Systems Reference Library

IBM System/360 Operating System:

Programmer's Guide to Debugging

0S Release 21.7

File No. S8360-20
Order No. GC28-6670-6

0s

IEXY 1 1111

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

Seventh Edition (November, 1972)

This is a reprint of GC28-6670-5 incorporating changes
released in the following Technical Newsletter:

GN28-2520 (dated April 15, 1972)

l This edition with Technical Newsletter GN28-2545 applies to

release 21.7 and component release 360S-0S-586 of IBM System/360
Operating System, and to all subsequent releases until otherwise
indicated in new editions or Technical Newsletters. Changes are
continually made to the information herein; before using this
publication in connection with the operation cf IBM systems,
consult the latest IBM System/360 and System/370 Bibliography,
GA22-6822, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Publications Development,
Department D58, Building 706-2, PO Box 390, Poughkeepsie, N.Y.
12602, Comments become the property of IBM.

© Copyright International Business Machines Corporation 1967,1968,1969,1970,1971,1972

This publication is intended to help you
use the debugging facilities provided with
the IBM System/360 Operating System. It
describes, in assembler language terms, the
major debugging facilities provided with
the Systenv/360 Operating System, and is
directed towards the programmer who deals
with system and application program
problems.

The publication is divided into three
principal parts: “Section 1: Operating
System Concepts;"™ “Section 2: Interpreting
Dumps;™ and "Section 3: Tracing Aids,”
plus an Introduction and a set of
Appendixes that provide specific debugging
information.

The Introduction provides a brief survey
of the material presented in the balance of
the publication.

Section 1 deals with internal aspects of
the operating system that are pertinent to
debugging. A working knowledge of this
information will provide you with the means
of determining the status of the system at
the time of failure, and the course of
events which led up to that failure. The
general precedure for debugging with an
operating system dump (Appendix A) assumes
knowledge of this control flow.

Section 2 includes instructions for
invoking, reading, and interpreting storage
dumps of systems with MFT or MVT control
programs. The material is intended to aid
you in interpreting dumps and isolating
errors.

Section 3 deals with the save area
chain, the Trace Option, and the
Generalized Trace Facility. Output from
the Generalized Trace Facility is
discussed.

Before reading this publication, you
should have a general knowledge of
operating system features and concepts as
presented in the prerequisite publications.
Occasionally, the text refers you to other
publications for detailed discussions
beyond the scope of this book.

.Preface

For information on debugging facilities
provided within higher languages, consult
the programmers' guides associated with the
respective languages. Other System/360
Operating System publications, such as
Messages and Codes, describe additional
debugging aids provided for the assembler
language programmer.

Notice: Coding level information presented
in this publication must not be used for
coding purposes or exposure to changes in
implementation may result. The information
is presented for debugging purposes only.

PREREQUISITE PUBLICATIONS

IBM System/360: Principles of
Operation, GA22-6821

IBM System/360 Operating System:

Supervisor Services and Macro
Instructions, GC28-6646

Data Management Services, GC26-3746

REFERENCE PUBLICAT IONS

IBM System/360 Operating System:

System_Control Blocks, GC28-6628

Messages and Codes, GC28-6631

Data Management Macro Instructions,
GC26~-3794

Sexrvice Aids, GC28-6719

TCAM Programmer's Guide and Reference,
GC30~-2024.

TCAM Serviceability Aids, GY30-2027.
TCAM, GY30-2029.

TSO Control Program, GY27-7199.

4 Programmer's Guide to Debugging (Release 21)

SUMMARY OF AMENDMENTS FOR GC28-66
O0S RELEASE 21 . .

» % e ® o * e

70-5

« o =

SUMMARY OF AMENDMENTS FOR GC28-6670-4

AS UPDATED BY GN28-2457 AND GN28-
0OS RELEASE 20.1 . . . ¢ &« « « &«
SUMMARY OF AMENDMENTS FOR GC28-66
OS RELEASE 20 .« « « .« «

INTRODUCTION 4 « o « ¢ o « © « o

SECTION 1: OPERATING SYSTEM CONC

Task Management . « « < « « « «
Task Control Block . .
Request Blocks . .
Active RB Queue .
Load List
Job Pack Area Queue (MFT With
Subtasking Only) . . .

* e @
* = ® e =
e @ e * @
e o . -

2472

70-3

e ® =

EPTS

e o & e @

.
-
.
-

Effects of LINK, ATTACH, XCTL, and
LOAD ¢ o « ¢ « o o o o« s o« = o o o
System Task Control Differences .

Systems With MPT (Without
Subtasking) . ¢« . . ¢ o . .
Main Storage Superv151on « o e .

SECTION 2:
ABEND/SNAP Dump (MFT)

Indicative Dump .

Storage Control in Systems w1th MPT

(Without Subtasking) . . « « . .
Storage Control in Systems with
MFT (With Subtasking)
Storage Control for a Region in
Systems with MVT . . . - . -
Storage Control for a Subpool in
Systems with MVT « . .
Storage Control for a Load Module
in Systems With MVT . . . « . &

System Control Blocks and Tables . .

Communications Vector Table (CVT)
Task Input/Output Table (TIOT)
Unit Control Block (UCB) . . .
Event Control Block (ECB)
Input/Output Block (IOB) .
Data Control Block (DCB) .
Data Extent Block (DEB) .
Summary of Control Block

Relationships . . « <« o ¢« ¢« « &«

«. 8 0
. & 8 3 & &

INTERPRETING DUMPS . . .

Invoking an ABEND/SNAP Dump (MFT)
Contents of an ABEND/SNAP Dump
(MFT) « ¢ & o o o« o o« = = « =
Guide to Using an ABEND/SNAP Dump
(MFT) - - - -

*® e ®» o @& o & =

ABEND/SNAP Dump (MVT) - .

Invoking an ABEND/SNAP Dump (MVT)
Contents of an ABEND/SNAP Dump
(MVT) & ¢ v o « o & o e o o
Guide to Using an ABEND/SNAP Dump
(MVT)

"« ® @ & * e e e

® ® = & © e *o =

Contents of an Indicative Dump .

-

-

-

s 8 8 0 &

.

-

. 8 0 4 0 8 s s s

9

10

18

IMDPRDMP Output

Guide to Storage Dumps - « « « «

Contents

Guide to Using an Indicative Dump
Storage Dumps

e % o & o o

Damage Assessment Routine (DAR)
console DUmMP « ¢ ¢ « « o
IMDSADMP Service Aid . .
System Failure
The SYS1.DUMP Data Set
Tape « « « «
Direct Access

e ®» =

& s s @

. @ @

5 4 6 85 & s @

Queue Control Block Traces
Link Pack Area Maps . « « « « o
Major System Control Block Format
MVT Control Block Formatting .
MFT Control Block Formatting
TSO System Block Formatting
Task Control Block Summaries
The General Format . . .
Output Comments . . .

» & o & 8 s s 0
e & s o o & o &
e« & & s o & s @

. o o

Determining the Cause of the

Task Structure o
MFT System (Without Subtaskin
MFT System (With Subtasking)
WT system - - - - - - - - -

Task Status - Active RB Queue

‘g

)

Main Storage Contents .

Load List (MFT) . .
Load List (MVT) . .

. e =

L]

Job Pack Area Queue (MFT W1th

Subtasking, MVT) « « . « «
Main Storage Supervision . .
Free Areas in MFT Systems
Gotten Subtask Areas (MFT)
Region Structure
I/0 Control Blocks .
Queue of DEBs .
UCBS « « o o &
DCB and TIOT .
IOB . ¢« « « &
ECB ¢ &« ¢ =« «
TSO Control Blocks
TSCVT .
RCB . .
UMSM .
SWAP DC
TJIB
TSB
TJIBX
PSCB
TAXE

s 8 & & & 8 » 8 8 & 2 2 b 2 e

-
»
.
.
.
.
.
-
.
-
-
-
.
.
-
-

= ¢ s & s [Ho

e 8 8 s 8 3 o8 s

O T T T R R B}

s & 4 & & s 8 & &

s 8 & & 3 o 4 4 s

s & 8 8 4 8 8 & & 83 & 8 o & B
& &8 & 8 & ¢ 8 * B s & & & s &
s & e 4 8 @ 4 & b 4 s 4 s 0

SECTION 3: TRACING AIDS/, - .
Save Area Chain
Trace Option . . « « « . =
Interpreting Trace Table
Generalized Trace Facility . .
GTF Minimal Trace Records .

I0 and PCI/I0 Minimal Trace Rec

SIO Minimal Trace Record .
DSP Minimal Trace Record .
EXT Minimal Trace Record .

& & & & & & & & & s & & ¢ &

-

in MVT Syste

¢ & & & 8 8 B 4 5 4 8 v B & b 8 Zs a8 b

Entries

-

Contents

L R O N T~ I I B I I A L)

s & 8 5 o o o N s o 0o 8 & 0 0o 3 ¢ 0@

e}

e & ® 8 6 8 & 4 & & 8 b 0 0w b s s s

or

¢ 8 8 & 6 8 a e 6 8 @ & & 8 8 s 8 b s s 4 s s 8 s b

¢ & o & o 0 b ¢ 8 s 5 & s & b 0 2 & b

l-oo.olouan

s 3 6 5 & 8 & & & & & & & &

67
68
68
68
68
68
68

68

69
70
70
71
75
75
92

.108
124
.128
«130
.137
.138
.138
.138
139
L 139
<141
<142
<142
142

“e142

.143
.143
.143
.143
.143
.143
Qluu
.144
L1448
.145
.145
.145
.146
.146
.146
.146
.146
.146
.146
.146

<147
147
.148
.148
.150
150
.151
.152
«153
.154

5

PGM Minimal Trace Record . . .
SVC Minimal Trace Record . . .
SSM Minimal Trace Record . . .
GTF Comprehensive Trace Records .
10 and PCI/IO Comprehensive Trace
RECOXd v « « = o = o = o « s = =
SI0 Comprehensive Trace Record .
DSP Comprehensive Trace Record .
EXT Comprehensive Trace Record .
PGM Comprehensive Trace Records
SSM Comprehensive Trace Record .
Time and Lost Event Records . . .
Hexadecimal Format Record
GTF SVC Comprehensive Trace Records
SVC Comprehensive Trace Records
Group 1 - BaSiC Fields . @ ® ® e
SVC Comprehensive Trace Records
Group 1 - BaSiC Fields .- ®» ® e =
SVC Comprehensive Trace Records
Group 2 - Basic Fields Plus DDNAME
Field - - - - - - - L] - - - - - L d
SVC Comprehensive Trace Records;
Group 3 - Basic Fields Plus
Parameter List Field . «
SVC Comprehensive Trace Records;
Group 4 - Basic Fields Plus
Variable Fields . « ¢« « o o « o

LI Y)
s s s 8

e s o & & s 3 @

-155
«156
.157
-158

.159
«161
~162
-163
-165
«166

167

.168
<169

170
<170

«181

.182

190

IMDPRDMP Output Comments - GTF
ProcesSing « « ¢ ¢« ¢ ¢ ¢ o« 4 o o o o

APPENDIX

A:

DEBUGGING WITH AN

OPERATING SYSTEM DUMP . . . &+ « « o «
Specialized Program Checks
Debugging Procedure Summary . « .

APPENDIX
APPENDIX

APPENDIX
PREFIXES

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX
AIDS . .

INDEX. .

6 Programmer's Guide to Debugging (Release 21)

SVCS - - - - - - - - - -
COMPLETION CODES .« « « &

SYSTEM MODULE NAME

® e & ® & ¢ ® © & e s o o

LIST OF ABBREVIATIONS . .
ECB COMPLETION CODES . .
UCB SENSE BYTES « « .« « «
SERVICE AIDS « o o « & =«

TCAM DEBUGGING AIDS .

CONTROL BLOCK POINTERS .

OPEN/CLOSE/EOV DEBUGGING

a4 e e & e & ° o » e & & =

.203

.205
.206
«207
- 209

- 215

.219
221
«223
.225
«229
.231
.233

241

.243

Figure 1. Control Information
Available Through the TCB
Figure 2. RB Formats e e * » e
Figure 3. Active RB Queue . . «
Figure 4. Load List (MFT) . . .
Figure 5. Job Pack Area Queue .
Figure 6. Main Storage Snapshot (MF
Without Subtasking) . « . ¢« ¢« ¢« <« &«
Figure 7. Partition (MFT Without
Subtasking) « ¢« ¢« ¢ o < o » .
Figure 8. Main Storage Snapshot (MFT
With Subtasking) a ¢ s s s s e s o o
Figure 9. Main Storage Snapshot
(MVT) - L] - - - - - - - - . - - - - .
Figure 10. Storage Control for a
Partition (MFT Without Subtasking) .

¢ 38 o & 4 0

Figure 11. Storage Control for Subtask

Storage (MFT With Subtasking)
Figure 12. Storage Control for a
Region (MVT) e % e s 2 o 8 s » o s &
Figure 13. Storage Control for a
Subpool (MVT) . . . - .
Figure 14. Storage cOntrol for a Load
Module (MVT) L] - - - - - - - - L d * Ld
Figure 15. Control Block
Relationships . « ¢« ¢ « « o« ¢ o o o &
Figure 16. Sample of an ABEND Dump
(MH) (Part 1 of 2) - - - - - - - -
Pigure 17. SYSABEND DD Statements .
Figure 18. Sample of Complete ABEND
Dump (MVT) (Part 1 of 2) « o s e o
Figure 19. Contents of an Indicative
Figure 20. Queue Control Block Trace
Sample . .« - - .
Figure 21. Link Pack Area Map Sample
Figure 22. Sample of MVT Major
Control Block Format - o s e “ e =
Figure 23. Sample of MFT Control
Blmk Fomt - - - - - - - -
Figure 24. Sample of TSO control
Block Format (Part 1 of 3) « o % o
Figure 25. TSB Summary Sample for
System That Operated Under MVT or MFT
With Subtasking . « « « « & &« & .- .
Figure 26. TCB Summary Sample for
Systems that Operated Under MFT
Without Subtasking “ s s e e & w = o

13
15
16
16
18

« o & 4 0

. 22
. 22

- 26

« 33
- “7
- 65

. 71
. 73

«109

<126

127

Figure

Dump
Figure

Hardware Control Words

Figure
in MFT
Figure
Figure
Figure
CDE in
Figure

Figure
Figure
Figure
Figure
Figure

27.

® ® ® & ®© & = o o

28.
29.

30.
31.
32.
MVT
33.

34.
35.
36.
37.
38.

with Model

Figure
(MF'T)
Figure
(MVT)
Figure

Trace Record

Figure
Figure
Figure
Figure
Figure
Figure
Figure

39.
s0.

* =

ul.

uz.
u3.
44,
45.
u6.
47.
48.

Figures

Sample of General Format

s -

» e =

Permanently Assigned

a ° e -

Finding the Partxtion TCBs

Finding the TCB

e & o

IMDPRDMP TCB Summary .
Determining Module From

Subpool D;scrip;ions in
MVT - IMDPRDMP Storage Print

I/0 Control Blocks

Save Area Trace .
Trace Table Entries (MFT

Trace Table Entries (MVT)

- o =

. e

Trace Table Entries (MVT
65 multiprocessing)
Sample Trace Table Entries

*« e © e o ® e e

-

-

Sample Trace Table Entries

e & o o e« * = e

e o e

IO and PCI/IO Minimal

- s e . =

SIO M1n1m31 Trace
DSP Minimal Trace
EXT Minimal Trace
PGM Minimal Trace
SVC Minimal Trace
SSM Minimal Trace
I0 and PCI/IO

Comprehensive Trace Record

Figure
Record
Figure
Record
Figure
Record
Figure
Record
Figure
Record
Figure
Figure

Trace Record

Figure
Figure

49.

50.
51.

52.

53.
54,
55.

56.
57.

Record

Record
Record
Record
Record
Record

SI0 Comprehensive Trace

« o e @ e o o »

DSP Comprehensive Trace

-

EXT Comprehensive Trace

‘e ® @ e = & ® e

PGM Comprehensive Trace

SSM Comprehensive Trace

e e » o s e o

Hexadecimal Format Record

* o o

Basic SVC Comprehensive
Control Block Flow . .
MVT Storage Control Flow

«129
-.138
«139
<140
«141
2142

<144
«145
-147
.148
.148

.149
.150
.150
.151
.152
.153
.154
.155
.156
.157
.159
.161
.162
.163
.165

<166
168

.170
«237
.239

Figures 7

8 Programmer‘s Gulde to Debugging (Release 21)

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

Summary of Amendments
for GC28-6670-5,-6

as Updated by GN28-2545
OS Release 21.7

Model 91 or 195 Imprecise Interruption
An explanation of the bits set by an
imprecise interruption on the Model 91
or 195 has been added. :

AMDPRDMP Format Changes
some additional fields have been added

to the JOB information and the TCB.

AMDPRDMP Messages
Several new messages can be put out by

AMDPRDMP to aid in debugging.

GrF_Records
The DSP, EXT, PRM, and SWC
comprehensive trace records have had a
parameter added to the MODN field.

Summary of Amendments
for GC28-6670-5
0S Release 21

PCP_REMOVAL
References to the PCP version of
Operating System/360 have been deleted
from the publication.

TESTRAN REMOVAL
References to the TESTRAN testing
facility of Operating System/360 have
been deleted from the publication.

IMDPRDMP SERVICE AID OUTPUT
Storage dumps as formatted and
displayed by the IMDPRDMP service aid
are now discussed in this publication.
This material was formerly in the
Service Aids publication, GC28-6719.

GENERALIZED TRACE FACILITY (GTF) OUTPUT
GTF trace records, as processed by the
EDIT function of the IMDPRDMP service
aid are illustrated and discussed in
Section 3 of the publication.

DEVICE SUPPORT
The sense byte information given in
Appendix G is updated to include
information for the:

IBM 3420 Magnetic Tape Unit and 3803
Tape Control

Summary of Amendments

The explanation for SVvC 79 (STATUS) has
been changed.

New Emulator

The 7074 emulator can be run on the
Model 155.

New I/0 Devices

Sense byte information has been added
for the 3213, 3215, 3272, 3277, and
3333 as well as additional support for
the 3410/3411.

Miscellaneous Corrections

Several additional changes have been
made to correct errors.

IBM 2596 Card Read Punch

IBM 3505 Card Reader

IBM 3525 Card Punch

IBM 3410 Magnetic Tape Unit

IBM 3411 Magnetic Tape Unit and
Control

PROBLEM DETERMINAT ION
Addition of an Appendix discussing
problem determination aids for
OPEN/CLOSE/EOV processing.

Updating of the completion codes and
service aids Appendixes to reflect
release 21 changes. .

The Console Dump facility, used to
obtain a storage dump for later
processing by IMDPRDMP, is briefly
described in the storage dump and
IMDPRDMP formatting section of the
publication.

MISCELLANEQUS

Editorial improvements and corrections
to existing material have been made
throughout the publication.

Summary of Amendments 9

Summary of Amendments
for GC28-6670-4
as Updated by GN28-2457 and GN28-2472

OS Release 20.1

TCAM -

Section 2: ABEND/SNAP Dump (PCP and MFT)
ABEND/SNAP Dump (MVT)
Appendix A
Appendix H
A brief description of TCAM debugging
Aids and a new SVC.

TSO
Section 2: TSO Control Blocks

Appendix A
The addition of new SVCs and a summary

of the control blocks formatted by
IMDPRDMP.

Summary of Amendments
for GC28-6670-3
0S Release 20

IMDPRDMP

"Guide to Using a Storage Image Dump"
" IMDPRDMP is used instead of IEAPRINT to

print MFT and MVT dumps.

3330, 2305, 2319

Appendix F
Additional of sense byte information fo
new devices.

MISCELLANEQUS

Appendix C
1. Addition of module name prefixes
for emulator programs.

Appendix G
2. New features of service aid program
IMAPTFLE.

TSO

Appendix A
New SVCs in Appendix A. This
information is for planning purposes
only.

10 Programmer's Guide to Debugging (Release 21.7)

To debug efficiently, you should be
familiar with the system control
information reflected in dumps. This
control information, in the form of control
blocks and traces, tells you what has
happened up to the point of error and where
key information related to the program is
located. To provide an insight into the
IBM System/360 Operating System and its
complex aspects of task management and
storage supervision, Section 1 of this
publication provides an orientation in the
control functions of the operating system.

The IBM System/360 Operatiig System
provides extensive debugging facilities to
aid you in locating errors and determining
the system state quickly. Some debugging
aids, such as console messages, provide
limited information that may not always
help you identify the error. This manual
discusses those debugging facilities that
provide you with the most extensive
information:

a. Abnormal termination (ABEND) and
snapshot (SNAP) dumps.

b. Indicative dumps.
c. Storage image dumps.
d. Tracing facilities.

Dumps are discussed in Section 2 and
tracing facilities in Section 3.

ABEND and SNAP Dumps are invoked by ABEND
and SNAP macro instructions, respectively.
They are grouped in a single category
because they provide identical information.
In addition to a hexadecimal dump of main
storage, they can contain convenriently
edited control information and displays of
the operating system nucleus and trace
table.

Indicative dumps contain control
information useful in isolating the
instruction that caused an abnormal end of
task situation. The information is similar
to that given in an ABEND/SNAP dump, but
does not include a dump of main storage.

Storage dumps are produced by either the
system dump facility at the time of a
system failure, or by a dump program
created through use of the IMDSADMP service
aid. IMDSADMP programs must be loaded into

Introduction

storage through use of the IPL facilities

and are intended for use in situations in

which the system is not operative, e.g., a
disabled wait state or an unending system

loop.

The system dump facility writes to the
SYS1.DUMP data set. The IMDPRDMP service
aid is used to format and print the
SYS1.DUMP data set. IMDPRDMP output is
described in this publication. The
IMDSADMP programs write to tape (high-speed
dump) or to tape or printer (low-speed
dump). The output tape produced by the
high~speed dump must be processed by the
IMDPRDMP program; low-speed output to tape
may be processed by IMDPRDMP, IEBPTPCH or
the IEBGENER utility program.

Storage dumps taken by the system dump
facility consist of control informaticn
followed by a display of printable storage
from location 00 to the capacity of
storage. Storage words are displayed in
both hexadecimal and EBCDIC notation.
Storage dumps taken by an IMDSADMP program
consist of register contents followed by a
display of storage from location 00 to the
capacity of storage. Notation is in koth
hexadecimal and EBCDIC.

Tracing facilities consist of the save
area chain trace, the Trace Option and the
Generalized Trace Facility.

The save area chain enables tracing of
the save areas for each level of load
module in a task. The save area trace is
displayed in ABEND/SNAP and storage dumps.

The Trace Option, if installed in the
system, provides records of system
interruptions (I0, SIO, etc.) that are
displayed in ABEND/SNAP and storage dumps.

The Generalized Trace Facility (GTF)
enables selective tracing of system and
application program events and records the
information internally, in a table which is
displayed in printouts of ABEND dumps and
storage dumps, or externally in a data set
which is processed by the IMDPRDMP service
aid to provide edited and formatted GTF
trace records. (For complete information
on GTF see the Sexvice Aids publication.)
The GTF output, as processed by IMDPRDMP,
is discussed in Section 3 of this
publication.

Intxoduction 11

General Notes: e Control block field names referred to
are those used in the IBM System/360

e Displacements and addresses shown in Operating System: System Control
the text and illustrations of this Blocks manual, GC28-6628.
publication are given in decimal
numbers, followed by the corresponding » Wherever possible, diagrams, and
hexadecimal number in parentheses, reproductions of dumps have been
€.g., TCB+14(E); location 28(1C); sVC included to aid you during the
42(27). All other numbers in the text debugging process.

are decimal, e.g., the seventeenth word
of the TCB; a Uu-word control block; 15 .
job steps.

12 Progtammer's Guide to Debugging (Release 21)

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

This section introduces you to the control
information that you must know to interpret
dumps. It is divided into three topics:

¢ task management
e main storage supervision
e system control blocks and tables

The first two topics deal with those
aspects of task management and main storage
management, respectively, that are
represented in dumps. The third topic
describes the remaining system control
blocks and tables helpful in pinpointing
errors.

Note: The descriptions of system control
blocks and tables in this section emphasize
function rather than byte-by-byte contents.
Appendix K summarizes the contents of those
control blocks most useful in debugging.

For a more detailed description of
system control blocks and taoles, refer to
the System Control Blocks publication,
GC28-6628.

Task Management

The task management control information
most useful in debugging with a dump
includes the task control block and its
associated request blocks and elements.

The functions, interactions, and
relationships to other system features of
these items are discussed in this topic. A
summary of how task supervision differs at
each system level concludes the topic.

Task Control Block

The operating system keeps pointers to all
information related to a task in a task
control block (TCB). For the most part,
the TCB contains pointers to other system
control blocks. By using these pointers,
you can learn such facts as what I/0
devices were allocated to the task, which
data sets were open, and which load modules
were requested.

Fiqure 1 shows some of the control
information that can be located by using
the pointers in the TCB. Later, in the
discussion of system control blocks and
tables, Figure 1 is expanded to show the
actual block names and pointer addresses.

Section 1: Operating System Concepts

——

7
t

| Devices | '
| !/{
| I

(———

==

! fi“_—_jx
| Data set l I Device ! ’
t attributes l : {amibum : '
L _{,}_.» % LV
£ T
==
| o]
| informaﬂonl II::@
e A e
| Complete | ! | | l
| /O |1 cew Il
| events | I st] |
L !____ 1/

Control Information Available
Through the TCB

Figure 1.

Request Blocks

Frequently, the routines that comprise a
task are not all brought into main storage
with the first load module. 1Instead, they
are requested by the task as it requires
them. This dynamic loading capability
necessitates another type of control block
to describe each load module associated
with a task -- a request block (RB). An RB
is created by the control program when it
receives a request from the system or from
a problem program to fetch a load module
for execution, and at other times, such as
when a type II supervisor call (SvC) is
issued. By looking at RBs, you can
determine which load modules have been
executed, why each lost control, and, in
most cases, which one was the source of an
error condition.

There are seven types of RBs created by
the control program:

e Program request block (PRB)

® Supervisor request block (SVRB)
e Interrupt request block (IRB)

Task Management 13

e Supervisor interrupt request block
(SIRB)

Loaded program request block (LPRB)
Loaded request block (LRB)

Finch request block (FRB)

Of these, you will most often encounter
the PRB and SVRB in dumps. The type of RB
created depends on the routine or load
module with which it is associated.

PRB_(Systems with MFT): A PRB is created
whenever an XCTL, LINK, or ATTACH macro
instruction is issued. It is located °*
immediately before the load module with
which it is associated.

PRB (Systems with MVT): A PRB is created
whenever an XCTL or LINK macro instruction
is issued. It is located in a fixed area
of the operating system.

SVRB: An SVRB is created each time a type
II, III, or 1V supervisor call is issued.
(Type I SVC routines are resident, but run
disabled; they do not require a request
block.) This block is used to store
information if an interruption occurs
during execution of these SVC routines. A
list of svCs, including their numbers and
types, appears in Appendix A.

IRB: An IRB is created each time an
asynchronous exit routine is executed. It
is associated with an event that can occur
at an unpredictable time during program
execution, such as a timing routine
initiated by an STIMER macro instruction.
The IRB is filled at the time the event
occurs, just before control is given to the
exit routine.

SIRB: An SIRB is similar to an IRB, except
that it is associated only with
IBM-supplied input/output error routines.
Its associated error routine\ is fetched
from the SYS1.SVCLIB data set.

LPRB (MFT only): An LPRB is created when a
LOAD macro instruction is issued unless the
LOAD macro instruction specifies:

e A routine that has already been loaded.

* A routine that is being loaded in
response to a LOAD macro instruction
previously issued by a task in the
partition (MFT with subtasking).

* A r?utine that is "only loadable" (see
LRB) .

An LPRB is located immediately before the
load module with which it is associated.
Routines for which an LPRB is created can
also be invoked by XCTL, LINK, and ATTACH
macro instructions.

LRB_(MFT only): The LRB is a shortened
form of an LPRB. Routines associated with
LRBs can be invoked only by a LOAD macro
instruction. This attribute is assigned to
a routine through the OL (only loadable)
subparameter in the PARM parameter of the
EXEC statement that executes the linkage
editor. The most common reason for
assigning this attribute is that linkage
conventions for XCTL, LINK, and ATTACH are
not followed. This request block is
located immediately before the load module
with which it is associated.

FRB_(MFT with subtasking only): An FRB is
created and attached to the job pack area
queuve, during LOAD macro instruction '
processing, if the requested module is not
already in the job pack area. The FRB
describes a module being loaded in response
to a LOAD macro instruction. Any
subsequent requests for the same module,
received while it is still being loaded,
are deferred by means of wait list elements
(WLES) queued to the FRB. When the module
is fully loaded, an LRB or an LPRB is
created, the FRB is removed from the job
pack area queue, and any requests,
represented by wait list elements, are
reinitiated.

Figure 2 shows the relative size of the
seven types of RBs and the significant
fields in each.

In Figure 2, the "size" field tells the
number of doublewords in both the RB and
its associated load module. The PSW
contained in the "“resume PSW" field
reflects the reason that the associated
load module lost control. Other fields are
discussed in succeeding topics.

This far, the characteristics of the TCB
and its associated RBs have been discussed.
With the possibility of many RBs
subordinate to one task, it is necessary
that queues of RBs be maintained. 1In
systems with MFT without subtasking, two
queues are maintained by the system -- the
active RB queue and the load list. In MFT
systems with subtasking, a job pack area
queue, containing FRBs, and LRBs and LPRBs
that represent reenterable modules is also
maintained. MVT systems maintain an active
RB queue apd a contents directory. The
contents directory is made up of three
separate queues: the link pack area
control queue (LPAQ); the job pack area
control queue (JPAQ); and the load list.

14 Programmer's Guide to Debugging (Release 21.7)

LPRB LRB PRB
=12 Major RB oddress
(MFT with subtasking)
-8 Lood list pointers -8 Load fist pointers
(MFT) (MFT)
-4 pointers
-4 Absent (MVT) -4 Absent (MVT)
0 Module name 0 Module name 0 Module name 0
(MFT) (MFT) : (MFT)
Last half of user's Last half of user's Last half of user's Module name
PSW (MVT) PSW (MVT) PSW (MVT)
8 8
Size Flags Size Flags Size Flags Size Flags
12€) |4 Entry point (MFT); 12(C) {4 Entry point (MFT); 12(C) | 4 Entry point (MFT); 12 (C)
Use Ct | § CDE (MVT) Use Ct |4 CDE (MVT) Use Ct | 4 CDE (MVT) ’ Address of WLE
16 (10) 16 (10) 16 (10) .
Address of TCB
Resume PSW Resume PSW 20 (14)
Address of LPRB
28(1C) 28(1C)
weirce|] Next B Program Extent List waircr|] Next BB
Mo r:ngth of extent in
| hiearchy 0
= = Note: Program extent list is added to LPRB, LRB, or PRB if the
+4 Length of extent in program described was hiearchy block loaded.
| hiearchy 1
|-:8 Address of extent in
:_ hiearchy 0
1+ 12(C) Address of extent in
_ hearchyl
SVRB IRB SIRB
0 Module name 0 Module name 0 Module name
(MFT) (MFT) (MFT)
Last half of user's Last half of user's Lost half of user's
PSW (MVT) PSW (MVT) PSW (MVT)
8
Size Flags Size Flags Size Flags

12(C) |4 Entry point (MFT);
Use Ct (4 CDE (MVT)

12(C) |4 Entry point (MFT);
Use Ct 4 CDE (MVT)

12(C) |4 Entry point (MFT);
Use Ct |4 CDE (MVT)

Figure 2. RB Formats

16 (10) 16 (10) 16 (10)
Resume PSW Resume PSW Resume PSW
28(1C) 28(1C) 28 (1C)
Wait Ct f Next R WaitCt 1 Next RB ey || NextRB
32 (20) 32 (20) 32 (20)
Register Register Register
Save Area Save Area Save Area
96 (60)
Extended
Save Area

Task Management 15

Active RB Queue

The active RB queue is a chain of request
blocks associated with active load modules
and SVC routines. This queue can contain
PRBs, SVRBs, IRBs, SIRBs, and under certain
circumstances, LPRBs. Figure 3 illustrates
how the active RB queue links together the
TCB and its associated RBs.

RB-A RB-8 RB-C

ta fs ic
| tres Yre-a {re-B
A B C
— | Load _ ... and -
—— | modules... | =T | SVC routines] —
Figure 3. Active RB Queue

The request blocks in the active RB
queue in Figure 3 represent three load
modules. Load module A invokes load module
B, and B, in turn, invokes C. When
execution of A began, only one RB existed.
When the first invoking request was
encountered, a second RB was created, the
TCB field that points to the most recent RB
was changed, and A's status information was
stored in RB-A. A similar set of actions
occurred when the second invoking request
was encountered. As each load module is
executed and control is returned to the
next higher level load module, its RB is
removed from the chain and pointers are
updated accordingly.

load List

The load list is a chain of request blocks
or elements associated with load modules
invoked by a LOAD macro instruction. The
load list differs from the active RB queue
in that RBs and associated load modules are
not deleted automdtically. They remain
intact until they are deleted with a DELETE
macro instruction or job step texrmination
occurs. By looking at the load list, you
can determine which system and problem

program routines were loaded before the
dump was taken. The format of the load
list differs with control program levels.

Systems with MFT (without subtasking): At
this control program level, the load list
associated with a TCB contains LRBs and
LPRBs. RBs on the load list are linked
together scomewhat differently from those on
the active RB queue because of the
characteristics of the LOAD macro
instruction. Because RBs may be deleted
from a load list in a different order than
they were created (depending on the order
of DELETE macro instructions), they must
have both forward and backward pointers.
Figure 4 illustrates how a load list links
together a TCB and three RBs.

RB-A RB-B_ RB-C

RB-A RB-B
RB-C TCB

< <
> —
tA E‘li T El] ic
A B

Load List (MFT)

$ RB-8

=1l

Figure 4.

Here, each RB contains a pointer both to
the previous RB and the next most recent RB
in the list. If there is no previous or
more recent RB, these fields contain zeros
and a pointer to the TCB, respectively.

Another field of a load list RB that
merits consideration is the use count.
Whenever a LOAD macro instruction is
issued, the load list is searched to see if
the routine is already loaded. If it is
loaded, the system increments the use count
by one and passes the entry point address
to the requesting routine.

Each time a DELETE macro instruction is
issued for the routine, the use count is
decremented by one. When it reaches zero,
the RB is removed from the load list 'and
storage occupied by the associated routine
is freed.

16 Programmer's Guide to Debugging (Release 21)

Systems With MFT (With Subtasking): At
this control program level, the load list

is used as described for MFT without
subtasking, with the following exceptions:

1. The LRBs and LPRBs queued on the load
list represent modules that are not
reenterable. LRBs and LPRBs
representing reenterable modules are
queued on the job pack area gqueue.

2. When a LOAD macro instruction is
issued, the system searches the job
pack area queue before searching the
load list.

Systems With MVT: Instead of LRBs and
LPRBs created as a result of LOAD macro
instructions, the load list maintained by a
system with MVT contains elements
representing load modules. Load list
elements (LLEs) are associated with load
modules through another control medium

called the contents directory.

The contents directory is made up of
three separate queues: the link pack area

control gqueue (LPAQ), the job pack area
control queue (JPAQ), and the load list.

The LPAQ is a record of every program in
the system link pack area. This area -
contains reenterable routines specified by
the control program or by the usex. The
routines in the system link pack area can
be used repeatedly to perform any task of
any job step in the system. The entries in
the LPAQ are contents directory entries
(CDEs).

There is a JPAQ for each job step in the
system that uses a program not in the link
pack area. The JPAQ, like the LPAQ, is
made up of CDEs. It describes routines in
a job step region. The routines in the job
pack area can be either reenterable or not
reenterable. These routines however,
cannot be used to perform a task that is
not part of the job step.

The load list represents routines that
are brought into a job pack area or found
in the link pack area by the routines that
perform the Load function. The entries in
the load list are load list elements, not
CDEs. Each load list element is associated
with a CDE in the JPAQ or the LPAQ; the
programs represented in the load list are
thus also represented in one of the other
contents directory queues.

Load list elements also contain a count
field that corresponds to the use count in
a LPRB or LRB. Each time a LOAD macro
instruction is issued for a load module
already represented on the load list, the
count is incremented by one. As
corresponding DELETE macro instructions are
issued, the count is decremented until it

reaches zero. An LLE has the following
format:

Byte 0: Reserved (RES).

Bytes 1-3: Pointer to the next more recent
LLE on the locad list.

Byte 4: Count.

Bytes 5-7: Pointer to the corresponding

CDE.

More will be said about CDEs in the next
topic of Section 1, titled "Main Storage.
Supervision.”®

Job Pack Area Queue (MFT With Subtasking
Only)

In an MFT system with subtasking, the job
pack area queue is a chain of request
blocks associated with load modules invoked
by a LOAD macro instruction. The queue
contains FRBs, and those LRBs and LPRBs
that represent reenterable modules. FRBs
are queued on the job rack area queue until
the requested module is completely loaded.
When the module is completely loaded into
main storage, the FRB is removed from the
job pack area queue and replaced with an
LBR or an LPR queue on the job pack area
queue if the loaded module is reenterable,
and on the load list if it is not.

In the MFT with subtasking
configuration, the load list represents
non-reenterable modules, while the jok pack
area queue represents cnly reenterable
modules within the partition. These RBs on
the job pack area queue are not deleted
automatically, but remain intact until they
are deleted by a DELETE macro instruction,
or until job step termination occurs.
Reenterable load modules are therefore
retained in the partition for use by the
job step task or any subtasks which may be
created.

Whenever a LOAD macro instruction is
issued, the job pack area queue is
searched. If the routine is already fully
loaded and represented ky an LRB or an LPRB
on the JPAQ (the routine is reenterable),
the system increments the use count by one
and passes the module entry point address
to the requesting routine. If an FRB for
the requested module is found, a wait list
element (WLE) representing the deferred
request is queued to the FRB, and the
request is placed in a wait. When the

Task Management 17

requested routine is fully loaded, the
system releases the request from the wait
condition, and the request is re-initiated.
If no RB for the requested routine is
found, an FRB is created and queued on the
JPAQ. The system then searches the load
list of the requesting task for an RB for
the requested routine. If an RB for that
routine is found on the load list (the
routine is not reenterable), the use count
is incremented by one, the entry point
address of the module is passed to the
requesting routine, and the FRB is dequeued
from the JPAQ. If no RB is found on the
load 1list, the FRB remains on the JPAQ and
the system begins loading the requestea
module.

Each time a DELETE macro instruction is
issued for the routine, the use count is
decremented by one (the DELETE routine
ignores FRBs). When the use count reaches
zero, the RB is removed from the queue.

Figure 5 illustrates how the job pack area
queue is chained to a TCB.

In Figure 5, each RB contains a pointer to
the previous RB and a pointer to the next
RB on the queue. If there is no previous

RB on the queue, that pointer will contain
zero; if there is no next RB on the queue
(this RB is the most recent on the JPAQ),
the next RB pointer will point back to the
job pack area queue pointer in the PIB.

A] C
Kby oy
B _—— ! !
e d
Figure 5. Job Pack Area Queue

Two wait list elements (WLEs) are queued
to FRB-C representing deferred requests
waiting until the initial loading of the
module is completed. The last WLE contains
zero in its forward pcinter, indicating
that it is the last element on the WLE
queue.

Effects of LINK, ATTACH, XCTL, and LOAD

LINK, ATTACH, XCTL, and LOAD, though
similar, have some distinguishing
characteristics and system dependencies
worth mentioning. By knowing what happens
when these macro instructions are issued,
you can make more effective use of the
active RB queue and the load list.

LINK: A LINK results in the creation of a
PRB chained to the active RB queue. Upon
completion of the invoked routine, control
is returned to the invocking routine. In
systems with MFT, the RB is removed from
the queuve. The storage occupied by the
invoked routine is freed unless the routine
is also represented on the load list, or on
the job pack area queue in MFT systems with
subtasking. In systems with MVT, the use
count in the CDE is decremented by one; if
it is then zero, the RB and the storage
occupied by the routine are marked for
deletion. A LINK macro instruction
generates an SVC 6.

ATTACH: An ATTACH is similar to the other
three macro instructions in systems with
MFT without subtasking. In systems with
MFT with subtasking or MVT, ATTACH is the
means for dynamically creating a separate
but related task -- a subtask.

At the MFT without subtasking level,
ATTACH effectively performs the same
functions as LINK with two notable
additions: :

1. You can request an exit routine to be
given control upon normal completion
of the attached routine.

2. You can request the posting of an
event control block upon the routine's
completion.

Exit routines are represented by additional
RBs on the active RB queue. The ATTACH
macro instruction generates an SVC 42(2a).

XCTL: An XCTL also results in the creation
of a PRB and immediate transfer of control
to the invoked routine. However, XCTL
differs from the other macro instructions
in that, upon completion of the invoked
routine, control is passed to a routine
other than the invoking routine. In fact,
an XCTL does not result in the creation of
a lower level RB. Instead, the invoking
routine and its associated RBs are deleted
when the XCTL is issued. 1In effect, the RB

18 Programmer's Guide to Debugging (Release 21)

for the invoked routine replaces the
invoking routine's RB. The XCTL macro
instruction generates an SVC 7.

LOAD: The LOAD macro instruction was
treated previously in the discussion of the
load list. To summarize: the system
responds to a LOAD by fetching the routine
into main storage and passing the entry
point address to the requesting routine in
register 0. Because the system does not
have an indication of when the routine is
no longer needed, a LOAD must be
accompanied by a corresponding DELETE macro
instruction. If not, the routine and its
RB remain intact until the job step is
terminated. The LOAD macro instruction
generates an SVC 8.

System Task Control Differences

Thus far, this topic has dealt with the
aspects of task supervision that are
similar for MFT and MVT. There are,
however, some major differences:

1. The number of tasks that can be known
to the system concurrently.

2. The layout of main storage.

3. The additional main storage control
information in systems with MVT.

The first two subjects are discussed
here, by system. The third subject,
because of its volume, is discussed in the
next topic of Section 1.

Systems With MFT (Without Subtasking)

Figure 6 is a snapshot of main storage in a
system with MFT without subtasking.

The fixed area contains the nucleus
(including TCB queue, transient area
loading task, communications task, and
master scheduler task), and the system
queue area. Optionally it may contain
access methods and SVC routine which are
normally nonresident, a list of absolute
addresses for routines which reside on
direct access devices, and a reenterakle
load module area.

One TCB exists for each task. 2all TCBs
are linked by dispatching priority in a TCB
queue, beginning with the three resident
tasks.

The dynamic _area is divided into a
maximum of 52 partitions. Each partition
contains one task. The dynamic area can
contain as many as 3 reading tasks, 36
writing tasks, and 15 job step tasks,
providing that the total number of tasks
does not exceed 52. Partition sizes and
attributes are defined during system
generation. Figure 7 shows the contents of
an MFT partition.

OYNAMIC
AREAS j
(PARTITIONS

FIXED
AREA

Figure 6. Main Storage Snapshot (MFT

Without Subtasking)

DYNAMIC
AREA

Partition (MFT Without
Subtasking)

Figure 7.

Task Management 19

Jobs are processed sequentially in a
partition, one job step at a time. An
ATTACH macro instruction does not create a
subtask.

Systems with MFT (With Subtasking):
Operating Systems that provide
multiprogramming with a fixed number of
tasks with the subtasking option (MFT with

subtasking) differ from MFT systems without

subtasking in the following major areas:

1. MFT with subtasking has an ATTACH
facility similar to the ATTACH
facility in MVT. While the number of
job step TCBs still may not exceed 15,
the number of tasks in any partition,
and therefore the total number of
tasks in the system, is now variable.
‘Job step task TCBs reside in the
‘nucleus. They are queued, following
the system task TCBs, in the same
manner as in MFT without subtasking.
When subtasks are created, however,
the subtask TCBs are placed in the
system queue area and gqueued to the
job step TCBs according to dispatching
priority (TCBTCB field), and according
to subtask relationships (TCBNTC,
TCBOTC, TCBLTC fields).

2. MFT with subtasking provides the
ability to change the dispatching
priority of any task within a
partition through the use of the CHAP
macro instruction.

Figure 8 is a snapshot of main storage in
an MFT system with subtasking. Note here
that the TCBs in the nucleus are all job
step TCBs, while those residing in the
sytem queue area are the subtask TCBs.

Systems with MVT: In Operating Systems
that provide multiprogramming with a
variable number of tasks (MVT), as many as
15 job steps can be executed concurrently.
Each job step requests an area of main
storage called a region and is executed as
a job step task. In addition, system tasks
request regions and can be executed
concurrently with job step tasks.

Regions are assigned automatically from
the dynamic area when tasks are initiated.
Regions are constantly redefined according
to the main storage requirements of each
new task.

DYNAMIC
AREAS <
PARTITIONS)

FlXED{
AREA

Figure 8. Main Storage Snapshot (MFT With

Subtasking)

With the facility of attaching subtasks
available to each task through the ATTACH
macro instruction, the number of TCBs in
the system is variable. Tasks gain control
of the CPU by priority. To keep track of
the priority and status of each task in the
system, TCBs are linked together in a TCB
queue.

Figure 9 is a snapshot of main storage
in a system with MVT. The fixed area is
occupied by the resident portion of the
control program loaded at IPL. The system
gueue space is reserved for control blocks
and tables built by the control program.
The dynamic area is divided into
variable-sized regions, each of which is
allocated to a job ster task or a system
task. Finally, the link pack area contains
selected reenterable routines, loaded at
IPL. If an IBM 2361 Core Storage device
and Main Storage Hierarchy Support are
included in the system, a secondary 1link

20 Programmer's Guide to Debugging (Release 21)

pack area may be created in hierarchy 1 to
contain other reenterable routines.

LINK PACK
AREA .

DYNAMIC
AREA
{REGIONS)

SYSTEM
QUEUE
AREA

FIXED
AREA

Figure 9.

Main Storage Snapshot (MVT)

Main Storage Supervision

Storage control information is kept in a
series of control blocks called gueue
elements. In systems with MFT without .-
subtasking, queue elements reflect areas of
main storage that are unassigned. In MFT
systems with subtasking, a gotten subtask
area queue element (GQE) is introduced to
record storage obtained for a subtask by a
supervisor issued GETMAIN macro
instruction. In systems with MVT, more
elaborate storage control is maintained; at
any given time, queue elements reflect the
distribution of main storage in regions,
subpools, and load modules.

The dynamic area may be significantly
expanded by including IBM 2361 Core Storage
in the system. Main Storage Hierarchy
Support for IBM 2361 Models 1 and 2 permits
selective access to either processor
storage (hierarchy 0) or 2361 Core Storage
(hierarchy 1). If IBM 2361 Core Storage is
not included, requests for storage from
hierarchy 1 are obtained from hierarchy 0.
If 2361 Core Storage is not present in an
MVT system and a region is defined to exist
in two hierarchies, a two-part region is
established within processor storage. The
two parts are not necessarily contiguous.

Storage Control in Systems with MFT
(Without Subtasking)

The chain of storage control information in
an MFT system without subtasking begins at
a table called the main storage supervisor
{MSS) boundary box, located in the system
nucleus. There is one MSS boundary box for
each partition. It is pointed to by the
TCB (TCBMSS field) for the partition.

Each boundary box contains 3 words. The
first word points to the Free Queue Element
(FQE) associated with the highest free area
in the partition. The second word points
to the lowest limit of the partition. The
third word contains the highest address in
the partition plus 1.

If Main Storage Hierarchy Support is
included, the first half of each expanded
boundary box describes the processor
storage (hierarchy 0) partition segment,
and. the second half describes the 2361 Core
Storage (hierarchy 1) partition segment.
Any partition segment not currently
assigned storage in the system has the
applicable boundary box pointers set to
zero. If the partiticn is established
entirely within hierarchy 0, or if 2361
Core Storage is not included in the system,
the hierarchy 1 pointers in the second half
of the expanded boundary box are set to
zero. If a partition is established
entirely within hierarchy 1, the hierarchy
0 pointers in the first half of the
expanded boundary box are set to zero.

FQE: Each free area in a partition is
described by an FQE. FQEs are chained
beginning with the FQE associated with the
free area having the highest address in the
partition. If Main Storage Hierarchy
Support is present, one FQE chain exists
for each hierarchy specified. Each FQE

occupies the first 8 bytes of the area it
It has the following format:

describes.

Pointer to FQE associated with
next lower free area or, if
this is the last FQE, zeros.

Bytes 0-3:

Bytes 4~7: Number of bytes in the free

areae.

Figure 10 summarizes storage control in
systems with MFT without subtasking.

Main Stcrage Supervision 21

DYNAMIC
AREA

FIXED
AREA

Figure 10. Storage Control for a Partition

(MFT Without Subtasking)

Storage Control in Systems with MFT (With
Subtasking)

Storage control information for the job
step or partition TCB in MFT systems with
subtasking is handled in the same way as in
MFT systems without subtasking. However,
when subtasks are created, the supervisor
builds another control block, the gotten
subtask area queue element (GQE). The GQEs
associated with each subtask originate from
a one word pointer addressed by the TCBMSS
" field of the subtask TCB.

GQE: Each area in main storage belonging
to a subtask, and obtained by a supervisor
issued GETMAIN macro instruction, is
described by a gotten subtask area gqueue
element (GQE). GQEs are chained in the
order they are created. The TCBMSS field
of the subtask TCB contains the address of
a word which points to the most recently
created GQE.

If Main Storage Hierarchy Support is
present in the system, the GQE chain can
span from hierarchy 0 to hierarchy 1 and
back in any order. Each GQE occupies the
first eight bytes of the area it describes,
and has the following format:

Bytes 0-3:

Pointer tc the Previous GQE or,
if zero, this is the last GQE
on the chain.

Bytes 4-7: Number of bytes in the gotten
subtask area.

Figure 11 summarizes the chaining of GUEs
to a subtask TCB.

ONE
PARTITIONS

FIXED
AREA S

Figure 11.

Storage Control for Subtask
Storage (MFT With Subtasking)

' Storage Control for a Region in Systems

with MVT

Unassigned areas of main storage within
each region of a system with MVT are
reflected in a queue of partition queue
elements (PQEs) and a series of free block
queue elements (FBQEs).

22 Programmer's Guide to D=bugging (Release 21)

PQE: The partition queue associated with a

region resides in the system queue space.
It is connected to the TCBs for all tasks
in the job step through a dummy PQE located
in the system queue space.
the following format:

A dummy PQE has

Bytes 0-3: Pointer to the first PQE in the

partition queue.
Bytes 4-7: Pointer to the last PQE in the
partition queue.

In systems that do not include the
rollout/rollin feature or Main Storage
Hierarchy Support for IBM 2361 Models 1 and
2, there is one PQE for each job step. If
the rollout feature is used, additional
PQEs are added each time a job step borrows
storage space from existing steps or
acquires unassigned free space to satisfy
an unconditional GETMAIN request. These
additional PQEs are removed from the queue
as the rollin feature is used. If Main

Storage Hierarchy Support is present, one
PQE exists for each hierarchy used by the
job step.

A PQE has the following format:

12(C)

» 17 (1) »

16 (10)

24 (18)

25 (19) 28 (1C) 29 (1D)

Bytes 1-3: Pointer to the first FBQE or,
if there are no FBQEs, a
pointer to the PQE itself.

Bytes 5-7: Pointer to the last FBQE or, if

there are no FBQEs, a pointer
to the PQE itself.

Bytes 9-11(B): Pointer to the next PQE or,
if this is the last PQE, zeros.

Bytes 13-15(D-F): Pointer to the previous
PQE or, if this is the first
PQE, zeros.

Bytes 17-19(11-13): Pointer to the TCB of
the owning job step.

Bytes 21-23(15-17): Size of the region, in
2K (2048) bytes.

Bytes 25-27(19-1B): Pointer to the first
byte of the region.

Byte 28(1C): Rollout flags.

FBQE: The FBQEs chained to a PQE reflect
the total amount of free space in a region.
Each FBQE is associated with one or more

~contiguous 2K blocks of free storage area.

FBQEs reside in the lowest part of their
associated area. As area distribution
within the region changes, FBQEs are added
to and deleted from the free block queue.

An FBQE has the following format:

Bytes 1-3: Pointer to the next lower FBQE
or, if this is the last FBQE, a

pointer to the PQE.

Pointer to the preceding FBQE,
or, if this is the first FBQE,
a pointer to the PQE.

Bytes 5-7:

Bytes 8-11(B): Number of bytes in the free

block.

The remaining main storage in a region
is used by problem programs and system
programs. For convenience in referring to
storage areas, the total amount of space
assigned to a task rerresents one or more
numbered subpools. (Subpools can also be
shared by tasks.) Subpocols are designated
by a number assigned to the area through a
GETMAIN macro instruction. Subpool numbers
available for problem program use range
from 0 through 127. Subpool numbers 128
through 255 are either unavailable or used
by system programs.

Storage control elements and queues for
a region are summarized in Figure 12.

Main Stcrage Supervision 23

DYNAMIC
AREAS

SYSTEM
QUEVE
SPACE

|
|
|
{

Figure 12. Storage Control for a Region

(MVT)

Storage Control for a Subpool in Systems
with MVT

Main storage distribution within each
subpool is reflected in a subpool queue
element (SPQE) and queues of descriptor
queue elements (DQEs) and free queue
elements (FQEs).

SPQE: SPQEs are associated with the
subpools created for a task. SPQEs reside
in the system queue space and are chained
to the TCB(s) that use the subpool. They
serve as a link between the TCB and the
descriptor queue, and may be part of a
subpool queue if the task.uses more than
one subpool. If a subpool is used by more
than one task, only one SPQE is created.
An SPQE has the following fommat:

0 1 4 5

Byte 0:

Bit 0 - Subpool is owned by this task
if zero; shared, and owned by
anqther task, if one.

Bit 1 - This SPQE is the last on the
queue, if one.

Bit 2 ~ Subpool is shared and owned by
this task, if one.

Bits 3-7 =~ Reserved.

Bytes 1-3: Pointer to next SPQE or, in

last SPQE, zero.

Byte 4: Subpool number.

Bytes 5-7: Pointer to first DQE or, if the
subpool is shared, a pointer to
the "owning" SPQE.

DQE: DQEs associated with each SPQE

-reflect the total amount of space assigned

to a subpool. Each DQE is associated with
one or more 2K blocks of main storage set
aside as a result of a GETMAIN macro
instruction. Each DQE is also the starting
point for the free queue. A DQE has the
following format:

8 9 12(C) 13(D)

Bytes 1-3: Pointer to the FQE associated
with the first free area.
Bytes 5-7: Pointer to the next DQE or, if

this is the last DQE, zeros.

Bytes 9-11(B): Pointer to first 2K block
described by this DQE.

Bytes 13-15(D-F): Length in bytes of area
described by this DQE.

FQE: The FQE describes a free area within
a set of 2K blocks described by a DQE. It
occupies the first eight bytes of that free
area. Since the FQE is within the sukpool,
it has the same protect key as the task
active within that subpool. Extreme care
should be exercised to see that FQEs are
not destroyed by the problem program. If
an FQE is destroyed, the free space that it
describes is lost to the system and cannot
be assigned through a GETMAIN. As area

distribution within the set of blocks
changes, FQEs are added to and deleted from
the free queue.
format:

An FQE has the following

24 Progr#fimer's Guide to Debugging (Release 21)

Bytes 1-3: Pointer to the next lower FQE
or, if this is the last FQE,
zeros.

Bytes 5-7: Number of bytes in the free

area.

Storage control for a subpool is
summarized in Figure 13.

DYNAMIC J
AREAS

SYSTEM
QUEUE
SPACE

Figure 13.

Storage Control for a Subpool
(MVT)

Storage control for a Load Module in
Systems With MVT

Each load module in main storage is
described by a contents directory entry
(CDE) and an extent list (XL) that tells
how much space it occupies.

CDE: The contents directory is a group of
queues, each of which is associated with an
area of main storage. The CDEs in each
queue represent the load modules residing
in the associated area. There is a CDE
queue for the link pack area and one for
each region, or job pack area. The TCB for
the job step task that requested the region
Contents directory queues reside in the
system queue space. A CDE has the
following format:

1600

17(11) 20(14) 21(15)
Byte 0: Flag bits, when set to one,
indicate:
Bit 0 - Module was loaded by NIP.
Bit 1 - Module is in process of keing
loaded.
Bit 2 - Module is reenterable.
Bit 3 - Module is serially reusalkle.
Bit 4 - Module may not be reused.
Bit 5 - This CDE reflects an alias
name (a minor CDE).
Bit 6 - Module is in job pack area.
Bit 7 - Module is not only-loadatle.
Bytes 1-3: Pointer to next CDE.
Bytes 5-7: Pointer to the RB.

Bytes 8-15(F): EBCDIC name of load module.

Byte 16(10): Use count.

Bytes 17-19(11-13): Entry point address of
locad module.

Byte 20: Flag bits, when set to one,
indicate:
Bit 0 - Reserved.
Bit 1 - Module is inactive.
Bit 2 - An extent list has been kuilt
for the module.
Pit 3 - This CDE contains a relocated

alias entry point address.
Bit 4 - The module is refreshable.
Bits 5, 6, 7 - Reserved.

Bytes 21-23(15-17): Pcinter to the XL for
this module or, if this is a
minor CDE, pointer to the
ma jor CDE.

XL: The total amount of main storage
occupied by a load module is reflected in
an extent list (XL). XLs are located in
the system queue space. An XL has the
following format:

System Control Blocks and Tables 25

Bytes 0-3:

Length of XL in bytes.

Number of scattered control
sections. If the control
sections are block-loaded, 1.

Bytes 4-7:

Remaining
bytes:

Length in bytes of each
control section in the module
(4 bytes for each control
section) and starting location
of each control section (4
bytes for each control
section).

Storage control elements and queues for
load modules are summarized in Figure 14.

System Control Blocks and Tables

In addition to the key task management
control blocks (TCB and RB), several other
control blocks containing essential
debugging information are built and
maintained by data management and job
management routines. Although some of
these blocks are not readily identifiable
on a storage dump, they can be located by
following chains of pointers that begin at
the TCB.

The control blocks discussed here have
the same basic functions at each control
program level. The precise byte-by-byte
contents of the blocks can be found in the
publication System Control Blocks. Block
contents useful in debugging are listed in
Appendix K.

DYNAMIC _
AREAS

SYSTEM
QUEUE
SPACE

Figure 14.

Storage Control for a Load
Module (MVT)

Communications Vector Table (CVT)

The CVT provides a means of communication
between nonresident routines and the
control program nucleus. Its most
important role in debugging is its pointer
to two words of TCB addresses. These words
enable you to locate the TCB of the active
task, and from there to find other
essential control information. Storage
locations 16 (10) and 76(4c) contain a
pointer to the CVT.

Task Input/Output Table (TIOT)

A TIOT is constructed by job management for
each task in the system. It contains
primarily pointers to control blocks used
by I/0 sugport routines. It is usually
located in the highest part of the main
storage area occupied by the associated
task (in systems with MVT, TIOTs are in the
system queue space.) Through the TIOT, you
can obtain addresses of unit control blocks
allocated to the task, the job and step
name, the ddnames associated with the step,
and the status of each device and volume
used by the data sets.

26 Prdogrammer's Guide to Debugging (Release 21)

Unit Control Block (UCB)

The UCB describes the characteristics of an
I/0 device. One UCB is associated with
each 1/0 device configured into a system.
The UCB's most useful debugging aid is the
sense information returned by the last
sense command issued to the associated
device.

Event Control Block (ECB)

The ECB is a 1-word control block created
when a READ or WRITE macro instruction is
issued, initiating an asynchronous 1/0
operation. At the completion of the 1I/0
operation, the access method routine posts
the ECB. By checking this ECB, the
completion status of an I/0 operation can
be determined. In all access methods but
QTAM, the ECB is the first word of a larger
block, the data event control block.

Input/Output Block (IOB)

The IOB is the source of information
required by the I/0 supervisor. It is
filled in with information taken from an
I1/0 operation request. In debugging, it is
useful as a source of pointers to the DCB
associated with the I/O operation and the
channel commands associated with a
particular device.

Data Control Block (DCB)

The DCB is the place where the operating
system and the problem program store all
pertinent information about a data set. It
may be completely filled by operands in the
DCB macro instruction, or partially filled
in and completed when the data set is
opened, with subparameters in a DD
statement and/or information from the data
set label. The format of DCBs differs
slightly for each of the various access
methods and device types. The DCB's
primary debugging aids are.its pointers to
the DEB and current IOB associated with its
data set, and the offset value of the
ddname in the TIOT.

Data Extent Block (DEB)

A DEB describes a data set's auxiliary
storage assignments and contains pointers

to some other control blocks. The DEB is
created and queued to the TCB at the time a
data set is opened. Each TCB contains a
pointer to the first DEB on its chain.
Through this pointer you can find out which
data sets are opened for the task at a
given time, what extents are occupied by
open data sets, and where the DCB and UCB
are located.

Summary of Control Block Relationships

Figure 15, an expansion of Figure 1, shows
the relationships among the principal
control blocks and tables in the System/360
Operating System.

Location +0 TCB Words
r) £ pd
< G
16(10) Vv
BM
£/
+ T +13(D)
C
B
fy o
% ﬂw '
R' Dey
+25(19) Py +33(21)
D
5 | E
@5 @0)| °
Py
vy
+68 S
(44)& i}quaa
Og
[oN
+4 Io +17(11)

ANNERY

Figure 15.

Control Block Relationships

System Control Blocks and Tables 27

28 Programmer's Guide to Debugging (Release 21)

Topics composing Section 2 are:

¢ ABEND/SNAP dumps issued by systems with
MFT.
" ® ABEND/SNAP dumps issued by systems with
MVT.
e Indicative dumps.
e Storage dumps.

Each topic includes instructions for
invoking the dump, a detailed description
" of the dump's contents, and a guide to
using the dump.

ABEND/SNAP Dump (MFT)

ABEND/SNAP storage dumps are issued
whenever the control program or problem
program issues an ABEND or SNAP macro
instruction, or the operator issues a
CANCEL command requesting a dump, and
proper dump data sets have been defined.
However, in the event of a system failure,
if a SYS1.DUMP data set has been defined
and is available, a full storage dump will
be provided, as explained in the section
"Storage Dumps."

Since, in an MFT with subtasking system,
subtasks may be created, you may receive
one or more partial dumps in addition to
the complete dump of the task that caused
the abnormal termination. A complete dump
includes a printout of all control
information related to the terminating
task, and the nucleus and all allocated
storage within the partition in which the
abending task resided. A partial dump of a
task related to the terminating task
includes only control information. The
partial dump is identified by either ID=001
or ID=002 printed in the first line of the
dump. Figure 16 is a copy of the first few
pages of a complete ABEND dump of an MFT
system with subtasking. It illustrates
some of the key areas on an ABEND dump, as
issued by systems with MFT. Those portions
of the dump that would only appear on a
dump of a subtasking system are noted in
the later discussions as appearing only in
a dump of an MFT with subtasking system.

For a discussion of a formatted ABEND
dump using the telecommunications acce''s
method (TCAM) in an MFT environment, see
IBM System/360 Operating System: TCAM
Program Logic Manual, GY30-2029.

References to other TCAM debugging aids are
found in Appendix J.

Section 2: Interpreting Dumps

Invoking an ABEND/SNAP Dump (MFT)

ABEND dumps are produced as a result of an
ABEND macro instructicn, issued either by a
processing program or an operating system
routine. The macro instruction requires a
DD statement in the input stream for each
job step that is subject to abnormal
termination. This DD statement must Lke
identified by one of the special ddnames
SYSABEND or SYSUDUMP. SYSABEND results in
edited control information, the system
nucleus, the trace table, and a dump of
main storage; SYSUDUMP excludes the nucleus
and the trace table. 1In the event of a
system failure, the Damage Assessment
routine (DAR) attempts to write a storage
image dump to the SYS1.DUMP data set. A
full explanation of storage dumps may be
found in the section "Storage Dumps."

SNAP Dumps result from a problem program
issuing a SNAP macro instruction. The
contents of a SNAP dump vary according to
the operands specified in the SNAP macro
instruction. SNAP dumps also require a DD
statement in the input stream. This DD
statement has no special characteristics
except that its ddname must not be SYSABEND
or SYSUDUMP. The processing program must
define a DCB for the snapshot data set.

The DCB macro instruction must contain, in
addition to the usual DCB requirements, the
operands DSORG=PS, RECFM=VBA, MACRF=(W),
BLKSIZE=882 or 1632, and LRECL=125. 1In
addition, the DCB must be opened before the
first SNAP macro instruction is issued.

Main Storage Considerations: Three BSAM
modules (IGG019BA, IGGO19BB, and the
device-dependent EOB module) are required
to process dumps. These modules should be
made resident in the Resident Access Method
(RAM) area by specifying RESIDNT=ACSMETH in
the SUPRVSOR macro instruction during
system generation. If these modules are
not resident, as much as 1352 bytes of main
storage within the partition are required
to contain them.

In addition to the area required for the
BSAM modules, 2784 bytes must be available
in the partition. 1344 of these bytes are
required for EOV processing should the
initial space specification for a direct
access device be exceeded by the dump
requirements.

ABEND/SNAP Dump (MFT) 29

* ABDUMP REQUESTED *

JOB ATHEQT24 STEP STEP

COMPLETION COOE USER = 0123
INTERRUPT AY COEFSA
PSW AT ENTRY TO ABEND 00150000 4006EFS5A

T8 01CB20 RB OOOTFCS58

MSS 0001CC58

PI1E

TIME 000737

00000000
PK/FLG 10810408

DATE 99366

DEB 0007F78C
FLG 000001F8

7107 000TFOBO
tLS 00000000
012420

S R O I T

STAE 00000000 TCT

ACTIVE RBS

PRB O0bEE28 NM TATHBLOG SL/SYAB 00302000

SVRB O7FD20 NM SVC-601C SZ/STAB 00120062
RG 0-7 00000240 80000078
8-15-7 0006EE60 0007FFT78
Q7FC58 NM SVC-AOQSA SZ/STAB 000CD062
RG 0-7 Q007FTEB 0007FD8O

8-15-7 Q007TFTES 0006F296

P/P STORAGE BOUNDARIES 0006E800 TO 00080000

FREE AREAS SIZE

00000060
00000050
C000FC58
€0000098
00000010
00000228
000000CO
©000C018

06€EB90
06ECS0
06F5B8
0TF668
QI 708
07F840
07FB90
CTFEES

Y

16. Sample of an ABEND Dump

30 Prograimmer's Guide to Debugging

00000000

USER 00000000 DAR 00000000

USE/EP O106EE4B
USE/EP 00007878
00000000 00080000
0007FFBO 000TFFF8
USE/EP 00007878

40007874 000097F 8
0001CC56 0000225C

(MFT) (Part 1 of 2)

(Release 21)

PSW 00180000 4006EF 5A

PSW FF040033 50007020
0007FE48
4006EE4E

PSW FFO4000E BOOLETEC
0001CB20
0001CB20

80000078
- QOOTEETE

0000000 **

SLPJFL. F80%0000 .

RESV 00000000

00000098
O006EESD

Q00 TFD20
0006F230

Q 000100

Q 900390
00005508
00009848

Q FAOJFS
0006F230
90007CBC

PAGE 1001

TRN 00000000
JST 00005508
OTL 7 0001CDEY
RESH 00000000
JSC8 00000000

WT/LNK 0001C820

WT/LNK 0006EE28
N0OTFC30
00000000
WT/LNK 0007FD20
00005508
000lE7C8

SAVE AREA TRACE
TATHBLOG WAS ENTERED

SA Q606 EACS
0001CC80

0007FC30

00000100
00000000
O006ECEOD

0006EE60
00080000
000TFF78

Q6EBFO WDL
R1
R7

WDl
R1

SA OGEESD 00000000 00000000

00000000

0006EBFSB
00000000

00009848
O00TFEAR
000TFFBO

00000000

4006EE4S
00000098
Q00TFFFB

00000000

3

R7 00000000 00000000 00000000

PROCEEDING BACK VIA REG 13

00000000
00000000
00000000

06EE60 WDl 00000000
R1 00000000
RT 00000000

SA OO06EBF8
00000000

00000000
TATHB10G WAS ENTERED

OCOGEELD

SA 00000100

OGEBFS WDl C606EACS
1 0001CC80
RT 0007FC30

HSA LSA
R2 R3

R8 QO00GECEQ R9 Q0007FFT8
DATA SETS
SNAP2 uce
ucs

uce

00225¢C
0022%¢C

OEB OTF78C

DUMDCS DEB OTFAF4

JOBLIB 190 0o0218C

SYSPRINT ucs 192 00225¢C

SYSABEND uce

ucs

192 00225¢

SNAPL 190 o00218C

REGS AT ENTRY TO ABEND
FL.PT.REGS 0-6 00.000000 00000000

REGS 0-7
REGS 8-15

00000240
0006EE60

80000078
O000TFF78

00000000
0007FFB0

NUCLEUS

000000
000020
000040
00G060
0Q0080

000CC000 0000051C
0004000A 50006846
1007F5€8 50000000
00040000 00000334
0001538C 00000000

FOFOFSC1 00000000
00000000 00000000
00001480 0Q0097F8
00040000 0000020€
00000000 00003000

000097F8
0000FF 00
60C850C0
00000000

00.000000 00000000

00080000
O007FFF8

00006000

00000000
00000000
00000000

RET 00009848
R4 OO0QTFE4S8
RI0 O0OTFFHO

0CO OGEFB4
DC8 O6EFSL

01040080
FFO4000E
00040000
00040000

00013440
000006000
00000000
00008278

000TFE48
4006EEAE

00000000

00000000
00000000
00000000

4006EE4B
00000098
COOQTFFFS

00.000000 00000000

8003ACD4
AOOOTE2A
00000282
00000226

00 00
00000000

0000A0
LINES
000160
000180
000140
LINE
0001€0
000200
000220
000240
000260
00C280
0002A0
0002C0
0002€0
000300
000320

00000000 00000000
0000C0~000140
00000000 00000000
0008C820 00007EFL 0006F465 80007D16
00000000 00000000 00000000 00000000
0001C0 SAME AS ABOVE
000079F0 00006888 0000A3A
G000846C 000083E4 00006780
00013340 00234700 024C96F0
40100038 94FD4011 90A13030
02070440 003847F0 024L 940F
04409C29 018091F0 02384780
90A1903C 58990000 D2079010
91800018 478002CE 568200208
01A098CD 00285880 02189101
000012AA 47C00332 90C28B004
078850F0 002C41E0 02DC98AD

00000000 00000000
SAME AS ABOVE
00000000 82000170 00040000
00000080

00000000

00000001
00006942
02279029
5890021C
02279829
029C90A1L
001894FD
052247F0Q
00290768
18185880
01408290

40007720
00001000
01805830
05895850
018091F0
01EQ0D207
90119140
026A0000
58A006C4
02189280
00281818

Figure 16. Sample of an ABEND Dump (MFT)

00000000 00000000
00000000
00000001
00000000

0003ATAQ
0006F491
00000000

90001520
00009730
30004700
021407F9
0443898A1L
47F00282
02€0%820
0000870A
12AA07CB
AQ008900
O TFB900F

0000A0D42
00000F28
06C45840
02105890
02384780
04400018
00184780
00015388
S58A0A004
100098F0
586800218

00000000

00000000
0006F4A8
0000000

000060000
0001335¢C
02500207
90AL01E0D
01E08200
589006C4
02040522
0A0390A9
18B8A58AA
cooo1200
04003890

(Part 2 of 2)

00000098
000HEESLD

PAGE 0002

RO 000094CE
R6 00005508
R12 4004ECCE

RC 00000000
R& 00000000
R12 00000000

RO 00000000
R6 N00N0000
R12 00000000

RO 00O0098CE
R6 000053508
R12 4006ECCE

00.000000 00000000

00005508
00009848

0Q0TFC30
00000000

+02005hc0csceeBace

'l..t...'.k.l‘l..l."l".‘

ceencacM®

* o s5Ys0c0cesecseBiHincncnenssceee?
¥eoesesssorenssrsconcssrssrnnoccs?®
$osevesssesonvercessecccecsesence®
$ivesesacsssevosnvnssecsanssraces®

scessneve®
$ossesesscevacnsescsacsssssenvens?
®iue00vvcccansvcesr cossscvescocceet
®rseesssliocsscccvescaccnessscecae®
Foes s0sceceeeDoncvsccaesDe cnvenaKe®
® cests sssnsscscscassccerasTeoee®
*Keo eseloscvccancocfeconrecsanec?
®e ceseefiscavesceeKoo co0eloceedl®
$eesvscseKanennsnnoe ssccsancsMy,®
L TR P R R P R PR RY |
®etrcocacncresnsesesDecncocvcenee?®
Poesecss ses0scovnnset

ceseses sssececennnc®

ABEND/SNAP Dump (MFT)

31

Device and Space Considerations: DD
statements for ABEND/SNAP dumps, must
contain- parameters appropriate for a basic
sequential (BSAM) data set. Data sets can
be allocated to any device supported by the
basic sequential access method. There are
several ways to code these DD statements
depending on what type of device you choose
and when you want the dump printed.

If you wish to have the dump printed
immediately, code a DD statement defining a
printer data set.

//SYSABEND DD UNIT=1443,DCB=(...

A printer is associated with the SYSOUT
class, you can also obtain immediate
printing by routing the data set through
the output stream.

r
| //SNAPDUMP DD SYSOUT=A,DCB=(...
L

—

This type of request is the easiest,
most economical way to provide for a dump.
All other DD statements result in the tying
up of an output unit or delayed printing of
the dunmp.

If you wish to retain the dump, you can
keep or catalog it on a direct access or
tape unit. The last step in the pertinent
job can serve several functions: to print
out key data sets in steps that have been
abnormally terminated, to print. an ABEND or
SNAP dump stored in an earlier step, or to
release a tape volume or direct access
space acquired for dump data sets.
Conditional execution of the last step. can
be established through proper use of the
COND parameter and its subparameters, EVEN
and ONLY, on the EXEC statement.

Direct access space should be requested
in units of average block size rather than
in cylinders (CYL) or tracks (TRK). If
abnormal termination occurs and the data
set is retained, the tape volume or direct
access space should be released (DELETE in
the DISP parameter) at the time the data
set is printed.

Sample DD Statements: Figure 17 shows a
set of job steps that include DD statements
for ABEND dump data sets.

The SYSABEND DD statement in STEP2 takes
advantage of the direct access space
acquired in STEP1 by indicating MOD in the
DISP parameter. Note that the space
request in STEP1 is large so that the
dumping operation is not inhibited due to
insufficient space. The final SYSABEND DD
statement in the job should indicate a
disposition of DELETE to free the space
acquired for dumping.

Contents of an ABEND/SNAP Dump (MFT)

This explanation of the contents of
ABEND/SNAP dumps for systems with MFT is
interspersed with sample sections taken
from an ABEND dump. Capital letters
represent the headings found in all dumps,
and lowercase letters, information that
varies with each dump. The lowercase
letter used indicates the mode of the
information, and the number of letters
indicates its length:

® h represents 1/2 byte of hexadecimal
information

e d represents 1 byte of decimal
information

s ¢ represents a 1-byte character

You may prefer to follow the explanation
on your own ABEND or SNAP dump.

32 Programmer's Guide to Debugging (Release 21)

JTSTEPI | [EXEC | |PeN=PIROGRAM]
//SYSABEND DD | [PSNAME=DUMP,UNI[T=23111,D1S/P=(,KEEP,KEEP), X
// VOLUME=SER|=1234/,SPACE= (TRIK,(11/0, 10)])

‘““‘“3?R2F‘bb”§£¢t£4¢nes"””"“”"“" R N e
//STEP2 | [EXEC | |PGM=PROGRAM2

/SYSABEQp DD | [DSNAME=%.S[TEP | ./[SYSABIEND,D|| SP=(|MOD,DIELETE|, KEEP)), X
// VOLsRIEF=#.STEP!|. SYSABEND

Figure 17. SYSABEND DD Statements

ABEND/SNAP Dump (MFT) 33

¢ ¢ ABDUMP REQUESTED®* * *
*cceeecte s
TIME dddddd

JOB ccccccecc STEP cccccece

'COMPLETION CODE SYSTEM = hhh (or USER = d4ddd)
[-X-1-1-1-1-JOPary
INTERRUPT AT hhhhhh

PSW AT ENTRY TO ABEND (SNAP) hhhhhhhh hhhhhhhh

DATE dddadd

PAGE daad

* *+ + ABDUMP REQUEGSTED * * #

" identifies the dump as an ABEND or
SNAP dump.

‘ccccccc ss e o0

is omitted or is one or more of the
following:

*CORE NOT AVAILABLE, LOC.

hhhhhhhhhhhh TAKEN...
indicates that the ABDUMP routine
confiscated storage locations
hhhhhh through hhhhhh because not
enough storage was available.
This aréa is printed under P/P
STORAGE, but can be ignored
because the problem program
originally in it was overlaid
during the dumping process.

*MODIFIED, /SIRB/DEB/LLS/ARB/MSS...
indicates that the one or more
queues listed were destroyed or
their elements dequeued during
abnormal termination:

e SIRB ~-- system interruption
request block queue. One or
more SIRB elements were found
in the active RB queue: these
elements are always dequeued
during dumping.

e DEB -- DEB queue. If the first
message also appeared, either a
DEB or an associated DCB was
overlaiad.

e LLS -- load list. If the first
message also appeared, one or
more loaded RBs were overlaid.

e ARB -- active RB queue. If the
first message also appeared,
one or more RBs were overlaid.

e MSS -- boundary box queue. One

or more MSS elements were

dequeued, but an otherwise
valid control block was found

in the free area specified by
an MSS element. .

*FOUND ERROR IN /DEB/LLS/ARB/MSS...
indicates that one or more of the
following contained an error:

e DEB: data extent block
e LIS: 1load list

e ARB: active RB

e MSS: boundary box

This message appears with either
the first or second message
above. The error could be:
improper boundary alignment,
control block not within storage
assigned to the program being
dumped, or an infinite loop (300
times is the maximum for this
test). For an MSS block, 4 other
errors could also be found:
incorrect descending sequence
(omitting loop count),
overlapping free areas, free area
not entirely within the storage
assigned to the program being
dumped, or count in count field
not a maltirle of 8.

JOB cccccccce

STEP

TIME

DATE

34 Programmer's Guide to Debugging (Release 21)

is the job name specified in the JOB
statement.

ccececcecec
is the step name specified in the EXEC
statement for the problem program
being dumped.

dddddd

is the hour (first 2 digits), minute
(second 2 digits), and second (last 2
digits) when the ABDUMP routine kegan
processing.

ddddd

is the year (first 2 digits) and day
of the year (last 3 digits). For
example, 67352 would be December 18,
1967.

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

PAGE dddd ‘
is the page number.
top of each page.

Appears at the

QOMPLETION CODE SYSTEM=hhh or COMPLETION

CODE USER=dddd
is the completion code supplied by the
control program (SYSTEM=hhh) or the
problem program (USER=dddd). Either
SYSTEM=hhh or USER=dddd is printed,
but not both. Common completion codes
are explained in Appendix B.

CCCCCCe. - «
explains the completion code or, if a
program interruption occurred:
PROGRAM INTERRUPTION ccccC... AT
LOCATION hhhhhh,

where ccccc is the program
interruption cause -- OPERATION,
PRIVILEGED OPERATION, EXECUTE,
PROTECTION, ADDRESSING, SPECIFICATION,

DATA ,FIXED-POINT OVERFLOW, FIXED-POINT
DIVIDE, DECIMAL OVERFLOW, DECIMAL
DIVIDE, EXPONENT OVERFLOW,EXPONENT
UNDERFLOW, SIGNIFICANCE, or
FLOATING-POINT DIVIDE; and hhhhhh is
the starting address of the
instruction being executed when the
interruption occurred.

INTERRUPT AT hhhhhh
is the address of next instruction to
be executed in the problem program.
It is obtained from the resume PSW of
the PRB or LPRB in the active RB queue
at the time abnormal termination was
requested.

PSW AT ENTRY TO ABEND hhhhhhhh hhhhhhhh or
PSW AT ENTRY TO SNAP hhhhhhhh hhhhhhhh
is the PSW for the problem or control
program that had control when abnormal
termination was requested or when the
SNAP macro instruction was executed.

TCB hhhhhh RB hhhhhhhh PIE hhhhhhhh
MSS hhhhhhhh PK/FLG hhhhhhhh
RG 0-7 hhhhhhhh hhhhhhhh
RG 8-15 hhhhhhhh hhhhhhhh
FSA hhhhhhhh TCB hhhhhhhh
LTC hhhhhhhh IQE hhhhhhhh
STAE hhhhhhhh TCT hhhhhhhh

hhhhhhhh
hhhhhhhh

DEB hhhhhhhh
FLG hhhhhhhh
hhhhhhhh
hhhhhhhh
TME hhhhhhhh
ECB hhhhhhhh
USER hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

TRN hhhhhhhh

JST hhhhhhhh
hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh

01C hhhhhhhh

RESV hhhhhhhh

JSCB bhhhhhhhh

TIOT hhhhhhhh CMP
LLS hhhhhhhh JLB
hhhhhhhh

hhhhhhhh hhhhhhhh

PIB hhhhhhhh NTC hhhhhhhh
XTCB hbhhhhhhh LP/FL hhhhhhhh
DAR hhhhhhhh RESV hhhhhhhh

t

TCB hhhhhh
is the starting address of the TCB.

RB hhhhhhhh
is the TCBRBP field (bytes 0 through
3): starting address of the active RB
queue and, consequently, the most
recent RB on the queue (usually
ABEND's RB).

PIE hhhhhhhh
is the TCBPIE field (bytes 4 through
7): starting address of the program
interruption element (PIE) for the
task.

DEB hhhhhhhh
is the TCBDEB field (bytes 8 through
11): starting address of the DEB
queue.

TIOT hhhhhhhh
is the TCBTIO field (bytes 12 through
15): starting address of the TIOT.

MP hhhhhhhh
is the TCBCMP field (bytes 16 through
19): task completion code in
hexadecimal. System codes are shown

in the third through fifth digits and
user codes in the sixth through
eighth.

TRN hhhhhhhh ‘
is the TCBTRN field (bytes 20 through
23): starting address of control core
(table) for controlling testing of the
task by TESTRAN.

MSS hhhhhhhh
is the TCBMSS field (bytes 24 through
27): starting address of the main
storage supervisor's boundary box.

PK/FLG hhhhhhhh
contains, in the first 2 digits, the
TCBPKF field (byte 28): protection
key.

FLG hhhhhhhh
contains, in the first 4 digits, the
last 2 bytes of the TCBFLGS field
(bytes 32 and 33): 1last 2 flag bytes.

contains, in the next 2 digits, the

TCBLMP field (byte 34): number of
resources on which the task is queued.

ABEND/SNAP Dump (MFT) 35

contains, in the last 2 digits, the
TCBDSP field (byte 35):

e Reserved in MFT without subtasking;
both digits are zero.

e In MFT with subtasking, this field
contains the dispatching priority of
the TCB.

LLS hhhhhhhh
is the TCBLLS field (bytes 36 through
39): starting address of the RB
most recently added to the load
list.

JLB hhhhhhhh
is the TCBJIB field (bytes 40 through
43): starting address of the DCB
for the JOBLIB data set.

JST hhhhhhh
is the TCBJST field (bytes 44 through
47). Not currently used in MFT
without subtasking. In MFT with
subtasking - the starting address of
the TCB for the job step task.

RG 0-7 and RG 8-15
is the TCBGRS field (bytes 48 through
111): contents of general registers 0
through 7 and 8 through 15, as stored
in the save area of the TCB when a
task switch occurred. These 2 lines
appear only in TCBs of tasks other
than the task in control when the dump
was requested.

FSA hhhhhhhh
contains, in the first 2 digits, the
TCBIDF field (byte 112): TCB
identifier field.

contains, in the last 6 digits, the
TCBFSA field (bytes 113 through 115):
starting address of the first problem
program save area. This save area was
set up by the control program when the
job step was initiated.

TCB hhhhhhhh
is the TCBTCB field (bytes 116 through
119): starting address of the next
TCB of lower priority or, if this is
the last TCB, zeros.

TME hhhhhhhh
is the TCBTME field (bytes 120 through
123): starting address of the timer
element created when an STIMER macro
instruction is issued by the task.
This field is not printed if the
computer does not contain the timer
option.

PIB hhhhhhhh
is the TCBPIB field (bytes 124 through
127): starting address of the program
information block.

Nrc¢ bhhhhhhh

is the TCBNTC field (bytes 128 through

131):

MFT without subtasking: zeros.
MFT with subtasking: the starting
address of the TCB for the previous
subtask on this subtask TCB queue.
This field is zero both in the job
step task, and in the TCB for the
first subtask created by a parent
task.

Oorc hhhhhhhh
is the TCBOTC field (bytes 132 through
135): starting address of the TCB for
the parent task. Both in the TCB for
the job step task, and in MFT systems
without subtasking this field is zero.

LTC hhhhhhhh
is the TCBLTC field (bytes 136 through
139): starting address of the TCB for
the most recent subtask created by
this task. This field is zero in the
TCB for the last subtask of a job
step, or in the TCB for a task that
does not create subtasks. This field
is always zero in an MFT system
without subtasking.

hhhhhhhh

is the TCBIQE field (bytes 140 through
143).

MFT without subtasking: zero.

MFT with subtasking: starting address
of the interruption queue element
(IQE) for the ETXR exit routine.
routine is specified by the ETXR
operand of the ATTACH macro
instruction that created the TCB being
dumped. The routine is to be entered
when the task terminates.

This

ECB hhhhhhhh
is the TCBECB field (bytes 144 through
147).

,

36 Programmer's Guide to Debugging (Release 21.7)

MFT without subtasking: zero.

MFT with subtasking: starting address
of the ECB field to be posted by the
control program at task termination.
This field is zero if the task was
attached without an ECB operand.

XTCB hhhhhhhh
" reserved for future use.

LP/FL hhhhhhhh

MFT without subtasking: reserved.
MFT with subtasking: contains in the
first byte, the limit priority of the
task (byte 152). contains, in the
last three bytes the field TCBFTFIG
(bytes 153 through 155) - flag bytes.

RESV hhhhhhhh
reserved for future use.

STAE hhhhhhhh
contains, in the first 2 digits, STAE
flags (byte 160).

contains, in the last 6 digits, the
TCBNSTAE field (bytes 161 through
163): starting address of the current
STAE control block for the task. This
field is zero if STAE has not been

TCT hhhhhhhh
is the TCBTCT field (bytes 164 through
167):

Address of the Timing Control Takle
(TCT): zeros if the System Management
Facilities option is not present in
the system.

USER hhhhhhhh
is the TCBUSER field (bytes 168
through 171): to be used as the user
chooses.

DAR hhhhhhhh
contains, in the first 2 digits,
Damage Assessment Routine (DAR) flags
(byte 172);

contains, in the last 6 digits, the
secondary non-disgatchability bits
(bytes 173 through 175).

RESV hhhhhhhh
reserved for future use.

JSCB hhhhhhhh
is the TCBJSCB field (bytes 180
through 183): the last three bytes
contain the address of the Jok Step

issued. Control Block.
ACTIVE RBS
cccc hhhhhh NM cccccccce §2/STAB hhhhhhhh USE/EP hhhhhhhh PSW hhhhhhhh hhhhhhhh 9 hhhhhh WT/LNK hhhhhhhh
RG 0=7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
RG 8-~15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhb
ACTIVE RBS Note: Three SVRBs for ABEND

identifies the next lines as the
contents of the active RBs queued to
the TCB.

cccc hhhhhh

indicates the RB type and its starting
address.

The RB types are:
PRB Program request block

SIRB Supervisor interrupt request
block

LPRB Loaded program request block
IRB Interruption request block

SVRB Supervisor request block

processing exist in the nucleus. They
are used when there is insufficient
space in the partition to create an
SVRB.

NM XXXXXXXX
is the XRBNM field (bytes 0 through
7): in PRB, LRB, and LPRB, the
program name; in IRB, the first byte
contains flags for the timer or, if
the timer is not being used, contains
no meaningful infcrmation; in SVRB for
a type 2 SVC routine, the first 4
bytes contain the TTR of the load
module in the SVC library, and the
last 4 bytes contain the SVC numker in
signed, unpacked decimal.

ABEND/SNAP Dump (MFT) 37

S8Z/STAB hhhhhhhh

contains in the first 4 digits, the
"XRBSZ field (bytes 8 and 9): number
of contiguous doublewords in the RB,
the program (if applicable), and
associated supervisor work areas.

contains in the last 4 digits, the
XSTAB field (bytes 10 and 11): flag
bytes.

USE/EP hhhhhhhh '

PSW

contains, in the first 2 digits, the
XRBUSE field (byte 12): use count.

contains;, in the last 6 digits, the
XRBEP field (bytes 13 through 15):
address of entry point in the
associated program.

hhhhhhhh hhhhhhhh
is the XRBPSW field (bytes 16 through
23): resume PSWH.

Q hhhhhh

is the last 3 bytes of the XRBQ field

(bytes 25 through 27): in PRB and
LPRB, starting address of an LPRB for
an entry identified by an IDENTIFY
macro instruction; in IRB, starting
address of a request element; in SVRB
for a type 3 or 4 SVC, size of the
program in bytes.

WT/LNK hhhbhhhh
contains, in the first 2 digits, the
XRBWT field (byte 28): wait count.

contains, in the last 6 digits, the
XRBLNK field (bytes 29 through 31):
primary queuing field. It is the
starting address of the previous RB
for the task or, in the first RB to be
placed on the gqueue, the starting
address of the TCB.

RG 0-7 and RG 8-15
is the XRBREB field (bytes 32 through
95 in IRBs and SVRBs): contents of
general registers 0 through 15 stored
in the RB. These 2 lines do not
appear for PRBs, LPRBs, and LRBs.

LOAD LIST

ccce hhhhhh NM ceccccccc SZ/STAB hhhhhhhh USE/EP hhhhhhhh PSW hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh

LOAD LIST

ccee

NM ¢

jdentifies the next lines as the
contents of the load list queued to
the TCB.

hhhhhh

indicates the RB type and its starting

address.

The RB types are:

LRB Loaded request block

LPRB Loaded program request block

D-LPRB Dummy loaded program request
block. (Present if the
resident reenterable load
module option was selected).

cccccce

is the XRBNM field (bytes 0 through
7)s program name.

SZ/STAB hhhhhhhh

38

contains, in the first 4 digits, the
XRBSZ field (bytes 8 and 9): number
of contiguous doublewords for the RB,
the program (if applicable), and
assotiated supervisor work areas.

contains, in the last 4 digits, the
XSTAB field (bytes 10 and 11): flag
bytes.

USE/EP hhhhhhhh
contains, in the first 2 digits, the
XRBUSE field (byte 12): use count.

contains, in the last 6 digits, the
XRBEP field (bytes 12 through 15):
address of entry roint in the program.

PSW hhhhhhhh hhhhhhhh
is the XRBPSW field (bytes 16 through
23): resume PSW.

Q hhhhhh
is the last 3 bytes of the XRBQ field
(bytes 25 through 27): in LPRB,
starting address of an LPRB for an
entry identified by an IDENTIFY macro
instruction; in LRB, unused.

WT/LNK hhhhhhhh
contains, in the first 2 digits, the
XRBWT field (byte 28): wait count.

contains, in the last 6 digits, the
XRBLNK field (bytes 29 through 31):

Prdgrammer's Guide to Debugging (Release 21)

primary queuing field for LRBs and
LPRBEs also on the active RB queue. It
points to the previous RB for the task
or, in the oldest RB in the queue,
back to the TCB.

JOB PACK AREA QUEUE

ccce hhhhhh NM cceccece
ccce hhhhhh NM cececccece
cccc hhhhhh NM ccccecce

S$2/STAB hhhhhhhh WTL

SZ/STAB hhhhhhhh USE/EP hhhhhhhh PSW hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh
hhhhhhhh REQ hhhhhhhh TLPRB hhhhhhhh
S$Z/STAB hhhhhhhh USE/EP hhhhhhhh PSW hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh

JOB PACK AREA QUEUE (MFT with subtasking
only)
identifies the next lines as the
contents of the job pack area queue
originating in the partition
information block (PIB).

ccce hhhhhh
indicates the RB type and its starting
address.

The RB types are:

FRB Finch request block
LRB Loaded request block
LPRB Loaded program request block

NM ccccccec
is the XRBNM field (bytes 0 through
7): Program name.

SZ/STAB hhhhhhhh
contains, in the first 4 digits, the
XRBSZ field (bytes 8 and 9): number
of contiguous doublewords for the RB,
the program (if applicable), and
associated supervisor work areas.

contains, in the last 4 digits, the
XSTAB field (bytes 10 and 11): flag
bytes.

USE/EP hhhhhhhh (LPRB, LRB Only)
contains, in the first 2 digits, the
XRBUSE field (byte 12): use count.

contains, in the last 6 digits, the
XRBEP field (bytes 13 through 15):
address of entry point in the program.

WTL hhhhhhhh (FRB Only)
is the XRWTL field of the FRB (bytes

12 through 15): address of the most
recent wait list element (WLE) on the
WLE queue.

PSW hhhbhhhhh hhhhhhhh (LPRB, LRB Only)
is the XRBPSW field (bytes 16 through
23): resume PSW.

REQ hhhhhhhh (FRB Only)
is the XRREQ field of the FRB (bytes
16 through 19): address of the TCB of
the requesting task.

TLPRB hhhhhhhh (FRB Only)
is the XRTLPRB field of the FRB (bytes
20 through 23): address of the LPRB
built by the Finch routine for the
requested program.

Q hhhhhh (LRB, LPRB Only)
is the last 3 bytes of the XRBQ field
(bytes 25 through 27): :

* in an LPRB, the starting address of
an LPRB for an entry identified by
an IDENTIFY macro instruction.

e in an LRB, unused.

WI'/LNK hhhhhhhh (LRB, LPRB Only)
contains, in the first 2 digits, the
XRBWT field (byte 28): wait count.

contains, in the last 6 digits (bytes
29 through 31): primary queuing field
for RBs. These RBs may be queued
either on the job pack area queue or
on the active RB queue. It points to
the previous RB for the task or, in
the oldest RB on the queue, back to
the TCB.

ABEND/SNAP Dump (MFT) 39

P/P STORAGE BOUNDARIES hhhhhhhh T0 hhhhhhhh
FREE AREAS SIZE
hhhhhh hhhhhhhh
GOTTEN CORE SIZE
hhhhhh hhhhhhhh

SAVE 'AREA TRACE

HSA hhhhhhhh
hhhhhhhh R3
hhhhhhhh R9

LSA hhhhhhhh
hhhhhhhh
hhhhhhhh

SA hhhhhh WPl hhhhhhhh

R1 hhhhhhhh R2
R?7 hhhhhhhh R8
INCORRECT BACK CHAIN

PROCEEDING BACK VIA REG 13

ccccccce WAS ENTERED VIA LINK (CALL) ddddd AT EP cCC2C...

EPA hhhhhhhh RO hhhhhhhh
hhhhhhhh R6 hhhhhhhh
R12 hhhhhhhh

RET hhhhhhhh
R4 hhhhhhhh RS
R10 hhhhhhhh R11 hhhhhhhh

P/P STORAGE BOUNDARIES hhhhhhhh TO hhhhhhhh
gives the addresses of the lower and
upper boundaries of a main storage
area assigned to the task. This
heading is repeated for every
noncontiguous block of storage owned
by the task.

FREE AREAS SIZE
hhhhhh hhhhhh
hhhhhh hhhhhh

are the starting addresses of free
areas and the size, in bytes, of each
area contained within the P/P STORAGE
BOUNDARIES field listed above.

GOTTEN CORE SIZE

hhhhhh hhhhhhhh

hhhhhh hhhhhhhh
‘(Printed only in a dump of a system
with the MFT with subtasking option).
These figures represent the starting
addresses of the gotten areas (those
areas obtained for a subtask through a
supervisor issued GETMAIN macro
instruction), and the size, in bytes,
of each area contained within the P/P
STORAGE BOUNDARIES field listed above.
If main storage hierarchy support is
included in the system, the values in
this field can address storage in
either hierarchy 0 or hierarchy 1, or
both.

SAVE AREA TRACE
identifies the next lines as a trace
of the save areas for the program.

ccccecce WAS ENTERED
is the name of the program that stored
register contents in the save area.
This name is obtained from the RB.

VIA LINK (CALL) ddddd
indicates the macro instruction (LINK
or CALL) used to give control to the
next lower level module, and is the ID
operand, if it was specified, of the
LINK or CALL macxro instruction.

AT EP ccccc...
is the entry point identified, which
appears only if it was specified in
the SAVE macro instruction that filled
the save area.

SA hhhhhh
is the starting address of the save
area.

WD1 hhhhhhhh
is the first word of the save area:
use of this word is optional.

HSA hhhhhhhh
is the second word of the save area:
starting address cf the save area in
the next higher level module. In the
first save area in a job step, this
word contains zercs. In all other
save areas, this word must be filled.

ISA hhhhhhhh
is the third word of the save area
(register 13): starting address of
the save area in the next lower level
module.

RET hhhhhhhh
is the fourth word of the save area
(register 14): return address.
Optional.

40 Programmer's Guide to Debugging (Release 21)

EPA hhhhhhhh
is the fifth word of the save area
(register 15): entry point to the
invoked module. Optional.

RO hhhhhhhh R1 hhhhhhhh ... R12 hhhhhhhh
are words 6 through 18 of the save
area (registers 0 through 12):
contents of registers 0 through 12
immediately after the linkage for the
module containing the save area.

INCORRECT BACK CHAIN
indicates that the following lines may
not be a save area because the second

word in this area does not point back
to the previous save area in the
chain.

PROCEEDING BACK VIA REG 13
indicates that the next 2 save areas
are (1) the save area in the lowest
level module, followed by (2) the save
area in the next higher level module.
The lowest save area is assumed to be
the save area pointed to by register
13. These 2 save areas appear only if
register 13 points to a full word
boundary and does not contain zeros.

DATA SETS
#¢e#% N OT F ORMAMATTED #*#**e?

cccecccece ucs ddd hhhhhh DEB hhhhhh

D/S FORMATTING TERMINATED

DCB hhhhhh

DATA SETS
indicates that the next lines present
information about the data sets for
the task. For unopened data sets,
only the ddname and UCB information
are printed.

NOT FORMATTED
indicates that the abnommal
termination dump routine confiscated
storage (indicated by *CORE NOT
AVAILABLE, LOC. hhhhhh-hhhhhh TAKEN);
because DCBs may have been overlaid,
or that the dump is for an OLTEP task.
Data set information is not presented.

cccececce
is the name field (ddname) of the DD
statement.

UCB ddd hhhhhh
is the unit to which the data set was

assigned, and the starting address of
the UCB for that unit. If the data
set was assigned to several units, the
additional units are identified on
following lines.

DEB hhhhhh
is the starting address of the DEB for
the data set. Appears only for open
data sets.

DCB hhhhhh
is the starting address of the DCB for
the data set. Arrpears only for open
data sets.

**D/S FORMATTING TERMINATED*#*
indicates that nc more data set
information is presented because a DCB
is incorrect, possibly because a
program incorrectly modified it.

ABEND/SNAP Dump (MFT) 41

TRACE TABLE « STARTING WITH OLDEST ENTRY

ddad 1/0 ddd PSW hhhhhhhh hhhhhhhh
dddd SI0 ddd CC = d
ddad svec ddd PSW hhhhhhhh hhhhhhhh

CAW hhhhhhhh
RG 0 hhhhhhhh RG 1

Ccsw hhhhhhhh hhhbhhhhh
OLD Csw hhhhhhhh hhhhhhhh {(or CSW STATUS hhhh)
hhhhhhhh

TRACE TABLE -- STARTING WITH OLDEST ENTRY
identifies the next lines as the
contents of the trace table. Each
entry is presented on one line. The
types of entries are:

I1/0 Input/output interruption entry

SIO start input/output (SIO) entry

SVC supervisor call (SVC) interruption
entry

dddd
is the number assigned to each entry.
The oldest entry receives the number
0001.

170 d4dd
is the channel and unit that caused
the input/output interruption.

PSW hhhhhhhh hhhhhhhh
is the program status word that was
stored when the input/output
interruption occurred.

CSW hhhhhiii.r hhhhhhhh
is the channel status word that was
stored when the input/output
interruption occurred.

S10 ddd
is the device specified in the SIO
instruction.

cc=4
is the condition ctode resulting from
execution of the SI0O instruction.
Zero indicates a successful start.

CAW hhhhhhhh .
is the channel address word used by
the SIO instruction.

OLD CSW hhhhhhhh hhhhhhhh
is the channel status word stored
during execution of an SIO operation.
It appears when CC is not equal to 1.

CSW STATUS hhhh
is the status portion of the channel
status word stored during execution of
an SIO instructicn. Appears when CC
is equal to 1.

SvVC ddd
is the SVC instruction's operand.

PSW hhhhhhhh hhhhhhhh
is the PSW stored during the SVC
interruption. An F in the fifth digit
of the first word identifies the entry
as representing a task switch.

RG 0 hhhhhhhh
is the contents of register 0 as
passed to the SVC routine.

RG 1 hhhhhhhh
is the contents of register 1 as
passed to the SVC routine.

42 Prdgrammer's Guide to Debugging (Release 21)

REGS AT E

FLTR 0-6
REGS

REGS 8-15

NTRY TO ABEND (SNAP)
hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh
hhhhhhhh hhhbhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

REGS AT ENTRY TO ABEND or REGS AT ENTRY TO FLTR 0-6
SNAP is the contents of floating point
identifies the next 3 lines as the registexrs 0, 2, 4, and 6.
contents of the floating point and
general registers when the abnormal REGS 0-7
termination routine received control is the contents of general registers 0
in response to an ABEND macro through 7.
instruction or when the SNAP routine
received control in response to a SNAP REGS 8-15
macro instruction. is the contents of general registers 8
through 15.
NUCLEUS
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccececceccecececccceccececccecceeec?
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccecccececcecececccceccecceccecceec?
LINE hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh %*cccceccceceecccccccccceccecceceec?
LINES hhhhhh=hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccceccccceccceccccccececcceccccecect
P/P STORAGE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccceccecccccccccccececceccceccccecec?
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccccccccecccccecccccccccccceccccee?
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh bhhhhhhhh *cccceccccccccccccceccccccccecceccce®
LINES hhhhhh=-hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccecccccccccccccecccccccceececccee®
END OF DUMP

The content of main storage is given

under 2 headings:

NUCLEUS and P/P STORAGE.

Under these headings, the lines have the
following format:

e First entry:
initial byte
presented on

® Next

the line.

8 entries:

the address of the
of main storage contents

8 full words (32

bytes) of main storage in hexadecimal.

®» Last entry (surrounded by asterisks):
the same 8 full words of main storage

in EBCDIC.

Only A through Z, 0 through

9, and blanks are printed; a period is

printed for anything else.

An

exception occurs in the printed lines

representing the ABDUMP work area.

The

contents of the ABDUMP work area during

the printing of EBCDIC characters

differs from the contents during
printing of the hexadecimal characters
because a portion of the work area is
used to write lines to the printer.
This exception should not create any
problems since the contents of the
ABDUMP work area is of little use in
debugging.

The following lines may also appear:

LINES hhhhhhhh-hhhhhhhh SAME AS ABOVE

are the starting addresses of the
first and last line of a group of
lines that are identical to the line
immediately preceding.

LINE

hhhhhh SAME AS ABOVE

is the starting
is identical to
preceding.

ABEND/SNAP Dump (MFT)

address of a line that
the line immediately

43

NUCLEUS
jdentifies the next lines as the
contents of the control program
nucleus.

P/P STORAGE
identifies the next lines as the
contents of the main storage area
assigned to the task (problem
program).

END OF DUMP

indicates that the dump or snapshot is
completed.

Guide to Using an ABEND/SNAP Dump (MFT)

Cause of Abnormal Termination: Evaluate
the user (USER Decimal code) or system
(SYSTEM=hex code) completion code using
Appendix C or the publication Messages and
Codes.

Active RB Queue: The first RB shown on the
dump represents the oldest RB on the queue.
The RB representing the load module that
had control when the dump was taken is
third from the bottom. The last RB
represents the ABDUMP routine, and the
second from last, the ABEND routine. The
names of load modules represented in the
active RB queue are given in the RB field
labeled NM in the dump. Names of load
modules in SVC routines are presented in
the format:

r ”
| NM SVC-mnnn
L

b e

where m is the load module number (minus 1)
in the routine and nnn is the signed
decimal SVC number. The last two RBs on an
ABEND/SNAP dump will always be SVRBs with
edited names SVC-105A (ABDUMP~-SVC 51) and
SVC-401C (ABEND--SVC 13).

Resume PSW: The resume PSW field is the
fourth entry in the first line of each RB
printout. It is identified by the
subheading PSW. For debugging purposes,
the resume PSW of the third RB from the
bottom, on the dump, is most useful. The
last three characters of the first word
give the SVC number or the I/0O device
address, depending on which type of
interruption caused the associated routine
to lose control. It also provides the CPU
state at the time of the interruption (bit
15), the length of the last instruction
executed in the program (bits 32,33), and
the address of the next instruction to be
executed (bytes 5-8).

Ioad List and Job Pack Area Queue: The
load module that had control at the time of
abnormal termination may not contain the
instruction address pointed to by the
resume PSW. In that case, look at the RBs
on the load list and on the job pack area
queue (MFT with subtasking). Compare the
instruction address with the entry points
of each load module (shown in the last 3
bytes of the field labeled USE/EP). The
module which contains the instruction
pointed to by the resume PSW is the one in
which abnormal termination occurred. The
name of the load module is indicated in the
field labeled NM.

Trace Table: Entries in the trace takle
reflect SI0O, 1I/0, and SVC interruptions and
task switching. SIO entries can be used to
locate the CCW (through the CAW), which
reflects the operation initiated by an SIO
instruction. If the SI0O operation was not
successful, the CSW STATUS portion of the
entry will show you why it failed.

1/C entries reflect the 1/0 old PSW and
the CSW that was stored when the ’
interruption occurred. From the PSW, you
can learn the address of the device on
which the interruption occurred (bytes 2
and 3), the CPU state at the time of
interruption (bit 15), and the instruction
address where the interruption occurred
(bytes 5-8). The CSW provides you with the
unit status (byte 4), the channel status
(byte 5), and the address of the previous
CCW plus 8 (bytes 0-3).

SVC entries provide the sSVC old PSW and
the contents of registers 0 and 1. The PSW
offers you the hexadecimal SVC number (bits
20-31), the CPU mode (bit 15), and the
address of the SVC instruction (bytes 5-8).
The contents of registers 0 and 1 are
useful in that many system macro
instructions use these registers for
parameter information. Contents of
registers 0 and 1 for each SVC interruption
are given in Appendix A.

A task switch entry is similar to an SVC
entry, except that words 3 and 4 of the
entry contain the address of the TCBs for
the "new" and "o0ld" tasks being performed,
respectively. The trace table entries for
one particular task are contained between
sets of two task switch entries. Word 3 of
the beginning task switch entry and word 4
of the ending task switch entry point to
the TCB for that task. Task switch entries
are identified by a fifth digit of ‘'F'.

Notes: If an ABEND macro instruction is
issued by the system when a program check
interruption causes abnormal termination,

an SVC entry does not appear in the trace
table, but is reflected in the PSW at entry.
to ABEND.

44 Prog¥ammer's Guide to Debugging (Release 21)

Dumps issued by systems with MFT contain
only the last four characters of the module
name in the RB APSW field. You cannot
distinguish between IFGOxxxx and IGGOXXXX.
After an SVC 19 has been issued, the OPEN
where-to-go table should be checked for the
module name.

Free Areas: ABEND/SNAP dumps do not print
out areas of main storage that are
available for allocaticn. Since the ABEND
routine uses some available main storage,
the only way you can determine the amount
of free storage available when abnormal
termination occurred is to re-create the
situation and take a stand-alone dump.

ABEND/SNAP Dump (MFT) 45

ABEND /SNAP Dump (MVT)

MVT dQumps differ from PCP and MFT dumps in
the addition of detailed main storage
control information, the omission of a
complete main storage dump, and the
omission of a trace table in ABEND dumps.
MVT dumps occur immediately after an
abnormal termination, provided an ABEND or
SNAP macro instruction was issued and
proper dump data sets were defined.
However, if a system failure has occurred
and a SYS1.DUMP data set has been defined
and is available, a full storage image dump
is provided, as explained in the section
headed "Storage Image Dump."

With MVT's subtask creating capability,
you may receive one or more partial dumps
in addition to a complete dump of the task
that caused abnormal termination. A
complete dump includes all control
information associated with the terminating
task and a printout of the load modules and
subpools used by the task. A partial dump
of a task related to the terminating task
includes only control information. A
partial dump is identified by either ID=001
or ID=002 printed in the first line of the
dump:. Figure 18 shows the key areas of a
couplete dump.

In systems with MVT, you can effect
termination of a job step task upon
abnormal termination of a lower level task.
To do this, you must either terminate each
task upon finding an abnormal termination
completion code issued by its subtask or
pass the completion code on to the next
higher level task.

For a discussion of a formatted ABEND
dump using the telecommunications access
method (TCAM) in an MVT environment, see
IBM System/360 Operating System: TCAM
Program Logic Manual, GY30-2029.

References to other TCAM debugging aids are
found in Appendix J.

Invoking an ABEND/SNAP Dump (MVT)

ABEND/SNAP dumps issued by systems with MVT
are invoked in the same manner as those
under systems with PCP and MFT. They
result from an ABEND or SNAP macro
instruction in a system or user program,
accompanied by a properly defined data set.
In the case of a system failure, the damage
assessment routine (DAR) attempts to write
a storage image dump to the SYS1.DUMP data
set. A full explanation of storage image
dumps may be found in the section headed
"Storage Image Dump."” The instructions
that invoke an ABEND/SNAP dump in MVT

environment are the same as those given in
the preceding topic for systems with MFT.
However, some additional considerations
must be made in requesting main storage and
direct access space.

MVT Considerations: 1In specifying a region
size for a job step subject to abnormal
termination, you must consider the space
requirements for opening a SYSABEND or
SYSUDUMP data set (if there is one), and
loading the ABDUMP routine and required
data management routines. This space
requirement can run as high as 6000 bytes.

Direct access devices are used
frequently for intermediate storage of dump
data sets in systems with MVT. To use
direct access space efficiently, the space
for the dump data set should be varied,
depending on whether or not abnormal
termination is likely. A small quantity
should be requested if normal termination
is expected. To prevent termination of the
dump dve to a lack of direct access space,
always specify an incremental (secondary)
quantity when coding a SPACE parameter for
a dump data set. You can obtain a
reasonable estimate of the direct access
space required for an ABEND/SNAP dump Ly
adding, (1) the number of bytes in the
nucleus, (2) the part of the system gueue
space required by the task (9150 bytes is a
sufficient estimate), and (3) the amount of
region space occupied by the task.

Multiply the sum by 4, and request this
amount of space in 1024-byte blocks.

This formula gives the space
requirements for one task. Request
additional space if partial dumps of
subtasks and invoking tasks will be
included.

Contents of an ABEND/SNAP Dump (MVT)

This explanation of the contents of
ABEND/SNAP dumps issued by systems with MVT
is interspersed with sample sections from
an ABEND dump. Capital letters represent
the headings found in all dumps, and
lowercase letters, information that varies
with each dump. The lowercase letter used
indicates the mode of the information and
the number of letters indicates its length:

e h represents 1/2 byte of hexadecimal
information

e d represents 1 byte of decimal
information

e c represents a l-byte character

You may prefer to follcw the explanation on
your own ABEND or SNAP dumg.

46 Programmer's Guide to Debugging (Release 21)

JOA IPCTeI STFP FXSTFP TIMF 0072409 NAYF 99346 PAGE 0001}

CNMPLETION CNNE SYSTFM = 837

PSW AT ENTRY TN ABFND FFO4000N SO00C40R

TCB 0D2FN28

ACTIVF RAS

PRB 030NF8

PR 0309A8

SVRA

02F0FO0

02F170

02FC78

LISy

Nf 00030RFR
NF 00031180
NE 000311CO

031290
030E30
0301F8
032390
032290
032260
032390
032200
03213C0
0303F0

031280
N2F398

030AR0
032380
032280
0322%0
032380
0321F0
032380
030888

oF8

02€N00
02€EN20
02FD40
02060

Figure 18.

RAP
uss

NON?ECTA
N0 738
FSA 01060768
Lre noNNO0oo
NSTAF 00000000

RESY
0/YTR

00000000
00000000

RESV
0ITTR

00000000
nonoonan
TAR-LN 00980400

Q/7TR DOOO3COF

RG 0-7 nNN0OOFNYg
RG 8-15 00039100
FXTSA E2ERE?FS
80007648

TAR-LN 00RB03CH
Q/TTR 00NOKI09
RG 0-7 80000000
RS A-15 00000837
FXTSA 0000729RF
CSCI1FOF1)

TAA-LN 0NCROICA
Q/TTR 00006201
RG 0-7 00000000
/5 A-~1% 0002F028
FXTSA 00820300
0012C%02

RSP-CNE
RSP-CNF
RSP-CNE

00000010
0000004C

00000010
00000010
00000010
00000010
00000010
00000010
00000010

PIF 00000
PK~FLG FOBSO
Tee 0000n
10F 00000
Ll non30

APSW
NT-LNK

000
0002

APSW
WT-LNK 0003
APSW F5FS
HY-LNK 0003
0N0396F4
000396F%&
FIANAC 340
00000001

APSW F2F O
WT-LNK 0002
80837000
0003036C
000ADNSA
forsci2e

APSH FIFO
WT-LNK 0002
0002F100
A000RNIA
00090040
00000000

020301F 8
01032260
010323C0

000000
0131290
030AF0
0323C0
0322C0
032290
0323C0
032230
0323F0
030€R0

00000001
00000001

00000001
00000001
00000001
00000001
00000001
00000001
00000001

010

0 1

00000000

000
409
000
000

00N2E
00000
00000
00030

L)
0no
000 JsT
48B4 STA

Tin
LS

000302F0
00030980
0002F028
00000000

268

0000
FO28

WC-ST-~STA

WC-S7-STA
ODFS

FOE?
09R8
00000003
00060620
0006DNED
0NOSNFEQD

WC-S2-STA

F1c3
FOEO
000196F &
RO002648
2000FFFF
crc2ecsos

WC-S2-STA

FSC1
F170
8000ANCA
NOON2FO2R
0008000A
00000000

WE-S1-STA

NE 00030DFO
NE 000310C8
NE 00000000

ROC-RB 00030DF8
ROC - %__0 0309R8
RNC-RA 00000000
ROC-RB 07020000
ROC-RA 00000000
ROC-RB 00000000
ROC-RA 00000000
ROC-RA 00000000
RNC-RB 00000000
ROC-RB 00000000

N

800002F8
80016€38
011€0300
01320300
RO0O0OAB0
80000210
80000180
80000038
80000210
80000100
80000090
-A0000350

00000050 00000N50 00000050 00000050

N0 DAR

A 000400R2

B 00040002

A 00120002 TQN
00000006
0003A1548
0002FFF &
CIC45N04

00000073
0003ACE1L
000272FFC A

8 00120007 TaN
4000C182
00000001
NNOKNBE O
C407R386

0006DDEOD
0006DFFO
FFN3N000

8 00120002 TON
N000DR6 R
nnn6enNNAR
18002648
00000000

0002F028
000310320
00000040

RSP-CDF 01032390
RSP-COE 01032390
RSP-CDE O1030RFO

60
TEKAAOD
16€C0A0%4
166019€D
1660198A
16601988
166019€D
16GOI9AY
166019AR
TENSZOVR

ADR LN
00035508
0003%9C8
01100300
01340100
00060980
000TFACD
000TF4A0
000 7FABO
00NTFAOO
000TE3AD
000T7ECtO
0006C480

0001898
011€0200
01460600

FL-CDE 00031290

FL-CNDE 00030E%0

00000000

00000000

00000000

CMP 8ORITON0
JLB 00000000
NTC 00000000
D-PQF 00032658
RESY 00000000

PSwW

PSW

PSH

00038C00
000395C0
00060FAR

PSW

0002EED&
00002648
0002F1FC

PSH

0002F170
0002 1F &
00090041

NE 0003
NE 0003

035508
036240
06C980
0TEAQO
OTE4AD
07€880
OTEA0O
0TEIAO
07FC10
06C480

ADR

0003Y0R00
01290400
01480400

00000000
000301€8
00030508
0002€AAO
0003146C

FFF50006 70035%3E

FFFS0037 S20TECAA

FF04000D 5000C408

00036F A8

5207F434
00000837

0003CC33
000TEC10
0003036C

00040033 5000COCE

0002EFC4
0000DnR68
0002F\F4&

0006DF B8
00000001
€2€8F2C9

FF040001 AC0TFBA4
00031290

40000594
00028460

00000000
00000000
00000018

1078
1170

RSP-CDE 0103229
RSP-CDE 01032200

031200
02F390
030A80
032380
032280
0322%0
032380
0321F0
032380
030888

w ADR

01040400
012E0500
014D0500

01000300
01300500

tecesscacsesssssssscnccacne®

00000N50 00000000
8F000000 01000000
00010008 00010001

Sample of Complete ABEND Dump (MVT) (Part 1 of

00N)D20A 0000?BEQ
00000000 FFN6DDBB
€2¢2Cc2C1 C3C40000

0F003000 0002F028 0402€EED& 98000000
0402ED10 18002648 00000031 00010032
00003000 00000000 00000000 €3C40000

2)

ABEND/SNAP Dump (MVT)

47

DER PAGE 0002

02FEAOD 00003050 09000N5G 00Q000D50 00000NSO $eePoecutnentereranovsssscnsacceat
Q2EELD 00no0ODSO 0OONN0B0 0OOD020F OONIIAFO 2A002000 03IN2F02R 04000000 ARNKONOD ®ioorssensscanrsvesenesOunssrcese®
OPFEED AFO0N000 10000000 NONOOODD FFOIGEF4 0602FERO 18002648 00000039 0H009003E ¥eoasresrasccensBecnsrassscrnensa®
02FF00 00080032 18002648 0000003E 0009003F 0008000A 18002648 0000003F 00090040 Pevesessstotsnnssnanenae sanee ¥
02€EF20 0008900A 18002648 00000040 0009004 00083004 18002648 000N004AL 00090042 Fesecncscese sroarareinse vsence®
D2FFa0 000A0N0A 18007648 NONGONAZ 00090043 000A300A 18002648 0N00004T 00090044 $oeans csrsessescnavtsonirneras®
G2FF60 00080004 18002648 00000044 00090045 00083004 18002648 00000045 00090046 ¥esesresarrnsenavssssnncsscacence
02EF B0 0008000A 18002648 00000046 00090047 0008300A 18002648 00000047 00090048 ®ievcnrrsasonerrsecsseracassnssas?
D2FFAD 000A000A 18002648 00000048 00090049 00080004 18002648 00000049 00090044 ®ornertorssecaceresnnnne cssone®
02EFCO 00080004 18002648 00000044 000900485 OB0RI00A 18002648 00000048 0009004C seescsernvenet
02FFEO 00080004 18002648 Q0000N04L 0000040 00082004 00010001 C1D9CIOL C3C4F6CO ®eassrarevinccssrancrenadARAICDG,*

Yioy JOR 1PCV 41 SYFP EXSTEP
on 14040101 PGMe®, DN N0230F00 B0002648
14040100 SYSABEND 00240900 RO002648
14040180 FY0&F001 00240C00 80002648
14040100 FINLIN 00250100 800013904
14000000 SYSPUNCH 00250800 00000000
[4040160 SYSPRINT 00240F00 A0002648
14040101 SYSIN 00250A00 A0N02648
SESRERERLEEN SPOF eSSk R SEEEE S50 928 DQF SES 0020 ERUES HOS24E FOF 4ssodtss
FLGS NSPOF SPn DQf ALK FOF LN NDQE NFQE LN
031738 00 031740 251 031250 06035000 000635000 50000800 0003I10F0 10000000 00000508
0003%800 00035800 00017000 00NONOOO 00000000 000001C8
031740 [JY 031488 252 0314C0 00060800 0006D800 00000800 00030878 00000000 00000588
N006CANO 00N6L000 00000800 0N03IOINA 00000000 00000480
0006LA00 000ACADN 00000A00 0002F384 00000000 00000180
0006BA00 0006B800 00000800 00000000 00000000 000001A0
031488 co 000000 000 031400
031400 80 000000 800 031408 0006N0ND 00N6DT4R GGONOBO0 00000N0N 06060000 00000020
00000000 00000%18
D~POE 0002468 FIRST 00031440 LAST 000314660
POF 031440 FF8 0004CR00 LFR 0004C800 NPQ 00000000 PPQ 00000000
TC8 00030508 RS1 00039000 RAD 00035000 FLG 0000

FROF 0&4C800 NFR 00031460 PFR 00031460 $I 0001F000

QCR TRACF

MAJ 0311C8 NMAJ 000301D0 0001C6A0 00031088 NM SYSDSN

MIN 031088 FOEL N003169R 000311C8 000060000 NM FF SYS1.MACLIR
NOEL 00000000 80031088 . 00030508 SVRA 00030100

MAJ 030190 NMAJ 00000000 000311C8 00030140 NM SYSTEAO1L

MIN 030140 FOEL 00030190 00030100 00000000 NM FO [EA

NQFL 00000000 000301A0 0002F028 SVRA O002EREN

SAVE AREA TRACE
SA 060768 WD1 00000000 00000000 00000900 00000000 00000000 00000000

°1 000000N0 00000000 00000000 00000000 00000000 00000009
RT 00000000 00000000 00000000 00000000 00000000 00000000

INTFRRUPY AT OTECAA

PROCFENING BACK VIA RFG 13

SA 0395C0 WN1 95T09SFF 70004780 95789180 80064710 958CI8LL 5203936€
R1 9207F3A0 00060570 000396F & NO0IT6F4L 000ADSTO TFO6DSTC
RT 00060608 0006DTAC 00000F N9 000TECTO S207F43% 0007€C10

SA 004780 DI 47900000 FF£000000 00000000 00000000 47400000 FFQ00000
R 00000000 00000000 47800000 FF000000 00000000 00000000
RT 47C00000 FFO000000 00000000 00000000 47000000 FFO00000

NUCLEUS

annonno onnnanot 000NCOCO 0N0N0000 000N0N0D Q000DNBSE 00000000 FFO4L00R0 80038724 ®iesnesesssnssssenssascracssessse®
gooc2e FFN50001 400TEC3C FFFS0001 02036CF2 0000FFO0 00000000 FF060336 80000000 ®eeve seesS eeZ2asosvsssssnnnscse®
000040 0D00ATCR OL0NO0000 00072540 0000NB&A OR3ISEABC 0001389C 00040000 0000F678 #ooeHeeoasassaeseocYoooosasaoasbe®

Figure 18. Sample of Complete ABEND Dump (MVT) (Part 2 of 2)

48 Programmer's Guide to Debugging (Release 21)

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

JOB ccecccce

COMPLETION CODE

STEP cceeccee TIME dddddd

SYSTEM = hhh (or USER = dddd)

PSW AT ENTRY TO ABEND (SNAP) hhhhhhhh hhhhhhhh

DATE ddddd

ID = dda PAGE dddd

JOB cccececce

STEP

TIME

DATE

is the job name specified in the JOB
statement.

ccceecce

is the step name specified in the EXEC
statement for the problem program
associated with the task being dumped.

dddddad

is the hour (first 2 digits), minute
(next 2 digits), and second (last 2
digits) when the abnormal termination
dump routine began processing.

ddddd

is the year (first 2 digits) and day
of the year (last 3 digits). For
example, 67352 would be December 18,
1967.

ID=ddd

is an identification of the dump. For
dumps requested by an ABEND macro
instruction, this identification is:

o Absent if the dump is of the task
being abnormally terminated.

e 001 if the dump is of a subtask of
the task being abnormally
terminated. (Note that, when a task
is abnormally terminated, its
subtasks are also abnormally
terminated.)

e 002 if the dump is of a task that
directly or indirectly created the

task being abnormally terminated, up
to and including the job step task.

PAGE dddd

is the page number. Aprears at the
top of each page. Page numbers begin
at 0001 for each task or subtask
dumped.

COMPLETION CODE SYSTEM=hhh or COMPLETION
CODE USER=dddd

is the completion code supplied by the
control program (SYSTEM=hhh) or the
problem program (USER=dddd).

For a system completion code of 0CO,
denoting an imprecise interruption on
a Model 91 or Model 195, bits 20
through 29 of the CMP field of the TCB
are significant for a Model 91, while
all the bits (20 through 31) are used
by a Model 195. For further
discussion on interpreting the
imprecise interruption configquration
refer to the publication IBM
Systen/360 Operating

System: Supervisor Services, Order

No. GC28-66u6.

PSW AT ENTRY TO ABEND hhhhhhhh hhhhhhhh or
PSW AT ENTRY TO SNAP hhhhhhhh hhhhhhhh

is the PSW for the problem program or
control program routine that had
control when abnormal termination was
requested, or when the SNAP macro
instruction was executed. It is not
necessarily the PSW at the time the
error condition occurred.

ABEND/SNAP Dump (MVT) 49

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

TCB

hhhhhh RBP
MSS hhhhhhhh
RG 0=7 hhhhhhhh
RG 8-15
FSA hhhhhhhh TCB
LTC hhhhhhhh IQE
NSTAE hhhhhhhh TCT

hhhhhhhh PIE

hhhhhhhh
ahhhhhhn

hhhhhhhh

hhhhhhhh hhhhhhhh

hhhhhhhh

hhhhhhhh DEB hhhhhhhh
PX=FLG hhhhhhhh FLG hhhhhhhh

TIO hhhhhhhh CMP
LL3 hhhhhhhh JLD

JST hhhhhhhbh NTC
STA hhhhhhhh
DAR hhhhhhhh RESV hhhhhhhh

hhhhhhhh TME hhhhbhhh
hhhhhhhh ECB hhhhhhhh
USER hhhhhhhh

hhhhhhhh TRN hhhhhhhh
hhhhhhhh JPQ hhhhhhhh
hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh

hhhhhitthh OTC hhhbhhhhh
D-PQE hhhhhhhh 50S hhhhhhhh
JSCB hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

TCB hhhhhh

is the starting address of the TCB.

RBP hhhhhhhh

is the TCBRBP field (bytes 0 through

MP hhhhhhhh

is the TCBCMP field (bytes 16 through
19): task completion code or contents
of register 1 when the dump was

requested.

System codes are given in

3): starting address of the active RB
queue and, consequently, the most
recent RB on the queue.

PIE hhhhbhbh

is the TCBPIE field (bytes 4 through
7): starting address of the program
interruption element (PIE) for the
task; however, in an abnormal
termination dump for the task causing
the abnormal termination, zeros. The
field is zeroed by the ABEND routine
to prevent interruptions during
dumping.

DEB hhhhhhhh

is the TCBDEB field (bytes 8 through
11): starting address of the DEB
queue. Under the heading DEB in the
dump, the prefix section for the first
DEB in the queue is presented in the
first 8-digit entry on the first line.
The 6~-digit entry at the left of each
line under DEB is the address of the
second column on the line, whether or
not the column is filled. The
contents of the TCBDEB field may
differ in the main storage printout
from what appears in the TCBDEB field
of the formatted section. This occurs
when the number of extents specified
in the DEB for the dump data set is
not sufficient to complete ABDUMP
processing. When the dump of main

" storage is given, the END OF VOLUME

routine may have built another DEB
having additional extents for the dump
data set and dequeued the original
DEB. Therefore, the TCBDEB field in
the main storage printout may contain
the address of the new DEB built by
END OF VOLUME.

TIO hhhhhhhh

50 Programmer's Guide to Debugging (Release 21.7)

is the TCBTIO field (bytes 12 through
15): starting address of the TIOT.

the third through fifth digits and
user codes in the sixth through eight
digits.

For a system completion code of 0CO,
denoting an imprecise interruption on
a Model 91 or Model 195, digits six
through eight contain the imprecise
interruption configuration. These bit
settings represent bits 16 to 27 of
the program old PSW (location X'28")
at the time of the program exception.
Therefore, in the TCB CMP field, bits
20 to 29 are significant for a Model
91 while a Model 195 makes use of all
the bits (20 to 31). For further
discussion on interpreting the
imprecise interruption configquration
refer to the publication IBM
Systemv360 Operating System:
Supervisor Services, Order

No. GC28-6646.

TRN hhhhhhhh :

is the TCBTRN field (bytes 20 through
23): starting address of the control
core (table) for controlling testing

of the task by TESTRAN.

MSS hhhhhhhh

is the TCBMSS field (bytes 24 through-
27): starting address of SPQE most
recently added to the SPQE queue.

PK-FLG hhhhhhhh

contains, in the first 2 digits, the
TCBPKF field (byte 28): protection

key.

contains, in the last 6 digits, the
first 3 bytes of the TCBFILGS field
(bytes 29 through 31): first 3 flag
bytes.

FLG hhhhhhhh

contains, in the first 4 digits, the
last 2 bytes of the TCBFLGS (bytes 32
and 33): 1last 2 flag bytes.

contains, in the next 2 digits, the RG 0-7 and RG 8-15
is the TCBGRS field (bytes 48 through

TCBLMP field (byte 34): 1limit 111) : contents of general registers 0
priority (converted to an internal through 7 and 8 through 15, as stored
priority, 0 to 255). in the save area of the TCB when a

task switch occurred. These 2 lines
contains, in the last 2 digits, the appear only in dumps of tasks other
TCBDSP field (byte 35): dispatching than the task in control when the dump
priority (converted to an internal was requested.

priority, 0 to 255).
FSA hhhhhhhh

LIS hhhhhhhh contains, in the first 2 digits, the
is the TCBLLS field (bytes 36 through TCBQEL field (byte 112): count of
39): starting address of the load enqueue elements.
list element most recently added to ..
the load list. contains, in the last 6 digits, the
TCBFSA field (bytes 113 through 115):
JLB hhhhhhhh starting address of the first problem
is the TCBJLB field (bytes 40 through program save area. This save area was
43): starting address of the DCB for set up by the control program when the

the JOBLIB data set. job step was initiated.

JPQ hhhhhhhh

is the TCBJPQ field (bytes 41 through TCB hhhhhhhh .
47): when translated into binary is the TCBTCB field (bytes 116 through

bits: 119) : starting address of the next
e Bit 0 is the purge flag. lower priority TCB on the TCB queue

o Bits 1 through 7 are reserved for or, if this is the lowest priority
future use and are zeros. TCB, zeros.
e Bits 8 through 31 are the starting
address of the queue of CDEs for the
job pack area control queue, which
is for programs acquired by the job
step.

The TCBIJPQ field is used only in the

first TCB in the job step; it is zeros
for all other TCBs.

ABEND/SNAP Dump (MVT) 50.1

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

} 50.2 pProgrammer's Guide to Debugging (Release 21.7)

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

TME hhhhhhhh
is the TCBTME field (bytes 120 through
123): starting address of the timer
element created when an STIMER macro
instruction is issued by the task.

JST hhhhhhhh
is the TCBJSTCB field (bytes 124
through 127): starting address of the
TCB for the job step task. For tasks
with a protection key of zero, this
field contains the starting address of
the TCB.

NTC hhhhhhhh

is the TCBNTC field (bytes 128 through
131): the starting address of the TCB
for the previous subtask on this
subtask queue. This field is zero in
the job step task, and in the TCB for
the first subtask created by a parent
task.

OTC hhhhhhhh
is the TCBOTC field (bytes 132 through
135): starting address of TCB for the
parent task. In the TCB for the job
step task, this field contains the
address of the initiator.

LTC hhhhbhhhh
is the TCBLTC field (bytes 136 through
139): starting address of the TCB for
the most recent subtask created by
this task. This field is zero in the
TCB for the last subtask of a job
step, or in a TCB for a task that does
not create subtasks.

IQE hhhhhhhh
is the TCBIQE field (bytes 140 through
143): starting address of the
interruption queue element (IQE) for
the ETXR exit routine. This routine
is specified by the ETXR operand of
the ATTACH macro instruction that
created the TCB being dumped. The
routine is to be entered when the task
terminates.

ECB hhhhhhhh
is the TCBECB field (bytes 144 through
147): starting address of the ECB to
be posted by the control program at
task termination. This field is zero
if the task was attached without an
ECB operand.

TSF hhhhhhhh

is the TCBSFLG field (bytes 94 through
97). The first two digits, byte 94,
contain internal TSO flags, the next
two digits, byte 95, contain the stop
count, and the last two bytes, 96 and
97, contain the limit and dispatching
priority of the TSO task.

D-PQE hhhhhhhh
is the TCBPQE field (bytes 152 through
155): starting address minus 8 bytes
of the dummy PQE. This field is
passed by the ATTACH macro instruction
to each TCB in a job step.

SQS hhhhhhhh
is the TCBAQE field (bytes 156 through
159): starting address of the
allocation queue element (RAQE).

NSTAE hhhhhhhh
contains, in the first 2 digits, STAE
flags (byte 160).

contains, in the last 6 digits, the
TCBNSTAE field (bytes 161 through
163): starting address of the current
STAE control block for the task. This
field is zero if STAE has not been
issued.

TCT hhhhhhhh
is the TCBTCT field (bytes 164 through
167): address of the Timing Control
Table (TCT).

USER hhhhhhhh
is the TCBUSER field (bytes 168
through 171): to be used as the user
chooses.

DAR hhhhhhhh
contains, in the first two digits,
Damage Assessment Routine (DAR) flags
(byte 172).

RESV hhhhhhhh
reserved for future use.

JSCB hhhhhhhh :
is the TCBJSCB field (bytes 180
through 183): the last three bytes
contain the address of the Job Step
Control Block.

ABEND/SNAP Dump (MVT) 51

ACTIVE RBS

ccec hhhhhh ccccec hhhhhhhh APSW hhhhhhhh WC+5Z~-STAB hhhhhhhh
Q/TTR hhhhhhhh WT-LNK hhhhhhhh

cceecee hhhhhhhh PSW hhhhhhhh hhhhhhbh

RG 0-7 hhhhhhhh hhhhhhhb hhhhhhhh hhahhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhbhhhh
RG 8-15 hhhhhbhh hhhhhhhh hhhhhhbh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
EXTSA hhhhhhhh hhhhhhbh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhihh hhhhhhhh
ACTIVE RBS APSW hhhhhhhh

identifies the next lines as the
contents of the active RBs queued to
the TCB, beginning with the oldest RB
first.

ccce hhhhhh
indicates the RB type (cccc) and
starting address (hhhhhh).

The RB types are:

PRB program request block
IRB interruption request block
SVRB supervisor request block

cccecce hhhhhhhh
indicates the RB's function (ccccce)
and bytes 0 through 3 of the RB
{hhhhhhhh) :

e RESV hhhhhhhh indicates PRB or SVRB
for resident routines. Bytes 0

is the RBABOPSW field (bytes 4 through
7):

e In PRB, right half of the problem

program's PSW when the interruption
occurred.

In IRB or SVRB for type II SVC
routines, right half of routine's
PSW during execution of ABEND or
ABTERM, or zeros.

In SVRB for type III or IV SVC
routines, right half of routine's
PSW during execution of ABEND or -
ABTERM, or the last four characters
of the name of the requested
routine. (The last two characters
give the SVC number.)

through 3 are reserved for later use WC-SZ-STAB hhhhhhhh

and contain zeros.

s TAB-~LN hhhhhhhh indicates SVRB for
transient routines. The first 4
digits contain the RBTABNO field
(bytes 0 and 1): displacement from
the beginning of the transient area
control table (TACT) to the entry
for the module represented by the
RB. The last 4 digits contain the
RBRTLNTH field (bytes 2 and 3):
length of the SVC routine.

e FL-PSA hhhhhhhh indicates IRB. The

contains, in the first 2 digits, the
RBWCSA field (byte 8): wait count in
effect at time of abnormal termination
of the program.

contains, in the second 2 digits, the
RBSIZE field (byte 9): size of the RB
in doublewords.

contains, in the last 4 digits, the
RBSTAB field (bytes 10 and 11):
status and attribute bits.

first 2 digits contain the RBTMFLD cccceec hhhhhhhh

field (byte 0): indicators for the
timer routines. This byte contains
zeros when the IRB does not
represent a timer routine. The last
6 digits contain the RBPSAV field
{bytes 1 through 3): starting
address of the problem program
register save area (PSA).

52 Programmer's Guide to Debugging {Release 21.7)

indicates the RB's function (cccccce)
and bytes 12 through 15 of the RB
{hhhhhhhh) :

e FL~CDE hhhhhhhh indicates SVRB for

resident routines, or PKRB. The
first 2 digits contain the RBCDFLGS
field (byte 12): control flags.

The last 6 digits contain the RBCDE
field (bytes 13 through 15):
starting address of the CDE for the
module associated with this RB.

e EPA hhhhhhhh is the RBEP field of an
IRB (bytes 12 through 15):
entry-point address of
asynchronously executed routine.

e TQN hhhhhhhh indicates SVRB for
transient routines. Is the RBSVTQN
field (bytes 12 through 15):
address of the next RB in the
transient control queue.

PSW hhhhhhhh hhhhhhhh
is the RBOPSW field (bytes 16 through
23): resume PSW.

Q/TTR hhhhhhhh
e In PRBs and SVRBs for resident

routines, contains zeros in the
first 2 digits. The last 6 digits
contain the RBPGMQ field (bytes 25
through 27): queue field for
serially reusable programs (also
called the secondary queue).

e In IRBs, contains the RBUSE field in
the first 2 digits (byte 24): count
of requests for the same exit
(ETXR). The RBIQE field in last 6
digits (bytes 25 through 27):
starting address of the queue of
interruption queue elements (IQE),
or zeros in the first 4 digits and
the RBIQE field in the last 4 digits
(bytes 26 and 27): starting address
of the request queue elements.

e In SVRBs for transient routines the

first 2 digits contain the RBTAWCSA
field (byte 24): number of requests
(used if transient routine is
overlaid) and the last 6 digits, the
RBSVITR field (bytes 25 through 27):
relative track address for the SVC
routine.

WI'-LNK hhhhhhhh

contains, in the first 2 digits, the
RBWCF field (byte 28): wait count.

contains, in the last 6 digits, the

RBLINK field (bytes 29 through 31):
starting address of the previous RB on
the active RB queue (primary queuing
field) or, if this is the first or
only RB, the starting address of the

TCB.

RG 0-7 and RG 8-15

is the RBGRSAVE field (bytes 32
through 95): in SVRBs and IRBs,

contents of registers 0 through 15.

EXTSA

e ITn IRBs, contains the RBNEXAV field

in the first 8 digits (bytes 96
through 99): address of next
available interruption queue element
(IQE), and in the remaining digits,
the interrupticn queue element work
space (up to 1948 bytes).

In SVRBs, contains the RBEXSAVE
field (bytes 96 through 143):
extended save area for SVC routine.

LOAD LIST
NE hhhhhhhh RSP=-CDE hhhhhhhh NE hhhhhhhh RSP=CDE hhhhhhhh NE hhhhhhhh RSP-CDE hhhhhhhh
LOAD LIST RSP-CDE hhhhhhhh

identifies the next lines as the
contents of the load list elements
(LLEs) queued to the TCB by its TCBLLS
field. The contents of 3 load list
elements are presented per line until
all elements in the queue are shown.

NE hhhhhhhh
contains, in the first 2 digits, LLE
byte 0: zeros.

contains, in the last 6 digits, LLE
bytes 1 through 3: starting address
of the next element in the load list.

contains, in the first 2 digits, LLE
byte 4: the count of the number of
requests made by LOAD macro
instructions for the indicated load
module. This count is decremented by
DELETE macro instructions.

contains, in the last 6 digits, LLE
bytes 5 through 7: starting address
of the CDE for the load module.

ABEND/SNAP Dump (MVT) 53

CDE

hhhhhhhh ATR1 hh NCDE hhhhhh ROC=RB hhhhhhhh

NM cceceeccee USE hh EPA hhhhhb ATR2 hh XL/MJ hhhhhh

CDE
identifies the next lines as the
contents directory addressed by an LLE
or RB. One entry is presented per
line.

hhhhhhhh
is the starting address of the entry
given on the line.

ATR1 hh
is the attribute flags.

NCDE hhhhhh

is the starting address of the next
entry in the contents directory.

ROC-RB hhhhhhhh
contains, in the first 2 digits,
Zeros.

contains, in the last 6 digits, the
starting address of the RB for the
load module represented by this entry.

NM cccecccee
is the name of the entry point to the
load module represented by this entry.

USE hh
is the count of, the uses (through
ATTACH, LINK, and XCTL macro
instructions) of the load module, and
of the number of LOAD macro
instructions executed for the module.

EPA hhhhhh
is the entry point address associated
with the name in the NM field.

ATR2 hh
is the attribute flags.

XL/MJ hhhhhh
is the starting address of the extent
list (XL) for a major CDE, or the
starting address cf the major CDE for
a minor CDE. (Minor CDEs are for
aliases.)

XL LN

hhhhhh $2 hhhhhhhh NO hhhhhhhh hhhhhhhh

ADR LN ADR LN ADR

hhhhhhhh hhhhhhhh hhhhhhhh

XL
indicates the next lines are entries
in the extent list, which is queued to
the major contents directory entry.
Each extent list entry is given in one
or more lines. Only the first line
for an entry contains the left 3
columns; additional lines for an entry
contain information only in the right
6 columns.

hhhhhh
is the starting address of the entry.

SZ hhhhhhhh
is the total length, in bytes, of the
entry.

NO hhhhhhhh
is the number of scattered control
sections in the lcad module described
by this entry. If this number is 1,
the load module was loaded as one
block.

LN hhhhhhhh
gives the length, in bytes, of the
control sections in the load module
descxribed by this entry. Bit 0 is set
to 1 in the last, or only, LN field to
signal the end of the list of lengths.

ADR hhhhhhhh
gives the starting addresses of the
control sections. Each ADR field is
paired with the LN field to its left.

54 Prdgrammer's Guide to Debugging (Release 21)

DEB

TIOT

hhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh

JOB c¢ccceccee STEP c¢eccccce PROC ccccecce
DD hhhhhhhh cceccccce hhhhhhhh hhhhhhhh

.hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

DEB JOB ccccccee
identifies the next lines as the is the name of the job whose task is
contents of the DEBs and their prefix being dumped.
sections. The first 6 digits in each
line give the address of the DEB
contents shown on the line, beginning STEP ccccccecece
with the second column. The first six is the name of the step whose task is
digits of the first line contains the being dumped.
prefix section for the first DEB on
the queue.
PROC ccccceccec
Note: DEBs are not formatted if the is the name for the job step that
dump is for an OLTEP task. If a dump called the cataloged procedure. This
of the DEB chain is desired, use a field appears if the job step whose
SYSABEND DD card so that the nucleus task is being dumped was part of a
will be dumped. cataloged procedure.
TIOT DD
identifies the next lines as the identifies the line as the contents of
contents of the TIOT. the DD entry in the TIOT.
MSS I ZEZXEEEREREER S] SPQB I ZAEEERSR R R R] LA AR SRS EREER RN] DQE (AR ES RS R ER 2] (AR X ERE) FQE [EX X2 R X
FLGS NSPQE SPID DQE BLK FQE LN NDQE NFPOE LN
hhhhhh hh hhhhhh dada hhhhhh hhhhhh hhhhhh hhhhhh hhhhhh hhhhhhhh hhhhhhhh
D=POE hhhhhh FIRST hhhhhhhh LAST hhhhhhhh
PQE hhhhhh FFB hhhhhhhh LFB hhhhhhhh NP0 hhhhhhhh PPO hhhhhhhh
TCB hhhhhhhh RSI hhhhhhhh RAD hhhhhhhh FLA hhhhhhhh
FBQE hhhhhh NFB hhhhhhhh PFB hhhhhhhh §2 hhhhhhhh
PéE hhhhhh P;B hhhhhhhh L;B hhhhhhhh N;Q hhhhhhhh pPPO hhhhhhhh
TCB hhhhhhhh RSI hhhhhhhh RAD hhhhhhhh FLG hhhhhhhh
FBOE hhhhhh NFB hhhhhhhh PFB hhhhhhhh $2 hhhhhhhh
MSs hhhhhh

identifies the next lines as the
contents of the main storage
supervisor queue. This queue includes
subpool queue elements (SPQE),
descriptor queue elements (DQE), and
free queue elements (FQE).

SPQE

is the starting address of the first
element shown on the line.

identifies the 4 columns beneath it as
the contents of SPQEs.

ABEND/SNAP Dump (MVT) 55

FLGS hh
is the SPQE flag byte.

NSPQE hhhhhh
is the starting address of the next
SPQE in the queue.

SPID ddd
is the subpool number.

DQE hhhhhh
for a subpool owned by the task being
dumped: the starting address of the
first DQE for the subpool.

for a subpool that is shared: the
starting address of the SPQE for the
task that owns the subpool.

identifies the 4 columns beneath it as
the contents of DQEs.

BLK hhhhhh
is the starting address of the
allocated 2K block of main storage or
set of 2K blocks.

FQE hhhhhh
is the starting address of the first
FQE within the allocated blocks.

LN hhhhhh
is the length, in bytes, of the
allocated blocks.

NDQE hhhhhh
is the starting address of the next
DQE.

FQE

identifies the 2 columns beneath it as
the contents of FQEs.

NFQE hhhhhhhh
is the starting address of the next
FQE.

LN hhhhhhhh
indicates the number of bytes in the
free area.

D-PQE hhhhhh
is the TCBPQE field (bytes 152 through
155): starting address minus 8 bytes
of the dummy PQE shown on the line.

FIRST hhhhhhhh
is the starting address of the first
PQE.

LAST hhhhhhhh
is the starting address of the last
PQE.

PQE hhhhhh
is the starting address of the PQE
shown on the 1line.

FFB hhhhhhhh
is bytes 0 through 3 of the PQE:
starting address of the first FBQE.
If no FBQEs exist, this field is the
starting address of this PQE

LFB hhhhhhhh
is bytes 4 through 7 of the PQE:
starting address of the last FBQE. If
no FBQEs exist, this field is the
starting address of this PQE.

NPQ hhhhhhhh
is bytes 8 through 11 of the element:
starting address of the next PQE or,
if this is the last PQE, zeros.

PPQ hhhhhhhh
is bytes 12 through 15 of the element:
starting address of the preceding PQE
or, if this is the first PQE, zeros.

TCB hhhhhhhh
is bytes 16 through 19 of the element:
starting address of the TCB for the
job step to which the space belongs
or, if the space was obtained from
unassigned free space, zeros.

RSI hhbhhhhh
is bytes 20 through 23 of the element:
size of the region described by this
PQE (a multiple of 20u8).

RAD hhhhhhhh
is bytes 24 through 27 of the element:
starting address cof the region
described by this PQE.

FLG hhbhhhhhh
is byte 28 of the element:

bit 0 when 0, indicates space
described by this PQE is owned;

when 1, indicates space is
borrowed.

bit 1 when 1, indicates region has
been rolled cut (meaningful only
when bit 0 is 0).

bit 2 when 1, indicates region has
been borrowed.

bit 3-7, reserved for future use.

Note: PQE information is contained in two
lines on the dump. When the rollout/rollin
feature or Main Storage Hierarchy Support
is included in the system, PQE information
(with associated FBQEs) appears once in the
dump for each region segment of the job
step. (Each PQE on the partition queue
defines a region segment. A job step's
region contains more than one segment only
when the step has rolled out another step
or steps, or Main Storage Hierarchy Support
is present.)

56 Programmer's Guide to Debugging (Release 21)

FBQE hhhhhh
is the starting address of the FBQE
shown on the lirne.

NFB hhhhhhhh
is bytes 0 through 3 of the element:
starting address of the next FBQE. 1In
. the highest or only FBQE, this field
contains the address of the PQE.

PFB hhhhhhhh
is bytes 4 through 7 of the element:
starting address of the previous FBQE.
In the lowest or only FBQE, the field
contains the address of the PQE.

SZ hhhhhhhh
is bytes 8 through 11 of the element:
size, in bytes, of the free area.

QCB TRACE
MAJ hhhhhh NMAJ hhhhhhhh PMAJ hhhhhhhh FMIN hhhhhhhh NM cccccccc
MIN hhhhhh FQEL hhhhhhhh PMIN hhhhhhhh NMIN hhhhhhhh NM xx xXXXX%XX
NQEL hhhhhhhh PQEL hhhhhhhh TCB hhhhhhhh SVRB hhhhhhhh
QCB TRACE PMIN hhhhhhhh

identifies the next lines as a trace
of the queue control blocks (QCB)
associated with the job step. Lines
beginning with MAJ show major QCBs,
lines beginning with MIN show minor
QCBs, and lines beginning with NQEL
show queue elements (QEL).

MAJ hhhhhh
is the starting address of the major
QCB whose contents are given on the
line.

NMAJ hhhhhhhh
is the starting address of the next
major QCB for the job step.

PMAJ hhhhhhhh
is the starting address of the
previous major QCB for the job step.

FMIN hhhhhhhh
is the starting address of the first
minor QCB associated with the major
QCB given on the line.

NM ccccccec
is the name of the serially reusable
resource represented by the major QCB.

MIN hhhhhh
is the starting address of the minor
QCB whose contents are given on the
line.

FQEL hhhhhhhh
is the starting address of the first
queue element (QEL), which represents
a request to gain access to a serially
reusable resource or set of resources.

is the starting address of the
previous minor QCB.

NMIN hhhhhhhh
is the starting address of the next
minor QCB.

NM XX XXXXXXXX
indicates, in the first 2 digits, the
scope of the name or address of the
minor QCB being dumped. If the scope
is hexadecimal FF, the name is known
to the entire operating system. If
the scope is hexadecimal 00 or 10
through FO, the name is known only to
the job step; in this case, the scope
is the protection key of the TCB
enqueuing the mincr QCB.

Also contaihs, in the last 8 digits,
the name or the starting address of
the minor QCB.

NQEL hhhhhhhh
indicates, by hexadecimal 10 in the
first 2 digits, that the queue element
on the line represents a request for
step-must-complete; by 00, ordinary
request; and by 20, a
set-must-complete request.

Also contains, in the last 6 digits,
the starting address of the next queue
element in the queue, or for the last
queue element in the queue, zeros.

PQEL hhhhhhhh
indicates, by hexadecimal 80 in the
first 2 digits, that the queue element
represents a shared request or, ty
hexadecimal 00, that the element
represents an exclusive request. (If

ABEND/SNAP Dunp (MVT) 57

the shared DASD option was selected,
hexadecimal 40 in the first 2 digits
indicates an exclusive RESERVE request
and 00 indicates a shared RESERVE
request.)

TCB hhhhhhhh
is the starting address of the TCB
under which the ENQ macxo instruction
was issued. :

SVRB hhhhhhhh

is the starting address, of the SVRB
under which the routine for the ENQ
macro instruction is executed, or,
after the requesting task receives
control of the resource, the UCB
address of a device being reserved
through a RESERVE macro instruction
(the latter value occurs only when the
shared DASD opticn was selected).

SAVE AREA TRACE

ccececocee WAS ENTERED VIA LINK (CALL) ddddd AT EP ccceCoas

SA hhhhhh WDl hhhhhhhh HSA hhhhhhhh LSA hhhhhhhh
Rl hhhhhhhh R2 hhhhhhhh R3 hhhhhhhh
R7 hhhhhhhh R8 hhhhhhhh R9 hhhhhhhh

INCORRECT BACK CHAIN

INTERRUPT AT hhhhhh

PROCEEDING BACK VIA REG 13

RET hhhhhhhh EPA hhhhhhhh RCG hhhhhhhh
hhhhhhhh R5 hhhhhhhh R6 hhhhhhhh
R10 hhhhhhhh R11 hhhhhhhh R12 hhhhhbhh

SAVE AREA TRACE
identifies the next lines as a trace
of the save areas for the program.
Each save area is presented in 3 or 4
lines. The first line gives
information about the linkage that
last used the save area. This line
will not appear when the RB for the
linkage cannot be found. The second
line gives the contents of words 0
through 5 of the save area. The third
and fourth lines give the contents of
words 6 through 18 of the save area;
these words are the contents of
registers 0 through 12. Save areas
are presented in the following order:

1. The save area pointed to in the
TCBFSA field of the TCB. This
save area is the first one for the
problem program; it was set up by
the control program when the job
step was initiated.

2. If the third word of the first
save area was filled by the
problem program, then the second
save area shown is that of the
next lower level module of the
task. However, if the third word
of the first area points to a
location whose second word does
not point back to the first area,
the message INCORRECT BACK CHAIN
appears, followed by possible
contents of the second save area.

58 Programmer's Guide to Debugging (Release 21)

3. The third, fourth, etc. save
areas are then shown, provided the
third word in each higher save
area was filled and the second
word of each lower save area
points back to the next higher
save area. This process is
continued until the end of the
chain is reached (the third word
in a save area contains zeros) or
INCORRECT BACK CHAIN appears.

Following the forward trace, the
message INTERRUPT AT hhhhhh appears,
followed by the message PROCEEDING
BACK VIA REG 13. Then, the save area
in the lowest level module is
presented, followed by the save area
in the next higher level. The lowest
save area is assumed to be the 76
bytes beginning with the byte
addressed by register 13. These two
save areas appear cnly if register 13
points to a full word boundary and
does not contain zeros.

cceccccce WAS ENTERED

is the name of the module that stored
register contents in the save area.
This name is obtained from the RB.

VIA LINK ddddd or VIA CALL ddddd

indicates the macro instruction (LINK
or CALL) used to give control to the
next lower level module, and is the ID

operand, if it was specified, of the
LINK or CALL macro instruction.

(register 15): entry point to the
called module. Use of this word is
optional; if the called module did not
fill the word, it contains zeros.
AT EP CCCCCe.se

is the entry point identifier, which

appears only if it was specified in

- the SAVE macro instruction that filled RO hhhhhhhh R1 hhhhhhhh ... R12 hhhhhhhh
the save area. are words 6 through 18 of the save
‘ area (registers 0 through 12):

SA hhhhhh contents of registers 0 through 12 for’
is the starting address of the save the module containing the save area
area. immediately after the linkage. Use of
these words is optiocnal; if the called
module did not £ill these words, they
contain zeros.

WD1 hhhhhhhh
is the first word of the save area
(optional).

HSA hhhhhhhh

is the second word of the save area: INCORRECT BACK CHAIN

starting address of the save area in
the next higher level module. In the
first save area in a job step, this
word contains zeros. 1In all other
save areas, this word must be filled.

LSA hhhhhhhh

is the third word of the save area
(register 13): starting address of
the save area in the next lower level
(called) module. If the module
containing this save area did not fill

indicates that the following lines may
not be a save area because the second
word in this area does not point back
to the previous save area in the
trace.

INTERRUPT AT hhhhhh

is the address of the next instruction
to be executed in the problem program.
It is obtained from the resume PSW
word of the last PRB or LPRB in the
active RB queue.

the word, it contains zeros.

PROCEEDING BACK VIA REG 13
indicates that the next 2 save areas
are (1} the save area in the lowest
level module, followed by (2) the save
area in the next higher level module.
The lowest save area is the save area
pointed to by register 13. These 2
save areas appear cnly if register 13
points to a fullword boundary and does
not contain zero.

RET hhhhhhhh
is the fourth word of the save area
(register 14): return address
(optional); if the called module did
not f£ill the word, it contains zeros.

EPA hhhhhhhh
is the fifth word of the save area

ABEND/SNAP Dump (MVT) 59

CPUx PSA
hhhhhh hhhhhhhh hhhhhhhh hhhbhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccocccocereceeccaccccocceccecececec®
- hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccccecoccececoceccceeeecceceecceccec*

NUCLEUS
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccccececececceccceecceeececcccececcH
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhhhhhhhhhhh hhhhhhhh *ceocceocoeecooccecccceceeeececceec#®
NUCLEUS CONT.
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccceocccecceecececccececececccecec*
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccecceeccocccccecceceececcecccc*
REGS AT ENTRY TO ABEND (SNAP)

FLTR 0-6 hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh

REGS 0-7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

REGS 8-15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
LOAD MODULE cceccccece
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *coeeegeoeeccecceccecceeceeccceecce®
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cceoccceccceccecececcecceccecccccck

LINES hhhhhh~-hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *coceogoceeccaccececcoecccecceccect
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cococoocceccecceccoceecccecceccec*
LINE hhhhhh SAME AS ABOVE

CSECT dd OF ccceceecce
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh ¥ccecececccccececceccecececcceccceeH
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccocccccecocecccecccccceeeeecccecc*

The contents of main storage are given
under 6 headings: CPUx PSA, NUCLEUS,
NUCLEUS CONT., LOAD MODULE cccccccec, CSECT
dd OF ccccccecc, and in the trace table, SP
ddd BLK hh. Under these headings, the
lines have the following format:

e First entry: the address of the
initial bytes of the main storage
presented on the line.

e Next 8 entries: 8 full words (32
bytes) of main storage in hexadecimal.

* Last entry (surrounded by asterisks):
the same 8 full words of main storage
in EBCDIC. Only A through Z, 0 through
9, and blanks are printed; a period is
printed for anything else.

The following lines may also appear:

LINES hhhhhh-~-hhhhhh SAME AS ABOVE
are the starting addresses of the
first and last lines for a group of
lines that are identical to the line
immediately preceding.

LINE hhhhhh SAME AS ABOVE

is the starting address of a line that

is identical to the line immediately

preceding.

60 Programmer's Guide to Debugging (Release

CPUx PSA (Model 65 Multiprocessing dumps

only)
identifies the next lines as the
contents of the prefixed storage area
(PSA) -- 0 through 4095 (FFF). If the
system is operating in partitioned
mode (1 CPU), x is the CPU
identification. If the system is
operating in a 2 CPU multisystem mode,
both PSAs are printed, the first under
the heading CPUA PSA and the second
under CPUB PSA.

NUCLEUS
identifies the next lines as the
contents of the nucleus of the control
programe.

NUCLEUS CONT.
identifies the next lines as the
contents of the part of the nucleus
that lies above the trace table.

REGS

SNAP
identifies the next 3 lines as the
contents of the floating point and
general registers when the abnormal
termination routine received control
in response to an ABEND macro
instruction or when the SNAP routine
received control in response to a SNAP

AT ENTRY TO ABEND or REGS AT ENTRY TO

21)

FLTR

REGS

REGS

macro instruction. These are not the
registers for the problem prog-am when
the error occurred.

0-6
indicates the contents of floating
point registers 0, 2, 4, and 6.

0-7
indicates
registers

the contents of general
0 through 7.

8-15
indicates
registers

the contents of general
8 through 15.

LOAD MODULE cccccccce
identifies the next lines as the
contents of the main storage area

occupied by the load module ccccccec

addressed by an LLE or RB.

All the

modules for the job step are dumped

under this type of heading.

Partial

dumps do not contain this information.

CSECT hhhh OF ccccceccce
identifies the next lines as the
contents of the main storage area
occupied by the control section
(CSECT) indicated by hhhh. This
control section belongs to the

scatter-loaded load module cccccccc.

DSP
1/0
S10
svcC
PGM
EXT

TRACE TABLE

NEW PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh SW hhhhhhhh TCB hhhhhhhh TME
OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh RES hhhhhhhh TCB hhhhhhhh TME
CC/DEV/CAW hhhhhhhh hhhhhhhh csw hhhhhhhh hhhhhhhh RES hhhhhhhh RES hhhhhhhh TCB hhhhhhhh TME
OLD PSW hhhhhhhh hhhhhhhh R15/R0O hhhhhhhh hhhhhhhh R1 hhhhhhhh RES hhhhhhhh TCB hhhhhhhh TME
OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh Rl hhhhhhhh PES hhhhhhhh TCB hhhhhhhh TME
OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh Rl hhhhhhhh RES hhhhhhhh TCB hhhhhhhh TME

hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh

TRACE TABLE (SNAP dumps only)

identifies the next lines as the
contents of the trace table. Each
trace table entry is presented on one
line; the name at the beginning of
each line identifies the type of entry
on the line:

e DSP Dispatcher entry

e I/0 Input/output interruption entry

e SIO Start input-output (SIO) entry

s SVC §uperviso¥ call (sW)
interruption entry

e PGM Program interruption entry

e EXT External interruption entry

OLD PSW hhhhhhhh hhhhhhhh

is the PSW stored when the
interruption represented by the entry
occurred.

NEW PSW hhhhhhhh hhhhhhhh

is the new PSW stored in the entry.

CC/DEV/CAW hhhhhhhh hhhhhhhh

contains, in the first 2 digits:
completion code.

contains, in the next 6 digits:
device type.

contains, in the last 8 digits:

address of the channel address word

(CAW) stored in the entry.

R15/RO hhhhhhhh hhhhhhhh
contains, in the first 8 digits:

contents of register 15 stored in the

entry.

contains, in the last 8 digits:

contents of register 0 stored in the

entry.

CSW hhhhhhhh hhhhhhhh
is the channel status word (CSW)
stored in the entry.

R1 hhhhhhhh
is the contents of register
in the entry.

RES hhhhhhhh
is reserved for future use;
are zerose.

SW hhhhhhhh
is reserved for future use;
are zeros.

TCB hhhhhhhh
is the starting address of the TCB
associated with the entry.

TME hhhhhhhh
is a representation of the timer
element associated with the entry.

ABEND/SNAP Dump (MVT)

1 stored

all digits

all digits

61

X DSP NEW PsSwW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh
X I1/0 OLD PSW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh
X SIO CC/DEV/CAW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh
X 8VC OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh
X PGM OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh
X EXT OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh
X SSM OLD PsW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh

R1 hhhhhhhh NUA hhhhhhhh NUB hhhhhhhh TME hhhhhh
R1 hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh TME hhhhhh
TCB hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh TME hhhhhh
R1 hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh TME hhhhhh
R1 hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh TME hhhhhh
R1 hhhhhhhh MSK hhhhhhhh TQE hhhhhhhh TME hhhhhh
R1 hhhhhhhh AFF yyhhhhhh OLB hhhhhhhh TME hhhhhh

TRT (MVT with Model 65 multiprocessing

dumps only)
identifies the next lines as the
contents of the trace table. Each
trace table entry is presented on one
line; the letter and name at the
beginning of each line identify the
CPU and the type of entry,
respectively:

e DSP Dispatcher entry.

e I/0 Input/cutput interruption
entry.

e SIO Start input/output entry.

e SVC Supervisor call interruption
entry.

® PGM Program interruption entry.
* EXT External interruption entry.
s SSM Set system mask entry.

OLD PSW hhhhhhhh hhhhhhhh
is the PSW stored when the
interruption represented by the entry
occurred.

NEW PSW hhhhhhhh hhhhhhhh .
is the new PSW stored in the entry.

CC/DEV/CAW hhhhhhhh hhhhhhhh
contains, in the first 2 digits:
completion code; in the next 6 digits:
device type; in the last 8 digits:
address of the channel address word
stored in the entry.

R15/R0 hhhhhhhh hhhhhhhh
contains, in the first 8 digits:
contents of register 15; in the last 8
digits: contents of register 0, both
as stored in the entry.

62 Prdgrammer's Guide to Debugging (Release

CSWw

hhhhhhhh hhhhhhhh
is the channel .status word stored in
the entry.

R1 hhhhhhhh

TCB

OLA

OLB

TQE

TME

21)

is the contents of register 1 as
stored in the entry.

hhhhhhhh

is the starting address of the TCB
associated with the entry.

hhhhhhhh

is the starting address of the new TCB
for CPU A, as stored in the entry.
hhhhhhhh

is the starting address of the old TCB
for CPU A, as stored in the entry.
hhhhhhhh

is the STMASK of the other CPU as
stored in the entry.
hhhhhhhh

is the starting address of the new TCB
for CPU B, as stored in the entry.
hhhhhhhh

is the starting address of the old TCB
for CPU B, as stored in the entry.
hhhhhhhh

is the first word of the timer queue
element stored in the entry, provided
a timer interrupt occurred.
hhhhhhhh

is a representaticn of the timer
element associated with the entry.
yyhhhhhh

contains, in the first 2 digits: the
ID of the locking CPU at the time of
the interrupt; in the last 6 digits:
starting address of the old TCB for
CPU A, as stored in the entry.

5P add

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhh
hhhhhh

END OF DUMP

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

*ccccocgcececccececccerecececececcece®

SP ddd
identifies the next lines as the
contents of a block of main storage
obtained through a GETMAIN macro
instruction, and indicates the subpool
number (ddd). The part of subpool 252
that is the supervisor work area is
presented first, followed by the
entire contents of any problem program
subpools (0 through 127) in existence
during the dumping.

END OF DUMP
indicates that the dump or snapshot is
completed. If this line does not
appear, the ABDUMP routine was
abnormally terminated before the dump
was completed, possibly because enough
space was not allocated for the dump
data set.

Guide to Using an ABEND/SNAP Dump (MVT)

Cause of Abnormal Termination: Evaluate
the user (USER=decimal code) or system
(SYSTEM=hex code) completion code using
Appendix B or the publication Messages and
Codes.

Dumped Task: Check the ID field for an
indication of which task is being dumped in
relation to the task that was abnormally
terminated:

» 001 indicates a partial dump of a
subtask

e 002 indicates a partial dump of the
invoking task

If the ID field is absent, the dump
contains a full dump of the task that was
abnormally terminated.

Active RB Queue: The first RB shown on the
dump represents the oldest RB on the queue.
The RB representing the load module that
had control when the dump was taken is
third from the bottom. The last RB
represents the ABDUMP routine and the
second from last, the ABEND routine. The
load module name and entry point (for a
PRB) are given in a contents directory
entry, the address of which is shown in the
last 3 bytes of the FL/CDE field.

Program Check PSW: The program check old
PSW is the fifth entry in the first line of
each RB printout. It is identified by the
subheading APSW. For debugging purposes,
the APSW of the third RB from the bottom of
the dump is most useful. It provides the
length of the last instruction executed in
the program (bits 32,33), and the address
of the next instruction to be executed
(bytes 5-8).

Ioad List: Does the resume PSW indicate an
instruction address outside the limits of
the load module that had control at the
time of abnormal termination? 1f so, look
at the LLEs on the load list. Each LLE
contains the CDE address in the dump field
labeled RSP-CDE.

CDEs: The entries in the contents
directory for the region are listed under
the dump heading CDE. The printouts for
each CDE include the load module and its
entry point. If you have a complete dump,
each load module represented in a CDE is
printed in its entirety following the
NUCLEUS section of the dump.

Trace Table (SNAP dumps only): Entries on
an MVT SNAP dump, if valid, represent
occurrences of SIO, external, SVC, program,
1/0, and dispatcher interruptions. SIO
entries can be used to locate the CCW
(through the CAW), which reflects the
operation initiated by an SIO instruction.
If the SIO operation was not successful,
the CSW STATUS portion of the entry will
show you why it failed. EXT and PGM
entries are useful for locating the
instruction where the interruption occurred
{(bytes 5-8 of the PSW).

SVC trace table entries provide the SVC old
PSW and the contents of registers 0, 1, and
15. The PSW offers you the hexadecimal SVC
number (bits 20-31), the CPU mode (bit 15),
and the address of the SVC instruction
(bytes 5-8). The contents of registers 0
and 1 are especially useful in that many
system macro instructions pass key
information in these registers. (See
Appendix A.)

1/0 entries reflect the I/0 0ld PSW and the
CSW that was stored when the interruption
occurred. From the PSW, you can learn the

ABEND/SNAP Dump (MVT) 63

*cecccececccceccecceccceceecececeececet -

address of the device that caused the
interruption (bytes 2 and 3), the CPU state
at the time of interruption (bit 15), and
the instruction address where the
interruption occurred (bytes 5-8). The CSW
provides you with the unit status (byte 4),
the channel status (byte 5), and the
address of the previous CCW plus 8 (bytes
0-3).

You can use the DSP entry to delimit the
entries in the trace table. To find all
entries for the terminated task, scan word
7 of each trace table entry for the TCB
address in a DSP entry. The lines between
this and the next DSP entry represent
interruptions that occurred in the task.

Region Contents: Free areas for the region
occupied by the dumped task are identified
under headings PQE and FBQE. The field

labeled SZ gives the number of bytes in the
free area represented by the FBQE.

Subpool Contents: Free and requested areas
of the subpools used by the dumped task are
described under the dump heading MSS.
Subpool numbers are given under the SPID
column in the list of SPQEs. If a GETMAIN
macro instruction was issued without a
subpool specification, space is assigned
from subpool 0. Thus, two SPQEs may exist
for subpool 0. The sizes of the requested
areas and free areas are given under the LN
column in the lists of DQEs and FQEs,
respectively.

Load Module Contents: The contents of each
load module used by the job step are given
under the heading XL. Each entry includes
the sizes (LN) and starting addresses (ADR)
of the control sections in the load module.

64 Programnmer's Guide to Debugging (Release 21)

Indicative Dump

An indicative dump is issued when a task is
abnormally terminated by an ABEND macro
instruction, and a dump is requested, but a
dump data set is not available, due either
to omission or incorrect specification of a
SYSABEND or SYSUDUMP DD statement. An
indicative dump is issued automatically on
the system output (SYSOUT) device.

Systems with MVT do not issue indicative
dumps.

Contents of an Indicative Dump

This explanation of indicative dumps
utilizes capital letters for the headings
found in all dumps, and lowercase letters
for information that varies with each dump.
The lowercase letter used indicates the
mode of the information, and the number of
letters indicates its length:

e h represents 1/2 byte of hexadecimal
information

e d represents 1 byte of decimal
information

e ¢ represents a l-byte character

Figure 19 shows the contents of an
indicative dump. You may prefer to follow
the explanation on your own indicative
dump.

CONTROL BYTE=hh
describes the contents of the
indicative dump.

First digit:

Bit Setting Meaning

0 0 Instruction image not
present
1 Instruction image present
1 0 Floating-point registers
not present
1 Floating-point registers
present
2 0 One general register set
present
1 Two general register sets
present
3 0 All active RBs present
1 All active RBs not present

Last digit:

Digit in
Hexadecimal Meaning
0 All loaded RBs present
8 All loaded RBs not present

TCB FLAGS=hh
is the first byte of TCBFLGS field
(byte 29 in the TCB for the program
being dumped): task end flag byte:

Bit Setting Meaning

0 1 Abnormal termination in
process

1 1 Normal termination in
process

2 1 Abnormal termination was

initiated by the resident
ABTERM routine

CONTROL BYTE=hh TCB FLAGS=hh NO. ACTIVE RB=dd NC. LOAD RB=dd

COMPLETION CODE ~ SYSTEMshhh USER=dddd
CCCCCCeee

REGISTER SET 1

hhhhhhhh hhhhbhhh hhhhhbhhh
hhhhhhhh hhhhhhhh hhhhhhhh
REGISTER SET 2

hhhhhhhh
hhhhbhhh

hhhhhhhh
hhhhhhhh

hhbhhhhhh
hhhbhhhh

nhhhhhhh
hhhhbhhh

hhhhhhhh hhhhhbhbh hhhhhhhh
hhhbhhhh bhhhhhhh hhhhhbhb
INSTRUCTION IMAGE=hhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh
PROGRAM IDsccccccce RB TYPE=hh ENTRY POINT=hhhhhh
RESUME PSW SM=hh K=h AMWP=h
PROGRAM ID=ccccccec RB TYPE=hh ENTRY POINT=hhhhhh

Figqure 19. Contents of an Indicative Dump

hhhhhhhh
hhhhbhhh

hhhhhbhhh
hhhhhbhh

hhhhhhhhhhbhhhbh bhhhhbhhhhhhhhbhh

hhhhhhhh
hhhhhbhh

hhhhhhhh
hbhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhbhhbhhh

hhhhhhhhhhhbhhhh

Ic=hhhh IL.CC=h PM=h JYA=hhhhhh

Indicative Dump 65

rage of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

3 1 ABTERM routine entered
because of program
interruption

4 1 Reserved for future use

5 1 Data set closing initiated

by the ABTERM routine

6 1 The ABTERM routine
overlaid some or all of
the problem program

7 1 The system prohibited
queuing of asynchronocus
exit routines for this
task

e Lost control to the input/output
interruption handler, which
subsequently terminated abnormally.

e Was abnormally terminated by the
control program because of a program
interruption.

e Issued an ABEND macro instruction to
request an abnormal termination.

If REGISTER SET 2 also appears in the
dump, the lines under REGISTER SET 1
give the general register contents for
a type II, III, or IV SVC routine
operating under an SVRB.

REGISTER SET 2

NO. ACTIVE RB=dd
is the number of active RBs presented
in the dump.

NO. LOAD RB=dd
is the number of RBs in the load list
presented in the dump.

indicates that the next 2 lines give
the contents of general registers 0
through 7 and 8 through 15 for a
program being executed under control
of an RB other than an SVRB when the
program last passed control to a type
II, IXII, or IV SVC routine.

INSTRUCTION IMAGE=hhhhhhhhhhhhhhhhhhhhhhhh

COMPLETION CODE SYSTEM=hhh USER=dddd
is the completion code supplied by the
control program (SYSTEM=hhh) or the
problem program (USER=dddd). Both
SYSTEM=hhh and USER=dddd are printed;
however, one of them is always zero.

CCCCCCuew

is 12 bytes of main storage, with the
instruction that caused a program
interruption in the right part of the
printout. This field appears only if
a program interruption occurred and is
also valid when the instruction length
in the resume PSW is 0.

explains the completion code or, if a hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh
program interruption occurred: hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh

PROGRAM INTERRUPTION ccccC... AT

LOCATION hhhhhh
where ccccc is the program
interruption cause: OPERATION,
PRIVILEGED OPERATION, EXECUTE,
PROTECTION, ADDRESSING,
SPECIFICATION, DATA, FIXED-POINT
OVERFLOW, FIXED-POINT DIVIDE,
DECIMAL OVERFLOW, DECIMAL DIVIDE,
EXPONENT OVERFLOW, DECIMAL

are the contents of floating~point
registers 0, 2, 4, and 6 when the
abnormal termination occurred. This
field appears only if the floating
point option is present. The first 2
digits of each register are the
characteristic of the floating point
number. The last 14 digits are the
mantissa.

DIVIDE, EXPONENT OVERFLOW, PROGRAM ID=cccccccce

EXPONENT UNDERFLOW, SIGNIFICANCE,
or FLOATING-POINT DIVIDE; and
hhhhhh is the address of the
instruction being executed when
the interruption occurred.

REGISTER SET 1
indicates that the next 2 lines give
the contents of general registers 0
through 7 and 8 through 15 for a
program being executed under control
of an RB when it:

e Passed control to a type I SVC
routine through an SVC instruction
and the routine terminated
abnormally.

66 Programmer's Guide to Debugging (Release 21.7)

is the XRBNM field (bytes 0 through
7): in PRB, LRBs, and LPRBs, the
program name; in IRBs, the first
character contains flags for the timer
or, if the timer is not being useqd,
contains no meaningful information; in
SVRBs for a type II SVC routine,
contains no meaningful information; in
SVRBs for a type III or IV SVC
routine, the first 4 bytes contain the
relative track address (TTR) of the
load module in the SVC library and the
last 4 bytes contain the SVC number in
signed, unpacked decimal; in SIRBs,
the name of the error routine
currently occupying the 400-byte
input/output supervisor transient
area.

RB TYPE=hh
“indicates the type of active RB

hh Type of RB

00 PRB that does not contain entry
points identified by IDENTIFY
macro instructions

10 PRB that contains one or more
entry points identified by
IDENTIFY macro instructions

20 LPRB that does not contain entry
points identified by IDENTIFY
macro instructions

30 LPRB that contains one or more
entry points identified by
IDENTIFY macro instructions

40 1IRB
80 SIRB
CO0 SVRB for a type II SVC routine

DO SVRB for a type III or IV SVC
routine

EO0 LPRB for an entry point identified
by an IDENTIFY macro instruction

FO LRB

ENTRY POINT=hhhhhh
is the XRBEP field (bytes 13 through
15): address of entry point in the
program.

RESUME PSW
XRBPSW field (bytes 16 through 23):
is the contents of the resume PSW.

SM=hh
is bits 0 through 7 of PSW:
mask.

K=h

system

is bits 8 through 11 of PSW:
protection key.

AMWP=h
is bits 12 through 15 of PSW:
indicators.

IC=hhhh
is bits 16 through 31 of PSW:
interruption code.

IL.CC=h
is bits 32 through 35 of PSW:
instruction length code (bits 32 and
33) and condition code (bits 34 and
35).

PM=h
is bits 36 through 39 of PSW:
mask.

program

IA=hhhhhh
is bits 40 through 63 of PSW:
instruction address.

PROGRAM ID=ccccccce
is the XRBNM field (bytes 0 through
7): program name.

RB TYPE=hh
indicates the type of RB:

hh Type of RB

20 LPRB that does not contain entry
points identified by IDENTIFY
macro instructions.

30 LPRB that contains one or more
entry points identified by
IDENTIFY macro instructions.

EO0 LPRB for an entry point identified
by an IDENTIFY macro instruction.

FO LRB.

ENTRY POINT=hhhhhh
is the XRBEP field (bytes 13 through
15): address of entry point in the
program.

Guide to Using an Indicative Dump

Completion Code: Evaluate the user
(USER=decimal code) or system (SYSTEM=hex
code) completion code using either Appendix
C of this publication or the publication
Messages and Codes. The line under the
completion code gives a capsule explanation
of the code or the type of program
interruption that occurred.

Instruction Address: If a program
interruption occurred, get the address of
the erroneous instruction in the last 3
bytes of the field labeled INSTRUCTIO
IMAGE. :

Active RB Queue: RBs are shown in the
first group of two-line printouts labeled
PROGRAM ID and RESUME PSW, with the most
recent RB shown first. There are two lines
for as many RBs indicated by NO. ACTIVE
RB=dd.

Register Contents: General register
contents at the time a program last had
control are given under the heading
REGISTER SET 2 or, if this heading is not
present, under REGISTER SET 1. Register
contents, particularly those of register
14, may aid you in locating the last
instruction executed in your program.

Indicative Dump 67

Storage Dumps

Storage dumps record the contents of main
storage from location 00 to the end of
printable storage.

Storage dumps are produced by the damage
assessnment routine (DAR) or other system
recovery routines, the Console Dump
facility, or the stand-alone service aid
program IMDSADMP.

DAMAGE ASSESSMENT ROUTINE (DAR)

The damage assessement routine produces a
storage dump when a system task fails and
is designed to provide increased system
availability in the event of system
failure. The storage dump is written to
the SYS1.DUMP data set.

If a system routine fails, DAR attempts
to reinitialize the failing task, thereby
permitting the system to continue operation
without interruption. DAR permits the
system to continue processing in a degraded
condition if it encounters a system failure
that does not permit total reinstatement of
the affected task or region. The operator
will be informed, via a WTO, that the
system is in an unpredictable state; he
then must decide whether or not
already-scheduled jobs should be allowed to
attempt completion.

Note: If TSO is installed in the system
and a failure occurs in the TSO subsystem
or in the operating system the TSO SWAP
data set must be recorded for use in
diagnosis if needed. The system recovery
routines do not do this. The IMDPRDMP
service aid can be used as a
high-performance dumping program for this
purpose by directing its output to tape.
Refer to the Sexrvice Aids publication for
details of this usage of the IMDPRDMP
program.

CONSOLE DUMP

The Console Dump function is designed to
meet the requirements for a dynamic main
storage dumping tool in the operating
system. The operator initiates the Console
~Dump from the primary console via a DUMP
command. Execution of the function allows
a dump to be taken to the SYS1.DUMP data
set of all or selective portions of main
storage. The dump operation is performed
during system operation and requires no
IPL. The storage dump may then be
formatted and printed by the IMDPRDMP
Service Aid program. Refer to the
Operator’s Guide publication for details of
the DUMP command.

IMDSADMP SERVICE AID

In situvations where the system is not
operative, an IMDSADMP program is loaded
into storage through use of the IPL
facilities. The storage dump taken may be
written in a high-speed version to tape or
disk, and in a low speed version to tape or
printer. The high-speed IMDSADMP dump must
be processed by the IMDPRDMP program. The
low-speed tape output may be processed by a
program such as the IEBGENER utility
program. The format of the low-speed
IMDSADMP output is similar to the general
format listing produced by the IMDPRDMP
program and therefore is not illustrated in
this publication. A sample IMDSADMP
listing and a discussion of the program are
contained in the Service Aids publication.

SYSTEM FAILURE

If a system failure occurs, the damage
assessment routine immediately attempts to
write a storage dump to the SYS1.DUMP data
set. A system failure may be caused by a
failure in any of the following system
tasks:

MFT:

Communications Task
Master Scheduler Task
Log Task

MVT:

System Error Task
Rollout/Rollin Task
Communications Task
Master Scheduler Task
Transient Area Fetch Task

A system failure is also caused by an
ABEND recursion in other than OPEN, CLOSE,
ABDUMP, or STAE; by a failure of a task in
'must complete' status; or, in MFT only, by
a failure in the scheduler if no SYSABEND
or SYSUDUMP DD card is provided.

THE SYS1.DUMP DATA SET

The SYS1.DUMP data set may reside on tape
or on a direct access device.

Tape

If you wish to have the SYS1.DUMP data set
reside on tape, you may specify the tape
drive during IPL. If the drive has not
been made ready prior to IPL, a MOUNT
message is issued to the console,
specifying the selected device. The device
should be mounted with an unlabeled tape.

68 Programmer's Guide to Debugging (Release 21)

After writing a storage image dump, the
damage assessment routine writes a tape
mark and will position the tape to the next
file. The tape drive will remain in a
ready state to receive another storage
image dump.

Direct Access

If you wish to have the SYS1.DUMP data set
placed on a direct access device, you may
preallocate the data set at system
generation or prior to any IPL of the
system. The following restrictions apply:

e The data set name must be SYS1.DUMP.

e The data set must be cataloged on the
IPL volume.

e The data set may be preallocated on any
volune that will be online during
system operation.

e The data set must be sequential.

e sufficient space must be allocated to
receive a storage image dump for all of
main storage.

When a direct access device is used for
the SYS1.DUMP data set, the data set can
hold only one storage dump. If additional
failures occur, and if the SYS1.DUMP data
set is occupied, DAR does not attempt to
write another storage image dump.

Use the IMDPRDMP serxvice aid to format
and list the SY¥S1.DUMP data set.

Storage Dumps 69

IMDPRDMP Output

Main storage information processed by the
IMDPRDMP program is presented in six
different output formats. The output
format used is determined by the function
of the particular area of the dumped
system's main storage that is being
printed. Two of these formats, the queue
control block trace and the link pack area
map, are invoked by specific format
statements. A third format is used to
print the major system control blocks. Two
formats are used for TSO; one for system
control blocks and the other for user
control blocks. any areas of the dumped
system's main storage that do not fall into
any of the aforementioned functional
categories are processed in the general
format.

Dump List Headings: Each page of output
listing contains a heading. This heading
has the optional user specified title, the
name of the module that invoked the dump,
the date and the time the dump was taken
except when processing Generalized Trace
Facility output when the heading will be
"EXTERNAL TRACE - DD ddname.™ Note: 1If
the dump was produced by IMDSADMP on a
system with the time-of-day (TOD) clock,
IMDPRDMP can not determine the time at
which the dump was taken; the time is
replaced by "TOD CLK."

Dump Header: If the dump was produced by
SVC DUMP, IMDPRDMP will print the title
taken from the dump header record. A
maximum of 100 characters are printed on
the second line of the first page of the
output listing.

Output Comments: While formatting the
dump, the IMDPRDMP program occasionally is
unable to locate, format and print a
control block. On those occasions IMDPRDMP
prints a comment explaining why the control
block could not be formatted and printed.
These comments are printed within the body
of the formatted dump and are part of the
IMDPRDMP output. A complete list of these
output comments along with further
explanations is contained at the end of
this chapter.

Summary Information: In addition to
formats, the following summary information
is printed at the end of each execution of
IMDPRDMP 3

s The number of entries to the read
routine;

e The number of times that the required
address was not found in a buffer;

¢ The number of blocks read from the dump
data set;

e The number of permanent I/0O errors
encountered during the execution;

e The average number of buffers used for

each operation performed during this
execution;

e The number of blocks read from the TSO
swap data sets;

e The ratio of the number of times the
read routine was called to the number
of times the requested address was not
in a buffer.

e When processing Generalized Trace
Facility output, the number of trace
records processed.

QUEUE CONTROL BLOCK TRACES

In a multiprogramming environment, requests
for system resources are enqueued. This
process is accomplished through the use of
queue control blocks (QCBs).

Certain system failures, such as task
contention deadlocks, become evident to the
user upon examination of a queue control
block trace. When requested through the
use of the QCBTRACE statement, the QCB
trace appears on a separate page of the
IMDPRDMP program dump listing. The trace,
a sample of which appears in Fiqure 20,
contains a listing of all gqueue control
blocks that were present in the dumped
system, and is available to users who are
processing main storage information
gathered from an MVT or MFT system.

(For more information on system resource
queuing, see IBM System/360 Operating
System: MVT Supervisor, GY28-6659.)

The page of the IMDPRDMP listing
containing the Queue Control Block trace is
identified by two heading lines. The first
line contains an optional title, the name
of the module that invocked the dump, and
the date and time that the information was
gathered from the dumped system. The
second line of the heading identifies the
page as containing a Queue Control Block
trace. The individual QCBs are then listed
for each Task Control Block. Each Queue
Control Block is formatted as follows:

MAJOR hhhhhh
The starting address of a major queue
control block, the contents of which
are given, indented, on the line or
lines below.

NAME ccccccecec
The name of the system resource
represented by the major QCB.

70 Programmer's Guide t~ "ebugging (Release 21)

SAMPLE QCB TRACE MODULE IMDSADMP

* & % %

| MAJOR 024100
|

NAME SYSDN

MINOR 0239A0

QEL 024068 TCB 023488 SHARED
MINOR 023838 NAME FF SYS1.MACLIB
QEL 023EDS8 TCB 023448 SHARED
MAJOR 0235ES8 NAME SYSIEFSD

| MINOR 0235CS8 NAME FF Q5
| QEL 023208 TCB 023480 EXCLUSIVE
| QEL 023C10 TCB 0238E0 EXCLUSIVE
|
L

DATE

QUEUE CONTROL BLOCK TRACE

NAME FF SYS1.LINKLIB

7/04/70 TIME 0.10 PAGE 2

® ¥ % %

Bl St e . S . - S G— G— A — — —— — —— ——— — i w— o)

Figure 20. Queue Control Block Trace Sample

MINOR hhhhhh

The starting address of the minor

queue control block. Contents are

given on this line or the lines below.
NAME hh ccceccce
The first two characters appearing
after the NAME field identifier
indicate the scope of the minor QCB
being dumped. If the scope is given
as hexadecimal FF, the name of the QCB
is known to the entire operating
system. If the scope indicator is
hexadecimal 00 or 10 through FO, the
name of the QCB is known only to the
job step. The scope :.ndicator shows
the storage protection key of the TCB
that enqueued this minor QCB. The
NAME field also contains the name of
the specific system resource
represented by the minor QCB.

QEL hhhhhh
The address of a queue element (QEL)
associated with the minor QCB
described on the line above.
line appears for each resource
requested by the task associated with
the minor QCB.

A QEL

TCB hhhhhh
The starting address
control block of the
This task requests a specific system
resource through the use of the QEL
indicated on this 1line.

of the task
requesting task.

SHARED or EXCLUSIVE
This indicator tells whether the
system resource is available to one
task (EXCLUSIVE) or several tasks
(SHARED).

IMDPRDMP Output Formatting:

LINK PACK AREA MAPS

Information on routines residing in either
the MVT link pack area or the MFT resident
reenterable load module area of the dump
system is available to the user through use
of the LPAMAP (link pack area map) format
statement.

For users who are processing an MVT
dump, the IMDPRDMP program produces a
listing of all routines loaded into the
link pack area by the nucleus
initialization program (NIP). For MFT
dumps, this list contains information
pertaining to all resident reentrant
routines loaded into the reenterable load
module area by NIP.

The IMDPRDMP user will find the link
pack area map, for MVT, or the reenterable
load module area map, for MFT, to be a
useful tool in isolating system failures
that occurred in program modules that
reside outside the user's partition or
region. If requested, the applicable map
appears on a separate page of the IMDPRDMP
program dump listing. A sample Link Pack
Area map is shown in Figqure 21 .

The dump listing page containing the
link pack area map is identified by two
heading lines. The first line contains the
optional title supplied by the user, the
name of the module that invoked the dump,
and the date and time that the information
was gathered from the dumped system. The
second line of the heading identifies the
page as containing a link pack area map.
Information on each module contained in the

Link Pack Area Maps 71

link pack area or reenterable load module LNGH
area, is given in the following format:

NAME cccccccc
The name of the load module TYPE
represented by this entry.

EPA hhhhhh
The entry point address of the module
identified on the corresponding line .
in the NAME column.

STA hhhhhh

The starting address of the named
module’s control section.

72 Programmer's Guide to Debugging (Release 21)

hhhhhh

The length, in bytes, of the control
sections in the l1load module described
on this line.

ccecce
The attributes of the control block
associated with the module being
described on this line. Under MVT,
the type of the contents directory
entry (CDE) associated with the module
is given. The type may be either
MAJOR or MINOR. Under MFT, the type
is shown as either a loaded request
block (LRB) or a loaded program
request block (LPRB).

sburzzenrod Indino AWGIdAWT

sdey eaxy xoed YUTT

EL

MODULE IMDSADMP DATE 11/12/7C TIME 00.15 PACT 0001
* ¥ % % LINK PACK AREA MAP *® ¥ ok X

NAME EPA STA LNGH TYPE
TEELWAIT 072418 072418 O0OCO3F8 MAJOR
16602092 C148C0 C74800 CO00400 MAJOR
16602012 €74C00 C74C00 000400 MAJOR
1660201y C75000 C75000 000400 MAJOR
16662002 C75400 (75400 000400 MAJOR
1660200Y C15800 C75800 000400 MAJOR
1660200M C75C00 C75CCO 00C400 MAJOR
IGG02006G 076000 C760C0 000400 MAJOR
16G0200F 076400 0764C0 000400 MAJOR
16G0200A C76800 076800 000400 MAJOR
IGGO199M 076C00 076C00 000400 MAJOR
16601968 C77000 077000 000400 MAJOR
1GGO196A C77400 C77400 CO00400 MAJOR
16601917 C77800 C778C0 000400 MAJGR
16601911 C77C00 077C00 C00400 MAJOR
16601910 C78000 078000 <CO0040C MAJOR
16601910 C78400 C78400 000400 MAJOR
IGGO1916G C78800 (78800 000400 MAJOR
I1GGO191D C78C0OC C€78CC0O 000400 MAJOR
166Cl91B C79000 C79CC0O0 000400 MAJOR
IGGCL91A (79400 C79400 000400 MAJOR
I1GG0190S €79800 C79800 C00400 MAJOR
IGGO190N 079C00 C79C00 000400 MAJCOR
IGGO190M CTAQ00 C7A000 000400 MAJOR
1660130L C7A400 CTA400 000400 MAJOR
IGCOO0SE CTA800 C7A800 000400 M™AJOR
15CC002 C7AC00 CTACO0 000400 MAJOR
I16CGColl C78360 C78360 CO00400 MAJOR
IGG019CK CTCAQ0Q0 CT7CAQ0 000060 MAJOR
1G6G019BC C7CA6C CT7CA6C OO0OOE8 MAJOR
15601980 C7CB48 C7CB48 (000128 MAJOR
13G019AD C7CCT0 CTCC70 OO000CO MAJYDR
IGGO19AL C7CD30 C7CD30 00Cl58 MAJOR
IGCO19AC C7D848 (7D848 O0OO000ES8 MAJOR
IGGO19CA C7DS30 (70930 000088 MAJOR
166C19CB C7D988 C7D988 000098 MAJOR
I1GGI19AG C7DASO CTDASO0 000090 MAJOR
1GGO19BE C7CAEC CTDAEO 000188 MAJOR
1GGO19AM C70C68 0T70C68 000078 MAJOR
IGGGL9AN C7DCEQ0 C7DCE0 000008 MAJOR
I1GGO19AV C70088 C70088 000058 MAJOR
1GG019M0 OTDEL10 C7DEL1O OOOOF0 MAJOR
1GGC13MB 078760 078760 OOl10A0 MAJOR
1GGC19MA C7CE88 OT7CEB8 000978 MAJOR
I1G6019CL C7E820 O07EB820 000040 MAJOR
1GGO19CF CIDFO0 C7D0FCO 000100 MAJOR
IGGO19CE O7E038 O7E038 00C088 MAJOR
IGGC19AY C7TEO0CO OTEOCO 000120 MAJOR
16G019A1 CTELE0 C7ELEQ0 CO0008C MAJOR
16601988 C7E8EC CTEB860 00CGS8 MAJOR
15601984 CT7E2¢C C7E260 000180 MmAJOP

Figure 21. Link Pack Area Map Sample

(TZ @seatay) burbbngsg o3 apTno s, Iaumesboxd e

MODULE IMDSADMP DATE 11/12/7C TIME 00.15 DAGE 002°

JO8 JoB4 STEP GO PROCSTEP STEPL
BREXK CURRENT TASK EEXX
TCB8 020400 RBP 0002E410 PIE 60C00000 DEB 0002DABC TIO CQO02ELFO CMP 00000000 YRN 00000000
MSS 0002E770 PK-FLG FCO00000 FLG 00001B18B LLS OCO2E3EQ JLB 00000000 JPQ 0002E3ES
RG 0-7 0C0C00C0 c000C066 0002DFBC 00000000 00020660 0002D1ES8 0002E234 00020BAB
RG 8-15 0C02CFAQ 030C0000 0002DFC8 0005DF08 4005DES6 00050F08 6007F 060 60208342
FSA 0006BF68 CB €0C0C000 TME 00000000 JST 0002D400 NTC 00000000 0TC GO002D1ES
LTC 00000000 1Q€ 0000C000 ECB 0002DFC4 TSPR 0C000000 D-PQE DJ002E770 SQS 0002DA9%0
STA CCCCCOO00 cT 0002CF28 USR 00000000 DAR 00000000 RES 00000000 JSCB 0002E33C
ACTIVE RBS
PRB 02E410 RESV ©C000C00 APSW 000000CO WC-SZ-STAB €0040082 FL-COE 000ZESES PSW FFF50009 ACOSDEFS
Q/TTR 000C0000 WT-LNK 00020400 NM GO EPA O5DES0 STA 05DESO LN 000180 ATR1 0B
MAIN STORAGE
0-PQE 0002E7T70 FIRST 0002£688 LAST Q002E688
PQE 02E688 FFB OCCSECCO LFB CCCEECOO NPQ 00000000 PPQ 00000000
TCB 0002D1ES RSI COOGCFO00 RAD 0005D800 FLG 0000
LCAD LIST
CDE OQRE3ES NM RETURNS USE 0L RESP 01 ATR1 CB EPA 050DC8 STA 050DC8 LN 000088
CDE 028850 NM I66C19CC USE 03 RESP 01 ATR1 BO EPA 07E928 STA 07E928 LN C000D8
CDE 028BB20 NM IGGC19CH LSE C3 RESP 01 ATR1 BO EPA OTEBBS STA O7E8B8 LN 000070
CDE 028730 NM IGGO19AC LSE 02 RESP 01 ATR1 BO EPA 070848 STA 07D848 LN 000QE8
COE 028BF0 NM IGGOLlSAQ USE 03 RESP 01 ATR1 B0 EPA QTF020 STA 07F020 LN 000078
JOB PACK QUEUE
CDE Q2E3ES8 NM RETURNS USE 01 RESP NA ATR1 0B EPA 05DDC8 STA 0500DC8 LN 000088
CDE O02E5ES8 NM GO LSE Ol RESP NA ATR1 0B EPA O5DESQ STA 05DESO LN 00018C
JEB 020ABC APPENDACES END OF EXT OTESBS8 SI0 000072 PCI 000072 CH END 000D72 AB END 000D72
PFX 00C00000 £560C006 000108BEO 1100C000
TCE 04020400 ADEB 1CC00000 ASYN FB00000C SPRG 0G000000 UPRG 0106BE18 PLST 180000CO DCB FFOSDFAZL
AVT 0402CAS8
FM-UCB START END TRKS
580026AC €002C063 C0C20003 0001
TIOT O2QEL1FO JOB JOB4 STEP GO PROC STEP)
OFFSET LN-STA CCONAME TTR-STC sTe-UC8
0018 140401C1 PGM=%,D0 00271520 800026AC
0G2C 140401C1 DUMMY €0271900 8C0026AC

Figure 22.

Sample of MVT Major Control Block Format

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

MAJOR SYSTEM CONTROL BLOCK FORMATS

Formatting of the major system control
blocks associated with a task is a function
of either a FORMAT control statement, or
one of the several noted parameters
associated with the PRINT control
statement. The control blocks of several
tasks may be printed during one execution
of IMDPRDMP. When more than one task is
print ed, the associated task control blocks
(TCBs) are grouped into a TCB summary,
listed following the printing of all
requested tasks. This summary provides an
index to the formatted TCBs by jobname.

see the discussion "Task Control Block
Summaries." ‘

For ease of identifying various dump
printouts, specific headings are printed on
each dump; such as FORMAT, DAR AND FO3
TASKS, PRINT CURRENT, and PRINT JOBNAME.

Each task being printed begins on a new
page, identified by two heading lines. The
first heading line contains the optional
title supplied by the user, the name of the
module that invoked the dump, and the date
and time that the information was gathered
from the dumped system, and a page number.
The second line of the heading identifies
the particular task being printed. This
task information is broken down into the
following named fields:

UNKNCGWN

cccccece

The JOB field displays the
eight-character name that was
specified in the label field of the
JOB statement.

JOB

UNKNOWN indicates that the job name is
unavailable.

STEP cccccccce
The STEP field shows the eight-
character step name of the problem
program associated with the task being
dumped. This name was supplied in the
label field of the EXEC statement.

PROCSTEP ccccccec
If the job step being displayed was
invoked from a cataloged procedure,
the step name of the cataloged
procedure, as contained in the
cataloged procedure's EXEC statement,
is displayed in this field.

If the task being printed was in control
at the time the dump was taken, a third

heading line follows the two previously
described. The line "#*#*** CURRENT TASK
#++x" jdentifies the TCB associated with
the task in control when the dump was
taken.

While formatting the dumped control
blocks, IMDPRDMP may issue various output
comments to assist the person who analyzes
the printout. The ocutput comments are
discussed following the control block
discussion.

Specific formatting of the major system
control blocks is dependent upon the
operating system option under which the
dumped system was operating. To allow the
reader to concentrate on the particular
operating system with which he is
concerned, the discussion of control block
formatting is divided into three parts:
MVT, MFT, and the TSO option of MVT.

MVT Control Block Formatting

The formats described below are repeated
for each requested task that is printed. A
sample of the major system control blocks,
as formatted from an MVT dump, is shown in
Figure 22.

MVT TASK CONTROL BLOCK (TCB) FORMATTING:
The task control block (TCB) contains
information that pertains to the specific
task named in the heading lines that appear
at the top of the page. Each TCB is
formatted as follows:

TCB hhhhhh .
The address of the task control block
being displayed is given in this first
field.

RBP hhhhhhhh
The address of the request block (RB)
that was currently associated with the
task represented by this TCB.

PIE hhhhhhhh
The address of the first program
interrupt element (PIE) enqueued by
this TCB.

DEB hhhhhhhh
The address of the beginning of the
data extent block (DEB) queue that was
associated with this task.
Information on the contents of each
DEB in the queue is given in a
separate portion of this MVT dump
listing. '

IMDPRDMP Output Formatting: MVT -- TCB 75

rage of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

TIO hhbhhhhh
The address of the task input output
table (TIOT) that was constructed
during device allocation for the task
represented by this TCB. The contents
of this table are displayed in a later
portion of this task's display.

CMP hhhhhhh
This word contains ABEND indicators
and user and system completion codes.
The usage of this field is as follows:

byte 0
leee oees Bit 0 indicates that a
dump had been requested.
edlee eeee Bit 1 set indicates that

a step ABEND had been
requested.

Bits 2 through 7 are
reserved for future use.

e« XX XXXX

bytes 1-3
The first 12 bits contain a system
completion code. These codes and
their meanings are explained in the
publication IBM_System/360 Operating
System: Messages and Codes, GC28-6631
under the heading "System Completion
Codes."™ A user completion code is
contained in the last 12 bits.

For a system completion code of 0CO,
denoting an imprecise interruption on
a Model 91 or Model 195, digits six
through eight contain the imprecise
interruption configuration. These bit
settings represent bits 16 through 27
of the program old PSW (location
X'28') at the time of the program
exception. Therefore, in the TCB CMP
field, bits 20 through 29 are
significant for a Model 91, while a
Model 195 makes use of all the bits
(20 through 31). For further
discussion on interpreting the
imprecise interruption configuration
refer to the publication IBM
System/360 Operating System:
Supervisor Services, Order

No. GC28-6646.

TRN hhhhhhhh v
Contains flags and TESTRAN indicators
as follows:

byte 0
1... Bit 0 set indicates that
both TESTRAN and decimal
simulator programs were
being used on a
System/360 Model 91
machine.
Bit 1 set indicates that
checkpoints were not
taken for this step.
Bit 2 set indicates that
the TCB being displayed

1.

ses .

»el.

belcnged to either a
graphics foreground or
the graghic job
processor.

Bit 3 set indicates that
the TCB being displayed
was associated with a
7094 emulator task that
was being run on a
System/360 Model 85
machine.

Bit 4 is reserved for
future use.

Bit 5 set indicates that
this is a time shared
task under control of
the TEST command
processor.

Bit 6 set indicates that
the OLTEP functions
require cleamup before
abnormal termination can
be invoked.

Bit 7 is reserved for
future use.

eeel 4one

ceese Xanse

-1..

«noa

..1.

eneX

bytes 1-3
The address of the control core table
that was used by TESTRAN.

MSS hhhhhhhh
Main storage supervision information
as follows:

byte 0
This byte determined roll-out
eligibility for the job step
associated with this TCB.

00 in this byte indicated that the job
step may be rolled out.

nz (nonzero) in this byte indicated
that the job step may not be rolled
out. :

bytes 1-3
These bytes contain the starting
address of the last subpool queue
element (SPQE).

PR-FIG hhhhhhhh
The storage protection key of the task
and a series of flags. This word is
divided into several subfields. These
are:

byte 0

XXXX seae The storage protection
key of the task
represented by this TCB.

0000 Always contain zeros.

byte 1
leae Bit 0 set indicates

thatan abnormal

termination was in

progress at the time the

76 Programmer's Guide to Debugging (Release 21.7)

.1..

|.1-

dump was taken. ceal
Bit 1 set indicates that
a normal termination was
in progress at the time
the dump was taken.

Bit 2 set causes the
Erase routine in ABEND
to enter when ABEND is
in control again.

1...

IMDPRDMP Output Formatting:

Bit 3 set causes the
Purge routine in ABEND
to enter when ABEND is
in control again.

Bit 4 set indicates that
the Graphics Abnormal
Termination routine was
in control of the task
associated with this TCB

MVT -- TCB 76.1

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

| 76.2 Programmer's Guide to Debugging (Release 21.7)

snee

LR R

byte 2
1'.‘

.1..

wele

P §

csese

*eee

LRI Y

‘1.-

0.1.

eeel

LR X K

->ene

.-w ee

i...

.1..

el

evel

at the time the dump was
taken. Bit 7 in byte 3
of this word must also
be on.

Bit 5 set indicates that
the top task in the TCB
chain (usually the job
step TCB) was in the
process of being
terminated when the dump
was taken.

Bit 6 set indicates that
an abnormal dump has
been completed.

Bit 7 indicates that
asynchronous exits could
not be scheduled.

Bit 0 set indicates that
the SYSABEND (or
SYSUDUMP) data set for
the job step is being
opened. Operands of
ABEND macro instruction
have been saved in
TCBCMP field.

Bit 1 set indicates that
if this is an initiator
TCB, the second job step
interval has expired.
Bit 2 set indicates that
for a job step TCB, the
job step can cause
rollout.

Bit 3 set indicates that
the current task had a
forced completion
imposed upon it. Other
tasks in the system
could not have been
performed until the
current task had been
completed.

Bit 4 set indicates that
the job step had a
forced completion
imposed upon it. Other
tasks in the job step
could not have been
performed until the
present job step had
been completed.

Bit 5 set indicates that
the SYSABEND (or
SYSUDUMP) data set has
been opened for the job
step.

Bit 6 set indicates that
an EXTR exit was
requested by an
attaching task.

Bit 7 set indicates that
the task associated with
this TCB was a member of
a time-sliced group.

byte 3

.1..

-e e

-1,

cee e

eeel caeX

l..x

-1..

-elX

s e

eeesX XaX1

FLG hhhhhhhh

Bit 0 set indicates that
a PSW associated with
the task represented by
this TCB was in the
supervisor state.

Bit 1 set is applicable
to job step TCBs.
Setting of this bit
indicates that the job
step had invoked
rollouts that were still
in effect at the time
the dump was taken.

Bit 2 set indicates that
ABEND was processing in
such a manner as to
prevent multiple ABENDS
from occurring in the
dumped system.

Bit 3 set indicates that
the SYSABEND (or
SYSUDUMP) data set is
being opened by this
task. (See also bit 7.)
Bit 4 set indicates that
an ABDUMP was in process
for the task associated
with this TCB at the
time the dump was taken.
(See bit 7 of this
byte.)

Bit 5 set is applicable
only for job step TCBs.
With this bit set, no
abnormal termination
dumps could have been
provided within the job
step represented by this
TCB.

Bit 6 set indicates that
a CLOSE had been issued
during ABEND processing.
(See bit 7 of this
byte.)

Bit 7 set, in
conjunction with bits 3,
4, or 6 of this byte or
bit 4 in byte 1 of this
word indicates that, had
the dumped system been
allowed to continue
processing without
interruption by the
IMDSADMP dump program, a
valid reentry to ABEND
would have been
effected.

This field displays a further series
of flags and certain priority

indicators.

This word is divided into

subfields as follows:

IMDPRDMP Output Formatting:

MVT -~ TCB 77

78 Programmer's

byte 0

If any one of the flags comprising
this byte were set at the time the
dump was taken, the task represented
by this TCB was considered to be
non-dispatchable.

leee anes Bit 0 was set by ABDUMP

eXeo weee Bit 1 is reserved for

‘ future use.

eele sene Bit 2 set indicates tha
the supply of 1I/0)
request queue elements
(RQEs) had been
exhausted.

ceeX XXee Bits 3 through 5 are
reserved for future use.

eese oele Bit 6 is applicable only
to M65 multiprocessing
situations. The setting
of this bit indicates
that the task
represented by this TCB
had been flagged
non-dispatchable by one
CPU to prevent any CPU
from working on it.

esee eesl Bit 7 set indicates that
the task associated with
this TCB entered the
ABEND routine while the
data control block
representing the
SYSABEND data set was
being opened for another
task.

byte 1

If any one of the flags comprising
this byte were set at the time the
dump was taken, the task represented
by this TCB was considered to be
non-dispatchable.
leee ceee Bit 0 set indicates that
the task represented by
this TCB was terminated
prior to the time the
dump was taken.
elee ween Bit 1 set indicates that
the task represented by
this TCB was a candidate
for termination by
ABEND.
eele coas Bit 2 set indicates that
a routine of the task
represented by this TCB
issued an unconditional
GETMAIN that could only
have been satisfied by
the rolling out of
another job step.
ceel cnae Bit 3 indicates that the
job step associated with
this TCB was rolled out.
esee leeoe Bit 4 set indicates that
another task was in
system—must—complete
status.

Guide to Debugging (Release 21)

ceee o1l.. Bit 5 set indicates that
another task in this job
step was in
step-must-complete
status at the time the
dump was taken.

ceees oel. Bit 6 is applicable only
for an initiator task.
Setting of this bit
indicates that a request
for a region could not
be satisfied.

P | Bit 7 is the primary
non-dispatchability
indicator. Setting of
this bit indicates that
one or more of the
secondary
non-dispatchability bits
(bytes 1-3 of the DAR
field) was set at the
time the dump was taken.

byte 2

The dispatching priority limit for the
task represented by this TCB.

byte 3

The dispatching priority of the task
represented by this TCB.

LLS hhhhhhhh

The load list element (LLE) for the
program that was loaded by means of
the LOAD macro instruction.

JLB hhhhhhhh

The address of the data control klock
associated with the JOBLIB associated
with the task.

JPQ hhhhhhhh

Contains information pertaining to a
job step TCB as follows:

byte 0

leee ceee Bit 0 set indicates that
if the associated job
ster had been allowed to
continue processing
without being
interrupted by the dump
program, the job step
would have been purged.

«XXX XXXX Bits 1 through 7 are
reserved for future use.

bytes 1-3

The address of the last contents
directory entry for a job pack area
(JPA) control gueue.

RG 0-7 and RG 8-15

The reqgister save area of the TCB
being displayed. The general
registers were stored in this area
upon entry to the first routine
invoked in the task. On entry to any

FSA

TCB

TME

JST

LTC

IQE

task, register 13 points to this TCB's
register save area. This pointer is
useful in locating the entry points of
first routines and in tracing the save
area chains.

hhhhhhhh
The address of the first problem
program save area.

hhhhhhhh
The address of the TCB that had the
next lowest priority on the ready
queue at the time the dump was taken.

hhhhhhhh
The address of the timer element.

hhhhhhhh
The address of the first TCB for a job
step. For tasks with a storage
protection key of zero (as shown in
the first byte of the PK-FIG field),
this word contains the address of this
TCB.

hhhhhhhh

The address of the previous TCB that
existed on the originating task's
queue of subtask TCBs (sister). If
this TCB was the first on the queue,
this field contains zeros.

hhhhhhhh
The address of the TCB representing
the originating task (mother).

hhhhhhhh

The address of the last TCB that
existed on the originating task's
queue of subtask TCBs at the time the
dump was taken {(daughter). If this
TCB was the last on the queune, this
field contains zeros.

hhhhhhhh
The address of the interruption queue
element (IQE) that was used in
scheduling the EXTR routine on the
originating task.

hhhhhhhh
The address of the event control block
(ECB) that would have been posted by
the supervisor's task termination
routines had either normal or abnormal
task termination been allowed to
occur.

TSPR hhhhhhhh

byte 0

This field contains flags that
indicate the status of the time
sharing (TSO). Without TSO or when
TSO has not been started, this field
contains zeros.

l1.c¢ <... Bit 0 set indicates that
this task is a time sharing
task.

«les Bit 1 set indicates that the
time sharing task should be
set non-dispatchable. This
bit was set by the TCBSTP
routine while the routine
was not executing as a
privileged program.

«»1. Bit 2 set indicates that the
system is executing and
requires that the time
sharing task must not be
interrupted by the attention
exit or by the STATUS SVC.

«esl Bit 3 set indicates that a
terminal I/0 purge is
required.

«ses XXXX Bits 4 through 7 are
reserved for future use.

byte 1
This field contains the number of SET
STATUS starts required to make this
time sharing task dispatchable.

byte 2
This field contains the limit priority
of the time sharing task.

byte 3
This field contains the dispatching
priority of the time sharing task.

D-PQE hhhhhhhh
The address of the region dummy
partition queue element minus 8
(DPQE-8).

SQ0S hhhhhhhh
The address of an allocated queue
element (AQE) which contains the
amount of available bytes assigned to
this task in the system queue area
(sQA), and a pointer to the next AQE
for this task.

STA hhhhhhhh -
Internal STAE routine flags and the
address of the STAE control block that
was in effect at the time the dump was
taken.

TCT hhhhhhhh
This word contains information
pertaining to the dumped system's
timing control table (TCT). The TCT
field is divided into the following
two subfields:

byte 0
Reserved for future use.

IMDPRDMP Output Formatting: MVT -- TCB 79

bytes 1-3

If the system management facilities
option was present in the dumped
system, these bytes contain the
address of the dumped system's timing
control table.

USR hhhhhhhh

This word is available to the user of
the dumped system. It contains any
information placed in it by the user.

DAR hhhhhhhh

The contents of this field were used
by the damage assessment routines
(DAR). Certain subfields displayed in
this word were also used to control
the dispatchability of the dumped
task. The DAR field is divided into
the following subfields:

byte 0

The first byte of the DAR field
contains DAR flags. These flags are
as follows:

P Bit 0 set indicates that
primary DAR recursion
occurred in the dumped
system. The damage
assessment routine
failed while writing a
main storage image dump.

edles cece Bit 1 set indicates that
secondary DAR recursion
occurred in the dumped
system. The damage
assessment routine
failed while attempting
to reinstate a failing
region or partition.

eeXX eeeer Bits 2 and 3 are
reserved for future use.

eenee 1. Bit 4 set indicates that
the system error task is
failing. The DAR dump
should not request any
error recovery procedure
(ERP) processing.

eese «XXe Bits 5 and 6 are
reserved for future use.

eeee sasl Bit 7 set indicates that
an SVC dump is executing
for this task.

byte 1

Bytes 1 through 3 of the DAR field are
used to store secondary
non-dispatchability flags. If any of
the flag bits in this subfield were
set, the primary non-dispatchability
bit (the last bit in the FIG field)
will also have been non-dispatchable.
The bit settings that may appear in
byte 1 are as follows:

XXes eeee Bits 0 and 1 are set by
the damage assessment
routines. Their
meanings are:

80 Programmer's Guide to Debugging (Release 21)

leoe wooe Bit 0 set indicates that
the task rkpresented by
this TCB is temporarily
non-dispatchable.

elee weee Bit 1 set indicates that
the task represented by
this TCB is permanently
non-dispatchable.

coXX cann Bits 2 and 3 are
recovery management
support and system error
recovery flags. Their
meanings ares:

esle case Bit 2 set indicates that
the task represented by
this TCB is temporarily
non-dispatchable.

eeel .. Bit 3 set indicates that
the task represented by
the TCB is permanently
non-dispatchable.

eree Xaas Bit 4 is reserved for
future use.

coea slaa Bit 5 set indicates that
this task is temporarily
non-dispatchable. Timer
services have been
requested and the
time-of-day clock is
still inoperative.

esse weXX Bits 6 and 7 are
reserved for future use.

byte 2

The bit settings for byte 2 are as
follows:

Keoe osamne Bit 0 is reserved for
future use.

edlee cene Bit 1 set indicates that
this task has been
stopped by a STATUS
stop.

wele eue Bit 2 set indicates that
task is
non-dispatchable. &An
SVC dump is executing
for another task.

eesl ceee Bit 3 set indicates that
this task is being
swarped out by the time
sharing (TSO).

esse laae Bit 4 set indicates that
this task is in an input
wait state.

eeea alea Bit 5 set indicates that
this task is in an
output wait state.

weme weXX Bits 6 and 7 are
reserved for future use.

byte 3

Reserved for future use.

RES hhhhhhhh

Reserved for future use.

Page of GC28-6679-5,6, Revised April 16, 1973, By TNL: GN28-2545

JSCB hhhhhhhh)
The address of the job step control
block.

RES hhhhhhhh
Reserved for future use.

IOBRC hhhhhhhh
Contains the address of the I0OB
restore chain for I/0 quiesced by
end-of-task.

MVT ACTIVE REQUEST BLOCK (RB) FORMATT ING:
Request blocks (RBs) were used by the lines
at the top of the dump page and in the
preceding TCB display, are listed in the
portion of the dump listing labeled "ACTIVE
RBS." Information on each RB associated
with the task is formatted as shown below:

PRB

IRB hhhhhh

SVRB

SIRB
Each RB display is preceded by a field
that indicates the type and address of
the RB being displayed. The four
types of RBs that may be displayed
under an MVT task are:

PRB

program request block
IRB

interruption request block
SVRB

supervisor request block (SVRBs
may be divided into two
categories; type 2 for resident
routines and type 3 or 4 for
transient routines)

SIRB
system interruption request
block.

The type acronym for each RB is
displayed in the first portion of the
field. The starting address of the
indicated request block appears in the
last portion of the field. The
contents of certain fields in the body
of the formatted display are dependent
upon the type of RB being displayed.
variations in display field usage are
noted in the descriptions of the
fields in which they occur.

RESV

TAB~LN hhhhhhhh

FL-PSA
This field shows both the function and
the first word of the regquest block
being displayed. The meanings of the
function indicators and the values
that follow them are:

RESV
indicates that the request block
is either a PRB or an SVRB for

resident routines. The first
word of these particular RBs is
reserved for future use and
contains zeros.

TAB~LN
indicates that the request block
being displayed is used as an
SVRB for transient routines. The
value field is divided into two
subfields of two bytes each. The
first two bytes show the
displacement of the entry point
of the module represented by this
SVRB from the beginning of the
transient area control table
(TACT). The second subfield
shows the length, in bytes, of
the SVC routine.

FL-PSA
indicates that the RB being
displayed is an IRB. The value
portion of this field is divided
into two subfields. The first
subfield has a length of one byte
and contains indicators for the
timer routines. When there were
no timer routines, this field
contains zercs. The timer
routine indicators set at the
time the dump was taken are shown
as:

l1... indicates that the
timer element was not
on queue.

«l.. dindicates that the
local time-of-day
option was used.

..00 indicates that the
timre interval was
requested in timer
units.

««01 1indicates that the
time interval was
requested in binary
units.

.«11 indicates that the
time interval was
requested in decimal
form.

esese leo.. 1indicates that the
time interval had
expired.

eese <000 indicates a task
request

eeee <100 indicates a task
request with an exit

specified.

eeses 001 indicates a wait
request.

esss »011 indicates a real
request.

eess <111 indicates a real
request with an exit
specified.

IMDPRDMP Output Formatting: MVT -- TCB 81

The second subfield is three
bytes long and contains the
starting address of the problem
program register save area (PSA).

APSW hhhhhhhh
The APSW field displays information
pertaining to the program status word
that was active at the time the dump
was taken. The functional variations
associated with the usage of this
field are:

e PRBs being formatted contain the
right half (bytes 4 through 7) of
the problem program's PSW when an
ABTERM interruption occurred.

¢ IRBs, SIRBs, and SVRBs for resident
routines use this field to display
the right half (bytes 4 through 7)
of the PSW that was active, in the
dumped system, during the
execution of an ABEND or ABTERM
routine. If no ABEND or ABTERM
routine was envoked in the dumped
system, this field contains zeros.

settings for these two
bits and their meanings
are: '

00ce ceew This is a program
request block (PRB).

0l.c ween This is an interrupt
request block (IRB).

10 eeee This is a system
interrupt request block
(SIRB).

11.. ... This is a supervisor
request block (SVRB).

e Xe XeXX Bits 2, 4, 6 and 7 are
reserved for future use.

eeel cene Bit 3 set indicates that
this request block is an
SVRB for a transient
routine.

P Bit 5 is applicable only
if the request block
being displayed is an
SVRB. If this bit is
set, a checkpoint could
have been taken in a
user exit from the sSVC
routine associated with
this RB.

byte 3

e SVRBs for transient routines use
this field in much the same way as
SVRBs for resident routines. If
an ABEND or ABTERM routine was
invoked in the dumped system,
bytes 4 through 7 of the
associated PSW are displayed in
this field. 1If an ABEND or ABTERM
routine was not invoked, this
field contains the last four
characters of the name of the
requested routine. (The last two .
characters of the name represent
the SVC number.)

WC-SZ-STAB hhhhhhhh
This field contains information
pertaining to wait conditions, request
block sizes, and RB status and
attribute characteristics. This field
is divided into three subfields, as
follows:

byte 0
The wait count that was in effect at
the time of the dump.

byte 1
The size of this request block. This
RB size is expressed as the number of
doublewords comprising the block.

byte 2
The last two bytes of the WC-SZ-STAB
field contain bit settings that
reflect the status and attributes of
the request block. The settings that
may appear in byte 2 are:

XXeo esse Bits 0 and 1 indicate

the type of RB being
displayed. The possible

82 Programmer's Guide to Debugging (Release 21.7)

The last byte of the WC-SZ-STAB field
contains more status and attribute
flags. The possible settings for this
subfield and their meanings are:

loee cene Bit 0 set indicates that
the WT-LNK field in this
RB display, contains in
its last three bytes,
the address of the TCB
to which this request
block is linked.

elee ceae Bit 1 applies only to
IRBs and SIRBs. If this
bit is set, the
indication is that at
the time the dump was
taken, the program
associated with this RB
was active.

eeXa eene Bit 2 is reserved for

: future use.

eesl ceen Bit 3 is applicable only
to IRBs. The setting of
this bit is an
indication that the IRB
was associated with an
ETXR exit routine.

veee XXeoo Bits 4 and 5 concern
interruption queue
elements (IQEs) and
request queue elements
(RQEs). This flag is
used as follows:

eeee 00.. This setting indicates
that the request queue
elerent was not to be
returned to the free
list when the exit was
taken.

eess 01.. This setting indicates

that the IRB had queue

indicates that a SYNC
macro instruction was

erae =l..

elements for
asynchronously executed
routines that were RQEs.
This setting is
applicable only if the
RB being displayed is an
IRB.

This setting indicates
that the IQE was not to
have been returned at
EXIT.

This setting is
applicable only to IRBs.
If this setting appears,
the indication is that
the IRB had queue
elements for
asynchronously executed
routines that were IQEs.
Bit 6 set indicates that
request block storage
could be freed at the
time of exit.

Bit 7 indicates request
wait conditions. The
meanings of the two
possible settings for
this bit are:

Bit 7 not set indicates
that the request had to
wait for a single event
or all of a number of
events.

Bit 7 set indicates that
the request had to wait
for a number of events.
This number of events
was less than the total
number of events that
were waiting.

esees 10..

eews 11..

LI) »-'1-

esee eeeX

eree o=l

aeee seal

FL-CDE

EPA

TON

hhhhhhhh

This field shows both the function and
the fourth word of the request block
being displayed. The meaning of the
function indicator and the value
following it is given below:

FL-CDE
the request block being displayed
is either a PRB or an SVRB for a
resident routine. The value
field is divided into two
elements. The first subfield has
a length of one byte and contains
control flag settings.

These control flags are as
follows:
XXXX X... Bits 0 through 4 are
reserved for future
use.

IMDPRDMP Output Formatting:

requested.
indicates that an
XCTL macro
instruction was
requested.
indicates that a LOAD
macro instruction was
requested.

sees wele

eees eeal

The second subfield is three
bytes long and contains the
address of the contents directory
entry (CDE) representing the
module that this request block
was associated with.

EPA
The request block being displayed
is an IRB. The value field
contains the entry point address
of a routine that was
asynchronously executed.

TQN
The request block being displayed
represents a transient routine
SVRB. The value field contains
the address of the next request
block that was on the queue of
transient routines.

PSW hhhhhhhh hhhhhhhh

The resume program status word. This
PSW represents the status of the
program represented by the RB being
displayed when a new RB was created.
Had the dumped system been allowed to
continue processing without being
interrupted by the dump program,
operation would have resumed on this
PSW.

Q/TTR hhhhhhhh

This word is used to display various
data, depending upon the type of
request block being displayed. Usage
of the Q/TTR value field is used by
each type of request block as follows:

e PRBs and SVRBs that represented
resident routines do not use this
field; the first byte always
contains zeros. Bytes 1 through 3
of the field show the address of a
request block that requested the use
of the same serially reusable
program.

e IRBs utilize this field in one of
two ways, to show either the
three-byte link-field segment or the
two-byte link-field segment,
depending upon the IRB usage. The
three-byte link-field segment
appears in the Q/TTR value field as
follows:

MVT -- TCB 83

byte 0
Contains a count of the number of
requests for the same exit (ETXR).
This use count is utilized by the
ATTACH macro instruction.

byte 1-3
Contains the starting address of
the queue of interruption queue
elements (IQEs).

Alternately, the Q/TTR value field
may be formatted to show the
two-byte link-field segment. In
this instance, the field is used
thusly:

byte 0-1
Reserved for future use.

bytes 2-3
The starting address of the queue
of request queue elements (RQEs).

e SVRBs that represented transient
routines display two data elements
in this field. The first subfield
has a length of one byte and shows
the number of requests if the
transient routinre was overlaid. The
last three bytes of the Q/TTR field
contain the relative direct access
device address for the associated
supervisor routine in the form TTR.

WT-LNK hhhhhhhh
This field displays information
pertaining to wait counts and request
block linkages. In the case of a
transient SvC, if this field contains
x'FF*, either the routine represented
by the SVRB is currently being brought
into the transient area, or this
routine has been displaced in the
transient area by a routine requested
by a higher priority task. To tell
what has happened, compare the APSW
and NM field contents as described
under NM below. This field is divided
into two subfields, one with a length
of one byte and the other with a
length of three bytes. These
subfields show the following:

byte 0
The number of requests that were
pending at the time the dump was taken
(wait count).

byte 1-3
The address of the next request block
on the RB queue. In the last RB on
the queue, this field contains the
address of the task control block
{TCB).

NM cccceccce
The eight character name of the load
module represented by the request
block being displayed with a possible
exception for transient SVRBs.

If byte 0 of the WT-LNK field contains
Xx'FF*, it is possible that the module
represented by this SVRB has been
overlaid in the transient area by a
module requested by a higher priority
task. Compare the APSW field,
(providing it contains the four
low-order bytes of a module name) with
the last four characters (the
hexadecimal should be translated to
EBCDIC) of the module name in the NM
field. No match indicates the user of
the transient area has been pre-empted
by a higher priority task. NM
therefore represents the module
currently in the transient area, not
the module represented by this SVRB.

If a match results, NM correctly
identifies the module name requested
by this SVRB. :

EPA hhhhhh
The address of the entry point of the
module named in the NM field of this
RB display.

STA hhhhhh
The starting address of the module
identified in the NM field of this
RB's display.

LN hhhhhh
The length, in bytes, of the load
module that is represented by this
request block.

ATR1 hh
This one byte field displays the
attributes of the described module.
These attributes are taken from the
contents directory entry associated
with the module. The meanings of the
attribute flag settings are given
below:
1... Bit 0 set indicates that
the module was resident
in the link pack area.
Bit 1 set indicates that
at the time the dump was
taken, the module
represented by this
request block was in the
process of being
fetched.
Bit 2 set indicates that
the module was
reenterable.
Bit 3 set indicates that
the module was serially
reusable.

elew waae

eele aaes

esel aenn

84 Programmer's Guide to Debugging (Release 21)

Bit 4 set indicates that
the module could not
have been reused. This
flag setting is not
applicable if either bit
2 or 3 is set.

Bit 5 set indicates that
the contents directory
entry associated with
this module reflects the
use of an alias name.
This information applies
only to minor CDEs.

Bit 6 set indicates that
the module was in the
job pack area.

Bit 7 set indicates that
the module was
considered not
only-loadable.

1‘. - -

.1..

eses

.Cl.

eeal

.o aw

MVT MAIN STORAGE INFORMATION: Each task
operating under the MVT option of the
operating system was dynamically assigned a
region of main storage that consisted of
one or more 2K-byte subpool areas. To keep
track of main storage allocations, the MVT
supervisor maintained a partition queue
associated with each region. Composed of
partition queue elements (PQEs), and
residing in the system gueue area, this
partition queue was connected to the TCBs
for each task in a job step through a dummy
partition queue element (DPQE).

Information on the areas of main storage
allocated to each task, is presented to the
user in a separate portion of each task's
dump listing headed "MAIN STORAGE." This
main storage information is formatted as
shown below:

D-PQE hhhhhhhh
The address minus eight bytes of the
dummy partition queue element (DPQE-8)
connecting the partition queue to this
task's TCB.

FIRST hhhhhhhh
The starting address of the first
partition queue element (PQE) on this
region's partition queue.

LAST hhhhhhhh
The starting address of the last PQE
on the partition queue.

PQE hhhhhh
The starting address of one of the
partition queue elements on the
partition queue bounded by the
addresses given on the line above.

FFB hhhhhhhh
The starting address of the first free
block queue element (FBQE) on the free
block queue associated with this PQE.

IMDPRDMP Output Formatting:

NPQ

PPQ

TCB

FIG

If no FBQEs exist, this field contains
the address of the PQE being displayed

hhhhhhhh

The starting address of the last free
block queue element (FBQE) on the free
block gueue associated with this PQE.
If no FBQEs exist, this field shows
the starting address of this PQE.

hhhhhhhh

The starting address of the next
partition queue element on the
partition queue. If the PQE being
displayed was the last PQE on the
queue, this field contains zeros.

hhhhhhhh

The starting address of the partition
queue element on the partition queue
that preceded this PQE. 1If this PQE
was the first on the queue, this field
contains zeros.

hhhhhhhh
The starting address of the TCB of the
job step to which the described region
is assigned. 1If this field contains
zeros, the indication is that the area
of main storage was obtained from
unassigned free space.

hhhhhhhh

The size of the region being
described. This number is a multiple
of 2K (2048).

hhhhhhhh
The starting address of the region
being described by this PQE.

hhh

The FLG field shows the settings of
several PQE flags whose meanings are
given below: '

Keoo Bit 0 indicates region
ownership. The meanings
of the settings are:
indicates that the space
described by this PQE
was owned by the
associated task.
indicates that the space
described by this PQE
was borrowed.

The setting of bit 1 is
meaningful only if bit 0
was not set. If this
bit is set and bit 0 is
not set, the indication
is that the region had
been rolled out.

Bit 2 set indicates that
the region described by
this PQE was borrowed by
another task.

Bits 3 through 7 are
reserved for future use.

0.‘.

l...

enase

'14‘0

el

oweX XXXX

MVT -- Load List 85

MVT LOAD LIST FORMATTING: A load list was
maintained by the dumped system's
supervisor in order to keep track of the
load modules that were in main storage and
the area of main storage each occupied.

The load list maintained by a system
operating under the MVT option of the
operating system contained a series of load
list elements (LLEs), each of which was
associated with a particular load module
through the use of a control block called a
contents directory entry (CDE). A
formatted listing of the dumped system's
MVT load list appears as follows:

CDE hhhhhh
The starting address of the contents
directory entry associated with this
load list item.

NM cccccecece
The eight-character name of the entry
point to the load module represented
by this entry.

USE hh
The count of the number of uses
(through the ATTACH, LINK and XCTL
macro instructions) of the load
module, and the number of times a LOAD
macro instruction was issued for the
module.

RESP hh
The responsibility count contained in
the load list entry associated with
the load module. This count indicates
the number of requests made by the
LOAD macro instruction for the
indicated load module. This count was
decremented by one for each occurrence
of the DELETE macro instruction.

ATR1 hh
The attributes of the load module
described in this load list entry.
These attributes are taken from the
contents directory entry associated
with the module. The meanings of the
attribute flag settings are given
below:
1... Bit 0 set indicates that
the module was resident
in the link pack area.
Bit 1 set indicates that
at the time the dump was
taken, the load module
represented by this load
list element was in the
process of being loaded.
Bit 2 set indicates that
the load module was
reenterable.
Bit 3 set indicates that
the load module was
serially reusable.

edee wean

.1,

ceel au.e

Bit 4 set indicates that
the load module could
not have been reused.
This flag setting is not
applicable if either bit
2 or 3 is set.

Bit 5 set indicates that
the contents directory
entry associated with
this load module
reflects the use of an
alias name. If this bit
is set, this line of the
load list display
reflects information
taken from a minor CDE.
Bit 6 set indicates that
the load module was in
the job pack area.

Bit 7 set indicates that
the load module was
considered not
only-loadable.

-~e e 1..-

1.,

-ewe

S

S §

-eew

EPA hhhhhh
The address of the entry point of the
locad module named in the NM field of
this load list display line.

STA hhhhhh
This field contains the starting
address of the load module identified
in the NM field of this load list
display line.

LN hhhhhh
The LN field supplies the user with
the length, in bytes, of the load
module represented by this load list
entry (LLE).

MVT JOB PACK QUEUE FORMAT: A job pack area
control queue (JPACQ) exists for each job

step in the dumped system that used a
program not in the link pack area. The job
pack queue, like the link pack area, is
made up of contents directory entries
(CDEs). This area describes routines in a
job step region that were brought into main
storage by contents supervision routines to
perform a task in the job step. The
IMDPRDMP program displays the contents of
the dumped MVT system's job pack queue as
follows:

CDE hhhhhh
The starting address of the contents
directory entry associated with this
job pack queue element.

NM ccccecece
The eight-character name of the entry
point to the load module represented
by this entry.

86 Programmer's Guide to Debugging (Release 21)

USE hh

RESP

ATR1

The count of the number of uses
(through the ATTACH, LINK and XCTL
macro instructions) of the load
module, and the number of times a LOAD
macxo instruction was issued for the
module.

NA

This responsibility count field is
flagged "NA' to indicate that the
information is not applicable to
modules displayed in the job pack
queue.

hh
The attributes of the load module
described in this jab pack queue
entry. These attributes are taken
from the contents directory entry
associated with the module. The
meanings of the attribute flag
settings are:

lece cene Bit 0 set indicates that
the module was resident
in the link pack area.
Bit 1 set indicates that
at the time the dump was
taken, the load module
represented by this job
pack queue entry was in
the process of being
loaded.
Bit 2 set indicates that
the load module was
reenterable.
Bit 3 set indicates that
the load module was
serially reusable.
Bit 4 set indicates that
the load module could
not have been reused.
This flag setting is not
applicable if either bit
2 or 3 is set.
Bit 5 set indicates that
the contents directory
entry associated with
this load module
reflects the use of an
alias name. If this bit
is set, this line of the
job pack queue display
reflects information
taken f£rom a minoxr CDE.
Bit 6 set indicates that
the load module was in
the job pack queue area.
Bit 7 set indicates that
the load module was
considered not
only-loadable.

.1..

.'1. - ee

‘vocl

LE XY

l...

R P

001.

...1

EPA hhhhhh

The address of the entry point of the
load module named in the NM field of
this job pack queue entry display
line.

STA hhhhhh

This field contains the starting
address of the load module identified
in the NM field of this job pack queue
entry display line.

LN hhhhhh

The LN field supplies the user with
the length, in bytes, of the load
module represented by this job pack
queue entry.

MVT DATA EXTENT BLOCK (DEB) FORMATTING:
Data extent blocks (DEBs), describing a

data set's external storage requirements,
were queued to those task control blocks

(TCBs) that represented tasks requiring

auxiliary storage input/output processing.

External storage information, taken from

each DEB, is formatted as shown below:

DEB hhhhhh
The starting address of the basic

section of the DEB being displayed.

APPENDAGES

The word "appendages® informs the user

that the five named fields on this

line contain information taken from
the appendage vector table preceding
the DEB being displayed. The named
fields appearing on the rest of this

IMDPRDMP Qutput Formatting:

line are:

END OF EXT hhhhhh

The entry point of the end-of-extent

appendage routine.

SIO hhhhhh
The entry point of the start I/0
appendage routine.

PCI hhhhhh
The entry point of the
program-controlled-interruption
appendage routine.

CH END hhhhhh
The entry point of the channel-end
appendage routine.

AB END hhhhhh

The entry point of the abnormal-end

appendage routine.

PFX hhhhhhhh hhhhhhhh hhhhhhhh
The second line of a DEB display

contains information taken from the

prefix section of the DEB being
displayed.
follows:

byte 0
The first byte of the prefix area
contain the contents of the 1I/0
support work area.
only by DEBs dealing with direct
access storage devices.

MVT -- DEBs

The area is subdivided as

This area is used

87

b

b

b

b

TCB

b

b

NDEB

b

b

88

ytes 1-7

The next seven bytes of the DEB prefix
section are used by DEBs associated
with direct access storage device
functions. This subfield displays the
data set control block's (DSCB)
address used by I/0 support. The
address is expressed in the following
format:

bytes 1 and 2 the bin (cell) number.
bytes 3 and 4 the cylinder address.
bytes 5 and 6 the track address.

byte 7 the record number.

ytes 8-11
The third word of the PFX field
contains the data control block (DCB)
modification mask that was used by I1I/0
support.

yte 12
The length of the DEB in doublewords .

ytes 13-15
The remainder of the DEB prefix
section is reserved for future use.

hhhhhh
This field marks the beginning of the
basic section of the data extent
block. The TCB field is divided into
two subfields as follows:

yte 0
The number of subroutines for which a
LOAD macro instrxuction was issued
during the execution of the OPEN
executor routines.

ytes 1-3

The starting address of the task
control block to which this DEB was
enqueued.

hhhhhh

The NDEB field is also used to display
two data elements. It is subfielded
as follows:

yte 0
The overall length of a data extent
block includes the length of a
variable length access method
dependent section. The first byte of
the NDEB field, expresses the length
of the access method dependent sectlon
in bytes. If the access method was
BDAM, this indicator is expressed as a
number of fullwords.

ytes 1-3
The last portion of the NDEB field
displays the starting address of the
basic section of the next DEB on the
task's queue. If this DEB was the
last on the queue, the contents of
this field are the starting address of
the TCB that enqueued this DEB.

Programmer's Guide to Debugging (Release 21)

ASYN hhhhhhhh

This field contains ?ata set status
flags and the address of the
associated IRB. This field is used as
follows:

byte 0

The first byte of the ASYN field
contains data set status flags. These
flags have the following meanings:

Bits 0 and 1 indicate
the data set's
disposition. The
possible settings are:
This setting indicates
that the disposition was
OLD.
This setting indicates
that the disposition of
the data set was MOD
(modify).
This setting indicates
that the disposition was
NEW.
Bit 2 set indicates that
* an end-of-volume (EOV)
or end-of-file (EOF)
condition had been
encountered.
The setting of bit 3 has
one of two meanings
depending upon the
external storage medium.
For disk this indicator
reflects a release of
unused external storage.
For tape, the meaning of
this indicator is that
an emulator tape with
second generation format
was being used.
Bit 4 set is a data
control block (DCB)
modification indicator.
Bit 5 set has two
meanings, depending upon
the auxiliary storage
recording medium. For
disk, the setting of bit
5 indicates that a split
cylinder was
encountered. For tape,
this flag indicates that
an emulator tape with
possible mixed parity
records was used.
Bit 6 set indicates the
use of nonstandard
labels.
Bit 7 set indicates that
reduced error recovery
procedures were used on
magnetic tapes
containing the data set
represented by this DEB.

XXea ecen

01.. ...,

10..

11-0 LA A 3

esdle cene

cesl ceee

- e e 1-.'

LA] .1‘.

ceme wola

eece aeal

bytes 1-3
The last portion of the ASYN field
shows the starting address of the IRB
that was associated with asynchronous
appendage exit scheduling.

SPRG hhhhhhhh
This field contains information on I/0
processing methods and the system
PURGE routine. The usage of this
field is as follows:
byte 0
The first byte of this field contain
flags that indicate the method of
input/output processing and the
disposition of the data set that was
to have been performed when an end-of-
volume condition occurred. These flag
settings are:
leee veen Bit 0 was set by ABEND.
The setting of this bit
indicates that the data
set associated with this
DEB was a SYSABEND or
SYSUDUMP data set.
e0ee enen Bit 1 is always zero.
eeXX cene Bits 2 and 3 show the
end-of-volume
disposition procedure.
The values for this flag
are:
«e01 REREAD
w1l ... LEAVE
eeee XxXxx The last half of this
byte contains flags that
indicate the type of
input/output processing
that was performed on
the data set represented
by this DEB. The values
for this flag are:
«ee. 0000 INPUT
«ees 1111 OUTPUT
eees 0011 INOUT
«e.- 0111 OUTIN
eee. 0001 RDBACK
eeee 0100 UPDAT
byte 1
The quiesce count. The byte is
associated with the system PURGE
routines {(SVC 16) and indicates the
number of auxiliary storage devices
that were executing the user's channel
programs.
bytes 2-3
Reserved for future use.
UPRG hhhhhhhh

The UPRG field contains extent
information and data used by the
user's purge routines. This field is
divided into the following two
subfields:

byte 0
The number of extents that were
specified in the DSCBs associated with
this DEB.

bytes 1-3
The address of the first input/output
block (I0B) in the user's purge chain.

PLST hhhhhhhh

Task priority and supervisor purge
information are contained in this
field. This field is formatted as
follows:

byte 0
The priority of the task under which
this DEB was enqueued.

bytes 1-3

The starting address of a parameter
list that was used to locate the purge
event control block (ECB) for a
supervisor purge request.

DCB hhhhhhhh
The DCB field contains three data
elements. These are displayed in the
format given below:

byte 0

XXXX caee The storage protection
key that was associated
with the task under
which this DEB was
enqueued.
A hexadecimal °*F' in
bits 4 through 7 of this
field identify this
control block as a data
extent block (DEB).

eees 1111

bytes 1-3
The starting address of the data
control block (DCB) that was
associated with this DEB.

AVT hhhhhhhh
The AVT field displays two DEB data
elements and is subfielded as follows:

byte 0
The DEB extent scale that is used to
determine the size of the device

dependent section of this DEB. For
direct access devices, a 4 is
displayed in this subfield. For a

nondirect access device or a
communication device, a 2 is
displayed.

bytes 1-3
In most cases the last portion of the
AVT field shows the starting address
of the appendage vector table
preceding this DEB. This table of
appendage routine addresses appears on
the first line of this DEB's display.

IMDPRDMP Output Formatting: MVT -- DEBs 89

OP-UCB hhhhhhh
The contents of this field have
meaning only when the DEB being
displayed describes a data set that
was assigned to a unit record or
magnetic tape device. This
information is formatted from the
device dependent section of the DEB.
The OP~-UCB field is subfielded as
follows:

byte 0
This first subfield is applicable only
to data sets assigned to magnetic tape
devices and shows the SET MODE
operation code. For a data set that
was assigned to a unit record device,
this subfield is reserved.

bytes 1-3
The starting address of the unit
control block (UCB) associated with
the data set described by the DEB
being displayed.

The following four fields are present only

for data sets assigned to the IBM 3525 Card
Punch for multi-function. The information

is formatted as shown below:

UCB hhhhhhhh

byte 0
The device modifier field (not used
for the 3525).

bytes 1-3
The starting address of the unit
control block (UCB) associated with
the data set described by the DEB
being displayed.

RDRDCB hhhhhhhh
The starting address of the data
control block (DCB) for the read
associated data set.

PCHDCB hhhhhhhh
The starting address of the data
control block (DCB) for the punch
.associated data set.

WTRDCB hhhhhhhh
The starting address of the data
control block (DCB) ior the print
associated data set.

The final portion of a DEB display shows
information pertaining to a data set that
was assigned to a direct access device.
This information, taken from the DEB's
device dependent section, is arranged in
columnar format with a line for each
extent. The information is formatted as
shown below:

FM-UCB hhhhhhhh
The first column displays two data
elenents and is formatted as follows:

byte 0
The device modifier showing the file
mask.

bytes 1-3
The starting address of the unit
control block (UCB) that was
associated with the data extent.

START hhhhhhhh
The address of the beginning of the
direct access device extent. The
first four characters represent the
cylinder address and the last four
characters represent the track
address.

END hhhhhhhh
The address of the end of the data
extent. Cylinder and track references
are formatted as in the extent
beginning address, described above.

TRKS hhhh
The number of direct access tracks
bounded by the starting and ending
addresses shown in the previous two
columns.

MVT_TASK INPUT/OUTPUT TABLE (TIOT)
FORMATTING: A task input output table
(TIOT) was constructed for each task in the
dumped system by MVT jcb management
routines. Residing in the system queue
area, this table contained primary pointers
to control blocks used by 1I/0 support
routines. As the functions of several TIOT
fields were dependent upon the state of
associated external storage devices,
multiple definitions may apply. The TIOT
that was constructed in an MVT system is
formatted as shown.

TIOT hhhhhh ,
The starting address of the task
input/output table being displayed.

JOB ccccccce
The eight-character name of the job
for which this TICT was constructed.

STEP cccecccece
The eight-character name specified in
the label field of the EXEC JCL
statement associated with this job
step.

PROC cccceccc
If the job step for which this TIOT
was constructed was invoked from a
cataloged procedure, the procedure
name, as contained in the EXEC JCL
statement, is displayed in this field.

Each data set associated with the indicated
task is represented by a separate DD entry
that is included in the TIOT. Each TIOT
entry is displayed on a separate line in

90 Programmer's Guide to.Debugging (Release 21)

‘columnar format. The use and meaning of
each column is given below:

OFFSET hhhh
The offset of this DD entry from the
beginning of the TIOT in hexadecimal.

LN-STA hhhhhhhh
Four bytes of length and status
information, described below:

byte 0
The total length (including all device
entries) in bytes of the DD entry
being displayed on this line.

byte 1
Status byte A, one of three status
bytes in a TIOT entry. The meanings
of the status byte settings are:

Xeoe oXee Bits 0 and 5 indicate
the tape label
processing that was to
have been performed.
The meanings of the
settings are:

Ocee 0.. Nonlabeled tape or an
indication to bypass
label processinge.

O0... .1.. Standard labels and
standard user labels.

l... .0.. Nonstandard labels.

elee aeee The setting of status
bit 1 has two meanings,
depending upon the
processing phase that
had been reached at the
time the system was
dumped. During
allocation processing,
the setting of this bit
indicates that this
entry represents a split
cylinder primary space
allocation DD. If the
dump was taken during
step termination
processing, the setting
of this bit indicated
that no unallocation of
space was necessary.

eele veee The setting of status
bit 2 works. under the
same philosophy as
status bit 1. During
allocation processing,
the setting of this bit
indicates that this
entry represents a split
cylinder secondary .pace
allocation DD. If the
dump was taken during
step termination
processing, the
indication was one of
rewinding with no
unloead.

I.‘l -e oo

> " s 1".

- e e -.1'

eses seal

byte 2

Bit 3 set indicates that
this DD entry represents
a JOBLIB.

Bit 4 set indicates that
direct access device
space management was
deemed necessary.

The setting of bit 6
specifies that the tape
volume was to have been
rewound and unloaded.

'The setting of bit 7

specifies that the tape
volume was to have been
rewound.

The third byte of this column has
meaning only during the allocation
phase. This displays the number of
devices that were requested by the
data set represented by the TIOT entry
displayed on this line.

byte 3

The last byte of the LN-STA field
displays a TIOT field that had meaning
at two points during the processing of

this task.

During the allocation

process, this field contained a link
to the appropriate prime split, unit
affinity, volume affinity or
suballocate TIOT entry. After CLOSE
processing, this byte was used thusly:

R

= XXX XXXX

DDNAME cccceccee

The setting of bit 0
indicates that the data
set represented by this
DD entry was a SYSOUT
data set that contained
data.

Bits 1 through 7 are
resexved for future use.

The eight-character DD name associated
with the TIOT entry being displayed.

TTR-STC hhhhhhhh

The first three bytes of this column
display the relative track address
(TTR) of the job file control block
(JFCB) associated with this entry.

STB-UCB hhhhhhhh

The last column in a TIOT display
contains information taken from the
one~-word device entries that are
appended to each TIOT entry. One TIOT
device entry exists for each allocated
device. This display field shows this
information in the following format:

IMDPRDMP Output Formatting: MVT -- TIOT 91

byte 0
Status byte B. The status bits have
the following meanings:
Bit 0 set indicates that
the data set associated
with this line of the
TIOT display was present
on the device
represented by this TIOT
device entry.
Bit 1 set indicates that
the data set associated
with this line of the
TIOT display would have
used the device
represented by this TIOT
device entry.
Bit 2 set indicates that
the device represented
by this device entry
violated separation.
Bit 3 set indicates that
a volume serial number
was present.
Bit 4 set indicates that
a setup message was
required.
Bit S5 indicates the
device disposition that
would have taken place
had the dumped system
been allowed to continue
processing this task.
The settings for this
bit are:
Indicates t .t if the
volume was required to
be unloaded, the volume
was to have been
deleted.
Indicates that if the
volume was requires to
be unloaded, the
unloaded volume was to
have been retained.
Bit 6 indicates that an
unload requirement had
been made.
Bit 7 set indicates that
a load or label
verification requirement
had been made.

1-.. - e e e

«ol.

ees e e

eeel ee

1.~. -

eXeo

esse

.0..

-1l..

.. 1.

P §

esece

bytes 1-3
The address of the UCB that was™used
in all cases except when the device
was a 2321 data cell drive. For a
2321, this address is that of the
description in the UCB of the cell in
the bin.

MFT Control Block Formatting

The formats described below are repeated
for each requested task that is printed. A
sample of the major system control blocks,
as formatted from an MFT dump, is shown in
Figure 23.

MFT TASK CONTROL BLOCK (TCB) FORMATTING:
The task control block (TCB) contains
information pertaining to the specific task
identified in the heading lines at the top
of the dump listing page. It is formatted
as follows:

TCB hhhhhh
The address of the task control block
being displayed is given in this first
display field.

RBP hhhhhhhh
The starting address of the request
block (RB) that was currently
associated with the task represented
by this TCB.

PIE hhhhhhhh
The address of the first program
interrupt element (PIE) enqueued by
this TCB.

DEB hhhhhhhh
The address of the beginning of the
data extent block (DEB) queue that was
associated with this task.
Information on the contents of each
DEB in the queue is given in a
separate portion of this MFT task's
dump listing.

TIO hhhhhhhh
The starting address of the task
input/output table (TIOT) that was
constructed during device allocation
for the task represented by this TCB.
The contents of this table are
displayed in a later portion of this
task's display.

CMP hhhhhhhh
This word contains ABEND indicators
and user and system completion codes
as follows:

byte 0

loce cne Bit 0 set indicates that
a dump had been
requested.
Bit 1 is reserved for
future use but is set
for MVT compatibility.
Bit 2 set indicates that
a portion of the problem
program's main storage
area was overlaid by a
second load of ABEND.
A first load overlay is
indicated by the setting
of bit 14 of the PK-FLG
field.
Bit 3 is reserved for
future use.
Bit 4 set indicates that
a double ABEND occurred
in the dumped task.

.1..

..1.

eeeX coee

cves laa.

92 Programmer's Guide to Debugging (Release 21)

:butazeuxod IndaIno AWAEIJAWI

€6 ©OL -- IJIW

MFT DUMP LISTING

Teod GCuusl4s NDEB 0CO00Q000 ASYN AB000000

avl J40136&4

MJ)UL& IMDSADMP DATE 11712770

SPRG ud 000000

[V &-] START END | TRKS
580015cC 00C40003 0CC500C9 0011
TIOT 071728 JOB JOBS STEF GO PR{C STEPL
JFFSET LN=-STA DDNAME TTR-STC STb-UCB
gd18 140401C0 PGM=%,DD 00700CCO 8C0015EC
wo2c 14G40100 OUMMY 007F0300 8000150C

TI®E 00.50 PAGE 0011

Jud J0B5 STEP GO PROCSTEP STEPL
AHEEH CURRENT TASK *EXXE
TC3 009148 RoP Q00C9228 PIE 00000000 DEB 00071634 TIG 0071728 cMP 0CO000Q0C TRN €0cCCcoCo
M3S S0U09¢10 PK-FLG 1CC00008 FLG OCOOO1E3 LLS Q00712F8 JLB CCOQOGOC JST 00CCG148
RG 10-1 00071780 5C02A910 5002A826 98071280 4002A896 S5CO07FD2 €Ccococe 000CO11A
RG 2-9 J0000000 0002C304 0007176C 0000004C V0009148 0007i7F8 CCCT71778 €00C0C00
FSA 08071730 e 00009348 TME 00009228 Ple EOOLYABS NTC 00000CCC GTC 00GC000CO
LTe GOoui0l0 IQE 00000C00 ECB 0CCOJ00C XTCB 00000000 LP/FL E300000C RES 00C00000
STA CGJICOUI0 T 00023948 USR 0000G0GO CAR 06J3C0000 RES CO000COC JSCB 00021284
ALTIVE RBS
PR3 02A8J0 AM GO SZ/STA3 0C2C00C0O USE/ZEP C002A820 PSW FF150C80 9G02AETA Q ¢0000000 WT—-LNK 00C0S148
I3 009228 NM $GKJ AKRY SZ/STAb OCOE404C USE/EP GOOZ2ABTE PS4 FF150193 BO0OZAEAA Q CCCCs288 WT-LNK CCC2A800
Ko 13-1 FAQOJCO048 00009228 00000000 0002C324 JA0T71760 00GCCT4C 0GCC0S148 COQ717F8
Ko 2-9 00072778 C0GauL000 00071780 00024910 50024826 JC02AS510 13C06acc 4C0122EA
EXTSA Q2600000 00071280 00C€09228 C0003 1438
P /P BOUNDRIES
HicR 0 00J2A38vw TJ 0007i8GO HIER 1 00L000GO TGO 000003GO
LGAD LIST
LRB 071300 NM DuMAYCL SZ Ccocss USE/ZEP 01071310
LPRB 071390 NM RETURNS SZ CO00AS8 USE/EP 01071380
JUsd PALK QUEUE
NOTHING IN JOo PACK
DE3 V71634 APPENBAGES END CF EXT 0229C0 SI10 O03FF4 PCl QU 3FF4 CH END CC3FF4 AB END QC3FF4
PFX 0CJL3O00 G5C00005 C0010BEO 11000000
Ted 240091438 NOEB 1C07150C ASYN F8CCO000 SPRG 000UVJ000 UPRG G107144C PLST E2CCOCO0 CCB 1F02A88BC
AVT Q4071010
FM-ULB START END TRKS
58001506C 0C020003 00020€03 0001
DES 071500 APPENDAGES ENC OF EXT O138F0 SIG Q13922 PCI 0l 36F8 CH END Gl386e4 AB END (13922
PFX 00UGCUUO 05C06007 CO00D7EQ 'OF0OCQ000

UPRG 010C0CCC PLST E3CCCCOO CCB QFO71778

Figure 23. Sample of MFT Control Block Format

CMP hhhhhhhh -- byte 0 -- (continued)

-1.. Bit 5 set indicates that
a dump message (WTO) was
to have been issued.

Bit 6 set indicates that
the dumped system's
scheduler was to have
printed an indicative
dump.

Bit 7 set indicates that
an ABEND message, to be
printed by the ABDUMP
routine, was providegd.

'.1.

eeel

bytes 1-3

The first 12 bits contain a system
completion code. These codes and
their meanings are explained in the
publication IBM System/360 Operating
System: Messages and Codes, GC28-6631
under the heading "System Completion
Messages."™ A user completion code is
contained in the last 12 bits.

TRN hhhhhhhh

Contains flags as follows:

byte 0

l... Bit 0 set indicates that
decimal simulator
programs were being used
on a System/360 model 91
machine.

Bit 1 set indicates that
checkpoints were not
taken for this step.

Bit 2 set indicates that
the TCB being displayed
was associated with
either a graphics
foreground job or the
graphic job processor.
Bit 3 set indicates that
the TCB being displayed
was associated with a
7094 emulator task that
was being run on a
System/360 model 85
machine.

Bits 4 through 7 are
reserved for future use.

.1..

.1,

eeel cene

o wee XXXX

bytes 1-3

Reserved.

MSs hhhhhhhh

94

Main storage supervision as follows:

byte 0

This byte is reserved for future use.

bytes 1-3

This subfield displays one of two
addresses. If the TCB being displayed
represents a job step, this subfield
contains the address of the boundary
box. If this TCB represents a

subtask, this field displays the
address of the gotten queue element

(GQE).

GQEs are preset only if the

dumped system issued a GETMAIN macrxo
instruction for the space.

PK-FLG hhhhhhhh

The storage protection key and a
series of flags associated with the

task being displayed.
divided into several subfields.

are:

byte 0
AXXX eeee

«.ee 0000
byte 1
l1...

l..

..1.

ceel ca.

l...

.1..

..1.

...1

byte 2
1...

*eeow

Progiammer*s Guide to Debugging (Release 21)

This field is
These

The storage protection
key associated with the
task represented by this
TCB.

Always contain zeros.

Bit 0 set indicates that
an abnormal termination
was in progress at the
time the dump was taken.
Bit 1 set indicates that
a normal termination was
in progress at the time
the dump was taken.

Bit 2 set indicates that
ABEND was initiated by
the resident abnormal
termination routine.

Bit 3 set indicates that
recursion through ABEND
was permitted.

Bit 4 set indicates that
the graphics abnormal
termination routine had
been entered for the
task represented by the
TCB being displayed.

Bit 5 set indicates that
the CLOSE routine was
initiated by ABEND.

Bit 6 set indicates that
a portion of the problem
program's main storage
area was overlaid in
order to process ABEND
routines. (See also bit
2 of the CMP display
field.)

Bit 7 set indicates that
the queueing of
asynchronous exits for --
the task represented by
the TCB being displayed,
was prohibited.

Bit 0 set indicates that
ABEND was prohibited for
this task. The setting
of this bit has meaning
only if the TCB being
disrlayed represents a
system task.

*XXe osXe

-oo-l aeee

ERE N 1-@:.

-. e -1--

“saea 00-1

byte 3
XXX «oX

---10 LR N

" ene 1---.

- see .1..

enee 2ol

FLG hhhhhhhh

Bits 1, 2 and 6 are
reserved for future use.
Bit 3 set indicates that
the task represented by
the TCB being displayed
had a forced completion
imposed upon it. Other
tasks in the dumped
system could not have
been performed until
this task had been
completed.

Bit 4 set indicates that
the job step had a
forced completion
imposed upon it. Other
tasks in the dumped
system could not have
been performed until
this job step had been
completed.

Bit 5 indicates that
dump processing had been
initiated in ABEND.

Bit 7 set indicates that
the task represented by
the TCB being displayed
was a member of a time
sliced group.

Bits 0, 1, 3 and 7 are
reserved for future use.
Bit 2 is an exit
effector indicator. The
setting of this bit
indicates that at the
time the dump was taken,
system error routines
were operating on this
task.

Bit 4 set indicates that
floating point registers
existed in the dumped
system.

Bit 5 set indicates that
at the time the dump was
taken, job scheduler
routines were)
processing.

Bit 6 set indicates that
at the time the dump was
taken, an XCTL routine
was changing the storage
protection key in the
PSW from zero to the one
used by the problem
program.

This field displays a further series
of flags and certain priority

indicators.
follows:

byte 0

This word is formatted as

Reserved for future use.

byte 1

XXXX XXXa Bits 0 through 6 are
reserved for future use.

csse eeel Bit 7 is the primary
non-dispatchability
indicator. Setting of
this bit indicates that
one or more of the
secondary
non-dispatchability bits
(bytes 1-3 of the DAR
field) was set at the
time the dump was taken.
If this bit is set, the
task represented by this
TCB was considered to be
non-dispatchable.

byte 2
This byte contains the number of
resources for which the task
represented by this TCB was enqueued.

byte 3
This byte displays the dispatching
priority of the task represented by
this TCB.

LLS hhhhhhhh
The address of the last request block
(RB) that was created by the loading
of a module that used the LOAD macro
instruction.

JLB hhhhhhhh
The address of the data control block
(DCB) representing the JOBLIB
associated with this task.

JST hhhhhhhh
Job step information. The contents of
this field have meaning only when the
dumped MFT system was operating with
the subtasking option. If this was
the case, this field shows the address
of the first TCB for a job step.

RG 0-7 and RG 8~15
The register save area of the TCB
being displayed. This pointer is
useful in locating the entry points of
first routines and in tracing the save
area chains.

FSA hhhhhhhh
This field displays two data elements
and is formatted as follows:

byte 0
The TCB identification code.

byte 1-3

The address of the first problem
program save area.

IMDPRDMP Output Formatting: MFT -- TCB 95

TCB hhhhhhhh

The address of the TCB that had the
next lowest priority on the ready
queue at the time the dump was taken.

TME hhhhhhhh

The address of the timer element.

PIB hhhhhhhh

The PIB field displays two items of
information in the following format:

byte 0

This byte contains flags that identify
the partition attributes. These flags
are:
XXe o Bits 0 and 1 indicate
the function of the
partition. The possible
functions are given
below:
System task partition.
Reader partition.
Writer partition.
Processing program
partition.
Bit 2 gives the
partition size. The
meanings of the possible
settings are:
Small partition.
Large partition.
Bit 3 set indicates that
CPU timing was stopped
by FINCH until a
transient routine was
loaded.
Bits 4 and 5 are
reserved for future use.
Bit 6 set indicates that
the partition associated
with this task was a
writer partition. This
bit is used by ABEND,
transient writers and
resident writers.
Bit 7 set indicates that
at the time the system
was dumped, the
scheduler was in
control. Had this
task's TIOT been written
to SYS1.SYSJOBQE, this
bit would not be set.

00..
01..
10..
11..

-—e & @
EX R
LR N)
.o e

»eXe

..0'
"1.
«eel

csew
csesmw

ceeesn

XXe o

P %

“ e

0010

LR R

bytes 1-3

The last portion of the PIB field
shows the address of the partition
information block (PIB) that was
associated with this task's partition.

NTC hhhhhhhh

The address of the previous TCB that
existed on the originating task's
queue of subtask TCBs (sister). 1If
the TCB was the first on the queue,
this field contains zeros. The
contents of the NTC field have meaning

only if the dumped system was
operating with the MFT subtasking
option. '

OrC hhhhhhhh

The OTC field is applicable only when
the dumped system was operating under
MFT subtasking option. If this was
the case, this field displays the
address of the TCB representing the
originating task (mother).

LTC hhhhhhhh

The address of the last TCB that
existed on the originating task's
queue of subtask TCBs (daughter) at
the time the dump was taken. If this
TCB was the last on the queue, this
field contains zeros. This field is
applicable only if the dumped system
was operating under the MFT subtasking
option.

IQE hhhhhhhh

The address of the interruption queue
element (IQE) that was used in
scheduling the ETXR routine on the
originating task. The contents of
this field have no meaning unless the
dumped system was operating under the
MFT subtasking option.

ECB hhhhhhhh

XTCB

If the dumped system was operating
undexr the MFT subtasking option, this
field displays the address of the
event control block (ECB) that would
have been posted by the supervisor's
task termination routines had either
normal or abnormal task termination
been allowed to occur.

hhhhhhhh
The XTCB field in this TCB display is
reserved for future use.

LP/FL hh hhhhhh

Priority and dump information on tasks
that were operating under the
subtasking option of MFT. The LP/FL
field displays its data as follows:

byte 0

The limit priority of the task
represented by the TCB being
displayed.

byte 1

96 Programmer's Guide to Debugging (Release 21)

Dump information flags.

XXXX Xeooo Bits 0 through 4 are
reserved for future use.
eene ol.. Bit 5 set indicates that

the task represented by
the TCB being displayed
was the top task in the
tree of abnormally
terminating tasks.

esce eol. Bit 6 set indicates that
an abnormal termination
dump had been completed.

eess soel Bit 7 set indicates that
the task represented by
this TCB was enqueued on
a dump data set.

byte 2

This byte contains more dump
information flag bits. The meanings
of these bits are:

leae coes Bit 0 set indicates that
at the time the system
was dumped, an OPEN was
in process for the dump
data set.

o XXX X..X Bits 1 through 4 and bit
7 are reserved for
future use.

seee olaa Bit 5 set indicates that
the dump data set was
open for the job step.

R Bit 6 indicates the type
of dump data set. The
possible setting are:

ecee o0 SYSUDUMP data set.

esee weol. SYSABEND data set.

byte 3

This last byte of the LP/FL field
shows abnormal termination flags as
follows:

XXX. X.XX Bits 0, 1, 2, 4, 6 and 7
are reserved for future
use.

eeel cnea Bit 3 set indicates that
a valid message
recursion occurred in
ABEND.

cese olae Bit 5 set indicates that
no abnormal termination
dumps could be provided
within the job step
associated with the TCB
being displayed.

RES hhhhhhhh

This field is reserved for future use.

STA hhhhhhhh

Internal STAE routine flags and the
address of the STAE control block that
was in effect at the tim€ the dump was
taken.

TCT hhhhhhhh

Information pertaining to the dumped
system's timing control table (TCT).
The TCT field is divided into the
following two subfields:

byte 0

This byte is reserved for future use.

byte 1-3

If the system management facilities
option was presented in the dumped

system, these bytes contain the
address of the dumped system's timing
control table (TCT).

USR hhhhhhhh

This word is available to the user of
the dumped system. It contains any
information placed in it by the user.

DAR hhhhhhhh :

The contents of this field were used
by the damage assessment routine
(DAR). Certain subfields displayed in
this word were also used to control
the dispatchability of the dumped
task. The DAR field is divided into
the following subfields.

byte 0

The first byte of the DAR field
contains DAR flags. The flags are as
follows:

lece ooee Bit 0 set indicates that
primary DAR recursion
occurred in the dumped
system. The damage
assessment routine
failed while writing a
main storage image dump.

eles coae Bit 1 set indicates that
secondary DAR recursion
occurred in the dumped
system. The damage
assessment routine
failed while attempting
to reinstate a failing
partition.

eele ceew Bit 2 set indicates that
only the dump capability
of the damage assessment
routine was requested.

eeeX coee Bit 3 is reserved for
future use.

ceee 1l... Bit 4 set indicates that
the system error task is
failing. The DAR dump
should not request any
error recovery procedure
(ERP) processing.

eoee «XXe Bits 5 and 6 are
reserved for future use.

eoee easl Bit 7 set indicates that
an SVC dump is executing
for this task.

byte 1

Bytes 1 through 3 of the DAR display
field are used to show the settings of
secondary non-dispatchability flags
bits. If any of the flags in this
subfield were set, the primary
non-dispatchability flag (the last bit
in the F1LG field) will also have been
set and the task represented by this
TCB will have been non-dispatchable.
The bit settings that may appear in
byte 1 and their meanings are:

IMDPRDMP Output Formatting: MFT -- TCB 97

Page of GC28~6670-5,6, Revised Rpril 16, 1973, By TNL: GN28-2545

XXee osesse

i

elee cnes

eeXX seane

R

ceel cens

eses Xeoas

ceee ol..

eass XX

byte 2

se e esvas

eXea ecoe

‘II1. e na

seX XXX.

L ‘.*Il

Bits 0 and 1 were set by
the damage assessment
routines. Their
meanings are:

Bit 0 set indicates that
the task represented by
the TCB being displayed
was flagged temporarily
non-dispatchable.

Bit 1 set indicates that
the task represented by
this TCB was deemed
permanently
non-dispatchable.

Bits 2 and 3 are
recovery management
support and system error
recovery flags. Their
meanings are:

Bit 2 set indicates that
the task represented by
this TCB was flagged
temporarily
non-dispatchable.

Bit 3 set indicates that
the task represented by
the TCB being displayed
was deemed permanently
non-dispatchable.

Bit 4 is reserved for
future use. :
Bit 5 set indicates that
this task is temporarily
non-dispatchable. Time
services have been
requested and the
time-of-day clock is
still inogerative.

Bits 6 and 7 are
reserved for future use.

Bit 0 indicates that at
the time the dumped
system was active,
ABDUMP was processing.
The setting of this flag
bit has meaning only if
the dumped system was
operating with the
subtasking option of
MFT.

Bit 1 is reserved for
future use.

Bit 2 set indicates that
this task is
non-dispatchable. 2an
SV dump is executing
for another task.

Bits 3 through 6 are
reserved for future use.
Bit 7 set indicates that
at the time the systen
was dumped, the dump
data set was in the
process of being opened.

byte 3

leee sees The setting of this
first bit has meaning
only if the dumped
system was operating
with the MFT subtasking
option. If this bit is
set, the indication is
that the task
represented by the TCB
being displayed was
terminated.

lee ann. Bit 1 set indicates that
had the dumped MFT
system, operating with
the subtasking option,
been allowed to continue
processing without
intervention by the dump
program, the task
represented by this TCB
would have been
terminated by ABEND.

e «XX XXXX Bits 2 through 7 are
reserved for future use.

RES hhhhhhhh
Reserved for future use.

JSCB hhhhhhhh
Contains the address of the job step
control block.

RES hhhhhhhh
Reserved for future use.

JOBRC hhhhhhhh
Contains the address of the IOB
restore chain for I/0 quiesced by
end-of -task.

MFT ACTIVE REQUEST BLOCK (RB) FORMATTING:
Request blocks (RBs) were used by the
dumped system's supervisor to maintain
information concerning a task. RBs
associated with the task identified in the
heading lines at the top of the dump page
and in the preceding TCB display, are
listed in the portion of the dump listing
labeled “ACTIVE RBS". Information on each
RB associated with the task is formatted as
shown be low:

PRB

LPRB

SVRB hhhhhh

SIRB

IRB
Each RB display is preceded by a field
that indicates the type and starting
address of the RB being displayed.
The five types of RBs that may be
displayed under an MFT task are:

PRB
program request block

LPRB
loaded program request block

98 Programmer's Guide to Debugging (Release 21.7)

SVRB
supervisor request block (SVRBs
may be divided into two ’
categories; type 2 for resident
routines and type 3 or 4 for
transient routines).

SIRB
system interrupt request block

IRB
interruption request block

The type acronym for each RB is
displayed in the first portion of the
field. The starting address of the
indicated request block appears in the
last portion of the field. The
contents of certain fields in the body
of the formatted RB display are
dependent upon the type of RB being
displayed. Variations in display
field usage are noted in the
descriptions of the fields in which
they occur.

NM ccccccece

The variations associated with the
usage of this field are:

e PRBs and LPRBs use this field to
display the name of the program they
represented.

e SVRBs display the SVRB type in this
field.

» SIRBs use this field to present the
eight-character name of the error
routine that was occupying the
supervisor transient area at the
time the dump was taken.

e IRBs display meaningful information
in this field only if the timer was
being used. If this was the case,
the first character in this field
represents the setting of the timerx
flags. The remainder of the NM
field is meaningless.

SZ/STAB hhhhhhhh

This field displays two data elements;
RB size information and STAB flag bit
settings. This field is subfielded as
follows:

bytes 0-1

The number of contiguous doublewords
that were occupied by the request
block, the associated program (if
applicable), and associated supervisor
work areas. If a program extent list
was present, the program size is not
included in this figure.

byte 2

STAB flag bit settings. The meaniag
of these flags are depends upon the
type of request block being displayed.
These flags are presented, by RB type,
below:

PRB
The following bit settings are
applicable to program request
block displays:

0000 indicates that the
program represented
by this PRB was not
loaded by a LOAD
macro instruction;
nor did it have minor
entries identified by
an IDENTIFY macro
instruction.

0001 indicate that the
program represented
by this PRB was not
loaded by a LOAD
macro instruction but
did have minor
entries identified by
an IDENTIFY macro
instruction.

eese XX.. Bit 4% and 5 have no
meaning in PRB
displays.

eseee <s1l. 1indicates that the
program represented
by this PRB was
hierarchy block
loaded and that a
program extent list
existed.

eee«e -e.l1 indicates that the
Frogram module
represented by this
PRB was refreshable.

LPRB

Loaded program request blocks

being displayed may have the

following bit settings in this
byte:

0010 indicates that the
program represented
by this LPRB was not
loaded by a LOAD
macro instruction;
nor did it have minor
entries identified by
an IDENTIFY macro
instruction.

0011 indicates that the
program represented
by this LPRB was not
loaded by a LOAD
macro instruction but
did have minor
entries identified by
an IDENTIFY macro
instruction.

IMDPRDMP Output Formatting: MFT -~ Active RBs 99

1110

-eee

CRE X

SVRB

P

.o -1

indicates that this
LPRB describes a
minor entry
identified by an
IDENTIFY macro
instruction.

Bits 4 and 5 have no
meaning in LPRB
displays.

indicates that the
program represented
by this LPRB was
hierarchy block
loaded and that a
program extent list
existed.

indicates that the
program module
represented by this
LPRB was refreshable.

Supervisor request blocks display
the following bit settings in
this subfield:

1100

1101

SIRB

l...

.1..

.o XX

indicates that the
program represented
by this SVRB is a
type 2 SVC routine
that had not been
loaded at the time
the dump was taken.
indicates that the
program represented
by this SVRB is a
type 3 or SVC routine
that had been loaded.
indicates that the
type 3 or 4 SvVC
routine was resident.
indicates that while
the dumped system was
active, a checkpoint
could have been taken
in a user exit from
the SVC routine
represented by this
SVRB.

bits 6 and 7 have no
meaning in SVRB
displays.

The flag bit setting applicable
to supervisor interrupt request
block displays is as follows:

1000

100 Programmer's Guide tc ™zbugging (Release 21)

cene

XXXX

indicates that the RB
being displayed is a
supervisor interrupt
request block (SIRB).
bits 4 through 7 have
no meaning in SIRB
displays.

IRB

Interrupt request block displays

use these flag bits in the

following manner.

0100 indicates that the RB
being displayed is an
interrupt request
block (IRB).
bits 4 through 7 have
no meaning in IRB
displays.

XXXX

eces

byte 3
The last byte of the SZ/STAB field
displays more status and attribute
flags. The possible settings for this
subfield and their meanings are:

Bit 0 set indicates that
the WT-LNK field in this
RB display contains, in
its last three bytes,
the address of the TCB
to which this request
block is linked.

Bit 1 set indicates that
at the time the dumped
system was active, the
program associated with
the RB being displayed
was active.

Bit 2 set indicates that
had the dumped system
been allowed to continue
processing without
intervention by the dump
program, general
registers 2 through 14
would have been restored
from this RB's general
register save area,
displayed on the
following two lines.

The setting of this bit
is valid only for 1IRB,
SIRB and SVRB displays.
Bit 3 set indicates that
the program module
represented by this
request block was
reenterable or reusable.
Bits 4 and 5 are used
only in IRB or LPRB
displays. The settings
of these bits and their
meanings are:

This setting indicates
that the IRB being
disglayed had no
interrupt queue elements
(IQEs) associated with
it‘.

1... LR R

'Ql-.v. L R

eele wee

P

eeee XXoo

s s e 00-0

eeee 01.. This setting indicates
that the IRB being
displayed had associated
with it interrupt queue
elements that were
request queue elements
(RQES).

eese 10.. This setting indicates
that the request block
being displayed is a
dummy LPRB, in a
partition that
represents a program in
the reenterable load
module area. The LPRB
for the program is in
the reenterable load
module area.

eess 11.. This setting indicates
that the IRB being
displayed had interrupt
queue elements
associated with it that
were not request queue
elements (RQEs).

eeee oeld Bit 6 set indicates that
when the dumped system
was active, request
block storage was to
have been freed when the
program returned.

csce ceeX Bit 3 indicates wait
request conditions. The
meanings of the two
possible settings for
this bit are:

ceee 2ea0 Bit 7 not set indicates
that the request had to
wait for a single event
or for all of a number
of events.

ceee 2eel Bit 7 set indicates that
the request had to wait
for a number of events.
This number of events
was less than the total
number of events that
were waiting.

USE/EP hhhhhhhh

The USE/EP field, as indicated by the
field identifier, displays two data
elements. These are shown jin the
following format:

byte 0

The first byte of this field contains
the use count that was applied to the
program module represented by the
request block being displayed. This
use count was calculated by
subtracting the number of invocations
of the DELETE macro instruction from
the number of times the LOAD macro
instruction was used.

byte 1-3
The second portion of the USE/EP field
displays the address of the entry
point of the module represented Ly
this request block.

PSW hhhhhhhh hhhhhhhh
The two words of the PSW field display
to the user the dumped system's old
program status word. If the dumped
system had been allowed to continue
processing without interruption by the
dump program, operation would have
resumed on this PSW.

Q hhhhhhhh
The information displayed in this
field depends upon type of RB being
displayed. The ccntents of this
display field are described below, by
RB type:

e PRBs and LPRBs use this field to
display the address of an LPRB
describing an entry that was
identified via the IDENTIFY macro
instruction.

e SVRBs representing type 3 or 4 SVCs
use this field to indicate the size
of the program they represent in
bytes.

e SIRBs and IRBs display in this field
the address of a 12- or 16-byte
request element.

WI'-LNK hhhhhhhh
This field displays information
pertaining to wait counts and request
block linkages. The field is divided
into the following two subfields:

byte 0 '
The number of requests that were
pending at the time the dump was taken
(wait count).

byte 1-3
The address of the next request block
on the RB queue. If the RB being
displayed was the last request block
on the queue, this field shows the
address of the task control block
(TCB) that enqueued this RB.

RG 0-7 and RG 8-15
The sixteen-word register save area
appears only after IRB, SIRB or SVRB
displays. These two lines display the
contents of general registers 0
through 15 as they were stored in the
request block.

MFT PROBLEM PROGRAM BOUNDARIES INFORMATION:
Each task operating under the MFT option of
the operating system was assigned a main
storage partition in which to operate. If

IMDPRDMP Output Formatting: MFT -- P/P Boundaries 101

the system configuration included 2361
Large Core Storage, partitions may have
included area from both hierarchy 0 (main
storage) and hierarchy 1 (low speed main
storage). If 2361 Large Core Storage was
not available or was not used, hierarchy 1
pointers were set to zero. Each MFT task
displays in its dump listing the limits of
the partition in which it operated. This
display is presented under the heading "P/P
BOUNDARIES" (problem program boundaries) in
the following format: '

HIER 0 hhhhhhhh
The starting address of the problem
program's hierarchy 0 partition.

TO hhhhhhhh
The ending address of the problem
program's hierarchy 0 main storage
partition.

HIER 1 hhhhhhhh
The starting address of the problem
program's hierarchy 1 partition. If
this field contains zeros, the
indication is that 2361 Large Core
Storage was either not available or
not utilized by this task.

TO hhhhhhhh
This last field indicates the high
limit of the problem program's
hierarchy 1 partition if one was used.
1f this field contains zeros, either
2361 Large Core Storage was not
available or it was not used by this
taske.

MFT LOAD LIST FORMATTING: A load list was
maintained by the dumped system's
supervisor in order to keep track of the
load modules that wexre in main storage and
the area of main storage each occupied. A
load list created by an MFT supervisor is
composed of loaded request blocks (LRBs)
and loaded program request blocks (LPRBs).
A formatted listing of the dumped MFT
system's load list appears as follows:

LRB

LPRB hhhhhhhh
The type of request block being
displayed and its starting address.

NM ccccccee
The eight-character name of the
program module represented by the
request block being displayed.

SZ hhhhhh
The number of contiguous double woxds
that were occupied by the request
block, the associated program (if
applicable) and associated supervisor
work areas. If a program extent list
was present, the program size is not
included.

USE/EP hhhhhhhh
Use count and entry point address as
follows:

byte 0
The use count that was applied to the
program module represented by the
request block being displayed. This
use count was calculated by
subtracting the number of times the
DELETE macro instruction was issued
from the number of times the LOAD
macro instruction was used.

byte 1-3
The address of the entry point of the
program module named in the NM field
of this RB display line.

MFT_JOB_PACK QUEUE FORMATTING: A job pack
area queue was maintained by the dumped
system®'s supervisor for each job step that
used a program not in the resident
reenterable load module area. A job pack
queue created by an MFT supervisor consists
of loaded request blocks (LRBs), loaded
program request blocks (LPRBs) and FINCH
request blocks (FRBs). A formatted job
pack area queue display appears as follows:

LRB

LPRB hhhhhh

FRB
The type of request block being
displayed and its starting address.

NM cccceccce
The eight-character name of the module
represented by the request block being
displayed.

$Z hhhhhh
The number of contiguous doublewords
that were occupied by the request
block, the associated program (if
applicable) and associated supervisor
work areas. If a program extent list
was present, the program size is not
included.

USE/EP hhhhhhhh

XRWTL
The usage of this display field is
dependent upon the type of request
block being displayed:

USE/EP
is used for LRBs and LPRBs and
displays the use count and entry
point address as follows:

byte 0
The use count that was applied to
the program module represented by
the request block being
displayed. This use count was
calculated by subtracting the
numbexr of times the DELETE macro

102 Programmer's Guide to Debugging (Release 21)

instruction was issued from the
number of times the LOAD macro
instruction was used.

bytes 1-3
The address of the entry point of
the program module named in the
NM field of this display line.

XRWTL
is used for FRBs and shows the
starting address of the wait list
element.

XRREQ hhhhhhhh
This field appears only in FRB
displays, and shows the address of the
TCB representing the task on whose
behalf this FRB was constructed.

XRTLPRB hhhhhhhh
This field appears only in FRB
displays and shows the starting
address of the area of main storage
that was acquired by the FETCH routine
for the module identified by the NM
field of this line.

MFT_DATA EXTENT BLOCK (DEB) FORMATTING:
Data extent blocks (DEBs), describing a
data set's external storage requirements,
were queued to those task control blocks
(TCBs) that represented tasks requiring
auxiliary storage input/output processing.
External storage information, taken from
each DEB, is formatted as shown below:

DEB hhhhhh
The starting address of the basic
section of the DEB being displayed.

APPENDAGES
The word "appendages®" informs the user
that the five named fields on this
line contain information taken from
the appendage vector table preceding
the DEB being displayed. The named
fields appearing on the rest of this
line are:

END OF EXT hhhhhh
The entry point of the end-of-extent
appendage routine.

SIO hhhhhh
The entry point of the start I/0
appendage routine.

PCI hhhhhh
The entry point of the
program-controlled-interruption
appendage routine.

CH END hhhhhh
The entry point of the channel-end
appendage routine.

AB END hhhhhh
The entry point of the abnormal-end
appendage routine. '

PFX hhhhhhhh hhhhhhhh hhhhhhhh
The second line of a DEB display
contains information taken from the
prefix section of the DEB being
displayed. The area is subdivided as
follows:

byte 0
The first byte of the prefix area
contains the contents of the 170
support work area. This area is used
only by DEBs dealing with direct
accéss storage devices.

bytes 1-7
The next seven bytes of the DEB prefix
section are used by DEBs associated
with direct access storage device
functions. This subfield displays the
data set control block's (DSCB)
address used by I/O support. The
address is expressed in the following
format:

bytes 1 and 2
bytes 3 and 4

the
the

bin (cell) number.
cylinder address.

bytes 5 and 6 the track address.
byte 7 the record number.
bytes 8-11

The third word of the PFX field
contains the data control block (DCB)
modification mask that was used by I/0
support.

byte 12 .
The length of the DEB in double words.

bytes 13-15
The remainder of the DEB prefix
section is reserved for future use.

TCB hhhhhhhh
This field marks the beginning of the
basic section of the data extent
block. The TCB field is divided into
two subfields as follows:

byte 0
The number of subroutines for which a
LOAD macro instruction was issued
during the execution of the OPEN
executor routines.

bytes 1-3
The starting address of the task
control block to which this DEB was
enqueued.

NDEB hhhhhhhh

byte 0 ,
The overall length of a data extent
block includes the length of a

IMDPRDMP Output Formatting: MFT -- DEBs 103

variable length access method

dependent section. The first byte of
the NDEB field expresses the length of
the access method dependent section in
bytes. If the access method was BDAM,
this indicator is expressed as a
number of full words.

bytes 1-3

ASYN

The last portion of the NDEB field
displays the starting address of the
basic section of the next DEB on the
task's queue. If this DEB was the
last on the queue, the content of this
field is the starting address of the
TCB that enqueued this DEB.

hhhhhhhh

This field contains data set status
flags and the address of the
associated IRB:

byte 0

The first byte of the ASYN field
contains data set status flags. These
flags have the following meanings:

Bits 0 and 1 indicate
the data set's
disposition. The
possible settings are:
This setting indicates
that the disposition was
OLD.

This setting indicates
that the disposition of
the data set was MOD
(modify).

This setting indicates
that the disposition was
NEW.

Bit 2 set indicates that
an end-of-volume (EOV)
or end-of-file (EOF)
condition had been
encountered.

The setting of bit 3 has
one of two meanings
depending upon the
external storage medium.
For disk, this indicator
reflects a release of
unused external storage.
For tape, this indicator
means that an emulator
tape with second
generation format was
being used.

XX. o

.o oaew

01..

10..

il..

.o s e

..1.

eeel cons

eeen loaa Bit 4 set is a data
control block (DCB)
modification indicator.
esee ol.a Bit 5 set has two

meanings, depending upon
the auxiliary storage
recording medium. For
disk, the setting of bit
5 indicates that a split
cylinder was

encountered. For tape,
this flag indicates that
an emulator tape with
possible mixed parity
records was used.

Bit 6 set indicates the
use of nonstandard
labels.

Bit 7 set indicates that
reduced error recovery
procedures were used on
magnetic tapes
containing the data set
represented by this DEB.

..1.

cew

enel

eeoa s

bytes 1-3

The last portion of the ASYN field
shows the starting address of the IRB
that was associated with asynchronous
appendage exit scheduling.

SPRG hhhhhhhh
This field contains information on I/0
processing methods and the system
PURGE routine.
byte 0
The first byte of this field contains
flags that indicate the method of
input/output processing and the
disposition of the data set that was
to have been performed when an end-of-
volume condition occurred. These flag
settings are:
loce enee Bit 0 was set by ABEND.
The setting of this bit
indicates that the data
set associated with this
DEB was a SYSABEND or
SYSUDUMP .data set.)
0o cene Bit 1 is always zero.
ceXX euee Bit 2 and 3 show the
end-of-volume
disposition procedure.
The values for this flag
are:
«.01 REREAD
eell ... LEAVE
...+ Xxxx The last half of this
byte contains flags that
indicate the type of
input/output processing
that was performed on
the data set represented
by this DEB. The values
for this flag are:
..o« 0000 INPUT
~ees 1111 OUTPUT
.ee. 0011 INOUT
«eae 0111 OUTIN
cees 0001 RDBACK
-ese 0100 UPDAT
byte 1

104 Programmer's Guide to Debugging (Release 21)

The quiesce count. The byte is
associated with the system PURGE
routines (SVC 16), and indicates the

number of auxiliary storage devices
that were executing the user's channel
programs.

bytes 2-3
Reserved for future use.

UPRG hhhhhhhh
The UPRG field contains extent
information and data used by the
user's purge routines. This field is
divided into the following two
subfields:

byte 0
The number of extents that were
specified in the DSCBs associated with
this DEB.

bytes 1-3
The address of the first input/output
- block (IOB) in the user's purge chain.

PLST hhhhhhhh
Task priority and supervisor purge
information are contained in this
field. This field is formatted as
follows:

byte 0
The priority of the task under which
this DEB was enqueued.

bytes 1-3
The starting address of a parameter
list that was used to locate the purge
event control block (ECB) for a
supervisor purge request.

DCB hhhhhhhh
The DCB field contains three data
elements. These are displayed in the
format given below:

byte 0

XXXX onee The storage protection
key that was associated
with the task under
which this DEB was
enqueued.
A hexadecimal "F" in
bits 4 through 7 of this
field identify this
control block as a data
extent block (DEB).

1111

ER R

bytes 1-3
The starting address of the data
control block (DCB) that was
associated with this DEB.

AVT hhhhhhhh
The AVT field displays two DEB data
elements and is subfielded as follows:

byte 0
The DEB extent scale that is used to
determine the size of the device

IMDPRDMP Output Formatting:

dependent section of this DEB. For
direct access devices, a 4 is
displayed in this subfield. For a

nondirect access device or a
communication device, a 2 is
displayed.

bytes 1-3
In most cases, the last portion of the
AVT field shows the starting address
of the appendage vector table
preceding this DEB. This table of
appendage routine addresses appears on
the first line of this DEB's display.

OP-UCB hhhhhhhh
The contents of this field have
meaning only when the DEB being
displayed describes a data set that
was assigned to a unit record or
magnetic tape device. This
information is formatted from the
device dependent section of the DEB.
The OP-UCB field is subfielded as
follcows:

byte 0
This first subfield is applicable only
to data sets assigned to magnetic tape
devices, and shows the SET MODE
operation code. For a data set that
was assigned to a unit record device,
this subfield is reserved.

bytes 1-3
The starting address of the unit
control block (UCB) associated with
the data set described by the DEB
being displayed.

The following four fields are present only
for data sets assigned to the IBM 3525 Card
Punch for multi-function. The information
is formatted as shown below:

UCB hhhhhhhh

byte 0
The device modifier field (not used
for the 3525).

bytes 1-3
The starting address of the unit
control block (UCB) associated with
the data set described by the DEB
being displayed.

RDRDCB hhhhhhhh
The starting address of the data
control block (DCB) for the read
associated data set.

PCHDCB hhhhhhhh
The starting address of the data
control block (DCB) for the punch
associated data set.

MFT -- DEBs 105

WITRDCB hhhhhhhh
The starting address of the data
control block (DCB) for the print
associated data set.

The final portion of a DEB display shows
information pertaining to a data set that
was assigned to a direct access device.
This information, taken from the DEB's
device dependent section, is arranged in
columnar format with a line for each
extent. The information is formatted as
shown below:

FM-UCB hhhhhhhh
The first column displays two data
elements and is formatted as follows:

byte 0
The device modifier showing the file
mask.

bytes 1-3
The starting address of the unit
control block (UCB) that was
associated with the data extent.

START hhhhhhhh
The address of the beginning of the
direct access device extent. The
first four characters represent the
cylinder address and the last four
characters represent the track
address.

END hhhhhhhh
The address of the end of the data
extent. Cylinder and track references
are formatted as in the extent
beginning address, described above.

TRKS hhhh
The number of direct access tracks
bounded by the starting and ending
addresses shown in the previous two
columns.

MFT TASK INPUT/OUTPUT TABLE (TIOT)
FORMATTING: A task input/output table
(TIOT) was constructed for each task in the
dumped system by MFT job management
routines. This table contained primary
pointers to control blocks used by I/0
support routines. As the functions™of
several TIOT fields were dependent upon the
state of associated external storage
devices, multiple definitions may apply.
The TIOT that was constructed in the dumped
MFT system is formatted as shown.

TIOT hhhhhh
The starting address of the task
input/output table being displayed.

JOB cceccccce
The eight-character name of the job
for which this TIOT was constructed.

STEP ccccccecce
The eight-character name specified in
the label field of the EXEC JCL
statement associated with this job
step.

PROC cccccecce
If the job step for which this TIOT
was constructed was invoked from a
cataloged procedure, the procedure
name, as contained in the EXEC JCL
statement, is displayed in this field.

Each data set associated with the indicated
task is represented by a separate DD entry
that is included in the TIOT. Each TIOT
entry is displayed on a separate line in
columnar format. The use and meaning of
each column is given below:

OFFSET hhhh
The offset of this DD entry from the
beginning of the TIOT in hexadecimal.

LN-STA hhhhhhhh

byte 0
The total length (including all device
entries) in bytes of the DD entry
being displayed on this line.

byte 1
Status byte A, one of three status
bytes in a TIOT entry. The meanings
of the status byte settings are:

Bits 0 and 5 indicate
the tape label
processing that was to
have been performed.
The meanings of the
settings are:

Xeaso sXeow

0... .0.. Nonlabeled tape or an
indication to bypass
label processing.

0.ea 1.. Standard labels or
standard user labels.

1... .0.. Nonstandard labels.

elue eone The setting of status

bit 1 has two meanings,
depending upon the
processing phase that
had been reached at the
time the system was
dumped. During
allccation processing,
the setting of this bit
indicates that this
entry represents a split
cylinder primary space
allocation DD. If the
dump was taken during
step termination
processing, the setting
of this bit indicates
that no unallocation of
space was necessary.

106 Programmer's Guide to Debugging (Release 21)

eele ceea The setting of status
bit 2 works under the
same philosophy as
status bit 1. During
allocation processing,
the setting of this bit
indicates that this
entry represents a split
cylinder secondary space
allocation DD. If the
dump was taken during
step termination
processing, the
indication was one of
rewinding with no
unload.

esel nena Bit 3 set indicates that
this DD entry represents
a JOBLIB.

esee lea. Bit 4 set indicates that
direct access device
space management was
deemed necessary.

eene «ul. The setting of bit 6
specifies that the tape
volume was to have been
rewound and unloaded.

eese emsl The setting of bit 7
specifies that the tape
volume was to have been
rewound.

byte 2

The third byte of this column has
meaning only during the allocation
phase. This displays the number of
devices that were requested by the
data set represented by the TIOT entry
displayed on this line.

byte 3

The last byte of the LN-STA field
displays a TIOT field that had meaning
at two points during the processing of
this task. During the allocation
process, this field contained a link
to the appropriate prime split, unit
affinity, volume affinity or
suballocate TIOT entry. After CLOSE
processing, this byte was used as
follows:
leee coee The setting of bit 0
indicates that the data
set represented by this
DD entry was a SYSOUT
data set that contained
data.
« XXX XXXX Bits 1 through 7 are
reserved for future use.

DDNAME ccccccec

The eight character DD name associated
with the TIOT entry being displayed.

TTR-STC hhhhhhhh

The first three bytes of this column
display the relative track address
(TTR) of the job file control block
(JFCB) associated with this entry.

STB-UCB hhhhhhhh

The last column in a TIOT display
contains information tdken from the
one~word device entries that are
appended to each TIOT entry. One TIOT
device entry exists for each allocated
device. This display field shows this
information in the following format:

byte 0

Status byte B. The status bits have
the following meanings:

leee ono Bit 0 set indicates that
the data set associated
with this line of the
TIOT display was present
on the device
represented by this TIOT
device entry.

elee ween Bit 1 set indicates that
the data set associated
with this line of the
TIOT display would have
used the device
represented by this TIOT
device entry.

I Bit 2 set indicates that
the device represented
by this device entry
violated separation.

enel cuan Bit 3 set indicates that
a volume serial number
was present.

P [Bit 4 set indicates that
a setup message was
required.

esas oeXee Bit 5 indicates the
device disposition that
would have taken place
had the dumped system
been allowed to continue
processing this task.
The settings for this
bit are:

eaes «0.. Indicates that if the
volume was required to
be unloaded, the volume
was to have been
deleted.

enes ol Indicates that if the
volume was required to
be unloaded, the
unloaded volume was to
have been retained.

eees asl. Bit 6 indicates that an
unload requirement had

: been made.

emes eoal Bit 7 set indicates that
a load or label
verification requirement
had been made.

bytes 1-3

The address of the UCB that was used
in all cases except when the device
was a 2321 data cell drive. For a
2321, this address is that of the
description in the UCB of the cell in
the bin.

IMDPRDMP Output Formatting: TSO 107

TSO System Block Formatting

The TSO control blocks are divided into two
groups: system and user. The control
blocks are discussed in the order in which
they appear when both groups are requested.
Some control blocks are formatted and
printed when either group is requested.

An example of a TSO system and user dump
listing is shown in Figure 24.

TIME SHARING COMMUNICATIONS VECTOR TABLE
(TSCVT) FORMATTING: The time sharing
communications vector table is a secondary
CVT to meet the time sharing requirements.
The time sharing CVT resides in the time
sharing region; therefore, it exists only
while the time sharing region is active.
When time sharing does not exist in the
system, the MVT CVT pointer to the TSCVT is
zZero.

TSCVT hhhhhh
The address of this time sharing
communications vector table.

TJB hhhhhhhh
The address of the time-sharing job
block (TJB) table. This table
contains all of the TJBs allowed TSO
users. The first TJB is for the
terminal job identification (TJID)
equal to zero.

RCB hhhhhhhh
The address of the region control
block (RCB) table. It is an indexed
table containing one RCB for each
possible time sharing region;
thexrefore, the table contains the
maximam number of RCBs that may be
used by time sharing. The first RCB
is for region one.

RPT hhhhhhhh
The address of the reference point
table (RPT). It is used by the
terminal input output coordinator
{TIOC).

FLG hhhh
These flags indicate functlons
requested from the time sharing
control task (TSC).

byte 0
laeoe «oee TSCSWPND: Bit 0 set
indicates that a swap has

ended.

elee <e.. TSCSWPBG: Bit 1 set
indicates that a swap should

be started.

ee«es TSCLOGON: Bit 2 set
indicates that a logon is
required.

.

esel .ec.. TSCDISC: Bit 3 set
indicates that a disconnect
is required.

-++s XXxx Bits 4 through 7 are
reserved for future use.

byte 1
Reserved for future use.

FL1 hhhh
These flags indicate atypical
functions required by the time sharing
control task (TSC).

byte 0
l... TSCSSTOP: Bit 0 indicates
that a system stop has been
requested and the time
sharing system is in the
process of stopping.

«les +s<. TSCRSTOP: Bit 1 indicates
that a region stop has been
requested.

eels TSCASTOP: Bit 2 is the
ABEND-STOP flag. When set,
it indicates to the time
sharing control task (TSC)
that time sharing should be
stopped. This flag is set
by (1) the TSO/RMS interface
return when a machine check
occurs in TCAM or (2) the
TCAM STAE exit when TCAM
abnormally. terminates.

«eeX Xxxx Bits 3 through 7 are
reserved for future use.

byte 1
Reserved for future use.

SDC hhhhhhhh
The address of the first data control
block (DCB) for swap data sets.

CUS hhhh
A count of the current TSO users
logged onto the system. For
additional users to be logged onto the
system, this number must be less than
the value in LUS.

108 Programmer's Guide to Debugging (Release 21)

thutyzewrod Indino AWAIAAWI

-~ OSL

60T LAOSL

MODULE [MDSADMP DATE 11/12/70 TIME 00.12 PAGE 000F
TSCVT 0DDA9C TJB OCOLDCES RCB 000DDFBS RPT 000D9DDO FLG 0000 FLl 0000 SDC 00000000
cus 0co4 LUS 0004 NTJ 000A szu 0030 CTR 0001 MuUS 0004
SAV 0C0DDB20 £CB 000DDB14 SIA 0000DDCDC 1CB 000DDC34 101 000D38C4 TQE 00014674
102 00003850 103 000D3E46 D02 000D28C8 LCQ 00000000 TRB 00000000 LPA 00000000
SLF 0GOCDF10 TSC 0001ACDO SPL 0001B4ES8 RSZ 0028 RSV 0000 SVT 00000000
SVQ €CCC0000 ABN 00001C20 D03 00O0DE8SO FLM 000DFD40 QTP 000DFD40 Y08 000DEADS
OMP 0CODD998 TC6 0001A5D8
RC8 ODDFBS RCT 0001A78B8 ECB C€0000001 DIECB 00000000 TJID 0004 RSIZE 0048 LsQsz 0005
NMBR o1 PKEY €0 UMSMN 04 FLG 40 F162 20 FBQE 01
UTTHQ 0000 CUSE 0004 EXTNT 000A7F68 UMSM 0OODDFAS SDCB OOODE120 PQE 0001AC20
PRG OE000000 PRG1l 000A79D0 PRG2 000ATFIC QPL 000A7F10 STECB 00000000 RCOVR OBOOFFO00
CONID 00 RESV 000000
UMSM ODDFAB ADDR-LN 04580C60 ADDR-LN 0CB80020 ADDR-LN 00000000 ADDR-LN 000000C0
SWAP DCB 00C0J0
CA3800 STGRAGE KEY 0
0A5800 0 00000000 0D0A58C8 00CA7260 00000000 000A58C3 0002830 CTCAS5220 000A5820 *eeeessecececscssenssscsscascnncse®
0A5820 0 00000000 OOCAFO00 0CO00G0G 00000000 00014788 00028000 OCOAS800 0000C000 *eeeaseDesccaccccosssassscscccnee®
JA584C 0 0C000000 CO0C1468 £CCCO0OC 0CO00000 000000CO 00000000 00C00000 0COG0000 Feceeccecccccccccsoascssassssesanse®
045860 0 CO00Q000 COOCO000 CCCCOD0J 00000000 00000000 00000000 ICO00030 00000000 #eeeseassssascasssssscsscccasccee?
OA5880 O TO NEXT LINE ACORESS SAME AS ABOVE
046C20 0 0012CC02 CCCCO000 FFC40000 O0OOCAFS 00000000 000AT700 CO000000 00000000 *eecesscscsccscceBoocscscsacsscoset
0A6C40 0 O0OCCFA3 0000C28C CO0A6D68 000AT700 40004486 00000001 OOODDD18 000DIDDO *eeeeeoBeoososocecs sococscccscasas™
JA6C60 G 00DATT88 00C1C1CO OOODIDF4 0CO00000 AOOOASF3 9000A60C 00000000 90000000 FeeeceooBeoeoboosesseBasccseonceee®
JA6C8C 0 00000000 00CCOCCO CCCOO0CC GCO00000 00000000 00000000 00000900 D00000C0 *ececsveccscsccssassscssssssscsee®
046CAO0 O 000C0000 00000GO0 000AT478 C0000098 000CD710 00000030 00124034 J000B834 *ueesesececcocccocsccsPosccnns =
J45CC0O 0 00046C00 CCCCCCCO CECCO000 00000000 000C0C00 00000300 CCCO0300 00000000 #eeosacsscsesseseccsasascncsncsee®
JASCED 0 SO0DOOLD COCCCCGC CCCCI0GO 93GI000C 000000CO 0020003C CCOOC00Q 00000000 *.eeesssecssvecosesacsscscosasasas®
Figure 24. sSample of TSO Control Block Format (Part 1 of 3)

C

aseaTad) ourbbngsg 03 °prnd s, IouMIEIhOIg OTT

TJB o0DOl8

UMSM ODDFO08

TSB ODSDF4

Eryey

TJBX OATFé68

JJB KGNO1

TCB OQA7TDAO

ACTIVE RBS
ORB 0A7D1S8

MAIN STORAGE
D-PQE 0Q0AS

PQE 0A5820

ERE L2322 2222 LR 22 2]

MCDULE IMDSADMP DATE 11/12/70 TIME 00.12 PAGE 0007
*XE %K TSO USER CONTROL BLOCKS A& EK
USER KGNO1! TJID0=0001 BAEGHRKEERER SRR TR RE

TSB 000D9DF4 ATTN 0o STAX o1 STYAY 00 STAT2 00 EXTNT OOOATF68

RCB 00CDCFB8 UMSM 000DDFOS8 SDCB QOCDEL120 UTTMQ 0002 RSTOR 48 UMSMN 04

USER KGNO1 IPPB8 00000000 NEWID 00 FLUSL 00 TJID 0001 MONI 00

RSV 0C0000

ADDR-LN 0A580C38 ADDR-LN 0A980Q058 ADDR-LN 0CB00028 ADDR-LN 00000000

STAY 81 TJB 00CD18 FLG1 00 WTSB 000000 LNSZ 78 OTBFP 000000
NOBF 00 CBFP 000000 BPKFL 00 1T8FP 000000 NITR 01 IBFP ODAOFO
CLEAR (¢10] QCB OELCCO ECB 00000000 TJID 0001 STCC 0000 ATNLC 0016
ATNTC 0000 LNNO 00 BLNK 00 ASRCE 0000 ATNCC 0003 AUTOS 00000000

AUTOI 00000000

THE FOLLOWING TJBX,TAXE,PSCB,TCB'S AND STORAGE ARE FROM THE SWAPPED DATA SET

XFST COOA7DAC

ERSDS 00000000

XLAST 000A6D68 XDSE QOO0A7320 XSVR8 000AT700

EEXEE

XRQE 00000000 XIQE 00000000

TAXE OQO00A6CBO XLECB 00000000 XPSWD RSV 00C00000 XAIQE 00000000 XQPL 000A7F10
XNQPE 000A XNTCB 0002 XLQPL 0054 HBFL 0000 XACY 00000000 XAECB 00014534
XKEYA COCA7FBO
STEP KGNQ1 PROCSTEP STARTING

RBP 000A7D18 FIE C0000000 DEB 00000000 TIO O00AT7864 CMP 00000000 TRN 00000000

MSS 030A794A0 PK~FLG E0000000 FLG 00018888 LLS OCOATEAO JLe 0000C000 JPQ O0OATEBO

RG O-7 00000001 FFF58C74 0001AS534 0001A500 000A 7510 COQATDAO 00000000 00000v01l

RG 8-15 OO00A7370 FFFFEFF9 CO0AT564 000A6D68 600FEAB2 000AT7534 4Q00FES30 600062FA

FSA 0300C0CO 1C8 000A6D68 TME 00000000 JST O0Q0A7TDAO NTC 00000000 OTC 0001A788

LTC 000A6D68 1QE 00000000 ECB OOODDFBC TSPR 8000B828 D-PQE 000A5810 SQS 000A6D40

STA 200CC498 TCT 00CA73D8 USR 00000000 DAR 00001000 RES 00000000 JSCB OQOATEOO

RESV €00000C00 APSHW 00000000 WC-SZ~STAB 00040083 FL-CDE 0001D580 PSW FF050001 SOOFECSBA

Q/TTR 0COC0000 WT-LNK Ol0ATDAO NM TEFSD263 EPA OFEABO STA OFEABO LN 000550 ATR1 89

810 FIRST 000A£820 LAST 0COAS5820

FFB 0CCCCOOO0
TC8 CCClA7BS

LFB OCOAFQOO
RST €0028000

PPQ 000300000
FLG 0000

NPQ 000C00CO
RAD 000AS5800

Figure 24.

Sample of TSO Control Block Format (Part 2 of 3)

sbuTtajewsod INdIn0 AWAIAAWI

TIT LADSL -- OSL

DEB 0AT74A4

TIOT OA6E28

PSCB 0A7B88

TAXE 0AACBO

MODULE IMDSADMP DATE 11/12/70

TIME 00.12

PAGE 0010

APPENDAGES END OF EXT 01516 SIO 01516C PCI 0151DC CH END O151A0 AB END 01516C

PFX 00000000 €2C00C08 00003FE2 110000C0

TC8 050A6D68 NDEB 01000000 ASYN 69000000 SPRG 00000000 UPRG 02000000 PLST B80O00000 DCB EFOCCE64

AVT 04015158

FM-UCB START END TRKS

50002AF0 0C61C000 0C920013 O03ES8

50002ABO CG9F0000 00C60013 0320

JOB KGNO1 STEP TMP PROC KGNPO1

OFFSET LN-STA DONAME TTR-STC STB-UCB

0018 14C401C0 SYSPRINT 00491600 80002570

002C 14040140 SYSCCMD 00480A00 B80002AF0

0040 14040100 C0481000 80002ABO

0054 14840100 SYSUCUMP 00491800 80002530

0068 14040100 SYSUT1 00481200 80002530

007C 14040100 SYSUT2 004B0600 80002570

0090 14040100 BSLOUT 00491A00 800025F0

00A4 14040100 SNAPTAPE 004C1100 80002530

coBs 14000010 DDl C04B0E00 00000000

oocc 14000010 ©D2 004BOCOO0 00000000

00EQ 14000010 0D3 004BOEOO 00000000

00F4 140C0010 DD4 0C4EQ100 00000000

o108 140C0010 DDS 004E0300 00000000

o11cC 140C0010 OD6 004E0500 00000000

0130 140C0010 DO7 004E0900 00000000

0144 146C0010 DD8 004EOBOO C0000000
USER KGNO1 USRL [+1] GPNM SYSDA ATR1 EOOO ATR2 0000 CPU 00018800
SWP C04C33FD LTIM Q08A0560 TCPU 00000000 TSWP 00020000 TCON 00000000 TCO1 00200000
RLGB OCCAB700 UPT 000A86F0 UPTL 0010 RSV] 2000 RSV2 C2000CO0 USE1l €0005007
USE2 CCCCCICcO
TMFLD 00 PPSAV OCD71G ABOPSY 00000000 WCSA 00 SIZE STAB 4034
EP 00008834 LCPSW 00040000 ROPSW 000203C2 USE oo} 108 000000 WCF 00
LINK 000000 GRO C00000COC GR1 00000000 GRZ 00000000 GR3 €0000000 GR4 00000000
GRS 00000000 GR6 000000CO GR7 00000000 GR8 00000000 GR9 00000000 GR10 000000092
GR11 00000000 GR12 02000000 GR13 0€0C0000 SR14 00000000 GR15 00000000 NIQE 0000000¢
LNK 000A&D14 PRM1 00000000 IRB 000A6CBO TCB 000A6CBO TLNK 000A6D68 XPSW 00000000
EXIT 00000200 STAT 00000000 PARM 000ABBFS8 TATIE COOCCF7C IRUF 000cC00C USER 000CCDB4

Figure 24.

Sample

of TSO Control

Block Format (Part 3 of 3)

LUs

SZU

CTR

MUS

SAV

ECB

SIA

icB

112

hhhh
The maximum number of TSO users that
may be logged onto the system. For
additional users to be logged onto the
system, the value of LUS must be
greater than the value in CUS. LUS
cannot exceed the value in NTJ. LUS
is set by the time sharing control
task (TSC). This field is initially
set to the same value as MUS; however,
if TSO encounters 1I/0 errors while
swapping users in and out, the time
sharing control task reduces this
value to limit the number of TSO
users.

hhhh
The number of time-sharing job blocks
(TIBs) and terminal status blocks
(TSBs) allocated when TSO was started.
The dummy TJB for the terminal job
identification (TJID) equal zero is
not included. The value of LUS cannot
exceed this number.

hhhh
The number of bytes in the time
sharing job block (TJB).

hhhh
Contains the number of region control
blocks (RCBs) allocated when TSO was
started. This number cannot be
increased after the TSO system is
started.

hhhh
The maximum number of users that may
be logged onto a TSO system. This
field is set by the START and MODIFY
commands issued by the operator.

hhhhhhhh
The beginning address of three 18-word
save areas used by the time sharing
control task (TsSC), the time sharing
interface program (TSIP), and the time
sharing dispatcher.

hhhhhhhh

The address of the table control block
(TSECBTAB) which contains the event
control blocks (ECBs) used to post the
time sharing control task (TSC), the
region control tasks (RCTs), and the
terminal input output coordinator
(TI0C).

hhhhhhhh
The address of the time sharing
interface area (TSIA).

hhhhhhhh
The address of the time sharing
interface control block (TSICB).

I01

TQE

102

103

D02

1CQ

TRB

LPA

SLF

TSC

SPL

RSZ

RSV

SVT

Programmer's Guide to Mebugging (Release 21)

hhhhhhhh

The address of the branch entry point
IKJEAIOL in the time sharing interface
program (TSIP).

hhhhhhhh
The address of the timer queue element
(TQE) used by TSO for time slicing.

hhhhhhhh

The address of the entry point
IKJEAIO2 in the time sharing
dispatcher.

hhhhhhhh

The address
IKJEAIO3 in
dispatcher.

of the entry point
the time sharing

hhhhhhhh

The address of the entry point to the
TSO driver routine (IKJEADO2), or the
equivalent entry in a user written
routine.

hhhhhhhh
The address of the first element in
the logon communications queue.

hhhhhhhh
The first address in the trace control
block chain. This address is
established and used by the statistics
collection routine. It is set to zero
by the time sharing control task
(TsC).

hhhhhhhh

The address of the first contents
directory entry (CDE) in the time
sharing link pack area.

hhhhhhhh
The address of the system-initiated
logoff routine. '

hhhhhhhh

The address of the task control block
(TCB) for the time sharing control
task (TSC).

hhhhhhhh
The address of the start parameter
list.

hhhh
The minimum number of 2K blocks for a
region during logon.

hhhh
Reserved for future use.

hhhhhhhh

The contents of the SVC table entry
used by the time sharing interface
program (TSIP).

hhhhhhhh
The contents of the SVC table entry
used by the TCAM/TIOC interface
program.

- svQ

ABN hhhhhhhh
The address of the out-of-main storage

abnormal termination routine

(IKJEAT07). The routine is resident
in main storage.
D03 hhhhhhhh

The entry point address to the TSO
driver MODIFY routine (IKJEADO3), or
the equivalent entry point address in
a user written routine.

hhhhhhhh
The entry point address IKJEFLM for
the system initiated logoff routine.

FLM

hhhhhhhh

The entry point address IKJGGQT1 for
the branch entry to the TCAM interface
program (QTIP).
T08 hhhhhhhh

The entry point address to the TSO
command routine (IJEATO08) for TSO
dumps taken by the time sharing
control task (TSC) TSO dumps.
DMP hhhhhhhh

The address of the TSO dump control
block.
T06 hhhhhhhh

The TCB address of the TSO dump
routine (IKJEATO06) for the time
sharing control task (TSC) modify
routine.

TIME SHARING REGION CONTROL BLOCK (RCB)
FORMATTING: A region control block (RCB)
contains information that is unique to a
time sharing region. There is one RCB for
each time sharing region. The RCBs reside
in the time sharing control tasks region,
they are contiguous, and they are created
during initialization of the time sharing
controller.

RCB hhhhhh
The address of the RCB. _
RCT hhhhhhhh
The address of the task control block
(TCB) for this region control task
(RCT). The TCB contains the address
of the partition queue element (PQE)
that defines the region.

ECB hhhhhhhh
The event control block (ECB) on which
this region control block (RCB) waits.
This ECB must be posted before this
region control task (RCT) can perform
one of its functions.

DIECB hhhhhhhh
The event control block (ECB) that is
posted upon completion of this region
control task (RCT). The time sharing
control task (TSC) waits for this ECB
to be posted.

TJID hhhh
The terminal job identification (TJID)
for the time sharing job currently
executing in this region.

RSIZE hhhh
The number of 2K blocks in this
region. It is set by the time sharing
control task (TSC) when the time
sharing system is started.

ILSQSZ hhhh
The number of 2K blocks in the local
system queue space (LSQS) for this
region. It is set by the time sharing
control task (TSC) when the time
sharing system is started.

NMBR hh
The identification number assigned to
this region.

PKEY hh
The protect key (PKEY) for the time
sharing job currently executing in
this region.

UMSMN hh
The number of entries in the main
storage map which describes the main
storage image that was initialized
during logon.

FLG hh

This field contains the first byte of
the region control block (RCB) flags.
The flags indicate various functions
to be performed by the region control
task (RCT) and time sharing control
task (TSC). These flags are set by
the time sharing interface program
(TSIP), the time sharing control task
(TsC), and the terminal input/output
coordinator (TIOC). These flags are
tested and reset by the region control
task (RCT) and the time sharing
control task (TSC).
leee <.« RCBFQO: Bit 0 is the
quiesce flag. When set,
this flag indicates that the
current user of this region
should be quiesced.
elea RCBFSO: Bit 1 is the swap
out flag. When set, this
flag indicates that the
current user should be
swapped out.

IMDPRDMP Output Formatting: TSO -- RCB 113

FLG2

114

eele RCBFSI: Bit 2 is the swap
in flag. When set, this
flag indicates that the
current user of this region
should be swapped in. The
user's terminal job
identification (TJID) is in
the region control block

(RCB).

seee

RCBFRS: Bit 3 is the
restore flag. When set,
this flag indicates that the
user, whose terminal job
identification (TJID) is in
the region control block
(RCB), should be restored by
the region control task
(RCT) .

eesl oo

RCBOCAB: Bit 4 set
indicates that the
out-of-main storage abnormal
termination routine was
invoked.

1...

cseas

Bit 5 is reserved for future
use.

e Xew

««1l. RCBFAT: Bit 6 is the
attention exit flag. When
set, this flag indicates
that an attention exit has
been requested for one or

more users.

«s+1 RCBFND: Bit 7 is the END
region control task (RCT)
flag. When set, this flag
indicates that the region
control task (RCT) should
terminate normally and
return control to the time

sharing control task (TSC).

.weon

hh

This field contains the second byte of

the region control block (RCB) flags.

See FLG.

1... «... RCBFSE: Bit 0 is the swap
end flag. When set, this
flag indicates that the
swap~in operation for the
current user of this region
is complete.

.1l.. RCBSTOP: Bit 1 is the

region stop flag. When set,

this flag indicates that a

request has been made to

stop the region. Every user
of this region will be
logged off.

ceeww

eele RCBACTV: Bit 2 indicates
the active status of the

region control task (RCT).

FBQE

The flag is set to one when
the region control task is
initialized; it is set to
zero when the region control
task is terminated.

RCBSTR1: Bit 3 indicates
that a region start has been
requested, and the region
control task should be
attached.

ceel 2.

1... RCBSTR2: Bit 4 indicates
that a region start has been
requested, and a swap logon

image should be created.

.Xxx Bits 5 through 7 are

reserved for future use.

cees o

hh
The number of free block queue
elements (FBQEs) for this region.

UTTMQ hhhh

CUSE

The relative track address (TT) of the
map queue pointer. The map queue
pointer describes the location of the
region's initialized logon image on
the swap data set.

hhhh

The number of users logged on to use
this region. The time sharing control
task (TSC) increments the count before
disconnect (DISC) and decrements the
count during logon.

EXTNT hhhhhhhh

UMSM

SDCB

The address of the initialized time

sharing job block extension (TJBX).

The TJBX is created during the logon
initialization for this region.

hhhhhhhh ‘

The address of the user main storage
map. This map describes the
initialized logon main storage image
for this region.

hhhhhhhh

The address of the swap data set
control block (SDCB). This block
points to the location of the
initialized logon image on the swap
data set for this region.

PQE hhhhhhhh

Programmer's Guide to Debugging (Release 21)

The address of the partition queue
element (PQE) pointer in the system
queue space (SQS). The PQE describes
the main storage space assigned to
this region. The PQE pointer is used
to manipulate main storage when (1)
this region control task®'s (RCT's)
region is obtained during start time
sharing initialization and (2) this
region control task's (RCT's) region

is freed during region control task
termination.

PRG hhhhhhhh

PRG1 hhhhhhhh

PRG2 hhhhhhhh
These three words constitute the SVC
1/0 purge parameter list. For further
information, see the "Purge Macro
Instruction®™ in the publication IBM
System/360: System Programmer's
Guide, GC28-6550.

QPL hhhhhhhh
The address of the quiesce 1/0
parameter list.

STECB hhhhhhhh
An event control block (ECB). During
a subsystem recovery, the time sharing
control task (TSC) waits for this ECB
to be posted by the region control
task (RCT). The posting is done
during end processing.

RCOVR hhhhhhhh

These bits indicate the current

recovery status of the region control

task (RCT) in the event of a subsystem

failure.

byte 0

l... RCBRCOVR: Bit 0 set
indicates that the status
bits in the following 3
bytes are valid.

« XXX XX.. Reserved for future use.

eese =eX. RCBWIOR: WTOR restore
processing complete.

eass =eeX RCBTACMP: Transient area
restore processing complete.
byte 1 -- RCBRSFLG
l... -... RCBRSTRT: Bit 0 set
indicates a restore.

«l.. -2.. RCBTCBDN: Bit 1 set
indicates that the task
control blocks (TCBs) have
been requeued.

esle 2e.. RCBQELCM: Bit 2 set
indicates that_ the queue
element (QEL) restore
processing is complete.

sesl <e.. RCBTQECM: Bit 3 set
indicates that the timer
queue element (TQE) restore
processing is complete.

eeees le.. RCBRQIQC: Bit 4 set
indicates that both the
request queue element (RQE)
and the interrupt queue
element (IQE) restore
processing is complete.

esee =le.. RCBIORSC: Bit 5 set
indicates that'the I/O
restore processing is
complete.

«ess ++Xx Bits 6 and 7 are reserved
for future use.

byte 2 -- RCBQUFLG
l1... -++. RCBQUSTR: Bit 0 set
indicates that quiesce has
started.

elee «<.. RCBIOSTR: Bit 1 set
indicates that the first
entry into the 1/0 purge
routine is complete.

esl. RCBTADON: Bit 2 set
indicates that the transient
area quiesce is complete.

eesl RCBWTORD: Bit 3 set
indicates that the write to
operator with reply (WTOR)
quiesce is complete.

«ess 1l... RCBQELDN: Bit 4 set
indicates that the queue
element (QEL) quiesce is
complete.

esess «l.. RCBIODON: Bit 5 set
indicates that the second
entry I/0 purge is complete.

«ess =-1l. RCBTQEDN: Bit 6 set
indicates that the timer
queue element (TQE) quiesce
is complete.

eeses =es1 RCBRQIQD: Bit 7 set
indicates that both the
request queue element (RQE)
and the interrupt queue
element (IQE) are complete.

byte 3

leee =+.. RCBSWTCH: Bit 0 indicates
the method of search used by
various subroutines in
IKJEAT07. When equal to
zero, all system users are
purged according to the
terminal job identification
(TJID). When equal to one,
all users in this region are
purged as indicated by the
region control block
addresses.

«le. RCBSWION: When bit 1 is set
along with bit 0 being set,
all system users are purged.
A search is made according
to the terminal job
identification (TJID) and
the request control block
(RCB).

IMDPRDMP Output Formatting: TSO -~ UMSM 115

. +XX XXxx Bits 2 through 7 are
reserved for future use.

CONID hh
The routing code of the console that
issued the last START, MODIFY, or STOP
command.

RESV hhhhhh
Reserved for future use.

}_MAIN STORAGE MAP (UMSM) FORMATTING:

. UMSM 1is used in the swap operation.
One user main storage map exists for each
possible time sharing user. The UMSM
contains a series of consecutive one-word
extent fields (ADDR-LN). Each one-word
extent contains a halfword address field
(ADDR) and a halfword length field (LN)
that describe the main storage space
allocated to the time sharing user. The
number of UMSM extents has established
defaults that can be modified by the
operator when he starts the time sharing
system. The number of extent entries is
stored in the time sharing job block (TJB)
at TIBUMSMN. Unused extent fields contain
Zeros.

UMSM hhhhhh
The address of the user main storage
map.

ADDR-LN hhhhhhhh
bytes 0 and 1

Begin Address: This field contains
the two high order bytes of the
beginning address of the main storage
segment allocated to the time sharing
user. Since main storage is allocated
in 2K blocks, the low order byte is
"always zero and, therefore, need not
be kept in a control block.

bytes 2 and 3
This field contains the two high-order
bytes designating the length of the
main storage space allocated to the
time sharing user. Since main storage
is allocated in 2K blocks, the
low-order byte is always zero and,
therefore, need not be kept in a
control block.

SWAP DATA CONTROL BLOCK (SWAP DCB)
FORMATTING: The swap data control block
(SWAP DCB) is used whenever a time sharing
user's region is swapped into or out of
main storage. Each region control task
(RCT) has one swap data control block.
Following the address of the swap data
control block is the contents of the main
storage data that was written on the swap
data set.

SWAP DCB hhhhhhhh
The address of the swap data control
block.

TIME SHARING JOB BLOCK (TJB) FORMATTING:
The time sharing job block (TJB) contains
status information about the time sharing
user. The TJB is retained in main storage
while the user is swapped out. One time
sharing job block exists for each possible
simultaneous time sharing user. The space
for the TJB is obtained from the time
sharing control task (TSC) region during
time sharing initialization. Status
information about terminals related to this
TJB is contained in the terminal status
block (TSB). The address of the terminal
status block is the first word of the TJB.

TJB hhhhhh
The address of this TJB.

TSB hhhhhhhh
The address of the terminal status
block (TSB) that owns this terminal
job. If zero, this job was started by
an operator command.

ATTN hh
A count of the unprocessed attention
interrupts for this job.

STAX hh
The number of scheduled specify
terminal attention exits (STAXs).

STAT hh
This field contains flags that
indicate the status of the time
sharing job.

l.e. <e.. TIBNIJB: Bit 0 set indicates
that this TJB is currently
unused.

«1.. TIBINCOR: Bit 1 set
indicates that this user is
currently in main storage.

eel. «... TIBLOGON: Bit 2 set
indicates that the logon
start has been set by the
terminal input output
coordinator (TIOC) during a
dialup to request a logon.
This bit is reset by the
time sharing control task
(TsC).

eeel TIBIWAIT: Bit 3 set
indicates that the terminal
job is in an input wait
state.

1... TIBOWAIT: Bit 4 set
indicates that the terminal
job is in an output wait
state.

116 Programmer's Guide to Debugging (Release 21)

ceeee

STATZ2 hh

.1..

..1.

eeaX

TIBSILF: Bit 5 set
indicates that the user is
to be logged off the system.
This bit is set by the
IKJSILF subroutine and
tested by the region control
task (RCT) restore routine
that posts the logon ECB.
This bit is tested and reset
by the logon/logoff routine.

TJIJBDISC: Bit 6 set
indicates that a request has
been made to the terminal
input output coordinator
(TIOC) to disconnect the
line.

Bit 7 is reserved for future
use.

These flags indicate the status of the
time sharing job.

1l...

-1l..

..1.

eeel

eveoe

1...

« XXX

EXTNT hhhhhhhh
The address of the terminal job block
extension (TJBX) when it is in main
storage.

RCB hhhhhhhh
The address of the region control
block (RCB) for this job.

TIBHUNG: Bit 0 set
indicates that the user's
communication line
disconnected.

TIJBHOLD: Bit 1 set
indicates that an output
wait (OWAIT) exists because
of a hold option.

TJBOCAB: Bit 2 set
indicates an out-of-main

storage abnormal termination.

has occurred for this user.

TIBRNAV: Bit 3 set
indicates that the user
cannot be logged onto the
time sharing system because
(1) a machine check occurred
in the user’'s region or (2)
the region is too small for
the user.

TIJBSURSV: Bit 4 set
indicates that on the next
swap in the swap unit is not
marked as available for the
user.

Bits 5 through 7 are
reserved for future use.

UMSM hhhhhhhh

The address of the user main storage
map (UMSM) for this job.

SDCB hhhhhhhh

The address of the swap data control
block (DCB) for this job.

UTTMQ hhhh
l...

cecne

111 1111

RSTOR hh

TJBUTTMP: Bit 0 of byte 0
set indicates a parallel
swap.

Bits 1 through 7 of byte 0
along with byte 1 contain
the offset into the map
queue. The map queue
contains a chain of
allocation units for this
user on the swap data set.
The address of the queue is
in the UTTMQ field of the
TSO region control block
(RCB) .

This field contains the status flags
used by the region control task (RCT)
restore operation.

l...

.1..

eeXe

eeel

i...

eXao

.ol.

IMDPRDMP Output

TJBOWP: Bit 0 set indicates
to the terminal input output
coordinator (TIOC) to end
the output wait (OWAIT)
condition.

TJIBIWP: Bit 1 set indicates
to the terminal input output
coordinator (TIOC) to end
the input wait (IWAIT)
condition.

Bit 2 is reserved for future
use.

TJBLOGP: Bit 3 set
indicates that the event
control block (ECB) waited
for by the logon image
should be posted. This flag
is set by the time sharing
control task (TSC) logon
routine and by the IKJSILF
subroutine.

TJIBLWAIT: Bit 4 set
indicates that if the user
is not made ready by restore
processing, he should be
swapped out again.

Bit 5 is reserved for future
use.

TJIJBFAT: Bit 6 set indicates
that an attention exit is
requested for this user's
job.

Formatting: TSO -- TJB 117

«++X Bit 7 is reserved for future
use.

I)

UMSMN hh
The number of entries in the user main
storage map (UMSM).

USER ccccececcee
The userid of the user who owns this
job. This field may have trailing
blanks when the user identification
contains less than eight characters.

IPPB hhhhhhhh
An address pointer to the beginning of
a chain of inter-partition post blocks
that indicate the event control blocks
(ECBs) to be posted by the restore
operation.

NEWID hh

Identifies the region where the user
should be logged on. When this field
is zero, the TSO driver should select
the region. When this field is set by
the end-of-routine for logons/logoff,
it identifies the naew region to which
the user will be shifted.

FLUSL hh
Reserved for future use.

TJID hhhh
This field contains the terminal job
identification (TJID) for this time
sharing job.

MONI hh
These flags indicate various
processing functions that cause
operator messages to be sent to this
terminal. The flags are set and reset
when the terminal user issues the
MONITOR subcommand of the OPERATOR
command.
1aes ee.. TIBMDSN: Bit 0 set
indicates that the first
non-temporary data set
allocated to a new volume
should be displayed as part
of the mount and keep
messages.
.1l.. TIBMJIBN: Bit 1 set
indicates that the name of
each job is to be displayed
on the console when each job
is initiated and terminated,
and that the unit recoxd
allocations are to be
displayed when a job step is
initiated.

cswae

esle vee. TIBMSES: Bit 2 set
indicates that when a
terminal session is
initiated or terminated a
message is displayed on the
operator console.

esel 4e.. TIBMSPA: Bit 3 set

indicates that the available
space on a direct access
device is to be displayed on
the operator console as part
of the demount message.

wees leee TIBMSTA: Bit 4 set
indicates that, at the end
of a job or job step,
certain data set disposition
information should be
printed with the demount
nmessages. These
dispositions are:
CATLG, or UNCATLG.

KEEP,

.xxx Bits 5 through 7 are
reserved for future use.

RSV hhhhhh
Reserved for future use.

TERMINAL STATUS BLOCK (TSB) FORMATTING:
Each terminal status block (TSB) contains
status information about one terminal user.
The terminal input output coordinator
(TIOC) uses this information. During
system initialization, one TSB is created
for each possible user. The main storage
space is obtained in one contiguous block
for all of the TSBs in the region of the
time sharing control task (TSC); this
contiguous string of TSBs is called the TSB
table. The origin pointer to the TSB table
is the TIOCTSB field in the TIOCRPT.

TSB hhhhhh
The address of this terminal status
block (TSB).

STAT hh
This field contains the terminal
status indicator flags.

leee «e.. TSBINUSE: Bit 0 set
indicates that this TSB is
bei g used. .

«1.. TSBLWAIT: Bit 1 set
indicates that the terminal
keyboard is locked due to a
lack of input buffer space.

«+l. ... TSBDSPLY: Bit 2 set

indicates that this TSB
represents a terminal which
is a graphic device.

118 Programmer's Guide to Debugging (Release 21)

eenel ee.. TSBNOBUF: Bit 3 set
indicates that TPUT found no
time sharing buffers.

esse le.. TSBITOFF: Bit 4 set
indicates that this user
wishes to prevent
inter-texrminal
comminications.

eses olee TSBDISC: Bit 5 set
indicates that this TSB has
been processed by logoff.

eses seX. Bit 6 is reserved for future
use.

eses eeel TSBATNLD: Bit 7 set
indicates an attention for
an input line deletion.

TJB hhhhhh

FLG1

The address of the time sharing job
block (TJIB) currently used by this
terminal. This field contains zeros
when this terminal is not associated
with a time sharing job block.

hh
This field contains terminal status
flags.

l.ee «<.. TSBANSR: Bit 0 set
indicates that an attention
simulation is requested.

eles soee. TSBOFLSH: Bit 1 set
indicates that the output
trailer gqueue is to be
flushed. This bit is set by
TCLEARQ.

eele se.. TSBOWIP: Bit 2 set
indicates that a TPUT
operation is in progress.

esel TSBWOWIP: Bit 3 set
indicates that a task is
waiting for another task to
complete a TPUT operation.

eess l... TSBIFLSH: Bit 4 set
indicates that an input
queue flush is in progress.

esee olee TSBTIOW: Bit 5 set
indicates that this user is
already using the maximum
number of output buffers
that can be allocated. This
TSB waits on event control
block (ECB) for this TCB.
This bit is set by a TPUT
macro instruction with a
terminal job identification
(TJ31ID).

eess seX. Bit 6 is reserved for future
use.

eesee needl TSBTIBF: Bit 7 set
indicates that no time
sharing buffers were
available when the sVC for
TPUT with the terminal job
identification (TJID) was
issued. The system waits
for the TJB event control
block (ECB) to be posted.

WISB hhhhhh
Reserved for future use.

LNSZ hh
The number of characters that can be
printed on one line for this terminal.
This field is set by either logon or
STSIZE.

OTBFP hhhhhh
The address of the trailer buffer if
the heading buffer for a message has
been removed from the message queue.
This field is reset to zeros when the
message has been completely moved to
the TCAM buffers.

NOBF hh
The number of buffers on the output
queue.

OBFP hhhhhh
The address of the first buffer on the
output buffer queue.

BRKFL hh
These flags indicate the status of the
communication line.

leee -... TSBBIPI: Bit 0 set
indicates to the TSINPUT
that a partial line exists
for prompting. Set by
TSOUTPUT.

«l.. TSBAUTON: Bit 1 set
indicates that automatic
input line numbering is
requested.

eele ¢... TSBBRKIN: Bit 2 set
indicates that TPUT is using
the breakin option and a
partial line was assigned to
this function. This bit is
set by TSINPUT. TSINPUT is
a TCAM subtask.

eesl TSBAULST: Bit 3 set
indicates that automatic
line numbering has started.

eese loao TSBAUTOC: Bit 4 set
indicates that automatic
character prompting is used.

IMDPRDMP Output Formatting: TSO -- TSB 119

+l.. TBSTAUT: Bit 5 set
indicates that the user is
being prompted with the next
line number.

- ...

«ell TSBSATN1l: Bits 6 and 7
contain a count of the
number of characters used to
simulate attention.

.-e e

ITBFP hhhhhh
The address of the first buffer in the
trailer input buffer chain.

NIBF .
The number of buffers on the input
queue.

IBFP hhhhhh
The address of the first buffer in the
input buffer queue chain.

CLEAR hh

This field contains terminal status

flags.

laes eee- TSBATTN: Bit 0 set
indicates that an attention
from this terminal has been
ignored.

elee eeee TSBTIMSG: Bit 1 set
indicates that TSOUTPUT is
processing a terminal job
identification (TJID)
message.

eele «ae. TSBSPIT: Bit 2 set

indicates that breakin
prompt and automatic prompt
are suppressed.

esel av.. TSBNBKSP: Bit 3 set
indicates that the next
character in the user's
buffer is a backspace
character.

«.s. XXXX Bits 4 through 7 are
reserved for future use.

QCB hhhhhh
The address of the queue control block
(QCB) that contains the destination
for the message being sent.

ECB hhhhhhhh
The event control block (ECB) at which
the inter-terminal communication (TPUT
with TJID) waits (1) when there are no
time sharing buffers, (2) when the
TSBOWIP bit is set, or (3) when the
TSBOQHLD bit is set.

TJID hhhh
The terminal job identification (TJID)
of the task waiting on this TCB's
event control block (ECB).

STCC hhhh
These two bytes define special purpose
characters that may be redefined by
the terminal user. i

byte 0
TSBLNDCC: This byte contains the line
delete character.

byte 1
TSBKSPCC: This byte contains the

character delete character.

ATNLC hhhh
The number of successive lines of
printed output between attention
simulation reads.

ATNTC hhhh
The number of seconds between
attention simulation reads.

LNNO hh
When a graphic terminal device is
used, this is the number of line that
can be displayed.

BLNK hh
Reserved for future use.

ASRCE hhhh
This field contains the same
information as the PRFSRCE field in
the TCAM buffer prefix.

ATNCC cccce
This field contains from one to four
characters that are used to simulate
attention. Some of the characterxr
positions may contain blanks.

AUTOS hhhhhhhh
This field initially contains the
starting line number for the first
input line. While the line of input
information is being received from the
terminal user, this field is updated
to contain the value of the current
line number.

AUTOI hhhhhhhh
This field contains the value that is
used to automatically increment the
value of the input line numbers. This
field can be modified by the terminal
user.

ERSDS cccc
When a graphic terminal device is
used, this word contains the
characters used to erase the display
screen.

TIME SHARING JOB BLOCK EXTENSION (TJBX)
FORMATTING: The time sharing job block
extension (TJBX) contains user job
information that can be rolled out to the
swap data set with the user's job. The

120 Programmer's Guide to Debugging (Release 21)

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

TIBX resides in the local system queue
space (ISQS) for the region. The TIBX
location is pointed to by the third word of
the time sharing job block (TJB). The
space for the TJIBX is obtained by the
region control task (RCT) during
initialization.

TJIBX hhhhhh
The address of the TJIBX.

XFST hhhhhhhh
The address of the logon TCB. The
logon TCB is the first TCB on the
user's ready queue.

XLAST hhhhhhhh
The address of the last TCB on the
user's ready queue.

XDSE hhhhhhhh
The address of the data set extension
(DSE) used by TSO dynamic allocation.

XSVRB hhhhhhhh
The address of the first supervisor
request block (SVRB) purged from the
transient area queue.

XRQE hhhhhhhh
The address of the first request queue
element (RQE) purged from the
asynchronous exit queue.

XIQE hhhhhhhh
The address of the first interrupt
queue element (IQE) purged from the
asynchronous exit queue.

TAXE hhhhhhhh
The address of the queue of terminal
attention exit elements (TAXEs) used
to schedule the attention exits.

XLECB hhhhhhhh
The logon event control block (ECB)
that was posted by the region control
task (RCT) to activate logon/logoff.

XPSWD cccccecce
The password entered by the terminal
user during logon. If the password
contains less than eight characters,
the field is padded to the right with
blanks. The entire field contains
blanks when the user is not required
to enter a password.

XATTR hhhhhhhh
The address of the chain of attribute
control blocks (ATRCBs).

XAIQE hhhhhhhh
The address of the attention interrupt
queue element (IQE) currently being
processed by the attention prologue.

IMDPRDMP Output Formatting:

XQPL hhhhhhhh
The address of the quiesce parameter
list (QPL).

XNQPE hhhh
The numbexr of entries in the quiesce
parameter list (QPL).

XNTCB hhhh
The number of task control blocks
(TCBs) active in the user‘'s job step.
when the value in XNTCB exceeds XNQPE,
the quiesce parameter list is
enlarged.

XLQPL hhhh
The number of bytes in the quiesce
parameter list.

RSV hhhh
Reserved for future use.

XACT hhhhhhhh
The relative track and record address
(TTR) for the account control table
(ACT) on SYSJOBQE.

XAECB hhhhhhhh
This field contains either: (1) The
address of the logon/logoff event
control block (ECB) when logon
processing begins. (2) The address of
the command scheduling block (CSCB's)
cancel event control block (ECB) after
the CSCB is created.

XKEYA hhhhhhhh
The address of the storage key save
area.
PROTECTED_ STEP CONTROL BLOCK (PSCB): The
protected step control block (PSCB)
contains accounting information related to
a single user. All timing information is
in software timer units. A software timer
unit is equal to 26.04166 microseconds.

PSCB hhhhhh
The address of this PSCB.

USER ccccccece
These seven bytes contain the userid
entered by the terminal user during
logon. If necessary, it is padded to
the right with blanks. This field
uniquely identifies each terminal user
in the time sharing system.

USRL hh
The numbexr of nonblank characters in
the userid.

GPNM cccccece
An eight-byte group name initialized
by logon from the user attribute data
set (UADS). When a name is not
available from UADS, the unit name
used by the dynamic allocation

TSO -- TJBX 121

_interface routine (DAIR) is used, if a
name is required.

ATR1 hhhh
Sixteen bits used to define terminal
user attributes.

byte 0
leee esee PSCBCTRL: Bit 0 set
‘ indicates that the user may
use the OPERATOR command.

elee eeee PSCBACCT: Bit 1 set
indicates that the user may
use the ACCOUNT command.
eel. ¢... PSCBICL: Bit 2 set
indicates that the user may
use the SUBMIT, STATUS,
CANCEL, and OUTPUT commands.

.seX XXxx Bits 3 through 7 are
reserved for future use.

byte 1
Reserved for future use.

ATR2 hhhh

bytes 0 and 1
Reserved for use by IBM customers.

CPU hhhhhhhh
The cumulative CPU time used by this
terminal user during this session.
The CPU field is set to zero during
logon.

SWP hhhhhhhh
The cumulative time that this terminal
user has been resident in the region.
The SWP field is set to zero during
logon.

LTIM hhhhhhhh
The actual time of day that this user
logged on to the time sharing system
for this session.

TCPU hhhhhhhh
The total CPU time used by this
terminal user, excluding the current
session.

TSWP hhhhhhhh
The total time that the terminal user
has been resident in the region during
this accounting period, excluding the
current session.

TCON hhhhhhhh

TC01 hhhhhhhh
TCON and TCO01 are a single eight byte
field. This field contains the total
connect time for this terminal user
during this accounting period,
excluding the current session.

RLGB hhhhhhhh
The address of the re-~-logon buffer
block used by logon as a pointer to
the re-logon command buffer.

UPT hhhhhhhh
The address of the user profile table
(UPT).

UPTL hhhh
The number of bytes in the user
profile table.

RSV1 hhhh

RSV2 hhhhhhhh
RSVl and RSV2 are a single six byte
field that is reserved for future use.

USE1 hhhhhhhh

USE2 hhhhhhhh
USEl and USE2 are a single eight byte
field reserved for use by IBM
customers.

TERMINAL ATTENTION EXIT ELEMENT (TAXE)
FORMATTING: The TSO terminal attention
exit element (TAXE) consists of a reqular
24 word interrupt request block (IRB) plus
a TSO addendum. It is used to schedule an
attention exit resulting from a terminal
attention interruption. It is created,
queued, and dequeued by the specify
terminal attention exit (STAX) macro
instruction. The main storage space for
the TAXE is obtained in the local system
queue space (LSQS) of the terminal user's
region.

TAXE hhhhhh
The address of this TAXE when it is in
main storage.

TMFLD hh

This field contains indicators for the

time routines.

l... Bit 0 set indicates that the
timer element was not
queued.

.1.. Bit 1 set indicates that the
local time-of-day option is

used.

«.00 Bits 2 and 3 set to
zexo-zero indicate that the
time interval was requested
in timer units (26.04166
microseccnds) .

..01 Bits 2 and 3 set to zero-one
indicate that the time
interval was requested in
binary units.

«+10 Reserved for future use.

122 Programmer's Guide to Debugging (Release 21.7)

eell Bit 2 and 3 set to one-one
indicate that the time
interval was requested in
decimal digits.

eses le.e Bit U4 set indicates that the
time interval has expired.

eese 000 Bits 5 through 7 set to
zero-zero-zero indicate an
STIMER task time request.

eess «001 Bits 5 through 7 set to
zero-zero-one indicate an
STIMER wait request.

esee «011 Bits 5 through 7 set to
zero-one~-one indicate an
STIMER REAL time request.

eeee 100 Bits 5 through 7 set to
one-zero-zero indicate an
STIMER task time request
with a specified exit.

eees «111 Bits 5 through 7 set to
one-one-one indicate an
STIMER REAL time request
with a specified exit.

Other combinations of bits 5 through 7
are reserved for future use.

PPSAV hhhhhh

The starting address of the register
save area for the problem program.

ABOPSW hhhhhhhh

WCsA

SIZE

STAB

This field displays the right half
(bytes 4 through 7) of the program
status word (PSW) that was active in
the dump system during the execution
of an ABEND or ABTERM routine. 1If
these routines have not been invoked,
then this field contains zeros.

hh
The number of requests waiting when
termination occurred.

hh
The number of doublewords in this
request block.

-

hhhh
This field contains two bytes of
status and attribute information.

byte 0

The TAXE is a type of interrupt
request block (IRB). Byte zero
identifies the type of request block;
however, for the TAXE, only the IRB
identification is used.

01.. Bits 0 and 1 set to zero-one
indicate that this is an
interrupt request block
(IRB).

byte 1

This byte contains various request
block indicators.

leee -<.s Bit 0 set indicates that the
RBLINK field points to the
task control block (TCB).

ele. <.... Bit 1 set indicates that the
program related to the
interrupt request block
(IRB) is active.

eel. «... Bit 2 set indicates that
this interrupt request block
(IRB) is for an exit routine
(ETXR) .

eeeX «... Bit 3 is reserved for future
use.

eese 00.. Bits 4 and 5 set to
zero-zexo indicate that the
request queue element (IQE)
is not to be returned.

«ese 01.. Bits 4 and 5 set to zero-one
indicate that the interrupt
request block (IRB) has
queue elements for
asynchronously executed
routines that are request
queue elements (RQEs).

«es- 10.. Bits 4 and 5 set to one-zero
indicate that an interrupt
queue element (IQE) is not
to be returned at EXIT.

eeee 11l.. Bits 4 and 5 set to one-one
indicate that the interrupt
request block (IRB) has
queue elements for
asynchronously executed
routines that are interrupt
queue elements (IQEs).

eeee o.l. Bit 6 set indicates that the
request block storage can be
freed at exit.

seses 22.0 Bit 7 set to zero indicates
a wait for a single event or
all of a number of events.

eeee es.1 Bit 7 set to one indicates a
wait for a number of events
that is less than the total
number of events that are
waiting.

EP hhhhhhhh

The address of the routine that was
asynchronously executed.

IMDPRDMP Output Formatting: TSO -- TAXE 123

LOPSW hhhhhhhh (Left half of PSW)

ROPSW hhhhhhhh (Right half of PSW)
This program status word (PSW)
contains the status of the program
represented by the request block being
displayed when a new request block was
created. Had the dumped system been
allowed to continue processing
normally, the operation would have
been resumed with this PSW.

USE hh
This field contains the use count as
used by ATTACH.

IQE hhhhhh
The address of the list origin for the
interrupt queue element (IQE).

WCF hh
The number of requests that were
pending when this dump was taken.

LINK hhhhhh
The address of the next request block
(RB) on this RB queue. If this is the
last request block on the gqueue, then
this field contains the address of the
task control block (TCB).

GRO hhhhhhhh

GR15 hhhhhhhh
The general register save .rea used by
the supervisor.

NIQE hhhhhhhh
The address of the next available
interrupt queue element (IQE).

LNK hhhhhhhh
The address of the next interrupt
queue element (IQE).

PRM1 hhhhhhhh
The address of the parameter list for
the asynchronous exit routine.

IRB hhhhhhhh
The address of the interrupt request
block (IRB) to be scheduled next.
TCB hhhhhhhh
The address of the task control block
(TCB) for this TAXE.

TLNK hhhhhhhh
The address of the next TAXE on this
queue.

XPSW hhhhhhhh
The left half (bytes 0 through 3) of
the program status word (PSW) for the
user attention exit routine.

EXIT hhhhhhhh
The address of the user attention exit
routine.

STAT hhhhhhhh
This field contains status flags for
this TAXE.

byte 0
l.ec «... TAXEFKEY: Bit 0 set
indicates that the task
issuing the specify terminal
attention exit (STAX) macro
instruction is a problem
program.

«l.. TAXEMOD: Bit 1 set
indicates that the task
issuing the specify terminal
attention exit (STAX) macro
instruction is in problem
program mode.

««l. TAXEFFREQ: Bit 2 set
indicates that the requested
TAXE is not available for
scheduling.

.eeX Xxxx Bits 3 through 7 are
reserved for future use.

bytes 1-3
Reserved for future use.

PARM hhhhhhhh
The address of the parameter list for
the specify terminal attention exit
(STAX) macro instruction.

TAIE hhhhhhhh
The address of the terminal attention:
interrupt element.

IBUF hhhhhhhh
The address of the user input buffer.

USER hhhhhhhh
The address of the user parameter list
from the specify terminal attention
exit (STAX) macro instruction.

Task Control Block Summaries

If, during the course of program execution,
the IMDPRDMP program formatted the major
system control blocks of more than one MVT
or MFT task, a summary of each displayed
task's TCB is presented at the end of the
control block portion of the dump listing.
Depending upon the operating system option
under which the dumped task was operating,
either the MVT/MFT-with-subtasking TCB
summary format (Figure 25), or the abridged
MFT-without-subtasking TCB summary format
(Figure 26) is presented.

Both summary formats are identified by
two lines of heading information. The

124 ‘Programmer's Guide to Debuvcaing (Release 21)

first heading line displays the optional
dump listing title, the name of the module
that invoked the dump, and the date and
time that the information was captured from
the dumped system. The second line of
heading displays the identifying phrase
"s%%% TCB SUMMARY *#%%%_"

The individual TCB summaries contain the
following information:

MVT or MFT with Subtasking TCBs:
summarized in the two-line array
illustrated in Figure PROUT-9 and described
below:

Are

JOB cccccccce
The JOB field in the first line of
each task control block array displays
to the user the eight-character name
of the job associated with the TCB.

STEP cccccccc
The STEP field shows the eight-
character name of the job step as it
appeared on the label field of the
EXEC JCL statement associated with the
step.

TCB hhhhhh
The starting address of the task
control block.

CMP hhhhhhhh
This field shows the ABEND indicators
and user and system completion codes
associated with this TCB. (See the
relevant TCB discussion for the
contents of this field.)

NTC hhhhhhhh
This word contains the address of the
TCB that occurred previous to this one
on the originating task's subtask
queue. If the TCB being summarized
was the first on the queue, this field
displays zeros.

OTC hhhhhhhh
The OTC field displays the address of
the TCB representing the originating
task.

IMDPRDMP Output Formatting:

LTC hhhhhhhh
This field contains the address of the
TCB that occurred last on the
originating task’s subtask queue at
the time the dump was taken. If the
TCB being summarized was the last on
the subtask queue, this field contains
zeros.

PAGE ddd
The page of the dump listing on which
the formatted control blocks
associated with this TCB, may be
found.

MFT Without Subtasking TCBs: Are
summarized in the two line abridged array
illustrated in Figure PROUT-10 and
described below:

JOB cccccccece
The JOB field in the first line of
each task control block array,
displays to the user the
eight-character name of the job
associated with the TCB being
summarized.

STEP ccccecccece
The STEP field shows the
eight-character name of the job step
as it appeared in the label field of
the EXEC JCL statement associated with
the step.

TCB hhhhhh
The starting address of the task
control block being summarized is
given in the first field of this
second line.

CMP hhhhnhhh
This field shows the ABEND indicators
and user and system completion codes
associated with the TCB. (See the MFT
TCB discussion for a description of
the contents of this field.)

PAGE ddd
The page of the dump listing on which
the formatted control blocks
associated with this TCB, are found.

TCB Summaries 125

9T

(1Z oseaTay) burbbngag o3 aptno s, 3sumexboag

Figure 25. TSB Summary Sample for System That Operated Under MVT or MFT With Subtasking

MODULE TMDSADMP DATE 11/12/70 TYIME 00.15 PAGE 0032
* ¥ % % TCB SUMMARY * ¥ % %
Jos STEP
TCB 0085E8 CMP 000GC000 NTC C0000000 0TC 00009CAO0 LTC 00000000 PAGE 0004
Jaos STEP
TCB 008728 CMP CCOCCCOO0 NTC 00000000 0TC 00009CAO LTC 00000000 PAGE 0CO5
" J18 STEP
TCB 008868 CMP 0C000000 NTC 00000000 0TC 00009CA0Q LTC 00000000 PAGE 0006
Jos STEP
TCB 0089A8 CMP COOCCCO00 NTC C0000000 0TC 00009CAO LTC 00000000 PAGE 0007
Jos STEP
TCB OOBAES CMP 00000000 NTC 00000000 0TC 00C09CAQ LTC 00000000 PAGE 0008
Jos STEP
TCB 008C28 CMP 00000C00 NTC 60000000 0TC 00009CAOQ LTC C0000000 PAGE 0009
Jos STEP
TCB 008D68 CMP 0000C000 NTC 00000000 0TC 00009CAQ LYC 00000000 PAGE 0010
438 STEP
TCB Q008EAS8 CMP 0000CCO0 NTC 0000000 OTC 00009CAQ LTC 00000000 PAGE 0011
Jos STEP
TC8 OO8FES CMP CgOCC200 NTC C000020C0 0TC 00009CAQ LYC 00000000 PAGE 0012
/-_k e ———— ——— ———
MODUL® IMDSADMP DATE 11/12/70 TIME 00.15 OAGE 0033
* % % % TCB SUMMARY =% % %
JCB MASTER STEP SCHEDULR
TC8 009CAQ CMP 000CCCCO NTC 000C0000 0TC 000C0000 LTC 0302€268 PAGE 0022
JGB MASTER STEP SCHEDULR
TCB 0288C8 CMP 00000000 NTC 00009BAS8 0TC 00009CAOQ LTC 00000000 PAGE 0025
J03 J0B4 STEP GO .
TCB 02EOF8 CMP 00000000 NTC 000288C8 0TC 00009CAQ LTC 0002D1ES8 PAGE 0027
TCB 02D1ES8 CMP CO00CO00 NTC 00000000 OTC OCO2EOQFS8 LTC €0020400 PAGE 0028
TCB T2D4CO CMF C0000C00 NTC C0J00000 OTC 0002D1E8 LTC 00000000 PAGE 002S
J0B WIR STEP CCE
TCB 02E268 CMP CCOO0OCGOO NTC C002€E0F8 3TC CO0G9CAQ LTC 00C2D108 PAGE 0030
TCB 020108 CMP 0GOOC 300 NTC 0000000C OTC C00cE243 LYC 03200000 PAGE 0031 ———— et

tburazewrod INdIN0 AWQUAAWI

LZT 3Jeuxod TeIsuldn

MFT DUMP LISTING AdOULE IMOSADMP DATE 11/12/70 TIME CO0.5C PAGE 0C22
* % % % TCB SUAMARY R

J0g STEP

1CB 3081773 CHMP 0000CCCC PAGE 0001
JO3 MASTER STEP SCHEDULR

TCB 303358 CMP 0GCCO000 PAGE 0002
Jod STEP

TCB 008333 CMP G0O0CCCOC PAGE 2C04
Jag STEP

TCB J08a14 CMP 0COCOCOC PAGE 0005
JO3 MASTER STeP SCHEDULR

TCB 0083064 CMP 00COCCOC PAGE 0C06
J03 MASTER STEP SCHEDULR

TCB 008340 LMP JGO0CCOC PAGE 0007
403 WIR STEP PU

TCB 00844 CMP 0COOCCOC PAGE CCO9
Jas STEP

TCB 0)8F4s CMP J0CCOCOC PAGE 0010
JJ3 JOBS STEP GJ

TCB 2091438 CMP 000C0000 PAGE COl1
Jug STEP

TCB 009344 (MP UCCCOCOC PAGE 0013
Jusd STEP

TCB 209344 CMP J0CO0GCC PAGE 0014
Jos STEP

TC8 009 144d CMP 000CC30C PAGE 0015
Jog STEP

TCB 009348 CMP J0C00CCOC PAGE 0016
Jos STEP

TCB 009348 CMP 00CO0CO0 PAGE 0O0L7
J03 STeP

TCB C09348 CMP 0000000G PAGE €018
Jas STEP

TCB 009F4a CMP J00GCCO0 PAGE 0019
J03 STepP

TCB J0Al4c CMP 0C00000C PASE 0020
Jos STEP

1C8 JIAa34s (4P J0CCCA0C PAGE 0021

Figure 26. TCB Summary Sample for Systems that Operated Under MFT Without Subtasking

THE GENERAL FORMAT

The IMDPRDMP program uses a general format
to display the hexadecimal contents of main
storage. The particular areas of main
storage displayed are determined by the
parameters entered after the PRINT user
control verb.

To identify various dump printouts,
IMDPRDMP prints specific headings on each
dump, such as ALLOCATED STORAGE, PRINT
STORAGE, and NUCLEUS and SQA PRINT. A
sample of a general format dump is shown in
Figure 27.

The IMDPRDMP program also reverts to the
general format if it is unable to format
control block information because it
encountered either a control block error or
one of several user control statement
format errors.

Each page of an IMDPRDMP program dump
listing containing information displayed in
the general format is identified by a
heading line. This heading line shows the
optional title supplied by the user
followed by the date and time that the
information was taken from the dumped
system. A sequential page number also
appears in each heading line.

Listings being produced under control of
the PRINT ALL, PRINT CURRENT, or PRINT
STORAGE (no operands) format control
statement display the contents of the

sixteen general purpose registers. If the
dump was obtained from a multiprocessing
system and both sets of registers were
obtained, then the contents of both sets of
registers are displayed. Where applicable,
the beginning of each main storage region
is noted by a line that gives the job, step
and procedure step name of the owning task,
followed by the status of the region
(BORROWED, ROLL-OUT, OWNED).

Then, starting at an address requested
by the user, as specified in a PRINT user
control statement, (or location zero if no
address was specified) the contents of main
storage are displayed. Each line of the
general format displays eight words of main
storage. Preceding each line of
information is the address of the first
byte displayed followed by a one-character
storage protection key indicator
representing the key associated with the
area of main storage being displayed on
this line. Following each line of
information, a 32-character translation
field is printed. This field gives the
EBCDIC translation of the translatable
characters in the eight hexadecimal words.
Untranslatable bytes are represented by
positional periods.

Printing of any line that duplicates the
contents of the line printed previously, is
suppressed. Duplicate lines are indicated
by the phrase "TO NEXT LINE ADDRESS SAME AS
ABOVE" following the line duplicated.

128 Programmer's Guide to Debugging (Release 21)

:tbutizewrod andino dWAHdAWT

s3jusuo) Ind3no

62T

MODULE IMDSADMP DATE 11/12/70 TIME 00.15 SAGE 0001
R 0-7 000C0C00 000022C8 00000000 8000214A 00002280 0000000A COO00000 DCCOC000 *eeeseasHeceseoossscosasccocsosseca®
R 8-15 00C00C00 00000000 00000000 00000000 00000C00 00000000 00000000 400020B4 *eceecessseccsse cae®
000000 00000191 C0001C0O0 40002084 60000028 08000080 40000001 FFESO000 900432B6 ¥eeessase essoaces *
000020 FFC40CO1 50008BB2 FFF50C04 8006E7C2 0000FFO0 00000000 FFO60009 80000000 *.seecceseSeceeXBosossrsvsoscscoe®
€00040 000022E8 0C000000 00002280 0000SF08 S5A643360 48100002 412000C0 50200048 *eseYeoocavosossssesSennssssosccse®
¢00060 982400C8 9D001000 00020000 00000003 9D001000 47700070 91030044 4T50007C *eeeHeooecvesoscsccscsssscsosases®
000030 31000046 4CCOCO05 C8C00080 40000001 05001C00 40000500 06001C00 000004BO *eeee ocavacs sossses scossccsnee™
000040 00000000 00000000 00000450 00D20650 44500088 47F0006C 02002000 00DB4040 *.essessssvesosKosssoosOoeKeoooQ *
©000C0 020000C8 2C000048 C2C5D5C4 40404040 40404040 40404040 40404040 40404040 *eeeHeeoesEND ®
2000E0 40404040 40404040 40404040 404040C6 FOFBC1DT DSFTFO040 FOFO4BFl F140F1F4 * FOSAPR7D 00.11 14%
0C0100 61FOF161 FIF94040 40404040 40404040 00000000 00000000 00000000 0000C000 *+01.99 cecesaseescesase®
000120 00000000 0C00C000 00000000 00000000 00000000 00000000 00000000 00000000 *eeeasesconsoaccrcsercoscscoasnse®
000160 00000000 00000000 00000000 82000170 00040000 00036018 00000000 00002000 *eesseescocorscccsvccscsssencsssos®
000180 FFO60C09 82C00000 COO0018A 018A018A FFO00190 FFO00190 00000001 FFFF6528 *ecaeesovecsccccsoscssoscscoasane®
0001A0 00009400 O0O09AF4 00009968 C00099B4 00009AF0 80009B74 00009ADO 4000BB62 *eeeecoebocosscescesOonsassces ooe
0001C0 000117E0 GOOC9BB4 C0000940 00009BT4 5000BCA% 6000A57A 00000030 OOO06FCGF4 *eeaaesssace ssevecsssscsessesedb™
CJ01E0 000000CC 000729C0O 00009000 0006F000 5006E596 00072988 AD06ET740 0C000I01 *eueeosesssecceOoooVosssoooX snesh
€90200 000726D0 00067594 00065D40 00072798 4006ETAE 0001828C 00000000 00000000 *asesessasee sses sXsoosococsaese¥
000220 00004E 98 00000000 41500800 1A551821 92825098 1B114010 50881804 58420014 *eeesseseessccccsscsase sessasasat
€03240 5834002C 05022015 30194770 OED49LFO 00214780 025A45EQ OE681B99 1BA991FE *.eeeNeceasoseMaOascsasosscccnnsa®
€00260 30104770 02724873 00229170 70124780 02824393 001C43A2 002089A0 900048TA Feeeeseccsssescccsasssascsscasenaet
002280 3G2291FF 700247E0 OED491A0 50984790 029E58F0 OFC445EF C00041C0 02B258B2 *seeececsoMescscsseesOaDococccansa®
C002A0 00041BAA 43ATCO0A 89A00003 41DAS2FC 07FC4012 O0L1EDTO8 20082008 D4032000 *eeavescosccacesces sssPesoseMane®
0002C0 5084927F 20045018 000094FD 50984580 02F64TF0 02E247F0 02EA4700 000045E0 *eeeessecsveecsosebe0eSeDeconnnns™
9002€E0 071C1812 58EOOFC8 O7FE4180 02D245C0 02A247F0 034644810 OF9C1211 4740035C *eeeeseoHoooooKeosaeOoososoose ao¥
€00300 91011001 47100352 4C710002 90231004 5001000C 92001004 D300100C 0021D201 *eeeeseee scccsscessscosclosseaKe®
000320 0F9C1000 40105088 18A0D200 1008A023 45EQ0AD0 91EFT006 47708008 9L1TFOFBO %eees vesesKeaoosasasosoacsossaan®
000340 47500E2A 91107C06 47100DE6 48AD0006 OTFAD502 20150FD1 47800308 58A00C24 *eesecccscsofecrsceNecasdoaoscons®
000360 4BA0S08C SCA0C024 18809620 B020S2F0 09771899 58A00FBC 5090A000 47FCO2F2 *esesesasscssceelenscrcossesealaSH
00380 91102000 471C03E6 41A05020 D200A000 302045C0 0SE407BC 48A00044% 54A05058 FeeesooeWeesoKesosaaoolUoneooaoana
000340 4770065C 58AC7030 91042001 471003C0 S8A20010 $1012000 478003C0 S8A2C018 *eesesesseccscssercssacsosnssnans™
€003c0 91082000 478003DA 50A05030 92085030 41A05028 D200502D 701850A0 004861C0 *eoseossssoassessssssKessoosossas®
C003E0 06644TF0 06245104 20014780 05D64TF0 03889140 702C4710 5929101 70064770 *.e00cacevscseleleoe sevecscacsnea®
000400 040694E7 20019110 20014710 05709102 70064716 04D241A0 703140A0 503AD203 *,44XeceesscesonssavacKaooe soaKo®
€90420 50007031 91012000 47100432 D2077030 20201BAA 43A70030 89A00004 41AA3020 *eeeeseesoscoKocessesssassosscnae
000440 91082001 471C0490 05037033 A0064740 053ED503 7033A00A 4720053E 91027013 *eeeseseeNeaocee soNosassrsossescas™
200460 471004D2 D5017031 A0044770 0S3E9104 30084780 0490D501 7T035A008 4740068A *...KNeeoesoosossscossoaeNosnons co¥
000480 D5017035 AOOC47CO 0490D201 70354008 41A05038 41800578 45C005E8 4TT0C688 #N.seesssoeKeoosessesasssssoaYooos™
000440 9D006C00 47BCO4A0 48A00044 54A05058 477C06A8 96427006 D2062009 00419104 Heeesscosccses cecoeKeosanea®
0004C0 00444780 8008945F T00691A0 50984790 80081886 88B0O0008 89B00002 4BCBS52D4 *easas cees eesesernassoME
CO04ED 4BC05096 41AG7031 40A0C002 43B07030 89800004 43983020 4290C00D D202CJ11 *eceeeeces sesececssessacassocscKane¥
000500 20119101 20004780 051CD202 €0112019 91082001 4780051C 9618CO0D S0C00048 MevseoovoesKosososasssasassasacss™
000520 91027013 47800530 58A00048 47FO0S5EQ 45000624 O0TTCI96A6 TO064TFO 066C58F3
000540 001C58FF OQ0OO0QSEF 47FO055C 4TF00554 4TF00432 41E00960 4TF00564 92422004 «
000560 41E00DA2 S4FETC06 94DF2000 47F00752 58C20018 4T7F0051C D5037031 50004770 *eseseccvosaseOsoaBeraOeoNovaoane™
600580 06249602 70064060 70044010 701447F0 04CA4910 TO2A4TT0 COD69148 702C4T10 *sueess evs seseOsccacccsalenocnee®
000540 05AE9101 70064780 ODD247F0 040E9407 702C94DF 200047F0 C40E9110 20004710 ceceleccoacee®
0005C0 05065842 00189101 20004710 050258A2 001047F0 OS5EOD200 50082018 41A05008 OseKesoosoona®
000550 41C00664 41B00624 50A00048 91202000 47800604 910C402C 47800624 943F402C I
000600 94DF 2000 58F3001C 58FF0004 S0B0S5074 OSEF4TFO 061E41E0 09644TF0 07525880 R Y « PP« P
000620 507407FB 92000048 91017006 47800638 91102001 4710063E 03000048 100C9CO0 -
000640 600005A0 88A0GO18 42A20010 S8900FCO 05B91899 40607004 40107014 S8A02010 =
300660 04A005CC 4770068E 96A07006 43307004 1A994079 52F0D600 700C509A D7C0700C *eesssesessscsvasse 0000cacesPocs™
200680 50GA45E0 075207F8 D2C37031 56004720 070C58A0 004841A0 AGO850A0 00400206 *eeeeceoBKacoescsoosassasssases Ko¥F
0006A0 20090041 471006E4 18E096A0 70069106 00454770 OF8CI110 00444780 0714945F
0006C0 70069120 00444710 80049608 70069140 0044071E 91840044 47808008 41808004

Fiqure 27. sample of General Format Dump

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

OUTPUT COMMENTS

The following output comments are printed
within the body of a formatted dump
whenever IMDPRDMP is unable to locate,
format and print a control block. These
comments explain why the referenced control
block is not printed within the dump
listing, these output comments are
separated from the main storage information
by a blank line both before and after each
output comment. Note: Output Comments
produced when IMDPRDMP is processing GTF
output are shown in Section 3 of this
pablication under the heading *IMDPRDMP
Output Comments -~ GTF Processing'.

DUPLICATE PREFIX FOLLOWS - ID ‘A’

Explanation: While processing a
dump from a Model 65
maltiprocessing system, IMDPRDMP
has determined that the CPU
prefixes (CPUIDs) are the same.

If the task that performs the dump
is initiated on one CPU,
interrupted, dispatched to the
second CPU, and completed the rest
of the processing on the second
CPU, then the prefix shown in this
output comment is that of the
first CPU to which the task was
assigned. Processing continues.

END OF FILE ON DUMP TAPE

Explanation: While trying to
locate a block of main storage on
the dump tape, IMDPRDMP reached
the end of the tape. This message
is printed only if IMDPRDMP is
either trying to extract the CVT
pointer or trying to extract an
area of storage for printing.

Processing terminates. If
IMDPRDMP did no formatting and the
tape does not contain a low-speed
dump produced by IMDSADMP, the job
may be rerumn using the CVT control
statement to direct IMDPRDMP to
the CVT in this dump. Low-speed
dumps produced by IMDSADMP can not
be formatted by IMDPRDMP.

ERROR FINDING PARTITION BOUNDARIES FOR TCB

aaaaaa

Explanation: IMDPRDMP found (1) a
TCB family chain pointer, (2) a
partition boundary box pointer, or
(3) a pointer within the partition
boundary box that was one of the
following:

1. Addressed an area that was

not on a full-word boundary.

2. Addressed an area that was

higher than the highest
address in the dump.

3. Could not be extracted from
the dump because either an
I/70 error was encountered
while attempting to read the
block containing the pointer
or the block containing the
pointer was missing from the
dump. A possible cause for a
missing block is that the
routine that produced the
dump encountered an I/0 error
while attempting to write the
block.

Processing continues.

ERROR FINDING REGION BOUNDARIES FOR
TCB aaaaaa.

Explanation: While attempting to
determine the region boundaries
for the family of TCBs attached to
the job step TCB at address
aaaaaa, one of the following
conditions occurred:

e IMDPRDMP found a chain with
more than fifty partition
queue elements (PQEs); or,

e IMDPRDMP found (1). a TCB
family chain pointer, (2) a
partition queue element (PQE)
pointer (TCB + X'98'), or (3)
a pointer within a PQE that:
1. Addressed an area that was

not on a word boundary;
or,

2. Addressed an area that was
higher than the highest
address in the dump; or,

3. Could not be extracted
from the dump decause
either an I/0 error was
encountered while
attempting to read the
block containing the
pointer or the block
containing the pointer was
missing from the dump; a
possible cause for a
missing block is that the
routine that produced the
dump encountered an I/0
error while attempting to
write the block.

Processing continues.

ERROR FORMATTING TCB

Explanation: One of the fields in
the TCB required for formatting
could not be extracted from the
dump because:

s IMDPRDMP encountered an I/O
error while attempting to read
the block that contains the
required data; or,

130 Programmer's Guide to Debugging (Release 21.7)

ERROR IN

ERROR IN

ERROR IN

e The block containing the
required data was missing from
the dump; a possible cause is
that the routine that produced
the dump encountered an I1/0
error while attemtping to
write the block.

Processing continues.

DEB CHAIN

Explanation: The routine that
formats the data extent block
(DEB) found one of the following
errors:

e A DEB chain pointer:

1. Was not on a word
boundary; or,

2. Addressed an area of main
storage higher than the
highest address in the
dump; or,

e The address of the DEB was
invalid causing the address of
the DEB prefix (DEB - 16) to
be zero or negative; or,

e A DEB chain pointer or one of
the fields necessary to format
the DEB could not be extracted
from the dump because:

1. IMDPRDMP encountered an
I/0 error attempting to
read the block that
contained the data; or,

2. The block containing the
data was missing from the
dump; a possible cause is
that the routine that
produced the dump
encountered an 1/0 error
while attempting to write
the block.

Processing continues.

EXTENT LIST

Explanation: While formatting the
load list or job pack area of an
MVT dump, IMDPRDMP encountered a
contents directory entry (CDE)
that had a block extent list with
a relocation factor (extent list +
4) of zero or greater than
twenty-five. A relocation factor
of zero is an error; however, a
value greater than twenty-five can
be valid. The value of
twenty-five was established by
IMDPRDMP as a reasonable limit; it
is improbable that a normal task
would have a program that has more
than twenty-five CSECTs causing it
to get an extent list with a
relocation factor greater than
twenty-five. Processing continues
with the next CDE.

JOB PACK QUEUE

Explanation: The routine that
formats the job pack area
encountered one of the following
errors:

e A job pack queue chain pointer
addressed an area that:
1. Was not on a word
boundary, or,
2. Was greater than the
highest address in the
dump.

e A job pack queue chain pointer
or one of the fields in a job
pack area control block could
not be extracted from the dump
because:

1. IMDPRDMP encountered an
1/0 error attempting to
read the block containing
the needed data, or,

2. The block containing the
needed data was missing
from the dump; a possible
cause is that the routine
that produced the dump
encountered an I/0 error
while attempting to write
the block.

Processing continues.

ERROR IN LOAD LIST

Explanation: The load list print
routine encountered one of the
following errors:

e A pointer in the load list
control block chain referenced
an area of main storage that:
1. Was not on a word
boundary, or

2. Was greater than the
highest address in the
dump.

e A field in a load list queue
control block could not be
extracted from the dump
because:

1. IMDPRDMP encountered an
I/0 error attempting to
read the block that
contained the data needed
to format the load list;
or,

2. The block containing the
data was missing from the
dump; a possible cause is
that the routine that
produced the dump
encountered an 1/0 error
while attempting to write
the block.

Processing continues.

IMDPRDMP Output Formatting: Output Comments 131

page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

ERROR IN TCB CHAIN DURING PRINT ALL

FUNCT ION

ERROR IN

Explanation: The PRINT ALL
routine encountered a TCB chain
pointer that was not on a
full-word boundary or addressed an
area that could not be extracted
from the dump decause:

1. The pointer addressed an area
higher than the highest
address in th dump.

2. IMDPRDMP encountered an I1/0
error while trying to read
the record that contained the
area addressed by the
pointer.

3. The record containing the
addressed area was missing
from the dump, possibly
because the routine that
produced the dump encountered
an I/0 error while attempting
to write the record.

No more TCBs are processed, but
all tasks encountered up to the
point are printed. The last TCB
printed may contain the error
described in 1 above or point to
the unavailable area described in
2 and 3 above.

TCB CHAIN TCB aaaaaa

Explanation: The routine that
formats the TCBs encountered one
of the errors given below; the
address of the TCB associated with
the error replaces the aaaaaa
field of the output comment.

e A TCB pointer for one of the
TCBs in the TCB family chain
addressed an area not on a
word boundary; or,

¢ A TCB pointer or the TIOT
pointer in the TCB at location
aaaaaa points to an area that
could not be extracted from
the dump because:

1. IMDPRDMP encountered an
I/0 error while attempting
to read the block that
contains the pointer; or,

2. The routine that produced
the dump encountered an
I/0 exror while writing
the block that contains
the pointer; therefore,
the block is missing from

the dump.
ERROR IN TIOT

Explanation: The format routine
found one of the following errors:

e The task input output table
(TIOT) pointer (TCB + X'C')
was not on a word boundary;
or,

e One of the fields required to
format the TIOT could not be
extracted from the dump
because:

1. IMDPRDMP encountered an
I/0 error while attempting
to read the block that
contains the required
data, or,

2. The block containing the
required data was missing
from the dump; a possible
cause is that the routine
that produced the dump
encountered an 1I/0 error
while attempting to write
the block.

ERROR WHILE FORMATTING CONTRCL BLOCKS
CONTINUING

Explanation: While building a
list of job step TCB's for all
partition regions in the dump data
set, PRDMP encountered one of the
following conditions:

1. One of the TCB chain pointers
was greater than the highest
address in the dump.

2. One of the TCB chain pointers
addressed an area that was
missing from the dump data
set.

PRDMP will attempt to use the
partial list and continue with its
formatting.

132 Programmer's Guide to Debugging (Release 21.7)

ERROR WHILE FORMATTING PSCB

Explanation: One of the following
errors occurred while IMDPRDMP was
formatting the protected step
control block (PSCB):

e The address of the PSCB in the
time sharing job block
extension (TJBX) was greater
than the highest main storage
address in dump; or,

e An 1/0 error occurred while
reading the block of dump
information that contained the
needed data; or,

e A block of dump information
containing part of the PSCB
was not found on either the
dump or swap data sets.

Processing continues. IMDPRDMP
attempts to format the control
blocks for the next TSO user.

ERROR WHILE FORMATTING RCB

Explanation: One of the following
errors occurred while IMDPRDMP was
formatting the time sharing region
control blocks (RCBs):

e The address of the RCB table
in the time sharing

communication vector table
(TSCVT) was greater than the
highest main storage address
in the dump; or,

e An 1/0 error occurred while
reading the block of dump
information that contained the
needed data; or,

e A block of dump information
containing part of an RCB was
not found on the dump data
set. This happens when an I/0
error occurred while the dump
routine was writing the data
onto the dump data set.

Processing continues. IMDPRDMP
attempts to format the next entry
in the RCB table.

ERROR WHILE FORMATTING SWAP CONTROL BIOCK

Explanation: One of the following
errors occurred while IMDPRDMP was

formatting the swap control block
(SWAP DCB):

e The address of the SWAP DCB in
the time sharing communication
vector table (TSCVT) was
greater than the highest main
storage address in the dump;
or,

IMDPRDMP Output Formatting: Output Comments 132.1

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

| 132.2 Programmer's Guide to Debugging (Release 21.7)

e An I1/0 error occurred while

reading the block of dump
information that contained the
data; or,

A block of dump information
containing part of the SWAP

e A block of dump information

containing part of the TJB was

not found on the dump data
set. This happens when an

I1/0

error occurred while the dump

routine was writing the dat
onto the dump data set.

a

DCB was not found on the dump
data set. This happens when
an I/0 error occurred while

Processing continues. IMDPRDMP
attempts to format the next active

the dump routine was writing TJIB.
the data onto the dump data
set. ERROR WHILE FORMATTING TJBX

Processing continues. IMDPRDMP
attempts to continue formatting
the time sharing job block (TJB).

Explanation: One of the following
errors occurred while formatting
the time sharing job block
extension (TJBX):
e The terminal job block (TJB),
that contained the address of
the TJB was not aligned on a
fullword boundary; or,

ERROR WHILE FORMATTING TAXE

Explanation: One of the following

errors occurred while IMDPRDMP was

formatting the terminal attention

exit element (TAXE): e The address of the TJIBX in the
TJB was greater than the

e The address of the TAXE in the highest address in the system

time sharing job block
extension (TJBX) was not
aligned in a fullword
boundary; or,

dump; or,

e An I/0 error occurred while
reading the block of dump

information that contained the
e The address of the TAXE in the needed data; or,
TIBX was greatexr than the
highest main storage address e A block of dump information
in the dump; or, containing part of the TJIBX
was not found on either the
® An I/0 error occurred while dump or swap data sets.
reading the block of dump
information that contained the

needed data; or,

Processing continues. IMDPRDMP
attempts to format the control
blocks associated with the next
e A block of dump information TSO user.
containing part of the TJBX.

was not found on the dump or

swap data sets.

ERROR WHILE FORMATTING TSB

Explanation: One of the following
errors occurred while IMDPRDMP was
formatting the terminal status
block (TSB):

e The address of the TSB table
in the time sharing
communication vector table
(TSCVT) was greater than the
highest main storage address
in the dump; or,

Processing continues. IMDPRDMP
attempts to format the control
blocks for the next TSO user.

ERROR WHILE FORMATTING TJB

Explanation: One of the following
errors occurred while IMDPRDMP was
formatting the time sharing job
block (TJB):

e An I/0 error occurred while
reading the block of dump
information that contained the
needed data; or,

e The address of the TJB table
in the time sharing
communication vector table
(TSCVT) was greater than the
highest main storage address
in the dump; or,

e A block of dump information
containing part of the TSB was
not found on the dump data

e An I/0 error occurr%d while set. This hagpens when a 1/0
reading the block of dump error occurred while the dump

information that contained the routine was writing the data
needed data; or, onto the dump data set.

IMDPRDMP Output Formatting: Output Comments 133

Processing continues. IMDPRDMP
attempts to format the associated
time sharing job block extension
(TJIBX).

ERROR WHILE FORMATTING TSCVT

Explanation: One of the following
errors occurred while IMDPRDMP was
formatting the time sharing
communication vector table
(TSCVT) 2

e The address of the TSCVT in
the communication vector table
(CVT) was greater than the
highest main storage address
in the dump; or,

e An I/0 error occurred while
reading the block of dump
information that contained the
needed data; or,

e A block of the dump
information containing part of
the TSCVT was not found on the
dump data set. This happens
when a I/0 error occurred
while the dump routine was
writing the data onto the dump
data set.

Processing continues. IMDPRDMP
attempts to format the time
sharing region control blocks
(RCBs).

ERROR WHILE FORMATTING USER MAIN STORAGE

Explanation: One of the following
errors occurred while IMDPRDMP was
formatting the user main storage
map (UMSM):

e The address of the UMSM
associated with the region
control task (RCT) or time
sharing job block (TJB) was
greater than the highest main
storage address in the dump;
or,

e An 1/0 error occurred while
reading the block of dump
information that contained
needed data; or,

e A block of dump information
containing part of the UMSM
was not found in the dump data
set. This happens when an 1/0
error occurred while the dump
routine was writing the data
onto the dump data set.

134 Programmer's Guide to Debugging (Release 21)

Processing continues. IMDPRDMP
attempts to continue formatting
with the terminal status block
(TSB).

FORMAT ERROR DURING TCB SUMMARY

Explanation: The routine that
prints the TCB summary must
extract a TCB completion code (TCB
+ X*16') or a TCB family chain
pointer from the dump. In this
case, IMDPRDMP was unable to do so
because:

e IMDPRDMP encountered an I/0
error while attempting to read
the block containing the
completion code or pointer;
or,

e The block containing the
completion code or pointer was
missing from the dump; a
possible cause is that the
routine that produced the dump
encountered an I/0 error while
attempting to write the block.

Processing for the current control
statement is terminated.

FORMAT ERROR IN MAIN STORAGE BLOCKS

Explanation: While formatting
main storage control blocks,
IMDPRDMP encountered one of the
following errors:

e A pointer in a main storage
control block addressed an
area that: '

1. Was not on a word
boundary; or,

2. Was higher than the
maximum address in the
dump; or,

e One of the fields in a main
storage control block could
not be extracted from the dump
because:

1. IMDPRDMP encountered an
170 error while attempting
to read the block that
contains the required
field; or,

2. The block containing the
required field is missing
from the dump; a possible
cause is that the routine
that produced the dump
encountered an 1/0 error
while attempting to write
the block.

Processing continues.

INFINITE

INFINITE

INFINITE

INFINITE

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

LOOP IN DEB CHAIN

Explanation: While formatting the
data extent blocks (DEBs),
IMDPRDMP found more than 200 DEBs
chained to the TCB. The limit of
200 DEBs prevents IMDPRDMP from
looping. When the limit is
exceeded, a loop is assumed which
causes this comment to be printed.
Processing continues after the
first 200 DEBs are printed.

LOOP IN JOB PACK QUEUE

Explanation: In MVT, IMDPRDMP
found more than 255 CDEs on the
job pack queue associated with the
TCB. In MFT, IMDPRDMP found more
than 255 RBs on the job pack queue
associated with the TCB. A limit
of 255 job pack queue control
blocks has been established by
IMDPRDMP to prevent a possible
looping condition. When the limit
is exceeded, a loop is assumed and
this comment is issued. The first
255 job pack queue control blocks
are printed and then processing
continues.

LOOP IN LOAD LIST

Explanation: In MVT, IMDPRDMP
found more than 255 load list
elements (LLEs) on the load 1list
chained to the TCB. In MFT,
IMDPRDMP found more than 255 RBs
on the load list. A limit of 255
elements on the load list has been
established by IMDPRDMP to prevent
a possible looping condition.

When the limit is exceeded, a loop
is assumed and this comment is
issued. The first 255 load list
elements are printed and then
processing continues.

LCOP IN PQES

Explanation: The main storage
print routine found more than 50
partition queue elements (PQEs)
chained to the TCB. A limit of 50
PQEs has been established by
IMDPRDMP to prevent a possible
looping condition. When the limit
is exceeded, a loop is assumed and
this comment is issued. The first
50 PQEs are printed and then
processing continues.

IMDPRDMP Output Formatting:

INFINITE

LOOP IN QCB CHAIN

Explanation: The QCB print
routine found more than 100 queue
control blocks (QCBs}) on the major
QCB chain or more than 100 QCBs on
a minor QCB chain. A limit of 100
QCBs has been established within
IMDPRDMP to prevent a possible
looping condition. When the limit
is exceeded, a loop is assumed and
this comment is issued. The first
100 QCBs are printed and then
processing continues.

INFINIT LOOP IN QEL CHAIN

INFINITE

INFINITE

Explanation: The QCB print
routine found more than 100 queue
elements (QELs) on a QEL chain. A
limit of 100 QELs has been
established within IMDPRDMP to
prevent a possible looping
condition. When the limit is
exceeded, a loop is assumed and
this comment is issued. The first
100 QELs are printed and then
processing continues.

LOOP IN RB CHAIN

Explanation: The RB print routine
found more than 50 request blocks
(RBs) on the RB chain. A limit of
50 RBs has been established within
IMDPRDMP to prevent a possible
looping condition. When the limit
is exceeded, a loop is assumed and
this comment is issued. The first
50 RBs are printed and then
processing continues.

LOOP IN TIOT

Explanation: While formatting the
TIOT, IMDPRDMP found more than 255
DD entries in the TIOT. Since
only 255 DD statements are allowed
per job step, a valid TIOT cannot
have more than 255 DD entries. A
loop is assumed because the limit
was exceeded and the TIOT end
indicator could not be found.
Processing continues.

INVALID TIOT

Explanation: While formatting the
task input output table (TIOT),
the FORMAT routine found an
invalid job name in the TIOT. To
be valid, the first character of
the job name must be A through Z,
or $, #, @ or a blank (X'40°').
Processing continues.

Output Comments 135

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL:

NO ELEMENTS ON LOAD LIST

Explanation: The load list
pointer in the TCB (displacement
X'24") is zero. The zero pointer
indicates that (1) no programs
were loaded by the LOAD macro
instruction or (2) the load list
pointer was overlaid with zero.
Processing continues.

NO EXTENT LIST

Explanation: While formatting the
load list and job pack queue for
an MVT dump, IMDPRDMP encountered
zeros in the extent list pointer
(CDE + '20') in a major contents
directory entry (CDE). This zero
pointer usually indicates an error
condition in which the extent list
pointer was overlaid with zeros.
Processing continues with the next
CDE.

NO LINK PACK AREA QUEUE

NO MAJOR

NO RSVC
RAM

Explanation: In MFT, an LPAMAP
was requested but the link pack
area queue pointer (CVT + X'*BC')
was zero. Processing continues.

QCBS

Explanation: The QCB TRACE
routine found zeros as the pointer
to the first major queue control
block (QCB). This indicates that
no resources have been enqueued at
the time of the dump or that the
pointer to the QCB queue has been
overlaid with zeros. Processing
continues.

MODULES IN LPA

Explanation: In MVT, either the
CDE or LLE chain, pointing to the
modules in the link pack area, was
empty. RSVC modules are found by
following the LLE pointer in the
master scheduler TCE (TCBLLEP).
Rpocessing continues.

RAM modules are found by
following the CDE chain from the
CVT (CVTQLPAQ). Processing for
this IMDPRDMP verb ends.

NOTHING IN JOB PACK

136 Programmer's Guide to Debugging (Release 21.7)

Explanation: 1In MVT, the job pack
queue field of the TCB (TCB +
X'2C*) is zero. In MFT, the

GN28-2545

partition information block (PIB)
field (TCB + X'7C') or the job
pack queue pointer (PIB + X'24°')
is zero. PCP does not have a job
pack pointer; therefore, this
comment does not appear in a PCP
dump. A zero job pack queue
pointer is usually a normal
condition, especially for a system
task. Processing continues.

RB FORMAT ERROR

Explanation: While formatting a
request block (RB), the RB print
routine found that the request
block (RB) chain pointer addressed
an area of main storage that:

e Was not on a word boundary;
or,

* Was higher than the highest
address in rmain storage; or,

e Could not be extracted from
the dump because:

1. IMDPRDMP encountered a 1/0
error while attempting to
read the block that
contained the pointer; or,

2. The block that contained
the pointer was missing
from the dump. One
possible cause for this is
that the program that
produced the dump may have
encountered an I/0 error
while writing the block.

e A field in the RB, or a
contents directory entry (CDE)
associated with the RB,
necessary to formatting the RB
could not be extracted from
the dump. Either IMDPRDMP
encountered an I/0 error while
trying to read the block, or
the block that contained the
pointer is missing from the
dump.

REGISTERS FROM OTHER CPU ARE INVALID-NOT
FORMATTED

Explanation: Multiprocessing
systems only. Only the registers
for the CPU in which the dump
program was executed will be
displayed on the dump listing.
This can occur ‘when the dump is
taken on a multiprocessing system
either when the NOMP option of
IMDSADMP is used or when the
direct control feature is not
operational.

TASK HAS

TASK HAS

TASK HAS

Page of GC28-6670-5,6

NO OPEN DATA SETS

Explanation: IMDPRIMP found the
data extent block (DEB) pointer in
the TCB (TCB + X'8°) to be zero.
This situation indicates that
there were actually no open data
sets or the DEB pointer in the TCB
was overlaid with zeros,
Processing continues.

NO TIOT

Explanation: While attempting to
format the task input output table
(TIOT), IMDPRDMP found that the
TIOT pointer (TCB + T°'C') was
either zero or larger than the
highest address in the dump. The
zero TIOT pointer could be a
normal condition for a system
communication task, but for a
problem program task this is an
error condition. Processing
continutes.

TERMINATED

Explanation: After formatting a
TCB, this comment is printed below
the TCB if the first bit (the
terminated bit) of the flag byte
at X'21' of the TCB is set.
Processing continues with the next
TCB.

TCB CHAIN ERROR IN F03 PRINT ROUTINE
TCB aaaaad...CONTINUING WITH NEXT TCB

Explanation: The Print FO03
routine encountered a TCB chain
pointer that:

e Was not on a word boundary:;
or,

e Addressed an area that could
not be extracted from the dump
because:

1. The pointer addressed an
area higher than the
maximum address in the
dump; or,

, Revised April 16, 1973, By TNL: GN28-2545

2. IMDPRDMP encountered an
170 error trying to read
the record containing the
area addressed by the
pointer; or,

3. The block containing the
addressed area was missing
from the dump, probably
because the routine that
produced the dump
encountered an 1/0 errorx
while attempting to write
the block.

The address of the TCB associated

with the error replaces the aaaaaa
field in the message. Processing

continues with the next TCB.

UNABLE TO OBTAIN JOB STEP TCB FOR CURRENT
TASK

Explanation: In an MFT system
with ATTACH, the job step TCB is
used to get the partition
boundaries. If the address of
this TCB is zero in the current
TCB, then the above comment is
issued. Processing continues.

XxxxXXx THROUGH xxxxxx COULD NOT BE PRINTED

Explanation: The block(s) of
storage between the two addresses
could not be printed because
IMDPRDMP encountered an I/0 error
while attempting to read the
block(s) or the blcck(s) that were
missing from the dump. Processing
continues. ‘

IMDPRDMP Output Formatting: Output Comments 136.1

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

| 136.2 Programmer's Guide to Debugging (Release 21.7)

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

Guide to Storage Dumps

The purpose of this section is to suggest
debugging procedures that you may use with
a storage dump. This discussion applies to
the output of the following programs:

e IMDSADMP- The low speed version that
creates an unformatted dump of main
storage.

e IMDPRDMP- Reads, formats, and prints
storage dumps from MFT or MVT systems
and the high speed version of IMDSADMP.

These programs produce hexadecimal dumps of
the contents of main storage from location
zero to the highest machine address.

The IMDPRDMP program provides formatting
capabilities which can be used to display
the important system control blocks for
easy examination. The IMDPRDMP program
does most of the procedures described in
this section automatically. The cases in
which the IMDPRDMP program does not provide
formatting are identified. A complete
description of the services provided by the
IMDPRDMP program is found in the
publication, IBM System/360 Operating
System: Service Aids, GC28-6719.

Since the formatting for the IMDPRDMP
program depends on the contents of the
dump, it is not always possible to provide
complete formatting. For example, if the
CVT of the system to be dumped has been
overlaid, the IMDPRDMP program can provide
only a hexadecimal dump of main storage.

Guide to storage Dumps 137

DETERMINING THE CAUSE OF THE DUMP

Main storage dumps are invoke by system
routines and these routines can be
identified by module names appearing in the
most recent request block (RB) for the
failing task. The main storage dump is
invoked by SVC 51. This SVC PSW appears as
the resume PSW in the second most recent RB
of some task in the system. The module
name in the current RB for that task must
be 201cC.

Main storage locations from zero to 128
(hexadecimal 80) are permanently assigned
and contain hardware control words. Figure
28 shows these fields, their location,
their length, and their purpose.

e — e

r k3 1
|Address| Length |
|Dec Hex|In Bytes Purpose |
i]
¥ 1
0o o0 | 8 |IPL PSW |
| $ ’ |
T T L}
8 8 | 8 | IPL CCWl |
4 1 4
k3 T 1
16 10 8 | IPL CCW2 |
i ’ |
T i)
|24 18 | 8 | External old PSW |
L L L [
1] T 14 1
|32 20 | 8 Supervisor call old PSW |
40 28 8 Program old PSW
48 30 | 8 Machine check old PSW
5 t i —
|56 38 | 8 |T/0 old PsSW |
[t { 4
{64 40 | 8 | Channel Status Word |
i i L . |
1] 1} T 1
|72 48 | 4 | Channel Address Word |
b t t {
176 uc | 4 |Unused |
i i 4 1
s T L |
|80 50 | 4 | Timer |
L 4 4 4
T 1] L
{84 54 | 4 |Unused |
t + 1 -
|88 58 | 8 | External new PSW |
F t ¢ {
|96 60 | 8 |Supervisor call new PSW |
i 1 1 ¥ |
] ¥ T 1
|104 68 | 8 | Program new PSW |
[l i 4 i
L] T T]
1112 70 | 8 |Machine check new PSW |
| t 1
{120 78 | 8 |1/0 new PSW i
L — e J
Figure 28. Permanently Assigned Hardware

Control Words

Cause of the Dump: Evaluate the PSWs that
appear in the formatted section of the dump
{the first four lines) to find the cause of

the dump.
format:

The PSW has the following

Progrom Status Word

System Mask Key AMWP Interruption Code
0 78 1112 15 16 31
c Program ’ ton Add
ILC C Mask nstruction ress

32 3334 35 36 39 40 63

¢ Does the instruction address field of
the o0ld machine check PSW show either
the value E2 or E02? If so, a hardware
error has occurred.

e Does the instruction address field of
the old program check PSW have a value
other than zero? If so, a program
check at the instruction preceding that
address caused the interruption.

TASK STRUCTURE

MFT System (Without Subtasking)

There is a TCB associated with each
partition of main storage there are also
TCBs for critical system tasks such as the
master scheduler task and the transient
area loading task. Figure 28 shows
location 76 (4C) unused for hardware
control words. The control program uses
this word to contain a pointer to the CVT.
Use this CVT pointer to locate the first
byte of the Cvr, then the CVITIXAVL field
(offset 124) in the CVT. The address
contained at CVTIXAVL is a pointer to the
I0S freelist. At offset 4 in the IOS
freelist is a pointer to the first address
in a list of TCB addresses. You can look
through this list of TCB addresses, and,
keeping your system options in mind, find
the TCBs for each partition. The TCB
addresses are listed in the following
order:

e Transient area loading task.

¢ System error task (MFT with
subtasking).

e Multiple console support write-to-log
task (optional).

e I/0 recovery management support task
(optional).

e Communications task.

e Master scheduler task.

e System management facilities task
(optional).

e Partition 0 task.

138 Programmer's Guide to Debugging (Release 21.7)

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

Partition 1 task.

.
.

Partition n task.

Figure 29 shows how to locate the
partition TCBs in sample output from the
IMDPRDMP program.

MFT System (With Subtasking)

For MFT with subtasking (and for MVT), a
task may create a subtask. The partition
TCBs for MFT with subtasking are referred
to as job step TCBs. The task structure
for a job step may be reconstructed in a
main storage dump by using the information
in Figure 30.

For MFT with subtasking, the job step
TCB may be found using the method described
for MFT without subtasking or by a more
direct method. CVT offset 245 (F5)
contains a pointer to the partition 0 job
step TCB address in this address table.

To recreate the task structure within
any partition, simply locate the job step
TCB, and follow the TCB pointers - as
explained in the previous section.

MVT System

To find the current TCB, look at location
76 (4C) for a pointer to the CVr. The
first word of the CVT contains a pointer to
a doubleword of TCB addresses, which
contains pointers to the next TCB to be
dispatched (first word) and the current TCB
(second word). Beginning with the current
TCB, you can recreate the task structure
for the job step using the methods in
Figure 30.

If the first word of the current TCB
points to itself, there are no ready tasks
to be dispatched, and the system has been
placed in an enabled wait state. This TCB,
now in control, is called the system wait
TCB.

All TCBs in the system are maintained in
a queue called the CVT ready queue. These
TCBs are queued according to their
dispatching priority. The CVTHEAD field,
offset +160 (A0) in the CVT, contains the
address of the highest priority TCB in the
system. Offset +116 (74) in the TCB points
to the TCB with the next lowest priority.
Figure 30 shows how to locate all of the
TCBs in the system.

000040

Location 4C
00000000 00000000 00000000 0000CBS50 017F8E00 0000CD5C 00040000 00000288
CVvT
1
00000000 00000000 00000000 00000000 00000774 0000078C OOOOAEE8 0001A288

00CB40

00CB60 00000000 000048B0 D000CBOA 00012B80O
00CB80O hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
00CBAQ hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
00CBCO

hhhhhhhh hhhhhhhh hhhhhhhh oopotas4

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

 — —

105 Freelist

¥’
004860 hhhhhhhh 2F90FFFF; 0001EC30 hhhhhhhh
S~

hhhhhhhh hhhhhhhh hhhhhhhh hhhbhhhhb

\List of TCB Addresses

—

— —

X
00008778 00008858 00008938 00008A18
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

LJLLVWLA

01EC20 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
01EC40 00008B68 00008C48 00008048 hhhhhhhh
PG TCB
008D40 00000000 00000000 0007D2D8 hhhhhhhh
008D60 bhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
008D8O hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
008DAO hhhhhhhh
e e

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

Figure 29.

Finding the Partition TCBs in MFT

Guide to Storage Dumps 139

(L*Tz osearsy) burbbngag o3 apIno s,xsumrexbord o4

Job Step TCB

+136(88) A

+132(84)

TCB

10l0)

@ is a job step TCB and . is the

TCB of the subtask
Offset +136(88) in

created by @ .
@ points to its

Subtosk |
1cB

+128(80)

+132(84)

+136
(88)

Job Step TCB

Subtask
1C8

+132(84) »@

I @ is a job step TCB, is the TCB for the first

subtask TCB ((B). Offset +132(84)
in the subtask TCB () points back I
to the job step TCB (@).

Figure 30.

subtask created by @ . is the TCB for the

second and most recent subtask created by .
Offset +136(88) in @ points to the TCB of its
most recently created subtask. Offset +136(84)
in points back to the creating task (@).
Offset +128(80) in poinfs to (By) the next
most recently created subtask TCB, Offset
+132(84) in points back to the originating
TCB ().

In each TCB:
Offset

+128(80) points to the TCB of the next most
recently created subtask, If none
exists, this field is zero,

points to the TCB of the task that
created it, If none exists, this field
is zero,

points to the TCB of the most recent

+132(84)

+136(88)

subtask created by this task, If none

exists, this field is zero.

Finding the TCB

Job Step TCB

TCB

OO

+136(88)

Subtask
TCB

Subtask

TCB

TC8

10,0,
10O,

TCB

0O

+132(84)

+136(88)

@ Subtask

TCB

@ Subtask
TCB

TCB

@ Subtask
TCB

TCB

+128(80) @'
+132(84) '

@ is the job step TCB, is the TCB for the first subtask created by @ . @ is the TCB

for the second and most recent subtask created by @ . Offset +136(88) in 0 points to
the TCB of its most recently created subtask, Offset +132(84) in points to the TCB of the
creating task, Offset +128 in @ points to the next most recently created subtask TCB,
Offset +132(84) in poinfs back to the job step TCB (@). Offset +136(88) in
points to the TCB of its most recently created subtask ().

points to the TCB of its creating task () ond to the TCB of the subtask most
recently created by @ . contains pointers to the TCB of the originating task (@)
and to the TCB of the task most recently created by @ . @comains only a pointer to
the TCB of the invoking task ((B)). .

+128(80)

+132(88) ‘@

+132(84)

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

Keep in mind that all TCBs in the system
appear on this gqueue. 7Therefore, not only
does a particular job step TCB appear on
the ready queue, but all of its subtask
TCBs also appear.

You can find the job step TCB associated
with any TCB by using the TCRISTCB field of
the TCB, offset +124 (7C). <This field
contains the address of the job step TCB
for the TCB you are examining.

In response to the FORMAT control
statement, the IMDPRDMP program will do
most of this work for you. It will
recreate the task structure, format all
TCBs in the system, and provide a TCB
summary. The TCB summary shows the task
structure. Figure 31 shows a portion of
the TCB summary information from an MVT
system. TCBs associated with a particular
job are grouped together under the job name
and step name. The TCB summary contains
the TCB address, the completion code, and,
when applicable, the address of the
originating TCB and the addresses of
created TCBs.

TASK STATUS - ACTIVE RB QUEUE

The first word of the TCB contains a
one-word pointer to the first word of the
most recent RB added to the queue. 1In its
eighth word, RB+28(1C), each RB contains a
pointer to the next most recent RB. The
last RB points back to the TCB.

You can determine the idenity of the
load module by looking either in the first

and/or second words of the RB for its
EBCDIC name or in the last 3 digits of the
resume PSW in the previous.RB for its SVC
number. The entry point to the module is
in the last 3 bytes of the fourth word in
the RB, RB-13(D).

In an MVT system, the name and entry
point of the associated load module are not
always contained in the RB associated with
the module. 1Instead, they are found in a
contents directory entry (CDE).

The address of the contents directory
entry for a particular load module is given
in the fourth word of the RB, RB+12(C).

The CDE gives the address of the next entry
in the directory (bytes 1-3), the name of
the load module, bytes 8-15(F); the entry
points of the module, bytes 17-19(11-13).

Figure 31 shows the formatting that the
IMDPRDMP program does for a task in an MVT
system. Notice the connection between the
RB and the CDE. The IMDPRDMP program
extracts the CDE information and displays
this information with the RB.

The wait-count field of the RB is
particularly important when locating the
TCB by using the CVT ready queue (CVTHEAD).
The high-order byte of the RB link field,
RB-28(1C), of the most recent RB for a TCB
contains a count of the number of events
for which the task is waiting. Tasks that
have a zero wait count are ready to be
dispatched (unless marked
non-dispatchable). Such a task will be
dispatched or become the current task when
all TCBs of higher priority are waiting for

* x x x P CRB S UMMARY * * * *
JOB MASTER STEP SCHEDULER)
TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh PAGE hhhh
JOB MASTER STEP SCHEDULER .
TCBhhhlihh CMPhhhhhhhh NITChhhhhhhh O1TChhhhhhhh LTChhhhhhhh PACE hhhh
JOB WTR STEP 00E -
TCBhhhhhh CMPhhhhhhhh N1Chhhhhhhh O'rChhhhihhhh Lrchhhhhhhh PACE hhhh
TCBhhhhhh CMPhhhhthhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh PAGE hhhh
JOB JOB11 STEP GO
TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh PAGE hhhh
TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh PAGE hhhh
TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh PAGE hhhh
JOB JoB12 STEP GO
TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh PAGE hhhh
W\ P

Figure 31. IMDPRDMP TCB Summary

Guide to Storage Dumps 141

the completion of an event. To determine
the events for which a task is waiting, use
the instruction address field in the resume
PSW to locate the WAIT macro instruction in
the source program. This will point you to
the operation being executed at the time of
the dump.

MAIN STORAGE CONTENTS
Load List (MFT)

The load list is a chain of request blocks
associated with load modules invoked by a
LOAD macro instruction. By looking at the
load list, and at the job pack area queue
described below, you can determine which
system and problem program routines were
loaded before the dump was taken. To
construct the load list associated with the
task in control, look at the tenth word in
the TCB, TCB+36(24), for a pointer to the
most recent RB entry on the load list,
minus 8 bytes (RB-8). This word, in turn,
points to the next most recent entry (minus
8), and so on. If this is the last RB,
RB-8 will contain zeroes. The word
preceding the most recent RB on the list
(RB~4) points back to the TCB's load list
pointer.

Load List (MVT)

To construct the load list associated with
the task in control, look at the tenth word
in the TCB, TCB+36(24), for a pointer to
the most recent load list entry (LLE).

Fach LLE contains the address of the next
most recent entry (bytes 0-3), the count
{byte 4), and the address of the CDE for
the associated load module (bytes 5-7). If

this is the last LLE in the list,
TCB+36(24) will contain zeroes.

Job Pack Area Queue (MFT With Subtasking,
MVT)

In systems with MFT with subtasking or MVT
control programs, the job pack area queue
is used to maintain reenterable modules
within a partition or region. The complete
description of this queue is found under
the topic "Task Status-Active RB Queue".

MFT_System: To reconstruct the job pack
area queue in an MFT system with
subtasking, look at TCB+125(7D) for a three
byte pointer to the partition information
block (PIB). The twelfth word of the PIB,
PIB+44(2C), points to the most recent RB on
the job pack area gqueue minus 8 bytes
(RB-8). This word in turn points to the
next most recent RB minus 8, and so on.

The last RB will have zero in this field.
The word preceding the most recent RB on
the queue (RB-4) points back to the job
pack area queue pointer in the PIB. You
can determine the identity of the load
module by locking either in the first
andsor second word of the RB for its EBCDIC
name, or in the last three digits of the
resume PSW in the previous RB for the SVC
number. The entry point of the module is
given in the last three bytes of the fourth
word in the RB, RB+29(1D), unless it is an
FRB.

The first five words of an FRB
(beginning at offset minus 8) are identical
in content to those of other RBs. The
XRWTL field, offset 12(C), contains the
address of a wait list element. The first
word of the WLE points to the next WLE, or

ACTIVE RBS

PRB 02DEBO RESV hhhhhhhh APSW

hhhhhhhh WC-SZ-STAB hhhhhhhh FL-CDE 0002DFD0 PSWFF0S50001 5006E1C2
Q/TTR hhhhhhhh WP-LNK hhhhhhhh NM IEESDO?Q EPA 062038

STA GGLECO LN 001940 ATR1 08

CDE 02DFDO NM IEFSDQ?Q USE 01 RESP NA

Module Name

Figure 32.

— QUEUE \W

ATR1 08 EPA 063038 STA (6CECO LN 001940

Entry Point Address

Determining Module From CDE in MVT

142 Programmer's Guide to Debugging (Release 21.7)

contains zeros if the WLE is the last one.
The second word points to the waiting SVRB.
You can determine the number of deferred
requests for the module by tracing the
chain of WLEs.

The XRREQ field of an FRB, offset
16(10), contains a pointer to the TCB of
the requesting task. The next word,
CRTLPRB, offset 20(14), points to an LPRB
built by the Finch routine for the
requested program. The FRB for the
requested program is removed from the job
pack area queue by the Finch routine when
the program is fully loaded.

MVT System: In MVT, the job pack area
gueue is maintained in the same manner as
the load list. The distinction between the
two queues is that the job pack area queue
contains reenterable programs. There are
no FRBs in MVT.

MAIN STORAGE SUPERVISION

Free Areas in MFT Systems

Areas of main storage that are available
for allocation at the time the dump was
taken are described by the MSS boundary box
and a series of free queue elements (FQEs).
The seventh word of the TCB for the task,
TCB+24(18), points to a six-word MSS
boundary box. The first word of the MSS
boundary box points to the FQE with the
highest processor storage address in the
partition (hierarchy 0), and the fourth
word, to the highest 2361 Core Storage
address in the partition (hierarchy 1).

The first word of each FQE points to the
next lower FQE; the second word of the FQE
gives the length of the area it describes.
FQEs occupy the first 8 bytes of the area
they describe.

Gotten Subtask Areas (MFT)

In MFT with subtasking, areas of a
partition allocated by the system to a
subtask within the partition are described
by gotten subtask area queue elements
(GQEs). The seventh word of the subtask
TCB, TCB+24(18), points to a one word
pointer to the most recently created GQE on
the GQE queue. Bytes 0 through 3 of the
GQE contain a pointer to the previous GQE
or, if zero, indicate that the GQE is the
last one on the queue. Bytes 4 through 7
of the GQE contain the length of the gotten
subtask area. Each GQE occupies the first
eight bytes of the gotten subtask area it
describes.

Region Structure in MVT System

The region associated with a particular
task in an MVT system is described by

partition queue elements (PQEs). The
thirty-ninth word of the TCB, offset +152
(98) contains a pointer to the dummy PQE
(D-PQE) for the region. The first word of
the dummy PQE points to the first PQE and
the second word, to the last PQE. The
first and second words of each PQE point to
the first and last free block queue
elements (FBQEs), respectively, associated
with the PQE. Separate PQEs are used to
describe parts of a region in different
storage hierarchies or part of a region
that was obtained by another task which has
been rolled out.

FBQEs describe free areas in the region
that have a a length which is a multiple of
2048 bytes. These free areas are available
for allocation to a specific subpool.

Subpool Descriptions (SPQEs) (MVT): The
seventh word of the TCB, TCB+24(18), points
to the SPQE representing the first subpool
used by the task. Each SPQE contains the
address of the next SPQE (bytes 1-3), the
subpool number (byte 4), and the address of
the first descriptor queue element (DQE)
for the subpool (bytes 5-7) or, if the
subpool is owned by another task (bit 0 is
1), the address of the SPQE that describes
it (bytes 5-7).

Storage within a subpool is described by
a descriptor queue element. Each DQE
contains the number of bytes of main
storage in the subpool. This count is
always a multiple of 2048 bytes. If a
request for space from a subpool cannot be
satisfied with the space described by an
existing DQE the GETMAIN routine builds
another DQE and links the new DQE to the
chain of existing DQE's. Each DQE contains
a pointer to the FQE that represents the
free area with the highest main storage
address in the subpool (bytes 1-3), a
pointer to the next DQE (bytes 5-7), and
the length of the area described by the
DQE, bytes 13-15(D-F).

Figure 33 shows the control blocks used

to describe the subpools for a task in an
MVT system.

I/0 CONTROL BLOCKS

Queue of DEBs

To find the queue of DEBs for the task,
look at the third word in the TCB (TCB+8).
The address given here points to the first
word of the most recent entry on the DEB
queue. There is a DEB on this queue for
each data set opened to the task at the
time of the dump. DEBs are enqueued in the
same order as the data sets are opened.

The last three bytes of the second word in
each DEB (DEB+5) points to the next most

Guide to Storage Dumps 143

recent DEB on the queue. The queue
contains one DEB for each open data set.

UCBs

You can find unit information for each
device in your system in the unit control
block (UCB) for that device. The address
of the UCB is contained in the last 3 bytes
of the ninth word of the DEB, DEB+33(21).
If the DEB queue is empty, scan the dump
around location 4096(1000) for words whose
fifth and sixth digits are FF. These are
the first words of the UCBs for the system;
UCBs are arranged in numerical order by
device address. (You may find it easier to
locate UCBs by looking for the device
address in the EBCDIC printout to the right
of each page.) The first two bytes of the
second word of each UCB give the device
address. The device type and class are
given in the third and fourth bytes of the
fifth word, UCB+18(12), respectively. The
sense bytes, with the exception of those
for devices with extended sense, begin in
the last two bytes of the sixth UCB word,
UCB+22(16), and continue from 1 to 6 bytes
depending on the device type. For the
extended sense devices, UCB+22 and UCB+23
are ignored. UCB+24(18) in this case
contains the number of bytes of sense

hhhhhh
hhhhhh

Lk
2

_hhhhhhhb hhhhhhhb 01

hhhhhhhh hhhhhhhh hhiihhhhh hhhhhhhh
hhhhhhhh

information to be found starting at the
address specified in UCB+25(19). Sense
bytes are given in Appendix G of this
publication. :

DCB and TIOT

The address of the DCB, a control block
that describes the attributes of an open
data set, is located in the last 3 bytes of
the seventh DEB word, DEB+25(19). The
first two bytes of the ninth word of the
DCB, offset 40(28), contains the offset in
the task input/output table (TIOT) of the
DD name entered for the data set.
Therefore, the address of the DD name for a
particular.data set may be found by adding
the TIOT offset in the DCB to the TIOT
address in the TCB (TCB+12), plus 24(16)
bytes for the TIOT header.

10B

If a data set is being accessed by a
sequential access method with normal
scheduling, the address of the input/output
block (I0B) prefix (IOB-8) is located in
the seventeenth word of the DCB,
DCB-68(44). The first word of the 10B
prefix points to the next I0B (if more than
one 1I0B exits for the data set). Each IOB

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
h [ihhh hhbhbhh o

ddress of SPQE

Address of SPQE for Subpool 251

A
Wmo! 0 @ 0
74/ Address of

—F—

SPQE for
02DA00 hhhhhhhh hhhhhhhh hhhhhhhh hhhhihhh 0002pEA0 refEBEEE 60000000 00 Subpool 0
02DA20 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh — C0000000 0002DA18 00000000 00000010
02DA40 hhhhhbhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hbbhhhhbh 000 KEEER oolENSR S
,,—-——.—d-‘_—d*—‘-—n—d’\—u—f‘—‘-"
T BaE ~_WW»mw,ﬁ“,w_.ﬂﬂ,ﬂm-~/””//;:9l .. DQE
e U U
020280 00000006 00000000 00053800°00019000"

No Free Storage Last DQE

~ SPQE for Subpool 252

02DEAO

»
0002DA30 FCO02DA68 hhhhhhhh hhhhhhhh

,/'*~"\~/-“_u“\,_—‘“‘N———'-—4——~—”—‘N~__

et

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh s

M—’J

046000

STORAGE KEY E
00000000 00000768 hhhhhhhh hhhhhhhh

FQE describing 1896 (768)
bytes of free storage

Figure 33.

e s S

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

Subpool Descriptions in MVT - IMDPRDMP Storage Print

144 Programmer's Guide to Debugging (Release 21)

0015E0
001600
001620

‘hhhhhhhh hhhhhhhh RZSES TR
‘hhhhhhhh hhhhhhbhh hhhhhhhh

011780
0117A0
0117cCo0
0117E0

hhhhhhhh hhhhhhhh
‘hhhhhhhh hhhhhhhh
ihhhhhhhh' hhhhhhhh
shhhhhhh' hhhhhhhh

OB Prefix
011550 13 g -HhbhKhhh

011E20 00000000 00000000

hhhhhhhh hhhhhhhh
hhhhhhhb hhhhhhhh <
‘hhhhhhbi hhhhhhhh
hhhhhhbh 7

ECB Operation
Complete

hhhhhhhh
00000000

72 omEE - |00
02000210

DDNAME

0024 014F0100 0
/"hhh hhhhh ‘hhhhhhhh! hhhhhhhh hhhhhbbh -

Volume mounted on Device

hhhhhhhh ‘hhhhhhhh hhhhhhhh hhhh
hhhhhhhh hhhhhhhh
‘hhhhihhh hhhhhbhb
hhhhhhh hhhhhhhh

Low-Order
7-bytes of last CSW

31011E2B 40000005

011E40 '1DO11E68 A0000008 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
011E60 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
011E80 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh DEB
011EAO0 :hhhhhhhh hhhhhhhh hhhhhhhb OFEEEY®S hhhhhhhh 18801888 hhhhhhhh hhhhhhhh
011ECO0 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hphhhhhh hhhhhhhh
\ T Address of UCB
Address of DCB
TIOT

021280 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh.hhhhhhhh
0212A0 ‘hhhhhhhh hhhhhhhh hhhbhhhhh hhhhhhhh' hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhbh
0212C0 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
0212E0 “hhhhhhhh*hhhhhhhh ‘hhhhhhhh hhhhhhhh © hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhhe
021300 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
021320 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh SESREORG]
021340 { sk f hhhhhhhh' hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhhf hhhhhhhh

Device Address \

30402001

bCB

hhhhhhhh' Dcﬁhozo TIOT Offset

41011E00 hhhhhhhh'
‘hhhhhhhh hhhhhhhh

Address of Channe! Program

‘00011794
00000000

08011E30

TIOT@ 21298
Offset A4
2133C

Figure 34. 1I/0 Control Blocks

for an open data set contains a pointer to
the CCW list in the last three bytes of the
fifth word, IOB+17(11).

ECB

The Completion code for an I/0 operation is
posted in the first byte of the event
control block (ECB). ECB completion codes
are explained in Appendix F. *“If the I/0
event is not complete and an SVC I (WAIT)
has been issued, the high-order bit of the
ECB is on, and bytes one through three
contain the address of the associated RB.
For the sequential and basic partition
access methods the second word of an IOB
points to its associated ECB.

Figure 34 shows the DEB, UCB, DCB,
IOB for a BSAM data set.

and

TSO CONTROL BLOCKS

The time sharing (TSO) control blocks are
obtained from the IMDPRDMP service aid
program by specifying the TSO control
statement in the input stream. The first
part of the TSO dump is the same as the
normal MVT dump. The control blocks that
IMDPRDMP formats are divided into two
group: system and user.

TSCVT

The time sharing communications vector
table (TSCVT) is a secondary CVT for the
MVT CVT. The time sharing CVT resides in
the time sharing region; therefore, it
exists only while the time sharing region
is active. When time sharing does not
exist in the system, the MVT CVT pointer to
the TSCVT (CVT+229) is zero.

Guide to Storage Dumps 145

RCB

A region control block (RCB) contains
information that is unique to a time
sharing region. There is one RCB for each
time sharing region. The RCBs reside in
the time sharing controller's region, they
are contiguous, and they are created during
initialization of the time sharing
controller.

The TSCVT points to a region control
block table. The RCB table is an indexed
table containing one RCB address for each
possible time sharing region, therefore,
the table contains the maximum number of
RCBs that may be used by time sharing. The
first RCB is for region one, the second for
region two, etc. The time sharing job
block (TJB) of a job points to the RCB
associated with that job.

UMSM

One user main storage map (UMSM) exists for
each possible time sharing user. The UMSM
contains a series of consecutive one-word
extent fields (ADDR-LN). Each one-word
extent contains a halfword address field
(ADDR) and a halfword length field (LN)
that describes the main storage allocated
to the time sharing user. The UMSM
contains the address and length of a
storage block (a multiple of 2K bytes) that
has been allocated to the user; only this
allocated storage will be swapped out for
the user. The time sharing job block (TJB)
points to the UMSM.

SWAP_DCB

The swap data control block (SWAP DCB) is
used whenever a time sharing user's region
is swapped into or out of main storage. It
describes a swap data set that contains an
IOB, area for channel programs, and the
track map queue. The TJB points to the
swap DCB.

TJB

The time sharing job block (TJB) contains
status information about a time sharing
user. The TJB is retained in main storage
while the user is swapped out. One -time
sharing job block exists for each possible
simultaneous time sharing usex. The space
for the TIB is obtained from the time
sharing control task (TSC) region during
time sharing initialization. Status
information about the terminal related to
this TJB is contained in the terminal

status block (TSB). The address of the
terminal status block is the first word of
the TJIJB. The first word of the TSCVT
points to the TJB. :

TSB

Each terminal status block (TSB) contains
status information about one terminal. The
terminal input/output coordinator (TIOC)
uses this information. During system
initialization, one TSB is created for each
possible user. The main storage space is
obtained in one contiguous block for all of
the TSBs in the region of the time sharing
control task (TSC); this contiquous string
of TSBs is called the TSB table. The
origin pointer to the TSB table is the
TIOCTSB field of the TIOCRPT.

TIBX

The time sharing job block extension (TJBX)
contains user job information that can be
rolled out to the swap data set with the
user's job. The TJBX resides in the local
system queue space (LSQS) for the region.
The TJIBX location is pointed to by the
third word of the time sharing job block
(TJB). The space for the TIJBX is obtained
by the region control task (RCT) during
initialization.

PSCB

The protected step control block (PSCB)
contains accounting information related to
a single user. All timing information is
in software timer units. A software timer
unit is equal to 26.04166 micro seconds.
The job step control block (JSCB), offset
268, points to the PSCB.

TAXE

The TSO terminal attention exit element
(TAXE) is a physical addendum to a regular
24 word interrupt request block (IRB). It
is used to schedule an attention exit
resulting from a terminal attention
interruption. It is created, queued, and
dequeued by the specify terminal attention
exit (STAX) macro instruction. The main
storage space for the TAXE is obtained in
the local system queue space (LSQS) of the
terminal user's region.

For a more detailed description of the
TSO control blocks formatted by the
IMDPRDMP program, see the Control Block
and/or TSO Control Program PLM
publications.

146 Programmer's Guide to Debugging (Release 21)

Tracing aids available are the save area
chain, trace option, and Generalized Trace
Facility (GTF). This section provides a
description of each tracing aid, and, for
GTF, describes its output after processing
by the IMDPRDMP service aid.

Save Area Chaijn

The save area chain is edited and clearly
identified in ABEND/SNAP dumps, and can be
located easily in storage dumps produced by
system dump facilities or the IMDSADMP
service aid.

A save area is a block of 72 bytes
containing chain pointers and register
contents. It has the following format:

8 12(C)

16(10) 20(14)
Pointer to the next higher
level save area or, if this is
the highest level save area,
Z€Xos.

Bytes 4-7:

Bytes 8-11(B): Pointer to the next lower
level save area or, if this is
the lowest level save area,
unused.

Bytes 12-15(C-F): Contents of register 14
(optional)

Bytes 16-19(10-13): Contents of register
15 (optional)

Bytes 20-71(14-3F):
0 to 12

Contents of registers

The save area for the first or highest
level load module in a task (save area 1)
is provided by the control program. The
address of this area is contained in
register 13 when the load module is first
entered. It is the responsibility of the
highest level module to:

Section 3: Tracing Aids

1. Save registers 0~12 in bytes
20-71(14~-3F) of save area 1 when it is
entered.

2. Establish a new save area (save area
2).

3. Place the contents of register 13 into
bytes 4-7 of save area 2.

4. Place the address of save area 2 into
register 13.

5. Place the address of save area 2 into
bytes 8-~11(B) of save area 1.

At this point, the save areas appear as
shown in Figure 35.

Save area | Save area 2

+4 0000 +41 1 Save orea 1

+8 | save orea 2

R gister 13
) tSavc ‘orea 2

Contents of

+20(14) | Sonfenis of
Freghiters 0412
+68(44)
Fiqure 35. Save Area Trace

If a module requests a lower level
module, it must perform actions 1 through 4
to ensure proper restoration of registers
when it regains control. (Action 5 is not
required, but must be performed if the dump
printout of the field is desired.) A
module that does not request a lower level
module need only perform the first action.

ABEND and SNAP dumps include edited
information from all save areas associated
with the dumped task under the heading
"SAVE AREA TRACE". 1In a stand-alone dump,
the highest level save area can be located
through a field of the TCB. Subsequent
save areas can be located through the save
area chain.

Section 3: Tracing Aids 147

TRACE_OPTION

The tracing routine is an optional feature
specified during system generation. This
routine places entries, each of which is
associated with a certain type of event,
into a trace table. When the table is
filled, the routine overlays old entries
with new entries, beginning at the top of
the table {(the entry having the lowest
storage address). The contents and size of
a trace table are highly system-dependent.

Systems With MFT: Trace table entries for
systems with MFT are 4 words long and
represent SIO, 1I/0, SVC and dispatcher
task-switching interruptions. Figure 36
shows the word contents of each type of
entry.

SIO CC/Dev CAW Csw
0 1 2
1/0 1/O OLD PSW csw
0 2
e SVC OLD PSW Reg O Reg 1
0 2 3
Task PSW } New TC8 |} Old TCB
Switch
0 2 3
Figure 36. Trace Table Entries (MFT)

Systems with MVT: The trace table in a
system with MVT is expanded to include more
entries and more information in each entry.
Trace table printouts occur only on SNAP
dumps and stand-alone dumps. Entries are
eight words long and represent occurences
of SIO, external, SVC, program, and 1I/0
interruptions, and dispatcher loaded PSWs.

Figure 37 shows the word contents of
trace table entries for SNAP dumps and
stand-alone dumps. Figure 38 shows the
contents of trace table entries as filled
by MVT with Model 65 multiprocessinqg. (SsSM
~-- set system mask -- entries are
optional.)

INTERPRETING TRACE TABLE ENTRIES

Location 84(54) in main storage contains
the address of the first word of the three
word trace table control block. The trace
table control block immediately preceeds
the table. The trace table control block
describes the bounds of the table and the
most recent entry at the time of the dump.

o e)

A} T 1
Current Entry | First Entry | Last Entryj
4 L) |

0 4 8

You can locate the trace table by scanning
the contents of main storage between
locations 16,384(4000) and 32,768(8000) for
trace table entries. Entries are four
words long and begin at addresses ending
with zero. To find the table boundaries
and current entry, scan the table in
reverse until you reach the trace table
control block.

Trace Table Entries in MFT: Trace table
entries for systems with MFT are 4 words
long and represent occurrences of SIO, 1/0,
SVC, and task-switching interruptions.
Figure 39 gives some sample entries and
their contents.

SI0 entries can be used to locate the CCW
(through the CAW), which reflects the
operation initiated by an SIO instruction.
If the SIO operation was not successful,
the CSW STATUS portion of the entry will
show you why it failed.

I/0 entries reflect the I/0 o0ld PSW and the
CSW that was stored when the interruption
occurred. From the PSW, you can learn the
address of the device on which the
interruption occurred (bytes 2 and 3), the
CPU state at the time of interruption (bit
15), and the instruction address where the
interruption occurred (bytes 5-8). The CSW
provides you with the unit status (byte 4),
the channel status (byte 5), and the
address of the previous CCW plus 8 (bytes
0-3).

sVC
External PSW Reg 15 Reg O
Progrom
Dispatcher 0 2 3
5 Reg 1 } 1TC8 Timer
4 6 7
S0 CC/Dev CAW CcswW {
0 1 2
}, il ' tree Timer
6 7
/0 PSW csw g
0 2
Timer
7
Figure 37. Trace Table Entries (MVT)

148 Programmer's Guide to Debugging (Release 21)

their contents.

In dumps of Model 65 Multiprocessing
system, trace table entries differ as
follows:

Section 3:

Dispatcher
is’\r/ocg:r:;d Otd PsW Reg 15 Reg 0 é New PSW Reg 15 Reg 0 ﬁ
0 2 3 0 2 3
Old 7CB Old 7C8 . New TC8 New TCB .
g Reg 1 (CPUA) (CPU B) Timer 11D L Reg 1 Fum (CPU B) Timer | ID
4 5 6 7 4 5 6 7
SIo Externol
CC/Dev CAW csw Old PSW Reg 15 Reg O
0 1 2 0 2 3
TC8 Old TCB Old TCB . STMASK .
5 (RQE) (CPUA) (cPu 8) fimer 1P 2 Reg | of other CPU TaE fimer 1P
4 5 6 7 4 5 6 7
1/0 SSM
Old PSW Csw Old PSW Reg 15 Reg 0
0 2 o 2 3
Old TCB Old TCB] Locking |4O1d TCB Old 7CB .
Reg 1 (CPU A) (CPU 8) Timer 1D ; Reo 1 epuin|licru A) (CPU B) Timer 11D
4 5 6 7 4 5 6 7
Figure 38. Trace Table Entries (MVT with Model 65 multiprocessing)
SVC entries provide the SVC old PSW and the SIO 5th word address of TCB.
contents of registers 0 and 1. The PSW 6th word: address of old TCB
offers you the hexadecimal SVC number (bits for CPU A.
20-31), the CPU mode (bit 15), and the . 7th word: address of old TCB
address of the SVC instruction (bytes 5-8). for CPU B.
The contents of registers 0 and 1 are 8th word CPU identification
useful in that many system macro (last byte).
instructions use these registers for I/0 3rd word: contents of register
parameter information. Contents of 15.
registers 0 and 1 for each SVC interruption 4th word contents of register
are given in Appendix B. 0.
8th word CPU identification
(last byte).
Trace Table Entries in MVT and M65MP: SVC and 6th word: address of old TCB
Entries in an MVT trace table are 8 words Program for APU A.
long and represent occurrences of SIO, 7th word: address of old TCB
external, SVC, program, I1I/0, and dispatcher for CPU B.
interruptions. You can identify what type 8th word CPU identification
of interruption caused an entry by looking (last byte).
at the fifth digit: Dispatcher 6th word: address of new TCB
for CPU A.
0 = sIO 7th word: address of new TCB
1 = External for CPU B.
2 = svVC 8th word: CPU identification
3 = Program (last byte).
5= 1/0 External 6th word: STMASK of other CPU.
D = Dispatcher 7th word: TQE if timer inter-
rupt occurred.
Figure 40 gives some sample entries and 8th word: CPU identification

(last byte). If so, a
program check at the
instruction preceding
that address caused
the interruption.

Tracing Aids 149

SIO
Condition Device CAW csw
code address
1/0
1/0 old PSW CSwW
SVC number
svC
SVC old PSW Register 0 Register 1
Indicates task switch
Task
Switch
Dispatched new PSW tnew TCB roid TCB
Figure 39. Sample Trace Table Entries

(MFT)

Generalized Trace Facility

The Generalized Trace Facility (GTF) traces
system and application program events and
records information about these events.
Trace records can be stored internally --
in a table similiar to the trace table of
the Trace Option -- or they can be recorded
externally in a data set that becomes input
to the IMDPRDMP service aid program. (When
stored internally the trace table is
formatted in ABEND/SNAP dumps.) The
IMDPRDMP service aid edits and formats the
GTF external trace records as specified in
an EDIT control statement.

This section describes the output of
GTF; it does not tell how to use GTF. For
a description of the functions performed by
GTF and IMDPRDMP refer to the Service Aids
publication.

SIO entry identifier

SIO) C i
|]
Condition Device CAW Csw
code address
); 00004800 00000000 -
TCB address Timer
1/O entry
identifier
L_‘ Dlevice address
10
1/0 old PSW Csw
Entry identifier
(SVC here) SVC number
svC
External
Program L s E e e
Dispatcher I I I
SVC old PSW Register 15 Register O
Register 1 TCB address Timer
Figure 40. Sample Trace Table Entries

(MVT)

System events traced by GTF in MFT, MVT,
and MVT-M65MP systems are:

10 interrupts

SIO operations

SVC interrupts

Program interrupts

External interrupts

Task Switches by the system dispatcher
SSM interrupts in multi-processing
systems

GTF MINIMAL TRACE RECORDS

The following material describes the
records produced u.xder the minimal trace
option (SYSM) of GIF. The formats
described appear in both ABEND/SNAP dumps
(under the heading GTF TRACE TABLE) and in
IMDPRDMP output. Minimal trace records are
produced for IO and PCI1/IO, SIO, SVC, PGM,
EXT, DSP, and SSM events.

150 Programmer's Guide to Debugging (Release 21)

10 and PCI/I0 Minimal Trace Record

{Q}{ggl} OLD PSW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh RQE TCB{hhhhhhhh}{

hhkkhkkhk

OLA hhhhhhhh OLB hhhhhhhh
OLD TCB hhhhhhhh
N/A

Figure 41. IO and PCI/IO Minimal Trace Record

{81

A

B
appears in MVT-M65MP system records;
identifies the CPU associated with the
event.

10
PCI

}

OLD PSW hhhhhhhh hhhhhhhh
the program status word that was
current at the time the I0 or PCI/IO
interrupt occurred.

identifies the type of trace record.

CSW hhhhhhhh hhhhhhhh
the channel status word associated
with the I0 or PCI/IO interrupt being
traced.

*EehhkRR
RQE TCB{hhhhhhhh
N/A

ITTIIT I
indicates that an error occurred
while gathering the information.

hhhhhhhh
is the address of the TCB of the
task for which this 1/0 operation
is being performed.

N/A
indicates the interrupt was
unsolicited: either the I/0
supervisor did not issue an SIO
instruction to the device; or
there is no valid UCB for the
device.

OLD TCB hhhhhhhh
in MFT and MVT system trace records,
the address of the TCB for the task
that was in control when the interrupt
occurred.

in MVT-M65MP systems the OLA and OLB
fields replace the OLD TCB field and
contain the address of the TCB for the
task in control of CPU A and CPU B
respectively, at the time the
interrupt occurred.

Section 3: Tracing Aids 151

SIO Minimal Trace Record

B

{A} SIO CC/DEV/CAW hhhhhhhh hhhhhhhh CSW hhhhhhhhhhhhhhhh RQE TCB{hhhhhhhh

OLD TCB hhhhhhhh

*****x%%) (OLA hhhhhhhh OLB hhhhhhhh}
(0]

N/A

Fiqure 42. SIO Minimal Trace Record

appears in MVT-M65MP system records;
identifies the CPU associated with the
event.

SI0
identifies the type of trace record.

CC/DEV/CAW hhhhhhhh hhhhhhhh
displays the SIO condition code, the
device address, and the CAW (channel
address word) for the I/0 operation
just initiated.

The first four digits represent the
condition code returned from the SIO
operation; the next four digits
represent the device address; and the
last eight digits represent the CAW.

CSW hhhhhhhh hhhhhhhh
the channel status word associated
with this event.

Rk EREEE
RQE TCB{hhhhhhhh
N/A

*kkkkkkR

indicates that an error occurred while
gathering the information.

hhhhhhhh
is the address of the TCB of the task
for which this I/0 operation is being
performed.

N/A
indicates the interrupt was
unsolicited, i.e., the I/0 supervisor
did not issue an SIO instruction to
the device; or, there is no valid UCB
for the device.

OLD TCB hhhhhhhh
in MFT and MVT system trace records,
the address of the TCB for the task
that was in control when the interrupt
occurred.

In MVT-M65MP systems the OLA and OLB
fields replace the OLD TCB field and
contain the address of the TCB for the
task in control of CPU A and CPU B
respectively, at the time the
interrupt occurred.

152 Programmer's Guide to Debugging (Release 21)

DSP Minimal Trace Record

NUA hhhhhhhh NUB hhhhhhhh}

{g} DSP {Sga ggz} hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh Rl hhhhhhhh {NEW TCB hhhhhhhh

Fiqure 43. DSP Minimal Trace Record

{A} registers 15 and 0 as they will be
B when the task being dispatched is
appears in MVT-M65MP records: given control.
identifies the CPU associated with the
event. R1 hhhhhhhh
the contents of general purpose
DSP register 1 as it will be when the task
identifies the type of record. being dispatched is given control.
NEW PSW hhhhhhhh hhhhhhhh NEW TCB hhhhhhhh
the PSW for the task about to be the address of the TCB for the task
dispatched. about to be dispatched.
In a record obtained from a MVT-M65MP In a record obtained from a MVT-M6SMP
system this field will be labeled RES system this field is replaced by the
PSW. ‘ NUA and NUB fields containing the
addresses of the tasks to be
R15/R0 hhhhhhhh hhhhhhhh dispatched on CPU A and CPU B when
the contents of general purpose processing resumes.

Section 3: Tracing Aids 153

EXT Minimal Trace Recorxd

{2} EXT OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhbhhhh Rl hhhhhhhh STMSK hhhhhhhh TQE TCB{hhhhhhhh

*t**t*tt}

N/A

Figure 44. EXT Minimal Trace Record

{5}

B
appears in MVT-M65MP records;
identifies the CPU associated with the

event.

EXT
identifies the type of trace record.

OLD PSW hhhhhhhh hhhhhhhh
the program status word that was
current at the time the external
interrupt occurred.

R15/R0 hhhhhhhh hhhhhhhh
the contents of general purpose
registers 15 and 0 at the time the
interrupt occurred.

R1 hhhhhhhh
the contents of general purpose
register 1 at the time the interrupt
occurred.

STMSK hhhhhhhh
appears in MVT-M65MP records only;
displays the SHOULDER TAP MASK at the
time the interrupt occurred.

LIPS L L)
TQE TCB{hhhhhhhh
N/A

LEL L 2 X

indicates that an error occurred
while gathering the information.

hhhhhhhh
is the address of the TCB of the
task that requested this timer
interrupt.

N/A
indicates the interrupt was other
than a timer interrupt.

154 Programmer's Guide to Debugging (Release 21)

PaM Minimal Trace Record

B

{A} PGM OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh {OLD TCB hhhhhhhh

OLA hhhhhhhh OLB hhhhhhhh}

Figure 45. PGM Minimal Trace Record

{3}

appears in MVT-M65MP system records;

identifies the CPU associated with the

event.

PGM
identifies the type of trace record.

OLD PSW hhhhhhhh hhhhhhhh
the program status word that was
current at the time the program
interrupt occurred.

R15/R0 hhhhhhhh hhhhhhhh
the contents of general purpose
registers 15 and 0 at the time the
interrupt occurred.

R1 hhhhhhhh

the contents of general purpose
register 1 at the time the interrupt
occurred.

OLD TCB hhhhhhhh

the address of the TCB for the task
that was in control when the interrupt
occurred.,

In MVT-M65MP trace records this field
is replaced by the OLA and OLB fields
that contain, respectively, the
address of the TCB for the tasks in
control of CPU A and CPU B at the time
the interrupt occurred.

Section 3: Tracing Aids 155

SVC Minimal Trace Record

B

{A} SVC OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh {OLD TCB hhhhhhhh

OLA hhhhhhhh OLB hhhhhhhh}

Figure 46. SVC Minimal Trace Record

A

B
appears in MVT-M65MP system records;
identifies the CPU associated with the

event.

SsvC
identifies the type of trace record.

registers 15 and 0 at the time the
interrupt occurred.

R1 hhhhhhhh

the contents of general purpose
register 1 at the time the interrupt
occurred.

OLD TCB hhhhhhhh

OLD PSW hhhhhhhh hhhhhhhh
the program status word that was
current at the time the interrupt
occurred. The SVC number, e.g., SVC
51, is represented by the last two
hexadecimal digits in the first word.

R15/R0 hhhhhhhh hhhhhhhh
the contents of general purpose

156 Programmer's Guide to Debugging (Release 21)

the address of the TCB for the task
that issued the SVC.

In MVT-M65MP systems the OLA and OLB
fields replace the OLD TCB field and
contain the address of the TCB for the
task in control of CPU A and CPU B
respectively, at the time the
interrupt occurred.

SSM Minimal Trace Record

{g} S§SM LK C OPSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh Rl hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh

Figure 47. SSM Minimal Trace Record

{A} OPSW hhhhhhhh hhhhhhhh

B the program status word that was
indicates the CPU associated with the current at the time the interrupt
event. occurred. Obtained from the CPU on

which the interrupt occurred.

SSM R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh
identifies the type of trace record. The contents of general purpose
registers 15, 0, and 1 from the CPU on
iK ¢ which the interrupt occurred, at the

time the interrupt occurred.
CPU affinity byte:

A indicates CPU A executing OLA hhhhhhhh OLB hhhhhhhh

disabled. the addresses of the TCBs of the tasks
B indicates CPU B executing in control in CPU A and CPU B
disabled. respectively at the time the interrupt
0 Neither CPU executing disabled. occurred.

Section 3: Tracing Aids 157

GTF COMPREHENSIVE TRACE RECORDS

The following material describes the
records produced when comprehensive tracing
is specified at the invoking of GTF
(MODE=EXT). The formats described appear

in the output from IMDPRDMP service aid
processing of the data recorded by GTF.

Comprehensive trace records are produced
for 10, PCI/IO, SIO, DSP, EXT, PGM, SsM,
and SVC events.

158 Programmeér's Guide to Debugging (Release 21)

{

{

JO and PCI/I0 Comprehensive Trace Record

s

CSW hhhhhhhh hhhhhhhh RQE{

*hokk ok ok kok
}{;gx} cuu OLD PSW hhhhhhhh hhhhhhhh JOBN:cccccccc

N/A

N/A

Ahkhkhhhkkk kkkkXkad kkkkkkhki

hhhhhhhh hhhhhhhh hhhhhhhh

{ oonsf

} RQE TCB{hhhhhhhh} SENS{

cccecccceg |OLTCB hhhhhhhh

********}{OLA hhhhhhhh OLBE hhhhhhhh}
N/A

khkkkkkdhk

hhhhhhhh}

N/A N/A

Figure u8.

o)

10
PCI

cuu

}

This field appears only in MVT-M65MP
system 1I/0 or PCI trace records and
identifies the computer associated
with the event.

This field identifies the type of
trace record -- inputs/output (10) or
program controlled interrupt (PCI).

This field displays the device address
for the device associated with the
interrupt in channel/unit form.

OLD PSW hhhhhhhh hhhhhhhh

JOBN{

This field displays the program status
word that was current at the time the
IO or PCI interrupt being traced,
occurred.

ccceceece
****#***}

N/A

This field has three possible entries,

as follows:

cceceecce
is the one to eight character
name of the job associated with
the interrupt being traced.

*hkkkk kX

asterisks indicate that a bad
control block chain prevented the
jobname from being obtained.

N/A

in PCI trace records N/A
indicates that the interrupt was
issued by the system and there is
no associated jobname; in IO
interrupt trace records N/A
indicates either a system issued
interrupt as for PCI or an
interrupt issued without a valid

DDNM

I0 and PCI/IO Comprehensive Trace Record

UCB for the device issuing the
interrupt.

|

This field has three possible entries,
as follows:

wekk Rk

{cccccccc
N/A

cceceececc
is the name of the DD statement
associated with the interrxupt
being traced.

¥k kkkkk

asterisk indicate that a bad
control block chain prevented the
data definition name from being
obtained.

N/A
N/A appears in the DDNM field for
one of the following reasons:
e An interrupt was issued without
a valid UCB for the device
issuing the interrupt.
The post bit in the UCB is
'‘off.*
The data event block (DEB)
pointer to the TCB is set to 0.
The DCB is not opened.
The DCB TIOT offset is outside
the valid range.
The TCB TIOT pointer is set to
0.
The DDNAME in the TIOT is not
recorded in EBCDIC characters.

OLTCB hhhhhhhh

In MFT and MVT system trace records
this field displays the address of the
TCB that was current at the time the
I0 or PCI interrupt being traced,
occurred.,

In MVT-M65MP system I0 and PCI trace
records the following fields replace
the OLTCB field:

Section 3:

Tracing Aids 159

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

OLA hhhhhhhh
This field displays the address
of the A computer TCB that was
current when the IO or PCI
interrupt occurred.

OLB hhhhhhhh
This field displays the address
of the B computer TCB that was
current when the IO or PCI
interrupt occurred.

CSW hhhhhhhh hhhhhhhh
This field displays the channel status
word from permanent storage location
64.

hhhhhhhh hhhhhhhh hhhhhhhh
RGE dkkbkkbbk kkkbkkkkdk Fkhkkkkki
N/A
This field has three possible entries
as follows:

hhhhhhhh hhhhhhhh hhhhhhhh
is the content of the first three
words of the Request Queue
Element associated with the IO or
PCI interrupt.

khkkkkbkkk hkkhkkkkk khkkkkkkik
asterisks indicate that a bad

control block chain prevented the

RQE information from being
obtained.

N/A
indicates that the interrupt was
issued without a valid UCB for
the device issuing the interrupt.

hhhhhhhh
ROE TCB(**%%%x%%
N/A

This field has three possible entries
as follows:

hhhhhhhh
is the address of the TCB
associated with the Request Queue
Element

*kkkkkkk

asterisks indicate that a bad
control block chain prevented the
TCB address from being obtained.

N/A
indicates that the interrupt was
issued without a valid UCB for
the device issuing the interrupt.

SENS{hhhhhhhh}
N/A

This field has two possible entries as

follows:

hhhhhhhh

is the content of the four sense
bytes in the UCB beginning at UCB
+ 22 which describe the IO or PCI
interrupt being traced. For more
information about the sense pytes
see Appendix G.

N/A
indicates that the interrupt was
issued without a valid UCB for
the device issuing the interrupt.

160 Programmer's Guide to Debugging (Release 21.7)

{

SIQ Comprehensive Trace Record

B N/A

A {OLA hhhhhhhh OLB hhhhhhhh
{ } SI0O cuu CC hh CAW hhhhhhhh JOBN{cccccccc} OLTCB hhhhhhhh

CSW hhhhhhhh hhhhhhhh RQE hhhhhhhh hhhhhhhh hhhhhhhh RQE TCB hhhhhhhh

Figure 49.

5}

SIO Comprehensive Trace Record

appears in MVT-M65MP system trace
records; identifies the computer
associated with the event.

SI0
the type of trace record.

cuu

: the device address in channel/unit
form for the device associated with
the record.

CC hh
hh - is the condition code set by the
SI0 event.

CAW hhhhhhhh
the channel address word associated
with this event -- taken from
permanent storage location 72.

JOBN{cccccccc}
N/A

cccececcee
is the one to eight character
jobname of the job associated
with this event.

N/A
indicates the SIO was issued by
the system and there is no
associated jobname.

OLTCB hhhhhhhh
in MFT/MVT systems the address of the
TCB that was current when the SI0O was
issued.

in MVT-M65MP systems the OLA and OLB
fields replace the OLTCB field.

OLA hhhhhhhh
is the A computer address of the
TCB that was current when the SIO
was issued.

OLB hhhhhhhh
is the B computer address of the
TCB that was current when the SIO
was issued.

CSW hhhhhhhh hhhhhhhh
the channel status word associated
with this event -- taken from
permanent storage location 64.

RQE hhhhhhhh hhhhhhhh hhhhhhhh
the first three words of the Request
Queue Element associated with the SIO
operation.

RQE TCB hhhhhhhh
the address of the TCB associated with
the reaquest queue element.

Section 3: Tracing Aids 161

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

DSP

Comprehensive Trace Record

WAITTCB
A vangoee {NUA hhhhhhhh NUB hhhhhhhh)
{B} DSP RES PSW hhhhhhhh hhhhhhhh JOBN{cccccccc} MODNJ yugpp*#*} {NUTCBE hhhhhhhh f PRTY hh
N/A gcececeece
Iccccecece
i 99999999
Figure 50. DSP Comprehensive Trace Record

A **TRB**%

{B} an asynchronous routine is about
MVT-M65MP systems only. Identifies to be dispatched and the module
the computer associated with the name is not available.
event.

ccecceee
in MVT systens the eight
DSP character module name from the
the type of trace record. CDE associated with the task to
be dispatched; or, the name of an
RES PSW hhhhhhhh hhhhhhhh error exit routine from the SIRB
the PSW for the task about to be associated with the task.
dispatched. 1If this task was
interrupted at some previous point in in MFT systems the eight
time, then this was the current PSW at character name from the LRB,
the interrupt. LPRB, PRB or FRB associated with
the task being disgpatched; or an
JOBN{cccccccc} error exit routine name from the
N/A SIRB associated with the task.
cccceecce Iccccecccee
is the eight character name of indicates that error fetch is in
the job associated with the task the process of loading an error
being dispatched. recovery module. The last seven
characters of the module name are
N/A shown.
indicates the task switch is for 99999999
a system task; no jobname is In MFT (with subtasking) an
available. ATTACH was issued, but the module
requested did not receive
WAITTCB control.
SVC-ccec

MODN |SVC-RES NUTCB hhhhhhhh
#+IRB**% the address of the new TCB -- the TCB
cceccecec of the next-to-be-dispatched task.
Iccceece

| 99999999 in MVT-M65MP systems the following
fields replace the NUTCB field:
WAITTCB NUA hhhhhhhh

the WAIT task is about to be
given control.

SVC-ccec
indicates a type 3 or 4 SVC is
about to get control; cccc is the
last four characters in the
module name.

SV(C-RES
indicates a resident type SVC
routine is about to be given
control.

the address of the TCB of the
next-to-be-dispatched task in the
A computer.

NUB hhhhhhhh

PRTY hh

hh

162 Programmer's Guide to Debugging (Release 21.7)

the address of the TCB of the
next-to-be-dispatched task in the
B computer.

the dispatching priority of the
next-to-be-dispatched task.

{

EXT

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

Comprehensive Trace Record

WAITTCB
§VC-ccce {OLA hhhhhhhh OLB hhhhhhhh}
{g} EXT OLD PSW hhhhhhhh hhhhhhhh JOBN{cccccccc} MODN f¥$;§§§¢ OLTCB hhhhhhhh STMSK hhhhhhhh
N/A ccecececce
Iccececee
99999999
khkd kA kR ek kkkdkkk
TQEFLG/TCB{hhhhhhhh} EXIT{hhhhhhhh}
N/A N/A
Figure 51. EXT Comprehensive Trace Record
A SVC-RES
B} a resident SVC routine was
This field appears only in MVT-M65MP interrupted.
system EXT trace records and
identifies the computer associated
with the event. **IRB***
the EXT interrupt occurred during
execution of an asynchronous
EXT routine with an associated IRB.
This field identifies the trace record
as an EXT trace record.
ccceccece
OLD PSW hhhhhhhh hhhhhhhh in MVT systems the eight
This field displays the program status character name of the module that
word that was current at the time the was interrupted - taken from the
external interrupt occurred. CDE associated with the task; or
the name of an errcr routine -
JOBN cccccccc} taken from the SIRB associated
{ N/A with the task.
This field has two possible entries as in MFT systems the eight
follows: character name of the module that
was interrupted - taken from
ccececcec either the LRB, LPRB, PRB, or
is the one to eight character FRB; or the name of an error
name of the job associated with routine - taken from the SIRB
the event. associated with the task.
N/A Iccccececce
indicates that the interrupt was indicates that error fetch was in
issued by the system and there is the process of loading an error
not associated job name. recovery routine when the
interrupt occurred. The last
WAITTCB seven characters of the module
SVC-ccce name are shown.
MODN |SVC-RES
+]RB**# 99999999
cceceeccee In MFT (with subtasking) an
Icceccecece ATTACH was issued, but the module
99999999 requested did not receive
control.
WAITTCB

The WAIT task was interrupted.

SVC-ccce
A type 3 or 4 SVC routine was
interrupted; cccc is the last
four characters of the routine
name.

OLTCB hhhhhhhh
In MFT/MVT systems the address of the
TCB that was current when the
interrupt occurred.

In MVT-M65MP systems the OLA and OLB
fields replace the OLTCB field.

Section 3: Tracing Aids 163

OLA hhhhhhhh
is the address of the TCB in the
A computer that was current when
the interrupt occurred.

OLB hhhhhhhh
is the address of the TCB in the
B computer that was current when
the interrupt occurred.

STMSK hhhhhhhh
In MVT-M65MP systems only - the
‘shoulder tap' mask from location
X'2BC' in the other computers prefix.

N/A
TQEFLG/TCB{ #**¥**x+%
hhhhhhhh

hhhhhhhh

is the first word of the timer
queue element (TQE). The first
byte of the word is the TQEFLGS
and the remaining three bytes the
TQETCB, which is the address of
the TCB for the task in which
this timer element is being used.

T T T Y
asterisks indicate that a bad
control block chain prevented the
information from being obtained.

N/A
indicates that this EXT interrupt
was not caused by the timer.

hhhhhhhh}

EXITY§ N/A
XEERAEE

hhhhhhhh
is the address of the exit
routine - taken from the eighth
word of the TQE.

N/A
indicates that this EXT interrupt
was not caused by the timer.

T T TR
asterisks indicate that a bad
control block chain prevented the
information from being obtained.

164 Programmer's Guide to Debugging (Release 21.7)

Page of GC28-6670-5,6, Revised April 16,

PGM Comprehensive Trace Records

1973, By TNL: GN28-2545

{

B N/A

RO hhhhhhhh Rl hhhhhhhh R2 hhhhhhhh R3 hhhhhhhh R4 hhhhhhhh R5 hhhhhhhh Ré hhhhhhhh R7 hhhhhhhh
R8 hhhhhhhh R9 hhhhhhhh R10 hhhhhhhh R11 hhhhhhhh R12 hhhhhhhh R13 hhhhhhhh R14 hhhhhhhh R15 hhhhhhhh

A} PGM ccc OLD PSW hhhhhhhh hhhhhhhh JOBN{cccccccc

WAITTCB
SVC-ccce

OLA hhhhhhhh OLB hhhhhhhh}
SVC-RES {OLTCB hhhhhhhh

*RTRBEM
ceceeeccee
Icceccece
99999999

Figure 52.

PGM Comprehensive Trace Record

MVT-M65MP systems only; identifies the
computer associated with the
interrupt.

PGM

the type of trace record.

ccc

the completion code for the program
interrupt.

OLD PSW hhhhhhhh hhhhhhhh

the program status word that was
current at the time the program
interrupt occurred.

cccccccc}

JOBN{ N/A

ccecccece
is the one to eight character
jobname of the job associated
with this event.

N/A
indicates a system task program
checked and no jobname is
available.

WAITTCB
SVC-cccce

MODN }|SVC-RES

*+*IRB***
cceccecece
Icccecce
99999999

SvVC-ccc
A type 3 or 4 SVC routine was
interrupted; cccc is the last
four characters of the routine
name.

SVC-RES
a resident SVC routine was
interrupted.

IRB*
the program check interrupt
occurred in an asynchronous
routine with an associated IRB.

ccceceecee
in MVT systems the eight
character name of the module that
was interrupted - taken from the
CDE associated with the task; or,
the name of an error routine -
taken from the SIRB associated
with the task.

Iccccecec
indicates that error fetch was in
the process of loading an error
recovery routine when the
interrupt occurred. The last
seven characters of the module
name are shown.

99999999
In MFT (with subtasking) an
ATTACH was issued, but the module
requested did not receive
control.

OLTCB hhhhhhhh

in MFT/MVT systems the address of the
TCB that was current when the
interrupt occurred.

In MVT-M65MP systems the OLA and OLB
fields replace the OLTCB field.

OLA hhhhhhhh
is the A computer address of the
TCB that was current when the
interrupt occurred.

OLB hhhhhhhh
is the B computer address of the
TCB that was current when the
interrupt occurred.

RO hhhhhhhh

to

R15 hhhhhhhh

the content of general purpose
registers zero through fifteen at the
time of the interrupt.

Section 3: Tracing Aids 165

{

SSM Comprehensive Trace Record

B

WAITTCB
SVC~ccec

} $8M OLD PSW hhhhhhhh JOBN{cccccccc} MODN }SVC~RES

AR TRBXAN
cceececce
Icceccece

N/A

OLA hhhhhhhh OLB hhhhhhhh LKID C

Figure 53. SSM Comprehensive Trace Record

)

SSM

identifies the computer associated
with the SSM interrupt.

identifies this trace record as an SSM
trace record.

OLD PSW hhhhhhhh hhhhhhhh

the program status word that was
current at the time the set system
mask instruction was issued.

JOBN{cccccccc}

MODN

N/A

cccececee
is the one to eight character
name of the job associated with
SSM interrupt.

N/A
indicates that the system
originated the interrupt and
there is no associated jobname.

WAITTCB

SVC-cccce

SVC-RES

*% JTRB***

Icccecce

WAITTCB
the WAIT task was interrupted.

svVC-ccec
a type 3 or 4 SVC routine was
interrupted; cccc is the last
four characters of the routine
name.

SVC-RES
a resident SVC routine was
interrupted.

**IRB*#* %
the SSM interrupt occurred during
execution of an asynchronous
routine with an associated IRB.

ccecceccece
the eight character name of the
module that was interrupted -
taken from the content directory
element (CDE) for the task; or
the name of an error routine -
taken from the SIRB associated
with the task.

Iccccecec
indicates that error fetch was in
the process of loading an error
recovery routine when the
interrupt occurred. The last
seven characters of the module
name are shown.

OLA hhhhhhhh
is the A computer address of the TCB
that was current when the interrupt
occurred. .

OLB hhhhhhhh
is the B computer address of the TCB
that was current when the interrupt
occurred.

LKID ¢
CPU affinity byte:

A indicates CPU A executing
disabled.

B indicates CPU B executing
disabled.

0 Neither CPU executing disabled.

166 Programmer‘'s Guide to Debugging (Release 21.7)

TIME

AND LOST EVENT RECORDS

GTF produces two types of time records and
a lost event record as follows:

TIME

**+*DATE:

ddddd.dddddd

appears on the last line of every
event record if TIME=YES was specified
in the GTF start command, and
designates in decimal the number of
seconds and microseconds since the
last midnight.

DAY ddd YEAR dddd TIME dd.dd.dd

This timestamp record appears at the
beginning of the printout of each
buffer filled by GTF and represents
the time the first record was placed
in the buffer.

DAY ddd
is the Julian date.

YEAR dddd
is the year.

*** LOST EVENTS:
dd.dd.dd (GTF DISABLED)

TIME dd.dd.dd
is the time since midnight in a
twenty-four hour format
(hours.minutes.seconds) .

NUM dddddddddd TIME

The lost event record appears whenever
GTF loses records, whether it is
because the GTF buffers overflowed or
because GTF was temporarily disabled
by ABEND. The record is not produced
if GTF terminates when the buffers are
full.

NUM dddddddddd
is the number of records that
were lost; one to ten decimal
digits.

TIME dd.dd.dd
is the time GTF resumed
recording; 24-hour format
starting at midnight.

GTF DISABLED
appears only if the events were
lost because GTF was temporarily
disabled, e.g., ABEND temporarily
disables GTF in order to format
GTF output for an ABEND dump.

Section 3: Tracing Aids 167

HEXADECIMAL FORMAT RECORD

HEXFORMAT
S M AID hh FID hh EID hh hhhhhhhh hhhhhhhh hhhhhhhh ‘/ahhhhhhhh
SUBSYS

Figure 54. Hexadecimal Format Record

Under some circumstances IMDPRDMP formats
and prints GTF records in hexadecimal
notation. The conditions under which GTF
records are formatted and printed in
hexadecimal format by IMDPRDMP are
presented in the discussion of the
hexformat record that follows:

HEXFORMAT
This label identifies a record dumped
in hex format at the request of the
user on a GTRACE macro. This request
was made by not specifying a format
appendage, that is FID=00.

USR

This label identifies this record as
dumped in hexformat because the user
requested a format appendage on the
GTRACE macro that could not be found.
This format appendage was identified
by FID=hh, and therefore its name is
IMDUSR hh.

SYSTEM
This label identifies a record that
was dumped in hex format because
either it is a GTF error record or the
format appendage for it has been
scratched by the user. If relative
bytes 0, 1 or 8, 9 contain X'EEEE',
then this is an error record produced
by GTF. This error record was
produced as a result of an
unrecoverable error in a GTF data
gathering routine. When the error was
encountered message IHL1181 was
written on the master system console
indentifying the error and the action
taken. This message is not issued if
the error occurred while building a
comprehensive SVC trace record.

Except for comprehensive SVC records,
this was the last record of its type
produced during the run of GTF that
produced it. If the X'EEEE' were not
in the record, then it was dumped in
hexformat because the IMDPRDMP format
appendage that formats this type of
record was not found by IMDPRDMP.

SUBSYS
This label identifies this record as
dumped in hexformat because the
subsystem format appendage requested
by the subsystem on a GTRACE was not
found by IMDPRDMP. The request was
made via FID=hh, and therefore, it's
name is IMDUSRhh.

AID hh
This field contains the AID of this
record, and should always be X*FF'.
The AID is the application identifier,
and GTF's is always X'FF'.

FID hh
This field contains the FID, or format
identifier. It is appended to
IMDSYS or 'IMDUSR' to obtain the
name of the format appendage that was
to have formatted this record.

EID hhhh
This field contains the EID, or event
identifier, for this record. The EID
uniquely identifies the event that
produced this record.

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
up to 64 words (256 bytes) of record
in the GTF internal format. The
internal format of GTF records is
available in the Service Aids PLM.

168 Programmer's Guide to Debugging (Release 21)

GTF SVC COMPREHENSIVE TRACE RECORDS

There are four groups of GTF SVC
Comprehensive Trace records.

Group 1 -- Those with Basic Fields
Group 2 -- Those with Basic Fields plus
a DDNAME Field

Group 3 -~ Those with Basic Fields plus
a Parameter List Field

Group 4 -- Those with Basic Fields plus
Variable Field(s) ,

The following sub-index lists the SVCs in
sequence, identifies the group to which
they belong, and gives the page where
register contents and other variable fields
are noted. '

SVC # Grogg Page

0 m 190
1 3 182
2 1 170
3 1 171
4 3 182
5 3 183
6 4 190
7 4 190
8 4 190
9 4 191
10 3 171
11 1 171
12 1 171
13 4 191
14 4 191
15 4 191
16 4 191
17 4 192
18 3 183
19 3 183
20 3 183
21 4 192
22 3 183
23 3 183
24 2 181
25 4 192
26 4 193
27 4 194
28 4 195
29 4 195
30 4 195
31 2 181
32 4 195
33 4 195
34 1 171
35 3 183
36 1 171
37 3 184
38 1 171
39 3 184
40 3 184
41 4 196
42 4 196
43 1 17
4y 4 197

null

[7]

PR i b R W R WE RS WR R R R R W E S WERRRE EEWR CWM CFWWR EWNR EESFUWERMWRMNNWNSNNR & puwHwL

rou

186
181
181
172
186
172
198
187
187
198
199
199
172
181
187
199
173
187
187
199
173
187
200
173
188
200
200
173
173
173
201
188
202
202
188
173
173
174
175
177
188
178
202
189
178
179
189
179
179
180
180
180
180

Section 3:

Tracing Aids

169

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

SVC Comprehensive Trace Records Group 1 -~ Basic Fields

B

R15/R0 hhhhhhhh hhhhhhhh Rl hhhhhhhh

{A} SVC ddd OLD PSW hhhhhhhh hhhhhhhh JOBN cccceccce MODN ccccccce {OLTCB hhhhhhhh

OLA hhhhhhhh OLB hhhhhhhh}

Figure 55. Basic SVC Comprehensive Trace Record

{3}

B
this field appears only in MVT-M65MP
records and identifies the CPU

associated with the event.

sSVC ddd
the decimal number of the SVC

OLD PSW hhhhhhhh hhhhhhhh
the program status word that was
current at the time the SVC interrupt
occurred. When SVC processing is
completed, operation is resumed under
control of this PsW.

#t#***t*}

JOBN{cccccccc
N/A

FrTIITI Y
indicate an error occurred while
attempting to retrieve the
jobname, e.g., an incorrect TIOT
address in the TCB could result
in asterisks being placed in this
field.

ccececece
is the eight character jobname of
the job issuing the SVC.

N/A)
indicates that the SVC was issued
by the system and there is no
associated jobname. '

&I RB* %
SVC-RES
MODN\SVC-nnnn
*cccecceee
cceeecce
N/A
SHERERES
99999999

*5 T RB¥**%
indicates the SVC was issued by
an asychronously executed routine
with an associated IRB.

SVC-RES
indicates the SVC was issued by a
resident SVC with an associated
SVRB.

SVC-nnn
indicates the SVC was issued by a
transient SVC module with an
associated SVRB. nnnn denotes
the last four characters of the
module name.

*cccccce
indicates that errcr fetch is in
the process of loading an error
recovery module. cccccec is the
last seven characters of the
module name.

ccecececce
is, in MVT systems, the eight
character name of the module
issuing the SVC -- taken from the
CDE associated with the task; or
the name of an error routine =--
taken from the SIRB associated
with the task.

In MFT systers the module name is
taken from the LRB, LPRB, PRB, or
FRB and the error routine name is
taken from the SIRB associated
with the task.

N/A
indicates the RB CDE pointer was
zZero.

I T IS
indicates that an erxor occurred
while attempting to retrieve the
module name.

99999999

In MFT (with subtasking) an
ATTACH was issued, but the module
requested did not receive
control.

170 Programmer's Guide to Debugging (Release 21.7)

'OLTCB hhhhhhhh SVC Comprehensive Trace Records Group 1 =--
the address of the TCB that was Basic Fields
current when the SVC was issued.

In MVT-M65MP systems the OLA and OLB SVC 2 (POST)
fields replace the OLTCE field and R15 contains no applicable
indicate the addresses of the TCBs information.
that were current in CPU A and CPU B RO contains the completion code to be
when the SVC was issued. placed in the ECB.
Rl contains the address of the ECB to
R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh be posted.

the contents of registers 15, 0, and 1
when the SVC was issued.

Section 3: Tracing Aids 170.1

Page oi GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

) 170.2 Programmer's Guide to Debugging (Release 21.7)

8VC 3 (EXIT)

registers contain no applicable
information.

SVC 10 (REGMAIN

R15 contains no applicable
information.

RO contairs the number of the subpool
requested in the high order byte, and
the number of bytes requested in the
low order three bytes.

R1 contains any negative value if the
request is for a GETMAIN; contains the
address of the storage to be freed if
the request is for a FREEMAIN;
contains zero value if the request is
for a FREEMAIN for an entire subpool.

SVC 11 (TIME)

R15 contains no applicable
information.

RO contains no applicable information.
R1 contains flag bits in the low order
byte that designate how the time is to
be returned in Register 0.

If the low order byte is:

x'00°*
register 0 is to contain a
32 bit unsigned binary
number representing the
number of timer units that
have elapsed. (A timer unit
is 26.04 micro-seconds).

x'01*
register 0 is to contain
elapsed time in hundredths
of a second.

x'02°
register 0 is to contain
packed decimal digits
representing elapsed time in
hours, minutes, seconds,
tenths of a second, and
hundredths of a second
(HHMMSSth) .

SVC 12 (SYNCH)

R15 contains the address of the entry
point for the processing program that
is to be given control.

RO contains no applicable information.
R1 contains no applicable information.

SVC_34 (MGCR)

R15 contains no applicable
information.

RO and R1 contents are as follows:
R1, if positive, contains a
pointer to the command buffer of
the command to be processed. RO
is not used in this case.

If R1 is negative and RO is zero,
then R1 contains a pointer to the
CSCB that is to be either added
to the chain or deleted from the
chain.

If R1 is negative and RO is
positive, then R1 contains a
pointer to the CIB that is to be
added to or deleted from the
chain. RO contains a pointer to
the beginning of the chain.

If Rl is negative and RO is
negative, then RO contains a
pointer to the CIB in which the
CIB count is to be set and R1
contains the value to which the
CIB count is to be set.

SVC 36 (WTL)
R15 contains no applicable information.
RO contains no applicable information.
Rl if positive, contains a pointer to
the user record that is to be written to
the system log dataset.

If negative, contains a pointer to
the LCA indicating either
initialization, (both data sets
have to be opened), or data set
switching is required.

SVC 38 (TTROUTER)
Registers 15, 0, and 1 do not contain
any applicable information.

SVC 43 (CIRB)
R15 contains no applicable
information.
RO contains the entry point address of
the user's asynchronous exit routine.
Rl contains option bit flags in the
high order halfword and the size of
the work area requested (in double
words) in the low order halfword.

Flag settings are:

flaqg byte 1

R, DIRB

Ocencace CIRB

.1000... bits 1-4 always set
as shown

R problem program key

eaceslae supervisor key

[I problem program state

eecenel. supervisor state

ecsscacl save area for
registers requested

acevassl no save area
requested

flaq byte 2

XXXX. o XX reserved

eecelaesne do not return IQEs at
exit

P return IQEs at exit

Section 3: Tracing Aids 171

SVC 46 (TTIMER)

R15 contains no applicable
information.

RO contains no applicable information.
Rl the low order three bytes carry
code determining how TTIMER should
work, as follows:

x*'00°
the time remaining in the
current tasks time interval
is to be returned in
register 0; the interval
timer is not to be canceled.

x'01°
the current task's time
interval is to be canceled.

x'02*
the time interval of a
related task is to be
canceled.

SVC_u49 (TTOPEN)

Registers 15, 0, and 1 do not contain
any applicable information.

SVC 52 (Restart/SMB Reader)

Registers 15 and 0 have no applicable
information.

R1 contents are as follows:
If SVC 52 is issued by the
Initiator for the purpose of
reading SMBs (containing JCL) for
an automatic step or checkpoint
restart, register 1 points to a
job queue DCB, SMB buffer, and
general work space.

If sVC 52 is issued from module
IEFRSTRT to initiate a check
point restart, register 1
contains a pointer to a parameter
list.

SVC 59 (OLTEP)

172

R15 contains no applicable
information.

RO contains a pointer to a three word
parameter list, which, in turn
contains pointers as follows:

Word 1 -- pointer to UCB

Word 2 -- pointer to DEB

Word 3 -- pointer to IECIOLTS

(L/70 interrupt handler).
R1 contains a call code used to
locate the particular OLTEP function
requested. The value will be greater
than x'00*' and equal or less than
x'94*,

Programmer's Guide t¢ Debugging (Release 21)

SVC 61 (TSAV)

Registers 15 and 0 have no applicable
information.

Rl contains zeroes if the routine is
being entered from the Overlay
Supervisor.

R1 contains the address of the DCB
used to fetch the module (set to a
negative value) if the routine is
being entered from the Contents
Supervisor.

SVC_68 (SYNADAF/SYNADRLS)

Entrxry from SYNADAF:

R15 contains a flag byte in the
high-order position and three bytes of
user data or an address of an entry
point to the SYNAD routine.

The flag byte contains codes as

follows:

00 EXCP request
01 BPAM request
02 BSAM request
03 QSAM request
04 BDAM request
05 BISAM request
06 QISAM request
07 BTAM request
08 QTAM request
09 GAM request

RO contains, in the three low order
bytes, the address of the DECB (BSAM,
BPAM, BDAM) or the address of the IOB
(BISAM, QISAM, QSAM).

Additionally, when a QSAM request is
made, the high-order byte contains the
offset of the first CCW in the IOB.

Rl contains a flag byte and the
address of the DCB in the high-order
byte and the three low-order bytes
respectively.

The flag byte bit settings are:

00000000 -

leceaaoe

BISAM and QISAM
error caused by input
error caused by
output

error caused by BSP,
CNTRL, or POINT
record had been
successfully read
INVALID request

PT conversion -
invalid character
BDAM only - hardware
error

BDAM only - no space
for record

eleaeaee
eeleca.n
..31.'..

eevelecs

ceeseles
ceescal.

Q'...O.l

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

Entry from SYNADRLS:
Registers 0 and 1 have no applicable
information.

R15 contains x*FF' in the high-order
byte, indicating the SVC routine is
being entered from the SYNADRLS macro
instruction and three bytes of user
data.

SVC 72 (CHATR)

Registers 15 and 0 have no applicable
information.

Rl contains the address of a parameter
list with the following structure:

Offset

0 address of parameter list+8
4 address of DCB
8 module name for XCTL
16 code for OPEN/CLOSE (1 byte);
address of UCM entry (3

bytes)
20 address of UCM
24 address of return

SVC 76 (IFBSTAT)

R15 contains no applicable
information.

The content and applicability of
Registers 0 and 1 vary with the
presence or absence of RDE
(Reliability Data Extractor) routines
in the control program.

If RDE is present:
RO contains a positive 0 or 8.
Rl has no applicable information.

A positive 0 in RO indicates that
EOD recording is requested; a
positive 8 indicates that IPL
recording is requested.

If RDE is not present:
RO contains a negative number
representing the length in bytes
of a record to be placed in the
SYS1.LOGREC data set.
R1 contains the address of the
record to be written.

SVC 79 (STATUS)

R15 has no applicable information.

RO If ND was specified, the two
high-order bytes contain the bits
indicating dispatchability.
The two low-order bytes contain
the function code:
cannot be rolled out
must complete - step
must complete - system
non-dispatchable - step
non-dispatchable - system

FwWwnrEo

5 non-dispatchable - TCB address
6 stop non-dispatchable
7 start dispatchable
R1 the high-order bit indicates SET or
RESET:
0 SET(SS)
1 RESET(RS)
The three low-order bytes contain
the TCB address if it was
specified, or, if not, zero.

SVC_83 (SMFWTM)

Registexrs 15 and 0 contain no
applicable information.

Rl contains a pointer as follows:
If positive a pointer to the
record that is to be written to
the SMF data set.

if negative a pointer to the SMCA
indicating either initialization
or processing for a SWITCH
command to switch SMF data sets.

SVC 84 (Restart Address Routine)

SVC 84 is issued by the GPS Graphic
170 Control Routine to have the buffer
restart address stored in the UCB
associated with the display unit for
which the routine builds a channel
program.

R15 contains no applicable
information.

RO contains the buffer restart address
to be stored in the UCB in the high
order two bytes. The low order two
bytes point to the UCB.

Rl contains a zero

SVC 85 (SWAP)

Registers 15, 0, and 1 do not contain
any applicable information.

SVC 91 (VOLSTAT)

R15 contains no applicable

information.

RO when negative, contains the address

of the UCB. Note: If device type is

disk go to SVC 91 load 2.

RO when positive, contains the address

of the DCB.

R1 contents are as follows:
if zero, the SVC was issued@ by CLCSE
if X'32*', the SVC was issued by DDR
if X'33' the sSVC was issued by EOD
if X'63', the SVC was issued by EOV
if any other than the above, the SVC
was issued by UNALLOCATION

SVC_92 (TCBEXCP)

R1S contains no applicable information
RO contains the address of the TCB for
the issuers task.

R1 contains the address of the IOB.

Section 3: Tracing Aids 173

SVC 93 (TGET/TPUT)

Entry from TGET

R15 contains no applicable information

RO the two high-order bytes are
reserved. The two low-order bytes
contain the buffer size in bytes.

Rl contains a flag byte and an address
as follows:
the high order byte is a flag byte
with these bit settings.
Denotes "TGET"

1100---.

specified
(1 SR Denotes "TPUT"
specified
elececes Reserved.

Reserved for TPUT
Denotes "NOWAIT"
specified means that
control should be
returned to the
program that issued
the TGET whether or
not an input line is
available from the
terminal if no input
line is obtained, a
return code of 4 will
be found in register
15.

Denotes "WAIT"
specified means that
control will not be
returned to the
program that issued
the TGET until an
input line has been
put into the
program’s buffer if
an input line is not
available from the
terminal, the issuing
program is put into a
wait state until a
line does become
available and is
placed in the
program's buffer
Reserved for TPUT
Reserved for TPUT
Reserved for TPUT
Denotes "ASIS"
specified means that
normal or minimal
editing will be
performed.

Denotes ®EDIT"
specified means that
in addition to the
normal (“"AsIsS"™)
editing, further
editing will be
performed.

ool-onoo

l..lc...

oo.Ooo--

o.--l--.

-...-1..

......10
04-0..01

emessn00

Programmer's Guide to Debugging (Release 21.7)

the low-order three bytes contain the
address of the buffer that is to
receive the input line.

Entry from TPUT

R1S contains no applicable
information.

RO the two high-order bytes contain
the Terminal Job Identifier number;
the two low-order bytes contain the
size of the input buffer in bytes.

Rl contains a flag byte and an address
as follows:

the high-order byte is a flag

byte with these bit settings:
Denotes "TGET"
specified
Denoctes "TPUT"
specified
Reserved
Denotes "LOWP"
specified means that
the terminal will not
receive any
inter-terminal
nessages if TSBITOFF
is on even if a
key-zero task is
sending the messages
may only be specified
on a TPUT with TJID.
Denotes “HIGHP"
specified means that
the terminal will
receive
inter-terminal
messages even if
TSBITOFF is on if a
key-zero task is
sending the messages
may only be specified
on a TPUT with TJID.
Denotes "NOWAIT"
specified means that
control should be
returned to the
program that issued
the TPUT whether or
not system output
buffers are available
for the output line
if no buffers are
available, a return
code of 4 will be
found in register 15.
Denotes "WAIT"
specified means that
control will not be
returned to the
program that issued
the TPUT until the
cutput line has opeen
placed in a system
cutput buffer if no
buffers are

lececaan
[

eleceass

eeleveas

P | JO

..lll.“

...0....

-0--1'--‘

l“..Qo.II

LN) loo

l.on-Ooo

'000..10

cesees 0l

'.‘.‘I'OO

available, the
issuing program will
be put into a wait
state until buffers
do become available
and the output line
is placed in then.
Denotes "“HOLD"
specified means that
the program that
issued the TPUT
cannot continue its
processing until this
output line has been
either written to the
texrminal or deleted.
Denotes "NOHOLD"
specified means that
control should be
returned to the
program that issued
the TPUT as soon as
the output line has
been placed on the
output gqueue.

Denotes “"BREAKIN"
specified means that
output has precedence
over input; that is,
if the user at the
terminal is
transmitting, he is
interrupted, and'this
output line is sent
any data that was
received before the
interruption is kept
and displayed at the
terminal following
this output line.
Denotes "NOBREAK"
specified means that
input has precedence
over output; that is,
the output message
will be placed on the
output queue to be
printed at some
future time when the
terminal user is not
entering a line.
Denotes "CONTROL"
specified means that
this line is composed
of terminal control
characters and will
not print or move the
carriage on the
terminal.

Denotes "ASIS"
specified; means that
normal or minimal
editing will be
performed.

Denotes "EDIT"
specified; means that
in addition to the
normal (“ASIS")

editing, further
editing will be
performed.

the low-order three bytes contain the
address of the buffer that is to hold
the line of output.

SVC 94 (TERMCTL)

Entry from TCLEARQ:

R15 contains
information.

RO Contents:
Bytes
1-3

Rl Contents:

Bytes
0

1-3

no applicable

01 -- Entry code
0 -- Reserved

80 -~ "INPUT" specified
00 -- "OUTPUT" specified
0 -- Reserved

Entry from STBREAK:

R15 contains
information.

RO Contents:

Bytes
0

1-3
Rl Contents:

Bytes
0

1-3

Entry from STCOM:

R15 contains
information.

RO Contents:

Bytes
0

1-3
Rl Contents:

Bytes
0

1-3

no applicable

04 -~ Entry code
0 -- Reserved

80 -- "YES"™ specified
00. -- "NO"™ specified
0 -- Reserved

no applicable

05 ~- Entry code
0 -~ Reserved

80 -- YES specified
00 -- NO specified
0 -- Reserved

Entry from STTIMEOU:

R15 contains
information.

no applicable

Section 3: Tracing Aids 175

RO Contents:

FIOF;
[
w

-3

R1 Contents:

Bytes
0

1-3

06 -- Entry code
0 -- Reserved

80 -- "YES" specified
00 -- "NO" specified
0 -- Reserved

Entry from STCC:

R1S5 contains
information.

RO Contents:

Bytes
0

1-3

Rl Contents:

Bytes

176 Programmer's Guide to Debugging (Release 21)

no applicable

07 -- Entry code
0 -- Reserved

Flag byte as follows:

l.ceees. first operand
specified
eleveess ATTN specified
eel..... LD specified
eeel.... CD specified
00000000 no operands
specified,
retain
previously-used
characters.
0 -- Reserved
hh -- line delete control
character. The
hexadecimal
representation of any
EBCDIC character on the
terminal keyboard except
the new line (NL) and
carriage return (CR)
control characters.
¢ -- the character
representation of any
EBCDIC character on the
terminal keyboard.
hh -- character delete
control character. The
hexadecimal
representation of any
EBCDIC character on the
terminal keyboard except
the new line (NL) and
carriage return (CR)
characters.
¢ -- the character
representation of any
EBCDIC character on the
terminal keyboard.

Entry from STATTN:

R15 contains no applicable
information. :

RO Contents:

Bytes

0 08 -- Entry code

1 00 -- Reserved

2 hh -- Lines byte. The

number of consecutive
lines of output that can
be directed to the
terminal before the
keyboard will unlock.

00 -- Output line
counting is not used.

3 hh -- Tens byte. The
tens of seconds that can
elapse before the
keyboard will unlock.

00 -- Locked keyboard
timing is not used.

Rl Contents:

Bytes
Flag byte as follows:

1....... LINES specified
elee.... TENS specified
eeleees. input address
specified
00000000 no operands
specified,
results in a
NOP instruction.
1-3 hhhhhh -~ Character
string address.
000000 -- no character
string was specified.

Entry from STAUTOLN::

R15 contains no applicable'informtion.

RO Contents

Bytes

0 09 -- Entry code

1-3 hhhhhh -- the address of
a fullword containing the
number to be assigned to
the first line of
terminal input.

Rl Contents:

Bytes
00 -- Reserved

0

1-3 hhhhhh -- the address of
a fullword containing the
increment value used in
assigning line numbers.

Entry from STSIZE:

R15 contains no applicable
information.

RO Contents:

Bytes

0 0OA -- Entry code

1,2 0000 -- Reserved.

3 hh -- lines byte. The

numbexr of lines (depth)
that can appear on the
screen.

R1 Contents:

Bytes
0-~-2 000000 ~- Reserved
3 hh -- size byte. The
logical line size (width)
in characters of the
terminal.
Entry from GTSIZE,

STAUTOCP, SPAUTOPT,

RO Contents:

Bytes ,
0 00 -- Entry code
1-3 0 -~ Reserved

R1 Contents:
No applicable information will be
zeroed.

Entry from TSABEND

R15 contains no applicable
information.

RO Contents:

Bytes
0 OF -- Entry code
1-3 0 -- Reserved

Rl Contents:
No applicable information will be
zeroed.

SVC 95 (TSIP)

RTAUTOPT

R15 contains no applicable
information.

RO Contents:

Bytes
0 Entry codes as follows:
0B -- GTSIZE
0C -~ STAUTOCP
0D -~ SPAUTOPT
OE -- RTAUTOPT
1-3 000000 -- Reserved

R1 Contents:
No applicable information, will
be zeroed.

Entry from STCLEAR:

R15 contains no applicable
information.

RO Contents:

Bytes
0 10 -- Entry code
1-3 000000 -- Reserved

R1 Coritents:

Bytes

0 00 -« Reserved.
1=3 hhhhhh -- erasure

character string address.

Entry from TCABEND

R15 contains no applicable
information.

R15 contains no arplicable
information.

RO Contents:

Bytes
0,1 zero or Terminal Job
Identifier (TJID) or not
applicable.
2 00 -~ Reserved
3 Entry code as follows:
Entry Code Calling Routine
00 Problem Program (TMP)
01 Timer Second - Level
Interruption Handler
02 TGET/TPUT
03 Region Control Task
o4 Dequeue, TIOC (Attention,
TSINPUT, TSOUTPUT), Timer
SLIH, WTOR
05 Region Control Task
06 Enqueue
07 Dequeue
08 TSO Dispatcher
09 TSO Dispatcher
0A TSO Dispatcher
0B TSO Dispatcher
0oc Region Control Task (Quiesce)

Section 3:

Tracing Aids 177

oD
0E

OF
10
11

12
13
14-18

Region Control Task (Quiesce)

Time Sharing Control Task
(swap)

Time Sharing Control Task
(swap)

Time Sharing Control Task
(Swap)

Time Sharing Control Task
{Swap)

Region Control Task (Restore)
Region Control Task (Restore)

Resexved

R1 Contents:

Bytes
0,1,2,3 variable as follows:
Entry Code Content
00 Address of 8-character
command name sign-bit:
0-ended
1-beginning
01 not applicable
02 Sign-bit:
O0-Input
1-output
Bytes 3&4:
Number of free buffers
03-05 not applicable
06 Estimated must complete time
07-0C not applicable
0D Number of FBQEs
0E Byte 0: Swap Units
Byte 1: Swap device code
(0,4,8,¢)
Bytes 2&3:
Swap size in 2K blocks
0F-13 not applicable

SVC 97 (TEST(TSO))

Entered froms

Any module o¢f the tested program,
when used as a breakpoint
handler. If used as a breakpoint
handler the TCBTCP bit is *1* in
the current TCB and registers 15,
0, and 1 contain no applicable
information.

Any module of the TSO Test
Command Processor when used as a
subroutine of TSO TEST. 1In this
case the current TCBTCP bit is
'*0' and registers are as follows:

R15 contains no applicable
information.

RO Contents:

Bzg:_es
0

1-3

Entry code as follows:

40 ~- Set TCBTCP bit to
'1.

20 -- Set TCBTCP bit to
lo'

10 -- Alter TCBTRN field
08 -~ Alter second word
of RBOPSW field

04 ~- Alter specific
register in SVC 97's SVRB
register save area

04 -- Alter all registers
in SVC 97's SVRB register
save area

02 -- Alter
floating-point register
in TCB save area

01 -- Set RB wait count
to 0 (zero).

Rddress of target TCB,
PRB, or IRB

Rl Contents:

Register 1 contents are variable as

follows:

Entry code
40
entry code
20
entry code

entry code
08

08

entry code
07

entry code
04

entry code
02

entry code
01

SVC 100

Bytes
0123 not applicable
0123 not applicable

not applicable

1,2,3 TCBTRN value

0 instruction length,
completion code
program mask

1,2,3 address of value for

second word of
RBOPSW field.
register number
+2,3 address of new value
x"FF*
2,3 address of 64-byte
value
floating-point
register number
address of new value
for register
not applicable

SVC 100 is used by the SUBMIT, OUTPUT,
OPERATOR, and CANCEL/STATUS

processors.

178 Programmer's Guide to Debugging (Release 21)

Contact your FE programming
representative for information
concerning the content of General
Purpose Registers 15, 0, and 1 upon
entry to SVC 100.

SVC 101 (QTIP)

SVC 101 is used only by the TSO
sub-system and the MCP and provides an
interface between them for
inter-region communication and data
movement.

R15 Contents:

Bytes

0 0 -- zeroed. by entry
code in RO

1-3 hhhhhh -- variable by
entry code in RO as
follows:

00 -- not applicable
03 -- entry address of
QTIP0030 within
IEDAYAA
04-0D -- not applicable
OE -- (with savearea
address in R1) not
applicable. (Without
savearea address in
R1) entry address .of
QTIP0140 within
IEDAYOO
0OF-11 -- not applicable
12-16 -- entry address of
IKJGGQT1, branch entry to
QTIP SVC
17 -- address of TSB
being logged off
18 -~ (same as 12-16)
19-1A -- not applicable
1C -- entry address of
QTIP0280 within
IEDAYII
1D -- not applicable.

RO Content:

Bytes

0 0 -- zeroed.
1-3 hh -- entry codes as
follows

00 -- invokes IEDAYAA
03 -- invokes IEDAYAA
04 -- invokes IEDAYHH
05-09 -- invokes IEDAYII;
OA -- invokes IEDAYLL;
0B-11 -- invokes IEDAYOO
12-14 -- invokes I1EDAYGP
15-16 -~ invokes IEDAYAA;
17 -- invokes IKJGGO088
18 -- invokes IEDAYOO;
19-1A -- IEDAYZZ invoked
1C ~- invokes IEDAYI1
1D -- IEDAYGP invoked;

Rl Content:

Bytes

0 0 -- zeroed.

1-3 hhhhhh -~ variable by
entry code in RO as
follows:

00 -- address of
savearea within AvVT
03 -- not applicable
04~-0D -~ address of
savearea within AVT
0E -- (without entry
address in R15;
address of savearea in
AVT) (with entry
address in R15; not
applicable)
O0F-11 -- address of
savearea within AVT
12-16 -- not applicable
17 -- zeroed;
indicates no savearea
is being passed
18 -- not applicable
19-1A -~ address of
savearea within AVT
1C -- not applicable
1D ~- address of
savearea within
TIOCRPT

SVC 103 (XLATE)

R15 contains no applicable
information.

RO contains the length of the field to
be translated.

R1 Contents:

Bytes
0 hh action byte as

follows:

80-translate from
EBCIDIC to ASCII
00-translate from
ASCII to EBCDIC

1-3 hhhhhh address of field to
be translated

SVC_104 (TCAM)

R15 contains no applicable information

RO indicates the subroutine to be
executed as follows:

Section 3: Tracing Aids 179

Bytes
0-3 00000001 IGCO0010D entry

point routine

00000002 GTFIELDA decode
routine

00000003 STTNME operator
command addressing
routine

00000004 IEDQCA02 scan
routine

svC 109

Type 3 and type 4 SVC routing routine.

R15 contains an index value, converted
to 3 digit EBCDIC number and appended
to name IGC00. This routine is then
called.

RO/R1 contain no applicable

information for SVC 109, contents are

R1 contains the address of the to be used by called routine IGX00.

operator control work area
Sve 116

SVC 105 (IMGLIB) Type 1 SVC routing routine.

R15 contains no applicable information R15 contains an index value, used in

binary form to index into a table to
RO contains no applicable information call other SVC routines.
-R1 indicates actions to be taken as RO/R1 contain no applicable
follows: information for SVC 116, contents are
to be used by called routines.

Bytes
0-3 00000000 construct a DCB svVC 117
and DEB for ,
SYS1. IMGLIB Type 2 SVC routing routine.

hhhhhhhh delete DCB at this
address and also
the DEB pointed to
by the DCB.

R15 contains an index value, used in
binary form to index into a table to
call othexr SVC routines.

RO/R1 contain no applicable

information for SVC 117, contents are
to be used by called routines.

180 Programmer's Guide to Debugging (Release 21)

SVC Comprehensive Trace Records Group 2 -

SVC 31 (FEOV)

Basic Fields Plus DDNAME Field

Group 2 SVC comprehensive trace records add
a DDNAME field to the fields composing the
basic record. The format is:

ttt###t#}

DDNAME{CCCCCCCC
N/A

E2 2222 2 2]
asterisks indicate an error
occurred while gathering the
information.

cceccececce
the name of the associated DD
statement.

N/A
indicates that the DD name could
not be obtained for the following
reasons: :

The DCB was not opened

The DCB TIOT offset was outside

the valid range

The DEB TCB pointer was set to 0
The TCB TIOT pointer was set to

0

The DD name in the TIOT was not

in EBCDIC notation

Following are descriptions of register 15,
0, and 1 content for the Group 2 SVCs.

SVC 24 (DEVTYPE)

R15 contains no applicable
information.

RO contains the address of the output
area or the two's compliment of the
output area address.

R1 contains the address of the DD
name, or the two's compliment of the
DD name address.

When control returns from the DEVTYPE
SVC routine, the output area will
contain 8, 20, or 24 bytes of device
data, depending on the value (+ or -)
of RO and R1l, and the device type
associated with the DDNAME as follows.

Output Area Size (Bytes)

RPS-DA DA Non-DA
RO and R1
positive 20 20 8
RO negative
and
R1 positive 20 20 8
RO and R1
neégative 24 20 8

R15 and RO contain no applicable
information

Rl contains the address of the DCB

SVC 53 (RELEX)

R15 contains no applicable information

RO contains the address of a parameter
list which contains either:

hhhhhhhh relative block or TTR
MBBCCHHR actual address

Rl contains the address of the DCB

SVC 55 (EOV)

R15 contains no arrlicable information

RO contains the IOB address if the
following are true:

DCBOFLAGS eeeleaas
DCBMACRF = Qcecccen
and RO is not equal to x'00001000°

R1 contains the DCB address

SVC 57 (FREEDBUF)

R15 contains no applicable information
RO contains the address of the DECB
Rl contains the address of the DCB

SVC 58 (REQBUF/RELBUF)

R15 contains no applicable information

RO contains the request count or
release address

Rl contains the DCB address
SVC 69 (BsSP)

R15 and RO contain no applicable
information

Rl contains the address of the DCB

Section 3: Tracing Aids 181

SVC Comprehensive Trace Records; Group 3 -

Basic Fields Plus Parameter lList Field

Group 3 SVC comprehensive trace records add
a parameter list field to the fields

composing the basic record.

The parameter

list field displays all or a portion of the
parameter list being passed to the SVC

routine by the caller.

The format is:

N/A
PLIST{hhhhhhhh hhhhhhhh hhhhhhhh ...}

AR EEERE FEP ek 2R ESE%S

N/A
indicates that there is no
applicable information

hhhhhhhh hhhhhhhh ...
parameter list display. Content
and amount varies with the SVC
being traced.

*%kE*kkE% kb kkkpk
indicates that an error occurred
while gathering the information.

Following are descriptions of register 15,
0, and 1 content, and PLIST content for the
Group 3 SVCs.

SVC 1 (WAIT)

R15 contains no applicable information

RO contains the count of the events
being waited on. If zero the wait is
treated as a NOP.

R1 if positive, contains the address
of the ECB being waited on. 1If
negative, contains the address of a
list of ECBs, in two's complement
form.

PLIST may contain up to 40 bytes of
information. It consists of a list of
ECB addresses up to a maximum of 10.

SVC _4_(GETMAIN)

182

R15 and RO contain no applicable
information.

R1 contains the alldress of the
parameter list passéd whén the sSvVC was
called. (If Rl is 28¢8 there is no
parameter 1ist anhd the PLIST field
will not be présent:)

PLINEY im ten bytes in lengeth and
breaks down as follows:

Bytes

0-3 hhhhhhhh

Programmer's Guide to Debugging (Release 21)

8 hh

‘hh

For a single area
request - the length
requested.

For a variable request
- the address of a
doubleword containing
the minimum and
maximum length
requested as shown
below:

Bytes

0 zero

1,2,3 minimum length
4 zerxo

5,6,7 maximum length

For a list request -
the address of a list
of GETMAIN length
requests (1 word per
request) the last word
containing x*80°' in
byte 0.

Hierarchy identifier
(optional)

hhhhhhhh

QA

For a single area
request - the address
of a word GETMAIN will
initialize as the
beginning allocated
core area.

For a variable area
request - the address
of a doubleword which
GETMAIN will
initialize with the
address of the
GETMAINed area and the
actual length
allocated.

For a list area
request - the address
of a list of words
which GETMAIN will
initialize with the
address of allocated
areas.

Flag byte as follows:

00
20
Cco

EO

unconditional single area
request

conditional single area
request

unconditional variable
request

conditional variable
request

80 unconditional list request
A0 conditional list request

9 hh Subpool identification

SVC 5 (FREEMAIN)

R15 and RO contains no applicable
information.

R1 contains the address of the
parameter list passed when the SVC was
called. (If R1 is zero, no list
passed, and PLIST will not appear.)

PLIST is 10 bytes in length and breaks
down as follows:

Bytes

0-3 a. For a single area request
the length to be freed.

b. For a list area request --

the address of a list of
FREEMAIN length requests
(1 word per request), the
list word containing x'80°
in byte 0.

4-7 a. For a single area request
-- the address of an area
to be freed.

b. For a list area request --
the address of a list of
addresses of the areas to
be freed. :

8 hh Flag byte as follows:

00 unconditional single area
request

20 conditional single area
request

80 unconditional list area
request

A0 conditional list area
request

9 hh Subpool identification.

SVC 18 (BLDL/FIND - Type D)

R15 contains no applicable
information.

RO contains the address of the
parameter list.

R1 contains the address of the DCB and
indicates the macro instruction that
issued the SVC call; if R1 is positive
-- BLDL; if R1 is negative -- FIND.

PLIST
The BLDL parameter list is 12
bytes in length:

1 the numbering entries
3
[}

2 entry length

4-11 the hexadecimal representation
of the member name for which
the BLDL was issued.

The FIND parameter list is 8
bytes in length:

Bytes

0-7 the hexadecimal representation
of the member name for which
the FIND was issued.

SVC 19,20,22,23 (OPEN,CLOSE,OPENJ, TCLOSE)

R15 and RO contain no applicable data.

Rl contains the address of the
parameter list.

PLIST is up to 40 bytes in length and
consists of a series of U-byte entries
(up to 10). Each entry breaks down as
follows:

Bytes
0 hh Ooption byte as shown

below:
Bits

leee «<.e. Last Entry indicator
.011 LEAVE
.001 REREAD
<100 REWIND
.010 IDLE
.000 DISP
«se. 0000 INPUT
«ees 1111 OUTPUT
eees 0011 INOUT
eses 0111 OUTIN
eee« 0100 UPDAT
«-s« 0001 RDBACK

1-3 hhhhhh DCB address

SVC 35 (WTO/WTOR)

R15 contains no applicable
information.

RO contains console source ID.

Rl contains the address of the
parameter list being passed to the
SvC.

PLIST is 12 bytes in length for WTO
and 20 bytes in length for WTOR.

The PLIST field for WTO breaks down as
follows:

Bytes

0 00-- indicates WTO
parameter list.

Section 3: Tracing Aids 183

1 hh~~ message length plus
four.

2,3 hhhh~- MCS flag bytes; bit

settings as follows:

Byte 2

l.ceeree Invalid entry
elesecees Message is to be
queued to the console
whose source ID is
passed in Register 0.
eelieeece the WTO is an
immediate command
response.
eseesleecs the WTO macro
instruction is a reply
to a WTOR macro
instruction.
Message should be
broadcast to all
active consoles.
Message queued for
hard copy only.
«sseesel Message queued
unconditionally to the
console whose source
ID is passed in
register 0.

.u.-.l-

secsasal

Byte 3

lese.ese time is not appended
to the message.
.1111... Invalid entry
esscel.. message is not queued
for hard copy
eseseell invalid entry

4-11 , First eight bytes
of message

The PLIST field for WTOR breaks down
as follows:

Bytes

(] hh--length of reply

1-3 hhhhhh--address of
reply buffer

4-7 hhhhhhhh~--address of
reply ECB

8 00-~-zeroed

9 hh--message length plus
four

10,11 hhhh--MCS flag bytes,
see WTO PLIST

12-19 first eight bytes of
message.

SVC 37 (SEGLD/SEGWT).

184

R15 contains ne dpplicable
information.

RO if zero, entry was from SEGLD;
non-zero indicates entry from SEGWT.

Programmer's Guide to Debugging (Release 21)

Rl contains the address of the
parameter list.

PLIST is 12 bytes in length and breaks
down as follows:

Bytes

0-3 hhhhhhhh branch instruction
(to svVC 45)

4-7 hhhhhhhh address of
Referred-to Symbol

8 hh "To" segment number

9~-11 hhhhhh Previous caller or 0

SVC 39 (LABEL)

R15 and RO contain no applicable
information.

Rl contains the address of the
parameter list.

PLIST is 20 bytes in length and breaks
down as follows:

Bytes

0-2 c00004 -~ REWIND option
c00006 -- UNLOAD option

3 hh relative UCB in TIOT
to use for mounting
purposes.

4-7 hhhhhhhh address of 8
byte DDNAME for DD card
that allocates devices
for mounting tapes.

8-11 hhhhhhhh~-address of
volume label set.

12,13 hhhh-- length of one
volume label.

14 hh-- number of labels
in volume label set

15 hh-- command byte of
control CCW

16-19 hhhhhhhh-- address of

the first 10 bytes of
volume header label.

SVC 40 (Extract)

R15 and RO contain no applicable
information.

Rl contains the address of the
parameter list.

PLIST is 12 bytes in length and breaks
down as follows:

Bytes

0 - Reserved

1-3 hhhhhh address of list area in
which the extracted
information will be
stored.

Reserved

5=-7 070000 EXTRACT will obtain
information from the
current TCB and/or its
related control blocks.
hhhhhh address of TCB from
which EXTRACT is to get
requested information.
flags byte; indicates
the fields to be
extracted as follows:

Bits

leeeee.. address of the
general register
save area

elee.... address of floating
point register save
area

eslecee. reserved

eeeless. address of end-of-
task exit routine

eseeale.. limit priority &
dispatching priority

esesel.. task completion code

esssssl. address of TIOT

eseeeesl address of the
command scheduler
communication list
in the CSCB

TSO_only flags byte;
indicates the TSO

fields to be extracted
as follows:

Bits

l....... address of time-
sharing flags in TCB

«1l...... address of protected
storage control
block

eel..... terminal job
identifier for task

.o« XXXX%X reserved

10,11 0000 reserved

SVC_45 (OVLYBRCH)

R15 contains the address of the Entry
Table entry which caused the SVC to be
issued.

RO and R1l contain no applicable
information.

PLIST is 12 bytes in length and breaks
down as follows:

0-3 hhhhhhhh Branch (inst. to
SVC 45)
4-7 hhhhhhhh address of

Referred-to-Symbol
"To" segment number
Previous caller or 0

8 hh
9-11 hhhhhh

SVC 47 (STIMER)

R15 contains no applicable information

RO contents:

Bytes

0 hh STIMER option byte
as follows:

x*'40' TOD option
x'30' DINTVL option
x'10' BINTVL option
x'00' TUINTVL option
1-3 hhhhhh exit address

R15 contains the address of the time
value

PLIST is four or eight bytes in length
depending on the option in force:

a. For the DINTVL and TOD options
PLIST is eight bytes in length
and represents the time value.

b. For the BINTVL and TUNINTVL
options PLIST is 4 bytes in
length and represents the time
value.

SVC_48 (DEQ)

R15 and RO contain no applicable
information.

Rl contains the address of the
parameter list.

PLIST is 16 bytes in length and breaks
down as follows:

Bytes
0 hh

if set to x'FF'
indicates the last
element in the
parameter list.
Otherwise no
meaning.

the length of the
minor name whose
address is in bytes
8, 9, 10 and 11 of
this element.

00 the length of the
minor name is in the
first byte of the
minor name field
whose address is in
bytes 8, 9, 10, and
11 of this element
(does not include
length byte itself).
DEQ parameters byte
as follows:

Bit Settings

Oceee... Exclusive request

l....... Shared request

e0ceee.. MINOR name is known
only to job step

Section 3: Tracing Aids 185

elec.... the scope of minor
name is SYSTEM
eelee... Set must complete
equal to SYSTEM
eeele... Set must complete
equal to STEP
essee000 RET=NONE
ee=e+001 RET=HAVE
eesae010 RET=CHNGE
eese011 RET=USE
eeeawlll RET=TEST
eeessle.. RELEASE
return code field
for codes returned
to the issuer by DEQ
4-7 hhhhhhhh address of major
resource name
(QNAME)
8-11 hhhhhhhh address of minor
resource name
(RNAME)
12~-15 hhhhhhhh if the DEQ
parameters byte bit
4 (RELEASE) is set
on this word
contains the UCB
address; otherwise
the content of this
word is
unpredictable.

3 hh

SVC 56 (ENQ)

R15 and RO contain no applicable
information

R1 contains the address of the
parameter list

PLIST is 16 bytes in length and breaks
down as follows:

Bytes
0 hh

if set to x'FF'
indicate the last
element in the
parameter list.
Otherwise no
meaning.

the length of the
minor name whose
address is in bytes
8, 9, 10, and 11 of
this element.

00 the length of the
minor name is in the
first byte of the
minor name field
whose address is in
bytes ., 9, 10, and
11 of this element
(does not include
length byte itself).
ENQ parameters byte
as follows:

2 hh

Bit Settings
0.c..e.. Exclusive request

l....... shared request

186 Programmer's Guide to Debugging (Release 21)

e0ceeee. MINOR name is known
only to job step
elecc... the scope of minor
name is SYSTEM
eslecce. Set must complete
equal to SYSTEM
evel.... Set must complete
equal to STEP
seee+000 RET=NONE
eess:001 RET=HAVE
eese:010 RET=CHNGE
eeeee011l RET=USE
eeeee111l RET=TEST
eeeelee. RESERVE
return code field
for codes returned
to the issuer by ENQ
4-7 hhhhhhhh address of major
resource name
(QNAME)
8-11 hhhhhhhh address of minor
resource name
(RNAME)
12-15 hhhhhhhh if the ENQ
parameters byte bit
4 (RESERVE) is set
on, this word
contains the UCB
address; otherwise
the content of this
word is
unpredictable.

3 hh

SVC 60 (STAE/STAI)

R15 contains no applicable information
RO contents:

00 -- Create

04 -- Cancel

08 -- Overlay

Rl contains the address of the
parameter list. The high-order bit is
set to one if the XCTL=YES parameter
was coded.

PLIST is eight bytes in length and
breaks down as follows:

Bytes

0 flag byte as

follows:

x *'80' for STAI

processing

x '20* for STAE

processing

If zero, the

CAMCE: operand is

in effect; otherwise

this is the address
of the STAE/STAIL
exit routine.

4-7 hhhhhhhh address of the exit
routine parameter
list; if zero no
exit routine
parameter list
exists.

1-3 hhhhhh

SVC 63 (CHEPT)

R15 and RO contain no applicable info.

R1 contents:
a. the address of the parameter list

b. Zero if a CANCEL request

PLIST is eight bytes in length and
breaks down as follows:

Bytes
0 00

check ID address
provided via the second
parameter of CHKPT
macro instruction
80 No check ID address
provided
1-3 hhhhhh address of checkpoint
DCB
check ID address not
provided
01 to 10check ID length
provided via third
parameter of the CHKPT
macro instruction
FF "s" specified as third
parameter of CHKPT
macro instruction; the
system generated check
ID is to be placed at
the address specified
in bytes 5-7
5-7 hhhhhh address for storing
system generated check
ID or address of user
provided check ID

4 00

SVC 64 (RDJFCB)

R15 and RO contain no applicable
information

R1 contains the address of the
parameter list

PLIST is up to forty bytes in length
and consists of a series of 4-byte
entries containing the DCB address.
The high-order byte has bit 0 set to
one to indicate the last entry.

SVC 70 (GSERV)

R15 and RO contain no applicable
information.

R1 contents:

Bytes

0 hh is a mask indicating

which bits in the

Graphic Control Byie

(GCB) should be reset.

1-3 hhhhhh the address of a
fullword field that
identifies the DCB
related to the GCB in
which bits are to be

reset.

PLIST is four bytes in length and
displays the fullword pointed to by
Rl. Byte 0 is a unit index factor
used to locate the UCB address in the
DEB associated with the DCB. (The GCB
to be reset is in the UCB).

SVC 73 (SPAR)

R15 and RO contain no applicable
information

R1 contains the address of the
parameter list

PLIST is up to 40 bytes in length and
consists of a series of 4-byte
entries. The first entry breaks down
as follows:

Bytes

0 hh the priority specified
for the attention
routine by the SPAR
macro instruction.

1 hh Reserved

2,3 hhhh the number of words in

the parameter list.
Each additional entry contains a GACB
address as specified by the SPAR
macro.

SVC 74 (DAR)

R15 and RO contain no applicable
information.

Rl contains the address of the
parameter list.

PLIST is up to forty bytes in length,
consisting of 4-byte entries. The
first entry breaks down as follows:

Reserved
hh the number of words in
the parameter list.

Each additional entxry contains a GACB
address specified by the DAR macro.

SVC 77 (ONLT)

R15 contains the address of the UCB of
the line for the terminal being
tested.

RO contains the address of the first
of five '9's in the test request
buffer for ONLT (five '9's' indicate a
request for an online test).

Rl contains the address of the
parameter list.

PLIST is 14 bytes in length and breaks
down as follows:

Section 3: Tracing Aids 187

0-3 hhhhhhhh address of the ECB
and the prefix of the
request buffer.

4-7 hhhhhhhh address of the
GETMAIN parameters
and terminal test
pattern table.

8-11 hhhhhhhh address of special

line control

characters

00 means test is

valid

01 means test is

invalid and not set

up

00 means no answer on

dial line

01 means answer on

dial line

12 hh

13 ‘hh

SVC 80 (GJP/GFX)

(The SVC 80 Processing Routine serves
as a communication link between GJP
routines and the GFX Task, and between
the GFX task and ABEND Hook routine.)

R15 contains no applicable
information.

RO contains the address of the
parameter list.

R1 contains the address of the console
control table.

PLIST is eight bytes in length and
breaks down as follows:

Bytes

0-3 ccee indicates which
routine passed to SVC

80 as follows:

PLOG ~- Log Off
PBEG -- Begin Job
Processor

ABDH -- Abend Hook
Routine

IERR -- Internal
Error Routine

NPRO -- Initial
Processor

4-7 hhhhhhhh the 2250 unit address
that indicates which
graphic job processor
is using the SVC 80
routine.

SVC 87 (DOM)

188

R15 contains no applicable
information.

RO the value (positive or negative) of
RO determines the content of R1.

Programmer's Guide to Debugging (Release 21)

Rl If RO is not negative, R1 contains
a message ID word (which is also
displayed in the PLIST field).

If RO is negative, R1 contains the
address of a list of message ID words.

PLIST is up to 40 bytes in length,
consisting of 4-byte entries. Each
entry is a message ID word. The last
entry is identified by the 0 bit in
the high-order byte being set to 1.

SVC 90 (XOMNGR)

R15 and RO contain no applicable
information.

R1 contains the address of the QMPA.

PLIST is 36 bytes in length and
contains the QOMPA fields. The QMPA
and its associated control blocks are
described in the MVT Job Management
PLM, Order No. GY28-6660.

SVC 96 (STAX)

R15 and RO contain no applicable
information.

Rl contains the address of the
parameter list.

PLIST is 20 bytes in length and breaks
down as follows:

Bytes
0-3 hhhhhhhh address of user
program to get

control at attention

interrupt.

4,5 hhhh size of input buffer
(max 4095)

6,7 hhhh size of output

buffer (max 4095)
address of output
buffer ‘
address of input
buffer

STAX option flag
byte as follows:

8-11 hhhhhhhh
12-15 hhhhhhhh
16 hh

Bits

l.....-.Reserved

«0.cc...replace=YES

eleeesereplace=NO

ealese..defer=YES

eeele...defer=NO

«es+1111Reserved
17-19 hhhhhh address of user
parameters for user
program.

SVC 99 (TSO Dynamic Allocation)

R15 and RO contain no applicable
information.

R1 contains the address of the
parameter list.

PLIST is up to 40 bytes in length.
Consult your FE programming
representative for information
concerning the data displayed in this
field.

SVC 102 (TCAM)

R15 and RO contain no applicable
information.

R1 contains the address of the
parameter list.

PLIST is up to 12 bytes in length
depending on the function and breaks
down as follows:

Bytes

0 hh Action code byte for

SVC 102 as follows:

l..¢ <... Flag issuing
task not
eligible for
rollout

«lee o... Post rollout/
rollin ECB
complete

eels <... Post standard
or TSO ECB
complete

esel Flag issuing
task not
eligible for
swap

wsee l... Move data
across
partition
boundary

eess »1l.. Enqueue
element on
disabled
ready queue
and post MCP
ECB complete

eeee -<1. Flag issuing
task eligible
for swap

eves «s.1 Flag issuing
task eligible
for rollout

1-3

5-7

9-11

hhhhhh

hh

hhhhhh

hh

hhhhhh

Section 3:

varies by action code
as follows:

Action Code

80,40,01 ECB address
20,02,10
08,04 Data Address
varies by action code
as follows:

20 x*'80', last
four bytes

80,40,01,

08,04,02,

10 x'00°"
reserved

varies by action code
as follows:

Action Code

20,02,10 TSO job ID

address
80,40,01, TCB address
08,04 Taraet

address (for
enqueuing an
element the
target
address is
the address
of the
disabled
ready queue
in the TCAM
AVT).

varies with action code
as follows:

Action Code

80,40,20,10,08,
04,02,01 x'80', last
four bytes

varies with action code
as follows:

Action Code
80,40,01 DEB address
08,04 Length

address
10,20,02 TCB address

Tracing Aids 189

SVC Comprehensive Trace Records; Group 4 -
Basic Fields Plus Variable Fields

GTF Group 4 SVC comprehensive trace records
have a variety of fields -- differing from
SVC to SVC -- added to the fields composing
the basic SVC record (Group 1). Format and
content of the additional fields for each
SVC are discussed in the following
material.

SVC 0 (EXCP)
Additional fields -- DDNAME, DCB, DEB.
Register 15, 0, and 1 content, and

DDNAME DCB, and DEB format and content
follow:

R15 and RO contain no applicable
information.

R1 contains the address of the 1IOB
associated with this request.

1-3 hhhhhh If byte 0 is 80; the
address of the
directory entry list.

If byte 0 is 00; the
address of the entry
point name.

4 hh hierarchy ID as
follows:
00 -- no hierarchy

01 ~- hierarchy 0
02 -- hierarchy 1

5 hhhhhh address of DCB or
zero.

NAME cccccccec
is the entry point/directory
entry (EP/DE) name of the module
to be linked to or control
transferred to.

SVC 7 (XCTL)

DDNAME ccccccece

N/A (Same as SVC 6)
See explanation of DDNAME field SVC 8 (LOAD)

under Group 2.
DCB hhhhhhhh

address of the DCB associated with
this I/0 request.

DEB hhhhhhhh

address of the DEB associated with
this I/0 request.

SVC 6 (LINK)
Additional fields -- PLIST, NAME

Register 15, 0, and 1 content, and
PLIST and NAME format and content
follow:

R15 contains the address of the
parameter list.

RO and R1 contain no applicable
information.

PLIST hhhhhhhh hhhhhhhh
- is eight bytes in length and
breaks down as follows:

Bytes
0 hh flag byte as follows:

80 DE form of macro
instruction

00 EP and EPLOC form
of macro instruction

190 Programmer's Guide to Debugging (Release 21)

Additional field ~- NAME

R15 contains no applicable
information.

RO Content:
If byte 0 contains x'00', bytes
1, 2, and 3 contain the address
of the entry point name.

If byte 0 contains x'80', bytes
1, 2, and 3 contain the address
of the directory entry 1list.

Rl Content:
In LCS systems, byte 0 contains
the hierarchy ID as follows:

00 -~ no hierarchy
01 -- hierarchy 0
02 -- hierarchy 1

In systems without LCS byte 0
contains no significant
information.

Bytes 1, 2, and 3 contain the DCB
address or zero if the default
for DCB was specified.

NAME cccccccece
is the entry points/directory
entxry name of the module to be
loaded.

SVC 9 (Delete)

Additional field -- NAME

R15 and R1 contain no applicable
information.

RO contains the address of the entry
point name.

NAME cccccece »
is the entry point name of the
module to be deleted.

SVC 13 (ABEND)

Additional field -- CMP CODE

R15 and RO contain no applicable
information.

Rl contains significant information
only if svC 13 was not called by the
ABTERM routines. In this case R1
contains the following:

Bytes
0 hh Flag byte as follows:

Bits

1... DUMP option
.1.. STEP option
.« XX XXXX reserved

-3 hhhhhh ABEND completion code

CMP CODE hhhhhhhh

is the ABEND completion code if
SVC 13 was called by the ABTERM
routines. It is the content of
the TCBCMP field of the current
TCB at the time the SVC interrupt
occurred. If ABEND recursion has
occurred this field will contain
the recursive completion code.

SVC 14 (SPIE)

Additional field -- PICA

R15 and RO contain no applicable
information.

R1l contains the address of the program
interrupt control area (PICA).

PICA hhhhhhhh hhhh
displays the program interrupt
control area from the associated
SPIE macro instruction.

SVC 15 (ERREXCP)

Additional fields -- DDNAME, RQE, RQE
TCB, CUU hhhh

R15 and RO contain no applicable
information.

Rl contains the address of the Request
Queue Element (RQE) which was assigned
to this I/0 request by IOS.

DDNAME cccccccece
is the name of the DD statement
associated with this I/0 request.

RQE hhhhhhhh hhhhhhhh hhhhhhhh
is the first 12 bytes of the RQE
assigned to this request by IOS.
The breakdown is:

0,1 hhhh not applicable
2,3 hhhh address of the UCB
4 hh TCB ID for MFT
5,6,7 hhhhhh address of IOB
8 hh priority byte
9 hhhhhh address of DEB
RQE TCB hhhhhhhh
is the address of the TCB
associated with the I/0 request.

CUU hhhh
device address in channel-unit
form of the device associated
with this I/0 request.

SVC 16 (PURGE)

Additional fields -- DDNAME, DCB,
PLIST

R15 and RO contain no applicable
information.

Rl address of the purge parameter
list.

N/A
DDNAME{cccccccc}
ERERRERR
cccececce
is the name of the DD statement
associated with the requests
being purged.

DCB hhhhhhhh
is the address of the DCB
associated with the purge
request.

PLIST hhhhhhhh hhhhhhhh hhhhhhhh
displays the PURGE parameter list
which breaks down as follows:

Bytes
0 hh option byte as
follows:

0... Purge request

elements in complete
DEB chain starting

with DEB specified in
address field.

Section 3: Tracing Aids 191

l... Purge the requests
associated with the
DEB specified in
address field.

«l.. «.... Post the purge
requests with x'48'.

«e0s ... Allow the active
request to quiesce.

eele Halt the I/0
operations.

eee0 Purge all requests.

eeel Purge only related
requests.

eess «0.. Purge AEQ, RB and IOS
logical channel
queue.

eess «l1l.. Purge AEQ and 1I0S
logical channel
queue.

eess ++0. Purge by DEB

eess «o1l. Purge by TCB

i-3 hhhhhh address of DEB.

4 hh completion code
5-7 hhhhhh address of TCB

8 hh gquiesce indicator:

01 if one or more
requests are
quiescing.

9-13 hhhhhh address of 10B.

SVC 17 (RESTORE)

Additional fields -- DDNAME, DCB, DEB

R15 and RO contain no applicable
information.

Rl contains the address of a pointer
to the chain of IOBs to be restarted.

N/A
DDNAME{ cccececcecce

EhkEkhkkE
ccceecce

is the name of the DD statement
associated with this IOB.

DCB hhhhhhhh
is the address of the DCB
associated with the IOB.

DEB hhhhhhhh
is the address of the DEB
associated with the IOB.

SVC_21 (STOW)

192

Additional fields -- DDNAME, PLIST

R15 contains no applicable
information.

RO contains the address of the
parameter 1list.

Programmer's Guide to Debugging (Release 21)

Rl contains the address of the
associated DCB.

The valves, positive or negative, of
RO and R1, indicate the directory
action STOW is to take as follows:

RO R1 Action
+ + ADD
+ - REPLACE
- + DELETE
- - CHANGE
N/A

DDNAME cccccccce
LIS LT L

ccceccce is the name of the
associated DD statement.

PLIST

hhhhhhhh ... (2 or 4 words)

is eight or 16 bytes in length,
depending on the directory action
being performed:

For ADD, REPLACE, or DELETE
actions the PLIST field is
eight bytes long and
contains, the member name or
alias of the PDS directory
entry being acted upon.

For CHANGE the PLIST field
is 16 bytes long, the first
eight bytes containing the
old member name or alias,
and the second eight bytes
contain the new member name
or alias.

SVC_25 (TRKBAI)

Additional fields -- DDNAME, DCBFDAD,
DCBTRBAL

R15 and RO contain no applicable
information.

R1 contains the address of the
associated DCB. Note: If R1 is
negative, the address is in complement
form and the DCBFDAD and DCBTRBAL
fields are meaningless.

N/A
DDNAME{cccccececce
kAEEkE R

is the name of the associated DD
statement.

DCBFDAD hhhhhhhh hhhhhhhh
is the full direct access address
(MBBCCHHR) from the DCB pointed
to by RI1.

DCBTRBAL hhhh
is the track balance -- the
number of bytes remaining on the
current track after a write. The
field is negative if no bytes
remain.

SVC 26 (CATALOG/INDEX/LOCATE)

Additional fields -- PLIST, DSN

R15 and RO contain no applicable
information.

R1l contains the address of the
parameter list when CATAIOG or INDEX
issue the SVC call.

R1 contains the address of CAMLST as
generated by the CAMLST macro
instruction when LOCATE issues the SVC
call.

DSN CCCCCCCCaew
is the data set name.

PLIST hhhhhhhh ... (4 words)

is the parameter list passed to
the SVC routine by the calling

macro instruction. Its content
varies, depending on the macro

instruction issuing the call.

Entry from CATALOG:

Bytes
0 hh option byte as follows:
Bits
l1... Search is to
start on
specified
CvoL
0see ee.. Search is to
start on
SYS.RES
-.1l. Catalog a
data set
..«1 Recatalog a
data set
waee lo.. Uncatalog a
data set
1 hh option bytes as follows:

elee «e.. Build all
missing index
levels

eess le.. Delete all
unneeded
index levels
except the
high level

eses +=l. Indicate
presence of
DSCB TIR

2 00
3 00
4 00 Reserved

5-7 hhhhhh address of the area that
contains the data set
name

8 00 Reserved

9-11 hhhhhh the address of the CVOL
ID, or zeroed.

12 00

13-15 hhhhhh address of the volume
list

Entry from INDEX:

Bytes
0 hh option byte as follows:

Bits

lcc. .e.. Search is to
start on
specified
CVOL

O0«ce. «+... Search is to
start on
SYS.RES

option byte as follows:

Bits

«lee ee.. Build an
index

eele «2... Build a
generation
index

esel .e.. Build an alias

eses 1l... Connect CVOLs

eees -1l.. Delete an

' index

««ss «s.1 Delete an

alias

option byte as follows:

Bits

leee «e«.. Disconnect
CVOLs

elee +e.. Indicate
DELETE option

eees le.. Indicate
EMPTY option

size of generation data
group

5-7 hhhhhh a. address of the index
name.

b. address of an eight
byte area that
contains a high-level
index name.

Section 3: Tracing Aids 193

194

8 00

c. address of an area
that contains an
alias to be deleted.

9-11 hhhhhh the address of the area

12 00

13-15 hhhhh

that contains the CVOL
1D, or zeroed.

a. address of an
eight-byte area that
contains an alias for
a high-level index.

b. address of a ten-byte
area that contains
the 4-byte device
code of the CVOL to
be connected followed
by its 6-byte volume
serial number.

Entry from LOCATE:

Bytes

0 hh
1 hh
2 hh
3 00
4 00

5-7 hhhhhh

8 00

9-11 hhhhhh

12 00

option byte as follows:

Bits

1... Search is to
start on
specified
CVOL

Ocee e«.a. Search is to
start on
SYS.RES

ssaee +-1. Read a block
by TTR.

«.00 0.0. LOCATE a name

option byte as follows:

Bits
.000 0000 LOCATE a name

option byte as follows:

Bits
Occe eea. LOCATE a name

address of the data set
name or the relative
track address (TTR) of
the desired block in the
catalog.

address of the CVOL 1D
or zeroes.

13-15, hhhhhh address of a 265 byte
workarea which must be
on a doubleword
boundary. If the issuer
of LOCATE has a non-zero
protect key, then the
workarea must have a
matching storage protect
key.

SVC 27 (OBTAIN)

Additional fields -~ PLIST, VOLSER,
DSN/CCHHR

R15 and RO contain no applicable
information.

Rl contains the address of the
parameter list.

PLIST hhhhhhhh ... (4 woxds)
displays the OBTAIN parameter
list which breaks down as
follows:

Bytes
0-3 hhhhhhhh operation code as
follows:

C1000000 SEARCH for DSNAME
C1800000 SEEK for track
address

4-7 hhhhhhhh address of data
set name or
address of track
address of DSCB,
CCHHR depending
on operation
code.

8-11 hhhhhhhh address of the
volume serial
number

12-15 hhhhhhhh address of
14-byte
workarea.

N/A]
VOLSER|cccccece

cccccc is the volume serial
number of the associated volume.

N/A indicates that the volser
pointer in the parameter list was
zero.
nnnnn
DSN/CCHHR |ccccecceceeC oo

nnnnn is the track address in
EBCDIC notation and is displayed
when the operation code in Word 1

of the parameter list indicates
SEEK.

Programmer's Guide to Debugging (Release 21)

cccecce ... is the data set name
and is displayed when the

operation code in word 1 of the
parameter list indicates SEARCH.
N/A if the name is unavailable.

SVC 28 (OPENEXT)

Additional fields -- content of R13

R15 contains no applicable
information.

RO contains zeroes, or the DCB address
of the SYSCTLG to be processed.

R1 contains the UCB address of the
volume whose SYSTCLG is to be opened,
if RO contains zeroes.

SVC 29 (SCRATCH)

Additional fields -- PLIST, DSN

R15 contains no applicable
information.

RO contains zeroes; or, the address of
a UCB or a SUBUCB (for a 2321 device)
for the device upon which unmounted
volumes may be mounted.

PLIST hhhhhhhh ... (4 words)
displays the SCRATCH parameter
list which breaks-down as
follows:

Bytes
0-3 hhhhhhhh operation code
as follows:

41004000 -- check
purge date
41005000 --
override purge
date

4-7 hhhhhhhh address of data

set name
8-11 not used
12-15 address of the

volume list

DSN CCCCCCCCC <.«
is the data set name. N/A if the
name is unavailable.

SVC 30 (RENAME)

Additional fields -- PLIST, OLD DSN,
NEW DSN

R15 contains no applicable
information.

RO contains the address of the UCB for
the device on which unmounted volumes
should be mounted, or zero.

R1 contains the address of the
parameter list.

PLIST hhhhhhhh ... (4 words)

displays the RENAME parameter
list which breaks-down as
follows:

Bytes

0-3 x'41002000°"

5-7 hhhhhhhh address of old
data set name

8-11 hhhhhhhh address of new

12-15 hhhhhhhh address of the
volume list

OLD DSN ccccee ...
is the fully qualified name of
the data set to be renamed. N/A
if the name is unavailable.

NEW DSN ccccC ...
is the new name for the data set
being renamed. N/A if the name
is unavailable.

SVC 32 (ALLOCATE)

Additional fields -- CUU, DSN
R15 contains no applicable information

RO when positive, contains the address
of the associated job file control
block; when negative (not
complemented--high-order bit is set
on), contains the address of the
associated model DSCB.

R1 contains the address of the UCB
list.

CUU ccc
is the unit address from the UCB
pointed to by R1.

DSN cccceece ...
is the data set name from the DSN
field of the JFCB or DSCB pointed
to by RO. N/A if the DSN field
was blank.

SVC 33 (IOHALT)

Additional fields -- CUU

R15 and RO contain no applicable
information

Rl contains the address of the UCB

associjiated with the request to be
halted.

Section 3: Tracing Aids 195

CUU hhhh
is the device address associated
with the device being halted.

SVC 41 (IDENTIFY)

Additional fields -- EPNAME

R15 contains no applicable
information.

RO contains the entry point name
address

R1 contains the main storage address
for the entry point name being added.

EPNAME ccccccce
is the entry point name being
added.

SVC 42 (ATTACH)

196

Additional fields -- SUPRVLIST, PPLIST

R15 contains the address of the
parameter list being passed to the SVC
routine.

RO contains no significant
information.

R1 contains the address of the
parameter list being passed to the
called program, or zero (no parameter
list being passed).

SUPRVLIST hhhhhhhh ... (36 bytes)
is the parameter list being
passed to the SVC routine and
breaksdown as follows:

Bytes
0 hh

EP/DE flag byte:

00 -- EP or EPLOC

specified

80 -- DE specified

1-3 hhhhhh address of the EP

name or directory

entry (determined

by byte 0).

hierarchy flag

(used if option

chosen) :

00 -- no hierarchy

specified

01 -- hierarchy 0

02 -- hierarchy 1

5-7 hhhhhh address of the
DCB; or zero.

8 hh Reserved.

9-11 hhhhhh address of the ECB

12 hh GsP flag byte:

00 -- bytes 13-15

contain subpool

number

Programmer's Guide to Debugging "“elease 21)

13-15

16

17-19

20

21-23

24,25

26

27

hhhhhh

hh

hhhhhh

hh

hhhhhh

hhhh

hh

hh

Bits

01 -- bytes 13-15
contain the
address of a
listing of subpool
numbers.

a subpool number
or address of
subpool 1list
(determined by
byte 12)

SHSP flag byte:

00 -- bytes 17-19
contain a subpool
number

01 -- bytes 17-19
contain the
address of a list
of subpool
numbers.

a subpool number
or address of a
subpool list
(determined by
byte 16)
Roll-In/Roll~-Out
flag:

00 -- new task may
not be rolled-out
and cannot invoke
roll-out.

01 -- new task may
not be rolled-out
but can invoke
roll-out

02 -- new task may
be rolled-out but
cannot invoke
roll-out

03 -- new task may
be rolled-out and
can invoke
roll-out

address of the
end-of-task exit
routine

dispatching
priority number
limit priority
number

Key Flags byte as
follows:

Xe.ee ses. Reserved
«0.ee <.... Propagate the

JSCB field from
the originating
task

«lee eee. If the origina-

ting task has a
protect key of
0, move the
specified JSCB
address into the

attached TCB;
otherwise,
propagate the
originating
task's TCBJSCB
field

«e0. Subpools 251 and
252 and the job
pack queue
pointer of the
originating task
are not given
to the attached
task.

esl. Subpools 251 and
252 of the job
pack queue
pointer are
given to the
attached task.

eeel the attached
task is to have
a protect key
of 0.

eeee 0... Subpool zero is
to be shared
with other
tasks.

eees l... Subpool zero is
not to be
shared

esee «0.. A save area of
72 bytes is to
be obtained for
the task.

eeee «1.. NO save area is
to be obtained.

«+=- «s0. Propagate the
TCBJSTCB field
from the
originating
task.

eees sel. The TCBISTCB of
the new task is
to point to the
new task.

ees= »+.0 The new task is
to operate in
problem program
mode.

eses ==+1 The new task is

to operate in
supervisor mode.

the entry point

name for EP; or

blank for EPLOC or

DE specification.

28-35 hhhh

PPLIST hhhhhhhh hhhhhhhh hhhhhhhh

«ss (up to 40 bytes)
is the parameter list being
passed to the called program and
consists of a series of four-byte
entries, each entry having it's
high-order byte reserved, and an
address in the low-order three
bytes.

SVC 44 (CHAP)

Additional fields -~ CHAP TCB

R15 contains no applicable
information.

RO contains a signed value to be added
to the dispatching priority of the
specified task. A negative value will
be in two's-complement form.

Rl contains the address of an area
containing the address of the TCB
whose priority is to be changed; or
zero. If zero, it indicates that the
active task's priority is to be
changed.

CHAP TCB hhhhhhhh
is the address of the TCB of the
active task at the time the SVC
interrupt occurred.

SVC 51 (SNAP)

Additional fields -- PLIST, MODN

R15 and RO contain no applicable
information.

Rl contains the address of the
parameter list.

PLIST:
The PLIST field when SVC 51 is
called by the SNAP macro
instruction is 12 bytes in length
and breaksdown as follows:

PLIST hhhhhhhh hhhhhhhh hhhhhhhh
displays three words of the
parameter list passed to SVC

51 by SNAP.
Bytes
0 hh ID number to be
printed in the
identification
heading of the dump.
1 00
2 hh option flag bytes as
follows:
Bits

0... «... ABEND request

lee. «... SNAP request

«1.. TCB address given

..1l. Display all
supervisor data

«e«l Display trace
table

esese l... Display nucleus

«ees »1.. Snapshot list is
given

Section 3: Tracing Aids 197

eses =sl. ID given
eeee «..1 Display QCBs

option flag byte as
follows:

Bits

l1... Save area (see
next flags)

«e0u. Display entire
save area

«l.. Display heading
only

eel. Display registers
on entry to ABEND

or SNAP

eeesl Display link pack
area

eee« 1l... Display job pack
area

eees «l.. Display PSW on
entry to ABEND or
SNAP

eeee <ol. Display all
subpools less
than subpool 128

.ses <s.X Reserved

4 00
5-7 hhhhhh address of DCB
8 00

9~-11 hhhhhh address of the TCB
specified in the
SNAP macro
instruction; or
zexro. If zero, the
dump is for the
current task.

Certain calls for SV 51 may result in
a 16 byte PLIST field being recorded.
If there is a problem in this area
please contact your FE programming
representative for programming
support.

N/A
MODN | ccccecceccece

cccececcece is the name of the
module calling SVC 51.

N/A appears if no module name is
available.

SVC 54 (DISABLE)

198

Additional fields -- DDNAME, DCB, DEB

R15 and RO contain no applicable
information.

R1 contains the address of the
associated DCB

Programmer's Guide to Debugging (Release 21)

N/A
DDNAME{cccccccce
TTTTTY B _
is the name of the DD statement
associated with this request.

DCB hhhhhhhh
is the address of the associated
DCB.

DEB hhhhhhhh
is the address of the associated
DEB.

SVC_62 (DETACH)

Additional fields -- DETACH TCB

R15 and RO contain no applicable
information.

R1 contains the address of an area
containing the address of the TCB to
be detached.

Note: If Rl contains zero the DETACH
TCB field is meaningless.

DETACH TCB hhhhhhhh
is the address of the TCB to be
detached.

SVC_65 (QWAIT)

Additional fields -- R2, QCB

R15, RO and Rl contain no applicable
information.

R2 contains the address of the QCB for
the element being waited on.

QCB hhhhhhhh hhhhhhhh hhhhhhhh
is the queue control block
pointed to by R2, and breakdown
as follows:

Bytes

0 hh queue status:
01 -- not on ready
queue
02 -- not waiting
03 -- waiting

1-3 hhhhhh address of first
element on the
queue.

priority of the

gueue when linked

onto the ready
queue.

5-7 hhhhhh address of the next
item on the ready
queue.

8 hh reserved.

9-11 hhhhhh address of the STCB
for the subtask to
be activated.

4 hh

SVC_66 (BTAM TEST)

Additional fields -- IOBERINF

R15 and RO contain no applicable
information.

R1 contains the address of the IOB
pointed to when the SVC was issued.

IOBERINF hhhhhhhh ... (4 words)
is the error information field
used by BTAM error recovery
routines.

SVC 67 (QPOST)

Additional fields -- R2, QCB

R15 and RO contain no applicable
information.

Rl contains the address of the element
being posted.

R2 contains the address of the QCB to
which the element is being posted.

QCB hhhhhhhh hhhhhhhh hhhhhhhh
is the queue control block
pointed to by R2 and breaksdown
as follows:

Bytes

0 hh qgueue status:
01 -- not on Ready
queue
02 -~ not waiting
03 -- waiting

1-3 hhhhhh address of first
element on the
queue.

4 hh priority of the
queue when linked
onto the ready

queue.

5-7 hhhhhh address of the next

7 item on the ready
queue.

8 hh reserved.

9-11 hhhhhh address of the STCB

for the subtask to
be activated.

SVC_71 (ASGNBFR/RLSEBFR/BUFINQ)

Additional fields -- DDNAME, PLIST

R15 and RO contain no applicable
information

R1 contains the address of the
parameter list.

DDNAME cccccccc
is the name of the DD statement
associated with the DCB specified
by the macro instruction.

PLIST hhhhhhhh hhhh ... (up to 12
bytes)
displays the parameter list
pointed to by Rl. The content
varies according to the macro
instruction calling the SvC.

Entry from ASGNBFR:

Bytes

0 o4 request byte, 04
indicates ASGNBFR

1-3 hhhhhh the DCB address

4-7 hhhhhhhh the address of a
half-word field
containing the
number of bytes of
buffer to be
assigned.

Entry from RLSEBFR:

Bytes

0 hh request byte:
08 indicates
RLSEBFR

0C indicates
RLSEBFR ALL

1-3 hhhhhh the DCB address

4-7 hhhhhhhh the address of a
half-word field
containing the
number of bytes of
buffer to be
released.

Entry f£from BUFINQ:

Bytes .

0 10 request byte, 10
indicates BUFINQ

1-3 hhhhhh the DCB address

4-7 hhhhhh address of the

table of buffer
addresses (must be
on a fullword
boundary)

8-11 hhhhhhhh the number of
bytes specified to
be available for
the table of
buffer addresses

svC 75 (Degueue Routine)

Additional fields -~ IQE
R15 contains no applicable information

RO contains the address of the next
IQE on the IRB active list for the
attention routine when ATTNINQ has
specified clear mode; otherwise,
contains zero.

Section 3: Tracing Aids 199

R1 Content:

Bytes

is a unit index to
identify a
particular 2260
display station; or
00 for a 2250
station.

1-3 hhhhhh the GACB address

N/A
IQE hhhhhhhh hhhhhhhh hhhhhhhh

when ATTNINQ specifies clear mode

this field displays the first 3
words of the IQE pointed to by
RO:

Bytes

0-3 hhhhhhhh the address of the

next IQE in the
chain, or zero
4-7 hhhhhhhh not meaningful

8-11 hhhhhhhh the address of the

hhhhhhhh IRB associated
with the IQE.

N/A
will appear in this field
whenever the ATTNINQ macro

instruction did not specify clear

mode.

SVC_78 (LSPACE)

Additional fields ~-- CUU

R15 and R1 contain no applicable
information

RO contains the address of the
associated UCB

CUU hhhh is the unit address

SVC 81 (SETPRT)

200

Additional fields -- DDNAME, PLIST

R15 and RO contain no applicable
information

R1 contains the address of the
parameter list.

DDNAME cccccecce
is the name of the DD statement
associated with the data set
being printed.

PLIST hhhhhhhh .. (four words)
is four words of the parameter
list being passed to SVC 81 and
breaks down as follows:

Programmer's Guide to Debugging (Release 21)

SVC 82 (DISKANAL)

Bytes
0-3 hhhhhhhh address of the DCB

4-7 hhhhhhhh EBCDIC character
set image ID
LOAD MODE
indicator:

8 hh

«0.. <.... no fold
1. ... fold
X.XX XXXX reserved

verification
indicator:

eeel ... verify
eeel ... don't verify
XXX. XXXXx reserved

data check
indicator:

10 hh

l1... block

«lee ... unblock

00.. as DCB specifies
eees 1l... unfold UCs 3211
eees «1.. fold UCs 3211

<« XX ..XX Yeserved

11-14 hhhhhhhh EBCDIC FCB
image ID

FCB parameter
options:

15 hh

l1... verify FCB
eess oe.1 align
« XXX XXX. reserved

Entered from modules:
IEHDANAL, IEHOGETA,
IEHDCELL, IEHDLABL,
IEHRDREST, IEHDDUMP

Additional fields -- VOLSER, DA-ADDR,
PLIST

R15 and RO contain no applicable
information

R1 contains the address of the
parameter list.

VOLSER cccccce
is the volume serial number

DA-ADDR N/A
hhhhhhhh hhhhhhhh

displays a six or eight byte
track address or N/A, dependent
on the options in effect for the
SVC routine. The breakdown is:

Option DA-ADDR Content

analyze or format six-byte track
address

post UCB eight-byte trac
address

address of N/A

alternate track

CCHH

unlabeled volume eight-byte
track address

new volume N/A

PLIST hhhhhhhh ... (16 bytes maximum)

is either 8, 12, or 16 bytes of
the parameter list pointed to by
R1. The first four bytes always
consist of a flag byte, defining
the function to be performed, and
a 3-byte UCB address. The fifth,
ninth, and thirteenth bytes, when
present, will contain a flag
indicating the last element
(4-bytes) in the list. The
breakdown is as follows:

Bytes
0 hh function byte as
follows:

8F -- new volume

1F -~ address of
alternate track
CCHH

00 -- ANALYZE or
FORMAT

08 -~ POST UCB
88 -- unlabeled
volume

1-3 hhhhhh address of UCB

(function 8F)

4 80 flag byte -- last
element
5-7 hhhhhh address of DCB

(function 1F)

4 80 flag byte -- last
element

5-7 hhhhhh address of
alternate track
CCHH

(function 00)

4-70 hhhhhhhh address of
alternate track
CCHH

8 80 flag byte -- last
element

9-11 hhhhhh address of
alternate track
information

(function 08)

4-7 hhhhhhhh address of serial
number

8 80 flag byte -- last
element

9-11 hhhhhh address of VTOC
address of VTOC

(function 88)

4-7 hhhhhhhh address of serial
number

8-11 hhhhhhhh address of VTOC

12 80 flag byte -- last
. element

13-15 hhhhhh address of DEB

SVC 86 (ATLAS)

Additional fields -- PLIST, CCHHR

R15 and RO contain no applicable
information

Rl contains the address of the
parameter list

PLIST hhhhhhhh hhhhhhhh
is the parameter list passed to
SVC 86 and breaks down as
follows:

Bytes
0 hh flag byte as
follows:

l1... User's channel
program can not be
re-executed.

. XXX XXXX reserved

1-3 hhhhhh address of IOB

4 hh flag byte as
follows:

leee «... IEHATLAS is the
calling program

-l.. a partial count
(CCHH only) has
been passed by
the calling

, program

««l. a write special
CCW is required
for a track
overflow record

ee.l a write
special
CCW is not
required

«oee XXXX reserved

5-7 hhhhhh address of count
(CCHHR) or partial
count (CCHH) field

CCHHR hhhhhhhhhh
is the five-byte track address of
the complete (CCHHR) or partial
count (CCHH) field passed by the
calling program.
Note: If entry to SVC 86 is from
the IEHATLAS program (byte 4, bit
0 in parameter list) this address
points to the CCHH part of the
count field.

Section 3: Tracing Aids 201

SVC 88 (MOD 88)

Additional fields -- DEB, DSSTAT FIGS,
DEVMOD

R15 and RO contain no applicable
information.

R1 contains the address of the DCB
associated with the current task at
the time the SVC was issued.

DEB hhhhhhhh
is the address of the data extent
block (taken from DCB pointed to
by R1)

DSSTAT hh
the data set status flags field
(taken from the DEB)

DEVMOD hh
the device modifier field (taken
from the DEB)

SVC 89 (EMSERV)

Additional fields -- PLIST, RESMCW

R15 and RO contain no applicable
information

R1 contains the address of the
parameter list

PLIST hhhhhhhh
displays four bytes from the
parameter list being passed to
the SVC routine. The breakdown
183

Bytes

0 hh flag byte:
C0 -~ enter emulator
mode
AQ -- leave emulator
.mode

202 Programmer's Guide to "2bugging (Release 21)

1i-3 hhhhhh address of control
storage 1ead name

RESMCW hhhhhhhh hhhhhhhh
displays dight bytes of the
RESMCW field from the RMS common
area.

SVC_98 (TSO PROTECT)

Additional fields -- PLIST, DSN

R15 and RO contain no applicable
information

R1 contains the address of the
parameter list

PLIST hhhhhhhh
displays the first four bytes of
the parameter list as follows:

Byte
0 01 entry code for the
add function
02 entry code for the
replace function
03 entry code for the
delete function
ou entry code for the

list function

1-3 hhhhhh varies by function
as follows:

000000 ~- add
function

000000 -- replace
function

000000 -~ delete
function

hhhhhh -- 80 byte
buffer address

DSN ccceceeeC «. s
is the data set name

IMDPRDMP OUTPUT COMMENTS - GTF PROCESSING

The following comments may appear in the
listing of GTF trace records.

I/70 ERROR ON ddname - CONTINUE

Explanation: The EDIT function of
IMDPRDMP is being used to process
a GTF external trace data set. An
I1/0 error was encountered while
attempting to read the trace data
set identified by ddname. Fewer
than three consecutive I/0 errors
have occurred for this data set,
so EDIT continues processing,
ignoring the current block that
caused the 1I/0 error.

I/0 ERROR ON ddname - EDIT PROCESSING
TERMINATED

ERROR IN

Explanation: The EDIT function of
IMDPRDMP is being used to process
a GTF external trace data set.
Three consecutive 1/0 errors have
been encountered while attempting
to read the trace data set
identified by ddname. EDIT
processing terminates.

GTF BUFFER CHAIN

Explanation: The EDIT function of
IMDPRDMP is being used to process
an internal (dump) trace data set.
While attempting to locate the GTF
trace buffers, IMDPRDMP
encountered one of the following
errors:

e A buffer pointer was not on a
word boundary.

e A buffer pointer addressed an
area of main storage that
could not be extracted from
the dump for one of the
following reasons:

1. The pointer addressed an
area higher than the
highest address in the
dump.

2. IMDPRDMP encountered an
1/0 error while attempting
to read the record
containing the area
addressed by the pointer.

3. The block containing the
addressed area was missing
from the dump, perhaps
because the program that
produced the dump
encountered an I/0 error
while attempting to write
the block. EDIT
processing is terminated.

ERROR IN GTF BUFFER - CONTINUING WITH
NEXT BUFFER

Explanation: The EDIT function of
IMDPRDMP is being used to process
an internal (dump) trace data set.
EDIT has encountered a GTF trace
record with a length that does not
lie within the acceptable range of
4 to 272 bytes. EDIT continues
processing with the next GTF
buffer.

GTF NOT ACTIVE AT TIME OF DUMP

Explanation: The Edit function of
IMDPRDMP is being used to process
an internal (dump) trace data set.
EDIT has determined that GTF was
not active at the time that the
dump was taken. EDIT processing
is terminated.

TRACE RECORD LL INVALID, DD ddname BLOCK
NO xxxyyy - EDIT PROCESSING TERMINATED

Explanation: The EDIT function of
IDMPRDMP is being used to process
a GTF external trace data set.
EDIT has encountered a GTF trace
record with a length that does not
lie within the acceptable range of
4 to 272 bytes. Ddname identifies
the GTF external data set being
processed; xxxyyy identifies the
number of the block containing the
faulty record. EDIT processing is
terminated.

EDIT TERMINATED UPON USER'S REQUEST

Explanation: A user exit has
requested EDIT termination by
returning to EDIT with a return
code of 24.

EXIT DELETED UPON USER'S REQUEST

Explanation: A user exit has
requested that it no longer be
invoked during the current EDIT
execution. This is the result of
a user exit routine return code of
16 or 20.

GTF OPTIONS IN EFFECT - option

Explanation: The input trace data
set was created by GTF with trace
options in effect as indicated by
*option'. The Service Aids
publication describes the options
available.

Section 3: Tracing Aids 203

204 Programmer's Guide to Debugging (Release 21)

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

Appendix A: Debugging With an Operating System Dump

The first facts you must determine in
debugging with an operating system dump are
the cause of the abnormal termination and
whether it occurred in a system routine or
a problem program. To aid you in making
these determinations, ABEND, SNAP, and
indicative dumps provide two vital pieces
of information -- the completion code and
the active RB queue. Similar information
can be obtained from a storage image dump
or a stand-alone dump by analyzing PSWs and
re-creating an active RB queue.

A completion code is printed at the top
of ABEND, SNAP, and indicative dumps. It
consists of a system code and a user code.
The system code is supplied by the control
program and is printed as a 3-digit
hexadecimal number. The user code is the
code you supplied when you issued your own
ABEND macro instruction; it is printed as a
4-digit decimal number. If the dump shows
a user code, the error is in your program,
and the completion code should lead you
directly to the source of error. Normally,
however, a system code will be listed; this
indicates that the operating system issued
the ABEND. Often the system completion
code gives enough information for you to
determine the cause of the error. The
explanations of system completion codes,
along with a short explanation of the
action to be taken by the programmer to
correct the error, are contained in the
publication IBM_System/360 Operating
System: Messages and Codes, GC28-6631.

To locate the load module that had
control at the time the dump was issued,
find the RB associated with the module. 1If
the dump resulted from an ABEND or SNAP
macro instruction, the third most recent RB
on the queue represents the load module
that had control. The most recent and
second most recent RBs represent the ABDUMP
and ABEND routines, respectively. Storage
image dumps and stand-alone dumps contain
PSW information that can be used to
identify the load module in control.

once you have located the RB or load
module, look at its name. If it does not
have a name, it is probably an SVRB for an
SVC routine, such as one resulting from a
LINK, ATTACH, XCTL or LOAD macro
instruction. To find the SVC number, look
at the last three digits of the resume PSW
in the previous RB on the queue. If a
previous RB does not exist, the RB in
question is an SVRB for a routine invoked

Appendix A:

by an XCTL macro instruction. Register 15
in the extended save area of the RB gives a
pointer to a parameter list containing the
name of the routine that issued the XCTL.

If the RB does not bear the name of one
of your load modules, either an RB was
overlaid or termination occurred during
execution of a system routine. The first
three characters of the name identify the
system components.

If the RB bears the name of one of your
load modules, you can be reasonably certain
that the source of the abnormal termination
lies in your object code. However, an
access method routine mray be at fault.

This possibility arises because your
program branches to access method routines
instead of invoking them through a
supervisor-assisted linkage. Thus, an
access method routine is not represented on
the active RB queue. To ascertain whether
an access method routine was the source of
the abnormal termination, you must examine
the resume PSW field in the RB. If the
last 3 bytes in this field point to a main
storage address outside your program, check
the load list to see if an access method
routine is loaded at that address. If it
is, you can assume that it, and not your
program, was the source of abnormal
termination.

Abnormal Termination in System Routines:

By analyzing the RB's name field or the SVC
number in the previous RB, you can
determine which system load module
requested the termination. If the RB has a
system module name, the first three
characters tell you the name of the system
component. The remaining characters in the
name identify the load module in error.

Remember, although a system routine had
control when the dump was taken, a problem
program error may indirectly have been at
fault. Such a situation might result from
an incorrectly specified macro instruction,
an FQE modified inadvertently, a request
for too much storage space, a branch to an
invalid storage address, etc. To determine
the function of the load module that had
control, consult Appendix C. With its
function in mind, the completion code
together with an examination of the trace
table may help you to uncover which
instruction in the problem program
incorrectly requested a system function.

Debugging With an Operating System Dump 205

Program Check Interruptions in Problem
Programs: If you have determined from the
completion code or PSWs and evaluation of
the RB queue that the dump resulted from a
program check in your problem program,
examine the status of your program in main
storage. (If you have received only an
indicative dump, you must obtain either an
ABEND/SNAP dump or a stand-alone dump at
this point.) Locate your program using
pointers in the RB. If its entry point
does not coincide with the lower boundary
of the program, you can find the lower
boundary by adding 32(20) to the address of
the RB (systems with MFT). The RB's size
field gives the number of doublewords
occupied by the RB, the program, and
associated supervisor work areas.
ABEND/SNAP dumps with MFT have the storage
boundaries of the problem program
calculated and printed.

Next, locate the area within your
program that was executed immediately prior
to the dump. To do this, you must examine
the program check old PSW. Pertinent
information in this PSW includes:

Bits 12-15: AMWP bits

Bits 32,33: Instruction length in
halfwords.

Bits 40-63: Instruction address

A useful item of information in the PSW
is the P bit of the AMWP bits (bits 12-15).
1f the P bit is on, the PSW was stored
while the CPU was operating in the problem
program state. If it is off, the CPU was
operating in the supervisor state.

Find the last instruction executed
before the dump was taken by subtracting
the instruction length from the instruction
address. This gives you the address of the
instruction that caused the termination.

If the source program was written in a
higher level language, you must evaluate
the instructions that precede and follow
the instruction at fault to determine their
function. You can then relate the function
to a statement in the source program.

Other Interruptions in Problem Programs:
If the completion code or PSWs and the
active RB gueue indicate a machine check
interruption, a hardware error has
occurred. Call your IBM Field Engineering
representative and show him the dump.

If an external interruption is
indicated, with no other type of
interruption, the dump probably was taken
by the operator. Check with him to find
out why the dump was taken at this point.
The most likely reasons are an unexpected

wait or a program loop. If a trace table
exists, examine it for the events preceding
the trouble or, if the trace table was made
ineffectual by a program loop, resubmit the
job and take a dump at an earlier point in
the program.

The remaining causes of a dump are an
error during either execution of an SVC or
an I/0 interruption. In either case,
examine the trace table. Entries in the
table tell you what events occurred leading
up to termination. From the sequence of
events, you should be able to determine
what caused a dump to be taken. From here,
you can turn to system control blocks and
save areas to get specific information.

FPor example, you can find the sense
information issued as a result of a unit
check in the UCB, a list of the open data
sets from the DEB chain, the CCW list from
the I0B, the reason for an I/0 interrupt in
the status portion of the CSW, etc.

Specialized Program Checks

In addition to the error program checks
(1-15), other system events cause program
checks which are normally transparent to
the user. They could, however, if seen in
a dump (except ABEND dumps where they do
not appear, result in some confusion. One
such event is the monitor call interrupt.
On 360 CPU's, the monitor call appears as a
01 (operation) interrupt code in the
program old PSW. To verify that a
simulated monitor call occurred, check the
address in the program old PSW. A monitor
call occurred if: ’

1. The address (-4) points to an
execution instruction ('44');

2. The execute is operating on an x'AF00°*
in low core;

3. A NOP (x'470°') follows the execute.

370 CPU's support the real monitor call
interrupt. The code in the program old PSW
is a x'40', and the PSW address (-4) points
directly at an x'AF' instruction.

Oon 360 CPU's, the x'AF*
as follows:

opcode is simulated

1. The first time an x'AF' instruction is
encountered, an execute instruction is
substituted for the x'AF'.

2. The execute is of an instruction in a
low-core table (Class Mask Takle).

3. If the monitor call should occur, the
instruction in the Class Mask Takle is
an x'AF00'; if it should not occur,
the instruction is a x*0700' (NOP).

206 Programmer's Guide to Debugging (Release 21)

“'

Required class and ID information for
the monitor call are contained in the
x*470" NOP following the execute.

Oon 370 CPU's, the monitor call occurs under
control of a mask in Control Register 8.

The Generalized Trace Facility (GTF) is a

user of the monitor call interrupt.
more detailed information,

For
refer to the

Service Aids Logic PLM, GY28-6721.

Debugging Procedure Summary

1.

Look at the completion code or PSW
printouts to find out what type of
error occurred. Common completion
codes and causes are explained in
Appendix C.

Check the name of the load module that
had control at the time the dump was
taken by looking at the active RB's.

If the name identifies a system
routine, proceed to step 4. If the
name identifies a problem program and
the completion code or PSW indicates a
program check, proceed to step 6. If
the name identifies a problem program,
and the completion code or PSW
indicates other than a program check,
proceed to step 10.

Find the function of the system
routine using Appendix D.

If the dump contains a trace table,
begin at the most recent entry and

Appendix A:

10.

11.

12.

proceed backward to locate the most
recent SVC entry indicating the
problem state. From this entry,
proceed forward in the table,
examining each entry for an error that
could have caused the system routine
to be terminated.

If the name identifies one of your
load modules, check the instruction
address and the load list to see if an
access method routine last had
control. If so, return to step 4.

Locate your program in the dump.

Locate the last instruction executed
before the dump.

Examine the instruction and, if the
program was written in a high-level
language, the instructions around it
for a possible error in object code.

If a machine check interruption is
indicated, call your IBM Field
Engineering representative.

If only an external interruption is
indicated, ask the operator why he
took the dump. Resubmit the job and
take a dump at the point where trouble
first occurred.

Examine the trace table, if one is
present, for events leading up to the
termination. Use trace table entries
and/or information in system control
blocks and save areas to isolate the
cause of the error.

Debugging With an Operating System Dump 207

73 Programmer's Guide to Der'gging (Release 21)

Appendix B: SVCs

Register contents at entry to an SVC routine are often helpful in

finding pointers and control information.

The table below lists SVC

numbers in decimal and hexadecimal, and gives the type, associated macro
instruction, and significant contents of registers 0 and 1 at entry to
each SVC routine.

r . T T v T T 1
| Decimal |Hex. | | | | |
| No. | No. | Type | Macro | Register 0 | Register 1 |
F — t t t {
| 0 | 0 | I | EXCP | | IOB address |
IR N | i
I
| | | | | | |
| 1 | 1 | I | WAIT |Event count |ECB address |
| | I | | I
| 1 | 1 | I | WAITR | Event count |2's complement of
% } : } : }ECB address :
| 1 | 1 | I |PRTOV | | |
| | I | I |
| 2 | 2 | I | POST | Completion code |ECB address
| I | I I I
| 3 | 3 | I | EXIT | | |
! | | | | | |
4	4	I	GETMAIN		Parameter list address
5	5	1	FREEMAIN		Parameter list address
				I I	
6	6	II	LINK]	Parameter list address	
					I
7	7	11	XCTL		Parameter list address
	I i		I		
J 8	8	1I1I	LOAD	Address of entry point	DCB address
i				address	
I I I					
9	9	1, IT	DELETE	Address of program name	
I !			I		
10	A	I	GETMAIN ox	Subpool number (byte 0)	Address of area to
			FREEMAIN	Length (bytes 1-3)	be freed
			(R Operand)		
10	A	1	FREEPOOL]		
11	B	I, III	TIME]	Time units code	
I	I			[
12	€	II	SYNCH		
			I I]		
13	D	IV	ABEND		Completion code
			I		
1u	E	11, II1}SPIE		PICA address	
			I		
15	F	I	ERREXCP		Address of request queue
		1		element	
L L L L L 4 3
(Part 1 of 5)

Appendix B: SVCs 209

1) T T B] T k) 1
|Decimal |Hex. | | | | |
| No. | No. | Type | Macro | Register 0 | Register 1 |
F f-—mt ¢ t + ' :
| 16 | 10 | III |PURGE | | |
i | | | | | |
17	11	III	RESTORE i	I0B chain address
]	
18	12	I { BLDL jAddress of build list	DCB address	
I I		I		
18	12	II	FIND	
I 19 {f 13	IV	OPEN		Address of parameter list
]			
20	14,	IV	CLOSE	{Address of parameter list
		i		of DCB addresses
		i	I	
21	15	1III	STOW	Parameter list address
				i
22	16	1V	OPEN TYPE=J	
]				of DCB addresses
23	17	IV	CLOSE TYPE=T	
i				I
24	18	1III	DEVTYPE	Jddname address
!		f I]		
25	19	III	TRKBAL	
]	
26	1A	IV	CATALOG	
]	I I I I			
26	1A	1Iv	INDEX	{Parameter list address
I]	I	
26	1A	II1	LOCATE	
]				
27	1B	III	OBTAIN	
28	1c	IV	CcvoL	
I	I			I
29	1D	1V	SCRATCH	UCB address
I] I !		
30	1E	IV	RENAME	UCB address
31 } IF	IV	FEOV i	DCB address	
!				
32	20	IV }ALLOC		Address of UCB list
] 33	21	III	IOHALT	juCB address
	I]]]			
34	22	1Iv	MGCR (MAST	i
			CMD EXCP)	
35 f 23	1Iv	WTO		Message address
]	
35	23	IV	WIOR	
36	28	1V	WTL	
]		I	
37	25	1I	SEGLD	
!			I I !	
37	25	11	SEGWT	
38	26	II	TTROUTER	
I	!			!
39	27 [III,IV]LABEL {	Parameter list address }		
i i L i i |
(Part 2 of 5)

210 Programmer's Guide to Debugging (Release 21)

[o s . e . s — — ——— — — i oS O o o . St " . W~ — St B Wi, S o . . S S, St ST S W i S S J B, S e, i, . St St WA S o e S W O W, S . G . e, WY

T T ¥ T] 1
Decimal |Hex. | | | |]
No. No. | | Macro | Register 0 | Register 1 |
4 4 i 1 1
Al 13 T L} L)
40 28 |1, II, |EXTRACT | |Parameter list address |
T | | |
41 { 29 |II, III}IDENTIFY |Entry point name address|Entry point address |
| | | | | |
42 | 2o |II, III|ATTACH | | |
| | | | |
43 2B |II, III|CIRB |Entry point address |size of work area in |
| | | |doublewords |
| | | | |
44 2 | I | CHAP |+ Increase priority |TCB address |
| | |- Decrease priority |]
45 2D | II | OVLYBRCH | i 1
| | I I
46 | 2E | I | TTIMER | |1: -Cancel |
| i |] | I
47 | 2F | II | STIMER |Exit address |Timer interval address |
i | | | | |
48 | 30 |1, II |DEQ | |QCB address |
| | | | I]
49 | 313 | III |TEST | | |
I | | I I |
50 I 32 | | | | |
! |] | | |
51 | 33 | 1v | sNAP | |Parameter list address }
| | i | | |
52 | 38 | 1Iv | RESTART | |DCB address |
| | | I I |
53 | 35 | III |RELEX | Key address | DCB address |
| | | I | !
54 | 36 | II |DISABLE | | i
| | |] ! |
55 | 37 | 1V | EOV | EOB address |DCB address i
I | | | l I
56 | 38 |1, II |ENQ | QEL address |QCB address |
| | | | I
56 | 38 |I, ITI |RESERVE | |
| I | | |
57 | 39 | III |FREEDBUF | DECB address | DCB address |
| | | | | |
58 | 38 | I | RELBUF | | DCB address |
I ! | | !
58 | 38 | 1 } REQBUF | |DCB address
I | | | | I
59 | 3383 | 1III |OLTEP | | |
|] | | | |
60 | 3¢ | IIXI |STAE |0 Create SCB |Parameter list address]
| | | |4 Cancel SCB I l
| | | 18 0 | |
61 | 3D | III |TTSAV | |Parameter list address |
| | | | | |
62 | 38 1+ II | DETACH | |TCB address]
] | | | I |
63 | 3F | 1Iv | CHKPT | |DCB address |
| | |] |
64 | 40 | III |RDJFCB | |Address of parameter list |
| | | | |of DCB addresses |
] | |] !
65 | 412 | I | QWAIT | |Parameter list address |
| | | | | |
66 | 42 | 1Vv | BTAMTEST | | |
. 1. 4 L i . 3

(Part 3 of 5)

Appendix B: SVCs 211

§ L] k) T T k] 1
|Decimal |Hex. |]] I |
| No. | No. | Type | Macro | Register 0 | Register 1 |
f 617 ? 43 i II iENDREADY T iQPOST i
|]] | |] |
| 68 [44 | IV | SYNADAF | same as register 0 on |Same as register 1 on |
| i | i :entry to SYNAD }entry to SYNAD }
|
| 68 | 44 IV | SYNADRLS | | |
| | | | !
| 69 | 45 III |BSP | |DCB address
| | | |
| 70 | 46 I GSERV | |Parameter list address
| | | | | |
| 71 | 47 III |RLSEBFR | |Parameter list address
| | | |
| 71 | 47 I1x ASGNBFR) |Parameter list address
| I | | I | I
Y s § | 47 | 1III |BUFINQ | |Parameter list address |
	!				
72	48	IV	CHATR		parameter list address
		i !			
i 73	49	III	SPAR		Parameter list address
I !	!	I			
74	4A	TIII	DAR		Parameter list address
I					
75	4B	1III	DQUEUE i	Parameter list address	
{ 76 5 4c { v !IFBSTAT } } }					
[}					
] !					
77	4D	IV	QTAMTEST]
	I	i i I			
78	4E	III	WSCAN		
79	4F	I	STATUS		
!]]		!			
80 { 50	III	IKASVC i i i			
! I i					
81	51	IV	SETPRT		
I		i			
. 82	52	IV	DASDR		
]	
83	53	III	SMFWTM		Message address
]	'	
84	54	I	GRAPHICS	UCB address and buffer]
		I	restart address		
I I			I		
85 { 55	IV	DDRSWAP			
86	56	IV	ATLAS		Parameter list address
]	
87	57	III	DOoM	If zero	A DOM message I.D.
{ {		If negative	A pointer to a list of DOM		
		}		message I.Ds i	
				I I	
88	58	III	MODS8S	Routine code	DCB address
		!		I	
89	59	III	EMSRV		Parameter list address
	!]			
9¢	5	IV	XOMNGR	Address of list of	OMPA address {
				ECB/I0OB pointers]	
{ } g i }(optional) { :					
91	5B	III	VOLSTAT	DCB address	zero: issued by CLOSE
					Non-zero: issued by EOV
L L L 1 L L 3

212 Programmer's Guide to MP~hugging (Release 21)

(Part 4 of 5)

[4 L] L) T k] L} 1
|Decimal |Hex. | | | | |
| No. | No. | Type | Macro | Register 0 | Register 1 |
+ + t 1 + 1
92 | 5 | 1 |TCBEXCP | i I
| I | | | I
| 93 | SD | IV | TGET/TPUT | TIID § buffer Size |Address of User's Buffer |
| | | | I |
| 94 : SE | IV :g:gb&;NAL {Entry code : }
| | | | I
95 | 5F I | TSEVENT | TIID/Entry Code or 0 |Not Always Applicable |
| | | | I |
| 96 | 60 III |STAX | |Parameter List Address |
| | | | | I I
97 | 61 III | TEST-TSO | | |
| | | | |
98 | 62 IV | PROTECT | |Parameter List Address |
| | | | | |
| 99 63 | IV |none { | |
I | | | I |
| 100 | 64 III |FIB | |
!
| 101 65 I QTIP Entry code Parameter List Address
| | | |
| 102 66 I | AQCTL | Parameter List Address
| | | | |
| 103 67 XLATE Field length Action byte and field
| address
|
| 104 | 68 | IV | TOPCTL | Subroutine indicator |Address of operator |
| | | | | |jcontrol word area |
| | | | | I
| 105 | 69 | III |IMAGLIB | |Action indication |
| | | | | |
| 109 | 6D | v | | -- contents used by called routine -- |
| | | | | I
| 116 | 74 | I |AT | -- contents used by called routines -- |
| | | | | I
| 117 | 75 | Ir | | == contents used by called routines -- [
L 1 1 L § J
(Part 5 of 5)
Appendix B: SVCs 213

214 Programmer's Guide to Debugging (Release 21)

Completion codes issued by operating system
routines are often caused by problem

program errors.

This appendix includes the

most common system completion codes, their
probable causes, and how to correct the
error or locate related information using a

dump.

For a more comprehensive coverage of

completion codes, see the publication
Messages and Codes.

0Cx A program check occurred without a

OF1

recovery routine. If bit 15 of the
old program PSW (PSW at entry to
ABEND) is on, the problem program had
control when the interruption
occurred; "x" reflects the type of
error that causes the interruption:

Cause

Operation

Privileged operation
Execute

Protection
Addressing
Specification

Data

Fixed-point overflow
Fixed-point divide
Decimal overflow
Decimal divide
Exponent overflow
Exponent underflow
Significance
Floating-point

HMEHODODP VOOV EWN X

The correct register contents are
reflected under the heading “"REGS AT
ENTRY TO ABEND" in an ABEND/SNAP dump.
In a stand-alone dump, register
contents can be found in the register
save area for ABEND'S SVRB.

A program check occurred in the
interruption handling part of the
input/output supervisor. The
applicable program check PSW can be
found at location 40(28). (In systems
with MFT, this PSW is valid only if
the first four digits are 0004).

The problem program can be responsible
for this code if:

1. An access method routine in the
problem program storage area has
been overlaid.

2. An IOB, DCB, or DEB has been
modified after an EXCP has been
issued, but prior to the
completion of an event.

OF2

100

101

102

106

Appendix C: Completion Codes

If a trace table exists (trace option
was specified at system generation),
the instruction address in the new
program check PSW, location 104(68),
contains the address of a field of
register contents. This field
includes registers 10 through 9 on an
ABEND/SNAP dump, or 10 through 1 on a
stand-alone dump.

If no trace table exists, the above
field contains registers 10 through 1
on both ABEND/SNAP (MFT only) and
stand-alone dumps.

Most frequently caused by incorrect
parameters passed to a type I SVC
routine.

A device has been taken off-1line
without informing the system, or a
device is not operational.

If a trace table exists, the most
current entry is an SIO entry
beginning with 30. The last 3 digics
of the first word give the device
address.

1f a trace table does not exist,
register 1 (in the SVRB for the ABEND
routine) contains a pointer to the IOB
associated with the device.

The wait count, contained in register
0 when a WAIT macro instruction was
issued, is greater than the number of
ECBs being waited upon.

An invalid ECB address has been given
in a POST macro instruction.

If a POST macro instruction has been
issued by the problem program, the ECB
address is given in register 1 of
either the trace table entry or the

SVRB for the ABEND routine.

If the POST was issued by an I/0
interruption handler, the ECB address
can be found in the IOB associated
with the event.

During a transient area load or a
dynamic load resulting from a LINK,
LOAD, XCTL, or ATTACH macro
instruction, the fetch routine found
an error. A description of the error
is contained in register 15 of ABEND's
SVRB register save area:

Appendix C: Completion Codes 215

122

155

200

201

202

213

216

0D The control program found an
invalid record type.

0E The control program found an
invalid address. The problem
program may contain a relocatable
expression that specifies a
location outside the partition
boundaries.

OF A permanent 1/0 error has
occurred. This error can probably
be found in the trace table prior
to the ABEND entry.

Register 6 of ABEND's SVRB register
save area points to the work area used
by the fetch routine. This area
contains the IOB, channel program, RLD
buffer, and the BLDL directory entry
associated with the program being
loaded.

The operator cancelled the job and
requested a dump.

An unauthorized user (a user other
than dynamic device reconfiguration)
has issued SVC 85. The user's task
has been abnormally terminated by
dynamic device recognition.

The error was detected when an 1/0
operation was requested and the
storage protection keys of the IOB,
ECB, and DCB were not the same as the
key in the DEB. (checked for MVT
only)

This completion code is identical to
102, but applies to the WAIT macro
instruction instead ot POST.

An invalid RB address was found in an
ECB. The RB address is placed in the
ECB when a WAIT macro instruction is
issued.

The error occurred during execution of
an OPEN macro instruction for a data
set on a direct-access device.

Either:

1. The data set control block (DSCB)
could not be found on the direct
access device.

2. An uncorrectable input/output
error occurred in reading or
writing the data set control
block.

Register 4 contains the address of a
combined work and control block area.
This address plus x'64' is the address
of the data set name in the JFCBDSNM
field of the job file control block
(JFCB).

222

301

308

400

406

506

Programmer's Guide to Debugging (Release 21)

The operator cancelled the job without
requesting a dump. The cancellation
was probably the result of a wait
state or loop. '

A WAIT macro instruction was issued,

specifying an ECB which has not been

posted complete from a previous event.

Either:

1. The ECB has been reinitialized by
the problem program prior to a
second WAIT on the same ECB, or

2. The high order bit of the ECB has
been inadvertently turned on.

The problem program requested the
loading of a module using an entry
point given to the control program by
an IDENTIFY macro instruction.

Register 0 of LOAD's SVRB register
save area contains the address (or its
complement) of the name of the module
being loaded.

The control program found an invalid
I0B, DCB, or DEB. Check the following
blocks for the indicated information:

e I0B - a valid DCB address.
* DCB - a valid DEB address.

e DEB - ID of OF and a valid UCB
address.

e UCB - a valid identification of
FF.

Note: 1In systems with MVT, this code
may appear instead of a 200 code, for
the reasons given under 200.

A program has the "only loadable"
attribute or has an entry point given
to the control program by an IDENTIFY
macro instruction. 1In either case,
the program was invoked by a LINK,
XCTL, or ATTACH macro instruction.

Register 15 of the LINK, XCTL, or
ATTACH SVRB register save area
contains the address of the name of
the program being loaded.

The error occurred during execution of
a LINK, XCTL, ATTACH, or LOAD macro
instruction in an overlay program or
in a program that was being tested
using the TESTRAN interpreter.

The program name can be found as
follows:

1. If a LOAD macro instruction was
issued, register 0 in the trace
table SVC entry or in the SVRB

604

605

606

60A

613

700

register save area contains the
address (or its complement) of
the program name.

2. If a LINK, XCTL, or ATTACH was
issued, register 15 of the
associated SVRB register save
area contains the address of a
pointer to the program name.

Note: Programs written in an overlay
structure or using TESTRAN should not
reside in the SVC library.

During execution of a GETMAIN macro
instruction, the control program found
one of the following:

1. A free area exceeds the
boundaries of the main storage
assigned to the task. This can
result from a modified FQE.

2. The A-operand of the macro
instruction specified an address
outside the main storage
boundaries assigned to the task.

During execution of a FREEMAIN macro
instruction, the control program found
that part of the area to be freed is
outside the main storage boundaries
assigned to the task, possibly
resulting from a modified FQE.

Item 1 under the 604 completion code
is also applicable to 605.

During execution of a LINK, XCTL,
ATTACH, or LOAD macro instruction, a
conditional GETMAIN request was not
satisfied because of a lack of
available main storage for a fetch
routine work area. Consequently, the
reqguest was not satisfied. ‘

The name of the load module can be
found as described under completion
code 506.

Results from the same situations
described under 604 and 605 for R-form
GETMAIN and FREEMAIN macro
instructions.

The error occurred during execution of
an OPEN macro instruction for a data
set on magnetic tape. An
uncorrectable input/output error
occurred in tape positioning or in
label processing.

A unit check resulted from an SIC
issued to initiate a sense command.

The defective device can be determined
from the SIO trace table entry that

704

705

706

804

806

reflects a unit check in the Csw
status.

A GETMAIN macro instruction requested
a list of areas to be allocated. This
type of request is valid only for
systems with MVT.

The applicable SVC can be found in a
trace table entry or in the PSW at
entry to ABEND.

Results from the same situations
described under 704 for FREEMAIN macro
instructions.

During execution of a LINK, LOAD,
XCTL, or ATTACH macro instruction, the
requested load module was found to be
not executable.

The name of the module can be found as
described under the completion code
506.

The error occurred during execution of
a GETMAIN macro instruction with a
mode operand of EU or VU. More main
storage was requested than was

available.

The exror occurred during execution of
a LINK, XCTL, ATTACH, or LOAD macro
instruction.

An errxor was detected by the control
program routing for the BLDL macro
instruction. This routine is executed
as a result of these macro
instructions if the problem program
names the requested program in an EP
or EPLOC operand. . The contents of
register 15 indicate the nature of the
error:

X'04' The requested program was
not found in the indicated
source.

X'08' An ancorrectable

input/output error occurred
when the BLDL control
program routine attempted to
search the directory of the
library indicated as
containing the requested
program.

Register 12 contains the address of
the BLDL list used by the routine. 1In
systems with MFT this address plus 4
is the location of the 8-byte name of
the requested program that could not
be loaded. 1In systems with MVT,
registers 2 and 3 contain the name of
the requested module.

Appendix C: Completion Codes 217

80A

905

90a

A0S

AQA

BO4

The error occurred during execution of
an R-form GETMAIN macro instruction.
More main storage was requested than
was available.

The address of the area to be freed
(given in a FREEMAIN macro
instruction) is not a multiple of
eight. The contents of register one
in either the trace table entry or
ABEND's SVRB register save area
reflect the invalid address.

Results from the same situations
described under 905 for R-form
FREEMAIN macro instructions.

The error occurred during execution of
a FREEMAIN macro instruction. The
area to be freed overlaps an already
existing free area. This error can
occur if the address or the size of
the area to be freed were incorrect or
modified.

The contents of registers 0 and 1 in
either the SVC trace table entry or
ABEND's SVRB register save area
reflect the size and address.

Results from the same situations
described under A05 for R-forxrm of
GETMAIN and FREEMAIN macro
instructions.

This error occurred during execution
of a GETMAIN macro instruction. A
subpool number greater than 127 was
specified. The problem program is
restricted tc using subpools 0-127.
This error can occur if the subpool
number was either incorrectly
specified or modified.

BOS

BOA

B37

Fnn

218 Programmer's Guide to Debugging (Release 21)

A displacement of nine bytes from the
list address passed to GETMAIN in
register 1 contains the subpool
number. Register 1 can be found in
either the SVC trace table entry or
ABEND's SVRB register save area.

Results from the same situation
described under B04 for FREEMAIN macro
instructions.

Results from the same situations
described under BO4 and BOS5 for R-form
of GETMAIN and FREEMAIN macro
instructions.

The subpool number can be found in the
high order bytes of register 0 in
either the SVC trace table entry or
ABEND's SVRB register save area.

The error occurred at an end of
volume. The control program found
that all space on the currently
mounted volumes was allocated, that
more space was required, and that no
volume was available for demounting.

Either allocate more devices or change
the program so that a device will be
free when a volume must be mounted.

An SVC instruction contained an
invalid operand; nn is the hexadecimal
value of the SvVC.

This error can occur if either an
invalid instruction was issued by the
problem program or an operand
referring to an optional function was
not included during system generation.

Appendix D: System Module Name Prefixes

All load modules associated with a specific operating system component
have a common prefix on their module names. This appendix lists the
module name prefixes and the associated system component(s).

Prefix Component Prefix Component
IBC Independent utility programs IFF Graphic programming support
IEA Supervisor, 1/0 supervisor, and IFG Close, open, and related routines
NIP
IEB Data set utility programs IGC Transient SVC routines
IEC Input/output supervisor IGE 170 error routines
IEE Master scheduler IGF Machine check handler program
IEF Job scheduler IHA System control blocks
1EG TESTRAN IHB Assembler during expansion of
supervisor and data management
IEH System utility programs macro instructions
1EI Assembler program during system IHC FORTRAN library subroutines
generation
IHD COBOL library subroutines
IEJ FORTRAN IV E compiler
IHE PL/1 library subroutines
IEK FORTRAN IV H compiler
IHF PL/1 library subroutines
IEM PL/I F compiler
IHG Update analysis program
IEP COBOL E compiler
IHI Object program originally coded in
IEQ COBOL F compiler ALGOL language
IER Sort/Merge program IHJ Checkpoint/restart
IES Report program generator IHL Generalized Trace Facility
IET Assembler E IHK Remote job entry
IEU Assembler F IIN 7094 emulator program for the
Model 85
IEW Linkage editor/overlay
supervisor/program fetch 110 7074 emulator program on the
Models 155 and 165
IEX ALGOL compiler
IIp 7080 emulator program on the Model
IEY FORTRAN IV G compiler 165
1EZ System Interfaces IIQ 1401/1440/1460 emulator program on
Models 135, 145, and 155
IFB Environment recording routines
IIR 1440/7010 emulator program on
IFC Environment recording and print Models 145 and 155
routines
IIT 709/7090/7094/7094 II emulator
IFD Online test executive program program on the Model 165

Appendix D: System Module Name Prefixes 219

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

l 11U 7074 emulator program on the Model IKF USAS COBOL compiler
155
IKA Graphic Job Processor IKJ Time Sharing
IKD Satellite graphic job processor
messages ILB USAS COBOL subroutines

220 Programmer‘'s Guide to Debugging (Release 21.7)

CCW

CDE

CPU

CSW

DAR

DCB

DD

DDR

DEB

I0B

IPL

IRB

LLE

LPRB

abnormal end-of~-task

alternate path retry

channel command word

contents directory entry
central processing unit
channel status word
communications vector table
damage assessment routine
data control block

data definition

dynamic device reconfiguration
data extent block

dummy partition queue element
descriptor queue element
event control block

free block queue element

free queue element

finch request block

gotten subtask area queue element

input/output block
initial program loading
interrupt request block
load list element

loaded program request block

loaded request block

Appendix E: List of Abbreviations

NIP
PIB
PQE
PRB
PSA

PSW

QEL
RB
SCB
SIOo
SIRB
SPQE
sSVvC
SVRB
sysour
TCB
TIOT
ucCB
WLE
XCTL

XL

Appendix E:

multiprogramming with a fixed
number of tasks

multiprogramming with a variable

number of tasks

nucleus initialization program
partition information block
partition queue element
program request block

prefixed storage area

program status worxd

gqueue control block

queue element

request block

STAE control block

start input/output

supervisor interrupt request block

subpool queue element
supervisor call
supervisor request block
system output‘

task control block

task input/output table
unit control block

wait list element
transfer control

extent list

List of Abbreviations

221

222 Programmer's Guide to Debugging (Release 21)

Appendix F: ECB Completion Codes

[1 . T 1
| Hexadecimal | l
| Code | Meaning]
t : 1 - ———— 1
7F000000	Channel program has terminated without error. (CSW contents can be
	useful.)
41000000	Channel program has terminated with permanent error. (CSW contents can
	be useful.)
42000000	Channel program has terminated because a direct access extent address i
	has been violated. (CSW contents do not apply.)
44000000	Channel program has been intercepted because of permanent error
	associated with device end of previous request. You may reissue the
}	intercepted request. (CSW contents do not apply.)]
48000000	Request element for channel program has been made available after it
	has been purged. (CSW contents do not apply.) [
4¥000000	Error recovery routines have been entered because of direct access
]	error but are unable to read home address of record 0. (CSW contents
	do not apply.)
L 4L e e e e e e et A o S e . e et i e o . o J

Appendix F: ECB Completion Codes 223

224 Programmer's Guide to Debugging (Release 21)

Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545

Appendix G: UCB Sense Bytes

BYTE 0 BYTE 1
BT
DEVICE o 1 2 3 4 5 6 7 0 1 2 3 4 5 s 7
WORD |[DATA 00-NON-XST TU AT FILE NOT
c™MD | INT | BUS EQ | DATA |OVER- - 7 WRT
2400 CNT |CNVIT| | NOISE |or-nor ey LOAD PROT- | CAP=
REJ REG [ol¥) CHK | CHK |[RUN ZERO | CHK :?-:g;:nng::: TRK POINT STATUS £t ABLE
2311, | cmo | INT | Bus | EQ |pAtA |over- |TRK - iseex DATA ITRK ~JEND |IN- |NO gy |uissing | OVER-
2841 REJ | REQ | OUT | CHK |cHK |RUN [CCND ey CHK |OVER- |OF |VALID |REC jppoy [AOW | FLOW
CHK FLD |RUN |CYL [sEQ [FOUND L TN
2301, 2302 MD | INT EQ | DATA | OVER- " HINVAL DATA | TRK END NO SERVICE | OVER-
noa,mu | o) | G | oUr | cax |k | RN CHK IN| OVER- [OF (VAL \Rec 1FRS [ovER- | FLOW
2319, 2820 Sl COUNT|RUN |CYL FOUND RUN | INL
SHOULD SHOULD| pata [SHOULD|BUFFER [SHOULD] | LIGHT | ERD T ey
20 | GF [Nor | BB ot [2ad INoT [RuN- ot PEN | ORDER | SR S
OCCUR OCCUR (OCCUR |NING |OCCUR DETECT | SEQ L ‘ (R
SHOULD|SHOULD READ | FILM |RECRDR SHOULD|SHOULD| 2840 |2640
2280 ‘;‘SD :‘?é BOUST f:?m g’:‘? NOT [NOT 'S‘ELGGL COUNT|LOW [FORCED|NOT [NOT |OUTPUT{INPUT fém’“’
OCCUR [OCCUR CHK GAP [OCCUR |OCCUR |CHK [CHK CHK
SHOULD|SHOULD] 1, . READ RECRDR | riiw [SHOULD|2840 |2840
28 RCE"}D o %UST E:?m 23,‘;‘ NOT |NOT 's"ELGG,k COUNT {gm FORCED| moTion [NOT |QUTPUT|INPUT g_“ém‘
occur foccur T CHK GAP |UMIT |OCCUR [CHK |CHK
e Sl e
1052, | cmp | INT | oBus £Q k ‘ K -
2150 RE} | REQ | oUT | CHK
1285 cMp | INT | sus EQ |DATA [OvER- [NON |kveD
REJ | REQ | ouT | cHK |cHk |RUN [RcvY |cORR PR g ' ‘ .
oo | Nt | sus tQ | DATA | OVER- |NON |KYBD e | LATE [NO TsHOULD] |\ o\ “TSHOULDTSHOULD[SHOULD
12871 Rey | REQ | OUT | CHK [CHK |RUN [RCVY |CORR MoDE | STKR |DOC INOT |gp = [NOT —NOT =~ \NOT
SELECT | FOUND|OCCUR OCCUR |OCCUR |OCCUR
- SHOULD| [SHOULD|END |NO |SHOULD SHOULD [SHOULD |SHOULD
1268 Al IEO o BN /e O | N INoT NOT “1oF |DOC INOT |INVALINoT “iNOT iNOT
occur | |occur | PAGE | FOUND[OCCUR OCCUR {OCCUR [OCCUR
2495 cMp | INT | BUS £EQ | DATA ;“OOTULD POSN ;‘g’r"w
REJ | REQ | OUT | cHK | CHK bccur ek NOT o
2540, cMD | INT | BUS EQ | DATA S?JAL '
2021 REJ | REQ | OUT | CHK | CHK pesgrd ; ; .
3505 CMD | INT | BUS EQ | DATA | NOT | ABNOR- (oEmMoNon | PERM= | AUTO- lyoron [RETRY
3525 | RES | REG | OUT | CHK | CHK |USED |rPotmar [faveass | [ANENT |MATIC |uacrunc-jny Reo
RESET [KEY ERROR [RETRY |T/N |comPiETE
cMD | INT | BUS EQ | Data |BUFFER | opp cMD | PRINT |PRINT | (INE | FORMS | CMD | MECHAN-
a2n RE; | REQ | ouT | cHK |cHk [PARITY lcpg [CH? RETRY | CHK [QUAL-|pos [cHK |sup icaL
CHK iTY MOTION
1403, | cmo | INT | BUS £Q e
1443 REJ REQ ouT CHK TYPE TYPE B
BAR BAR
1442,2596 | cMD | INT | BUS EQ | DATA | OVER- |
2501,2520 | REJ | REQ | OUT | CHK | CHK |RUN
2671, emo | INT | BUs EQ | DATA &
2802 RES | REQ | OUT | CHK|cHK |
oo | T | sus tq [SHOULD[SHOULDFHOULD[SHOULD
2260 S0 e | oor | s INot INoT INoT INOT
loccur joccur loccur joccur
2701, | cMD | INT | BUS EQ | DATA | OVER- |LOST |TiME
2702 REJ | REQ | OUT | CHK | CHK |RUN |DATA |OUT . , I
boc [= § [}
14191275 | cMp | INT | Bus | NOT| DATA | OVER- |AUTO |NOT NOT | NOT |unoen |AMT Grwe [ACCT ;fggs”:fgé"
READ FIELD
PCU REJ | REQ | OUT | USED|CHK |RUN |SELECT |uUsED usep |usep |meao PO jeeot (FELDFIGD EELD
/1275 | cmp | Nt | B84 Nor | Nor ;:;5 Auto |oP 5 o
SCU Res | Rea | QW | usep|usen | STER . FseLeCT AT ‘ :
oo | Nt | eus ta | oATA | OVER- | INVID |END | STATE | NO WRITE JOPER-
B W ke | our | ok | ere | RN P ATk {OF lvaR [REC | FRE . liNHimiT[aTION
- FORMAT CYL | PRES | FOUND INL
cMp | INT | BUs | EQ | DATA | OvER- | WORD |DATA w7 AT FILE | NOT
3410/341) REJ REQ out CHK | CHK RUN CNT CNVTY NOISE | STATUS | STATUS! TRK LOAD :{f‘;rYUS PROT~ | CAP=
ZERO | CHK A B U | POINT ECT |ABLE
CMD | INT | BUS EQ | DATA |OVER-|" . ¢ perm [INVLD | END NO FILE " {OPER-
2305 REJ REQ | Our CHK | CHK | RUN . ERR . ITRK Of REC PROT ATION
Fs FORMAT|CYL | FOUND © i
- DATA] 0 7 FILE | NOT
220303 | o | R | oor | ok | one Lo lent fenvit] fnoise [status [status| TRe | FOAD | 9T feroT- | cae-
ZERO | CHK A 8 i ECT |ABLE

Appendix G:

UCB Sense Bytes

225

Page of GC28-6670-5,6, Revised April 16, 1973,

By TNL: GN28-2545

BYTE 2 BYTE 3
BT
DEVICE 0 1 2 3 4 5 6 7 0 i 2 3 4 5 6 7
6 & 7 INDICATE SKEW | 5800 |BKWD | COM-
I 2400 BITS 0-7 INDICATE A TRACK IS IN ERROR NO ERROR OR m LRCR | SKEW | CRC |REQ | o 1460 | STATUS| PARE
MULTI-ERROR VRC
2n, |un- | fze'&’“’ e 1AW junsel ' eeany | ON [READ fwRiTe g:u SEEK
2841 | SAFE 1o ek CHK CHK [STATUS LINE |SAFETY |SAFETY cyL INCMPL
ggg;'g?f UN- :?g‘ SKEW |CTR | COMP LRC IRC | LRC | tRe
29 w20 |SAFE | ok |FAIL | CHKCHK BITO | BIT1 | BIT2 | BIT3 |- .
BUFFER ADDRESS REGISTER BUFFER ADDRESS REGISTER
2250
unsl mulams amzlmnlamolmn BIT 8 1 BIT7 !ana !ms 15«14 Ima lmz iws
BUFFER ADDRESS REGISTER BUFFER ADDRESS REGISTER
2280
m!s]mulamalmulsnlltamojsfw BT 8] BIT7 IBITé lms lanu lsna]nnz [sm
BUFFER ADDRESS REGISTER BUFFER ADDRESS REGISTER
2282
BITIS| BITH14] 81T13 | BTi2 | BTV BITIO | BIT® BITS | BIT7 | BT6 | BIT5 |8iT4 |BIT3 | BT2 | BT
ARR T ~ARR | CARR |PLATEN [PLATEN RIBBON [TRAIN COIL |HAM- USCAR | SEP
an W g stor [FAILED (T3t |FORMS Imo. lovER- e I he iy (heary | PROT [MER | L |synic | syie
MOVE | cHK |CHK [TO ADV |RETRACT TION [LOAD CHK |FIRE CHK | CHK
3330 | COR- §. © -] ENV :
1] a3 RECT- :| DATA RESTART COMMAND
Lo E ABLE “IPRESENT| e
BUF COR-
2305 LOG | RECT- o oiin, o o RESTART COMMAND
FULL | ABLE | = i e
gggi USED FOR DIAGNOSTIC PURPOSES ONLY USED FOR DIAGNOSTIC PURPOSES ONLY
MTE/ Sata | ENV | Brr
3410/3411 TRACK N ERROR VRC | VRer | SKEW femks | cig | seTn | BKWD
CRCR TV
RW | MTE/ oama | YRC 1 gpe” ¢
3420/3803 TRACK IN ERROR SKEW ENV BKWD |COM-
VRC | LRCR o ek W PARE
BYTE 4 BYTE 5
ECHO RES ~ |READ [WRITE | DELAY |SEQ SEQ SEQ COMMAND N PROGRESS WHEN OVERFLOW INCOMPLETE OCCURS
2400 £R TAPE |CLOCK|CLOCK |{CNTR [IND | IND | IND OR
UNIT [ERR [ERR ERR {C] A . ZERO
2 ERRC T T S T COMMAND IN PROGRESS WHEN OVERFLOW INCOMPLETE OCCURS
041’ WRITE = X'05"
) y READ = X'06' ZERO
2301,2302 | SEQ SEQ SEQ | SEQ SEQ | SEQ | SEQ SEQ T h
2303,2314 | IND IND | IND | IND | IND | IND | IND | IND
2319,2820 | 0 1 2 3 4 5 6 7
3330,
1 3133 PHYSICAL DRIVE IDENTIFICATION CYLINDER ADDRESS
2305 CYLINDER ADDRESS
TaRE T TARE DIAG | TAPE NEW | NEw | WAT T TTpe T Jparity [TACHO] FALSE
3410/3411 | 5ot UNIT | EOT TRK |UNIT | SPARE SuB- | sus- |MPE | b |COM- |METER |END | RPQ
ISR -1 REJ CHK | CHK SYSTEM |SYSTEM | chi BURST |[PARE |CHK MARK
ALU REJ TAPE |[WRITE | micro- TAPE NEW NEW | wRT PE START EXCESSIVE
3420/3803 | WA | TAPE |INDI- TGR | PEGM. | LWR | UNIT suB- | sus- |Me | D [reap [ERTELIRGSTL) req
ERROR UNIT | CATE |VRC ERROR CHK SYSTEM |SYSTEM | cHx BURST | CHK OR T™
BYTE 6 BYTE 7
3330,* | RE- CYL |DIFFER HEAD ADDR FORMAT OF REMAINING ENCODED ERROR
j| 3333 VERSE | HIGH [HIGH SENSE BYTES {8-23) MESSAGE
2305+ CURRENT HEAD ADDR ENCODED ERROR MESSAGE
7 SHORT [DUAL 1, oo LAMP | TAPE BOT-| TAPE BOT] DATA
3410/3411 | TRK | GAP |DEN- |NiTE TU MODEL FAILURE[TOULERT (TR RGN RESET | SECUmTY
TU [MODE [sITy | PENSITY CHK |eWk |cw KEY | cux Lo
DUAL NRz| AR
WRT TAPE APE DATA
3420/3803 | 7 TRK |CURRENT {DEN- - LAMP RESET ERASE | seaning [LOAD
/ K IURE [y | e TAPE UNIT MODEL DEFINED FAILURE| Ler™ | Rigwr™ | KEY |BRSE"| HEAD | Pmes- |FAILURE

226 Programmer's Guide to Debugging (Release 21.7)

BYTE S
BT
DEVICE 0 1 2 3 4 7
NO 1 MARG-
™ eno READ- INAL
341073411 ‘c'&w" BACK VELO-
DATA ary
186 EARLY |EARLY
VELO- SOR VELOCITY
3420/3803 |DROP BEGIN [END e
WHILE RDBK |RDBK CiTY CNT e SDR CNTRS cu
J RETRY WRTNG
WRT JACHK |CHK
BYTL 10 BYTE 11
CMD NO B) BUS XFR/ IMSTRU-] ALY
3420/3803 | STATUS L e pak/tsrl ROSU | ow Miceo-
AE PAR CTION
J RD 8K ADDR ERR Ic DECODE DETECT
CHK ERR ERR HROWR
BYTE 13
XFR/
B2 8Us [ROS 2
PARITY Low CONTROL UNIT CONTROL UNIT
3420/3803. | (3% k5o PaaTY lic 2 DENSITY UNIQUE 1D HIGH
ERR
BYTE 14 BYTE 15
CONTROL UNIT TAPE UNIT
3420/3803 UNIQUE 1D LOW UNIQUE 1D
BYTE 16 BYTE 17
WO
CONTROL UNIT
3420/3803 TAPE UNIT cHAN- | pEvice oA
UNIQUE 1D I*:M‘g)sw SWITCH FEATURES
BYTE 18 BYTE 19
rowen SR PRIMED FOR DEVICE END
CHK
3420/3803 |ovER- EC LEVEL OF TAPE UNIT
ATURE w7[ruo|wslfu41w3|ruz|w|Iruo
BYTE 20 BYTE 21
PRIMED FOR DEVICE END LOAD ;Eg ,':;ft'" TAPE |REELS [LOAD [LOAD |[LOAD
3420/3803 BUTTON] 1ot | 1irne- | PRE= [LOADEDIREWIND|COM- | CHECK
DEPRESS SENT PLETE
wr] we]wuolwc[ruslmA]1u9lwa ING |ING
BYTE 22 8YTE 23
3420/3803 FRU IDENTIFIERS FOR CONTROL UNIT FRU IDENTIFIERS FOR CONTROL UNIT

Appendix G:

UCB Sense Bytes

227

228 Programmer's Guide to I’ +ging (Release 21)

Appendix H: Service Aids

In addition to the debugging facilities discussed in this manual, IBM
provides the following service aid programs to aid you in debugging. A
complete description of each of these service aids and instructions for
their use are found in the publication IBM System/360 Operating System
Service Aids, GC28-6719.

Program_Name Functional Description
IMDSADMP A stand-alone program, assembled with user-selected

options, that dumps the contents of main storage onto a
tape or a printer. The program has two versions:

e A high speed version that dumps the contents of main .
storage to a tape.

¢ A low speed version that formats and dumps the
contents of main storage either to a tape or directly
to a printer.

IMDPRDMP A problem program that allows the user to format and print
IMSADMP output data sets, the SYS1.DUMP data set, the TSO
dump data set and its associated swap data sets, and
Generalized Trace Facility output data sets. IMDPRDMP can
also be used to transfer a system dump from a SYS1l.DUMP
data set on a direct access device to another data set for
later formatting and printing.

IMCIQDMP A stand-alone program that reads, formats, and prints
either the entire operating system data set SYS1.SYSJOBQE,
or selects and prints information related to a specific
job in that data set. Because it operates independently
of the operating system, IMCJQDMP can print the contents
of the job queue as it appeared at the time of abnormal
termination.

IMCOSJIQD A problem program that reads, formats, and prints the
contents of the system job gueue data set (SYS1.SYSJOBQE).
Either the entire job queue or information related to a
specific job may be printed.

Because the program can be run under 0S, it is not
necessary to re-IPL the operating system as with IMCJQDMP.

IMBLIST A problem program that produces formatted listings of
object modules, load modules, module cross references,
CSECT identification records (IDRs), and PTFs.

IMBMDMAP A problem program that produces a map of the system
nucleus, any load module, the resident reenterable load
module area of an MFT system, or the link pack area of an
MVT system. The listing produced by this program shows
the locations of CSECTS, external references, and entry
points within a load module.

IMASPZAP A problem program that can inspect and modify either data
records or load modules located on a direct access storage
device.

Appendix H: Service Aids

229

IMAPTFLE A problem program that generates job control language
(JCL) statements necessary to add a PTF to the Operating
System in a later step, or applies PTFs to the Operating
System by dynamically invoking the linkage editor.

IFCDIPOO A problem program that initializes the SYS1.LOGREC data
set.
IFCEREPO A problem program that edits, writes, and accumulates

environment records on the SYS1.LOGREC data set.

230 Programmer's Guide t~ NDebugging (Release 21)

Appendix J: TCAM Debugging Aids

In addition to the debugging facilities described in this publication,
the telecommunications access method provides the following aids to
debugging:

e I/0 error recording procedures.

e I/0 interrupt trace table (line trace).

s A dispatcher subtask trace table (STCB trace).

® Sequential listings of buffers and message queue data sets.

Optional formatted listings of the line and STCB traces are available
with TCAM. These debugging aids are described in the publications IBM
System/360 Operating System: TCAM Proqgqrammer's Guide and Reference
Manual, GC30-2024, and IBM System/360 Operating System: TCAM
Serviceability Aids Program Logic Manual, GY30-2027. A discussion of
the TCAM formatted ABEND dump is given in the publication IBM System/360
Operating System: TCAM Program Logic Manual, GY30-2029.

Appendix J: TCAM Debugging Aids 231

232 Programmer's Guide to Debugging (Release 21)

Appendix K: Control Block Pointers

This appendix summarizes the contents of the control blocks that are

most useful in debugging.

Control blocks are presented in alphabetical

order, with displacements in decimal, followed by the hexadecimal

counterpart in parentheses.

Figure 56 illustrates control block
relationships in the System/360 Operating System.

Figure 57 shows

relationships between storage control elements in a system with MVT.

CVT - Communications Vector Table

+0 Address of TCB control words

+53(35) Address of entry point of ABTERM

+193(C1) Address of secondary CVT (used
only with Model 65
Multiprocessing systems and TSO)

DCB -~ Data Control Block

+40(28) ddname (before open); offset to
ddname in TIOT (after open)

+45(2D) DEB address

+69(45) IOB address

DEB - Data Extent Block

+1 TCB address

+5 Address of next DEB
+25(19) DCB address

+33(21) UCB address

+38(26) Address of start of extent
+42(237) Address of end of extent

ECB - Event Control Block
+1 RB address or completion code

IOB - Input/Output Block

~7 Address of next IOB (BSAM, (QSAM,
and BPAM)

+2 Sense bytes

+5 ECB address

+9 CSW

+17(11) CCW list address

+21(15) DCB address

RB - Request Block (PCP and MFT)

-8 Address of previous RB on load
list

-4 Address of next RB on load list

+0 Module name

+13(D) Entry point address

+16(10)
+29(1D)

Resume PSW
Address of previous RB

RB - Request Block (MVT)

+4 Last half of user's PSW
+13(D) CDE address

+16(10) Resume PSW

+29(1D) Address of previous RB

TIOT - Task Input/Output Table

+0 Job name

+8 Step name

+24(18) DD entries begin (one variable-
length entry for each DD
statement)

+0 Length of DD entry

+4 ddname

+16(10) Device entries begin (one 4-byte
entry for each device)

+20(14) Next device entry (if there is

one)

(Next DD entry begins at 24(18)
plus length of first DD entry)

TCB - Task Control Block (PCP and MFT)

+1 Address of most recent RB

+9 Address of most recent DEB

+13 (D) TIOT address

+16(10) Completion code

+25(19) MSS boundary box address

+37(25) Address of most recent RB on load
list

+113(71) Anddress of first save area

+161 (A1) Address of STAE control block

+181(B5) Address of the job step control

block

TCB - Task Control Block
(MFT) with Subtasking

+45(2D) Address of TCB for job step task

+129(81) Address of TCB for next subtask
attached by same parent task

+133(85) Address of TCB for parent task

+137(89) Address of TCB for most recent
subtask

+145(91) Address of ECB to be posted at
task completion

+181 (B5) Address of the job step control

block

Appendix K: Control Block Pointers 233

TCB - Task Control Block (MVT)

+1

+9
+13(D)
+16(10)
+25(19)
+33(21)
+37(25)
+113(71)
+125(7D)
+129(81)

+133(85)
+137(89)

+145(91)
+153(99)

+161 (A1)

Address of most recent RB
Address of most recent DEB

TIOT address

Completion code

Address of most recent SPQE

Bit 7 -- Non-dispatchability bit
Address of most recent LLE
Address of first save area
Address of TCB for job step task
Address of TCB for next subtask
attached by same parent task
Address of TCB for parent task
Address of TCB for most recent
subtask

Address of ECB to be posted at
task completion

Address of dummy PQE minus 8
bytes

Address of STAE control block

+181 (BS)

Address of the job step control
block

UCB - Unit Control Block

-4

+2

+4
+13(D)
+18(12)
+19(13)
+22(16)

+24(18)
+25(19)
+40(28)

234 Programmer's Guide to Debugging (Release 21)

CPU ID (used only with Model 65
Multiprocessing systems)

FF (UCB identification)

Device address

Unit name

Device class

Device type

Sense bytes (except devices with
extended sense)

Number of sense bytes (devices
with extended sense)

Address of sense bytes (devices
with extended sense)

Number of outstanding RESERVE
requests (shared DASD only)

{ reawen &

[
R F 0ty e |
[
12
4. 1 1oos Lt
— P L N LA L
o I wr ~
! nesr s rolnone
°
] [
R — T .
== »] _
6 Y w8
Yravw |, j o
ao~one | Meoaat § Neat Modde
Phavien s | a0 hor wexh LEy o] rsere
i 4 —1
B we
. nd o Y [wey “
! e (10
| a Y V re
Protn Jd] v ||
IR el 4
x . e
[E) -
Q) h 7 /
Loewa P30
e 110,
Jf e
220
_)
(d -
Te=
accon
N wddion /
2 1
we
40 (2%, [Otise
Jj ofs
-
- 1108 hater
100 ;
O
106
TN.-I <)
oo -
{ Mot 108
Poi -
" 1
Soree
o brter
39 1
‘
—
—ow |
n
w
10 tee
o0 cow
() !
T] [==
° . .

Figure 56. Control Block Flow

Appendix K: Control Block Pointers 237

238 Programmer ‘'S Guide to Debugging (Release 21)

ce

0]Q RB Queve
25 (19) |_t Sobpool Queve
37 (25 [HLocd List
Load List Subpool Queue Active RB Queve
r~ S~ ~ r - Al r - N
LLE SPQE R8
LLE SPOE R8
LLE SPQE RB
o 4 Next LLE 4 Next SPQE
4| 4ot t oqe 12 o[t COE
28 (1c)|__|} Previous R8
Descriptor Queve
e — Y
OQF
1413
DQE
4 FaE
§ Next DQE
Free Queve
g - ~
FQE
FQE
FOE
0 4 Next FQE
4 Length
Contents Directory
s N N
COE 0 Xt
Length
COE 4| Number CSECTs
a| Length CSECT-1
CDE
§rext COE Length CSECT-N
‘ ARB / Location CSECT-1
8 Program -
120 Name Location CSECT-N
16 (10) $Entry point
XL MVT
20 (14) ¢ Storage Control
Polnters
Figure 57. MVT Storage Control Flow

Appendix K: Control Block Pointers 239

240 Programmer's Guide to Debugging (Release 21)

Appendix L:

There are two types of traces that may be
performed during OPEN/CLOSE/EOV processing,
provided that GTF is active.

e ABEND trace - A trace performed before
an OPEN/CLOSE/EOV problem determination
module calls an ABEND routine.

e Optional work area trace - A trace
performed when an OPEN/CLOSE/EOV module
has finished execution. This trace is
made only if DCB=DIAGNS=TRACE is .
specified in the DD statement of the
data set for which the trace is
desired.

Further information on requesting these
traces is contained in IBM System/360

Operating System: Data Management
Services, GC26-3746.

The format of both types of
OPEN/CLOSE/EOV trace output is as follows:

T *
JUSRFF FFF ccc control block fields |
L J

USRFF
is the name (excluding the IMD prefix)
of the IMDPRDMP appendage which
formats the control block and work
area information collected by
OPEN/CLOSE/EOV and included in the GTF
output data set. FF is the format ID
for OPEN/CLOSE/EOV.

FFF

ccc

OPEN/CLOSE /EOV Debugging Aids

is the event ID which defines the
event which caused the trace entry.
Everything traced by OPEN/CLOSE/EOV
has an event ID of FF.

is the control block that was traced
to provide the problem program with
OPEN/CLOSE/EOV data for debugging
purposes.

When the OPEN/CLOSE/EOV ABEND trace
occurs, only those control blocks
meaningful to an ABEND condition will
be traced. The selection of these
control blocks is described in IBM
System/360 Input/Output Support
(OPEN/CLOSE/EQV) PLM, GY28-6609.

If the optional work area trace has
been requested, the OPEN/CLOSE/EOV
work area and the user's DCB will be
traced after the execution of each
OPEN/CLOSE/EOV module.

control block fields

are the contents of fields in control
block ccc. For descriptions of the
fields shown, refer to IBM System/360
Operating System: System Control
Blocks, GC28-6628 or IBM System/360
Operating System: Input/Output
Support (OPEN/CLOSE/EOV) PLM,
GY28-6609.

Appendix L: OPEN/CLOSE/EOV Debugging Aids 241

242 Programmer's Guide to Debugging (Release 21)

Page of GC28-6670-5,6, Revised March 1, 1973, By TNL: GN28-2545

Indexes to systems reference library
manuals are consolidated in the publication
IBM System/360 Operating System: Systems
Reference Library Master Index, GC28-66u4.
For additional information about any
subject listed below, refer to other
pablications listed for the same subject in
the Master Index.

When more than one page reference is
given, the major reference is first.

ABEND dumps
contents of (MVT)
contents of (MFT)
guide to using (MVT) 63-64
guide to using (MFT) U44-45
how to invoke (MVT) 46
how to invoke (MFT) 29
introduction to 11
samples of (MVT) 47-48
samples of (MFT) 30-31

Abnormal termination, cause of
in an ABEND/SNAP dump (MVT) 63
in an ABEND/SNAP dump (MFT) 44

Abnormal termination dumps (see ABEND

dumps)

Active RB queue
description of 16
instructions for using 205
in a storage dump 141
in an ABEND/SNAP dump (MVT) 52,63
in an ABEND/SNAP dump (MFT) 37,44
in an indicative dump 67

AMWP bits
in an indicative dump 67
meaning of 206

APSW field, in an ABEND/SNAP dump

(MVT) 52,63
ATTACH macro instruction, effects of 18
Attaching subtasks 20

46-64
29-45

Boundary
problem program 40,206

Catalog dump 32
CDE
as used with the load list %
format of 25 '
in an ABEND/SNAP dump 54
in a storage dump 141
Communications vector table (see CVT)
Complete dump (MVT)
description of 46
sample of 47,48
Completion codes
description of common 215
explanation of 205
in an ABEND/SNAP dump (MVT) 49
in an ABEND/SNAP dump (MFT) 35
in an indicative dump 67

Index

Console dump facility 68
COND parameter,
to regulate job step execution 32
Contents directory
description of 17,25
entries (see CDE)
Control blocks
descriptions of 26,27
pointers in 233
relationships between 27
use in debugging 205
Control block displays (IMDPRDMP output)
74~-122
MFT DEB format 103
MFT job pack queue format 102
MFT load list format 102
MFT problem program boundaries 101-102
MFT RB format 98
MFT TCB format 92-98
MFT TIOT format 107
MVT DEB format 87-90
MVT job pack queue format 86-87
MVT load list format 86
MVT main storage information 85
MVT RB format 81-85
MVT TCB format 75-80
MVT TIOT format 90-92
TSO PSCB format 121
TSO RCB format 113
TSO SWAP DCB format 116
TSO TAXE format 123
TSO TJB format 116
TSO TIBX format 120-121
TSO TSB format 118
TSO TSCVT format 108
TSO UMSM format 116
Control information 13
Control program nucleus
ABEND/SNAP (MVT) 60
ABEND/SNAP (MFT) 43-44
CVT
description of 26
in a storage image dump 138,139
pointers in 233
/
Data control block (see DCB)
Data event c&ntrol block 27
Data extent block (see DEB)
Damage assessment routine (DAR) 68
DCB
description of 27
in a storage dump 144
pointers in 233
DD statements
required with ABEND/SNAP dumps
sample of SYSABEND 32
DEB
description of 27
in a storage dump 143
in an ABEND/SNAP dump (MVT) 55
in an ABEND/SNAP dump (MFT) 41
pointers in 233

29,32

Index 243

Page of GC28-6670-5, 6, Revised March 1, 1973, By TNL: GN28-2545

DEB queue
in a storage dump 143
in an ABEND/SNAP dump (MVT) 50
in an ANDED/SNAP dump (MFT) 35
Debugging procedure
description of 205
summary 207
DELETE macro instruction 16
Dequeued elements 34
Descriptor queue element (see DQFE)
Destroyed queues 32
Device considerations,
for ABEND/SNAP dumps 29,32
Dispatcher trace table entry (MVT)
format of 148,149
in a SNAP dump 61,64
in a storage image dump 146
Dispatching priority 19,20
DQE
format of 24
in a storage dump 143
in an ABEND/SNAP dump 56,64
Dump (see individual type of dump, e.g.,
ABEND, indicative)
Dump data set
MVT 46
MFT 29
Dump list heading (IMDPRDMP output) 70
Dynamic area
in systems with MVT 20
in systems with MFT 19

ECB
completion codes, list of 223
description of 27
in a storage dump 145
pointers in 233
posting of, using ATTACH 18
Event control block (see ECB)
Extent list (see XL)
External interruption 206
External trace table entry
format of 148
in a SNAP dump 61,63,64
in a storage dump 148,149

FBQE

format of 22-23

in a storage dump 146

in an ABEND/SNAP dump 57,64
FINCH request block 14
Finding the partition TCB 141
FRB 14
Fixed area

in systems with MFT 19

in systems with MVr 20
FQE

format of (MFT) 21

format of (MVT) 24
Free areas

in an ABEND/SNAP dump (MFT) 44
Free block queue element (see FBQE)
Free queue element (see FQE)

General debugging procedure
description of 205-207
summary 207

General format (IMDPRDMP output) 128

Generalized trace faility (GTF) 150-203
comprehensive trace records

158-166,169-202

DSP 162

EXT 163

I0 159

PCI/I0 159

PGM 165

SI0 161

SSM 166

svCc 170
description of 15
hexadecimal format record 168
lost event recorxrd 167
minimal trace records 150-157

Dsp 153

EXT 154

I0 151

PCI/IO 151

PGM 155

SI0 152

SSM 157

svVC 156

SVC comprehensive trace records 169-202

sub-index 169

time record 167
GETMAIN macro instruction 21-22
Gotten subtask area queue element 21-22
GQE 21-22
GTF (see Generalized Trace Facility)
GTF trace table

in ABEND/SNAP dumps 150

in IMDPRDMP output 150
Guide to using storage image dump 137

Hardware error 205,206
Hierarchy, main storage 20-22

IFCDIPOO 230
IFCEREPO 230
IMAPTFLE 230
IMASPZAP 229
IMBLIST 229
IMBMDMAP 229
IMCJQDMP 229
IMCOSIQD 229
IMDPRDMP 229
IMDSADMP 229
Indicative dumps
contents of 65-67
description of 65
guide to using 67
introduction 11
Input/output block (see IOB)
Interrupt request block 14
Interruptions 205,206
I0B
description of 27
in a storage dump 144-145
pointers in 233

244 Programmer's Guide to Debugging (Release 21.7)

I7/0 trace table entry
format of 148
in a storage dump (MFT) 148-149
in a storage dump (MVT) 148
in a SNAP dump (MVT) 61, 63-64
in an ABEND/SNAP dump (MFT) 42,44
IRB 14

Job pack area 14,17
Job pack area queue 17
Job step 19

Job step task (MVT)
JPAQ 17

20,46

LINK macro instruction, effects of 18
Link pack area (MVT) 20-21
Link pack area maps (IMDPRDMP output)
71-73
LLE
count field 17
description of 17
in an ABEND/SNAP dump (MVT) 50
Load list
description of 16
~instruction for using 205,207
in a storage dump 142
in an ABEND/SNAP dump (MVT)
in an ABEND/SNAP dump (MFT).
in an indicative dump 66
in systems with MVT 17
in systems with MFT 16-17
Load list element (see LLE)
LOAD macro instruction, effects of 18-19
Load module, storage control for
in an ABEND/SNAP dump (MVT)
in systems with MVT 25-26
Loaded program request block 14
LPRB 14
LRB 14

53,63
38,44

53-54,64

Main storage hierarchy support
inclusion of 20-22
effects on MSS boundary box 21
effects on partition queue 21
Main storage layout
in systems with MFT with subtasking
19-20
in systems with MFT without subtasking
19
in the systems with MVT 20
Main storage supervisor's boundary box
(see MSS)
Machine check interruption 205-207
MFT, systems with
considerations in using an ABENIV/SNAP
dump of 44~45
contents of an ABEND/SNAP dump of 34-45
quide to using a storage
dump of 137
how to invoke an ABEND/SNAP
dump of 29
main storage layout in 20
storage control in 21-23
task control characteristics of 19-~20
trace table entries in 148

Model 65 Multiprocessing system
trace table formats 149
prefixed storage area, as shown in an
ABEND/SNAP dump {(MVT) 60
trace table entries in a SNAP dump 62
Module name prefixes, list of 219
description of (MFT) 21-22
in an ABEND/SNAP dqump (MVT)
starting address (MFT) 35
Multiprogramming with a fixed number of
tasks (see MFT, systems with)
Multiprogramming with a variable number of
tasks (see MVT, system with)
MVT, systems with
complete ABEND/SNAP dump of 47-~48
contents of an ABEND/SNAP dump U46-64
guide to using a storage image dump of
137-146
guide to using an ABEND/SNAP dump
of 63-64
how to invoke an ABEND/SNAP dump of 46
load list 16
main storage layout in 20
storage control in 22-26
task control characteristics in 20
trace table entries in 148

55-56

Nucleus
contents of 19-20
in an ABEND/SNAP dump (MVT) 60
in an ABEND/SNAP dump (MFT) 44

Only loadable (OL) 14
OPEN/CLOSE/EOV debugging 241
Output comments (IMDPRDMP output)
from GTF processing 203
Overlaid problem program 34

130-136

Partition (MFT) 19-20
Partition queue element (see PQE)
Partition TICBs 138-141
PIE 35,49
Pointers, control block 231
PQE
format of 23
in a storage dump 143
in an ABEND/SNAP dump 56-64
PRB 14
Priority 19-20
Problem program, how to locate in a
dump 205-207
Problem program storage boundaries, in an
ABEND/SNAP dump (MFT) 40
Program check interruption
Program check old PSW
in an ABEND/SNAP dump (MVT)
information in 205,206
Program check trace table entry
format of 148
in a SNAP dump 61-62
in a storage dump 145-146
Program interruption element (see PIE)
Program request block 14
Protection key 35
PSCB 146

205,206
52,63

Index 245

Page of GC28-6670~5, 6, Revised March 1, 1973, By TNL: GN28-25u45

PSW at entry to ABEND
in an ABEND/SNAP dump (MVT) 49
in an ABEND/SNAP dump nMFT) 35
PSW, program check old (see program check
old PSW)
PSW, resume (see resume PSW)

QCB 57
Queue control block trace (IMDPRDMP
output) 70-71
Queue elements (MVT) 21,22-26
Queues destroyed 34
RB
as affected by LINK, ATTACH, XCTL and

LOAD 18
formats of 13-16
in an ABEND/SNAP dump (MVT) 52-54
in an ABEND/SNAP dump (MFT) 37,38,44
in an indicative dump 66
most recent 35,49
name field, in a dump 205
purpose of 13
pointers in 233
pointers to, in a storage dump 141-142
queue (see active RB queue)
sizes of 15
types of 13-14
when created 13
which ones appear in a dump 205
RCB 145
Re-creating the task structure
MFT with subtasking 139
MVT 139
Reenterable load module area (MFT) 19
Region (MVT)
contents of, in an ABEND/SNAP dump 64
description of 20
storage control for
Register contents
in a save area 147
in an ABEND/SNAP dump (MVT) 60-61
in an ABEND/SNAP dump (MFT) 43
in an indicative dump 66
Request block (see RB)
Resume PSW
in an ABEND/SNAP dump (MVT)
in an ABEND/SNAP dump (MFT)
in an indicative dump 67
Retain dump 32
Rollout/rollin
effects on partition queuwe 22-23

22-24

53,62
38,44

Save areas
format of 147
in an ABEND/SNAP dump (MVT) 58
in an ABEND/SNAP dump (MFT) 40
Save area chain 147
Sense bytes, UCB
table of 225
Sequential partitioned system (see MFT,
systems with)
Service aids 229
Set system mask trace table entry
format of 149
in an ABEND/SNAP dump 62

SIO trace table entry
format of (MFT) 148
format of (MVT) 148

in a SNAP dump (MVT) 62-63
in an ABEND-SNAP dump
(MFT) 42,44-45

SIRB 14

SNAP dumps
contents of (MVT) 46-63
contents of (MFT) 32-44
guide to using (MVT) 63-64
guide to using (MFT) U44-45

how to invoke (MVT) 46
how to invoke S5MFT) 29
introduction to 11
Snapshot dumps (see SNAP dumps)
Space considerations, for ABEND/SNAP
dumps 32
SPQE
formt of 24
in a storage dump 143
in an ABEND/SNAP dump 55,64
SQS (see system queue space)
SsM (see set system mask trace table entry)
Storage control
in systems with MFT with subtasking 22
in systems with MFT without subtasking
21
in systems with MVT
Storage dumps
discussion of 68
guide to using 137
introduction to 11
Subpool
definition of 24
in a storage dump 143
in an ABEND/SNAP dump 55,64
queue elements (see SPQE)
Subtask, as created by ATTACH 18
Supervisor calls, list of 209
Supervisor interrupt request block 14
Supervisor request block 14
SVC trace table entries
formt of (MFT) 148
format of (MVT) 148
in a SNAP dump (MVT) 61-62
in an ABEND/SNAP dump (MFT)
SVCs, list of 209
SVRB 14
SYSABEND DD statement
description of 32
samples of 33
SYSOUT, as a dump data set 32
System control blocks (see control blocks)
System differences in task control 18-20
System failure 68
System queue space (MVT) 20
System tasks 18-20
System wait TCB 75
SYS1.DUMP data set 68,29
SYSUDUMP DD statement 29

25,26

42-44

Task completion code (see completion codes)
Task control block (see TCB)

Task control differences, by system 18-20
Task dispatching priority 20

Task input/output table (see TIOT)

246 Programmer's Guide to Debugging (Release 21.7)

Page of GC28-6670-5,6, Revised March 1, 1973, By TNL: GN28-2545

Task management 13-21

Task supervision 13-21

Task structure, recreating the, using a

storage dump (MVT) 139

Task switch trace table entry (MFT)
format of 148
in an ABEND/SNAP dump 44

Task switching (MFT) 20

TAXE 146
TCAM Debugging Aids 231
TCB

description of 13 :
in an ABEND/SNAP dump (MVT) 49-51
in an ABEND/SNAP dump (MFT) 35-37
information available through 13
locating, in a storage dump 138-141
pointers in 233
pointers to, in a storage dump (MFT)
138-139
queue (MFT) 19,20
queue (MVT) 20
relationships 19-20
summary display (IMDPRDMP output)
124-127
MFT without subtask TCBs 125
MFT or MVT with subtask TCBs 125
TCBILCT 51,233
TCBNTC 51,233
TCBOTC 51,233
TCBTCB 50, 233

Telecommunications Access Method (see TCAM)

Termination, abnormal (see abnormal
termination)
TIOT
description 26
in ABEND dump (MVT) 55
in IMDPRDMP output (MVT) 90
pointers in 233

TIJB 146
TIBX 146
Traces 147-150
Trace table
control block 148

delimiting entries, in an ABEND/SNAP

dump (MFT) 44
description of 1us
format of entries (MFT) 148
format of entries (MVT) 149
formt of entries
{(Mod 65 multiprocessing systems)
in a SNAP dump (MVT) 61-62
in a storage dump 148-149
in an ABEND/SNAP dump (MFT) 42
samples of entries 148-149
usefulness in debugging 206
TSB 146
TSCVT 145
TSO Control Blocks 145-146

ucB
description of 27
in a storage dump 144
in an ABEND/SNAP dump (MFT) 41
pointers in 234
UMSM 146
Unit control block (see UCB)
Use count 17

Wait list 17
Wait list element 17,18
WLE 17

XCTL macro instruction, effects of 18
XL

description of 25

in a ABEND/SNAP dumps S4,64

Index

149

247

GC28-6670-4

B

Internationsi Business Machines Corporation

Data Processing Division
1133 Weiittiseter Avenue, White Piains, New York 10604

(U.S.A. only)

1BM World Trade
821 United Nations Plasa, New Yerk, New York i 717

¢

*VSTN Ul pag (OZ-09ES) spino BuiBBnqaq SO 09t/

9-0£99-8209

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	050.1
	050.2
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	076.1
	076.2
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	132.1
	132.2
	133
	134
	135
	136
	136.1
	136.2
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	170.1
	170.2
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	xBack

