
Systems Reference Library

IBM System/360 Operating System:

Time Sharing Option

Command Language Reference

File No. S360-36
Order No. GC28-6732-1 OS

This reference publication describes the TSO
command language that a terminal user may use to
request the services of TSO.

The "Introduction" describes what the command
language is. The section entitled "What You
Must Know to Use the Commands" contains general
information necessary for the use of every
command.

The section entitled "The Commands" contains
a description of each corrroand, its operands and
its subcommands. Examples are included.

"Command Procedure statements" describes the
statements designed for use in command
procedures. The "Glossary" contains definitions
of terms contained in the text of the
publication.

Information in this publication for TSO, the
IBM 2260 and 2265 Display Stations is for planning
purposes until those items are available.

Preface

This reference publication describes the
commands, subcommands and operands of the
TSO Command Language. This publication is
designed -f'or use at a terminal by all
terminal users. The level of knowledge
required for this publication varies.
Commands that are used by most terminal
users require little prerequisite knowledge
of the system. Commands that are used only
by knowledgable users assume a greater
knowledge of the system.

The major divisions in this book are:

• Introduction
• Wha~ You Must Know to Use the Commands
• The Commands
• Command Procedure statements
• Glossary
• Index

The Introduction describes what the
command language is. The section entitled
"What You Must Know to Use the Commands"
contains general information necessary for
the use of every command.

The section entitled "The Commands"
contains a description of each command, 'its
operands and its subcommands. Examples are
included.

Second Edition (March, 1971)

The commands are presented in
alphabetical order. Subcommands are
presented in alphabetical order following
the command to which they apply. A
boldface heading on each page identifies
the information contained on the page. The
boldface headings and alphabetical
organization allow you to locate particular

, commands as you would locate a subject in a
, dictionary or encyclopedia. Thelarger
boldface headings identify the first pages
of the descriptions of commands.,

"Command Procedure Statements" describes
the statements designed for use in command
procedures.

The Glossary contains definitions of
terms that appear in the text of this
publication.

The "Index" contains the location (page
number) where terms and subjects are
discussed in the- text.

Information concerning the IBM 2260 and
2265 Display stations is for planning
purposes only.

This is a major revision of, and obsoletes, GC28-6732~0. This
publication has been completely rewritten and should be reviewed
in its entirety.

This edition applies to release 20.1, of IBM System/360
Operating System, and to all subsequent releases until other
wise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein; before
using this publication in connection with the operation of
IBM systems, consult the latest IBM System/360 SRL Newsletter,
Order No. GN20-0360, for the editions that are applicable and
current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems Publica
tions" Department D58, PO Box 390, Poughkeepsie,N. Y. 12602

e Copyright International Business Machines Corporation 1970,1971

INTRODUCTION • • • •

WHAT YOU MUST KNOW TO USE THE COMMANDS
The Syntax of a Command

7

11
• 11

11 Positional Operands ••
Keyword Operands • • 12
Delimiters • • • • • • • • • 12

• 13 Notation Conventions
Subcommands • • • • • • • • • • • 14

How to Enter a Command • •
Data Set Naming Conventions

Data Set Names in General •
TSO Data Set Names
How to Enter Data Set Names

System-Provided Aids • • • • •
The Attention Interruption
The HELP Command • • • •
Messages

THE COMMANDS

ACCOUNT Command

• • • • 15
• 15

• • 16
• • • 1 6
• • • 1 7

• 19
• 19
• 19
• 20

• • • 25

• • • • 2 oJ

Subcommands • •....... 27
ADD Subcommand 31
CHANGE Subcommand . . . 37
DELETE Subcommand • 41
END Subcommand • . 45
HELP SUbcommand • 47
LIST Subcommand •. .•••. 49
LISTIDS Subcommand 51

ALLOCATE Command . . • . . 53
ASM Command . • . I.. 57
CALC Command 59
CALL Command . • • . • 61
CANCEL Command • • .• .••• 63
COBOL Command • • . . 65
CONVERT Command • . . . 67
COpy Command • . • 69

DELETE Subcommand . 11
EDIT Command . . • . • • • . • • . 73
Modes 'of Operation . . 78

Input Mode 78
Edit Mode . • . . 79
Changing from One Mode to Another 81
Data Set Disposition 81

Tabulation Characters 81
Executing User Written Programs' 81
Terminating the EDIT Command . 82
Subcommands for EDIT .•••. 84

BOTTOM Subcommand . 85
CHANGE Subcommand . 87
DELETE Subcommand . ..•• . 91
DOWN Subcommand • • . 93
END Subcommand .• • . 95
FIND Subcommand • • . 97
FORMAT Subcommand • . • • 99
HELP Subcommand. .101
INPUT Subcommand . • •• .103
INSERT Subcommand . . .105
INSERT/REPLACE/DELETE FUNCTION .107
LIST Subcommand. • • . . • •. .109

Contents

MERGE Subcommand . . .
PROFILE Subcommand . •
RENUM Subcommand • •
RUN Subcommand • .
SAVE Subcommand
SCAN Subcommand
TABSET Subcommand . • • • .
TOP Subcommand . • . . . • .'. • .•
UP Subcommand . . • .
VERIFY Subcommand.

EXEC Command. . .
FORMAT Command.
FORT Command . • . .
FREE Command
HELP Command
LINK Command. .
LIST Command. . .
LISTALC Command .
LISTBC Command.
LISTCAT Command
LISTDS Command. •
LOAD GO Command. •
LOGOFF Command.
LOGON Command . .
MERGE Command ..•
OPERATOR Command.

'. .

CANCEL Subcommand. . . • •
DISPLAY Subcommand .
END Subcommand • .
HELP Subcommand ..
MODIFY Subcommand. .
MONITOR Subcommand
SEND Subcommand. • .
STOP Subcommand. •

OUTPUT Command. . . . •
CONTINUE Subcommand. .
END Subcommand • •
HELP Subcommand.
SAVE Subcommand. •

PROFILE Command .•..

111
113
115
117
121
123
125
127
129
131
133
135
137
139
141
145
153
155
157
159
163
165
169
171
173
175
177
179
181
183
185
187
189
191
193
197,
199
201
203
205

PROTECT Command • • • • 209
Passwords •••• • • • • 209
Types of Access • • • • • 209
Password Data Set 211

RENAME Command ••••••••• 213
RUN Command. • • 215
SEND Command • • • • • 21 9
STATUS Command • • • • • • 221
SUBMIT Command • • 223
TERMINAL Command • • • • • • 225
TEST Command • • • • • • 229

ASSIGNMENT OF VALUES • • • • • • 233
AT Subcommand • • • • 235
CALL Subcommand • • • • • 239
DELETE Subcommand • • •• 241
DROP Subcommand • • • • • • 243
END Subcommand • • • • • • • • • • • 245
EQUATE Subcommand •••••• 247
FREEMAIN Subcommand • 249
GETMAIN Subcommand • • •••• 251
GO Subcommand ••• ' •• 253

Contents 3

HELP Subcommand
LIST Subcommand
LISTDCB Subcommand •
LISTDEB Subcommand •
LISTMAP Subcommand •
LISTPSW Subcommand •
LISTTCB Subcommand •
LOAD Subcommand
OFF Subcommand • • • •
QUALIFY Subcommand •
RUN Subcommand •
WHERE Subcommand •

TIME Command •••••

COMMAND PROCEDURE STATEMENTS
END Statement
PROC Statement
WHEN Statement

\

APPENDIX A: PROGRAM PRODUCT
INFORMATION

APPENDIX B: ADDRESSES FOR
SUBCOMMANDS OF TEST • •

GLOSSARY

INDEX • • •

4

• • • 2"55
• • • • 257

• • • 261
• • 263

265
• • 267

• • • 269
• • 271

• • • 273
• • •• 275

277
• • •• 279

• •• 281

• • • • • 283
• • • • • 285

• • • 287
• • • • 289

• 291

• • 293

• • 295

• • 305

Figures

Figure 1.
Terminal
Figure 2.
Data Set

Tables

Entering Commands From a

Organization of the UADS

Table 1. Functions of the TSO

6

• • 28

Commands and Subcommands (Part 1 of 2). 8
Table 2. Descriptive Qualifiers • 17
Table 3. Descriptive Qualifiers
Supplied by Default • • • • • • • • • • 18
Table 4. Default Values for LINE and
BLOCK Operands • • • • • •. .'. • • 77

Illustrations

Figure 3. The Simplest Structure
That an Entry in the UACS Can Have • 29
Figure 4. A Complex Structure For an
Entry in the UADS • • • • • • • • • • • 29
Figure 5. Information Available
Through the HELP Ccmmand ..'.. .143

Table 5. Values of the Line Pointer
Referred to by an Asterisk (*). • • 80
Table 6. Subcornmands Used With the
Edit Ccmmand • • • • • .• • • • 8 1J
Table 7. Default Tab settings •• 125

Illustrations 5

You request work by typing
commands at your terminal.
The commands are entered
into the system when
you press the carrier
return key.

IBM
SYSTEM/360

The ~ystem resp~nds to .your
commands in a conversational
manner, prompting you for
required input and sending .

. 6utput back to your terminal.

Introduction

TSO is the Time Sharing Option of the System/360 Operating System. TSO
allows you and a number of other users to use the facilities of the
system concurrently and in a conversational manner. You can communicate
with the system by typing requests for work (commands) on a terminal
which may be located far away from the system installation. The system
responds to your requests by performing the work and sending messages
back to your terminal. The messages tell you such things as what the
status of the system is with regard to your work and what input is
needed to allow the work to be done.

, A command, then, is a request for work. By using different commands,
you can have different kinds of work performed. You can store data in
the system, change the data, and retrieve it at your convenience. You
can create programs, test them, have them executed, and obtain the
results at your terminal. The commands make the full capability of the
system, available at your terminal.

When you use a command to request work, the command establishes the
scope of the work to the system. To provide flexibility and greater
ease of use, the scope of some commands' work encompasses several'
operations that are identified separately. After entering the command.
you may specify one of the separately identified operations by typing a
subcommand. A subcommand, like a command, is a request for work;
however, the work requested by a subcommand is a particular operation
within the scope of work established by a corrmand.

The commands and subcommands recognized by TSO form the TSO command
language. The :command language is designed to be easy to use., The
command names and subcommand names are typically familiar English words,
usually verbs. that describe the work to be done. The number of command
names and subcommand names that you must learn has been kept to a
minimum. The information that you must provide is defined by operands
(words or numbers that accompany the command names and subcommand
names). Most of the operands have default values that are used by the
system if you choose to omit the operand from the command or subcommand.
In addition. you can abbreviate many of the command names, subcommand
names and operands. Together. the defaults and abbreviations decrease
the amount of typing required.

This reference manual describes what each command can do and how to
enter, or type in, a command at your terminal. Table 1 shows you the
kinds of work you can accomplish by using the command language, and
identifies most of the commands and subcommands that you can use to
request each kind of work. A complete list of 'the commands,
subcommands6 and their abbreviations is located on the divider page that
precedes the descriptions of the commands.

Additional commands and subcommands are available for a license fee -
as optional Program Products. ,This manual does not describe, the use of
Program Product commands; however, it is organized modularly so that the
descriptions of the'Program Product commands may be inserted in the
proper alphabetical sequence.

Information concerning the IBM 2260 and 2265 Display Stations is for
planning purpose s only..

7

Introduction

Table 1. Functions of. the TSO Commands and Subcommands (Part 1 of 2)

8

FUNCTION

CONTROL
YOUR
TERMINAL
SESSION

COMMAND

identify yourself to the system ••••••••••• LOGON
define your operational characteristics ••• TERMINAL

PROFILE

display messages (notices and mail) •••••••
send messages •••••••••••••••••••••••••••••
obtain help from the system •••••••••••••••

end your terminal session ••••••••••••••••
display session time used

EDIT •••••••
LISTBC
SEND
HELP
OPERATOR •••
ACCOUNT ••••
LOGOFF
TIME

SUBCOMMAND

PROFILE

HELP
HELP

ENTER, create a data set ••••••••.•••••••••••••••• EDIT
MODIFY, enter data into a data set ••••••••••••••
STORE,
AND change data in a data set ••••••••••••••••
RETRIEVE edit data ••••••••••••••••••••••••••••••
DATA place data into columns ••••••••••••••

display referenced lines •••••••••••••
renumber lines of data~ ••••••••••••••••••
check the syntax of input statements •••••
delete lines of data from a data set •••••
delete an entire data set ••••••••••••••••
allocate a data set ••••••••••••••••••••••

,free an allocated data set •••••••••••••••
copy a data set ••••••••••••••••••••••••••
format a data set ••••••••••••••••••••••••

EDIT ••••••• INPUT
EDIT ••••••• INSERT
EDIT ••••••• CHANGE
EDIT ••••••• INSERT
EDIT ••••••• TABSET
EDIT ••••••• UP
EDIT ••••••• DOWN
EDIT ••••••• TOP
EDIT ••••••• BOTTOM
EDIT ••••••• VERIFY
EDIT ••••••• RENUM
EDIT ••••••• SCAN
EDIT ••••••• DELETE
DELETE
ALLOCATE
FREE
.cOpy *
FORMAT *
EDIT ••••••• FORMAT*

merge two data sets •••••••••••••••••••••• MERGE *
EDIT ••••••• MERGE*

list the contents of a data set •••••••••• LIST*

list the names of allocated data sets ••••
list the names of cataloged data sets ••••
list information about your d~ta sets ••••
store a data set •••••••••••••••.••••••••••
rename a data set ••••••••••••••••••••••••
establish passwords for a data set •••••••
end the EDIT functions •••••••••••••••••••

EDIT ••••••• LIST
LIS TALC
LIS TCAT
LISTDS
EDIT ••••••• SAVE
RENAME
PROTECT
EDIT ••••••• END

* optional Program Products, available for a license fee

Introduction
Table 1. Functions of the TSO Commands and Subcommands (Part 2 of 2)

FU1~CTION

DEVELOP,
PROGRAMS
AND
PROCESS
DATA

TEST
AND
DEBUG
A
PROGRAM

CONTROL
THE
SYSTEM

create a program; enter it in a data set ••
convert PL/l and FORTRAN statements •••••••
compile and execute a program

invoke a standard compiler ••••••••••••••••
invoke the assembler prompter •••••••••••••
invoke the COBOL prompter •••••••••••••••••
invoke the FORTRAN prompter •••••••••••••••
linkage edit a compiled program •••••••••••
load and execute a load module ••••••••••••

load and execute an object module •••••••••
submit a job for batch processing •••••••••
cancel a batch job ••••••••••••••••••••••••
display the status of a batch job •••••••••

execute a procedure consisting of commands

initiate testing ••••••••••••••••••••••••••
load a load module for execution ••••••••••
set breakpoints for inspection ••••••••••••
remove breakpoints •••••••••••••••••••• ~ •••
establish base location for addresses.~ •••
display absolute addresses ••••••••••••••••
add symbols to symbol table •••••••••••••••
initialize registers and start execution ••
start or restart program execution ••••••••
get additional main storage •••••••••••••••
release main storage ••••••••••••••••••••••
display 'contents of main storage ••••••••••
display contents of registers •••••••••••••
display a Data Control Block ••••••••••••••
display a Data Extent Block •••••••••••••••
display a storage map •••••••••••••••••••••
display the Program Status Word •••••••••••
display a Task Control Block ••••••••••••••
delete the program with no more testing •••
end tes ting •
display CPU time ••••••••••••••••••••••••••

modify TSO options ••••••••••••••••••••••••
display system status •••••••••••••••••••••
cancel a tenninal user ••••••••••••••••••••
moniter terminal and job activities •••••••
send messages to users ••••••••••••••••••••
stop monitoring •••••••••••••••••••••••••••
maintain the user attribute data set ••••••
add new user attributes •••••••••••••••••••
delete user attributes ••••••••••••••••••••
change user attributes ••••••••••••••••••••
display user attributes •••••••••••••••••••
list user identificat'ions •••••••••••••••••

COMMAND

EDIT
CONVERT
RUN
EDIT •••••••
CALL
ASM*
COBOL*
FORT*
LINK
CALL
LOADGO
LOADGO
SUBMIT
CANCEL
STATUS
OUTPUT
EXEC

TEST
TEST •••••••
TEST •••••••
TEST •••••••
TEST •••••••
TEST •••••••
TEST •••••••
TEST •••••••
TEST •••••••
TEST •••••••
TEST •••••••
TEST •••••••
TEST •••••••
TEST •••••••
TEST •••••••
TEST •••••••
TEST •••••••
TEST •••••••
TEST •••••••
TEST •••••••
TIME

OPERATOR •••
OPERATOR •••
OPERATOR •••
OPERATOR •••
OPERATOR •••
OPERATOR •••
ACCOUNT •• '
ACCOUNT ••••
ACCOUNT ••••
ACCOUNT ••••
ACCOUNT ••••
ACCOUNT ••••

* optional Program Products, available for a license fee.

SUBCOMMAND

RUN

LOAD
AT
OFF
QUALIFY
WHERE
EQUATE
CALL
GO
GETMAIN
FREEMAIN
LIST
.LIS'!
LISTDCB
LISTDEB
LISTMAP
LISTPSW
LISTTCB
RUN
END

MODIFY
DISPLAY
CANCEL
MONITOR
SEND
STOP

ADD
DELETE
CHANGE
LIST
LISTIDS

9'

What You Must Know to Use the Commands

~o use the TSO command language you should know:

• The syntax of a command.

• The way to enter a command.

• The data set naming conventions.

In addition, you should be aware of the aids available to you:

• The attention interruption.

• The HELP command.

• The messages that you receive from the system.

Note: In this manual, all references to terminal keyboards and keys
apply specifically to the IBM 2741 Communications Terminal. For
information concerning the use of other terminals refer to IEM
Systern/360 Operating System: Time Sharing Option, Terminals,
GC28-6762-0. Terminals which are equivalent to those explicitly
supported may also function satisfactorily. The customer is responsible
for establishing equivalency. IBM assumes no responsibility for the
impact that any changes to the IBM-supplied products or programs may
have on such terminals. '

The Syntax of a Command
A command consists of a command name followed, usually, by one or more
operands. A command name is typically a familiar English word, usually
a verb, that describes the function of the command. For instance, the
RENAME command changes the name of a data set. Operands provide the
specific information required for the command to perform the requested
operation. For instance, operands for the RENAME command identify the
data set to be renamed and specify the new name:

INST~

command

/AME /BUY
name operand operand

(new name for (old data-set-name) data set)

~wo types of operands are used with the commands: positional and
keyword. Positional operands follow the command name and precede
keywords.

Positional Operands

Positional
prescribed
integers.
positional
positional

operands are values that follow the command name in a
sequence. The value may be one or more names, symbols, or
In the command descriptions within this manual, the
operands are shown in lower case characters. A typical
operand is:

data-set-name

11

What You Must Know to Use the Commands

You must replace "data-set-name" with an actual data set name when you
enter the conmand.

When you want to enter a positional operand that is a list of several
names or values, the list must be enclosed within parentheses. The
names or values mus~ not include unmatched right parentheses.

Keyword Operands

Keywords are specific names or symbols that have a particular meaning to
the system. You can include keywords in any order following the
positional operands. In the command descriptions within this book,
keywords are shown in upper case characters. A typical keyword is:

TEST

In some cases you may specify values with a keyword. The value is
entered within parentheses following the keyword. The way a typical
keyword with a value appears in this book is:

LINESIZE(integer)

Continuing this example" you would select the number of characters that
you want to appear in a line and substitute that number for the
"integer" when yeu enter the operand:

LINESIZE(SO)

You must enter keywords spelled exactly as they are shown or you may use
an acceptable abbreviation. You may abbreviate any keyword by entering
only the significant characters; that is, you must type as much of the
keyword as is necessary to distinguish it from the other keywords of the
command or subcommand. For instance, the LISTBC command has four
keywords:

MAIL
NOMAIL

NOTICES
NONOTICES

The abbreviations are:

M for MAIL (also MA and MAl)
NOM for NOMAIL (also NOMA and NOMAI)
NOT for NOTICES (also NOTI, NOTIC, and NOTICE)
NON for NONOTICES (also NO NO , NONOT, NONOTI, NONOTIC" and NONOTICE)

Delimiters

When you type a command, you should separate the command name from the
first operand by one or more blanks. You should separate operands by
one or more blanks or a comma. For instance, you can type the LISTBC
command like this:

LISTBC NOMAIL NONOTICES

or like this:

LISTBC NOMAIL,NONOTICES

Enter a blank by pressing the space bar at the bottom of your terminal
keyboard. You can also use the TAB key to enter one or more blanks.

12

What You Must Know to Use the Commands

Note: A keyword with a value is a single operand and must not contain
delimiters; for instance, do not separate the keyword from the
parentheses that enclose the value.

Notation Conventions

~he notation used to define the command syntax and format in this
publication is described in the following paragraphs.

1. The set of symbols listed below are used to define the' format but
you should never type them in the actual statement.

hyphen
underscore
braces {}
brackets []
ellipsis

The special uses of these symbols are explained in paragraphs 5-9.

2. You should type upper-case letters and words, numbers, and the set
of symbols listed below in an actual command exactly as shown in
the statement definition.

apostrophe
asterisk
comma
equal sign
parentheses
period

* ,
=
()

3. Lower-case letters. words, and symbols appearing in a command
definition represent variables for which you should substitute
specific information in the actual cOIrmand.

Example: If name appears in a command definition, you should
substitute a specific value (for example, ALPHA) for the variable
when you enter the command.

4. Stacked items represent alternatives. You should select only one
such alternative.

Example: The representation

A
B
C

indicates that either A or B or C is to be selected.

5. Hyphens join lower-case letters, words, and symbols to form a
single variable. .

Example: If member-name appears in a command definition, you
should substitute a specific value (for example, BETA) for.the
variable in the actual command.

6. An underscore indicates a default option. If you select an
underscored alternative, you need not type it when you enter the
command.

13

What You Must Know to Use the Commands

Example: The representation

A
B
C

indicates that you are to select eitber A or B or C; however, if
you select B, you need not type ,it, because it is the default
option.

7. Braces group related items, such as alternatives.

Example: The representation

ALPHA= ({i} ,OJ

indicates that you must·cboose one of the items enclosed within tbe
braces. If you select A, the result is 'ALPHA=(AI,D). If you select
B, the result can, be either ALPHA=(,D) or ALPHA=(B,D).

8. Brackets also group related items; however, everyth~ng within tbe
brackets is optional and may be omitted.

Example: The representation

indicates that you may cbooseone of the items enclosed within the
brackets or that you may omit all of the items within the brackets~
If you select,B, the result is: ALPHA=(B,D). If you oroit them
all, the result is: ALPHA=(,D).

9. An ellipsis indicates that the preceding item or group of items can
be repeated more than once in succession,.

Example:

ALPHA [, BETA] •••

indicates that ALPHA can appear alone or can be followed by ,BETA
any number of times in succession.

Subcommands

The work done by some of the commands is divided into individual
operations. Each operation is defined and requested by a subcommand.
To request one of the individual operations, you must first enter the
command. You can then enter a subcommand to specify the particular
operation that you want performed. You can continue entering
subcommands until you enter tbe END subcommand.

(

The commands that have subcommands are ACCOUNT, CALC (a Program
Product), EDIT, OPERATOR, OUTPUT and TEST. When you enter the ACCOUNT
command you can then enter the subcommands for ACCOUNT. Likew'ise, wben
you enter the CALC1 EDIT~ OPERATOR, OUTPUT, or TEST commands you can
enter appropriate subcommands.

14

What You Must Know to Use the Commands

The syntax o~ a subcommand is the same as that of a command. A
subcommand consists of a subcommand name followed, usually, by one or
more operands. The discussions of operands and delimiters affly to
subcommands as well as commands.

How to Enter a Command
A terminal session is designed to be an uncomplicated process: you
identify yourself to the system by entering the LOGON corrmand and then
request work from the system by entering other commands. To enter a
command or subcommand:

1. Type the command or subcommand name and any operands that you
select.

2. Press the carrier return key.

You can begin typing at any position on a line; you do not have to start
at the lefthand margin. You can type command names and operands in
either uppercase-or lowercase characters. You may prefer to type your
input in lowercase characters so that you can distinguish your input
from the system's messages on your listing (the system prints in
uppercase characters).

You can continue a line by placing a hyphen at the end of the line
that is to be continued.

You can define your own character-deletion and line-deletion
characters f or correcting typing errors,. or you can accept the
characters that the system uses by default if you do not specify your
own selection. The default characters for the IBM 2741 Communications
Termina 1 are:

• The BACKSPACE key, to delete the preceding character on the line •
• The ATTN key, to delete the entire line, (including continued lines).

For other defaults and for information concerning the use of other
terminals refer to IBM System/360 Operating System: Time Sharing
Option, Terminals'l GC28-6762.

You may use the PROFILE command to define the keys that ycu want to
use as the character-deletion and line-deletion characters.

Data Set Naming Conventions
A data set is a collection of data. Each data set stored in the system
is identified by a unique data set name,. The data set name allows the
data to be retrieved and helps protect the data from unauthorized use.

The data set naming co'nventions for TSO simplify the use of data set
names. When a data set name conforms to the conventions. you can'refer
to the data set by its fully,qualified name or by an abbreviated version
of the name,. The following paragraphs:

1. Describe data set-names in general.
2. 'Define the names that conform to the naming conventions for TSO.
3. Tell you how to enter a complete data set name. and how to enter

the abbreviated version of a name that conforms to the TSO data set
naming conventions.

15

What You Must Know to Use the Commands

Data set Names in General

A data set name consists of one or more fields. Each field consists of
one through eight alphameric characters and must begin with an
alphabetic character. A simple data set name with only one field may
be:

PARTS

A data set name that consists of more than one field is a "qualified"
data set name. The fields in a qualified data set name are separated by
periods. A qualified data set name may be:

PARTS.OBJ
or

PARTS. DATA

Partitioned Data Sets: A partitioned data set is simply a data set with
the da ta divided i"nto one or more independent groups ca lIed members.
Each member is identified by a member name and can be referred to
separately. The member name is enclosed within parentheses and appended
to the end of the data set name:

TSO Data Set Names

PARTS.DATA(PART14)

lmember name

A data set name must be qualified in order to conform to the TSO data
set naming conventions. The qualified name must consist of at least the
two required fields of the following three:

1. You user identification (required).
2. A user-supplied name (optional).
3. A descriptive qualifier (required).

Normally all three names are used.

The total length of the data set name must not exceed 44 characters.
including periods. A typical TSO data set name is:

ENGBW.PARTS.DATA

" " 1\ I I I
identification qualifier------J I I
user supplied'name------------------J I
descriptive qualifier------" _______________ J

The TSO data set naming conventions also apply to partitioned data sets.
A typical TSO name for a member of a partiticned data set is:

ENGBW.PARTS.DATA(PART14)

Identification Qualifier: The identification qualifier is always the
lef~ost qualifier of the full data set name. For TSO. this qualifier
is the user identification a~signed to you by your installaticn.

User-supplied Name: You choose a name for the data sets that you want
to identify... It can be a simple name or several simple names separated
by periods.

16

What You Must Know to Use the Commands

Descriptive Qualifier: The descriptive qualifier is always the
rightmost qualifier of the full data set name. To conform to the data
set naming conventions, this qualifier must be one of the qualifiers
listed in Table 2.

Table 2. Descriptive Qualifiers
r-----------------------T--,
IDescriptive Qualifier I Data Set Contents I
~-----------------------+--f
I ASM Assembler (F) input I
I BASIC ITF:BASIC statements I
I FORT FORTRAN statements I
I IPLI ITF:PL/I statements I
I PLI PL/I (F) statements I
I COBOL American National Standard COBOL statements
I TEXT Uppercase and lowercase text
I DATA Uppercase text
I CNTL JCL and SYSIN for SUBMIT command
I CLIST TSO commands
I STEX STATIC external data from ITF:PLI
I OBJ Object module
I LIST Listings
I LOAD Load module
I LINKLIST output listing from linkage editcr
I LOADLIST Output listing from loader
I TESTLIST output listing from TEST command
I OUTLIST output listing from OUTPUT corrmand L-______________________ ~ ___ _

How to Enter Data Set Names

The data set naming conventions simplify the use of data set names. If
the data set name conforms to the conventions, you may specify only the
user-supplied name field and the descriptive qualifier when ycu refer to
the data set. The system viII add your user identification to the front
of the name that you specify. When you are using the LINK ccmmand for
example, the system viII add both the user identification and the
descriptive qualifier, allowing you to specify only the user-supplied
name. For instance, you may refer to the data set named
USERID.PARTS.OBJ by specifying only PARTS (when you are using LINK) or
by.specifying PARTS. OBJ (vhen you are using other commands). You may
refer to a member of a partitioned data set USERID.PARTS.OBJ(PART14) by
specifying PARTS(PART14) vhen you are using LINK or by specifying
PARTS.OBJ (PART14) when you are using other commands.

When you specify an entire fully qualified data set name, as you must
do if the name does not conform to the TSO data set naming conventions,
you must enclose the entire name vithin apostrophes:

'JOED58.PROG.LIST'
or

'JOED58.PROG.FIRST'

Defaults for Data Set Names: When you specify only the user-supplied
name, the system adds your user identification and. vhenever possible, a
descriptive qualifier. The system attempts to derive the descriptive
qualifier from available information. For instance, if you specified
ASM as an operand for the EDIT command, the system viII assign ASM as
the descriptive qualifier. If the information is insufficient, the
system viII issue a message at your terminal requesting the required

17

What You Must Know to Use the Commands

information. If you specify the name of a partitioned data set and do
not include a required member name, the system will use TEMPNAME as the
default member name. "(If you are creating a new member, the member name
will become TEMPNAME; if you are modifying an existing partitioned data
set, the system will search for a member named TEMPNAME.) Table 3
presents a list of command names and the default descriptive qualifiers
associated with each command. .

Table 3. Descriptive Qualifiers Supplied by Default
r----------T---,
I I DESCRIPTIVE QUALIFIERS I
I Command I Input Output Listing I
~----------+----------------------------------~------------------------~
IASM ASM OBJ LIST
I CALC STEX STEX
I CALL LOAD
I COBOL COBOL
I CONVERT IPLI
I FORT
I EXEC CLIST
I FORMAT TEXT
I FORT FORT
I LINK OBJ "
I LOAD
I LOADGO OBJ
I I LOAD
I OUTPUT I
IRUN " I ASM
I I FORT
I I BASIC
I I COBOL
I I IPLI
I SUBMIT I CNTL
I" TEST I OBJ

OBJ
PLI
FORT

OBJ
LOAD

---'

I I LOAD "

LIST

LIST
LIST
LINKLIST

LOADLIST

OUTLIST

TESTLIST
L-__________ ~ __ ~J

The following examples illustrate the default names supplied by the
system.

r---~------------_r__--------------------_,_-----------------------,
IIf you specify: IThe input data IThe output data set I
I I set name is: . Iname will be: I
~---.--------------+_----------------------_+-------------------------f
IEDIT PARTS ASM IUID.PARTS.ASM IUID.PARTS.ASM I
ILINK PARTS IUID.PARTS.OBJ IUID.PARTS.LOAD(TEMPNAME) I
ICALL PARTS IUID.PARTS.LOAD(TEMPNAME) 1--- I

. IEDIT PARTS(JAN) ASMIUID.PARTS.ASM(JAN) I UID.PARTS. ASM (JAN) I
ILINK PARTS(JAN) IUID.PARTS.OBJ(JAN) lUID.PARTS.LOAD(JAN) I
ICALL PARTS(JAN) I UID. PARTS.LOAD(JAN) 1--- I
1 1 1 I
IEDIT (PARTS) ASM IUID.ASM(PARTS) IUID.ASM(PARTS) I
ILI~K (PARTS) IUID.OBJ(PARTS) IUID.LOAD(PARTS) 1
1 CALL (PARTS) 1 UID.LOAD (PARTS) 1--- I
.--------------~--------------------.L~--------------------f
INote: In these examples. UID stands for your user identification. I
ITEMPNAME is the membername supplied by the system. I I ." _________________ ~ ___________________________________ J

18

What You Must Know to Use the Commands

SYSTEM-PROVIDED AIDS

Several aids are available for your use at the terminal:

• The attention interruption allows you to interrupt processing so
that you can enter a command.

'. The HELP command provides you with information about the commands •

• The conversational messages guide you in your work at the ter.minal.

The Attention Interruption

'Ihe attention interruption allows you to interrupt processing so that
you can enter a command or subcommand. For instance, if you are
executing a program and the program gets in a loop/, you can use the
attention interruption to halt'execution. As another example, when you
are having the data listed at your terminal and tpe data that you need
has been listed11 you may use the attention interruption to stop the
listing operation instead of waiting until the entire data set has been
listed.

You can use the attention interruption for access to the system at
any time. If, when you receive an attention interruption" yeu decide
that you want to continue with the operation that you interrupted, you
can do so by pressing the carrier return key before you type anything
else. You can also request an attention interruption at the command
level, enter the TIME command, and then resume with the interrupted
operation in the same manner.

If your terminal has an interruption facility, you can request an
attention interruption by pressing the apprepriate key (the ATTN key on
IBM 2741 Communications Terminals). Whether or not your terminal has a
key for attention interruptions, you can use the TERMINAL corrmmand to
specify particular operating conditions that the system is to interpret
as a request for an attention interruption. More specifically, you can
specify a sequence of characters that the system is to interpret as a
request for an attention interruption. In addition., 'you can request the
system to pause after a certain number of seconds of processing time has
elapsed or after a certain number of lines of output has been displayed
.at your terminal. When the system pauses, you can enter the sequence of
characters that you define as a request for an attention interruption.

Note: When you are USl.Ilg the A'l'TN key as a line-delete character you
must request ATTN twice in order to get an interruption. If you are
also in the input mode of the EDIT command you must request ATTN three
times to get an interruption. -

The HELP Comnand

'Ihe HELP command provides you with information about the'use. function,
syntax ,and operands of commands and subcommands. When you enter HELP"
the system displays at your terminal a list of commands and a brief
description of the function of each. By specifying a command name as an
operand for the HELP command, you can get a list of operands and a
description of the ,function ~nd syntax of the command.

HELP is also a subcommand for all of the commands that have
subcommands,. 'By specifying a subcommand name as an operand for the HELP

19

What You Must Know to Use the Commands

subcommand, you can get a list of operands and a description of the
function and syntax of the subcommand.

Messages

You receive three types of messages at your terminal:

Mode messages.
Prompting messages.
Informational messages.

A mode message tells you the system is ready to accept new input a
command. a subcommand'l or data. When the system is waiting for you to
enter a command, the mode message displayed at your terminal is:

READY

Other mode messages may be displayed, when appropriate. to tell you that
the system is waiting for you to enter a subcommand or data. In these
cases, the mode message is the name of the current command or
subcommand:

ACCOUNT
EDIT
INPUT
OPERATOR
OUTPUT
TEST
etc.

~hese mode messages are displayed when the mode changes.

A prompting message tells you that required information is missing
and that you must take an explicitly described action in resI=cnse. For
instance, prompting messages prompt you to supply missing operands and
to correct operands that you specified incorrectly. A typical prompting
message is:

ENTER DATA SET NAMF-

The system expects an immediate response to messages that end with a
hyphen. Use the PROMPT or NOPROMPT operand of the PROFILE command to
specify whether or not you want to receive prompting messages. You can
stop a prompting sequence by requesting an attention interruI=tion.

An informational message tells you about the status of the system and
your terminal session. For instance, an informational message may tell
you when program execution has terminated, or how much time you have
used. Informational messages do not require a response.

In some cases, an informational message may serve as a mode message;
for instance, an informational message that tells of the comI=letion of a
subcommand's operation also implies that you can enter another
subcommand.

Levels of Messages: Prompting messages and informational messages may
have additional messages associated with them. The additional messages
explain the initial message more fully.

Prompting messages may have any number of additional rressages;
informational messages may have only one additional message. When an

20

What You Must Know to Use the Commands

additional informational message is available, the message at your
terminal will end with a plus sign (+); prompting messages do not end
with a plus sign, even though an additional message is available.

'Ihe Question Mark: To receive an additional message, you must enter a
question mark- (?) and a carrier return. When you enter a question
mark, it must be placed in the first position on the line. You can
continue entering question marks until no other message is available.
When no other message exists, the system will display:

NO INFORMATION AVAILABLE

For example, a listing at your terminal may look like:

INVALID LINE NUMBER ENCOUNTERED+
?
USE EDIT WITH NONUM OPERAND
?
NO INFORMATION AVAILABLE

The following list contains informational messages that you might
receive at your terminal and will require the attention of your
installations's system programmer.

MESSAGE

BROADCAST DATA SET NOT ALLOCATED, DATA SET NOT ON VOLUME+
CATALOG INFORMATION INCORRECT

BROADCAST DATA SET NOT ALLOCATED, SYSTEM OR INSTALLATION ERROR+
CATALOG ERROR CODE 4
CATALOG ERROR CODE 14
CATALOG ERROR CODE lC
DYNAMIC ALLOCATION ERROR
DYNAMIC ALLOCATION ERROR
DYNAMIC ALLOCATION ERROR
DYNAMIC ALLOCATION ERROR
DYNAMIC ALLOCATION ERROR
DYNAMIC ALLOCATION ERROR
DYNAMIC ALLOCATION ERROR
DYNAMIC ALLOCATION ERROR
DYNAMIC ALLOCATION ERROR
DYNAMIC ALLOCATION ERROR
DYNAMIC ALLOCATION ERROR
DYNAMIC ALLOCATION ERROR
DYNAMIC ALLOCATION ERROR

BROADCAST DATA SET NOT USABLE+
I/O SYNAD ERROR xxxxxxxx
OPEN ERROR CODE xxxxxxxx

CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE

104
108
10C
208
214
21C
1704
1718
4704
4708
470C
4734
4738

DATA SET xxxxxxxx DELETED BUT xxxxxxxx STILL CATALOGUED+
CATALOG ERROR CODE 4
CATALOG ERROR CODE 14
CATALOG ERROR CODE lC

DATA SET xxxxxxxx NOT ALLOCATED, DATA SET NOT ON VOLUME+
CATALOG INFORMATION INCORRECT

DATA SET xxxxxxxx NOT ALLOCATED, SYSTEM OR INSTALLATION ERROR+
CATALOG ERROR CODE 4

21

What You Must Know to Use the Commands

CATALOG ERROR CODE 14
CATALOG ERROR CODE lC
DYNAMIC ALLOCATION ERROR CODE 104
DYNAMIC ALLOCATION ERROR" CODE 108
DYNAMIC ALLOCATION ERROR CODE lOC
DYNAMIC ALLOCATION ERROR CODE 208
DYNAMIC ALLOCATION ERROR CODE 214
DYNAMIC ALLOCATION ERROR CODE 21C
DYNAMIC ALLOCATION ERROR CODE 1104
DYNAMIC ALLOCATION ERROR CODE 1118
DYNAMIC ALLOCATION ERROR CODE 4104
DYNAMIC ALLOCATION ERROR CODE 4108
DYNAMIC ALLOCATION ERROR CODE 410C
DYNAMIC ALLOCATION ERROR CODE 4134
DYNAMIC ALLOCATION ERROR CODE 4138

DATA SET xxxxxxxx NOT USABLE+
BIDL I/O ERROR
FIND I/O ERROR
I/O SYNAD ERROR xxxxxxxx
OPEN ERROR CODE xxxxxxxx
STOW I/O ERROR

DATA SET xxxxxxxx RENAMED BUT xxxxxxxx STILL CATALOGUED+
CATALOG ERROR CODE 4
CATALOG ERROR CODE 14
CATALOG ERROR CODE lC

FILE SYSPROC NOT USABLE+
FIND I/O ERROR
I/O SYNAD ERROR xxxxxxxx
OPEN ERROR .CODE xxxxxxxx

HELP DATA SET NOT ALLOCATED. DATA SET NOT ON VOLUME+
CATALOG INFORMATION INCORRECT

HELP DATA SET NOT ALLOCATED. SYSTEM OR INSTALLATION ERROR+
CATALOG ERROR CODE 4 '
CATALOG ERROR CODE 14
CATALOG ERROR CODE lC
DYNAMIC ALLOCATION ERROR CODE 104
DYNAMIC ALLOCATION ERROR CODE 108
DYNAMIC ALLOCATION ERROR CODE 10C
DYNAMIC ALLOCATION ERROR CODE 208
DYNAMIC ALLOCATION ERROR CODE 214
DYNAMIC ALLOCATION ERROR CODE 21C
DYNAMIC ALLOCATION ERROR CODE 1104
DYNAMIC ALLOCATION ERROR CODE 1718
DYNAMIC ALLOCATION ERROR CODE 4704
DYNAMIC ALLOCATION ERROR CODE 4108
DYNAMIC ALLOCATION ERROR CODE 470C
DYNAMIC ALLOCATION ERROR CODE 4734
DYNAMIC ALLOCATION ERROR CODE 4738

HELP DATA SET NOT' USABLE+
FIND I/O ERROR
I/O SYNAD ERROR xxxxxxxx

22

What You Must Know to Use the Commands

HISTORY NOT AVAILABLE+
REQUIRED VOLUME NOT MOUNTED
DATA SET NOT ON VOLUME
I/O ERROR DURING OBTAIN. CODE xxxx
10CATE ERROR CODE 4
LOCATE ERROR CODE .24

LOGON TERMINATED - SYSTEM ERROR

MEMBERS NOT AVAILABLE+

SYSTEM ERROR+

DIRECTORY STRUCTURE ERROR
I/O SYNAD ERROR DURING DIRECTORY SEARCH xxxxxxxx

DATA SET xxxxxxxx NOT UNALLOCATED. DYNAMIC
ALLOCATION ERROR CODE xxxx
DATA SET xxxxxxxx NOT UNALLOCATED. CATALOG ERROR
CODE xxxx

SYSTEM FAILURE - ALL USERS TERMINATED
SYSTEM FAILURE - PLEASE LOGON AGAIN

UNABLE TO DELETE DATA SET xxxxxxxx+
SCRATCH ERROR CODE 4
SCRATCH .ERROR CODE 6
STOW ERROR CODE 16

UNABLE TO MODIFY PROTECTION FLAGS OF DATA SET xxxxxxxx+'
I/O ERROR WHILE UPDATING SECURrTY FLAGS

UNABLE TO PROTECT DATA SET+
I/O ERROR IN PASSWORD DATA SET

USER ATTRIBUTE DATA SET NOT ALLOCATED. DATA SET NOT ON VOLUME+
CATALOG INFORMATION INCORRECT

USER ATTRIBUTE DATA SET NOT USABLE+
BWL I/O ERROR
I/O SYNAD ERROR xxxxxxxx
OPEN ERROR CODE xxxxxxxx
STOW I/O ERROR

xxxxxxxx ENDED DUE TO ERROR+
'SYSTEM ABEND CODE xxxxxxxx

23

The Commands

~his section contains descriptions of the TSC commands. The ccmmands
are presented in alphabetical order. Subconmands are presented in
alphabetical order following the command to which they apply. A
boldface heading on each page identifies the information contained on
the page. The boldface headings and the alphabetical organization allow
you to locate particular commands as you would locate a subject in a
dictionary or encyclopedia.
r---------------------------------------T---------------------------------------, I COMMAND (Abbreviation) I COMMAND (Abbreviation) I
I SUBCOMMAND (abbreviation> I SUBCOMMAND (Abbreviation) I
~---------------------------------------+_--------------------------------------i I ACCOUNT LISTDS (LISTD)
I ADD (A) LOADGO (LOAD)
I CHANGE (C) LOGOFF
I DELETE (D) LOGON
I END *MERGE
I HELP (H) OPERATOR (OPER)
I LIST (L) CANCEL (C)
I LISTIDS (LISTI) DISPLAY (D)
I ALLOCATE (ALLOC) END
I *ASM HELP (H)
I *CALC MODIFY (F)
. *DELETE (D) MONITOR (MN)

*END SEND
*HELP (H) STOP (P)
*SAVE OUTPUT (OUT)

CALL CONTINUE (CONT)
CANCEL END

*COBOL (COB) HELP (H)
*CONVERT (CON) SAVE (S)
*COPY PROFILE (PROF)

DELETE (D) PROTECT (PROT)
EDIT (E) RENAME (REN)

BOTTOM (B) RUN (R)
CHANGE (C) SEND (5E)
DELETE (D) STATUS (ST)
DOWN SUBMIT (SUB)
END TERMINAL (TERM)
FIND (F) TEST

*FORMAT (FORM) AT
HELP (H) CALL
INPUT (I) DELETE (D)
INSERT (IN} DROP
LIST (L) END

*MERGE (M) HELP (H)
PROFILE (PROF) EQUATE (EQ)
RENUM (REN) FREEMAIN (FREE)
RUN (R) GETMAIN (GET)
SAVE (S) GO
SCAN (SC) LIST (L)
TABSET (TAB) LISTDCB
TOP LISTDEB
UP LISTMAP
VERIFY (V) LISTPSW

EXEC (EX) LI STTCB
*FORMAT (FORM) LOAD
*FORT OFF

FREE QUALIFY (Q)
HELP (H) RUN (R)
LINK WHERE (W)

*LIST (L) TIME
LISTALC (LISTA) **END

, LISTBC (LISTB) **PROC
LISTCAT (LISTC) **WHEN

~---------------------------------------~---------------------------------------~ I *Optional Program Product cormnands available for a license fee. I
I **For use in command procedures. _ I L ___ J

25

ACCOUNT Command

Use the ACCOUNT command and subcommands to update the entries in the
User Attribute Data Set (UADS). (You can use this command cnly if your
installation has given you the authority to do so.) Basically, the UADS
is a list of, terminal users who are authorized to use TSO. The UADS
contains information about each of the users. The inforreaticn in the
UADS is used to regulate access to the system.

Subcommands

You cannot accomplish any work with the ACCOUNT command until you use a
subcommand to define the operation that you want to perform. The
subcommands and the operations that they define are:

ADD

CHANGE

DELETE

END

HELP

LIST

LISTIDS

Add new entries to the UADS; add new data to existing
entries.

Change data in specific fields of UADS entries.

Delete entries or parts of entries from the UADS.

Terminate the ACCOUNT command.

Obtain help from the system.

Display the contents of an entry in the UADS.

Display the user identifications for all entries.

The subcommands cannot be used until you have entered the 'ACCOUNT
command. Each subcommand is discussed separately following the format
of the ACCOUNT command.

There is an entry in the UADS for each terminal user. Each entry
consists of the following information:

1. A user identification.

2. One or more passwords. or a single null field. associated with the
user identification.

3. One or more account numbers, or a single null field, associated
with each password.

4. One or more procedure names associated with each account number.
Each procedure name identifies a procedure that is invoked when the
user begins a terminal session by entering the .LOGON command. '

5. The region size requirements for each procedure.

6. The name of the group of devices that the user will use when he
does not request specific devices.

7. The authori ty to use or a restriction against using the ACCOUNT
command.

8. The authori ty to use or a restriction against using the OPERATOR
command.

27

ACCOUNT Command

9. The authority to use or restriction against using the SUBMIT.
STATUS. CANCEL. and OUTPUT commands.

The organization of the information contained in the UADS is shown in
Figure 2. Figure 3 shows the simplest structure that an entry in the
UADS can have • . and Figure 4 shows a more complex structure.

r--------------T---,
I COMMAND I OPERANDS I
~--------------+------------------------~--------------------------~---f I ACCOUNT I . I L ______________ ~ ___ J

The user identification identifies the entry and user
attributes, and points to the password fields.

(to other passwords)

Each password field points to the account number fields
that are associated with the password.

(to other account numhers)
Account

Each account number field points to the procedure names
thata~e associated with the account number.

(to other procedure names)
Procedure

Associated with each procedure are region size
requirements and device group.

Figure 2. Organization of the UADS Data Set

28

ACCOUNT Command

UADS
data set

Figure 3. The Simplest Structure That an Entry in the UADS Can Have

UADS
data set

~
user I identification

l
I

password password

I
I 1

account account account
number number number

I I
I 1 I I

procedure procedure procedure procedure procedure
name name name name name

I I I I
other other other other other

attributes attributes attributes attributes attributes

Figure 4. A Complex Structure For an Entry in the UADS

29

ACCOUNT Command
ADD Subcommand

Use the ADD subcommand to add new data to the User Attribute Data Set
(UADS>. Each terminal user has an entry in the UADS. Each entry
contains several items of data. The data that you want to add may be
additional data for an existing entry, or it may be an entire new entry .•

r-----------T---,
I SUBCOMMAND I OPERANDS I
.-----------+---~
I {~D}, J ({~ser-identity}[;assword [:ccount [prOCedUre]]])

[DATA ([[passwords] accounts] procedures)]

[SIZE(integer)]

[UNIT (name)]

[
MAXSIZE (integer>]
NOLIM

NOACCT NOOPER NOJCL [ACCT] [OPER] [JCL]
L-__________ ~ __________________________________ ~---------------____ _

user-identity

*

specifies a user identification that identifies the UADS entry.
The user identification is composed of 1-7 alphameric characters
that begin with an alphabetic or national character. The entry
that this field identifies may be:

• An existing entry to which new data is to be added •
• A new entry that is to be added to the UADS.

specifies that all fields corresponding to the position of the
asterisk are to be considered valid for the operation of the
subcommand. When you are creating a new entry" the asterisk
indicates a null field.

password
specifies a word that the user must enter before he can use the
system. The word must be composed of i-a alphameric characters and
must begin with an alphabetic or national character (#, $, ~>. The
password helps indicate the structure in the UADS to which data is
being added, or, when you are adding an entire new entry, the
password is part of the data being added.

account
specifies an account number used for administrative pur~oses. The
account number helps indicate the structure in the UADS to which
data is being added. or, when you are adding an entire new entry,
the account number is part of the data being added.

For TSO, an account number must not exceed 40 characters. and must
not contain a blank. tab, quotation mark, apostrophe, comma,
semicolon, or line control character. A right parenthesis is
permissable only when a left parenthesis precedes it somewhere in
the account number.

31

ACCOUNT Command
ADD Subcommand

procedure
specifies the name of a procedure that is invoked when the user
enters the LOGON command. The procedure name is composed of 1-8
alphameric characters that begin with an al~habetic character. You
should not specify this field for the first positional operand
unless you are adding an entire new entry to the UADS.

DATA(passwords and/or accounts and/or procedures}
specifies that data is to be added to an existing entry. The data
to be added is enclosed within parentheses following the DA~A
keyword. The system adds the data specified with this keyword to
the structure identified by the first positional operand. More
specifically" the data is added to the entry starting with the
field following the last field specified in the first ~ositional
operand.

passwords
specifies a password or a list of passwords to be added to the
existing entry at the location indicated by the first ~ositional
operand. When you specify a list of passwords, the list must be
enclosed within a separate set of parentheses embedded within the
set of parentheses required for the DATA keyword. Each password
must be com~osed of 1-8 alphameric characters and must begin with
an alphabetic or national character.

accounts
specifies an account number or a list of account numbers to be
added to the existing entry. When you specify a list of account
numbers, the list must be enclosed within a separate set of
parentheses embedded within the set of parentheses required for the
DATA keyword. An account number must not exceed 40 characters and
must not contain'a blank, tab, quotation mark, semicolon,' or line
control character; a right parenthesis is permissable only when a
left parenthesis balances it somewhere in the account number. No
more than 255 identical account numbers m~y exist under one user
entry.

procedures
specifies a procedure name or a list of procedure names to be added
to the existing entry. Each procedure name is composed of 1-8
alphameric characters that begin with an alphabetic character.
When you specify a list of procedure.names, in addition to one or
more other fields, the list must be enclosed within a separate set
of parentheses embedded within the set of parentheses required for
the DATA keyword. You should specify the region size requirements
for each procedure by using the SIZE keyword. No more than 255
identical procedure names may exist under one user entry.

SIZE (integer)
specifies the region size, in ,1024 byte units" that the user will
have assigned to him if he does not specify a size himself. The
integer specified must not exceed 65,534._ If you omit the SIZE
keyword or if you specify SIZE(O}, the default value is the minimum

. region size.

UNIT (name)

32

specifies the name of the group of devices that the user identified
by the first positional operand will use when he does net request
specific devices. You can specify a UNIT attribute for each unique
combination of password, account, and procedure in the enbry.

ACCOUNT Command
ADD Subcommand

MAXSIZECinteger)
specifies the maximmn region size,. in 1024 byte units, that the
user identified by the first operand can request at LOGON. The
integer must not exceed 65,534. If you omit the MAXSIZE keyword or
if you specify MAXSIZE(O), the default of NOLIM is assumed.. Use
this operand only when you add a complete entry to the UADS.

NOLIM

ACCT

If NOLIM is specified. no maximum region size limit is enforced.
This is the default when neither MAXSIZE nor NOLIM is sfecifie.d.
Use this operand only when you add a complete entry to the UADS.

specifies that the user identified by tbe first operand can use the
ACCOUNT command, thereby controlling access to the time sharing
system. Use this operand only when you add a complete entry to the
UADS.

NOACCT

OPER

specifies that the user identified by tbe first operand cannot use
the ACCOUNT command. This is the default when neither ACCT nor
NOACCT is sfecified. Use this operand only when you add a complete
entry to the UADS.

specifies that the user identified by the first operand can use the
OPERATOR command. Use this operand only when you add a complete
entry to the UADS.

NOOPER

JCL

specifies that the user identified by the first operand cannot use
the OPERATOR command. This is the default when neither OPER nor
NOOPER is specified. Use this operand only when you add a complete
entry to the UADS.

specifies that the user identified by the first operand can use the
SUBMIT. STATUS, CANCEL,. and OUTPUT cOIr.mands. Use this operand only
when you add a complete entry to the UADS.

NOJCL
specifies that the user identified by the first operand cannot use
the SUBMIT, STATUS,. CANCEL. and OUTPUT commands. This is the
default when neither JCL nor NOJCL is specified. Use this operand
only when you add a complete entry to the UADS.

33

ACCOUNT Command
ADD Subcommand

Example 1

Operation: Add a new entry to the UADS.

Known: The user identification ••••••• ' •• '. • • • • • • •• • •• • • ••• KALTPT
The password. -•••••• ' ••••••••••••••••••••••• -. • • • • •• XAYBZC
The account number ••• ' •••••• , ••• ,., •••••••••••••••• ' •• 32058
The procedure name ' ... , ••••••••• ' ••• , •• ' MYLOG
The user cannot use the ACCOUNT corrmand.
The user cannot use the OPERATOR command.
The user can use the SUBMIT command.
The user's maximum allowable region size., •••••••• 153.600 bytes
The region size requirements for the procedure ••• 81,920 bytes
The name of the group of devices allowed ••••••• ' •• SYSDA

r---~---------,
IADD (KALTPT XAYBZC 32058 MYLCG) NOACCT NOOPER JCL - I
IMAXSIZE (150) SIZE (80) UNIT (SYSDlp I L-___ J

Example 2

Operation: Add a new password~ account number. and procedure name to an
existing entry in the UADS. Also include the region size
requirements for the procedure.

Known: The user identification for the entry •••••• '. ,. • • •• SLAT2
The new password •••••••••••••••• ' '. , •• '. •• MZ3TII
The new account number ' ,. ' ••• '.. 7116166
The new procedure name ' ••••••• ' '. AMABALA
The region size requirements for the procedure., •• 92,160 bytes

r--,
IADD (SLAT 2) DATA(MZ3TII 7116166 AMABALA) SIZE(90) I L--__ J

Example 3

Operation: Continuing example 2. add, a new account number. 288104. to
an entry in the UADS.

Known: The user identification for the entry, ,.. SLAT2
The password for the entry ,. ' ,.'. MZ3TII
The new account nmnber ' ' ••••• ' ••••••• ' •••• ' •• 288104
The input procedure name, Ie .. '. Ie '.'. • • • .. • • • ... MYLOG
The region size requirements for the procedure 116.736 bytes
The device group to be used Ie .. '. ~ .. Ie ••••• ' '. SYS2301

r--,
IADD (SLAT2 MZ3TII) DATA(288104 MYLOG) SIZE(114) UNIT(SYS2301) I L __ J

34

ACCOUNT Command
ADD Subcommand

Example 4

Operation: Add a new procedure name and region size requirements for
the procedure to all entries in the UADS.

Known: The input procedure name ••••••• ' •• ,. • • • • • • • • • • • •• •• MYLOG
The region size requirements ' ... ' ••••••••••••••• 74,752 bytes

r---~--------------------,
IADD (* * *) DATA{MYLOG) SIZE(73) I L-___ J

Example 5

Operation: Add a new account number and procedure name to all
structures for a particular entry in the UADS.

Known: The user identification for the entry •••••••••••• WMROEL
The input account number •• '. '. • ... • • • • • • • • • • • • • • • • ... 5707471
The input procedure name ••• ' ••• ' •• ' ' ••• '. ... LOGPROC
The region size requirements ' 102,400 bytes

r---~---~------------------------,
IADD (WMROEL *) DATA(S707471 LOGPROC) SIZE(100) I L __________________________________ " ____________________________________ J

35

ACCOUNT Command
CHANGE Subcommand

Use the CHANGE subcommand to change existing fields of data within
entries in the UADS.

r-----------T---,
I SUBCOMMANDS I . OPERAND I
~---------~-+-----------------~----------------------------------~-1
{~HANGE} 1 ({~ser-identity}[~assword [:ccount [~rocedure]J])

I
I
I
I
I
I
I
I ,
I
I
I
I

[

DATA(luser-identitY21 >]
password2
account2
procedure2

[SIZE (integer>]

[UNIT(name)]

[
MAXSIZE(integer>]
NOLIM

I [ACCT] [OPER] [JCL]
I NOACCT NOOPER NOJCL I L-_________ ~~ ___ J

user-identity
specifies the existing user identification that identifies the UADS
entry •.

*
specifies that all fields corresponding to the position the
asterisk are to be considered valid for the operation of the
subcommand.

password
specifies an existing password that a user must enter before be can
use the system. The password helps locate the data being changed,
and, when you are changing a password, identifies the data being
changed.

account
specifies an existing account number. The account number helps
locate the data being changed6 and. when you are changing an
account number, identifies the data being changed.

procedure
specifies an existing name of a procedure. The procedure name"
when specified~ is the data being changed.

DATA(user identity2 and/or passvord2 and/or account2 and/or procedure2>
specifies the replacement data. The data enclosed within
parentheses following the DATA keyword is used by the system to
replace the data identified by the last field of the first operand.

user identity2
specifies a user identification to replace the existing user
identity. Tbe user identification is composed of 1-7 alphameric
characters that begin with an alphabetic or national character.

37

ACCOUNT Command
, CHANGE Subcommand

password2
specifies a password to replace the existing password. The
password must "be composed of 1-8 alphameric characters and must
begin with an alphabetic or national character.

account 2
specifies' an account number to replace the existing acccunt number.
The account number is composed of 1-40 characters and must not
contain a blank, tab, quotation mark .. semicolon, apostrophe., comma,
or line control character.' A right parenthesis is permissable only
when a left parenthesis balances it somewhere in the account
number.

procedure 2
specifies a procedure name to replace the existing procedure name.
The procedure name is composed of 1-8 alphameric characters and
must begin with an alphabetic character.

SIZE (integer)
specifies the region size, in 1024 byte units," that is specified on
the JCL EXEC statement of the" procedure whose name is being added
to the UADS. The integer must not exceed 65,534. If you specify
SIZE(O), the minimum region size is assumed.

UNIT (name)
specifies the name of the group of devices that the user will use
when he does not request specific devices.

MAXSIZE(integer)

NOLIM

ACCT

specifies the maximum region size~ in 1024 byte units, that the
user may request at LOGON. The integer must not exceed 65,534. If
you specify MAXSIZE(O). the default of NOLIM is assumed.

specifies that the user is not restricted to a maximum region size.

specifies that the user can use the ACCOUNT command thereby
controlling access to the time sharing system.

NOACCT
specifies that the user ~annot use the ACCOUNT command.

OPER
specifies that the user can use the OPERATOR command.

NOOPER

JCL
specifies that 'the user cannot use the OPERA~OR comrr.and.

specifies that the user can use the SUBMIT, STATUS. CANCEL, and
OUTPUT commands.

NOJCL

38

specifies that the user cannot use the SUBMIT, STATUS, CANCEL, and
OUTPUT commands.

ACCOUNT Command
CHANGE Subcommand

Example 1

Operation: Change an account number for a particular entry in the UADS.
At the same time authorize the user to issue the ACCOUNT and
OPERATOR commands.

Known: The user identification for the entry ••••••• '. • ... •• TOC23
The password. ' ' I •••••••••• I. I •• Ie •••••••••••• Ie I. •• AOX3P
The old account number •••••••• ' '. • • • • • • • • • • •• ... 2E2 97 05
The new account number............................... 2E2670S

r--,
ICliANGE (TOC23 AOX3P 2E2970S) DATA(2E2670S) ACCT OPER I L--__ J

Example 2

Operation: Authorize all users to issue the SUBMIT command.

r---~--------------------,
ICHANGE (*) JCL I L-___ J

~he asterisk in the first positional operand specifies that all user
identities are considered valid for the operation of this sutcdmmand.,

Example 3

Operation: Change the user identification for an entry in the UADS.

Known: The existing user identification ' ••••••••• SWECORP
The new user identification •••••••• ' ' ' •• SWECPOI

r--,
ICHANGE (SWECORP) DATA(SWECPOl) I L-____________________________ ~ __ J

Example 4

Operation: Change the name of a procedure for an entry that consists of
a user identification, a procedure name, and attributes (no
password or account number).

Known: The user identification '. • • • • •• WSNCD
The old procedure name ' ••• '. • • • ... TTURM
The new procedure name. '. • • • • • .. • .. • • • • • • .. • • • • • • • • TML'

r--,
ICHANGE (WSNCD * * TTURM) DATA(TML) I L--__ J

39

ACCOUNT Command
DELETE Subcommand

Use the DELETE subcommand to delete data from the User Attribute Data
Set (UADS). Each terminal user has an entry in the UADS. Each entry
contains several items of data. The data thay you want to delete may be
a part of an existing entry, or it may be an entire existing entry.

r-----------T---,
I SUBCOMMAND J OPERANDS I
~-----------+---~ I {~ELETE}: ({~ser-identity}[~assword [;ccountJJ> I
I J I
I I [DATA ([paSSWOrds }>] I I I, accounts I
J I procedures I L-__________ i ___ J

user-identity

*

specifies a user identification which identifies the UACS entry.
The user identification is composed of 1-7 alphameric characters
that begin with an alphabetic or national character.

specifies that all fields corresponding to the position of the
asterisk are to be considered valid for the operation of the
subcommand.

password
specifies a word that a user must enter before he can use the
system. The word must be composed of 1-8 alphameric characters and
must begin with an alphabetic or national character. The password
helps indicate the particular existing structure from which data is
being deleted, or, when you are aeleting a password, the password
is the data being deleted.

account
specifies an account number used for administrative purposes. The
account number helps indicate the structure from which data is
being deleted, or, when you are deleting an account number. the
account number is the data being deleted.

For TSO, an account number, must not exceed 40 characters, and must
not contain a.blank. tab, quotation mark, semicolon, apostrophe,
comma, or line control character. A right parenthesis is
permissable only when a left parenthesis precedes it somewhere in
the account number.

DATA(passwords.or accounts or procedures)
specifies the data that is to be deleted from an existing entry.
The data to be deleted is enclosed within parentheses following the
DATA keyword.

passwords·
specifies a password or a list 'of passwords to be de~eted from the
existing entry'at the location indicated by the first pcsitional
operand. Each password must be composed of 1-8 alphameric
characters, and must begin with an alphabetic or national
character.

41

ACCOUNT Command
DELETE Subcommand

'accounts
specifies an account number or a list of account nurrbers to be
deleted from the existing entry. An account number must not exceed
40 characters, and must not contain a blank, tab, quotation mark,
apostrophe, comma, semicolon, or line centrol character. A right
parenthesis is permissable only when a left parenthesis £alances it
somewhere in the account number.

procedures
specifies a procedure name or a list of procedure names to be
deleted from the existing entry. Each procedure name is composed
of 1-8 alphameric characters and must begin with an alphabetic
character.

The Contents of an Entry in the UADS: Each entry in the UADS consists
of the followirig information:

(These four items correspond to the fields of the first positional
operand and the DATA keyword for this subcorr~and. These items are the
only items that you can delete separately. To delete items 5-9, you
must delete the entire entry.)

1. A user identification.

2. One or more passwords, or a single null field, associated with the
user identification.

3. One or more account numbers, or a single null field, associated
with each passw~rd.

4. One or more procedure names associated with each account number.
Each procedure name identifies a procedure that is invoked when the
user begins a terminal session by entering the LOGON cemmand.

(These last five items can be deleted only when the entire entry is
deleted.)

5. The region size requirements for each each procedure.

6. The name of the group of devices that the user will use when he
'does not request specific devices.

7. The authority to use. or a restriction against using,. the ACCOUNT
command.

8. The authority to use. or a restriction against using~ the OPERATOR
command.

9. The authority to use, or a restriction against using" the SUBMIT,
STATUS, CANCEL~ and OUTPUT commands.'

Deleting an Entire Entry: To delete an entire entry from the UADS" you
only need to know the user identification for the entry. You must
specify the user identification·as the first and only field ef the first
posi tiona I operand.

Deleting Data from an EXisting Entry: To use the DELETE subcommand to
delete data from an existing entry, you must identify:

a. The location within the entry.
b. The data that you want to delete.

42

ACCOUNT Command
DELETE Subcommand

Example 1

Operation: Delete an entire entry from the UADS.

Known: The user identification for the entry ••••••••••••• VASHTAR

r--,
IDELETE (VASHTAR) I L __ J

Example 2

Operation: Delete a procedure name from an entry in the UADS having the
following index structure.

SCHRDNY

Known: The user i denti-ficat ion •• SCHRDNY
The password. ' •••. 4 •••••••••••••••• _I_ '. .. EGCLON
The account number •••••• ,.~ ••••• , •••• , ••••••••••••••• 3707656
The procedure name to be deleted •••••••••••••••••• LOGB

r---~------,
IDELETE (SCHRDNY EGCLON 3707656) DATA(LOGB) I L __ J

The resultant index structure is:

43

ACCOUNT Command
DELETE Subcommand

Example, 3

Operation: Delete an account number from an entry in the UACS having
the following index structure.

Known: The user identification ' ••• '.' •••••••••••• ' ••••••• ALPHA2
The password.. DRAHCIR
The account nwnber to be deleted 32757

r--, I DELETE (ALPHA 2 DRAHCIR) DATA(32757) I L __ ~ _____________________ J

The resultant index structure is:

44

ACCOUNT Command
END Subcommand

Use the END subcommand to terminate operaticn of the ACCOUNT command.
After entering the END subcommand, you may enter new coreroands.

r-----------T---,
I SUBCOMMAND I OPERANDS I
.-----------+--~--~ I ~D . I I . L __________ ~ ___ J

45

ACCOUNT Command
HELP Subcommand

Use the HELP subcommand to find out how to use ACCOUNT and the ACCOUNT
subcommands. When you enter the HELP subco~mand, the system responds by
printing out explanatory information at your terminal. You may request:

• A list of available subcommands •
• An explanaticn of the function, syntax, and operands of a specific

subcommand.

The HELP subcommand actually causes the system to execute a function
of the HELP command; therefore, you may consult the discussion of the
HELP command if you desire more detailed information.

r-----------T---,
ISUBCOMMAND I OPERANDS I
.-----------+---~
I {HELP} I [subcommand-name] I
I H I [FUNCTION] I
I J [SYNTAX] I
I I [OPERANDS[(list-of-operands)] I
I I [ALL] I L-__________ ~ ___ J

subcommand-name
specifies the subcommand that you want to have clarified. If you
omit this operand" the system will display a list of ACCOUNT
subcommands.

FUNCTION
specifies that you want a description of the referenced
subcommand's function.

SYNTAX
specifies that you want a definition of the proper syntax for the
referenced subcommand.

OPERANDS (list-of-operands)
specifies that you want an explanation of the operand a~~licable to
the referenced subcommand.

ALL

The list of operands specifies the particular keywords that you
want to have explained,. If you do not specify any keywcrds,. all of
the applicable keywords will be included. You must use cne or more
blanks or a comma as a delimiter between the keywords in the list.

specifies that you want a description of the function, the syntax,
and the operands of the subcommand that you specified. This is the
default if no operand is specified,.

Example 1

Operation: Have a list of available subcommands displayed at your
terminal.

r---~-------,
I HELP I L-_ _ ___ J

47

ACCOUNT Command
HELP Subcommand

Example 2

Operation: Obtain all available information about a particular
subcOmmand.

Known: The subcommand name, ••••••••••• ' ••••• ' •••••••• '. • • •.• • • • • ... • • • • •• ADD

r------------------------------~---------------------------------------,
IH ADD I L __ J

Example 3

Operation: Have a list of the operands for a particular subcommand
displayed at your terminal~

Known: The subcommand name ••••••••••• ' •.••••••••••••• ' ••••••••••••• '.. LIST

r--------·--,
Ih list operands I L __ J

48

ACCOUNT Command
LIST Subcommand

Use the LIST subcommand to display entries in the User Attri~ute Data
Set (UADS> or to display fields of data from within particular entries,.

r-----------T---,
ISUBCOMMAND I OPERANDS I
~-----------+-------------------. ------------------------------------~
: {~IST} : ({~Ser-identity}[;aSSWOrd [:ccount [~rocedureJ]]) :
L-__________ ~ ____________________________________ ~ __________________ J

user-identity

*

specifies a user identification that identifies the UADS entry.
The user identification is composed of 1-7 alphameric characters
that begin with an alphabetic or national character.

specifies that all fields corresponding to the position of the
asterisk are to be considered valid for the operation of the
subcommand.

password'
specifies a word that a user must enter before he can use the
system. The word must be composed of 1-8 alphameric characters and
must begin with an alphabetic or national character. The password
helps indicate the structure to be displayed.

account
specifies an accolIDt number used for administrative purJ;:0ses,. The
account number helps indicate tbe structure to be displayed. For
TSO, an account ntnnber must not exceed 40 characters" and must not
contain a blank" tab, quotation mark" apostrophe ll comma, semicolon ll

or line control character. A right parenthesis is permissable only
when a left parenthesis precedes it somewhere in the account
number.

procedure
specifies the name of a procedure that is invoked when the user
enters the LOGON command. The procedure name helps indicate the
particular structure to be displayed. The procedure name is
composed of ,1-8 alphameric characters and must begin with an
alphabetic character.

Example 1

Operation: List the contents of the UADS.

r---~-----------------·-------,
ILIST (*> I , L-_______________________________ ~ _____________________________ ~ ______ J

49

ACCOUNT Command
LIST Subcommand

Example 2

Operation: List all of a particular entry in the UADS.

Known: The user identification. ' ••• ' ••• ' •• ' ••••••••••• ' •••• ,. •• JOTSOP

r---------------------------------------~------------------------------,
ILIST (JOTSOP) I L--________ ' _______________ ~ __ J

Example 3

Operation: List all of the account numbers for a particular entry.

Known: The user identifcation ••••••••••••••••••••• , •••• , • •• EVOTS
The password ••••••• ' •••••••••• '. '. '. ' ••• ' •• ' •••• ' •• '. , ••• ,. '.. ROOLF

r--,
ILIST (EVOTS ROOLF *> I L--____________ ~ ___ J

50

ACCOUNT Command
LISTIDS Subcommand

Use the LISTIDS subcommand to have a list of the user identifications in
the User Attribute Data Set (UADS) displayed at your terminal.

r-----------T---,
I SUBCOMMAND I OPERANDS I
~-----------+---~
I {LISTIDS} I I
I LISTI I . I L-__________ i ___ J

Example 1

Operation: List all user identifications in 'the UADS.

r---~--------------------,
I LISTIDS I L __ J

51

ALLOCATE Command

Use the ALLOCATE command to allocate, dynamically" the data sets
required by a program that you intend to execute.

r--------------T---,
I COMMAND I OPERANDS I
~----------+----------------------.:..-----------------------------~

{
ALLOCATE} I DATASET({* }> [FILE(name>]!
ALLOC I data-set-name

, I
, I FILE (name> [DATASET({* })]

I data-set-name

[

OLD] SHR \
MOD
NEW
SYSOUT

[VOLUME (serial>]

I
I
I
I
I
I
I
I
I
I [SPACE(quantity [increment]) BLOCK(block-length~
I '
I [DIR(integer>]

L-------------~ __ J

DATASET(data-set-name or *>
specifies the name of the data set that is to be allocated. The
data set name must include the descriptive (rightmost> qualifier
and may contain a member name in parentheses. (See the data set
naming conventions,. >

You may substitute an asterisk (*> for the data set name to
indicate that you want to have your terminal allocated for input
and output. If you use an asterisk (*) '. only the FILE operand is
recognized by the system. All other operands are ignored.

In general~ you may specify either or both the DATASET and FILE
keywords; however~ the data set name must be specified if the
status of the data set is OLD or SHR, or if it is MOD and the data
set currently exists. You will be prompted to supply the name of a
MOD data set if you omit the SPACE operand, indicating that the
data set currently exists. The SPACE operand must be specified
when the dataset is NEW.

The system'generates names for SYSOUT data sets; therefore l you
should not specify a data s,et name when you allocate a SYSOUT data
set. If you do, the system igno~es it.

FILE (name)
specifies the name to be associated with the data set. It may
contain no more than eight characters. This name must match the
data definition (DD) name in the Data Control Block (DCB> that is
associated with the data set. For PL/I, this name is the file name
in a DECLARE statement and has the form - DCL filename FILE-; for
instance, DCL MASTER FILE. For COBOL. this name is the
external-name used in the ASSIGN TO clause. For FORTRAN. this name

53

ALLOCATE Command

OLD

SHR

MOD

NEW

is the data set reference number that identifies a data set and has
the form -FTxxFyyy;- for instance, FT06F002.

If you omit this operand, the system assigns an available file name
(ddname) from a data definition statement in the procedure that is
invoked when you enter the LOGON command.

indicates that the data set currently exists and that yeu require
exclusive use of the data set. The data set should be cataloged.
If it is not, you must specify the VOLUME oferand. OLD data sets
are retained by the system when you free them from allocation.

indicates that the data set currently exists but that yeu do not
require exclusive use of the data set. Other tasks may use it
concurrently. SBR data sets are retained by the systerr. when you
free them.

indicates that you want to append data to the end of the data set.
If the data set is actually new, you must also specify the SPACE
operand. MOD data sets are retained by the system when you free
them if you specify a data set name; they are deleted if you do not
specify a data set name.

indicates that the data set does not exist and that it is to be
created. You must specify the SPACE and BLOCK operands for NEW
data sets. For new partitioned data sets you must alse sfeeify the
DIR operand. NEW data sets are kept and cataloged if yeu specify a
data set name. They are deleted if you do not specify a data set
name.

SYSOUT
indicates that the data set is to be a system output data set.
Output data will be initially written cn a direct access device and
later transcribed from the direct access device to the final output
device. The final output device may be a unit record device (such
as a printer or a terminal) or a magnetic tape device. The output
class to which this data set is assigned is that of the message
class. (See also the publication IBM System/360 Operating System,
Supervisor and Data Management Services, GC28-6646.) After
transcripticn by an output writer, SYSOUT data sets are deleted.
You may specify space values with the SPACE operand; if you do not,
default space values are provided by the system.

If you do not specify OLD, SHR, MOD, NEW, or SYSOUT, the system
assigns a default value depending on the BLOCK, SPACE, and DIR
operands. If you specify the BLOCK, SPACE, and DIR operands, the
status defaults to NEW; otherwise, it defaults to OLD.

To change the output class refer to the FREE command and to the
OUTPUT command.

VOLUME (seria 1)

, 54

specifies the serial number of the direct access volume cn which a
new data set is to reside or on which an old data set is located.
If you do not sfecify a serial number, new data sets are allocated
to any eligible direct access volume.

ALLOCATE Command

BLOCK (block-length)
specifies the average block length (in bytes) of the records that
are to be written to the data set. The BLOCK operand is required
for new data sets. You must specify the SPACE operand when you
specify this operand. You may also specify BLOCK for SYSOUT data
sets if the default values are not acceptable.

SPACE (quantity, increment)
specifies the amount of space to be reserved for the new data set.
The amount of space is determined by multiplying the "block length"
(specified by the BLOCK(block-length) keyword) by the "quantity"
value of the SPACE(quantity,incrernent) keyword. SPACE is required
for new data sets and m~y be specified for SYSOUT data sets. You
must specify the BLOCK operand when you specify this operand.

quantity
specifies the primary number of blocks to be allocated for the data
set.

increment
specifies a secondary number of blocks to be allocated for the data
set each time the previously allocated space has been exhausted. A
maximum of 15 secondary blocks may be allocated.

DIR(integer)
specifies the number of 256 byte records that are to be allocated
for the directory of a new partitioned data set. This operand must
be specified if you are allocating a new partitioned data set. You
must also specify the BLOCK and SPACE operands.

Example 1

Operation: Allocate an existing cataloged data set containing input
data for a program. The data set name conforms to the data
set naming conventions, and you need exclusive use of the'
data.

Known: The name of the data set ••••••• 0 •••••••••••• REB35. INPUT. DATA

r--,
IALLOCATE DATASET (INPUT. DATA) OLD I L __________________________________ , ____________________________________ J

Example 2

Operation: Allocate a new data set to contain the output from a
program.

Known: The name that you want to give tbe data set REB35~OUTPUT.DATA
The block length ••••••••••••••••••••••••••• 1056 bytes
The number of blocks expected to be used ••• 50

r----------------------------------~----~------------------------------,
IALLOCATE DATASET(OUTPUT.DATA) NEW SPACE(50:r10) BLOCK(1056) I L--__ J

55

ALLOCATE Command

Example 3

Operation: Allocate your terminal as a temporary input data set.

r--,
IALLOCATE DATASET(*) FILE(FT01F001) I L __ J

Example 4

Operation: Allocate an existing data set that is not cataloged and
whose name does not conform to the data set naming
conventions.

Known: The-data set name SYS1.PTIMAC.AM
The volume serial number ••• '. • •• • • • • • • • • • • •• B99RS2
The DD name •••• '. • • • • • • • • .• • • • • • • • • • • • • • • • • •• SYSL IB

r--,
lalloc dataset('sysl.ptimac,.am') file(syslib) volume(b99rs2) shr I L-___ J

Example 5

Operation: Allocate a new partitioned data set.

Known: The data set name ••••••••••••• , ••••••••••••• JOHNS. OVERHEAD. TEXT
The block length ••••••••••••••••••••••••••. 256 bytes
The number of blocks 500
The number of directory records •••••••••••• 50

r--~---------------------------,
IALLOC DATASET(OVERHEAD.TEXT) NEW BLOCK(256) SPAC~(500) DIR(50) I L-___ J

56

ASM Comm'and

The ASM command is provided as part of the optional TSO ASM Prompter
program product which is available for a license fee.

Use the ASM command to process data sets and produce object modules.
The prompter requests required information and enables you tc correct
your errors at the terminal.

57

CALC Command

The CALC command is provided as part of the optional ITF:PL/I program
product which is available for a license fee.

Use the CALC command to execute ITF:PL/I statements in desk
calculator mode; that is, to have statements interpreted and executed as
you enter them.

59

CALL Command

Use the CALL command to load and execute a program that exists in
executable (load module) form. The program may be user-written, or it
may be a system module such as a compiler, sort, or utility ~rogram~

You must specify the name of the program (load module) to be
processed. It must be a member of a partitioned data set.

You may specify a list of parameters to be passed to the s~ecified
program. The system formats this data so that when the prcgram receives
control, register one contains the address of a fullword. The three low
order bytes of this full word contain the address of a halfwcrd field.
This half word field is the count of the number of bytes of information
contained in the parameter list. The parameters immediately follow the
half word field.

If the program terminates abnormally, you are notified of the
condition and may enter a TEST command to examine the failing ~rogram.

r--------------T---,
I COMMAND J OPERANDS I
~--------------+--.-------~
I CALL J data-set-name ['parameter-string']' I 1-_____________ ~ ___________ ~ ________________________________ - __________ J

data-set-name
specifies the name of the member of a partitioned data set that
contains the program to be executed. You must enclose the member
name within parentheses. When the name of the partitioned data set
conforms to the data set naming conventions, the system will add
the necessary qualifiers to make the name fully qualified. The
system will supply .LOAD as a default for the descriptive qualifier
and (TEMPNAME) as the default for a member name. If the name of
the partitioned data set does not conform to the data set naming
conventions, it must be included with the member name in the
following manner:

data-set-name(membername)

If you specify a fully qualified name, enclose it in a~cstrophes
(single quotes) in the following manner:

parameter-string

'USERID.MYPROGS.LOADMOD(A) ,
'SYS1.LINKLIB(IEUASM),

specifies up to 100 characters of information that you want to pass
to the program as a parameter list. When passing paramet~rs to a
program, you should use the standard linkage conventions.

Example 1

Operation: ~xecute a load module.

Known: The name of the load module ••••••••• BARB01.PEARL.LOAD(TEMPNAME)
Parameters ••••••••• ' ••••••••••••••••• 10,18,23

r--, ICALL PEARL '10 18 23' I 1-___ J

61

CALL Command

Example 2

Operation: Execute a load module.

Known: The· name of the load module ••• '" '. , •••• SHEP.MYLIB.LOAD (COSl)

r--,
ICALL MYLIB(COSl) I L-___ J

Example 3

Operation: Execute a load module.

Known: The name of the load module, "' ••••••••••••• BCMD93.LOAD(SINl)

r--,
ICALL (SINl) I' L __ J

62

CANCEL Command

Use the CANCEL command to halt processing of conventional batch jobs
that you have submitted fram your terminal. If several jobs have the
same jobname. the system cancels only the first one it finds with that
name. A message will be displayed at your 'terminal to advise you of the
action taken by the system. A message will also be displayed at the
system operator's console when a job is canceled.

Only authorized users can use this command (see the ACCOUNT command).
This command is generally used in conjunction with the SUBMIT, STATUS,
and OUTPUT commands.

r--------------T---,
I COMMAND I OPERANDS' I
l--------------f---~
I {CANCEL} J (job-name-list) I
I C I I L ____________ ~~ ___ J

(job-name-list)
specifies the names of the jobs that you want to cancel. The name
of a job that you submit from your terminal consists of your user
identification plus one or more alphameric characters uf to a
maximum of eight characters. You can cnly cancel jobs that have a
userid that is identical to the one with which you logged on.

Note: When you specify a list of several job names, you must
separate the jobnames with standard delimiters and you must enclose
the entire list within parentheses.

Example 1

Operation: Cancel a conventional batch job.

Known: The name of the job ••••••••••••••••••••••••••••••• JE024Al

r--,
ICANCEL JE024Al I L--__ J

Example 2

Operation: Cancel several conventional batch jobs.

Known: ,The names of the jobs •••••••••••••••••••••• '. •• • • •• D58BOBTA
D58BOBTB
D58BOBTC

r--~-----------------------,
IC (D58BOBTA D58BOBTB D58BOBTC) I L __________________________ ' _________________ ~ _______________________ J

63

COBOL Command

The COBOL command is provided as part of the optional COBOL Prompter
program product which is available for a license fee.

Use the COBOL command to compile an American National standard (ANS>
COBOL programs. This command reads and interprets statements for the
American National Standard COBOL version 3 compiler and prompts you for
any information that you have omitted or entered incorrectly. It also
allocates required data sets and passes parameters to the compiler.

65

CONVERT Command

~he CONVERT command is provided as part of the optional lTF:PL/I and
BASIC program product or the Code and Go program product which is
available for a license fee.

Use the CONVERT command to convert language statements contained in
data sets to a form suitable for a compiler other than the cne for which
they were originally intended. The conversions that can be accomplished
with this corrmand are:

FROM TO
------------------------------------T-----------------------------------
Statements suitable for the IStatements suitable for the
TSO ITF:PLI compiler (a Program IPL/I (F) compiler
Product) I
------------------------------------+-----------------------------------
Free format statements suitable for IFixed format statements suitable
the Code and Go FORTRAN compiler Ifor the FORTRAN (G1) compiler and
(a Program Product) lall the FORTRAN compilers provided

I with the Operating system
------------------------------------+----~------------------------------
Fixed format statements suitable forlFree format statements suitable
the FORTRAN (GI) compiler Ifor the Code an9 Go FORTRAN

Icompiler (a Program Product)
------------------------------------+------~----------------------------
statements in an ITF/OS collection IA form acceptable by TSO
------------------------------------~-----------------------------------

67

COpy Command

The COpy command is provided as part of the optional TSO Data Utilities:
COPY, FORMAT, LIST,. MERGE program product which is available for a
license fee.

Use the COpy command to copy sequential or partitioned data sets,.
You can also use this command to:

• Add members to or merge partitioned data sets.
• Resequence line numbers of copied records.
• Change the record length, the block size, and the record format when

copying into a sequential data set.

69

DELETE Command

Use the DELETE command to delete one or more data sets or one or more
members of a partitioned data set.

If the data set is cataloged, the system removes the catalog entry.
The catalog entry for a partitioned data set is removed cnly when the
entire partitioned data set is deleted. The system deletes a member of
a partitioned data set by removing the member name from the directory of
the partitioned data set.

Members of a partitioned data set and aliases for any memters must
each· be deleted explicitly. That is, when you delete a member, the
system does not remove any alias names of the member; likewise, when you
delete an alias name, the member itself is not deleted.

After you delete a protected data set., you should use the PROTECT
command to update the password data set to reflect the change. This
will prevent your having insufficient space for future entries.

r--------------T--~--,
I COMMAND J OPERANDS I
r--------------+------------------~------------------------------------f
I {DELETE} I (data-set-list) [PURGE] I
I D I NOPURGE ' I 'L-_____________ i ___ J

data-set-list
specifies the name of a data set or a member of a partitioned data
set, or a list of names of data sets and/or members (see data set
naming conventions). If you specify a list, it must be enclosed
within parentheses.

If you want to delete several data sets having similar names, you
may insert an asterisk into the data set name at the point of
dissimilarity. That is, all data sets whose names match except at
the position where the asterisk is placed will be deleted. ,
However, you may use only one asterisk per data set name, and you
must not place it in the first position.

For instance~ suppose that you have several data sets named:

ROGERA.SOURCE.PLI
ROGERA.SOURCE2.PLI
ROGERA.SOURCE2.TEXT
ROGERA.SOURCE2.DATA

If you specify:

DELETE SOURCE2.*

,the only data set remaining will be

ROGERA.SOURCE.PLI
PURGE

specifies that the data set is to be deleted even
date has not elapsed. This operand is ignored by
are deleting a member of a partitioned data set.
applies to all data sets specified in a list.

if its expiration
the system if you
The PURGE keyword

71

DELETE Command

NOPURGE
specifies that you want the system to check the expiraticn date for
the data set. Only if the expiration date has elapsed will the
data set be deleted. The NOPURGE keyword applies to all data sets
specified in a list. This is the default if neither PURGE nor
NOPURGEis specified.

Example 1

Operation: Delete a member of a partitioned data set.

Known: The data set name and member name ••••• BANOO.INCREASE.FORT(HOOF)

r--~-----------------------------,
IDELETE INCREASE.FORT(HOOF) I L-________ ~ ___ ---__________ J

Example 2

Operation: Delete several data sets.

Known: The name of the data sets ••••••••••••••••••• JWSD58.CMDS.TEXT
JWSD58. UTILS.OBJ
JWSD58.BUDGET.ASM

r------------------------------------~---------------------------------,
IDELETE (CMDS.TEXT UTILS.OBJ BUDGET.ASM) I L-___ J

Example 3

Operation: Delete a data set even if its expiration date has not
expired.

Known: The name of the data set •••••••••••••• REB1.SCHEDULE.OBJ

r--,
ID SCHEDULE.OBJ PURGE I L __ J

72

EDIT Command

Use the EDIT command to enter and modify data in the system.

r--------------T---,
I COMMAND I OPERANDS I
~--------------+---~

{~DIT} data set name

1
I
I
I
I

:~iF [([int1ger1 [int;~er2J J [~=~~])]
IPLI
BASIC
ASM
COBOL
CLIST
CNTL
TEXT
DATA

FORT~I]
GOFORT [(FREE n

FIXEOJ

[
SCAN]
NOS CAN

[
NUM[(integer1 [integer 2])]J [CAPS]
NONUM ASIS

I [BLOCK(integer)] [LINE(integer)] L-_____________ ~ ___ J

data-set-name

PLIF

PLI

specifies the name of the data set that you want to create or edit,.
(See data set naming conventions.)

specifies that the data set specified by the first operand is for
PLIF statements.

specifies that the data set identified by the first operand is for
PL/I statements. The statements may be for the PLI optimizing
compiler or the PLI checkout compiler.

integerl and integer2
the opt'ional values contained within the parentheses are applicable
only when you request syntax checking. The integer1 and integer2
values define the column boundaries for your input statements. The
position of the 'first character of a line, as determined by the
left margin adjustment on your terminal. is column 1. The value
for integerl specifies the column where each input statement is to
begin. The statement can extend from the column specified by
integerl up to and including the column specified as a value for
integer2. If you omit integerl you must omit integer2, and the
default values are columns 2 and 72; however, you can omit integer2
without omitting integer1.

73

EDIT Command

CHAR48 or CHAR60
CHAR48 specifies that the PL/I source statements are written using
the character set that consists of 48 characters. CHAR60 specifies
that the source statements are written using the character set that
consists of 60 characters. If you omit both CHAR48 and CHAR60, the
default value is CHAR60.

IPLI (CHAR48 or CHAR60)
specifies that the data set identified by the first operand is for
PL/I statements that may be processed by the ITF:PLI Prcgram
Product. CHAR48 or CHAR60 are used as described in the PLI operand
description.

BASIC

ASM

specifies that the data set identified by the first qperand is for
BASIC statements that may be processed by the ITF:BASIC Program
Product.

specifies that the data set identified by the first operand is for
assembler language statements •.

COBOL
specifies that the data set identified by, the first operand is for
COBOL statements.

CLIST

CNTL

IJ:'EXT

DATA

FORT

specifies that the data set identified by the first operand is for
a command procedure and will contain TSO commands and sub commands
as statements or records in the data set.

specifies that the data set identified by the first operand is for
Job Control Language (JCL) statements and SYSIN data to be used
with the SUBMIT command.

specifies that the data set identified by the first operand is for
text that may consist of both uppercase and lowercase characters.

specifies that the data set identl.fied by the first operand is for
data that may be subsequently retrieved or used as input data for
processing by an application program.

specifies that the data set identified by the first operand is for
FORTRAN statements.

FORTE

FORTG

specifies that the data set identified by the first operand is for
FORTRAN (E) statements.

specifies that the data set identified by the first operand is for
FORTRAN (G) statements.

FORTGI
specifies that the data set identified by the first operand is for
FORTRAN (G1) statements. You may use FORT as an abbreviation for
this operand. This is the default value if no other FORTRAN
language level is spec·ified with the FORT operand.

FORTH

74

specifies that the data set identified by the first operand is for
FORTRAN (H) statements.

EDIT Command

GOFORT(FREE or FIXED}
specifies that the data set identified by the first operand is for
statements that are suitable for processing by the Code and Go
FORTRAN Program Product •.

FREE specifies that the statements are of variable lengths and do
not conform to set column requirements. This is the default value
if neither FREE nor FIXED is specified. FIXED spec1fies that
statements adhere to standard FORTRAN column requirements and are
80 bytes long.

Note: The PLI,. IPLI,. BASIC. ASM, FORT. FORTE. FORTG .. FORTGI. FORTH,
GOFORT, COBOL, CLIST,. CNTL. TEXT and DATA operands specify the type of
data set you want to edit or create. You must specify one of these
whenever:

a. The data set name does not follow data set naming conventions.
b. You did not specify a descriptive qualifier for the data set name.

If the data set type is not defined by a descriptive qualifier in either
(a) or (b) above. the system prompts you for it.

'The system will also prompt you for the data set type if the
rightmost qualifier of the data set name is not an acceptable
descriptive qualifier for EDIT and no data set type was specified on the
EDIT command.

NEW

OLD

SCAN

specifies that the data set named by the first operand does not
exist. If an existing cataloged data set already has the data set
name that you specified. the system notifies you when yeu try to
save it; otherwise. the system allocates your data set 'when you
save it.

If you specify NEW without specifying a member name,,, the system
allocates a sequential data set for you when you save it. If you
specify NEW and include a member name the system allocates a
partitioned data set and creates the indicated member when you try
to save it.

specifies that the data set named on the. EDIT command already
exists. When you specify OLD and the system is unable to locate
the data set~ you will be notified and you will have to reenter the
EDIT command.

If you specify OLD without specifying a member name. the system
will assume that your data set is sequential: if the data set is
in fact a partitioned data set, the system will assume that the
member name is TEMPNAME. If you specify OLD and include a member
name,. the system· will notify you if your data set is net
parti ti oned.

specifies that each line of data you enter into the system is to be
checked for correct syntax on a statement by statement tasis.
Syntax checking is performed only for GOFORT, FORTH" FORT, FORTE,
FORTG, FORTGI, BASIC, PL/I, and IPLI statements.

NOSCAN
specifies that syntax checking is not to be performed. This is the
default value if neither SCAN nor NOSCAN is specified.

75

EDIT Command

NUM(integer1 integer2)
specifies that the lines of the data set records are numbered. You
may specify integer1 and integer2 for ASM type data sets only.
Integer1 specifies, in decimal, the starting column (73-80) of the
line number. Integer2 specifies, in decimal, the length (8 or
less) of the line number. Integer1 plusinteger2 cannot exceed 81.
If integer1 and integer2 are not specified, the line numbers will
default according to the type of data set being created or edited
(see Table 4). NUM is the default value if you omit both NUM and
NONUM.

NONUM
specifies that your data set records de not contain line numbers.
Do not specify this keyword for the BASIC, IPLI, and GOFORT data
set types, since they must always have line numbers. The default
is NUM.

CAPS
specifies that all input data is to be converted to uppercase
characters. If you omit both CAPS and ASIS, then CAPS is the
default except when the data set type is TEXT.

ASIS
specifies that input is to retain the same form (upper and lower
case) as entered.

BLOCK (integer)
specifies the maximum length" in bytes" for blocks ef records of a
new data set. Specify this operand only when creating a new data
set. You cannot change the block size of an existing data set. If
you omit this operand" it will default according to the type of
data set being created. Default block sizes are described in Table
4. If different defaults are established at system generation
(SYSGEN) time, Table 4 values may not be applicable. The blocksize
(BLOCK) for data sets that contain fixed length rec'ords must be a
multiple of the record length (LINE); for variable length records"
the blocksize must be a multiple of the record length plus 4.

LINE (integer)
specifies the length of the records to be created for a new data
set. Specify this operand only when creating a new data set. The
new data set will be composed of fixed length records with a
logical record length equal to the specified integer. You cannot
change the logical record size of an existing data set.. If you
specify this operand and the data set type is ASM. FORT, FORTE,
FORTG, FORTGI, FORTH, COBOL or CNTL the integer must be 80. If
this operand is omitted. the line size defaults according to the
type of data set being created. Default line sizes for each data
set type may be, found in Table 4.

This command is the primary facility for entering data into the
system. Therefore, almost every application involves some use of EDIT.
With EDIT, you can create, modify, store~ retrieve" and delete data sets
with sequential organization, including members of partitioned data
sets. These data sets may contain:

• Source programs composed of programming language statements (PL/l,
COBOL, FORTRAN. etc.).

• Data used as input to a program.
• Text use'd f or information storage and retrieval.
• Commands, subcommands. and/or data (Command Procedure).

76

...,J

...,J

r---------T-----~---------------T----------------T-------------------T-----------------'8
I DATA SET IDSORGILRECL I BLOCK SIZE I LINE NUMBERS I Ig.
I I ~---------------L----------------+-------------------+-----------------1~
I I I LINE (n) (Note1) BLOCK (n) I NUM (n,m) I CAPS/ASIS ICD
I I ~------~-------T-------T--------+-------------------+-------T----~----1
I I" I I I I I I I CAP S I;::
I I Idefaultlspecif. Idefaultlspecif. Idefault (n,m) spec. I default I Required I
~---------~-----+-------+_-------+-------+--------+-------------------+------~+---------1°
JASM IPS/POI 80 I =80 I 1680 l~defaultlLast 8 73~~80 " CAPS Yes I~
~OBOL IPS/POI 80 I =80 I 400 l~d~faultIFir~t 6 CAPS Yes I~
CNTL IPS/POI 80 I =80 I 1680 l~defaultlLast 8 CAPS Yes I~
FORT (all) JPS/POI 80 I =80 I 400 l~defaultlLast 8 CAPS Y.es Irt
P~IF IPS/POI 80 I ~100 I 400 l~defaultlLast 8 CAPS Yes I~
DATA IPS/POI 80 I ~255 I 1680 l~defaultlLast 8 CAPS No I~
TEXT IPS/POI 255 I (Note 2) I 1680 I~defaultl (Note 3) ASIS No I~
CLIST IPS/POI 255 I (Note 2) I 1680 I I (Note 3) CAPS Yes 100
GOFORT IPS/POI 255 I (Note 2).1 1680 I~defaultl (Note 3) CAPS No IHl
BASIC IPS/POI 120 I (Note 2)1 1680 I~defaultl (Note 3) CAPS Yes Ig
IPLI IPS/POI 120 I (Note 2)1 1680 I~defaultl (Note 3) CAPS Yes I~
(or user supplied data set type ~- See Note 4) I IH
PLI IPS/POI 104 I ~100 I 500 I~d€faultl (Note 3) CAPS Yes I~
t---------~---~------~-------L-------~-------L-------------------L-------L---------1
I Note 1: The default br maximum allowatle block size may be specified at SYSGEN time. I§
I I~
INote 2: Specifying a LINE value results in fixed length records with a_LRECL, equ,al tol~
Ithe specified value. The specified value must always be equal to or less than the Ig
Idefault. If the LINE keyword is ommitted. variable length records will be created. I~

I 10
INote 3: The line numbers will be contained in the last eight bytes of all fixed lengthl~
records and in the first eight bytes of all variable length records. I~

Note 4: If the user desires that additional data set types are to be recognized by
EDIT command, he need only add an entry to a table of ccnstants which describes the
data set attributes. The EDIT program will support da~a sets with the following
attributes: "

Data Set Organization
Record formats
Logical Record Size
Block Sizes-

Sequence Nos.-

Must be either sequential or partitioned
Fixed or Variable
Less than or equal to 255 characters
User specified -- but must be less than or equal to track
length
V type: First 8 characters
F type: Last 8 characters

I§
thel~

l __ _

tr:I
tj
~

Q
o
8
8
PJ

= Sl,.

EDIT Command

You can also use the EDIT command to:

• Compile, load, a~d execute a source program.
• Test and debug a source program.

These operati'ons are defined and controlled by using the EDIT operands
and subcommands.

Modes of Operation

'The EDIT command has two modes of operation: input mode and edit mode.
You enter data into a data set when you are in input mode. You enter
subcommands and their operands when you are in edit mode.

You must specify a data set name when you enter the EDIT command. If
you specify a new data set name and the NEW operand, the system
allocates a new data set dynamically and places you in input mode. If
you specify the name of an eXisting data set and the OLD operand. the
system opens the existing data set and places ,you in edit mode.

Input Mode

In input mode, you type a line of data and then enter it inte the data
set by pressing your terminal's carrier return key. You can enter lines
of data as long as you are in input mode. One typed line of input
becomes one record in the data set.

When you want to enter a statement that is too long fer a. single
line. you can continue the statement onto a ,second line. Use a hyphen
at the end of the first line to indicate the continuation. The
statement will then occupy two lines in the data set but the system will
concatenate them for syntax scanning.

If you enter a command or subcommand while you are in input mode, the
system will add it to the data set as input data.

Line Numbers: Unless you specify otherwise, the system assigns a line
number to each line as it is entered., Line numbers make editing much
easier, since you can refer to each line by its own number.

Each line number consists of not more than eight digits, with the
significant digits justified on the right and preceded by zeros. Line
numbers are placed at the beginning of variable length records and at
the end of fixed length records (exception: line numbers for COBOL
fixed length records are placed in the first six positions at the
beginning of the record). When you are working with a data set that has
line numbers, you can have the new line number listed at the start of,
each new input line. If you are creating a data set without line
numbers, you can request that a prompting character be displayed at the
terminal before each line is entered. Otherwise, none will be issued.

Record Format: Record formats and sizes may vary according to the type
of dataset. In all cases. the length of your records must not exceed
255 characters. All input records will be converted to upper case
characters, except when you specify the ASIS or TEXT operand. The TEXT
operand also specifies that character-deleting indicators will be
recognized, but all other characters will be added to the data set
unchanged. More specific considerations are:

78

EDIT Command

All Assembler source data sets must consist of fixed length records
80 characters in length. These records mayor may not have line
numbers. If the records are line-numbered, the number can be
located anywhere within columns 73 to 80.

You can create a variety of FORTRAN data sets: FORTE; FORTG;
FORTGI; FORTH; and GOFORT. You can enter GOFORT input statements
in "free form". that is, there are no specific columns which your
data must go into. Free form FORTRAN data will be stored in
variable length records. When you signify that a'line will be
continued by ending it with a hyphen, the system will remove the
hyphen from all fixed length records but will not remove it from
variable length records. If you use fixed length records for
GOFORT, FORTE, FORTG,FORTGI or FORTH, all records are 80
characters long. In addition, the fixed length records must adhere
to the column restrictions of the FORTRAN comp1lers. You can
accomplish this by establishing settings with the TABSET subcommand
before you enter your source data, or by using the system defaults.

PLI and BASIC data sets may consist of either fixed length or
variable length records. All records must contain line numbers.
Fixed-length records may be specified up to 120 characters in
length. The default is variable-length records with the line
number contained in the first eight characters.

Syntax Checking: You can have each line of input checked fer ~roper
syntax. The system will check the syntax of statements for data sets
having FORT, PLI, IPLI, and BASIC descriptive qualifiers. In~ut lines
will be collected within the system until a complete statement is
available for checking_

When an error is found during syntax checking. an appropriate error
message is issued and edit mode is entered. You can then take
corrective action, using the subeommands. When you wish to resume input
operations, press your terminal's carrier return key w.ithout typing any
input. Input mode is then entered and you can continue where you left
off. Whenever statements are being checked for syntax during input
mode. the system will prompt you for each line to be entered unless 'you
specify the NOPROMPT operand for _the INPUT subcommand.

Edit Mode

You can enter subcommands to edit data sets when you are in Edit Mode.
You can edit data sets that have line numbers by referring to the number
of the line that you want to edit. This is called line - number
editing. You can also edit data by referring to specific items of text
within the lines. This is called context editing. A data set having no
line numbers may be edited only by context. Context editing is
performed by using subcommands that refer to the current line value or a
character combination, such as with the FIND or CHANGE subccrr~ands.
There is a pointer within the system that points to a line within the
data set,_ Normally, this pOinter points to the last line that you
referred to. You can use subcommands to change the pointer so that it
points to any line of data that you choose. You may then refer to the
line that it points to by specifying an asterisk <*> instead of a line
number. Table 5 shows where the pointer pOints at completion of each
subcommand_

When you edit data sets wfth line numbers, the line number field will
not be involved in any modifications made tc the record exce~t during
renumbering_ Also" the only editing op'erations that will be {:erformed

79

EDIT Command

across rec ord boundaries will be the CHANGE, RENUM" and FIND subcommands
(the TEXT operand must have been specified for the EDIT command in these

two instances). .

Table 5. Values of the Line Pointer'Re~erred to by an Asterisk (*)

r---------------------T--,
IEdit Subcomrr,ands IValue of the .Pointer at completion of Subcommand I
.---------------------+--~
BOTTOM Last line (or line zero for empty data sets)

CHANGE

DELETE

DOWN

END

FIND

FORMAT(a program
product)

HELP

INPUT

INSERT

Last line changed

Line preceding deleted line (or line zero for
empty data sets)

Line after last line referred to (or line zero
for empty data sets)

No change

Found line, if any, else no change

No change

No change

Last line entered

Last line entered

Insert/Replace/Delete Inserted line or line preceding the deleted line

ILIST
I
IMERGE(a program
I product)
I
I PROFILE
I
IRENUM
I
I RUN
I
I SAVE
I
I SCAN
I
ITABSET
I
I TOP
I
IUP
I
I

Last line listed

Last line

No change

Same relative record

No change

No change

Last line referred to, if any

No change

Zero value

Line before last line referred to (or line zero
for empty data sets)

lVERIFY No change L-____________________ ~ __ J

80

EDIT Command

Changing From One Mode to Another

If you specify an existing data set name as an operand for the EDIT
command, you begin processing in edit mode. If you specify a new data
set name or an old data set with no records, as an operand fer the EDIT
command, you will begin processing in input mode. You will change from
edit mode to input mode when:

1. You press the carrier return key without typing anything first.

2. you enter the INPUT subcommand.

3. You enter the INSERT subcommand with no operands.

You will switch from input mode to edit mode when:

1. you press the carrier return key without typing anything first.

2. You cause an attention interruption.

3. There is no more space for records to be inserted into the data set
and resequencing is not allowed.

4. When an error is discovered by the syntax checker.

Data Set Disposition

The system assumes a disposition of (NEW,CATLG) for new data sets and
(OLD,KEEP) for existing data sets.

Tabulation Characters
When you enter the EDIT command into the system, the system establishes
a list of tab setting values for you, depending on the data set type.
These are logical tab setting values and mayor may not represent the
actual tab setting on your terminal. You can establish your own tab
settings for input by using the TABSET subcommand. A list of the
default tab setting values for each data set type is presented in the
TABSET subcorr~and description. The system will scan each inFut line for
tabulation characters (the characters produced by pressing the TAB key
on the terminal). The system will replace each tabulatien character by
as many blanks as are necessary to position the next character at the
appropriate logical tab setting.

When tab settings are not in use, each tabulation character
encountered in all input data will be replaced by a single blank. You
can also use the tabulation character to separate subcommands from their
operands.

Executing User Written Programs
, You can compile and execute the source statements contained in certain
data set types by using the RUN subcommand. The RUN subcommand makes
use of optional Program Products; the specific requirements are
discussed in the description of the RUN subcommand.

81

EDIT Command

Terminating the EDIT Command

You can terminate the EDIT operation at any time by switching to edit
mode (if you are not already in edit mode) and entering the END
subcommand. Before terminating the EDIT command, you should te sure to
store all data that you want to save. You can use the SAVE subcommand
for this purpose.

Example 1

Operation: Create a data set to contain a COBOL program.

Known: The user-supplied name for the new data set. PARTS
The fully qualified name will be •••••••••••• BOBD58.PARTS.COBOL
Line numbers are to be assigned.

r--,
IEDIT PARTS NEW COBOL I L-___ J

Example 2

Operation: Create a data set to contain a program written in FORTRAN to
be processed by the FORTRAN (G1) compiler.

Known: The user-supplied name for the new data set ••••• HYDRLICS
The fuily qualified name will be •••••••••• DEPT90.HYDRLICS.FORT
The input statements are not to be numbered.
Syntax checking is desired.
Block size ' .. . ' •....•.............•....•...• 400
Line length must be.............................. 80
The data is to be changed to all upper case.

r-------------~--,
IEDIT HYDRLICS NEW FORT NONUM SCAN I L-___ J

or
r--,
Ie hydrlics ne fort scan non I L--__ ~ _________________ J

Example 3

Operation: Add data to an existing data set containing input data for a
program.

Known: The name of the data set •••••••••••••••••••• FHETD58.MANHRS.DATA
Bl<lC:k size ~ 1680
Line length ••••••••••••••••••••••••••••••••• 80
Line numbers are desired.
The data is to be upper case.
Syntax checking is not applicable.

r-----------------------------------~----------~------------------~----,
Ie manhrs.data I L-___ ~ ___ J

82

EDIT Command

Example 4

Operation: Create a data set for a Corr~and Frocedure.

Known: The user supplied name for the data set ••••••••••••••••• CMDPROC

r--,
IE CMDPROC NEW CLIST I L __ J

Example 5

Operation: Create a data set to contain a PL/I PROGRAM.

Known: The user-supplied name for the data set ••••••••••• WEATHER
The column requirements for input records
left margin ••••••••••••••••••••••••••••••••••••••• Cclumn 1
right margin •••••••••••••••••••••••••••••••••••••• Column 68
The allowed character set ••• ~ ••••••••••••••••••••• 48 characters
Line numbers are desired.
Each statement is to be checked for proper syntax.
The default BLOCK and LINE value are acceptable.

r--,
ledit weather new pli(l 68 char48) scan I L-___ J

83

EDIT Command

Subcommands for EDIT

Use the subcommands while in edit mode to edit and manipulate data. The
format of each subcommand is similar to the format of all the commands.
Each subcommand" therefore, is presented and explained in a manner
similar to that for a command. Table 6 contains a brief summary of each
subcommand's function.

Table 6. Subcommands Used With the Edit Command
r------------------------------T---------------------------------------,
I BOTTqM Moves the pointer to the last line.
1 CHANGE Modifies a character string. '
I DELETE Removes records.
I DOWN Moves the pointer toward the end of
I the data.
lEND Terminates the EDIT command.
IFIND Locates a character string,.
IFORMAT (available as an Formats and lists data..
I optional
I Program Product)
I HELP
I INPUT
I INSERT
ILIST
IMERGE (available as an
I optional
I Program Product>
I PROFILE
I
IRENUM
IRUN
I
I SAVE
I SCAN
I TAB SET
I TOP
I'
IUP
I
I VERIFY
I

Explains available subcommands,.
Prepares the system for data input.
Inserts records.
Prints out specific lines of data.
Combines all or parts of data sets.

Specifies your selected 'delete'
indicators. '
Numbers or renumbers lines of data
Compiles~ loads, and executes the data
set.
Retains the data set.
Controls syntax checking.
Sets the Tabs.
Moves the pointer to the first line of
data set.
Moves the pointer toward the start of
data set.
Lists each line 'referenced by the
pointer.

I Insert/Replace/Delete Inserts.replaces, or deletes a line. L-_____________________________ ~ ______________________________________ J

84

BOTTOM Subcommand

Use the BOTTOM subcommand to change the current line pointer so that it
points to the last line of the data set being edited. This subcommand
may be useful when subsequent subcommands such as INPUT or MERGE must
begin at the end of the data set.

r-----------~---,
'SUBCOMMAND , OPERANDS I
!------------+---~-~
'{BOTTOM} , ,
, B , I L--__________ i ___ J

85

CHANGE Subcommand

Use the CHANGE subcommand to modify a sequence of characters (a
character-string) in a line or. in a range of lines.

r------------T---,
I SUBCOMMAND I OPERANDS I
l------------t---~
I {CHANGE} I [line-number-l [line-nUmber-2]] I
I C . I ~ [countl] I
I I I
I I {stringl [string2 [SpeCial-delimiter[ALLlll} I
I j count2· I L--__________ ~ __________________________ ~ ____________________________ J

line-number-l
specifies the number of a line you want to change. When used with
line number 2_ it specifies the first line of a range of lines.

line-number-2

*

specifies the last line of a range of lines that you want to
change.

specifies that the line pointed to by the line pointer in the
system is to be used. If you do not specify a line number or an
asterisk, the current line will be the default value.

countl
specifies the number of lines that you want to change, st~rting at
the position indicated by the asterisk (*).

stringl
specifies a sequence of characters (a character string) that you
want to change. The sequence must be preceded by an extra
character that serves asa special delimiter. The extra character
may be any printable character other than a number" blank. tab,
comma, semicolon, parenthesis, or asterisk. The extra ch~racter
must not apFear in the character string. Do not put. a standard
delimiter between the extra character and the string of characters
because the delimiter will be treated as a character in the
character string.

The specified. lines are displayed at your terminal up to and
including the sequence of 'characters that you specified for
stringl. You can then edit the lines as you please.

string 2
specifies a sequence of characters that you want to use as a
replacement for ·stringl'. Like stringl. string2 must be'preceded
by an extra character that serves as a special delimiter,. This
character must be the same as the extra character used for stringl.

The specified lines are scanned for occurrences of the sequence of
characters specified for stringl. If you specify the ALL operand,
each occurrence of stringl.in the range of. lines is replaced by the
sequence of characters that you specify for string2.. If you do not
specify the ALL operand, only the first occurrence of stringl will
be replaced by string2.

87

CHANGE Subcommand

ALL
specifies that every occurrence of ' stringl' within the specified
line or range of lines will be replaced by , string2'.

count 2
specifies a number of characters to be displayed at your terminal"
starting at the beginning of each specified line.'

combinations of Operands: You can enter several different combinations
of these operands. The system interprets the operands that you enter
according to the following rules:

• When you enter a single number and no other operands, the system
assumes that you are accepting the default value of the asterisk <*>
and that the number is a value for the "count2" operand.

• When you enter two numbers and no other cperands" the system assumes
that they are "line number 1" and "count2" respectively.

• When you enter two operands and the first is a number and the second
begins with a character that is not a number, the system assumes
that they are "line number 1" and "stringl".

• When you enter three operands and they are all numbers, the system
assumes that they are "line number 1"~ "line number 2" and "count2".

• When you enter three operands and the first two are numbers but the
last begins with a character that is not a number~ the system
assumes that they are "line number 1"" "line number 2" and
"stringl".

Example 1

Operation: Change a sequence of ~haracters in a particular line of a
line numbered data set.

Known: The line nlimber •••• ' ••••••••••••.••••••••••••••• ~ ••••••• 57
The old sequence of characters......................... parameter
The new sequence of characters I. • • • • .. operand

r--,
ICHANGE 57 XparameterXoperand I L __ J

Example 2

Operation: Change a sequence of characters wherever it appears in
several lines of a line numbered data set.

Known: The starting line number , ... , •• '. • • •.• • • •• 24
The ending line number •••••••••••••••••••••••••.••••.••••.•.• '.. 82
The old sequence of characters i.e.
The new sequence of characters e.g.

r------------------------------------~------------~--------------------,
Icbange 24 82 !i.e. !e.g. fall I L--__ ~ _______________________ J

The blanks following the stringl and string2 examples (i.e. and e.g. >
are treated as characters.

88

CHANGE Subcommand

Example 3·

Operation: Change part of a line in a line numbered data set.

Known: The line number •••••••••••••••••••••••••••• ' •••••• '. • • • • •• •• •• 143
The number of characters in the line preceding the
characters to be changed •••••••••••••••••••••••••••••••••••• 18

r-------------------~---,
ICHANGE 143 18 ' I L-___ J

This form of the subcommand causes the first 18 characters of line
number 143 to. be listed at your terminal. "You complete the line by
typing the new information and enter the' line by pressing the RETURN
key. All of your changes will be incorporated into the data set.

Example 4

Operation: Change part of a particular line of a line numbered data
set.

Known: The line number •••••••• -•••••••.••••••••••••••••• 103
A string of characters to be changed ••••••••••• 315 h.p. at 2400

r--,
ICHANGE 103 M315 h.p. at 2400 I L--___ ~---------------_________ J

This form of the subcommand causes line number 103 to be searched until
the characters "315 h.p. at 2400" are found. The line is displayed at
your terminal up to the string of characters. You can then complete the
line and enter the new version into the data set.

Example 5

Operation: Change the values in a table.

Known: The line number of the first line in the table •••••.••••••••• 387
The line number of the last line in the table ••••••••••••••• 406
The number of column containing the values ••••••••• '. •• •• •• •• 53

r------------.------------------------~---------------------------------,
ICHANGE 387 406 53 I L-___ J

Each line in the table is displayed at your terminal up to the column
containing the value. As each line is displayedw you can type in the
new value,. The next line viII not be displayed until you complete the
current line and enter it into the data set.

Example 6

Operation: Add a sequence of characters to the front of the line that
is currently referred to by the pointer within the system.

Known: The sequence of characters •••• '.... •••••••• •• ••• In the beginning

r--·-~--------------------,
ICHANGE * //In the Beginning I L-___ J

89

DELETE Subcommand

Use the DELETE Subcommand to remove one or more records from the data
set being edited.

Upon completion of the delete operation, the current line fointer
will point to the line that preceded the deleted line.

r------------T---,
I SUBCOMMAND I OPERANDS. I
~-----------+-------------------.....;--------------------.---------------~
I {DELETE} I [line-number-1 [line-nUmber-21] I
I D I ~ [countl I
L,----------~---________ J

line-number-1
specifies the line to be deleted; or the first line of a range of
lines to be deleted.

line-number-2
specifies the last line of a range of lines to be deleted.

* specifies that the first line to be deleted is the line indicated
by the current line pointer in the system. This is the default if
no line is specified.

count
specifies the number of lines to be deleted, starting at the
location indicat~d by. the preceding operand.

Example 1

Operation: Delete the line being referred to currently .•

r---,
IDELETE * I L-___ ~-------------___________ J

or
r--,
I DELETE I L-__ J

or
r--,
ID * I L-___ J

or

r--,
ID . I L-___ J

or
r--~----~------------------------,
1*, I L __ J

Any of the preceding command combinations or abbreviations will cause
the deletion of the line referred to currently. The last instance is
actually a use of the insert/replace/delete function.

91

DELETE Subcommand

Example 2

Operation: Delete a particular line from the data set.

Known: The line number •••••••••••••••••••••••••••• ' ••••••••••••• ,. '. •• 04

r--,
IDELETE 4 I L __ J

Leading zeroes are not required.

Example 3

Operation: Delete several consecutive lines from the data set.

Known: The number of the first line •••••••••••••••••••••••••••••••• 18
The number of the last line ••••••••••••••••••• ' •••••••••••••• 36

r--,
IDELETE 18 36 I L __ J

Example 4

Operation: Delete several lines from a data set with no, line numbers.
The current line pointer in the system points to the first
line to be deleted.

Known: The number of lines to be deleted ••••••••••••• ' ••••••••• '. '. '. •• 18

r~--~--------------,--------------,

IDELETE * 18 I L-___ J

92

DOWN Subcommand

Use the DOWN subcommand to change the current line pointer so that it
points to a line that is closer to the end of the data set.

r------------T--------------------------------------~----------------,
I SUBCOMMAND I OPERANDS I
~------------+---~
I DOWN I [count] I L-___________ ~ ___ J

count
specifies the number of lines between the one prior to the line
currently referred to and the line to which you want to refer. If
you omit this operand!. the default is cne.

Example 1

Operation: Change the point~r so that it points to the next line.

r--,
I DOWN I L--__ J

Example 2

Operation: Change the pointer so that you can refer to a line that is
located closer to the end of the data set than the line
currently pointed to.

Known: The number of lines from the present position to
'the new position •.•.....•.......•.......••..... I. • • • • • • • •• 18

r--,
IDOWN 18 I L-___ J

93

END Subcommand

. Use the END subcommand to terminate operaticn of the EDIT command.
After entering the END subcommand, you may enter new commands. If you
have modified your data set and have not entered the SAVE sutcommand"
the system will ask you if you want to save the modified data set,. If
so, you can then enter the SAVE subcommand. If you do not want to save
the data set, re-enter the END subcommand.

r------------T-----------------------~---------~---------------------,
J SUBCOMMAND J . OPERANDS I
~-------~----+---~
I END I I L--__________ i--___ J

95

FIND Subcommand

Use the FIND subcommand to locate a specified sequence of characters.
The system begins the search at the line referred to by the current line
pointer in the system, and continues until the character string is found
or the end of the data set is reached. If you want to ignore the first
part of each line in the search, you may specify the number of
characters to be ignored at the start of ea?h line.

r------------T-----------------------------------~-------------------,
I SUBCOMMAND I OPERANDS I
l------------+---~
I FIND I string [count] I L-______ ~ ____ ~ ___ J

string
specifies the sequence of characters (the character string> that
you want to locate. This sequence of characters must be preceded
by an extra character that serves as a special delimiter. The
extra character may be any printable character other than a number,
semicolon, blank, tab. comma, parenthesis, or asterisk. You must
not use the extra character in the character string. Do not put a
delimiter between the extra character and the string of characters.

count

If you do not specify a string, then the string you specified the
last time you used the FIND subcommand will be the default. If no
default is available, you will be prompted.

specifies the position' within each line at which you want the
search for the string to begin. For instance, if you want to
ignore the first 5 positions on a line you must specify the digit 6
for the count operand. When you use this operand, you must
separate it and the string operand with another extra character
identical to the one preceding the string operand. .

Example 1

Operation: Locate a sequence of characters in a data set.

Known: The sequence of characters ••• w •••••••••••••• ELSE GO TO COUNTER1

r---------------------------------~-------------------~----------------,
IFIND XELSE GO TO COUNTER1 I L-__ ~------J

Example 2

Operation: Locate a particular instruction in a data set containing an
assembler language program.

Known: The sequence of characters ••••••••••••••••••••••••••• LA 3,BREAK
The instruction begins in column 10.

r--,
IFIND 'LA 3,BREAK '10 . I L--__ J

97

EDIT Command
FORMAT Subcommand

The FORMAT subcommand is provided as part of the optional TSO Data
Utilities: COPY, FORMAT. LIST, MERGE program product which is available
for a license fee.

Use the FORMAT subcommand to format textual output. This subcommand
provides the facilities to:

• Print a heading on each page.
• Center lines of text between margins.
• Control the amount of space for all four margins.
• Justify left and right margins of text.
• Number pages of output consecutively.
• Halt printing when desired.
• Print multiple copies of selected pages.
• Control line and page length.
• Control paragraph indentation.

99

EDIT Command
HELP Subcommand

Use the HELP subcommand to find out how to use EDIT and the EDIT
subcommands. When you enter the HELP subcommand, the system responds by
printing out explanatory information at your terminal. You may request:

• A list of available subcommands •
• An explanation of the function, syntax, and operands of a specific

subcommand.

The HELP subcommand actually causes the system to execute a function of
the HELP command; therefore, you may consult the discussion of the HELP
command if you desire more detailed information.

r--·------·----T---,
'SUBCOMMAND , OPERANDS ,
~------------+---1
, {HELP} , [subcommand-name] . I
,H '[FUNCTION] I
, '[SYNTAX] I
, I [OPERANDS[(list-of-operands)] I
, '[ALL] I L-___________ ~ ___ J

subcommand-name
specifies the subcommand that you want to have clarified. If you
omit this operand~ the system will display a list of EDIT
subcommands.

FUNCTION
specifies that you want a description of the referenced
subcommand's function.

SYNTAX
specifies that you want a definition of the proper syntax for the
referenced subcommand.

OPERANDS (list-of-operands)

ALL

specifies that you want an' explanation of the keyword operands
applicable to the, referenced subcommand.

The list of operands specifies the particular keywords that you
want to have explained. If you do not specify any keywords, all of
the applicable keywords will be included. You must use one or more
blanks or a comma as a delimiter between the keywords in the list.

specifies that you want a description of the function, the syntax"
and the operands of the subcommand that you specified. This is the
default if no operand is specified.

Example 1

Operation: Have a list of available subcommands displayed at your
terminal.

r--,
I HELP I L-___ J

101

EDIT Command
HELP Subcommand

Example 2

Operation: Obtain all available information about a particular
subcommand.

Known: The subcommand name •••••••••••••••••••••••••• ~ ••••••••••••• FIND

r--,
IH FIND I L ___ J

Exampie 3

Operation: Have a list of the operands for a particular subcommand
displayed at your terminal.

Known: The subcommand name •••••••••••••••••••••••••••• ' •••••••• '. • •• LIST

r--,
Ih list operands I L ___ J

102

EDIT Command
INPUT Subcommand

Use the INPUT subcommand to put the system in input mode so that you can
add new data to a new or existing data set. '

r------------v---,
ISUBCOMMAND J OPERANDS I
~------------+---~
I {INPUT} I [line-number[increment]J[RJ [PROMPT] I
I I I *' 10 ! NOPROMPT I
I I I L-___________ ~ ___ J

line-number
specifies the line number and location for the first new line of
input.

increment

*

R

I

specifies the amount that you want each succeeding line number to
be increased. If you omit this operand, the default is 10.

specifies that the next new line of input will either replace or
follow the line pointed to by the current line pOinter, depending
on whether you specify the R or I operand.

I

specifies that you want to replace existing lines of data and
insert new lines into the data set,. This operand, is ignored if you
fail to specify either a line number or an asterisk. If the
specified line already exists, the old line will be replaced by the
new line. If the specified line is vacant, the new line will be
inserted at that location.

specifies that you want to insert new lines into the data set
without altering existing lines of data. Tbis operand is ignored
if you fail to specify either a line number or an asterisk.

PROMPT
specifies that you want the system to display either a line number
or. if the data set is not line-numbered. a prompting character
before each new input line. If you omit this operand, the default
is:

a. The value (either PROMPT or NOPROMPT) that was established the
last time you used input mode.

b. PROMPT. if this is the first use of input mode and the data set
has line numbers.

c. NOPROMPT,. if this is the first use of input mode and the data
set does not have line numbers.

NOPROMPT
specifies that you do not want to be prompted.

103

EDIT Command
INPUT Subcommand

Example 1

Operation: Add and repla~e data in an old data set.

Known: The data set is to contain line numbers.
Prompting is desired.
The ability to replace lines is desired.
The first line number '.. • • ... • • •.• • • • •• 2
The increment value for line numbers ' •••• 2

r--,
IINPUT 2 2 R PROMPT I L-___ J

The listing at your terminal will resemble the following sam~le listing
with your input in lower case and the computers response in upper case.

edit query cobol old

EDIT

input 2 2 r prompt

INPUT

00002 identification division
00004 program-id.query
00006

Example 2

Operation: Insert data in an existing data set.

Known: The data set contains text for a re~ort.
The data set does not have line numbers.
The ability to replace lines is not necessary.
The first input data is "New research and development activities

-will" which is to be placed at the end of the data set.

r---------------------------~--,
I INPUT I L-_____________________________________ ~ _______________________________ J

The listing at your terminal will resemble the following sam~le listing:

104

edit forecast. text old text nonum asis
EDIT
input
INPUT
New research' and development activities vill

EDIT Command
INSERT Subcommand

Use the INSERT subcommand to insert one or more new lines of data into
the data set. Input data is inserted following the location pointed to
by the line pointer in the system. You may change the position pointed
to by the line pointer by using the BOTTOM'I DOWN, TOP:. UP, and FIND
subcommands.

r------------T-----------------~------------~---~--------------------,
I SUBCOMMANDS I ,OPERANDS I
~------------+---~
I {INSERT} I [insert-datal . I
I IN I I L-___________ ~ ___ J

insert-data
specifies the complete sequence of characters that you wish to
insert into the data set at the location indicated by the line
pointer. When the first character of the inse~ed data is a tab,
no delimiter is required between the command and the data. Only a
single d~limiter is recognized by the system. If you enter more
than one delimiter, all except the first are considered to be input
data.

Example 1

Operation: Insert a single line into a data set.

Known: The line to be inserted is:

"UCBFLG DS ALl CONTROL FLAGS"

The location for the insertion follows the 7ist line in the data
set.

The current line pointer points to the 74th line in the data
set.

Before entering the INSERT subcommand:. the current line pointer must be
moved up 3 lines to the location where the new data will be inserted.

r--, I ' INSERT UCBFLG DS ALl CONTROL FLAGS I I __ J

The listing at your terminal will be similar to the following sample
listing.

edit iomodule old asm
EDIT
up 3
insert ucbflg ds all control flags

105

EDIT Command
INSERT Subcommand

Example 2

Operation: Insert several lines into a data set.

Known: The data. set contains line numbers.
The inserted lines are to follow line number 00280 .•
The current line pointer points to line number 00040.
The lines to be inserted are:
"J.W.HOUSE 13-244831 24.73"
"T.N.HOWARD 24-782095 3.05"
"B.H.IRELAND 04-007830 104.56"

Before entering the INSERT subcommand the current line pointer must be
moved down 24 lines to the location where the new data will be inserted.

r--, I INSERT I L-___ - ___ J

The listing at your terminal will be similar to the following sample
listing:

edit sales old data
EDIT
down 24
insert
INPUT
00281 j.w.house 13-244831 24.73
00282 t.n.howard 24-782095 3.05
00283 b.h.ireland 04-007830 104.56

New line numbers are generated in sequence beginning with the number one
greater than the one pointed to by the current line pointer. When no
line can be inserted. you viII be notified. No resequencing will be
done.

106

EDIT Command
INSERT jREPLACEjDELETE Function

The INSERT/REPLACE/DELETE function lets you insert, replace, or delete a
line of data without specifying a subcommand name. To insert or replace
a line, all you need to do is indicate the location and the new data.
To delete a line, all you need to do is indicate the location. You can
indicate the location by specifying a line number or an asterisk. The
asterisk means that the location to be used is pointed to by the line
pointer within the system. You can change the line pointer by using the
UP, DOWN, TOP, BOTTOM, and FIND subcommands so that the proper line is
referred to.

r------------T------------------------------~------------------------, I SUBCOMMAND J '. OPERANDS I
!------------+---~ I I {line-number} [string] , I
I I * - I L--__________ ~ ___ J

line-number

*

specifies the number of the line you want to insert" change, or
delete.

specifies that you want to insert,. change. or delete the line at
the location pointed to by the line pointer in the system. You can
use the TOP" BOTTOM, UP, DOWN, and FIND subcommands to change the
line pointer without modifying the data set you are editing.

string
specifies the sequence of characters that you want to either insert
into the data set or to replace an existing line. If this operand
is omitted and a line exists at the specified location~ the
existing line is deleted. When the first character of "string" is
a tab" no delimiter is required between this operand and the
preceding operand. Only a single delimiter is recognized by the
system. If you enter more than one delimiter l• all except the first
are considered to be input data.

How the System Interprets the Operands: When you specify only a line
number or an asterisk, the system deletes a line of data. When you
specify a line number or asterisk followed by a sequence of characters,
the system will replace the existing line with the specified sequence of
characters or, if there is no existing data at the location,-the system
will insert the sequence of characters into the data set at the
specified location.

Example 1

Operation: Insert a line into a data set.

Known: The number to be assigned to the new line 62
The data ' •• ' •••••••••••••• ' ·OPEN INPUT PARTS-FILE"

r--, I 62 OPEN INPUT PARTS-FILE I
L-__ ~-------~-----------------___ J

107

EDIT Command
INSERT IREPLACE/DELETE Function

Example 2

Operation: Replace an existing line in a data set.

Known: The number of the line that is to be replaced •• , ••••••••••••• 287
The replacement data ••••••••••••••••••••••••• "GO TO BOURCOUNT;"

r--~-------------------, I 287 GO TO BOURCOUNT; I L--__ , ________________ J

Example 3

Operation: Replace an existing line in a data set that does not have
line numbers.

Known: The line pointer in the system paints to the line that is to be
replaced.
The replacement data is Ie ,. "58 PRINT USING 120,S"

r---~--, I * 58 PRINT USING 120,5 I L--______ ', __ J

Example 4

Operation: Delete an 'entire line.

, Known: The number of the line ' , '. • • • • .. • • •• 98
The current line pointer in the system points to line 98.

r---,
198 I L----___ J

or
r--~--------------------~---,
1* I I L--_______________________________________ ~ _________________________ J

108

EDIT Command
LIST Subcommand

Use the LIST subcommand to display one or more lines of your data set at
your terminal.

r------------T-----------------------~-------------------------------,
I SUBCOMMAND I OPERANDS I
.------------+---------------------~---------------------------------~
I {LIST} I [line-number-l [line-nUmber-2]] I
I L I * [count] I
I I I
I I [NUM] I
I I SNUM ,I L-__________ ..L--_________________________ . __________________________ J

line-number-l
specifies the number of the line that you want to be displayed at
your terminal.

line-number-2

*

specifies the number of the last line that you want displayed.
When you specify this operand" all the lines from line number 1
through line number 2 are displayed,.

specifies that the line referred to by the line pointer in the
'system is to be displayed at your terminal. You can change the
line pointer by using the UP, DOWN, TOP, BOTTOM1 and FIND
subcommands without modifying the data set you are editing,.

count

NUM

SNUM

specifies the number of lines that you want to have displayed,
starting at the location referred to by the line pointer.

specifies that line numbers are to be displayed with the text.
Thi's is the default value if both NUM and SNUM are omitted. If
your data set does not have line numbers, this operand will be
ignored by the system.

specifies that' line numbers are to be omitted.

Example 1

Operation: List an entire data set.

r---~---,
ILIST I L _________________________________ , ___________________________________ J

Example 2

Operation: List part of a data set that has line numbers.

Known: The line number of the first line to be displayed •• ' •••• ' ' •• 21
The line number of the last line to be displayed, ••• - , I. ... • •• 44
Line numbers are to be included in the list.

r--------------------------------~-----~---------~--------------------,
ILIST 27 44 I L--_______________________________________ ~ ____________________________ J

109

EDIT Command
LIST Subcommand

Example ·3

Operation: List part of a data set that does not have line numbers,.

Known: The line pointer in the system pOints to the first line to be
listed.
The section to be listed consists of 17 lines.

r--,
ILIST * 17 . I L-___ J

110 .

EDIT Command
MERGE Subcommand

The MERGE subcommand is provided as part of the optionalTSO Bata
utilities: COpy. FORMAT. LIST. MERGE program product which is available
for a license fee.

Use the MERGE subcommand to:

• Merge all or part of a data set into a specific area within another
data set or within itself •

• Resequence line numbers i~ a merged data set or member.

111

EDIT Command
PROFILE Subcommand

Use the PROFILE subcommand to specify the character-deletion and/or
line-deletion indicators that you want to use at your termin.al.

Initially, a user profile is prepared for you when arrangements are
made for you to use the system. You change the characteristics of your
user profile ,by using the PROFILE subcommand with the appropriate
operands. Only the character'istics that you specify by operands will
change; other characteristics remain unchanged. You must specify at
least one operand or the subcommand will be ignored by the system. (See
the PROFILE command.>

r------------T---,
ISUBCO~D I OPERANDS I
~------------+---1
I {PROFILE} J [CHAR ({BS }>] [LINE ({ATTN })] I
J PROF I character character I
I I I ,NOLINE I
I I NOCHAR I L ____________ ~ ___ J

CHAR(BS or character)
specifies the character or terminal keyboard key that you want to
use at your terminal to delete a character from a line.

BS specifies that the backspace key is to be your
character-deletion indicator. (This is the initial value that is
in effect until changed specifically.)

Character specifies the particular character or key that you want
to use as your character-deletion indicator. You should not
specify a blank" comma" tah, asterisk, parenthesis" colon, or
apostro~e,.

NO CHAR
specifies that you do not warit to use the character-deleting
indica~or.

LINE(ATTN or character>
specifies the character or key that you want to use at your
terminal to delete an entire line. You should not specify a blank,
comma, tab, asterisk, parenthesis, colon, or apostrophe.

ATTN specifies that an attention interruption is to delete a line.
(This is the initial value that is in effect until changed
specifically.)

Character specifies the particular character or key that you want
to use as your line deletion indicator.

NOLINE
specifies that you do not want to use the line-deletion indicator.

113

EDIT Command
PROFILE Subcommand

Example 1

Operation: specify that the backspace key is used for deleting a
character and that the ATTN key is used for deleting a line.

r--,
IPROFILE CHAR (BS) LINE (ATTN) I L--__ ~ ______ ~ _______ J

Example 2

Operation: Specify that an exclamation mark is used for deleting a
character and that a pound sign is used for deleting a line.

r---·-----------------------,
IPROFILE CHAR(!) LINE(#) I L--__ J

114

Use the RENUM subcommand to:

. EDIT Command
RENUM Subcommand

• Assign a line number to each record of a data set that does not have
line numbers •

• Renumber each record in a data set that bas line numbers.

New line numbers are placed in the last eight character positions of
'fixed length records (except for COBOL data sets), or in the first eight
character positions of variable length records. Line numbers for COBOL
data sets are placed in the first six positions. If variable length
records were not numbered previously, the records will be lengthened so
that the eight-character fields can be prefixed to each record. If the
record cannot be extended eight characters, you are notified. Any
information in the last positions of fixed length records is replaced by
the line numbers.

In all cases the specified (or default> increment value becomes the
line increment for the data set.

r------------T--~--------------, I SUBCOMMAND' I OPERANDS . I
~------------+------------------------------.-------------~----------~
I {RENUM} I [new-line-number [increment [old-line-number]]] I
I REN j I L __ ' _________ .L ___ ;... ______ J

new-line-number
specifies the first line numb~ to be assigned to the data set. If
this operand is omitted, the first line number will be 10,.

increment
specifies the amount by which each succeeding line number is to be
incremented,. (The default value is 10.) You cannot use this
operand unless you specify a new line number.

old-line-number
specifies the location within the data set where renumbering will
begin. If this operand is omitted,. renumbering will start at the
beginning of the data set. The old line number should be equal to
or less than the new line number. You cannot use this operand
unless you ·specify a value for the increment operand.

Example 1

Operation: Renumber an entire data set.'

r--,
IRENUM I L-___ J

115

EDIT Command
RENUM Subcommand

Example 2

Operation: Renumber part of a data set.

Known: The old line nllIllb·er .•••••••• I. I •• 14 '. ' ••••• r •••• ' •••••• re '. I •• 14 ••••••• '.. 17
The new line. nllIllber ••••• Ie • '. r ' I. ' ••••••••• I. I.. 21
The increment. Ie I. '4 I. '- I ••• re ••••••• r ,. ' ••• I ••• ' ••• '. I. I •• '.. 1

r--,
IREN 21 1 11 I L-___ J

116

EDIT Command
RUN Subcommand

Use the RUN subcommand to compile. load. and execute the source
statements in data set that you are editing. The RUN subcommand is
designed specifically for use with certain program products; it selects
and invokes the particular program product needed to process your source
statements. The following table shows which program product is selected
to process each type of source statement. (Appendix A contains
references to additional information about the program products .•)

r----------------------------T---,
IIf your program or data set I Then the following Program Product is I
Icontains statements of this I needed: I
Itype (see EDIT): I I

l----------------------------+---~
I IPLI I ITF:PL/I I
I I (Shared Language Component and PL/II
I I Processor) I
l----------------------------+---------------~---------------------~---~ I BASIC I ITF:BASIC I
I . I (Shared Language Component and' I
I I BASIC Processor) I
l----------------------------+---~ I GOFORT I Code and Go FORTRAN I
l-------------------------~-+_---------------~--------------------~---~
I FORT I TSO FORrRAN Prompter and FORTRAN IV (Gl) I
.-------------. ---------------+--------------~-------------------------~ I COBOL I TSO COBOL prompter and American I
I I National Standard COBOL Version 3 I
.----------------------------+--------------------. ---------------------~
IASM I TSO ASM Prompter I
• ____________________________ .J. ____________ ~----------------------------f

IPrograms containing statements suitable for the following IBM-supplied
Ilanguage processors can be compiled and executed by using the CALL
I command ..
I
I ASM (F). PL/l (F) I, COBOL (E) or (F), FORTRAN (E), (G) or (H)
I

·IYOU can use the CONVERT command to convert ITF:PL/I and Code and Go
IFORTRAN statements to a form suitable for the PL/l and FORTRAN
I compilers, respectively~
I
I When the descriptive qualifier for your data set name is • FORTI, the
ICode and Go Fortran compiler is invoked unless you specify another
lcompiler with the EDIT command.
L-- -------------______________________ ~------------------------J

117

EDIT Command
RUN Subcommand

r------------T---,
I SUBCOMMAND I OPERANDs I
!------------+-------------------------------~-----------------------~
I {RUN} I ['parameters'] I '
I R J, I
I I [TEST] [CHECK] I
I I NOTEST OPT I
j I' I
I I [LMSG] I
I I SMsG ' I
I I. , I
I ' I [LPREC] I
I I SPREe I L-_________ ~ _____________________ ~ _______________________________ J

'parameters'

TEST

specifies a string of up to 100 characters that is passed to the
program that is to be executed. You may specify this operand only
for data sets with the ASM and FORT descriptive qualifiers.

specifies that testing will be performed during execution. This
operand is valid for ITF:PL/I and ITF:BASIC Program Product
programs only.

NOTEST

LMSG

SMSG

specifies that no testing will be done. If you omit both TEST and
NOTEST. the default value is NOT EST •

specifies that you want to receive complete diagnostic messages.
This operand is valid for the optional ITF:PL/I. ITF:BASIC and Code
and Go FORTRAN Program Products only.

specifies that you want to receive the short, concise diagnostic
messages. If you omit both LMSG and SMSG, the default value is
SMSG.

LPREC

SPREC

specifies that you want long precision arithmetic calculations
(valid only for the ITF:BASIC Program Product).

specifies that you want short prec1s1on arithmetic calculations.
If you omit both LPREC and SPREC, the default value is SPREe.

CHECK
specifies that a PLI Checkout data set is being edited.

OPT
specifies that a PLI Optimizing Source" data set is being edited.

118

EDIT Command
RUN Subcommand

'Example 1

Operation: Compile and execute the data being edited by the EDIT
command.

Known: The EDIT command is being used currently.
The data set contains statements prepared for the optional
ITF:BASIC Program Product compiler.
The s¥stems contains the optional ITF:BASIC
Program Product.
Default values for the RUN subcommand are suitable.

r--,
IRON ", I L-___ J

Example 2

Operation: Execute an assembler language program contained in the data
set referred to by the EDIT command.

Known: The parameters to be passed to the program are: '1024.PAYROLL'

r------------------------------~----------------~----------------------,
IRON '1024 PAYROLL' I L-___ J

119

EDIT Command
SAVE Subcommand

Use the SAVE subcommand to have your data set retained as a Fermanent
data set. If you use SAVE without an operand, the updated version of
your data set replaces the original version. When you specify a new
data set name as an operand. both the original version and the updated
version of the data set are saved.

r-----------~---, I SUBCOMMAND I OPERANDS I
!------------+---~
I {SAVE} I [data-set-namel I
I S I I L-___________ ~ ___ J

data-set-name
specifies a new data set name that will be assigned to your edited
data set. The new name may be different from the current name.
(See the data set naming conventions.)

If you use SAVE without an operand, the updated version of your
data set replaces the original version. When you specify a new
data set name as an operand, both the original version and the
updated version of the data set are saved.

Example 1

Operation: Save the data set that has just been edited by the EDIT
command.

Known: The system is in edit mode.
The user supplied name that you want to give the dat.a set is
INDEX.

r--------------------------~----------·---------------------------------,
ISAVE INDEX I L-- _________ ' ___ J

121

EDIT Command
SCAN Subcommand

Use the SCAN subcommand to request syntax checking services for
statements that will be processed by the PL/I(F), FORTRAN(G), or
FORTRAN(H) compiler or by the Code and Go FORTRAN, FORTRAN IV (GI),
ITF:BASIC or ITF:PL/I Program Products. You can have each statement
checked as you enter it or you can have an entire program checked.

r------------v---, I SUBCOMMAND I OPERANDS I
~------------t---~
I {SCAN} I {line-number-1 [line-nUmber-2]} I
I SC I * [count] I
I J I
I I [ON] I
I I OFF I L-______ ~ __ ~_~ ___ J

line-number-1
specifies the number of a line to be checked for proper syntax.

line-number-2

*

specifies that all lines between line number 1 and line number 2
are to be checked for proper syntax.

specifies that the line at the location indicated by the line
pointer in the system is to be checked for proper syntax. The line
pointer can be changed by the TOP, BOTTOM, UP, DOWN. and FIND
subcommands ..

count
specifies the number of lines you want checked for proper syntax.

ON
specifies that each line is to be checked for proper syntax as it
is entered.

OFF
specifies that each line is not to be checked as it is entered.

Example 1

Operation: Have each line of a FORTRAN program checked for proper
syntax as it is entered.

r ---,
ISCAN ON . I L--____________________ . __ J

Example 2

Operation: Have all the statements in a data set checked for proper
syntax.

r-----------------------------------~~----~------------~------------· ---,
I SCAN I L-_ _ ______________________________________ . ______________________ J

123

EDIT Command
SCAN Subcommand

Example 3

Operation: Have several statements checked for proper syntax.

Known: The number of the first line to be checked ••••• ' ••••• ' ••• ' •••••• 62
The number of the last line to be checked •••••• ' •• '. •• •• 69

r--, ISCAN 62 69 I L-___ J

Example 4

Operation: Check several statements for proper syntax.

Known: The line pointer points to the first line to be checked,.
The number of lines to be checked ' ••• I I. '. '.. 7

r---------------------------------------~------------------------------,
ISCAN * 7 I L--__ J

124

EDIT Command
T ABSET Subcommand

Use the TABSET subcommand to:

• Establish or change the tabulation settings (the tab values that are
to be translated into blanks by the system) •

• Void any existing tabulation settings.

The basic form of the subcommand causes tabulation characters to be
translated'into blanks corresponding to the column requirements for the
data set type. For instance, if the name of the data set being edited
has FORT. as a descriptive qualifier,. the first tabulation setting will
be in column 7. The values in Table 7 will be in effect when you first
enter the EDIT command.

Table 7. Default Tab Settings
r---r------------------------~---,
IData Set Name Descriptive Qualifier IDefault Tab settings Columns I

.---------------------------------------~-+-------~----------------~---f
IPLI 15,10,15.,20,25,30,35,40,45,,50
IPLIF 15,10,15"20,25,30,35,, 40,45,50
IFORT(FORTRAN IV (GI) I
land Code and Go FORTRAN Program Products) 17,72
IASM 110,16,31,72
I COBOL 18,12,72
I TEXT 15,10,15,20,30.40
I DATA 110,20,30,40,50,60
IC~IST 110,20~30,,40,50,60
ICNTL. 110,20,30,,40,50,,60
IIPLI(ITF:PL/I Program Product) 15,10,15,20,25,30,35,40.45,50
IBASIC(ITF:BASIC Program Product) 110,20,301,40,50,60
I COBOL 1·8,12,72 L-__ ~ ____________________________ J

r------------T---,
I SUBCOMMAND 1 OPERANDS I
.------------+-------------------~-----------------------------------~
I {TABSET} I [ON (integer-list)] I
1 TAB I OFF I
1 '1 IMAGE I L--__________ ~ _________________________ ~ _____________________________ J

ON(integer~list)

OFF

specifies that tab settings are to be translated into blanks by the
system. If you specify ON wi thout an integer list,,, the existing or
default tab settings are used. You can establish new values for
tab settings by specifying the numbers of the tab columns as values
for the integer list. A maximum of ten values is allowed. If you
omit both ON and OFF the default value is ON.

specifies that there is to be no translation of tabulation
characters,. '

IMAGE
specifies that the next input line will define new tabulation
settings~ The next line that you type should consist 'of blanks and
-t-s, with the location of the -t"s indicating the column positions
for the tab settings (a maximum of 10 settings is allowed). Do not
~se the tab key to produce the new image line.

125

EDIT Command
T ABSET Subcommand

Example 1

Operation: Establish standard tab settings for your data set,.

r-----------,----------------------------~------------------------------,
I TAB I L--__ J

Example 2

Operation: Establish tabs for columns 2" 18, and 72.

r--,
ITAB ON (218 72) I L--__ J

Example 3

Operation: Use an example to establish tab settings.

Known:
II

The example is: '
t t t "

r--------------------------------------~-------------------------------, ITAB IMAGE ' I
Itt t I L-_________________________________ ' ________________________________ ~---J

126

EDIT Command
TO,P Subcommand

Use the TOP subcommand to change the line pOinter in the system so that
it points to the beginning of the data set. That is, the pointer will
point to the position preceding the first record of an' unnumbered data
set. or the pointer will pOint to line number zero of a data set that
has line numbers.

This subcommand is useful in setting the line pointer to the proper
position for subsequent subcommands that need to start their operations
at the beginning of the data set. For data sets that have line numbers.
there mayor may not be a record with line number zero. In the event
that the data set is empty you will be notified and the asterisk takes
on a zero value. If the data set begins with line number zero, you
cannot position the current line pointer before the first record without
renumbering one or more records.

r------------T---,
I SUBCOMMAND I OPERANDS I
t------------+-----~---~
I TOP J I L-___________ ~ ___ J

Example 1

Operation: Move the line pointer to the beginning of your data set.

r--,
I TOP I L-_______________ . _________________________ ~ ____________________________ J

127

EDIT Command
UP Subcommand

Use the UP subcommand to change the line pointer in the system so that
it points to a record nearer the beginning of your data set. If the use
of this command causes the line pointer to point to the first record of
your data set. you will be notified.

r------------T---, I SUBCOMMAND I OPERANDS I
~------------+--------~----~---~
I UP I [count] I L-___________ ~ ___ J

count
specifies the number of iines toward the beginning of the data set
that you want to move the current line pointer. If count is
omitted. the pointer will be moved only one line.

Example 1

Operation: Change the pointer so that it refers to the preceding line.

r--, IUP . I L---___ J

Example. 2

Operation: Change the pointer so that it refers to a line lccated 17
lines before the location currently referred to.

r---------------------~---------------~---~-------~----------------~---, IUP 17 I
L--__________________________________ ~--~------~--.~----------------__ , __ J

129

EDIT Command
VERIFY Subcommand

Use the VERIFY subcommand to display the line that is currently pointed
to by the line pointer in the system. Every time the pointer changes,
the line to which it points after the change will be displayed at your
terminal.

r------------T---,
I SUBCOMMAND I I OPERANDS I
~-------. -----f---f
I [VERIFY] I [ON] I
I V I OFF I L-___________ ~ ___ J

ON
specifies that you want to have the line that is referred to by the
line pointer displayed at your terminal each time the line pointer
changes. This is the default if you omit both ON and OFF.

OFF
specifies that you do not want to have this service.

Example 1

Operation: Have the line that is referred to by the line pointer
displayed at your terminal each time the line pointer
changes.

r-------------------------------~---------~-------~--------------------,
I VERIFY I L-___ J

or
r--.---,
IVERIFY ON I
L--____________________ ~ _______________ ~---------~-------------_______ J

Example 2

Operation: Terminate the operations of the VERIFY subcommand.

r--· -----~--------------------,
IVERIFY OFF I L-______________________________________ ~ __ ------------_______________ J

131

EXEC Command

Use the EXEC command to execute a command procedure (see section
entitled ·Command Procedure Statements").

You can specify the EXEC command in two ways:

1. The explicit form.. where you enter EXEC followed by the name of the
data set that contains the command procedure.

2. The implicit form. where you do not enter EXEC but only enter the
name of the member of the command procedure library (a partitioned
data set) that contains the command procedure.

Some of the commands in a command procedure may have symbolic values
for operands. When you specify the EXEC command, you may supply actual
values for the system to use in place of the symbolic values.

r--------------T--------~--,
1 COMMAND I. OPERANDS 1
~--------_ .-------t---~
1 {EXEC} 1 data-set-name ['VaIUe-list'][NOLISTJ 1
1 EX. _ I· ,LIST I
f--------------t---~---~ 1 1 procedure-name [value-list] I L-_____________ ~ ___ - _________ J

data-set-name
specifies the name of the data set containing the command procedure
to be executed. If the descriptive qualifier for the data set is
not CLIST (as in BOB.FORTCOMP.CLIST) you,mu~t enclose the fully
qualified name within apostrophes. (See'tihe data set naming
conventions.)

procedure-name
specifies a member of a command procedure library that is invoked
when you enter the LOGON command. The library must previously have
been defined in the SYSPROC DD statement of the logon procedure or
with the ALLOCATE command.

value-list
specifies the actual values that are to be substituted for the
symbolic values in the command procedure. The symbolic values are
defined by the operands of the PROC statement in the command
procedure. The actual values that are to replace the symbolic
values defined by positional operands in the PROC statement must be
in the same sequence as the positional operands. The actual values
that are to replace the symbOlic values defined by keywords in the
PROC statement must follow the positional values. but may be in any
sequence. When you use the explicit form of the command.. the value
list must be enclosed in apostrophes. If apostrophes appear within
the list, then you must provide two apostrophes in order to print
one ..

NOLIST
specifies that the commands and subcommands will not be listed at
the terminal. The system assumes NOLIST for implicit and explicit
EXEC commands.

133

EXEC Command

LIST
specifies that commands and subcommands will be listed at the
terminal as they are executed. This opezand, is valid only for the
explicit form of EXEC.

Example 1

operation: Execute a command procedure to invoke the PL/I compiler.

Known: The name of the data set that contains the command procedure is
RBJ2I.PLIC.CLIST.

The command procedure consists of:

PROC 1 NAME
ALLOCATE DATASET(&NAME~.PLI) FILE(SYSIN)
ALLOCATE DATASET(&NAME •• LIST) FILE(SYSPRINT) BLOCK(SO) SPACE(300.100)
ALLOCATE DATASET(&NAME,.,.OBJ) FILE(SYSLIN) BLOCK(SO) SPACE(250,100)
ALLOCATE 'FILE(SYSUT1) BLOCK(1024)SPACE(60,.60)
ALLOCATE FILE(SYSUT3) BLOCK(SO) SPACE(250.100)
CALL 'SYS1.LINKLIB(IEMAA)' 'LIST,ATR,XREF,STMT'
FREE FILE (SYSUT1, SYSUT3 .SYSIN ,.SYSPRINT)

The name of . your program is 'EXP".
You want to have the names of the commands in the command procedure
displayed at your terminal as they are executed.

r---~---~----------------~---, I EXEC PLIC 'EXP' LIST ' I L-__ . ____ ~----------------~---J

The listing at your terminal will be similar to:

exec plic 'exp' list

ALLOCATE DATASET(EXP.PLI) FILE(SYSIN)
ALLOCATE DATASET(EXP.LIST) FILE(SYSPRINT) BLOCK(SO) SPACE(300.100)
ALLOCATE DATASET(EXP.OBJ) FILE(SYSLIN) BLOCK(SO) SPACE(250.100)
ALLOCATE FILE(SYSUT1) BLoCK(1024) SPACE(60,,60)
ALLOCATE FILE(SYSUT3) BLOCK(SO) SPACE(250~100)

CALL 'SYS1. LINKLIB (IEMAA) " 'LIST '. ATR. XREF • STMT'
FREE FILE(SYSUT1.SYSUT3~SYSIN,SYSPRINT)
READY

Example 2

Operation: suppose that the command procedure in Example 1 was stored
in a command procedure library. Execute the command
procedure using the implicit form of EXEC.

Known: The name of the member of the partitioned data set that contains
the command procedure is PLIC

r--, ----------------, Iplic exp , I L--___ ~---_J

134

FORMAT Command

The FORMAT command i·s provided as part of the optional TSO Data
utilities: COPY; FORMAT. LIST, MERGE program product which is available
for a license fee.

Use the FORMAT command to format textual output. This command
provides the facilities to:

• Print a heading on each page.
• Center lines of text between margins.
• Control the amount of space for all four margins.
• Justify left and right margins of text.
• Number pages of output consecutively,.
• Halt printing when desired.
• Print multiple copies of selected pages.
• Control line and page length.
• Control paragraph identation.
• Store a data set that has already been formatted.
• Print all or part of a sequential or partitioned data set.

135

~F;O'RT Command

The FORT command is provided as part of the optional FORTRAN Prompter
program product which is available fora license fee.

Use the FORT command to compile a FORTRAN IV (Gl) program. You viII
be prompted for any information that you have omitted or entered
incorrectly. It also allocates required data sets and passes parameters
to the FORTRAN IV (Gl) compiler.

137 '

FREE Command

Use the FREE command to release ("de-allocate") previously allocated
data sets that you no longer need. You can also use this command to·
change the output class of SYSOUT data sets.

The maximum number of data sets that may be allocated to you at any
one time depends on the number of Data Definition· (DD) statements in the
procedure that is invoked when you LOGON. The allowable number must be
large enough to accomodate:

• Data sets allocated via the LOGON and ALLOCATE commands •

• Data sets allocated dynamically" and later freed automatically, by
the system's command processors.

The data sets allocated by the LOGON and ALLOCATE commands are not freed
automatically. To avoid the possibility of reaching your limit and
being denied necessary resources, you should use the FREE command to
release these data sets when they are no longer needed.

When you freeSYSOUT data sets, you may change their output class to
make them available for processing by an output writer.

When you enter the LOGOFF command, all data sets allocated to you are
freed by the system.

r--------------T----~--,
I COMMAND I OPERANDS I

r--------------t---~
I FREE I {DATASETtlist-Of-data-set-names)} I
I I FILE (list-of-file-names) I

I I I
I I [SYSOUT (class)] I L-_____________ ~ ___ J

DATASET (!ist-of-data-set-names)
specifies one or more data set names that identify the data sets
that you want to free. (See the data set naming conventions.> If
you omit this operand, you must. specify the FILE operand.

FILE (list-of-file-names)
specifies one or more file names that identify the data sets to be
freed. If you omit this operand, you must specify the DATASET
operand.

SYSOUT (class)
specifies an output class which is represented by a single
character. All of the system output (SYSOUT~ data sets specified
in the DATASET and FILE operands will be assigned to this class and
placed in the output queue for processing by an output writer (see
IBM System/360 Operating System: supervisor and Data Management

. Services~ GC28-6646). If you do not specify a new class, the
SYSOUT data sets that are freed will remain in the message class.

139

FREE Command

Example 1

Operation: Free a data set by specifying its data set name.

Known: The data set name ••••••••••••••.••••••• it TOC903 .• PROGA.LOAD

r--,
IFREE DATASET(PROGA.LOAD) I L ___________ .-: ___ J

Example 2

Operation: Free three data sets by specifying their data set names.

'Known: The data set names •••••• ' ••• , ••••• , •• it LIRPA. PB99CY •. ASM
LIRPA.FIRSTQTR.DATA
LIRPA.LOOF.MSG

r--,-----------------------,
IFREE DATASET(PB99CY.ASM~FIRSTQTR.DATA.·LIRPA.LOOF.MSG·) I L __ ~--------------______ J

Example' 3

Operation:' Free five data sets by specifying data set names or data
definition names. Change the output class for any SYSOUT
data sets being freed.

Known: The name of a data set it I ••• '. ' ••• it ••• it it •••••••• DNIW. HCRAM.FORT
The filenames (data definition names) of
4 data sets, ••• Ie ~ '. ;. ••••• ' ••••••••• ' •••• ' '. SYSUTl

SYSUT3
SYSIN
SYSPRINT

The new output class •• it ' •••• ' ' •• ' ' •• '. '. • •• B

. r----------------------------------~--:---------~---------------~---,
IFREE DATASET(HCRAM.FORT) FILE (SYSUT1,.SYSUT3 .SYSIN.SYSPRINT) SYSOUT(B) I L ___ ~ ______________ J

140

HELP Command

Use the HELP command to obtain information about the function, syntax"
and operands of commands and subcommands. This reference information is
contained within the system and is displayed at,your terminal in
response to your request for help.

r---~----------T---,
I COMMAND I OPERANDS I

.--------------t---1
I {HELP} I [command-name] I
I H I [FUNCTION] I
I I [SYNTAX] I
I I [OPERANDS (list-of-operands)] I
I I [ALL] I L _____________ ~ ___ ~ ____ J

command-name
specifies the name of the command that you want to know more about.

FUNCTION
specifies that you want to know more about the purpose and
operation of the command.

SYNTAX
specifies that you want to know more about the syntax required to
use the command properly.

OPERANDS (list-of-operands)

ALL

specifies that you want to see explanations of the operands for the
command. When you specify the keyword OPERANDS and omit any
values" all operands will be described. You can specify particular
keyword operands that you want to have described by including them
as values within parenthesis following the keyword.. If you specify
a list of more than one operand, the operands in the list must be
separated by commas or blanks.

specifies that you want to see all information available concerning
the command or subcommand. This is the default value if no other
KEYWORD operand is specified.

HELP Information: The scope of available information ranges from
general to specific. The HELP command with no operands produces a list
of valid commands and their basic functions. From the list you can
select the command most applicable to your needs. If you need more
information about the selected command, you may use the HELP command

'again, specifying the selected command name as an operand. You will
then receive:

1. A brief description of the function' of the command.

2. The format- and syntax for the command.

3. A description of each operand.

You can obtain information about a command only when the system is ready
to accept a command.

141

HELP Command

If you do not want to have all of the detailed informaticn, you may
request only the portion' that you need.

, 'The information about the commands is contained in a cataloged
partitioned data set named SYS1.HELP. Information for each command is
kept in a member of the partitioned data set. The HELP command causes
the system to select the appropriate member and display its 'contents'at
your terminal.

Figure 5 shows' the hierarchy of the sets of information available
wi th the HELP command,. Figure 5 also shows the form of the command
necessary to produce any particular set,.

Example 1

Operation: Obtain a list of all available commands.

r---~-------------------------,
I HELP I L __ ~ _________ J

Example 2

Operation: Obta'in all the information available for the ALLOCATE
command. .

r---~--------------------,
IHELP ALLOCATE 'I L-___ J

Example 3

Operation: Have a description of the XREF, MAP" COBLIB, and OVLY
operands for the LINK command displayed at your terminal.

r---~----------------~---,
IH LINK OPERANDS(XREF,MAP,COBLIB"OVLY) I _ L-___ J

Example 4

Operation: Have a description of the function and syntax of the LISTBC
command displayed at your terminal.

r--~----~~-----------------------,
Ih listbc function syntax I L--__ ~---J

142

HELP Command

When the system is READY
to accept a command, you
may request: When the system is ready to

accept a subcommand, you
may request:

LIST OF COMMANDS
LIST OF SUBCOMMANDS

COMMAND FUNCTION
SUBCOMMAND FUNCTION

COMMAND SYNTAX
SUBCOMMAND SYNTAX

LIST OF OPERANDS LIST OF OPERANDS

EACH OPERAND
10 EACH OPERAND

this form of.the command•... produces:

/" HELP

HELP commandname

Q)

~ HELP commandname ALL o
S
~ < HELP commandname FUNCTION
CI
~

~ HELP commandname SYNTAX

HELP commandname OPERANDS

HELP cOmmandname OPERANDS (list of operands)

...
E-I ...
ZE-I
::>::>
Ofl.l
UE-I
u::>
~O

r HELP

HELP subcommandname

HELP subcommandname

HELP subcommandname

.HELP subcommandname

HELP subcommandname

HELP subcommandname

'-

ALL

FUNCTION

SYNTAX

OPERANDS

OPERANDS (list of operands)

Figure 5. Information Available Through the HELP Command

G)

®00
000
o
o
®
@

CD
G)@@

G)@@

G)

®
®
@

143

LINK Command

Use the LINK command to invoke the linkage editor service program.
Basically, the linkage editor converts one or more object modules (the
output modules from compilers) into a load module that is suitable for
execution. In doing this. the linkage editor changes all symbolic
addresses in the object modules into relative addresses. you can find a
complete description of the functions of the linkage editor in the
publication IBM system/360 operating System: Linkage Editor and Loader,
GC28-6538.

The linkage editor provides a great deal of informati.on to help you
test and debug a program. This information includes a cross-reference
table and a map of the module that identifies the location of control
sections, entry points, and addresses. you can have this information
listed at your terminal or saved in a data set on some device.

You can specify all the linkage editor options explicitly or you can
accept the default values. The default values are satisfactory for most
uses. By accepting the default values, you simplify the use of the LINK
command,.

If the module that you' want to process has a simple structure (that
is, it is self contained and does not pass control to other modules) and
you do not require the extensive listings produced by the linkage'editor
and you do not want a load module, you may want to use the LOADGO
command as an alternative to th,eLINR command.

145

LINK Command

r------------T-----~---,
1 COMMAND 1 OPERANDS I'
.-----------.-t------------------------------------~--------------------~

LINK (data-set-list)

1
1
1
1
1

[LOAD[(data-set-name)]]

[
PRINT({*data_set_name} >]
NOPRINT

[LIB(data-set-list)]

[PLILIB]

[PLICMIX1'

[PLIBASEl

[FORTLIBl

[COBLIB1.

[~MAP] [:~AL] [~iisT] [~~FrJ [~g~AL]
.[~~] [:~iusJI~~FRJ [~~~R] [~:~y]
[

RENT J [SIZE (integerl integer2) I [NE]
NORENT.' NONE

[~~OLJ [~~DCJ [:~IARJ [~:kJ[~~ERMJ
1 [DCBS(blocksize)] . L-__________ ~ __ J

(data -set-Ii st)
specifies the names of one or more data sets containing your object'
modules and/or linkage editor control statements •. (See the data
set naming conventions). The specified data sets will be
concatenated within the output load module in the sequence that ,
they are included in this operand. You may substitute an asterisk
(*> for a data set name to indicate that you will enter control
statements from your terminal. The system will prompt you to enter
the control statements. A null line indicates the end of your
data. The publication IBM System/360 Operating System: Linkage
Editor and Loader. GC28-6538. contains a description of the control
statements.

LOAD(data~set-name)
specifies the name of the partitioned data set that will contain
the load module after processing.by the linkage editor (see the
data set naming conventions). If you omit this operand~ the system
will generate a name according to the data set naming ccnventions.

PRINT (data-set-nameor .)
specifi~s that linkage editor listings are to be produced and

146

LINK Command

placed in the specified data set. When you omit the data set name,
the data set that is generated is named according to the data set
naming conventions. You may substitute an asterisk (*> for the
data set name if you want to have the listings displayed at your
terminal. This is the default value if you specify the LIST. MAP,
or XREF operand.

NOPRINT
specifies that no linkage editor. listings are to be produced. This
operand causes the MAP. XREF. and LIST options to become invalid.
This is the default value if both PRINT and NOPRINT are omitted.
and you do not use the LIST. MAP, or XREF operand.

LIB (data-set-list>
specifies one or more names of library data sets to be searched by
the linkage editor to locate load modules referred to by the module
being processed (that is, to resolve external references>. (See
the data set naming conventions.> When you specify more than one
name. the names must be separated by a comma.

PLILIB
specifies that the partitioned data set named SYS1.PLILIB is to be
searched by the linkage editor to locate load modules that are
referred to by the module being processed.

PLIBASE
specifies that the partitioned data set named SYS1.PLIBASE is to be
searched to locate load modules referred to by the module being
processed.

PLICMIX
specifies that the partitioned data set named SYS1.PLICMIX is to be
searched to locate load modules referred to by the module being
processed.

FORTLIB
specifies that the partitioned d~ta set named SYS1.FORTLIB is to be
searched by the linkage editor to locate load modules referred to
by the module being processed.

COBLIB

MAP

specifies that the partitioned data set named SYS1.COBLIB is to be
searched by the linkage editor to locate load modules referred to
by the module being processed.

specifies that the PRINT data set is to contain a map of the output
module consisting of the control sections~ the entry names. and
(for overlay structures> the segment number.

NOMAP

NCAL

specifies that a map of the output module is not to be listed.
This is the default value if both MAP and NOMAP are omitted.

specifies that the automatic library call mechanism is not to be
invoked to locate the modules that are referred to by the module
being processed when the object module refers to other load
modules.

147

LINK Command

NON CAL

LIST

specifies that the modules referred to by the module being
processed are to be located by the automatic library call mechanism
when the object module refers to other load modules. This is the
default value if both NCAL and NONCAL are omitted.

specifies that a list of all linkage editor control statements is
to be placed in the PRINT data set.

NOLIST

LET

specifies that a listing of linkage editor control statements is
not to be produced. This is the default value if both LIST and
NOLIST are omitted.

specifies that the output module is permitted to be marked as
executable even though a severity 2 error is found (a severity 2
error indicates that execution of the output module may be
impossible).

NOLET

XCAL

specifies that the output module be marked non-executable when a
severity 2 error is found. This i~ the default value if both LET
and NOLET are omitted.

specifies that the output module is permitted to be marked as
executable even though an exclusive call has been made tetween
segments of an overlay structure. Because the segment issuing an
exclusive call is overlaid, a return from the requested segment can
be made only by another, exclusive call or a branch.

NOXCAL

XREF

specifies that both valid and invalid exclusive calls will be
marked as errors., This is the default value if both XCAL and
NOXCAL are omitted.

specifies that a cross-reference table is to be placed on the PRINT
data set. Tbe table includes the module map and a list'of all
address constants referring to other control sections. Since the
XREF operand includes a module map~ both XREF and MAP cannot be
specified for a particular LINK command.

NOXREF ,

REUS

specifies that a cross-reference listing is not to be produced.
This is the default value if both XREF and NOXREF are omitted.

specifies that the load module is to be marked serially reusable if
the input load module was reenterable or serially reusable. The
RENT and REUS operand are mutually exclusive. The REUS operand
must not be specified if the OVLY or TEST operands are specified.

NOREUS

148

specifies that the load module is not to be marked reusable. This
the default value if both REUS and NOREUS are omitted.

REFR

LINK Command

specifies that the load module is to be marked refreshable if-the
input load module was refreshable and the OVLY and TEST operands
were not specified.

NOREFR

SCTR

specifies that the load module is not to be marked refreshable.
This is the default value if both REFR and NOREFR are omitted.

s.pecifies that the load module created by the linkage editor can be
either scatter loaded or block loaded. If you specify SCTR_. do not
specify OVLY.

NOSCTR

OVLY

specifies that scatter loading is not permitted. This is the
default value if both SCTR and NOSCTR are omitted.

specifies that the load module is an overlay structure and is.
therefore suitable for block loading only. If you specify OVLY, do
not specify SCTR.

NOOVLY

RENT

specifies that the load module is not an overlay structure. This
is the default value if both OVLY and NOOVLY are omitted.

specifies that the load module is marked reenterable provided the
input load module was reenterable and that neither the OVLY nor the
TEST operand was specified.

NORENT
specifies that the load module is not marked reenter able. This is
the default value if both RENT and NORENT are omitted.

SIZE (integer1,integer2)

NE

NONE

OL

specifies the amount of main storage to be used by the linkage
editor. The first integer (integer1) indicates the maximum
allowable number of bytes. Integer2 indicates the number of bytes
to be used as the load module buffer~ which is the main storage
area used to contain input and output data. If this operand is
omitted, SIZE defaults to the ~ize specified at system generation
(SYSGEN).

specifies that the output load module cannot be processed again by
the linkage editor or loader. The linkage editor will not create
an external symbol dictionary. If you specify either MAP or XREF,
this operand is invalid.

specifies that the output load module can be processed again by the
linkage editor and loader and that an external symbol dictionary is
present.. This is the default value if both NE and NONE are
omitted.

specifies that the output load module can be brought into main
storage only by the LOAD macro instruction.

149

LINK Command

NOOL

DC

NODC

HIAR

specifies that the load module is not .restricted to the use of the
LOAD macro instruction for loading into main storage. This is the
default value.if both OL and NOOL are omitted.

specifies that the output module can be reprocessed by the linkage
editor (E).

specifies that the load module cannot be reprocessed by the linkage
editor (E).. This is the default value if both DC and NODC are
omitted.

specifies that the control sections within the output module are to
be marked for loading into either processor storage or .IBM 2361
core storage. The linkage editor control statement HIARCHY assigns
the appropriate hierarchy to the control sections. When you
specify HIAR. the load module is marked suitable for scatter
loading.

NOHIAR

TEST

specifies that no hierarchy assignments are to be made to the
output load module. This is the default value if both,HIAR and
NOHIAR are omitted.

specifies that the symbol tables created by the assembler and
contained in the input modules are to be placed into the output
module.

NOTEST
specifies that no symbol table is to be retained in the output load
module. _ This is the default value if both TEST and NOTEST are
omitted.

TERM
specifies that you want error messages directed to your terminal as
well as to the PRINT. data set. This is the default value if both
TERM and NOTERM are omitted.

NOTERM
specifies that you want error messages directed only to the PRINT
data set and not to your terminal ..

DCBS (blocksi'ze)

150

specifies the blocksize of the records contained in the output load
. module "blocksize" must be an integer.

LINK Command

Example 1

Operation: Combine three object modules into a single load module.

Known: The names of the object modules in the sequence
that the modules must be in ' DEPT03.GSALESA.OBJ

DEPT03.GSALESB.OBJ
DEPT03.NSALES.9BJ

You want all of the linkage editor listings to be produced and
directed to your terminal.

The name for the output load module •••••• DEPT03.SALESRPT.LOAD(TEMPNAME)

r--,
ILINK (GS~ESA.GSALESB.NSALES) LOAD(SALESRPT) PRINT(*) I
IXREF LIST I '--__ . __________________ J

Example 2

Operation: Create a load module from an object module l an existing load
module, and a standard processor library.

Known: The name of the object module XRDJA3.M33THRUST.OBJ

The name of the load module .•••••.••••• XRDJA3.M33PAYLD.LOAD(MOD1)

The name of the standard processor library used resolving
external references in the object module ••• 0 ••••••• ' ••• SYS1.PLlLIB

The name of the output load module. XRDJA3.M33PERFORM.LOAD(MOD2)

r---,
Ilink (m33thrust,*) load (m33perfor.m(mod2» print (*) plilib map list I L--___ J

The listing at your terminal will be:

allocate dataset(m33payld.load) file (ldl)
link (m33thrust.*) load (m33perform(mod2» print(*) plilib map list
IKJ76080A ENTER CONTROL STATEMENTS -
include ld2(modl)
(null line)
IKJ76111I END OF CONTROL STATEMENTS

151

LIST Command

The LIST command is provided as part of the optional TSO Data Utilities:
COPY, FORMAT" LIST, MERGE program product which is availabl.e for a
license fee.

Use the LIST command to display a sequential data set ,or a member of
a partitioned data set,. You can arrange fields within records for
output; you can include or suppress record numbers; you can list all or
part of a particular line of data" and you can list a sing.le line of
data, a group of lines, or a whole data set.

153

LIST ALC Command

Use the LISTALC command to obtain a list of the names of the data sets
allocated to you. The list also specifies the number of data sets that
the system will allow to be allocated to you dynamically. In addition l

you can also obtain information about the status and history of each
data set, names of the members of partitioned data sets~ and
system-generated names assigned to data sets.

r--------------T---, I COMMAND I . OPERANDS I
l------.-t---~
I {LISTALC} I [STATUS] [HISTORY] [MEMBERS] [SYSNAMES] I
I LISTA I I L-___________ ~ __ J

STATUS
specifies that you want information about the status of each .data
set. This operand provides you with:

HISTORY

• The data· definition name (DDNAME) for the data set.
• The scheduled and conditional dispositions of the data set.

The keywords denoting the dispositions are CATLG. DELETE~ KEEP
and UNCATLG. The scheduled disposition is the normal
dispo~ition and precedes the conditional disposition when
listed. The conditional disposition takes effect if an
abnormal termination occurs. CATLG means that the data set is
retained and its name is in the system catalog. DELETE means
that references to the data set are to be removed from the
system and the space occupied by the data set is to be
released. KEEP means that the data set is to be retained.
UNCATLG means that the data set name is removed from the
catalog but the data set is retained.

specifies that you want to obtain information about the history of
each data set. This operand provides you with:

MEMBERS

• The creation date.
• The expiration date.

Note: All data sets created by dynamic allocation will have
creation and expiration dates of 00/00/00.

• An indication as to whether or not the data set has password
protection.

• The data set organization (DSORG). The listing will contain:

PS for sequent~al
PO for partitioned
IS for indexed sequential
DA for direct access
•• for unspecified
?? for any other specification

specifies that you want to obtain the library member names of each
partitioned data set having your user's identification as the
leftmost qualifier of the data set name. Aliases will be included.

SYSNAMES
specifies that you want to obtain the fully qualified names of data
sets having system-generated names.

155

LISTALC Command

Example 1

Operation: Obtain a list of the names of all the data sets allocated to .
you.

r------------------------~---,
ILISTALC I L-__ ~J

Example 2

Operation: Obtain a list of the names of all the data sets allocated to
you. At the same time obtain the creation date, the
expiration date, password protection, and data set
organization for each data set allocated to you.

r--,
ILISTA HISTORY I L ___ ~----------------____ J

Example 3

Operation: Obtain all available information about the data sets
allocated to you.

r--,
Ilista members history status sysnames I L--__ ~ ___ J

The output at your terminal will be similar to the following listing:

listalc mem status sysnames history

--DSORG--CREATED--EXPIRES---SECURITY---DDNAME---DISP

RRED95.ASM
PS 00/00/00 00/00/00 WRITE EDTDUMY1 KEEP

RRED95.EXAMPLE
PO 00/00/00 00/00/00 PROTECTED EDTDUMY2 KEEP,KEEP

·-MEMBERS--
MEMBER1
MEMBER2

SYS70140.T174803.RVOOO.TSOSPEDT.R0000001

** 00/00/00 00/00/00 NONE SYSUT1

3 DATA SETS CAN BE ALLOCATED DYNAMICALLY
EDTDUMY3
SYSIN
SYSPRINT

READY

156

DELETE

LISTBC Command

Use the LISTBC command to obtain a listing of the contents of the
SYS1.BRODCAST data set. The SYS1.BRODCAST data set contains messages of
general interest (NOTICES) that are sent from the system to all
terminals and messages directed to a particular user (MAIL). The system
deletes MAIL messages from the data set after they have been sent.
NOTICES must be deleted explicitly by the operator.

r------~-------T-----------------------------.----------------~---------,
1 COMMAND 1 OPERANDS 1-
r--------------t----------~---------------~--------~-------------------~
I { LISTBC} I [MAIL] [NOTICES J 1
1 LISTB 1 NOMAIL NONOTICES I L-_____________ ~ ___ J

MAIL
specifies that you want to receive the messages from the broadcast
data set that are intended specifically for you. This is the
default value if both MAIL and NOMAIL are omitted.

NOMAIL
specifies that you do not want to receive messages intended
specifically for you.

NOTICES
specifies that you want to receive the messages from the· broadcast
data set that are intended for all users. This is the default
value if both NOTICES and NONOTICES are omitted.

NONOTICES
specifies that you do not want to receive the messages that are
intended for all users.

Example 1

Operation: Specify that you want receive all messages.

r--,
ILISTBC I L-___ J

Example 2

operation: specify that you want to receive only the messages intended
for all terminal users.

r--,
Ilistbc nomail I L-___ J

157

LISTCAT Command

Use the LISTCAT command to obtain a list of the names of your cataloged
data sets.

The system catalog is a data set that contains the location of other
data sets. The catalog is organized into levels of indexes that connect
the data set names to corresponding locations (volumes and data set
sequence numbers). Each qualifier in the data set name (see the data
set naming conventions) corresponds to one of the indexes in the
catalog. For instance. suppose that a data set named D58JCD.GSCORE.DATA
is cataloged. The catalog has a master index that contains D58JCD as an
entry. This entry includes the location of an index named D58JCD. .The
index named D58JCD contains GSCORE as an entry that includes the
location of an index named GSCORE. The index named GSCORE contains DATA
as an entry that includes the location of the data set.

The LISTCAT command. when entered with no operands. produces a list
of all cataloged data sets that have your user identification as the
leftmost qualifier. You can request a partial. more specific list by
identifying the index level that you want to have listed. You can
specify any index level in the catalog.

r--------------T---,
I COMMAND I OPERANDS I
~---------+--~ I {LISTCAT} I [HISTORY] [MEMBERS] [VOLUMES] [LEVEL (index)] . I
I LISTC J I L-_____________ i ___ J

HISTORY
specifies that you want information about the history of each data
set. This operand provides you with:

MEMBERS

• The creation date.
• The expiration date.

Note: All data set created by dynamic allocation will have
creation and expiration dates of 00/00/00.

• An indication as to whether or not the data set has password
protection.

• The data set organization (DSORG).

specifies that you want a list of names for the members of each
partitioned data set. Alias names will be included.

VOLUMES
specifies that you want the volume identification (VOLID) for each
volume on which the data sets reside. A volume may be a reel of
tape. a disk pack. a bin in a data cell. or a drum.

LEVEL (index)
specifies that you want the names of only a portion of the
cataloged data sets. You indicate an index level by including one
or 'more data set name qualifiers for 'index'. All data sets at an
index level that is lower than the one that you indicate will be
listed. For instance. if you have an index st~cture such as:

159

LISTCAT Command

and you specify LEVEL(BCCORP.PROGA), you viII receive:

ASM (meaning BCCORP.PROGA.ASM)
OBJ (meaning BCCORP.PROGA.OBJ)
LOAD (meaning BCCORP. PROGA.LOAD).

The specified index must begin with the highest level of
qualification (for example, your user identification, or SYS1).
You may also include one asterisk in your specified index
qualification. The. asterisk indicates that all qualifiers
corresponding to the position of the asterisk are to be considered
as if each was specified explicitly. The asterisk must not be
placed at the highest or lowest level.

Example 1

Operation: List the names of all of your cataloged data sets.

r--,
ILISTCAT I L-_________________ ~ ___ J

Example 2

Operation: List the names of all of your cataloged data sets; include
. their history and the volumes that they reside on.

r---------·---,
ILISTCAT HISTORY VOLUMES I L-___ J

The listing produced at your terminal will appear similar to the
following simulated listing.

READY

listcat history volumes

--DSORG--CREATED---EXPIRES---SECURITY

CLIST.FLOWCHRT
PS 01/11/66 09/14/10 NONE

--VOLUMES-
D58LIB

160

LISTCAT Command

XERPT.TEXT
PS 00/00/00 00/00/00 NONE

--VOLUMES-
D58LIB

READY

Example '3

Operation: List the names, history and volumes of a p~rticular
selection of your cataloged data sets.

The names of your data sets ••••••••••••••••••• RCHD58.FLOW1.FORT
RCHD58. FLOW2. FORT
RCHD58.FLOW3.FORT

r--,
ILISTCAT LEVEL(RCHD58.*.FORT) HISTORY VOLUMES I L-___ J

The listing produced at your terminal wil'l appear similar to the
following simulated listing.

READY

listcat level(rchd58.*.fort) volumes· history

--DSORG--CREATED---EXPIRES---SECURITY

RCHD58.FLOW1.FORT
PS 00/00/00 00/00/00 NONE

--VOLUMES-
D58CAT

RCHD58.FLOW2.FORT
PS 00/00/00 00/00/00 PROTECTED

--VOLUMES-
D58CAT

RCHD58.FLOW3.FORT
PS 00/00/00 00/00/00 WRITE

--VOLUMES-
D58CAT

READY

161

LISTDS Command

Use the LISTDS command to have the attributes of specific data sets
displayed at your terminal. you can obtain:

• The volume identification (VOLID) of the volume on which the data
set resides. A volume may be a disk pack, a bin in a data cell,
ora drum.

• The record format (RECFM), the logical record length (LRECL), and
the blocksize (BLKSIZE) of the data set. I

• The data set organization (DSORG).

• Directory information for members of partitioned data sets if you
specify the data. set name in the form data set name(membername).

• Creation date" expiration date, and security attributes

• File name and disposition •.

• Data set control blocks (DSCB).

r---------~----T----------------------------------~--------------.------, I COMMAND J OPERANDS' I
~--~-----------+--------------------------~----------------------------~
I {LISTDS} J (data-set-list) [STATUS] [HISTORY] [MEMBERS] [LABEL] I
I LISTD . I I
L-_____________ ~ _____________________ ~~---------------------~ __________ ~

(data-set-list)
specifies one or more data set names (see the data set naming
conventions·). This operand identifies the data sets that you want

. to know more about. Each data set specified must be currently
allocated or available from the catalog, and must ~eside on a
currently active volume. I

STATUS
specifies that you want the following additional information:

• The data definition (DD) name DDNAME currently associated with
the data set.

• Th~ currently scheduled data set disposition and the conditional
disposition. The keywords denoting the dispositions are CATLG,
DELETE, KEEP, and UNCATLG. The·scheduled disposition is the
normal disposition and precedes the conditional disposition when
listed.. The conditional disposition takes effect if an abnormal
termination occurs. CATLG means that the data set is cataloged.
DELETE means that the data set is to be removed. KEEP means
that the data set is to be retained. UNCATLG means that the
name is removed from the catalog but t~e data set is retained.

HISTORY
specifies that you want to obtain the creation and expiration dates
for the specified data sets (all data set created by dynamic
allocation will have creation and expiration dates of 00/00/00),
and to find out whether or not the data ~ets a~e password
protected.

163

LISTDS Command

MEMBERS

LABEL

specifies that you want a list of all the members of a partitioned
data set including any aliases.

specifies that you want to have the entire data set control block
(DSCB) listed at your terminal. This operand is applicable only to
direct access data sets. The listing will be in hexadecimal
notation.

Example 1

Operation: List the basic attributes of a particular ~ata set.

Known: The data set name •• ' •••.••••• , •••••••••••••••••••••• RCHD95.CIR.OBJ

r--,
ILISTDS CIR I L-___ J

The listing produced at your terminal will be similar to the listing
shown below.

READY

listds cir

RCHD95.CIR.OBJ
--RECFM-LRECL~BLKSIZE-DSORG

F~ 80 80 PS'

--VOLUMES--
. D95LIB

READY

Example. 2

Op~ration: List the basic attributes and the DSCBs for a particular
data set.

Known: The data set name •••••••••••••••••••••••••• RCHD95.IKJEHDS1.LOAD

r--,
Ilistd ikjehds1 label I L-______________________________ ~ _________________ ~---------------_____ J

164

LOADGO Command

Use the LOADGO command to load a compiled or assembled program into main
storage and begin execution.

The LOADGO command will load object modules produced by a compiler or
assembler, and load modules produced by the linkage editor. (If you
want to load and execute a single load module_ the CALL command is more
efficient.) The LOADGO command will also search a call library (SYSLIB)
or a resident link pack area, or both. to resolve external references.

The LOADGO command invokes the system loader to accomplish this
function. The loader combines basic editing and loading services of the
linkage editor and program fetch in one job step (see the' publication
IBM system/360 Operating system: linkage Editor and Loader, GC28-6538).
Therefore. the load function is equivalent to the link edit and 90
function.

The LOADGO command does not produce load modules for program
libraries. and it does not process linkage editor control statements
such as. INCLUDE.. NAME .. OVERLAY, etc.

r---------~---, I COMMAND I OPERANDS' I
~---. -----+--~
{

LOADGO} (data-set-list) [parameters'] .
LOAD

[
PRINT ({* }>]
NOPRINT data-set-name

[LIB(data-set-list)]

[PLILIBl [PLIBASEl [.PLICMIX1 [FORTLIBl [COBLIBJ

[~~:RM] [:~s] [:~] [;~J[~~Er]
[SIZE(integer-name)]

[EP(entry-name)]

[NAME(program-name)]
~~---.--__ i-----___ ---__ ------------------------______________________ _

(data -set-li st)
specifies the· names of one or more object modules and/or load
modules to be ~oa:ded and executed. The names may be data set
names. names of members of partitioned data sets, or both (see the
data set naming conventions). When you specify more than one name4

the names must be enclosed within parentheses and separated· from
each othex by a standard delimiter (blank or comma).

'parameters'
specifies any parameters that you want to pass to the program to be
executed.

PRINT(data-set-name or .)
specifies the name of the data set that is to contain the listings

165

LOADGO Command

produced by the LOADGO command. If you omit the data set name, the
generated data set will be named according to the data set naming
conventions. You may substitute an asterisk (*) for the data set
name if you want to have the listings displayed at your terminal.
This,is,the default if you specify the MAP operand.

NOPRINT

, 'TERM

specifies that no listings ,are to be produced. This operand
negates the MAP operand. 'This is the default value if both PRINT
and NOPRINT are omitted, and you do not use the MAP operand.

specifies that you want any error messages directed to your
terminal as well as the PRINT data set. This is the default value
if both TERM and NOTERM are omitted.

NOTERM '
specifies that you 'want any error messages directed only to the
PRINT data set.

LIB (data set list)
specifies the names of one or more library data sets that are to be
searched to find modules referred t,o by the module being processed
(that is, to resolve external ,references).

PLILIB
specifies that the partitioned data set named SYS1.PLILIB is to be
searched to locate load modules referred to by the module being
processed.

PLIBASE
specifies that the partitioned data set named SYS1.PLIBASE is to be
searched to locate load modules referred to by the,module being
processed.

PLICMIX
specifies that the partitioned data set named SYS1.PLICMIX is to be
searched to locate load modules referred to by the module being
processed.

COBLIB
specifies that the partitioned data set named SYS1.COBLIB is to be
searched to locate load modules referred to by the module being
processed.'

FORTLIB

RES

specifies that,the partitioned data set named SYS1.FORTLIB is to be
searched to locate load modules referred to by the .module being
processed.

specifies that the link pack area is to be searched 'for load
modules (referred to by the module being processed) before the
specified libraries are searched. This is the default value if
both RES and NORES are omitted. If you specify the NOCALL operand
the RES operand is invalid.

NORES

166

specifies that the link pack area is not to be searched to locate
modules referred to by the module being processed.

MAP

LOADGO Command

specifies that a list of external names and their absolute storage
addresses are to be placed on the PRINT data set. This operand is
ignored when NOPRINT is specified~

NOMAP

CALL

specifies that external names and addresses are not to be contained
in the PRINT data set. This is the default value if both MAP and
NOMAP are omitted.

specifies that the data set specified in the LIB operand is to be
searched to locate load modules referred to by the module being
processed. This is the default value if both CALL and NOCALL are
omitted.

NO CALL

LET

specifies that the data set specified by the LIB operand will not
,be searched to locate modules: that are referred to by the module
being processed. The RES operand is invalid when you specify this
operand.

specifies that execution is to be attempted even if a severity 2
error should occur. (A severity 2 error indicates that execution
may be impossible.)

NOLET
specifies that execution is not to be attempted if a severity 2
error should occur. This is the default value if both LET and NO
are omitted.

SIZE (integer)
specifies the size, in bytes'l of dynamic main storage that can be
used by the loader. If this operand is not specified, then the.
size defaults to the size specified at System Generation (SYSGEN).

EP(entry-name)
specifies the external name for the entry point to the,loaded
program. You must specify this operand if the entry pOint of the
loaded program is in a load module other than the primary input
module. (The primary input module is the first one that you name
in the data set list.>

NAME (program-name)
specifies the name that you want assigned to the loaded program.

Example 1

Operation: Load and execute an object module.

Known: The name of the data set •••••••••••••••••••••• SHEPD58.CSINE.OBJ

r- ---------------------------------------,--------,
ILOADGO CSINE PRINT(*> I L--________ ' __ J

161

LOADGO Command,

Example 2

Operation: Combine an object module and a load module, and then load
and execute them.

Known: The name of the data set
containing the object module LARK.HINDSITEooOBJ
The name of the data set
containi'ng the load module LARK.THERMOS.LOAD (COLD)

r--, I LOAD (HINDSITE: THERMOS(COLD» PRINT(*> LIB('SYS1.S0RTLIB') I
INORES MAP SIZE'(i44K) EP(START23) NAME ~THERMSIT) I L-_________________________________ ~ ___________________________________ J

168

LOGOFF Command

Use the LOGOFF command to terminate your terminal session.

Before you enter the LOGOFF command~ you should use the EDIT
command's SAVE subcommand to store the data sets that you want to save.
When you enter the LOGOFF command, the system frees all the data sets
allocated to you; data remaining in main storage will be lost.

Note: If you intend to enter the LOGON command immediately and continue
processing against a different account number you do not enter LOGOFF.
Instead, you can just enter the LOGON command as you would enter any
other, command.

r-~------------T--------------------------------------~----------------,
I COMMAND I' OPERAND I
~--------------+---~
I LOGOFF I I L-_____________ ~ ____________ ~ ______________ ~------------------_________ J

Example 1

Operation: Terminate your terminal session.

r-----------· ---,
I logoff 'I L-___ J

169

LOGON Command

Use the LOGON command to initiate a terminal session. Before you can
use the LOGON command:. your installation must provide you with certain
basic information.

• Your user identification (1-7 characters) and:. if required by your
installation, a password (1-8 alpbameric characters).

• An account number (mayor may not be required for your
installation). .

• A procedure name (mayor may not be required for your installation).

You must s~pply this information to the _system by using the LOGON
command and operands. The information that you enter is used by the
system to start and control your time.sharing terminal session.

You can also use the operands to specify whetber or not you want to
receive messages from the system or other users.

r--------------T---,
I COMMAND I . OPERANDS I
r--------------+----~--~--------------------------------------~--------~

LOGON I user-identity [/password] . I
I I
I [ACCT(account)] I
I I
I [PROC (procedure)] I
I I
1 [SIZE(integer)] I
I I
I [NOTICES] I
I NONOTICES I
I I
I [:~IL] .. I L--____________ ~ ___ J

user-identity and password
specifies your user identification and, if required, a valid
password. You user, identification must be separated from the
password by a slash (/) and:. optionally, one or more standard
delimiters (tab, blank. or comma). Your identification a~d
password must match the identification contained ,in the system's
User Attribute Data Set (UADS). If you omit any part of this
operand, the system will prompt you to complete the operand.
(Printing is suppressed for some types of terminals when you
respond to a prompt for a password.)

ACCT(account)
specifies the account number required by your installation. If the
UADS contains only one account number for the password that you
specify, this operand is not required. If the account number is
required and you omit it. the system will prompt you for it.

For TSO,. an account number must not exceed 40 characters, and must
not contain a blank~ tab, quotation mark. apostrophe, semicolon~
comma. or line control character. Right parentheses are
permissible only when left parentheses balance them somewhere in
the account number.

171

LOGON Command

PROC(procedure-name)
specifies the name of a cataloged procedure containing the Job
Control Language (JeL) needed to initiate your session.

SIZE (integer)
specifies the size of the main storage region, in units of 1024
bytes, that you want allocated to your job. The UADS contains a
default value ,for your region size if you omit this operand. The
UADS also contains a value for the maximum region size that you
will be allowed. ' This operand will be rejected if you specify a
region size exceeding the maximum region size allowed by the UADS
(in this case, the UADS.value MAXSIZE will be used).

NOTICES
specifies that messages intended for all terminal users are to be
listed at your terminal during LOGON processing. This is·the
default value if both NOTICES and NONOTICES are omitted.,

NONOTICES

MAIL

specifies that you do not want to receive the messages intended for
all users.

specifies that·you want messages intended specifically for you' to
'be displayed at your terminal. This is the default value if both

MAIL and NOMAIL are omitted.

NOMAIL
specifies that you do not want to receive messages intended
specifically for you.

Example 1

Operation: Initiate a terminal session.

Known: Your User identification and password ••••••••••• AJKD58/23XA$MBT
Your installation does not require an account number or
procedure name for LOGON.

r--~-----------,
ILOGON AJKD58/23XA$MBT I .L-________ ~ __________________________________ ,---------------___________ J

Example 2

Operation: Initiate a terminal session.

Known: Your user identification and password •••••••••••••• BEUS951/MOi
Your account nmnber , •••••.••• '. 288104
The name of a cataloged. procedure TS951
You do not want to receive messages.
Your main storage space requirement 90,000 bytes

r--, ILOGON HEUS951-/MOi ACCT(288104) PROC (TS951) SIZE (9 0) NONOTICES NOMAlL I ' L-____ ' _________ ' __ J

172

MERGE Command

The MERGE command is provided as part of the optional TSO Data
Utilities: COPY, FORMAT,. LIST, MERGE program product which is available
for a license fee •.

Use the MERGE command to:

• MERGE a complete or part of a sequential or member of a partitioned
data set into a sequential or member of a partitioned data set.

~ Copy a complete or part of a sequen~ial or member of a partitioned
data set into a new or (pre-allocated) empty sequential data set.

• Copy a complete or part of a sequential or member of a partitioned
dataset into a new member of an existing partitioned data set.

• Copy a complete or part of a sequential or member of a partitioned
data set into a new or (pre-allocated) empty partitioned data set~

113

OPERATOR Command

Use the OPERATOR command and its subcommands to regulate and maintain
the system from a terminal.

This command may be used only by personnel who have been given the
authority to do so by the installation management. The authority to use
OPERATOR is normally given to personnel responsible for system
operation, and is recorded in the User Attribute Data Set (see the
ACCOUNT command).

The OPERATOR command has eight subcommands: CANCEL~ DISPLAY, END,
HELP, MODIFY, MONITOR, SEND and STOP. You may enter the subcommands
after using the OPERATOR command.

r--------------T----------------------------~--------------------------,
I COMMAND I OPERANDS I
.--------------+---~-----------------~---------~--------------------~--~
I { OPERATOR} I I
IOPER I I L _____________ ~ __ ~----J

115

OPERATOR Command
CANCEL Subcommand

Use the CANCEL command to terminate the current activities of a terminal
user or a job submitted for conventional batch processing. When you use
the CANCEL command to terminate a terminal session~ accounting
information will be presented to the user. The syntax for this
subcommand is the same as the syntax for the MVT operator commands.

r------------T---,
I SUBCOMMAND I OPERANDS I
l------------+---~
I {CANCEL} I jObname[,DUMP[~ALL]]) I
1 C J ,IN[=class] I
I I ,OUT [=class] I
I I unit-address I
I I identifier I
I I U=user-identification[.DUMP] I L-___________ ~ __________ ~ _______________ ~ __________________ ~------J

jobname

DUMP

ALL

is the name of the job that you want to cancel.

specifies that an abnormal-end-of-job storage dump will be taken if
a step of the job is being executed when you enter the command.
The dump will be printed on the system output device.

specifies that all the input and output for the job is to be
canceled.

IN=class
specifies that the system is to search for the job on'the input
queue indicated by "classn• If you omit nclass tt • all input queues
will be searched.

OUT=class
specifies that the system is to search for the job on the output
queue indicated by "class". .If you omit "c·lass". all output queues
will be searched.

Note: If neither the IN or OUT parameter is used the system will
search all 'the input queues and the hold queue for-the job.

unit-address
specifies' the address of an I/O device. The system will stop the
output currently being lfritteri on the device.

identifier
spec·ifie·s the identifier of a system task to be terminated during
allocation. You cannot cancel a system task that is not associated
with a unit (device).

This dperand can be the identifier used in a START command issued
by the system"s console operator or it, can be a unit type (such as
1'103 or 2311) associated with a unit address or a proce'dure used in
a START command.

177

OPERATOR Command.
CANCEL Subcommand

U=user identification
specifies the user identification for a user whose terminal session
is to be terminated by the CANCEL command.

Note: Use the 'CANCEL U=userid' format for canceling time sharing
jobs only and the 'CANCEL jobname' format for canceling
conventional batch jobs'only.

Example 1

Operation: ~erminate a user's terminal session.

Known: The user's identification •••••••••••••••••• ' ••••••••••••• RCHTD36

r-~-------~---------------------------------~----------------~---------,
IC U=RCHTD36 I L--_________________________________ ~ __________________________________ J

Example 2

Operation: Cancel a job that has been submitted from a terminal for
conventional batch processing and have a dump printed.

Known: The name of the job ••••••••••••••••••••••••••••••• ,. • • • •• PAYROLL

r---~----------------~---,
Icancel payroll"dump, 'I L-___ J

Example 3

Operation: Cancel the output from a job that has been submitted from a
terminal for conventional batch processing.

Known: .The name of the job, •••••••••••• ' ••••••• ' '. • • • • • • • • • •• SUEG'
The output class .. ,e •• J

r--,
ICANCEL SUEG,OUT=J I L--__ J

178

OPERATOR Command
DISPLAY Subcommand

Use the DISPLAY subcommand to obtain a listing of:

• The number of terminal users for each time sharing region.

• The number of conventional batch jobs awaiting execution that were
submitted from a terminal by the SUBMIT command.

• The messa9~s from time sharing jobs that are awaiting replies from
an opera tor.

• The number of active terminals, the identification of each user ll and
the time sharing region being used by each user. The operands
'jobname', 'A' I 'N' " 'Q', 'T' and 'R' are also operands of the
DISPLAY command of the System/360 Operating System. They are
described in detail in the publication IBM System/360 0Ferating
System: Operator's Reference. The syntax for this subcommand is
the same as the sYntax for the MVT operator commands~

r------------T-------------------------------~-----------------------, I SUBCOMMAND I .' OPERANDS . I
f------------t---f
I {DISPLAY} I jobname I
I D I A' I
I I T I
I I N[=list1 I
I I Q[=list1 I
I I R I
I I USER [=NMBR1 I
I I T I
~-----------~---________ J

jobname

A

specifies 'the name of the job for whicp the following status
information is to be displayed: job name; ~lass; job priority;
type of queue the job is in (JOB Q, HOLD Q, SOUT Q (SYSOUT queue),
or BRDR): and the job's position in the queue.

The maximum length of a job name is eight characters. If your
Jobname is JOBNAMES w STATUS, T, A, R, Q" N, SPACEr. DSNAME, SESS,
USER, U, M, or CONSOLES it must be enclosed in parentheses.

specifies that you want the system to display information about all
jobs,and jobsteps that are recognized by the system as tasks (that
is, those jobs and job steps that have one or more task control
block (TCB».

The information displayed for jobs in background regions includes
the names of the job and job step associated with each task, the
number of subordinate tasks operating within the same region of
main storage, the beginning and end addresses of the region, and
the amount of' supervisor queue space used for system control blocks
related to the main task. If rollout is included in the system,
the display will indicate whether the region is borrowed or rolled
out.

The information displayed for time-sharing regions includes TIME
SHARING as the job name, the number of users for each region, the
region number, the beginning and end addresses of the region" and

179

OPERATOR Command
DISPLAY Subcommand

N

Q

list

R

T

the,amount of local supervisor queue space used for system control
blocks by the user's tasks.

specifies that ,you want a list of job names on the input, hold"
output, BRDR, and ASB readerbatching queues.

specifies that you want a list of the number of entries on the
input, hold, output" BRDR, and ASB reader batching queues.

specifies that you want information about specific queues. You can
specify up to four of the following queues:

• specific input work queue name (job class A through 0).
• SOUT (system 'output queues coll~ctively).
• HOLD (system hold queue).
• BRDR (background reader queue).

specifies tha~ you want a listing of messages that are awaiting a
response from an operator.

specifies that you want the time of day and the date.

USER=NMBR
indicates you want specific information about time sharirig users.
If you do not specify =NMBR" the number of active terminals " the
identi'fication of each user and the corresponding region number of
each riser will be displayed at your terminal. If you do specify
=NMBR. only the number of active terminals will be displayed.

Example 1

Operation: Have the number of time sharing regions and the number of
u,sers for 'each region displayed at your terminal.

r------.......... .o....-------------. ------~-~----------... ---.-.-;...----. '-' ----------~--' --.-.;------, ..
IDISPLAY A I, L-___________ ~ ___________ ~ __ _________ , __ ~ __ ..:.._'_ _________ ..;._..;. ______ J

Example 2

Operation: Have the status of a particular job displayed at your
terminal.

Known: 'The name of the job is, ' •• ',., •••• ' ••• ' '. 'I. ' •••••• ' •• RBTATT

r--... -'------...... ---.-------~--------~---~----'-~----...:~----:------- - --.-----------]
1 display rbtai:t 'I
L-__ '_-:-_______ ~ ___ ._ __ ~ _______ ~ ___________ ~ _____ _:_._~-~-----__________ ~_J

Example 3

Operation~ bbtain the user l.dentificati'on for each active terminal
user.

r-------.--------.-----------.:.-.---------.... ~-----------.... -------..... ~-~----"-------,
Id user I L ____________ ·, ___ · _' _ ___ . _________ .. ________; _______ ' _______ J

180'

OPERATOR Command
END Subcommand

Use the END subcommand to terminate operation of the OPERATOR command.
After entering the END subcommand, you may enter new commands.

r------------T---,
I SUBCOMMAND I OPERANDS 1
~------------+---~
I END j "1 L _________ ..1. __ -' ________ J

181

OPERATOR Command
HELP Subcommand

Use the HELP subcommand to find out how to use OPERATOR and the OPERATOR
subcommands. When you enter the HELP subcommand, the system responds by
printing out explanatory information at your terminal. You may request:

• A list of available subcommands •
• An explanation of the fucntion, syntax~ and oper~nds of a specific

subcommand.

, The HELP subcommand actually causes the system to execute a function
of the HELP command; therefore, you may consult the discussion of the
HELP command if you desire more detailed information.

r------------T-----------------------------~--~----------------------,
I SUBCOMMAND I OPERANDS I
f------------+---~
I {HELP} I [subcommand-name] . I
I H I [FUNCTION] I
I I [SYNTAX] I
I I [OPERANDS [(list-of-operands)] I-
I I [ALL] I L-___________ ~---_________________________ ~ _________________________ J

. subcommand-name
specifies the subcommand that you want to have clarified~ If you
omit this operand~ the system will display a list of OPERATOR
subcommands.

FUNCTION
specifies that you want a description of the' referenced
subcommand's function.

SYNTAX
specifies that you want a definition of the proper syntax for the
referenced subcommand.

\ OPERANDS (list-of-operands) , .

ALL

specifies that you want an explanation of the operands applicable
'to the referenced subcommand.

The list of' operands ·speci.fies the particular keywords that you
want to have explained. If you do not specify any keywords, all of
the applicable keywords will be included. you must use one or more
blanks or a comma as a delimiter between the keywords in the list.

specifies that you want a description lof the function, the syntax,
and the operands of the. subcommand that you specified. This is the
default val~e if no operands are specified.

Example 1

Operation: 'Have a' list of available subcommands displayed at your
terminal.

r--~-----------------------------,
I HELP I L--__ ~---J

183

OPERATOR Command
HELP Subcommand

Example 2

Operation: Obtain all available information about a particular
subcommand.

Known: The subcommand name •••••••••••••••••••••••• ' •••••••••• ' •••• MODIFY

r---~----------------,
IH MODIFY I L-__________________________________ ~ _________ ~ ________________________ J

Example 3

Operation: Have a list of the operands for a particular subcommand
displayed at your terminal.

Known: The subcommand name ••••••••••••••••••••••••••••••••••••• DISPLAY

r--~------------------------, ---,
Ih DISPLAY operands . I L-_______________________ ' __ J

184

OPERATOR Command
MODIFY Subcommand

Use the MODIFY subcommand to modify the time sharing options that were
specified when the system was generated or when time sharing was
initiated. The syntax used for this subcommand is the same as the
syntax used for MVT operator commands.

r------------T---,
I . SUBCOMMAND I OPERANDS'. I .
~------------+---~
I {MODIF'Y} I [procedure. 1 identification . I
I F I I
I I , USERS=number I·
I I , SUBMIT= (queuesize) 'I
I I ,REGSIZE(n)=(nnnnnK.,xxxxxK)... I
I I \ ,DRIVER=(parameters) . . I
I I ,HOLD=(region~list) I
I I ,SMF= ([OFF J ["EXT={YES}) I
I I OPT={l} NO . I
I I 2 I L--__________ i ____________________________________ ~ _________________ J

procedure
specifies the name of the time sharing. procedure that you want to
modify. This name must be the same as the one that was used when
the procedure was st~rted with a START command issued by the
console operator.

identification
'specifies the identification of the system task used when the task
was defined by a START command issued by the console operator.

USERS=number
indicates the number of users allowed for time sharing- The
maximum number is determined at START time and cannot be exceeded
by the MODIFY command.

SUBMIT=Queuesize
indicates the maximum number of logical tracks to be used for the
queue for conventional batch jobs submitted by the SUBMIT command.

REGSIZE(n)=(nnnnnK~xxxxxK)
indicates the number and size of each time sharing region. 'n' is
the region number (included on the informational messages from the
DISPLAY command). You specify the size of the region in the form
nnnnnK. You specify the local supervis'or queue area (LSQA) to be
added to the region in the form xxxxxK. "nnnnn" and "xxxxx" are
the number of 1024 byte areas you want. These numbers may range
from one to five digits, but cannot exceed 16384. The numbers
should be specified as even numbers. (If you specify an odd
number, the system treats it as the next higher even number). LSQA
cannot be grea~er thantbe region size. If the size equals zero
the region will be freed. Anytime you use the REGSIZE operand~ any
users of that region will be logged off.

DRIVER=(parameters)
specifies a parameter list to be passed to the time sharing driver
(a component of TSO). For instance~ BACKGROUND=value is the only
keyword that can be passed to the IBM supplied driver -- it

185

OPERATOR Command
MODIFY Subcommand

indicates the percentage of system resource time quaranteed for
conventional batch processing; however" different parameters may be
supplied for user-written drivers, •.

HOLD=(region-list)
specifies that the time-sharing ~egions specified in nregion-list"
are not to be allocated for any new users. If you specify more
,than one region, then you must separate the regions specified with
commas.

SMF=(OFF or OPT=l or OPT=2. EXT=YES or NO)
'indicates which option of the system Management Function (SMF) is
to be used, for time sharing operations. OFF indicates that SMF is
not to be used for time sharing operations. OPT=l or 2 indicates
an option of SMF that is to be used 'for time sharing operations.
EXT indicates that exits to the installation routines are active.

Example ,1

Operation: Change the number of terminals allowed for timesharing
operations,.

Known: The existing allowable number '.. 32
The new number •• , ••••••••• , - 26

r--,
IMODIFY TSO.USERS=26 I L-________________________________ . ________ ~ ____________________________ J

Example 2

Operation: Change the maximum size of time sharing region number 3 from
70K to lOOK, with 10K reserved for local supervisor queue
area (LSQA).

r-----------------------·-----------~-----------------------------------,
If tso.regsize (3)=(100K,10K) I L--___ ~ ________ J

Example 3

Operation: Change the guaranteed packground percentage of time to 60%.

r--------------~---,
IF TSO.DRIVER=(BACKGROUND=60) I L-_____________________________________ ~ _______________________________ J

186

OPERATOR Command
MONITOR Subcommand

Use the MONITOR subcommand to,monitor terminal activities and job
activities within the system. Informational messages will be displayed.
The content of the messages will pertain to the type of information
indicated by the operand included with the MONITOR subcommand. The
system will continue to issue these informational messages until halted
by a STOP subcommand or until you terminate the OPERATOR command.

t-----~------T--· -----------------------------------.------------------,
I SUBCOMMAND I OPERANDS I
~------------+----------------------------------~--------------------t
I { MONITOR} I SESS [, T] I
I MN I STATUS I
I I JOBNAMES [,T] I
I I SPACE I
I I DSNAME. ' I L---_________ ~ ___ J

SESS

T

indicates that you are to be notified whenever any terminal session
is initiated or terminated. The user's identification will be
displayed at your terminal. If the session terminates abnormally,
the user identification will appear in the diagnostic message; the
message "user LOGGED OFF" will not appear if the session was
canceled.

If you specify the T operand." the system displays' the time of day
in addition to the users identification. The format of the time
output is shown under the T operand description.

specifies that you want the time of day to be displayed in the
following format:

,hh.mm.ss

The variables in this format are:

hh - Hours (00-23)

mm - .Minutes (00-59)

ss - Seconds (00-59)

whenever one TSO user specifies this operandI all subsequent users
of the MONITOR command will also receive the time at their
terminals.

STATUS
specifies that you want the data set names and volume serial
numbers of data sets with dispositiolls of KEEP" CATLG, or UNCATLG
to be displayed whenever the data sets are freed.

JOBNAMES
specifies that you want the name of each job to be displayed both
when the job starts and when it terminates, and that you want unit
record allocation to be displayed when the job step starts. If a
jab terminates abnormally~ the jobname will appear in the
diagnostic message; the message 'jobname ENDED' will net appear.

187

OPERATOR Command
MONITOR Subcommand

SPACE

If you specify the T operand with the JOBNAMES operand, the system
displays the time of the day in addition to the jobnames. The
format 'of the output is shown under the T operand description.

specifies that you want the system to display, in.demount messages,
the available space on a direct access device.

DSNAME
specifies that you want the system to display" within the mount and
K (keep> type demount messages" the name of the first non-temporary
data set allocated to the volume to which the messages refer.

Example 1

Operation: Have the system notify you whenever a terminal session
begins or ends.

r-------------------------------~--------------------------------------,
IMONITOR SESS' I L __ J

Example 2

Operation: Have displayed at your terminal the name of each job when
the job starts and when it terminates. Also have the time
displayed with the jobname.

r--,
IMN JOBNAMES,T I L--_' _____ , __ J

188

OPERATOR Command
SEND Subcommand

Use the SEND subcommand to send a message to any or all terminal users.
A 'message may be sent to one or more terminal users by indicating the
user identification of each recipient or to all terminal users by not
indicating and specific user identifications. If the intended recipient
,is not logged on, the message can be retained within the system and
presented automatically when the recipient logs on. You will be
notified when the recipient of an immediate message is not logged on:
the message will be deleted by the system.

The syntax for this subcommand is the same as, the syntax for MVT
operator commands.

r------------T------------------------------------~-----------------,
1 SUBCOMMAND 1 OPERANDS 1
~------------+---~
1 {SEND} I, !'text' {,USER=(USer-identification-list)} [,NOW]! I
1 SE 1 ,ALL ,LOGON I I
1 1 message-n mnber{ 1 DELETE} I
1 I "I LIST . I
1 1 U~ I L-_________ ~ ____________________________ . _________________________ J

'text'
specifies the message that you want to send. You must enclose,' the
text of the message within apostrophes (single quotes). The
maximum length of a message is 115 characters including blanks.
The message must be contained on one line (you cannot continue a
message on a second line). If you want a quotation mark print'ed in
the message, you must enter two quotation marks.

USER=(user-identification-list)

ALL

NOW

specifie's the user indentification of one or more terminal users
who are to receive the message.

specifies that all terminal users are to receive the message.
Terminal users who are currently using the system will receive the
message immediately. ,This is ,the default value if both USER=(user
identification list) and ALL are omitted.

specifies that the message is to be sent immediately. If the
recipient is not l.ogged on, you will.. be notified and the message
will be deleted. This is the default value if NOW and LOGON are
omitted.

LOGON
specifies that the message is to be retained in the SYS1.BRODCAST
data set if:

a. You specify a user identification the message is retained in
the "mail.w section of the SYS1.BROADCAST data set and deleted
by the system after it is sent to the intended user.

b. You specify wALL-, t~e message will/be stored in the "notices"
se<;tion of the SYS1.BROADCAST data set and retained there until
the'operator deletes it.

189

OPERATOR Command
SEND S~bcommand

message-number, DELETE
specifies the number of a notice in the SYS1.BRODCAST data set that
you want to delete. .

message-number" LIST
specifies the number of a notice in the SYS1.BRODCAST data set that
you want to have displayed at your terminal. Anytime you specify a
message number without either the LIST or DELETE operand, th~
system assumes the ~efault value and deletes the message.

LIST
specifies that you want to receive a listing of all the SEND
notices' retained in the system. The listing will be produced at
your terminal.

Example 1

-operation: send a message to all terminal users currently logged on.

Known: The message:
TSO TO SHUT DOWN AT 9:55 P.M. EST 9/14/70

r--~---------------,
ISEND 'TSO TO SHUT DOWN AT 9:55 P.M. EST 9/14/70',ALL I L--__ J

Examp'le 2

'Operation: send a message to two particular terminal users currently
logged on.

Known: The user identific'ations ••••••• '. ,. • • • •• • • •• • • • • • • ... • • •• ••• T24
OTO

The message:
YOUR ACCT NO. INVALID AFTER THIS SESSION

r-----------------7-------------------------------~--------------------,
ISEND 'YOUR ACCT NO. INVALID AFTER THIS SESSION' "USER=(T24.,OTO> I L-____ - __ J

Example 3

Operation: Delete a message.

Known: The message n,umber.. 8

r--,
ISEND 8 . I L-___ J

Example.4

Operation: Have all messages displayed at your terminal.

r-------------' ------------'--------, -~---------~---~------------------,
lSEND LIST I L--___ ~ _______________________________________ ~ ______________ ~ __ ------J

190

OPERATOR Command
STOP Subcommand

Use the STOP subcommand to terminate the monitoring operations of the
MONITOR subcommand. ,This subcommand will halt the display of status
information at your terminal.

r----------T-------------~-------------~------------------------, I SUBCOMMAND I OPERANDS I
.-----------+--~
I { STOP} I J JOB NAMES I
I P I SPACE, I
I I DSNAME I
I I SESS I
I I \ STATUS I L--________ ~ ___________ . ----_________________ ------------_________ J

JOBNAMES
specifies that the operations provided by the JOBNAMES operand of
the MONITOR subcommand are to be stopped. (The system will stop
displaying the names of jobs as they start and end.)

SPACE
specifies that the operations provided by the SPACE operand of the
MONITOR subcommand are to be stopped. (The system will stop
displaying the available space on direct access devices.)

DSNAME

SESS

specifies that the operations provided by the DSNAME operand of the
MONITOR subcommand are to be stopped. (The system will stop
displaying the name of the first non-temporary data set allocated
to the volume to which the mount and K type demount messages
refer.)

specifies that the operations provided by the SESS operand of the
MONITOR subcommand are to be stopped. (The system will stop
notifying the operator whenever a terminal session is initiated or
terminated.)

STATUS
specifies that the operations provided by the STATUS operand of the
MONITOR subcommand are to be stopped. (The system will stop
displaying the names and volmne ser·ial numbers of data sets with
dispositions of KEEP y CATLG. or UNCATLG at job step end and job
end.)

Example 1

Operation: stop the display of the names of jobs as they begin
execution and terminate.

r-----------------------------------~----~------~----------------~---,
ISTOP JOBNAMES . I
L--_________ ~ _______________________ ~--~------------------~~ __ J

191

OPERATOR Command
STOP Subcommand

Example 2

Operation: Stop the display of available space on direct access
devices ..

r--,
Istop space I L __ J

192

OUTPUT Command

Use the OUTPUT command to:

• Direct the output from a conventio~al batch job to your ter.minal.
The output includes the job's Job Control Language statements (JCL),
system messages, and system output (SYSOUT) data sets.

• Direct the output from a conventional batch job to a specific data
set~

• Change the output class for a conventional batch job.

• Delete the output (SYSOUT) data sets or the system messages for
conventional batch jobs.

r--------------T--------------------------~----------------------------,
I COMMAND I OPERANDS I
l--------------+---~
I {'OUTPUT} I (job-name-list) . I
lOUT I [CLASS (class-name-list)] I
I I I

: I [PRINT ({~ata-set-name})] r::~]· [=~~!~s~ I
I I NOPRINT[(class-name)] BEGIN I L-_____________ ~ ___ J

(job-name-list)
specifies one or more names of jobs that have been submitted for
conventional batch processing. Each jobname must begin with your
user identification (see data set naming conventions) unless the
routine that scans and checks the user identification is replaced
by a user-written routine. The system viII process the output from
the jobs identified by the job name list.

CLASS(class-name~list)
specifies the names of the output classes to be searched for output
from the jobs identified in the jobname list. If you do not
specify the name of an output class. the system's default class
viII be searched for the jobs output~ A class name is a single
character or digit (A-Z or 0-9). See the publication IBM
System/360 Operating System: Supervisor and Data Management
Services~ GC28-6646. for additional information.

PRINT(data-set-name or *)
is the name of the data set to which the output is to be directed.
You may substitute an asterisk for the data set name to indicate
that the output is to be directed to your terminal. If you omit
both the data set name and the asterisk, the default value is the
asterisk. Print is the default value if you omit both PRINT and
NOPRINT.

NOPRINT(class-name)
indicates that the output is to be removed from the class specified
in the CLASS operand, and placed in the class specified in NOPRINT.
If you specify NOPRINT without including.a class name. the output
is deleted from the system.

193

OUTPUT Command

NEXT

HERE

,Note: Do not specify the following characters as the first
character in the class-name; the system viII try to interpret them
asa class-name and thus cause you to lose,your data.

comma
tab
blank space
asterisk
semicolon

,slash
right parenthesis

indicates that output operations of a job that has been interrupted
are to be resumed vith the next SYSOUT data set or group of system
messages.

indicates that output operations of a job that has been interrupted
are to be resumed at a point approximately ten lines before the
point of interruption (that is, approximately ten lines will be
repeated). This is the default value if you omit HERE, BEGIN, and
NEXT.

BEGIN
indicates that output operations of a job that has been interrupted
are to be resumed from the beginning of the data set being
processed, or, from the first message if a block of system messages
is being processed.

PAUSE
indicates that output operations are to pause after each SYSOUT
data set is listed to allov you to enter a SAVE or CONTINUE
subcomm~nd. (A carrier return entered after the pause will cause
normal processing to continue.) This operand can be overridden by
the NOPAUSEoperand of the CONTINUE subcommand.

NOPAUSE
indicates that output operations are not to be interrupted. This
operand can be overridden by the PAUSE operand of the CONTINUE
subcommand.

Considerations: The OUTPUT command applies to 'all conventional batch
jobs vhose job names begin vith your user identification. Access to
jobs whose job names do not begin with a valid user identification must
be provided by a user-written routine. The SUBMIT, STATUS, and CANCEL
commands also apply to conventional batch jobs. You must have special
permission to use these commands.

Note: You can simplify the use of the OUTPUT command by including the
NOTIFY keyword for the SUBMIT command when you submit. a job for
conventional batch processing. The system viII notify you when the job
terminates, giving you an opportunity to use the OUTPUT command, SYSOUT
data sets should be assigned to SYSOUT classes that do not have
conventional output writers operating.

Output sequence: Output will be produced according to the 'sequence of
the classes that you specify for the CLASS operand. For example, assume
that you vant to retrieve the output of the folloving jobs:

JOB 91435.MSGCLASS=X
EXEC PGM=IEBPTPCH
DD SYSOUT=Y

OUTPUT ·Command

//JWSD581
//
//SYSPRINT
//SYSUT1 DD DSNAME=PDS. UNIT=2311. VOL=SER=111112 ,.LABEL= (,. SUL) •

DISP= (OLD ,KEEP) "DCB= (RECFM=U,BLKSIZE=3625)
//SYSUT2
//SYSIN

DD SYSOUT=Z
DD *

PRINT TYPORG=PS,TOTCONV=XE
LABELS DATA=NO

/*
//JWSD582
//
//SYSPRINT
//DD2
//SYSIN
//
/*

JOB
EXEC
DD
DD
DD

SCRATCH

91435.MSGCLASS=X
PGM=IEHPROG
SYSOUT=Y
UNIT=2311.VOL=SER=231100.DISP=OLD

* VTOC.VOL=2311=231100

To retrieve the output, you enter:

OUTPUT (JWSD581 JWSD582) CLASS (X Y Z)

Your output will be listed in the following order: .

1. output of class X (JCL and messages for both jobs).

2. output of class Y (SYSPRINT data for job JWSD581 followed by
SYSPRINT data for job JWSD582).

3. output of class Z (SYSUT2 data for job JWSD582).

Because of this~ you should avoid unnecessary division of data sets
among classes. If a job uses several classes, you should retrieve the
output for that job alone rather than specifying a list of jobnames. By
retrieving the job alone~ all its output will ,be together physically.

Subcommands: Subcommands for the OUTPUT command are: CONTINUE.. END.
and SAVE. When output has been interrupted. you can use the CONTINUE
subcommand to resume output operations.

Interruptions occur when:

• Processing of a sysout data set completes and the PAUSE operand vas
specified vith the OUTPUT command. .

• Processing of a sysout data set terminates because of an error
, condition •

• You press the attention ,key.

• The END subcommand is entered before completion of the job that is
being processed.

You can use the SAVE subcommand to rename and catalog a SYSOUT data set
for retrieval by a different method. Use the END subcommand to
terminate OUTPUT. The remaining portion of a job that has been
interrupted viII be returned to the output queue.

195

OUTPUT Command

Example 1

Operation: Direct the output from a conventional batch job to your
terminal.

Known: . The name of the job •••••••••••••••••••••• SMITH2
The job is in the system output class •••• SYSOUT=X
Output oFerations are to be resumed with the next SYSOUT data
set or group of system messages.
You want the system to pause after Frocessing each block of
output data.

r--,
IOUTPUT SMITH2 CLASS(X) PRINT(*) NEXT PAUSE . I L __ J

Example 2

Operation: Oirect the output from two conventional batch jobs to a data
set so that it can be saved and processed at a later date.

Known: The names of the jobs ••••••••••••••••••••• JANA
JANB

The name for the output data set •••••••••• JAN.AUGPP.OUTLIST

r--,
IOUTPUT (JANA.JANB) CLASS(R.S.T) PRINT(AUGPP.OUTLIST) I
L-________ ---____________ J

Example 3

Operation: Change the output class.

Known: The name of the job •••••••• ,........ ., •••••• ' KEANl
The existing output class ••••••••••••••••• SYSOUT=S
The new output class •••••.•••••.•••••••••••• T

r--,
IOUTPUT KEAN1 CLASS(S) NOPRINT(T)I L-____ . ___ J

Example 4

Operation: Delete the output instead of changing the class (see Example
3) •

r--,
lOUT KEAN1 CLASS(S) NOPRINT I L-___ J

196

OUTPUT Command
CONTINUE Subcommand

Use the CONTINUE subcommand to resume output operations that have been
interrupted.

Interruptions occur when:

• An output operation completes and the PAUSE operand was specified
with the OUTPUT command.

• An output operation terminates because of an error condition.
• You press the attention key.

If other TSO commands have been entered during the interruption., the
OUTPUT command must be reentered.

r------------T---,
l SUBCOMMAND J OPERANDS l
~------------t-------------------~-----------------------------------~
'I CONTINUE l [NEXT] [PAUSE] l
l l HERE NOPAUSE I
1 1 BEGIN l L-___________ ~ __ --_____ J

NEXT

HERE

specifies that output operations are to be resumed with the next
data set being processed or with the next message if a block of
system messages is being processed. This is the default value if
NEXT, HERE. and BEGIN are omitted.

indicates that output operations are to be resumed at a point
approximately ten lines before the point of interruption (that is,
approximately ten lines will be repeated).

BEGIN
indicates that output operations are to be resumed from the
beginning of the data set being processed or from the first message
if a block of system messages is being processed.

PAUSE
indicates that output operations are to pause after each data set
is processed to allow you to enter a SAVE subcommand. (A carrier
return entered after the pause will cause normal processing to
continue.) You can use this operand to override a previous NOPAUSE
condition for output.

NOPAUSE
indicates that output operations are not to be interrupted. You
can use this operand to override a previous PAUSE condition for
output.

Example 1

Operation: Continue output operations with the next SYSOUT data set or
group of messages.

r---~--------------------,
lCONTINUE I
L ____________________________________ ~------------------------_. ________ J

197

OUTPUT Command
CONTINUE Subcommand

Example 2

Operation: start output operations over again.

r--~------------------------.-----,
ICONTINUE BEGIN I L--__ J

198

OUTPUT Command
END Subcommand

Use the END subcommand to terminate the operatipns of the OUTPUT
command.

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+---~
I END I I L-___________ ~ ___ J

199

OUTPUT Command
HELP Subcommand

Use the HELP subcommand to find out how to use OUTPUT and the OUTPUT
subcomroands. When you enter the HELP subcommand, the system responds by
printing out explanatory information at your terminal. 'You may request:

• A list of available subcommands.
• An explanation of the function., syntax, and operands of a specific

subcommand.

The HELP subcommand actually causes the system to execute a function
of the HELP command; therefore, you may consult the discussion of the
HELP command if you desire more detailed information.

r------------v------------~--,
I SUBCOMMAND I OPERANDS I
~------------t---~-----------1
I HELP I [subcommand-name] I
I H I [FUNCTION] I
I I [SYNTAX] \ I
I I [OPERANDS[(list-of-operand)] I
j I [ALL] I L--__________ ~ ___ ~ ___ J

subcommand-name
specifies the subcommand that you want to have clarified. If you
omit this operand, the system will display a list of OUTPUT
subcommands.

FUNCTION
specifies that you want a description of the referenced
subcommand1s function.

SYNTAX
specifies that you want a definition of the proper syntax for the
referenced subcommand.

OPERANDS (list-of-operands)

ALL

specifies that you want an explanation of the operands applicable
to the referenced subcommand.

The list of operands specifies the particular keywords that you
want to have explained. If you do not specify any keywords, all of
the applicable keywords will be included. You must use one or more
blanks or a comma as a delimiter between the keywords in the list.

specifies that you want a description of the function, the syntax,
and the operands of the subcommand that you specified. This is the
default value if no operands are specified.

Example 1

Operation: Have a list of available subcommands displayed at your
terminal.

r--,
I HELP I L-___ J

201

OUTPUT Command
HELP Subcommand

Example 2

Operation: Obtain all available information about a particular
subcommand.

Known: The subcommand name •••••••••• , , ••••••••••••••• , •••••••••••• SAVE

r--,
IHSAVE I L-___ ---______________ ~ ____ J

Example 3

Operation: Have a list of the operands for a particular subcommand
displayed at your terminal,.

Known: The subcommand name •••••••••••••••••••• ' •••••••••••• ' •••• CONTINUE

r---,
Ih continue operands I L--_______________________ ~ ___ J

202

OUTPUT Command
SAVE Subcommand

Use the SAVE subcommand to rename and catalog a SYSOUT data set for
retrieval by some method other than the OUTPUT command.

r------------T---,
I SUBCOMMAND I 9PERANCS I
~------------+--. ---~
I SAVE I data-set-name' I L--__________ i __ - ________ J

data-set-name
specifies the new data set name to be given to the SYSOUT data set
(see the data set naming conventions). The renamed data set will
be cataloged by the new name.

Example 1

Operation: Save an output data set.-

Known: The name of the data set ••• ' ADT023. NEWOUT.OUTLIST

r---~--------------------,
ISAVE NEWOUT I L-___ J

203

PROFILE Command

Use the PROFILE command to establish your user profile; that is~ to tell
the system how you want to use your terminal. You can:

• .Define a character-deletion or line-deletion control character.

• Specify whether or not prompting is to occur.

• Specify whether or not you will accept messages from other
terminals.

• Specify whether or not you want the opportunity to obtain additional
information about messages from a command procedure.

• Specify whether or not you want message numbers for diagnostic
messages that may be displayed at your terminal.

Initially" a user profile is prepared for you when arrangements are made
for you to use the system. You change the characteristics of your user
profile by using the PROFILE command with the appropriate operands.
Only the characteristics that you specify explicitly by operands will
change; other characteristics remain unchanged. The new characteristics
will remain valid from session to session. You must specify at least
one operand or the system will ignore the command.

I

r--------------t---, I COMMAND I OPERANDS I
.--------------t-----------------------------~-------------------------~
I {PROFILE} I [CHAR ({character} >J- [LINE ({?haracter} >] I
I . PROF 1 BS ATTN I
I I NOCHAR NOLINE I
I I I
I I [PROMPI'] [INTERCOM] I
I I NOPROMPT NOINTERCOM I
I I I
I ' I [PAUSE] [MSGID] I
I I NOPAUSE NOMSGID I
L-_____________ i _____ -------------------------------___________________ J

CHAR (character)
specifies the character that you want to use to tell the system to
delete the previous character entered. You should not specify a
blank, tab, comma. asterisk, or parenthesis because these
characters are used to enter commands.

CHAR (BS)
specifies that a backspace signals that the previous character
entered should be deleted. The backspace is the value that is in
effect until you change it.

NOCBAR
specifies that no control character is to be used for character
deletion.

LINE (character)
specifies a control character that you want to use to tell the
system to delete the current line.

205

PROFILE Command

LINE (ATTN)
specifies that an attention interruption is to be inter~reted as a
line-deletion control character. The attention interruption is the
value that is in effect until you change it.

NOLINE
specifies that no line-deletion contr.ol character is needed.

PROMPT
specifies that you want the system to prompt you for missing

. information.

NOPROMPT
specifies that no prompting is to occur.

INTERCOM
specifies that you are willing to receive messages from other
terminal users.

NOINTERCOM
specifies that you do not want to receive messages from other
terminals.

PAUSE
. specifies that you want the opportunity to ,obtain additional
information when a m~ssage is issued at your terminal while a
command procedure (see the EXEC command) is executing. After a
message that has additional levels of· information is issued, the
system will display the word PAUSE and wait for you to enter a
question mark (?) or a carrier return.

NOPAUSE
specifies that 'you do not want prompting for a question mark or
carrier return.

MSGID
specifies that diagnostic messages are to include message
identifiers.

NOMSGID
specifies that diagnostic messages are not to include message
identifiers.

Example 1

Operation: Establish a complete user profile

Known: The character that you want to use to tell tne system to delete
the· 'previous character •••••••• ·••.•••••••••••.••••••••••••••• #.
The indicator that you want to use to tell the system to delete
the current line.. A IJ:"l'N •
You want to be prompted.
You do not want to receive messages from other terminals.
You want to be able to get second level messages while a command
procedure is executing.
You do not want diagnostic message identifiers.

r---~--, IPROFILE CHAR(#) LINE(ATTN) PROMPT NOINTERCOM PAUSE NOMSGID I
L ____________ . _____________________________ ~----------------------------J

206

PROFILE Command

Example 2

Operation: Suppose that you have established the user profile in
Example 1. The terminal that you are using now does not
have a key to cause an attention interrupt. You want to
change the line delete control character from ATTN to i
without changing any other characteristics.

r--,
IPROF LINE(i) I
L--______________________________________ ~~---------------------__ ' _____ J

Example 3

Operation: Establish and use a line-deletion character and a
character-deletion character.

Known: The line-deletion character ~ •• • ... • • • • ... • • • • •• t
The character-delet'ion character

r--,
I PROFILE LINE (t) CHAR (!) I L _______________________________ ~ ______________________________________ J

NOw, if you type:

NOW IS THE TItAC!BCG!.

and press the carripr return key~ you will actually enter:

ABC.

207

PROTECT Command

Use the PROTECT command to prevent unauthorized access to your data set.
This command establishes or changes:

• The passwords that must be specified to gain access to your data
set.

• The type-of access allowed.

Passwords

You may assign one or more passwords t? a- data set. The password for a
data set must be specified before access to the data set is allowed. A
password consists of one through eight alphameric characters. You are
allowed two attempts to supply the correct password.

Types of Access

Four operands determine the type of access allowed for your data set.
They are, PWREAD, PWWRITE. NOPWREAD:r NOWRITE.

Each operand. when used alone, defaults to one of the preceding types,
of access,. The default values for each operand used alone are:

OPERAND I DEFAULT VALUE
------------t----------------

I
PWREAD I PWREAD PWWRITE

I
NOPWREAD I NOPWREAD PWWRITE

I
PWWRITE I NOPWREAD PWWRITE

I
NOWRITE I PWREAD NOWRITE

A combination of NOPWREAD and NOWRITE is not supported and will default
to NOPWREAD and PWWRITE.

If you specify a password but do not specify a type of access, the
default is:

• NOPWREAD PWWRITE if the data set does not have any existing access
restrictions.

• The existing type of access if a type of access ,has already been
established.

When you specify the REPLACE function of the PROTECT command the default
type of access is that of the entry being replaced.

209

PROTECT Command

r--------------T---,
I COMMAND I OPERANDS I
f------~-------+-----------------------~---------------· ----------------f
I JPROTECT} I. data-set-name I
I)PROT I . I
I I . [ADD (password2) J I
I I REPLACE (password1 password2) I
I J DELETE (password1) . I
I I LIST (password1). I
I I I
I I [PWREAD] [PWWRITE] I I I NOPWREAD NOWRITE I.
I I 'I
I I [DATA(string)] I L _____________ ~ _________________________ ~ ___________________ ~-~ _______ J

data-set-name
specifies the name of the data set that viII be subject to the
functions of thi·s command (see the data set naming conventions).

ADD (password2)
specifies that a nev password is to be required for access to the
named data set. This is the default value if ADD, REPLACE, DELETE,
and LIST are omitted.

If the data set exists and is not already protected by a password.
its security counter viII be set and the password being assigned
will be flagged as the control password for the data set. The
security counter is not affected when additional passwords are
entered.

REPLACE(password1~ passvord2)
specifies that you vant to replace an existing password~ access
type, or optional security information. The first value (password
1) is the existing password; the second value (password2) is the
nev passvord.

DELETE (passvordl)
specifies that you vant to delete an existing passvord. access
type~ or optional security information.

If the entry being removed is the control entry (see the discussion
folloving these operand descriptions), all other entries for the
data set viII also be removed.

LIST (passvordl)
specifies that you vant the security counter, the access type, and
any ~ptional security information in the Passvord Data set entry to
be displayed at your terminal.

passvordl
specifies tbe existing password that you want to replace, delete,
or have its security information listed.

password2

210

specifies the new password that you ~ant to add or to replace an
existing password.

PROTECT Command

·PWREAD
specifies that the password must be g~ven before the data set can
be read.

NOPWREAD
specifies that the data set can be read without using a password.,

PWWRITE
specifie~ that the password must be given before the data set can
be written upon.

NOWRITE
specifies that the data set cannot be written upon.

DATA (string)
specifies optional security information to be retained in the
system. The value that you supply for 'string' specifies the
optional security information that is to be included in the
Password Data Set entry (up to 77 bytes).

Password Data Set

Before you can use the PROTECT command. a Password Data Set must reside
on the system residence volume. The Password Data Set contains
passwords and security information for protected data sets. You can use
the PROTECT command to display this information about your data sets at
your terminal.

The Password Data Set contains a security counte'r for each protected
data set. This counter keeps a record of the number of times an entry
has been referred to. The counter is set to 'zero' at the time an entry
is placed into the data set. and is incremented each time the entry is
accessed.

Each password is stored as part of an entry in the Password Data set.
The first entry in the Password Data Set for each. protected data set is
the control entry. The password from the control entry must be
specified for each access of the data set via the PROTECT command. with
one exception: the LIST operand of the PROTECT command does not require
the password from the control entry.

If you omit a required password when using the PROTECT command. the
system will prompt you for it; and if your terminal is equipped with the
• print-inhibit' feature. 'the system will disengage the printing
mechanism at your terminal while you enter the password in response.
However. the 'print-inhibit' feature is not used if the prompting is for
a new password.

Example 1

Operation: Establish a password for a new data set.

Known: The name of the data set •••••••••••••••••••••• LEOBTG.SALES.DATA
The password~.................................... L82GRIFN
The type of access allowed •••••••••••••••••••• PWREAD PWWRITE

r--,
IPROTECT SALES.DATA PWREAD ADD(L82GRIFN) I L----__ J

211

PROTECT Command

Example 2

Operation: Replace an existing password without changing the existing
access type.

Known: The name of the data set •••.••••••••••••• TCOSALES.NETSALES.DATA
The existing password ••••• , ••••.••••••••• ". MTGQ)AOP
The new password ".................. PAO$TMG
The control password ELHAVJ

r---~--------------------,
IPROT NETSALES.DATA/ELHAVJ REPLACE(MTG@AOP,PAO$TMG) I
L-______________________________________ ~ _____ "------------------______ -J

Example 3

Operation: Delete one of several passwords.

Known: The name of the data set ••••••••••••••••••••• MTGGO.NETGROSS.ASM
The password ••••••••••••••••••••••••••••••••• LETGO
The control passord, APPLE

r--,
I PROT NETGROSS..ASM/APPLE DELETE(LETGO) I L-___ J

Example 4

Operation: Obtain a listing of the security information for a protected
data set.

Known: The name of the data set •••••••• ' LTG24.BILLS.CNTRLA
The password required, D#JPJAM

r--,
Iprotect 'ltg24.bills.cntrla ' list(d#jpjam) I L-___ J

Example 5

Operation: Change the type of access allowed for a data set.

Known: The name of the data set •••••• '. • • • •• • GJPD23A. PROJCTN.LOAD
The new type of access NOPWREAD PWWRITE
The eXisting password '. , , oo DDAY6/6
The control password............................ EEYORE

r--,
IPROTECT PROJCTN.LOAD/EEYORE REPLACE (DDAY6/6.DDAY6/6) I
INOPWREAD PWWRITE I L-__ ~ __ J

212

RENAME Command

Use the RENAME command to:

• Change the name of a data set.
• Change the name of a member of a partitioned data set.
• Create an alias for a member of a partitioned data set.

r--------------T-------------~---,
I COMMAND I OPERANDS I
~-------------+------------------------~------------------------------~
I { RENAME} I old-name new-name [ALIAS] I
I REN I I L-_____________ ~ __________________________ ~ ____________________________ J

old-name
specifies the name that you want to change,. The name that you
specify may be the name of an existing data set or the name of an
existing member of a partitioned data set. (See the data set
naming conventions.)

new-name

ALIAS

specifies the new name to be assigned to the existing data set or
member. If you are renaming or assigning an alias to a member. you
may supply only the member name and omit all other levels of
qualification. (See data set naming conventions).

specifies that the member name supplied for new name operand is to
become an alias for the member identified by the old name operand.

You can rename several data sets by substituting an asterisk for a
qualifier in the old name and new name operands. The system will change
all data set names that match the old name except for the qualifier
corresponding to the asterisk's position.

213

RENAME Command

Example· 1

Operation: you have several data sets named:

USERID.MYDATA.DATA

USERID.YOURDATA.DATA

USERID.WORKDATA.DATA

that you want to rename:

USERID.MYDATA.TEXT

USERID.YOURDATA.TEXT

USERID.WORKDATA.TEXT

you must specify either:

r--,
IRENAME 'USERID.*.DATA','USERID.*.TEXT' -, I L--_____ . ___ J

or
r---,
IRENAME *.DATA, *.TEXT 1-L-__ ~-----_______ J

Example 2

Operation: Assign an alias "SUZIE" to the partitioned data set member
named "ELIZBETH(LIZ)".

r---------------~---------------------~----~-------------------------,
IREN 'ELIZBETH(LIZ) , (SUZIE) ALIAS 1 L--__ ~ _________________________ J

214

RUN Command'

Use the RUN command to compile, load, and execute the source statements
in a data set. The RUN command is designed specifically for use with
certain program products; it selects and invokes the particular program
product needed to process the source statements in the data set that you
specify. The following table shows which program product is selected to
process each type of source statement. (Appendix A contains references
to additional information about the program products.)

r-----------------------------T--,
IIf your program or data set I Then the following Program Product I
Icontains statements of this I is needed: I
Itype (see EDIT): I I

r-----------------------------t-------------------~~-------------------~
I IPLI I ITF:PL/I I
I 1 (Shared Language Component and PL/II
I 1 Processor) I
~-----------------------------t---------~---------~--------------------~
I BASIC 1 ITF:BASIC _ 1
1 1 (Shared Language Component and I
I 1 BASIC Processor) I
~FOR~--------------~-----t-cod;-;~d-G~-FORTRAN------------------~-1

.----. ------------------, --------t-------~--------------------------~-----~
I FORT 1 TSO FORTRAN Prompter and FORTRAN IV I
I 1 (GI) Compiler . I
.-----------~-~--' --------------t--------~-~--------~--------------------~
I COBOL 1 TSO COBOL Prompter and American I
I I National standard COBOL Version 3 I
1 1 Compiler 1
.-----------------------------t--~
IASM . I TSO ASM Prompter 1
.-----------------------------~-----------~----------------------------~ IPrograms containing statements suitable for the following IBM~suppliedl
Ilanguage processors can be compiled and executed by using the CALL .1
lcommand.· 1
1 I
1 ASM (F),PL/1 (F),COBOL (E) or (F),FORTRAN (E), (G) or (H) 1
I. .1
IYou can use the CONVERT command to convert ITF:PL/I and Code and G9 1
IFORTRAN statements to a form suitable for the PL/1 and FORTRAN 1
Icompilers/, respectively. 1
L-___ ~--.~----------------~---J

The RUN command and the RUN subcommand for the EDrT command perform
the same basic function.

215

RUN Command

r--------------T---,
I COMMAND I OPERANDS I
.--------------+--' ------------------------------'-----. -----------------~

{~UN} f data-set-name ['parameters'] ,

I ASM
I COBOL
I FORT
I IPLI [TEST] [LMSG]
I NOT EST SMSG
I -
j
I
I

BASIC[TEST] [LMSG][LPREC]
NOT EST SMSG SPREC

I FREE SMSG
I GOFORT[FIXED][LMSG]

L _____________ ~ __ _

data-set-name 'parameters'

ASM

specifies the name of the data set containing the source program.
(See the data set naming conventions.) A string of up to 100
characters can be passed to the program via the "parameters"
operand (valid only for ASM, FORT, and COBOL).

specifies that the TSO Assembler Prompter Program Product and the
Assembler (F) compiler are to be invoked to process the source
program. If the rightmost qualifier of the data set name is ASM,
this operand is not ~equired.

COBOL

FORT

IPLI

BASIC

specifies that the TSO COBOL Prompter and the American National
Standard COBOL Program Products are to be invoked to process the
source program. If the rightmost qualifier of the data set name is
COBOL, this operand is not'required.

specifies that the TSO FORTRAN Prompter and the FORTRAN IV (GI)
Program Products are to te invoked to process the source program.
If the rightmost qualifier of the data set name is FORT, the Code
and Go Fortran compiler will be invoked unless you specify this
operand.

specifies that the ITF:PL/I Program Product is to be invoked to
process the source program. If the rightmost qualifier of the data
set name is IPLI, this operand is not required.

specifies that the ITF:BASIC Program Product-is to be invoked to
process the source program. If the rightmost qualifier of the'qata
set name is BASIC" this operand is not required.

GOFORT

216

specifies that the Code and Go Fortran Program Product is to be
invoked for interactive processing of the source program.

'lEST

RUN Command

specifies that testing of the program is to be performed. This
operand is valid only for the ITF:PL/I and BASIC Program Product.

NOTEST

LMSG

SMSG

LPREC

SPREC

specifies that the TEST function is not desired. This is the
default value if both TEST and NOTEST are omitted.

specifies that the long form of the diagnostic messages are to be
provided. This operand is applicable to the ITF:PL/I, ITF:BASIC,
and Code and Go FORTRAN Program Products only.

specifies that the short form of the diagnostic messages is to be
provided. This operand is applicable to the ITF:PL/I, ITF:BASIC,
and Code and Go FORTRAN Program Products only. This is the default
value if both LMSG and SMSG are omitted.

specifies that long precision arithmetic calculations are required
by the program. This operand. is valid cnly· for the ITF:BASIC
Program Product.

specifies that short prec1s10n arithmetic calculations are adequate
for the program. This operand is valid only for the ITF:BASIC
Program Product. This is the default value if both LPREC and SPREC
are omitted.

FIXED

FREE

specifies the format of the source statements to be processed by
the Code and Go FORTRAN Program Product. The statements must be in
standard format when this operand is specified. If you omit this
operand, the FREE operand is the default value.

specifies that the source program consists of free form statements
applicable only to the Code and Go FORTRAN Program Product.

Determining Compiler Type: The system uses tvo sources of information
to determine which compiler viII be used. The first source of
informati~n is the optional operand (ASM" COBOL~ FORT:r IPLI. BASIC, or
GOFORT) that you may specify for the ·RUN command. If you omit this
operand, the system checks the descriptive qualifier of the data set
name that is to be executed (see the dataset naming conventions for a
list of descriptive qualifiers). If the system cannot determine the
compiler type from the descriptive qualifier" you viII be prompted.

Example 1

Operation: Compile,. load .. and execute a source program composed of
BASIC statements.

Known: The name.of the data set containing
the source program DDG39T.MANHRS.BASIC

r--~~--~---------------------~---,
IRUN MANHRS.BASIC I
L __ ~-----------------------------------~------~---~------------~-__ ~ ___ J

217

RUN Command

Example 2

Operation: Compile, load and e,xecute a Code and Go FORTRAN source
program contained in a data set that does' not conform to the
data set naming conventions.'

Known: The data set name •••••••••••••••••••••••••••• TRAJECT.MISSILE
For FORTRAN statements that conform to the standard format.
Complete'diagnostic messages are needed.
Parameters to be passed to the p~ogram are ••• 50 144 5000

r-----------~--~---,
IRUN, 'TRAJECT.MISSILE' '50 144 5000' GOFORT FIXED LMSG I L-___ J

218

SEND Command

Use the SEND command to send a message to another terminal user or to
the system operator. A message may be sent to more than one terminal
user. If the intended recipient of a message is not logged on~ the
message can be retained within the system and presented automatically
when he logs on. You will be notified when the recipient is not logged
on and the message is deferred.

This command should'be used by terminal users; system operators
should use the SEND subcommand of the OPERATOR command.

r--------------T---,
I COMMAND' I OPERAND \ I
r-~------------+---f
I {SEND} I' text' [USER (identifications) [NOW J] I
I SE I. LOGON I
I I OPERATOR[(integer)] I L-_____________ ~ ___ J

'text'
specifies the message to be sent. You must enclose the text of the
message within apostrophes (single quotes). The message must not
exceed 115 characters including blanks. If no other operands are
used, the message goes to the console operator. If you want '
apostrophes to be printed you must enter two in order to get one.

USER (identifications)

NOW

LOGON

specifies the user identification of one or more terminal users who ~
are to receive the message.. A maximum of 20 identifications can be
used.

specifies that you want the message to be sent immediately. If the I

recipient is not logged on, you will be notified and the message
will be deleted. This is the default value if both NOW and LOGON
are omitted.

specifies that you want the message retained in the SYS1.BRODCAST
data set if the recipient is not logged on. When the recipient
logs on. the message will be removed from the data set and directed
to his terminal. 'If the recipient is currently using.the·system,
the message will be sent immediately.

OPERATOR (integer)
specifies that you want the message sent to the operator indicated
by the integer. If you omit the integer, the default is two (2);
that is, the message goes to the mas'ter console operator. This is
the default value if both USER (identifications) and OPERATOR are
omitted.

219

SEND Command

Example 1

.operation: Send a message to two other terminal users.

Known: The message:
ACCOUNT NUMBER 401288 MUST NOT BE .USED ANY MORE.
CHANGE TO ACCOUNT NUMBER 530266.
The user identification for the terminal users •••••••••• AMCORP6

AMCORP7

r--,
ISEND 'ACCOUNT NUMBER 401288 MUST NOT BE USED ANY I
IMORE. CHANGE TO ACCOUNT NUMBER 530266.' I
IUSER(AMCORP6,AMCORP7) NOW I L-___ J

Example 2

Operation: Send a message that is to be delivered to "JONES" when he
begins his terminal session or now if he is currently logged
cn.

Known: The recipient 'suser-identification •••••••••.•••••••••••••• JONES
The message:
"IS YOUR VERSION OF THE SIMULATOR,READY?"

r--,
ISEND 'IS YOUR VERSION OF THE SIMULATOR READY?' USER(JONES) LOGON I L-___ J

220

STATUS Command

Use the STATUS command to have the status of conventional batch jobs
displayed at your ter.minal. you can obtain the status of all batch
jobs, of several specific batch jobs, or of a single batch job. The
information that you receive for each job will tell you whether it is
awaiting execution, is currently executing, or has completed execution.

This command may be used only by personnel who have been given the
authority to do so by the installation management.

r--------------T------------------·--------~----------------------------,
I COMMAND I OPERANDS I
~------------+-----------------------------~-------------------------f
I {STATUS} I [(jobname-list)] I
I ST I . I L _____________ ~ ___ J

. (jobname-list)
specifies the names of the conventional batch jobs that you want to
know the status of. If two or more jobs have the same jobname, the
system will only display the status of the first one encountered.
When more than one jobname is included in the list, the list must
be enclosed within parentheses. If you do not specify any
jobnames, you will receive the status of all your conventional
batch jobs that you submitted with the SUBMIT command.

Example 1

Operation: Have the status of two batch jobs displayed at your
terminal.

Known: The jobnames ' ••••••••••••••••••••••• ABJ325A2
ABJ325A3

r--,
I STATUS (ABJ325A2"ABJ325A3) I L __ J

221

SUBMIT Command

Use the SUBMIT command to submit one or more batch jobs for conventional
processing. Each job submitted must be contained in a sequential direct
access data set or member of a partitioned data set.

This command may be used only by personnel who have been given the
authority to do so by the installation management.

r-~------------T---,
I COMMAND I OPERANDS ' I

r--------~-----+---------------------------------------~---------------~
I {SUBMIT} I (data-set-list) [NOTIFY] ' I
I S I NONOTIFY I L-_____________ ~ ____________________________ ~ __________________________ J

(data-set-list)
specifies one or more data set names or names of members of
partitioned data sets (see the data set naming conventions).. If
you specify more than one data set name. enclose them in
parentheses.

NOTIFY
specifies that you are to be notified when your job terminates.
This operand is only recognized when no job card has been provided
with the job that you are processing. This is the default value if
both NOTIFY and NONOTIFY are omitted.

NONOTIFY
specifies that you do not want to be notified when your job
terminates. This operand is only recognized when no job card has
been provided with' the job that you are processing.

Example 1

Operation: Submi t two jobs fo'r' conventional batch processing.

Known: The names of the data sets that contain the jobs:

ABTJQ.STRESS.CNTL
ABTJQ.STRAIN.CNTL

You want to be notified as each job terminates.

r--~---------------------,
ISUBMIT (STRESS STRAIN) I L __ J

223

TERMINAL Command

Use the TERMINAL command to define the operating characteristics that
depend primarily upon the type of terminal that you are using. You ca~
specify the ways that you want to request an attention interruption and
you can identify hardware features and capabilities. The TERMINAL
command allows you to request an attention interruption whether or not
your terminal has a key for the purpose.

Refer to IBM System/360 Operating system: Time Sharing Option,
Terminals, GC28-6762 for a description of the TERMINAL command's
characteristics as they apply to the various terminals available with
TSO.

r------------T-----------------------------·----------------------,
I COMMAND I OPERANDS I
l------------t---f
I {TERMINAL} I [LINES (integer>] [SECONDS (integer>] [INPUT (string>l I
I TERM I NOLINES NOSECONDS NOINPUT J I
I I I
I 1 [BREAK] [TIMEOUT] [LINESIZE(integer>] I
I I NOBREAK NOTIMEOUT I L-____________ ~ ___ J

LINES (integer)
specifies an integer from 1 to 255 that indicates you want the
opportunity to request an attention interruption after that number
of lines of continuous output has been directed to your terminal.

NOLINES
specifies that output line count is not to be used for controlling
an attention interruption.

SECONDS (integer)
specifies an integer from 10 to 2550 (in multiples of 10) to
indicate that you want the opportunity to request an attention
interruption after that number of seconds has elapsed during which
the terminal has been locked and inactive.

NOSECONDS
specifies that elapsed time is not to be used for controlling an
attention interruption.

INPUT (string)
specifies the character string that~ if entered between lines of
input, will cause an attention interruption. The • string' cannot
exceed four characters in length.

NOINPUT

BREAK

specifies that no character string will cause an attention
interruption.

specifies that your terminal can be interrupted by the system
during input operation ..

NOBREAK
specifies that your terminal does not have the capability for
interruptions b,y the system during input operations.

225

TERMINAL Command

TIMEOUT
specifies that your terminal's keyboard will lock u'p automatically
after approximately. nine to 18 seconds of inactivity (applicable to
the IBM 1052 Printer-Keyboard without the timeout suppression
feature) •

NOTIMEOUT
specifies that your terminal's keyboard does not lockup
automatically, after a period of inactivity.

LINESIZE(integer)
specifies the length of the line (the number of characters) that
can be printed or displayed at your terminal.

Example 1

Operation: Define the characteristics for an 'IBM 2741 communications
termi,nal. you can use the attention key for attention
interrupts only during input.

Known: Output line count for attention interruptions ••••••• 56
Elapsed time for attention interruptions •••••• "' ••••• 120 seconds
The character string for attention interruptions •••• XYZ
The line size I. I ••••••• I •••• I ••••••••••••••••• I. '. I. •• 80

r-~---------------------------~-----------~------------------------~---,
I TERMINAL LINES (56) SECONDS(120) INPUT (XYZ) NOBREAK I
I NO TIMEOUT LINESIZE (80) . I L--_______________________ ~ _____________ ~ _____________________________ J

Example 2

Operation: Define the characteristics for an IBM 2741 Communications
Terminal. You can use the attention key for attention
interrupts during input and during output.

Known: The length of line that you want to have printed ••••••••••••• 80

r----, ---~------------------------,
ITERMINAL NOLINES NOSECONDS NOINPUT BREAK NQTIMEOUT I
I LINESI ZE (80) I
I __________________ . ______ . _____ ~ ______ ~------------------------J'

226

TERMINAL Command

Exarople'3

Operation: Define the characteristics for an IBM 1052 Printer-Keyboard
on which you can use the attention key to request attention
interrupts only during input.

Known: output line count for attention interruptions •••••••• - 63
Elapsed time for attention interruptions ••••••••••••• 90 seconds

'The character string for attention interruptions ••••• KKKK
The line size•.•.......... ,•.................. 130

r-----~--,
ITERM LINES(63) SECONDS(90) INPUT(KKKK) NOBREAK I
ITIMEOUT LINESIZE(130) I L-___ J

Example l.
Operation: After establishing characteristics as in Example 3, change

only the SECONDS operand.

Known: The new value for SECONDS •••••• ' •••••••••••••••••••••••••••••• 30

r--,
ITERM SECONDS(30) I L-________________________ ~ __ J

227

TEST Command

Use the TEST command to "debug" a program, that is to test a program for
proper execution and to locate any programming errors. To use the TEST
command and subcommands, you should b~ familiar with the basic assembler
language and the addressing conventions described in Appendix B. For
best results, the program to be tested should be written in basic
assembler language.

r--------------T---------------~---------------------------------------, I COMMAND I OPERANDS I
.--------------+--~--------------~
I TEST I J;:rogram-name [. parameters'] [LOAD J.[CP] I
I I 'OBJECT NOCP , I L--____________ ~ ___ J

program-name
specifies the name of the data set containing the program to be
tested. (See the data set naming conventions'.) The program must
be in object module form or load module form.

parameters
specifies a list of parameters to be passed to the named program.
The list must not exceed 100 characters including delimiters.

LOAD
specifies that the named program is a load module that has been
processed by the linkage editor and is a member of a partitioned
data set. This is the default value if both LOAD and OBJECT are
omitted.

OBJECT

CP

specifies that the named program is an object module that has not
been processed by the linkage editor. The program can be contained
in a sequential data set or a member of a partitioned data set.

specifies that the named program is a command processor.

NOCP
specifies that the named program is not a command processor. This
is the default value if both CP and NOCP are omitted.

Uses of the TEST Command: Before execution begins you can:

• Supply initial values (test data) that you want to pass to the
program.

• Establish breakpoints after instructions where execution will be
interrupted so that you'can examine interim results.

You can then execute the program. When you use the TEST command to
load and execute a program, the program must be an object module or a
load module suitable for processing. If the program that you want to
test is already executing. you can begin testing by interrupting the
program with an attention interruption followed by the TEST command with
no operands. You can also begin testing after an abnormal ending
(ABEND) if the program is still in main storage.

229

TEST Command

Prior to and during execution you can:

• Display the contents of registers and main storage (as when
execution is interrupted at a breakpoint).

• Modify the contents of your registers and main storage.

• Display the Program status Word (PSW).

• List the contents of· control blocks.

• "Step through" sections of the program, checking each instruction
for proper execution.

Refer to Appendix B for ,the TEST command addressing conventions.

Subcommands: The subcommands of the TEST command are:

AT

CALL

establishes breakpoints at specified locations.

initializes registers and initiates processing of the program at a
specified address.

DELETE

DROP

END

deletes a load module.

removes symbols established by the EQUATE command from the symbol
table of the module being tested.

terminates all operations of the TEST command and the program being
tested.

EQUATE
adds a symbol to the symbol table and assigns attributes and a
location to that symbol.

FREEMAIN
frees a specified number of bytes of main storage.

GETMAIN

GO

LIST

acquires a specified number of bytes ,of main storage for use by the
program being processed.

restarts the program at the point of interruption or at a specified
address.

displays the contents of main storage area or registers.

LISTDEB
lists the contents of a Data Extent Block (DEB) (you must specify
the address of the DEB).

LISTDCB

230

lists the contents of a Data Control Block (DCB) (you must specify
the address of the ~CB)~

TEST Command

LISTMAP
displays a storage map.

LISTPSW
displays the Program Status Word (PSW).

LISTTCB
lists the contents of the Task Control Block (TCB) (you may. specify
the address of another TCB).

LOAD
loads a program into roain storage for execution.

OFF
removes breakpoints.

QUALIFY
establishes the starting or base location fo~ relative addresses;
resolves identical external symbols within a load module. '

RUN
terminates TEST and completes execution of the program.

WHERE
displays the absolute address of a symbol or entrypoint or the
address of the next executable instruction.

Example 1

Operation: ~nvoke a program for testing.

Known: The name of the data set that
contains the program ' ••• llBSELF.LOAD(THRUST)

The program is a load module and is not a command processor.
The parameters to be passed ••••••••••••••••• 2048~80

r--,
I TEST (THRUST) • 2048, 80 'I L __ J

Example 2

Operation: Invoke a.program for testing.

Known: The name of the data set that
contains the program DECKCO.PAYLOAD.OBJ
The program is an object module and is not a command processor.

r---~--------~---------------,
ITEST PAYLOAD OBJECT I
L _______________________________________ ~----------------~-----------__ J

Example 3

Operation: Test a command processor.

Known: The name of the data set containing
the command processor '. DCOOIL. LOAD (OUTPUT)

r--~-,
ITEST (OUTPUT) CP . I L-___ ~ _____ J

231

TEST Command
Assignment of Values

'When processing is halted at .:a breakpoint, you can modify values in main
storage and in registers. This function is implicit; that is, you do
not enter a subcommand name. The system performs the function in
response to operands that you enter.

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+---~
I I address=data-type'value' I L ___________ i ___ ~ _________ J

address
specifies the location that you want to contain a new value. The
address may be a symbolic address, a relative address, an absolute
address, or a register. (See Appendix B for more information about
addresses.)

data-type 'value'
specifies the type of data and the value that you want to place in
the specified location. You indicate the type of data by one of
the following codes:

Code
C

Type of Data
Character
Hexadecimal
Binary

Maximum'Length (Bytes)
one line of input1

X
B
H
F
E
D
P
Z
A
S
Y

Fixed point binary (halfword)
Fixed point binary (full word)
Floating point (single precision)
Floating point (double precision)
Packed decimal
Zoned decimal
Address constant
Address ('base + displacement)
Address constant (halfword)

1Continued lines are permitted.

64
64

6
11

9
18
32
17
10

8
5

You include your data following the code. Your data must be
enclosed within apostrophes.

Example 1

Operation: Insert a character string at a particular location in main
storage.

Known: The address is a symbol........................... INPOINT
The data •••••••••••••••.••••••••••••••••••••••••• JANUARY 1, 1970

r--, I INPOINT=C 'JANUARY 1,. 1970'. I L-___ J

233

TEST Command
Assignment of Values

Example 2

Operation: Insert a binary number into a register.

Known: The number of the reg ister •••••• ' •• '. • • • • • • • • • • • •• Register' 6
. The data...................................... 0000 0001 0110 0011

r--"
16R=B'0000000101100011' I L-___ J

234

TEST Command
AT Subcommand

Use the AT subcommand to establish breakpoints before the command where
processing is to be temporarily halted so that you can examine the
results of execution up to the point of interruption.

r-------~----T---,
I SUBCOMMAND I OPERANDS I
l-------· -----+---~
I AT I {address [:address] } [(list-of-subcommands)] I
I I (address-list) I
I - I - I
I I [COUNT (integer)] [NODEFERJ [NOTIFY] I
I I DEFER NONOTIFY I L--__________ ~ ___ J

address
specifies a location that is to contain a breakpoint. The address
may be a symbolic address, a relative. address, an absolute address,
or a general register containing an address. The address must be
on a half word boundary. (See Appendix B for more information about
addresses.)

address:address
specifies a range of addresses that are to .contain breakFoints.
Each address may be a symbolic address, a relative address, an
absolute address., or a general register containing an address.
Each address m,ust be on a half word boundary. A breakpoint will be
established at each instruction between the two addresses. (See
Appendix B for more information about addresses.)

address-list
specifies several addresses that are to contain breakpoints. Each
address may be a symbolic address,. a relative address, an absolute
address, or a general register containing an address. The first
address must be on a halfword boundary. The list must be enclosed
within parentheses, and the addresses in the list must be separated
by standard delimiters (one or more blanks or a comma). A
breakpoint will be established at each address. {See Appendix B
for more information about addresses.}

list-of-subcommands
specifies one or more subcommands to be executed when the program
is interrupted at the indicated location. If you specify more than
one subcommand, the subcommands must be separated by semicolons
(for instance, LISTTCB PRINT(TCBS)iLISTPSWiGO CALCULAT). The list
cannot be longer than 255 characters.

COUNT (integer)
specifies that processing will not be halted at the breakpOint
until it has been encountered a number of times. This operand is
directly applicable to program loop situations, where an
instruction is executed several times. The breakpoint will be
observed each time it bas been encountered the number of times
specified for the 'integer' operand. The integer specified cannot
exceed 321 767.

235

TEST Command
AT Subcommand

DEFER
specifies that the breakpoint'is to be established in a program
that is not yet in storage., The program to contain the breakpoint
will be brought in as a result of a LINK" LOAD7 ATTACH, or XCTL
macro instruction by the program being tested. You must qualify
the address of the breakpoint explicitly (loadname and CSECT name)
when you specify this operand., J

NODEFER
specifies that the breakpoint is to be inserted into the program
now in main storage. This is the default value if both DEFER and
NODEFER are omitted.

NOTIFY
specifies that when it is encountered the breakpoint will be
identified at the terminal.. This is the default value if both
NOTIFY and NONOTIFY are,omitted.

NONOTIFY
specifies that when it is encountered the breakpoint will not be
identified· at the terminal.

Example 1

Operation: Establish breakpoints at each instruction in a section of
the program that is being tested.

. ,

Known: The addresses of the first and last instructions of
that section that is to be tested •••••••••••••••••••• LOOPA

I EX ITA
The subcommands to be executed are ••••••••••.••••••••• LISTPSW,GO

r--~---,
IAT LOOPA:EXITA (LISTPSW;GO) I L-__ ~J

Example 2

OpeT~tion: Establish breakpoints at several locations in a program.

Known: The addresses for the bre:-kpoints +8A
LOOPB
'EXITB

r---~----------------~---,
IAT (+8A LOOPB EXITB) I L--__ J

Example 3

Operation: Establish a breakpoint at a location in a loop. The address
of the location is contained in register 15. You only want
to have an interruption every tenth cycle through the loop.

Known: The address for the breakpoint •••••• ~ ••••••••••••••••••••• 15R%

r-------------------~-----~-------------~----~-~----------------------,
IAT 15R%' COUNT(10) I
L-__ ~ __________________________ ~--------------------------------___ ~---J

236

TEST Command
AT Subcommand

Example 4 .

Operation: Establish a breakpoint for a program other than the one
presently in main storage.

Known: The csect name... YLREVEB
The name of the load module KCIW
The symbolic address for the breakpoint....................... PROG

r--~-----------------------,
IAT KCIW.YLREVEB.PROG DEFER I L--__ J

237

TEST Command
CALL Subcommand

Use the CALL subcommand to initialize registers and initiate processing
at a specified address. You can pass parameters to the program that is
being tested.

r------------T---,
1 SUBCOMMAND 1 OPERANDS I
~-------~----+---------------~--------------------------------. -------~
1 CALL 1 address 1
1 I 1
I 1 [PARM (address-list)] 1
I, 1 I

'I 1 [VL] 1
1 1 1
1 1 [RETURN (address)] I L-___________ ~ ___ J

address
specifies the address where processing is to begin. The address
may be a symbolic address. a relative address" an absolute address,
or a general register containing an address. (See Appendix B for
more information about addresses.)

PARM(address-list)

VL

specifies one or more addresses that pOint to data to be used by
the program being tested. The list of addresses will be expanded
to full words and placed into contiguous storage. Register one will
contain the address of the start of the list.

specifies that the high order bit of the last fullword of the list
of addresses pointed to by general register one is to be set to
one.

RETURN (address)
specifies that general register 14 is to contain the address that
you supply as the value for this keyword. After the program
executes, the system will return control to the point indicated by
register 14.

Example 1

Operation: Initiate execution of the program being tested at a
particular location.

Known: The starting address I _ I •• '. • •• + OA
The addresses of data to be passed CTCOUNTR

LOOPCNT
TAX

r--~-----------------------,
ICALL +OA PARM(CTCOUNTR LOOPCNT TAX) 1 L-_____________ ~ ___ J

239

TEST Command
CALL Subcommand

Example 2

Operation: Initiate execution at a particular location.

Known: The starting address •••••••••••••••••••••••••••••••••••• STARTBD
The addresses of data to be pass ed. , ••••••••••••• ,. • • • • • •• BDFLAGS

PRFTTBL
COSTTBL
ERREXIT

Set the high order bit of the last address parameter to one-so
that the program can tell the end of the list. '
After execution" control is to be returned to •• 0 ••••••••• +24A

r--,
ICALL STARTBD PARM(BDFLAGS PRFTTBL COSTTBL ERREXIT) I
IVL RETURN(+24A) I L __ J

240

TEST Command
DELETE Subcommand

Use the DELETE subcommand to delete a load module awaiting execution.

Insert 92
r------------T---~---,
I SUBCOMMAND I OPERAND I
!------------+~----------------------------------~-----------------~
I { DELETE} J load-name . I
I D I I L-___________ ~ ___ J

load name
specifies the name of the load module to be deleted. The load name
is the name by which the program is known to the system when it is
in main storage. The name must not exceed eight characters.

Example 1

Operation: The program being tested has called a subroutine that is in
load module form. Before executing the subroutine, a
breakpoint is encountered. You do not want to execute the
subroutine because you intend to pass test data to the
program instead. You now want to delete the subroutine
since it will not be used.

Known: The name of the subroutine (load module) •••••••• TOTAL

r--,
IDELETE TOTAL I L-___ J

or
r--~---,
ID 'IOTAL I L--__ J

241

TEST Command
DROP Subcommand

Use the DROP subcommand to remove symbols from the symbol table of the
module being tested. You can only remove symbols that you established
with the EQUATE subcommand; you cannot remove symbols that were
established by the linkage editor.

r------------T---,
1 SUBCOMMAND ·1 OPERAND I
~------------t---f
: DROP I (symbol-list) I L-___________ ~ ___ J

(symbol-list)
specifies one or more symbols that you want to remove from the
symbol table created by the EQUATEsubccmmand. When you specify
only one symbol, you do not have to enclose that symbol 'within
parentheses; however,' if you specify more than one symbol you must
enclose them within parentheses. If you do not specify any
symbols, the entire table of symbols will be removed.

Example 1

Operation: Remove all symbols that you have established with the EQUATE
command.

r--~-,
I DROP 1 L-___ ' __ J

Example 2

Operation: Remove several symbols from the symbol table.

Known: The names of the symbols •••••••• ,. , ... ,. • • • • •• • • • • •• •• • • ••• STARTADD
TOTAL
WRITESUM

r--,
IDROP (STARTADD TOTAL WRITESUM) I L--__ l

2,43

TEST Command
END Subcommand

Use the END subcommand to terminate all functions of the TEST command
and the program being tested.

r------------T---~-,
I SUBCOMMAND I OPERANDS I
~------------+----------.---~
I END I ' I L-_________ ~ __________________________________ ~ __________________ J

245

TEST Command
EQUATE Subcommand

Use the EQUATE subcommand to add a symbol to the symbol table of the
module being tested. This subcommand allows you to establish a new
symbol that you can use to refer to an address or to override an
'existing symbol to reflect a new address or new attributes. If no
symbol table exists, one is created and the specified name is added to
it. You can also modify the data attributes (type" length, and
multiplicity). The DROP subcommand removes symbols added by the EQUATE
subcommand.

r---------·--,..--,
I SUBCOMMAND I OPERANDS I
!---------+---f
I {EQUATE} I symbol address data-type [LENGTH(integer)] I
I EQ I [MULTIPLE(integer)] I '--___________ .l ______________ :.... _________ -: ___________________________ J

symbol
specifies the symbol (name) that you want to have added to the
symbol table so that you can refer to an address symbolically. The
symbol must consist of one through eight alI=hameric characters" the
first of which is an alphabetic character.

address
specifies a symbolic address, a relative address. an absolute
address, or a general register containing an address. The address
that you specify will be equated to the symbol that you specify.
(See Appendix B for more information about addresses.)

data-type
specifies the type of data ~hat you want to place in the specified
location. You indicate the type of data by one of the following
codes:

Code Type of Data Maximum Length (Bytes)
C Character 256
X Hexadecimal 256
B Binary 256
H Fixed point binary (halfword) 8
F Fixed point binary (fullword) 8
E Floating point (single precision), 8
D Floating point (double precision) 8
p Packed decimal 16
Z Zoned decimal 16
A Address constant 4
S Address (base + displacement) 2
Y Address constant (halfword) 2

LENGTH (integer)
specifies the length of the data. The maximum value of the integer
is 2566 If you do not specify the length, the following default
,values viII apply:

Type of Data
C:,B.P" Z
H,.S.y
F"E.A.X
D
I

Default Length (Bytes)
1
2
4
8
variable

247

TEST Command
EQUATE Subcommand

MULTIPLE (integer)
specifies a multiplicity factor. The multiplicity factor means
that one element of the data appears several times in succession;
the number of repetitions is indicated by the number specified for
"integer". The maximum value of the integer is 256.

Note: If you do not specify any keywords, the defaults are:

type - X
multiplicity - 1
length - 4

Example 1

Operation: Add a symbolic address to the symbol table of the module
that you are testing.

Known: The symbol ••••••••• ' ••• '. • • • .• .. • •.• • • • • • • • • • • • • . • •.• • • • • • • .. •• EXITRTN
The address ' ••• I •••• Ie •• TOT.AL+ 4

r-------------~----------------------------------~---------------------,
IEQUATE EXITRTN TOTAL+4 I L--__ J

Example 2

Operation: Change the address and attributes for an existing·symbol.

Known: The symbol... CONSTANT
The l'leV address I Ie • I. • •• IFAAO.
The new attributes: type •••••••••••••••••••••••••.•••••• C

length ••••••••••••••••••••••••••••• L(S)
mul tiplicity ••••••••• -. • • • •• • • • • • • •• M (2)

r----------------------~---,
IEQ CONSTANT lFAAO. C M(2) L(8) I L __ J

248

TEST Command
FREEMAIN Subcommand

Use the FREEMAIN subcommand to free a specified number of bytes of main
storage ..

r------------T-------------------------~-----------------------------,
I SUBCOMMAND I OPERANDS I
!------------+---~
I {FREEMAIN} I integer address [SP (integer)] I
I FREE I I L--__________ ~ ___ J

integer
specifies the number of bytes of main storage to be released.

address
specifies a symbolic address, a relative address" an absolute
address, or a general register containing an address. This address
is the location of the space to be freed. (See Appendix B for more
information about address.)

The LISTMAP subcommand may be used to help locate previously
acquired main storage.

SP(integer)
specifies the number of the subpool that contains the space to be
freed,. If you omit this operand~ the default value is subpool
zero. The integer must be in the range zero through 127.

Example 1

Operation: Free space in main storage tha~ was acquired previously by a
GETMAIN subcommand or by a GETMAIN macro instruction in the
module being tested.

Known: The size of the space, in bytes ••••••••••••••••••• ' •••••• " 500
The absolute address of the space ••••••••••••• ,. • • • • • • • ••• 054A20
The number of the sub pool that the
space was acquired from ••••••••• 0 ••••••••••••••••••••••• 0 •• 3

r--,
IFREE 500 054A20. SP(3) I L----__ J

249

TEST Command
GETMAIN Subcommand

Use the GETMAIN subcommand to obtain "a specified number of bytes of main
storage.

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+---f
I {GETMAIN} I integer [SP(integer)]" I
I GET I I L-___________ ~ ___ J

integer
specifies the number of bytes of main storage to be obtained.

SP(integer)
specifies the number of "a subpool that contains the bytes of malll
storage that you want to obtain. If you omit this operandi. the
default value is subpool zero. The integer must be in the range
zero through 127.

Example 1

Operation: Get 500 bytes of main storage from subpool 3.

r--,
IGET 500 SP(3) I L-_______________________ ~ ________________________ ~ ________________ ~---J

251

TEST Command
GO Subcommand

Use the GO subcommand to start or restart program execution from a
particular address. If the program was interrupted for a breakpoint and
you want to continue from the breakpoint. there is no need to specify
the address. However. you may start execution at any point by
specifying the address.

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+---------~---~
I GO I [address] I L--__________ ~ ___ J

address
specifies a symbolic address. a relative address l an absolute
address, or a general register containing an address. Execution
will begin at the address that you specify. (See Appendix B for
more information about addresses.)

Example 1

Operation: Begin execution of a program at the ~oint where the last
interruption occurred.

r---------~-~--,
IGO . I L-___ J

Example 2

Operation: Begin execution at a particular address.

Known: The address ' .' •• '. ••• •.• •• ••• • •• • • • •• • •• • • •• CALCULAT

r----------~~---,
I GO CALCULAT I L-_________________ ~ _____________________________ ~ _____________________ J

253

TEST Command
HELP Subcommand

Use the HELP subcommand to find out how to use TEST and the TEST
subcommands. When you enter the HELP subcommand, the system responds by
printing out explanatory information at your terminal. You may request:

• A list of available subcommands •
• An explanation of the function, syntax" and operands of a specific

subcommand.

The HELP subcommand actually causes the system to execute a function
of the HELP command; therefore, you may consult the discussion of the
HELP command if you desire more detailed infcrmation.

r------------T---,
I SUBCOMMAND I . OPER~NDS I
~------------+------------------------------~---~-----------------.~
I {HELP} I [subconunand-name] I -
I H· I [FUNCTION] I
I I [SYNTAX] I
I I [OPERANDS[(list-of-operands)] I
I I [ALL] I L-___________ ~ ___ J

subcommand-name
specifies the subcommand that you want to have clarified. If you
omit this operand~ the system will display a list of TEST
subcommands.

FUNCTION
specifies that you want a description of the referenced
subcommand's function.

SYNTAX
specifies that you want a definition of the proper syntax for the
referenced subcommand.

OPERANDS (list-of-operands)

ALL

specifies that you want an explanation of the operands applicable
to the referenced subcommand.

The list of 'operands specifies the particular keywords that you
want to have explained. If you do not specify any keywcrds" all of
the applicable keywords will be included. You must use one or more
blanks or a comma as a delimiter between the keywords in the listw

specifies that you want a description of the function" the syntax"
and the operands of the subcommand that you specified. This is the
default value if no operands are specified.

Example 1

Operation: Have a list of available subcommands displayed at your
terminal.

r--~-----------------------,
I HELP I L __ J

255

TEST Command
HELP Subcommand

Example 2

Operation: Obtain all available information about a particular
subcommand.

Known: The subcommand name .••••••••••••••••••••••••••••.••.••••••• QUALIFY

r--,
IH QUALIFY I L-_____ . ______________________ ~ ___ J

Example 3

Operation: Have a list of the operands for a particular subcommand
displayed at your terminal.

Known: The subcommand name •••••••••••••.••••••••••••••.•••••••••• ' •• LIST

r---~--,
Ih list operands . I L __ J

256

TEST Command
LIST Subcommand

Use the LIST subcommand to have the contents of a specified area of main
storage, or the contents of registers, displayed at your terminal or
placed into a data set .•

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+---~
I {LIST} l{addreSS[:addreSS]} data-type [LENGTH(integer}] I
I L I (address-list) [MULTIPLE(integer}] I
I I [PRINT(data-set-name}] I L-___________ ~ ___ J

address
specifies the location of data that you want displayed at your
terminal or placed into a data set. The address may be a symbolic
address, a relative address" an absolute address, or a general or
floating-point register. (See Appendix B for more information
about addresses.)

address: address
specifies that you want the data located between the specified
addresses displayed at your terminal or placed into a data set.
Each address may be a symbolic address, a relative address" an
absolute address, or a general or floating point register. (See
Appendix B for more information about addresses.)

(address-list)
specifies several addresses of data that you want displayed at your
terminal or placed into a data set. The data at each location will
be retrieved. Each address may be a symbolic address, a relative
address, an absolute address. or a general or floating-point
register. The list of addresses must be. enclosed within
parentheses, and the addresses must be separated by standard
delimiters (one or more blanks or a comma). (See Appendix B for
more information about addresses.)

data-type
specifies the type of data that you want to place in the specified
location. You indicate the type of data by one of the following
codes:

Code
C
X
B
H
F
E
D
P
Z
A
S
y

LENGTH (integer)

Type of Data ::.:M:.;:a;:.:x::.::i::.::mu=m:::.....:L=.;:;:e;.::n:.;;;gL.;;t::.::h=--~(B=_y~t;.;:;e;.=s;.:..)
Character 256
Hexadecimal 256
Binary 256
Fixed point binary (halfword) 8
Fixed point binary (fullword) 8
Floating point (single precision) 8
Floating point (double precision) 8
Packed decimal 16
Zoned decimal 16
Address constant 4
Address (base + displacement) 2
Address constant (halfword) 2

indicates the length~ in bytes of the data that is to be listed.

257

TEST Command
LIST Subcommand

The maximum value for the integer is 256. If you do not sp~cify
the length" the following default values will apply:

Type . of Data
C"B.,P" Z
H,S" Y
F,E,A,X
D
I

Default Length (Bytes)
1
2
4
8
variable

MULTIPLE (integer) "
" specifies the multiplicity factor. The multiplicity factor means

that one element of the data appears several times in succession;
the number of repetitions is indicated by the number specified for
"integer". The maximum value of the integer is 256.

PRINT (data-set-name)

258

specifies the name of a sequential data set to which the data is
directed (see data set naming conventions). If you omit this
operand, the data will go to your terminal.

The data format is blocked variable lengtn records. Old data sets
with the standard record format and block size are treated as NEW
if being opened for the first time, otherwise, they are treated as
MOD data sets.

The LIST subcommands of TEST perform the following functions on
each data set they process.

r-----------------------~-------~-----------T--------------------,
I If your record fonnat I" Fixed or 1 Variable or 1
Iwas: 1 Fixed Blocked 1 variable Blocked 1
~-----------------------+----------T---------+----------T---------~
IThen it is changed to IRecordsizelBlocksizelRecordsizelBlocksizel
Ivariable blocked with ~-~--------+-~-------+----------+-----~---~
Ithe following I 125 I 1625 I 125 I 129 I
I attributes I I I I I L-______________________ ~ __________ ~ _________ ~ __________ ~ _________ J

The specified data set is kept open until:

1. The TEST session is ended by a RUN or END subcommand or

2. A LIST subcommand is entered specifying a different PRINT data
set. In this case., the previous data set is closed and the
current one opened.

Example 1

TE;:ST Command
LIST Subcommand

Operation: List the contents of an area of main storage.

Known: The area to be displayed is between ••••••••••• ' •• ~ • • • • •• COUNTERA
DTABLE

The, attributes are •••••• ' ••••• _ ' '. • • • •• C

The name for a data set to contain

L(130)
M(l)

the listed data •••••••••••••••••••••••••••••••• '. ' ••••••• ' DCDUMP

r--,
ILIST COUNTERA:DTABLE C L(130) M(l) PRLNT(DCDUMP) I L __ J

Example 2

Operation: List the contents of main storage at several addresses

:Known: The addresses •••••• ' •••••••••• '. ,,. '. ' ••• '. •• • • •• • • • • • • • • • • •• TOTALl
TOTAL 2
TOTAL 3
ALLTOTAL

The attributes I. • • • • •• F
L(3)
M(3)

r--,
IL (TOTALl TOTAL2 TOTAL3 ALLTOTAL) F L(3) ~ (3) I L--___ ~ ____ J

25?

TEST Command
LISTDCB Subcommand

Use the LISTDCB subcommand to list the contents of a data control block
(DCB). You must provide the address of the beginning of the DCB. The
forty-nine or fifty-two bytes of data following the address will be
formatted according to the names of the fields as presented in the
publication system/360 Operating System: System Control Blocks,
GC28-6628.

If you wish, you can have only selected fields displayed. The field
identification is based on the sequential access method DCB for direct
access. Fifty-two bytes of data are displayed if the data set is
closed; forty-nine bytes of data are displayed if the data set is
opened.

r------------T---, I SUBCOMMAND I OPERANDS I
!------------f---~ I LISTDCB I address [FIELD(names)] [PRINT(data-set-name)] I L-__________ .L ___ J

address'
specifies a symbolic address, a relative address. an absolute
address. or a general register containing an address. The
specified address is the address of the DCB that you want
displayed. The address must be on a fullword boundary. (See
Appendix B for more information about addresses~)

FIELD (names)
specifies one or more names of the particular fields in the DCB
that you want to have displayed at your terminal. The segment name
will not be printed when you use this operand. If you omit this
operand, the entire DCB will be displayed.

PRINT (data-set-name)
specifies the name of the sequential data set.to :which data is to
be directed (see data set naming conventions). If you omit this
operand, the data will be displayed at your terminal.

The data format is blocked variable length records. Old data sets
with the standard record format and blocksize are treated as NEW if
they are being opened for the first time; otherwise they are
treated as MOD data sets.

The specified data set is kept open until:

1. The TEST session is ended by a RUN or END subcommand, or

2. A LIST subcommand is entered that specifies a differen~ PRIN~
data set. In this case~ the former data set is closed and the
current one opened.

261

TEST Command
LISTDCB Subcommand

Example 1

Operation: List the RECFM field of a DCB for the program that is being
tested.

Knov~: The DCB begins at location................................... DCBIN.

r--,
ILISTDCB DCBIN FIELD(DCBRECFM) 'I L-___ J

Example 2

Operation: List on entire DCB.

Known: The absolute address of the DCB.............................. 33B4

r----------------------~--------------------------~--------------------,
ILISTDCB 33B4. I
L-________________ ~-------------------------------~--------____________ J

262

TEST Command
LISTDEB Subcommand

Use the LISTDEB subcommand to list the contents of a data extent block
(DEB). You must provide the address of the beginning of the DEB. The
32 bytes of data following the address will be formatted according to
the names of the fields as presented in the publication System/360
Operating system: System Control Blocks. GC28-6628.

In addition to the 32 byte basic section. you may receive up to 16
direct access device dependent sections of 16 bytes each until the full
length has been displayed. If you wish. you can have only selected
fields displayed.

r------------T---~---------,
I SUBCOMMAND I OPERANDS . I
~------------+---~ I LISTDEB I address [FIELD(names)] [PRINT(data-set-name)] I L-___________ ~ ___ - _________ J

address
specifies a symbolic address" a relative address" an absolute
address, or a general register containing an address. The address
is the beginning of the DEB, and must be on a fullword boundary.
(See Appendix B for more information about addresses.)

FIELD (names)
specifies one or more names of the particular fields in the DEB
that you want to have displayed at your terminal. If'you omit this
operand, the entire DEB will be listed.

PRINT (data-set-name)
specifies the name of the sequential data set to which data is to
be directed (see data set naming conventions). If you omit this
operand, the data will be displayed at your terminal.

The data format is blocked variable length records. Old data sets
with the standard record format and blocksize are treated as NEW if
they are being opened for the first time; otherwise they are
treated as MOD 'data sets.

The specified data set is kept open until:

1. The TEST session is ended by a RUN or END subcommand, or

2. A LIST subcommand is entered that specifies a different PRINT
data set. In this case, the former data set is closed and the
current one opened.

Example 1

Operation: List the entire DEB for the DCB that is named DCBIN.

Known: The address of the DEB •.•••• , ••• ,., ••••.••••.••••••••••••• ~. DCBIN+2C"

r---~--------------------,
ILISTDEB DCBIN+2C% I L--__ J

263

TEST Command
LISTMAP Subcommand

Use the LISTMAP subcommand to display a storage map at your terminal.
The map identifies the location and assignment of any storage assigned
to the program.

All storage assigned to the problem program and its subtasks as a
result of GETMAIN requests is located and identified by subpool (0-127).
All programs assigned to the problem program and its subtasks are
identified by name, size, location, and attribute. storage assignment
and program assignment are displayed by task. When the assignments for
the problem program and all its subtasks tasks have been displayed, a
map of all unassigned storage within the region is displayed.

r------------T---,
I SUBCOMMAND I OPERANDS I
f------------+---~ I LISTMAP I [PRINT (data-set-name)] I L--__________ i ___ J

PRINT (data-set-name)
specifies the name of the sequential data set to which data is to
be directed (see data set naming conventions). If you omit this
operand, the data will be displayed at your terminal.

The data format is blocked variable length records. Old data sets
with the standard record format and blocksize are treated as NEW if
they are being opened for the first item; otherwise,. they are
treated as MOD data sets.

The specified data set is kept open until:

1. The TEST session is ended by a RUN or END subcommand, or

2. A LIST subcommand is entered that specifies a different PRINT
data set. In this case, the former data set is closed and the
current one opened.

Example 1

Operation: Display a map of main storage at your terminal.

r--------------------------------------~-------------------------------,
I LISTMAP I L-__ ~----------__________ J

Example 2

Operation: Direct a map of main storage to a data set.

Known: The name f or the data set ••••• ' ••••• '. • • • • • • • •• ACDQP • MAP. TESTLIST

r---------------------~-----------------~---------~----------------~---,
ILISTMAP PRINT(MAP) I L--___ ~----------__________ J

265

TEST Command
LISTPSW Subcommand

Use the LISTPSW subcommand to display a Program status Word (PSW) at
your terminal.

r------------T---,
I SUBCOMMAND I . OPERANDS I
l------------+-------------------------~-----------------------------~ I LISTPSW I [ADDR(address)] [PRINT(data-set-name)] I L-___________ ~ __ -J

ADDR(address)
specifies a symbolic address, a relative address,. an absolute
address, or a general register containing an address. The address
identifies a particular PSW. If you do not specify an address, you
will receive the current PSW for the program that is executing.
(See Appendix B for more information about addresses.)

PRINT (data-set-name)
specifies the name of the sequential data set to which data is to
be directed (see data set naming conventions). If you omit this
operand, the data will be displayed at your terminal.

The data format is blocked variable length records. Old data sets
with the standard record format and blocksize are treated as NEW if
they are being opened for the first time; otherwise" they are
treated as MOD data sets.

The specified data set is k~pt open until:

1. The T,EST session is ended by a RUN or END subcommand, or

2. A LIST subcommand is entered that specifies a different PRINT
data set. In this case, the former data set is closed and the
current one opened.

Example 1

Operation: Displ'ay the current PSW at your terminal.

r---,
ILISTPSW I L--__ J

Example 2

Operation: Copy the Input/Output old PSW, onto a data set.

Known: The address of the PSW (in hexadecimal} ••••• 38
The name for the data set ••••• ' •••••••••••••• SKJ23.PSWS.TESTLIST

r--,
ILISTPSW ADDR(38.) PRINT(PSWS) I
L--____________________________ ~------~---------~---------------_______ J

261

TEST Command
LISTTCB Subcommand

Use the LISTTCB subcommand to display the contents of a task control
block (TCB). You may provide the address of the beginning of the TCB.
The data following the address will be formatted according to the names
of the fields as presented in the publication: system/360 Operating
System: System Control Blocks, GC28-6628.

If you wish, you can have only selected fields displayed.

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+---~
I LISTTCB I [ADDR(address)] [FIEID(names)] [PRINT (data-set-name)] I L ___________ ~ __ --_________ J

ADDR(address)
specifies a symbolic address, a. relative address~ an absolute
address, or a general register containing an address. The address
must be on a full word boundary. The address identifies the
particular TCB that you want to display. If you omit an address,
the TCB for the current task is displayed. (See Appendix Bfor
more information about addresses.)

FIELD (names)
specifies one or more names of the particular fields in the TCB
that you want to have displayed. If yeu omit this operand" the
entire TCB will be displayed.

PRINT (data-set-name)
specifies the name of the sequential data set to which data is to
be directed. If you omit this operand~ the data will be displayed
at your terminal.

The data format is blocked variable length records. Old data sets
with the standard record format and blocksize are treated as NEW if
they are being opened for the first time; otherwise, they are
treated as MOD data sets.

The specified data set is kept open until:

1. The TEST session is ended by a RUN or END subcommand, or

2. A LIST subcommand is entered that specifies a different PRINT
data set. In this case, the former data set is closed and the
current one opened.

Example 1

Operation: Save a copy of the TCB for the cureent task on a data set.

Known: The name for the data set ••••••••••••••••••• GCAMP.TCBS.TESTLIST

r--,
ILISTTCB PRINT(TCBS) I L ___ J

269

TEST Command
LISTTCB Subcommand

Example 2

Operation: Save a copy of some fields· of a task that is not active in a
data set for future information.

Known: The symbolic address of the TCE ••••••••••••••••.•••••••••• MYTCB2
The fields that are being requested.~ •••••••••••••••••••• TCBTIO

TCBCMP
TCBGRS

The name for the data set •••••••••••••••••••••••• SCOTT.TESTLIST

r--~---,
ILISTTCB ADDR(MYTCB2)MYTCB2 FIELD(TCBTIO,TCECMP.TCBGRS) I
IPRINT('SCOTT.TESTLIST') I L-___ J

270

TEST Command
LOAD Subcommand

Use the LOAD subcommand to load a program into main storage for
execution.

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+---f
I LOAD I program-name I L-___________ i ___ J

program name
specifies the name of a member of a partitioned data set that
contains the load module to be tested. (See the data set naming
conventions.)

Example 1

Operation: Load a program named ATX03.LOAD(GSCORES)

r---------------------------------------~------------------------------, I LOAD (GSCORES> I L-___ J

271

TEST Command
OFF Subcommand

Use the OFF subcommand to remove breakpoints from a program.

r------------T---~---,
I SUBCOMMAND I OPERAND I
l------------+-----------------------~-------------------------------f
I OFF I {addressr:addressl} I
I I (address-list) I L-___________ ~ ___ J

address
specifies the location of a breakpoint that you want to remove.
The address may be a symbolic address, a relative address, an
absolute address, or a general register containing an address. The
address must be on a halfword boundary. (See Appendix B for more
information about addresses.)

address:address
specifies a range of addresses. Each address may be a symbolic
address, a relative address, an absolute address, or a general
register containing an address. Each address must be on a halfword
boundary. All breakpoints in the range of addresses will be
removed. (See Appendix B for more information about addresses.)

(address-list)
specifies the location of several breakpoints that you want to
remove. Each address may be a symbolic address, a relative
address, an absolute address, or a general register containing an
address. Each address must be on a halfword boundary. (See
Appendix B for more information about addresses.)

Example 1

Operation: Remove all breakpoints in a section of the program.

Known: The beginning and ending addresses of the section ••••••••• LOOPC
EXITC

r----~------------------~--------------~-------------------------------,
IOFF LOOPC:EXITC I L-___ ~---J

Example 2

Operation: Remove several breakpoints located at different ~ositions.

Known: The addresses of the breakpoints ••••••••••••••• '. • • • • • • •• COUNTRA
COUNTRB
EX ITA

r---~--------------------,
I OFF (COUNTRA COUNTRB EXITA) I L--__ J

Example 3

Operation: Remove all breakpoints in a program,.

r---~-----~------------------,
I OFF I L-___ J

273

TEST Command
QUALIFY Subcommand

Use the QUALIFY subcommand to qualify symbolic and relative addresses;
that is, to establish the starting or base location to which
displacements are added so that an absolute address is obtained. The
QUALIFY subcommand allows you to specify uniquely which program and
which CSECT within that program you intend to test using symtolic and
relative addresses.

You can specify an address to be used as the base location for
subsequent relative addresses. Each time you-use the QUALIFY
subcommand, previous qualifications are voided. -

Symbols that were established by the EQUATE subcommand before you
enter QUALIFY are not affected by the QUALIFY subcommand.

r------------T-----------~---,
I SUBCOMMAND I OPERANDS I
~------------+----------------------~--------------------------------~
I{QUALIFY} I {address l I
I Q 1 load-module-name[.entryname] [TCB(address)] (I L-___________ ~ ______________________________________ - _________________ J

address

load
specifies an absolute, relative or symbolic address.

specifies the name by which a load module is known. The load name
may be a member name of a partitioned data set or an alias.

load. entry
specifies the name by which a load module is known, and an external
name' within the load module,. This operand changes the base for
both symbolic and relative addresses. The two names are separated
by a period. The load module name may be a member name of a
partitioned data set or an alias. The entry name is the name that
is duplicated in another module of the load module •

• entry
specifies an external name within a previously specified load
module that you are now testing.

TCB(address)
specifies the address of a task control block (TCB). This operand
is necessary when programs of the same name are assigned to two or
more subtasks and you must establish uniquely which one is to be
qualified, or when the load module request block is not in the TCB
chain.

Example 1

Operation: Establish a base location for relative addresses to a symbol
within the currently qualified program.

Known: The base address ••• ' ,.... • •• •• QSTART

r--,
IQUALIFY QSTART I L-___ J

275

TEST Command
QUALIFY Subcommand

Example 2

Operation: Change the base location for 'symbolic and relative addresses
to a different CSECT in the program.

Known: The module name.. PROFITS
The entry name (CSECT) •••••••••••••••••••••••••••••••••• SALES
The TCB address ••• +124%

r--,
I QUALIFY PROFITS. SALES .TCB(+124%) I L-___ J

Example 3

Operation: Change the base location for relative addresses to an
absolute address.

Known: The absolute address of the new base •••••••••••••••••••• SF820

r-------------------------------------~--------------------------~---~-,
IQUALIFY SF820. I L-__ ________ _________ _____ ... _____ J

276

TEST Command _
RUN Subcommand

Use the RUN subcommand to cause the program that is being tested to
execute to termination without recognizing any breakpoints. When you
specify this subcommand. TEST is terminated. When the program
completes, you can enter another command. Overlay programs are not
supported by the RUN subcommand. Use the GO subcommand to execute
overlay programs.

r------------T---,
I SUBCOMMAND I OPERANES I
i------------t---~
I {RUN}. I [address] I
I R I I L-___________ ~ ___ J

address
specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. Execution
will begin at the specified address. If you do not specify an
address. execution begins at the last ~oint of interruption or from
the entry ~oint if the RUN subcommand was not previously specified.
(See Appendix B for more information about addr'esses ..)

Example 1

Operation: Execute the program to termination from the last point of
interruption.

r--,
IRUN I L-___ ~ _______________________ J

Example 2

Operation: Execute a ,program to termination from a specific address.

Known: The address ••••••• • , •••••••••••••••••• • , •••••••••••••••••••••• +AS

r--,
IRUN +A8 I L-___ J

277

TEST Com~and
WHERE Subcommand

Use the WHERE subcommand to obtain the absolute address serving as the
starting or base location for the symbolic and relative addresses in the
program. Alternately, you can obtain the absolute address of an
entrypoint in a particular module or control section (CSECT). If you do
not specify any operands for the WHERE subcommand, you will receive the
address of the next executable instruction.

r------------T~---,
I SUBCOMMAND I OPERANDS I
~--~---------+~-~----------------------------~-~--------------------~
I { WHERE} I { address } I
I W I load~module-name[.entryname] I L-___________ ~ ___ J

address
specifies a symbolic address, a relative address~ an absolute
address, or a general register containing an address. When you
specify an address as the operand for the WHERE subcommand, you
will receive the name of the load module containing the address.
(See Appendix B for more information about addresses.)

load-module-name.entry-name
specifies the name by which a load module is known/, and an
externally referable name within the load module. The two names
are separated by a period. The load module name may be the name or
an alias of a member of a partitioned data set. The entry name is
the symbolic address of an entry point into the specified module.
The entry name may be omitted, in which case the first entry point
into the specified module will be supplied. When you specify this
operand for WHERE, you will receive the main storage' address of the
load module.

Example 1

Operation: Obtain the absolute address of the module named CSTART.

r--,
IWHERE CSTAR~ I L-___ J

Example 2

Operation: Obtain the absolute address of the CSECT named JULY in the
module named NETSALES.

r--,--------,
I WHERE NETSALES. JULY I
L-~ __ ~ _______________________ J

Example 3

Operation: Determine in which program an ,absolute address is located.

Known: The absolute address •••••••••• ' •••• ' ••••• , •••••••••••••• '. • • •• 3E2B 8

r---------·---,
IWHERE 3E2B8. I L-___ J

279

TEST Command
WHERE Subcommand

Note: You will also get the TCB address and the relative address that
are relative to the absolute address you specify.

Example 4

Operation: Determine the absolute address of the next executable
instruction.

r--,
I WHERE I L-___ J

280

TIME Command

Use the TIME command to find out how much execution time or how much
session time you have used during the current session.

Program execution time is displayed when you enter the TIME command.
(To enter the corrmand while a program is executing, you must first cause
an attention interruption.) Program execution time is measured from the
time that the program last received input from your terminal. The TIME
command has no effect upon the executing program.

Your current session time is displayed in all other instances.

r--------------T---,
I COMMAND I OPERANDS I
r--------------+---~
I TIME I I L-_____________ ~ ___ J

281

Command Procedure Statements

A command procedure is a prearranged sequence of TSO commands and,
optionally, subcommands and data. A command procedure is a convenient
method for executing a repeatedly-used sequence of corrmands. The
procedure is stored in either a data set that has CLIST as the
descriptive qualifier (see the EDIT command) or in a member of a command
procedure library (partitioned data set).

The staterr,ents contained in this section are designed esr:ecially for
use in command procedures. They are:

The END statement.

The PROC statement.

The WHEN command.

283

Command Procedure Statements the
END Statement

Use the END statement to end a command procedure. When the system
encounters an END statement in a command procedure, execution of the
command procedure is halted and the system becomes ready to accept
another command from the terminal.

r--------------T-----------------~------------------------------------,
I STATEMENT J OPERANDS I
.--------------+---~
I END I I L-_____________ ~ ___ J

285

Command Procedure Statements the
PROe Statement

Use the PROC statement to define the symbolic values used in a command
procedure.

r--------------T---,
I STATEMENT I OPERANDS I
.--------------+---~
I PROC I number [positional-operands] [keywords] I L-_____________ ~ ___ J

number
specifies the number of positional operands that follow. The
number must be a decimal digit. If none of the operands are
positional, you must specify a zero.

positional operands
specifies one or more positional operands.

keywords
specifies one or more keyword operands.

Example 1

Operation: Use a PROC statement to identify five symbolic operands.

Known: Three positional operands to define ••••••••••••••••••••• &NAME
&NUNBER
&'IIME

Two keyword operands to define •••••••••••••••••••••••••• &XREF
&MAP

r--,
IPROC 3 NAME NUMBER TIME XREF MAP I L-______________________________ ~ ______________________________________ J

Example 2

Operation: Use, all three types of operands for a PROC statement.

Known: You are creating a command procedure that will use two existing
programs named USERJWS.LOAD(SALESRPT) and INVENTRY.A to produce
a sales report and to update the inventory. The name of the
command procedure is REPORTS. You want to use different data
sets as input to the procedure. The output of the first program
SALESRPT will be the input for INVENT~Y. You want to be able to
have the output displayed at your terminal or directed to a data
set so that it can be retrieved at some later date. The
commands in the procedure are:

ALLOCATE DATASET(&LASTOUT.) NEW BLOCK(80) SPACE(SOO 10)
ALLOCATE DATASET(&INPUT.) OLD
ALLOCATE DATASET(&OUTIN.) &NEW BLOCK(80) SPACE(SOO 10)
CALL (SALESRPT) '&INPUT &OUTIN.'
WHEN SYSRC(GT 4) END
CALL 'INVENTRY.A' '&OUTIN &LASTOUT.'
END

287

Command Procedu're Statements the
PROC Statement

The PROC statement that will precede the first ALLOCATE cow~and is:

PROC 2 INPUT OUTIN LASTOUT(*) NEW

The EXEC command to execute this procedure and have the output displayed
at your terminal w111 be:

EXEC REPORTS 'FEBSALES FEBRUARY NEW'

when the input data set is named FEBSALES and you want to name the
output from the SALESRPT program FEBRUARY. If you want to direct the
output ,from the procedure to a data set named FEBRPT instead of to your
terminal, you would enter:

EXEC REPORTS 'FEBSALES FEBRUARY NEW LAST OUT (FEBRPT),

In this case, the symbolic values in the command procedure will be
changed to:

ALLOCATE DATASET(FEBRPT) NEW BLOCK(80) SPACE(SOO 10)
ALLOCATE DATASET(FEBSALES) OLD
ALLOCATE DATASET(FEBRUARY) NEW BLOCK(80) SPACE(SOO 10)
CALL (SALESRPT) 'FEBSALES FEBRUARY'

288

WHEN SYSRC(GT 4) END
CALL 'INVENTRY.A' 'FEBRUARY FEBRPT'
END

Command Procedure
WHEN Command

Use the WHEN command to initiate or terminate a command frocedure when
any preceding command returns a specified return code. This command is
designed to be used within a command procedure.

r--------------T---,
I COMMAND I OPERAND ' I
.--------------+---------------------------------_.:..._-------------------~
I WHEN I [SYSRC(operator integer>] I
I I I
I I [END] I
I I command-name I L-_____________ ~ ___ J

SYSRC
specifies that the return code from the previous functicn (the
previous command in the command procedure) is to be tested
according to the values specified for Of era tor and integer.

operator
specifies one of the following operators:

EQ or = means equal to
NE or ,= means not equal to
GT or > means greater than
LT or < means less than
GE or >= means greater than or equal to
NG or ,> means not greater than
LE or <= means less than or equal to
NL or ,< means not less than

integer
specifies the four digit constant that the return ccde is to be

END

compared to.

specifies that processing is to be terminated if the ccroparison is
true. This is the default if you do not specify a comroand.

command
specifies any command name and appropriate operands. The command
will be processed if the comparison is true.

289

Appendix A: Program Product Information

Certain functions referred to in this publication are provided through
IBM Program Products, which are available from IBM for a license fee.
Program Products referred to in this manual are:

• Interactive Terminal Facility (ITF): PLII and BASIC. A froclem
solving language processor. See the following pUblications: IBM
System/360 Operating system Time Sharing Option: Interactive
Terminal Facility: PLII and BASIC Design Objectives, GC28-6822.
ITF:PL/I General Information, GC28-6827. ITF: BASIC General
Information, GC28-6828.

• Code and Go FORTRAN. A FORTRAN compiler designed fora very fast
compile-execute sequence. See the publications: Code and Go
FORTRAN Design Objectives, GC28-6823., FORTRAN Program Products for
OS and OS with TSO r General Infor~ation, GC28-6824.

• FORTRAN IV (G1) Aversion of the FORTRAN (G) compiler modified for
the terminal environment. See the publications: FORTRAN IV
(G1)Processor Design Objectives, GC28-6845. FORTRAN Program
Products for OS and OS with TSO r General Information, GC28-6824.

• TSO FORTRAN Prompter. An initialization routine to promft the user
for options, and invoke the FORTRAN IV (G1) Processor. See the
publications: TSO FORTRAN Prompter Design'Objectives, GC28-6843.
FORTRAN Program Products for OS and OS with TSO r General
Information, GC28-6824.

• FORTRAN IV Library (Mod I). Execution-time routines for List
directed 1/0, and PAUSE and STOP capability, available for either
Code ang Go FORTRAN IV (G1). See the publications: FOR~RAN IV
Library (Mod I) Design Objectives, GC28-6844. FORTRAN Program
Products for OS and OS with TSO, General Information, GC28-6824.

• Full American National Standard COBOL Version 3. A version of the
American National Standard (formerly USAS) COBOL compiler modified
for the terminal environment. See the fublication: Full American
National Standard COBOL Version 3 Design Objectives, GC28-6406.

• ~SO COBOL Prompter. An initialization routine to prompt the user
for options, and invoke the Full ANS COEOL Version 3 ·Processor. See
the publication: TSO COBOL Prompter Design Objectives, GC28-6404.

• TSO.Asserrhler Prompter. An initialization routine to prompt tpe
user for options and invoke the Asserrbler (F). See the fublication:,
TSO Asserrbler Prompter Design Objectives, GC26-3734.

• ~SO Data Utilities: COPY, FORMAT, LIST, MERGE. A set of commands
and EDIT subcommands to manipulate user data sets and format text.
See the publication: TSO Data Utilities: COPY, FORMAT, LIST MERGE
Design Objectives, GC28-6750.

291

Appendix B: Addresses for Subcommands of Test

An address used as an operand for a subcomrrand of TEST may be a symbolic
address, a relative address, an absolute address, or a register which
may contain an address.

A symbolic address consists of one through eight alphameric
characters, the first of which is an alphabetic character. The symbolic
address must correspond to a symbol in the program that is being tested.
Symbols cannot be used if the program being tested is a rrember of a \
partitioned data set that is part of a LINK library list unless the
partitioned data set is named SYSi.LINKLIB or is the first one in the
list, or unless the program is brought into main storage by 'IEST as an
operand of the TEST command or a subsequent load command. A relative
address is a hexadecimal number preceded by a plus sign (+). An
absolute address is a hexadecimal number followed by a period. An
expression consisting of one of these types cf addresses followed by a
plus or minus displacement value is also valid.

Qualified Addresses: You can qualify syrr~clic and relative addresses to
indicate that they apply to a paLticular control section (CSECT). To do
this, you precede the address by either the name of the load module and
the name of csect or just the name of csect. The qualified address must
be in the form:

.csectname.address

or

loadname.csectname.address

For instance, if the user supplied name of the load module is OUTPUT,
the name of the csect is CTSTART, and the symbolic address is TAXRTN you
would specify:

.CTSTART.TAXRTN

or

OUTPUT. CTSTART. TAXRTN

If you do not include qualifiers, the system assumes that the address
applies to the current control section.

General Registers: You can refer to a general register using the LIST
or Assignment of Values subcornmands by specifying a deciroal integer
followed by an R. The decimal integer indicates the number cf the
register and must be in the range zero through is. The contents of the
registers are hexadecimal characters. Other references to the general
registers imply indirect addressing. The term indirect general register
is used to refer to the general registers when they are used for
indirect addressing.

Floating-Point Registers: You can refer to a floating-point register
using the LIST or Assignment of Values subccmmand by specifying a
decimal integer followed by an E or a D. An E indicates a
floating-point register with single-precision. A D indicates a
floating-point register with double precision. The decimal integer
indicates the number of the register and must be a zero, two, four, or
six. You must not use floating-point registers for indirect addressing;
expressions composed of references to floating-paint registers followed
by a plus or minus displacement value or a percent sign are invalid.

293

Appendix B: Addresses For Suhcommands of Test

Indirect Addresses: An indirect address is an address of a location or
general register that contains another address. An indirect address
must be followed by a percent sign (the percent sign indicates that the
address is indirect). For instance, if you want to refer to some data
and the address of the data is located at address A you can specify ~%.

Location A

address B
B

You can indicate severa'I levels of indirect addresses by following the
initial indirect address with a corresponding number of percent signs.
You can also include plus or minus displacement values. For instance.,
you may specify:

SR%%+4%

Graphically, this expression indicates:

Register 5

00000A24 Location A24
000001C2 Location lC2

00000A40

+4 00000922 922

Restriction on Symbol Use: You can refer to external symbols in a Load
Module if:

• A composite external symbol dictionary (CESD), record exists.

• The TEST operand of the Link command was specified.

• The program was brought into main storage by the TEST command or one
of its subtasks.

You can refer to external symbols in an Object Module if there is
. room in main storage for a .CESD to be built.

You can refer to most internal symbols if you specify the TEST
operand when you assemble and link edit your program. Exce~tions are:

• Names on equate statements.

• Names on ORG, LTORG, and CNCP statement·s.

• Symbols more than eight bytes long.

294

The following are definitions of ,ords and
phrases used in this publication.

abnormal end of task (ABEND): Termination
of a task prior to normal completion
because of an error condition.

address: The location of information in
main storage.

address-constant: A number, or a symbol
representing a number, used in calculating
storage addresses.

alias: An alternate name for a particular
member of a partitioned data set.

allocate: To assign a resource for use in
performing a specific tas~.

alphameric letters: The letters A through
Z, digits 0 through 9'1 and #, $, and Iil.

application program: A program, written by
the'user, that applies to his own work.

assemble: To prepare a machine language
program from a symbolic language program by
substituting absolute operation codes for
symbolic operations codes and absolute or
relocatable addresses for symbolic
addresses.

assembler: A program that assembles.

attention interruption: An interruption of
instruction execution caused by a terminal
user pressing the attention key. (See also
"simulated attention.")

attention key: A function key that is used
to cause an attention interruptiqn.

attribute: A characteristic; for instance,
attributes of data include record length,
record format, data set name, associated
device type and volurreidentification, use,
creation date, etc. (See also "UADS.")

auxiliary storage: Data storage other than
main storage (for example,'tape. direct
access, etc.).

BASIC: An algebra-like language used
especially for problem solving by
engineers, scientists, and others who may
not be professional programmers.

batch processing: Describing the
processing of one job step at a time in a
region; so called because jobs are
submitted in a group or "batch."

Glo'ssary,

block data: One record or several records
grouped together in an unbroken sequence
for transfer in.or out of main storage as a
unit.

blocked .(records): Grouped records for the
purpose of conserving storage space or
increasing the efficiency or access of
processing.

break: See "receive interruption."

breakpoint: A point within an executing
program where execution is to be
interrupted for debugging activity.

broadcast data set: A system data set
containing messages and notices from the
system operator, administrators, and other
terminal users.

~: The representation of a character;
eight binary digits (bits) operated upon as
a unit.

catalog:

1. noun: In the System/360 Operating
System, a collection of data set
indexes that are used by the control
program to locate a volume containing
a specific data set.

2. verb: To include the volume
identification of a data set in the
catalog.

cataloged data set: The quality attributed
to a data set, whose name and location are
stored ,in th~ system catalog. A data set
that is represented in an index or
hierarchy of indexes which provide the
means for locating the data set.

cataloged procedure: A set of job control
statements that has been placed in a data
set named SYS1.PROCLIB and that can be
retrieved by narr~ng it in a job control
language (JCL) execute (EXEC) statement.

central processing unit (CPU): A unit of a
computing system that processes data ty
executing predefined sequences of
instructions, such as add, subtract,
multiply, and divide instructions.

channel: A device that connects the
central processing unit and main storage
with the control units for the input/output
devices.

Glossary 295

character: A letter, digit, or other
symbol that is used as part of the
organization, control, or representation of
data. For example, A,B, C, 0,1,2,,#, +, *, etc.

character-deletion character: A character"
within a line of terminal input specifying
that the immediately preceding character is
to be deleted from the line.

character string: Any sequence of
characters.

COBOL: Common business oriented language.
A business data processing language.

Code and go FORTRAN: A conversational
version of FORTRAN used for rapid
compilation and execution of programs.

command: Under TSO, a request from a
terminal for the ex~cution of a particular
program called a command processor. The
command processor is in a command library
under the command name. Any subsequent
commands processed directly by that command
processor are called subcommands. The
command processor performs the function
that the user requested.

command language: The set of commands,
subcommands and operands, recognized by
TSO.

command library: A partitioned data set
consisting of command processor programs.
A user command librarY' can be concatenated
to the system command library.

command name: The first term in a command"
usually followed by operands.

command procedure~ A data set or member of
a partitioned data set containing TSO
cc~~ands to be performed sequentially by
the EXEC command.

command processor (CP): A problem program
executed as"the result of entering a
command at the terminal. Any problem
program can be defined as a command
processor by assigning a command name to
the program and including the program in
the command library~

communication line: Any medium such as a
wire or a telephone circuit, that connects
a terminal with a computer.

compile: To prepare a machine language
program from a computer program written in
a high-level source language.

computing system: A central processing
unit with main storage, input/output
channels, control units, storage devices"
and input/output devices connected to it.

296

console: The computer hardware that is
used by the system operator to operate the
system.

context editing: A method of editing a
line data set without using line numbers.
To refer to a particular line, all or part
of the contents of t"hat line are specified.

control block: A storage area that
contains a particular type of information
used by the operating system to control the
use of system resources.

control dictionary: The external symbol
dictionary and relocation dictionary,
collectively, of an object or load module.

control program: A collective or general
term for all routines in,the operating
system that contribute to the management of
resources, programs, and data and implement
the data organization or communications
conventions of the operations.

control section (CSECT): The smallest
separately relocatable unit of a program;
that group of coding specified by the
programmer to be an entity~ all elements of
which are to be loaded into contiguous main
storage addresses for execution.

control terminal: Any terminal at which a
TSO user authorized to enter commands
affecting system execution is logged on.

control unit: A unit that acts as an
interface between a terminal and the rest
of the system.

control volume: A volume that contains one
or more indexes of the catalog.

conversational: Describing a program or a
system that carries on a dialog with a
terminal user, alternately accepting input
and then responding to the input quickly
enough for the user to maintain his train
of thought.

CPU: See "central processing unit. n

CPU time: The time devoted by the central
processing unit to the execution of
instructions.

current line pointer: A pOinter maintained
by the Edit command processor that
indicates the line of a line data set with
which a user is currently working. A
terminal user can refer to the value of the
current line pointer by entering an
asterisk (*) with EDIT subcommands.

data: Information used as a basis for
calculation~ measurement and decision.

data control block (DCB): A control block
used by the operating system in storing and
retrieving data.

data definition name (ddname): A name
appearing in the data control block
assigned to a program; the name is
specified in the name field of a data
definition statement.

data definition (DD) statement: A job
control statement that describes a data set
associated with a particular job step.

data management: A general t~rm that
collectively describes those functions of
the control program that provide access to
data sets, enforce data set conventions,
and regulate the use of input/output
devices.

data set:

1. A collection of data that is
accessible by the system. The data
set usually resides on an auxiliary
storage device.

2. A telephone device used to transmit
telecommunications data.

data set catalog: See "catalog. n

data set organization: The arrangement by
data management of information in a data
set. For example, sequential organization,
or partitioned organization.

data set name: The term or phrase used to
identify a data set (see qualified name).

DCB: See "data control block.n

ddname: See ndata definition name. n

DD statement: see ndata definition (DD)
statement. n

debug: To detect, locate., and remove
mistakes from a routine.

default option: A language statement
option that is selected by the operating
system control program or a processing
program in the absence of a selection by a
user.

delimiter: A character that groups or
separates words or values in a line of
input.

device type: Usually, the general name for
a kind of device, specified at the time the
system is generated. For example, 2311 or
2400.

direct access: Retrieval or storage of
data directly from or to its location on a
volume of a direct access device.

direct access device: An auxiliary storage
device in which the data access time is
effectively independent of the location of
the data.

directory: An index that is used by the
operat1Dg system contrel program to locate
one or more sequential blocks of data
(called members) that are stored in
separate partitions of a partitioned data
set in direct access storage.

disk Fack: A direct access storage volume
containing magnetic disks on which data is
stored. When being used, a disk pack is
mounted on a disk storage drive, such as
the IBM 2311 Disk Storage Drive.

dispatching priority: A number assigned to
tasks to determine the order in which they
will use tbe central processing unit.

dump (main storage):

1. verb: To copy the contents of all or
part of main storage onto an output
device.

2. noun: The data resulting from (1).

3. noun: A routine that will accomplish
(1) •

edit mode: Under the EDIT command an entry
mode tbat accepts successive subcommands
suitable for modifying an existing line
data set.

entry point: Any location in a program to
which control can be passed by another
program.

exclusive call: A reference between
exclusive segments of an overlay program.

exclusive segments: Segments of an overlay
program which are executed in the same
location in main storage but never
simultaneously.

execute' (EXEC) statement: A Job Control
Language (JCL) statement that designates a
job step by identifying the load module or
cataloged procedure to te fetched and
executed.

extent: The physical locations of
contiguous storage areas on input/output
devices occupied by or reserved for a
particular data set. A data set may have
more than one extent.

Glossary 297

external reference: The use of a name or
'symbol defined in another module or
program.

external symbol: A control section name,
entry pOint name, or external reference; a
symbol in the external symbol dictionary.

external symbol dictionary (ESD): Control
information which identifies the external
symbols in ·a module stored as part of the
object or as part of an object or load
module.

field, data: One or more items of
information that together make up a record
such as an account number or the name of a
person.

file name:. A name of a collection of data
(the file name corresponds to the data
definition name).

foreground. job: For TSO" a program
executed in a region devoted to time
sharing operations.

FORTRAN: (FORmula TRANslating system) A
programming language primarily us~d to
express computer programs by arithmetic
formulas.

function key: A terminal key, such as the
attention key~ that causes the transmission
of a signal not associated with a
character. Detection of the signal usually
causes the system to perform a predefined
operation for the user.

group name: The name for a particular
collection of devices, s~ecified at the
time the system is generated. For example,
SYSDA or TAPE.

hardware: Physical equi~ent as opposed to
the program or method of use, for example,
mechanical" magnetic, electrical, or
electronic devices.. (Contras-L with
"software. ")

IBM System/360: A collection of computing
,system devices that can be connected
together in many combinations to produce a
wide range of unique and unified computing
systems. Although the systems vary in size
and performance, they share many
characteristics, including a common machine
language.

IBM System/360 Operating. system: An
application of the system/360 computing
system, in the form of program and data
resources, that is specifically designed
for use in creating and controlling the
performance of other applications. TSO is
an optional facility of the Operating
system.

298

index (data management): A table in the
catalog structure used to locate data sets.

initialize: TO set counters" switches"
addresses, etc., to zero or other starting
values at the beginning of, or at
prescribed points in" a computer routine.

input device: A machine used to enter data
into the system.

input stream: The flow of data into the
system.

input mode: Under the EDIT command an
entry mode that accepts successive lines of
input for a line data set. The lines are
not checked for the-~resence of
subcommands.

installation: A general term for a
particular computing system" in the context
of the overall function it serves and the
individuals who manage it, operate it,
apply it to problems, maintain it, and use
the results it produces.

instruction: A statement that specifies an
operation and includes the required values.

interruption: A transfer of CPU control to
the control program of the Operating
system. The transfer is initiated
automatically by.the computing system or by
a problem state program through the
execution of a supervisor call (SVC)
instruct{on. The transfer of control
occurs in such a way that control can later
be restored to the interrupted program., or,
in systems that perform more than one task
at a time" to a different program.

ITF:BASIC: A conversational subset of
BASIC designed for ease of use at a
terminal.

ITF:PL/I: A conversational subset of PL/I
designed for ease of use at a terminal.

1. In the background environment, a
collection of related problem
programs, identified in the input
stream by a JOB statement 'followed by
one or more EXEC and-DD statements.

2. In the foreground environment, the
processing done on behalf of one user
from LOGON to LOGOFF -- one terminal
session.

Job Control Language: A high-level
programming language used to code
statements that control the initiation and
execution of jobs.

job control statement: Any of the Job
Control Language phrases that identify a
job or define its requirements.

job definition: A series of job/control
statements that define a job. (See ftjob. ft)

job library: A set of user-identified
partitioned data sets used as the main
source of load modules for a given job.

job output device: A device assigned by
the operator for common use in recording
output data for a series of jobs.

job (JOB) statement: A job control
statement that identifies the beginning of
a job. It contains information such as the
name of the job, an account number, and the
class and priority assigned to the job.

job scheduler: The control program
function that regulates and schedules the
use of the system and its resources for the
execution of jobs.

job step: A unit of work associated with
one processing program or one cataloged
procedure, and related data.

keyword: A command operand that consists
of a specific character string (such as
FORTLIB or PRINT) and optionally a
parenthesized value.

language statement: A phrase that is coded
by a programmer, operator'l or user of a
computing system. The phrase conveys

, information to a processor such as a
language translator program, service
program, or control program. A language
statement may signify that an operation is
to be performed or may simply contain data
that is to be passed to the processing
program.

language translator: Any assembler.,
compiler, or other routine that accepts
statements in one language and produces
equivalent ~tatements in another language.

library:

1. A collection of data sets associated
with a particular use and identified
in a directory.

2. Any partitioned data set.

line:

1. A single line of one or more
characters typed at a terminal and
entered into the system.

2. A cirCUit, such as a telephone line,
over which data is communicated.

line data set: A data set with logical
records, that are printable lines.

line-deletion character: .A character that
specifies' that it and all preceding
characters are to be deleted from a line of
terminal input.

line number: A number associated with line
in a line data set, which can be used to
refer to the line.

line number editing: A mode of operation
under the EDIT command in which lines to be
modified are referred to by line number.

linkage editor: A program that produces a
single load module from one or more object
and/or load modules.

link library: A generally accessible
partitioned data set which contains load
modules such as those referred to by macro
instructions or system facilities.

listing: A display or printout of data.

load: To place a program in main storage
so that it can be executed.

loader: A program that combines the basic
editing and loading functions of the
linkage editor. It loads object and/or
load modules ~nto main storage for
execution; however, it does not produce
load modules.

load module: The cutput of the linkage
editor; a program in a form suitable for
loading into main storage for execution.

Local System Queue Area (LSQA): That a
portion of a time sharing region used for
control blocks.

logical record: A record that is defined
in terms of the information it contains
rather than by its physical qualities.

LOGOFF: The TSO command that terminates a
user's terminal session.

LOGON: The TSO command that a user must
enter to initiate a terminal session.

LOGON procedure: A cataloged procedure
that is executed as a· result of a user
entering the LOGON command.

LSQA: See ftLocal System Queue Area. ft

macro instruction: An instruction in a
source language that is equivalent to a
specified sequence of machine instructions.

machine language: A language consisting of
instructions written in binary digits that

Glossary 299

do not have to be translated to be
acceptable for use by the hardware_

main storage: The storage in a computing
system from which instructions may be
executed and from which data can be loaded
into registers.

main storage region: "See region."

member: A partition of a partitioned data
set.

merge: To combine records from two or more
similarly ordered data sets into one data
set.

message: In telecommunications. a
combination of characters and symbols
transmitted from one point to another on a
network.

message text: A part of a teleprocessing
message consisting of the information that
is routed to a user at a terminal or to a
program in a central system that is to
process it (not including line control
characters) I.
module: The input tO I or output from, a
single execution of an assembler, compiler,
or linkage editor. a source, object" or '
load module; hence l a program unit that is
discrete and identifiable with respect to
compiling, combining with other units, and
loading.

multiprogramming: Executing more than one
program concurrently by interleaving the
execution of one with that of another. The
term "multiprogramming" is also broadly
used to refer to the performance of more '
than one.data processing task concurrently
whether a sing Ie reenterable program" or
several programs, are executed to perform
the tasks.

MVT: Multiprogramming with a variable
number of tasks. The IBM System/360
Operating System control program that
supervises the concurrent execution of a
variable number of tasks in main storage
and ~llocates system resources to them.

~: A one to eight character alphameric
term that identifies a dataset, a command
or control statement~ a program, or a
cataloged procedure. The first character
of the name must be alphabetic.

national characters: The characters #, $,
and i.

node list: The first positional operand
for the ADD, CHANGF;, DELETE, and LIST
subcommands 'of the ACCOUNT command. It is
normally represented within those

300

subcommands by its parts" i. e., userid,
password, account, and procedure.

object module: The output of a single
execution of an assembler or compiler. the
output constitutes input to the linkage or
loader. An object module consists of one
or more control sections in relocatable,
though not executable, form and an
associated control dictionary.

object module library: A partitioned data
set that is used to store object modules.

object program: A program that has been
compiled or assembled by a language
translator. (See "object' module .• ")

operand: In the TSO command language,
information entered with a command name to
define the data on which a command
processor operates and to control the
execution of the command processor. Some
operands are positional, identified by
their sequence in the command input line;
others are identified by keywords.

operating system: An application of a
computing system, in the form of organized
collections of programs and data, that is
specifically designed for use in creating
and controlling the performance of other
applications. (see "IBM System/360
Operating System.")

operator: A member ox a data processing
installation who is responsible for
directing the overall operation of a
computing system.

output class: Anyone of up to 36
different output data classes, defined at
an installation, to which output data can
be assigned.

output device: A machine (such as a
printer~ terminal, or tape drive> that will
accept the output from the system.

output writer: The part of the job
scheduler that controls the writing of job
output data.

overlay program: A program consisting of
several segments that has been provided by
the linkage editor with information that
allows segments to be retained on auxiliary
storage and, when needed, loaded into the
same area occupied by a segment that has
just executed.

partitioIled data set: A data set that is
stored in direct access storage and can be
cataloged like. any other data set. A
partitioned data set is often called a
program library. It is divided into
independent partitions called members, each
of which normally contains a program or

part of a program, in the form of one or
more sequential blocks. Each program
library contains a built-in directory cor
index) that the control program can use to
locate a program in the library. Each
member has a unique name listed in a
directory at the beginning of the data set.
Members can be added or deleted as needed.
Records within members are organized
sequentially.

password: A one-to-eight character symbol
assigned to a user that he can be required
to supply at LOGON. The password is
confidential, as opposed to the user
identification. Users can also assign
passwords to data sets.

physical record: A record that is defined
in terms of physical qualities rather than
by the information it contains. (See
nrecord. n)

PL/I: A high-level programming language
that has features of both COBOL and
FORTRAN, plus additional features.

priority: A,rank assigned to a task that
determines its precedence in receiving
system resources.

private library: A partitioned data set
other than the link library or the job
library.

privileged instructions: Instructions that
affect overall system operation and which
may be used only when special conditions
are met.

procedure: See ncataloged procedure. n

procedure library: A program library in
direct access storage containing job
definitions •. The reader/interpreter can be
directed to read and interpret a particular
job defintion by an execute (EXEC)
statement in a job stream.

processor: A program performing some fixed
function on input, such as a compiler or
th~ linkage editor.

profile (user): The set of characteristics
that describe the user to the system.

program: A logically self-contained
sequence of instructions that can be
executed by. a computing system to' attain a
specific result.

program library: A partitioned data set
containing programs in load module form for
general or assorted applications.

protection key: An indicator associated
with a task which appears in the program
status word whenever the task is in

control, and which must match ,the storage
keys of all storage blocks the task is to
use.

proqrarnmer: A person mainly involved in
designing, writing, and testing ,computer
programs.

prompting: A system function ,that helps a
terminal user by requesting him to supply
operands necessary to continue processing.

PSW (program status word): A doubleword in
main storage used to control the order in
which instructions are executed, and to
hold and indicate the status of the system
in relation to a particular program.

qualified name: A data set name that is
composed of two or more names separated by
periods. (For example, MOORE.SALES.JUNE.)

reader/interpreter: A job scheduler
function that services an input job stream.

read-only: A type of access to data that
allows the data to be read but not
modified.

record: One or more data fields that
represent an organized body of related
data, such as all of the basic .accounting
information concerning a single sales
transaction. (See also nlogical recordn
and nphysical record. n)

receive interruption: The interruption of
a transmission to a terminal by a higher
priority transmission from the terminal.
Also called a nbreakn.

reenterable: The attribute or
characteristic of a load module that allows
the same copy of the module in main storage
to be used by several tasks concurrently.

region: An area of main storage allocated
to a job step and assigned a unique storage
protection key. Time sharing jobs share
regions. Each job occupies a region
briefly, then is swapped out to auxiliary
storage and another jo~ is swapped into the
vacated main storage area for execution.
The jobs are swapped in and out until they
are completed.

relocation:. The: chang;es of address
constants required when a change o,f or1g1n
of a module or control section is made in
main storage.

relocation dictionary: That part of an
object or load module which identifies all
relocatable address ~Qnstants in the
module.

Glossary 301

Remote Job Entry: Submission of JCL
statements and data from a terminal to
cause the jobs described to be scheduled
and executed as though encountered in the
input job stream.

resource: Any facility of the system
required by a jab or task, including main
storage input/output devices, the central
processing. unit, data sets, and control and
processing programs.

return code: A number placed in a
designated register (the "return code
register") at the completion of a program.
The number is established by user
convention and may be used to influence the
execution of succeeding Frograms or, in the
case of an abnormal end of task (ABEND), it
may simply be printed for programmer
analysis.

reverse break: See "transmit
interruption."

routine: A part of a program or subprogram
that may have general or frequent use.

secondary storage: See "auxiliary
storage."

separator: A delimiter used to separate or
group fields in an input line to the
system.

session time: The elapsed real time from
LOGON to LOGOFF.

service program: A processing program,
such as the linkage editor, sort/merge
program, or a utility program that performs
specific services for a user of the
program.

simulated attention: A, function that
allows terminals without attention keys to
interrupt processing. The terminal is
queried (for a specified character string.
meaning "attention") after a specified
number of seconds of uninterrupted
execution or after a specified number of
lines of consecutive output. '

SMF: See "System Management Facilities."

software: A set of programs, procedures,
rules, and possibly associated
documentation concerned with the operation
of a data processing system. For example;
compilers, library routines, manuals,
circuit diagrams. (Contrast with
"hardware.")

source language: The input to a language
translator; for example, FORTRAN, COBOL,
PL/I.

302

source module: A series of language
statements that represent the input to a
language translator.

source module library: A partitioned data
set that is used to store and retrieve a
source module.

source program: A program written in a
source language.

statement: A phrase consisting of words or
terms of a programming ianguage.

storage: See "main storagel, auxiliary
storage.-

storage block: An area of main storage
that consists of 2048 bytes to which a
storage key can assigned.

storage dump: A recording of the contents
of main or auxiliary storage so that it can
be examined by a programmer or operator.
(See also "dump.")

storage key: An indicator associated with
storage blocks which requires that tasks
have a matching indicator before they are
allowed to use the blocks.

subroutine: A relatively short sequence of
instructions that can be incorporated into
a program to perform a specific function,
such as finding the square root of a
number.

subcommand: For TSO, a subcommand is a
request for a particular operation to be
performed, the particular operation falling
within the scope of work ~equested by the
command to which the subcommand applies.

symbol: 1\ unique yord" compos ed of as many
as eight alphameric characters and
beginning with an alphabetic character,
which is used to identify an address,
module, etc. ' -

syntax' checker: A program that tests
source statements in a programming language
for violations of that language's syntax.

SYSIN: A system input stream. Also, a
name used as the data definition name of a
Qata set in the input stream.

SYSOUT: A system cut put stream. Also, an
indicator used in data definition
statements to signify that a data set is to
be written on a system output unit.

system analyst: 'An expert on accounting,
record keeping, and other business systems
and practices, who formulates and plans
data processing applications.

system catalog: See "catalog."

system console: See "console."

system generation: The process of using
one operating system to assemble and link
together into a coherent whole all the
required, alternative, and optional parts
that form a new operating system.

system input device: A device that is
assigned to read a job input stream.

system library: A program library in
auxiliary storage in which the various
parts of an operating system are stored.

system library device: Anauxiliary
storage device on which the system library
is stored.

system Management Facilities (SMF): A
group of service routines to help an
installation implement an accounting system
for computer users. '

system output device: An output device
shared by all jobs.

system programmer:

1. A programmer who is assigned to plan,
generate, maintain, extend,. and
control the use of an operating system
with the aim of improving the overall
productivity of an installation.

2. A programmer who designs programming
systems and other applications.

system resource: Any facility of the
computing system that may be allocated to a
task.

system utility device: A device that is
ass~gned for temporary storage of
intermediate data for a series of job
steps.

SYS1.PROCLIB: A system data set containing
cataloged procedures.

task: A unit of work for the central
processing unit defined by the control
program.

task control block (TCB): The
consolidation of control information
rela ted to a task. -

telecommunications: The transmission of
messages from one location to another over
telephone and other communication lines.

teleprocessing: The processing of data
that is received from or sent to remote
locations by way of telecommunication
lines. .

terminal: A device resembling a typewriter
that is used to communicate with the
system.

terminal job: A foreground job; a session
from LOGON to LOGOFF. Also used to refer
to the time sharing region assigned to a
user and associated system control blocks.

terminal user: See "user."

time sharing: A method of using a
computing system that allows a number of
users to execute programs concurrently and
to interact with them during execution.

transmit interruption: The interruption of
a transmission from a te~inal by a higher.
priority transmission to the terminal.
Also called "reverse break."

unit address: The symbolic location of an
input/output device.

~: Under TSO. anyone with an entry in
the User Attribute Data Set; anyone
eligible to log on.

user attributes: A set of parameters in
the User Attribute Data set (UADS). 'I'he
parameters describe the user to the system:
whether he is authorized to use the ACCOUNT
command, what size main storage region he
is to be assigned. etc.

User Attribute Data Set (UADS): A
partitioned data set with a member for each
authorized system user. Each member
contains the appropriate user
identifications,. passwords, account
numbers, LOGON procedure names. and user
characteristics defining the user's
profile.

user identification: A one to eight
character symbol identifying each system
user.

User Profile Table: A table of user
attributes kept for each active user, built
from information in the LOGON command, the
UADS, and the LOGON procedure.

utility programs: Service programs that
assist the user in organizing and '
maintaining data.

verification: An operation under the EDIT
corr~and in which all sub commands are
acknowledged and any text changes are
displayed as they are made.

volume: A section or unit of auxiliary
storage space that is serviced by a single
read/write mechanism whose operation is
entirely independent of any other
read/write mechanism.

Glossary 303

Indexes to systems reference library
manuals are consolidated in-the publication
IBM Svstem/360 Operating system: systems
Reference Library Master Index!~ GC28-6644.
For additional information about any
subject listed below, refer to other
publications listed for the same subject in
the Master Index.

A operand, display subcommand 179
abbreviations of command names and

subcommand names 25
absolute address 295
access (read/write protection) 209
ACCOUNT command, 9,27

ADD subcommand 9,31
CHANGE subcommand 9,37
DELETE subcommand 9" 41
END subcommand 9,45
LIST subcommand 9,49
LISTIDS subcommand 9,51

account mode 20
account numbers, syntax 31
ACCT operand, ADD subcommand 37
ADD subcommand 9,31
add new user attributes to the UADS 9,,31
ADD operand" PROTECT command 209
add symbols to the symbol table, (TEST) 9
address list operand,

LIST subcommand 257
OFF subcommand 273

address operand,
AT subcommand 235
FREEMAIN subcommand 235,249

address:address operand, AT subcommand 235
addresses (TEST) 293
addresses, equating symbols to, (TEST) 293
addresses, establish base location,

(TEST) 293
address list operand, AT subcommand 235
aids 19
alias 295

, ~ .. J

alias, deletion of 21"3
alias operand, RENAME command 213
allocate a data set 53
ALLOCATE command 53
allocation, dynamic 53
ALL operand " SEND subcommand 189
ASIS operand, EDIT command 73
ASM command 57
ASM operand,

EDIT command 73
RUN command 216

assemble a program 9" 61,,215
assignment of values function (TEST) 233
AT subcommand 235
attention interruptions 19
attention key . 19~113~206,225

, ATTN operand"
PROFILE command 205
PROFILE subcommand 113

Index

attributes of users(ACCOUNT)
attributes of users(PROFILE)

27
113,205

basic 17,295
BASIC operand"

EDIT command 73
RUN command 216

batch processing 223,295
begin a terminal session 171
begin execution of a test program 229
BEGIN operand,

CONTINUE subcommand 197
OUTPUT command 193

block data 295
BLOCK (integer) operand"

CONVERT command 67
EDIT command 73

BLOCK(block length) operand ALLOCATE
command 53

blocksize 77
BOTTOM subcommand 85
break 230,,235,295
BREAK operand, TERMINAL command 225
breakpoints,

how to establish(TEST) 230,235
removal of, (TEST) 230,273

broadcast data set 157,189,295
BS operand,

PROFILE command 205
PROFILE subcommand 113

CALC command 59
CALL command 61
CALL subcommand 239
CALL operand, LOAD GO command 165
cancel a batch job 63
cancel a terminal user 177
CANCEL command, 63
CANCEL subcommand 177
cancelation of batch jobs 63
capabilities of the'Command Language 8
CAPS operand, EDIT command 73
catalog a data set 121
change data 87
CHANGE subcommand (ACCOUNT) 37
CHANGE subcommand (EDIT) 87
change us~r attributes in the UADS 37
change. values in registers and main storage

(TEST) 257
changing modes. (EDIT) 78,103
changing region size (OPERATOR) 185
CHAR ope rand:6

PROFILE command 205
PROFILE subcommand 113

CHARACTER operand"
PROFILE command 205
PROFILE subcommand 113

character-deletion characters 113,20.5
characteristics of terminals 225
characteristics of users 113,,205

Index 305

check the syntax of input lines 19,123
CLASS operand., CANCEL subcommand 111
CLASS (class name list) operand" OUTPUT
'command 139,193

CLIST operand,' EDIT command 13
CNTL operand, EDIT command 13
COBLIB operand, LINK command 146
COBOL command 65
COBOL operand.,

ED IT command 13
RUN command 216

CODE and GO FORTRAN 296
columns of data 8,,125
command,

definition of 1
list of 25
procedure statements 283,281
structure 1

compile and execute a program 61.,215
compilers, execution of"
program products 215,291
standard 61,215

compilers, how to use 61
compiling a program 215,,216
context editing 13 .
CONTINUE subcommand 197
control blocks" (see ndisplay then)
control fields in the UADS 21,28
control of the system 115
control of your terminal session 8
conventional batch processing 223,296
conversion of data sets, fixed- to
free-format FORTRAN 61

conversion of data sets" IPLl to PL/I 67
CONVERT command 61
COpy command 6~

COUNT(integer) operand, AT subcommand 235
CP operand, TEST command 229
create a data set 73
create a command procedure 13
create a program 13

DATA (password account procedure) operand,
ADD subcommand 31

Data Control Block 261
data definition name 53,,139,155,,163,297
data entry, storage, modification, and
retrieval 73

Data Extent Block 263
DATA operand,

EDIT command 73
PROTECT command 209

data set,
allocation 53
blocksize 71
conversion 67
record length 77
record format 77

data set list operand,
LINK command 146
LISTDS command 163
LOADGO command 165
SUBMIT command 223

data set name('parameter string') operand,
CALL command 61

data set name operand, . SAVE subcommand 121

. 306

DATASET(data set name) operand, ALLOCATE
command 53

DC operand" LINK command 146
DCB 261
DDNAME 53,139~155/,163,291
DEB 263
debug (TEST) 229
default data set names 18
defaults 7,,15
DEFER operand~ AT subcommand 235
define your operational
characteristics 8,113,,205,225

definitions of terms 295
delete a character 113
delete a data set 71
delete a module being tested 241
DELETE command 11
delete data from the UADS 41
delete lines of data 91
DELETE operand, PROTECT command 209
delete output data 193
DELETE operand, SEND subcommand 189
delete subcommand,

ACCOUNT command 41
EDIT command 91
TEST command 241

delete user attributes from the UADS 41
deleting a data set or member of a
partitioned data set 71

deleting an alias for a data set 213
delimiters 12,,297
descriptive qualifier 16,11
DIR(integer) operand, ALLOCATE command 53
display a storage map (TEST) 265
display main storage and registers

(TEST) 257
display messages 157,171
display session and CPU time used 281
DISPLAY subcommand 179
display the

Data Control Block (TEST) 261
Data Extent Block (TEST) 263
Program Status Word (TEST) 267
Task Control Block (TEST) 269

DOWN subcommand 93
DRIVER operand, MODIFY subco~~and 185
DROP subcommand 243
DSNAME operand, MONITOR subcommand 187
DSNAME operand, STOP subcommand 191
dump 291 -,
DUMP operand" CANCEL subcommand 177
dynamic allocation 53

edit a data set 73
EDIT command, 13

BOTTOM subcommand 85
CHANGE subcommand 87
DELETE subcommand 91
DOWN subcommand 93
END subcommand 95
FIND subcommand 97
HELP subcommand 47,101,183,201,255
INPUT subcommand 103
INSERT subcommand 105
LIST subcommand 109
PROFILE subcommand 113
RENUM subcommand 115

EDIT command (continued)
RUN subcommand 117
SAVE subcommand 121
SCAN subcommand 123
TABSET subcommand 125
TOP subcommand 127
UP subcommand 129
VERIFY subcommand 131
subcommands 7,73

edit mode 79
END statement (command procedures)· 285
END subcommand,

ACCOUNT command 45
EDIT command 95
OPERATOR command 181
OUTPUT command 199
TEST command 245

end your terminal session 169
enter data into the system 73,103
enter a command, how to 15
EP(entry name) operand, LOADGO

command 165
EQUATE subcommand 247
equating symbols to addresses (TEST) 247
establish breakpoints for testing 230,235
examples (see appropriate command or

subcommand)
EXEC command 133
execute a command procedure 133
execute a test program with no more
testing 277

execution of a load module 61,165
explicit EXEC command 133
EXT operand, MODIFY subcommand 185

FIELD (names) operandi' LISTDCB
subcommand 261

FILE operand" ALLOCATE command 53
FIND subcommand 97
FIXED operand,

CONVERT command 67
RUN command 216

FORMAT,
command 135
subcommand 99

FORT command 137
FORT operand,

EDIT command 73
RUN command 216

FORTLIB operand, LINK command 146
FORTRAN 79,298
free an allocated data set 139
FREE command 139
FREE operand,

CONVERT command 67
RUN command' 216

FREEMAIN subcommand 249
functions of commands and subconunands - 8

get additional main storage (TEST) 251
GETMAIN subcommand 251
glossary 295
GO subcommand 253

CONVERT command 67
GOFORT operand,

RUN command 216
group name for devices 31,37

HELP command 141
HELP subcommand 47,101,183~201,255
HERE oFerand,

CONTINUE subcommand 197
OUTPUT command 193

HIAR operand, LINK ccmmand 146
HISTORY operand, LISTALC command 155
how to enter a command 15·
how to request second level messages 21
how to specify data set names 17

I operand, INPUT subcommand 103
identification, user 31.,171
IDENTIFIER operand, CANCEL subcommand 63
identification.qualifier 16
identify yourself to the system 31,171
IMAGE operand" TAB SET subcommand 125
implicit EXEC command 133
IN operand, CANCEL subcommand 177
increment operand, INPUT subcommand 103
indirect address 294
informational messages 21
initialize registers (TEST) 239
INPUT('string') operand, TERMINAL

command 225
input mode 78,103
INPUT subcommand 103
insert data operand, INSERT subcommand 105
INSERT subcommand 105
Insert/Replace/Delete function (EDIT) 107
integer operand, FREEMAIN command 249
integer list operand, TABSET

subconnnand 125
INTERCOM operand, PROFILE command 113
interruption

attention 19
attention l, simulated 19

invoking a load module 61,145,165,271
invoking a standard compiler 61

CONVERT command 67
IPLI operand"

RUN command 216
ITF:BASIC 79,,298,
ITF:PLI 79,298

JCL for conventional batch jobs 223
JCL operand,

ADD subcommand 31
CHANGE subcommand 37

job name list operand,
CANCEL command 63
OUTPUT command 193
STATUS command 221

jobname operandi,
CANCEL subcommand 177
DISPLAY subcommand -179

jobnames 223 .
jobnames operand,

MONITOR subcommand 187
STOP subcommand 191

keywords 299

LABEL operandi' LISTDS command 163
language processors, execution of
61,117,165,215

Index 307

LET operand,
LINK command 146
LOADGO command 165

LEVEL (index) operand, LISTCAT command 159
levels of messages 21
LIB operand, LINK command 146
LINE (ATTN) operand, PROFILE command 205
LINE (character) operand" PROFILE

command 205
LINE (integer) operand, EDIT command 73
line number editing 109,115,131
line number operand, LIST subcommand 109
line numbers 78,115
line numbers" creating 73
line numbers, display of 109,131
line numbers" renumber 115
LINE operand, PROFILE subcommand 113
line-delete characters 113,,205
line deletion 91,,113,205
LINES(integer) operand, TERMINAL command

225
LINESIZE(integer) operand, TERMINAL

command 225
LINK command 145,
Linkage Editor 145
LIST command 153
list of commands and subcommands 25
list-of-subcommands operand, AT

subcommand 235
list of the functions of commands and

subcommands 8,9
LIST operand,

EXEC command 133
PROTECT command 209
SEND subcommand 189

LIST subcommand,
ACCOUNT command 49
EDIT command 109
TEST command 257

list the contents of a data set 109
list the names of allocated data sets 155
list the names of cataloged data sets 159
list the names of stored data sets 155
list the UADS 49
list user identifications from the UADS 51
LISTALC command 155
LISTBC command 157
LISTCAT command 159
LISTDCB subcommand 261
LISTDEB subcommand 263
LISTDS command 163
LIST IDS subcommand
LISTMAP subcommand
LISTPSW subcommand
LISTTCB subcommand
LMSG operand,

51
265
267
269

RUN command 216
RUN subcommand 118

load a program for execution 271
load a program for testing 229
load and execute a lead module 61~165,271

load and execute an obj~ct module 165
load module, execution of 61,,271
LOAD operand,

LINK command
TEST command

LOAD subcommand
LOADGO command

308

146
229
271

165

locate data 97
LOGOFF command 169
LOGON command 171
LOGON operand,

SEND command 219
SEND subcommand 189

LOGON procedures 171
LPREC operand

RUN command 216
RUN subcommand 118

LRECL(integer) operand, CONVERT command 67

MAIL operand,
LISTBC command 157
LOGON command 171

maintain the UADS 27
MAP operand,

LINK command 146
LOADGO command 165

MAXSIZ,E (integer) operand, ADD
subcommand 31

member names, partitioned data sets, 16
MEMBERS operand, LISTALC command 155
MERGEr,

command 173
subcommand 111

message levels 21
message number operand" SEND

subcommand '189
messages,

informational 21
mail 157,171
mode 20
notices 157 1,171
prompting 20
sending of 219

MOD operand, ALLOCATE ccmmand 53
mode messages 20
modes (EDIT) 78
modify an existing data set 73
modify data 213

'MODIFY subcommand 185
modify values in registers and main storage

(TEST) 257
monitor, stop monitoring
activities 187,191

MONITOR subcommand 187
monitor terminal and job activities 187
move the current line
pointer 80~85,93,127,129

MSGID operand, PROFILE command 205
multiple jobs 223

N operand, DISPLAY subcommand 179
name qualifier, user supplied 16,17
NAME operand, LOADGO command 165
NCAL operand" LINK command' 146
NE operand, LINK command 146
new line number operand, RENUM

subcommand 115
new name operand, RENAME command 213
NEW operand, ALLOCATE command 53
NEXT operand,

CONTINUE subcommand 197
OUTPUT command 193

NO operand, MODIFY subcommand 185

NOACCT operand, ADD subcommand 31
NOBREAK operand, TERMINAL command 225
NOCALL operand, LOADGO command 165
NOCHAR operand,

PROFILE command 205
PROFILE subcommand 113

NOCP operand, TEST command 229
NODC operand, LINK command 146
node list 300
NODEFER operand, AT subcommand 235
NOHIAR operand, LINK command 146
NOINPUT operand, TERMINAL command 225
NOINTERCOM operand" PROFILE command 205
NOJCL operand, ADD subcommand 31
NOLET operand,

LINK command 146
LOAD GO command 165

NOLIM operand, ADD subcommand 31
NOLINE operand,

PROFILE command 205
PROFILE subcommand 113

NOLINES operand, TERMINAL command 225
NOLIST operand" EXEC command 133,
NOMAIL operand "

LISTBC command 157
LOGON command 171

NOMAP operand,
LINK command 146
LOADGO command 165

NOMSGID operand, PROFILE command 205
NONCAL operand, LINK command 146
NONE operand,'LINK command 146
NONOTICES operand,

LISTBC command 157
LOGON command 171

NONOTIFY operand, SUBMIT command 223
NONUM operand, EDIT command 73
NOOL operand, LINK command 146
NOOPER operand, ADD subcommand 31
NOOVLY operand, LINK command 146
NOPAUSE operand,

CONTINUE subcommand 197
OUTPUT command 193
PROFILE command 205

NOPRINT operand,
LINK command 146
OUTPUT command 193

NOPROMPT operand,
INPUT subcommand 103
PROFILE command 205

NOPURGE operand, DELETE command 71
NOREFR operand, LINK command 146
NORENT operand, LINK command 146
NOREUS operand, LINK command 146
NOSCAN operand, EDIT command 73
NOSCTR operand, LINK command 146
NOSECONDS operand, TERMINAL command 225
NOTEST operand,

LINK command 146
RUN command 216
RUN subcommand 118

NOTERM operand"
LINK command 146
LOADGO command 165

NOTICES operand,
LISTBC command 157
LOGON command 171

NOTIFY operand, SUBMIT command 223

NOTIMEOUT operand, TERMINAL command 225
NOW operand"

SEND command 219
SEND subcommand 189

NOWRITE operand, PROTECT command 209
NOXCAL operand, LINK ccmmand 146
NOXREF operand, LINK command 146
NOM operand,

EDIT command 73
LIST subcommand 109

.oBJECT operand" TEST command 229
OFF operand, TABSET subcommand 125
OFF subcommand 273
OL operand, LINK ccmmand 146
old line number operand, RENUM

subcommand 115
old name operand, RENAME command 213
OLD operand, ALLOCATE command 53
ON operand, TABSET subccmmand 125
OPER operand, ADD subccmmand 31
operands (see individual operand name)
operation of the system 175-
operational characteristics 225
OPERATOR command" 175

CANCEL subcommand 177
DISPLAY subcommand 179
END subcommand 181
MODIFY subco~mand 185
MONITOR subcommand 187
SEND subcommand 189
STOP subcommand 191

operator mode 20~175 .
OPT operand,.MODIFY subcommand 185
OUT (data set name 2) operand, CONVERT

command 67
OUT operand, CANCEL subcommand 177
output class 300
OUTPUT command, 193

CONTINUE subcommand 197
END subcommand 199
SAVE subcommand 203

output of batch jobs 193
OVLY operandi, LINK command 146

parameter string operand, CALL command 61
parameters operand, RUN subcommand 118
PARM(address list) operand, CALL

subcommand 239
partitioned data set names 16
partitioned data sets 16
password 209
password data set 211
password operand,

ADD subcommand 31
CHANGE subcommand 37

password, for a dCl.ta set 209
password" for LOGON 171
password 1 operand, PROTECT command 209
password 2 operand" PROTECT command 209
PAUSE operand,

CONTINUE subcommand 197
OUTPUT command 193
PROFILE command 205

place data into columns 8,125
PL/I 301

Index 309

PLILIB operand, LINK command 146
positional operands 11
prerequisites and corequisites 2·
PRINT(data set name) operand, LISTDCB

subcommand 261'
print-inhibit for passwords 211
PRINT operand,

LINK command 146
OUTPUT command 193

PROC operand, LOGON command 171
PROC statement 287
procedure names 31
procedure operand,. ADD subcommand 31
procedure, at LOGON 171
procedure, command 287
procedures in the UADS 27,,31,,37,41
PROFILE command 205
PROFILE subcommand 113
program development 73
program products, additional information
availability 291

Program status Word 267,,301
PROMPT operand,

INPUT subcommand 103
PROFILE command 205

prompting messages 20
PROTECT command 209
protection of data sets 209
PSW 267,301
purge a data set 71
PURGE operand, DELETE command 71
PWREAD operand, PROTECT command 209
PWWR ITE operand" PROTECT command 2 0 9

Q operand, DISPLAY subcommand 179
qualified data set name 16
qualifiers 17
qualifiers, descriptive 17
qualifiers, identification 17
qualifiers" user-supplied narre 17
QUALIFY subcommand 275
question mark 21

R operand, -
DISPLAY subcommand 179
INPUT subcommand 103

read/write access to data sets 209
ready mode 20
record format for data sets 78
records, lengths 77
REFR operand, LINK command 146
region size for users 185
region size, changing, (OPERATOR) 185
register notation 293
REGSIZE operand, MODIFY subcommand 185
relative address 293
release an allocated data set 139,
release main storage (TEST) 249
remove breakpoints (TEST) 273
rename a data set 213
RENAME command 213
RENT operand, LINK command 146
renumber a data set 115
REPLACE operand, PROTECT command 209
RES o~erand, LOADGO command 165

310

restart a test program 253
retrieve data 109
RETURN(address) operand, CALL

subcommand . 239
REUS operand" LINK command 146
reverse break 303
RUN command 215
RUN subcommand,

EDIT command 118
TEST command 277

save a data set 121
SAVE subcommand 121
SCAN operand, EDIT command 73
SCAN subcommand 123
scanning language statements for proper
syntax 79,,123

·SCTR operand" LINK command 146
SECONDS operand, TERMINAL command 225
SEND,

command 219
subcommand 189

separators. 303
SESS operand,

MONITOR subcommand 187
STOP subcommand 191

session control 8
set breakpoints for testing 235
SHR oFerand, ALLOCATE command 53
simulated attention interruption 303
SIZE(integer) operand, ADD subcommand 31
SIZE operand, LINK command 146
SMF operand, MODIFY subcommand' 185
SMSG operand,

RUN command 216
RUN subcommand 118

SNUM operand, LIST subcommand lOY
SP (integer) operand.,

FREEMAIN subcommand 249
GETMAIN subcommand 251

SPACE(quantity, increment) operand,
ALLOCATE command 53

SPACE operand,
MONITOR subcc~~and 187
STOP subcommand 191

SPREC operand,
RUN command 216
RUN subcommand 118

standard compiler, execution 61
start a terminal sessicn 171
-start execution of a test program 229
STATUS command 229
status of batch jobs 221
status of the system 223
STATUS operand,

LISTALC command 155
MONITOR subcommand 187
STOP subcommand 191

STOP subcommand 191
storage map 265
store a data set 121
store data 121
STRING operand,

PROTECT command 209
Insert/Replace/Delete function 107

structure of a command 11

subcommand
definition of 14
ADD (ACCOUNT) 31
AT (TEST) 235
BOTTOM (EDIT) 85
CALL (TEST) 239
CANCEL (OPERATOR) 177
CHANGE (ACCOUNT) 37
CHANGE (EDIT) 87
CONTINUE (OUTPUT) 197
DELETE (ACCOUNT) 41
DELETE (EDIT) 91
DELE'I'E (TEST) 241
DISPLAY (OPERATOR) 179
DOWN (EDIT) 93
END (ACCOUNT) 45
END (EDIT) 95
END (OPERATOR) 181
END (OUTPUT) 199
END (TEST) 245
EQUATE (TEST) 247
FIND (EDIT) 97
FORMAT (EDIT) 99
FREEMAIN(TEST) 249
GETMAIN(TEST) 251
GO (TEST) 253
HELP 47,101,183~201~255
INPUT (EDIT) 103
INSERT (EDIT) 105
LIST (ACCOUNT) 49
LIST (EDIT) 109
LIST (TEST) 257
LISTDCB(TEST) 261
LISTDEB(TEST) 263
LISTIDS(ACCOUNT) 51
LISTMAP(TEST) 265
LISTPSW(TEST) 267
LISTTCB(TEST) 269
LOAD (TEST) 271
MERGE-(EDIT) 111
MODIFY (OPERATOR) 185
MONITOR (OPERATOR) 187
OFF (TEST) 273
PROFILE (EDIT) 113
QUALIFY (TEST) 275
RENUM(EDIT) ,115
RUN (EDIT) 117
RUN ('I'EST) 277
SAVE (EDIT) 121
SAVE (OUTPUT) 203
SCAN (EDIT) 123
SEND (OPERATOR) 189
STOP (OPERATOR) 191
TAB SET (EDIT) 125
TOP (EDIT) 127
UP (EDIT) 129
VERIFY (EDIT) 131

submit a job for batch processing 223
SUBMIT command 223
SUBMIT operand, MODIFY subcommand 185
symbol address(attributes) operand, EQUATE

subcommand 247
symbol-list operand, DROP subcommand 243
symbol table 247'
symbolic address 293
symbolic values in command procedures 287
symbols" removal froin symbol table 243
syntax of the command language 11

syntax checking 79,123
SYNTAX operand, HELP

subcommand 47,101,183,201,255
SYSNAMES operand, LISTALC command 155
SYSOUT(class) operand, FREE command 139
SYSOUT data set, delete a 139,193
SYSOUT operand, ALLOCATE command 53
SYSRC operand, WHEN ccmmand 289
system-provided aids 19
system control 175
system operation and maintenance 175

T operand,
DISPLAY subcommand 179
MONITOR subcommand 187

tab settings 81,125
Tabset subcommand 125
tabulation characters 81
Task Control Block (TCE) 269
TERMINAL command 225
TERM operand, LINK command 146
TERM operand, LOADGO' ccmmand 165
terminal characteristics 225
terminate your terminal session 169
terminating the edit command 95
test a 'program 229
TEST command 229

AT subcommand 229
CALL subcommand 239
DELFl'E subcommand 241
END subcommand 245
EQUATE subcommand 247
FREEMAIN subcommand 249
GETMAIN subcommand 251
GO subcommand 253
LIST subcommand 257
LISTDCB subcommand 261
LISTDEB subcommand 263
LISTMAP subcommand 265
LISTPSW subcommand 267
LISTTCB subcommand 269
LOAD subcommand 271
OFF subcommand 273
QUALIFY subcommand 275
RUN subcommand 277
WHERE subcommand 279

test mode 20,229
TEST operand,

LINK command 146
RUN command 216
RUN subcommand 118

testing facilities of PL/I 118,216
TEXT operand, SEND subcommand 189
TEXT operand" EDIT command 73
time,command 281
TIMEOUT operand" TERMINAL command 225
TOP subcommand 127
transmit interruption feature 303
types of data used for subcommands of
test 233

U=user identification c~erand, CANCEL
subcommand 177

UADS 27
unit address operand, CANCEL

subcommand 177
UNIT (name) operand" ADD subcommand 31
unit type 37

Index 311

UP subcommand 129
user attribute data set 27
user characteristics 113,205
user identification 31,,171.

- user identity operand, ADD subcommand 31
user profile 113,205
user region size,

default 31,38
maximum 185

user supplied name qualifier 16,17
USER (user identification list) operand"

SEND subcommand 189
USER=NUMBER operand, DISPLAY

subcommand 179

value list operand, EXEC command 133
verification of text changes 131

312

VERIFY subcommand 131
VL operand, CALL subcommand 239
VOLUME (serial) . operand" ALLOCATE

command 53
VOLUMES operand, LISTCAT command 159

WHEN command 289
WHERE subcommand 279

XCAL operand" LINK command 146
XREF operand, LINK command 146

YES operand, MODIFY subcommand 185

GC28-6732-1

International Business Machines Corporation
Data Processing Division'
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York'10017
(International)

VI

~
ro
~
0-
o
o
VI

-I
VI

o
()
o
3
B
:J
0-

S
:J
to
C
o
to

C1l

". IBM System/360 Operating System
Time Sharing Option
Command Language

READER'S COMMENT FORM

Order No. GC28-6732-1

Please use ,this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. All suggestions
and comments become the property of IBM.

Please do not use this form to request technical information or additional copies of publications.
All such requests should be directed to your IBM representative or to the IBM Branch Office
serving your loca lity.

• Please indicate your occupation:

• How did you use this publication?

o Frequently for reference in my work.

o As an introduction to the subject.

o As a textbook in a course.

o For specific information on one or two subjects.

• Comments (Please include page, numbers and give examples.):

• Thank you for your comme'nts. No postage necessary if mailed in the U.S.A.

GC28-6732-1

YOUR COMMENTS, PLEASE •••

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of mM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of mM.

Note: Please direct any requests forcopies of publications, or for assistance in using your
IBM system, to your IBM representative or to the mM branch office serving your locality.

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Programming Systems Publications

Department 058

Fold

POSTAGE WILL BE PAID BY •••

IBM Corporation

P.O. Box 390

Poughkeepsie, N.Y. 12602

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604

. [U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Fold

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N.Y.

Fold

lJ

C
r
o
3
8
::J
C

rc
::J
~
C
C

(Q
ClI

Technical Newsletter File Number S360-36 (OS ReI 20.6)

Re: Order No. GC28-6732-1

This Newsletter No. GN28-2503

Date september 1, 1971

IBM System/360 Operating System:
Time Sharing Option
Command Language Reference

© IBM Corp. 1971

Previous Newsletter Nos.

This Technical Newsletter, a part of release 20.6 of IBM
System/360 Operating System, provides replacement pages for the
subject publication. These replacement pages remain in effect for
subsequent releases unless specifically altered. Pages to be
inserted and/or removed are:

Cover,2
Summary of Amendments
185-186

A change to the text or a change to an illustration is indicated
by a vertical line to the left of the change.

Summary of Amendments

This Technical Newsletter includes changes to the MODIFY
subcommand of the OPERATOR command.

Note: Please file this cover letter at the back of the manual to
provide a record of changes.

IBM Corporation, Programming Systems Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602

GN28-2480

PRINTED IN U.S.A.

nrn~ Systems Reference Library

IBM System/360 Operating System:

Time Sharing OptiDn

CDmmand Language Reference

File No. 8360-36
Order No. GC28-6732-1 OS

Page of GC28-6732-1, Revised September 1, 1971, By TNL: GN28-2S03

Preface

This publication describes how to use the
commands and operands of the TSO Command
Language. It is intended for use at a
terminal. The level of knowledge required
for this publication depends upon the
command being used. Most commands require
little knowledge of TSO and of the
Operating System; however, some commands
require a greater knowledge of the system.
As a general rule, the description of each
command requires an understanding of those
elements being manipulated by the command.

The publication, IBM System/360
Operating System: Time Sharing Option,
Terminal User's Guide, GC28-6763 describes
the functions performed by the TSO Command
Language.

The publication, IBM Systern/360
Operating system: Time Sharing Option,
Terminals, GC28-6762 describes how to use
the terminals supported by TSO.

The major divisions in this book are:

• Introduction
• What You Must Know to Use the Commands
• The Commands
• Command Procedure Statements
• Glossary
• Index

The Introduction describes what the
command language is. The section entitled
"What You Must Know to Use the Commands"

Second Edition (March, 1971)

contains general information necessary for
the use of every command.

The section entitled "The Comma"nds"
contains a description of each command, its
operands and its subcommands. Examples are
included.

The commands are presented in
alphabetical order. Subcommands are
presented in alphabetical order following
the command to which they apply. A
boldface heading on each page identifies
the information contained on the page. The
boldface headings and alphabetical
organization allow you to locate particular
commands as you would locate a subject in a
dictionary or encyclopedia. The larger
boldface headings identify the first pages
of the descriptions of commands.

"Command Procedure statements" describes
the statements designed for use in command
procedures.

The Glossary contains definitions of
terms that appear in the text of this
publication.

The "Index" contains the location (page
number> where terms and subjects are
discussed in the text.

This is a major revision of, and obsoletes, GC28-6732-0.
This publication has been completely rewritten and should be
reviewed in its entirety.

This edition, with Technical Newsletters GN28-2480 and
GN28-2503, applies to release 20.6 of IBM System/360 Operating
System, and to all subsequent releases until otherwise indi
cated in new editions or Technical Newsletters. Changes are
continually made to the information herein~ before using this
publication in connection with the operation of IBM systems,
consult the latest IBM System/360 SRL Newsletter, Order No.
GN20-0360, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at .the back of
this pUblication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems Publica
tions, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602.
Comments become the property of IBM.

© Copyright International Business Machines Corporation 1970,1971'

Page GC28-6732-1, Revised September 1, 1971, By TNL: GN28-2503

SUMMARY OF AMENDMENTS
FOR GC28-6732-1
OS RELEASE 20.6

MODIFY SUBCOMMAND OF OPERATOR

The keyword descriptions have been
clarified.

Summary of Amendments 4.1

)

Page GC28-6732-1, Revised September 1, 1971, By TNL: GN28-2503

OPERATOR Command
MODIFY Subcommand

Use the MODIFY subcommand to modify the time sharing options that were
specified when th€ system was generated or when time sharing was
initiated. The syntax used for this subcommand is the same as the
syntax used for MVT operator commands.

r--~---------T---,
I SUBCOMMAND I OPERANDS I
!~-----------+-----------~---~
I {MODIFY} I [procedure. 1 identification I
I F I I
I I , USERS=number I
I I ,SUBMIT=(queuesize) I
I I ,REGSIZE(n)=(nnnnnK,xxxxxK)... I
I I ,DRIVER=(parameters) I
I I , HOLD= (region-list) I
I I , SMF= ([OFF J [, EXT={ YES}]) I
I I OPT={l} NO I
I I 2 I L-___________ ~ ___ J

procedure
specifies the name of the time sharing procedure that you want to
modify_ This name must be the same as the one that was used when
the procedure was started with a START command issued by the
console operator.

identification
specifies the identification of the system task used when the task
was defined by a START command issued by the console operator.

USERS=number
indicates the number of users allowed for time sharing. The
maximum number is determined at START time and cannot be exceeded
by the MODIFY command.

SUBMIT=Queuesize
indicates the maximum number of logical tracks to be used for the
queue for conventional batch jobs submitted by the SUBMIT command.

REGSIZE(n)=(nnnnnK,xxxxxK)
indicates the number and size of each time sharing region. 'n' is
the region number (included on the informational messages from the
DISPLAY command). You specify the size of the region in the form
nnnnnK. You specify the local supervisor queue area (LSQA) to be
added to the region in the form xxxxxK. The LSQA size must be
smaller than the region size" but greater than zero. "nnnnn" and
"xxxxx" are the number of 1024 byte areas you want. These numbers
may range from one to five digits, but the sum cannot exceed 16382.
The numbers should be specified as even numbers.. (If you specify
an odd number., the system treats it as the next higher even
number). LSQA size region must be smaller than the region size,
but greater than zero. If the size equals zero the region will be
freed. Anytime you use the REGSIZE operand, any users of that
region will be logged off.

DRIVER=(parameters)
specifies a parameter list to be passed to the time sharing driver

185

Page GC28-6732-1, Revised september 1, 1971, By TNL: GN28-2503

OPERATOR Command
MODIFY Subcommand

(a component of TSO). For instance, BACKGROUND=value is the only
keyword that can be passed to the IBM supplied driver -- it
indicates the percentage of system resource time quaranteed for
conventional batch processing; however, different parameters may be
supplied for user-written drivers.

HOLD=(region-list)
specifies that the time-sharing regions specified in "region-list"
are not to be allocated for any new users. If you specify more
than one region, then you must separate the regions specified with
commas. If you specify only one region, the parentheses are not
needed.

SMF=(OFF or OPT=l or OPT=2, EXT=YES or NO)
indicates which option of the System Management Function (SMF) is
to be used for time sharing operations. OFF indicates that SMF is
not to be used for time sharing operations. OPT=1 or 2 indicates
an option of SMF that is to be used for time sharing operations.
EXT indicates that exits to the installation routines are active.

Note: If duplicate keywords are entered in a MODIFY command, the
right-most (last entered) keyword and parameters will determine
system action. (n) is part of the REGSIZE(n) keyword; therefore,
REGSIZE(1) and REGSIZE(2) are not considered duplicate keywords.

You may not specify HOLD and REGSIZE(n) for the same region in
one MODIFY command. If you do, the system will request that
you either specify the option you prefer, indicate that both
keywords are to be ignored for this region, or cancel the
MODIFY command.

Example 1

Operation: Change the number of terminals allowed for time sharing
operations.

Known: The existing allowable number •••••••••••••••••••••••••••••••• 32
The new number... 26

r--~---------------------,
IMODIFY TSO,USERS=26 I L __ J

Example 2

Operation: Change the maximum size of time sharing region number 3 from
70K to lOOK, with 10K reserved for local supervisor queue
area (LSQA).

r--,
If tso,regsize(3)=(100K,10K) I L __ J

Example 3

Operation: Change the guaranteed background percentage of time to 60%.

r--,
IF TSO,DRIVER=(BACKGROUND=60) I L ___ -J

186

