
File Number S360-30
Order Number GC26-3746-1

Systems Reference Library

OS Data Management Services Guide

Release 21

This book describes the services provided by the operating system
to allow the programmer to organize data into data sets on auxiliary
storage devices, to read. information from these data sets into main
storage, and, after processing the information, to record it on
auxiliary storage devices.

This book is intended for application programmers who write
assembler-language programs that create and process data sets. It
describes the assembler-language macro instructions used to request
input and output operations. The format of the macro instructions
is explained in as Data Management Macro Instructions,
GC26-3794, which should be used with this book.

In addition to describing the characteristics of data sets and
direct-access storage devices, the book describes the techniques you
can use to process sequential, partitioned, indexed sequential, and
direct data sets.

This book assumes you have a basic knowledge of the operating
system and of assembler language. Two books that contain
information al?out these subjects are as Introduction, GC28-6534,
and as Assembler Language, GC28-6514. It also assumes you
are familiar with job control language, especially the DD statement,
as described in as Job Control Language Reference, GC28-6704.

This book does not discuss macro instructions used for the time
sharing option or for graphics, teleprocessing, optical character
readers, optical reader-sorters, or magnetic character readers.
These macro instructions are discussed in separate publications that
are listed in the IBM System/360 and System/370 Bibliography,
GA22-6822. ~ :

~"
4 ... ·'

Second Edition (February 1972)

This publication corresponds to release 21 of the operating system. It is a major
revision of GC26-3746-0 and technical newsletters GN26-0624 and GN26-0631,
which are now obsolete. A change is indicated by a vertical line in the margin to the
left of the change. The major changes are listed in "Summary of Changes."

Information in this book changes from time to time. Before using this publication with
IBM systems, consult the latest IBM System/360 and 370 SRL Newsletter,
GN20-0360, for the editions that are current and applicable.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM Branch Office serving your locality.

Forms are provided at the back of this publication for reader's comments. If the forms
have been removed, comments may be addressed to IBM Corporation, Programming
Publications, Department D78, San Jose, California 95114. All comments become the
property of IBM.

© Copyright International Business Machines Corporation 1971, 1972

HOW TO USE THIS BOOK

If you know how to write assembler-language programs and use job control statements,
you can use this book to write programs that create and process data sets. To use this
book you must have basic knowledge of the operating system as contained in OS
Introduction, GC28-6534, of assembler language as described in OS Assembler
Language, GC28-6514, and of job control language (JCL) as explained in OS Job
Control Language Reference, GC28-6704.

"Part 1: Introduction to Data Management" introduces you to the characteristics of
data sets, how you name them, how the system catalogs them, and how you format the
records in them. The format of tracks on a direct-access storage device is explained
briefly. If you want to know more on this subject you can refer to Introduction to
IBM System/360 Direct-Access Storage Devices and Organization Methods,
GC20-1649.

Part 1 also describes the data control block (DCB) and the information it supplies to
the operating system. Special processing routines that you specify in the DCB macro
instruction are also explained in this section.

In "Part 2: Data Management Processing Procedures" there is an explanation of
data-processing techniques that includes the macro instructions for the queued access
technique and the basic access technique and the macro instructions for analyzing input
and output errors. The section on data-processing techniques also tells how to select
an access method and how to begin and end processing of a data set.

The section "Buffer Acquisition and Control" in Part 2 explains three different
methods you can use to obtain buffers and the macro instructions you use with each
method. This section also describes ways to control buffers: simple buffering and
exchange buffering for the queued access technique, direct buffering and dynamic
buffering for the basic access technique. In addition, for the queued access technique,
there is an explanation of the four mpdes of moving the records in main storage: move
mode, data mode, locate mode, and ~ubstitute mode. Macro instructions for controlling
buffers are described here, too.

The next four sections of Part 2 concern processing data sets of four different types: a
sequential data set, a partitioned data set, an indexed sequential data set, and a direct
data set. They explain the organization of the data sets and the macro instructions
used to process them. In the examples the macro instructions are coded in just enough
detail to make the examples clear. For a complete description of the operands and
options available, see OS Data Management Macro Instructions, GC26-3794.

"Part 3: Data Set Disposition and Space Allocation" tells you how to figure the
amount of space you need for a data set on a direct-access storage device and how to
request that space in your JCL DD statement. You are given special directions for
allocating space for a partitioned data set and an indexed sequential data set. Part 3
also tells how to indicate in the JCL DD statement the status of the data set at the
beginning of and during processing and how to indicate what you want the system to
do with the data set when processing has terminated. You also are told how to use the
DD statement to route the data set to a system output writer, to concatenate data sets,
to catalog data sets, and to protect confidential data sets.

Appendix A describes data set labeling. Appendix B explains control characters you
can use to control card punches and printers. Appendix C explains special

iii

considerations for writing programs for the 3505 Card Reader and the 3525 Card
Punch.

The following books are referred to in the text:

OS Data Management for System Programmers, GC28-6550, is for system
programmers who are responsible for maintaining, updating, and extending the data
management libraries of the operating system.

OS Messages and Codes, GC28-6631, explains the system completion codes and
error messages issued by the operating system.

OS MFT Guide, GC27-6939, and OS MVT Guide, GC28-6720, provide
introductory material for programmers not familiar with the multiprogramming with a
fixed number of tasks (MFT) and multiprogramming with a variable number of tasks
(MVT) versions of the operating system.

OS Service Aids, GC28-6719, aids system programmers and persons maintaining OS
in diagnosis of system or application program failures.

OS Sort/Merge, GC28-6543, explains how to use the sort/merge program.

OS Supervisor Services and Macro Instructions, GC28-6646, explains how to
reserve system resources for the exclusive control of your program and how to restart
your program from a checkpoint if the system fails.

OS System Control Blocks, GC28-6628, shows the format of the control blocks used
by more than one component of the operating system.

OS System Generation, GC28-6554, describes the process you use to create or
modify an operating system.

OS Tape Labels, GC28-6680, explains how the system processes tapes with IBM
standard labels, American National Standard labels, nonstandard labels, or no labels.

OS Utilities, GC28-6586, describes how to use operating system utility programs that
are used by programmers responsible for organizing and maintaining operating system
data.

iv

CONTENTS

iii How to Use this Book

xi Summary of Changes for Release 21

1 Part 1: Introduction to Data Management
1 Data Set Characteristics
3 Data Set Identification
3 Data Set Storage
4 Direct-Access Volumes
5 Magnetic-Tape Volumes
6 Data Set Record Formats
6 Fixed-Length Records
7 Fixed-Length Records, Standard Format
8 Fixed-Length Records, ASCII Tapes
9 Variable-Length Records
9 Variable Length Records - Format V

10 Spanned Variable-Length Records (Sequential Access Methods)
12 Spanned Variable-Length Records (Basic Direct Access Method)
12 Variable-Length Records - Format D
14 Undefined-Length Records
15 Control Character
15 Direct-Access Device Characteristics
16 Track Format
16 Track Addressing
17 Track Overflow
17 Write-Validity-Check Option
18 The Data Control Block
19 Data Set Description
21 Processing Program Description
21 Macro Instructions Form (MACRF)
21 Exits to Special Processing Routines
22 End-of-Data-Set Exit Routine (EODAD)
22 Synchronous Error Routine Exit (SYNAD)
24 Exit List (EXLST)
26 Standard User Label Exit
28 User Totaling (BSAM and QSAM only)
30 Data Control Block Exit
30 End-of-Volume Exit
30 Block Count Exit
31 Defer Nonstandard Input Trailer Label Exit
31 FCB Image Exit
31 DeB ABEND Exit
35 Modifying the Data Control Block
36 Sharing a Data Set

39 Part 2: Data Management Processing Procedures
39 Data-Processing Techniques
39 Queued Access Technique
39 GET - Retrieve a Record
39 PUT - Write a Record
40 PUTX - Write an Updated Record

v

40 Basic Access Technique
41 READ - Read a Block
41 WRITE - Write a Block
42 CHECK - Test Completion of Read or Write Operation
42 WAIT - Wait for Completion of a Read or Write Operation
42 Data Event Control Block (DECB)
43 Error Handling
43 SYNADAF - Perform SYNAD Analysis Function
43 SYNADRLS - Release SYNADAF Message and Save Areas
43 ATLAS - Perform Alternate Track Location Assignment
44 Selecting an Access Method
44 Opening and Closing a Data Set
46 OPEN - Initiate Processing of a Data Set
47 CLOSE - Terminate Processing of a Data Set
48 End-of -Volume Processing
49 FEOV - Force End of Volume
49 Buffer Acquisition and Control
50 Buffer Pool Construction
50 BUILD - Construct a Buffer Pool
51 BUILDRCD - Build a Buffer Pool and a Record Area
51 GETPOOL - Get a Buffer Pool
51 Automatic Buffer Pool Construction
51 FREEPOOL - Free a Buffer Pool
53 Buffer Control
54 Simple Buffering
56 Exchange Buffering
59 RELSE - Release an Input Buffer
60 TRUNC - Truncate an Output Buffer
60 GETBUF - Get a Buffer from a Pool
61 FREEBUF - Return a Buffer to a Pool
61 FREEDBUF - Return a Dynamic Buffer to a Pool
61 Processing a Sequential Data Set
61 Data Format - Device Type Considerations
62 Magnetic Tape (T A)
63 Paper-Tape Reader (PT)
63 Card Reader and Punch (RD IPC)
64 Printer (PR)
64 Direct-Access Device (DA)
64 Device Control
65 CNTRL - Control an 110 Device
65 PRTOV - Test for Printer Overflow
65 SETPRT - Load Universal Character Set and Forms Control Buffers
66 BSP - Backspace a Magnetic-Tape or Direct-Access Volume
66 NOTE - Return the Relative Address of a Block
66 POINT - Position to a Block
67 Device Independence
67 System Generation Considerations
67 Programming Considerations
69 Chained Scheduling for 110 Operations
70 Search Direct for Input Operations
71 Creating a Sequential Data Set
72 Using BSAM to Read Fixed-Length Blocked Records
73 Processing a Partitioned Data Set
74 Partitioned Data Set Directory
77 Processing a Member of a Partitioned Data Set

vi

77 BLDL - Construct a Directory Entry List
78 FIND - Position to a Member
79 STOW - Alter a Directory Entry
79 Creating a Partitioned Data Set
81 Retrieving a Member of a Partitioned Data Set
82 Updating a Member of a Partitioned Data Set
82 Updating in PI~ce
82 Rewriting a Member
83 Processing an Indexed Sequential Data Set
84 Indexed Sequential Data, Set Organization
84 Prime Area
85 Index Areas
86 Overflow Areas
87 Adding Records to an Indexed Sequential Data Set
87 Inserting New Records into an Existing Indexed Sequential Data Set
87 Adding New Records to the End of an Indexed Sequential Data Set
89 Maintaining an Indexed Sequential Data Set
90 Indexed Sequential Buffer and Work Area Requirements
93 Controlling an Indexed Sequential Data Set Device
94 SETL - Specify Start of Sequential Retrieval
94 ESETL - End Sequential Retrieval
94 Creating an Indexed Sequential Data Set
97 Updating an Indexed Sequential Data Set
97 Direct Retrieval and Update of an Indexed Sequential Data Set

102 Processing a Direct Data Set
102 Organizing a Direct Data Set
102 Referring to a Record in a Direct Data Set
103 Creating a Direct Data Set
104 Adding or Updating Records on a Direct Data Set

109 Part 3: Data Set Disposition and Space Allocation
109 Allocating Space on Direct-Access Volumes·
109 Specifying Space Requirements
110 Estimating Space Requirements
112 Allocating Space for a Partitioned Data Set
112 Allocating Space for an Indexed Sequential Data Set
114 Specifying a Prime Data Area
114 Specifying a Separate Index Area
115 Specifying an Independent Overflow Area
115 Calculating Space Requirements for an Indexed Sequential Data Set
119 Control and Disposition of Data Sets
120 Routing Data Sets through the Output Stream
121 Concatenating Sequential and Partitioned Data Sets
123 Cataloging Data Sets
124 Entering a Data,Set Name in the Catalog
125 Entering a Generation Data Group in the Catalog
125 Controlling Confidential Data - Password Protection

127 ;\ppendix A: ,Direct-Access Labels
127 Volume-Label Group
128 Initial Volume Label Format
129 Data Set Control Block (DSCB)
129 User Label Groups
130 User Header and Trailer Label Format

vii

131 Appendix B: Control Characters
131 Machine Code
131 Extended American National Standards Institute Code

133 Appendix C: Special Programming Considerations for the 3505
Card Reader and the 3525 Card Punch

133 3525 Interpret Punch
133 3525 Print
133 3525 Associated Data Sets
135 Opening Associated Data Sets
136 Closing Associated Data Sets
137 Optical Mark Read (3505 only) and Read Column Eliminate

(3505 and 3525)

139 Index

viii

FIGURES

7 Figure 1. Fixed-Length Records
8 Figure 2. Fixed-Length Records for ASCII Tapes
9 Figure 3. Variable-Length Rec~rds

10 Figure 4. Spanned Variable-Length Records
11 Figure 5. Segment Control Codes
12 Figure 6. Spanned Variable-Length Records for BDAM Data Sets
13 Figure 7. Variable-Length Records for ASCII Tapes
14 Figure 8. U ndefined-Length Records
14 Figure 9. Undefined-Length Records for ASCII Tapes
15 Figure 10. 1316 Disk Pack
16 Figure 11. Direct-Access Volume Track Formats
18 Figure 12. Completing the Data Control Block
19 Figure 13. Sources and Sequence of Operations for Completing the

Data Control Block
22 Figure 14. Data Management Exit Routines
25 Figure 15. Format and Contents of an Exit List
26 Figure 16. Parameter List Passed to User Label Routine
27 Figure 17. System Response to a User Label Exit Routine Return Code
31 Figure 18. System Response to Block Count Exit Return Code
32 Figure 19. Defining an FCB Image
33 Figure 20. Parameter List Passed to DCB ABEND Exit Routine
34 Figure 21. Conditions for which Recovery Can Be Attempted
34 Figure 22. Recovery Work Area
36 Figure 23. Modifying a Field in the Data Control Block
44 Figure 24. Data Management Access Methods
46 Figure 25. Opening Three Data Sets Simultaneously
47 Figure 26. Closing Three Data Sets Simultaneously
52 Figure 27. Constructing a Buffer Pool From a Static Storage Area
52 Figure 28. Constructing a Buffer Pool Using GETPOOL and FREEPOOL
54 Figure 29. Simple Buffering with MACRF=GL and MACRF=PM
55 Figure 30. Simple Buffering with MACRF=GM and MACRF=PM
56 Figure 31. Simple Buffering with MACRF=GL and MACRF=PL
57 Figure 32. Exchange Buffering with MACRF=GT and MACRF=PT
58 Figure 33. Exchange Buffering with MACRF=GL and MACRF=PM
59 Figure 34. Exchange Buffering with MACRF=GL and MACRF=PT
60 Figure 35. Buffering Technique and GET/PUT Processing Modes
63 Figure 36. Tape Density (DEN) Values
70 Figure 37. Creating a Sequential Data Set - Move Mode,

Simple Buffering
71 Figure 38. Creating a Sequential Data Set - Locate Mode,

Simple Buffering
72 Figure 39. Creating a Sequential Data Set - Substitute Mode,

Exchange Buffering
73 Figure 40. Using BSAM to Read Fixed-Length Blocked Records
74 Figure 41. A Partitioned Data Set
75 Figure 42. A Partitioned Data Set Directory Block
75 Figure 43. A Partitioned Data Set Directory Entry
78 Figure 44. Build List Format
79 Figure 45. Creating One Member of a Partitioned Data Set
80 Figure 46. Creating Members of a Partitioned Data Set Using STOW

ix

81 Figure 47. Retrieving One Member of a Partitioned Data Set
81 Figure 48. Retrieving Several Members of a Partitioned Data Set Using

BLDL, FIND, and POINT
83 Figure 49. Updating a Member of a Partitioned Data Set
85 Figure 50. Indexed Sequential Data Set Organization
86 Figure 51. Format of Track Index Entries
88 Figure 52. Adding Records to an Indexed Sequential Data Set
90 Figure 53. Deleting Records From an Indexed Sequential Data Set
96 Figure 54. Creating an Indexed Sequential Data Set
98 Figure 55. Sequentially Updating an Indexed Sequential Data Set
99 Figure 56. Directly Updating an Indexed Sequential Data Set

101 Figure 57. Directly Updating an Indexed Sequential Data Set with
Variable-Length Records

104 Figure 58. Creating a Direct Data Set
106 Figure 59. Adding Records to a Direct Data Set
106 Figure 60. Updating a Direct Data Set
111 Figure 61. Direct Access Storage Device Capacities
1 11 Figure 62. Direct Access Device Overhead Formulas
114 Figure 63. Requests for Indexed Sequential Data Sets
122 Figure 64. Reissuing a READ for Unlike Concatenated Data Sets
123 Figure 65. Catalog Structure on Two Volumes
127 Figure 66. Direct-Access Labeling
128 Figure 67. Initial Volume Label
130 Figure 68. User Header and Trailer Labels
134 Figure 69. Correspondence Between Print Line Numbers and

Channel Numbers
136 Figure 70. Operations that Cause Card Feed for a 3525 Card Punch
138 Figure 71. OMR Coding Rules

x

SUMMARY OF CHANGES FOR RELEASE 21

DeB ABEND Exit

DOS Tapes

A description of the DCB ABEND exit routine has been added to the section "Exits to
Special Processing Routines" in Part 1.

Special considerations for using the CNTRL, BSP, and POINT macro instructions in
processing DOS tapes under OS are in the section "Device Control." A restriction is
listed in the section "Chained Scheduling for I/O Operations."

IEHPROGM Data Set Protection Feature

This new feature of the IEHPROGM utility program is described in the section
"Controlling Confidential Data - Password Protection."

Time Sharing Option (TSO)

TSO information has been removed. See Time Sharing Option Guide to Writing a
Terminal Monitor Program or a Command Processor, GC28-6764.

3400-Series Magnetic-Tape Units

Recording densities are given in the section "Data Format - Device Type
Considerations.' ,

3505 Card Reader and 3525 Card Punch

Special programming considerations for these devices are in Appendix C. Restrictions
appear in the sections "Opening and Closing a Data Set," "Data Format - Device
Type Considerations," and "Chained Scheduling for I/O Operations."

xi

ACRONYMS USED IN THIS BOOK

A
ABE
ABEND
ACC
AFF

ANSI
ASCII
ABSTR
AUL

B
BCDIC
BDAM
BDW
BFALN
BFTEK
BISAM
BLDL
BLKSIZE
BPAM
BSAM
BSM

BSP
BSR

BUFeB
BUFL
BUFNO
BUFOFF

CCW
CONTIG
CPU
CSW
CYLOFL

D
DA
DAU
DCB
DCBD
DD
DEB
DECB
DEN
DEVD
DISP

ANSI control code (value of RECFM)
abnormal end (value of EROPT)
abnormal end (macro instruction)
accept erroneous block (value of EROPT)
affinity (channel separation parameter of DD statement or unit affinity
value of UNIT)
American National Standards Institute
American National Standard Code for Information Interchange
absolute track (value of SPACE)
American National Standard or User labels (value of LABEL)

blocked records (value of RECFM)
Binary Coded Decimal Interchange Code
basic direct access method
block descriptor word
buffer alignment (operand of DCB)
buffer technique (operand of DCB)
basic indexed sequential access method
build list (macro instruction)
blocksize (operand of DCB)
basic partitioned access method
basic sequential access method
backspace past tapemark and forward space over tapemark (operand of
CNTRL)
backspace one block (macro instruction)
backspace over a specified number of blocks (records)
(operand of CNTRL)
buffer pool control block (operand of DCB)
buffer length (operand of DCB)
buffer number (operand of DCB)
buffer offset (length of ASCII block prefix by which the buffer is offset;
operand of DCB)

channel command word
contiguous space allocation (value of SPACE)
central processing unit
channel status word
number of tracks for cylinder overflow records (operand of DCB)

format-D (ASCII variable-length) records (value of RECFM)
direct-access (value of DEVD or DSORG)
direct-access unmovable data set (value of DSORG)
data control block (control block name or macro instruction)
data control block dummy section macro instruction
data definition
data extent block
data event control block
magnetic tape density (operand of DCB)
device-dependent (operand of DCB)
data set disposition (parameter of DD statement)

xiii

DSCB
DSORG

EBCDIC
EODAD
EOF
EOV
EROPT
ESETL
EXCP
EXLST

F
FB
FBS
FBT

FCB
FEOV
FS
FSM

FSR

GL
GM

HA

I/O
INOUT
lOB
IPL
IRG
IS
ISAM
ISU'

JCL
JFCB

KEY LEN

LRECL

M
MACRF
MFT
MOD
MSHI
MSWA
MVT

data set control block
data set organization (operand of DCB)

Extended Binary Coded Decimal Interchange Code
end-of -data set exit routine address (operand of DCB)
end-of -file
end-of -volume
error options (operand of DCB)
end sequential retrieval (QISAM macro instruction)
execute channel program (macro instruction)
exit list (operand of DCB)

fixed-length records (value of RECFM)
fixed-length, blocked records (value of RECFM)
fixed-length, blocked, standard records (value of RECFM)
fixed-length, blocked records with track overflow option (value of
RECFM)
forms control buffer
force end-of-volume (macro instruction)
fixed-length, standard records (value of RECFM)
forward space past tapemark and backspace over tapemark (operand of
CNTRL)
forward space over a specified number of blocks (records) (operand of
CNTRL)

GET macro, locate mode (value of MACRF)
GET macro, move mode (value of MACRF)

home address

input/ output
input then output (operand of OPEN)
input/ output block
initial program load
interrecord gap
indexed sequential (value of DSORG)
indexed sequential access method
indexed sequential unmovable (value of DSORG)

job control language
job file control block

key length (operand of DCB)

logical record length (operand of DCB)

machine control code (value of RECFM)
macro instruction form (operand of DCB)
multiprogramming with a fixed number of tasks
modify data set (value of DISP)
main storage for highest-level index (operand of DCB)
main storage for work area (operand of DCB)
multiprogramming with a variable number of tasks

NCP number of channel programs (operand of DCB)
NOPWREAD no password to read a data set (value of LABEL)
NRZI non-return-to-zero-inverse (tape recording mode)
NSL nonstandard label (value of LABEL)

xiv

NTM

OMR
OPTCO
OS
OUTIN

PCI
POS
PE
PL
PM
PO
POU
PRTSP
PS
PSU

QISAM
QSAM

RCE
ROBACK
ROW
RECFM
RKP
RPS

S
SOW
SEP

SER
SETL
SF
SK
SKP
SL
SMSI
SMSW
SP
SS
SUL
SYNAO
SYSIN
SYSOUT

T
TIOT
TRTCH

U
UCS
UHL
UTL

number of tracks in cylinder index for each entry in lowest level of
master index (operand of DCB)

optical mark read on 3505 Card Reader
optional services code (operand of DCB)
operating system
output then input (operand of OPEN)

program-controlled interruption
partitioned data set
phase encoding (tape recording mode)
PUT macro, locate mode (value of MACRF)
PUT macro, move mode (value of MACRF)
partitioned organization (value of DSORG)
partitioned organization unmovable (value of DSORG)
printer line spacing (operand of DCB)
physical sequential (value of DSORG)
physical sequential unmovable (value of DSORG)

queued indexed sequential access methods
queued sequential access method

read column eliminate for 3505 Card Reader and 3525 Card Punch
read backward (operand of OPEN)
record descriptor word
record format (operand of DCB)
relative key position (operand of DCB)
rotational position sensing

standard format records (value of RECFM)
segment descriptor word
separation (channel separation parameter of DD statement or
unit separation value of UNIT)
volume serial number (value of VOLUME)
set lower limit of sequential retrieval (QISAM macro instruction)
sequential forward (operand of READ or WRITE)
skip to a printer channel (operand of CNTRL)
skip erroneous block (value of EROPT)
IBM standard labels (value of LABEL)
size of main-storage area for highest-level index (operand of DCB)
size of main-storage work area (operand of DCB)
space lines on a printer (operand of CNTRL)
select stacker on card reader (operand of CNTRL)
IBM standard and user labels (value of LABEL)
synchronous error routine address (operand of DCB)
system input stream
system output stream

track overflow option (value of RECFM)
task I/O table
track recording technique (operand of DCB)

undefined length records (value of RECFM)
universal character set
user header label
user trailer label

xv

V
VB
VBS
VTOC

format-V (variable-length) records (value of RECFM)
variable-length, blocked records (value of RECFM)
variable-length, blocked, spanned records (value of RECFM)
volume table of contents

xvi

PART 1: INTRODUCTION TO DATA MANAGEMENT

Data Set Characteristics

The data management programs of the operating system (OS) help you achieve
maximum efficiency in managing the mass of data associated with the many programs
that are processed at your installation by providing systematic and effective means of
organizing, identifying, storing, cataloging, and retrieving all data, including programs,
processed by the operating system.

Data set storage control, along with an extensive catalog system, makes it possible for
you to retrieve data by symbolic name alone, without specifying device types and
volume serial numbers. In freeing computer personnel from maintaining involved
volume serial number inventory lists of stored data and programs, the catalog reduces
manual intervention and the likelihood of human error.

Data sets stored within the cataloging system can be classified according to installation
needs. For example, a sales department could classify the data it uses by geographic
area, by individual salesman, or by any other logical plan.

The cataloging system also makes it possible for you to classify successive generations
or updates of related data. These generations can be given an identical name and
subsequently be referred to relative to the current generation. The system
automatically maintains a list of the most recent generations.

You can request data from a direct~access volume, a remote terminal, or a tape
volume, and data organized sequentially or directly, in essentially the same way. In
addition, data management provides:

Allocation of space on direct-access volumes. Flexibility and efficiency of
direct-access devices are improved through greater use of available space.

Automatic retrieval of data sets by name alone.

Freedom to defer specifications such as buffer length, blocksize, and device type
until a job is submitted for processing. This permits the creation of programs that
are in many ways independent of their operating environment.

Control of confidential data is provided by the data set security part of the operating
system. You can prevent unauthorized access to payroll data, sales forecast data, and
all other data sets that require special security attention. An individual can use a
security-protected data set only after furnishing a predefined password.

Input/ output routines are provided to efficiently schedule and control the transfer of
data between main storage and input/output devices. Routines are available to:

Read data

Write data

Translate data from ASCII (American National Standard Code for Information
Interchange) to EBCDIC (Extended Binary Coded Decimal Interchange Code)
and back

Block and deblock records

Overlap reading, writing, and processing operations

Part 1: Introduction to Data Management 1

• Read and verify volume and data set labels

Write data set labels

Automatically position and reposition volumes

Detect error conditions and correct them when possible

Provide exits to user-written error and label routines

as data management programs also provide for a variety of methods for gaining access
to a data set. The methods are based on data set organization and data access
technique.

as data sets can be organized in four ways:

Sequential: Records are placed in physical rather than logical sequence. Given
one record, the location of the next record is determined by its physical position
in the data set. Sequential organization is used for all magnetic-tape devices, and
may be selected for direct-access devices. Punched tape, punched cards, and
printed output are sequentially organized.

• Indexed Sequential: Records are arranged in sequence, according to a key that is
a part of every record, on the tracks of a direct-access volume. An index or set
of indexes maintained by the system gives the location of certain principal
records. This permits direct as well as sequential access to any record.

Direct: The records within the data set, which must be on a direct-access volume,
may be organized in any manner you choose. All space allocated to the data set
is available for data records. No space is required for indexes. You specify
addresses by which records are stored and retrieved directly.

• Partitioned: Independent groups of sequentially organized records, called
members, are in direct-access storage. Each member has a simple name stored in
a directory that is part of the data set and contains the location of the member's
starting point. Partitioned data sets are generally used to store programs. As a
result, they are often referred to as libraries.

Requests for input/output op.erations on data sets through macro instructions employ
two techniques: the technique for queued access and the technique for basic access.
Each technique is identified according to its treatment of buffering and synchronization
of input and output with processing. The combination of an access technique and a
given data set organization is called an access method. In choosing an access method
for a data set, therefore, you must consider not only its organization, but also what you
need to specify through macro instructions. Also, you may choose a data organization
according to the access techniques and processing capabilities available.

The code generated by the macro instructions for both techniques is optionally
reenterable depending on the form in which parameters' are expressed.

In addition to the access ,methods provided by the operating system, an elementary
access technique called execute channel program is also provided. To use this
technique, you must establish your own system for organizing, storing, and retrieving
data. Its primary advantage is the complete flexibility it allows you in using the
computer directly.

An important feature of data management is that much of the detailed information
needed to store and retrieve data, such as device type, buffer processing technique, and
format of output records need not be supplied until the job is ready to be executed.

2 as Data Management Services

This device independence permits changes to those specifications to be made without
changes in the program. Therefore, you may design and test a program without
knowing the exact input/output devices that will be used when it is executed.

Device independence is a feature of both access techniques for processing a sequential
data set. To some extent, you determine the degree of device independence achieved.
Many useful device-dependent features are available as part of certain macro
instructions, and achieving device independence requires some selectivity in their use.

Data Set Identification

Data Set Storage

Any information that is a named, organized collection of logically related records can
be classified as a data set. The information is not restricted to a specific type, purpose,
or storage medium. A data set may be, for example, a source program, a library of
macro instructions, or a file of data records used by a processing program.

Whenever you indicate that a new data set is to be created and placed on auxiliary
storage, you (or the operating system) must give the data set a name. The data set
name identifies a group of records as a data set. All data sets recognized by name
(referred to without volume identification) and all data sets residing on a given volume
must be distinguished from one another by unique names. To assist in this, the system
provides a means of qualifying data set names.

A data set name is one simple name or a series of simple names joined together so that
each represents a level of qualification. For example, the data set name
DEPT58.SMITH.DATA3 is composed of three simple names. Proceeding from the
left, each simple name is a category within which the next simple name is a
subcategory.

Each simple name consists of from 1 to 8 alphameric characters, the first of which must
be alphabetic. The special character period (.) separates simple names from each other.
Including all simple names and periods, the length of the data set name must not
exceed 44 characters. Thus, a maximum of 22 simple names can make up a data set
name.

To permit different executions of a program to process different data sets without
program reassembly, the data set is not referred to by name in the processing program.
When the program is executed, the data set name and other pertinent information (such
as unit type and volume serial number) are specified in a job control statement called
the data definition (DD) statement. To gain access to the data set during processing,
reference is made to a data control block (DeB) associated with the name of the DD
statement. Space for a data control block, which specifies the particular data set to be
used, is reserved by a DeB macro instruction when your program is assembled.

System/360 and System/370 provide a variety of devices for collecting, storing, and
distributing data. Despite the variety, the devices have many common characteristics.
The generic term volume is used to refer to a standard unit of auxiliary storage. A
volume may be anyone of the following:

A reel of magnetic tape

A disk pack

A bin in a data cell

Part 1: Introduction to Data Management 3

• A drum
• That part of an IBM 2302 disk storage device served by one access mechanism

(the device has either two or four volumes in all)

Each data set stored on a volume has its name, location, organization, and other
control information stored in the data set label or volume table of contents (for
direct-access volumes only). Thus, when the name of the data set and the volume on
which it is stored are made known to the operating system, a complete description of
the data set, including its location on the volume, can be retrieved. Then, the data
itself can be retrieved, or new data added to the data set.

Various groups of labels are used to identify magnetic-tape and direct-access volumes,
as well as the data sets they contain. Magnetic-tape volumes can have standard or
nonstandard labels, or they can be unlabeled. Direct-access volumes must use standard
labels. Standard labels include a volume label, a data set label for each data set, and
optional user labels.

Keeping track of the volume on which a particular data set resides can be a burden and
a source of error. To alleviate this problem, the system provides for automatic
cataloging of data sets. The system can retrieve a cataloged data set if given only the
name of the data set. If the name is qualified, each qualifier corresponds to one of the
indexes in the catalog. For example, the system finds the data set
DEPT58.SMITH.DATA3 by searching a master index to determine the location of the
index name DEPT58, by searching that index to find the location of the index SMITH,
and by searching that index for DAT A3 to find the identification of the volume
containing the data set.

By use of the catalog, collections of data sets related by a common external name and
the time sequence in which they were cataloged (their generation) can be identified;
they are called generation data groups. For example, a data set name
LAB.PAYROLL(O) refers to the most recent data set of the group;
LAB.P A YROLL(-1) refers to the second most recent data set, etc. The same data set
names can be used repeatedly with no requirement to keep track of the volume serial
numbers used.

Direct-Access Volumes

Direct-access volumes are used to store executable programs, including the operating
system itself. Direct-access storage is also used for data and for temporary working
storage. One direct-access storage volume may be used for many different data sets,
and space on it may be reallocated and reused. A volume table of contents (VTOC) is
used to account for each data set and available space on the volume.

Each direct-access volume is identified by a volume label, which is usually stored in
track 0 of cylinder o. You may specify up to seven additional labels, located after the
standard volume label, for further identification.

The VTOC is a data set consisting of data set control blocks (DSCBs) that describe
the contents of the direct-access volume. The VTOC can contain seven kinds of
DSCBs, each with a different purpose and a different format number. OS System
Control Blocks describes the seven kinds of DSCBs, their purposes, and their formats.

Each direct-access volume is initialized by a utility program before being used on the
system. The initialization program generates the volume label and constructs the table
of contents. For additional information on direct-access labels, see" Appendix A:
Direct-Access Labels."

4 OS Data Management Services

When a data set is to be stored on a direct-access volume, you must supply the
operating system with the amount of space to be allocated to the data set, expressed in
blocks, tracks, or cylinders. Space allocation can be independent of device type if the
request is expressed in blocks. If the request is made in tracks or cylinders, you must
be aware of such device considerations as cylinder capacity and track size.

Magnetic-Tape Volumes

Because of the sequential organization of magnetic-tape devices, the operating system
does not require space allocation procedures comparable to those for direct-access
devices. When a new data set is to be placed on a magnetic-tape volume, you must
specify the data set sequence number if it is not the first data set on the reel. OS
positions a volume with IBM standard labels, American National Standard labels, or no
labels so that the data set can be read or written. If the data set has nonstandard
labels, you must provide for volume positioning in your nonstandard-label-processing
routines. All data sets stored on a given magnetic-tape volume must be recorded in the
same density.

When a data set is to be stored on an unlabeled tape volume and you have not
specified a volume serial number,- the system assigns a serial number to that volume and
to any additional volumes required for the data set. Each such volume is assigned a
serial number of the form Lxxxyy where xxx indicates the data set sequence number
from IPL to IPL and yy indicates the volume sequence number for the data set. If you
specify volume serial numbers for unlabeled volumes on which a data set is to be
stored, the system assigns volume serial numbers to any additional volumes required. If
data sets residing on unlabeled volumes are to be cataloged or passed, you should
specify the volume serial numbers for the volumes r«quired. This will prevent data sets
residing on different volumes from being cataloged or passed under identical volume
serial numbers. Retrieval of such data sets could result in unpredictable errors.

Each data set and each data set label group on magnetic tape~ that is to be processed by
the operating system must be followed by a tapemark. Tapemarks cannot exist within
a data set. When the operating system is used to create a tape with standard labels or
no labels, all tapemarks are automatically written. Two tapemarks are written after the
last trailer label group on a volume to indicate the last data set on the volume. On an
unlabeled volume, the two tapemarks are written after the last data set.

When the operating system is used to create a tape data set with nonstandard labels,
the delimiting tapemarks are not written. If the data set is to be retrieved by the
operating system, those tapemarks must be written by' your nonstandard-Iabel
processing routine. Otherwise, tapemarks are not required after nonstandard labels
since positioning of the tape volumes must be handled by installation routines.

For more information on labels for magnetic-tape volumes, refer to OS Tape Labels.

The data on magnetic-tape volumes can be in either EBCDIC or ASCII. ASCII is a
7-bit code consisting of 128 characters. It permits data on magnetic tape to be
transferred from one computer to another even though the two computers may be
products of different manufacturers.

Data management support of ASCII and of American National Standard tape labels is
sUGh that data management can translate records on input tapes in ASCII into EBCDIC
"for internal processing and translate the EBCDIC back into ASCII for output. Records
on such input tapes may be sorted into ASCII collating sequence, as explained in OS
Sort / Merge.

Part 1: Introduction to Data Management 5

Data Set Record Formats

A data set is composed of a collection of records that normally have some logical
relation to one another. The record is the basic unit of information used by a
processing program. It might be a single character, all information resulting from a
given business transaction, or measurements recorded at a given point in an experiment.
Much data processing consists of reading, processing, and writing individual records.

The process of grouping a number of records before writing them on a volume is
referred to as blocking. A block is made up of the data between interrecord gaps
(IRGs). Each block can consist of one or more records. Blocking conserves storage
space on the volume because it reduces the number of IRGs in the data set. In many
cases, blocking also increases processing efficiency by reducing the number of
input/ output operations required to process a data set.

Records may be in one of four formats: fixed-length (format-F), variable-length for
data in EBCDIC (format-V), variable-length for data to be translated to or from
ASCII (format-D), or undefined-length (format-V). The main consideration in the
selection of a record format is the nature of the data set itself. You must know the
type of input your program will receive and the type of output it will produce.
Selection of a record format is based on this knowledge, as well as on an understanding
of the input/output devices that are used to contain the data set and the access method
lIsed to read and write the data records. The record format of a data set is indicated in
the data control block according to specifications in the DCB macro instruction, the
DO statement, or the data set label.

For ASCII tapes, data can be in I'ormat-F, format-D, and format-V with the
restrictions noted under "Fixed-Length Records, ASCII tapes," "Variable-Length
Records-Format 0," and "Undefined-Length Records." When data management
reads records from ASCII tapes, it translates the records into EBCDIC. When data
management writes records onto ASCII tapes, it translates the records into ASCII.
Because you use input records after they are translated and because output records are
translated when you ask data management to write them, you work only with EBCDIC.

Note: There is no minimum requirement for blocksize; however, if a data check occurs
on a magnetic-tape device, any record shorter than 12 bytes in a Read operation or 18
bytes in a Write operation is treated as a noise record and lost. No check for noise is

I made unless a data check occurs. The sort/merge program does not accept records
shorter than 18 bytes.

Fixed-Length Records

The size of fixed-length (format-F) records, shown in Figure 1, is constant for all
records in the data set. The number of records within a block is constant for every
block in the data set, unless the data set contains truncated (short) blocks. If the data
set contains unblocked format-F records, one record constitutes one block.

The system automatically performs physical length checking on blocked format-F
records, making allowance for truncated blocks. Because the channel and interruption
system can be used to accommodate length checking, and the blocking and deblocking
are based on a constant record length, format-F records can be processed faster than
format-V records.

Format-F records are shown in Figure 1. The optional control character (C), used for
stacker selection or carriage control, may be included in each record to be printed or
punched.

6 OS Data Management Services

Block
A

Blocked Records Record A RecordB

Block

Unblocked Recoros [ReCO:d A 1
Figure 1. Fixed-Length Records

"

Record C

,
" ,

"
"

......

Block

Record D Record E

......
............

, Record

"¥=~==~~~====~
c Data

Block

\L Optional Control I
\ Character - 1 Byte /

\ /
\ /
\ I

[R~rd B 1
\ /

1 Record C r

Record F

Block

[R~rd D 1

Fixed-Length Records, Standard Format: During creation of a sequential data set (to be
processed by BSAM or QSAM) with fixed-length records, the RECFM subparameter
of the DeB macro instruction may specify a standard format (RECFM=FS or FBS).
A standard-format data set must conform to the following specifications:

All records in the data set are format-F records.

No block except the last block is truncated. (With BSAM you must ensure that
this specification is met.)

Every track except the last one contains the same number of blocks.

Every track except the last one is filled to capacity as determined by the track
capacity formula established for the device. (These formulas are presented in
Part 3 of this book under "Allocating Space on Direct-Access Volumes. ")

A sequential data set with fixed-length records having a standard format can be read
more efficiently than a data set that doesn't specify a standard format. This efficiency
is possible because the system is able to determine the address of each record to be
read because each track contains the same number of blocks.

You should never extend a data set of this type (by coding DISP=MOD) if the last
block is truncated, because the extension will cause the data set to contain a truncated
block that isn't the last block. This type of data set on magnetic tape should not be
read backward, because then the data set would begin with a truncated block.
Consequently, you will probably not want to use this type of data set with magnetic
tape. If you use one of the basic access techniques with this type of data set, you
should not specify that the· track overflow feature is to be used with the data set.

If at any time the characteristics of your data set are altered from the specifications
described above, then the data set should no longer be processed with the standard
format specification.

Part 1: Introduction to Data Management 7

Blocked
Records

Optional

Fixed-Length Records, ASCII Tapes: For ASCII tapes, format-F records are the same
as described above, with two exceptions:

Control characters, if present, must be American National Standards Institute
(ANSI) control characters.

Records or blocks of records can contain block prefixes.

Figure 2 shows the format of fixed-length records for ASCII tapes and where control
characters and block prefixes go if they exist.

Block Block
J. J.

\

Optional
Block Record A Record B Record C
Prefix

Block Record D Record E Record F
Prefix

"
.....

c Data

\ LOptional Control /
\ Character-1 Byte /

\ /
\ / Block

r-----\\~------~/ ~----~J.~----~
OPtional

~----r-------~' r~ ____ ,-______ ~

Block
J.

Block
J.

Optional
Unblocked Block Record A
Records Prefix

Optional
Block Record B Block Record D

Optional
Block Record C

Prefix Prefix Prefix

Figure 2. Fixed-Length Records for ASCII Tapes

The block prefix can vary in length from 0 to 99 bytes but the length must be constant
for the data set being processed. For blocked records, the block prefix precedes the
first logical record. For unblocked records, the block prefix precedes each logical
record.

Using QSAM and BSAM to read records with block prefixes requires that you specify
the BUFOFF operand in the DCB. When using QSAM, you cannot read the block
prefix on input. When using BSAM, you must account for the block prefix on both
input' and output. When using either QSAM or BSAM, you must account for the
length of the block prefix in the BLKSIZE and BUFL operands of the DeB.

When you use BSAM on output records, the operating system does not recognize a
block prefix. Therefore, if you want a block prefix, it must be part of your record.
Note that you cannot include block prefixes in QSAM output records.

The block prefix can contain any data you want, but you must avoid using data types
such as binary, packed decimal, and floating-point that cannot be translated into
ASCII.

For more information about control characters, refer to "Control Character" and to
"Appendix B: Control Characters."

8 OS Data Management Services

Variable-Length Records

Blocked Records

The variable-length record formats are format V and format D. Format-V records can
be spanned; that is, records can be larger than the blocksize, as described below.
Format-D records are used for ASCiI tape data sets and cannot be spanned.

Variable-Length Records - Format V: Format V provides for variable-length records,
variable-length record segments, each of which describes its own characteristics, and
variable-length blocks of such records or record segments. Except when
variable-length track overflow records are specified for rotational position sensing, the
control program performs length checking of the block and uses the record or segment
length information in blocking and deblocking. The first 4 bytes of each record, record
segment, or block make up a descriptor word containing control information. You
must allow for these additional 4 bytes in both your input and output buffers.

Block Descriptor Word: A variable-length block consists of a block descriptor word
(BDW) followed by one or more logical records or record segments. The block
descriptor word is a 4-byte field that describes the block. The first 2 bytes specify the
block length ('LL') - 4 bytes for the BDW plus the total length of all records or
segments within the block. This length can be from 8 to 32,760 bytes or, when you
are using WRITE with tape, from 18 to 32,760. The third and fourth bytes are
reserved for future system use and must be O. If the system does your blocking - that
is, when you use the queued access technique - the operating system automatically
provides the BDW when it writes the data set. If you do your own blocking - that is,
when you use the basic access technique - you must supply the BDW.

Block
BOW
~ l,.L

LL 00 Record A Record B Record C LL 00 Record 0 Record E Record F

t LReserved - 2 Bytes -- -\ ----Block Len th - - - -g
H

\'lRO-W---------~~o~~-ta----------~,
r--""---v

2 Bytes

Record H 00 c

I Optional Control Character /
Reserved - 2 Bytes / /

I '------Record Length- /
I 2 Bytes /

I / Block

r=t:JL_~~O~~~' _______ R_e_co_rd __ c ____ ~r/~~:~:-:-:~N~'
Reserved - 2 Bytes

'----Block Length - 2 Bytes

Figure 3. Variable-Length Records

Part 1: Introduction to Data Management 9

Record Descriptor Word: A variable-length logical record consists of a record
descriptor word (RDW) followed by the data. The record descriptor word is a 4-byte
field describing the record. The first 2 bytes contain the length ('11') of the logical
record (including the 4-byte RDW). The length can be from 4 to 32,756. For
information about processing a sequential data set, see "Data Format - Device Type
Considerations." All bits of the third and fourth bytes must be 0, as other values are
used for spanned records. For output, you must provide the RDW except in data mode
for spanned records (described under "Buffer Control"). For output in data mode, you
must provide the total data length in the physical record length field (DCBPRECL) of
the DCB. For input, the operating system provides the RDW except in data mode. In
data mode, the system passes the record length to your program in the logical record
length field (DCBLRECL) of the DCB. The optiona}/control character (C) may be
specified as the fifth byte of each record. The RDW and the control character, if
specified, are not punched or printed.

Figure 3 shows blocked and unblocked variable-length records without spanning.

Spanned Variable-Length Records (Sequential AcceYS Methods): The spanning feature of
the queued and basic sequential access methods enables you to create and process
variable-length logical records that are larger than one physical block and/or to pack
blocks with variable-length records by splitting the records into segments so that they
can be written into more than one block, as shown in Figure 4.

Block
A-

I'
~L '\ BOW

LL
Last

Segment
of Logical
Record A

•

First Segment
of Logical
Record B

LL I ntBrmediate Segment
of Logical Record B LL

Last First Segment
Segment of Logical
of Logical Record C
Record B

"' , 1 ,
1 , . Reserved -I , , \

2 Bytes I " \
\
\

\
\ 1 "

I " Block Length - I ,
2 Bytes I 11 " 11 \ I U',

First
Segment
of Logical
Record

,
I..__----A ,
(SOW Data '\

j,... ___ -"A ____ ~

SOW Data

,
V SOW
__ ~A'-__ ---.,~

Data

Inter.
mediate 1111 Last
Segment }(Jf. Segment
of Logical of Logical
Record L--.--L.~.....L-___ --I Record L--.---L,L..-----I

c

Optional Control Segment Control
Character Code
Reserved - 1 Byte
Segment Control Code -
1 Byte (See Figure 5)

'-----Segment Length - 2 bytes U
,~----------~~~--------------\

ROW Data Portion ofLDgical Record B

Logical Record JJ.
(I n User's Work Area)

A ,r---------~~'----------~
Data Portion! Data Portion

c of : of
First Segment! I ntermediate Segment

I

Data Portion
of Last

Segment

Note: Not All Segment and Block
Combinations are Represented

t LOptional Control Character
L-..: Reserved - 2 Bytes

----Record Length - 2 Bytes

Figure 4. Spanned Variable-Length Records.

10 OS Data Management Services

When spanning is specified for blocked records, the system tries to fill all blocks. For
unblocked records, a record larger than blocksize is split and written in two or more
blocks, each block containing only one record or record segment. Thus the block size
may be set to the one that is best for a given device or processing situation. It is not
restricted by the maximum record length of a data set. A record may, therefore, span
several blocks, and may even span volumes. Note that a logical record spanning three
or more volumes cannot be processed in update mode (described under "Buffer
Control") by QSAM. A block can contain a combination of records and record
segments, but not multiple segments of the same record. When records are added to or
deleted from a data set, or when the data set is processed again with different blocksize
or record-size parameters, the record segmenting will change.

Segment Descriptor Word: Each record segment consists of a segment descriptor word
(SDW) followed by the data. The segment descriptor word, similar to the record
descriptor word, is a 4-byte field that describes the segment. The first 2 bytes contain
the length ('11') of the segment, including the 4-byte SDW. The length can be from 5
to 32,756 bytes or, when you are using WRITE with tape, from 18 to 32,756 bytes.
The third byte of the SDW contains the segment control code, which specifies the
relative position of the segment in the logical record. The segment control code is in
the rightmost 2 bits of the byte. The segment control codes are shown in Figure 5.
The remaining bits of the third byte and all of the fourth byte are reserved for future
system use and must be O.

Binary Code Relative Position of Segment

00 Complete logical record

01 First segment of a multisegment record

10 Last segment of a multisegment record

11 Segment of a multisegment record other than the first

Figure 5. Segment Control Codes

The SDW for the first segment replaces the RDW for the record after the record has
been segmented. You or OS can build the SDW, depending on which mode of
processing is used. In the basic sequential access method, you must create and
interpret the spanned records yourself. In the queued sequential access method move
mode, complete logical records, including the RDW, are processed in your work area.
GET consolidates segments into logical records and creates the RDW. PUT forms
segments as required and creates the SDW for each segment. Data mode is similar to
move mode, but allows reference only to the data portion of the logical record in your
work area. The logical record length is passed to you through the DCBLRECL field of
data control block. In locate mode, both GET and PUT process one segment at a time.
However, in locate mode, if you provide your own record area using the BUILDRCD
macro instruction or if you ask the system to provide a record area by specifying
BFTEK=A, then GET, PUT,and PUTX process one logical record at a time.

A logical record spanning three or more volumes cannot be processed when the data
set is opened for update.

When unit-record devices are used with spanned records, the system assumes
unblocked records and the blocksize must be equivalent to the length of one print line
or one card. Records that span blocks are written one segment at a time.

Part 1: I ntroduction to Data Management 1 I

Spanned Variable-Length Records (Basic Direct Access Method): The spanning feature
of the basic direct access method (BDAM) enables you to create and process variable
length unblocked logical records that are longer than 1 track. The feature also enables
you to pack tracks with variable-length records by splitting the records into segments.
These segments can then be written onto more than one track, as shown in Figure 6.

Track 1 Track 2 Track 3
(

Block
r~----------~~----------BOW l.J- \

r .A

First Segment
I ntermediate Segment of Last Segrrent

LL of Logical
Record A

~t 'I., Re ervad,
2 Bytes

, ,
....
" ', ,

LL

t \ LL = rack size \

\

Logical Record A
LL of Logical

Record A , , ,
\.

\ I
\ I

\ \ I ,
Block Length -
2 Bytes

\.
..... ,

, 11 ' , ,1'-------------...... -----'...;",.\' \ ___ ------11 --__ \ J
\ I

\ , U.
'--------.'

SOW Data V'" SOW Data \\

-'/'--- --............... --- I ntermediate ~-''----.... r--,/'----.,
Segment /----,---,---+------; Last First

Segment 11
of Logical
Record

c
of Logical 1111 Segment
Record XJf. of Logical

Record

Logical Record
(I n User's Work
Area)

Block Length -
2 Bytes

Reserved -
2 Bytes

Optional Control
Character
Reserved - 1 Byte
Segment Control Code -
1 Byte (See Figure 5)

'----- Segment Length - 2 Bytes
LL

A

Segment Control
Code

R1 '
I'r--------------------'----------------~\

BOW R OW Data Portion of Logical Record A

Data Portion : Data Portion :Data Portion
c of :

First Segment i
of ! of Last

I ntermediate Segment : Segment

Optional Control Character
Reserved - 2 Bytes

....... - __ Record Length - 2 Bytes

Note: Not All Segment and Block Combinations are Represented

Figure 6. Spanned Variable-Length Records for BDAM Data Sets

r SOW

When you specify spanned, unblocked record format for the basic direct access method
and when a complete logical record cannot fit on the track, the system tries to fill the
track with a record segment. Thus the maximum record length of a data set is not
restricted by blocksize. Furthermore, segmenting records allows a record to span
several tracks, with each segment of the record on a different track. However, since
the system does not allow a record to span volumes, all segments of a logical record in
a direct data set are on the same volume.

Variable-Length Records - Format D: For ASCII tapes, variable-length records must
be format-D records. Format-D records are the same, as format-V records, except:

Control characters, if present, must be ANSI control characters.
Records or blocks of records can contain block prefixes.

12 OS Data Management Services

Data '\

Segment Contr
Code

Blocked
Records

Figure 7 shows the format of variable-length records for ASCII tapes, where the
record des.criptor word (RDW) must go, and where block prefixes and control
characters can go when they exist.

Block Block
r~----------------~'~--------------~\ (~------------------~.~--------------------\

Optional Optional
Block Record A Record B Record C Block Record 0 Record E
Prefix Prefix

\
\
\
\
V~------------------A------------------~>\

/
/

/

/

/
/

/

Unblocked Optional
Block Record C

Records Prefix

ROW Data
,--A---y--------------~--------~----~\

H. 00 c

Optional Control Character
Reserved - 2 Bytes

..... --- Record Length.-=.- ---
2 Byte~--

-__ -- Block

- r \
Optional

Block Record 0
Prefix

Record F

Block
r~------~------~\

Optional
Block Record E
Prefix

Note: Block prefixes on output records must be 4 bytes long.

Figure 7. Variable-Length Records for ASCII Tapes

The block prefix can vary in length from 0 to 99 bytes but its length must remain
constant for the data set being processed. For blocked records, the block prefix
precedes the first logical record in each block. For unblocked records, the block prefix
precedes each logical record. If the block prefix exists, it precedes the RDW.

To include block prefixes in format-D records on output, code BUFOFF=L as a
DCB operand. Your block prefix must be 4 bytes long, and it must contain the length
of the block, including the block prefix. If you use QSAM to write records, data
management fills in the block prefix for you. If you use BSAM to write records, you
must fill in the block prefix yourself. When BUFOFF = L is specified for format-D
records, the block prefix is treated as a block descriptor word (BDW) by data
management.

When using QSAM, you cannot read the block prefix on input. When using BSAM,
you must account for the block prefix on both input and output. When using either
QSAM or BSAM, you must account for the length of the block prefix in the BLKSIZE
and BUFL operands.

When you use BSAM on output records, the operating system does not recognize the
block prefix. Therefore, if you want a block prefix, it must be part of your record.

The block prefix can contain any data you want, but you must avoid using data types,
such as binary, packed decimal, and floating-point, that cannot be translated into

Part 1: Introduction to Data Management 13

ASCII. For format-D records, the only time the block prefix can contain binary data
is when you have coded BUFOFF = L,· which tells data management that the prefix is
a BDW. Unlike the block prefix, the RDW must always be in binary.

If you create variable-length records that are shorter .than 18 bytes, data management
pads each one up to a length of 18 bytes when the records are written onto ASCII
tape. The padding character used is the ASCII circumflex.

For more information about control characters, refer to "Control Character" and to
"Appendix B: Control Characters."

Undefined-Length Records

Format U permits processing of records that do not conform to the F or V format. As
shown in Figure 8, each block is treated as a record; therefore, deblocking must be
performed by your program. The optional control character may be used in the first
byte of each record. Because the system does not perform length checking on
format-U records, your program may be designed to read less than a complete block
into main storage.

Record
.A

C Data

\ l 0 tional Control
I

/ \ P
\ Character-1 Byte /
\ /

Block
\ I

\ Block I Block

8 1 Re~'d B I 8
Figure 8. Undefined-Length Records

For ASCII tapes, format-U records are the same as described above, with the two
exceptions described for format-F records on ASCII tapes.

Figure 9 shows the format of undefined-length records for ASCII tapes and where
control characters and blocks prefixes, if any, go.

Record
A

Optional

\

Block

Optional
Block Record A
Prefix

Block
Prefix

\
\

\

c Data

to tiona I Control p
Character-1 Byte

\ Block /
v~------~----~\/

Optional
Block Record B
Prefix

I
I

I

I
I

r
Optional

Block
Prefix

Figure 9. Undefined-Length Records for ASCII Tapes

14 as Data Management Services

Block

Record C

Control Character

You may specify in the DD statement, the DCB macro instruction, or the data set label
that an optional control character is part of each record in the data set. The I-byte
character is used to indicate a carriage control channel when the data set is printed or a
stacker bin when the data set is punched. Although the character is a part of the
record in storage, it is never printed or punched. For that reason, buffer areas must be
large enough to accommodate the character. If the immediate destination of the record
is a device, such as disk, that does not recognize the control character, the system
assumes that the control character is the first byte of the data portion of the record. If
the destination of the record is a printer or punch and you have not indicated the
presence of a control character, the system regards the control character as the first
byte of data. A list of the control characters is in "Appendix B: Control Characters."

Direct-Access Device Characteristics

Regardless of organization, data sets created using the operating system can be stored
on a direct-access volume. Each block of data has a distinct location and a unique
address, making it possible to locate any record without extensive searching. Thus,
records can be stored and retrieved either directly or sequentially.

Although direct-access devices differ in physical appearance, capacity, and speed, they
are similar in data recording, data checking, data format, and programming. The
recording surface of each volume is divided into many concentric tracks. The number of
tracks and their capacity vary with the device. Each device has some type of access
mechanism, containing read/write heads that transfer data as the recording surface
rotates past them. Only one head at a time can transfer data.

The logical arrangement of related tracks is vertical rather than horizontal. As shown
in Figure 10, a cylinder of a 1316 disk pack is composed of 10 tracks, one for each

Comb-Type
Access Assembly

Figure 10. 1316 Disk Pack

00

Disks

Part 1: Introduction to Data Management 15

Track Format

I Count I B
Track Descriptor

Record (RO)

!count! B
Track Descriptor

Record (RO)

recording surface. Because there are 203 tracks per recording surface, there are 203
vertical cylinders of 10 tracks each. If a data set extends to more than 1 track, it is
continued on the next track in the cylinder, not the next track on the same recording
surface.

Information is recorded on all direct-access volumes in a standard format. In addition
to device data, each track contains a track descriptor record (capacity record or RO)
and data records.

As shown in Figure 11, there are two possible data record formats - count-data and
count-key-data - only one of which can be used for a particular data set.

Count-Data Format

Icount! B DO I Count I B
Data Record (R 1) Data Record (Rn)

Count-Key-Data Format

BBB Du Icount! B B
Data Record (R 1) Data Record (Rn)

Figure 11. Direct-Access Volume Track Formats

Track Addressing

In addition to device data, the count area contains 8 bytes that identify the location of
the record by cylinder, head, and record numbers, its key length (0 if no keys are
used), and its data length.

If the records are written with keys, the key area (1 to 255 bytes) contains a record
key that specifies the data record by part number, account number, sequence number,
or some other identifier. In some cases, records are written with keys so that they can
be located quickly.

Two types of addresses can be used to store and retrieve data on a direct-access
volume: actual addresses and relative addresses. The only advantage of using actual
addresses is the elimination of time required to convert from relative to actual addresses
and vice versa. When sequentially processing a multiple-volume data set, you can refer
only to records of the current volume.

Actual Addresses: When the system returns the actual address of a record on a
direct-access volume to your program, it is in the form MBBCCHHR, where:

M

is a I-byte binary number specifying the relative location of an entry in a data
extent block (DEB). The data extent block is created by the system when the
data set is opened. Each extent entry describes a set of consecutive tracks
allocated for the data set.

16 OS Data Management Services

Track Overflow

BBeeHH

R

is three 2-byte binary numbers specifying the cell (bin), cylinder, and head
number for the record (its track address). The cylinder and head numbers are
recorded in the count area for each record.

is a 1-byte binary number specifying the relative block number on the track. The
block number is also recorded in the count area.

If you use actual addresses in your program, the data set must be treated as unmovable.

Relative Addresses: Two kinds of relative addresses can be used to refer to records in a
direct-access data set: relative block addresses and relative track addresses.

The relative block address is a 3-byte binary number that indicates the position of the
block relative to the first block of the data set. Allocation of noncontinuous sets of
blocks does not affect the number. The first block of a data set always has a relative
block address of O.

The relative track address has the form TTR, where:

TT

R

is a 2-byte binary number specifying the position of the track relative to the first
track allocated for the data set. The TT for the first track is O. Allocation of
noncontinuous sets of tracks does not affect the number.

is a 1-byte binary number specifying the number of the block relative to the first
block on the track TT. The R value for the first block of data on a track is 1.

If the record overflow feature is available for the direct-access device being used, you
can reduce the amount of unused space on the volume by specifying the track overflow
option in the DD statement or the DeB macro instruction associated with the data set.
If the. option is used, a block that does not fit on the track is partially written on that
track and continued on the next track. (The track onto which the record is continued
must be physically next and must be part of the same extent as the track that holds the
first part of the record.) Each segment (the portion written on one track) of an
overflow block has a count area. The data length field in the count area specifies the
length of that segment only. If the block is written with a key, there is only one key
area for the block. It is written with the first segment. If the track overflow option is
not used, blocks are not split between tracks.

Write-Validit~Check Option

You can specify the write-validity-check option in either the DD statement or the DeB
macro instruction. After a record is transferred from main to secondary storage, the
system reads the stored record (without data transfer) and, by testing for a data check
from the 110 device, verifies that the record was written correctly: This verification
requires an additional revolution of the device for each record that was written.
Standard error recovery procedures are initiated if an error condition is detected.

Part 1: Introduction to Data Management 17

The Data Control Block

DCB Macro

B F G H J

You must describe the characteristics of a data set, the volume on which it resides, and
its processing requirements before processing can begin. During execution, the
descriptive information is made available to the operating system in the data control
block (DCB). A DCB is required for each data set and is created in a processing
program by a DCB macro instruction.

Primary sources of information to be placed in the data control block are a DCB macro
instruction, a data definition (DD) statement, and a data set label. In addition, you can
provide or modify some of the information during execution by storing the pertinent
data in the appropriate field of the data control block. The specifications needed for
input/ output operations are supplied during the initialization procedures of the OPEN
macro instruction. Therefore, the pertinent data can be provided when your job is to
be executed rather than when you write your program (see Figure 12).

D D Statement Data Set Label

C D A E

Data Control Block

ABCDEFGHIJ

Figure 12. Completing the Data Control Block

When the OPEN macro instruction is executed, the Open routine:

Completes the data control block

Loads all necessary data access routines not already in main storage

Initializes data sets by reading or writing labels and control information

Constructs the necessary system control blocks

Information from a DD statement is stored in the job file control block (JFCB) by
the operating system. When the job is to be executed, the JFCB is made available to
the Open routine. The data control block is filled in with information from the DCB
macro instruction, the JFCB, or an existing data set label. If more than one source
specifies information for a particular field, only one source is used. A DD statement
takes precedence over a data set label, and a DeB macro instruction over both.
However, you can modify any data control block field either before the data set is
opened, or when as returns control to your program (at the data control block exit).
Some fields can be modified during processing.

18 as Data Management Services

Figure 13 illustrates the process and the sequence of filling in the data control block
from various sources. The primary source is your program, that is, the DCB macro
instruction. In general, you should use only those DCB parameters that are needed to
ensure correct processing. The other parameters can be filled in when your program is
to be executed. When a data set is opened, any field in the JFCB not completed by a
DD statement is filled in from the data set label (if one exists). Then any field not
completed in the DCB is filled in from the JFCB. Any field in the DCB can then be
completed or modified by your own DCB exit routine.

DeB
Macro

DO
Statement

Old
Data Set

Label

DeB
Exit

Routine

New
Data Set

Label

Figure 13. Sources and Sequence of Operations for Completing the Data Control Block

When the data set is closed, the data control block is restored to the condition it had
before the data set was opened; it is then available for reuse with another data seL
The Open and Close routines also use the updated JFCB to write the data set labels for
output data sets. If the data set is not closed when your job terminates, the operating
system will close it automatically. Note, however, that the system cannot automatically
close any open data sets after the :t;lormal termination of a program that was brought
into main storage by the loader. Therefore, loaded programs must include CLOSE
macro instructions for all opened data sets.

Data Set Description

For each data set you are going to process, there must be a corresponding DCB and
DD statemenL The characteristics of the data set and device-dependent information
can be supplied by either source. In addition, the DD statement must supply data set
identification, device characteristics, space allocation requests, and related information
as specified in "The DD Statement" in OS Job Control Language Reference. You
establish the logical connection between a DCB and a DD statement by specifying the
name of the DD statement in the DDNAME field of the DCB macro instruction, or by
completing the field yourself before opening the data set.

Part 1: Introduction to Data Management 19

Once the data set characteristics have been specified in the DCB macro instruction,
they can be changed only by modification of the DCB during execution. The fields of
the DCB discussed below are common to most data organizations and access
techniques.

Data Set Organization (DSORG): speCifies the organization of the data set as physical
sequential (PS), indexed sequential (IS), partitioned (PO), or direct (DA). If the data
set contains absolute rather than relative addresses, you must mark it as unmovable by
adding a U to the DSORG parameter (for example, by coding DSORG=PSU). You
must specify the data set organization in the DCB macro instruction. When creating or
processing an indexed sequential organization data set or creating a direct data set, you
must also specify DSORG in the DD statement.

Record Format (RECFM): specifies the characteristics of the records in the data set as
fixed-length (F), variable-length (V), or undefined-length (U). Blocked records are
specified as FB or VB. You may also specify the records as fixed-length standard by
using FS or FBS. You can request track overflow for records other than standard
format by adding a T to the RECFM parameter (for example, by coding FBT).

Record Length (LRECL): specifies the length, in bytes, of each record in the data set.
If the records are of variable length, the maximum record length must be specified. For
input, the field should be omitted for format-U records.

Blocksize (BLKSIZE): specifies the maximum length, in bytes, of a block. If the
records are of format F, the blocksize must be an integral multiple of the record length
except for SYSOUT data sets. (See "Routing Data Sets through the Output Stream" in
Part 3 of this book.) If the records are of format V, the blocksize specified must be
the maximum blocksize. If records are unblocked, the blocksize must be 4 bytes
greater than the record length (LRECL). When spanned variable-length records are
specified, the blocksize is independent of the record length.

Each of the data set description fields of the data control block, except as noted for
data set organization, can be specified when your job is to be executed. In addition,
data set identification and disposition, as well as device characteristics, can be specified
at that time. The parameters of the DD statement discussed below are common to
most data set organizations and devices.

Data Definition Name (DDNAME): is the name of the DD statement and connects the
DD statement to the data control block that specifies the same DDNAME.

Data Set Name (DSNAME): specifies the name of a newly defined data set, or refers
to a previously defined data set.

Data Control Block (DCB): provides, by means of subparameters, information to be
used to complete those fields of the data control block that were not specified in the
DCB macro instruction. This parameter cannot be used to modify a data control block.

Channel Separation and Affinity (SEP / AFF): requests that specified data sets use
different channels during input/output operations.

Input/Output Device (UNIT): specifies the. number and type of I/O devices to be
allocated for use by the data set.

Space Allocation (SPACE): designates the amount of space on a direct-access volume
that should be allocated for the data set. Unused space can be released when your job
is finished.

20 OS Data Management Services

Volume Identification (VOLUME): identifies the particular volume or volumes, or the
number of volumes, to be assigned to the data set, or the volumes on which existing
data sets reside.

Data Set Label (LABEL): indicates the type and contents of the label or labels
associated with the data set. The operating system verifies standard labels (SL) and
standard user labels (SUL). Nonstandard labels (NSL) can be specified only if your
installation has incorporated into the operating system routines to write and process
nonstandard labels.

Data Set Disposition (DISP): describes the status of a data set and indicates what is to
be done with it at the end of the job step.

Processing Program Description

OS requires several types of processing information to ensure proper control of your
input/ output operations. The forms of macro instructions in the program, buffering
requirements, and the addresses of your special processing routines must be specified
during either the assembly or the execution of your program. The DCB parameters
specifying buffer requirements are discussed in "Buffer Acquisition and Control."

Because macro instructions are expanded during the assembly of your program, you
must supply the macro instruction forms that are to be used in processing each data set
in the associated DeB macro instruction. You can supply buffering requirements and
related information in the DCB macro instruction, the DD statement, or by storing the
pertinent data in the appropriate field of the data control block before the end of your
DCB exit routine. If the addresses of special processing routines are omitted from the
DCB macro instruction, you must complete them in the DCB before opening the data
set.

Macro Instruction Form (MACRF)

The MACRF parameter of theDCB macro instruction specifies not only the macro
instructions used in your program, but also the processing mode as discussed in the
section "Buffer Control." The organization of your data set, the macro instruction
form, and the processing mode determine which of the data access routines will be used
during execution.

Exits to Special Processing Routines

The DCB macro instruction can be used to identify the location of:

A routine that performs end-of-data procedures

A routine that supplements the operating system's error recovery routine

A list that contains addresses of special exit routines

The exit addresses can be specified in the DCB macro instruction or you can complete
the DCB fields before opening the data set. Figure 14 summarizes the exits that you
can specify either explicitly in the DCB, or implicitly by specifying the address of an
exit list in the DCB.

Part 1: Introduction to Data Management 21

Exit Routine When Available Where Specified

End-of-Data-Set When no more sequential EODAD operand
records or blocks are
available

Error Analysis After an uncorrectable SYNAD operand
input/ output error

Standard User Label When opening, closing, EXLST operand and
(physical sequential or reaching the end of a exit list
or direct organization) data set, and when changing

volumes

Data Control Block When opening a data set EXLST operand and
exit list

End-of-Volume When changing volumes EXLST operand and
exit list

Block Count After unequal block count EXLST operand and
comparison by end-of-volume exit list
routine

FCB Image When opening a data set or EXLST operand and
issuing a SETPRT macro exit list I DeB ABEND When an ABEND condition EXLST operand and
occurs in Open, Close, or exit list
end-of-volume routine.

Figure 14. Data Management Exit Routines

End-of-Data-Set Exit Routine (EODAD): The EODAD parameter of the DCB macro
instruction specifies the address of your end-of-data routine, which performs any final
processing on an input data set. This routine is entered when a READ or GET request
is made and there are no more records or blocks to be retrieved. (On a READ request,
the routine is entered when you issue a CHECK macro instruction to check for
completion of the read operation.) Your routine can reposition the volume for
continued processing (if the access method is BPAM), close the data set, or process the
next sequential data set. Under no condition should you issue another QSAM GET
request after the data set has encountered the end-of-data condition. If no exit
routine is provided, the task will be abnormally terminated.

Synchronous Error Routine Exit (SYNAD): The SYNAD parameter of the DCB macro
instruction specifies the address of an error routine that is to be given control when an
input/ output error occurs. This routine can be used to analyze exceptional conditions
or uncorrectable errors. The block being read or written can be accepted or skipped,
or processing can be terminated.

If an input/output error occurs during data transmission, standard error recovery
procedures, provided by as, attempt to correct the error before returning control to
your program. An uncorrectable error usually causes an abnormal termination of the
task. However, if you specify in the DCB macro instruction the address of an error
analysis routine (called a SYNAD routine), the routine is given control in the event of
an uncorrectable error.

22 OS Data Management Services

You can write a SYNAD routine to determine the cause and type of error that occurred
by examining:

• The contents of the general registers
• The data event control block (discussed in Part 2 under "Basic Access

Technique")

The exceptional condition code

• The standard status and sense indicators

You can use the SYNADAF macro instruction to perform this analysis automatically.
This macro instruction produces an error message that can be printed by a subsequent
PUT or WRITE macro instruction.

After completing the analysis, you can return control to OS or close the data set. To
continue processing the same data set, you must first return control to the control
program by a RETURN macro instruction. The control program then transfers control
to your processing program, subject to the conditions described below. In no case
should you attempt to reread or rewrite the record, because the system has already
attempted to recover from the error.

When you are using GET and PUT to process a sequential data set, the operating
system provides three automatic error options (EROPT) to be used if there is no
SYNAD routine or if you want to return control to your program from the SYNAD
routine:

ACC accept the erroneous block

• SKP skip the erroneous block

ABE abnormally terminate the task

These options are applicable only to data errors, as control errors result in abnormal
termination of the task. Data errors affect only the validity of a block of data.
Control errors affect information or operations necessary for continued processing of
the data set. These options are not applicable to output errors, except output errors on
the printer. When chained scheduling is used, the SKP option is not available, and
ACC is assumed if SKP is coded. If the EROPT and SYNAD fields are not completed,
ABE is assumed.

When you use READ and WRITE macro instructions, errors are detected when you
issue a CHECK macro instruction. If you are processing a direct or sequential data set
and you return to the control program" from your SYNAD routine, the operating system
assumes that you have accepted the bad record. If you are creating a direct data set
and you return to the control program from your SYNAD routine, your task is
abnormally terminated.

For a detailed description of the register contents upon entry to your SYNAD routine,
refer to the tables in the as Data Management Macro Instructions manual. The
tables there describe register contents for programs using QISAM, BISAM, BDAM,
BPAM, BSAM, and QSAM.

Your SYNAD routine can end by branching to another routine in your program, such
as a routine that closes the data set. It can also end by returning control to the control
program, which then returns control to the next sequential instruction (after the macro)

Part 1: Introduction to Data Management 23

in your program. If your routine returns control, the conventions for saving and
restoring register contents are as follows:

• The SYNAD routine must preserve the contents of registers 13 and 14. If
required by the logic of your program, the routine must also preserve the contents
of registers 2 through 12. Upon return to your program, the contents of registers
2 through 12 will be the same as upon return to the control program from the
SYNAD routine.

The SYNAD routine must not use the save area whose address is in register 13,
because. this area is used by the control program. If the routine saves and restores
register contents, it must provide its own save area.

If the SYNAD routine calls another routine or issues supervisor or data
management macro instructions, it must provide its own save area or issue a
SYNADAF macro instruction. The SYNADAF macro instruction provides a save
area for its own use, and then makes this area available to the SYNAD routine.
Such a save area must be removed from the save area chain by a SYNADRLS
macro instruction before control is returned to the control program.

When you use QSAM to read and translate paper-tape characters, your SYNAD
routine receives control when you request the record preceding the record in error.
Before giving control to your SYNAD routine, the system translates the requested
record into your buffer.

For example, suppose that you are using QSAM to read and translate a paper-tape
data set and that you have specified, in your DCB, SYNAD=(address) and
EROPT=ACC. Suppose also that the third record of the data set has a parity error.
When you issue a GET request for the second record, the system translates that record
into your buffer and, as a result of the error in the third record, passes control to your
SYNAD routine. Because you specified the accept option, the system returns control
to your program after your SYNAD error analysis routine completes its processing.
When you issue a GET request for the third record, all characters other than the
erroneous one are translated into your buffer; the erroneous' character is moved, in
normal sequence, into your buffer without translation.

Exit List (EXLST): The EXLST parameter of the DCB macro instruction specifies the
address of a list that contains the addresses of special processing routines, a forms
control buffer (FCB) image, or a user totaling area. An exit list must be created if user

I label, data control block, end of volume, block count, or DCB ABEND exits are used
or if an FCB image is defined in the processing program.

The exit list is constructed of 4-byte entries that must be aligned on fullword
boundaries. Each exit list entry is identified by a code in the high-order byte, and the
address of the routine, image, or area is specified in the 3 low-order bytes. Codes and
addresses for the exit list entries are shown in Figure 15.

You can activate or deactivate any entry in the list by placing the required code in the
high-order byte. Care must be taken, however, so as not to destroy the last entry
indication. OS scans the list from top to bottom, and the first active entry found with
the proper code is selected.

I You can shorten the list during execution by setting the high-order bit to 1, and extend
it by setting the high-order bit to o. .

24 OS Data Management Services

Entry Type

Inactive entry

Input header label

Output header label

Input trailer label

Output trailer label

Data control block exit

End-of-volume

User totaling

Block count exit

Defer input trailer
label

Defer nonstandard
input trailer label

FCB image

I DCB ABEND exit

Last entry

Hexadecimal
Code

00

01

02

03

04

05

06

OA

OB

OC

OD

10

11

80

3-Byte Address - Purpose

Ignore the entry; it is not active.

Process a user input header label.

Create a user output header label.

Process a user input trailer label.

Create a user output trailer label.

Take a data control block exit.

Take an end-of-volume exit.

Assume this address is beginning of user's totaling area.

Take a block-count-unequal exit.

Defer processing of a user input trailer label from
end-of-data until closing (no exit routine address).

Defer processing a nonstandard input trailer label on
magnetic tape unit from end-of-data until closing (no
exit routine address).

Define an FCB image.

Examine the ABEND condition and select one of several
options.

Treat this entry as last entry in list. This code can
be specified with any of the above but must always be
specified with the last entry.

Figure 15. Format and Contents of an Exit List

When control is passed to an exit routine, the registers contain the following
information:

Register

o
1

2-13
14
15

Contents

Variable; see exit routine description
Address of data control block currently being processed
Contents before execution of the macro instruction
Return address (must not be altered by the exit routine)
Address of exit routine entry point

The conventions for saving and restoring register contents are as follows:

The exit routine must preserve the contents of register 14. It need not preserve
the contents of other registers. The control program restores the contents of
registers 2-13 before returning control to your program.

The exit routine must not use the save area whose address is in register 13,
because this area is used by the control program. If the exit routine calls another
routine or issues supervisor or data management macro instructions, it must
provide the address of a new save area in register 13.

Part 1: Introduction to Data Management 25

Standard User Label Exit: When you create a data set with physical sequential or
direct organization, you can provide routines to create your own data set labels. You
can also provide routines to verify these labels when you use the data set as input.
Each label is 80 characters long with the first 4 characters UHLl,UHL2, ... ,UHL8 for a
header label or UTLl,UTL2, ... ,UTL8 for a trailer label.

The physical location of the labels on the data set depends on the data set organization.
For direct. (BDAM) data sets, user labels are placed on a separate user label track in
the first volume. User label exits are taken only during execution of the Open and
Close routines. Thus you may create or examine up to eight user header labels only
during execution of Open and up to eight trailer labels only during execution of Close.
Since the trailer labels are on the same track as the header labels, the first volume of
the data set must be mounted when the data set is closed. For physical sequential
(BSAM or QSAM) data sets, you may create or examine up to eight header labels and
eight trailer labels on each volume of the data set. For ASCII tape data sets, you may
create unlimited user header and trailer labels. The user label exits are taken during
open, close, and end-of-volume processing.

To create or verify labels, you must specify the addresses of your label exit routines in
an exit list for use during standard label processing. Thus you may have separate
routines for creating or verifying header and trailer label groups. Care must be taken if
a magnetic tape is read backward, since the trailer label group is processed as header
labels and the header label group is processed as trailer labels.

When your routine receives control, the contents of register a are unpredictable.
Register 1 contains the address of a parameter list. The contents of registers 2-13 are
the same as when the macro instruction was issued. However, if your program does
not issue the CLOSE macro instruction, or abnormally terminates before issuing
CLOSE, the CLOSE macro instruction will be issued by the control program, with
control-program information in these registers.

The parameter list pointed to by register 1 is a 16-byte area aligned on a fullword
boundary. Figure 16 shows the contents of the area.

o
Address of aD-byte buffer area

4
Address of DeB being processed

8
Address of status information

12
Address of user totaling image area

Figure 16. Parameter List Passed to User Label Exit Routine

The first address in the parameter list points to an 80-byte label buffer area. For
input, the control program reads a user label into this area before passing control to the
label routine. For output, the user label exit routine constructs labels in this area and
returns to the control program, which writes the label. When an input trailer label

26 OS Data Management Services

routine receives control, the EOF flag (high-order byte of the second entry in the
parameter list) is set as follows:

bit 0 = 0:
bit 0 = 1:
bits 1-7:

Entered at end-of-volume
Entered at end-of -file
Reserved

When a user label exit routine receives control after an uncorrectable I/O error has
occurred, the third entry of the parameter list contains the address of the standard
status information. The error flag (high-order byte of the third entry in the parameter
list) is set as follows:

bit 0 = 1:
bit 1 = 1:
bits 2-7:

Uncorrectable I/O error
Error occurred during writing of updated label
Reserved

The fourth entry in the parameter list is the address of the user totaling image area.
This image area is the entry in the user totaling save area that corresponds to the last
record physically written on the volume. The image area is discussed further under
"User Totaling."

Each routine must create or verify one label of a header or trailer label group, place a
return code in register 15, and return control to the operating system. The operating
system responds to the decimal return code as shown in Figure 17.

Routine Type Return Code

Input header 0
or
trailer label

4

8

12

Output header 0
or trailer label

4

8

System Response

Normal processing is resumed. If there are any remaining labels
in the label group, they are ignored.

The next user label is read into the label buffer area and control is
returned to the exit routine. If there are no more labels in the label
group, normal processing is resumed.

The label is written from the label buffer area and normal processing
is resumed. 1

The label is written from the label area, the next label is read into the
label buffer area, and control is returned to the label processing
routine. If there are no more labels, processing is resumed. 1

Normal processing is resumed; no label is written from the label
buffer area.

User label is written from the label buffer area. Normal processing is
resumed.

User label is written from the label buffer area. If fewer than eight
labels have been created, control is returned to the exit routine, which
then creates the next label. If eight labels have been created, normal
processing is resumed.

1 Only for a physical sequential data set opened for update or a direct data set opened for update or output.

Figure 17. System Response to a User Label Exit Routine Return Code

You can create user labels only for data sets on magnetic-tape volumes with IBM
standard labels or American National Standard labels and for data sets on direct-access
volumes. When you specify both user labels and IBM standard or American National
Standard labels in a DD statement by specifying LABEL= (,SUL) or LABEL= (,AUL)
and there is an active entry in the exit list, a label exit is always taken. A label exit
may be taken when an input data set does not contain user labels, or when no user

Part 1: Introductio,l to Data Management 27

label track has been allocated for writing labels on a direct-access volume. In either
case, the appropriate exit routine is entered with the buffer area address parameter set
to O. On return from the exit routine, normal processing is resumed; no return code is
necessary.

Label exits are not taken for system output (SYSOUT) data sets, or for data sets on
volumes that do not have standard labels. For other data sets, exits are taken as
follows:

When the data set is opened, header label exits are taken, except when the data
set already exists and DISP=MOD is coded in the DD statement. In the latter
case, the volume is positioned to the end of the data set, and input trailer label
exits are taken.

When end-of-volume is reached, trailer label exits are taken; header label exits
are taken after volume switching. Input trailer label exits are not taken, however,
if you force end-of-volume by issuing an FEOV macro instruction.

When end-of-data is reached, input trailer label exits are taken before the
EODAD exit, unless the DCB exit list indicates defer input trailer label
processing. When an output data set is closed, output trailer label exits are taken.

When end-of-data is reached for a direct-access data set and the DCB exit list
indicates that the system is to defer input trailer label processing, the system
changes the OC to 00. When the Close routine has finished processing, the
system changes the code back to ~C.

To process records in reverse order, a data set on magnetic tape can be read backward.
When you read backward, header label exits are taken to process trailer labels, and
trailer label exits are taken to process header labels. The system presents labels from a
label group in ascending order by label number, which is the order in which the labels
were created. If necessary, an exit routine can determine label type (UHL or UTL)
and number by examining the first four characters of each label. Tapes with IBM
standard labels can have as many as eight user labels. Tapes with American National
Standard labels can have unlimited user labels.

If an uncorrectable error occurs during reading or writing of a user label, the system
passes control to the appropriate exit routine with the third word of the parameter list
flagged and pointing to status information.

After an input error, the exit routine must return control with an appropriate return
code (0 or 4). No return code is required after an output error. If an output error
occurs while the system is opening a data set, the data set is not opened (DCB is
flagged) and control is returned to your program. If an output error occurs at any
other time, the system attempts to resume normal processing.

A sample program illustrating user label processing is included in· SYS 1.SAMPLIB.
This program, named USERLABL, is discussed in OS System Generation.

User Totaling (BSAM and QSAM only): When creating or processing a data set with
user labels, you may develop control totals for each volume of the data set and store
this information in your user labels. For example, a control total that was accumulated
as the data set was created can be stored in your user label and later compared with a
total accumulated during processing of the volume. User totaling assists you by
synchronizing the control data you create with records physically written on a volume.

28 as Data Management Services

For an output data set without user labels, you can also develop a control total that will
be available to your end-of -volume routine.

To request user totaling, you must specify OPTCD=T in the DCB macro instruction or
in the DCB parameter of the DD statement. The area in which you accumulate the
control data (the user totaling area) must be identified to the control program by an
entry of hexadecimal OA in the DCB exit list.

The user totaling area, an area in storage that you provide, must begin on a half word
boundary and be large enough to contain your accumulated data plus a 2-byte length
field. The length field must be the first 2 bytes of the area and specify the length of
the entire area. A data set for which you have specified user totaling (OPTCD=T) will
not be opened if either the totaling area length or the address in the exit list is 0, or if
there is no X'OA' entry in the exit list.

The control program establishes a user totaling save area, in which the control program
preserves an image of your totaling area, when an I/O operation is scheduled. When
the output user label exits are taken, the address of the save area entry (user totaling
image area) corresponding to the last record physically written on a volume is passed to
you in the fourth entry of the user label parameter list. This parameter list is described
in the section "Standard User Label Exit." When an end-of-volume exit is taken for
an output data set and user totaling has been specified, the address of the user totaling
image area is in register O.

When using user totaling for an output data set, that is, when creating the data set, you
must update your control data in your totaling area before issuing a PUT or a WRITE
macro instruction. The control program places an image of your totaling area in the
user totaling save area when an I/O operation is scheduled. A pointer to the save area
entry (user totaling image area) corresponding to the last record physically written on
the volume, is passed to you in your label processing routine. Thus you can include the
control total in your user labels. When subsequently using this data set for input, you
can accumulate the same information as you read each record and compare this total
with the one previously stored in the user trailer label. If you have stored the total
from the preceding volume in the user header label of the current volume, you can
process each volume of a multivolume data set independently and still maintain this
system of control.

When variable-length records are specified with the totaling facility for user labels,
special considerations are necessary. Since the control program determines whether a
variable-length record will fit in a buffer after a PUT or a WRITE has been issued, the
total you have accumulated may include one more record than is actually written on the
volume. In the case of variable-length spanned records, the accumulated total will
include the control data from the volume-spanning record although only a segment of
the record is on that volume. However, when you process such a data set, the
volume-spanning record or the first record on the next volume will not be available to
you until after the volume switch and user label processing are completed. Thus the
totaling information in the user label may not agree with that developed during
processing of the volume.

One way you can resolve this situation is to maintain, when you are creating a data set,
control data pertaining to each of the last two records and include both totals in your
user labels. Then the total related to the last complete record on the volume and the
volume-spanning record or the first record on the next volume would be available to
your user label routines. During subsequent processing of the data set, your user label

Part 1: Introduction to Data Management 29

routines can determine if there is agreement between the generated information and
one of the two totals previously saved.

Data Control Block Exit: You can specify in an exit list the address of a routine that
completes or modifies a DCB and does any additional processing required before the
data set is completely open. The routine is entered during the opening process after
the JFCB has been used to supply information for the DCB. The routine can
determine data set characteristics by examining fields completed from the data set
labels.

As with label processing routines, register 14's contents must be preserved and restored
if any macro instructions are used in the routine. Control is returned to the operating
system by a RETURN macro instruction; no return code is required.

End~f-Volume Exit: You can specify in an exit list the address of a routine that is
.entered when end-of-volume is reached in processing of a physical sequential data set.

When the end-of -volume routine is entered, register 0 contains 0 unless user totaling
was specified. If you specified user totaling in the DCB macro instruction (by coding
OPTCD=T) or in the DD statement for an output data set, register 0 contains the
address of the user totaling image area. The routine is entered after a new volume has
been mounted and all necessary label processing has been completed. If the volume is
a reel of magnetic tape, the tape is positioned after the tapemark that precedes the
beginning of the data.

You can use the end-of -volume exit routine to take a checkpoint by issuing the
CHKPT macro instruction, which is discussed in OS Supervisor Services and Macro
Instructions. If the job step terminates abnormally, it can be restarted from this
checkpoint. When the job step is restarted, the volume is mounted and positioned as
upon entry to the routine. Note that restart becomes impossible if changes are
subsequently made to the system SVC library (SYS1.SVCLIB). When the step is
restarted, pointers to end-of-volume modules must be the same as when the
checkpoint was taken.

The end-of -volume exit routine returns control in the same manner as the data control
block exit routine. Register 14's contents must be preserved and restored if any macro
instructions are used in the routine. Control is returned to the operating system by a
RETURN macro instruction; no return code is required.

Block Count Exit: You can specify in an exit list the address of a routine that will
allow you to abnormally terminate the task or continue processing when the
end-of -volume routine finds an unequal block count condition. When you are using
standard labeled input tapes, the block count in the trailer label is compared by the
end-of -volume routine with the block count in the DCB. The count in the trailer label
reflects the number of blocks written when the data set was created. The number of
blocks read when the tape is used as input is contained in the DCBBLKCT field of the
DCB.

The routine is entered during end-of -volume processing. The trailer label block count
is passed in register O. You may gain access to the count field in the DCB by using the
address passed in register 1 plus the proper displacement, as given in OS System
Control Blocks. If the block count in the DCB differs from that in the trailer label
when no exit routine is provided, the task is abnormally terminated.

30 OS Data Management Services

The routine must terminate with a RETURN macro instruction and a return code that
indicates what action is to be taken by the operating system, as shown in Figure 18.
As with other exit routines, register 14's contents must be saved and restored if any
macro instructions are used.

Return Code System Action

o The task is abnormally terminated.

4 Normal processing is resumed.

Figure 18. System Response to Block Count Exit Return Code

Defer Nonstandard Input Trailer Label Exit: In an exit list, you can specify a code
that indicates that you want to defer nonstandard input trailer label processing from
end-of -data until the data set is closed. The address portion of the entry is not used
by the operating system.

An end-of -volume condition exists in several situations. Two are when the system
reads a filemark or tape mark at the end of a volume of a multivolume data set but that
volume is not the last, and when the system reads a filemark or tapemark at the end of
a data set. The first situation is referred to here as an end-of-volume condition, and
the second as an end-of -data condition, although it, too, can occur at the end of a
volume.

For an end-of-volume (EOV) condition, the EOV routine passes control to your
nonstandard input trailer label routine, whether or not this exit code is specified. For
an end-of -data condition when this exit code is specified, the EOV routine does not
pass control to your nonstandard input trailer label routine. Instead, the Close routine
passes control to your end-of -data routine.

FCB Image Exit: You can specify in an exit list the address of a forms control buffer
(FCB) image. This FCB image can be loaded into the forms control buffer of the
printer control unit. The FCB controls the movement of forms in printers that do not
use a carriage control tape.

The first 4 bytes of the FCB image contain the image identifier. To load the FCB, this
image identifier is specified in the FCB parameter of the DD statement or the SETPRT
macro instruction.

The image identifier is followed by the FCB load module, described in OS Data
Management for System Programmers.

You can use an exit list to define an FCB image only when writing to an online printer.
Figure 19 illustrates one way the exit list can be used to define an FCB image.

DCB ABEND Exit: You can specify in the DCB exit list the address of your DCB
ABEND exit routine to be entered when an ABEND condition occurs during open,
close, or end-of -volume processing. When an ABEND condition occurs, a message
about the ABEND condition is issued and the DCB ABEND exit routine is given
control. The contents of the registers when the exit routine is entered are the same as
for other DCB exit list routines except that register 1 contains the address of the
parameter list described in Figure 20.

Part 1: Introduction to Data Management 31

DCB .. ,EXLST=EXLIST

EXLST OS OF
DC X' 10' Flag code for FCB image
DC AL3(FCBIMG) Address of FCB image
DC X'80000000' End of EXLST

FCBIMG DC CL4' IMG1 ' FCB identifier
DC X' 00' FCB is not a default
DC AL1(66) Length of FCB
DC X'OO' Spacing is 6 lines per inch
DC 5X'00' Lines 3-6 no channel codes
DC X' 01 ' Line 7 channel 1
DC 6X'00' Lines 8-13 no channel codes
DC X'02' Line (or Lines) 14 channel 2
DC 5X'00' Line (or Lines) 15-19 no channel codes
DC X'03' Line (or Lines) 20 channel 3
DC 9X'00' Line (or Lines) 21-29 no channel codes
DC X'04' Line (or Lines) 30 channel 4
DC 19X'00' Line (or Lines) 31-49 no channel codes
DC X'05' Line (or Lines) 50 channel 5
DC X'06' Line (or Lines) 51 channel 6
DC X'07' Line (or Lines) 52 channel 7
DC X'08' Line (or Lines) 53 channel 8
DC X' 09' Line (or Lines) 54 channel 9
DC X'OA' Line (or Lines) 55 channel 10
DC X'OB' Line (or Lines) 56 channel 1 1
DC X'OC' Line (or Lines) 57 channel 12
DC 8X'00' Line (or Lines) 58-65 no channel codes
DC X' 10' End of FCB image

END
//ddname DD UNIT=3211, FCB=(IMG1,VERIFY)
/*

Figure 19. Defining an FeB Image

You must inspect bits 4, 5, and 6 of the option mask byte (byte 3 of the parameter list)
to determine which options are available. If a bit is set to 1, the corresponding option
is available. Indicate your choice by inserting the appropriate value in byte 3 of the
parameter list, overlaying the bits you inspected. If you use a value that specifies an
option that is not available, the ABEND is issued immediately.

If the contents of the option mask are 0, you must request an immediate ABEND by
leaving the value of 0 in the option mask unchanged.

If bit 5 of the option mask is set to 1, you can ignore the ABEND by placing a decimal
value of 4 in byte 3 of the parameter list. Processing on the current DeB stops. If
you subsequently attempt to use this DeB, the results are unpredictable. If you ignore
an error in end-of-volume, the data set will be closed before control is returned to
your program.

If bit 6 of the option mask is set to 1, you can delay the ABEND by placing a decimal
value of 8 in byte 3 of the parameter list. All other DeBs waiting for open or close
processing will be processed before the ABEND is issued. For end-of-volume,
however, you can't delay the ABEND because the end-of-volume routine never has
more than one DeB to process.

32 OS Data Management Services

Bit Meaning

0-3 Reserved for Future Use

4 OK to Recover

5 OK to Ignore

6 OK to Delay

Fullword Boundary
Displace~ent ~~~~~~~~~~~~~~~~~I~~~~~~~~~I~~~~~~~

o Syste~ Co~pletion Code Return Code Option Mask

4 DCB Address

8 OpenlClose/End-of-Volu~e Work Area Address

12 00 I Recovery Work Area Address

Figure 20. Parameter List Passed to DeB ABEND Exit Routine

If bit 4 of the option mask is set to 1, you can attempt to recover. Place a decimal
value of 12 in byte 3 of the parameter list and provide information for the recovery
attempt. Figure 21 lists the ABEND conditions for which recovery can be attempted.

For the recovery attempt, you should supply a recovery work area (see Figure 22) with
a new volume serial number for each volume associated with an error. If no new
volumes are supplied, recovery will be attempted with the existing volumes, but the
likelihood of successful recovery is greatly reduced.

If you request recovery for system completion code 213, return code 04, you must
indicate in your job control language (JCL) they are nonsharable by specifying unit
affinity, deferred mounting, or more volumes than units for the data set.

If you request recovery for system completion code 237, return code 04, you don't
need to supply new volumes or a work area. The condition that caused the ABEND is
the disagreement between the block count in the DeB and that in the trailer label.
This disagreement is ignored to permit recovery.

Part 1: Introduction to Data Management 33

Displacement

o

4

System
Completion
Code

213

237

413

613

717

813

Return
Code

04

04

18

08

Description of Error

DSCB was not found on volume specified.

Block count in DCB does not agree with block count in trailer label.

Data set was opened for input and no volume serial number was specified.

I/O error occurred during reading of tape label.

OC Invalid tape label was read.

10 I/O error occurred during writing of tape label.

14 I/O error occurred during writing of tapemark following header labels.

10

04

I/O error occurred during reading of trailer label 1 to update block
count in DCB.

Data set name on header label does not match data set name on
DD statement.

Figure 21. Conditions for which Recovery Can Be Attempted

Bit

o

2-7

Meaning

Free This Work Area

Volume Serial Numbers Are
Provided

Reserved for Future Use

Halfword Boundary

Length of This Work Area Option Byte I Subpool Number

Number of
New Volumes I New Volume Serial Numbers (6 bytes eachl

~--------------~
r......l

T
Figure 22. Recovery Work Area

34 OS Data Management Services

If you request re~overy for system completion code 717, return code 10, you don't
need to supply new volumes or a work area. The ABEND is caused by an 110 error
during updating of the DCB block count. To permit recovery, the block count is not
updated. Consequently, an abnormal termination with system completion code 237,
return code 04, may result when you try to read from the tape after recovery. You
may attempt recovery from the ABEND with system completion code 237, return code
04, as explained in the preceding paragraph.

System completion codes and their return codes are described in OS Messages and
Codes.

The work area that you supply for the recovery attempt must begin on a halfword
boundary and can contain the information described in Figure 22. Place a pointer to
the work area in the last 3 bytes of the parameter list pointed to by register I and
described in Figure 20.

If you acquire the storage for the work area by using the GETMAIN macro instruction,
you can request that it be freed by a FREE MAIN macro instruction after all
information has been extracted from it. Set the high-order bit of the option byte in the
work area to 1 and place the number of the subpool from which the work area was
requested in byte 3 of the recovery work area.

Only one recovery attempt per data set is allowed during open, close, or
end-of -volume processing. If a recovery attempt is unsuccessful, you may not request
another recovery. The second time through the exit routine you may request only one
of the other options (if allowed): issue the ABEND immediately, ignore the ABEND,
or delay the ABEND. If at any time you select an option that is not allowed, the
ABEND is issued immediately.

Note that if recovery is successful, you still receive an ABEND message on your listing.
This message refers to the ABEND that would have been issued if the recovery had not
been successful.

Modifying the Data Control Block

You can complete or modify the DCn during execution of your program. You can also
determine data set characteristics from information supplied by the data set labels.
Changes or additions can be. made before opening of the data set, after closing it,
during the DCB exit routine, or while -the data set is open. Naturally, any information
must be supplied before it is needed.

Because each DCB does not have a symbolic name for each field, a DCBD macro
instruction must be used to supply the symbolic names. By loading a base register with
the 3;ddress of the DCB to be processed, you can refer to any field symbolically.

The DCBD macro instruction generates a dummy control section (DSECT) named
IHADCB. The name of each field consists of DCB followed by the first five letters of
the keywor~ operand that represents the field in the DCB macro instruction. For
example, the field reserved for blocksize is referred to as DCBBLKSI.

The attributes of each DCB field are defined in the dummy control section. Because
each field in the DCB is not necessarily aligned on a full word boundary, care must be
taken when storing or moving data into the field. The length attribute and the
alignment of each field can be determined from an assembly listing of the DCBD
macro instruction.

Part 1: Introduction to Data Management 35

The DCBD macro instruction can be coded once to describe all DCBs even though
their fields differ because of differences in data set organization and access technique.
It must not be coded more than once for asingle assembly. If it is coded before the
end of a control section, it must be followed by a CSECT or DSECT statement to
resume the original control section.

Changing an Address in the Data Control Block: Figure 23 illustrates how you can
modify a field in the data control block. The DCBD macro instruction defines the
symbolic name of each field.

The data set defined by the data control block TEXTDCB is opened for use as both an
input and an output data set. When its use as an input data set is completed, the
EODAD routine closes the data set temporarily to reposition the volume for output.
The EODAD routine then uses the dummy control section IHADCB to change the
error exit address (SYNAD) from INERROR to OUTERROR.

The EODAD routine loads the address TEXTDCB into register 10, which it uses as a
base register for IHADCB. It then moves the address OUTERROR into the
DCBSYNAD field of the DCB. This field is a fullword, but contains information that
must not be disturbed in the high-order byte. For this reason, care must be taken to
change only the 3 low-order bytes of the field.

OPEN

EOFEXIT CLOSE
LA
USING
MVC
B

INERROR STM

OUT ERROR STM

(TEXTDCB, INOUT)

(TEXTDCB,REREAD),TYPE=T
10,TEXTDCB
IHADCB,10
DCBSYNAD+l(3),=AL3(OUTERROR)
OUTPUT
14,12,SYNADSA+12

14,12,SYNADSA+12

TEXTDCB DCB DSORG=PS,MACRF=(R,W),DDNAME=TEXTTAPE,
EODAD=EOFEXIT,SYNAD=INERROR

DCBD DSORG=PS

Figure 23. Modifying a Field in the Data Control Block

Sharing a Data Set

C

A data set can be shared by all the tasks of a job step. If requested in the DD
statement, a data set can be shared by all the tasks in the system. However, regardless
of which access method is used, the task that opens the data set must also close it.

When a data set is shared by several tasks, you must treat it as a serially reusable
resource. A task must have exclusive control of a data set in order to add or update
records, and shared control in order to read records.

In performing a task, you gain exclusive or shared control of a data set by issuing the
ENQ and DEQ macro instructions, which are described in OS Supervisor Services
and Macro Instructions. Note that these macro instructions must be used by all of the
tasks that process a shared data set.

36 OS Data Management Services·

When you process a direct data set, you need to use the ENQ and DEQ macro
instructions only when tasks that share a data set do not refer to the same DCB. When
all tasks do refer to the same DCB, you must have exclusive control of a block of
records that you are updating, but you do not need either shared or exclusive control of
the entire data set. You can request exclusive control of a block of records through the
DeB, READ, WRITE, and RELEX macro instructions.

Shared Direct-Access Storage Devices: At some installations, a direct-access storage
device is shared by two or more independent computing systems. Tasks executed on
these systems can share data sets stored on the device. For details, refer to OS MFT
Guide or OS MVT Guide.

Part 1: Introduction to Data Management 37

PART 2: DATA MANAGEMENT PROCESSING PROCEDURES

Data-Processing Techniques

The operating system allows you to concentrate most of your efforts on processing the
records read or written by the data management routines. To get the records read and
written, your main responsibilities are to describe the data set to be processed, the
buffering techniques to be used, and the access method. An access method has been
defined as the combination of data set organization and the technique used to gain
access to the data. Data access techniques are discussed here in two categories -
queued and basic.

Queued Access Technique

The queued access technique provides GET and PUT macro instructions for
transmitting data between main and auxiliary storage. These macro instructions cause
automatic blocking and deblocking of the records stored and retrieved. Anticipatory
(look-ahead) buffering and synchronization (overlap) of input and output operations
with central processing unit (CPU) processing are automatic features of the queued
access technique.

Because the operating system controls buffer processing, you can use as many
input/ output (I/O) buffers as needed without reissuing GET or PUT macro
instructions to fill or empty buffers. Usually, more than one input block is in main
storage at any given time, so I/O operations do not delay record processing.

Because the operating system synchronizes input/output with processing, you need not
test for completion, errors, or exceptional conditions. After a GET or PUT macro
instruction is issued, control is not returned to your program until an input area is filled
or an output area is available. Exits to error analysis (SYNAD) and end-of-volume or
end-of-data (EODAD) routines are automatically taken when necessary.

GET - Retrieve a Record

The GET macro instruction obtains a record from an input data set. It operates in a
logical sequential and device-independent manner. As required, tm; GET macro
instruction schedules the filling of input buffers, deblocks records, and directs input
error recovery procedures. For sequential data sets, it also merges record segments into
logical records. After all records have been processed and the GET macro instruction
detects an end-of-data indication, the system automatically checks labels on sequential
data sets and passes control to your end-of-data (EODAD) routine. If an
end-of-volume condition is detected for a sequential data set, the system provides
automatic volume switching if the data set extends across several volumes or if
concatenated data sets are being processed. If you specify OPTCD=Q in the DCB,
GET causes input data to be translated from ASCII to EBCDIC.

PUT - Write a Record

The PUT macro instruction places a record into an output data set. Like the GET
macro instruction, it operates in a logical sequential and device-independent manner.
As required, the PUT macro instruction schedules the emptying of output buffers,
block~ records, and handles output error correction procedures. For sequential data

Part 2: Data Management Processing Procedures 39

sets, it also initiates automatic volume switching and label creation, and also segments
records for spanning. If you specify OPTCD=Q in the DCB, PUT causes output to be
translated from EBCDIC to ASCII.

If the PUT macro instruction is directed to a card punch or printer, the system
automatically adjusts the number of records or record segments per block of format-F
or format-V blocks to 1. Thus, you can specify a record length (LRECL) and
blocksize (BLKSIZE) to provide an optimum blocksize if the records are temporarily
placed on magnetic tape or a direct-access volume.

For spanned variable-length records, the blocksize must be equivalent to the length of
one card or one print line. Record size may be greater than blocksize in this case.

PUTX - Write an Updated Record

The PUTX macro instruction is used to update a data set or to create an output data
set using records from an input data set as a base. PUTX updates, replaces, or inserts
records from existing data sets but does not create records or add records from other
data sets.

When you use the PUTX macro instruction to update, each record is returned to the
data set referred to by a previous GET macro instruction. The buffer containing the
updated record is flagged and written back to the same location on the direct-access
storage device from which it was read. The block is not written until a GET macro
instruction is issued for the next buffer, except when a spanned record is to be updated.
In that case, the block is written with the next GET macro instruction.

When the PUTX macro instruction is used to create an output data set, you can add
new records by using the PUT macro instruction. As required, the PUTX macro
instruction blocks records, schedules the writing of output buffers, and handles output
error correction procedures.

Basic Access Technique

The basic access technique provides the READ and WRITE macro instructions for
transmitting data between main and auxiliary storage. This technique is used when the
operating system cannot predict the sequence in which the records are to be processed
or when you do not want some or all of the automatic functions performed by the
queued access technique. Although the system does not provide anticipatory buffering
or synchronized scheduling, macro instructions are provided to help you program these
operations.

The READ and WRITE macro instructions process blocks, not records. Thus, blocking
and deblocking of records is your responsibility. Buffers, allocated by either you or the
operating system, are filled or emptied individually each time a READ or WRITE
macro instruction is issued. Moreover, the READ and WRITE macro instructions only
initiate input/output operations. To ensure that the operation is completed
successfully, you must issue a CHECK macro instruction to test the data event control
block (DECB) or issue a WAIT macro instruction and then check the DECB yourself.
The number of READ or WRITE macro instructions issued before a CHECK macro
instruction is used should not exceed the specified number of channel programs (NCP).

40 OS Data Management Services

READ - Read a Block

The READ macro instruction retrieves a data block from an input data set and places it
in a designated area of main storage. To allow overlap of the input operation with
processing, the system returns control to your program before the read operation is
completed. The DECB created for the read operation must be tested for successful
completion before the record is processed or the DECB is reused.

If an indexed sequential data set is being read, the block is brought into main storage
and the address of the record is returned to you in the DECB.

When you use the READ macro instruction for BSAM to read a direct data set with
spanned records and keys and you specify BFTEK=R in your DCB, the data
management routines displace record segments after the first in a record by key length.
Thus, you can expect the block descriptor word and the segment descriptor word at the
same locations in your buffer or buffers, regardless of whether you read the first
segment of a record, which is preceded in the buffer by its key, or a subsequent
segment, which does not have a key. This procedure is called offset reading.

You can specify variations of the READ macro instruction according to the
organization of the data set being processed and the type of processing to be done by
the system as follows:

Sequential
SF
SB

Read the data set sequentially.
Read the data set backward (magnetic tape, format-F and format-U
only). When RECFM=FBS, data sets containing a last truncated
block cannot be read backward.

Indexed Sequential
K Read the data set.
KU - Read for update. The system maintains the device address of the

record; thus, when a WRITE macro instruction returns the record, no
index search is required.

Direct
D
I
K
F
X
R
U

WRITE - Write a Block

Use the direct access method.
Locate the block using a block identification.
Locate the block using a key.
Provide device position feedback.
Maintain exclusive control of the block.
Provide next address feedback.
Next address can be a capacity record or logical record, whichever
occurred first.

The WRITE macro instruction places a data block in an output data set from a
designated area of main storage. The WRITE macro instruction can also be used to
return an updated record to a data set. To allow overlap of output operations with
processing, the system returns control to your program before the write operation is
completed. The DECB created for the write operation must be tested for successful
completion before the DECB can be reused. For ASCII tape data sets, do not issue
more than one WRITE on the same record, because the WRITE macro instruction
causes the data in the record to be translated from EBCDIC to ASCII.

Part 2: Data Management Processing Procedures 41

As with the READ macro instruction, you can specify variations of the WRITE macro
instruction according to the organization of the data set and the type of processing to
be done by the system as follows:

Sequential
SF
SFR -

Write the data set sequentially.
Write the data set sequentially with next-address feedback.

Indexed Sequential
K Write a block containing an updated record, or replace a record with

an unblocked record having the same key. The record to be replaced
need not have been read into main storage.

KN - Write a new record or change the length of a variable-length record.

Direct
SD
SZ

D
I
K
A
F
X

Write a dummy fixed-length record.
Write a capacity record (RO). The system supplies the data, writes the
capacity record, and advances to the next track.
Use the direct access method.
Search argument identifies a block.
Search argument is a key.
Add a new block.
Provide record location data (feedback).
Release exclusive control.

CHECK - Test Completion of Read or Write Operation

When processing a data set, you can test for completion of a READ or WRITE request
by issuing a CHECK macro instruction. The system tests for errors and exceptional
conditions in the data event control block (DECB). Successive CHECK macro
instructions issued for the same data set must be issued in the same order as the
associated READ and WRITE macro instructions.

The check routine passes control to the appropriate exit routines specified in the DCB
for error analysis (SYNAD) or, for sequential data sets, end-of-data (EODAD). It
also automatically initiates end-of -volume procedures (volume switching or extending
output data sets).

If you specify OPTCD=Q in the DCB, CHECK causes input data to be translated
from ASCII to EBCDIC.

WAIT - Wait for Completion of a Read or Write Operation

When processing a data set, you can test for completion of any READ or WRITE
request by issuing aWAIT macro instruction. The input/output operation is
synchronized with processing, but the DECB is not checked for errors or exceptional
conditions, nor are end-of-volume procedures initiated. Your program must perform
these operations.

The WAIT macro instruction can be used to await completion of multiple read and
write operations. Each operation must then be checked or tested separately.

Data Event Control Block (DECB)

A data event control block is a 16- to 32-byte area reserved by each READ or
WRITE macro instruction. It contains control information and pointers to standard

42 OS Data Management Services

Error Handling

status indicators. It is described in detail in Appendix A of OS Data Management
Macro Instructions.

The DECB is examined by the Check routine when the I/O operation is completed to
determine if an uncorrectable error or exceptional condition exists. If it does, control is
passed to your SYNAD routine. If you have no SYNAD routine, the task is
abnormally terminated.

The basic and queued access techniques both provide special macro instructions for
analyzing input/output errors. These macro instructions can be used in SYNAD
routines and in error analysis routines that are entered directly when you use the basic
access technique with indexed sequential data sets.

SYNADAF - Perform SYNAD Analysis Function

The SYNADAF macro instruction analyzes the status, sense, and exceptional condition
code data that is available to your error analysis routine. It produces an error message
that your routine can write into any appropriate data set. The message is in the form
of an unblocked variable-length record, but you can write it as a fixed-length record
by omitting the block length and record length fields that precede the message text.

The text of the message is 120 characters long, and begins with a field of 36 or 42
blanks; you can use the blank field to add your own remarks to the message.
Following is a typical message with the blank field omitted:

,TESTJOB ,STEP2 ,283,TA,MASTER ,READ ,DATACHECK ,0000015,BSAM

This message indicates that a· data check occurred during reading of the fifteenth block
of a data set. The data set was identified by a DD statement named MASTER, and
was on a magnetic-tape volume on unit 283. The name of the job was TESTJOB; the
name of the job step was STEP2.

If the error analysis routine is entered because of an input error, the first 6 bytes of the
message (bytes 8-13) contain binary information. If no data was transmitted or if the
access method is QISAM, the first 6 bytes are blank. If the error did not prevent data
transmission, the first 6 bytes contain the address of the input buffer and the number
of bytes read. You can use this information to process records from the block; for
example., you might print each record after printing the error messag~-. Bef ore printing
the message, however, you should replace this binary information with EBCDIC
characters.

The SYNADAF macro instruction provides its own save area and makes this area
available to your error analysis routine. When used at the entry point of a SYNAD
routine, it fulfills the routine's responsibility for providing a save area.

SYNAPRLS - Release SYNADAF Message and Save Areas

The SYNADRLS macro instruction releases the message and save areas provided by
the SYNADAF macro instruction. You must issue this macro instruction before
returning from the error analysis routine.

ATLAS - Perform Alternate Track Location Assignment

The ATLAS macro instruction enables your program to recover from permanent
input/ output errors when processing a data set in direct-access storage. After a data

Part 2: Data Management Processing Procedures 43

check, or in certain missing-address-marker conditions, you can issue ATLAS to assign
an alternate track to replace the error track or transfer data from the error track to the
alternate track.

Use of the ATLAS macro instruction requires a knowledge of channel programming. A
detailed description of the macro instruction and its use is included in OS Data
Management for System Programmers.

If you do not use the ATLAS macro instruction, you can use the IEHA TLAS utility
program to perform the same function. The principal difference between the macro
instruction and the utility program is that the latter provides error recovery only after
your own program has been completed. For a detailed description of IEHATLAS,
refer to OS Utilities.

Selecting an Access Method

Access methods are identified primarily by the data set organization to which they
apply. For instance, BDAM is the basic access method for direct organization.
Nevertheless, there are times when an access method identified with one organization
can be used to process a data set usually thought of as organized in a different manner.
Thus, a data set created by the basic access method for sequential organization
(BSAM) may be processed by the basic direct access method (BDAM). If the queued
access technique is used to process a sequential data set, the access method is referred
to as the queued sequential access method (QSAM).

Basic access methods are used for all data organizations, while queued access methods
apply only to sequential and indexed sequential data sets as shown in Figure 24.

Data Set
Organization

Sequential
Partitioned
Indexed Sequential
Direct

Access Technique

Basic Queued

BSAM OSAM
BPAM
BISAM OISAM
BDAM

Figure 24. Data Management Access Methods

It is possible to control an I/O device directly while processing a data set with any data
organization without using a specific access method. The execute channel program
(EXCP) macro instruction uses the system programs that provide for scheduling and
queuing I/O requests, efficient use of channels and devices, data protection,
interruption procedures, error recognition and retry. Complete details about the EXCP
macro are in OS Data Management for System Programmers.

Opening and Closing a Data Set

Although your program has been assembled, the various data management routines
required for I/O operations are not a part of the object code. In other words, your
program is not completely assembled until the DCBs are initialized for execution. You
accomplish initialization by issuing the OPEN macro instruction. After all DCBs have
been completed, the system ensures that all required access method routines are loaded
and ready for use and that all channel command word lists and buffer areas are ready.

44 OS Data Management Services

Access method routines are selected and loaded according to data control fields that
indicate:

Data organization

Buffering technique

Access technique

I/O unit characteristics

This information is used by the system to allocate main-storage space and load the
appropriate routines. These routines, the channel command word (CCW) lists, and
buffer areas created automatically by the system remain in main storage until the Close
routine signals that they are no longer needed by the DCB that was using them.

When I/O operations for a data set are completed, you should issue a CLOSE macro
instruction to return the DCB to its original status, handle volume disposition, create
data set labels, complete writing of queued output buffers, and free main and auxiliary
storage.

After closing the data set, you should issue a FREEPOOLmacro instruction to release
the main storage used for the buffer pool. If you plan to process other data sets, use
FREEPOOL to regain the buffer pool storage space. If you expect to reopen a data
set using the same DCB, use FREEPOOL unless the buffer pool created the first time
the data set was opened will meet your needs when you reopen the data set.
FREEPOOL is discussed in more detail in the section "Buffer Pool Construction."

After the data set has been closed, the DCB can be used for another data set. If you
do not close the data set before a task terminates, the operating system closes it
automatically. If the DCB is not available to the system at that time, the operating
system abnormally terminates the task, and data results can be unpredictable. Note,
however, that the operating system cannot automatically close any open data sets after
the normal termination of a program that was brought into main storage by the loader.
Therefore, loaded programs must include CLOSE macro instructions for all open data
sets.

An OPEN or CLOSE macro instruction can be used to initiate or terminate processing
of more than one data set. Simultaneous opening or closing is faster than issuing
separate macro instructions; however, additional storage space is required for each data
set specified.

Notes:

Two or more DCBs should never be opened concurrently for output to the same
data set on a direct-access device, except with the indexed sequential access
method (ISAM). Otherwise the end-of-file record written by the CLOSE for
one DeB may overlay data associated with another DCB.

• Two or more DCBs should never be opened concurrently using the same
DDname. This is true for both input and output and especially important when
you are using more than one access method. Any action on one DCB that alters
the task input/output table (TIOT) or JFCB affects the other DCB(s) and thus
can cause unpredictable results.

If you want to use the same DD statement for two or more DCBs, you cannot
specify parameters for fields in the first DCB and then be assured of obtaining
the default parameters for the same fields in any subsequent DCB using the same

Part 2: Data Management Processing Procedures 45

DD statement. Therefore, unless the parameters of all DCBs using one DD
statement are the same, you should use separate DD statements.

• Associated data sets for the 3525 Card Punch can be opened in any order, but all
data sets must be opened before any processing can begin. Associated data sets
can be closed in any order, but once a data set has been closed, I/O operations
cannot be performed on any of the associated data sets. See "Appendix C:
Special Programming Considerations for the 3505 Card Reader and the 3525
Card Punch" for more information.

Volume disposition specified in the OPEN or CLOSE macro instruction can be
overridden by the system if necessary. However, you need not be concerned; the
system automatically requests the mounting and demounting of volumes, depending
upon the availability of devices at a particular time.

OPEN - Initiate Processing of a Data Set

The OPEN macro instruction is used to complete a data control block for an associated
data set. The method of processing and the volume positioning instruction in the event
of an end-of-volume condition can be specified.

Processing Method: You can process a data set as either input or output (by coding
INPUT or OUTPUT as the processing method operand of the OPEN macro) or, under

I
BSAM, a combination of the two (by coding INOUT or OUTIN). Associated data sets
to be processed concurrently on the 3525 Card Punch must have separate DCBs for
each data set. See "Appendix C: Special Programming Considerations for the 3505
Card Reader and the 3525 Card Punch" for more information. If the data set resides
on a direct-access volume, you can code UPDAT in the processing method operand to
indicate that records can be updated. To specify that a magnetic-tape volume is to be
read backward by BSAM or QSAM, code RDBACK in this operand. If the processing
method operand is omitted from the OPEN macro instruction, INPUT is assumed. The
operand is ignored by the basic indexed sequential access method (BISAM); it must be
specified as OUTPUT when you are using the queued indexed sequential access method
(QISAM) to create an indexed sequential data set. You can override the INOUT and
OUTIN at execution by using the LABEL parameter of the DD statement, as discussed
in OS Job Control Language Reference.

Simultaneous Opening of Data Sets: In Figure 25, the data sets associated with three
DCBs are to be opened simultaneously.

OPEN (TEXTDCB"CONVDCB,(OUTPUT),PRINTDCB,(OUTPUT))
+ CNOP 0,4
+ BAL 1,*+16 Load register with list address
+ DC AL 1 (0) Option byte
+ DC AL3(TEXTDCB) DCB address
+ DC AL 1 (15) Option byte
+ DC AL3(CONVDCB) DCB address
+ DC AL 1 (143) Option byte
+ DC AL3(PRINTDCB) DCB address
+ SVC 19 Issue open SVC

Figure 25. Opening Three Data Sets Simultaneously

Since no processing method operand is specified for TEXTDCB, the system assumes
INPUT. Both CONVDCB and PRINTDCB are opened for output. No volume

46 OS Data Management Services

positioning options are specified; thus, the position indicated by the DD statement
DISP parameter is used.

At execution, the SVC 19 instruction passes control to the Open routine, which then
initializes the three DCBs and loads the appropriate access method routines.

CLOSE - Terminate Processing of a Data Set

The CLOSE macro instruction is used to terminate processing of a data set and release
it from a DCB. The volume positioning that is to result from closing the data set can
also be specified. Volume positioning options are the same as those that can be
specified for end-of-volume conditions in the OPEN macro instruction or the DD
statement. An additional volume positioning option, REWIND, is available and can be
specified by the CLOSE macro instruction for magnetic-tape volumes. REWIND
positions the tape at the load point regardless of the direction of processing.

The operating system provides a temporary closing option, CLOSE (TYPE=T), for
data sets being processed by BSAM. This option cannot be used if you are using
BSAM to create a direct data set (MACRF= WL coded in the DCB macro instruction).
CLOSE (TYPE=T) causes the RLSE parameter on the DD card to be ignored. When
the macro instruction is executed for data sets on magnetic-tape or direct-access
volumes, the system processes labels and repositions the volume as required. However,
the DCB maintains its open status. You can continue processing of the data set at a
later stage in your program without reissuing the OPEN macro instruction, thus
improving performance. Magnetic-tape volumes are repositioned to the point either
preceding the first data block or following the last data block of the data set. The
presence of tape labels has no effect on repositioning.

Simultaneous Closing of Data Sets: In Figure 26, the data sets associated with three
DCBs are to be closed simultaneously.

CLOSE (TEXTDCB"CONVDCB"PRINTDCB)
+ CNOP 0,4
+ BAL 1 , *+ 16 Branch around list
+ DC AL1(0) Option byte
+ DC AL3(TEXTDCB) DCB address
+ DC AL1(0) Option byte
+ DC AL3(CONVDCB) DCB address
+ DC AL1(128) Option byte
+ DC AL3(PRINTDCB) DCB address
+ SVC 20 Issue close SVC

Figure 26. Closing Three Data Sets Simultaneously

Because no volume positioning operands are specified, the position indicated by the DD
statement DISP parameter is used.

At execution, the SVC 20 instruction passes control to the Close routine, which
terminates processing of the three data sets and returns the three DCBs to their original
status.

Part 2: Data Management Processing Procedures 47

End-of-Volume Processing

Control is passed automatically to the data management end-of-volume routine when
any of the following conditions is detected:

• End-of-data indicator (input volume)

• Tapemark (input tape volume)
Filemark (input direct-access volume)

End of reel (output tape volume)

End of extent (output direct-access volume)

You may issue a force end-of-volume (FEOV) macro instruction before the
end-of-volume condition is detected.

The end-of-volume routine checks or creates standard trailer labels, if the LABEL
parameter of the associated DD statement indicates standard labels. Control is then
passed to the appropriate user label routine if it is specified in your exit list.

If multiple-volume data sets are specified in your DD statement, automatic volume
switching is accomplished by the end-of -volume routine. When an end-of -volume
condition exists on an output data set, additional space is allocated as indicated in your
DD statement. If no more volumes are specified or if more than specified are required,
the storage is obtained from any available volume on a device of the same type. If no
such volume is available, your job is terminated.

Volume Positioning: When an end-of -volume condition is detected, the system
positions the volume according to the disposition specified in the DD statement unless
the volume disposition is specified in the OPEN macro instruction. Volume positioning
instructions for a sequential data set on tape or direct access can be specified as
LEAVE or REREAD.

LEAVE

positions the volume at the logical end of the data set just read or written. If the
data set has been read backward, the logical end is the physical beginning of the
data set.

REREAD

positions the volume at the logical beginning of the data set just read or written.

A volume positioning instruction can be specified only if the processing method
operand has been specified. It is ignored if devices other than magnetic-tape and
direct-access are used, or if the number of volumes exceeds the number of available
units.

For magnetic-tape volumes, positioning varies according to the direction of the last
input operation and the existence of tape labels. If the tape was last read forward:

LEAVE

positions a labeled tape to the point following the tapemark that follows the data
set trailer label group, and an unlabeled volume to the point following the
tapemark that follows the last block of the data set.

48 OS Data Management Services

REREAD

positions a labeled tape to the point preceding the data set header label group,
and an unlabeled tape to the point preceding the first block of the data set.

If the tape was last read backward:

LEAVE

positions a labeled tape to the point preceding the data set header label group,
and an unlabeled tape to the point preceding the first block of the data set.

REREAD

positions a labeled tape to the point following the tapemark that follows the data
set trailer label group, and an unlabeled tape to the point following the tape mark
that follows the last block of the data set.

FEOV - Force End of Volume

The FEOVmacro instruction directs the operating system to initiate end-of-volume
processing before the physical end of the current volume is reached. If another volume
has been specified for the data set, volume switching takes place automatically. The
volume positioning options REWIND and LEA VE are available.

The FEOV macro instruction can only be used when you are using BSAM or QSAM.

Buffer Acquisition and Control

The operating system provides several methods of buffer acquisition and control. Each
buffer (main-storage area used for intermediate storage of input/ output data) usually
corresponds in length to the size of a block in the data set being processed. When you
use the queued access technique, any reference to a buffer actually refers to the next
record (buffer segment).

You can assign more than one buffer to a data set by associating the buffer with a
buffer pool. A buffer pool must be constructed in a main-storage area allocated for a
given number of buffers of a given length.

Buffer segments and buffers within the buffer pool are controlled automatically by the
system when the queued access technique is used. However, you can terminate
processing of a buffer by issuing a release (RELSE) macro instruction for input or a
truncate (TRUNC) macro instruction for output. Two buffering techniques, simple and
exchange, can be used to process a sequential data set. Only simple buffering can be
used to process an indexed sequential data set.

If you use the basic access technique, you can use buffers as work areas rather than as
intermediate storage areas. You can control them directly, by using the GETBUF and
FREEBUF macro instructions, or dynamically, by requesting dynamic buffering in your
DCB macro instruction and your READ or WRITE macro instruction. If you request
dynamic buffering, the system will automatically provide a buffer each time a READ
macro instruction is issued. That buffer will be freed when you issue a WRITE or
FREEDBUF macro instruction.

Part 2: Data Management Processing Procedures 49

Buller Pool Construction

Buffer pool construction can be accomplished in any of three ways:

• Statically using the BUILD macro instruction

• Explicitly using the GETPOOL macro instruction

• Automatically by the system when the data set is opened

If QSAM simple buffering is used, the buffers are automatically' returned to the pool
when the data set is,closed. If the buffer pool is constructed explicitly or automatically,
the main storage area must be returned to the system by the FREEPOOL macro
instruction.

In many applications, fullword or double word alignment of a block within a buffer is
important. You can specify in the DCB that buffers are to start on either a
doubleword boundary or a full word boundary that is not also a doubleword boundary
(by coding BFALN=D or F). If doubleword alignment is specified for format-V
records, the fifth byte of the first record in the block is so aligned. For that reason,
fullword alignment must be requested to align the first byte of the variable-length
record on a doubleword boundary. The alignment of the records following the first in
the block depends on the length of the previous records.

Note that buffer alignment provides alignment only for the buffer. If records from
ASCII magnetic tape are read and the records use the block prefix, the boundary
alignment of logical records within the buffer depends on the length of the block prefix.
If the length is 4, logical records are on fullword boundaries. If the length is 8, logical
records are on doubleword boundaries.

If the BUILD macro instruction is used to construct the buffer pool, alignment depends
on the alignment of the first byte of the reserved storage area.

When you process multiple QISAM data sets, you can use a common buffer pool. To
do this, however, you must use the BUILD macro instruction to reformat the buffer
pool before opening each data set.

BUILD - Construct a Buffer Pool

When you know, before program assembly, both the number and the size of the buffers
required for a given data set, you can reserve an area of appropriate size to be used as
a buffer pool. Any type of area can be used - for example, a predefined storage area
or an area of coding no longer needed.

A BUILD macro instruction, issued during execution of your program, structures the
reserved storage area into a buffer pool. The address of the buffer pool must be the
same as that specified for the buffer pool control block (BUFCB) in your DCB. The
buffer pool control block is an 8-byte field preceding the buffers in the buffer pool.
The number (BUFNO) and length (BUFL) of the buffers must also be specified. For
QSAM, the length of BUFL must be at least the blocksize.

When the data set using the buffer pool is closed, you can reuse the area as required.
You can also reissue the BUILD macro instruction to reconstruct the area into a new
buffer pool to be used by another data set.

50 OS Data Management Services

You can assign the buffer pool to two or more data sets that require buffers of the
same length. To do this, you must construct an area large enough to accommodate the
total number of buffers required at anyone time during execution. That is, if each of
two data sets requires five buffers (BUFNO=S), the BUILD macro instruction should
specify ten buffers. The area must also be large enough to contain the 8-byte buffer
pool control block.

BUILDRCD - Build a Buffer Pool and a Record Area

The BUILDRCD macro instruction performs the same functions as the BUILD macro
instruction and the following additional functions:

It allows you access to an entire logical record, not just a segment, for a
sequential data set used by QSAM in locate mode and having a record format of
VS or VBS.

It links a record area to the buffer control block by extending the buffer control
block to 12 bytes. Thus, a spanned record can be assembled or segmented in the
record area.

GETPOOL - Get a Buffer Pool

If a specified area is not reserved for use as a buffer pool, or you want to defer
specifying the number and length of the buffers until execution of your program, you
should use the GETPOOL macro instruction. It enables you to vary the size and
number of buffers according to the needs of the data set being processed.

The GETPOOL macro instruction structures a main-storage area allocated by the
system into a buffer pool, assigns a buffer pool control block, and associates the pool
with a specific data set. The GETPOOL macro instruction should be issued either
before opening of the data set or during your DCB exit routine.

When using GETPOOL with QSAM, specify a buffer length (BUFL) of at least the
blocksize.

Automatic Buffer Pool Construction

If you have requested a buffer pool and have not used an appropriate macro instruction
by the end of your DCB exit routine, the system automatically allocates main-storage
space for a buffer pool. The buffer pool control block is also 'assigned and the pool is
associated with a specific DCB. If you are using the basic access technique to process
an indexed sequential or direct data set, you must indicate dynamic buffer control.
Otherwise, the system does not construct the buffer pool automatically.

Because a buffer pool obtained automatically is not freed automatically when you issue
a CLOSE macro instruction, you should also issue a FREEPOOL macro instruction,
which is discussed in the next section.

FREEPOOL - Free a Buffer Pool

Any buffer pool assigned to a DCB either automatically by the OPEN macro
instruction (except when dynamic buffer control is used) or explicitly hy the
GETPOOL macro instruction must be released before your program is terminated. The
FREEPOOL macro instruction should be issued to release the main storage area as
soon as the buffers are no longer needed. As a general rule, when you are using the
queued access technique, an output data set should be closed first to ensure that all the
records have been . written. However, when you are using exchange buffering or when

Part 2: Data Management Processing Procedures 51

BUILD

ENDJOB CLOSE

RETURN
INDCB DCB
OUTDCB DCB

CNOP
INPOOL DS

processing an indexed sequential data set using the queued access technique, the buffer
pool must not be released until all the data sets have been closed.

Constructing a Buffer Pool: Figures 27 and 28 illustrate several possible methods of
constructing a buffer pool. They do not take into account the method of processing or
controlling the buffers in the pool.

(INDCB"OUTDCB,(OUTPUT))

(INDCB"OUTDCB)

Processing
Structure a buffer pool
Processing
Processing

Processing
Return to system

BUFNO=5,BUFCB=INPOOL,EODAD=ENDJOB,--
control

BUFNO=5,BUFCB=INPOOL,---
0,8
CL528

Force boundary alignment
Buffer pool

Figure 27. Constructing a Buffer Pool From a Static Storage Area

ENDJOB

INDCB
OUTDCB

In Figure 27, a static storage area named INPOOL is allocated during program
assembly. The BUILD macro instruction, issued during execution, arranges the buffer
pool into ten buffers, each 52 bytes long. Five buffers are assigned to INDCB and five
to OUTDCB, as specified in the DCB macro instruction for each. The two data sets
share the buffer pool because both specify INPOOL as the buffer pool control block.
Notice that an additional 8 bytes have been allocated for the buffer pool to contain the
buffer pool control block.

GETPOOL
GETPOOL
OPEN

INDCB,10,52
OUTDCB,5,112
(INDCB"OUTDCB,(OUTPUT))

CLOSE (INDCB"OUTDCB)
FREEPOOL INDCB

FREEPOOL OUTDCB

Construct a 10-buffer pool
Construct a 5-buffer pool

Release buffer pools after all
I/O is complete

RETURN Return to system control
DCB DSORG=PS,BFALN=F,LRECL=52,RECFM=F,EODAD=ENDJOB,---
DCB DSORG=IS,BFALN=D,LRECL=52,KEYLEN=10,BLKSIZE=104,

RKP=O,RECFM=FB,---
C

Figure 28. Constructing a Buffer Pool Using GETPOOL and FREEPOOL

In Figure 28, two buffer pools are constructed explicitly by the GETPOOL macro
instructions. Ten input buffers are provided, each 52 bytes long, to contain one
fixed-length record; five output buffers are provided, each 112 bytes long, to contain
two blocked records plus an 8-byte count field (required by ISAM). Notice that both
data sets are closed before the buffer pools are released by the FREEPOOL macro
instructions. The same procedure should be used if the buffer pools were constructed
automatically by the OPEN macro instruction.

52 OS Data Management Services

Buffer Control

Your program can use four techniques to control the buffers used by your program.
The advantages of each depend to a great extent upon the type of job you are doing.
Simple and exchange buffering are provided for the queued access technique. The
basic access technique provides for either direct or dynamic buffer control.

Although only simple buffering can be used to process an indexed sequential data set,
buffer segments and buffers within a buffer pool are controlled automatically by the
operating system.

In addition, the queued access technique provides four processing modes that determine
the extent of data movement in main storage. Move, data, locate, or substitute mode
processing can be specified for either the GET or PUT macro instruction. The buffer
processing mode is specified in the MACRF field of the DCB macro instruction. The
movement of a record is determined as follows:

Move mode: The record is moved from an input buffer to your work area, or
from your work area to an output buffer.

Data mode (QSAM Jormat-V spanned records only): The same as the move
mode except only the data portion of the record is moved.

Locate mode: The record is not moved. Instead, the address of the next input
or output buffer is placed in register 1. For QSAM format-V spanned records, if
you have specified logical records by specifying BFTEK=A or by issuing the
BUILDRCD macro instruction, the address returned in register 1 points to a
record area where the spanned record is assembled or segmented.

Substitute mode: The record is not moved. Instead, the address of the next
input or output buffer is interchanged with the address of your work area.

Two processing modes of the PUTX macro instruction can be used in conjunction with
a GET-locate macro instruction. The update mode returns an updated record to the
data set from which it was read~ the output mode transfers an updated record to an
output data set. There is no actual movement of data in main storage. The processing
mode is specified by the operand of the PUTX macro instruction, as explained in OS
Data Management Macro Instructions.

If you use the basic access technique, you can control buffers in one of two ways:

Directly, using the GETBUF macro instruction to retrieve a buffer constructed as
described above. A buffer can then be returned to the pool by the FREEBUF
macro instruction.

Dynamically, by requesting a dynamic buffer in your READ or WRITE macro
instruction. This technique can be used only when you are processing an indexed
sequential or direct data set. If you request dynamic buffering, the system
automatically provides a buffer each time a READ macro instruction is issued.
The buffer is supplied from a buffer pool that is created by the system when the
data set is opened. The buffer is released (returned to the pool) upon completion
of a WRITE macro instruction when you are updating. If you do not update the
record in the buffer and thus release the buffer when the record is written, the
FREEDBUF macro instruction may be used. If you are processing an indexed
sequential data set, the buffer is automatically released upon the next issuance of
the READ macro instruction if there has been no intervening WRITE or
FREEDBUF macro instruction.

Part 2: Data Management Processing Procedures 53

Simple Buffering

GET

A

B

The term simple buffering refers to the relationship of segments within the buffer. All
segments in a simple buffer are together in main storage and are always associated with
the same data set. When the buffer pool is constructed, the system creates a channel
command word (CCW) for each buffer in the buffer pool. For this reason, each
record must be physically moved from an input buffer segment to an output buffer
segment. It can be processed within either segment or in a work area.

If you use simple buffering, records of any format can be processed. New records can
be inserted and old records deleted as required to create a new data set. A record can
be moved and processed as follows:

Processed in an input buffer and then moved to an output buffer (GET-locate,
PUT -move/PUTX-output)

Moved from an input buffer to an output buffer where it can be processed
(GET-move, PUT-locate)

Moved from an input buffer to a work area where it can be processed and then
moved to an output buffer (GET-move, PUT-move)

• Processed in an input buffer and returned to the data set (GET-locate,
PUTX-update)

The following examples illustrate the control of simple buffers and the processing
modes that can be used. The buffer pools may have been constructed in any way
previously described.

Simple Buffering - GET-locate, PUT-move/PUTX-output: The GET macro
instruction (step A, Figure 29) locates the next input record to be processed. Its
address is returned in register 1 by the system. The address is passed to the PUT
macro instruction in register O.

OUTPUT OUTPUT
NEXTREC GET INDCB

LR 0, 1
PUT OUTDCB,(O)
B NEXTREC

INDCB DCB MACRF=(GL) , ---
OUTDCB DCB MACRF=(PM), ---

Figure 29. Simple Buffering with MACRF=GL and MACRF=PM

The PUT macro instruction (step B, Figure 29) specifies the address of the record in
register O. The system then moves the record to the next output buffer.

Note: The PUTX-output macro instruction can be used in place of the PUT-move
macro instruction. However, processing will be as described under exchange buffering
(see PUT-substitute).

54 OS Data Management Services

A

B

GET

Simple Buffering - GET-move, PUT-locate: The PUT macro instruction locates the
address of the next available output buffer. Its address is returned in register 1 and is
passed to the GET macro instruction in register O.

The GET macro instruction specifies the address of the output buffer into which the
system moves the next input record.

A filled output buffer is not written until the next PUT macro instruction is issued.

Simple Buffering - GET-move, PUT-move: The GET macro instruction (step A,
Figure 30) specifies the address of a work area into which the system moves the next
record from the input buffer.

The PUT macro instruction (step B, Figure 30) specifies the address of a work area
from which the system moves the record into the next output buffer.

I OUTPUT I OUTPUT I
PUT

NEXTREC GET INDCB , WORKAREA

PUT
B

WORKAREA DS
INDCB DCB

OUTDCB,WORKAREA
NEXTREC
CLSO

INPUT E~!I OUTDCB DCB
MACRF=(GM) ,--
MACRF=(PM) ,---

Figure 30. Simple Buffering with MACRF=GM and MACRF=PM

Simple Buffering - GET-locate, PUT-locate: The PUT macro instruction (step A,
Figure 31) locates the address of the next available output buffer. The address is
returned in register 1.

The GET macro instruction (step B, Figure 31) locates the address of the next input
buffer. Its address is returned in register 1. You must then move the record from the
input buffer to the output buffer. Processing can be done either before or after the
move operation.

A filled output buffer is not written until the next PUT macro instruction is issued.
Note that. the last CLOSE macro instruction attempts to write the last record of your
data set. Be careful not to issue an extra PUT before issuing CLOSE. Otherwise,
when the CLOSE macro instruction tries to write your last record, it will write a
meaningless record.

Note that if records other than format-F records are being moved, the length attribute
of the MVC instruction must be changed as shown by the code beginning with the
USING statement in Figure 31. If the record is more than 256 bytes, you will have to
code a move routine to process the complete record.

Part 2: Data Management Processing Procedures 55

NEXTREC PUT OUTDCB
PUT LR 6, 1

/ GET INDCB

I
LR 7 , 1

OUTPUT OUTPUT USING IHADCB,5
LA 5,INDCB

A

LH 4,DCBLRECL

GET SH 4, =H' 1 '
EX 4,MOVEREC

B NEXTREC
B MOVEREC MVC 0(1,6),0(7)

INDCB DCB MACRF= (GL) ,
EODAD=EOF,---

OUTDCB DCB MACRF=(PL) , ---
DCBD DSORG=(LR)

EOF

Figure 31. Simple Buffering with MACRF=GL and MACRF=PL

Exchange Buffering

The term exchange buffering refers to the relationship of segments within a buffer. All
the segments in an exchange buffer are not necessarily together in main storage, nor
are they always associated with the same data set. When the buffer pool is
constructed, the system creates a channel command word (CCW) for each buffer
segment in the buffer. This makes it possible to exchange the CCWs of different
storage locations.

To use exchange buffering, you must provide a work area comparable in size and
alignment to a buffer segment. That work area is substituted for the next buffer
segment (the storage areas change roles). The CCW created for the buffer segment
actually points to the work area.

Why use exchange buffering? Because there is no need to move the record. This
means a considerable saving in processing time when you use substitute mode or
BUTX-output mode.

The use of exchange buffering during execution of your program requires these
conditions:

• Input and output buffers must be of the same size and alignment.

Records must be unblocked or blocked format-F records.

ASCII records must be format-F records with BUFOFF=(O).

Track overflow cannot be used with blocked format-F records.

GET-move and PUT-locate modes cannot be used.

Unit-record devices must not be specified.

If you request exchange buffering, but it cannot be used, the system automatically uses
simple buffering. Move mode processing is used in place of substitute mode.

After opening the data set, you can test the DCBCIND 1 field of the DCB to determine
if simple buffering was substituted for exchange buffering because of inconsistencies in
the DCB information. The eighth bit of the DCBCINDI field is 1 for exchange
buffering and 0 for simple buffering.

56 OS Data Management Services

A

B

c

If your records are blocked format-F records, each segment is aligned as specified in
the DCBBFALN field. Therefore, your buffer length (DCBBUFL) must specify
buffers large enough to contain segments whose length is a multiple of 16 bytes.
Otherwise, the specified boundary alignment cannot be achieved; simple buffering is
used and only the first byte in the first record is aligned as specified.

To reopen a DCB that has been opened for exchange buffering, you must first close all
DCBs using the buffer pool associated with the DCB to be reopened and issue a
FREEPOOL macro instruction specifying the DCB to be reopened.

There are two possible error conditions that cannot be pre checked by the system:

Word alignment that does not correspond to the characteristics of the machine.
If, for example, you expect to process your data on a System/360 Model 65, 75,
85, or 91 or on a System/370, your record length should be a multiple of 16; on
a model 50, a multiple of 8; on a model 40, a multiple of 4. No error will result
if the records are processed on a smaller system.

An I/O device that transfers the data faster than the CPU can exchange the
addresses in the CCW.

The following examples illustrate the control of exchange buffers and the corresponding
processing modes that can be used. The buffer pools may have been constructed in
any way previously described.

Exchange Buffering - GET-substitute, PUT-substitute: The GET macro instruction
(step A, Figure 32) specifies the address of a work area. The work area address is
exchanged with the address of the next input record returned in register 1. After
processing, the address of the record is passed to the PUT macro instruction.

GET
I OUTPUT I OUTPUT I

Exchanged PUT

Exchanged

GET=~~==:=~;;=~==----.-_----,
maaEm ~

Exchanged

LA
NEXTREC GET

LR

PUT
LR
B

WORKAREADS
INDCB DCB
OUTDCB DCB

O,WORKAREA
INDCB,(O)
0, 1

OUTDCB,(O)
0, 1
NEXTREC
CLSO
MACRF=(GT), --
MACRF=(PT), ---

Figure 32. Exchange Buffering with MACRF=GT and MACRF=PT

Part 2: Data Management Processing Procedures 57

GET

~
A

B

GET

'"

The PUT macro instruction (step B, Figure 32) specifies the address of the output
record. The output record address is exchanged for the address of the next output
buffer available for use as a work area. The work area address, returned in register 1,
is passed to the GET macro instruction (step C, Figure 32) in register O.

Notice that as the areas are exchanged there is no movement of data. Output records
are contained in the original input area and vice versa, but are logically associated with
the correct data set.

Exchange Buffering - GET-locate, PUTX-output: The GET macro instruction (step
A, Figure 33) locates the address of the next input record. The address is returned in
register 1. The record must be processed in the buffer segment before the PUTX
macro instruction (step B, Figure 33) is issued. The PUTX macro instruction specifies
the address of both the input and output data control block. The two buffer segments
are exchanged without any movement of data. The GET macro instruction (step C,
Figure 33) locates the next record to be processed.

Notice that the DCB macro instruction for the output data set specifies move mode;
this is required.

OUTPUT OUTPUT

NEXTREC GET INDCB

PUTX OUTDCB,INDCB
B NEXTREC

INDCB DCB MACRF=(GL), ---

Exchanged OUTDCB DCB MACRF=(PM), ---

cE=:JIm INPUT OUTPUT

Figure 33. Exchange Buffering with MACRF=GL and MACRF=PM

Exchange Buffering - GET-locate, PUT-substitute: The GET macro instruction (step
A, Figure 34) locates the next input record. Its address is returned in register 1. You
must then move the. record to a work area. You can process the record either before
or after the move.

The PUT macro instruction (step B, Figure 34) specifies the address of the work area
containing the next output record. The system returns the address of the next output
buffer available for use as a work area in register 1. That address is passed to the
move (MVC) instruction in register 6. .

58 OS Data Management Services

GET

A

The GET macro instruction (step C, Figure 34) locates the next input record. You
must then move the record to the new work area. Notice that the previous work area
becomes part of the output buffer (step C).

Note that if records other than format-F records are being moved, the length attribute
of the MVC instruction must be changed as shown by the code beginning with the
USING statement in Figure 34. If the record is more than 256 bytes long, you must
code a move routine to process the complete record.

, OUTPUT' OUTPUT I LA 6,WORKAREA
NEXTREC GET INDCB

LR 7 , 1
USING IHADCB,S
LA S,INDCB
LH 4,DCBLRECL
SH

B 'INPUT II :;~~~! I
4,=H'1 '

EX 4,MOVEREC

PUT OUTDCB,(6)
LR 6, 1

GET Exchanged B NEXTREC
MOVEREC MVC 0(1,6),0(7)
WORKAREADS CLSO

c INDCB DCB MACRF=(GL),---
OUTDCB DCB MACRF=(PT), ---

DCBD DSORG=(LR)

Figure 34. Exchange Buffering with MACRF=GL and MACRF=PT

Buffering Techniques and GET/PUT Processing Modes: As you can see from the
previous examples, the most efficient code is achieved by use of automatic buffer pool
construction, and GET-locate and PUTX-output with either simple or exchange
buffering. Figure 35 summarizes the combinations of buffering techniques and
processing modes that can be used. Notice, for example, that if you use PUT-locate
and GET-substitute, you must provide a work area and you must also move the record
from the work area to the output buffer.

RELSE - Release an Input Buffer

When using the queued access technique to process a sequential or indexed sequential
data set, you can direct the system to ignore the remaining records in the input buffer
being processed. The next GET macro instruction retrieves a record from another
buffer. If format-V spanned records are being used, the next logical record obtained
may begin on any segment in any subsequent block.

If you are using move mode, the buffer is made available for refilling as soon as the
RELSE macro instruction is issued. When you are using locate mode, the system does
not refill the buffer until the next GET macro instruction is issued. If a PUTX macro
instruction has been used, the block is written before the buffer is refilled.

Part 2: Data Management Processing Procedures 59

Output Buffering: + Simple Exchange Simple Exchange Simple Simple Exchange Simple Exchange

(I)
(I)

(I) (I)
(I) (I) (I) I ,_.

(I) > co > > co > co (I) > u 0 0 u 0 0 u > 0 E E E 0 E E 0 0 E j2:
Input j2: f;: ~ ~ ~ ~ ~ ~

(I)'
::;) ::;) (I) ::;) ::;) ::;) (I) Input ::;) ::;) ::;) (I) C£ C£ (I)' (I)

Buffering: -. ::J a.. a.. a.. '"0 a.. a.. a..
a.. a.. a.. ::J ,~ ~ Buffering: ::J ::J ::J ::J ::J ::J 0) 0) (I)'

23 8 23
(I)' C£ (I)' ' ,~ (I)

Simple (I)' (I)' (I)' (I) '.j:i (1),-
Exchange

(1)'- '.j:i (I) '.j:i (I) '.j:i '.j:i
> > > :> (/) co co co co (/) ~ e ~ co co co co (/) (/) co (/) > (/) > (/) (/)

0 0 0 0.0 u u u u.o u u u u.o .ou .0 0 .00 .0.0
E E E E a 0 0 0 o ::J ~~~ E E .2 o ::J ::J 0 a E a E ::J ::J

j! j2: - (/) - (/) (/)- (/) (/)

Actions ~ ~ ~ t-!-~ j2: ~~ I- '-I- ~ ~ ~ ~~ ~~ ~~ ~~ ~~ w w w w::;) w w w w::;) w g'::;) w w w W::;) W::;) W::;) W::;) W::;)

~ (!) (!) (!) (!)a.. (!) (!) (!) (!)a.. (!) :::::- a.. (!) (!) (!) (!)a.. (!)a.. (!)a.. (!)a.. (!)a..

Program must move X X X X X X
record

System moves record X X X X X X X X X X

System moves record X
segment

Record is not moved X' X

Work area required X X X X X X X X X

PUTX - output can X X X X
be used

1pUTX, only

Figure 35, Buffering Technique and GET/PUT Processing Modes

TRUNC - Truncate an Output Buffer

When using the queued access technique to process a sequential data set, you can
direct the system to write a short block. The first record in the next buffer is the next
record processed by a PUT-output or PUTX-output mode.

If the locate mode is being used, the system assumes that a record has been placed in
the buffer segment pointed to by the last PUT macro instruction,

The last block of a data set is truncated by the Close routine, Note that a data set
containing format-F records with truncated blocks cannot be read from direct-access
storage as efficiently as a standard format-F data set.

GETBUF - Get a Buffer from a Pool

The GETBUF macro instruction can be used with the basic access technique to request
a buffer from a buffer pool constructed by the BUILD, GETPOOL, or OPEN macro

60 OS Data Management Services

instruction. The address of the buffer is returned by the system in a register you
specify when you issue the macro instruction. If no buffer is available, the register
contains 0 instead of an address.

FREEBUF - Return a Buffer to a Pool

The FREEBUF macro instruction is used with the basic access technique to return a
buffer to the buffer pool from which it was obtained by a GETBUF macro instruction.
Although the buffers need not be returned in the order in which they were obtained,
they must be returned when they are no longer needed.

FREEDBUF - Return a Dynamic Buffer to a Pool

Any buffer obtained through the dynamic buffer option must be released before it can
be used again. When you are processing a direct data set, if you do not update the
block in the buffer and thus free the buffer when the block is written, you must use the
FREEDBUF macro instruction. If there is an uncorrectable input/output error, the
control program releases the buffer. When you are processing an indexed sequential
data set, if you do not update the block in the buffer or if there is an un correctable
input error, the control program releases the buffer when the next READ macro
instruction is issued on the same DECB, unless you use the FREEDBUF macro
instruction.

To effect the release, you must specify the address of the DECB that was created when
the block was read using the dynamic buffering option, as well as the address of the
DCB associated with the data set being processed.

Processing a Sequential Data Set

Data sets residing on all volumes other than direct-access volumes must be processed
sequentially. In addition, a data set residing on a direct-access volume, regardless of
organization, can be processed sequentially. This feature of the operating system
allows you to write your program with little regard for the type of device to be used
when the program is executed, except for restrictions on the use of certain
device-dependent macro instructions and processing options.

Either the queued or the basic access technique may be used to store and retrieve the
records of a sequential data set. Additionally, a technique called chained scheduling
can be used to accelerate the input/output operations required for a sequential data set.

Data Format - Device Type Considerations

Before execution of your program, you must supply OS with both the record format
(RECFM) and device-dependent (DEVD) information in a DCB macro instruction, a
DD statement, or a data set label. The DCB subparameters for the DD statement
differ slightly from those described here. A complete description of the DD statement
and a glossary of DCB subparameters is contained in OS Job Control Language
Reference.

The record format (RECFM) parameter of the DCB macro instruction specifies the
characteristics of the records in the data set as fixed-length (RECFM=F),
variable-length (RECFM=V or D), or undefined-length (RECFM=U). Fixed-length
blocked records (RECFM=FB) can be specified as standard (RECFM=FBS), which
means there are no truncated (short) blocks or unfilled tracks within the data set, with

Part 2: Data Management Processing Procedures 61

Magnetic Tape (T A)

the possible exception of the last block or track. Data sets with a fixed-length,
standard format were described previously under "Fixed-Length Records, Standard
Format."

As an optional feature, a control character can be contained in each record. This
control character will be recognized and processed if the data set is printed or punched.
The control characters are transmitted on both tapes and direct-access volumes. The
presence of a control character is indicated by M or A in the RECFM field of the data
control block. M denotes machine code; A denotes American National Standards
Institute (ANSI) code. If either M or A is specified, the character must be present in
every record; the printer space (PRTSP) or stacker select (STACK) field of the DCB is
ignored. The optional control character must be in the first byte of format-F and
format-U records and in the fifth byte of format-V records and format-D records
where BUFOFF=L. Control character codes are listed in "Appendix B: Control
Characters. "

The device-dependent (DEVD) parameter of the DCB macro instruction specifies the
type of device on which the data set's volume resides:

T A magnetic tape
PT paper tape reader
PR printer
PC card punch
RD card reader
DA direct-access device

Format-F, -V, -D, and -U records are acceptable for magnetic tape. Format-V
records are not acceptable on 7-track tape if the data conversion feature l is not
available. ASCII records are not acceptable on 7-track tape.

When you create a tape data ~et with variable-length record format (V or D), the
control program pads any data block shorter than 18 bytes. For format-V records, it
pads to the right with binary Os so that the data block length equals 18 bytes. For
format-D (ASCII) records, the padding consists of ASCII circumflex characters.

Note that there is no minimum requirement for blocksize; however, if a data check
occurs on a magnetic-tape device, any record shorter than 12 bytes in a read operation
or 18 bytes in a write operation will be treated as a noise record and lost. No check
for noise will be made unless a data check occurs.

Tape density (DEN) specifies the recording density in bits per inch per track, as shown
in Figure 36. If this information is not supplied, the highest applicable density is
assumed.

The track recording technique (TRTCH) for 7-track tape can be specified as:

C Data conversion is to be used.

E Even parity· is to be used; if E is omitted, odd parity is assumed.

T BCDIC to EBCDIC translation is required.

I Data conversion makes it possible to write 8 binary bits of data on 7 tracks. Otherwise, only 6 bits of an 8-bit
byte are recorded. The length field of format-V records contains binary data and is not recorded correctly without data
conversion.

62 OS Data Management Services

Recording Density
Models 2400 and 3400 I DEN Value

o
7-Track1

200
556
800

9-Track 9-Track (phase encoded)

2
3

11 No 7-track feature on the 3410

800

2 Non-return-to-zero-inverse (NRZI) mode

3 Phase encoding (PE) mode

Figure 36. Tape Density (DEN) Values

Paper-Tape Reader (PT)

1600

9-Track (dual-density)

8002

16003

The paper-tape reader accepts format-F and format-U records. If you use QSAM, you
should not specify the records as blocked. Each format-U record is followed by an
end-of -record character. Data read from paper tape may optionally be converted into
the System/360 or System/370 internal representation of one of six standard
paper-tape cQdes. Any character found to have a parity error will not be converted
when the record is transferred into the input area. Characters deleted in the conversion
process are not counted in determining the blocksize.

The following symbols indicate the code in which the data was punched. If this
information is omitted, I is assumed.

I IBM BCD perforated tape and transmission code (8 tracks)
F Friden (8 tracks)
B Burroughs (7 tracks)
C National Cash Register (8 tracks)
A ASCII (8 tracks)
T Teletype (5 tracks)
N No conversion

Note that when you are using QSAM, the processing mode must be move mode.

Card Reader and Punch (RD /PC)

Format-F, -V, and -U records are acceptable to both the reader and punch. The
device control character, if specified in the RECFM parameter, is used to select the
stacker; it is not punched. The first 4 bytes (record descriptor word or segment
descriptor word) of format-V records or record segments are not punched. For
format-V records, at least 1 byte of data must follow the record or segment descriptor
word or the carriage control character.

Each punched card corresponds to one physical record. Therefore, you should restrict
the maximum record size to 80 (EBCDIC mode) or 160 (column binary mode) data
bytes. When mode (C) is used for the card punch, BLKSIZE must be 160 unless you
are using PUT. Then you can specify BLKSIZE as 160 or a multiple of 160, and the
system handles this as described earlier under "PUT - Write a Record" in the section
"Queued Access Techniques." You can specify the read/punch mode of operation
(MODE) parameter as either card image (column binary) mode (C) or EBCDIC mode
(E). If this information is omitted, E is assumed.

Part 2: Data Management Processing Procedures 63

Printer (PR)

The stacker selection parameter (STACK) can be specified as either 1 or 2 to indicate
which bin is to receive the card. If it is not specified, 1 is assumed.

Note that when QSAM is used, punch error correction on the IBM 2540 Card Read
Punch is automatically performed only for data sets using three or more buffers without
the chained scheduling feature.

The 3525 Card Punch accepts only format-F records for print data sets and for
associated data sets. Other record formats are allowed for the read data set, the punch
data set, and the interpret punch data set. See "Appendix C: Special Programming
Considerations for the 3505 Card Reader and the 3525 Card Punch" for more
information on programming for the 3525 Card Punch.

Records of format F, V, and U are acceptable to the printer. The first 4 bytes (record
descriptor word or segment descriptor word) of format-V records or record segments
are not printed. For format-V records, at least 1 byte of data must follow the record
or segment descriptor word or the carriage control character. The carriage control
character, if specified in the RECFM parameter, is not printed. However, the system
does not position the printer to channel 1 for the first record.

Because each line of print corresponds to one record, the record length should not
exceed the length of one line on the printer. For variable-length spanned records, each
line corresponds to one record segment, and blocksize should not exceed the length of
one line on the printer.

If carriage control characters are not specified, you can indicate printer spacing
(PRTSP) as 0, 1, 2, or 3. If it is not specified, 1 is assumed.

Direct-Access Device (DA)

Device Control

Direct-access devices accept records of format F, V, or U. If the records are to be
read or written with keys, the key length (KEYLEN) must be specified. In addition,
the operating system has a standard track format for all direct access volumes. Each
track contains data information as well as certain control information such as:

The address of the track

The address of each record

The length of each record

Gaps between areas

A complete description of track format is contained in the section "Direct-Access
Device Characteristics." Your only concern in creating a sequential data set is to allow
for an 8-byte track descriptor record (capacity record or RO) when requesting space on
a direct-access volume. In addition, device overhead, which varies with the device,
must be allocated for each block on the track.

The operating system provides you with six macro instructions for controlling
input/ output devices. Each is, to varying degrees, device-dependent. Therefore, you
must exercise some care if you wish to achieve device independence.

64 as Data Management Services

When you use the queued access technique, only unit record equipment can be
controlled directly. When using the basic access technique, limited device
independence can be achieved between magnetic-tape and direct-access devices. You
must check all read or write operations before issuing a device control macro
instruction.

CNTRL - Control an 110 Device

The CNTRL macro instruction performs these device-dependent control functions:

• Card reader stacker selection (SS)

Printer line spacing (SP)

Printer carriage control (SK)

Magnetic-tape backspace (BSR) over a specified number of blocks

Magnetic-tape backspace (BSM) past a tapemark and forward space over the
tapemark

Magnetic-tape forward space (FSR) over a specified number of blocks

Magnetic-tape forward space (FSM) past a tapemark and a backspace over the
tapemark

Backspacing moves the tape toward the load point; forward spacing moves the tape
away from the load point.

Note that the CNTRL macro instruction cannot be used with an input data set
containing variable-length records on the card reader.

You can use the CNTRL macro instruction to position DOS tapes that contain
embedded DOS checkpoint records if you specify OPTCD=H in the DCB parameter
field of the DD statement. The CNTRL macro instruction cannot be used to
backspace DOS 7-track tapes that are written in data convert mode and contain
embedded checkpoint records.

PRTOV - Test for Printer Overflow

The PRTOV macro instruction tests for channel 9 or 12 of the printer carriage control
tape or the forms control buffer (FCB). An overflow condition causes either an
automatic skip to channell or, if specified, transfer of control to your routine for
overflow processing. If you specify an overflow exit routine, set DCBIFLGS to X'OO'
before issuing another PRTOV.

If the data set specified in the DCB is not for a printer, no action is taken.

SETPRT - Load Universal Character Set and Forms Control Buffers

The SETPRT macro instruction indicates the character set to be used by a printer with
the Universal Character Set (UCS) feature. When issued, SETPRT loads the UCS
buffer with a character set image from the image library. The image library is a
cataloged data set containing the UCS and FCB images for the 1403 and 3211
printers. It is located in the system library called SYS 1. [MAG ELIB. Thus, it allows
your program to change character sets during execution. SETPRT also allows you to
request the operator to verify loading of the buffer and to specify the printing of

Part 2: Data Management Processing Procedures 65

lowercase EBCDIC characters in uppercase when no uppercase/lowercase print chain
or train is available.

For a printer that has no carriage control tape, you can use the SETPRT macro
instruction to load the FCB, to request operator verification of buffer loading, and to
allow the operator to align the paper in the printer.

The FCB contents can be fetched from the system library or defined in your program
through the exit list of the DCB macro instruction, as discussed under "Exit List
(EXLST)."

When issued, the SETPRT macro instruction loads a special UCS buffer from the
system library. The library contains images of standard IBM character sets and of your
own special character sets. The operator can be requested to verify the loaded image
after mounting the appropriate print chain or train.

The SETPRT macro instruction can be used to block or deblock printer data checks.
When data checks are blocked, unprintable characters are treated as blanks and do not
cause an error condition.

BSP - Backspace a Magnetic-Tape or Direct-Access Volume

The BSP macro instruction backspaces one block on the magnetic-tape or direct-access
volume being processed. The block can then be reread or rewritten. An attempt to
rewrite the block destroys the contents of the remainder of the tape or track.

The direction of movement is toward the load point or beginning of the extent. You
may not use the BSP macro instruction if the track overflow option was specified or if
the CNTRL, NOTE, or POINT macro instruction is used. The BSP macro instruction
should be used only when other device control macro instructions could not be used for
backspacing.

I
You can use the BSP macro instruction to backspace DOS tapes containing embedded
D. OS checkpoint records. If you use th. is means of backspacing, you must test for and
bypass the embedded checkpoint records. You cannot use the BSP macro instruction
for DOS 7-track tapes written in translate mode.

NOTE - Return the Relative Address of a Block

The NOTE macro instruction requests the relative address of the block just read or
written. In a multivolume data set, the address is relative to the beginning of the
volume currently being processed.

The address provided by the operating system is returned in register 1. The address is
in the form of a 4-byte relative block address for magnetic tape; for a direct-access
device, it is a 4-byte relative track address. The amount of unused space available on
the track of the direct-access device is returned in register O.

POINT - Position to a Block

The POINT macro instruction causes repositioning of a magnetic---tape or direct-access
volume to a specified block. The next read or write operation begins at this block. In

I
a multivolume data set, you must ensure that the volume referred to is the volume
currently being processed. If a write operation follows the POINT macro instruction,
all of the track following the write operation is erased unless the data set is opened for
UPDAT.

66 OS Data Management Services

You can use the POINT macro instruction to position DOS tapes that contain
embedded checkpoint records if you specify OPTCD=H in the DCB parameter field of
the DD statement. The POINT macro instruction cannot be used to backspace DOS
7 -track tapes that are written in data convert mode and contain embedded checkpoint
records.

Device Independence

The ability to request input/output operations without regard for the physical
characteristics of the I/O devices makes it possible for you to write one program that
will fulfill a variety of needs. Device independence may be useful for:

Accepting data from a number of recording devices, such as 1316 disk pack, 7-
or 9-track magnetic tape, or unit-record equipment. This situation could arise
when several types of data-acquisition devices are feeding a centralized complex.

Observing constraints imposed by the availability of input/output devices (for
example, when devices on order have not been installed).

Assembling, testing, and debugging on one System/360 or System/370
configuration and processing on a different configuration. For example, a 2311
drive can be used as a substitute for several magnetic-tape units.

Device independence is not difficult to achieve, but requires some planning and
forethought. There are two areas of planning necessary to achieve device
independence - system generation considerations and programming considerations.

System Generation Considerations

You can provide for device independence when the system is generated by generating a
system that not only meets the current input/output configuration requirements but
includes anticipated device attachments. Creating such a system entails looking ahead
at expected delivery of input/output devices and, during system generation,
constructing the necessary control blocks and tables. Thus, when the devices are
delivered, they need only be physically attached. The operating system recognizes the
devices without modification. During the interim, unconnected devices must he pla<;ed
off-line by a V AR Y command issued by the operator.

When new device attachments cannot be fully anticipated, you ,can add new devices by
performing an I/O device generation. This is a limited type of system generation that
enables you to change your I/O configuration without regenerating other parts of the
system.

System generation techniques for effecting a smooth transition to new input/output
devices do not include addition of new device types. When support for new devices is
provided, a new system must be generated. A complete description of system
generation techniques is contained in OS System Generation.

Programming Considerations

Each of three data set organizations - partitioned, indexed sequential, and direct -
requires the use of a direct-access device. Device independence is meaningful, then,
only for a sequentially organiied data set, that is, a data set where one block of data
follows another, thus allowing input or output to be on a magnetic tape drive, a
d,irect-access device, a card read/punch, or a printer.

Part 2: Data Management Processing Procedures 67

Your program will be device-independent if you do two things:

Omit all device-dependent macro instructions and macro instruction parameters
from your program.

Defer specifying any required device-dependent parameters until the program is
ready for execution. That is, supply the parameters on your data definition (DD)
statement.

In examining the following list of macro instructions, consider only the logical layout of
your data record without regard for the type of device used. Also, consider that any
reference to a direct-access volume is to be treated like a reference to magnetic tape,
that is, you must create a new data set rather than attempt to update.

OPEN

Specify INPUT, OUTPUT, INOUT, or OUTIN. The parameters RDBACK and
UPDATE are device-dependent and cause an abnormal termination if directed to
a device of the wrong type.

READ

Specify forward reading (SF) only.

WRITE

Specify forward writing (SF) only; use only to create new records.

PUTX

Use only output mode.

NOTE/POINT

BSP

These macros arc valid for both magnetic-tape and direct-access volumes.

This macro is valid for magnetic-tape or direct-access volumes. However, its use
would be an attempt to perform device-dependent action.

CNTRL/PRTOV

These macros are device-dependent.

DCB Subparameters

MACRF

Specify R/W or G /P. Processing mode can also be indicated.

DEVD

Specify DA if any direct-access device may be used. Magnetic-tape and
unit-record equipment DCBs will fit in the area provided during assembly.
Specify unit-record devices only if you expect never to change to tape or
direct-access devices. Key length (KEYLEN) can be specified on .the DD
statement if necessary.

68 OS Data Management Services

RECFM, LRECL, BLKSIZE

These can be specified in the DD statement. However, you must consider
maximum record size for specific devices, and track overflow cannot be specified
unless supported.

DSORG

Specify sequential organization (PS or PSU).

OPTCD

This subparameter is device-dependent; specify it in the DD statement.

SYNAD

Any device-dependent error checking is automatic. Generalize your routine so
that no device-dependent information is required.

Chained Scheduling for I/O Operations

To accelerate the input/output operations required for a data set, the operating system
provides a technique called chained scheduling. When requested, the system bypasses
the normal I/O routines and dynamically chains several input/output operations
together. A series of separate read or write operations, functioning with chained
scheduling, is issued to the computing system as one continuous operation. The
program-controlled interruption (PCI) flag in the CCWs is used for synchronization of
the I/O operations.

The I/O performance is improved by reduction in both the CPU time and the channel
start/ stop time required to transfer data between main and auxiliary storage. The
effects of rotational delay are also reduced since several successive blocks, requested
separately, can be retrieved in a single rotation. Chained scheduling can be used only
with simple buffering. Each data set for which chained scheduling is specified must be
assigned at least two, and preferably three, buffers.

A request for chained scheduling will be ignored and normal scheduling used if any of
the following are encountered when the data set is opened:

BDAM CREATE, that is, MACRF=(WL)

Track overflow

UPDAT in the operand of the OPEN macro instruction

Exchange buffering

CNTRL macro instruction to be used

Device type is paper tape reader

A print data set or any associated data set for the 3525 Card Punch. (See
"Appendix C: Special Programming Considerations for the 3505 Card Reader
and the 3525 Card Punch" for more information on programming for the 3525.)

Bypassing of embedded DOS checkpoint records on tape input data sets

When chained scheduling is being used, the automatic skip feature of the PRTOV
macro instruction for the printer will not function. Format control must be achieved by

Part 2: Data Management Processing Procedures 69

ANSI or machine control characters. (Control characters are discussed in more detail
in Part 1 under "Control Character," in Part 2 under "Data Format - Device Type
Considerations," and in "Appendix B: Control Character.") When you use
undefined-length records with· QSAM, the DCBLRECL field is equal to the BLKSIZE
field, not the actual record length ... The entire block is moved to your work area in the
move mode. In locate mode, the address of the beginning of the block is returned in
register 1.

I When chained scheduling is used on the 2540 Card Read Punch, error recovery
procedures are not performed.

Chained scheduling is most valuable for programs that require extensive input and
output operations. Because a data set using chained scheduling may monopolize
available time on a channel, separate channels should be assigned, if possible, when
more than one data set is to be processed.

Search Direct for Input Operations

OPEN
NEXTREC GET

AP
UNPK
PUT
B

To accelerate the input operations required for a data set, the operating system
provides a technique called search direct. Search direct reads in the requested record
and the count field of the second record. This allows the operation to get the next
record directly, along with the count field of the following record. Search direct can be
used with all record formats except format-UT, format-FBT, and spanned. You
request search direct by coding OPTCD=Z in the DeB macro instruction except for
record formats FS and FBS. It is an automatic feature for formats FS and FBS. This
technique cannot be used with the NOTE and POINT macro instructions when you
specify the UPDAT option of OPEN.

(INDATA, , UU'l'IJA'J'A, (OUTPUT))
INDATA,WORKAHEA
NUMBER,=P'l'
COUNT,NUMBF:R
OUTDATA,COUNT
NEXTREC

Move mode

Record count adds 6
bytes to each record

TAP ERROR SYNADAF
LA

ACSMETH=QSAM
0,68 (0, 1)

Control program returns message
address in register 1.

ST
PUT
SYNADRLS
L
RETURN

ENDJOB CLOSE

COUNT DS
WORKAREA DS
NUMBER DC
SAVE14 DS
INDATA DCB

14,SAVE14
OUTDATA,(O)

14,SAVE14

(INDATA"OUTDATA)

CL6
CL50
PL4'O'

SYNAD routine prints part of
the message (beginning with
the unit number) as a 56-byte
fixed-length record. It then
returns to the control
program.

F
DDNAME=INPUTDD,DSORG=PS,MACRF=(GM),EROPT=ACC,

OUTDATA DCB
SYNAD=TAPERROR,EODAD=ENDJOB

DDNAME=OUTPUTDD,DSORG=PS,MACRF=(PM),EROPT=ACC

Figure 37. Creating a Sequential Data Set - Move Mode, Simple Buffering

70 OS Data Management Services

C

I

Creating a Sequential Data Set

NEXTREC

TAPERROR

ENDJOB

OPEN
GET
LR
AP
UNPK
PUT
MVC

As discussed earlier, a processing program should be developed using, as much as
possible, factors that are constant, with variable factors specified at execution. For that
reason, the following examples are generalized as much as possible. They are neither
exhaustive nor intended as complete examples. Rather, they are presented as
introductory sequences.

Since the basic access technique for sequential processing is usually used to create a
partitioned data set or a direct data set, examples of the READ and WRITE macro
instructions are deferred for discussion in those areas. There is no other reason,
however, for them not to be used in place of the queued access macro instructions if
automatic blocking and anticipatory buffering are not required.

Tape-to-Print, Move Mode - Simple Buffering: In Figure 37, the GET-move and
PUT-move require two movements of the data records. If the record length (LRECL)
does not change in processing, only one move is necessary; you can process the record
in the input buffer segment. A GET-locate can be used to provide a pointer to the
current segment.

Tape-to-Print, Locate Mode - Simple Buffering: This example (Figure 38) is similar
to that in Figure 37. However, since there is no change in the record length, the
records can be processed in the input buffer. Only one move of each data record is
required.

(INDATA"OUTDATA,(OUTPUT),ERRORDCB,(OUTPUT))
INDATA Locate mode
2,1 Save pointer
NUMBER,=P'l'

Process in input area
Locate mode
Move record to output buffer

B
SYNADAF
ST

o (6 , 2) , NUMBER
OUTDATA
0(50,1),0(2)
NEXTREC
ACSMETH=QSAM
2,SAVE2

Message address in register 1
Save register 2 contents

L
MVC
MVC
LA
LR
PUT
SYNADRLS
LR'
L
RETURN
CLOSE

2, 8(0,1)
8(70,1),50(1)
78(50,1),0(2)
0, 4(1)
2,14
ERRORDCB,(O)

14,2
2,SAVE2

(INDATA"OUTDATA"ERRORDCB)

Load pointer to input buffer
Shift nonblank message fields
Add input record to message
Load address of message
Save return address
Print message (move mode)
Release message and save area
Restore return address
Restore register-2 contents
Return to control program

NUMBER DC PL4'0'
DDNAME=INPUTDD,DSORG=PS,MACRF=(GL),EROPT=ACC,

SYNAD=TAPERROR,EODAD=ENDJOB
DDNAME=OUTPUTDD,DSORG=PS,MACRF=(PL),EROPT=ACC
DDNAME=SYSOUTDD,DSORG=PS,MACRF=(PM),RECFM=V,

BLKSIZE=128,LRECL=124,EROPT=ACC

INDATA DCB

OUTDATA DCB
ERRORDCB DCB

SAVE 2 DS

C

C

F

Figure 38. Creating a Sequential Data Set - Locate Mode, Simple Buffering

Part 2: Data Management Processing Procedures 71

OPEN
LA

NEXTREC GET
LR
USING
AP
UNPK
PUT
LR
B

Tape-to-Print, Substitute Mode - Exchange Buffering: Although the initial problem is
the same, the solution described in Figure 39 takes advantage of exchange buffering,
which eliminates the need to move the data record, and makes direct reference to
individual fields within a record through the use of a dummy control section (DSECT).
The use of the DSECT allows symbolic reference to be made for storage-to-storage
operations; therefore, the length attributes need not be explicitly stated.

(INDATA"OUTDATA,(OUTPUT),ERRORDCB,(OUTPUT))
O,GIVEAWAY Set up for first buffer
INDATA,(O) Substitute mode
2,1 Pointer to next record
RECORD, 2 Establish address of DSECT
NUMBER,=P'1'
COUNT, NUMBER
OUTDATA,RECORD
0, 1

Substitute mode
Exchange work area

TAPERROR SYNADAF
NEXTREC
ACSMETH=QSAM SYNAD routine is same

as in previous example
ENDJOB CLOSE

DS
GIVEAWAY DS
NUMBER DC
INDATA DCB

OUTDATA DCB

DSECT

(INDATA"OUTDATA"ERRORDCE)

00
CLSO
PL4'-'
DONAME=INPU'\'J)[), DSORG=PS, MACRF=(GT), BFTEK=E, BFALN=D,

EROPT=ACC, SYNAJ)::.::'l'APEHHOR, EODAD=ENDJOB
DONAME=OU'l'PU'\'\)J), DSORG=PS, MACRF=(PT) , BFTEK=E, BFALN=D,

EROPT=ACC

C

C

RECORD
COUNT
RESTOFIT

DS CL6
DS CL44

Figure 39. Creating a Sequential Data Set - Substitute Mode, Exchange Buffering

Using BSAM to Read Fixed-Length Blocked Records

When you read a sequential data set, you can determine the length of the record in one
of the following three ways, depending upon the record format of the data set:

For fixed-length records, the length of all records is the value in the DCBBLKSI
field of the DCB.

For variable-length records, the block descriptor word in the record contains the
length of the record.

For fixed-length blocked or undefined-length records, the following metl}od can
be used to calculate the block length. After checking the DECB for the READ
request but before issuing any subsequent data management macro instructions
that specify the DCB for the READ request, obtain the lOB address from the
DECB. The lOB address can be loaded from the location 16 bytes from the start
of the DECB.

Obtain the residual count from the channel status word (CSW) that has been stored in
the input/output block (lOB). The residual count is in the halfword 14 bytes from the
start of the lOB. Subtract this residual count from the number of data bytes requested
to be read by the READ macro instruction. If "s" was coded as the length parameter

72 as Data Management Services

OPEN
LA
USING

READ
READ

CHECK
LH
L
SH

CHECK
LH
L
SH

MVC
READ

CHECK
LH
L
SH

DCB DCB
DCBD

of the READ macro instruction or the length parameter was omitted, the number of
bytes requested is the value of DCBBLKSI at the time the READ was issued. If the
length was coded in the READ macro instruction, this value is the number of data
bytes and it is contained in the halfword 6 bytes from the beginning of the DECB.
The result of the subtraction is the length of the block read. See Figure 40.

(DCB, (INPUT))
DCBR,DCB
IHADCB,DCBR

DECB1,SF,DCB,AREA1
DECB2,SF,DCB,AREA2,5O

DECB1
WORK 1 , DCBBLKS I
WORK2,DECB1+16
WORK1,14(WORK2)

DECB2
WORK 1 , DECB2+6
WORK2,DECB2+16
WORK 1 , 14(WORK2)

DCBBLKSI,LENGTH3
DECB3,SF,DCB,AREA3

DECB3
WORK1,LENGTH3
WORK2,DECB+16
WORK1,14(WORK2)

... RECFM=U,NCP=2, ...

Blocksize at time of READ
lOB address
WORK 1 has block length

Length requested
lOB address
WORK 1 has block length

Length to be read

Blocksize at time of READ
lOB address
WORK 1 has block length

Figure 40. Using BSAM to Read Fixed-Length Blocked Records

Processing a Partitioned Data Set

A partitioned data set can be stored only on a direct-access device. It is divided into
sequentially organized members, each made up of one or more records (see Figure 41).
Each member has a unique name, 1 to 8 characters long, stored in a directory that is
part of the data set. The records of a given member are stored or retrieved
sequentially.

The main advantage of using a partitioned data set is that you can retrieve any
individual member once the data set is opened without searching the entire data set.
For example, a program library can be stored as a partitioned data set, each member of
which is a separate program or subroutine. The individual members can be added or
deleted as required. When a member is deleted, the member name is removed from the
directory, but the space used by the member cannot be reused until thc data set is
reorganized.

The directory, a series of records at the beginning of the data set, contains an entry for
each member. Each directory entry contains the member name and the starting
location of the member within the data set, as shown in Figure 41. In addition, you

Part 2: Data Management Processing Procedures 73

Directory
Records

can specify up to 62 characters of information in the entry. The directory entries are
arranged in alphameric collating sequence by name.

The track address of each member is recorded by the system as a relative track address
within the data set rather than as an absolute track address. Thus, an entire data set
can be moved without changing the relative track addresses in the directory. The data
set can be considered as one continuous set of tracks regardless of how the space was
actually allocated.

If there is not sufficient space available in the directory for an additional entry, or not
enough space available within the data set for an additional member, no new members
can be stored.

Space from
Deleted
Member

Available
Area

Figure 41. A Partitioned Data Set

Partitioned Data Set Directory

The directory of a partitioned data set occupies the beginning of the area allocated to
the data set on a direct-access volume. It is searched and maintained by the FIND and
STOW macro instructions. The directory consists of member entries arranged in
ascending order according to the binary value of the member name or alias.

Member entries vary in length and are blocked into 256-byte blocks. Each block
contains as many complete entries as will fit in a maximum of 254 bytes; any remaining
bytes are left unused and are ignored. Each directory block contains a 2-byte count
field that specifies the number of active bytes in a block. As shown in Figure 42, each
block is preceded by a hardware-defined key field containing the name of the last
member entry in the block, that is, the member name with the highest binary value.

Each member entry contains a member name or alias. There can be as many as 16
aliases for each member. Each entry also contains the relative track address of the
member and a count field, as shown in Figure 43. In addition, it may contain a user
data field. The last entry in the last directory block has a name field of maximum
binary value - all Is.

74 OS Data Management Services

Key
Name of
Last
Entry in
Block
"---y--J

Bytes 8

Data
Number of
Bytes Used
(Maximum

256)
'---y--/

2

Member
Entry A

Member
Entry B

254

Member
Entry N

Figure 42. A Partitioned Data Set Directory Block

Member
Name

8

Pointer to
First Record
of Member

TTR

Bits

Optional User Da
C

I TTRN I I TTRN TTRN

----~ ta

----......
~~-........ ~~------------------~--------~

........ 0-31 halfwords
........................ (Maximum 62 bytes)

1 If Number of Number of User
Name is an User Data Data Halfwords

Alias TTRNs

o 1-2 3-7

Figure 43. A Partitioned Data Set Directory Entry

NAME

TTR

specifies the member name or alias. It contains up to 8 alphameric characters,
left-justified and padded with blanks if necessary.

is a pointer to the first block of the member; TT is the number of the track,
relative to the beginning of the data set, and R is the number of the block,
relative to the beginning of that track.

Note: This pointer is created by adding 1 to the TTR for the last block of the
previous member (which is an end-of-file mark). If track TT is full, the next
block will begin at record 1 of track TT + 1, and the pointer will he updated
accordingly. The control program finds the block by searching in multitrack mode
using TT(R-l) as a search argument.

Part 2: Data Management Processing Procedures 75

C

specifies the number of halfwords contained in the user data field. It may also
contain additional information about the user data field, as shown below:

Bits a 1-2 3-7

I I
o when set to 1, indicates that the NAME field contains an alias.

1-2 specifies the number of pointers to locations within the member.

A maximum of three pointers is allowed in the user data field. Additional
pointers may be contained in a record referred to as a note list, discussed
below. The pointers can be updated automatically if the data set is moved
or copied by a utility program such as IEHMOVE. The data set must be
marked unmovable under the following conditions:

• More than three pointers are used in the user data field.

The pointers in the user data field or note list do not conform to the
standard format.

The pointers are not placed first in the user data field.

Any direct access address (absolute or relative) are embedded in any
data blocks or in another data set that refers to this data set.

3-7 contains a binary value indicating the number of halfwords of user data.
This number must include the space used by pointers in the user data field.

You can use. the user data field to provide variable data as input to the STOW macro
instruction. If pointers to locations within the member are provided, they must be 4
bytes long and placed first in the user data field. The user data field format is as
follows:

User Data

I TTRN I TTRN I TTRN I Optional

TT is the relative track address of the note list or area to which you are
pointing.

R is the relative block number on that track.

N is a binary value that indicates the number of additional pointers contained
in a note list pointed to by the TTR. If the pointer is not to a note list,
N=O.

A note list consists of additional pointers to blocks within the same member of a
partitioned data set. You can divide a member into subgroups and store a pointer to
the beginning of each subgroup in the note list. The member may be a load module
containing many control sections (CSECTs), each CSECT being a subgroup pointed to
by an entry in the note list. You get the pointer to the beginning of the subgroup by
using the NOTE macro instruction after you write the first record of the subgroup.
Remember that the pointer to the first record of the member is stored in the directory
entry by the system.

76 OS Data Management Services

I If the existence of a note list was indicated as shown above, the list can be updated
automatically when the data set is moved or copied by a utility program such as
IEHMOVE. Each 4-byte entry in the note list has the following format:

TT is the relative track address of the area to which you are pointing.

R is the relative block number on that track.

X is available for any use.

To place the note list in the partitioned data set, you must use the WRITE macro
instruction. After checking the write operation, use the NOTE macro instruction to
determine the address of the list and place that address in the user data field of the
directory entry.

Processing a Member of a Partitioned Data Set

Because a member of a partitioned data set is sequentially organized, it is processed in
the same manner as a sequential data set. Either the basic or queued access technique
can be used. However, you cannot alter the directory when using the queued
technique.

To locate a member or to process the directory, several macro instructions are provided
by the operating system. The BLDL macro instruction can be used to structure a list
of directory entries in main storage; the FIND macro instruction locates a member of

I the data set for subsequent processing; the STOW macro instruction adds, deletes,
replaces, or changes a member name in the directory. To use these macro instructions,
you must specify DSORG=PO or POU in the DCB macro instruction. Before issuing
a FIND, BLDL, or STOW macro instruction, you must check all preceding
input/ output operations for completion.

BLDL - Construct a Directory Entry List

The BLDL macro instruction is used to place directory information in main storage.
The data is placed in a build list, which you construct before the BLDL macro
instruction is issued. The format of the list is similar to that of the directory. For each
member name in the list, the system supplies the address of the member and any
additional information contained in the directory entry. Note that if there is more than
one member name in the list, the member names must be in collating sequence
regardless of whether the members are from the same library or from different libraries.

You can optimize retrieval time by directing a subsequent FIND macro instruction to
the build list rather than the directory to locate the member to be processed.

The build list, as shown in Figure 44, must be preceded by a 4-byte list description
that indicates the number <?f entries in the list and the length of each entry (12 to 76
bytes). The first 8 bytes of each entry contain the member name or alias. The next 6
bytes must be available to contain the starting address of the member plus some control
data. If there is no user data entry, only the TTR and C fields are required. If
additional information is to be supplied from the directory, up to 62 bytes can be
reserved.

Part 2: Data Management Processing Procedures 77

List
Description FFLL 1

Member
Name

(Each entry starts on halfword boundary)

Filled in by BLDL
A

I

TTR K Z C
(3) (1) (1) (1)

---'-- -

{

User Data

)
-

Programmer Supplies:
FF Number of member entries in list.
LL Even number giving byte length of each entry (minimum of 12).

Member name Eight bytes, left-justified.

B LD L Supplies:
TTR Member starting location.

K If only data set = O. If concatenation = number.
Not required if no user data.

Z Source of directory entry. Private library = O.
Link library = 1. Job or step library = 2.
Not required if no uSer data.

C Same C field from directory. Gives nJmber of user data halfwords.
User data As much as will fit in entry.

Figure 44. Build List Format

FIND - Position to a Member

To determine the starting address of a specific member, you must issue a FIND macro
instruction. The system places the correct address in the data control block so that a
subsequent input or output operation begins processing at that point.

There are two ways you can direct the system to the right member when you use the
FIND macro instruction: specify the address of an area containing the name of the
member or specify the address of the TTR field of the entry in a build list you have
created by using the BLDL macro instruction. In the first case, the system searches the
directory of the data set for the relative track address; in the second case, no search is
required because the relative track address is in the build list entry.

If you want to process only one member, you can process it as a sequential data set
(DSORG=PS) using either BSAM or QSAM. You indicate the name of the member
you want to process and the name of the partitioned data set in the DSNAME
parameter of the DD statement. When you open the data set, the system places the
starting address in the data control block so that a subsequent GET or READ macro
instruction begins processing at that point. You cannot use the FIND, BLDL, or
STOW macro instructions when you are processing one member as a sequential data
set.

STOW - Alter a Directory Entry

Unless you are adding members to a partitioned data set one at a time, you must issue
a STOW macro instruction to enter the member name in the directory. When you add

78 OS Data Management Services

a single member, the STOW operation is performed automatically when the data set is
closed.

You can also use the STOW macro instruction to delete, replace, or change a member
name in the directory, as well as to store additional information with the directory
entry. Since an alias can also be stored in the directory in the same way, you should be
consistent in altering all names associated with a given member. For example, if you
replace a member, you must delete related aliases or change them so that they point to
the new member. If you use STOW to change user data in the directory entry, you
must also move the TTR of the member into the DCBRELAD.

If you do not use the STOW macro instruction before closing a partitioned data set
that you have written, your CLOSE request causes the system to issue a STOW macro
instruction. If you specify DISP=MOD, the system issues a STOW macro instruction
with the replace option, causing replacement of an entry in the directory. If you
specify DISP=NEW or DISP=OLD and the member does not exist, the system issues a
STOW macro instruction with the add option, causing addition of an entry to the
directory. If you specify DISP=OLD and the member already exists, the system issues
a message to that effect.

Creating a Partitioned Data Set

//PDSDD

OUTDCB

DD

DCB

If you have no need to add entries to the directory, that is, the STOW and BLDL
macro instructions will not be used, you can create a new data set and write the first
member as follows (see Figure 45):

Code DSORG=PS or PSU in the DCB macro instruction.

Indicate in the DD statement that the data is to be stored as a member of a new
partitioned data set, that is, DSNAME=name (membername) and DISP=NEW.

Request space for the member and the directory in the DD statement.

Process the member with an OPEN macro instruction, a series of PUT or WRITE
macro instructions, and then a CLOSE macro instruction. A STOW macro
instruction is issued automatically when the data set is closed.

As a result of these steps, the data set and its directory are created, the records of the
member are written, and a 12-byte entry is made in the directory.

---,DSNAME=MASTFILE(MEMBERK),SPACE=(TRK,(100,5,7)),
DISP=(NEW,KEEP)

--,DSORG=PS,DDNAME=PDSDD,---

C

OPEN (OUTDCB,(OUTPUT))
PUT [or WRITE]

CLOSE (OUTDCB) Automatic Stow

Figure 45. Creating One Member of a Partitioned Data Set

Part 2: Data Management Processing Procedures 79

//PDSDD

OUTDCB

*

*

*
*

*
*
Repeat from

DD

DCB
OPEN
WRITE
CHECK

WRITE
CHECK

NOTE
ST

WRITE
CHECK
NOTE
ST
STOW

** for

To add additional members to the data set, follow the same procedure. However, a
separate DD statement (with the space request omitted) is required for each member.
The disposition should be specified as modify, DISP=MOD. The data set must be
closed and reopened each time a new member is specified.

To take full advantage of the STOW macro instruction, and thus the BLDL and FIND
macro instructions in future processing, you can provide additional information with
each directory entry. You do this by using the basic access technique, which also
allows you to process more than one member without closing and reopening the data
set, as follows (see Figure 46):

. Request space in the DD statement for the members and the directory.

each

Define DSORG=PO or POU in the DCB macro instruction.
Use WRITE and CHECK to write and check the member records.

Use NOTE to note the location of any note list written within the member, if
there is a note list.

When all the member records have been written, issue a STOW macro instruction
to enter the member name, its location pointer, and any additional data in the
directory.

Continue to write, check, note, and stow until. all the members of the data set and
the directory entries have been written.

--,DSNAME=MASTFILE,SPACE=(TRK,(100,5,7)),DISP=MOD

--,DSORG=PO,DDNAME=PDSDD,--
(OUTDCB,(OUTPUT))
** Write and check first record of member.

The system will supply the relative
track address for the directory entry.
Write and check remaining records of
number.

If you are dividing the member into
subgroups, note the location of the first
record in subgroup, storing pointer
in note list.
Write note list at end of member.

Note location of note list, storing
pointer in list for STOW.
Enter information in directory for
this member after all records and note
lists are written.

additional member

CLOSE (OUTDCB)

Figure 46. Creating Members of a Partitioned Data Set Using STOW

80 OS Data Management Services

Retrieving a Member 0/ a Partitioned Data Set

To retrieve a specific member from a partitioned data set, either the basic or queued
access technique can be used as follows (see Figure 47):

Code DSORG=PS or PSU in the DCB macro instruction.

Indicate in the DD statement that the data is a member of an existing partitioned
data set by coding DSNAME=name(membername) and DISP=OLD.

Process the member with an OPEN macro instruction, a series of GET and
READ macro instructions, and then a CLOSE macro instruction.

When your program is executed, the directory is searched automatically and the
location of the member is placed in the DCB.

//PDSDD

INDCB

DD --,DSNAME=MASTFILE(MEMBERK),DISP=OLD

DCB --,DSORG=PS,DDNAME=PDSDD,-
OPEN (INDCB) Automatic Find
GET (or READ)
CLOSE (INDCB)

Figure 47. Retrieving One Member of a Partitioned Data Set

//PDSDD DD --,DSNAME=MASTFILE,DISP=OLD

INDCB DCB --,DSORG=PO,DDNAME=PDSDD,--
OPEN (INDCB)
BLDL Build a list of selected member names

in main storage.
FIND (or POINT)

/*
READ *Read note list.
CHECK
POINT Locate subgroup by,using note list.
READ
CHECK Read member records.

Repeat from * for each additional member.

CLOSE (INDCB)

Figure 48. Retrieving Several Members of a Partitioned Data Set Using BLDL, FIND,
and POINT

To process several members without closing and reopening, or to take advantage of
additional data in the directory, the following technique should be used (see Figure
48):

Code DSORG=PO or POU in the DCB macro instruction.

Build a list (BLDL) of needed member entries from the directory.

Indicate in the DD statement the data set name of the partitioned data set by
coding DSNAME=name and DISP=OLD.

Use the FIND or POINT macro instruction to prepare for reading the member
records.

Part 2: Data Management Processing Procedures HI

• The records may be read from the beginning of the member, or a note list may be
read first, to obtain additional locations that point to subcategories within the
member.

• Read (and check) the records until all those required have been processed.

• Point to additional categories, if required, and read the records.

Repeat this procedure for each member to be retrieved.

Updating a Member 0/ a Partitioned Data Set

Updating in Place

Rewriting a Membe~

A member of a partitioned data set can be updated in place, or can be deleted and
rewritten as a new member.

When you update in place, you read records, process them, and write them back to
their original positions without destroying the remaining records on the track. The
following rules apply:

You must specify the update option (UPDAT) in the OPEN macro instruction.
To perform the update, you can use only the READ, WRITE, CHECK, NOTE,
POINT, FIND, and BLDL macro instructions.

• You cannot use chained scheduling.
• You cannot delete any record or change its length; you cannot add new records.

A record must be retrieved by a READ macro instruction beforeit can be updated by
a WRITE macro instruction. Both macro instructions must be execute forms that refer
to the same DECB; the DECB must be provided by a list form. (The execute and list
forms of the READ and WRITE macro instructions are described in as Data
Management Macro Instructions.)

Updating With Overlapped Operations: To overlap input/output and CPU activity, you
can start several read or write operations before checking the first for completion. You
cannot overlap read and write operations, however, as operations of one type must be
checked for completion before operations of the other type are started or resumed.
Note· that each concurrent read or write operation requires a separate channel program
and a separate DECB. If a single DECB were used for successive read operations,
only the last record read could be updated.

In Figure 49, overlap is achieved by having a read or write request outstanding while
each record is being processed. Note the use of execute-form and list-form macro
instructions, identified by.the operands MF=Eand MF=L.

There is no actual update option that can be used to add or extend records in a
partitioned data set. If you want to extend or add a record within a member, you must
rewrite the complete member in another area of the data set. Since space is allocated
when the data set is created, there is no need to request additional space. Note,
however, that a partitioned data set must be contained on one volume. If sufficient
space has. not been allocated, the data set must be reorganized by the IEBCOPY utility
program.

82 OS Data Management Services

/ /PDSDD DD

UPDATDCB DCB
READ
READ

AREAA DS
AREAB DS

OPEN
LA
LA

READRECD READ
NEXTRECD READ

CHECK

DSNAME=MASTFILE(MEMBERK),DISP=OLD,--

DSORG=PS,DDNAME=PDSDD,MACRF=(R,W),NCP=2,EODAD=FINISH
DECBA,SF,UPDATDCB,AREAA,MF=L Define DECBA
DECBB,SF,UPDATDCB,AREAB,MF=L Define DECBB

Define buffers

(UPDATDCB,UPDAT)
2,DECBA
3,DECBB
(2),SF,MF=E
(3) , SF, MF=E
(2)

Open for update
Load DECB addresses

Read a record
Read the next record
Check previous read operation

(If update is required, branch to R2UPDATE)

LR
LR
LR
B

4,3
3,2
2,4
NEXTRECD

If no update is required,
switch DECB addresses in
registers 2 and 3
and loop

In the following statements, "R2" and "R3" refer to the records that were read using the DECBs whose addresses are in registers
2 and 3, respectively. Either register may point to either DECBA or DECBB.

R2UPDATE CALL
CHECK
WRITE

UPDATE, ((2))
(3)
(2), SF, MF=E

Call routine to update R2
Check read for next record (R3)
Write updated R2

(If R3 requires an update, branch to R3UPDATE)
CHECK (2) If R3 requires no update, check

write for R2 and loop B READRECD
R3UPDATE CALL UPDATE, ((3)) Call routine to update R3

WRITE (3),SF,MF=E
CHECK (2)

Write updated R3
Check write for R2

CHECK (3) Check write for R3
B

FINISH CLOSE
READRECD
(UPDATDCB)

Loop
End-of-Data exit routine

Figure 49. Updating a Member of a Partitioned Data Set

When you rewrite the member, you must provide two DCBs, one for input and one for
output. Both DCB macro instructions can refer to the same data set, that is, only one
DD statement is required.

You can reflect the change in location of the member either automatically, by
indicating a disposition of OLD, or by using the STOW macro instruction. Although
the old member is, in effect, deleted, its space cannot be reused until the data set is
reorganized.

Processing an Indexed Sequential Data Set

The organization of an indexed sequential data set allows you a great deal of flexibility
in the operations you can perform. The data set can be read or written sequentially,
individual records can be processed in any order, records can be deleted, and new
records can be added. The system automatically locates the proper position in the data
set for new records and makes any necessary adjustments when records are deleted.

The queued access technique must be used to create an indexed sequential data set. It
can also be used to sequentially process or update the data set and to add records to

Part 2: ,Data Management Processing Procedures 83

the end of the data set. The basic access technique can be used to insert new records
between records already in the data set and to update the data set directly.

Indexed Sequential Data Set Organization

Prime Area

The records in an indexed sequential data set are arranged according to collating
sequence by a key field in each record. Each block of records is preceded by a key
field that corresponds to the key of the last record in the block.

An indexed sequential dataset resides on direct-access storage devices and can occupy
up to three different areas:

Prime Area - This area, also called the prime data area, contains data records
and related track indexes. It exists for all indexed sequential data sets.

Overflow Area - This area contains records that overflow from the prime area
when new data records are added. It is optional.

Index Area - This area contains master and cylinder indexes associated with the
data set. It exists for a data set that has a prime area occupying more than one
cylinder.

The indexes of an indexed sequential data set are analogous to the card catalog in a
library. For example, if the library user knows the name of the book or the author, he
can look in the card catalog and obtain a catalog number that will enable him to locate
the book in the book files. He would then go to the shelves and proceed through rows
until he found the shelf containing the book. Usually each row contains a sign to
indicate the beginning and ending numbers of all books in that particular row. Thus, as
he proceeded through the rows, he would compare the catalog number obtained from
the index with the numbers posted on each row. Upon locating the proper row, he
would then search that row for the shelf that contained the book. Then he would look
at the individual book numbers on that shelf until he found the particular book.

ISAM uses the indexes in much the same way to locate records in an indexed
sequential data set.

As the records are written in the prime area of the data set, the system accounts for the
records contained on each track in a track index area. Each entry in the track index
identifies the key of the last record on each track. There is a track index for each
cylinder in the data set. If more than one cylinder is used, the system develops a
higher-level index called a cylinder index. Each entry in the cylinder index identifies
the key of the last record in the cylinder. To increase the speed of searching the
cylinder index, you can request that a master index be developed for a specified
number of cylinders, as shown in Figure 50.

Rather than reorganize the whole data set when records are added, you can request
that space be allocated for additional records in an overflow area.

Records are written in the prime area when the data set is created or updated. The
portion of Figure 50 labeled Cylinder 1 illustrates the initial structure of the prime area.
Although the prime area can extend across several noncontiguous areas of the volume,
all the records are written in key sequence. Each record must contain a key; the
system automatically writes the key of the highest record before each block.

84 OS Data Management Services

Master Index

I 450 I 9?0 2000 I

Cylinder Index

200 300 375 450 ..
500 600 700 900 ~

...-

~

1000 1200 15~0 2000

Cylinder 1 ~ Cylinder 11 Cylinder 12

~ 100 100 200 200 Track
1

1500 ~
1

2000 Index
Data Data Data Data Prime
10 20 40 100 Data

Data Data Data Data Prime
150 175 190 200 Data

Overflow

Figure 50. Indexed Sequential Data Set Organization

Index Areas

When the ABSTR option of the SPACE parameter of the DD statement is used to
generate a multivolume prime area, the VTOC of the second volume and on all
succeeding volumes must be contained within cylinder 0 of the volume.

The operating system generates track and cylinder indexes automatically. Up to three
levels of master indexes are created if requested.

Track Index: This is the lowest level of index and is always present. There is one track
index for each cylinder in the prime area; it is written on the first track(s) of the
cylinder that it indexes.

The index consists of a series of paired entries, that is, of a normal entry and an
overflow entry for each prime track. For fixed-length records, each normal entry (and
also DCBFIRSH) points to either record 0 or the first prime record on a shared track.
For variable-length records, the normal entry contains thc key of the highest record on
the track and the address of the last record on the track. The overflow entry is
originally the same as the normal entry. (This is why 100 appears twice on the track
index for cylinder 1 in Figure 50.) The overflow cntry is changed when records are
added to the data set. Then the overflow entry contains the key of the highest
overflow record and the address of the lowest overflow record logically associated with
the track. Figure 51 shows the format of a track index.

If all the tracks allocated for the prime data area are not used, the index entries for the
unused ones are flagged as inactive. The last entry of each track index is a dummy
entry indicating the end of the index. When fixed-length record format has been

Part 2: Data Management Processing Procedures X5

specified, the remainder of the last track used for a track index contains prime data
records if there is room for them.

Normal/Overflow
Pair

Normal/Overflow
Pair

r~----------------~~~--------------~'r~----------------~A~----------------~,
Normal Overflow Normal Overflow
Entry Entry Entry Entry ________ ~~,· _________________ ~~ ______ ~~--------~~------~'r,--------A~------~,

r ,r ,r

Key 1 Data2 Key3 Data4 Key1 Data2 Key3 Data4 ~
1 Normal key

2Normal data

key of the highest record on the prime data track

address of the prime data track

30verflow key = key of the highest overflow record logically associated with the prime data track

40verflow data = address of the lowest overflow record logically associated with the prime data track

Notes:
• If there are no overflow records, overflow key and data entries are the same as normal key and data entries .
• This figure is a logical representation only; that is, it makes no attempt to show the physical size of track index entries.

Figure 51. Format of Track Index Entries

Overflow Areas

Each index entry has the same format. It is an unblocked, fixed-length record
consisting of a count, a key, and a data area. The length of the key corresponds to the
length of the key area in the record to which it points. The data area is always 10
bytes long. It contains the full address of the track or record to which the index points,
as well as the level of the index and the entry type.

Cylinder Index: For every track index created, the system generates a cylinder index
entry. There is one cylinder index for a data set, each entry of which points to a track
index. Since there is one track index per cylinder, there is one cylinder index entry for
each cylinder in the prime data area, except in the case of a I-cylinder prime area. As
with track indexes, inactive entries are created for any unused cylinders in the prime
data area.

Master Index: As an optional feature, the operating system creates, at your request, a
master index. Each entry in the master index points to a track of the cylinder index.
This avoids a serial search through a large cylinder index.

You can specify the number of entries to be included in each master index. For
example, if you indicate that you want a master index created for every 3 tracks of
cylinder index entries, a master index is created if the cylinder index exceeds 3 tracks.
A higher-level master index is created if the first level master index exceeds 3 tracks.
This procedure continues up to three levels of master indexes.

As records are added to an indexed sequential data set, space is required to contain
those records that will not fit on the prime data track on which they belong. You can
request that a number of tracks be set aside as a cylinder overflow area to contain

86 OS Data Management Services

overflows from prime tracks in each cylinder. An advantage of using cylinder overflow
areas is a reduction of search time required to locate overflow records. A disadvantage
is that there will be unused space if the additions are unevenly distributed throughout
the data set.

Instead of, or in addition to, cylinder overflow areas, you can request an independent
overflow area. Overflow from anywhere in the prime data area is placed in a specified
number of cylinders reserved solely for overflow records. An advantage of having an
independent overflow area is a reduction in unused space reserved for overflow. A
disadvantage is the increased search time required to locate overflow records in an
independent area.

If you request both cylinder overflow and independent overflow, the cylinder overflow
area is used first. It is a good practice to request cylinder overflow areas large enough
to contain a reasonable number of additional records and an independent overflow area
to be used as the cylinder overflow areas are filled.

Adding Records to an Indexed Sequential Data Set

Either the queued access technique or the basic access technique may be used to add
records to an indexed sequential data set. A record to be inserted between records
already in the data set must be inserted by the basic access method using WRITE KN
(key new). Records added to the end of a data set, that is, records with successively
higher keys, may be added to the prime data area or the overflow area by the basic
access method using WRITE KN, or they may be added to the prime data area by the
queued access technique using the PUT macro instruction.

Inserting New Records into an Existing Indexed Sequential Data Set

As you add records to an indexed sequential data set, the system inserts each record in
its proper sequence according to the record key. The remaining records on the track
are then moved up one position each. If the last record does not fit on the track, it is
written in the first available location in the overflow area. A 10-byte link field is
added to the record put in the overflow area to connect it logically to the correct track.
The proper adjustments are made to the track index entries. This procedure is
illustrated in Figure 52.

Subsequent additions are written either on the prime track or as part of the overflow
chain from that track. If the addition belongs after the last prime record on a track but
before a previous overflow record from that track, it is written in the first available
location in the overflow area. Its link field contains the address of the next record in
the chain.

Adding New Records to the End of an Indexed Sequential Data Set

Records added to the end of a data set, that is, records with successively higher keys,
may be added by the basic access method using WRITE KN (key new), or by the
queued access method using the PUT macro instruction (resume load). In either case
records may be added to the prime data area.

When you use the WRITE KN macro instruction, the record being added is placed in
the prime data area only if there is room for it on the prime data track containing the
record with the highest key currently in the data set. If there is not sufficient room on
that track, the record is placed in the overflow area and linked to that prime track even
though additional prime data tracks originally allocated have not been filled.

Part' 2: Data Management Processing Procedures 87

Overflow Entry

Initial Format
Track
Index

10 20 40 100
Prime
Data

150 175 190 200

Overflow

Add Records Track
25 and 101 Index

10 20 25 40
Prime
Data

101 150 175 190

100
Track

200
Track

Overflow 1 2

Add Records Track

26 and 199 Index

10 20 25 26
Prime
Data

101 150 175 190

Track
1 Overflow

Figure 52. Adding Records to an Indexed Sequential Data Set

When you use the PUT macro instruction (resume load), records are added to the
prime data area until the space originally allocated is filled. Once this allocated prime
area is filled, you can add records to the data set using WRITE KN, in which case they
will be placed in the overflow area. Resume load is discussed in more detail later under
"Creating an Indexed Sequential Data Set."

In order to add records with successively higher keys using the PUT macro instruction
(resume load):

• The key of any record to be added must be higher than the highest key currently
in the data set.

88 OS Data Management Services

The DD statement must specify DISP=MOD.

The data set must have been successfully closed when it was created or when
records were previously added using the PUT macro instruction.

You may continue to add fixed-length records in this manner until the original space
allocated for prime data is exhausted.

When you add records to an indexed sequential data set using the PUT macro
instruction (resume load), new entries are also made in the indexes. During resume
load on a data set with a partially filled track and/or a partially filled cylinder, the
track index entry and/or the cylinder index entry is overlaid when the track or cylinder
is filled. If resume load abnormally terminates after these index entries have been
overlaid, a subsequent resume load will get a sequence check when adding a key that is
higher than the highest key at the last successful CLOSE but lower than the key in the
overlaid index entry. When the SYNAD exit is taken for a sequence check, register 0
contains the address of the highest key of the data set.

Maintaining an Indexed Sequential Data Set

An indexed sequential data set must be reorganized occasionally for two reasons:

The overflow area will eventually be filled.

Additions increase the time required to locate records directly.

The frequency of reorganization depends on the activity of the data set and on your
timing and storage requirements. There are two ways you can accomplish
reorganization:

• You can reorganize the data set in two passes by writing it sequentially into
another area of direct-access storage or magnetic tape and then recreating it in
the original area.

You can reorganize the data set in one pass by writing it directly into another
area of direct-access storage. In this case, the area occupied by the original data
set cannot be used by the reorganized data set.

The operating system maintains statistics that are pertinent to reorganization. The
statistics, written on the direct-access volume and available in the DCB for checking,
include the number of cylinder overflow areas, the number of unused tracks in the
independent overflow area, and the number of references to overflow records other
than the first. They appear in the RORG 1, RORG2, and RORG3 fields of the DCB.

If you indicate when creating or updating the data set that you want to be able to flag
records for deletion during updating, you can set the delete code (the first byte of a
fixed-length record or the fifth byte of a variable-length record) to X'FF'. If a flagged
record is forced off its prime track during a subsequent update, it will not be rewritten
in the overflow area, as shown in Figure 53, unless it has the highest key on that
cylinder. Similarly, when you process sequentially, flagged records are not retrieved for
processing. During direct processing, flagged records are retrieved like any other
records, and you should check them for the delete code.

Note that to use the delete option, RKP must be greater than 0 for fixed-length
records and greater than 4 for variable-length records.

Part 2: Data Management Processing Procedures R9

Key Data

Fixed Length /X'FF'j I
!

Delete Code

Key
BOW ROW
~ Data

Variable I LLOO I 1£00 i X'FF' i //tooi , Length

t
Delete Code

Initial Format

10 20 40 100

150 175 190 200

Record 100 is
marked for deletion
and record 25 is
added to the

10 data set 20 25 40

150 175 190 200

Figure 53. Deleting Records from an Indexed Sequential Data Set

Indexed Sequential Buffer and Work Area Requirements

The only case in which you will ever have to compute the buffer length (BUFL)
requirements for your program is when you use the BUILD or GETPOOL macro
instruction to construct the buffer area. If you are creating an indexed sequential data
set (using the PUT macro instruction), each buffer must be 8 bytes longer than the
blocksize to allow for the hardware count field, that is:

Buffer length = 8 + Blocksize

I (8) I Data
(BLKSIZE)

...... _---------- Buffer ----------.....

90 OS Data Management Services

\
C7

One exception to this formula arises when you are dealing with an unblocked format-F
record whose key field precedes the data field; its relative key position is 0 (RKP=O).
In that case the key length must also be added, that is:

Buffer length = 8 + Key length + Record length

... ~ ---------- Buffer ----------•• ~

The buffer requiremehls for using the queued access technique to read or update (using
the GET or PUTX macro instruction) an indexed sequential data set are discussed
below.

For fixed-length unblocked records when both the key and data are to be read and for
variable-length unblocked records, padding is added so that the data will be on a
doubleword boundary, that is:

Buffer length = Key length + Padding + 10 + Blocksize

Key
Padding

Link Data

(KEYLEN) (10) (BLKSIZE)

... Buffer .,

For fixed-length unblocked records when only data is to be read:
Buffer length = 16 + LRECL

Padding
(6)

Link
(10)

Data
(LRECL)

........ _----------Buffer-----------.. ~

For fixed-length blocked records:
Buffer length = 16 + Blocksize

Data
(BLKSIZE)

..... ~----------- Buffer----------... ~

For variable-length blocked records, padding is 2 if the buffer starts on a fullword
boundary that is not also a double word boundary or 6 if the buffer starts on a
doubleword boundary, that is:
Buffer length = 12 or 16 + Blocksize

I Padding I ~;~~ I Data
(BLKSIZE)

........ ___ ----------Buffer----------__ .,~

If you are using the input data set with fixed-length, unblocked records as a basis for
creating a new data set, a work area is required.

The size of the work area is given by:

Work area = Key length + Record length

Key
Data

(LRECL)

....... -----------Work Area---------• .,~

Part 2: Data Management Processing Procedures 91

If you are reading only the data portion of fixed-length unblocked records or
variable-length records, the work area is the same size as the record, that is:

Work area = Record length

Data
(LRECL),

........ ._----------, Work Area---------_

When you use the basic access technique to update records in an indexed sequential
data set, the key length field need not be considered in determining your buffer
requirements. The area for fixed-length records must be:

Buffer length = 16 + Btocksize

Padding
(6)

Link
(10)

Data
(BLKSIZE)

• ~ffM •
For variable-length records, padding is 2 if the buffer starts on a fullword boundary
that is not also a doubleword boundary or 6 if a buffer starts on a doubleword
boundary. Thus, the area must be:

Buffer length = 12 or 16 + 810cksize

I Padding I Link
(10)

Data
(BLKSIZE)

... Buffer •

I
You can speed up the process of adding fixed-length or variable-length records to a
data set by using the MSW A parameter of the DCB macro instruction to provide a
special work area for the operating system. The size of the work area (SMSW
parameter in the DeB) must be large enough to contain a full track of data, the count
fields of each block, and the work space for inserting the new record.

The size of the work area needed varies according to the record format and the device
type. You can calculate it during execution using device-dependent information
obtained with the DEVTYPE macro instruction and data set information from the
DSCB obtained with the OBTAIN macro instruction. The DEVTYPE and OBTAIN
macro instructions are discussed in as Data Management for System Programmers.

Note that you can use the DEVTYPE macro instruction only if the index and prime
areas are on devices of the same type or if the index area is on a device with a larger
track capacity than that of the device containing the prime area. If you are not trying
to maintain device independence, you may precalculate the size of the work area
needed and specify it in the SMSW field of the DCB macro instruction. The maximum
value for SMSW is 65,535.

For calculating the size of the work area, refer to the storage device capacities shown
in Figure 61 under "Estimating Space Requirements" and the device overhead formulas
given in the same section.

For fixed-length blocked records, SMSW is calculated as follows:

I
SMSW = HIRPD(BLKSIZE + 8) + LRECL + KEYLEN

The formula for fixed-length unblocked records is

SMSW = HIRPD(KEYLEN + LRECL + 8) + 2

92 OS Data Management Services

I
The value for HIRPD is in the index (format 2) DSCB. OS System Control Blocks
shows the exact location of this field in the index DSCB. If you don't use the MSW A
and SMSW parameters, the control program supplies a work area using the formula
BLKSIZE + LRECL + KEYLEN.

For variable-length records, SMSW may be calculated by one of two methods. The
first method may lead to faster processing although it may require more main storage
than the second method.

The first method is as follows:

SMSW = HIRPD(BLKSIZE + 8) + LRECL + KEYLEN + 10

The second method is as follows:

SMSW ~ ~raCk c:acity - Bn + ~(BLKSIZE)+ 8(HIRPD)+ LRECL + KEYLEN + 10 +(REM - N - KEY LEN)

In all of the above formulas, the terms BLKSIZE, LRECL, ~EYLEN, and SMSW are
the same as the parameters in the DCB macro instruction. REM is the remainder of
the division operation in the formula and N is the first constant in the Bi formulas
described in Figure 62. (REM-N-KEYLEN) is added only if it is positive. The
second method yields a minimum value for SMSW. ThErefore, the first method is valid
only if its application results in a value higher than the value that would be derived
from the second method. If neither MSW A nor SMSW is specified, the control
program supplies the work area for variable-length records, using the second method to
calculate the size.

Another technique to increase the speed of processing is to provide space in main
storage for the highest-level index. To specify the address of this area, use the MSHI
operand of the DCB. When the address of this area is specified, you must also specify
its size, which you can do by using the SMSI operand of the DCB. The maximum
value for SMSI is 65,535. If you do not use this technique, the index on the volume
must be searched.

The size of the storage area (SMSI parameter) varies. To allocate that space during
execution, you can find the size of the high-level index in the DCBNCRHI field of the
DCB during your DCB exit routine or after the data set is open. Use the DCBD
macro instruction to gain access to the DCBNCRHI field (see "Modifying the Data
Control Block" in Part O. You can also find the size of the high-level index in the
DS2NOBYT field of the index (format 2) DSCB, but you must use the utility program
IEHLIST to print the information in the DSCB. You can calculate the size of the
storage area required for the high-level index by using the formula

(
Number of Tracks) (Number of Entries) (Key Length + 10)

SMSI = in High - Level Index per Track

The formula for calculating the number of tracks in the high-level index is in the
section "Calculating Space Requirements for an Indexed Sequential Data Set" in Part
3. When a data set is shared and has the DCB integrity feature (DISP=SHR), the
high-level index in storage is not updated when DCB fields are changed.

C~ntrollingan Indexed Sequential Data Set Device

An indexed sequential data set is processed sequentially or directly. Direct processing
is accomplished by the basic access technique. Because you provide the key for the
record you want read or written, all device control is handled automatically by the

Part 2: Data Management Processing Procedures 93

system. If you are processing the data set sequentially, using the queued access
technique, the device is automatically positioned at the beginning of the data set.

In some cases, you may wish to process only a section or several separate sections of
the data set. You do this by using the SETL macro instruction, which directs the
system to begin sequential retrieval at the record having a specific key. The processing
of succeeding records is the same as for normal sequential processing, except that you
must recognize when the last desired record has been processed. At this point, issue
the ESETL macro instruction to terminate sequential processing. You can then begin
processing at another point in the data set.

SETL - Specify Start of Sequential Retrieval

The SETL macro instruction enables you to retrieve records starting at the beginning of
an indexed sequential data set or at any point in the data set. Processing that is to
start at a point other than the beginning can be requested in the form of a record key,
a key prefix, or an actual address of a prime data record.

Use of a key prefix is useful because you don't have to know the whole key of the first
record to be processed. Any number of key characters can be used in the key prefix.
Key characters to the right of the key prefix should be represented by binary Os.

To use actual addresses, you must keep an account of where the records were written
when the data set was created. The device address of the block containing the record
just processed by a PUT -move macro instruction is available in the 8-byte data control
block field DCBLPDA. For blocked records the address is the same for each record in
the block.

ESETL - End Sequential Retrieval

The ESETL macro instruction directs the system to stop retrieving records from an
indexed sequential data set. A new scan limit can then be set, or processing
terminated. An end-of-data-set indication automatically terminates retrieval. An
ESETL macro instruction must be executed before another SETL macro instruction
(described above) using the same DCB is executed.

Creating an Indexed Sequential Data Set

You can create an indexed sequential data set in one step or in several steps. You can
create the data set either by writing all records in a single step or by writing one group
of records in one step and writing additional groups of records in subsequent steps.
Writing records in subsequent steps is resume loading. When using either one step or
several steps, you must present the records for writing in ascending order by key.

To create an indexed sequential data set by the one-step method, you should proceed
as follows:

Code DSORG=IS or ISU and MACRF=PM or PL in the DCB macro
instruction.

• Specify in the DD statement the DCB attributes DSORG=IS or ISU, record
length (LRECL), blocksize (BLKSIZE), record format (RECFM), key length
(KEYLEN), relative key position (RKP), options required (OPTCD), cylinder
overflow (CYLOFL), and the number of tracks for a master index (NTM).

94 OS Data Management Services

Specify space requirements with the SPACE parameter. To reuse previously allocated
space, omit the SPACE parameter and code DISP=(OLD,[KEEPD.

• Open the data set for output.

• Use the PUT macro instruction to place all the records or blocks on the
direct-access volume.

• Close the data set.

The records that compose a newly created data set must be presented for writing in

I
ascending order by key. You can merge two or more input data sets. If you want a
data set with no records (a null data set), you must write at least one record when you
create the data set. You can subsequently delete this record to achieve the null data
set.

If records are blocked, you should not write a 1-byte record with the hexadecimal
value FF. This value is used for padding; if it occurs as the last record of a block, the
record cannot be retrieved.

When creating an indexed sequential data set, a procedure called loading, you can
improve performance by using the full-track-index-write option. You do this by
specifying OPTCD= U in the DCB. This causes the operating system to accumulate
track-index entries in main storage. Note that the full-track-index-write option can
be used only for fixed-length records.

If you do not specify this option, the operating system writes each normal-overflow
pair of entries for the track index after the associated prime data track has been
written. If you specify this option, the operating system accumulates track-index
entries in main storage until either there are enough entries to fill a track or
end-of-data or end-of-cylinder is reached. Then the operating system writes these
entries as a group, writing one group for each track of track index.

When you specify the full-track-index-write option, the track index entries are written
as fixed-length unblocked records. If a large enough area of main storage is not
available, the entries are written as they are created, that is, in normal-overflow pairs.

Once an indexed sequential data set has been created, its characteristics cannot be
changed. However, for added flexibility, the system allows you to retrieve records
using either the queued access technique with simple buffering, or the basic access
technique with dynamic buffering.

Tape-to-Disk - Indexed Sequential Data Set: The example in Figure 54 shows the
creation of an indexed sequential data set from an input tape containing 60-character
records. The key by which the data set is organized is in positions 20-29. The output
records will be an exact image of the input, except that the records will be blocked.
One track per cylinder is to be reserved for cylinder overflow. Master indexes are to
be built when the cylinder index exceeds six tracks. Reorganization information about
the status of the cylinder overflow areas is to be maintained by the system. The delete
option will be used during any future updating.

To create an indexed sequential data set in more than one step, create the first group
of records using the one step method described above. ·This first section must contain
at least one data record. The remaining records can then be added to the end of the
data set in subsequent steps using resume load. Each group to be added must contain
records with successively higher keys. This method allows you to create the indexed
sequential data set in several short time periods rather than in a single long one.

Part 2: Data Management Processing Procedures 95

IIINDEXDD DD
II

I IINPUTDD DD

DSNAME=SLATE.DICT(PRIME),DCB=(BLKSIZE=240,CYLOFL=1,
DSORG=IS,OPTCD=MYLR,RECFM=FB,LRECL=60,NTM=6,RKP=19,
KEYLEN=10),UNIT=2311,SPACE=(CYL,25"CONTIG),---

~C

C

ISLOAD START 0

DCBD
ISLOAD CSECT

OPEN
NEXTREC GET

LR
PUT
B

CHECKERR L
USING
TM
BO
TM
BO
TM
BO

Rest of error checking
Error routine

DSORG=IS

(IPDATA"ISDATA,(OUTPUT))
IPDATA
0,1
ISDATA,(O)
NEXTREC

3,=A(ISDATA)
IHADCB,3
DCBEXCD1,X'04'
OPERR
DCBEXCD1 , X' 20'
NOSPACE
DCBEXCD2,X'80'
SEQCHK

Locate mode
Address of record in register 1
Move mode

Initialize base for errors

Uncorrectable error

Space not found

Record out of sequence

End of job routine (EODAD FOR IPDATA)
IPDATA DCB
ISDATA DCB DDNAME=INDEXDD,DSORG=IS,MACRF=(PM),SYNAD=CHECKERR

Figure 54. Creating an Indexed Sequential Data Set

This method also allows you to provide limited recovery from uncorrectable output
errors. When an uncorrectable output error is detected, do not attempt to continue
processing or to close the data set. If you have provided a SYNAD routine, it should
issue the ABEND macro instruction to terminate processing. If no SYNAD routine is

I
provided, the control program will terminate your processing. If the error shows that
space in which to add the record was not found, you must close the data set; issuing
subsequent PUT macro instructions can cause unpredictable results. You should begin
recovery at the record following the end of the data as of the last successful close. The
rerun time is limited to that necessary to add the new records, rather than to that
necessary to recreate the whole data set.

When you extend an indexed sequential data set with resume load, the disposition
parameter of the DD statement must specify MOD. To ensure that the necessary
control information is in the DSCB before attempting to add records, you should at
least open and close the data set successfully on a version of the system that includes
resume load. This need be done only if the data set was created on a previous version
of the system. Records may be added to the data set by resume load until the space
allocated for prime data in the first, step has been filled.

During resume load on a data set with a partially filled track and/or a partially filled
cylinder, the track index entry and/or the cylinder index entry is overlaid when the
track or cylinder is filled. If resume load abnormally terminates after these index
entries have been overlaid, a subsequent resume load will result in a sequence check
when it adds a key that is higher than the highest key at the last successful CLOSE but
lower than the key in the overlaid index entry. When the SYNAD exit is taken for a
sequence check, register 0 contains the address of the high key of the data set.

96 OS Data Management Services

Updating an Indexed Sequential Data Set

To sequentially retrieve and update records in an indexed sequential data set:

Code DSORG=IS or ISU to agree with what you specified when you created the
data set, and MACRF=GL, SK, or PU in the DCB macro instruction.

Code a DD statement for retrieving the data set. The data set c,haracteristics and
options are as defined when the data set was created.

Open the data set.

Set the beginning of sequential retrieval (SETL).

• Retrieve records and process as required, marking records for deletion as required.

Return records to the data set.

Use ESETL to end sequential retrieval as required and reset the starting point.

Close the data set to end all retrieval.

Sequential Updates - Indexed Sequential Data Set: Assume that, using the data set
created in the previous example, you are to retrieve all records beginning with 915.
Those records with a date (positions 13-16) before today's date are to be deleted. The
date is in the standard form as returned by the system in response to the TIME macro
instruction, that is, packed decimal OOyyddds. Overflow records can be logically
deleted even though they cannot be physically deleted from the data set.

One way to solve this problem is shown in Figure 55.

Direct Retrieval and Update of an Indexed Sequential Data Set

By using the basic indexed sequential access method (BISAM) to process an indexed
sequential data set, you can make direct references to the records in the data set for the
purpose of:

Direct retrieval of a record by its key

Direct update of a record

Direct insertion of new records

Because the operations are direct, there can be no anticipatory buffering. However,
the system provides dynamic buffering each time a read request is made, if specified.

To ensure that the requested record is in main storage before you start processing, you
must issue aWAIT or CHECK macro instruction. If you issue aWAIT macro
instruction, you must test the exception code field of the DECB. If you issue a
CHECK macro instruction, the system tests the exception code field in the DECB. If
an error analysis routine has not been specified and a CHECK is issued, the program is
abnormally terminated with a system completion code X'001 '. In either case, if you
wish to determine whether the record is an overflow record, you should test the
exception code field of the DECB.

After you test the exception code field of the DECB, you need not set it to o. If you
have used a READ KU macro instruction and if you plan to use the same DECB again
to rewrite the updated record using a WRITE K macro instruction, you should not set
the field to O. If you do, your record may not be rewritten properly.

Part 2: Data Management Processing Procedures 97

//INDEXDD DD DSNAME=SLATE.DICT,---

ISRETR START 0
DCBD DSORG=IS

ISRETR CSECT

USING IHADCB,3
LA 3, ISDATA
OPEN (ISDATA)
SETL ISDATA,KC,KEYADDR Set scan limit
TIME Today's date in register 1
ST 1 , TODAY

NEXTREC GET ISDATA Locate mode
CLC 1 9 (1 0 , 1), LIMI T
BNL ENDJOB
CP 1 2 (4 , 1), TODAY Compare for old date
BNL NEXTREC
MVI O(1) , X' FF' Flag old record for deletion
PUTX ISDATA Return delete record
B NEXTREC

TODAY DS F
KEYADDR DC C'91S' Key prefix

DC XL7'O' Key padding
LIMIT DC C'916'

DC XL7'O'

CHECKERR
Test DCBEXCD1 and DCBEXDE2 for error indication
Error Routines
ENDJOB CLOSE

ISDATA DCB

(ISDATA)

DSNAME=INDEXDD,DSORG=IS,MACRF=(GL,SK,PU),
SYNAD=CHECKERR

C

Figure 55. Sequentially Updating an Indexed Sequential Data Set

To update existing records, you must use the READ KU and WRITE K combination.
Because READ KU implies that the record will be rewritten in the data set, the system
retains the DECB and the buffer used in the READ KU and uses them when the
record is written. If you decide not to write the record, you should use the same
DECB in another read or write macro instruction or issue a FREEDBUF macro
instruction if dynamic buffering was used. If you issue several READ KU or WRITE
K macro instructions before checking the first one, you may destroy some of your
updated records unless the records are from different blocks.

If there is the possibility that your task and another task will be simultaneously
updating the same data set, or the same task has two or more DCBs opened for the
same data set, you should use the DCB integrity feature. You specify the DCB
integrity feature by coding DISP=SHR in your DD statement. In this way you ensure
that the DCB fields are maintained for your program to process the data set correctly.
If you do not use DISP=SHR and more than one DCB is open for updating the data
set, the results are unpredicatable.

If you specify DISP=SHR, you must also issue an ENQ for the data set before each
input/ output request and a DEQ upon completion of the request. All users of the data
set must use the same qname operand for ENQ. For example, the users might use the

98 OS Data Management Services

data set name as the qname operand. For more information about using ENQ and
DEQ, see OS Supervisor Services and Macro Instructions.

When you are using resume load or the scan mode with QISAM and you want to issue
PUTX, issue an ENQ on the data set before processing it and a DEQ after processing
is complete. When you are using BISAM to update the data set, do not modify any
DCB fields or issue a DEQ until you have issued CHECK or WAIT.

Sharing a BISAM DCB between Related Tasks: When a task using BISAM processes a
data set whose DCB is defined and opened by a related task, the task must issue an
ENQ on the DCB before an input/output request is issued and must issue a DEQ after
the WAIT or CHECK for the input/output request is issued. If the task does not
enqueue the DCB and any of its related tasks terminates abnormally, the task may
enter a wait state or a program check may occur. See OS Supervisor Services and
Macro Instructions for more information on the ENQ and DEQ macro instructions and
on multitasking.

/ /INDEXDD DD
/ /TAPEDD DD

DSNAME=SLATE.DICT,DCB=(DSORG=IS,BUFNO=1, ...),---

ISUPDATE START 0

NEXTREC

RDCHECK

AREA
KEY
UPDATE
RESOURCE
ELEMENT

GET
ENQ
READ
WAIT
TM
BM
L
MVC
WRITE
WAIT
TM
BM
DEQ
B
TM
BZ
FREEDBUF
MVC
WRITE
WAIT
TM
BM
DEQ
B
DS
DS
DS
DS
DC
DC

TPDATA,KEY
(RESOURCE,ELEMENT,E"SYSTEM)
DECBRW,KU" 'S',MF=E
ECB=DECBRW
DECBRW+24,X'FD'
RDCHECK
3,DECBRW+16
30,(20,3),UPDATE
DECBRW,K,MF=E
ECB=DECBRW
DECBRW+24,X'FD'
WRCHECK
(RESOURCE,ELEMENT,SYSTEM)
NEXTREC
DECBRW+24,X'80'
SYNAD
DECBRW,K,ISDATA
AREA, KEY
DECBRW,KN"AREA-16, IS' ,MF=E
ECB=DECBRW
DECBRW+24,X'FD'
SYNAD
(RESOURCE,ELEMENT"SYSTEM)
NEXTREC
4F
30C
CL10
CL20
CL8'SLATE'
C'DICT'

Test for any condition
but overflow
pick up pointer to record
Update record

Any errors?

No record found
If not, go to error routine
Otherwise, free buffer

Add record to file

Test for errors

Release exclusive control

BISAM WRITE KN work field
Logical record to be added

READ
ISDATA DCB

DECBRW,KU,ISDATA,'S' ,IS' ,KEY,MF=L
DDNAME=INDEXDD,DSORG=IS,MACRF=(RUS,WUA),

MSHI=INDEX,SMSI=2000
TPDATA DCB
INDEX DS 2000C

Figure 56. Directly Updating an Indexed Sequential Data Set

C

Part 2: Data Management Processing Procedures 99

Direct Update With Exclusive Control - Indexed Sequential Data Set: In the example
shown in Figure 56, the previously described data set is to be updated directly with
transaction records on tape. The input tape records are 30 characters long, the key is
in positions 1-10, and the update information is in positions 11-30. The update
information replaces data in positions 31-50 of the indexed sequential data record.

Exclusive control of the data set is requested since more than one task may be referring
to the data set at the same time. Notice that exclusive control is released after each
block is written to avoid tying up the data set until the update is completed.

Note the use of the FREEDBUF macro instruction in Figure 56. Usually the
FREEDBUF macro instruction has two functions:

• To indicate to the ISAM routines that a record that has been read for update will
not be written back

To free a dynamically obtained buffer

In Figure 56, since the read operation was unsuccessful, the FREEDBUF macro
instruction frees only the dynamically obtained buffer.

The first function of FREEDBUF allows you to read a record for update and then
decide not to update it without performing a WRITE for update. You can use this
function even when your READ macro instruction does not specify dynamic buffering,
provided that you have included S (for dynamic buffering) in the MACRF field of your
READ DCB.

You can effect an automatic FREEDBUF simply by reusing the DECB, that is, by
issuing another READ or a WRITE KN to the same DECB. You should use this
feature whenever possible, since it is more efficient than FREEDBUF. For example, in
Figure 56, the FREEDBUF macro instruction could be eliminated, since the WRITE
KN addressed the same DECB as the READ KU.

For an indexed sequential data set with variable-length records, you may make three
types of updates by using the basic access technique. You may read a record and write
it back with no change in its length, simply updating some part of the record. You do
this with a READ KU followed by a WRITE K, the same way you update fixed-length
records. Two other methods for updating variable-length records use the WRITE KN
macro instruction and allow you to change the record length.

In one method, a record read for update (by a READ KU) may be updated in a
manner that will change the record length and then be written back with its new length
by a WRITE KN. In the second method, you may replace a record with another
record having the same key and possibly a different length using the WRITE KN macro
instruction. To replace a record, it is not necessary to have first read the record.

In either method, when changing the record length, you must place the new length in
the DECBLGTH field of the DECB before issuing the WRITE KN macro instruction.
If you use a WRITE macro instruction to update a variable-length record that has been
marked for deletion, the first bit (no record found) of the exceptional condition code
field (DECBEXC1) of the DECB is set on. If this condition is found, the record must
be written using a WRITE KN with nothing specified in the DECBLGTH field.

Direct Update - Indexed Sequential Data Set with Variable-Length Records: In Figure
57, an indexed sequential data set with variable-length records is updated directly with
transaction records on tape. The transaction records are of variable length and each
contains a code identifying the type of transaction. Transaction code 1 indicates that
an existing record is to be replaced by one with the same key; 2 indicates that the

100 OS Data Management Services

//INDEXDD DD
//TAPEDD DD

ISUPDVLR START

NEXTREC GET
CLI

*
BL
READ
CHECK
CLI
BH

record is to be updated by appending additional information, thus changing the record
length; 3 or greater indicates that the record is to be updated with no change to its
length. For this example, the maximum record length of both data sets is 256 bytes.
The key is in positions 6-15 of the records in both data sets. The transaction code is
in position 5 of records on the transaction tape. The work area (REPLAREA) size is
equal to the maximum record length plus 16 bytes.

DSNAME=SLATE.DICT,DCB=(DSORG=IS,BUFNO=1, ...),---

o

TPDATA,TRANAREA
TRANCODE,2

REPLACE
DECBRW,KU,,'S', IS' ,MF=E
DECBRW,DSORG=IS
TRANCODE,2
CHANGE

Determine if replacement or
other transaction
Branch if replacement
Read record for update
Check exceptional conditions
Determine if change or append
Branch if change

* CODE TO MOVE RECORD INTO REPLACEA+16 AND APPEND DATA FROM TRANSACTION
* RECORD

*

*

CHANGE

MVC

WRITE

CHECK
B

DECBRW+6(2),REPLAREA+16

DECBRW,KN"REPLAREA,MF=E

DECBRW,DSORG=IS
NEXTREC

Move new length from RDW
into DECBLGTH (DECB+6)
Rewrite record with changed
length

* CODE TO CHANGE FIELDS OR UPDATE FIELDS OF THE RECORD

WRITE

*
CHECK
B

REPLACE MVC

*
WRITE

*
CHECK
B

CHECKERR

REPLAREA DS
TRANAREA DS
TRANCODE DS
KEY DS
TRANDATA DS-

READ
ISDATA DECB
TPDATA DCB

DECBRW,K,MF=E

DECBRW,DSORG=IS
NEXTREC
DECBRW+6(2),TRANAREA

DECBRW,KN"TRANAREA+16
,MF=E

DECBRW,DSORG=IS
NEXTREC

CL272
CL4
CL1
CL10
CL241

Rewrite record with no
change of length

Move new length from RDW
into DECBLGTH (DECB+6)
Write transaction record
as replacement for record
with the same key

SYNAD routine

DECBRW,KU,ISDATA, 'S', IS' ,KEY,MF=L
DDNAME=INDEXDD,DSORG=IS,MACRF=(RUSC,WUAC),SYNAD=CHECKERR

Figure 57. Directly Updating an Indexed Sequential Data Set with Variable-Length Records

Part 2: Data Management Processing Procedures 101

Processing a Direct Data Set

In a direct data set, there is a relationship between a control number or identification
of each record and its location on the direct-access volume. This relationship allows
you to gain access to a record without an index search. You determine the actual
organization of the data set. If the data· set has been carefully organized, location of a
particular record takes less time than with an indexed sequential data set.

Although you can process a direct data set sequentially using either the queued access
technique or the basic access technique, you cannot read record keys using the queued
access technique. When you use the basic access technique, each unit of data
transmitted between main storage and an I/O device is regarded by the system as a
record. If, in fact, it is a block, you must perform any blocking or deblocking required.
For that reason, the BLKSIZE value must be equal to the LRECL value when
format-F or format-U records are processed. When format-V records are used, the
BLKSIZE value must be equal to the LRECL value plus 4. Only BLKSIZE must be
specified when you add or update records on a direct data set.

As indicated in the discussion of direct-access devices, record keys are optional. If
they are specified, they must be used for every record and must be of a fixed length.

Organizing a Direct Data Set

In developing the organization of your data set, you can use direct addressing. When
direct addresses are used, the location of each record in the data set is known.

If format-F records with keys are being written, the key of each record can be used to
identify the record. For example, a data set with keys ranging from a to 4999 should
be allocated space for 5000 records. Each key relates directly to a location that you
can refer to as a relative record number. The main disadvantage of this type of
organization is that records may not exist for many of the keys even though space has
been reserved for them.

Space could be allocated on the basis of the number of records in the data set rather
than on the range of keys. This type of organization requires the use of a
cross-reference table. When a record is written in the data set, you must note the
physical location either as an actual address or as a relative track and record number.
The addresses must then be stored in a table that is searched when a record is to be
retrieved. Disadvantages are that cross-referencing can be used efficiently only with a
small data set, storage is required for the table, and precessing time is required for
searching and updating the table. ",. ..

A more common, but somewhat complex, technique for organizing the data set involves
the use of indirect addressing. In indirect addressing, the address of each record in the
data set is determined by a mathematical manipulation of the key. This manipUlation is
referred to as randomizing or conversion. Since a number of randomizing procedures
could be used, no attempt is made here to describe or explain those that might be most
appropriate for your data set.

Re/e"ing to a Record in a Direct Data Set

Once you have determined how your data set is to be organized, you must consider
how the individual records will be referred to when the data set is updated or new
records are added. This is important for determining whether a return address will be

102 OS Data Management Services

required when the data is created and, if so, in what form the return address will be
used. The record identification can be represented in any of the following forms:

Relative Block Address: You specify the relative location of the record (block) within
the data set as a 3-byte binary number. This type of reference can be used only with
format-F records. The system computes the actual track and record number. The
relative block address of the first block is O.

Relative Track Address: You specify the relative track as a 2-byte binary number and
the actual record number on that track as a I-byte binary number. The relative track
address of the first track is O.

Relative Track Address and Actual Key: In addition to the relative track address, you
specify the address of a main-storage location containing the record key. The system
computes the actual track address and searches for the record with the correct key.

Actual Address: You supply the actual address in the standard 8-byte form
MBBCCHHR. Remember that the use of an actual address may force you to indicate
that the data set is unmovable.

Extended Search: You request that the system begin its search with a specified starting
location and continue for a certain number of records or tracks. This same option can
be used to request a search for unused space in which a record can be added.

To use the extended search option, you must indicate in the DCB the number of tracks
(including the starting track) or records (including the starting record) that are to be
searched. If you indicate a number of records, the system may actually examine more
than this number. In searching a track, the system searches the whole track (starting
with the first record); it therefore may examine records that precede the starting record
or follow the ending record.

If the DCB specifies a number equal to or greater than the number of tracks allocated
to the data set or the number of records within the data set, the entire data set is
searched in the attempt to satisfy your request.

Exclusive Control for Updating: If more than one task in the same job step is referring
to the same data set through the same DCB, exclusive control can be requested in the
DCB macro instruction to prevent simultaneous reference to the same record. No
other task in the system requesting exclusive control of that record is given access to it
until it is released by means of a WRITE or RELEX macro ins~ruction. Only the task
that opened the data set can use the RELEX macro instruction to release exclusive
control of a record within that data set.

Creating a Direct Data Set

Once the organization of a direct data set has been determined, the process of creating
it is almost identical to that of creating a sequential data set. The data set organization
field in the DCB macro instruction is specified as physical sequential (DSORG=PS or
PSU). The DD statement must indicate direct-access (DSORG=DA or DAU). The
DCB macro instruction must specify a direct-access device (DEVD=DA). If keys are
used, a key length (KEYLEN) must also be specified. Record length (LRECL) should
not be specified. The WRITE macro instruction should be of the form used to create a
direct data set (MACRF=WL).

I If you are using direct addressing with keys, you can reserve space for future format-F
records by writing a dummy record. To reserve or truncate a track f or format-U or

Part 2: Data Management Processing Procedures 103

/ /DAOUTPUT DD

/ /TAPINPUT DD

DIRECT START

L
OPEN
LA

NEXTREC GET
LR

COMPARE C

*
BNE
WRITE
CHECK
AH
B

DUMMY C
BH
WRITE
CHECK
AH
BR

INPUTEND LA
BR

ENDJOB CLOSE

DUMAREA DS
DALOAD DCB

TAPEDCB DCB

format-V records, write a capacity record (see "Direct-Access Device Charac
teristics").

Format-F records are written sequentially as they are presented. When a track is
filled, the system automatically writes the capacity record and advances to the next
track. Because of the form in which relative track addresses are recorded, direct data
sets whose records are to be identified by means other than actual address must be
limited in size to no more than 65,536 tracks for the entire data set.

Tape-to-Disk - Direct Data Set: In the example problem in Figure 58, a tape
containing 204-character records arranged in key sequence is used to create a direct
data set. A 4-byte binary key for each record ranges from 1000 to 8999, so space for
8000 records is requested.

DSNAME=SLATE.INDEX.WORDS,DCB=(DSORG=DA,
BLKSIZE=200,KEYLEN=4,RECFM=F),SPACE=(204,8000),---

9,=F'1000'
(DALOAD,(OUTPUT),TAPEDCB)
10,COMPARE
TAPEDCB
2, 1
9, O(2)

DUMMY .
DECB1,SF,DALOAD,(2)
DECBl
9 ,=H' 1 '
NEXTREC

Compare key of input against
control number

Write data record

C

9,=F'8999' Have 8000 records been written?
ENDJOB
DECB2,SD,DALOAD,DUMAREA
DECB2
9,=H'1 '
10
10,DUMMY
10
(TAPEDCB"DALOAD)

Write dummy

CLS
DSORG=PS,MACRF=(WL),DDNAME=DAOUTPUT,
DEVD=DA,SYNAD=CHECKER,--
EODAD=INPUTEND,MACRF=(GL),

C

Figure 58. Creating a Direct Data Set

Adding or Updating Records on a Direct Data Set

The techniques for adding records to a direct data set depend on the format of the
records and the organization used.

Format-F With Keys: Adding a record amounts to essentially an update by record
identification. The reference to the record can be made by either a relative block
address or a relative track address.

104 OS Data Management Services

If you attempt to add a record by relative block address, the system converts the
address to a relative track address. That track is searched and the new record written
in place of the first dummy record on the track. If there is no dummy record on the
track, you are informed that the write operation did not take place. If you request the
extended search option, the new record will be written in place of the first dummy
record found within the search limits you specify. If none is found, you are notified
that the write operation could not take place. In the same way, a reference by relative
track address causes the record to be written in place of the first dummy record on that
track or the first within the search limits, if requested.

Format-F Without Keys: Here too, adding a record is really updating a dummy record
already in the data set. The main difference is that dummy records cannot be written
automatically when tIle data set is created. You will have to use your own method for
flagging dummy records. The update form of the WRITE macro instruction
(MACRF=W) must be used rather than the add form (MACRF=WA).

You will have to retrieve the record first (using a READ macro instruction), test for a
dummy record, update, and write.

Format-V or Format-U With Keys: The technique used to add records in this case
depends on whether records are located by indirect addressing or a cross-reference
table. If indirect addressing is used, you must at least initialize each track (write a
capacity record) even if no data is actually written. That way the capacity record
indicates how much space is available on the track. If a cross-reference table is used,
you should exhaust the input and then initialize enough succeeding tracks to contain
any additions that might be required.

To add a new record, use a relative track address. The system examines the capacity
record to see if there is room on the track. If there is, the new record is written.
Under the extended search option, the record is written in the first available area within
the search limit.

I
Format-V or Format-U Without Keys: Because a record of this type does not have a
key, you can refer to the record only by its relative track or actual address. When you
add a record to this data set, you must update the cross-reference table required by a
data set of this type.

Tape-to-Disk Add - Direct Data Set: The example in Figure 59 involves adding
records to the data set created in the last example. Notice that the write operation
adds the key and the data record to the data set. If the existing record is not a dummy
record, an indication is returned in the exception code of the DECB. For that reason,
it is better to use the WAIT macro instruction instead of the CHECK macro instruction
to test for errors or exceptional conditions.

Tape-to-Disk Update - Direct Data Set: The example in Figure 60 is similar to that
in Figure 59, but involves updating rather than adding. There is no check for dummy
records. The existing direct data set contains 25,000 records whose 5-byte keys range
from 00001 to 25000. Each data record is 100 bytes long. The first 30 characters are
to be updated. Each input tape record consists of a 5-bytc key and a 3D-byte data
area. Notice that only data is brought into main storage for updating.

Part 2: Data Management Processing Procedures 105

//DIRADD
//TAPEDD
DIRECTAD

NEXTREC

DD
DD
START

OPEN
GET

DSNAME-SLATE.INDEX.WORDS,---

(DIRECT,(OUTPUT},TAPEIN)
TAPEIN,KEY

L 4,KEY Set up relative record number
SH
ST
WRITE
WAIT
CLC
BE

4,=H'1000'
4,REF
DECB,DA,DIRECT,DATA,'S' ,KEY,REF+1
ECB=DECB
DECB+1(2),=X'OOOO' Check for any errors
NEXTR.EC

Check error bits and take required action

DIRECT

TAPEIN
KEY
DATA
REF

DCB

DCB
DS
DS
DS

DDNAME=DIRADD, DSORG=DA,RECFM=F, KEYLEN=4,BLKSIZE=200,
MACRF=(WA)

F
CL200
F

Figure 59. Adding Records to a Direct Data Set

/ /DIRECTDD DD DSNAME=SLATE.INDEX.WORDS,---
/ /TAPINPUT DD
DIRUPDAT START

OPEN (DIRECT,(UPDAT),TAPEDCB)
NEXTREC GET TAPEDCB,KEY

PACK KEY,KEY
CVB 3,KEYFIELD
SH 3 ,=H' 1 '
ST 3,REF
READ DECBRD,DI,DIRECT,'S' ,IS' ,O,REF+1
CHECK DECBRD
L 3,DECBRD+12
MVC O(30,3),DATA
ST 3,DECBWR+12
WRITE DECBWR,DI,DIRECT, IS' ,'S',O,REF+1
CHECK DECBWR
B NEXTREC

KEYFIELD DS OD
DC XL3'-'

KEY DS CL5
DATA DS CL30
REF DS F
DIRECT DCB DSORG=DA,DDNAME=DIRECTDD,MACRF=(RISC,WIC),

OPTCD=R,BUFNO=1,BUFL=100
TAPEDCB DCB

Figure 60. Updating a Direct Data Set

106 as Data Management Services

C

C

Consideration for User Labels: User labels must be created when the data set is
created. They may be updated, but not added or deleted, during processing of a direct
data set. When creating a multivolume direct data set using BSAM, you should turn
off the header exit entry after OPEN and turn on the trailer label exit entry just before
issuing the CLOSE. This eliminates the end-of-volume exits. The first volume,
containing the user label track, must be mounted when the data set is closed. If you
have requested exclusive control, OPEN and CLOSE will ENQ and DEQ to prevent
simultaneous reference to user labels.

Part 2: Data Management Processing Procedures 107

PART 3: DATA SET DISPOSITION AND SPACE ALLOCATION

Allocating Space on Direct-Access Volumes

When direct-access storage space is required for a data set, you specify the amount of
space needed and the device type, and the operating system selects the device and
allocates the space accordingly. This arrangement provides for flexible and efficient
use of devices and available storage space, and· relieves you of considering the details
involved in efficient space control.

Before a direct-access volume can be used for data storage, it must be initialized by the
utility program IBCDASDI. The IBCDASDI functions include in part:

Creating the standard 80-byte volume label and writing it on cylinder 0, track 0,
of the volume.

Initializing the volume table of contents (VTOC). The location of the VTOC
depends on the conventions your installation uses in initializing the volume.

• Writing the home address (HA) and capacity record (RO) for each track.

Checking tracks and making alternate track assignments if necessary.

When the data set is to be stored on a direct-access volume, you must supply, in the
DD statement, control information designating the amount of space to be allocated and
the manner in which it is to be allocated.

Specifying Space Requ"emen~

The amount of space required can be specified in blocks, tracks, or cylinders. If you
want to maintain device independence, specify your space requirements in blocks. If
your request is in tracks or cylinders, you must be aware of such device considerations
as cylinder and track capacity.

Cylinder allocation allows faster input/output of sequential data sets than does track
allocation. Track allocation stops input/output at the end of every track to prevent
references on the same cylinder outside of the data set. The time difference occurs
when you use the sequential access method or the partitioned access method to read a
data set whose record format is not fixed standard (FS). If the data set is partitioned,
the time difference occurs during both loading of a module from the data set and
reading of the data set's directory.

Allocation by Blocks: When the amount of space required is expressed in blocks, you
must specify the number and average length of the blocks within the data set, as in this
example:

II DD --,SPACE=(300,(5000,100))

300 = average block length in bytes
5000 = quantity (number of blocks)

100 = increment (to be used if the quantity is not sufficient) allocated
in additional blocks

Part 3: Data Set Disposition and Space Allocation 1 09

Note that when average block length and secondary space allocation are being used,
the BLKSIZE parameter specified must be equal to the maximum block length.

From this information, the operating system estimates and allocates the number of
tracks required. Space is always in whole tracks. You may also request that the space
allocated for a specific number of blocks begin and end on cylinder boundaries.

You must be certain that both the quantity and the increment are large enough to
contain the largest block to be written. Otherwise, all of the space requested is
allocated but erased as the system tries to find a space large enough for the record.

Allocation by Tracks or Cylinders: When the amount of space required is expressed in
tracks or cylinders, you must also specify the device type in the DD statement, as in
these examples:

II DD --,SPACE=(TRK,(100,S)),UNIT=2301
II OD -,SPACE=(CYL,(3,1)),UNIT=2311

Allocation by Absolute Address: If the data set contains location-dependent information
in the form of an absolute track address (MBBCCHHR), space should be requested
with respect to the number of tracks and the beginning address, as in this example:

II DO -,SPACE=(ABSTR,(SOO,20)),UNIT=2311

where 500 tracks are required, beginning at relative track 20.

Additional Space Allocation Options: The DD statement provides you with a great deal
of flexibility in specifying space requirements. You can request that the space be
continuous (SPACE=CONTIG) or not (SPACE=ALX). These and other options
are described in detail in as Job Control Language Reference.

Estimating Space Requirements

To determine how much space your data set requires, you must consider these
variables:

Device type
Track capacity
Tracks per cylinder

• Cylinders per volume
Data length (blocksize)
Key length
Device overhead

Figure 61 lists the physical characteristics of a number of direct-access storage devices.

The term device overhead refers to the space required on each track for hardware data,
that is, address markers, count areas, gaps between records, record 0, etc. Device
overhead varies with each device and depends also on whether the blocks are written
with keys. To compute the actual space required for each block including device
overhead, you can use the formulas in Figure 62. Note that any fraction of a byte
must be treated as an extra byte. For example, if the formulas give 15.067 bytes, you
must allocate 16 bytes.

110 OS Data Management Services

Device Volume Track Tracks Per Number of Total
Type Type Capacity1 Cylinder Cylinders Capacity1

2311 Disk 3625 10 200 7,250,000
23142 Disk 7294 20 200 29,176,000
2302 Disk 4984 46 246 56,398,944
3330 Disk 13030 19 404 101,751,270
2303 Drum 4892 10 80 3,913,600
2305-1 Drum 14136 8 48 5.428,224
2305-2 Drum 14660 8 96 11,258,880
2301 Drum 20483 8 253 4,096,600
2321 Cell 2000 204 9804 39,200,000

1 Capacity is indicated in bytes.
2 Data applies also to the 2319 Disk Storage Device.
3 There are 25 logical cylinders in a 2301 Drum.
4 A volume is equal to the one bin in a 2321 Data Cell.

Figure 61. Direct-Access Storage Device Capacities

Bytes Required by Each Data Block
Device Blocks With Keys Blocks Without Keys

Bi Bn Bi Bn

2311
2314/2319
2302
3330
2303
2301
2305-1
2305-2
2321

81 +(KL+DL)537 /512
146+(KL+DL)534/512
81 +(KL+DL)537 /512
191 +KL+DL
146+KL+DL
186+KL+DL
632+KL+DL
289+KL+DL
1 00+(KL+OL)537 /512

2'J+KL+DL
45+KL+DL
20+KL+DL
191 +KL+DL
38+KL+DL
53+KL+DL
632+KL+DL
289+KL+DL
16+KL+DL

Bi is any block but the last on the track.
Bn is the last block on the track.
DL is data length.
KL is key length.

Figure 62. Direct-Access Device Overhead Formulas

The formulas can be combined in the following way:

61 +(DL)537 /512
101 +(DL)534/512
61 +(DL)537 /512
135+DL
108+DL
133+DL
430+DL
198+DL
84+(DL)537/512

DL
DL
DL
135+DL
DL
DL
430+DL
198+DL
DL

If you intend to specify your space requirements in tracks (TRK) or cylinders (CYL),
your estimate should be made as shown above. If you request absolute tracks
(ABSTR), remember that you cannot allocate track 0, cylinder o. The amount of space
required for the VTOC will reduce the space available on the rest of the volume.

If you specify your space requirements in average block length, the system performs the
computations for you.

Because a sequential data set and a direct data set are created in the same way, the
estimate and specification of space requirements are identical. If you use the WRITE
SZ macro instruction, your secondary allocation for a direct data set should be at least
2 tracks. Space allocation for a partitioned data set requires that you also consider the
space used for the directory. Similarly, allocation for an ~ndexed sequential data set
requires that you consider the space needed for the prime area, index areas, and
overflow areas.

Part 3: Data Set Disposition and Space Allocation 111

Allocating Space for a Partitioned Data Set

What is the average size of the members to be stored on your direct-access volume?
How many members will fit on the volume? Will you need directory entries for the
member names only or will aliases be used? How many? Will members be added or
replaced frequently? All of these questions must be' answered if you are to estimate
your space requirements accurately and use the spac~ efficiently. Note, too, that a
partitioned data set cannot extend beyond one volume.

If your data set will be quite large, or you expect to do a lot of updating, it might be
best to allocate a full volume. If it will be small or seldom subject to change, you
should make your estimate as accurate as possible to avoid wasted space or wasted time
used for recreating the data set.

Because the characteristics of all the members of the data set must be uniform, the
record format could be specified as undefined (RECFM= U) and the blocksize
(BLKSIZE) as a maximum length. It i~ a good practice to indicate a block length equal
to track capacity, for example, BLKSIi;J3=362S, for a 2311 disk. You might then ask
for either 200 tracks, or 20 cylinders, thus allowing for 725,000 bytes of data.

Assuming an average length of 70,000 bytes for each member, you need space for at
least 10 directory entries. If each member also has an average of three aliases, space
for an additional 30 directory entries is required.

Space for the directory is expressed in 256-byte blocks. Each block contains from 3 to
20 entries, depending on the length of the user data field. If you expect 40 directory
entries, request at least 8 blocks. Because'the space for the directory is allocated in full
tracks, any unused space on the track is wasted unless there is enough space left to
contain a block of the first member. Therefore, the most advisable request in this case
would be for 10 blocks.

Any of the following space specifications would cause the same allocation:

SPACE= (3625,(200" 10))

SPACE= (CYL,(20" 1 0))

SPACE= (TRK,(200" 1 0))

Although an increment has been omitted in these examples, it could have been supplied
to provide for extension of the member area. The directory size, howeN'er, cannot be
extended.

Allocating Space for an Indexed Sequential Data Set

An indexed sequential data set has three areas: prime, index, and overflow. Space for
these areas can be subdivided and allocated as follows:

Prime area - If you request a prime area only, the system automatically uses a
portion of that space for indexes, taking one cylinder at a time as needed. Any
unused space in the last cylinder used for index will be allocated as an
independent overflow area. More than one v61ume can be used in most cases,
but all volumes must be for devices of the sc:i'i'ne device type.

Index area - You can request that a separate area be allocated to contain your
cylinder and master indexes. The index area must be contained within one
volume, but this volume can be on a device of a different type than the one that

112 OS Data Management Services

~
contains the prime area volume. If a separate inslex area is requested, you cannot
catalog the data set with a DD statement. .

If the total space occupied by the prime area and index area does not exceed one
volume, you can request that the separate index area be embedded in the prime
area (to reduce access arm movement) by indicating an index size in the SPACE
parameter of the DD statement defining the prime area.

If you request space for prime and index areas only, the system automatically uses
any space remaining on the last cylinder used for master and cylinder indexes for
overflow, provided the index area is on a device of the same type as the prime
area.

• Overflow area - Although you can request an independent overflow area, it
must be contained within one volume. If no specific request for index area is
made, then it will be allocated from the specified independent overflow area.

To request that a designated number of tracks on each cylinder be used for
cylinder overflow records, you must use the CYLOFL parameter of the DCB
macro instruction. The number of tracks that you can use on each cylinder equals
the total number of tracks on the cylinder minus the number of tracks needed for
track index and for prime data, that is:

Usable tracks = total tracks - (track index tracks + prime data tracks)

Note that when you create a I-cylinder data set, ISAM reserves 1 track on the last
cylinder for the end-of -file file mark.

When you request space for an indexed sequential data set, the DD statement must
follow a number of conventions, as shown below and summarized in Figure 63.

Space can be requested only in cylinders (CYL) or absolute tracks (ABSTR). If
the absolute track technique is used, the designated tracks must make up a whole
number of cylinders.

Data set organization (DSORG) must be specified as indexed sequential (IS or
ISU) in both the DCB macro instruction and the DCB parameter of the DD
statement.

All required volumes must be mounted when the data set is opened; that is,
volume mounting cannot be deferred.

If your prime area extends beyond one volume, you must indicate the number of
units and volumes to be spanned, for example,
UNIT=(2311,3),VOLUME=(",3).

You can catalog the data set using the DD statement parameter DISP=(,CATLG)
only if the entire data set is defined by one DD statement, that is, if you did not
request a separate index or independent overflow area.

As your data set is created, the operating system builds the track indexes in the prime
data area. Unless you request a separate index area or an embedded index area, the
cylinder and master indexes are built in the independent overflow area. I f you did not
request an independent overflow area, the cylinder and master indexes are built in the
prime area:~

Part 3: Bata Set Disposition and Space Allocation 113

Criteria Restrictions on Resulting
Unit Types and Arrangement

1. Number 2. Types 3. Index Numb.er of Units of Areas
of 00 of DO Size Requested
Statements Statements Coded?

3 INDEX None Separate index, prime,
PRIME and overflow areas.
OVFLOW

2 INDEX None Separate index and prime
PRIME areas.

2 PRIME No None Prime area and overflow
OVFLOW area with an index at its

end

2 PRIME Yes The statement Prime area and embedded
OVFLOW defining the prime index, and overflow area.

area cannot request
more than one unit.

PRIME No None Prime area with index at
its end. Any unused index
area is used for indepen-
dent overflow.

PRIME Yes Statement cannot Prime area with embedded
request more than index area.
one unit.

Figure 63. Requests for Indexed Sequential Data Sets

If an error is encountered during allocation of a multivolume data set, the IEHPROGM
utility program should be used to scratch the DSCBs of the data sets that were
successfully allocated. The IEHLIST utility program can be used to determine whether
or not part of the data set has been allocated. The IEHLIST utility program is also
useful to determine whether space is available or whether identically named data sets
exist before space allocation is attempted for indexed sequential data sets. These utility
programs are described in OS Utilities.

Specifying a Prime Data Area

To request that the system allocate space and subdivide it as required, you should code:

Iiddname
II
II

DD DSNAME=dsname,DCB=DSORG=IS,
SPACE=(CYL,quantity"CONTIG),UNIT=unitname,
DISP=(,KEEP),---

C

C

You can accomplish the same type of allocation by qualifying your dsname with the
element indication (PRIME). This element is assumed if omitted. It is required only if
you request an independent index or overflow area. To request an embedded index
area when an independent overflow area is specified, you must indicate
DSNAME=dsname(PRIME). To indicate the size of the embedded index, you specify
SPACE=(CYL,(quantity"index size».

Specifying a Separate Index Area

To request a separate index area, other than an embedded area as described above, you
must use a separate DD statement. The element name is specified as (INDEX). The

114 OS Data Management Services

space and unit designations are as required. Notice that only the first DD statement
can have a data definition name. The data set name (dsname) must be the same.

Iiddname
II

DD DSNAME=dsname(INDEX),--
DD DSNAME=dsname(PRIME),---

Specifying an Independent Overflow Area

A request for an independent overflow area is essentially the same as for a separate
index area. Only the element name, OVFLOW, is changed. If you do not request a
separate index area, only two DD statements are required.

Iiddname DD DSNAME=dsname(INDEX,---
II DD DSNAME=dsname(PRIME),---
II DD DSNAME=dsname(OVFLOW),---

Calculating Space Requirements for an Indexed Sequential Data Set

To determine the number of cylinders required for an indexed sequential data set, you
must consider the number of blocks that will fit on a cylinder, 'the number of blocks
that will be processed, and the amount of space required for indexes and overflow
areas. In making the computations, consider additional space that is required for device
overhead as shown in Figure 62. Remember the formula:

Blocks

per track

= 1 +«Track capacity - Length of the last block)/(Length of other blocks))

Bt = 1 + «Ct-Bn)/Bi)

The following eight steps summarize calculation of space requirements for an indexed
sequential data set.

Step 1

Once you know how many records will fit on a track and the maximum number of
records you expect to create, you can determine how many tracks you will need for
your data.

Number of tracks

required

(Maximum number of blocks/Blocks per track) + 1

ISAM load mode reserves the last prime data track for the file mark.

Example: Assume that a 200,000 record part-of-speech dictionary is stored on an
113M 2311 Disk Storag~Dr.i.ve as an imlexed sequt!Iltial data set. Each record in the
dictionary has a 12-byte key (the word itself) and an 8-byte data area containing a
part-of-speech code and control information. Each block contains 50 records;
LRECL=20 and BLKSIZE= 1000. Using the formula from Figure 62, we find that
each track will contain 3 blocks or 150 records. A total of 1333 1/3 tracks will be
required for the dictionary.

Bt = 1 + 3625 - (20 + 12 + 1000)

81 + 1.049(12 + 1000)

1 + 2593

1143

3

Records per track = (3 blocks)(50 records per block) 150

Prime data tracks required (T) = 200,000 records

150 records per track
+ 1 1334 1/3

Part 3: Data Set Disposition and Space Allocation 115

Step 2

You will want to antiCipate the number of tracks required for cylinder overflow areas.
The computation is the same as for prime data tracks, but you must remember that
overflow records are unblocked and a 10':":byte 'link field is added. Remember, if you
exceed the space allocated for any cylinder' overflow area, an inc1ependent overflow
ar~a is required. Those records are not placed in another cylinder overflow area.

Overflow records

per track (Ot)

1 + Track capacity - Length of last overflow record

Length of other overflow records

Ot = 1 + «Ct-Rn)/Ri)

Example: Approximately 5000 overflow records are expected for the data set
described in step 1. Since 29 overflow records will fit on a track, 173 overflow tracks
are required. This is approximately 2 overflow tracks for every 15 prime data tracks.
Since the 2311 disk has 10 tracks per cylinder, it would probably be best to allocate 2
tracks per cylinder for overflow .

. Ot = 1 + 3625 - (20 + 12 + 20 + 10)

81 + 1.049(12 + 20 + 10)

1 + 3563 = 29

126

Overflow tracks required = __ 5_0_0_0_r_e_co_r_d_s_

29 records per track

173

Overflow tracks per cylinder (Oe) = 2

Step 3

You will have to set aside space in the prime area for track index entries. There will be
two entries (normal and overflow) for each track on a cylinder that contains prime data
records. The data field of each index entry is always 10 bytes long. The key length
corresponds to the key length for the prime data records. How many index entries will
fit on a track?

Index entries

per track (It)

It

+ Track capacity - Length of last index entry

Length of other index entries

1 + «Ct-En)/Ei)

Example: Again assuming 2311 disk and records with 12-byte keys, we find that 35
index entries will fit on a track.

It = 1 + 3625 - (20 + 12 + 10)

81 + 1.049(12 + 10)

1 +3583 = 1 + 34

'·105

35

Step 4

The number of tracks required for track index entries will depend on the number of
tracks per cylinder and the number of track index entries per track. Any unused space
on the last track of the track index can be used for any prime data records that will fit.

Number of track index

tracks per cylinder (Ic)

Ie

116 as Data Management Services

2(Tracks per cylinder-overflow tracks per cylinder) +

Index entries per traek + 2

(2(Tc-Oc)+ 1)/(lt+2)

Note that for variable-length records or when a prime data record will not fit on the
last track of the track index, the last track of the track index is not shared with prime
data records. In such a case, if the remainder of the division is less than or equal to 2,
do not round the quotient up to the nearest integer. In all other cases, round the
quotient up to the nearest integer.

Example: The 2311 disk has 10 tracks per cylinder. You can fit 35 track index entries
per track. Therefore, you need less than 1 track for each cylinder:

Ic = 2(10-2) + 1 = 17

35 + 2 37

The space remaining on the track is «(1-17/37)(3625)) = 1960'bytes. This is enough
for 1 block of prime data records. Since the normal number of blocks per track is 3,
the block uses 1/3 of the track, and the effective value of Ic is therefore 1-1/3 = 2/3.

Step 5

Next you have to compute the number of tracks available on each cylinder for prime
data records. You cannot include tracks set aside for cylinder overflow records.

Prime data

tracks per

cylinder

(Tracks) -(oVerflOW tracks) (Index tracks)
== 'per cylinder - per cylinder - per cylinder

Pc = T c - oc - Ie

Example: If you set aside 2 cylinder overflow tracks, and you require 2/3 of a track
for the track index, 7 1/3 tracks are available on each cylinder for prime data records.

Pc = 10 - 2 - 2/3 = 7 1/3

Step 6

The number of cylinders required for the prime data records, track index area, and
cylinder overflow area is determined by the number of prime data tracks required
divided by the number of prime data tracks available on each cylinder.

Number of

cylinders

required

== Prime data tracks required/Prime data tracks per cylinder

C = T/Pc

Example: You need 1333 1/3 tracks for prime data' records. You can use 7 1/3
tracks per cylinder. Therefore, 182 cylinders are required for your prime area and
cylinder overflow areas.

C = (1333 1/3)/(7 1/3) 181.9

Step 7

You will need space for a cylinder index as well as track indexes. There is a cylinder
index entry for each track index (for each cylinder allocated for the data set). The size
of each entry is the same as the size of the track index entries; therefore, the number
of entries that will fit on a track is the same as the number of track index entries.
Unused space on a cylinder index track is not shared.

Part 3: Data Set Disposition and Space Allocation 117

: '"Number of tracks

required for

cylinder index

Ci

(Track indexes + 1)/lndex entries per track

(C+ 1)/lt

Example: You have 182 track indexes. Since 35 index entries fit on a track, you need
5.3 tracks for your cylinder index. The remaining space on the last track is unused.

Ci = (182 + 1)/35 = 5.3

Note that every time a cylinder index crosses a cylinder boundary, ISAM writes a
dummy index entry that lets IS AM chain the index levels together. The addition of
dummy entries can increase the number of tracks required for a given index level. To
determine how many dummy entries will be required, divide the total number of tracks
required by the number of tracks ona cylinder. If the remainder is 0, subtract 1 from
the quotient. If the corrected quotient is not 0, calculate the number of tracks these
dummy entries require. Also consider any additional cylinder boundaries crossed by
the addition of these tracks and by any track indexes starting and stopping within a
cylinder.

Step 8

If you have a data set large enough to require master indexes, you will want to
calculate the space required according to the number of tracks for master indexes
(NTM parameter) you specified in the DeB macro instruction or the DD statement.

If the cylinder index exceeds the NTM specification, an entry is made in the master
index for each track of the cylinder index. If the master index itself exceeds the NTM
specification, a second-level master index is started. Up to three levels of master
indexes are created if required.

The space requirements for the master index are computed in the same way as those
for the cylinder index.

Number of tracks

required for

master indexes

= (Number of cylinder index tracks + l)/lndex entries per track

M J = (Ci+ 1)/lt when Ci>NTM

M2 = (M J +1)/lt when Ml>NTM

M3 = (M2+ 1)/lt when M2>NTM

Example: Assume that your cylinder index will require 22 tracks. Since large keys are
used, only 10 entries will fit on a)rack. Assuming that NTM was specified as 2, 3
tracks will be required for a master index, and two levels of master index will be
created.

M 1 = (22+ 1)/10 = 2.3

Note that every time a master index crosses a cylinder boundary, ISAM writes a
dummy index entry that lets ISAM chain the index levels together. The addition of
dummy entries can increase the number of tracks required for a given index level. To
determine how many dummy entries will be required, divide the total number of tracks
required by the number of tracks on a cylinder. If the remainder is 0, subtract 1 from
the quotient. If the corrected quotient is not 0, calculate the number of tracks these
dummy entries require. Also consider any additional cylinder boundaries crossed by

118 OS Data Management Services

the addition of these tracks and by any track indexes starting and stopping within a
cylinder.

Summary: Indexed Sequential Space Requirement Calculations

1. How many blocks will fit on a track?

Bt = 1 + «Ct- Bn)/Bi)

2. How many overflow records will fit on a track?

Ot = 1 + «Ct- Rn)/Ri)

3. How many index entries will fit on a track?

It = 1 + «Ct- En)/Ei)

4. How many track index tracks are needed per cylinder?

Ie = (2(Tc-Oc)+ 1)/(lt+2)

5. How many tracks on each cylinder can be used for prime data records?

Pc = Tc - Oc - Ic

6. How many cylinders are needed for the prime data area?

C = T/Pc

7. How many tracks are required for the cylinder index?

Ci = (C+ l)/lt

8. How many tracks are required for master indexes?

M = (Ci+ l)/lt

Control and Disposition of Data Sets

You specify two kinds of status and disposition information for the data sets you use
for your processing by coding DISP= (status,disposition) in the disposition field of the
DD statement. The first kind deals with the status of the data set when you begin
processing and the relationship of the data set to other job steps in your job or other
jobs. The second deals with what is to be done with the data set when you have
completed processing. In the latter case, you can take advantage of the catalog of the
operating system.

A data set that is being used for input has a status of OLD. If it can be used by more
than one job, the status should be specified as SHR. If you are going to add to the
input data set, specify MOD. The system automatically positions the access mechanism
after the last record when the data set is opened. A new output data set should be
indicated as NEW.

Having identified the status of the data set at the beginning of your job step, you
should specify how you want it disposed of at the end of processing. If the disposition
is to be unchanged, you need not specify anything. The status of an existing data set
remains unchanged; a new data set is deleted.

Part 3: Data Set Disposition and Space Allocation 119

The requested disposition is performed at the end of the job step. A data set to be
used in a later job can be kept (KEEP) until a subsequent request is made to delete it.
If the data set is to be used by more than one job step in the same job, you can specify
that it is to be passed (PASS).

If you specify the CA TLG disposition, the data set name is recorded in the catalog by
the system and its volume is noted. An old data set can subsequently be removed from
the catalog if you specify UNCATLG.

If you wish, you can specify one disposition to be performed if the job step terminates
normally, and a different disposition to be performed if the job step terminates
abnormally. For example, you can specify DISP=(OLD,DELETE,KEEP) if you wish
to delete a data set under normal conditions, but wish to keep it if processing is
abnormally terminated. For normal termination, you can specify any disposition -
PASS, KEEP, DELETE, CATLG, or UNCATLG; for abnormal termination, you can
specify any disposition except PASS.

Routing Data Sets through the Output Stream

Whenever you ~have an output data set to be printed or punched, you can route the
data set through the output stream. Data sets in the output stream are written into
intermediate storage on a direct-access device and later transferred to the card punch
or printer by a system routine called the system output writer. Routing data sets
through the output stream improves operating-system efficiency because the
unit-record device is not tied up for the entire length of your program. It is busy only
as long as it takes the system output writer to punch or print your output.

When you route a data set through the output stream, you do not request a unit-record
device for exclusive use by your job step. Instead, you request an output class that is
assigned to the device you need. You should have a list of the output classes in your
installation and of the devices assigned to each class.

Output classes are identified by the letters A-Z and the digits 0-9. You request an
output class by coding the SYSOUT keyword parameter in your DD statement. For
example, code SYSOUT=A to request output class A. You can assign several data sets
to the same output class. The system output writer copies data sets in the order of
their DD statements. For other parameters you can code with the SYSOUT parameter,
see "The SYSOUT Parameter" in the section "The DD Statement" in OS Job Control
Language Reference.

You open and close a SYSOUT data set (a data set routed through the output system)
in the same way as any other data set. If specified in an exit list, the DCB exit routine
is entered in the usual manner.

You create a SYSOUT data set by using either the basic sequential access method
(BSAM) or the queued sequential access method (QSAM). You can write records in

'\
any format defined for the type of unit-record device to whHeh the data set will be
transferred. Record length must not exceed the maximum al16wable for the device.

When you use QSAM with fixed-length blocked records or BSAM, the DCB blocksize
parameter does not have to be a multiple of logical record length (LRECL) if the
blocksize is specified through the SYSOUT DD statement. Under these conditions, if
blocksize is greater than LRECL but not a multiple of LRECL, blocksize is reduced to
the nearest lower multiple of LRECL when the data set is opened. This feature allows
a cataloged procedure to specify blocking for SYSOUT data sets, even though your
LRECL is not known to the system until execution. Therefore, the SYSOUT DD

120 OS Data Management Services

statement of the go step of a compile-load-go procedure can specify blocksize without
blocksize being a multiple of LRECL. For further information, refer to "The DCB
Parameter" in the section "The DD Statement" in OS Job Control Language
Reference.

Because a SYSOUT data set is written on a direct-access device, you should omit the
DEVD operand in the DCB macro instruction, or should code DEVD=DA.

Your SYNAD routine is entered on errors that occur when you write the data set into
intermediate storage on a direct-access device.

Your program is responsible for printing format, pagination, and header control. Use
of control characters must be indicated in the usual way in the DCB. If you do not use
control characters, a standard control is supplied. When channel 12 is sensed, a printer
will space one line and skip to channel 1; a card punch will select punch pocket 1.

Cards can be punched only in EBCDIC mode.

Concatenating Sequential and Partitioned Data Sets

Two or more sequential or partitioned data sets can be automatically retrieved by the
system and processed successively as a single data set. This reading technique is known
as concatenation. A maximum of 255 data sets (16, if partitioned) can be concatenated,
but they must be used only for input.

To save time when processing two consecutive data sets on a single volume, you
specify LEAVE in your OPEN macro instruction. Concatenated data sets cannot be
read backward.

When data sets are concatenated, the system treats the group as a single data set and
only one data extent block (DEB) is constructed. Thus, it is important to consider the
characteristics of the individual data sets being concatenated. Data sets with like
characteristics are those that may be processed correctly using the same data control
block (DCB), input/output block (lOB), and channel program. Any exception makes

I them unlike. Concatenated partitioned data sets are always treated as like and use the
attributes of the first data set only. You must inform the system if unlike data sets are
concatenated by modifying the DCBOFLGS field of the DCB .. The indication must be
made before the end of the current data set is reached. You must set bit 4 to 1 by
using the instruction 01 DCBOFLGS,X'08' as described in "Modifying the Data
Control Block." If bit 4 of the DCBOFLGS field is 1, end-of-volume processing for
each data set will issue a CLOSE for the data set just read and an OPEN for the next
concatenated data set. This opening and closing procedure· updates the fields-in the
DCB and, if necessary, builds a new lOB and a new channel program. If the buffer
pool was obtained automatically by the Open routine, the procedure also frees the
buffer pool and obtains a new one for the next concatenated data set. The procedure
does not issue a FREEPOOL for the last concatenated data set. Unless you have some
way of determining the characteristics of the next data set before it is opened, you
should not reset the DCBOFLGS field to indicate like characteristics during processing.

When unlike data sets h~ve been concatenated, you should not issue multiple input
requests, that is, a series of READ or GET macro instructions, in your program. If you
do, you will have to arrange some way to determine which requests have been
completed and which must be reissued. In any case, the GET or READ macro
instruction that detected the end of data set will have to be reissued. Figure 64
illustrates a possible routine for determining when a GET or READ must be reissued.

Part 3: Data Set Disposition and Space Allocation 121

Process

This restriction does not apply to like data sets since no open or close operation is
necessary between data sets.

When the change from one data set to another is made, label exits are taken as
required; automatic volume switching is also performed for multiple-volume data sets

I unless they are partitioned. If you are concatenating partitioned data sets on multiple
volumes, all the volumes must be mounted before program execution. Your
end-of-data-set (EODAD)routine is not entered until the last data set has been
processed, except that for partitioned data sets, your EODAD routine receives control
at the end of each member. At that time, you can process the next member or close
the data set.

Set
>--O_n ___ --i~ Reread Switch

Off

Set
Reread Switch

On

Return to
Check via Open *

Yes

DCBEXIT

*Returns are to control
program address in register 14

Set First

Time-In

Switch Off

Set Bit 4
of OFLGS

to 1

Figure 64. Reissuing a READ for Unlike Concatenated Data Sets

You process a concatenation of partitioned data sets the same way you process a single
partitioned data set with one exception. You must use the FIND macro instruction to
begin processing a member; you cannot use the POINT (or NOTE) macro instruction
until after the FIND macro instruction has been issued. Example 13 shows how to
process a single partitioned data set using FIND. If two members of different data sets
in the concatenation have the same name, the FIND macro instruction determines the
address of the first one in the concatenation. You would not be able to process the
second one in the concatenation. The' BLD L· macro instruCtion' provides the
concatenation number of the data set to which the member belongs in the K field of
the build list. See the section "BLDL-Construct a Directory Entry List" under
"Processing a Partitioned Data Set" in Part 2 of this book.

122 as para Management ,Services

Further discussion and examples of concatenated data sets are contained in as Job
Control Language Reference.

Cataloging Data Sets

Index
B

The OS catalog is itself a data set residing on one or more direct-access volumes. It is
organized into levels of indexes that connect the data-set names to corresponding
volumes and data-set sequence numbers. For each level of qualification in the data-set
name, there is an index group in the catalog.

The highest level of the catalog resides on the system-residence volume. The VTOC
contains an entry for the DSCB defining the catalog and its highest-level index, the
volume index. The lowest-level index contains the simple name of the data set and the
number of the volume on which it resides.

The complete catalog can exist on the system-residence volume, or you can specify that
parts of it be constructed on other volumes. Any volume containing part of the catalog
is called a control volume. The use of control volumes allows data sets that are
functionally related to be cataloged separately. The advantages include:

Control volumes can be moved from one processing system to another.

• System-residence requirements can be reduced by placement of seldom-used
indexes on a control volume.

System-Residence Volume Control Volume

Volume Table of Contents Volume Table of Contents
Voll,lme

Volume Index E : Poi nter to

I I Volume Serial I Index E
BI Pointer to EI Number of

I Index B I

Index Pointer to

E Index A

'Volume

Index
A

Data Data Data Data

Set Set Set Set

B.F B.G E.A.L E.A.P

Figure 65. Catalog Structure on Two Volumes

Part 3: Data Set Disposition and Space Allocation 123

For any given data set, only one level of control volume, other than the
system-residence volume, can be used. Notice that in Figure 65, INDEX E, which is
the highest-level index on the control volume, has an entry in both volume indexes.

The same type of cataloging is available for maintaining generation data groups.
Cataloging each new generation data set with a unique name would be both
inconvenient and inefficienL If you catalog individual data sets in a chronological
collection by number, the entire collection can be stored under a single data set name.

Each update of the data set is called a generation; the number associated with it is
called a generation number. A generation data group is the entire collection of
chronologically related data sets that can be referred to by the same data set name. A
particular generation can be referred to by either the absolute generation name or the
relative generation number of the data set.

Absolute Generation Name: The operating system assigns each data set in the
generation data group an absolute generation name in the form GggggVvv:

gggg is an unsigned 4-digit decimal generation number.

• vv is an unsigned 2-digit decimal version number.

The generation number indicates how far removed the data set is from the original
generation. The version number indicates how many times the associated generation
has been replaced. Only the most recent version of a specific generation is retained.

Generation Increment: You can specify the increment by which the generation number
is changed. For example, if you request a current generation G0013V04 and an
increment of 2, the new generation would be assigned the absolute generation name
G0015VOO.

Version Increment: When you replace the same generation with a new version, it is
your responsibility to assign the new, nonzero version number.

I
Concatenated Generations: . By specifying only the data group name, you can request a
concatenation of all existing data sets in the generation data group, starting with the
most recent and ending with the oldest, with unit affinity to the most recent.

Relative Generation Number: Rather than request a data set by its absolute generation
number, you can refer to it relative to the most recent generation, that is,
DSNAME=dsname(n). Those immediately preceding the most recent are i~entified by
n values of -1, -2, etc. You create new generations by referring to them 'as
DSNAME=name(+ 1), name (+2), name (+3), etc. The last of these is cataloged as
name (0) and the other generations in the catalog are adjusted accordingly at the end
of the job.

Entering a Data Set Name in the Catalog

The catalog structure, including all levels of indexes, is initially created or modified by
the utility program IEHPROGM. A data set name can then be entered if the proper
index levels of the name e){ist.

Forexample, if a data set named A.B.C is to be cataloged, the volume index on the
system-residence volume must have an index entry for index A, which must point to an
index B. When the data set A.B.C is cataloged, C is entered into index B along with

1'24 OS!Data;M.anagement Services

the volume serial number of the volume where data set A.B.C resides. The cataloging
request is entered as:

//ddnarneDDDSNAME=A.B.C,DISP=(,CATLG)

Entering a Generation Data Group in the Catalog

A data set that is part of a generation data group is represented in the catalog by an
additional level of index that contains an entry for each generation. The utility
program IEHPROGM is used to create the index levels and to instruct the system in
how the generations are to be maintained.

Controlling Confidential Data - Password Protection

In addition to the usual label protection that prevents opening of a data set without the
correct data set name, the operating system provides data set security options that
prevent unauthorized access to confidential data. Two levels of protection options are
available. You specify these options in the LABEL field of a DD statement with the
parameter PASSWORD or NOPWREAD.

Password protection (specified by the PASSWORD parameter) makes a data set
unavailable for all types of processing until a correct password is entered by the
system operator.

No-password-read protection (specified by the NOPWREAD parameter) makes
a data set available for input without a password, but requires that the password
be entered for output or delete operations.

If an incorrect password is entered twice, the job is terminated by the system.

You can request password protection when you create the data set by using the
LABEL field of the DD statement in your JCL. The system sets the data set security
byte either in the standard header label 1 as shown in OS Tape Labels or in the
identifier data set control block (DSCB) as shown in OS System Control Blocks.
Once you have requested security protection, you cannot remove it with JCL unless
you recreate the data set and scratch the protected data set. You can add protection to
an old data set or change it from NOPWREAD to PASSWORD if you open the data
set for OUTPUT or OUTIN when you open it for the first time during a job step.

In addition to requesting password protection in your JCL, you must enter at least one
record for each protected data set in a data set name PASSWORD that must be

---------'-------II-eF~~-Af1t--+J::1te4ijyq.lIef¥~~. eRGe--¥ol-ume. ··OS-lJAJ).S-M--l:::19§-ic, ... QY28-6607; contains
a description of the record format for the PASSWORD data set. You should also
request password protection for the PASSWORD data set itself to prevent both reading
and writing without knowledge of the password.

For a data set on a direct-access device you can place the data set under protection at
the same time that you enter its password in the PASSWORD data set. You can use
the PROTECT macro instruction or the IEHPROGM utility program to add, change,
or delete an entry in the PASSWORD data set; with either of these methods the system
updates the DSCB of the data set to reflect its protected status. This provision
eliminates the need for you to use. JCL whenever you add, change, or remove security
protection for a data seton a direct-access device. A description of how to maintain
the PASSWORD data set, including the PROTECT macro instruction, is contained in
OS Data Management for System Programmers. os Utilities describes IEHPROGM.

Part 3: Data Set Disposition and Space Allocation 125

APPENDIX A: DIRECT-ACCESS LABELS

Only standard label formats are used on direct-access volumes. Volume, data set, and
optional user labels are used (see Figure 66). In the case of direct-access volumes, the
data set label is the data set control block (DSCB).

Tracks

Cylinder

All Remaining
Track of Volume

Figure 66. Direct-Access Labeling

Volume-Label Group

[

[

Volume Label

Additional Labels

(Optiona~

- 1

VTOC DSCB

Free Space DSCB

DSCB

DSCB

DCSB l

Unused Storage
Area for Data Sets

>- VTOC

J

The volume-label group immediately follows the initial program loading (IPL) records
on track 0 of cylinder 0 of the volume. It consists of the initial volume label plus a
maximum of seven additional volume labels. The initial volume label identifies a
volume and its owner, and is used to verify that the correct volume is mounted. It can
also be used to prevent use of the volume by unauthorized programs. The additional
labels are processed by an installation routine that is incorporated into the system.

The format of the direct-access volume label group is shown in Figure 67.

Appendix A: Direct-Access Labels 127

Field (3)

2 (1)

3 (6)

4 (1)

5 (10)

6 (10)

7 (10)

8 (10)

9 ~

(Up to 7 Additional Volume Labels)
80-Byte Physical Record

~

Volume Label Identifier (VOL)

Volume Label Number (1)

Volume Serial Number

Volume Security

VTOC Pointer

Reserved for Manufacturers (Blank)

Reserved (Blank)

Owner Name and Address Code

Blank (29)

l~----,J
Figure 67. Initial Volume Label

Initial Volume Label Format

Volume Label Identifier (VOL): Field 1 contains the initial volume labeL

Volume Label Number (1): Field 2 identifies the relative position of the volume label in
a volume label group. It must be written as 1.

The operating system identifies an initial volume label when, in reading the initial
record, it finds that the first 4 characters of the record are VOL1.

Volume Serial Number: Field 3 contains a unique identification code assigned when the
volume enters the system. You can place the code on the external surface of the
volume for visual identification. The code is normally numeric (000001-999999), but
may be any 6 alphameric characters.

Volume Security: Field 4 is reserved for future use by installations that wish to provide
security for volumes. It must be written as O.

VTOC Pointer: Field 5 of direct-access volume label 1 contains the address of the
VTOC.

128 as Data Management Services

Reserved for Manufacturers: Field 6 is reserved for future standardization purposes.
Leave it blank.

Reserved: Field 7 is reserved for future developmental purposes. Leave it blank.

Owner Name and Address Code: Field 8 contains a unique identification of the owner
of the volume.

All of the bytes in Field 9 are left blank.

Data Set Control Block (DSCB)

The system automatically constructs a DSCB when space is requested for a data set on
a direct-access volume. Each data set on a direct-access volume has one or more
DSCBs to describe its characteristics. The DSCB appears in the VTOC and contains
operating-system data, device-dependent information, and data set characteristics, in
addition to space allocation and other control information. There are seven kinds of
DSCBs, each with a different purpose and a different format number. For an
explanation of the seven kinds of DSCBs, see OS System Control Blocks.

User Label Groups

User header and trailer label groups can be included with data sets of physically
sequential or direct organization. The labels in each group have the format shown in
Figure 68.

Each group can include up to eight labels, but the space required for both groups must
not be more than 1 track on a direct-access device. The current minimum track size
allows a maximum of eight labels, including both header and trailer labels.
Consequently, a program becomes device-dependent (among direct-access devices)
when it creates more than eight labels.

If user labels are specified in the DD statement (LABEL=SUL), an additional track is
normally allocated when the data set is created. No additional track is allocated when
specific tracks are requested (SPACE=(ABSTR, ...)), or when tracks allocated to
another data set are requested (SUBALLOC= ...). In either case, labels are written on
the first track that is allocated.

User Header Label Group: The operating system writes these labels as directed by the
processmg program recordmg the data set. The first 4 characters of the user header
label must be UHLl, ... , UHL8; you can specify the remaining 76 characters. When the
data set is read, the operating system makes the user header labels available to the
problem program for processing.

User Trailer Label Group: These labels are recorded (and processed) as explained in
the preceding text for user header labels, except that the first 4 characters must be
UTLl, , UTL8.

Appendix A: Direct-Access Labels 129

Field (3)

2 (1)

3 -- (76)

80-Byte Physical Record (Maximum of 8)

Label. Identifier (UH L if Header, UTL if Trailer)

Label Number (1 - 8)

-i,... User-Specified

Figure 68. User Header and Trailer Labels

User Header and Trailer Label Format

Label Identifier: Field 1 indicates the kind of user header label. UHL indicates a user
header label; UTL indicates a user trailer label.

Label Number: Field 2 identifies the relative position (1-8) of the label within the user
label group.

User-Specified: Field 3 (76 bytes).

130 OS Data Management Services

APPENDIX B: CONTROL CHARACTERS

Machine Code

As an optional feature, each logical record, in any record format, may include a control
character. This control character is recognized and processed if a data set is being
written to a printer or punch.

For format-F and format-U records, this character is the first byte of the logical
record.

For format-V records, it must be the fifth byte of the logical record, immediately
following the record descriptor word.

Two options are available. If either option is specified in the DCB, the character must
appear in every record and other line spacing or stacker selection options also specified
in the DCB are ignored.

You can specify in the DCB that the machine code control character has been placed in
each logical record. If the record is to be written, the appropriate byte must contain
the command code bit configuration specifying both the write and the desired carriage
or stacker select operation. If the record is not to be written, the byte can specify any
command other than write.

Command codes for specific devices are contained in publications describing the
control units and devices.

Extended American National Standards Institute Code

In place of machine code, you can specify control characters defined by the American
National Standards Institute, Inc. (ANSI). These characters must be represented in
EBCDIC.

Appendix B: Control Characters 131

The extended American National Standards Institute (ANSI) code is as follows:

Code Action Before Printing a Line

b Space one line (blank code)
o Space two lines

Space three lines
+ Suppress space
1 Skip to channel 1
2 Skip to channel 2
3 Skip to. channel 3
4 Skip to channel 4
5 Skip to channel 5
6 Skip to channel 6
7 Skip to channel 7
8 Skip to channel 8
9 Skip to channel 9
A Skip to channel 10
B Skip to channel 11
C Skip to channel 12
V Select punch pocket 1
W Select punch pocket 2

These control characters include those defined by ANSI FORTRAN. If any other
character is specified, it is interpreted as 'b' or V, depending on the device being used;
no error indication is returned.

132 OS Data MariagementServices'

APPENDIX C: SPECIAL PROGRAMMING CONSIDERATIONS FOR THE
3505 CARD READER AND THE 3525 CARD PUNCH

Using BSAM or QSAM, you can read cards on the 3505 Card Reader, or you can
read, punch, interpret punch (punch and interpret the punches), or print cards on the
3525 Card Punch. There are no new programming considerations when you read or
punch cards unless you read using read column eliminate (RCE) or optical mark read
(OMR), which are explained in the last section of this appendix. The following three
sections will help you write programs to interpret punch, to print, or to do more than
one operation on each card during the execution of your program.

3525 Interpret Punch

3525 Print

You can interpret punch by specifying FUNC=I in the DCB. LRECL must be 80 or
81 if you use a control character. The first 64 characters that you punch in a card are
printed (interpreted) on line 1 of the card; the last 16 characters are printed
right-justified on line 3 of the card. One output macro instruction is all you need to
both punch and interpret the punches on a card.

You can print two lines of data or as many as 25 lines of data on a card. If you
specify FUNC=WT in the DCB, you can print on lines 1 and 3 only (two-line print).
If you specify FUNC= W, you can print as many as 25 lines on a single card (multiline
print). You can print data that is identical to or different from the data which is
punched on the card.

You effect stacker selection for cards when printing only by using the STACK operand
of the DCB macro instruction.

You can control line positioning and card feeding by using the CNTRL macro
instruction or by using the control characters explained in " Appendix B: Control
Characters." If you use ANSI control characters, abnormal termination results when
you try to space and print beyond line 3 (two-line print) or beyond line 25 (multiline
print) or when you try to suppress space and print on any 'line. You feed the next card
by skipping to a channel with a number equal to or less than the channel number on . .
channel numbers.

If you do not control printing by using the CNTRL macro instruction or by using
control characters, print lines are single-spaced and cards are fed automatically.

3525 Associated Data Sets

You can perform more than one operation on each card during the execution of your
program. The data used for each operation is considered as an individual data set and
each data set must have a separate DCB. For example, if you want to read a card,
punch additional data into the card, and print data on the card, you must specify three
DCBs. These three data sets are called associated data sets. You indicate that they are

Appendix C: Special Programming Considerations for the 350.5 Card Reader and the 3525 Card Punch 133

associated by coding the proper subparameters for FUNC in each DCB. In this
example you code FUNC=RPW. See OS Data Management Macro Instructions for
the other FUNC subparameters you would code for other associated data sets.

You must also indicate that the data sets are associated with the same device by using
the unit affinity parameter of the DD statement. On the first DD statement for an
associated data set you would code UNIT=3525 or UNIT=unitaddress; on the DD
statements for the other associated data sets you would code UNIT=AFF=READ,
where READ is the name of the first DD statement. The following JCL examples
show how you would code the UNIT parameter using device type and the DCB
parameter of the DD statement.

Line Number Channel Number

1
2
3 2
4
5 3
6
7 4
8
9 5

10
11 6
12
13 7
14
15 8
16
17 9 (overflow)
18
19 10
20
21 11
22
23 12 (overflow)
24
25

Figure 69. Correspondence Between Print Line Numbers and Channel Numbers

Read and punch associated data sets:

//READ DD UNIT=3525,DCB=(FUNC=RP)
//PUNCH DD UNIT=AFF=READ,DCB=(FUNC=RP)

Read, punch, and print associated data sets:

/ /READ DD
/ /PUNCH DD
/ /PRINT DD

UNIT=3525,DCB=(FUNC=RPW)
UNIT=AFF=READ,DCB=(FUNC=RPW)
UNIT=AFF=READ,DCB=(FUNC=RPWX)

Read and print associated data sets:

//READ DO UNIT=3525,DCB=(FUNC=RW)
//PRINT DD UNIT=AFF=READ,DCB=(FUNC=RWX)

134 as Data Management Services

Punch and print associated data sets:

//PUNCH DD UNIT=3525,DCB=(FUNC=PW)
//PRINT DD UNIT=AFF=PUNCH,DCB=(FUNC=PWX)

Only four combinations of operations are allowed for associated data sets. You can
read and punch; read, punch, and print; read and print; or punch and print. The
following restrictions apply to associated data sets:

I/O operations on a single card must be completed in the sequence read, punch,
print. Two reads in succession or two punches in succession cause abnormal
termination if performed on the read and punch data sets or the read, punch, and
print data sets. A print operation can be omitted or repeated, but the first line on
a card cannot be printed until the card has been punched or, if the card is not to
be punched, until the card has been read.

You can use either BSAM or QSAM to process associated data sets, but the same
access method must be used on all the associated data sets in the program.
Otherwise abnormal termination occurs.

The FUNC parameter must be coded in the DCB or the DD statement for each
associated data set. See OS Data Management Macro Instructions for a
complete description of the FUNC parameter.

• Associated data sets cannot be allocated to SYSIN or SYSOUT. You must
request the specific device type or unit address in the UNIT parameter of the DD
statement. See OS Job Control Language Reference and the examples above
for more information on the DD statement and the UNIT parameter.

BUFNO= 1 must be specified to read or punch an associated data set.

When one of the associated data sets is to be punched, stacker selection can occur
only with the punch data set. You can accomplish this by using control characters
or the STACK operand of the DCB macro instruction. For the read and print
associated data sets where no punch data set is used, stacker selection can be
specified only with the read read data set through the CNTRL macro instruction.

• To. prevent punching card columns that already contain data, you request the data
protection option in the FUNC parameter of the DCB macro instruction. This
option applies only to the read, punch, and print associated data sets and the read
and punch associated data sets. OS Data Management Macro Instructions
explains how to request the data protection option in the FUN C parameter of the

An attempt to feed a card during printing causes abnormal termination. The next
card feeds automatically when you request the next read or punch.

Opening Associated Data Sets

Associated data sets can be opened in any order, but you cannot process one associated
data set unless all associated data sets are open. If an I/O operation is requested for a
data set when one or more of its associated data sets is not open, abnormal termination
results.

Appendix C: Special Programming Considerations for the 3505 Card Reader and the 3525 Card Punch 135

Closing Associated Data Sets

Associated data sets can be closed in any order, but once a data set is closed, I/O
operations cannot be requested for any of its associated data sets. If such an operation
is requested, abnormal termination results.

When you close the associated data set that causes card feeds, the CLOSE macro
instruction causes a feed command to be issued. This ensures that your last data card
is moved from the card transport to the stacker. If you do not close the data set that
causes card feeds before your job terminates, your last data card will remain in the card
transport. Figure 70 shows which operation causes a card feed for 3525 data sets and
associated data sets.

Data Set

Read

Punch

Print

Interpret Punch

Read and Punch

Read, Punch, and Print

Read and Print

Punch and Print

Operation Causing a Card Feed

Read

Punch

Print

Punch

Read

Read

Read

Punch

Figure 70. Operations That Cause Card Feed for a 3525 Card Punch

If you use a data delimiter card for the input data set, your program must check for it
and branch to your EODAD routine. If the end-of-file condition is sensed by the
device, the system branches to your EODAD routine and causes a card feed. After
your program reads a data delimiter card, do not attempt to punch or print on it; if you
do, you will cause the first card of the following job to be lost. Your data delimiter
card remains in the card transport until the following job causes a card feed or until a
nonprocess runout is performed by the operator.

To prevent the loss of the last data card when data sets are closed, remember the
following restrictions:

All associated data sets must be closed before termination of the job step without
intervening I/O operations for any of the associated data sets.

If any data set is reopened, the appropriate associations must be reestablished.

• If the data set was read in read column eliminate (RCE) mode, a card feed will
be issued to reset the mode to read 80 columns instead of the normal card feed
that is issued when the data set is closed.

136 OS Data Management Services

Optical Mark Read (3505 only) and Read Column Eliminate (3505 and 3525)

If you specify MODE=O for optical mark ~ead (OMR) or MODE=R for read column
eliminate (RCE) in the DCB, you must provide a format descriptor card as the first
card of your data deck. The format descriptor card specifies the columns from which
optical marks are to be read or the columns which are to be eliminated. Abnormal
termination results if you do not supply a format descriptor card. If you use
checkpoint/restart, the format of the OMR or RCE data set must be reestablished
when the job is restarted.

Format Descriptor Card: The word FORMAT must be coded starting in column 2 of
the first card of the data deck, followed by a blank and the parameters that specify the
columns to be read in OMR mode or RCE mode. The remaining columns are read in
the normal punched mode.

If columns 1,3,5,7,9,70,72,74,76,78, and 80 are to be read in OMR mode, code
FORMAT (1,9),(70,80). A maximum of 40 columns of OMR data can be read from

each card.

If columns 20 through 30 and 52 through 76 are not to be read (RCE mode), code
FORMAT (20,30),(52,76).

Continuation cards can be coded if necessary and are coded like macro instruction
continuation cards.

OMR or RCE is in effect only while the data set that specifies it is open.

OMR Data Records: The following rules apply to coding an OMR record.

Mark fields must be separated by at least one blank (not a punch or mark).

Mark and punch fields must be separated by at least one blank (not a punch or
mark).

Mark fields in odd columns and mark fields in even columns must be separated by
at least two blanks (not punches or marks).

Mark or punch fields may begin in any column, so long as the coding conforms to
the first three rules.

These rules and their application to an 80-column card are represented in Figure 71.

Although OMR data is physically located on the card in alternating columns, the data is
compressed in the channel. The blank following an optical mark is not transferred to
the input buffer. See Figure 71 for the format of the OMR data as it appears in the
channel and input buffer.

When a marginal mark, weak mark, or poor erasure is detected, the column's data is
replaced with X'3F' in EBCDIC or with X'3F3F' in column binary mode. X'3F' is
also placed in column 80 for EBCDIC and column 160 for column binary. You are
responsible for checking for OMR reading errors.

Appendix C: Special Programming Considerations for the 3505 Card Reader and the 3525 Card Punch 137

Card Column 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Card Data P1 P2 @ M4 @ M6 @ @ Mg @ M11 @ P13 P14 P15

""'-- ,-- ", - - - -
switch from switch from switch from

punch to mark even to odd marks mark to punch

Input Buffer and
P1 P2 Izf M4 M6 L!$ Mg M11 P13 P14 P15 Channel Data

@ must have neither punch nor mark data

b hexadecimal 40

Px punch data in Column X

Mx mark data in Column X

Figure 71. OMR Coding Rules

138 OS Data Management Services

INDEX

Indexes to Systems Reference Library publications are consolidated in OS Master Index to Reference
Manuals, GC28-6644. For additional information about any subject listed below, refer to other publications
listed for the same subject in the Master Index.

ABE error option 23
absolute (actual) address
absolute generation name
ACC error option 23
access method 2

defined 39
selecting 44

access techniques
basic 2,40-43
queued 2,39-40

actual track address

16-17,103,110
124

(MBBCCHHR) 16-17,103,110
address, direct-access

absolute (actual) 16-17,103,110
relative 17,74,75,103

AFF (affinity, channel) 20
alias

effect on, of changing directory entry 79
entry in directory 74

alignment, buffer 50,57
allocation

(See space allocation)
American National Standard Code for Information
Interchange

(See ASCII block prefix;
ASCII format)

American National Standard labels 5
American National Standards Institute

(See ANSI control character; American National
Standard labels)

ANSI control character
with chained scheduling 69-70
described 131-132
device-type considerations 62
with format-D records 14
with format-F ASCII tape records 8
with format-U records 14

anticipatory buffering
omitted with basic access technique 40,71,97
with queued access technique 39

ASCII block prefix
with format-D records 12-14
with format-F records 8
with format-U records 14
restrictions 8,13

ASCII format
and device-type considerations 62
restriction for 7-track tape 62
translating data from 5,6
translating data to 40,41

ASCII variable-length records (format-D) 12-14
associated data sets (3525 Card Punch)

closing
data delimiter 136
emptying card transport 136
end-of-file sensed by device 136
preventing loss of last data card 136

defined 133
FUNC operand 134
opening 135
restrictions

access method 135
BUFNO 135
card feeding during printing 135
data protection 135
sequence of I/O 135
stacker selection 135

unit affinity 134
automatic blocking 39
automatic cataloging of data sets 4
automatic error options (EROPT) 23
auxiliary storage

(See data set storage; direct-access storage;
magnetic-tape volumes)

backspace
by BSP 66
by CNTRL 65

basic access technique
blocking 102
buffer control 53
definition of 2,40
uses

creating data sets 71
reading fixed blocked records 72-73
with direct data sets 102
with indexed sequential data sets 83,87,97
with partitioned data sets 77

BDAM (basic direct access method)
restriction with chained scheduling 69
selecting an access method 44
spanned variable-length records t 2
(See also direct data set)

BOW (block descriptor word) 10,13
BFTEK field 11,41,53
bin, data cell 3, 17
BLDL macro instruction

build list format 78

Index 139

BLDL macro instruction (continued)
description 77
updating a partitioned data set 82
use 77,80,82

BLKSIZE field
description 20
device-dependence 63,69
effect of data check on 6,62
including block prefix 13
requirement for direct data set 102

block, data
definition 6
descriptor word (BDW) 10,13
(See also record format)

block count exit routine 25,30-31
block descriptor word (BDW) 10,13
blocking

automatic 39
defined 6
with fixed-length records 6
with standard fixed-length records 7
with variable-length records 9-12
with undefined·-Iength records 14
usefulness 6

block prefix (ASCII records)
with format-D records 12-14
with format-F records 8
with format-V records 14
restrictions 8,13

blocksize field
(See BLKSIZE field)

boundary alignment
buffer 50,56
data control block 35

BSAM (basic sequential access method)
(See basic access technique)

BSP macro instruction 66
buffer

acquisition and control 49-61
alignment 50,57
control

direct 49,53
dynamic 49,53
forms control 31-32

defined 49
length (BUFL) 49,62,91
number (BUFNO) 49
pool 49-52
(See also buffer pool construction)
segment 49
(See also GETBUF; FREEBUF; FREEDBUF;
RELSE; TRUNC)

buffer pool construction 49-52
automatic 49,50,51
examples 52
explicit 50,51
static 50
(See also BUILD; GETPOOL; FREEPOOL)

buffering
dynamic 49,53
exchange 49,53,56.;.59
simple 49,53,54-56,71
summary 59

, 140 •. QS ... Data Management Services

BUFOFF field 8,13
build list format 78
BUILD macro instruction
. description 50

with indexed sequential data set 90
BUILDRCD macro instruction 51

capacity
cylinder 5, 109
record 16, 109
track 7,15,93,109-111

card punch (PC), record format with 63-64
card reader (RD)

record format with 63-64
restriction with CNTRL macro instruction 65

carriage control
characters 15,62,131-132
format-D 12
format-F 6,8
format-U 14
format-V 10
(See also CNTRL; PRTOV)

catalog, system 123-125
control volumes 123
entering a data set name 123
entering a generation data group 124

cataloging data sets
automatic 4
defined 1

CCW
(See channel command word)

chained scheduling 61,69-70
restriction with partitioned data set 82

changing an address in the data control block 35-36
channel command word (CCW)

creation by OPEN 45
PCI flag in 69
use in exchange buffering 56,57
use in simple buffering 54

channel program
execute (EXCP) 2,44
number of (NCP) 40

channel separation and affinity (SEP / AFF) field 20
character set, changing 65-66
CHECK macro instruction

DECB 42,43
description 42
updating a partitioned data set 80
use with SYNAD routine 23
using WAIT instead 42,97,105

checkpoint/ restart
restriction for OMR and RCE 137

CHKPT macro instruction
use in end-of-volume exit routine 30

CLOSE macro instruction
description 47
function 45
for multiple data sets 45
with partitioned data set 79-80
temporary close option 47

CLOSE macro instruction (continued)
TYPE=T 47
TYPE= T exception for direct data sets 47
volume positioning 47

closing a data set 45-46,47
restriction for loaded data sets 19,45

CNTRL macro instruction 65
device dependence 68
restrictions

with BSP macro instruction 66
with chained scheduling 69

concatenation
defined 121
of generations 124
of partitioned data sets 121-122
of sequential data sets 121-122
of unlike data sets 121-122

condition, exceptional
analysis of 42-43
SYNAD routine 22-24
testing for 39,42
(See also CHECK; WAIT)

control buffer
(See forms control buffer)

control char~cter (C)
ANSI 8,62,131-132
carriage 15,62,131-132
effect of omission for SYSOUT data set 121
explained 14,131-132
with fixed-length records 6,8
machine code 62,13 1
specifying 14,62,131-132
with undefined-length records 14
with variable-length records 10

control error 23
control section 36
control volume, defined 123-124
count area 17

device overhead 111
ISAM index entries 85
count-data format 17
count-key-data format 17

cross-reference table with direct data sets 102
CSECT 36
cylinder

allocation by 110
eaflaeity), 1Q9
definition 15
index 84,86,117-118
logical 111
overflow (CYLO FL) 86-87,94, 113

calculating space for 116
CYLO FL (cylinder overflow) 86-87,94, 113

D-format records
(See format-D records)

data access techniques
(See access techniques)
data cell 3,17
data check, effect on BLKSIZE 6,62

data control block (DCB)
attributes of, determining 35
changing an address in 35-36
completion 18-19
creation by DCB macro instruction 18
description 18-20
dummy control section 35
exit 22,25,30
fields· 20
integrity of with indexed sequential
data sets 93,98-99

modifying 18,35-36
primary sources of information 18-19
reopening, with exchange buffering 57
restriction for DD name 45
restriction for direct access devices 45
sequence of completion 19
use 4

data definition name (DDNAME) field 20
restrictions 45

data definition (DD) statement
fields 19-20
relationship to DCB
relationship to JFCB
restrictions 45
use 3

data errors 23

18-20
18-19

data event control block (DECB)
checking for errors 40-41
description of 43

data format in sequential organization 60-64
data management, introduction to 1-38
data mode processing 53
data processing techniques 39-49

basic access technique 40-43
end-of-volume processing 48-49
error handling 43-44
queued access technique 39-40
opening and closing a data set 44-49
selecting an access method 44

data set
characteristics 1-15
definition 6
description 19-20
disposition 119-126

cataloging 120,124-125
concatenation 121-122
password protectIon 125
status 119-120

disposition (DISP) field 21
identification 3
label

contents 4
(See also magnetic-tape volumes; labels,
direct-access)

label (LABEL) field 21
like characteristics 121
name 3
name (DSNAME) field 20
organization 2

(See also direct data set; indexed sequential
data set; partitioned data set, sequential data
set)

Index 141

data set (continued)
organization (DSORG) field 20
output class 120
record formats

(See record formats)
routing through the output stream 120-121
security 125
sequence number 4
sharing 36-37
space allocation for direct-access volumes 109-119

estimation 110-111
for indexed sequential data sets 112-119
for partitioned data sets 112
specification 109-110

storage 3-5
direct-access 4-5
magnetic-tape 5

SYSOUT 120-121
opening 120
writing 120

unlike characteristics 121
unmovable

indication 17,20,103
partitioned 76
(See also direct data set, indexed sequential
data set, partitioned data set, sequential
data set)

data set control block (DSCB)
contents of 4,129
data set label 127
index (format-2) 93
location 129

DCB
(See data control block)

DCB macro instruction
creating data control block 18

DCBIND 1 field 56
DCBD macro instruction

restriction on use 36
use 35-36

DCBLPDA field 94
DCBNCRHI field 94
DCBPRECL field 10
DD statement fields 20-21
DDNAME

(See data definition name field)
DECB

(See data event control block)
refer nonstandard input trailer label exit 25,31
defining an FCB image 31,32
deletion

of member name 79
of indexed sequential data set records 89,97

DEN (tape density) 63
density, tape 63
descriptor word 9

(See also block descriptor word, record descriptor
word)

DEVD field 61-62,68,121
device control for sequential data sets 64-67
device-dependent macro instructions 64-67
device independence 67-68
device-type considerations for data format

sequential organization 61-64

142 OSData Management Services

DEVTYPE macro instruction 92
direct-access storage

access mechanism 15
advantages 15
device characteristics 15-17
record format 16,64
track addressing 16-17
track, defined 15
track format 16
track overflow 17
write validity check 17

direct-access disk pack 3,15
direct-access volumes 4-5

labels 4,127-130
direct addressing 102
direct data set

access technique 102
adding records 104-106
creation 107

multivolume direct data set 108
user labels 108

extended search option 103
organization 102
processing 103-107
record format 104-105
record reference 103
updating records 104-106

with exclusive control 103
format-F with keys 104
format-F without keys 105
format-U or -v with keys 105
format-U or -V without keys 105

direct organization 2
(See also direct data set)

directory
(See partitioned data set)

disk drive
(See 2302 disk storage; 2311 disk drive; 2314
storage drive; 2319 storage drive; 2321 data cell;
3330 disk drive)

disk pack 3,15
disk operating system

(See DOS)
DOS (disk operating system) tapes with embedded
checkpoint records

backspacing 66
restriction with chained scheduling 69
positioning

CNTRL 65
POINT 66

DOS (disk operating system) 7-track tapes
restriction with BSP 66
restriction with POINT 66
restriction with CNTRL 65

drum storage
(See 2301 drum storage; 2303 drum storage;
2305 drum storage)

DSCB (data set control block)
DSECT 35-36
DSNAME 20
DSORG field

described 20
device independence 69
with indexed sequential data set 94

DSORG field (continued)
with partitioned data set 78-81

dummy control section for DCB 35-36
dummy record

with direct data set 103-104
dynamic buffering

buffer control 49,53
release of 61
(See also READ; RELEX; WRITE)

II
EBCDIC (Extended Binary Coded Decimal
Interchange Code)

translation to and from ASCII 1,5,6
embedded index area 113,114
end-of-data routine (EODAD) 22

with concatenated data sets 122
with queued access technique 39

end-of-volume
exit routine 30
with GET 39
processing 48-49
(See also FEOV)

EODAD routine
(See end-of-data routine)

EROPT field 23
error

analysis routine (SYNAD) 22-24
control 23
checking, automatic 70
data 23
handling 41-42
options, automatic 23
uncorrectable 22,28

error routine
(See error; synchronous error routine exit)

ESETL macro instruction 94
exceptional condition code

(See condition, exceptional)
exchange buffering 53,56-59

buffer length requirements 57
effect on chained scheduling 69
examples 58-59
testiRg f9f 56

EXCP macro instruction 44
execute channel program 2
exit list (EXLST) field 24
exit routine

block count 30
conventions 24-25
data control block (DCB) 30
DCB ABEND 31
defer nonstandard input trailer label exit 31
end-of-data 22
end-of-volume 30
error analysis (SYNAD) 22-24
FCB image 31
list (EXLST) 24-25
register contents on entry 25
user label 26-28
user totaling 28-29

exit routines identified by DCB 21-22
EXLST field 24
Extended Binary Coded Decimal Interchange Code
(EBCDIC)

translation to and from ASCII 1,5,6
extended American National Standards Institute (ANSI)

Code 62,131-132
extended search option for direct data sets 103

II
F-format records

(See format-F records)
FCB

(See forms control buffer)
feedback

request for 41,42,102
FEOV macro instruction 49
fixed-length records 6-9
FIND macro instruction

description 78
updating a partitioned data set 82
use 74,77

force end of volume (FEOV) 49
format-F records 6-9

ASCII tapes 8-9
standard format 7

format-FBT records restriction with search direct 70
format-D records 12-14
format-U records 14
format-UT records restriction with search direct 70
format-V records 9-12

BDW 9
RDW 10
SDW 11
segment control codes 11
spanned 10-12

forms control buffer (FCB) 31
forms control buffer image

defining 31-32
exit list 24,25

FREEBUF macro instruction 49,61
FREEDBUF macro instruction 49,61

example 100
FIUHWOOl. ma!;fg iRstfYctigA. 50,51-52
full track-index write option 95
FUNC (DCB operand) 133-135

generation data groups
absolute generation name 124
cataloging 124
entering in the catalog 1,4,125
generation data group, defined 124
generation, defined 124
generation number, defined 124

generation
data set 124

Index 143

generation (continued)
data sets concatenated 124
increment 124
numbers, relative 124
version increment 124

GET macro instruction
description 39
used to create a sequential data set 71-72
with spanned records 11
(See als~ data mode processing; locate mode
processing; move mode processing; substitute mode

processing)
GETBUF macro instruction 60
GETPOOL macro instruction

description 51
with indexed sequential data set 90

III
header label, user 26
HIRPD 92-93

D
IBCDASDI 109
IEBCOPY utility program 82
IEHLIST utility program 93,114
IEHMOVE utility program 76,77
IEHPROGM utility program 114,125
IHADCB macro instruction 35-36

increment, generation 124
independent overflow area 87-89,115-116
index

catalog 4,123
cylinder 84,86,117 -118
master 84,86,118
space allocation for 112-119
track 84,85,116-117

indexed sequential data set
adding records 87-89

inserting new records 87
new records at the end 87

areas 84-87
allocating space for 112-115
prime 84
index 84,85-86
overflow 84,86-87

buffer requirements 90-92
creation 94-96
DCB integrity 93,98-99
device control 93-94
full track-index write option 95
high-level index in storage restriction with DCB
integrity 93

indexes
cylinder index 86,117-118
master index 86,118
track index 85,116-117

144 as Data Management Services

key field 83
loading 95
maintenance 89-90
organization 84-87
processing 83-101
reorganization 89-90
resume load 88,94-96
space allocation for 112-119
updating 97-101
sequential 97
direct 97-101

work area requirements 90-92
indexed sequential organization 2

(See also indexed sequential data set)
indexes of the catalog 123
indirect addressing 102
INOUT option

OPEN macro instruction 46
overriding 46

INPUT option
OPEN macro instruction 46

input! output device (UNIT) field 20
input! output device generation 67
input/ output devices

card reader and punch 63-64
direct access 4,15-17,64
magnetic tape 5,62-63
paper tape reader 63
printer 64

interpret punch data set . 133
ISAM

(See indexed sequential data set; indexed sequential
organization)

D
job file control block (JFCB) 18-19

key area 16
key class 94
key, record

direct access 16
indexed sequential 2,97
prefix 94,97

II
LABEL field of DD statement 21
labels, data set 4

(See also magnetic-tape volumes; labels, direct
access)

labels, direct-access
data set control block 129

labels, direct-access (continued)
format 128
user label groups 129-130
volume label group 127-129

LEAVE option 48
length checking 6
link field 87,91
loading an indexed sequential data set 94

locate mode processing 53,60
defined 53
with GET macro instruction

creating a sequential data set 71-72
exchange buffering 58
simple buffering 54,55

with PUT macro instruction
creating a sequential data set 71-72
simple buffering 55

LRECL field
described 20
device independence 69
in example of simple buffering 71
for format-U records 102
and ISAM

buffer requirements 90-93
data set creation 94

omission with direct-access data sets 102
with PUT 40
with SYSOUT data set 120-121

machine code control character 62,131
MACRF (macro instruction form) field

described 21
device independence 68
dynamic buffering 100
processing mode 53

magnetic-tape volumes
defined 3
density 5,63
labels

American National Standard 5
none 5
nonstandard 5
standard 5
use I 26-28
volume 3

organization 5
positioning 5
record format 62-63
serial number 5
tapemarks 5

MBBCCHHR .16-17,103,110
member of a partitioned data set

creation 79-81
deletion 74
description 2,74"
directory entries for 75-77
positioning to a 78
processing 77 -79
retrieving 81-82
rewriting 83

updating 82-83
in place 82
overlapped 82

(See also FIND; NOTE; partitioned data set;
POINT; STOW)

MODE=O 137
MODE=R 137
modes, processing

(See data mode; locate mode; move mode;

substitute mode)
modifying the data control block 18,35-36
move mode processing 53

defined 53
with GET macro instruction

creating a sequential data set 71-72
simple buffering 55

with PUT macro instruction
creating a sequential data set 71-72
simple buffering 54

MSHI field 93
MSW A field 92,93
multivolume data sets, restriction with NOTE and
POINT 66

II
names

data set 3
generation data group 4,124

NCP (number of channel programs) 40
nonstandard tape labels 5
note list 76,77
NOTE macro instruction

description 66
device independence 68
restriction with BSP macro instruction 66
restriction with multivolume data sets 66
use with partitioned data set 77 ,82

OMR
(See 9fltiGal mark read)

OPEN macro instruction
device independence 68
functions 18,45-46
used for more than one data set 46
volume positioning 46

opening a data set 45-46
opening and closing a data set 45-47
OPTCD=H 66
OPTCD=Z 70

search direct option
OPTCD field

with ASCII tapes 39,40,42
device dependence 69
with ISAM 95
to request totaling 29

optical mark read (0 MR)

Index 145

optical mark read (OMR) (continued)
data format 137
data records, coding rules 138
format descriptor card 137
reading errors 137
how to specify 137

OUTIN option 46
output class 121
output mode

defined 53
exchange buffering 56
simple buffering 54

OUTPUT option 46
output stream 121
overflow

chain 87,88
cylinder 87,94,113,117
entry 87
independent area 87,89
printer 65
records 87 -89
track 17

effect on chained scheduling 69
restriction on BSP macro instruction 66

overlap of input/output 39,82
overriding OPEN options 46

II
paper-tape reader (PT)

described 63
effect on chained scheduling 69
record format with 63
with a SYNAQ routine 24

partitioned data set
concatenation 121-122
creation 79-80

with basic access technique 80
defined 2,73
directory 73-76

adding members to 79
obtaining information from 77
defined 73

directory entry
alteration 79
defined 74
described 74-76
length 74

processing 73-83
of several members 81-82

space allocation for 112
(See also member of a partitioned data set;
partitioned organization)

partitioned organization 2
password protection 125
PC (card punch) record format 63-64
PDS

(See partitioned data set)

146 OS Data Management Services

POINT macro instr~ction
device independence 68
explained 66-67
restriction with BSP macro instruction 66
restriction with multivolume data sets 66
updatin~ a partitioned data set 82

prefix, block
(See block prefix)

prefix, key 94,97
prime data area

description 84
space allocation for 112-119

print data set (3525 Card Punch)
card feeding

automatic 133
program-controlled 133

line positioning
automatic 133
program-controlled 133
restriction with ANSI control
characters 133

line number correspondence to channel
numbers 134

multiline print 133
stacker selection 133
two-line print 133

printer (PR)
overflow 65
record format with 64

processing sequential data sets 61-73
program, describing the processing 21-35
PR TO V macro instruction

description 65
device dependence 68

PT
(See paper-tape reader)

PUT macro instruction
description 39-40
used to create a sequential data set 71-72
with spanned records 11
(See also data mode processing; locate mode
processing; move mode processing; substitute mode
processing)

PUTX macro instruction
description 40
device independence 68
with exchange buffering 56,58
with GET-locate 53
with spanned records 11
(See also output mode; update mode)

queued access technique 39-40
buffer control 53-60
defined 39
introduced 2
processing modes
(See data mode processing;

llUeueci access teclmique (continued)
locate mode processing; move mode processing;
substitute mode processing)

II
RCE (read column eliminate)

format descriptor card 137
how to specify 137

RD (card reader) 63-65
RDW

(See record descriptor word)
RD BACK option 46
read backward 41

restriction for concatenated data sets 121
read column eliminate (RCE)

format descriptor card 137
how to specify 137

READ macro instruction
description 41
device independence 68
updating a partitioned data set 82
with KU 97,100,101

RECFM field
(See record format)

record blocking
(See blocking)

record, defined 6
record descriptor word (RDW)

data mode exception for spanned records 10
in ISAM data set being updated 101
variable-length records 10,13
when replaced by segment descriptor word 11

record format 6-15
device independence 69
fixed-length (F) 6-9
fixed-length (F) for ASCII 7-8
fixed-length standard (FS) 7
RECFM field 20,61,69
selecting 6
undefined-length (U) 14
undefined-length (U) for ASCII 14
variable-length (D) for ASCII 9, 12-14
variable-length (v) 9-12

spanned (basic direct access method) 12
spanned (sequential access method) 10-11

with card punch 63-64
with card reader 63-64
with control character 62
with direct access storage device 64
with magnetic tape 62-63
with paper tape reader 63
with printer 64
with sequential organization 61

record length (LRECL) field 20
relative block address

defined 17
with direct data set 103

relative key position (RKP) 89

relative track address (TTR)
defined 17
with direct access 103

RELEX macro instruction 37, 103
RELSE macro instruction 49,59
RLSE parameter of DD statement 47
reorganization of indexed sequential data set 89
REREAD option 48,49
restart

end-of-volume exit routine 30
resume load 88,94-96
return code

with block count exit 31
with user labels 27

REWIND option 47
RKP (relative key position) 89
RORGl, RORG2, RORG3 fields 89
RPS (rotational position sensing) devices variable-length

track overflow records 9

save area, user totaling 29
SDW

(See segment descriptor word)
search direct for input 70
secondary storage

(See data set storage; direct-access storage;
magnetic-tape volumes)

search option, extended 103
security, data set 1,125
segment

buffer 51,53
control code 11
descriptor word (SDW) 11
overflow. record 17

selecting an access method 44
SEP (separation, channel) 20
sequential data set

creation 71-73
concatenation 121-122
processing 61-73

sequential organization
defined 2
device control 63-68
device independence 67-69

through programming 67-69
through system generation 67

SETL macro instruction 94
SETPRT macro instruction 65-66
sharing data sets 36-37
sharing direct access storage devices 37
simple buffering 49,53,54-56,71
simple names

levels of qualification 3
length 3

SKP error option 23
SMSI field 93
SMSW FIELD 92-93

Index 147

space allocation
estimating requirements 110-111
field (SPACE) 20
for an indexed sequential data set ·112-119
for a partitioned data set 112
specifying 109-110

spanned records
basic direct access method 12
restriction with search direct 70
sequential access method 10-11

stacker selection
control characters for 6,15,132
ST ACK operand ignored 62
using CNTRL macro 65
using STACK operand 64
for 3525 print data set 133

standard fixed-length records 7,61

standard labels
direct-access volumes 4
magnetic-tape volumes 5

storage
(See direct-access storage; magnetic-tape volumes)

STOW macro instruction
description 78-79
input for 76
use 77

substitute mode processing
creating a sequential data set 72
defined 53
with exchange buffering 56-58,72
with GET macro instruction 57-58
with PVT macro instruction 57-59

switching, volume
automatic 39,48,49,122
initiated by CHECK 42

SYNAD field
device independence 69

SYNAD routine 22-24
SYNADAF macro instruction

description 43
examples 70-72
use in SYNAD routine 23,24

SYNADRLS macro instruction
description 43
examples 70-72
use in SYNAD routine 24

lynchronous error (SYNAD) routine exit
device independence 69
examples 70-72
with ISAM 89,96
macro instructions 43
specifying 22
with a SYSOVT data set 121
writing 22-24

SYSOUT data set 120-121
system generation 67
system output device 120
system output writer 120
SYS1.SVCLIB and checkpoint/restart 30
SYS1.SAMPLIB 28

148 OS· Data Management Services

II
tape

(See magnetic-tape volumes, paper-tape reader)
temporary close 47
totaling area, user totaling exit routine 28-29
track

addressing 16-17
defined 15
format

count-data format 16
count-key-data format 16

index 85
overflow option 17

effect on chained scheduling 69
restriction on BSP macro instruction 66

trailer label, user 26
TRVNC macro instruction 49,60
truncated blocks 7
TTR 17,89,103
TYPE=T 47

I!I
V-format records

(See format-V records)
VHL (user header label) 26
undefined length records (V) 6,14
UNIT field 20
unlabeled magnetic tape 5
UNPK instruction

examples 72
VPDAT option 46
update mode 53
user header label (VHL) 26
user label exit routine 25,26-28

restriction for data sets on volumes without standard
labels 28

restriction for SYSOVT data sets 28
with read backward 26

user totaling exit routine 28-29
control program save area 29
control totals 29
exit list entry 25
image area address 27,29
OPTCD operand 29
restricted to BSAM, QSAM 29
totaling area 29
variable-length records and 29

user trailer label (VTL) 26
utility programs

IEHDASDI 109
IEHPROGM 125
initialize a direct-access volume 4,109

VTL (user trailer label) 26

variable-length block 10
variable-length record (format-V) 9-12

segments II
spanned 10-12
special consideration for, with user totaling 29

variable-length record (format-D) 12-14
version increment, generation 124
V -format records.

(See format-V 'records)
volume

control 123
defined 3
direct-access 4
disposition 46,47,48,119-120
labels 4
magnetic-tape 5
serial number 5

volume identification (VOLUME) field 21
volume index 123
volume switching 39,48,49,122
volume table of contents (VTOC) 4,109,127-129
VTOC (volume table of contents) 4,109,127-129

WAIT macro instruction
with basic access technique 40,97
description 42
examples 99,106

WRITE macro instruction
add form 105
description 41-42
device independence 68
update form 105
updating a partitioned data set 82
used with note list 77
with K 97
with KN 88,100
with WL i03

write validity check option 17

1316 Disk Pack 15
2301 Drum Storage

capacity 111
overhead formula 111
volume of 3

2302 Disk Storage
capacity 111
overhead formula 111
volume of 3

2303 Drum Storage
capacity 111
overhead formula 111
volume of 3

2305 Drum Storage
capacity 111
overhead formula 111
volume of 3

2311 Disk Drive
capacity 111
overhead formula 111

2314 Storage Drive
capacity 111
overhead formula 111

2319 Storage Drive
capacity 111
overhead formula 111

2321 Data Cell
capacity 111
overhead formula 111

2400 Magnetic Tape Units
recording density 63

2540 Card Read Punch
chained scheduling restriction 70

3330 Disk Drive
capacity 111
overhead formula 111

3400 Magnetic Tape Units
recording density 63

3505 Card Reader 133
(See also OMR; RCE)

3525 Card Punch
interpret punch data set 133
print data set 133
associated data sets 133-136

'Index 149

Order Number GC26-3746-1.

Intematlonal Business Machines. Corporation
Data Processing Division
1133 Weltchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

I
I
I
I
I
I
I
r
I
I

READER'S COMMENT FORM

OS Data Management Services Guide Order Number GC26-3746-1

Your comments about this publication will help us to produce better publications for your use. If
you wish to comment, please use the space provided below, giving specific page and paragraph
references.

Please do not use this form to ask technical questions about the system or equipment or to make
requests for copies of publications. Instead, make such inquiries or requests to your IBM represen
tative or to the IBM Branch Office serving your locality.

Reply requested Name

Yes D Job Title

No D Address

____________ """--_Zip ______________ _

No postage necessary if mailed in the USA

Order Number GC26-3746-1

YOUR COMMENTS, PLEASE ...

This publication is one of a series which serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your answers to the questions on the back.of
this form, together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the persons responsible for writing and
publishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

fold

BUSINESS REPLY MAIL
NO.POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY.

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. D78

fold

International Business Machines. Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF.

fold

fold

