
File No. 5360-20 
Order No. GC28-6670-6 OS 

Systems Reference Library 

IBM System/3S0 Operating System: 

Programmer's Guide to Debugging 

OS Release 21.7 



Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

Seventh Edition (November, 1972) 

This is a reprint of GC28-6670-5 incorporating changes 
released in the following Technical Newsletter: 

GN28-2520 (dated April 15, 1972) 

This edition with Technical Newsletter GN28-2545 applies to 
release 21.7 and component release 360S-0S-586 of IBM System/360 
Operating System, and to all subsequent releases until otherwise 
indicated in new editions or Technical Newsletters. Changes are 
continually made to the information herein; before using this 
publication in connection with the operation of IBM systems, 
consult the latest IBM S stem 360 and S stem 370 Biblio ra h , 
GA22-6822, for the e ~t~ons t 

Requests for copies of IBM publications should be made to 
your IBM representative or to the IBM branch office serving 
your locality. 

A form for readers' comments is provided at the back of 
this publication. If the form has been removed, comments may 
be addressed to IBM Corporation, Publications Development, 
Department D58, Building 706-2, PO ,Box 390, poughkeepsie, N.Y. 
12602. Comments become the property of IBM. 

C Copyright International Business Machines Corporation 1967,1968,1969,1970,1971,1972 



This publication is intended to help you 
use the debugging facilities provided with 
the IBM System/360 Operating system. It 
describes., in assembler language terms, the 
major debugging facilities provided with 
the Systeml360 operating System, and is 
directed towards the programmer who deals 
with system and application program 
problems. 

The publication is divided into three 
principal parts: "Section 1: Operating 
System Concepts;" "Section 2: Interpreting 
Dumps;" and "Section 3: Tracing Aids,· 
plus an Introduction and a set of 
Appendixes that provide specific debugging 
information. 

The Introduction provides a brief survey 
of the material presented in the balance of 
the publication. 

Section 1 deals with internal aspects of 
the operating system that are pertinent to 
debugging. A working knowledge of this 
information will provide you with the means 
of determining the status of the system at 
the time of failure, and the course of 
events which led up to that failure. The 
general precedure for debugging with an 
operating system dump (Appendix A) assumes 
knowledge of this control flow. 

Section 2 includes instructions for 
invoking, reading, and interpreting storage 
dumps of systems with MFT or MVT control 
programs. The material is intended to aid 
you in interpreting dumps and isolating 
errors. 

Section 3 deals with the save area 
chain, the Trace Option, and the 
Generalized Trace Facility. output from 
the Generalized Trace Facility is 
discussed. 

Before reading this publication, you 
should have a general knowledge of 
operating system features and concepts as 
presented in the prerequisite publications. 
OCcasionally, the text refers you to other 
publications for detailed discussions 
beyond the scope of this book. 

Preface 

For information on debugging facilities 
provided within higher languages, consult 
the programmers' guides associated with the 
respective languages. Other Systeml360 
Operating system publications, such as 
Messages and Codes, describe additional 
debugging aids provided for the assembler 
language programmer. 

Notice: Coding level information presented 
in this publication must not be used for 
coding purposes or exposure to changes in 
implementation may result. The information 
is presented for debugging purposes only. 

PREREQUISITE PUBLICATIONS 

IBM system/360: Principles of 
Operation, GA22-6821 

IBM systeml360 Operating System: 

Supervisor Services and Macro 
Instructions, GC28-6646 

Data Management services, GC26-3746 

REFERENCE PUBLICATIONS 

IBM System/360 Operating System: 

System Control Blocks, GC28-6628 

Messages and Codes, GC28-6631 

Data Management Macro Instructions, 
GC26-3794 

Service Aids, GC28-6719 

TCAM Programmer's Guide and Reference, 
GC30-2024. 

TCAM Serviceability Aids, GY30-2027. 

~, GY30-2029. 

TSO Control Program, GY27-7199. 



4 Programmer's Guide to Debugging (Release 21) 



SUMMARY OF AMENDMENTS FOR GC28-6670-5 
OS RELEASE 21 • • • .. • .• •• • • .. •• 9 

SUMMARY OF AMENDMENTS FOR GC28-6670-4 
AS' UPDATED BY GN28-2457 AND GN28-2472 
OS RELEASE 20.1 ............... 10 

SUMMARY OF AMENDMENTS FOR GC28-6670-3 
OS RELEASE 20 • •• '. 10 

INTRODUCTION • .. • • • • .. .. .. .. .. • .. ... 11 

SECTION 11 OPERATING SYSTEM CONCEPTS 
Task Management ....... 

Task Control Block • • 
Request Blocks .. .. 
Active RB Queue 
Load List ...... .. .. • .. .. .. 

.. . 
Job Pack Area Queue (MFT With 
subtasking Only) • • • • • .. • .. 
Effects of LINK, ATTACH, XCTL, and 
LOAD • • • • • • • • • • • • • • 
System Task Control Differences 
Systems With MFT (Without 
Subtasking) ........ . 

Main storage supervision .. • • 
Storage Control in systems with MFT 
(Without Subtasking) • • .. 
Storage Control in systems with 
MFT (With Subtasking) 
storage Control for a Region in 
systems with MVT .. • • • • • • .. 
Storage Control for a Subpool in 
Systems with MVT • • • • .. • • • 
Storage Control for a Load Module 
in Systems With MVT • • • • • • • 

• 13 
13 
13 
13 
16 
16 

17 

18 
19 

19 
21 

21 

22 

22 

24 

• 25 
.. 26 System Control Blocks and Tables .. • • 

Communications Vector Table (CVT) 
Task Input/Output Table (TIOT) • 
unit Control Block (UCB) • • 

• 26 
... 26 

Event Control Block (ECB> 
Input/Output Block (lOB) 
Data Control Block (DCB) 
Data Extent Block (DEB) 
Summary of Control Block 
Relationships 

27 
... 27 

27 
.. • 27 

27 

27 

SECTION 2: INTERPRETING DUMPS • • • 29 
ABEND/SNAP Dump (MFT) ...... 29 

Invoking an ABEND/SNAP Dump (MFT) • 29 
Contents of an ABEND/SNAP Dump 
(MFT) ............ • 32 
Guide to Using an ABEND/SNAP Dump 
(MFT) ........................ 44 

ABEND/SNAP Dump (MVT) ••••••••• 46 
Invoking an ABEND/SNAP Dump (MVT) • 46 
Contents of an ABEND/SNAP Dump 
(MVT) ................. .. 46 
Guide to Using an ABEND/SNAP Dump 
(MVT).. • .. .. .. • • .. .. .. • .. 63 

Indicative Dump .. • .. • .. • .. .. .. .. .. • 65 
Contents of an Indicative Dump ..... 65 

Contents 

Guide to usi~ an Indi.cative Dump • 67 
Storage Dumps ............. • • .. .. 68 

Damage Assessment Routine (DAR) .... 68 
Console Dump .. • .. • • .. • • • • • 68 
IMDSADMP Service Aid. • • • • • • 68 
system Failure.. • .. • .. • '. 68 
The SYS1.DUMP Data Set • • • • .. .. 68 

Tape .. • • .. • ... .. .. .. • .68 
Direct Access .. 69 

IMDPRDMP output ....... • .. 70 
Queue Control Block Traces .. • .. 70 
Link Pack Area Maps .. 71 
Major System Control Block Formats •• 75 

MVT Control Block Formatting • • • • 75 
MFT Control Block Formatting • .. 92 
TSO System Block Formatting ... 108 
Task Control Block summaries '. .124 

The General Format • • .. • .128 
Output Comments ...... .. • .. .. 130 

Guide to Storage Dumps. • • .. .. .. .137 
Determining the Cause of the Dump •• 138 
Task Structure ................ 138 

MFT system (without Subtasking) ... 138 
MFT System (With subtasking) •• 139 
MVT System • • •• .. • • .. • .139 

Task Status - Active RB Queue .141 
Main Storage Contents •• 142 

Load List (MFT) ...... • .142 
Load List (MVT) ..... '. .142 
Job Pack Area Queue (MFT With 
Subtasking, MVT). • • .. • .' .142 

Main Storage Supervision .. .143 
Free Areas in MFT Systems .143 
Gotten Subtask Areas (MFT). • • • .143 
Region Structure in MVT system ••• 143 

I/O Control Blocks. • ••• 143 
Queue of DEBs •••• • •• 143 
UCBs • • • • • .144 
DCB and TIOT • • • • • • • • .144 
lOB • • • • • • .144 
ECB •• • .. • • • .145 

TSO Control Blocks • • •• 145 
TSCVT • • • • • • • • • .145 
RCB .• '. • • • • .146 
UMSM .146 
SWAP DCB • • • • • • .. .146 
TJB • • • • • • • • • .146 
TSB • • • • • • • • • .146 
TJBX • • • • • • .• • .146 
PSCB • • • • • • .146 
TAXE • • • • • • • .146 

SECTION 3: TRACING AIDS 7 • • .1~7 
Save Area Chain •• • '. ~. • .. • • 147 
Trace Option • .. • • • • • • • • • • • .148' 

Interpreting Trace Table Entries .148 
Generalized Trace Facility ••••••• 150 

GTF Minimal Trace Records ....... 150 
10 and PCI/IO Minimal Trace Record .151 
SIO Minimal Trace Record. .152 
DSP Minimal Trace Record .153 
EXT Minimal Trace Record •••••• 154 

Contents 5 



PGM Minimal Trace Record • • • • • .155 
SVC Minimal Trace Record • • • • • .156 
SSM Minimal Trace Record. • • • • .157 

GTF Comprehensive Trace Records • • .158 
10 and PCI/IO Comprehensive Trace 
Record • • • • • • • • • • • • • • .159 
SIO Comprehensive Trace Record. • ,.161 
DSP Comprehensive Trace Record •• ,.162 
EXT Comprehensive Trace Record • • .163 
PGM Comprehensive Trace Records •• 165 
SSM Comprehensive Trace Record • • ,.166 

Time and Lost Event Records •• 167 
Hexadecimal Format Record • • • • • .168 
GTF SVC Comprehensive Trace Records .169 

SVC Comprehensive Trace Records 
Group 1 -- Basic Fields •••••• 170 
SVC Comprehensive Trace Records 
Group 1 -- Basic Fields •••••• 170 
SVC Comprehensive Trace Records 
Group 2 - Basic Fields Plus DDNAME 
Field ••• • • • • • • • • • • • .181 
SVC Comprehensive Trace Records; 
Group 3 - Basic Fields Plus 
Parameter List Field • • • •• • • .182 
SVC Comprehensive Trace Records; 
Group 4 - Basic Fields Plus 
Variable Fields •••• • • • • • .190 

IMDPRDMP output Comments - GTF 
Processing • • • • • • • • • • 

APPENDIX A: DEBUGGING WITH AN 
OPERATING SYSTEM DUMP • '. • • • 

Specialized Program Checks • 
Debugging Procedure Summary 

APPENDIX B: SVCs 

APPENDIX C: COMPLErION CODES 

APPENDIX D: SYSTEM MODULE NAME 
PREFIXES 

APPENDIX E: LIST OF ABBREVIATIONS 

APPENDIX F: ECB COMPLETION CODES 

APPENDIX G: UCB SENSE BYTFS • . 
APPENDIX H: SERVICE AIDS . 
APPENDIX J: TCAM DEBUGGING AIDS • 

APPENDIX K: CONTROL BLOCK POINTERS 

.203 

.205 
• .206 
• .201 

• .209 

.215 

.219 

.221 

'. · .223 

.225 

· · .229 

· · .231 

· .233 

APPENDIX L: OPEN/CLOSE/EOV DEBUGGING 
AIDS • . .241 

INDEX. • • • •• 243 

6 Programmer's Guide to Debugging (Release 21) 



Figure 1. Control Information 
Available Through the TeB 13 
Figure 2.. RB Formats ........ 15 
Figure 3. Active RB Queue • 16 
Figure 4.. Load List (MFT) • • 16 
Figure 5. Job Pack Area Queue ... .. • 18 
Figure 6. Main Storage snapshot (MFT 
Without SUbtasking) ........... 19 
Figure 7. Partition (MFT Without 
Subtasking) '........ '. • • • .. • • 19 
Figure 8. Main Storage Sna'pshot (MFT 
With Subtasking) • • • • • .. • • 20 
Figure 9.. Main Storage Snapshot 
(MVT) .............. '. • • • 21 
Figure 10. storage Control for a 
Partition (MFT Without Subtasking) •• 22 
Figure 11. storage Control for Subtask 
Storage (MFT With SUbtasking) • • 22 
Figure 12. storage Control for a 
Region (MVT) • '. • • • • • •• • • 24 
Figure 13. Storage Control for a 
Subpool (MVT) ...... '. • • • • • • • 25 
Figure 14. storage Control for a Load 
Module (MVT) • '. .. .. • .. • • • • • 26 
Figure 15. Control Block 
Relationships ........ '. • • .. 27 
Figure 16. Sample of an ABEND Dump 
(MFT) (Part 1 of 2) ............. 30 
Figure 17. SYSABEND 00 Statements 33 
Figure 18. Sample of Complete ABEND 
Dump (MVT) (Part 1 of 2) ••••••• 47 
Figure 19. Contents of an Indicative 
Dump • • • ... • • • '. • • • • • '. • 65 
Figure 20. Queue Control Block Trace 
sample ..... '. • • • • • • .. .. • • • 71 
Figure 21. Link Pack Area Map Sample • 73 
Figure 22. Sample of MVT Major 
Control Block Format ........ 74 
Figure 23. Sample of MFT Control 
Block Format ••• '. • .. • '. • • .. 93 
Figure 24. Sample of TSO Control 
Block Format (Part 1 of 3). • .109 
Figure 25. TSB summary Sample for 
System That Operated Under MVT or MFT 
With Subtasking • • • • • .. .. •• .126 
Figure 26. TCB Summary sample for 
Systems that Operated Under MFT 
Wi thout SUbtas king ........ ..127 

Figures 

Figure 27. Sample of General Format 
Dump ........................ 129 
Pigure 28.. Permanently Assigned 
Hardware Control Words' ••••••• .138 
Figure 29. Finding the Partition TCBs 
in MI'T ................... 139 
Figure 30. Finding the TCB ....... 140 
Figure 31. IMDPRDMP TCB summary .. 141 
Figure 32.. Determining Module From 
CDB in MV'1' ..... '. • • • • .. .142 
Figure 33. Subpool DeSCriptions in 
MVT - IMDPRDMP Storage Print ........ 144 
Figure 34. I/O Control Blocks .145 
Figure 35. Save Area Trace •• 147 
Figure 36. Trace Table Entries (MFT) .148 
Figure 37. Trace Table Entries (MVT) .148 
Figure 38.. Trace Table Entries (MVT 
with Model 65 multiprocessing) .149 
Figure 39. Sample Trace Table Entries 
(MFT) • • • • • • • .. .. • • .. '. '. .150 
Figure 40. sample Trace Table Entries 
(MVT) • • • • • .. • • .. • • .150 
Figure 41. 10 and PCI/IO Minimal 
Trace Record • • • '. • • • • • 
Figure 42. SIO Minimal Trace 'Record 
Figure 43. DSP Minimal Trace Record 
Figure 44.. EXT Minimal Trace Record 
Figure 45. PGM Minimal Trace Record 
Figure 46. SVC Minimal Trace Record 
Figure 47. SSM Minimal Trace Record 
Figure 48. 10 and PCI/IO 

•• 151 
.152 
.153 
.154 
.155 
.156 
.157 

Comprehensive Trace Record ......... 159 
Figure 49. SIO Comprehensive Trace 
Record .......... '. .. .. .. • • .. .161 
Figure 50. DSP Comprebensive Trace 
Record •••••••••••••• '. .162 
Figure 51. EXT Comprehensive Trace 
Record ... '. .. • • • • .. • .. • • • .. • 163 
Figure 52. PGM Comprehensive Trace 
Record ..................... 165 
Figure 53. SSM comprehensive Trace 
Record '. '. • • • • • • • • • '. • .. • .166 
Figure 54. Hexadecimal Format Record .168 
Figure 55. Basic SVC Comprebensive 
Trace Record • '. • • • • • '. • • •• .170 
Figure 56. Control Block Flow •• 237 
Figure 57. MVT s'torage Control Flow .239 

Figures 7 



8 Programmer·s Q~1de to Debugging (Release 21) 



Page of GC28-6610-5,6, Revised April 16, 1913, By TNL: GN28-2545 

Summary of Amendments 
for GC28-6670-S,-6 
as Updated by GN28-2545 
OS Release 21.7 

Model 91 or 195 Imprecise Interruption 
An explanation of the bits set by an 
imprecise interruption on the Model 91 
or 195 has been added. 

AMPPRDMP Format Changes 
Some additional fields have been added 
to the JOB information and the TCB. 

AMPPRDMP Messages 
Several new messages can be put out by 
AMDPRDMP to aid in debugging. 

GTF Records 
The DSP, EXT, PRM, am sve 
comprehensive trace records have had a 
parameter added to the MOON field. 

Summary of Amendments 
for GC28-6670 .. S 
OS Release 21 

PCP REHOVAL 
References to the PCP version of 
Operating System/360 have been deleted 
from the publication. 

TmTRAN R1!MOVAL 
References to the TESTRAN testing 
facility of Operating System/360 have 
been deleted from the publication. 

IMDPRDMP SERVICE AID OUTPUT 
Storage dumps as formatted and 
displayed by the IMDPRDMP service aid 
are now discussed in this publication. 
This material was formerly in the 
,service Aids publication, GC28-6719. 

GENERALIZED TRACE FACILITY (GTF) OUTPUT 
GTF trace records, as processed by the 
EDIT function of the IMDPRDMP service 
aid are illustrated and discussed in 
section 3 of the publication. 

DEVICE SUPPORT 
The sense byte information given in 
Appendix G is updated to include 
information for the: 

IBM 3420 M~gnetic Tape Unit and 3803 
Tape Control 

Summary of Amendments 

The explanation for SVC 79 (STATUS) has 
been chan ged. 

New Emulator 
The 7074 emulator can be run on the 
Model 155. 

New I/O Devices 
sense byte information has been added 
for the 3213, 3215, 3272, 3217, and 
3333 as well as additional support for 
the 3410/3411. 

Miscellaneous Corrections 
Several additional changes have been 
made to correct errors. 

IBM 2596 Card Read Punch 
IBM 3505 card Reader 
IBM 3525 Card Punch 
IBM 3410 Magnetic Tape Unit 
IBM 3411 Magnetic Tape Unit and 
Control 

PROBLEM DETERMINATION 
Addition of an Appendix discussing 
problem determination aids for 
OPEN/CLOSE/EOV processing. 

Updatirg of the completion codes and 
service aids Appendixes to reflect 
re lease 21 changes. . 

The Console Dump facility, used to 
obtain a storage dump for later 
processing by IMDPRDMP, is briefly 
described in the storage dump and 
IMDPRDMP formatting section of the 
publ ication • 

MISCELLANEOOS 
Editorial improvements and corrections 
to existi rg material have been made 
throughout the publication. 

Summary of Amendments 9 



Summary of Amendments 
for GC28-6610-4 
as Updated by GN28-2451 and GN28-2472 
OS Release 20.1 

TCAM . 

section 2: ABEND/SNAP Dump (PCP and MFT) 
ABEND/SNAP Dump (MVT) 
Appendix A 
Appendix H 

A brief description of TCAM debugging 
Aids and a new SVC. 

Section 2.: TSO Control Blocks 
Appendix A 

The addition of new SVCs and a summary 
of the control blocks formatted by 
IMDPRDJ.I.IP. 

Summary of Amendments 
for GC28-6610-3 
OS Release 20 

IMDPRDMP 

"Guide to Using a storage Image Dump" 
IMDPRDMP is used instead of IEAPRINT to 
print MFT and MVT dumps. 

3330, 2305, 2319 

Appendix F 
Additional of sense byte information fo 
new devices. 

MISCELLANEOUS 

Appendix C 
1. Addition of module name prefixes 

for emulator programs. 

Appendix G 
2. New features of service aid program 

IMAPTFLE. 

Appendix A 
New SVcs in Appendix A. This 
information is for planning purposes 
only. 

10 Programmer's Guide to Debugging (Release 21.7) 



To debug efficiently, you should be 
familiar with the system control 
information reflected in dumps. This 
control information, in the fonn of control 
blocks and traces, tells you what has 
happened up to the point of error and where 
key information related to the program is 
located. To provide an insight into the 
IBM System/3~0 Operating system and its 
complex aspects of task management and 
storage supervision, section 1 of this 
publication provides an orientation in the 
control functions of the operating system. 

The IBM system/ 360 Operatil.g system 
provides extensive debugging facilities to 
aid you in locating errors and determining 
the system state quickly. some debugging 
aids, such as console messages, provide 
limited information that may not always 
help you identify the error. This manual 
discusses those .debugging facilities that 
provide you with the most extensive 
information: 

a. Abnormal termination (ABEND) 
snapshot (SNAP) dumps. 

b. Indicative dumps. 

c. Storage image dumps. 

d. Tracing facilities. 

Dumps are discussed in Section 2 and 
tracing facilities in Section 3. 

and 

ABEND and SNAP Dumps are invoked by ABEND 
and SNAP macro instructions, respectively. 
They are grouped in a single category 
because they provide identical information. 
In addition to a hexadecimal dump ot main 
storage. they can contain conver'.iently 
edited control information and displays of 
the operating system nucleus and trace 
table. 

Indicative dumps contain control 
information useful in isolating the 
instruction that caused an abnormal end of 
task situation. The information is similar 
to that given in an ABEND/SNAP dump, but 
does not include a dump of main storage. 

Storage dumps are produced by either the 
system dump facility at the time of a 
system failure, or by a dump program 
created through use of theIMDSADMP service 
aid. IMDSADMP programs must be loaded into 

Introduction 

storage through use of the IPL facilities 
and are intended for use in situations in 
which the system is not operative, e.g., a 
disabled wait state or an unending system 
loop. 

The system dump facility writes to the 
SYS1.DUMP data set. The IMDPRDMP service 
aid is used to format and print the 
SYS1.DUMP data set. IMDPRDMP output is 
described in this publication. The 
IMDSADMP programs write to tape (high-speed 
dump) or to tape or printer (low-speed 
dump). The output tape produced by the 
high-speed dump must be processed by the 
IMDPRDMP program; low-speed output to tape 
may be processed by IMDPRDMP, IEBPTPCH or 
the IEBGENER utility program. 

Storage dumps taken by the system dump 
facility consist of control information 
followed by a display of printable storage 
from location 00 to the capacity of 
storage. Storage words are displayed in 
both hexadecimal and EBCDIC notation. 
storage dumps taken by an IMDSADMP program 
consist of register contents followed by a 
display of storage from location 00 to the 
capacity of storage. Notation is in hoth 
he,xadecimal and EBCDIC. 

Tracing facilities consist of the save 
area chain trace, the Trace Option and the 
Generalized Trace Facility. 

The save area chain enables tracing of 
the save areas for each level of load 
module in a task. The save area trace is 
displayed in ABEND/SNAP and storage dumps. 

The Trace Option, if installed in the 
system, provides records of system 
interruptions (10, SIO, etc.) that are 
displayed in ABEND/SNAP and storage dumps. 

The Generalized Trace Facility (GTF) 
enables selective tracing of system and 
application program events and records the 
information internally, in a table which is 
displayed in printouts of ABEND dumps and 
storage dumps, or externally in a data set 
which is processed by the IMDPRDMP service 
aid to provide edited and formatted GTF 
trace records. (For complete information 
on GTF see the Service Aids publication.) 
The GTF output, as processed by IMDPRDMP, 
is discussed in Section 3 of this 
publication. 

Introduction 11 



General Notes: 

• Displacements and addresses shown in 
the text and illustrations of this 
publication are given in decimal 
numbers, followed by the corresponding 
hexadecimal number in parentheses, 
e·_g_, TCB+14(E), location 28(lC); SVC 
42 (2A)... All other numbers in the text 
are decimal" e.g_, the seventeenth word 
of the TCB; a 4-word control block; 15 . 
job steps. - --

12 programmer's Guide to Debugging (Release 21) 

• Control block field names referred to 
are those used in the IBM System/360 
Operating System: system Control 
Blocks manual, GC28-6628. 

• Wherever possible, diagrams, and 
reproductions of dumps have been 
included to aid you during the 
debugging process. 



Page of GC28-6670-5,6, Revised April 16, 1973, B¥ TNL: GN28-2545 

This section introduces you to the control 
information that you must know to interpret 
dumps. It is divided into three topics: 

• task management 
• main storage supervision 
• system control blocks and tables 

The first two topics deal with those 
aspects of task management and main storage 
management, respectively, that are 
repres ented in dumps. The third topic 
describes the remaining system control 
blocks and tables helpful in pinpointing 
errors. 

~: The descriptions of system control 
blocks and tables in this section emphasize 
function rather than byte-by-byte contents. 
Appendix K summarizes the contents of those 
control blocks most useful in debugging-

For a more detailed description of 
system control blocks and ta.oles, refer to 
the system Control Blocks publication, 
GC28-6628. 

Task Management 

The task management control information 
most useful in debugging with a dump 
includes the task control block and its 
associated request blocks and elements. 
The functions, interactions, and 
relationships to other system features of 
these items are discussed in this topic. A 
summary of how task supervision differs at 
each system level concludes the topic. 

Task Control Block 

The operating system keeps pointers to all 
information related to a task in a task 
control block (TCB). For the most part, 
the TCB contains pointers to other system 
control blocks. By using these pointers, 
you can learn such facts as what I/O 
devices were allocated to the task, which 
data sets were open, and which load modules 
were requested. 

Figure 1 shows some of the control 
information that can be located by using 
the pointers in the TCB. Later, in the 
discussion of system control blocks and 
tables, Figure 1 is expanded to show the 
actual block names and pOinter addresses. 

Section 1: Operating System Concepts 

D /---11 ,--- I 
I Load 'I 
I Modules I 
I I 
L ') __ ...J F--:"~ 

o 
/----'71 
1----1" 
I ,I 
I Devices I I 
I II 
L __ -') 

I Open 'I 
Ir-r-'::'::::::::::::::::;! I data I I'.----;-.L 
V I sets I) V 

r~-----;71 L - - .J r:---=-- -i7J 
I Data set ,I I Device II 
, attributes I : : attributes I I 
L-OY L ___ Y 

r--=-- -j?! 
I I/O" . F I fnfo,motionl i =l} 

f:...----{I L - _J/ F ----i71 
I Complete I I I I I 
I I/O I I ~cw I I 
I events I I I list I I 
L __ -.J/' L __ .J) 

Figure 1. Control Information Available 
'lhrough the TCB 

Request Blocks 

Frequently, the routines that comprise a 
task are not all brought into main storage 
wi th the first load module. Instead, they 
are requested by the task as it requires 
them. This dynamic loading capability 
necessitates another type of control block 
to describe each load module associated 
wi th a task -- a request block (RB). An RB 
is created by the control program when it 
receives a request from the system or from 
a problem pr03ram to fetch a load module 
for execution, and at other times, such as 
when a type II supervisor call (SVC) is 
issued. By looking at RBs, you can 
determine which load wOOules have been 
executed, why each lost control, and, in 
most cases, which one was the source of an 
error condition. 

There are seven types of RBs created by 
the cont~ol program: 

• Program request block (PRB) 
• SUpervisor request block (SVRB) 
• Interrupt request block (IRB) 

Task Management 13 



• supervisor interrupt request block 
(SIRB) 

• Loaded program request block (LPRB) 
• Loaded request block (LRB) 
• Finch request block (FRB) 

Of these, you will most often encounter 
the PRB and SVRB in dumps. The type of RB 
creat ed depends on t he routine or load 
module with which it is associated. 

PRB (Systems with MFl'): A PRB is created 
whenever an XCTL, LINK, or ATTACH macro 
instruction is issued. It is located ~ 
immediately before the load module with 
which it is associated. 

PRB (Systems wi th MVT): A PRB is created 
whenever an XCTL or LINK macro instruction 
is issued. It is located in a fixed area 
of the operating system. 

SVRB: An SVRB is created each time a type 
II, III, or IV supervisor call is issued. 
(Type I SVC routines are resident, but run 
disabled; they do not require a request 
block.) This block is used to store 
information if an interruption occurs 
during execution of these WC routines. A 
list of SVCs, including their n\lllbers and 
types, appears in Appendix A. 

IRB: An IRB is created each time an 
asynchronous exit routine is executed. It 
is associated with an event that can occur 
at an unpredictable time during program 
execution, such as a timing routine 
initiated by an STIMER macro instruction. 
The IRB is filled at the time the event 
occurs, just before control is given to the 
exit routine. 

SIRB: An SIRB is similar to an IRB, except 
that it is associated only with 
IBM-supplied input/output error routines. 
Its associated error routine\is fetched 
from the SYS1.SVCLIB data set. 

LPRB (MFT only): An LPRB is created when a 
LOAD macro instruction is issued unless the 
LOAD macro instruction specifies: 

• A routine that has already been loaded. 
• A routine that is being loaded in 

response to a LOAD macro instruction 
previously issued by a task in the 
part it ion (MFT with subtasking). 

• A routine that is ·only loadable ft (see 
LRB). 

An LPRB is located immediately before the 
load module with which it is associated. 
Routines for which an LPRB is created can 
also be invoked by XCTL, LINK, and ATTACH 
macro instructions. 

LRB (MF'!' only): The LRB is a shortened 
form of an LPRB. Routines associated with 
LRBs can be invoked only by a LOAD macro 
instruction. This attribute is assigned to 
a routine through the OL (only loadable) 
subpar.arneter in the PARM parameter of the 
EXEC statement that executes the linkage 
editor. The most common reason for 
assigning this attribute is that linkage 
conventions for XCTL, LINK, and ATTACH are 
not followed. '!his request block is 
located ~ediately before the load module 
with which it is associated. 

FRB (MFT with subtasking only): An FRB is 
created and attached to the job pack area 
queue. durirg LOAD macro instruction 
processing, if the requested module is not 
already in the job pack area. The FRB 
describes a module being loaded in response 
to a LOAD macro instruction. Any 
subsequent requests for the same module, 
received while it is still being loaded, 
are deferred by means of wait list elements 
(WLEs) queued to the FRB. When the module 
is fully loaded, an LRB or an LPRB is 
crea ted. the FRB is re moved from the job 
pack area queue, and any requests, 
represented by wait list elements, are 
reinitiated. 

Figure 2 shows the relative size of the 
seven types of RBs and the significant 
fields in each. 

In Figure 2, the "size" field tells the 
nwnber of doublewords in both the RB and 
its associated load module. The PSW 
contained in the "resume PSW" field 
reflects the reason that the associated 
load module lost control. Other fields are 
discussed in succeeding topics. 

This far, the characteristics of the TCB 
and its associated RBs have been discussed. 
With the possibility of many REs 
subordinate to one task, it is necessary 
tha t queues of RBs be maintained. In 
systems with MFT without subtasking, two 
queues are maintained by the system -- the 
active RB queue and the load list. In MFT 
systems with subtasking, a job pack area 
queue, containing FRBs, and LRBs and LPRBs 
that represent reenterable modules is also 
maintained. MVT systems maintain an active 
RB queue a~ a contents directory. The 
contents directory is made up of three 
separate queues: the link pack area 
control queue (LPAQ); the job pack area 
control queue (JPAQ); and the load list. 

14 Programmer's Guide to Debugging (Release 21.7) 



LPRB 
-12 Major RB address 

(MFTwlth subtasking) 

-8 Load fist pointen 
(MFT) 

-4 Absent (MVT) 

0 
Module name 
(MFT) 
Last half of user's 
PSW (MVT) 

8 I Size Flags 

12(e) 14 Entry point (MFT)i 

Use et + eDE (MVT) 

16 (10) 

Resume PSW 

28(1e) I t 
Woit et 

Next R8 

SVRB 
0 Module name 

(MFT) 
Last half of user's 
PSW (MVT) 

8 
Size I Flags 

12(e) \4 Entry point (MFT)i 
Use et • eDE (MVT) 

16 (10) 

Resume PSW 

28(le) It 
Waitet 

Next R8 

32 (20) 

Register 
Save Area 

96 (60) 

Extended 
Save Area 

Figure 2. RB Formats 

LRB 

-8 Load list pointen 
(MFT) 

-4 Absent (MVT) 

0 Module nome 
(MFT) 
Last half of user's 
PSW (MVl) 

8 
Size I Flags 

12 (e) I + Entry point (MFT)i 
Use et t eDE (MVT) 

Program Extent List 
r; 0 - t:;g-;h af';x;;';-t I;: -, 

I hiearchy 0 I 
1.--------1 
I 

+ 4 Length of extent in I 
hiearchy 1 

t----------I 
I + 8 Address of extent In I 

hiearchy 0 r--------t I + 12(e) Address of extent in I 
L _ ~archy 1 ___ ...J 

IRB 
o 

Module name 
(MFT) 
Last half of user's 
PSW (MVT) 

Resume PSW 

Next R8 

Register 
Save Area 

PRB FRB 

-8 

Load list 
-4 pointen 

0 Module name 
(MFT) 

Module name 
Last half of user's 
PSW (MVT) 

8 
Flags Size Flags 

12 (e) 
Address of WlE 

16 (10) 16 (10) 
Address of TC8 

Resume PSW 
20 (14) 

Address of LPR8 

i Next R8 

Note: Program extent list is added to lPRB, LR8, or PR8 If the 
program described was hi earchy block loaded. 

SIRB 
o 

16 (10) 

Module nome 
(MFT) 
Last half of user's 
PSW (MVT) 

Resume PSW 

Next RB 

Register 
Save Area 

Task Management "15 



Active RB Queue 

The active RB queue is a chain of request 
blocks associated with active load modules 
and SVC routines. This queue can contain 
PRBs, SVRBs, IRBs, SIRBs, and under certain 
circumstances, LPRBs. Figure 3 illustrates 
how the active RB queue links together the 
TeB and its associated RBs. 

I 

A B 

I I L~ I I _ modules... _ . 

Figure 3. Active RB Queue 

c 

••. and I=l 
SVC ,ou,;"e,~ 

The request blocks in the active RB 
queue in Figure 3 represent three load 
modules. Load module A invokes load module 
B, and B. in turn. invokes C. When 
execution of A began, only one RB existed. 
When the first invoking request was 
encountered. a second RB was created, the 
TCB field that points to the most recent RB 
was changed., and A's status information was 
stored in RB-A. A similar ~et of actions 
occurred when the second invoking request 
was encountered. As each load module is 
executed and control is returned to the 
next higher level load module, its RB is 
removed from the chain and pointers are 
updated accordingly. 

Load List 

The load list is a chain of request blocks 
or elements associated with load modules 
invoked by a LOAD macro instruction. The 
load list differs from the active RB queue 
in that RBs and associated load modules are 
not deleted automdtically. They remain 
intact until they are deleted with a DELETE 
macro instruction or job step termination 
occurs. By looking at the load list. you 
can dete~~ine which system and problem 

program routines were loaded before the 
dump was taken. The format of the load 
list differs with control program levels. 

systems with MFT (without subtasking): At 
this control program level, the load list 
associated with a TCB contains LRBs and 
LPRBs. RBs on the load list are linked 
together somewhat differently from those on 
the active RB queue because of the 
characteristics of the LOAD macro 
instruction. Because RBs may be deleted 
from a load list in a different order than 
they were created (depending on the order 
of DELETE macro instructions), they must 
have both forward and backward pointers. 
Figure 4 illustrates how a load list links 
together a TCB and three RBs. 

A 

I=l 
~ 

B 

~ 
~ 

Figure 4. Load List (MFT) 

c 

i 
Here, each RB contains a pointer both to 

the previous RB and the next most recent RB 
in the list. If there is no previous or 
more recent RB, these fields contain zeros 
and a pointer ~? the TCB, respectively. 

Another field of a load list RB that 
merits consideration is the use count. 
Whenever a LOAD macro instruction is 
issued, the load list is searched to see if 
the routine is already loaded. If it is 
loaded, the system increments the use count 
by one and passes the entry point address 
to the requesting routine. 

Each time a DELETE macro instruction is 
issued for the routine, the use count is 
decremented by on~. When it reaches zero, 
the RB is removed from the load list and 
storage occupied by the associated routine 
is freed. 

16 Programtner's Guide to Debugging (Release 21) 



Systems With MFT (With Subtasking): At 
this control program level, the load list 
is used as described for MFT without 
subtasking, with the following exceptions: 

1. The LRBs and LPRBs queued on the load 
list represent modules that are not 
reenterable. LRBs and LPRBs 
representing reenterable modules are 
queued on the job pack area queue. 

2. When a LOAD macro instruction is 
issued, the system searches the job 
pack area queue before searching the 
load list. 

Systems With MVT: Instead of LRBs and 
LPRBs created as a result of LOAD macro 
instructions, the load list maintained by a 
system with MVT contains elements 
representing load modules. Load list 
elements (LLEs) are associated with load 
modules through another control medium 
called the contents directory. 

The contents directory is made up of 
three separate queues: the link pack area 
control queue (LPAQ), the job pack area 
control queue (JPAQ), and the load list .• 

The LPAQ is a record of every program in 
the system link pack area. This area 
contains reenterable routines specified by 
the control program or by the user. The 
routines in the system link pack area can 
be used repeatedly to perform any task of 
any job step in the system. The entries in 
the LPAQ are contents directory entries 
(CDEs) • 

There is a JPAQ for each job step in the 
system that uses a program not in the link 
pack area. The JPAQ, like the LPAQ, is 
made up of CDEs. It describes routines in 
a job step region. The routines in the job 
pack area can be either reenterable or not 
reenterable. These routines however, 
cannot be used to perform a task that is 
not part of the job step. 

The load list represents routines that 
are brought into a jab pack area or found 
in the link pack area by the routines that 
perform the Load function. The entries in 
the load list are load list elements, not 
CDEs.. Each load list element is associated 
with a CDE in the JPAQ or the LPAQ; the 
programs represented in the load list are 
thus also represented in one of the other 
contents directory queUes. 

Load list elements also contain a count 
field that corresponds to the use count in 
a LPRB or LRB. Each time a LOAD macro 
instruction is issued for a load module 
already represented on the load list, the 
count is incremented by one. As 
corresponding DELETE macro instructions are 
issued, the count is decremented until it 

reaches zero. An LLE has the following 
format: 

Byte 0: Reserved (RES). 

Bytes 1-3: Pointer to the next more recent 
LLE on the load list. 

Byte 4: Count. 

Bytes 5-7: Pointer to the corresponding 
CDE .. 

More will be said about CDEs in the next 
topic of Section 1, titled -Main Storage. 
supervision.-

Job Pack Area Queue (MFT With subtaskinq 
Only) 

In an MFT system with subtasking, the job 
pack area queue is a chain of request 
blocks associated with load modules invoked 
by a LOAD macro instruction. The queue 
contains FRBs, and those LRBs and LPRBs 
that represent reenterable modules. FRBs 
are queued on the job pack area queue until 
the requested module is completely loaded. 
When the module is completely loaded into 
main storage, the FRB is removed from the 
job pack area queue and replaced with an 
LBR or an LPR queue on the job pack area 
queue if the loaded module is reenter able, 
and on the load list if it is not. 

In the MFT with subtasking 
configuration, the load list represents 
non-reenterable modules, while the job pack 
area queue represents cnly reenterable 
modules within the partition. These RBs on 
the job pack area queue are not deleted 
automatically, but remain intact until they 
are deleted by a DELETE macro instruction, 
or until job step termination occurs. 
Reenterable load modules are therefore 
retained in the partition for use by the 
job step task or any subtasks which may be 
created. 

Whenever a LOAD macro instruction is 
issued, the job pack area queue is 
searched. If the routine is already fully 
loaded and represented by an LRB or an LPRB 
on the JPAQ (the routine is reenterable), 
the system increments the use count by one 
and passes the module entry point address 
to the requesting routine. If an FRB for 
the requested module is found, a wait list 
element (WLE) representing the deferred 
request is queued to the FRB, and the 
request is placed in a wait. When the 

Task Management 17 



requested ~outine is fully loaded, the 
system releases the request from the wait 
condition, and the request is re-initiated. 
If no RB for the requested routine is 
found, an FRB is created and queued on the 
JPAQ. The system then searches the load 
list of the requesting task for an RB for 
the requested routine. If an RB for that 
routine is found on the load list (the 
routine'is not reenterable), the use count 
is incremented by one, the entry point 
address of the module is passed to the 
requesting routine, and the FRB is dequeued 
from the JPAQ. If no RB is found on the 
load list, the FRB remains on the JPAQ and 
the system begins loading the requesteo 
module. 

Each time a DELETE macro instruction is 
issued for the routine, the use count is 
decremented by one (the DELETE routine 
ignores FRBs). When the use count reaches 
zero, the RB is removed from the queue. 

Figure 5 illustrates how the job pack area 
queue is chained to a TeB. 

In Figure 5, each RB contains a pointer to 
the previous RB and a pointer to the next 
RB on the queue. If there is no previous 
RB on the queue, that pointer will contain 
zero; if there is no next RB on the queue 
(this RB is the most recent on the JPAQ), 
the next RB pOinter will point back to the 
job pack area queue pointer in the PIB .• 

Figure 5. Job Pack Area Queue 

Two wait list eleroents (WLEs) are queued 
to FRB-C representing deferred requests 
waiting until the initial loading of the 
module is completed. The last WLE contains 
zero in its forward pcinter, indicating 
that it is the last element on the WLE 
queue. 

Effects of LINK, ATTACH, XCTL, and LOAD 

LINK, ATTACH, XCTL, and LOAD, though 
similar, have some distinguishing 
characteristics and system dependencies 
worth mentioning. By knowing what happens 
when these macro instructions are issued, 
you can make more effective use of the 
active RB queue and the load list. 

LINK: A LINK results in the creation of a 
PRS chained to the active RB queue. Upon 
completion of the invoked routine, control 
is returned to the invoking routine. In 
systems with MFT, the RE is rerooved from 
the queue. The storage occupied by the 
invoked routine is freed unless the routine 
is also represented on the load list, or on 
the job pack area queue in MFT systems with 
subtasking. In systems with MVT, the use 
count in the CDE is decremented by one; if 
it is then zero, the RB and the storage 
occupied by the routine are marked for 
deletion.. A LINK macro instruction 
generates an SVC6. 

ATTACH: An ATTACH is similar to the other 
three macro instructions in systems with 
MFT without subtasking. In systems with 
MFT with subtasking or MVT, ATTACH is the 
means for dynamically creating a separate 
but related task -- a subtask. 

At the MFT without subtasking level, 
ATTACH effectively performs the same 
functions as LINK with two notable 
additions: 

1. You can request an exit routine to be 
given control upon normal completion 
of the attached routine. 

2. You can request the posting of an 
event control block upon the routine'S 
completion. 

Exit routines are represented by additional 
RBs on the active RB queue. The ATTACH 
macro instruction generates an SVC 42(2A). 

XCTL: An XCTL also results in the creation 
of a PRB and immediate transfer of control 
to the invoked routine. However, XCTL 
differs from the other macro instructions 
in that, upon completion of the invoked 
routine, control is passed to a routine 
other than the invoking routine. In fact, 
an XCTL does not result in the creation of 
a lower level RB. Instead, the invoking 
routine and its associated REs are deleted 
when the XCTL is issued. In effect, the RE 

18 programmer's Guide to DebUgging (Release 21) 



for the invoked routine replaces the 
invoking routine's RB. The XCTL macro 
instruction generates an SVC 7. 

~: The LOAD macro instruction was 
treated previously in the discussion of the 
load list. To summarize: the system 
responds to a LOAD by fetching the routine 
into main storage and passing the entry 
point address to the requesting routine in 
register o. Because the system does not 
have an indication of when the routine is 
no longer needed, a LOAD must be 
accompanied by a corresponding DELETE macro 
instruction. If not, the routine and its 
RB remain intact until the j'ob step is 
terminated. The LOAD macro instruction 
generates an SVC 8. 

System Task Control Differences 

Thus far, this topic has dealt with the 
aspects of task supervision that are 
similar for MFT and MVT. There are, 
however, some major differences: 

DYNAMIC 
AREAS 

(PARTITIONS 

FIXED 
1. The number of tasks that can be known AREA 

to the system concurrently. 
2. The layout of main storage. 
3. The additional main storage control 

information in systems with MVT. 

The first two subjects are discussed 
here, by system. The third subject, 
because of its volume, is discussed in the 
next topic of section 1. 

systems With MFT (Without Subtaskinq) 

Figure 6 is a snapshot of main storage in a 
system with MFT without subtasking. 

The fixed area contains the nucleus 
(including TCB queue, transient area 
loading task, communications task, and 
master scheduler task), and the system 
queue area. Optionally it may contain 
access methods and SVC routine which are 
normal.l.y nonresident, a list of absolute 
addresses for routines which reside on 
direct acceSR devices, and a reenterable 
load module area. 

One TeB exists for each task.. All TCBs 
are linked by dispatching priority in a TCB 
queue, beginning with the three resident 
tasks. . 

The dynamic area is divided into a 
maximum of 52 partitions. Each partition 
contains one task. The dynamic area can 
contain as many as 3 reading tasks, 36 
writing tasks, and 15 job step tasks, 
providing that the total number of tasks 
does not exceed 52. Partition sizes and 
attributes are defined during system 
generation. Figure 7 shows the contents of 
an MFT partition. 

Figure 6. Main Storage Snapshot (MFT 
Without subtasking) 

DYNAMIC 
AREA 

Figure 7. Partition (MFT Without 
Subtasking) 

Task Management 19 



Jobs are processed sequentially in a 
partition, one job step at a time. An 
ATTACH macro instruction does not create a 
subtask. 

Systems with MFT (With Subtaskinq): 
Operating Systems ~hat provide 
multipro.gramming with a fixed number of 
tasks with the subtasking option (MFT with 
subtasking) differ from MFT systems without 
subtasking in the following major areas: 

1. MFT with subtasking has an ATTACH 
facility similar to the ATTACH 
facility in MVT. While the number of 
job step TeSs still may not exceed 15, 
the number of tasks in any partition, 
and therefore the total number of 
tasks in the system, is now variable. 
Job step task TCSs reside in the 
nucleus. They are queued, following 
the system task TCBS, in the same 
manner as in MFT without subtasking. 
When subtasks are created, however, 
the subtask TCBs are placed in the 
system queue area and queued to the 
job step TCSs according to dispatching 
priority (TCBTCB field), and according 
to subtask relationships (TCBNTC, 
TCBOTC, TCBLTC fields). 

2. MFT with subtasking provides the 
ability to change the dispatching 
priority of any task within a 
partition through the use of the CHAP 
macro instruction. 

Figure 8 is a snapshot of main storage in 
an MFT system with subtasking. Note here 
that the TCBs in the nucleus are all job 
step TCBs, while those residing in the 
sytem queue area are the subtask TCBs. 

Systems with MVT: In Ope~ating Systems 
that provide multiprogramming with a 
variable number of tasks (MVT), as many as 
15 job steps can be executed concurrently. 
Each job step requests an area of main 
storage called a region and is executed as 
a job step task. In addition, system tasks 
request regions and can be executed 
concurrently with job step tasks. 

Regions are assigned automatically from 
the dynamic area when tasks are initiated. 
Regions are constantly redefined according 
to the main storage requirements of each 
new t.ask. 

Figure 8. Main storage Snapshot (MFT With 
Subtas ki ng) 

With the facility of attaching subtasks 
available to each task through the ATTACH 
macro instruction, the number of TCBs in 
the system is variable. Tasks gain control 
of the CPU by priority. To keep track of 
the priority and status of each task in the 
system, TCBs are linked together in a TCB 
queue. 

Figure 9 is a snapshot of main storage 
in a system with MVT. The fixed area is 
occupied by the resident portion of the 
control program loaded at IPL. The system 
queue space is reserved for control blocks 
and tables built by the control program. 
The dynamic area is divided into 
variable-sized regions, each of which is 
allocated to a job step task or a system 
task. Finally, the link pack area contains 
selected reenterable routines, loaded at 
IPL. If an IBM' 2361 Core Storage device 
and Main storage Hierarchy Support are 
included in the system, a secondary link 

20 Pro9tafume~'s Guide to Debugging (Release 21) 



pack area may be created in hierarchy 1 to 
contain other reenterable routines. 

LINK PACK 
AREA, 

DYNAMIC 
AREA 

(REGIONS) 

SYSTEM 
QUEUE 

AREA 

FIXED 
AREA 

Figure 9. Main Storage Snapshot (MVT) 

Main Storage Supervision 

Storage control information is kept in a 
series of control blocks called queue 
elements. In systems with MFT without 
subtasking, queue elements reflect areas of 
main storage that are unassigned. In MFT 
systems with subtasking, a gotten subtask 
area queue element (GQE) is introduced to 
record storage obtained for a subtask by a 
supervisor issued GETMAIN macro 
instruction. In systems with MVT, more 
elaborate storage control is maintained~ at 
any given time, queue elements reflect the 
distribution of main storage in regions, 
subpools, and load modules. 

The dynamic area may be significantly 
expanded by including IBM 2361 Core storage 
in the system. Main Storage Hierarchy 
support for IBM 2361 Models 1 and 2 permits 
selective access to either processor 
storage (hierarchy 0) or 2361 Core Storage 
(hierarchy 1). If IBM 2361 Core Storage is 
not included, requests for storage from 
hierarchy 1 are obtained from hierarchy o. 
If 2361 Core Storage is not present in an 
MVT system and a region is defined to exist 
in two hierarchies, a two-part region is 
established within processor storage. The 
two parts are not necessarily contiguous. 

Storage Control in systems with MFT 
(Without Subtaskinq) 

The chain of storage control information in 
an MFT system without subtasking begins at 
a table called the main storage supervisor 
(MBS) boundary box, located in the system 
nucleus. There is one MSS boundary box for 
each partition. It is pointed to by the 
TCB (TCBMSS field) for the partition. 

Each boundary box contains 3 words. The 
first word points to the Free Queue Element 
(FQE) associated with the highest free area 
in the partition. The second word points 
to the lowest limit of the partition. The 
third word contains the highest address in 
the partition plus 1. 

If Main Storage Hie~archy Support is 
included, the first half of each expanded 
boundary box describes the processor 
storage (hierarchy 0) partition segment, 
and. the second half describes the 2361 Core 
storage (hierarchy 1) partition segment. 
Any partition segment not currently 
assigned storage in the system has the 
applicable boundary box pointers set to 
zero. If the partition is established 
entirely within hierarchy 0, or if 2361 
Core Storage is not included in the system, 
the hierarchy 1 pointers in the second half 
of the expanded boundary box are set to 
zero. If a partition is established 
entirely within hierarchy 1, the hierarchy 
o pointers in the first half of the 
expanded boundary box are set to zero. 

FOE: Each free area in a partition is 
described by an FQE. FQEs are chained 
beginning with the FOE associated with the 
free area having the highest address in the 
partition. If Main storage Hierarchy 
Support is present, one FQE chain exists 
for each hierarchy specified. Each FQE 
occupies the first 8 bytes of the area it 
describes. It has the following format: 

o 4 

Bytes 0-3: Pointer to FOE associated with 
next lower free area or, if 
this is the last FQE, zeros. 

Bytes 4-1: Number of bytes in the free 
area. 

Figure 10 summarizes storage control in 
systems with MFT without subtasking. 

Main Storage Supervision 21 



DYNAMIC 
AREA 

FIXED 
AREA 

Figure 10. storage Control for a Partition 
(MFT Without Subtasking) 

Storage Control in Systems with MFT (With 
Subtasking) 

Storage control information for the job 
step or partition TCB in MFT systems with 
subtasking is handled in the same way as in 
MFT systems without subtasking. However, 
when subtasks are created, the supervisor 
builds another control block, the gotten 
subtask area queue element (GQE). The GQEs 
associated with each subtask originate from 
a one word pointer addressed by the TCBMSS 
field of the subtask TCB. 

~: Each area in main storage belonging 
to a subtask" and obtained by a supervisor 
issued GETMAIN macro instruction, is 
described by a gotten subtask area queue 
element (GQE). GQEs are chained in the 
order they are created. The TCBMSS field 
of the subtask TCB contains the address of 
a word which points to the most recently 
crea ted GQE. 

If Main Storage Hierarchy Support is 
present in the system, the GQE chain can 
span from hierarchy 0 to hierarchy 1 and 
back in any order. Each GQE occupies the 
first eight bytes of the area it describes, 
and has the following format: 

o 4 

Bytes 0-3: Pointer to the Previous GQE or, 
if zero, this is the last GQE 
on the chain. 

Bytes 4-7: Number of bytes in the gotten 
subtask area. 

Figure 11 summarizes the chaining of GQEs 
to a subtask TCB. 

ONE 
PARTITION 

FIXED 
AREA 

Figure 11. Storage Control for Subtask 
storage (MFT With SUbtasking) 

storage Control for a Region in Systems 
with MVT 

Unassigned areas of main storage within 
each region of a system with MVT are 
reflected in a queue of partition queue 
elements (PQEs) and a series of free block 
queue elements (FBQEs). 

22 PrdC'Jrammer's Guide to D~bugging (Release 21) 



POE: The partition queue associated with a 
region resides in the system queue space. 
It is connected to the TCBs for all tasks 
in the job step through a dummy PQE located 
in the system queue space. A dummy PQE has 
the following format: 

o 4 

Bytes 0-3: Pointer to the first PQE in the 
partition queue. 

Bytes 4-7: Pointer to the last PQE in the 
partition queue. 

In systems that do not include the 
rollout/rollin feature or Main Storage 
Hierarchy Support for IBM 2361 Models 1 and 
2, there is one PQE for each job step. If 
the rollout feature is used, additional 
PQEs are added each time a job step borrows 
storage space from existing steps or 
acquires unassigned free space to satisfy 
an unconditional GETMAIN request. These 
additional PQEs are removed from the queue 
as the rollin feature is used. If Main 
Storage Hierarchy Support is present, one 
PQE exists for each hierarchy used by the 
job step. A PQE has the following format: 

16 (10) 17 (11) 20 (14) 21 (15) 

24 (18) 25 (19) 28 (1C) 29 (10) 

Bytes 1-3: Pointer to the first FBQE or, 
if there are no FBQEs, a 
pointer to the PQE itself. 

Bytes 5-7: Pointer to the last FBQE or, if 
there are no FBQEs, a pointer 
to the PQE itself. 

Bytes 9-11(B): Pointer to the next PQE or, 
if this is the last PQE., zeros. 

Bytes 13-15(D-F): Pointer to the previous 
PQE or, if this is the first 
PQE, zeros. 

Bytes 17-19(11-13): Pointer to the TCB of 
the owning job step. 

Bytes 21-23(15-17): Size of the region, in 
2K (2048) bytes. 

Bytes 25-27(19-1B): Pointer to the first 
byte of the region. 

Byte 28(lC): Rollout flags. 

FBQE: The FBQEs chained to a PQE reflect 
the total amount of free space in a region. 
Each FBQE is associated with one or more 

,contiguous 2K blocks of free storage area. 
FBQEs reside in the lowest part of their 
associated area. As area distribution 
within the region changes, FBQES are added 
to and deleted from the free block queue. 

An FBQE has the following format: 

Bytes 1-3: Poin~er to the next lower FBQE 
or, if this is the last FBQE, a 
pointer to the PQE. 

Bytes 5-7: Pointer to the preceding F.BQE, 
or, if this is the first FBQE, 
a pointer to the PQE. 

Bytes 8-11(B): Number of bytes in the free 
block. 

The remaining main storage in a region 
is used by problem programs and system 
programs. For convenience in referring to 
storage areas, the total amount of space 
assigned to a task represents one or more 
numbered subpools. (Subpools can also be 
shared by tasks.> Sub pools are designated 
by a number assigned to the area through a 
GETMAIN macro instruction. Subpool numbers 
available for problem program use range 
from 0 through 127. ~ubpool numbers 128 
through 255 are either unavailable or used 
by system programs. 

storage control elements and queues for 
a region are summarized in Figure 12. 

Main Stcrage Supervision 23 



SYSTEM 
QUEUE 
SPACE 

Bytes 1-3: Pointer to next SPQE or, in 
last SPQE, zero. 

Byte 4: Subpool number. 

Bytes 5-1: Pointer to first DQE or, if the 
subpool is shared, a pointer to 
the "owning" SPQE. 

DQE: DQEs associated with each SPQE 
reflect the total amount of space assigned 
to a subpool. Each DQE is associated with 
one or more 2K blocks of main storage set 
aside as a result of a GETMAIN macro 
instruction. Each DQE is also the starting 
point for the free queue. A DQE has the 
following format: 

Figure 12. storage Control for a Region 8 
(MVT) 

:~~~qe Control for a Subpool in Systems 
wit.h .. MVT 

Main storage distribution within each 
subpool is reflected in a subpool queue 
elem~nt (SPQE) and queues of descriptor 
queue elements (DQEs) and free queue 
elements (FQEs). 

SPQE: SPQEs are associated with the 
subpools created for a task. SPQEs reside 
in the system queue space and are chained 
to the TCB(s) that use the subpool. They 
serve as a link between the TCB and the 
descriptor queue, and may be part of a 
subpool queue if the task.uses more than 
one subpool. If a subpool is used by more 
than one task, only one SPQE is created. 
An SPQE has the following fODmat: 

o 5 

Byte 0: 
Bit 0 - SUbpool is owned by this task 

if zero; shared, and owned by 
anqther task, if one. 

Bit 1 - This SPQE is the last on the 
queue, if one .. 

Bit 2 - Subpool is shared and owned by 
this task, if one .• 

Bits 3-7 - Reserved. 

Bytes 1-3: Pointer to the FQE associated 
with the first free area. 

Bytes 5-1: Pointer to the next DQE or, if 
this is the last DQE, zeros. 

Bytes 9-11(B): Pointer to first 2K block 
described by this DQE. 

Bytes 13-1S(D-F): Length in bytes of area 
described by this DQE. 

FQE: The FQE describes a free area within 
a set of 2K blocks described by a DQE. It 
occupies the first eight bytes of that free 
area. Since the FQE is within the subpool, 
it has the same protect. key as the task 
active within that subpool. Extreme care 
should be exercised to see that FQEs are 
not destroyed by the problem program. If 
an FOE is destroyed, the free space that it 
describes is lost to the system and cannot 
be assigned through a GETMAIN. As area 
distribution within the set of blocks 
changes, FOEs are added to and deleted from 
the free queue. An FOE has the following 
format: 

o 4 5 

24 Piog~~er's Guide to Debugginq (Release 21) 



Bytes 1-3: Pointer to the next lower FOE 
or, if this is the last FOE, 
zeros. 

Bytes 5-7s Number of bytes in the free 
area. 

storage control for a subpool is 
summarized in Figure 13. 

DYNAMIC 
AREAS 

Figure 13. Storage Control for a subpool 
CMVT) 

Storage Control for a Load Module in 
Systems With MVT 

Each load module in main storage is 
described by a contents directory entry 
CCDE) and an extent list (XL) that tells 
how much space it occupies. 

CDE: The contents directory is a group of 
queues, each of which is associated with an 
area of main storage. The CDEs in each 
queue represent the load modules residing 
in the associated area. There is a CDE 
queue for the link pack area and one for 
each region, or job pack area. The TCB for 
the job step task that requested the region 
Contents directory queues reside in the 
system queue space. A CDE has the 
following format: 

8 

16(10) 17(11) 

Byte 0: Flag bits, when set to one, 
indicate: 

Bit 0 
Bit 1 

- Module was loaded by NIP. 

Bit 2 -
Bit 3 
Bit 4 
Bit 5 

Bit 6 -
Bit 7 

Module is in process of teing 
loaded. 
Module is reenterable. 
Module is serially reusable. 
Module may not be reused. 
This CDE reflects an alias 
name (a minor CDE). 
Module is in job pack area. 
Module is not only-loadatle. 

Bytes 1-3: Pointer to next CDE. 

Bytes 5-7: Pointer to the RB. 

Bytes 8-15(F): EBCDIC name of load module. 

Byte 16(10): Use count. 

Bytes 17-19(11-13): Entry point address of 
load module. 

Byte 20: Flag bits, when set to one, 
indicate: 

Bit 0 
Bit 1 
Bit 2 

- Reserved. 

I~it 3 

Bit 4 
Bits 5, 

Module is inactive. 
An extent list has heen tuilt 
for the module. 
This CDE contains a relocated 
alias entry point address. 
The module is refreshable. 
6, 7 - Reserved. 

Bytes 21-23(15-17): Pointer to the XL for 
this module or, if this is a 
minor CDE, pointer to the 
major CDE. 

XL: The total amount of main storage 
occupied by a load module is reflected in 
an extent list (XL). XLs are located in 
the system queue space. An XL has the 
following format: 

System Control Blocks and Tables 25 



o 4 

8 12(C) 

Bytes 0-3: Length of XL in bytes. 

Bytes 4-1: Number of scattered control 
sections. If the control 
sections are block-loaded, 1. 

Remaining 
bytes: 

Length in bytes of each 
control section in the module 
(4 bytes for each control 
section) and starting location 
of each control section (4 
bytes for each control 
section). 

Storage control elements and queues for 
load modules are summarized in Figure 14. 

System Control Blocks and Tables 

In addition to the key task management 
control blocks (TeB and RB). several other 
control blocks containing essential 
debugging information are built and 
maintained by data management and job 
management routines. Although some of 
these blocks are not readily identifiable 
on a storage dump, they can be located by 
following chains of pointers that begin at 
the TCB .. 

The control blocks discussed here have 
the same basic functions at each control 
program level. The precise byte-by-byte 
contents of the blocks can be found in the 
publication System Control Blocks. Block 
contents useful in debugging are listed in 
Appendix K. 

OYNAMIC 
AREAS 

Figure 14. Storage Control for a Load 
Module (MVT) 

Communications Vector Table (evT) 

The CVT provides a means of communication 
between nonresident routines and the 
control program nucleus. Its most 
important role in debugging is its pointer 
to two words of TCB addresses. These words 
enable you to locate the TCB of the active 
task, and from there to find other 
essential control information. Storage 
locations 16(10) and 16(4c) contain a 
pointer to the CVT. 

Task Input/Output Table (TIOT) 

A TIOT is constructed by job management for 
each task in the system. It contains 
primarily pOinters to control blocks used 
by I/O support routines. It is usually 
located in the highest part of the main 
storage area occupied by the associated 
task (in systems with MVT, TIOTs are in the 
system queue space.) Through the TIOT, you 
can obtain addresses of unit control blocks 
allocated to the task, the job and step 
name, the ddnames associated with the step, 
and the status of each device and volume 
used by the data sets. 

26 Prdgrammer's Guide to DebUgging (Release 21) 



Unit Control Block (UCB) 

The UCB describes the characteristics of an 
I/O device. One UCB is associated with 
each I/O device configured into a system. 
The UCB's most useful debugging aid is the 
sense information ~eturned by the last 
sense command issued to the associated 
device. 

Event Control Block (ECa) 

The ECB is a i-word control block created 
when a READ or WRITE macro instruction is 
issued, initiating an asynchronous I/O 
operation. At the completion of the I/O 
operation, the access method routine posts 
the ECB. By checking this ECa, the 
completion status of an I/O operation can 
be determined. In all access methods but 
QTAM, the ECB is the first word of a larger 
block, the data event control block. 

Input/Output Block (lOB) 

The lOB is the source of information 
required by the I/O supervisor. It is 
filled in with information taken from an 
I/O operation request. In debugging, it is 
useful as a source of pointers to the DCB 
associated with the I/O operation and the 
channel commands associated with a 
particular device. 

Data Control Block (DCB) 

The DCB is the place where the operating 
system and the problem program store all 
pertinent information about a data set. It 
may be completely filled by operands in the 
DCB macro instruction, or partially filled 
in and completed when the data set is 
opened, with subparameters in a DD 
statement and/or information from the data 
set label. The format of DCBs differs 
slightly for each of the various access 
methods and device type s. The DCB' s 
primary debugging aids are·its pointers to 
the DEB and current lOB associated with its 
data set, and the offset value of the 
ddname in the TIOT. 

Data Extent Block (DEB) 

A DEB describes a data set's auxiliary 
storage assignments and contains pointers 

to some other control blocks. The DEB is 
created and queued to the TCB at the time a 
data set is opened. Each TCB contains a 
pointer to the first DEB on its chain. 
Through this pointer you can find out which 
data sets are opened for the task at a 
given time, what extents are occupied by 
open data sets, and where the DCB and UCB 
are located. 

Summary of Control Block Relationships 

Figure 15, an expansion of Figure 1, shows 
the relationships among the principal 
control blocks and tables in the Systeml360 
Operating System. 

Location +0 feB Words 

~;O) O=rCyT~=( 

+1 

+25( 19) 

~) 
~ 

(~) U U +21 (15) 

~
8 

I 8 

+4 '0 F 8 i 

+17(11) 

===u 

~ ~ 

o 

+13(0) 

Figure 15. Control Block Relationships 

system Control Blocks and Tables 27 



28 Prd§rammer's Guide to Debugging (Release 21) 



Topics composing section 2 are: 

• ABEND/SNAP dumps issued by systems with 
MFT. 

• ABEND/SNAP dumps issued by systems with 
MVT. 

• Indicative dumps. 
• storage dumps. 

Each topic includes instructions for 
invoking the dump, a detailed description 
of the dump's contents, and a guide to 
using the dump_ 

ABEND ISNAP Dump (MFT) 

ABEND/SNAP storage dumps are issued 
whenever the control program or problem 
program issues an ABEND or SNAP macro 
instruction, or the operator issues a 
CANCEL command requesting a dump, and 
proper dump data sets have been defined. 
However, in the event of a system failure, 
if a SYS1.DUMP data set has been defined 
and is available, a full storage dump will 
be provided, as explained in the section 
·Storage Dumps.· 

Since, in an MFT with subtasking system, 
subtasks may be created, you may receive 
one or more partial dumps in addition to 
the complete dump of the task that caused 
the abnormal termination. A complete dump 
includes a printout of all control 
information related to the terminating 
task, and the nucleus and all allocated 
storage within the partition in which the 
abending task resided. A partial dump of a 
task related to the terminating task 
includes only control information. The 
partial dump is identified by either 10=001 
or 10=002 printed in the first line of the 
dump. Figure 16 is a copy of the first few 
pages of a complete ABEND dump of an MFT 
system with subtasking. It illustrates 
some of the key areas on an ABEND dump, as 
issued by systems with MFT. Those portions 
of the dump that would only appear on a 
dump of a subtasking system are noted in 
the later discussions as appearing only in 
a dump of an MFT with subtasking system. 

For a discussion of a formatted ABEND 
dump using the telecommunications acce's 
method (TCAM) in an MFT environment, see 
IBM system/360 Operating system: TCAM 
Program Logic Manual., GY30-2029. 
References to other TCAM debugging aids are 
found in Appendix J. 

Section 2: Interpreting Dumps 

Invoking an ABEND/SNAP Dump (MFT) 

ABEND dumps are produced as a result of an 
ABEND macro instruction, issued either b¥ a 
processing program or an operating system 
routine. The macro instruction requires a 
DO statement in the inFut stream for each 
job step that is subject to abnormal 
termination. This DO statement must be 
identified by one of the special ddnames 
SYSABEND or SYSUDUMP. SYSABEND results in 
edited control information, the system 
nucleus, the trace table, and a dump of 
main storage; SYSUDUMP excludes the nucleus 
and the trace table. In the event of a 
system failure, the Damage Assessment 
routine (DAR) attempts to write a storage 
image dump to the SYS1.DUMP data set. A 
full explanation of storage dumps may be 
found in the section ·Storage Dumps." 

SNAP Dumps result from a problem program 
issuing a SNAP macro instruction. The 
contents of a SNAP dumF vary according to 
the operands specified in the SNAP macro 
instruction. SNAP dumps also require a DO 
statement in the input stream. This DO 
statement has no special characteristics 
except that its ddname must not be SYSABEND 
or SYSUDUMP. The processing program must 
define a DCB for the snapshot data set. 
The DCB macro instruction must contain, in 
addition to the usual DCB requirements, the 
operands DSORG=PS, RECFM=VBA, MACRF=(W), 
BLKSIZE=882 or 1632, and LRECL=125. In 
addition, the DCB must be opened before the 
first SNAP macro instruction is issued. 

Main storage Considerations: Three BSAM 
modules (IGG019BA, IGG019BB, and the 
device-dependent EOB module) are required 
to process dumps. These modules should be 
made resident in the Resident Access Method 
(RAM) area by specifying RESIDNT=ACSMETH in 
the SUPRVSOR macro instruction during 
system generation. If these modules are 
not resident, as much as 1352 bytes of main 
storage within the partition are required 
to contain them .• 

In addition to the area required for the 
BSAM modules, 2784 bytes must be available 
in the partition. 1344 of these bytes are 
required for EOV processing should the 
initial space specification for a direct 
access device be exceeded by the dump 
requirements. 

ABEND/SNAP Dump (MFT) 29 



• A80UMP REQUESTED. 

J08 A THEOT 24 

COMPlE TJ ON COOE 

INTERRUPT AT CbEF5A 

STEP STEP 

USER· 0123 

PSW AT ENTRY TO A8END 00150000 4006EF5A 

TJ~E 000737 DATE 99366 

TC8 01C620 R8 0007FC58 PIE 00000000 DEB 0007F78C TIOT 0001FORO CMP Roon001S 
I4SS 0001CC58 PK/FLG 10810408 FLG 000001F8 llS 00000000 JLJL. OQ9 7FF 78 

riiWiiiiitadi~~~&g~~~~b7:U~~ ~'~;~~~'~:g,~~~~ 
STAE 00000000 Te T 00000000 USER 00000000 DAR 00000000 RESV 00000000 

ACTIVE RBS 

PAGE 'l001 

TRN OOOOOMO 
.)S T 00005508 
ore'> o'oofeOEO' 
US!' oooboooO: 
JSCB 00000000 

PRB ObEE28 NM TATH810G SLISTAB 00302000 USE/EP 0106FE48 PSW 00150000 400bfF5A Q 000')00 WT/lNK 0001C8l0 

SVRB 01F020 NM SVC-601C SlISTAB 00120062 
RG 0-7 000002AO 80000078 
8-15-1 000bEE60 0007FF18 

SVR6 07FC58 NM SVC-A05A Sl/STA8 000CD062 
RG 0-1 0007F7E8 0007F080 
8-15-1 0001F1E8 000bF296 

PIP STORAGE 80UNDARIES 0006E800 TO 00080000 

FRE E AREAS . SIZE 

00000060 
00000050 
0000Fe58 
C0000098 
00000010 
00000228 
ooooooeo 
aoooe018 

USE/EP 00007878 PSW FF0400:n 50007020 Q 900390 WT/LNK 0006EE28 
00000000 00080000 0007FE48 00000098 00005508 000 7FC 30 
0001FFBO 0007FFF8 400bEE4E 0006EE60 0000984R 00000000 

USE/EP 00001818 PSW FF04000E 8001E7EC Q F801F8 WT/lNK 000JFD20 
4000187A 000097F8 0001e620 0007F020 OOObF230 00005508 
0001ce56 0000225C 0001CB20 000bF230 'l0007CBC 0001E7C8 

Figure 16. sample of an ABEND Dump (MFT) (Part 1 of 2) 

30 programmer's Guide to Debugging (Release 21) 



SAVE AREA TRACE PAGf: 0002 

TATHIHOG WAS ENTERED 

SA 06E8FII WOl 0606 EAC II HSA 00000100 lSA 0006EE60 UT 000091148 EPA 4006EE48 AO 0001)98CE 
Al 0001CC80 A2 00000000 A3 00080000 A4 000fFE411 R5 00000M8 R6 0001)5508 
A7 0007FC30 A8 0006ECEO R9 0007FF78 AIO 0007FFBO Rll 0007FFF8 IH2 4006ECCE 

SA 06EE60 1401 00000000 HSA 0006EBF8 lSA 00000000 RET 00000000 EPA 00000000 RO 0000001)0 
RI 00000000 R2 00000000 A) 00000000 A4 00000000 A5 00000000 A6 00000000 
R1 00000000 IU 00000000 R9 00000000 RIO 00000000 Rll 00000000 Rl2 0001)0000 

PROCEEDING BACK VIA REG n 

SA 06££60 WDI 00000000 HSA 0006EBF8 lSA 00000000 RET 00000000 EPA 00000000 RO 00000000 
AI 00000000 A2 00000000 A3 00000000 Rio 00000000 R5 00000000 R6 1)0000000 
A7 00000000 R8 00000000 R9 00000000 RIO 00000000 Rll 00000000 AU 00000000 

TATHB10G WAS ENTERED 

SA 06EBF8 WDl 0606EAC8 HSA 00000100 lSA 0006EE60 AET 00009848 EPA 4006£E48 RO 000098C£ 
Rl 0001CC80 R2 00000000 R] 00080000 u 0007FE48 A5 000000911 A6 00005508 
R7 0007FC30 All 0006ECEO R9 0007fF78 RIO 0007FF60 All 0007FFF8 AlZ 4006E(CE 

DATA SETS 

SNAP2 uce 192 00225C OE8 07F78C OC8 OUF84 

OUHOCe uce 192 00225( DES OlFAfIt Dee 06EF" 

JOBUB UC8 190 00218C 

SYSPAINT utB 192 00225C 

SYSA8ENO ut8 192 00225C 

SNAPI UC8 190 00218C 

AEGS AT ENTRY TO ABEND 

Fl.PT.REGS 0-6 

AEGS 0-7 

00.000000 00000000 00.000000 00000000 00.000000 00000000 00.000000 00000000 

AEGS 8-15 

NUCLEUS 

000000 
000020 
00C040 
00(,060 
000080 
OOOOAO 

LINES 
000160 
000180 
000140 

liNe 
OOOlEO 
000200 
000220 
000240 
000260 
000280 
0002AO 
0002eo 
0002EO 
000300 
000320 

00000240 8000001B 00000000 00080000 0007Fe48 00000098 00005508 0001FC)O 
0006E£60 0001H78 0007FF80 0001FFF8 ~006EE~E 0006EE60 00009848 00000000 

oooceooo 0000051C FOFOF5Cl 00000000 
0004000A 500068106 00000000 00000000 
1007F5E8 50000000 00001480 000091F8 
OOO~OOOO oo00033A 00040000 0000020e 
00015380 00000000 00000000 OOOOlOOO 
00000000 00000000 00000000 0000(1)00 

0000CO-000140 SAME AS ABOVE 
00000000 00000000 00000000 82000170 
0001C820 00001E91 0006F465 80007016 
00000000 00000000 00000000 00000000 

OOOlCO SAME AS ASOVE 
000079FO 00006888 0000A43A 00000001 
0000846C 000083E4 00006180 00006942 
00013340 00234700 024C96fO 02279029 
40100038 94F04011 90A13030 5890021C 
02070440 003847FO 024C940f 02279829 
04409029 018091FO 02384780 029C90Al 
90A1903C 58990000 02079010 00189~FD 
91800018 418002C£ 58200208 052Z47FO 
014098CO 00285880 02189101 00Z9078-8 
000012AA 41C0033Z 90C2BOO~ 18185880 
018850FO 002(41EO 020C98AO 01408200 

000097F8 00013440 01040080 8003AC04 
OOOOFfOO 00000000 FF04000E A0001£2A 
60C85OCO 00000000 00040000 00000282 
00000000 00008218 00040000 00000226 
00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 

00040000 OOOU 740 00000000 00000000 
00000080 0006F491 00000001 0006F4A8 
00000000 00000000 00000000 r.0000000 

40007120 0000A042 90001520 00000000 
OOOOlOOO OOOOOFU 00009130 000U35C 
01805830 06C45840 30004100 025C0201 
OS895850 02105890 021407F9 90Al01£0 
018091FO 02384180 01t489841 01£08200 
01E00201 04400018 47F00282 589006C4 
90119140 00184780 02(05820 02040522 
02640000 000153BII 0000810A OA039049 
584006C4 SUOA004 124407C8 188A5844 
OZ189280 1000'f8fO A0008900 C0001200 
002811118 58800218 01F8900F 04005890 

••••••••• OO~A ••••••• 8 •••••••••• M. 
* ••••••••••••••••••••••••••••••••• 
••• 5Y ••••••••••• 8.H ••••••••••••••• ................................... •................................• •................................• 
* ••••••••••••••••••••••••••••••••• 
* •••••••••• It ••••••••••• 4 ••••••• 4.•................................ -
•... 0............ . ..............• 
•••••••• u ••••••••••••••••••••••••• 
••••••••••• 0 ••••••••• 0 ••••••• K •• 
• ••••• • ••••••••••••••••••• 9 •••• * 
*K ••••• 0 ••••••••••• 0 ••••••••••••• 
* •••••• 0 •••••••••• K ••••• 0 ••••• 0-
••••••••• K ••••••••••••••••••• " •• -
- ••••••••••• Q ••• 0 ••••••••••••••••• 
•••••••••••••••••••• 0 ••••••••••••• 
•••••••••• P ••••••••••••• 0 ••••••••• 

Figure 16. Sample of an ABEND Dump (MFT) (Part 2 of 2) 

ABEND/SNAP Dump (MFT) 31 



Device and Space Considerations: DD 
statements for ABEND/SNAP dumps, must 
contain parameters appropriate for a basic 
sequential (BSAM) data set. Data sets can 
be allocated to any device supported by the 
basic sequential access method. There are 
several ways to code these DO statements 
depending on what type of device you choose 
and when you want the dump printed. 

If you wish to have the dump printed 
immediately, code a DO statement defining a 
printer data set. 

r-----------------------------------------1 I//SYSABEND 00 UNIT=1443,DCB=(... I L _________________________________________ J 

A printer is associated with the SYSOUT 
class" you can also obtain inmediate 
printing by routing the data set through 
the output stream. 

r-----------------------------------------, I//SNAPDUMP DO SYSOUT=A,DCB=(... I L _________________________________________ J 

This type of request is the easiest, 
most economical way to provide for a dump_ 
All other DO statements result in the tying 
up of an output unit or delayed printing of 
the dump. 

If you wish to retain the dump, you can 
keep or catalog it on a direct access or 
tape unit. The last step in the pertinent 
job can serve several functions: to print 
out key data sets in steps that have been 
abnormally terminated, to print, an ABEND or 
SNAP dump stored in an earlier step, or to 
release a tape volume or direct access 
space acquired for dump data sets. 
Conditional execution of the last step can 
be established through proper use of the 
COND parameter and its subparameters. EVEN 
and ONLY, on the EXEC statement. 

Direct access space should be requested 
in units of average block size rather than 
in cylinders (CYL) or tracks (TRK). If 
abnormal termination occurs and the data 
set is retained. the tape volume or direct 
access space should be released (DELETE in 
the DISP parameter) at the time the data 
set is printed. 

Sample DD Stateroents: Figure 17 shows a 
set of job steps that include DO statements 
for ABEND dump data sets. 

The SYSABEND DO statement in STEP2 takes 
advantage of the direct access space 
acquired in STEPl by indicating MOD in the 
DISP parameter. Note that the space 
request in STEPl is large so that the 
dumping operation is not inhibited due to 
insufficient space. The final SYSABEND DO 
statement in the job should indicate a 
disposition of DELETE to free the space 
acquired for dumping. 

Contents of an ABEND/SNAP Dump (MFT) 

This explanation of the contents of 
ABEND/SNAP dumps for systems with MFT is 
interspersed with sample sections taken 
from an ABEND dump. Capital letters 
represent the headings found in all dumps, 
and lowercase letters, information that 
varies with each dump_ The lowercase 
letter used indicates the mode of the 
information, and the number of letters 
indicates its length: 

• h represents 1/2 byte of hexadecimal 
information 

• d represents 1 byte of decimal 
information 

• c represents a i-byte character 

You may prefer to follow the explanation 
on your own ABEND or SNAP dump_ 

32 Programmer's Guide to Debugging (Release 21) 



Figure 17. SYSABEND DD Statements 

ABEND/SNAP Dump (MFT) 33 



* * * A 8 DUM PRE QUE S TID • • • 

*ccccccc ••• 

JOB ecce ecce STEP ecce ecce TIME dddddd DATE ddddd PAGE dddd 

COMPLETION CODE SYSTEM • hhh (or USER • dddd) 

cacece ••• 

INTIRRUPT AT hhhhhh 

PIW AT ENTRY TO ABEND (SNAP) hhhhhhhh hhhhhhhh 

• • • A B DUM PRE QUE S TED • • • 
identifies the dump as an ABEND or 
SNAP dump. 

·ccccccc ••••• 
is omitted or is one or more of the 
following: 

.CORE NOT AVAILABLE, LOC. 
hhhhhhhhhhhh TAKEN ••• 

indicates that the ABDUMP routine 
confiscated storage locations 
hhhhhh through hhhhhh because not 
enough storage was available. 
This area is printed under PIP 
S'roRAGE, but can be ignored 
because the problem program 
originally in it was overlaid 
during the dumping process. 

*MODIFIED, /SIRB/DEB/LLS/ARB/MSS .••• 
indicates that the one or more 
queues listed were destroyed or 
their elements dequeued during 
abnorma I term! na ti on: 
• SIRB -- system interruption 

request block queue. One or 
more SIRB elements were found 
in the active RB queue: these 
elements are always dequeued 
during dumping. 

• DEB -- DEB queue. If the first 
message also appeared, either a 
DEB or an associated DCB was 
overlaid. 

• LLS -- load list. If the first 
message also appeared, one or 
more loaded RBs were overlaid. 

• ARB -- active RB queue,. If the 
first message also appeared, 
one or more RBs were overlaid. 

• MSS boundary box queue. One 
or more MSS elements were 
dequeued, but an otherwise 
valid control block was found 

in the free area specified b¥ 
an MSS element. 

.FOUND ERROR IN /DEBILLS/ARB/MSS ••• 
indicates that one or more of the 
following contained an error: 

• DEB: 
• LLS: 
• ARB: 
• MSS: 

data extent block 
load list 
active RB 
boundary box 

This message appears with either 
the first or second message 
above. The error could be: 
improper boundary alignment, 
control block not within storage 
assigned to the program being 
dumped, or an infinite loop (300 
times is the maximum for this 
test). For an MSS block, 4 other 
errors could also be found: 
incorrect descending sequence 
(omitting loop count), 
overlapping free areas, free area 
not entirely within the storage 
assigned to the program being 
dumped, or count in count field 
not a multiple of 8. 

JOB cccccccc 
is the job name specified in the JOB 
statement. 

STEP cccccccc 
is the step name specified in the EXEC 
statement for the problem program 
being dumped. 

TIME dddddd 
is the hour (first 2 digits), minute 
(second 2 digits), and second (last 2 
digits) when the ABDUMP routine cegan 
process ing • 

DATE ddddd 
is the year (first 2 digits) and day 
of the year (last 3 digits). For 
example, 61352 would be December 18, 
1961. 

34 Programmer's Guide to Debugging (Release 21) 



Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

PAGE dddd 
is the page nUJl1ber. Appears at the 
top of each page. 

COMPLETION OODE'SYSTEM=hhh or COMPLETION 
CODE U5ER=dddd 

is the completion code supplied by the 
control program (SYSTEM=hhh) or the 
problem program (USER=dddd). Either 
SY5TEM=hhh or USER=dddd is printed, 
but not both. Common completion codes 
are explained in Appendix B. 

cccccc ••• 

TCB 

explains the completion code or, if a 
program interruption occurred: 
PROORAM INl'ERBlJPl'ION ccccc... AT 
LOCATION hhhhhh, 

where ccccc is the program 
interruption cause -- OPERATION, 
PRIVILEGED OPERATION, EXECUTE, 
PROTECTION, ADDRESSING, SPECIFICATION, 

hhhhhh RB hhhhhhhh PIE hhhhhhhh DEB hhhhhhhh 
MSS hhhhhhhh PK/FLG hhhhhhhh FLG hhhhhhhh 

DATA,FIXED-POINT OVERFLOW, FIXED-POINT 
DIVIDE, DECIMAL OVERFLOW, DECIMAL 
DIVIDE, EXPONENT OVERFLOW, EXPONENr 
UNDERFLOW, SIGNIFICANCE, or 
FLOATING-POINT DIVIDE; and hhhhhh is 
the starting address of the 
instruction being executed when the 
interruption occurred. 

INTERRUPT AT hhhhhh 
is the address of next instruction to 
be executed in the problem program. 
It is obtained from the resume PSW of 
the PRB or LPRB in the active RB queue 
at the time abnormal termination was 
requested. 

PSW AT ENTRY TO ABEND hhhhhhhh hhhhhhhh or 
PSW AT ENTRY TO SNAP hhhhhhhh hhhhhhhh 

is the PSW for the problem or control 
program that had control when abnormal 
termination was requested or when the 
SNAP macro instruction was executed. 

TIOT hhhhhhhh CMP hhhhhhhh TRN hhhhhhhh 
LLS hhhhhhhh JLB hhhhhhhh JST hhhhhhhh 

RG 0-7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
RG 8-15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
FSA hhhhhhhh TeB hhhhhhhh TME hhhhhhhh 
LTC hhhhhhhh IOE hhhhhhhh ECB hhhhhhhh 
STAE hhhhhhhh TCT hhhhhhhh USER hhhhhhhh 

TCB hhhhhh 
is the starting address of the TCB. 

RB hhhhhhhh 
is the TCBRBP field (bytes 0 through 
3) : starting address of the active RB 
queue and, consequently, the most 
recent RB on the queue (usually 
ABEND's RB). 

PIE hhhhlL.llllh 
is the TCBPIE field (bytes 4 through 
7): starting address of the program 
interruption element (PIE) for the 
task. 

DEB hhhhhhhh 
is the TCBDEB field (bytes 8 through 
11): starting address of the DEB 
queue. 

TIOT hhhhhhhh 
is the TCBTIO field (bytes 12 through 
15): starting address of the TIOT. 

eMP hhhhhhhh 
is the TCBCMP field (bytes 16 through 
19): task completion code in 
hexadecimal. System codes are shown 

PIB hhhhhhhh NTC hhhhhhhh O'l'C hhhhhhhh 
XTCB hhhhhhhh LP/FL hhhhhhhh RESV hhhhhhhh 
DAR hhhhhhhh RESV hhhhhhhh JSCB hhhhhhhh 

in the third through fifth digits and 
user codes in the sixth through 
eighth. 

TRN hhhhhhhh 
is the TCBTRN field (bytes 20 through 
23): starting address of control core 
(table) for controlling testing of the 
task by TESTRAN. 

MSS hhhhhhhh 
is the TCBMSS field (bytes 24 through 
27): starting address of the main 
storage supervisor's boundary box. 

PK/FLG hhhhhhhh 
contains, in the first 2 digits, the 
TCBPKF field (byte 28): protection 
key. 

FLG hhhhhhhh 
contains, in the first 4 digits, the 
last 2 bytes of the TCBFLGS field 
(bytes 32 and 33): last 2 flag bytes. 

contains, in the next 2 digits, the 
TCBLMP field (byte 34): number of 
resources on which the task is queued. 

ABEND/SNAP Dump (MFT) 35 



contains, in the last 2 digits, the 
TCBDSP field (byte 35): 

• Reserved in MFT without subtasking; 
both digits are zero. 

~ In MFT with subtasking, this field 
contains the dispatching priority of 
the TCB. 

LLS hhhhhhhh 
is the TCBLLS field (bytes 36 through 

39): starting address of the RB 
most recently added to the load 
list. 

JLB hhhhhhhh 
is the TCBJLB field (bytes 40 through 

43): starting address of the DCB 
for the JOBLIB data set. 

JST hhhhhhh 
is the TCBJST field (bytes 44 through 
47) • Not currently used in MFT 
wi thout subtasking. In MFl' with 
subtasking - the starting address of 
the TCB for the job step task. 

RG 0-7 and RG 8-15 
is the TCBGRS field (bytes 48 through 
111): contents of general registers 0 
through 7 and 8 through 15, as stored 
in the save area of the TCB when a 
task switch occurred. These 2 lines 
appear only in TCBs of tasks other 
than the task in control when the dump 
was requested. 

FSA hhhhhhhh 
contains, in the first 2 digits, the 
TCBIDF field (byte 112): TCB 
identifier field. 

contains, in the last 6 digits, the 
TCBFSA field (bytes 113 through 115): 
starting address of the first problem 
program save area. This save area was 
set up by the control program when the 
job step was initiated .• 

'rCB hhhhhhhh 
is the TCBTCB field (bytes 116 through 
119): starting address of the next 
TCB of lower priority or, if this is 
the last TCB., zeros. 

TME hhhhhhhh 
is the TCBTME field (bytes 120 through 
123) : starting address of the timer 
element created when an STIMER macro 
instruction is issued by the task • 
This field is not printed if the 
computer does not contain the timer 
option. 

PIB hhhhhhhh 
is the TCBPIB field (bytes 124 through 
127): starting address of the program 
information block. 

NrC hhhhhhhh 
is the TCBNTC field (bytes 128 through 
131) : 

MFT without subtasking: zeros. 

MFT with subtasking: the starting 
address of the TCB for the previous 
subtask on this subtask TCB queue. 
This field is zero both in the job 
step task, and in the TCB for the 
first subtask created by a parent 
task. 

orc hhhhhhhh 
is the TCBOTC field (bytes 132 through 
135): starting address of the TCB for 
the parent task. Both in the TCB for 
the jcb step tas k, and in MFT systems 
without subtasking this field is zero. 

LTC hhhhhhhh 
is the TCBLTC field (bytes 136 through 
139): sta tti ng address of the Tca for 
the most recent subtask created by 
this task. This field is zero in the 
TCB for the last subtask of a job 
step, or in the TCB for a task that 
does not create subtasks. This field 
is always zero in an MFT system 
without subtaskinq. 

hhhhhhhh 
is the TCBIQE field (bytes 140 through 
143). 

MFT without subtasking: zero. 

MFT with subtasking: starting address 
of the interruption queue element 
(IQE) for the ETXR exit routine. This 
routine is specified by the ETXR 
operand of the ATTACH macro 
instruction that created the TCB being 
dumped. '!be routine is to be entered 
when the task terminates. 

ECB hhhhhhhh 
is the TCBECB field (bytes 144 through 
147). 

36 Pi:OC)t:&m1ler's Guide to Debugging (Release 21.7) 



MFT without subtasking: zero. 

MFT with subtasking: starting address 
of the ECB field to be posted by the 
control program at task termination. 
This field is zero if the task was 
attached without an ECB operand. 

XTCB hhhhhhhh 
reserved for future use. 

LP/FL hhhhhhhh 
MFT without subtasking: reserved. 

MFT with subtasking: contains in the 
first byte, the limit priority of the 
task (byte 152). contains, in the 
last three bytes the field TCBFTFLG 
(bytes 153 through 155) - flag bytes. 

RESV hhhhhhhh 
reserved for future use. 

STAE hhhhhhhh 
contains, in the first 2 digits, STAE 
flags (byte 160). 

contains, in the last 6 digits, the 
TCBNSTAE field (bytes 161 through 
163): starting address of the current 
STAE control block for the task. This 
field is zero if STAE has not been 
issued. 

ACTIVE RBS 

TCT hhhhhhhh 
is the TCBTCT field (b~tes 164 through 
167) : 

Address of the Timing Control Table 
(TCT): zeros if the system Management 
Facilities option is not present in 
the system. 

USER hhhhhhhh 
is the TCBUSER field (bytes 168 
through 171): to be used as the user 
chooses. 

DAR hhhhhhhh 
contains, in the first 2 digits, 
Dawage Assessment Routine (DAR) flags 
(byte 172); 

contains, in the last 6 digits, the 
secondary non-dis~atchability bits 
(bytes 173 through 175). 

RESV hhhhhhhh 
reserved for future use. 

JSCB hhhhhhhh 
is the TCBJSCB field (bytes 180 
through 183): the last three bytes 
contain the address of the Job Step 
Control Bloc k. 

ecce hhhhhh NM ecce ecce SZ/STAB hhhhhhhh USE/EP hhhhhhhh PSW hhhhhhhh hhhhhhhh 0 hhhhhh WT/LNK hhhhhhhh 
RG 0-7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
RG 8-15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

ACTIVE RBS 
identifies the next lines as the 
contents of the active RBs queued to 
the TCB. 

cccc hhhhhh 
indicates the RB type and its starting 
address. 

The RB types are: 

PRB Program request block 

SIRB Supervisor interrupt request 
block 

LPRB Loaded program request block 

IRB Interruption request block 

SVRB supervisor request block 

Note: Three SVRBs for ABEND 
processing exist in the nucleus. They 
are used when there is insufficient 
space in the partition to create an 
SVRB. 

NM xxxxxxxx 
is the XRBNM field (bytes 0 through 
7): in PRB, LRB, and LPRB, t.he 
program name; in IRB,· the first byte 
contains flags for the timer or, if 
the timer is not being used, contains 
no meaningful information; in SVRB for 
a type 2 SVC routine, the first 4 
bytes contain the TTR of the load 
module in the SVC library, and the 
last 4 bytes contain the SVC numcer in 
signed, unpacked decimal. 

ABEND/SNAP Dump (MFT) 37 



SZ/STAB hhhhhhhh 
contains in the first 4 digits, the 
XRBSZ field (bytes 8 and 9): number 
of contiguous doublewords in the RB, 
the program (if applicable), and 
associated supervisor work areas. 

contains in the last 4 digits, the 
XSTAB field (bytes 10 and 11): flag 
bytes. 

USE! EP hhhhhhhh 
contains, in the first 2 digits, the 
XRBUSE field (byte 12): use count. 

contains; in the last ~ digits, the 
XRBEP field (bytes 13 through 15): 
address of entry point in the 
associated program. 

PSW hhhhhhhh hhhhhhhh 
is the XRBPSW field (bytes 16 through 
23): resume PSW. 

Q hhhhhh 
is the last 3 bytes of the XRBQ field 

LOAD LIST 

(bytes 25 through 27)a in PRB and 
LPRB, starting address of an LPRB for 
an entry identified by an IDENTIFY 
macro instruction; in IRB, starting 
address of a request element; in SVRB 
for a type 3 or 4 SVC, size of the 
program in bytes. 

WT /LNK hhhhhhhh 
contains, in the first 2 digits, the 
XRBWT field (byte 28): wait count. 

contains, in the last 6 digits, the 
XRBLNK field (bytes 29 through 31): 
primary queuing field. It is the 
starting address of the previous RB 
for the task or, in the first RB to be 
placed on the queue, the starting 
address of the TeB. 

RG 0-7 and RG 8-15 
is the XRBREB field (bytes 32 through 
95 in IRBs and SVRBs): contents of 
general registers 0 through 15 stored 
in the RB. These 2 lines do not 
appear for PRBs, LPRBs, and LRBs. 

ecce hhhhhh NM cccccccc SZ/STAB hhhhhhhh U5E/EP hhhhhhhh psw hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh 

LOAD LIST 
identifies the next lines as the 
contents of the load list queued to 
the TeB. 

cccc hhhhhh 
indicates the RB type and its starting 
address. 

The RB types are: 

LRB 
LPRB 
D-LPRB 

NM cccccccc 

Loaded request block 
Loaded program request block 
Dummy loaded program request 
block. (Present if the 
resident reenterable load 
module option was selected). 

is the XRBNM field (bytes 0 through 
7): program name. 

SZ/STAB hhhhhhhh 
contains, in the first 4 digits, the 
XRBSZ field (bytes 8 and 9): number 
of contiguous doublewords for the RB, 
the program (if applicable), and 
assobiated supervisor work areas. 

contains, in the last 4 digits, the 
XSTAB field (bytes 10 and 11): flag 
bytes. 

USE/EP hhhhhhhh 
contains, in the first 2 digits, the 
XRBUSE field (byte 12): use count. 

contains, in the last 6 digits, the 
XRBEP field (bytes 12 through 15): 
address of entry point in the program. 

PSW hhhhhhhh hhhhhhhh 
is the XRBPSW field (bytes 16 through 
23): resume PSW. 

Q hhhhhh 
is the last 3 bytes of the XRBQ field 
(bytes 25 through 27): in LPRB, 
starting address of an LPRB for an 
entry identified by an IDENTIFY macro 
instruction; in LRB, unused. 

WT/LNK hhhhhhhh 
contains, in the first 2 digits, the 
XRBWT field (byte 28): wait count. 

contains, in the last 6 digits, the 
XRBLNK field (bytes 29 through 31): 

38 ProgramfuQr'S Guide to DebUgging (Release 21) 



primary queuing field for LRBs and 
LPRBs also on the active RB queue,. It 
points to the previous RB for the task 
or, in the oldest RB in the queue, 
back to the TeB. 

JOB PACK AREA QUEUE 

ecce hhhhhh NM ecce ecce 
cccc hhhhhh NM cccccccc 
ecce hhhhhh NM cccccccc 

SZ/STAB hhhhhhhh USE/EP hhhhhhhh psw hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh 
SZ/STAI3 hhhhhhhh WTL hhhhhhhh REO hhhhhhhh TLPRB hhhhhhhh 
SZ/STAB hhhhhhhh USE/EP hhhhhhhh PSW hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh 

JOB PACK AREA QUEUE (MFT with subtasking 
only) 

identifies the next lines as the 
contents of the job pack area queue 
originating in the partition 
information block (PIB). 

cccc hhhhhh 
indicates the RB type and its starting 
address. 

The RB types are: 

FRB Finch request block 
LRB Loaded request block 
LPRB Loaded program request block 

NM cccccccc 
is the XRBNM field (bytes 0 through 
7): Program name. 

SZ/STAB hhhhhhhh 
contains, in the first 4 digits, the 
XRBSZ field (bytes 8 and 9): number 
of contiguous doublewords for the RB, 
the program (if applicable), and 
associated supervisor work areas. 

contains, in the last 4 digits, the 
XSTAB field (bytes 10 and 11): flag 
bytes. 

USE/EP hhhhhhhh (LPRB, LRB Only) 
contains, in the first 2 digits, the 
XRBUSE field (byte 12): use count. 

contains, in the last 6 digits, the 
XRBEP field (bytes 13 through 15): 
address of ent,ry point in the program. 

'WTL hhhhhhhh (FRB Only) 
is the XRWTL field of the FRB (bytes 

12 through 15): address of the most 
recent wait list element (WLE) on the 
WLE queue. 

PSW hhhhhhhh hhhhhhhh (LPRB, LRB Only) 
is the XRBPSW field (bytes 16 through 
23): resume PSW. 

REO hhhhhhhh (FRB Only) 
is the XRREQ field of the FRB (bytes 
16 through 19): address of the TCB of 
the requesting task. 

TLPRB hhhhhhhh (FRB Only) 
is the XRTLPRB field of the FRB (bytes 
20 through 23): address of the LPRB 
built by the Finch routine for the 
requested program. 

Q hhhhhh (LRB, LPRB Only) 
is the last 3 bytes of the XRBQ field 
(bytes 25 through 27): 

• in an LPRB, the starting address of 
an LPRB for an entry identified by 
an IDENTIFY macro instruction. 

• in an LRB, unused. 

WT/LNK hhhhhhhh (LRB, LPRB Only) 
contains, in the first 2 digits, the 
XRBWT field (byte 28): wait count. 

contains, in the last 6 digits (bytes 
29 through 31): Frimary queuing field 
for RBs. These RBs may be queued 
either on the job pack area queue or 
on the active RB queue. It points to 
the previous RB for the task or, in 
the oldest RB on the queue, back to 
the TCB. 

ABEND/SNAP Dump (MFT) 39 



PIP STORAGE BOUNDARIES hhhhhhhh TO hhhhhhhh 

FREE AREAS SIZE 

hhhhhh hhhhhhhh 

GOTTEN CORE SIZE 

hhhhhh hhhhhhhh 

SAVE 'AREA TRACE 

cccccccc WAS ENTERED VIA LINK (CALL) ddddd AT EP ccccc ••• 

SA hhhhhh WDl hhhhhhhh HSA hhhhhhhh 
R1 hhhhhhhh R2 hhhhhhhh 
R7 hhhhhhhh R8 hhhhhhhh 

LSA hhhhhhhh 
R3 hhhhhhhh 
R9 hhhhhhhh 

INCORRECT BACK CHAIN 

PROCEEDING BACK VIA REG 13 

P/P STORAGE BOUNDARIES hhhhhhhh TO hhhhhhhh 
gives the addresses of the lower and 
upper boundaries of a main storage 
area assigned to the task. This 
heading is repeated for every 
noncontiguous block of storage owned 
by the task. 

FREE AREAS SIZE 

hhhhhh hhhhhh 

hhhhhh hhhhhh 
are the starting addresses of free 
areas and the size, in bytes, of each 
area contained within the P/P STORAGE 
BOUNDARIES field listed above. 

GOTTEN CORE SIZE 

hhhhhh hhhhhhhh 

hhhhhh hhhhhhhh 
(Printed only in a dump of a system 
with the MFT with subtasking option). 
These figures represent the starting 
addresses of the gotten areas (those 
areas obtained for a subtask through a 
supervisor issued GETMAIN macro 
instruction), and the size, in bytes, 
of each area contained within the P/P 
STORAGE BOUNDARIES field listed above. 
If main storage hierarchy support is 
included in the system, the values in 
this field can address storage in 
either hierarchy 0 or hierarchy 1, or 
both. 

SAVE AREA TRACE 
identifies the next lines as a trace 
of the save areas for the program. 

RET hhhhhhhh 
R4 hhhhhhhh 
RlO hhhhhhhh 

EPA hhhhhhhh 
R5 hhhhhhhh 
Rll hhhhhhhh 

cccccccc WAS ENTERED 

RO hhhhhhhh 
p.6 hhhhhhhh 
nl2 hhhhhhhh 

is the name of the program that stored 
register contents in the save area. 
This name is obtained from the RB. 

VIA LINK (CALL) ddddd 
indicates the macro instruction (LINK 
or CALL) used to give control to the 
next lower level module, and is the ID 
operand, if it was specified, of the 
LINK or CALL reacro instruction. 

AT EP ccccc ••• 
is the entry point identified, which 
appears only if it was specified in 
the SAVE macro instruction that filled 
the save area. 

SA hhhhhh 
is the starting address of the save 
area. 

WDl hhhhhhhh 
is the first word of the save area: 
use of this word is optional. 

HSA hhhhhhhh 
is the second word of the save area: 
starting address of the save area in 
the next higher level module. In the 
first save area in a job step, this 
word contains zeros. In all other 
save areas, this word must be filled. 

!.SA hhhhhhhh 
is the third word of the save area 
(register 13): starting address of 
the save area in the next lower level 
module. 

RET hhhhhhhh 
is the fourth word of the save area 
(register 14): return address. 
Optional. 

40 Pro~fammer's Guide to Debugging (Release 21) 



EPA hhhhhhhh 
is the fifth word of the save area 
(register 15): entry point to the 
invoked module. Optional. 

RO hhhhhhhh Rl hhhhhhhh ••• R12 hhhhhhhh 
are words 6 through 18 of the save 
area (registers 0 through 12): 
contents of registers 0 through 12 
immediately after the linkage for the 
module containing the save area. 

INCORRECT BACK CHAIN 
indicates that the following lines may 
not be a save area because the second 

DATA SETS 

•••• - NOT FOR MAT TED •• _.-

cccccccc UCB ddd hhhhhh DEB hhhhhh 

--0/5 FORMATTING TERMINATED--

DATA SETS 
indicates that the next lines present 
information about the data sets for 
the task. For unopened data sets, 
only the ddname and UCB information 
are printed. 

NOT FORMATTED 
indicates that the abnormal 
termination dump routine confiscated 
storage (indicated by .CORE NOT 
AVATI.ABLE, LOC. hhhhhh-hhhhhh TAKEN); 
because DCBs may have been overlaid, 
or that the dump is for an OLTEP task. 
Data set information is not presented. 

cccccccc 
is the name field (ddname) of the DD 
statement. 

UCB ddd hhhhhh 
is the unit to which the data set was 

word in this area does not point back 
to the previous save area in the 
chain. 

PROCEEDING BACK VIA REG 13 

DCB hhhhhh 

indicates that the next 2 save areas 
are (1) the save area in the lowest 
level module, followed by (2) the save 
area in the next higher level module. 
The lowest save area is assumed to be 
the save area pointed to by register 
13. These 2 save areas appear only if 
register 13 points to a full word 
boundary and does not contain zeros. 

assigned, and the starting address of 
the UCB for that unit. If the data 
set was assigned to several units, the 
additional units are identified on 
following lines. 

DEB hhhhhh 
is the starting address of the DEB for 
the data set. A~~ears only for open 
data sets. 

DCB hhhhhh 
is the starting address of the DCB for 
the data set. A~~ears only for open 
data sets. 

•• 0/5 FORMATTING TERMINATED •• 
indicates that no more data set 
information is presented because a DCB 
is incorrect. possibly because a 
program incorrectly modified it. 

ABEND/SNAP Dump (MFT) 41 



TRACE TABLE - STARTING WITH OLDEST ENTRY 

CSW hhhhhhhh bhhhhbhh dddd 
dddd 
dddd 

I/O ddd 
SIO ddd 
SVC ddd 

PSW hhhhhhhh hhhhhhhh 
CC • d 
PSw hhhhhhhh hhhhhhhh 

CAW hhhhhhhh 
RG 0 hhhhhhhh 

OLD CSW 
RG 1 

hhhhhhhh hhhhhhhh (or CSW STATUS hhhh) 
hhhhhhhh 

TRACE TABLE -- STARTING WITH OLDEST ENTRY 
identifies the next lines as the 
contents of the trace table,. Each 
entry is presented on one line. The 
types of entries are: 

dddd 

I/O Input/output interruption entry 

SIO start input/output (SIO) entry 

SVC supervisor call (SVC) interruption 
entry 

is the number assigned to each entry. 
The oldest entry receives the number 
0001. 

I/O ddd 
is the channel and unit that caused 
the input/output interruption. 

PSW hhhhhhhh hhhhhhhh 
is the program status word that was 
stored when the input/output 
interruption occurred. 

CSW hhhhh.hi.'') hhhhhhhh 
is the channel status word that was 
stored when the input/output 
interruption occurred. 

SIO ddd 
is the device specified in the SIO 
instruction. 

CC=d 
is the condition code resulting from 
execution of the SIO instruction. 
Zero indicates a successful start. 

CAW hhhh~hhh . 
is the channel address word used by 
the SIO instruction. 

OLD CSW hhhhhhhh hhhhhhhh 
is the channel status word stored 
during execution of an SIO operation. 
It appears when CC is not equal to 1. 

CSW STATUS hhhh 
is the status portion of the channel 
status word stored during execution of 
an SIO instruction. Appears when CC 
is equal to 1. 

SVC ddd 
is the SVC instruction's operand. 

PSW hhhhhhhh hhhhhhhh 
is the PSW stored during the SVC 
interruption. An F in the fifth digit 
of the first word identifies the entry 
as representing a task switch. 

RG 0 hhhhhhhh 
is the contents of register 0 as 
passed to the svc routine. 

RG 1 hhhhhhhh 
is the contents of register 1 as 
passed to the SVC routine. 

42 proqrammer's Guide to Debugging (Release 21) 



REGS AT ENTRY TO ABEND (SNAP) 

FLTR 0-6 hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hh·hhhhhhhhhhhhhh 

REGS 0-7 
REGS 8-15 

hhhhhhhh 
hhhhhhhh 

hhhhhhhh 
hhhhhhhh 

hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh 

hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh 

hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh 

REGS AT ENTRY TO ABEND or REGS AT ENTRY TO 
SNAP 

identifies the next 3 lines as the 
contents of the floating point and 
general registers when the abnormal 
termination routine received control 
in response to an ABEND macro 
instruction or when the SNAP routine 
received control in response to a SNAP 
macro instruction. 

NUCLEUS 

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

LINE hhhhhh SAME AS ABOVE 
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

LINES hhhhhh-hhhhhh SAME AS ABOVE 
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
PIP STORAGE 

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

LINES hhhhhh-hhhhhh SAME AS ABOVE 
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

END OF DUMP 

The content of main storage is given 
under 2 headings: NUCLEUS and P/P STORAGE. 
Under these headings, the lines have the 
following format: 

• First entry: the address of the 
initial byte of main storage contents 
presented on the line. 

• Next 8 entries: 8 full words (32 
bytes) of main storage in hexadecimal. 

• Last entry (surrounded by asterisks): 
the same 8 full words of main storage 
in EBCDIC. Only A elrough Z, 0 through 
9, and blanks are printed; a period is 
printed for anything else. An 
exception occurs in the printed lines 
representing the ABDUMP work area. The 
contents of the ABDUMP work area during 
the printing of EBCDIC characters 

FLTR 0-6 
is the contents of floating point 
registers 0, 2, 4, and 6. 

REGS 0-7 
is the contents of general registers 0 
through 7. 

REGS 8-15 

hhhhhhhh 
hhhhhhhh 

hhhhhhhh 

hhhhhhhh 

hhhhhhhh 
hhhhhhhh 
hhhhhhhh 

hhhhhhhh 

is the contents of general registers 8 
through 15. 

hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc* 
hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc* 

hhhhhhhh hhhhhhhh *CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC* 

hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc* 

hhhhhhhh hhhhhhhh *CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC* 
hhhhhhhh hhhhhhhh *CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC* 
hhhhhhhh hhhhhhhh ·cccccccccccccccccccccccccccccccc· 

hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc* 

differs from the contents during 
printing of the hexadecimal characters 
because a portion of the work area is 
used to write lines to the printer. 
This exception should not create any 
problems since the contents of the 
ABDUMP work area is of little use in 
debugging. 

The following lines may also appear: 

LINES hhhhhhhh-hhhhhhhh SAME AS ABOVE 
are the starting addresses of the 
first and last line of a group of 
lines that are identical to the line 
immediately preceding. 

LI NE hhhhhh SAME AS ABOVE 
is the starting address of a line that 
is identical to the line immediately 
preceding. 

ABEND/SNAP Dump (MFT) 43 



NUCLEUS 
identifies the next lines as the 
contents of the control program 
nucleus. 

P/P STORAGE 
identifies the next lines as the 
contents of the main storage area 
assigned to the task (problem 
program). 

END OF DUMP 
indicates that the dump or snapshot is 
completed. 

Guide to Using an ABEND/SNAP Dump (MFT) 

Cause of Abnormal Termination: Evaluate 
the user (USER Decimal code) or system 
(SYSTEM=hex code) completion code using 
Appendix C or the publication Messages and 
Codes. 

Active RB Queue: The first RB shown on the 
dump represents the oldest RB on the queue. 
The RB representing the load module that 
had control when the dump was taken is 
third from the bottom. The last RB 
represents the ABDUMP routine, and the 
second from last, the ABEND routine. The 
names of load modules represented in the 
active RB queue are given in the RB field 
labeled NM in the dump. Names of load 
modules in SVC routines are presented in 
the format: 

r-------------·--------------------------, 
I NM SVC-mnnn I L ________________________________________ -J 

where m is the load module number <minus 1) 
in the routine and nnn is the signed 
decimal SVC number. The last two RBs on an 
ABEND/SNAP dump will always be SVRBs with 
edited names SVC-105A (ABDUMP--SVC 51) and 
SVC-401C (ABEND--SVC 13). 

Resume PSW: The resume PSW field is the 
fourt;h entry in the first Ii ne of each RB 
printout. It is identified by the 
subheading PSW. For debugging purposes, 
the resume PSW of the third RB from the 
bottom, on the dump, is most useful. The 
last three characters of the first word 
give the SVC number or the I/O device 
address, depending on which type of 
interruption caused the associated routine 
to lose control. It also provides the CPU 
state at the time of the interruption (bit 
15), the length of the last instruction 
executed in the program (bits 32,33), and 
the address of the next instruction to be 
executed (bytes 5-8). 

Load List and Job Pack Area Queue: The 
load module that had control at the time of 
abnormal termination may not contain the 
instruction address pointed to by the 
resume PSW. In that case, look at the RBs 
on the load list aIn on the job pack area 
queue (MFT with subtasking). Compare the 
instruction address with the entry points 
of each load module (shown in the last 3 
bytes of the field labeled USFJEP). The 
module which contains the instruction 
pointed to by the resume PSW is the one in 
which abnormal termination occurred. The 
name of the load module is indicated in the 
field labeled NM. 

Trace Table: Entries in the trace table 
reflect SIO, I/O, and SVC interruptions and 
task switching.. SIO entries can be used to 
locate the ccw (through the CAW), which 
reflects the operation initiated by an SIO 
instruction. If the SIO operation was not 
successful, the CSW STATUS portion of the 
entry will show you why it failed. 

I/O entries reflect the I/O old PSW and 
the CSW that was stored when the 
interruption occurred. From the PSW, you 
can learn the address of the device on 
which the interruption occurred (bytes 2 
and 3), the CPU state at the time of 
interruption (bit 15), and the instruction 
address where the interruption occurred 
(bytes 5-8). The CSW provides you with the 
unit status (byte 4), the channel status 
(byte 5), and the address of the previous 

CCW plus 8 (bytes 0-3). 

SVC entries provide the SVC old PSW and 
the contents of registers 0 and 1. The PSW 
offers you the hexadecimal SVC number (bits 
20-31), the CPU mode (bit 15), and the 
address of the SVC instruction (bytes 5-8). 
The contents of registers 0 and 1 are 
useful in that many system macro 
instructions use these registers for 
parameter information. Contents of 
registers 0 and 1 for each SVC interruption 
are given in Appendix A. 

A task switch entry is similar to an SVC 
entry, except that words 3 and 4 of the 
entry contain the address of the TeBs for 
the "new" and "old" tasks being performed, 
respectively. The trace table entries for 
one particular task are contained between 
sets of two task switch entries. Word 3 of 
the beginning task switch entry and word 4 
of the ending task switch entry point to 
the Tca for that task. Ta,sk switch entries 
are identified by a fifth digit of 'F'. 

Notes: If an ABEND macro instruction is 
issued by the system when a program check 
interruption causes abnormal termination, 
an SVC entry does not appear in the trace 
table, but is reflected in the PSW at entry 
to ABEND. 

44 Programmer's Guide to Debugging (Release 21) 



Dumps issued by systems with MFT contain 
only the last four characters of the module 
name in the RB APSW field. You cannot 
distinguish between IFGOxxxx and IGGOxxxx. 
After an SVC 19 has been issued, the OPEN 
where-to-go table should be checked for the 
module name. 

Free Areas: ABEND/SNAP dumps do not print 
out areas of main storage that are 
available for allocation. Since the ABEND 
routine uses some available main storage, 
the only way you can determine the amount 
of free storage available when abnormal 
termination occurred is to re-create the 
situation and take a stand-alone dump. 

ABEND/SNAP Dump (MFT) 45 



ABEND /SNAP Dump (MVT) 

MVT dumps differ from PCP and MFT dumps in 
the addition of detailed main storage 
control information, the omission of a 
complete main storage dump, and the 
omission of a trace table in ABEND dumps. 
MVT dumps occur immediately after ~l 
abnormal termination, provided an ABEND or 
SNAP macro instruction was issued and 
proper dump data sets were defined. 
However, if a system failure has occurred 
and a SYS1.DUMP data set has been defined 
and is available, a full storage image dump 
is provided, as explained in the section 
headed "Storage Image Dump." 

With MVT's subtask creating capability, 
you may receive one or more partial dumps 
in addition to a complete dump of the task 
that caused abnormal termination. A 
complete dump includes all control 
information associated with the terminating 
task and a printout of the load modules and 
subpools used by the task. A partial dump 
of a task related to the terminating task 
includes only control information. A 
partial dump is identified by either ID=OOl 
or ID=002 printed in the first line of the 
d~;. Figure 18 shows the key areas of a 
complete dump. 

In systems with MVT, you can effect 
termination of a job step task upon 
abnormal termination of a lower level task. 
To do this, you must either terminate each 
task upon finding an abnormal termination 
completion code issued by its subtask or 
pass the completion code on to the next 
higher level task. 

For a discussion of a formatted ABEND 
dump using the telecommunications access 
method (TCAM) in an MVT environment, see 
IBM System/360 Operating System: TCAM 
Program Logic Manual, GY30-2029. 
References to other TCAM debugging aids are 
found in Appendix J. 

Invoking an ABEND/SNAP Dump (MVT) 

ABEND/SNAP dumps issued by systems with MVT 
are invoked in the same manner as those 
under systems with PCP and MFT. They 
result from an ABEND or SNAP macro 
instruction in a system or user program, 
accompanied by a properly defined data set. 
In the case of a system failure, the damage 
assessment routine (DAR) attempts to write 
a storage image dump to the SYS1.DUMP data 
set. A full expla nation of storage image 
dl~ps may be found in the section headed 
"Storage Image Dump." The instructions 
that invoke an ABEND/SNAP dump in MVT 

environment are the same as those given in 
the preceding topic for systems with MFT. 
However, some additional considerations 
must be made in requesting main 'storage and 
direct access space. 

MVT Considerations: In specifying a region 
size for a job step subject to abnormal 
termination, you must consider the space 
requirements for opening a SYSABEND or 
SYSUDUMP data set (if there is one), and 
loading the ABDUMP routine and required 
data management routines. This space 
requirement can run as high as 6000 bytes. 

Direct access devices are used 
frequently for inteFmediate storage of dump 
data sets' in systems with MVT. To use 
direct access space efficiently, the space 
for the dump data set should be varied, 
depending on whether or not abnormal 
termination is likely. A small quantity 
should be requested if normal termination 
is expected. To prevent termination of the 
dump due to a lack of direct access space, 
always specify an incremental (secondary) 
quantity when coding a SPACE parameter for 
a dump data set. You can obtain a 
reasonable estimate of the direct access 
space required for an ABEND/SNAP dump by 
adding, (1) the number of bytes in the 
nucleus, (2) the part of the system queue 
space required by the task (9150 bytes is a 
sufficient estimate), and (3) the amount of 
region space occupied by the task. 
Multiply the sum by 4, and request this 
amount of space in 1024-byte blocks. 

This formula gives the space 
requirements for one task. Request 
additional space if partial durrops of 
subtasks and invoking tasks will be 
included. 

Contents of an ABEND/SNAP Dump (MVT) 

This explanation of the contents of 
ABEND/SNAP dumps issued by systems with MVT 
ts interspersed with samr-Ie sections from 
an ABEND dump. Capital letters represent 
the headings found in all dumps, and 
lowercase letters, information that varies 
with each dump. The lowercase letter used 
indicates the mode of the information and 
the number of letters indicates its length: 

• h represents 1/2 byte of hexadecimal 
information 

• d represents 1 byte of decimal 
information 

• c represents a 1-byte character 

You may prefer to follcw the explanation on 
your own ABEND or SNAP dump. 

46 Programruer's Guide to Debugging (Release 21) 



'iTFP fllHFP Tr"F 00'40<) flATF 'l"'''6 PAGE 0001 

C""PlFTrON conE C;Y~TF" • fB7 

U FIITRY Tn A8FNn 1'1'040000 5000(4011 

0~F!'I18 IIAP 000?fC78 PIF 00000000 [lEA 0001En14 Tin 0001021'0 CM' IIOAHOOO TIl .. 00000000 
'4~S 010111311 PI(-FtC FOII'l040'l HG 00000000 llS 000109110 Jl8 00000000 JPO 000101£8 
1'511 0lO60'1M TCB OOOOOMO TME 00000000 JST 00021'018 NTC 00000000 OTC 00010'508 
ur: nol)OOOOO 101' 00000000 Ftll 000J0484 5TA 00000000 D-POF 000,2668 505 0001fAlO 
NSTAF 00000000 T!':T OOtll02f111 lI'if' 00000000 OAA 00000000 RfW 00000000 JSC8 0001l46C 

01001'8 "FSV oonnoooo IIPSW 001'100000 we-Sl-HAII 000400112 Fl-COE ono'n1'lO PSW FFF50006 700H'SlE 
I)/fTR ooooonoo WT-l NK 0007F0111 

01091'8 RE<;V oooonooo IIPSW 00000000 Wt:-Sl-STAII 00n400n2 Fl-tOE 000101''10 psw 1'1'1'50017 5207EC4A 
Il/"R nOllnOooo WT-tNK OOOlOflFII 

021'01'0 HP.-tN 00'lll0400 APSW F5"o;FOF1 wC-'il-C;UA Mt20002 TON OOOOoono P5W FF040000 5000C408 
QfT'" 1'0001(01' WT-lNK OOO",Oql\1I 
Rr. 0-7 ooonOF09 000196F4 00000001 nOOOOO06 00000011 00018COO 000161'118 0001CCH 
R~ 8-15 00019100 0001961'4 00061l6:0 OOOlA 1 'HI OOOlACI'I 000195CO 5207F434 0007ECI0 
I' lIT'i A E1EIIE1F5 I' ,nt.r. 340 0006001'0 0002FFF4 0007FfC4 0006DFI\1I 00000817 0001016C 

1100",,"48 OOOnoOOl OOOltOFEO C 1C4'5004 

'iVRII 021'170 TAR-lit 0011 1I01C II AP'iW F?FOFlel WC-Sl-STl8 00110001 TIlN 00000000 psw 00040031 '5000COCf 
QITTR 001'10"10" WT-l "IK 0001FOl'0 
~r. 0-7 80000000 80837000 000J9"F4 4000CI1I2 0006001'0 0002ff04 0002EFC4 0006Df811 
R:; A-I'I 00noOB17 0OO10J6C AOO01648 00000001 00060FFO 000026411 000001168 00000001 
FXT~A 00001QIIF 000llnOll8 7000FFFF OOO"OflfO ff InnOoo 0007f IFC 0002flF4 1'2E8f2CQ 

Co;C IFOF I r:qr '5C 11 8 CIC2C505 C4071n86 

SVR8 07f08 TAII-l N Ol'lf 1I0~rll AP'iw F IFOF'5C1 wt:-H-'iUII 001?0007 TON 00000000 PSW 1'1'040001 4001F8'4 
OfT Til 0(1)06701 WT-tNK 0002FI70 
RG 0-7 00000000 00021'100 IIOOOROCA 000001168 0002F011! 0002F170 000112QO 00000000 
"'- II-I'I 00071'0;>11 4000flOU 0001F0711 000600811 000'0110 000?rlf4 40000'194 00000000 
FXl'iA 00620'00 00090040 OOOIlOOOA 111007648 00000040 00090041 00028460 00000018 

0012C:>02 00000000 00000000 00000000 

UC;T 

ifF OOO'OAFI! 
ifF 000111180 
"IE 000311CO 

IISP-CIlE 0701011'11 
IISP-COF 01012260' 
Rsp-ellE 010121CO 

"IE 000100FO 
NE 000110C8 
HE 00000000 

IISP-COF 01012190 
liSP-COl' 01011390 
RSP-COE 01010111'0 

NE 000]1078 RSP-COE OlO'2Z" 
NE 00011170 IISP-CDI' 010U200 

031 ?QO IITRI 08 "ICOE 000000 ROC-liB 000100F8 II'" CO USE 01 EPA 035508 ATRi! 20 Xl/"'J O]UM 
0301'80 URI 011 toIC!)E 0'1290 :~~-::i-gK~~g~~g "I'" fHUOO USE 01 EPA 036240 ATR2 20 Xl/"'J Olf1 .. 
0101 F8 AT II 1 31 NCOF 010111'0 .,'" tGCOAO'5A USE 01 EPA OflC980 ATR2 28 Xl/"'J OlOlBO 
OH1CJO ATRI 1111 "ICOE O]?lCO ROC-P8 O')OJOOOO NM IGGOI'lCO USE 06 fPA 07EAOO ATR2 20 Xl/"'J OlZl80 
012290 ATPI 1\" "CDI' 0372CO ROC-III'1 00000000 "I'" rGGOICJIIA USE 05 ePA OTE4AO ATR2 20 Xl/"'J OlZZ80 
012260 ATRI R8 "IC()E 032290 1I0C-R8 00000000 NM IGGOl988 use 05 EPA 07E1III0 AT II 2 20 Xl/"'J 0]2250 
0]1190 ATRI R8 NCOI' Ol?JCO 1I0C-1I8 00000000 "'''' IGGOICJCO USE 06 EPA 07fAOO HII2 20 Xl/"'J 032380 
012200 AT II I 118 NtrlF 012210 1I0C-IIR onoooooo "1M IMOI'9AJ USf 01 fPA 07F1AO HR2 20 Xl/"'J 0]21FO 
0123CO ATRI R8 NCOI' 01131'0 IInC-A8 00000000 "I'" ICGOl9AR USF 04 EPA 07FCI0 ATR2 20 xl/"'J OJZlBO 
01MFO A TIl 1 1q "IrOE 030FII0 110C-1I8 00000000 "I" leWSIOVR LJ'iE 01 EPA 06C480 AT II 2 20 Xl''''J 0108U 

IN AOll IN A 011 IN AOR 

011280 Sl 00000010 NO 00000001 8000011'8 0001'1'508 
02flCJ8 'i7 0000004( NO 00000001 1100161'111 0001'1CJC8 000''11)(.8 000'0"00 010A0400 01000500 

0111:0300 01lnOl00 0llE0200 01290400 0121'0500 01300500 
01120]00 OtlAOIOO 01460600 01480400 01400~00 

010l1li0 <;z 00000010 NO 00000001 1100001.110 0006('l80 
01?]110 'il 00000010 NO 00000001 1t00001l0 0007HOO 
0""780 S1 00000010 NO 00000001 80000180 0007F440 
012150 'i1 00000010 NO 00000001 1I00000'S1I 0007FR80 
012HO S7 00000010 "11'1 00000001 80000210 0(1)7FAOO 
01211'0 Sl 00000010 'f0 00000001 80000100 0007£3AO 
0123110 5l 00000010 NO 00000001 ROOOOMO 0007ECI0 
030111111 51 00000010 NO OOOOMOI .110000150 0006C480 

00000050 OOOOOMO OOOOOO~O 00000050 •................................• 
00000050 00000000 000:)020A 0000181'0 01'00:>000 000~F0111 0402fE04 "8000000 ••••••••••••••••••••••• 0 •••• M ••••• 
8FOOOOOO 01000000 00000000 FF060088 04011'010 18002648 00000031 00010012 * ...•.......•..••..•.....•••••.••• 
000100011 00010001 C2C2C2Cl elC40000 0000:>000 00000000 00000000 C3C40000 • •••••••• BBBICD •••••••••••••• CO ••• 

Figure 18. Sample of Complete ABEND Dump (MVT) (Part 1 of 2) 

ABEND/SNAP Dump (MVT) 47 



0000:>050 rl')000n'50 00000050 0000000;0 
OOOOOP'IO 00000000 0000070F OOOllAfO 7400:>0:>0 1;"0"'"071' (41)00001) 8"000noo 
N'OOMOO 10000000 OonOOOOO rFOlq6F4 0402FfAo 180071>411 000000'3') 000'1003" 
0(0800)2 lfHl02M8 OOOOOO'E 000q003f 0008000. 180021>48 0000003F 00090040 
0008000A 111002648 00000040 00090041 0008300. flJOrl7648 000000 ... 00090042 
OOO",O(lOA 111007646 nl')000047 00090043 OOOIl'OOA 18002648 00000041 000Q0044 
0008000A 16002648 00000044 0009004~ 0008:>001l 111007648 000000lt5 000900 .. 6 
OOOIlOOOA 18002648 000000lt6 00090041 OOOMOOA 1800'M8 00000047 00090048 
OOOltDnOA 18007648 onOOOO48 OOQQ004Q oo08000A , 800'''48 00000049 000Q004A 
OOO!lno04 18002648 0OOoo04A 000CJ0048 0001l300A 18002648 00000048 OOMOO4C 
000'10004 1800'6411 00000041: OOMOOItO 0008:>00" 00010001 C 10IJC101 C3C4F6CO 

JOB t PCTltt STFD EX'iHP 
Dn 14040111\ PG,,··.on OOBOfOO 1I000764ft 
on 14040100 SYSA8ENO 00240900 1100026411 
00 140100180 FT06FOOI 007 .. 0COO 110002648 
00 14040100 FTNLIN 007'10100 eOO01Qll4 
no 14000000 SYSPUNCH 002501400 00000000 
00 [40ifoUo SV$PRINT 00240FOO 110002648 
00 14040101 SYSfN 00250AOO 140007648 

•••••••••••• SP:)F •••••••••••• ••••••••••••••• OOf ••••••••••••••• 
flce; N<;POF sPIn OOf 811( FOE LN "'DOE 

1'31718 00 011740 ?'il 011 ?50 000''1000 00 03 'iOOO 00000800 0OO310fO 
0001'S800 000'1'5800 00017000 00000000 

03174n 00 OltltA8 Z'P 0314CO 000601100 00060800 00000800 00030818 
0006COOO 0006COOO 000001100 00010'08 
0006CII00 MOhrftO/) nOOOOflOO OOOlF1flll 
0()O68800 000611800 00000800 00000000 

031488 CO 000000 000 onltoo 
011400 60 OOOMO 000 0114118 OOOr.JlOOO 000607ltS 00000800 00000000 

O-POE 00017668 FIIIST 000114"0 U<;T 00011460 
031460 fF8 0004CROO tFR 0004(800 NPQ 00000000 PPO 00000000 

TCa 00030508 IISI 00039000 1I10 0003'5000 FLO 0000 

04(800 tffl\ 000'1460 PfR 00031460 SZ 0001FOOO 

TRAU 

011 tC8 """4J 00030100 PM4J 0001C640 F14tN 00031088 NM SYSOSN 

(l110lt8 FOfL 000316CJ8 P"'ItN 000311C8 "''''IN 00000000 N'" Ff SYSt.Mln 18 

"ClEL 00000000 pon FlO011088 TC:FI 00030508 SVIIR 00010100 

N"'"J 00000000 PMAJ 000311C8 FMtN 00030liO /tiM SVSlEAOI 

fQH 00030lCJO PMIN 00030100 "'MIN 00000000 NM FO lEA 

N,)fl 00000000 PQH 00030'"0 TCR 0001f018 SVIIR 0002fRfll 

AIIH TlUCF. 

060168 IfOt 00000000 HSA 00000000 LSA 00000300 A:ET 00000000 EPA 00000000 ., 00000000 112 00000000 113 00000000 114 00000000 It'i 00000000 
In 00000000 118 00000000 119 00000000 1110 00000000 IIIl 00000000 

INfFlIlI\JpT AT Ont41 

PIIOCffO'NC 8"C:1( VIA PFr. 11 

03<)o;CO Wi'll 9'51090;FF H<;A 70004180 LSA 9'57!l9180 1I~1 80064110 EPA 95SC tRll 
III Q207flAO II? 00060510 113 000,\Q6F. 114 000196F4 II') 000"0570 
In' 0(\060688 1111 000M)78C IIC1 00000F09 1110 0001HIO RIl 520 1 fit .... 

0041110 Will 41<)00000 H,\A HOoaooo t"4 00000000 lifT 00000000 EPA ~1l00000 
III 00000000 II? 00000000 '1'\ 41"00000 R4 HOOOOOO 11'5 00000000 
111 41COOOOO q8 HOOOOOO R9 00000000 1110 00000000 1111 HOOOOOO 

••• P ................................... 
.............................. • 0 ............. 
......................... 4 ......................... . ........................................................... • e .................... ........................... * ..................................................... 
............................................................ -....................................................... ... ., .............................• 
* ••••...•••••••••..••••••••••••••• 
...... ..................... AR1JC06 •• 

••••••• FOf •••••••• 
NfOE LN 

00000000 000005011 
00000000 000001C8 
00000000 00000588 
00000000 00000480 
00000000 00000180 
00000000 OOOOOIAO 

00060000 00000020 
00000000 00000'518 

110 00000000 
116 00000000 
1112 00000000 

110 520 ... 9361' 
116 lF060~CC 
tt12 0001fC10 

110 fFOOOOOO 
116 00000000 
IIt2 FFOOOOOO 

•..... ...........................• 
••••• ••• • 5 ••••• 2 ••••••••••••••••• 
* ... H •••••••••••••• v ••••••••••• 6.-

Figure 18. Sample of Complete ABEND Dump (MVT) (Part 2 of 2) 

48 Programmer's Guide to Debugging (Release 21) 



Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

JOB cccccccc STEP ccccccec TIME dddddd DATE ddddd 10 • ddd PAGE dddc! 

COMPLETION CODE SYSTEM • hhh (or USER • dddd) 

PSW AT ENTRY TO ABEND (SNAP) hhhhhhhh hhhhhhhh 

JOB cccccccc 
is the job name specified in the JOB 
statement. 

STEP cccccccc 
is the step name specified in the EXEC 
statement for the problem program 
associated with the task being dumped. 

TIME dddddd 
is the hour (first 2 digits), minute 
(next 2 digits), and second (last 2 
digits) when the abnormal termination 
dump routine began processing. 

DATE ddddd 
is the year (first 2 digits) and day 
of the year (last 3 digits). For 
example, 67352 would be December 18, 
1967. 

ID=ddd 
is an identification of the dump. For 
dumps requested by an ABEND macro 
instruction, this identification is: 

• Absent if the dump is of the task 
being abnormally terminated. 

• 001 if the dump is of a subtask of 
the task being abnormally 
terminated. (Note that, when a task 
is abnormally terminated, its 
subtasks are also abnormally 
terminated. ) 

• 002 if the dump is of a task that 
directly or indirectly created the 

~ask being abnormally terminated, up 
to and including the job step task •. 

PAGE dddd 
is the page number. Appears at the 
top of each page. Page numbers begin 
at 0001 for each task or subtask 
dumped. 

COMPLETION CODE SYSTEM=hhh or COMPLETION 
CODE USER=dddd 

is the completion code supplied by the 
control program (SYSTEM=hhh) or the 
problem program (USER=dddd). 
For a system completion code of OCO, 
denoting an imprecise interruption on 
a Model 91 or Model 195, bits 20 
through 29 of the CMP field of the TCB 
are significant for a Model 91, while 
all the bits (20 through 31) are used 
by a Model 195. For further 
discussion on interpreting the 
imprecise interruption configuration 
refer to the publication IBM 
Systeml360 Operating ---
system: Supervisor services, Order 
No. GC28-6646. 

PSW AT ENTRY ro ABEND hhhhhhhh hhhhhhhh or 
PSW AT ENTRY TO SNAP hhhhhhhh hhhhhhhh 

is the PSW for the problem program or 
control program routine that had 
control when abnormal termination was 
requested, or when the SNAP macro 
instruction was executed. It is not 
necessarily the PSW at the time the 
error condition occurred. 

ABEND/SNAP Dump (MVT) 49 



Page of GC28-667o-5,6, Revised April 16, 1973, By TNL: GN28-2545 

TCD hhhhhh RIIP hhhhhhhh PIE hhhhhhhh DEB hhhhhhhh TID hhhhhhhh CMP hhhhhhhh TRN hhhhhhhh 
H56 hhhhhhhh PK-FL.r. hhhhhhhh P'Lr. hhhhhhhh LL~ hhhhhhhh "I,D hhhhhhhh .71'Q hhhhhhhh 
RG 0-7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
RG 8-15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
.. SA hhhhhhhh TCB hhhhhhhh THE hhhhhhhh 
LTC hhhhhhhh IQE hhhhhhhh ECB hhhhhhhh 
NSTAE hhhhhhhh TCT hhhhhhhh USER hhhhhhhh 

TCB hhhhhh 
is the starting address of the TCB. 

RBP hhhhhhhh 
is the TCBRBP field (bytes 0 through 
3): starting address of the active RB 
queue and, consequently, the most 
recent RB on the queue. 

PIE hhhhhhhh 
is the TCBPIE field (bytes 4 through 
7): starting address of the program 
interruption element (PIE) for the 
task: however, in an abnormal 
termination dump for the task causing 
the abnormal termination, zeros. The 
field is zeroed by the ABEND routine 
to prevent interruptions during 
dumping. 

DEB hhhhhhhh 
is the TCBDEB field (bytes 8 through 
11): starting address of the DEB 
queue. Under the heading DEB in the 
dump, the prefix section for the first 
DEB in the queue is presented in the 
first 8-digit entry on the first line. 
The 6-digit entry at the left of each 
line under DEB is the address of the 
second column on the I ine, whether or 
not the column is filled. The 
contents of the TCBDEB field may 
differ in the main storage printout 
from what appears in the TCBDEB field 
of the formatted section. This occurs 
when the number of extents specified 
in the DEB for the dump dat a set is 
not sufficient to complete ABDUMP 
processing. When the dump of main 
storage is given, the END OF VOLUME 
routine may have built another DEB 
having additional extents for the dump 
data set and dequeued the original 
DEB. Therefore, the TCBDEB field in 
the main storage printout may contain 
the address of the new DEB built by 
END OF VOLUME. 

TID hhhhhhhh 
is the TCBTIO field (bytes 12 through 
15): starting address of the TIOT. 

.IST hhhhhhhh NTC hhhhhhhh OTC hhhhhhhh 
STA hhhhhhhh D-PQE hhhhhhhh sQs hhhhhhhh 
DAR hhhhhhhh RESV hhhhhhhh JSCB hhhhhhhh 

a.1P hhhhhhhh 
is the TCBCMP field (bytes 16 through 
19): task completion code or contents 
of register 1 when the dump was 
requested. System codes are given in 
the third through fifth digits and 
user codes in the sixth through eight 
digits. 

For a system completion code of OCO, 
denoting an imprecise interruption on 
a Model 91 or Model 195, digits six 
through eight contain the imprecise 
interruption configuration. These bit 
settings represent bits 16 to 27 of 
the program old PSW (location X'28') 
at the time of the program exception. 
Therefore, in the TCB CMP field, bits 
20 to 29 are significant for a Model 
91 while a Model 195 makes use of all 
the bits (20 to 31). For further 
discussion on interpreting the 
imprecise interruption configuration 
refer to the publication IBM 
Systeml360 Operating System: 
supervisor Services, Order 
No. GC28-6646. 

TRN hhhhhhhh 
is the TCBTRN field (bytes 20 through 
23): starting address of the control 
core (table) for controlling testing 
of the task by TESTRAN. 

MSS hhhhhhhh 
is the TCBMSS field (bytes 24 through 
27): starting address of SPQE most 
recently added to the SPQE queue. 

PK-FLG hhhhhhhh 
contains, in the first 2 digits, the 
TCBPKF field (byte 28): protection 
key. 

contains, in the last 6 digits, the 
first 3 bytes of the TCBFLGS field 
(bytes 29 through 31): first 3 flag 
bytes. 

FLG hhhhhhhh 
contai ns, in the first 4 digits, the 
last 2 bytes of the TCBFLGS (bytes 32 
am 33): last 2 flag bytes. 

50 Programmer's Guide to Debugging (Release 21.7) 



contains, in the next 2 digits, the 

TCBLMP field (byte 34): limit 
priority (converted to an internal 
priority, 0 to 255). 

contains, in the last 2 digits, the 
TCBDSP field (byte 35): dispatching 
priority (converted to an internal 
priority, 0 to 255). 

LIS hhhhhhhh 
is the TCBLLS field (bytes 36 through 
39): starting address of the load 
list element most recently added to 
the load list. 

JLB hhhhhhhh 
is the TeBJLB field (bytes 40 through 
43): starting address of the DCB for 
the JOBLIB data set. 

JPQ hhhhhhhh 
is the TCBJPQ field (bytes 41 through 
47): when translated into binary 
bits: 
• Bit 0 is the purge flag. 
• Bits 1 through 7 are reserved for 

future use and are zeros. 
• Bits 8 through 31 are the starting 

address of the queue of COBs for the 
job pack area control queue, which 
is for programs acquired by the job 
step. 

The TCBJPQ field is used only in the 
first TCB in the job step; it is zeros 
for all other TCBs. 

RG 0-7 and RG 8-15 
is the TCBGRS field (bytes 48 through 
111): contents of general registers 0 
through 7 and 8 through 15, as stored 
in the save area of the TCB when a 
task switch occurred. These 2 lines 
appear only in dumps of tasks other 
than the task in control when the dump 
was requested. 

FSA hhhhhhhh 
contains, in the first 2 digits, the 
TCBQEL field (byte 112): count of 
enqueue elements. 

contains, in the last 6 digits, the 
TCBFSA field (bytes 113 through 115): 
starting address of the first problem 
program save area. This save area was 
set up by the control program when the 
job step was initiated. 

TeB hhhhhhhh 
is the TCBTCB field (bytes 116 through 
119): starting address of the next 
lower priority TCB on the TCB queue 
or, if this is the lowest priority 
TCB, zeros. 

ABEND/SNAP Dump (MVT) 50.1 



Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

I 50.2 Pr~9rammer's Guide to Debugging (Release 21.7) 



Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

TME hhhhhhhh 
is the TCBTME field (bytes 120 through 
123): starting address of the timer 
element created when an STlMER macro 
instruction is issued by the tas}t. 

JST hhhhhhhh 
is the TCBJSTCB field (bytes 124 
through 127): starting address of the 
TCB for the job step task. For tasks 
with a protection key of zero, this 
field contains the starting address of 
the TCB. 

NTC hhhhhhhh 
is the TCBNTC field (bytes 128 through 
131): the starting address of the TCB 
for the previous subtask on this 
subtask queue. This field is zero in 
the job step task, and in the TCB for 
the first subtask created by a parent 
task. 

OTC hhhhhhhh 
is the TCBOTC field (bytes 132 through 
135): starting addres~ of TCB for the 
parent task. In the TCB for the job 
step task, this field contains the 
address of the initiator. 

LTC hhhhhhhh 
is the TCBLTC field (bytes 136 through 
139): starting address of the TCB for 
the most recent subtask created by 
this task. This field is zero in the 
TCB for the last subtask of a job 
step, or in a TCB for a task that does 
not create subtasks. 

IQE hhhhhhhh 
is the TCBIQE field (bytes 140 through 
143): starting address of the 
interruption queue element (IQE) for 
the ETXR exit routine. This routine 
is specified by the ETXR operand of 
the ATTACH macro instruction that 
created the TCB being dumped. The 
routine is to be entered when the task 
terminates. 

ECB hhhhhhhh 
is the TCBECB field (bytes 144 through 
147): starting address of the ECB to 
be posted by the control program at 
task termination. This field is zero 
if the task was attached without an 
ECB operand. 

TSF hhhhhhhh 
is the TCBSFLG field (bytes 94 through 
97). The first two digits, byte 94, 
contain internal TSO flags, the next 
two digits, byte 95, contain the stop 
count, and the last two bytes, 96 and 
97, contain the limit and dispatching 
priority of the TSO task. 

D-PQE hhhhhhhh 
is the TCBPQE field (bytes 152 through 
155): starting address minus 8 bytes 
of the dummy PQE. Th{s field is 
passed by the ATTACH macro instruction 
to each TCB in a job step. 

SQS hhhhhhhh 
is the TCBAQE field (bytes 156 through 
159): starting address of the 
allocation queue element (AQE). 

NSTAE hhhhhhhh 
contains, in the first 2 digits, STAE 
flags (byte 160). 

contains, in the last 6 digits, the 
TCBNSTAE field (bytes 161 through 
163): starting address of the current 
STAE control block for the task. This 
field is zero if STAE has not been 
issued. 

TCT hhhhhhhh 
is the TCBTCT field (bytes 164 through 
167): address of the Timing Control 
Tab Ie (TCT). 

USER hhhhhhhh 
is the TCBUSER field (bytes 168 
through 171): to be used as the user 
chooses. 

DAR hhhhhhhh 
contains, in the first two digits, 
Damage Assessment Routine (DAR) flags 
(byte 172). 

RESV hhhhhhhh 
reserved for future use. 

JSCB hhhhhhhh 
is the TCBJSCB field (bytes 180 
through 183): the last three bytes 
contain the address of the Job step 
Control Block. 

ABEND/SNAP Dump (MVT) 51 



ACTIVE RBS 

ecce hhhhhh eeecee hhhhhhhh APSW hhhhhhhh WC-SZ-STAB hhhhhhhh 
Q/TTR hhhhhhhh WT-LNK hhhhhhhh 
RG 0-7 hhhhhhhh hhhhhhhh hhhhhhhh 
RG 8-15 hhhhhhhh hhhhhhhh hhhhhhhh 
EXT SA hhhhhhhh hhhhhhhh hhhhhhhh 

hhhhhhhh hhhhhhhh hhhhhhhh 

hhhhhhhh 
hhhhhhhh 
hhhhhhhh 
hhhhhhhh 

ccccee hhhhhhhh PSW hhhhhhhh hhhhhhhh 

hhhhhhhh 
hhhhhhhh 
hhhhhhhh 

hhhhhhhh 
}jhhhhhhh 
hhhhhhhh 

hhhhhhhh 
hhhhhhhh 
hhhhhhhh 

hhhhhhhh 
hhhhhhhh 
hhhhhhhh 

ACTIVE RBS APSW hhhhhhhh 
identifies the next lines as the 
contents of the active RES queued to 
the TCB, beginning with the oldest RB 
first. 

cccc hhhhhh 
indicates the RB type (cccc) and 
starting address (hhhhhh). 

The RB types are: 

PRB program request block 
IRB interruption request block 
SVRB supervisor request block 

cccccc hhhhhhhh 
indicates the RBis function (cccccc) 
and bytes 0 through 3 of the RB 
(hhhhhhhh): 

• RESV hhhhhhhh indicates PRB or SVRB 
for resident routines. Bytes 0 
through 3 are reserved for later use 
and contain zeros. 

• TAB-LN hhhhhhhh indicates SVRB for 
transient routines. The first 4 
digits contain the RBTABNO field 
(bytes 0 and 1): displacement from 
the beginning of the transient area 
control table (TACT) to the entry 
for the module represented by the 
RB. The last 4 digits contain the 
RBRTLNTH field (bytes 2 and 3): 
length of the SVC routine. 

• FL-PSA hhhhhhhh indicates IRB. The 
first 2 digits contain the RBTMFLD 
field (byte 0): indicators for the 
timer routines. This byte contains 
zeros when the IRB does not 
represent a timer routine. The last 
6 digits contain the RBPSAV field 
(bytes 1 through 3): starting 
address of the problem program 
register save area (PSA). 

is the RBABOPSW field (bytes 4 through 
7) : 

• In PRB, right half of the problem 
program' s PSW when -the interruption 
occurred. 

• In IRB or SVRB for ty~e II SVC 
routines, right half of routine's 
PSW during execution of ABEND or 
ABTERM, or zeros. 

• In SVRB for type III or IV SVC 
routines, right half of routine's 
PSW during execution of ABEND or 
ABTERM, or the last four characters 
of the name of the requested 
routine. (The last two characters 
give the SVC number.) 

WC-SZ-STAB hhhhhhhh 
contains, in the first 2 digits, the 
RBWCSA field (byte 8): wait count in 
effect at time of abnormal termination 
of the program. 

contains, in the second 2 digits, the 
RBSIZE field (byte 9): size of the RB 
in doublewords. 

contains, in the last 4 digits, the 
RBSTAB field (bytes 10 and 11): 
status and attribute bits. 

cccccc hhhhhhhh 
indicates the RBis function (cccccc) 
and bytes 12 through 15 of the RB 
( hhhhhhhh) : 

• FL-CDE hhhhhhhh indicates SVRB for 
resident routines, or PRB. The 
first 2 digits contain the RBCDFLGS 
field (byte 12): control flags. 

52 programmer's Guide to Debugging (Release 21.7) 



The last 6 digits contain the RBCDE 
field (bytes 13 through 15): 
starting address of the CDE for the 
module associated with this RB. 

• EPA hhhhhhhh is the RBEP field of an 
IRB (bytes 12 through 15): 
entry-point address of 
asynchronously executed routine. 

• TQN hhhhhhhh indicates SVRB for 
transient routines. Is the RBSVTQN 
field (bytes 12 through 15): 
address of the next RB in the 
transient control queue. 

PSW hhhhhhhh hhhhhhhh 
is the RBOPSW field (bytes 16 through 
23): resume PSW. 

Q/TTR hhhhhhhh 
• In PRBs and SVRBs for resident 

routines, contains zeros in the 
first 2 digits. The last 6 digits 
contain the RBPGMQ field (bytes 25 
through 27): queue field for 
serially reusable programs (also 
called the secondary queue). 

• In IRBs, contains the RBUSE field in 
the first 2 digits (byte 24): count 
of requests for the same exit 
(ETXR). The RBIQE field in last 6 
digits (bytes 25 through 27): 
starting address of the queue of 
interruption queue elements (IQE), 
or zeros in the first 4 digits and 
the RBIQE field in the last 4 digits 
(bytes 26 and 27): starting address 
of the request queue elements. 

LOAD LIST 

• In SVRBs for transient routines the 
first 2 digits contain the RBTAWCSA 
field (byte 24): number of requests 
(used if transient routine is 
overlaid) and the last 6 digits, the 
RBSVTTR field (bytes 25 through 27): 
relative track address for the SVC 
routine. 

Wl'-LNK hhhhhhhh 
contains, in the first 2 digits, the 
RBWCF field (byte 28): wait count. 

contains, in the last 6 digits, the 
RBLINK field (bytes 29 through 31): 
starting address of the previous RB on 
the active RB queue (primary queuing 
field) or, if this is the first or 
only RB, the starting address of the 
TCB. 

RG 0-7 and RG 8-15 
is the RBGRSAVE field (bytes 32 
through 95): in SVRBs and IRBs, 
contents of registers 0 through 15. 

EXTSA 
• In IRBs, contains the RBNEXAV field 

in the first 8 digits (bytes 96 
through 99): address of next 
available interruption queue element 
(IQE), and in the remaining digits, 
the interruption queue element work 
space (up to 1948 bytes). 

• In SVRBs, contains the RBEXSAVE 
field (bytes 96 through 143): 
extended save area for SVC routine. 

NE hhhhhhhh RSP-CDE hhhhhhhh NE hhhhhhhh RSP-CDE hhhhhhhh NE hhhhhhhh RSP-CDE hhhhhhhh 

LOAD LIST 
identifies the next lines as the 
contents of the load list elements 
(LLEs) queued to the TCB by its TCBLLS 
field. The content.:.:.; of 3 load list 
elements are presented per line until 
all elements in the queue are shown. 

NE hhhhhhhh 
contains, in the first 2 digits, LLE 
byte 0: zeros. 

contains, in the last 6 digits, LLE 
bytes 1 through 3: starting address 
of the next element in the load list. 

RSP-CDE hhhhhhhh 
contains, in the first 2 digits, LLE 
byte 4: the count of the number ot 
requests made by LOAD macro 
instructions for the indicated load 
module. This count is decremented by 
DELETE macro instructions. 

contains, in the last 6 digits, LLE 
bytes 5 through 7: starting address 
of the CDE for the load module. 

ABEND/SNAP Dump (MVT) 53 



CDE 

hhhhhhhh ATRl hh NCDE hhhhhh ROC-RS hhhhhhhh NM cccccccc USE hh EPA hhhhhh ATR2 hh XL/MJ hhhhhh 

CDE 
identifies the next lines as the 
contents directory addressed by an LLE 
or RB.. One entry is presented per 
line. 

hhhhhhhh 
is the starting address of the entry 
given on the line. 

ATR1 hh 
is the attribute flags. 

NCDE hhhhhh 
is the starting address of the next 
entry in the contents directory. 

ROC-RB hhhhhhhh 

XL 

contains., in the first 2 digits, 
zeros. 

contains., in the last 6 digits, the 
starting address of the RB for the 
load module represented by this entry_ 

LN 

NM cccccccc 
is the name of the entry point to the 
load module represented by this entry. 

USE hh 
is th~ count of. the uses (through 
ATTACH, LINK, and XCTL macro 
instructions> of the load module, and 
of the number of LOAD macro 
instructions executed for the module. 

EPA hhhhhh 
is the entry point address associated 
with the name in the NM field. 

ATR2 hh 
is the attribute flags. 

XL/MJ hhhhhh 

ADR 

is the starting address of the extent 
list (XL) for a major CDE, or the 
starting address of the major CDE for 
a minor CDE. (Minor CDEs are for 
aliases. > 

LN ADR LN ADa 

hhhhhh SZ hhhhhhhh NO hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

XL 
indicates the next lines are entries 
in the extent list, which is queued to 
the major contents directory entry. 
Each extent list entry is given in one 
or more lines. Only the first line 
for an entry contains the left 3 
columns; additional lines for an entry 
contain information only in the right 
6 columns. 

hhhhhh 
is the starting address of the entry_ 

SZ hhhhhhhh 
is the total length, in bytes, of the 
entry. 

NO hhhhhhhh 
is the number of scattered control 
sections in the lead module described 
by this entry_ If this number is 1, 
the load module was loaded as one 
block. 

LN hhhhhhhh 
gives the length, in bytes, of the 
control sections in the load module 
described by this entry. Bit 0 is set 
to 1 in the last, or only, LN field to 
signal the end of the list of lengths. 

ADR hhhhhhhh 
gives the starting addresses of the 
control sections. Each ADR field is 
paired with the LN field to its left. 

54 Programmer's Guide to Debugging (Release 21) 



DEB 

hhhhhh 
hhhhhh hhhhhhhh hhhhhhhh 
hhhhhh hhhhhhhh hhhhhhhh 
hhhhhh hhhhhhhh hhhhhhhh 

TIOT JOB ceeeeccc STEP cccceecc 
00 hhhhhhhh cccccccc 

hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh 

I'ROC ecce ecce 
hhhhhhhh hhhhhhhh 

hhhhhhhh 
hhhhhhhh 
hhhhhhhh 

hhhhhhhh 
hhhhhhhh 
hhhhhhhh 

hhhhhhhh 
hhhhhhhh 
hhhhhhhh 

hhhhhhhh 
hhhhhhhh 
hhhhhhhh 

DEB JOB cccccccc 
is the name of the job whose task is 
being dumped. 

ideptifies the next lines as the 
contents of the DEBs and their prefix 
sections. The first 6 digits in each 
line give the address of the DEB 
contents shown on the line, beginning 
with the second column. The first six 
digits of the first line contains the 
prefix section for the first DEB on 
the queue. 

STEP cccccccc 
is the name of the step whose task is 
being dumped. 

PROC cccccccc 

TIOT 

Note: DEBs are not formatted if the 
dump is for an OLTEP task. If a dump 
of the DEB chain is desired, use a 
SYSABEND DD card so that the nucleus 
will be dumped. 

identifies the next lines as the 
contents of the TIOT • 

DD 

MSS ............. SPQE •••••••••••• _._ ....... -._--
P'LGS NSPQE SPIO OQE BLK P'QE 

hhhhhh hh hhhhhh ddd hhhhhh hhhhhh hhhhhh 

o-po£ hhhhhh FIRST hhhhhhhh LAST hhhhhhhh 

PQE hhhhhh FFB hhhhhhhh LFB hhhhhhhh NI'O hhhhhhhh 1'1'0 

TCB hhhhhhhh R!lt hhhhhhhh RAO hhhhhhhh P'Lr. 

FBQE hhhhhh NFB hhhhhhhh PFB hhhhhhhh SZ hhhhhhhh 

PQE hhhhhh FFB hhhhhhhh LFB hhhhhhhh NP() hhhhhhhh JlT'O 

TCB hhhhhhhh RSI hhhhhhhh RAO hhhhhhhh P'Lr. 

'BOE hhhhhh NFB hhhhhhhh Pf'B hhhhhhhh SZ hhhhhhhh 

is the name for the job step that 
called the cataloged procedure. This 
field appears if the job step whose 
task is being dumped was part of a 
cataloged procedure. 

identifies the line as the contents of 
the DD entry in the TIOT. 

DQE . ........... _ .. FQE .. __ .... 
LN NOQE NP'OE LN 

hhhhhh hhhhhh hhhhhhhh hhhhhhhh 

hhhhhhhh 
hhhhhhhh 

hhhhhhhh 
hhhhhhhh 

MSS hhhhhh 
identifies the next lines as the 
contents of the main storage 
supervisor queue. This queue includes 
subpool queue elements (SPQE), 
descriptor queue elements (DQE), and 
free queue elements (FQE). 

SPQE 

is the starting address of the first 
element shown on the line. 

identifies the 4 columns beneath it as 
the contents of SPQEs. 

ABEND/SNAP Dump (MVT) 55 



FLGS hh 
is the SPQE flag byte. 

NSPQE hhhhhh 
is the starting address of the next 
SPQE in the queue. 

SPID ddd 
is the subpool number. 

DOE hhhhhh 

J:QE 

for a subpool owned by the task being 
dumped: the starting address of the 
first DOE for the subpool .• 

for a subpool that is shared: the 
starting address of the SPQE for the 
task that owns the subpool. 

identifies the 4 columns beneath it as 
the contents of DQEs. 

BLl< hhhhhh 
is the starting address of the 
allocated 2K block of main storage or 
set of 2K blocks. 

FQE hhhhhh 
is the starting address of the first 
FQE within the allocated blocks. 

LN hhhhhh 
is the length, in bytes, of the 
allocated blocks. 

NDQE hhhhhh 

FQE 

is the starting address of the next 
DQE. 

identifies the 2 columns beneath it as 
the contents of FQES. 

NFQE hhhhhhhh 
is the starting address of the next 
FQE. 

LN hhhhhhhh 
indicates the number of bytes in the 
free area. 

D-PQE hhhhhh 
is the TCBPQE field (bytes 152 through 
155): starting address minus 8 bytes 
of the dummy PQE shown on the line. 

FIRST hhhhhhhh 
is the starting address of the first 
PQE. 

LAST hhhhhhhh 
is the starting address of the last 
PQE. 

PQE hhhhhh 
is the starting address of the PQE 
shown on the line. 

FFB hhhhhhhh 
is bytes 0 through 3 of the PQE: 
starting address of the first FBQE. 
If no FBQEs exist, this field is the 
starting address of this PQE 

LFB hhhhhhhh 
is bytes 4 through 7 of the PQE: 
starting address of the last FBQE. If 
no FBQEs exist, this field is the 
starting address of this PQE. 

NPQ hhhhhhhh 
is bytes 8 through 11 of the element: 
starting address of the next PQE or, 
if this is the last PQE, zeros. 

PPQ hhhhhhhh 
is bytes 12 through 15 of the element: 
starting address of the preceding PQE 
or, if this is the first PQE, zeros. 

TCB hhhhhhhh 
is bytes 16 through 19 of the element: 
starting address of the TCB for the 
job step to which the space belongs 
or, if the space was obtained from 
unassigned free space, zeros. 

RSI hhhhhhhh 
is bytes 20 through 23 of the element: 
size of the region described by this 
PQE (a multiple of 2048). 

RAD hhhhhhhh 
is bytes 24 through 27 of the element: 
starting address of the region 
described by this PQE. 

FLG hhhhhhhh 
is byte 28 of the element: 

bit 0 when 0, indicates space 
described by this PQE is owned; 

when 1, indicates space is 
borrowed. 

bit 1 when 1, indicates region has 
been rolled out (meaningful only 
when bit 0 is 0). 

bit 2 when 1, indicates region has 
been borrowed. 

bit 3-7, reserved for future use. 

Note: PQE information is contained in two 
lines on the dump. When the rollout/rollin 
feature or Main Storage Hierarchy support 
is included in the system, PQE jnformation 
(with associated FBQEs) appears once in the 
dump for each region segment of the job 
step. (Each PQE on the partition queue 
defines a region segment. A job step's 
region contains more than one segment only 
when the step has rolled out another step 
or steps, or Main Storage Hierarchy Support 
is present.) 

56 Programmer's Guide to Debugging (Release 21) 



FBQE hhhhhh 
is the starting address of the FBQE 
shown on the line. 

NFB hhhhhhhh 
is bytes 0 through 3 of the element: 
starting address of the next FBQE.. In 
the highest or only FBQE, this field 
contains the address of the PQE. 

QCB TRACE 

PFB hhhhhhhh 
is bytes 4 through 7 of the element: 
starting address of the previous FBQE. 
In the lowest or only FBQE, the field 
contains the address of the PQE. 

SZ hhhhhhhh 
is bytes 8 through 11 of the element: 
size, in bytes, of the free area. 

MAJ hhhhhh NMAJ hhhhhhhh PMAJ hhhhhhhh FMIN hhhhhhhh NM cccccccc 

MIN hhhhhh FQEL hhhhhhhh PMIN hhhhhhhh NMIN hhhhhhhh NM xx xxxxxxxx 

NQEL hhhhhhhh PQEL hhhhhhhh TeB hhhhhhhh SVRB hhhhhhhh 

QCB TRACE 
identifies the next lines as a trace 
of the queue control blocks (QCB) 
associated with the job step. Lines 
beginning with MAJ show major QCBs, 
lines beginning with MIN show minor 
QCBs, and lines beginning with NQEL 
show queue elements (QEL). 

MAl hhhhhh 
is the starting address of the major 
QCB whose contents are given on the 
line. 

NMAJ hhhhhhhh 
is the starting address of the next 
major QCB for the job step. 

PMAl hhhhhhhh 
is the starting address of the 
previous major QCB for the job step. 

FMIN hhhhhhhh 
is the starting address of the first 
minor QCB associated with the major 
QCB given on the line. 

NM cccccccc 
is the name of the serially reusable 
resource represented by the major QCB. 

MIN hhhhhh 
is the starting address of the minor 
QCB whose contents are given on the 
line. 

FQ EL hhhhhhhh 
is the starting address of the first 
queue element (QEL), which represents 
a request to gain access to a serially 
reusable resource or set of resources. 

PMIN hhhhhhhh 
is the starting address of the 
previous minor QCB. 

NMI N hhhhhhhh 
is the starting address of the next 
minor QCB. 

NM xx xxxxxxxx 
indicates, in the first 2 digits, the 
scope of the name or address of the 
minor QCB being dumped. If the scope 
is hexadecimal FF, the name is known 
to the entire operating system. If 
the scope is hexadecimal 00 or 10 
through FO, the name is known only to 
the job step; in this case, the scope 
is the protection key of the TCB 
enqueuing the roincr QCB. 

Also contaihs, in the last 8 digits, 
the name or the starting address of 
the minor QCB. 

NQEL hhhhhhhh 
indicates, by hexadecimal 10 in the 
first 2 digits, that the queue element 
on the line represents a request for 
step-must-complete; by 00, ordinary 
request; and by 20, a 
set-must-complete request. 

Also contains, in the last 6 digits, 
the starting address of the next queue 
element in the queue, or for the last 
queue element in the queue, zeros. 

PQEL hhhhhhhh 
indicates, by hexadecimal 80 in the 
first 2 digits, that the queue element 
represents a shared request or, ty 
hexadecimal 00, that the element 
represents an exclusive request. (If 

ABEND/SNAP Dump (MVT) 57 



the shared DASD option was selected" 
hexadecimal 40 in the first 2 digits 
indicates an exclusive RESERVE request 
and 00 indicates a shared RESERVE 
request .. ) 

TCB hhhhhhhh 
is the starting address of the TCB 
under which the ENQ macro instruction 
was issued. 

SAVE AREA TRACE 

eeeececc WAS ENTERED VIA LINK (CALL) ddddd AT EP cccce ••• 

SVRB hhhhhhhh 
is the starting address,of the SVRB 
under which the routine for the ENQ 
macro instruction is execut'ed, or, 
after the requesting task receives 
control of the resource, the UCB 
address of a device being reserved 
through a RESERVE macro instruction 
(the latter value occurs only when the 
shared DASD option was selected). 

SA hbbbhh WDI hhbhhhbh 
RI hhbhhhhh 
R7 hhhhhbhh 

"SA hhbhhhhh 
R2 hbhhhbhh 
R8 hhhhhhhh 

LSA hhhhhhhh RET hhbhhhhh EPA hhhhhhhh RO hhhhhhhh 
R3 hhhhhhhh R4 hhhhhhhh RS hhhhhhhh R6 hhhhhbhh 
R9 hhhhhhhh RIO hhhhhhhh Rli hhhhhhhh R12 hhhhhhhh 

INCORRECT BACK CHAIN 

INTERRUPT AT hhhhhh 

PROCEEDING BACK VIA REG 13 

SAVE AREA TRACE 
identifies the next lines as a trace 
of the save areas f or the program.. 
Each save area is presented in 3 or 4 
lines,. The first line gives 
information about the linkage that 
last used the save area. This line 
will not appear when the RB for the 
linkage cannot be found. The second 
line gives the contents of words 0 
through 5 of the save area.. The third 
and fourth lines give the contents of 
words 6 through 18 of the save area; 
these words are the contents of 
registers 0 through 12. Save areas 
are presented in the following order: 

1. The save area pointed to in the 
TCBFSA field of the TCB. This 
save area is the first one for the 
problem program; ~t was set up by 
the control program when the job 
step was initiated. 

2. If the third word of the first 
save area was filled by the 
problem program, then the second 
save area shown is that of the 
next lower level module of the 
task. However, if the third word 
of the first area points to a 
location whose second word does 
not point back to the first area, 
the message INCORRECT BACK CHAIN 
appears, followed by possible 
contents of the second save area. 

3. The third, fourth, etc. save 
areas are then shown, provided the 
third word in each higher save 
area was filled and the second 
word of each lower save area 
points back to the next higher 
save area. This process is 
continued until the end of the 
chain is reached (the third word 
in a save area contains zeros) or 
INCORRECT BACK CHAIN appears. 

Following the forward trace, the 
message INTERRUPT AT hhhhhh appears, 
followed by the message PROCEEDING 
BACK VIA REG 13. Then, the save area 
in the lowest level module is 
presented, followed by the save area 
in the next hi.gher level. The lowest 
save area is assumed to be the 76 
bytes beginning with the byte 
addressed by register 13. These two 
save areas appear cnly if register 13 
points to a full word boundary and 
does not contain zeros. 

cccccccc WAS ENTERED 
is the name of the module that stored 
register contents in the save area. 
This name is obtained from the RB. 

VIA LINK ddddd or VIA CALL ddddd 
indicates the macro instruction (LINK 
or CALL) used to give control to the 
next lower level module, and is the ID 

58 Progrimmer's Guide to Debugging (Release 21) 



operand, if it was specified, of the 
LINK or CALL macro instruction. 

AT EP ccccc ••• 
is the entry point identifier, which 
appears only if it was specified in 
the SAVE macro instruction that filled 
the save area. 

SA hhhhhh 
is the starting address of the save 
area. 

WD1 hhhhhhhh 
is the first word of the save area 
(optional) • 

HSA hhhhhhhh 
is the second word of the save area: 
starting address of the save area in 
the next higher level module. In the 
first save area in a job step, this 
word contains zeros. In all other 
save areas, this word must be filled. 

LSA hhhhhhhh 
is the third word of the save area 
(register 13): starting address of 
the save area in the next lower level 
(called) module. If the module 
containing this save area did not fill 
the word, it contains zeros. 

RET hhhhhhhh 
is the fourth word of the save area 
(register 14): return address 
(optional); if the called module did 
not fill the word, it contains zeros. 

EPA hhhhhhhh 
is the fifth word of the save area 

(register 15): entry point to the 
called module. Use of this word is 
optional; if the called module did not 
fill the word, it contains zeros. 

RO hhhhhhhh R1 hhhhhhhh ••• R12 hhhhhhhh 
are words 6 through 18 of the save 
area (registers 0 through 12): 
contents of registers 0 through 12 for: 
the module containing the save area 
immediately after the linkage. use of 
these words is optional; if the called 
module did not fill these words, they 
contain zeros. 

INCORRECT BACK CHAIN 
indicates that the following lines may 
not be a save area because the second 
word in this area does not point back 
to the previous save area in the 
trace. 

INTERRUPT AT hhhhhh 
is the address of the next instruction 
to be executed in the problem program. 
It is obtained from the resume PSW 
word of the last PRB or LPRB in the 
active RB queue. 

PROCEEDING BACK VIA REG 13 
indicates that the next 2 save areas 
are (1) the save area in the lowest 
level module, followed by (2) the save 
area in the next higher level module. 
The lowest save area is the save area 
pointed to by register 13. These 2 
save areas appear only if register 13 
points to a fullword boundary and does 
not contain zero. 

ABEND/SNAP Dump (MVT) 59 



CPUx PSA 

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccocccccccccccccccccc* 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc* 

NUCLEUS 

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc* 
hhhhhhhh hhhhhhhhhhhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc· 

NUCLEUS CONT. 

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc* 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc* 

REGS AT ENTRY TO ABEND (SNAP) 

FLTR 0-6 

REGS 0-7 
REGS 8-15 

hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh 

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

LOAD MODULE cccccccc 

hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh 

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

*cccccccccccccccccccccccccccccccc* 
*cccccccccccccccccccccccccccccccc* 

LINES hhhhhh-hhhhhh SAME AS ABOVE 
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

*cccccccccccccccccccccccccccccccc* 
*cccccccccccccccccccccccccccccccc* 

LINE hhhhhh SAME AS ABOVE 

CSECT dd OF cccccccc 

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc* 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc* 

The contents of main storage are given 
under 6 headings: CPUx PSA, NUCLEUS, 
NUCLEUS CONT., LOAD MODULE cccccccc, CSECT 
dd OF cccccccc, and in the trace table, SP 
ddd BLK hh. Under these headings, the 
lines have the following format: 

• First entry: the address of the 
initial bytes of the main storage 
presented on the line. 

• Next 8 entries: 8 full words (32 
bytes) of main storage in hexadecimal. 

• Last entry (surrounded by asterisks): 
the same 8 full words of main storage 
in EBCDIC. Only A through Z, 0 through 
9, and blanks are printed; a period is 
printed for anything else. 

The following lines may also appear: 

LINES hhhhhh-hhhhhh SAME AS ABOVE 
are the starting addresses of the 
first and last lines for a group of 
lines that are identical to the line 
immediately preceding. 

LINE hhhhhh SAME AS ABOVE 
is the starting address of a line that 
is identical to the line immediately 
preceding. 

CPUx PSA (Model 65 Multiprocessing dumps 
only) 

identifies the next lines as the 
contents of the prefixed storage area 
(PSA) -- 0 through 4095 (FFF). If the 
system is operating in partitioned 
mode (1 CPU), x is the CPU 
identification. If the system is 
operating in a 2 CPU multisystem mode, 
both PSAs are printed, the first under 
the heading CPUA PSA and the second 
under CPUB PSA. 

NUCLEUS 
identifies the next lines as the 
contents of the nucleus of the control 
program. 

NUCLEUS CONT .. 
identifies the next lines as the 
contents of the Fart of the nucleus 
that lies above the trace table. 

REGS AT ENTRY TO ABEND or REGS AT ENTRY TO 
SNAP 

identifies the next 3 lines as the 
contents of the floating point and 
general registers when the abnormal 
termination routine received control 
in response to an ABEND macro 
instruction or when the SNAP routine 
received control in response to a SNAP 

60 Programmer's Guide to Debugging (Release 21) 



macro instruction. These are not the 
registers for the problem prog."':am when 
the error occurred. 

FLTR 0-6 
indicates the contents of floating 
point registers 0, 2, 4, and 6. 

REGS 0-7 
indicates the contents of general 
registers 0 through 7. 

REGS 8-15 
indicates the contents of general 
registers 8 through 15. 

TRACE TABLE 

LOAD MODULE cccccccc 
identifies the next lines as the 
contents of the main s.torage area 
occupied by the load module cccccccc 
addressed by an LLE or RB. All the 
modules for the job step are dumped 
under this type of heading. Partial 
dumps do not contain this information. 

CSECT hhhh OF cccccccc 
identifies the next lines as the 
contents of the main storage area 
occupied by the control section 
(CSECT) indicated by hhhh. This 
control section belongs to the 
scatter-loaded load module cccccccc. 

DSP NEW PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh SW hhhhhhhh TCB hhhhhhhh TME hhhhhhhh 
I/O OLD PSW hhhhhhhh hhhhhhhh R15/HO hhhhhhhh hhhhhhhh In hhhhhhhh liES hhhhhhhh TCB hhhhhhhh TME hhhhhhhh 
SIO CC/DEV/CAW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh RES hhhhhhhh RES hhhhhhhh TCB hhhhhhhh TME hhhhhhhh 
SVC OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh RES hhhhhhhh TCB hhhhhhhh TME hhhhhhhh 
PGM OLD I'SW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh Hl hhhhhhhh PES hhhhhhhh TCB hhhhhhhh TME hhhhhhhh 
EXT OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh RES hhhhhhhh TCB hhhhhhhh TME hhhhhhhh 

TRACE TABLE (SNAP dumps only) 
identifies the next lines as the 
contents of the trace table. Each 
trace table entry is presented on one 
line; the name at the beginning of 
each line identifies the type of entry 
on the line: 

• DSP Dispatcher entry 

• I/O Input/output interruption entry 

• SIO Start input-output (SIO) entry 

• SVC Supervisor call (SVC> 
interruption entry 

·PGM Program interruption entry 

• EXT External interruption entry 

OLD PSW hhhhhhhh hhhhhhhh 
is the PSW stored when the 
interruption represented by the entry 
occurred. 

NEW PSW hhhhhhhh hhhhhhhh 
is the new PSW stored in the entry. 

CCIDEV/CAW hhhhhhhh hhhhhhhh 
contains, in the first 2 digits: 
completion code. 

contains, in the next 6 digits: 
device type. 

contains, in the last 8 digits: 
address of the channel address word 
(CAW) stored in the entry. 

R15/RO hhhhhhhh hhhhhhhh 
contains, in the first 8 digits: 
contents of register 15 stored in the 
entry. 

contains, in the last 8 digits: 
contents of register 0 stored in the 
entry. 

CSW hhhhhhhh hhhhhhhh 
is the channel status word (CSW) 
stored in the entry. 

Rl hhhhhhhh 
is the contents of register 1 stored 
in the entry. 

RES hhhhhhhh 
is reserved for future use; all digits 
are zeros. 

SW hhhhhhhh 
is reserved for future use; all digits 
are zeros. 

TCB hhhhhhhh 
is the starting address of the TCE 
associated with the entry. 

TME hhhhhhhh 
is a representation of the timer 
element associated with the entry. 

ABEND/SNAP Dump (MVT) 61 



TRT 

X DSP NEW PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh R1 hhhhhhhh 
Rl hhhhhhhh 
TeB hhhhhhhh 
Rl hhhhhhhh 
Rl hhhhhhhh 
Rl hhhhhhhh 
Rl hhhhhhhh 

NUA hhhhhhhh 
OLA hhhhhhhh 
OLA hhhhhhhh 
aLA hhhhhhhh 
aLA hhhhhhhh 
MSI< hhhhhhhh 
AFF yyhhhhhh 

NUB hhhhhhhh 
OLB hhhhhhhh 
OLB hhhhhhhh 
aLB hhhhhhhh 
OLB hhhhhhhh 
TOE hhhhhhhh 
aLB hhhhhhhh 

TME hhhhhh 
TME hhhhhh 
TME hhhhhh 
TME hhhhhh 
TME hhhhhh 
TME hhhhhh 
TME hhhhhh 

X I/O OLD PSW hhhhhhhh hhhhhhhh esw hhhhhhhh hhhhhhhh 
X SIO eC/DEV/eAW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh 
X sve OLD PSW hhhhhhhh hhhhhhhh 
X PGM OLD PSW hhhhhhhh hhhhhhhh 
X EXT OLD PSW hhhhhhhh hhhhhhhh 
X SSM OLD PS~ hhhhhhhh hhhhhhhh 

R15/RQ hhhhhhhh hhhhhhhh 
R15/RO hhhhhhhh hhhhhhhh 
R15/RO hhhhhhhh hhhhhhhh 
R1S/RO hhhhhhhh hhhhhhhh 

TRT (MVT with Model 65 multiprocessing 
dumps only) 

identifies the next lines as the 
contents of the trace table. Each 
trace table entry is presented on one 
line; the letter and name at the 
beginning of each line identify the 
CPU and the type of entry, 
respectively: 

• DSP Dispatcher entry. 

• I/O Input/output interruption 
entry. 

• SIO Start input/output entry. 

• SVC supervisor call interruption 
entry .. 

• PGM Program interruption entry. .. 

• EXT External interruption entry. 

• SSM Set system mask entry. 

OLD PSW hhhhhhhh hhhhhhhh 
is the PSW stored when the 
interruption represented by the entry 
occurred. 

NEW PSW hhhhhhhh hhhhhhhh 
is the new PSW stored in the entry. 

CC/DEV/CAW hhhhhhhh hhhhhhhh 
contains, in the first 2 digits: 
completion code; in the next 6 digits: 
device type; in the last 8 digits: 
address of the channel address word 
stored in the entry. 

R15/RO hhhhhhhh hhhhhhhh 
contains, in the first 8 digits: 
contents of register 15; in the last 8 
digits: contents of register 0, both 
as stored in the entry .. 

CSW hhhhhhhh hhhhhhhh 
is the channel.status word stored in 
the entry. 

Rl hhhhhhhh 
is the contents of register 1 as 
stored in the entry. 

TeB hhhhhhhh 
is the starting address of the TCB 
associated with the entry. 

NUA hhhhhhhh 
is the starting address of the new TCB 
for CPU A, as stored in the entry. 

OLA hhhhhhhh 
is the starting address of the old TCB 
for CPU A, as stored in the entry. 

MSK hhhhhhhh 
is the STMASK of the other CPU as 
stored in the entry. 

NUB hhhhhhhh 
is the starting address of the new TCB 
for CPU B, as stored in the entry. 

OLB hhhhhhhh 
is the starting address of the old TCB 
for CPU B, as stored in the entry. 

TQE hhhhhhhh 
is the first word of the timer queue 
element stored in the ent.ry, provided 
a timer interrupt occurred. 

TME hhhhhhhh 
is a representation of the timer 
element associated with the entry. 

AFF yyhhhhhh 
contains, in the first 2 digits: the 
ID of the locking CPU at the time of 
the interrupt; in the last 6 digits: 
starting address of the old TCB for 
CPU A, as stored in the entry. 

62 prdyrammer's Guide to Debugging (Release 21) 



SP ddd 

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc· 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh ·CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC* 

END OF DUMP 

SP ddd 
identifies the next lines as the 
contents of a block of main storage 
obtained through a GETMAIN macro 
instruction, and indicates the subpool 
number (ddd). The part of subpool 252 
that is the supervisor work area is 
presented first, followed by the 
entire contents of any problem program 
subpools (0 through 127) in existence 
during the dumping. 

END OF DUMP 
indicates that the dump or snapshot is 
completed. If this line does not 
appear. the ABDUMP routine was 
abnormally terminated before the dump 
was completed, possibly because enough 
space was not allocated for the dump 
data set. 

Guide to Using an ABEND/SNAP Dump (MVT) 

Cause of Abnormal Termination: Evaluate 
the user (USER=decimal code) or system 
(SYSTEM=hex code) completion code using 
Appendix B or the publication Messages and 
Codes. 

Dumped Task: Check the ID field for an 
indication of which task is being dumped in 
relation to the task that was abnormally 
terminated: 

• 001 indicates a partial dump of a 
subtask 

• 002 indicates a partial dump of the 
invoking task 

If the ID field is absent, the dump 
contains a full dump of the task that was 
abnormally terminated. 

Active RB Queue: The first RB shown on the 
dump represents the oldest RB on the queue. 
The RB representing the load module that 
had control when the dump was taken is 
third from the bottom. The last RB 
represents the ABDUMP routine and the 
second from last, the ABEND routine. The 
load module name and entry pOint (for a 
PRB) are given in a contents directory 
entry, the address of which is shown in the 
last 3 bytes of the FL/CDE field. 

Program Check PSW: The program check old 
PSW is the fifth entry in the first line of 
each RB printout.. It is identified by the 
subheading APSW. For debugging purposes, 
the APSW of the third RB f rom the bottom of 
the dump is most useful. It provides the 
length of the last instruction executed in 
the program (bits 32,33), and the address 
of the next instruction to be executed 
(bytes 5 -8). 

Load List: Does the resume PSW indicate an 
instruction address outside the limits of 
the load module that had control at the 
time of abnormal termination? If so, look 
at the LLEs on the load list. Each LLE 
contains the CDE address in the dump field 
labeled RSP-COE. 

COEs: The entries in the contents 
directory for the region are listed under 
the dump heading COE. The printouts for 
each CDE include the load module and its 
entry point. If you have a complete dump, 
each load module represented in a CDE is 
printed in its entirety following the 
NUCLEUS section of the dump. 

Trace Table (SNAP dumps only): Entries on 
an MVT SNAP dump, if valid, represent 
occurrences of SIO, external, SVC, program, 
I/O, and dispatcher interruptions. SIO 
entries can be used to locate the CCW 
(through the CAW), which reflects the 
operation initiated by an SIO instruction • 
If the SIO operation was not successful, 
the CSW STATUS portion of the entry will 
show you why it failed. EXT and PGM 
entries are useful for locating the 
instruction where the interruption occurred 
(bytes 5-8 of the PSW). 

§Y£ trace table entries provide the SVc old 
PSW and the contents of registers 0, 1, and 
15. The PSW offers you the hexadecimal SVC 
number (bits 20-31), the CPU mode (bit 15), 
and the address of the SVC instruction 
(bytes 5-8). The contents of registers 0 
and 1 are especially useful in that many 
system macro instructions pass key 
information in these registers. (See 
Appendix A.) 

I/O entries reflect the I/O old PSW and the 
CSW that was stored when the interruption 
occurred. From the PSW, you can learn the 

ABEND/SNAP Dump (MVT) 63 



address of the device that caused the 
interruption (bytes 2 and 3), the CPU state 
at the time of interruption (bit 15), and 
the instruction address where the 
interruption occurred (bytes 5-8). The CSW 
provides you with the unit status (byte 4), 
the channel status (byte 5), and the 
address of the previous CCW plus 8 (bytes 
0-3) • 

You can use the DSP entry to delimit the 
entries in the trace table. To find all 
entries for the terminated task, scan word 
7 of each trace table entry for the TCB 
address in a DSP entry. The lines between 
this and the next DSP entry represent 
interruptions that occurred in the task. 

Region Contents: Free areas for the region 
occupied by the dumped task are identified 
under headings PQE and FBQE. The field 

labeled SZ gives the number of bytes in the 
free area represented by the FBQE. 

Subpool Contents: Free and requested areas 
of the subpools used by the dumped task are 
described under the dump heading MSS. 
Subpool numbers are given under the SPID 
column in the list of SPQEs. If a GETMAIN 
macro instruction was issued without a 
subpool specification, space is assigned 
from subpool O. Thus. two SPQEs may exist 
for subpool O. The sizes of the requested 
areas and free areas are given under the LN 
column in the lists of DQEs and FQEs, 
respectively. 

Load Module Contents: The contents of each 
load module used by the job step are given 
under the heading XL. Each entry includes 
the sizes (LN) and starting addresses (ADR) 
of the control sections in the load module. 

64 Programmer's Guide to Debugging (Release 21) 



Indicative Dump 

An indicative dump is issued when a task is 
abnormally terBdnated by an ABEND macro 
instruction, and a dump is requested, but a 
dump data set is not available, due either 
to omission or incorrect specification of a 
SYSABEND or SYSUDUMP DO statement. An 
indicative dump is issued automatically on 
the system output (SYSOUT) device. 

Systems with MVT do not issue indicative 
dumps. 

Contents of an Indicative Dump 

This explanation of indicative dumps 
utilizes capital letters for the headings 
found in all dumps, and lowercase letters 
for information that varies with each dump. 
The lQo1ercase letter used indicates the 
mode of the information, and the number of 
letters indicates its length: 

• h represents 1/2 byte of hexadecimal 
information 

First digit: 

Bit setting Meaning 
o 0 Instruction image not 

present 

1 

2 

3 

1 Instruction image present 

o 

1 

o 

1 

o 
1 

Floating-point registers 
not present 
Floating-point registers 
present 

One general register set 
present 
Two general register sets 
present 

All active RBs present 
All active RBs not present 

Last digit: 

Digit in 
Hexadecimal Meaning 

o All loaded RBs present 

8 All loaded RBs not present 

TCB FLAGS=hh 
• d represents 1 byte of decimal 

information 
is the first byte of TCBFLGS field 
(byte 29 in the TCB for the program 
being dumped): task end flag byte: 

• c represents a 1-byte character 
Bit setting Meaning 
-0- 1 Abnormal termination in 

process Figure 19 shows the contents of an 
indicative dump_ You may prefer to follow 
the explanation on your own indicative 
dump. 

CONTROL BYTE=hh 
describes the contents of the 
indicative dump. 

CONTROL SYTE-hh ~CS FLAGS-hh NO. ACTIVE RS-dd NC. lOAD RS-dd 
COMPLETION CODE - SYS~EM-hhh USER-dddd 
cccccc ••• 

1 1 

2 1 

REGISTER SET 1 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhb hhhhhhhh hhhhhhbh hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
REGISTER SET 2 
hhhhhhhh hhhhhhhh hhhhhhhh nhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhbhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
INSTRUCTION IMAGE~hhhhhhhhhhhhhhhhhhhhhhhh 
hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh 
PROGRAM ID-cccccccc RS TYPE=hh ENTRY POINT-hhhhhh 
RESUME PSW S~.hh K=h AMWP-h IC-hhhh Il.CC-h PM-h IA-hhhhhh 
PROGRAM ID-cccccccc RS TYPE-hh ENTRY POINT-hhhhhh 

Figure 19. Contents of an Indicative Dump 

Normal termination in 
process 

Abnormal termination was 
initiated by the res ident 
ABTERM routine 

Indicative Dump 65 



Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

3 

4 

5 

'6 

7 

1 

1 

1 

1 

1 

ABrERM routine entered 
because of program 
interruption 

Reserved for future use 

Data set closing initiated 
by the ABTERM routine 

The ABTERM routine 
overlaid some or all of 
the problem program 

The system prohibited 
queuing of asynchronous 
exit routines for this 
task 

NO. ACTIVE RB=dd 
is the number of active RBs presented 
in the dump_ 

NO. LOAD RB=dd 
is the number of RBs in the load list 
presented in the dump_ 

COMPLETION CODE SYSTEM=hhh USER=dddd 
is the completion code supplied by the 
con~Iol program (SYSTEM=hhh) or the 
problem program (USER=dddd). Both 
SYSTEM=hhh and USER=dddd are pr inted; 
however, one of them is always zero. 

cccccc ••• 
explains the completion code or, if a 
program interruption occurred: 

PROORAM INTERRUPl'ION ccccc... AT 
LOCATION hhhhhh 

where ccccc is the program 
interruption cause: OPERATION, 
PRIVILEGED OPERATION, EXECUTE, 
PROTECTION, ADDRESSING, 
SPECIFICATION, DATA, FIXED-POINT 
OVERFLOW, FIXED-POINT DIVIDE, 
DECIMAL OVERFLCW, DECIMAL DIVIDE, 
EXPONENT OVERFLOW, DECIMAL 
DIVIDE, EXPONENl' OVERFLOW, 
EXPONENT UNDERFLOW, SIGNIFICANCE, 
or FLOATING-POINT DIVIDE; and 
hhhhhh is the address of the 
instruction being executed when 
the interruption occurred. 

REGISTER SET 1 
indicates that the next 2 lines give 
the contents of general registers 0 
through 7 and 8 through 15 for a 
program being c~cuted under control 
of an RB when it: 

• Passed control to a type I SVC 
routine through an SVC instruction 
and the routine terminated 
abnormally. 

• Lost control to the input/output 
interruption handler, which 
subsequently terminated abnormally. 

• Was abnormally terminated by the 
control program because of a program 
interruption. 

• Issued an ABEND macro instruction to 
request an abnormal termination. 

If REGISTER SET 2 also appears in the 
dump, the lines under REGISTER SET 1 
give the general register contents for 
a type II, III, or IV SVC routine 
operati r¥J under an SVRB. 

REGISTER SET 2 
indicates that the next 2 lines give 
the contents of general registers 0 
through 7 and 8 through 15 for a 
program being executed under control 
of an RB other than an SVRB when the 
program last passed control to a type 
II, III, or IV SVC routine. 

INSTRUCTION lMAGE=hhhhhhhhhhhhhhhhhhhhhhhh 
is 12 bytes of main storage, with the 
instruction that caused a program 
interruption in the right part of the 
printout. This field appears only if 
a program interruption occurred and is 
also valid when the instruction length 
in the resume PSW is o. 

hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh 
hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh 

are the contents of floating-point 
registers 0, 2, 4, and 6 when the 
abnormal terminati<;m occurred. This 
field appears only if the floating 
point option is present. The first 2 
digits of each register are the 
characteristic of the floating point 
number. The last 14 digits are the 
mantissa. 

PROGRAM ID=cccccccc 
is the XRBNM field (bytes 0 through 
7): in PRB, LRBs, and LPRBs, the 
program name; in IRBs, the first 
character contains flags for the timer 
or, if the timer is not being used, 
contains no meaningful information; in 
SVRBs for a type II SVC routine, 
contains no meaningful information; in 
SVRBs f or a type III or IV SVC 
routine, the first 4 bytes contain the 
relative track address (TTR) of the 
load module in the SVc library and the 
last 4 bytes contain the SVC number in 
signed, unpacked decimal; in SIRBs, 
the name of the error routine 
currently occupying the 400-byte 
input/output supervisor transient 
area. 

66 Programmer's Guide to Debugging (Release 21.7) 



RB TYPE=hh 
indicates the type of active RB 

hh Type of RB 
00 PRB that does not contain entry 

points identified by IDENTIFY 
macro instructions 

10 PRB that contains one or more 
entry points identified by 
IDENTIFY macro instructions 

20 LPRB that does not contain entry 
points identified by IDENTIFY 
macro instructions 

30 LPRB that contains one or more 
entry points identified by 
IDENTIFY macro instructions 

40 IRB 

80 SIRB 

CO SVRB for a type II SVC routine 

DO SVRB for a type III or IV SVC 
routine 

EO LPRB for an entry point identified 
by an IDENTIFY macro instruction 

FO LRB 

ENTRY POINT=hhhhhh 
is the XRBEP field (bytes 13 through 
15): address of entry point in the 
program. 

RESUME PSW 

SM=hh 

K=h 

XRBPSW field (bytes 16 through 23): 
is the contents of 'the resume PSW. 

is bits 0 through 7 of PSW: system 
mask. 

is bits 8 through 11 of PSW: 
protection key. 

AMWP=h 
is bits 12 through 15 of PSW: 
indicators. 

IC=hhhh 
is bits 16 through 31 of PSW: 
interruption code. 

IL.CC=h 
is bits 32 through 35 of PSW: 
instruction length code (bits 32 and 
33) and condition code (bits 34 and 
35). 

PM=h 
is bits 36 through 39 of PSW: program 
mask. 

IA=hhhhhh 
is bits 40 through 63 of PSW: 
instruction address. 

PROGRAM ID=cccccccc 
is the XRBNM field (bytes 0 through 
7): program name. 

RB TYPE=hh 
indicates the type of RB: 

hh Type of RB 
20 LPRB that does not contain entry 

points identified by IDENTIFY 
macro instructions. 

30 LPRB that contains one or more 
entry points identified by 
IDENTIFY macro instructions. 

EO LPRB for an entry point identified 
by an IDENTIFY macro instruction. 

FO LRB. 

ENTRY POINT=hhhhhh 
is the XRBEP field (bytes 13 through 
15): address of entry point in the 
program. 

Guide to Using an Indicative Dump 

Completion Code: Evaluate the user 
(USER=decimal code) or system (SYSTEM=hex 
code) completion code using either Appendix 
C of this publication or the publication 
Messages and Codes. The line under the 
completion code gives a capsule explanation 
of the code or the type of program 
interruption that occurred. 

Instruction Address: If a program 
interruption occurred, get the address of 
the erroneous instruct"ion in the last 3 
bytes of the field labeled INSTRUCTION 
IMAGE. 

Active RB Queue: RBs are shown in the 
first group of two-line printouts labeled 
PROGRAM ID and RESUME PSW, with the most 
recent RB shown first. There are two lines 
for as many RBs indicated by NO. ACTIVE 
R8=dd. 

Register Contents: General register 
contents at the time a program last had 
control are given under the heading 
REGISTER SET 2 or. if this heading is not 
present. under REGISTER SET 1. Register 
contents. particularly those of register 
14, may aid you in locating the last 
instruction executed in your program. 

Indicative Dump 67 



Storage Dumps 

Storage dumps record the contents of main 
storage from location 00 to the end of 
printable storage. 

Storage dumps are produced by the damage 
assessment routine (DAR) or other system 
recovery routines, the Console Dump 
facility, or the stand-alone service aid 
program IMDSADMP. 

DAMAGE ASSESSMENT ROUTINE (DAR) 

The damage assessement routine produces a 
storage dump when a system task fails and 
is designed to provide increased system 
availability in the event of system 
failure. The storage dump is written to 
the SYS1.DUMP data set .• 

If a system routine fails, DAR attempts 
to reinitialize the failing task, thereby 
permitting the system to continue operation 
without interruption. DAR permits the 
system to continue processing in a degraded 
condition if it encounters a system failure 
that does not permit total reinstatement of 
the affected task or region. The operator 
will be informed, via a WTO, that the 
system is in an unpredictable state; he 
then must decide whether or not 
already-scheduled jobs should be allowed to 
attempt completion. 

Note: If TSO is installed in the system 
and a failure occurs in the TSO subsystem 
or in the operating system the TSO SWAP 
data set must be recorded for use in 
diagnosis if needed. The system recovery 
routines do not do this. The IMDPRDMP 
service aid can be used as a 
high-performance dumping program for this 
purpose by directing its output to tape. 
Refer to the service Aids publication for 
details of this usage of the IMDPRDMP 
program. 

CONSOLE DUMP 

The Console Dump function is designed to 
meet the requirements for a dynamic main 
storage dumping tool in the operating 
system. The operator initiates the Console 
Dump from the primary console via a DUMP 

. command. Execution of the function allows 
a dump to be taken to the SYS1.DUMP data 
set of all or selective portions of main 
storage. The dump operation is performed 
during system operation and requires no 
IPL. The storage dump may then be 
formatted and printed by the IMDPRDMP 
Service Aid program. Refer to the 
Operator's Guide publication for details of 
the DUMP command. 

IMDSADMP SERVICE AID 

In situations where the system is not 
operative, an IMDSADMP program 'is loaded 
into storage through use of the IPL 
facilities. The storage dump taken may be 
written in a high-speed version to tape or 
disk. and in a low speed version to tape or 
printer. The high-speed IMDSADMP dump must 
be processed by the IMDPRDMP program. The 
low-speed tape output may be processed by a 
program such as the IEBGENER utility 
program. The format of the low-speed 
IMDSADMP output is similar to the general 
format listing produced by the IMDPRDMP 
program and therefore is not illustrated in 
this publication. A sample IMDSADMP 
listing and a discussion of the program are 
contained in the Service Aids publication. 

SYSTEM FAILURE 

If a system failure occurs, the damage 
assessment routine immediately attempts to 
write a storage dump to the SYS1.DUMP data 
set. A system failure may be caused by a 
failure in any of the following system 
tasks: 

MFT: 

Communications Task 
Master Scheduler Task 
Log Task 

MVT: 

System Error Task 
Rollout/Rollin Task 
Communications Task 
Master Scheduler Task 
Transient Area Fetch Task 

A system failure is also caused by an 
ABEND recursion in other than OPEN, CLOSE, 
ABDUMP, or STAE; by a failure of a task in 
'must complete' status; or, in MFT only, by 
a failure in the scheduler if no SYSABEND 
or SYSUDUMP DD card is provided. 

THE SYS1.DUMP DATA SET 

The SYS1.DUMP data set may reside on tape 
or on a direct access device • 

Tape 

If you wish to have the SYS1.DUMP data set 
reside on tape, you may specify the tape 
drive during IPL. If the drive has not 
been made ready prior to IPL, a MOUNT 
message is issued to the console, 
specifying the selected device. The device 
should be mounted with an unlabeled tape. 

68 programmer's Guide to Debugging (Release 21) 



After writing a storage image dump, the 
damage assessment routine writes a tape 
mark and will position the tape to the next 
file.. The tape drive will remain in a 
ready state to receive another storage 
image dump. 

Direct Access 

If you wish to have the SYS1.DUMP data set 
placed on a direct access device., you may 
preallocate the data set at system 
generation or prior to any IPL of the 
system. The following restrictions apply: 

• The data set name must be SYS1.DUMP. 

• The data set must be cataloged on the 
IPL volume. 

• The data set may be preallocated on any 
volur~ that will be online during 
system operation. 

• The data set must be sequential. 

• sufficient space must be allocated to 
receive a storage image dump for all of 
main storage. 

When a direct access device is used for 
the SYS1.DUMP data set, the data set can 
hold only one storage dump. If additional 
failures occur, and if the SYS1.DUMP data 
set is occupied, DAR does not attempt to 
write another storage image dump. 

Use the IMDPRDMP service aid to format 
and list the SYS1.DUMP data set. 

Storage Dumps 69 



IMDPRDMP Output 

Main storage information processed by the 
IMDPRDMP program is presented in six 
different output formats. The output 
format used is determined by the function 
of the particular area of the dumped 
system's main storage that is being 
printed. TWo of these formats, the queue 
control block trace and the link pack area 
map, are invoked by specific format 
statements. A third format is used to 
print the major system control blocks. Two 
formats are used for TSO; one for system 
control blocks and the other for user 
control blocks. Any areas of the dumped 
system's main storage that do not fall into 
any of the aforementioned functional 
categories are processed in the general 
format. 

Dump List Headings: Each page of output 
listing contains a heading. This heading 
has the optional user specified title, the 
name of the module that invoked the dump, 
the date and the time the dump was taken 
except when processing Generalized Trace 
Facility output when the heading will be 
"EXTERNAL TRACE - DO ddname." Note: If 
the dump was produced by IMDSADMP on a 
system with the time-of-day (TOO) clock, 
LMDPRDMP can not determine the time at 
which the dump was taken~ the time is 
replaced by "TOO CLK." 

Dump Header: If the dump was produced by 
SVC DUMP, IMDPRDMP will print the title 
tqken from the dump header record. A 
maximum of 100 characters are printed on 
the second line of the first page of the 
output listing .• 

output Comments: While formatting the 
dump, the IMDPRDMP program occasionally is 
unable to locate, format and print a 
control block. On those occasions IMDPRDMP 
prints a comment explaining why the control 
block could not be formatted and printed. 
These comments are printed within the body 
of the formatted dump and are part of the 
IMDPRDMP output. A complete list of these 
output comments along with further 
explanations is contained at the end of 
this chapter. 

Summary Information: In addition to 
formats, the following summary information 
is printed at the end of each execution of 
IMDPRDMP: 

• The number of entries to the read 
routine; 

• The number of times that the required 
address was not found in a buffer; 

• The number of blocks read from the dump 
data set; 

• The number of permanent I/O errors 
encountered during the e~ecutionl 

• The average number of buffers used for 
each operation performed during this 
execution; 

• The number of blocks read from the TSO 
swap data sets; 

• The ratio of the number of times the 
read routine was called to the number 
of times the requested address was not 
in a buffer. 

• When processing Generalized Trace 
Facili ty output·, the number of trace 
records processed. 

QUEUE CONTROL BLOCK TRACES 

In a multiprogramming environment., requests 
for system resources are enqueued. This 
process is accomplished through the use of 
queue control blocks (QCBs). 

Certain system failures, such as task 
contention deadlocks, become evident to the 
user upon examination of a queue control 
block trace. When requested through the 
use of the QCBTRACE statement, the QCB 
trace appears on a separate page of the 
IMDPRDMP program dump listing. The trace, 
a sample of which appears in Figure 20, 
contains a listing of all queue control 
bloc~s that were present in the dumped 
system, and is available to users who are 
processing main storage information 
gathered from an MVT or MFT system. 

(For more information on system resource 
queuing, see IBM Systernl360 Operating 
system: MVT supervisor, GY28-6659.) 

The page of the IMDPRDMP listing 
containing the Queue Control Block trace is 
identified by two heading lines. The first 
line contains an optional title, the name 
of the module that invoked the dump, and 
the date and time that the information was 
gathered from the dumped system. The 
second line of the heading identifies the 
page as containing a Queue Control Block 
trace. The individual QCBs are then listed 
for each Task Control Block. Each Queue 
Control Block is formatted as follows: 

MAJOR hhhhhh 
The starting address of a major queue 
control block, the contents of which 
are given, indented, on the line or 
lines below. 

NAME cccccccc 
The name of the system r(~source 
represented by the major QCB. 

70 programmer's Guide t.,.... ''"\ebugging (Release 21) 



r---------------------------------------------------------------------------------------, 
SAMPLE OCB TRACE MODULE IMDSADMP DATE 7/04/70 TIME 0.10 PAGE 2 

• • • • o U E U E CON T R 0 L B L 0 C K T R ACE • • • • 
MAJOR 024100 NAME SYSDN 

MINOR 0239AO 
OEL 024068 

NAME FF SYS1.LINKLIB 
TCB 023488 SHARED 

MINOR 023838 
QEL 023ED8 

NAME FF SYS1,. MACLIB 
TCB 023448 SHARED 

MAJOR 0235E8 NAME SYSIEFSD 

MINOR 0235C8 NAME FF 05 
QEL ~~3208 TCB 023480 
OEL 023C10 TCB 0238EO 

EXCLUSIVE 
EXCLUSIVE 

L ______________________________________________________________________________________ _ 

Figure 20. Queue Control Block Trace Sample 

MINOR hhhhhh 
The starting address of the minor 
queue control block. Contents are 
given on this line or the lines below. 

NAME hh cccccccc 
The first two characters appearing 
after the NAME field identifier 
indicate the scope of the minor QCB 
being dumped. If the scope is given 
as hexadecimal FF, the name of the QCB 
is known to the entire operating 
system. If the scope indicator is 
hexadecimal 00 or 10 through FO. the 
name of the QCB is known only to the 
job step. The scope : .ndicator shows 
the storage protection key of the TCB 
that enqueued this minor QCB. The 
NAME field also contains the name of 
the specific system resource 
represented by the minor QCB. 

QEL hhhhhh 
The address of a queue element (QEL) 
associated with the minor QCB 
described on the line above. A QEL 
line appears for each resource 
requested by the task associated with 
the minor QCB. 

TCB hhhhhh 
The starting address of the task 
control block of the requesting task. 
This task requests a specific system 
resource through the use of the QEL 
indicated on this line. 

SHARED or EXCLUSIVE 
This indicator tells whether the 
system resource is available to one 
task (EXCLUSIVE) or several tasks 
(SHARED) • 

LINK PACK AREA MAPS 

Information on routines residing in either 
the MVT link pack area or the MFT resident 
reenterable load module area of the dump 
system is available to the user through use 
of the LPAMAP (link pack area map) format 
statement. 

For users who are processing an MVT 
dump, the IMDPRDMP program produces a 
listing of all routines loaded into the 
link pack area by the nucleus 
initialization program (NIP). For MFT 
dumps, this list contains information 
pertaining to all resident reentrant 
routines loaded into the reenterable load 
module area by NIP. 

The IMDPRDMP user will find the link 
pack area map, for MVT, or the reenterable 
load module area map. for MFT, to be a 
useful tool in isolating system failures 
that occurred in program modules that 
reside outside the user's partition or 
region. If requested. the applicable map 
appears on a separate page of the IMDPRDMP 
program dump listing. A sample Link Pack 
Area map is shown in Figure 21 • 

The dump listing page containing the 
link pack area map is identified by two 
heading lines. The first line contains the 
optional title supplied by the user, the 
name of the module that invoked the dump., 
and the date and time that the information 
was gathered from the dumped system. The 
second line of the heading identifies the 
page as containing a link pack area map. 
Information on each module contained in the 

IMDPRDMP Output Formatting: Link Pack Area Maps 71 



link pack area or reenterable load module 
area.. is given in the following format: 

NAME cccccccc 
The name of the load module 
represented by this entry. 

EPA hhhhhh 
The entry point address of the module 
identified on the corresponding line 
in the NAME column. 

STA hhhhhh 
The starting address of the named 
module'S control section. 

LNGH hhhhhh 
The length, in bytes, of the control 
sections in the load module described 
on this line. 

TYPE ccccc 
The attributes of the control block 
associated with the module being 
described on this line. Under MVT" 
the type of the contents directory 
entry (CDE) associated with the module 
is given. The type may be either 
MAJOR or MINOR. Under MFT, the type 
is shown as either a loaded request 
block (LRB) or a loaded program 
request block (LPRB). 

72 programmer's Guide to Debugging (Release 21) 



~O,)ULE 1140SA')~P DATE 11/12170 TIMe 00.15 PA(:C 0001 

... '" '" ... LIN K P A ( K ARE A tot A P 11< * ... ... 

"'loME EPA STA LNGH TYPE 

lEELWAIT 072418 072418 0003F8 Ji4AJOR 
IGG0209Z C74800 C74800 000400 MAJOR 
IGG0201l 04(00 C14(00 000400 MAJOR 
IGG0201Y C75000 C75000 000400 "'AJaR 
IGGC,200Z 015400 C75400 000400 "AJaR 
IGG0200Y C15800 (15800 000400 MAJOR 
IGG0200H C15(00 C75(00 000400 Ji4AJOR 
IGG0200G 076000 C760CO 000400 Ji4AJOR 
IGG0200F 076400 076400 000400 MAJOR 
IGG0200A (76800 076800 000400 "'AJOR 
IGG0199" 076eoo 076(00 000400 MAJOR 
IGG01968 C77000 077000 000400 MAJOR 
IGG01~6A C77400 C71400 000400 MAJOR 
IGG01917 C77800 (778CO 000400 MAJOR 
IGG01911 C77eoo 077(00 e00400 "AJOR 
IGG01910 C78000 078000 000400 MAJOR 
IGG01910 C78400 C78400 000400 MAJOR 

.... IGG0191G C78800 (78800 000400 MAJOR 

i§ IGG01910 C78eoo C78COO 000400 MAJOR 
IGGC191B (79000 C79000 000400 MAJOR 

toO IGGC19lA (79400 C79400 000400 MAJOR 
(g IGG0190S (79800 079800 000400 Ji4AJOR 
3: IGG0190N 079(00 C79(00 000400 MAJOR 
toO IGG0190" (1AOOO C7AOOO 000400 Ji4AJOR 
0 IGG0190L C7A400 (7A400 000400 MAJOR 

~ IG(0005E C7A800 C7A800 000400 ".AJOR 

"'0 1 lice 002 e7Aeoo 07ACOO 000400 MAJOR 
c:: IGCC0011 C78360 C78360 000400 MAJOR 
rt' IGG019CK C7(AOO C7eAOO 000060 MAJOR 
IWj IGG019Be C1(A6C C7CA60 0000E8 ".AJOR 
0 1;;G01980 07(848 C7CB48 000128 MAJOR 
t"'I I;;G019AO C7e(70 C7ee 70 OOOOCO ~AJOR 

I IGG019AL C1(030 07C030 000158 ,.,AJOR 
rt' IGr.019A( C7!>848 070848 0000E8 MAJOR 
rt' IGG019(A C10930 (70930 000088 MAJOR .... 
~ 

IGGOI9(8 C7!J988 C70988 000098 MAJOR 
IGG01QAG C10A50 C70A50 000090 "'AJaR .. 
IGG0198E C7CAEO C70AEO 000188 "'AJaR 
IGGOP~AM C70(68 070C68 000078 MAJOR 

t:"4 IGG019AN C70(EO e7DeEO 000008 JOIAJOR .... 
IGG019AV e70DB8 e70088 000058 MAJOR 

~ IGG019/140 070ElO C70EI0 OOOOFO MAJOR 

toO 
IGGC19MB 076760 078760 0010AO MAJOR 

01 IGGC19MA C7CE88 07eE88 000978 MAJOR 
n IGG019CL e7E820 07E8l0 000040 MAJOR 
)r IGG019CF C7oFOO C10FCO 000100 MAJOR 

~ IGG019CE 071:038 07E038 000088 MAJOR 
t"'I IGGC19AJ C7EO(0 07EO(a 000120 MAJOR 
(I) IGG019AI C1ElEO e1E lEO 000080 "AJOR 01 

IGG019BB C1E8te C7E860 00C058 MAJOP 
::c 
01 

It;GOI9BA C7E2fC C7E260 0001RO "'AJOP 

i 
-...1 

Figure 21. Link Pack Area Map sample w 



...,J 

.t:: 

'tI 
t1 g 
tot 
AJ· 

B 
m 
t1 . 
OJ 

~ .... 
0. 
tD 

(t" 
o 
tj 
tD 
t:r 
c: 

\Q 
\Q .... 
::s 
\Q 

-~ 
m .... 
tD 
AJ 
en 
m 
to.,) 
~ -

M~DUlF I~DSAD~P DATE 11/12/70 TI~E 00.15 DAGE 002 0 

JOB JOB4 STEP GO pqOCSTEP STEP1 

"''''**''' CURRENT TASK ***** 
TCB 020400 RBP 0002E410 PIE 00000000 DEB 00020ABC TID 0002E 1fO CIllP 00000000 TRN 00000000 

MSS 0002E710 PK-FLG FCOOOOOO FLG 00001B1B LLS OC02E3EO JLB 00000000 JPQ 0002E3E8 
RG 0-1 ooooooeo COOOC066 00020FBC 00000000 00020660 000201E8 0002E234 000208A8 
RG 8-15 OC02CFAO 000COOOO 0002DFC8 0005DF08 40050E56 00050F08 6001F060 60008342 
fSA 0006BF68 TCB COCOOOOO TME 00000000 JST 00020400 ~Te 00000000 OTC 0002D1E8 
LTC 00000000 loe 00000000 ECB 00020FC4 TSPR 00000000 O-POE J002E170 SQS 00020A90 
STA CCCCCOOO lCT 0002CF28 USR 00000000 DAR 00000000 RES 00000000 JSCB 0002E33C 

ACTIVE R8S 

!>RB 02E410 RES V OCOOOOOO APSW 00000000 we-SZ-STAB 00040082 J:L-CDE 0002E5E8 psw FFF50009 AC050EF9 
Q/TTR OOOCOOOO ",T-LNK 00020400 NM GO EPA OSDE50 STA 050E50 LN 0001BO ATRl OB 

"1AIN STORAGE 

o-PQE 0002E710 FIRST 0002:688 LAST 0002E688 

PQ':: 02E686 FF6 OOC5ECCO lFB CCC~EOOO NPQ 00000000 PPO 00000000 
TCS 000201E8 RSI COOOFOOO RAO 00050800 FLG 0000 

LOAD LIST 

COE 02E3E8 NM RETURNS LSE 01 RESP 01 ATRl OB EPA 05DOC8 STA 0500C8 l~ 000088 
COE 0288S:> NM IGGCl9CC "'SE 03 PESP 01 ATRI 80 EPA 01E928 STA 01E928 IN COOO08 
COE 028620 N~ IGG019CH I.SE 03 f<ESP 01 ATRol 80 EPA 07E8B8 STA 07E8B8 LN 000070 
COE 02S730 NM IGG019AC l.SE 02 PESP 01 ATR1 BO EPA 070848 STA 070848 L~ 0000E8 
CuE 026BFO NM IGGOl~AQ LISE 03 RESP 01 ATRI SO EPA 01F020 STA 071=020 L~ 000018 

JOB PACK QUEUE 

COE OlE3E8 NM RETURt-;S USE 01 RESP NA ATRI 06 EPA 0500C8 STA 0500C8 L~ 000088 
COE 02E5E8 NM GO uSE 01 RESP NA ATRI 08 EPA 050f50 STA OSDE50 IN OOOlse 

ilE8 020ABC APPENDAGES E~O OF EXT 07E8B8 SID 000072 PCI 000072 CH END 000012 AS END 000072 
PFX ()OOOOOOO C5000006 0OO10BEO 11 OOCOOO 
TeB 04020400 "DEB lCCOOOOO 
AVT 0402CA98 

FM-UCS 
580026AC 

TIOT 02EIFO JOB J084 

OFFSET 
0018 
002C 

START END 
00020003 COC20003 

STEP GO 

IN-STA 
140401Cl 
1404J!:1 

CDNAH 
PG~=*.DD 
Ou~'Io\Y 

ASVN F800000e S PRG 00000000 

TRKS 
0001 

PROC STEP 1 

TTR-STC 
00211500 
C0271900 

ST8-UCS 
800026AC 
8C002t-AC 

Figure 22. sample of MVT Major Control Block Format 

UPRG 0106BE18 PLST IBOOOOOO DCB FF050f.aO 



Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

MAJOR SYSTEM CONTROL BLOCK FORMATS 

Formatting of the major system control 
blocks associated with a task is a function 
of either a FORMAT control statement, or 
one of the several noted parameters 
associated with the PRINT control 
statement. The control blocks of several 
tasks may be printed dur ing one execution 
of IMDPRDMP. When more than one task is 
printed, the associated task control blocks 
(TCBs> are grouped into a TCB summary, 
listed follCMing the printing of all 
requested tasks. This summary provides an 
index to the formatted TCBs by jobname. 
see the discussion "Task Control Block 
Summaries .ft 

For ease of identifying various dump 
printouts, specific headings are printed on 
each dump; such as FORMAT, DAR AND F03 
TASKS, PRINT CURRENT, and PRINT JOBNAME. 

Each task being printed begins on a new 
page, identified by two heading lines. The 
first heading line contains the optional 
title supplied by the user, the name of the 
module that invoked the dump, and the date 
and time that the information was gathered 
from the dumped system, and a page number. 
The second line of the heading identifies 
the particular task being printed. This 
task information is broken dCMn into the 
following named fields: 

UNKNaJN 
JOB cccccccc 

The JOB field displays the 
eight-character name that was 
specified in the label field of the 
JOB statement. 

UNKNOWN indicates that the job name is 
unavailable. 

STEP cccccccc 
The STEP field shows the eight
character step name of the problem 
program associated with the task being 
dumped. This n arne was suppl ied in the 
label field of the EXEC statement. 

PROCSTEP cccccccc 
If the job step being displayed was 
invoked from a cataloged procedure, 
the step name of the cataloged 
procedure, as contained in the 
cataloged procedure's EXEC statement, 
is displayed in this field. 

If the task being printed was in control 
at the time the dump was taken, a third 

heading line follows the two previously 
described. The line "**** CURRENT TASK 
****W identifies the TCB a$sociated with 
the task in control when the dump was 
taken. 

While formatting the dumped control 
bloc ks, IMDPRDlvlP may issue various output 
comments to assist the person who analyzes 
the printout. '!he output comments are 
discussed following the control block 
discussion. 

Specific formatting of the major system 
control blocks is dependent upon the 
operating system option under which the 
dumped system was operating. To allow the 
reader to concentrate on the particular 
operating system with which he is 
concerned, the discussion of control block 
formatting is divided into three parts: 
MVT, MFT, and the TSO option of MVT. 

MVT Control Block Formatting 

The formats described below are repeated 
for each requested task that is printed. A 
sample of the major system control blocks, 
as formatted from an MVT dump, is shown in 
Figure 22. 

MVT TASK CONTROL BLOCK (TCB> FORMATTING: 
The task control block (TCB> contains 
information that pertains to the specific 
task named in the heading lines that appear 
at the top of the page. Each TCB is 
formatted as follows: 

TCB hhhhhh 
The address of the task control block 
being displayed is given in this first 
field. 

RBP hhhhhhhh 
The address of the request block (RB) 
that was currently associated with the 
task represented by this TCB. 

PIE hhhhhhhh 
The address of the first program 
interrupt element (PIE) enqueued by 
this TCB. 

DEB hhhhhhhh 
The address of the beginning of the 
data extent block (DEB) queue that was 
associated with this task. 
Information on the contents of each 
DEB in the queue is given in a 
separate portion of this MVT dump 
listing. 

IMDPRDMP Output Formatting: MVT -- TCB 75 



Page of GC28-667o-S,6, Revised April 16, 1973, By TNL: GN28-2545 

TIO hhhhhhhh 
The address of the task input output 
table (TIOT) that Was constructed 
during device allocation for the task 
represented by this TeB. The contents 
of this table are displayed in a later 
portion of this task':3 display. 

CMP hhhhhhh 
This word contains ABEND indicators 
and user and system completion codes. 
The usage of this field is as follows: 

byte 0 
1 ••• 

.1 .. 

•• xx xxxx 

bytes 1-3 

Bit 0 indicates that a 
dump had been requested. 
Bit 1 set indicates that 
a step ABEND had been 
requested. 
Bits 2 through 7 are 
reserved for future use. 

The first 12 bits contain a system 
completion code. These codes and 
their meanings are explained in the 
publication IBM system/360 Operating 
System: Messages and Codes, GC28-6631 
under the heading ·system Completion 
Codes.- A user completion code is 
contained in the last 12 bits. 

FOr a system completion code of aco, 
denoting an imprecise interruption on 
a Model 91 or Model 195, digits six 
through eight contain the imprecise 
interruption configuration. These bit 
settings represent bits 16 through 27 
of the program old PSW (location 
X'28') at the time of the program 
exception. Therefore, in the TCB CMP 
field, bits 20 through 29 are 
significant for a Model 91, while a 
Model 195 makes use of all the bits 
(20 through 31). For further 
discussion on interpreting the 
imprecise interruption configurat.ion 
refer to the public~tion IBM 
System/360 Operating system: 
Supervisor Services, Order 
No. GC28- 6646. 

TRN hhhhhhhh 
Contains flags and TESTRAN indicators 
as follows: 

byte 0 
1 ••• 

.1 ..... . 

, .. 1 ..•. '. 

Bit 0 set indicates that 
both TESTRAN and decimal 
simulator programs were 
being used on a 
System/360 Model 91 
machine. 
Bit 1 set indicates that 
checkpoints were not 
taken for this step. 
Bit 2 set indicates that 
the TeB being displayed 

· .. 1 .... 

x ••• 

.1 •• 

· . .. ..1. 

· . .. . .. x 

bytes 1-3 

belonged to either a 
graphics foreground or 
the graphic job 
processor~ 

Bit 3 set indicates that 
the TCB being displayed 
was associated with a 
7094 emulator task that 
was being run on a 
System/360 Model 85 
machine. 
Bit 4 is reserved for 
future use. 
Bit 5 set indicates that 
this is a time shared 
task under control of 
the TEST command 
processor. 
Bit 6 set indicates that 
the OLTEP functions 
require cleanup before 
abnormal termination can 
be invoked. 
Bit 7 is reserved for 
future use. 

The address of the control core table 
that was used by TESTRAN. 

MSS hhhhhhhh 
Main storage supervision information 
as follows: 

byte 0 
This byte determined roll-out. 
eligibility for the job step 
associated with this TCB. 

00 in this byte indicated that the job 
step may be rolled out. 

nz (nonzero) in this byte indicated 
that the job step may not be rolled 
out. 

bytes 1-3 
These bytes contain the starting 
address of the last subpool queue 
element (SPQE). 

PR-FLG hhhhhhhh 
The storage protection key of the task 
am a series of flags. This word is 
divided into several subfields. These 
are: 

byte 0 
xxxx 

byte 1 
1 .•• 

0000 

The storage protection 
key of the tas k 
represented by this TCB. 
Always contain zeros. 

Bit 0 set indicates 
thatan abnonnal 
termination was in 
progress at the time the 

76 Programmer's Guide to Debugging (Release 21.7) 



.1.. . ... 

.• 1 •.... 

dump was taken. 
Bit 1 set indicates that 
a normal termination was 
in progress at the time 
the dump was taken. 
Bit 2 set causes the 
Erase routine in ABEND 
to enter when ABEND is 
in control again. 

••• 1 .••• 

• • •• 1 ••• 

Bit 3 set causes the 
Purge routine in ABEND 
to enter when ABEND is 
in control again. 
Bit 4 set indicates that 
the Graphics Abnormal 
Termination routine was 
in control of the task 
associated with this TCB 

IMDPRDMP output Formatting: MVT -- TCB 76.1 



Page of GC28-6610-5,6, Revised April 16, 1913, By TNL: GN28-2545 

116.2 Programmer's Guide to Debugging (Release 21.1) 



...... 1 .. 

...• • .1. 

•. ' .• ,. .• 1 

byte 2 
1, ••• 

.1,. '. .. ••• 

.. ,.1 ...... 

· .. 1 ' ..•. 

· . .• 1 •.• 

• . .. .1 .. 

· . .. , .. 1. 

• • •• •• '. 1 

at the time the dump was 
taken. Bit 7 in byte 3 
of this word must also 
be on. 
Bit 5 set indicates that 
the top task in the TCB 
chain (usually the job 
step TeB) was in the 
process of being 
terminated when the dump 
was taken. 
Bit 6 set indicates that 
an abnormal dump has 
been completed. 
Bit 7 indicates that 
asynchronous exits could 
not be scheduled. 

Bit 0 set indicates that 
the SYSABEND (or 
SYSUDUMP) data set for 
the job step is being 
opened. Operands of 
ABEND macro instruction 
have been saved in 
TCBCMP field. 
Bit 1 set indicates that 
if this is an initiator 
TCB, the second job step 
interval has expired. 
Bit 2 set indicates that 
for a job step TCB, the 
job step can cause 
rollout. 
Bit 3 set indicates that 
the current task had a 
forced completion 
imposed upon it. Other 
tasks in the system 
could not have been 
performed until the 
current task had been 
completed. 
Bit 4 set indicates that 
the job step had a 
forced completion 
imposed upon it. Other 
tasks in the job step 
could not have been 
performed until the 
present job step had 
been completed. 
Bit 5 set indicates that 
the SYSABEND (or 
SYSUOUMP) data set has 
been opened for the job 
step. 
Bit 6 set indicates that 
an EXTR exit was 
requested by an 
attaching task. 
Bit 7 set indicates that 
the task associated with 
this TCB was a member of 
a time-sliced group. 

byte 3 
1 ... 

.1 ...... . 

' . . 1. . ... 

..• 1 ... x 

· .•. 1 .. x 

••••. 1 •• 

• • •• • ,.1x 

• , •• x x.xl 

FLG hhhhhhhh 

Bit 0 set indicates that 
a PSW.associated with 
the task represented by 
this TCB was in the 
supervisor state. 
Bit 1 set is applicable 
to job step TCBs. 
setting of this bit 
indicates that the job 
step had invoked 
rollouts that were still 
in effect at the time 
the dump was taken. 
Bit 2 set indicates that 
ABEND was processing in 
such a manner as to 
prevent multiple ABENDS 
from occurring in the 
dumped system. 
Bit 3 set indicates that 
the SYSABEND (or 
SYSUDUMP) data set is 
being opened by this 
task. (See also bit 7.) 
Bit 4 set indicates that 
an ABDUMP was in process 
for the task associated 
with this TCB at the 
time the dump was taken. 
(see bit 7 of this 
byte. ) 
Bit 5 set is applicable 
only for job step TCBs. 
With this bit set, no 
abnormal termination 
dumps could have been 
provided within the job 
step represented by this 
TCB. 
Bit 6 set indicates that 
a CLOSE had been issued 
during ABEND processing. 
(See bit 7 of this 
byte. ) 
Bit 7 set, in 
conjunction with bits 3, 
4. or 6 of this byte or 
bit 4 in byte 1 of this 
word indicates that, had 
the dumped system been 
allowed to continue 
processing without 
interruption by the 
IMDSADMP dump program, a 
valid reentry to ABEND 
would have been 
effected. 

This field displays a further series 
of flags and certain priority 
indicators. This word is divided into 
subfields as follows: 

IMDPRDMP Output Formatting: MVT -- TeB 77 



byte 0 
If anyone of the flags compr~s~ng 
this byte were set at the time the 
dump was taken, the task represented 
by this TCB was considered to be 
non-dispatchable. 

1 ..• 
.x •• 

•• 1. 

••• x xx •• 

•• 1. 

'e •• '. • •• 1 

byte 1 

Bit 0 was set by ABDUMP 
Bi t 1 is reserved for 
future use. 
Bit 2 set indicates that 
the supply of I/O 
request queue elements 
(RQEs) had been 
exhausted. 
Bits 3 through 5 are 
reserved for future use. 
Bit 6 is applicable only 
to M65 multiprocessing 
situations. The setting 
of this bit indicates 
that the task 
represented by this TCB 
had been flagged 
non-dispatchable by one 
CPU to prevent any CPU 
from working on it. 
Bit 7 set indicates that 
the task associated with 
this TCB entered the 
ABEND routine while the 
data control block 
representing the 
SYSABEND data set was 
being opened for another 
task. 

If anyone of the flags compr~s~ng 
this byte were set at the time the 
dump was taken, the task represented 
by this TCB was considered to be 
non-dispatchable. 

1... •••• Bit 0 set indicates that 
the task represented by 
this TCB was terminated 
prior to the time the 
dump was taken. 

.1. '. •••• Bit 1 set indicates that 
the task represented by 
this TCB was a candidate 
for termination by 
ABEND. 

•• 1. •••• Bit 2 set indicates that 
a routine of the task 
represented by this TCB 
issued an unconditional 
GETMAIN that could only 
have been satisfied by 
the rolling out of 
another job step. 

••• 1 •• '.. Bit 3 indicates that the 
job step associated with 
this TCB was rolled out. 

•••• 1... Bit 4 set indicates that 
another task was in 
systern-must-com~lete 
status. 

' ...• ' . . 1 .• 

. '. .. . .1. 

.'.' •• , ••• 1 

byte 2 

Bit 5 set indicates that 
another task in this job 
step was in 
step-must-complete 
status at the time the 
dump was taken. 
Bit 6 is applicable only 
for an initiator task. 
setting of this bit 
indicates that a request 
for a region could not 
be satisfied. 
Bit 7 is the primary 
non-d!spatchability 
indicator. setting of 
this bit indicates that 
one or more of the 
secondary 
non-dispatchability bits 
(bytes 1-3 of the DAR 
field) was set at the 
time the dump was taken. 

The dispatching priority limit for the 
task represented by this TCB. 

byte 3 
The dispatching priority of the task 
represented by this TCB. 

LLS hhhhhhhh 
The load list element (LLE) for the 
program that was loaded by means of 
the LOAD macro instruction. 

JLB hhhhhhhh 
The address of the data control block 
associated with the JOBLIB associated 
with the task. 

JPQ hhhhhhhh 
Contains information pertaining to a 
job step TCB as follows: 

byte 0 
1 ... 

.xxx xxxx 

bytes 1-3 

Bit 0 set indicates that 
if the associated job 
step had been allowed to 
continue processing 
without being 
interrupted by the dump 
program, the job step 
would have been purged. 
Bits 1 through 7 are 
reserved for future use. 

The address of the last contents 
directory entry for a job pack area 
(JPA) control queue • 

RG 0-7 and RG 8-15 
The register save area of the TeB 
being displayed. The general 
registers were stored in this area 
upon entry to the first routine 
invoked in the task. On entry to any 

78 programmer's Guide to Debugging (Release 21) 



task, register 13 points to this TCB's 
register save area. This pointer is 
useful in locating the entry points of 
first routines and in tracing the save 
area chains .. 

FSA hhhhhhhh 
The address of the first problem 
program save area. 

TCB hhhhhhhh 
The address of the TCB that had the 
next lowest priority on the ready 
queue at the time the dump was taken. 

TME hhhhhhhh 
The address of the timer element. 

JST hhhhhhhh 
The address of the first TCB for a job 
step. For tasks with a storage 
protection key of zero (as shown in 
the first byte of the PK-FLG field), 
this word contains the address of this 
TCB. 

NTC hhhhhhhh 
The address of the previous TCB that 
existed on the originating task's 
queue of subtask TCBs (sister). If 
this TCB was the first on the queue, 
this field contains zeros. 

OTC hhhhhhhh 
The address of the TCB representing 
the originating task (mother). 

LTC hhhhhhhh 
The address of the last TCB that 
existed on the originating task's 
queue of subtask TCBs at the time the 
dump was taken (daughter). If this 
TCB was the last on the queue, this 
field contains zeros. 

IQE hhhhhhhh 
The address of the interruption queue 
element (IQE) that was used in 
scheduling the EXTR routine on the 
originating task. 

ECB hhhhhhhh 
The address of the event control block 
(ECB) that would have been posted by 
the supervisor's task termination 
routines had either normal or abnormal 
task termination been allowed to 
occur. 

TSPR hhhhhhhh 

byte 0 
This field contains flags that 
indicate the status of the time 
sharing (TSO). Without TSO or when 
TSO has not been started, this field 
contains zeros. 

1 ......... Bit 0 set indicates that 
this task is a time sharing 
task. 

.1 •.•••.•• Bit 1 set indicates that the 
time sharing task should be 
set non-dispatchable. This 
bit was set by the TCBSTP 
routine while the routine 
was not executing as a 
pri vi leged program. 

•.• 1. • ••• Bit 2 set indicates that the 
system is executing and 
requires that the time 
sharing task must not be 
interrupted by the attention 
exit or by the STATUS SVC. 

• .•• 1 ••.•• Bit 3 set indicates that a 
terminal I/O purge is 
required. 

byte 1 

xxxx Bits 4 through 7 are 
reserved for future use. 

This field contains the number of SET 
STATUS starts required to make this 
time sharing task dispatchable. 

byte 2 
This field contains the limit priority 
of the time sharing task. 

byte 3 
This field contains the dispatching 
priority of the time sharing task. 

D-PQE hhhhhhhh 
The address of the region dummy 
partition queue element minus 8 
(DPQE-8). 

SQS hhhhhhhh 
The address of an allocated queue 
element (AQE) which contains the 
amount of available bytes assigned to 
this task in the system queue area 
(SQA), and a pointer to the next AQE 
for this task. 

STA hhhhhhhh 
Internal STAE routine flags and the 
address of the STAE control block that 
was in effect at the time the dump was 
taken. 

TCT hhhhhhhh 
This word contains information 
pertaining to the dumped system's 
timing control table (TCT). The TCT 
field is divided into the following 
two subfields: 

byte 0 
Reserved for future use. 

IMDPRDMP Output Formatting: MVT -- TCB 79 



bytes 1-3 
If the system management facilities 
option was present in the dumped 
system. these bytes contain the 
address of the dumped system's timing 
control table. 

USR hhhhhhhh 
This word is available to the user of 
the dumped system. It contains any 
information placed in it by the user. 

DAR hhhhhhhh 
The contents of this field were used 
by the damage assessment routines 
(DAR). Certain subfields displayed in 
this word were also used to control 
the dispatchability of the dumped 
task. The DAR field is divided into 
the following subfields: 

byte 0 
The first byte of the DAR field 
contains DAR flags. These flags are 
as follows: 

1..... • ••. 

.1.... • '. e·. 

•• xx 

1 .... 

.xx. 

.. . 1 

byte 1 

Bit 0 set indicates that 
primary DAR recursion 
occurred in the dumped 
system. The damage 
assessment routine 
failed while writing a 
main storage image dump. 
Bit 1 set indicates that 
secondary DAR recursion 
occurred in the dumped 
system. The damage 
assessment routine 
failed while attempting 
to reinstate a failing 
region or partition. 
Bits 2 and 3 are 
reserved for future use. 
Bit 4 set indicates that 
the system error task is 
failing. The DAR dump 
should not request any 
error recovery procedure 
(ERP) processing. 
Bits 5 and 6 are 
reserved for future use. 
Bit 7 set indicates that 
an SVC dump is executing 
for this task. 

Bytes 1 through 3 of the DAR field are 
used to store secondary 
non-dispatchability flags. If any of 
the flag bits in this subfield were 
set, the primary non-dispatchability 
bit (the last bit in the FLG field) 
will also have been non-dispatchable. 
The bit settings that may appear in 
byte 1 are as follows: 

1 ..... ,. .... 

.1 ..... ' .. 

•• xx •• ' •• 

•• 1.. • .... 

.... 1 ' .•.. 

x ••• 

.1 .. 

'. • •• ' •• xx 

byte 2 

Bit 0 set indicates that 
the task represented by 
this TCB is temporarily 
non-dispatchable. 
Bit 1 set indicates that 
the task represented by 
this TCB is permanently 
non-dispatchable. 
Bits 2 and 3 are 
recovery management 
sUPE0rt and system error 
recovery flags. Their 
meanings are: 
Bit 2 set indicates that 
the task represented by 
~his TCB is temporarily 
non-dispatchable. 
Bit 3 set indicates that 
the task represented by 
the TeB is permanently 
non-dispatchable. 
Bit 4 is reserved for 
future use. 
Bit 5 set indicates that 
this task is temporarily 
non-dispatchable. Timer 
services have been 
requested and the 
time-of-day clock is 
still inoperative,. 
Bits 6 and 7 are 
reserved for future use. 

The bit settings for byte 2 are as 
follows: 

x ••• 

.1 ... 

.. 1 .... 

... 1 .... 

'. '. ... 1 •.• 

•• ,w. .1 .. 

_ .xx 

byte 3 

Bit 0 is reserved for 
future use. 
Bit 1 set indicates that 
this task has been 
stopped by a STATUS 
stop_ 
Bit 2 set indicates that 
task is 
non-dispatchable. An 
SVC dump is executing 
for another task. 
Bit 3 set indicates that 
this task is being 
swapped out by the time 
sharing (TSO) • 
Bit 4 set indicates that 
this task is in an input 
wait state. 
Bit 5 set indicates that 
this task is in an 
output wait state. 
Bits 6 and 7 are 
reserved for future use. 

Reserved for future use. 

xx.. •••• Bits 0 and 1 are set by 
the damage assessment 
routines. Their 
meanings are: 

RES hhhhhhhh 
Reserved for future use. 

80 Programmer's Guide to Debugging (Release 21) 



Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

JSCB hhhhhhhh 
The address of the job step control 
block. 

RES hhhhhhhh 
Reserved for future use. 

IOBRC hhhhhhhh 
Contains the address of the lOB 
restore chain for I/O quiesced by 
end-of-task. 

MVT ACTIVE REQUEST BLOCK (RB) FORMATTING:. 
Request blocks (REs) were used by the lines 
at the top of the dump page and in the 
preceding TCB display, are listed in the 
portion of the dump listing labeled "ACTIVE 
RBS." Information on each RB associated 
with the task is formatted as shown below: 

PRB 
IRB hhhhhh 
SVRB 
SIRE 

Each RB display is preceded by a field 
that indicates the type and address of 
the RB being displayed. The four 
types of RBs that may be displayed 
under an MVT task are: 

PRB 

IRB 

SVRB 

SIRB 

program request block 

interruption request block 

supervisor request block (SVREs 
may be divided into two 
categories; type 2 for resident 
routines and type 3 or 4 for 
transient routines) 

system interruption request 
block. 

The type acronym for each RB is 
displayed in the first portion of the 
field. The starting address of the 
indicated request block appears in the 
last portion of the field. The 
contents of certain fields in the body 
of the formatted display are dependent 
upon the type of RB being displayed. 
variations in display field usage are 
noted in the descriptions of the 
fields in which they occur. 

RESV 
TAB-LN hhhhhhhh 
FL-PSA 

This field shows both the function and 
the first word of the request block 
being displayed. The meanings of the 
function indicators and the values 
that follow them are: 

RESV 
indicates that the request block 
is either a PRB or an SVRB for 

resident routines. The first 
word of these particular RBs is 
reserved for future use and 
contains zer03. 

TAB-LN 
indicates that the request block 
being displayed is used as an 
SVRB for transient routines. The 
value field is divided into two 
subfields of two bytes each. The 
first two bytes show the 
displacement of the entry paint 
of the module represented by this 
SVRB from the beginning of the 
transient area control table 
(TACT). The second subfield 
shows the length, in h¥tes, of 
the SVC routine. 

FL-PSA 
indicates that the RB being 
displayed is an IRB. The value 
portion of this field is divided 
into two subfields. The first 
subfield has a length of one byte 
and contains indicators for the 
titrer routines. When there were 
no timer routines, this field 
contains zeros. The timer 
routine indicators set at the 
time the dump was taken are shown 
as: 

1... indicates that the 
timer element was not 
on queue. 

.1. • indicates that the 
local time-of-day 
option was used. 

•• 00 indicates that the 
titre interval was 
requested in timer 
units. 

•• 01 indicates that the 
time interval was 
requested in binary 
units. 

•• 11 indicates that the 
time interval was 
requested in decimal 
form. 

1... indicates that the 
time interval had 
expired. 

.000 indicates a task 
request 

.100 indicates a task 
request with an exit 
specified. 

• 001 indica tes a wait 
request. 

.011 indicates a real 
request • 

• 111 indicates a real 
request with an exit 
specified. 

IMDPRDMP Output Formatting: MVT -- Tea 81 



The second subfield is three 
bytes long and contains the 
starting address of the problem 
program register save area (PSA). 

APSW hhhhhhhh 
The APSW field displays information 
pertaining to the program status word 
that was active at the time the dl.mlp 
Was taken. The functional variations 
associated with the usage of this 
field are: 

• PRBs being formatted contain the 
right half (bytes 4 through 7) of 
the problem program's PSW when an 
ABTERM interruption occurred. 

• IRBs, SIRBs, and SWBs for resident 
routines use this field to display 
the right half (bytes 4 through 7) 
of the PSW that was active, in the 
dumped system, during the 
execution of an ABEND or ABTERM 
routine. If no ABEND or ABTERM 
routine was envoked in the dumped 
system, this field contains zeros. 

00 •• 

01 •• 

10 •• 

11 •• 

... x. x. xx 

••. 1 

. . .. .1 .. 

settings for these two 
bi ts and their meanings 
are: 
This is a program 
request block (PRS). 
This is an interrupt 
request block (IRB). 
This is a system 
interrupt request block 
(SIRB) • 
This is a supervisor 
request block (SVRB). 
Bits 2, 4, 6 and 7 are 
reserved for future use. 
Bit 3 set indicates that 
this request block is an 
SVRB for a transient 
routine. 
Bit 5 is applicable only 
if the request block 
being displayed is an 
SVRB. If this bit is 
set, a checkpoint could 
have been taken in a 
user exit from the SVC 
routine associated with 
this RB. 

byte 3 
• SVRBs for transient routines use 

this field in much the same way as 
SWBs for resident routines. If 
an ABEND or ABTERM routine was 
invoked in the dl.mlped system, 
bytes 4 through 7 of the 
associated PSW are displayed in 
this field. If an ABEND or ABTERM 
routine was not invoked, this 
field contains the last four 
characters of the name of the 
requested routine. (The last two 
characters of the name represent 
the svc number.) 

WC-SZ-STAB hhhhhhhh 
This field conta1ns information 
pertaining to wait conditions, request 
block sizes, and RB status and 
attribute character istics. This field 
is divided into three subfields, as 
follOllis: 

byte 0 
The wait count that was in effect at 
the time of the dump. 

byte 1 
The size of this request block. This 
RB size is expressed as the number of 
doublewords comprising the block. 

byte 2 
The last two bytes of the WC-SZ-STAB 
field contain bit settings that 
reflect the status and attr ibutes of 
the request block. The settings that 
may appear in byte 2 are: 

xx.. • ••• Bits 0 and 1 indicate 
the type of RB being 
displayed. The possible 

82 Programmer's Guide to Debugging (Releaqe 21.7) 

The last byte of the WC-SZ-STAB field 
contains more status and attribute 
flags. The possible settings for this 
subfield and their meanings are: 

1. .. . ... 

.1 ..... . 

•• x. 

. .. 1 

•••• xx •• 

• • •• 00 •• 

Bit 0 set indica tes tha t 
the WT-LNK field in this 
RB display, contains in 
its last three bytes, 
the address of the 'l'CB 
to which this request 
block is linked. 
Bit 1 applies only to 
IRBs arid SIRBs. If this 
bit is set, the 
indication is that at 
the time the dump was 
taken, the program 
associated with this RB 
was active. 
Bit 2 is reserved for 
future use. 
Bit 3 is applicable only 
to IRBs. The s ett ing of 
this bit is an 
indication that the IRB 
was associated with an 
ETXR exit routine. 
Bits 4 and 5 concern 
interruption queue 
elements (IQEs) and 
request queue elements 
(RQEs). This flag is 
used as follows: 
This setting indicates 
that the request queue 
e letrent was not to be 
returned to the free 
list when the exit was 
taken. 



• •.. 01 ... 

.' •• '. 10, •• 

• '.... 11 •• 

· . .. ..1. 

• '. ... •• '. x 

' •• ' •••• >.0 

' ••• '. '. ' •• 1 

This setting indicates 
that the IRB had queue 
elements for 
asynchronously executed 
routines that were RQEs. 
This setting is 
applicable only if the 
RB being displayed is an 
IRB. 
This setting indicates 
that the IQE was not to 
have been returned at 
EXIT. 
This setting is 
applicable only to IRBs. 
If this setting appears, 
the indication is that 
the IRB had queue 
elements for 
asynchronously executed 
routines that were IQEs. 
Bit 6 set indicates that 
request block storage 
could be freed at the 
time of exit. 
Bit 7 indicates request 
wait conditions. The 
meanings of the two 
possible settings for 
this bit are: 
Bit 7 not set indicates 
that the request had to 
wait for a single event 
or all of a number of 
events .• 
Bit 7 set indicates that 
the request had to wait 
for a number of events. 
This number of events 
was less than the total 
number of events that 
were waiting. 

FL-CDE 
EPA hhhhhhhh 
TQN 

This field shows both the function and 
the fourth word of the request block 
being displayed. The meaning of the 
function indicator and the value 
following it is given below: 

FL-CDE 
the request block being displayed 
is either a PRB or an SVRB for a 
resident routine. The value 
field is divided into two 
elements. The first subfield has 
a length of one byte and contains 
control flag settings. 

These control flags are as 
follows: 

xxxx x... Bits 0 through 4 are 
reserved for future 
use. 

EPA 

TON 

.1.. indicates that a SYNC 
macro instruction was 
requested. 

•• 1. indicates that an 
XCTL macro 
instruction was 
requested. 

••• 1 indicates that a LOAD 
macro instruction was 
requested. 

The second subfield is three 
bytes long and contains the 
address of the contents directory 
entry (CDE) representing the 
module that this request block 
was associated with. 

The request block being displayed 
is an IRB. The value field 
contains the entry point address 
of a routine that was 
asynchronously executed. 

The request block being displayed 
represents a transient routine 
SVRB. The value field contains 
the address of the next request 
block that was on the queue of 
transient routines. 

PSW hhhhhhhh hhhhhhhh 
The resume program status word. This 
PSW represents the status of the 
program represented by the RB being 
displayed when a ~ RB was created. 
Had the dumped system been allowed to 
continue processing without being 
interrupted by the dump program. 
operation would have resumed on this 
psw. 

Q/TTR hhhhhhhh 
This word is used to display various 
data. depending upon the type of 
request block being displayed. Usage 
of the Q/TTR value field is used by 
each type of request block as follows: 

• PRBs and SVRBs that represented 
resident routines do not use this 
field: the first byte always 
contains zeros. Bytes 1 through 3 
of the field show the address of a 
request block that requested the use 
of the same serially reusable 
program. 

• IRBs utilize this field in one of 
two ways. to show either the 
three-byte link-field segment or the 
two-byte link-field segment. 
depending upon the IRB usage. The 
three-byte link-field segment 
appears in the Q/TTR value field as 
follows: 

IMDPRDMP Output Formatting: MV'l' -- TCB 83 



byte 0 
Contains a count of the number of 
requests for the same exit (ETXR). 
This use count is utilized by the 
ATTACH macro instruction. 

byte 1-3 
Contains the starting address of 
the queue of interruption queue 
elements (IQEs). 

Alternately, the Q/TTR value field 
may be formatted to show the 
two-byte link-field segment. In 
this instance, the field is used 
thusly: 

byte 0-1 
Reserved for future use. 

bytes 2-3 
The starting address of the queue 
of request queue elements (RQEs). 

• SVRBs that represented transient 
routines display two data elements 
in this field. The first subfield 
has a length of one byte and shows 
the number of requests if the 
transient routi~~ was overlaid. The 
last three bytes of the Q/TTR field 
contain the relative direct access 
device address for the associated 
supervisor routine in the form TTR. 

WT-LNK hhhhhhhh 
This field displays information 
pertaining to wait counts and request 
block linkages. In the case of a 
transient SVC, if this field contains 
x'FF', either the routine represented 
by the SVRB is currently being brought 
into the transient area, or this 
routine has been displaced in the 
transient area by a routine requested 
by a higher priority task. TO tell 
what has happened, compare the APSW 
and NM field contents as described 
under NM below. This field is divided 
into two subfields, one with a length 
of one byte and the other with a 
length of three bytes. These 
subfields show the following: 

byte 0 
The number of requests that were 
pending at the time the dump was taken 
(wait count) .. 

byte 1-3 
The address of the next request block 
on the RB queue. In the last RB on 
the queue, this field contains the 
address of the task control block 
(TCB). 

NM cccccccc 
The eight character name of the load 
module represented by the, request 
block being displayed with a possible 
exception for transient SVRBs. 

If byte 0 of the WT-LNK field contains 
x'FF', it is possible that the module 
represented by this SVRB has been 
overlaid in the transient area by a 
module requested by a higher priority 
task. Compare the APSW field, 
(providing it contains the four 
low-order bytes of a module name) with 
the last four characters (the 
hexadecimal should be translated to 
EBCDIC) of the module name in the NM 
field. No match indicates the user of 
the transient area has been pre-empted 
by a higher priority task. NM 
therefore represents the module 
currently in the transient area, not 
the module represented by this SVRB. 

If a match results, NM correctly 
identifies the module name requested 
by this SVRB. 

EPA hhhhhh 
The address of the entry point of the 
module named in the NM field of this 
RB display_ 

STA hhhhhh 
The starting address of the module 
identified in the NM field of this 
RB's display. 

LN hhhhhh 
The length, in bytes, of the load 
module that is represented by this 
request block. 

ATR1 hh 
This one byte field displays the 
attributes of the described module. 
These attributes are taken from the 
contents directory entry associated 
with the module. The meanings of the 
attribute flag settings are given 
bel.ow: 

1 .... 

.1.,. ' •.•.•• 

.. 1. . ... 

. .. 1 ' .... 

Bit 0 set indicates that 
the module was resident 
in the link pack area. 
Bit 1 set indicates that 
at the time the dump was 
taken, the module 
represented by this 
request block was in the 
process of being 
fetched. 
Bit 2 set indicates that 
the module was 
reenterable. 
Bit 3 set indicates that 
the module was serially 
reusable. 

84 Programmer's Guide to Debugging (Release 21) 



...... 1 .. ' •. 

. ,... .1 .. 

.... . .1. 

....... • •.• 1 

Bit 4 set indicates that 
the module could not 
have been reused. This 
flag setting is not 
applicable if either bit 
2 or 3 is set. 
Bit 5 set indicates that 
the contents directory 
entry associated with 
this module reflects the 
use of an alias name. 
This info~ation applies 
only to minor CDEs. 
Bit 6 set indicates that 
the module was in the 
job pack area. 
Sit 7 set indicates that 
the module was 
considered not 
only-loadable. 

MVT MAIN STORAGE INFORMATION: Each task 
operating under the MVT option of the 
operating system was dynamically assigned a 
region of main storage that consisted of 
one or more 2K-byte subpool areas. To keep 
track of main storage allocations, the MVT 
supervisor maintained a partition queue 
associated with each region.. Composed of 
partition queue elements (PQEs), and 
residing in the system queue area, this 
partition queue was connected to the TCSs 
for each task in a job step through a dummy 
partition queue element (DPQE). 

Information on the areas of main storage 
allocated to each task, is presented to the 
user in a separate portion of each task's 
dump listing headed "MAIN STORAGE." This 
main storage information is formatted as 
shown below: 

0-PQE hhhhhhhh 
The address minus eight bytes of the 
dummy partition queue element (DPQE-8) 
connecting the partition queue to this 
task's TeB. ' 

FIRST hhhhhhhh 
The starting address of the first 
partition queue element (PQE) on this 
region" s partition queue. 

LAST hhhhhhhh 
The starting address of the last PQE 
on the partition queue. 

PQE hhhhhh 
The starting address of one of the 
partition queue elements on the 
partition queue bounded by the 
addresses given on the line above. 

FFB hhhhhhhh 
The starting address of the first free 
block queue element (FBQE) on the free 
block queue associated with this PQE. 

If no FBQEs exist. this field contains 
the address of the PQE being displayed 

LFB hhhhhhhh 
The starting address of the last free 
block queue element (FBQE) on the free 
block queue associated with this PQE • 
If no FBQEs exist, this field shows 
the starting address of this PQE. 

NPQ hhhhhhhh 
The starting address of the next 
partition queue element on the 
partition queue. If the PQE being 
displayed was the last PQE on the 
queue, this field contains zeros. 

PPQ hhhhhhhh 
The starting address of the partition 
queue element on the partition queue 
that preceded this PQE. If this PQE 
was the first on the queue, this field 
contains zeros. 

TeB hhhhhhhh 
The starting address of the TCB of the 
job step to which the described region 
is assigned. If this field contains 
zeros, the indication is that the area 
of main storage was obtained from 
unassigned free space. 

RSI hhhhhhhh 
The size of the region being 
described. This number is a multiple 
of 2K (2048). 

RAn hhhhhhhh 
The starting address of the ,region 
being described by this PQE. 

FLG hhh 
The FLG field shows the settings of 
several PQE flags whose meanings are 
given below: x'... . ... 

0.. •• •• ' •• 

1 ....... . 

.. 1. '. . .... 

.,.1 ... ' ••• 

,., •• x xxxx 

Bit 0 indicates region 
ownerShip. The meanings 
of the settings are: 
indicates that the space 
described by this PQE 
was owned by the 
associated task. 
indicates that the space 
described by this PQE 
was borrowed. 
The setting of bit 1 is 
meaningful only if bit 0 
was not set. If this 
bit is set and bit 0 is 
not set, the indication 
is that the region had 
been rolled out. 
Bit 2 set indicates that 
the region described by 
this PQE was borrowed by 
another task. 
Bits 3 through 7 are 
reserved for future use. 

IMDPRDMP Output Formatting: MVT -- Load List 85 



MVT LOAD LIST FORMATTING: A load list was 
maintained by the dumped system's 
supervisor in order to keep track of the 
load modules that were in main storage and 
the area of main storage each occupied. 
The load list maintained by a system 
operating under the MVT option of the 
operating system contained a series of load 
list elements (LLEs). each of which was 
associated with a particular load module 
through the use of a control block called a 
contents directory entry (CDE). A 
formatted listing of the dumped system's 
MVT load list appears as follows: 

CDE hhhhhh 
The starting address of the contents 
directory entry associated with this 
load list item. 

NM cccccccc 
The eight-character name of the entry 
point to the load module represented 
by this entry. 

USE hh 
The count of the number of uses 
(through the ATTACH, LINK and XCTL 
macro instructions) of the load 
module, and the number of times a LOAD 
macro instruction was issued for the 
module. 

RESP hh 

ATR1 

The responsibility count contained in 
the load list entry associated with 
the load module. This count indicates 
the number of requests made by the 
LOAD macro instruction for the 
indicated load module. This count was 
decremented by one for each occurrence 
of the DELETE macro instruction. 

hh 
The attributes of the load module 
described in this load list entry_ 
These attributes are taken from the 
contents directory entry associated 
with the module. The meanings of the 
attribute flag settings are given 
below: 

1 •• '. 

.1 .• ... '.'. 

.. 1. 

•• >.1 •• ' •• 

Bit 0 set indicates that 
the module was resident 
in the link pack area. 
Bit 1 set indicates that 
at the time the dump was 
taken, the load module 
represented by this load 
list element was in the 
process of being loaded. 
Bit 2 set indicates that 
the load module was 
reenterable. 
Bit 3 set indicates that 
the load module was 
serially reusable. 

'. • .. 1 •.. 

'. . .. .1.,. 

... '. . .1. 

• .•..•. 1 

EPA hhhhhh 

Bit 4 set indicates that 
the load module could 
not have been reused. 
This flag setting is not 
applicable if either bit 
2 or 3 is set. 
Bit 5 set indicates that 
the contents directory 
entry associated with 
this load module 
ref lects the use of an 
alias name. If this bit 
is set, this line of the 
load list display 
reflects information 
taken from a minor CDE. 
Bit 6 set indicates that 
the load module was in 
the job pack area. 
Bit 7 set indicates that 
the load module was 
considered not 
only-loadable. 

The address of the entry point of the 
load module named in the NM field of 
this load list display line .• 

STA hhhhhh 
This field contains the starting 
address of the load module identified 
in the NM field of this load list 
display line. 

LN hhhhhh 
The LN field supplies the user with 
the length, in bytes, of the load 
module represented by this load list 
entry (LLE). 

MVT JOB PACK QUEUE FORMAT: A job pack area 
control queue (JPACQ) exists for each job 
step in the dumped system that used a 
program not in the link pack area. The job. 
pack queue, like the link pack area, is 
made up of contents directory entries 
(CDEs). This area describes routines in a 
job step region that were brought into main 
storage by contents supervision routines to 
perform a task in the job step. The 
IMDPRDMP program displays the contents of 
the dumped MVT system's job pack queue as 
follows: 

CDE hhhhhh 
The starting address of the contents 
directory entry associated with this 
job pack queue element. 

NM cccccccc 
The eight-character name of the entry 
point to the load module represented 
by this entry. 

86 Programmer's Guide to Debugging (Release 21) 



USE hh 
. The count of the number of uses 

(through the ATTACH, LINK and XCTL 
macro instructions) of the load 
module., and the number of times a LOAD 
macro instruction was issued for the 
module. 

RESP NA 
This responsibility count field is 
flagged INA' to indicate that the 
information is not applicable to 
modules displayed in the job pack 
queue,. 

ATRl hh 
The attributes of the load module 
described in this jab pack queue 
entry. These attributes are taken 
from the contents directory entry 
associated with the module. The 
meanings of the attribute flag 
settings ares 1... Bit 0 set indicates that 

the module was resident 
in the link pack area. 

.1.. Bit 1 set indicates that 
at the time the dump was 
taken, the load module 
represented by this job 
pack queue entry was in 
the process of being 
loaded • 

• 41. Bit 2 set indicates that 
the load module was 
reenterable. 

•.•• 1 Bit 3 set indicates that 
the load module was 
serially reusable. 

1... Bit 4 set indicates that 
the load module could 
not have been reused. 
This flag setting is not 
applicable if either bit 
2 or 3 is set. 

•••• • 1.. Bit 5 set indicates that 
the contents directory 
entry associated with 
this load module 
reflects the use of an 
alias name. If this bit 
is set, this line of the 
job pack queue display 
reflects information 
taken fr,1m a minor CDE • 

•••• •• 1. Bit 6 set indicates that 
the load module was in 
the job pack queue area • 

•. ' ••••• 1 Bit 7 set indicates that 
the load module was 
considered not 
only-Ioadable. 

EPA hhhhhh 
The address of the entry point of the 
load module named in the NM field of 
this job pack queue entry display 
line .. 

STA hhhhhh 
This field contains the starting 
address of the load module identified 
in the NM field of this job pack queue 
entry display line. 

LN hhhhhh 
The LN field supplies the user with 
the length, in bytes, of the load 
module represented by this job pack 
queue entry. 

MVT DATA EXTENT BLOCK (DEB) FORMATTING: 
Data extent blocks (DEBs), describing a 
data set's external storage requirements, 
were queued to those task control blocks 
(TCBs) that represented tasks requiring 
auxiliary storage input/output processing. 
External storage information, taken from 
each DEB, is formatted as shown below: 

DEB hhhhhh 
The starting address of the basic 
section of the DEB being displayed. 

APPENDAGES 
The word "appendages· informs the user 
that the five named fields on this 
line contain information taken from 
the appendage vector table preceding 
the DEB being displayed. The named 
fields appearing on the rest of this 
line are: 

END OF EXT hhhhhh 
The entry point of the end-of-extent 
appendage routine. 

SIO hhhhhh 
The entry point of the start I/O 
appendage routine. 

PCI hhhhhh 
The entry point of the 
program-controlled-interruption 
appendage routine • 

CH END hhhhhh 
The entry point of the channel-end 
appendage routine. 

AB END hhhhhh 
The entry point of the abnormal-end 
appendage routine. 

PFX hhhhhhhh hhhhhhhh hhhhhhhh 
The second line of a DEB display 
contains information taken from the 
prefix section of the DEB being 
displayed. The area is subdivided as 
follows: 

byte 0 
The first byte of the prefix area 
contain the contents of the I/O 
support work area. This area is used 
only by DEBs dealing with direct 
access storage devices. 

IMDPRDMP Output Formatting: MVT -- DEBs 87 



bytes 1-7 
The next seven bytes of the DEB p~efix 
section are used by DEBS associated 
with direct access storage device 
functions. This sUbfield displays the 
data set control block's (DSeB) 
address used by I/O support. The 
address is expressed in the following 
format: 
bytes 1 and 2 
bytes 3 and 4 
bytes 5 and 6 
byte 7 

bytes 8-11 

the bin (cell) number. 
the cylinder address. 
the track address. 
the record number. 

The third word of the PFX field 
contains the data control block (DCB) 
modification mask that was used by I/O 
support. 

byte 12 
The length of the DEB in doublewords • 

bytes 13-15 
The remainder of the DEB prefix 
section is reserved for future use. 

reB hhhhhh 
This field marks the beginning of the 
basic section of the data extent 
block. The TeB field is divided into 
two subfields as follows: 

byte 0 
The number of subroutines for which a 
LOAD macro instruction was issued 
during the execution of the OPEN 
executor routines. 

bytes 1-3 
The starting address of the task 
control block to which this DEB was 
enqueued. 

NDEB hhhhhh 
The NDEB field is also used to display 
two data elements. It is subfielded 
as follows: 

byte 0 
The overall length of a data extent 
block includes the length of a 
variable length access method 
dependent section. The first byte of 
the NDEB field, expresses the length 
of the access method dependent seetlon 
in bytes. If the access method was 
BDAM, this indicator is expressed as a 
number of fullwords. 

bytes 1-3 
The last portion of the NDEB field 
displays the starting address of the 
basic section of the next DEB on the 
task' s queue.. If thi s DEB was the 
last on the queue, the contents of 
this field are the starting address of 
the TeB that enqueued this DEB. 

ASYN hhhhhhhh 
This field contains ~ata set status 
flags and the address of the 
associated IRB. This field is used as 
follows: 

byte 0 
The first byte of the ASYN field 
contains data set status flags. These 
flags have the following meanings: 

xx .•••••• 

01 •••••• 

10 •••••• 

11.. . ... 

.. 1. 

.•. 1 •... 

• . .• 1 ••• 

· . .. .1 .. 

· . .. . .1. 

...•... 1 

Bits 0 and 1 indicate 
the data set' s 
disFosition. The 
possible settings are: 
This setting indicates 
that the disposition was 
OLD. 
This setting indicates 
that the disposition of 
the data set was MOD 
(modify). 
This setting indicates 
that the disposition was 
NEW. 
Bit 2 set indicates that 
an end-of-volume (EOV) 
or end-of-file (EOF) 
condition had been 
encountered. 
The setting of bit 3 has 
one of two meanings 
depending upon the 
external storage medium. 
For disk this indicator 
reflects a release of 
unused external storage. 
For tape, the meaning of 
this indicator is that 
an emulator tape with 
second generation format 
was being used. 
Bit 4 set is a data 
control block (DCB) 
modification indicator. 
Bit 5 set has two 
meanings, depending upon 
the auxiliary storage 
recording medium. For 
disk, the setting of bit 
5 indicates that a split 
cylinder was 
encountered. For tape, 
this flag indicates that 
an emulator tape with 
possible mixed parity 
records was used. 
Bit 6 set indicates the 
use of nonstandard 
labels. 
Bit 7 set indicates that 
reduced error recovery 
procedures were used on 
magnetic tapes 
containing the data set 
represented by this DEB. 

88 Programmer's Guide to Debugging (Release 21) 



bytes 1-3 
The last portion of the ASYN field 
shows the starting address of the IRB 
that was associated with asynchronous 
appendage exit scheduling. 

SPRG hhhhhhhh 
This field contains information on I/O 
processing methods and the system 
PURGE routine. The usage of this 
field is as follows: 

byte 0 
The first byte of this field contain 
flags that indicate the method of 
input/output processing and the 
disposition of the data set that was 
to have been performed when an end-of
volume condition occurred. These flag 
settings are: 

1,. ... • ••• 

.0, •• 
•• xx 

•• 01 
' •• 11 

byte 1 

xxxx 

0000 
1111 
0011 
0111 
0001 
0:...00 

Bit 0 was set by ABEND. 
The setting of this bit 
indicates that the data 
set associated with this 
DEB was a SYSABEND or 
SYSUDUMP data set. 
Bit 1 is always zero. 
Bits 2 and 3 show the 
end-of-volwne 
disposition procedure. 
The values for this flag 
are: 
REREAD 
LEAVE 
The last half of this 
byte contains flags that 
indicate the type of 
input/output processing 
that was performed on 
the data set represented 
by this DEB. The values 
for this flag are: 
INPUT 
OUTPUT 
INOUT 
OUTIN 
ROBACK 
UPDAT 

The quiesce count. The byte is 
associated with the system PURGE 
routines (SVC 16) and indicates the 
number of auxiliary storage devices 
that were executing the user's channel 
programs. 

bytes 2-3 
Reserved for future use. 

UPRG hhhhhhhh 
The UPRG field contains extent 
information and data used by the 
user's purge routines. This field is 
divided into the following two 
subfields: 

byte 0 
The number of extents that were 
specified in the DSCBs associated with 
this DEB. 

bytes 1-3 
The address of the first input/output 
block (lOB) in the user's purge chain. 

PJ.ST hhhhhhhh 
Task priority and supervisor purge 
information are contained in this 
field. This field is formatted as 
follows: 

byte 0 
The priority of the task under which 
this DEB was enqueued. 

bytes 1-3 
The starting address of a parameter 
list that was used to locate the purge 
event control block (ECB) for a 
supervisor purge request. 

DCB hhhhhhhh 
The DCB field contains three data 
elements. These are displayed in the 
format given below: 

byte 0 
xxxx 

•••• 1111 

bytes 1-3 

The storage protection 
key that was associated 
with the task under 
which this DEB was 
enqueued. 
A hexadecimal 'F' in 
bits 4 through 7 of this 
field identIfy this 
control block as a data 
extent block (DEB). 

The starting addr,ess of the data 
control block (DCB) that was 
associated with this DEB. 

AVT hhhhhhhh 
The AVT field displays two DEB data 
elements and is subfielded as follows: 

byte 0 
The DEB extent scale that is used to 
determine the size of the device 
dependent section of this DEB. For 
direct access devices, a 4 is 
displayed in this subfield. For a 
nondirect access device or a 
communication device, a 2 is 
displayed. 

bytes 1-3 
In most cases the last portion of the 
AVT field shows the starting address 
of the appendage vector table 
preceding this DEB. This table of 
appendage routine addresses appears on 
the first line of this DEB's display. 

IMDPRDMP Output Formatting: MVT -- DEBs 89 



OP-UCB hhhhhhh 
The contents of this field have 
meaning only when the DEB being 
displayed describes a data set that 
was assigned to a unit record or 
magnetic tape device. This 
information is formatted from the 
device dependent section of the DEB. 
The OP-UCB field is subfielded as 
follows: 

byte 0 
This first subfield is applicable only 
to data sets assigned to magnetic tape 
devices and shows the SET MODE 
operation code. For a data set that 
was assigned to a unit record device, 
this subfield is reserved. 

bytes 1-3 
The starting address of the unit 
control block (UCB) associated with 
the data set described by the DEB 
being displayed. 

The following four fields are present only 
for data sets assigned to the IBM 3525 Card 
Punch for multi-function. The information 
is formatted as shown below: 

UCB hhhhhhhh 
byte 0 

The device modifier field (not used 
for the 3525). 

bytes 1-3 
The starting address of the unit 
control block (UCB) associated with 
the data set described by the DEB 
being displayed. 

RDRDCB hhhhhhhh 
The starting address of the data 
control block (OCB) for the read 
associated data set. 

PCHDCB hhhhhhhh 
The starting address of the data 
control block (OCB) for the punch 
associated data set. 

WTRDCB hhhhhhhh 
The starting address of the data 
control block (OCB) Lor the print 
associated data set. 

Tne final portion of a DEB display shows 
information pertaining to a data set that 
was assigned to a direct access device. 
This information" taken from the DEB' s 
device dependent section, is arranged in 
columnar format with a line for each 
extent. The information is formatted as 
shown below: 

FM-UCB hhhhhhhh 
The first column displays two data 
elements and is formatted as follows: 

byte 0 
The device modifier showing the file 
mask. 

bytes 1-3 
The starting address of the unit 
control block (UCB) that was 
associated with the data extent. 

START hhhhhhhh 
The address of the beginning of the 
direct access device extent. The 
first four characters represent the 
cylinder address and the last four 
characters represent the track 
address. 

END hhhhhhhh 
The address of the end of the data 
extent. Cylinder and track references 
are formatted as in the extent 
beginning address, described above. 

TRKS hhhh 
The number of direct access tracks 
bounded by the starting and ending 
addresses shown in the previous two 
columns. 

MVT TASK INPUT/OUTPUT TABLE (TIOT) 
FORMATTING: A task input output table 
(TIOT) was constructed for each task in the 
dumped system by MVT jcb management 
routines. Residing in the system queue 
area, this table contained primary pointers 
to control blocks used by I/O support 
routines. As the functions of several TIOT 
fields were dependent upon the state of 
associated external storage devices, 
multiple definitions may apply_ The TIOT 
that was constructed in an MVT system is 
formatted as shown. 

TIOT hhhhhh 
The starting address of the task 
input/output table being displayed. 

JOB cccccccc 
The eight-character name of the job 
for which this TIOT was constructed. 

STEP cccccccc 
The eight-character name specified in 
the label field of the EXEC JCL 
statement associated with this job 
step .. 

PROC cccccccc 
If the job step for which this TIOT 
was constructed was invoked from a 
cataloged procedure, the procedure 
name, as contained in the EXEC JCL 
statement, is displayed in this field. 

Each data set associated with the indicated 
task is represented by a separate DO entry 
that is included in the TIOT. Each TIOT 
entry is displayed on a separate line in 

90 proyrammer's Guide to.Debugging (Release 21) 



columnar format. The use and meaning of 
each column is given below: 

OFFSET hbhh 
The offset of this DO entry from the 
beginning of the TIOT in hexadecimal. 

LN-STA hbhhhhhh 
Four bytes of length and status 
information., described below: 

byte 0 
The total length (including all device 
entries) in bytes of the DO entry 
being displayed on this line. 

byte 1 
Status byte A, one of three status 
bytes in a TIOT entry. The meanings 
of the status byte settings are: 

x.... .x .. 

0, ...... o •• 

0,. •• .1, •• 

1 ..... 0 •• 
.1, •• 

•. 1. . ..• 

Bits 0 and 5 indicate 
the tape label 
processing that was to 
have been performed. 
The meanings of the 
settings are: 
Nonlabeled tape or an 
indication to bypass 
label processing_ 
Standard labels and 
standard user labels. 
Nonstandard label s. 
The setting of status 
bit 1 has two meanings, 
depending upon the 
processing phase that 
had been reached at the 
time the system was 
dumped. During 
allocation processing, 
the setting of this bit 
indicates that this 
entry represents a split 
cylinder primary space 
allocation DO. If the 
dump was taken during 
step termination 
processing, the setting 
of this bit indicated 
that no unallocation of 
space was necessary. 
The setting of status 
bit 2 works under the 
same philosophy as 
status bit 1. During 
allocation processing., 
the setting of this bit 
indicates that this 
entry represents a split 
cylinder secondary ~pace 
allocation DO. If the 
dump was taken during 
step termination 
processing, the 
indication was one of 
rewinding with no 
unload. 

••• 1.... Bit 3 set indicates that 
this DO entry represents 
a JOBLIB. 

•••• 1... Bit 4 set indicates that 
direct access device 
space management was 
deemed necessary. 

•••••• 1. The setting of bit 6 
specifies that the tape 
volume was to have been 
rewound and unloaded. 

'" •.•• . ••• 1 ·The setting of bit 7 
specifies that the tape 
volume was to have been 
rewound. 

byte 2 
The third byte of this column has 
meaning only during the allocation 
phase. This displays the number of 
devices that were requested by the 
data set represented by the TIOT entry 
displayed on this line. 

byte 3 
The last byte of the LN-STA field 
displays a TIOT field that had meaning 
at two points during the processing of 
this task. During the allocation 
process, this field contained a link 
to the appropriate prime split, unit 
affinity. volume affinity or 
suballocate TIOT entry. After CLOSE 
processing, this byte was used thusly: 

1 •.• ' .•.• 

.• xxx xxxx 

DDNAME cccccccc 

The setting of bit 0 
indicates that the data 
set represented by this 
DO entry was a SYSOUT 
data set that contained 
data. 
Bits 1 through 7 are 
reserved for future use. 

The eight-character DD name associated 
with the TIOT entry being displayed. 

TTR-STC hhhhhhhh 
The first three bytes of this column 
display the relative track address 
(TTR) of the job file control block 
(JFCB) associated with this entry. 

STB-UCB hhhhhhhh 
The last column in a TIOT display 
contains information taken from the 
one-word device entries that are 
appended to each TIOT entry. One TIOT 
device entry exists for each allocated 
device. This display field shows this 
information in the following format: 

IMDPRDMP Output Formatting: MVT -- TIOT 91 



byte 0 
Status byte B. The status bits have 
the following meanings: 

1... •••• Bit 0 set indicates that 
the data set associated 
with this line of the 
TIOT display was present 
on the device 
represented by this TIOT 

.1... . •• ' •• 

· .1. .." .. 

· .. 1 .••. 

· .. '. 1. ' .. 

• . .• . x .• 

· '. .. . o .• 

· . .. .1 .. 

· . .. .. 1. 

• • •• • •.• 1 

bytes 1-3 

device entry. 
Bit 1 set indicates that 
the data set associated 
wi th thi s line of the 
TIOT display would have 
used the device 
represented by this TIOT 
device entry. 
Bit 2 set indicates that 
the device represented 
by this device entry 
violated separation. 
Bit 3 set indicates that 
a volume serial number 
was present. 
Bit 4 set indicates that 
a setup message was 
required. 
Bit 5 indicates the 
device disposition that 
would have taken place 
had the dmnped system 
been allowed to continue 
processing this task. 
The settings for this 
bit are: 
Indicates t ,t if the 
volume was required to 
be unloaded, the volume 
was to have been 
deleted. 
Indicates that if the 
volume was requires to 
be unloaded, the 
unloaded volume was to 
have been retained. 
Bit 6 indicates that an 
unload requirement had 
been made. 
Bit 7 set indicates that 
a load or label 
verification requirement 
had been made. 

The address of the UCB that was~used 
in all cases except when the device 
was a 2321 data cell drive. For a 
2321, this address is that of the 
description in the DCB of the cell in 
the bin. 

MFT Control Block Formatting 

The formats described below are repeated 
for each requested task that is printed. A 
sample of the major system control blocks. 
as formatted from an MFT dump, is sho\>.m in 
Figure 23. 

MFT TASK CONTROL BLOCK (TCB) FORMATTING: 
The task control block (TCB) contains 
information pertaining to the specific task 
identified in the heading lines at the top 
of the dump listing page. It is formatted 
as follows: 

TCB hhhhhh 
The address of the task control block 
being displayed is given in this first 
display field. 

RBP hhhhhhhh 
The starting address of the request 
block (RB) that was currently 
associated with the task represented 
by this TCB. 

PIE hhhhhhhh 
The address of the first program 
interrupt element (PIE) enqueued by 
this TeB. 

DEB hhhhhhhh 
The address of the beginning of the 
data extent block (DEB) queue that was 
associated with this task. 
Information on the contents of each 
DEB in the queue is given in a 
separate portion of this MFT task's 
dump listing. 

TIO hhhhhhhh 
The starting address of the task 
input/output table (TIOT) that was 
constructed during device allocation 
for the task represented by this TCB. 
The contents of this table are 
displayed in a later portion of this 
task' s display. 

CMP hhhhhhhh 
This word contains ABEND indicators 
and user and system completion codes 
as follows: 

byte 0 
1 •• '. 

.1.. .. ' .. 

.. 1 ..... 

• , •• x 

1 ••• 

Bit 0 set indicates that 
a dump had been 
requested. 
Bit 1 is reserved for 
future use but is set 
for MVT compatibility. 
Bit 2 set indicates that 
a portion of the problem 
program's main storage 
area was overlaid by a 
second load of ABEND. 
A first load overlay is 
indicated by the setting 
of bit 14 of the PK-FLG 
field. 
Bit 3 is reserved for 
future use .• 
Bit 4 set indicates that 
a double ABEND occurred 
in the dumped task. 

92 Programmer's Guide to Debugging (Release 21) 



I-t 

i§ 
~ 

~ 
~ 
o :; 
'tj 

:; 
"IJ o 
11 

! .... 
~ .. 
::c 
~ 
I 
I 

~ 

Q 

MFT DUMP LlSfiNG ~JJuLc IMOSAD"P CATE 11/12110 TI~E 00.50 PAGE 0011 

JtJd J 065 STEP Gil PROCSTEP STEP1 

*.*.* CURRENT TASK .* •• * 
T Cd 009148 KdP OJv~922 8 PIe 00000000 oes 00071634 TIO JJ 071728 CMP ocoooooo tRN COCCOOCO 

I4SS JOuO~dO PK-FLG 1 CCOOO08 FlG 0OOOOlE3 LlS 0OO1l2f8 Jl& COOOOOOO JST 00CC«;148 
KG 10-1 00071 780 OC02A910 5002A626 9BC712i30 400.2A896 5(';007FD2 cecococe; OOOCOllA 
Rli .2-9 JOOOOOOO 0002C304 0007176( 0000004C 1l000~148 00J1l7F8 oeC71718 OOOCOOOO 
fSA 080717a0 TCB 00009348 THE 00009228 Pid EOO19AB8 NTC oooooccc OTC OOCOOOOO 
L.T~ vCuvCGJO IOE 00000000 Eca oeoollooo XTCS 0.)000000 LP/fL E300000C RES 00000000 
S TA C\iJ\.uOJO TCT 000209A8 USR OOOOuOOO CAR OGO-:;OOOO RES coooococ Jsca 00021284 

I4~Tl~E RBS 

PKO 02A80':) I'4M GO S1I ST Aa oe2CO OC 0 USE/ EP C002A820 PS~ FF150C80 9002AE7A Q COOOOOOO "T-LNt< 00CO«;148 

Ii<d ,)09228 Nr4 !lGKJ Ak'f SllSlAo OCOE404C USE/EP 0002A87i: P5~ Ff150193 8002AEAA Q CCCCC;2S8 "T-lNK CCC2.4800 
K~ IV-I Fi400C048 00009228 00000000 0002C3J4 Ju07176C 
,,~ 2-9 0007). 778 (,000(,000 000717 BO 0('02A91J 500lA826 
E.(TSA OJOOOOOO 000712130 00C09228 0OO09l<td 

jJ IP SOUND,UE S 

HicR 0 00J2Ad..,u Til OuJ7i800 HIER 1 OOCOOOGO TO 00000000 

diAD L I Sf 

l.. R8 071300 ~H D,",MH~L sz ccoe88 USE/EP 01071310 
LPKB 07139J ~~ RETURNS sz COOOA8 USE/EP 01071380 

Jud I'ACK QUEUE 

~uiHING IN JOe PACK 

DEd J 1163 .. .4PP':N(.lI4~iS END CF EXT 0229CO SIO 003FF4 PCI JIl3Ff4 

DES 07150; 

T 10 T 011728 

PFX OC")CCO':)O 05COOO05 00010aEO 11000000 
T ~d J400 ~14a NuEB 1007150C AS YN F8CCOOOO SPKG OJOv.)OOO 
A~T 04071.010 

FM-lJ(.o START END TRKS 
5(100150C OC020003 00020C03 0001 

APPeNDAGeS ENe OF EXT 0138FO SI G 013922 P~I 0130F8 
PfX 000CCJuJ 05COOO07 000007EO OFOOOOOO 
T~d CC"OS148 NOES ')C000000 

14 "T 04(>130::4 
fM-U(.d 

5a0015':C 

JOB JOB 5 
0FfSET 

JOIS 
,,02C 

START END 
0")C40J03 OCC50009 

STEP GO 
LN-STA ODNAME 

140401CO PGM=*.DD 
14040100 OU~MV 

AS YN A8000000 SPRG 0J 000000 

TRKS 
0011 

PRf'(. "TEPl 
TTR-SIC 
00700ceo 
007F0300 

SIb-UCa 
8C0015EC 
8000150C 

00CCCC4C OCGOS148 COO717F8 
JC02ASIO 13COCOCC 4C0122EA 

CH END CC3FF4 AS END OC3FF4 

UPRG C 1071440 PLST E3CCOCOO teB IFOZA8BO 

CH END G 13864 AS END 013922 

UPRG 010eococ PlST E3CCCCOO ece OF07177B 

~ Figure 23. Sample of MFT Control Block Format 



CMF hhhhhhhh -- byte 0 -- (continued) 
••••• 1.. Bit 5 set indicates that 

a dump message (WTO) was 
to have been issued. 

•••• •• 1. Bit 6 set indicates that 
the dumped system's 
scheduler was to have 
printed an indicative 
dump. 

••••••• 1 Bit 7 set indicates that 
an ABEND message, to be 
printed by the ABDUMP 
routine, was provided. 

bytes 1-3 
The first 12 bits contain a system 
completion code. These codes and 
their meanings are explained in the 
publication IBM system/360 Operating 
system: Messages and Codes, GC28-6631 
under the heading ·System Completion 
Messages.- A user completion code is 
contained in the last 12 bits. 

TRN hhhhhhhh 
Contains flags as follows: 

byte 0 
1 •. '. 

. 1.. . ... 

• ,.1 •••• '. 

. .. 1 .... 

•••• xxxx 

bytes 1-3 
Reserved. 

MSS hhhhhhhh 

Bit 0 set indicates that 
decimal simulator 
programs were being used 
on a System/360 model 91 
machine. 
Bit 1 set indicates that 
checkpoints were not 
taken for this step. 
Bit 2 set indicates that 
the TCB being displayed 
was associated with 
either a graphics 
foreground job or the 
graphic job processor. 
Bit 3 set indicates that 
the TCB being displayed 
was associated with a 
7094 emulator task that 
was being run on a 
System/360 model 85 
machine. 
Bits 4 through 7 are 
reserved for future use. 

Main storage supervision as follows: 

byte 0 
This byte is reserved for future use. 

bytes 1-3 
This subfield displays one of two 
addresses. If the TCB being displayed 
represents a job step, this subfield 
contains the address of the boundary 
box. If this TCB represents a 

subtask" this field displays the 
address of the gotten queue element 
(GQE). GQEs are preset only if the 
dumped system issued a GETMAIN macro 
instruction for the space • 

PK-FLG hhhhhhhh 
The storage protection key and a 
series of flags associated with the 
task being displayed. This field is 
divided into several subfields. These 
are: 

byte 0 
xxxx 

byte 1 
1, •• '. 

0000 

.1,.. • ••• 

· .1.. ... 

· •• 1 ' .•.. 

• • •• 1, ••• 

· . .• .1 .. 

· . .. . .1. 

· . .• • •• 1 

byte 2 
1 •• '. 

The storage protection 
key associated with the 
task represented by this 
TCB. 
Always contain zeros. 

Bit 0 set indicates that 
an abnormal termination 
was in progress at the 
time the dump was taken. 
Bit 1 set indicates that 
a normal termination was 
in progress at the time 
the dump was taken. 
Bit 2 set indicates that 
ABEND was initiated by 
the resident abnormal 
termination routine. 
Bit 3 set indicates that 
recursion through ABEND 
was permitted. 
Bit 4 set indicates that 
the graphics abnormal 
termination routine had 
been entered for the 
task represented by the 
TCB being displayed. 
Bit 5 set indicates that 
the CLOSE routine was 
initiated by ABEND. 
Bit 6 set indicates that 
a portion of the problem 
program's main storage 
area was overlaid in 
order to process ABEND 
routines. (See also bit 
2 of the CMP display 
field. ) 
Bit 7 set indicates that 
the queueing of 
asynchronous exits for 
the task represented by 
the TCB being displayed, 
was prohibited. 

Bit 0 set indicates that 
ABEND was prohibited for 
this task. The setting 
of this bit has meaning 
only if the TCB being 
displayed represents a 
system task. 

94 Programmer's Guide to Debugging (Release 21) 



.xx •.•• x. 

.... 1 

.• , .... 1., •• 

• 1 •• 

••• 1 

byte 3 
xx.x ••• x 

• .• 1. 

• • .• 1. ' .• 

· .... .1 .. 

· .. '. , .. 1. 

FLG hhhhhhhh 

Bits 1, 2 and 6 are 
reserved for future use. 
Bit 3 set indicates that 
the task represented by 
the TCB being displayed 
had a forced completion 
imposed upon it. Other 
tasks in the dumped 
system could not have 
been performed until 
this task had been 
completed. 
Bit 4 set indicates that 
the job step had a 
forced completion 
imposed upon it. Other 
tasks in the dumped 
system could not have 
been performed until 
this job step had been 
completed. 
Bit 5 indicates that 
dump processing had been 
initiated in ABEND. 
Bit 7 set indicates that 
the task represented by 
the TCB being displayed 
was a member of a time 
sliced group. 

Bits 0, 1, 3 and 7 are 
reserved for future use. 
Bit 2 is an exit 
effector indicator. The 
setting of this bit 
indicates that at the 
time the dump was taken, 
system error routines 
were operating on this 
task. 
Bit 4 set indicates that 
floating point registers 
existed in the dumped 
system. 
Bit 5 set indicates that 
at the time the dump was 
taken, job scheduler 
routi nes were 
processing. 
Bit 6 set indicates that 
at the time the dump was 
taken, an XCTL routine 
was changing the storage 
protecti on ltey in the 
PSW from zero to the one 
used by the problem 
program. 

This field displays a further series 
of flags and certain priority 
indicators. This word is formatted as 
follows: 

byte 0 
Reserved for future use. 

byte 1 
xxxx xxx. 

.4,.1 

byte 2 

Bits 0 through 6 are 
reserved for future use • 
Bi t 7 is the primary 
non-dispatchability 
indicator. Setting of 
this bit indicates that 
one or more of the 
secondary 
non-dispatchability bits 
(bytes 1-3 of the DAR 
field) was set at the 
time the dump was taken. 
If this bit is set, the 
task represented by this 
TCB was considered to be 
non-dispatchable. 

This byte contains the number of 
resources for which the task 
represented by this TCB was enqueued .• 

byte 3 
This byte displays the dispatching 
priority of the task represented by 
this TCB. 

LIS hhhhhhhh 
The address of the last request block 
(RB) that was created by the loading 
of a module that used the LOAD macro 
instruction. 

JLB hhhhhhhh 
The address of the data control block 
(DCB) representing the JOBLIB 
associated with this task. 

JST hhhhhhhh 
Job step information. The contents of 
this field have meaning only when the 
dumped MFT system was operating with 
the subtasking option. If this was 
the case, this field shows the address 
of the first TCB for a job step. 

RG 0-7 and RG 8-15 
The register save area of the TCB 
being displayed. This pOinter is 
useful in locating the entry points of 
first routines and in tracing the save 
area chains .. 

FSA hhhhhhhh 
This field displays two data elements 
and is formatted as fotlows: 

byte 0 
The TCB identification code. 

byte 1-3 
The address of the first problem 
program save area. 

IMDPRDMP Output Formatting: MFT -- TCB 95 



TCB hhhhhhhh 
The address of the ~B that had the 
next lowest priority on the ready 
queue at the time the dump was taken. 

TME hhhhhhhh 
The address of the timer element. 

PIB hhhhhhhh 
The PIB field displays two items of 
information in the following format: 

byte 0 
This byte contains flags that identify 
the partition attributes. These flags 
are: 

xx.. • ••• 

00 •• 
01 •• 
10 .•.• 
11 •• 

• .x. 

•. 0. 
· .1. 
••• 1 

xx •• 

•. 1. 

· . .. ..1. 

bytes 1-3 

Bits 0 and 1 indicate 
the function of the 
partition. The possible 
functions are given 
below: 
System task partition. 
Reader partition. 
Writer partition. 
Processing program 
partition. 
Bit 2 gives the 
partition size. The 
meanings of the possible 
settings are: 
Small partition • 
Large partition. 
Bit 3 set indicates that 
CPU timing was stopped 
by FINCH until a 
transient routine was 
loaded. 
Bits 4 and 5 are 
reserved for future use. 
Bit 6 set indicates that 
the partition associated 
with this task was a 
writer partition. This 
bit is used by ABEND, 
transient writers and 
resident writers. 
Bit 7 set indicates that 
at the time the system 
was dumped. the 
scheduler was in 
control. Had this 
task's TIOT been written 
to SYS1.SYSJOBQE, this 
bit would not b~ set. 

The last portion of the PIB field 
shows the address of the partition 
information block (PIB) that was 
associated with this task's partition. 

NTC hhhhhhhh 
The address of the previous TCB that 
existed on the originating task's 
queue of subtask TCBs (sister). If 
the TCB was the first on the queue. 
this field contains zeros. The 
contents of the NTC field have meaning 

only if the dumped system was 
operating with the MFT subtasking 
option. 

arc hhhhhhhh 
The OTC field is applicable only when 
the dumped system was operating under 
MFT subtasking option. If this was 
the case, this field displays the 
address of the TCB representing the 
originating task (mother). 

LTC hhhhhhhh 
The address of the last TCB that 
existed on the originating task's 
queue of subtask TCBs (daughter) at 
the time the dump was taken. If this 
TCB was the last on the queue, this 
field contains zeros. This field is 
applicable only if the dumped system 
was operating under the MFT subtasking 
option. 

IQE hhhhhhhh 
The address of the interruption queue 
element (IQE) that was used in 
scheduling the ETXR routine on the 
originating task. The contents of 
this field have no meaning unless the 
dumped system was operating under the 
MFT subtasking option. 

ECB hhhhhhhh 
If the dumped system was operating 
under the MFT subtasking option, this 
field displays the address of the 
event control block (ECB) that would 
have been posted by the supervisor's 
task termination routines had either 
normal or abnormal task termination 
been allowed to occur. 

X'l'CB hhhhhhhh 
The XTCB field in this TCB display is 
reserved for future use. 

LP/FL hh hhhhhh 
Priority and dump information on tasks 
that were operating under the 
subtasking option of MFT. The LP/FL 
field displays its data as follows: 

byte 0 
The limit priority of the task 
represented by the TCB being 
displayed. 

byte 1 
Dump information flags. 

xxxx x ••• 

.1 .. 

Bits 0 through 4 are 
reserved for future use. 
Bit 5 set indicates that 
the task represented by 
the TCB being displayed 
was the top task in the 
tree of abnormally 
terminating tasks. 

96 Programmer's Guide to Debngging (Release 21) 



...... 1. 

• • •• . .• 1 

byte 2 

Bit 6 set indicates that 
an abnormal termination 
dump had been completed. 
Bit 7 set indicates that 
the task represented by 
this TCB was enqueued on 
a dump data set. 

This byte contains more dump 
information flag bits. The meanings 
of these bits are: 

1. .. . ... 

.xxx x •• x 

'. • •.• ,.1 •• 

· .. '. .. x. 

•• 0. 
.. 1. 

byte 3 

Bit 0 set indicates that 
at the time the system 
was dumped, an OPEN was 
in process for the dump 
data set. 
Bits 1 through 4 and bit 
7 are reserved for 
future use. 
Bit 5 set indicates that 
the dump data set was 
open for the job step. 
Bit 6 indicates the type 
of dump dataset. The 
possible setting are: 
SYSUDUMP data set • 
SYSABEND data set • 

This last byte of the LP/FL field 
shows abnormal termination flags as 
follows: 

xxx. x.xx 

· .. 1 .... 

· . .. .1 .. 

RES hhhhhhhh 

Bits 0, 1, 2, 4, 6 and 7 
are reserved for future 
use. 
Bit 3 set indicates that 
a valid message 
recursion occurred in 
ABEND. 
Bit 5 set indicates that 
no abnormal termination 
dumps could be provided 
within the job step 
associated with the TCB 
being displayed. 

This field is reserved for future use. 

STA hhhhhhhh 
Internal STAE routine flags and the 
address of the STAE control block that 
was in effect at the time the dump was 
taken. 

TCT hhhhhhhh 
Information pertaining to the dumped 
system's timing control table (TCT). 
The TCT field is divided into the 
following two subfields: 

byte 0 
This byte is reserved for future use. 

byte 1-3 
If the systan managanent facilities 
option was presented in the dumped 

system, these bytes contain the 
address of the dumped system's timing 
control table (TCT). 

USR hhhhhhhh 
This word is availa.ble to the user of 
the dumped systell1. It contains any 
information placed in it by the user. 

DAR hhhhhhhh ( 
'Ihe contents of! this field were used 
by the damage assessment routine 
(DAR). Certain subfields displayed in 
this word were also used to control 
the dispatchability of the dumped 
task. The DAR field is divided into 
the f ollowi ng subfields. 

byte 0 
The first byte of the DAR field 
contains DAR flags. The flags are as 
follows: 

1. •• • ••• 

.1.. . ... 

.. 1. . ... 

••• x 

1 ••• 

• xx. 

••• 1 

byte 1 

Bit 0 set indicates that 
primary DAR recursion 
occurred in the dumped 
system. The damage 
assessment routine 
failed while writing a 
main storage image dump. 
Bit 1 set indicates that 
secondary DAR recursion 
occurred in the dumped 
syst~m. The damage 
assessment routine 
failed while attempting 
to reinstate a failing 
partition. 
Bit 2 set indicates that 
only the dump capability 
of the damage assessment 
routine was requested. 
Bi t 3 is res erv ed for 
future use. 
Bit 4 set indicates that 
the system error task is 
f ai Ii ng. The DAR dump 
should not request any 
error recovery procedure 
(ERP) processing. 
Bits 5 and 6 are 
reserved for future use. 
Bit 7 set indicates that 
an SVC dump is executing 
for this task. 

Bytes 1 through 3 of the DAR display 
field are used to show the settings of 
secondary non-dispatchability flags 
bits. If any of the flags in this 
subfield were set, the primary 
non-dispatchability flag (the last bit 
in the FLG field) will also have been 
set and the task represented by this 
TCB will have been non-dispatchable. 
The bit settings that may appear in 
byte 1 and their meanings are: 

IMDPRDMP Output Formatting: MFT -- TCB 97 



Page of GC28-667o-5,6, Revised April 16, 1973, By TNL: GN28-2545 

xx •••••• 

1 ••••••• 

.1.. . ... 

• .xx •••• 

.. 1 ••... 

..• 1 .•.. 

x ••• 

.1 •• 

• .. •• • .xx 

byte 2 
1 ••• 

.x •• 

· .1. 

•• x xxx. 

Bits 0 and 1 were set by 
the damage assessment 
routines. Their 
meanings are: 
Bit 0 set indicates that 
the task represented by 
the TCB being displa yed 
was flagged temporarily 
non-dispatchable. 
Bit 1 set indicates that 
the task represented by 
this TeB was deemed 
p ermanen t1 y 
non-dispatchable. 
Bits 2 and 3 are 
recovery management 
support and system error 
recovery flags. Their 
meanings are: 
Bit 2 set indicates that 
the task represented by 
this TeB was flagged 
t empor ar il y 
non-dispatchable. 
Bit 3 set indicates that 
the task represented by 
the TCB being displayed 
was deemed permanently 
non-dispatchable. 
Bit 4 is reserved for 
future use. 
Bit 5 set indicates that 
this task is temporarily 
non-dispatchable. Time 
services have been 
requested and the 
time-of-day clock is 
still inoperative. 
Bits 6 and 7 are 
reserved for future use. 

Bit 0 indicates that at 
the time the dumped 
system was active, 
ABDUMP was process ing. 
The setting of this flag 
bit has meaning only if 
the dumped system was 
operating with the 
subtask ing option of 
MFr. 
Bit 1 is reserved for 
future use. 
Bit 2 set indiCates that 
this task is 
non-dispatchable. An 
SVC dump is executing 
for another task. 
Bits 3 through 6 are 
reserved for future use. 
Bit 7 set indicates that 
at the time the system 
was dumped, the dump 
data set was in the 
process of being opened. 

byte 3 
1 ... 

.1 ..... . 

.. .xx xxxx 

The setting of this 
first bit has meaning 
only if the dumped 
system was operating 
with the MFT subtasking 
option. If this bit is 
set, the indication is 
that the task 
represented by the TCB 
being displayed was 
term ina ted .. 
Bit 1 set indicates that 
had the dumped MF'T 
systero, operating with 
the subtasking option, 
been allowed to continue 
processing without 
intervention by the dump 
program, the task 
represented by this TCB 
would have been 
terminated by ABEND .. 
Bits 2 through 7 are 
reserved for future use. 

RES hhhhhhhh 
Reserved for future use. 

JSCB hhhhhhhh 
Contains the address of the job step 
control block. 

RES hhhhhhhh 
Reserved for future use. 

IOBRC hhhhhhhh 
Contains the address of the lOB 
restore chain for I/O quiesced by 
e OO-of -task. 

MFT ACTIVE REQUEST BLOCK (RB) FORMATTING: 
Request blocks (RBs) were used by the 
dumped system's supervisor to maintain 
informati on concerning a task. RBs 
associated with the task identified in the 
heading lines at the top of the dump page 
and in the precedi ng TCB dis pI ay I are 
listed in the portion of the dump listing 
labeled ftACTIVE RBS·. Information on each 
RB associated with the task is formatted as 
shown be low: 

PRB 
LPRB 
SVRB hhhhhh 
SIRB 
IRB 

Each RB display is preceded by a field 
that indicates the type and starting 
address of the RB being displayed • 
The five types of RBs that may be 
displayed under an MFT task are: 

PRB 
program request block 

LPRB 
loaded program request block 

98 Programmer's Guide to Debugging (Release 21.7) 



SVRB 

SIRB 

IRB 

supervisor request block (SVRBs 
may be divided into two 
categories; type 2 for resident 
routines and type 3 or 4 for 
transient routines>. 

system interrupt request block 

interruption request block 

The type acronym for each RB is 
displayed in the first portion of the 
field. The starting address of the 
indicated request block appears in the 
last portion of the field. The 
contents of certain fields in the body 
of the formatted RB display are 
dependent upon the type of RB being 
displayed. variations in display 
field usage are noted in the 
descriptions of the fields in which 
they occur. 

NM cccccccc 
The variations associated with the 
usage of this field are: 

• PRBs and LPRBs use this field to 
display the name of the program they 
represented. 

• SVRBs display the SVRB type in this 
field. 

• SIRBs use this field to present the 
eight-character name of the error 
routine that was occupying the 
supervisor transient area at the 
time the dump was taken. 

• IRBs display meaningful information 
in this field only if the timer was 
being used. If this was the case, 
the first character in this field 
represents the setting of the timer 
flags. The remainder of the NM 
field is meaningless. 

SZ/STAB hhhhhhhh 
This field displays two data elements; 
RB size information and ST~ flag bit 
settings. This field is subfielded as 
follows: 

bytes 0-1 
The number of contiguous doublewords 
that were occupied by the request 
block, the associated program (if 
applicable>, and associated supervisor 
work areas. If a program extent list 
was present, the program size is not 
included in this figure. 

byte 2 
STAB flag bit settings. The meani~lg 
of these flags are depends upon the 
type of request block 'being displayed. 
These flags are presented, by RB type, 
below: 

PRB 

LPRB 

The following bit settings are 
applicable to program request 
block displays: 

0000 indicates that the 
program represented 
by this PRB was not 
loaded by a LOAD 
macro instruction; 
nor did it have minor 
entries identified by 
an IDENTIFY macro 
instruction. 

0001 indicate that the 
program represented 
by this PRB was not 
loaded by a LOAD 
macro instruction but 
did have minor 
entries identified by 
an IDENTIFY macro 
instruction. 

xx.. Bit 4 and 5 have no 
meaning in PRB 
displays,. 

..1. indicates that the 
program represented 
by this PRB was 
hierarchy block 
loaded and that a 
program extent list 
existed. 

••• 1 indicates that the 
program module 
represented by this 
PRB was refreshable. 

Loaded program request blocks 
being displayed may have the 
following bit settings in this 
byte: 
0010 indicates that the 

program represented 
by this LPRB was not 
loaded by a LOAD 
macro instruction; 
nor did it have minor 
entries identified by 
an IDENTIFY macro 
instruction. 

0011 indicates that the 
program represented 
by this LPRB was not 
loaded by a LOAD 
macro instruction but 
did have minor 
entries identified by 
an IDENTIFY macro 
instruction. 

IMDPRDMP Output Formatting: MFT -- Active RBs 99 



SVRB 

SIRB 

1110 indicates that this 
LPRB describes a 
minor entry 
identified by an 
IDENTIFY macro 
instruction. 

xx.. Bits 4 and 5 have no 
meaning in LPRB 
displays. 

•• 1. indicates that the 
program represented 
by this LPRB was 
hierarchy block 
loaded and that a 
program extent list 
existed. 

••• 1 indi ca tes that the 
prCXJram module 
represented by this 
LPRB was refreshable. 

supervisor request blocks display 
the following bit settings in 
this subfield: 

1100 indicates that the 
prCXJram represented 
by this SVRB is a 
type 2 SVC routine 
that had not been 
loaded at the time 
the dump was taken. 

1101 indicates that the 
program represented 
by this SVRB is a 
type 3 or SVC routine 
that had been loaded. 

1... indicates that the 
type 3 or 4 SVC 
routine was resident. 

.1.. indicates that while 
the dumped system was 
acti ve, a checkpoint 
could have been taken 
in a user exit from 
the SVC routine 
represented by this 
SVRB. 

•• xx bits 6 and 7 have no 
meaning in SVRB 
displays. 

The flag bit setting applicable 
to supervisor interrupt request 
block displays is as follows: 

1000 indicates that the RB 
being displayed is a 
supervisor interrupt 
request block (SIRB). 

xxxx bits 4 through 7 have 
no meaning in SIRB 
displays. 

100 programmer's Guide tC" "'~bugging (Release 21) 

IRB 

byte 3 

Interrupt request block displays 
use these flag bits in the 
following manner. 

0100 indicates that the RB 
being displayed is an 
interrupt request 
block (IRB). 

xxxx bits 4 through 7 have 
no meaning in IRB 
displays. 

The last byte of the SZ/STAB field 
displays mor& status and attribute 
flags. The possible settings for this 
subfield and their meanings are: 

1. .. .. ' .. 

,.1,. '. • ••• 

.. 1. . ... 

. .. 1 .... 

' •••• xx •• 

..... 00 •• 

Bit 0 set indicates that 
the WT-LNR field in this 
RB display contains, in 
its last three bytes, 
the address of the TCB 
to which this request 
block is linked. 
Bit 1 set indicates that 
at the time the dumped 
system was active, the 
program associated with 
the RB being displayed 
was active. 
Bit 2 set indicates that 
had the dumped system 
been allowed to continue 
processing without 
intervention by the dump 
program, general 
registers 2 through 14 
would have been restored 
from this RB's general 
register save area, 
displayed on the 
following two lines. 
The setting of this bit 
is valid only for IRB, 
SIRB and SVRB displays. 
Bit 3 set indicates that 
the program module 
represented by this 
request block was 
reenterable or reusable. 
Bits 4 and 5 are used 
only in IRB or LPRB 
displays. The settings 
of these bits and their 
meanings are: 
This setting indicates 
that the IRB being 
displayed had no 
interrupt queue elements 
(IQEs) associated with 
it. 



•••• 01 ... 

• ••• 10 •• 

· • .. 11 .• 

· . .• •• 1. 

• • •• •• '. x 

• • •• • •• 0 

• • •• • •• 1 

USElEP hhhhhhhh 

This setting indicates 
that the IRB being 
displayed had associated 
with it interrupt queue 
elements that were 
request queue elements 
(RQEs) • 
This setting indicates 
that the request block 
being displayed is a 
dummy LPRB, in a 
partition that 
represents a program in 
the reenterable load 
module area. The LPRB 
f or the program is in 
the reenterable load 
module area. 
This setting indicates 
that the IRB being 
displayed had interrupt 
queue elements 
associated with it that 
were not request queue 
elements (RQEs). 
Bit 6 set indicates that 
when the dumped system 
was active, request 
block storage was to 
have been freed when the 
program returned. 
Bit 3 indicates wait 
request conditions. The 
meanings of the two 
possible settings for 
this bit are: 
Bit 7 not set indicates 
that the request had to 
wait for a single event 
or for all of a number 
of events. 
Bit 7 set indicates that 
the request had to wait 
f or a number of even ts. 
This number of events 
was less T~an the total 
number of events that 
were waiting. 

The USE/EP field, as indicated by the 
field identifier, displays two data 
elements. These are shown in the 
following format: 

byte 0 
The first byte of this field contains 
the use count that was applied to the 
program module represented by the 
request block being displayed. This 
use count was calculated by 
subtracting the number of invocations 
of the DELETE macro instruction from 
the number of times the LOAD macro 
instruction was used. 

byte 1-3 
The second portion of the USE/EP field 
displays the address of the entry 
pOint of the module represented by 
this request block. 

PSW hhhhhhhh hhhhhhhh 
The two words of the PSW field display 
to the user the dumped system's old 
program status word. If the dumped 
system had been allowed to continue 
processing without interruption by the 
dump program, operation would have 
resumed on this PSW. 

Q hhhhhhhh 
The information displayed in this 
field depend.s upon type of RB being 
displayed. The contents of this 
display field are described below, by 
RB type: 

• PRBs and LPRBs use this field to 
display the address of an LPRB 
describing an entry that was 
identified via the IDENTIFY macro 
instruction. 

• SVRBs representing type 3 or 4 SVCS 
use this field to indicate the size 
of the program they represent in 
bytes. 

• SIRBs and IRBs display in this field 
the address of a 12- or 16-byte 
request e"lement. 

WT- LNK hhhhhhhh 
This field displays information 
pertaining to wait counts and request 
block linkages. The" field is divided 
into the following two subfields: 

byte 0 
The number of requests that were 
pending at the time the dump was taken 
(wait count). 

byte 1-3 
The address of the next request block 
on the RB queue.. If the RB being 
displayed was the last request block 
on the queue, this field shows the 
address of the task control block 
(TCB) that enqueued this RB. 

RG 0-7 and RG 8-15 
The sixteen-word register save area 
appears only after IRB, SIRB or SVRB 
displays. These two lines display the 
contents of general registers 0 
through 15 as they were stored in the 
request block. 

MFT PROBLEM PROGRAM BOUNDARIES INFORMATION: 
Each task operating under the MFT option of 
the operating system was assigned a main 
storage partition in which to operate. If 

IMDPRDMP Output Formatting: MFT -- P/P Boundaries 101 



the system configuration included 2361 
Large Core Storage, partitions may have 
included area from both hierarchy 0 (main 
storage) and hierarchy 1 (low speed main 
storage). If 2361 Large Core storage was 
not available or was not used, hierarchy 1 
pointers were set to zero. Each MFT task 
displays in its dump listing the limits of 
the partition in which it operated. This 
display is presented under the heading ·P/P 
BOUNDARIES· (problem program boundaries) in 
the following format: 

HIER 0 hhhhhhhh 
The starting address of the problem 
program's hierarchy 0 partition. 

TO hhhhhhhh 
The ending address of the problem 
program's hierarchy 0 main storage 
partition. 

HIER 1 hhhhhhhh 
The starting address of the problem 
program's hierarchy 1 partition.. If 
this field contains zeros l the 
indication is that 2361 Large Core 
Storage was either not available or 
not utilized by this task. 

TO hhhhhhhh 
This last field indicates the high 
limit of the problem program's 
hierarchy 1 partition if one was used. 
If this field contains zeros, either 
2361 Large Core storage was not 
available or it was not used by this 
task. 

MFl' LOAD LIST FORMATTING: A lO9.d list was 
mainta~ned ~y the dumped system's 
superv~sor ~n order to keep track of the 
load modules that were in main storage and 
the area of main storage each occupied. A 
load list created by an MFT supervisor is 
composed of loaded request blocks (LRBs) 
and loaded program request blocks (LPRBs). 
A formatted listing of the dumped MFT 
system's load list appears as follows: 

LRB 
LPRB hhhhhhhh 

The type of request block being 
displayed and its starting address. 

NM cccccccc 
The eight-character name of the 
program module represented by the 
request block being displayed. 

SZ hhhhhh 
The number of contiguous double words 
that were occupied by the request 
block, the associated program (if 
applicable) and associated supervisor 
work areas. If a program extent list 
was present, the program size is not 
included. 

USE/EP hhhhhhhh 
Use count and entry point address as 
follows: 

byte 0 
The use count that was applied to the 
program module represented by the 
request block being displayed. This 
use count was calculated by 
subtracting the number of times the 
DELETE macro instruction was issued 
from the number of times the LOAD 
macro instruction was used. 

byte 1-3 
The address of the entry point of the 
program module named in the NM field 
of this RB display line. 

MFT JOB PACK QUEUE FORMATTING: A job pack 
area queue was maintained by the dumped 
system's supervisor for each job step that 
used a program not in the resident 
reenterable load module area. A job pack 
queue created by an MFT supervisor consists 
of loaded request blocks (LRBs), loaded 
program request blocks (LPRBs) and FINCH 
request blocks (FRBs). A formatted job 
pack area queue display appears as follows: 

LRB 
LPRB hhhhhh 
FRB 

The type of request block being 
displayed and its starting address. 

NM cccccccc 
The eight-character name of the module 
represented by the request block being 
displayed. 

SZ hhhhhh 
The number of contiguous doublewords 
that were occupied by the request 
block, the associated program (if 
applicable) and associated supervisor 
work areas. If a program extent list 
was present, the program size is not 
included. 

USE/EP hhhhhhhh 
XRWTL 

The usage of this display field is 
dependent upon the type of request 
block being displayed: 

USE/EP 
is used for LRBs and LPRBs and 
displays the use count and entry 
point address as follows: 

byte 0 
The use count that was applied to 
the program module represented by 
the request block being 
displayed. This use count was 
calculated by subtracting the 
number of times the DELETE macro 

102 Programmer's Guide to Debugging (Release 21) 



instruction was issued from the 
number of times the LOAD macro 
instruction was used. 

bytes 1-3 

XRWTL 

The address of the entry point of 
the program module named in the 
NM field of this display line. 

is used for FRBs and shows the 
starting address of the wait list 
element. 

XRREQ hhhhhhhh 
This field appears only in FRB 
displays, and shows the address of the 
TCB representing the task on whose 
behalf this FRB was constructed. 

XRTLPRB hhhhhhhh 
This field appears only in FRB 
displays and shows the starting 
address of the area of main storage 
that was acquired by the FETCH routine 
for the module identified by the NM 
field of this line. 

MFl' DATA EXTENT BLOCl< (DEB) FORMATTING: 
Data extent blocks (DEBs), describing a 
data set's external storage requirements, 
were queued to those task control blocks 
(TCBs) that represented tasks requiring 
auxiliary storage input/output processing. 
External storage information, taken from 
each DEB, is formatted as shown below: 

DEB hhhhhh 
The starting address of the basic 
section of the DEB being displayed .• 

APPENDAGES 
The word ·appendages· informs the user 
that the five named fields on this 
line contain information taken from 
the appendage vector table preceding 
the DEB being displayed. The named 
fields appearing on the rest of this 
line are: 

END OF EXT hhhhhh 
The entry point of the end~of-extent 
appendage routine. 

SIO hhhhhh 
The entry point of the start I/O 
appendage routine. 

PCI hhhhhh 
The entry point of the 
program-controlled-interruption 
appendage routine. 

CH END hhhhhh 
The entry point of the channel-end 
appendage routine. 

AB END hhhhhh 
The entry point of the ~bnormal-end 
appendage routine. 

PFX hhhhhhhh hhhhhhhh hhhhhhhh 
The second line of a DEB display 
contains information taken from the 
prefix section of the DEB being 
displayed. The area is subdivided as 
follows: 

byte 0 
The first byte of the prefix area 
contains the contents of the I/O 
support work area. This area is used 
only by DEBs dealing with direct 
access storage devices. 

bytes 1-7 
The next seven bytes of the DEB prefix 
section are used by DEBs associated 
with direct access storage device 
functions. This subfield displays the 
data set control block's (DSCB) 
address used by I/O support. The 
address is expressed in the following 
format: 

bytes 1 and 2 
bytes 3 and 4 
bytes 5 and 6 
byte 7 

bytes 8-11 

the bin (cell) number. 
the cylinder address. 
the track address. 
the record number. 

The third word of the PFX field 
contains the data control block (DCB) 
modification mask that was used by I/O 
support. 

byte 12 
The length of the DEB in double words. 

bytes 13-15 
The remainder of the DEB prefix 
section is reserved for future use. 

Tca hhhhhhhh 
This field marks the beginning of the 
basic section of the data extent 
block. The TCB field is divided into 
two subfields as follows: 

byte 0 
The number of subroutines for which a 
LOAD macro instruction was issued 
during the execution of the OPEN 
executor routines. 

bytes 1-3 
The starting address of the task 
control block to which this DEB was 
enqueued. 

NDEB hhhhhhhh 

byte 0 
The overall length of a data extent 
block includes the length of a 

IMDPRDMP Output Formatting: MFT -- DEBs 103 



variable length access method 
dependent section. The first byte of 
the NDEB field expresses the length of 
the access method dependent section in 
bytes. If the access method was BDAM, 
this indicator is expressed as a 
number of full words. 

bytes 1-3 
The last portion of the NDEB field 
displays the starting address of the 
basic section of the next DEB on the 
task's queue. If this DEB was the 
last on the queue, the content of this 
field is the starting address of the 
TCB that enqueued this DEB. 

ASYN hhhhhhhh 
This field contains data set status 
flags and the address of the 
associated IRB: 

. . .. . .1. 

• • ... • •• 1 

bytes 1-3 

encountered. For tape, 
this flag indicates that 
an emulator tape with 
possible mixed parity 
records was used. 
Bit 6 set indicates the 
use of nonstandard 
labels. 
Bit 7 set indicates that 
reduced error recovery 
procedures were used on 
mag neti c tapes 
containing the data set 
represented by this DEB. 

The last portion of the ASYN field 
shows the starting address of the IRB 
that was associated with asynchronous 
appendage exit scheduling. 

SPRG hhhhhhhh 
byte 0 

The first byte of the ASYN field 
contains data set status flags. These 
flags have the following meanings: 

xx •••••• 

01.. • ••• 

10 •••••• 

11 •••••• 

.. . 1. ' ..... 

· .. 1 .... 

• .. ... 1 .... 

· . .. .1 .. 

Bits 0 and 1 indicate 
-the data set's 
disposition. The 
possible settings are: 
This setting indicates 
that the disposition was 
OLD. 
This setting indicates 
that the disposition of 
the data set was MOD 
(modify) • 
This setting indicates 
that the disposition was 
NEW. 
Bit 2 set indicates that 
an end-of-volume (EOV) 
or end-of-file (EOF) 
condition had been 
encountered. 
The setting of bit 3 has 
one of two meanings 
depending upon the 
external storage medium. 
For disk, this indicator 
reflects a release of 
unused external storage. 
For tape, this ~ndicator 
means that an emulator 
tape with second 
generation format was 
being used. 
Bit 4 set is a data 
control block (DCB) 
modification indicator. 
Bit 5 set has two 
meanings, depending upon 
the a uxi liary storage. 
recording medium. For 
disk, the setting of bit 
5 indicates that a split 
cylinder was 

104 programmer's Guide to Debugging (Release 21) 

This field contains information on I/O 
processing methods and the system 
PURGE routine .. 

byte 0 
The first byte of this field contains 
flags that indicate the method of 
input/output processing and the 
disposition of the data set that was 
to have been performed when an end-of
volume condition occurred. These flag 
settings are: 

1. .. ' .... 

• 0 •• 
... xx 

•• 01 
•• 11 

byte 1 

xxxx 

0000 
1111 
0011 
0111 
0001 
0100 

Bit 0 was set by ABEND. 
The setting of this bit 
indicates that the data 
set associated with this 
DEB was a SYSABEND or 
SYSUDUMPdata set. 
Bit 1 is always zero • 
Bit 2 and 3 show the 
end -of -volume 
disposition procedure. 
The values for this flag 
are: 
REREAD 
LEAVE 
The last half of this 
byte contains flags that 
indicate the type of 
input/output processing 
that was performed on 
the data set represented 
by this DEB. The values 
for this flag are: 
INPUT 
OUTPUT 
INOUT 
OUT IN 
RDBACK 
UPDAT 

The quiesce count. The byte is 
associated with the system PURGE 
routines (SVC 16), and indicates the 



number of auxiliary storage devices 
that were executing the user's channel 
programs. 

bytes 2-3 
Reserved for future use. 

UPRG hhhhhhhh 
The UPRG field contains extent 
information and data used by the 
user's purge routines,. This field is 
divided into the following two 
subfields: 

byte 0 
The number of extents that were 
specified in the DSCBs associated with 
this DEB. 

bytes 1-3 
The address of the first input/output 

. block (lOB) in the user's purge chain. 

PLST hhhhhhhh 
Task priority and supervisor purge 
information are contained in this 
field. This field is formatted as 
follows: 

byte 0 
The priority of the task under which 
this DEB was enqueued. 

bytes 1-3 
The starting address of a parameter 
list that was used to locate the purge 
event control block (ECB) for a 
supervisor purge request. 

DCB hhhhhhhh 
The DCB field contains three data 
elements. These are displayed in the 
format given below: 

byte 0 
xxxx 

•••• 1111 

bytes 1-3 

The storage protection 
key that was associated 
with the task under 
which this DEB was 
enqueued. 
A hexadecimal WF W in 
bits 4 through 7 of this 
field identify this 
control block as a data 
extent block (DEB). 

The starting address of the data 
control block (DCB) that was 
associated with this DEB. 

AVT hhhhhhhh 
The AVT field displays two DEB data 
elements and is subfielded as follows: 

byte 0 
The DEB extent scale that is used to 
determine the size of the device 

dependent section of this DEB. For 
direct access devices, a 4 is 
displayed in this subfield. For a 
nondirect access device or a 
communication device, a 2 is 
displayed. 

bytes 1-3 
In most cases, the last portion of the 
AVT field shows the starting address 
of the appendage vector table 
preceding this DEB. This table of 
appendage routine addresses appears on 
the first line of this DEB's display. 

OP-UCB hhhhhhhh 
The contents of this field have 
meaning only when the DEB being 
displayed describes a data set that 
was assigned to a unit record or 
magnetic tape device. This 
information is formatted from the 
device dependent section of the DEB. 
The OP-UCB field is subfielded as 
follows: 

byte 0 
This first subfield is applicable only 
to data sets assigned to magnetic tape 
devices, and shows the SET MODE 
operation code. For a data set that 
was assigned to a unit record device, 
this subfield is reserved. 

bytes 1-3 
The starting address of the unit 
control block (UCB) associated with 
the data set described by the DEB 
being displayed. 

The following four fields are present only 
for data sets assigned to the IBM 3525 Card 
Punch for multi-function. The information 
is formatted as shown below: 

UCB hhhhhhhh 
byte 0 

The device modifier field (not used 
for the 3525). 

bytes 1-3 
The starting address of the unit 
control block (UCB) associated with 
the data set described by the DEB 
being displayed. 

RDRDCB hhhhhhhh 
The starting address of the data 
control block (DCB) for the read 
associated data set. 

PCHDCB hhhhhhhh 
The starting address of the data 
control block (DCB) for the punch 
associated data set. 

IMDPRDMP Output Formatting: MFT -- DEBs 105 



WTRDCS hhhhhhhh 
The starting address of the data 
control block (DCS) for the print 
associated data set. 

The final portion of a DEB display shows 
information pertaining to a data set that 
was assigned t.O a direct access device. 
This information, taken from the DES's 
device dependent section, is arranged in 
columnar format with a line for each 
extent. The information is formatted as 
shown below: 

EM-UCS hhhhhhhh 
The first column displays two data 
elements and is formatted as follows: 

byte 0 
The device modifier showing the file 
mask,. 

bytes 1-3 
The starting address of the unit 
control block (UCB) that was 
associated with the data extent. 

START hhhhhhhh 
The address of the beginning of the 
direct access device extent. The 
first four characters represent the 
cylinder address and the last four 
characters represent the track 
address. 

END hhhhhhhh 
The address of the end of the data 
extent. Cylinder and track references 
are formatted as in the extent 
beginning address, described above. 

TRKS hhhh 
The number of direct access tracks 
bounded by the starting and ending 
addresses shown in the previous two 
columns. 

MFT TASK INPUT/OUTPUT TABLE (TIOT) 
FORMATTING: A task input/output table 
(TIOT) was constructed for each task in the 
dumped system by MFT job management 
routines. This table contained primary 
pointers to control blocks used by I/O 
support routines. As the functions"of 
several TIOT fields were dependent upon the 
state of associated external storage 
devices, multiple definitions may apply. 
The TIOT that was constructed in the dumped 
MFl' system is formatted as shown. 

TIOT hhhhhh 
The starting address of the task 
input/output table being displayed. 

JOB cccccccc 
The eight-character name of the job 
for which this TIOT was constructed. 

STEP cccccccc 
The eight-character name specified in 
the label field of the EXEC JCL 
statement associated with this job 
step. 

PROC cccccccc 
If the job step for which this TIOT 
was constructed was invoked from a 
cataloged procedure, the procedure 
name, as contained in the EXEC JCL 
statement, is displayed in this field. 

Each data set associated with the indicated 
task is represented by a separate DO entry 
that is included in the TIOT. Each TIOT 
entry is displayed on a separate line in 
columnar format. The use and meaning of 
each column is given below: 

OFFSET hhhh 
The offset of this DD entry from the 
beginning of the TIOT in hexadecimal. 

LN-STA hhhhhhhh 

byte 0 
The total length (including all device 
entries) in bytes of the DD entry 
being displayed on this line. 

byte 1 
status byte A# one of three status 
bytes in a TIOI' entry. The meanings 
of the status byte settings are: 

x. •• '. x .• 

0 •••• 0 •• 

o. .• .1 •• 

1.> ••• 0 •• 
.1 .. 

Bits 0 and 5 indicate 
the tape label 
processing that was to 
have been performed. 
The meanings of the 
settings are: 
Nonlabeled tape or an 
indication to bypass 
label processing. 
Standard labels or 
standard user labels. 
Nonstandard labels. 
The setting of status 
bit 1 has two meanings, 
depending upon the 
processing phase that 
had been reached at the 
time the system was 
dumped. During 
allocation processing, 
the setting of this bit 
indicates that this 
entry represents a split 
cylinder primary space 
allocation DD. If the 
dump was taken during 
step termination 
processing, the setting 
of this bit indicates 
that no unallocation of 
space was necessary. 

106 Progranuner's Guide 'to Debugging (Release 21) 



... 1. • '..... The setting of status 
bit 2 works under the 
same philosophy as 
status bit 1. During 
allocation processing, 
the setting of this bit 
indicates that this 
entry represents a split 
cylinder secondary space 
allocation DD. If the 
dump was taken during 
step termination 
processing, the 
indication was one of 
rewinding with no 
unload. 

' ••• 1 •• '" • Bit 3 set indicate s that 
this DD entry represents 
a JOBLIB. 

• ' ••• 1.... Bit 4 set indicates that 
direct access device 
space management was 
deemed necessary. 

•••• ..1. The setting of bit 6 
specifies that the tape 
volume was to have been 
rewound and unloaded. 

'. • • .• • .•• 1 The setti ng of bi t 7 
specifies that the tape 
volume was to have been 
rewound. 

byte 2 
The third byte of this column has 
meaning only during the allocation 
phase. This displays the number of 
devices that were requested by the 
data set represented by the TIOT entry 
displayed on this line. 

byte 3 
The last byte of the LN-STA field 
displays a TIOT field that had meaning 
at two pOints during the processing of 
this task. During the allocation 
process, this field contained a link 
to the appropriate prime split, unit 
affinity, volume affinity or 
suballocate TIOT entry. After CLOSE 
processing, this byte was used as 
follows: 

1 ....... . 

.xxx xxx x 

OONAME cccccccc 

The setting of bit 0 
indicates that the data 
set represented by this 
DO entry was a SYSOUT 
data set tha~ contained 
data. 
Bits 1 through 7 are 
reserved for future use. 

The eight character DD name associated 
with the TIOT entry being displayed. 

TTR-STC hhhhhhhh 
The first three bytes of this column 
display the relative track address 
(TTR) of the job file control block 
(JFCB) associated with this entry. 

STB-UCB hhhhhhhh 
The last column in a TIOT display 
contains information t~ken from the 
one-word device entri'es that are 
appended to each TIOT entry. One TIOT 
device entry exists for each allocated 
device. This display field shows this 
information in the following format: 

byte 0 
status byte B. The status bits have 
the following meanings: 

1... •• • Bit 0 set indicates that 
the data set associated 
with this line of the 
TIOT display was present 
on the device 
represented by this TIOT 

.1. '. . .... 

•• 1 .•••• 

• .• 1 •••. 

• '. .. 1 •.• 

• . •• • x •. 

• • •• .0 •• 

•.•.. 1 .. 

...... 1. 

•.• .. , ... 1 

bytes 1-3 

devi ce entry. 
Bit 1 set indicates that 
the data set associated 
with this line of the 
TIOT display would have 
used the device 
represented by this TIOT 
device entry. 
Bit 2 set indicates that 
the device represented 
by this device entry 
violated separation. 
Bit 3 set indicates that 
a volume serial number 
was pres ent. 
Bit 4 set indicates that 
a setup message was 
required. 
Bit 5 indicates the 
device disposition that 
would have taken place 
had the dumped system 
been allowed to continue 
processing this task. 
The settings for this 
bit are: 
Indicates that if the 
volume was required to 
be unloaded, the volume 
was to have been 
deleted. 
Indicates that if the 
volume was required to 
be unloaded, the 
unloaded volume was to 
have been retained. 
Bit 6 indicates that an 
unload requirement had 
been made. 
Bit 7 set indicates that 
a load or label 
verification requirement 
had been made. 

The address of the UCB that was used 
in all cases except when the device 
was a 2321 data cell drive. For a 
2321, this address is that of the 
description in the UCB of the cell in 
the bin. 

IMDPRDMP Output Formatting: TSO 107 



TSO System Block Formatting 

The TSO control blocks are divided into two 
groups: system and user. The control 
blocks are discu~sed in the order in which 
they appear when both groups are requested. 
Some control blocks are formatted and 
printed when either group is requested. 

An example of a TSO system and user dump 
listing is shown in Figure 24. 

TIME SHARING COMMUNICATIONS VECTOR TABLE 
(TSCVT) FORMATTING: The time sharing 
communications vector table is a secondary 
CVT to meet the time sharing requirements. 
The time sharing CVT resides in the time 
sharing region; therefore, it exists only 
while the time sharing region is active. 
When time sharing does not exist in the 
system, the MVT CVT pOinter to the TSCVT is 
zero. 

TSCVT hhhhhh 
The address of this time sharing 
communications vector table. 

TJB hhhhhhhh 
The address of the time-sharing job 
block (TJB) table. This table 
contains all of the TJBs allowed TSO 
users. The first TJB is for the 
terminal job identification (TJID) 
equal to zero. 

RCB hhhhhhhh 
The address of the region control 
block (RCB) table. It is an indexed 
table containing one RCB for each 
possible time sharing region; 
therefore, the table contains the 
maximum number of RCBs that may be 
used by time sharing. The first RCB 
is for region one. 

RPT hhhhhhhh 
The address of the reference point 
table (RPT). It is used by the 
terminal input output coordinator 
(TIOC) • 

FLG hhhh 
These flags indicate functions 
requested from the time sharing 
control task (TSC). 

byte 0 
1. '. '. TSCSWPND: Bit 0 set 

indicates that a swap has 
ended. 

.1 ........ TSCSWPBG: Bit 1 set 
indicates that a swap should 
be started. 

•• 1 • •••• TS CLOGON : Bi t 2 set 
indicates that a logon is 
required. 

• .•• 1 •••• TSCDISC: Bit 3 set 
indicates that a disconnect 
is required. 

• ••• xxx x Bits 4 through 7 are 
reserved for future use. 

byte 1 
Reserved for future use. 

FLl hhhh 
These flags indicate atypical 
functions required by the time sharing 
control task (TSC). 

byte 0 
1 .••.• TSCSSTOP: Bit 0 indicates 

that a system stop has been 
requested and the time 
sharing system is in the 
process of stopping. 

.• 1.. .. .... TSCRSTOP: Bit 1 indicates 
that a region stop has been 
requested. 

•• 1 ••••• TSCASTOP: Bit 2 is the 
ABEND-STOP flag. When set, 
it indicates to the time 
sharing control task (TSC) 
that time sharing should be 
stopped. This flag is set 
by (1) the TSO/RMS interface 
return when a machine check 
occurs in TCAM or (2) the 
TCAM STAE exit when TCAM 
abnormally. terminates. 

• •• x xxxx Bits 3 through 7 are 
reserved for future use. 

byte 1 
Reserved for future use. 

SDC hhhhhhhh 
The address of the first data control 
block (DCB) for swap data sets. 

CUS hhhh 
A count of the current TSO users 
logged onto the system. For 
additional users to be logged onto the 
system, this number must be less than 
the value in LUS. 

lOB programmer's Guide to Debugging (Release 21) 



H 

~ 
to 

~ 
3: 
I'd 

0 
~ 
rt" 
to 
~ 
I'Ij 
0 
t1 

~ 
rt" 
rt 
~. 

~ 

t-3 en 
0 

~ 
en 

3 
I-lo 

MODULE 1141)SAOMP DATE 11/12170 TIME 00.12 PAG':: OOO~ 

TSC VT 000A90 TJB OCOtOCE8 ReB 00000f88 RPT 00009000 fLG 0000 fLl 0000 SOC 00000000 
CUS 0C.04 LUS OOOA NTJ OOOA SZU 0030 CTR 0001 MUS OOOA 
SAY 00000B20 ECB 00000814 SIA OOODoeoc ICB 00000C34 101 000038C4 TQ~ 00014674 
102 00003850 103 000D3E46 002 000028C8 LeQ 00000000 TRB 00000000 lC'A 00000000 
SLF ocoeOFIO TSC OOOlACOO SPL 0001B4E8 RSZ 0028 RSV 0000 SVT 00000000 
SVQ CCCCOOOO ABN 00001C20 003 0000E880 FLM 00001=040 QTP 0000fD40 T08 OOOOEAD8 
OMP 00000998 106 000lA508 

~e6 000FB8 ~CT 0001A7B8 Eca COOOOOOI OIECB 00000000 TJ 1 0 0004 RSlZE 004B lSQSZ 0005 
NM8R 01 PKEY EO UMSMN 04 FlG 40 I=lG2 20 FBQE 01 
UTTMQ 0000 eUSE 0004 EXTNT 000A7F68 UMS,", 000ODFA8 soeB 000DEl20 PQE 0001AC20 
PRG OEOOOOOO PRGI 000A7900 PRG2 000A7FlC QPL OOOA1FI0 STECB 00000000 RCOVR OBOOFFOO 
CONIO 00 RESV 000000 

U-"S"l 00OfA8 AOOR-LN 04580C60 AOOR-LN OC880020 AOOR-L~ 00000000 A:JOR-lN ooooooeo 

Sw4P DeB 

CASSO,) 
OA5800 0 
0A 5820 0 
')A5840 a 
045860 0 
0A5880 0 
046C20 0 
DA6e40 0 
JA6C 60 0 
JA6CSC a 
046CAO 0 
JA6CCO 0 
JA6CEO 0 

00COOO 

STORAGE KEY 0 
00000000 000AS8e8 00CA7260 00000000 
00000000 OOCAFOOO OCOOOOOC 00000000 
00000000 cooe1468 occeoooe OCOOOOOO 
eooooooo COOGOOOO cceCOOOJ 00000000 
TO NEXT LINE ACORESS SAME AS A80VE 
0012CC02 ('CCCOOOO FFC40000 0000eAF8 
000eCFA3 0000e2SC COOA6D68 000A7700 
000A778S ooelCleo 000090F4 oeoooooo 
00000000 OOCCOOOO CCCOOOOC oeoooooo 
oooeoooo 00000000 000A7418 00000098 
00040COO ceecccco ccceoooo 00000000 
COOOOJ~~ coccccac C(C(Joao OOOJOOOO 

000A58CO 00J028}0 
000lA1BS 00028000 
00000000 00000000 
00000000 00000000 

OOOCOOOO 000A7700 
4000A4 B6 00000001 
AOOOA5Fa 9000A60e 
00000000 00000000 
000C0110 00000000 
OOOCOOOO 00000000 
000000(0 OO~OOOJC 

CC'CAS8Z0 OOOA5820 * •••••••••••••••••••••••••••••••• = 
000A5800 00000000 * •••.•• o ••••••••••••••••••••••••• ~ 
00000000 OCOOOOOO ••••••••••••••••••••••••••••••••• * 
~COOOOOO 00000000 ••••••••••••••••••••••••••••••••• * 

COOOOOOO 00000000 * •••••.••••••••• 8 •••••••••••••••• * 
00000018 00009000 • •••••• 8 ••••••••• ••••••••••••••• * 
00000000 00000000 * ....•. A •••• 4 ••••••• 8 •••••••••••• * 
00000')00 :>0000000 * •••••••••••••••••••••••••••••••• ~ 
00124034 )000B834 * •••••••••••••••••• P ••••••• ..... -
cccoonoo 00(100000 # •••••••••••••••••••••••••••••••• * 
COOOOOOO 00000000 * ••••..•••••••••••.•••••••••••••• * 

~ Figure 24. Sample of TOO Control Block Format (Part 1 of 3) 



.... 
t-o 

"Cr. 
"'t. 

$ 
11-
ill 

§ 
(1) 
toe . 
Ul 

en 
c: .... 
~ 
(1) 

g 
0 
~ 
b" 
c: 

I,Q 
I,Q .... 
::1 
Q 

...... 
~ 
(!) .... 
(!) 
~ 
en 
(!) 

-

11 MCDUlE I~CSAQ~P DATE 11/12/10 TI~E 00.12 PAGE 0007 

•• *** TSO USER CONTROL BLOCKS ***** 

****************** USER KGNOl TJID=0001 ******************** 
TJB 000018 TSB OOOD90F4 ATTN 00 STAX 01 STAT 00 STAT2 00 EXTNT 000A1F68 

RCB 0000CFB8 UMSM 000DDF08 SOCB 000DEl20 UTTMQ 0002 RSTOR 48 UMSMN 04 
USER KGNOI IPP8 00000000 NEWIO 00 FlUSL 00 TJID 0001 MONI 00 
RSV OCOOOO 

UMSM ODDF08 AOOR-LN OA580C38 ADOR-lN OA980058 AODR-l~ OCBOO028 ADDR-lN 00000000 

TSB 009DF4 STAT 81 TJB 00e018 FLGI 00 WTSB 000000 LNSZ 18 OTBFP 000000 
NOBF 00 CBFP 000000 BPKFl 00 ITBFP 000000 NITR 01 IBFP ODAOFO 
CLEAR 00 QCB OElCCO EeB 00000000 TJID 0001 STee 0000 ATNLC 0016 
ATNTe 0000 lNNO 00 BlNK 00 ASRCE 0000 ArNeC 0003 AUTOS 00000000 
AUTOI 00000000 ERSOS 00000000 

**** THE FOLlOWING TJBX,lAXE,PseB,TCB'S AND STORAGE ARE FRO~ THE SWAPPED DATA SET ***** 

TJBX OA7F68 XF5T DOOA1DAC XLAST 000A6068 XOSE OOOA1320 XSVRB 000A1100 XRQE 00000000 XIQE 00000000 
TAXE 000A6C80 XLEC8 00000000 XPSWO RSV OOCOOOOO XAIQE 00000000 XQPl 000A7FlO 
XNQPE OOOA XNTCB 0002 XlQPl 0054 H8Fl 0000 XAeT 00000000 XAECB 0001A534 
XKEYA COCA7F80 

JOB KGN01 STEP KGNOI PROCSTEP STARTING 

TeB OA70AO RBP 000A1Dl8 FIE CODooooa DEB 00000000 TIO OOOA 1864 CHP 00000000 TRN 00000000 
,,",S5 030A79AO PK-FLG EOOOOOOO FLG 00018888 LLS OOOA 1EAO JLB 00000000 JPQ 000A7EBO 
RG 0-1 00000001 FFF58C14 OOOlA534 000lA500 OOOA 7510 000A10AO 00000000 00000001 
RG 8-15 000A7370 FFFFFFF9 COOA7564 OOOA6D68 600 FEAB2 000A7534 400FEO,30 600062FA 
FSA 030000CO TCB 000A6D68 THE 00000000 JST 00OA70AO NTC 00000000 OTC 0001A1B8 
LTC 000A6068 IOE 00000000 EeB OOODDFBC TSPR 8000B82S o-PQE 000A5810 SOS OOOA6i'J40 
ST A 200CC498 TCT 00CA130a USR 00000000 DAR 00001000 RES 00000000 JSeB 000A1EOO 

ACTIVE RBS 

DRS DA1018 RESV 00000000 APSW 00000000 
Q/TTR oeoeoooo WT-LNK 010A70AO 

WC-SZ-STAB 00040083 Fl-CDE 00010580 PSW FF050001 500FEC8A 
~M lEFSD263 EPA OFEABO STA OFEABO IN 000550 ATRl B9 

"4AIN STORAGE 

)-oQE OOOA5810 FIRST 000A~820 LAST OCOA5820 

PQE OAS820 FFB OCCCCOOO 
TeB COC1A7B13 

lFB OOOAFOOO 
RSI 00028000 

NPQ ooocooeo 
RAO OOOA 5800 

PPQ 00000000 
FLG 0000 

Figure 24. sample of TSO Control Block Format (Part 2 of 3) 



H 

~ 
~ 

~ 
~ 

~ 
"0 :; 
t'Ij 
o 
t1 

2 
rt 
rt ..,. 
~ 

t-3 en o 

t-3 
en 

3 
... 

DEB OA74A4 

MODULE IMOSADMP DATE 11/12/70 TI~E 00.12 

APPENDAGES END OF EXT 01516E SID 01516C PCI 01S1DC CH END 01S1AO AB END 01516C 
PFX 00000000 (2COOGOB 00003FE2 11000000 
TCB 050A6D68 ~DEB 01000000 ASYN 69000000 S~RG 00000000 UPRG 02000000 PLST B8000000 
AVT 04015158 

FM-UCB START END TRKS 
50002AFO 0(61COOO OC920013 03E8 
50002ABO 009FOOOO 00C60013 0320 

PAGE 0010 

OCB EFO(CE64 

TIOT OA6E28 JOB KGNOI STEP THP PROC KGNPOl 

PSCB OA7B88 

TAXE OAf>CBO 

OFFSET 
0018 
002C 
0040 
0054 
0068 
007C 
0090 
00A4 
COB8 
OOCC 
OOEO 
00F4 
0108 
Olle 
0130 
0144 

IN-STA 
14C401CO 
14040140 
140401GO 
14()40100 
14040100 
14040100 
14040100 
14040100 
14000010 
14000010 
14000010 
140COOI0 
140C0010 
140COO 10 
140(0010 
140G0010 

USER KGN01 
SWP C04C33FO 
RLGB OCCA8700 
USE2 CCCCCJCO 

THFLD 
EP 
LINt(. 
GRS 
G~ll 
lNK 
EXIT 

00 
0000B834 

000000 
00000000 
00000000 
000A601't 
001)001)00 

OONAHE 
S~SPRINT 

SYSCOIO 

SYSUCUHP 
SVSUT1 
SYSUT2 
BSLOUT 
SNAPTAPE 
001 
002 
003 
004 
005 
006 
007 
008 

TTR-ST( 
00491600 
00480AOO 
00481000 
00491800 
00481200 
00~B0600 
00491AOO 
004(1100 
C04Boeoo 
004BOCOO 
004BOEOO 
OC4E0100 
004E0300 
004E0500 
004E0900 
004EOBOO 

STB-U(B 
80002570 
80002AFO 
80002ABO 
80002530 
80002530 
80002570 
800025FO 
80002530 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

USRL 05 
L TIM 008 A0560 
UPT 000A86FO 

GPNM SVSOA 
TCPU 00000000 
UPTl 0010 

PPSAV 
LCPSW 
GkO 
GR6 
GR12 
PR.a.tl 
STAT 

OC0710 
00040000 
cooooooe 
ooooooeo 
00000000 
00000000 
00000000 

~BOPS'" 
~oPSw 

GRl 
GR7 
GR13 
IRB 
PAR.H 

00000000 
(I{'(10':'3C2 
00000000 
00000000 
ococoooo 
000A6CBO 
OOOABBF8 

ATR 1 EOOO 
TSWP 000)0000 
P SVl :)000 

~SA 00 
USE 00 
GR2 OJ000000 
GR8 00000000 
~R 14 00000000 
TCB 000A6(BO 
TAlE COOCCF7C 

ATR2 0000 
TCON 00000000 
RSV2 C0000COO 

SIZE 
tOE 
GQ,3 
GQ9 
GR15 
TlNK 
IPUF 

12 
000000 

00000000 
00000000 
00000000 
000A6068 
00000000 

CPU 00018BOO 
TC01 OO()OOOOO 
U$'=l 0000000') 

STAB 
WCF 
GR4 
GQ10 
NIQE 
XPSW 
USER 

4034 
00 

00000000 
00000001) 
ooooooor 
OOOOOO{lO 
000(C084 

... . 

.... Fl.gure 24. sample of TOO Control Block Format (Part 3 of 3) 



LUS hhhh 
The maximum number of TSO users that 
may be logged onto the system. For 
additional users to be logged onto the 
system, the value of LUS must be 
greater than the value in CUS. LUS 
cannot exceed the value in NTJ. LUS 
is set by the time sharing control 
task (TSC). This field is initially 
set to the same value as MUS; however, 
if TSO encounters I/O errors while 
swapping users in and out. the time 
sharing control task reduces this 
value to limit the number of TSO 
users. 

NTJhhhh 
The number of time-sharing job blocks 
(TJBs) and terminal status blocks 
(TSBs) allocated when TSO was started. 

The dummy TJB for the terminal job 
identification (TJID) equal zero is 
not included. The value of LUS cannot 
exceed this number. 

SZU hhhh 
The number of bytes in the time 
sharing job block (TJB). 

CTR hhhh 
Contains the number of region control 
blocks (RCBs) allocated when TSO was 
started. This number cannot be 
increased after the TSO system is 
started. 

MUS hhhh 
The maximum number of users that may 
be logged onto a TSO system. This 
field is set by the START and MODIFY 
commands issued by the operator. 

SAV hhhhhhhh 
The beginning address of three IS-word 
save areas used by the time sharing 
control task (TSC). the time sharing 
interface program (TSIP), and the time 
sharing dispatcher. 

ECB hhhhhhhh 
The address of the table control block 
(TSECBTAB) which contains the _event 
control blocks (ECBs) used to post the 
time sharing control task (TSC). the 
region control tasks (RCTs), and the 
terminal input output coordinator 
('flOC) • 

SIA hhhhhhhh 
The address of the time sharing 
interface area (TSIA). 

ICB hhhhhhhh 
The address of the time sharing 
interface control block (TSICB). 

101 hhhhhhhh 
The address of the branch entry point 
IKJEAIOl in the time sharing interface 
program (TSIP). 

TQE hhhhhhhh 
The address of the timer queue element 
(TQE) used by TSO for time slicing. 

102 hhhhhhhh 
The address of the entry point 
IKJEAI02 in the time sharing 
dispatcher. 

103 hhhhhhhh 
The address of the entry point 
IKJEAI03 in the' time sharing 
dispatcher. 

D02 hhhhhhhh 
The address of the entry point to the 
TSO driver routine (IKJEAD02). or the 
equivalent entry in a user written 
routine. 

LCQ hhhhhhhh 
The address of the first element in 
the logon communications queue. 

TRB hhhhhhhh 
The first address in the trace control 
block chain. This address is 
established and used by the statistics 
collection routine. It is set to zero 
by the time sharing control task 
(TSC) • 

LPA hhhhhhhh 
The address of the first contents 
directory entry (CDE) in the time 
sharing link pack area. 

SLF hhhhhhhh 
The address of the system-initiated 
logoff routine. 

TSC hhhhhhhh 
The address of the task control block 
(TCa) for the time sharing control 
task (TSC). 

SPL hhhhhhhh 
The address of the start parameter 
list. 

RSZ hhhh 
The minimum number of 2K blocks for a 
region during logon. 

RSV hhhh 
Reserved for future use. 

SVT hhhhhhhh 
The contents of the SVC table entry 
used by the time sharing interface 
progl:am (TS IP) • 

112 Programmer's Guide to nebugging (Release 21) 



· SVQ hhhhhhhh 
The contents of the SVC table entry 
used by the TCAM/TIOC interface 
program. 

ABN hhhhhhhh 
The address of the out-of-main storage 
abnormal termination routine 
(IKJEAT07). The routine is resident 
in main storage. 

DO 3 hhhhhhhh 
The entry point address to the TSO 
driver MODIFY routine (IKJEAD03), or 
the equivalent entry point address in 
a user written routin~. 

FLM hhhhhhhh 
The entry point address IKJEFLM for 
the system initiated logoff routine. 

QTP hhhhhhhh 
The entry point address IKJGGQT1 for 
the branch entry to the TCAM interface 
program (QTIP). 

T08 hhhhhhhh 
The entry point address to the TSO 
command routine (IJEAT08) for TSO 
dumps taken by the time sharing 
control task (TSC) TSO dumps. 

DMP hhhhhhhh 
The address of the TSO dump control 
block,. 

T06 hhhhhhhh 
The TCB address of the TSO dump 
routine (IKJEAT06) for the time 
sharing control task (TSC) modify 
routine. 

TIME SHARING REGION CONTROL BLOCK (RCB) 
FORMATTING: A region control block (RCB) 
contains information that is unique to a 
time sharing region. There is one RCB for 
each time sharing region. The RCBs reside 
in the time sharing control tasks region, 
they are contiguous, and they are created 
during initialization of the time sharing 
controller. 

RCB hhhhhh 
The address of the RCB. ~ 

RCT hhhhhhhh 
The address of the task control block 
(TCH) for this region control task 
(RCT). The TCB contains the address 
of the partition queue element (PQE) 
that defines the region. 

ECB hhhhhhhh 
The event control block (ECB) on which 
this region control block (RCB) waits. 
This ECB must be posted before this 
region control task (RCT) can perform 
one of its functions. 

DIECB hhhhhhhh 
The event control block (ECB) that is 
posted upon completion of this region 
control task (RCT). The time sharing 
control task (TSC) waits for this ECB 
to be posted. 

TJID hhhh 
The terminal job identification (TJID) 
for the time sharing job currently 
executing in this region. 

RSIZE hhhh 
The number of 2K blocks in this 
region. It is set by the time sharing 
control task (TSC) when the time 
sharing system is started. 

LSQSZ hhhh 
The number of 2K blocks in the local 
system queue space (LSQS) for this 
region. It is set by the time sharing 
control task (TSC) when the time 
sharing system is started. 

NMBR hh 
The identification number assigned to 
this region. 

PKEY hh 
The protect key (PKEY) for the time 
sharing job currently executing in 
this region. 

UMSMN hh 
The number of entries in the main 
storage map which describes the main 
storage image that was initialized 
during logon. 

FLG hh 
This field contains the first byte of 
the region control block (RCB) flags. 
The flags indicate various functions 
to be performed by the region control 
task (RCT) and time sharinq control 
task (TSC). These flags are set by 
the time sharing interface program 
(TSIP), the time sharing control task 
(TSC). and the terminal input/output 
coordinator (TIOC). These flags are 
tested and reset by the region control 
task (RCT) and the time sharing 
control task (TSC). 

1 ••••••• RCBFQO: Bit 0 is the 
quiesce flag. When set, 
this flag indicates that the 
current user of this region 
should be quiesced. 

.1 •• ' •••• RCBFSO: Bit 1 is the swap 
out flag. When set, this 
flag indicates that the 
current user should be 
swapped out. 

IMDPRDMP Output Formatting: TSO -- RCB 113 



•• 1 ••••• RCBFSI: Bit 2 is the swap 
in flag. When set, this 
flag indicates that the 
current user of this region 
should be swapped in. The 
user's terminal job 
identification (TJID) is in 
the region control block 
(RCB) • 

.••• 1 •••• RCBFRS: Bit 3 is the 
restore flag. When set, 
this flag indicates that the 
user, whose terminal job 
identificati.on (TJID) is in 
the region control block 
(RCB), should be restored by 
the region control task 
(RCT) • 

•••• 1 ••• RCBOCAB: Bit 4 set 
indicates that the 
out-of-main storage abnormal 
termination routine was 
invoked. 

••••• x •• Bit 5 is reserved for future 
use. 

•••• •• 1. RCBFAT: Bit 6 is the 
attention exit flag. When 
set, this flag indicates 
that an attention exit has 
been requested for one or 
more users. 

•••• ••• 1 RCBFND: Bit 7 is the END 
region control task (RCT) 
flag. When set, this flag 
indicates that the region 
control task (RCT) should 
terminate normally and 
return control to the time 
sharing control task (TSC). 

FLG2 hh 
This field contains the second byte of 
the region control block (RCB) flags. 
See FLG. 

1 ••••••• RCBFSE: Bit 0 is the swap 
end flag. When set, this 
flag indicates that the 
swap-in operation for the 
current user of this ~egion 
is complete • 

• 1 •••••• RCBSTOP: Bit 1 is the 
region stop flag. When set, 
this flag indicates that a 
request has been made to 
stop the region. Every user 
of this region will be 
logged off. 

•• 1 ••••• RCBACTV: Bit 2 indicates 
the active status of the 
region control task (RCT). 

The flag is set to one when 
the region control task is 
initialized; it is set to 
zero when the region control 
task is terminated. 

••• 1 '.... RCBSTRl : Bit 3 indicates 
that a region start has been 
requested. and the region 
control task should be 
attached • 

• '... 1 ••• RCBSTR2: Bit 4 indicates 
that a region start has been 
requested, and a swap logon 
image should be created. 

••••• xxx Bits 5 through 7 are 
reserved for future use • 

FBQE hh 
The number of free block queue 
elements (FBQEs) for this region. 

UTTMQ hhhh 
The relative track address (TT) of the 
map queue pointer. The map queue 
pointer describes the location of the 
region's initialized logon image on 
the swap data set • 

CUSE hhhh 
The number of users logged on to use 
this region. The time sharing control 
task (TSC) increments the count before 
disconnect (DISC) and decrements the 
count during logon • 

EXTNT hhhhhhhn 
The address of the initialized time 
sharing job block extension (TJBX). 
The TJBX is created during the logon 
initialization for this region. 

UMSM hhhhhhhh 
The address of the user main storage 
map. This map describes the 
initialized logon main storage image 
for this region. 

SDeB hhhhhhhh 
The address of the swap data set 
control block (SDCB). This block 
points to the location of the 
initialized logon image on the swap 
data set for this region. 

PQE hhhhhhhh 
The address of the partition queue 
element (PQE) pointer in the system 
queue space (SQS). The PQE describes 
the main storage space assigned to 
this region. The PQE pointer is used 
to manipulate main storage when (1) 
this region control task's (RCT's) 
region is obtained during start time 
sharing initialization and (2) this 
region control task's (RCT's) region 

114 Programmer's Guide to Debugging (Release 21) 



is freed during region control task 
termination. 

PRG hhhhhhhh 
PRGl hhhhhhhh 
PRG2 hhhhhhhh 

These three words constitute the SVC 
I/O purge parameter list,. For further 
information" see the "Purge Macro 
Instruction" in the publication IBM 
System/360: system Programmer's 
Guide, GC28-6550. 

QPL hhhhhhhh 
The address of the quiesce I/O 
parameter list. 

STECB hhhhhhhh 
An event control block (ECB). During 
a subsystem recovery, the time sharing 
control task (TSC) waits for this ECB 
to be posted by the region control 
task (RCT). The posting is done' 
during end processing. 

RCOVR hhhhhhhh 
These bits indicate the current 
recovery status of the region control 
task (RCT) in the event of a subsystem 
failure. 

byte 0 
1 ••••••• RCBRCOVR: Bit 0 set 

indicates that the status 
bits in the following 3 
bytes are valid. 

'. xxx xx •• Reserved for future use. 

byte 1 
1 •.•• 

•• x. RCBWTOR: WTOR restore 
processing complete. 

••• x RCBTACMP: Transient area 
restore processing complete. 

-- RCBRSFLG 
RCBRSTRT: Bit 0 set 
indicates a restore. 

.1 ••.••• RCBTCBDN: Bit 1 set 
indicates that the task 
control blocks (TCBs) have 
been requeued. 

• ,.1. •••• RCBQELCM: Bi t 2 set 
indicates that~the queue 
element (QEL) restore 
processing is complete. 

..• 1 •••• RCBTQECM: Bit 3 set 
indicates that the timer 
queue element (TQE) restore 
processing is complete. 

•••• 1 ••• RCBRQIQC: Bit 4 set 
indicates that both the 
request queue element (RQE) 
and the interrupt queue 
element (IQE) restore 
processing is complete. 

••••• 1 •• RCBIORSC: Bit 5 set 
indicates that1the I/O 
restore processing is 
complete. 

•• '. •• • xx Bits 6 and 7 are reserved 
for future use. 

byte 2 
1, ••• 

RCBQUFLG 
RCBQUSTR: Bit 0 set 
indicates that quiesce has 
started • 

• 1. '. • ••• RCBIOSTR: Bit 1 set 
indicates that the first 
entry into the I/O purge 
routine is complete. 

•• 1. • ••• RCBTADON: Bit 2 set 
indicates that the transient 
area quiesce is complete. 

••• 1 •••• RCBWTORD: Bit 3 set 
indicates that the write to 
operator with reply (WTOR) 
quiesce is complete. 

•••• 1, ••• RCBQELDN: Bit 4 set 
indicates that the queue 
element (QEL) quiesce is 
complete. 

•••• .1... RCBIODON : Bit 5 set 
indicates that the second 
entry I/O purge is complete. 

• ••••• 1. RCBTQEDN: Bit 6 set 
indicates that the timer 
queue element (TQE) quiesce 
is complete • 

•••• .•• 1 RCBRQIQD: Bit 7 set 
indicates that both the 
request queue element (RQE) 
and the interrupt queue 
element (IQE) are complete. 

byte 3 
1... RCBSWTCH: Bit 0 indicates 

the method of search used by 
various subroutines in 
IKJEAT07. When equal to 
zero, all system users are 
purged according to the 
terminal job identification 
(TJID). When equal to one, 
all users in this region are 
purged as indicated by the 
region control block 
addresses. 

.1 •••••• RCBSWTON: When bit 1 is set 
along with bit 0 being set, 
all system users are purged • 
A search is made according 
to the terminal job 
identification (TJID) and 
the request control block 
(RCB). 

IMDPRDMP Output Formatting: TSO -- UMSM 115 



·.xx xxxx Bits 2 through 7 are 
reserved for future use. 

CONID hh 
The routing code of the console that 
issued the last START. MODIFY, or STOP 
command. 

RESV hhhhhh 
Reserved for future use. 

( MAIN STORAGE MAP (UMSM) FORMATTI NG: 
, UMSM is used in the swap operation. 

One user main storage map exists for each 
possible time sharing user. The UMSM 
contains a series of consecutive one-word 
extent fields (ADDR-LN). Each one-word 
extent contains a halfword address field 
(ADDR) and a halfword length field (LN) 
that describe the main storage space 
allocated to the time sharing user. The 
number of UMSM extents has established 
defaults that can be modified by the 
operator when he starts the time sharing 
system. The number of extent entries is 
stored in the time sharing job block (TJB) 
at TJBUMSMN. Unused extent fields contain 
zeros. 

UMSM hhhhhh 
The address of the user main storage 
map. 

ADDR-LN hhhhhhhh 
bytes 0 and 1 

Begin Address: This field contains 
the two high order bytes of the 
beginning address of the main storage 
segment allocat.ed to the time sharing 
user. since main storage is allocated 
in 2K blocks, the low order byte is 
always zero and, therefore, need not 
be kept in a control block. 

bytes 2 and 3 
This field contains the two high-order 
bytes designating the length of the 
main storage space allocated to the 
time sharing user. Since main storage 
is allocated in 2K blocks, the 
low-order byte is always zero and, 
therefore, need not be kept in a 
control block. 

SWAP DATA CONTROL BLOCK (SWAP DCB) 
FORMATTING: The swap data control block 
(SWAP DCB) is used whenever a time sharing 
user's region is swapped into or out of 
main storage. Each region control task 
(RCT) has one swap data control block. 
FOllowing the address of the swap data 
control block is the contents of the main 
storage data that was written on the swap 
data set. 

SWAP DCB hhhhhhhh 
The address of the swap data control 
block. 

TIME SHARING JOB BLOCK (TJB) FORMATTING: 
The time sharing job block (TJB) contains 
status information about the time sharing 
user. The TJB is retained in main storage 
while the user is swapped out. One time 
sharing job block exists for each possible 
simultaneous time sharing user. The space 
for the TJB is obtained from the time 
sharing control task (TSC) region during 
time sharing initialization. Status 
information about terminals related to this 
TJB is contained in the terminal status 
block (TSB). The address of the terminal 
status block is the first word of the TJB. 

TJB hhhhhh 
The address of this TJB. 

TSB hhhhhhhh 
The address of the terminal status 
block (TSB) that owns this terminal 
job. If zero, this job was started by 
an operator command. 

ATTN hh 
A count of the unprocessed attention 
interrupts for this job. 

STAX hh 
The number of scheduled specify 
terminal attention exits (STAXs). 

STAT hh 
This field contains flags that 
indicate the status of the time 
sharing job. 

1 •••.••• TJBNJB: Bit 0 set indicates 
that this TJB is currently 
unused. 

.1 ••..•. TJBINCOR: Bit 1 set 
indicates that this user is 
currently in main storage. 

•• 1 ••••• TJBLOGON: Bit 2 set 
indicates that the logon 
start has been set by the 
terminal input output 
coordinator (TIOC) during a 
dialup to request a logon. 
This bit is reset by the 
time sharing control task 
(TSC) • 

• •• 1 •••• TJBIWAIT: Bit 3 set 
indicates that the terminal 
job is in an input wait 
state. 

• ••• 1 ••• TJBOWAIT: Bit 4 set 
indicates that the terminal 
job is in an output wait 
state. 

116 Programmer's Guide to Debugging (Release 21) 



••••• 1 •• TJBSILF: Bit 5 set 
indicates that the user is 
to be logged off the system. 
This bit is set by the 
IKJSILF subroutine and 
tested by the region control 
task (RCT) restore routine 
that posts the logon ECB. 
This bit is tested and reset 
by the logon/logoff routine. 

•••••• 1. TJBDISC: Bit 6 set 
indicates that a request has 
been made to the terminal 
input output coordinator 
(TIOC) to disconnect the 
line. 

••••••• x Bit 1 is reserved for future 
use. 

STAT2 hh 
These flags indicate the status of the 
time sharing job. 

1 ••• TJBHUNG: Bit 0 set 
indicates that the user's 
communication line 
disconnected. 

• 1 •••••• TJBHOLD: Bit 1 set 
indicates that an output 
wait (OWAIT) exists because 
of a hold option. 

• • 1.. ••• TJBOCAB: Bit 2 set 
indicates an out-of-main 
storage abnormal termination. 
has occurred for this user. 

• • • 1 •••• TJBRNAV: Bit 3 set 
indicates that the user 
cannot be logged onto the 
time sharing system because 
(1) a machine check occurred 
in the user's region or (2) 
the region is too small for 
the user. 

•••• 1 ••• TJBSURSV: Bit 4 set 
indicates that on the next 
swap in the swap unit is not 
marked as available for the 
user • 

•••• • xxx Bits 5 through 1 are 
reserved for future use. 

EXTNT hhhhhhhh 
The address of the terminal job block 
extension (TJBX) when it is in main 
storage. 

RCB hhhhhhhh 
The address of the region control 
block (RCB) for this job. 

UMSM hhhhhhhh 
The address of the user main storage 
map (UMSM) for this job. 

SDCB hhhhhhhh 
The address of the swap data control 
block (DCB) for this job. 

UTTMQ hhhh 
1 • •.• •••• TJBUTTMP: Bi t 0 of byte 0 

set indicates a parallel 
swap. 

.111 1111 Bits 1 through 1 of byte 0 
along with byte 1 contain 
the offset into the map 
queue. The map queue 
contains a chain of 
allocation units for this 
user on the swap data set. 
The address of the queue is 
in the UTTMQ field of the 
TSO region control block 
(RCB). 

RSTOR hh 
This field contains the status flags 
used by the region control task (RCT) 
restore operation • 

1 ••••••• TJBOWP: Bit 0 set indicates 
to the terminal input output 
coordinator (TIOC) to end 
the output wait (OWAIT) 
condition • 

.1 •••••• TJBIWP: Bit 1 set indicates 
to the terminal input output 
coordinator (TIOC) to end 
the input wait (IWAIT) 
condition • 

•• x ••••• Bit 2 is reserved for future 
use. 

••• 1 •••• TJBLOGP: Bit 3 set 
indicates that the event 
control block (ECB) waited 
for by the logon image 
should be posted. This flag 
is set by the time sharing 
control task (TSC) logon 
routine and by the IKJSILF 
subroutine. 

•••• 1 ••• TJBLWAIT: Bit 4 set 
indicates that if the user 
is not made ready by restore 
processing, he should be 
swapped out again. 

••••• x •• Bit 5 is reserved for future 
use. 

•••••• 1. TJBFAT: Bit 6 set indicates 
that an attention exit is 
requested for this user's 
job. 

IMDPRDMP Output Formatting: TSO -- TJB 111 



........ x Bit 7 is reserved for future 
use. 

UMSMN hh 
The number of entries in the user main 
storage map (UMSM). 

USER cccccccc 
The userid of the user who owns this 
job. This field may have trailing 
blanks when the user identification 
contains less than eight characters. 

IPPB hhhhhhhh 
An address pointer to the beginning of 
a chain of inter-partition post blocks 
that indicate the event control blocks 
(ECEs) to be posted by the restore 
operation. 

NEWID hh 
Identifies the region where the user 
should be logged on. When this field 
is zero, the TSO driver should select 
the region. When this field is set by 
the end-of-routine for logon/logoff. 
it identifies the ~ew region to which 
the user will be shifted. 

FLUSL hh 
Reserved for future use. 

TJID hhhh 
This field contains the terminal job 
identification (TJID) for this time 
sharing job. 

MONI hh 
These flags indicate various 
processing functions that cause 
operator messages to be sent to this 
terminal. The flags are set and reset 
when the terminal user issues the 
MONITOR subcommand of the OPERATOR 
command. 

1 ••••••• TJBMDSN: Bit 0 set 
indicates that the first 
non-temporary data set 
allocated to a new volume 
should be displayed as part 
of the mount and keep 
messages. 

• 1 •••••• TJBMJBN: Bit 1 set 
indicates that the name of 
each job is to be displayed 
on the console when each job 
is initiated and terminated, 
and that the unit record 
allocations are to be 
displayed when a job step is 
initiated. 

.•• 1 ....... TJBMSES: Bit 2 set 
indicates that when a 
terminal session is 
initiated or terminated a 
message is displayed on the 
operator console. 

• •• 1 •••• TJBMSPA: Bit 3 set 
indicates that the available 
space on a direct access 
device is to be displayed on 
the operator console as part 
of the demount message. 

•••• 1 ••• TJBMSTA: Bit 4 set 
indicates that, at the end 
of a job or job step., 
certain data set disposition 
information should be 
printed with the demount 
messages. These 
dispositions are: KEEP'I 
CATLG, or UNCATLG. 

• '. ... .. xxx Bits 5 through 7 are 
reserved for future use. 

RSV hhhhhh 
Reserved for future use. 

TERMINAL STATUS BLOCK (TSB) FORMATTING: 
Each terminal status block (TSB) contains 
status information about one terminal user. 
The terminal input output coordinator 
(TIOC) uses this information. During 
system initialization, one TSB is created 
for each possible user. The main storage 
space is obtained in one contiguous block . 
for all of the TSBs in the region of the 
time sharing control task (TSC); this 
c~ntiguous string of TSBs is called the TSB 
table. The origin pointer to the TSB table 
is the TIOCTSB field in the TIOCRPT. 

TSB hhhhhh 
The address of this terminal status 
block (TSB). 

STAT hh 
This field contains the terminal 
status indicator flags. 

1 ••••••• TSBINUSE: Bit 0 set 
indicates that this TSB is 
bel ,)(, used • 

.1 ....... TSBLWAIT: Bit 1 set 
indicates that the terminal 
keyboard is locked due to a 
lack of input buffer space. 

•• 1. • ••• TSBDSPLY: Bit 2 set 
indicates that this TSB 
represents a terminal which 
is a graphic device. 

118 Programmer's Guide to Debugging (Release 21) 



• , •• 1 •••• TSBNOBUF: Bi t 3 set 
indicates that TPUT found no 
time sharing buffers. 

•••• 1 ••• TSBITOFF: Bit 4 set 
indicates that this user 
wishes to prevent 
inter-terminal 
communications. 

• • •• • 1. '. TSBDISC: BitS set 
indicates that this TSB has 
been processed by logoff. 

TJB hhhhhh 

•• x. Bit 6 is reserved for future 
use. 

' ••• 1 TSBATNLD: Bi t 7 set 
indicates an attention for 
an input line deletion. 

The address of the time sharing job 
block (TJB) currently used by this 
terminal. This field contains zeros 
when this terminal is not associated 
with a time sharing job block. 

FLG1 hh 
This field contains terminal status 
flags. 

1 ••••••• TSBANSR: Bit 0 set 
indicates that an attention 
simulation is requested. 

• 1. '. •••• TSBOFLSH: Bi t 1 set 
indicates that the output 
trailer queue is to be 
flushed. This bit is set by 
TCLEARQ. 

• .1. • ••• TSBOWIP: Bit 2 set 
indicates that a TPUT 
operation is in progress. 

• • ,.1 •••• TSBWOWIP: Bi t 3 set 
indicates that a task is 
waiting for another task to 
complete a TPUT operation. 

..... 1 ••• TSBIFLSH: Bit.!, set 
indicates that an input 
queue flush is in progress. 

••••• 1 •• TSBTJOW: Bit 5 set 
indicates that this user is 
already using the maximum 
number of output buffers 
that can be allocated. This 
TSB waits on event control 
block (ECB> for this TCB. 
This bit is set by a TPUT 
macro instruction with a 
terminal job identification 
(TJID) • 

•••••• x. Bit 6 is reserved for future 
use. 

, ••• 1 TSBTJBF: Bit 7 set 
indicates that no time 
sharing buffers were 
available when the SVC for 
TPUT with the terminal job 
identification (TJID) was 
issued. The system waits 
for the TJB event control 
block (ECB) to be posted. 

WTSB hhhhhh 
Reserved for future use • 

LNSZ hh 
The number of characters that can be 
printed on one line for this terminal. 
This field is set by either 'logon or 
STSIZE. 

OI'BFP hhhhhh 
The address of the trailer buffer if 
the heading buffer for a message has 
been removed from the message queue. 
This field is reset to zeros when the 
message has been completely moved to 
the TCAM buffers. 

NOBF hh 
The number of buffers on the output 
queue. 

OBFP hhhhhh 
The address of the first buffer on the 
output buffer queue • 

BRI<FL hh 
These flags indicate the status of the 
communication line. 

1 ••••••• TSBBIPI: Bit 0 set 
indicates to the TSINPUT 
that a partial line exists 
for prompting. set by 
TSOUTPUT. 

.1 •••••• TSBAUTON: Bit 1 set 
indicates that automatic 
input line numbering is 
requested • 

•• 1. •• ' •• TSBBRKIN: Bit 2 set 
indicates that TPUT is using 
the breakin option and a 
partial line was assigned to 
this function. This bit is 
set by TSINPUT. TSINPUT is 
a TCAM subtas k. 

••• 1 •••• TSBAULST: Bit 3 set 
indicates that automatic 
line numbering has started. 

•••• 1 ••• TSBAUTOC: Bit 4 set 
indicates that automatic 
character prompting is used. 

IMDPRDMP Output Formatting: TSO -- TSB 119 



.• .• • .• .1.. TBSTAUT: Bit 5 set 
indicates that the user is 
being prompted with the next 
line number. 

•••.••• 11 TSBSATN1: Bits 6 and 1 
contain a count of the 
number of characters used to 
simulate attention. 

ITBFP hhhhhh 

NIBF 

The address of the first buffer in the 
trailer input buffer chain. 

The number of buffers on the input 
queue. 

IBFP hhhhhh 
The address of the first buffer in the 
input buffer queue chain. 

CLEAR hh 
This field contains terminal status 
flags. 

1 ••••••• TSBATTN: Bit 0 set 
indicates that an attention 
from this terminal has been 
ignored. 

.1 •••••• TSBTJMSG: Bit 1 set 
indicates that TSOl~PUT is 
processing a terminal job 
identification (TJID) 
message. 

•• 1 ••••• TSBSPIT: Bit 2 set 
indicates that breakin 
prompt and automatic prompt 
are suppressed. 

••• 1 •••• TSBNBKSP: Bit 3 set 
indicates that the next 
character in the user's 
buffer is a backspace 
character. 

•••• xxxx Bits 4 through 7 are 
reserved for future use. 

QCB hhhhhh 
The address of the queue control block 
<QCB) that contains the destination 
for the message being sent. 

ECB hhhhhhhh 
The event control block (ECB) at which 
the inter-terminal communication (TPUT 
with TJID) waits (1) when there are no 
time sharing buffers, (2) when the 
TSBOWIP bit is set, or (3) when the 
TSBOQHLD bit is set. 

TJID hhhh 
The terminal job identification (TJIO) 
of the task waiting on this TCB's 
event control block (ECa). 

STCC hhhh 
These two bytes define special purpose 
characters that may be redefined by 
the terminal user. 

byte 0 
TSBLNDCC: This byte contains the line 
delete character. 

byte 1 
TSBKSPCC: This byte contains the 
character delete character. 

ATNLC hhhh 
The number of successive lines of 
printed output between attention 
simulation reads. 

ATNTC hhhh 
The number of seconds between 
attention simulation reads. 

LNNO hh 
When a graphic terminal device is 
used, this is the number of line that 
can be displayed. 

BLNK hh 
Reserved for future use. 

ASRCE hhhh 
This field contains the same 
information as the PRFSRCE field in 
the TCAM buffer prefix. 

ATNCC cccc 
This field contains from one to four 
characters that are used to simulate 
attention. Some of the character 
positions may contain blanks. 

AUTOS hhhhhhhh 
This field initially contains the 
starting line number for the first 
input line. While the line of input 
information is being received from the 
terminal user, this field is updated 
to contain the value of the current 
line number • 

AUTOI hhhhhhhh 
This field contains the value that is 
used to automatically increment the 
value of the input line numbers. This 
field can be modified by the terminal 
user. 

ERSDS cccc 
When a graphic terminal device is 
used, this word contains the 
characters used to erase the display 
screen. 

TIME SHARING JOB BLOCK EXTENSION (TJBX) 
FORMATTING: The time sharing job block 
extension <TJBX) contains user job 
information that can be rolled out to the 
swap data set with the user's job. The 

120 Programmer's Guide to Debugging (Release 21) 



Page of GC28-6610-5,6, Revised April 16, 1913, By TNL: GN28-2545 

TJBX resides in the local system queue 
space (ISQS) for the region. The TJBX 
location is pointed to by the third word of 
the time sharing job block (TJB). The 
space for the TJBX is obtained by the 
region control task (RCT) during 
initialization. 

TJBX hhhhhh 
The address of the TJBX. 

XFST hhhhhhhh 
The address of the logon TCB. The 
logon TCB is the first TCB on the 
user's ready queue. 

XLAST hhhhhhhh 
The address of the last TCB on the 
user's ready queue. 

XDSE hhhhhhhh 
The address of the data set extension 
(DSE) used by TSO dynamic allocation. 

XSVRB hhhhhhhh 
The address of the first supervisor 
request block (SVRB) purged from the 
transient area queue. 

XRQE hhhhhhhh 
The address of the first request queue 
element (RQE) purged from the 
asynchronous exit queue. 

XIQE hhhhhhhh 
The address of the first interrupt 
queue element (IQE) purged from the 
asynchronous exit queue. 

TAXE hhhhhhhh 
The address of the queue of terminal 
attention exit elements (TAXEs) used 
to schedule the attention exits. 

XLECB hhhhhhhh 
The logon event control block (ECB) 
that was posted by the region control 
task (RCT) to activate logon/logoff. 

XPSWD cccccccc 
The password entered by the terminal 
user during logon. If the password 
contains less than eight·characters, 
the field is padded to the right with 
blanks. The entire field contains 
blanks when the user is not required 
to enter a password. 

XATTR hhhhhhhh 
The address of the chain of attribute 
control blocks (ATRCBs). 

XAIQE hhhhhhhh 
The address of the attention interrupt 
queue element (IQE) currently being 
processed by the attention prologue. 

XQPL hhhhhhhh 
The address of the quiesce parameter 
list (QPL). 

XNQPE hhhh 
The number of entries in the quiesce 
parameter list (QPL). 

XNTCB hhhh 
The number of task control blocks 
(TCBs) active in the user's job step. 
Wile n the va lue in XNTCB exceeds XNQPE, 
the quiesce parameter list is 
enlarged. 

XLQPL hhhh 
The number of bytes in the quiesce 
paraneter list. 

I RSV hhhh 
Reserved f or future use. 

XACT hhhhhhhh 
The relative track and record address 
(TTR) f or the account. control table 
(ACT) on SYSJOBQE. 

XAECB hhhhhhhh 
This field contains either: (1) The 
address of the logon/logoff event 
control block (ECB) when logon 
processing begins. (2) The address of 
the command scheduling block (CSCB's) 
cancel event control block (ECB) after 
the CSCB is created. 

XKEYA hhhhhhhh 
The address of the storage key save 
area. 

PROTECTED STEP CONTROL BLOCK (PSCB>: The 
protected step control block (PSCB) 
contains accounting information related to 
a single user. All timing information is 
in software timer units. A software timer 
unit is equal to 26.04166 micrcseconds. 

PSCB hhhhhh 
The address of this PSCB. 

USER ccccccc 
These seven bytes contain the userid 
entered by the terll'inal user during 
logon. If necessary, it is padded to 
the right with blanks. This field 
uniquely identifies each terminal user 
in the time sharing system. 

USRL hh 
The number of nonblank characters in 
the userid. 

GPNM cccccccc 
An eight-byte group name initialized 
by logon from the user attriblte data 
set (UADS). When a name is not 
avai lab Ie from UADS, the unit name 
used by the dynamic allocation 

IMDPRDMP Output Formatting: TSO -- TJBX 121 



interface routine (DAIR) is used, if a 
name is required. 

ATR1 hhhh 
Sixteen bits used to define terminal 
user 4ttributes. 

byte 0 
1... PSCBCTRL: Bit 0 set 

indicates that the user may 
use the OPERATOR command. 

• 1 •••••• PSCBACCT: Bit 1 set 
indicates that the user may 
use the ACCOUNT command. 

•• 1 ••••• PSCBJCL: Bit 2 set 
indicates that the user may 
use the SUBMIT, STATUS, 
CANCEL, and OUTPUT commands. 

••• x xxxx Bits 3 through 7 are 
reserved for future use. 

byte 1 
Reserved for future use. 

ATR2 hhhh 

bytes 0 and 1 
Reserved for use by IBM customers. 

CPU hhhhhhhh 
The cumulative CPU time used by this 
terminal user during this session. 
The CPU field is set to zero during 
logon. 

SWP hhhhhhhh 
The cumulative time that this terminal 
user has been resident in the region. 
The SWP field is set to zero during 
logon. 

LTIM hhhhhhhh 
The actual time of day that this user 
logged on to the time sharing system 
for this session. 

TCPU hhhhhhhh 
The total CPU time used by this 
terminal user, excluding the current 
session. 

TSWP hhhhhhhh 
The total time that the terminal user 
has been resident in the region during 
this accounting period, excluding the 
current session. 

TCON hhhhhhhh 
TCO 1 hhhhhhhh 

TCON and TC01 are a single eight byte 
field. This field contains the total 
connect time for this terminal user 
during this accounting period, 
excluding the current session. 

RLGB hhhhhhhh 
The address of the re-logon buffer 
block used by logon as a pointer to 
the re-logon command buffer. 

UPT hhhhhhhh 
The address of the user profile table 
(UPT) • 

UPTL hhhh 
The number of bytes in the user 
profile table • 

RSV1 hhhh 
RSV2 hhhhhhhh 

RSVl and RSV2 are a single six byte 
field that is reserved for future use • 

USE1 hhhhhhhh 
USE2 hhhhhhhh 

USEl and USE2 are a Single eight byte 
field reserved for use by IBM 
c ustoroers. 

TERMINAL ATTENTION EXIT ELEMENT (TAXE) 
FORMATTING: '!he TSO terminal attention 
exit element (TAXE) consists of a regular 
24 word interrupt request block (IRB) plus 
a TSO addendum. It is used to schedule an 
attention exit resulting from a terminal 
attention interruption. It is created, 
queued, and dequeued by the specify 
terminal attention exit (STAX) macro 
instruction. The main storage space for 
the TAXE is obtained in the local system 
queue space (LSQS) of the terminal user's 
region. 

TAXE hhhhhh 
The address of this TAXE when it is in 
mai n storage. 

'lMFLD hh 
This field contains indicators for the 
ti me routi nes. 

1... Bit 0 set indicates that the 
timer element was not 
queued. 

.1 •••••• Bit 1 set indicates that the 
local time-of-day option is 
used. 

•• 00 •••• Bits 2 and 3 set to 
zero-zero indicate that the 
time interval was requested 
in timer units (26.04166 
microseconds) • 

•• 01 •••• Bits 2 and 3 set to zero-one 
indicate that the time 
interval was requested in 
binary units. 

..10 •••• Reserved for future use. 

122 Programmer's Guide to Debugging (Release 21.7) 



•• 11 .•• ' •• Bit 2 and 3 set to one-one 
indicate that the time 
interval was requested in 
dec imal digi ts. 

•••• 1 ••• Bit 4 set indicates that the 
time interval has expired. 

•• •• ,.000 Bits 5 through 7 set to 
zero-zero-zero indicate an 
STIMER task time request. 

.• 001 Bits 5 through 7 set to 
zero-zero-one indicate an 
STIMER wait request. 

•••• ,.011 Bits 5 through 7 set to 
zero-one-one indicate an 
STIMER REAL time request. 

• • •• ,.100 Bits 5 through 7 set to 
one-zero-zero indicate an 
STIMER task time request 
with a specified exit. 

••••• 111 Bits 5 through 7 set to 
one-one-one indicate an 
STIMER REAL time request 
with a specified exit. 

Other combinations of bits 5 through 7 
are reserved for future use. 

PPSAV hhhhhh 
The starting address of the register 
save area for the problem program. 

ABOPSW hhhhhhhh 
This field displays the right half 
(bytes 4 through 7) of the program 
status word (PSW) that was active in 
the dump system during the execution 
of an ABEND or ABTERM routine. If 
these routines have not been invoked, 
then this field contains zeros. 

WCSA hh 
The number of requests waiting when 
termination occurred. 

SIZE hh 
The number of doublewords in this 
request block. 

STAB hhhh 
This field contains two bytes of 
status and attribute information. 

byte 0 
The TAXE is a type of interrupt 
request block (IRB). Byte zero 
identifies the type of request block; 
however, for the TAXE, only the IRB 
identification is used. 
01 •••••• Bits 0 and 1 set to zero-one 

indicate that this is an 
interrupt request block 
(IRB) • 

byte 1 
This byte contains various request 
block indicators. 

1 ••• ' •••• Bit 0 set indicates that the 
RBLINK field points to the 
task control block (TCB). 

.1 •••••• Bit 1 set indicates that the 
program related to the 
interrupt request block 
(IRB) is active. 

• .1. . •••• Bit 2 set indicates that 
this interrupt request block 
(IRB) is for an exit routine 
(ETXR) • 

••• x •••• Bit 3 is reserved for future 
use. 

• ••• 00 •• Bits 4 and 5 set to 
zero-zero indicate that the 
request queue element (IQE) 
is not to be returned. 

• ••• 01 •• Bits 4 and 5 set to zero-one 
indicate that the interrupt 
request block (IRB) has 
queue elements for 
asynchronously executed 
routines that are request 
queue elements (RQEs). 

• ••• 10 •• Bits 4 and 5 set to one-zero 
indicate that an interrupt 
queue element (IQE) is not 
to be returned at EXIT. 

•••• 11 •• Bits 4 and 5 set to one-one 
indicate that the interrupt 
request block (IRB) has 
queue elements for 
asynchronously executed 
routines that are interrupt 
queue elements (IQEs). 

• ••••• 1. Bit 6 bet indicates that the 
request block storage can be 
freed at exit. 

• •••••• 0 Bit 7 set to zero indicates 
a wait for a single event or 
all of a number of events. 

• •••••• 1 Bit 7 set to one indicates a 
wait for a number of events 
that is less than the total 
number of events that are 
waiting_ 

EP hhhhhhhh 
The address of the routine that was 
asynchronously executed. 

IMDPRDMP Output Formatting: TSO -- TAXE 123 



LOPSW hhhhhhhh (Left half of PSW) 
ROPSW hhhhhhhh (Right half of PSW) 

This program status word (PSW) 
contains the status of the program 
represented by the request block being 
displayed when a new request block was 
created. Had the dumped system been 
allowed to continue processing 
normally, the operation would have 
been resumed with this PSW. 

USE hh 
This field contains the use count as 
used by ATTACH. 

IQE hhhhhh 
The address of the list origin for the 
interrupt queue element (IQE). 

WCF hh 
The number of requests that were 
pending when this dump was taken. 

LINK hhhhhh 
The address of the next request block 
(RB) on this RB queue. If this is the 
last request block on the queue, then 
this field contains the address of the 
task control block (TCB). 

GRO hhhhhhhh 

GR15 hhhhhhhh 
The general register save ,rea used by 
the supervisor. 

NIQE hhhhhhhh 
The address of the next available 
interrupt queue element (IQE). 

LNK hhhhhhhh 
The address of the next interrupt 
queue element (IQE). 

PRM1 hhhhhhhh 
The address of the parameter list for 
the asynchronous exit routine. 

IRB hhhhhhhh 
The address of the interrupt request 
block (IRB) to be scheduled next. 

TCB hhhhhhhh 
The address of the task control block 
(TCB) for this TAXE. 

TLNK hhhhhhhh 
The address of the next TAXE on this 
queue. 

XPSW hhhhhhhh 
The left half (bytes 0 through 3) of 
the program status word (PSW) for the 
user attention exit routine. 

EXIT hhhhhhhh 
The address of the user attention exit 
routine. 

STAT hhhhhhhh 
This field contains status flags for 
this TAXE. 

byte 0 
1 .•. TAXEFKEY: Bit 0 set 

indicates that the task 
issuing the specify terminal 
attention exit (STAX) macro 
instruction is a problem 
program.. 

,.1 •••••• TAXEMOD: Bit 1 set 
indicates that the task 
issuing the specify terminal 
attention exit (STAX) macro 
instruction is in problem 
program mode. 

• .1. • ••• TAXEFFREQ: Bit 2 set 
indicates that the requested 
TAXE is not available for 
scheduling,. 

• •• x xxxx Bits 3 through 7 are 
reserved for future use. 

bytes 1-3 
Reserved for future use. 

PARM hhhhhhhh 
The address of the parameter list for 
the specify terminal attention exit 
(STAX) macro instruction. 

TAlE hhhhhhhh 
The address of the terminal attention 
interrupt element. 

IBUF hhhhhhhh 
The address of the user input buffer. 

USER hhhhhhhh 
The address of the user parameter list 
from the specify terminal attention 
exit (STAX) macro instruction. 

Task Control Block Summaries 

If, during the course of program execution, 
the IMDPRDMP program formatted the major 
system control blocks of more than one MVT 
or MFT task, a summary of each displayed 
task's TCB is presented at the end of the 
control block portion of the dump listing. 
Depending upon the operating system option 
under which the dumped task was operating. 
either the MVT/MFT-with-subtasking TCB 
summary format (Figure 25), or the abridged 
MFT-without-subtasking TCB summary format 
(Figure 26) is presented. 

Both summary formats are identified by 
two lines of heading i.nt ormation. The 

124 Programmer's Guide to Debprroing (Release 21) 



first heading line displays the optional 
dump listing title, the name of the module 
that invoked the dump, and the date and 
time that the information was captured from 
the dumped system. The second line of 
heading displays the identifying phrase 
••••• TCB SUMMARy ••••. • 

The individual TCB summaries contain the 
following information: 

MVT or MFT with Subtasking TCBs: Are 
summarized in the two-line array 
illustrated in Figure PROUT-9 and described 
below: 

JOB cccccccc 
The JOB field in the first line of 
each task control block array displays 
to the user the eight-character name 
of the job associated with the TCB. 

STEP cccccccc 
The STEP field shows the eight
character name of the job step as it 
appeared on the label field of the 
EXEC JCL statement associated with the 
step .• 

TCB hhhhhh 
The starting address of the task 
control block. 

CMP hhhhhhhh 
This field shows the ABEND indicators 
and user and system completion codes 
associated with this TCB. (see the 
relevant TCB discussion for the 
contents of this field.> 

NTC hhhhhhhh 
This word contains the address of the 
TCB that occurred previous to this one 
on the originating task's subtask 
queue. If the TCB being summarized 
was the first on the queue, this field 
displays zeros. 

OTC hhhhhhhh 
The OTC field displays the address of 
the TCB representing the originating 
task. 

LTC hhhhhhhh 
This field contains the address of the 
TCB that occurred last on the 
originating task's subtask queue at 
the time the dump was taken. If the 
TCB being summarized was the last on 
the subtask queue, this field contains 
zeros. 

PAGE ddd 
The page of the dump listing on which 
the formatted control blocks 
associated with this TCB, may be 
found. 

MFT Without Subtaskinq TCBs: Are 
summarized in the two line abridged array 
illustrated in Figure PROUT-10 and 
described below: 

JOB cccccccc 
The JOB field in the first line of 
each task control block array, 
displays to the user the 
eight-character name of the job 
associated with the TCB being 
summarized. 

STEP cccccccc 
The STEP field shows the 
eight-character name of the job step 
as it appeared in the label field of 
the EXEC JCL statement associated with 
the step. 

TCB hhhhhh 
The starting address of the task 
control block being summarized is 
given in the first field of this 
second line. 

CMP hhhhi"lhhh 
This field shows the ABEND indicators 
and user and system completion codes 
associated with the TCB. (see the MFT 
Tca discussion for a description of 
the contents of this field.> 

PAGE ddd 
The page of the dump listing on which 
the formatted control blocks 
associated with this TCe, are found. 

IMDPRDMP Output Formatting: Tca Summaries 125 



P 
tv 
C\ 

MODULE t"4DSADII4P !JATE 11/12/70 TI'4E 00.15 PAGE 0032 

"'d 
* '* * * T e B SUM!4APY * * * * t1 

0 
u:l 
t1 JOB STEP 
"" ~ TCB 0085EB CMP 000((;000 NTC COOOOOOO OTe 00009CAO LTC 00000000 PAGE 0004 

rc JOB STEP t1 . 
en TCB 008728 CMP ccocceoo NTC 00000000 OTC 00009CAO LTC 00000000 PAGE 0005 

(i) J'JB STEP 
~ TCB 008868 CMP 00000000 NTC 00000000 OTC 00009CAO LTC 00000000 PAGE 0006 
~. 

Q, 
JOB STEP rc 

rt 
TCB 0089A8 CMP COOOOOOO ~TC 00000000 OTC 00009CAO LTC 00000000 PAGE 0007 

0 
JOB STEP 

0 TCB 008AE8 CMP 00000000 NTC 00000000 OTC 00OO9CAO LTC 00000000 PAGE 0008 en 
tr 
~ JOI3 STEP 

lQ TCB OOBC 28 CMP OOOOOCOO NTC 00000000 OTC 00009CAO LTC 00000000 PAGE 0009 lQ .... 
=' JOB STEP 

i.Q TCB 008068 CHP DOooe 000 NTC 00000000 OTC 00009CAO LTC 00000000 PAGE 0010 
.-. 
~ JJB STEP rc TCB 00SEA8 CMP OOOOCOOO NTC 00000000 OTC 00009CAO LTC 00000000 PAGE 0011 .... 
rc 
"" JO'3 STEP en TCB 008F E8 C~P COOCC 000 NTC COOOOOCO OTC 00009CAO LTC 00000000 PAGE 0012 ct) 

tv 
P -

M4JDUL~ I"lDSAD"4P f)ATE 11/12170 TI""!= 00.15 PAGE 0033 

'* * * * T C B SUM rot A P Y ;;0: * :0: * 

JOB MASTER STEP SCI-EOULR 
TCB 009CAO CMP Oooeo(eo NTC OOOCOOOO OTe 00000000 LTC 0002E268 PA';E 0022 

JOB MASTER STEP SCHDULR 
TCB 0288C8 CMP 00000000 ~TC 0OO09BA8 OTC 00009CAO LTC 00000000 PAGE 0025 

JOB JOB4 STEP GO 
TCB 02EOF8 CHP 00000000 NTC 000288C8 OTC 00009CAO LTC 0002DIE8 PAGE 0027 
TCB 0201 E8 C~P COOOCOOO NTC 00000000 OTe 0002EOF8 LTC 00020400 PAGE 0028 
TCB ::i2D4CO CMf COOOOCOO NTC 00:)00000 OTC 0002DIE8 LTC 00000000 PAGE 002~ 

JOB WTR STEP CCE 
TeB 02E268 CMP OCOOCOOO NTC e002EOF8 OTC COOOQCAO LTC OOC2DIJ8 PAGE 0030 
TCB 020108 C M P 000 VC J J J NTC OO()OJOOC ClTC C002E2~a LTC CJ'JOOCJO PAGE 0031 

Figure 25. TSB Summary sample for System That Operated Under MVT or MFT With Subtasking 



H 

~ 
to 

~ 
3: 
ttl 

o 
r;: 
rt 
-g 
rt 
t'Zj 
o 
11 

~ 
rt 
rt .... 
.8 

GJ 
ro 
::s 
(t) 
11 
QI 
I-' 

I'%j 

~ 
III 
rt 

~ 

14FT !.lUMP lISf1i'~G 

Jud STEP 
TCB JOaHeS CMi> JOOOCCOC 

JOd HASTER. STEP SCHcOUlR 
TCB JOd 3!:>d ~HP OCCOOOOO 

Jud STEP 
TeB ooaBS CMP OOOOCCOC 

JJd STEP 
TCB JOS>\J.d CMP ococacoc 

JOd MASTER STeP 5CI1EOUlR 
TeB 008300 CI'4? Jocoecoc 

~ 

JOd MASTcK STC:P SCHeOULR 
TCB 008;40 ('I'IP JOOOCCOC 

JOd .TR STEP Pu 
TeB OJi< 140 ~MP ooooceoc 

JJd STEP 
T('B 0)8;:40 ~HP ooceocoo 

Jud JOB5 STEP GJ 
TeB Ou914d CHi> OOOCOOOO 

JJd STEP 
Te6 JJ934d (.HP JOCCoeoc 

Jud STEP 
TeB Ju~ 54d eMf JOGoeecc 

JuB STEP 
TCB 00914d ~MP oaoccooc 

JOd STEP 
reB 009 i4a 0'''' 00000eoc 

JJo STEP 
TeB 009348 eMP JOCOOCOO 

JOd SH:P 
T('B C09J"td CMt> vOOOvOOO 

Jue SH:P 
TCB 009F4d C.Mt> JOOCCCOO 

JOd STeP 
TCB JOA14U C .. -tt> \)COOOOOC 

JJd STEP 
TCd JJA34d c."V JO~CCJOC 

... Jl.l\JL C IM.JSADHP OATE 11/12170 TIME CO. 50 

* * * * T C B SU,",MARY * * * * 

PAGE 0001 

PAGE 0002 

PAGE J004 

PAGE 0005 

PAGE 0(06 

PAGE 0001 

PAGE OC09 

PAGE 0010 

PAGE COlI 

PAGE 0013 

PAGE 0014 

PAGE 0015 

PAGE 0016 

PAGE 0017 

PAGE C018 

PAGE 1)019 

PA::;E 0020 

PAGE 0021 

~ Figure 26. TCB SUmmary sample for systems that Operated Under MFT Without Subtasking 

PAGE OC22 



THE GENERAL FORMAT 

The IMDPRDMP program uses a general format 
to display the hexadecimal contents of main 
storage. The particular areas of main 
storage displayed are determined by the 
parameters entered after the PRINT user 
control verb. 

To identify various dump printouts, 
IMDPRDMP prints specific headings on each 
dump, such as ALLOCATED STORAGE, PRINT 
STORAGE" and NUCLEUS and SQA PRINT. A 
sample of a general format dump is shown in 
Figure 27. 

The IMDPRDMP program also reverts to the 
general format if it is unable to format 
control block information because it 
encountered either a control block error or 
one of several user control statement 
format errors. 

Each page of an IMDPRDMP program dump 
listing containing information displayed in 
the general format is identified by a 
heading line. This heading line shows the 
optional title supplied by the user 
followed by the date and time that the 
information was taken from the dumped 
system. A sequential page number also 
appears in each heading line. 

Listings being produced under control of 
the PRINT ALL, PRINT CURRENT, or PRINT 
STORAGE (no operands) format control 
statement display the contents of the 

sixteen general purpose registers.. If the 
dump was obtained from a multiBrocessing 
system and both sets of registers were 
obtained, then the contents of both sets of 
registers are displayed. Where applicable, 
the beginning of each main storage region 
is noted by a line that gives the job, step 
and procedure step name of the owning task, 
followed by the status of the region 
(BORROWED, ROLL-OUT, OWNED). 

Then, starting at an address requested 
by the user, as specified in a PRINT user 
control statement, (or location zero if no 
address was specified) the contents of main 
storage are displayed'. Each line of the 
general format displays eight words of main 
storage. Preceding each line of 
information is the address of the first 
byte displayed followed by a one-character 
storage protection key indicator 
representing the key associated with the 
area of main storage being displayed on 
this line. Following each line of 
information, a 32-character translation 
field is printed. This field gives the 
EBCDIC translation of the translatable 
characters in the eight hexadecimal words. 
Untranslatable bytes are represented by 
positional periods. 

Printing of any line that duplicates the 
contents of the line printed previously, is 
suppressed. Duplicate lines are indicated 
by the phrase "TO NEXT LINE ADDRESS SAME AS 
ABOVE" following the line duplicated. 

128 Programmer's Guide to Debugging (Release 21) 



H 

~ 
t1;I 

Ej 
~ 
o 
~ 
rt 

't:S 
~ 
rt 

~ o 
11 

~ 
rt 
rt ... 
~ 

o 
~ 
rt 
"0 s:: 
rt 

(') 
o 
:3 
:3 
(1) 

!:3 
rt 
C/J 

~ 

R 0-7 
R 8-15 
000000 
000020 
000040 
(000060 
000030 
000040 
ooooeo 
:)(IOOEO 
oeOl00 
000120 
000160 
000180 
OOOlAO 
0001eo 
C':)OlEO 
CaJ200 
000220 
C0-)240 
000260 
00')280 
C00240 
0002CO 
,)002EO 
C00300 
000320 
000340 
000360 
000380 
000340 
C003CO 
C003EO 
000400 
000420 
0(10440 
J00460 
000480 
0004AO 
0004CO 
0004EO 
000500 
000520 
000540 
000560 
000580 
0005AO 
0005CO 
0005~0 

000600 
000620 
(000640 
000660 
000680 
0006AO 
0006CO 

00000000 000022C8 00000000 8000214A 
00000000 00000000 00000000 00000000 
00000191 00001COO 40002064 6000002B 
FFC40C01 50008882 FFF50004 6006E7C2 
000022E8 OCOOOOOO 00002280 00005E08 
982400C8 90001000 00020000 00000003 
310000A6 4CCOC005 08000080 40000001 
00000000 00000000 00000450 00020650 
020000C8 2C000048 C2C505C4 40404040 
40404040 40404040 40404040 404040C6 
61FOF161 F9F94040 40404040 40404040 
00000000 00000000 00000000 00000000 
00000000 00000000 00000000 82000170 
FF060C09 SOCOOOOO 0000018A 018A018A 
00009AOO 00009AF4 00009968 0000Q9B4 
000117EO 00009BB4 00000040 00009B74 
OOOOOOCC 000729CO 00000000 0006FOOO 
00072600 00067?94 00065040 00072798 
00004E98 00000000 41500800 lA551821 
5834002C 05022015 30194770 OE0491FO 
30104770 02724873 00229170 10124780 
302291FF 700247EO OE0491AO 50984790 
000418~A 43A1COOA 89A00003 410452FC 
5C84921F 2004501B 000094FO 50984580 
071C1812 58EOOFC8 07FE4180 020245CO 
91011001 41100352 4C110002 902310C4 
OF9C1000 401050fB 18AO~200 1008A023 
47500E2A 91107C06 411000E6 48A00006 
4B40508C 5040C024 18B09620 B02092FO 
91102000 471003E6 41A05020 0200AOOO 
4170065C 58AC1030 91042001 411003CO 
91082000 4180030A 504050jO 92085030 
066447FO 06249104 20014780 050647FO 
040694E7 20019110 20014710 05709102 
50001031 91012000 47100432 02011030 
91082001 471C0490 05037033 A0064740 
41100402 05011031 40044710 053E9104 
05017035 AOOC47CO 04900201 1035A008 
90006000 41800440 48A00044 54A05058 
00444780 8008945F 700691AO 50984790 
4BC05096 41AG7031 40AOC002 43B07030 
20119101 20004780 051CJ202 C0112019 
91027013 41800530 58AJ0048 47F005EO 
001C58FF 000005EF 47F0055C 47F00554 
41EOOOA2 94FE1C06 940F2000 47F00752 
06249602 70064060 70044010 701447FO 
05AE9101 70064780 000247fO 040E9407 
050658A2 00189101 20004710 050258A2 
41C00664 41B00624 50A00048 91202000 
94D~2000 58F3001C 58FF0004 50B05074 
507401FB 92000048 91017006 47800638 
600005AO 88A00018 42A20010 58900FCO 
04A005CC 4770068E 96A01006 43901004 
509445EO 075207F8 D2C37031 50004720 
20090041 411006E4 18E096AO 70069106 
70069120 00444710 80049608 70069140 

tv FO 
\0 1.gure 27. sample of General Format Dump 

"DOULE I"OSA~~P DATE 11/12/10 TIME 00.15 DAGf 0001 

00002280 OOOOOOOA 00000000 00000000 
00000000 00000000 00000000 40002084 
08000080 40000001 FFE50000 900432B6 
OOOOFFOO 00000000 FFO~0009 80000000 
5A643360 48100002 412000CO 50200048 
90001000 47100010 Q1030044 4150007C 
05001COO 40000500 06001COO 000004BO 
445000B8 47F0006C P2002000 00084040 
40404040 40404040 40404040 40404040 
FOF8C1D1 D9F7F040 FOF04BFl F140FIF4 
00000000 00000000 00000000 OOOOCOOO 
00000000 00000000 00000000 00000000 
00040000 00036018 00000000 OOOO~JOO 
FF000190 FF000190 00000001 F~FF6528 
00009AF O 80009B74 00009400 4000B962 
5000BCA4 6000A514 00000030 0006F9F4 
5006E596 00072968 A006E140 00000001 
4006E1AE 0001828C 00000000 00000000 
92825098 16114010 50881804 58420014 
00214780 025445EO OE681B99 18A991FE 
02824393 001C43A2 002089AO 9000487A 
029E58FO OFC445EF C00041CO 02B258B2 
07FC4012 001E0708 20082008 04032000 
02F641FO 02E247FO 02=A4700 000045EO 
02A241FO 03444810 OF9C1211 4740035C 
5001000C 92001004 0300100C 00210201 
45EOOAOO 91EF7006 41708008 91 c FOFBO 
07FA0502 20150F01 41800308 58400024 
09771B9Q 58AOOFBC 50904000 47FC02E2 
302045CO 05E407BC 48A00044 54A05058 
58A20010 91012000 418oo3CO 58A2C018 
41A05028 02005020 101850AO 004841CO 
03889140 702C4110 C5929101 70064770 
10064110 04024140 103140AO 503A0203 
20201BAA 43A70030 S9400004 41AA3020 
053E0503 7033AOOA 4120053E 9102701~ 
30084180 04900501 7035A008 4140048A 
41A05038 41B00578 45C005E8 4710C688 
411006A8 96427006 02062009 00419104 
80081886 88800008 89B00002 48CB5204 
89800004 43983020 4290COOD 0202CJ11 
91082001 4780051C 9618COOO 50(00048 
45C00624 071C96A6 700647FO 066C58F3 
47F00432 41E00960 47F00564 92422004 
58C20018 41F0051C 05031031 50004770 
04CA4910 702A4710 00069148 102C4710 
702C940F 200047FO 040E9110 20004110 
001047FO 05E00200 50082018 41A05008 
47800604 910C402C 47800624 943F402C 
05EF47FO 061E41EO 096447FO 01525880 
91102001 4710063E r3000048 lCOC Q COO 
05891899 40607004 40107014 5~402010 
1A994079 52F00600 700C509A 0700700C 
070C58AO 004841AO A00850AO 0040D206 
00454710 OF8C9110 00444780 0714945F 
0044071E 91840044 47808008 41808004 

* ....... H •••••••••••••••••••••••• * 
* ••••••••••••••••••••••••••••••• * 
* •••••••••.••••.•••.•••• v •••••• * 
* •••••.••• 5 •••• XB •••••••••••••••• ~ 
•••• v ••••••••••••••• s •••••••••••• * 
* ..• H •••••••••••••••••••••••••••• * 
* ..•.•....•.•.••.•.••••...•••. * 
• ••••••••••••• K ••••••• O •• K •••• Q * 
* ••• H ••••• E~O * 
* *.01.99 

~084PR73 00.11 14* 
••••.••••.••.••. * 

* •••..••••.•••••.••••.••••••••••• * 
* •••••••••••••••••••••••••••••••• * 
••••••••••••••••••••••••••••••••• * 
* .••..•• 4 ••••••••••• 0 •••••••• ••• ~ 
* ••••••••••••••••••••••••••••• 94~ 
* .............• o ••• v ••••••• x •••• * 
* ••...••••••••••• x ••••••••••••• * 
* •••..••.•.•.••.•.•••••••••.•••. * 
* •••• N •••••••• M.O •••••••••••••••• ~ 
* •.•...•....••....•......••.•.... * 
* ••••••••• ~ ••••••••• O.D •••••••••• * 
* ••••••••••••••••••••• P ••••• M ••• * 
* ••••••.•••••.•••. 6.0.S.0 •••••••• * 
* ....... H ••••• K ••••• O ••••••••••• * 
* ..•..••.••.•.••.....•.. l ••••• K.* 
* .... ..... ~ ..........•......•.•. ~ 
•••••••••••• w •••••• N •••• J •••••••• * 
* ••••••••••••••• 0 ••••••••••••• 0.'* 
* .••..•• W •••• K •••••••• u •••••••••• * 
* •••••••••••••••••••••••••••••••. * 
* ••..•••......•...•.• K ••••••••••• * 
• ••• o ••..••.•• c.o ••••••••••••••• * 
* .•. x ••••••••••••••••• K ••••••• K.* 
* •••••••.•••• K ••••••••••••••••••• * 
* ........ N •••••••• N ••••••••••••• * 
•••• KN ••••••••••••••••• ~ •••••• •• * 
*N ••••••••• K •••••••••••••••• y •••• * 
* •••••••••••••••••••••••• K ••••••• * 
* ••••••••••••••••••••••••••••••• ~* 
* ••••••••••••••••••••••••••• K ••• * 
••••••••••• K ••••••••••••••••••••• * 
* •••.••••••..• 0 ••••••••••••• 0 ••• 3* 
* ••••••••• 0 ••• 0 ••• 0 ••••••• 0 •••••• * 
* ••••••••••••• O ••• B ••• O •• N ••••••• ~ 
* .......•..... 0 ••••••••• 0 •••••• * 
* •.•.•.•.. K.O ••••••••••• O •••••••• * 
*.O ••••••••••• K ••••• O •• K ••••••••• * 

' •.•••••••••••••.••••••••••• * 
t.3 ••••••••••••• 0 ••••••• 0 •••• * 
••••••••••••••••••••• l ••••••• ~ ......................•...... -

••••....••••.••••.••• oo ••••• p ••• * 
* •...... 8K •••••••••••••••••••• K.* 
* •.••••. u •••••••••••••••••••••••• * 
* ••.•..•.••...••••••••••.••.••.. * 



Page of GC28-667o-5,6, Revised April 16, 1973, By TNL: GN28-2545 

OUTPUT COMMENTS 

The following output comments are printed 
within the body of a formatted dump 
whenever IMDPRDMP is unable to locate. 
format and print a control block. These 
comments explain why the referenced control 
block is not printed within the dump 
listing. these output comments are 
separated from the main storage information 
by a blank line both before and after each 
output comment. Note: output Comments 
produced when IMDPRDMP is processing GTF 
output are shown in Section 3 of this 
plblication under the heading • IMDPRDMP 
Output Comments - GTF Processing'. 

DUPLICATE PREFIX FOLLOWS - 10 • A' 

Explanation: While processing a 
dump from a Model 65 
nultiprocessing system, IMDPRDMP 
has determined that the CPU 
prefixes (CPUIDs) are the same. 
If the task that performs the dump 
is initiated on one cPu, 
interrupted, dispatched to the 
second CPU, and completed the rest 
of the processing on the second 
CPU, then the prefix shown in this 
output comment is that of the 
first CPU to which the task was 
assigned. Processing continues. 

END OF FILE ON DUMP TAPE 

Explanation: While trying to 
locate a block of main storage on 
the dump tape, IMDPRDMP reached 
the end of the tape. This message 
is printed only if IMDPRDMP is 
either trying to extract the CVT 
pOinter or trying to extract an 
area of storage for printing. 

Processing terminates. If 
IMDPRDMP did no formatting and the 
tape does not contain a low-speed 
dump produced by IMDSADMP, the job 
may be rerun using the CVTcontrol 
statement to direct IMDPRDMP to 
the CVT in this dump_ Low-speed 
dumps produced by IMDSADMP can not 
be formatted by IMDPRDMP. 

ERROR FINDING PARTITION BOUNDARIES FOR TCB 
aaaaaa 

Explanation: IMDPRDMP found (1) a 
TCB family chain pointer, (2) a 
partition boundary box pointer, or 
(3) a pointer within the partition 
boundary box that was one of the 
following: 
1. Addressed an area that was 

not on a full-word boundary. 
2. Addressed an area that was 

higher than the highest 
address in the dump. 

3. Could not be extracted from 
the dump because-either an 
I/O error was encountered 
while attempting to read the 
block containing the pointer 
or the block containing the 
pointer was missing from the 
dump. A possible cause for a 
missing block is that the 
routine that produced the 
dump encc:untered an I/O error 
while attempting to write the 
block. 

Processing continues. 

ERROR FINDING REGION BOUNDARIES FOR 
TCB aaaaaa. 

Explanation: While attempting to 
determine the region boundaries 
for the family of TCBs attached to 
the job step TCB at address 
aaaaaa, one of the following 
conditions occurred: 

• IMDPRDMP found a chain with 
more than fifty partition 
queue elements (PQEs); or, 

• IMDPRDMP found (1), a TCB 
family chain pointer, (2) a 
partition queue element (PQE) 
pointer (TCB + X'98'), or (3) 
a pointer within a PQE that: 
1. Addressed an area that was 

not on a word boundary; 
or, 

2. Addressed an area that was 
higher than the highest 
address in the dump; or, 

3. Could not be extracted 
from the dump decause 
either an I/O error was 
encountered while 
attempting to read the 
block containing the 
pointer or the block 
containing the pointer was 
missing from the dump; a 
possible cause for a 
missing block is that the 
routine that produced the 
dump encountered an I/O 
error while attempting to 
write the block. 

Processing continues. 

ERROR FORMATTING TCB 

Explanation: One of the fields in 
the TCB required for formatting 
could not be extracted from the 
dump because: 

• IMDPRDMP encountered an I/O 
error while attempting to read 
the block that contains the 
required data; or, 

130 Programmer's Guide to Debugging (Release 21.7) 



• The block containing the 
required data was missing from 
the dump; a possible cause is 
that the routine that produced 
the dump encountered an I/O 
error while attemtping to 
write the block. 

Processing continues. 

ERROR IN DEB CHAIN 

Explanation: The routine that 
formats the data extent block 
(DEB) found one of the following 
errors: 

• A DEB chain pointer: 
1. Was not on a word 

boundary; or, 
2. Addressed an area of main 

storage higher than the 
highest address in the 
dump; or, 

• The address of the DEB was 
invalid causing the address of 
the DEB prefix (DEB - 16) to 
be zero or negative; or, 

• A DEB chain pointer or one of 
the fields necessary to format 
the DEB could not be extracted 
from the dump because: 
1. IMDPRDMP encountered an 

I/O error attempting to 
read the block that 
contained the data; or, 

2. The block containing the 
data was missing from the 
dump; a possible cause is 
that the routine that 
produced the dump 
encountered an I/O error 
while attempting to write 
the block. 

Processing continues. 

ERROR IN EXTENT LIST 

Explanation: While formatting the 
load list or job pack area of an 
MVT dump, IMDPRDMP encountered a 
contents directory entry (CDE) 
that had a block extent list with 
a relocation factor (extent list + 
4) of zero or greater than 
twenty-five. A relocation factor 
of zero is an error; however, a 
value greater than twenty-five can 
be valid. The value of 
twenty-five was established by 
IMDPRDMP as a reasonable limit; it 
is improbable that a normal task 
would have a program that has more 
than twenty-five CSECTs causing it 
to get an extent list with a 
relocation factor greater than 
twenty-five. Processing continues 
with the next CDE. 

ERROR IN JOB PACK QUEUE 

Explanation: The routine that 
formats the job pack area 
encountered one of the following 
errors: 

• A job pack queue chain pointer 
addressed an area that: 
1. Was not on a word 

boundary, or, 
2. Was greater than the 

highest address in the 
dump. 

• A job pack queue chain pointer 
or one of the fields in a job 
pack area control block could 
not be extracted from the dump 
because: 
1. IMDPRDMP encountered an 

I/O error attempting to 
read the block containing 
the needed data, or, 

2. The block containing the 
needed data was missing 
from the dump; a possible 
cause is that the routine 
that produced the dump 
encountered an I/O error 
while attempting to write 
the block. 

Processing continues. 

ERROR IN LOAD LIST 

Explanation: The load list print 
routine encountered one of the 
following errors: 

• A pointer in the load list 
control block chain referenced 
an area of main storage that: 
1. Was not on a word 

boundary, or 
2. Was greater than the 

highest address in the 
dump. 

• A field in a load list queue 
control block could not be 
extracted from the dump 
because: 
1. IMDPRDMP encountered an 

I/O error attempting to 
read the block that 
contained the data needed 
to format the load list; 
or, 

2. The block containing the 
data was missing from the 
dump; a possible cause is 
that the routine that 
produced the dump 
encountered an I/O error 
while attempting to write 
the block. 

Processing continues. 

IMDPRDMP output Formatting: output Comments 131 



Page of GC28-6610-5,6, Revised April 16, 1913, By TNL: GN28-2545 

ERROR IN TCB CHAIN DURING PRINT ALL 
FUNCTION 

Explanation: The PRINT ALL 
routine encountered a TCB chain 
pointer that was not on a 
full-word boundary or addressed an 
area that could not be extracted 
from the dump decause: 

1. The pointer addressed an area 
higher than the highest 
address in th dump. 

2. IMDPRDMP encountered an I/O 
error while trying to read 
the record that contained the 
area addressed by the 
pointer. 

3. The record containing the 
addressed area was missing 
from the dump, possibly 
because the routine that 
produced the dump encountered 
an I/O error while attempting 
to write the record. 

No more TCBs are processed, but 
all tasks eocountered up to the 
point are printed. The last TCB 
printed may contain the error 
described in 1 above or point to 
the unavailable area described in 
2 and 3 above. 

ERROR IN TCB CHAIN TeB aaaaaa 

Explanation: The routine that 
formats the TCBs encountered one 
of the errors given below; the 
address of the TCB associated with 
the error replaces the aaaaaa 
field of the output comment. 

• A TCB pointer for one of the 
TCBs in the TeB family chain 
addressed an area not on a 
word boundary; or, 

• A TeB pOinter or the TIOT 
pOinter in the TCB at location 
aaaaaa po in ts to an ar ea tha t 
could not be extracted from 
the dump because: 

1. IMDPRDMP encountered an 
I/O error while attempting 
to read the block that 
contains the pointer; or, 

2. The routine that produced 
the dump encountered an 
I/O error while writing 
the block that contains 
the pointer; therefore, 
the block is missing from 

the dump_ 
ERROR IN TIOT 

Explanation: The format routine 
found one of the following errors: 

• The task input output table 
(TIOT) pointer (TCB + X'C') 
was not on a word boundary; 
or, 

• One of the fields required to 
format the TIOT could not be 
extracted from the dump 
because: 

1. IMDPRDMP encountered an 
I/O error while attempting 
to read the block that 
contains the required 
data, or, 

2. The block containing the 
required data was missing 
from the dump; a possible 
cause is that the routine 
that produced the dump 
encountered an I/O error 
while attempting to write 
the block. 

ERROR WHILE FORMATTING CONTROL BLOCKS •••• 
CONTINUING 

Explanation: While building a 
list of job step TCB's for all 
partition regions in the dump data 
set, PRDMP encountered one of the 
following conditions: 

1. One of the TCB chain pointers 
was greater than the highest 
address in the dump. 

2 _ One of the TCB chain pointers 
~ddressed an area that was 
missing from the dump data 
set. 

PRDMP will attempt to use the 
partial list and continue with its 
formatting_ 

132 Programmer·s Guide to Debugging (Release 21.7) 



ERROR WHILE FORMATTING PSCB 

Explanation: One of the following 
errors occurred while lMDPRDMP was 
formatting the protected step 
control block (PSCB): 

• The address of the PSCB in the 
time sharing job block 
extension (TJEX) was greater 
than the highest main sterage 
address in dump; er. 

• An I/O error occurred while 
reading the block of dump 
information that contained the 
needed data; or. 

• A block of dump information 
conta ining part of the PSCB 
was not found on either the 
dump er swa p data sets. 

Processing continues. IMDPROOP 
a ttempts to. fermat the cent rol 
blocks for the next TSO user. 

ERROR WHILE FORMATTING RCB 

Explanatien: One of the follOWing 
errors occurred while IMDPRDMP was 
formatting the time sharing Legion 
centrol blocks (RCBs): 

• The address of the RCB table 
in the time sharing 

communicatien vector table 
(TSCVT) was greater than the 
highest main storage address 
in the dump; o.r. 

• An I/O error occurred while 
reading the block of dump 
information that contained the 
needed data; or. 

• A block of dump inforrnat ion 
containing part of an RCB was 
not found on the dump data 
set. This happens when an I/O 
error occurred while the dump 
reutine was writing the data 
onto the dump data set. 

Processing centinues. I MDPRDMP 
attempts to format the next entry 
in the RCB table. 

ERROR WHILE FORMATTING SWAP CONTROL BLOCK 

Explanation: One of the following 
errors occurred while IMDPRDMP was 
formatting the swap control block 
(SWAP DCB): 

• '!he address of the SWAP DCB in 
the time sharing communication 
vector table (TSCVT) was 
greater than the highest main 
storage address in the dump; 
or. 

IMDPRrMP Output Forma tti ng: output Conunents 132.1 



Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

I 132.2 programmer's Guide to Debu9ging (Release 21.7) 



• An I/O error occurred while 
reading the block of dump 
information that contained the 
data; or, 

• A block of dump information 
containing part of the SWAP 
DCB was not found on the dump 
data set. This happens when 
an I/O error occurred while 
the dump routine was writing 
the data onto the dump data 
set. 

Processing continues. IMDPRDMP 
attempts to continue formatting 
the time sharing job block (TJB). 

ERROR WHILE FORMATTING TAXE 

Explanation: One of the following 
errors occurred while IMDPRDMP was 
formatting the terminal attention 
exit element (TAXE): 

• The address of the TAXE in the 
time sharing job block 
extension (TJBX) was not 
aligned in a fullword 
boundary; or, 

• The address of the TAXE in the 
TJBX was greater than the 
highest main storage address 
in the dump; or, 

• An I/O error occurred while 
reading the block of dump 
information that contained the 
needed data; or, 

• A block of dump information 
containing part of the TJBX 
was not found on the dump or 
swap data sets. 

Processing continues. IMDPRDMP 
attempts to format the control 
blocks for the next TSO user. 

ERROR WHILE FORMATTING TJB 

Explanation: One of the following 
errors ~curred while IMDPRDMP was 
formatting the time sharing job 
block (TJB): 

• The address of the TJB table 
in the time sharing 
communication vector table 
(TSCVT) was greater than the 
highest main storage address 
in the dump: or" 

• An I/O error occurred while 
reading the block of dump 
information that contained the 
needed data; or, 

• A block of dump information 
containing part of the TJB was 
not found on the dump data 
set. This happens when an I/O 
error occurred while the dump 
routine was writing the data 
onto the dump data set,. 

Processing continues. IMDPRDMP 
attempts to format the next active 
TJB. 

ERROR WHILE FORMATTING TJBX 

Explanation: One of the following 
errors occurred while formatting 
the time sharing job block 
extension (TJBX): 

• The terminal job block (TJB), 
that contained the address of 
the TJB was not aligned on a 
fullword boundary; or, 

• The address of the TJBX in the 
TJB was greater than the 
highest address in the system 
dump; or, 

• An I/O error occurred while 
reading the block of dump 
information that contained the 
needed data; or, 

• A block of dump information 
containing part of the TJBX 
was not found on either the 
dump or swap data sets. 

Processing continues. IMDPRDMP 
attempts to format the control 
blocks associated with the next 
TSO user. 

ERROR WHILE FORMATTING TSB 

Explanation: One of the following 
errors occurred while IMDPRDMP was 
formatting the terminal status 
block (TSB): 

• The address of the TSB table 
in the time sharing 
communication vector table 
(TSCVT) was greater than the 
highest main storage address 
in the dump; or, 

• An I/O error occurred while 
reading the block of dump 
information that contained the 
needed data; or, 

• A block of dump information 
containing part of the TSB was 
not found on the dump data 
set. This ha~pen~ when a I/O 
error occurren wh~le the dump 
routine was writing the data 
onto the dump data set. 

IMDPRDMP Output Formatting: output Comments 133 



Processing continues. IMDPRDMP 
attempts to format the associated 
time sharing job block extension 
(TJBX) .. 

ERROR WHILE FORMATTING TSCVT 

Explanation: One of the following 
errors occurred while IMDPRDMP was 
formatting the time sharing 
communication vector table 
(TSCVT): 

• The address of the TSCVT in 
the communication vector table 
(CVT) was greater than the 
highest main storage address 
in the dump; or, 

• An I/O error occurred while 
reading the block of dump 
information that contained the 
needed data7 or, 

• A block of the dump 
information containing part of 
the TSCVT was not found on the 
dump data set. This happens 
when a I/O error occurred 
while the dump routine was 
writing the data onto the dump 
data set. 

Processing continues. IMDPRDMP 
attempts to format the time 
sharing region control blocks 
(RCBs) • 

ERROR WHILE FORMATTING USER MAIN STORAGE 
MAP 

Explanation: One of the following 
errors occurred while IMDPRDMP was 
formatting the user main storage 
map (UMSM): 

• The address of the UMSM 
associated with the region 
control task (RCT) or time 
sharing job block (TJB) was 
greater than the highest main 
storage address in the dump; 
or, 

• An I/O error occurred while 
reading the block of dump 
information that contained 
needed data; or, 

• A block of dump information 
containing part of the UMSM 
was not found in the dump data 
set. This happens when an I/O 
error occurred while the dump 
routine was writing the data 
onto the dump data set. 

Processing continues. I MDPR DMP 
attempts to continue formatting 
with the terminal status block 
(TSB),. 

FORMAT ERROR DURING TeB SUMMARY 

Explanation: The routine that 
prints the TCB summary must 
extract a TCB completion code (TCB 
+ X'16') or a TCB family chain 
pOinter from the dump. In this 
case, IMDPRDMP was unable to do so 
because: 

• IMDPRDMP encountered an I/O 
error while attempting to read 
the block containing the 
completion code or pointer; 
or" 

• The block containing the 
completion code or pointer was 
missing from the dump; a 
possible cause is that the 
routine that produced the dump 
encountered an I/O error while 
attempting to write the block. 

Processing for the current control 
statement is terminated. 

FORMAT ERROR IN MAIN STORAGE BLOCKS 

Explanation: While formatting 
main storage control blocks, 
IMDPRDMP encountered one of the 
following errors: 

• A pointer in a main storage 
control block addressed an 
area that: 
1. Was not on a word 

boundary; or, 
2. Was higher than the 

maximum address in the 
dump; or, 

• One of the fields in a main 
storage control block could 
not be extracted from the dump 
because: 
1. IMDPRDMP encountered an 

I/O error while attempting 
to read the block that 
contains the required 
field; or, 

2. The block containing the 
required field is missing 
from the dump; a possible 
cause is that the routine 
that produced the dump 
encountered an I/O error 
while attempting to write 
the block. 

Processing continues. 

134 Programmer's Guide to Debugging (Release 21) 



Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

INFINITE LOOP IN DEB CHAIN 

Explanation: While formatting the 
data extent blocks (DEBs), 
IMDPRDMP found more than 200 DEBs 
chained to the TCB. The limit of 
200 DEBs prevents IMDPRDMP from 
looping. When the limit is 
exceeded, a loop is assumed which 
causes this comment to be printed. 
processing continues after the 
first 200 DEBs are printed. 

INFINITE LOOP IN JOB PACK QUEUE 

Explanation: In MVT, IMDPRDMP 
found more than 255 CDEs on the 
job pack queue associated with the 
TCB. In MFT, IMDPRDMP found more 
than 255 RBs on the job pack queue 
associated with the TCB. A limit 
of 255 job pack queue control 
blocks has been established by 
IMDPRDMP to prevent a possible 
looping condition. When the limit 
is exceeded, a loop is assumed and 
this COmlnent is issued. The first 
255 job pack queue control blocks 
are printed and then processing 
continues. 

INFIN ITE LOOP IN LOAD LIST 

Explanation: In MVT, IMDPRDMP 
found more than 255 load list 
elements (LLEs) on the load list 
chained to the TCB. In MFT, 
IMDPRDMP found more than 255 RBs 
on the load list. A limit of 255 
elements on the load list has been 
established by IMDPRDMP to prevent 
a possible looping condition. 
When the limit is exceeded, a loop 
is assumed and this comment is 
issued. The first 255 load list 
elements are printed and then 
processing continues. 

INFINITE LOOP IN PQES 

Explanation: The main storage 
print routine found more than 50 
partition queue elements (PQEs) 
chained to the TeB. A limit of 50 
PQEs has been established by 
IMDPRDMP to prevent a possible 
looping condition. When the limit 
is exceeded, a loop is assumed and 
this comment is issued. The first 
50 PQEs are printed and then 
processing continues. 

INFINITE LOOP IN QCB CHAIN 

Explanation: The'QCB print 
routine found more than 100 queue 
control blocks (QCBs) on the major 
QCB chain or more than 100 QCBs on 
a minor QCB chain. A limit of 100 
QCBs has been established within 
IMDPRDNP to prevent a possible 
looping condition. When the limit 
is exceeded, a loop is assumed and 
this comment is issued. The first 
100 QCBs are printed and then 
processing continues. 

INFINIT LOOP IN QEL CHAIN 

Explanation: The QCB print 
routine found more than 100 queue 
elements (QELs) on a QEL chain. A 
limit of 100 QELs has been 
established within IMDPRDMP to 
prevent a possible looping 
condition. When the limit is 
exceeded, a loop is assumed and 
this comment is issued. The first 
100 QELs are printed and then 
processing continues. 

INFINITE LOOP IN RB CHAIN 

Explanation: The RB print routine 
found more than 50 request blocks 
(RBs) on the RB chain. A limit of 
50 RBs has been established within 
I~illPRDMP to prevent a possible 
looping condition. When the limit 
is exceeded, a loop is assumed and 
this comment is issued. The first 
50 RBs are printed and then 
processing continues. 

INFINITE LOOP IN TIOT 

Explanation: While formatting the 
TIOT, IMDPRDMP found more than 255 
DD entries in the TIOT. Since 
only 255 DD statements are allowed 
per job step, a valid TIOT cannot 
have more than 255 DD entries. A 
loop is assuroed because the limit 
was exceeded and the TIOT end 
indicator could not be found. 
Processing continues. 

INVALID TIOT 

Explanation: While formatting the 
task input output table (TIOT), 
the FOR1-1AT routine found an 
invalid job name in the TIOT. To 
be valid, the first character of 
the job name must be A through Z, 
or $, #, ~ or a blank (X'40'). 
Processing continues. 

IMDPRDMP OUtput Formatting: Output Comments 135 



Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

NO ELEMENTS ON LOAD LIST 

Explanation; The load list 
pointer in the TCB (displacement 
X'24') is zero. The zero pointer 
indicates that (1) no programs 
were loaded by the LOAD macro 
instruction or (2) the load list 
pointer was overlaid with zero. 
Processing continues. 

NO EXTENl' LIST 

Explanation: While formatting the 
load list a nd job pack queue for 
an MVT dump, IMDPRDMP encountered 
zeros in the extent list pointer 
(CDE + '20') in a major contents 
directory entry (CDE). This zero 
pointer usually indicates an error 
condition in which the extent list 
pointer was overlaid with zeros. 
Processing continues with the next 
CDE. 

NO LINR PACK AREA QUEUE 

Explanation: In MFT, an LPAMAP 
was requested but the link pack 
area queue pointer (CVT + X'BC') 
was zero. Processing continues. 

NO MAJOR QCBS 

Explanation: The QCB TRACE 
routine found zeros as the pointer 
to the first major queue control 
block (QCB). This indicates that 
no resources have been enqueued at 
the time of the dump or that the 
pointer to the QCB queue has been 
overlaid with zeros. Processing 
continues. 

NO RSVC MODtn.ES IN LPA 
RAM 

Explanation: In MVT, either the 
CDE or LLE chain, pointing to the 
modules in the link pack area, was 
empty. RSVC modules are frond by 
following the LLE pOinter in the 
master scheduler TCE (TCBLLEP). 
Rpocessing continues. 

RAM modules are found by 
following the CDE chain from the 
CVT (CVTQLPAQ). Processing for 
this IMDPRDMP verb ends. 

NOTHING IN JOB PACK 

Explanation: In MVT, the job pack 
queue field of the 'ICB ('ICB + 
X' 2 C') is z ero • In MFl', the 

partition information block (PIB) 
field (TCB + X'7C') or the job 
pack queue pointer (PIB + X'24') 
is zero. PCP does not have a job 
pack pointer; therefore, this 
comment does not appear in a PCP 
dump. A zero job pack queue 
pointer is usually a normal 
condition, especially for a system 
task. Processing continues. 

RB FORMAT ERROR 

Explanation: While formatting a 
request block (RB), the RB print 
routine found that the request 
block (RB) chain pointer addressed 
an area of main storage that: 

• Was not on a word boundary: 
or, 

• Was higher than the highest 
address in wain storage: or, 

• could not be extracted from 
the dump because: 
1. IMDPRDMP encountered a I/O 

error while attempting to 
read the block that 
contained the pointer; or, 

2. The block tha t contained 
the pointer was miss ing 
from the dump. One 
possible caus e for t his is 
that the program that 
produced the dump may have 
encountered an I/O error 
while writing the block. 

• A field in the RB, or a 
contents directory entry (CDE) 
associated with the RB, 
necessary to formatting the RB 
could not be extracted from 
the dump. Either IMDPRDMP 
encountered an I/O error while 
try! ng to read the block, or 
the block that contained the 
pointer is missing from the 
dump. 

REGISTERS FROM OTHER CPU ARE INVALID-NOT 
FORMATTED 

Explanation: Multiprocessing 
systems only. Only the registers 
for the CPU in which the dump 
pro:J ram was executed will be 
displayed on the dump listing. 
This can occur 'when the dump is 
taken on a multiprocessing system 
either when the NOMP option of 
IMDSADMP is used or when the 
direct control feature is not 
operational. 

136 Programmer's Guide to Debugging (Release 21.7) 



Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

TAS K HAS NO OPEN DAT A S El'S 

Explanation: IMDPRrMP foond the 
data extent block (DEB) pointer in 
the TCB (TCB + X'S') to be zero. 
This situation indicates that 
there were actually no open data 
sets or the DEB pointer in the TCB 
was overlaid with zeros. 
Processing continues. 

TAS K HAS NO TI <Jl' 

Explanation: While attempting to 
format the task input output table 
(TIOT), IMDPRDMP found that the 

TI<Jl' pointer (TCB + T' C') was 
either zero or larger than the 
highest address in the dump. The 
zero TIOT pointer could be a 
normal condition for a system 
communication task, but for a 
problem program task this is an 
error condition. Processing 
continutes. 

TASK HAS TERMINATED 

~xplanation: After formatting a 
TeB, thi s c omrre nt is pri nt ed bel ON 

the Tefl if the first bit (the 
terminated bit) of the flag byte 
at X· 21' of the TCE is set. 
Processing continues with the next 
TeE. 

TCE CHAIN ERROR IN F03 PRINT ROUTINE 
TeE aaaaaa ••• CONTINUING WITH NEXT TeE 

Explanation: The Print F03 
routine encountered a TCB chain 
pointer that: 

• Was not. on a word boundary; 
or, 

• Addressed an area that could 
not be extracted from the dump 
because: 
1. The poi nte r address ed an 

area higher than the 
maximum address in the 
dump; or, 

2. IMDPRDMP encomtered an 
I/O error trying to read 
the record containing the 
area addressed by the 
pointer; or, 

3. The block containing the 
addressed area was missing 
from the dump, probably 
because the rootine that 
produced the dump 
encountered an I/O error 
while attempting to write 
the block. 

The address of the TeE associated 
with the error replaces the aaaaaa 
field in the message. Processing 
continues with the next TCE. 

UNABLE TO OBTAI N JOn STEP TCB FOR CURRENT 
TASK 

Explanation: In an MFT system 
with A~CH, the job step TeB is 
used to get the partition 
boundaries. If the address of 
thh, Ten is zero in t.he ell rrent 
TCB, then the above conunent is 
issued. Processing continue s. 

xxxxxx THROUGH xxx xxx COULD NOT BE PRINTED 

~~lanation: The block(s) of 
storage between the two addresses 
c eu ld not be pri nt ed becaus e 
IMDPRDMP encountered an I/O error 
while attempting to read the 
block(s) or the bleck(s) that were 
missing from the dump. Processing 
continues. 

IMDPRDMP Output Formatting: Output Comments 136.1 



Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

1136 • .2 Programmer's Guide to Debugging (Release 21.7) 



Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

Guide to Storage Dumps 

The purpose of this section is to suggest 
debugging procedures that you may use with 
a storage dump. This discussion applies to 
the output of the following programs: 

• IMDSADMP- The low speed version that 
creates an unformatted dump of main 
storage • 

• IMDPRDMP- Reads, formats, and prints 
storage dumps from MFT or MVT systems 
and the high speed version of IMDSADMP. 

These programs produce hexadecimal dumps of 
the contents of main storage from location 
zero to the highest machine address. 

The IMDPRDMP program provides formatting 
capabilities which can be used to display 
the important system control blocks for 
easy examination. The IMDPRDMP program 
does most of the procedures described in 
this section automatically. The cases in 
which the IMDPRDMP program does not provide 
formatting are identified. A complete 
description of the services provided by the 
IMDPRDMP program is found in the 
publication, IBM System/360 Operating 
System: Service Aids, GC28-6719. 

Since the formatting for the IMDPRDMP 
program depends on the contents of the 
dump, it is not always possible to provide 
complete formatting. For example, if the 
CVT of the system to be dumped has been 
overlaid, the IMDPRDMP program can provide 
only a hexadecimal dump of main storage. 

Guide to storage Dumps 137 



DETERMINING THE CAUSE OF THE DUMP 

Main storage dumps are invoke by system 
routines and these routines can be 
identified by module names appearing in the 
most recent request block (RB) for the 
failing task. The main storage dump is 
invoked by SVC 51. This SVC PSW appears as 
the resume PSW in the second most recent RB 
of some task in the system. The module 
name in the current RB for that task must 
be 201C. 

Main storage locations from zero to 128 
(hexadecimal 80) are permanently assigned 
and contain hardware control words. Figure 
28 shows these fields, their location, 
their length, and their purpose. 

r-------T--------T------------------------, 
I Address I Length I I 
1 Dec Hex 1 In Bytes I Purpose I 
~-------t--------t------------------------~ 
10 0 I 8 IIPL PSW I 
~------t--------+-----------------------_i 
18 8 I 8 IIPL CCW1 I 
~-------t--------+-----------------------_i 
116 10 I 8 IIPL CCW2 I 
~------+--------~-----------------------_i 
124 18 I 8 IExternal old PSW I 
~------t--------t-----------------------~ 
132 20 I 8 ISupervisor call old PSW I 
~------t--------t-----------------------_i 
140 28 I 8 IProgram old PSW I 
~-------t--------t-----------------------_i 
148 30 I 8 IMachine check old PSW I 
~------t--------t-----------------------_i 
156 38 I 8 11/0 old PSW I 
r-------t--------t-----------------------_i 
164 40 I 8 IChannel status WOrd I 
~------t--------t-----------------------_i 
172 48 I 4 IChannel Address Word I 
~-------t--------t----------------·-------~ 
176 4C I 4 I Unused I 
.-------t--------+------------------------~ 
180 50 I 4 I Timer I 
~------t--------t-----------------------~ 
184 54 I 4 I Unused I 
.-------t--------t-----------------------_i 
188 58 1 8 I External new PSW I 
~------t--------t------------------------~ 
196 60 I 8 Isupervisor call new PSW I 
.-------t--------+------------------------~ 
1104 68 I 8 I Program new PSW~ I 
~------t--------t-----------------------_i 
1112 70 I 8 IMachine check new PSW I 
• -------t--------t------------------------~ 
1120 78 I 8 11/0 new PSW I L ______ L ________ ~ _______________________ _J 

Figure-28. Permanently Assigned Hardware 
Control Words 

Cause of the Dump: Evaluate the PSWs that 
appear in the formatted section of the dump 
(the first four lines) to find the cause of 

the dump. The PSW has the following 
format: 

Program St(Jtu~ Word 

I Koy I AMWP I Int."uptiM Cod. I 
o 7 8 11 12 15 16 31 

Instruction Address 

32 33 34 35 36 39 40 

• Does the instruction address field of 
the old machine check PSW show either 
the value E2 or E02? If so, a hardware 
error has occurred. 

• Does the instruction address field of 
the old program check PSW have a value 
other than zero? If so, a program 
check at the instruction preceding that 
address caused the interruption. 

TASK STRUCTURE 

MFT System (Without Subtaskinq) 

There is a TeB associated with each 
partition of main storage there are also 
TCBs for critical system tasks such as the 
master scheduler task and the transient 
area loading task. Figure 28 shows 
location 76 (4C) unused for hardware 
control words. The control program uses 
this word to contain a pointer to the CVT. 
Use this CVT pointer to locate the first 
byte of the cvr, then the CVTlXAVL field 
(offset 124) in the CVT. The address 
contained at CVTlXAVL is a pointer to the 
lOS freelist. At offset 4 in the lOS 
freelist is a pointer to the first address 
in a list of TCB addresses. You can look 
through this list of TCB addresses, and, 
keeping your system options in mind, find 
the TCBs for each partition. The TCB 
addresses are listed in the following 
order: 

• Transient area loading task. 
• System error task (MFT with 

subtasking) • 
• Multiple console support write-to-Iog 

task (optional). 
• I/O recovery management support task 

( opt ional ) • 
• communications task. 
• Master scheduler task. 
• System management facilities task 

(optional) • 
• Partition 0 task. 

138 programmer's Guide to Debugging (Release 21.7) 



Page of GC28-6670-S,6, Revised April 16, 1973, By TNL: GN28-2S45 

• Partition 1 task. 
• 
• 
• Partition n task. 

Figure 29 shows how to locate the 
partition TCBs in sample output from the 
IMDPRIl-1P program. 

MFT system (With Subtaskinq) 

For MFT with subtasking (and for MVT), a 
task may create a subtask. Th~ partition 
TCBs for MFT with subtasking are referred 
to as job step 'ICBs. The task structure 
for a job step may be reconstructed in a 
main storage dump by using the information 
in Figure 30. 

For MFT with subtasking, the job step 
TCB may be found using the method described 
for MFT without subtasking or by a more 
direct method. CVT offset 245 (FS) 
contains a pointer to the partition 0 job 
step TCB address in this address table. 

To recreate the task structure within 
any partition, simply locate the job step 
TCB, and follow the TeB pointers - as 
explained in the previous section. 

location 4C 

000040 00000000 00000000 00000000 OOOOCBSQ 

00CB40 
00CB60 
00CB80 
OOCBAO 
OOCBCO 

00000000 00000000 00000000 00000000 
00000000 000048BO OOOOCBOA 00012880 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh 00P04864 

lOS Freellst 

004860 hhhhhhhh 2F90FFFFi0001EC30 hhhhhhhh 

01EC20 
01£C40 

008040 
008060 
008080 
0080AO 

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
00008868 00008C48 000d8D48 hhhhhhhh 

00000000 00000000 00070208 hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhh 

Figure 29. Finding the Partition TCBs in MFT 

MVT System 

To find the current TCB, look at location 
76 (4C) for a pointer to the CVT. The 
first word of the CVT contains a pointer to 
a doubleword of TCB addresses, which 
contains pointers to the next TCB to be 
dispatched (first word) and the current TCB 
(second word). Beginning with the current 
TCB, you can recreate the task structure 
for the job step using the methods in 
Figure 30. 

If the first word of the current TCB 
points to itself, there are no ready tasks 
to be dispatched, and the system has been 
placed in an enabled wait state. This TeB, 
now in control, is called the system wait 
TCB. 

All TCBs in the system are maintained in 
a queue called the CVT ready queue. These 
TCBs are queued according to their 
dispatching priority. The CVTHEAD field, 
offset +160 (AO) in the CVT, contains the 
address of the highest priority TCB in the 
system. Offset +116 (74) in the TCB points 
to the TCB with the next lowest priority. 
Figure 30 shows how to locate all of the 
TCBs in the system. 

017F8EOO oooocosc 00040000 00000288 

eYT 

00000774 0000078C 0000AEE8 0001A288 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh.hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

list of TeB Addresses 

00008778 00008858 00008938 00008A18 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

Guide to Storage Dumps 139 



.... 
.f;: 
o 

ttt 
11 

~ 
:it 
I 
t1 . 
CD 

fl 
~ 
S' 
~ 

[ 
~ 
i 
~ .... 
m 
en 
CD 

to...) .... . .... -

o 

+ 132(84) 

Job Step TeB 

t;'\ Subtosk 
v:..J TeB 

TeB 

00 

o 

tB;\ Subtask 
~TeB 

o Subtask 
'2J TeB 

TeB 

80 
+ 132(84) 

o is a job step TeB and 0 is the 

TeB of the subtask created by 0 
Offset + 136(88) in 0 points to its 

subtask Te8 ( 0). Offset + 132(84) 

in the subtask Te8 (0) points bock 

to the job step TeB ( 0 ). 

o is a job step TeB. @ is the TeB for the first 

subtask created by 0 . ® is the TeB for the 

second and most recent subtask created by 0 . 
Offset + 136(88) in 0 points ta the TCB of its 

most recently created subtask. Offset + 136(84) 

in @points back to the creating task ( 0 ). 
Offset + 128(80) in ®points to @ the next 

most recently created subtask TeB. Offset 

+ 132(84) in @points back to the originating 

TCB(G». 

In each TeB: 

Offset 

+ 128(80) points to the TCB ofthe next most 
recently created subtask. If none 
exists, this field is zero. 

+ 132(84) points to the TCB of the task that 
created it. If none exists, this field 
is zero. 

+ 136(88) points to the TeB of the most recent 
subtask created by this task. If none 
exists, this field is zero. 

Figure 30. Finding the TeB 

o 

t;;\ Subtask 
'\:V TeB 

tC;\ Subtask V TeB 

o is the job step TeB. ® is the TeB for the first subtask created by 0 . ~ is the TeB 

for the second and most recent subtask created by 0 . Offset + 136(88) in (5 points to 

the TeB of its most recently created subtask. Offset + 132(84) in ® points to the TeB of the 

creating task. Offset + 128 in @points to the next most recently created subtask TeB. 

Offset + 132(84) in @points bock to the job step Tea ( 0). Offset + 136(88) in ® 
points to the TeB of its most recently created subtosk ( @). 

@ points to the TeB of its creating task ( @) and to the TeB of the subtask most . 

recently created by ®. ® contains pointers to the TeB of the originating task ( ®) 
and to the TeB of the task most recently created by ®. ® contains only a pointer to 

the TCB of the invoking task ( @). 



Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

Keep in mind that all TCBs in the system 
appear on this queue. '1:herefore, not only 
does a particular job step TCB appear on 
the ready queue, but all of its subtask 
TCBs als 0 appear. 

You can find the job step TCB associated 
wi th any TeB by using the TCIDSTCB field of 
the TCB, offset +124 (7C). This field 
contains the address of the job step TCB 
for the TCB you are examining. 

In response to the FORMAT control 
statement, the IMDPRDMP program will do 
most of this work for you. It will 
recreate the task structure, format all 
TCBs in the system, and provide a TCB 
summary. The TCB summary shows the task 
structure. Figure 31 shows a portion of 
the Tca summary information from an MVT 
system. TCBs associated with a particular 
job are grouped together under the job name 
and step name. The TCB summary contains 
the Tca address, the completion code, and, 
when applicable, the address of the 
originating TCB and the addresses of 
created TCBs. 

TASK STATUS - ACTIVE RB QUEUE 

The first word of the TCB contains a 
one-word pointer to the first word of the 
most recent RB added to the queue. In its 
eighth word, RB+28(lC), each RB contains a 
pointer to the next most recent RB. The 
last RB points back to the TCB. 

You can determine the idenity of the 
load module by looking either in the first 

and/or second words of the RB for its 
EBCDIC name or in the last 3 digits of the 
resume PSW in the previous.RB for its SVC 
number. The entry point to the module is 
in the last 3 bytes of the fourth word in 
the RB, RB-13(D). 

In an MVT system, the name and entry 
point of the associated load module are not 
always contained in the RB associateG with 
the module. Instead, they are found in a 
contents directory entry (eDE). 

The address of the contents directory 
entry for a particular load module is given 
in the fourth word of the RB, RB+12(C). 
The CDE gives the address of the next entry 
in the directory (bytes 1-3), the name of 
the load module, bytes 8-15(F); the entry 
points of the module, bytes 17-19(11-13). 

Figure 31 shows the formatting that the 
IMDPRDMP program does for a task in an MVT 
system. Notice the connection between the 
RB and the CDE. The IMDPRDMP program 
extracts the CDE information and displays 
this information with the RB. 

The wait-count field of the RB is 
particularly important when locating the 
TCB by using the CVT ready queue (CVTHEAD). 
The high-order byte of the RB link field, 
RB-28(lC), of the most recent RB for a Tca 
contains a count of the number of events 
for which the task is waiting. Tasks that 
have a zero wait count are ready to be 
dispatched (unless marked 
non-dispatchable). Such a task will be 
dispatched or become the current task when 
all TCBs of higher priority are waiting for 

* * * * T C B S 11 M M A R Y * * * * 

JOB MASTER STEP SCHEDULER 
LTChhhhhhhh hhhh TCBhhhhhh CMPhhhhhhhh N'l'Chhhhhhhh OTChhhhhhhh PAGE 

JOB MASTER STEP SCHEDULER 
Ilhllh 'l'C13hhhhhh CMPhhhhhhhh N'l'Chbll11111lhh O'l'Chhhlll1l1hh L'l'Clltlllllhhhll l'J\CE 

.JOB WTR STEP OOE 
L'l'Chhbhhhhh hhhh 'l'CBhhhhhh CMPhhhhhhhh N'l'Chhhhhbhh O'l'Chhhbhhhh PJ\GE 

TCBhhhhhh CMPhhhhl'1hhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh PAGE hhhh 

JOB JOBll STEP GO 
hhhh TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh PAGE 

TCBhhhhhh CMPhhhhhhhh N'I'Chhhhhhhh OTChhhhhhhh L'l'Chhhhhhhh PAGE hhhh 

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh PAGE hhhh 

JOB JOB12 STEP GO 
PAGE hhhh TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh 

Figure 31. IMDPRDMP TCB Summary 

Guide to Storage Dumps 141 



the completion of an event. To determine 
the events for which a task is waiting. use 
the instruction address field in the resume 
psw to locate the WAIT macro instruction in 
the source program. This will point you to 
the operation being executed at the time of 
the dump_ 

MAIN STORAGE CONTENTS 

Load List (MFT) 

The load list is a chain of request blocks 
associated with load modules invoked by a 
LOAD macro instruction. By looking at the 
load list. and at the job pack area queue 
described below. you can determine which 
system and problem program routines were 
loaded before the dump was taken. To 
construct the load list associated with the 
task in control. look at the tenth word in 
the TCB, TCB+36(24), for a pointer to the 
most recent RB entry on the load list, 
minus 8 bytes (RB-8). This word, in turn, 
points to the next most recent entry (minus 
8), and so on. If this is the last RB, 
RB-8 will contain zeroes. The word 
preceding the most recent RB on the list 
(RB-4) points back to the TCB's load list 
pointer. 

Load List (MVT) 

To construct the load list associated with 
the task in control, look at the tenth word 
in the TCB, TCB+36(24), for a pointer to 
the most recent load list entry (LLE). 
Each LLE contains the address of the next 
most recent entry (bytes 0-3), the count 
(byte 4), and the address of the CDE for 
the associated load module (bytes 5-7). If 

ACTIVE RBS 

this is the last LLE in the list, 
TCB+36(24) will contain zeroes. 

Job Pack Area Queue (MFT With Subtasking. 
MVT) 

In systems with MFT with subtasking or MVT 
control programs, the job pack area queue 
is used to maintain reenterable modules 
within a partition or region. The complete 
description of this queue is found under 
the topic "Task Status-Active RB Queue". 

MFT System: To reconstruct the job pack 
area queue in an MFT system with . 
subtasking, look at TCB+125(7D) for a three 
byte pointer to the partition information 
block (PIB). The twelfth word of the PIB, 
PIB+44(2C), points to the most recent RB on 
the job pack area queue minus 8 bytes 
(RB-8). This word in turn points to the 
next most recent RB minus 8, and so on. 
The last RB will have zero in this field. 
The word preceding the most recent RB on 
the queue (RB-4) points back to the job 
pack area queue pointer in the PIB. You 
can determine the identity of the load 
module by looking either in the first 
and/or second word of the RB for its EBCDIC 
name, or in the last three digits of the 
resume PSW in the previous RB for the SVC 
number. The entry point of the module is 
given in the last three bytes of the fourth 
word in the RB, RB+29(lD), unless it is an 
FRB. 

The first five words of an FRB 
(beginning at offset minus B) are identical 
in content to those of other RBs. The 
XRWTL field, offset 12(C), contains t~e 
address of a wait list element. The first 
word of the WLE points to the next WLE, or 

PRB 02DEBO RESV hhhhhhhh APSW hhhhhhhh WC-SZ-STAB hhhhhhhh FT.-CDE 0002DFOO PSWFF050001 5006EIC2 
Q/TTR hhhhhhhh WT-LNK hhhhhhhh NM IEFSD079 EPA 06E03a STA 06CECO LN 001940 ATRl 08 

CDE 02DFDO NM 

Module Name Entry Point Address 

Figure 32. Determining Module From CDE in MVT 

lq2 Programmer's Guide to Debugging (Release 21.7) 



contains zeros if the WLE is the last one. 
The second word points to the waiting SVRB. 
You can determine the number of deferred 
requests for the module by tracing the 
chain of WLEs. 

The XRREQ field of an FRB~ offset 
16(10), contains a pointer to the TCB of 
the requesting task. The next word, 
CRTLPRB" offset 20 (14), points to an LPRB 
built by the Finch routine for the 
requested program. The FRB for the 
requested program is removed from the job 
pack area queue by the Finch routine when 
the program is fully loaded~ 

MVT system: In MVT, the job pack area 
queue is maintained in the same manner as 
the load list. The distinction between the 
two queues is that the job pack area queue 
contains reenterable programs. There are 
no FRBs in MVT. 

MAIN STORAGE SUPERVISION 

Free Areas in MFT Systems 

Areas of main storage that are available 
for allocation at the time the dump was 
taken are described by the MSS boundary box 
and a series of free queue elements (FQEs). 
The seventh word of the TCB for the task, 
TCB+24(18), points to a six-word MSS 
boundary box. The first word of the MSS 
boundary box points to the FQE with the 
highest processor storage address in the 
partition (hierarchy 0), and the fourth 
word., to the highest 2361 Core storage 
address in the partition (hierarchy 1). 
The first word of each FQE points to the 
next lower FOE; the second word of the FQE 
gives the length of the area it describes. 
FOEs occupy the first 8 bytes of the area 
they describe. 

C~tten Subtask Areas (MFT) 

In MFT with subtasking, areas of a 
partition allocated by the system to a 
subtask within the partition are described 
by gotten subtask area queue elements 
(GQEs). The seventh word of the subtask 
TCB, TCB+24(18), points to a one word 
pointer to the most recently created GQE on 
the GQE queue. Bytes 0 through 3 of the 
GQE contain a painter to the previous GQE 
or, if zero, indicate that the GQE is the 
last one on the queue. Bytes 4 through 7 
of the GQE contain the length of the gotten 
subtask area. Each GQE occupies the first 
eight bytes of the gotten subtask area it 
describes. 

Region Structure in MVT System 

The region associated with a particular 
task in an MVT system is described by 

partition queue elements (PQEs). The 
thirty-ninth word of the TCB, offset +152 
(98) contains a pointer to the dummy PQE 
(D-PQE) for the region. The first word of 
the dummy PQE points to the first PQE and 
the second word" to the last PQE. The 
first and second words of each PQE point to 
the first and last free block queue 
elements (FBQEs), respectively, associated 
with the PQE. separate PQEs are used to 
describe parts of a region in different 
storage hierarchies or part of a region 
that was obtained by another task which has 
been rolled out. 

FBQEs describe free areas in the region 
that have a a length which is a multiple of 
2048 bytes. These free areas are available 
for allocation to a specific subpool. 

Subpool Descriptions (SPQEs) (MVT): The 
seventh word of the TCB, TCB+24(18), points 
to the SPQE representing the first subpool 
used by the task. Each SPQE contains the 
address of the next SPOE (bytes 1-3), the 
subpool number (byte 4), and the address of 
the first descriptor queue element (DQE) 
for the subpool (bytes 5-7) or, if the 
subpool is owned by another task (bit 0 is 
1), the address of the SPQE that describes 
it (bytes 5-7). 

storage within a subpool is described by 
a descriptor queue element. Each DQE 
contains the number of bytes of main 
storage in the subpool. This count is 
always a multiple of 2048 bytes. If a 
request for space from a subpool cannot be 
satisfied with the space described by an 
existing DOE the GETMAIN routine builds 
another DQE and links the new DOE to the 
chain of existing DQE's. Each DQE contains 
a pOinter to the FOE that represents the 
free area with the highest main storage 
address in the subpool (bytes 1-3), a 
pointer to the next DOE (bytes 5-7), and 
the length of the area described by the 
DQE, bytes 13-15(D-F). 

Figure 33 shows the control blocks used 
to describe the subpools for a task in an 
MVT system. 

I/O CONTROL BLOCKS 

Queue of DEBs 

To find the queue of DEBs for the t.ask, 
look at the third word in the TeB (TCB+8). 
The address given here points to the first 
word of the most recent entry on the DEB 
queue. There is a DEB on this queue for 
each data set opened to the task at the 
time of the dump. DEBs are enqueued in the 
same order as the data sets are opened. 
The last three bytes of the second word in 
each DEB (DEB+5) points to the next most 

Guide to Storage Dumps 143 



recent DEB on the queue. The queue 
contains one DEB for each open data set. 

UCBs 

You can find unit information for each 
device in your system in the unit control 
block (UCB) for that device. The address 
of the UCB is contained in the last 3 bytes 
of the ninth word of the DEB, DEB+33(21). 
If the DEB queue is empty, scan the dump 
around location 4096(1000) for words whose 
fifth and sixth digits are FF. These are 
the first words of the UCBs for the system: 
UCBs are arranged in numerical order by 
device address. (You may find it easier to 
locate UCBs by looking for the device 
address in the EBCDIC printout to the right 
of each page.) The first two bytes of the 
second word of each UCB give the device 
address. The device type and class are 
given in the third and fourth bytes of the 
fifth word, UCB+1S(12), respectively. The 
sens.e bytes, with the exception of those 
for devices with extended sense, begin in 
the last two bytes of the sixth UCB word, 
UCB+22(16), and continue from 1 to 6 bytes 
depending on the device type. For the 
extended sense devices, UCB+22 and UCB+23 
are ignored. UCB+24(1S) in this case 
contains the number of bytes of sense 

information to be found starting at the 
address specified in UCB+2S(19). Sense 
bytes are given in Appendix G of this 
publication. 

DCB and TIOT 

The address of the DCB, a control block 
that describes the attributes of an open 
data set, is located in the last 3 bytes of 
the seventh DEB word, DEB+2S(19). The 
first two bytes of the ninth word of the 
DCB, offset 40(2S), contains the offset in 
the task input/output table (TIOT) of the 
DD name entered for the data set. 
Therefore, the address of the DD name for a 
particular. data set may be found by adding 
the TIOT offset in the DCB to the TIOT 
address in the TCB (TCB+12), plus 24(16) 
bytes for the TIOT header. 

If a data set is being accessed by a 
sequential access method with normal 
scheduling, the address of the input/output 
block (lOB) prefix (IOB-S) is located in 
the seventeenth word of the DCB, 
DCB-6S(44}. The first word of the lOB 
prefix points to the next lOB (if more than 
one lOB exits for the data set). Each lOB 

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhh hhhhhhhh hhhhhhhh o~ ~hhhhhhh. ,1)1lhihh~~h .. ~hhhhh9h"hhh?f:l~l}p,tth~l;lh~hll 

Address of SPOE for Subpool 251 

-- -

- -

02DAOO 
02DA20 
02DA40 

_-- lost DOE 

Last DOE 

o 

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

SPOE for Subpool 252 

; 
02DEAO 0002DA30 FC02DA68 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

STORl\GE KEY E 
046000 00000000 00000768 hhhhhhhh hhhhhhhh 

-
FOE describing 1896 (768) 
bytes of free storage 

-
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

-

Figure 33. Subpool Descriptions in MVT - IMDPRDMP Storage Print 

144 Prbgrammer's Guide to Debugging (Release 21) 

1 _l -

Address of 
SPOE for 
SubpoolO 



UCB------------__ _ 

001SEO hhhhhhhh hhhhhhhh .. hilh.hlhh.hllhlh •• 
001600.hhhhhhbh hhhhhhhh. 
001620 hhhhhhhh hhhhhhhh hhhhhhhh 

UCB 10 Device Address ~ 

Be .2401.4'01.90 O~ 30402001' 
802 hhhhhhhhhhhhhhhll·hhnhhhhbhhhhhhbh 

Volume mounted on Device 

DCB 

Oll780 
O1l7AO 
0117CO 
01l7EO 

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhhhhhhhhl1h hhhhhhhh hhhh~ 
'hhhhhhhhhhbhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh O_mf20~--T'OT Offset 
lhbhhhhhhhhhhhhhhhhhhhhhh 'hhhhhhhh hhhhh~nhhhhhhhhh 41011EOO hhhhhhhh 
~h~hhhhhh' hhhhhhhh hhhhhhhh1Ji. iI···· hhhhhhhh hhhhhhhh hhhhhhhh 11hhhhhhh 

~
ECB a, peration Address of Channel Program 

omp ete Low-Orde~ / 
. ~ lOB Prefix 7-bytes of lasl CSW ~ I 

Oll~~~'hhhhhhhh hhhhhhhh ·?FoIaM '0131] L ... 40_ 00011794 
011E20 00000000 00000000 00000000 02000210 31011E2B 40000005 08011E30 00000000 
011E40 lDOllE68 A0000008 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
011E60 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
011E80 hhhhhhhh hhhhhhhll hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh DEB 
OllEAO hhhhhhhh hhhhhhhb hhhhhhhb O~ .' hhhhhhhh IB1AD'JII hhhhhhhh hhhhhhhh 
OllECO hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh~hhhhhhh hhhhhhht~h~_~~hh h~hhhhhh 

·------Address of UCB 
Address of DCB 

TlOT 

021280 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
0212AO hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
0212CO hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
0212EO 'hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
021300 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
021320 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
021340 ~ hhhhhhhh hhhhhhhh 

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhhhhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhO hhhhhhhh hhhhhhhh '! 'l&.1li 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

1 
DDNAME 

Figure 34. I/O Control Blocks 

for an open data set contains a pointer to 
the caw list in the last three bytes of the 
fifth word. 10B+17(11). 

The Completion code for an I/O operation is 
posted in the first byte of the event 
control block (ECB). ECB completion codes 
are explained in Appendix F. ~f the I/O 
event is not complete and an SVC I (WAIT) 
has been issued, the high-order bit of the 
ECB is on. and bytes one through three 
contain the address of the associated RB. 
For the sequential and basic partition 
access methods the second word of an lOB 
points to its associated ECB. 

Figure 34 shows t,he DEB, UCB, DCB, and 
lOB for a BSAM data set. 

TSO CONTROL BLOCKS 

TlOT r(V 21298 
Offset A4 

2133C 

The time sharing (TSO) control blocks are 
obtained from the IMDPRDMP service aid 
program by specifying the TSO control 
statement in the input stream. The first 
part of the TSO dump is the same as the 
normal MVT dump. The control blocks that 
IMDPRDMP formats are divided into two 
group: system and user. 

The time sharing communications vector 
table (TSCVT) is a secondary CVT for the 
MVT CVT. The time sharing CVT resides in 
the time sharing region; therefore, it 
exists only while the time sharing region 
is active. When time sharing does not 
exist in the system, the MVT CVT pointer to 
the TSCVT (CVT+229) is zero. 

Guide to Storage Dumps 145 



A region control block (RCB) contains 
information that is unique to a time 
sharing region. There is one RCB for each 
time sharing region. The RCBs reside in 
the time sharing controller's region, they 
are contiguous, and they are created during 
initialization of the time sharing 
controller. 

The TSCVT points to a region control 
block table. The RCB table is an indexed 
table containing one RCB address for each 
possible time sharing region, therefore, 
the table contains the maximum number of 
RCBs that may be used by time sharing. The 
first RCB is for region one, the second- for 
region two, etc. The time sharing job 
block (TJB) of a job points to the RCB 
associated with that job. 

One user main storage map (UMSM) exists for 
each possible time sharing user. The UMSM 
contains a series of consecutive one-word 
extent fields (ADDR-LN). Each one-word 
extent contains a halfword address field 
(ADDR) and a halfword length field (LN) 
that describes the main storage allocated 
to the time sharing user. The UMSM 
contains the address and length of a 
storage block (a multiple of 2K bytes) that 
has been allocated to the user: only this 
allocated storage will be swapped out for 
the user. The time sharing job block (TJB) 
points to the UMSM. 

SWAP DCB 

The swap data control block (SWAP DCB) is 
used whenever a time sharing user's region 
is swapped into or out of main storage. It 
describes a swap data set that contains an 
lOB, area for channel programs, and the 
track map queue. The TJB points to the 
swap DCB. 

The time sharing job block (TJB) contains 
status information about a time sharing 
usee. The TJB is retained in main storage 
while the user is swapped out. Onetime 
sharing job block exists for each possible 
simultaneous time sharing user. The space 
for the TJB is obtained from the time 
sharing control task (TSC) region during 
time sharing initialization. Status 
information about the terminal related to 
this TJB is contained in the terminal 

status block (TSB). The address of the 
terminal status block is the first word of 
the TJB. The first word of the TSCVT 
points to the TJB. 

Each terminal status block (TSB) contains 
status information about one terminal. The 
terminal input/output coordinator (TIOC) 
uses this information. During system 
initialization, one TSB is created for each 
possible user. The main storage space is 
obtained in one contiguous block for all of 
the TSBs in the region of the time sharing 
control task (TSC); this contiguous string 
of TSBs is called the TSB table. The 
origin pointer to the TSB table is the 
TIOCTSB field of the TIOCRPT. 

The time sharing job block extension (TJBX) 
contains user job information that can be 
rolled out to the swap data set with the 
user's job. The TJBX resides in the local 
system queue space (LSQS) for the region. 
The TJBX location is pointed to by the 
third word of the time sharing job block 
(TJB). The space for the TJBX is obtained 
by the region control task (RCT) during 
initialization. 

The protected step control block (PSCB) 
contains accounting information related to 
a single user. All timing information is 
in software timer units. A software timer 
unit is equal to 26.04166 micro seconds. 
The job step control block (JSCB), offset 
268, points to the PSCB. 

The TSO terminal attention exit element 
(TAXE) is a physical addendum to a regular 
24 word interrupt request block (IRB). It 
is used to schedule an attention exit 
resulting from a terminal attention 
interruption. It is created, queued, and 
dequeued by the specify terminal attention 
exit (STAX) macro instruction. The main 
storage space for the TAXE is obtained in 
the local system queue space (LSQS) of the 
terminal user's region. 

For a more detailed description of the 
TSO control blocks formatted by the 
IMDPRDMP program, see the Control Block 
and/or TSO Control Program PLM 
publications. 

146 Programmer's Guide to Debugging (Release 21) 



Tracing aids available are the save area 
chain, trace option, and Generalized Trace 
Facility (GTF). This section provides a 
description of each tracing aid, and, for 
G.rF, describes its output after processing 
by the lMDPRDMP service aid. 

Save Area Cha.;n 

The save area chain is edited and clearly 
identified in ABEND/SNAP dumps, and can be 
located easily in storage dumps produced by 
system dump facilities or the IMDSADMP 
service aid. 

A save area is a block of 72 bytes 
containing chain pointers and register 
contents. It has the following format: 

o 4 

.. ~ 

Bytes 4-7: Pointer to the next higher 
level save area or, if this is 
the highest level save area, 
zeros. 

Bytes 8-11(B): Pointer to the ne~t lower 
level save area or, if this is 
the lowest level save area, 
unused. 

Bytes 12-15(C-F): Contents of register 14 
(optional) 

Bytes 16-19(10-13): Contents of register 
15 (optionaj.) 

Bytes 20-71(14-3F): Contents of registers 
o to 12 

The save area for the first or higpest 
level load module in a task (save area 1) 
is provided by the control program. The 
address of this area is contained in 
register 13 when the load module is first 
entered. It is the responsibility of the 
highest level module to: 

Section 3: Tracing Aids 

1. Save registers 0-12 in bytes 
20-11(14-3F) of save area 1 when it is 
entered. 

2. Establish a new save area (save area 
2) • 

3. Place the contents of register 13 into 
bytes 4-7 of save area 2. 

4. Place the address of save area 2 into 
register 13. 

5. Place the address of save area 2 into 
bytes 8-11(S) of save area 1. 

At this point, the save areas appear as 
shown in Figure 35. 

Save area I Save area 2 

+4 0000 

+20(14) 

+68(44) ~ 
Figure 35. Save Area Trace 

If a module requests a lower level 
module, it must perform actions 1 through 4 
to ensure proper restoration of registers 
when it regains control. (Action 5 is not 
required, but must be performed if the dump 
printout of the field is desired.) A 
module that does not request a lower level 
module need only perform the first action. 

ABEND and SNAP dumps include edited 
information from all save areas associated 
with the dumped task under the heading 
·SAVE AREA TRACE". In a stand-alone dump, 
the highest level save area can be located 
through a field of the TCB. Subsequent 
save areas can be located through the save 
area chain. 

section 3: Tracing Aids 147 



TRACE OPTION 

The tracing routine is an optional feature 
specified during system generation. This 
routine places entries, each of which is 
associated with a certain type of event, 
into a trace table. When the table is 
filled, the routine overlays old entries 
with new entries, beginning at the top of 
the table (the entry having the lowest 
storage address). The contents and size of 
a trace table are highly system-dependent. 

systems With MFT: Trace table entries for 
systems with MFT are 4 words long and 
represent SIO, I/O, SVC and dispatcher 
task-switching interruptions. Figure 36 
shows the word contents of each type of 
entry. 

SIO I CC/Dev CAW esw 

0 2 

1/0 I/O OLD PSW esw 

0 2 

sve I sve OLD PSW Reg 0 I Reg 1 

0 2 3 

Task I 
Switch 

PSW I t New TeS I tOld TeB 

0 2 3 

Figure 36. Trace Table Entries (MFT) 

Systems with MVT: The trace table in a 
system with MVT is expanded to include more 
entries and more information in each entry. 
Trace table printouts occur only on SNAP 
dumps and stand-alone dumps. Entries are 
eight words long and represent occurences 
of SIO, external, SVC, program, and I/O 
interruptions, and dispatcher loaded PSWS. 

Figure 37 shows the word contents of 
trace table entries for SNAP dumps and 
stand-alone dumps. Figure 38 shows the 
contents of trace table entries as filled 
by MVT with Model 65 multiprocessin~. (SSM 
-- set system mask -- entries are 
optional.) 

INTERPRETING TRACE TABLE ENTRIES 

Location 84(54) in main storage contains 
the address of the first word of the three 
word trace table control block. The trace 
table control block immediately preceeds 
the table. The trace table control block 
describes the bounds of the table and the 
most recent entry at the time of the dump. 

r---------------T-------------T-----------, I Current Entry I First Entry I Last Entry I L _______________ ~ _____________ ~ ___________ J 

048 
You can locate the trace table by scanning 
the contents of main storage between 
locations 16,384(4000) and 32,768(8000) for 
trace table entries. Entries are four 
words long and begin at addresses ending 
with zero. To find the table boundaries 
and current entry, scan the table in 
reverse until you reacQ the trace table 
control block. 

Trace Table Entries in MFT: Trace table 
entries for systems with MFT are 4 words 
long and represent occurrences of 510, I/O, 
SVC, and task-switching interruptions. 
Figure 39 gives some sample entries and 
their contents. 

SIO entries can be used to locate the CCW 
(through the CAW), which reflects the 
operation initiated by an 510 instruction. 
If the SIO operation was not successful, 
the CSW STATUS portion of the entry will 
show you why it failed. 

I/O entries reflect the I/O old PSW and the 
CSW that was stored when the interruption 
occurred. From the PSW, you can learn the 
address of the device on which the 
interruption occurred (bytes 2 and 3), the 
CPU state at the time of interruption (bit 
15), and the instruction address where the 
interruption occurred (bytes 5-8). The CSW 
provides you with the unit status (byte 4), 
the channel status (byte 5), and the 
address of the previous CCW plus 8 (bytes 
0-3). 

sve 

1 
External PSW Reg 15 Reg 0 
Program 
Dispatcher 0 2 3 

1 Reg 1 I tTes Timer 

4 6 7 

SIO I ee/Dev CAW CSW l 
0 2 

1 fres Timer 

6 7 

I/O psw csw l 
0 2 

! Timer 

7 

Figure 37. Trace Table Entries (MVT) 

148 Programmer's Guide to Debugging (Release 21) 



SVC and I Old PSW I;" 15 Rog 0 \ 
Program L. _________ ...... ____ -':-___ -----'~ 
023 

Dispotcherl _________ ..&.I ____ ........ ____ ...,,( _ New PSW' Reg 15 Reg 0 ( 

o 2 3 

4 4 5 6 

~ ~ 
SIO 

I I I 
External 

I CC/Dev CAW CSW Old PSW Reg 15 Reg 0 

0 1 2 0 2 3 

~ Reg 1 STMASK I 
of other CPU • TOE Timer H 

4- 5 4 5 6 7 

~ 
I/o 

I I ~ 
SSM 

Old PSW CSW Old PSW Reg 15 Reg 0 

0 2 0 2 3 

5 6 

Figure 38. Trace Table Entries (MVT with Model 65 multiprocessing) 

§y£ entries provide the SVC old PSW and the 
contents of registers 0 and 1. The PSW 
offers you the hexadecimal SVC number (bits 
20-31), the CPU mode (bit 15), and the 
address of the SVC instruction (bytes 5-8). 
The contents of registers 0 and 1 are 
useful in that many system macro 
instructions use these registers for 
parameter information. Contents of 
registers 0 and 1 for each SVC interruption 
are given in Appendix B. 

Trace Table Entries in MVT and M65MP: 
Entries in an MVT trace table are 8 words 
long and represent occurrences of SIO, 
external, SVC, program, I/O, and dispatcher 
interruptions. You can identify what type 
of interruption caused an entry by looking 
at the fifth digit: 

0 = SIO 
1 = External 
2 = SVC 
3 = Program 
5 = I/O 
D = Dispatcher 

Figure 40 gives some sample entries and 
their contents. 

In dumps of Model 65 Multiprocessing 
system, trace table entries differ as 
follows: 

SIO 

I/O 

SVC and 
Program 

Dispatcher 

External 

5th word address of TCB. 
6th word: address of old TCB 

for CPU A. 
7th word: address of old TCB 

for CPU B. 
8th word CPU identification 

'(last byte). 
3rd word: contents of register 

15. 
4t.h word contents of register 

o. 
8th word CPU identification 

(last byte). 
6th word: address of old TCB 

for APU A. 
7th word: address of old TCB 

for CPU B. 
8th word CPU identification 

(last byte). 
6th word: address of new TCB 

for CPU A. 
7th word: address of new TCB 

for CPU B. 
8th word: CPU identification 

(last byte). 
6th word: STMASK of other cpu. 
7th word: TQE if timer inter-

rupt occurred. 
8th word: cpu identification 

(last byte). If so, a 
program check at the 
instn1ction preceding 
that address caused 
the interruption. 

Section 3: Tracing Aids 149 



SIO 

I/o 

SVC 

Task 
Switch 

Condition Device CAW 
code address 

I/o old PSW 

SVC number 

SVC 0 PSW 

Indicates task switch 

Dispatched new PSW 

csw 

CSW 

Register 0 Register 1 

Figure 39. Sample Trace Table Entries 
(MFT) 

Generalized Trace Facility 

The Generalized Trace Facility (GTF) traces 
system and application program events and 
records information about these events. 
Trace records can be stored internally -
in a table simi liar to the trace table of 
the Trace Option -- or they can be recorded 
externally in a data set that becomes input 
to the IMDPRDMP service aid program. (When 
stored internally the trace table is 
formatted in ABEND/SNAP dumps.) The 
IMDPRDMP service aid edits and formats the 
GTF external trace records as specified in 
an EDIT control statement. 

This section describes the output of 
GTF: it does not tell how to use GTF. For 
a description of the functions performed by 
GTF and IMDPRDMP refer to the Service Aids 
publication. 

510 

va 

SVC 
External 
Program 
Dispatcher 

510 entry identifier 

I.'~ 
Condition Device CAW 

cade address 

VA entry 
identifier 

1·;;&'°;;:; 
VA old PSW 

oooooooo 

Entry identifier 
(SVC here) SVC number 

Register 1 

CSW 

TCB address Timer 

CSW 

~lrr;:<:1 
Timer 

TCB address Timer 

Figure 40. Sample Trace Table Entries 
(MVT) 

System events traced by GTF in MFT, MVT, 
and MVT-M65MP systems are: 

10 interrupts 
SIO operations 
SVC interrupts 
Program interrupts 
External interrupts 
Task Switches by the system dispatcher 
SSM interrupts in multi-processing 
systems 

GTF MINIMAL TRACE RECORDS 

The following material describes the 
records produced u.rler the minimal trace 
option (SYSM) of GTF. The formats 
descr ibed a ppea r in both ABEND/SNAP dumps 
(under the heading GTF TRACE TABLE) and in 
IMDPRDMP output. Minimal trace records are 
produced for 10 and peI/lo, SIO, SVC, PGM, 
EXT. DSP, and SSM eve nts. 

150 programmer's Guide to Debugging (Release 21) 



10 and PCl/IO Minimal Trace Record 

{

********I{OLA hhhhhhhh OLB hhhhhhhh} 
'{:}{~gI} OLD PSW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh ROE TCB ~~~hhhhh OLD TCB hhhhhhhh 

Figure 41. 10 and PCl/IO Minimal Trace Record 

{~} 

10 } 
PCI 

appears in MVT-M65MP system records~ 
identifies the CPU associated with the 
event. 

identifies the type of trace record. 

OLD PSW hhhhhhhh hhhhhhhh 
the program status word that was 
current at the time the 10 or PCI/IO 
interrupt occurred. 

CSW hhhhhhhh hhhhhhhh 
the channel status word associated 
with the 10 or PCI/IO interrupt being 
traced. 

{ ........ } RQE TCB hhhhhhhh 
N/A 

•••••••• 
indicates that an error occurred 
while gathering the information,. 

hhhhhhhh 

N/A 

is the address of the TCB of the 
task for which this I/O operation 
is being performed .• 

indicates the interrupt was 
unsolicited: either the I/O 
supervisor did not issue an SIO 
instruction to the device; or 
there is no valid UCB for the 
device. 

OLD TCB hhhhhhhh 
in MFT and MVT system trace records, 
the address of the TCB for the task 
that was in control when the interrupt 
occurred. 

in MVT-M65MP sys·tems the OLA and OLB 
fields replace the OLD TCB field and 
contain the address of the TCB for the 
task in control of CPU A and CPU B 
respectively, at the time the 
interrupt occurred. 

section 3: Tracing Aids 151 



SIO Minimal Trace Record 

{

********}{OLA hhhhhhhh OLB hhhhhhhh} 
{~} SIO CC/DEV/CAW hhhhhhhh hhhhhhhh CSW hhhhhhhhhhhhhhhh ROE Tca ~~~hhhhh gLD TCB hhhhhhhh 

Figure 42. SIO Minimal Trace Record 

{~} 

SIO 

appears in MVT-M65MP system records; 
identifies the CPU associated with the 
event. 

identifies the type of trace record. 

CC/DEV/CAW hhhhhhhh hhhhhhhh 
displays the SIO condition code, the 
device address, and the CAW (channel 
address word) for the I/O operation 
just initiated. 

The first four digits represent the 
condition code returned from the SIO 
operation; the next four digits 
represent the device address; and the 
last eight digits represent the CAW. 

CSW hhhhhhhh hhhhhhhh 
the channel status word associated 
with this event. 

ROE TCB{~~~~~~~} 
N/A 

•••••••• 
indicates that an error occurred while 
gathering the information. 

hhhhhhhh 

N/A 

is the address of the TCB of the task 
for which this I/O operation is being 
performed. 

indicates the interrupt was 
unsolicited, i.e., the I/O supervisor 
did not issue an SIO instruction to 
the device; or, there is no valid UCB 
for the device .• 

OLD TCB hhhhhhhh 
in MFT and MVT system trace records, 
the address of the TCB for the task 
that was in control when the interrupt 
occurred. 

In MVT-M65MP systems the OLA and OLB 
fields replace the OLD TCB field and 
contain the address of the TCB for the 
task in control of CPU A and CPU B 
respectively, at the time the 
interrupt occurred. 

152 PrOgrammer*s Guide to Debugging (Release 21) 



DSP Minimal Trace Record 

{
NUA hhhhhhhh NUB hhhhhhhh} 

{As} DSP {RES PSW} hhhhhhhh hhhhhhhh R1S/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh NEW TeB hhhhhhhh 
NEW PSW 

Figure 43... DSP Minimal Trace Record 

{~} 

DSP 

appears in MVT-M65MP records: 
identifies the CPU associated with the 
event. 

identifies the type of record. 

NEW PSW hhhhhhhh hhhhhhhh 
the PSW for the task about to be 
dispatched. 

In a record obtained from a MVT-M65MP 
system this field will be labeled RES 
PSW. 

R15/RO hhhhhhhh hhhhhhhh 
the contents of general purpose 

registers 15 and 0 as they will be 
when the task being dispatched is 
given control. 

Rl hhhhhhhh 
the contents of general purpose 
register 1 as it will be when the task 
being dispatched is given control. 

NEW TCB hhhhhhhh 
the address of the TCB for the task 
about to be dispatched. 

In a record obtained from a MVT-M65MP 
system this field is replaced by the 
NUA and NUB fields containing the 
addresses of the tasks to be 
dispatched on CPU A and CPU B when 
processing resumes. 

section 3: Tracing Aids 153 



EXT Minimal Trace Record 

{
********} 

{~} EXT OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh STMSK hhhhhhhh TOE Tea ~'~hhhhh 

Figure 44. EXT Minimal Trace Record 

EXT 

appears in MVT-M65MP records; 
identifies the CPU associated with the 
event,. 

identifies the type of trace record. 

OLD PSW hhhhhhhh hhhhhhhh 
the program status word that was 
current at the time the external 
interrupt occurred. 

R15/RO hhhhhhhh hhhhhhhh 
the contents of general purpose 
registers 15 and 0 at the time the 
interrupt occurred. 

R1 hhhhhhhh 
the contents of general purpose 
register 1 at the time the interrupt 
occurred. 

STMSK hhhhhhhh 
appears in MVT-M65MP records only; 
displays the SHOULDER TAP MASK at the 
time the interrupt occurred. 

TQE TCB{::~~~~} 
N/A 

•••••••• 
indicates that an error occurred 
while gathering the information. 

hhhhhhhh 

N/A 

is the address of the TeB of the 
task that requested this timer 
interrupt. 

indicates the interrupt was other 
than a timer interrupt. 

154 Programmer's Guide to Debugging (Release 21) 



PGM Minimal Trace Record 

{ } {
aLA hhhhhhhh aLB hhhhhhhh} 

~ PGM 01.0 PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh Rl llhhhhhhh OLD TeB hhhhhhhh 

Figure 45.. PGM Minimal Trace Record 

{~} 

PGM 

appears in MVT-M65MP system records; 
identifies the CPU associated with the 
event. 

identifies the type of trace record. 

OLD PSW hhhhhhhh hhhhhhhh 
the program status word that was 
current at the time the program 
interrupt occurred. 

R15/RO hhhhhhhh hhhhhhhh 
the contents of general purpose 
registers 15 and 0 at the time the 
interrupt occurred. 

R1 hhhhhhhh 
the contents of general purpose 
register 1 at the time the interrupt 
occurred. 

OLD TCB hhhhhhhh 
the address of the TCB for the task 
that was in control when the interrupt 
occurred. 

In MVT-M65MP trace records this field 
is replaced by the OLA and OLB fields 
that contain, respectively, the 
address of the TeB for the tasks in 
control of CPU A and CPU B at the time 
the interrupt occurred. 

section 3: Tracing Aids 155 



SVC Minimal Trace Record 

{
OLA hhhhhhhh OLB hhhhhhhh} 

{~} SVC OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh OLD TCO hhhhhhhh 

Figure 46. SVC Minimal Trace Record 

{~} 

SVC 

appears in MVT-M65MP system records; 
identifies the CPU associated with the 
event. 

identifies the type of trace record. 

OLD PSW hhhhhhhh hhhhhhhh 
the program status word that was 
current at the time the interrupt 
occurred. The SVC number, e.g., SVC 
51, is represented by the last two 
hexadecimal digits in the first word. 

R15/RO hhhhhhhh hhhhhhhh 
the contents of general purpose 

registers 15 and 0 at the time the 
interrupt occurred. 

R1 hhhhhhhh 
the contents of general purpose 
register 1 at the time the interrupt 
occurred. 

OLD TCB hhhhhhhh 
the address of the TCB for the task 
that issued the SVC. 

In MVT-M65MP systems the OLA and OLB 
fields replace the OLD Tca field and 
contain the address of the TCB for the 
task in control of CPU A and CPU B 
respectively, at the time the 
interrupt occurred. 

1.56 Programmer's Guide to Debugging (Release 21) 



SSM Minimal Trace Record 

{:} SSM LX C OPSW hhhhhhhh hhhhhhhh RlS/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh aLA hhhhhhhh aLB hhhhhhhh 

Figure 47. SSM Minimal Trace Record 

{~} 

SSM 

IK c 

indicates the CPU associated with the 
event. 

identifies the type of trace record. 

CPU affinity byte: 
A indicates CPU A executing 
disabled. 
B indicates CPU B executing 
disabled. 
o Neither CPU executing disabled. 

OPsw hhhhhhhh hhhhhhhh 
the program status word that was 
current at the time the interrupt 
occurred. Obtained from the CPU on 
which the interrupt occurred. 

R15/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh 
The contents of general purpose 
registers 15, 0, and 1 from the CPU on 
which the interrupt occurred, at the 
time the interrupt occurred. 

OLA hhhhhhhh OLB hhhhhhhh 
the addresses of the TCBs of the tasks 
in control in CPU A and CPU B 
respectively at the time the interrupt 
occurred. 

Section 3: Tracing Aids 157 



GTF COMPREHENSIVE TRACE RECORDS 

The following material describes the 
records produced when comprehensive tracing 
is specified at the invoking of GTF 
(MODE=EXT). The formats described appear 

in the output from IMDPRDMP service aid 
processing of the data recorded by GTF4 

Comprehensive trace records ·are produced 
for 10, pel/IO, SIO, DSP, EXT, PGM, SSM, 
and SVC events. 

158 Pr6tjramme!r's Guide to Debugging (Release 21) 



10 and PCI/IO comprehensive Trace Record 

{
********} 

{A}{IO} cuu OLD PSW hhhhhhhh hhhhhhhh JOBN cccccccc 
B pcr N/A 

{
******** ******** ********} 

CSW hhhhhhhh hhhhhhhh RQE hhhhhhhh hhhhhhhh hhhhhhhh 
N/A 

{
********}{OLA hhhhhhhh aLB hhhhhhhh} 

DDNM cccccccc OLTCB hhhhhhhh 
N/A 

{
* ** * * * **} RQE Tcn hhhhhhhh SENS{hhhhhhhh} 
N/A N/A 

Figure 48. 10 and PCI/IO Comprehensive Trace Record 

{~} 

cuu 

This field appears only in MVT-M65MP 
system I/O or PCI trace records and 
identifies the computer associated 
with the event. 

This field identifies the type of 
trace record -- input/output (10) or 
program controlled interrupt (PCI). 

This field displays the device address 
for the device associated with the 
interrupt in channel/unit form. 

OLD PSW hhhhhhhh hhhhhhhh 
This field displays the program status 
word that was current at the time the 
10 or PCl interrupt being traced, 
occurred. 

{

CCCCCCCC} 
JOBN •••••••• 

N/A 

This field has three possible entries, 
as follows: 

cccccccc 
is the one to eight character 
name of the job associated with 
the interrupt being traced. 

•••••••• 

N/A 

asterisks indicate that a bad 
control block chain prevented the 
jobname from being obtained. 

in PCI trace records N/A 
indicates that the interrupt was 
issued by the system and there is 
no associated jobname; in 10 
interrupt trace records N/A 
indicates either a system issued 
interrupt as for PCI or an 
interrupt issued without a valid 

UCB for the device issuing the 
interrupt. 

{

CCCCCCCC} 
DDNM .* ..... . 

N/A 

This field has three possible entries, 
as follows: 

cccccccc 
is the name of the DD statement 
associated with the interrupt 
being traced. 

.* .. * •• * 

N/A 

asterisk indicate that a bad 
control block chain prevented the 
data definition name from being 
obtained. 

N/A appears in the DDNM field for 
one of the following reasons: 
• An interrupt was issued without 

a valid UCB for the device 
issuing the interrupt. 

• The post bit in the UCB is 
• off. • 

• The data event block (DEB) 
pointer to the TCB is set to o. 

• The DCB is not opened. 
• The DCB TIOT offset is outside 

the valid range .• 
• The TCa TIOT pointer is set to 

o • 
• The DDNAME in the TIOT is not 

recorded in EBCDIC characters. 

OLTCB hhhhhhhh 
In MFT and MVT system trace records 
this field displays the address of the 
TCB that was current at the time the 
10 or PCl interrupt being traced. 
occurred. 

In MVT-M65MP system 10 and PCI trace 
records the following fields replace 
the OLTCB field: 

Section 3: Tracing Aids 159 



Page of GC28-6670-5.6, Revised April 16, 1973, By TNL: GN28-2545 

OLA hhhhhhhh 
This field displays the address 
of the A computer TCB that was 
current when the 10 or PCI 
interrupt occurred. 

OLB hhhhhhhh 
This field displays the address 
of the B computer TCB that was 
current when the 10 or PCI 
interrupt occurred. 

CSW hhhhhhhh hhhhhhhh 
This field displays the channel status 
word from permanent storage location 
64. 

{

hhhhhhhh hhhhhhhh hhhhhhhh} 
RQE •••••••••••••••••••••••• 

N/A 

This field has three possible entries 
as follows: 

hhhhhhhh hhhhhhhh hhhhhhhh 
is the content of the first three 
words of the Request Queue 
Element associated with the 10 or 
PCl interrupt. 

•••••••••••••••••••••••• 

N/A 

asterisks indicate that a bad 
control block chain prevented the· I 
RQE information from being 
obtained. 

indicates that the interrupt was 
issued without a valid UCB for 
the device issuing the interrupt. 

{
hhhhhhhh} 

RQE TCB •••••••• 
N/A 

This field has three possible entries 
as follows: 

hhhhhhhh 
is the address of the TCB 
associated with the Request Queue 
Element 

• ••••••• 

N/A 

asterisks indicate that a bad 
control block chain prevented the 
TCB address from being obtained. 

indicates that the interrupt was 
issued without a valid UCB for 
the device issuing the interrupt. 

SENS{hhhhhhhh} 
N/A 

This field has two possible entries as 
follows: 

hhhhhhhh 

N/A 

is the content of the four sense 
bytes in the UCB beginning at UCB 
+ 22 which describe the 10 or PCI 
interrupt being traced. For more 
information about thE:: sense oytes 
see Appendix G. 

indicates that the interrupt was 
issued without a valid UCB for 
the device issuing the interrupt. 

160 programmer's Guide to Debugging (Release 21.7) 



SIO Comprehensive Trace Record 

{
A} {OLA hhhhhhhh OLB hhhhhhhh} 
B SIO cuu CC hh CAW hhhhhhhh JOBN{CCCCCCCC} OLTCB hhhhhhhh 

N/A 

CSW hhhhhhhh hhhhhhhh RQE hhhhhhhh hhhhhhhh hhhhhhhh RQE TeB hhhhhhhh 

Figure 49. SIO Comprehensive Trace Record 

{~} 

SIO 

cuu 

CC hh 

appears in MVT-M65MP system trace 
records; identifies the computer 
associated with the event. 

the type of trace record. 

the device address in channel/unit 
form for the device associated with 
the record. 

hh - is the condition code set by the 
SIO event. 

CAW hhhhhhhh 
the channel address word associated 
with this event -- taken from 
permanent storage location 72. 

JOBN{cccccccc} 
N/A 

cccccccc 

N/A 

is the one to eight character 
jobname of the job associated 
with this event. 

indicates the SIO was issued by 
the system and there is no 
associated jobname. 

OLTCB hhhhhhhh 
in MFT/MVT systems the address of the 
TCB that was current when the SIO was 
issued. 

in MVT-M65MP systems the OLA and OLB 
fields replace the OLTCB field. 

OLA hhhhhhhh 
is the A computer address of the 
TCB that was current when the SIO 
was issued. 

OLB hhhhhhhh 
is the B computer address of the 
TCB that was current when the SIO 
was issued. 

CSW hhhhhhhh hhhhhhhh 
the channel status word associated 
with this event -- taken from 
permanent storage location 64. 

RQE hhhhhhhh hhhhhhhh hhhhhhhh 
the first three words of the Request 
Queue Element associated with the SIO 
operation. 

RQE TCB hhhhhhhh 
the address of the TCB associated with 
the request queue element. 

Section 3: Tracing Aids 161 



Page of GC28-6670-5,6, Revised April 16, 1913" By TNL: GN28-2545 

DSP comprehensive Trace Record 

{~} DSP RES psw hhhhhhhh hhhhhhhh I
~~~:~;~C 
SVC-RES {NlJA hhhhhhhh NUB hhhhhhhhl 

JOBN{CCCCCCCC} MODN **IRS*** NUTCB hhhhhhhh {PRTY hh 
N/A cccccccc 

Figure 50. DSP Comprehensive Trace Record 

DSP 

MVT-M65MP systems only. Identifies 
the computer associated with the 
event. 

the type of trace record. 

RES PSW hhhhhhhh hhhhhhhh 
the PSW for the task about to be 
dispatched. If this task was 
interrupted at some previous point in 
time, then this was the current PSW at 
the interrupt. 

JOBN{cccccccc} 
N/A 

ccceeece 

N/A 

is the eight character name of 
the job associated with the task 
being dispatched. 

indicates the task swi tch is for 
a system task; no jobname is 
available. 

WAITTCB 
SVC-cecc 

MOON SVC-RES 
**IRB*** 
cccccecc 
Iceccccc 
99999999 

WAITTCB 
the WAIT task is about to be 
given control. 

SVC-cccc 
indicates a type 3 or 4 SVC is 
about to get control; ccce is the 
last four characters in the 
module name. 

SVC'-RES 
indicates a resident type SVC 
routine is about to be given 
control. 

Iccccccc 
99999999 

**IRB*** 
an asynchronous routine is about 
to be dispatched and the module 
name is not available. 

cccccccc 
in MVT systerrs the eight 
character module name from the 
CDE associated with the task to 
be dispatched; or, the name of an 
error exit routine from the SIRB 
associated with the task. 

in ~'T systems the eight 
character narre from the LRB, 
LPRB, PRB or FRB a ssocia ted with 
the task being dispatched; or an 
error exit routine name from the 
SIRB associated with the task. 

Iecccccc 
indicates that error fetch is in 
the process of loading an error 
recovery module. The last seven 
characters of the module name are 
shown. 

99999999 
In MFT (with subtasking) an 
ATTACH was issued, but the module 
requested did nbt receive 
control. 

NUTCB hhhhhhhh 
the address of the new Tea -- the TeB 
of the next-to-be-dispatched task. 

in MVT-M65MP systems the following 
fields replace the NUTCB field: 
NUA hhhhhhhh 

the address of the Tca of the 
next-to-be-dispatched task in the 
A computer. 

NUB hhhhhhhh 

PRTY hh 

hh 

the address of the Tea of the 
next-to-be-dispatched task in the 
B computer. 

the dispatching priority of the 
next-to-be-dispatched task. 

162 Pro9rammer's Guide to Debugging (Release 21.1) 



Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

EXT Comprehensive Trace Regord 

!
WAITTCB I SVC-cccc OLA hhhhhhhh OLB hhhhhhhh 

{~} EXT OLD PSW hhhhhhhh hhhhhhhh JOBN{~~~CCCCC} MOON ;~i;:;;. {OLTCB hhhhhhhh }STMSK hhhhhhhh 

CCCCCCCC 

{********} {********} TQEFLG/TCB hhhhhhhh EXIT hhhhhhhh 
N/A N/A 

Figure 51. EXT Comprehensive Trace Record 

{~} 

EXT 

This field appears only in MVT-M65MP 
system EXT t.race records and 
identifies the computer associated 
wi th the event. 

This field identifies the trace record 
as an EXT trace record. 

OLD PSW hhhhhhhh hhhhhhhh 
This field displays the program status 
word that was current at the time the 
external interrupt occurred. 

JOBN{CCCCCCCC} 
N/A 

This field has two possible entries as 
follows: 

cccccccc 

N/A 

is the one to eight character 
name of the job associated with 
the event. 

indicates that the interrupt was 
issued by the system and there is 
not associated job name. 

WAITTCB 
SVC-cccc 

MOON SVC-RES 
**IRB*** 
cccccccc 
Iccccccc 
99999999 

WAITTCB 
The WAIT task was interrupted. 

SVC-cccc 
A type 3 or 4 SVC routine was 
interrupted; cccc is the last 
four characters of the routine 
name. 

Iccccccc 
99999999 

SVC-RES 
a resident SVC routine was 
interrupted. 

**IRD*** 
the EXT interrupt occurred during 
execution of an asynchronous 
routine with an associated IRD. 

cccccccc 
in MVT systerrs the eight 
character name of the module that 
was interrupted - taken from the 
CDE associated with the task; or 
the name of an error rout ine -
taken from the SIRD associated 
wi th the tas k. 

in MFT systems the eight 
character narre of the module that 
was interrupted - taken from 
either the LRB, LPRB, PRB, or 
FRB; or the narre of an error 
routine - taken from the SIRS 
associated with the task. 

Iccccccc 
indicates that error fetch was in 
the process of loading an error 
recovery routi ne when the 
interrupt occurred. The last 
seven characters of the module 
name are shown. 

99999999 
In MFT (with subtasking) an 
ATTACH was issued, but the module 
requested did not receive 
control .. 

OLTCB hhhhhhhh 
In MFT/MVT syste~s the address of the 
TCB that was current when the 
interrupt occurred. 

In MVT-M65MP systems the OLA and OLB 
fields replace the OLTCB field. 

section 3: Tracing Aids 163 



OLA hhhhhhhh 
is the address of the TCB in the 
A computer that was current when 
the interrupt occurred. 

OLB hhhhhhhh 
is the address of the TCB in the 
B computer that was current when 
the interrupt occurred. 

STMSK hhhhhhhh 
In MVT-M65MP systems only - the 
'shoulder tap' mask from location 
X'2BC' in the other computers prefix. 

TQEFLG/TCB{:~!** ••• } 
hhhhhhhh 

hhhhhhhh 
is the first word of the timer 
queue element (TQE). The first 
byte of the word is the TQEFLGS 
and the remaining three bytes the 
TQETCB, which is the address of 
the TCB for the task in which 
this timer element is being used. 

•••••• ** 

N/A 

asterisks indicate that a bad 
control block chain prevented the 
information from peing obtained. 

indicates that this EXT interrupt 
was not caused by the timer. 

{
hhhhhhhh} 

EXIT N/A 
•• ** •• *. 

hhhhhhhh 

N/A 

is the address of the exit 
routine - taken from the eighth 
word of the TQE. 

indicates that this EXT interrupt 
was not caused by the timer. 

••• * •• *. 
asterisks indicate that a bad 
control block chain prevented the 
information from being obtained. 

164 Programmer's Guide to Debugging (Release 21.7) 



Page of GC28-6670-5,,6, Revised April 16, 1973, By TNL: GN28-2545 

PGM Comprehensive Trace Records 

JOUN{CCCCCCCC} MODN!;~~~~~: 
N/A cccccccc 

Iccccccc 
99999999 

{~} PGM ccc OLD PSW hhhhhhhh hhhhhhhh {
OLA hhhhhhhh OLB hhhhhhhh} 
OLTen hhhhhhhh 

RO hhhhhhhh Rl hhhhhhhh R2 hhhhhhhh R3 hhhhhhhh R4 hhhhhhhh R5 hhhhhhhh R6 hhhhhhhh R7 hhhhhhhh 
R8 hhhhhhhh R9 hhhhhhhh RIO hhhhhhhh RII hhhhhhhh RI2 hhhhhhhh R13 hhhhhhhh RI4 hhhhhhhh R15 hhhhhhhh 

Figure 52. PGM Comprehensive Trace Record 

PGM 

ccc 

MVT-M65MP systems only; identifies the 
computer associated with the 
interrupt. 

the type of trace record. 

the completion code for the program 
interrupt. 

OLD PSW hhhhhhhh hhhhhhhh 
the program status word that was 
current at the time the program 
interrupt occurred. 

{
CCCCCCCC} 

JOBN N/A 

cccccccc 

N/A 

is the one to eight character 
jobname of the job associated 
with this event. 

indicates a system task program 
checked and no jobname is 
available. 

WAITTCB 
SVC-cccc 

MOON SVC-RES 
**IRB*** 
cccccccc 
Iccccccc 
99999999 

SVC-ccc 
A type 3 or 4 SVC routine was 
interrupted; cccc is the last 
four characters of the routine 
name. 

SVC-RES 
a resident SVC routine was 
interrupted. 

**IRB*** 
the program check interrupt 
occurred in an asynchronous 
routine with an associated IRB. 

cccccccc 
in MVT systems the eight 
character name of the module that 
was interrupted - taken from the 
CDE associated with the task; or, 
the name of an error routine -
taken from the SIRB associated 
with the task. 

Iccccccc 
indicates that error fetch was in 
the process of loading an error 
recovery routine when the 
interrupt occurred. The last 
seven characters of the module 
name are shown. 

99999999 
In MFT (with subtasking) an 
ATTACH was issued, but the module 
requested did not receive 
control. 

OLTCB hhhhhhhh 
in MFT/MVT systems the address of the 
TCB that was current when the 
interrupt occurred. 

In MVT-M65MP systems the OLA and OLB 
fields replace the OLTCB field. 

OLA hhhhhhhh 
is the A computer address of the 
TCB that was current when the 
interrupt occurred. 

OLB hhhhhhhh 
is the B computer address of the 
Tca that was current when the 
interrupt occurred. 

RO hhhhhhhh 
to 

R15 hhhhhhhh 
the content of general purpose 
registers zero through fifteen at the 
time of the interrupt. 

Section 3: Tracing Aids 165 



SSM Comprehensive Trace Record 

WAITTCB 
SVC-cccc {!} ~SM OLD PSW hhhhhhhh JOBN{CCCCCCCC} MODN SVC-RES 

N/A **IRB*** 
CCCCCCCC 
Iccccccc 

Figure 53. SSM Comprehensive Trace Record 

SSM 

identifies the computer associated 
with the SSM interrupt. 

identifies this trace record as an SSM 
trace record. 

OLD PSW hhhhhhhh hhhhhhhh 
the program status word that was 
current at the time the set system 
mask instruction was issued. 

JOBN {cccccccc} 
N/A 

cccccccc 

N/A 

is the one to eight character 
name of the job associated with 
SSM interrupt. 

indicates that the system 
originated the interrupt and 
there is no associated jobname. 

I

WAITTCB I SVC-cccc 
MOON SVC-RES 

**IRB··· 
Iccccccc 

WAITTCB 
the WAIT task was interrupted. 

SVC-cccc 
a type 3 or 4 SVC routine was 
interrupted; cccc is the last 
four characters of the routine 
name. 

sve-RES 
a re$ident sve routine was 
interrupted. 

OLA hhhhhhhh OLB hhhhhhhh LKID C 

.*IRB*** 
the SSM interrupt occurred during 
execution of an asynchronous 
routine with an associated IRB. 

cccccccc 
the eight character name of the 
module that was interrupted -
taken from the content directory 
element (CDE) for the task; or 
the name of an error routine -
taken from the SIRB associated 
with the task. 

Iccccccc 
indicates that error fetch was in 
the process of loading an error 
recovery routine when the 
interrupt occurred. The last 
seven characters of the module 
name are shown. 

OLA hhhhhhhh 
is the A computer address of the TCB 
that was current when the interrupt 
occurred. 

OLB hhhhhhhh 
is the B computer address of the TCB 
that was current when the interrupt 
occurred. 

LKID c 
CPU affinity byte: 

A indicates CPU A executing 
disabled. 

B indicates CPU B e~ecuting 
disabled. 

o Neither CPU executing disabled. 

166 Programmer's Guide to Debugging (Release 21.7) 



TIME AND LOST EVENT RECORDS 

GTF produces two types of time records and 
a lost event record as follows: 

TDiE ddddd.dddddd 

appears on the last line of every 
event J.:'ecord if TIME=YES was specified 
in the GTF start command, and 
designates in decimal the number of 
seconds and microseconds since the 
last midnight. 

.**DATE: DAY ddd YEAR dddd TIME dd.dd.dd 

This timestamp record appears at the 
beginning of the printout of each 
buffer filled by GTF and represents 
the time the first record was placed 
in the buffer. 

DAY ddd 
is the Julian date. 

YEAR dddd 
is the year. 

TIME dd.dd.dd 
is the time since midnight in a 
twenty-four hour format 
(hours. mi nutes .• seconds) • 

* •• LOST EVENTS: NUM dddddddddd TIME 
dd.dd.dd [GTF DISABLED] 

The lost event record appears whenever 
GTF loses records, whether it is 
because the GTF buffers overflowed or 
because GTF was temporarily disabled 
by ABEND. The record is not produced 
if GTF terminates when the buffers are 
full. 

NUM dddddddddd 
is the number of records that 
were lost; one to ten decimal 
digits .. 

TIME dd.dd.dd 
is the time GTF resumed 
recording; 24-hour format 
starting at midnight. 

GTF DISABLED 
appears only if the events were 
lost because GTF was temporarily 
disabled, e.g., ABEND temporarily 
disables GTF in order to format 
GTF ou-tput f or an ABEND dump. 

section 3: Tracing Aids 167 



HEXADECIMAL FORMAT RECORD 

IHEXFORMATI 
~~~~EM AID hh FlO hh EID hh 

SUBSYS 

hhhhhhhh hhhhhhhh hhhhhhhh ~ hhhhhhhh 

Figure 54. Hexadecimal Format Record 

Under some circumstances IMDPRDMP formats 
and prints GTF records in hexadecimal 
notation. The conditions under which GTF 
records are formatted and printed in 
hexadecimal format by IMDPRDMP are 
presented in the discussion of the 
hexformat record that follows: 

HEX FORMAT 

USR 

This label identifies a record dumped 
in hex format at the request of the 
user on a GTRACE macro. This request 
was made by not specifying a format 
appendage, that is FID=OO. 

This label identifies this record as 
dumped in hexformat because the user 
requested a format appendage on the 
GTRACE macro that could not be found. 
This format appendage was identified 
by FID=hh, and therefore its name is 
IMDUSR hh. 

SYSTEM 
This label identifies a record that 
was dumped in hex format because 
either it is a GTF error record or the 
format appendage for it has been 
scratched by the user. If relative 
bytes 0, 1 or 8, 9 contain X'BEEE', 
then this is an error record produced 
by GTF. This error record was 
produced as a result of an 
unrecoverable error in a GTF data 
gathering routine. When the error was 
encountered message IHL1181 was 
written on the master system console 
indentifying the error and the action 
taken. This message is not issued if 
the error occurred while building a 
comprehensive SVC trace record. 

Except for comprehensive SVC records, 
this was the last record of its type 
produced during the run of GTF that 
produced it. If the X'EEEE' were not 
in the record" then it was dumped in 
hexformat because the IMDPRDMP format 
appendage that formats this type of 
record was not found by IMDPRDMP. 

SUBSYS 
This label identifies this record as 
dumped in hexformat because the 
subsystem format appendage requested 
by the subsystem on a GTRACE was not 
found by IMDPRDMP. The request was 
made via FID=hh, and therefore, it's 
name is IMDUSRhh. 

AID hh 
This field contains the AID of this 
record, and should always be X'FF'. 
The AID is the application identifier, 
and GTF's is always X'FF'. 

FlO hh 
This field contains the FID, or format 
identifier. It is appended to 
'IMDSYS' or 'IMDUSR' to obtain the 
name of the format appendage that was 
to have formatted this record. 

EID hhhh 
This field contains the EID, or event 
identifier, for this record. The EID 
uniquely identifies the event that 
produced this record. 

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
up to 64 words (256 bytes) of record 
in the GTF internal format. The 
internal format of GTF records is 
available in the Service Aids PLM. 

168 programmer's Guide to Debugging (Release 21) 



GrF SVC COMPREHENSIVE TRACE RECORDS SVC # Group Page 
~ 3 185 

There are four groups of GTF SVC 46 1 172 
Comprehensive Trace records. 47 3 185 

48 3 185 
Group 1 -- Those with Basic Fields 49 1 172 
Group 2 -- Those with Basic Fields plus 50 null 
a DDNAME Field 51 4 197 
Group 3 -- Those with Basic Fields plus 52 1 172 
a Parameter List Field 53 2 181 
Group 4 -- Those with Basic Fields plus 54 4 198 
Variable Field(s) 55 2 181 

56 3 186 
The following sub-index lists the SVcs in 57 2 181 
sequence, identifies the group to which 58 2 181 
they belong, and gives the page where 59 1 172 
register contents and other variable fields 60 3 186 
are noted. 61 1 172 

62 4 198 
~ Gro~p Page 63 3 187 
a 4 190 64 3 187 
1 3 182 65 4 198 
2 1 170 66 4 199 
3 1 171 67 4 199 
4 3 182 68 1 172 
5 3 183 69 2 181 
6 4 190 70 3 187 
7 4 190 71 4 199 
8 4 190 72 1 173 
9 4 191 73 3 187 
10 3 171 74 3 187 
11 1 171 75 4 199 
12 1 171 76 1 173 
13 4 191 77 3 187 
14 4 191 78 4 200 
15 4 191 79 1 173 
16 4 191 80 3 188 
17 4 192 81 4 200 
18 3 183 82 4 200 
19 3 183 83 1 173 
20 3 183 84 1 173 
21 4 192 85 1 173 
22 3 183 86 4 201 
23 3 183 87 3 188 
24 2 181 88 4 202 
25 4 192 89 4 202 
26 4 193 90 3 188 
27 4 194 91 1 173 
28 4 195 92 1 173 
29 4 195 93 1 174 
30 4 195 94 1 175 
31 2 181 95 1 177 
32 4 195 96 3 188 
33 4 195 97 1 178 
34 1 171 98 4 202 
35 3 183 99 3 189 
36 1 171 100 1 178 
37 3 184 101 1 179 
38 1 171 102 3 189 
39 3 184 103 1 179 
40 3 184 104 1 179 
41 4 196 105 1 180 
42 4 196 109 1 180 
43 1 171 116 1 180 
44 4 197 117 1 180 

section 3: Tracing Aids 169 



Page of GC28-667o-5,6, Revised April 16, 1973, By TNL: GN28-2545 

SVC comprehensive Trace Records Group 1 -- Basic Fields 

, {OLA hhhhhhhh OLB hhhhhhhh} 
{~} svc ddd OLD PSW hhhhhhhh hhhhhhhh JOBN cccccccc MOON cccccccc OLTCB hhhhhhhh 

RIS/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh 

Figure 55. Basic SVC Comprehensive Trace Record 

this field appears only in MVT-M65MP 
records and identifies the CPU 
associated with the event. 

SVC ddd 
the decimal number of the svc 

OLD psw hhhhhhhh hhhhhhhh 
the program status word that was 
current at the time the SVC interrupt 
occurred. When SVC processing is 
completed, operation is resumed under 
control of this PSW. 

{
* •••• *.*} JOBN cccccccc 

N/A 

**.*.* •• 
indicate an error occurred while 
attempting to retrieve the 
jobname, e.g., an incorrect TIOT 
address in the Tca could result 
in asterisks being placed in this 
field. 

cccccccc 

N/A 

is the eight character jobname of 
the job issuing the SVC. 

indicates that the svc was issued 
by the system and there is no 
associated jobname. 

**IRB*** 
SVC-RES 

MODN SVc-nnnn 
·ccccccc 
cccccccc 

N/A 
**.* •• *. 
99999999 

*·IRB*·· 
indicates the SVC was issued by 
an asychronously executed routine 
with an associated IRB. 

SVC-RES 
indicates the svc was issued by a 
resident SVC with an associated 
SVRB. 

SVC-nnn 
indicates the svc was issued by a 
transient SVC module with an 
associated SVRB. nnnn denotes 
the last four characters of the 
module name. 

*ccccccc 
indicates that error fetch is in 
the process of loading an error 
recovery module. ccccccc is the 
last seven characters of the 
module name. 

cccccccc 

N/A 

is, in MVT systems, the eight 
character name of the module 
issui ng the SVC -- taken from the 
COE associated with the task; or 
the name of an error routine -
taken from the SIRS associated 
wi th the tas k. 

In MFT systerrs the module name is 
taken from the LRB, LPRB, PRB, or 
FRB and the error routine name is 
taken from the SIRB associated 
with the task. 

indicates the RB CDE pointer was 
zero. 

.*.**.*. 
indicates that an error occurred 
while attempting to retrieve the 
module name. 

1

99999999 
In MFT (with subtasking) an 
ATTACH was issued, but the module 
requested did not receive 
control. 

110 Programmer's Guide to Debugging (Release 21.7) 



OLTCB hhhhhhhh 
the address of the TCB that was 
current when the SVC was issued. 

In MVT-M65MP systems the OLA and OLB 
fields replace the OLTCE field and 
indicate the addresses of the TCBs 
that were current in CPU A and CPU B 
when the SVC was issued. 

R15/RO hhhhhhhh hhhhhhhh R1 hhhhhhhh 
the contents of registers 15, 0, and 1 
when the SVC was issued. 

SVC Comprehensive Trace Records Group 1 -
Bas ic Fiel ds 

SVC 2 (POST) 
R15 contains no applicable 
i nf orma ti on. 
RO contains the completion code to be 
placed in the ECB. 
R1 contains the address of the ECB to 
be posted. 

Section 3: Tracing Aids 170.1 



Page oi GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

t 170.2 P~Qgrammerts Guide to Debugging (Release 21.7) 



Bve 3 (EXIT) 
registers contain no applicable 
information. 

Bve 10 (REGNAlN' 
R15 contains no applicable 
information. 
RO contains the number of the subpool 
requested in the high order byte, and 
the number of bytes requested in the 
low order three bytes .• 
R1 contains any negative value if the 
request is for a GETMAIN; contains the 
address of the storage to be freed if 
the request is for a'FREEMAIN; 
contains zero value if the request is 
for a FREEMAIN for an entire subpool. 

sve 11 (TIME) 
R15 contains no applicable 
information. 
RO contains no applicable information. 
R1 contains flag bits in the low order 
byte that designate how the time is to 
be returned in Register o. 

If the low order byte is: 

x'OO' 

x'Ol' 

x'02' 

sve 12 (SYNCH) 

register 0 is to contain a 
32 bit unsigned binary 
number representing the 
number of timer units that 
have elapsed.. (A timer unit 
is 26.04 micro-seconds). 

register 0 is to contain 
elapsed time in hundredths 
of a second. 

register 0 is to contain 
packed decimal digits 
representing elapsed time in 
hours, minutes, seconds, 
tenths of a second, and 
hundredths of a second 
UlHMMSSth) • 

R15 contains the address of the entry 
point for the processing program that 
is to be given control. 
RO contains no applicable information. 
R1 contains no applicable information. 

sve 34 (MGCR) 

R15 contains no applicable 
information. 

RO and Rl contents are as follows: 
Rl, if positive, contains a 
pointer to the command buffer of 
the command to be processed. RO 
is not used in this case. 

If Rl is negative and RO is zero, 
then Rl contains a pointer to the 
CSCB that is tQ be either added 
to the chain or deleted from the 
chain. 

If R1 is negative and RO is 
positive, then Rl contains a 
pointer to the CIB that is to be 
added to or deleted from the 
chain. RO contains a pointer to 
the beginning of the chain. 

If Rl is negative and RO is 
negative, then RO contains a 
pointer to the CIB in which the 
CIB count is to be set and R1 
contains the value to which the 
CIB count is to be set. 

SVC 36 (WTL) 
R15 contains no applicable information. 
RO contains no applicable information. 
R1 if positive, contains a pointer to 
the user record that is to be written to 
the system log dataset. 

If negative, contains a pointer to 
the LCA indicating either 
initialization, (both data sets 
have to be opened), or data set 
switching is required,. 

SVC 38 (TTROUTER) 
Registers 15, 0, and 1 do not contain 
any applicable in,formation. 

SVC 43 (CIRD) 
R15 contains no applicable 
information. 
RO contains the entry point address of 
the user's asynchronous exit routine .• 
R1 contains option bit flags in the 
high order halfword and the size of 
the work area requested (in double 
words) in the low order halfword. 

Flag settings are: 

flag byte 1 
1....... DIRB 
0 ••••• '.. CIRB 
.1000... bits 1-4 always set 

as shown 
• •••• 1.. problem program key 
.' ••• ,.0.. supervisor key 
• ....... 1.. problem program state 
••••.•• 0. supervisor state 
••••••• 1 save area for 

registers requested 
••••••• 0 no save area 

requested 

flag byte 2 
xxxx •• xx reserVed 
•••• 1... do not return IQEs at 

exit 
• •••• 1. • return IQEs at exit 

section 3: Tracing Aids 171 



SVC 46 (TTIMER) 
R15 contains no applicable 
information. 
RO contains no applicable information. 
Rl the low order three bytes carry 
code determining how TTlMER should 
work, as follows: 

x'OO' 

x'Ol' 

x'02' 

SVC 49 (TTOPEN) 

the time rema1n1ng in the 
curr~nt tasks time interval 
is to be returned in 
register 0; the interval 
timer is not to be canceled,. 

the current task's time 
interval is to be canceled. 

the time interval of a 
related task is to be 
canceled. 

Registers 15, 0, and 1 do not contain 
any applicable information. 

SVC 52 (Restart/SMB Reader) 
Registers 15 and 0 have no applicable 
information. 

Rl contents are as follows: 
If SVC 52 is issued by the 
Initiator for the purpose of 
reading 5MBs (containing JCL) for 
an automatic step or checkpoint 
restart, register 1 points to a 
job queue DCB, 5MB buffer, and 
general work space. 

If SVC 52 is issued from module 
IEFRSTRT to initiate a check 
point restart, register 1 
contains a pointer to a parameter 
list. 

SVC 59 (OLTEP) 
R15 contains no applicable 
information. 
RO contains a pointer to a three word 
parameter list, which, in turn 
contains pOinters as follows: 

Word 1 -- pointer to UCB 
Word 2 -- pointer to DEB 
Word 3 -- pointer to IECIOLTS 
(I/O interrupt handler). 

R1 contains a call code used to 
locate the particular OLTEP function 
requested. The value will be greater 
than x'OO' and equal or less than 
x·9 .. •• 

SVC 61 (TSAV) 
Registers 15 and 0 have no applicable 
informa tion. 

R1 contains zeroes if the routine is 
being entered from the OVerlay 
Supervisor .. 

Rl contains the address of the DCB 
used to fetch the module (set to a 
negative value) if the routine is 
being entered from the Contents 
Supervisor. 

SVC 68 (SYNADAF/SYNADRLS) 

Entry from SYNADAF: 

R15 contains a flag byte in the 
high-order position and three bytes of 
user data or an address of an entry 
point to the SYNAD routine. 

The flag byte contains codes as 
follows: 

00 EXCP request 
01 BPAM request 
02 BSAM request 
03 QSAM request 
04 BDAM request 
05 BISAH request 
06 QISAM request 
01 BTAM request 
08 QTAM request 
09 GAM request 

RO contains, in the three low order 
bytes, the address of the DECB (BSAM, 
BPAM, BDAM) or the address of the lOB 
(BISAM, QISAM, QSAM). 

Additionally, when a QSAM request is 
made, the high-order byte contains the 
offset of the first CCW in the lOB. 

R1 contains a flag byte and the 
address of the DCB in the high-order 
byte and the three low-order bytes 
respectively. 

The flag byte bit settings are: 

00000000 
1 ..•.•.. 
.1 ••••.• 

· .1 ••••• 

•.• 1 .•.. 

· . •. 1 ... 
· • ' . •. 1 .. 

· ... .. 1. 

· .... .. 1 

BISAH and Q I SAM 
error caused by input 
error caused by 
output 
error caused by BSP, 
CNTRL, or POINT 
record had been 
successfully read 
INVALID request 
PT conversion -
invalid character 
BDAM only - hardware 
error 
BDAM only - no space 
for record 

112 Programmer's Guide ~~ bebu99ing (Release 21) 



Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

Entry from SYNADRLS: 
Registers 0 and 1 have no applicable 
information. 

R15 contains x'FF' in the high-order 
byte, indicating the SVC routine is 
being entered from the SYNADRLS macro 
instruction and three bytes of user 
data. 

SVC 72 (CHA'l'R) 
Registers 15 and 0 have no applicable 
information. 

R1 contains the address of a parameter 
list with the following structure: 

Offset 

o address of parameter list+8 
4 address of DCB 
8 module name for XCTL 

16 code for OPEN/CLOSE (1 byte)~ 
address of UCM entry (3 
bytes) 

20 address of UCM 
24 address of return 

SVC 76 (IFBSTAT) 
R15 contains no applicable 
information. 

The content and applicability of 
Registers 0 and 1 vary with the 
presence or absence of ROE 
(Reliability Data Extractor) routines 
in the control program. 

If RDE is present: 
RO contains a positive 0 or 8. 
Rl has no applicable information. 

A positive 0 in RO indicates that 
EOD recording is requested~ a 
positive 8 indicates that IPL 
recording is requested. 

If RDE is not present: 
RO contains a negative number 
representing the length in bytes 
of a record to be placed in the 
SYS1.LOGREC data set. 
R1 contains the address of the 
record to be wri tten. 

SVC 79 (STATUS) 
R15 has no applicable information. 

RO If ND was specified, the two 
high-order bytes contain the bits 
indicating dispatchability. 

The two low-order bytes contain 
the function code: 
o cannot be rolled out 
1 must complete - step 
2 must complete - system 
3 non-dispatchable - step 
4 non-dispatchable - system 

5 non-dispatchable - TCB address 
6 stop non-dispatchable 
1 start dispatchable 

R1 the high-order bit indicates S~T or 
RESET: 

o SET(SS) 
1 RESET(RS) 

The three low-order bytes contain 
the TCB address if it was 
specified, or, if not, zero. 

SVC 83 (SMFWTM) 
Registex's 15 and 0 contain no 
applicable information. 

R1 contains a pointer as follows: 
If positive a pointer to the 
record that is to be written to 
the SMF data set. 

if negative a pointer to the SMCA 
indicating either initialization 
or processing for a SWITCH 
command to switch SMF data sets. 

SVC 84 (Restart Address Routine) 
SVC 84 is issued by the GPS Graphic 
I/O Control Routine to have the buffer 
restart address stored in the UCB 
associated with the display unit for 
which the routine builds a channel 
program. 

R15 contains no applicable 
i nf orma ti on. 

RO contains the buffer restart address 
to be stored in the UCB in the high 
order two bytes. The low order two 
bytes point to the UCB. 
R1 contains a zero 

SVC 85 (SWAP) 
Registers 15, 0, and 1 do not contain 
any applicable information. 

SVC 91 (VOLSTAT) 
R15 contains no applicable 
information. 
RO when negative, contains the address 
of the UCB. Note: If device type is 
disk go to SVC 91 load 2. 
RO when positive" contains the address 
of the DCB. 
R1 contents are as follows: 

if zero, the SVC was issued by CLOSE 
if X' 32' " the SVC was issued by DDR 
if X'33' the SVC was issued by EOD 
if X' 63'" the SVC was issued by EOV 
if any other than the above" the SVC 
was issued by UNALLOCATION 

SVC 92 (TCBEXCP) 
R15 contains no applicable information 
RO contains the address of the TCB for 
the issuers task. 
R1 contains the address of the lOB. 

Section 3: Tracing Aids 173 



Bve 9 3 (TGET/TP tn') 

Entry from TGET 

R15 contains no applicable information 

RO the two high-order bytes are 
reserved. The two low-order bytes 
contain the buffer size in bytes. 

R1 contains a flag byte and an address 
as follows: 

the high order byte is a flag byte 
with these bit settings. 

1 ....... . 

0 ••••••• 

.1 .. ' ..... 
•• 1 •••.• 
••• 1 •••. 

••• 0 •••• 

.••• 1 ••• 

.•. .. 1 •• 
•••••• 10 
•••••• 01 

...... 1100 

Denotes "TGET" 
specified 
Denotes "TPt1l''' 
specified 
Reserved. 
Reserved for TPUT 
Denotes "NOWAIT" 
specified means that 
control should be 
returned to the 
program that issued 
the TGE.T whether or 
not an input line is 
available from the 
terminal if no input 
line is obtained, a 
return code of 4 will 
be found in register 
15. 
Denotes "WAIT" 
specified means that 
control wi 11 not be 
returned to the 
program that issued 
the TGET until an 
input line has been 
put into the 
program's buffer if 
an input line is not 
available from the 
terminal, the issuing 
program is put into a 
wait state until a 
line does become 
available and is 
placed in the 
program's buffer 
Reserved for TPUT 
Reserved for TPUT 
Reserved for TPUT 
Denotes "ASIS" 
specified means that 
normal or minimal 
editing will be 
performed. 
Denotes "EDIT" 
specified means that 
in addition to the 
normal ("ASIS") 
editing, further 
editing will be 
performed. 

174 programmer's Guide to Debugging (Release 21.7) 

the low-order three bytes contain the 
address of the buffer that is to 
receive the input line. 

Entry from TPUT 

R15 contains no applicable 
information. 

RO the two high-order bytes contain 
the Termi nal Job Identifier number; 
the two low-order bytes contain the 
size of the input buffer in bytes. 

R1 contains a flag byte and an address 
as follows: 

the high-order byte is a flag 
byte with these bit settings: 
1. • •• • • • Denotes "TGET" 

specified 
O. • • • • • • Denotes "TPUT" 

specified 
.1...... Reserved 
•• 1 •.••• 

•• 0 ••••• 

.•• 1 ...• 

••• 0 •••• 

Denotes "LOWP" 
specified means that 
the terminal will not 
receive any 
inter-terminal 
rr.essages if TSBITOFF 
is on even if a 
key-zero task is 
sending the messages 
way only be specified 
on a TPUT with TJID. 
Denotes "HIGHP" 
specified means that 
the terminal will 
receive 
inter-terminal 
messages even if 
TSBITOFF is on if a 
key-zero task is 
sending the messages 
may only be specified 
on a TPUT with TJID. 
Denotes "NOWAIT" 
specified means that 
control should be 
returned to the 
program that issued 
the TPUT whether or 
not system output 
buffers are available 
for the output line 
if no buffers are 
available, a return 
code of 4 will be 
found in register 15. 
Denotes "WAIT" 
specified means that 
control will not be 
returned to the 
program that issued 
the TPUT until the 
output line has Deen 
placed in a system 
cut put buffer if no 
buffers are 



•••• 1,. ' •• 

.e ••• 0 ••• 

• I ••• '. 1 •• 

.•.. . o •. 

..... •• 10 

•• ' •• , •• 01 

+ •• ' •• , •• 00 

available, the 
issuing program will 
be put into a wait 
state until buffers 
do become available 
and the output line 
is placed in them. 
Denotes "BOID" 
specified means that 
the program that 
issued the TPUT 
cannot continue its 
processing until this 
output line has been 
either written to the 
terminal or deleted .• 
Denotes "NOBOLD" 
specified means that 
control should be 
returned to the 
program that issued 
the TPUT as soon as 
the output line has 
been placed on the 
output queue. 
Denotes "BREAKIN" 
specified means that 
output has precedence 
over input; that is, 
if the user at the 
terminal is 
transmitting, he is 
interrupted, and-this 
output line is sent 
any data that was 
received before the 
interruption is kept 
and displayed at the 
terminal following 
this output line. 
Denotes "NOBREAK" 
specified means that 
input has precedence 
over output; that is, 
the output message 
will be placed on the 
output queue to be 
printed at some 
future time when the 
terminal user is not 
entering a line. 
Denotes "CONTROL" 
specified means that 
this line is composed 
of terminal control 
characters and will 
not print or move the 
carriage on the 
terminal. 
Denotes "ASIS" 
specified; means that 
normal or minimal 
editing will be 
performed. 
Denotes "EDIT" 
specified; means that 
in addition to the 
normal ("ASIS·) 

editing, further 
edi ting will be 
performed. 

the low-order three bytes contain the 
address of the buffer that is to hold 
the line of output. 

SVC 94 (TERMC'l'L) 

Entry from TCLEARQ: 

R15 contains no applicable 
information. 

RO Contents: 

Bytes 
0 01 
1-3 0 

R1 Contents: 

Bytes 
0 80 

00 
1-3 0 

Entry from STBREAK: 

Entry code 
Reserved 

"INPUT" specified 
"OUTPUT" specified 
Reserved 

R15 contains no applicable 
informa tion. 

RO Contents: 

Bytes 
0 04 Entry code 
1-3 0 Reserved 

R1 Contents: 

Bytes 
0 80 "YES" specified 

00 "NO" specified 
1-3 0 Reserved 

Entry from STOOM: 

R15 contains no applicable 
informa tion. 

RO Contents: 

Bytes 
0 
1-3 

R1 Contents: 

Bytes 
0 

1-3 

05 
0 

80 
00 

0 

Entry code 
Reserved 

YES specified 
NO specified 
Reserved 

Entry from STTIMEOU: 

R15 contains no applicable 
information. 

Section 3: Tracing Aids 175 



RO Contents: 

Bytes 
0 
1-3 

Rl Contents: 

Bytes 
0 

1-3 

06 
0 

80 
00 

0 

Entry code 
Reserved 

"YES· specified 
"NO" specified 
Reserved 

Entry from STec: 

R15 contains no applicable 
information. 

RO Contents: 

Bytes 
o 
1-3 

R1 Contents: 

1 
2 

3 

07 
o 

Entry code 
Reserved 

Flag byte as follows: 

1 ••••••• first operand 
specified 

.1 •••••• ATTN specified 
•• 1 •.••• LD specified 
••• 1 ••• '. CD specified 
00000000 no operands 

specified, 
retain 
previously-used 
characters. 

o -- Reserved 
hh -- line delete control 
character. The 
hexadecimal 
representation of any 
EBCDIC character on the 
terminal keyboard except 
the new line (NL) and 
carriage return (CR) 
control characters. 

c -- the character 
representation of any 
EBCDIC character on the 
terminal keyboard. 

hh -- character delete 
control character. The 
hexadecimal 
representation of any 
EBCDIC character on the 
terminal keyboard except 
the new line (NL) and 
carriage return (CR) 
characters. 

c -- the character 
representation of any 
EBCDIC character on the 
terminal keyboard. 

116 programmer's Guide to Debugging (Release 21) 

Entry from STATTN: 

R15 contains no applicable 
information. 

RO Contents: 

Bytes 
o 
1 
2 

3 

R1 Contents: 

1-3 

08 -- Entry code 
00 -- Reserved 
hh -- Lines byte. The 
number of consecutive 
lines of output that can 
be directed to the 
terminal before the 
keyboard will unlock. 
00 -- Output line 
counting is not used. 
hh -- Tens byte. The 
tens of seconds that can 
elapse before the 
keyboard will unlock. 
00 -- Locked keyboard 
timing is not used. 

Flag byte as follows: 
1 ..•••.• LINES specified 
.1 •••••• TENS specified 
'. ,.1..... input address 

specified 
00000000 no operands 

specified, 
results in a 
NOP instruction. 

hhhhhh -- Character 
string address. 
000000 ~- no character 
string was specified. 

Entry from STAUTOLN: 

R15 contains no applicable informtion. 

RO Contents 

Bytes 
o 
1-3 

Rl Contents: 

Bytes 
o 
1-3 

09 -- Entry code 
hhhhhh -- the address of 
a fullword containing the 
number to be assigned to 
the first line of 
terminal input. 

00 -- Reserved 
hhhhhh -- the address of 
a fullword containing the 
increment value used in 
assigning line numbers. 



Entry from STSIZE: 

R15 contains no applicable 
information. 

RO Contents: 

Bytes 
o 
1,2 
3 

Rl Contents: 

Bytes 
0-2 
3 

OA -- Entry code 
0000 -- Reserved. 
hh -- li nes byte. . The 
number of lines (depth) 
that can appear on the 
screen. 

000000 -- Reserved 
hh -- size byte. The 
logical line size (width) 
in characters of the 
terminal. 

Entry from GTSIZE, STAUTOCP, SPAUTOPT, 
RTAUTOPT 

R15 contains no applicable 
information. 

RO Contents: 

Bytes 
o 

1-3 

R1 Contents: 

Entry codes as follows: 

OB GTSIZE 
OC -- STAUTOCP 
OD -- SPAUTOPT 
OE -- RTAUTOPT 

000000 -- Reserved 

No applicable information, will 
be zeroed. 

Entry from STCLEAR: 

R15 contains no applicable 
information. 

RO Contents: 

Bytes 
o 
1-3 

Rl Contents: 

10 -- Entry code 
000000 -- Reserved 

00 .. - Reserved. 
hhhhhh -- erasure 
character string address. 

Entry from TCABEND 

R15 contains no applicable 
information. 

RO Contents: 

Bytes 
o 
1-3 

00 
o 

Entry code 
Reserved 

R1 Contents: 
No applicable information will be 
zeroed. 

Entry from TSABEND 

R15 contains no applicable 
information .• 

RO Contents: 

Bytes 
o 
1-3 

OF 
o 

Entry code 
Reserved 

Rl Contents: 
No applicable information will be 
zeroed. 

SVC 95 (TSIP) 

R15 contains no a~plicable 
informa tion. 

RO Contents: 

Bytes 
0,1 

2 
3 

Entry Code 
00 

01 

02 

03 

04 

05 

06 

07 

08 

09 

OA 

OB 

OC 

zero or Terminal Job 
Identifier (TJID) or not 
applicable. 
00 -- Reserved 
Entry code as follows: 

Calling Routine 
Problem Program (TMP) 

Timer second - Level 
Interruption Handler 

TGET/TPUT 

Region Control Task 

Dequeue, TIOC (Attention, 
TSINPUT, TSOUTPUT), Timer 
SLIH, WTOR 

Region Control Task 

Enqueue 

Dequeue 

TSO Dispatcher 

TSO Dispatcher 

TSO Dispatcher 

TSO Dispatcher 

Region Control Task (Quiesce) 

section 3: Tracing Aids 177 



OD 

OE 

OF 

10 

11 

12 

13 

14-18 

Region Control Task (Quiesce) 

Time Sharing Control Task 
(Swap) 

Time sharing Control Task 
(swap) 

Time Sharing Control Task 
(Swap) 

Time Sharing Control Task 
(SWap) 

Region Control Task (Restore) 

Region Control Task (Restore) 

Reserved 

R1 Contents: 

Bytes 
0,1,2,3 variable as follows: 

Entry Code 
00 

01 

02 

03-05 

06 

07-0C 

00 

OE 

OF-13 

Content 
Address of 8-character 
command name sign-bit: 

O-ended 
i-beginning 

not applicable 

Sign-bit: 
O-Input 
i-Output 

Bytes 3&4: 
Number of free buffers 

not applicable 

Estimated must complete time 

not applicable 

Number of FBQEs 

Byte 0: Swap Units 
Byte 1: Swap device code 
(0,4,8,c) 

Bytes 2&3: 
Swap size in 2K blocks 

not applicable 

SVC 97 ('l'EST(TSO» 

Entered fromi 
Any module of the tested program, 
when used as a b~eakpoint 
handl.t. If used as a breakpoint 
handler the TCBTCP bit is '1' in 
the current TCB and registers 15, 
0, and 1 contain no applicable 
infornat ion .. 

Any module of the TSO Test 
Command Processor when used as a 
subroutine of TSO TEST. In this 
case the current TCBTCP bit is 
'0' and registers are as follows: 

R15 contains no applicable 
information. 

RO Conte nts : 

Bytes 
o Entry code as follows: 

40 -- Set TCBTCP bit to 
'1' 
20 -- Set TCBTCP bit to 
'0' 
10 Alter TCBTRN field 
08 Alter second word 
of RBOPSW field 
04 -- Alter specific 
register in SVC 97's SVRB 
register save area 
04 -- Alter all registers 
in SVC 97's SVRB register 
save area 
02 -- Alter 
floating-point register 
in TCB s ave area 
01 -- Set RB wait count 
to 0 (zero). 

1-3 Address of target TCB, 
PRB, or IRB 

Rl Contents: 

Register 1 contents are variable as 
follows: 

Bytes 
Entry code 0123 

40 
entry code 0123 

20 
entry code 0 

1,2.3 
entry code 0 

08 

08 
1,2,3 

entry code 0 
07 1,2,3 

entry code 0 
04 1,2,3 

entry code 0 
02 1,2,3 

entry code 0,1, 
01 2,3 

SVC 100 

not applicable 

not applicable 

not applicable 
TCBTRN value 
instruction length, 
completion code 
program mask 

address of value for 
second word of 
RBOPSW field. 
register number 
address of new value 
x'FF' 
address of 64-byte 
value 
floating-point 
register number 
address of new value 
for register 
not applicable 

SVC 100 is used by the SUBMIT, OUTPUT, 
OPERATOR, and CANCEL/STATUS 
processors. 

178 programmer's Guide to Debugging (Release 21) 



SVC 

Contact your FE programming 
representative for information 
concerning the content of General 
purpose Registers 15, 0, and 1 upon 
entry to SVC 100. 

101 (QTIP) 
SVC 101 is used only by the TSO 
SUb-system and the MCP and provides an 
interface between them for 
inter-region communication and data 
movement. 

R15 Contents: 

Bytes 
o 

1-3 

RO Content: 

Bytes 
o 
1-3 

o -- zeroed. by entry 
code in RO 
hhhhhh -- variable by 
entry code in RO as 
follows: 

00 -- not applicable 
03 -- entry address of 
QTIP0030 within 
I EOAYAA 

04-00 -- not applicable 
OE -- (with savearea 
address in R1) not 
applicable. (Without 
savearea address in 
R1) entry address .of 
QTIP0140 within 
IEOAYOO 

OF-l1 -- not applicable 
12-16 -- entry address of 
IKJGGQT1, branch entry to 
QTIP SVC 

17 -- address ofTSB 
being logged off 
18 -- (same as 12-16) 

19-1A -- not applicable 
lC -- entry address of 
QTIP0280 within 
IEOAYII 
10 -- not applicable. 

o -- zeroed. 
hh -- entry codes as 
follows 

00 
03 
04 

05-09 
OA 

OB-l1 
12-14 
15-16 

17 
18 

19-1A 
1C 
10 

invokes IEOAYAA 
invokes IEOAYAA 
invokes IEDAYHH 
invokes IEDAYII; 
invokes IEOAYLL; 
invokes IEOAYOO 
invokes IEDAYGP 
invokes IEDAYAA; 
invokes IKJGG088 
invokes IEDAYOO; 
IEDAYZZ invoked 
invokes IEDAYII 
IEDAYGP invoked; 

R1 Content: 

Bytes 
o 
1-3 

SVC 103 (XLATE) 

o -- zeroed. 
hhhhhh -- variable by 
entry code in RO as 
follows: 

00 -- address of 
savearea within AVT 
03 -- not applicable 

04-0D -- address of 
savearea within AVT 

OE -- (without entry 
address in R15; 
address of savearea in 
AVT) (with entry 
address in R15; not 
applicable) 

OF-11 -- address of 
savearea within AVT 
12-16 -- not applicable 

17 -- zeroed; 
indicates no savearea 
is being passed 
18 -- not applicable 

19-1A -- address of 
savearea within AVT 

1C -- not applicable 
1D -- address of 
savearea within 
TIOCRPT 

R15 contains no applicable 
information. 

RO contains the length of the field to 
be translated. 

R1 Contents: 

Bytes 
o hh action byte as 

follows: 

80-translate from 
EBCIDIC to ASCII 
OO-translate from 
ASCII to EBCDIC 

1-3 hhhhhh address of field to 
be translated 

SVC 104 (TCAM) 

R15 contains no afplicable information 

RO indicates the subroutine to be 
executed as follows: 

Section 3: Tracing Aids 179 



Bytes 
0-3 00000001 IGCOOI0D entry 

point routine 
00000002 GTFIELDA decode 

routine 
00000003 STTNME operator 

command addressing 
routine 

00000004 IEDQCA02 scan 
routine 

Rl contains the address of the 
operator control work area 

SVC 105 (IMGLIB) 

R15 contains no applicable information 

RO contains no applicable information 

Rl indicates actions to be taken as 
follows: 

Bytes 
0-3 00000000 construct a DCB 

and DEB for 
SYS1.IMGLIB 

hhhhhhhh delete DCB at this 
address and also 
the DEB pointed to 
by the DCB. 

SVC 109 

Type 3 and type 4 SVC routing routine. 

R15 contains an index value, converted 
to 3 digit EBCDIC number and appended 
to name IGCOO. This routine is then 
called. 

RO/R1 contain no applicable 
information for SVC 109, contents are 
to be used by called routine IGXOO. 

sve 116 

Type 1 SVC routing routine. 

R15 contains an index value, used in 
binary form to index into a table to 
call other SVC routines. 

RO/Rl contain no applicable 
information for SVC 116, contents are 
to be used by called routines. 

SVC 111 

Type 2 SVC routing routine. 

R15 contains an index value, used in 
binary form to index into a table to 
call other SVC routines. 

RO/Rl contain no applicable 
information for SVC 111, contents are 
to be used by called routines. 

180 Programmer's Guide to Debugging (Release 21) 



SVC Comprehensive Trace Records Group 2 -
Basic Fields Plus DDNAME Field 

Group 2 SVC comprehensive trace records add 
a DDNAME field to the fields composing the 
basic record. The format is: 

{ ........ } DDNAME cccccccc 
N/A 

•••••••• 
asterisks indicate an error 
occurred while gathering the 
information. 

cccccccc 

N/A 

the name of the associated DD 
statement. 

indicates that the DD name could 
not be obtained for the following 
reasons : 

The DCB was not opened 
The DCB TIOT offset was outside 
the valid range 
The DEB TCB pointer was set to 0 
The TCB TIOT pointer was set to 
o 
The DO name in the TIOT was not 
in EBCDIC notation 

Following are descriptions of register 15, 
0, and 1 content for the Group 2 SVcs. 

SVC 24 (DEVTYPE) 

R15 contains no applicable 
information. 

RO contains the address of the output 
area or the two's compliment of the 
output area address. 

Rl contains the address of the DD 
name, or the two's compliment of the 
DD name address. 

When control returns from the DEVTYPE 
SVC routine, the output area will 
contain 8, 20, or 24 bytes of device 
data, depending on the value (+ or -) 
of RO and Rl, and the device type 
associated _ith the DDNAME as follows. 

RO and Rl 
positive 
RO negative 
and 
Rl positive 
RO and Rl 
negative 

output Area Size (Bytes) 
RPS-DA DA Non-DA 

20 20 8 

20 20 8 

24 20 8 

SVC 31 (FEOV) 

R15 and RO contain no applicable 
informa tion 

Rl contains the address of the DCB 

SVC 53 (RELEX) 

R15 contains no applicable information 

RO contains the address of a parameter 
list which contains either: 

hhhhhhhh relative block or TTR 
MBBCCHHR actual address 

Rl contains the address of the DCB 

SVC 55 (EOV) 

R15 contains no applicable information 

RO contains the lOB address if the 
following are true: 

DCBOFLAGS = ••• 1 •••• 
DCBMACRF = 0 ••••••• 
and RO is not equal to x'OOOOlOOO' 

R1 contains the DCB address 

SVC 57 (FREEDBUF) 

R15 contains no a~plicable information 

RO contains the address of the DECB 

Rl contains the address of the DCB 

SVC 58 (REQBUF/RELBUF) 

R15 contains no applicable information 

RO contains the request count or 
release address 

Rl contains the DCB address 

SVC 69 (SSP) 

R15 and RO contain no applicable 
information 

Rl contains the address of the DCB 

section 3: Tracing Aids 181 



svc Comprehensive Trace Records; Group 3 -
Basic Fields Plus Parameter List Field 

Group 3 svc comprehensive trace records add 
a parameter list field to the fields 
composing the basic record. The parameter 
list field displays all or a portion of the 
parameter list being passed to the SVC 
routine by the caller. The format is: 

{
N/A } PLIST hhhhhhhh hhhhhhhh hhhhhhhh ••• 
•••••••••••••••••••••••• 

N/A 
indicates that there is no 
applicable information 

hhhhhhhh hhhhhhhh ••• 
parameter list display_ Content 
and amount varies with the SVC 
being traced. 

•••••••• • ••••••• 
indicates that an error occurred 
while gathering the information. 

Following are descriptions of register 15, 
0, and 1 content, and PLIST content for the 
Group 3 SVcs. 

SVC 1 (WAIT) 

R15 contains no applicable information 

RO contains the count of the events 
being waited on. If zero the wait is 
treated as a NOP. 

Rl if positive, contains the address 
of t.he ECB being waited on. If 
nega·ti ve, contains the address of a 
list of ECBs, in two's complement 
form. 

PLIST may contain up to 40 bytes of 
information. It consists of a list of 
ECB addresses up to a maximum of 10. 

SVC 4_(GJ~;Tk1AIN} 

R15 and RO contain no applicable 
information. 

Rl contains the aBdress tif the 
param(~ter list, p~ssed WHen the SVC was 
called. (If R1 is 2~io ~here is no 
parameter list aha the ptfST field 
will not b~ ptesent.d 

p~'d~ t_ t.n ~y~.. 1ft 1eftq~h and 
breaks down as follows: 

0-3 hhhhhhhh 

182 Programmer"s Guide to Debugging (Release 21) 

8 hh 

4 

5-7 

a. For a single area 
request - the length 
requested. 

b. For a variable request 
- the address of a 
doubleword containing 
the minimum and 
maximum length 
requested as shown 
below: 

o 
1,2,3 
4 
5,6,7 

zero 
minimum length 
zero 
maximum length 

c. For a list request -
the address of a list 
of GETMAIN length 
requests (1 word per 
request) the last word 
containing x'80' in 
byte o. 

hh 

Hierarchy identifier 
(optional) 

hhhhhhhh 

a. For a single area 
request - the address 
of a wordGETMAIN will 
initialize as the 
beginning allocated 
core area. 

b. For a variable area 
request - the address 
of a doubleword which 
GETMAIN will 
initialize with the 
address of the 
GETMAINed area and the 
actual length 
allocated. 

c. For a list area 
request - the address 
of a list of words 
which GETMAIN will 
initialize with the 
address of allocated 
areas. 

Flag byte as follows: 

00 unconditional single area 
request 

20 conditional single area 
request 

CO unconditional variable 
request 

EO conditional variable 
request 



9bh 

80 unconditional list request 
AO conditional list request 

Subpool identification 

SVC 5 (FREEMAIN) 

R15 and RO contains no applicable 
information. 

Rl contains the address of the 
parameter list passed when the SVC was 
called. (If Rl is zero, no list 
passed, and PLIST will not appear.) 

PLIST is 10 bytes in length and breaks 
down as follows: 

Bytes 
0-3 

4-7 

8hh 

9hh 

a. For a single area request 
the length to be freed. 

b. For a list area request 
the address of a list of 
FREEMAIN length requests 
(1 word per request), the 
list word containing x'80' 
in byte O. 

a. For a single area request 
the address of an area 

to be freed. 

b. For a list area request -
the address of a list of 
addresses of the areas to 
be freed. 

Flag byte as follows: 

00 uneondi tional single area 
request 

20 conditional single area 
request 

80 uneondi tional list area 
request 

AO conditional list area 
request 
Subpool identification. 

SVC 18 (BLDL/FIND - Type D) 

R15 contains no applicable 
information. 

RO contains the address of the 
parameter list. 

R1 contains the address of the DCB and 
indicates the macro instruction that 
issued the SVC call: if R1 is positive 
-- BLDL: if R1 is negative -- FIND. 

PLIST 
The BLDL parameter list is 12 
bytes in length: 

~ 
0,1 
2,3 

the numbering entries 
entry length 

4-11 

Bytes 
0-7 

the hexadecimal representation 
of the member name for which 
the BLDL was issued. 

The FIND parameter list is 8 
bytes in Ie ngth : 

the hexadecimal representation 
of the member name for which 
the FIND was issued. 

SVC 1Q,20,22,23 (OPEN,CLOSE,OPENJ,TCLOSE) 

SVC 

Rl5 and RO contain no applicable data .. 

R1 contains the address of the 
parameter list. 

PLIST is up to 40 bytes in length and 
consists of a series of 4-byte entries 
(up to 10). Each entry breaks down as 
follows: 

Bytes 
0 hh Option byte as shown 

below: 

Bits 

1 .... Last Entry indicator 
.011 LEAVE 
.001 REREAD 
.100 RF..WIND 
.010 IDLE 
.000 DISP 

0000 INPUT 
1111 OUTPUT 
0011 INOUT 
0111 OUT IN 
0100 UPDAT 
0001 RDBACK 

1-3 hhhhhh DCB address 

35 (WTO/WTOR) 

R15 contains no applicable 
information. 

RO contains console source 10. 

R1 contains the address of the 
parameter list being passed to the 
SVC. 

PLIST is 12 bytes in length for WTO 
and 20 bytes in length for WTOR. 

The PLIST field for WTO breaks down as 
follows: 

o 00-- indicates WTO 
parameter list. 

Section 3: TraCing Aids 183 



1 bb-- message length plus 
four .. 

hhhh-- MCS flag bytes~ bit 
settings as follows: 

Byte 2 

1....... Invalid entry 
.1 ....... '. Message is to be 

queued to the console 
whose source ID is 
passed in Register o. 

.... 1... • • .. the WTO is an 
immediate command 
response • 

• • • • 1,. .. .. the WTO macro 
instruction is a reply 
to a WTOR macro 
instruction. 

• ' •••• 1. Message should be 
broadcast to all 
active consoles. 

....... 1 Message queued for 
hard copy only • 

........ 1 Message queued 
unconditionally to the 
console whose source 
ID is passed in 
register o. 

Byte 3 

1........ time is not appended 
to the message • 

• 1111.... Invalid entry 
••••• 1.. message is not queued 

for hard copy 
•••••• 11 invalid entry 

4-11 First eight bytes 
of message 

The PLIST field for WTOR breaks down 
as follows: 

Bytes 
o 
1-3 

4-7 

8 
9 

10 •. 11 

12-19 

SVC 37 (SEGLD/SEGwtl 

hh--length of reply 
hhhhhh--address of 
reply buffer 
hhhhhhhh--address of 
reply ECB 
OO--zeroed 
hh--message length plus 
four 
hhhh--MCS flag bytes, 
see wTo PLIST 
first eight bytes of 
message. 

R15 con~ains nd ap~l1c.bl. 
1n:fermat:.!on. 

RO if zero, entry was from SEGLD, 
non-zero indicates entry from SEGWT. 

R1 contains the address of the 
parameter list. 

PLIST is 12 bytes in length and breaks 
down as follows: 

Bytes 

0-3 

4-7 

8 
9-11 

SVC 39 (LABEL) 

hhhhhhhh branch instruction 
(to SVC 45) 
hhhhhhhh address of 
Referred-to Symbol 
hh ·To· segment number 
hhhhhh Previous caller or 0 

R15 and RO contain no applicable 
informa tiona 

Rl contains the address of the 
parameter list • 

PLIST is 20 bytes in length and breaks 
down as follows: 

Bytes 

0-2 

3 

4-7 

8-11 

12,13 

14 

15 

16-19 

sve 40 (Extract) 

c00004 -- REWIND option 
c00006 -- UNLOAD option 
hh relative UCB in TIOT 
to use for mounting 
purposes. 
hhhhhhhh address of 8 
byte DDNAME for DD card 
that allocates devices 
for mounting tapes. 
hhhhhhhh--address of 
volume label set. 
hhhh-- length of one 
volume label. 
hh-- number of labels 
in volume label set 
hh-- command byte of 
control CCW 
hhhhhhhh-- address of 
the first 10 bytes of 
volume header label. 

R1S and RO contain no applicable 
information. 

R1 contains the address of the 
parameter list. 

PLIST is +2 bytes in length and breaks 
down as follows: 

Bytes 

o Reserved 
1-3 hhhhhh address of list area in 

which the extracted 
information will be 
stored. 

4 00 Reserved 

184 Programmer's Guide to Debugging (Release 21) 



5-7 

8 

9 

o~oooo EXTRACT will obtain 
information from the 
current TCB and/or its 
related control blocks. 

hhhhhh address of TCB from 
which EXTRACT is to get 
requested information. 

hh flags byte; indicates 
the fields to be 
extracted as follows: 

Bits 

hh 

1 •••••.• address of the 
general register 
save area 

.1. • • ••• address of floating 
point register save 
area 

•• 1 ••••• reserved 
.••• 1.. ••• address of end-of

task exit routine 
•••• 1 ••• limit priority' 

dispatching priority 
••••• 1 •• task completion code 
•••••• 1. address of TIOT 
••••••• 1 address of the 

Bits 

command scheduler 
communication list 
in the CSCB 

TSO only flags byte; 
indicates the TSO 
fields to be extracted 
as follows: 

1 ••••••• address of time
sharing flags in TCB 

.1 •••••• address of protected 
storage control 
block 

•• 1. • • •• termi nal job 
identifier for task 

••• xxxxx reserved 

10,11 0000 

SVC 45 (OVLYBRCH) 

reserved 

R15 contains the address of the Entry 
Table entry which caused the SVC to be 
issued. 

RO and R1 contain no applicable 
information. 

PLIST is 12 bytes in length and breaks 
down as follows: 

0-3 

4-7 

8 
9-11 

hhhhhhhh 

hhhhhhhh 

hh 
hhhhhh 

Branch (inst. to 
SVC 45) 
address of 
Referred-to-Syrnbol 
·TO· segment number 
Previous caller or 0 

SVC 47 (STIMER) 

R15 contains no applicable information 

RO contents: 

Bytes 
o hh STIMER option byte 

as follows: 
x'40' TOO option 
x'30' OINTVL option 
x' 10' BINTVL option 
x'OO' TUINTVL option 

1-3 hhhhhh exit address 

R15 contains the address of the time 
value 

PLIST is four or eight bytes in length 
depending on the option in force: 

a. For the OINTVL and TOO options 
PLIST is eight bytes in length 
and represents the time value .• 

b. For the BINTVL and TUN INTVL 
options PLIST is 4 bytes in 
length and represents the time 
value. 

SVC 48 COEQ) 

R15 and RO contain no applicable 
information. 

R1 contains the address of the 
parameter list. 

PLIST is 16 bytes in length and breaks 
down as follows: 

Bytes 
o hh 

1 hh 

00 

2 hh 

if set to x'FF' 
indicates the last 
element in the 
parameter list. 
Otherwise no 
meaning • 
the length of the 
minor name whose 
address is in bytes 
8, 9, 10 and 11 of 
this element. 
the length of the 
minor name is in the 
first byte of the 
minor name field 
whose address is in 
bytes 8, 9, 10, and 
11 of this element 
(does not include 
length byte itself). 
DEQ parameters byte 
as follows: 

Bit Settings 
0 ••••••• Exclusive request 
1 ••••••• Shared request 
.0 •••••• MINOR name is known 

only to job step 

section 3: Tracing Aids 185 



• 1, ...... '. the scope of minor 
name is SYSTEM 

•• 1 ••••• set must complete 
equal to SYSTEM 

••• 1 •••• set must complete 
e qua I to STEP 

'. , •••• 000 RET=NONE 
........ 001 RET=HAVE 
••••• 010 RET=CHNGE 
••••• 011 RET=USE 
...... 111 RET=TEST 
•• ' ... 1... RELEASE 

3 hh return code field 
for codes returned 
to the issuer by DEQ 

4-7 hhhhhhhh address of major 
resource name 
(QNAME) 

8-11 hhhhhhhh address of minor 
reSOUI:ce name 
(RNAME) 

12-15 hhhhhhhh if the DEQ 
parameters byte bit 
4 (RELEASE) is set 
on this word 
contains the UCB 
address; otherwise 
the content of this 
word is 
unpredictable .. 

SVC 56 (ENQ) 

.0 •••••• MINOR name is known 
only to job step 

.1 •••• '.. the s cope of minor 
name is SYSTEM 

•• 1 ..... '. Set must complete 
equal to SYSTEM 

••• 1 •••• Set must complete 
equal to STEP 

...... 000 RET=NONE 
' ••••• 001 RET=HAVE 
' ••••• 010 RET=CHNGE 
•• ' ••• 011 RET=USE 
••••• 111 RET=TEST 
•••• 1. '.. RESERVE 

3 hh return code field 
for codes returned 
to the issuer by ENQ 

4-7 hhhhhhhh address of major 
resource name 
(QNAME) 

S-11 hhhhhhhh address of minor 
resource name 
(RNAME) 

12-15 hhhhhhhh if the ENQ 
parameters byte bit 
4 (RESERVE) is set 
on, this word 
contains the UCB 
address; otherwise 
the content of this 
word is 
unpredictable. 

R15 and RO contain no applicable 
information SVC 60 (STAE/STAI) 

Rl contains the address of the 
parameter list 

PLIST is 16 bytes in length and breaks 
down as follows: 

Bytes 
o hh if set to x'FF' 

indicate the last 
element in the 
parameter list. 
Otherwise no 
meaning. 

1 hh the length of the 
minor name whose 
address is in bytes 
8, 9, 10, and 11 of 
this element. 

00 the length of the 
minor name is in the 
first byte of the 
minor name field 
whose address is in 
bytes ~, 9, 10, and 
11 of this element 
(does not include 
length byte itself). 

2 hh ENQ parameters byte 
as follows: 

Bit Settings 
o •••• '.. • Exclusive request 
1 ••••••• shared request 

lS6 Programmer's Guide to Debugginq (Release 21) 

R15 contains no applicable information 
RO contents: 

00 Create 
04 -- Cancel 
OS -- Overlay 

Rl contains the address of the 
parameter list. The high-order bit is 
set to one if the XCTL=YES parameter 
was coded. 

PLIST is eight bytes in length and 
breaks down as follows: 

Bytes 
o 

1-3 

4-7 

hhhhhh 

hhhhhhhh 

flag byte as 
follows: 
x 'SO' for STAI 
processing 
x '20' for STAE 
processing 
If zero, the 
'CAMCE:' operand is 
in effect: otherwise 
this is the address 
of the STAE/STAI 
exit routine. 
address of the exit 
routine parameter 
list; if zero no 
exit routine 
parameter list 
exists. 



.SVC 63 (CHKPT) 

R15 and RO contain no applicable info. 

R1 contents: 
a. the address of the parameter list 
b. Zero if a CANCEL request 

PL1ST is eight bytes in length and 
breaks down as follows: 

Bytes 
0 00 check 10 address 

provided via the second 
parameter of CHKPT 
macro instruction 

80 No check 10 address 
provided 

1-3 hhhhhh address of checkpoint 
DCB 

4 00 check 10 address not 
provided 

01 to 10check 10 length 
provided via third 
parameter of the CHKPT 
macro instruction 

FF wSw specified as third 
parameter of CHKPT 
macro instruction; the 
system generated check 
10 is to be placed at 
the address specified 
in bytes 5-7 

5-7 hhhhhh address for storing 
system generated check 
10 or address of user 
provided check 10 

SVC 64 (RDJFCB) 
R15 and RO contain no applicable 
information 

R1 contains the address of the 
parameter list 

PLIST is up to forty bytes in length 
and consists of a series of 4-byte 
entries containing the DCB address. 
The high-order byte has bit 0 set to 
one to indicate the last entry. 

SVC 70 (GSERV) 
R15 and RO contain no applicable 
information. 

R1 contents: 

Bytes 
o hh is a mask indicating 

which bits in the 
Graphic Control By~e 
(GCB) should be reset. 

1-3 hhhhhh the address of a 
fullword field that 
identifies the OCB 
related to the GCB in 
which bits are to be 
reset. 

PLIST is four bytes in lengt hand 
displays the fullword pointed to by 
Rl. Byte 0 is a unit index factor 
used to locate the UCB address in the 
DEB associated with the DCB. (The GCB 
to be reset is in the UCB). 

SVC 73 (SPAR) 

R15 and RO contain no applicable 
information 

Rl contains the address of the 
parameter list 

PL1ST is up to 40 bytes in length and 
consists of a series of 4-byte 
entries. The first entry breaks down 
as follows: 

Bytes 
o hh the priority specified 

for the attention 
routine by the SPAR 
macro instruction. 

1 hh Reserved 
2,3 hhhh the number of words in 

the parameter list. 
Each additional entry contains a GACB 
address as specified by the SPAR 
macro. 

SVC 74 (DAR) 

R15 and RO contain no applicable 
informa tion. 

R1 contains the address of the 
parameter list. 

PLIST is up to forty bytes in length, 
consisting of 4-byte entries. The 
first entry breaks down as follows: 

Bytes 
0,1 hh 
2,3 hh 

Reserved 
the nurr~er of words in 
the parameter list. 

Each additional p.ntry contains a GACB 
address specified by the DAR macro. 

SVC 77 (ONLT) 

R15 contains the address of the UCB of 
the line for the terminal being 
tested. 

RO contains the address of the first 
of five '9's in the test request 
buffer for ONLT (five '9's' indicate a 
request for an online test). 

Rl contains the address of the 
parameter list. 

PL1ST is 14 bytes in length and breaks 
down as follows: 

Section 3: Tracing Aids 187 



Bytes 
0-3 hhhhhhhh address of the ECB 

and the prefix of the 
request buffer. 

4-7 hhhhhhhh address of the 
GE~IN parameters 
and terminal test 
pattern table. 

8-11 hhhhhhhh address of special 
line control 
characters 

12 hh 00 means test is 
valid 
01 means test is 
invalid and not set 
up 

13 'bh 00 means no answer on 
dial line 

SVC 80 (GJP/GFX) 

01 means answer on 
dial line 

(The SVC 80 Processing Routine serves 
as a communication link between GJP 
routines and the GFX Task, and between 
the GFX task and ABEND Hook routine.) 

R15 contains no applicable 
information. 

RO contains the address of the 
parameter list. 

Rl contains the address of the console 
control table. 

PLIST is eight bytes in length and 
breaks down as follows: 

Bytes 
0-3 cccc indicates which 

routine passed to SVC 
80 as follows: 

PLOG -- Log Off 
PBEG -- Begin Job 
Processor 
ABDH -- Abend Hook 
Routine 
IERR -- Internal 
Error Routine 
NPRO -- Initial 
Processor 

4-7 hhhhhhhh the 2250 unit address 

svc 87 (DOM) 

that indicates which 
graphic job processor 
is using the svc 80 
routine. 

R15 contains no applicable 
information. 

RO the value (positive or negative) of 
RO determines the content of R1. 

R1 If RO is not negative, R1 contains 
a message 10 word (which is also 
displayed in the PLIST field). 

If RO is negative, R1 contains the 
address of a list of message 10 words. 

PLIST is up to 40 bytes in length, 
consisting of 4-byte entries. Each 
entry is a message ID word. The last 
entry is identified by the 0 bit in 
the high-order byte being set to 1. 

SVC 90 (XQMNGR) 

R15 and RO contain no applicable 
information. 

R1 contains the address of the QMPA. 

PLIST is 36 bytes in length and 
contains the QMPA fields. The QMPA 
and its associated control blocks are 
described in the MVT Job Management 
PLM, Order No. GY28-6660. 

SVC 96 (STAX) 

R15 and RO contain no applicable 
information. 

R1 contains the address of the 
parameter list. 

PLIST is 20 bytes in length and breaks 
down as follows: 

Bytes 
0-3 hhhhhhhh address of user 

program to get 
control at attention 
interrupt. 

4,5 hhhh size of input buffer 
(max 4095) 

6,7 hhhh size of output 
buffer (max 4095) 

8-11 hhhhhhhh address of output 
buffer 

12-15 hhhhhhhh address of input 
buffer 

16 hh STAX option flag 
byte as follows: 

Bits 

1 ••••••• Reserved 
.0 •••••• replace=YES 
.1 •••••• replace=NO 
•• 1 ••••• defer=YES 
• •• 1 •••• defer=NO 
•••• 1111Reserved 

17-19 hhhhhh address of user 
parameters for user 
program. 

188 programmer's Guide to D('bugging (Release 21) 



SVC 99 (TSO Dynamic Allocation) 

R15 and RO contain no applicable 
information. 

Rl contains the address of the 
parameter list. 

PL1ST is up to 40 bytes in length. 
Consult your FE programmdng 
representative for information 
concerning the data displayed in this 
field. 

SVC 102 (TCAM) 

R15 and RO contain no applicable 
information. 

Rl contains the address of the 
parameter list. 

PL1ST is up to 12 bytes in length 
depending on the function and breaks 
down as follows: 

Bytes 
o hh Action code byte for 

SVC 102 as follows: 

1 ••••••• Flag issuing 
task not 
eligible for 
rollout 

.1 •••••• Post rollout/ 
rollin ECB 
complete 

•• 1 ••••• Post standard 
or TSO ECB 
complete 

••• 1 •••• Flag issuing 
task not 
eligible for 
swap 

•••• 1 ••• Move data 
across 
partition 
boundary 

••••• 1 •• Enqueue 
element on 
disabled 
ready queue 
and post MCP 
ECB complete 

•• •• ...1. Flag issuing 
task eligible 
for swap 

••••••• 1 Flag issuing 
task eligible 
for rollout 

1-3 

4 

5-7 

S 

9-11 

hhhhhh varies by action code 
as follows: 

hh 

Action Code 
SO,40,01 ECB address 
20,02,10 
OS,04 Data Address 

varies by action code 
as follows: 

20 

SO, 40,,01, 
OS,04,02, 

x'SO', last 
four bytes 

10 x'OO' 
reserved 

hhhhhh varies by action code 
as follows: 

hh 

hhhhhh 

Action Code 

20,02,10 TSO job 10 
address 

SO,40,01, TCB address 
OS,04 Taraet 

address (for 
enqueuing an 
element the 
target 
address is 
the address 
of the 
disabled 
ready queue 
in the TCAM 
AVT). 

varies with action code 
as follows: 

Action Code 

SO,40,20,10,OS, 
04,02,01 x'SO', last 

four bytes 

varies with action code 
as follows: 

Action Code 

SO,40,01 
OS,04 

10,20,02 

DEB address 
Length 
address 
TCB address 

section 3: Tracing Aids 189 



SVC Comprehensive Trace Records; Group 4 -
Basic Fields Plus Variable Fields 

GTF Group 4 SVC comprehensive trace records 
have a variety of fields -- differing from 
SVC to SVC -- added to the fields composing 
the basic SVC record (Group 1). Format and 
content of the additional fields for each 
SVC are discussed in the following 
material. 

SVC 0 (EXCP) 

Additional fields -- DDNAME, DCB, DEB. 

Register 15, 0, and 1 content, and 
DDNAME DCB, and DEB format and content 
follow: 

R15 and RO contain no applicable 
information. 

R1 contains the address of the lOB 
associated with this request. 

DDNAME cccccccc 
N/A 

see explanation of DDNAME field 
under Group 2. 

DCB hhhhhhhh 

address of the DCB associated with 
this I/O request. 

DEB hhhhhhhh 

address of the DEB associated with 
this I/O request. 

svc 6 (LINK) 

Additional fields -- PLIST, NAME 

Register 15, 0, and 1 content, and 
PLIST and NAME format and content 
follow: 

R15 contains the address of the 
parameter list. 

RO and R1 contain no applicable 
information. 

PLIST hhhhhhhh hhhhhhhh 
is eight bytes in length and 
breaks down as follows: 

Bytes 
o hh flag byte as follows: 

SO DE form of macro 
instruction 
00 EP and EPLOC form 
of macro instruction 

1-3 hhhhhh If byte 0 is SO; the 
address of the 
directory entry list. 

4 hh 

If byte 0 is 00; the 
address of the entry 
point name. 

hierarchy ID as 
follows: 

00 
01 
02 

no hierarchy 
hierarchy 0 
hierarchy 1 

5 hhhhhh address of DCB or 
zero. 

NAME cccccccc 
is the entry point/directory 
entry (EP/DE) name of the module 
to be li nked to or control 
transferred to. 

SVC 7 (XCTL) 

(Same as SVC 6) 

SVC S (LOAD) 

Additional field -- NAME 

R15 contains no applicable 
information. 

RO Content: 
If byte 0 contains x'OO', bytes 
1, 2, and 3 contain the address 
of the entry point name. 

If byte 0 contains x'SO', bytes 
1, 2, and 3 contain the address 
of the directory entry li.st. 

R1 Content: 
In LCS systems, byte 0 contains 
the hierarchy ID as follows: 

00 
01 
02 

no hierarchy 
hierarchy 0 
hierarchy 1 

In systems without LCS byte 0 
contains no significant 
inf orma ti on. 

Bytes 1, 2, and 3 contain the DCB 
address or zero if the default 
for DCB was specified. 

NAME cccccccc 
is the entry point/directory 
entry name of the module to be 
loaded. 

190 Programmer's Guide to Debugging (Release 21) 



SVC 9 (Delete) 

Additional field -- NAME 

R15 and R1 contain no applicable 
information .. 

RO contains the address of the entry 
point name. 

NAME cccccccc 
is the entry point name of the 
module to be deleted. 

SVC 13 (ABEND) 

Additional field -- CMP CODE 

R15 and RO contain no applicable 
information. 

R1 contains significant information 
only if SVC 13 was not called by the 
ABTERM routines. In this case R1 
contains the following: 

Bytes 
o hh Flag byte as follows: 

Bits 
1 ••• 
.1 .. 
•• xx 

DUMP option 
STEP option 

xxxx reserved 

1-3 hhhhhh ABEND completion code 

CMP CODE hhhhhhhh 
is the ABEND completion code if 
SVC 13 was called by the ABTERM 
routines. It is the content of 
the TCBCMP field of the current 
TCB at the time the SVC interrupt 
occurred. If ABEND recursion has 
occurred this field will contain 
the recursive completion code. 

SVC 14 (SPIE) 

Additional field -- PICA 

R15 and RO contain no applicable 
information. 

R1 contains the address of the program 
interrupt control area (PICA). 

PICA hhhhhhhh hhhh 
displays the program interrupt 
control area from the associated 
SPIE macro instruction. 

SVC 15 (ERREXCP) 

Additional fields 
TCB, CUU hhhh 

DDNAME, RQE, RQE 

R15 and RO contain no applicable 
information. 

Rl contains the address of the Request 
Queue Element (RQE) which was assigned 
to this I/O request by lOS. 

DDNAME cccccccc 
is the name of the DD statement 
associated with this I/O request. 

RQE hhhhhhhh hhhhhhhh hhhhhhhh 
is the first 12 bytes of the RQE 
assigned to this request by 105. 
The breakdown is: 

Bytes 
0,1 
2,3 
4 
5,6,7 
8 
9 

hhhh 
hhhh 
hh 
hhhhhh 
hh 
hhhhhh 

RQE TCB hhhhhhhh 

not applicable 
address of the 
TCB ID for MFT 
address of lOB 
priority byte 
addr.:ss of DEB 

UCB 

is the address of the TCB 
associated with the I/O request. 

cuu hhhh 
device address in channel-unit 
form of the device associated 
with this I/O request. 

SVC 16 (PURGE) 

Additional fields -- DDNAME, DCB, 
PLlST 

R15 and RO contain no applicable 
information. 

R1 address of the purge parameter 
list. 

{
N/A } 

DDNAME cccccccc 
•••••••• 

cccccccc 
is the name of the DD statement 
associated with the requests 
being purged. 

DCB hhhhhhhh 
is the address of the DCB 
associated with the purge 
request. 

PLlST hhhhhhhh hhhhhhhh hhhhhhhh 
displays the PURGE parameter list 
which breaks down as follows: 

Bytes 
o hh opti on byte as 

follows: 

0 ••••••• Purge request 
elements in complete 
DEB chain starting 
with DEB specified in 
address field. 

Section 3: Tracing Aids 191 



1-3 
4 
5-7 
8 

1 ••••••• Purge the requests 
associated with the 
DEB specified in 
address field. 

.1.. Post the purge 
requests with x'4S'. 

•• 0. Allow the active 
request to quiesce • 

•• 1. Halt the I/O 
operations. 

••• 0 Purge all requests. 
••• 1 Purge only related 

requests • 
• 0 •• Purge AEQ, RB and lOS 

logical channel 
queue • 

••.• . 1 .. Purge AEQ and lOS 
logical channel 
queue • 

•• 0. Purge by DEB 
•• 1. Purge by TCB 

hhhhhh 
hh 
hhhhhh 
hh 

address of DEB. 
completion code 
address of TCB 
quiesce indicator: 
01 if one or more 
requests are 
quiescing. 

9-13 hhhhhh address of lOB. 

SVC 1 7 (RESTORE) 

Additional fields -- DDNAME, DCB, DEB 

R15 and RO contain no applicable 
information. 

R1 contains the address of a pOinter 
to the chain of lOBS to be restarted. 

{
N/A } 

DDNAME cccccccc 
•••••••• 

cccccccc 
is the name of the DD statement 
associated with this lOB. 

DCB hhhhhhhh 
is the address of the DCB 
associated with the lOB. 

DEB hhhhhhhh 
is the address of the DEB 
associated with the lOB. 

SVC 21 (STOW) 

Additional fields -- DDNAME, PLlST 

R15 contains no applicable 
information. 

RO contains the address of the 
parameter list. 

R1 contains the address of the 
a ssoc ia ted DCB. 

The values, positive or negative, of 
RO and R1, indicate the directory 
action STOW is to take as follows: 

PLIST 

RO R1 Action 
+ + ADD 
+ REPLACE 

+ DELETE 
CHANGE 

N/A 
DDNAME cccccccc 

•••••••• 
cccccccc is the name of the 
associated DD statement. 

hhhhhhhh ••• (2 or 4 words) 

is eight or 16 bytes in length, 
depending on the directory action 
be ing pe rf ormed: 

For ADD, REPLACE, or DELETE 
actions the PLIST field is 
eight bytes long and 
contains, the member name or 
alias of the PDS directory 
entry being acted upon. 

For CHANGE the PLIST field 
is 16 bytes long, the first 
eight bytes containing the 
old member name or alias, 
and the second eight bytes 
contain the new member name 
or alias. 

SVC 25 (TRKBAl) 

Additional fields -- DDNAME, DCBFDAD, 
DCBTRBAL 

R15 and RO contain no applicable 
informa tion. 

R1 contains the address of the 
associated DCB. Note: If R1 is 
negative, the address is in complement 
form and the DCBFDAD and OCBTRBAL 
fields are meaningless. 

{
N/A } 

DDNAME cccccccc 
•••••••• 

is the name of the associated DD 
statement. 

DCBFDAD hhhhhhhh hhhhhhhh 
is the full direct access address 
(MBBCCHHR) from the DCB pointed 
to by R1. 

192 Programmer's Guide to Debugging (Release 21) 



DCBTRBAL hhhh 
is the track balance -- the 
number of bytes remaining on the 
current track after a write. The 
field is negative if no bytes 
remain. 

SVC 26 (CATALOG/INDEX/LOCATE) 

Additional fields -- PLIST, DSN 

R15 and RO contain no applicable 
information. 

R1 contains the address of the 
parameter list when CATALOG or INDEX 
issue the SVC call. 

R1 contains the address of CAMLST as 
generated by the CAMLST macro 
instruction when LOCATE issues the SVC 
call. 

DSN cccccccc ••• 
is the data set name. 

PLIST hhhhhhhh ••• (4 words) 

is the parameter list passed to 
the SVC routine by the calling 
macro instruction. Its content 
varies, depending on the macro 
instruction issuing the call. 

Entry from CATALOG: 

Bytes 
o hh 

1 hh 

option byte as follows: 

Bits 
1::: Search is to 

start on 
specified 
CVOL 

0... •••• Search is to 
start on 
SYS.RES 

•• 1. Catalog a 
data set 

••• 1 Recatalog a 
data set 

1... Uncatalog a 
data set 

option bytes as follows: 

Bits 
.1.. Build all 

missing index 
levels 

•••• 1 ••• Delete all 
unneeded 
index 1 evel s 
except the 
high level 

• • •• ..1. Indicate 
presence of 
DSCB TIR 

2 

3 

4 

5-7 

00 

00 

00 Reserved 

hhhhhh address of the area that 
contains the data set 
name 

8 00 Reserved 
9-11 hhhhhh the address of the CVOL 

10, or zeroed. 

12 00 

13-15 hhhhhh address of the volume 
list 

Entr:y 

!!y"tes 
0 

1 

2 

3 

4 

5-7 

from INDEX: 

hh option byte as follows: 

Bits 
1 ••• search is to 

start on 
specified 
CVOL 

0 ••• .... search is to 
start on 
SYS.RES 

hh option byte as follows: 

Bi,ts 
:-r:.-:- Build an 

index 
•• 1. Build a 

generation 
index 

••• 1 Build an alias 
1 ••• Connect CVOLs 
.1 •• Delete an 

index 
••• 1 Delete an 

alias 

hh option byte as follows: 
Bi 1".5 
1 ••• Disconnect 

CVOLs 
.1 •• Indicate 

DELETE option 
1 •• '. Indicate 

EMPTY option 

hh size of generation data 
group 

00 

hhhhhh a. address of the index 
name. 

b. address of an eight 
byte area that 
contains a high-level 
index name. 

Section 3: Tracing Aids 193 



8 

9-11 

12 

00 

c. address of an area 
that contains an 
alias to be deleted. 

hhhhhh the address of the area 
that contains the CVOL 
ID, or zeroed. 

00 

13-15 hhhhh a. address of an 
eight-byte area that 
contains an alias for 
a high-level index. 

b. address of a ten-byte 
area that contains 
the 4-byte device 
code of the CVOL to 
be connected followed 
by its 6-byte volume 
serial number. 

Entry from LOCATE: 

Bytes 
o hh option byte as follows: 

1 

2 

3 

4 

5-7 

8 

9-11 

12 

hh 

hh 

00 

00 

Bits 
1 ••• Search is to 

start on 
specified 
CVOL 

0 ••••••• search is to 
start on 
SYS.RES 

•• 1. Read a block 
by TTR. 

•• 00 0.0. LOCATE a name 

option byte as follows: 

Bits 
.000 0000 LOCATE a name 

option byte as follows: 

Bits 
0:-:-: •••• LOCATE a name 

hhhhhh address of the data set 
name or the relative 
track address (TTR) of 
the desired block in the 
catalog. 

00 

hhhhhh address of the CVOL ID 
or zeroes. 

00 

13-15, hhhhhh address of a 265 byte 
workarea which must be 
on a doubleword 
boundary. If' the issuer 
of LOCATE has a non-zero 
protect key, then the 
workarea must have a 
matching storage protect 
key. 

SVC 27 (OBTAIN) 

Additional fields -- PLIST, VOLSER, 
DSN/CCHHR 

R15 and RO contain no applicable 
information. 

Rl contains the address of the 
parameter list. 

PLIST hhhhhhhh ••• (4 words) 
displays the OBTAIN parameter 
list which breaks down as 
follows: 

Bytes 
0-3 hhhhhhhh operation code as 

follows: 

4-7 

Cl000000 
C1800000 

SEARCH for DSNAME 
SEEK for track 
address 

hhhhhhhh address of data 
set name or 
address of track 
address of DSCa, 
CCHHR depending 
on operation 
code. 

8-11 hhhhhhhh address of the 
volume serial 
number 

12-15 hhhhhhhh address of 
14-byte 
workarea. 

{
N/A } 

VOLSER cccccc 

cccccc is the volume serial 
number of the associated volume. 

N/A indicates that the volser 
pointer in the parameter list was 
zero. 

{
nnnnn } 

DSN/CCHHR cccccccccc ••• 

nnnnn is the track address in 
EBCDIC notation and is displayed 
when the operation code in Word 1 
of the parameter list indicates 
SEEK. 

194 proqrammer' S Gu id. t,o Debuqq i ':1g (ReI ea s e 21) 



cccccc ••• is the data set name 
and is displayed when the 
operation code in word 1 of the 
parameter list indicates SEARCH. 
N/A if the name is unavailable. 

SVC 28 (OPENEXT) 

Additional fields -- content of R13 

R15 contains no applicable 
information. 

RO contains zeroes, or the DCB address 
of the SYSCTLG to be processed. 

R1 contains the UCB address of the 
volume whose SYSTCLG is to be opened, 
if RO contains zeroes. 

SVC 29 (SCRATCH) 

Additional fields -- PLIST, DSN 

R15 contains no applicable 
information .. 

RO contains zeroes; or, the address of 
a UCB or a SUBUCB (for a 2321 device) 
for the device upon which unmounted 
volumes may be mounted. 

PLIST hhhhhhhh ••• (4 words) 
displays the SCRATCH parameter 
list which breaks-do~l as 
follows: 

Bytes 
0-3 hhhhhhhh operation code 

as follows: 

4-7 

8-11 

12-15 

41004000 -- check 
purge date 
41005000 
override purge 
date 

hhhhhhhh address of data 
set name 

not used 

address of the 
volume list 

DSN ccccccccc ••• 
is the data set name. N/A if the 
name is unavailable. 

SVC 30 (RENAME) 

Additional fields -- PLIST, OLD DSN, 
NEW DSN 

R15 contains no applicable 
information. 

RO contains the address of the UCB for 
the device on which unmounted volumes 
should be mounted, or, zero. 

R1 contains the address of the 
parameter list. 

PLIST hhhhhhhh ••• (4 words) 

displays the RENAME parameter 
list which breaks-down as 
follows: 

x'41002000' 
Bytes 
0-3 
5-7 hhhhhhhh address of old 

data set name 
8-11 hhhhhhhh address of new 
12-15 hhhhhhhh address of the 

volume list 

OLD DSN ccccc ••• 
is the fully qualified name of 
the data set to be renamed. N/A 
if the name is unavailable. 

NEW DSN ccccc ••• 
is the new name for the data set 
being renamed. N/A if the name 
is unavailable. 

SVC 32 (ALLOCATE) 

Additional fields -- CUU, DSN 

R15 contains no applicable information 

RO when 'positive, contains the address 
of the associated job file control 
block; when negative (not 
complemented--high-order bit is set 
on), contains the address of the 
associated model DSCB. 

R1 contains the address of the UCB 
list. 

CUU ccc 
is the unit addr~ss from the UCB 
pointed to by R1. 

PSN cccccccc ••• 
is the data set name from the DSN 
field of the JFCB or DSCB pointed 
to by RO. N/A if the DSN field 
was blank. 

SVC 33 (IOHALT) 

Additional fields -- CUU 

R15 and RO contain no applicable 
information 

R1 contains the address of the UCB 
associated with the request to be 
halted. 

section 3: Tracing Aids 195 



CUU hhhh 
is the device address associated 
with the device being halted. 

SVC 41 (IDENTIFY) 

Additional fields -- EPNAME 

R15 contains no applicable 
information. 

RO contains the entry point name 
address 

R1 contains the main storage address 
for the entry point name being added. 

EPNAME cccccccc 
is the entry point name being 
added. 

SVC 42 (ATTACH) 

Additional fields -- SUPRVLIST, PPLIST 

R15 contains the address of the 
parameter list being passed to the SVC 
routine. 

RO contains no significant 
information. 

R1 contains the address of the 
parameter list being passed to the 
called program, or zero (no parameter 
list being passed). 

SUPRVLIST hhhhhhhh ••• (36 bytes) 
is the parameter list being 
passed to the SVC routine and 
breaksdown as follows: 

~ 
0 hh EP/DE flag byte: 

00 -- EP or EPLOC 
specified 
80 -- DE specified 

1-3 hhhhhh address of the EP 
name or directory 
entry (determined 
by byte 0). 

4 hh hierarchy flag 
(used if option 
chosen): 
00 -- no hierarchy 
specified 
01 -- hierarchy 0 
02 -- hierarchy 1 

5-7 hhhhhh address of the 
DCB; or zero. 

8 hh Reserved. 
9-11 hhhhhh address of the ECB 
12 hh GSP flag byte: 

00 -- bytes 13-15 
contain subpool 
number 

196 Programmer's Guit1e to Debugging '""""lelease 21.) 

01 -- bytes 13-15 
contain the 
address of a 
listing of subpool 
numbers. 

13-15 hhhhhh a subpool number 
or address of 
subpool list 
(determined by 
byte 12) 

16 hh SHSP flag byte: 
00 -- bytes 17-19 
contain a subpool 
number 
01 -- bytes 17-19 
contain the 
address of a list 
of subpool 
numbers. 

17-19 hhhhhh a subpool number 
or address of a 
subpool list 
(determined by 
byte 16) 

20 hh Roll-In/Roll-Out 
flag: 
00 -- new tasK may 
not be rolled-out 
and cannot invoke 
roll-out. 
01 -- new task may 
not be rolled-out 
but can invoke 
roll-out 
02 -- new task may 
be rolled-out but 
cannot invoke 
roll-out 
03 -- new task may 
be rolled-out and 
can invoke 
roll-out 

21-23 hhhhhh address of the 
end-of-task exit 
routine 

24,25 hhhh dispatching 
priority number 

26 hh limit priority 
number 

27 hh Key Flags byte as 
follows: 

Bits 
x... Reserved 
.0.. Propagate the 

JSCB field from 
the originating 
task 

.1 •••••• If the origina
ting task has a 
protect key of 
0, move the 
specified JSCB 
address into t.pe 



attached TCB; 
otherwise, 
propagate the 
originating 
task's TCBJSCB 
field 

•• 0 ••••• Subpools 251 and 
252 and the job 
pack queue 
pointer of the 
originating task 
are not given 
to the attached 
task. 

•• 1 ••••• Subpools 251 and 
252 of the job 
pack queue 
pointer are 
given to the 
attached task • 

••• 1 •••• the attached 
task is to have 
a protect key 
of O • 

•••• 0 ••• Subpool zero is 
to be shared 
with other 
tasks • 

•••• 1 ••• Subpool zero is 
not to be 
shared 

••••• 0 •• A save area of 
72 bytes is to 
be obtained for 
the task • 

• 1 •• No save area is 
to be obtained. 

•• 0. Propagate the 
TCBJSTCB field 
from the 
originating 
task • 

•••• •• 1. The TCBJSTCB of 
the new task is 
to point to the 
new task • 

•••• ••• 0 The new task is 
to operate in 
problem program 
mode • 

••. 1 The new task is 
to operate in 
supervisor mode. 

28-35 hhhh the entry point 
name for EP; or 
blank for EPLOC or 
DE specification. 

PPLIST hhhhhhhh hhhhhhhh hhhhhhhh 
(up to 40 bytes) 
is the parameter list being 
passed to the called program and 
consists of a series of four-byte 
entries, each entry having it's 
high-order byte reserved, and an 
address in the low-order three 
bytes. 

SVC 44 (CHAP) 

Additional fields -- CHAP TCB 

R15 contains no applicable 
informa tiona 

RO contains a signed value to be added 
to the dispatching priority of the 
specified task. A negative value will 
be in two's-complement form. 

Rl contains the address of an area 
containing the address of the TCB 
whose priority is to be changed; or 
zero. If zero, it indicates that the 
active task's priority is to be 
changed. 

CHAP TCB hhhhhhhh 
is the address of the TCB of the 
active task at the time the SVC 
interrupt occurred. 

SVC 51 (SNAP) 

Additional fields -- PLIST, MOON 

R15 and RO contain no applicable 
information. 

Rl contains the address of the 
parameter list. 

PLIST: 
The PLIST field when SVC 51 is 
called by the SNAP macro 
instruction is 12 bytes in length 
and breaksdown as follows: 

PLIST hhhhhhhh hhhhhhhh hhhhhhhh 
displays three words of the 
parameter list passed to SVC 
51 by SNAP. 

o hh 

1 00 

2 hh 

Bits 
~ 
1 ••• 
.1 •• 
.. 1. 

••• 1 

ID number to be 
printed in the 
identification 
heading of the dump. 

option flag bytes as 
follows: 

1 .•• 
.1 •• 

ABEND request 
SNAP request 
TCB address given 
Display all 
supervisor data 
Display trace 
table 
Display nucleus 
Snapshot list is 
given 

Section 3: Tracing Aids 197 



3 

4 

hh 

Bits 
1 ••• 

· o .. 
• 1 •• 

· .1. 

• •• 1 

•• 1. ID given 
••• 1 Display QCBs 

option flag byte as 
follows: 

Save area (see 
next flags) 
Display entire 
save area 
Display heading 
only 
Display registers 
on entry to ABEND 
or SNAP 
Display link pack 
area 

1 ••• Display job pack 
area 

.1 •• Display PSW on 
entry to ABEND or 
SNAP 

•••••• 1. Display all 
subpools less 
than subpool 128 

••• x Reserved 

00 

5-7 hhhhhh address of DCB 

8 00 

9-11 hhhhhh address of the TCB 
specified in the 
SNAP macro 
instruction; or 
zero. If zero, the 
dump is for the 
current task. 

Certain calls for SVC 51 may result in 
a 16 byte PLIST field being recorded. 
If there is a problem in this area 
please contact your FE programming 
representative for programming 
support. 

(
N/A I 

MODN cccccccc 

cccccccc is the name of the 
module calling SVC 51. 

N/A appears if no module name is 
available. 

SVC 54 (DISABLE) 

Additional fields -- DDNAME, DCB, DEB 

R15 and RO contain no applicable 
information. 

Rl contains the address of the 
associated DCB 

{
N/A } 

DDNAME cccccccc 
•••••••• 

is the name of the DD statement 
associated with this request. 

DCB hhhhhhhh 
is the address of the associated 
DCB. 

DEB hhhhhhhh 
is the address of the associated 
DEB • 

SVC 62 (DETACH) 

Additional fields -- DETACH TCB 

R15 and RO contain no applicable 
information. . 

Rl contains the address of an area 
containing the address of the TCB to 
be detached. 

Note: If Rl contains zero the DETACH 
TCB field is meaningless. 

DETACH TCB hhhhhhhh 
is the address of the TCB to be 
detached. 

SVC 65 <QWAIT) 

Additional fields -- R2, QCB 

R15, RO and R1 contain no applicable 
informa tion. 

R2 contains the address of the QCB for 
the element being waited on. 

QCB hhhhhhhh hhhhhhhh hhhhhhhh 
is the queue control block 
pOinted to by R2,and breakdown 
as follows: 

Bytes 
0 hh queue status: 

01 -- not on ready 
queue 
02 not waiting 
03 -- waiting 

1-3 hhhhhh address of fi.rst 
element on the 
queue. 

4 hh priority of the 
queue when linked 
onto the ready 
queue. 

5-7 hhhhhh address of the next 
item on the ready 
queue. 

8 hh reserved. 
9-11 hhhhhh address of the STCB 

for the subtask to 
be activated. 

198 Programmer's Guide to Debugging (Release 21) 



SVC 66 (BTAM TEST) 

Additional fields -- IOBERINF 

R15 and RO contain no applicable 
information. 

R1 contains the address of the lOB 
pointed to when the SVC was issued. 

IOBERINF hhhhhhhh (4 words) 
is the error information field 
used by BTAM error recovery 
routines. 

SVC 67 (QPOST) 

Additional fields -- R2, QCB 

R15 and RO contain no applicable 
information. 

R1 contains the address of the element 
being posted. 

R2 contains the address of the QCB to 
which the element is being posted. 

QCB hhhhhhhh hhhhhhhh hhhhhhhh 
is the queue control block 
painted to by R2 and breaksdown 
as follows: 

Bytes 
0 hh queue status: 

01 -- not on Ready 
queue 
02 -- not waiting 
03 -- waiting 

1-3 hhhhhh address of first 
element on the 
queue. 

4 hh priority of the 
queue when linked 
onto the ready 
queue. 

5-7 hhhhhh address of the next 
7 item on the ready 

queue. 
S hh reserved. 
9-11 hhhhhh address of the STCB 

for the subtask to 
be activated. 

SVC 71 (ASGNBFR/RLSEBFR/BUFINQ) 
Additional fields -- DDNAME, PLIST 

R15 and RO contain no applicable 
information 

R1 contains the address of the 
parameter list. 

DDNAME cccccccc 
is the name of the DO statement 
associated with the DCB specified 
by the macro instruction. 

PLIST hhhhhhhh hhhh ••• (up to 12 
bytes) 

displays the parameter list 
pointed to by R1. The content 
varies according to the macro 
instruction calling the SVC. 

Entry from ASGNBFR: 

Bytes 
o 04 request byte., 04 

indicates ASGNBFR 
1-3 hhhhhh the DCB address 
4-7 hhhhhhhh the address of a 

half-word field 
containing the 
number of bytes of 
buffer to be 
assigned. 

Entry from RLSEBFR: 

Bytes 
o hh request byte: 

08 indicates 
RLSEBFR 

1-3 
4-7 

OC indicates 
RLSEBFR ALL 

hhhhhh the DCB address 
hhhhhhhh the address of a 

half-word field 
containing the 
number of bytes of 
buffer to be 
released. 

Entry from BUFINQ: 

Bytes 
o 10 

1-3 hhhhhh 
4-7 hhhhhh 

8-11 hhhhhhhh 

SVC 75 (DequeUe Routine) 

request byte, 10 
indicates BUFINQ 
the DCB address 
address of the 
table of buffer 
addresses (must be 
on a full word 
boundary) 
the number of 
bytes specified to 
be available for 
the table of 
buffer addresses 

Additional fields -- IQE 

R15 contains no applicable information 

RO contains the address of the next 
IQE on the IRB active list for the 
attention routine when ATTNINQ has 
specified clear mode; otherwise, 
contains zero. 

Section 3: Tracing Aids 199 



Rl Content: 

Bytes 
o hh 

1-3 hhhhhh 

N/A 

is a unit index to 
identify a 
particular 2260 
display station; or 
00 for a 2250 
station.. 
the GACB address 

IOE hhhhhhhh hhhhhhhh hhhhhhhh 

when ATTNINQ specifies clear mode 
this field displays the first 3 
words of the IQE pointed to by 
RO: 

Bytes 
0-3 hhhhhhhh the address of the 

next IQE in the 
Chain. or zero 

4-7 hhhhhhhh not meaningful 
8-11 hhhhhhhh the address of the 

hhhhhhhh IRB associated 
with the IQE. 

N/A 
will appear in this field 
whenever the ATTNINQ macro 
instruction did not specify clear 
mode. 

SVC 78 (LSPACE) 

Bytes 
0-3 
4-7 

8 

9 

10 

hhhhhhhh address of the DCB 
hhhhhhhh EBCDIC character 

set image ID 
hh LOAD MODE 

indicator: 

.0.. no fold 

.1.. fold 
x.xx xxxx reserved 

hh verification 
indicator: 

••• 1 verify 
••• 0 don't verify 
xxx. xxx x reserved 

hh data check 
indicator: 

1 ••• block 
.1 .. unblock 
00 •• as DeB specifies 

1 ••• unfold UCS 3211 
.1 •• fold UCS 3211 

•• xx •• xx reserved 

11-14 hhhhhhhh EBCDIC FCB 
image ID 

15 hh FCB parameter 
options: 

1... verify FCB 
••• 1 align 

.xxx xxx. reserved 

Additional fields -- CUU SVC 82 (DISKANALl Entered from modules: 

R15 and R1 contain no applicable 
information 

RO contains the address of the 
associated UCB 

CUU hhhh is the unit address 

SVC 81 (SETPRT) 

Additional fields -- DDNAME, PLIST 

R15 and RO contain no applicable 
information 

Rl contains the address of the 
parameter list. 

DDNAME cccccccc 
is the name of the DD statement 
associated with the data set 
being printed. 

PLIST hhhhhhhh.. (four words) 
is four words of the parameter 
list being passed to SVC 81 and 
breaks down as follows: 

200 Programmer's Guid~ ttl Debugging (Release 21) 

IEHDANAL, IEHOGETA, 
IEHDCELL, IEHDLABL. 
IEHDREST. IEHDDUMP 

Additional fields -- VOLSER, DA-ADDR, 
PLIST 

R15 and RO contain no applicable 
information 

Rl contains the address of the 
parameter list. 

VOLSER cccccc 
is the volume serial number 

DA-ADDR N/A 
hhhhhhhh hhhhhhhh 

displays a six or eight byte 
track address or N/A, dependent 
on the options in effect for the 
SVC routine. The breakdown is: 

Option 
analyze or format 

post UCB 

DA-ADDR Content 
six-byte track 
address 
eight-byte trac 
address 



address of 
alternate track 
CCHH 
unlabeled volume 

new volume 

N/A 

eight-byte 
track address 
N/A 

PLIST hhhhhhhh ••• (16 bytes maximum) 
is either 8, 12, or 16 bytes of 
the parameter list pointed to by 
Rl. The first four bytes always 
consist of a flag byte, defining 
the function to be performed, and 
a 3-byte UCB address. The fifth, 
ninth, and thirteenth bytes, when 
present, will contain a flag 
indicating the last element 
(4-bytes) in tne list. The 
breakdown is as follows: 

Bytes 
0 hh function byte as 

follows: 

8F -- new volume 
1F -- address of 
alternate track 
CCHH 
00 -- ANALYZE or 
FORMAT 
08 -- POST UCB 
88 -- unlabeled 
volume 

1-3 hhhhhh address of UCB 

(function SF) 
4 80 flag byte -- last 

element 
5-7 hhhhhh address of DCB 

(function iF) 
4 80 flag byte -- last 

element 
5-7 hhhhhh address of 

alternate track 
CCHH 

<function 00) 
4-70 hhhhhhhh address of 

alternate track 
ceHH 

8 80 flag byte last 
element 

9-11 hhhhhh address of 
alternate track 
information 

(function 08) 
4-7 hhhhhhhh address of serial 

number 
8 80 flag byte -- last 

element 
9-11 hhhhhh address of VTOC 

address of VTOC 

(function 88) 
4-7 hhhhhhhh address of serial 

number 

8-11 
12 

13-15 

SVC 86 (ATLAS) 

hhhhhhhh address of VTOC 
80 flag byte -- last 

element 
hhhhhh address of DEB 

Additional fields -- PLIST, CCHHR 

R15 and RO contain no applicable 
information 

R1 contains the address of the 
parameter list 

PLIST hhhhhhhh hhhhhhhh 
is the parameter list passed to 
SVC 86 and breaks down as 
follows: 

Bytes 
o hh flag byte as 

follows: 

1... User's channel 
program can not be 
re-executed. 

.xxx xxxx reserved 

1-3 hhhhhh address of lOB 

4 hh flag byte as 
follows: 

1... IEHATLAS is the 
calling program 

.1.. a partial count 
(CeHH only) has 
been passed by 
the calling 
program 

•• 1 ••••• a write special 
cew is required 
for a track 
overflow record 

••• 1 •••• a write 
special 
CCW is not 
required 

•••• xxxx reserved 

5-7 hhhhhh address of count 
(CCHriR) or partial 
count (CCHH) field 

CCHHR hhhhhhhhhh 
is the five-byte track address of 
the complete (CCHHR) or partial 
count (CCHH) field passed by the 
calling prCXJram. 
Note: If entry to SVC 86 is from 
the IEHATLAS program (byte 4, bit 
o in parameter list) this address 
points to the CCHH part of the 
count field. 

Section 3: Tracing Aids 201 



SVC 88 (MOD 88) 

Additional fields -- DEB, DSSTAT FLGS, 
DEVMOD 

R15 and RO contain no applicable 
information. 

1-3 hhhhhh address of control 
storage lead name 

RESMCW hhhhhhhh hhhhhhhh 
displays dight bytes of the 
RESMCW field from the RMS cammon 
area. 

Rlcontains the address of the DCB 
associated with the current task at 
the time the SVC was issued. SVC 98 (TSO PROTECT) 

DEB hhhhhhhh 
is the address of the data extent 
block (taken from DCB pointed to 
by Rl) 

DSSTAT hh 
the data set status flags field 
(taken from the DEB) 

DEVMOD hh 
the device modifier field (taken 
from the DEB) 

SVC 89 (EMSERV) 

Additional fields -- PLIST, RESMCW 

R15 and RO contain no applicable 
information 

R1 contains the address of the 
parameter list 

PLIST hhhhhhhh 
displays four bytes from the 
parameter list being passed to 
the SVC routine. The breakdown 
is: 

~ o hh flag byte: 

co -- enter emulator 
mode 
AO -- leave emulator 
mode 

202 Programmer's Guide to ""~bugging (Release 21) 

Additional fields -- PLIST, DSN 

R15 and RO contain no applicable 
information 

R1 contains the address of the 
parameter list 

PLIST hhhhhhhh 
displays the first four bytes of 
the parameter list as follows: 

Byte 
o 01 

02 

03 

04 

entry code for the 
add function 
entry code for the 
replace function 
entry code for the 
delete function 
entry code for the 
list function 

1-3 hhhhhh varies by function 
as follOW's: 

DSN cccccccc ••• 

000000 -- add 
function 
000000 -- replace 
function 
000000 -- delete 
function 
hhhhhh 80 byte 
buffer address 

is the data set name 



IMDPRDMP OUTPUT COMMENTS - GTF PROCESSING 

The following comments may appear in the 
listing of GTF trace records. 

I/O ERROR ON ddname - CONTINUE 

Explanation: The EDIT function of 
IMDPRDMP is being used to process 
a GTF external trace data set. An 
I/O error was encountered while 
attempting to read the trace data 
set identified by ddname. Fewer 
than three consecutive I/O errors 
have occurred for this data set, 
so EDIT continues processing, 
ignoring the current block that 
caused the I/O error. 

I/O ERROR ON ddname - EDIT PROCESSING 
TERMINATED 

Explanation: The EDIT function of 
IMDPRDMP is being used to process 
a GTF external trace data set. 
Three consecutive I/O errors have 
been encountered while attempting 
to read the trace data set 
identified by ddname. EDIT 
processing terminates. 

ERROR IN GTF BUFFER CHAIN 

Explanation: The EDIT function of 
IMDPRDMP j.s being used to process 
an internal (dump) trace data set. 
While attempting to locate the GTF 
trace buffers, IMDPRDMP 
encountered one of the following 
errors: 

• A buffer pointer was not on a 
word boundary. 

• A buffer pointer addressed an 
area of main storage that 
could not be extracted from 
the dump for one of the 
following reasons: 
1. The pointer addressed an 

area higher than the 
highest address in the 
dump. 

2. IMDPRDMP encountered an 
I/O error while attempting 
to read the record 
containing the area 
addressed by the pointer. 

3. The block containing the 
addressed area was missing 
from the dump, perhaps 
because the program that 
produced the dump 
encountered an I/O error 
while attempting to write 
the block. EDIT 
processing is terminated .• 

ERROR IN GTF BUFFER - CONTINUING WITH 
NEXT BUFFER 

Explanation: The EDIT function of 
IMDPRDMP is being used to process 
an internal (dump) trace data set. 
EDIT has encountered a GTF trace 
record with a length that does not 
lie within the acceptable range of 
4 to 272 bytes. EDIT continues 
processing with the next GTF 
buffer. 

GTF NOT ACTIVE AT TIME OF DUMP 

Explanation: The Edit function of 
IMDPRDMP is being used to process 
an internal (dump) trace data set. 
EDIT has determined that GTF was 
not active at the time that the 
dump was taken. EDIT processing 
is terminated. 

TRACE RECORD LL INVALID, DD ddname BLOCK 
NO xxxyyy - EDIT PROCESSING TERMINATED 

Explanation: The EDIT function of 
IDMPRDMP is being used to process 
a GTF external trace data set. 
EDIT has encountered a GTF trace 
record with a length that does not 
lie within the acceptable range of 
4 to 272 bytes. Ddname identifies 
the GTF external data set being 
processed: xxxyyy identifies the 
number of the block containing the 
faulty record. EDIT processing is 
terminated. 

EDIT TERMINATED UPON USER'S REQUEST 

Explanation: A user exit has 
requested EDIT termination by 
returning to EDIT with a return 
code of 24. 

EXIT DELETED UPON USER'S REQUEST 

Explanation: A user exit has 
requested that it no longer be 
invoked during the current EDIT 
execution. This is the result of 
a user exit routine return code of 
16 or 20. 

GTF OPTIONS IN EFFECT - option 

Explanation: The input trace data 
set was created by GTF with trace 
options in effect as indicated by 
'option'. The Service Aids 
publication describes the options 
available. 

section 3: Tracing Aids 203 



204 Programmer's Guide to Dpbugging (Release 21) 



Page of GC28-6670-5,6, Revi8ed April 16, 1973, By TNL: GN28-2545 

Appendix A: Debugging With an Operating System Dump 

The first facts you must determine in 
debugging with an operating system dump are 
the cause of the abnormal termination and 
whether it occurred in a system routine or 
a problem program. To aid you in making 
these determinations, ABEND, SNAP, and 
indicative dumps provide two vital pieces 
of information -- the completion code and 
the active RB queue. Similar information 
can be obtained from a storage image dump 
or a stand-alone dump by analyzing PSWs and 
re-creating an active RB queue. 

A completion code is printed at the top 
of ABEND, SNAP, and indicative dumps. It 
consists of a system code and a user code. 
The system code is supplied by the control 
program and is printed as a 3-digit 
hexadecimal number. The user code is the 
code you supplied when you issued your cwn 
ABEND macro instruction; it is printed as a 
4-digit decimal number. If the dump shows 
a user code, the error is in your program, 
and the completion code should lead you 
directly to the source of error. Normally, 
however, a system code will be listed; this 
indicates that the operating system issued 
the ABEND. Often the system completion 
code gives enough information for you to 
determine the cause of the error. The 
explanations of system completion codes, 
along with a short explanation of the 
action to be taken by the programmer to 
correct the error, are contained in the 
publication IBM System/360 Operating 
System: Messages and Codes, GC28-6631. 

To locate the load module that had 
control at the time the dump was issued, 
find the RB associated with the module. If 
the dump resulted from an ABEND or SNAP 
macro instruction, the third most recent RB 
on the queue represents the load module 
that had control. The most recent and 
second most recent RBs represent the ABDUMP 
and ABEND routines, respectively. Storage 
image dumps and stand-alone dumps contain 
PSW information that can be used to 
identify the load module in control. 

Once you have located the RB or load 
module, look at its name. If it does not 
have a name, it is probably an SVRB for an 
SVC routine, such as one resulting from a 
LI NK, ATTACH, XcrL or LOAD macro 
instruction. To find the SVC number, look 
at the last three digits of the resume PSW 
in the previous RB on the queue. If a 
previous RB does not exist, the RB in 
quest ion is an SVRB for a routine invoked 

by an XCTL macro instruction. Register 15 
in the extended save area of the RB gives a 
pointer to a parameter list containing the 
name of the routine that issued the XCTL. 

If the RB does not bear the name of one 
of your load modules, either an RB was 
overlaid or termination occurred during 
execution of a system routine. The first 
three characters of the name identify the 
system components. 

If the RB bears the name of one of your 
load modules, you can be reasonably certain 
that the source of the abnormal termination 
lies in your object code. However, an 
access method routine rray be at fault. 
This possibility arises because your 
program hranches to access method routines 
instead of invoking them through a 
supervisor-assisted linkage. Thus, an 
access method routine is not represented on 
the active RB queue. To ascertain whether 
an access method routine was the source of 
the abnormal termination, you must examine 
the resume PSW field in the RB. If the 
last 3 bytes in this field point to a main 
storage address outside your program, check 
the load list to see if an access method 
routine is loaded at that address. If it 
is, you can assume that it, and not your 
program, was the source of abnormal 
termination. 

Abnormal Termination in System Routines: 
By analyzing the RB'sname field or the SVC 
nwnber in the previous RB, you can 
determine which system load module 
requested the termination. If the RB has a 
system module name, the first three 
characters tell you the name of the system 
component. The remaining characters in the 
name identify the load module in error. 

Remember, although a system routine had 
control when the dump was taken, a proolem 
program error may indirectly have been at 
fault. Such a situation might result from 
an incorrectly specified macro instruction, 
an FQE modified inadvertently, a request 
for too much storage space, a branch to an 
invalid storage address, etc. To determine 
the function of the load module that had 
control., consult Appendix C. With its 
function in mind, the coropletion code 
together with an examination of the trace 
table may help you to uncover which 
instruction in the problem program 
incorrectly requested a system function. 

Appendix A: Debugging With an Operating system Dump 205 



Program Check Interruptions in Problem 
Programs: If you have determined from the 
completion code or PSWs and evaluation of 
the RB queue that the dump resulted from a 
program check in your problem program, 
examine the status of your program in main 
storage. (If you have received only an 
indicative dump, you must obtain either an 
ABEND/SNAP dump or a stand-alone dump at 
this point.) Locate your program using 
pointers in the RB. If its entry point 
does not coincide with the lower boundary 
of the program, you can find the lower 
boundary by adding 32(20) to the address of 
the RB (systems with MFT). The RB's size 
field gives the number of doublewords 
occupied by the RB, the program, and 
associated supervisor work areas. 
ABEND/SNAP dumps with MFT have the storage 
boundaries of the problem program 
calculated and printed. 

Next, locate the area within your 
program that was executed immediately prior 
to the dump_ To do this, you must examine 
the program check old PSW. Pertinent 
information in this PSW includes: 

Bits 12-15: AMWP bits 

Bits 32,33: Instruction length in 
halfwords. 

Bits 40-63: Instruction address 

A useful item of information in the PSW 
is the P bit of the AMWP bits (bits 12-15). 
If the P bit is 011, the PSW was stored 
while the CPU was operating in the problem 
program state. If it is off, the CPU was 
operating in the supervisor state. 

Find the last instruction executed 
before the dump was taken by subtracting 
the instruction length from the instruction 
address. This gives you the address of the 
instruction that caused the termination. 
If the source program was written in a 
higher level language, you must evaluate 
the instructions that precede and follow 
the instruction at fault to determine their 
function. You can then relate the function 
to a statement in the source program. 

Other Interruptions in Problem Programs: 
If the completion code or PSWs and the 
active RB queue indicate a machine, check 
interruption, a hardware error has 
occurred. Call your IBM Field Engineering 
representative and show him the dump. 

If an external interruption is 
indicated, with no other type of 
interruption, the dump probably was taken 
by the operator. Check with him to find 
out why the dump was taken at this point. 
The most likely reasons are an unexpected 

wait or a program loop. If a trace table 
exists, examine it for the events preceding 
the trouble or, if the trace table was made 
ineffectual by a program loop, resubmit the 
job and take a dump at an earlier point in 
the program. 

The remaining causes of a dump are an 
error during either execution of an SVC or 
an 1/0 interruption. In either case, 
examine the trace table. Entries in the 
table tell you what events occurred leading 
up to termination. From the sequence of 
events, you should be able to determine 
what caused a dump to be taken. From here, 
you can turn to system control blocks and 
save areas to get specific information. 
For example, you can find the sense 
information issued as a 'result of a unit 
check in the UCB, a list of the open data 
sets from the DEB chain, the CCW list from 
the lOB, the reason for an I/O interrupt in 
the status portion of the CSW, etc. 

Specialized Program Checks 

In addition to the error program checks 
(1-15), other system events cause program 
checks which are normally transparent to 
the user. They could, however, if seen in 
a dump (except ABEND dumps where they do 
not appear, result in some confusion. One 
such event is the monitor call interrupt. 
On 360 CPU's, the monitor call appears as a 
01 (operation) interrupt code in the 
program old PSW. To verify that a 
simulated monitor call occurred, check the 
address in the program old PSW. A monitor 
call occurred if: 

1. The address (-4) points to an 
execution instruction ('44'): 

2. The execute is operating on an x'AFOO' 
in low core: 

3. A NOP (x'470') follows the execute. 

370 CPU's support the real monitor call 
interrupt. The code in the program old PSW 
is a x'40', and the PSW address (-4) points 
directly at an x'AF' instruction. 

On 360 CPU's, the x'AF' opcode is simulated 
as follows: 

1. The first time an x'AF' instruction is 
encountered, an execute instruction is 
substituted for the x'AF'. 

2. The execute is of an instruction in a 
low-core table (Class Mask Table). 

3. If the monitor call should occur, the 
instruction in the Class Mask Table is 
an x'AFOO': if it should not occur, 
the instruction is a x'0700' (NOP). 

206 Programmer's Guide to Debugging (Release 21) 



4. Required class and 10 information for 
the monitor call are contained in the 
x'410' NOP following the execute. 

On 370 CPU's, the monitor call occurs under 
control of a mask in Control Register 8. 

The Generalized Trace Facility (GTF) is a 
user of the monitor call interrupt. For 
more detailed information, refer to the 
Service Aids Logic PLM, GY28-6121. 

Debugging Procedure Summary 

1. Look at the completion code or PSW 
printouts to find out what type of 
error occurred. Common completion 
codes and causes are explained in 
Appendix C. 

2. Check the name of the load module that 
had control at the time the dump was 
taken by looking at the active RB's. 

3. If the name identifies a system 
routine, proceed to step 4. If the 
name identifies a problem program and 
the completion code or PSW indicates a 
program check, proceed to step 6. If 
the name identifies a problem program, 
and the completion code or PSW 
indicates other than a program check, 
proceed to step 10. 

4. Find the function of the system 
routine using Appendix D. 

5. If the dump contains a trace table, 
begin at the most recent entry and 

proceed backward to locate the most 
recent svc entry indicating the 
problem state. From this entry, 
proceed forward in the table, 
examining each entry for an error that 
could have caused the system routine 
to be terminated. 

6. If the name identifies one of your 
load modules, check the instruction 
address and the load list to see if an 
access method routine last had 
control. If so, return to step 4. 

7. Locate your program in the dump. 

8. Locate the last instruction executed 
before the dump .• 

9. Examine the instruction and, if the 
program was written in a high~level 
language, the instructions around it 
for a possible error in object code. 

10. If a machine check interruption is 
indicated, call your IBM Field 
Engineering representative. 

11. If only an external interruption is 
indicated, ask the operator why he 
took the dump. Resubmit the job and 
take a dump at the point where trouble 
first occurred. 

12. Examine the trace table, if one is 
present, for events leading up to the 
termination. Use trace table entries 
and/or information in system control 
blocks and save areas to isolate the 
cause of the error. 

Appendix A: Debugging With an Operating system Dump 207 



<i:} Programmer's Guide to Df'~""'q9ing (Release 21) 



Appendix B: SVCs 

Register contents at entry to an SVC routine are often helpful in 
finding pointers and control information. The table below lists SVC 
numbers in decimal and hexadecimal, and gives the type, associated macro 
instruction, and significant contents of registers 0 and 1 at entry to 
each SVC routine. 

r--------T-----T-------T------------T------------------------T---------------------------, 
IDecimal I Hex. 1 I I I I 
I No. 1 No. I Type I Macro I Register 0 I Register 1 I 
~--------+-----+-------+------------+------------------------+--------------------------~ o 0 I I EXCP lOB address 

o o 

1 1 

1 1 

1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

8 8 

9 9 

10 A 

10 A 

11 B 

12 C 

13 D 

14 E 

15 F 

I 

I 

1 

I 

1 

I 

I 

I 

II 

II 

II 

I 
I XDAP 

I 
I WAIT 
1 
I WAITR 
1 
I 
I PRTOV 
I 
lPOST 
I 
I EXIT 
I 
IGETMAIN 
I 
IFREEMAIN 
I 
I LINK 
I 
IXCTL 
I 
I LOAD 
I 
I 

Event count 

Event count 

Completion code 

Address of entry point 
address 

ECB address 

2's complement of 
ECB address 

ECB address 

Parameter list address 

Parameter list address 

Parameter list address 

Parameter list address 

DCB address 

I, II I DELETE Address of program name 

1 

I 

I 
IGETMAIN or 
lFREEMAIN 
I (R Operand) 
IFREEPOOL 
I 

Subpool number (byte 0) 
Length (bytes 1-3) 

Address of area to 
be freed 

I, III ITIME ITime units code 
I I 

II ISYNCH 1 
I I 

IV I ABEND ICompletion code 
I I 

II, III1SPIE IPICA address 
I I 

I IERREXCP IAddress of request queue 
I lelement ________ ~ _____ ~ ______ ~ ____________ ~ ________________________ ~ _________________________ J 

(Part 1 of 5) 

Appendix B: SVcs 209 



r--------T-----T-------T------------T------------------------T--------------------------, 
IDecimal I Hex. I I I I I 
I No. I No. I Type I Macro I Register 0 I Register 1 I 
r--------t-----f-------t------------t------------------------+------------~-------------~ 
I 16 I 10 I III I PURGE I I 
I I I I I I 
I 17 I 11 I III I RESTORE I IIOB chain address 
I I' I I I 
I 18 I 12 I II IBLDL JAddress of build list IDCB address 
I I I I I I 
I 18 I 12 I II I FIND I I 
I I I I I I 
I 19 I 13 I IV I OPEN I IAddress of parameter list 
I I I I I lof DCB addresses 
I I I I I I 
I 20 I 14. I IV I CLOSE I IAddress of parameter list 
I I I I lof DCB address es 
I I I I I 
I 21 I 15 I III ISTOW Parameter list address IDCB address 
I I I I I 
I 22 I 16 I IV 10PEN TYPE:J IAddress of parameter list 
I I I I lof DCB addresses 
I I I I I 
I 23 I 17 I IV ICLOSE TYPE=T IAddress of parameter list 
I I I 1 lof DeB addresses 
I I I I I 
I 24 I 18 I III IDEVTYPE Iddname address 
I I I J I 
J 25 I 19 I III ITRKBAL IDCB address 
I I I I I 
I 26 I 1A I IV I CATALOG IParameter list address 
I I I I I 
I 26 I 1A I IV JINDEX I IParameter list address 
I I I I I 
I 26 I 1A I III LOCA'I'E I I Parameter list address 
I I I I I 
I 27 I lS I III OBTAIN I IParameter list address 
I I I I I 
I 28 I 1C I IV CVOL I I 
I I I I 
I 29 I 10 IV SCRATCH I UCB address I Parameter list address 
I I I I 
I 30 I lE IV RENAME IUCB address IParameter list address 
I I J I 
I 31 I 1F IV FEOV I IDCB address 
I I I I 
I 32 I 20 IV ALLOe I I Address of ueB list 
I I I I I 
I 33 I 21 III IIOHALT I IUCB address 
I I I I I 
I 34 I 22 IV IMGCR (MAST I I 
I I I CMD EXCP) I I 
I I I I I 
I 35 I 23 IV IWTO I IMessage address 
I I I I I 
I 35 I 23 IV 1 WI'OR I I Message address 
I I I I I 
I 36 I 24 IV IWTL I IAddress of message 
I I j I I 
I 37 I 25 II ISEGLD I ISegment name address 
I I I I I 
I 37 I 25 II ISEGWT I Iseqment name address 
I I I I I 
I 38 I 26 II ITTROUTER I I 
I I I I I 
I 39 I 27 IIII,IV ILABEL I IParameter list address I L ________ ~ _____ i_ ______ ~ ____________ ~ ________________________ i_ _________________________ J 

(Part 2 of 5) 

210 Programmer's Guide to Debugging (Release 21) 



r-------~-----T-------T------------T-----------------------~--------------------------, 
IDecimal I Hex. I I I I I 
I No. I No. I Type I Macro I Register 0 I Register 1 I 
t--------t-----t-------t------------t------------------------t--------------------------i 
I 40 28 I, II, IEXTRACT IParameter list address I 
I III I I I 
I I I I 
I 41 29 II, IIIIIDENTIFY Entry point name address I Entry point address I 
I I I I 
I 42 2A II, IIIIATTACH I I 
I I I I 
I 43 2B II, IIIICIRB Entry point address 'Size of work area in , 
I I Idoublewords I 
I I I I 
I 44 2C I I CHAP + Increase priority ITCB address I 
I I - Decrease priority I I 
I 45 2D II iOVLYBRCH I I 
I I I , 
I 46 2E I I'ITIMER 11: . Cancel I 
I I , , 
I 47 2F II ISTIMER Exit address ITimer interval address I 
I I I I 
I 48 30 I, II IDEQ IQCB address I 
I I I I I 
I 49 31 III ITEST I I 
I I I I 
I 50 32 I I I 
I I I I 
I 51 33 IV I SNAP I IParameter list address 
I I I I 
I 52 34 IV I RESTART I IDCB address 
I I I I 
I 53 35 III IRELEX IKey address IDCB address 
I I I I 

54 36 II IDISABLE I I 
I I I 

55 37 IV I EOV I EOB address IDCB address 
I I I 

56 38 I, II IENQ IQEL address IQCB address 
I I 

56 38 I, II IRESERVE I 
, I 

57 39 III lFREEDBUF DECB address IDCB address 
I I 

58 3A I I RELBUF IDCB address 
I I 

58 3A I IREQBUF IDCB address 
I I 

59 3B III ,OLTEP I 
J I 

60 3C III I STAE 0 Create SCB I Parameter list address 
I 14 Cancel SCB I 
I 18 0 I 

61 3D III ITTSAV I ,Parameter list address 
I I I 

62 3E II I DETACH I ITCB address 
I I I 

63 3F IV I CHKPT I I DCB address 
I I I 

64 40 III IRDJFCB I IAddress of parameter list 
I I lof DCB addresses 
I I I 

65 41 II IQWAIT I IParameter list address 
I I I 

I 66 42 I IV I BTAMTEST I I I L ________ ~ ____ ~ ______ ~ ____________ ~ ________________________ ~ _________________________ J 

(Part 3 of 5) 

Appendix B: SVCs 211 



r--------T-----T-------T------------T-----------------------~--------------------------, 
I Decimal I Hex. I I I I I 
I No. I No,. I Type I Macro I Register 0 I Register 1 I 
~-------_+-----+-------+------------+------------------------+--------------------------f 
I 67 I 43 I II I ENDREADY I I QPOST 
I I I I t 
I 68 I 44 IV ISYNADAF ISame as register 0 on Isame as register 1 on 
I I I I entry to SYNAD lentry to SYNAD 
I I I I I 
I 68 I 44 IV I SYNADRLS I I 
I I I I I 
I 69 I 45 III IBSP I IDCB address 
I I I I I 
I 70 I 46 II I GSERV I IParameter list address 

I I I I 
71 I 47 III IRLSEBFR I IParameter list address 

I I I I 
71 I 47 III IASGNBFR I IParameter list address 

I I I I 
71 I 47 III IBUFINQ I IParameter list address 

I I I I 
72 I 48 IV ICHATR I IParameter list address 

I I I I 
73 I 49 III lSPAR IParameter list address 

I I I 
74 I 4A III IDAR IParameter list address 

I I I 
75 I 4B III IDQUEUE IParameter list address 

I I I 
76 I 4C IV; IFBS'lAT I 

I I I 
77 I 4D IV I QTAMTEST I 

I I I 
78 I 4E III IWSCAN I 

I I I 
79 I 4F I I STATUS I 

I I I I 
80 I 50 III IIKASVC I I 

I I I I 
,81 I 51 IV I SETPRT I I 
I I I I I 
I, 82 I 52 IV I DASDR I I 
I I I I I 
I 83 I 53 III ISMFWTM I IMessage address 
I I I I I I 
I 84 I 54 I I GRAPHICS I UCB address and buffer I I 
I I I I restart address I I 
I I I I I 
I 85 I 55 IV I DDRSWAP I I 
I I I I I 
I 86 I 56 IV I ATLAS I Parameter list address I 
I I I I I 
I 87 I 57 III 100M IIf zero A DOM message I.D. I 
I I I II! negative A pointer to a list of DOMI 
I I I I message I. Os I 
I I I I I 
I 88 I 58 III IMOD88 IRoutine code DCB address I 
I I I I I 
I 89 I 59 III IEMSRV I Parameter list address I 
I I j I I 
I 90 I SA IV I XQMNGR IAddress of list of lQMPA address I 
I I I I ECB/IOB pointers I I 
I I I I (optional) I I 
I I I I I I 
I 91 I 5B III IVOLSTAT IDCB address I zero: issued by CLOSE I 
I I I I I I Non-zero: issued by EOV I L ________ ~ ____ ~ ______ ~ ____________ ~ ____________________ - ___ ~ _________________________ J 

(Part 4 of 5) 

212 Programmer's Guide to r-'··',ugging (Release 21) 



r------~-----~------T------------T------------·-----------~--------------------------, 
I Dec imal I Hex. I j I I I 
I No. I No. I Type I Macro I Register 0 I Register 1 I 
~--------f-----f-------+------------+------------------------+--------------------------~ 

92 5C I TCBEXCP I 
I 

93 5D IV TGET/TPUT TJID & buffer Size Address of User's Buffer 

94 5E 

95 SF 

96 60 

91 61 

98 62 

99 63 

100 64 

101 65 

102 66 

103 61 

104 68 

105 69 

109 6D 

116 14 

IV 

I 

III 

III 

IV 

IV 

III 

I 

I 

STERMINAL 
STATUS 

TSEVENT 

STAX 

TEST-TSO 

PROTECT 

none 

FIB 
I 
IQTIP 
I 
IAQCTL 
I 
I XLATE 
I 
I 

IV I'IOPCTL 
I 
I 

III IIMAGLIB 
I 

IV I 

I 
I 
IAT 
I 

Entry code 

TJID/Entry Code or 0 

Entry code 

Field length 

Subroutine indicator 

Not Always Applicable 

Parameter List Address 

Parameter List Address 

Parameter List Address 

IParameter List Address 
I 
IAction byte and field 
I address 
I 
IAddress of operator 
Icontrol word area 
I 
IAction indication 

contents used by called routine --

contents used by called routines --

111 15 I II I contents used by called routines --________ ~ _____ i_ ______ ~ ____________ ~ ___________________________________________________ J 

(Part 5 of 5) 

Appendix B: SVCs 213 



214 PrOgrammer's Guide to Debugging (Release 21) 



Completion codes issued by operating system 
routines are often caused by problem 
program errors. This appendix includes the 
most common system completion codes, their 
probable causes, and how to correct the 
error or locate related information using a 
dump. For a more comprehensive coverage of 
completion codes, see the publication 
Messages and Codes. 

OCx A program check occurred without a 
recovery routine. If bit 15 of the 
oid program PSW (PSW at entry to 
ABEND) is on, the problem program had 
control when the interruption 
occurred; -x- reflects the type of 
error that causes the interruption: 

~ Cause 
1 Operation 
2 Privileged operation 
3 Execute 
4 Protection 
5 Addressing 
6 Specification 
7 Data 
8 Fixed-point overflow 
9 Fixed-point divide 
A Decimal overflow 
B Decimal divide 
C Exponent overflow 
D Exponent underflow 
E Significance 
F Floating-point 

The correct register contents are 
reflected under the heading -REGS AT 
ENTRY TO ABEND- in an ABEND/SNAP dump. 
In a stand-alone dump, register 
contents can be found in the register 
save area for ABEND'S SVRB. 

OFl A program check occurred in the 
interruption handling part of the 
input/output supervisor. The 
applicable pr~ram check PSW can be 
found at locat1on 40(28). (In systems 
with MFT, this PSW is valid only if 
the first four digits are 0004). 

The problem program can be responsible 
for this code if: 

1. An access method routine in the 
problem program storage area has 
been overlaid. 

2. An lOB, DCB, or DEB has been 
modified after an EXCP has been 
issued" but prior to the 
completion of an event. 

Appendix C: Completion Codes 

If a trace table exists (trace option 
was specified at system generation), 
the instruction address in the new 
program check PSW, location 104(68), 
contains the address of a field of 
register contents. This field 
includes registers 10 through 9 on an 
ABEND/SNAP dump, or 10 through 1 on a 
stand-alone dump. 

If no trace table exists, the above 
field contains registers 10 through 1 
on both ABEND/SNAP (MFT only) arod 
stand-alone dumps. 

OF2 Most frequently caused by incorrect 
parameters passed to a type I SVC 
routine. 

100 A device has been taken off-line 
without informing the system, or a 
device is not operational. 

If a trace table exists, the most 
current entry is an SIO entry 
beginning with 30. The last 3 digits 
of the first word give the device 
address. 

If a trace table does not exist, 
register 1 (in the SVRB for the ABEND 
routine) contains a pointer to the lOB 
associated with the device. 

101 The wait count, contained in register 
o when a WAIT macro instruction was 
issued, is greater than the number of 
ECBs being waited upon. 

102 An invalid ECB address has been given 
in a POST macro instruction. 

If a POST macro instruction has been 
issued by the problem program, the ECB 
address is given in register 1 of 
either the trace table entry or the 
SVRB for the ABEND routine. 

If the POST was issued by an I/O 
interruption handler, the ECB address 
can be found in the lOB associated 
with the event. 

106 During a transient area load or a 
dynamic load resulting from a LINK, 
LOAD, XCTL, or ATTACH macro 
instruction, the fetch routine found 
an error.. A description of the error 
is contained in register 15 of ABEND's 
SVRB register save area: 

Appendix C: Completion Codes 215 



00 The control program found an 
invalid record type. 

OE The control program found an 
invalid address. The problem 
program may contain a relocatable 
expression that specifies a 
location outside the partition 
boundaries. 

OF A permanent I/O error has 
occurred. This error can probably 
be found in the trace table prior 
to the ABEND entry. 

Register 6 of ABEND's SVRB register 
save area points to the work area used 
by the fetch routine.. This area 
contains the lOB, channel program, RLD 
buffer, and the BLDL directory entry 
associated with the program being 
loaded. 

122 The operator cancelled the job and 
requested a dump. 

155 An unauthorized user (a user other 
than dynamic device reconfiguration) 
has issued SVC 85. The user's task 
has been abnormally terminated by 
dynamic device recognition. 

200 The error was detected when an I/O 
operation was requested and the 
storage. protection keys of the lOB, 
ECB, and DCB were not the same as the 
key in the DEB. (checked for MVT 
only) 

201 This completion code is identical to 
102, but applies to the WAIT macro 
instruction instead of POST. 

202 An invalid RB address was found in an 
ECB. The RB address is placed in the 
ECB when a WAIT macro instruction is 
issued. 

213 The error occurred during execution of 
an OPEN macro instruction for a data 
set on a direct-access device. 
Either: 

1. The data set control block (DSCB) 
could not be found on the direct 
access device. 

2. An uncorrectable input/output 
error occurred in reading or 
writing the data set control 
block. 

Register 4 contains the address of a 
combined work and control block area. 
This address plus x'64' is the address 
of the data set name in the JFCBDSNM 
field of t.he job file control block 
(JFCB) • 

222 The operator cancelled the job without 
r~questing a dump. The cancellation 
was probably the result of a wait 
state or loop. . 

301 A WAIT macro instruction was issued, 
specifying an ECB which has not been 
posted complete from a previous event. 
Either: 
1. The ECB has been reinitialized by 

the problem program prior to a 
second WAIT on the same ECB, or 

2. The high order bit of the ECB has 
been inadvertently turned on. 

308 The problem program requested the 
loading of a module using an entry 
point given to the control program by 
an IDENTIFY macro instruction. 

Register 0 of LOAD's SVRB register 
save area contains the address (or its 
complement) of the name of the module 
being loaded. 

400 'I'he control program found an invalid 
lOB, DCB, or DEB. Check the following 
blocks for the indicated information: 

• lOB - a valid DCB address. 

• DCB - a valid DEB address. 

• DEB - 10 of OF and a valid UCB 
address. 

• UCB - a valid identification of 
}'r'. 

Note: In systems with MVT, this code 
may appear instead of a 200 code, for 
the reasons given under 200. 

406 A program has the "only loadable" 
attribute or has an entry paint given 
to the control program by an IDENTIFY 
macro instruction. In either case, 
the program was invoked by a LINK, 
XCTL, or ATTACH macro instruction. 

Register 15 of the LINK, XCTL, or 
ATTACH SVRB register save area 
contains the address of the name of 
the program being loaded. 

506 The error occurred during execution of 
a LINK, XCTL, ATTACH, or LOAD macro 
instruction in an overlay program or 
in a program that was being tested 
using the TESTRAN interpreter. 

The program name can be found as 
follows: 

1. If a LOAD macro instruction was 
issued, register 0 in the trace 
table SVC entry or in the SVRB 

216 Programmer's Guide to Debugging (Release 21) 



register save area contains the 
address (or its complement) of 
the program name. 

2. If a LINK, XCTL, or ATTACH was 
issued, register 15 of the 
associated SVRB register save 
area contains the address of a 
pOinter to the program name. 

Note: Programs written in an overlay 
structure or using TESTRAN should not 
reside in the SVC library. 

604 During execution of a GETMAIN macro 
instruction, the control program found 
one of the following: 

1. A free area exceeds the 
boundaries of the main storage 
assigned to the task. This can 
result from a modified FQE. 

2. The A-operand of the macro 
instruction specified an address 
outside the main storage 
boundaries assigned to the task. 

605 During execution of a FREEMAIN macro 
instruction, the control program found 
that part of the area to be freed is 
outside the main storage boundaries 
assigned to the task, possibly 
resulting from a modified FQE. 

Item 1 under the 604 completion code 
is also applicable to 605. 

606 During execution of a LINK, XCTL, 
ATTACH, or LOAD macro instruction, a 
conditional GETMAIN request was not 
satisfied because of a lack of 
available main storage for a fetch 
routine work area. Consequently, the 
request was not satisfied. 

The name of the load module can be 
found as described under completion 
code 506. 

60A Results from the same situations 
described under 604 and 605 for R-form 
GETMAIN and FREEMAIN macro 
instructions. 

613 The error occurred during execution of 
an OPEN macro instruction for a data 
set on magnetic tape. An 
uncorrectable input/output error 
occurred in tape positioning or in 
label processing. 

700 A unit check resulted from an SIO 
issued to initiate a sense command. 

The defective device can be determined 
from the SIO trace table entry that 

reflects a unit check in the CSw 
status. 

704 A GETMAIN macro instruction requested 
a list of areas to be allocated. This 
type of request is valid only for 
systems with MVT. 

The applicable SVC can be found in a 
trace table entry or in the PSW at 
entry to ABEND. 

705 Results from the same situations 
described under 704 for FREEMAIN macro 
instructions • 

706 During execution of a LINK, LOAD, 
XCTL, or ATTACH macro instruction, the 
requested load module was found to be 
not executable. 

The name of the module can be found as 
described under the completion code 
506. 

804 The error occurred during execution of 
a GETMAIN macro instruction with a 
mode operand of EU or VUe More main 
storage was requested than was 
available. 

S06 The error occurred during e~ecution of 
a LINK, XCTL, ATTACH, or LOAD macro 
instruction. 

An error was detected by the control 
program routing for the BLDL macro 
instruction. This routine is executed 
as a result of these macro 
instructions if the problem program 
names the requested program in an EP 
or EPLOC operand. The contents of 
register 15 indicate the nature of the 
error: 

X'04' The requested program WrtS 

not found in tht indicat.ed 
source. 

X'OS' An uncorrectable 
input/output error occurred 
when the BLDL control 
program routine attempted to 
search the directory of the 
library indicated as 
containing the requested 
program. 

Register 12 contains the address of 
the BLDL list used by the routine. In 
systems with MFT this address plus 4 
is the location of the S-byte name of 
the requested program that could not 
be loaded. In systems with MVT, 
registers 2 and 3 contain the name of 
the requested module. 

Appendix C: Completion Codes 217 



80A The error occurred during execution of 
an R-form GETMAIN macro instruction. 
More main storage was requested than 
was available. 

905 The address of the area to be freed 
(given in a FREEMAIN macro 
instruction) is not a multiple of 
eight. The contents of register one 
in either the trace table entry or 
ABEND's SVRB register save area 
reflect the invalid address. 

90A Results from the same situations 
describea under 905 for R-form 
FREEMAIN macro instructions. 

AOS The error occurred during execution of 
a FREEMAIN macro instruction. The 
area to be freed overlaps an already 
existing free area. This error can 
occur if the address or the size of 
the area to be freed were incorrect or 
modified. 

The contents of registers 0 and 1 in 
either the svc trace table entry or 
ABEND's SVRB register save area 
reflect the size and address. 

AOA Results from the same situations 
described under AOS for R-form of 
GETMAIN and FREEMAIN macro 
instructions. 

B04 This error occurred during execution 
of a GETMAIN macro instruction. A 
subpool number greater than 127 was 
specified. The problem program is 
restricted to using subpools 0-127. 
This error can occur if the subpool 
number was either incorrectly 
specified or modified. 

A displacement of nine bytes from the 
list address passed to GETMAIN in 
register 1 contains the subpool 
number. Register 1 can be found in 
either the SVc trace table entry or 
ABEND's SVRB register save area. 

BOS Results from the same situation 
described under B04 for FREEMAIN macro 
instructions • 

BOA Results from the same situations 
described under B04 and BOS for R-form 
of GETMAIN and FREEMAIN macro 
instructions. 

The subpool number can be found in the 
high order bytes of register 0 in 
either the svc trace table entry or 
ABEND's SVRB register save area. 

B37 The error occurred at an end of 
volume. The control program found 
that all space on the currently 
mounted volumes was allocated, that 
more space was required, and that no 
volume was available for demounting. 

Either allocate more devices or change 
the program so that a device will be 
free when a volume must be mounted. 

Fnn An SVC instruction contained an 
invalid operand; nn is the hexadecimal 
value of the SVC. 

This error can occur if either an 
invalid instruction was issued by the 
problem program or an operand 
referring to an optional function was 
not included during system generation. 

218 Programmer's Guide to Debugging (Relea3e 21) 



Appendix 0: System Module Name Prefixes 

All load modules associated with a specific operating system component 
have a common prefix on their module names. This appendix lists the 
module name prefixes and the associated system component(s). 

Prefix 

IBC 

lEA 

IEB 

lEe 

lEE 

IEF 

lEG 

IEH 

lEI 

Component 

Independent utility programs 

Supervisor, I/O supervisor, and 
NIP 

Data set utility programs 

Input/output supervisor 

Master scheduler 

Job scheduler 

TESTRAN 

system utility programs 

Assembler program during system 
generation 

IEJ FORTRAN IV E compiler 

IEK FORTRAN IV H compiler 

IEM PL/I F compiler 

IEP COBOL E compiler 

IEQ 

lER 

lES 

lET 

lEU 

lEW 

COBOL F compiler 

Sort/Merge program 

Report program generator 

Assembler E 

Assembler F 

Linkage editor/overlay 
supervisor/program fetch 

lEX ALGOL compiler 

lEY FORTRAN IV G compiler 

IEZ system Interfaces 

IFB Environment recording routines 

IFC 

IFD 

Environment recording and print 
routines 

Online test executive program 

Prefix 

IFF 

IFG 

IGC 

IGE 

IGF 

IHA 

IHB 

IHC 

Component 

Graphic programming support 

Close, open, and related routines 

Transient SVC routines 

I/O error routines 

Machine check handler program 

System control blocks 

Assembler during expansion of 
supervisor and data management 
macro instructions 

FORTRAN library subroutines 

IHD COBOL library subroutines 

IHE PL/I library subroutines 

IHF PL/I library subroutines 

IHG Update analysis program 

lHl 

IHJ 

IHL 

lHK 

lIN 

110 

lIP 

lIQ 

IIR 

lIT 

Object program originally coded in 
ALGOL language 

Checkpoint/restart 

Generalized Trace Facility 

Remote job entry 

1094 emulator program for the 
Model 85 

1014 emulator program on the 
Models 155 and 165 

1080 emulator program on the Model 
165 

1401/1440/1460 emulator program on 
Models 135, 145, and 155 

1440/1010 emulator program on 
Models 145 and 155 

109/1090/1094/1094 II emulator 
program on the Model 165 

Appendix D: System Module Name Prefixes 219 



Page of GC28-667o-5,6, Revised April 16, 1973, By TNL: GN28-2545 

1IU 7074 emulator program on the Model 11<F US AS COBOL cOlJ1piler 
155 

IRA Graphic Job Processor 11<J Time Sharing 

11<D Satellite graphic job processor 
messages ILB USAS COBOL subroutines 

220 Programmer's Guide to Debugging (Release 21.7) 



ABEND abnormal end-of-task 

APR alternate path retry 

CCW channel command word 

CDE contents directory entry 

CPU central processing unit 

csw channel status word 

CVT communications vector table 

DAR damage assessment routine 

DeB data control block 

DO data definition 

DDR dynamic device reconfiguration 

DEB data extent block 

DPQE dummy partition queue element 

DQE descriptor queue element 

EeB event control block 

FBQE free block queue element 

FQE free queue element 

FRB finch request block 

G<.2E gotten subtask area queue element 

lOB input/output block 

IPL initial program loading 

IRB interrupt request block 

LLE load list element 

LPRB loaded program request block 

LRB loaded request block 

Appendix E: List of Abbreviations 

MFT 

MVT 

multiprogramming with a fixed 
number of tasks 

multiprogramming with a variable 
number of tasks 

NIP nucleus initialization program 

PIB p?rtition information block 

PQE partition queue element 

PRB program request block 

PSA prefixed storage area 

psw program status word 

QCB queue control block 

QEL queue element 

RB request block 

SCB STAE control block 

SIO start input/output 

SIRB supervisor interrupt request block 

SPQE subpool queue element 

SVC supervisor call 

SVRB supervisor request block 

SYSOUT system output 

TCB task control block 

TIOT task input/output table 

UCB unit control block 

WLE wait list element 

XCTL transfer control 

XL extent list 

Appendix E: List of Abbreviations 221 



222 Programmer's Guide to Debugging (Release 21) 



Appendix F: ECB Completion Codes 

r-------------T--------------------------------------------------------------------------, 
I Hexadecimal I 1 
I Code I Meaning I 
~----~--------+-------------------------------------------------------------------------~ 
I 7FOOOOOO I Channel progrdIII has teI'minated without error. (CSW contents can be I 
I I useful.> I 
I I I 
I 41000000 I Channel program has t.erminated with permanent error. (CSW cont:ents can I 
I I be useful.> I 
I I I 
I 42000000 I ChanIEl program has terminated because a direct access extent address I 
I I has been violated. (CSW contents do not apply.) I 
I I I 
I 44000000 I Channel program has been intercepted because of permanent error I 
I I associated with device end of previous request. You may reissue the I 
I I intercept.ed requf'st. (CSW contents do not. apply.) I 
I I I 
I 48000000 I Request_ element for channel program has been madf-) available after it I 
I I has been purged. (CSW contents do not apply.) I 
I I I 
I 4FOOOOOO I Error recovery routines have been entered because of direct access I 
I I error but are unable to read home address of record o. (CSW contents I 
I I do not apply.) I l _____________ ~ _____________________________________________ . ____________________________ J 

Appendix F: ECB Completion Codes 223 



224 programmer's Guide to Debugging (Release 21) 



Page of GC28-6670-5,6, Revised April 16, 1973, By TNL: GN28-2545 

Appendix G: UCB Sense Bytes 

wno Bynl 
.. 

~ DEVICE 0 1 2 3 .c 5' 6 7 0 I 2 3 4 5 6 7 

CMD INT BUS EQ DATA OVER- WORD DATA 
2.coo REJ REQ OUT CHK CHK RUN CNT CNVTT 

ZERO CHK 

OO-NON-X$T TU 
7 

AT FILE NOT 
NOISE 01- NOT REAOY LOAD WRT 

PROT- CAP-
10-111>'1' .. NO IIWO TRK STATUS 
II-RD'I'.IIWI>IIO POINT ECT ABLE 

2311 , CMD INT BUS EQ DATA OVER- TRK SEEK 
2a.il REJ REQ OUT CHK CHK RUN CCND CHK 

CHK 

DATA TRK END IN- NO FILE UISSIIjG OVER-
CHK OVER- OF VALID REC PROT 

AOII flOW 
FLD RUN CYL SEQ FOUND MIlKR INL 

2301,2302 CMD INT BUS EQ DATA OVER- INVAL 
2303,2314 REJ REQ OUT CHK CHK RUN ", ADDR 
2319,2820 

DATA TRK END NO sERVICE OVER-
CHKIN OVER- OF INVAL REC FILE OVER- FLOW 
COUNT RUN CYl SEQ FOUND PROT RUN INL 

CMD SHOULD BUS SHOULD DATA SHOULD BUFFER SHOULD 
2250 REJ NOT OUT NOT CHK NOT RUN- NOT 

OCCUR OCCUR OCCUR NING OCCUR 

UGHT END CHAR 
PEN ORDER MODE 
DETECT SEQ 

-
CMO INT BUS EQ DATA SHOULD SHOULD ILLGL 

2280 REJ REQ OUT CHK CHK NOT NOT SEG 
OCCUR OCCUR 

f------ ' 
READ FILM RECRDR SHOULD SHOULD 2s.co 2840 
COUNT LOW FORCED NOT NOT OUTPUT INPUT GRAPH-

CHK GAP OCCUR OCCUR CHK CHK IC CHK 

CMO INT BUS EQ DATA SHOULD SHOULD ILlGL 
2282 REJ REQ OUT CHK CHK NOT NOT SEGN 

OCCUR OCCUR 

READ 
FILM 

RECRDR FILM SHOULD 2s.co 2840 
COUNT FORCED MOTIO" NOT OUTPUT INPUT GRAPH-

CHK LOW GAP LIMIT OCCUR CHK CHK ICCHK 

", '" 
1052, CMD tNT BUS EQ 

" '/: {- .i '" " 

2150 REJ REQ OUT CHK .... " 

1285 CMD INT BUS EQ DATA OVER- NON KYeo 
REJ REQ OUT CHK CHK RUN RCVY CORR ',' 

1287 CMD INT BUS EQ DATA OVER- NON KYeo 
REJ REQ OUT CHK CHK RUN RCVY CORR 

~--~ - SHOUlD 
CMD INT BUS EQ DATA OVER- NON 

1288 REJ REQ OUT CHK CHK RUN RCVY NOT 
OCCUR 

TAPE LATE NO SHOULD INVAL SHOULD SHOULD SHOULD 

MODE STKR DOC NOT OP NOT NOT NOT 
SELECT :~UND OCCUR OCCUR OCCUR OCCUR ---

SHOULD SHOULD '---.-.. 
SHOULD END NO 

I NVAl 
SHOULD SHOULD 

NOT OF DOC NOT NOT NOT NOT 
OCCUR PAGE FOUND OCCUR OP OCCUR OCCUR OCCUR ----- f-_.- .----- -- --.- ---

CMD INT BUS EQ DATA SHOULD POSN SHOULD 
2495 REJ REQ OUT CHK CHK NOT CHK NOT 

OCCUR OCCUR 

t----, .. -,--_., .,----------- '--- - ,,-

2540, CMD INT BUS EQ DATA 
UN-

2021 REJ REQ OUT CHK CHK 
USUAL 

I CMD " 

3505, CMD INT BUS EQ DATA NOT ABHOR- ~~~~;, MAL 
3525 REJ REQ OUT CHK CHK USED FORMAT (BYPASS 

Run K[Y 

PERM- AUTO- MOTIOIj RETRY 

ANENT MAliC IotALFUIjC-
AFT(R 
INT llEO 

ERROR RETRY TIOIj COMPLETE 

CMD INT BUS EQ DATA BUFFER LOAD 
3211 REJ REQ OUT CHK CHK PARITY CHK CH 9 

-'----'--c--"----1-------- ----- CHK 
.'-_r---"--' , 

1403, CMD INT BUS EQ ~ ~ , CH 9 
1443 REJ REQ OUT CHK 

1------ ---,---1--- -- '---

CMD PRINT PRINT LINE 'ORMS~~J"~'-J RETRY CHK QUAL- POS CHK SUP M~~~~1j 
lTV 

"--.--.-.~-,. ----'-- --~ ---.-........ .,. .. ,--~. ----.-'---

'. 

1442,2596 CMD INT BUS EQ DATA OVER-
2501,2520 REJ REQ OUT CHK CHK RUN 

2671, CMD INT BUS EQ DATA •. ' 
2822 REJ REQ OUT CHK CHK 

" 

CMD INT BUS EQ 
SHOULD SHOULD ISHOULD SHOULD 

2260 NOT NOT NOT NOT 
REJ REQ OUT CHK OCCUR OCCUR OCCUR OCCUR 

2701, CMD INT BUS EQ DATA OVER- LOST TIME 
2702 REJ REQ OUT CHK CHK RUN DATA OUT 

:' ,. 

1419/1275 CMD INT BUS NOT DATA OVER- AUTO NOT 
PCU REJ REQ OUT USED CHK RUN SELECT USED 

.. 
~NOI 

I>OC AMT "ROCl.. ACCT' TRANSIT SERIAL' 
UNOlil FIELD ;~t~L FIELD FIELD FIELD USED USED REAO 
I4[AO VALID VALID VALID VALID VALID 

1419/1275 CMD tNT BUS NOT NOT LATE AUTO OP 
SCU REJ REQ OUT USED USED STKR SELECT ATT 

CHK SELECT 

3330, CMO INT BUS EQ DATA OVER-
,'., 

33J3 REJ REQ OUT CHK CHK RUN 
PERM INVLD END STATE NO FILE 

WRITE OPER-

ERR TRK OF VAR REC 
PROT 

INHIBIT ATION 
FORMAT CYL PRES FOUND INL 

CMD INT BUS EQ DATA OVER- WORD DATA 
3410/3<411 REJ REQ OUT CHK CHK RUN CNT CNVTT 

ZERO CHK 

TU TU 7 AT 
WRT 

FILE NOT 
NOISE STATUS STATUS TRK LOAD PROT- CAP· 

A B TU POINT STATUS ECT ABLE 

CMD INT BUS EQ DATA OVER-
2305 REJ REQ OUT CHK CHK RUN 

" :, 

PERM 
I NVlD END NO 

FII.E 
OPER-

TRK OF REC ATION 
ERR FORMAT CYL FOUND PROT INl 

CMD INT BUS EQ DATA OVER- WORD DATA 
3420/3803 REJ REQ OUT CHK CHK RUN CNT CNVTT 

ZERO CHK 

TU TU 7 LOAD WRT FILE NOT 
NOISE STATUS STATUS TRK POINT STATUS PROT- CAP-

A 8 TU ECT ABLE 

Appendix G: ueB Sense Bytes 225 



Page of GC28-6670-5.6. Revised April 16. 1973. By TNL: GN28-2545 

BYTE 2 BYTE 3 

~ DEVICE 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

6 &. 7 INDICATE 
2400 81TS 0-7 INDICATE A TRACK IS IN ERROR NO ERROR OR 

MUL TI-ERROR 

R/W SKEW 0-800 BKWD COM-
VRC LRCR SKEW CRC REO 0-1600 STATUS PARE 

VRC 
.' SERIAL- TAG ALU UNSEL 2311, UN-

IZER LINE 
2841 SAFE ; CHK CHK 

CHK STATUS 
ON READ WRITE 

END 
SEEK 

READY OF 
LINE SAFETY SAFETY CYL 

INCMPL 
'----- '---

2301,2302 UN-
SHIFT 

SKEW CTR COMP 
2303,2314 SAFE REG FAIL CHK CHK 
2319,2820 CHK 

LRC LRC lRC LRC 
BIT 0 BIT 1 BIT 2 BIT 3 

BUFFER ADDRESS REGISTER BUFFER ADDRESS REGISTER 
2250 

BIT 151 81T 141 81T 13[ BIT 12 I BIT 11 I BIT 10 I BIT 9 BIT 8 I BIT 7 I ~ BIT 5 I 81T 4 181T 3 I 81T 2 I BIT I 

BUFFER ADDRESS REGISTER BUFFER ADDRESS REGISTER 
2280 

81T 151 8tT 141 BIT 13 I BIT 12 I BIT 11 I BIT 10 I BIT 9 81T 8 I BIT 7 I 81T 6 I BIT 5 I BIT 4 I BIT 3 I 81T 2 I BIT , 

.. ,' BUFFER ADDRESS REGISTER 
"; 

BUFFER ADDRESS REGISTER 
2282 

BIT 15 81T 14 BtT 13 BIT 12 81T 11 BIT 10 BIT 9 BIT 8 BIT 7 81T 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 

c .. "" CARR CARR PLATEN PLATEN RIBBON TRAIN 
3211 ""ILED 

SEQ FAILED 
FAILED FORMS MO- OVER-TO STOP TO JAM "OVE CHK CHK TOADV MT"ACT TION LOAD 

UCS8 PLB FCB COIL HAM- FIELD USCAR SEP 

PARITY PARITY PARITY PROT MER ENG SYNC SYNC 
CHK FIRE CHK CHK 

3330, '\ 
COR- ENV 
RECT- DATA 

3333 ABLE ' PRESENT 
REST ART COMMAND 

'--- 1----------.- ~ - ----.----- . --~------- "-_ .. .-,~~." --- .~-

BUF COR-
2305 LOG RECT- REST ART COMMAND 

FULL ABLE 
. ~ - -" "~-. .~-.---.-.--".-----

3505, 
USED FOR DIAGNOSTIC PURPOSES ONLY 3525 USED FOR DIAGNOSTIC PURPOSES ONLY 

3410/3411 TRACK IN ERROR MTE/ 
END 

ENV 
USOO 

VRC SKEW DATA IPI BKWD 
lRCR CHK/ CHK SET IN 

CRCR TU 

3420/3803 TRACK IN ERROR 
END VRC 1600 C 

R/W MTE/ SKEW 
OAT .. ENV 8PI 

BKWD COM-
VRC LRCR CHK/ SETIN 

CItC CHK TU PARE 

BYTE 4 BYTE 5 

ECHO 
RES READ WRITE I DELAY SEQ SEQ SEQ 

2400 TAPE CLOCK CLOCK CNTR IND IND IND 
ERR UNIT ERR ERR ERR C B A 

COMMAND IN PROGRESS WHEN OVERFLOW INCOMPLETE OCCURS 
OR 
ZERO 

". 

2311, 
2841 

COMMAND IN PROGRESS WHEN OVERFLOW INCOMPLETE OCCURS 
WRITE X'05' OR 
READ -= X'06' ZERO 

2301,2302 SEQ SEQ SEQ SEQ I SEQ SEQ SEQ SEQ 
2303,2314 IND IND IND IND IND lND IND IND 
2319,2820 0 1 2 3 4 5 6 7 

3330, 
PHYSICAL DRIVE IDENTIFICATION 3333 CYLINDER ADDRESS 

-.-----~-
_._- --- -' ~ _. , .. ~~ . - -------- .. 

2305 CYLINDER ADDRESS 

TAPE TAPE DIAG TAPE 
3410/3411 UNIT 

UNIT EOT TRK UNIT SPARE pos 
._- _. on ~ .... _ •• 

CHK REJ CHK CHK 
Alii-- TAPE 

~- TAPE --r--REJ WRITE \ MICRO· 
3420/3803 H"RD- TAPE INDI- TGR PRG .. LWR UNIT 

W""E DETECT ERROR 
ERAOIt UNIT CATE VRC ERROR CHK 

-......... _-..... " ·w,,·i· ,- ... _. "·--"--··r- .. ~-- .. - -.~-- _.--_.-
NEW NEW PE PARITY TACHO FALSE 
SUB- SUB- T .. PE 10 COM- METER END RpQ .... RI( 

SYSTEM SYSTEM CHI( BURST PARE CIiK MARK 
NEW NEW WRT PE START PARTIAL 

EXCESSIVE 

SUB- SUB-
T .. PE 10 READ POST- RpQ .. ARK RECORD .... PLE 

SYSTEM SYSTEM CHI( BURST CHK ORT" 

BYTE 6 BYTE 7 

3330, * RE- CYL DIFFER HEAD ADDR 
3333 VERSE HIGH HIGH 

FORMAT OF REMAINING ENCODED ERROR 
SENSE BYTES (8-23) MESSAGE 

2305* CURRENT HEAD ADDR ENCODED ER~OR MESSAGE 

7 SHORT DUAL ALTER-
3410/3411 TRK GAP DEN- NATE TU MODEL 

TU MODE SITY DENSITY 

LAMP TAPE.OT· T .. PEIOT DATA 

FAILURE TOM LEFT 1l)MItIGH RESET SECURITY 
COLU .. N COLUMN E""Se 

CHK CHII CHII KEY CHII , 
WitT DUAL NRZI 

3420/3803 7 TRK CURRENT DEN- DEN- TAPE UNIT MODEL DEFINED 
F .. ILUItf. SITY SITY 

T .. PE t .. P[ DATA I AIR II LAMP lOTTO .. lOTTO" 
RESET SECURITY ERASE IIE""ING LOAD 

FAILURE LEFT R'GHT KEY ERASE HEAD :~~~- FAILURE 

226 Programmer's Guide to Debugging (Release 21.7) 



3420/3803 

3420/3803 

3420/3803 

134,0/,,,,, 

3420/3803 

3420/3803 

3420/3803 

CMD 
STATUS 
REJ 

82 IUS 
MIIITY 
LSIIAOOR 
[RII 

I'OW(A 
CHIC/ 
OVEII
TEMPER
ATURE 

BYTE 8 

END 
VELOCITY 
CHI( 

NO : START 
READ- . VELO-
BACK CITY 
DATA CHK 

EARL YEARLY 
BEGIN END 
RDBK RDBK 
CHK CHK 

BYTE 14 

CONTROL UNIT 
UNIQUE 10 LOW 

BYTE 16 

TAPE UNIT 
UNIQUE ID 

BYTE 18 

SLOW 
BEGIN 
ROOK 
CHK 

EC lEVEL OF TAPE UNIT 

BYTE 20 

PRIMED FOR DEVICE END 

TUF I TUE I TUD I TUC I TUB I TUA I TU9 I TUS 

BYTE 22 

FRU IDENTifiERS FOR CONTROL UNIT 

~ ___ •• _..L ________ ._._. ___ •... _. ____ . ____ . __ • _______ . ....J 

Bl BUS ROSI 
PAR/LSR PAR 

~~RDR ERR 

CONTROL UNIT 
DFN51TY 

8YTE 9 

BYTE 11 

XFR/ INSTRU •. 
LOW CTION 

~~Rl DECODE 

IItV 1 
MICIIO· 
PflGM 
DETECT 
HRDWII 

BYTE 13 

CONTROL UNIT 
UNIQUE ID HICH 

BYTE 15 

TAPE UNIT 
UNIQUE 10 

BYTE 17 

TWO CONTROllJNIT 
CHAN- DEVICE 
NELSW SWITCH FEATURES 
(MIS) 

BYTE 19 

D BUS 
PAR 
ALU 1 

EC LEVEL OF 
CONTROL UNIT 

PRIMED FOR OEVICE END 

TU 7 I TU 6 I TU 5 1 TU 4 I TU 3 I TU 2 I TU I I TU 0 

BYTE 21 

LOAD 
LEFT RIGHT 

TAPE REELS LOAD LOAD LOAD REEL REEL 
BUTTON TURN- TURN- PRE- LOADED REWIND COM- CHECK 
DEPRESS ING ING SENT PlETE 

BYTE 23 

FRU IDENTIFIERS FOR CONTROL UNIT 

Appendix G: UCB Sense Bytes 227 



228 Programmer's Guide to pr' '1ging (Release 21) 



Appendix H: Service Aids 

In addition to the debugging facilities discussed in this manual, IBM 
provides the following service aid programs to aid you in debugging. A 
complete description of each of these service aids and instructions for 
their use are found in the publication IBM system/360 Operating system 
Service Aids " GC28-6719. 

Program Name Functional Description 

IMDSADMP A stand-alone program, assembled with user-selected 
options, that dumps the contents of main storage onto a 
tape or a printer. The program has two versions: 

IMDPRDMP 

IMCJQDMP 

IMCOSJQD 

IMBLIST 

IMBMDMAP 

lMASPZAP 

• A high speed version that dumps the contents of main 
storage to a tape. 

• A low speed version that formats and dumps the 
contents of main storage either to a tape or directly 
to a printer. 

A problem program that allows the user to format and print 
IMSADMP output data sets, the SYS1.DUMP data set, the TSO 
dump data set and its associated swap data sets, and 
Generalized Trace Facility output data sets. IMDPRDMP can 
also be used to transfer a system dump from a SYS1.DUMP 
data set on a direct access device to another data set for 
later formatting and printing. 

A stand-alone program that reads, formats, and prints 
either the entire operating system data set SYS1.SYSJOBQE, 
or selects and prints information related to a specific 
job in that data set. Because it operates independently 
of the operating system, IMCJQDMP can print the contents 
of the job queue as it appeared at the time of abnormal 
termination. 

A problem program that reads, formats, and prints the 
contents of the system job queue data set (SYS1.SYSJOBQE). 
Either the entire job queue or information related to a 
specific job may be printed. 

Because the program can be run under OS, it is not 
necessary to re-IPL the operating system as with IMCJQDMP. 

A problem program that produces formatted listings of 
object modules, load modules, module cross references, 
CSECT identification records (lDRs), and PTFs. 

A problem program that produces a map of the system 
nucleus, any load module, the resident reenterable load 
module area of an MFT system, or the link pack area of an 
MVT system. The listing produced by this program shows 
the locations of CSECTS, external references, and entry 
pOints within a load module. 

A problem program that can inspect and modify either data 
records or load modules located on a direct access storage 
device. 

Appendix H: service Aids 229 



IFCDIPOO 

IFCEREPO 

A problem program that generates job control language 
(JCL) statements necessary to add a PTF to the operating 
system in a later step, or applies PTFs to the Operating 
System by dynamically invoking the linkage editor. 

A problem program that initializes the SYS1.LOGREC data 
set. 

A problem program that edits, writes, and accumulates 
environment records on the SYS1.LOGREC data set. 

230 programmer's Guide tr nebugging (Release 21) 



Appendix J: TeAM Debugging Aids 

In addition to the debugging facilities described in this publication, 
the telecommunications access method provides the following aids to 
debugging: 

• I/O error recording procedures. 
• I/O interrupt trace table (line trace). 
• A dispatcher subtask trace table (STCB trace). 
• Sequential listings of buffers and message queue data sets. 

Optional formatted listings of the line and STCB traces are available 
with TCAM. These debugging aids are described in the publications IBM 
system/360 Operating System: TCAM Programmer's Guide and Reference 
Manual, GC30-2024, and IBM System/360 Operating System: TCAM 
serviceability Aids Program Logic Manual, GY30-2027. A discussion of 
the TCAM formatted ABEND dump is given in the publication IBM System/360 
Operating System: TCAM Program Logic Manual, GY30-2029. 

Appendix J: TCAM Debugging Aids 231 



232 programmer's Guide to Debu99in9 (Release 21) 



Appendix K: Control Block Pointers 

This appendix summarizes the contents of the control blocks that are 
most useful in debugging. Control blocks are presented in alphabetical 
order, with displacements in decimal, followed by the hexadecimal 
counterpart in parentheses. Figure 56 illustrates control block 
relationships in the System/360 Operating system. Figure 57 shows 
relationships between storage control elements in a system with MVT. 

CVT - Communications Vector Table 
+0 Address of TCB control words 
+53(35) Address of entry point of ABTERM 
+193(C1) Address of secondary CVT (used 

only with Model 65 
Multiprocessing systems and TSO) 

DCB - Data Control Block 
+40(28) ddname (before openi: offset to 

ddname in TIOT (after open) 
+45(20) DEB address 
+69(45) lOB address 

DEB - Data Extent Block 
+1 TCB address 
+5 Address of next DEB 
+25(19) DCB address 
+33(21) UCB address 
+38(26) Address of start of extent 
+42(2A) Address of end of extent 

ECB - Event Control Block 
+1 RB address or completion code 

lOB - Input/Output Block 
-7 Address of next lOB (BSAM, QSAM, 

and BPAM) 
+2 Sense bytes 
+5 ECB address 
+9 CSW 
+17(11) CCW list address 
+21(15) DCB address 

RB - Request Block (PCP and MFT) 
-8 Address of previous RB on load 

list 
-4 Address of next RB on load list 
+0 Module name 
+13(0) Entry point address 
+16(10) Resume PSW 
+29(10) Address of previous RB 

RB - Request Block (MVT) 
+4 Last half of user's PSW 
+13(0) CDE address 
+16(10) Resume PSW 
+29(10) Address of previous RB 

TIOT - Task Input/output Table 
+0 Job name 
+8 step name 
+24(18) DO entries begin (one variable-

+0 
+4 
+16(10) 

+20(14) 

length entry for each DO 
staterrent) 
Length of DO entry 
ddname 
Device entries begin (one 4-byte 
entry for each device) 
Next device entry (if there is 
one) 

(Next DO entry begins at 24(18) 
plus length of first DO entry) 

TCB - Task Control Block (PCP and MFT) 
+1 
+9 
+13(D) 
+16(10) 
+25(19) 
+37(25) 

Address of most recent RB 
Address of most recent DEB 
TIOT address 
Completion code 
MSS boundary box address 
Address of most recent RB on load 
list 

+113(71) Address of first save area 
+161 (A1) Address of STAE control block 
+181 (B5) Address of the job step control 

block 

TCB - Task Control Block 
(MFT) with Subtaskinq 
+45(2D) Address of TCB for job step task 
+129(81) Address of TCB for next subtask 

attached by same parent task 
+133(85) Address of Tca for parent task 
+137(89) Address of Tca for most recent 

subtask 
+145(91) Address of Eca to be posted at 

task completion 
+181 (S5) Address of the job step control 

block 

Appendix K: Control Block Pointers 233 



TCB - Task Control Block (MVT) 
+1 
+9 
+13(0) 
+16(10) 
+25(19) 
+33(21) 
+37 (25) 
+113(71) 
+125(70) 
+129 (81) 

+133(85) 
+137(89) 

+145(91) 

+153(99) 

+161(A1) 

Address of most recent RB 
Address of most recent OEB 
TI0T address 
Completion code 
Address of most recent SPQE 
Bit 7 -- Non-dispatchability bit 
Address of most recent LLE 
Address of first save area 
Address of TCB for job step task 
Address of TCB for next subtask 
attached by same parent task 
Address of TCB for parent task 
Address of TCB for most recent 
subtask 
Address of ECB to be posted at 
task completion 
Address of dummy PQE minus 8 
bytes 
Address of STAE control block 

+181 (B5) Address of the job step control 
block 

UCB - Unit Control Block 
-4 

+2 
+4 
+13 (D) 
+18(12) 
+19(13) 
+22 (16) 

+24(18) 

+25(19) 

+40(28) 

CPU 10 (used only with Model 65 
Multiprocessing systems) 
FF (UCB identification) 
Device address 
Unit name 
Device class 
Device type 
Sense bytes (except devices with 
extended sense) 
Number of sense bytes (devices 
with extended sense) 
Address of sense bytes (devices 
with extended sense) 
Number of outstanding RESERVE 
requests (shared DASD only) 

234 programmer's Guide to Debugging (Release 21) 



Figure 56 .. Control Block Flow 

Appendix K: Control Block Pointers 237 



238 programmer's GUide to Debugging (Release 21) 



o 1-..1.:-----4'" 

25 (19) I--.L:-___ ~ 

37 (25) ~'-----.r 

Load lilt Subpool Qu.u. __ --------~A~----------_ ~ __________ ~A~ __________ _ 

Descriptor aueue __ ----------~A------------_ 

,.--____ CO_nt_en-"~ Directory 

8 

12 (01--.,.----..... 

16 (10)t-tt;~:::.:.:.:.:-r ••••••• 
20 (l4)L..-....I,.;,, ___ ...Y 

Figure 57. MVT Storage Control Flow 

Active RB Queue r-__________ ~A~ __________ ~ 

MVT 
Storage Control 

Pointe,. 

Appendix K: Control Block Pointers 239 



240 Programmer's GUide to Debugging (Release 21) 



Appendix L: OPEN/CLOSE/EOV Debugging Aids 

There are two types of traces that may be 
performed during OPEN/CLOSE/EOV processing, 
provided that GTF is active. 

• ABEND trace - A trace performed before 
an OPEN/CLOSE/EOV problem determination 
module calls an ABEND routine. 

• Optional work area trace - A trace 
performed when an OPEN/CLOSE/EOV module 
has finished execution. This trace is 
made only if DCB=DIAGNS=TRACE is 
specified in the DD statement of the 
data set for which the trace is 
desired. 

Further information on requesting these 
traces is contained in IBM System/360 
Operating System: Data Management 
Services, GC26-3146. 

The format of both types of 
OPEN/CLOSE/BOV trace output is as follows: 

r-----------------------------------------, fUSRFF FFF ccc control block fields I L _________________________________________ J 

USRFF 
is the name (excluding the IMD prefix) 
of the IMDPRDMP appendage which 
formats the control block and work 
area information collected by 
OPEN/CLOSE/EOV and included in the GTF 
output data set. FF is the format ID 
for OPEN/CLOSE/EOV. 

FFF 

ccc 

is the event ID which defines the 
event which caused the trace entry. 
Everything traced by OPEN/CLOSE/EOV 
has an event ID of FF. 

is the control block that was traced 
to provide the problem program with 
OPEN/CLOSE/EOV data for debugging 
purposes. 

When the OPEN/CLOSE/BOV ABEND trace 
occurs, only those control blocks 
meaningful to an ABEND condition will 
be traced.. The selection of these 
control blocks is described in IBM 
System/360 Input/Output support---
(OPEN/CLOSE/EOV) PLM, GY28-6609. 

If the optional work area trace has 
been requested, the OPEN/CLOSE/EOV 
work area and the user's DCB will be 
traced after the execution of each 
OPEN/CLOSE/EOV module. 

control block fields 
are the contents of fields in control 
block ccc. For descriptions of the 
fields shown, refer to IBM System/360 
Operating system: System Control 
Blocks, GC28-6628 or IBM System/360 
Operating System: Input/Output 
support (OPEN/CLOSE/EOV) PLM, 
GY28-6609. 

Appendix L: OPEN/CLOSE/EOV Debugging Aids 241 



242 programmer'. Guide to Debugging (Release 21) 



Page of GC28-6670-5,6, Revised March 1, 1973, By TNL: GN28-2545 

Indexes to systems reference library 
manuals are consolidated in the publication 
IBM System/360 Operating System: systems 
Reference Library Master Index, GC28-6644. 
For additional information about any 
subject listed below, refer to other 
publications listed for the same subject in 
the Master Index. 

When more than one page reference is 
given, the major reference is first. 

ABEND dumps 
contents of (MVT) 46-64 
contents of (MFT) 29- 45 
guide to using (MVT) 63-64 
guide to using (MFT) 44- 45 
how to invoke (MVT) 46 
how to invoke (MFT) 29 
introduction to 11 
samples of (MVT) 47- 48 
samples of (MFT) 30-31 

Abnormal termination, cause of 
in an ABEND/SNAP dump (MVT) 63 
in an ABEND/SNAP dump (MFT) 44 

Abnormal termination dumps (see ABEND 
dumps) 

Active RB queue 
description of 16 
instructions for using 205 
in a storage dump 141 
in an ABEND/SNAP dump (MVT) 52,63 
in an ABEND/SNAP dump (MFT) 37,44 
in an indicative dump 67 

AMWP bits 
in an indicative dump 67 
meaning of 206 

APSW field, in an ABEND/SNAP dump 
(MVT) 52,63 

ATTACH macro instruction, effects of 18 
Attaching subtasks 20 

Boundary 
problem program 40,206 

Catalog dump 32 
CDE \""'\ 

as used with the load list '1.7 ) 
format of 25 
in an ABEND/SNAP dump 54 
in a storage dump 141 

Communications vector table (see CVT) 
CampI et e dump (MVT) 

description of 46 
sample of 47,48 

Completion codes 
description of common 215 
explanation of 205 
in an ABEND/SNAP dump (MVT) 49 
in an ABEND/SNAP dump (MFT) 35 
in an indicative dump 67 

Console dump facility 68 
COND pararreter, 

to regulate job step execution 32 
Contents directory 

description of 17,25 
entries (see CDE) 

Control blocks 
descriptions of 26,27 
pOinters in 233 
relationships between 27 
use in debugging 205 

Index 

Control block displays (IMDPRDMP output) 
74-122 

MFT DEB format 103 
MFT job pack queue format 102 
MFT load list format 102 
MFT problem program boundaries 101-102 
MFT RB format 98 
MFT TCB format 92-98 
MFT TIOT format 107 
MVT DEB format 87-90 
MVT job pack queue format 86-87 
MVT load list format 86 
MVT main storage information 85 
MVT RB format 81-85 
MVT TCB format 75-80 
MVT TIOT format 90-92 
TSO PSCB format 121 
TSO RCB format 113 
TSO SWAP DCB format 116 
TSO TAXE format 123 
TSO TJB format 116 
TSO TJBX format 120-121 
TSO TSB format 118 
TSO TSCVT format 108 
TSO Ul'JSM format 116 

Control information 13 
Control program nucleus 

ABEND/SNAP (MVT) 60 
ABEND/SNAP (MFT) 43-44 

CVT 
description of 26 
in a storage image dump 138,139 
pointers in 233 

I 
Data controllblock (see DCB) 
Data event c9ntrol block 27 
Da ta extent block (see DEB) 
Damage assessment routine (DAR) 68 
DCB 

description of 27 
in a storage dump 144 
pointers in 233 

DO statements 
required with ABEND/SNAP dumps 29,32 
sample of SYSABEND 32 

DEB 
description of 27 
in a storage dump 143 
in an ABEND/SNAP dump (MVT) 55 
in an ABEND/SNAP dump (MFT) 41 
pointers in 233 

Index 243 



Page of GC28-667o-5,6, Revised March 1,1973, By TNL: GN28-2545 

DED queue 
in a storage dump 143 
in an ABEND/SNAP dump (MVT) 50 
in an ANDED/SNAP dump (MFT) 35 

Debugging procedure 
description of 205 
summary 201 

DELETE macro instruction 16 
Dequeued elements 316 
Descriptor queue element (see DQE) 
Destroyed queues 32 
Device considerations, 
for ABEND/SNAP dumps 29,32 

Dispatcher trace table entry (MVT) 
format of 148,149 
in a SNAP dump 61,64 
in a storage image dump 146 

Dispatching priority 19,20 
DOE 

format of 24 
in a storage dump 143 
in an ABEND/SNAP dump 56,64 

Dump (see individual type of dump, e.g., 
ADm D, indicat ive) 

Dump da ta set 
MVT 46 
MFT 29 

Dump list heading (IMDPRDMP output) 70 
Dynamic area 

ECD 

in systems with MVT 20 
in systems with MFT 19 

completion codes, list of 223 
description of 21 
in a storage dump 145 
pointers in 233 
posting of, using ATTACH 18 

Event control block (see ECB) 
EXtent list (see XL) 
External interruption 206 
EXternal trace table entry 

format of 148 
in a SNAP dump 61,63,64 
in a storage dump 148,149 

FBQE 
format of 22-23 
in a storage dump 146 
in an ABEND/SNAP dump 51,64 

FINCH request block 14 
Finding the partition TeD 141 
FRB 1" 
Fixed area 

in systems with MFr 19 
in systems with MVT 20 

FQE 
format of (MFT) 21 
format of (MVT) 24 

Free areas 
in an ABEND/SNAP dump (MFT) 44 

Free block queue element (see FBQE) 
Free queue element (see FQE) 

General debugging procedure 
description of 205-207 
sumllBry 207 

General format (IMDPRDMP output) 128 
Generalized trace faility (GTF) 150-203 

comprehensive trace records 
158-166,169 -202 

DSP 162 
EXT 163 
10 159 
PCI/IO 159 
PGM 165 
SIO 161 
SSM 166 
SVC 170 

description of 15 
hexadecimal format record 168 
lost event record 167 
minimal trace records 150~157 

OOP 153 
EXT 154 
10 151 
PCI/IO 151 
PGM 155 
SIO 152 
SSM 157 
SVC 156 

SVC comprehensive trace records 169-202 
sub- index 169 

time record 167 
GETMAIN macro instruction 21-22 
Gotten subtask area queue element 21- 22 
GQE 21-22 
GTF (see Generalized Trace Facility) 
GTF trace table 

in ABEND/SNAP dumps 150 
in IMDPRDMP output 150 

Guide to using storage image dump 137 

Hardware error 205,206 
Hierarchy. main storage 20-22 

IFCDIPOO 230 
IFCEREPO 230 
lMAPrFLE 230 
IMASPZAP 229 
IMBLIST 229 
IMBMDMAP 229 
I MCJQDMP 229 
IMCOSJQD 229 
IMDPRDMP 229 
IMDSADMP 229 
Indicative dumps 

contents of 65-67 
description of 65 
guide ~o using 67 
introduction 11 

Input/output block (see lOB) 
Interrupt request block 14 
Interruptions 205,206 
lOB 

description of 27 
in a storage dump 144-145 
pointers in 233 

244 Programmer's Guide to Debugging (Release 21.7) 



I/O trace table entry 
format of 148 
in a storage dump (MFT) 148-149 
in a storage dump (MVT) 148 
in a SNAP dump (MVT) 61, 63- 64 
in an ABEND/SNAP dump (MFT) 42,44 

IRB 111 

Job pack area 
Job pack area 
Jab step 19 
Job step task 
JPAQ 17 

14,17 
queue 

(MVT) 

17 

20,46 

LINR macro instruction, effects of 18 
Link pack area (MVT) 20- 21 
Link pack area maps (IMDPRDMP output) 
71-73 

LLE 
count field 17 
description of 17 
in an ABEND/SNAP dump (MVT) 50 

!Dad list 
description of 16 
instruction for using 205,207 
in a storage dump 1112 
in an ABEND/SNAP dump (MVT) 53,63 
in an ABEND/SNAP dump (MFT) 38,44 
in an indicative dump 66 
in systems with MVT 17 
in systems with MFT 16-17 

Load list element (see LLE) 
LOAD macro instruction, effects of 18-19 
Load module, storage control for 

in an ABEND/SNAP dump (MVT) 53-54,611 
in systems with MVT 25-26 

Loaded program request block 14 
LPRB 111 
LRB 14 

Main storage hierarchy support 
inclusion of 20- 22 
effects on NSS boundary box 21 
effects on partition queue 21 

Main storage layout 
in systems with MFT with subtasking 

19-20 
in systems with MFT without subtasking 

19 
in the systems with MVT 20 

Main storage supervisor's boundary box 
(see NSS) 

Machine check interruption 205-207 
MFT, systems with 

considera tions in using an ABENDISNAP 
dump of 411-115 

contents of an ABEND/SNAP dump of 34-45 
guide to using a storage 
dump of 137 

how to invoke an ABEND/SNAP 
dump of 29 

main storage layout in 20 
storage control in 21-23 
task control characteristics of 19-20 
trace table entries in 148 

Model 65 Multiprocessing system 
trace table formats 149 
prefixed storage area, as shown in an 

ABEND/SNAP dump (MVT) 60 
trace table entries in a SNAP dump 62 

Module name prefixes,. list of 219 
description of (MFT) 21-22 
in an ABEND/SNAP dump (MVT) 55-56 
starting address (MFT) 35 

Multiprogramming with a fixed number of 
tasks (see MFT, systems with) 

Multiprogramming with a variable number of 
tasks (see MVT, system with) 

MVT, systems with 
complete ABEND/SNAP dump of 117-48 
contents of an ABEND/SNAP dump 46- 64 
guide to using a storage image dump of 

137-146 
guide to using an ABEND/SNAP dump 
of 63-64 

how to inVOke an ABEND/SNAP dump of 46 
load list 16 
main storage layout in 20 
storage control in 22-26 
task control characteristics in 20 
trace table entries in 148 

Nucleus 
contents of 19-20 
in an ABEND/SNAP dump (MVT) 60 
in an ABEND/SNAP dump (MFT) 44 

only loadable (OL) 14 
OPEN/CLOSEIEOV debugging 241 
Output comments (IMDPRDMP outp.1t) 130-136 

from GTF processing 203 
overlaid problem program 34 

Pa rti tion (MFT) 19-2 0 
Parti tion queue element (see PQE) 
Partition TeBs 138-1111 
PIE 35,49 
Pointers, control block 231 
PQE 

fornat of 23 
in a storage dump 143 
in an ABEND/SNAP dump 56-64 

PRB 111 
Priority 19-20 
Problem program, how to locate in a 
dump 205-207 

Problem program storage boundaries, in an 
ABEND/SNAP dump (MFT) 110 

Program check interruption 205,206 
Program check old PSW 

in an ABEND/SNAP dump (MVT) 52,63 
information in 205,206 

Program check trace table entry 
format of 148 
in a SNAP dump 61-62 
in a storage dump 1115-146 

Program interruption element (see PIE) 
Program request block 111 
Protection key 35 
PSCB 146 

Index 245 



Page of GC28-667o-S,6, Revised March 1,1973, By TNL: GN28-2545 

PSW at entry to ABEND 
in an ABEND/SNAP dump (MVT) 49 
in an ABEND/SNAP dump nMFT) 35 

PSW, program check old (see program check 
old PSW) 

PSW, resume (see resume PSW) 

QCB 57 
Queue control block trace (IMDPRIJ.1P 
output) 70-71 

Queue elements (MVT) 21,22-26 
Queues destroyed 34 

RB 
as affected by LINK, ATTACH, XCTL and 

LOAD 18 
formats of 13-16 
in an ABEND/SNAP dump (MVT) 52-54 
in an ABEND/SNAP dump (MFT) 37,38,44 
in an indicative dump 66 
most recent 35,49 
name field, in a dump 205 
pI rpos e of 13 
pointers in 233 
pointers to, in a storage dump 141-142 
queue (see active RB queue) 
sizes of 15 
types of 13-14 
when created 13 
which ones appear in a dump 205 

RCB 145 
Re-creating the task structure 

MFT with subtasking 139 
MVT 139 

Reenterable load module area (MFT) 19 
Region (MIT) 

contents of, in an ABEND/SNAP dlElp 64 
description of 20 
st orage control for 22- 24 

Register contents 
in a save area 147 
in an ABEND/SNAP dump (MVT) 60-61 
in an ABEND/SNAP dump ( MFT) 43 
in an indicative dump 66 

Request block (see RB) 
Resume PSW 

in an ABEND/SNAP dump (MVT) 53,62 
in an ABEND/SNAP dump (MFT) 38,44 
in an indicative dump 67 

Retain dump 32 
Rollout/rollin 

effects on partition queue 22-23 

Save areas 
format of 147 
in an ABEND/SNAP dump (MVT) 58 
in an ABEND/SNAP dump (MFT) 40 

Save area chain 147 
Sens e byt es, ueB 

table of 225 
Sequential partitioned system (see MFT, 

systems with) 
service aids 229 
set system mask trace table entry 

format of 149 
in an ABEND/SNAP dump 62 

SIO trace table entry 
format of (MFT) 148 
fornat of (MVT) 148 
in a SNAP dump (MVT) 62-63 
in an ABEND-SNAP dump 

(MFl') 42,44-45 
SlRB 14 
SNAP dumps 

contents of (MVT) 46-63 
contents of (MFT) 32-44 
guide to using (MVT) 63-64 
guide to using (MFT) 44-45 
how to invoke (MVT) 46 
how to invoke 5MFT) 29 
introduction to 11 

Snapshot dumps (see SNAP dumps) 
Space considerations, for ABEND/SNAP 

dumps 32 
SPQE 

fornat of 24 
in a storage dump 143 
in an ABEND/SNAP dump 55,64 

SQS (see system queue space) 
SSM (see set system mask trace table entry) 
Storage control 

in systems with MFT with subtasking 22 
in systems with MFT without subtasking 

21 
in systems with MVT 25,26 

Storage dUJllPs 
discussion of 68 
guide to usi n:J 137 
introduction to 11 

Subpool 
definition of 24 
in a storage dump 143 
in an ABEND/SNAP dump 55,64 
queue elements (see SPQE) 

Subtask, as created by ATTACH 18 
Supervisor calls, list of 209 
Supervisor interrupt request block 14 
Supervisor request block 14 
SVC trace table entries 

fornat of (MFT) 148 
format of (MVT) 148 
in a SNAP dump (MVT) 61-62 
in an ABEND/SNAP dump (MFT) 42-44 

SVCs, list of 209 
SVRB 14 
SYSABEND DD statement 

description of 32 
samples of 33 

SYSOUT, as a dump data set 32 
System control blocks (see control blocks) 
System differences in task control 18-20 
System failure 68 
System que ue space (MVT) 20 
System tasks 18-20 
system wait TeB 75 
SYS1.DUMP data set 68,29 
SYSUDUMP DD statement 29 

Task completion code (see completion codes) 
Ta sk control block (see TCB) 
Task control differences, by system 18-20 
Task dispatchizg priority 20 
Task input/output table (see TIOT) 

246 Programmer's Guide to Debugging (Release 21.7) 



Page of GC28-6670-5,6, Revised March 1. 1973. By TNL: GN28-2545 

Task management 13- 21 
Task supervision 13-21 
Task structure. recreating the, using a 

storage dump (MVT) 139 
Task switch trace table entry (MFT) 

format of 148 
in an ABEND/SNAP dump 44 

Task switching (MFT) 20 
TAXE 146 
TeAM Debugging Aids 231 
TCB 

description of 13 
in an ABEND/SNAP dump (MVT) 49-51 
in an ABEND/SNAP dump (MFT) 35-37 
information available through 13 
locating, in a storage dump 138-141 
pointers in 233 
paint ers to, in a storage dump (MFT) 
138-139 

queue (MF'l) 19, 20 
queue (MVT) 20 
relationships 19-20 
summary display (IMDPRDMP out put) 
124-127 

MFT without subtask TCBa 125 
MFT or MVT with subtask TeBs 125 

I 
TCBLCT 51.233 
TCBNTC 51, 233 
TCBOTC 51.233 
TCSTCB 50, 233 
Telecommunications Access Method (see TCAM) 
Termination. abnormal (see abnormal 

term ina tion) 
TIOT 

description 26 
in ABEND dump (MVT) 55 
in IMDPRDMP output (MVT) 90 
point ers in 233 

TJB 146 
TJBX 146 
Traces 147-150 
Trace table 

control block 148 
delimiting entries, in an ABEND/SNAP 
dump (MFT) 44 

description of 148 
fornat of entries (MFT) 148 
format of entries (MVT) 149 
fornat of entries 

(Mod 65 multiprocessing systems) 149 
in a SNAP dump (MVT) 61-62 
in a storage dump 148-149 
in an ABEND/SNAP dump (MFT) 42 
samples of entries 148-149 
usefulness in debugging 206 

TSB 146 
TSCVT 145 
TSO Control Blocks 145-146 

UCB 
description of 27 
in a storage dump 144 
in an ABEND/SNAP dump (MFT) 41 
pointers in 234 

UMSM 146 
Unit control block (see UCB) 
Use count 17 

Wait list 17 
Wili t list elenent 17,18 
WLE 17 

XCTL macro instruction, effects of 18 
XL 

description of 25 
in a ABEND/SNAP dumps 54,64 

Index 247 



GC28-6670-.6 

llm~ 
................................... Corporation 
D ... ....,c ........ D ...... 
1113 .......... A ....... , ............... New Y_,01M 
(U.s.A. Galt) 

...... T .... ~ .t ....................... VWlt.NewVOllr\ l17 ........... 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	050.1
	050.2
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	076.1
	076.2
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	132.1
	132.2
	133
	134
	135
	136
	136.1
	136.2
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	170.1
	170.2
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	xBack

