
Systems Reference Library

IBM OS

Linkage Editor and Loader

Program Numbers 360S-ED-510
360S-ED-521
360S-LD-547

File No.
Order No.

This publication provides the information necessary to
use the linkage editor or loader program of the IBM
System/360 Operating System to prepare the output of a
language translator for execution. The intended
audience is a customer applications programmer coding
in a higher-level language or a system programmer
responsible for installing and maintaining the
operating system. An introductory knowledge of the
concepts and facilities of the IBM System/360 Operating
System is required to use this reference guide most
effectively.

The linkage editor combines and edits modules to
produce a single module that can be brought into main
storage by program fetch for execution. It operates as
a processing program rather than as part of the control
program. The linkage editor provides several
processing facilities that are either performed
automatically or invoked in response to control
statements prepared by the programmer.

The loader combines the basic editing and loading
functions of the linkage editor and program fetch in
one job step. It is designed for high-performance
loading of modules that do not require the special
processing facilities of the linkage editor and fetch,
such as overlay. The loader does not produce load
modules for program libraries.

S360-31
GC28-6538-9 os

Tenth Edition (January 1972)

This is a major revision of, and makes obsolete, Order No. GC28-6538-S.
Information about CSECT Identification records has been added. Minor
changes have been made throughout.

This edition corresponds to Release 21 of the IBM System/360 operating
System and to all subsequent releases until otherwise indicated in new
editions or Technical Newsletters.

Changes are periodically made to the specifications herein; before using
this publication in connection with the operation of IBM systems, refer
to the latest SRL Newsletter, Order No. GN20-0360, for editions that
are applicable and current.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM Bran~h Office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Corporation, Programming Publications, Department 078, Monterey and
Cottle Roads, San Jose, California 95114.

@ Copyright International Business Machines Corporation 1969,1971

SUMMARY OF AMENDMENTS

Date of Publication:
Form of Publication:

January 1972
Revision GC28-6538-9

CSECT Identification Records

New: Programming Feature

NUMBER 1

These records contain data describing the language translators and
linkage editor that produced the program, any modifications to that
program by IMASPZAP, and, optionally, up to forty characters of user
data for each control section within the program. The IMBLIST
service aid program can be used to access these records.

Programmer responses to linkage editor and loader messages are
changed where applicable to reflect the problem determination aids
offered by the IMBLIST service aid program.

Linkage Editor and Loader Messages

New: Programming and Documentation

• Two new messages define error conditions in relation to the
SYSPRINT data set. IEW0984 occurs when the block size is too
large. IEW0994 occurs when the SYSPRINT DD statement is missing.

• New message IEW0661 is added to occur when a control statement
used to specify functions not available under the IBM System/360
Operating System is detected.

• New message IEW0114 is added to occur when the STOW routine
cannot obtain the work space it needs to store a member in the
specified library.

• New message IEW199I is issued when control is returned to the
loader after the loaded program terminates abnormally in an MVT
environment.

Maintenance: Documentation Only

• An additional programmer response is provided for message
IEW0364.

• The descriptions of messages IEW0161, IEW0112, and IEW0182 are
clarified to explain that the references identified in the
messages are branch-type references.

• Additional programmer response information is provided for
message IEW0222.

Linkage Editor Miscellaneous Ch~Qqes

Maintenance: Programming and Documentation

• When different member names are used on the SYSLMOD DD statement
and the NAME control statement, a cross reference table is
printed.

Maintenance: Documentation Only

• The necessity for respecifying OVERLAY control statements when a
module in overlay structure is reprocessed by the linkage editor
is stated.

• ALIAS statement example is clarified.

• The MFT partition size, like the MVT region size, must be larger
than value1 when the SIZE option is used.

• The relationship of blocking factors to the values specified in
the SIZE option is clarified.

• The result of misspelling an entry on a CHANGE or REPLACE
statement is explained.

• Information about handling COBOL class test on TRANSFORM tables
in an overlay structure is added.

Loader Miscellaneous Changes

Maintenance: Programming and Documentation

• The storage requirement for the loader is expanded.

Maintenance: Documentation Only

• The explanation of how the loader uses the SYSLIB data set to
resolve external references is expanded.

Editorial changes that have no technical significance are not noted
here.

Specific changes to the text made as of this publishing date are
indicated by a vertical bar to the left of the text. These bars will be
deleted at any subsequent republication of the page affected.

This publication provides applications
programmers with the information necessary
to use the linkage editor and loader of the
IBM System/360 Operating System to prepare
the output of a language translator for
execution. Additional information on the
operation and use of the linkage editor and
loader is directed to the system programmer
responsible for installing and maintaining
the operating system.

The Introduction briefly defines the
functions of the linkage editor and loader
and gives recommendations for the use of
each. Part 1 describes the linkage editor,
and should be read before Part 2, which
describes the loader.

The linkaqe editor combines and edits
modules to produce a single module that can
be brought into main storage by program
fetch for execution. It operates as a
processing program rather than as part of
the control program. The linkage editor
provides several processing facilities that
are either performed aut9matically or
invoked in response to control statements
prepared by the programmer.

Part 1, which consists of six chapters
and four appendixes, briefly describes the
processing facilities and operation of the
linkage editor. The introduction also
defines linkage editor terms in reference
to the source language statements that
cause them to be created.

The six chapters describe the input to
the linkage editor, the output from the
linkage editor, module editing functions,
design and specification of overlay
programs, the job control language
necessary to run a linkage editor job step,
and the linkage editor control statements.
The last two chapters are summaries of
reference information to be used after the
general information in the first four
chapters is learned. The appendixes to
Part 1 contain sample programs, diagnostic
messages, a description of the linkage
editor programs, and information on the
invocation of the linkage editor.

The 12~~~£ program combines the basic
editing and loading functions of the
linkage editor and program fetch in one job
step. It is designed for high-performance
loading of modules that do not require the
special processing facilities of the

linkage editor and fetch, such as overlay.
The loader does not produce load modules
for program libraries.

Part 2 of this publication describes the
loader. The introduction to this part
describes the functional characteristics of
the loader, along with its compatibility
with the linkage editor and restrictions on
its use. The chapter on using the loader
describes the job control language
statements and invocation procedures for
the loader, as well as loader input and
output, and user program data. The
appendixes to Part 2 contain sample input,
diagnostic messages, a description of
loader return codes, and storage
considerations. All of these items are
discussed in relation to the capabilities
of the linkage editor; therefore, the
reader must be familiar with Part 1 of this
publication.

PREREQUISITES

To use this reference guide most
effectively, the programmer must have a
basic knowledge of the concepts and
facilities of the IBM System/360 Operating
System. In order to understand the
information on the job control language
specifications for the linkage editor and
loader, the reader should also be familiar
with the publication IBM System/360
Operating System: Job Control Language
Reference, Order No. GC28-6704.

The following publication is needed to use
the linkage editor or loader under the Time
Sharing Option (TSO) of the IBM System/360
Operating System:

This manual contains procedures for
invoking the linkage editor or loader from
the terminal and gives a brief description
of the options that can be specified under
TSO.

Further information on TSO can be found
in the following two manuals:

IBM System/360 Operating System:

Ti~~_§haring_QEti2TI Gu1de, Order No.
GC28-6698

Time Sharing Option Command La~~~~
Re!~~~Qce, Order No. GC28-6732

ADDIT!QNAL PUBLICATIONS

Within the text, references are made to
the following publications:

IBM System/360 Operating System:

Data Manaq~~~Q~_§~~Y!£~~, Order No.
GC26-3746
Maintenance, Order No. GC27-6918
Messages and Codes, Order No.
GC28-6631
OS Service Aids, Order No. GC28-6791
~t2E~gg=~~t!~~t~~, Order No.
GC28-6551
§~E~~Yi~2~_§~~!£~~_~QQ_~~£~2
Instructions, Order No. GC28-6646
~y~t~~=£2QtE2!_~!2£~~' Order No.
GC28-6628
System Generation, Order No.
GC28-6554
Q~!!~~ie~, Order No. GC28-6586

INTRODUCTION • • • • • 9

PART 1. LINKAGE EDITOR • • 11
object and Load Modules • • • • 13

External Symbol Dictionary • • • 14
Text • • • • 15
Relocation Dictionary • • .. 15
End Indication • • .. 15

Linkage Editor Processing • .. 16
Input and output Sources • .. 16
Load Module Creation 17

Assigning Addresses • .. 18
Resolving External References • 18

Functions of the Linkage Editor 19
Links Modules • 19
Edits Modules • 20
Accepts Additional Input Sources 20
Reserves Storage • • • • • 22
Processes Pseudo Registers • • • 22
Creates Overlay Programs • • •• ·22
Creates Multiple Load· Modules .. 22
Provides Special Processing and
Diagnostic Output Options .. 22
Assigns Load Module Attributes • • .. 23
Assigns Storage Hierarchies .. • .. • 23
Allocates User-Specified Main
Storage Areas
Stores System Status Index
Information • • • •
Traces Processing History

.. 23

23
.. 24

Relationship to the operating System .. • 24
.. 24 Time Sharing Option (TSO)

Language Dependencies • • • •
Assembler Language • •
COBOL .. • • •
FORTRAN

• 25
• 25

25
.. 25

PL/I • • • • • 26

INPUT TO THE LINKAGE EDITOR
Primary Input Data Set

Object Modules • • • • • • • • • •
From Cards • • • • •
As a Member of a Partitioned Data

27
27

• • 28
• 28

Set •• • .. • • • • 28
Passed from a Previous Job Step .. • 29
created in a separate Job • •. • • .. 30

Control Statements • • • • 30
Object Modules and Control Statements 31

Control Statements in the Input
Stream • • • • .. • • • • • • • • • • 31
Control Statements in a Separate
Data Set • •

Automatic Call Library
• • • • 32

SYSLIB DD Statement
System Call Library • • • • ..
Private Call Libraries •
Concatenation of Call Libraries

Library Control Statement
Additional Call Libraries
Restricted No-Call Function
Never-Call Function

NCAL Option .. • • .. • .. •

• 32
• 33

33
• 33

34
• • 34

• 35
.. 35

36
.. .. 36

Included Data Sets • • • • • • • • • • .
Including Sequential Data Sets •
Including Library Members .. • • • •
Including Concatenated Data Sets • •

OUTPUT FROM THE LINKAGE EDITOR •
Output Load Module .. • •

Output Module Library
Member Name • • • • •
Alias Names • • • •

Entry Point .. • • .. •
Reserving Storage in the Output Load
Module • • • • • • • • • .. • •
Processing Pseudo Registers
Multiple Load Module Processing

Diagnostic Output • • • .. •
Diagnostic Messages • .. • •

Module Disposition Messages
Error/Warning Messages • .. • •
Sample Diagnostic Output • • • • • •

opti ona lOut put .. • • .. • .. • .. •
Control Statement Listing
Module Map .. •
Cross-Reference Table

MODULE EDITING • • • • • ..
Editing Conventions

Changing External Symbols
Replacing Control Sections

Automatic Replacement
Replace Statement

Deleting a Control Section
Name • • .. • • • •

or Entry

37
38
38
39

41
41
41
42
43
43

44
45
45
46
46
46
48
49
51
51
51
52

54
54
55
57
57
59

60

OVERLAY PROGRAMS • • • • • 63
Design of an Overlay Program • • .. • .. • 63

Single Region Overlay Program
Control Section Dependency ..
Segment Dependency • • • • .. • ..
Length of an Overlay Program
Segment Origin • .. • .. • • • .. •
Communication Between Segments ..
Overlay Process .. • • • .. •

Multiple Region Overlay Program
Specification of an Overlay Program

Segment Origin • • • • • • • •
Region Origin .. • .. • • •
Positioning Control Sections •

Using Object Decks • • ..
Using INCLUDE Statements •
Using INSERT Statements

Special Options
OVLY Option • •
LET Option • • • •
XCAL Option

Special Considerations •
Common Areas • .. • • • • •
Storage Requirements
Overlay Communication

CALL Statement or CALL Macro
Instruction .. • • •
Branch Instruction .. •

64
64
66
67
68
68
70
72
74
74
76

• 77
77
78
78
80
80
80
81
81
81
83
84

85
85

seg~ent Load (SEGLD) Macro
Instruction • • • •
Segment Wait (SEGWT) Macro
Instruction

86

• • 87

JOB CONTROL LANGUAGE SUMMARY • • 89
EXEC Statement Introduction 89
EXEC Statement -- Program Name • • 89
EXEC Statement -- Job Step Options • 90

Module Attributes • • • • • • • • 90
Downward Compatible Attribute • • • 91
Hierarchy Format Attribute • 91
Not Editable Attribute • 92
Only Loadable Attribute • • • • • • 92
Overlay Attribute • • • • • • • 92
Reusability Attributes • 93
Refreshable Attribute • • • • • • • 94
Scatter Format Attribute • • 94
Test Attribute • • • •• • • • • 95
Default Attributes • • • 95
Incompatible Attributes •••• 95

Special Processing Options • •• • 96
Exclusive Call Option • 96
Let Execute Option • • • • 96
No Automatic Library Call Option 96

Space Allocation Options • • 97
SI ZE Option • • • • • • • 97
DCBS Option • • • • • .103

output Options • • • • • • • • • • • • 104
Control Statement Listing Option •• 104
Module Map Option ••••••••• 104
Cross-Reference Table Option •••• 105
Alternate Output (SYSTERM) option .105

Incompatible Job Step Options •• 105
EXEC Stateme~t -- REGION Parameter ••• 106
EXEC Statement -- RetUrn Code .107
DD Statements ••••••••••••• 107

Linkage Editor DD Statements ••• 109
SYSLIN DD Statement •••••••• 109
SYSLIB DD Statement • • • • • .110
SYSUTl DD Statement •••••••• 110
SYSPRINT DD Statement • • • • .111
SYSLMOD DD Statement •••••••• 111
SYSTERM DD Statement. • • •• 112

Additional DD Statements. • • •• 113
Cataloged Procedures •••••••••• 114

Linkage Editor cataloged Procedures .114
Procedure LKED • • • ~ ••••• 114
Procedure LKEDG • • •• .116

Overriding Cataloged Procedures .117
Overriding the EXEC Statement ••• 117
overriding DD Statements .118

Adding DD Statements. • • • • • .119

LINKAGE EDITOR CONTROL STATEMENT
SUMMARY •• • • • • •

General Format • •
Format Conventions
Placement Information
ALIAS Statement • • • • • • •
CHANGE Statement •
ENTRY Statement
HIARCHY Statement
IDENTIFY Statement
INCLUDE Statement

• .121
.121

••• 121
.122

••• 123
.124
.126

• .127
.128
• 130

INSERT Statement • •
LIBRARY Statement
NAME Statement • • •
OVERLAY Statement
REPLACE Statement
SETSSI Statement • •

• .131
• .133
• .135
• .136
• . 138
• . 140

APPENDIX A. SAMPLE PROGRAMS •• 141
Sample Program COBFORT • • • .141

Job Control Language. • .141
Linkage Editor Output •. 142

Sample Program RPLACJOB .145
Job Control Language. • .145
Linkage Editor Control Statements .147
Linkage Editor Output •. 148

Sample Program REGNOVLY •••••••. 150
Job Control Language •••••••. 151
Linkage Editor Control Statements .152
Linkage Editor Output •. 152

Sample Program PARTDS ••••••. 157
Job Control Language •••••••. 158
Linkage Editor Control Statements .159
Linkage Editor output ••••••. 159

APPENDIX B: INVOCATION OF THE LINKAGE
EDITOR • • • • • • • • • • • • • • . 161

APPENDIX C: LINKAGE EDITOR PROGRAMS •. 163
capacities. • • • •••••. 163
Intermediate Data Set ••••••• 167
Linkage Editor Storage Requirements 167

APPENDIX D: LINKAGE EDITOR DIAGNOSTIC
MESSAGES • • • • • • • • • • •. • . 169

PART 2: LOADER
Functional Characteristics •
Compatibility and Restrictions.

Time Sharing Option (TSO)
Processing Object Modules in
Storage • • • • • • •
Loaded Program Restrictions

USING THE LOADER • • • •
Input for the Loader.

EXEC Statement • • •
DD Statements • • • •

SYSLIN DD statement
SYSLIB DD Statement
SYSLOUT DD Statement
SYSTERM DD Statement • •

Loaded Program Data • • • • .
Invoking the Loader
Loader Output

• .201
• • • . 201

Main

• . 203
• . 203

• .204
• .204

• .205
• • 205

. 205
• • • . 207

• . 208
• . 209
• . 209
• .209
• .210
• .210

• • • . 215

APPENDIX E: SAMPLE INPUT FOR THE LOADER 217

APPENDIX F: LOADER RETURN CODES • • 219

APPENDIX G: STORAGE CONSIDERATIONS ••. 221

APPENDIX H: LOADER DIAGNOSTIC MESSAGES .223

GLOSSARY •• • . 234

INDEX .237

FIGURES

Figure 1. Preparing a Source Module
for Execution • • • • • • • • • • • • • 11
Figure 2. Preparing a Source Module
for Execution and Executing the Load
Module • • • • • • •
Figure 3. External Names and
External References • • • • •

• 12

• 13
Figure 4. Use of the External Symbol
Dictionary • • • • • • • • • • • « • « • 15
Figure 5. Input, Intermediate, and
Output Sources for the Linkage Editor • 17
Figure 6. A Load Module Produced by
the Linkage Editor • « • • • • • • • • • 18
Figure 7. Linkage Editor Processing
-- Module Linkage • • • • • • • • • • • 20
Figure 8. Linkage Editor Processing
-- Module Editing • • • • • • • • • • • 21
Figure 9. Linkage Editor Processing
-- Additional Input Sources •••• • • 21
Figure 10. Processing of One INCLUDE
Control statement • • • • • • • • • • • 37
Figure 11. Processing of More than
One INCLUDE Control Statement
Figure 12. Diagnostic Messages for
the Level E Linkage Editor • • • • •
Figure 13. Diagnostic Messages for
the Level F Linkage Editor
Figure 14. Module Map • • • • • • • «

Figure 15. Cross-Reference Table
Figure 16. Editing a Module • • •
Figure 17. Changing an External

38

50

50
• 53
• 53

54

Reference and an Entry Point • • • • • • 56
Figure 18. Automatic Replacement of
Control Sections • • • • • • • • • • • • 58
Figure 19. Replacing a Control
Section with the REPLACE Control
Statement • • • • • • • • • • • • • • • 60
Figure 20. Deleting a Control Section • 61
Figure 21. Control Section
Dependencies • • • • • • • • • • • • • • 65
Figure 22. Single-Region Overlay Tree
Structure • • • • • • • • • • • • • • • 66
Figure 23. Length of an overlay Module 67
Figure 24. Segment Origin and Use of
Storage • • • • • • • • • • • • • • • • 68
Figure 25. Inclusive and Exclusive
Segments • • • • • • • • • • • • • • • • 69
Figure 26. Incl~sive and Exclusive
References • • • • • • • • • • • • • • • 70
Figure 27. Location of Segment and
Entry Tables in an Overlay Module
Figure 28. Control Sections Used by
Several Paths • • • • •
Figure 29. Overlay Tree for
Multiple-Region Program
Figure 30. Symbolic Segment Origin in
Single-Region Program

• 71

• 73

• 73

• 75

ILLUSTRATIONS

Figure 31. Symbolic Segment and
Region Origin in Multiple-Region
Program • • • • • • • • • 76
Figure 32. Common Areas Before
Processing • • • • • • • • • 82
Figure 33. Common Areas After
Processing • • • • • • • • • 83
Figure 34. Incompatible Job Step
options for the Linkage Edi t.or • • • • • 106
Figure 35. Statements in the LKED
Cataloged Procedure •••••••••• 115
Figure 36. Statements in the LKEDG
Cataloged Procedure •••••••••• 117
Figure 37. Overlay Structure for
INSERT Statement Example •••••••• 132
Figure 38. Overlay Structure for
OVERLAY Statement Example ••••••• 137
Figure 39. L~nkage Editor Output for
Sample Program COBFORT ••••••••• 143
Figure 40. Linkage Editor Output for
Job step that Created SUBONE •••••• 146
Figure 41. Linkage Editor Output for
Sample Program RPLACJOB ••••• 149
Figure 42. Overlay Tree for
Multiple-Region Sample Program REGNOVLY 150
Figure 43. Linkage Editor output for
Sample Program REGNOVLY •• 153
Figure 44. Inpu~ Statements for
IEBUPDTE Utility Program •••••••• 157
Figure 45. Macro Instruction Basic
Format. • • • • • • • • • • • • .161
Figure 46. Loader Processing --
SYSLIB Resolution ••••••••••• 202
Figure 47. Loader Processing -- Link
Pack Area and SYSLIB Resolution •• 202
Figure 48. Loader Processing --
Automatic Editing •• 203
Figure 49. Input Deck for the Loader
-- Basic Format ••••••••• 205
Figure 50. Loader and Loaded Program
Data in MFT or MVT Input Stream ••• 210
Figure 51. Macro Instruction Basic
Format • • • • • • • • • • • • • • .211

•• 212
Figure 52. Using the LINK Macro
Instruction To Refer to the Loader
Figure 53. Using the LOAD and CALL
Macro Instructions to Refer to
IEWLOADR (Loading Without
Identification) •••••••••• •
Figure 54. Using the LOAD and CALL
Macro Instructions to Refer to IEWLOAD
(Loading With Identification) ••••
Figure 55. Module Map Format Example
Figure 56. Input Deck for a Load Job
Figure 57. Input Deck for a
Compile-Load Job • • • • •
Figure 58. Input Deck for compilation
and Loading of the Three Modules

• 213

.214

.216

.217

• 217

• 218

TABLES

Table 1. system Automatic Call
Libraries • • • • • • • • • • • 33
Table 2. Branch Sequences for
Overlay Programs • • • • • • • • • 86
Table 3. Use of the SEGLD Macro
Instruction • • • • • • • • • • • • 87
Table 4. Use of the SEGWT Macro
Instruction • • • • • • • • • • • • 88
Table 5. Device Types and Maximum
Record Sizes • • • • • • • • • • • • • • 99
Table 6. Load Module Buffer Area and
SYSLMOD and SYSUT1 Record Sizes .100
Table 7. Blocking Factors and Their
Relationship to the SIZE option •• 103
Table 8. REGION Increase When the
SIZE Option Is Used •••••••••• 106

Table 9. Linkage Editor Return Codes .101
Table 10. Linkage Editor ddnames .109
Table 11. DCB Requirements for object
Module and Control Statement Inputt ••. 110
Table 12. DCB Requirements for
SYSPRINT • • • • • • • • • • • • • .111
Table 13. DCB Requirements for
Additional Input Data Sets. •• • .113
Table 14. Capacities of Linkage
Editor Programs •••••••.•••. 164
Table 15. Minimum Dynamic Storage
Requirements for the Linkage Editor •• 168
Table 16. Overlay Supervisor Storage
Requirements •••••••••••••. 168
Table 17. Return Codes •••.•••. 219
Table 18. Main Storage Requirements •• 222

INTRODUCTION

The linkage editor and the loader are two of the processing programs of
IBM System/360 Operating System. They prepare the output of language
translators for execution. The linkage editor prepares a load module
that is to be brought into main storage for execution by program fetch.
The loader prepares the executable program in main storage and passes
control to it directly.

The linkage editor provides several processing facilities such as
creating overlay programs, and aiding program modification. (The
linkage editor is also used to build and edit system libraries.) The
loader provides high performance loading of programs that do not require
the special processing facilities of the linkage editor.

Use of the linkage editor is recommended in the following cases:

• If the program requires linkage editor services in addition to the
MAP, LET, NCAL, and SIZE options.

• If the program uses linkage editor control statements such as
INCLUDE, NAME, OVERLAY, etc.

• If a load module is to be produced for a program library_

Use of the loader is recommended if the program only requires the use of
the following linkage editor options: MAP, LET, NCAL, and SIZE.
Because of its fewer options and because it can process a job in one job
step, the loader reduces editing and loading time by about one half.

Linkage editor processing is performed in a link edit step. The
linkage editor can be used for compile-link edit-go, compile-link edit,
link edit, and link edit-go jobs. Loader processing is performed in a
load step, which is equivalent to the link edit-go steps. The loader
can be used for compile-load and load jobs.

Introduction 9

Linkage editor processing is a necessary step that follows the source
program assembly or compilation of any problem program. The linkage
editor is one of the processing programs of the IBM System/360 Operating
System, and is a service program used in association with the language
translators.

Every problem program is designed to fulfill a particular purpose.
To achieve that purpose, the program can generally be divided into
logical units that perform specific functions. A logical unit of coding
that performs a function, or several related functions, is a ~2Q~!~.
Ordinarily, separate functions should be programmed into separate
modules, a process called modular programming. Each module can be
written in the symbolic language that best suits the function to be
performed. (The symbolic languages are assembler, ALGOL, COBOL,
FORTRAN, PL/I, and RPG.)

Each module is separately assembled or compiled by one of the
language translators. The input to a language translator is a source
~Qdule; the output from a language translator is an 2Qj~~S module.
Before an object module can be executed, it must be processed by the
linkage editor. The output of the linkage editor is a load module
(Figure 1).

Figure 1. Preparing a Source Module for Execution

An object module is in relocatable format with un executable machine
code. A load module is also relocatable, but with executable machine
code. A load module is in a format that can be loaded into main storage
and relocated by program fetch (Figure 2).

Part 1. Linkage Editor 11

Figure 2. Preparing a Source Module for Execution and Executing the
Load Module

Any module is composed of one or more control sections. A control
section is a unit of coding (instructions and data) that is, in itself,
an entity. All elements of a control section are loaded and executed in
a constant relationship to one another. A control section is,
therefore, the smallest separately relocatable unit of a program.

Each module in the input to the linkage editor may contain symbolic
references to control sections in other modules; such references are
called external references. These references are made by means of
address constants (adcons). The symbol referred to by an external
reference must be either the name of a control section or the name of an
entry point in a control section. Control section names and entry names
are called external names. By matching an external reference with an
external name, the linkage editor resolves references between modules.
External references and external names are called ~~~~fn~!_§YmQ2!§
(Figure 3). An external symbol is one that is defined in one module and
can be referred to in another.

12

External [
Symbols

External Names:

Control Section Entry Name
At All
Bl

External References.

FromAl toBl
From Bl to A 11

Figure 3. External Names and External References

OBJECT AND LOAD MODULES

object modules and load modules have the same basic logical
structure. Each consists of:

ENTRY All

CALL Bl

CSECT Bl

• Control dictionaries, containing the information necessary to
resolve symbolic cross references between control sections of
different modules, and to relocate address constants. Control.
dictionary entries are generated when external symbols, address
constants, or control sections are processed by a language
translator. Each language translator usually produces two kinds of
control dictionaries: an external symbol dictionary (ESD) and a
relocation dictionary (RLD).

• Text, containing the instructions and data of the prograffi.

• An end of module indication: an END statement in an object module,
an end-of-module indicator in a load module.

Each control dictionary and the text and end indication is described in
greater detail in the following text.

Both object modules and load modules can contain data used by the
linkage editor to create CSECT Identification (lOR) records. If the
language translator creating an object module supports CSECT
Identification, the input object module can contain translator data for
Identification records on the END statement. Input load modules differ
from object modules in the type of data they supply. Input load modules
can also provide IMASPZAP data, linkage editor data, and user data to
the Identification records that are built during linkage editor
processing. During the link edit step, the optional IDENTIFY control
statement is used to supply the optional user data for the CSECT
Identification records.

Part 1. Linkage Editor 13

External Symbol Dictionary

The external symbol dictionary (ESD) contains one entry for each
external symbol defined or referred to within a module. The dictionary
contains an entry for each external reference, pseudo register (external
dummy section), entry name, named or unnamed control section, and blank
or named common area. An entry name, pseudo register, or named control
section can be referred to by any control section or separately
processed module; an unnamed control section cannot.

Each entry identifies a symbol, or a symbol reference, and gives its
location, if known, within the module. Each entry in the external
symbol dictionary is classified as one of the following:

• External reference -- a symbol that is defined as an external name
in another separately processed module, but is referred to in the
module being processed. The external symbol dictionary entry
specifies the symbol; the location is unknown.

• Weak external reference -- a special type of external reference that
is not-to be-resolved by automatic library call unless an ordinary
external reference to the same symbol is found. The external symbol
dictionary entry specifies the symbol; the location is unknown.

• Entrv name -- a name within a control section that defines an entry
point. The external symbol dictionary entry specifies the symbol
and its location, and identifies the control section to which it
belongs.

• ~ontrol secti~me -- the symbolic name of a control section. l'he
external symbol dictionary entry specifies the symbol, the length of
the control section, and its location. In this case, the location
represents the origin of the control section, which is the first
byte of the control section.

• Blank or named common area -- a control section used to reserve a
main storage area that can be referred to by other modules. The
reserved storage area can be used, for example, as a communications
region within a program or to hold data supplied at execution time.
The external symbol dictionary entry specifies the name, if present,
and the length of the area. If there is no name, the name field
contains blanks.

• Private code -- an unnamed control section. The external symbol
dictionarY-entry specifies the length of the control section, and
the origin. The name field contains blanks.

• Pseudo register -- a special facility (corresponding to the external
dummy section feature of Assembler F) that can be used to write
re-enterable programs. A pseudo register is a dynamically obtained
location in main storage that can be used as a pointer to
dynamically acquired storage; that is, the space for such areas is
not reserved in the load module but is acquired during execution.
The external symbol dictionary contains the name, length, alignment,
and displacement of the pseudo register.

When processing input modules, the linkage editor resolves references
between modules by matching the referenced symbols to defined symbols.
To do this, the linkage editor searches for the external symbol
definition in the external symbol dictionary of each input module. As

14

shown in Figure 4, the linkage editor matches the external reference to
Bl by locating the definition for Bl in the external symbol dictionary
of Module B. In the same way, it matches the external reference to All
by locating the definition for All in the external symbol dictionary of
Module A.

Figure 4. Use of the External Symbol Dictionary

The text contains the instructions and data of the module.

Relocation Dictionary

The relocation dictionary (RLD) contains one entry for each
relocatable address constant that must be modified before a module is
executed. An entry identifies an address constant by indicating both
its location within a control section and the external symbol whose
value must be used to compute the value of the address constant. (The
external symbol is defined in an external symbol dictionary entry in
another control section or module.)

The linkage editor uses the relocation dictionary whenever it
processes a module to adjust the address constants for references to
other control sections and modules. This dictionary is also used to
adjust these address constants again after program fetch reads an output
load module from a library and loads it into main storage for execution.

End Indication

The end of a load module is marked by an ~~g=2f=m2Q~!~ indicator
(EOM). The EOM cannot, like the assembler END instruction, specify an
entry point. Therefore, whenever a load module is reprocessed by the
linkage editor, a main entry point should be specified on an ENTRY
statement. If one is not specified, the linkage editor will assign the
first byte of the first control section encountered as the entry point.

Part 1. Linkage Editor 15

LINKAGE EDITOR PROCESSING

Two levels of the linkage editor are available: level E, which is
designed to process programs in 15K or more of main storage (where K is
equal to 1024 bytes); and level F, which is designed to process programs
in 44K or more of main storage. A compatibility option is provided to
ensure that programs processed by the level F editor can be reprocessed
by the level E editor.

The rest of this section discusses the input and output sources of
the linkage editor, and the way in which the linkage editor produces a
load module.

INPUT AND OUTPUT SOURCES

The general input and output sources of both linkage editor programs
are the same. The linkage editor can receive its !nEQ~ from several
sources, as follows:

• The primary input, which can contain only object modules and linkage
editor control statements (called control statements in the
following text).

• Additional user-specified input, which can contain either object
modules and control statements, or load modules. This input is
either specified by the user as input, or incorporated automatically
by the linkage editor from a call library.

During processing, the linkage editor generates !!!~~!I!!~S!!?!~~_S!?!~?!.
The level E linkage editor always places this intermediate data on a
direct aCgess storage device; the level F linkage editor places
intermediate data on a direct access storage device when main storage
allocated for input data is exhausted.

Output of the linkage editor is of two types:

• A load module, which is always placed in a library (a partitioned
data set) as a named member.

• Diagnostic output, which is produced as a sequential-data set.

Figure 5 shows the input, intermediate, and output sources for the
linkage editor program.

16

Figure 5. Input, Intermediate, and Output Sources for the Linkage
Editor

LOAD MODULE CREATION

In processing object and load modules, the linkage editor assigns
consecutive relative addresses to all control sections and resolves all
references between control sections. Object modules produced by several
different language translators can be used to form one load module.

An output load module is composed of all input object modules and
input load modules processed by the linkage editor. The control
dictionaries of an output module are therefore a composite of all the
control dictionaries in the linkage editor input. The control
dictionaries of a load module are called the composite external symbol
dictionary (CESD) and the relocation dictionary (RLD). The load module
also contains all of the text from each input module, and one
end-of-module indicator (Figure 6).

Part 1. Linkage Editor 17

Figure 6. A Load Module Produced by the Linkage Editor

Assigning Addresses

Each module to be processed by the linkage editor has an origin that
was assigned during assembly, compilation, or a previous execution of
the linkage editor. When several modules, each with an independently
assigned origin, are to be processed by the linkage editor, the sequence
of the addresses is unpredictable; two input modules may even have the
same origin.

Each input module can be made up of one or more control sections. To
produce an executable output load module, the linkage editor assigns
relative main storage addresses to each control section by assigning an
origin to the first control section encountered and then assigning .
addresses, relative to that origin, to all other control sections to be
included in the output load module. The value assigned as the origin of
the control section is used to relocate each address dependent item in
the control section.

Although the addresses in a load module are consecutive, they are
relative to zero. When a load module is to be executed, program fetch
prepares the module for execution by loading it at a specific main
storage location. The addresses in the module are then increased by
this base address. Each address constant must also be readjusted,
another function of program fetch.

Resolving External References

The linkage editor also resolves external references in the input
modules. Cross references between control sections in different modules
are symbolic. They must be resolved relative to the addresses assigned
to the load module. The linkage editor calculates the new address of
each relocatable expression in a control section and determines the
assigned origin of the item to which it refers.

18

FUNCTIONS OF THE LINKAGE EDITOR

Linkage editor input may consist of a combination of object modules,
load modules, and control statements. The primary function of the
linkage editor is to combine these modules, in accordance with the
requirements stated on control statements, into a single output load
module. Although this linking or combining of modules is its primary
function, the linkage editor also:

• Edits modules by replacing, deleting, and rearranging control
sections as directed by control statements.

• Accepts additional input modules from data sets other than the
primary input data set, either automatically, or upon request.

• Reserves storage for the common control sections generated by
assembler and FORTRAN language translators, and static external
areas generated by PL/I.

• Computes total length and assigns displacements for all pseudo
registers (external dummy sections).

• Creates overlay programs in a structure defined by control
statements.

• Creates multiple output load modules as directed by control
statements.

• Provides special processing and diagnostic output options.

• Assigns module attributes that describe the structure, content, and
logical format of the output load module.

• Assigns storage hierarchies as directed by control statements.

• Allocates main storage areas for linkage editor processing as
specified by the programmer (level F linkage editor only).

• Stores system status index information in the directory of the
output module library (systems personnel only).

• Traces the processing history of a program.

Each of the linkage editor functions is described briefly in the
following paragraphs.

Links Modules

Processing by the linkage editor makes it possible for the programmer
to divide his program into several modules, each containing one or more
control sections. The modules can be separately assembled or compiled.
The linkage editor combines these modules into one output load module
(Figure 7) with contiguous storage addresses. During processing by the
linkage editor, references between modules within the input are
resolved. The output module is placed in a library (partitioned data
set).

Part 1. Linkage Editor 19

Figure 7. Linkage Editor Processing -- Module Linkage

Edits Modules

Program modification is made easier by the editing functions of the
linkage editor. When the functions of a program are changed, the
programmer modifies, then compiles and link edits again only the
affected control sections instead of the entire source module.

Control sections can be replaced, renamed, deleted, or moved as
directed by control statements. Control sections can also be
automatically replaced by the linkage editor. External symbols can also
be changed or deleted as directed by control statements.

Figure 8 illustrates the module editing function of the linkage
editor.

AcceEts Additional InEut Sources

Standard subroutines can be included in the output module, thus
reducing the work in coding programs. The programmer can specify that a
subroutine be included at a particular time during the processing of his
program by using a control statement. When the linkage editor processes
a program that contains this statement, the module containing the
subroutine is retrieved from the indicated input source, and made a part
of the output module (Figure 9).

20

Figure 8. Linkage Editor Processing -- Module Editing

Figure 9. Linkage Editor Processing -- Additional Input Sources

Symbols that are still undefined after all input modules have been
processed cause the automatic library call mechanism to search for
modules that will resolve these references. When a module name is found
that matches the unresolved symbol, the mOdule is processed by the
linkage editor and also becomes part of the output module (Figure 9).

Part 1. Linkage Editor 21

Note: The level F linkage editor distinguishes a special type of
external reference; the weak external reference. An unresolved weak
external reference does not cause the linkage editor to use the
automatic library call mechanism. Instead, the reference is left
unresolved, and the load module is marked as executable.

The linkage editor processes COmmon control sections generated by the
FORTRAN and assembler language translators. The static external storage
areas generated by the PL/I compiler are processed in the same way. The
common areas are collected by the linkage editor, and a reserved main
storage area is provided within the output module.

Processes Pseudo Regi§~~

Pseudo registers, like the external dummy sections of Assembler F,
aid in generating re-enterable code. The linkage editor processes
pseudo registers by accumulating the total length of storage required
for all pseudo registers and recording the displacement of each. During
execution, the program dynamically acquires the necessary storage.

Creates Overl~rogram§

To minimize main storage requirements, the programmer can organize
his program into an overlay structure by dividing it into segments
according to the functional relationships of the control sections. Two
or more segments that need not be in main storage at the same time can
be assigned the same relative storage addresses, and can be loaded at
different times.

The programmer uses control statements to specify the relationship of
segments within the overlay structure. The segments of the load module
are placed in a library so that the control program can load them
separately when the load module is executed.

Creates MultiEJ~Loag-Module~

The linkage editor can also process its input to form more than one
load module within a single job step. Each load module is placed in the
library under a unique member name, as specified by a control statement.

Provides Special Processing and Diagnostic Output Options

The programmer can specify special processing options that negate
automatic library call or the effect of minor errors. In addition, the
linkage editor can produce a module map or cross-reference table that
shows the arrangement of contrOl sections in the output module and
indicates how they communicate with one another. A list of the control
statements processed can also be produced.

22

Throughout processing, errors and possible error conditions are
logged. Serious errors cause the linkage editor to mark the output
module not executable. Additional diagnostic data is automatically
logged by the linkage editor. The data indicates the disposition of the
load module in the output module library.

Assigns Load Module Attributes

When the linkage editor generates a load module, it places an entry
for the module in the directory of the library. This entry contains
attributes that describe the structure, content, and logical format of
the load module. The control program uses these attributes to determine
how a module is to be loaded, what it contains, if it is executable,
whether it is executable more than once without reloading, and if it can
be executed by concurrent tasks. Some module attributes can be
specified by the programmer; others are specified by the linkage editor
as a result of information gathered during processing.

Assigns Storage Hierarchies

When main storage hierarchy support is included in a system, the
linkage editor provides addressing distinction between processor storage
and IBM 2361 Core Storage. In order for the linkage editor to determine
into which area of main storage a control section is to be loaded, the
programmer specifies the hierarchy to which the control section belongs.
The assignment of control sections to a specific hierarchy is
accomplished with a control statement.

If main storage hierarchy support is not included in a system, and
some control sections within a module are assigned to each hierarchy, an
MVT system establishes a two-part region within processor storage. The
two parts are not necessarily contiguous. In an MFT system, the module
is loaded in one area within processor storage.

Allocates User-Specified Main Storage Areas

The programmer can specify the total amount of main storage to be
made available to the linkage editor, the amount to be used for the load
module buffer, and the buffer for the output load module. These options
should be specified only when the level F linkage editor is used.

The following information is intended for systems personnel
responsible for maintaining IBM-supplied load modules. It is not
generally applicable to non-IBM load modules.

Four bytes in the library directory entry for IBM-supplied load
modules are used to store system status index information. This
information, which is used for maintenance of the modules, is placed in
the directory with a control statement. For details on the use of this
statement, refer to the publication IBM System/360 Operating System:
Maintenance.

Part 1. Linkage Editor 23

Tracing the processing history of a program is simplified by the CSECT
Identification (lOR) records created and maintained by the linkage
editor. A CSECT Identification record can contain data that describes:

• The language translator, its level, and the translation date for
each control section.

• The most recent processing by the linkage editor.

• Any modification made to the executable code of any control section.

Optionally, user-supplied data associated with the executable code of a
control section can also be recorded.

RELATIONSHIP TO THE OPERAT!!~§!§!~~

The linkage editor has the same relationship to the operating system
as any other processing program. It can be executed either as a job
step, a subprogram, or a subtask. Control is passed to the linkage
editor in one of three ways:

• As a job step, when the linkage editor is specified on an EXEC job
control statement in the input stream.

• As a subprogram, with the execution of a CALL macro instruction
(after the execution of a LOAD macro instruction), a LINK macro
instruction, or an XCTL macro instruction.

• As a subtask, in multitasking systems, with the execution of the
ATTACH macro instruction.

Execution of the linkage editor and the data sets used by the linkage
editor are described to the system with job control language statements.
These statements describe all jobs to be performed by the system.

Note: Job control statements are not to be confused with linkage editor
control statements. Job control statements are processed before the
linkage editor is executed; linkage editor control statements are
processed during linkage editor execution.

Depending on the operating system configuration used, certain
restrictions are placed on the size of a load module. Under MFT, a load
module can contain up to 524,288 bytes. If a load module is larger than
this, it should be divided into several load modules that are
dynamically loaded by assembler language macro instructions. Under MVT,
modules larger than 524,288 bytes are allowed.

When the linkage editor is used under TSO, it is invoked by the
linkage editor prompter, a program that acts as an interface between the
user and the operating system and linkage editor. Under TSO, execution
of the linkage editor and definition of data sets used by the linkage
editor are described to the system through use of the LINK command that
causes the prompter to be executed. Operands of the LINK command can
also be used to specify the linkage editor options a job requires.

24

complete procedures for use of the LINK command are given in the
Terminal User'S Guide.

This section defines control section, entry name, external reference,
common area, and pseudo register (external dummy section) in terms of
the source language statements that generally create them. The
languages described are assembler, COBOL, FORTRAN, and PL/I.

Note: Unless the language translator supports CSECT Identification
(IDR) Records, identification data is not produced.

Assembler Language

In the assembler language, a control section is defined by a CSECT
statement or a START statement. Either statement may specify a control
section name. The control section delimiter is an END statement, or
another CSECT or START statement.

An entry name is defined wi~h an ENTRY statement.

An external reference to a data area is specified with an EXTRN
statement and an A-type address constant; an external reference to a
control section or an entry name is specified with a V-type address
constant.

A common area is specified with a COM statement.

An external dummy section (Assembler F and Assembler H only) is
defined with a DXD instruction or a DSECT and a Q-type address constant;
a CXD instruction defines a 4-byte field that the linkage editor uses to
accumulate the length of all external dummy sections in a load module.

In COBOL, a control section is produced for each compilation. COBOL
control sections are always named, because a name must be specified in
the PROGRAM-ID paragraph of the IDENTIFICATION DIVISION.

An entry name is defined with an ENTRY statement.

An external reference is created by the compiler when a CALL
statement is used.

COBOL does not use common areas or pseudo registers.

FORTRAN

In FORTRAN, a control section is defined with a SUBROUTINE, FUNCTION,
or BLOCK DATA statement that specifies the control section name. If the
first statement in a FORTRAN routine is not one of these, it is assumed
to begin the main routine of the program. Automatically, the statement

Part 1. Linkage Editor 25

defines a control section named MAIN, the name always assigned to the
main routine of a FORTRAN program unless the programmer has used the
NAME option to assign a name to his main routine. A control section
delimiter is an END statement.

An entry name is defined with an ENTRY statement.

An external reference is created for an EXTERNAL statement or a
reference to a subroutine subprogram, a function subprogram, or a BLOCK
DATA subprogram.

A common area is specified with a COMMON statement. A name may be
specified, if desired.

FORTRAN does not use pseudo registers.

In PL/I, a control section is defined by an external PROCEDURE
statement and named by the first statement label. When the MAIN option
is specified, the control section IHEMAIN, which contains the address of
the principal entry point, is created. In both cases, the control
section IHENTRY is generated to provide appropriate linkage to the
library storage management modules. Control sections are also created
for each STATIC EXTERNAL or EXTERNAL declaration with initial text and
for each EXTERNAL file constant.

Note: If the labels or variable names used for control section names
exceed seven characters, PL/I generates a seven-character control
section name by concatenating the first four and the last three
characters in the label or variable name.

A control section is also created for STATIC INTERNAL storage; it
contains the items declared with their storage class attributes as well
as work areas and control blocks added by the compiler. This control
section takes its name from the name of the external procedure control
section, followed by the letter A and padded to the left with asterisks
to a length of eight characters.

An entry name is defined with an ENTRY statement.

An external reference is created for an ENTRY declaration, either
explicitly or implicity declared with the EXTERNAL attribute.
Unresolved function references or procedure calls imply EXTERNAL scope
and also cause an external reference to be generated.

A named common area is specified with a STATIC EXTERNAL or EXTERNAL
declaration when the defined area does not contain initial text. (When
the area is initialized, a control section is generated.) The name is
the name of the variable. PL/I does not <Jse blank common areas.

A pseudo register is created for each CONTROLLED variable, for each
file declared, and for each PROCEDURE or PROCEDURE BEGIN block or ON
unit in the program. The name of the pseudo register created for a
CONTROLLED EXTERNAL variable is the name of the variable. In all other
cases, the name of the pseudo register is generated from the external
procedure control section name followed by a letter (B, C, etc.) and
padded to the left with asterisks to a length of eight characters. The
asterisks can be replaced if necessary to provide sufficient unique
names.

26

INPUT TO THE LINKAGE EDITOR

The linkage editor accepts input from two major sources: the primary
input data set and additional data sets. The primary input data set is
made available through job control language specifications. ~QQ!~!2~~!
data sets are made available either through the automatic library call
mechanism, or through user-specified control statements. They must,
however, also be defined with job control language specifications.

Primary and additional input data sets may contain the following
types of data:

• One or more object modules.

• One or more load modules.

• Control statements.

• Combinations of the above (restrictions on certain combinations are
noted where they apply).

Object modules and control statements may be contained in either
sequential or partitioned data sets. Load modules must be contained in
partitioned data sets.

Execution of the linkage editor with no input results in no error
messages. The listing header is printed and the requested options are
listed. The linkage editor then terminates.

This chapter describes the "linking" functions of the linkage editor
only; the "editing" functions are described in the chapter "Module
Editing."

PRIMARY INPUT DATA SET

The primary input data set is required for every linkage editor job
step. It must be defined by a DD statement with the ddname SYSLIN. The
primary input can be:

• A sequential data set.

• A member of a partitioned data set.

• A concatenation of sequential data sets and/or members of
partitioned data sets.

The primary input data set must contain object modules and/or control
statements. The modules and control statements are processed
sequentially and their order determines the basic order of linkage
editor processing during a given execution. However, the order of the
control sections after processing does not necessarily reflect the order
in which they appeared in the input.

In the examples that follow, only the statements necessary to define
the input to the linkage editor are shown; complete examples are shown
in Appendix A.

Input to the Linkage Editor 27

OBJECT MODULES

The primary input to the linkage editor may consist solely of one or
more object modules. The rest of this section discusses object module
input from cards, as a member of a partitioned data set, passed from a
previous job step, and created in a separate job.

From Cards

Object module input to the linkage editor may be on cards. The card
deck itself is treated as a sequential data set; the cards are placed in
the input stream, after a DO * statement, as follows:

//SYSLIN DO * r--,
IObject Deck A I
~--~
IObject Deck B I L __ J

/*

The card input is followed by a /* statement.

If card decks are used in addition to other input, the DO * statement
must be last, as follows:

//SYSLIN
//

DD
DO

DSNAME=INPUT, •••

* r--,
IObject Deck A I
~---~
IObject Deck B I L __ J

/*

By omitting the ddname on the second DO statement, the card input is
concatenated to the data set described on the SYSLIN DD statement.

As a Member of a Partitioned Data Set

An object module in a partitioned data set can be used as primary
input to the linkage editor by specifying its data set name and member
name on the SYSLIN DD statement. In the following example, the member
named TAXCOMP in the object module library LIBROUT is to be the primary
input; LIBROUT is a cataloged data set:

//SYSLIN DD DSNAME=LIBROUT(TAXCOMP) ,DISP= (OLD, KEEP)

The library member is processed as if it were a sequential data set.

28

Members of partitioned data sets can be concatenated with other input
data sets, as follows:

//SYSLIN
//

DD
DD

DSNAME=OBJLIB,DISP=(OLD,KEEP), •••
DSNAME=LIBROUT(TAXCOMP),DISP=(OLD,KEEP)

Library member TAXCOMP is concatena~ed to data set OBJLIB; both must
contain object modules since they are the primary input.

Passed from a Previous Job Step

An object module to be used as input can be passed from a previous
job step to a linkage editor job step in the same job, as in a
compile-link edit job. That is, the output from the compiler is direct
input to the linkage editor. In the following example, an object module
that was created in a previous job step (step A) is passed to the
linkage editor job step (step B):

Step A: //SYSGO DD DSNAME=&&OBJECT,DISP=(NEW,PASS), •••

Step B: //SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)

The data set name &&OBJECT, used in both job steps, identifies the
object module as the output of the language processor on the SYSGO DD
statement, and as the primary input to the linkage editor on the SYSLIN
DD statement.

~: The double ampersand (&&) in the data set name defines a
temporary data set. These data sets exist for the duration of the job
and are automatically deleted at the end of the job. If the data set is
to be preserved for longer than the duration of a single job, the double
ampersand is not used (DSNAME=OBJECT).

The method used in the preceding example can also be used to retrieve
object modules created in previous steps. If the same data set name is
used for the output of each language processor, one SYSLIN DD statement
can be used to retrieve all the object modules, as follows:

Step A: //SYSGO DD DSNAME=&&OBJMOD,DISP=(NEW,PASS), •••

Step B: //SYSPNCH DD DSNAME=&&OBJMOO,DISP=(MOD,PASS)

Step C: //SYSLIN DD OSNAME=&&OBJMOD, DISP=(OLD, DELETE)

The two object modules from Steps A and B are placed in the same
sequential data set, &&OBJMOD. The SYSLIN DO statement in step C causes
both object modules to be used as the primary input to the linkage
editor.

Input to the Linkage Editor 29

Another method can be used to accomplish this purpose: concatenation
of data sets. This method could be used if the object modules were
created in previous job steps with different member names, as follows:

Step A: //SYSGO DD

Step B: //SYSPNCH DD

Step C: //SYSLIN DD
// DD

DSNAME=&&OBJLIB(MODA),DISP=(NEW,PASS), •••

DSNAME=&&OBJLIB(MODB),DISP=(MOD,PASS>, •••

DSNAME=&&OBJLIB(MODA),DISP=(OLD,DELETE)
DSNAME=&&OBJLIB(MODB),DISP=(OLD,DELETE)

The object modules created in Steps A and B were placed in a partitioned
data set with different member names. The two members are concatenated
in Step C as primary input. Each member is considered to be a
sequential data set.

Created in a separate Job

If the only input to the linkage editor is an object module from a
previous job, the SYSLIN DD statement contains all the information
necessary to locate the object module, as follows:

//SYSLIN
//

DD DSNAME=OBJECT,DISP=(OLD,DELETE),UNIT=2311,
VOLUME=SER=LIB613

An object module created in a separate job may also be on cards, in
which case it is handled as described earlier.

CONTROL STATEMENTS

The primary input data set may also consist solely of control
statements. When the primary input is control statements, input modules
are specified on INCLUDE control statements (see "Included Data Sets").
The control statements may be either placed in the input stream or
stored in a permanent data set.

In the following example, the primary input consists of control
statements in the input stream:

//SYSLIN DD * r--,
ILinkage Editor Control Statements I L __ J

/*

30

In the next example, the primary input consists of control statements
stored in the member INCLUDES in the partitioned data set CTLSTMTS:

//SYSLIN DD DSNAME=CTLSTMTS(INCLUDES),DISP=(OLD,KEEP), •••

In either case, the control statements can be any of those described
in nLinkage Editor control Statement Summary,n as long as the rules
given there are followed.

OBJECT MODULES AND CONTROL STATEMENTS

The primary input to the linkage editor may contain both object
modules and control statements. The object modules and control
statements may be in either the same data set or different data sets.
If the modules and statements are in the same data set, this data set is
described on the SYSLIN DD statement as any data set is described.

If the modules and statements are in different data sets, the data
sets are concatenated. The control statements may be defined either in
the input stream or as a separate data set.

Control Statements in the Input Stream

control statements can be placed in the input stream and concatenated
to an object module data set, as follows:

//SYSLIN
//

DD
DD

DSNAME=&&OBJECT, •••

* r--,
ILinkage Editor Control statements I L ___ -------------J
/*

Another method of handling control statements in the input stream is
to use the DDNAME parameter, as follows:

//SYSLIN
//

//SYSIN

DD
DD

DD

DSNAME=&&OBJECT, •••
DDNAME=SYSIN

* r--, I Linkage Editor Control statements I l __ J

/*

Note: The linkage editor cataloged procedures use DDNAME=SYSIN for the
SYSLIN DD statement to allow the programmer to specify the primary input
data set required.

Input to the Linkage Editor 31

A separate data set that contains control statements may be
concatenated to a data set that contains an object module. The control
statements for a frequently used procedure (for example, a complex
overlay structure or a series of INCLUDE statements) can be stored
permanently. In the following example, the members of data set CTLSTMTS
contain linkage editor control statements. One of the members is
concatenated to data set &&OBJECT.

//SYSLIN
//

DD
DD

DSNAME=&&OBJECT,DISP=(OLD,DELETE), •••
DSNAME=CTLSTMTS(OVLY),DISP=(OLD,KEEP), •••

The control statements in the member named OVLY of the partitioned data
set CTLSTMTS are used to structure the object module.

AUTOMATIC CALL LIBRARY

The automatic library call mechanism is used to resolve external
references that were not resolved during primary input processing.
Unresolved external references found in modules from additional data
sources are also processed by this mechanism.

Note: The following discussion of automatic library call does not apply
to unresolved weak external references; they are left unresolved.

The automatic library call mechanism involves a search of the
directory of the automatic call library for an entry that matches the
unresolved external reference. When a match is found, the entire member
is processed as input to the linkage editor.

Automatic library call can resolve an external reference when the
following conditions exist; the external reference must be (1) a member
name or an alias of a module in the call library, and (2) defined as an
external name in the external symbol dictionary of the module with that
name. If the unresolved external reference is a member name or an alias
in the library, but is not an external name in that member, the member
is processed but the external reference remains unresolved unless
subsequently defined.

The automatic library call mechanism searches the call library
defined on the SYSLIB DD statement. The call library can contain either
(1) object modules and control statements or (2) load modules; it must
not contain both.

Modules from libraries other than the SYSLIB call library can be
searched by the automatic library call mechanism as directed by the
LIBRARY control statement. The library specified in the control
statement is searched for member names that match specific external
references that are unresolved at the end of input processing. If any
unresolved references are found in the modules located by automatic
library call, they are resolved by another search of the library. Any
external references not specified on a LIBRARY control statement are
resolved from the library defined on the SYSLIB DD statement.

In addition, two means exist to negate the automatic library call
mechanism. The LIBRARY statement can be used to negate the automatic
library call for selected external references unresolved after input
processing; the NCAL option on the EXEC statement can be used to negate
the automatic library call for al! external references unresolved after
input processing. Use of the LIBRARY control statement and the NCAL
option are discussed after the SYSLIB DD statement that follows.

32

SYSLIB DD STATEMENT

If the automatic library call mechanism is to be used, the call
library must be a partitioned data set described by a DD statement with
a ddnameof SYSLIB. The call library may be either a system call
library or a private call library; call libraries may be concatenated.

Most of the system processing programs have their own automatic call
library (Table 1). This library must be defined when an object module
produced by that processor is to be link edited.

The call library may contain input/output, data conversion, and/or
other special routines that are needed to complete the module. The
processor creates an external reference for these special routines and
the linkage editor resolves the references from the appropriate call
library.

In the following example, a FORTRAN object module created in Step A
is to be link edited in Step B, and the FORTRAN automatic call library
is used to resolve external.references:

Step A: //SYSOBJ DD

Step B: //SYSLIN DD
//SYSLIB DD

DSNAME=&&OBJMOD,DISP=(NEW,PASS), •••

DSNAME=&&OBJMOD, DISP= (OLD, DELETE)
DSNAME=SYS1. FORT LIB , DISP=SHR

The disposition of SHR on the SYSLIB DD statement means that other tasks
which may be executing concurrently with Step B may also use
SYS1.FORTLIB.

Table 1. System Automatic Call Libraries
r-----------------------------------T----------------------------------,
I Processing Program I Library Name I
~----------------------------------t----------------------------------~
I ALGOL I SYS1.ALGLIB I
I COBOL I SYS1.COBLIB I
I FORTRAN I SYS1.FORTLIB I
I PL/I I SYS1. PL1LIB I
I sort/Merge I SYS1. SORTLIB I l ___________________________________ ~ __________________________________ J

Private Call Libraries

The SYSLIB DO statement can also describe a private, user-written
library. In this case, the automatic library call mechanism searches
the private library for unresolved external references. In the
following example, unresolved external references are to be resolved
from a private library named PVTPROG:

//SYSLIB DO DSNAME=PVTPROG,OISP=SHR,UNIT=2311,VOLUME=SER=PVT002

Input to the Linkage Editor 33

System call libraries and private call libraries may be concatenated
either to themselves, and/or to each other. When libraries are
concatenated, they must all be either object module libraries or load
module libraries; they may not be mixed.

If object modules from different system processors are to be link
edited to form one load module, the call library for each must be
defined. This is accomplished by concatenating the additional call
libraries to the library defined on the SYSLIB DD statement. In the
following example, a FORTRAN object module and a COBOL object module are
to be link edited; the two system call libraries are concatenated as
follows:

//SYSLIB
//

DD
DD

DSNAME=SYS1.FORTLIB,DISP=SHR
DSNAME=SYS1.COBLIB,DISP=SHR

System libraries are cataloged; no unit or volume information is needed.

A system call library and a private call library can also be
concatenated in this way. For example, by adding the following
statement to the two in the preceding example, the private call library
PVTPROG, which is not cataloged, is concatenated to the two system call
libraries:

// DD DSNAME=PVTPROG, DISP=SHR, UNIT=2311,VOLUME=SER=PVT002

Any external references not resolved from the two system libraries
are resolved from the private library.

LIBRARY CONTROL STATEMENT

The LIBRARY control statement can be used to direct the automatic
library eall mechanism to a library other than that specified in the
SYSLIB DD statement. Only external references listed on the LIBRARY
statement are resolved in this way. All other unresolved external
references are resolved from the library in the SYSLIB DD statement.

The LIBRARY statement can also be used to specify external references
that are ~ot to be resolved by the automatic library call mechanism.
The LIBRARY statement specifies the duration of the nonresolution:
either during the current linkage editor job step, called restricted
no-call; or during this or any subsequent linkage editor job step,
called never-call.

Examples of each use of the LIBRARY statement follow; a description
of the format is given in "Linkage Editor Control Statement Summary."

34

Additional Call Libraries

If additional libraries are to be used to resolve specific
references, the LIBRARY statement contains the ddname of a DD statement
that describes the library. The LIBRARY statement also contains, in
parentheses, the external references to be resolved from the library;
i.e., the names of the members to be used from the library. If the
unresolved external reference is not a member name in the specified
library, the reference remains unresolved unless subsequently defined.

For example, two modules (DATE and TIME) from a system call library
have been rewritten. The new modules are to be tested with the calling
modules before they replace the old modules. Because the automatic
library call mechanism would otherwise search the system call library
(which is needed for other modules), a LIBRARY statement is used, as
follows:

IISYSLIB
IITESTLIB
IISYSLIN
II

LIBRARY
1*

DD DSNAME=SYS1.COBLIB,DISP=SHR
DD DSNAME=TEST,DISP=(OLD,KEEP), •••
DD DSNAME=ACCTROUT, •••
DD *

TESTLIB (DATE, TIME)

Two external references, DATE and TIME, are resolved from the library
described on the TESTLIB DD statement. All other unresolved external
references are resolved from the library described on the SYSLIB DD
statement.

Restricted No-Call Function

The programmer can use the LIBRARY statement to specify those
external references in the output module for which there is to be no
library search during the current linkage editor job step. This is done
by specifying the external reference(s) in parentheses without
specifying a ddname. However, the reference remains unresolved and the
linkage editor marks the module nonexecutable unless LET is specified on
the EXEC statement.

For example, a program contains references to two large modules that
are called from the automatic call library. One of the modules has been
tested and corrected, the other is to be tested in this job step.
Rather than execute the tested module again, the restricted no-call
function is used to prevent automatic library call from processing the
module as follows:

II
I/SYSLIB

I/SYSLIN
II

LIBRARY
1*

EXEC PGM=IEWL,PARM=LET
DD DSNAME=PVTPROG, DISP=SHR, UNIT=2311,VOLUME=SER=PVT002

DD DSNAME=&&PAYROL, •••
DD *

(OVERTIME)

As a result, the external reference to OVERTIME is not resolved by
automatic library call.

Input to the Linkage Editor 35

Never-Call Function

The never-call function specifies those external references that are
not to be resolved by automatic library call during this or any
subsequent linkage editor job step. This is done by specifying an
asterisk followed by the external reference(s) in parentheses. However,
the reference remains unresolved and the linkage editor marks the module
nonexecutable unless LET is specified on the EXEC statement.

For example, a certain part of a program is never executed, but it
contains an external reference to a large module (CITYTAX) which is no
longer used by this program. However, the module is in a call library
needed to resolve other references. Rather than take up storage for a
module that is never used, the never-call function is specified, as
follows:

//
//SYSLIB

//SYSLIN
//

LIBRARY

EXEC PGM=IEWL,PARM=LET
DD DSNAME=PVTPROG,DISP=SHR, UNIT=2311, VOLUME =SER= PVT 0 02

DD DSNAME=TAXROUT,DISP=OLD, •••
DD *
* (CITYTAX)

As a result, whenever program TAXROUT is executed, the external
reference to CITYTAX is not resolved by automatic library call.

NCAL OPTION

When the NCAL option is specified, no automatic library call occurs
to resolve external references that are unresolved after input
processing. The NCAL option is similar to the restricted no-call
function on the LIBRARY statement, except that the NCAL option negates
automatic library call for all unresolved external references and
restricted no-call negates automatic library call for selected
unresolved external references. However, with NCAL, the output module
is marked executable; with restricted no-call, the module is marked
nonexecutable unless LET is specified.

The NCAL option is a special processing parameter that is specified
on the EXEC statement as described in "NO Automatic Library Call
Option."

36

INCLUDED DATA SETS

The INCLUDE control statement requests the linkage editor to use
additional data sets as input. These can be sequential data sets
containing object modules and/or control statements, or members of
partitioned data sets containing object modules and/or control
statements, or load modules.

The INCLUDE statement specifies the ddname of a DD statement that
describes the data set to be used as additional input. If the DD
statement describes a partitioned data set, the INCLUDE statement also
contains the name of each member to be used. See "Linkage Editor
Control Statement Summary" for a detailed description of the format of
the INCLUDE statement.

When an INCLUDE control statement is encountered, the linkage editor
processes the module or modules indicated. Figure 10 shows the
processing of an INCLUDE statement. In the illustration, the primary
input data set is a sequential data set named OBJMOD which contains an
INCLUDE statement. After processing the included data set, the linkage
editor processes the next primary input item. The arrows indicate the
flow of processing.

Primary Input
Data Set 08JMOD

INCLUDE 08JlI8 (MODAl

Library 08JlI8
Member MODA

Figure 10. Processing of One INCLUDE Control Statement

If an included data set also contains an INCLUDE statement, this
specified module is also processed. However, any data following the
INCLUDE statement is not processed.

If the OBJMOD data set shown in Figure 10 is itself included, the
data following the INCLUDE statement for OBJLIB is not processed.
Figure 11 shows the flow of processing for this example.

Input to the Linkage Editor 37

Primary Input
Data Set SYSLIN

INCLUDE OBJMOD

Sequential
Data Set OBJMOD

INCLUDE OBJLlB (MODAl

Library OBJLlB
Member MODA

Figure 11. Processing of More than One INCLUDE Control Statement

Including Seguential Data Sets

sequential data sets containing object modules and/or control
statements can be specified by an INCLUDE control statement. In the
following example, an INCLUDE statement specifies the ddnames of two
sequential data sets to be used as additional input:

DD DSNAME=ACCTROUT,DISP=(OLD,KEEP), •••
DD DSNAME=INVENTRY,DISP=(OLD,KEEP), •••
DD DSNAME=QTREND, •••

//ACCOUNTS
//INVENTRY
//SYSLIN
//

INCLUDE
/*

DD *
ACCOUNTS,INVENTRY

Each ddname could also have been specified on a separate INCLUDE
statement; with either method, a DD statement must be specified for each
ddname.

Another method of doing the preceding example is given in "Including
Concatenated Data Sets."

Including Library Members

One or more members of a partitioned data set can be specified on an
INCLUDE control statement. The member name must be specified on the
INCLUDE statement; no member name should appear on the DD statement
itself.

38

In the following example, one member name is specified on the INCLUDE
statement:

//PAYROLL
//SYSLIN
//

INCLUDE

DD DSNAME=PAYROUTS,DISP=(OLD,KEEP), •••
DD DSNAME=&&CHECKS, DISP=(OLD, DELETE)
DD *
PAYROLL (FICA)

If more than one member of a partitioned data set is to be included,
the INCLUDE statement specifies all the members to be used from each
library. The member names are not repeated on the DD statement.

In the following example, an INCLUDE statement specifies two members
from each of two libraries to be used as additional input:

//PAYROLL
//ATTEND
//SYSLIN

INCLUDE
/*

DD DSNAME=PAYROUTS,DISP=(OLD,KEEP), •••
DD DSNAME=ATTROUTS,DISP=(OLD,KEEP), •••
DD *
PAYROLL(FICA,TAX),ATTEND(ABSENCE,OVERTIME)

Each library could have been specified on a separate INCLUDE statement;
with either method, a DD statement must be specified for each ddname.

Another method of doing this example is given in "Including
Concatenated Data Sets."

In~ludinq Concatenated Data sets

Several data sets can be designated as input with one INCLUDE
statement that specifies one ddname; additional data sets are then
concatenated to the data set described on the specified DD statement.
When data sets are concatenated, all of the records must have the same
characteristics (i.e., format, record length, block size, etc.).

§~uential Data Sets: In the following example, two sequential data
sets are concatenated and then specified as input with one INCLUDE
statement:

//CONCAT
//
//SYSLIN
//

INCLUDE
/*

DD DSNAME=ACCTROUT,DISP=(OLD,KEEP), •••
DD DSNAME=INVENTRY,DISP=(OLD,KEEP), •••
DD DSNAME=SALES,DISP=OLD, •••
DD *

CONCAT

When the INCLUDE statement is recognized, the contents of the sequential
data sets ACCTROUT and INVENTRY are processed.

Input to the Linkage Editor 39

Library Members: Members from more than one library can be designated
as input with one ddname on an INCLUDE statement. In this case, all the
members are listed on the INCLUDE statement; the partitioned data sets
are concatenated using the ddname from the INCLUDE statement:

//CONCAT
//
//SYSLIN
//

INCLUDE
/*

DO DSNAME=PAYROUTS,DISP=(OLD,KEEP), •••
DD DSNAME=ATTROUTS,DISP=(OLD,KEEP), •••
DD DSNAME=REPORT,DISP=OLD, •••
DD *
CONCAT(FICA,TAX, ABSENCE, OVERTIME)

When the INCLUDE statement is recognized, the two libraries PAYROUTs and
ATTROUTS are searched for the four members; the members are then
processed as input.

40

OUTPUT FROM THE LINKAGE EDITOR

The linkage editor produces two types of output: a load module and
diagnostic information. The principal output of the linkage editor is
the output load module. The linkage editor always places this load
module in a partitioned data set. In addition, the linkage editor
issues diagnostic information. Error and/or warning messages, module
disposition data, and optional diagnostic output are stored in the
diagnostic output data set.

OUTPUT LOAD MODULE

The linkage editor produces one or more load modules from the input
processed. When more than one load module is produced, the process is
called multiple load module processing.

Whether or not the linkage editor produces one or more load modules,
the following apply:

• The load module is stored in a partitioned data set called the
output module library.

• The load module must have an entry point; if the prograremer has not
assigned one, the linkage editor does.

• During processing, the linkage editor reserves and collects common
areas, as specified in the source language program.

• During processing, the linkage editor accumulates total length and
individual displacements for each pseudo register (external dummy
section).

• During processing, the linkage editor collects and records
identification data in the CSECT Identification (IDR) records~

OUTPUT MODULE LIBRARY

The linkage editor stores every load module it produces in the output
module library. This library is a partitioned data set that must be
described by a DD statement with the name SYSLMOD. The data set name of
the library is also specified on this DD statement. The data set can be
either temporary (defined with a double ampersand), or permanent
(defined without a double ampersand). If the data set name is either
SYS1.LINKLIB or SYS1.SVCLIB, it would be advisable to re-IPL the system
after linkage editor processing is complete. This ensures that the
corresponding Data Extent Block (DEB) is updated to reflect additional
extents if secondary allocation of direct access space was required.

Whether the data set is permanent or temporary, each module must be
assigned a unique name, called the ~~~£~E_~~~~' to distinguish one load
module from another. The output module can be.assigned ~!!~§~§ if the
programmer wants the module either identified by more than one name or
entered for execution at several different points. Each member name and
alias in a load module library must be unique. The library member name

Output from the Linkage Editor 41

and aliases for each load module appear as separate entries in the
library directory, along with the module attributes. (Some module
attributes can be assigned on the EXEC statement for each linkage editor
job step; see "Module Attributes" in "Job Control Language Summary.")

Member Name

The member name of the output load module must be unique in the
library. The member name must be specified either on the SYSLMOD DD
statement or in a NAME control statement. Either method can also be
used to replace an identically named member in the library. If the name
is omitted, the linkage editor assigns a temporary member name
(TEMPNAME) that may not be unique.

Assigned on SYSLMOD DD Statement: If the member name is assigned on the
SYSLMOD DD statement, the name is written in parentheses following the
data set name of the library. For example:

//SYSLMOD DD
//

DSNAME=MATHLIB(SQDEV),DISP=(NEW,KEEP),UNIT=2311,
SPACE=(TRK,(100,10,1»),VOLUME=SER=LIB002

The.member name SQDEV is assigned to the load module, which is placed in
the new library named MATHLIB.

Assigned on NAME Control statement: If the member name is not specified
on the SYSLMOD DD statement, it must be assigned in a NAME control
statement. For example:

//SYSLMOD
//SYSLIN
//

NAME
/*

DD
DD
DO

SQDEV

DSNAME=MATHLIB,DISP=(NEW,KEEP), •••
DSNAME=' 'OBJECT, DISP= (OLD, DELETE)

*

The member name SQDEV is assigned to the load module, which is placed in
the library named MATHLIB.

Assigned on Both: If both the SYSLMOD DD statement and the NAME control
statement specify a member name, the names should be identical. If the
names are different, the name on the NAME control statement is used as

Ithe member name. If a temporary data set name was used on the SYSLMOO
statement and the NAME statement specifies a different name, the member
cannot be located for execution. For example:

//LKED

//SYSLMOD
//SYSLIN
//

NAME
/*
//GO

EXEC

DD
DO
DD

READ

EXEC

PGM=IEWL

DSNAME="LOADST(GO),OISP=(NEW,PASS), •••
DSNAME="OBJECT,DISP=(OLD,DELETE)

*

PGM=*.LKED.SYSLMOD

The EXEC statement of the GO step specifies that the module to be
executed is described in the LKED step in the SYSLMOD statement. The
system tries to locate a member named GO; however, the output module was
assigned the name READ.

42

Replacing an Identically-Nam~g_~!Q!~fY_~~~Q~E: An output module' can
replace an identically named member in the library in either of two
ways. The disposition field of the SYSLMOD statement contains OLD, as
follows:

I/SYSLMOD DD DSNAME=MATHLIB(SQDEV),DISP=(OLD,KEEP), •••

Or, the NAME control statement specifies the replace function, as
follows:

NAME SQDEV(R)

In either case, the member named SQDEV is replaced with a new module of
the same name.

Alias Names

An output module can be assigned a maximum of 16 aliases, specified
with the ALIAS control statement. The aliases exist in addition to the
member name of the output module. When a module is referred to by an
alias, execution begins at the external name specified by the alias. If
the name specified by the ALIAS statement is not an external symbol
within the module, the main entry point is used.

For example, an output module is to be assigned two additional entry
points, CODEl and CODE2. In addition, due to a misunderstanding,
calling modules have been written and tested using both ROUT ONE and
ROUTl to refer to the output module. Rather than correct the calling
modules, an alternate library member name (alias) is also assigned.

/ISYSLMOD
II
IISYSLIN
II

1*

ALIAS
N~E

DD DSNAME=PVTLIB,DISP=OLD,UNIT=2314,
VOLUME=SER=LIBOOl

DD DSNAME=660BJECT,DISP=(OLD,DELETE)~
DD *
CODE1,CODE2,ROUTONE
ROUTl

The names CODE1, CODE2, and ROUTONE appear in the library directory
along with ROUT1, the member name. Because COnEl and CODE2 are defined
as external symbols within the outp~t module, when these names are used,
execution begins at these points. Control may be passed to the main
entry point by using either the member name ROUTl or the alias ROUTONE.

ENTRY POINT

Every load module must have a main entry point. The programmer may
specify the entry point in one of two ways:

• On a linkage editor ENTRY control statement.

• On an assembler language END statement, which is the last statement
in the source program. The assembler produces an object module and
an END statement for the module. The assembler-produced END
statement contains an entry point only if the source language END
statement contained one.

output from the Linkage Editor 43

From its input, the linkage editor selects the entry point for the
load module as follows:

1. From the first ENTRY control statement in the input.

2. If there is no ENTRY control statement in the input, from the first
assembler-produced END statement that specifies an entry point.

3. If no ENTRY control statement or no assembler-produced END
statement specifies an entry point, the first byte of the first
control section of the load module is used as the entry point.

In general, the entry point should be explicitly specified because it
is not always possible to predict which control section will be first in
the output module.

When a load module is reprocessed by the linkage editor, it has no
END statement. Therefore, if the first byte of the first control
section of the load module is not a suitable entry point, the entry
pOint must be specified in one of two ways:

• Through an ENTRY control statement.

• Through the assembler-produced END statement of another input
module, which is being processed for the first time. This object
module must be the first such module to be processed by the linkage
editor.

Entry points other than the main entry point may be specified with an
ALIAS control statement. The symbol specified on the ALIAS statement
must be defined as an external symbol in the load module. Any reference
to that symbol causes execution of the module to begin at that point
instead of the main entry point.

In the following example, assume that CDCHECK, CODE1, and CODE2 are
defined as external symbols in the output module:

//SYSLIN DD DSNAME=&&OBJECT, DISP=(OLD, DELETE)
// DD *

/*

ENTRY CDC HECK
ALIAS CODE1,CODE2,ROUTONE
NAME ROUTl

As a result of the preceding control statements, CDCHECK is the main
entry point; CODEl and CODE2 are additional entry points. Any reference
to ROUTONE or ROUTl causes execution to begin at CDCHECK; any reference
to CODEl and CODE2 causes execution to begin at these points.

RESERVING STORAGE IN THE OUTPUT LOAD MODULE

In FORTRAN, assembler language, and PL/I, the programmer can create
control sections that reserve main storage areas that contain no data or
instructions. These control sections are called "common" or "static
external" areas, and are produced in the object modules by the language
translators. These common areas are used, for example, as communication
regions for different parts of a program or to reserve main storage
areas for data supplied at execution time. These coromon areas are
either named or unnamed (blank).

44

Collection of Common Areas: During processing, the linkage editor
collects common areas. That is, if two or more blank common areas are
found in the input, the largest blank common area is used in the output
module; all references to a blank common area refer to the one retained.
If two or more named common areas have the same name, the largest of the
identically named common areas is used in the output module; all
references to the named common areas refer to the one area retained.

Identical!y Named CommQn Areas_~ng_QQn~~Q!_§~£~!Qn§: If a control
section (as is generated from a BLOCK DATA subprogram in FORTRAN, for
example) and a named common area have the same name, the length of the
control section must be greater than or equal to the length of the named
common area. If the control section is smaller in length than the named
common area, a diagnostic message is issued. The control section is
regarded as the largest of the common areas processed with that name.
All subsequent control sections and/or common areas with the same name
are ignored.

PROCESSING PSEUDO REGISTERS

In PL/I, programmers can use pseudo registers to define storage that
will not be reserved in the load module but can be allocated dynamically
during execution. The external dummy sections generated by Assembler F

I or Assembler H correspond to the pseudo registers of PL/I.

The linkage editor accumulates the total length of all pseudo
registers in the input and records the displacement of each. If two or
more pseudo registers have the same name, the one with the longest
length and the most restrictive alignment will be retained. All other
pseudo registers with the same name will be ignored; all references to
the identically named pseudo registers will refer to the one retained.

MULTIPLE LOAD MODULE PROCESSING

The linkage editor can produce more
job step. A NAME control statement in
delimiter for input to a load module.
follow the NAME statement in the input
formation of the next load module.

than one load module in a single
the input stream is used as a
If additional input modules
stream, they are used in the

Each load module that is formed has a unique name and is placed in
the same library as a separate member. When processing multiple load
modules in a single job step, the options and attributes specified in
the EXEC statement for that job step apply to all load modules created.
If the linkage editor terminates abnormally during processing of any of
the output modules, neither that module nor any of the modules yet to be
processed in the job step is processed or placed in the library. Load
modules processed before abnormal termination have already been placed
in the library.

The SYSLMOD DD statement should not specify a member name when a NAME
control statement is used to specify the name of the first load module.
However, if the SYSLMOD statement does specify a member name, the name
must be identical to that specified in either the first NAME statement
or an ALIAS statement for the first module. In either case, the NAME
statement is regarded as the last item to be processed for the preceding
load module.

Output from the Linkage Editor 45

In the following example, two load modules are produced in one
linkage editor job step:

IILKED
IISYSLMOD
II
IIMODTWO
IISYSLIN
II

ENTRY
N~E

INCLUDE
ENTRY
N~E

EXEC
DD

DD
DD
DD

PGM=IEWL,PARM='MAP,LIST'
DSNAME=PAYROLLCOVERTIME),DISP=OLD,UNIT=2314,
VOLUME=SER=LIB002
DSNAME=&&OBJECTCB),DISP=COLD,DELETE)
DSNAME=&&OBJECT(A),DISP=(OLD,DELETE)

* INIT
OVERTIME
MODTWO
HSKEEP
VACATION

The first load module is produced from the object module in the data
set defined on the SYSLIN DD statement. The main entry pOint is INIT
and the member name is OVERTIME.

The second load module is produced from the object module specified
by the INCLUDE statement. The main entry point is HSKEEP and the member
name is VACATION.

Both load modules are placed in the library PAYROLL, defined on the
SYSLMOD statement. Note that the member name specified on the SYSLMOD
statement is identical to the name given the first load module.

The parameters on the EXEC card specify that a module map and a
control statement listing is produced for each load module. The map and
listing are discussed in detail in the next section.

DIAGNOSTIC OUTPUT

Diagnostic information is stored in the diagnostic output data set,
which must be defined by a DD statement with the name SYSPRINT. This
output is a collection of messages generated by the linkage editor, as
well as any optional output requested by the programmer.

DIAGNOSTIC MESSAGES

The linkage editor generates two types of messages: module
disposition messages and error/warning messages.

Module Disposition Messages

Module disposition messages of several types are printed for each
load module produced. The first message indicates the options and
attributes specified for each module. Invalid options or attributes are
replaced by INVALID in the output. Messages are also generated to
inform the programmer that incompatible attributes have been specified.

Disposition messages also describe the handling of the load module.
These messages are preceded by several asterisks, and are:

46

• member name NOW ADDED TO DATA SET.

• member name NOW REPLACED IN DATA SET.

• member name DOES NOT EXIST BUT HAS BEEN ADDED TO THE DATA SET.

(The replacement function was specified, but
the member did not exist in the data set; the
module is added to the data set using the
member name given.)

• alias name IS AN ALIAS FOR THIS MEMBER.

• MODULE HAS BEEN MARKED NOT EXECUTABLE.

In addition, module disposition messages are used when the
re-enterable (RENT), reusable (REUS), and/or refreshable (REFR) linkage
editor options have been specified for the module. When one or more of
these module attributes has been indicated, a message informs the user
what attribute(s) have been assigned to the modu~e. This message
indicates whether the load module has been marked re-enterable or not
re-enterable, reusable or not reusable, refreshable or not refreshable,
depending on the option or options used. (See "Reusablity Attributes"
and "Refreshable Attribute" in the job control language summary section
for more information on these options.)

The message consists of several asterisks and MODULE HAS BEEN MARKED,
followed by the attribute(s) assigned as a result of the linkage editor
options specified. The programmer, of course, is responsible for
verifying that the module actually is re-enterable, reusable, and/or
refreshable. The following messages are examples of some possible
combinations:

• MODULE HAS BEEN MARKED REFRESHABLE.

• MODULE HAS BEEN MARKED NOT REFRESHABLE.

• MODULE HAS BEEN MARKED REUSABLE AND NOT REFRESHABLE.

• MODULE HAS BEEN MARKED REUSABLE AND REFRESHABLE.

When an error causes the linkage editor to mark a module not
executable, only the MODULE HAS BEEN MARKED NOT EXECUTABLE message
appears; no attribute messages are generated.

Output from the Linkage Editor 47

Error/Warninq Messages

certain conditions that are present when a module is being processed
can cause an error or warning message to be printed. These messages
contain a message code and message text. If an error is encountered
during processing, the message code for that error is printed with the
applicable symbol or record in error. After processing is completed,
the diagnostic message associated with that code is printed. The error
warning messages have the following format:

lEW Orom s

where:

IEWO
rom
s

message text

indicates a linkage editor message
is the message number
is the severity code, and may be one of the following values:

1 Indicates a condition that may cause an error during
execution of the output module. A module map or
cross-reference table is produced if specified by the
programmer. The output module is marked executable.

2 -- Indicates an error that could make execution of the
output module impossible. Processing continues. When
possible, a module map or cross-reference table is
produced if specified by the programmer. The output
module is marked not executable unless the LET option is
specified on the EXEC statement.

3 -- Indicates an error that will make execution of the output
module impossible. Processing continues. When possible,
a module map or cross-reference table is produced if
specified by the programmer. The output module is' marked
not executable.

4 -- Indicates an error condition from which no recovery is
possible. Processing terminates. The only output is
diagnostic messages.

Note: A special severity code of zero is generated for each
control statement printed as a result of the LIST option.
Severity zero does not indicate an error or warning condition.

The highest severity code encountered during processing is
multiplied by 4 to create a return code that is placed in
register 15 at the end of processing. This return code can be
tested to determine whether or not processing is to continue
(see "Job Control Language Summary").

message text contains combinations of the following:

48

• The message classification (either error or warning).

• Cause of error.

• Identification of the symbol, segment number (when in
overlay), or input item to which the message applies.

• Instructions to the programmer.

• Action taken by the linkage editor.

Optionally, error/warning messages can be sent to a separate output
data set, which is defined by specifying TERM in the FARM field of the
EXEC statement and including a SYSTERM DD statement. This separate
SYSTERM data set consists of only numbered error/warning messages. It
supplements the SYSPRINT output data set, which can also include module
disposition messages and optional diagnostic output. When SYSTERM is
used, the numbered error/warning messages appear in both data sets.

Appendix D contains a complete list of error/warning messages.

Sample Diagnostic~utput

Figure 12 and Figure 13 show the format of the diagnostic output for
the level E and level F linkage editor, respectively. No optional
output was requested other than the list of control statements.

The letters indicate the disposition and error/warning messages as
follows:

fi\ Is a module disposition message that lists the options and
~ attributes specified. For the level F linkage editor, additional

information is printed indicating the variable and default options
used.

fi\Is a list of control statements used (IEWOOOO) and the message
\!) codes (IEW0201 and IEW0461) for error/warning conditions

discovered during processing. For error/warning message codes,
the symbol in error, if necessary, is also listed (CCCCCCCC and
BASEDUMP).

Is a module disposition message (****) that indicates that the
output module (BBBBBBBB) has been added to the output module data
set.

fO\ Is the diagnostic message directory that contains the.text of the
\!) error codes listed in item ® .

Output from the Linkage Editor 49

~ r---, o

~ E-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED LET,NCAL,XREF,OVLY,LIST

{

IEWOOOO NAME BBBBBBBB

®- IEW0201
B -----. IEW0461 CCCCCCCC

IEW0461 BASEDUMP
~ ****BBBBBBBB NOW ADDED TO DATA SET

DIAGNOSTIC MESSAGE DIRECTORY

@--. IEW0201 WARNING - OVERLAY STRUCTURE CONTAINS ONLY ONE SEGMENT -- OVERLAY OPTION
CANCELED.

IEW0461 WARNING - SYMBOL PRINTED IS AN UNRESOLVED EXTERNAL REFERENCE, NCAL WAS
SPECIFIED.

___ J

Figure 12. Diagnostic Messages for the Level E Linkage Editor

r---,
0--' F44-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED LET,NCAL,XREF,OVLY,LIST

VARIABLE OPTIONS USED-SIZE=(153600,51200) DEFAULT OPTIONS USED
NAME BBBBBBBB

{

IEWOOOO
t8'----~.~ IEW0201
~ IEW0461 CCCCCCCC

IEW0461 BASEDUMP
~ ****BBBBBBBB NOW ADDED TO DATA SET

DIAGNOSTIC MESSAGE DIRECTORY

@-~ IEW0201 WARNING - OVERLAY STRUCTURE CONTAINS ONLY ONE SEGMENT -- OVERLAY OPTION
CANCELED.

IEW0461 WARNING - SYMBOL PRINTED IS AN UNRESOLVED EXTERNAL REFERENCE, NCAL WAS
SPECIFIED.

Figure 13. Diagnostic Messages for the Level F Linkage Editor

OPTIONAL OUTPUT

In addition to error/warning and disposition messages, the linkage
editor can produce diagnostic output as requested by the programmer.
This optional output includes a control statement listing, a module map,
and a cross-reference table.

control Statement Listing

If the LIST option is specified on the EXEC statement, a listing of
all linkage editor control statements is produced. For each control
statement, the listing contains a special message code, IEWOOOO,
followed by the control statement. Item B in Figures 12 and 13
contains an example of a control statement listing.

Module Map

If the MAP option is specified on the EXEC statement, a module map of
the output load module is produced. The module map shows all control
sections in the output module and all entry names in each control
section. Named cornmon areas are listed as control sections.

For each control section, the module map indicates its origin
(relative to zero) and length in bytes (in hexadecimal notation).
each entry name in each control section, the module map indicates
location at which the name is defined. These locations are also
relative to zero.

For
the

If the module is not in an overlay structure, the control sections
are arranged in ascending order according to their origins. An entry
name is listed with the control section in which it is defined.

If the module is an overlay structure, the control sections are
arranged by segment. The segments are listed as they appear in the
overlay structure, top to bottom, left to right, and region by region.
Within each segment, the control sections and their corresponding entry
names are listed in ascending order according to their assigned origins.
The number of the segment in which they appear is also listed.

In any module map, the following are identified by a dollar sign:

• Blank common area.

• Private code (unnamed control section).

• For overlay programs, the segment table and each entry table.

Each control section that is obtained from a call library during
automatic library call is identified by an asterisk after the control
section name.

At the end of the module map is the entry address, that is, the
relative address of the main entry point. The entry address is followed
by the total length of the module in bytes; in the case of an overlay
module, the length is that of the longest path. Pseudo registers, if
used, also appear at the end of the module map; the name, length, and
displacement of each pseudo register is given.

Output from the Linkage Editor 51

Figure 14 contains a module map with five control sections. There
are two named control sections (COBSUB and MAINMOD), one unnamed control
section (designated by $PRIVATE), and two control sections obtained from
a call library (ILBODSPO and ILBOSTPO). In addition, two entry names
are defined, SUBl in the unnamed control section and ILBOSTP1 in control
section ILBOSTPO.

Note: The IMBMDMAP program described in the os Service Aids publication
can also be used to obtain a module map.

Cross-Reference Table

If the XREF option is specified on the EXEC statement, a
cross-reference table is produced. The cross-reference table consists
of a module map and a list of cross-references for each control section.
Each address constant that refers to a symbol defined in another control
section is listed with its assigned location, the symbol referred to,
and the name of the control section in which the symbol is defined.

For overlay programs, this information is provided for each segment;
in addition, the number of the segment in which the symbol is defined is
provided.

If a symbol is unresolved after processing by the linkage editor, it
is identified by $UNRESOLVED in the list. However, if an unresolved
symbol is marked by the never-call function (as specified on a LIBRARY
control statement), it is identified by $NEVER-CALL. If an unresolved
symbol is a weak external reference, it is identified by $UNRESOLVED(W).

Figure 15 contains a cross-reference table for the same program whose
module map is shown in Figure 14. All of the information from the
module map is present, plus a list of cross-references for each control
section.

52

o
~
tlj
C
rt

HI
11

~
rt
0-
(I)

t'"'
1-"
::s
~
OJ

t.Q
(I)

I:Ij
Q..
1-"
rt
o
11

CONTROL SECTION

NAME ORIGIN LENGTH

COBSUB 00 33A
$PRIVA1E 340 EF

MAINMOD 430 166
ILBODSPO* 5S8 5E2
ILeOSTPO* eeo 35

ENTRY ADDRESS 430
TOTAL LENGTH BB 8

NOT EXIST

Figure 14. Module Map

CONTFlOl SECTION

NAME ORIGIN LENGTH

COBSUS 00 33A
$PRI'OTE 340 EF

MAINMOD 430 166
ILBOOSPO* 598 5E2
nBOSTPO* B80 35

LOCATION REfeRS TO SYMBOL

250 ILBOSTPO
258 nBOSTPl
418 coasus

ENTRY ADDRESS 430
TOTAL LENGTH BBS

NAME LOCATI ON N~ME LOCAT ION NJIME

SUBl 340

ILBOSTPI 896

CROSS REFERENCE TABLE

ENTRY

NAME LOCATION NAME LOCAT ION NAME

SUBl 340

ILBOSTPl 896

IN CONTROL SECTION LOCATION REFER S TO SYMBOL

IlBOSTPO 254 IL SODSPO
IlSOSTPO 45C SUBl
(casus

~ Figure 15. Cross-Reference Table

LOCAl ION NAME LOCATION

loeA TI ON NAME LOCATION

IN CONTROL SECTION

ILBODSPO

MODULE EDITING

The linkage editor performs editing functions either automatically or
as directed by control statements. These editing functions provide for
program modification on a control section basis. That is, they make it
possible to modify a control section within an object or load module,
without recompiling the entire source program.

The editing functions can modify either an entire control section or
external symbols within a control section. control sections can be
deleted or replaced; external symbols can be deleted or changed.
(External symbols are control section names, entry names, external
references, named common areas, or pseudo registers.)

Whatever function is used, it is requested in reference to an !~E~E
module. The resulting output load module reflects the request. That
is, no actual change, deletion, or replacement is made to an input
module. The requested alterations are used to control linkage editor
processing (Figure 16).

IISYSLMOD DO DSNAME=NEWLIB (MODA1A2), ...
IIMODATWO DO DSNAME=MODA2, .. .
IISYSLIN DO ~SNAME=MODA 1, .. .
II DO

ENTRY CSECT3
REPLACE CSECT2 (CSECTA)
INCLUDE MODATWO

Figure 16. Editing a Module

Editing Conventions

In requesting editing functions, certain conventions should be
followed to ensure that the specified modification is processed
correctly. These conventions concern the following items:

• Entry points for the new module.

• Placement of centrol statements.

• Identical old and new symbols.

54

Entry Points: Each time the linkage editor reprocesses a load module,
the entry point for the output module should be specified in one of two
ways:

• Through an ENTRY control statement.

• Through the assembler-produced END statement of an input object
module, if one is present. If the entry point specified in the
assembler-produced END statement is not defined in the object
module, the entry name must be defined as an external reference.

The entry point assigned must be defined as an external name within the
resulting load module.

Placement of control Statements: The control statement (CHANGE or
REPLACE) used to specify an editing function must precede either the
module to be modified, or the INCLUDE statement that specifies the
module. If an INCLUDE statement specifies several modules, the CHANGE
or REPLACE statement applies only to the first module included.

Identical Old and New S~ols: The same symbol should not appear as
both an old external symbol and a new external symbol in one linkage
editor run. If a control section is to be replaced by another control
section with the same name, the linkage editor handles this
automatically (see "Automatic Replacement").

CHANGING EXTERNAL SYMBOLS

The linkage editor can be directed to change an external symbol to a
new symbol while processing an input module. External references and
address constants within the module automatically refer to the new
symbol. External references from other modules to a changed external
symbol must be changed with separate control statements.

Both the old and the new symbols are specified on either a CHANGE
control statement or a REPLACE control statement. The use of the old
symbol within the module determines whether the new symbol becomes a
control section name, an entry name, or an external reference. The old
symbol appears first, followed by the new symbol in parentheses.

The CHANGE control statement changes a control section name, an entry
name, or an external reference. The REPLACE statement changes or
deletes an entry name; if the symbols on a REPLACE statement are control
section names, the entire control section is replaced or deleted (see
"Replacing Control Sections").

In the following example, assume that SUBONE is defined as an
external reference in the input load module. A CHANGE statement is used
to change the external reference to NEWMOD (Figure 17).

//SYSLMOD
//SYSLIN

ENTRY
CHANGE
INCLUDE
NAME

/*

DD DSNAME=PVTLIB,DISP=OLD,UNIT=2311,VOLUME=SER=PVT002
DD *
BEGIN
SUBONE(NEWMOD)
SYSLMOD(MAINROUT)
MAINROUT(R)

Module Editing 55

//SYSLMOD
//SYSLIN

ENTRY
CHANGE
INCLUDE
NAME

/*

DD DSNAME=PVTLlB, •••
DD *
MAINEP
SUBONE (NEWMOD),BEGIN (MAINEP)
SYSLMOD(MAINROUT)
MAINROUT(R)

Figure 17. Changing an External Reference and an Entry Point

In the load module MAINROUT, every reference to SUB ONE is changed to
NEWMOD. Note also that the INCLUDE statement specifies a ddname of
SYSLMOD. This allows a library to be used both as input and as the
output module library.

More than one change can be specified on the same control statement.
If, in the same example, the entry point is also to be changed, the two
changes can be specified at once (Figure 17).

//SYSLMOD
//SYSLIN

ENTRY
CHANGE
INCLUDE
NAME

/*

DD DSNAME=PVTLIB,DISP=OLD,UNIT=2311,VOLUME=SER=PVT002
00 *
MAINEP
SUBONE(NEWMOD),BEGIN(MAINEP)
SYSLMOO(MAINROUT)
MAINROUT(R)

The main entry point is now MAINEP instead of BEGIN. The ENTRY
control statement specifies the new entry point because this is the
entry point that is entered in the library directory entry for the load
module.

Both changes could also have been specified on the same REPLACE
control statement.

56

REPLACING CONTROL SECTIONS

An entire control section can be replaced with a new control section.
Control sections can be replaced either automatically or with a REPLACE
control statement. Automatic replacement acts upon all input modules;
the REPLACE statement acts only upon the module that follows it.

Note 1: Any CSECT Identification (IDR) records associated with a
particular control section are also replaced.

Note 2: (For assembler language programmers only.) When some but not
all control sections of a separately assembled module are to be
replaced, A-type address constants that refer to a deleted symbol will
be incorrectly resolved unless the entry name is at the same
displacement from the origin in both the old and the new control
section. If all control sections of a separately assembled module are
replaced, no restrictions apply.

AUTOMATIC REPLACEMENT

Control sections are automatically replaced if both the'old and the
new control section have the same name. The first of the identically
named control sections processed by the linkage editor is made a part of
the output module. All subsequent identically named control sections
are ignored; external references to identically named control sections
are resolved with respect to the first one processed. Therefore, to
cause automatic replacement, the new control section must have the same
name as the control sectiQn to be replaced, and must be processed before
the old control section.

Caution: Automatic replacement applies to duplicate control section
names only; if duplicate entry points exist in control sections with
different names, a REPLACE control statement must be used to specify the
entry point name.

Note on overlay programs: When identically named control sections
appear in modules being placed in an overlay structure, the second and
any subsequent control sections with that name are ignored. This occurs
whether the modules are in segments in the same path or in exclusive
segments. Resolution of external references may therefore cause invalid
exclusive references. Invalid exclusive references cause the linkage
editor to mark the output module not executable unless the XCAL option
is specified on the. EXEC statement.

Example 1

An object module deck contains two control sections, READ and WRITE;
member INOUT of library PVTLIB also contains a control section WRITE.

//SYSLMOD DD
//SYSLIN DD

DSNAME=PVTLIB,DISP=OLD,UNIT=2311,VOLUME=SER=PVT002

* r---,
I Object Deck for READ I
~---~
I Object Deck for WRITE I l ___ J

ENTRY READIN
INCLUDE SYSLMOD(INOUT)
NAME INOUT(R)

/*

Module Editing 57

The output load module contains the new READ control section, the new
WRITE control section (replacing the old WRITE control section in member
INOUT), and all remaining control sections from INOUT.

Example 2

A large load module named PAYROLL, originally written in COBOL,
contains many control sections. Two control sections, FICA and
STATETAX, were recompiled and passed to the linkage editor job step in
the &&OBJECT data set. Then, by including the load module PAYROLL, a
member of the partitioned data set LIB001, as well as the output of the
language translator, the modified control sections automatically replace
the identically named control sections (Figure 18).

//SYSLMOD
//
//SYSLIB
//OLDLOAD
//
//SYSLIN
//

INCLUDE
ENTRY

/*

DD DSNAME=LIB002(PAYROLL},DISP=OLD,UNIT=2314,
VOLUME=SER=LIB002

DD DSNAME=SYS1.COBLIB,DISP=SHR
DD DSNAME=LIB001,DISP=<OLD,DELETE),UNIT=2314,

VOLUME=SER=LIBOOl
DD DSNAME= & &OBJECT, DISP=<OLD, DELETE)
DD *
OLDLOAD(PAYROLL)
INITl

IISYSlMOD
IIOlDlOAD
IlsYSllN
II

INCLUDE
ENTRY

1*

DO DSNAME=lI8002 (PAYROLL), •••
DO DSNAME=lI8001, ••• gg ~SNAME=&&oBJECT, •••

OLDLOAD(PAYROLL)
INITl

Figure 18. Automatic Replacement of Control Sections

58

The output module contains the modified FICA and STATETAX control
sections and the rest of the control sections from the old PAYROLL
module. The main entry point is INIT1, and the output module is placed
in a library named LIB002. The COBOL automatic call library is used to
resolve any external references that may be unresolved after the SYSLIN
data sets are processed.

REPLACE STATEMENT

The REPLACE statement is used to replace control sections when the
old and the new control sections have different names. The name of the
old control section appears first, followed by the name of the new
control section in parentheses. The REPLACE statement must immediately
precede either the input module that contains the control section to be
replaced, or the INCLUDE statement that specifies the input module.

An external reference to the old control section from within the same
input module is resolved to the new control section. An external
reference to the old control section from any other module becomes an
unresolved external reference unless one of the following occurs:

• The external reference to the old control section is changed to the
new control section with a separate CHANGE control statement.

• The same entry name appears in the new control section or in some
other control section in the linkage editor input.

In the following example, the REPLACE statement is used to replace
one control section with another of a different name. Assume that the
old control section SEARCH is in library member TBLESRCH, and that the
new control section BINSRCH is in the data set &&OBJECT, which was
passed from a previous step (Figure 19).

//SYSLMOD
//
//SYSLIN
//

ENTRY
REPLACE
INCLUDE
NAME

DD DSNAME=SRCHRTN,DISP=OLD,UNIT=2311,
VOLUME=SER=SRCHLIB

DD DSNAME=&&OBJECT, DISP=(OLD, DELETE)
DD *
READ IN
SEARCHCBINSRCH)
SYSLMOD(TBLESRCH)
TBLESRCH(R)

Module Editing 59

IISYSLMOD
IISYSLIN
II

1*

ENTRY
REPLACE
INCLUDE
NAME

DD DSNAME=SRCHRTN, •.•
DD DSNAME=&&OBJ ECT, •••
DD *
READIN
SEARCH (BINSRCH)
SYSLMOD(TBLESRCH)
TBLESRCH(R)

'"
READIN ENTRY

CALL BINSRCH

BINSRCH

Figure 19. Replacing a Control Section with the REPLACE Control
Statement

./

V

/

The output module contains BINSRCH instead of SEARCH; any references
to SEARCH within the module refer to BINSRCH. Any external references
to SEARCH from other modules will not be resolved to BINSRCH.

DELETING A CONTROL SECTION OR ENTRY NAME

The REPLACE statement can be used to delete a control section or an
entry name. The REPLACE statement must immediately precede either the
module that contains the control section or entry name to be deleted or
the INCLUDE statement that specifies the module. Only one symbol
appears on the REPLACE statement; the appropriate deletion is made
depending on how the symbol is defined in the rr.odule.

If the symbol is a control section name, the entire control section
is deleted. The control section name is deleted from the external
symbol dictionary only if no address constants refer to the name from
within the same input module. If an address constant does refer to it,
the control section name is changed to an external reference.

The preceding is also true of an entry name to be deleted. Any
references to it from within the input module cause the entry name to be
changed to an external reference.

,These editor-supplied external references, unless resolved with other
input modules, cause the automatic library call mechanism to attempt to
resolve them. Also, the deletion of a control section or an entry name
may cause external references from other input modules to be unresolved.
Either condition can cause the output load module to be marked not
executable.

If a deleted control section contains an unresolved external
reference, the reference remains.

60

Note: When a control section is deleted, any CSECT Identification data
associated with that control section is also deleted.

In the following example, control section CODER is to be deleted
(Figure 20).

//SYSLMOD
//SYSLIN

ENTRY
REPLACE
INCLUDE
NAME

/*

DD DSNAME=PVTLIB,DISP=OLD,UNIT=2311,VOLUME=SER=PVT002
DD *
START1
CODER
SYSLMOD(CODEROUT)
CODEROUT(R)

The control section CODER is deleted. If no address constants refer
to CODER from other control sections in the module, the control section
name is also deleted. If address constants refer to CODER, the name is
retained as an external reference.

IISYSlMOD
IISYSlIN

ENTRY
REPLACE
INCLUDE
NAME

1*

DD DSNAME=PVTlIB I' ••
DD *
START!
CODER
SYSLMOD(CODEROUT)
CODEROUT(R)

Figure 20. Deleting a Control Section

Module Editing 61

Ordinarily, when a load module produced by the linkage editor is
executed, all of the control sections of the module remain in main
storage throughout execution. The length of the load module is,
therefore, the sum of the lengths of all of the control sections. When
main storage space is not at a premium, this is the most efficient way
to execute a program. However, if a program approaches the limits of
the main storage available, the programmer should consider using the
overlay facilities of the linkage editor.

In most cases, all that is needed to convert an ordinary program to
an overlay program is the addition of control statements to structure
the module. The programmer chooses the overlayable portions of the
program, and the system arranges to load the required portions when
needed during execution of the program.

When the linkage editor overlay facility is requested, the load
module is structured so that, at execution time, certain control
sections are loaded only when referenced. When a reference is made from
an executing control section. to another, the system determines whether
or not the code required is already in main storage. If it is not, the
code is loaded dynamically and may overlay an unneeded part of the
module already in storage.

The rest of this chapter is divided into three sections that describe
the design, specification, and special considerations for overlay
programs.

DESIGN OF AN OVERLAY PROGRAM

The way in which an overlay module is structured depends on the
relationships among the control sections within the module. Two control
sections that do not have to be in storage at the same time can overlay
each other. Such control sections are independent; that is, they do not
reference each other either directly or indirectly. Independent control
sections can be assigned the same load addresses and are loaded only
when referenced. For example, control sections that handle error
conditions or unusual data may be used infrequently, and need not be
occupying storage unless in use.

control sections are grouped into segments. A segment is the
smallest functional unit (one or more control sections) that can be
loaded as one logical entity during execution. The control sections
required all of the time are grouped into a special segment called the
root segment. This segment remains in storage throughout execution of
an overlay program.

When a particular segment is to be executed, any segments between it
and the root segment must also be in storage. This is a E~~h. A
reference from one segment to another segment lower in a path is a
downward reference. That is, the segment contains a reference to
another segment farther from the root segment. Conversely, a reference
from one segment to another segment higher in a path (closer to the root
segment) is an upward reference.

Overlay Programs 63

Therefore, a downward reference may cause overlay because the
necessary segment may not yet be in main storage. An upward reference
will not cause overlay because all segments between a segment and the
root segment must be present in storage.

sometimes several paths need the same control sections. This problem
may be solved by placing the control sections in another region. In an
overlay structure, a reqio~ is a contiguous area of main storage within
which segments can be loaded independently of paths in other regions.
An overlay program can be designed ih single or multiple regions.

SINGLE REGION OVERLAY PROGRAM

To design an overlay structure, the programmer should select those
control sections that will receive control at the beginning of
execution, plus those that should always remain in main storage; these
control sections form the root segment. The rest of the structure is
developed by determining the dependencies of the remaining control
sections and how they can use the same main storage locations at
different times during execution.

Besides control section dependency, other topics discussed in this
section are segment dependency, the length of the overlay program,
segment origin, communication between segments, and overlay processing.

Control Section Dependency

Control section dependency is determined by the requirements of a
control section for a given routine in another control section. A
control section is dependent upon any control section from which it
receives control, or which processes its data. For example, if control
section C receives control from control section B, then C is dependent
upon B. That is, both control sections must be in main storage before
execution can continue beyond a given point in the program.

A program contains seven control sections, CSA through CSG, and
exceeds the amount of storage available for its execution. Before the
program is rewritten, it is examined to see whether or not it could be
placed into an overlay structure. Figure 21 shows the groups of
dependent control sections in the program (the arrows indicate
dependencies).

64

c::J CSA

1

CSB CSB CSB

esc

Figure 21. Control Section Dependencies

Each dependent group is also a path. That is, if control section CSG
is to be executed, CSB and CSA must also be in storage. Because CSA and
CSB are in each path, they must be in the root segment. Control section
CSC is in two groups, and therefore is a common segment in two different
paths.

A better way to show the relationship between segments is with a tree
structure. A tree is the graphic representation that shows how segments
can use main storage at different times. It does not imply the order of
execution, although the root segment is the first to receive control.
Figure 22 shows the tree structure for the dependent groups shown in
Figure 21. The structure is contained in one region, and has five
segments.

Overlay Programs 65

T~
CSA

+ > Root Segment 1

CS8

I ~

esc > Segment 2 CS G Segment 5

C

..."

tD

1
+ C

1

> Segment 3 CSF > Segment 4

J SE

.1

Figure 22. Single-Region Overlay Tree Structure

segment Dependency

When a segment is in main storage, all segments in its path are also
in main storage. Each time a segment is loaded, all segments in its
path are loaded if they are not already in main storage. In Figure 22,
when segment 3 is in main storage, segments 1 and 2 are also in main
storage. However, if segment 2 is in storage, this does not imply that
segment 3 or 4 is in main storage since neither segment is in the path
of segment 2.

The position of the segments in an overlay tree structure does not
imply the sequence in which the segments are executed. A segment can be
loaded and overlaid as many times as required by the logic of the
program. However, a segment will not be overlaid by itself. If a
segment is modified during execution, that modification remains only
until the segment is overlaid.

66

Length of an Overlay Program

For purposes of illustration, assume that the control sections in the
sample program have the following lengths:

control section
CSA
CSB
CSC
CSD
CSE
CSF
CSG

~~gth-1!n_~y~~21
3,000
2,000
6,000
4,000
3,000
6,000
8,000

If the program were not in overlay, it would require 32,000 bytes of
main storage. In overlay, however, the program requ1res the amount of
storage needed for the longest path. In this structure, the longest
path is formed by segments 1, 2, and 3, since, when they are all in
storage, they require 18,000 bytes as shown in Figure 23.

eso
4,000
bytes

t
eSE

3,000
bytes

1

Segment 3
7,000 bytes

esc
6,000
bytes

Segment 2
6,000 bytes

T
eSA

3,000
bytes

+·:f.: .•. : ••. :.: ..•.

is'

eS8
2,000
bytes

Root Segment 1
5,000 bytes

eSF } Segment 4
6,000 6,000 bytes

I

Figure 23. Length of an Overlay Module

eSG
8,000
bytes

1
Segment 5
8,000 bytes

Note, however, that the length of the longest path is not the minimum
requirement for an overlay program; when a program is in overlay,
certain tables are used, and their storage requirements must also be
considered. The storage required by these tables is given in the
section "Special Considerations."

Overlay Programs 67

segment Origin

The linkage editor assigns the relocatable origin of the root segment
(the origin of the program) at O. The relative origin of each segment
is determined by 0 plus the length of all segments in the path. For
example, the origin of segments 3 and 4 is equal to 0 plus 6,000 (the
length of segment 2) plus 5,000 (the length of the root segment), or
11,000. The origins of all the segments are as follows:

Segment
1
2
3
4
5

Origin

° 5,000
11,000
11,000

5,000

The segment origin is also called the !2~g_E2!nt, because it is the
relative location at which the segment is loaded.

Figure 24 shows the segment origin for each segment and the way
storage is used by the sample program. In the illustration, the
vertical bars indicate segment origin; any two segments with the same
origin may use the same storage area. Figure 24 also shows that the
longest path is that of segments 1, 2, and 3.

7,000 bytes

o 6 7 10 11 12 13 14 15 16 17 18 19 20

--------------- Relative Storage Location (in 1,000 byte increments) -------------_

Figure 24. Segment Origin and Use of Storage

Segments that can be in main storage simultaneously are considered to
be inclusive. segments in the same region but not in the same path are
considered to be exclusive; they cannot be in main storage
simultaneously. Figure 25 shows the inclusive and exclusive segments in
the sample program.

68

Segments upon which two or more exclusive segments are dependent are
called common segments. A segment common to two other segments is part
of the path of each segment. In Figure 25 segment 2 is common to
segments 3 and 4, but not to segment 5.

I S]"

I
S'T'

I
Segment ..

.1

T
Root

ST"

Figure 25. Inclusive and Exclusive Segments

I

1"" Inclusive Segments
1,2, and 3
1,2, and"
1 and 5

Exclusive Segments
2 and 5
3 and ..
3 and 5
"and 5

An inclusive reference is a reference between inclusive segments;
that is, a reference from a segment in storage to an external symbol in
a segment that will not cause overlay of the calling segment. An
exclusive reference is a reference between exclusive segments; that is,
a reference from a segment in storage to an external symbol in a segment
that will cause overlay of the calling segment.

Figure 26 shows the difference between an inclusive reference and an
exclusive reference; the arrows indicate references between segments.

Inclusive References: Wherever possible, inclusive references should be
used instead of exclusive references. Inclusive references between
segments are always valid and do not require special options. When
inclusive references are used, there is also less chance for error in
s~ructuring the overlay program correctly.

Exclusive References: An exclusive reference is made when the external
reference in the requesting segment is to a symbol defined in a segment
not in the path of the requesting segment. Exclusive references are
either valid or invalid.

An exclusive reference is valid only if there is also a reference to
the requested control section-rn-a segment common to both the segment to
be loaded and the segment to be overlaid. The same symbol must be used
in both the common segment and the exclusive reference. In Figure 26, a
reference from segment B to segment A is valid, because there is an
inclusive reference from the common segment to segment A. (An entry
table in the common segment contains the address of segment Ai the
overlay does not destroy this table.)

In the same illustration, a reference from segment A to segment B is
inyalid because there is no reference from the common segment to segment
B. A reference from segment A to segment B can be made valid by
including, in the common segment, an external reference to the symbol
used in the exclusive reference to segment B.

Overlay Programs 69

Inclusive
Reference

Common Segment

Segment B

Segment A Exclusive
Reference

Figure 26. Inclusive and Exclusive References

Another way to eliminate exclusive references is to arrange the
program so that the references that will cause overlay are made in a
higher segment. For example, the programmer could eliminate the
exclusive reference shown in Figure 26 by writing a new module to be
placed in the common segment; the new module's only function would be to
reference segment B. He would then change the code in segment A to
refer to the new module instead of to segment B. Control then would
pass from segment A to the common segment, where the overlay of segment
A by segment B would be initiated.

If either valid or invalid exclusive references appear in the
program, the linkage editor considers them errors unless one of the
special options is used. These options are described later in this
section.

Notes:

• During the execution of a program written in a higher level language
such as FORTRAN, COBOL, or PLII, an exclusive call results in
abnormal termination of the program if the requested segment
attempts to return control directly to the invoking segment that has
been overlaid •

• If a program written in COBOL includes a segment that contains a
reference to a COBOL class test or TRANSFORM table, the segment
containing the table must be either (1) the root segment or (2) a
segment that is higher in the same path than the segment containing
the reference to the table.

Overlay Process

The overlay process is initiated during execution of a program only
if a control section in main storage references a control section not in
storage. The control program determines the segment that the referenced
control section is in and, if necessary, loads the segment. When a
segment is loaded, it overlays any segment in storage with the same
relative origin. Any segments in storage that are lower in the path of
the overlaid segment are also overlaid. An exclusive reference can also
cause segments higher in the path to be overlaid. If a control section
in storage references a control section in another segment already in
storage, no overlay occurs.

70

The portion of the control program that determines when overlay is to
occur is the overlay supe~i~, which uses special tables to determine
when overlay is necessary. These tables are generated by the linkage
editor, and are part of the output load module. The special tables are
the segment table and the entry table(s). Figure 27 shows the location
of the segment and entry tables in the sample program.

Figure 27. Location of Segment and Entry Tables in an Overlay Module

Because the tables are present in every overlay module, their size
must be considered when planning the use of main storage. The storage
requirements for the tables are given in "Special Considerations." A
more detailed discussion of the segment and entry tables follows.

~ent Table: Each overlay program contains one segment table
(SEGTAB)i this table is the first control section in the root segment.
The segment table contains information about the relationship of the
segments and regions in the program. During execution, the table also
indicates which segments are either in storage or being loaded, and
other control information.

Ent~ Tabl~: Each segment that is not the last segment in a path may
contain one entry table (ENTAB); this table, when present, is the last
control section in a segment.

When overlay will be required, an entry in the table is created for a
symbol to which control is to be passed, provided (1) the symbol is used
as an external reference in the requesting segment, and (2) the symbol
is defined in another segment either lower in the path of the requesting
segment, or in another region. An EN TAB entry is not created for any

Overlay Programs 71

symbol already present in an entry table closer to the root segment
(higher in the path), or for a symbol defined higher in the path. (A
reference to a symbol higher in the path does not have to go through the
control program because no overlay is required.)

If an external reference and the symbol to which it refers are in
segments not in the same path but in the same region. an exclusive
reference was made. If the exclusive reference is valid, an ENTAB entry
for the symbol is present in the common segment. Since the common
segment is higher in the path of the requesting segment, no ENTAB entry
is created in the requesting segment. When the reference is executed,
control passes through the ENTAB entry in the common segment. That is,
a branch to the location in the ENTAB causes the overlay supervisor to
be called to load the needed segment or segments.

If the exclusive reference is invalid, no ENTAB entry~is present in
the common segment. If the LET option is specified, an invalid
exclusive reference causes unpredictable results when the program is
executed. Since no ENTAB entry exists, control is passed directly to
the relative address specified in the reference, even though the
requested segment may not be in main storage.'

MULTIPLE REGION OVERLAY PROGRAM

If a control section is used by several segments, it is usually
desirable to place that control section in the root segment. However,
the root segment can get so large that the benefits of overlay are lost.
If some of the control sections in the root segment could overlay each
other (except for the requirement that all segments in a path must be in
storage at the same time), the job may be a candidate for multiple
region structure. Multiple region structures can also be used to
increase segment loading efficiency: processing can continue in one
region while the next path to be executed is being loaded into another
region.

With multiple regions, a segment has access to segments that are not
in its path. Within each region, the rules for single region overlay
programs apply, but the regions are independent of each other. A
maximum of four regions can be used.

Figure 28 shows the relationship between the control sections in the
sample program and two new control sections, CSH and CSI. The two new
control sections are each used by two other control sections in
different paths. Placing CSH and CSI in the root segment makes the
segment larger than necessary because CSH and CSI can overlay each
other. The two control sections should not be duplicated in two paths
because the linkage editor automatically deletes the second pair and an
invalid exclusive reference may then result.

If however, the two control sections are placed in another region,
they can be in storage when needed, regardless of the path being
executed in the first region. Figure 29 shows all of the control
sections in a two-region structure. Either path in region 2 can be in
main storage regardless of the path being executed in region 1; segments
in region 2 can cause segments in region 1 to be loaded without being
overlaid themselves.

12

T
CSA

+ CSB

I

I
esc

I
I

CSD CSF

t
CSE

1

Figure 28. Control sections Used by Several Paths

Figure 29. Overlay Tree for Multiple-Region Program

I
CSG

CSI

,. ~.,.~;.::., •. 1::· .. ,!).; .• 1 .• , ... ,., 1

Overlay Programs 13

The relative origin of a second region is determined by the length of
the longest path in the first region (18,000 bytes). Region 2,
therefore, begins at 0 plus 18,000 bytes. The relative origin of a
third region would be determined by the length of the longest path in
the first region plus the longest path in the second region.

The main storage required for the program is determined by adding the
lengths of the longest path in each region. In Figure 29, if CSH is
4,000 bytes and CSI is 3,000 bytes, the storage required is 22,000
bytes, plus the storage required by the special overlay tables.

SPECIFICATION OF AN OVERLAY PROGRAM

Once the programmer has designed an overlay structure, he must place
the module in that structure by indicating to the linkage editor the
relative positions of the segments and regions, and the control sections
in each segment. Positioning is accomplished as follows:

• Segments are positioned by OVERLAY statements. Since segments are
not named, the programmer identifies a segment by giving its origin
(or load point) a symbolic name and then uses that name in an
OVERLAY statement to specify a symbolic origin. Each OVERLAY
statement begins a new segment.

• Regions are also positioned by OVERLAY statements. The programmer
specifies the origin of the first segment of the region, followed by
the word REGION in parentheses.

• Control sections are positioned in the segment specified by the
OVERLAY statement with which they are associated in the input
sequence. However, the sequence of the control sections within a
segment is not necessarily the order in which the control sections
are specified.

The input sequence of control statements and control sections should
reflect the sequence of the segments in the overlay structure from top
to bottom, left to right, and region by region. This sequence is
illustrated in later examples.

In addition, several special options are used with overlay programs.
These options are specified on the EXEC statement for the linkage editor
job step, and are described at the end of this section.

Note: If a load module in overlay structure is to be reprocessed by the
linkage editor, the OVERLAY statements and special options (such as
OVLY) must be respecified. If the statements and options are not
provided, the output load module will not be in overlay structure.

SEGMENT ORIGIN

The symbolic origin of every segment, other than the root segment,
must be specified with an OVERLAY statement. The first time a symbolic
origin is specified, a load pOint is created at the end of the previous
segment. That load point is logically assigned a relative address at
the doubleword boundary that follows the last byte in the preceding
segment. Subsequent use of the same symbolic origin indicates that the
next segment is to have its origin at the same load point.

14

In the sample single-region program, the symbolic or1g1n names ONE
and TWO are assigned to the two necessary load pOints, as shown in
Figure 30. Segments 2 and 5 are at load point ONE, segments 3 and 4 are
at load point TWO.

The following sequence of OVERLAY statements will result in the
structure in Figure 30 (the control sections in each segment are
indicated by name):

Control section CSA
Control section CSB
OVERLAY ONE
Control section CSC
OVERLAY TWO
Control section CSD
Control section CSE
OVERLAY TWO
Control section CSF
OVERLAY ONE
Control section CSG

Note that the sequence of OVERLAY statements reflects the order of
segments in the structure from top to bottom and left to right.

T
Root Segment 1

Segment 2

Segment 3

1
Segment"

1
Figure 30. Symbolic Segment Origin in Single-Region Program

Overlay Programs 75

REGION ORIGIN

The symbolic origin of every region, other than the first, must be
specified with an OVERLAY statement. Once a new region is specified, a
segment origin from a previous region should not be specified.

In the sample multiple-region program, the symbolic origin THREE is
assigned to region 2, as shown in Figure 31. segments 6 and 7 are at
load point THREE.

REGION 1

I
Segment 2

TWO

T
.... T"' 1

ONE

Segment 3 Segment 4

........ 1············1··:·······:·:·····~············· ... : ········r················ REGION 2 .. : THREE

Segment 6 Segment 7

1 1

Figure 31. Symbolic Segment and Region Origin in Multiple-Region
Program

If the following is added to the sequence for the single-region
program, the multiple-region structure will be produced:

76

OVERLAY THREE(REGION)
Control section CSH
OVERLAY THREE
control section CSI

POSITIONING CONTROL SECTIONS

After each OVERLAY' statement, the control sections for that segment
must be specified. The control sections for a segment can be specified
in one of three ways:

• By placing the object decks for each segment after the appropriate
OVERLAY statement.

• By using INCLUDE control statements for the modules containing the
control sections for the segment.

• By using INSERT control statements to reposition a control section
fro~its position in the input stream to a particular segment.

Any control sections that precede the first OVERLAY statement are placed
in the root segment; they can be repositioned with an INSERT statement.
Control sections from the automatic call library are also placed in the
root segment. The INSERT statement can be used to place these control
sections in another specific segment. Common areas in an overlay
program are described in "special considerations."

An example of each of the three methods of positioning control
sections follows. Each example results in the structure for the
single-region sample program. An example is also given of repositioning
control sections from the automatic call library_

Using Object Decks

The primary input data set for this example contains an ENTRY
statement and seven object decks, separated by OVERLAY statements:

//LKED EXEC PGM=IEWL,PARM='OVLY'

//SYSLIN DD *
ENTRY BEGIN
Object deck for CSA
Object deck for CSB
OVERLAY ONE
Object deck for CSC
OVERLAY TWO
Object deck for CSD
Object deck for CSE
OVERLAY TWO
Object deck for CSF
OVERLAY ONE
Object deck fur CSG

/*

The EXEC statement illustrates that the OVLY parameter must be specified
for every overlay program to be processed by the linkage editor.

Overlay Programs 77

Using INCLUDE statements

The primary input data set for this example contains a series of
control statements. The INCLUDE statements in the primary input data
set direct the linkage editor to library members that contain the
control sections of the program.

//LKED EXEC PGM=IEWL,PARM='OVLY'

//MODLIB DD DSNAME=OBJLIB,DISP=(OLD,KEEP), •••
//SYSLIN DD *

/*

ENTRY BEGIN
INCLUDE MODLIB(CSA,CSB)
OVERLAY ONE
INCLUDE MODLIB(CSC)
OVERLAY TWO
INCLUDE MODLIB(CSD,CSE)
OVERLAY TWO
INCLUDE MODLIB(CSF)
OVERLAY ONE
INCLUDE MODLIB(CSG)

This example differs from the previous one in that the control sections
of the program are not part of the primary input data set, but are
represented in the primary input by the INCLUDE statements. When an
INCLUDE statement is processed, the appropriate control section is
retrieved from the library and processed.

Using INSERT Statements

When INSERT statements are used, the INSERT and OVERLAY statements
may either follow or precede all the input modules. However, the order
of the control sections in a segment is not necessarily the same as the
order of the INSERT statements for each segment. An example of each is
given, as well as an example of repositioning automatically called
control sections.

Followin9-AII Input: The control statements can follow all the input
modules, as shown in the following example:

18

//LKED EXEC PGM=IEWL,PARM='OVLY'

//SYSLIN DD DSNAME=OBJECT,DISP=(OLD,KEEP), •••
// DD *

/*

ENTRY BEGIN
INSERT CSA,CSB
OVERLAY ONE
INSERT CSC
OVERLAY TWO
INSERT CSD,CSE
OVERLAY TWO
INSERT CSF
OVERLAY ONE
INSERT CSG

The primary input data set contains the object modules for the control
sections, and the input stream is concatenated to it.

Preceding AII~ut: The control statements can also precede all input
modules, as shown in the following example:

//LKED EXEC
//MODULES DD

PGM=IEWL,PARM='OVLY'
DSNAME=OBJSEQ,DISP=(OLD,KEEP), •••

//SYSLIN DD *
ENTRY BEGIN
INSERT CSA,CSB
OVERLAY ONE
INSERT CSC
OVERLAY TWO
INSERT CSD,CSE
OVERLAY TWO
INSERT CSF
OVERLAY ONE
INSERT CSG
INCLUDE MODULES

/*

The primary input data set contains all of the control statements for
the overlay structure and an INCLUDE statement. The data set specified
by the INCLUDE statement contains all of the object modules for the
structure, and is a sequential data set.

Repositioning Automatically Called Control Sections: The INSERT
statement can also be used to move automatically called control sections
from the root segment to the desired segment. This is helpful when
control sections from the automatic call library are used in only .one
segment. By moving such control sections, the root segment will contain
only those control sections used by more than one segment.

When a program is written in a higher level language, special control
sections are called from the automatic call library. Assume that the
sample program is written in COBOL and that two control sections
(ILBOVTRO and ILBOSCHO) are called automatically from SYS1.COBLIB.
ordinarily, these control sections are placed in the root segment.
However, INSERT statements are used in the following example to place
these control sections in segments other than the root segment.

Overlay Programs 79

//LKED
//MODLIB
//SYSLIB

EXEC
DD
DD

PGM=IEWL,PARM='OVLY'
DSNAME=OBJLIB,DISP=(OLD,KEEP), •••
DSNAME=SYS1.COBLIB,DISP=SHR

//SYSLIN DD *
ENTRY BEGIN

/*

INCLUDE MODLIB(CSA,CSB)
OVERLAY ONE
INCLUDE MODLIE(CSC)
OVERLAY TWO
INCLUDE MODLIE(CSD,CSE)
INSERT ILBOVTRO
OVERLAY TWO
INCLUDE MODLIB(CSF)
INSERT ILBOSCHO
OVERLAY ONE
INCLUDE MODLIB(CSG)

As a result, segments 3 and 4 will also contain ILBOVTRO and ILBOSCHO,
respectively.

This example also combines two of the ways of specifying the control
sections for a segment.

SPECIAL OPTIONS

The linkage editor provides three special job step options for the
overlay programmer. These options are specified on the EXEC statement
for the linkage editor job step. They must be specified each time a

I load module in overlay structure is reprocessed by the linkage editor.
The three options are OVLY, LET, and XCAL.

OVLY Option

The OVLY option must be specified for every overlay program. If the
option is omitted, all the OVERLAY and INSERT statements are considered
invalid. The output module is marked not executable unless the LET
option is specified. The output module is not in an overlay structure.

LET Option

With the LET option, the output module is marked executable even
though certain error conditions were found during linkage editor
processing. When LET is specified, any exclusive reference (valid or
invalid) is accepted. At execution time, a valid exclusive reference is
executed correctly; an invalid exclusive reference usually causes
unpredictable results.

Also with the LET option, unresolved external references do not
prevent the module from being marked executable. This could be helpful
when part of a large program is ready for testing; the segments to be
tested may contain references to segments not yet coded. If LET is

80

specified, the program can be executed to test those parts that are
finished (as long as the references to the absent segments are not
executed). If the LET option is not specified, these unresolved
references will cause the module to be marked not executable.

XCAL option

with the XCAL option, a valid exclusive call is not considered an
error, and the load module is marked executable. However, other errors
could cause the module to be marked not executable, unless the LET
option is specified; in this case, the XCAL option is not required.

SPECIAL CONSIDERATIONS

This section discusses several special considerations that affect
overlay programs. These considerations include the handling of common
areas, special storage requirements, and overlay communication.

COMMON AREAS

When cornmon areas (blank or named) are encountered in an overlay
program, the common areas are collected as described previously (i.e.,
the largest blank or identically named common area is used). The final
location of the common area in the output module depends on whether
INSERT statements were used to structure the program.

If INSERT statements are used to structure the overlay pr~gram, a
named cornmon area should either be part of the input stream ~n the
segment to which it belongs, or should be placed there with an INSERT
statement.

Because INSERT statements cannot be used for blank common areas, a
blank cornmon area should always be part of the input stream in the
segment to which it belongs.

If INSERT statements are not used, and the control sections for each
segment are placed or included between OVERLAY statements, the linkage
editor "promotes" the common area automatically. That is, the common
area is placed in the cornmon segment of the paths that contain
references to it so that the common area is in main storage when needed.
The position of the promoted area in relation to other control sections
within the common segment is unpredictable.

If a cornmon area is encountered in a module from the automatic call
library, automatic promotion places the common area in the root segment.
In the case of a named common area, this may be overridden by use of the
INSERT statement.

Assume that the sample program is written in FORTRAN and that common
areas are present as shown in Figure 32. Further assume that the
overlay program is structured with INCLUDE statements between the
OVERLAY statements so that automatic promotion occurs.

Overlay Programs 81

Figure 32. Common Areas Before Processing

Segments 2 and 5 contain blank common areas, segments 3 and 4 contain
named common area A, and segments 4 and 5 contain named common area B.
During linkage editor processing, the blank corrmon areas are collected
and the largest area is promoted to the root segment (the first common
segment in the two paths); the common areas named A are collected and
the largest area is promoted to segment 2; the common areas named Bare
collected and promoted to the root segment. Figure 33 shows the
location of the common areas after processing by the linkage editor.

82

Figure 33. Common Areas After Processing

STORAGE REQUIREMENTS

The storage requirements for an overlay program include the items
placed in the module by the linkage editor and the overlay supervisor
necessary for execution.

Items in the Load Module: The items that the linkage editor places in
an-overlay load-module-are the segment table, entry tables, and other
control information. Their size must be included in the minimum
requirements for an overlay program, along with the storage required by
the longest path and any control sections from the automatic call
library.

Every overlay program has one segment table in the root segment. The
storage requirements are:

SEGTAB = 4n + 24

where:

n = the number of segments in the program

Overlay Programs 83

Some segments will have an entry table. The requirements of the
entry tables in the segments in the longest path must be added to the
storage requirements for the program. The requirements for an entry
table are:

ENTAB = 12(x + 1)

where:

x the number of entries in the table

Finally, a NOTE list is required to execute an overlay program. The
storage requirements are:

NOTELST = 4n + 8

where:

n = the number of segments in the program

Overlay Supervisor: To the minimum requirements of the load module
itself must be added the requirements of the overlay supervisor. This
system routine is not placed in an overlay module, but, during execution
of the module, the supervisor may be called to initiate an overlay. If
called, the storage allocated for the program must be large enough for
the supervisor also.

Three overlay supervisor modules are furnished with the system: the
basic, advanced, and asychronous modules. The basic module does not
test whether a request for overlay is valid; the other two do. Neither
the basic nor advanced modules permit overlay through the SEGLD macro
instruction (see "Overlay Communication"); the asynchronous module does.
When the SEGLD macro instruction is used with the basic and advanced
modules, it is ignored. The storage requirements for the overlay
supervisor modules are:

Module
Basic (used with MFT)
Advanced (used with MFT)
Asynchronous (used with MVT)

Storage
Requirements

(in bytes)
436
512
992

OVERLAY COMMUNICATION

Several ways of communicating between segments of an overlay program
are discussed in this section. A higher level or assembler language
program may use a CALL statement or CALL macro instruction,
respectively, to cause control to be passed to a symbol defined in
another segment. The CALL may cause the segment to be loaded if it is
not already present in storage. An assembler language program may also
use three additional ways to communicate between segments:

84

• By a branch instruction, which causes a segment to be loaded and
control to be passed to a symbol defined in that segment.

• By a segment load (SEGLD) macro instruction (MVT only>, which
requests loading of a segment. Processing continues in the
requesting segment while the requested segment is being loaded •

• By a segment load and wait (SEGWT) macro instruction, which requests
loading of a segment. Processing continues in the requesting
segment only after the requested segment is loaded.

Any of the four methods may be used to make inclusive references.
Only the CALL and branch may be used to make exclusive references.
Neither the SEGLD nor SEGWT macro instruction should be used to make
exclusive references; since both imply that processing is to continue in
the requesting segment, an exclusive reference leads to erroneous
results when the program is executed.

CALL Statement or CALL Macro Instruction

A CALL statement or CALL macro instruction refers to an external name
in the segment to which control is to be passed. The external name must
be defined as an external reference in the requesting segment. In
assembler language, the name must be defined as a four-byte V-type
address constant; the high-order byte is reserved for use by the control
program, and must not be altered during execution of the program.

When a CALL is used, the requested segment and any segments in its
path are loaded if they are not part of the path already in main
storage. After the segment is loaded, control is passed to the
requested segment at the location specified by the external name.

A CALL between inclusive segments is always valid. A return can be
made to the requesting segment by another source language statement,
such as RETURN. A CALL between exclusive segments is valid if the
conditions for a valid exclusive reference are met; a return from the
requested segment can be made only by another exclusive reference,
because the requesting segment has been overlaid.

Branch Instruction

Any of the branching conventions shown in Table 2 can be used to
request loading and branching to a segment. As a result, the requested
segment and any segments in its path are loaded if they are not part of
the path already in main storage. Control is then passed to the
requested segment at the location specified by the address constant
placed in general register 15.

The address constant must be a 4-byte V-type add~~ss constant. The
high-order byte is reserved for use by the control program, and must not
be altered during execution of the program.

Overlay Programs 85

Table 2. Branch Sequences for Overlay Programs
r----------T----------T--------------------T---------------------------, I Example I Name1 I Operation I Operand2 3 I
~---------f----------t--------------------f---------------------------~
I 1 I I L I R15,=VCname) I
I I I BALR I Rn,R15 I
~----------+----------f--------------------t---------------------------~
I 2 I I L I R15,ADCON I
I I I BALR I Rn,R15 I
I I I I I
I I I I I
I I I I I
I I ADCON I DC I V(name) I
~----------f----------t--------------------t---------------------------~
I 3 I I L I R15, =V(name) I
I I I BAL I Rn,O(O,R15)4 I
~----------+----------t--------------------t---------------------------~ I 4 I I L I R15, =V(name) ,
I I I BAL I Rn, 0 (R15) 5 I
~----------+----------t--------------------f---------------------------~ I 56 I I L I R15, =VCname) I
I I I BCR I 15,R15 I
~----------+----------t--------------------t---------------------------~
I 6 6 I I L I R15, =VCname) I
I I I BC I 15,OCO,R15)4 I
~----------+----------t--------------------f---------------------------~
I 1 6 I I L I R15, =V(name) I
I I I BC I 15,O(R15)5 I
~----------~----------~--------------------~---------------------------~
11 When the name field is blank, specification of a name is optional. I
12R15 is the register into which is loaded a 4-byte address constant I
I that is an entry name or a control section name in the requested t
I segment. The address constant must be loaded into the standard entry I
I pOint register, register 15. I
13 Rn is any other register and is used to hold the return address. I
I This register is usually register 14. I
14This may also be written so that the index register is loaded with I
I the address constant; the other fields must be zero. I
15In this format, the base register must be loaded with the address I
I constant; the displacement must be zero. I
16This example is an unconditional branch; other conditions are also I
I allowed. I l ______________________________________ ~ _______________________________ J

A branch between inclusive segments is always valid; a return may be
made by means of the address stored in Rn. A branch between exclusive
segments is valid if the conditions for a valid exclusive reference are
met; a return can be made only by another exclusive reference.

Segment Load (SEGLD) Macro Instruction

The SEGLD macro instruction is used to provide overlap between
segment loading and processing within the requesting segment. As a
result of using any of the examples in Table 3, the loading of the
requested segment and any segments in its path is initiated when they
are not part of the path already in main storage. Processing then
resumes at the next sequential instruction in the requesting segment
while the segment or segments are being loaded. control may be passed
to the requested segment with either a CALL or a branch, as shown in
examples 1 and 2, respectively. A SEGWT instruction can be used to

86

ensure that the data in the control section specified by the external
name is in main storage before processing begins, as shown in Example 3.

The external names specified in the SEGLD macro instruction must be
defined with a 4-byte V-type address constant. The high-order byte is
reserved for use by the control program and must not be altered during
execution of the program.

Note: Some configurations of the control program do not have the
capability of processing the SEGLD macro instruction. When used, the
macro instruction is treated as a NOP (no operation) and the segment is
loaded when a SEGWT macro instruction or a branch is executed. If the
rules of overlay are followed, correct execution occurs.

Table 3. Use of the SEGLD Macro Instruction
r----------T----------T--------------------T---------------------------,
I Example I Name1 I Operation I Operand2 3 I
~----------+----------+--------------------+---------------------------1
I 1 I I SEGLD I external name I
I I I I I
I I I CALL I external name I
~----------+----------f--------------------+---------------------------~
I 2 I I SEGLD I external name I
I I I I I
I I I branch I I
~----------f----------f--------------------+---------------------------1
I 3 I I SEGLD I external name I
I I I I I
I I I SEGWT I external name I
I I I L I Rn,=A(name) I
~----------~----------~--------------------~---------------------------1
11 When the name field is blank, specification of a name is optional. I
12 External name is an entry name or a control section name in the I
I requested segment. I
13 Rn is any other register and is used to hold the return address. I
I This register is usually register 14. I L __ J

Segment Wait (SEGWT) Macro Instruction

The SEGWT macro instruction is used to stop processing in the
requesting segment until the requested segment is in main storage.

As a result of using any of the examples in Table 4, no further
processing takes place until the requested segment and all segments in
its path are loaded when not already in main storage. Processing
resumes at the next sequential instruction in the requesting segment
after the requested segment has been loaded.

If the SEGWT and SEGLD macro instructions are used together, overlap
occurs between processing and segment loading; use of the SEGWT macro
instruction serves as a check to see that the necessary information is
in storage when it is finally needed (see Example 1 in Table 4). In
Example 2 in Table 4, no overlap is provided; the SEGWT macro
instruction initiates loading, and processing is stopped in the
requesting segment until the requested segment is in main storage.

Overlay Programs 87

The external name specified in the SEGWT macro instruction must be
defined with a 4-byte v-type address constant. The high-order byte is
reserved for use by the control program, and must not be altered during
execution of the program.

If the contents of a main storage location in the requested segment
are to be processed, the entry name of the location must be referred to
by an A-type address constant.

Table 4. Use of the SEGWT Macro Instruction
r----------T----------T--------------------T---------------------------,
I Example I Name1 I Operation I Operand2 3 I
~----------+----------+--------------------+---------------------------~
I 1 I I SEGLD I external name I
I I I I I
I I I SEGWT I external name I
I I I L I Rn,ADCON I
I I I I I
I I I branch I I
I I ADCON I DC I A(name) I
~----------+----------+--------------------+---------------------------~
I 2 I I SEGWT I external name I
I I I L I Rn,=A(name) I
~----------~----------~--------------------~---------------------------~
11 When the name field is blank, specification of a name is optional. I
12 External name is an entry name or a control section name in the I
I requested segment. I
13 Rn is any other register and is used to hold the return address. I
I This register is usually register 14. I L __ J

88

JOB CONTROL LANGUAGE SUMMARY

This chapter summarizes those aspects of the job control language
that pertain directly to the use of the linkage editor. The major
topics covered are the EXEC statement, DD statements, and cataloged
procedures for the linkage editor. The reader should be familiar with
the job control language as described in the publication !~~_§y~tem/360
QQgrati~System:~ob_Control_LaQg~~ge Reference.

The EXEC statement is the first statement of every job step. For the
linkage editor job step, the following topics are pertinent:

• The program name of the linkage editor.

• Linkage editor options passed to the job step.

• Region requirements for the linkage editor.

For an execution job step following the linkage editor job step, the
linkage editor return code is important.

EXEC STATEMENT -- PROGRAM NAME

The EXEC statement contains the symbolic name of the load module to
be invoked for execution. The linkage editor can be invoked with one of
the following symbolic program names:

• IEWLE150 for the 15K design level E linkage editor.

• IEWLE180 for the 18K design level E linkage editor.

• IEWLF440 for the 44K design level F linkage editor.

• IEWLF880 for the 88K design level F linkage editor.

• IEWLF128 for the 128K design level F linkage editor.

If the alias name IEWL or LINKEDIT is specified, the largest design
level of the linkage editor available in the system is invoked.

For example, the following EXEC statement causes the 44K level F
linkage editor to be invoked:

//LKED EXEC PGM=IEWLF440, •••

If PGM=IEWL were specified, the 44K linkage editor would be executed
only if it were the largest linkage editor available.

Appendix C contains a description of the five linkage editor design
levels.

Job Control Language Summary 89

EXEC STATEMENT -- JOB STEP OPTIONS

The EXEC statement also contains a list of options or parameters to
be passed to the linkage editor. These options are of four types:

• Module attributes, which describe the characteristics of the output
load module.

• Special processing options, which affect linkage editor processing.

• Space allocation options, which affect the amount of storage used by
the linkage editor for processing and output module library buffers.

• output options, which specify the kind of output the linkage editor
is to produce.

The rest of this section describes the options in each category. All of
the options for a particular linkage editor execution are listed in the
PARM parameter on the EXEC statement. They can be listed in any
sequence, as long as the rules for coding parameters are followed.

MODULE ATTRIBUTES

The module attributes describe the characteristics of the output
module, or modules. (If more than one load module is produced by the
same linkage editor job step, all output modules will have the
attributes assigned on the EXEC statement.) The attributes for each
load module are stored in the directory of the output module library
along with the member name. (The format of the directory entry of a
partitioned data set is given in the publication !~~_~2tem/360
~ratinq System: System Control Blocks.)

Module attributes specify whether or not the module:

• Can be reprocessed by the level E linkage editor.

• Is to be processed in hierarchy format.

• Can ever be reprocessed by the linkage editor.

• Can be brought into main storage only by the LOAD macro instruction.

• Is to be in overlay format.

• Can be reused.

• Can be placed in the link pack area; i.e., is re-enterable.

• Can be replaced during execution by recovery management; i.e., is
refreshable.

• Is to be processed in scatter format.

• Is to be tested by TESTRAN (assembler language only).

After the descriptions of the module attributes, the default and
incompatible attributes are discussed.

90

A module with the downward compatible attribute can be reprocessed by
either the level E or level F linkage editor. The downward compatible
attribute must be,specified when load modules produced by the level F
linkage editor are to be processed again by the level E linkage editor.
When this attribute is specified, a maximum record size of 1024 bytes is
used for the output module library. If the level E linkage editor is
requested to process a load module that does not have this attribute,
the request is treated as an error.

To assign the downward compatible attribute, code DC in the PARM
field as follows:

//LKED EXEC PGM=IEWL,PARM=·DC •••• •

The level E linkage editor automatically assigns the downward compatible
attribute to all load modules it produces.

Hierarchy Format Attribute

Control sections within a module with the hierarchy format attribute
are suitable for either block or scatter loading into the hierarchies
specified in HIARCHY control statements. Specification of hierarchy
format, when main storage hierarchy support is included in the system,
allows the programmer to make use of both processor storage (hierarchy
0) and IBM 2361 Core storage (hierarchy 1). When main storage hierarchy
support is not included in the system, programs with the hierarchy
format attribute are block or scatter loaded into processor storage (see
"Scatter Format").

When storage hierarchies are used, all control sections assigned to a
hierarchy are normally block loaded. If the allocated region within the
hierarchy is not large enough for block loading of the cont.rol sections,
and the scatter loading feature is available, the control sections may
be scatter loaded into the allocated area within the hierarchy.

The hierarchy format attribute overrides the scatter format
attribute; the overlay attribute overrides the hierarchy format
attribute and must be omitted if hierarchies are to be assigned.

To assign the hierarchy format attribute, code HIAR in the PARM
field, as follows:

//LKED EXEC PGM=IEWL,PARM=·HIAR, ••• •

See the description of the HIARCHY control statement for information
on assigning control sections to a specific hierarchy.

Note: Because control sections may be scatter loaded when HIAR is
specified, the programmer should ensure that the load module does not
contain zero-length control sections, private code sections, or common
areas. The presence of such sections in a module that is to be scatter
loaded can, under certain circumstances, cause Program Fetch to
terminate abnormally when the module is loaded into main storage for
execution.

Job Control Language Summary 91

Not Editable Attribute

A module with the not editable attribute has no external symbol
dictionary, and cannot ever be reprocessed by the linkage editor.
Because the external symbol dictionary is not stored with the module,
the module requires less storage space in the output module library. If
a module map or a cross-reference table is requested, the not editable
attribute is negated.

To assign the not editable attribute, code NE in the PARM field, as
follows:

//LKED EXEC PGM=IEWL,PARM='NE, ••• '

Note: The not editable attribute is intended primarily for use by the
control program.

On1Y-Loadable Attribute

A module with the only loadable attribute can be brought into main
storage only with a LOAD macro instruction. Some subsets of the control
program use a smaller control table when the load module is invoked with
a LOAD. This reduces the overall main storage requirements of the
module.

A module with the only loadable attribute must be entered by means of
a branch instruction or a CALL macro instruction. If an attempt is made
to enter the module with a LINK, XCTL, or ATTACH macro instruction, the
program making the attempt is terminated abnormally by the control
program.

To assign the only loadable attribute, code OL in the PARM field as
follows:

//LKED EXEC PGM=IEWL,PARM=·OL, ••• •

Note: The only loadable attribute is intended primarily for use by the
control program. Use of this attribute by the problem programmer can
impair the usability of the module.

Overlay Attribute

A program with the overlay attribute is placed in an overlay
structure as directed by the linkage editor OVERLAY control statements.
The module is suitable only for block loading; it cannot be refreshable,
re-enterable, serially reusable, or assigned to hierarchies.

If the overlay attribute is specified and no OVERLAY control
statements are found in the linkage editor input, the attribute is
negated. The condition is considered a recoverable error; that is, if
the LET option is specified, the module is marked executable.

The overlay attribute must be specified for overlay processing. If
this attribute is omitted, the OVERLAY and INSERT statements are

92

considered invalid, and the module is not an overlay structure. This
condition is also recoverable; if the LET option is specified, the
module is marked executable.

To assign the overlay attribute, code OVLY in the PARM field as
follows:

//LKED EXEC PGM=IEWL,PARM=·OVLY, ••• •

See "Overlay Programs" for information on the design and
specification of an overlay structure.

Reusability~ttributes

Either one of two attributes may be specified to denote the
reusability of a module. Reusability means that the same copy of a load
module can be used by more than one task either concurrently or one at a
time. The reusability attributes are re-enterable and serially
reusable; if neither is specified, the module is not reusable and a
fresh copy must be brought into main storage before another task can use
the module. --

The linkage editor only stores the attribute in the directory entry;
it does not check whether the module i.s really re-enterable or serially
reusable. A re-enterable module is automatically assigned the reusable
attribute. However, a reusable module is not also defined as
re-enterable; it is reusable only. For information on designing a
reusable module, see the publication !~~_2y§~~~L~§Q_QE~f~~!~9_§y§~~~1_
Concepts and Facilities.

Re-enterable: A module with the re-enterable attribute can be executed
by more than one task at a time; that is, a task may begin executing a
re-enterable module before a previous task has finished executing it.
This type of module cannot be modified by itself or by any other module
during execution.

If a module is to be re-enterable, all of the control sections within
the module must be re-enterable. If the re-enterable attribute is
specified, and any load modules that are not re-enterable become a part
of the input to the linkage editor, the attribute is negated.

To assign the re-enterable attribute, code RENT in the PARM field, as
follows:

//LKED EXEC PGM=IEWL,PARM=·RENT, ••• •

Serially Reusable: A module with the serially reusable attribute can be
executed by only one task at a time: that is, a task may not begin
executing a serially reusable module before a previous task has finished
executing it. This type of module must initialize itself and/or restore
any instructions or data in the module altered during execution.

If a module is to be serially reusable, all of its control sections
must be either serially reusable or re-enterable. If the serially
reusable attribute is specified, and any load modules that are neither
serially reusable nor re-enterable become a part of the input to the
linkage editor, the serially reusable attribute is negated.

Job Control Language Summary 93

To assign the serially reusable attribute, code REUS in the PARM
field, as follows:

//LKED EXEC PGM=IEWL,PARM=·REUS, ••• •

Refreshable Attribute

A module with the refreshable attribute can be replaced by a new copy
during execution by a recovery management routine without changing
either the sequence or results of processing. This type of module
cannot be modified by itself or by any other module during execution.
The linkage editor only stores the attribute in the directory entry; it
does not check whether the module is refreshable.

If a module is to be refreshable, all of the control sections within
it must be refreshable. If the refreshable attribute is specified, and
any load modules that are not refreshable become a part of the input to
the linkage editor, the attribute is negated.

To assign the refreshable attribute, code REFR in the PARM field, as
follows:

//LKED EXEC PGM=IEWL,PARM=·REFR, ••• •

Scatter Format Attribute

A module with the scatter format attribute need not be loaded into a
contiguous block of main storage: rather, the programmer can specify the
dynamic loading of control sections into noncontiguous, or scattered,
areas within his assigned main storage area. Although scatter loading
can also be left to the control program, the programmer should specify
the loading process himself for most effective use of available storage.
If the scatter format attribute is not specified, the linkage editor
produces a load module in a format suitable for block loading. That is,
the control program can load the module only into one contiguous main
storage area large enough to contain the complete module.

When the scatter format attribute is specified, the linkage editor
produces a load module in a format suitable for either scatter or block
loading. If the scatter load feature is not available in the control
program, modules with the scatter format attribute are block loaded.

To assign the scatter format attribute, code SCTR in the PARM field,
as follows:

//LKED EXEC PGM=IEWL,PARM='SCTR, ••• •

Note 1: The block format attribute is assigned by the linkage editor if
scatter format is not specified. (The programmer cannot specify block
format.)

Note 2: SCTR is specified, the programmer should ensure that the load
module does not contain zero-length control sections, private code
sections, or common areas. The presence of such sections in a module
that is to be scatter loaded can, under certain circumstances, cause
Program Fetch to terminate abnormally when the module is loaded into
main storage for execution.

94

Test Attribute

A module with the test attribute is to be tested and contains the
testing symbol tables for the test translator (TESTRAN) or the TSO TEST
command. The linkage editor accepts these tables as input, and places
them in the output module. The module is marked as being under test.
If the test attribute is not specified, the symbol tables are ignored by
the linkage editor and are not placed in the output module. If the test
attribute is specified, and no symbol table input is received, the
output load module will not contain symbol tables to be used by TESTRAN
or the TSO TEST command.

To assign the test attribute, code TEST in the PARM field, as
follows:

//LKED EXEC PGM=IEWL,PARM='TEST, ••• •

Note 1: The test attribute applies primarily to assembler language
programs using TESTRAN or the TSO TEST command.

Note 2: Modules that use TESTRAN should not be marked with the RENT,
REUS, or REFR attribute.

Default Attributes

Unless specific module attributes are indicated by the programmer,
the output module is not in an overlay structure, and it is not tested
(assembler only). The module is in block format, not refreshable, not
re-enterable, not serially reusable, and cannot be reprocessed by the
level E linkage editor.

One other attribute is specified by the linkage editor after
processing is finished. If, during processing, severity 2 errors were
found that would prevent the output module from being executed
successfully, the linkage editor assigns the not executable attribute.
The control program will not load a module with this attribute.

If the LET option is specified, the output module is marked
executable even if severity 2 errors occur. The LET option is discussed
later in this section.

Incompatible Attributes

Although there are ten module attributes that the programmer may
specify, several are mutally exclusive. When mutually exclusive
attributes are specified for a load module, the linkage editor ignores
the less Significant attributes. For example, if both OVLY and RENT are
specified, the module will be in an overlay structure and will not be
re-enterable.

Certain attributes are also incompatible with other job step options.
For convenience, all job step options are shown in Figure 34 at the end
of this chapter along with those options that are incompatible.

Job Control Language Summary 95

SPECIAL PROCESSING OPTIONS

The special processing options affect the executability of the output
module and the use of the automatic library call mechanism. These
options are the exclusive cail option, the let execute option, and the
no automatic call option. ~

Exclusive Call Option

When the exclusive call option is specified, the linkage editor marks
the output module as executable when valid exclusive references have
been made between segments. However, a warning message is given for
each valid exclusive reference.

To specify the exclusive call option, code XCAL in the PARM field as
follows:

//LKED EXEC PGM=IEWL,PARM=·XCAL,OVLY, ••• •

The OVLY attribute must also be specified for an overlay program.

Note: Other errors may cause the module to be marked not executable
unless the let execute option is specified.

Let Execute OP1ion

When the let execute option is specified, the linkage editor marks
the output module as executable even though a severity 2 error condition
was found during processing. (A severity 2 error condition could make
execution of the output load module impossible.) Some examples of
severity 2 errors are:

• Unresolved external references.
• Valid or invalid exclusive calls in an overlay program.
• Error 9n a linkage editor control statement.
• A library module that cannot be found.
• No available space in the directory of the output module library.

To specify the let execute option, code LET in the PARM field as
follows:

//LKED EXEC PGM=IEWL,PARM=·LET, ••• •

Note: If LET is specified, XCAL need not be specified.

No Automatic Library Call Option

When the no automatic library call option is specified, the linkage
editor library call mechanism does not call library members to resolve
external references. The output module is marked executable even though
unresolved external references are present. If this option is
specified, the LIBRARY statement cannot be used to negate the automatic
library call for selected external references. Also, with this option,
a SYSLIB DD statement need not be supplied.

96

To specify the no automatic library call option, code NCAL in -the
PARM field, as follows:

//LKED EXEC PGM=IEWL,PARM='NCAL, ••• '

Note: Other errors may cause the module to be marked not executable
unless the LET option is also specified.

SPACE ALLOCATION OPTIONS

These options allow the programmer to specify the storage available
to the linkage editor, and to specify the block size for the output
module. These options can only be used with the level F linkage editor.

SIZE Option

The programmer can specify, through the SIZE parameter, the amount of
main storage to be used by the level F linkage editor. Also, he can
specify how much of the specified main storage is to be used as the load
module/text buffer, which is the main storage used to contain input and
output data. If this buffer is large enough, use of the intermediate
data set (SYSUT1) may not be required.

If (1) the SIZE option is not specified, (2) a value is incorrectly
specified in the SIZE option, or (3) one of the values is not specified,
default values chosen during system generation are used. For details on
how to establish default values, see the publication ~~~_§Y2~~m~l£Q
operating System: System Generation.

The following text describes the format of the SIZE option, how to
determine the value for the load module buffer, and the blocking factors
used with the linkage editor F.

Format: The format of the SIZE option is:

When coded in the PARM field, the expression is enclosed in single
quotes, as follows:

//LKED EXEC PGM=IEWL,PARM=·SIZE=(value1,value2), ••• •

where:

value 1
specifies the maximum number of bytes of wain storage available to
the linkage editor. This value can be specified either in the form
~ (where ~ represents the actual number of bytes of main storage,
not to exceed 9999999) or ~K (where Q represents the number of 1K
blocks of main storage, not to exceed 9999Ki 1K is equal to 1024
bytes). Value1 must not exceed the amount of main storage that can
be made available in the system.

Job Control Language Summary 97

The m~n~mum value~ that can be specified is the design size of the
level F linkage editor being used. The following are the minimum
values for each design size:

44K value~ at least 45056 bytes or 44K

88K value~ at least 90112 bytes or 88K

128K -- value~ at least 131072 bytes or 128K

To indicate that additional main storage should be made available
to the linkage editor, specify a number larger than the design
size.

Value~ includes the number of bytes to be used as the load module
buffer, which is specified in value2.

value2
specifies the maximum amount of value~ that is to be used as the
load module buffer and is expressed as a number from 6144 (or 6K)
through 102400 (or lOOK).

For example, if SIZE=(59K,18K) is specified when the 44K design size
is used, the maximum number of bytes that can be made available to the
linkage editor is 60,416, of which 18,432 bytes are to be used as the
load module buffer. Other valid examples of the SIZE option are:

SIZE=(512000,100K) and SIZE=(200K,20480).

If value~ exceeds the amount of ~ain storage available in the system
at the time of linkage editor execution, value~ is automatically
decreased by the linkage editor. This value is never decreased below
the design size being used. After a new value~ is established, an
attempt is made to satisfy the request for value2• If this request
cannot be satisfied, value2 is also decreased. This value is never
decreased below 6K.

Determining Valuea: The load module buffer is used for three different
purposes during linkage editor processing. The buffer is used for input
text records, intermediate data records, or output load module records.

Therefore, the size specified in value2 must be large enough to hold
the largest load module input record, a record from the intermediate
data set (SYSUT1), or a record for the output module library (SYSLMOD).
In any case, the device on which the data set resides determines the
values to be considered. That is, the maximum record size for the
device is used to determine value2. The value2 chosen must meet the
requirements for all three types of data sets. Table 5 contains the
maximum record sizes for the allowable devices.

98

Table S. Device Types and Maximum Record Sizes
r-------------~--------------------T-----------------------------------,
I Device I Maximum Record Size I
~----------------------------------+-----------------------------------~ I IBM 2301 Drum Storage 18K I
I I
I IBM 2302 Disk Storage 4K I
I I
I IBM 2303 Drum Storage 4K I
I I
I IBM 2311 Disk Storage 3K I
I I
I IBM 2314 Disk Storage 6K I
I I
I IBM 2319 Disk Storage 6K I
I I
I IBM 2321 Data Cell 1K I
I I
I IBM 3330 Disk Storage I
I Facility 12K I
I I
I IBM 230S Fixed Head Storage I
I Facility I 13K I l __________________________________ ~ ___________________________________ J

The load module buffer must be large enough to contain an input load
module record. An input load module record could be from the automatic
call library (SYSLIB), or a data set specified on an INCLUDE statement.
If the linkage editor encounters a record that cannot be contained in
the load module buffer, the record is deleted. Therefore, value2 must
be at least large enough to hold an input record from the device
containing the largest load module records.

For example, a user has a SYSLIB data set on an IBM 2301 Drum Storage
Device, which holds 18K records. Since the linkage editor may normally
allocate only 6K to the load module buffer, an additional 12K must be
provided for this buffer. Therefore, the following SIZE option could be
used:

SIZE=(S6K,18K)

These values allow the 44K design size to run in sufficient storage
while providing 18K for the load module buffer.

The greater the size of the load module buffer, the less likely it is
that the intermediate data set would be required. For example, if
SIZE=(200K,100K) is specified, it is less likely that SYSUT1 would be
required than if SIZE=(S9K,18K) is specified. Consider a user with a
SYSLIB data set on an IBM 2311 Disk Storage Device, who would like to
allow 102,400 bytes for value 1 • Because he only needs 3K for the
largest load module input record, if value2 is greater than 3K the
possibility of not using SYSUT1 is greater. The SIZE option could be
coded as follows:

SIZE=(100K,24K)

In this case, the load module buffer is 24K bytes and it is likely that
the intermediate data set will not be used. The additional storage over
and above that needed for the linkage editor itself is used for buffer
and table allocation.

Job Control Language Summary 99

The previous examples did not consider the interrelationship of the
input load module requirements with the output load module library
reqUirements. To achieve the maximum output record size on this
library, value2 must be at least twice the record size of the device for
the SYSLMOD data set. Note, however, that if the downward compatible
attribute is specified for the output load module, the SYSL~OD record
size is forced to 1K no matter what device is used.

As stated previously, the load module buffer must be large enough to
hold the largest load module input record, or a record from the
intermediate data set (SYSUT1). In addition, the buffer must be at
least 6K or twice the desired record size for SYSLMOD. Table 6 shows
the load module buffer area for each SYSLMOD and SYSUT1 record size.
The record size specified for SYSLMOD and the maximum record size for
SYSUT1 should be compatible; that is, one should be a multiple of the
other. If the sizes specified are not compatible, the linkage editor
reduces the larger size until it becomes a multiple of the smaller one
or equal to it. For example, if the desired SYSLMOD record size is 6K
and the maximum SYSU~l record size is 4K, the linkage editor reduces the
SYSLMOD record size to 4K.

Table 6. Load Module Buffer Area and SYSLMOD and SYSUT1 Record Sizes
(Part 1 of 3)

r----------------------------T----------------------------T------------,
I SYSLMOD Record Size I SYSUT1 Record Size I Minimum I
~----------T---------------~+-----------T----------------~Load Module I
I Device I Maximum Record, Device I Maximum Record 'Buffer Area I
I Used I Size Produced I Used I Size Produced I (value2) ,
~----------+----------------+-----------+----------------+------------~
I I I 2321 I 1K I ,
I I ~-----------+----------------~ I
I I I 2311 I 3K I I
I I ~-----------+----------------~ 6K I
I , I 2302,2303 I 4K I I
I IBM 2321 I 1K ~-----------+----------------~ I
I I I 2314,2319 I 6K I ,
I I ~-----------+----------------+------------~
I I I 3330 I 12K I 14K I
I I ~-----------+----------------+------------~
I I I 2305 ,13K I 15K I
I I ~-----------+----------------+------------~
I I I 2301 I 18K I 20K I
~-----------+----------------+-----------+----------------+------------~

I I 2321 I 1K I I
I ~-----------+----------------~ I
I I 2311 I 3K I I
I ~-----------+----------------~ 6K ,
I I 2302,2303 I 3K2 I I

IBM 2311 I 3K ~-----------+----------------~ I
I I 2314,2319 I 6K I I
, ~-----------+----------------+------------~
I I 3330 I 12K I I
I ~-----------+----------------~ 18K I
I I 2305 ~ 12K2 I I
I ~-----------+----------------+------------~
I I 2301 I 18K I 24K I

~-----------~----------------~-----------~----------------~------------~
INotes: I
11 The SYSLMOD record size is reduced to less than the maximum to make I
I it compatible with the SYSUT1 record size. I
12The SYSUT1 record size is reduced to less than the maximum to make itl
I compatible with the SYSLMOD record size. I l __ J

100

Table 6. Load Module Buffer Area and SYSLMOD and SYSUTl Record Sizes
(Part 2 of 3)

r----------------------------T----------------------------T------------,
I SYSLMOD Record Size I SYSUTl Record Size ,Minimum I
~-----------T----------------+-----------T----------------~Load Module I
I Device I Maximum Record, Device I Maximum Record IBuffer Area'
I Used I Size Produced I Used :1 size Produced I (value.2) I
~-----------+----------------+----------~+----------------+------------~
I I 4K I 2321 I lK I I
I ~----------------+-----------+----------------~ I
I I 3Ki. I 2311 I 3K I I
I ~----------------+-----------+----------------~ 8K I
I I 12302,2303, 4K I I
I I ~-----------+----------------~ I
I IBM 2302, I I 2314,2319 I 4K I I
I IBM 2303, 4K ~-----------+----------------+------------~
I I I 3330 I 12K I I
I I ~-----------+----------------~ 20K I
, , , 2 3 0 5 , 12K.2 I I
I I ~-----------+----------------+------------~
I I I 2301 I 16K.2 I 24K I
~-----------+----------------+-----------+----------------+------------~
I I I 2321 , lK' I
I I 6K ~-----------+----------------~ 12K I
I I I 2311 I 3K I I
, ~----------------+-----------+----------------+------------~
I I 4Ki. I 2302,2303 I 4K I 8K I
I IBM 2314, ~----------------+-----------+----------------+------------~
I IBM 2319 I I 2314,2319 I 6K I I
I I ~-----------t----------------~ I
I I I 3330 I 12K I 12K I
I I 6K ~-----------+----------------~ ,
I I I 2305 I 12K.2 I I
I , ~-----------+----------------+------------~
I I I 2301 I 18K I 30K I
~-----------+----------------+-----------+----------------+------------~

I I 2321 I lK ,
I ~-----------+----------------~
, I 2311 I 3K I
I ~-----------+----------------~
I I 2302,2303 I 4K I

IBM 3330 I 12K ~-----------+----------------f 24K
I I 2314,2319 I 6K I
I ~-----------+----------------~
I I 3330 I 12K I
I ~--------.--+----------------~
, I 230 5 ; I 12K.2 I
I ~-----------+----------------~ , I 2301 I 18K I

~-----------~----------------~-----------~----------------~------------~
'Notes: I
Ii.The SYSLMOD record size is reduced to less than the maximum to make I
I it compatible with the SYSUTl record size. I
I.2The SYSUTl record size is reduced to less than the" maximum to make itl
, compatible with the SYSLMOD record size. I L __ J

Job Control Language Summary 101

Table 6. Load Module Buffer Area and SYSLMOD and SYSUT1 Record Sizes
(Part 3 of 3)

r----------------------------T----------------------------T------------,
I SYSLMOD Record Size I SYSUT1 Record Size ,Minimum ,
~----------T----------------t-----------T----------------~Load Module ,
,Device ,Maximum Record, Device 'Maximum Record 'Buffer Area ,
, Used , Size Produced 'Used , Size Produced ,(value2) ,
~-----------t----------------t-----------t----------------t------------~

,13K , 2321 , 1K ,26K,
~----------------+-----------+----------------t------------~
, , 2311 , 3K' ,
I ~-----------f----------------~ I
I , 2302,2303 I 4K I I

IBM 2305, 12K1 ~-----------t----------------~ 24K ,
, I 2314,2319 I 6K' ,
I ~-----------t----------------~ ,
, , 3330 I 12K I ,
~----------------+-----------+----------------+------------~
, I 2305 I 13K I ,
,13K ~-----------t----------------~ 26K ,
, I 2301 , 13K2, ,

~-----------f----------------+-----------+----------------+------------~
I I 2321 , 1K I I
,18K ~-----------t--~-------------~ 36K ,
, I 2311 , 3K' I
~----------------+-----------+----------------+------------~
I 16K1 I 2302,2303 I 4K I 32K I

IBM 2301 ~----------------t-----------t----------------f------------~
,18K I 2314,2319 , 6K ,36K I
~----------------+-----------+----------------+------------~
I 12K1 I 3330 I 12K ,24K,
~----------------f-----------t----------------+------------~
, 13K1 , 2305 I 13K I 26K I
~----------------+-----------+----------------+------------~
I 18K I 2301 ,18K ,36K I

~-----------~----------------~-----------~----------------~------------~
,~otes: ,
,1The SYSLMOD record size is reduced to less than the maximum to make ,
I it compatible with the SYSUT1 record size. ,
12The SYSUT1 record size is reduced to less than the maximum to make it,
I compatible with the SYSLMOD record size. I L __ J

The maximum size of any SYSLMOD record is 18K, which is the maximum
for the IBM 2301 Drum. In this case, the load module buffer must be 36K
for maximum efficiency. If records larger than 3K are written on
SYSLMOD, value1 for the 44K design size must be increased above 44K.
The 44K editor with 74K for value1 and 36K for value2 is capable of
writing 18K records. Therefore, only the 88K and 128K design size
editors, using that amount of storage respectively, are capable of
writing 18K records, and remaining within their respective design
points.

Blocking Factors: After the load module buffer is allocated, the
linkage editor allocates other input and output buffers. These buffers
are for the primary input data set (SYSLIN), additional input object
module data sets, and the diagnostic output data set (SYSPRINT). The
input blocking factors <i.e., the number of logical records per one
physical record) allowed for these buffers are determined by the linkage
editor, based on the amount of storage available.

102

For most efficient processing, one of three blocking factors may be
used: 5, 10,- or 40. The one selected depends on the design size used,
and the amounts selected for value1 and value2 of the SIZE option.
(Intermediate blocking factors of 2 through 4, 6 through 9, and 11
through 39 require SIZE option values for blocking factors of 5, 10, and
40, respectively.) Table 7 contains the minimum for value1 and the
maximum for value2 for each design size and blocking factor. If value2
is greater than that given in the table, a corresponding increase should
be made to value1. If the blocking factor for input or output records
is greater than Sand value2 has been decreased by the linkage editor,
no output is produced.

Table 7. Blocking Factors and Their Relationship to the SIZE Option
r----------T---,
I I Blocking Factor I
I Design ~-------------------T-------------------T-------------------~
I Size I S to 1 I 10 to 1 I 40 to 1 I
~----------+-------------------+-------------------+-------------------~
I 44K I SIZE=(44K,6K) I SIZE=(S2K,6K) I SIZE=(88K,6K) I
I I I I I
I 88K I SIZE=(88K,44K) I SIZE=(88K,36K) I SIZE=(88K,8K) I
I I I I I
I 128K I SIZE=(128K,62K) I SIZE=(128K,56K) I SIZE=(128K,24K) I L __________ ~ ___________________ ~ ___________________ ~ ___________________ J

For example, assume that the load module buffer is to be 12K, and
that the input records on SYSLIN are blocked 10 to 1. If the 44K design
size is used, the corresponding SIZE option must have the following new
values:

SIZE=(S8K,12K)

The blocking factor for SYSPRINT and the object module buffers will also
be 10 to 1. If, however, only SOK is available and the appropriate
reductions are made in value1 and value2, no output is produced.

DCBS Option

The DCBS option allows the programmer to specify the block size for
the SYSLMOD data set in the DCB parameter of the DD statement. If the
data set is new, the block size specified by the programmer will be used
unless it is larger than the maximum record size for the device. In
this case, the linkage editor will use the maximum record size. If the
data set is old, either the block size specified by the programmer or
the existing block size, whichever is larger, will be used. However, if
the block size specified by the programmer is larger than the maximum
record size for the device, the linkage editor will use the maximum
record size.

Job Control Language Summary 103

The following example shows the use of the DCBS option for a 2314
disk:

//LKED EXEC PGM=IEWL,PARM='XREF,DCBS'

//SYSLMOD DD DSNAME=LOADMOD(TEST),DISP=(NEW,KEEP),
// DCB=(BLKSIZE=3072), •••

As a result, the linkage editor uses a 3K block size for the output
module library.

Note: When the DCBS option is used, a block size must be specified in
the DCB parameter of the SYSLMOD DD statement.

OUTPUT OPTIONS

These options control the optional diagnostic output produced by the
linkage editor. The programmer can request that the linkage editor
produce a list of all control statements and a module map or
cross-reference table to help in testing a program. The format of each
is described in the chapter "output from the Linkage Editor."

In addition, the programmer can request that the numbered
error/warning messages generated by the linkage editor should appear on
the SYS~ERM data set as well as on the SYSPRINT data set.

Control Statement Listi~_QEt!Q~

To request a control statement listing, code LIST in the PARM field,
as follows:

//LKED EXEC PGM=IEWL,PARM=·LIST, ••• •

When the LIST option is specified, all control statements processed
by the linkage editor are listed in card-image format on the diagnostic
output data set.

Module MaE OEtion

To request a module map, code MAP in the PARM field, as follows:

//LKED EXEC PGM=IEWL,PARM=·MAP, ••• •

When the MAP option is specified, the linkage editor produces a
module map of the output module on the diagnostic output data set.

104

To request a cross-reference table, code XREF in the PARM field, as
follows:

//LKED EXEC PGM=IEWL,PARM='XREF, ••• •

When the XREF option is specified, the linkage editor produces a
cross-reference table of the output module on the diagnostic output data
set. The cross-reference table includes a module map; therefore, both
XREF and MAP cannot be specified for one linkage editor job step.

Alternate Output (SYSTERM) Option

To request that the numbered linkage editor error/warning messages be
generated on the data set defined by a SYSTERM DD statement, code TERM
in the PARM field, as follows:

//LKED EXEC PGM=IEWL,PARM='TERM, ••• •

when the TERM option is specified, a SYSTERM DD statement must be
provided. If it is not, the TERM option is negated.

Output specified by the TERM option supplements printed diagnostic
information: when TERM is used, linkage editor error/warning messages
appear in both output data sets.

INCOMPATIBLE JOB STEP OPTIONS

When mutually exclusive job step options are specified for a linkage
editor execution, the linkage editor ignores the less significant
options. Figure 34 illustrates the significance of those options that
are incompatible. when an X appears at an intersection, the options are
incompatible. The option that appears higher in the list is selected.

For example, to check the compatibility of XREF and NE, follow the
XREF column down and the NE row across until they intersect. Since an X
appears where they intersect, they are incompatible; XREF is selected,
NE is negated.

Job Control Language Summary 105

~
0--4

I--- ,\~S'\
~0
~

x

$-
~~

X ~~~S
~ x ~

~~
XI ~'\~

" X X
~~

X X X ~
;..~\>

~
$>

~" ~~

0"

<::)~

S~~
#~

X G<:OS
<;)

J
'\~~~

Figure 34. Incomp~tible Job step Options for the Linkage Editor

EXEC STATEMENT -- REGION PARAMETER

If the SIZE option is specified with the level F linkage editor, the

I REGION size, if MVT is used, must be larger than value~. If MFT is
used, the partition size must be larger than value~. The increase
depends on the design size of the linkage editor used; Table 8 contains
the increase for each design size.

For example, if SIZE=(200K,36K) is coded when using the 88K design
size, the REGION specified should be at least 208K, that is REGION=208K.

Appendix C contains the minimum storage requirements for the level E
linkage editor, and the level F linkage editor without the SIZE option.

Table 8. REGION Increase When the SIZE Option Is Used
r----------------------------T---,
I Design Size I Increase I
~----------------------------t---~
I 44K I 10K I
I I I
I 88K I 8K I
I I I
I 128K I 8K I L ____________________________ ~ ___ J

106

EXEC STATEMENT -- RETURN CODE

The linkage editor passes a return code to the control program upon
completion of the job step. The return code reflects the highest
severity code recorded in any iteration of the linkage editor within
that job step. The highest severity code encountered during processing
is multiplied by 4 to create the return code; this code is placed into
register 15 at the end of linkage editor processing. Table 9 contains
the return codes, the corresponding severity code, and a description of
each.

The programmer may use this return code to determine whether or not
the load module is to be executed by using the condition parameter
(COND) on the EXEC statement for the load module. The control program
compares the return code with the values specified in the COND
parameter, and the results of the comparisons are used to determine
subsequent action. The CONn parameter may be specified either in the
JOB statement or the EXEC statement (see the publication !~~_~y§tem/360
QQerating System:~~Co~t~ol_~~~g~~g~_Reference).

Table 9. Linkage Editor Return Codes
r-----~--------~--,
I Return \ Severity \ I
I Code I Code I Description I
~-----t--------t--------------------~---------------------------------~
I 00 I 0 I Normal conclusion. I
~------t--------+--1
I 04 I 1 I Warning messages have been listed, execution should I
I I I be successful. For example, if the overlay option isl
I I I specified and the overlay structure contains only onel
I I I segment, a return code of 04 is issued. I
~------+--------+--1
I 08 I 2 I Error messages have been listed, execution may fail. I
I I I The module is marked not executable unless the LET I
I I I option is specified. For exa~ple, if the block size I
1 I I of a specified library data set cannot be handled by I
I I I the linkage editor, a return code of 08 is issued. I
~------+--------+--~ I 12 I 3 I Severe errors have occurred, execution is impossible. I
I I I For example, if an invalid entry point has been ·1
1 I I specified, a return code of 12 is issued. I
~------+--------+--1
I 16 I 4 I Terminal errors have occurred, the processing has I
1 I I terminated. For example, if the level F linkage I
I I I editor cannot handle the blocking factor requested I
I I I for SYSPRINT, a return code of 16 is issued. I l ______ ~ ________ ~ __ J

Every data set used by the linkage editor must be described with a DD
statement. Each DD statement must have a name, unless data sets are
concatenated. The DD statements for data sets required by the linkage
editor have pre-assigned names; those for additional input data sets
have user-assigned names; those for concatenated data sets (after the
first) have no names.

In addition to the name, the DD statement provides the control
program with information about the input/output device on which the data

Job Control Language Summary 107

set resides, and a description of the data set itself. All of the job
control language facilities for device description are available to the
users of the linkage editor.

Besides information about the device, the DD statement also contains
a data set description, which includes the data set name and its
disposition. Information for the data control block (DCB) may also be
given.

General information pertinent to the linkage editor on the data set
name and DCB information follows; information on disposition is given in
the discussion for each data set.

DATA SET NAME: The linkage editor uses either sequential or partitioned
data sets. For sequential data sets, only the name of the data set is
specified; for partitioned data sets, the member name must also be
specified either on the DD statement or with a control statement.

When input data sets are passed from a previous job step, or when the
output load module is being tested, a recommended practice is to use
temporary data set names (i.e., &&dsname). Use of temporary names
ensures that there are no duplicate data sets with out-of-date modules.
A data set with a temporary name is automatically deleted at the end of
the job. When a module is to be stored permanently, a data set name
without ampersands is used.

DCB INFORMATION: Before a data set can be used for input, information
describing the data set must be placed in the data control block (DCB).
If this information does not exist in the DCB or header label, or if no
labels are used (magnetic tape does not require labels), the programmer
must specify it in the DCB parameter on the DD statement. (Assembler
language programmers may also use the DCB macro instruction.)

Record format (RECFM), logical record size (LRECL), and block size
(BLKSIZE) subparameters of the DCB parameter are discussed as they apply
to the linkage editor. specific information on each as it applies to
the linkage editor data sets is given in the description of the data set
which follows later in this section. other DCB information (tape
recording technique, density, and so forth) is described in the
publication !BM~ystem/360 O~~~~!ng_§y~t~~ __ ~2Q_£2~!~2!_Lang~~g~
Reference.

Record Format: The following record formats are used with the linkage
editor:

108

F The records are fixed length.

FB The records are fixed length, and blocked.

FBM The records are fixed length, blocked, and contain machine
code control characters.

FBS -- The records are fixed length, blocked, and written in
standard blocks.

FM The records are fixed length and contain machine code control
characters.

FS The records are fixed length and written in standard blocks.

U The records are undefined length.

UA The records are undefined length and contain USASI control
characters.

A record format of FS or FBS must be used with caution. All blocks
in the data set must be the same size. This size must be equal to the
specified block size. A truncated block can occur only as the last
block in the data set.

Logical Record and Block Size: For the level E linkage editor, blocking
of input and output data sets is not allowed. That is, LRECL and
BLKSIZE must be equal, when both are specifi·ed.

For the level F linkage editor, blocking is allowed for input object
module data sets and the diagnostic output data set. The blocking
factors used to determine buffer allocations are 5, 10, and 40. The
BLKSIZE must therefore be a multiple of LRECL. See the description of
blocking factors in the discussion of the SIZE option.

Also, with the level F linkage editor, a block size may be specified
for the output load module library when the DCBS option is specified
(see "SYSLMOD DD Statement" later in this section).

LINKAGE EDITOR DD STATEMENTS

The linkage editor uses six data sets; of these, four are required.
The DD statements for these data sets must· use the preassigned ddnames
given in Table 10. The descriptions that follow give pertinent device
and data set information for each linkage editor data set.

Table 10. Linkage Editor ddnames
r----------------------------T----------T------------------------------,
I Data Set I ddname I Required I
r----------------------------f----------f------------------------------~

Primary input data set I SYSLIN I Yes I
I I I

Automatic call library I SYSLIB I Only if the automatic library I
I I call mechanism is used I
I I I

Intermediate data set I SYSUT1 I Yes I
I I I

Diagnostic output data set I SYSPRINT I Yes I
I I I

output module library I SYSLMOD I Yes I
I I I

Alternate output data set I SYSTERM I Only if the TERM option is I
I I specified I L ____________________________ ~ __________ ~ ______________________________ J

SYSLIN DD Statement

The SYSLIN DD statement is always required; it describes the primary
input data set which can be assigned to a direct access device, a
magnetic tape unit, or the card reader. The data set may be either
sequential or partitioned: in the latter case, a member name must be
specified.

Job Control Language Summary 109

This data set must contain object modules and/or control statements.
Load modules used in the primary input data set are considered a
severity 4 error.

The recommended disposition for the primary input data set is SHR or
OLD.

The DCB requirements depend on the editor used. These requirements
are shown in Table 11.

Table 11. DCB Requirements for Object Module and Control
Statement Input

r------------T---,
I Level I DCB Requirements I
I Editor ~-------------T--------------------T----------------------~
I Used I LRECL I BLKSIZE I RECFM I
~------------+-------------+--------------------+----------------------~
I E I 80 I 80 IF, FS I
~------------t-------------t--------------------f----------------------~
I I I 80 I F I FS I
I F I 80 ~--------------------+----------------------~
I I I 400,80~,3200* I FB,FBS I
~------------~-------------~--------------------~----------------------~
I*These are the maximum block sizes allowed. Which maximum is I
I applicable depends on the size of the linkage editor and the values I
I given to value1 and value2. See Table 7 for more detail. I L __ J

SYSLIB DD Statement

The SYSLIB DD statement is required when the automatic library call
mechanism is to be used. This DD statement describes the automatic call
library, which must be assigned to a direct-access device. The data set
must be partitioned, but member names should not be specified.

The recommended disposition for the call library is SHR or OLD.

If concatenated call libraries are used, object and load module
libraries must not be mixed. If only object modules are used, the call
library may also contain control statements.

The DCB requirements for object module call libraries are given in
Table 11. The DCB requirement for load module call libraries is a
record format of U; the block size used for storage allocation is equal
to the maximum for the device used, not the record read.

SYSUT1 DD Statement

The SYSUT1 DD statement is always required; it describes the
intermediate data set,which is a sequential data set assigned to a
direct access device. Space must be allocated for this data set but the
DCB requirements are supplied by the linkage editor.

110

SYSPRINT DD statement

The SYSPRINT DD statement is always required; it describes the
diagnostic output data set, which is a sequential data set assigned to a
printer or an intermediate storage device. If an intermediate storage
device is used, the data records contain a carriage control character as
the first byte.

The usual specification for this data set is SYSOUT=A. The system
assigns the device and DeB requirements, except for the level F editor.
When this editor is used, the programmer may assign a block size if he
is running under an MFT or MVT system. The record format assigned by
the linkage editor depends on whether blocking is used or not.

Table 12 shows the DeB requirements for SYSPRINT, both level E and
level F. The shaded areas represent information supplied by the linkage
editor. The only information that can be supplied by the programmer is
the block size for the level F linkage editor.

Table 12. DeB Requirements for SYSPRINT

Level
Editor
Used

E

I F

Requirements

I 605,1210,4840 2

~---------------
11The value specified for BLKSIZE, either on the DeB parameter of the
I SYSPRINT DD statement or in the DseB (data set control block) of an
I existing data set, must be a multiple of 121; if it is not, the
I linkage editor issues a message to the operator's console and
I terminates processing.
12These are the maximum block sizes allowed. Which maximum is
I applicable depends on the size of the linkage editor and the values
I given to value1 and value2. See Table 7 for more detail.

SYSLMOD DD statement

The SYSLMOD DD statement is always required; it describes the output
module library, which must be a partitioned data set assigned to a
direct-access device. A member name must be specified, either on the
SYSLMOD DD statement or on a NAME control statement.

If the member is to replace an identically named member in an
existing library, the disposition should be OLD. If the member is to be
added to an existing library, the disposition should be MOD. If no
library exists and the member is the first to be added to a new library,
the disposition should be NEW. If the member is to be added to an
existing library that may be used concurrently in another region or
partition (level F editor only), the disposition should be SHR.

For the level E editor, the maximum logical record size and block
size is equal to 1K, with a record format of U. These values are
assigned by the linkage editor.

Job Control Language Summary 111

For the level F editor, the record format is U. The logical record
and block sizes are equal to (1) the maximum track size for the device
or (2) one-half of the number specified for value2 of the SIZE option,
whichever is smaller. These are the values assigned by the linkage
editor unless one of the following conditions exists:

• The DCBS option is specified on the EXEC statement, in which case
the programmer must supply a block size in the DCB parameter. The
linkage editor then uses either the programmer-specified block size,
or the maximum size allowed by the device, whichever is smaller.

• The DC option is specified on the EXEC statement, in which case the
logical record and block sizes are forced to lK to allow
reprocessing by the level E editor.

These conditions apply to both old and new data sets. For an old data
set, the existing block size in the DSCB (data set control block) will
be changed only if the value specified in the DCB parameter is greater
than the existing value.

In the following example, the SYSLMOD DD statement specifies a
permanent library on an IBM 2314 Disk Storage Device:

//SYSLMOD DD DSNAME=USERLIB(TAXES>,DISP=MOD,UNIT=2314, •••

The linkage editor assigns a record format of U, and a logical record
and block size of 6K, the maximum for a 2314. However, consider the
following example:

//LKED

//SYSLMOD
//

EXEC PGM=IEWL,PARM='XREF,DCBS'

DD DSNAME=USERLIB(TAXES),DISP=MOD,UNIT=2314,
DCB=(BLKSIZE=3072>, •••

The linkage editor still assigns a record format of U, but the logical
record and block size are now 3K rather than 6K, due to the use of the
DCBS option.

SYSTERM DD Statement

The SYSTERM DD statement is optional; it describes a data set that is
used only for numbered error/warning messages. Although intended to
define the terminal data set when the linkage editor is being used under
the Time Sharing Option (TSO> of the operating system, the SYSTERM DD
statement can be used in any environment to define a data set consisting
of numbered error/warning messages that supplements the SYSPRINT data
set.

SYSTERM output is defined by including a SYSTERM DD statement and
specifying TERM in the PARM field of the EXEC statement. When SYSTERM
output is defined, numbered messages are then written to both the
SYSTERM and SYSPRINT data sets.

112

The following example shows how the SYSTERM DD statement CQuid be
used to specify the system output unit:

//SYSTERM DD SYSOUT=A

The DCB requirements for SYSTERM (LRECL=121 and BLKSIZE=121) are
supplied by the linkage editor. If necessary, the linkage editor will
modify the DSCB (data set control block) of an existing data set to
reflect these values.

ADDITIONAL DD STATEMENTS

Each ddname specified on an INCLUDE or LIBRARY control statement must
also be described with a DD statement. These DD statements describe
sequential or partitioned data sets, assigned to magnetic tape units or
direct access devices.

The ddnames are specified by the user along with any other necessary
information. The DCB requirements for these data sets are shown in
Table 13.

When concatenated data sets are included, each data set must contain
records of the same format, record size, and block size. If the data
sets reside on magnetic tape, the tape recording technique and density
must also be identical.

Table 13. DCB Requirements for Additional Input Data Sets
r--------T------------------------T------------------------------------,
I Level I I DCB Requirements I
I Editor I ~------------T--------------T--------~
I Used I Data Set Contents I LRECL I BLKSIZE I RECFM I
~--------~------------------------+------------+--------------+--------~
I I Object modules and/or I 80 I 80 I F,FS I
I I control statements I I I I
I E r------------------------+------------+--------------+--------~
I I Load, modules I lK I 1K I U I
~--------+------------------------+------------+--------------+--------~
I I Object modules and/or I I 80 I F,FS I
I I control statements I 80 .--------------+--------~
I F I I I 400,800,3200*1 FB,FBS I
I ~------------------------+------------+--------------+--------~
I I Load modules I maximum I equal to I U I
I I I for device, I LRECL I I
I I I or one-half I I I
I I I of value2' I I I
I I I whichever I I I
I I lis sma ller ~ I'
~--------~------------------------~------------~--------------~--------~
I*These are the maximum block sizes allowed. Which maximum is I
I applicable depends on the size of the linkage editor and the values I
I given to value~ and value2_ See Table 7 for more detail. I L __ J

Job Control Language summary 113

CATALOGED PROCEDURES

To facilitate the operation of the system, the control program allows
the programmer to store EXEC and DD statements under a unique member
name in a procedure library. Such a series of job control language
statements is called a cataloged procedure. These job control language
statements can be recalled at any time to specify the requirements for a
job. To request this procedure, the programmer places an EXEC statement
in the input stream. The EXEC statement specifies the unique member
name of the procedure desired.

The specifications in a cataloged procedure can be temporarily
overridden, and DD statements can be added. The information altered by
the programmer is in effect only for the duration of the job step; the
cataloged procedures themselves are not altered permanently. Any
additional DD statements supplied by the programmer must follow those
that override the cataloged procedure.

LINKAGE EDITOR CATALOGED PROCEDURES

Two linkage editor cataloged procedures are provided: a single-step
procedure that link edits the input and produces a load module
(procedure LKED), and a two-step procedure that link edits the input,
produces a load module, and executes that module (procedure LKEDG).
Many of the cataloged procedures provided for language translators also
contain linkage editor steps. The EXEC and DD statement specifications
in these steps are similar to the specifications in the cataloged
procedures described in the following paragraphs •

. Procedure LKED

The cataloged procedure named LKED is a single-step procedure that
link edits the input, produces a load module, and passes the load module
to another step in the same job. The statements in this procedure are
shown in Figure 35: the following is a description of those statements.

Statement Numbers: The 8-digit numbers on the right-hand side of each
statement are used to identify each statement and would be used, for
example, when permanently modifying the cataloged procedure with the
system utility program IEBUPDTE. For a description of this utility
program, see the publication IBM System/360 Operating System:
Utilities.

EXEC Statement: The PARM field specifies the XREF, LIST, LET, and NCAL
options. If the automatic library call mechanism is to be used, the
NCAL option must be overridden, and a SYSLIB DD statement must be added.
Overriding and adding DD statements is discussed later in this section.

The prqgram name IEWL requests the largest linkage editor available
in the system. If the 128K design size of the level F editor is
present, a larger REGION must be specified, at least 136K. This is done
by overriding the REGION specification of 96K with a specification of
REGION=136K.

SYSPRINT Statement: The SYSPRINT DD statement specifies the SYSOUT
class A, which is either a printer or an intermediate storage device.
If an intermediate storage device is used, a carriage control character
precedes the data. The carriage control characters are USASI characters
for the level E editor, and machine code for the level F editor.

114

SYSLIN Statement: The specification of DDNAME=SYSIN allows the
programmer to specify any input data set as long as it fulfills the
requirements for linkage editor input. The input data set must be
defined with a DD statement with the ddname SYSIN. This data set may be
either in the input stream or residing on a separate volume.

If the data set is in the input stream, the following SYSIN statement
is used:

//LKED.SYSIN DD *

If this SYSIN statement is used, it must be the last DD statement in the
job step. The object module decks and/or control statements must follow
the SYSIN statement, with a delimiter statement (/*> at the end of the
input.

If the data set resides ona separate volume, the following SYSIN
statement is used:

//LKED.SYSIN DD parameters describing an input data set

If this SYSIN statement is used, it may be anywhere in the job step DD
statements as long as it follows all overriding DD statements. Several
data sets may be concatenated as described in the chapter "Input to the
Linkage Editor."

SYSLMOD Statement: The SYSLMOD DD statement specifies a temporary data
set and a general space allocation. The disposition allows the next job
step to execute the load module. If the load module is to reside
permanently in a library, these general specifications must be
overridden.

SYSUTl Statement: The SYSUTl DD statement specifies that the
intermediate data set is to reside on a direct-access device, but not
the same device as either the SYSLMOD or the SYSLIN data sets. Again, a
general space allocation is given.

SYSLIB Statement: Note that there is no SYSLIB DD statement. If the
automatic library call mechanism is to be used with a cataloged
procedure, a SYSLIB DD statement must be added; also, the NCAL option in
the PARM field of the EXEC statement must be negated.

r--,
I//LKED EXEC PGM=IEWL,PARM='XREF,LIST,LET,NCAL',REGION=96K 000200001
I//SYSPRINT DD SYSOUT=A 000400001
I//SYSLIN DD DDNAME=SYSIN 000600001
I//SYSLMOD DD DSNAME=&&GOSET(GO),SPACE=(1024, (50,20,1», C000800001
1// UNIT=SYSDA, DISP= (MOD, PASS) 001000001
1//SYSUTl DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN», C001200001
1// SPACE=(1024, (200,20» 001400001 L __ J

Figure 35. Statements in the LKED Cataloged Procedure

Job Control Language Summary 115

Inyokinq the LKED Procedure: To invoke the LKED procedure, code the
following EXEC statement:

//stepname EXEC LKED

where stepname is optional and is the name of the job step.

The following example shows the use of the SYSIN DD * statement:

step A: //LESTEP EXEC LKED
r--,
IOverriding and additional DD statements for the I
ILKED step, each beginning //LKED.ddname... I L __ J

//LKED.SYSIN DD *
r--,
IObject module decks and/or control statements I L __ J

/*
Step B: //EXSTEP EXEC PGM=*.LESTEP.LKED.SYSLMOD

r--,
IDD statements and data for load module execution I L __ J

If data is supplied for the execution step, the data must be followed by
a /* delimiter statement.

step A invokes the LKED procedure and Step B executes the load module
produced in Step A. The job control language statements for these two
steps are combined in LKEDG cataloged procedure.

Procedure LKEDG

The cataloged procedure named LKEDG is a two-step procedure that link
edits the input, produces a load module, and executes that load module.
The statements in this procedure are shown in Figure 36. The two steps
are named LKED and GO. The specifications in the statements in the LKED
step are identical to the specifications in the LKED procedure.

GO Step: The EXEC statement specifies that the program to be executed
is the load module produced in the LKED step of this job. This module
was stored in the data set described on the SYSLMOD DD statement in that
step. (If a NAME statement was used to specify a member name other than
that used on the SYSLMOD statement, use the LKED procedure.)

The condition parameter specifies that the execution step is bypassed
if the return code issued by the LKED step is greater than 4. If the
LET option is to be effective, the condition parameter must be
overridden. The new condition parameter must specify that the execution
step is bypassed if S is less than the return code issued. That is,
COND=(S,LT,LKED) must be specified.

116

r--,
J//LKED EXEC PGM=IEWL,PARM='XREF,LIST,LET,NCAL',REGION=96K 000200001
\//SYSPRINT DD SYSOUT=A 000400001
I//SYSLIN DD DDNAME=SYSIN 000600001
I//SYSLMOD DD DSNAME=&&GOSET(GO),SPACE=<1024,(SO,20,1), C000800001
\// UNIT=SYSDA,DISP=(MOD,PASS> 001000001
1//SYSUTl DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN», C001200001
1// SPACE=(1024, (200,20) 001400001
\//GO EXEC PGM=*.LKED.SYSLMOD,COND=(4,LT,LKED) 001600001 l __ J

Figure 36. Statements in the LKEDG Cataloged Procedure

Invoking the LKEDG Procedure: To invoke the LKEDG procedure, code the
following EXEC statement:

//stepname EXEC LKEDG

where stepname is optional and is the name of the job step.

The following example shows the use of the SYSIN DD * statement with
the LKED procedure:

//TWOSTEP EXEC LKEDG
r--,
IOverriding and additional DD statements for the LKED step, each I
Ibeginning //LKED.ddname ••• I L __ J

//LKED.SYSIN DD *
r--,
I Object module decks and/or control statements I L __ ~ _______________________ J

/*

r--,
IDD statements for the GO step, each beginning //GO.ddname ••• I L __ J

//GO.SYSIN DD *
r--,
IData for the GO step I L __ J

/*

OVERRIDING CATALOGED PROCEDURES

The programmer may override any of the EXEC or DD statement
specifications in a cataloged procedure. These new specifications
remain in effect only for the duration of the job step. For a detailed
description of overriding cataloged procedures, see the publication IBM
§Y§tem/360_0perating System: Job COQ~~Q!_~~gg~ge Reference.

Overriding the EXEC Statement

The EXEC statement in a cataloged procedure is overridden by
specifying the changes and additions on the EXEC statement that invokes

Job Control Language Summary 117

the cataloged procedure. The stepname should be specified when
overriding the EXEC statement parameters.

For example, the REGION parameter can be increased for the 12SK
design size of the level F editor as follows:

//LESTEP EXEC LKED,REGION.LKED=136K

The rest of the specifications on the EXEC statement of procedure LKED
remain in effect.

If the PARM field is to be overridden, all of the options specified
in the cataloged procedure are negated. That is, if XREF, LIST, LET, or
NeAL is desired when overriding the PARM field, they must be
respecified. In the following example, the OVLY option is added and the
NCAL option is negated:

//LESTEP EXEC LKED,PARM.LKED='OVLY,XREF,LIST,LET'

As a result, the XREF, LIST, and LET options are retained, but the NCAL
option is negated; when NCAL is negated, a SYSLIB DD statement must be
added.

If procedure LKEDG is used, and the LET option is to be effective,
the condition parameter of the GO step must be overridden, as follows:

//LEEX EXEC LKEDG,COND.GO=(S,LT,LKED)

Overriding DD Statements

Any of the DD statements in the cataloged procedures can be
overridden as long as the overriding DD statements are in the same order
as they appear in the procedure. If any DD statements are not
overridden, or overriding DD statements are included but are not in
sequence, the specifications in the cataloged procedure are used.

Only those parameters specified on the overriding DD statement are
affected; the rest of the parameters remain as specified in the
procedure. In the following example, the output load module is to be
placed in a permanent library:

//LIBUPDTE
//LKED.SYSLMOD
//LKED.SYSIN

EXEC
DD
DD

LKED
DSNAME=LOADLIB(PAYROLL),DISP=OLD
DSNAME=OBJMOD,DISP=(OLD,DELETE)

Unit and volume information should be given if these data sets are not
cataloged.

As a result of the statements in the example, the LKED procedure is
used to process the object module in the OBJMOD data set. The output
load module is stored in the data set LOADLIB with the name PAYROLL.
The SPACE parameter on the SYSLMOD DD statement and the other
specifications in the procedure remain in effect.

118

ADDING DD STATEMENTS

The DD statements for additional data sets can be supplied when using
cataloged procedures. These additional DD statements must follow any
overriding DD statements, and must precede a DD * statement.

In the following example, the automatic library call mechanism is to
be used along with the LKEDG procedure:

//CPSTEP
//LKED.SYSLMOD
//LKED.SYSLIB
//LKED.SYSIN

EXEC
DD
DD
DD

LKEDG, PARM. LKED=' XREF, LIST'
DSNAME=LOADLIB(TESTER),DISP=OLD, •••
DSNAME=SYS1.PL1LIB,DISP=SHR

* r--,
IObject module decks and/or control statements I L __ J

/*
//GO.SYSIN DD *
r--,
IData for execution step I L __ J

1*

The NCAL option is negated, and a· SYSLIB DD statement is added between
the overriding SYSLMOD DD statement and the SYSIN DD statement.

Job Control Language Summary 119

This chapter summarizes the linkage editor control statements. The
description of each statement includes:

• What the statement does

• The format of the statement

• Placement of the statement in the input

• Notes on use, if any

• One or more examples that include job control language statements,
when necessary.

The control statements are described in alphabetical order. Before
using this chapter, the user should be familiar with the following
information on general format, format conventions, and placement.

General Format

Each linkage editor control statement specifies an QE~f~1!Qn and one
or more Q2erands. Nothing must be written preceding the operation,
which must begin in or after column 2. The operation must be separated
from the operand by one or more blanks.

A control statement can be continued on as many cards as necessary by
terminating the operand at a comma, and by placing a nonblank character
in column 72 of the card. continuation must begin in column 16 of the
next card. A symbol cannot be split; that is, it cannot begin on one
card and be continued on the next.

Format Conventions

The following conventions are used in the formats to describe the
coding of the linkage editor control statements:

• upper-case letters and words must be coded exactly as shown.

• Lower-case letters and words represent variables for which specified
information is substituted.

• Parentheses, commas, and asterisks, when shown, are required.

• Items within braces, { }, are required and must be specified.

Linkage Editor Control Statement Summary 121

• Items within brackets, [J, are optional and may be omitted.

• stacked items, enclosed in either braces or brackets, represent
alternative items; only one item should be specified.

• The ellipsis (•••) indicates that the preceding unit may occur
once, or any number of times in succession.

Placement Information

Linkage editor control statements are placed before, between, or
after modules. They can be grouped, but they cannot be placed within a
module. However, specific placement restrictions may be imposed by the
nature of the functions being requested by the control statement. Any
placement restrictions are noted.

122

ALIAS Statement

The ALIAS statement specifies additional names for the output library
member, and can also specify names of alternative entry points. Up to
16 names can be specified on one ALIAS statement, or separate ALIAS
statements for one library member. The names are entered in the
directory of the partitioned data set in addition to the member name.

Format: The format of the ALIAS statement is:

r---------T--,
I Operation I Operand I
~---------f--~
I I{SYmbOI } [, symbol] I
I ALIAS I ••• I
I I external name ,external name I L _________ ~ __ J

symbol
specifies an alternate name for the load module.- When the module
is executed, the main entry point is used as the starting point for
execution.

external name
specifies a name that is defined as a control section name or entry
name in the output module. When the module is called for
execution, execution begins at the external name referred to.

Placement: An ALIAS statement can be placed before, between, or after
object modules or other control statements. It must precede a NAME
statement used to specify the member name, if one is present.

• In an overlay program, an external name specified by the ALIAS
statement must be in the root segment.

• No more than 16 alias names can be assigned to one output module.

• Each alias specified for a load module is retained in the directory
entry for the module: the linkage editor does not delete an old
alias. Therefore, each alias that is specified must be unique;
assigning the same alias to more than one load module can cause
incorrect module reference.

Example: An output module, ROUT1, is to be assigned two alternate entry
points, CODEl and CODE2. In addition, calling modules have been written
using both ROUTl and ROUTONE to refer to the output module. Rather than
correct the calling modules, an alternative library member name is also
assigned.

ALIAS
NAME

CODE1,CODE2,ROUTONE
ROUTl

Since CODEl and CODE2 are entry names in the output module, when these
names are used to call the module, execution begins at the point
referred to. The modules that call the output module with the name
ROUTONE now correctly refer to ROUTl at its main entry point. The names
CODE1, CODE2, and ROUTONE appear in the library directory along with
ROUT1.

Linkage Editor Control Statement summary 123

CHANGE Statement

The CHANGE statement causes an external symbol to be replaced by the
symbol in parentheses following the external symbol. The external
symbol to be changed can be a control section name, an entry name, or an
external reference. More than one such substitution may be specified in
one CHANGE statement.

Format: The format of the CHANGE statement is:

.--------7--,
I Operation I Operand I
~---------+--~
I CHANGE \ external symbol (newsymbol) [,externalsymbol(newsymbol)]... \ L _________ ~ __ J

externalsymbol
is the control section name, entry name, or external reference that
is to be changed.

newsymbol
is the name to which the external symbol is to be changed.

Placement: The CHANGE control statement must be placed immediately
before either the module containing the external symbol to be changed,
or the INCLUDE control statement specifying the module.

• External references from other modules to a changed control section
name or entry name remain unresolved unless further action is taken.

• If the symbol specified on the CHANGE statement is inadvertently
misspelled, the symbol will not be changed. Linkage editor output,
such as the cross-reference listing or module map, can be used to
verify each change.

Example 1: Two control sections in different modules have the name
TAXROUT. Since both modules are to be link edited together, one of the
control section names must be changed. The mOdule to be changed is
defined with a DD statement named OBJMOD. The control section name
could be changed as follows:

//OBJMOD DD DSNAME=TAXES,DISP=(OLD,KEEP), •••
//SYSLIN DD *

/*

CHANGE TAXROUT(STATETAX)
INCLUDE OBJMOD

As a result, the name of control section TAXROUT in module TAXES is
changed to STATETAX. Any references to TAX ROUT from other modules are
not affected.

124

Example 2: A load module contains references to TAXROUT that must now
be changed to STATETAX. This module is defined with a DD statement
named LOADMOD. The external references could be changed at the same
time the control section name is changed, as follows:

//OBJMOD DD DSNAME=TAXES,DISP=(OLD,DELETE), •••
//LOADMOD DD DSNAME=LOADLIB,DISP=OLD, •••
//SYSLIN DD *

CHANGE TAXROUT(STATETAX)
INCLUDE OBJMOD
CHANGE TAXROUT(STATETAX)
INCLUDE LOADMOD(INVENTRY)

As a result, control section name TAXROUT in module TAXES and external
reference TAXROUT in module INVENTRY are both changed to STATETAX. Any
references to TAXROUT from other modules are not affected.

Linkage Editor Control Statement Summary 125

ENTRY Statement

The ENTRY statement specifies the symbolic name of the first
instruction to be executed when the program is called by its module name
for execution. An ENTRY statement should be used whenever a module is
reprocessed by the linkage editor. If more than one ENTRY statement is
encountered, the first statement specifies the main entry point; all
other ENTRY statements are ignored.

Format: The format of the ENTRY statement is:

r---------T--, I Operation I Operand I
~--------f--~
I ENTRY \externalname I L _________ ~ __ J

external name
is defined as either a control section name or an entry name in a
linkage editor input module.

Placement: An ENTRY statement can be placed before, between, or after
object modules or other control statements. It lLlust precede the NAME
statement for the module, if one is present.

Notes:

• In an overlay program, the first instruction to be executed must be
in the root segment.

• The external name specified must be the name of an instruction, not
a data name.

Example: In the following example, the main entry point is INIT1:

//LOADLIB DD DSNAME=LOADLIB,DISP=OLD, •••
//SYSLIN DD *

ENTRY INIT1
INCLUDE LOADLIB(READ,WRITE)

ENTRY READIN
/*

INIT1 must be either a control section name or an entry name in the
linkage editor input. The entry point specification of READIN is
ignored.

126

HIARCHY statement

The HIARCHY statement assigns one or more control sections to a
specific storage hierarchy. This provides addressing distinction
between processor storage (hierarchy 0) and IBM 2361 Core Storage
(hierarchy 1). Only one storage hierarchy may be specified on each
BIARCHY statement. All control sections not named in a BIARCBY
statement are marked for loading into processor storage. If a control
section is named on more than one BIARCHY statement, the last statement
processed with the control section name is used to assign a hierarchy.

Format: The format of the BIARCHY statement is:

r---------T--,
I Operation I Operand I
~---------+--~
IHIARCHY I number, csectnamel, csectname1... I L _________ ~ __ J

number
specifies a storage hierarchy and may be either of the following
values:

o for processor storage
1 for IBM 2361 Core Storage

csectname
is the name of the control section to be assigned to the storage
hierarchy.

Placement: A HIARCHY statement can be placed before, between, or after
object modules or other control statements.

• The HIAR attribute must be specified on the EXEC statement when
HIARCHY statements are used.

• If a HIARCHY statement is encountered during the processing of an
overlay program, the HIARCHY statement is ignored.

• Any hierarchy assignment for one or more control sections that is
specified on a LINK, LOAD, XCTL, or ATTACH macro instruction
overrides any assignment made on a HIARCHY statement.

Example: A program contains three control sections (MAINMOD, COMPROUT,
and SUBROUT)i two control sections (COMPROUT and SUBROUT) are to be
assigned to IBM 2361 Core Storage. This could be accomplished as
follows:

IILKED EXEC PGM=IEWL,PARM='HIAR,XREF,LET'

IISYSLIN DD *
HIARCHY 1,COMPROUT,SUBROUT

1*

Control section MAINMOD, which does not have a hierarchy specified for
it, is assigned to processor storage (hierarchy 0).

Linkage Editor Control Statement Summary 127

IDENTIFY Statement

The IDENTIFY statement specifies any data supplied by the user to be
entered into the CSECT Identification (IDR) records for a particular
control section. The statement can be used either to supply descriptive
data for a control section or to provide a means of associating
system-supplied data with executable code.

Format: The format of the IDENTIFY statement is:

r---------T--,
I Operation I Operand I
~---------f-----------------------------,------------------------------~
IIDENTIFY Icsectname('data') [,csectname('data'))... I L _________ ~ __ J

csectname
is the symbolic name of the control section to be identified.

data
specifies up to 40 EBCDIC characters of identifying information.
The user may supply any information desired for identification
purposes.

Placement: An IDENTIFY statement can be placed before, between, or
after other control statenlents or object modules. The IDENTIFY
statement must follow the module containing the control section to be
identified or the INCLUDE statement specifying the module.

Example: In the following example, IDENTIFY statements are used to
identify the source level of a control section, a PTF application to a
control section, and the functions of several control sections.

/*

//LKED
//SYSPRINT
//SYSUTl
//SYSLMOD
//OLDMOD
//PTFMOD
//SYSLIN

EXEC
DD
DD
DD
DD
DD
DD

PGM=IEWL
SYSOUT=A
UNIT=SYSDA,SPACE=(TRK, (10,5»
DSNAME=LOADSET,DISP=OLD
DSNAME=OLD.LOADSET,DISP=OLD
DSNAME=PTF. OBJECT, DISP=OLD

*
(input object deck for a control section named FORT)

IDENTIFY
INCLUDE
IDENTIFY
INCLUDE
IDENTIFY

FORT('LEVEL 03')
PTFMOD(CSECT4)
CSECT4('PTF99999')
OLDMOD(PROG1)
CSECT1('I/O ROUTINE'),CSECT2('SORT ROUTINE'),
CSECT3('SCAN ROUTINE')

X

Execution of this example produces IDR records containing theffollowing
identification data:

• The name of the linkage editor that produced the load module, the
linkage editor version and modification level, and the date of the
current linkage editor processing of the module. This information
is provided automatically.

128

• User-supplied data describing the functions of several control
sections in the module, as indicated on the third IDENTIFY
statement.

• If the language translator used supports IDR, the Identification
records produced by the linkage editor also contain the name of the
translator that produced the object module, its version and
modification level, and the date of compilation.

The IDR records created by the linkage editor can be referenced by using
the LISTIDR function of the IMBLIST service aid program. For
instructions on how to use IMBLIST, see !~~_§Y~!~m~l~Q_QE~~~!!~g_§Y~!~m~
Service Aids.

Linkage Editor Control Statement Summary 129

INCLUDE Statement

The INCLUDE statement specifies sequential data sets and/or libraries
that are to be sources of additional input for the linkage editor.
INCLUDE statements are processed in the order in which they appear in
the input. However, the sequence of data sets and modules within the
output load module does not necessarily follow the order of the INCLUDE
statements.

Format: The format of the INCLUDE statement is:

r--------~--,
I Operation I Operand I
~---------+--~
I INCLUDE Iddname[(membername[,membername] •••)) I
I I [,ddname[(membername[,membername] ••• ») •••) I L _________ ~ __ J

ddname
is the name of a DD statement that describes either a sequential or
a partitioned data set to be used as additional input to the
linkage editor. For a sequential data set, ddname is all that must
be specified. For a partitioned data set, at least one member name
must also be specified.

membername
is the name of or an alias for a member of the library defined in
the specified DD statement. The membername must not be specified
again on the DD statement.

Placement: An INCLUDE statement can be placed before, between, or after
object modules or other control statements.

Note: A NAME statement in any data set specified in an INCLUDE
statement is invalid; the NAME statement is ignored. All other control
statements are processed.

Example 1: In the following example, an INCLUDE statement specifies two
data sets to be the input to the linkage editor:

//OBJMOD DD
//LOADMOD DD

DSNAME=&&OBJECT, DISP=(OLD, DELETE)
DSNAME=LOADLIB,DISP=SHR, •••

//SYSLIN DD *
INCLUDE OBJMOD,LOADMOD(TESTMOD,READMOD)

1*

Note that a DD statement must be supplied for every ddname specified in
an INCLUDE statement.

Example 2: Two separate INCLUDE statements could have been used in the
preceding example, as follows:

INCLUDE OBJMOD
INCLUDE LOADMOD(TESTMOD,READMOD)

130

INSERT Statement

The INSERT statement repositions a control section from its position
in the input sequence to a segment in an overlay structure. However,
the sequence of control sections within a segment is not necessarily the
order of the INSERT statements.

If a symbol specified in the operand field of an INSERT statement is
not present in the external symbol dictionary, it is entered as an
external reference. If the reference has not been resolved at the end
of primary input processing, the automatic library call mechanism
attempts to resolve it.

Format: The format of the INSERT statement is:

r---------T--,
I Operation I Operand I
~---------+--~ I INSERT Icsectname[,csectname)... I L _________ i __ J

csectname
is the name of the control section to be repositioned. A
particular control section can appear only once within a load
module.

Placement: The INSERT statement must be placed in the input sequence
following the OVERLAY statement that specifies the origin of the segment
in which the control section is to be positioned. If the control
section is to be positioned in the root segment, the INSERT statement
must be placed before the first OVERLAY statement.

Note: Control sections that are positioned in a segment must contain
all address constants to be used during execution unless:

• The A-type address constants are located in a segment in the path.

• The V-type address constants used to pass control to another segment
are located in the path. If an exclusive reference is made, the
V-type address constant must be in a common segment.

• The V-type address constants used with the SEGLD and SEGWT macro
instructions are located in the segment.

Linkage Editor Control Statement Summary 131

Example: The following INSERT <and OVERLAY) statements specify the
overlay structure shown in Figure 37:

// EXEC PGM=IEWL,PARM='OVLY, XREF, LIST'

I
esc

t
CSD

1

//SYSLIN DD *
INSERT CSA
INSERT CSB
OVERLAY ALPHA
INSERT CSC,CSD
OVERLAY ALPHA
INSERT CSE

T
CSA

+ C58

I
ALPHA

Figure 37. Overlay Structure for INSERT Statement Example

132

I
CSE

1

LIBRARY statement

The LIBRARY statement can be used to specify:

• Additional automatic call libraries, which contain modules used to
resolve external references found in the program.

• Restricted no-call function: External references that are not to be
resolved by the automatic library call mechanism during the current
linkage editor job step.

• Never-call function: External references that are not to be
resolved by the automatic library call mechanism during any linkage
editor job step.

Combinations of these functions can be written in the same LIBRARY
statement.

Format: The format of the LIBRARY statement is:

r---------T--,
I Operation I Operand I
t---------t--------~---~
I !{ddname (membername [, membername] •••)} !
!LIBRARY I (externalreference[,externalreferencel •••) ,... I
I I *(externalreference{,externalreference] •••) I L _________ ~ __ J

ddname
is the name of a DO statement that defines a library.

membername
is the name of or an alias for a member of the specified library.
Only those members specified are used to resolve references.

external reference

*

is an external reference that may be unresolved after primary input
processing. The external reference is not to be resolved by
automatic library call.

indicates that the external reference is never to be resolved; if
the * (asterisk) is missing, the reference is left unresolved only
during the current linkage editor run.

Placement: A LIBRARY statement can be placed before, between, or after
object modules or other control statements.

Notes:

• If the unresolved external symbol is not a member name in the
library specified, the external reference remains unresolved unless
defined in another input module.

• If the NCAL option is specified, the LIBRARY statement cannot be
used to specify additional call libraries.

Linkage Editor Control statement Summary 133

• Members called by automatic library call are placed in the root
segment of an overlay program, unless they are repositioned with an
INSERT statement.

Example: The following example shows all three uses of the LIBRARY
statement:

// EXEC PGM=IEWL, PARM=' LET,XREF, LIST'
//TESTLIB DD DSNAME=TEST,DISP=SHR, •••

//SYSLIN DD *
LIBRARY TESTLIB(DATA,TIME),(FICACOMP),*(STATETAX)

/*

As a result, members DATE and TIME from the additional library TEST are
used to resolve external references. FICACOMP and STATETAX are not
resolved; however, because the references remain unresolved, the LET
option must be specified on the EXEC statement if the module is to be
marked executable. In addition, STATETAX will not be resolved in any
subsequent reprocessing by the linkage editor.

134

NAME Statement

The NAME statement specifies the name of the load module created from
the preceding input modules, and serves as a delimiter for input to the
load module. As a delimiter, the NAME statement allows multiple load
module processing in one linkage editor job step. The NAME statement
can also indicate that the load module replaces an identically named
module in the output module library.

Format: The format of the NAME statement is:

r---------T--, I operation I Operand I
~---------+--~ I NAME Imembername[(R)] I L _________ ~ __ J

membername

(R)

is the name to be assigned to the load module that is created from
the preceding input modules.

indicates that this load module replaces an identically named
module in the output module library. If the module is not a
replacement, the parenthesized value (R) should not be specified.

Placement: The NAME statement is placed after the last input module or
control statement that is to be used for the output module.

Notes:

• Any ALIAS statement used must precede the NAME statement.

• A NAME statement found in a data set other than the primary input
data set is invalid. The statement is ignored.

Example: In the following example, two load modules, RDMOD and WRTMOD,
are produced by the linkage editor in one job step:

//SYSLMOD DD
//NEWMOD DD
//SYSLIN DD
// DO

/*

NAME RDMOD(R)
INCLUDE NEWMOD
NAME WRTMOO

DSNAME=AUXMODS,DISP=MOD, •••
DSNAME=&&WRTMOD,DISP=OLO
DSNAME=&&RDMOD,DISP=OLD

*

As a result, the first module is named RDMOD and replaces an identically
named module in the output module library AUXMODS; the second module is
named WRTMOD and is added to the library_

Linkage Editor Control Statement summary 135

OVERLAY Statement

The OVERLAY statement indicates either the beginning of an overlay
segment, or the beginning of an overlay region. since a segment or a
region is not named, the programmer identifies it by giving its origin
(or load point) a symbolic name. This name is then used on an OVERLAY
statement to signify the start of a new segment or region.

Format: The format of the OVERLAY statement is:

r---------T--,
I Operation I Operand I
~---------+--~
I OVERLAY Isymbol[(REGION)] I l _________ ~ __ J

symbol
is the symbolic name assigned to the origin of a segment. This
symbol is not related to external symbols in a module.

(REGION)
specifies the origin of a new region.

Placement: The OVERLAY statement must precede the first module of the
next segment, the INCLUDE statement specifying the first module of the
segment, or the INSERT statement specifying the control sections to be
positioned in the segment.

Notes:

• The OVLY option must be specified on the EXEC statement when OVERLAY
statements are to be used.

• The sequence of OVERLAY statements should reflect the order of the
segments in the overlay structure from top to bottom, left to right,
and region by region.

• No OVERLAY statement should precede the root segment.

136

Example: The following OVERLAY and INSERT statements specify the
overlay structure in Figure 38.

// EXEC PGM=IEWL, PARM=' OVLY, XREF, LIST'

//SYSLIN DD
// DD

INSERT CSA

DSNAME=&&OBJ, •••

*
OVERLAY ONE
INSERT CSB
OVERLAY TWO
INSERT CSC
OVERLAY TWO
INSERT CSD
OVERLAY ONE
INSERT CSE,CSF
OVERLAY THREE(REGION)
INSERT CSH
OVERLAY THREE
INSERT CSI

/*

REGION 1

I
eS8

I
TWO I

esc

1

T
CSA

I
ONE

I
eSD

1

I
eSE

+ CSF

1-

--------------------r---------------····-T······---··~ REGION 2 THREE
eSH CSI

..L .l..

Figure 38. Overlay Structure for OVERLAY Statement Example

Linkage Editor Control statement Summary 137

REPLACE Statement

The REPLACE statement specifies one of the following:

• The replacement of one control section with another.

• The deletion of a control section.

• The deletion of an entry name.

A REPLACE statement can specify more than one function.

When a control section is replaced, all references within the input
module to the old control section are changed to the new control
section. Any external references to the old control section from other
modules are unresolved unless changed.

When a control section is deleted, the control section name is also
deleted from the external symbol dictionary unless references are made
to the control section from within the input module. If there are any
such references, the control section name is changed to an external
reference. External references from other modules to a deleted control
section also remain unresolved.

When deleting an entry name, the entry name is changed to an external
reference if there are any references to it within the same input
module.

Format: The format of the REPLACE statement is:

r--------~--, I Operation I Operand I
~---------+--~
I I{Csectname-1[(CSectname-2)]} I
I REPLACE I , • • • I
I I entry name . I L _________ ~ __ J

csectname
is the name of a control section. If only csectname-1 is used, the
control section is deleted; if csectname-2 is also used, the first
control section is replaced with the second.

entry name
is the entry name to be deleted.

Placement: The REPLACE statement must immediately precede either (1)
the module containing the control section or entry name to be replaced
or deleted, or (2) the INCLUDE statement specifying the module.

Notes:

• Unresolved external references are not deleted from the output
module even though a deleted control section contains the only
reference to a symbol.

138

• When some but not all control sections of a separately assembled
module are to be replaced, A-type address constants that refer to a
deleted symbol will be incorrectly resolved, unless the entry name
is at the same displacement from the origin in both the old and the
new control sections.

• If the control section specified on the REPLACE statement is
inadvertently misspelled, the control section will not be replaced
or deleted. Linkage editor output, such as the cross-reference
listing and module map, can be used to verify each change.

Example: In the following example, assume that control section INT7 is
in member LOANCOMP and that control section INTS, which is to replace
INT7, is in data set &&NEWINT. Also assume that control section PRIME
in member LOANCOMP is to be deleted.

//NEWMOD DD
//OLDMOD DD
//SYSLIN DD

ENTRY MAINENT
INCLUDE NEWMOD

DSNAME=&&NEWINT, DISP=(OLD, DELETE)
DSNAME=PVTLIB,DISP=OLD, •••

*

REPLACE INT7CINTS>,PRIME
INCLUDE OLDMOD(LOANCOMP)

/*

As a result, INT7 is removed from the input module described by the
OLDMOD DD statement, and INT8 replaces INT7. All references to INT7 in
the input module now refer to INTS. Any references to INT7 from other
modules remain unresolved. Control section PRIME is deleted; the
control section name is also deleted from the external symbol dictionary
if there are no references to PRIME in LOANCOMP.

Linkage Editor Control statement Summary 139

SETSSI Statement

The SETSSI statement specifies hexadecimal information to be placed
in the system status index of the directory entry for the output module.

Format: The format for the SETSSI statement is:

r---------T--,
I Operation I Operand I
~--------f--~
ISETSSI Ixxxxxxxx I L _________ ~ __ J

xxxxxxxx
represents eight hexadecimal characters (0 through 9 and A through
F) to be placed in the 4-byte system status index of the output
module library directory entry.

Placement: The SETSSI statement can be placed before, between, or after
object modules or other control statements. It must precede the NAME
statement for the module, if one is present.

Note: A SETSSI statement must be provided whenever an IBM-supplied load
module is reprocessed by the linkage editor. If the statement is
omitted, no system status index information is present (see the
publication IBM System/360 Operating System: Maintenance.)

140

This appendix contains sample linkage editor programs. The.material
presented for each program includes a description of the program, the
job control language necessary for the linkage editor job step, linkage
editor control statements (if any), and the linkage editor output. The
sample programs are:

• Link editing a COBOL and a FORTRAN object module (COBFORT).

• Replacing one control section with another by using the REPLACE
statement (RPLACJOB).

• Creating a multiple-region overlay program (REGNOVLY).

• Placing the control statements for the multiple region overlay
program in a partitioned data set, and using them (PARTDS).

The output for each program includes a cross-reference table and module
map, and a control statement listing and diagnostic messages, if any.

SAMPLE PROGRAM COBFORT

Sample program COBFORT link edits a COBOL object module and a FORTRAN
object module to form one load module. The source programs were
compiled in two steps previous to the linkage editor job step, and the
output from each compilation was placed in data set &&OBJMOD.

The job control language for the linkage editor job step of this
sample program is:

//LKED
//SYSUTl
//SYSLIB
//
//SYSLMOD
//
//SYSPRINT
//SYSLIN

Statement
EXEC

SYSUTl

EXEC
DD
DD
DD
DD

DD
DD

PGM=IEWL,PARM='XREF'
DSNAME=&&UT1,UNIT=SYSDA,SPACE=(TRK, (100,10»
DSNAME=SYS1.COBLIB,DISP=SHR
DSNAME=SYS1. FORTLIB, DISP=SHR
DSNAME=&&LOADMD(GO),UNIT=SYSDA,DISP=(NEW,PASS),
SPACE=(TRK, (100,10,1»
SYSOUT=A
DSNAME= & &OBJMOD, DISP=(OLD, DELETE)

Explanation
Causes the execution of the largest level linkage editor
available in the system. The PARM field option requests a
cross-reference table and a module map to be produced on
the diagnostic output data set.

Defines a temporary direct-access data set to be used as
the intermediate data set.

Appendix A. sample Programs 141

Statement
SYSLIB

SYSLMOD

SYSPRINT

SYSLIN

ExE1anation
Defines the automatic call library; the call libraries for
COBOL and FORTRAN are concatenated; both are used to
resolve external references.

Defines a temporary data set to be used as the output
module library; the load module is assigned a member name
of GO, and is pnssed to a subsequent step for execution.

Defines the diagnostic output data set, which is assigned
to output class A.

Defines the primary input data set, &&OBJMOD, which
contains both input object modules; this data set was
passed from a previous job step and is to be deleted at the
end of this job step.

Linkage Editor Output

Figure 39 shows the linkage editor output for COBFORT. The !!~~ing
header indicates the level editor (44K) used, options specified
(XREF,LIST), and the SIZE option values used in decimal (65536 for
value1 and 6144 for value2). Because XREF is specified, the heading
CROSS REFERENCE TABLE precedes the rest of the output.

Part 1 of Figure 39 shows the module map for COBFORT. MAINMOD and
FORTSU are the names of the input control sections. The rest of the
control sections are either from the COBOL automatic call library or
from the FORTRAN automatic call library. (They can be distinguished by
the initial three letters; ILB indicates a COBOL control section, IHC a
FORTRAN control section.) The origin and length (in hexadecimal) of
each control section follows the name.

To the right of each control section is a list of the entry names
defined in each control section. The location (in hexadecimal) of each
entry name is also given. For example, in control section IHCCOMH2 (the
asterisk is not a part of the name; it indicates that the control
section is from the automatic call library), entry name SEQDASD is
defined at location 1720.

Part 2 of Figure 39 shows the cross-reference table for COBFORT. The
table contains the location of any address constant that refers to a
symbol defined in another control section. The symbol that the address
constant refers to is also listed, along with the control section in
which the symbol is defined. For example, at location 250 in control
section MAINMOD (determined by using the module map; 250 falls between
origin 00 and origin 330), an address constant refers to symbol
ILBOSTPO, defined in control section ILBOSTPO.

The entry address is 00 and the ~Q~~!_!g~g~h of the load module is
S8CO. Note that the length of the module is rounded up to a doubleword
boundary.

The disposition m~ssage at the end of the output in Figure 39
indicates that the load module GO has been added to the output module
library. The library did not contain any other module with that name.
The four asterisks identify the message.

142

f
8,
><
> •

f(1
e
"0
(I)

"0
t1 o

I.Q
t1
1lI

~

E ~!~~~e13~f 2~inkage Editor Output for Sample Program COB FORT

~
.r::
.a:

LOCATION REFERS TO SYMBOL IN CONTROL SECTION

250 ILBOSTPO ILBOSTPO
258 FORTSU FORTSU
3CO I BCOM# IHCECOMH

1290 AOCON# IHCFCVTH
1294 ARITH# IHCEFNTH
12BO I HCUOPT IHCUOPT
129C FCVLOUTP IHCFCVTH
12A4 FCVCOUTP IHCFCVTH
12AC FCVZOUTP IHCFCVTH
1268 I HCCOMH2 IHCCOMH2
1240 I HCCOMH2 IHCCOMH2
1248 IHCCOMH2 IHCCOMH2
1645 I HCECOMH IHCECOMH
13FO I HCERRM IHCERRM
1865 IHCECOMH IHCECOMH
1885 I HCECOMH IHCECOMH
3130 I HCERRM IHCERRM
3698 INTSWTCH IHCECOMH
363C IHCUOPT IHCUOPT
369C FIOCS# IHCEFIOS
3950 I HCERRM rHCERRM
47A8 IBCOM# IHCECOMH
5418 I BCOM# IHCECOMH
5420 FIOCSBEP IHCEFIOS
57A8 ADCON# IHCFCVTH

ENTRY ADDRESS 00
TOTAL LENGTH 58CO

NOT EXIST

Figure 39. Linkage Editor Output for Sample Program COBFORT
(Part 2 of 2)

LOCATION REFERS TO SYMBOL

254 ILBODSPO ILBODSPO
25C ILBOSTPl ILBOSTPO
51C SEQDASD IHCCOMH2

1288 FIOCS# I.l::iCEFIOS
12B4 ADJSWTCH IHCEFNl'H
1298 FCVEOUTP rHCFCVTH
12AO FCVIOUTP IHCFCVTH
12A8 FCVAOUTP IHCFCVTH
123C IHCERRE IHCERRM
126C IHCERRM IHCERRM
1244 IHCCOMH2 I.l::iCCOMH2
124C I HCCOMH2 IHCCOMH2
1648 IHCECOMH I.l::iCECOMH
13EC IBCOM# IHCECOMH
1875 IHCECOMH I.l::iCECOMH
3134 I BCOfJl# IHCECOMH
3694 IBCOM# H1CECOMH
3640 INT6SWCH liiCFCV'l'H
36AO ADCON# IHCFCVTH
370C IHCERRM IHCERRM
479C IHCUATBL IHCUATBL
5414 IHCUOPT IrtCUOPT
541C IHCTRCH IhCEl'kCH
57A4 IBCOM# IHCECOMH
S7AC FIOCSBEP ItlCEE'IOS

SAMPLE PROGRAM RPLACJOB

Sample program RPLACJOB shows the use of the REPLACE statement to
replace one control section with another. The source program for the
new control section (NEWMOD) is processed in a previous job step and
passed to the linkage editor job step. The control section (SUBONE) to
be replaced is in an existing load module. Figure 40 shows the linkage
editor output for the job step that created this load module. Note that
the entry address is FO which is the location of the entry point MAINMOD
(specified on the ENTRY control statement).

Job Control Language

The job control language for the replacement job step of this sample
program is:

//LKED
//SYSUTl
//INPUTX
//SYSLMOO
//
//SYSPRINT
//SYSLIN
//
//

EXEC
DD
DD
DO

DD
DD

DD

PGM=IEWL,PARM='XREF,LIST'
DSNAME=&&UT1,UNIT=SYSDA,SPACE=(TRK, (100,10»
DSNAME=LOADLIB,DISP=OLD,UNIT=2311,VOL=SER=DEP613
DSNAME=LOADLIB(GO),DISP=MOD,UNIT=2311,
VOL=SER=DEP613
SYSOUT=A
DSNAME=&&OBJMOD,DISP=(OLD,DELETE),UNIT=2311,
VOL=SER=OEP613

* r--,
ILinkage Editor Control Statements I L __ J

/*

Appendix A. Sample Programs 145

~
~
0\

F44-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF,LIST
DEFAULT OPTION(S) USED - SIZE=(65536,6144)

IEWOOOO ENTRY MAINMOD

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION

SUBONE 00 EF
SUB1 00

MAl NfoilOD FO 146

NAME LOCATION NAME

LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION

11C
ENTRY ADDRESS
TOTAL LENGTH

SUBONE
FO

238

SUBONE

Figure 40. Linkage Editor output for Job step that Created SUBONE

LOCA'lION

Statement
EXEC

SYSUTl

INPU'IX

SYSLMOD

SYSPRINT

SYSLIN

Explanation
Causes the execution of the largest level linkage editor
available in the system. The PARM field options request a
cross-reference table and a module map (XREF), and a
control statement listing (LIST) to be produced on the
diagnostic output data set.

Defines a temporary direct-access data set to be used as
the intermediate data set.

Defines a permanent data set, used later as additional
linkage editor input.

Defines a permanent data set to be used as the output
module library. Note that it is the same data set that was
described on the INPUTX DD statement. The output load
module is added to the data set, under the member name GO.

Defines the diagnostic output data set, which is assigned
to output class A.

Defines the primary input data set, &&OBJMOD, which
contains the object module for the replacement control
section. This data set is temporary and was passed from a
previous job step; it is to be deleted at the end of this
job. 'Ihis statement also concatenates the input stream to
the primary input data set. The input stream contains
linkage editor control statements that must be followed by
a /* statement.

Linkage Editor Control Statements

The input stream contains the linkage editor control statements that
are necessary for the replacement of SUBONE with NEWMOD. The control
statements are:

ENTRY MAINMOD
REPLACE SUBONE(NEWMOD)
INCLUDE INPUTX(GO)

Statement
ENTRY

REPLACE

INCLUDE

ExE!anation
Specifies that the entry point is to be MAINMOD.

Specifies that control section SUBONE in the module that
follows the REPLACE statement is to be replaced by control
section NEWMOD.

Specifies additional input: member GO of the data set
described on the INPUTX DD statement. This library member
contains the control section to be replaced. Since this
member name is identical to that specified on the SYSLMOD
DD statement, the output load module replaces the existing
library member.

Appendix A. Sample Programs 147

Link~ge Editor Output

Figure 41 shows the linkage editor output for sample program
RPLACJOB. The listing header indicates the level editor (44K) used, the
options specified (XREF and LIST), and the SIZE option values used
(65536 for value1 and 6144 for value2).

Because the LIST option is specified, a £Q~!~Q!_~t~!~~~nt_l!§ting is
produced. Each control statement is preceded by a special message
number, IEWOOOO. Because XREF is specified, the heading CROSS REFERENCE
TABLE precedes the rest of the output.

The module map shows that control section NEWMOD is now part of the
load module, and that control section SUBONE has been deleted. The new
entry address is F8, because NEWMOD is longer than SUBONE. The !Q!~!
length of the load module is 240 bytes.

The cross-reference table indicates that at location 124 in MAINMOD,
an address constant refers to symbol NEWMOD, defined in control section
NEWMOD. Note that before the replacement occurred, the address constant
in MAINMOD referred to SUBONE, defined in control section SUBONE (Figure
40). When the REPLACE statement is used to replace a control section,
references to the old control section from within the same input module
are also changed.

The disposit!on mes~aqe indicates that the output load module (GO)
has been added to the output module library.

148

:l:>'
"0
"0
(t)
::s
~
1-"
><
:l:>' .
Cf)
III

~
I-'
(t)

I"d
t1
o

I.Q
t1
III
:3 en

~
~
\0

F4~-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF,LIST

IEWOOOO
IEWOOOO
IEWOOOO

DEFAULT OPTION(S) USED - SIZE=(65536,6144)
ENTRY MAINMOD
REPLACE SUBONE(NEWMOD'
INCLUDE INPUTX(GQ)

CROSS REFERENCE TABLE

CONTROL SECTION

NAME

NEWMOD
MAINMOD

ORIGIN

00
F8

LENGTH

F1
146

ENTRY

NAME LOCATION NAME LOCATION NAME

LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL

124
ENTRY ADDRESS
TOTAL LENGTH

NEWMOD
F8

240

NEWMOD

Figure 41. Linkage Editor output for Sample Program RPLACJOB

LOCATION NAME LOCATION-

IN CONTROL SECTION

SAMPLE PROGRAM REGNOVLY

Sample program REGNOVLY creates a multiple-region overlay structure.
The structure produced is shown in Figure 42. In this program, some of
the references between control sections are:

eSA to eSE
eSB to eSE
eSB to CSO
eso to ese

The reference from eSB to CSE is a valid exclusive call because there is
a reference to eSE in the segment common to both eSB and eSE; the
reference from eSD to esc is invalid because there is no reference to
esc in the common segment.

The source programs for all the control sections were compiled in
previous job steps. All of the object modules were placed in the same
data set, which was passed to the linkage editor job step.

REGION 1 T~
CSA > Root $egmeftt 1

"" AlJIIoIA

da >,$ 2 a SegmentS

.,J

"" ·8ETA
""I

cs C > Segment 3 aD > Segment4

.. -. .Jj ~rplli1Iiin .. ------· .. ·T· .. ··········· .. · REGION 2 GAMMA

aF Segment 6 aG Segment 7

1 1
Figure 42. Overlay Tree for Multiple-Region Sample Program REGNOVLY

150

The job control language for the linkage editor job step of this
sample program is:

IILKED
//SYSUTl
IISYSLIB
I/SYSLMOD
II
I/SYSPRINT
IISYSLIN
II

EXEC
DD
DD
DD

DD
DD
DD

PGM=IEWL,PARM='XREF,LIST,OVLY,LET'
DSNAME=&&UT1,UNIT=SYSDA,SPACE=(TRK, (100,10»
DSNAME=SYS1.COBLIB,DISP=SHR
DSNAME=&&OVLYJB(GO),UNIT=SYSDA,DISP=(NEW,PASS),
SPACE=(TRK, (100,10,1»
SYSOUT=A
DSNAME=&&OBJMOD, DISP= (OLD,DELETE)

* r--,
ILinkage Editor Control statements I l __ J

1*

Statement
EXEC

SYSUTl

SYSLIB

SYSLMOD

SYSPRINT

SYSLIN

Ex£.!~~ti2!!
Causes the execution of the largest level linkage editor
available in the system. The PARM field options request a
cross-reference table and a module map (XREF), and a
control statement listing (LIST) to be produced on the
diagnostic output data set. The module is to be assigned
the overlay attribute (OVLY), and marked executable in
spite of severity 2 errors (LET). The LET option is
specified to permit testing of the output module, even
though an invalid exclusive call is present. The XCAL
option allows only valid exclusive calls.

Defines a temporary direct-access data set to be used as
the intermediate data set.

Defines the automatic call library (SYS1.COBLIB) to be used
to resolve external references. All control sections from
this library are placed in the root segment; they remain
there unless they are repositioned.

Defines a temporary data set to be used as the output
module library; the load module is assigned the member name
GO and is passed to a subsequent step for execution.

Defines the diagnostic output data set, which is assigned
to output class A.

Defines the primary input data set, &&OBJMOD, which
contains the object modules for the overlay structure.
This data set is temporary and was passed from a previous
job step; it is to be deleted at the end of this job. This
statement also concatenates the input stream to the primary
input data set. The input stream contains linkage editor
control statements, which must be delimited by a 1*
statement.

Appendix A. Sample Programs 151

Linkage Editor Control Statements

The input stream contains the linkage editor control staterr.ents that
structure the overlay program. The control statements are:

INSERT CSA
ENTRY CSA
OVERLAY ALPHA
INSERT CSB
OVERLAY BETA
INSERT CSC
OVERLAY BETA
INSERT CSD
OVERLAY ALPHA
INSERT CSE
OVERLAY GAMMA(REGION)
INSERT CSF
OVERLAY GAMMA
INSERT CSG

Linkage Editor Output

Figure 43 shows the linkage editor output for sample program
REGNOVLY. The listin~~g~E indicates the level editor (44K) used, the
options specified (XREF,LIST,OVLY, and LET), and the SIZE option values
used (65536 for value1 and 6144 for value2).

Because the LIST option was specified, the control statement listing
is produced. Each control statement is preceded by a special message
number, IEWOOOO.

The control statement listing is followed by two diagnostic message
numbers (IEW0172 and IEW0182). The explanation of the messages and the
information following each message is given at the end of the output in
the diagnostic message directory.

The output for each segment contains a module map and a
cross-reference table. The segments are listed as they appear in the
overlay structure, top to bottom, left to right, and region by region.
(Note that this is also the sequence in which the OVERLAY and INSERT
statements must be given.)

152

:J:;I
'0
'0
(1)

~
0"
~

:J:;I .
en
01
~
'0
I-'
<D

"tI
1"1
o
~
1"1
01
~ en

ROO'T (.
SEGMENT .

F44-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF,LIST,OVLY,LET
DEFAULT OPTION(S) USED - SIZE=(65536,6144)

IEWOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEW0172
IEW0182

INSERT CSA
ENTRY CSA
OVERLAY ALPHA
INSERT CSB
OVERLAY BETA
INSERT CSC
OVERLAY BETA
INSERT CSD
OVERLAY ALPHA
INSERT CSE
OVERLAY GAMMAtREGION)
INSERT CSF
OVERLAY GAMMA
INSERT CSG

2 CSE
4 CSC

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG. NO~ NAME

$SEG'IAB 00 34 1
CSA 38 362 1
ILBOOSPO* 3AO 6F8 1
ILBOSTPO* A98 35 1

ILBOSTPl
$ENTAB ADO 30 1

LOCATION REFERS TO SYMBOL IN CONTROL SECTION

288 ILBOSTPO ILBOSTPO
290 CSG CSG
298 CSB CSB

CROSS REFERENCE TABLE

LOCATION NAME

AAE

SEG. NO. LOCATION

1 28C
7 294
2 29C

~ Figure 43. Linkage Editor Output for sample Program REGNOVLY
~ (Part 1 'of 3)

LOCATION NAME LOCATION NAt-1E

REFERS TO SYMBOL IN CONTROL SECTION SEG NO

ILBODSPO ILBODSPO 1
CSE CSE ::>
ILBOSTPl ILBOS'IPO 1

~
U'1
.r:

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION

CSB BOO 33A 2
$ENTAB E40 18 2

SEGMENT
2 LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.

D50 ILBOSTPO ILBOSTPO 1
D58 CSE CSE 5
DbO ILBOSTPl ILBOSTPO 1

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION

CSC E58 314 3

SEGM~NT
3

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.

10A8 ILBOSTPO ILBOSTPO 1
lOBO ILBOSTPl ILBOSTPO 1

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION

CSD E58 35A 4
SEGMENT

4

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.

lOAS ILBOSTPO ILBOSTPO 1
lOBO CSC CSC 3

Figure 43. Linkage Editor Output for Sample Program REGNOVLY
(Part 2 of 3)

NAME LOCATION NAl'lE LOCATION NAlVlt; LOCATION

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. 1.~0.

D54 ILBODSPO ILBODSPO 1
D5C CSD CSD 4

NAME LOCATION NAME LOCATION NAME LOCATION

LOCATION REFERS TO SYMBOL IN CONTROL SLCTIOl~ SEG. i~O

10AC ILBODSPO ILBODSPO 1

NAME LOCATION NAME LOCA'IION NAME LOCATION

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. J:'.l0.

10AC ILBODSPO ILBODSPO 1
lOB4 ILBOSTPl ILBOSTPO 1

:J:,o
'0
'0
(0

::l
0.
1-'-
><
:J:,o .

CONTROL

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION

CSE BOO 314 5

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.

D50 ILBOSTPO ILBOSTPO 1
D58 ILBOSTP1 ILBOSTPO 1

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION

CSF 11B8 2F2 6

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.

1408 ILBOSTPO ILBOSTPO 1

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION

CSG 11B8 314 7

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.

1408 ILBOSTPO ILBOSTPO 1
1410 ILBOSTP1 ILBOSTPO 1

ENTRY ADDRESS 38
TOTAL LENGTH 14DO

****GO DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET

NAME LOCATION NAME LOCATION NAME

LOCATION REFERS TO SYMBOL IN CONTROL SECTION

D54 ILBODSPO ILBODSPO

NAME LOCATION NAME LOCATION NAME

LOCATION REFERS TO SYMBOL IN CONTROL SECTION

140C ILBOSTP1 ILBOSTPO

NAME LOCATION NAME LOCATION NAME

LOCATION REFERS TO SYMBOL IN CONTROL SECTION

140C ILBODSPO I LBODS PO

Cf)
PJ
8
'0
f-'
(0 DIAGNOSTIC MESSAGE DIRECTORY

~
t1
o

\.Q

t1
PJ
8
Ul

~ Figure 43. Linkage Editor Output for Sample Program REGNOVLY
~ (Part 3 of 3)

Sl:.G. NO.

1

SI:.G.

1

SEG.

1

IBM Confidential

Within each segment, a ~Qdu!~_~~E lists the control sections in
ascending sequence according to their assigned origin. The origin,
length, and segment number is listed for each control section, along
with any entry names and the location where each entry name is defined.
For example, the root segment has five control sections: $SEGTAB, which
is always the first control section in the root segment; CSA, which is
from the object module input; ILBODSPO and ILBOSTPO, which are from the
automatic call library and were not repositioned; and $ENTAB, which,
when present, is always the last control section in any segment (as also
in segment 2). One entry name is defined, ILBOSTPl at location AAE in
control section ILBOSTPO.

The cross-reference table for each segment contains all of the
address constants that-refer to symbols defined in other control
sections. The location of the address constant is followed by the
symbol referred to, the control section in which the symbol is defined,
and the segment in which the control section is located. For example,
in the root segment, an address constant at location 290 refers to
symbol CSG, which is defined in control section CSG in segment 7.
Although the region is not given, the overlay tree in Figure 42 shows
that segment 7 is in region 2.

At the end of the output for all the segments is the entry address
and total length. The entry address is 38, which is the origin of CSA,
the specified entry point. The total length given refers to main
storage used, not device storage. The length given, therefore, is that
of the longest path. The longest path is that formed by the root
segment and segments 2, 4, and 7; the length given is 14DO.

However, if the given lengths of the control sections in each segment
are added, the result is l4B3. The discrepancy exists because the given
lengths do not include the padding bytes necessary to make control
sections begin on a doubleword address (multiple of 8). For example, in
the root segment, the length of $SEGTAB is 34; however, the origin of
CSA which follows $SEGTAB is 38 (decimal 56). Four additional bytes are
needed so that the origin of CSA is a multiple of 8.

The di~2osi~ion mes~age indicates that the load module GO has been
added to the output module library. The library did not contain any
other module by that name. The four asterisks identify the message.

The last item in the output for this sample program is the qi~g~Q§tic
me~sa~iEectory. The directory contains the text for the message
numbers listed after the control statement listing. The directory must
be correlated to the information following the number to interpret the
message.

For example, message IEW0172 is an error message which indicates that
an exclusive call was made fE2~ the segment number printed (2) following
the message number to the symbol printed (CSE). The output for segment
2 indicates that this call is at location D58 in control section CSB,
and the symbol is defined in control section CSE in segment 5. This is
the valid exclusive call from CSB to CSE described earlier. (If XCAL
were specified, a warning message is issued instead of an error
message.)

If an invalid exclusive call is detected, message IEW0182 appears as
shown. This is also an error message: it indicates that an invalid
exclusive call was made from segment 4 to symbol CSC. This call is at
location lOBO in control section CSD, and the symbol is defined in
control section CSC in segment 3. This is the invalid exclusive call
from CSD to CSC, also described earlier.

156

IBM Confidential

Sample program PARTDS illustrates that linkage editor control
statements can be placed in a separate data set and then used as input.
For convenience, the control statements are those for sample program
REGNOVLY, described previously_ These control statements are placed in
a partitioned data set. When the member that contains the control
statements is referenced, the linkage editor uses the control statements
to produce the overlay structure shown earlier in Figure 42.

Figure 44 shows the input statements for the IEBUPDTE utility program
used to place the control statements in a partitioned data set. For a
detailed description of this utility program and its use, see the
publication IBM~Y§tem/36Q_Q~~!~t!~g_§Y~~~~1 __ Q~!1!t!~~.

The source programs for all the control sections were compiled in
previous job steps. All the object modules were placed in the same data
set, which was passed to the linkage editor job step. The input modules
are those used for sample program REGNOVLY.

r--,
I//PARTDS JOB ,SMITH,MSGLEVEL(2,O)
I//CTLG EXEC PGM=IEBUPDTE,PARM=(NEW)
1//SYSUT2 DD DSNAME=OVLYLIB,UNIT=2311,VOL=SER=DA028,DISP=NEW,
1// SPACE=(TRK,(10,5,2»,DCB=(LRECL=80,BLKSIZE=80,RECFM=F)
I//SYSPRINT DD SYSOUT=A
I//SYSIN DD *
1./ ADD NAME=OVLY,LEVEL=OO,SOURCE=OO,LIST=ALL
1./ NUMBER NEW1=10,INCR=5
I INSERT CSA
I ENTRY CSA
I OVERLAY ALPHA
I INSERT CSB
I OVERLAY BETA
I INSERT CSC
1 OVERLAY BETA
I INSERT CSD
I OVERLAY ALPHA
I INSERT CSE
1 OVERLAY GAMMA(REGION)
I INSERT CSF
I OVERLAY GAMMA
I INSERT CSG
1./ ENDUP
1/* I L __ J

Figure 44. Input Statements for IEBUPDTE utility Program

Appendix A. Sample Programs. 157

IBM Confidential

The job control language for the overlay program job step of this
sample program is:

//LKED
//SYSUTl
//OVLYCDS
//SYSLIB
//SYSLMOD
//
//SYSPRINT
//SYSLIN
//

EXEC
DD
DD
DD
DD

DD
DD
DD

PGM=IEWL, PARM='XREF, LIST, OVLY, LET'
DSNAME=&&UT1,UNIT=SYSDA,SPACE=(TRK, (100,10»
DSNAME=OVLYLIB,UNIT=2311,VOL=SER=DA028,DISP=OLD
DSNAME=SYS1.COBLIB,DISP=SHR
DSNAME=&&OVLYJB(GO>,UNIT=SYSDA,DISP=(NEW,PASS>,
SPACE=(TRK, (100,10,1)
SYSOUT=A
DSNAME=&&OBJMOD, DISP=(OLD, DELETE)

* r--,
ILinkage Editor Control Statements I L __ J

/*

Statement
EXEC

SYSUTl

OVLYCDS

SYSLIB

SYSLMOD

SYSPRINT

SYSLIN

158

Explanation
Causes the execution of the largest level linkage editor
available in the system. The PARM field options request a
cross-reference table and a module map (XREF), and a
control statement listing (LIST) to be produced on the
diagnostic output data set. The output load module is to
be assigned the overlay attribute (OVLY), and is to be
marked executable despite severity 2 errors (LET).

Defines a temporary direct-access data set to be used as
the intermediate data set.

Defines a permanent data set to be used later as additional
input; this is the partitioned data set which was created
by IEBUPDTE and contains the control statements for
structuring the overlay program.

Defines the automatic call library (SYS1.COBLIB) to be used
to resolve external references. All control sections from
this library are placed in the root segment; they remain
there unless they are repositioned.

Defines a temporary data set to be used as the output
module library; the load module is to be assigned the
member name GO, and is passed to a subsequent step for
execution.

Defines the diagnostic output data set, which is assigned
to output class A.

Defines the primary input data set, &&OBJMOD, which
contains the object modules for the overlay structure.
This data set is temporary and was passed from a previous
job step; it is to be deleted at the end of this job. This
statement also concatenates the input stream to the primary
input data set. The input stream contains linkage editor
control statements that must be delimited by a /*
statement.

IBM Confidential

The input stream contains an INCLUDE statement, as follows:

INCLUDE OVLYCDS{OVLY)

This statement causes the control statements to be read from the
partitioned data set described on the OVLYCDS DD statement. The member
name of the statements is OVLY, the same name used in the ADD statement
for the utility program.

Linkage Editor Output

The output for this sample program is identical to the output from
the REGNOVLY sample program, with one exception. The list of control
statements begins with the statement

IEWOOOO INCLUDE OVLYCDS(OVLY)

This statement is followed by a list of the control statements read from
the additional input data set specified in this INCLUDE statement. The
rest of the output is identical to that shown in Figure 43.

Appendix A. Sample Programs 159

The linkage editor can be invoked by a problem program at execution
time through the use of the ATTACH, LINK, LOAD, or XCTL macro
instruction. Figure 45 shows the basic format of these macro
instructions.

r------------T-------------T---,
'Name ,operation I Operand I
~------------+-------------+---~
I [symbol] I {LINK} I EP=linkedi tname, I
, , ATTACH I PARAM=(optionlist[,ddnamelist]>,VL=l ,

I ~-------------+---~
I I {LOAD} I EP=linkedi tname I
I I XCTL , I L ____________ ~ _____________ ~ ___ J

Figure 45. Macro Instruction Basic Format

EP=linkeditname

PARAM

specifies the symbolic name of the linkage editor. The entry pOint
at which execution is to begin is determined by the control program
(from the library directory entry).

specifies, as a sublist, address parameters to be passed from the
problem program to the linkage editor. The first fullword in the
address parameter list contains the address of the option and
attribute list for the load module. The second fullword contains
the address of the ddname list. 'If standard ddnames are to be
used, this list may be omitted.

optionlist
specifies the address of a variable length list containing the
options and attributes. This address must be written even- though
no list is provided.

The option list must begin on a halfword boundary. The two
high-order bytes contain a count of the number of bytes in the
remainder of the list. If no options or attributes are specified,
the count must be zero. The option list is free form with each
field separated by a comma. No blanks or zeros should appear in
the list.

ddnamelist
specifies the address of a variable length list containing
alternative ddnames for the data sets used during linkage editor
processing. If standard ddnames are used, this operand may be
omitted.

The ddname list must begin on a halfword boundary. The two
high-order bytes contain a count of the number of bytes in the
remainder of the list. Each name of less than 8 bytes must be left
justified and padded with blanks. If an alternate ddname is
omitted from the list, the standard name will be assumed. If the
name is omitted within the list, the 8-byte entry must contain
binary zeros. Names can be omitted from the end by merely
shortening the list.

Appendix B: Linkage Editor Interfaces 161

VL

The sequence of the a-byte entries in the ddnamelist is as follows:

1
2

3
4
5
6
7
8
9-11
12

SYSLIN
member name (the name under which the output

load module is stored in the SYSLMOD data
set; this entry is used if the name is not
specified on the SYSLMOD DD statement or if
there is no NAME control statement)

SYSLMOD
SYSLIB
not applicable
SYSPRINT
not applicable
SYSUTl
not applicable
SYSTERM

specifies that the sign bit is to be set to 1 in the last fullword
of the address parameter list.

When the linkage editor completes processing, a condition code is
returned in register 15 (see "Linkage Editor Return Code").

162

Two levels of the linkage editor are available: level E and level F.
Both can operate as part of any System/360 Operating System; for a
particular system, the design of the linkage editor programs is selected
during system generation.

Both linkage editor programs will accept as input the load modules of
either linkage editor; however, the input records for the level E
program cannot exceed 1K and cannot contain more than one control
section. The input records for the level F program can be any length as
long as value2 of the SIZE parameter is at least as large as the input
record length. The following discussion contrasts the two levels.

Level E: This level is intended for a 32K~ computing system; however,
it can be executed in a larger main storage. Two designs of the level E
program are available: 15K and 18K. These sizes represent the minimum
amounts of main storage that must be available for each of the designs
of the level E linkage editor program.

In comparison, for a given amount of available main storage, the 15K
design has bigger capacities, but the 18K design is faster.

The two designs of the level E program have the same base; i.e., the
logic and control flow of these programs is identical. Each design size
processes programs in all environments where the available main storage
is equal to or greater than the design size.

Level F: This level is intended for a 64K or larger computing system.
Three designs of the level F program are available: 44K, 88K, and 128K.
These sizes represent the minimum amounts of main storage that must be
available for each of the designs of the level F linkage editor program.

In comparison, for a given amount of available main storage, the 44K
design has bigger capacities, but the 88K design is faster. The 128K
design offers the best performance of all.

The three designs of the level F program have the same base; i.e.,
the logic and control flow is identical. Each design size processes
programs in all environments where the available main storage is equal
to or greater than the design size.

Capacities

When the main storage available to either of these programs is
increased, the program has increased capacities for external symbol
dictionary entries, intermediate text records, and relocation dictionary
records.

The capacities of the two linkage editor programs are shown in Table
14. (Different designs of the level E and level F programs are shown
separately.) For the level E program, the capacities are given first
for the program in the minimum amount of available main storage and then
for the program in a greater amount that reflects a typical machine
size.

11K = 1,024 bytes

Appendix C: Linkage Editor Programs 163

Table 14. Capacities of Linkage Editor Programs (Part 1 of 2)
r------------------------------T-------------------T-------------------,
I I E Level I F Level I
I Linkage Editor Program ~---------T---------+-----T------T------~
I I 15K I 18K I 44K I 88K I 128K I
~------------------------------+----T----+----T----f-----+------+------~
IMain storage allocated to I 15KI 18KI 18KI 20KI 44K 1 88K I 128K 1
Iprogram (in bytes) 1 1 1 1 1 I 1 I
~------------------------------+----+----+----+----f-----+------+------~
IMaximum number of entries in I 1191 2291 151 1401 350 I 1098 I 1846 I
Icomposite external symbol I I I I I I I I
Idictionary (ESD) I I I I I I I I
~------------------------------+----+----+----+----+-----+------+------~
IMaximum number of intermediate I 611 1411 351 831 288 I 616 I 1064 I
Itext records 1 1 I 1 1 1 1 I
~------------------------------+----+----f----+----+-----+------+------~
IMaximum number of relocation I 631 1431 311 191 200 I 620 I 1044 1
Idictionary (RLD) records I 1 1 1 I I 1 1
~------------------------------+----+----+----+----+-----+------+------~
IMaximum number of segments perl 331 381 321 341 200 1 255 I 255 ~
I program I 1 I I I 1 1 I
~------------------------------+----+----+----+----+-----+------+------~
IMaximum number of overlay I 41 41 41 41 4 1 4 I 4 I
Iregions per program I I 1 I 1 I I I
~------------------------------+----+----+----+----f-----+------+------~
IMaximum blocking factor for I 11 11 11 11 51 1 40 I 40 I
linput object modules (i.e., I I 1 I I I I I
Inumber of 80-column card I I I I I I I I
I images per physical record) 1 I 1 1 1 1 1 1
~------------------------------+----+----+----+----+-----+------+------~
IMaximum blocking factor for 1 11 11 11 11 51 1 40 I 40 I
ISYSPRINT output (i.e., number 1 1 1 I 1 I I 1
lof 121-character logical 1 1 I 1 I I 1 I
1 records per physical record) I 1 I 1 1 1 1 I
~------------------------------~----~----~----~----~-----~------~------~
1From 52K to 88K for value1 of the SIZE option, the blocking factor I
for input object modules and SYSPRINT output is 10; for value1 1
greater than 88K, the blocking factor is 40. For further information 1
on blocking factors, see the "SIZE Option" section. 1

2When downward compatibility has been specified, the value is 1024. 1
3When downward compatibility has been specified, the value is 1024. I

The maximum output text record length is achieved when value2 of the 1
SIZE parameter is at least twice the record length size. For 1
example, on a 2301, 18432 byte records will be written if value2 is I
at least 36864. t
Note: The block size in the DSCB reflects the maximum block size fori
the device, not necessarily the current record (RECFM=U) size. I L __ J

164

Table 14. capacities of Linkage Editor Programs (Part 2 of 2)
r------------------------------~-------------------T-------------------,
I I E Level I F Level I
I Linkage Editor Program ~---------T---------f-----~------~------~
I I 15K I 18K I 44K I 88K I 128K I
~-------------T----------------+----T----+----T----f-----f------+------i
I IOn IBM 2311 Diskl10241102411024110241307221 30722 1 30722 1
I tStorage Drive I I I I I I I I

~----------------f----f----f----+----+-----f------f------i
IOn IBM 2314,2319110241102411024110241307221 614431 61443 1
Istorage Facility I I I 1 I I I I
~----------------f----+----+----f----+-----f------f------i
IOn IBM 2302 Diskl10241102411024110241307221 40963 1 40963 1

Output text IStorage Drive I I I I I 1 I 1
record length~----------------f----+----+----f----+-----f------f------i
(in bytes) IOn IBM 2301 Druml1024110241102411024130722118432311843231

Istorage Drive I I I I I I I I
~----------------+----f----+----f----+-----f------f------~
IOn IBM 2303 Druml102411Q2411024110241307221 40963 1 40963 1
Istorage Drive I I I I I I I I
t----------------f----+----+---~f----+-----f------f------i
IOn IBM 2321 Datal102411024110241102411024 I 1024 I 1024 I
ICel1 I I I I I I I I
t----------------f----f----f----+----f-----f------f------i
IOn IBM 2305 IN/AI N/AI N/AI N/A13072 2 1133123 1133123 1
IFixed Head I I I I I I I I
IStorage Facility! I I I I I I I
t----------------f----f----f----f----f-----f------f------~
IOn IBM 3330 Diskl N/AI N/AI N/AI N/A13072 2 112288 3 1122883 1
I Storage Facility! I I I ! I I I

t-------------~----------------~----~----~----~----~-----~------~------~
11 From 52K to 88K for value1 of the SIZE option, the blocking factor
I for input object modules and SYSPRINT output is 10; for value1
I greater than 88K, the blocking factor is 40. For further information
I on blocking factors, see the "SIZE Option" section.
12When downward compatibility has been specified, the value is 1024.
13When downward compatibility has been specified, the value is 1024.
, The maximum output text record length is achieved when value2 of the
I SIZE parameter is at least twice the record length size. For
I example, on a 2301, 18432 byte records will be written if value2 is
I at least 36864.
I Note: The block size in the DSCB reflects the maximum block size for
I the device, not necessarily the current record (RECFM=U) size. l __ J

For the composite external symbol dictionary, the number of entries
permitted for either program can be computed by subtracting, from the
maximum number given in Table 14, one entry for each of the following:

• A data definition name (ddname) specified in LIBRARY statements.
• A data definition name (ddname) specified in INCLUDE statements.
• An ALIAS statement.
• A symbol in REPLACE or CHANGE statements that are in the largest

group of such statements preceding a single object module in the
input to the linkage editor.

• The segment table (SEGTAB) in an overlay program.
• An entry table (ENTAB) in an overlay program.

To compute the number of i~tgE~ggi~~g_~g~~_Eg£2Eg~ that will be
produced during processing of either program, add one record for each
group of ~ bytes within each control section, where ~ is the record size
for the intermediate data set. For the level E program, ~ is 1024. For
the level F program, ~ is 1024 minimum; a maximum is chosen depending on

Appendix C: Linkage Editor Programs 165

the amount of main storage available to the linkage editor and the
devices allocated for the intermediate and output data sets.

The number of text records that can be handled by a linkage editor
program is less than the maximums given in Table 13 if the text of one
or more control sections is not in sequence by address in the input to
the linkage editor.

To compute the number of relocation dictionary records in either
program, add one record for each group of 30 relocatable address
constants within each control section. In determining the number of
records, add one record for a remainder of less than 30 address
constants.

There is no maximum limit to the number of CSECT Identification
records associated with a load module produced by the level F linkage
editor. To determine the number of bytes of identification data
contained in a particular load module, use the following formula:

166

269 + 16A = 31B + 2C + ICn + 6) = SIZE

where:

A = the number of compilations or assemblies by a processor
supporting CSECT Identification that produced the object code
for the module.

B the number of pre-processor compiler compilations by a processor
supporting CSECT Identification that produced the object code
for the module.

C the number of control sections in the module with END statements
that contain identification data.

I the number of control sections in the module that contain
user-supplied data supplied during link editing by the optional
IDENTIFY control statement.

n the average number of characters in the data specified by
IDENTIFY control statements.

Notes:

• The size computed by the formula includes space for recording up
to 19 IMASPZAP modifications. When 75% of this space has been
used, a new 251-byte record is created the next time the module
is reprocessed by the linkage editor •

• To determine the approximate number of records involved, divide
the computed size of the identification data by 256.

Example: A module contains 100 control sections produced by 20
unique compilations. Each control section is identified during link
editing by 8 characters of user data specified by the IDENTIFY
control statement. The size of the identification data is computed
as follows:

A 20
I 100
n 8

269 + 320 + 1400 1989 bytes

If the optional user data specified on the IDENTIFY control
statements is omitted, the size can be reduced considerably, as
computed below:

269 + 320 = 589 bytes

For the level E linkage editor, the maximum number of g2~n~~f9_£~!!~
made from a segment to other segments lower in its path is 58; the
maximum for the level F linkage editor can never exceed 340. To compute
the maximum number of downward calls allowed when using the level F
linkage editor, subtract 12 from the SYSLMOD record size and then divide
the difference by 12. Examples of maximum downward calls are 84 for a
SYSLMOD record size of 1024 bytes and 340 for a SYSLMOD record size of
6144 bytes.

Intermediate Data Set

The intermediate data set (SYSUT1) is used by the linkage editor to
hold intermediate data records during processing. The level E linkage
editor always places intermediate data in this data set. The level F
linkage editor places intermediate data in this data set when main
storage allocated for input data or certain forms of out-of-sequence
text is exhausted.

The following direct access devices, if supported by the system, can
be used for this data set:

IBM 2321 Data Cell
IBM 2311 Disk Storage Drive
IBM 2302 Disk Storage Drive
IBM 2303 Drum Storage Drive
IBM 2314 Storage Facility
IBM 2319 storage Facility
IBM 2301 Drum Storage Drive
IBM 2305 Fixed Head storage Facility
IBM 3330 Disk Storage Facility

Linkage Editor Storage Reguirements

The amount of dynamic main storage required by the linkage editor for
execution depends on the design level and on the operating system
configuration used. Table 15 contains the minimum dynamic main storage
required by each design level when used with MFT, and a suggested region
size for each design level when used with MVT.

Appendix C: Linkage Editor Programs 167

Table 15. Minimum Dynamic Storage Requirements for the Linkage Editor

r----------------------------T---,
I I Minimum Storage Requirement I
I Design Level t---------------------T-------------------~
I I MFT I MVT I
~----------------------------t---------------------t-------------------~
I 15K level E I 15, 500 I 24K I
t----------------------------f---------------------f-------------------~
I 18K level E I 18,432 I 26K I
r---------------------------f---------------------t-------------------~
I 44K level F I 45,056 I 54K I
t----------------------------f---------------------t-------------------~
I 88K level F I 90,112 I 96K I
r---------------------------t---------------------t-------------------~
I 128K level F I 131,072 I 136K I L ____________________________ ~ _____________________ ~ ___________________ J

All of the linkage editor programs, except the 128K level F linkage
editor, are in overlay format and use the overlay supervisor. The
storage required by the overlay supervisor must be added to the minimum
dynamic storage requirement for the linkage editor. The amount of
additional storage required depends on the overlay supervisor included
in the system during system generation. Table 16 contains the storage
requirements for the overlay supervisor.

Table 16. Overlay supervisor Storage Requirements
r---------------------------------T------------------------------------,
I Overlay Supervisor I Storage Required I
r------------~-------------------t------------------------------------~
I Basic (MFT) I 436 I
t---------------------------------f------------------------------------~
I Advanced (MFT) I. 512 I
r--------------------------------t------------------------------------~
I Asynchronous (MVT) I 992 I L _________________________________ ~ ____________________________________ J

The storage requirements in Table 15 include the storage required by
the access method modules used by the linkage editor. The linkage
editors use the basic sequential and basic partitioned access methods
(BSAM and BPAM, respectively). A list of access method modules and the
storage they require can be found in the publication !~~_2Y2~~~£~~Q
operating_sys~m:~Qrage~2~!~~~~§·

168

This appendix contains linkage editor diagnostic messages.

Each message contains a severity code that indicates the nature of
the condition causing the message to be generated. severity codes used
in linkage editor diagnostic messages appear as the final position of
the message code and are defined as follows:

r-------------T--,
ISeverity Code I Meaning I
~-------------+--~
I 0 I Indicates a condition that will not cause an error I
I I during execution of the output module. I
r-------------+--i
I 1 I Indicates a condition that may cause an error during I
I I execution of the output module. A module map or I
I I cross-reference table is produced if specified by the I
I I programmer. The output module is marked executable. I
r-------------+--i
I 2 I Indicates an error that could make execution of the I
I I output module impossible. Processing continues. When I
I I possible, a module map or a cross-reference table is I
I I produced if specified by the programmer. The output I
I I module is marked "not executable" unless the LET I
I I option has been specified. I
~-------------+--i
I 3 I Indicates an error that will make execution of the I
I I output module impossible. Processing continues. When I
I I possible, a module map or cross-reference table is I
I I produced if specified by the programmer. The output I
I I module is marked "not executable." I
r-------------+--~
I 4 I Indicates an error condition from which no recovery is\
I I possible. processing terminates. The only output is I
I I diagnostic messages. I L _____________ ~ ___ ~ ____________ J

IEWOOOO (control statement)

EX2lanation: The control statement is printed as a result of
the LIST option.

IEW0012 ERROR - INPUT CONTAINS INVALID TWO-BYTE RELOCATABLE ADDRESS
CONSTANT, CONSTANT HAS NOT BEEN RELOCATED.

EX2lanation: A relocatable A-type or V-type address constant of
less than three bytes has been found in the input.

Appendix D: Linkage Editor Diagnostic Messages 169

Programmer Response: Probable user error. Check assembler
language input for Y-type address constants, which cannot be
relocated. Delete or correct the invalid address constant. If
the problem recurs, do the following before calling IBM for
programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Have the object module input and associated listings
available.

• If the incorrect module is an object module, execute the
LISTOBJ function of the IMBLIST service aid program and save
the resulting object module listing.

IEW0022 ERROR - INPUT CONTAINS INVALID V-TYPE ADDRESS CONSTANT, CONSTANT
HAS NOT BEEN RELOCATED.

Exp!ana~1~ A V-type address constant of less than four bytes
has been found in the overlay structure.

System Action: The constant is not relocated.

Programmer Response: Probable user error. Either (1) specify a
length of four bytes for all V-type address constants; or (2) if
a 3-byte V-type address constant refers to a symbol within its
overlay segment, you can assemble it as an A-type address
constant with an EXTRN statement. One method of isolating an
invalid address constant is (1) link edit with OVLY and XREF
options specified; (2) link edit again without the OVLY option;
(3) compare the external reference lists. Any reference
appearing in the second run and not the first is invalid in an
overlay structure. If the problem recurs, do the following
before calling IBM for programming support:

• Have the output used to isolate the address constant
available.

• Have source listings of all input modules available.

• Make sure that the XREF and LIST options were specified for
the failing job step.

IEW0033 ERROR - INVALID ENTRY POINT FROM END CARD, NO ENTRY POINT
ASSIGNED.

170

]~planation: The entry point for the program was specified as a
relative address in an END card. The entry point that was
specified a~peared to be valid when the END card was processed,
however, the entry point was found to be invalid when the entry
point of the load module was being determined.

syste~Action: No entry point is assigned.

Programmer Response: Check object module input for
completeness. Then either specify an entry point name on the
ENTRY control statement, or, if entry pOints were specified at
compilation or assembly, make sure the object module containing
the desired entry point precedes all other object modules with
assembled or compiled entry points. If the problem recurs, do
the following before calling IBM for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Have the object module input and associated listings
available.

• If the incorrect module is an object module, execute the
LISTOBJ function of the IMBLIST service aid program and save
the resulting object module listing.

IEW0043 ERROR - INPUT CONTAINS INVALID EXTERNAL SYMBOL 10.

~~Ela~ti~ An ESD card is probably mispunched.

§ystem-Action: The invalid item is ignored.

Programmer Response: Probable user error. Check the input
object modules for completeness and proper sequence. If
necessary, either (1) re-create any module which has been in
card form, or (2) isolate the incorrect module by executing the
linkage editor with the NCAL option specified, using the NAME
control statement for each input module. Diagnostic IEW0043
should recur and isolate the incorrect module. Re-create the
module and rerun the step. If the problem recurs, do the
following before calling IBM for programming support:

• Have available the output used to isolate the module as
described above.

• If the incorrect module is a load module, execute the
IMBLIST service aid program, using the OUTPUT=BOTH option of
the LISTLOAD function, and save the resulting load module
and cross-reference listings.

• If the incorrect module is an object module, execute the
LISTOBJ function of the IMBLIST service aid program and save
the resulting object module listing.

• Make sure that the XREF and LIST options were specified for
the failing job step.

IEW0053 ERROR - ENTRY STATEMENT SYMBOL PRINTED IS INVALID (NOT AN
EXTERNAL NAME), NO ENTRY POINT ASSIGNED.

Explanation: The symbolic entry point specified in an ENTRY
statement is not a control section or entry name.

§ystem-Action: No entry pOint is assigned.

PrQgfamme~esp~: Probable user error. Correct the ENTRY
control statement, or make sure that the control section
containing the entry point is included in the input and has not
been accidentally deleted or redefined by a REPLACE or CHANGE
control statement. 'If the problem recurs, do the following
before calling IBM for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Have the object module input and associated listings
available.

• If the incorrect module is an object module, execute the
LISTOBJ function of the IMBLIST service aid program and save
the resulting object module listing.

Appendix 0: Linkage Editor Diagnostic Messages 171

IEW0063 ERROR - END CARD SYMBOL PRINTED IS INVALID (NOT AN EXTERNAL
NAME), NO ENTRY POINT ASSIGNED.

Explanation: The symbolic entry point specified in an END
statement is not a control section or entry name.

§y~~Action: No entry point is assigned.

Pr2~ammer Resp~~: Check that the entry point control section
or entry name has not been accidentally deleted or redefined by
a REPLACE or CHANGE control statement. Check the module
containing the entry point for completeness. If the problem
recurs, do the following before calling IBM for programming
support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Execute the IMBLIST service aid program, using the LISTOBJ
function, and save the resulting listing of the questionable
object module.

• Have the object module input and associated listings
available.

IEW0073 ERROR - ENTRY STATEMENT SYMBOL PRINTED IS NOT IN ROOT SEGMENT OF
OVERLAY STRUCTURE, NO ENTRY POINT ASSIGNED.

Explanation: The entry point specified by the programmer is in
a segment other than the root segment. Either (1) the module
containing the entry point was placed in a segment other than
the root segment by mea~s of the INSERT statement or (2) the
entry point is incorrectly specified on the ENTRY statement.

~stem Action: No entry point is assigned.

Programmer Respons~: Probable user error. Either correct the
ENTRY control statement, or move the module containing the entry
point to the root segment. If the problem recurs, do the
following before calling IBM for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Have the object module input and associated listings
available.

• Execute the IMBLIST service aid program, using the LISTOBJ
function, and save the resulting listing of the questionable
object module.

IEW0083 ERROR - END CARD SYMBOL PRINTED IS NOT IN ROOT SEGMENT OF
OVERLAY STRUCTURE, NO ENTRY POINT ASSIGNED.

172

Explanation: The entry point is in a segment other than the
root segment. Either (1) the INSERT statement was used to place
the control section containing the entry point in another
segment or (2) the symbol specified on the END statement is
incorrect.

System Ac~ No entry point is assigned.

Programmer Respons~: ~probable user error. Move the object
module containing the entry point to the root segment, or
specify an entry point in the root segment using the ENTRY
control statement. If the problem recurs, do the following
before calling IBM for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Execute the IMBLIST service aid program, using the LISTOBJ
function, and save the resulting listing of the questionable
object module.

• Have the object module input and associated listings
available.

IEW0093 ERROR - END CARD ENTRY POINT ADDRESS PRINTED IS NOT IN ROOT
SEGMENT OF OVERLAY STRUCTURE. NO ENTRY POINT ASSIGNED.

Explanation: The entry point is in a segment other than the
root segment. Either (1) the INSERT statement was used to place
the control section containing the entry point in another
segment or (2) the address specified on the END statement is
incorrect.

System Action: No entry point is assigned.

programmer Response: Probable user error. Move the object
module containing the entry point to the root segment, or
specify an entry point in the root segment using the ENTRY
control statement. If the problem recurs, do the following
before calling IBM for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Execute the IMBLIST service aid prqgram, using the LISTOBJ
function, and save the reSUlting listing of the questionable
object module.

• Have the object module input and associated listings
available.

IEW0102 ERROR - INVALID ENTRY POINT ON END CARD, ENTRY POINT IGNORED.

Explanation: A possible entry point for the program was
specified as a relative address in an END card. When the END
card was processed, the control section identification of the
specified entry point was found to be invalid.

System Action: The entry point is ignored. The first valid
entry point encountered is used; if there is none, no entry
pOint is assigned.

Programmer Response: Probable user error. Check the input
object modules for completeness and proper sequence. If
necessary, either (1) re-create any module that has been in card
form, or (2) isolate the incorrect module by executing the
linkage editor with the NCAL option specified, using the NAME
control statement for each input object module. Diagnostic
IEW0102 should recur and isolate the incorrect module.
Re-create the module and rerun the step. If the problem recurs,
do the following before calling IBM for programming support:

Appendix D: Linkage Editor Diagnostic Messages 113

• Have available the output used to isolate the module.
• Execute the IMBLIST service aid program, using the LISTOBJ

function, and save the resulting listing of the questionable
object module.

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Have the job stream and output listing of the step used to
create the incorrect module available.

IEWOl13 ERROR - OUTPUT MODULE CONTAINS NO CONTROL SECTIONS IN ROOT
SEGMENT OF OVERLAY STRUCTURE, NO ENTRY POINT ASSIGNED.

Explanation: There are no control sections in the root segment.
Either (1) all control sections originally in the root segment
have been deleted, or (2) there were no control sections
originally in the root segment, or (3) an OVERLAY statement
preceded the input.

System Action: No entry point is assigned.

Programmer Response: Probable user error. Place at least one
control section in the root segment. If the problem recurs, do
the following before calling IBM for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Have a root segment module and its associated listings
available.

• If the root segment module is a load module, execute the
IMBLIST service aid program, using the OUTPUT=BOTH option of
the LISTLOAD function.

IEW0123 ERROR - NO ESD ENTRIES, EXECUTION IMPOSSIBLE.

174

Explanation: There are no external symbol dictionary entries.
There are no control sections in the output.

§y~tem Action: Processing is terminated.

Pr2~ammer Respons~: Probable user error. Check other messages
issued for cause of error (i.e., invalid input from object
module). Insure that at least one control section appears in
the input and is not deleted by the REPLACE control statement.
If the problem recurs, do the following before calling IBM for
programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Have at least one input module with its associated source
listing available.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

• Execute the IMBLIST service aid program, using the LISTOBJ
function and save the resulting listing of the questionable
object module.

IEW0132 ERROR - SYMBOL PRINTED IS AN UNRESOLVED EXTERNAL REFERENCE.

EXEla~ti~ An external reference is unresolved at the end of
input processing. None of the following is specified:
restricted no-call, never-call, or NCAL.

§ystem Action: The module is marked not executable unless LET
is specified.

Programmer Response: Probable user error. Check that the
reference is valid and not the result of a keypunch or
programming error. If the reference is valid, add the needed
module or alias to one of the input data sets. Make sure the
SYSLIB data set DD statement has been specified, if needed. If
resolution is not desired, specify NCAL, never-call, or
restricted no-call. If the problem recurs, do the following
before calling IBM for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• If the needed module is in a partitioned data set, execute
the IEHLIST utility program, using the LISTPDS function to
print out the data set's directory.

• If the needed module is a load module, execute the IMBLIST
service aid program, using the OUTPUT=XREF option of the
LISTLOAD function, and save the resulting map and
cross-reference listings.

• If the needed module is an object module, have the module
and associated source listing available.

• Make sure that MSGLEVEL=(l,l) was specified in the JOB
statement for the failing job.

• If the module containing the unresolved external reference
is an object module, execute the IMBLIST service aid
program, using the LISTOBJ function, and save the resulting
listing. If the module is a load module, execute the
IMBLIST service aid program, using the LISTLOAD function
with the OUTPUT=BOTH option, and save the resulting listing.

IEW0143 ERROR - NO TEXT.

Explanation: No text remains in the output module. Either (1)
all the control sections originally in the input are deleted or
(2) there are no control sections that originally contained
text.

§yste~Action: Processing is terminated.

Programmer Response: -Probable user error. Check other messages
issued for cause of error <i.e., invalid input from object
module). Insure that at least one control section contains text
and is not deleted by the REPLACE control statement or by
automatic replacement. If the problem recurs, do the following
before calling IBM for programming support:

• Have a module containing text and its associated listing
available.

• Make sure that the XREF and LIST options were specified for
the failing job step.

Appendix D: Linkage Editor Diagnostic Messages 175

• Make sure that MSGLEVEL=(l,l) was specified in the JOB
statement for the failing job.

IEW0152 ERROR - INVALID OVERLAY STRUCTURE, NO CALLS OR BRANCHES MADE
FROM ROOT SEGMENT.

Explanation: There are no calls or branches from the root
segment to a segment lower in the tree structure. Other
segments cannot be loaded.

System Action: The module is marked not executable unless LET
is specified.

Programmer Response: Probable user error. Make sure the root
segment contains a control section that refers to at least one
other segment in the overlay structure by means of a v-type
address constant. If the problem recurs, do the following
before calling IBM for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Have a root segment module which calls another segment
available with its associated listing.

• Execute the IMBLIST service aid program, using the
OUTPUT=EOTH option of the LISTLOAD function, and save the
resulting listings.

IEW0161 WARNING - EXCLUSIVE CALL FROM SEGMENT NUMBER PRINTED TO SYMBOL
PRINTED -- XCAL WAS SPECIFIED.

Explanation: There is a'valid exclusive branch-type reference;
the XCAL option is specified for this job step.

§ystem Action: Processing continues.

Programmer Response: No response is necessary normally. You
can check that the printed branch-type references between
exclusive segments are correct according to your overlay
structure. If you suspect that the message fails to appear when
it should or appears incorrectly, do the following before
calling IBM for programming support:

• Execute the IMBLIST service aid program, using the
OUTPUT=XREF option of the LISTLOAD function, and save the
resulting map and cross-reference listings of the output
load module.

• Have modules that contain the calls and symbol available
with associated source listings.

• Make sure that the XREF and LIST options were specified for
the failing step.

IEW0112 ERROR - EXCLUSIVE CALL FROM SEGMENT NUMBER PRINTED TO SYMBOL
PRINTED.

116

Explanation: A valid branch-type reference is made from a
segment to an exclusive segment; the XCAL option is not
specified.

§ystem Action: The module is marked not executable unless the
LET option is specified.

Programmer Response: Probable user error. Either (1) rearrange
the overlay structure to place both segments in the same path or
(2) specify the XCAL option. If the problem recurs, do the
following before calling IBM for programming support:

• Make sure that the XREF and LIST o,ptions were specified for
the failing job step.

• Have the modules containing the symbol and the calls to it
available with associated listings.

• Execute the IMBLIST service aid program, using the
OUTPUT=XREF option of the LISTLOAD function, and save the
resulting map and cross-reference listings of the output
load module.

IEW0182 ERROR - INVALID EXCLUSIVE CALL FROM SEGMENT NUMBER PRINTED TO
SYMBOL PRINTED.

Explanati~ There is an invalid exclusive branch~type
reference from a segment to a symbol in an exclusive segment.

System Action: The module is marked not executable unless the
LET option is specified.

Programmer Response: Probable user error. Either, (1) place
the segments in the same path, or (2) place a V-type address
constant in a common segment. If the problem recurs, do the
following before calling IBM for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Have the modules containing the symbol and the calls to it
available with associated listings.

• Execute the IMBLIST service aid program, using the
OUTPUT=XREF option of the LISTLOAD function, and save the
resulting map and cross-reference listings of the output
load module.

IEW0191 WARNING - MAIN STORAGE REQUIREMENTS FOR OUTPUT LOAD MODULE HAVE
EXCEEDED S12K BYTES.

Explanation: with MFT, a request block (RB) will not
accommodate an address greater than 524,287.

§ystem Action: Processing continues. The output load module
will run only under MVT.

Programmer Response: Probable user error. If the program is to
be rerun under MFT, divide the load module into several load
modules that are dynamically loaded by assembler language macro
instructions. If the problem recurs, do the following before
calling IBM for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

Appendix D: Linkage Editor Diagnostic Messages 177

IEW0201 WARNING - OVERLAY STRUCTURE CONTAINS ONLY ONE SEGMENT -- OVERLAY
OPTION CANCELLED.

ExElanati~ There are no OVERLAY statements in the input.

§ystem Action: The overlay option is canceled.

Programmer Response: Probable user error. Either place OVERLAY
statements in the input, or remove the OVLY options from the
EXEC statement. If the problem recurs, do the following before
calling IBM for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Make sure that MSGLEVEL=(l,l) was speci~ied on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

• Execute the IMBLIST service aid program, using the
OUTPUT=XREF option of the LISTLOAD function, and save the
resulting map and cross-reference listings of the output
load module.

IEW0212 ERROR - EXPECTED CONTINUATION CARD NOT FOUND.

Explanation: A linkage editor control statement specifying a
continuation <nonblank in column 72) is not followed by a
continuation card.

System Action: The card is not processed as a continuation, but
as normal input.

Progr~~~r Re§E2n§~: Probable user error. Either remove the
nonblank character in column 72 or insert the necessary
continuation record. If the problem recurs, do the following
before calling IBM for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

IEW0222 ERROR - CARD PRINTED CONTAINS INVALID INPUT FROM OBJECT MODULE.

178

Explanation: A control statement may have been placed within an
object module, or a record that is not an object module record
contains a non-blank character in column 1.

§ysteill-Ac~ The questionable record is ignored and
processing continues.

Programmer Response: Probable user error. Check object module
input for invalid records. Column 1 should contain a 12-2-9
punch. Columns 2-4 should contain a TXT, RLD, ESD, END, or SYM
identifier. Because any record with a non-blank punch is taken
as an object module record, this error message can also occur
when a control statement is erroneously begun in column 1.
Remove incorrect records or re-create the module, and rerun the
job. If the problem recurs, do the following before calling IBM
for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Have object module input available.

IEW0232 ERROR - INPUT FROM LOAD MODULE IS INVALID.

ExplanatiQB: An unrecognizable record type was found while
reading a load module.

System Action: The questionable record is ignored and
processing continues.

Programmer Response: Probable user error. (1) Check that all
input data sets are specified ,correctly on DD statements.
(2) If load module input occurs in the primary input, rerun the
step with the NCAL option specified. If error message IEW0232
recurs, the incorrect load module is in primary input. Other­
wise it is in SYSLIB input. (3) Isolate the incorrect load
module by executing the linkage editor with INCLUDE and NAME
statements for each suspect load module. When the incorrect
load module is isolated, re-create it and rerun the job step.
If the incorrect load module contains CSECT identification rec­
ords (IDRs) and is processed by a version of a linkage editor
earlier than Release 21.0 of the operating system, obtain a
later version of the linkage editor that supports IDRs and rerun
the job step. If the problem recurs, do the following before
calling IBM for programming support:

• If, an incorrect load module was created, execute the IMBLIST
service aid program, using the OUTPUT=MODLIST option of the
LISTLOAD function, and save the resulting listing •

• Make sure that the XREF and LIST options were specified for
the failing job step.

IEW0241 WARNING - EXTERNAL SYMBOL PRINTED IS DOUBLY DEFINED -- ESD TYPE
DEFINITIONS CONFLICT.

~~planatiQB: Probable user error. Two identical external names
have been found in the input. (1) The invalid match involves a
label reference (LR) or label definition (LD) matching an
existing section definition (SD), common <CM) or label reference
(LR). The section definition for the input LR or LD must be
marked delete in order for this not to be an error. (2) It is
always invalid for a CM to match an existing LR.

system Action: References to the name are resolved with respect
to the first occurrence of the name.

Appendix D: Linkage Editor Diagnostic Messages 179

Programmer Response: Probable user error. Correct the existing
symbol conflict. To isolate the problem, load module symbols
can be printed using the LISTLOAD function of the IMBLIST
service aid program, specifying the OUTPUT=XREF option. Object
module symbols can be printed using the LISTOBJ function of the
IMBLIST service aid program. If the error recurs, do the
following before calling IBM for programming support:

• Have all object module and load module input available.

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Have the output of IMBLIST available.

IEW0254 ERROR - TABLE OVERFLOW -- TOO MANY EXTERNAL SYMBOLS IN ESD.

Explanati~ There are too many external symbols or control
statement operands in the problem program.

System Action: Processing is terminated.

Programmer Response: Probable user error. Check that no
unnecessary modules or control statements are included in the
input. Then, either (1) increase the linkage editor's table
space by increasing value1 (or decreasing value2) of the SIZE
parameter, making sure the region or partition size is also
increased, if necessary; or (2) reduce the number of external
symbols in the input (control sections, entry points, and named
common areas). If the problem recurs, do the following before
calling IBM for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

IEW0264 ERROR - TABLE OVERFLOW -- INPUT MODULE CONTAINS TOO MANY
EXTERNAL SYMBOLS IN ESD.

180

Explanation: Either (1) an input module contains too many
external symbols in the ESD or (2) an ESD card is mispunched.

System Action: Processing is terminated.

Programmer Response: Probable user error. Check that input
object modules are complete and not mispunched. Then either (1)
break down any large input module into a number of smaller
modules, or (2) increase the linkage editor's table space by
increasing value1 (or decreasing value2) of the SIZE parameter,
making sure the region or partition size is also increased, if
necessary. If the problem recurs, do the following before
calling IBM for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Have all object and load module input available.

• Execute the IMBLIST service aid program, using the LISTOBJ
function, and save the resulting listing of the questionable
object module.

IEW0212 ERROR - LOAD MODULE FROM LIBRARY SPECIFIED UNACCEPTABLE TO
LEVEL (x).

Explanation: In the message text, ~ is either E for the level E
linkage editor or F for the level F linkage editor.

When the load module was created, it was marked not editable,
or, for the level E, the downward compatible attribute was not
specified.

Syste~~ The load module is not accepted as input.

Programmer Response: Probable user error. If the module is
unacceptable because it is marked not editable, it must be
re-created before it can be input to either linkage editor. If
the module is unacceptable because it has not been marked
downward compatible, either re-create the module or rerun the
step using the level F linkage editor. If the problem recurs,
do the following before calling IBM for programming support:

• Execute the IEHLIST utility program, using the LISTPDS
function with the FORMAT option to print out the module's
directory entry and show the not editable and downward
compatible indicators.

• Make sure that the XREF and LIST options were specified for
the failing job step.

IEW0284 ERROR - DDNAME PRINTED CANNOT BE OPENED.

Explanation: The specified data set cannot be opened. The DD
statement defining the data set is missing.

§ystem Action: Processing is terminated.

Programmer Response: Probable user erro~. Either (1) supply
the missing DD statement, or (2) correct erroneous information
on the DD statement. If the linkage editor was invoked by a
macro instruction such as LINK rather than through the EXEC
statement, make sure the ddname list, if passed, was correct.
If the problem recurs, do the following before calling IBM for
programming support:

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• If possible, execute the IEHLIST utility program, using the
LISTVTOC function to print out the Data Set Control Block
for the data set that cannot be opened.

• Have the associated job stream and output listings
available.

IEW0294 ERROR - DDNAME PRINTED HAD SYNCHRONOUS ERROR.

Explanation: ~ither (1) a physical uncorrectable I/O error
occurred, or (2) an object module is missing an END card as the
last card, or (3) if the data definition name that was printed
is for a DD statement that defines a blocked input data set of
fixed format, an input record larger than the specified block
size or logical record length was found.

Appendix D: Linkage Editor Diagnostic Messages 181

System Action: Processing was terminated. The data definition
name in the name field of the DD statement for the input data
set was printed after the message code. If an 1/0 error
occurred, the information provided by the SYNADAF macro
instruction was printed after the message code in the following
format: SYNAD EXIT, jobname, stepname, unit address, device
type, ddname, operation attempted, error description, block
count or BBCCHHR, access method.

Proqrammer Response: For any fixed format, specify the correct
block size. If the block size was correct and the data set was
an input data set, re-create or restore the data set. If the
problem recurs, do the following before calling IBM for
programming support:

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• If possible, execute the IEHLIST utility program using the
LISTVTOC function to print out the Data Set Control Block
for the data set containing the error.

• Have the associated job stream and output listings
available.

IEW0302 ERROR - INVALID STATEMENT -- SCAN TERMINATED.

Explanation: Either (1) there is an error on a linkage editor
control statement, or (2) an OVERLAY control statement was
encountered and the OVLY attribute was not specified on the EXEC
statement, or (3) a HIARCHY control statement was encountered
and the HIAR attribute was not specified on the EXEC statement.

System Action: A statement in error is accepted as input up to
the point of the error: the OVERLAY statements are ignored and
the module is not in overlay format.

Programmer Response: Probable user error. Either (1) correct
the error, if necessary, or (2) specify OVLY on the EXEC
statement, or (3) specify HIAR on the EXEC statement. If the
problem recurs, do the following before calling IBM for
programming support:

• Make sure the LIST option was specified for the failing job
step.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the associated job stream and output listings
available.

IEW0314 ERROR - MAXIMUM NUMBER OF REGIONS (four) EXCEEDED.

182

Explanation: There are five or more regions specified in this
overlay structure.

System Action: Processing is terminated.

Programmer Re£Eons~: Probable user error. Reduce the number of
regions in the overlay structure to four. If the problem
recurs, do the following before calling IBM for programming
support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

IEW0324 ERROR - MAXIMUM NUMBER OF SEGMENTS EXCEEDED.

Explanation: Either (1) the number of segments exceeded 256; or
(2) the number of segments, although less than 256, could not be
handled in existing table and buffer space.

~ste!!LAction: Processing is terminated.

Programmer Re~ons~: Probable user error. If the number of
segments in the overlay structure exceeded 256, reduce it to
256. Otherwise, increase linkage editor table and buffer space
by increasing value~ of the SIZE parameter. Be sure to increase
region or partition size also, if necessary. If the problem
recurs, do the following before calling IBM for programming
support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW0332 ERROR - MAXIMUM NUMBER OF ALIASES EXCEEDED, EXCESS IGNORED.

Explanation: More than sixteen aliases were specified for the
output load module.

~stem Action: The excess aliases are ignored.

Programmer Re2E~~:
the number of aliases,
under a different name
If the problem recurs,
programming support:

Probable user error. Either (1) reduce
or (2) create a second copy of the module
with the additional aliases specified.
do the following before calling IBM for

• Make sure the LIST option was specifed for the failing job
step.

• Execute the IEHLIST utility program, using the LISTPDS
function to print out the directory entries for the
partitioned data set containing the output load module.

IEW0342 ERROR - LIBRARY SPECIFIED DOES NOT CONTAIN MODULE.

Explanation: The module or alias name specified on an INCLUDE
or LIBRARY control statement was not found in the specified
library.

~stem Action: Any references to the module are not resolved.
The output load module is marked not executable unless the LET
option has been specified.

Appendix D: Linkage Editor Diagnostic Messages 183

Programmer Response: Probable user error. Correct the library
or module name on the DD, INCLUDE, or LIBRARY control statement.
If the problem recurs, do the following before calling IBM for
programming support:

• Execute the IEHLIST utility program, using the LISTPDS
function to print out the library's directory entries.

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW0354 ERROR - TABLE OVERFLOW -- TOO MANY CALLS BETWEEN CONTROL
SECTIONS.

Explanation: There are too many v-type address constants
referring to external symbols in a program that is being
structured in overlay. The table recording these v-type address
constants has overflowed.

§ystem Action: Processing is terminated.

Programmer Response: Probable user error. Either (1) increase
the linkage editor'S table space by increasing value1 (or
decreasing value2) of the SIZE parameter, making sure the region
or partition size is also increased, if necessary; or (2) reduce
the number of V-type address constants by combining control
sections; or (3) change V-type address constants that do not
refer across segments to A-type address constants with EXTRN
statements. If the pro~lem recurs, do the following before
calling IBM for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW0364 ERROR - TABLE OVERFLOW INPUT TEXT EXCEEDED MAXIMUM OR TOO

184

MANY CHANGES OF ORIGIN IN INPUT.

Explanation: There are too many discontinuities in the input
addresses of text or too much text for the linkage editor to
handle in existing table space.

System Action: Processing is terminated.

Programmer Response: Probable user error. (1) Increase the
linkage editor'S table space by increasing value1 (or decreasing
value2) of the SIZE parameter, making sure the region or
partition size is also increased if necessary. If this fails,
(2) increase the linkage editor's buffer space by increasing
both value1 and value2 of the SIZE parameter, making sure the
region or partition size is increased proportionately; or (3)
reduce the number of ORG statements specified in assembler

language routines; or (4) break down the step into a number of
link edits, performing only part of the necessary linkage
function in each successive step; or (5) if the SYSLMOD data set
is new (DISP=NEW), make sure that the block size is valid. If
the problem recurs, do the following before calling IBM for
programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Make sure that MSGLEVEL=(l,l) was specified for the JOB
statement for the failing job step.

• Have the job stream and associated output listings
available.

IEW0374 ERROR - TABLE OVERFLOW -- INPUT CONTAINS TOO MANY RELOCATABLE
ADDRESS CONSTANTS OR TOO MANY CONTROL SECTIONS CONTAINING SUCH
CONSTANTS.

Explanation: Either (1) there are too many control sections
with relocation dictionaries or (2) there are too many
relocatable address constants.

§ystem Action: Processing is terminated.

Programmer Response: Probable user error. Either (1) increase
the linkage editor's table space by increasing value1 (or
decreasing value2) of the SIZE parameter, making sure the region
or partition size is also increased, if necessary; or (2) reduce
the number of relocatable address constants in the input. (One
method is to assemble the coding of two or more control sections
into one control section.) If the problem recurs, do the
following before calling IBM for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW0382 ERROR - TEXT RECORD ID IS INVALID, CARD IGNORED.

Explanation: The ID of the text record refers to an invalid
external symbol dictionary entry; i.e., it does not refer to a
section definition entry or a private code entry. The input
deck may be out of sequence or incomplete.

~stem Action: The record is ignored. Processing continues.

Programmer Response: Probable user error. Check the input
object modules for completeness and proper sequence. If
necessary, either (1) recreate any module which has been in card
form, or (2) isolate the incorrect module by executing the
linkage editor with the NCAL option specified, using the NAME
control statement for each input module. Diagnostic IEW0382
should recur and isolate the incorrect module. Recreate the
module and rerun the step. If the problem recurs, do the
following before calling IBM for programming support:

Appendix D: Linkage Editor Diagnostic Messages 185

• Have available the output used to isolate the module as
described above.

• If the incorrect module is a load module, execute the
IMBLIST service aid program, using the OUTPUT=BOTH option of
the LISTLOAD function, and save the resulting load module
and cross-reference listings.

• If the incorrect module is an object module, execute the
LISTOBJ function of the IMBLIST service aid program and save
the resulting object module listing.

• Make sure that the XREF and LIST options were specified for
the failing job step.

IEW0394 ERROR - MEMBER NOT STORED IN LIBRARY -- PERMANENT DEVICE ERROR.

Explanation: This is either an input/output error, or no space
was allocated for the library directory.

§ystem Action: Processing is terminated.

Programmer Response: Check the SYSLMOD data set to make sure it
is a partitioned data set with space allocated for a directory.
If necessary, restore the library to a different volume, and
rerun the job. If the problem recurs, do the following before
calling IBM for programming support:

• Execute the IEHLIST utility program, using the LISTVTOC
function to print out the Data Set Control Block for the
SYSLMOD data set.

• Have the output from a run with the library on a different
volume available.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW0404 ERROR - MEMBER NOT STORED IN LIBRARY -- NO SPACE LEFT IN
DIRECTORY.

186

Explanation: All directory blocks allocated when the output
data set was created have been used.

§yste~Action: The member is not stored in the specified
library.

Programmer Response: Probable user error. Either (1)
reprocess, placing the output module in a new library; when the
original library is used as input, concatenate the new one with
it; or (2) use a utility program to copy the library, allowing
for more directory entries. Edit the member into the new
library. If the problem recurs, do the following before calling
IBM for programming support:

• Execute the IEHLIST utility program, using the LISTVTOC and
LISTPDS statements to print out the Data Set Control Block
and directory entries for the SYSLMOD data set.

• Make sure that the LIST option was specified for the.failing
job step.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW0412 ERROR - ALIAS NOT STORED IN LIBRARY -- NO SPACE LEFT IN
DIRECTORY.

Explanation: All directory blocks allocated when the output
data set was created have been used.

§ystem-Action: The alias is not stored in the specified
library: however, the member can be referred to by the member
name.

PrQ~ammer Response: Probable user error. Either (1)
reprocess, placing the output module in a new library; when the
original library is used as input, concatenate the new one with
it; or (2) use a utility program to copy the entire library
(except the member whose alias was not stored), and allow for
more directory entries. Edit the member into the new library.
If the problem recurs, do the following before calling IBM for
programming support:

• Execute the IEHLIST utility program, using the LISTVTOC and
LISTPDS statements to print out the Data Set Control Block
and directory entries for the SYSLMOD data set.

• Make sure the LIST option was specified for the failing job
step.

• Make sure that MSGLEVEL~(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW0421 WARNING - IDENTICAL NAME IN DIRECTORY, WILL TRY TO STORE UNDER
, TEMP NAME ' •

Explanation:
the library.

The output module name has been used previously in
The replace function is not specified.

system Action: An attempt is made to store the output module
into the library under the name TEMPNAME.

Programmer Response: Probable user error. Either, (1)
reprocess, using a different name in the SYSLMOD DD statement or
NAME statement, or (2) reprocess, and specify the replacement
function for the name originally specified in the SYSLMOD DD
statement or the NAME statement. If the problem recurs, do the
following before calling IBM for programming support:

• Make sure the LIST option was specified for the failing job
step.

• Execute the IEHLIST utility program, using the LISTPDS
statement to print out the directory entries for the SYSLMOD
data set.

Appendix D: Linkage Editor Diagnostic Messages 187

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW0432 ERROR - LIBRARY NAME PRINTED CANNOT BE OPENED, DO CARD MAY BE
M.ISSING.

Explanation: The DO statement that defines the library is
probably missing. This message also results when a sequential
data set (encountered in the processing of an INCLUDE statement)
cannot be opened.

System Action: Processing continues without input from the
specified library.

Progfammer Response: Probable user error. Either supply the
missing DO statement, or correct erroneous information on the DO
statement. If the problem recurs, do the following before
calling IBM for programming support:

• Make sure the LIST option was specified for the failing job
step.

• Execute the IEHLIST utility program using the LISTVTOC
statement to print out the Data Set Control Block for the
data set that can't be opened.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW0444 ERROR - TABLE OVERFLOW -- TOO MANY DOWNWARD CALLS.

188

Explanation: There are too many V-type address constants that
refer to segments lower in the tree structure.

System Action: Processing is terminated.

Programmer Response: Probable user error. Either (1) increase
the linkage editor's table space by increasing value~ (or
decreasing value2) of the SIZE parameter, making sure the region
or partition size is also increased if necessary; or (2) use an
overlay structure with fewer segments. If the problem recurs,
do the following before calling IBM for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW0454 ERROR - TABLE OVERFLOW -- SEGMENT CONTAINS TOO MANY DOWNWARD
CALLS.

Explanation: One segment in the overlay structure contains too
many V-type address constants that refer to segments lower in
the tree structure. The maximum is determined by the size of an
output load module record.

§y~~em Action: Processing is terminated.

Programme~ponse: Probable user error. Either (1) increase
the size of an output load module record by specifying SYSLMOD
~s a library with a larger block size, (2) incorporate some of
the called control sections in the requesting segment, or (3)
divide the requesting segment into two or more segments. If the
problem recurs, do the following before calling IBM for
programming support:

• Make)sure that the XREF and LIST options were specified for
the failing job step.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and output listing of the step used to
create the incorrect module available.

IEW0461 WARNING - SYMBOL PRINTED IS AN UNRESOLVED EXTERNAL REFERENCE,
NCAL WAS SPECIFIED.

Explanation: The NCAL option, restricted no-call, or never-call
function was specified for the external reference.

System Action: The automatic library call mechanism does not
attempt to resolve the external reference.

Programmer Response: No response is ne~essary normally. Check
that the reference is valid and not the result of a keypunch or
programming error. If you wish the reference resolved, either
(1) add the needed module to the primary or included input data
sets; (2) remove the NCAL option, if specified; (3) remove the
LIBRARY statement specifying restricted no-call or never-call;
or (4) if an input load module contained a never-call reference,
re-create the load module without specifying never-call. If the
problem recurs, do the following before calling IBM for
programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• For each load module containing a call to the reference,
execute the IMBLIST service aid program, using the
OUTPUT=XREF option of the LISTLOAD function, and save the
resulting map and cross-reference listings.

• Have available each object module that contains a call to
the reference, and the associated source listing.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

Appendix D: Linkage Editor Diagnostic Messages 189

IEW0472 ERROR - INVALID ALIAS ENTRY POINT IN OVERLAY STRUCTURE.

Explanation: The specified alias entry point is not in the root
segment.

§yste~Action: The entry point for the member name is used.

Programmer ResE~: Probable user error. Respecify the alias,
entry point, or overlay structure. If the problem recurs, do
the following before calling IBM for programming support:

• Have the module containing the alias entry point and its
associated listing available.

• Execute the IMBLIST service aid program, using the
OUTPUT=XREF option of the LISTLOAD function, and save the
resulting map and cross-reference listings of the output
load module.

• Make sure that the XREF and LIST options were specified for
the failing job step.

IEW0484 ERROR - TABLE OVERFLOW -- TOO MANY EXTERNAL SYMBOLS AFFECTED BY
RELOCATION.

~~planati~ There are too many symbols being relocated.

§ystem Action: Processing is terminated.

ProgrammeE-Resp~~: Probable user error. Either (1) increase
the linkage editor's table space by increasing value1 (or
decreasing value2) of the SIZE parameter, making sure the region
or partition size is also increased if necessary; or (2) break
down the step into a number of link edits, performing only part
of the necessary editing function in each successive step. If
the problem recurs, do the following before calling IBM for
programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW0492 ERROR - NAME CARD FOUND IN LIBRARY, CARD IGNORED.

190

Explanation: A NAME statement has been encountered in an
included data set or an automatic call library. NAME statements
may be placed only in the primary input.

system Action: The record is ignored. Processing continues.

Programmer ResEonse: Remove the NAME statement from the library
or sequential data set. Reprocess if the load module is
incorrect. If the problem recurs, do the following before
calling IBM for programming support:

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Execute the IEBPTPCH utility program to print out all
included and automatic call library modules.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW0502 ERROR - ALIAS NOT STORED IN LIBRARY -- PERMANENT DEVICE ERROR.

Explana~ion: The alias could not be stored in the library
directory because of a hardware error.

system Action: The load module has already been stored.

Programmer Response: Execution of the module is possible using
the member name or aliases already stored. The module can be
link edited again with the new alias specified. If diagnostic
IEW0502 appears again, restore the library to a different volume
and rerun. If the problem recurs, do the following before
calling IBM for programming support:

• Have the output from a run with the library on a different
volume available.

• Execute the IEHLIST utility program, using the LISTVTOC and
LISTPDS statements to print out the Data Set Control Block
and directory entries for the SYSLMOD data set.

• Make sure the LIST option was specified for the failing job
step.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW0512 ERROR - INCLUDE STATEMENT SYNTAX CONFLICTS WITH RECORD FORMAT OF
SPECIFIED DATA SET -- DDNAME PRINTED.

Explanation: The INCLUDE statement syntax conflicts with the
characteristics of the data set specified on the DD statement.

§y~te~tion: The specified module is ignored.

PrQgrammer Re~~~: Probable user error. Either (1) specify a
member name on the INCLUDE or DD statement if the data set is
partitioned; or (2) remove all member names from the INCLUDE
statement if the data set is not partitioned. If the problem
recurs, do the following before calling IBM for programming
support:

• Make sure the LIST option was specified for the failing job
step.

• Execute the IEHLIST utility program using the LISTVTOC
statement to print out the Data Set Control Block for the
specified data set.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

Appendix D: Linkage Editor Diagnostic Messages 191

• Have the job stream and associated output listings
available.

IEW0522 ERROR - SPECIFIED DATA SET HAS UNACCEPTABLE RECORD FORMAT
--DDNAME PRINTED.

Explanation: The record format of the specified data set is not
type U or F and cannot be processed by the linkage editor.

~stem AC~ The data set is not processed.

Programmer ResEonse: Probable user error. Correct the data set
specification. If the problem recurs, do the following before
calling IBM for programming support:

• Execute the IEHLIST utility program, using the LISTVTOC
statement to print out the Data Set Control Block for the
rejected data set.

• Make sure the LIST option was specified for the failing job
step.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW0532 ERROR - BLOCKSIZE OF LIBRARY DATA SET EXCEEDED MAXIMUM -- DDNAME
PRINTED.

Exelanation: The block qize of the specified library data set
cannot be handled by the linkage editor.

System Action: The data set is not processed.

Programmer Response: Probable user error. Either (1) decrease
the block size of 'the data set, or (2) increase value2 of the
SIZE parameter to allow for larger buffers, and increase value1
accordingly, if necessary. If the problem recurs, do the
following before calling IBM for programming support:

• Execute the IEHLIST utility program, using the LISTVTOC
statement to print out the Data set Control Block for the
specified data set.,

• Make sure the LIST option was specified for the failing job
step.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW0543 ERROR - IDENTICAL NAME IN DIRECTORY

192

~~planati~ The member name already exists in the directory.
In the case of a member, an attempt was made to store under
TEMPNAMEi however, TEMPNAME was also found in the directory.

system Action: The output module is not stored under this
member name.

Progr~r Re§E~~: Probable user error. Either (1) specify a
unique member name for the module on the NAME control statement
or the SYSLMOD DD statement, or (2) specify the replace function
on the NAME statement. If the problem recurs, do the following
before calling IBM for programming support:

• Execute the IEHLIST utility program, using the LISTPDS
statement to print out the directory entries for the SYSLMOD
data set.

• Make sure the LIST option was specified for the failing job
step.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW0552 ERROR - COMMON PRINTED EXCEEDED SIZE OF CONTROL SECTION WITH
IDENTICAL NAME

Explanation: A named common area has been encountered which is
larger than a control section with the same name.

System-Action: The linkage editor uses the longest length
specified for the name at the time it encounters the control
section. Processing continues.

Programmer Response: Ensure that no named common area is larger
than the control section initializing it. FORTRAN programmers
should make sure that any named COMMON in a BLOCK DATA
subprogram is at least as large as any pther FORTRAN program or
subprogram with which the BLOCK DATA subprogram is to be link
edited. To isolate the problem, run the step with the NCAL
option specified. If the error recurs, the long COMMON occurs
in the primary data set or an included data set. Otherwise it
occurs in a module from the automatic call library. In either
case, execute the LISTOBJ function of the IMBLIST service aid
program to list all object module symbols, and execute the
LISTLOAD function of IMBLIST with the OUTPUT=XREF option to list
all load module ~ymbols in the appropriate input data sets.
Check the listings for all modules that contain the named COMMON
in question and correct the lengths. If the problem recurs, do
the following before calling IBM for programming support:

• Have available the output from IMBLIST used to isolate the
problem.

• Make sure that the XREF and LIST options were specified for
the failing job step.

IEW0512 ERROR - COMMON PRINTED AND SUBROUTINE HAVE IDENTICAL NAME.

Explanation: This message appears only when the linkage editor
is processing an object program originally written in FORTRAN.
It is issued when a COMMON defined in the program has the same
name as a subprogram.

Appendix D: Linkage Editor Diagnostic Messages 193

§ystem Action: Processing continues. The output module is
marked not executable unless the LET option is specified.

User Response: Change the name of either the COMMON or the
subprogram so that the names are no longer the same. Compile
and link edit the program again. If the problem recurs, do the
following before calling IBM for programming support:

• Have the source program listing and the linkage editor
output listing available.

• Have the associated job stream and output listings
available.

• Make sure that the XREF and LIST options were specified for
the failing job step.

IEW0594 INPUT DATA SET BLKSIZE IS INVALID

ExE1~nati~ The block size for the primary input data set
(SYSLIN) is not an even multiple of the logical record length,
or exceeds the allowable maximum.

System Action: Linkage editor processing is terminated.

Programmer R~§E2nse: Probable user error. Determine whether
the values specified in the SIZE parameter are sufficient to
accommodate the blocking factor of the primary input data set
(SYSLIN). Blocking factors are discussed in the "SIZE Option"
section. If the SIZE values are not large enough, increase them
and execute the linkage editor step again. In an MVT system,
the region for the job step must be large enough to allow the
SIZE values specified, as described in "EXEC Statement -- REGION
Parameter." If the region is not large enough, increase the
REGION parameter before executing the linkage editor step again.

If the blocking factor is greater than 40 to 1 or is not a
multiple of the logical record length, correct the BLKSIZE
field, or re-create the data set, or both. Execute the linkage
editor step again.

If the problem recurs, do the following before calling IBM
for programming support:

• If possible, execute the IEHLIST utility program, using the
LISTVTOC statement to print out the Data Set Control Block
for the specified data set.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW0602 ERROR - INPUT FROM OBJECT MODULE IS INVALID, END CARD MISSING.

194

Explanation: The END card of an object module being processed
by the linkage editor is missing.

£ystem ~~tion: Linkage editor processing continues. The load
module produced is marked not executable unless the LET option
has been specified.

Programmer Response: If input to the linkage editor was in the
form of an object deck, verify that the last card is an END card
(END in columns 2, 3, and 4). If the card is not an END card,
recompile or reassemble the source program. If input to the
linkage editor was not in the form of an object deck, recompile
or reassemble the source program with the DECK option specified.

In either case, verify that the last card is an END card. Rerun
the linkage editor step using the object deck. If the problem
recurs, do the following before calling IBM for programming
support:

• Have the object module input and associated source listings
available.

• Execute the IMBLIST service aid program, using the LISTOBJ
function, and save the resulting listing of the questionable
object module.

• Make sure that MSGLEVEL=(l,l) was specified in the JOB
statement for the failing job.

• Have the job stream and output listings available.

IEW0614 LENGTH NOT SPECIFIED FOR EXTERNAL SYMBOL PRINTED

Explanation: An object module contained a control section that
had a length field containing zero in its external symbol
dictionary (ESD) entry, and either (1) the control section was
not last in the object module or (2) the length was not
specified on the END card.

System Action: The module was not processed, and the linkage
editor terminated processing.

Programmer Response: Probable user error. Check the input
object modules for completeness and proper sequence. If
necessary, either (1) re-create any module that has been in card
form, or (2) isolate the incorrect module by executing the
linkage editor with the NCAL option specified, using the NAME
control statement for each input object module. Diagnostic
IEW0614 should recur and isolate the incorrect module.
Re-create the module and rerun the step. If the problem recurs,
do the following before calling IBM for programming support:

• Have available the output used to isolate the module.

• To list the incorrect object module, execute the LISTOBJ
function of the IMBLIST service aid program and save the
resulting object module listing.

• Make sure that the XREF and LIST options were specified for
the failing job step.

• Have the job stream and output listing of the step used to
create the incorrect module available.

IEW0630 DDNAME PRINTED HAD SYNCHRONOUS ERROR -- XREF ABORTED.

Explanation: A permanent input/output error occurred while
attempting to produce a cross-reference table. The output
module was successfully edited.

Appendix D: Linkage Editor Diagnostic Messages 195

§yste~tion: The information provided by the SYNADAF macro
instruction was printed after the message code in the following
format: SYNAD EXIT, jobname, stepname, unit address, device
type, ddname, operation attempted, error description, block
count or BBCCHHR, access method.

Programmer Response: Rerun the linkage editor step. If the
problem recurs, do the following before calling IBM for
programming support:

• Save the output from the SYNADAF macro instruction.

• Make sure that MSGLEVEL=(l,l) was specified in the JOB
statement for the failing job.

• If possible, execute the IEHLIST utility program using the
LISTVTOC function to print out the data set control block
for the data set specified in the SYNAD output.

• Have the job stream and associated listings available.

IEW0661 CONTROL STATEMENT IGNORED

Explanation: A control statement used to specify functions not
available under the IBM System/360 Operating System was found in
the input to the linkage editor.

§y~a£tion: The statement is ignored. Linkage editor
processing continues.

Programmer Response: If the output load. module is to be run
under an operating system with page alignment and/or control
section sequencing, execute the linkage editor step again using
the appropriate linkage editor, which includes support for the
specified control statements. If the output load module is to
be executed under the IBM System/360 Operating System, ignore
the message. If the problem recurs, do the following before
calling IBM for programming support:

• Make sure the LIST and XREF options were specified for the
failing step.·

• Have the job stream and associated output listings
available.

IEW0670 THE SPECIFIED IDENTIFY DATA HAS BEEN ADDED TO THE IDR FOR THE
CONTROL SECTION NAME PRINTED.

196

Explanation: The linkage editor has added the data specified on
the IDENTIFY control statement to the IDR record for the control
section indicated.

System Acti~n: Processing continues.

Programmer Response: None. This message is for information
only; because no error occurred, no response is required.

IEW0682 ERROR - CONTROL SECTION NAME ON AN IDENTIFY CONTROL STATEMENT IS
INCORRECT OR THE STATEMENT IS MISPLACED -- IDENTIFY DATA
IGNORED.

Explanation: The control section named on ~he IDENTIFY control
statement either (1) does not exist in the load module or (2)
had not been read in by the linkage editor by the time it
encountered the IDENTIFY statement.

§y~teID-Action: The data specified on the IDENTIFY statement is
ignored. Linkage editor processing continues.

Programmer Response: Probable user error. Check the IDENTIFY
statement to verify that the control section name has been
specified correctly and that the IDENTIFY statement has been
placeq correctly in the input. verify that the required control
sectiqn has been included in the input to the linkage editor
step. \ Correct the input and rerun the linkage editor step. If
the problem recurs, do the following before calling IBM for
programming support:

• Have the job stream and associated output listings
available.

• Make sure that MSGLEVEL=(l,l) was specified in the JOB
statement for the failing job.

• Make sure that the LIST and MAP or XREF options were
specified for the failing step.

IEW0694 ERROR - TABLE OVERFLOW - SIZE VALUE SPECIFIED NOT LARGE ENOUGH
FOR CSECT IDR INPUT -- LINKAGE EDITOR PROCESSING TERMINATED.

Explanation: The space available for CSECT Identification
records was insufficient for the actual input.

System Action: Linkage editor processing is terminated.

Programmer Response: Probable user error. Increase the space
available to the linkage editor by increasing value1 (or
decreasing value2) of the SIZE option, making sure that the
region or partition size is also increased correspondingly, if
necessary. Rerun the linkage editor step. If the problem
recurs, do the following before calling IBM for programming
support:

• Have the job stream and associated output listings
~vailable.

• Make sure that MSGLEVEL=(l,l) ~as specified in the JOB
statement for the failing job.

• Make sure that the LIST and XREF options were specified for
the failing step.

IEW0704 UNRECOVERABLE ERROR DETECTED IN CSECT IDR INPUT -- LINKAGE
EDITOR PROCESSING TERMINATED.

Expla~ti2TI: An unrecoverable error was detected while
processing an input module containing CSECT Identification (IDR)
records. The cause of the error was a load module IDR record
that contained ~n invalid code in its subtype field (the third
byte of the record).

Appendix D: Linkage Editor Diagnostic Messages 197

§ystem Action: Linkage editor processing is terminated.

Programmer ResE~: Probable user error. Examine all data
sets containing input load modules. Check all secondary input
sources (either defined by the SYSLIB DD statement or specified
on an INCLUDE statement). If any user modifications were made
to any record other than text in any of these modules, re-create
any affected modules from the source or object level and execute
the linkage editor step again. If the problem recurs, do the
following before calling IBM for programming support:

• Execute the IMBLIST service aid program with the LISTLOAD
function and the OUTPUT=BOTH option to list all load modules
in the input to the linkage editor.

• Execute the IMBLIST service aid program with the LISTIDR
function to list CSECT IDR records for all members of the
data set SYS1.LINKLIB cataloged on the system when the error
occurred.

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job and that the LIST option was
specified on the EXEC statement for the linkage editor step.

• Have the job stream, all input data sets, and all associated
output listings available.

IEW0714 ERROR -- MEMBER NOT STORED IN LIBRARY -- STOW WORKSPACE
UNAVAILABLE.

EXElanation: The conditional GETMAIN macro instruction issued
by the STOW routine to obtain work space in main storage was
unnsuccessful (that is, not enough contiguous main storage was
available.)

System Action: The member is not stored in the specified
library; linkage editor processing is terminated.

Prog~mer Re~Eons~: Rerun the linkage editor job step. The
error may be a temporary one caused by fragmentation of main
storage. If the problem persists, check for user-written
programs or user-written SVC (supervisor call) routines that may
be executing concurrently with the linkage editor and causing
main storage fragmentation, as would occur when a GETMAIN macro
is issued without a FREEMAIN in an uncontrolled loop. If the
problem still persists, do the following before calling IBM for
programming support:

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Have the job stream, all associated output listings, and the
system console sheet available.

IEW0984 ERROR - SYSPRINT BLOCKSIZE EXCEEDS MAXIMUM -- LINKEDIT
PROCESSING TERMINATED.

198

EXElanation: The block size specified for the SYSPRINT data set
cannot be handled by the linkage editor.

§yste~~£tion: The data set is not opened. Linkage editor
processing is terminated.

Programmer Re~E~: Probable user error. Either (1) decrease
the block size of the data set, or (2) increase value2 of the
SIZE option to allow for larger buffers, and increase value1
accordingly, if necessary. Increase the region or partition
size correspondingly, if necessary. Rerun the linkage editor
step. If the problem recurs, do the following before calling
IBM for programming support:

• Execute the IEHLIST utility program, using the LISTVTOC
statement to print out the Data Set Control Block for the
SYSPRINT data set.

• Make sure that MSGLEVEL=Cl,l) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW0994 ERROR - SYSPRINT DD CARD MISSING - LINKAGE EDITOR PROCESSING
TERMINATED.

Explanation: The SYSPRINT data set cannot be opened.

system Action: Linkage editor processing is terminated.

Programmer Response: Probable user error. The SYSPRINT DD
statement is probably missing. Supply the missing SYSPRINT DD
statement, and execute the job step again. If the problem
recurs, do the following before calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,l) was specified on the JOB
statement for the failing job.

• Execute the IMBLIST service aid program, using the LISTLOAD
and LISTIDR statements to print out the linkage editor and a
list of all modifications to it from the link library
(SYS1.LINKLIB).

• Have the job stream and associated output listings
available.

Appendix D: Linkage Editor Diagnostic Messages 199

PART 2: LOADER

The Loader is one of the IBM System/360 Operating System processing
programs. It combines basic editing and loading functions of the
linkage editor and program fetch in one job step. Therefore, the load
function is equivalent to the link_~Q~t-gQ function. The loader can be
used for compile-load and load jobs.

The loader will load object modules produced by a language processor
and load modules produced by the linkage editor into main storage for
execution. Optionally, it will search a call library (SYSLIB) or a
resident link pack area, or both, to resolve external references. The
loader does not produce load modules for program libraries.

The functional characteristics, compatibility and restrictions,
performance considerations, and storage considerations of the loader are
described in the following sections.

FUNCTIONAL CHARACTERISTICS

I The loader can be used with MFT and MVT. The loader is re-enterable
and, therefore, can reside in the resident link pack area.

The loader combines the following basic functions of the linkage
editor and program fetch:

1. Resolution of external references between program modules.

2. optional inclusion of modules from a call library (SYSLIB) or from
a link pack area, or from both (Figures 46 and 47). (Inclusion of
modules from a call library or the link pack area is performed, if
requested, when external references remain unresolved after
processing the primary input to the loader. If both are requested,
the link pack area is searched first.)

3. Auto~atic deletion of duplicate copies of program modules (Figure
48). (The first copy is loaded and all succeeding requests use
that copy.)

4. Relocation of all address constants so that control may be passed
directly to the assigned entry point in main storage.

The diagnostics produced by the loader a~e similar to those of the
linkage editor.

Loader 201

Figure 46. Loader Processing -- SYSLIB Resolution

Figure 47. Loader Processing -- Link Pack Area and SYSLIB Resolution

202

Figure 48. Loader Processing -- Automatic EditinJ

COMPATIBILITY AND RESTRICTIO~~

The loader accepts the same basic input as the linkage editor:

1. All object modules that can be processed by the linkage editor can
be input to the loader.

2. All load modules produced by the linkage editor can be input to the
loader (except load modules edited with the NE option).

The loader supports the following linkage editor options: MAP, LET,
NCAL, SIZE, and TERM. All other linkage editor options and attributes
are not supported, but, if used, they will not be considered as errors.
A message will be listed on SYSLOUT indicating that they are not
supported. The supported options are specified in the PARM field of the
EXEC statement, or with the LINK, ATTACH, LOAD, or XCTL macro
instruction. In addition to the supported linkage editor options, the
loader provides several other options. All loader options are described
under "EXEC Statement" in the section "Using the Loader."

The loader does not process linkage editor control statements (for
example, INCLUDE, NAME, OVERLAY, etc.). If they are used, they will not
be treated as errors and a message will be listed on SYSLOUT indicating
that the control statements are not supported.

The loader and the linkage editor are bound by the same input
conventions. (These conventions are discussed in Part 1 of this
publication.) In addition, the loader can accept load modules in the
SYSLIN data set and object modules from a data area in main storage.

The loader does not use auxiliary storage space for work areas; that
is, there is no loader function corresponding to the linkage editor's
creation of intermediate work data sets or output load modules.

Time Sharing option (TSO)

When the loader is used under TSO, it is invoked by the loader
prompter, a program that acts as an interface between the user and the
operating system and the loader. Under TSO, execution of the loader and
definition of the data sets used by the loader are described to the
system through use of the LOADGO command that causes the prompter to be
executed. Operands of the LOADGO command can also be used to specify
the loader options a job ren.uires.

Loader 203

Complete procedures for using the LOADGO command to load and execute
an object module are given in the Terminal User's Guide.

The loader can act as an interface with a compiler that has the
ability to construct a data area of one or more object modules in main
storage as an alternative to a data set on a secondary storage volume
(such as a tape or disk). Such a compiler passes the loader a
description of the internal data area, which the loader then processes
as primary input. This internal data area replaces external SYSLIN data
set input to the loader.

,Instead of placing text records for the object module in the internal
data area, the compiler can pass pointers to preloaded text. The loader
can then perform its relocation and linkage functions on the preloaded
text itself; text is not moved during processing.

Loaded Program Restrictions

Any loaded program that issues an XCTL macro instruction or an
IDENTIFY macro instruction in an MFT environment will not execute
properly. It is recommended that any such program be processed by the
linkage editor.

If an IDENTIFY macro instruction is issued by the loaded program,
IDENTIFY returns a 'oct code in register 15. This code means that the
entry point address is not within an eligible load module and that the
entry point was not added.

I In an MFT environment, any data set opened by a loaded program should
be closed by the program before execution is complete.

204

This section discusses how to prepare an input deck for the loader and
how to invoke the loader; it also describes the output from the loader.

INPUT FOR THE LOADER

The input deck for the loader must contain job control language
statements for the loader and, optionally, for the loaded program
(Figure 49).

Only the EXEC statement and the SYSLIN OD statement are required for
a loader step. The JOB statement is required if the loader is the first
step in the job.

r-------------------------~---,
I//name JOB parameters (optional) 1
I//name EXEC PGM=LOADER,PARM=<parameters) I
I//SYSLIN DD parameters I
1/ /SYSLIB DD parameters (optional) I
I//SYSLOUT DO parameters (optional) 1
1/ /SYSTERM DO parameters (optional) I
1// (optional DD statements and data required for loaded program) I L __ J

Figure 49. Input Deck for the Loader -- Basic Format

EXEC STATE11ENT

The EXEC statement is used to call the loader and to specify options
for the loader and for the loaded program. The loader is called by
specifying PGM=IEWLDRGO or PGM=LOADER (see "Invoking the Loader").
Loader and loaded program options are specified in the PARM field of the
EXEC statement. The PARM field must have the following format:

,PARM=' [loaderoption[,loaderoptionl ••• l
[/programoption[,programoptionl ••• l'

Note that the loaded program options, if any, must be separated from the
loader options by a slash (/). If there are no loader options, the
program options must begin with a slash. The entire PARM field may be
omitted if there are no loader or loaded program options.

Parameters must be enclosed in single quotes when special characters
(/ and =) are used.

Using the Loader 205

The loader options are:

MAP

NOMAP

RES

NORES

CALL

The loader produces a map of the loaded program that lists external
names and their absolute storage addresses on the SYSLOUT data set.
(If the SYSLOUT DD statement is not used in the input deck, this
option is ignored.) The module map is described in "Loader output"
in this section.

A map is not produced.

An automatic search of the link pack area queue is to be made.
This search is always made after processing the primary input
(SYSLIN), and before searching the SYSLIB data set. When this
option is specified. the CALL option is automatically set.

No automatic search of the link pack area queue is to be made.

An automatic search of the SYSLIB data set is to be made. (If the
SYSLIB DD statement is not included in the input deck, this option
is ignored.)

NOCALL
or NeAL

LET

NOLET

An automatic search of the SYSLIB data set will not be made& When
this option is specified, the NORES option is automatically set.

The loader will try to execute the object program even though a
severity 2 error condition is found. (A severity 2 error condition
is one that could make execution of the loaded program impossible.)

The loader will not try to execute the loaded program if a severity
2 error condition is found.

SIZE=size
specifies the size, in bytes, of dynamic main storage that can be
used by the loader (see Appendix G).

EP=name
specifies the external name to be assigned as the entry point of
the loaded program. This parameter must be specified if the entry
point of the loaded program is in an input load module. For
FORTRAN, ALGOL, and PL/I, these entry pOints must be MAIN,
IHIFSAIN, and IHENTRY, respectively.

NAME=name

PRINT

specifies the name to be used to identify the loaded program to the
system. If this parameter is not used, the loaded program will be
named **GO.

Informational and diagnostic messages are produced on the SYSLOUT
data set.

NOPRINT

206

Informational and diagnostic messages are not produced on the
SYSLOUT data set. SYSLOUT is not opened.

TERM
Numbered diagnostic messages are to be sent to the SYSTERM data
set. Although intended to be used when operating under the Time
Sharing Option (TSO>, the SYSTERM data set can be used to replace
or supplement the SYSLOUT data set at any time. (If the SYSTERM DD
statement is not included in the input deck, this option is
ignored.)

N~E~

Numbered diagnostic messages are not to be sent to the SYSTERM data
set.

Unless otherwise specified with the LOADER macro instruction during
system generation, the default options are: NOMAP, RES, CALL, NOLET,
SIZE=100K, and PRINT. The default options NAME=**GO and NOTERM cannot
be changed during system generation.

The following are examples of the EXEC statement. In these examples,
X and Yare parameters required by the loaded program.

//LOAD EXEC PGM=LOADER

//LOAD EXEC PGM=IEWLDRGO,PARM='MAP,EP=FIRST/X,Y'

//LOAD E~C PGM=LOADER,PARM='/X,Y'

//LOAD EXEC PGM=IEWLDRGO,PARM=(MAP, LET)

//LOAD EXEC PGM=LOADE,PARM=NOPRINT

//LOAD E~C PGM=LOADER,PARM=' NAME=NEWPROG, TERM, NOPRINT'

For further details in coding the EXEC statement refer to the Job
Co~trol La~uage Reference publication.

DD STATEMENTS

The loader uses four DD statements named SYSLIN, SYSLIB, SYSLOUT, and
SYSTERM. (These ddnames can be changed during system generation with
the LOADER macro instruction.) The SYSLIN DD statement must be used in
every loader job. The other three are optional.

The following considerations apply to the DCB parameter of SYSLIN,
SYSLIB, and SYSLOUT.

• For better performance, BLKSIZE and BUFNO can be specified.

• If BUFNO is omitted, BUFNO=2 is assumed •

• Any value given to BUFNO is assumed for NCP (number of channel
programs).

• If RECFM=U is specified, BUFNO=2 is assumed, and BLKSIZE and LRECL
are ignored.

• RECFM=V is not accepted.

• RECFM=FBSA is always assumed for SYSLOUT.

Using the Loader 207

• If RECFM is omitted, RECFM=F is assumed for SYSLIN and SYSLIB.

• If BLKSIZE is omitted, the value given to LRECL is assumed.

• LRECL=121 is assumed for SYSLOUT unless the loader is operating
under the Time Sharing Option (TSO), when LRECL=81 is assumed.

• If LRECL is omitted, LRECL=80 is assumed for SYSLIN and SYSLIB.

• If OPTCD=C is used to specify chained scheduling, an additional 2K
(2048 bytes) of main storage is needed in the user's region if the
necessary data management routines are not resident.

Note: The SYSTERM data set will always consist of unblocked
81-character records with BUFNO=2 and RECFM=FSA. Because these values
are fixed, the DCB parameter need not be used.

In addition to the DD statements used by the loader, any DD
statements and data required by the loaded program must be included in
the input deck.

SYSLIN DD. Statement

The SYSLIN DD statement defines the input data for the loader. This
input can be either object modules produced by a language translator, or
load modules produced by the linkage editor, or both. The .data sets
defined by the SYSLIN DO statement can be either sequential data sets.
or members of a partitioned data set, or both. The DSNA¥£ parameter for
a partitioned data set must indicate the member name, that is,
DSNAME=dsname(membername). concatenation can be used to include more
than one module in SYSLIN.

?

The following are examples of the'SYSLIN DD statement. The first
example defines a member of a previously cataloged partitioned data set:

//SYSLIN DD OSNAME=OUTPUT.FORT(MOD12),DISP=OLD,
DCB= (BLKSIZE=320, BUFNo='4)

The second example defines a sequential data set on magnetic tape:

//SYSLIN DD
//

OSNAME=PROG1S,UNIT=2400,DISP=(OLD,KEEP),
VOLUME=<PRIVATE,RETAIN,SER=MCS167)

The third example defines a data set which was the output of a
previous step in the same job:

//SYSLIN DD DSNAME=*.COBOL.SYSLIN,DISP=(OLD,DELETE)

The fourth example shows the concatenation of three data sets. The
first two data sets are members ~f different partitioned data sets; the
first is an object module and the second is a load module. The third
data set is in the input stream following a SYSIN DD statement (see
"Loaded Program Data" in this section ••

208

//SYSLIN DD
//
// DD
// DD

DSNAME=PGMLIB.SET1CRFS1),DISP=OLD,
DCB=(BLKSIZE=3200,RECFM=FB)
DSNAME=PGMLIB.SET2 (ABCS),DISP=OLD, DCB=RECFM=U
DDNAME=SYSIN

SYSLIB DD Statement

The SYSLIB data set contains IBM-supplied or user-written library
routines to be included in the loaded program. The data set is searched
when unresolved references remain after processing SYSLIN and optionally
searching the link pack area.

The SYSLIB data set is used to resolve an external reference when the
following conditions exist: the external reference must be (1) a member
name or an alias of a module in the data set, and (2) defined as an
external name in the external symbol dictionary of the module with that
name. If the unresolved external reference is a member name or an alias
in the library, but is not an external name in that member, the member
is processed but the external reference remains unresolved unless
subsequently defined.

The data set defined by the SYSLIB DD statement must be a partitioned
data set that contains either object modules or load modules, but not
both. Concatenation may be used to include more partitioned data sets
in SYSLIB. All concatenated data sets must contain the same type of
modules (object or load).

The following are examples of the SYSLIB DD statement. The first
example defines a cataloged partitioned data set that can be shared by
other steps:

//SYSLIB DD DSNAME=SYS1.ALGLIB,DISP=SHR

The second example shows the concatenation of two data sets:

//SYSLIB DD
// DD

SYSLOUT DD statement

DSNAME=SYS1.PL1LIB,DISP=SHR
DSNAME=LIBMOD. MATH, DISP=OLD

The SYSLOUT DD statement is used for error and warning messages and
for an optional map of external references (see "Loader Output" in this
section). The data set defined by this DD statement must be a
sequential data set. The DCB parameter can be used to specify the
blocking factor (BLKSIZE) of this data set. For better performance, the
number of buffers (BUFNO) to be allocated to SYSLOUT can also be
specified.

The following are examples of the SYSLOUT DD statement. The first
example specifies the system output unit:

//SYSLOUT DD SYSOUT=A

The second example defines a sequential data set on a 1443 printer:

//SYSLOUT DD UNIT=1443,DCB=(BLKSIZE=121,BUFNO=4)

The SYSTERM DD statement defines a data set that is used for numbered
diagnostic messages only. When the loader is being used under the Time

Using the Loader 209

Sharing Option (TSO) of the operating system, the SYSTERM DD statement
defines the terminal output data set. However, SYSTERM can also be used
at any time to replace or supplement the SYSLOUT data set. Because the
SYSTERM data set is not opened unless the loader must issue a diagnostic
message, using SYSTERM instead of SYSLOUT can reduce loader processing
time.

When the SYSTERM data set replaces the SYSLOUT data set, the numbered
messages in the SYSTERM data set are the only diagnostic output; when
SYSTERM supplements the SYSLOUT data set, the numbered messages appear
in both data sets, and optional diagnostic and informational output f

such as a list of options or a module map, can be obtained on SYSLOUT

The DCB parameters for SYSTERM are fixed and need not be specified.
The SYSTERM data set always consists of unblocked 81-character records
with BUFNO=2 and RECFM=FSA.

The following example shows the SYSTERM DD statement when used to
specify the system output unit:

//SYSTERM DD SYSOUT=A

LOADED PROGRAM DATA

Loaded program data and loader data can both be specified in the
input reader in MFT and MVT. Loaded program data can be defined by a DD
statement following the loader data.

Figure 50 shows the loading of a previously compiled FORTRAN problem
program under MFT or MVT. The program to be loaded (loader data)
follows the SYSLIN DD statement. The loaded program data follows the
FT05F001 DD statement.

r--,
I//LOAD JOB MSGLEVEL=l I
I//LDR EXEC PGM=LOADER,PARM=MAP I
I//SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=SHR I
!//SYSLOUT DD SYSOUT=A I
1//FT06F001 DD SYSOUT=A I
I//SYSLIN DD * I
I (Loader data) I
1/* !
1//FT05F001 DD * I
I (Loaded program data) I
1/* I L __ J

Figure 50. Loader and Loaded Program Data in MFT or MVT Input Stream

INVOKING THE LOADER

The loader can be referred to by either its program name, IEWLDRGO,
or its alias, LOADER. The loader can be invoked through the EXEC
statement, as described in "Input for the Loader," or through the LOAD,
ATTACH, LINK, or XCTL macro instruction. Figure 51 shows the basic
format for the macro instruction.

210

r-------T---------T--~--------,
I Name I operation I Operand I
~-------~---------~---~
I I I EP=loadername I
I [Symbolll{LINK } IPARAM=(optionlist[,ddname listl) I
I I ATTACH IVL=l I
I ~---------~---~
I I {LOAD} I EP=loadername I
I I XCTL I I l ________ ~ _________ ~ ___ J

Figure 51. Macro Instruction Basic Format

EP
specifies the symbolic name of the loader. The entry point at
which execution is to begin is determined by the control program
from the library directory entry.

PARAM
specifies, as a sublist, address parameters to be passed to the
loader. The first fullword in the address parameter list contains
the address of the option list for the loader and/or loaded
program. The second fullword contains the address of the ddname
list. If standard ddnames are to be used, this list may be
omitted.

option list
specifies the address of a variable length list containing the
loader and loaded program options. This address must be written
even though no list is provided.

The option list must begin on a halfword boundary. The two
high-order bytes contain a count of the number of bytes in the
remainder of the list. If no options are specified, the count must
be zero.

The option list is free form, with the loader and loaded program
options separated by a slash (/), and with each option separated by
a comma. No blanks or zeros should appear in the list.

ddname list

VL

specifies the address of a variable length list containing
alternative ddnames for the data sets used during loader
processing. If the standard ddnames are used, this operand may be
omitted.

The format of the ddname list is identical to the format of the
ddname list for invoking the linkage editor; the 8-byte entries in
the list are as follows:

Entry
1
2
3
4
5
6
7-11
12

Alternate Name For:
SYSLIN
not applicable
not applicable
SYSLIB
not applicable
SYSLOUT
not applicable
SYSTERM

specifies that the sign bit is to be set to 1 in the last fullword
of the address parameter list.

Using the Loader 211

Figure 52 shows an assembler language program that uses the LINK
macro instruction to refer to the loader.

r--,

PMM
OPTIONS
LENGTH
SAVEAREA

SAVE (14,12) initialize -- save

LA 13,SAVEAREA

registers and point
to new save area

LINK EP=LOADER,PARAM=(PARM),VL=l

L 13,4(13)
RETURN (14,12),T

DS
DC
DC
EQU
DS

END

OH
AL2(LENGTH)
C'NOPRINT,CALL/X,Y,Z'
*-OPTIONS
18F

length of options
loader and loaded program

options
save area

L ___ _

Figure 52. Using the LINK Macro Instruction To Refer to the Loader

If desired, the loader may be used to process a program but not
execute it. To invoke just the portion of the loader that processes
input data, specify either the name IEWLOAD or the name IEWLOADR with a
LOAD and CALL macro instruction.

IEWLOAD, which is used with MVT only, will both load and identify the
program. IEWLOAD returns the address of an 8-character name in register
1. This name can be used with an ATTACH, LINK, LOAD, or XCTL macro
instruction to invoke the loaded program.

I EWLOADR, which can be used with MFT or MVT, will load the program
but will not identify it. IEWLOADR returns the entry point of the
loaded program in register O. Register 1 points to two full words: the
first points to the beginning of storage occupied by the loaded program;
the second contains the size of the loaded program. This location and
size can then be used in a FREEMAIN macro instruction to free the
storage occupied by the loaded program when it is no longer needed.

Figure 53 shows an assembler language program that uses the LOAD and
CALL macro instructions to refer to IEWLOADR. Figure 54 shows an
assembler language program that uses the LOAD and CALL macro
instructions to refer to IEWLOAD.

For further information on the use of these macro instructions, refer
to the publication IBM System/360 Operating System: Data Manag~~~~t
services.

212

r--,

*

*

FREE

PARMi
OPTIONSl
LENGTH 1

PARM2
OPTIONS2
LENGTH 2
SAVEAREA

SAVE (14,12),T initialize -- save registers and

ST 13,SAVEAREA+4
LA 13,SAVEAREA

LOAD
LR
CALL

LR
LR
LR

EP=IEWLO.M:""'l
15,0
(15), (PARM1) , VL

7,15
5,0
6,1

DELETE
CH

EP=IEWLOADR
7,=H'4'
FREE
15,5

BH
LR

CALL (15), (PARM2), VL

L 0,4(6)
L 1,0(6)
FREEMAIN R,LV=(O),A=(l)

L 13,4(13)
RETURN (14,12),T
DS OH
DC AL2(LENGTH1)
DC
EQU
OS
DC
DC
EQU
OS

END

C'NOPRINT,CALL'
*-OPTIONSl
OH
AL2 (LENGTH2)
C'X,Y,Z'
*-OPTIONS2

18F

point to new save area

load the loader
get its entry pOint address
invoke the loader

save return code
save entry to loaded program
save pointer to list containing

start address and length
delete loader
verify successful loading
negative branch

I
I
I
I
I
I
I
I
I
I

loading successful -- get
point address for CALL

invoke program

entry I

get length into register 0
get start address
delete loaded program

length of loader options
loader options

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

length of loaded program options I
loaded program options I

save area
I
I
I
I
I
I l __ J

Figure 53. Using the LOAD and CALL Macro Instructions to Refer to
IEWLOADR (Loading Without Identification)

Using the Loader 213

r--,
SAVE (14,12),T initialize -- save registers and

* point to new save area

*
*

PARMi
OPTIONSl
LENGTHl

PARM2
OPTIONS2
LENGTH2
SAVEAREA
PGMNAM

ST 13,SAVEAREA+4
LA 13,SAVEAREA

LOAD
LR
CALL
LR
MVC
DELETE
CH
BH

EP=IEWLOAD
15,0
(15), (PARM1),VL
7,15
PGMNAM(S),O(l)
EP=IEWLOAD
7,=H'4'
ERROR

load the loader
get its entry point address
invoke the loader
save the return code
save program name
delete the loader
verify successful loading
negative branch

LINK EPLOC=PGMNAM,PARM=(PARM2),VL=1 loading successful,
invoke program

L 13,4(13)
RETURN (14,12),T
DS OH
DC AL2(LENGTH1) length of loader options
DC C'MAP' loader options
EQU *-OPTIONSl
DS OH
DC AL2 (LENGTH2) length of loaded program options
DC C' X, Y, Z' loaded program options
EQU *-OPTIONS2
DS lSF save area
DS 2F program name

END L __ J

Figure 54. Using the LOAD and CALL Macro Instructions to Refer to
IEWLOAD (Loading with Identification)

214

LOADER OUTPUT

Loader output consists of a collection of diagnostics and error
messages, and of an optional storage map of the loaded program. This
output is produced in the data set defined by the SYSLOUT DD and SYSTERM
DD statements. If these are omitted, no loader output is produced.

SYSLOUT output includes a loader heading, and the list of options and
defaults requested through the PARM field of the EXEC statement. The
SIZE stated is the size obtained, and not necessarily the size requested
in the PARM field. Error messages are written when the errors are
detected. After processing is complete an explanation of the error is
written. Loader error messages are similar to those of the linkage
editor and are listed in Appendix H.

SYSTERM output includes only numbered warning and error messages.
These messages are written when the errors are detected. After
processing is complete, an explanation of each error is written.

The storage map includes the name and absolute address of each
control section and entry point defined in the loaded program. Each map
entry marked with an asterisk (*) comes from the data set specified on
the SYSLIB DD statement. Two asterisks (**> indicate the entry was
found in the link pack area; three asterisks (***> indicate the entry
comes from text that was pre loaded by a compiler.

The map is written as the input to the loader is processed, so all
map entries appear in the same sequence in which the input ESD items are
defined. The total size and storage extent of the loaded program are
also included. For PL/I programs, a list is written showing
pseudo-registers with their addresses assigned relative to zero. Figure
55 shows an example of a module map.

In an MVT environment, the loader issues an informational message
when the loaded program terminates abnormally.

Using the Loader 215

tv
~
(71

OS/360

OPTIONS USED - PRINT,MAP,NOLET,CALL,NORES,SIZE=424176

NAME TYPE ADDR NAME TYPE ADDR NAME TYPE

SAMPL2B SO 161EO SAMPL2BA SO 16EC8 IHEMAIN SO
SYSIN SO 17D48 IHEVQC * SD 17080 IHEVQCA * LR
IHEOIA * SO 183CO IHEOIAA * LR 183CO IHEOIAB * LR
IHEVPA * SO 18870 IHEVPAA * LR 18870 IHEVFC * SD
IHEVPCA * LR 189F8 IHEVFE * SD 18BE8 IHEVFEA * LR
IHEONC * SO 18CB8 IHEONCA * LR 18CB8 IHEOOA * SO
IHEOMA * SO 19010 IHEDMAA * LR 19010 IHEVFO * SD
IHEVFAA * LR 19160 IHEVPB * SD 19248 IHEVPBA * LR
IHEIOB * SO 19488 IHEIOBA * LR 19488 IHEIOBB * LR
IHESARC * LR 1A9C8 IHESADO * LR 1A9DE IHESAFF * LR
IHEBEGA * LR 1AE28 IHEERR * SD 1AE68 IHEERRD * LR
IHEERRA * LR 1AE86 IHEERRE * LR 1B4E2 IHEIOF * SO
IHEITAiZ * LR 1B81E IHEITAX * LR 1B8.2A IHEITAA * LR
IHEOCNB * LR 1B862 IHEIOD * SO 1BA50 IHEIOOG * LR
IHEVTB * SO 1BCFO IHEVTBA * LR 1BCFO IHEVQA * SO

IHEQINV PR 00 IHEQERR PR 4 SAMPL2BB PR
SYSIN PR 14 IHEQLSA PR 18 IHEQLWO PR
IHEQLW3 PR 28 IHEQLW4 PR 2C IHEQLWE PR
IHEQFVD PR 3C IHEQCFL PR 40 IHEQFOP 'PR
IHEQEVT PR 58 IHEQSLA PR 60 IHEQSAR PR
IHEQSFC PR 70

IEW1 001 IHEUPBA
IEW1001 IHEUPAA
IEW1001 IHETERA
IEW1001 IHEM91C
IEW1001 IHEM91B
IEW1001 IHEM91A
IEW1001 IHEOOOO
IEW1001 IHEVPFA
IEW1001 IHEVPDA
IEW1001 IHEOBNA
IEW1001 IHEVSFA
IEW1001 IHEVSBA
IEW1001 IHEVCAA
IEW1001 IHEVSAA
IEW1001 IHEONBA
IEW1001 IHEUPBB
IEW1001 IHEUPAB
IEW1001 IHEVSEB

TOTAL LENGTH 5068
ENTRY ADDRESS 17000

WARNING

lo'i ~ 55. Module Map Format Example

ADDR NAME TYPE ADDR NAME TYPE ADDR

17Cf8 IHENTRY SO 17000 IHESPRT SO 17010
17080 IHEVQB * SO 17F08 IHEVQBA • LR 17FD8
183C2 IHEVPE * SO 18608 IHEVPEA * LR 18608
189DO IHEVFCA * LR 189DO IHEVPC • SO 189F8
18BE8 IHEVSC * SO 18C08 IHEVSCA • LR 18C08
18F30 IHEOOAA * LR 18F30 IHEOOAB • LR 18F32
19108 IHEVFOA * LR 19108 IHEVFA • SO 19160
19248 IHEXIS • SO 193FO IHEXISO • LR 193FO
19490 IHEIOBC * LR 19498 IHEIOBO .. LR 194AO
1AA18 IHEPRT * SO 1AB70 IHEPRTA • LR 1AB70
1AE68 IHEERRC * LR 1AE72 IHEERRB • LR 1AE7C
1B580 IHEIOFB * LR 1B580 IHEIOFA * LR 1B582
1B83E IHEOCN * SO 1B860 IHEOCNA • LR 1B860
1BA50 IHEIOOP * LR 1BA52 IHEIOOT • LR 1BB4A
1B078 IHEVQAA * LR 1BD78

8 SAMPL2BC PR C IHEQSPR PR 10
1C IHEQLW1 PR 20 IHEQLW2 PR 24
30 IHEQLCA PR 34 IHEQVOA PR 38
48 IHEQADC PR 4C IHEQXLV PR 50
64 IHEQLWF PR 68 IHEQRTC PR 6C

Figure 56 shows an input deck for a load job. A previously assembled
program, MASTER, is to be loaded. The SYSLOUT, SYSLIB, and SYSTERM DD
statements are not used.

r--,
I//LOAD JOB MSGLEVEL=l I
1// EXEC PGM=LOADER 1
I//SYSLIN DD DSNAME=MASTER,DISP=OLD 1
I 1
I (DD statements and data required for execution of MASTER) I
I I
1/* 1 L __ J

Figure 56. Input Deck for a Load Job

Figure 57 shows an input deck for a compile-load job. The COBOL F
(IEQCBLOO) compiler is used for the compile step. The loaded program
requires the SYSOUT, TAXRATE, and SYSIN DD statements.

r--,
I//JOB JOB 22, MCS, MSGLEVEL=l
I//COBOL EXEC PGM=IEQCBLOO,PARM=MAP,REGION=86K,RD=R
I//SYSPRINT DD SYSOUT=A
I//SYSPUNCH DD UNIT=SYSCP
1//SYSUTl DD UNIT=SYSDA,SPACE=(TRK, (100,10»
1//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK, (100,10»
1//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK, (100,10»
1//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK, (100,10»)
I//SYSLIN DD DSNAME=&&LOADSET,DISP=(MOD, PASS>,
1// UNIT=SYSSQ,SPACE=(TRK, (30,10»
I//SYSIN DD *
I (source program)
1/*
I//LOAD EXEC PGM=LOADER,PARM='MAP,LET',COND=(5,LT,COBOL)
If/SYSLIN DD DSNAME=*. COBOL.SYSLIN, DISP=(OLD, DELETE)
I//SYSLOUT DD SYSOUT=A
I//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR
I//SYSOUT DD SYSOUT=A
I//TAXRATE DD DSNAME=TAXRATE,DISP=OLD
I (Data for Loaded Program)
1/* I
L ______________________ ~----------_-_-_---------------_________________ J

Figure 57. Input Deck for a Compile-Load Job

Appendix E: Sample Input for the Loader 217

Figure 58 shows the compilation and loading of three modules. In the
first three steps, the FORTRAN H (IEKAAOO) compiler is used to compile a
main program, MAIN, and two subprograms, SUBl and SUB2. Each of the
object modules is placed in a sequential data set by the compiler and
passed to the loader job step. In addition to the FORTRAN library, a
private library, MYLIB, is used to resolve external references. In the
loader job step, MYLIB is concatenated with the SYSLIB DD statement.
SUB1 and SUB2 are included in the program to be loaded by concatenating
them with the SYSLIN DD statement. The SYSTERM statement is used to
define the diagnostic output data set. The loaded program requires the
FT01FOOl and FT10FOOl DD statements for execution, and it does not
require data in the input stream.

r--,
I//JOBX JOB I
1//STEP1 EXEC PGM=IEKAAOO,PARM='NAME=MAIN,LOAD' I
I I
I I
1 I
I//SYSLIN DD DSNAME=&&GOFILE,DISP=(,PASS),UNIT=SYSSQ I
I//SYSIN DD * I
I (Source module for MAIN) I
1/* I
1//STEP2 EXEC PGM=IEKAAOO,PARM='NAME=SUB1,LOAD' I
I I
I I
I I
I//SYSLIN DD DSNAME=&&SUBPROG1,DISP=(,PASS),UNIT=SYSSQ I
I//SYSIN DD * I
I (Source module for SUB1) I
1/* I
1//STEP3 EXEC PGM=IEKAAOO,PARM='NAME=SUB2,LOAD' I
I I
I I
I I
I//SYSLIN DD DSNAME=&&SUBPROG2,DISP=(,PASS),UNIT=SYSSQ I
I//SYSIN DD * I
I (Source module for SUB2) I
1/* 1
1//STEP4 EXEC PGM=LOADER I
I//SYSTERM DD SYSOUT=A I
I//SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=OLD I
1// DD DSNAME=MYLIB,DISP=OLD I
I//SYSLIN DD DSNAME=*.STEP1.SYSLIN,DISP=OLD 1
1// DD DSNAME=*.STEP2.SYSLIN,DISP=OLD I
1// DD DSNAME=*.STEP3.SYSLIN,DISP=OLD I
1//FT01FOOl DD DSNAME=PARAMS,DISP=OLD I
1//FT10FOOl DD SYSOUT=A I
1/* I l __ J

Figure 58. Input Deck for Compilation and Loading of the Three Modules

218

APPENDIX F: LOADER RETURN CODES

The return code of a loader step is determined by the return codes
resulting from loader processing and from loaded program processing.

The return code indicates whether errors occurred during the
execution of the loader or of the loaded program. The return code can
be tested through the COND parameter of the JOB statement specified for
this job and/or the COND parameter of the EXEC statement specified in
any succeeding job step. (For details, see the publication !~~
System/360 Operating System: Job Control Lang~~g~.) Table 17 shows the
return codes.

Table 17. Return Codes (Part 1 of 2)

r-----7-------7-------T---,
I I ILoaded I I
I ILoader I Program I I
IReturn!Return IReturn I I
I Code I Code1 I Code I Conclusion or Meaning I
~-----~-------~-------~---~
I I 0 I 0 I Program loaded successfully, and execution of I
I I I I the loaded program was successful. I

I ~-------~-------t---~
I 0 ! 4 I 0 I The loader found a condition that may cause ani
I ~-------+-------I error during execution, but no error occurred I
I 18 (LET) I 0 I during execution of the loaded program. I
~-----t-------~-------~---------------------------------------~-------~
I I I I Program loaded successfully, and an error I
I I 0 I 4 I occurred during execution of the loaded I
I I I I program. I
I 4 ~-------+-------+---~
I I 4 I 4 I The loader found a condition that may cause ani
I ~------t-------I error during execution, and~n error did I
I 18 (LET) I 4 I occur during execution of the loaded program. I
~------+-------+-------+---~
I I I I Program loaded successfully, and an error I
I 1 0 I 8 I occurred during execution of the loaded I
I I I I program. I
I ~-------+-------t---~ I I 4 I 8 I The loader found a condition that may cause ani
I 8 ~-------+-------I error during execution, and an error did I
I 18 (LET) I 8 I occur during execution of the loaded program. I
I ~------+-------t---~
I I I I The loader found a condition that could make I
I I 8 I I execution impossible. The loaded program was I
I I I I not executed. I
t------~------~-------~---~
11 Error diagnostics (SYSLOUT and/or SYSTERM data set) for the loader I
I will show the severity of errors found by the loader. I L __ J

Appendix F: Loader Return Codes 219

Table 17. Return Codes (Part 2 of 2)
r------T-------T-------T---,
I I ILoaded I I
I ILoader I Program I I
IReturnlReturn IReturn I I
I Code I Code~ I Code I Conclusion or Meaning I
~------+-------+-------+------------------------------------~--~-------~
I I I I Program loaded successfully, and an error I
I I 0 I 12 I occurred during execution of the loaded I
I I I I program. I
I ~-------+-------t---~
I I 4 I 12 I The loader found a condition that may cause ani
I 12 ~-------+------~I error during execution, and an error did I
I 18 (LET) I 12 I occur during execution of the loaded program. I
I ~-------+-------t---~
I I 12 I I The loader could not load the program I
I I I I successfully, execution impossible. I
~------+-------+-------t---~
I I 0 I 16 I Program loadeq successfully, and the loaded I
I I I I program found a terminating error. I
I ~-------+-------t---~
I I 4 I 16 I The loader found a condition that may cause ani
I ~-------+-------I error during execution, and a terminating I
I 16 18 (LET) I 16 I error was found during execution of the loaded I
I I I I program. I
I ~-------+-------+---~
I I 16 I I The loader could not load program, execution I
I I I I impossible. I
~------i-------~-------i------------------------------_________________ ~
I~Error diagnostics (SYSLOUT and/or SYSTERM data set) for the loader I
I will show the severity of errors found by the loader. I L __ J

220

APPENDIX G: STORAGE CONSIDERATIONS

The loader requires main storage space for the following items:

• Loader code.

• Data management access methods.

• Buffers and tables used by the loader (dynamic storage).

• Loaded program (dynamic storage).

Region size includes all four of the above items; the SIZE option
refers to the last two items.

For the SIZE option, the minimum required main storage is 4K plus the
size of the loaded program. This minimum requirement grows to
accommodate the extra table entries needed by the program being loaded.
For example: FORTRAN requires at least 3K plus the size of the loaded
program, and PL/I needs at least 8K plus the size of the loaded program.
Buffer number (BUFNO) and block size (BLKSIZE) could also increase this
minimum size. Table 18 shows the appropriate storage requirements in
bytes.

The maximum main storage that can be used is whatever main storage is
available up to 8192K.

Allor part of the main storage required is obtained from user
storage. If the access methods are made resident at IPL time, they are
allocated in system storage. However, 6K is always reserved for system
use.

In an MVT environment the loader code could also be made resident in
the link pack area. If so, it requires the following space: IEWLDRGO,
the control/interface module (alias LOADER), approximately 400 bytes;
IEWLOADR, the loader processing portion, approximately 13,250 bytes.

The size of the loaded program is the same as if the program had been
processed by the linkage editor and program fetch.

The loader does not use auxiliary storage space for work areas.

Appendix G: Storage Considerations 221

Table 18. Main Storage Requirements
r-----------------------T---------------------T-----------------------,
I I Approximate I I
I I Main Storage I I
I I Requirements I I
I Consideration I (in bytes) I Comments I
~-------T---------------t---------------------t-----------------------~
I 1 Control I 400 (MFT) 1 I
I Loader I I 2000 (MVT) I I
I Code t---------------t---------------------t-----------------------~
I I Processing 113250 (MFT) I I
I 1 114000 (MVT) I I
~-------~---------------t---------------------t-----------------------~
IData Management I 6K I BSAM I
~------------------------+---------------------+-----------------------~
IObject Module Buffers IBUFNO(BLKSIZE + 24) Iconcatenation of ,
land DECBs I Idifferent BLKSIZE and I
I I I BUFNO must be I
I I I considered. (Minimum I
I I 'BUFN0=2) ,
~-----------------------t---------------------t-----------------------~
ILoad Module Buffer I 304 I I
I and DECBs I I I
~-----------------------t---------------------t-----------------------~
ISYSTERM DCB I 312 IAllocated if TERM I
I Buffers, and DECBs I ,option is specified I
~-----------------------t---------------------t-----------------------~
ISYSLOUT Buffers IBUFNO(BLKSIZE + 24) IBuffer size rounded up ,
land DECBs I Ito integral number of I
I I Idouble words. I
I I I (Minimum BUFNO=2) I
~------------------------t---------------------t-----------------------~
ISize of program being IProgram Size IProgram size is I
I loaded I Irestricted only by I
I I lavailable main storage I
~------------------------+---------------------+-----------------------~
lEach external relocation I 8 I I
Idictionary entry I I I
~------------------------+---------------------+-----------------------~
lEach external symbol I 20 I I
~------------------------t---------------------t-----------------------i
ILargest ESD number I 4n IAllocated in increments I
I In is the largest ESD lof 32 entries I
I Inumber in any input I I
I I module I I
~------------------------+---------------------+-----------------------~
IFixed Loader Table Size I 1260 ISubtract 88 if NOPRINT I
I I lis specified I
~------------------------t---------------------t-----------------------~
ICondensed Symbol I 12n IBuilt only if TSO is I
I Table In is the total numberloperating and space I
I lof control sections lis available I
I land common areas in I I
I Ithe loaded program I I
t------------------------+---------------------+-----------------------~
I System I 1600 (MFT) I I
I Requirements I 4000 (MVT) I I l ________________________ ~ _____________________ ~ _______________________ J

222

APPENDIX H: LOADER DIAGNOSTIC MESSAGES

This appendix contains the loader diagnostic messages. Each message
directed to the programmer contains a severity code in the final
position of the message code. The severity codes are defined as
follows:

r------------T--,
,severity Codel Meaning I
~------------f-----------------------------------·---------------------~
, 0 I Indicates a condition that will not cause an error I
I I during execution of the loaded module. I
~------------f--~
I 1 I Indicates a condition that may cause an error during I
I I execution of the loaded module. I
~-------------f--~
, 2 , Indicates an error that could make execution of the ,
I I loaded module impossible. Processing continues. I
r---------------f--~
I 3 I Indicates an error that will make execution of the I
I I loaded module impossible. Processing continues. I
r-------------f--~
I 4 I Indicates an error condition from which no recovery is I
I I possible. Processing terminates. I L _____________ ~ __ J

Each message directed to the operator's console contains a type code
in the last position of the message code. The type code indicates the
action to be taken. The code used in loader diagnostic messages is as
follows:

I Information: no operator action is required.

IEW1001 WARNING - UNRESOLVED EXTERNAL REFERENCE (NOCALL SPECIFIED)

Explanation: The NCAL, NOCALL, or NORES option or never-call
function was specified for the external reference.

§ystem Action: The SYSLIB data set is not searched if the NCAL
or NO CALL option has been specified. The Link Pack Area queue
is not searched if the NORES option has been specified.
Neither the SYSLIB data set nor the Link Pack Area queue are
searched if the ER is marked 'never-call' _from a previous
linkage editor run.

Programmer Response: No response is necessary normally. If
you wish the reference resolved, either (1) add the needed
module to the SYSLIN input data set; (2) remove the NOCALL,
NCAL, or NORES option, if specified; or (3) if an input load
module contained a never-call reference, re-create the load
module without specifying never-call. If the problem recurs,
do the following before calling IBM for programming support:

• Run the failing step using the linkage editor instead of
the loader and save the resulting output.

• Make sure the MAP option was specified for the failing job
step.

Appendix H: Loader Diagnostic Messages 223

• For each load module containing a call to the reference,
execute the IMBLIST service aid program, using the
OUTPUT=XREF option of the LISTLOAD function, and save the
resulting output.

• Have available each object module that contains a call to
the reference with its associated source listing.

IEW1012 ERROR - UNRESOLVED EXTERNAL REFERENCE

Explanation: The external reference was not found on the
SYSLIB defined data set or in the Link Pack Area.

System Action: No attempt is made to execute the module unless
the LET option is specified.

Rroqrammer Response: Probable user error. Make sure that the
reference is valid and not the result of a keypunch or
programming error. If the reference is valid, add the needed
module or alias to either (1) the SYSLIB data set, (2) the link
pack area, or (3) the SYSLIN input data set. Make sure the
SYSLIB data set DD statement has been specified if needed. If
the problem recurs, do the following before calling IBM for
programming support:

• If the needed module is in a SYSLIB or SYSLIN partitioned
data set, execute the IEHLIST utility program using the
LISTPDS statement to print out the data set directory.

• If the needed module is in a load module, execute the
IMBLIST service aid program, using the OUTPUT=XREF option
of the LISTLOAD function, and save the resulting output.

• If the needed module is an opject module, have the module
and associated source listing available.

• If the needed module is in the link pack area, execute the
IMBMDMAP service aid program with the PARM=(LINKPACK)
option and save the resulting link pack area map.

• Execute the failing job step using the linkage editor
instead of the loader and save the resulting output.

• Make sure that MSGLEVEL=(l,l) was specified in the JOB
statement for the failing job.

• Make sure that the MAP option was in effect for the failing
job step.

IEW1024 ERROR - DDNAME CANNOT BE OPENED.

224

Explanation: The SYSLIN data set cannot be opened. The DD
statement defining the data set is missing or incorrect.

System Action: Processing is terminated. The Loader returns
to the caller with a condition code of 16.

Programmer Response: Probable user error. Either (1) ·supply a
missing SYSLIN 00 statement, (2) correct erroneous information
on the SYSLIN 00 statement, or (3) make sure the correct ODNAME
has been specified for the SYSLIN data set. If the loader was
invoked by a macro instruction such as LINK rather than through
the EXEC statement, make sure that the SYSLIN ddname, if
passed, is correct. If the problem recurs, do the following
before calling IBM for programming support:

• Either have the output of the SYSGEN of the loader
available, or execute the IMASPZAP service aid program with
the DUMPT IEWLOADR IEWLDDEF statement and save the
resulting dump of loader default ddnames.

• Make sure that MSGLEVEL=(l,l) was specified in the job
statement for the failing job.

IEW1034 ERROR - DDNAME HAS SYNCHRONOUS ERROR.

Explanation: A physical uncorrectable input/output error
occurred. If it occurred on a blocked data set, the block size
may have been specified incorrectly.

System Action: The message supplied by the SYNADAF macro
instruction was printed. Processing was terminated.

Programmer Response: For any fixed format, specify the correct
block size. If the block size was correct and the data set was
an input data set, re-create or restore the data set. If the
problem recurs, do the following before calling IBM for
programming support:

• Execute the failing step using the linkage editor instead
of the loader and save the resulting output.

• Make sure that MSGLEVEL=(l,l) was specified in the JOB
statement for the failing step.

IEW1044 ERROR - UNACCEPTABLE RECORD FORMAT (VARIABLE ON INPUT)

~xpl~ation: Only object module (FIXED record format) and load
module (UNDEFINED record format) data sets are accepted by the
loader.

~stem~ction: Processing was terminated. The Loader returns
to caller with a condition code of 16.

Appendix H: Loader Diagnostic Messages 225

~roqrammer Response: Probable user error. (1) Make sure that
the record format specification is correct. The record format
may have been mispunched. (2) Make sure that the correct data
set has been specified. If the problem recurs, do the
following before calling IBM for programming support:

• Execute the IEHLIST utility program, using the LISTVTOC
statement to print out the data set control blocks for the
input data sets, and save the resulting output.

• Execute the failing step using the linkage editor instead
of the loader and save the resulting output.

• Make sure that MSGLEVEL=(l,l) was specified in the job
statement for the failing job.

• Make sure that the MAP option was in effect for the failing
job step.

IEW1053 ERROR - I/O ERROR WHILE SEARCHING LIBRARY DIRECTORY.

Explanation: A permanent input/output error occurred while
attempting a BLDL.

§ystem Action: Automatic library call processing is
terminated.

Programmer Response: Insure that the SYSLIB defined data set
is partitioned. If it is, re-create or restore the data set
and rerun the job step. If the problem recurs, do the
following before calling IBM for programming support:

• Execute the IEHLIST utility program using the LISTPDS
statement to print out the SYSLIB data set directory, and
save the resulting output.

• Execute the failing step using the .linkage editor instead
of the loader and save the resulting output.

• Make sure that MSGLEVEL=(l,l) was specified in the JOB
statement for the failing job.

• Makes sure that the MAP option was in effect for the
failing job step.

IEW1072 ERROR - BLKSIZE IS INVALID

226

~xplanation: In the specified data set, BLKSIZE was not an
integral multiple of LRECL.

System Action: BLKSIZE was rounded up to the next highest
multiple of LRECL and processing continued.

Programmer Response: Probable user error. Change BLKSIZE to
be an integral multiple of LRECL. If the error recurs, do the
following before calling IBM for programming support:

• If the data set was an input data set, execute the IEHLIST
utility program using the LISTVTOC statement to print out
the data set control block, and save the resulting output.

• Make sure that MSGLEVEL=(l,l) was specified in the JOB
statement for the failing job.

IEW1082 ERROR - INVALID LENGTH SPECIFIED

Explanation: The length of the Control Section was not
specified on the ESD or the END card.

§ystem Action: The total length of the text received was used.

Programmer Response: Check if an END record in any input
object module is missing or has been replaced. If so,
re-create the object module and rerun. If the problem recurs,
do the following before calling IBM for programming support:

• Have the object module input and associated source listings
available.

• Execute the failing step using the linkage editor instead
of the loader and save the resulting output.

• Make sure that the MAP option was in effect for the failing
job step.

IEW1093 ERROR - NO TEXT RECEIVED

~xplanation: No valid text has been received for the loaded
module.

System Action: The loader returns to the caller with a
condition code of 12.

Programmer Response: Probable user error. (1) Make sure that
the SYSLIN data was specified correctly. (2) Check other error
messages issued for cause of error (e.g., invalid record).
Correct the error and rerun the job step. If the problem
recurs, do the following before calling IBM for programming
support:

• Execute the IMBLIST service aid program, using the LISTOBJ
function, and save the resulting listing of the
questionable input module.

• Have all SYSLIN input available.
• Execute the failing step using the linkage editor instead

of the loader and save the resulting output.
• Make sure that MSGLEVEL=(l,l) was specified in the JOB

statement for the failing job.
• Make sure that the MAP option was in effect for the failing

job step.

IEW1102 ERROR - DOUBLY DEFINED ESD

Explanation: Two identical external names have been found in
the input. (1) The invalid match involves a label reference
(LR) or label definition (LD) matching an existing section
definition (SD), common (CM), or label reference
(LR). The section definition for the input LR or LD must be
marked delete in order for this not to be an error. (2) It is
always invalid for a CM to match an existing LR.

System Action: References to the name are resolved with
respect to the first occurrence of the name.

Appendix H: Loader Diagnostic Messages 227

Programmer Response: Probable user error. Correct the
existing symbol conflict. To isolate the problem, execute the
LISTOBJ function of the IMBLIST service aid program to list all
object module symbols, and execute the LISTLOAD function of
IMBLIST with the OUTPUT=XREF option to list all load module
symbols. If the error recurs, do the following before calling
IBM for programming support:

• Have all object and load module input and the output from
IMBLIST available.

• Execute the failing step using the linkage editor instead
of the loader and save the resulting output.

• Make sure that the MAP option was in effect for the failing
job step.

IEWll12 ERROR - INVALID 2-BYTE ADCON.

Explanation: A relocatable A-type or v-type address constant
of less than 3 bytes has been found in the input.

System Action: The constant is not relocated.

Rrogrammer Response: Probable user error. Check assembler
language input for Y-type address constants, which can't be
relocated. Delete or correct the invalid address constant. If
the problem recurs, do the following before calling IBM for
programming support:

• Have object module input and associated listings available.

• Execute the IMBLIST service aid program, using the LISTOBJ
function and save the resulting listing of the questionable
input module.

• Rerun the step using the lin~age editor instead of the
loader, and save the resulting output.

• Make sure the MAP option was specified for the failing job
step.

IEWl123 ERROR - INVALID RECORD FROM LOAD MODULE.

228

Explanation: An unrecognizable type record was found while
reading a load module.

§ystem Action: The record was ignored and processing
continued.

Programmer Response: (1) Check that all input data sets are
specified correctly on DD statements. (2) If load module input
occurs in the SYSLIN data set, rerun the step with the NOCALL
option specified. If error message IEWl123 recurs, the
incorrect load module is in SYSLIN input. Otherwise, it is in
SYSLIB input. (3) Isolate the incorrect load module by
executing the linkage editor with the NCAL option specified,
using the INCLUDE and NAME statements for each suspect load
module. When the incorrect load module is isolated, re-create
it and rerun the job step. If the problem recurs, do the
following before calling IBM for programming support:

• If an incorrect load module was created, execute the
IMBLIST service aid program, using the OUTPUT=BOTH option
of the LISTLOAD function, and save the resulting load
module and cross-reference listings.

• Execute the failing step using the linkage editor instead
of the loader and save the resulting output.

IEWl132 ERROR - INVALID ID RECEIVED.

~~lanation: Input contains an invalid external symbol ID.

This error is the result of the following conditions:

1. The SD for an LD does not appear in the input module.
2. Text is received before the ESD defining it is received.
3. An RLD is received before the ESDs to which it pertains.
4. The ID defining the entry point on the END card is not a

defined SD, PC, or LR ESD type.

System Action: The invalid item is ignored.

Programmer Response: (1) Check that input object modules are
complete and that assembly or compilation errors did not occur
when object modules were generated. (2) Rerun the step with
the NOCALL option specified. If error message IEWl132 recurs,
the incorrect module is in SYSLIN input. Otherwise, it is in
SYSLIB input. (3) Isolate the incorrect module by executing
the linkage editor with the NCAL option specified, using the
INCLUDE and NAME statements for each suspect module. When the
incorrect module is isolated, re-create it and rerun the step.
If the problem recurs, do the following before calling IBM for
programming support:

• If an incorrect object module was created, have the module
and its associated listing available.

• If an incorrect load module was created, execute the
IMBLIST service aid program, using the OUTPUT=BOTH option
of the LISTLOAD function, and save the resulting load
module and cross-reference listings.

• Run the failing step using the linkage editor instead of
the loader, and save the resulting output.

IEWl141 WARNING - CARD RECEIVED NOT AN OBJECT RECORD.

Explanation: The card read has a blank in column one.

System Action: The card is ignored.

Programmer Response: Probable user error. Check input for a
blank card or linkage editor control card. If other errors
occur, re-create all object modules which have been in card
form. If the problem recurs, do the following before calling
IBM for programming support:

• Make sure the MAP option was specified for the failing job
step.

• Rerun the step using the linkage editor instead of the
loader, and s~ve the resulting output.

Appendix H: Loader Diagnostic Messages 229

• Make sure that MSGLEVEL=(1,1) was specified on the JOB
statement for the failing job.

• Have the job stream and associated output listings
available.

IEW1152 ERROR - INVALID RECORD FROM OBJECT MODULE.

Explanation: An unrecognizable record type was received while
reading an object module.

§ystem~ction: The card is ignored.

E!Qgrammer Response: Probable user error. Check object module
input for invalid records. Column 1 should contain a 12-2-9
punch. Columns 2-4 should contain a TXT, RLD, ESD, END, or SYM
identifier. Remove incorrect records or re-create the module,
and rerunc If the problem recurs, do the following before
calling IBM for programming support:

• Have object module input available.

• Execute the IMBLIST service aid program, using the LISTOBJ
function, and save the resulting listing of the
questionable input module.

• Rerun the step using the linkage editor instead of the
loader, and save the resulting output.

IEW1161 WARNING - NO ENTRY POINT RECEIVED.

230

~xplanation: No entry point was specifie~ in the parameter
field or the END card. The END card entry point specification
could be incorrect (i.e., invalid 10, bad column alignment,
etc.) The parameter field specification could also be
incorrect.

§ystem Action: The first assigned address is used as the entry
point.

Programmer Response: Probable user error. (1) Specify the
entry point name in the loader parameter list, EP=. If the
entry point occurs in load module input, this parameter must be
specified. (2) If you cannot use the EP= parameter and the
entry point occurs in an object module, make sure that the
module is included in the SYSLIN or SYSLIB input and that an
entry pOint was specified during compilation or assembly. If
the problem recurs, do the following before calling IBM for
programming support:

• Have the module containing the entry point and its
associated listing available.

• Make sure the MAP option was in effect for the failing job
step.

• Rerun the step using the linkage editor instead of the
loader, and save the resulting output.

IEWl173 ERROR - ENTRY POINT RECEIVED BUT NOT MATCHED.

Explanation: The entry point name specified in the parameter
field or on an END card was not matched to an incoming LR, SD,
or PC.

System Action: The first assigned address is used as the entry
point address.

Programmer Re§ponse: Probable user error. (1) Check to see if
the EP= parameter was specified correctly. (2) Check to see if
the module containing the entry point is included in either the
SYSLIN or SYSLIB input. (3) Check other messages issued for
the cause of error (i.e., invalid record). If the problem
recurs, do the following before calling IBM for programming
support:

• Have the module containing the entry point and its
associated listing available.

• If the module is a load module, execute the IMBLIST service
aid program, using the OUTPUT=BOTH option of the LISTLOAD
function. If the module is an object module, use the
LISTOBJ function of the IMBLIST service aid. Save the
resulting listing.

• Rerun the. step using the linkage editor instead of the
loader, and save the output.

• Make sure the MAP option was in effect for the failing job
step.

IEWl182 WARNING - NO END CARD RECEIVED.

~xplanation: An END card is missing for an input object
module.

System Action: Processing continues.

Programmer Response: Probable user error. Check input object
modules. The last record of each should have a 12-2-9 punch in
column 1 and the END identifier in columns 2-4. If an END
record is missing, re-create the module and rerun. If the
problem recurs, do the following before calling IBM for
programming support:

• Have object module input available.

• Execute the IMBLIST service aid program, using the LISTOBJ
function, and save the resulting listing of the
questionable object module.

• Rerun the step using the linkage editor instead of the
loader, and save the resulting output.

• Make sure the MAP option was in effect for the failing job
step.

IEW1194 ERROR - AVAILABLE STORAGE EXCEEDED.

Explanation: The amount of main storage available to the
loader is insufficient to allow construction of the required
tables and loaded program.

Appendix H: Loader Diagnostic Messages 231

§ystem~ction: The loader returns to caller with a completion
code of 16.

Programmer Response: Probable user error. (1) Increase the
SIZE parameter, or (2) make sure the REGION specification is
sufficient, or (3) make sure that sufficient main storage is
available to satisfy the SIZE specification. If the problem
recurs, do the following before calling IBM for programming
support:

• Either have the output of the SYSGEN of the loader
available or execute the IMASPZAP service aid program with
the DUMPT IEWLOADR IEWLDDEF statement, and save the
resulting dump of the loader's default SIZE value.

• Make sure that MSGLEVEL=<l,l) was specified in the JOB
statement for the failing job.

• Make sure the MAP option was in effect for the failing job
step.

IEW1204 ERROR - TOO MANY EXTERNAL NAMES IN INPUT MODULE.

Explanation: The external symbol ID is too large to fit in the
translation table.

§ystem Action: Processing is terminated. The loader returns
to the caller with a completion code of 16.

Programmer Response: If the program is large and/or conlplex,
either (1) run the step using the linkage editor, or (2) break
down the large program module into a number of smaller
routines. If the program is not particularly large or complex,
check other messages issued for the cause of error. Object
module input may be incomplete or mispunched. Re-create object
modules and rerun. If the problem recurs, do the following
before calling IBM for programming support:

• Have all input modules available.

• If the module is a load module, execute the IMBLIST service
aid program, using the OUTPUT=BOTH option of the LISTLOAD
function. If the module is an object module, use the
LISTOBJ function of the IMBLIST service aid. Save the
resulting listing.

• Make sure the MAP option was in effect for the failing job
step.

IEW1214 ERROR - IDENTIFICATION FAILED - DUPLICATE PROGRAM NAME FOUND.

232

Explanation: When trying to identify the loaded program to the
system, the IDENTIFY routine found a duplicate program name in
the user's region or partition or in the link pack area.

system Action: Processing is terminated. The loader returns
to the caller with a completion code of 16.

\

User Response: Probable user error. Specify a unique program
name using the NAME option or let the loader default the name
to **GO. Rerun the job. If the problem recurs, do the
following before calling IBM for programming support:

• Have the job stream and associated output listings
available.

• Use IEBPTPCH to obtain a dump of SYS1.PARMLIB to get a list
of the routines in the link pack area.

IEW1224 ERROR - IDENTIFICATION FAILED.

~xplanation: The IDENTIFY routine located an error in the
parameter list passed to it by the loader. In an MFT
environment, the name IEWLOAD may have been used to invoke the
loader. In" an MVT environment, the appropriate IDENTIFY macro
instruction support may not be included in the operating
system.

System Action: Processing is terminated. The loader returns
to caller with a completion code of 16.

User Response: If IEWLOAD was used to invoke the loader in an
MFT environment, specify IEWLOADR instead. Rerun the job. If
the problem recurs, do the following before calling IBM for
programming support:

• Have the job stream and associated output listings
available.

In an MVT environment, verify that the appropriate IDENTIFY
macro instruction support is included in the system. The
release level of the IDENTIFY macro instruction should be the
same as the release level of the loader. If the appropriate
IDENTIFY support is included, do the following before calling
IBM for programming support:

• Have the job stream and associate output listings
available.

IEW1991 ERROR - USER PROGRAM HAS ABNORMALLY TERMINATED.

Explanation: This message is issued by the loader when it
determines that the loaded program has terminated abnormally.
This message occurs only under MVT.

System Action: Loaded program execution is terminated
abnormally, and control is returned to the loader. (Unless the
user has included a SYSUDUMP DD statement for the loaded
program, this message is the only indication that the program
has terminated abnormally.)

Operator Response: None.

Programmer Response: To obtain a dump to aid in determining
the cause of the abnormal termination, include a SYSUDUMP DD
statement for the loaded program and rerun the job. If the
problem recurs, do the following before calling IBM for
programming support:

• Have the job stream and associated output listings
available.

Appendix H: Loader Diagnostic Messages 233

GLOSSARY

IBM is grateful to the American National Standards Institute (ANSI) for
permission to reprint its definitions from the American National

~ Standard Vocabulary for Information Processing (ANSI X3.12-1970), which
was prepared by Subcommittee X3.5 on Terminology and Glossary of
American National Standards committee X3. ANSI definitions are preceded
by an asterisk.

*address: An identification, as represented by a name, label, or
number, for a register, location in storage, or any other data source
or destination such as the location of a station in a communication
network; any part of an instruction that specifies the location of an
operand for the instruction.

address constant: A value, or an expression representing a value, used
in the calculation of storage addresses; can be used for branching or
retrieving data.

alias name: An alternate name or entry point for a load module that is
also entered in the output module library directory entry along with
the member name.

automatic library call mechanism: The process whereby control sections
are processed by the linkage editor or loader to resolve external
references to members of partitioned data sets not resolved by primary
input processing.

auxiliary storage: Data storage other than main storage; for example,
storage on magnetic tape or direct access devices.

common area: A control section used to reserve a main storage area
that can be referred to by other modules; may be e1ther named or
unnamed (blank).

common segment: A segment upon which two exclusive segments are
dependent.

control section: That part of a program <instructions and data)
specified by the programmer to be a relocatable unit, all elements of
which are to be loaded into adjoining storage locations for execution.
Abbreviated CSECT.

control section name: The symbolic name of a control section.

downward reference: A reference made from a segment to another segment
lower in the same path; i.e., farther from the root segment.

entry name: A name within a control section that defines an entry
point, and can be referred to for execution by any control section.

exclusive reference: A reference between exclusive segments; that is,
a reference from a segment in storage to an external symbol in a
segment that will cause overlay of the calling segment.

exclusive segments: Segments in the same region of an overlay program,
neither of which is in the path of the other; they cannot be in main
storage simultaneously.

234

external name: A name that can be referred to by any control' section
or separately assembled or compiled module; i.e., a control section
name or an entry name.

external reference: (1) A reference to a symbol that is defined as an
external name in another module. (2) An external symbol that is
defined in another module; that which is defined in the assembler
language by an EXTRN statement or by a V-type address constant, and is
resolved during linkage editing. See also weak external reference.

gxternal_symbol: A control section name, entry point name, or external
reference that is defined or referred to in a particular module. A
symbol contained in the external symbol dictionary.

hierarchy: An optional division of main storage that provides
addressing distinction between processor storage (hierarchy 0) and IBM
2361 Core Storage (hierarchy 1).

inclusivg~ference: A reference between inclusive segments; that is,
a reference from a segment in storage to an external symbol in a
segment that will not cause overlay of the calling segment.

inclusive segments: Segments in the same region of an overlay program
that are in the same path; they can be in main storage simultaneously.

invalid exclusive reference: An exclusive reference in which a common
segment does not contain a reference to the symbol used in the
exclusive reference.

library: In this publication, it is a partitioned data set that always
contains named members.

!Qad module: The output of the linkage editor; a program in a format
suitable for loading into main storage for execution.

load module buffer: An entity of main storage used by the level F
linkage editor to read input load module text records and possibly to
retain the text information in storage for subsequent writing of the
output load module text records.

*module: A program unit that is discreet and identifiable with respect
to compiling, combining with other units, and loading, for example, the
input to, or output from, an assembler, compiler, linkage editor, or
executive routine.

multiple load module processinq: A method of processing whereby two or
more load modules can be produced in a single linkage editor job step.

t
*object module: A module that is the output of an assembler or compiler

and is input to a linkage editor.

overlay program: A program in which certain control sections can use
the same storage locations at different times during execution.

*Qvef~~upervisor: A routine that controls the proper sequencing and
positioning of segments of computer programs in limited storage during
their execution.

Qyerlay~ree: A graphic representation showing the relationships of
segments of an overlay program and how the segments are arranged to use
the same main storage area at different times.

path: All of the segments in an overlay tree between a given segment
and the root segment, inclusive.

Glossary 235

~ivate code: An unnamed control section.

Eroqram: A logically self-contained sequence of operations or
instructions that, when followed in some predetermined sequence, will
produce a specified result; a sequence of instructions to be performed
by an electronic computer; one or more modules, in source language or
relocatable object code, or one module in executable code, that are a
logically self-contained process.

Erogram fetch: A program that prepares load modules for execution by
loading them at specific storage locations; it also readjusts each
address constant.

Eseudo regis~: In PL/I, a location in main storage that is used as a
pointer to dynamically acqaired main storage. It enables the PL/I
compiler to generate re-enterable code. External dummy sections give
the programmer using Assembler F or Assembler H the same facility.

re-enterable load module: A module that can be used concurrently by
more than one task.

refreshable load module: A load module that cannot be modified by
itself or by any other modllie during execution; can be replaced by a
new copy during execution by a recovery management routine without
changing either the sequence or results of processing.

region: In an overlay structure, it is a contiguous area of main
storage within which segments can be loaded independently of paths in
other regions. Only one path within a region can be in main storage at
anyone time.

relocation: The modification of address constants required to
compensate for a change of origin of a module, program, or control
section.

~oo~~ent: That segment of an overlay program that remains in main
storage at all times during the execution of the overlay program; the
first segment in an overlay program.

scatter format: A load module attribute that permits the programmer or
the control program to dynamically load control sections into
noncontiguous areas of main storage.

segment: The smallest functional unit (one or more control sections)
that can be loaded as one logical entity during execution of an overlay
program.

serially reusable load module: A module that cannot be used by a
second task until the first task has finished using it.

source module: The source statements that constitute the input to a
language translator for a particular translation.

uEward reference: A reference made from a segment to another segment
higher in the same path; i.e., closer to the root segment.

valid exclusive reference: An exclusive reference in which a common
segment contains a reference to the symbol used in the exclusive
reference.

weak external reference: An external reference that does not have to
be resolved during linkage editing. If it is not resolved, it appears
as though its value was resolved to zero. Abbreviated WXTRN.

236

(Where more than one page reference is given, the major reference appears first.)

$PRIVATE 52
**GO 206

A-type address constant
replacing control sections 139
and SEGWT macro instruction 88

adcons (see address constants)
additional call libraries 35
additional input sources

automatic call library 32-36
general description of 20-21
included data sets 37-40
libraries 35
processing of 32-33,37-38
specification of

automatic call library 33-34
INCLUDE statement 37-40
LIBRARY statement 34-36,133-134

address
defined 234
assignment 18
of main entry point 43-44

in module map 51
address constant 12

(see also A-type, Q-type, v-type address
constant)

defined 234
resolution of 15

advanced overlay supervisor 84
alias 41
alias name 43

defined 234
for the loader 210
for the linkage editor 89
specification of 43,44

ALIAS statement 43,44
summary 123

alternate output data set (see SYSTERM data
set)

assembler language dependencies 25
asynchronous overlay supervisor 84
ATTACH macro instruction

and hierarchy assignment 127
invoking the loader 218,219
and only loadable modules 92

attributes, module (see module attributes)
automatic call library for linkage
editor 32-36

negating 35-36
automatic call library for loader

DO statement for 208
description of 201,202
negating 206
options for use 206

automatic deletion of modules 201,203

automatic library call mechanism
defined 234
(see also automatic call library for
linkage editor, loader)

automatic replacement
control sections 57-59
modules 43
overlay note 57

automatic search of link pack area 206
auxiliary storage

defined 234

basic overlay supervisor 84
blank common area

collection of 44-45,81-82
defined 14
in module map 51

BLKSIZE subparameter 109
block size 109
blocking factors 100-103
branch instructions

in overlay programs 85-86
buffer, load module (see load module

buffer)
buffer numbers, for loader data sets 207

call library, linkage editor 32-36
additional libraries 35
concatenating 34
ddname 33
NeAL option 36
never-call 36
restricted no-call 35
specification of 32-36

call library, loader
DD statement for 208
description 201,202
options for use 206

CALL loader option 206
CALL macro instruction 85

to invoke the loader 212
with only loadable modules 92

CALL statement 85
capacities of the linkage editor 163-lb8
cataloged procedure

defined 114
for the linkage editor 114-119

LKED 114-116
LKEDG 116-117

how to add DD statements 119
how to override 117-118

CESD (see composite external symbol
dictionary)

CHANGE statement 55-56
summary 124-125

changing external symbols 55-5b
class test table 70

Index 237

COBOL language dependencies 25
collection of common areas 45-46
common areas

blank 14
collection of 44-45,81-82
defined 234,14
in module map 51
named 14
reserving storage for 44-45
definition

Assembler 25
FOR'IRAN 26
PL/I 26

common segment
defined 65,234
in exclusive references 69-70
in promotion of common areas 81-82

comparison of linkage editor and
loa:ier 203

compatibility
of linkage editor and loader 203
of linkage editors 91,16

composite external symbol dictionary 17
numner of entries 165

concatenation of call libraries 34
concatenation of input data sets

linkage editor 39-40
restriction 113

loa:ier 208
COND parameter 107
condition code (see return code)
condition parameter, in LKEDG 116
constant (see address constant)
control dictionaries 13
control section

defined 12,234
external symbol dictionary 14
how to delete 60-61
how to position 77-80
how to replace 57-60
in module map 51
definition

Assembler 25
COBOL 25
FORTRAN 25-26
PL/I 26

control section name
defined 234
external symbol dictionary 14
changing 55-56

control statements
continuation of 121
format conventions 121-122
general format 121
as input 30-31,32
listing 51,53
listing option 104
placement information 122
summary list 123-140
(see also individual statements)

cross-reference table 52
sample 53

cross-reference table option 105
CSEcr identification records

function 24

238

in object and load modules 13
storage required 166-167
use of IDENTIFY 128-129

data definition statement (see DD
sta tement)

data for loaded program 209
data set

concatenation of 34,208
linkage editor

input 27-40
output 41-53

loader 207-210
data set name 108
DC attribute 91
DCB information

linkage editor 108-109
loader 207

DCBS option 103-104
DD statements

general description 107-108
linkage editor data sets 107-113

ddnames 109
SYSLIB 33-34,110
SYSLIN 109-110
SYSLMOD 111-112
SYSPRINT 111
SYSUTl 110

loader data sets
ddnames 207-210,211
SYSLIB 208
SYSLIN 207-208
SYSLOUT 209

ddname list 161-162
ddnames

linkage editor 109
specifying alternate names 161-162

loader
automatic call library 208
diagnostic data set 209-210
input data set 207-208
specifying alternate names 211

default module attributes 95
deleting

control section 60-61
entry name 60-61

design levels, linkage editor 163-168
diagnostic messages

linkage editor
directory 48-50
format 46-48
list of 169-199

loader
format 215
list of 223-233

diagnostic output
linkage editor 46-53

messages 46-50
optional 51-53
options, summary 22

loader
data set 209
format 215
options 206

dictionaries
composite external symbol 17,165
external symbol 13-15
relocation 13,15,165

directory entry, output module 22, 41
disposition messages 46-47
downward call (see downward reference)
downward compatible attribute 91

downward reference 63
defined 234
maximum number 165

editing conventions 54
editing, module 54-61
end of module indication 15,13
END statement

object module 13
specifies entry pOint 43-44

ENTAB (see entry table)
entry address, in module map 51
entry name

defined 234
definition, language

Assembler 25
COBOL 25
FOR'IRAN 26
PL/I 26

in ESD 14
how to change 55-56
how to delete 60-61
in module map 51

entry point 43-44
of loaded program 206
specification of

END statement 43-44
ENTRY statement 43,126
EP loader option 206

ENTRY statement 43
summary 126

entry table 71-72
EOM (see end of module indication)
EP loader option 206
error condition (see severity code)
error messages (see diagnostic messages)
ESD (see external symbol dictionary)
exclusive call option 96
exclusive reference 69-70

defined 234
and entry table 71-72
XCAL option 96
restriction 70

exclusive segments 68-70
defined 234

EXEC statement
linkage editor 89-107

introduction 89
job step options 90-105
program name 89
REGION parameter 106
return code 107

loader
description 205-207
examples 207

executable module 96
external dummy section

Assembler definition of 25
defined 14
processing of 22,45
(see also pseudo register)

external name 12, 13
defined 235
(see also control section name; entry
name)

external reference 12
changing 55-56
defined 235
definition, language

Assembler 25
COBOL 25
FORTRAN 26
PL/I 26

in ESD 13-14
resolving 32,18
weak 14,21

with automatic library call 32
in cross-reference table 52

external symbol 12,13
changing 55-56
defined 235

external symbol dictionary 13-15

FORTRAN language dependencies 25-26
functions

linkage editor 19-23
loader 201

HIAR attribute 91
HIARCHY statement 23

summary 127
hierarchy, defined 235
hierarchy assignment

description 23
specification

HIAR attribute 89
HIARCHY statement 127,23

hierarchy format attribute 91

I type code 223
IDENTIFY macro instruction, as input to
loader 203

IDENTIFY statement summary 128-129
IDR (see CSECT identification records)
IEBUPDTE, input statements 157
IEWL 89,114
IEWLOAD 212,214
IEWLOADR 212,213
IEWOOOO 51
IMBMDMAP program 52
INCLUDE statement 37-40

summary 130
included data sets 37-40

concatenated data sets 39-40
library members 38-39
sequential data sets 38

inclusive reference 69
defined 235

inclusive segments 68-70
defined 235

incompatible job step options 105-106
incompatible module attributes 95,105-106
input da ta set,s

linkage editor 27-40
type of data 27

loader 207-208
input processing 27

Index 239

,input sources
linkage editor 16-17
loader 205,207-208

INSERT statement 78-80
summary 131-132

intermediate data set
linkage editor

ddname 109
description 16-17,165
devices supported 165
and SIZE option 100
when used 165

loader 203
intermediate text records

number produced 165
internal data area 204
invalid attributes or options 46
invalid exclusive reference 69-70

defined 235
invocation of

the linkage editor 161-163
the loader 210-214

job control language summary· 89-119
job control statements

linkage editor 89-119
loader processing

basic format 205
compile-load job 217
load job 217
multiple compilations 218

job step options, on EXEC statement 90-106

language dependencies
Assembler 25
COBOL 25
FORTRAt~ 25- 26
PL/I 26

let execute option 96
LET option

for the linkage editor 96
and overlay programs 79-80

for the loader 203,206
level E 163

capacities 163-165
compatibility with F 91
intermediate data set 165
program name 89
storage requirements 167-168

level F
capacities 163-165
compatibility with E 91
intermediate data set 167
program name 89
storage allocation for 97-103
storage requirements 167-168

library, defined 235
library call (see automatic call library
for linkage editor, loader; call library)

library members

240

how to include 38-39
as input to the linkage editor 28-29
as input to the loader 207-208

LIBRARY statement 36-38
additional call libraries 35
with NeAL 96
never-call function 36
restricted no-call function 35
summary 133-134

LINK command
function of 24

LINK macro instruction
to invoke the linkage editor 161-162
to invoke the loader 210,212

link pack area resolution by the
loader 206-207

linkage editor
cataloged procedures 114-119
compared to loader 9,201
control statement summary 121-140
DD statements 109-113
diagnostic messages 169-199
functions 19-2fo'
input 27-40/'
how to invoke 161-163
output 41-53
processing 16-18
program names 89
programs 163-168
relationship to operating system 23-24
storage requirements 167-168
when to use 9

LINKEDIT 89
linking modules 19-20
LIST option 104,51
LKED procedure 114-116
LKEDG 116-117
LOAD macro instruction

to invoke the loader 210-214
with only loadable modules 92

load module
attributes 90-95
buffer 97-104
defined 11,235
entry point 43-44
as input.

to the linkage editor 27
to the loader 203

as linkage editor output 41-46
multiple processing of 45-46
size restriction 24
structure 13

load module attribute assignment
summary 22-23

load module buffer 97-104
defined 235

load module creation 17-18
load point 68,74-75
load step 9,201
loaded program

data 210
in module map 215
options 205
restrictions 204
return code 219-220

loader
abnormal termination message <MVT) 215
alias name 210
compared to linkage editor 9, 203
compatibility with linkage editor 203
data sets 207-210

input 201,203
invocation of 210-214
options 206
output 215-216
program name 205
restrictions on use 203
return code 219-220

LOADGO command
function of 204

loading
with identification 212,214
without identification 212,213

logical record length
linkage editor data sets

blocking factors 109
diagnostic output 111
input 109-110
SIZE option 97-103

LRECL 109
(see also logical record length)

macro instruction, basic format 161-162
main storage requirements

linkage editor 167-168
loader 221-222
overlay programs 82-83

MAP option
linkage editor 104
loader 206,203

maximum record size for device types 99
member name 42-43

defined 41
member, partitioned data set

how to include 38-39
as input to the linkage editor 28-29
as input to the loader 207-208

messages
disposition 46-47
examples 50
format 48-49
list of

linkage editor 169-199
loader 223-233

text 48
unnumbered 46-47

modular programming 11
module

defined 11,235
(see also load module; module
attributes; object module)

module attributes 90-97
default attributes 95
downward compatible 91
hierarchy format 91
incompatible attributes 95,105-106
not editable 92
not executable 95
only loadable 92
overlay 92-93
reusability

re-enterable 93
serially reusable 93

refreshable 94
scatter format 94
test 95

module disposition messages 46-47
module editing 54-61

summary 20-21
module linking 19-20
module map

linkage editor
description 51-52
example 53
MAP option 104

loader
description 215
example 216
specification 206

module map option 104
multiple load module processing 45-46

defined 235
multiple region overlay program 72-74

specification 75-76

NAME option 206
NAME statement 42

in multiple load module processing 43
replace function 43
with SYSLMOD DD 45-46
summary 135

named common area
collection of 44-45,81-82
defined 14
in module map 51

NCAL option
linkage editor 39,96-97
loader 206,203

NE attribute 92
negation of

automatic library call
linkage editor 35-36
loader 206

loader
diagnostic output 206
module map 206
search of link pack area 206

not editable attribute 94
not executable attribute 96
re-enterable attribut~ 93
refreshable attribute 94
serially reusable 93

never-call function 36
in cross-reference table 52

no automatic library call option 96-97
no-call (see restricted no-call function)
NOCALL loader option 206
node point (see load point)
NOLET loader option 206,203
NOMAP loader option 206
NOPRINT loader option 206
NORES loader option 206
NOTERM loader option 206
not editable attribute

linkage editor 92
loader 203

not executable attribute 95

object module
defined 11,235
in main storage 204

Index 241

input to linkage editor 28-31
with control statements 31-32

input to the loader 207-210
structure 13

OL attribute 92
only loadable attribute 92
optidnal output 51-53
options, linkage editor

module attributes 90-97
output 104-105
space allocation 97-103
special processing 96-97

origin
of control section in module map 51
of region 76
of segments 68

and OVERLAY statement 74-75
output of the linkage editor

diagnostic messages 46-50
load module 41-46
output module library 41-43
optional output 51-53
output options 104-105

output of the loader
messages 215
module map 215,216
specification of 206

output module library 41-43
overlap of loading and processing of

overlay segments 86-87
overlay attribute 92-93

with hierarchy attribute 91
overlay program

communication 84-88
defined 235
design 63-74
module map 51
multiple region 72-73
process 70-72
region origin 76
respecifying control statements 74,80
sample program 150-156
segment origin 74-78
single region 64-72
special considerations 81-88
specification 74-81
storage requirements 83-84

OVERLAY statement 74-76
summary 136-137

overlay supervisor 71
defined 235
storage requirements 167-168

overlay tree 65-66
defined 235

overriding cataloged procedures
EXEC statement 117-118
DD statements 118

OVLY attribute 93

partitioned data set
as input

242

to linkage editor 28-29
to loader 207-208

as output of linkage editor 41-43
(see also library)

path, in overlay programs 63
defined 235

PL/I language dependencies 26
placement of control statements' 122

(see also individual statements)
positioning control sections 77-80
preloaded text 204,215
primary input data set 27-32

control statements 30-31,31-32
object modules 28-30,31-32

PRINT loader option 206
private call libraries 33
private code

defined 14,236
in module map 51

procedure LKED 114-116
procedure LKEDG 116-117
program
Pocessing history, tracing 24

defined 236
program fetch

defined 236
functions 18

program name
on EXEC statement 89

prompter, linkage editor
function of 24

prompter, loader
function of 204

pseudo register
defined 14,236
in module map 51
PL/I definition of 26
processing of 22,45

Q-type address constant 25

RECFM (see record format)
record format (RECFM) 108-109

linkage editor data sets
diagnostic output 111
input 109-110
load modules 111-112

loader data sets 207
record size, maximum for device type 99
re-enterable attribute 93
re-enterable load module

defined 236
module attribute 93

REFR attribute 94../
refreshable attribute 94
refreshable load module

defined 236
module attribute 94

region, main storage
for linkage editor

cataloged procedures 114
requirements 167-168
with SIZE option 106

for loader 221
region, in overlay programs 72-73,76

defined 236

relocating a load module 11-12
relocation

defined 236
relocation dictionary 15

number of entries 165
RENT attribute 93
replace function 43
REPLACE statement 55-56,59-61

sample program 145-149
summary 138-139

replacing control sections 57-60
assembler language note 57

replacing external symbols (see CHANGE
statement; changing external symbols)

replacing load modules with the same
name 43

repositioning control statements 77-80
from automatic call library 79-80
INSERT statement 131-132

reprocessing load modules
compatibility 91
entry point assignment 44
not editable attribute 92

RES loader option 206
reserving storage 44-45
resolving external references 32,18
restrictions, loaded program 204
restricted no-call function 35
return code

linkage editor 107
loader 219-220

testing 219
severity code 48

REUS attribute 93
reusability attributes 93

re-enterable 93
serially reusable 93

RLD (see relocation dictionary)
root segment 63

defined 236
with OVERLAY 74
and segment table 71-72

sample programs 141-159
scatter format attribute 94

defined 236
with hierarchy attribute 91

scatter loading 94
SCTR attribute 94
SEGLD macro instruction 86-87
segment

communication 68-70
defined 236
dependency 66
origin 68
(see also exclusive, inclusive, root
segments)

segment load macro instruction 86-87
segment table 70-72
segment wait macro instruction 87-88

with SEGLD 86-87
SEGTAB (see segment table)
SEGWT macro instruction 87-88

with SEGLD 86-87

sequential data set
how to include 38
as input to the linkage editor 27
as input to the loader 207-208

serially reusable
attribute 93
defined 236

SETSSI statement 140
severity code

linkage editor 48
return code 107,170

loader 206,223
severi ty 0 48
severity 2 errors 95,96

SIZE option
linkage editor 97-103
loader

description 203,206
and region size 206

size restriction, load modules 24
source module

defined 236
space allocation options 97-104

DeBS option 103-104
SIZE option 97-103
minimum values 97-98

special processing options 96-97
summary 22

static external areas 44-45
storage hierarchy assignment

summary 23
(see also hierarchy assignment)

storage requirements (see main storage
requirements)

SYSLIB DD statement 110
for the linkage editor 110

(see also automatic call library)
for the loader 208

SYSLIN DD statement
for the linkage editor 109-110

(see also primary input data set)
for the loader 207-208

SYSLMOD DD statement 111-112
(see also output module library)
and NAME statement 45-46

SYSPRINT DD statement 111
(see also diagnostic output)

system call library 33
list of 33

system status index information
storage of 23

SYSTERM data set
linkage editor 112,105,48
loader 209-210,207,215

SYSTERM DD statement
linkage editor 112,105,48
loader 209-210

SYSUTl DD statement 110
(see also intermediate data set)

tasking options of PLlI, use with
loader 203

TEMP NAME 42
temporary data set 29,41

Index 243

TERM option
linkage editor 112,105,48
loader 206

TEST attribute 93
test translator 95
TESTRAN 95
text 13,15
text, message 48
time sharing option (see TSO)
tracing processing history 24
TRANSFORM table 70
tree structure 65-66

defined 235
TSO (time sharing option)

linkage editor 24
SYSTERM data set 112,105
TERM option 48

loader
SYSTERM data set 209-210,207,215
TERM option 206

TXT (see text)
type code 223

unnumbered messages 46-47
unresolved references

and automatic library call 32
in cross-reference table 52

upward reference 63
defined 236

user-specified
input 16
storage 23

user-written library (see private call
libraries)

244

V-type addre~s constant
with CALL 85
branch instruction, overlay 85
with SEGLD 87
wi th SEGWT 88

valid exclusive reference 69-70
defined 236

wait for loading of segment 87-88
warning messages 48-50
weak external reference 21

with automatic library call 32
in cross-reference table 52
defined 14,236

XCAL option 96
XCTL macro instruction

and hierarchy assignment 127
as input to the loader 203
to invoke the loader 210-212
and only loadable modules 92

XREF option 105
(see also cross-reference table)

zero-length control section 91

READER'S COMMENTS

TITLE: IBM OS Linkage Editor & Loader ORDER NO. GC28-6538·9

Your comments assist us in improving the usefulness of our publications; they are an important part
of the input used in preparing updates to the publications. All comments and suggestions become
the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM
representative or to the IBM Branch Office serving your locality.

Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC28-6538-9

fold

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE Will BE PAID BY ..•

IBM CORPORATION

Monterey & Cottle Roads
San Jose, California 95114

Attention: Programming Publications, Dept. 078

FIRST CLASS

PERMIT NO. 2078

SAN JOSE, CAL.

fold

· • 0 · = ·
:e!.
• 0
• :::I .aq

:e:
• CI.I

.. ~ .. :
fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10B04
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[In terna tional]

fold

GC28-6538-9

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

	001
	002
	002.1
	002.2
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	replyA
	replyB
	xBackA
	xBackB

