File No. S360-20
order No. Gc28-6550-11 | 08

Systems Reference Library

0S Data Management for System Programmers

Release 21

This publication consists of self-contained
chapters, each of which provides information on
how to modify, extend, or implement the data
management capabilities of the IBM System/360
Operating System control program. It is
designed primarily for system programmers
responsible for maintaining, updating, and
extending the operating system features.

Topics:

Catalog and VTOC Maintenance

IECDSECT, IEFJFCBN, and IEFUCBOB Macro
Instructions

The EXCp Macro Instruction

The XDAP Macro Instruction

Implementing Data Set Protection

Adding a UCS Image to the System Library

Twelfth Edition (April 1973)

This edition replaces the previous edition (numbered GC28-6550-10) and its technical
newsletter (numbered GN26-0750) and makes them both obsolete.

This edition applies to release 21.7 and to all subsequent releases unless otherwise
indicated in new editions or technical newsletters.

Significant changes are summarized under “Summary of Amendments” following the
list of illustrations. Each technical change is marked by a vertical line to the left of
the changed area.

Information in this publication is subject to significant change. Any such changes will
be published in new editions or technical newsletters. Before using the publication,
consult the latest IBM System/360 and System/370 Bibliography, GA22-6822, and the
technical newsletters that amend that bibliography, to learn which editions and
technical newsletters are applicable and current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

Forms for reader’s comments are provided in the back of this publication. If the forms
have been removed, comments may be addressed to IBM Corporation, Programming
Center—Publishing, Department D58, Monterey and Cottle Roads, San Jose, California
95193. All comments become the property of IBM.

@ Copyright International Business Machines Corporation 1966, 1967, 1968, 1969, 1970,
1971, 1972,1973

Preface

This publication consists of self-contained
chapters, each of which provides system
programmers with information on how to
modify, extend, or implement the data
management capabilities of the IBM
System/360 Operating System control
program. Although the information in one
chapter is sometimes related to information
in another, all chapters have been written
as separate and complete units. It is
assumed that users of this publication are
thoroughly familiar with the design of the
operating system and its features. Such
information can be obtained in IBM
System/360 Operating System: Introduction,
GC28-6534. Each chapter contains its own
introductory section and list of
prerequisite publications. This
organization has been used to reduce
cross-referencing.

Preface 3

ISUMMARY OF AMENDMENTS FOR GC28-6550-11 -- OS RELEASE 21.7
SUMMARY OF AMENDMENTS FOR GC28-6550-10 -- OS RELEASE 21

SUMMARY OF AMENDMENTS FOR GC28-6550-9 -- 0OS RELEASE 20.1

MAINTAINING THE CATALOG AND THE VOLUME TABLE OF CONTENTS
How to Read a Block From the Catalog

-By Specifying the Name of a Data Set

.

-By Specifying the Name of a Generation Data
Alias

-By Specifying a Name Using an

-By Specifying by TTR
How to Build an Index .
How to
How to
How to
How to
How to
How to
How to

Delete an Index .
Assign an Alias .
Delete an Alias .

Catalog a Data Set

-When Index Levels Exist .
-By Creating Required Index Levels
How to Remove Data Set References From
-Uncatalog and Retain Index Levels .
-Uncatalog and Remove Index Levels

How to Recatalog a Data Set

Build a Generation Index

.
e o o
.

Connect Control Volumes .
Disconnect Control Volumes

How to Read a Data Set Control Block

Contents e e o o o o @
How to Delete a Data Set
How to Rename a Data Set

e o & o o o o e o o o

From t

o o (Fe o o o o o 0 o o s

How to Share Space on a Volume Inltlallzed

Appendix A:
Control Entries . . .
Pointer Entries . . .

The Volume Control Block Contents
Device Code Designations

Appendix B:

IECDSECT, IEFUCBOB,
IECDSECT Macro Instruction
IEFUCBOB Macro Instruction
IEFJFCBN Macro Instruction

EXECUTE CHANNEL PROGRAM (EXCP)
Use of EXCP in System and Problem Programs

System Use of EXCP . .
Programmer Use of EXCP
EXCP Requirements . . .
Channel Program . . .
Control Blocks
Channel Program Execution

* o o+ o

.
.
.
.
.

MACRO

« o o o o

Catalog Block Entries .

.

e o s e

.

.

and IEFJFCBN MACRO

INSTRUCTIONS

=3

Mo o o o o o o o ¢ o o o

e o e e o Cle o o

=}
e o o o o Oie o s He e e (Ne e o o e e s s s e o
2]

1]

o o o o o e o o

t

e V

INSTRUCTION

e o o o o

.

Interruption Handling and Error Recovery

Appendages . . .+ ¢ o o o

Start Input/Output (SIO) Appendage .

Program Controlled Interruption (PCI) App

End-of-Extent Appendage
Channel End Appendage
Abnormal End Appendage

P

rocedur

en

Block Multiplexer Channel Programmlng Notes
EXCP Programming Specifications

Macro Instructions . . .

.

.

.

DCB -- Define Data Control Block for EXCP

.
.
.
-
.
.

nda

o
QO ¢ ¢ o 4o o o o o o o ¢ ¢ o o o W0

e o o e 0o e o o

coooooLQo

(0]

[o}

]

¢ o o o o o o o o F]e e s o o o s e s s s e s s e s s e .

(@]
s o o o o [N

e o o o o o o o o

W e o o o o o o o ¢ o o o (o

® e o o o o o o o o o e o o o o o o

o o o

oomouo-otooo

.

o o

.

e & o e o o e e o e o 8 s o e e o o

V)

¢ o o o o o s o o T'e s o o o s e s e e s e s s 2 e e s e e

-

MDe o o o o ¢ o o o o o o o+ o o o o o o o

e o o o o o o o o

® e 8 e e o o o o o e o o e o e o o

¢ o o o o o o o o O e o e o s s s s o s s e s s s o s o s .

® o 8 e e o o 6 o o o e o & o e o o

H

e & o & o 6 & o o o o e b+ o o & e o o o

® o 8 o e 8 e & o ° o e o o e 0 o o

e o e o e e o e o o o ° o o e s 0+ o o o

e o 8 6 e o o o o & o o & o o e e o o

Contents

® o o & o o e 8 o 0 o o s o o o o o o o

¢ 8 o o o o o o o

e o e o o 0 o & o o o 0 0+ o s o o o o o

® o o o o o 6 o o o o e o o e s s o o

Contents

5

OPEN =-- Initialize Data Control Block .
EXCP -- Execute Channel Program. . .
EOV -- End of Volume
CLOSE -~ Restore Data Control Block
Control Block Fields
Input/Output Block Flelds . .
Event Control Block Fields
Data Extent Block Fields . . .
Appendix: RESTORE and PURGE Macro Instruction
RESTORE Macro Instruction . . . « ¢ o o« o .
PURGE Macro Instruction . . . e e o s o o
ATLAS -- Assign an Alternate Track and Copy Data
Track .« o ¢ & ¢ ¢ ¢ ¢« o o o o« « e e e e
ATLAS Macro Instruction . . .
Use Of ATLAS ¢ ¢ ¢ ¢ ¢ « « &
Operation of the ATLAS program
Return Codes« . .

e o o o

® o ¢ o 9 o e s o o
e ¢ o o s o o o o o o
e o o o o o+ o o o o o
e o o o o 0 o o o o

e o o o o & o o o o

M e o o o o » o o o o o

rom t

o o e o e o e s e o e
o
v]

o o

¢ o o e o
* o s o o
* o e o o
* e o o o

o o
e o o o o

.

.

.

.

.
°« .
.
-

EXECUTE DIRECT ACCESS PROGRAM (XDAP)
Requirements for Execution of Direct
XDAP Programming Specifications .

The XDAP Control Block

MACRO INSTRUCTION
Access Program.

Event Control Block (ECB) .

Input/Output Block (IOB) . .

Direct Access Channel Program
XDAP Options .« « + &« ¢ o &« o « o .
Appendix: CVT Macro Instruction .

® o o o o o o o
e o 0 o o o e o o
o o o o ¢ o o o o
e o o o o o o o o
e o o ¢ o s o e o

.
.
.
.
.
.
.

e o e o o o o
o o o o o o o
e o o o ¢ s o

e o o o o

DATA SET PROTECTION . . « « « « o . .
Implementing Data Set Protection . . .
Password Data Set Characteristics . .
Creating Protected Data Sets
Protection Feature Operating Characteristics .
Using the PROTECT Macro Instruction to Malntaln the Password Data
Set e e e e . o o .- . . e o e e
Password Data Set Characterlstlcs and Record Format When You Use
the PROTECT Macro e o s o o o o s e s e e o o s o
Programming Conventions for the PROTECT Macro Instruction .
PROTECT Macro Parameter Lists
Return Codes from the PROTECT MacCroO . « « « o o o o o o &

. e o
. e o
. o« o
- o o

e o o o
e o o o
e o o o
e o o o

.
.
.
.

.
.
.
.
.

SYSTEM MACRO INSTRUCTIONS . . . e e o o o o o o o
System Macro Instructions in ThlS Publlcatlon e s e e e e e o .
Locate Device Characteristics (DEVTYPE) Macro Instruction .
Device Characteristics Information
Output for Each Device Type
Exceptional Returns . . « ¢« ¢« « + & . .
How to Read a Job File Control Block
OPEN -- Prepare the Data Control Block for Proces

sing
RDJFCB -- Read a Job File Control Block (S). . .
Programming NoteS. . « o « o o « o o o o o & .

e e o o o o e
e o o o o o o

(s)

ADDING A UNIVERSAL CHARACTER SET IMAGE OR A FORMS CONTROL BUFFER

IMAGE TO THE IMAGE LIBRARY e o o o s o o o o o o o o
How to Add a UCS Image to the Image lerary e e e e e e e o o
How to Add a Forms Control Buffer Image to the Image lerary e .

INDEX ¢ ¢ o o o o o o o o o o o o s o o s o o o o o s o o o s o o

6 OS Data Management for System Programmers

109

111
112
115

117

Figures

Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

EXCPl.
EXCP2.
EXCP3.
EXCP4.

EXCP5.

XDAP1.
XDAP2.
PSWD1.
PSWD2.
PSWD3.
PSWD4.
PSWD5.
CTLGl.
CTLG2.

Illustrations

Data Control Block Format for EXCP (After OPEN) . . .
Input/Output Block Format« o e e
Event Control Block After Posting of Completlon Code.
Error Locations and Return Codes if CCHH is in the

Count Area Field e e e e
Error Locations and Return Codes 1f CCHHRKDD is in
the Count Area Field o

Event Control Block After Postlng of Completlon Code.
The XDAP Channel Programs« «
Parameter List for Add Function . . .
Parameter List for Replace Function .
Parameter List for Delete Function .

Parameter List for List Function .

Return Codes from the PROTECT Macro .

Catalog and VTOC Macro Instructions . . e
Return Codes of Catalog and VTOC Macro Instruction

S

Illustrations

7

Summary of Amendments
for GC28-6550-11
OS Release 21.7

TAPE DRIVE FEATURE SUPPORT

The 7-track feature is now supported on all 3400 model tape drives. The
UCB Type Field has been corrected for 3400 tape drives, in the DEVTYPE
macro instruction portion of the manual.

MISCELLANEOUS CHANGES

Other technical and editorial corrections have been made throughout the
manual.

Summary of Amendments 9

Summary of Amendments
for GC28-6550-10
OS Release 21

NEW DEVICE SUPPORT

Information is added to support the IBM
3803/3420 Magnetic Tape Subsystem and
the 1I8M 3505/3525 Card Reader/Card
Punch.

CATALOG MANAGEMENT

Changes have been made to the section
on catalog and VTOC maintenance to show
changes in the method of adding,
deleting and naming data sets in the
catalog.

MACRO INSTRUCTIONS ADDED

Information is added about the CVT and
LABEL macro instructions.

ORGANIZATION CHANGE

Information from the following chapters
has been relocated to the IBM
System/360 Operating System MFT Guide,
GC27-6939:

The Must Complete Function

Job Queue Formatting

The PRESRES Volume Characteristics
List

Output Separation

Writing System Output Writer Routines

Adding SVC Routines to the Control
Program

Message Routing Exit Routines

Handling Accounting Routines

Reader/Interpreter and Output Writer
Cataloged Procedures

Resident Routines Option

The Shared DASD Option

The Must Complete Function

Job Queue Formatting

The PRESRES Volume Characteristics
List

Output Separation

Writing System Output Writer Routines

Adding SVC Routines to the Control
Program

Message Routing Exit Routines

Handling Accounting Routines

Reader/Interpreter and Output Writer
Cataloged Procedures - Dedicated
Data Sets

Using the Link Pack Area

Writing Rollout/Rollin Installation
Appendages

The Shared DASD Option

The Time Slicing Facility

System Macro Instructions (except
DEVTYPE, OPEN, and RDJFCB)

The chapter about graphic job
processing has been relocated to the
User's Guide for Job Control from the
IBM 2250 Display Unit, GC27-6933.

The chapter about satellite graphic job
processing has been relocated to the
User's Guide for Job Control from the
IBM 2250 Display Unit Attached to an
IBM 1130 System, GC27-6938.

The chapter about System Management
Facilities was removed during the last
revision. The information may now be
found in IBM System/360 Operating
System SMF Guide, GC28-6715.

Information about the tracing routine

option may now be found in IBM System/360

Operating System: Programmer's Guide to

Debugging, GC28-6670.

The Time Slicing Facility MISCELLANEQOUS CHANGES

System Macro Instructions (except
DEVTYPE, OPEN, and RDJFCB)

Information from the following chapters
has been relocated to the IBM
System/360 Operating System MVT Guide,
GC28-6720:

10 O0S Data Management for System Programmers

Information is added to clarify
specifications of the password data set
and the use of the IEHPROGM utility
program for updating the password data
set.

New Event Control Block (ECB) codes
have been added to the descriptions in
the EXCP and XDAP macro instruction
sections.

Summary of Amendments
for GC28-6550-9
OS Release 20.1

] T T 1
| Item | Description |Chapter Affected |
L [l 4 3
r T T 1
TSO	The PURGE parameter list has a	Execute Channel Program
	fourth word that can be used to	
	purge a list of TCBs.	
[L [l ']		
[] T T 1		
START command	The START command can now be used	System Reader, Initiator,
	to start a problem program. J]and Writer Cataloged	
		procedures
: + + !		
7094 Emulator]Change to the ASB procedure for	System Reader, Initiator,
	7094 Emulator J]and Writer Cataloged	
		Procedures
1 1 1]		
r T] 1		
FORTRAN G	Change to data blocking for	System Reader, Initiator,
	FORTRAN G]and Writer Cataloged
		Procedures
k + 1 1

STAE Change to STAE retry routine System Macro Instructions

Y

| | procedure | |
t 1 -—- + - i
| PROTECT |Additional return code for |Pata Set Protection |
| | PROTECT macro instruction |]
1 1 4 /]
[T T 1
3211 Printer	New device dependent information	IECDSECT, IEFJFCBN, and
	for the 3211 Printer	IEFUCBOB Macro Instructions
		Execute Direct Access
		Program (XDAP) Macro
		Instructions
		System Macro Instructions
		Writing System Output Writer
		Routines
: : :Output Separation :		
		System Reader, Initiator,
		and Writer Cataloged
		procedures
]]
		Adding a Universal Character
		Set Image or FCB Image to
! 1 !the Image Library !		
L} T 1 1		
3330 and 2305	New device dependent information	Maintaining the Catalog
Direct Access	for the 3330 and 2305 Direct	and the Volume Table of
Devices	Access Devices	Contents
I		
		Execute Direct Access
		Program (XDAP) Macro
		Instruction
]	
		System Macro Instructions
		The shared Direct Access
		Storage Device Option
L 1 1 i

Summary of Amendments

-

CONTENTS DIRECTORY

Maintaining the Catalog and the Volume Table of Contents q
IECDSECT, IEFUCBOB, and IEFJFCBN Macro Instructions > q
Execute Channel Program (EXCP) Macro Instruction >
Execute Direct Access Program (XDAP) Macro Instruction >
Data Set Protection S

System Macro Instructions >

Adding a Universal Character Set Image or a Forms
Control Buffer Image to the System Library

Index

Y

Contents Directory 13

Maintaining the Catalog and
the Volume Table of Contents

This chapter provides detailed information
on how to maintain and modify the catalog
and volume table of contents.

Before reading this chapter, you should
be familiar with the information contained
in the prerequisite publications listed
below.

PREREQUISITE PUBLICATIONS

The IBM System/360 Operating System:
Assembler Language publication (GC28-6514)
contains the information necessary to code
programs in the assembler language.

The IBM System/360 Operating System:
Data Management Services publication
(GC26-3746) contains a general description
of the structure of catalog indexes, as
well as a brief discussion of the volume
table of contents (VTOC).

COMPANION PUBLICATION

The IBM System/360 Operating System:
System Control Blocks publication
(GC28-6628) contains format and field
descriptions of the system control blocks
referred to in this chapter.

RECOMMENDED PUBLICATIONS

The IBM System/360 Operating System:
Utilities publication (GC28-6586) describes

how to maintain and modify the catalog and
the volume table of contents through the
use of utility programs.

Maintaining the Catalog and the Volume Table of Contents 15

Maintaining the Catalog and the Volume Table of Contents

This chapter describes how to maintain and modify the catalog and the
volume table of contents through the use of macro instructions. Most of
the maintenance and modification functions can also be performed using
utility statements. The utility statements are described in the
publication IBM System/360 Operating System: Utilities.

The functions you can perform using the macro instructions are
described in text, and the formats of the macro instructions are
tabulated on a fold-out sheet (Figure CTLG1l) at the back of this book.
The chart on the fold-out sheet associates the function described in
text with the macro instructions needed to perform the function. You
should keep the fold-out sheet open when reading the text.

The functions that are described in text are:

How to read a block from the catalog.

How to build an index.

How to build a generation index.

How to delete an index.

How to assign an alias.

How to delete an alias.

How to connect control volumes.

How to disconnect control volumes.

How to catalog a data set.

How to remove data set references from the catalog.
How to recatalog a data set.

How to read a data set control block from the volume table of
contents.

How to delete a data set.

How tO rename a data set.

Accompanying the function descriptions in text are coding examples
and programming notes; exceptional-return condition codes for the macro
instructions are tabulated on the back of the fold-out sheet (Figure
CTLG2). In the functional descriptions, bytes of data blocks are
numbered from zero (the first byte is byte zero).

HOW TO READ A BLOCK FROM THE CATALOG

To read either an index block or a block indicating the volumes on which
a data set is stored (volume-list block), you use the LOCATE and CAMLST
macro instructions. There are two ways to specify the block that you
want read into main storage: by using the name of the index level or
data set, or by using the block's location relative to the beginning of
the catalog (TTR).

-By Specifving the Name of a Data Set

If you specify an index level name, the first block of the named index
is read into main storage, and an exceptional return code is set. Index
block formats are contained in Appendix A of this chapter.

If you specify a data set name, a 256-byte volume-list block is read
into main storage. The block contains up to 20 volume pointers, each of
which points to a volume on which part of the data set is stored. The
first two bytes of the block contain the number of volume pointers for
the data set. Each volume pointer is a 12-byte field that contains a
4-byte device code, a 6-byte volume serial number, and a 2-byte data set
sequence number. (Device codes are contained in Appendix B of this
chapter.)

16 O0S Data Management for System Programmers

If the named data set is stored on more than 20 volumes, bytes
252-254 of the block contain the relative track address of the next
volume-list block of volume pointers. Byte 255 contains a binary zero.

If the named data set is stored on only one volume, bytes 252-254 of
the block contain the relative track address of the DSCB for that data
set, otherwise these bytes are zero. Byte 255 contains a binary zero.

Example: 1In the following example, the list of volumes that contain
data set A.B is read into main storage. The search for the volume-list
block starts on the system residence volume.

I T 1
| Name Operation| Operand |
8 L 3
; LOCATE { INDAB READ VOLUME-LIST BLOCK FOR i
| Check Exceptional Returns CATALOGED DATA SET A.B INTO|
| INDAB | CAMLST | NAME,AB, ,LOCAREA MAIN STORAGE AREA NAMED |
| AB DC | CL44'A.B* LOCAREA. LOCAREA ALSO i
| LOCAREA Ds | 0D CONTAINS 3-BYTE TTR AND |
| | Ds | 265C 6-BYTE SERIAL NUMBER |
L 4 L J

The LOCATE macro instruction points to the CAMLST macro instruction.
NAME, the first operand of CAMLST, specifies that the system is to
search the catalog for a volume-list block by using the name of a data
set. AB, the second operand, specifies the main storage location of a
4u-byte area into which you have placed the fully qualified name of a
data set. LOCAREA, the fourth operand, specifies a 265-byte area you
have reserved in main storage.

After execution of these macro instructions, the 265-byte area
contains: the 256-byte volume-list block for the data set A.B and the
6-byte serial number of the volume on which the block was found (in
bytes 259-264). If data set A.B resides on only one volume, bytes
252-254 of the volume-list block contain the relative track address of
the DSCB for data set A.B (relative to the beginning of the volume).

If a code of 4 is returned in register 15 indicating that the
required control volume was not mounted, bytes 259-264 of the work area
will contain the volume serial number of this required volume. If
LOCATE finds an old CVOL pointer entry, and the CVOL is not mounted,
binary zeros will be returned in bytes 252-255 of the work area.
However, if a new CVOL pointer entry is found, the four-byte device code
of the CVOL will be returned in those bytes.

-By Specifyving the Name of a Generation Data Set

You specify the name of a generation data set by using the fully
qualified generation index name and the relative generation number of
the data set. The value of a relative generation number reflects the
position of a data set in a generation data group. The following values
can be used:

e Zero - specifies the latest data set cataloged in a generation data
group.

e Negative number - specifies a data set cataloged before the latest
data set.

e Positive number - specifies a data set not yet cataloged in the
generation data group.

Maintaining the Catalog and the Volume Table of Contents 17

When you use zero or a negative number as the relative generation
number, a volume-list block is read into main storage and the relative
generation number is replaced by the absolute generation name.

When you use a positive number as the relative generation number, an
absolute generation name is created and replaces the relative generation
number. A volume-list block is not read, since none exists for these
data sets.

Example: In the following example, the list of volumes that contain
generation data set A.PAY(-3) is read into main storage. The search for
the volume-list block starts on the system residence volume.

r T T 1
| Name | Operation| Operand |
1 1 4 J
" T T T
| | LOCATE ! INDGX READ VOLUME-LIST BLOCK FOR |
| Check Exceptional Returns DATA SET A.PAY(-3) INTO |
INDGX	CAMLST	NAME,APAY, ,LOCAREA MAIN STORAGE AREA NAMED
APAY	bc	CL44*A.PAY(-3)" LOCAREA. LOCAREA ALSO CON-
LOCAREA	DS	oD TAINS 3-BYTE TTR AND
I | DS | 265C 6-BYTE SERIAL NUMBER I
L 4 4L J

The LOCATE macro instruction points to the CAMLST macro instruction.
NAME, the first operand of CAMLST, specifies that the system is to
search the catalog for a volume-list block by using the name of a data
set. APAY, the second operand, specifies the main storage location of a
44-byte area into which you have placed the name of the generation index
and the relative generation number of a data set in the generation data
group. LOCAREA, the fourth operand, specifies a 265-byte area you have
reserved in main storage.

After execution of these macro instructions, the 265-byte area
contains: the 256-byte volume-list block for generation data set
A.PAY(-3) and the 6-byte serial number of the volume on which the block
was found (in bytes 259-264). If data set A.PAY(-3) resides on one
volume, bytes 252-254 of the volume-list block contain the relative
track address of the DSCB for that data set (relative to the beginning
of the volume). In addition, the system will have replaced the relative
generation number that you specified in your u44-byte area with the data
set's absolute generation name.

-By Specifyving a Name Using an Alias

For each of the preceding functions, you can specify an alias as the
first name in the qualified name of an index level, data set, or
generation data set. Each function is performed exactly as previously
described, with one exception: the alias name specified is replaced by
the true name.

-By Specifying by TTR

You can read any block in the catalog by specifying, in the form TTR,
the identification of the block and its location relative to the)
beginning of the catalog. TT is the number of tracks from the beginning
of the catalog, R is the record number of the desired block on the
track. (Formats of each type of catalog block are contained in Appendix
A of this chapter.)

Example: In the following example, the block at the location indicated

by TTR is read into main storage. The specified block is in the catalog
on the system residence volume.

18 Os Data Management for System Programmers

L} T . T 1
| Name | Operation| Operand |
8 4 4 J
I Ll 1) T
| | LOCATE | BLK READ A BLOCK INTO MAIN |
| Check Exceptional Returns STORAGE AREA NAMED LOCAREA |
BLK	CAMLST	BLOCK,TTR, ,LOCAREA
TIR DC	H'S' RELATIVE TRACK 5	
	pc	x'03° BLOCK 3 ON TRACK
LOCAREA	Ds	oD LOCAREA ALSO CONTAINS 3-BYTE
	Ds	265C TTR AND 6-BYTE SERIAL NO.
L L L |

The LOCATE macro instruction points to the CAMLST macro instruction.
BLOCK, the first operand of CAMLST, specifies that the system is to
search the catalog for the block indicated by TTR, the second operand.
LOCAREA, the fourth operand, specifies a 265-byte area you have reserved
in main storage.

After execution of these macro instructions, the 265-byte area
contains the 256-byte index block and the 6-byte serial number of the
volume on which the block was found (in bytes 259-264).

HOW TO BUILD AN INDEX

To build a new index structure and add it to the catalog, you must
create each level of the index separately. (You can also create index
levels while you are cataloging a data set onto those index levels. See
"How to Catalog a Data Set" in this chapter for details.) You create
each level of the index by using the INDEX and CAMLST macro
instructions.

These two macro instructions can also be used to add index levels to
existing index structures.

Example: In the following example, index structure A.B.C is built on
the control volume whose serial number is 000045.

L] T L 1
| Name | Operation| Operand |
I8 4 1

¥ T T "
| | INDEX | INDEXA BUILD INDEX A |
| Check Exceptional Returns |
| | INDEX | INDEXB BUILD INDEX STRUCTURE A.B |
| Check Exceptional Returns |
| | INDEX | INDEXC BUILD INDEX STRUCTURE A.B.C|
| Check Exceptional Returns |
INDEXA	CAMLST	BLDX,ALEVEL,VOLNUM
INDEXB	CAMLST	BLDX,BLEVEL,VOLNUM
INDEXC	CAMLST	BLDX,CLEVEL,VOLNUM
VOLNUM	DC	CL6'000045" VOLUME SERIAL NUMBER

ALEVEL DC cL2'a’ INDEX STRUCTURE NAMES

% BLEVEL % DC } CL4'A.B' FOLLOWED BY BLANKS {
| CLEVEL | DC | cL6'A.B.C* WHICH DELIMIT FIELDS |
L e L J

Each INDEX macro instruction points to an associated CAMLST macro
instruction. BLDX, the first operand of CAMLST, specifies that an index
level be built. The second operand specifies the main storage location
of an area into which you have placed the fully qualified name of an
index level. The third operand specifies the main storage location of
an area into which you have placed the 6-byte serial number of the
volume on which the index level is to be built.

Maintaining the Catalog and the Volume Table of Contents 19

HOW TO BUILD A GENERATION INDEX

You build a generation index by using the INDEX and CAMLST macro
instructions. All higher levels of the index must exist. If the higher
levels of the index are not in the catalog, you must build them. How to
build an index has been explained previously. In the following example,
the generation index D is built on the control volume whose serial
number is 000045. The higher level indexes A.B.C already exist. When
the number of generation data sets in the generation index D exceeds
four, the oldest data set in the group is uncataloged and scratched.

r T T 1
| Name | Operation| Operand |
b t + !
| | INDEX | GENINDX BUILD GENERATION INDEX |
| Check Exceptional Returns |
GENINDX	CAMLST	BLDG,DLEVEL,VOLNUM, ,DELETE, , 4
DLEVEL	DC	CL8'A.B.C.D" BLANK DELIMITER
VOLNUM	DC	CL6'000045"
L e L]

The INDEX macro instruction points to the CAMLST macro instruction.
BLDG, the first operand of CAMLST, specifies that a generation index be
built. DLEVEL, the second operand, specifies the main storage location
of an area into which you have placed the fully qualified name of a
generation index. VOLNUM, the third operand, specifies the main storage
location of an area into which you have placed the 6-byte serial number
of the volume on which the generation index is to be built. DELETE, the
fifth operand, specifies that all data sets dropped from the generation
data group are to be deleted. The final operand, 4, specifies the
number of data sets that are to be maintained in the generation data
group.

HOW TO DELETE AN INDEX

You can delete any number of index levels from an existing index
structure. Each level of the index is deleted separately. Generation
indexes are also removed this way. (You can also delete index levels
automatically when they are no longer needed. See "How to Remove Data
Set References from the Catalog" in this chapter for details.) You
delete each level of the index by using the INDEX and CAMLST macro
instructions.

If an index level either has an alias, or has other index levels or
data sets cataloged under it, it cannot be deleted.

Example: 1In the following example, index level C is deleted from index
structure A.B.C. The search for the index level starts on the system
residence volume.

r T T 1
| Name | Operation| Operand |
F 1 + {
| | INDEX | DELETE DELETE INDEX LEVEL C FROM|
| Check Exceptional Returns INDEX STRUCTURE A.B.C |
| DELETE | CAMLST | DLTX,LEVELC |
| LEVELC | DC | CL6'A.B.C" ONE BLANK FOR DELIMITER |
L 4 AL J

The INDEX macro instruction points to the CAMLST macro instruction.
DLTX, the first operand of CAMLST, specifies that an index level be
deleted. LEVELC, the second operand, specifies the main storage
location of an area into which you have placed the fully qualified name
of the index structure whose lowest level is to be deleted.

20 O0S Data Management for System Programmers

HOW TO ASSIGN AN ALIAS

You assign an alias to an index level by using the INDEX and CAMLST
macro instructions. An alias can be assigned only to a high level
index; e.g., index A of index structure A.B.C can have an alias, but
index B cannot. Assigning an alias to a high level index effectively
provides aliases for all data sets cataloged under that index. An alias
cannot be assigned to a generation index with only one level.

Example: In the following example, index level A is assigned an alias
of X. The search for the index level starts on the system residence
volume.

r T T 1
{ Name 1 Operatlon! Operand 1
1)] r T
| | INDEX | ALIAS BUILD AN ALIAS FOR A HIGH|
| Check Exceptional Returns LEVEL INDEX |
| ALIAS | CAMLST | BLDA,DSNAME, ,DSALIAS |
| DSNAME | DC | cLs'a" MUST BE 8-BYTE FIELDS |
! DSALIAS l DC l CcL8'Xx"* 1

The INDEX macro instruction points to the CAMLST macro instruction.
BLDA, the first operand of CAMLST, specifies that an alias be built.
DSNAME, the second operand, specifies the main storage location of an
8-byte area into which you have placed the name of the high level index
to be assigned an alias. DSALIAS, the fourth operand, specifies the
main storage location of an 8-byte area into which you have glaced the
alias to be assigned.

HOW TO DELETE AN ALIAS

You delete an alias previously assigned to a high level index by using
the INDEX and CAMLST macro instructions.

kil

Example: In the following example, alias X, previously assigned as an
alias for index level A, is deleted. The search for the alias starts on
the system residence volume.

r T T 1
| Name | Operation| Operand |
b 4 L]
L} T T T
| | INDEX | DELALIAS DELETE AN ALIAS FOR A |
| Check Exceptional Returns HIGH LEVEL INDEX |
| DELALIAS| CAMLST | DLTA,ALIAS |
| ALIAS | DC | cLs'x" MUST BE 8-BYTE FIELD |
L L A i |

The INDEX macro instruction points to the CAMLST macro instruction.
DLTA, the first operand of CAMLST, specifies that an alias be deleted.
ALIAS, the second operand, specifies the main storage locaticn of an
8-byte area into which you have placed the alias to be deleted.

Maintaining the Catalog and the Volume Table of Contents 21

HOW TO CONNECT CONTROL VOLUMES

You connect two control volumes by using the INDEX and CAMLST macro
instructions. If a control volume is to be connected to the system
residence volume, you need supply only the serial number of the volume
to be connected and the name of a high level index associated with the
volume to be connected.

If a control volume is to be connected to a control volume other than
the system residence volume, you must supply the serial numbers of both
volumes and the name of a high level index associated with the volume to
be connected.

The result of connecting control volumes is that the volume serial
number of the control volume connected and the name of a high level
index are entered into the volume index of the volume to which it was
connected. This entry is called a control volume pointer.

Example: In the following example, the control volume whose serial
number is 001555 is connected to the control volume numbered 000155.
The name of the high level index is HIGHINDX.

r T . T 1
| Name | Operation| Operand |
8 4 4 J
[) T T 1
| | INDEX | CONNECT CONNECT TWO CON- |
| Check Exceptional Returns TROL VOLUMES WHOSE|
CONNECT	CAMLST	LNKX,INDXNAME,OLDCVOL,NEWCVOL SERIAL NUMBERS ARE
INDXNAME	DC	CL8*HIGHINDX" 000155 AND 001555.
oLDCVOL	DC	CL6'000155"
NEWCVOL	DC	X'30002001" 2311 DISK STORAGE
	DC	CL6'001555"
L 1. 1 J

The INDEX macro instruction points to the CAMLST macro instruction.
LNKX, the first operand of CAMLST, specifies that control volumes be
connected. INDXNAME, the second operand, specifies the main storage
location of an 8-byte area into which you have placed the name of the
high level index of the volume to be connected. OLDCVOL, the third
operand, specifies the main storage location of a 6-byte area into which
you have placed the serial number of the volume to which you are
connecting. NEWCVOL, the fourth operand, specifies the main storage
location of a 10-byte area into which you have placed the U4-byte binary
device code of the volume to be connected followed by the 6-byte area to
contain the volume serial number of the volume to be connected.

HOW TO DISCONNECT CONTROL VOLUMES

You disconnect two control volumes by using the INDEX and CAMLST macro
instructions. If a control volume is to be disconnected from the system
residence volume, you need supply only the name of the high level index
associated with the volume to be disconnected.

If a control volume is to be disconnected from a control volume other
than the system residence volume, you must supply, in addition to the
name of the high level index, the serial number of the control volume
from which you want to disconnect.

The result of disconnecting control volumes is that the control

volume pointer is removed from the volume index of the volume from which
you are disconnecting.

22 O0S Data Management for System Programmers

Example: In the following example, the control volume that contains the
high level index HIGHINDX is disconnected from the system residence
volume.

[} i) 1 1
| Name | Operation| Operand |
L 4 1 J
i T INDEX T DISCNECT DISCONNECT TWO CONTROL VOLUMES I
| Check Exceptional Returns |
| DISCNECT| CAMLST | DRPX,INDXNAME I
| INDXNAME| DC | CL8*"HIGHINDX' MUST BE 8-BYTE FIELD |
L L L. J

The INDEX macro instruction points to the CAMLST macro instruction.
DRPX, the first operand of CAMLST, specifies that control volumes be
disconnected. INDEXNAME, the second operand, specifies the main storage
location of an 8-byte area into which you have placed the name of the
high level index of the control volume to be disconnected.

HOW TO CATALOG A DATA SET

You catalog a data set by using the CATALOG and CAMLST macro
instructions. The CATALOG macro instruction points to the CAMLST macro
instruction; parameters of the CAMLST macro instruction specify the
options for cataloging a data set. When the CAT parameter is used, all
index levels required to catalog the data set must exist in the catalog.
The index structure need not exist when the CATBX parameter is used; any
missing index levels are automatically created.

You must build a complete volume list in main storage. This volume
list consists of volume pointers for all volumes on which the data set
is stored. The first two bytes of the list indicate the number of
volume pointers that follow. Each 12-byte volume pointer consists of a
4-byte device code, a 6-byte volume serial number, and a 2-byte data set
sequence number. The sequence number is always zero for direct access
volumes. (Device codes are contained in Appendix B of this chapter.)

-When Index lLevels Exist

When the index levels already exist for a data set, you can use the CAT
parameter of the CAMLST macro instruction to catalog the data set.
Missing index levels cause an exceptional return code to be set.

Example: In the following example, the data set named A.B.C is
cataloged under an existing index structure A.B. The data set is stored
on two volumes.

r T .1 1
| Name | Operation| Operand |
¢ 1 + {
| | CATALOG | ADDABC CATALOG DATA SET A.B.C. THE |
| Check Exceptional Returns INDEX STRUCTURE A.B. EXISTS |
ADDABC	CAMLST	CAT,DSNAME,,VOLUMES
DSNAME	DC	CL6'A.B.C" ONE BLANK FOR DELIMITER
VOLUMES	DC	H'2" TWO VOLUMES
	DC	X'30002001° 2311 DISK STORAGE
	DC	CL6'000014° VOLUME SERIAL NUMBER
	DC	H'O" DATA SET SEQUENCE NUMBER
	DC	X'30002001" 2311 DISK STORAGE
	DC	CL6'000015" VOLUME SERIAL NUMBER
	DC	H'O' SEQUENCE NUMBER I
L 4 A J

Maintaining the Catalog and the Volume Table of Contents 23

The CATALOG macro instruction points to the CAMLST macro instruction.
CAT, the first operand of CAMLST, specifies that a data set be
cataloged. DSNAME, the second operand, specifies the main storage
location of an area into which you have placed the fully qualified name
of the data set to be cataloged. VOLUMES, the fourth operand, specifies
the main storage location of the volume list you have built.

-By Creating Required Index Levels

When index levels are missing, you can use the CATBX parameter of the
CAMLST macro instruction to automatically create them before cataloging
the data set.

Example: 1In the following example, the index structure A.B is created
and data set A.B.C is cataloged. The data set is stored on one volume.

r T T 1
| Name | Operation| Operand |
L 4 J
1} - T T
| | CATALOG | CTBXABC CATALOG DATA SET A.B.C |
| Check Exceptional Returns CREATE NEEDED INDEX LEVELS |
CTBXABC	CAMLST	CATBX,DSNAME,VOLUMES ,DSCBTTR=TTR
DSNAME	DC	CL6'A.B.C' ONE BLANK FOR DELIMITER
VOLUMES	DC	H'1"' ONE VOLUME
	DC	X*30002001° 2311 DISK STORAGE
	DC	CL6'000015" VOLUME SERIAL NUMBER
	DC	H'O® DATA SET SEQUENCE NUMBER
TTR	DC	XL3'000103" TTR OF DSCB IN VTOC
L 4 L J

The CATALOG macro instruction points to the CAMLST macro instruction.
CATBX, the first operand of CAMLST, specifies that a data set is to be
cataloged and any required higher level indexes are to be created.
DSNAME, the second operand, specifies the main storage location of an
area into which you have placed the fully qualified name of the data set
to be cataloged. VOLUMES, the third operand, specifies the main storage
location of the volume list you have built. DSCBTTR=TTR, the fourth
operand, specifies the main storage location into which you have placed
the relative track address of the DSCB for the data set to be cataloged.
The DSCBTTR operand is optional and is ignored for data sets residing on
more than one volume.

HOW TO REMOVE DATA SET REFERENCES FROM THE CATALOG

You remove data set references from the catalog by using the CATALOG and
CAMLST macro instructions. Two options are available: simply remove
references, or remove references and delete any indexes that are no
longer needed.

-Uncatalog and Retain Index Levels

When the UNCAT operand of the CAMLST macro instruction is used, a data
set reference is removed, but all index levels are retained.

Example: In the following example, references to data set A.B.C are
removed from the catalog.

24 O0S Data Management for System Programmers

) T 1
| Name Operation| Operand |
I8 4 J
r T T
| | CATALOG | REMOVE REMOVE REFERENCES TO DATA |
| Check Exceptional Returns SET A.B.C FROM THE CATALOG |
| REMOVE | CAMLST | UNCAT ,DSNAME |
| DSNAME | DC | CL6'A.B.C" ONE BLANK FOR DELIMITER |
L L L J

The CATALOG macro instruction points to the CAMLST macro instruction.
UNCAT, the first operand of CAMLST, specifies that references to a data
set be removed from the catalog. DSNAME, the second operand, specifies
- the main storage location of an area into which you have placed the
fully qualified name of the data set whose references are to be removed.

-Uncatalog and Remove Index Levels

When the UNCATDX operand of the CAMLST macro instruction is used, a data
set reference and unneeded indexes, with the exception of the
highest-level index, are removed from the catalog.

Example: In the following example, references to data set A.B.C are
removed from the catalog. Index B is removed unless it contains
references to other data sets. Index A remains because it is the
highest level index.

r T . T 1
| Name | Operation| Operand |
b t 1 !
| | CATALOG | RMDSNNDX REMOVE REFERENCES TO DATA |
| Check Exceptional Returns SET A.B.C FROM THE CATALOG |
| RMDSNNDX| CAMLST | UCATDX,DSNAME AND REMOVE INDEXES |
| DSNAME | DC | CL6'A.B.C' ONE BLANK FOR DELIMITER |
L 4 1 5]

The CATALOG macro instruction points to the CAMLST macro instruction.
UNCATDX, the first operand, specifies that references to a data set be
removed from the catalog. DSNAME, the second operand, specifies the
main storage location of an area into which you have placed the fully
qualified name of the data set whose references are to be removed.

HOW TO RECATALOG A DATA SET

You recatalog a cataloged data set by using the CATALOG and CAMLST macro
instructions. Recataloging is usually performed when new volume
pointers must be added to the volume list of a data set.

You must build a complete volume list in main storage. This volume
list consists of volume pointers for all volumes on which the data set
is stored. The first two bytes of the list indicate the number of
volume pointers that follow. Each 12-byte volume pointer consists of a
L-byte device code, a 6-byte volume serial number, and a 2-byte data set
sequence number. The sequence number is always zero for direct access
volumes. (Device codes are contained in Appendix B of this chapter.)

Example: In the following example, the data set named A.B.C is
recataloged. A new volume pointer is added to the volume list, which
previously contained only two volume pointers.

Maintaining the Catalog and the Volume Table of Contents 25

r T . v b
| Name | Operation| Operand

L 4 4

[} L] T

| | CATALOG | RECATIG RECATALOG DATA SET A.B.C,

| Check Exceptional Returns ADDING A NEW VOLUME

| POINTER TO THE VOLUME

| RECATLG | CAMLST | RECAT ,DSNAME, ,VOLUMES LIST.

| DSNAME | DC | CL6'A.B.C" ONE BLANK FOR DELIMITER

| VOLUMEs | DC | H'3" THREE VOLUMES |
| | DC | X*30002001" 2311 DISK STORAGE |
| | bc | CL6'000014" VOLUME SERIAL NUMBER

| | DC | B'O" SEQUENCE NUMBER

| | DC | X'30002001" 2311 DISK STORAGE

| | DC | CL6'000015" VOLUME SERIAL NUMBER

| | bc | H'O' SEQUENCE NUMBER

| | bC | X'30002001° 2311 DISK STORAGE

| | bc | CL6'000016" VOLUME SERIAL NUMBER |
| | DC | H'O" SEQUENCE NUMBER |
L 4 1 J

The CATALOG macro instruction points to the CAMLST macro instruction.
RECAT, the first operand of CAMLST, specifies that a data set be
recataloged. DSNAME, the second operand, specifies the main storage
location of an area into which you have placed the fully qualified name
of the data set to be recataloged. VOLUMES, the fourth operand,
specifies the main storage location of the volume list you have built.

HOW TO READ A DATA SET CONTROL BLOCK FROM THE VOLUME TABLE OF CONTENTS

You can read a data set control block (DSCB) into main storage by using
the OBTAIN and CAMLST macro instructions. There are two ways to specify
the DSCB that you want read: by using the name of the data set
associated with the DSCB, or by using the absclute track address of the
DSCB.

When you specify the name of the data set, a format 1 (identifier)
DSCB is read into main storage. To read a DSCB other than a format 1
DSCB, you must specify an absolute track address. (DSCB formats and
field descriptions are contained in the System Control Block
publication).

When a data set name is specified, the 96-byte data portion of the
format 1 DSCB, and the absolute track address of the DSCB are read into
main storage. When the absolute track address of a DSCB is specified,
the UU4-byte key portion and the 96-byte data portion of the DSCB are
read into main storage.

Example: In the following example, the format 1 DSCB for data set A.B.C
is read into main storage. The serial number of the volume containing
the DSCB is 770655. :

r 1
! Name Operation| Operand 1
] T
| | OBTAIN | DSCBABC READ DSCB FOR DATA |
| Check Exceptional Returns SET A.B.C INTO MAIN]
DSCBABC	CAMLST	SEARCH,DSABC,VOLNUM,WORKAREA STORAGE AREA NAMED
bDsABC	DC	CL44*A.B.C* WORKAREA. 96-BYTE
VOLNUM	DC	CL6'770655" DATA PORTION IS
WORKAREA	DS	op READ. THE REST OF
	Ds	1usc THE AREA IS USED BY
		THE OBTAIN ROUTINE
L L L J

26 O0OS Data Management for System Programmers

The OBTAIN macro instruction points to the CAMLST macro instruction.
SEARCH, the first operand of CAMLST, specifies that a DSCB be read into
main storage. DSABC, the second operand, specifies the main storage
location of a 4u4-byte area into which you have placed the fully
qualified name of the data set whose associated DSCB is to be read.
VOLNUM, the third operand, specifies the main storage location of a
6-pyte area into which you have placed the serial number of the volume
containing the required DSCB. WORKAREA, the fourth operand, specifies
the main storage location of a 148-byte work area that is to contain the
DSCB.

After execution of these macro instructions, the first 96 bytes of
the work area contain the data portion of the format 1 DSCB; the next
five bytes contain the absolute track address of the DSCB.

HOW TO DELETE A DATA SET

You delete a data set stored on direct access volumes by using the
SCRATCH and CAMLST macro instructions. This causes all data set control
blocks (DSCB) for the data set to be deleted, and all space occupied by
the data set to be made available for reallocation. If the data set to
be deleted is sharing a split cylinder, the space will not be made
available for reallocation until all data sets on the split cylinder are
deleted.

A data set cannot be deleted if the expiration date in the format 1
(identifier) DSCB has not passed, unless you choose to ignore the
expiration date. You can ignore the expiration date by using the OVRD
option in the CAMLST macro instruction.

If a data set to be deleted is stored on more than one volume, either
a device must be available on which to mount the volumes, or at least
one volume must be mounted. In addition, all other required volumes
must be serially mountable. Certain volumes, such as the system
residence volume, must always be mounted.

When deleting a data set, you must build a complete volume list in
main storage. This volume list consists of volume pointers for all
volumes on which the data set is stored. The first two bytes of the
list indicate the number of volume pointers that follow. Each 12-byte
volume pointer consists of a U4-byte device code, a 6-byte volume serial
number, and a 2-byte scratch status code. (Device codes are contained
in Appendix B of this chapter.)

Volumes are processed in the order that they appear in the volume
list. Those volumes that are pointed to at the beginning of the list
are processed first. If a volume is not mounted, a message is issued to
the operator requesting him to mount the volume. This is done if you
indicate the 1I/0 device on which unmoumted volumes are to be mounted by
loading register zero with the address of the UCB associated with the
device to be used. If you do not load register zero with the UCB
address, its contents must be zero, and at least one volume in the volume
list must be mounted before the SCRATCH macro instruction is executed.

If the operator cannot mount the requested volume, he issues a reply
indicating that he cannot fulfill the request. A condition code is then
set in the last byte of the volume pointer (the second byte of the
scratch status code) for the unavailable volume, and the next volume
indicated in the volume list is processed or requested.

Example: In the following example, data set A.B.C is deleted from two
volumes. The expiration date in the format 1 DSCB is ignored.

Maintaining the Catalog and the Volume Table of Contents 27

H T . T 1
| Name | Operation| Operand |
L i 4. 3
[3 L L) T
| | SR | 0,0 SET REG 0 TO ZERO |
| | SCRATCH | DELABC DELETE DATA SET |
| Check Exceptional Returns A.B.C. FROM TWO |
| DELABC | CAMLST | SCRATCH,DSABC, ,VOLIST,,OVRD VOLUMES, IGNORING |
DSABC DC cL44*'a.B.C" THE EXPIRATION
I VOLIST : DC } H'2' DATE IN THE DSCB. {
| | DC | X'30002001° 2311 DISK STORAGE |
| | DC | CL6'000017" VOLUME SERIAL NO. |
{ | b | x+30002001" 2511 DISK STORAGE |
S T
| | DC | CL6'000018" VOLUME SERIAL NO. |
| | DC | B'O" SCRATCH STATUS CODE|
L L L J

The SCRATCH macro instruction points to the CAMLST macro instruction.
SCRATCH, the first operand of CAMLST, specifies that a data set be
deleted. DSABC, the second operand, specifies the main storage location
of a U4-byte area into which you have placed the fully qualified name of
the data set to be deleted. VOLIST, the fourth operand, specifies the
main storage location of the volume list you have built. OVRD, the
sixth operand, specifies that the expiration date be ignored in the DSCB
of the data set to be deleted.

HOW TO RENAME A DATA SET

You rename a data set stored on direct access volumes by using the
RENAME and CAMLST macro instructions. This causes the data set name in
all identifier (format 1) data set control blocks (DSCB) for the data
set to be replaced by the new name that you supply.

If a data set to be renamed is stored on more than one volume, either
a device must be available on which to mount the volumes, or at least
one volume must be mounted. In addition, all other required volumes
must be serially mountable. Certain volumes, such as the system
residence volume, must always be mounted.

When renaming a data set, you must build a complete volume list in
main storage. This volume list consists of volume pointers for all
volumes on which the data set is stored. The first two bytes of the
list indicate the number of volume pointers that follow. Each 12-byte
volume pointer consists of a 4-byte device code, a 6-byte volume serial
number, and a 2-byte rename status code. (Device codes are contained in
Appendix B of this chapter.)

Volumes are processed in the order they appear in the volume list.
Those volumes that are pointed to at the beginning of the list are
processed first. If a volume is not mounted, a message is issued the
operator requesting him to mount the volume. This is done if you
indicate the I/0 device on which unmounted volumes are to be mounted by
loading register zero with the address of the UCB associated with the
device to be used. If you do not load register zero with the UCB
address, its contents must be zero, and at least one volume in the volume
list must be mounted before the RENAME macro instruction is executed.

If the operator cannot mount the requested volume, he issues a reply
indicating that he cannot fulfill the request. A condition code is then
set in the last byte of the volume pointer (the secondary byte of the
rename status code) for the unavailable volume, and the next volume
indicated in the volume list is processed or requested.

28 Os Data Management for System Programmers

Example: In the following example, data set A.B.C is renamed D.E.F.
The data set extends across two volumes.

I T Ll 1
| Name | Operation| Operand |
1 4] }
r Rl

| | SR | 0,0 SET REG 0 TO ZERO |
| | RENAME | DSABC CHANGE DATA SET |
| Check Exceptional Returns NAME A.B.C. TO |
DSABC	CAMLST	RENAME ,OLDNAME, NEWNAME,VOLIST LD.E.F
OLDNAME	DC	CL44'A.B.C"
NEWNAME	DC	CLU4'D.E.F"'
VOLIST	DC	B*'2' TWO VOLUMES
	DC] X*30002001" 2311 DISK STORAGE	
	DC	CL6'000017" VOLUME SERIAL NO.
	o	%+300020017 2311 DISK STORAGE

SK S

| | pc | CL6'000018" VOLUME SERIAL NO. |
| | pC | H'O' RENAME STATUS CODE|
L L 4 J

The RENAME macro instruction points to the CAMLST macro instruction.
RENAME, the first operand of CAMLST, specifies that a data set be
renamed. OLDNAME, the second operand, specifies the main storage
location of a 44-byte area into which you have placed the fully
qualified name of the data set to be renamed. NEWNAME, the third
operand, specifies the main storage location of a U44-byte area into
which you have placed the new name of the data set. VOLIST, the fourth
operand, specifies the main storage location of the volume list you have
built.

How to Share Space on a Volume Initialized Under DOS

With the addition to the OS DADSM allocation program of a routine to
convert a DOS format VIOC to an OS format VTOC, it is now possible to
share the space on such a volume (one initialized under DOS) between
data sets written by users using DOS and users using OS. The degree and
limits of sharing are:

® The 0OS user may now request space in any standard OS form of space
allocation, that is: TRK, CYL, average block size, and ABSTR.

e The OS stand-alone utility program IBCRCVRP does not accept
alternate track assignment made under DOS. If the volume has any
alternate tracks assigned under DOS, and additional alternate tracks
must be assigned, the DOS assign alternate track program must be
used to perform that function.

The net effect is that O0S and DOS may share a volume, but the data sets

written under each system can only be read under the system under which
they were written.

Maintaining the Catalog and the Volume Table of Contents 29

Appendix A: Catalog Block Entries

This section describes the contents of all catalog entries.

Control Entries

A volume index control entry is always the first entry in a volume
index. The volume index control entry is 22 bytes long and contains
eight fields.

Field 1: Name field (8 bytes) -- contains only a binary one to ensure
that this entry is the first entry in the first block of the index.

Field 2: Last block address (3 bytes) -- contains the relative track
address of the last block in the volume index. The address is in the
form TTR.

Field 3: Halfword count (1 byte) --- contains a binary five to indicate
that five half words follow.

Field 4: Catalog upper limit (3 bytes) -- contains the relative track
address of the last block in the catalog data set. The address is in
the form TTR.

Field 5: Zero field (1 byte) -- contains binary zeros.

Field 6: First available block address (3 bytes) -- contains the
relative track address of the unused block in the catalog that is
closest to the beginning of the catalog data set.

Field 7: Zero field (1 byte) -- contains binary zeros.

Field 8: Unused bytes in last block (2 bytes) -- contains the binary
count of the number of unused bytes in the last block of the volume
index.

An index control entry is the first entry in all indexes except
volume indexes. The index control entry is 18 bytes long and contains
six fields.

Field 1: Name field (8 bytes) -- contains only a binary one to ensure
that this entry, because it has the lowest binary name value, is the
first entry in the first block of the index.

Field 2: Last block address (3 bytes) -- contains the relative track
address of the last block assigned to the index. The address is in the
form TTR.

2 A1 A3 - . —_ - - - "
Field 3: Halfword count (1 byte) contains a binary three to indicate

that three half words follow.

Field 4: 1Index lower limit (3 bytes) -- contains the relative track
address of the block in which this entry appears. The address is in the
form TTR.

Field 5: Number of aliases (1 byte) -- contains the binary count of the
number of aliases assigned to the index. If the index is not a high
level index, this field is zero.

Field 6: Unused bytes in last block (2 bytes) -- contains the binary

count of the number of unused bytes remaining in the last block of the
index.

30 OS Data Management for System Programmers

An index link entry is the last entry in all index blocks. The entry
is 12 bytes long and contains three fields.

Field 1: Name field (8 bytes) =-- contains only the hexadecimal number
FF to ensure that this entry, because it has the highest binary name
value, will appear as the last entry in any index block.

Field 2: Link address (3 bytes) -- contains the relative track address
of the next block of the same index, if there is a next block in the
index. Otherwise, the field contains binary zeros. '

Field 3: Halfword count (1 byte) -- contains a binary zero to indicate
that no additional fields follow.

Pointer Entries

An index pointer entry can appear in all indexes except generation
indexes. The entry is 12 bytes long and contains three fields.

Field 1: Name field (8 bytes) -- contains the name of the index being
pointed to by field 2.

Field 2: 1Index address (3 bytes) -- contains the relative track address
of the first block of the index named in field 1. The address is in the
form TTR.

Field 3: Halfword count (1 byte) -- contains a binary zero to indicate
that no additional fields follow.

A data set pointer entry can appear in any index. It contains the
simple name of a data set and from one to five 12-byte fields that each
identify a volume on which the named data set resides. If the data set
resides on more than five volumes, a volume control block must be used
to point to the volumes. The volume control block is identified by a
volume control block pointer entry, not a data set pointer entry.

The data set pointer entry varies in length. The length is
determined by the formula (14+12m), where m is the number of volumes
containing the data set. The variable m can be from 1 through 5. The
data set pointer entry can appear in any index, and it contains five
fields.

Field 1: Name field (8 bytes) -- contains the simple name of the data
set whose volumes are identified in field 5.

Field 2: DSCB TTR (3 bytes) -- contains the track address (TTR) of the
data set control block if the data set resides on only one volume. If
the data set resides on more than one volume, this field contains a
binary zero.

Field 3: Halfword count (1 byte) -- contains the binary count of the
number of half words that follow. The number is found by the formula
(ém+1), where m is the number of volumes on which the data set resides.
The variable m can be from 1 through 5.

Field 4: Volume count (2 bytes) -- ccatains the binary count of the
number of volumes identified in field 5 of this entry.

Field 5: Volume entries (12 to 60 bytes) -- contains from one to five
12-byte entries, each of which identifies a volume on which the data set
resides. Each entry contains a 4-byte device code, a 6-byte volume
serial number, and a 2-byte data set sequence number. The data set
sequence number is zero for direct access volumes.

Maintaining the Catalog and the Volume Table of Contents 31

A volume control block pointer entry can appear in any index. It can
identify up to 20 volumes. The entry is 14 bytes long and contains four
fields.

Field 1: Name field (8 bytes) -- contains the last name of the
qualified name of the data set identified by this entry. The data set
resides on the volumes whose serial numbers are given in the volume
control block pointed to by field 2.

Field 2: Address field (3 bytes) -- contains the relative track address
of the volume control block identifying the volumes containing the data
set named in field 1. The address is in the form TTR.

Field 3: Halfword count (1 byte) -- contains a binary one to indicate
that one half word follows.

Field 4: Zero field (2 bytes) -- contains binary zeros.

A control volume pointer entry can appear only in volume indexes. It
is 18 bytes long and contains four fields.

Field 1: Name field (8 bytes) -- contains a high level index name that
appears in the volume index of the control volume identified in field 4.

Field 2: Address field (3 bytes) -- contains binary zeros.

Field 3: Halfword count (1 byte) -- contains a binary three to indicate
that three half words follow.

Field 4: Control volume serial number (6 bytes) -- contains the serial
number of the control volume whose volume index contains an entry
identifying the high level index name in field 1.

A new control volume pointer entry can appear only in volume indexes.
It is 22 bytes long and contains 5 fields.

Field 1: Name field (8 bytes) contains a high level index name that
appears in the volume index of the control volume identified in fields 4
and 5.

Field 2: Address field (3 bytes) contains binary zeros.

Field 3: Halfword count {1 byte) contains a binary 5 to indicate that
five halfwords follow.

Field 4: Control volume device code (4 bytes) contains the U4-byte
binary device code of the control volume whose index contains an entry
identifying the high level index name in field 1.

Field 5: Control volume serial number (6 bytes) contains the serial
number of the control volume whose index contains an entry identifying
the high level index name in field 1.

An alias entry can appear in volume indexes only. An alias entry is
20 bytes long and contains four fields.

Field 1: Name field (8 bytes) -- contains the alias of the high level
index identified in field 2.

Field 2: Address field (3 bytes) -- contains the relative track address

of the first block of the index named in field 4. The address is in the
form TTR.

32 O0S Data Management for System Programmers

Field 3: Halfword count (1 byte) -- contains a binary four to indicate
that four half words follow.

Field 4: True name field (8 bytes) -- contains the name of the index
whose alias appears in field 1. The address of the index is in field 2.

A generation index pointer entry can appear in all indexes except

generation indexes. The entry 1is 16 bytes long and contains six fields.

Field 1: Name field (8 bytes) -- contains the name of the generation
index whose address is contained in field 2.

Field 2: Address field (3 bytes) -- contains the relative track address
of the generation index named in field 1. The address is in the form
TTR.

Field 3: Halfword count (1 byte) -- contains a binary two to indicate
that two half words follow.

Field 4: Flags (1 byte) -- contains flags that govern the uncataloging
of data sets as specified by the DELETE and EMPTY options of the INDEX
macro instruction. The options and their hexadecimal codes are as
follows:

EMPTY=01 DELETE=02 EMPTY and DELETE=03

Field 5: Maximum generations allowed (1 byte) -- contains the binary
count of the maximum number of generations allowed in the index at one
time as specified in the INDEX macro instruction.

Field 6: Current generation count (2 bytes) -- contains the binary
count of the number of generations cataloged in the index.

The Volume Control Block Contents

A volume control block is composed of one or more volume-list blocks.
Each volume-1list block contains an 8-byte key and a 256-byte data
portion. The data portion of the volume-list block can identify up to
20 volumes on which a data set is recorded. The format of the volume
list block is as follows:

Field 1: Number of volumes (2 bytes) -- the first volume-list block
contains the binary count of volumes on which the data set is stored;
the value of this field is reduced by 20 for each subsequent volume-list
block. If a data set is on 61 volumes, for example, it has four
volume-1list blocks. The first field of each block contains 61,41,21,
and 1, respectively.

Field 2: Volume identification (12 to 240 bytes) -- contains from 1 to
20 12-byte entries, each of which identifies a volume on which the data
set resides. Each entry contains a 4-byte device code, a 6-byte volume
serial number, and a 2-byte data set sequence number. The data set
sequence number is zero for direct access volumes.

Field 3: Zero field (10 bytes) -- contains binary zeros.

Field 4: Chain address (3 bytes) -- contains the relative track address
of the next block of this volume control block, if additional blocks
exist. The address is in the form TTR. If this is the last block of
the volume control block, the field contains a binary zero. If this
field is not zero, this block must contain twenty 12-byte fields
identifying volumes of the data set.

Field 5: Zero field (1 byte) -- contains binary zeros.

Maintaining the Catalog and the Volume Table of Contents 33

Appendix B: Device Code Designations

Device Code
Designation
(In Hexadecimal)

Device Features

IBM 2400 Series Magnetic

Tape Units 30008001
IBM 2400 series Magnetic

Tape Units 7-track Compatibility 30808001
IBM 2400 Series Magnetic 7-track Compatibility

Tape Units Data Conversion 30C08001
IBM 2400 Series Magnetic

Tape Units Phase Encoding 34008001
IBM 2400 sSeries Magnetic Phase Encoding ‘

Tape Units with Dual Density 34208001
IBM 2311 Disk Storage Drive 30002001
IBM 2301 Drum Storage 30402002
IBM 2302 Disk Storage 30002004
IBM 2303 Drum Storage 30002003
IBM 2314 Direct Access
Storage Facility 30c02008
IBM 2321 Data Cell 30002005
IBM 2305 Fixed Head
Storage Model 1 30002006
IBM 2305 Fixed Head
Storage Model 2 30002007
IBM 3330 Disk Storage 30502009
IBM 3400 Series Magnetic
Tape Units Phase Encoding 34008003
IBM 3400 Series Magnetic Phase Encoding
Tape Units with Dual Density 34208003
IBM 3400 Series Magnetic
Tape Units 7-track 34C08003

Note: These and other device codes are also enumerated under the

DEVTYPE macro instruction in the chapter:

34 OS Data Management for System Programmers

"System Macro Instructions."

IECDSECT, IEFUCBOB, and
IEFJFCBN Macro Instructions

If you want to use the IECDSECT, IEFJFCBN,
and IEFUCBOB macro instructions, you must
either add these macro definitions to the
macro library (SYS1.MACLIB) or place them
in a separate partitioned data set and
concatenate this data set to the macro
library. Expansions of these macros appear
in the microfiche for some open/close/EOV
modules.

This chapter contains the following:
e The format of the macro instructions.
e The job control and utility statements
needed to add the macro instructions to
the library.

Information about label handling routines
may be found in the publication IBM System/360
Operating System: Tape Labels, GC28-6680.

IECDSECT, IEFUCBOB, and IEFJFCBN Macro Instructions 35

IECDSECT Macro Instruction

This macro instruction defines the s-mbolic names of fields in the work
area used by the OPEN, CLOSE, TCLOSE, and EOV routines. Consult IBM
System/360 Operating System: Input/Output Support (OPEN/CLOSE/EOV)
Program Logic Manual, GY28-6609, for a description of fields in the work
area. Code this macro instruct<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>