
File No. 5360-36
GY28-6661-5

Program Logic

OS Release 21

IBM System/3S0 Operating System

Initial Program Loader and

Nucleus Initialization Program

Program Number 360S-CI-535

This publication presents the internal logic of the
IBM System/360 Operating System Initial Program Loader
and Nucleus Initialization Program. The operation of
the Nucleus Initialization Program in each of the con
trol program environments (MFT, MVT) is described in
the section dealing with the Nucleus Initialization
Program. Special initialization procedures for MVT
with Model 65 multiprocessing systems are included in
Appendix A. The ~ables, work areas, and control blocks
are illustrated in the publication, as well as flowcharts
illustrating the logic flow of the Initial Program Loader
and the Nucleus Initialization Program.

This program logic manual is directed to personnel
responsible for program maintenance. It can be used to
locate specific areas of the program, and it enables
the reader to relate these areas to the corresponding
program listings. Program logic information is not
necessary for program operation and use.

Sixth Edition (March, 1972)

This is a major revision of, and makes obsolete, GY28-
6661-q and its associated TNL GN27-1353. This edition
applies to Release 21 of the System/360 Operating Sys
tem and to all subsequent releases until otherwise
indicated in new editions or Technical Newsletters. A
change is indicated by a vertical line to the left of
the change. Changes are continually being made to the
specifications herein; before using this publication in
connection with the operation of IBM systems, consult
the latest System/360 SRL Newsletter, GN20-0360, for
the editions that are applicable and current.

This publication was prepared for production using an IBM
update the text and to control the page and line format.
sions for photo-offset printing were obtained from an IBM
using a special print train.

computer to
Page impres-
1Q03 Printer

Copies of this and other IBM publications can be obtained through IBM
branch offices.

A form for reader's comments appears at the back of this publication.
Address any additional comments concerning the contents of this publica
tion to IBM Corporation, programming Publications, Department 636
Neighborhood Road, Kingston, New York 12401

~ Copyright International Business Machines Corporation 1970,1971,1972

This publication describes the internal
logic and theory of operation of the Ini
tial Program Loader, which brings in the
programs which become the control program
nucleus, and the Nucleus Initialization
Program, which prepares those programs and
the balance of main storage for operation
of the control program.

The publication consists of eight major
sections. The Introduction presents an
overview of the purpose and functions of
the programs and introduces the major
topics presented in the manual. The sec
tion, Initial Program Loader presents a
detailed discussion of that program's
operation, including the use of tables,
work areas, and control blocks. The
address resolution procedure is described
in detail as an adjunct to the listings of
the program. The Nucleus Initialization
Program section discusses the operation of
that program and emphasizes the differences
that exist for the different configurations
of the control program. The Routine Lists
section presents a summary of each of the
major IPL and NIP routines. The section
Tables and Work Areas contains illustra
tions of the tables, work areas, and con
trol blocks used by the programs or ini
tialized by the programs. The Flowcharts
section contains charts that diagram the
logic flow of the Initial Program Loader
and the Nucleus Initialization Program.
Appendix A: Initialization for MVT with
Model 65 Multiprocessing describes the spe
cial initialization procedures for the
Model 65 Multiprocessing System. Appendix
B: NIP Interface Routine describes the
special processing necessary to maintain
correct base addresses when NIP uses
subroutines.

Throughout this publication, references
to control program configurations are simp
lified by the use of abbreviations. When

PREFACE

used in the publication, MFT refers to sys
tems capable of multiprogramming with a
fixed number of tasks, and MVT refers to
systems capable of multiprogramming with a
variable number of tasks. MVT with Model
65 multiprocessing is not abbreviated in
this publication. An appendix is devoted
to a detailed discussion of MVT with Model
65 multiprocessing.

The reader of this publication should
have a knowledge of the assembler language
for System/360 and should be familiar with
the following publications:

IBM System/360: principles of Opera
tion, GA22-6821

IBM System/360 Operating System:
Introduction, GC28-6534
Assembler Language, GC28-6524
MFT Guide, GC27-6939
MVT Guide, GC28-6720

In addition, information contained in
other publications may prove helpful to
understanding these programs. These publi
cations are:

IBM System/360 operating System:
Data Management Macro Instructions,
GC26-3794
Data Management Services Guide,
GC26-3746
Messages and Codes, GC28-6631
Operator's Reference, GC28-6691
Programmer's Guide to Debugging,
GC28-6670
Service Aids, GC28-6719
Storage Estimates, GC28-6551
System Control Blocks, GC28-6628
system Generation, GC28-6554
MFT supervisor PLM, GY27-7236
MVT supervisor PLM, GY28-6659

iii

SUMMARY OF AMENDMENTS

Release 21

• Status Display support

• Initialization for the Generalized Trace Facility

• Relocation of the IPL program

• Channel Check and Machine Check Handler support for the System/370
Model 135

• Operator Procedures for loading an alternative nucleus or limiting
apparent storage size for System/370 machines

Release 20.1

• Time Sharing Option

• Channel Check and Machine Check Handler support for the System/370
Model 145

Release 20

• Extended Precision Floating Point Divide

• Initialization procedures for the Block Multiplexor channel

• Locating, formatting, and initializing the SYS1.DUMP data set

iv

INTRODUCTION ••••• • • • • • • •
The Initial Program Loader • • • • •
The Nucleus Initialization program
Lists of Routines • •
Tables and Work Areas • • • • • • •
Flowcharts • • • • • • • • • • • •

CONTENTS

Appendix A: Initialization for MVT with
Appendix B: NIP Interface Routine •

Model 65 Multiprocessing

1
1
1
1
1
2
2
2

THE INITIAL PROGRAM LOADER • • • • • • • • • • 3
3
4
4
5
5
5
6
6
6
8
8
8

Loading the IPL Program • • • • • • • • • • • • •
Determining the Nucleus • • • • • • •
Clearing Storage and Determining its Size • • •••••

Indicating Size of Main Storage • • • •
Finding the Selected Nucleus • • • •
Assigning Nucleus Control Section Addresses

Calculating the Addresses • • •
Calculating the Relocation Factors

IPL Program Relocation • • • • • • •
Loading the Nucleus Control Sections
Replacing Nucleus Address Constants •
Giving Control to the Nucleus Initialization Program

THE NUCLEUS INITIALIZATION PROGRAM • • • • • • • • •
Nucleus Table Initialization • • • • • • • • •

Initializing the Communications Vector Table Pointer
Establishing the Trace Table Address (Optional: MVT)
Building the Dummy TCB Table (MFT With Subtasking)
Testing for Extended Precision Floating Point Simulation
Determining Size of IBM 2361 Core Storage (Optional: MFT,
Determining Console Readiness (MFT, MVT without MCS)

• • • • • 11
· • 11

. . . • 11
• • 12

• 12
• • 12

MVT) •• 12
• • 12

• 13
Determining the Master Console in a System with Multiple Console
Support (Optional: MFT, MVT) ••••••••••••••••••
Initializing Transient Display Control Modules (Multiple Console
Support with Display Consoles only) • • • 13

13
14

• • 14
14

Initializing Ready Direct Access UCBS • • • • • • • • •
Initializing the System Residence UCB • • • •
Creating and Initializing Data Extent Blocks

General System Initialization • •
Checking The Timer (OPTIONAL) • • • • • • • •
Defining Control Program Areas • . . • • • • • •
Initializing the SVC Table (MVT; Optional: MFT)
Creating and Initializing the Linkage Library DEB.

• • • • • • 16
16

••••• 17
• 17

Locating, Formatting, and Initializing the SYS1.DUMP Data Set • 20
Determining User Options (Optional) • • • • • • • • • • • • 21
Initializing Optional Control Program Functions • 22

• 22
• • • • 22

Emulator Warning Message • • • • • • . • • • • • • • • • •
Initializing the Parameter Library •• • • • • • • • •
Building the LINKLIB List (PCP, MFT, MVT) • • • • • • • 23
Initializing for Generalized Trace Facility •
Establishing Block Multiplexer Channel Capability •
Building the TCB Address Table (MFT) • • • •
Recovery Management Initialization • • • • •
Rebuilding the System Queue Area • • • • • • • • •
Initialization for Time-Slicing (Optional)
Allocating, Opening, and Formatting the Rollout Data Set
(Optional: MVT) • • • • • • • • • • • • • • •••••

• • 23
• • 23
• • 23
• • 24

• • • 24
• • 24

• 25
Initialization for Machine-Check Handler, Model 65 ••••
Initialization for Machine-Check Handler, System/360 Model 85 and

• 27

System/370 •••••••••••••••••••
Initialization for the Channel-Check Handler
Loading Optional Error Recovery Procedure Modules • • • • • •

• 27
• • 28

• 30

v

Initialization for Dynamic Device Reconfiguration SYSRES Support • 30
Resetting Main Storage Divisions •••••• • 32

Expanding the System Queue Area (Optional) ••••• 32
Relocating NIP (MVT) ••••.•.• • • • • • 32
constructing the Link Pack Area (MVT) • • . • • • • • • 32
constructing the Resident Reenterable Module Area (Optional: MFT) • 32
Constructing the Resident BLDL List (Optional) ...•...• • 33
Loading the Link Pack Area Modules (MVT) ••••••••••••• 33
Loading the Resident Reenterable Module Area Modules (Optional:
MFT) •••••••••••••••••••
IGFMCHFO Processing -- Stage 2 •••• • • . . • • • • • • • •

35
35

Loading Optional Resident Routines (MFT) • • • • • • • • 35
Preparing Main Storage When the System Contains Main Storage
Hierarchy Support for IBM 2361 Core Storage (MFT) •• •••• 35

36 Preparing Main Storage (MFT) ••••..•••••••
Preparing Main Storage (MVT) ••••••••••••••

Establishing the Final Master Scheduler Region (MVT)
Defining the Dynamic Area (MVT) • • • . • • • • • •

Verifying Hard Copy Requirements for MCS (Optional) .
Establishing Hard Copy Output capability (Optional)
NIP Termination (MFT) •
NIP Termination (MVT) •

LISTS OF ROUTINES • •
Initial Program Loader Program Control Section
Nucleus Initialization Program Control Section

TABLES AND WORK AREAS • • • •
Scatter/'l'ranslation Record
Control Record • • • • • •
Relocation Dictionary (RLD) Record
Control and Relocation Dictionary Record
Scatter Extent List • • • • • •

FLOWCHARTS

APPENDIX A: INITIALIZATION FOR MVT WITH MODEL 65 MULTIPROCESSING
Preliminary Initialization at Entry to NIP

Checking the First Main Storage Unit

• 36
36

• 37
37
37
37

• 38

39
39
39

41
• 41

• • 42
• 43

44
• 45

• • 46

62
• • • 62

62
Temporary Prefixed Storage Area Initialization • • • • • • • • 62

62 Unit Control Block Initialization ••••••••••••
Initializing the Channel Availability Table
Initializing Direct Access Device UCBs
Initializing Non-Direct Access Device UCBs

Prefixed Storage Area (PSA) Initialization
Initializing the CPU Status Byte (CPUSTAT)
Initializing the Storage Element Status Map (FSSEMAP) •
Initializing the Prefix (PREFIX2) • •
Initializing the External and Machine New PSWs
Constructing the Second PSA • • • . • •
Initializing the TCB Pointer (IEATCBP) •••••
Initializing the PTRIGGER Field .. • • • • • • • •
Initializing the Timer Prefix Field (PREFTMRA) ••••
Initializing the CPU Identification Bytes • •
Initializing the Console Identification Bytes (CONSOLID)
Initializing the Channel Availability Table ••••••

Defining Main Storage • • • • • • • • . • • • • • • • • •
Determining Unavailable Main Storage • • • •
Defining the Free Area ••• • • • • • • • • • •
Final Main Storage Preparation • • • •

Second CPU Initialization • . • .
Initializing the Channel Availability Table • • • • • •
Initializing the Timer • . • • • • • •
Determining Device Availability • • • •
Initializing the TCB Pointer (IEATCBP)
Checking for Error Conditions

NIP Termination • • • • • • . • •

APPENDIX B: NIP INTERFACE ROUTINE

INDEX

vi

• 64
65

• • • 65
• • 65
• • 65
• • 67
• • 67

• • • 67
67
67

• 67
• 67
• 68

68
68
68
68

• • • 68
• • 68

• 70
70

• • 70
70

• • 72
• • 72

72

• • 73

· 74

ILLUSTRATIONS

Figure 1. Wait State Error Codes • • • • • • • • •
Figure 2. Main Storage Layout Before IPL Relocation •
Figure 3. Main Storage After IPL Relocation • • • •
Figure 4. Read Command Modifications •••••••

• • •• lI-
• • •• 7

7
• • •• 8

Figure 5. Main Storage After Loading First Three Sections •••••
Figure 6. Main Storage at IPL Termination •••

9
9

Figure 7. Register Contents at IPL Termination
Figure 8. Data Extent Block Initialization ••••
Figure 9. Timer Test BCT Loop Values
Figure 10. Nucleus Dummy Buffer Size ••••••
Figure 11. Defining Control Program Areas in a System Without IBM
2361 Core Storage (MVT) • • • • • • • • • • • • • • • • • •
Figure 12. Defining Control Program Areas in a System With IBM
2361 core Storage (MVT) •
Figure 13. Defining Control Program Areas (MFT) ••••••••
Figure 14. Main Storage in an MFT System After Rebuilding the

• 10
• • 15

16
• • 16

18

• 19
20

System Queue Area • 25
Figure 15. Main Storage in an MVT system After Rebuilding the
System Queue Area • • • • • • • • • • • • • • • • • • • 26
Figure 16. Loading the MCH Resident Nucleus •••• • • • • • • 28
Figure 17. MCH Nucleus at Conclusion of IGFMCHFO Stage 1 Processing 29
Figure 18. Communications Scheme After Initialization ••••••• 31
Figure 19. MFT Main Storage After Resident BLDL List construction • 34
Figure 20. MVT Main Storage After Resident BLDL Construction 34
Figure 21. MFT Boundary Box and Extension for Main Storage
Hierarchy Support • 36
Figure 22. Final MVT Main storage • • 36
Figure 23. Shared Subpool 0 SPQEs (MVT)
Figure 24. Final MFT Main Storage • • • • •

• • • • • . 37
• 38

Figure 25. Main Storage After Multiprocessing NIP Module Has Been
Loaded • 63
Figure 26. Channel Availability Table At System Generation • • 64
Figure 27. MVT with Model 65 Multiprocessing Addition to UCB • 64
Figure 28. Main Storage After the Second PSA Has Been Established • 66
Figure 29. Main Storage After Free Area Has Been Established •••• 69
Figure 30. Final Main Storage Layout (MVT with Model 65
Multipxocessing) ••••••••• • • • •
Figure 31. NIP Interface Routine ••••••

• 71
73

Chart AA. Initial Program Loader Control Flow • • • • • • • 47
Chart AB. Nucleus Initialization Program Control Flow • • • • • • • 48
Chart AC. Timer Initialization • • • • • • • • • • • • • 49
Chart AD. Supervisor Call (SVC) Table Initialization • • • • • • • • 50
Chart AE. Machine-Check Handler Initialization (Model 65) ••••• 51
Chart AF. CCH Initialization Routine •••••• • • • • • • 52
Chart AG. CCHPGMCK...... • • • • • • • • • • • • 53
Chart AB. CCH Move Module •• • • • • • • • • • • • • 54
Chart AI. Initialization for Rollout/Rollin • • • • 55
Chart AJ. MVT with Model 65 Multiprocessing Initialization 56
Chart AK. MVT with Model 65 Multiprocessing Second CPU
Initialization • • • • • •• • • • • • • • • 58
Chart AL. Initialization for SYS1.DUMP Data set • • • • 59

vii

For the IBM System/360 Operating System
to function in a computing system, the pro
grams and their associated control blocks
and work areas must be loaded into main
storage and prepared for operation.

Loading the control program modules is
the fUnction of the Initial Program Loader,
referred to as the IPL program.

After the IPL program completes the
loading fUnction, control is passed to the
Nucleus Initialization Program, referred to
as NIP, which performs the functions neces
sary to initiate operation of the control
program. NIP also loads and initializes
optional routines selected by the user.

This publication is a guide to the pro
gram listings of IPL and NIP. Where poss
ible, the organization of the manual fol
lows the logical flow of the programs dis
cussed and the topics appear in the order
of their appearance in the program list
ings. Unless otherwise indicated, IPL/NIP
processing is common to both MFT and MVT.
Only that processing that is unique to one
or the other, or processing that is option
al is noted as such. This section provides
an overview and general discussion of the
other sections in the manual. Detailed
information on each routine can be found in
the appropriate section.

THE INITIAL PROGRAM LOADER

The Initial Program Loader (IPL) clears
main storage, determines main storage size,
relocates its own instructions, reads in
the selected control program nucleus and
resolves address constants. When IPL has
completed its operations, control is trans
ferred to the Nucleus Initialization Pro
gram. IPL functions in the same manner for
both control program configurations; the
control program nucleus which IPL loads
governs the option of the operating system.

The section "The Initial Program Loader"
describes the IPL fUnctions in detail and
is divided into the following topics:

• Loading the IPL Program

• Determining the Nucleus

• Clearing Storage and Determining its
Size

• Finding the Selected Nucleus

INTRODUCTION

• Assigning Nucleus Control Section
Addresses

• IPL Program Relocation

• Loading the Nucleus Control Section

• Replacing Nucleus Address Constants

• Giving Control to the Nucleus Initial
ization Program

THE NUCLEUS INITIALIZATION PROGRAM

The Nucleus Initialization Program (NIP)
prepares the control program for operation
by defining main storage areas and initial
izing certain tables, work areas, and con
trol blocks. These NIP functions vary
according to the control program option
(MFT or MVT), so that NIP code for an MVT
system will contain routines that do not
appear in NIP code for an MFT system.
These differences result from selective
processing of the NIP macro instruction
during system generation. According to the
system being generated, program switches
are set which cause sections of coding to
be included in, or deleted from, the NIP
load module produced by system generation.
NIP also loads and initializes optional
routines selected by operator command at
system initialization.

The NIP section of this publication is
organized in the order of appearance of
routines in the NIP macro. Each routine is
identified with the option or options of
the control program in which it is
included; for example, the NIP Relocation
routine appears only in NIP for an MVT
system.

LISTS OF ROUTINES

This section lists the IPL and NIP rou
tines by their entry point names and gives
a brief synopsis of the routine function,
including the tables, work areas, and con
trol blocks used by the routine. In cases
where a routine is embedded within another
routine and does not have a specific entry
point name, the nearest entry point is
given in parentheses.

TABLES AND WORK AREAS

This section presents illustrations of
the tables, work areas, control blocks, and

Introduction 1

record formats referred to in this publica
tion. Many of the control blocks used by
IPL and NIP are standard system control
blocks and can be found in other publica
tions. For the convenience of the reader,
however, they are included in this section.

FLOWCHARTS

This section contains the logic flow
charts for IPL and NIP. The charts are
arranged to follow the same order as the
presentation of the topic or function the
chart represents. Charts for MVT with
Model 65 multiprocessing are included.

APPENDIX A: INITIALIZATION FOR MVT WITH
MODEL 65 MULTIPROCESSING

In addition to initialization for MVT,
initialization for MVT with Model 65 multi-

2

processing requires special procedures.
These procedures are performed by a special
module (IEAMP650) and are described in
Appendix A. The reader should understand
the Nucleus Initialization Program for MVT
before using the appendix.

APPENDIX B: NIP INTERFACE ROUTINE

NIP uses subroutines to perform repeti
tive fUnctions during initialization pro
cessing. Because only one base register is
available for executable code, NIP uses
interface routines assembled in the con
stants area to maintain correct addressabi
lity in branching to these subroutines.

The Initial Program Loader (IPL) is a
program which initializes main storage and
loads the control program nucleus. The IPL
program functions in exactly the same way
regardless of the control program option to
be loaded. As a result, IPL may perform
some fUnctions which are not necessary for
a particular system initialization~ the
nucleus initialization program will not
require some of the information. However,
IPL can initialize the same generated sys
tem on varying machine configurations and
use its work areas and tables to communi
cate with the nucleus initialization pro
gram. The nucleus initialization program
is able to determine any restrictions, such
as machine size, by using these tables and
work areas.

The IPL records, located on the system
residence volume, consist of three records.
The first record is read into main storage
by a hardware feature and causes the second
record to be read into main storage above
the area to be occupied by IPL. A transfer
in channel (TIC) command by the first reco
rd causes the execution of the second, or
"bootstrap", record. The bootstrap record
causes the third record, the IPL program
text, to be read into main storage, over
laying the first record. The IPL program:

• Determines the nucleus to be used
(either the standard nucleus or an
alternative user-selected nucleus can
be used).

• Clears main storage and determines its
size.

• Finds the selected nucleus on secondary
storage.

• Assigns main storage addresses to the
nucleus control sections.

• Relocates the unexecuted portion of its
own instructions and work areas to pre
vent being overlaid when the nucleus
control sections are read into main
storage.

When these preparations are complete,
the IPL program:

• Reads the nucleus initialization pro
gram into a predetermined area of main
storage.

• Reads the nucleus control sections into
main storage.

THE INITIAL PROGRAM LOADER

• Establishes addressability among the
control sections by resolving address
constants.

In performing these operations, IPL uses
its own input/output routine (IEASTRIO),
and interprets linkage editor output in
order to resolve addresses.

IPL performs these operations for all of
the control program options~ the dif
ferences in control program initialization
are handled by the nucleus initialization
program (NIP).

When IPL successfully completes all pro
cessing, it transfers control to NIP.

If an error occurs during IPL, the sys
tem is placed in a wait state and an error
code is stored in the program status word.
These wait state codes are explained in
Figure 1. Further discussion and user
action required can be found in Messages
and Codes.

LOADING THE IPL PROGRAM

To prepare for initial program loading,
the operator mounts the system residence
(SYSRES) volume on a direct access device
and sets the load unit address switches to
the unit address of that device. Initial
program loading is then initiated by pres
sing the LOAD key.

Pressing the LOAD key causes a system
reset, turns on the LOAD light, turns off
the MANUAL light, and initiates a read
operation from the selected input device.
When the read operation is completed satis
factorily, the IPL PSW is obtained, the CPU
starts operating, and the LOAD light turns
off.

When the read operation is initiated,
the selected input device starts transfer
ring data. The first 24 bytes are read
into storage locations 0-23. Storage pro
tection, program controlled interruptions,
and a possible incorrect-length indication
are ignored. The doubleword read into
location 8 is a channel command word (CCW)
which causes the loading of the second IPL
record, the "bootstrap" record.

The "bootstrap" record is loaded into
storage at an address higher than the size
of the IPL program text (the third record)
to ensure that the record will not be over
laid by the IPL control section. The

The Initial Program Loader 3

transfer in channel command at location 16
(in the first record) specifies the address
of the bootstrap record. The bootstrap
record is a chain of CCWs that cause the
IPL control section to be read into main
storage, beginning at location O.

When the device provides channel end
(the last CCW in the chain is executed),
the unit address is stored in bits 21-31 of
the first word in storage. Bits 16-20 are
set to 0, and bits 0-15 remain unchanged.
The CPU then fetches the doubleword in
storage location 0 as a new PSW and pro
ceeds as in a normal operation. The LOAD
light then turns off.

r----T-----------T------------------------,
ICodelBit PatternlMeaning I
~----+-----------+------------------------~
I 01 10000 0001 11/0 not operational I
~---+-----------+------------------------~
I 02 10000 0010 ICSW stored on error I
~----+-----------+------------------------~
I 03 10000 0011 11/0 not initiated I
~----t-----------+------------------------~
I 04 10000 0100 IError on TIO I
~----+-----------+------------------------~
I 05 10000 0101 IUnit-check caused by I
I I I other than TCC, EOT, I
I I I EOCYL. Four Sense bytes I
I I lare moved to location 841
I I Ifor stand-alone dump. I
~----+-----------+------------------------~
I 06 10000 0110 IUndefined error I
~----+-----------+------------------------~
I 07 10000 0111 INo-console condition at I
I I IIPL I
~----t-----------t------------------------~
I 17 10001 0111 IUni£-check on Sense I
I I I Command I
~----t-----------+------------------------~
I 18 10001 1000 IAvailable storage I
I I I exceeded for RLD records I
~----+-----------+------------------------~
I 19 10001 1001 IUnexpected Program check I l ____ ~ ___________ ~ ________________________ J

Figure 1. Wait State Error Codes

Clearing Registers

The first executable instruction in IPL
loads zeros into registers 1 through 14
(register 15 is used as a base register).
The address of lEAPCRET is then placed in
register 10. IEAPCRET is the return point
from the first expected program check.
(Program check interruptions are handled by
IPL. The program new program status word
is constructed pointing to IEAINT. lEAINT
is a branch on register 10; the contents of
register 10 are modified by IPL routines to
handle the next expected interruption.)

IPL then determines if an alternative
nucleus has been selected or if main
storage size has been limited by operator
action.

4

DETERMINING THE NUCLEUS

The user has the option of selecting the
nucleus to be loaded. The operator oom
mUnicates this information to the IPL pro
gram by stopping at location 80 (hex), and
storing the suffix for the alternative nuc
leus into location 8. On System/360 CPU
models, the stopping is accomplished by
setting the ADDRESS COMPARE switches to 80.
On System/370 CPU models, the RATE switch
is set to INSTRUCTION STEP before the
operator presses the LOAD key. (The pri
mary nucleus name is IEANUC01; user alter
native nuclei are given unique names by
appending 2 through 9 to the base name
IEANUCO.) For further information about
nucleus generation, see System Generation.

As its first operation after clearing
registers, IPL tests location 8. If loca
tion 8 is not zero, the character found is
appended to the nucleus name and the name
thus formed is stored at IEANUCY for later
use. If location 8 is zero, the primary
nucleus (IEANUC01) is used.

At this time, the operator may also
limit apparent storage size, by storing a
hexadecimal character into location 9.

CLEARING STORAGE AND DETERMINING ITS SIZE

After the IPL program has determined the
nucleus, its next operation is to determine
if a limit has been set on main storage
size. Location 9 (hex) is tested for zero.
If not zero, the maximum storage size is
set according to the character which has
been loaded into location 9. The valid
characters and their meanings are:

• X'C6' indicates maximum storage of
64K.

• X'C7' indicates maximum storage of
128K.

• X'A7' indicates maximum storage of
192K.

• X'C8' indicates maximum storage of
256K.

• X'A8' indicates maximum storage of
384K.

• X'C9' indicates maximum storage of
512K.

• X'DO' indicates maximum storage of
768K.

• X'Dl' indicates maximum storage of
1024K.

IPL later clears storage, up to the
indicated limit, by moving zeros. Even
though more main storage might be available
on the machine system, any addresses above
the specified limit will be ignored by the
control program, and any later attempts to
address storage above the limit may result
in a protection violation interruption.

Clearing Floating Point Registers

IPL next loads zeros into the floating
point registers, using a series of LDR
instructions. If the system is not
equipped with floating-point registers, a
program check interruption occurs. The
program new PSW (location 60 hex) points to
lEAINT which is a branch instruction (BR
10). Since register 10 was previously
loaded with the address of lEAPCRET, con
trol is returned to that point. lEAPCRET
is the instruction following the series of
LDR instructions. Register 10 is then
loaded with the address of lEAROUND, the
routine which is to gain control after the
next expected program interruption.

INDICATING SIZE OF MAIN STORAGE

I IPL clears main storage using an MVC
instruction in a loop, moving 256 zeros at
a time. This continues until an addressing
interruption occurs. The routine that
clears storage is identified on the program
listings by the name lEAZRLP3. The
expected interruption is handled (via pro
gram new PSW and IEAINT) by IEAROUND.
IEAROUND rounds main storage size (in
register 9) to a doubleword boundary and
stores this rounded value at lEAMAXC. The
routine IEAKYLP then sets the storage key
for each 2K block of storage to the super
visor key of o.

FINDING THE SELECTED NUCLEUS

The IPL nucleus location routine (IEAPC
KEY) searches for the chosen nucleus name
on the primary system residence volume and
determines the location of the nucleus data
set. To locate the correct nucleus, the
routine:

1. Passes the address of the system resi
dence device, stored at location 2, to
the I/O subroutine (IEASTRIO). (This
device contains the system residence
volume.)

2. Reads the label of the system resi
dence volume to find the address of
the VTOC, which contains the data set
control block for the nucleus data
set.

3. Reads the data set control block for
the VTOC to determine the number of
tracks per logical cylinder of the
system residence device. (IPL obtains
this value, since different types of
direct access devices may be used.)

4. Reads the SYS1.NUCLEUS DSCB to deter
mine the location of the partitioned
data set directory.

5. Determines the location of the first
scatter/translation record for the
nucleus data set member from the par
titioned data set directory record
containing the nucleus name.

6. Reads the scatter/translation record
into main storage above the text of
the IPL program.

ASSIGNING NUCLEUS CONTROL SECTION ADDRESSES

For each nucleus control section, the
IPL program assigns an address in main
storage and calculates a relocation factor.
The relocation factors are used to convert
address constants to the actual main
storage addresses.

Since IPL obtains the nucleus structure
from the scatter/translation record, IPL
can only calculate control section
addresses after this record has been read
into main storage. (The composition of the
nucleus cannot be known in advance because
several options that affect nucleus size
are available at system generation.) More
information about system generation is
available in System Generation.

The scatter/translation record contains
the scatter list and the translation table,
which are provided by linkage editor to aid
in the assignment of CSECT addresses. The
scatter list contains suggested relative
load addresses for the CSECTs~ the transla
tion table gives indexes for the displace
ment of each control section's scatter list
entry from the start of the list.

Note: In aSSigning and calculating
addresses for the nucleus control sections,
IPL expects that the first two control sec
tions in the nucleus member data set are
the nucleus initialization program control
section and the I/O interruption handler
control section. The first CSECT (NIP) is
loaded adjacent to the relocated IPL text
in high-address storage, the second CSECT
is loaded at absolute location 0, as the
I/O interruption handler CSECT defines the
permanent storage area for the control pro
gram. If these two CSECTS are not in this
order, initialization and subsequent opera
tion is unpredictable.

The Initial Program Loader 5

CALCULATING THE ADDRESSES

Using the relative origins obtained from
the scatter list, IPL determines the main
storage area required by each control sec
tion. IPL constructs a table of these
sizes and uses it to assign CSECT loading
addresses, which it places in an address
table.

The IPL-constructed tables are of the
same structure as the scatter table, and
the entries associated with a given CSECT
have the same relative position in each IPL
table as in the scatter table.

Building the Size Table (SIZTABLE)

Using the scatter table information to
calculate the size of every control section
but the last, IPL:

1. Subtracts the control section origin
from the next higher control section
origin. This gives the area size
required for the former CSECT.

2. Stores the difference in the size
table in a position corresponding to
that of the control section entry in
the scatter table.

To calculate the size of the last CSECT,
IPL subtracts that CSECT's relative origin
from the size of the entire nucleus, which
was obtained from the partitioned data set
directory record.

Building the Address Table (ADRTABLE)

IPL makes address assignments first for
the NIP and I/O interruption handler con
trol sections, which have the translation
table entries immediately following the
initial dummy entry.

Since NIP remains in storage only tem
porarily, IPL loads it adjacent to the por
tion of IPL that has been relocated (which
also is in storage temporarily). This
address is obtained by subtracting the size
of the area needed by the NIP control sec
tion from the relocation address of IPL.
The difference is stored in NIP's entry in
the address table.

IPL then assigns the I/O interruption
handler an address of 0 since it contains
the pre-assembled Program Status Words
(PSWs), which are not relocatable.

Since other nucleus control sections may
be placed in main storage in random order,
their addresses in storage have the same
numerical relation as their entries in the
translation table. (The translation table
is an alternative suggestion of loading
order from linkage editor.) IPL calculates
these addresses by:

6

1. Adding to the preceding entry in the
address table the associated entry in
the size table. For example, the
second address placed in the table
will be equal to the size of the I/O
interruption handler, which has an
address of zero.

2. Stores the sum in the address table in
a location corresponding to that con
trol section's entries in the scatter
and size tables.

CALCULATING THE RELOCATION FACTORS

The IPL program uses the addresses it
has assigned to the control sections to
calculate the corresponding relocation fac
tors. For each control section, IPL sub
tracts the suggested relative origin found
in the scatter table from the assigned main
storage address. The difference, which may
be positive or negative, is stored in the
relocation factor table (RLFTABLE). For
example, consider the relocation factor for
the I/O interruption handler CSECT. The
assigned address is location 0, but the
relative origin may be 2000. The reloca
tion factor is then -2000.

The CSECT entries in the RLFTABLE are in
the same order as in the scatter, size, and
address tables. Therefore, RLFTABLE
entries also are accessible through the
translation table.

IPL PROGRAM RELOCATION

IPL, Which was loaded beginning at loca
tion 0, must load the nucleus text into the
area of storage it now occupies. To make
room for the nucleus text, IPL relocates
its tables and the unexecuted portion of
code to upper main storage. The relocation
address is determined by the size of
storage and the size of the IPL tables and
code to be relocated. The size of unex
ecuted IPL code and IPL tables is sub
tracted from an address determined by
storage size. The result of the subtrac
tion gives the beginning address of the
relocated IPL. For storage sizes S12K and
greater, IPL size is subtracted from SOaK.
For storage size 256, IPL size is sub
tracted from 252K. For other sizes less
than 512K IPL size is subtracted from the
highest available storage address. The
relocated portion of IPL will never occupy
storage above SOaK. Relocation is accomp
lished using the IEAADDR routine. After
IPL relocates its tables and unexecuted
instructions, it moves zeros into the
storage it occupied before relocation.
Figures 2 and 3 illustrate main storage
before and after IPL relocation.

Cleared Storage

Highest
Address
for
IPL/NIP

Relocation Factor Table (RLFTABLE)

low Address

Figure 2.

Address Tab Ie (ADRT ABLE)

Size Table

Scatter list

Translation Table

IPL Program

Main Storage Layout Before IPL
Relocation

Relocation Factor Table (RLFTABLE)

Highest
Address
for
IPL/NIP

low Address

Figure 3.

Address Table (ADRTABLE)

Size Table

Scatter List

Translation Table

IPL Program

Available Main Storage
(Cleared to all 0)

Main Storage After IPL
Relocation

The Initial Program Loader 7

LOADING THE NUCLEUS CONTROL SECTIONS

The IPL program reads in nucleus CSECTs
in any sequence that it encounters them in
the load module. First, the IPL program
initializes a 260-byte buffer in main
storage. It uses this buffer to read in
control, RLD, and control/RLD records. IPL
reads the first nucleus control record into
the buffer. Then, to load each control
section, the IPL program:

1. Determines, from the record in the
buffer, the length of the following
text record and the external symbol
dictionary identification number
(ESDID) of the control section con
taining the text record.

2. Finds the proper translation table
entry, so that it can obtain the relo
cation factor. (The control section
identification number is also the dis
placement of the corresponding entry
from the start of the translation
table. The IPL program uses this
value as an index to the table to find
the applicable entry.)

3. Finds the relocation factor for the
control section by using the transla
tion table entry (multiplied by four)
as a displacement within the reloca
factor table. (All text records in
the same control section have the same
relocation factor.)

4. Modifies a preassembled READ command
in the control record by adding the
relocation factor to the operand of
the command, which has been set by
linkage editor to the relative origin
of the CSECT in the load module.

Figure 4 shows the modification of the
read commands for the text records of
a Single CSECT.

Name Operation Operand

Preassemb led RDRCDI RD 100 {256 Bytes}

Read
Commands RDRCD2 RD 356 {256 Bytes}

RDRCD3 RD 612 {20 Bytes}

Read
Commands RDRCDI RD 80 {256 Bytes}

With
RLF = -20 RDRCD2 RD 336 {256 Bytes}

added to
Relative RDRCD3 RD 592 {20 Bytes}
Origin

Note: CSECT with assigned stor~ge address of 80 and relative
origin of 100 is assumed. This table shows modification of
commands to read first three records of CSECT •

Figure 4. Read Command Modifications

8

5. Passes the preassembled READ command
to the I/O subroutine (IEASTRIO),
which then reads the text record into
the loading address.

6. Reads into the buffer the control,
control/RLD, or RLD record following
the text record.

7. Moves any relocation information for
the control section from the record in
the buffer into the relocation dic
tionary (RLD) area above the high end
of the nucleus. Figure 5 illustrates
the placement of RLD information. (If
the record is an RLD record, which
contains only relocation information,
IPL reads and transfers RLD informa
tion until it encounters a control or
control/RLD record on the data set
member).

8. Repeats the procedure from the first
step until all of the nucleus text has
been read into main storage.

Figure 5 shows the arrangement of
storage after three control sections are
loaded. IPL loads the CSECTs in the order
in which it encounters them on disk and not
in the order of their main storage
addresses.

REPLACING NUCLEUS ADDRESS CONSTANTS

IPL establishes address ability among the
control sections by converting nucleus
address constants to their main storage
equivalents. The IEARELOC routine uses the
address table and the RLD information to
make the conversions.

From the address table, IPL obtains the
location of each control section: then
from the RLD information, IPL findS the
length and displacement from the control
section origin of each address constant in
the CSECT.

IPL adds to each of these address con
stants the relocation factor for the CSECT
referred to by the constant. Finally, IPL
replaces each address constant with the
corresponding sum it has computed, which is
the actual main storage address.

Figure 6 shows the layout of storage
after all CSECTs have been loaded and
address constants have been replaced.

GIVING CONTROL TO THE NUCLEUS
INITIALIZATION PROGRAM

When it gives control to NIP, the IPL
program loads, into general registers, the
size of main storage, the address of the
system residence device, the address of the

sizetable, the address of the address
table, the number of entries per table, and
the address of the next doubleword above
the end of the nucleus. The contents of
general registers at IPL termination is
shown in Figure 7. The IPL program then

Relocation Factor Table (RLFTABLE)

Address Table (ADRTABLE)

Size Table

Scatter List

Translation Table

Re located portion of I P L program

First loaded CSECT text
(N IP Program)

(Zeros)

RLD Data - 3rd CSECT

RLD Data - 2nd CSECT

RLD Data - 1st CSECT

(Zeros)

Third loaded CSECT

(Zeros)

Second loaded CSECT text
(I/O Supervisor)

Low Address

Figure 5. Main Storage After Loading
First Three Sections

Highest
Address
for
IPVNIP

branches to absolute location 16C (hex).
This location contains an instruction to
load the program status word from location
170 (hex), which contains the starting
address of the Nucleus Initialization
Program.

Relocation Factor Table (RLFTABLE)

Address Tab Ie (ADRT AB LE)

Size Table

Scatter List

Translation Table

Relocated Portion of IPL (Executed)

NIP Program Text

Available Main Storage
(zeros)

Used RLD Data

Nucleus Text

Low Address

Highest
Address
for
IPVNIP

Figure 6. Main Storage at IPL Termination

The Initial Program Loader 9

Reg Content Reg Content

0 Varies B Address of ADRTABLE (excluding Dummy Entry)

1 Varies 9 Number of Entries per table (number of CSECTS)

2 Varies 10 SYSRES Device Address

3 Varies 11 Varies

4 Address of SI ZT AB LE (excluding Dummy Entry) 12 Varies

5 Varies 13 Varies

6 Storage Size 14 Varies

7 Address of End of Nucleus 15 Varies

Figure 7. Register Contents at IPL Termination

10

The Nucleus Initialization Program (NIP)
is assembled at system generation from a
system generation (SYSGEN) macro (SGIEA2NP)
according to the options selected for the
system being generated. Therefore, the
order of the routines in NIP is the same
for all levels of the control program, but
NIP fUnctions vary according to the control
program selected -- some functions may be
dropped from the assembly entirely, either
because they are not supported by a control
program level or not selected as a SYSGEN
option.

This section describes the organization
and functions of NIP in the order of the
appearance of routines in the NIP macro
instruction. Each function is identified
by:

1. The control program level (MFT, MVT)
to which it applies.

2. A routine or entry point name to
assist the reader in relating the
description to the program listing. A
list of NIP routines and their entry
points is included in the section
"Lists of Routines."

If the control program is to be MVT with
Model 65 multiprocessing, a special module
(IEAMP650) must perform some of the ini
tialization procedure. The additional ini
tialization for MVT with Model 65 multi
processing is discussed in Appendix A.

NIP creates some control blocks and
tables which are used later by control pro
gram routines. NIP also uses control
blocks and tables which are assembled as
part of nucleus control sections. These
control blocks and tables are discussed not
only from the standpoint of NIP's use, but
also the later use by control program rou
tines. The control blocks and tables which
are used or initialized by NIP are
described in more detail in the section
"Tables and Work Areas." Detailed descrip
tions of major system control blocks can be
found in System Control Blocks.

Illustrations of main storage layout
during various stages of NIP execution are
included in this section. Where necessary,
each control program level is illustrated
separately.

THE NUCLEUS INITIALIZATION PROGRAM

NUCLEUS TABLE INITIALIZATION

The nucleus initialization program first
initializes system tables which are used by
NIP and then later used by control program
routines. Some of these tables are option
al, others vary slightly according to con
trol program option. The initialization,
therefore, depends on the control program
option and the options selected at system
generation.

INITIALIZING THE COMMUNICATIONS VECTOR
TABLE POINTER

The first function of NIP, after estab
lishing addressability, is to initialize
the pointer to the communications vector
table (CVT). The CVT is brought into
storage as part of the I/O Supervisor con
trol section, and NIP obtains the CVT
address by means of an external reference
(V-type address constant). NIP then stores
the address of the CVT at location 10
(hex.), so that this address may later be
used to place entries in the CVT or to
retrieve information from the CVT.

CVT-Related Initialization

NIP stores, in its own constant area,
the size of storage and the pointer to the
end of the nucleus. IPL passes this infor
mation to NIP in registers 6 and 7, respec
tively. If, in a system with MVT, the
rollout option has been selected, the main
storage size is also placed in the rollout
parameter list (see "Initializing the Roll
out Data Set").

The address of the device which was used
for IPL loading is saved for later use by
NIP to determine the system residence (SYS
RES) device.

Register 6, which contains the value
found by IPL for main storage size, is
decremented by one and the result (highest
addressable byte in main storage) stored in
the CVT at offset 164. In systems with
MFT, this address is also stored in the
supervisor validity-check routine which is
resident in the nucleus.

The communications vector table contains
addresses of control blocks and tables
which are used by control program routines.
Many of these addresses are resolved during
the time that IPL reads in the nucleus, but
NIP must adjust some of the addresses
because NIP processing changes the loca-

The Nucleus Initialization Program 11

tions of certain boundaries and control
blocks. A detailed layout and description
of the CVT can be found in System Control
Blocks.

ESTABLISHING THE TRACE TABLE ADDRESS
(OPTIONAL: MVT)

If system generation included the trace
table option, NIP retrieves the three
pointers (current entry pointer, start-of
table pointer, end-of-table pointer) and
rounds them to eight-word boundaries. The
address of the list of pointers is at loca
tion 84 (dec). NIP only adjusts the bound
aries of the trace table; no clearing of
trace table storage is performed.

The trace table is primarily a debugging
tool; entries are made in this table for
all I/O and SVC interruptions. For a
detailed description of the trace table and
an explanation of its use in debugging, see
Programmer's Guide to Debugging.

BUILDING THE DUMMY TCB TABLE (MFT WITH
SUBTASKING)

NIP constructs a dummy TCB table at
location ATCHLOP2. This table holds a
maximum of 15 entries, and is used by NIP
until the system queue area initialization
is complet~d. After the system queue area
is initialized, the table is rebuilt in its
permanent location (see "Building the TCB
Address Table (MFT)").

TESTING FOR EXTENDED PRECISION FLOATING
POINT SIMULATION

The Nucleus Initialization Program tests
to determine if the Extended Precision
Floating Point Divide feature is part of
the system hardware. If the feature is
present, a flag is set in the CVTOPTA field
of the Communications Vector Table.

The Program Check New PSW address is
replaced with the address of the routine
EPFPRET. NIP then issues an extended pre
cision instruction. If the operation is
successful, bit 7 of the CVTOPTA field of
the CVT is set and processing continues.
Unsuccessful execution of the extended pre
cision instruction causes a program check,
and control goes to EPFPRET to determine
the type of program check by examining the
Program Check Old PSW. An operations
interruption indicates that there are no
floating point registers in the hardware,
and the extended precision feature is not
included.

The flag at bit 7 of CVTOPTA in the CVT
is set for later use by the initial

12

Extended Precision Simulator Routine (IEAE
PSIM). A bit setting of 1 is used to ind
icate the presence of the Extended Preci
sion Floating Point Divide feature; only
the divide simulator is needed. A bit set
ting of 0 indicates that all extended pre
cision instructions are to be simulated.

DETERMINING SIZE OF IBM 2361 CORE STORAGE
(OPTIONAL: MFT, MVT)

Main storage may be expanded by includ
ing IBM 2361 Core Storage in the system.
Main Storage Hierarchy Support for IBM 2361
Models 1 and 2 permits selective access to
either processor storage (known as hierar
chy 0) or the additional storage added by
including 2361 Core Storage (the additional
storage is known as hierarchy 1). NIP
determines if 2361 Core Storage is in the
system by comparing total storage size
(determined by IPL) with 1024K. If the
size is larger than 1024K, NIP divides the
last storage address by 1024K. The
remainder in the division (in register 0)
is placed in IEAHOH1 as the size of hierar
chy o. If there is no remainder, processor
size is assumed to be 1024K.

DETERMINING CONSOLE READINESS (MFT, MVT
WITHOUT MCS)

Before NIP can communicate with the
operator, it must determine whether the
console is ready. To do this, the console
initialization routine (IEACONS1) finds the
primary console and checks its readiness.
If the primary console is not ready, NIP
finds the alternative console, checks it
for readiness, and establishes it as the
primary console. If neither the primary
nor the alternative console is ready, NIP
issues an LPSW instruction, placing the
system in a wait state with an error code
of 07 (hexadecimal) in the current Program
Status Word (PSW). To recover, the console
must be made ready and the IPL procedure
repeated.

NIP finds the consoles by comparing
names in the UCB table with the names pro
vided for the primary and alternative con
soles by the system generation program.
Two names are given for each console: an
input name and an output name. For a stan
dard, noncomposite console, the operation
of the console search routine is simplified
since only input names need be compared, as
both input and output names refer to the
same console. For composite consoles, NIP
first finds the input console and repeats
its search to find the output console.

DETERMINING THE MASTER CONSOLE IN A SYSTEM
WITH MULTIPLE CONSOLE SUPPORT (OPTIONAL:
MFT, MVT)

If the system was generated with Mul
tiple Console Support (MCS), NIP obtains
the pointer to the master console entry in
the Unit Control Module (UCM). The pointer
is contained in the MCS Prefix to the UCM.
NIP then tests the master console for avai
lability. If the master console is avail
able, the UCB for that unit is flagged to
indicate that it is the master console, and
the master console flag in the UCMDISP
field of the unit's UCM entry is set to 1.
A complete description and diagram of the
UCM, including the MCS Prefix, can be found
in the MFT Supervisor and MVT supervisor
Proqram Loqic Manuals.

NIP then determines whether the hard
copy log is necessary. The hard copy log
is required if the master console is a
graphic device. If the master console is a
graphic device, or if a second console is
found available, the hard copy required
flag is set to 1.

If the master console is found to be
unavailable, NIP sets the ·previously
tested" flag (UCMXOR) in the UCM entry and
obtains the entry for the alternate console
of the master console. If the alternate
console is not available, the UCM entry is
flagged as tested, and the search for an
available console proceeds to the next con
sole on the alternate console chain. This
search continues until either an available
console is found or the end of the chain is
reached.

If no available console is found during
the search of the master console UCM entry
chain, the console specified in the first
UCM entry in the UCM base is tested for
availability. Each device not flagged as
"previously tested,· and represented by a
UCM entry is tested until an available con
sole is found. If no console is available,
the system is placed in a wait state with
an error code of X'07'. When the console
search is successfully completed, NIP
resets the UCMXOR flag to 0 in all UCM
entries that were tested and marked during
the search. The address of the master con
sole UCM entry is placed in the UCMMCENT
field of the MCS Prefix to the UCM.

INITIALIZING TRANSIENT DISPLAY CONTROL
MODULES (MULTIPLE CONSOLE SUPPORT WITH
DISPLAY CONSOLES ONLY)

To initialize display (CRT) consoles,
NIP first locates the transient display
control module (TDCM) in main storage for
each transient DCM group (in each transient
DCM group, one TDCM is initially resident).

NIP then uses a portion of the screen image
buffer in the TDCM as a temporary DCM to
write messages to the display console
screen. This enables NIP to process each
console assigned to a transient DCM group
without bringing the TDCM for each console
into main storage. Console initialization
modules later remove the temporary DCM from
the screen image buffer in the TDCM.

INITIALIZING READY DIRECT ACCESS UCBS

The unit control block initialization
routine (IEUCBO) checks readiness of direct
access devices. NIP recognizes direct
access UCBs by testing the device type
(DEVTYP) indicator field in each UCB. For
each of these UCBs, NIP determines device
readiness by issuing a TIO instruction. If
the primary channel path for the device is
not available, NIP attempts to check the
device by using an alternate channel path
(if any are available). The device is con
sidered ready by NIP if any path (primary
or alternate) receives a condition code
other than not available and does not have
a CSW stored with unit check status. When
NIP finds a ready direct access UCB, the
volume serial number of the mounted volume
is obtained and placed in the UCB. The
relative track address (TTR) of the volume
table of contents (VTOC) of the mounted
volume is also placed in the UCB. This
information is later used by the allocation
routines of the job scheduler, the access
method routines, and I/O supervisor
routines.

To avoid processing any UCB more than
once, and for its later use, NIP builds a
direct access device (DAD) table. This
table contains device addresses aSSigned at
system generation to each direct access
device UCB. Each table entry consists of
four half-word device addresses, the first
of which is the primary address; the other
three are secondary addresses.

NIP issues a RESERVE/RELEASE command
sequence for each device that is designated
as a shared direct access device at system
generation. This is done to verify that
the two channel switch feature is installed
(the hardware reserve capability does
exist). A direct access device that can be
shared is indicated by a 1 in bit 2 of byte
2 in the UCBTYP field of the UCB. The com
mand sequence is issued as many as ten
times if the device is busy. Each retry is
preceded by a 100-millisecond delay to
avoid tying up the control unit. If after
ten retries the device is still busy
because it is being held reserved by anoth
er CPU, a message (IEAl20A) is sent to the
operator. The operator must decide whether
the system should continue, leaving the

The Nucleus Initialization Program 13

device offline, or wait for the device to
become available.

Note: The UCB for a direct access device
contains a revised unit address for the
device if the primary channel path for the
device was not available and an alternate
channel path was available.

INITIALIZING THE SYSTEM RESIDENCE UCB

The NIP routine CHKIPLDV ensures that
the system residence (SYSRES) volume is
mounted on a logically and physically con
nected device by verifying that there is a
UCB for the device. The SYSRES unit
address is passed from IPL to NIP, and NIP
compares this address to the unit addresses
in the UCBs until an equal compare is
found. NIP then sets the status indicators
in the UCB to indicate permanent residence
and the system residence volume.

If no UCB speCifying the device address
is found, an operator message is issued
indicating that the SYSRES volume must be
remounted on a logically connected device,
and the system is placed in a wait state
with an error code of 3 in the current PSw.
The nucleus must then be reloaded from the
defined device by the IPL program.

CREATING AND INITIALIZING DATA EXTENT
BLOCKS

To provide for a multi-extent SVC
library and a mUlti-extent or mUlti-volume
Linkage library, NIP builds the needed data
extent blocks. These blocks are built at
the high end of the nucleus and become a
part of the nucleus. So that NIP can later
adjust the nucleus boundaries, the end-of
nucleus address, which is stored in IEADMY,
is also placed in IEANUCND. IEADMY is then
incremented to include the area reserved
for building the DEBs; IEANUCND, pointing
to the actual end of the nucleus, is incre
mented each time a DEB is built and ini
tialized. The addresses in IEADMY and
IEANUCND are always rounded to a doubleword
boundary.

Building and Initializinq the SVCLIB and
LOGREC Data Extent Blocks

The data extent block (DEB) for the
SYS1.SVCLIB data set is built by NIP. The
DEBs for SYS1.SVCLIB and SYS1.LOGREC are
then initialized with information from the
DSCB of the data set. (The DEB for SYS1.
LOGREC is assembled and loaded as part of
the nucleus, it is not built by NIP.)
Since the SVC library may have multiple
extents, its DEB is built, the DSCB checked
for number of extents, and an appendage for

14

each extent (up to 15 additional extents
are possible) is added to the DEB. The DEB
for SYS1.LOGREC (LOGREC is limited to one
extent) is then initialized.

$YS1.SVCLIB and SYS1.LOGREC must reside
on the system residence volume. The NIP
subroutine IEACOMON obtains the information
needed to initialize the DEB by first read
ing the volume label to find the volume
table of contents (VTOC). NIP then:

1. Reads into a buffer the data portion
of the data set control block (DSCB)
for the data set DEB being initialized

2. Moves the absolute device address of
the data set boundaries (start CCHH
and end CCHH) from the buffer to the
DEB.

3. Determines the number of tracks per
cylinder from the device characteris
tics table and places this in the DEB.

4. Places the address of the UCB for the
primary system residence device into
each DEB. The address of an I/O
appendage is placed in each DEB. (See
Figure 8.)

GENERAL SYSTEM INITIALIZATION

NIP performs general system initializa
tion functions. This initialization is
primarily a housekeeping function; prepara
tions either affect areas of main storage
or obtain information from mounted volumes.
The Nucleus Initialization Program:

• Checks and sets the timer (optional)

• Builds a temporary system queue area

• Initializes the SVC table

• Builds and initializes the Linkage
Library DEB

• Locates, formats, and initializes the
SYS1.DUMP data set

• Establishes communication with the
operator (obtional)

• Locates and attempts to obtain a DSCB
for the system parameter library (SYS1.
PARMLIB) data set

• Establishes the linkage library list
(LINKLIST) and builds and initializes
the LINKLIB DEB for concatenated LINK
LIB data sets

• Initializes the System Environment
Recorder program (optional)

-4

DEB Length

o

+4 Number of
Concatenation
Indexes

+8
Concatenati on
Indicator

+12

+16

Number of Extents

+20

Task Priority

+24
Protect Key and

Address of D CB DEB ID

+28

Extent Scale I/o Appendage Address

+32

+36

+40

Start HH (Track)

+44

End HH (Track)

Figure 8. Data Extent Block Initialization

• Allocates, opens, and formats the Roll
out data set (optional, MVT only)

• Initializes the SYS1.ASRLIB data set
and the nucleus refresh table (NRT) for
Machine Check Handler and Channel Check
Handler (optional)

• Initializes time slice control elements
(two for MVT with Model 65 multiproces
sing) (optional)

UCB Address

Start CC (Cylinder)

End CC (Cylinder)

Number of Tracks

General system initialization varies
with the control program configuration
selected. For example, the size, content,
and use of the system queue area are dif
ferent in MFT and MVT; different initial
ization routines are selected from the NIP
macro at system generation for each of
these systems. The Rollout option is sup
ported only in systems with MVT; the rou
tines performing this initialization func
tion are included in NIP only if a system
with MVT is generated.

The Nucleus Initialization Program 15

CHECKING THE TIMER (OPTIONAL)

If the timer option was selected at sys
tem generation, NIP sets the time count at
six hours and waits for the timer to decre
ment the count. The waiting is accomp
lished by loading a value into register 1
and executing a one-instruction BCT loop
using register 1. The value used varies
according to CPU Model as shown in Figure
9.

If the timer is inactive, NIP issues the
message lEA1001 TIMER IS NOT WORKING to
notify the operator of the condition.

DEFINING CONTROL PROGRAM AREAS

After checking the timer, NIP begins
definition of control program areas. Since
NIP uses the control program to complete
some of its functions (for example, NIP
issues a BLDL macro instruction to initia
lize the SVC table), NIP defines main
storage areas required for control program
operation. A system with MFT requires one
area, the system queue area; a system with
MVT requires two areas, the system queue
area and the master scheduler area.

The system queue area (SQA) is con
structed in a temporary location to allow
NIP to add required control blocks (DEBs)
to the nucleus while using system functions
requiring the SQA. The temporary location
of the system queue area is dependent upon
machine model, recovery management options,
and control program options. Figure 10
gives the amount of main storage in bytes
between the end of the nucleus and the tem
porary system queue area. The standard
size will be increased by the amount indi
cated for each option included in the
system.

System/360 or System/370 CPU Mode I BCT Loop Value (Decimal)

System/360 Model 65, 75 21000

System/360 Madel 85 56340

System/360 Model 91 111200

System/360 Model 195 94600

System/370 Model 155 25000

System/370 Model 165 50000

Others 17000

Figure 9. Timer Test BCT Loop Values

16

Options

Machine MFT with
Model

Basic SER CCH subtasking

195 6K 10K

91 6K 7K

others 6K 6K 4K 1K

Figure 10. Nucleus Dummy Buffer Size

The end-of-nucleus address is contained
in two words: IEADMY, which contains the
highest address of the nucleus loaded plus
the dummy area; and IEANUCND, which origin
ally contains the highest address of the
nucleus and is updated as control blocks
are added to the nucleus.

NIP uses the queue size specification
set by system generation to build the sys
tem queue area.

In a system with MVT, the master sched
uler area is temporarily defined as all of
main storage from the end of the system
queue area to the NIP control section area.

In a system with MVT, NIP constructs the
following queue elements in the system
queue area to describe the areas:

1. A dummy partition queue element (PQE)
of 8 bytes, which points to the parti
tion queue element (MSPQE1) for the
master scheduler region.

2. A partition queue element (MSPQE1)
which points to the master scheduler
region. (If the Rollout option has
been selected, a pointer to this PQE
is stored in the Rollout TCB.)

3. A dummy PQE of 8 bytes which points to
a partition queue element (HOPQE) for
the free area.

4. A partition queue element (HOPQE)
which is initialized later.

5. A descriptor queue element (DQE) that
defines the size of the system queue
area.

6. A free area queue element (FQE) which
gives the size of unused system queue
area.

7. A free block queue element (FBQE) that
defines the size of the master sched
uler region. (This control block is
not located in the SQA, but rather in
the temporary master scheduler region.
It is built and chained at this time,
however.)

8. A partition queue element (BlPQE)
which is initialized to represent all
hierarchy 1 storage.

9. A partition queue element (MSPQE2) for
the master scheduler region in hierar
chy 1. MSPQE2 is initialized only if
a secondary link pack area (in hierar
chy 1) is loaded.

If a system is generated with Main
storage Hierarchy Support for the IBM 2361
Core Storage, Models 1 and 2, the addition
al queue elements (items 8-9 in preceding
list) are constructed. If the system is
generated with a hierarchy structure, and
2361 Core Storage is in the system, a
separate ,PQE (H1PQE) is constructed for
2361 Core Storage (hierarchy 1). H1PQE is
temporarily chained to MSPQE1, and func
tions in place of the MSPQE for hierarchy 1
until the Link Pack Area modules are
loaded. A corresponding FBQE is then es
tablished for 2361 Core Storage. The first
address of 2361 Core Storage is one byte
higher than the last address in processor
storage (hierarchy 0). Space is reserved
for a secondary master scheduler partition
queue element (MSPQE2) which is initialized
and chained to MSPQEl only if a secondary
link pack area exists in hierarchy 1 (2361
Core Storage) storage. If no link pack
area is constructed in hierarchy 1, the
space reserved for MSPQE2 is freed, and
H1PQE is then the only PQE for hierarchy 1.

NIP also sets aside the area required
for the initial supervisor request block
(SVRB) at the end of the system queue area
and stores the SVRB address in the tran
sient area handler routine. Figure 11
shows the layout of main storage for an MVT
system without 2361 Core Storage at this
time. Figure 12 shows the layout of
storage for an MVT system (excluding MVT
with Model 65 multiprocessing) with 2361
Core Storage. If the Rollout option has
been selected, the pointer to the high
boundary of the system queue area is also
stored in the Rollout boundary pointer.

Figure 13 shows the main storage layout
for an MFT system at this time.

INITIALIZING THE SVC TABLE (MVT; OPTIONAL:
MFT)

In a system with MVT, the routine which
defines the system queue area also initial
izes the SVC table. In systems with MFT,
this initialization is optional and can be
located in the program listings by the
instruction name SVXINIT.

NIP initializes all supervisor table
entries for nonresident SVC routines.

These type III and type IV routines reside
in the SYS1.SVCLIB data set on the system
residence volume. The routines may be
either IBM- or user-supplied or both. The
corresponding SVC table entries are flagged
as representing nonresident routines.

When NIP recognizes an entry for a non
resident routine, the SVC number (nnnn)
related to the entry is combined with the
prefix IGCO to obtain the routine name
(IGCOnnnn). NIP then:

1. Issues a BLDL macro instruction to
obtain module information from the SVC
library directory.

2. Extracts from the directory record the
low-order 18 bits of the TTR (track
and record address) and the low-order
11 bits of the length of the first
text record. NIP places these values
into the SVC table entry.

If the BLDL routine failS to locate an
SVC routine name, NIP issues an error mes
sage to the operator specifying the name of
the routine. In MVT if an I/O error occurs
or the BLDL for an SVC fails, NIP inserts
the address of the nucleus resident error
routine (IGCERROR).

CREATING AND INITIALIZING THE LINKAGE
LIBRARY DEB

Creation and initialization of the link
age library DEB is similar to that for the
SVC library, but because the data set
(SYS1.LINKLIB) may reside on other than the
system residence volume, NIP handles its
initialization separately. If SYS1.LINKLIB
is not on the system residence volume, it
may be on another mounted volume or an
unmounted volume. SYS1.LINKLIB must be
cataloged. ----

To determine the serial number of the
volume containing the linkage library data
set, NIP issues a LOCATE macro instruction
before attempting DEB initialization. If
the information obtained from the catalog
data set indicates that the linkage library
does reside on the system residence volume,
NIP initializes the DEB. If the system
catalog has no entry for SYS1.LINKLIB, NIP
enters a wait state with an error code 03.

If LINKLIB does not reside on the system
residence volume, NIP determines if the
volume is mounted by searching the direct
access device table (previously constructed
by NIP) for the volume serial number. If
the volume is mounted, NIP proceeds with
initialization.

The Nucleus Initialization Program 17

FBQE

Dummy
PQET

Law Address

Figure 11.

18

Executed IPL Instructions and Tables

NIP I nstru eli ons

Free Area
(Temporary Master Scheduler Region)

Master
Dummy Free Area

Scheduler DQE

MSPQET PQE2 HOPQE

Dummy Area

Nucleus

SVRB

FQE

Highest
Address
or ~

I PL/NIP

System
Queue
Area

Defining Control Program Areas in a System Without IBM 2361 Core Storage
(MVT)

Hierarchy
1

Hierarchy
o

FSQE

--....

FBClE

FBQE

Dummy
PQEl

Low Address

Master
Dummy

Scheduler
MSPQEl

PQE2

Free Area

Executed IPL Instructions and Tables

NI P Instructions

Free Area
(Temporary Master Scheduler Region)

Free Area Free Area
DQE

HOPQE H1PQE

Dummy Area

Nucleus

HI gn Aoaress

SVRB

Master
Scheduler FQE
MSPQE2

Hi ghest
Address
in
Processor

'- Storage

25 2K

System
Queue
Area

Figure 12. Defining Control Program Areas in a System With IBM 2361 Core Storage (MVT)

The Nucleus Initialization program 19

r---

FQE

Law Address

Executed IPL Instructions and Tables

NIP Instructions

Free Area

System Queue Area

Dummy Area

Nucleus

Highest
Address
for
IPI/NIP

Figure 13. Defining Control Program Areas
(MFT)

If the volume is not mounted, NIP issues
a message to the operator requesting that
the volume be mounted. NIP places the sys
tem in a simulated wait state until an I/O
interruption indicates that the volume has
been mounted. NIP then compares the

20

requested serial number with the serial
number of the volume mounted. If the seri
al numbers are not the same, NIP again
requests the correct volume be mounted.

When the serial numbers are the same,
NIP initializes the related UCB, marking it
permanently resident so that the linkage
library volume cannot be dismounted. The
DEB is then initialized, using the subrou
tine lEACOMON.

LOCATING, FORMATTING, AND INITIALIZING THE
SYS1.DUMP DATA SET

NIP determines whether the SYS1.DUMP
data set exists on a direct access device
or whether a tape device can be mounted.
If SYS1.DUMP is on a direct access device,
NIP must ensure that the data set is large
enough and initialize the control blocks.
The IEALOCAT routine is used by NIP to
search the catalog to determine whether
SYS1.DUMP resides on a direct access
device.

Processing If No SYS1.DUMP Data Set Exists

If no catalog entry for SYS1.DUMP is
found, a console message requests the
operator to either enter the address of a
tape device to be used for the data set or
to state that there are no provisions for
SYS1.DUMP. In an MFT system, if no provi
sion is made for the data set, the CVTDAR
pointer in the communications Vector Table
is cleared to zero, a message is issued to
the operator to inform him that the SYS1.
DUMP function is inoperative, and NIP pro
cessing continues. In an MVT system, the
control blocks are initialized as much as
possible, the CVTDAR pointer is set to the
CVT and the same message is issued.

If the operator replies with the address
of a tape unit, NIP verifies that the unit
status of the tape is acceptable, that the
tape is mounted, and that the tape is unla
beled. If any of these conditions is not
met, a message is issued to the operator,
and he is requested to repeat his actions.
This will continue until NIP determines
that all required conditions have been met.
The control blocks (ECB, DCB, DEB, and lOB)
required by the Write Dump routine are con
structed at the high end of the nucleus and
then initialized. NIP stores the addresses
of the control blocks in the CVT. Regular
NIP processing is resumed.

processing a cataloged SYS1.DUMP Data Set

If a catalog entry for the SYS1.DUMP
data set is found, the NIP subroutine IEA
SERCH obtains the unit address and deter
mines that the correct volume is mounted.
Another subroutine, lEAUCBFN, searches for

the UCB and obtains the UCB pointer. (If
no UCB is found, processing continues as
though no data set exists.)

Using specific device information from
the UCB, NIP issues an OBTAIN macro
instruction. If the OBTAIN fails, NIP
determines the reason for failure and takes
appropriate action. If failure was due to
a permanent I/O error or an unsuccessful
GETMAIN, processing continues as though no
SYS1.DUMP data set exists. If space for
the data set has not been allocated, NIP
issues an ALLOCATE macro instruction for
the required space and writes an EOF as the
first record of the allocated data set.
Processing then continues as described
under "Final Control Block Initialization.-

If the OBTAIN is successful, indicating
the data set has been allocated, NIP deter
mines if the data set consists of a single
extent. If the data set does not consist
of a Single extent, NIP continues as
described under "Scratch Data Set.- For a
single-extent data set, NIP determines
whether or not it is large enough to con
tain a full storage dump. If the data set
is too small, NIP reads the first record to
test for an EOF that would indicate the
data set is empty. If the first record is
EOF, processing continues as described
under "Scratch Data Set.- If the data set
is too small, but contains a dump, proces
sing continues as if no data set exists.
The message sent to the operator requests a
tape to be mounted for the SYS1.DUMP data
set. If the data set is large enough, NIP
continues with final control block
Initialization.

The possible conditions and the resul
tant actions taken are:

• Data set contains a dump, processing
continues as if no data set exists.
(Message is issued to operator.)

• Data set does not contain a dump, allo
cated space too small. Processing con
tinues as described in the section
"Scratch Data Set."

• Data set does not contain dump. allo
cated space is sufficient. Processing
continues with final control block
initialization.

Scratch Data Set

If a data set is not acceptable because
it consists of multiple extents, or if an
acceptable data set is too small. NIP
attempts to scratch the data set. If the
data set is successfully scratched, a mes
sage is issued to the operator to inform
him of the action, and NIP issues an ALLOC
ATE macro instruction to reallocate the

I data set. NIP writes an EOF as the first
record of the just-allocated data set. If
either the scratch or allocate is unsucces-
sful, processing is resumed as though no
SYS1.DUMP data set exists.

Final Control Block Initialization

When the data set has been initialized,
NIP initializes the necessary control
blocks (ECB, DCB, DEB, lOB) and stores the
address of the blocks in the CVTDAR field
of the Communications Vector Table.

DETERMINING USER OPTIONS (OPTIONAL)

If operator communication was selected
at system generation, NIP issues the mes
sage IEA2181 MOD=nnn [,ALTSYS=xxx] [mmm]
ASSUMED. The model number (nnn) in the
message is the model number specified at
system generation. The ALTSYS= part of the
message describes the alternate SYSRES
device address and appears only if the
Dynamic Device Reconfiguration option was
selected during system generation. The
machine designation (mmm) indicates that
the model number (nnn) is part of the
System/360 (mmm=360) or System/370 (mmm=
370) series. This message is written so
the operator can determine whet~er the
correct model has been assumed and, if not,
specify the correct model number in the
MOD= parameter when he enters the system
parameters. This message is also written
to inform the operator of the alternate
SYSRES device that was specified at system
generation so that he may specifyanother
device, if he desires, in the ALTSYS= pa
rameter when he enters the system parame
ters. If an invalid address is specified,
no message will be issued to indicate this
condition. The system will use the altern
ate system residence device specified at
system generation.

NIP then requests the operator to enter
parameters for those options which may be
modified by the user during NIP processing.
NIP reads the reply, and when a parameter
(consisting of a keyword and user-supplied
values) is recognized, it places the param
eter values in the buffer for the corres
ponding option. If options chosen at sys
tem generation are not specified by the
operator, NIP uses the default specifica
tions for the option. The operator may
delete an option from the system by enter
ing a comma in place of the parameter value
(that is, RAM=,). In this case NIP sets a
null switch in the buffer area for the
option and processing will later be
bypassed. If the operator enters a parame
ter in the wrong format, NIP issues a mes
sage indicating the error. The operator
may respecify the parameter.

The Nucleus Initialization Program 21

The user options which may be modified
and the corresponding keywords are:

• Additional resident modules. In sys
tems with MVT, these modules are loaded
into the link pack area. In systems
with MFT, these modules are loaded into
the optional resident reenterable
module area if included in the system.
In systems with MFT that do not include
the resident reenterable module area,
only the resident access method modules
can be loaded into the nucleus (RAM=).

• Additional or alternate resident error
recovery modules (RERP=).

• A resident module list resulting from
BLDL information (BLDL=).

• Additional resident SVC routines
(RSVC=).

• User-specified request for hierarchy
structure (HIARCHY=).

• User-specified model numbers for MCH,
CCH, and block multiplexer initializa
tion (MOD=).

• A larger system queue area (SQS=).

• An alternate SYSRES device different
from that specified at system genera
tion (ALTSYS=).

• User-specified device for hard copy log
(HARDCPY=).

• user-specified minimum partition for
job initiation (MIN=).

For systems with MVT only:

• Changes to time-slice groups and length
of time slice (TMSL=).

• User-specified number of blocks for use
as a buffer by the initiator (QBF=).

• User-specified number of 2K blocks for
the master scheduler region size
(MPS=).

• Additional resident modules to be
loaded into the secondary Link Pack
Area of hierarchy 1 (HRAM=).

• Additional resident SVC routines to be
loaded into the secondary Link Pack
Area of hierarchy 1 (HSVC=).

If the operator enters a parameter for
an option not selected at system genera
tion, NIP issues a message indicating the
option is not supported.

22

INITIALIZING OPTIONAL CONTROL PROGRAM
FUNCTIONS

Certain portions of main storage must be
set aside for the later use of the control
program. Some functions must be initial
ized for use by NIP, and other fUnctions
dependent on parameter lists established at
system generation and stored in the SYS1.
PARMLIB data set must be initialized before
NIP can complete its processing. Some of
these functions may have been altered by
the operator replies which have just been
read from the console and stored in the
appropriate parameter lists.

EMULATOR WARNING MESSAGE

If the emulation option was selected at
system generation on the System/360 Model
85 or System/370 models (EMULATOR macro),
NIP issues message lEA1251 EMULATOR COMPA
TIBILITY FEATURE ASSUMED LOADED INTO WCS.
This message is written to remind the
operator that, if emulation is to be per
formed, the compatibility feature micro
coded data set must have been loaded into
Writable Control Storage (WCS) prior to
IPL. NIP issues this message only if the
current model ID is the same as the model
ID specified at system generation. For
information about loading WCS in the Model
85, see Emulating the IBM 7094 on IBM
Models 85 and 165 using OS/360, GC27-6951.

INITIALIZING THE PARAMETER LIBRARY

The parameter library data set (SYS1.
PARMLIB) contains the parameter lists and
module lists for system options. These
lists are used by NIP to determine the
modules to be loaded for the RAM, BLDL, and
RSVC functions and the data sets to be con
catenated with the system linkage library.

NIP issues a LOCATE macro instruction to
find SYS1.PARMLIB. If no entry for SYS1.
PARMLIB is found in the catalog, NIP
assumes that the data set resides on the
system residence volume. NIP then issues
an OBTAIN macro instruction to determine
the actual track address of the data set on
the appropriate volume. This address is
stored for later use by the initialization
routines which must access SYS1.PARMLIB for
parameter lists.

Note: If the OBTAIN macro instruction
fails, none of the resident options can be
initialized. The message lEA2111 OBTAIN
FAILED FOR SYS1.PARMLIB is written to the
operator and followed by the message lEA20-
8I, indicating the inoperative resident
functions.

BUILDING THE LINKLIB LIST (PCP, MFT, MVT)

NIP builds the linkage library list
(LINKLIST) and constructs and initializes
the DEB as needed for multiple extent, mul
tiple volume linkage library. NIP issues a
GETMAIN macro instruction to obtain main
storage in which to build the list. The
linkage library list is then read from
SYS1.PARMLIB into a buffer. Each data set
name read into the buffer is then trans
ferred to the dynamically acquired area as
an entry in the LINKLIST. Each entry con
sists of a flag byte and a 44-byte name
(left-adjusted, padded with blanks if
necessary). The last name in the list is
followed by 1 byte containing X'FO'.

After the last name is placed in the
LINKLIST, NIP issues a LOCATE macro
instruction for each data set name. The
LOCATE is issued in the same order as the
names in the list, and for each LOCATE, an
addition is made to the LINKLIST. If the
LOCATE is successful, the entry consists of
a flag byte and a six-character volume
label. The flag byte is set to X'OO'. If
the LOCATE is not successful, the entry
consists of seven bytes set to X'FF'.

NIP then searches all the UCBS to find
which devices have the requested volumes
mounted. If a needed volume is not repre
sented in the mounted volume identifier in
the UCB, the flag byte is set to X'FF' and
NIP issues the message IEA131A MOUNT LINK
LIB VOLes) for the volume indicated as not
mounted. If the operator replies with an
EOB signal from the console, the volume
label field in all LINKLIST entries and the
DSNAME flag byte specifying that volume are
set to X'FF' (not used). When the correct
volume is mounted, the UCB is marked per
manently resident.

When all required volumes have been
mounted (or their use canceled by operator
action), NIP issues an OBTAIN macro
instruction for each data set name. If the
OBTAIN fails for any reason, the flag byte
of the data set name and the volume label
and its flag byte are overlaid with X'FF'.
The appropriate message is issued to the
operator.

If the OBTAIN is successful, the flag
byte remains set to X'OO' and a DEB is con
structed and initialized in the same manner
as the DEB for the SYS1.SVCLIB. No more
than 15 data sets may be concatenated with
SYS1.LINKLIB.

The pointer to the end of the nucleus,
IEANUCND, is updated each time the DEB is
expanded and initialized for a concatenated
LINKLIB volume. Thus, IEANUCND always

points to the highest address in the
nucleus.

INITIALIZING FOR GENERALIZED TRACE FACILITY

NIP determines if the system being ini
tialized is for a System/370. If it is,
control register 8 is initialized to to
enable MONITOR CALL interruptions for class
1 monitoring. The class 1 monitoring capa
bility of System/370 is initiated by load
ing bits 16 through 31 of control register
8 with a hexadecimal 4000. In System/360,
the MONITOR CALL instruction is simulated,
and initialization is not required.

GTF is primarily a debugging tool that
is invoked by the operator issuing a START
command. When GTF is invoked, the optional
trace table facility is disabled and the
trace functions are performed by GTF. For
additional information on the Generalized
Trace Facility, refer to Service Aids.

.ESTABLISHING BLOCK MULTIPLEXER CHANNEL
CAPABILITY

NIP determines if the system being ini
tialized supports the Block Multiplexer
Channel and if the user selected the chan
nel to be used in block multiplexer mode
(this selection must be made at system
generation). In systems with control regi
sters, a control register flag is set to
one, to indicate block multiplexer capabi
lity. The control register flag is checked
by input/output supervisor routines to
determine the correct I/O technique.

Block multiplexer support is determined
by comparing the value at location MODELID
with the entries in the list BLMPXCPU.
MODELID reflects the system-generated model
number or the model number supplied by the
operator in reply to the message IEA101A
SPECIFY SYSTEM PARAMETERS. BLMPXCPU is a
subset of the list CPUTAB, which is a list
of supported model numbers. The subset
list contains those models that support the
Block Multiplexer Channel.

BUILDING THE TCB ADDRESS TABLE (MFT)

NIP builds and initializes a table of
TCB addresses for systems with MFT. The
location of the table and the number of
table elements are placed in the communica
tions vector table. If MFT with subtasking
is included in the system, the number of
table elements is calculated to be the
number of TCBs created during system
generation (depending on the system options
chosen), plus the number of possible
attached subtasks that can execute concur
rently. The latter value is based on the

The Nucleus Initialization Program 23

value specified by the user in the SQS= pa
rameter (see "Expanding the System Queue
Area").

RECOVERY MANAGEMENT INITIALIZATION

After the DEB for the SYS1.LINKLIB has
been initialized, NIP initializes the Sys
tem Environment Recorder (SER) program if
it was selected at system generation. NIP
determines if the operator specified a
model in the MOD= parameter and uses this
model number for initialization. If the
operator did not specify a model in his
reply, the model specified during system
generation is used.

NIP checks the SER option table to
determine the option to be used. The SER
option table is built within NIP at system
generation and contains the options for
model/storage size variances selected by
the user, since the level of SER support
can be varied according to model and
storage size combinations. If the table
does not contain the correct model combined
with either the actual storage size or a
value less than the actual storage size,
SER initialization is bypassed, the SEREP
interface is left intact, and the message
lEA2171 SEREP INTERFACE ESTABLISHED is
issued. If the option table contains an
acceptable model/storage size entry, the
specified SER option is initialized. If
the table contains more than one acceptable
entry, the SER option specified in the
entry containing the storage size specifi
cation closest to the actual storage size
is the option initialized.

After the appropriate SER option has
been determined, the resident SER module,
with its initialization appendage, is
loaded by NIP from SYS1.LINKLIB. The
module to be loaded is found by using a
module name in the form IFBSRxmn, where x
is the level of SER support (0 or 1), and
mn is the model number.

If the SERO option is selected, NIP
establishes a logical connection between
the resident portion of SER and the non
resident portion, module IFBSEROO, which
resides on the linkage library. NIP finds
the address of IFBSEROO and stores the
address in the resident portion of SER.

To find the address of IFBSEROO in the
linkage library, NIP reads the partitioned
data set directory record for the module.
From the relative track address in this
record, NIP calculates the absolute address
(CCHHR) of the first text record and places
this address, along with the unit address
of the device, in the SERO control section
in the nucleus. In the final NIP routine,
a read CCW, which points to a location 20

24

bytes above the end of the nucleus, is
placed in the resident SER location
IFBADDR.

REBUILDING THE SYSTEM QUEUE AREA

After all additions to the high end of
the nucleus have been completed, the system
queue area can be relocated to its per
manent location. The queue area is moved
to a location adjacent to the end of the
nucleus (indicated by lEANUCND).

In a system with MFT, the system queue
area is moved and the FQE for the dynamic
area is adjusted to reflect the address of
the first byte of storage above the SQA.
This address is obtained by adding the sys
tem generation chosen size of the SQA to
the address in lEANUCND, the end-of-nucleus
pointer. Free area then is defined as all
storage from the end of the SQA to the
beginning of NIP code (see Figure 14).

In a system with MVT, the SQA is moved
in the same manner and the control blocks
(HOPQE, FBQE) are adjusted to indicate the
change in storage layout (see Figure 15).

In both systems, the size of the SQA may
be changed by operator response to the mes
sage lEA101A SPECIFY SYSTEM PARAMETERS (see
"Expanding the System Queue Area").

Message Buffer for MCS (Optional)

After the system queue area has been
relocated to its permanent position, a 2K
portion is obtained for use as a message
buffer in a system with MCS. This area is
used to store copies of all system messages
and operator replies that are issued prior
to completion of console initialization.
The area is freed by either the communica
tions task console initialization routine
(if the hard copy log is a console), or by
the log initialization routine (if the hard
copy log is the system log).

Note: A temporary buffer is used for NIP
messages before the SQA is relocated. The
message buffer does not contain any mes
sages generated as a result of the "list"
parameter in response to the lEAl01A SPECI
FY SYSTEM PARAMETERS message.

INITIALIZATION FOR TIME-SLICING (OPTIONAL)

If the time-slicing option was selected
at system generation, NIP converts the mil
lisecond value in the time-slice control
elements (TSCEs) to timer units. Because
this option may be canceled by the opera
tor, NIP first checks the time-slice value
in the first TSCE for zero. This value is
set to zero if time slicing has been can-

celed, and NIP then branches around the
routine. If time slicing is not canceled,
NIP compares the millisecond value for the
time-slice interval with the minimum value
of 20 milliseconds. If the value is less
than the minimum, NIP increases it to 20
milliseconds, issues a message to the
operator that the interval has been
increased, and proceeds with millisecond
to-timer unit conversion.

NIP multiplies the millisecond value in
the TSCE by 1000, and divides the result by
26, obtaining the number of timer units.
This value is placed in the TSCE in the
field TSCEMSEC. The process is repeated
for each TSCE on the chain of time-slice
control elements.

ALLOCATING, OPENING, AND FORMATTING THE
ROLLOUT DATA SET (OPTIONAL: MVT)

Allocation

The rollout data set (SYS1.ROLLOUT) must
be cataloged. The data set may reside on
any system-supported DASD, but must occupy
no more than a single volume.

NIP locates the rollout data set by
using the catalog to obtain its volume
serial number. If the data set has not
been catalogued, NIP notifies the operator
and bypasses further rollout processing.
When the volume serial number has been
found, NIP compares it with the numbers in
the direct access device table to determine
whether the desired volume has been mounted
on the correct device type, as indicated in
the catalog entry. If the volume has not
been mounted, NIP requests that the opera
tor mount it.

NIP then calculates the number of rec
ords per track, using the device type of
the rollout data set (obtained from the
device table) and a 1024-byte record size.
This nurr~er is converted to the correspond
ing number of cylinders, and is used later
by the Rollout program.

NIP issues an OBTAIN macro instruction
for the DSCB(S) of the rollout data set.
This is to ensure that sufficient space is
available for the data set. If a DSCB is
not found, space has not been allocated;
NIP issues an ALLOCATE macro instruction
for the required space. If the space has
been allocated but is not sufficient, NIP
issues a SCRATCH macro instruction to elim
inate it, and an ALLOCATE macro instruction
to provide new space of sufficient size.
If sufficient space is not available, NIP
sets a program switch to prohibit rollouts
and bypasses further rollout processing.

Whenever NIP issues an ALLOCATE macro
instruction it follows with an OBTAIN macro
instruction to verify that the new DSCB has
been created.

R

Low Address

Executed IPL Instructions and Tables

NIP Instructions

Free Area

System Queue Area

Nucleus

Highest
Address
for
IPVNIP

Figure 14. Main storage in an MFT System
After Rebuilding the System
Queue Area

The Nucleus Initialization program 25

,

FBQE

Dummy PQEl

Low Address

Figure 15.

26

Executed IPL Instructions and Tables

NIP Instructions

Free Area
(Temporary Master Scheduler Region)

System Queue Area

Master
Free Area Free Area

Scheduler Dummy PQE2
HOPQE HlPQE

MSPQEl

Nucl eus

Master
DQE Scheduler

MSPQE2

SVRB

FQE

Highest
Address
for
IPL/NIP

Main Storage in an MVT System After Rebuilding the System Queue Area

Opening and Formatting

NIP opens and formats the rollout data
set. Additional formatting may be required
from one IPL to the next (for example, if
the system link pack area is modified): if
the data set has been partially formatted,
NIP begins additional formatting at the
point where previous formatting ended.

NIP opens the rollout data set by build
ing the necessary control blocks and issu
ing an OPENJ macro instruction.

NIP uses the "last TTR written" field.
It completes rollout initialization by
attaching the DEB to the rollout DCB, and
the rollout appendage vector table to the
DEB.

INITIALIZATION FOR MACHINE-CHECK HANDLER,
MODEL 65

When the MCH option has been selected at
system generation, NIP initializes pointers
for MCH and completes the SYS1.ASRLIB data
set by writing on it copies of all refresh
able nucleus modules. NIP uses the MOD=
parameter of the "specify system parame
ters" message to set the IGFMOD field to
the IBM System/360 model number. The MCH
programs use this field to determine wheth
er recovery processing is to take place.

NIP locates the SYS1.ASRLIB data set
through the catalog. If an entry for the
data set cannot be located in the catalog,
or if it resides on a volume for which
there is no UCB, NIP notifies the operator
and cancels the MCH function. If the data
set is located on an unmounted volume, NIP
requests that the operator mount the
volume, and waits until SYS1.ASRLIB has
been successfully located and mounted.

NIP then obtains the address on SYS1.
SVCLIB of the MCH module which will be the
first to be loaded into the transient area.
The address is placed in the IGFENVCK field
of the MCH common area. If the module can
not be found in SYS1.SVCLIB, or if an I/O
error occurs, NIP indicates that MCH ini
tialization has failed.

After the IGFENVCK field has been ini
tialized, NIP processes the 12-byte entries
in the nucleus refresh table (IGFNUC01),
which was prepared at system generation.
Each entry identifies a refreshable nucleus
module. Using the module name from the nu
cleus refresh table and the size and
address from IPL SIZTABLE and IPL ADRTABLE,
NIP writes the modules on SYS1.ASRLIB. NIP
then places the disk address and length of
each record in the nucleus refresh table.
Finally, the table itself is written on
SYS1.ASRLIB as the last record, and the

address of the table is stored in IGFNUC01,
an 8-byte field with this format:

Bytes
0-4

5

6-7

contents
CCHHR (the address)

X, 00'

length of the table

NIP indicates to the operator that ini
tialization of SYS1.ASRLIB is incomplete
if: (a) NIP is unable to find a matching
address in IPL ADRTABLE for an entry in the
nucleus refresh table: (b) NIP is unable to
continue writing modules in SYS1.ASRLIB
because of insufficient space. If an I/O
error occurs while NIP is writing on SYS1.
ASRLIB, NIP notifies the operator and can
cels the MCH function.

If the resident BLDL option has been
selected, NIP places the address of the

I resident LINK area into the IGFBLDL field
of the MCH common area, and places the
address of the resident SVC BLDL area into
the IGFSVBLD field of the MCH common area.

If resident Type 3 and 4 SVC routines
have been specified, NIP stores the address
of the resident SVC area in the IGFSVCQ
field of the MCH common area.

At the successful completion of MCH ini
tialization processing, NIP stores X'FF' in
the high-order byte of the IGFBLDL field of
the MCH common area.

INITIALIZATION FOR MACHINE-CHECK HANDLER,
SYSTEM/360 MODEL 85 AND SYSTEM/370

The Machine-Check Handler (MCH) for
System/360 Model 85 and System/370 is ini
tialized by the module IGFMCHFO. This
module is part of MCH, but it is executed
during NIP processing. Before attempting
to load the MCH module, NIP compares the
model number of the system being initial
ized to the model number specified at sys
tem generation. For the Model 85, if the
model numbers are not equal, MCH initial
ization is not performed.

However, for System/370 machines that
have MCH, the secondary model support (SMS)
option is provided. That is, MCH initial
ization is provided for all System/370
machines (except the Model 195) which are
specified at system generation as primary
or secondary models, regardless of the
System/370 machine on which the system is
IPLed. If the model numbers are equal or
if SMS is specified at system generation,
NIP loads the MCH resident nucleus
(IGFMCH10 for the Model 85, IGFMCHEO for
other models) into the dynamic area and
passes control to the loaded module. The

The Nucleus Initialization Program 27

MCH resident nucleus module performs its
own initialization and relocates itself
(see Figure 16) so that it becomes contigu
ous with the control program nucleus. The
pOinter to the end of the nucleus is
updated to point to the end of the MCH
resident nucleus and control is returned to
NIP. NIP deletes the copy of the load
module from the dynamic area and then loads
the MCH initialization module IGFMCHFO and
passes control to it.

IGFMCHFO processing -- Stage 1

During Stage 1 of its processing,
IGFMCHFO performs the following functions:

1. Allocates space for the MCH Transient
Area. Allocation is accomplished by
adding to the end-of-nucleus pointer
the number of bytes needed for the
transient area. For the Model 85, 3K
bytes are allocated; for System/370,
only 1K bytes are needed. IGFMCHFO
then loads into the transient area the
module which will initially reside
there (for System/360 Model 85, the
initiator/terminator; for system/370,
the Soft Machine-check Handler).

2. Allocates space for, and initializes
the Model Dependent Common Area.

Pointer to End
of OS Nucleus

I GPR 1

I Before
I Relocation
lof MCH
I Nucleus

I
I
I
I
I

After
Relocation
of MCH
Nucleus

!G MCH
Resident
Nucleus

II: Relocation) -----------------: \ /"
\, MCH Resident Nucleus
''''-------------------------

OS NUCLEUS

Figure 16. Loading the MCH Resident
Nucleus

28

Dynamic
Area

Fixed Area

3. Initializes IGFMSBOO, the machine sta
tus block in the control program nu
cleus, with information for machine
status control and multiple console
support (MeS) control information for
the nucleus.

4. Allocates the Model Independent Common
Area. This area serves as the MCH
communications area.

5. Allocates the Fixed Logout Save Area.
This step is performed only for
System/370 initialization. The fixed
logout save area is 280 bytes.

6. Allocates the Extended Logout (System/
370 models only). A pOinter to the
extended logout is placed in control
register 15.

7. Initializes control register 14 with
the machine check mask (System/370
only) •

8. Initializes the Model Independent Com
mon Area.

9. Initializes pointers in the MCH
nucleus.

10. Initializes the Dispatcher. A pointer
to the MCH nucleus Post ECB routine is
placed in the Dispatcher.

11. Initializes the machine-check new PSW.

12. Initializes the Module Scheduler. The I

IDs and TTRs of the MCH transient
modules on SYS1.SVCLIB are placed in
the MCHTTRS field in the MCH Model
Independent Common Area, and the suc
cessor IDs for those modules having
successors are placed in the MCHNXIDS
field.

13. Allocates Subsystem Common Area
(Optional) •

Figure 17 illustrates the structure of
the MCH Area at this stage of NIP proces
sing.

After initializing the Module Scheduler,
IGFMCHFO returns control to NIP. NIP saves
the end-of-nucleus pointer and deletes the
copy of IGFMCHFO that was loaded in the
dynamic area.

INITIALIZATION FOR THE CHANNEL-CHECK
HANDLER

The Channel-Check Handler supports the
2860, 2870, 2880 stand-alone channels, and
the Model 135, 145 and 155 integrated
channels.

Pointer to End
of OS Nucleus

Extended Logout Save Area

Fixed Logout Save Area

I ndependent Common Area

Dependent Common Area

MCH Transient Area

MCH Resident Nucleus

as NUCLEUS

}

System/370 Models Only
Except Model 135 where
Extended Logout is Part
of the Fixed Logout

} Contains Initial
Transient Module

Figure 17. MCH Nucleus at Conclusion of
IGFMCHFO Stage 1 Processing

The Channel-Check Handler (CCH) consists
of one central channel- and model
independent module which is permanently
resident, and six channel-dependent channel
error analysis modules, one for each of the
supported channels. In addition, there is
a CCH Initialization routine which is used
for initialization purposes only, and a
move routine within each of the analysis
modules.

At system generation, the channels that
are to be part of the system are specified;
they are indicated in the channel configu
ration word. For a system which includes
CCH, the central CCH module is loaded as
part of the nucleus. The analysis modules
for the specified channels reside on SYS1.
LINKLIB, and the needed modules are loaded
by NIP.

During nucleus initialization, the CCH
initialization routine indicates to NIP
which analysis modules are to be made resi
dent. NIP dynamically loads those modules;
only those channel-dependent analysis
modules needed to support a specific chan
nel configuration occupy space in the
nucleus.

If the CCH option was selected at system
generation and the MOD= parameter value is
65 or greater, NIP loads the CCH initial
ization routine IGFCCHIN. NIP gives con
trol to IGFCCHIN, and passes three parame
ters: the address of the channel configu
ration word, the address of a dummy buffer

(indicating the unused area of storage
immediately after the resident nucleus),
and the address of a parameter list. The
CCH Initialization routine places indica
tors in the parameter list to indicate to
NIP which of the analysis modules are to be
made resident.

The CCH Initialization routine first
determines what channels are both in the
system and online, and uses this informa
tion to fill the parameter list. The pa
rameter list consists of a two-byte hexa
decimal code for each module needed (the
last two digits of the module name). Addi
tionally, the channel type for each channel
is stored in the first byte of the appro
priate entry in the channel pointer table
and a hexadecimal code is stored in the
fourth byte of the same entry, to be used
by the move routine in establishing
linkages.

The CCH Initialization routine then sets
up a record entry area three times the size
of the maximum record length needed for the
channels in the system. This area is es
tablished beginning at the address of the
dummy buffer and is initialized to zero.
The CCH Initialization routine places the
address of this area in the parameter table
and in the central CCH module. The size of
the individual record is saved in the half
word before the record entry area and in
the CCH module. The master byte (see "CCH
Communications Scheme," below) and the
release number are also stored ahead of the
record area. If a 145 channel or a 2880
channel is attached to a Model 165, the
address of the channel logout area is
placed in location 172 (dec). For the 2880
channel attached to a Model 165, the
address of the channel logout area is also
placed in word 5 of the parameter table.
The CCH Initialization routine returns con
trol to NIP, passing the address of the
unused buffer space and the address of the
parameter list.

NIP then deletes the CCH Initialization
module. Using the parameter list, NIP
loads each analysis module needed into the
high address portion of main storage and
passes control to the move routine (in the
module), passing the address of the remain
ing dummy buffer.

The move routine obtains the address of
the channel pointer table and examines the
fourth byte of each address entry in the
table for the hexadecimal code that identi
fies the module to be moved. When the move
routines locates the code, it stores the
address of the module in the three right
hand bytes of that entry, if it is unused,
overlaying the hexadecimal code. The pro
cess is continued for each address entry in
the table.

The Nucleus Initialization Program 29

The move routine then moves the channel
analysis module (except for the move rou
tine itself) into the dummy buffer and
updates the buffer address.

When the move routine completes the
required move, it returns control to NIP,
passing the address of the unused buffer.
NIP deletes the move routine and loads the
next analysis module, passing control to
its move routine. This procedure continues
until all modules identified in the parame
ter list have been loaded.

CCH Communications Scheme

The CCH Communications Scheme is illus
trated in Figure 18.

The address of the first word of the
LOGREC DCB is placed in the CVTDCB field of
the Communications Vector Table (CVT) by
system generation. The first word of the
LOGREC DCB contains the address of a five
word parameter table which is the CCH por
tion of the I/O RMS Communications Area.
The address of the parameter table is also
contained in the word located at displace
ment -4 from the beginning of the CCH
pointer table.

The parameter table contains the follow
ing information:

First word:
contains the address of the beginning
of a table of five ERPIBs which reside
within the CCH central module.

Second word:
first byte: contains a flag field
which indicates, when other than zero,
that there are record entries to be
written. The field is initially set
to zero.

second, third, and fourth bytes: con
tain the address of the beginning of
the record entry area, which contains
three record entries of the maximum
length needed for the channels in the
system.

Third word:
CCH base register value.

Fourth word:

30

contains the address of the channel
pointer table in the central CCH
module. The channel pointer table
contains pointers for each channel to
the appropriate analysis module. A
zero in the address entry for a chan
nel indicates that the channel is not
supported. The first byte of each
address entry contains the channel ID
information placed there by the CCH
Initialization routine. The channel

pOinter table can be expanded to pro
vide for more than seven channels.

Fifth word:
2880 Logout pointer.

All these tables reside in the nucleus
before CCH is initialized. During initial
ization, the record entry area and the ana
lysis modules are appended to the nucleus
by the CCH Initialization routine and the
move routines within each module. The CCH
Initialization routine also stores a word
preceding the record entry area. This word
contains:

First byte:
this is the master byte for CCH. Each
bit indicates the presence of a type
of channel.

Second byte:
this byte contains the release level
of the system in binary.

Third and fourth bytes:
these bytes contain the maximum size
for a record entry. This information
is also in displacement -8 from the
beginning of the channel pointer
table.

LOADING OPTIONAL ERROR RECOVERY PROCEDURE
MODULES

Error Recovery Procedure (ERP) modules
from the SVC library are loaded according
to the lists specified in the RERP= parame
ter. (If the RERP parameter is not used in
reply to the SPECIFY SYSTEM PARAMETERS mes
sage, the default list, SYS1.PARMLIB member
IEAIGEOO is used.) NIP uses the same pro
cedures to locate and load the ERP modules
as for the RAM and RSVC modules. However,
NIP creates a separate chain of ERP-related
CDEs and saves a pointer to this chain at
location IEAAERP. The pointer in the TCB
is zeroed as for RAM and RSVC modules. NIP
restricts ERP loading to those modules
which have module names beginning with
IGEO.

INITIALIZATION FOR DYNAMIC DEVICE
RECONFIGURATION SYSRES SUPPORT

If Dynamic Device Reconfiguration SYSRES
support was selected at system generation,
the operator has the option to change the
alternate system residence device specified
at system generation by specifying ALTSYS=
as a system parameter. If this is done,
NIP places the new alternate system resi
dence device address in the I/O RMS Com
munications Area for use by Dynamic Device
Reconfiguration SYSRES.

CVT First 4 Bytes of LOGREC DCB

-1 @ Parameter Table 1
1

First 5 Words of I/O RMS
Communications Area-Parameter Table

@ ERPIB Table
~

Flag I +4 @ Record Entry Area -
+116 @ LOGREC DCB r--

+8 CCH Base Register Value

+12 @ CCH Channel Pointer Table -

+16 2880 Logout Pointer

Central CCH Module - ----------------------~

ERPI B Table

L.,

~
-8 Max. Record Entry Size

I -4
@ Parameter Table

I

CCH Channel Pointer Table
I
I

0 I L...., ID @ 2870 Analysis Rtn
I

1 ID @ 2860 Analysis Rtn

1
2 ID @ 2860 Analysis Rtn

I
3 ID @ 2860 Analysis Rtn

I
4 ID @ 2880 Ana lysis Rtn

I
5 ID 0 I
6 ID 0

I
I

FF I
'--- I

I L ____________________ ~

Resident Nucleus

Figure 18. Communications Scheme After Initialization

,------...

--

--

Master I Release I Maximum Rec'd
Byte Leve I Entry Si ze

RECORD

ENTRY

AREA

I FF

2870
Analysis Routine

2860
Analysis Routine

2880
Analysis Routine

--~-------. Add,llon to Nucleus Made
by CCH Initialization

The Nucleus Initialization Program 31

RESETTING MAIN STORAGE DIVISIONS

So that it may complete its operations,
NIP resets main storage divisions. The
program expands the system queue area if
the SQS= parameter was specified. In a
system with MVT, NIP frees upper main
storage by relocating its unexecuted
instructions.

EXPANDING THE SYSTEM QUEUE AREA (OPTIONAL)

If the operator specified a larger sys
tem queue area in response to the SPECIFY
SYSTEM PARAMETERS message, NIP resets the
area's upper boundary to include the
requested supplemental area.

In a system with MFT without subtasking,
the operator enters, in the SQS- parameter,
the total size of the system queue area
desired. NIP checks this value to deter
mine that it is at least 1600 bytes (the
minimum size of the system queue area), and
then adjusts the upper boundary. The upper
boundary is rounded to a doubleword bounda
ry, and the FQE for the dynamic area is
adjusted to the resultant boundary.

In MFT with subtasking the user must
calculate, in addition to the minimum
requirements of an MFT system without sub
tasking, an increase in system queue area
size as follows:

Minimum requirements N(A+B+C+4) + 4D + E

where:

N is the number of simultaneously active
tasks possible.

A is the length of one floating-point
register save area in one TCB (if
necessary).

B is the length of one task control
block (TCB).

C is the length of one timer queue ele
ment (TQE); this is zero if the
interval timer is not included in the
system.

D is the number of system tasks
generated during system generation.

E is the amount of storage space
required by system options selected by
the user during system generation.

Note: The user should be aware that the
system writer issues an ATTACH macro
instruction. Thus, the user should add the
number of writers active in the system to
the factor N (the number of simultaneously
active tasks possible). Additional infor-

32

mation about storage requirements can be
found in Storage Estimates.

In a system with MVT, the operator
enters the supplemental size as the number
of additional 2K blocks of storage to be
added. NIP converts this number to a numb
er of bytes and adds this supplemental size
to the system queue area end address to
determine the new upper boundary.

NIP updates affected control blocks and
pointers to show the new, expanded size.
The new free area size is placed in the
FQE. A pointer to the FQE and the area
size are placed in the DQE. NIP also
updates the system environment recorder and
main storage supervisor pointers to the new
system queue area. NIP then places a new
SVRB pointer in the transient area handler
routine of the second level interruption
handler.

RELOCATING NIP (MVT)

Before continuing main storage initial
ization, NIP relocates its unexecuted por
tion, thus freeing upper storage. NIP
moves its instructions to the 2K block fol
lowing the system queue area.

To maintain address ability, NIP computes
the displacement factor for the move and
uses the factor to recalculate its internal
address constants. The program also resets
address constants in channel command words
(CCWs) and resets base registers.

When the move is complete, NIP branches
to the relocated instructions to continue
storage preparation.

CONSTRUCTING THE LINK PACK AREA (MVT)

After the final size of the system queue
area is determined and upper storage is
freed, NIP constructs the link pack area.
The area consists of the optional resident
BLDL list, the standard modules which are
always resident, and any modules indicated
by the user. These modules may be from the
linkage library or the SVC library.

CONSTRUCTING THE RESIDENT REENTERABLE
MODULE AREA (OPTIONAL: MFT)

The modules to be loaded into the resi
dent reenterable module area are selected
from lists contained in the SYS1.PARMLIB
data set, as described by the RAM= parame
ter. These modules may come from the link
age or SVC libraries, and should not
include SVC modules which may be loaded
into the resident SVC area.

CONSTRUCTING THE RESIDENT BLDL LIST
(OPTIONAL)

When the resident BLDL option is chosen,
NIP constructs lists of BLDL entries for
modules in SYS1.SVCLIB or SYS1.LINKLIB. In
MFT systems, the lists reside as part of
the nucleus. In MVT systems, the lists are
part of the Link Pack Area. These modules
are listed in member IEABLDxx of SYS1.
PARMLIB (xx is the parameter value supplied
by the operator, or is 00 by default).

NIP first builds lists of entries, con
taining only the names of the specified
modules. In a system with MFT, the list is
built adjacent to the system queue area
(see Figure 19). In MFT systems, the BLDL
list is built in the part of main storage
where it will remain, and becomes part of
the nucleus. In a system with MVT, the
lists are built immediately following the
relocated NIP instructions and NIP then
issues a GETMAIN macro instruction to
obtain permanent storage at the upper end
of storage for the BLDL list. NIP then
moves the constructed table to its per
manent location (see Figure 20).

NIP issues the BLDL macro instruction to
fill in the list entries with the linkage
library directory information. Should a
permanent I/O error occur during BLDL
execution, a message is sent to the opera
tor and NIP operation continues. Should
any specified module directory entries not
be found in LINKLIB or SVCLIB, a message is
sent to the operator giving the correspond
ing module names.

If the user requested a listing of
modules with resident BLDL list entries,
NIP writes, in operator messages, the
module names as it obtains them from
SYS1.PARMLIB.

LOADING THE LINK PACK AREA MODULES (MVT)

In a system with MVT, NIP loads into the
link pack area any SVC library and linkage
library modules required by the control
program or specified by the user as resi
dent. The standard modules are listed
internally in NIP, but the user lists are
contained in the SYS1.PARMLIB data set. A
message is issued to the operator to inform
him that the optional routines (BLDL, RAM,
RSVC, RERP) are not operative if NIP was
unable to locate and open the SYS1.PARMLIB
data set. NIP first loads the standard
modules, then the optional resident access
modules, and finally the resident SVcs. If
the system includes IBM 2361 Core Storage
and Main storage Hierarchy Support, a
secondary Link Pack Area may exist in

hierarchy 1 storage. Only those modules
that are specified by the user options
HRAM= and HSVC= are loaded into this secon
dary LPA.

Standard Modules

For each standard module to be loaded,
NIP issues a BLDL macro instruction. When
NIP obtains from BLDL the partitioned data
set directory information for the module,
it sets the attribute field to show that
the associated routine is reentrant regard
less of Linkage Editor assigned attributes.
NIP then issues a LOAD macro instruction
specifying the constructed BLDL list for
that module.

Optional Linkage Library Modules

When the standard modules are loaded,
NIP obtains the module lists specified by
the RAM= parameter values. (The default
module list is IEAIGGOO.) NIP issues the
BLDL macro instruction for each module.
After NIP sets the attribute field of the
found module BLDL list, the program issues
a LOAD macro instruction.

When loading of standard and of any
optional modules is complete, NIP obtains a
pointer to the chain of contents directory
entries (CDES) for the loaded modules. NIP
flags each CDE to show that NIP loaded the
module for permanent residence. NIP sets
the pOinter to the chain in the nucleus
resident LINK, LOAD, XCTL service routine
and zeros the temporary chain pointer in
the master task control block (TCB).

Optional Type 3 and Type 4 SVC Modules

Lists indicated by the RSVC= parameter
values are used to load modules from the
SVC library. (The default list is SYS1.
PARMLIB member IEARSVOO.) NIP uses the
same procedure to locate and load the SVC
modules as for the RAM modules. However,
NIP forms a separate chain of SVC-related
CDEs. NIP saves a pointer to this chain at
location IEAQSVCQ. The pointer in the TCB
is zeroed as for the linkage library
modules.

Also, when the loaded module is the
first (or only) module of an SVC routine,
NIP updates the corresponding SVC table
entry to show that the module is resident
and to give the module'S main storage
address. (These modules are recognized by
their names which are of the form
IGCOOxxx.)

The Nucleus Initialization Program 33

Executed IPllnstructions and Tables

Highest
Address
for
IPVNIP

R

low Address

Figure 19.

34

NIP Instructions

Free Area

Resident BlDl list

System Queue Area

Nucleus

MFT Main Storage After Resident
BLDL List construction

Resident BLDl list (In link Pack Area)

High
Address

Resident BlDl list Built Here, Then
Moved to Upper Ma i n Storage

Relocated NIP Instructions

System Queue Area (Expanded)

Nucleus

low Address

Figure 20. MVT Main Storage After Resident
BLDL Construction

optional Error Recovery Procedure Modules

Lists indicated by the RERP= parameter
values are used to load error recovery pro
cedure (ERP) modules from the SVC library.
(The default list in SYS1.PARMLIB member
IEAIGEOO). NIP uses the same procedure to
locate and load the ERP module as for RAM
and RSVC modules. However, NIP forms a
separate chain of ERP-related CDEs, and
saves a pointer to this chain at location
IEAAERP. The pointer in the TCB is zeroed
as for the RAM and RSVC modules. NIP
restricts ERP loading to those modules
which have names beginning with the four
characters IGEO.

LOADING THE RESIDENT REENTERABLE MODULE
AREA MODULES (OPTIONAL: MFT)

In a system with MFT which includes the
optional resident reenterable module area,
NIP loads into this area any SVC or linkage
library modules specified by the user in
the RAM= option. The user's module lists
are contained in the SYS1.PARMLIB data set.
If NIP is unable to locate a DSCB for the
SYS1.PARMLIB data set, a message is issued
to the operator to inform him that the
optional routines are inoperative.

Optional Linkage Library Modules

NIP obtains the module lists specified
by the RAM= parameter values. (The default
module list is IEAIGGOO.) NIP issues the
BLDL macro instruction for each module.
After NIP sets the attribute field of the
found module BLDL list, it issues a LOAD
macro instruction.

When loading of the modules is com
pleted, NIP obtains a pointer to the chain
of loaded program request blocks (LPRBS)
for the loaded modules. NIP places the
pointer in the communications vector table
(CVT) and then zeros out the temporary
chain pointer in the communication task TCB.

IGFMCHFO PROCESSING -- STAGE 2

After the link pack area has been ini
tialized, NIP again loads IGFMCHFO for its
stage 2 processing.

For System/360 Model 85 and System/370
machines (excluding the Model 195),
IGFMCHFO initializes pointers to the resi
dent SVCLIB BLDL Table and LINKLIB BLDL
Table in the MCH Independent common area.
Then, if the IPLed model number is 135 or
145, IGFMCHFO returns to NIP, which deletes
the copy of IGFMCHFO that was just loaded.
For Model 85 and System/370 Models 155 and
165, IGFMCHFO then computes checksums for
all refreshable data in the control program
nucleus and the link pack area. The com-

puted checksums are written out on SYS1.
ASRLIB, where they will be available if the
need arises to refresh the related data.
For an explanation of checksumming as a
method of refreshing, see IBM System/360
Operating System: Machine-Check Handler
for IBM System/360 Model 85, Program Logic
Manual, GY27-7184, or Machine-Check Handler
for IBM System/370 Models-155 and 165,
GY27-7198.

MCH Initialization for System/370 is
then complete, and control is returned to
NIP. NIP deletes the copy of IGFMCHFO
which was just loaded. One more step
occurs for System/360 Model 85 MeH initial
ization. NIP checks to determine if the
alternate multiply algorithm should be
loaded. If the function is required, NIP
loads the Alternate Multiply Control module
and passes control to that module so that
the necessary initialization functions can
be performed. The Alternate Multiply Con
trol module returns control to NIP, and NIP
then deletes the module before continuing
system initialization.

LOADING OPTIONAL RESIDENT ROUTINES (MFT)

Optional resident routines are loaded in
the same manner in an MFT system as in an
MVT system, except that the routines are
loaded into different areas of storage. In
an MFT system, the RAM, BLDL, RERP, and
RSVC resident modules are loaded into the
area of storage adjacent to the system
queue area. The boundary boxes and end-of
nucleus pointers are updated to reflect the
additional size of the control program area
(nucleus).

PREPARING MAIN STORAGE WHEN THE SYSTEM
CONTAINS MAIN STORAGE HIERARCHY SUPPORT FOR
IBM 2361 CORE STORAGE (MFT)

If the computing system being initial
ized contains IBM 2361 Core Storage units
and the control program has been generated
with Main Storage Hierarchy Support, a
boundary box extension is initialized to
indicate the space available. The boundary
box extension is created during system
generation. NIP determines if 2361 Core
Storage is present on the system and places
the addresses of the upper and lower limits
in the boundary box extension (see Figure
21). The FQE for the area is built and the
FQE pointer in the boundary box is initial
ized. In a system with MFT, a six-word
boundary box for each partition defined in
system generation exists in the master
scheduler resident data area. However, NIP
initializes only the master scheduler
boundary box; the initialization of parti
tions is the function of the master sched
uler initialization routine. The boundary
box for the master scheduler describes all

The Nucleus Initialization Program 35

See
Note I HO Free Queue Element

HO Low Boundary

HO High Boundary

Hi Free Queue Element

Hi Low Boundary

Hi High Boundary

Note: Bit 7 of Byte 0 in the HO Boundary Box is set to 1 to
indicate the presence of the extension for Main Storage
Hierarchy Support.

Extension for
Ma in Storage
Hierarchy Support

Figure 21. MFT Boundary Box and Extension
for Main Storage Hierarchy
support

of processor (hierarchy 0) storage, 2361
Core Storage (hierarchy 1) is described as
free area.

PREPARING MAIN STORAGE (MFT)

In a system with MFT, main storage which
is to be used for problem programs is
divided into two or more logically discrete
areas called partitions. creating these
partitions is a function of the MFT master
scheduler. NIP rounds the nucleus boundary
and sets protection keys for the control
program area and problem program (dynamic)
area. Control is then passed to the master
scheduler, which completes storage prepara
tion. Passing control to the master sched
uler is explained later under "NIP
Termination."

PREPARING MAIN STORAGE (MVT)

After building the link pack area in a
system with MVT, NIP determines the final
main storage divisions required for control
program operation. At this time, NIP
divides free main storage into the master
scheduler region of predetermined size and
the dynamic area, which is all the unused
storage. (See "Defining Control Program
Areas" for control block use and storage
designation.)

ESTABLISHING THE FINAL MASTER SCHEDULER
REGION (MVT)

NIP sets the master scheduler region
size to six 2K blocks. If MPS=nn was spe
cified, NIP overrides the pre-set value
with the size indicated by nn, provided
that the requested amount of storage is
available for allocation. NIP designates
storage adjacent to the link pack area as
the final master scheduler region (see

36

Figure 22). NIP sets the master scheduler
partition queue element (MSPQE1) in the
system queue area to the address of the new
FBQE constructed at the beginning of the
master scheduler region. The FBQE points
to MSPQE1 and gives the size of the master
scheduler region.

Link Pack Area

Master Scheduler Region

Free Area
(Dynamic Area for Problem Program Regions)

System Queue Area

Nucleus

Low Address

Figure 22. Final MVT Main Storage

High
Address

o

8

NIP builds two SPQES in subpool 255 of
the system queue area to allow the master
scheduler and communications tasks to share
subpool zero. NIP issues a GETMAIN macro
instruction to obtain 16 bytes of storage
from subpool 255. The format of the two
SPQEs is shown in Figure 23.

The master scheduler SPQE is flagged as
owned, while the communications task SPQE
is flagged as shared. Each SPQE is chained
to the SPQE chain for the task with Which
it is associated. If either of the SPQEs
for subpool zero is the only SPQE on the
chain, it is also flagged as the last SPQE
on the chain.

DEFINING THE DYNAMIC AREA (MVT)

NIP defines the storage space between
the system queue area and the master sched
uler region as the dynamic area for problem
programs. This space includes the area
occupied by NIP. (The NIP instructions are
transparent to the control program when NIP
passes control to it.) NIP constructs an
FBQE at the start of dynamic area, thus
overlaying some NIP instructions. The FBQE
points to the dynamic area partition queue
element (HOPQE) and contains the size of
the dynamic area. HOPQE, which was pre
viously unused, points to the FBQE. Figure
22 shows main storage after NIP processing.

VERIFYING HARD COpy REQUIREMENTS FOR MCS
(OPTIONAL)

If the HARDCPY parameter was specified,
either at system generation or as an opera
tor response when entering system parame
ters, NIP ensures that the hard copy device
is available.

Either a device address or the SYSLOG
data set may be specified for the hard copy
log. (SYSLOG is a valid specification only
if LOG support was included in system
generation.) If SYSLOG is specified, NIP
attempts to locate the SYS1.SYSLOGa (where
a is either X or Y) data set in the system
catalog. NIP searches first for the SYS1.
SYSLOGX data set; if that is not found, the
search is repeated for the SYS1.SYSLOGY
data set. If neither data set can be

F Address of
Next SPQE

F Address of
0

Next SPQE

0

Add ress of Master
Scheduler SPQE

Master
Scheduler

Commun i cati ons
Task

Figure 23. Shared Subpool 0 SPQEs (MVT)

found, NIP terminates the hard copy search
after issuing the appropriate message. If
the device on which SYSLOG is mounted was
not on-line at IPL, the search is ter
minated. Normal NIP processing continues.

If the hard copy specification indicates
a device address, NIP searches for the
corresponding UCM entry to ensure that the
address represents a valid console. If no
UCM entry is found, the HARDCPY SPECIFICA
TION INVALID message is issued to the mast
er console and the search is terminated.
Normal NIP processing continues.

When an acceptable and available device
is found, NIP sets the system flag in the
MCS prefix to the UCM base, as appropriate,
to indicate:

• that hard copy log is required.

• that hard copy is to be included in the
SYSLOG.

• that commands are to be included in the
system log.

• that the timer is operative.

If the hard copy specification was a
device address, the address of the UCM
entry for that device is placed in the hard
copy pointer field of the MCS prefix to the
UCM base. If the hard copy device is the
SYSLOG device, zeros are placed in the hard
copy pointer field.

ESTABLISHING HARD COpy OUTPUT CAPABILITY
(OPTIONAL)

If the system includes MCS, a hard copy
output device may be required. NIP tests
the hard copy required flag in the MCS pre
fix to the UCM base. If hard copy output
is required, NIP determines whether an
acceptable device has been previously spe
cified. If not, the SPECIFY HARDCPY mes
sage is issued to the master console. An
acceptable operator response is required
before processing can continue. NIP tests
for the device (or SYSLOG data set) availa
bility, and if the device was not on-line
at IPL or for any other reason is not
available, repeats the SPECIFY HARDCPY mes
sage. This procedure is repeated until an
available device is obtained. If no hard
copy device is available, re-IPL is
required.

NIP TERMINATION (MFT)

In a system with MFT, NIP passes control
to the master scheduler which performs
initialization of the dynamic area. NIP
sets the storage protection keys of the

The Nucleus Initialization Program 37

dynamic area to 0 and adjusts the master
scheduler boundary box to describe a parti
tion that includes all main storage above
the end of the nucleus. (In a system which
includes IBM 2361 Core Storage and Main
Storage Hierarchy Support, the master
scheduler partition includes all of hierar
chy 0, and the boundary box for hierarchy 1
is initialized to indicate all of hierarchy
1 as free storage.) A pointer to the ori
ginal contents of the master scheduler
boundary box is passed to the master sched
uler initialization routine when NIP relin
quishes control.

NIP then constructs an RB at the low
address of the temporary master scheduler
partition and establishes XCTL code to the
master scheduler initialization module
IEESD569. The master scheduler task con
trol block (TCB) is made dispatchable, and
the NEW pointer in the NEW/OLD doubleword
(used for task switching by the dispatcher)
is set to zero. NIP then branches to the
dispatcher. Figure 24 shows main storage
at NIP termination in an MFT system.

NIP TERMINATION (MVT)

When NIP has completed storage initiali
zation, the program passes control to the
first module (IEEVIPL) of the master sched
uler. NIP issues a LINK macro instruction
specifying the module name.

38

Temporary Master Scheduler Partition

f----

PRB

RESIDENT REENTERABLE MODULE AREA
RAM, BLDL, RSVC, RERP

System Queue Area

Nucleus

Low Address

Figure 24. Final MFT Main Storage

High
Address

This section contains routine lists for
the Initial Program Loader and the Nucleus
Initialization Program.

Routine names are given for convenience
in relating routine descriptions to the
location of the instructions in the program
listing. Each routine name given for NIP
is the address or the entry point name in
the listing nearest to the start of the
routine. The names given for the parts of
the IPL program are actual routine names.

INITIAL PROGRAM LOADER PROGRAM CONTROL
SECTION

Load Module Name: IEAIPLOO
Control Section Name: IEAIPL
Routine Names:

IEAADDR IPL Relocation: Moves unexecuted
part of IPL to upper end of main
storage to make room for the nuc
leus at low end.

IEACOMLP Nucleus Location: Locates the
nucleus on the primary system
residence device.

IEACOMPR Nucleus Selection: Selects the
nucleus to be loaded.

IEAHOOP Control Section Data Organiza
tion: computes and arranges
loading data before the nucleus
is loaded.

IEALOAD Nucleus Load: Loads the nucleus
into main storage.

IEAMAIN Hardware Initialization: Clears
main storage and machine regis
ters, and sets storage protection
keys.

IEARELOC RLD Relocation: Calculates abso
lute values for address constants
in the nucleus text.

IEASTRIO IPL Common I/O Subroutine:
Issues START I/O instructions and
tests for successful completion
of I/O operations.

NUCLEUS INITIALIZATION PROGRAM CONTROL
SECTION

Load Module Names: IEANUCOl through
IEANUCOZ

LISTS OF ROUTINES

Control Section Name: IEANIPO
Routine Names:

IEACOMON Data Extent Block Initialization
Common Subroutine: Inserts data
set boundary data into data
extent blocks.

IEACONSl Console Initialization: Saves
the unit address of the opera
tor's console for the use of NIP
and the control program.

IEACOREX Partition Adjustment: Decreases
the size of the master scheduler
region by the size of each module
loaded into the link pack area.

IEAENDRM Link Pack Area Load: Loads
modules into the link pack area
in conjunction with the IEARMLDR
routine.

I EAG ETXT List Finder: Finds lists for
link pack area loading and calcu
lates a pointer to the address of
the first module.

IEAFNDTX Module Locator: Obtains the
relative track address (TTR) of a
module from the partitioned data
set (PDS) directory record for
the module.

CHKIPLDV Data Extent Block Initialization:
Identifies the unit control block
for the system residence device
and initializes data extent
blocks for the supervisor call
library and the system log.

IEALISTK Names of lists of required
modules.

IEALOCAT Volume Serial Number Subroutine:
Issues a LOCATE (SVC 26) macro
instruction to find the serial
number of a volume containing a
particular data set.

IEAMOUNT Mount Message Subroutine: Issues
requests to the operator to mount
a desired volume.

IEAMS1ER MS/l Pointer Routine: Sets poin
ters for main storage initializa
tion procedures.

IEANIP4 Address Conversion: Sets the
base register and converts con
trol block addresses to absolute
values in main storage.

Lists of Routines 39

IEANOUCB System Residence Error: Indi
cates to the operator that no
unit control block corresponds to
the system residence device. The
nucleus must be reloaded under
this condition.

IEAOPMSG Operator Communication: Provides
operator communication.

IEARDVOL Volume contents Reader: Reads
the volume table of contents
(VTOC> of a volume mounted on a
specified device.

IEARMLDR Link Pack Area Load: Loads
modules into the link pack area
in conjunction with the IEAENDRM
routine.

IEASCAN1 Linkage Library Initialization:
Finds the Linkage library and
initializes its data extent
block.

IEASETK storage Protection Key Initiali
zation: sets storage protection
keys of all 2048-byte blocks of
main storage.

IEASTRIO NIP Common I/O Subroutine:
Issues START I/O instructions and
tests for successful I/O
completion.

IEATIMER Timer Initialization: Checks and
sets the system timer.

IEAUCBFN Unit Control Block Finder: Finds
the address of a unit control
block corresponding to a given
unit address.

40

IEAUCBO

SENSESS

SVXINIT

(None)

(None)

(None)

(None)

Unit Control Block Initializa
tion: Initializes direct access
device unit control blocks and
the direct access device table.

Unit Check Subroutine: Handles
unit check interruptions to clear
possible contingent connection
conditions from a 2841 Control
Unit.

SVC Initialization: Finds the
length and relative track address
of each externally stored super
visor call routine and places the
value into the supervisor call
table.

Main Storage First Initializa
tion: Sets initial values for
the system queue area and master
scheduler region.

Main storage Second Initializa
tion: Sets the final value for
the system queue area, sets an
intermediate value for the master
scheduler region, and relocates
the unexecuted portion of NIP.

Main Storage Final Initializa
tion: Calculates and assigns
final values for main storage
areas.

System Environment Recorder
Initialization: Gives to the
portion of the SER program in
main storage the address of the
externally stored portion.

TABLES AND WORK AREAS

SCATTER/TRANSLATION RECORD

~lo~~ll~12_-_3~IT4_-_10_2_3 ______________________________ J~ \~ __________ u_p_ro __ a_nd __ in_c_lu_di_n_g_l_02_0_b_y_te_s ______ ~

- Data - may conroin translation table, translation table and scatter table or scatter table only

'--Count - in bytes, of data field

'-- Zero - one byte of binary zeros

'--Identification - identifies this as a scatter-translation record - bit configuration is: 0001 0000

Translation Table

\ I I I I I I I
Padding (2 bytes) - if necessary, to force full-word boundary alignment of scatter table.

Pointer (2 bytes) - to the scatter table entry that contains the address of the control section
containing this CESD entry.
Number of translation table entries = number of CESD entries + 1.
Pointer will be zero if its corresponding CESD entry is not SD, PC, CM or LR.

Zero - 2 bytes of bi nary zeros

NOTE: (One 2-byte entry for each external symbol)

(4 bytes) - of a control section (SD, PC or CM) (one entry for each CSECT)
--~----------~--

Zero - 4 bytes of binary zeros

~ [

Padding (2 bytes) if necessary to align scatter table to a full-word boundary.

Translation data

NOTE: Translation table follows extent list in main srorage.

Translation table entries are two bytes in length, scatter roble entries four bytes in length.

Legend for Types of Entries in Composite External Symbol Dictionary (CESD)

SD = section definition
LR = label reference
PC = private code
CM = common

Tables and Work Areas ql

CONTROL RECORD

o 1- 3 4, 6, 8-15
5 7

(

Record length is 20 bytes
)

'-- Length of control section - specifies the length of the control section (in bytes)
thOt the text in the following record belongs to (2 bytes)

L-___ CESO entry number - specifies the composite external symbol dictionary entry
that contains the control section names of the control section that this
text is part of (2 bytes)

L... ___ Channel Comma~d Word (CCW) - that could be used to read the text record that follows.
The data address field contains the linkage editor assigned address of the first
byte of text in the text record that follows. (8 bytes)

'---Count - contains two bytes of binary zeros. The count field contains the length of the record.

L......- Count - in bytes of the control information (CESO 10, length of control section) following the CCW
field (2 bytes)

Spare - contains three bytes of binary zeros

- Identificatoon - specifies that th.s .s: (I byte)

•. A control record - 0000 0001

• The control record that precedes the last text record of this overlay segment - 0000 0101

• The control record that precedes the last text record of the modu Ie - 0000 1101

42

RELOCATION DICTIONARY (RLD) RECORD

o 1 - 3 4,
5

6,
7

8-15 16-255 (

L RLD data -- see below

'-- Spare - contains 8 bytes of binary zeros

Record length can be between 24 and
256 bytes

'-- Count - in bytes of the relocation dictionary information following the spare 8 byte field (2 bytes)

'-- Count - contains two bytes of binary zeros

""":"'Spare - contains three bytes of binary zeros

-Identification - specifies that this IS. (1 byte)

RLD Data

R P F A

A relocation dictionary record - 0000 0010
The last record of the segment - 0000 0110
The last record of the madu Ie - 0000 111 0

F A

'--Flag -

F A R P F A R P F A

L - inka e editor as Address L g signed
address of the address
constant (3 bytes)

specifies miscellaneous information as follows: (1 byte) when byte format is xxxxLIST:
xxxx specifies the type of this RLD item (address constant)
0000 -- non-branch type in assembler language, a DC A (name)
0001 -- branch type (in assembler language, a DC V (name)
0010 -- pseudo register displacement value
0011 -- pseudo register cumulative displacement value
1000 and 1001 -- this c.-ldress constant is not to be relocated, because it refers to an
unresolved symbol.
LL specifi~s the length of the address constant
01 -- two byte
10 -- three byte
11 -- four byte
S specifies the direction of relocation
o -- positive
1 -- negative
T specifies the type of RLD item fallowing this one
o -- the following RLD item has a different relocation and/or position pointer
1 -- the following RLD item has the same relocation and position pointers as this one,
and therefore is ami tted

"-- Position pointer - contains the entry number of the CESD entry (or translation table entry) that indicates which
section the address constant is in (2 bytes) control

'--I -Relocation pOinter contams the entry number of the CESD entry (or translation table entry) that indicates which symbol's
value is to be used in the computation of the address constant's value (2 bytes)

Tables and Work Areas 43

CONTROL AND RELOCATION DICTIONARY RECORD

1'1'-'\ :.\ ~'18-15111\11 ~ ITIIJ

44

l L -- l L Length of control section (2 bytes)

Flag

CESD entry number (2 bytes)

~(3 bytes)

lli!i. (1 byte)

Positian pointer (2 bytes)

Relocation pointer (2 bytes)

Channel Command Word (8 bytes)

Count of RLD information (2 bytes)

Count af control information (2 bytes) - the control information contains the
10 and length of control sections in the following text record.

Spare (3 bytes)

Identification (1 byte) - specifies that this record is:

• A control ond RLD record - 0000 0011

• A control and RLD record that Is followed by the
last text record of a segment - 0000 0111

• A control and RLD record that is followed by the
last text record of a modu Ie - 0000 1111

Note: For detailed descriptions of the data fields see:

Relocation Dictionary Record
Control Recard

The record length w ill vary from 20 ta 260 bytes.

SCATTER EXTENT LIST

EXLLNTH (Total size of extent Ii.t)

Bytes 0

Number of relocation factors

4

8 Length of firot non-contiguous block

12
Length of second non-contiguous block

16
Length of third non-contiguous block

~ - 1 byte ~IE 3 bytes

Hex. SO· Length of last non-contiguous block

0 Address of first non-contiguous block

0 Address of second non-contiguous block

0 Address of third non-contiguous block

• • •
• • • ;

• • •
• • •

0 Address of last non-contiguous block

• Indicates the end of the immediately preceding length-of-block
list. Used by the GETMAIN routine.

,..

r:::

Tables and Work Areas 45

FLOWCHARTS

The flowcharts in this manual have been produced by an IBM program, using ANSI sym
bols. The symbols are defined in the left column below, and examples of their use are
shown at the right.

46

SYMBOL

ONPAGE
CONNECTOR · . · . ·

OFFPAGE
CONNECTOR

DEFINITION

INDICATES A SUBROUTINE OR
MODULE THAT IS DESCRIBED
IN THIS MANUAL

INDICATES A SUBROUTINE OR
MODULE THAT IS INCLUDED
IN THE FLOWCHARTS OF AN
OTHER MANUAL.

IND
FUN
PUT
AND
INSTR

INDICATES ENTRY TO OR EXIT
FROM ANOTHER BLOCK ON THE
SAME FLOWCHART PAGE.

INDI
FROM
PAGE
FLOWC

ENTRY TO OR EXIT
K ON ANOTHER

E SAME SET OF

EXAMPLE

MODNAME

C~::MF:)

i,J-'~

COMMENTS

B3: MODNAME IS THE LOAD MODULE OR LIBRARY
NAME OF THE ROUTINE DESCRIBED BY THIS
FLOWCHART.

COMNAME IS THE COMMON NAME OF THE
ROUTINE.

OTHERMOD INDICATES THE MODULES PASSING
CONTROL TO THIS MODULE AND THEIR FLOW
CHARTS.

C3: eSEeT IS THE eSEeT NAME OR OTHER ENTRY
POINT AT WHICH PROCESSING BEGINS.

E3:

F3:

G3:

H3:

J3:

LABEL 1 IS THE LABEL OF THE FIRST
INSTRUCTION.

LAB IS 'rHE
THIS

ED TO
TO T
SUBR

SECTION OF
WHICH CONTROL

• CONTROL
eTION FOLLOW-

ENTR'lPT ;rs THE ENTRY POINT.

SUBRTN IS THE COMMON NAME OF THE SUB
ROUTINE IN FLOWCHART AG.

VIA: PASSMECH INDICATES HOW CONTROL
PASSES FROM COMNAME TO SUBRTN.

3 INDI
ITH BLOCK

OF FLOW-
PAIRED
LOCK 03.

LABEL4 IS THE LABEL OF A SECTION OF CODE
OF THIS ROUTINE THAT INITIATES I/O.

NEXTRTN IS THE COMMON NAME OF THE ROUT
INE THAT EXECUTES AFTER THIS ROUTINE.

ENTRYPT IS THE ENTRY POINT OF NEXTRTN,
WHICH IS DESCRIBED IN CHART AC.

VIA: PASSMECH INDICATES HOW CONTROL
PASSES FROM COMNAME TO NEXTRTN.

Chart AA. Initial Program Loader Control Flow

PRELIMINARY
OPERATIONS AND CONDITIONS. FOR IEAIPL MODULE
* *
* * * • . . .

* ; I
* * * * ** ** * * *** * * ** * **** * * **

IPL CONTROL I
RECORD •

F1-'----,

Flowcharts 47

Chart AB.

48

Nucleus Initialization Program Control Flow

FROM IPL
CHART AA

Chart AC. Timer Initialization

c~~
CHART AD

Flowcharts 49

Chart AD. supervisor Call (SVC) Table Initialization

50

Chart AE. Machine-Check Hand1er Initialization (Model 65)

IEAUCBFN 1
c=:J

Flowcharts 51

Chart AF. CCH Initialization Routine

-0~:~
I-_____J CHART AG

52

Chart AG. CCHPGMCK

F10wcharts 53

ChartAH.

54

CCH Move Module

0~~-:vE")
BUFFER

THIS ROUTINE MOVES EPPIB FILL
ROUTINES DOWN TO THE END OF THE
NUCLEUS DURING INITIALIZATION.

Chart AI. Initialization for Rollout/Rollin

Flowcharts 55

Chart AJ. MVT with Model 65 Multiprocessing Initialization (Chart 1 of 2)

56

CONTINUE NON
MP NIP

PROCESSING UP
TO DEVICE

INITIALIZATION

CONTINUE NON-MP
NIP PROCESSING

UP TO NIP
RELOCATION

CONTINUE NON-MP
PROCESSING UP

TO DESIGNATION
OF MAIN STORAGE

AREAS

t
ro?l
~

Chart AJ. MVT with Model 65 Multiprocessing Initialization (Chart 2 of 2)

NOTE 1 -
CAUSES SECOND CPU
INITIALIZATION
SEE CHART AH

LOOP UNTIL CPU2
IS INITIALIZED

(TO MASTER SCHEDULER)

Flowcharts 57

Chart AK.

58

MVT with Model 65 Multiprocessing Second CPU Initialization

EXECUTED
ON SECOND
CPU

Chart AL. Initialization for SYS1.DUMP Data Set (Chart 1 of 3)

_A ' _______ -...

(
SYS1.DUMP DATA

SET
INITIALIZATION

NO

Flowcharts 59

chart AL.

60

!
roD
~

Initialization for SYS1.DUMP Data Set (Chart 2 of 3)

Chart AL. Initialization for SYS1.DUMP Data Set <Chart 3 of 3)

Flowcharts 61

APPENDIX A: INITIALIZATION FOR MVT WITH MODEL 65 MULTIPROCESSING

In MVT with Model 65 multiprocessing,
NIP performs the additional functions of
initializing entries in the Prefixed
Storage Area (PSA), defining main storage
to allow blocks of storage to be logically
omitted from the system, and initializing
the second cpu.

The NIP routines which initialize the
PSA, define main storage, and perform
initialization for the second cpu are con
tained in a separate load module
(IEAMP650), brought into main storage by
NIP after the system queue area has been
rebuilt in its permanent location. The
layout of main storage, after the multi
processing NIP load module has been brought
in, is shown in Figure 25.

Until the multiprocessing NIP load
module (IEAMP650) is loaded, the higher
main storage units contained in the config
uration are not represented by any FBQE.
IEAMP650 determines the size of main
storage to enable FBQE representation for
all main storage and to place the second
PSA in the highest 4K block of main
storage. Ultimately, NIP relocates itself
above IEAMP650.

PRELIMINARY INITIALIZATION AT ENTRY TO NIP

NIP ensures that the lower 256K bytes of
main storage are not malfunctioning, and
establishes a temporary Prefixed Storage
Area (PSA) for the second cPU.

CHECKING THE FIRST MAIN STORAGE UNIT

If a machine check occurred when the IPL
program cleared main storage (due to a mal
functioning storage area), a uniprocessing
system enters the WAIT state at entry to
NIP, because the PSW containing the NIP
routine entry point address is enabled for
machine checks. However, in MVT with Model
65 multiprocessing, NIP can logically omit
from the system malfunctioning areas of
main storage above 256K. Therefore, the
PSW for the multiprocessing NIP module is
disabled for machine checks, and NIP deter
mines if a machine check occurred in the
first 256K bytes of main storage by issuing
a Diagnose Log instruction and checking the
logout in the diagnostic scan out area of
the PSA. If a machine check did occur in
the first 256K bytes, a WAIT state PSW is
loaded with an error code of 18. Other-

62

wise, a PSW enabled for machine check is
loaded, and the NIP routine continues.
(Pending machine checks are cleared when a
Diagnose Log instruction is executed.)

TEMPORARY PREFIXED STORAGE AREA
INITIALIZATION

Certain entries in the Prefixed storage
Area (PSA) are used by multiprocessing rou
tines prior to final PSA initialization.
Therefore, NIP creates a 4K byte temporary
PSA for the second CPU at the top of the
first 256K bytes of main storage, and
initializes the following PSA fields:

• The CPUID and IOCPUID bytes are ini
tialized. NIP examines the CPU1 ID bit
(bit 1 of byte X'C2') in the logout,
and places a X'C1' in the CPU identifi
cation byte (CPUID) if the bit is on;
if off, NIP places a X'C2' in CPUID.
The opposite value is placed in CPUID
in the temporary PSA. In messages
printed at the console, CPU 1 is called
CPU A; CPU 2 is called CPU B.

NIP also initializes IOCPUID, a full
word in the PSA, which is used by lOS to
indicate the CPU that started the last I/O
operation on a particular device. This
entry is set to X'OOOOOOOO' for CPU A and
to X'00000008' for CPU B.

• The doubleword TCB pointers (IEATCBP)
in the temporary PSA are set to the
partition TCB, and the RB wait count is
set to zero. (See "Initializing the
TCB Pointers (IEATCBP)" for detail.)

• A copy of the Channel Availability
Table is placed in the temporary PSA
(see "Initializing the Channel Availa
bility Table").

UNIT CONTROL BLOCK INITIALIZATION

Unit Control Blocks are initialized to
reflect the status of each device and the
attachment of a device to a particular CPU.
The availability of each CPU's channels is
determined to allow one CPU to access a
device through the other CPU's channel if
its own channel is unavailable. Thus, in a
multiprocessing system, a device is not
marked offline if only one CPU's channel to
the device is unavailable.

FBQE

Master
Dummy PQEl Scheduler

MSPQEl

Law Address

Temporary PSA

I PL Instructions

NI P Instructions

Free Area

Multiprocessing NIP Load Module (lEAMP650)

System Queue Area

Dummy PQE2
Free Area
HOPQE DQE

Nucleus

SVRB

FQE

Highest
Address
for
IPL/NIP

Figure 25. Main Storage After Multiprocessing NIP Module Has Been Loaded

Appendix A: Initialization for MVT with Model 65 Multiprocessing 63

Channel Byte a Byte 1

6 a a 01 01 1 a 0000 0000

5 0001 a 1 01 a 0 a a 0000

4 0001 01 0 a 0000 0000

3 0001 001 1 0000 0000

2 0001 001 0 0000 0000

1 0001 0001 0000 0000

0 000 1 0000 0000 0000

Byte 0 indicates channel status and number; Byte 1 indicates control unit/device address. There is an entry in the Channel Availability Table for
each device.

Byte a Setting

Bit 0 0
1

Bit 1 a
1

Bit 2 0
1

Bit 3 0
1

Meaning

Channel not busy
Channel is busy

Channel is operational
Channel is not operational

Channel is attached to system
Channel is not attached to system

Channel is initialized
Channel is not initialized

Figure 26. Channel Availability Table At System Generation

INITIALIZING THE CHANNEL AVAILABILITY TABLE

NIP determines if any channel path is
not available to the CPU because the chan
nel is in TEST MODE, is powered down, or
not physically attached to the system. An
unavailable channel is marked offline in
the Channel Availability Table which is
located in the PSA and shown in Figure 26.
The status of each channel is described by
a two-byte entry which represents a 16-bit
Channel-Control Unit-Device address.

Each channel is tested by issuing a TCH
instruction which determines the setting of
bit 1 in byte 0 (operational/not operation
al). NIP then determines from the IOS con
stant IECHICHA (established at system
generation) the highest numbered channel
attached to the system, and sets bit 2 of
byte 0 to 1 for all channels above the
highest numbered channel. Bit 2 indicates
that the channel is not attached to the
system.

The Channel Availability Table is used
by the VARY channel routine to logically
remove or attach a channel to the CPU. If
any of the four high-order bits are set, a
condition code of not operational is
received when the channel is tested.

64

Determining Console Readiness

NIP locates the first available console
from the list of console devices specified
by the SYSGEN program and marks it active
in the Unit Control Module. A console is
available if (1) the channel is available,
and (2) the device is operational.

If the console device can be accessed by
only one CPU, as in the case of a 1052 with
a 1052 adapter, byte 0 of the multiprocess
ing addition to the UCB is initialized as
shown in Figure 27.

Byte 0
Setting Meaning

Bit Bit
6 7

0 0 device accessible to both
CPUs or neither CPU

1 0 device accessible only to
CPU A

0 1 device accessible only to
CPU B

Figure 27. MVT with Model 65 Multiprocess
ing ~dition to UCB

INITIALIZING DIRECT ACCESS DEVICE UCBS

In a multiprocessing system, before a
device is tested, the channel to that
device is checked for availability. If the
channel is marked unavailable in the Chan
nel Availability Table, the device is
marked offline and not ready in its UCB.
otherwise, the device is tested as in the
uniprocessing system.

INITIALIZING NON-DIRECT ACCESS DEVICE UCBS

In a multiprocessing system, before
testing each non-direct access device, the
channel is checked for availability. If
unavailable, the UCB for the device is
marked offline. If the channel is avail
able, a TIO is issued to the device. If a
condition code of not operational results,
the UCB is marked offline. If a CSW is
stored, a SENSE command is issued to clear
the contingent connection and the UCB
remains marked online. If the device is a
tape drive, the device is tested to deter
mine if it physically exists; if not, the
UCB is marked offline and not ready. If a
CSW is not stored, the UCB remains marked
ready and online.

Teleprocessing Devices

A teleprocessing device is attached to
the first CPU that issues a TIO and finds
the device available. Therefore, tele
processing devices can be attached to eith
er one of the two CPUs. The multiprocess
ing addition to the UCB, located at a dis
placement of -4, is initialized as shown in
Table 6.

PREFIXED STORAGE AREA (PSA) INITIALIZATION

Since each multiprocessing CPU works on
tasks independently, and because program
status words must be stored separately, a
multiprocessing system requires two PSAs;
one located in lower main storage and one
in upper main storage. In the multisystem
mode, NIP creates an additional 4K byte PSA
for the second CPU; in the partitioned
mode, a 2K byte PSA. The 2K byte PSA is
located at upper main storage, and its
entries are initialized to allow multi
processing routines to operate as if two
CPUs were functioning.

In the multisystem mode, the CPU with
its prefix switch disabled has the lower
PSA, and the CPU with its prefix switch
enabled has the upper PSA. The prefix
switch is a hardware mechanism which allows
a routine to access its own CPU's PSA by
referring to lower 4K byte locations and to
access the other CPU's PSA by referring to
upper 4K byte locations. If the switch is

disabled (CPU has lower PSA), addresses
generated by the CPU remain unchanged. If
the switch is enabled (CPU has upper PSA),
addresses generated by the CPU are checked
to determine whether they are less than 4K
bytes or greater than the prefix value.
(The prefix value is 4K bytes less than the
highest main storage address indicated on
the configuration control panel.) If less
than 4K bytes, the prefix value is added to
the address; if greater than the prefix
value, the prefix value is subtracted from
the address. Figure 28 shows the layout of
main storage after the second PSA is
established.

NIP initializes the following multi
processing fields in the PSAs:

• CPU status byte

• storage Element status Map

• Prefix field

• External and machine-new PSWs

• PSA of second CPU

• TCB pOinters

• Timer Prefix field

• PTRIGGER field

• CPU identification bytes

• Console Identification bytes

• Channel Availability Table

INITIALIZING THE CPU STATUS BYTE (CPUSTAT)

NIP determines the status of the multi
processing system and records it by setting
the CPU STAT byte to one of the following
values:

Setting Indication
00000000 Multisystem with two CPUs

00000001 Partitioned with one CPU

00000010 Multisystem with one CPU

To determine the system status, NIP
tests the multisystem log bit, bit 7 of
byte X'C1' in the logout. If on, the sys
tem is operating in multisystem mode, and
CPUSTAT is set to X'OO'; if off, the system
is operating in partitioned mode, and CPUS
TAT is set to X'Ol'. In the multisystem
mode, after completing initialization for
the first cPU, NIP determines whether the
second CPU is in operation; if not, CPUSTAT
is then set to X'02'.

Appendix A: Initialization for MVT with Model 65 Multiprocessing 65

l __________________ P_S_A _________________ ---lt':.·
.... Upper Main Storage

Temporary PSA

I PL Instructions

NI P I nstructi ons

Free Area

FBQE

Multiprocessing NIP Lood Module (iEAMP650)

System Queue Area

Master
Free Area

Dummy PQEl Scheduler Dummy PQE2 HOPQE DQE
MSPQEl

Nucleus

PSA

Law Address

Figure 28. Main Storage After the Second PSA Has Been Estab1ished

66

SVRB

FOE

...
Highest
Address
for
IPL/NIP

INITIALIZING THE STORAGE ELEMENT STATUS MAP
(FSSEMAP)

NIP clears main storage above 256K and
detects the unavailability of main storage
units that are physically not in the system
or blocks that are malfunctioning. NIP
initializes FSSEMAP to reflect the status
of main storage, by setting a pair of bits
for each 2K storage block to one of the
following values:

Setting
00

11

Indication
available 2K storage block

unavailable 2K storage block
(not chained into system
queue)

NIP first examines the storage status
bits in the logout to determine whether any
256K storage units are physically omitted
from the system and are therefore unavail
able. If any are, the corresponding bit
setting in FSSEMAP is B'll'.

The available main storage above 256K is
then checked to ensure that it is function
ing properly. A machine check interruption
in any 2K block of main storage causes that
block to be represented in FSSEMAP as
unavailable.

The main storage check routine also
determines whether:

1. Both CPUs can access each available
256K storage unit

2. The upper PSA area is available (see
"Defining Main storage")

INITIALIZING THE PREFIX (PREFIX2)

NIP places the address of the upper
storage PSA in PREFIX2, a word in the PSA
which enables a routine to access the other
CPU's PSA. This value, less 1, is also
stored in the CVT as the highest address
able main storage byte.

INITIALIZING THE EXTERNAL AND MACHINE NEW
PSWS

In the multisystem mode, NIP sets the
external interruption new PSW to point to
the malfunction alert handler, a routine
which determines if a malfunction alert
signal (issued by the other CPU when it
experiences a machine check interruption)
has been received. If not, the External
First-Level Interruption Handler is
entered. In the partitioned mode, NIP
leaves the external interruption new PSW
pointing to the External First-Level Inter
ruption Handler.

In the multisystem mode, NIP sets the
machine check new PSW to contain a Wait
State error code of A21. In the parti
tioned mode, NIP leaves the machine check
New PSW pointing to the Recovery Management
Support (RMS) routines. If, in the multi
system mode, NIP later finds that only one
CPU is operating, the machine check new PSW
is reset to point to RMS.

CONSTRUCTING THE SECOND PSA

The second PSA is constructed by dupli
cating common fields from the first PSA.
NIP places a copy of the lower PSA in upper
main storage, starting at the address in
PREFIX2. NIP then initializes the fields
in the PSAs which differ for each CPU.

INITIALIZING THE TCB POINTER (IEATCBP)

In a multiprocessing system, each CPU
performs different tasks; therefore, a dou
bleword TCB pointer is located in the PSA
of each CPU. NIP sets the "new" and "old"
pointers in the IEATCBP field of the second
CPU to point to the partition TCB, a dummy
high priority task. When only one CPU is
operating, the "new· and "old· pointers in
the second PSA point to this dummy task
Which is always dispatchable. Thus, the
Dispatcher routine will never dispatch
another task on the nonexistent CPU.

During second CPU initialization, the
partition TCB is set non-dispatchable, and
the IEATCBP pointer of the second CPU is
set to point to the WAIT task, a special
task which has no associated programs and
which the Dispatcher always dispatches in
the Wait state.

INITIALIZING THE PTRIGGER FIELD

In the multisystem mode, NIP examines
the Prefix trigger log 'bit, bit 2 of byte
X'SS'. If on, the prefix switch is enabled
for this CPU, and PTRIGGER byte of the PSA
is set to C'P'; if off, the prefix switch
is disabled, and PTRIGGER is set to C' ,.
The second CPU's PTRIGGER field is set to
the opposite value. The ABDUMP routine
uses this field to determine which PSA
belongs to each CPU.

INITIALIZING THE TIMER PREFIX FIELD
(PREFTMRA)

Although each CPU has a timer, only the
timer designated as active is used by timer
routines. Initially, the timer of the CPU
that performed the IPL routine is desig
nated as active, the timer of the other CPU
as inactive. To enable a routine to access

Appendix A: Initialization for MVT with Model 65 Multiprocessing 67

the active timer, PREFTMRA contains zeros
if the active timer is located in the same
PSA, or contains the PREFIX2 value if the
active timer is located in the other PSA.
Thus, the active timer can be referenced by
adding the PREFTMRA value to the timer's
PSA displacement value.

If, during second CPU initialization,
the second CPU's timer is found to be work
ing, while the first CPU's timer is not,
the second CPU's timer is designated as
active.

INITIALIZING THE CPU IDENTIFICATION BYTES

The CPUID and IOCPUID bytes in the first
CPU's PSA were initialized at entry to NIP
(see "Temporary PSA Initialization"). Now,
NIP initializes these bytes in the second
CPU's PSA. CPUID and IOCPUID are set to
X'C1' and X'OOOOOOOO' for CPU A, or to
X'C2' and X'00000008' for CPU B.

INITIALIZING THE CONSOLE IDENTIFICATION
BYTES (CONSOLID)

CONSOLID is initialized to contain the
address of an available 1052 console. In a
system with Multiple Console Support (MCS),
CONSOLID is initialized to contain the
address of the highest available non
composite console on the master console's
alternate chain. If none are available, it
is initialized to contain the address of
any non-composite console.

INITIALIZING THE CHANNEL AVAILABILITY TABLE

The multiprocessing Channel Availability
Table, contained in the PSA, is initialized
before the Unit Control Blocks are initial
ized (see ·Unit Control Block Initializa
tion").

DEFINING MAIN STORAGE

In a multiprocessing system, 256K
storage units may not be physically present
in the system, or may be malfunctioning.
NIP logically removes these sections from
the system and allocates main storage
regions within the available area.

DETERMINING UNAVAILABLE MAIN STORAGE

Unavailable main storage is determined
when the PSA is initialized. (See "Ini
tializing the Storage Element status Map
(FSSEMAP)".) NIP checks the storage status
log bits in the logout area to determine if
any main storage units are not attached to
the first CPU. If so, the corresponding
address range is marked offline in FSSEMAP.

68

After the second CPU has been initialized,
NIP compares the storage status log bits of
both CPUs. If they differ, a message is
issued to the operator indicating that the
256K storage units are set asymmetrically,
and a wait state PSW with an error code of
15 is loaded.

NIP then checks and clears main storage
above 256K. Any 2K storage blocks in which
a machine check occurs is marked unavail
able in FSSEMAP. If a block of main
storage is malfunctioning, but a machine
check does not occur, a Wait State PSW with
an error code of 14 is loaded.

After main storage has been cleared, NIP
checks FSSEMAP to determine whether the
upper PSA (i.e., the upper 4K in the multi
system mode or a 2K block in the parti
tioned mode if the IPL CPU does not have
prefixing enabled) is marked unavailable.
If it is, a Wait State PSW with an error
code of 16 is loaded.

DEFINING THE FREE AREA

The size of the upper PSA (2K if in par
titioned mode, 4K if in multisystem mode)
is subtracted from the highest available
main storage byte, and this value is stored
in the CVT as the highest addressable main
storage byte. The size of the free area of
main storage, from the system queue area to
the upper PSA, is stored in the Master
Scheduler FBQE and MSPQE1.

If any 2K blocks of main storage are
marked unavailable in FSSEMAP, NIP con
structs the free area FBQES so that the
unavailable blocks are logically excluded
from the system. NIP then issues a message
to the operator identifying the unavailable
areas. (A VARY storage online command may
be issued later to make the main storage
blocks logically available.)

Figure 29 shows the layout of main
storage if storage areas are logically
omitted from the system.

FINAL MAIN STORAGE PREPARATION

After building the link pack area, NIP
divides free main storage into the master
scheduler region and the dynamic area.

Establishing the Final Master Scheduler
Region

NIP searches the free area FBQEs, start
ing with the last FBQE, to find a free
block which is large enough (at least 18K)
for the master scheduler region. Any free
block not large enough is marked unavail
able in FSSEMAP.

High
1-______________________ PS_A _____________________ -1 Address

FBQE

FBQE

FBQE

Dummy PQEl

Low Address

Free Area

Free Area

T emparary PSA

I PL Instructians

NI P Instructians

Free Area

Multipracessing NIP Laad Module (lEAMP650)

Master
Scheduler Dummy PQE2
MSPQEl

System Queue Area

Free Area
HOPQE

Nucleus

PSA

DQE

SVRB

FQE

Figure 29. Main Storage After Free Area Has Been Established

Appendix A: Initialization for MVT with Model 65 Multiprocessing 69

When a free block is found, the size of the
master scheduler region is subtracted from
the size of the free block, and a new mast
er scheduler FBQE is constructed at the
beginning of the master scheduler region.
The master scheduler partition queue ele
ment (PQEl) in the system queue area is set
to the address of the master scheduler
FBQE, and the master scheduler FBQE set to
point PQEl.

Defining the Dynamic Area

NIP constructs an FBQE at the start of
the dynamic area, overlaying some NIP
instructions. The dynamic area FBQEs are
then chained so that the first and last
FBQEs point to the dynamic area PQE (PQE2),
and PQE2 points to the first and last
FBQEs. PQE2 contains the size of the
dynamic area, from the end of the system
queue area to the be~inning of the master
scheduler region.

Figure 30 shows final main storage
layout.

SECOND CPU INITIALIZATION

In the multisystem mode, the multi
processing NIP load module determines
whether the second CPU is in operation,
and, if it is, does the following:

• Clears the registers

• Initializes the Channel Table

• Initializes the Timer

• Checks devices for availability to the
second CPU

• Initializes the Console Identification
bytes

• Initializes the TCB pointer

• Checks for error conditions

If the second CPU is not in operation,
NIP:

• Sets CPUSTAT to X'02' to indicate
multisystem mode with one CPU.

• Sets the machine check new PSW to the
Recovery Management Support routines.

NIP issues a WRITE DIRECT instruction
with a X'qO' in the 12 field which causes
the second CPU to load the PSW (LPSW) from
its location o. This location was set by
NIP (first cPU) to point to location X'SO'

70

(second CPU). Location X'SO' has also been
set by NIP (first CPU) to contain a branch
to the second CPU Initialization Routine.
In addition, prior to issuing the WRITE
DIRECT instruction, NIP sets a byte in main
storage which is reset by NIP on the second
CPU. If this byte is not reset, the second
CPU is not in operation.

While initialization of the second CPU
is in process, the first CPU's NIP routine
tests the completion byte in main storage.
When initialization of the second CPU is
complete, this byte is reset to X'OO', the
second CPU enters an enabled Wait state,
and the first CPU's NIP routine checks for
any errors found during second CPU
initialization.

INITIALIZING THE CHANNEL AVAILABILITY TABLE

NIP tests each channel by issuing a TCH
instruction and initializes the Channel
Availability Table in the second cPU's PSA
(see -Unit Control Block Initialization-).

INITIALIZING THE TIMER

The value of the active timer on the
first CPU is increased by x'SOOOOOOO' and
the result stored in the second cPU's
timer. NIP waits for the timer to decre
ment. If the timer does decrement, NIP
determines whether the first CPU's timer is
also working. If not, NIP designates the
timer on the second CPU as the active timer
by switching the values in the PREFTMRA
field for the two CPUs and switching the
TIMER values for the two CPUs.

DETERMINING DEVICE AVAILABILITY

A TIO instruction is issued to each
device whose channel is available to the
second CPU. The UCB is marked as follows:

Result of TIO
Not operational

CSW stored

Available (CSW not
stored)

UCB setting
offline/not ready

online/ready

online/ready

If the results for both CPUs do not agree
(that is, a device is neither online nor
offline to both CPUs), an error flag is
set. However, if the results for both CPUs
do not agree because a channel is unavail
able to one CPU, the error flag is not set.
Thus, NIP sets the error flag only when the
control units are set asymmetrically.

FBQE

FBQE

FBQE

Dummy PQEl

Low Address

Master
Scheduler
MSPQEl

Dummy PQE2

PSA

li nk Pack Area

Master Scheduler Region

Dynamic Area

Dynamic Area

System Queue Area

Free Area
HOPQE

Nucleus

PSA

SVRB

DQE FQE

High
Address

Figure 30. Final Main storage Layout (MVT with Mode~ 65 Multiprocessing)

Appendix A: Initialization for MVT with Model 65 Multiprocessing 71

If a console device that can be accessed
by only one CPU (such as the 1052) is found
available to the second CPU, the UCB word
at a displacement of -4 is initialized as
follows:

Indication
Byte 0, Bit

Setting
6 7
10

o 1

device accessible to
CPU A
device accessible to
CPU B

INITIALIZING THE TCB POINTER (IEATCBP)

NIP sets the partition task TCB non
dispatchable and sets the 'new' and 'old'
TCB pointers to the WAIT task TCB.

CHECKING FOR ERROR CONDITIONS

The first CPU's NIP routine now checks
for the following possible error conditions
found during second CPU initialization:

72

• If the prefix switches of both CPUs are
set alike (both enabled or disabled), a
message is written to the operator, and
a Wait State PSW with an error code of
12 is loaded.

• If the storage status log bits of both
CPUs are not set alike (that is, if
both CPUs cannot access the same
storage units using the same
addresses), a message is written to the
operator, and a Wait State PSW with an
error code of 15 is loaded.

• If the second CPU's(timer is not work
ing, a message is issued to the
operator.

• If any control units for tape or
direct-access devices are set asymmet
rically, a message is issued to the
operator.

NIP TERMINATION

NIP issues messages to the operator
indicating the channels (if any) that are
marked offline in the Channel Availability
Table, the status of each device, and the
system initiated (partitioned, multiproces
sor, or one-CPU multiprocessor). Control
is then passed to the first module (IEE
VIPL) of the master scheduler.

Unlike IPL, the assembly of the Nucleus
Initialization Program depends on the type
of control program being generated (MFT,
MVT) and the options selected at system
generation for that control program. Only
those routines needed to support the con
trol program and the selected options are
included in the assembly. To save main
storage, NIP uses subroutines to perform
repetetive functions. The processing of
-inline- code is sequential, and addressa
bility is established for each 4096 bytes
of code without regard to the previous base
address. However, because only one base
register (register 11) is available for all
executable code (registers 12 and 13 are
base registers for the NIP constants area),
an interface routine for each sUbroutine is
necessary to maintain proper
addressability.

APPENDIX B: NIP.INTERFACE ROUTINE

For each subroutine used by the in-line
code, an interface routine similar to that
shown in Figure 31 is included in the NIP
constants area. When a BAL instruction is
encountered in the in-line code, the inter
face routine receives control and saves the
base address and the return address of the
in-line code before passing control to the
subroutine. The subroutine also uses
register 11 to establish its addressabili
ty. Upon completion of processing, the
subroutine returns control to the interface
routine which reestablishes the return
address and base address of the in-line
code, and then branches to the in-line
code. Notice that the symbolic address in
the BAL instruction is not that of the sub
routine, but that of the interface routine.

REG11,REGSAVE
RETREG , RETSAVE

Figure 31. NIP Interface Routine

L REG 11 , SUBADDR
BALR RETREG,REGll
L REGll ,REGSAVE
L RETREG, RETSAVE
BR RETREG

REGSAVE DS F
RET SAVE DS F
SUBADDR DC A(SUBADDRA)

Appendix B: NIP Interface Routine 73

Indexes to program logic manuals are
consolidated in the publication IBM System!
360 Operating System: Program Logic Manual
Master Index, GY28-6717. For additional
information about any subject listed below,
refer to other publications listed for the
same subject in the Master Index.

Where more than one page reference is
given, the major reference is first.

address
assigning CSECT 5
building table (ADRTABLE) 6

addressability 8
alternate multiply control module 35
ALTSYS parameter 30,22
analysis modules, channel error 28-30
ATCHLOP2 12

BLDL
list 32
macro 16,17
option 33
parameter 22

BLMPXCPU 23
block multiplexer channel 23
bootstrap record 3-4
boundary box extension 35-36
boundary box 35-36

CCH 28-30
CCH Initialization routine 29
Channel Availability Table 64,62
Channel, block multiplexer 23
Channel Check Handler 28-30
channel configuration word 29
channel error analysis module 30
channel path

alternate 13
primary 13

channel pointer table 30
CHKIPLDV 14
command, RESERVE 13
Communication Vector Table (CVT) 11
consoles

alternative 13
composite 12
determining readiness 12
determining readiness

(multiprocessing) 64
initialization routine 12
Multiple Console Support (MCS) 13
primary 12

contents Directory Entry (CDE) 33
Control record format 42
CPU status byte 65
CPUTAB 23

74

data extent blocks (DEB)
rollout appendage vector table 27
SYSl.LINKLIB 17
SYSl.LOGREC 14
SYS1.SVCLIB 14

DDR 30
descriptor queue element (DQE) 16
direct access device

alternate channel 13
building DAD table 13
primary channel 13
table 13
UCB initialization 13
UCB initialization (multiprocessing) 77

dummy TCB table 12
dynamic area

MFT 36,23
MVT 36
MVT with Model 65 multiprocessing 70

dynamic device reconfiguration 30

EPFPRET 12
ERP (Error Recovery Procedures) loading of
modules 30

error analysis module, channel 30
error conditions

BLDL 17
console 13
IPL 3
WAIT state codes 4

Extended Precision Floating Point Divide
hardware feature 12
simulation 12
simulator routine 12

external symbol dictionary identification
number (ESDID) 8

free area queue element (FQE) 16
free block queue element (FBQE) 16,68

Generalized Trace Facility 23

hard copy log
establishing requirements 37
need for 12
message buffer 24
parameter 22
verifying requirements 37

hierarchy
parameter 22
support 35,12,17

IEAAERP
IEAADDR
lEACOMON
IEACONS1
lEAEPSIM

30
6
14,20
12
12

IEAHOH1 12
IEAIGEOO 30
IEAKYLP 5
IEALOCAT 20
IEAMP650 62,11
IEANUC01 4
IEAPCKEY 5
IEAPCRET 4
IEARELOC 8
IEAROUND 5,6
IEASTRIO 5, 8
IEAUCBFN 20
IEAZRLP3 5
IEESD569 38
IEEVIPL 38
IEUCBO 13
IFBSEROO 24
IGFCCHIN 29
IGFENVCK 23
IGFMCH10 27
IGFMCHFO 28,35
initialization routine, CCH 28-30
input/output

interruption handler 6,8
routine 8
supervisor 11

interface routine, NIP 73
IPL 3

bootstrap record functions 3-4

LINKLIB list 23
link pack area

constructing 32
loading 33

LOAD key 3
LOGREC 14

Machine Check Handler 27-28
macro instructions

ALLOCATE 21
BLDL 16-17
LINK 38
LOCATE 17,22
OBTAIN 21,22
SYSGEN 11
XCTL 38

main storage
clearing 4
determining size limit 4
hierarchy support for 2361
resetting divisions 32
rounding size 5

35,12,17

setting storage key 5
unavailable 68

malfunction alert handler 68
master scheduler

area 16
boundary box
final region
final region

MFT subtasking
MIN parameter
MOD parameter
Model ID 24

35
36

(multiprocessing)
32

22
22

move routine (CCH) 29
MPS parameter 22

68

Multiple Console support (MCS)
determining master console 13
hard copy requirements 37
message buffer for NIP 24

MVT with Model 65 multiprocessing
initialization module 62,11
second CPU initialization 70
UCB 62

NIP interface routine 73
nucleus

alternative 4
CSECT addresses 5,8
CSECT loading 8
determining 4
initialization program starting
address 8

locating on SYSRES 5
primary 4

options
BLDL list 32
Channel Check Handler 28-30
constructing LPA 32
deletion 21
determining user 21
expanding SQA 32
Machine Check Handler 27-28
recovery management 24
RERP parameter 22
resident access method (RAM) 22
resident BLDL 32
resident reenterable module area,
loading 35

rollout
data set 25
parameter list 11

System Environment Recording
(SER) 24,14

timer 16
time-slicing 24
trace table 12

partitioned data set directory
locating 5
locating scatter/translation record 5

partition queue element (PQE)
dummy 16
free area 16
hierarchy 16
master scheduler 16

prefixed storage area (PSA) 62,65
PTRIGGER field 67

QBF parameter 27

RAM parameter 22
READ command modification 8
reconfiguration, dynamic device 30
recovery management 24
register

clearing general 4
clearing floating point 5

Index 75

contents at IPL termination 10
relocation

dictionary record format 43
factors 6
factor table (RLFTABLE) 6
IPL 6
NIP 32

RERP parameter 22
RESERVE command 13
resident access method 22
resident BLDL list 33
rollout

data set 25
parameter list 11

routine, extended prec1s1on simulator 12
RSVC parameter 22

scatter extent list format 45
scatter/translation record

format 41
locating 5
reading 5

SGIEA2NP 11
simulator routine, extended precision
size

mai n storage 4
SQA 24
increase for subtasking 32
table 6
2361 storage 12

SQA (see system queue area)
SQS parameter 22
status byte, CPU 65

12

storage element status map (FSSEMAP) 67
subtasking in MFT 32
supervisor request block (SVRB) 17
supervisor validity check routine 11
SVC table 17
switches

LOAD UNIT 3, 4
prefix 65

SYSGEN macro 11
system queue area (SQA)

constructing 16
expanding 32
parameter 22
rebuilding 24
Size increase for subtasking 32

system residence device

76

determining 11
mounting of 3
UCB 14

SYS1.ASRLIB 27
SYS1.DUMP data set

cataloged 20-21
initializing 20-21
Write Dump routine 21

SYS1.LINKLIB
creating 17
initializing 17

SYS1.LOGREC 14
SYS1.PARMLIB 22
SYS1.SVCLIB

building 14
SVC routines in 17

TCB table, dummy 12
termination

MFT 37
MVT with Model 65 multiprocessing
MVT 38

timer
active 70
option 16
prefix field 67

time slicing
option 24
parameter 22

Unit Control Block
DEVTYP 13
direct access device 13
initialization routine 13
initialization (MVT with Model 65
multiprocessing) 62

SYSRES 13
table 12

Unit Control Module (UCM)
master console entry 13
Multiple Console Support Prefix 13

2361 Core Storage
boundary box extension 35
determining size 12
main storage preparation 35

72

o
S

IBM System/360 Operating System; Initial Program Loader and
Nucleus Initialization Program; Program Number 360-CI-535

Order No. GY28-6661-5

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

How did you use this publication?

o As an introduction o As a text (student)

o As a reference manual 0 As a text (instructor)

READER'S
COMMENT
FORM

o For another purpose (explain) __ _

-------~--~------

Please comment on the general usefulness of the book; suggest additions, deletions, and clarifications; list
specific errors and omissions (give page numbers):

What is your occupation? __ _

Number of latest Technical Newsletter (if any) concerning this publication: ______________ _

Please include your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

GY2S-6661-5

Your comments, please •••

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

Fold Fold

o
So

....
:;
CD

I
I
I
I
I , ... ····················t

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 636
Neighborhood Road
Kingston, New York 12401

First Class
Permit 40
Armonk
New York

.....................•... t
Fold

Intematlonal Buslne .. Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.s.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(international)

Fold I
I
I
I
I
1

I
I
I
I
I,
1
I
1
I
I
I

GY28-6661-5

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10804
[U.S.A. only)

IBM World Trada Corporation
B21 Unitad Nations Plaza, Naw York, Naw York 10017
[International)

