Systems Reference Library

IBM System/360 Operating System:

Job Control Language Reference

The job control language is used with all
System/360 Operating System control programs.
Every job submitted for execution by the
operating system must include job control
language statements. These statements contain
information required by the operating system to
initiate and control the processing of jobs.

This publication describes the facilities
provided with the job control language and
contains the information necessary to code job
control language statements.

This publication is intended for review and
reference by programmers who are familiar with
the information contained in IBM System/360
Operating System: Job Control Lanquage User's
Guide, GC28-6703, or who have experience in
using the job control language.

File No.
Oxrder No.

5360-36
GC28-6704-1

[os

Second Edition (June, 1971)

This is a major revision of, and obsoletes, GC28-6704-0 and
Technical Newsletter GN28-2451. Other changes to the text,
and changes to illustrations, are indicated by a vertical
line to the left of the change.

This edition applies to Release 20.1 of the IBM System/360
Operating System, and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are periodically made to the information herein;
before using this publication in connection with the
operation of IBM systems, refer to the latest IBM System/360
SRL Newsletter, Order No. GN20-0360, for the editions that
are applicable and current.)

This publication is for references purposes only. It)
contains all of the information necessary to code job control
language statements. If you never coded job control language
statements, you should read and become familiar with the
information in the publication IBM System/360 Operating
System: Job Control Lanquage User‘'s Guide, GC28-6703, before
using this one.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be -addressed to IBM Corporation, Programming Systems
Publications, Department D58, PO Box 390, Poughkeepsie, N. Y.
12602

© Copyright International Business Machines Corporation 1970,1971

This publication describes the facilities

provided with the job control language and
contains the information necessary to code
job control language statements.

This publication can be used by
programmers who are familiar with the job
control language and are coding job control
language statements. The publication may,
for example, be used for review of a
particular job control language statement
or parameter, or for reference on how to
code a parameter or what occurs when a
particular parameter or subparameter is
coded. All information in this book is
pertinent to systems with the control
program configurations MFT and MVT unless
otherwise noted.

This publication has five logical parts:

1. Programming notes, which contain
coding conventions used in coding job
control language statements.

2. Job control language statements, which
describe the format of each statement
and the format of the parameters
associated with the statement.
is a separate section for each
statement.

There

3. Appendixes, which include additional
information on the job control
language facilities, such as how to
write and use cataloged procedures,
and what default values are provided
when certain parameters are not coded.

4. Glossary, which contains definitions
of many of the terms used in this
publication. :

5. Foldout charts, which show the format
of JOB, EXEC, and DD statement

Preface

parameters. The foldout charts appear
after the index.

Before you read this publication, you
should understand the concepts and
terminology introduced in the prerequisite
publications listed below. In addition,
the text refers you to other publications
for detailed discussions beyond the scope
of this publication.

PREREQUISITE PUBLICATIONS

IBM System/360 Operating System:

Concepts and Facilities, GC28-6535

Job Control lanquage User's Guide,
GC28-6703)

PUBLICATIONS TO WHICH THE TEXT REFERS

IBM System/360 Operating System:

System Programmer's Guide, GC28-6550

Utilities, GC28-6586

Operator's Guide, GC28-6540

Supervisor and Data Management Services,
GC28-6646

Supervisor and Data Management Macro
Instructions, GC28-6647

Storage Estimates, GC28-6551

Tape Labels, GC28-6680

Advanced Checkpoint/Restart, GC28-6708

Preface 3

Programming Notes

JOB Statement

Notes

Y

EXEC Statement

DD Statement

\

EXEC

Command Statement

Comment Statement

Delimiter Statement

Null Statement

Y

Command

> Comment

' Delimiter

PEND Statement

Null

PEND

PROC Statement

Y

PROC

Appendixes

' Appendixes

Glossary

Glossary

lndex

Foldout Charts

Index

Y

Y

Charts

SUMMARY OF MAJOR CHANGES
Release 20.1 o o « « = =
Release 20 o o « o = o »
Release 19 o o o o o o o

6 4 ,_0" []
s » &
& 5 o 3
o s &
* & * @
¢ o & o
LI Y

THE FORMAT OF THIS PUBLICATION

[}
é
[
.

SECTION I: PROGRAMMING NOTES . . « =
Notation for Defining Control
Statement Parameters « « « o« o« o « o =«
Fields in Control Statements . .
Parameters in the Operand Field
Continuing Control Statements
Backward Referenmces
Concatenating Data Sets .
Character SetsS « « o« « o «
Using Special Characters .
Coding FOIM .« o o o = o o

" s 0 3

[N }

s o & 3 & o
5 o & o 3
* & o & 8
¢ o 8 3 &

SECTION II: THE JOB STATEMENT .
JOB Statement Format . « « . . .
Rules for Coding « o« ¢ o o « = o &
Positional and Keyword Parameters
Sample JOB Statements .« . « . «
Assigning a Jobname . . . o < o
Examples of valid Jobnames . . .
Accounting Information Parameter
Rules for Coding « « « o« o « o o
Supplying Accounting Information .
Examples of the Accounting Informati
Parameter .« « o o o o © o o o o
Programmer®’s Name Parameter . .
Rules for Coding « &« « & =« ¢ « o &
When to Code the Programmer®s Name'
Parameter « o« o« o o o o o o o o o o o
Examples of the Programmer's Name
Parameter . o« o ¢ o o ¢ o o o o « o
The CLASS Parameter . « « « « o o o«
Rules for CoAing « « « o o o o« o « «
Assigning a Job Class to Your Job .
The CLASS Parameter and Time-Slicing

s @
DR I
LRI)

s s 8 s 8

s & o & B 8

-oif-locouui
[}

kExamples of the CLASS Parameter .
The COND Parameter « o « o« « o «
Rules for CoOAing « « o o o o o «
Using the COND Parameter . . .o o
When the COND Parameter is Coded on
Both the JOB and EXEC Statements . .
Examples of the COND Parameter
The MSGCLASS Parameter « « o« « « « o o«
Rules for Coding « « « o« o« o o o = =
Assigning an Output Class to System
MesSsSages .« « « “ e o o o o
Examples of the MSGCLASS Parameter
The MSGLEVEL Parameter . . « <« « «
Rules for Coding « « « « o = o o «
Requesting Output of Job Control
Statements and Certain Messages . . .
Examples of the MSGLEVEL Parameter .
The NOTIFY Parameter (For MVT with
Rules for Coding . . . e o & o e o
What the NOTIFY Parameter Does « « . ¢ «
What is Time Sharing « « « « « « =«

* & 8 B

Contents

Example of the NOTIFY Parameter
The PRTY Parameter .« « « o« <« =« -«
Rules for Coding « « « « « = « «
What the PRTY Parameter Does . .
The PRTY Parameter and Tlme—811c1ng
Examples of the PRTY Parameter .
The RD Parameter « « « <« < o =
Rules for Coding
Using the Restart Facxlltles -
Defining Restart « « « « « «
Examples of the RD Parameter .
The REGION Parameter - Without Ma1n
Storage Hierarchy Supprort (For MVT)
Rules for CoOAing o« o w « o w o o = &
Requesting Main Storage .« « « « .« .
Acquiring Additional Main Storage
Examples of the REGION Parameter . .
The REGION Parameter - With Main
Storage Hierarchy Support (For MVT,
Excluding M65MP) o « o o o o o « « = =
Rules for Coding
Requesting Main Storage in One or Two
Hierarchies . « o« ¢ o o« o o o o « =
Acquiring Additional Main Storage
Examples of the REGION Parameter .
The RESTART Parameter . « « o« «
Rules for COAing « « « o o o« = « o
When to Code the RESTART Parameter
Rules for Referencing Generation
Data Sets and Using Backward
References . .« « « . o .- o o e
Examples of the RESTART Parameter
The ROLL Parameter (For MVT) . .
Rules for Coding « o« « « « o « »
When to Code the ROLL Parameter
Examples of the ROLL Parameter .
The TIME Parameter « « o« « o« « o
Rules for Coding « « « o o « « o o
Specifying a Time Limit for the Job
Time Limit for Wait States
How to Eliminate Timing . « « « « «
Examples of the TIME Parameter . . .
The TYPRUN Parameter (Foxr MFT, MVT)
Holding a JODb =+ 2o o ¢ o o o © o o
Example of the TYPRUN Parameter . .

s o & &
@ o &
e o s a2 »
L] L] . L L] L]

a & s & & & 2 s * & 8 s o a2

SECTION III: THE EXEC STATEMENT .
EXEC Statement Format . « « « « «
Rules for CoAing « « o o = o =« « =«
Positional and Keyword Parameters
Sample EXEC Statements . « « «
Assigning a Stepname <« « . o .
Examples of Valid Stepnames . .
The PGM Parameter . « « « « o
Identifying the Program to be Execu
Temporary Library . . .
System Library « « « « o o
Private Library . « « « « &
The IEFBR1U4 Program < « « o
Examples of the PGM Parameter
The PROC Parameter « « o« o« « «

s e
e

o 6 s 8 s o (te s o 8 s 2 &
s 8 o ¢ o ¢ Le s o s s s

s & s & 8

& 8 & 3 » s 8 2 & b 4 & o 8 a2 e o 2 » & 2 s & s o o0 s & & & & s s & » o

s & 5 & 5 & & o 8 s 8 s s

Contents

Identifying the Cataloged or In-Stream
Procedure to be Called . .« « « « ¢« « &
Examples of the PROC Parameter
The ACCT Parameter « « « ¢ « w « o o =
Rules for Coding « « « « o« « o »
Providing Accounting Information
Job Step or Procedure Step . .
Examples of the ACCT Parameter
The COND Parameter « « . < «
Rules for Coding « « « « « .
Using the COND Parameter . .
Bypassing a Job Step . . -
Executing a Job Step . . .
When You Call a Cataloged Procedure
Examples of the COND Parameter . . .
The DPRTY Parameter (For MVT)
Rules for Coding « « o o = « o« « « o =«
Assigning a Dispatching Priority . . .
The DPRTY Parameter and Time-Slicing
When You Call a Cataloged Procedure
Examples of the DPRTY Parameter . . .
The PARM Parameter . . . « « 2 « « « =
Rules for CoAing « « o« « o « « o o « o
Providing a Processing Program With
Information at Execution Time
When You Call a Cataloged or
In-Stream Procedure
Examples of the PARM Parameter .
The RD Parameter « o« o = o = o «

or a

a 8 o & o & @

.
-

-
-
-

-
.
-
C

Rules for Coding « « « o « o o«
Using the Restart Facilities .
Defining Restart - .

When You Call a Cataloged Procedure
Examples of the RD Parameter . . « . .
The REGION Parameter - Without Main
Storage Hierarchy Support (For MVT) .
Rules for CoOAing « « o o « o o « o o =
Requesting Main Storage . « « o« « o «

Acquiring Additional Main Storage .

When You Call a Cataloged Procedure
Examples of the REGION Parameter . . .
The REGION Parameter - With Main
Storage Hierarchy Support (For MVT,
Excluding M65MP) . . o o « o o o o = &«

Rules for Coding « « « ¢ o « o o « .

Requesting Main Storage in One or Two
Hierarchies . . . e s e e o o o
Acquiring Addltlonal Maln Storage .
When You Call a Cataloged Procedure
Examples of the REGION Parameter . . .
The ROLL Parameter (For MVT)
Rules for Coding « « « w o « o o « = o
When to Code the ROLL Parameter . . .
When You Call a Cataloged Procedure
Examples of the ROLL Parameter
The TIME Parameter . « o« o« 2 =« o s o
Rules for COAing « o« o« « o « « o o« o «
Specifying a Time Limit for a Job Step
Time Limit for Wait States
How to Eliminate Timing . . « o« = « «
How the Job Time Limit Affects the
Step Time Limit
When You Call a Cataloged Procedure
Examples of the TIME Parameter

SECTION IV: THE DD STATEMENT
DD Statement FOrmat . . « o« o o o = @
Rules for Coding « . .« 4 o o o« o« = o &«

8 JCL Reference (Release 20.1)

4 4 & 8 8 & s 8 8 & & b 0 b s s b s o &
[+ 2] [o o]
[0 pas

.
[+
©

L] I. . L] . L] s o
e
et

s s & 8 8 @
O
wm

Positional and Keyword Parameters . .
Sample DD Statements « « o « o « o « o
Assigning a Ddname « o w o
When Adding or 0verr1ding
Information in a Cataloged Procedure
SEeP 2 ¢« e 2 o ® e e 4 o % @ e e = a
Examples of Valid Ddnames
Special DAnames <« e« o ¢ o o © o o
JOBLIB . . - e
Rules for Coding the JOBLIB DD
Statement .« . ¢ ¢ ¢ o 0 ¢ e o o o
The DISP Parametero -
when the Library Is Cataloged ..
When the Library Is Not Cataloged
Concatenating Libraries . .
When the Job Includes a STEPLIB DD
Statement 4 e 4 e o o . .
Examples of the JOBLIB DD Statement .
STEPLIB . . . « . @ .- e =
Rules for Codlng the STEPLIB DD
Statement . . « « o o @ o . e e
When the lerary Is Cataloged o o
When the Library Is Not Cataloged
or Passed . . . « @ e o e @
When the Library Is Passed By a
Previous Step . . e o
Concatenating Libraries .
When the Job Includes a JOBLIB DD
Statement < « =« ¢ ¢ & ¢ © o o o .
Examples of the STEPLIB DD Statement .
SYSABEND and SYSUDUMP . . . « & e
Writing the Dump to a Unit Record
Device . . . e e % o e = o = o o =
Storing the Dump “ @ o 2 e ® o
Examples of the SYSABEND and SYSUDUMP
DD Statements < o« o « o © « @ 2 =« o o

e o
. e
- e

SYSCHK « « « e o w s e e e o e
Rules for Codlng the SYSCHK DD
Statement « o« « ¢ ¢ o ¢ o o o o

When the Checkpoint Data Set Is
Cataloged . . « « . . o .« e
When the Checkpoint Data Set Is
Not Cataloged o e . e
Examples of the SYSCHK DD Statement .
The *# Parameter .« « « « o oa. o o o o «
Rules for codlng e o o o ® % o o e o
Defining Data in the Input Stream . .
The DCB Subparameters BLKSIZE and
BUFNO .+ 2 @ o ¢ o o = = o o o =
Examples of the * Parameter
The DATA Parame€ter « « « o o = o =«
Rules for Codlng « o 4 o @ « o
Defining Data in the Input Stream .
The DCB Subparameters BLKSIZE and
BUFNO . . « .« . e e .
Examples of the DATA Parameter .
The DUMMY Parameter .« « « o« = =«
Rules for Coding « « <« « « o «

-
-
. o
o o
-

What the DUMMY Parameter Does
Coding the DUMMY Parameter . .
Examples of the DUMMY Parameter
The DYNAM Parameter -- MVT With T
Rules for Coding « « « « « =« « &
What the DYNAM Parameter Does .
Coding the DYNAM Parameter . . .
Example of the DYNAM Parameter .
The AFF Parameter . . « « . . .
Rules for Coding « « « « « « = =

(0]

o s o o s s 0N & s s s 8

.106
.107
.109

.109
.110
.111
112

.112
«112
.113
»113
.113

.114
114
116

.116
.116

.116

.117
117

<117
.117
.119

.119
.119

.120
<121

.121
.121

122
122
.123
.123
.123

<124
.124
.127
.127
127

.128
.128
.131
.131
.131
.131
.132
.133
.133
.133
.133
.133
.135
.135

Optimizing Channel Usage . .
Requesting Channel Separation
Example of the AFF Parameter .
The DCB Parameter . « « « « =«
Rules for Coding « . « . .
Completing the Data Control Block

DCB Macro Instruction . « . .

DCB Parameter o« « o o o o o =«

Data Set Label . . . - .
Specifying DCB Informatlon on the DD
Statement . . . - o

Supplying DCB Keyword Subparameters

Copying DCB Information From a Data

Set Label .« ¢« ¢ o ¢ 2 2 o o @ o o =

Copying DCB Information From an

Earlier DD Statement
Glossary of DCB Subparameters .
Examples of the DCB Parameter .
The DDNAME Parameter . « o« o o «
Rules for Coding « « « 2 « o o =
What the DDNAME Parameter Does .
When You Code the DDNAME Parameter

The DCB Subparameters BLKSIZE and

BUFNO . . e o o o e o e @
Examples of the DDNAME Parameter . .
The DISP Parameter « o« « « o « o o &

3 8 & B
T s & a &
® & & 8 o & o &

i

Rules for Coding . . . o o =
What the DISP Parameter Does - =
Specifying the Data Set's Status .
When you Specify NEW as the Data
Set's Status . . . « e o o o o
When You Specify OLD as the Data
Set's Status . . . c % o @ s @
When You Specify SHR as the Data
Set's Status . . . « o e o o @
When You Specify MOD as the Data
Set's Status « « « o o ¢ o o o = o
Specifying a Disposition for the Data
Set - - - - - - - - - - - - - - . - -
When You Specify DELETE as the
DisSposition .« « o o o o o o o o @
When You Specify KEEP as the
Disposition . . . - - « o
When You Specify PASS as the
Disposition - - s
When You Specify CATLG as the
Disposition o . -
When You Specify UNCATLG as the
Disposition . . . e« o @ = o o @
Specifying a Condltlonal D1$p0$1t10n
for the Data Set o« o e @
When You Specify DELETE as the
Conditional Disposition . . . <« .
When You Specify KEEP as the
Conditional Disposition
When You Specify CATLG as the
Conditional Disposition . « « «
When You Specify UNCATLG as the
Conditional Disposition .
Disposition Processing Chart .
Examples of the DISP Parameter
The DSNAME Parameter « o« « «
Rules for Coding « « « o« « « .
Identifying the Data Set . « + . .
Creating or Retrieving a Nontemporary
Data Set ¢« ¢« ¢ o o o ¢ ¢ o o o o o o o
Nontemporary Data Sets «
Members of a Partitioned Data Set

LR S)
o s b 0
s 0 8 s 8
» L] . . . ()

«135
.135
136
<137
<137
137
.138
<139
.139

«139

«139

.139
.140

-140

.156
«157
.157
»157
«157
.159
159
161
.162
.162
.162
.163
.163
.163
.l164
.165
.166
.166
<166
.167
.167
.168
.168
.168
.169
.169
.169
.171
.173
173
174
<174

.174
.175

Generations of a Generation Data
Group - o % e = e
Areas of an Indexed Sequentlal
Data Set « v ¢ o ¢ o o o o « s o @
Creating or Retrieving a Temporary
Data Set o o « ¢ ¢ & o s o o « = o o o
Temporary Data Sets .« « o« « « « &
Members of a Temporary Partitioned
Data Set ¢« « o o o « . - o
Areas of a Temporary Indexed
Sequential Data Set . « o o« « « @
Using a Dedicated Data Set . « . .
Copying the Data Set Name From an
Earlier DD Statement . « « ¢ o« « o
Specifying the DSNAME Parameter in
Apostrophes .« « o« .« « o e w
Examples of the DSNAME Parameter N
The FCB Parameter .« « « o o« o o o
Rules for COAing w =« = e o @« o « =
Image Identifier « « « v o ¢ o o
Requesting Alignment of Forms .
Requesting Operator Vexification
Examples of the FCB Parameter .
The LABEL Parameter . « « « « «
Rules for Coding . « .

Data Set Labels .« ¢« « « o « «
When to Code the LABEL Parameter
The Data Set Sequence Number

Subparameter « « o« « « o o o o o o o
The Label Type Subparameter
The PASSWORD and NOPWREAD
Subparameters .« « « o o o o » o o
The IN and OUT Subparameters . . .
The RETPD and EXPDT Subparameters
Examples of the LABEL Parameter .
The OUTLIM Parameter « « « « o
Rules for Coding « « « o o o o «

s & 5 o 8 o & 3 ¢ & s

e & 3 8 3 s & @ 4 » 2

What the OUTLIM Parameter Does
Determining the Output Limit .
Example of the OUTLIM Parameter
The QNAME Parameter -- MFT and MVT
with TCAM & & & o o o« « o o =
Rules for Coding « « « o o « =«
What the ONAME Parameter Does
Example of the QNAME Parameter
The SEP Parameter .« « o« . o«
Rules for Coding « « o« « o« « &
Optimizing Channel Usage . .
Requesting Channel Separation
Example of the SEP Parameter .
The SPACE Parameter . « . « «
Rules for Coding « « o « o o « o
‘Requesting Space for a Data Set
Specifying the SPACE Parameter .
Letting the System Assign Specific
Tracks . « « « e o @4 o e m e o o o o
Specifying the Unit of Measurement .
Specifying a Primary Quantity . . .
Specifying a Secondary Quantity . .
Requesting Space for a Directory or
INA@X &2 o o« o o © o = a o s = o o @
Releasing Unused Space -- RLSE .
Specifying the Format of Allocated
Space -- CONTIG, MXIG, or ALX . . .«
Allocating Whole Cylinders -- ROUND
Assigning Specific Tracks . . « « « o
Examplés of the SPACE Parameter . . .
The SPLIT Parameter o« « « o « o o o

" 3 3 5 s 8 s s

‘e 8 8 B & 8 & » s

® & 8. 8 ¥ & 3 b s s

o 0 8 8 » 8 & o &+ 3 2 b
5 8 8 3 5 8 * 2 ¥ 0 s 0 &

-175
.175

<176
.176

-176

<177
<177

<177

<177
«178
<179
«179
179
<179
.180
.180
.181
.182
.182
.182

.183
.183

.184
.185
.185
.186
.187
.187
.187
.187
.188

.189
.189
.189
.189
.191
.191
.191
.191
.192
.193
.194
194
.195

195
«195
-196
.196

«197
«197

.198
.198
<199
.199
.201

Contents 9

Rules for Coding . . . -
Requesting Space for a Data Set .
Specifying the SPLIT Parameter . . «
Requesting Space in Units of
Cylinders + « <« - .
Requesting Space in Units of Blocks
Examples of the SPLIT Parameter . «
The SUBALLOC Parameter « « « « «
Rules for Coding « «
Requesting Space for a Data Set .
specifying the SUBALLOC Parameter .
specifying the Unit of Measurement
Specifying a Primary Quantity . .
Identifying the Original Data Set
Specifying a Seconddry Quantity
Requesting Space for a Directory
Examples of the SUBALLOC Parameter
The SYSOUT Parameter « « « « « o o
Rules for Coding . . .

« @ o o e e

¢ ® e ® @ e e

- .

- ® ® e ® @ =

¢ 8 s 8

Advantages to Coding the SYSOUT

Parameter « o« o« o o o o o o o * = =
The Classname .« w « o o » « « = =
The Program Name€ « « « « o « s = o
The Form NUmber . « « « =« o o o =
Coding Other Parameters With the
SYSOUT Parameter « « o« « « « o =
JOb Separators « « « « o o o o

Examples of the SYSOUT Parame er .

The TERM Parameter -- MVT and TSO
Rules for Coding « « « « « o =
What the TERM Parameter Does .
Examples of the TERM Parameter
The UCS Parameter . « « « o« «
Rules for Coding . . .
Special Character Sets « « « «
Identifying the Character Set
Requesting Fold Mode <« « « « «
Requesting Operator Verification
Examples of the UCs Parameter .
The UNIT Parameter
Rules for Coding . « « «
Providing Unit Information
Identifying the Device
Unit Address . . .
Device Type . .
Group Name . . .
Unit Count
Parallel Mounting
Deferred Mounting
Unit Separation .
Unit Affinity . .
Examples of the UNIT
The VOLUME Parameter
Rules for Coding « w« « « « « o«
Providing Volume Information .
Specific Volume Request .
Nonspecific Volume Request
The PRIVATE Subparameter . .
When PRIVATE Is Not Coded
The RETAIN Subparameter . .
The Volume Sequence Number
Subparameter « « ¢ 4 « ¢ o o o @ o
The Volume Count Subparameter . .

e« o e

s & & s s 8

s & & & o & i o

s 8 ¢ s & & & & 8 3.0 3

%i‘.ll.li‘

s (ke % o o 8 2 4 & 0 s

[\
0

-
.
-
-
-
-
.
-
r
-

s Rje & 2 o s o @

3
& 8 & 8 8 5 8 8 B & 8 & % 4 ® s ¥ B B B 2B & 8 8 6 8 & b &6 0 8 s

s 8 & o b 8 % 3 & & P & 8 8 8 & 8 ¥ & 8
o & & ¢ b 8 8 & 3 s b s s s s 0 s b b oo

s & o &

s 8.6 8 & 8 & & & 3 & o ® B 8 B 8 ° B B B B & 8 6 0 0 e & & @

.« 2201
. 0202
« 202

« «202
203
.20“
.205
«206
«206
«206
.207
«207
«207
208
.208
.209
.211
.211

-211
.212
212
212

.213
.213
.214
.215
.215
.215
.215
.217
.217
.217
.218
.219
.219
.219
.221
.221
.222
.223
.223
.22
.226
.226
.227
.227
.227
.228
.228
.231
.232
.232
.232
.233
.233
.233
.234

« <234
.235

Supplying Volume Serial Numbers (SER) 235

Referring the System to an Earlier
Specific Volume Request (REF) . .
| volume Affinity « « « « ¢ ¢ o o & &
Volume StatesS o« o o o v o o o o o o

10 JCL Reference (Release 20.1)

. «236
« 2237
. <237

The Mount and Use Attributes
Nonsharable Attribute <« « « « « .
Satisfying Specific Volume Requests
Satisfying Nonspecific Volume
REQUESLS « o © = = o « o o 5 @ o o @
Examples of the VOLUME Parameter . . .

SECTION V: THE COMMAND STATEMENT . .
The Command Statement Format « « « « o
Rules for CoAing « « « o« o o « « = .
Commands That Can Be Entered Through
the Input Stream « « «
MF. T - - - - . - - L - - - L] - - -
MVT - - - - - - - - - - - . - - -
Example of the Command Statement . .

- @ ® w e ® =

SECTION VI: THE COMMENT STATEMENT .
The Comment Statement Format « « . «
Rules for COAing « = o« o o o @« o = o

output Listings « « ¢ « « « ¢ o &

Example of the Comment Statement .

SECTION VII: THE DELIMITER STATEMENT
The Delimiter Statement Format . « . .
Rules for Coding . .
Example of the Delimiter Statement .«

a @ & o o . o

SECTION VIII: THE NULL STATEMENT
The Null Statement Format <« « « « « o
Example of the Null Statement .. '

SECTION IX: THE PEND STATEMENT
The PEND Statement Format . .
Rules For Coding « w « « .
Examples of the PEND Statement

e & » &
o« & o @
s & s 0
s & 8 @

SECTION X: .THE PROC STATEMENT
The PROC Statement Format . . « . . .
Rules for Coding
Assigning a Value on a PROC Statement
to a Symbolic Parameter « « « o =« o «
Examples of the PROC Statement . « .« «
SECTION XIS APPENDIXES <« o ¢ o @« o
APPENDIX A: CATALOGED AND IN-STREAM
PROCEDURES « o o« @ @ o o o o o o o o o
USING CATALOGED AND IN-STREAM
PROCEDURES + « « « - .« « o
How To Call a Cataloged Procedure o« o
How to Call An In-stream Procedure . .

«237
.240

«240

. 240
241

<243
243
«243

. 244
<244

<245

246

247
-247
247
<247
-247

«249
.249
.249
.249

.251
.251
«251

«253
.253
253
.254

«255
.255
.255

«256
«257

.259
.261

.263
.263
.263

Assigning Values to Symbolic Parameters 264

Mullifying a Symbolic Parameter
Example of Assigning Values to
Symbolic Parameters .
Overriding, Adding, and Nullifying
Parameters on an EXEC Statement . . .

Ooverriding EXEC STATEMENT Parameters

Adding EXEC STATEMENT Parameters . .

Nullifying EXEC. STATEMENT Parameters
Examples of Overriding, Adding, and
Nullifying Parameters on an EXEC
Statement . . . o
Overriding, Addlng, and Nulllfylng
Parameters on a DD Statement

Overriding DD STATEMENT Parameters .

Adding DD Statement Parameters

. s

» ® 6 e e e & e

.266
.267
.269

.269
.271

«271

.272

.273
«273
275

Nullifying DD STATEMENT Parameters . .276
Examples of Overriding, Adding, and
Nullifying Parameters on a DD Statement 277

oOverriding DD Statements That Define

Concatenated Data Sets . « o« o o « « » 2279
Adding DD Statements to a Procedure . .279
Examples of Adding DD Statements to a
ProcedUre .« o« o o o « o o o o o o o o 2280
WRITING PROCEDURES: CATALOGED AND
IN-STRERAM 4« o « o o « o o o « = e o «282
Why Catalog Job Control Statements « « «282
Why Use In-Stream Procedures . . « . « .282
The Contents of Cataloged And
In-stream Procedures . « . « « « o . 282
Using Symbolic Parameters in a
Procedure . « o« o o = o o @ e « o «283
Adding and Modifying Cataloged
ProceduUres o« « « « = o« o « o« o = o « 2285
APPENDIX B: USING THE RESTART
FACILITIES o« o o o o o o o o = « o « « 2287
REStAYES « o o o o = « o ©« » o o « o =« 2287
Automatic Step Restart « « « « « o o <287
Automatic Checkpoint Restart287
Deferred Step Restart . . « « « . . .287
Deferred Checkpoint Restart288
Examples of Using the Restart
FAacilitiesS o o« o o o o « o o o o o » o« 2290
APPENDIX C: CREATING AND RETRIEVING
INDEXED SEQUENTIAL DATA SETS o « « « « 2293
Creating an Indexed Sequential Data Set 293
The DSNAME Parameter « « « = « « » « 294
The UNIT Parameter . « « « « o « « o 229
The VOLUME Parameter . « o « « « =« - 2294
The LABEL Parameter . « « . « « « « .29
The DCB Parameter . « « « o « « o o« 295
The DISP Parameter . « « « « = « « « 2295
The SPACE Parameter . . e o o o 2295
Nonspecific Allocation Technlque .« «295
Absolute Track Technique . . . « . .296
The SEP or AFF Parameter . . . « « . .296
Area Arrangement of an Indexed
Sequential Data Set . + « « « . . .« «296
Retrieving an Indexed Sequential Data
SEL ¢ ¢ 4 4 e e e e e e s e e = o e o 298

DSNAME Parameter
UNIT Parameter .
VOLUME Parameter

The DCB Parameter .

The DISP Parameter .
Example of Creating and Retrieving
Indexed Sequential Data Set . « « .« .

The
The
The

LI N R)
8 o 8 0
L S S
LI S S 1

s & 4 s s
s & & s @

e« o o e

APPENDIX D: CREATING AND RETRIEVING
GENERATION DATA SETS « « o o ¢ o o o o
Before You Define the First Generation
Data set - - - - - - - - - - - - - - -
Creating a Model Data Set Label .

Referring the System to a

Cataloged Data Set . o « « « « «
Creating a Generation Data Set . . .
The DSNAME Parameter o« o
The DISP Parameter . . . N
The UNIT Parameter
The VOLUME Parameter . . -
The SPACE Parameter . . -
The LABEL Parameter . . -
The DCB Parameter . « . "
Retrieving a Generation Data S
t

e o 3 & &
s & & o & 3 & s s s

The DSNAME Parameter .
The DISP Parameter . .
The UNIT Parameter . .
The LABEL Parameter .
The DCB Parameter
Resubmitting a Job for Restar
Example of Creating and Retrieving
Generation Data Sets « « « « « &

I B R)
. . (0]
L I N ' T Y I

o & & o b & b 8 8 b s s
e & 8 & & & & s 8 v s s &

APPENDIX E: DEFAULT PARAMETER VALUES
SUPPLIED IN THE INPUT READER PROCEDURE
How To Keep Track of the Default
Values and Restrictions . « « « « « «

APPENDIX F: A CHECKLIST &« « o = o o «
EXampleS ¢« o o o o o o o o o o o o « o

SECTION XII: GLOSSARY « 2 o o « o« o o
INDEX ¢ o o« o o @ o o o o s o o o o &«

SECTION XIII: CONTROL STATEMENT
FOLDOUT CHARTS « ¢ « = = « o o o o« o =

Contents

.298
.298
.298
.298
<299

«299

. 301

.301
.301

.302
.302
.302
.302
.303
.303
.303
.303
.303
.304
.304
.304
.304
.304
.304
.304

«305

.307
307

.311
.313

.317

.327

.341

11

Illustrations

Figures

Fiqure 1. Control Statement Fields . 20
Figure 2. Character Sets e e o o = =« 25
Figure 3. Coding Form for Coding

Control Statements e o o o o o o o o o 27
Figure 4. How the Data Control Block

Is Filled o o o o o o o = o o s « »« « 2138

Tables

Table 1. Disposition Processing Chart 170
Table 2. Combinations of Mount and

Use Attributes « o o « o ¢ o = o o o - 2239
Table 3. Area Arrangement of Indexed
Sequential Data SetS « o o o o o « o o 4297

12 JCL Reference (Release 20.1)

Table 4.

Default Values and

Restrictions Supplied in the Input
Reader Procedures . .

Table 5.

A Checklist

®

art

1 of 3

-

)

309
.311

Summary of Major Changes

Release 20.1

The Release 20.1 changes listed below are described in this manual. They are indicated
in the text by a vertical line to the left of the change.

Item Description Arxeas Affected

Support for The 2305-1, 2305-2, 2319, and 3330 direct 151,224
2305-1, 2305-2, |access devices have been added to the section |
2319, and 3330 |on the UNIT parameter. 3%, a character coded in |
| the subparameter OPTCD of the DCB parameter, has|
|an additional meaning when referring to input |
|from a direct access storage device. |
1 {
1

T

Support for 3211 |The 3211 printer has been added to the section 106,179-180,
|on the UNIT parameter. FCB, a new parameter to 225,319
|be coded on the DD statement, allows you to |
| specify forms control information. The UCS
| parameter can also be coded for the 3211;
| character set codes to be specified in the UCS
| parameter for the 3211 printer have also been
| added.
4

+ :
Removal of PCP |All references to the Primary Control Program
information |have been removed. All information in this
|manual now applies to systems with MFT or MVT,
. |unless restrictions are specifically noted.
4

T
b e e e e el e e e et e T e o e, — e i e

e oo

summary of Major Changes -- Release 20.1 13

Release 20

Item

Description

[B
P

ASCII Support

All references to USASCII have been changed to
ASCII (American Standard Code for Information
Interchange). In the DCB subparameter BLKSIZE,
you can specify the minimum and maximum lengths
|for blocks of ASCII records on magnetic tape. D
Jand DB can be specified as values for the RECFM
|subparameter of the DCB parameter; D means that |
the ASCII records are of variable length and DB
means that the ASCII records are of variable
length and that they are blocked. A new DCB
subparameter BUFOFF allows you to specify a
|buffer offset for a block of one or more ASCIIX

| records on magnetic tape. Q can be specified as
|a value for the DCB subparameter OPTCD; Q
|specifies that translation from ASCII input to

| EBCDIC is required or that translation from

| EBCDIC to ASCII output is required. AL and AUL
|are new values for the LABEL parameter; AL
|s'pecifies that the data set has American
|National Standard labels and AUL specifies that

| labels and American National Standard user
| labels. :
4

Dynamic Allocation
Support for TSO

L]

|DYNAM, a new DD statement parameter, allows you
jto defer definition of a data set until you
|require it.

L

NOTIFY Parameter

|
|
|
|
|
|
|
|
II
|the data set has both American National Standard|
|
|
|
|
|
|
1
|

[}

NOTIFY, a new JOB statement parameter, indicates
to the system that you are requesting that a
|message be sent to your time sharing terminal
| when your background job completes. |

NOPWREAD Subparameter|NOPWREAD, a new subparameter of the LABEL

parameter, specifies that a data set can be read
jwithout a password, but that the operator must |
give the password before the data set can be
written in or. deleted.

i i

1 3 1}

| TERM Parameter | TERM, a new DD statement parameter, allows you
| |to-identify a job as a time-sharing task.

1 [

L)

|155/7165

|Model Dependency
[

} .
|3210 and 3215 printer-keyboards have been added
| to the section on the UNIT parameter. ,

1 3

fChanges to Support
| TCAM (Telecommuni-
jcations Access
|Method)

|

TQNAME, a new parameter for the DD statement,
|allows you to access messages received by means
jof TCAM for processing by an application
|program. Seven new subparameters have been
|added to the DCB parameter: BUFIN, BUFOUT,

| BUFMAX, BUFSIZE, PCI, RESERVE, THRESH. In
|addition, five other subparameters of the DCB

| parameter may also be used with TCAM: BLKSIZE,
| BUFL, LRECL, OPTCD, RECFM.

i

Input/Output
Recovery Management
Support

L

r .

| The command SWAP has been deleted from the list
|of commands that can be coded on the command -

| statement.

L

e e s et it i O s, e s — a—— — —) w— e gy T——

14 JCL Reference (Release 20.1)

Release 19

r T 1
] Item | Description |
L L d
) L| T
|System Management |The TIME parameter on the JOB and EXEC state- |
|Facilities Subset 1 |ments now applies to MFT as well as MVT. |
L 1 .’
1 3 R T
System Management	OUTLIM, a new parameter on the DD statement
Facilities Subset 2	that specifies SYSOUT, allows you to limit the
	number of logical records you want included in
]]an output data set.	
[1 4	
3 T .’	
Input/output	REPOS, a new DCB subparameter that specifies
Recovery Management	[repositioning for tape devices, has been added.
Support	A new command, SWAP, that allows Dynamic Device
i	Reconfiguration of two volumes has been added.
t [,’	
r - LI . .	
{Data Managenment	Two new values for BFTEK, a DCB subparameter,
Support for American	have been added. A specifies record area
National Standard jbuffering; R specifies record buffering.	
COBOL	-
k + 1	
j2495 Tape Cartridge	2495 is now supported.
Reader ,	
- - : - 2]
Optical Readers VOLUME=SER=OCRINP is assumed for Optical Readers|
| if no volume serial number is specified. 1285, |
| 1287, and 1288 Optical Readers are now {
supported. O and H are new values for DCB
subparameter OPTCD. O specifies on line
correction for Optical Readers; H requests
hopper empty exit for Optical Readers.
1419 Magnetic Tape 1419 and 1275 are now supported.
Reader and 1275 | |
Optical Reader Sorter|
J .
Recognition of 1B, a new value for DCB subparameter OPTCD,
| EOF on Input |requests that end-of-file recognition be |
| |disregarded for tapes. |
L L J
¥ i] 1
| ISAM Improvements |Foxr ISAM, a newly created data set can now |
| |overlay an older one -- reusing the space. The |
| | independent overflow area of an ISAM data set |
| |can now be on a different device type from the |
| |prime area. |
L L . J
(continued)

summary of Major Changes -- Release 19 15

Release 19 (continued)

T [} .
|Blocksize Adjustment |If the BLKSIZE parameter for a SYSOUT data set
|for Sysout Data Sets |is not an integral multiple of and larger than

| |the logical record length, it is adjusted.
L i

3

Item Description i

J

L}

|Direct System) |In MFT and MVT, an output data set can now |

jOutput Facility |be written directly to the desired unit record |

| , jor magnetic tape device. ‘ |
4

t 1

Seven-Track Tape |The default for 7-track tape is now 800 |

Default of 800 BPI |bits-per-inch. |
i

- 1 1

DD DUMMY Substitu- |A data set that is not needed after restart can |

tion at Restart |be defined by coding the DUMMY parameter. |
L

1 1

In-Stream Procedures |A facility has been added that allows procedures|

| jto be included in the input stream of a job. |
L 1

¥ 1 : : {

|Main Storage |If you code the REGION parameter and request {

|Hierarchy Support, | storage only from hierarchy 1, no hierarchy 0 |

|MVT Extension |segment is allocated. |

1 . (]] {

|

I

|

]

16 JCL Reference (Release 20.1)

The Format of This Publication

This publication is designed for easy reference. The first section of
this publication contains information that is common to all job control
language statements; for instance, one of the topics in this section is
how to continue a field onto another control statement. You may want to
review Section I from time to time.

Sections II through X contain descriptions and examples of the
different control statements. The job control statements are described
in the following order:

1. The JOB statement.

2. The EXEC statement.

3. The DD statement.

4. The command statement.
5. The comment statement.
6. The delimiter statement.
7. The null statement.

8. The PEND statement.

9. The PROC statement.

" Each statement description includes the purpose of the statement and
rules for coding the statement. Notice that the JOB, EXEC, and DD
statements are described first, in the order in which they normally
appear in the input stream. The remaining statements are described in
alphabetical order.

The statement description for the JOB, EXEC, and DD statements is
followed by a chapter on assigning a name in the name field of the
statement and a chapter for each positional and keyword parameter that
can be coded on the statement. The chapters on positional parameters
appear before the chapters on keyword parameters, Both positional and
keyword parameters are described in alphabetical order.

The format of the positional or keyword parameter appears at the
beginning of the chapter. Each subparameter is then described briefly.
The text following the format description of the parameter describes the
purpose of the parameter and each subparameter. Each chapter ends with
examples on the use of the parameter and its subparameters.

Section XI consists of Appendixes A through F. These appendixes
include:

1. Appendix A: Cataloged and In-stream Procedures

2. Appendix B: Using the Restart Facilities

3. Appendix C: Creating and Retrieving Indexed Sequential Data Sets
4. Appendix D: Creating and Retrieving Generation Data Sets

5. Appendix E: Default Parameter Values Supplied in the Input Reader
Procedure

6. Appendix F: A Checklist
Section XII is a glossary of terms used in this publication.
Section XII1I, which follows the index, is a set of foldout charts.
These charts show the format of JOB, EXEC, and DD statement parameters.

The Format of This Publication 17

Section I: Programming Notes

Notation for Defining Control Statement Parameters

The formats of the parameters described in this publication for the JOB,
EXEC, and DD statements appear at the beginning of the chapter on the
corresponding parameter. Notations used in the format descriptions are
described below.

1. Uppercase letters and words are coded on the control statement
exactly as they appear in the format description, as are the
following characters.

ampersand
asterisk
comma

equal sign
parentheses
period

* ™

¢ alfls
[

2. Lowercase letters, words, and symbols appearing in the format
description represent variables for which specific information is
substituted when the parameter is coded.

For example, PRTY=priority is the format description for the PRTY
parameter. When you code the PRTY parameter on a JOB statement,
you substitute a number for the word "priority."

3. Braces { } are a special notation and are never coded on a control
statement. Braces are used to group related items; they indicate
that you must code one of the items.

For example, | TRK is part of the format description
CYL
block size

for the SPACE parameter. When you code the SPACE parameter, you
must code either TRK, CYL, or a substitute for "block size," which
would be a number. :

4. Brackets [] are a special notation and are never coded on a
control statement. Brackets indicate that the enclosed item or
jtems are optional and you can code one or none of the items.

For example, [,DEFER] is part of the format description for the
UNIT parameter. When you code the UNIT parameter, you can include
.DEFER in the UNIT parameter or omit it.

An example of more than one item enclosed in brackets is

EXPDT=yyddd |, which is part of the format description for the
RETPD=nnnn

LABEL parameter. When you code the LABEL parameter, you can
~include either EXPDT=yyddd or RETPD=nnnn in the LABEL parameter or
omit both. ' '

Sometimes, one of a group of items enclosed in brackets is a comma.

You code the comma when none of the other items in the group is
used and a following part of the parameter is still to be coded.

Section I: Programming Notes 19

The comma indicates to the system that you have not selected to
code any of the items enclosed in the brackets.

For example, [,progneme][,form numberl) is part of the format

' description for the SYSOUT parameter. When you code the SYSOUT
parameter, you have the option of coding both ",progname"™ and
* ,form number”, omitting both, or coding only one. The comma
enclosed in brackets with ",progname®™ must be coded when
" .progname” is not coded but ", form number" is coded; that is, you
would code: ,,form number).

5. An ellipsis «s. (three consecutive periods) is a special notation
and is never coded on a control statement. An ellipsis is used to
indicate that the preceding item can be coded more than once in
succession.

For example, COND=((code,operator),...) 1is the format description
for the COND parameter on the JOB statement. The ellipsis
indicates that (code,operator) can be repeated.

Fields in Control Statements

Every control statement is logically divided into different fields.
There are four fields -- name field, operation field, operand field,
comments field -- but not all of the control statements can contain all
of these fields. Figure 1 shows the fields for each statement.

[} T q
| Columns : |

Statement | 1 and 2 Fields |

F + + {
|Job /7 | name operation(JOB) operand® comments® |
| Execute // | name®* operation(EXEC) operand comments?i |
Data Definition 7/ name! operation(DD) operand comments?* |
PROC(Cataloged) /77 namel operation(PROC) operand comments?i |
PROC (in-stream) /7 name operation (PROC) operand® comments2|
|Procedure end | Vo4 |name? operation(PEND) comments? |
Command 7/ operation(command) operand comments |
Delimiter /% comments? |
| Null | 7/ |
1 4

Statement |Columns 1,2,3 Field |

+ : 1

Comment | //* | comments i
i L 4

1

ioptional |
20ptional -- If operand(s) are not coded, comments cannot be coded. If|
| operand(s) are coded, comments are optional. |
L 4

Figure 1. Control Statement Fields

The name field identifies the control statement so that other
statements and system control blocks can refer to it. The name field is
1 to 8 alphameric and national (#, @, $) characters; the first character
must be alphabetic or national. The name field must begin in column 3.

The operation field specifies the type of control statement, or, in
the case of the command statement, the command. The operation field
must follow the name field and must be preceded and followed by at least
one blank.

20 JCL Reference (Release 20.1)

The operand field contains parameters separated by commas. The
operand field must follow the operation field and must be preceded and
followed by at least one blank. The operand field is described in more
detail in the next chapter "Parameters in the Operand Field."

The comments field contains any information deemed helpful by the
person who codes the control statement. The comments field must follow
the operand field and must be preceded by at least one blank. '

Control statement fields -- except the name field, which must begin
in column 3 -- can be coded in free form. Free form means that the
fields need not begin in a particular column. Separate each field with
a blank; the blank serves as a delimiter between fields.

Except for the comment statement, which can be coded through column
80, fields cannot be coded past column 71. If the total length of the
fields will exceed 71 columns, you must continue the fields onto one or
more succeeding statements. How to continue fields is described in the
chapter "Continuing Control Statements."

Some examples of how the different fields appear on control
statements are:

Columns :
123
Name Operation Operand . Comments
/ / JOB8 JOB MSGLEVEL=(1,1) ‘ THE FIRST STATEMENT IN JOB
/ / STP1 EXEC PCGM=PROG4,REGION=80K EXECUTES PROGRAM NAMED PROG4
/ / WORK DD UNIT=2400 DEFINES A TEMPORARY DATA SET

Parameters in the Operand Field

The operand field is made up of two types of parameters: one type is
characterized by its position in the operand field in relation to other
parameters (a positional parameter); the other type is positionally
independent with respect to others of its type, and is characterized by
a keyword followed by an equal sign and variable information (a keyword
parameter). Both positional parameters and the variable information
associated with keyword parameters can assume the form of a list of
several items (subparameters) of information.

All positional and keyword parameters and subparameters coded in the
operand field must be separated from one another by commas.

Positional parameters must be coded first in the operand field in a
specific order. The absence of a positional parameter is indicated by a
comma coded in its place. However, if the absent parameter is the last
one, or if all later positional parameters are also absent, you need not
code replacing commas. If all positional parameters are absent from the
operand field, you need not code any replacing commas.

Keyword parameters can be used anywhere in the operand field with
respect to one another. Because of this positional independence, you
need not indicate the absence of a keyword parameter.

A positional parameter or the variable information in a keyword
parameter sometimes assumes the form of a list of subparameters. Such a

Section I: Pfogramming Notes 21

list may be composed of both positional and keyword subparameters that
follow the same rules and restrictions as positional and keyword
parameters. You must enclose a subparameter list in parentheses, unless
the list reduces to a single subparameter.

The EXEC statements and DD statements in cataloged procedures can
contain one other type of parameter -- a symbolic parameter. A symbolic
parameter is characterized by a name preceded by an ampersand (§); a
symbolic parameter stands as a symbol for a parameter, a subparameter,
or a value. Symbolic parameters allow you to make any information in
the operand field of a procedure EXEC statement or DD statement
variable. A value to be assumed by a symbolic parameter may be coded on
the EXEC statement that calls the procedure. This value is in effect
only while the procedure is being executed. For a detailed discussion
on how to assign values to symbolic parameters, refer to the chapter
"Assigning Values to Symbolic Parameters" in Appendix A; for a detailed
discussion on how to use symbolic parameters in a set of control
statements that you plan to catalog as a procedure, refer to the chapter
"Using Symbolic Parameters in a Procedure"™ in Appendix A.

Continuing Control Statements

When the total length of the fields on a control statement will exceed
71 columns, you must continue the fields onto one or more succeeding
statements.

The command, comment, delimiter, and null statements cannot be
continued.

You can continue the operand field or the comments field. To

continue either of these fields, you must follow the continuation
conventions.

To continue the operand field:

1. Interrupt the field after a complete parameter or subparameter,
including the comma that follows it, at or before column 71.

2. Comments can be included by following the 1nterrupted field with at
least one blank.

11-20 21-30 7i-80
BE!HEEIEEEIIEBBEGHBEEIIEJE]E]BBIBEEHEBBBEIEBEHEBEIBEIBBEJIIEBE]BEIEEEHBEHEBIEEEHEBHBEIBE 0]

1/) SMAME= 3.3, R & &, 7 TesTRL |\ 0 1,

3. Optionally, code any nonblank character in column 72. (The
nonblank character in column 72 is required only when you are
continuing a comments field.) If you do not code a character in
column 72 when continuing the operand field, the system treats the
next statement as a continuation statement as long as you follow
the conventions outlined in items 4 and 5.

22 JCL Reference (Release 20.1)

[1-10 11-20 21-30 l 31—-40 4]1-50 51— 60 81-70 71-80
i" ARCREUEE IR BEEHEEONARNEEEHEEOCNANAEHE a]j’{tr'l'[sa o[iZ3 ammamnaamaanmamnaamaﬂm@mnsanaanma
/DD DD\ DSWAME =PROBS3 8.8, Dt SA=NEM, KELA, DELETED,, DATA \SET FOR TESTEL | X

4. Code the identifying characters // in columns 1 and 2 of the
following statement.

1-10 - - = 71580
1T2[3[4[5]e[7[8]o[0]1[2[3[a[s[e]7[e]olol 1 [2[3[a[s[el7I8[S[ol 1 [2[3[4[5 e[7I8]8]0 1 [2[3]4l5]6]7[818[0 1 12[3]a[516[78[o]0[1 T2[3[4]5[6[7[89[0] i [2]3]4]5]e]7[8IS]0

7/ WA B I I IS B IV ISV IV IUPUIT BN I R S

5. Continue the interrupted operand beginning in any column from 4
through 16. If you leave the statement blank after column 2 or if
you begin coding after column 16, the system assumes that no other
operands are present and treats any characters you code as a
comment field.

1-10 -
iT2[3]a]5le[71eIslo]112[3[a[s[67[e[s o[TT2[3]a[5[e[7[e[s o] 1 f2[3[4[5[e[7[8[S[o[i [2[3[4[5[6[7 B[SOl [2

/ (T231 1 E= 7.84,.8 I S0

To continue the comments field:

1. Interrupt the comment at a convenient place before column 72.

1-10 ~_1=20 21-30 31-40 4i-50 51—60 71-80
EREEFEEO EREREEFEEOZERERIERb ZERskrERR ZERIseTIEE0l PRRISE T eE0 2 ERSEBRl RISk R0
[/STECI, EXEC PoM=ALI I, RESIoM=8bK, RD=R, DPRT Y= (13,142), RESULTS, @A TEST .\ 1.1

2. Code a nonblank character in column 72.

[/ STEPL, , |EXEC \PeN= AL, REGLOMs =R, DPRTHA=Cr3.,02), RESULTS, oF TEST,

3. Code the identifying characters // in columns 1 and 2 of the
following statement.

T 11-20 | 21-30 71-80
S[o[1[2[3[45[6[7T8[s[ol 1123 EBlEmmu@lIEEIEE]EIIBIBBBIBEmllE'!BHEEIBEEIIEBﬂﬁﬂlﬁﬂmnﬂﬂﬂﬁﬂlmﬂ

| 7 A B T U B I I ST S AP VNI PP I S S B
] } } - ! - !

4. Continue the comments field beginning in any column after column 3.

QUNEBEEG o
M@ML@MM_&Q&EKI.M...I.HA..‘.|....|1#..|....|....1‘...

Section I: ' Programming Notes 23

Any control statements in the input stream, other than a comment
statement, that the system considers to contain only comments have //#%
in columns 1 through 3 on an output listing. Any control statements in
a cataloged procedure, other than a comment statement, that the system
considers to contain only comments have XX* in columns 1 through 3 on an
output listing. For a comment statement, *** appears in columns 1
through 3 on an output listing.

Backward References

A facility of the job control language allows you to refer the system to
an earlier DD statement in the job for certain information. A backward
reference is of the following forms:

e parameter=*.ddname -- use this form when the earlier DD statement is
contained in the same job step.

e parameter=#*.stepname.ddname -- use this form when the earlier DD
statement is contained in an earlier job step.

e parameter=#*,stepname. procstepname.ddname -- use this form when the
earlier DD statement is contained in a cataloged procedure called by
an earlier job step. ("Stepname" is the name of the step that calls
the procedure.)

You can use the backward reference facility only with certain
parameters. These parameters and the information the system obtains
when the backward reference facility is used are:

e PGM -- the data set that contains the program to be executed in this
job step. ,

®» DCB -- all DCB subparameters coded on the earlier DD statement. (If
you code any DCB keyword subparameters following the backward
reference, these subparameters override any of the corresponding
subparameters coded on the earlier DD statement. If a DD statement
defines an existing data set and contains a backward reference in
the DCB parameter, the system copies only those subparameters from
the earlier DD statement that were not previously specified for the
existing data set.)

e DSNAME -- the name of the data set being defined on this DD
statement.

e VOLUME=REF -~ the volume serial number(s) on which the data set
resides or will reside; unit information is also obtained by the
system.

Concatenating Data Sets

Up to 255 sequential or up to 16 partitioned input data sets, each of -
which may reside on a different volume, can be logically connnected for
the duration of a job step. To concatenate data sets, simply omit the
ddnames from all the DD statements except the first in the sequence.
When this ddname is encountered in a data control block in the
processing program, each data set is automatically processed, in the
same sequence as the DD statements defining them.

If concatenated data sets have unlike characteristics, e.g., the
device types, block lengths, or record formats differ, the DCBOFLGS

24 JCL Reference (Release 20.1)

field of the data control block must be modified while the ptogram is
executing. For details, refer to the topic "Concatenating Sequéntial
and Partitioned Data Sets"™ in the Supervisor and Data Mangement Services

publication.

If you make a backward reference to a concatenation, the system
obtains information only from the first data set Jdefined in the
sequence.

You should not concatenate other data sets to a data set you have
defined using the DUMMY parameter. When the processing program asks to
read a dummy data set, an end-of-data-set exit is taken immediately and
any concatenated data set is ignored.

The following example illustrates a group of DD statements defining
concatenated data sets, including a data set in the input stream.

//INPUT DD DSNAME=A.B.C, DISP=(OLD,DELETE)

V4 DD DSNAME=X.Y.Z, DISP=0OLD,LABEL= (,NL)
/7 DD DSNAME=ALPHA, UNIT=2311, VOLUME=SER=P12, DISP= (OLD, DELETE)
// DD *
data
/*)

Character Sets

Job control statements are coded using a combination of the characters
from three different character sets. The contents of each of the
character sets are described in Figure 2.

Character Set Contents

——

A through Z

Alphameric
' 0 through 9

Alphabetic
Numeric

——

"At" sign a
Dollar sign
Pound sign

National

3*Ur

T
|
I
4
¥
|
|
|
4
1
Comma |
Period |
Slash {
Special Apostrophe |
Left parenthesis l
Right parenthesis |
Asterisk |
Ampersand |
Plus sign |
Hyphen |
Equal sign |
Blank 1

s St maem S s B s G e, S g W s G, W . S S e, S o
1+~ a0

T e S RSy SIS R SHpe——

Figure 2. Character Sets

Section I: Programming Notes 25

When you code any special characters, certain rules must be followed.
These rules and the use of special characters are described next.

Using Special Characters

Special characters are used in the job control language to:

1. Delimit parameters (the comma).

2. Delimit fields (the blank).

3. Perform syntactical functions. (For example, the appearance of &€
as the first two characters following DSNAME= tells the system that
a temporary data set name follows. The appearance of / in the UNIT
parameter, UNIT=293/5, tells the system that a specific 2321 bin is
desired.)

Sometimes you can code a special character that does not satisfy one
of the three uses of special characters. In most of these cases, you
must indicate that special characters are being used by enclosing the
item that contains the special characters in apostrophes (5-8 punch),
€.g., ACCT="123+456". If one of the special characters is an
apostrophe, you must code two consecutive apostrophes (two 5-8 punches)
in its place, e.g., 'O''NEILL'.

The following list contains those parameters that can have special
characters as part of their variable 1nformat10n, and indicates when the
apostrophes are not required.

1. The accounting information on the JOB statement. The account
number and additional accounting information can contain hyphens
without being enclosed in apostrophes.

2. The programmer's name on the JOB statement. The programmer's name
can contain periods without being enclosed in apostrophes.

3. The checkid field in the RESTART parameter on the JOB statement.

4. The ACCT parameter on the EXEC statement. The ACCT parameter can
contain hyphens without being enclosed in apostrophes.

5. The PARM parameter on the EXEC statement.

6. The DSNAME parameter on the DD statement. The DSNAME parameter can
contain hyphens without being enclosed in apostrophes. If the
DSNAME parameter contains a qualified name, it can contain periods
without being enclosed in apostrophes. If the DD statement
identifies a generation of a generation data group, the generation
number in the DSNAME parameter can contain a plus or minus (hyphen)
sign without being enclosed in apostrophes. If the DD statement
defines a temporary data set, the DSNAME parameter can contain, as
the first two characters, ampersands without being enclosed in
apostrophes. If the DD statement defines a member of a partitioned
data set, a generation of a generation data group, or an area of an
indexed sequential data set, the DSNAME parameter contains
parentheses that enclose the member name, generation number, or
area name; these parentheses are not enclosed in apostrophes.

7. The volume serial number in the VOLUME parameter on the DD

statement. The volume serial number can contain hyphens without
being enclosed in apostrophes.

26 JCL Reference (Release 20.1)

Coding Form

For your convenience in coding control statements, you can use Form
N74167, a punch card containing formatted lines, each representing a
different type of statement. (See Figure 3.) Some of the lines can be
used for concatenations, overrides, and continuation statements.

123456 78 91011121314 1516 17 18 19 20 21 2223 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72|73 74 1576 77 78 79 80|
/ —
/ T 2[3 Jobname -Vor. O TiZ" T4 Ti& JOB Statemeni Operands 1D/SEQ

e
1/ n i llg_l E{X]E(C

7 EXEC Statement Operands 00000000

EXEC Statement Operands

00000100

; g
B /
X
lor| 3
] 6
o
~ [o]
r
o |2 7] EXIELC ;
3~ ddname - Var.
DD Statement Operands fﬂ’ 5 00000200 ~cl)
2l I4Il1 (Jflc Tenatigns) % 4 B
or Concatanatigns 7
or A oo Qr DD Statement Operands ¢ 00000300
N C
3 Stepname . ddname~-Var. 21 24 DD Statement Operands (This statement 7 o]
or 00000400
/G%%LH%A#TIH ||lﬂb” 4 N
‘iome -Vor,Opfior K " PROC Stotement Operands 1 T
00000500
/At PROC 8 R
[iter Statement Comments
/% Delimiter em: 00000600|L
[4 Command varb-var | |13 d Staf
Command Statement Operands . 00000700|S
/7 T
3 (Fixed)
xe Biank Null Statement 00000800|A
/7 T
0 T T Siat T €
7 /¥ : s 000009 00|y
/) S Confinuation Statements { For all above except Dehmiler, Command, Null, Comment Stalements) ‘E 06001000 E‘
- L T
'8 ,) 314 Continued Operands From Preceding Statement, Starting Before Column 17 g 0000 1100|S
E 123456 78 91011121314 1516 171819 20 21 2223 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 38 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 7576 77 78 79 80}
k—)vurioble Fields Shorter Than Maximum as Shown, Allow Left Justification of Fields That Foliow. 1BMN 74167

Figure 3. Coding Form for Coding Control Statements

Section I: Programming Notes 27

Section II: The JOB Statement

The JOB statement marks the beginning of a job and, when jobs are
stacked in the input stream, marks the end of the control statements for
the preceding job. The JOB statement must contain a valid jobname in
its name field. All parameters in its operand field are optional,
unless your installation has established that the account number and the
programmer's name parameters must be coded. If no parameters are coded
in the operand field of the JOB statement, no comments can be coded on
the statement.

- JOB Statement Format

[/;/jobname JOB operands comments

The JOB statement consists of the characters //, in columns 1 and 2, and
four fields -- the name, operation (JOB), operand, and comments fields.

Rules for Coding |

Follow the order listed below when coding the JOB statement:

1. Code the characters // in columns 1 and 2.

1-10 11-20 21-30 31-40 4
112134 [5le[7I8[8[ol 1 23[4[8Tel7[els ol i f2[3{al5el7[8Io0] 1 [23[4T51617[8]o]0l1 [2[3]4

1-50 51-60 6i~70 71-80
BEIBEEHBQWEBIBEEHBHEBBEEEEBEB!BBEEEq

/«Ix|.|xL..IL.|.11..|lL.A|4__||..A!.|J.I|A4.!J_L.‘l....!.»..I....l..LLl....!.lJ,I..
t

2. Select a name for the job; code that name, starting in column 3.

=10] 7180
1J2[3[a[5]e[7]8Io[o{ 1]2[3[4[6]6]7]8[olo[I [2[3]45]6[7[e]e]o]1 [2[3]4]5[6]7I8[o]o] 1 [2[3[al5[6[7[8[slol 1 T2[3]4[56]7]8[]0[1 [2[3]4[5[6]7[8[]o] 1 [2[3[4[5[e[7[e[9]0]

LN 2 Y A B EN W D T B S I S I IS S NP W

3. Follow the jobname with at least one blank.

4. Code JOB.

=10 21-30 S5i-60 61-70 7!-80
[2[3[4[5]e[7I8[S[o] 1T2[314[5]67 8o [o] 1 [2[3]4]5]el7[e[sIoli [2[3]4T51e[7[8l8I0] T [2I3[AlET6 [7[8]s0] T2 [BIAlST6] 7Ia[elo] 1 [2[3[aIsel7[E[e[o 1 [23alST6 7 I8 o10)

A/CALC JOB (0 n e e e e

5. Follow JOB with at least one blank.

Section II: The JOB Statement 29

6. Code any desired p051t10na1 parameters. Separate each parameter
with a comma.

lEBHEGEEQEUEBH5EIBEEHEBﬂ@ETEEEﬂEE!QEIEBEHBﬁﬂEEIEBEBEEHEEIEEEUEBBEB

5
WlCALC ToB ' C. LZ,K,MM'...l....!.‘..1....g..“|....g....|.‘..g.u.x....g....l...,

7. Code any desired keyword parameters. Separate each parameter with
a comma.

1-10 7i-80
l2BEBBIQEEHEEHBBIDEEDEEBEEIEEEHEEBBBIEEEUBBHEElBEEHEEEHEIEE@BBBHEEIEEEHEEBBEIBEO

LICALE, ToB 310Gt BROWW , HSi6.L EVEL= (R 1)y REGTONZ00K | o Ve Ll a ity

8. Code at least one blank.

9. Code any desired comments.

I-10) . 5i~60 61-70 71-80
IEBHBEIBBEDEBEBBIBBEﬂEBﬂBBIﬂEEﬂEBﬂEBIﬁEEﬂﬂBHEEIEEEﬂBBEBEIEEEHBEEBBIGEEHEEEBBIBBO

L1CALC TOB ;' Lt BROWN NS6LEVEL 5 R01), RECI.ON=100K DEPT. | 83, RuN NP B N I

Positional and Keyword Parameters

There are two types of parameters that can be coded on the JOB
statement:

Positional parameters, which must precede any keyword parameters and
must be coded in the following order:

accounting information
programmer's name

These positional parameters are described in the following pages in the
order listed above.

Keyword parameters, which may be coded in any order after the positional
parameters. BAny of the following keyword parameters can be coded on the
JOB statement:

CLASS

COND

MSGCLASS
MSGLEVEL

NOTIFY (MVT with TSO)
PRTY

RD

REGION (MVT only)
RESTART

ROLL (MVT only)
TIME

TYPRUN

These keyword parameters are described, after the positional parameters,
in the order listed above.

30 .JCL Reference (Release 20.1)

Sample JOB Statements

1.
2.
3.

a.

//ALPHA JOB
//L0s JOB
//MART JOB

//TRYS8 JOB

843, LINLEE, CLASS=F, MSGLEVEL=(1,1)

s BROWNLY, REGION=90K, TIME=(4,30),MSGLEVEL=(2,0)

1863, RESTART=STEP4

Section II:

The JOB Statement 31

Assigning a Jobname

(/;/jobname JOB

You must assign a name to every job submitted for execution. The
jobname must begin in column 3 of the JOB statement and must consist of
1 through 8 alphameric and national (#, a, $) characters. The first
character must be an alphabetic or national character.

No two jobs in a multiprogramming environment should have the same
jobname.

The following names and characters should not be used as jobnames,
because they are keywords of the DISPIAY command:

CONSOLES A U
DSNAME N
JOBNAMES Q
SPACE R
STATUS T

If you must assign one of these keywords as a jobname, notify the
operator, so he will be sure to enclose the jobname in parentheses when
he uses it with the DISPLAY command. For example, if you have assigned
the jobname SPACE to a job and the system operator wishes to display the
status of the job, he must issue a command stating DISPLAY (SPACE). 1If
the parentheses were omitted, the operator would get the amount of
available space on a particular direct access volume resulting from a
DISPLAY SPACE command.

Examples of Valid Jobnames

//RERUNY JOB
//7#123A JOB

//JOBD58 JOB

Section II: The JOB'Statement -~ Assigning a Jobname 33

Accounting Information Parameter

(laccount numberl [,additional accounting information,...Jl)

account number

additional accounting information

the account number to which this job is to be charged.

any other accounting information required by an installation's
accounting routines. When additional accounting information
consists of more than one item, each must be separated by a comma.

Rules for Coding

1.

2.

When accounting information is supplied, it must be coded before
any other parameter on the JOB statement.

The account number and each item of additional accounting
information are considered subparameters and each must be separated
by a comma.

When accounting information consists of more than one subparameter,
you must enclose the information in either parentheses or
apostrophes (5-8 punch), e.g., '5438,GROUP6' or (5438,GROUP6). If
apostrophes are used, all accounting information enclosed in the
apostrophes is considered as one field.

If the accounting information must be continued on another
statement, enclose the accounting information in parentheses. You
may not continue on another statement any accounting information
enclosed in apostrophes.

The account number and other accounting information cannot exceed
142 characters, including the commas that separate the
subparameters.

If any of the subparameters contain special characters (except
hyphens), either: (1) enclose the accounting information in
apostrophes, or (2) enclose the subparameter in apostrophes and the
accounting information in parentheses, e.g., '5438,10/08/66' or
(5438,"10/08/766"'). (The enclosing apostrophes are not considered
part of the information.) If one of the special characters is an
apostrophe, code two consecutive apostrophes in its place, e.g.,
(5438, "'0O**NEILL'). If one of the special characters is an
ampersand and you are not defining a symbolic parameter, code two
consecutive ampersands in its place, e.g., "34&&8241°.

If you do not supply accounting information but do code the
programmer's name, you must code a comma preceding the programmer's
name to indicate that the accounting information parameter, which
is a positional parameter, has been omitted.

Supplying Accounting Information

Accounting information is optional unless the installation establishes
it as a requirement in a PARM field parameter of the cataloged procedure
for the input reader.

Section II: The JOB Statement -~ Accounting Information Parameter 35

Routines that process accounting information must be supplied by the
installation. For information on how to add accounting facilities,
refer to the chapter "Handling Accounting Information"™ in the System
Programmer's Guide publication.

Examples of the Accounting Information Parameter

1. //JOBA43 JOB D548-868
Account number only; no parentheses are required.
2. //J0B4y JOB (D548-868,'12/8/69"', WILSON)

Account number plus additional accounting information; parentheses
are required.

3. //JOB45 JOB (,E1659,GROUP6X)

Only additional accounting information; parentheses are required.

36 JCL Reference (Release 20.1)

Programmer’s Name Parameter

programmer's name

programmer's name

the name or identification of the person responsible for the job.
JOB

Rules for Coding

1.

If the programmer 's name parameter is coded, it must follow the
accounting information parameter, or the comma that indicates its
absence, and must precede all keyword parameters.

The name cannot exceed 20 characters, including all special
characters.

If the name contains special characters, other than periods,
enclose the name in apostrophes. If the special characters include
apostrophes, each must be shown as two consecutive apostrophes.

If you are not required to specify a name, you need not code a
comma to indicate its absence.

When to Code the Programmer’s Name Parameter

The programmers' name parameter is optional unless the installation
establishes it as a requirement in a PARM field parameter of the
cataloged procedure for the input reader.

Examples of the Programmer’s Name Parameter

1‘

//APP JOB ¢+Ce«L.BROWN
Programmer's name, without accounting information supplied.
//DELTA JOB ¢ 'T.0O" '"NEILL'

Programmer's name containing special characters, without accounting
information supplied.

//7#308 JOB (846349,GROUP12) , GREGORY

Account number plus additional accounting information and
programmer's name.

Section II: The JOB Statement -- Programmer's Name Parameter 37

The CLASS Parameter

CLASS=jobclass

jobclass
assigns a job class to your job. Code any alphabetic character
from A through O, depending on the characteristics of your job and
the installation's rules for assigning a job class.

Rules for Coding

' 1. The jobclass is an alphabetic character from A through O.

Assigning a Job Class to Your Job

The CLASS keyword parameter provides a way of establishing a good mix of
jobs in the system; an example of a good mix would be one job that is
I70 bound in the system with another job that is CPU bound. A good mix
can be established since the job class determines where a job will be
placed on the input work queue and jobs with common characteristics are
assigned to the same job class. Jobs within a job class are assigned a
priority, either in the PRTY parameter or by default. This allows jobs
within a class to be selected for processing based on their priorities.

If you do not specify the CLASS parameter, the default job class of A
is assigned to the job. .

THE CLASS PARAMETER AND TIME-SLICING

If your installation provides time-slicing facilities with MFT, the
CLASS parameter can be used to make a job part of a group of jobs to be
time-sliced. At system generation, a group of contiguous partitions are
selected to be used for time-slicing, and each partition is assigned at
least one job class. To make your job part of a group of jobs to be
time-sliced, specify a class that was assigned only to the partitions
selected for time-slicing. (With MVT, you use the PRTY parameter and
the DPRTY parameter to make, respectively, a job or job step part of a
group of jobs and job steps to be time-sliced.)

Examples of the CLASS Parameter

1.» //SETUP JOB CLASS=C
Assigning a job to job class C.
2, //JAN JOB CLASS=M, PRTY=10

Assigning a job to job class M with a priority of 10.

Section II: The JOB Statement -- CLASS Parameter 39

The COND Parameter

COND=((code, operator), ...)

code
a decimal number from 0 through 4095. This number is compared with
the return code issued by each job step.

operator

the type of comparison to be made with the return code. Relational
operators and their meanings are:

GT...greater than
GE...greater than or equal to
EQ...equal to

ILT...less than

LE...less than or equal to
NE...not equal to

Rules for Coding

1. Code from one through eight different return code tests.

2. When making only one return code test, you need not code the outer
parentheses.

Using the COND Parameter

The COND keyword parameter can be used to eliminate unnecessary use of
computing time by basing the continuation of a job on the successful
completion of one or more of its job steps. The operator in the COND
parameter indicates the mathematical relationship between the code
specified on the JOB statement and the code returned by a completed job
step. The operator or operators are compared with the return code and
if any of the relationships are true, the remaining steps are bypassed
and the job is terminated. Up to eight different tests, each consisting
of a code and operator, may be specified.

The compiler, assembler, and linkage editor programs issue return
codes. You may want to use the COND parameter to test these return
codes. If you write your processing programs in assembler language, ANS
COBOL, FORTRAN, or PL/I, you can use the COND parameter to test return
codes issued by your programs.

WHEN THE COND PARAMETER IS CODED ON BOTH THE JOB AND EXEC STATEMENTS
The COND parameter can also be coded on an EXEC statement. When a
return code test requested on an EXEC statement is satisfied, the

associated job step is bypassed.

If you code the COND parameter on the JOB statement and on one or

. more of the job's EXEC statements, the return code tests requested on

the JOB statement have precedence over those requested on the EXEC
statements. Therefore, any return code test requested on the JOB
statement that is satisfied causes termination of the job, even if the
return code test is not satisfied for a particular step.

Section II: The JOB Statement -- COND Parameter 41

Examples of the COND Parameter

i. //TYPE JOB COND=(7,LT)

If 7 is less than the return code, the job is terminated. (Any
return code less than or equal to 7 allows the job to continue.)

2. //TEST JOB COND=((20,GE), (30,LT))
If 20 is greater than or equal to the return code, or 30 is less

than the return code, the job is terminated. (Any return code of 21
through 30 allows the job to continue.) .

42 JCL Reference (Release 20.1)

The MSGCLASS Parameter
MSGCLASS=output class

output class
the output class to which system messages for your job are to be
routed by the system. Code an alphabetic (A-Z) or numeric (0-9)
character depending on your installation's rules for assigning an
output class for system messages.

Rules for Coding

l 1. The output class is an alphabetic (A-Z) or numeric (0-9) character.

Assigning an Output Class to System Messages

If the MSGCLASS parameter is not coded, system messages associated with
your job are routed to the default output class specified in the PARM
field of the input reader procedure. The default for the MSGCLASS
parameter is A unless changed by your installation. (Default values and
restrictions supplied by IBM in the input reader procedure are listed in
Appendix E. For more information on the input reader procedure, consult
the System Programmer's Guide.) Your installation may require that you
specify a different output class other than the default value in order
to separate different types of output or to distribute the workload of
the output writers. One or more output classes is associated with each
output writer; each output writer is associated with a specific output
device.

You can route a job's system messages and output data sets to the
same output class. You do this by coding the same output class in both
the MSGCLASS parameter on the JOB statement and the SYSOUT parameter on
the DD statements for the data sets.

Examples of the MSGCLASS Parameter

i. //1IN JOB MSGCLASS=F
Specifying an output class.

2. //BOTLE JOB

Specifying no output class. In this case, the output class will
default to the MSGCLASS value specified in the PARM field of the
input reader procedure. The default is A unless changed by your
installation.

3. //A1430 JOB MSGCLASS=L
//STEP1 EXEC PGM=PRINT
//70UTPUT DD SYSOUT=L

Specifying that a job's system messages (MSGCLASS parameter) and
output data set (SYSOUT parameter) are to be routed to the same
output class.

Section II: The JOB Statement -- MSGCLASS Parameter 43

The MSGLEVEL Parameter

MSGLEVEL- (statements, messages)

statements
specifies which job control statements are to be written as
output from your job. Code:

0 - when only the JOB statement is to be written.

1 - when all input job control statements, cataloged
procedure statements, and the internal representation of
procedure statement parameters after symbolic parameter
substitution are to be written.

2 - when only input job control statements are to be written.

messages
specifies what allocation/termination messages (consisting of
allocation, disposition, and allocation recovery messages) are
to be written as output from your job. Code:

0 - when no allocation/termination messages are to be
written, unless the job abnormally terminates. If this
occurs, these messages are to be written as output.

1 - when all allocation/termination messages are to be
written.

Rules for Coding

1. If the first subparameter of the MSGLEVEL parameter is omitted, you
must code a comma to indicate its absence, e.g., MSGLEVEL=(,1).

2. If the second subparameter of the MSGLEVEL parameter is omitted,
you need not code the parentheses, e.g., MSGLEVEI~2.

Requesting Output of Job Control Statements
and Certain Messages

The MSGLEVEL keyword parameter is used to tell the job scheduler what
output from your job is to be written as part of the output listing.
You can request the following output:

¢ The JOB statement.
e All input job control statements.

e All cataloged procedure statements for procedures called by any of
the job's steps and the internal representation of procedure
statement parameters after symbolic parameter substitution.

e Allocation, disposition, and allocation recovery messages
(allocation/termination messages).

You need to code the MSGLEVEL parameter only when the established
| default will not provide you with the desired output. The default is
established as a PARM parameter field in the cataloged procedure for the
input reader. The established default is assumed when MSGLEVEL is not
coded or when one of the subparameters is not coded. For system tasks,
the system assumes a message level of (1,0).

Section I1I: The JOB Statement -~ MSGLEVEL Parameter 45

Examples of the MSCGLEVEL Parameter

1.

//GD40 JOB MSGLEVEL=(2,1)

Requesting that only input statements and all allocation/termination
messages be written. '

//STEL JOoB MSGLEVEL=(0,1)

Requesting that only the JOB statement and all
allocation/termination messages be written.

//SYM JOB MSGLEVEL=(1,0)

Requesting that all input control statements, procedure statements,
the internal representation of procedure statements after symbolic
parameter substitution, and no allocation/termination messages be
written.

46 JCL Reference (Release 20.1)

The NOTIFY Parameter (For MVT With TSO)

NOTIFY=user identification

user identification
specifies the identification that is to be used to notify you when
your background job is complete. Code a 1 to 7 character
alphameric identification. The first character must be an JOB
alphabetic character.

Rules for Coding

1. If the NOTIFY parameter is coded for MFT, or MVT without the Time
Sharing Option (TSO), the parameter is not used, but is checked for
syntax. '

2. The user identification must be the same as the one you specify
when you start the terminal session (LOGON).

What the NOTIFY Parameter Does

The NOTIFY keyword parameter indicates to the system that you are
requesting that a message be sent to your time sharing terminal when
your background job completes. Under TSO, a background job is one that
is entered through the SUBMIT command or through the input stream
(SYSIN).

What is Time Sharing

Time sharing is a method of using a computing system that allows a
number of users to execute programs concurrently and to interact with
them during execution. The Time Sharing Option (TSO) is an option of
the operating system providing conversational time sharing from remote
terminals. That is the user "converses" with the system through the use
of the terminal.

Reference

1. For a detailed discussion of the Time Sharing Option, refer to IBM
l Systemns/360 Operating System Time Sharing Option Guide.

Example of the NOTIFY Parameter
1. //SIGN JOB NOTIFY=POK1l

When the job "SIGN" is compléte, a message will be sent to the user
"POK1" informing him that his job has been completed.

Section II: The JOB Statement ~- NOTIFY Parameter 47

The PRTY Parameter

PRTY=priority

priority
assigns a priority of 0 through 13 to your job. (The highest
priority is 13.)

Rules for Coding

1. Avoid using priority 13 since this priority is used by the system
to expedite processing of jobs in which certain errors were
diagnosed. '

2. In MVT, if you want a job step to have a different dispatching
priority than the job's, code the DPRTY parameter on the EXEC
statement associated with that job step.

What the PRTY Parameter Does

The PRTY keyword parameter determines the job's initiation priority
within its job class. (The job class is assigned in the CLASS parameter
on the JOB statement.) When the job is initiated, the system converts
the job's priority into a dispatching priority so that the job's tasks
can compete with other tasks for uwse of main storage and CPU resources.

If you do not specify the PRTY parameter, a default priority is
assumed. The default is specified as a PARM parameter field in the
cataloged procedure for the input reader.

THE PRTY PARAMETER AND TIME-SLICING

If your installation provides time-slicing facilities in MVT, the PRTY
parameter can be used to make a job part of a group of jobs and job
steps to be time-sliced. The priorities of the time-sliced groups are
selected at system generation. To make your job part of a group of jobs
to be time-sliced, specify a priority number selected for time-slicing.
(To make one of the job's steps part of a group of jobs and job steps to
be time-sliced, code the DPRTY parameter on the associated EXEC
statement.)

Examples of the PRTY Parameter

1. //7#1930 JOB PRTY=8,CLASS=C

The job will have an initiation priority of 8 in the job class C.
2. //RING JOB PRTY=U4

The job will have an initiation priority of 4 in the job class A.

(since the CLASS parameter is not specified, the job is assigned to
the default job class A.)

Section II: The JOB Statement -- PRTY Parameter 49

The RD Parameter

RD=|R
RNC
NC .
NR
JOB
R
specifies that automatic step restart is permitted.
RNC _
specifies that automatic step restart is permitted and automatic
checkpoint restart is not permitted and no checkpoints can be
established.
NC
specifies that neither automatic step restart nor automatic
checkpoint restart is permitted and no checkpoints can be
established. '
NR

specifies that neither automatic step restart nor automatic
checkpoint restart is permitted, but the CHKPT macro instruction
can establish a checkpoint.

Rules for Coding

| 1. Be sure to code MSGLEVEL=(1,0), MSGLEVEL=(1,1), or MSGLEVEL=1 when
RD=R or RD=RNC is specified.

2. If you are permitting automatic step restart, assign each step a
unique step name.

3. Code the RD parameter on EXEC statements, instead of the JOB
statement, when you want to make different restart requests for
each job step. (If the RD parameter is coded on the JOB statement,
RD parameters coded on the job*'s EXEC statements are ignored.)

Using the Restart Facilities

The RD (restart definition) keyword parameter is coded when you want to
make use of the step restart facilities, to suppress the action of the
CHKPT macro instruction, or to suppress automatic restarts. The step
restart facilities permit execution of a job to be automatically

| restarted at a job step after the job abnormally terminates or after a
system failure occurs. Through the RD parameter, you can specify that
execution of a job is to be automatically restarted at the beginning of
a job step that abnormally terminates (step restart).

Execution of a job can also be automatically restarted within a job
step that abnormally terminates (checkpoint restart). In order for
checkpoint restart to occur, the CHKPT macro instruction must have been
executed in the processing program before abnormal termination. . When
you use the RD parameter to request suppression of CHKPT macro
instruction action, automatic checkpoint restart cannot occur.

Section II: The JOB Statement -- RD Parameter 51

If the RD parameter is not coded, step restart cannot occur. If the
RD parameter is not coded and the processing programs contain CHKPT
macro instructions, checkpoint restart can occur.

The following three conditions must be met before automatic step or
checkpoint restart can occur: (1) the completion code returned during
abnormal termination indicates that the step is eligible for restart,
(2) the operator authorizes restart, and (3) MSGLEVEL=(1,0),
MSGLEVEL=(1,1), or MSGEEVEL=1 must be coded on the JOB statement. If
these conditions are satisfied, special disposition processing is
performed before restart. If automatic step restart is to occur, alil
data sets in the restart step with a status of OLD or MOD, and all data
sets being passed to steps following the restart step, are kept. All
data sets in the restart step with a status of NEW are deleted. 1If
automatic checkpoint restart is to occur, all data sets currently in use
by the job are kept.

DEFINING RESTART

You define the type of restart that can occur by coding one of the
subparameters of the RD parameter: R, RNC, NC, or NR. Each of these
subparameters is described in detail in the following paragraphs.

RD=R: R indicates that automatic step restart is permitted. If the
job's processing programs do not include any CHKPT macro instructions,
coding RD=R permits execution to be resumed at the beginning of any step
that abnormally terminates. If any program does include a CHKPT macro
instruction, coding RD=R permits step restart to occur only if the step
abnormally terminates before execution of the CHKPT macro instruction;
thereafter, only checkpoint restart can occur. If you cancel the
effects of the CHKPT macro instruction before a checkpoint restart is
performed, the request for automatic step restart is again in effect.

RD=RNC: RNC indicates that automatic step restart is permitted and
automatic checkpoint restart is not permitted. RD=RNC should be
specified when you want to suppress the action of all CHKPT macro
instructions included in the job's processing programs and to permit
automatic step restart.

RD=NC: NC indicates that neither automatic step restart nor automatic
checkpoint restart is permitted. RD=NC should be specified when you
want to suppress the action of all CHKPT macro instructions included in
the job's processing programs and not to permit automatic step restart.
RD=NC has no effect on processing if CHKPT macro instructions are not
included in the programs.

RD=NR: 'NR indicates that a CHKPT macro instruction can establish a
checkpoint, but neither automatic step restart nor automatic checkpoint
restart is permitted. Coding RD=NR allows you to resubmit the job at a
later time and specify in the RESTART parameter the checkpoint at which
execution is to be resumed. (The RESTART parameter is coded on the JOB
statement of the resubmitted job.) RD=NR has no effect on processing if
CHKPT macro instructions are not included in the job's processing
programs .

References

1. For detailed information on the checkpoint/restart facilities,
refer to the publication Advanced Checkpoint/Restart Planning
Guide, Form C28-6708, the topic "Checkpoint and Restart" in the
publication Supervisor and Data Management Services, and "Using the
Restart Facilities"™ in Appendix B of this publication.

52 JCL Reference (Release 20.1)

2. PFor information on how to code the CHKPT macro instruction, refer
to the publication Supervisor and Data Management Macro
Instructions.

Examples of the RD Parameter

1. //MAY JOB RD=R,MSGLEVEL=(1,0)

Permits execution to be automatically restarted with the step that
abnormally terminates.

2. J//TRY56 JOB RD=RNC,MSGLEVEL=(1,1)
Permits execution to be automatically restarted beginning with the
step that abnormally terminates and suppresses the action of CHKPT
macro instructions.

3. //PASS JOB RD=NR, MSGLEVEL~(1,1)

Neither automatic step nor checkpoint restart can occur, but CHKPT
macro instructions can establish checkpoints.

Section II: The JOB Statement -- RD Parameter 53

The REGION Parameter--Without Main Storage Hierarchy
Support (For MVT)

REGION=valueKk

valuek
specifies the number of contiguous 1024-byte areas of main storage
to be allocated to each job step. The number can range from one to JOB

five digits but may not exceed 16383.

Rules for Coding

1. Code an even number. (If you code an odd number, the system treats
it as the next highest even number. When the value 16383K is
coded, the system treats it as 16384K. However, the value 16384K
must not be coded on the JOB statement.)

2. Code the REGION parameter on EXEC statements, instead of the JOB
statement, when you want to specify a different region size for
each job step. (If the REGION parameter is coded on the JOB
statement, REGION parameters coded on the job's EXEC statements are
ignored.)

3. If the REGION parameter is coded for MFT, the parameter is not
used, but is checked for syntax.

Requesting Main Storage

The REGION keyword parameter is used to specify how much main storage,
in contiguous bytes, is to be allocated to each job step. Code the
REGION parameter when you want more storage or less storage than would
be allocated if the default region size was used. The default region
size is established as a PARM parameter field in the cataloged procedure
for the input reader. You can consult the Storage Estimates publication
to help you determine how much main storage is required to process your
job.

ACQUIRING ADDITIONAL MAIN STORAGE

If any of the job's steps may require use of more storage than has been
allocated, you can code the ROLL parameter and request that the system
try to provide you with additional main storage. The ROLL parameter is

described in the chapters "The ROLL Parameter"™ later in this section and
in Section III. ‘

Examples of the REGION Parameter

1. //COLE JOB REGION=112K

Specifies that 112 contiguous 1024-byte areas of main storage are to
be allocated to each job step.

Section 1II: The JOB Statement -- REGION Parameter 55

2. /7334 JOB REGION=70K,ROLL=(YES, YES)

The REGION parameter specifies that 70 contiguous 1024-byte areas of
main storage are to be allocated to each job step. In the ROLL
parameter, the first subparameter tells the system that any of the
job's steps may be rolled out if additional storage is required by
another job; the second subparameter tells the system that it should
try to provide you with additional main storage if it is required.

56 JCL Reference (Release 20.1)

The REGION Parameter--With Main Storage Hierarchy Support
(For MVT, Excluding M65MP)

REGION= (value K,valueyK)

value K
specifies the number of contiguous 1024-byte areas in hierarchy 0
to be allocated to each job step. If IBM 2361 Core Storage is
present, the number cannot exceed 16383.

valueysK
specifies the number of contiguous 102u-byte areas in hlerarchy 1
to be allocated to each job step. If IBM 2361 Core Storage is
present, the number cannot exceed 1024 (for each Model 1) or 2048
(for each Model 2).

Rules for Coding

1. When processor storage includes hierarchies 0 and 1, the sum of
value and value; cannot exceed 16383.

2. Code even numbers. (If you code an odd number, the system treats
it as the next highest even number. When 16383K is coded for
value , the system treats it as 16384K. However, 16384K must not
be coded for value on the JOB statement.)

3.. When you are requesting storage only in hierarchy 1, precede value,
with a comma, to indicate the absence of value .

4. When you are requesting storage only in hierarchy 0, you need not
code the parentheses.

5. Code the REGION parameter on EXEC statements, instead of the JOB
statement, when you want to specify a different region size for
each job step. (If the REGION parameter is coded on the JOB
statement, REGION parameters coded on the job's EXEC statements are
ignored.)

6. If the REGION parameter is coded for MFT, the parameter is not
used, but is checked for syntax.

Requesting Main Storage in One or Two Hierarchies

The REGION keyword parameter is used to specify how much main storage is
to be allocated to each job step, and, when main storage hierarchy
support has been specified at system generation, in which hierarchy or
hierarchies main storage is to be allocated. With main storage
hierarchy support, storage hierarchies 0 and 1 are provided. If IBM
2361 Core Storage, Model 1 or 2, is present in the system, processor
storage is referred to as hierarchy 0 and 2361 Core Storage is referred
to as hierarchy 1. If 2361 Core Storage is not present, a two-part
region is established in processor storage when regions are requested in
two hierarchies. The two parts are not necessarily contiguous.

Section II: The JOB Statement -~ REGION Parameter 57

Code the REGION parameter to specify how much storage is to be
allocated in each hierarchy, or that all storage for the job is to be
allocated in a particular hierarchy. (If you do not code the REGION
parameter on either the JOB or. EXEC statement, the default region size,
which is a PARM parameter field in the cataloged procedure for the input
reader, is used and is always allocated in hierarchy 0. If you code the
REGION parameter and request storage only from hierarchy 1, no hierarchy
0 segment will be allocated. You can consult the Storage Estimates
publication to help you determine how much main storage is required to
process your job. Then, depending on your reasons for using
hierarchies, determine how much storage is required in each.

If main storage hierarchy support was not specified at system
generation and regions are requested in both hierarchies, the region
sizes are combined and an attempt is made to allocate a single region
from processor storage. If a region is requested entirely from
hierarchy 1, an attempt is made to allocate the region from processor
storage. :

ACQUIRING ADDITIONAL MAIN STORAGE

If your job may require use of more main storage than has been allocated
in a particular hierarchy, you can code the ROLL parameter and request
that the system try to provide you with additional main storage in that
hierarchy. The ROLL parameter is described in the chapters "The ROLL
Parameter" later in this section and in Section IIIX.

Examples of the REGION Parameter

1. //MAIN JOB REGION=(80K,30K)

Specifies that the system is to allocate 80 contiguous 1024-byte
areas of storage in hierarchy 0 and 30 contiguous 1024-byte areas of
storage in hierarchy 1. If main storage hierarchy support is not
included in the system, the system will try to obtain 110 contiguous
1024-byte areas in processor storage.

2. J//WEEK JOB REGION=(,98K)

Specifies that the system is to allocate 98 contiguous 1024-byte
areas of storage in hierarchy 1.

3. //JWC JOB REGION=98K

Specifies that the system is to allocate 98 contiquous 1024-byte
areas of storage in hierarchy 0.

4. //TEST12 JoB REGION=(100K,50K) ,ROLL= (YES,YES)

The REGION parameter specifies that the system is to allocate 10Q
contiguous 1024-byte areas of storage in hierarchy 0 and 50
contiguous 1l024-byte areas of storage in hierarchy 1. 1In the ROLL
parameter, the first subparameter tells the system that any of the
job's steps may be rolled out if additional storage is required by
another job; the second subparameter tells the system that it should
try to provide you with additional main storage if it is required.

58 JCL Reference (Release 20.1)

The RESTART Parameter

RESTART=(| * [, checkidl)
stepname
stepname.procstepname

indicates that execution is to be restarted at or within the first
job step.

stepname

specifies that execution is to be restarted at or within the named
job step.

stepname. procste pname
specifies that execution is to be restarted at or within a
cataloged procedure step. Stepname is the name of the job step
that calls the cataloged procedure, and procstepname is the name of
the procedure step. You-.can code * in place of
stepname.procstepname if the first job step calls a cataloged
procedure and you want execution to be restarted at or within the
first procedure step.

checkid
is the name of the checkpoint at which execution is to be
restarted. When checkid is coded, execution is restarted within
the specified job step at the named checkpoint. If checkid is not
coded, execution is restarted at the specified job step.

Rules for Coding

1. You need not code the parentheses if execution is to be restarted
at a job step, i.e., if you do not code the checkid subparameter.

2. If the checkpoint name contains special characters, the name must
be enclosed in apostrophes. If one of the special characters is an
apostrophe, identify it by coding two consecutive apostrophes in
its place.

3. Be sure to include the SYSCHK DD statement when execution is to be
- restarted within a job step. (The SYSCHK DD statement is described
in the section titled "SYSCHK" in the chapter "Assigning a Ddname"
in Section IV of this publication.)

When to Code the RESTART Parameter

The RESTART keyword parameter is coded when you are resubmitting a job
for execution and you want to make use of the restart facilities. The
restart facilities allow a job that is resubmitted for execution to be
restarted at or within a particular job step. This reduces the time
required to execute the job since execution is resumed, not repeated.
If the RESTART parameter is not coded, execution of the entire job is
repeated. ‘

Through the RESTART parameter, you can specify where execution is to
be restarted. Execution of a resubmitted job can be restarted at the

Section II: The JOB Statement -- RESTART Parameter 59

beginning of a step (step restart) or within a step (checkpoint
restart). In order for checkpoint restart to occur, the CHKPT macro
instruction must have been executed in the processing program during the
original execution of the job. If execution is to be restarted at a
checkpoint, the resubmitted job must include an additional DD statement.
This DD statement defines the checkpoint data set and has the ddname
SYSCHK. (For additional information on the SYSCHK DD statement, see the
section titled "SYSCHK" in the chapter "Assigning a Ddname" in Section
IV of this publication.)

RULES FOR REFERENCING GENERATION DATA SETS AND USING BACKWARD REFERENCES

Because the resubmitted job has been previously executed and because you
may not be restarting with the first job step, there are certain rules
that apply to referencing generation data sets and using backward
references. They are:

1. If step restart is performed, generation data sets that were
created and cataloged in steps preceding the restart step must not
be referred to in the restart step or in steps following the
restart step by means of the same relative generation numbers that
were used to create them. Instead, you must refer to a generation
data set by means of its present relative generation number. For
example, if the last generation data set created and cataloged was
assigned a generation number of +2, it would be referred to as 0 in
the restart step and in steps following the restart step. In this
case, the generation data set assigned a generation number of +1
would be referred to as -1. If generation data sets created in the
restart step were kept instead of cataloged (i.e.,
DISP=(NEW,CATLG, KEEP) was coded), you can during checkpoint restart
refer to these data sets and generation data sets created and
cataloged in steps preceding the restart step by the same relative
generation mumbers used to create them.

2. Before resubmitting a job, check all backward references to steps
that precede the restart step. Eliminate all backward references
for the following keywords: PGM and COND, on the EXEC statements,
and, SUBALLOC and VOLUME=REF=reference, on the DD statements. (A
backward reference of VOLUME=REF=reference is allowed if the
referenced statement includes VOLUME=SER= (serial number,...).)

Reference

1. For detailed information on the checkpoint/restart facilities,
refer to the publication Advanced Checkpoint/Restart Planning
Guide, the topic "Checkpoint and Restart®™ in the publication
Supervisor and Data Management Services, and "Using the Restart
Facilities™ in Appendix B of this publication.

Examples of the RESTART Parameter

1. //LINES JOB RESTART=COUNT

Specifies that execution is to be restarted at the job step named
COUNT.

60 JCL Reference (Release 20.1)

//aLoC5 JOB RESTART= (PROCESS, CHKPT3)

specifies that execution is to be restarted within the job step
named PROCESS at the checkpoint named CHKPT3. This JOB statement
nmust be followed by a DD statement named SYSCHK, which defines the
data set on which an entry for the checkpoint named CHKPT3 was
written. :

//WORK JOB RESTART= (% ,CKPT2)

Specifies that execution is to be restarted at the checkpoint named
CKPT2 in the first job step.

//CLIP5 JOB RESTART= (PAY.WEEKLY,CHECKS8)

Specifies that execution is to be restarted within the procedure
step named WEEKLY at the checkpoint named CHECK8. PAY is the name
of the job step that calls the cataloged procedure that contains the
procedure step named WEEKLY. This JOB statement must be followed by
a DD statement named SYSCHK, which defines the data set on which an
entry for the checkpoint named CHECK8 was written.

Section II: The JOB Statement -- RESTART Parameter 61

The ROLL Parameter (For MVT)

ROLL=(x,y)

declares whether the steps of the job may be rolled out. Code YES
if the job's steps can be rolled out; code NO if the job's steps
cannot be rolled out.

declares whether the steps of the job may cause rollout of another
job step. Code YES if the job's steps can cause rollout of another
job step; code NO if the job's steps cannot cause rollout of
another job step. YES must be coded if you want additional main
storage allocated to the job's steps when additional main storage
is required. .

Rules for Coding

1.

2.

If you code the ROLL parameter, both subparameters must be
specified.

Code the ROLL parameter on EXEC statements, instead of the JOB
statement, when you want to make different requests for each job
step. (If the ROLL parameter is coded on the JOB statement, ROLL
parameters coded on the job's EXEC statements are ignored.)

Code ROLIL~ (NO,YES) or ROLI~(NO,NO) if this job is a teleprocessing
job that uses the Auto Poll option. If you allow the job's steps
to be rolled out, the job cannot be restarted properly.

If the ROLL parameter is coded for MFT, the parameter is not used,
but is checked for syntax.

When to Code the ROLL Parameter

The ROLL keyword parameter should be coded if any of the job's steps may
require more main storage than was requested in the REGION parameter.
When you specify in the ROLL parameter that this job can cause rollout
of other job steps, an attempt is made to allocate additional storage if
a job step requires it. In order to allocate this additional space to a
job step, another job step with a lower priority may have to be rolled
out, i.e., temporarily transferred to secondary storage.

The ROLL parameter should also be coded when you want control over

whether the job's steps can be rolled out because of another step's need
for additional main storage. If the ROLL parameter is not coded, the
default established in the PARM parameter field in the cataloged
procedure for the input reader is used.

Section II: The JOB Statement -- ROLL Parameter 63

Examples of the ROLL Parameter

1. //DINTER JOB ROLL=(YES,YES) ,REGION=100K
Specifies that the job's steps can be rolled out and can cause
rollout of another job step if a step requires more than 100K of
main storage.

2. J//TEST332 JOB ROLIL~=(NO, YES)

Specifies that the job‘s steps cannot be rolled out but can cause
rollout of another job step. ~

64 JCL Reference (Release 20.1)

The TIME Parameter

TIME=\ (minutes, seconds)
1440

minutes
specifies the maximum number of minutes the job can use the CPU.
The number of minutes must be less than 1440 (24 hours).

seconds
specifies the maximum number of seconds beyond the specified number
of minutes the job can use the CPU, or, if no minutes are
specified, the maximum number of seconds the job can use the CPU.
The number of seconds must be less than 60.

‘1440
specifies that the job is not to be timed. Code 1440 if the job
may require use of the CPU for 24 hours or more or if any of the
job's steps should be allowed to remain in a wait state for more
than the established time limit.

Rules for Coding

1. If the CPU time limit is given in minutes only, you need not code
the parentheses.) '

2. If the CPU time limit is given in seconds only, you must code a
comma preceding the seconds to indicate the absence of minutes.

3. You can also code the TIME parameter on EXEC statements to indicate
how long each step can use the CPU.

Specifying a Time Limit for the Job

The TIME keyword parameter can be used to specify the maximum amount of
time a job may use the CPU. Two benefits of coding the TIME parameter
are that it allows you to find out how long the job uses the CPU (CPU
time used appears on the output listing), and it helps limit the CPU
time wasted by a step that goes into a loop. Normally, a job that
exceeds the specified time limit is terminated. However, if the System
Management Facilities option is included in the system and a user exit
routine is provided, this routine can extend the time limit so that
processing can continue. When the TIME parameter is not coded on the
JOB statement, there is no CPU time limit assigned to the job; however,
each job step is still timed. "

TIME LIMIT FOR WAIT STATES

Since a job step can go into an extremely long wait state, the time a
job step may remain in a wait state is limited. If the System
Management Facilities option is included in the system, the installation
determines this time limit. In this case, a job step remaining in a
wait state for more than the established time limit causes termination
of the job unless a user-provided exit routine extends the wait-state
time limit for that step. If the System Management Facilities option is
not included, the system automatically provides a 30-minute time limit
for wait states; a job step remaining in a wait state for more than 30
consecutive minutes causes termination of the job.

Section II: The JOB Statement -- TIME Parameter 65

How to Eliminate Timing

Certain applications require a job to use the CPU for 24 hours or more.
In this case you must eliminate timing by coding TIME=1440. This
specification should also be made when any of the job's steps should be
allowed to remain in a wait state for more than the established time
limit.

Reference

1.

A discussion of the System Management Facilities option is
contained in "Section 5: Task Management” in Concepts and
Facilities. Information on user exit routines to be used with the
System Management Facilities option is contained in the chapter
"System Management Facilities"™ in System Programmer's Guide.

Examples of the TIME Parameter

1.

66

//SEED JOB TIME=(12,10)

Specifies that the maximum amount of time the job can use the CPU is
12 minutes 10 seconds.

//TYPEU1 JOB TIME=(,30)

Specifies that the maximum amount of time the job can use the CPU is
30 seconds.

//FORMS JOB TIME=5

Specifies that the maximum amount of time the job can use the CPU is
5 minutes.

//RAINCK- JOB TIME=1440

Specifies that the job is not to be timed. Therefore, the job may

use the CPU and may remain in a wait state for an unspecified period

of time.

JCL Reference (Release 20.1)

The TYPRUN Parameter (For MFT, MVT)

TYPRUN=HOLD

HOLD
specifies that the job is to be held in the job queue until the
operator issues a RELEASE command.

Holding a Job

Code TYPRUN=HOLD when the job should be held for execution until some
event has occurred. The operator must be informed of what it is you are
waiting for. When the event has occurred, the operator issues a RELEASE
command, thereby allowing the job to be selected for processing.

Example of the TYPRUN Parameter

Jobs UPDATE and LIST are to be submitted for execution. The job UPDATE
uses a program that adds and deletes members to a library; the job LIST
uses a program that lists the members of a library. In order to get an
up-to-date listing of the library, UPDATE must be executed before LIST.
This is accomplished by coding TYPRUN=HOLD on the JOB statement for the
job named LIST. If a DISPIAY JOBNAMES command is issued by you or the
operator, the operator is notified on the console when UPDATE has
completed processing; he issues a RELEASE command for LIST. The job
LIST can then be selected for execution.

Section II: The JOB Statement -- TYPRUN Parameter 67

Section III: The EXEC Statement

The EXEC statement is the first statement of each job step and cataloged

procedure step. The EXEC statement is followed by DD statements and
data that pertain to the step. The principal function of the EXEC
statement is to identify the program to be executed or the cataloged

procedure to be called. All other parameters in the operand field are

optional. A job cannot contain more than 255 job steps and procedure
steps.

EXEC Statement Format

(/)/stepname EXEC operands comments

The EXEC statement consists of the characters //, in columns 1 and 2,

and four fields -- the name, operation (EXEC), operand, and comments
fields.

Rules for Coding

Follow the order listed below when coding the EXEC statement:

1. Code the characters // in columns 1 and 2.

=10
112[3[4[5[6]

11-20 |
[a[5[e[7[8[s[0l1T2

I
WEEEIEE AED)

¥ &Y P I AU IS BRIV ST AU BT BT RPN APUFUUTN AUPIE AN PP I

2. Optionally, you may assign a name to the job step; if you do, code

the stepname starting in column 3.

1-10 H-20 21-30 31-40 41-50 51-60 6i-70 . 71-80
T2[3[A[Ble[7BIo101 1[2[3[4[5 67]8]S0 1 [2[3 4[5 617 [e[8T0[1 [2[3[4lsT6] 7Ie[o]o] 1 [2[3[4I5el7I8ISIO] T 23415 e[7[8[S[0] [2[3[4[5l6[7I88[o[TT2[3[4ISTe[7I8Io0

LISTEPL oy v U b b e b e b e e e

3. Follow the stepname or // with at least one blank.

4. Code EXEC.

1-10 11-20 21-30 3i=-40 41-50 5i—60 61-70 71-80
lEﬂﬂﬂﬂﬂﬂﬂﬂhaEnEEIEﬂﬁmﬁﬂﬁmﬂﬂﬂﬂhﬂﬂnﬂﬁﬂﬂﬂdﬂﬂﬂ4EEIEEdﬂEHnHEﬂﬂﬂdﬂﬂﬂﬂﬂﬂﬂﬂﬂdﬁﬂﬂnﬂﬁﬂﬂﬂ0

[4STEAL EXEC \ 1\ L

P U A BRI U P I

5. Follow EXEC with at least one blank.

Section III: The EXEC Statement 69

EXEC

6. Identify the program to be-exeduted (PGM), or the cataloged
procedure to be called (PROC). (When you are calling a procedure,
you may omit PROC=.) :

‘L[.S‘,fé[P[EXEC P@M EVERLTEY, |\ o0l ...!..,.1....!,l..l....‘l....u...!‘....j.

7. Code any desired keyword parameters. Separate each parameter with
a comma. '

i-10 - -) - 71-80
11213]a[s[e[7[e[slo] 1T2[3]a]s[el7[alslol 1213145 e[7e[olo] 1 [2[3]a[5]e[7 8lo[0] i [2[3[4l5[6[7[8ls]o] i [2[3[4[5[6[7Ie[o]o] 1[2[3[a]s[e[7[elo[o] i [2]34l5[6[7[8[o]0

LISTEPL, EXEC PéM=¥ERTFY, PARM=" 11853, 11+M ACCT=DINTER Lo |vuad .y, T

8. Code at least one blank.

9. Code any desired comments.

[LSﬂgF/ EXEC, Péﬂ-#ﬁﬁzﬁﬁ,ﬁ&ﬁﬂ«'L?#JlLﬂﬂ’ ﬁccragg NTER BO @,c&gg&..gnggﬁ. . .

(

Positional and Keyword Parameters

There are two types of parameters that can be coded on the EXEC
statement:

Positional parameters, which must precede any keyword parameters. One
of the following two positional parameters is coded:

PGM
PROC

These p051t10nal parameters are described in the following. pages in the
order listed above.

Keyword parameters, which may be coded in’any order after the positional
parameter. Any of the following keyword parameters can be coded on the
EXEC statement:

ACCT

COND

DPRTY (MVT only)
PARM

RD)

REGION (MVT only)
ROLL (MVT only)
TIME

These keyword parameters are described, after the positional parameters.
in the order listed above.

70 JCL Reference (Release 20.1)

Sample EXEC Statements

1.

2.

3.

4.

//STEPUY
7/
//FOR

//PICY

EXEC

EXEC

EXEC

EXEC

PGM=DRBC,PARM="3018,NO"*

PGM=ENTRY,REGION=80K,TIME= (2,30) ,DPRTY=(11, 11)

PROC=PEU489, TIME=4

SAL83,ACCT.STEP1=123019

Section IIls

The EXEC Statement 71

Assigning a Stepname

(///stepname EXEC

The stepname identifies a job step within a job. The stepname is
optional. You must assign a stepname if you wish to do any of the
following:

1. Make backward references to the step.

2. Override parameters on an EXEC statement or DD statement in a
cataloged procedure step, and add DD statements to a cataloged
procedure step.

3. Perform a step or checkpoint restart at or within the step.

The stepname must begin in column 3 of the EXEC statement and must
consist of 1 through 8 alphameric and national (a, #, §) characters.

The first character must be an alphabetic or national character. Each
stepname within a job or a cataloged procedure must be unique.

Examples of Valid Stepnames

1. //STEP4 EXEC
2. //aLoC EXEC

3. //PRINT EXEC

Section III: The EXEC Statement -- Assigning a Stepname 73

The PGM Parameter

PGM=| program name
*.stepname.ddname
*,stepname. procstepname.ddname

program name
is the member name or alias of the program to be executed. The
program must be a member of a partitioned data set that resides in
a temporary, system, or private library.

*.stepname.ddname
is a backward reference to a DD statement that defines, as a member
of a partitioned data set, the program to be executed; stepname is
the name of the step in which the DD statement appears. Usually,
this form is used when a previous job step creates a temporary
partitioned data set to store one program until the program is
required.

*,stepname. procstepname. ddname
is a backward reference to a DD statement within a cataloged
procedure step that defines, as a member of a partitioned data set,
the program to be executed. Stepname is the name of the step that
calls the procedure, and procstepname is the name of the procedure
step that contains the DD statement. Usually, this form is used
when a cataloged procedure step, called by an earlier job step in
the job, creates a temporary partitioned data set to store a
program until the program is required.

Identifying the Program to Be Executed

‘All programs that can be executed are members of partitioned data sets
(libraries). The library that contains the program may be a temporary
library, the system library, or a private library. In order to execute
a program contained in any of these libraries, you must code the PGM
parameter as the first parameter on the EXEC statement.

TEMPORARY LIBRARY

If in a job you want to assemble, linkage edit, and then execute a
program, you must make the output of the linkage editor a member of a
partitioned data set. ' This is accomplished by creating a temporary
library. A temporary library is a partitioned data set created in the
job to store a program, as a member of the data set, until it is
executed in a following job step. When the program is required, you may
refer back to the DD statement that defines the temporary library and
the member by coding PGM=%*.stepname.ddname or .
PGM=%,stepname.procstepname.ddname. You may also request use of a
program that is a member of a temporary library by coding PGM=program
name and including a DD statement named JOBLIB or STEPLIB that defines
the temporary library. (Information on the JOBLIB and STEPLIB DD
statements can be found in the chapter "Assigning a Ddname™ in Section
IV of this publication.)

If you want to keep this program available for use by other jobs, you

must make the program a member of the system library or a private
library.

Section III: The EXEC Statement -- PGM Parameter 75

SYSTEM LIBRARY

The system library is a partitioned data set named SYS1.LINKLIB and it
contains frequently used programs, as well as programs used by the
system. You request the use of a program that is a member of the system
library simply by coding PGM=program name. The system automatically
looks in SYS1.LINKLIB for a member with the corresponding name.

A program that resides in the system library may also be executed by
coding PGM=*.stepname.ddname or PGM=#%.stepname.procstepname.ddname.
This can be done only when the named DD statement defines the program as
a member of the system library.

PRIVATE LIBRARY

A private library is a partitioned data set that contains programs not
used frequently enough to warrant their inclusion in the system library.
You request use of a program that is a member of a private library by
coding PGM=program name and including a DD statement named JOBLIB or
STEPLIB that defines the private library. The system automatically
looks in the private library and, if the program is not found there, in
SYS1.LINKLIB for a member with the corresponding name. (Information on
the JOBLIB and STEPLIB DD statements can be found in the sections titled
"JOBLIB"™ and "STEPLIB" in the chapter "Assigning a Ddname" in Section IV
of this publication.)

A program that resides in a private library may also be executed by
coding PGM=#*.stepname.ddname or PGM=%*.stepname.procstepnane.ddname.
This can be done only when the named DD statement defines the program as
a member of a private library.

THE IEFBR14 PROGRAM

If space allocation and disposition processing requests are contained in
your job control statements, you can satisfy these requests prior to
executing your program. To do this, substitute IEFBR14 for your
program's name. This also allows you to check the accuracy of your
control statements. (If you create a data set when using this program,
the data set's status will be old when you execute your own program.)

Examples of the PGM Parameter

1. //STEP1 EXEC PGM=TABULATE

Specifies that the program named TABULATE is a member of
SYS1.LINKLIB.

2. //J0BS8 JOB MSGLEVEL=(2,0) :
//JOBLIB DD DSNAME=DEPT12.LIB4, DISP=(OLD, PASS)
//STEP1 EXEC. PGM=USCAN

Specifies that the system is 'to look for the program named USCAN in
a private library named DEPT12.LIB4, and, if not found there, the
system is to look in the system library.

76 JCL Reference (Release 20.1)

//CREATE EXEC PGM=IEWL,REGION=96K

//SYSLMOD DD DSNAME=§ § PARTDS (PROG) ,UNIT=2311, DISP= (MOD,PASS), X
7/ SPACE=(1024, (50, 20, 1))

//EXCUTE EXEC PGM=*.CREATE.SYSLMOD

Use of backward reference to a DD statement that defines a temporary
library created in the step named CREATE. The program named PROG is
stored as a member of the partitioned data set named &§&PARTDS and is
executed in the step named EXCUTE.

//STEP2 EXEC PGM=UPDT
//DDA DD DSNAME=SYS1.LINKLIB(P40),DISP=OLD
//STEP3 EXEC PGM=%.STEP2.DDA :

Use of backward reference to a DD statement that defines the system
library. The program named P40 is stored as a member of
SYS1.LIWNKLIB and is executed in the step named STEP3.

//CHECK EXEC PGM=IEFBR1l4
Executing the program named IEFBR14 allows you to satisfy space
allocation and disposition processing requests prior to executing

your program. The remaining job control statements in the job are
also checked for syntax.

Section III: The EXEC Statement -- PGM Parameter 77

The PROC Parameter

PROC=procedure name
procedure name

procedure name
the member name (or alias) of the cataloged procedure or the name
of the in-stream procedure to be called.

Identifying the Cataloged or In-stream Procedure to Be Called

A cataloged procedure is a set of job control statements that has been
placed in a special partitioned data set referred to as the procedure
library. (The IBM-supplied procedure library is named SYS1.PROCLIB; at
your installation, there may be additional procedure libraries, which
would have different names.) - Each cataloged procedure is a member of
this data set. An in-stream procedure is a set of job control
statements, beginning with a PROC statement and ending with a PEND
statement, that have been placed in the input stream. An in-stream :
procedure can be executed any number of times during the job in which it
appears. Both cataloged and in-stream procedures consist of one or more
procedure steps; each procedure step consists of an EXEC statement,
which identifies the program to be executed, and DD statements, which
define the data set. requirements of the step.

In order to use a cataloged or in-stream procedure, you must code the
PROC statement as the first parameter on the EXEC statement, instead of
the PGM parameter, and give the name of the cataloged procedure. You
can, instead, code only the cataloged or in-stream procedure name; the
job scheduler will recognize that it is a procedure name since it must
appear first in the operand field.

wWhen the EXEC statement specifies that a cataloged or in-stream
procedure is to be called, subsequent parameters in the operand field
can be used to override EXEC statement parameters in the procedure.
Also, any DD statements that follow the EXEC statement are either
overriding DD statements or DD statements that are to be added to the
cataloged or in-stream procedure for the duration of the job step.
overriding and adding to cataloged procedures are discussed in the
chapter "Using Cataloged and in-stream Procedures"™ in Appendix A of this
publication.

Examples of the PROC Parameter

1. //SP3 EXEC PROC=PAYWKRS

specifies that the cataloged or in-stream procedure named PAYWKRS is
to be called.

2. J//BK3 EXEC OPERATE
Specifies that the cataloged or in-stream procedure named OPERATE is

to be called. This specification has the same effect as coding
PROC=OPERATE.

Section III: The EXEC Statement -- PROC Parameter 79

The ACCT Parameter

ACCT=(accounting information,...)

accounting information

includes one or more subparameters of accounting information to be
passed to the installation's accounting routines by the system.

Rules for Coding

1.

Providing Accounting Information for a Job Step or Procedure Step

If the accounting information includes several subparameters, each
must be separated by a comma.

If the accounting information consists of only one subparameter,
you need not code the parentheses.

The maximum number of characters of accounting information, plus
the commas that separate the subparameters, is 142.

If a subparameter contains special characters (other than a
hyphen), enclose the subparameter in apostrophes. The apostrophes
are not considered part of the information. If one of the special
characters is an apostrophe, code two consecutive apostrophes in
its place.

Code the ACCT keyword parameter when you want to provide accounting
information for a step. If the job step calls a cataloged procedure,
the ACCT parameter overrides any ACCT parameters coded in the procedure
steps and pertains to all the procedure steps. If different steps in
the procedure require different accounting information, code
ACCT.procstepname=(accounting information,...) for each step that
requires accounting information. Accounting information will then
pertain only to the named procedure step.

Examples of the ACCT Parameter

1.

//STEP1 EXEC PGM=JP5,ACCT=(LOCATIONS,"CHGE+3")

Specifies that this accounting information pertains to this job
step.

//STP3 EXEC LOOKUP,ACCT=("/83468")
Specifies that this information pertains to this job step. Since

this step calls a cataloged procedure, the accounting information
pertains to all the steps in the procedure.

//STPY EXEC BILLING,ACCT.PAID=56370,ACCT.LATE=56470, X

// ACCT.BILL="'121+366"

Specifies that different accounting information pertains to each of
the named procedure steps (PAID, LATE, and BILL).

Section III: The EXEC Statement -- ACCT Parameter 81

EXEC

The COND Parameter

COND=(| (code, operator) ge=<[,]| EVEN)
(code, operator,stepname) ONLY
(code,operator, stepname. procstepname)

code
a decimal number from 0 through 4095. This number is compared with
the return code issued by all previous steps or a specific step.

operator ; ,
the type of comparison to be made with the return code. Relational
operators and their meanings are: EXEC

GT...greater than
GE...greater than or equal to
EQ...equal to .

LT...less than

LE...less than or equal to
NE...not equal to

stepname
the name of a preceding job step that issued the return code to be
tested.

stepname.procstepname .
the name of a procedure step "procstepname® that issued the return
code to be tested; the procedure step is part of a procedure that
was called by an earlier job step named "stepname."

EVEN
specifies that the job step is to be executed even if one or more
of the preceding job. steps have abnormally terminated. If the
current job step specifies that return code tests are to be made
and if any of the tests are satisfied, this job step is bypassed.
Do not code EVEN when ONLY is coded.

ONLY
specifies that the job step is to be executed only if one or more
of the preceding job steps have abnormally terminated. If the
current job step specifies that return code tests are to be made
and if any of the tests are satisfied, this job step is bypassed.
Do not code ONLY when EVEN is coded.

Ruies fof Coding

1. When neither EVEN nor ONLY is coded, you can make as many as eight
tests on return codes issued by preceding job steps or cataloged
procedure steps, which completed normally. When either EVEN or
ONLY is coded, you can make as many as seven tests on return codes.

2. If you want only one test made, you need not code the outer
parentheses.

3. If you code only EVEN or ONLY, you need not enclose it in
parentheses.

4. If you want each return code test to be made on the return code
issued by every preceding step, do not code a stepname.

5. The EVEN or ONLY subparameter can appear before, between, or after
return code tests.

Section III: The EXEC Statement -- COND Parameter 83

Using the COND Parameter

The COND keyword parameter can be used to eliminate unnecessary use of
computing time by basing the execution of a job step on the successful
completion of one or more preceding job steps. When the COND parameter
is coded on the JOB statement, any return code test that is satisfied
causes all remaining job steps to be bypassed. If, instead, you want a
particular job step to be bypassed when a return code test is satisfied,
code the COND parameter on the EXEC statement. Besides allowing you to
specify the conditions for bypassing a job step, the COND parameter
allows you to specify the condition for executing a job step.

The compiler, assembler, and linkage editor programs issue return
codes. You may want to use the COND parameter to test these return
codes. If you write your processing programs in assembler language, ANS
COBOL, FORTRAN, or PL/I, you can use the COND parameter to test return
codes issued by your programs.

BYPASSING A JOB STEP

The return code tests specified in the COND parameter determine whether
a job step is to be bypassed. Each return code test consists of a code,
an operator, and, optionally, a stepname. The operator indicates the
mathematical relationship between the code specified on the EXEC
statement and the code returned by a completed job step. The operator
or operators are compared with the return code or codes and if any of
the relationships are true, the job step is bypassed.

If the return code test includes a stepname, the test is made using
the return code issued by the named step. If the return code test does
not include a stepname, the test is made using the return code issued by
every preceding job step that completed normally. To test in a later
job step the return code issued by a cataloged procedure step, specify
both the name of the job step that called the procedure and the
procedure stepname, i.e., stepname.procstepname.

EXECUTING A JOB STEP

Abnormal termination of a job step normally causes subsequent steps to
be bypassed and the job to be terminated. By means of the COND
parameter, you can specify the condition for executing a job step after
one or more of the preceding job steps have abnormally terminated. For
the COND parameter, a job step is considered to abnormally terminated if
a failure occurs within the user's program once it has received control.
(If, during scheduling, a job step is not scheduled for execution
because of failures such as job control language errors or inability to
allocate space, the remainder of the job steps are bypassed, whether or
not a condition for executing a later job step was specified.)

The condition for executing a job step after one or more of the
preceding job steps have abnormally terminated is either EVEN or ONLY.
EVEN causes the step to be executed even if one or more of the preceding
job steps have abnormally terminated; ONLY causes the step to be
executed only if one or more of the preceding job steps have abnormally
terminated. When a job step abnormally terminates, the COND parameter
on the EXEC statement of the next step is scanned for the EVEN or ONLY
subparameter. If neither is specified, the job step is bypassed and the
EXEC statement of the next step is scanned for EVEN or ONLY. If EVEN or
ONLY is specified, return code tests, if any, are made on all previous
steps specified that did not abnormally terminate. The step is bypassed
if any one of these tests is satisfied, or if one of the previous job

84 JCL Reference (Release 20.1)

steps abended because it exceeded the time limit for the job.
Otherwise, the job step is executed.

Caution: When a job step that contains the EVEN or ONLY subparameter
refers to a data set that was to be created or cataloged in a preceding
step, the data set (1) will not exist if the step creating it was
bypassed, or (2) may be imcomplete if the step creating it abnormally
terminated. Also, if the job step refers the system to an earlier job
step for volume and unit information, this information is not available
if the earlier job step was bypassed.

WHEN YOU CALL A CATALOGED PROCEDURE
EXEC

The COND parameter may be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure, you may
want to override all COND parameters in the procedure or only certain
COND parameters. To override all COND parameters, code the COND
parameter on the EXEC statement that calls the procedure. This
establishes one set of return code tests and the EVEN or ONLY
subparameter for all steps in the procedure. To override only certain
COND' parameters, code, on the EXEC statement that calls the procedure,
COND.procstepname for each procedure step that you want to override.
Return code tests and the EVEN or ONLY subparameter will then pertain
only to the named procedure step.

Examples of the COND Parameter

i. //STEP6 EXEC PGM=BAB,COND=(4,GT,STEP3)

If 4 is greater than the return code issued by STEP3, this step is
bypassed. (A return code of 4 or greater allows this step to be
executed.) Since neither EVEN nor ONLY is specified, this job step
is automatically bypassed if a preceding step abnormally terminates.

2. //TEST2 EXEC PGM=BACK,COND=((16,GE), (90,LE,STEP1),ONLY)

If 16 is greater than or equal to the return code issued by any of
the preceding job steps or if 90 is less than or equal to the return
code issued by STEP1l, this step is bypassed. If none of the tests
are satisfied (any return code of 17 through 89 does not satisfy the
tests) and a preceding job step has abnormally terminated, this step
is executed because ONLY is coded.

3. //PRCH EXEC PGM=SPE,COND=(12,EQ,STEP4.LOOKUP)

If 12 is equal to the return code issued by the procedure step named
LOOKUP, the job step is bypassed. Since neither EVEN nor ONLY is
specified, this job step would be automatically bypassed if a
preceding step abnormally terminated.

4. //STP4 EXEC BILLING, COND.PAID=(EVEN, (20,LT)), X
L4 COND.IATE=(60,GT,FIND),COND.BILL=((20,GE), (30,LT, CHGE))

Specifies that different return code tests pertain to each of the
named procedure steps (PAID, IATE, and BILL). If the return code
test specified for the procedure step named PAID is not satisfied,
the step is executed even if a preceding step abnormally terminated.

Section III: The EXEC Statement -- COND Parameter 85

The DPRTY Parameter (For MVT)

DPRTY=(valuel,value?2)

valuel
a number from 0 through 15. If you do not assign a number, a value
of 0 is assumed.

value2
a number from 0 through 15. If you do not assign a number, a value
of 11 is assumed.

Rules for Coding

1. Avoid assigning a number of 15 to valuel. This number is used for
certain system tasks.

2. If you omit value2, you need not code the parentheses.

3. If you omit valuel, you must code a comma preceding value2 to
indicate the absence of wvaluel.

4. If the DPRTY parameter is coded for MFT, the parameter is not used,
but is checked for syntax.

Assigning a Dispatching Priority

The DPRTY parameter is used to assign a dispatching priority to a job
step. Dispatching priority determines in what order tasks will use main
storage and CPU resources. If you do not code the DPRTY parameter, the
job step is assigned the priority assigned to the job either on the JOB
statement (the PRTY parameter) or by default.

Valuel of the DPRTY parameter has the same meaning as the value you
assign in the PRTY parameter. That is, if you code PRTY=10 on the JOB
statement and DPRTY=10 on the EXEC statement, the job and step priority
are the same. Also, in this case the job and step have the same
dispatching- priority. This is because the system converts the number 10
to an internal priority and then adds 11 to the internal priority to
form the dispatching priority (11 is always the number added to the
job's internal priority; 11 is the number added to the job step's
internal priority when value2 of the DPRTY parameter is omitted).

If you code value2 of the DPRTY parameter, the system adds that value
to the internal priority to form the dispatching priority. (The
internal priority is formed by the system by converting the value
assigned to valuel in the DPRTY parameter.)

When you want the job step to have a different dispatching priority
than the job, you code the DPRTY parameter and either raise or lower the
values, depending on whether the step is to have a higher or lower
priority than the job.

Section III: The EXEC Statement -- DPRTY Parameter 87

THE DPRTY PARAMETER AND TIME-~SLICING

If your installation provides time-slicing facilities in a system with
MVT, the DPRTY parameter can be used to make a job step part of a group
of jobs and job steps to be time-sliced. (To make an entire job part of
a group of jobs and job steps to be time-sliced, code the PRTY parameter
on the JOB statement.) At system generation, the priorities of the
time-sliced groups are selected. If the number assigned to "valuel"
corresponds to a priority number selected for time-slicing and "value2"
is either omitted or assigned a value of 11, then the job step's tasks
will be time-sliced. :

WHEN YOU CALL A CATALOGED PROCEDURE

The DPRTY parameter may be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure, you may
want to .override all DPRTY parameters in the procedure or only certain

" DPRTY parameters. To override all DPRTY parameters, code the DPRTY
parameter on the EXEC statement that calls the procedure. This
establishes one dispatching priority for all the steps in the procedure.
To override only certain DPRTY parameters, code, on the EXEC statement
that calls the procedure, DPRTY.procstepname for each procedure step
that you want to override. The dispatching priority will then pertain
only to the named procedure step.

Examples of the DPRTY Parameter

i. //BP2 EXEC PGM=FOUR,DPRTY=(13,9)
The system uses these numbers to form a dispatching priority for
this step. Since the numbers are high, the dispatching priority
will be high.

2. //STEpP3 EXEC PGM=BROWN31l,DPRTY=(,12)
The system first assigns a value of 0 to the absent subparameter and
then forms a dispatching priority. In this case, the dispatching
priority will be very low.

3. //S5T2 EXEC COMP,DPRTY=4

The system assigns a dispatching priority of 4 to all steps in the
procedure named COMP.

88 JCL Reference (Release 20.1)

The PARM Parameter

PARM=value

value

consists of up to 100 characters of information or optlons that the
system is to pass to the processing program.

Rules for Coding

1.

If the value contains more than one expression separated by commas,
the value must be enclosed in apostrophes or parentheses, e.g.,
PARM='P1,123,MT5' or PARM=(P1,123,MT5). (Enclosing apostrophes and
parentheses are not passed to the processing program; commas within
apostrophes and parentheses are passed as part of the value.)

If any expression contains special characters, either (1) enclose
the value in apostrophes, or (2) enclose the expression in
apostrophes and the value in parentheses, e.g., PARM='P50,12+80' or
PARM=(P50,'12+80"'). (The enclosing apostrophes and parentheses are
not considered part of the value.) If one of the 'special
characters is an apostrophe, code two consecutive apostrophes in
its place, e.g., PARM="CONTROL INFORM®''N'. If one of the special
characters is an ampersand and you are not defining a symbolic
parameter, code two consecutive ampersands in its place, e.g.,
PARM='3462665". (When two apostrophes or two ampersands are coded,
only one is passed to the processing program.)

If the value must be continued on another statement, enclose the
value in parentheses. The continuation comma is considered part of
the value field and counts towards the maximum of 100 characters of
data. You may not continue on another statement any value enclosed
in apostrophes. -

EXEC

Providing a Processing Program With Information at Execution Time

some information required by a program may vary from application to
application, such as module attributes and options required by compiler,
assembler, and linkage editor programs. In order to provide this
information to the program at the time it is executed, you can code the
PARM keyword parameter. The program must include instructions that can
retrieve this information. (The exact location and format of the
information passed to a processing program are described under the topic
"Program Management" in Section I of Supervisor and Data Management
Services.)

WHEN YOU CALL A CATALOGED OR IN-STREAM PROCEDURE

The PARM parameter may be coded on the EXEC statement of a cataloged or
in-stream procedure step. If the job step calls a cataloged or
in-stream procedure, you can pass information to the first procedure
step and nullify all other PARM parameters in the procedure or override
some of the PARM parameters contained in the procedure. To accomplish
the first, code the PARM parameter on the EXEC statement that calls the
procedure. The information contained in the PARM parameter is passed to
the first procedure step and PARM parametérs in all other procedure

Section III: The EXEC Statement -- PARM Parameter 89

steps are nullified. To override some of the PARM parameters contained
in the procedure, code, on the EXEC statement that calls the procedure,
PARM.procstepname for each procedure step that you want to override.
Information provided is passed only to the named procedure step.

Examples of the PARM Parameter

1. //RUN3 EXEC PGM=APG22,PARM=(P1,123,°'P2=5")

The system passes the information in the PARM parameter, except the
apostrophes, to the processing program named APG22.

2. // EXEC PROCS81,PARM=MTS
The system passes this information to the first step of the
procedure named PROC81. If any of the other procedure steps contain
the PARM parameter, these parameters are nullified.

3. //STP6 EXEC ASMFCI1G,PARM.LKED=(MAP,LET)
The system passes this information to the procedure step named LKED.

If any of the other procedure steps contain the PARM parameter,
these parameters are still in effect.

90 JCL Reference (Release 20.1)

The RD Parameter

RD=|R
RNC
NC
NR
R
specifies that automatic step restart is permitted.
RNC
specifies that automatic step restart is permitted and automatic
checkpoint restart is not permitted and no checkpoints can be
established. :
NC
specifies that neither automatic step restart nor automatic
checkpoint restart is permitted and no checkpoints can be
established.
NR

specifies that neither automatic step restart nor automatic
checkpoint restart is permitted, but the CHKPT macro instruction
can establish a checkpoint. ‘

Rules for Coding

| 1. Be sure to code MSGLEVEL=(1,1), MSGLEVEL=(1,0), or MSGLEVEL=1 when
RD=R or RD=RNC is specified.

2. If you are permitting automatic step restart, assign the step a
unique step name.

3. If you have coded the RD parameter on the JOB statement, RD
parameters on the job's EXEC statements are ignored.

Using the Restart Facilities

The RD (restart definition) keyword parameter is coded when you want to
make use of the step restart facilities, to suppress the action of the
CHKPT macro instruction, or to suppress automatic restarts. The step
restart facilities permit execution of a job to be automatically
lrestarted at a job step after the job abnormally terminates or after a
system failure occurs. Through the RD parameter, you can specify that
- execution of a job step is to be automatically restarted at the
beginning of the step if it abnormally terminates (step restart).

Execution of a job step can also be automatically restarted within
the step if it abnormally terminates (checkpoint restart). In order for
checkpoint restart to occur, the CHKPT macro instruction must have been
éxecuted in the processing program before abnormal termination. When
you use the RD parameter to request suppression of the CHKPT macro
instruction action, automatic checkpoint restart cannot occur.

If the RD parameter is not coded, step restart cannot occur. If the

RD parameter is not coded and the processing program contains CHKPT
macro instructions, checkpoint restart can occur.

Section III: The EXEC Statement -- RD Parameter 91

The following three conditions must be met before automatic step or
checkpoint restart can occur: (1) the completlon code returned during
abnormal termination indicates that the step is eligible for restart,
(2) the operator authorizes restart, and (3) MSGLEVEL—(l 0),
MSGLEVEL=(1,1), or MSGLEVEL=1 must be ¢oded on the JOB statement. If
these conditions are satisfied, special disposition processing is
performed before restart. If automatic step restart is to occur, all
data sets in the restart step with a status of OLD or MOD, and all data
sets being passed to steps following the restart step, are kept. All
data sets in the restart step with a status of NEW are deleted. If
automatic checkpoint restart is to occur, all data sets currently in use
by the job are kept.

DEFINING RESTART

You define the type of restart that can occur by coding one of the
subparameters of the RD parameter: R, RNC, NC, or NR. Each of these
subparameters is described in detail in the following paragraphs.

RD=R: R indicates that automatic step restart is permitted. If the
processing program used by the job step does not include any CHKPT macro
instructions, coding RD=R allows execution to be resumed at the
beginming of this step if it abnormally terminates. If the program does
include a CHKPT macro instruction, coding RD=R permits automatic step
restart to occur only if the step abnormally terminates before execution
of the CHKPT macro instruction; thereafter, only checkpoint restart can
occur. If you cancel the effects of the CHKPT macro instruction before
a checkpoint restart is performed, the request for automatic step
restart is again in effect.

RD=RNC: RNC indicates that automatic step restart is permitted and
automatic checkpoint restart is not permitted. RD=RNC should be
specified when you want to suppress the action of all CHKPT macro
instructions included in the processing program and to permit automatlc
step restart.

RD=NC: NC indicates that neither automatic step restart nor automatic
checkpoint restart is permitted. RD=NC should be specified when you
want to suppress the action of all CHKPT macro instructions included in
the processing program and not to permit automatic step restart. RD=NC
has no effect on processing if CHKPT macro instructions are not included
in the program.

RD=NR: NR indicates that a CHKPT macro instruction can establish a
checkpoint, but neither automatic step restart nor automatic checkpoint
restart is permitted. Coding RD=NR allows you to resubmit the job at a
later time and specify in the RESTART parameter the checkpoint at . which
execution is to be resumed. (The RESTART parameter is coded on the JOB
statement of the resubmitted job.) RD=NR has not effect on processing
if CHKPT macro instructions are not included. in the program.

WHEN YOU CALL A CATALOGED PROCEDURE

The RD parameter may be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure, you may
want to override all RD parameters in the procedure or only certain RD
parameters. To override all RD parameters, code the RD parameter on the
EXEC statement that calls the procedure. This establishes one restart
request for all the steps in the procedure. To override only certain RD
parameters, code, on the EXEC statement that calls the procedure,
RD.procstepname for each procedure step that you want to override. The
restart request will then pertain only to the named procedure step.

92 JCL Reference (Release 20.1)

References

1. For detailed information on the checkpoint/restart facilities,
refer to the publication Advanced Checkpoint/Restart Planning
Guide, the topic "Checkpoint and Restart"™ in the publication
Supervisor and Data Management Services, and "Using the Restart
Facilities"™ in Appendix B of this publication.

2. For information on how to code the CHKPT macro instruction, refer
to the publication Supervisor and Data Management Macro
Instructions.

Examples of the RD Parameter

1. //STEP1 EXEC PGM=GIIM,RD=R

Permits execution to be automatlcally restarted with this step if it
abnormally terminates.

2. //NEST EXEC PGM=T18,RD=RNC
Permits execution to be automatically restarted with this step if it
abnormally terminates; suppresses the action of CHKPT macro
instructions issued in the program this job step uses.

3. //CARD EXEC PGM=WTE,RD=NR
Neither automatic step restart nor automatic checkpoint restart can
occur, but CHKPT macro instructions issued in the program that this
job step executes can establish checkpoints.

4. //STP4 EXEC BILLING,RD.PAID=NC,RD.BILL=NR

Specifies that different restart requests pertain to each of the
named procedure steps (PAID and BILL).

Section III: The EXEC Statement -- RD Parameter 93

The REGION Parameter--Without Main Storage Hierarchy
Support (For MVT)

REGION=valuek

valueK
specifies the number of contiguous 1024-byte areas of main storage
to be allocated to the job step. The number can range from one to
five digits but may not exceed 16383.

Rules for Coding

1. Code an even number. (If you code an odd number, the system treats
it as the next highest even number. When the value 16383K is
coded, the system treats it as 16384K. However, the value 16384K
must not be coded on the EXEC statement.)

2. If you have coded the REGION parameter on the JOB statement, REGION
parameters on the job's EXEC statements are ignored.

3. If the REGION parameter is coded for MFT, the parameter is not
used, but is checked for syntax.

Requesting Main Storage

The REGION keyword parameter is used to specify how much main storage,
in contigquous bytes, is to be allocated to the job step. Code the
REGION parameter when you want more storage or less storage than would
be allocated if the default region size was used. The default region
size is established as a PARM parameter field in the cataloged procedure
for the input reader. You can consult the Storage Estimates publication
to help you determine how much main storage is required to process your
job.

ACQUIRING ADDITIONAL MAIN STORAGE

If the step may require use of more main storage than has been
allocated, you can code the ROLL parameter on either the JOB statement
or this EXEC statement and request that the system try to provide you
with additional main storage. The ROLL parameter is described in the
chapters "The ROLL Parameter" later in this section and in Section II.

WHEN YOU CALL A CATALOGED PROCEDURE

The REGION parameter may be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure, you may
want to override all REGION parameters in the procedure or only certain
REGION parameters. To override all REGION parameters, code the REGION
parameter on the EXEC statement that calls the procedure. Each
procedure step will be allocated the same amount of storage. To
override only certain REGION parameters, code, on the EXEC statement
that calls the procedure, REGION.procstepname for each procedure step
that you want to override. The requested region size will then be
allocated only to the named procedure step.

Section III: The EXEC Statement -- REGION Parameter 95

Examples of the REGION Parameter

1.

//JUNE EXEC PGM=A1403,REGION=112K

Specifies that 112 contiguous 1024-byte areas of main storage are to
be allocated to the job step. :

//STP2 EXEC PGM=RATL,REGION=70K,ROLL=(YES,YES)

The REGION parameter specifies that 70 contiguous 1024-byte areas of
main storage are to be allocated to the job step. In the ROLL
parameter, the first subparameter tells the system that this step
may be rolled out if additional storage is required by another job;
the second subparameter tells the system that it should try to
provide this step with additional main storage if it is required.

//STP4 EXEC BILLING,REGION.IATE=80K,REGION.BILL=108K

Specifies that different region sizes are to be allocated to the
named procedure steps (LATE and BILL).

96 JCL Reference (Release 20.1)

The REGION Parameter--With Main Storage Hierarchy Support
(For MVT, Excluding M65MP)

REGION=(value K,valuey k)

value K
specifies the number of contiguous 1024-byte areas in hierarchy 0
to be allocated to the job step. If IBM 2361 Core Storage is
present, the number cannot exceed 16383.

valuey K
specifies the number of contiguous 1024-byte areas in hierarchy 1
to be allocated to the job step. If IBM 2361 Core Storage is
present, the number cannot exceed 1024 (for each Model 1) or 2048
(for each Model 2).

Rules for Coding

1. When processor storage includes hierarchies 0 and 1, the sum of
value and value, cannot exceed 16383.

2. Code even numbers. (If you code an odd number, the system treats
it as the next highest even number. When 16383K is coded for
value , the system treats it as 16384K. However, 16384K must not
be coded for value on the EXEC statement.)

3. When you are requesting storage only in hierarchy 1, precede valuey

with a comma, to indicate the absence of value .

4. When you are requesting storage only in hierarchy 0, you need not
code the parentheses.

5.. If you have coded the REGION parameter on the JOB statement, REGION

parameters on the job's EXEC statements are ignored.

6. If the REGION parameter is coded for MFT, the parameter is not
used, but is checked for syntax.

Réquesting Main Storage in One or Two Hierarchies

The REGION keyword parameter is used to specify how much main storage is

to be allocated to each job step, and, when main storage hierarchy
support has been specified at system generation, in which hierarchy or
hierarchies to allocate main storage. With main storage hierarchy
support, storage hierarchies 0 and 1 are provided. If IBM 2361 Core
Storage, Model 1 or 2, is present in the system, processor storage is
referred to as hierarchy 0 and 2361 Core Storage is referred to as
hierarchy 1. If 2361 Core Storage is not present, a two-part region is
established in processor storage when regions are requested in two
hierarchies. The two parts are not necessarily contiguous in processor
storage.

Code the REGION parameter to specify how much storage is to be
allocated in each hierarchy, or that all storage for the job step is to
be allocated in a particular hierarchy. (If you do not code the REGION
parameter on either the JOB or EXEC statement, the default region size,

which is a PARM parameter field in the cataloged procedure for the input
reader, is used and is always allocated in hierarchy 0. - If you code the
REGION parameter and request storage only from hierarchy 1, no hierarchy

0 segment will be allocated.) You can consult the Storage Estimates

Section III: The EXEC Statement -- REGION Parameter 97

EXEC

publication to help you determine how much main storage is required to
process the job step. Then, depending on your reasons for using
hierarchies, determine how much storage is required in each.

If main storage hierarchy support was not specified at system
generation and regions are requested in both hierarchies, the region
sizes are combined and an attempt is made to allocate a single region
from processor storage. If a region is requested entirely from
hierarchy 1, an attempt is made to allocate the region from processor
storage.

ACQUIRING ADDITIONAL MAIN STORAGE

If the job step may require more main storage than has been allocated,
you can code the ROLL parameter and request that the system try to
provide you with additional main storage in that hierarchy. The ROLL
parameter is described in the chapters "The ROLL Parameter" later in
this section and in Section II.

WHEN YOU CALL A CATALOGED PROCEDURE

The REGION parameter may be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure, you may
want to override all REGION parameters in the procedure or ‘only certain
REGION parameters. To override all REGION parameters, code the REGION
parameter on the EXEC statement that calls the procedure. Each
procedure step will be allocated the same amount of storage in the
specified hierarchies. To override only certain REGION parameters,
code, on the EXEC statement that calls the procedure,

REGION. procstepname for each procedure step you want to override. The
requested region size will then be allocated in the specified
hierarchies only to the named procedure step.

Examples of the REGION Parameter

1. //MART EXEC PGM=TYP,REGION=(80K, 30K)

Specifies that the system is to allocate 80 contiguous 1024-byte
areas of storage in hierarchy 0 and 30 contiguous 1024-byte areas of
storage in hierarchy 1. If main storage hierarchy support is not
included in the system, the system will try to obtain 110 contiguous
1024-byte areas in processor storage.

2. // EXEC PGM=U1489,REGION=(, 98K)

Specifies that the system is to allocate 98 contiguous 1024-byte
areas of storage in hierarchy 1.

3. //RAND EXEC PGM=SSYS,REGION=(100K,50K) ,ROLL=(YES,YES)

The REGION parameter specifies that the system is to allocate 100
contiguous 1024-byte areas of storage in hierarchy 0 and 50
contiguous 1024-byte areas of storage in hierarchy 1. In the ROLL
parameter, the first subparameter tells the system that this step
may be rolled out if additional storage is required by another job;
the second subparameter tells the system that it should try to
provide this step with additional main storage if it is required.

4. //STP4 EXEC BILLING,REGION.PAID=(28K,10K),REGION.LATE= (44K, 8K)
Specifies that different region sizes are to be allocated to the

named procedure steps (PAID and LATE).

98 JCL Reference (Release 20.1)

The ROLL Parameter (For MV'T)

ROLLI~(x,Y)
b 4
declares whether the job step may be rolled out. Code YES if the
step may be rolled out; code NO if the step may not be rolled out.
Y

declares whether the job step may cause rollout of another job
step. Code YES if the step may cause rollout of another job step;
code NO if the step may not cause rollout of another job step. YES
must be coded if you want additional main storage allocated to the
step when additional main storage is required.

Rules for Coding

1. If you code the ROLL parameter, both subparameters must be
specified.

2. If you have coded the ROLL parameter on the JOB statement, ROLL
parameters coded on the job's EXEC statements are ignored.

3. Code ROLL=(NO,YES) or ROLIL=(NO,NO) if this step is part of a
teleprocessing job that uses the Auto Poll option. If you allow
the step to be rolled out, the step cannot be restarted properly.

4. If the ROLL parameter is coded for MFT, the parameter is not used,
but is checked for syntax.

When to Code the ROLL Parameter

The ROLL keyword parameter should be coded if the job step may require
more main storage than was requested in the REGION parameter. When you
specify in the ROLL parameter that this job step may cause rollout of
another job step, an attempt is made to allocate additional storage if
the step requires it. In order to allocate this additional space to a
job step, another job step with a lower priority may have to be rolled
out, i.e., temporarily transferred to secondary storage.

The ROLL parameter should also be coded when you want control over
whether the job step can be rolled out because of another step's need
for additional main storage. If the ROLL parameter is not coded, the
specification made in the PARM parameter field in the cataloged
procedure for the input reader is used.

WHEN YOU CALL A CATALOGED PROCEDURE

The ROLL parameter may be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure, you may
want to override all ROLL parameters in the procedure or only certain
ROLL parameters. To override all ROLL parameters, code the ROLL
parameter on the EXEC statement that calls the procedure. This
establishes one rollouts/rollin request for all the steps in the
procedure. To override only certain ROLL parameters, code, on the EXEC
statement that calls the procedure, ROLL.procstepname for each procedure
step that you want to override. The rollout/rollin request will then
pertain only to the named procedure step.

Section III: The EXEC Statement -- ROLL Parameter 99

EXEC

Examples of the ROLL Parameter

1.

//FILL EXEC PGM=PLUS,ROLIL~=(YES, YES),REGION=100K

Specifies that this step may be rolled out and may cause rollout of
another job step if this step requires more than 100K of main
storage.

//0P EXEC PGM=Z165,ROLL=(NO,YES)

Specifies that this step may not be rolled out but may cause rollout
of another job step.

//STP4 EXEC BILLING,ROLL.LATE=(YES,NO) ,ROLL.BILL=(NO,NO)

Speéifies that different rollout/rollin requests pertain to each of
the named procedure steps (LATE and BILL).

100 JCL Reference (Release 20.1)

The TIME Parameter

TIME=\| (minutes,seconds)
1440
minutes .
specifies the maximum number of minutes the job step can use the
CPU. The number of minutes must be less than 1440 (24 hours).

seconds ' .
specifies the maximum number of seconds beyond the specified numbe
of minutes the job step can use the CPU, or, if no minutes are
specified, the maximum number of seconds the job step can use the
CPU. The number of seconds must be less than 60.

1440
specifies that the job step is not to be timed. Code 1440 if the
step may require use of the CPU for 24 hours or more or if the step
should be allowed to remain in a wait state for more than the
established time limit.

Rules for Coding

1. If the CPU time limit is given in minutes only, you need not code
the parentheses.

2. If the CPU time limit is given in seconds only, you must code a
comma preceding the seconds to indicate the absence of minutes.

3. You must not code TIME=0 on an EXEC statement.

Specifying a Time Limit for a Job Step

The TIME keyword parameter can be used to specify the maximum amount of
time the job step may use the CPU. Two benefits of coding the TIME -
parameter are that it allows you to find out how long the step uses the
CPU (CPU time used appears on the output listing), and it helps limit
the CPU time wasted by the step if it goes into a loop. Normally, a
step that exceeds the specified time limit causes termination of the
job. However, if the System Management Facilities option is included in
the system and a user exit routine is provided, this routine can extend
the time limit so that processing can continue. When the TIME parameter
is not coded, a default time limit is assumed. The default is specified
as a PARM parameter field in the cataloged procedure for the input
reader.

TIME LIMIT FOR WAIT STATES

Since the job step can go into an extremely long wait state, the time a
job step may remain in a wait state is limited. If the System
Management Facilities option is included in the system, the installation
determines this time limit. 1In this case, if the job step remains in a
wait state for more than the established time limit, the job is
terminated unless a user-provided exit routine extends the wait-state
time limit for the step. If the System Management Facilities option is
not included, the system automatically provides a 30-minute time limit
for wait states; if the job step remains in a wait state for more than
30 consecutive minutes, the job is terminated.

Section III: The EXEC Statement -- TIME Parameter 101

How to Eliminate Timing

Certain applications require a job step to use the CPU for 24 hours or
more. In this case you must eliminate timing by coding TIME=1440. This
specification should also be made when the step should be allowed to
remain in a wait state for more than the established time limit.

HOW THE JOB TIME LIMIT AFFECTS THE STEP TIME LIMIT

The remaining job time may affect the amount of time the step can use
the CPU. If the remaining CPU time for the job is less than the CPU
time limit specified on the EXEC statement, the step can use the CPU
only for the job's remaining CPU time. For example, if the job's
remaining CPU time is 5 minutes and the step specifies a CPU time limit
of 10 minutes, the step can only use the CPU for 5 minutes.

WHEN YOU CALL A CATALOGED PROCEDURE

The TIME parameter may be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure, you may
want to override all TIME parameters in the procedure or only certain
TIME parameters. To override all TIME parameters, code the TIME
parameter on the EXEC statement that calls the procedure. This applies
a CPU time limit for the entire procedure, and nullifies any TIME
parameters that appear on EXEC statements in the procedure. To override
only certain TIME parameters, code, on the EXEC statement that calls the
procedure, TIME.procstepname for each procedure step that you want to
override. The CPU time limit will then pertain only to the named
procedure step.

Reference

1. A discussion of the System Management Facilities option is
contained in "Section 5: Task Management" in Concepts and
Facilities. Information on user exit routines to be used with the
System Management Facilities option is contained in the chapter
"System Management Facilities" in System Programmer's Guide.

Examples of the TIME Parameter

1. //STEP1 EXEC PGM=GRYS,TIME=(12,10)

Specifies that the maximum amount of time the step can use the CPU
is 12 minutes 10 seconds.

2. //FOUR EXEC PGM=JPLUS,TIME=(,30)

Specifies that the maximum amount of time the step can use the CPU
is 30 seconds.

3. //INT EXEC PGM=CALC,TIME=5
Specifies that the maximum amount of time the step can use the CPU

is 5 minutes.

102 JCL Reference (Release 20.1)

//LONG EXEC PGM=INVANL,TIME=1440

Specifies that the job step is not to be timed. Therefore, the step
may use the CPU and may remain in a wait state for an unspecified
period of time.

//STP4 EXEC BILLING,TIME.PAID=(45,30),TIME.BILL=(112,59)

sSpecifies that different time limits pertain to each of the named
procedure steps.

Section III: The EXEC Statement -- TIME Parameter 103

EXEC

Section IV: The DD Statement

The DD (data definition) statement describes a data set that is to be
used in a job step and specifies the input and output facilities
required for use of the data set. Each data set to be used in a step
reqguires a DD statement; all DD statements for a step follow that step's
EXEC statement. Although all DD statement parameters are optional, a
blank operand field is invalid, except when you are overriding DD
statements that define concatenated data sets. (See "Overriding DD
Statements that Define Concatenated Data Sets" in Appendix A of this
publication.) You can include a maximum of 255 DD statements per job
step.

DD Statement Format

r/>/ddname DD operands comments

The DD statement consists of the characters //, in columns 1 and 2, and
four fields - the name, operation (DD), operand, and comments field.
Rules for Coding

Follow the order listed below when coding the DD statement:

1. Code the characters // in columns 1 and 2.

Y AT AT AT ETET S UATIT (VNPT SPUNNTEN STUUETIN AT AT S VRTITN SPRTETITES VAR ST AP PR ISP S
‘ e } } } ; } {

2. Code a ddname, starting in column 3. (A ddname is not coded in two
cases. These cases are described in the chapter "Assigning a
Ddname. ")

[2[3]
//DAiI.|n.l.x.:l....|....l.‘..l....l....l.‘..l....!....l....!.‘..l...LL.....I..‘

3. Follow the ddname, or // if a ddname is not coded, with at least
one blank.

4. Code DD.

1-10 11-20 21-30 -~ _71-80 .
lEEBBGIEEEHBBBEBIBBEHBBEBBHBEEﬂBBHEBIEBEHEBHBEIEEEBEEHEGIBE@HBEBEEIEEEHEBGBEIEEO

LADDA DD g e L e]

el v e b

5. Follow DD with at least one blank.

Section IV: The DD Statement 105

6. Code any desired positional parameter.

| o
//DD.4 AD Duﬂﬁll....!....l..‘rgt...|....3A..A[.‘..;...,|.,..g....|....!,...|..“

7. Code any desired keyword parameters. Separate each parameter with
a comma.

112 D [} = m;JJpP;ALm...!.“,I....(.‘..|....;....|..,.|.|.A|r..‘

8. Code at least one blank.

9. Code any desired comments.

=4 B..C =04d REMOVE “1Du ' ER, THT.S, P B

Positional and Keyword Parameters

There are two types of parameters that can be coded on the DD statement:

Positional parameters, which must precede any keyword parameters. One
of the following positional parameters may be coded on a DD statement:

*
DATA
DUMMY
DYNAM

These positional parameters are described in the following pages in the
order listed above.

Keyword parameters, which may be coded in any order. The following
keyword parameters can be coded on a DD statement:

AFF

DCB

DDNAME

DIsSP

DSN (see DSNAME)

DSNAME

FCB

LABEL

OUTLIM

ONAME - MFT and MVT with TCAM
SEP

(continued on next page)

106 JCL Reference (Release 20.1)

SPACE
SPLIT
SUBALLOC
SYsSouT

TERM - MVT with TSO

UCs
UNIT

VOL (see VOLUME)

VOLUME

These keyword parameters are described, after the positional parameters,

in the order listed above.

Sample DD Statements

1.
2.

3.

4.

//DDA
//PRINT

//1IN
/7

//DWN

DD

DD

DD

DSNAME= & §TEMP, UNIT=2400, DISP=(NEW, PASS)

SYSOUT=F

DSNAME=ALLOC ,DISP=(,KEEP,DELETE) ,UNIT=2311, X
VOLUME=SER=541382,SPACE=(CYL, (12,1))

*

Section 1IV:

The DD Statement 107

Assigning a Ddname

(///ddname DD

The ddname identifies a DD statement so that subsequent control
statements and the data control block in the processing program can
refer to it. The ddname must begin in column 3 and consist of 1 through
8 alphameric and national (a3, #, §) characters. The first character
must be an alphabetic or national character.

Each ddname within a job step should be unique. If duplicate ddnames
exist in a step, allocation of devices and space and disposition
processing are done for both DD statements; however, all references are
directed to the first such DD statement in the step.

There are several special ddnames that tell the system that you want
to make use of particular facilities. Except for the ddname SYSCHK, do
not use the special ddnames unless you want these facilities. These
special ddnames are individually discussed following "Examples of Vvalid
Ddnames"™ in the section titled "Special Ddnames".

Apart from the restricted use of certain special ddnames, there are
two instances when you should not code a ddname at all:

1. If a DD statement is to define a data set that is concatenated with
a data set defined by a preceding DD statement.

2. If the DD statement is the second or third consecutive DD statement
that defines an indexed sequential data set. (Defining an indexed
sequential data set on more than one DD statement is discussed in
"Appendix C: Creating and Retrieving Indexed Sequential Data
Sets. ")

WHEN ADDING OR OVERRIDING INFORMATION IN A CATALOGED PROCEDURE STEP

If the job step uses a cataloged procedure, DD statements that follow
the EXEC statement are used (1) to override parameters on the various DD
statements in the procedure, and (2) to add new DD statements to the
procedure. These modifications exist only for the duration of the job
step; they do not change the procedure permanently.

To make one of these modifications, each ddname must be qualified by
a procedure step name, i.e., procstepname.ddname,as follows:

1. To override parameters on a DD statement, code the name of the
procedure step in which the DD statement appears, followed by a
period, followed by the name of the DD statement that you want to
override.

2. To-add DD statements to a procedure step, code the name of the
procedure step in which you want to add the statement, followed by
a period, followed by a ddname of your choosing.

To supply a procedure step with data in the input stream, code the
name of the procedure step that is to use the data, followed by a
ddname. This ddname may be predefined in the procedure step by
means of the DDNAME parameter. In this case, the ddname that
follows the procedure step name is the name coded in the DDNAME
parameter. Otherwise, you code a ddname of your choosing.

Section IV: The DD Statement -- Assigning a Ddname 109

Examples of Valid Ddnames

1.
2'

3 -

//DD1 DD

//7#5863 DD
//INPUT DD
/77 DD

Because the ddname is missing from the second DD statement, the data
sets defined in these statements are concatenated.

//PAYROLL.DAY DD

If the procedure step named PAYROLL includes a DD statement named
DAY, this statement overrides parameters on the statement named DAY.
If the step does not include a DD statement named DAY, this
statement is added to the procedure step for the duration of the job
step.

//STEPSIX.DD4 DD
7/ DD

You can define data sets that are to be concatenated and added to
the procedure step by coding this sequence; that is, by identifying
the procedure step in which you want to add the statements, followed
by a ddname of your choosing, on the first DD statement and omitting
the ddname on the second DD statement.

110 JCL Reference (Release 20.1)

Special Ddnames

There are five special ddnames that tell the system you want to make use
of a particular facility. The five ddnames and their functions are:

JOBLIB -

STEPLIB -

SYSABEND -

SYSUDUMP -

SYSCHK -

this DD statement defines a private library that the
system makes available for use by the job.

this DD statement defines a private library that the
system makes available for use by a job step.

this DD statement defines a data set on which a dump
can be written if the step abnormally terminates. The
dump provided would include the system nucleus, the
processing program storage area, and, possibly, a
trace table.

this DD statement defines a data set on which a dump
can be written if the step abnormally terminates. The
dump provided would include only the processing
program storage area.

this DD statement defines the checkpoint data set and

is included when a deferred checkpoint restart is to
occur.

Section IV: The DD Statement -- Special Ddnames 111

JOBLIB

Unless the system is told that the program you request on the EXEC
statement resides in a private or temporary library, the system expects
to find it in the system library (SYS1.LINKLIB). One way to tell the
system that a program resides in a private library is to follow the JOB
statement with a DD statement named JOBLIB. (The other way to tell the
system that a program resides in a private library is to include, as one
of the DD statements for a job step, a DD statement named STEPLIB. The
STEPLIB DD statement is described under the next topic, "STEPLIB.") If
you include a JOBLIB DD statement, each time you request a program the
system first looks in the private library; if the system does not find
the program there, the system looks for it in the system library.

The parameters you code on the JOBLIB DD statement are determined by
whether the library is cataloged. The parameters that must be coded
when the library is cataloged and when the library is not cataloged are
described under "When the Library Is Cataloged" and "When the Library Is
Not Cataloged," respectively. In either case, how you code the DISP
parameter is the same and is described in the topic "The DISP
Parameter. "

RULES FOR CODING THE JOBLIB DD STATEMENT

1. The ddname must be JOBLIB. Never use the ddname JOBLIB except when
you are defining a private library.

2. The JOBLIB DD statement must appear immediately after the JOB
statement to which it pertains.

3. A JOBLIB DD statement cannot appear in a cataloged procedure.

The DISP Parameter

To make the private library available throughout the job, you must code
the DISP parameter to specify the library's status and disposition. One
of the following may be coded:

1. DIsP=(OLD,PASS)
The library already exists and is kept at the end of the job. If
you code DISP=OLD, the system assumes DISP=(OLD,PASS).

2. DIsSP=(SHR,PASS)
The library already exists and is kept at the end of the job. The
library may be used by other jobs that are being executed
concurrently. If you code DISP=SHR, the system assumes
DISP=(SHR,PASS).

3. DIsP=(NEW,PASS)
The library is created and used in the job, and is deleted at the
end of the job.

4. DISP=(NEW,CATLG)

The library is created, cataloged, and used in the job, and is kept
at the end of the job.

112 JCL Reference (Release 20.1)

Wwhen the Library Is Cataloged

If the private library is cataloged, you must always code the DSNAME and
DISP parameters.

e The DSNAME parameter specifies the name of the private library.
e The DISP parameter is either DISP=(OLD,PASS) or DISP=(SHR,PASS).

The other parameter you might code is DCB.

e Code the DCB parameter if complete data control block information is
not contained in the data set label.

If you wish to refer to the private library in a later DD statement,
code DSNAME=#.JOBLIB and the DISP parameter, DISP=(OLD,disposition).
(Do not assign a disposition of DELETE, because the library would then
be deleted at the end of the job step and be unavailable for use during
the remainder of the job.) If a later DD statement defines a data set
that is to be placed on the same volume as the private library, you can
code VOLUME=REF=#.JOBLIB to obtain volume and unit information. :

When the Library Is Not Cataloged

If the private library is not cataloged, you must always code the DISP
and UNIT parameters.

e The DISP parameter is
DIsP=(OLD,PASS), DISP=(SHR,PASS) , DISP=(NEW,PASS), or
DISP=(NEW,CATLG).

* The UNIT parameter specifies the device to be allocated to the
library.

You must always code the VOLUME parameter unless the status of the data
set is NEW. The DSNAME parameter is required unless the data set has
been assigned a disposition of (NEW,PASS). If the status of the data
set is NEW, the SPACE parameter is required.

e The VOLUME parameter identifies the volume serial number.
e The DSNAME parameter specifies the name of the private library.

e The SPACE parameter allocates space for the library on the
designated volume.

The other parameter you might code is DCB.

e Code the DCB parameter if complete data control block information is
not contained in the data set label.

If you wish to refer to the private library in a later DD statement,
code DSNAME=%_,JOBLIB, VOLUME=REF=*.JOBLIB (or VOLUME=SER=serial number,
UNIT=unit information), and the DISP parameter, DISP=(OLD,disposition).
(Do not assign a disposition of DELETE, because the library would then
be deleted at the end of the job step and be unavailable for use during
the remainder of the job). If a later DD statement defines a data set
that is to be placed on the same volume as the private library, you can
code VOLUME=REF=#.JOBLIB to obtain volume and unit information.

Concatenating Libraries

You can arrange a sequence of DD statements that define different
libraries. The libraries are searched in the order in which the DD

Section IV: The DD Statement -- Special Ddnames 113

statements appear. If the system library is not defined on one of these
DD statements, it is searched last.

To concatenate libraries, omit the ddname from all the DD statements
defining the libraries except the first DD statement. The first DD
statement must specify a ddname of JOBLIB, and the entire group must
appear immediately after the JOB statement.

ﬂpén the Job Includes a STEPLIB DD Statement

If both JOBLIB and STEPLIB DD statements appear in a job, the STEPLIB
definition has precedence, i.e., the private library defined by the
JOBLIB DD statement is not searched for any step that contains the
STEPLIB definition. If you want the JOBLIB definition ignored but the
step does not require use of another private library, define the system
library on the STEPLIB DD statement:

//STEPLIB DD DSNAME=SYS1.LINKLIB,DISP=OLD

Examples of the JOBLIB DD Statement

1. //PAYROLL JOB
//J30BLIB DD DSNAME=PRIVATE.LIB4, DISP=(OLD, PASS)
//STEP1 EXEC PGM=SCAN
//STEP2 EXEC PGM=UPDATE
//DD1 DD DSNAME=# .JOBLIB, DISP=(OLD,PASS)

The private library defined on the JOBLIB DD statement is cataloged.
The statement named DD1 refers to the private library defined in the
JOBLIB DD statement.

2. //PAYROLL JOB REGION=86K .
//JOBLIB DD DSNAME=PRIV.DEPT58,DISP=(OLD,PASS),UNIT=2311, X
V4 VOLUME=SER=D58PVL o
//STEP1 EXEC PGM=DAY
//STEP2 EXEC PGM=BENEFITS
//DD1 DD DSNAME=# ,JOBLIB, VOLUME=REF=%.JOBLIB,DISP= (OLD,PASS)

The private library defined on the JOBLIB DD statement is not
cataloged. The statement named DD1 refers to the private library
defined in the JOBLIB DD statement.

3. //TYPE JOB MSGLEVEL=(1, 1)
//JOBLIB DD DSNAME=GROUP8.LEVEL5 ,DISP= (NEW, CATLG) ,UNIT=2311, X
7/ VOLUME=SER=148562, SPACE=(CYL, (50, 3, 4))
//STEP1 EXEC PGM=DISC
//DDA DD DSNAME=GROUP8.LEVEL5 (RATE) , DISP=OLD, X
/77 VOL=REF=%.JOBLIB

//STEP2 EXEC PGM=RATE

The private library defined on the JOBLIB DD statement does not
exist yet; therefore, all the parameters required to define the
private library are included on the JOBLIB DD statement. The
library is not created until STEP1 when a new member is defined for
the library. The system looks for the program named DISC in the

system library; the system looks for the program named RATE first in
the private library.

114 JCL Reference (Release 20.1)

//PAYROLL JOB
//JOBLIB DD DSNAME=KRG.LIB12,DISP=(OLD,PASS)

/7 DD DSNAME=GROUP31.TEST,DISP= (OLD, PASS)
/7 DD DSNAME=PGMSLIB, UNIT=2311, X
// DISP=(OLD,PASS) ,VOLUME=SER=34568

Several private libraries are concatenated. The system searches for
each program in this order: KRG.LIB12, GROUP31l.TEST, PGMSLIB,
before searching SYS1l.LINKLIB.

Section IV: The DD Statement -- Special Ddnames 115

STEPLIB

Unless the system is told that the program requested on the EXEC
statement resides in a private or temporary library, the system expects
to find the program in the system library (SYS1.LINKLIB). One way to
tell the system that the program the job step needs resides in a private
library is to include, as one of the DD statements for that step, a DD
statement named STEPLIB. (The other way to tell the system that a
program resides in a private library is to follow the JOB statement with
a DD statement named JOBLIB. The JOBLIB DD statement is described in
the previous topic, "JOBLIB.") If you include a STEPLIB DD statement,
each time a program is requested the system first looks in the private
library for the program the job step uses; if the system does not find
the program there, it looks for the program in the system library.

RULES FOR CODING THE STEPLIB DD STATEMENT
1. The ddname must be STEPLIB. Never use the ddname STEPLIB except

when you are defining a private library.

2. A STEPLIB DD statement can appear in any position among the DD
statements for the step.

3. The library defined on a STEPLIB DD statement can be referred to by
or passed to later job steps in the same job.

4. A STEPLIB DD statement can appear in a cataloged procedure.
5. The parameters you code on the STEPLIB DD statement are determined

by whether the library is cataloged, not cataloged, or passed by a
previous job step.

When the Library Is Cataloged

If the private library is cataloged, you must always code the DSNAME and
DISP parameters.

e The DSNAME parameter specifies the name of the private library.

e The DISP parameter specifies the library's status, either OLD or
SHR, and its disposition. The disposition would be KEEP, UNCATLG,
DELETE, or PASs, depending on how you want the library treated after
its use in the job step.

The other parameter you might code is DCB.

e Code the DCB parameter if complete data control block information is

not contained in the data set label.

When the Library Is Not Cataloged or Passed

If the private library is not cataloged or passed, you must always code
the DSNAME, DISP, VOLUME, and UNIT parameters.

e The DSNAME parameter specifies the name of the private library.
e The DISP parameter specifies the library's status, either OLD or
SHR, and its disposition. The disposition would be KEEP, CATLG,

DELETE, or PASS, depending on how you want the library treated after
its use in the job step. -

116 JCL Reference {(Release 20.1)

e The VOLUME parameter identifies the volume serial number.

¢ The UNIT parameter specifies the device to be allocated to the
library.

The other parameter you might code is DCB.

e Code the DCB parameter if complete data control block information is
not contained in the data set label.

When the Library Is Passed By a Previous Step

If a private library has been assigned a disposition of PASS, a later
job step can use the library when you code the DSNAME and DISP
parameters on a STEPLIB DD statement.

¢ The DSNAME parameter specifies either the name of the private
library or a backward reference of the form *.stepname.STEPLIB. If
the STEPLIB DD statement that assigned a disposition of PASS. occurs

in a cataloged procedure, the backward reference must include the
procedure step name, i.e., *.stepname.procstepname.STEPLIB.

e The DISP parameter specifies a status of OLD and a disposition. The
disposition would be KEEP, CATLG, UNCATLG, DELETE, or PASS,
depending on how you want the library treated after its use in the
job step.

Concatenating Libraries

You can arrange a sequence of DD statements that define different
libraries. The libraries are searched in the order in which the DD
statements appear. If the system library is not defined on one of these
statements, it will be searched last for the program the job step uses.

To concatenate libraries, omit the ddname from all the DD statements
defining the libraries except the first DD statement. The first DD
statement must specify a ddname of STEPLIB, and the entire group appears
as part of the DD statements for a particular step.

When the Job Includes a JOBLIB DD Statement

If both JOBLIB and STEPLIB DD statements appear in a job, the STEPLIB
definition has precedence, i.e., the private library defined by the
JOBLIB DD statement is not searched for any step that contains the
STEPLIB definition. If you want the JOBLIB definition ignored but the
step does not require use of another private library, define the system
library on the STEPLIB DD statement:

//STEPLIB DD DSNAME=SYS1.LINKLIB,DISP=OLD

Examples of the STEPLIB DD Statement

1. //PAYROLL JOB
//STEP1 EXEC LAB14
//STEP2 EXEC PGM=SPKCH
//STEPLIB DD DSNAME=PRIV.LIBS, DISP=(OLD,KEEP)
//STEP3 EXEC PGM=TIL80
//STEPLIB DD DSNAME=PRIV.LIB13, DISP=(OLD,KEEP)

The private libraries defined in STEP2 and STEP3 are cataloged.

Section 1IV: The DD Statement -- Special Ddnames 117

//PAYROLL JOB

//JOBLIB DD DSNAME=LIB5.GROUP4,DISP= (OLD, PASS)
//STEP1 EXEC PROC=SNZ12

//STEP2 EXEC PGM=SNAP10 .
//STEPLIB DD DSNAME=LIBRARYP, DISP=(OLD,PASS), X

7/ UNIT=2311,VOLUME=SER=55566

//STEP3 EXEC PGM=A1530

//STEPU4 EXEC PGM=SNAP11l

//STEPLIB DD DSNAME=*.STEP2. STEPLIB, X
7/ DISP=(OLD,KEEP)

The private library defined in STEP2 is not cataloged. The STEPLIB
DD statement in STEP4 refers to the library defined in STEP2. Since
a JOBLIB DD statement is included, STEP1L and STEP3 could execute
programs from LIB5.GROUP4 or, if not found there, from SYSli.LINKLIB.
STEP2 and STEP4 could execute programs from LIBRARYP or
SYS1.LINKLIB.

//PAYROLL JOB

//JOBLIB DD DSNAME~=LIB5.GROUPY4, DISP=(OLD, PASS)
//STEP1 EXEC PGM=SUM

//STEPLIB PD DSNAME=SYS1.LINKLIB, DISP=0LD
//STEP2 IXEC PGM=VARY

//STEP3 EXEC PGM=CALC

//STEPLIB DD DSNAME=PRIV.WORK,DISP=(OLD,PASS)

/7 DD DSNAME=LIBRARYA,DISP= (OLD,KEEP), X
7/ UNIT=2311, VOLUME=SER=44455

7/ DD DSNAME=LIB.DEPT88,DISP= (OLD,KEEP)
//STEPY EXEC PGM=SHORE .

STEP2 and STEP4 can use programs contained in the private library
named LIB5.GROUP4, which is defined in the JOBLIB DD statement.
STEP1 can use a program only from the system library, since the
library defined on the STEPLIB DD statement is the system library
and the JOBLIB definition is ignored. A concatenation of private
libraries is defined in STEP3. The system searches for the program
named CALC in this order: PRIV.WORK, LIBRARYA, LIB.DEPTS88,
SYS1.LINKLIB. If a later job step refers to the STEPLIB DD
statement in STEP3, the system will search for the program in the
private library named PRIV.WORK, and if not found there, in
SYS1.LINKLIB. :

\

118 JCL Reference (Release 20.1)

SYSABEND and SYSUDUMP

Each job step may contain one DD statement with a ddname of either
SYSABEND or SYSUDUMP; if more than one is included, all but the first DD
statement is ignored. These DD statements define a data set in which an
abnormal termination dump can be written if the job step abnormally
terminates. (Never use the ddname SYSABEND or SYSUDUMP unless you are
defining a data set in which a dump can be written.) The dump provided
when the SYSABEND DD statement is used includes the system nucleus, the
processing program storage area, and a trace table, if the trace table
option (MFT only) was requested at system generation. The SYSUDUMP DD
statement provides only a dump of the processing program storage area.

The parameters you code on one of these statements are determined by
whether you want the dump written to a unit record device or stored and
written at a later time.

WRITING THE DUMP TO A UNIT RECORD DEVICE

If you want the dump written to a unit record device, you code either
the UNIT or SYSOUT parameter.

e The UNIT parameter specifies the unit record device to which you
want to write the dump, e.g., UNIT=1403.

e The SYSOUT parameter specifies the output class through which you
want the data set routed, e.g., SYSOUT=A.

If the SYSOUT parameter is coded, the dump is not routed directly to
a system output device. Instead, the dump is stored on a direct access
device and later written on a system output device. If you want control
over which direct access device the dump is stored on, you can include
the UNIT parameter. You can also control the amount of space allocated
to the dump by including the SPACE parameter. Otherwise, the system
assigns a direct access device and space for a dump. (The device and
space that the system assigns are specified as PARM parameter fields in
the cataloged procedure for the input reader.) If you may require a
great deal of space for dumping, you should code the SPACE parameter,
rather than using the default, and assign an adequate amount of space so
that the dumping operation is not inhibited due to insufficient space.

STORING THE DUMP

If you want to store the dump and write it at a later time, the DD
statement must include the DSNAME, UNIT, VOLUME, and DISP parameters.

e The DSNAME parameter specifies the name of the data set.

e The UNIT parameter specifies the device to allocate to the data set.

e The VOLUME parameter identifies the volume serial number.

e The DISP parameter specifies the data set's status and disposition.
Since you want to store the data set, the data set's disposition

must be either XKEEP, CATLG, oOr PASS.

If the dump is to be stored on a direct access device, you must code
either the SPACE, SPLIT, or SUBALLOC parameter.

e The SPACE, SPLIT, or SUBALLOC parameter specifies the amount of
space you want allocated to the data set.

Section IV: The DD Statement -- Special Ddnames 119

Reference

1. Refer to the publication Programmer's Guide to Debugging for
information on how to interpret dumps.

Examples of the SYSABEND and SYSUDUMP DD Statements

1. //STEP2 EXEC PGM=A
//SYSABEND DD SYSOUT=A

The SYSABEND DD statement specifies that you want the dump routed
through the standard output class A.

2. J//STEP3 EXEC PGM=B
//8YSUDUMP DD SYsouT=F,SPACE=(TRK, (0,50)), UNIT=(2311,3)

The SYSUDUMP DD statement specifies that you want the dump routed
through the output class F. The dump is temporarily stored on the
specified device. If the UNIT and SPACE parameters were not coded,
the system would assign a direct access device and an estimate of
space required for the dump. In the SPACE parameter, zero tracks
are requested for the primary quantity; therefore, no space is
allocated unless the step abnormally terminates. If the step
abnormally terminates, space for a dump is allocated using the
secondary quantity. Requesting multiple units increases the
likelihood that one of the volumes mounted on these devices contains
enough space to allocate the secondary quantity.

3. //STEP1 EXEC PGM=PROGRAM1
//SYSABEND DD DSNAME=DUMP, UNIT=2311,DISP=(, PASS,KEEP), X
/7 VOLUME=SER=1234, SPACE=(TRK, (110,10))
//STEP2 EXEC PGM=PROGRAM2

//SYSABEND DD DSNAME=*.STEP1.SYSABEND,DISP=(OLD,DELETE,KEEP)

The SYSABEND DD statements specify that you want the dump stored.
The space request in STEP1 is large (110 tracks) so that the dumping
-operation is not inhibited due to insufficient space; if STEP1 does
not abnormally terminate but STEP2 does, the dump will be written
using the space allocated in STEPl. In both steps, a conditional
disposition of KEEP is specified. This allows storing of the dump
if either of the steps abnormally terminates. If both of the steps
are successfully executed, the second term of the DISP parameter
(DELETE) in STEP2 causes the data set to be deleted and the space
acquired for dumping to be freed.

4. //STEP1 EXEC PGM=WWK
//SYSUDUMP DD DSNAME=DUMP, UNIT=2311,DISP=(, DELETE, X
// KEEP) ;, VOLUME=SER=54366, SPACE=(TRK, (80,10))
//STEP2 EXEC PGM=PRINT,COND=ONLY
//IN DD DSNAME=#*,STEP1. SYSUDUMP, DISP=(OLD,DELETE), X
/7/ VOLUME=REF=#%,STEP1 . SYSUDUMP

STEP1 specifies that the dump is to be stored if the step abnormally
terminates. Because COND=ONLY is specified in STEP2, the step is
executed only if STEP1 abnormally terminates. STEP2 uses a progdgram
that prints the dump.

120 JCL Reference (Release 20.1)

SYSCHK

If CHKPT macro instructions were executed during the original execution
of your processing program, checkpoint entries were written on a
checkpoint data set. If you plan to resubmit your job for restart and
execution is to be restarted at a particular checkpoint, you must
include a DD statement named SYSCHK when you resubmit the job. The
SYSCHK DD statement defines the data set on which the checkpoint entry
was written.

RULES FOR CODING THE SYSCHK DD STATEMENT

1. The ddname must be SYSCHK. SYSCHK can be used as the ddname of
other DD statements in jobs.

2. The SYSCHK DD statement must immediately precede the first EXEC
statement of the resubmitted job when restart is to begin at a
checkpoint. (If the first EXEC statement is preceded by a DD
statement named SYSCHK and restart is to begin at a step, the
SYSCHK DD statement is ignored.)

3. If a JOBLIB DD statement is included, the SYSCHK DD statement must
follow it.

4. The RESTART parameter must be coded on the JOB statement;
otherwise, the SYSCHK DD statement is ignored.

5. The parameters you code on the SYSCHK DD statement are determined
by whether the checkpoint data set is cataloged.

When the Checkpoint Data Set Is Cataloged

If the checkpoint data set is cataloged, you must always code the DSNAME
and DISP parameters.

e The DSNAME parameter specifies the name of the checkpoint data set.

e The DISP parameter must specify or imply a status OLD and a
disposition of KEEP.

Other parameters you might code are VOLUME, UNIT, LABEL, and DCB.

e If the checkpoint entry exists on a tape volume other than the
first volume of the checkpoint data set, you must indicate this by
coding the volume serial number or volume sequence number in the
VOLUME parameter. (The serial number of the volume on which a
checkpoint entry was written is contained in the console message
printed after the checkpoint entry is written.) If you code the
volume serial number, you must also code the UNIT parameter, since
the system will not look in the catalog for unit information.

e Code the LABEL parameter if the checkpoint data set does not have
standard labels.

e Code DCB=TRTCH=C if the checkpoint data set is on 7-track magnetic
tape with nonstandard labels or no labels.

Section IV: The DD Statement -- Special Ddnames 121

When the Checkpoint Data Set Is Not Cataloged

If the checkpoint data set is not cataloged, you must always code the
DSNAME, DISP, VOLUME, and UNIT parameters.

L The DSNAME parameter spec1f1es the name of the checkpoint data set.

If the checkpoint data set is partitioned, do not include a member
name in the DSNAME parameter.

The DISP parameter must specify or imply a status of OLD and
disposition of KEEP.

The VOLUME parameter specifies. the volume serial number of the
volume on which the checkpoint entry resides. (The serial number of
the volume on which a checkpoint entry was written is contained in
the console message printed after the checkpoint entry is written.)

The UNIT parameter specifies the device to be allocated to the data
set.

Other parameters you might code are LABEL and DCB.

® Code the LABEL parameter if the checkpoint data set does not have
standard labels.

e Code DCB=TRTCH=C if the checkpoint data set is on 7-track magnetic
tape with nonstandard or no labels.

Examples of the SYSCHK DD Statement

1.

//J30B1 JOB RESTART= (STEP3, CK3)

//SYSCHK DD DSNAME=CHLIB, UNIT=2311, X
7/ DISP=0OLD, VOLUME=SER=456789

/7/STEP1 . EXEC

The checkpoint data set defined on the SYSCHK DD statement is not
cataloged.

//3J0B2 JOB RESTART= (STEP2,NOTE2)

//JOBLIB DD DSNAME=PRIV.LIB3,DISP=(OLD, PASS)

//SYSCHK DD DSNAME=CHECKPTS, DISP=(OLD,KEEP) , : X
/7 - UNIT=2400,VOLUME=SER=438291

//STEP1 EXEC

The checkpoint data set defined on the SYSCHK DD statement is not
cataloged. Note that the SYSCHK DD statement follows the JOBLIB DD
statement. '

/7/7JOB3 JOB RESTART= (* , CHECK4)

//SYSCHK DD DSNAME=CHKPTLIB, DISP=OLD, X
/7 LABEL=(,NSL), DCB=(TRTCH=C)

//STEP1 EXEC

The checkpoint data set defined on the SYSCHK DD statement is
cataloged and has nonstandard labels.

122 JCL Reference (Release 20.1)

The * Parameter

//ddname DD *

specifies that the data following this statement is to be entered
through the input stream for use by a processing program.

Rules for Coding

' 1. You may code more than one DD * statement per job step.

| 2. When you call a cataloged procedure, you may add more than one DD *
statement to a procedure step.

l 3. If the data is preceded by a DD * statement, a delimiter statement
(/%) following the data is optional.

' 4. Only the DCB subparameters BLKSIZE and BUFNO have meaning when
coded on a DD * statement. Any other parameters coded on a DD *
statement are not used but are checked for syntax.

5. A cataloged procedure cannot contain a DD * statement.

6. Code the DATA parameter instead of the * parameter when the data
contains job control statements.

Defining Data in the Input Stream

'The input stream can be on a card reader, a magnetic tape, or a direct
access device.

If the EXEC statement for the job step specifies a program name, you
can includé the data for the job step in the input stream. If the EXEC
statement for the job step calls a cataloged procedure, you can include
the data for each procedure step in the input stream.

If the processing program does not read all the data in an input
stream, the remaining data is flushed without causing abnormal
termination of the job.

You can include several distinct groups of data in the input stream
for a job step or procedure step. The system can recognize each group
of data if you precede each group with a DD * statement, or follow each
group with a delimiter statement (/#*), or both. (If you leave out the
DD * statement for a group of data, the system provides a DD * statement
having SYSIN as its ddname.)

The following rules apply when data is entered through an input
streams

Section IV: The DD Statement -- * Parameter 123

e. The input stream can be on any device supported by QSAM.

e The characters in the records must be coded in BCD or EBCDIC.
Note: When the automatic SYSIN batching reader is used to read the
input stream, a DD * statement does not appear in the output listing.

Instead, an identically named DD statement describing the temporary data
set created from the input data appears.

The DCB Subparameters BLKSIZE and BUFNO

The input reader procedure causes data in the input stream to be written
onto a direct access device so that the data can be retrieved rapidly
when it is required by a processing program. As the data is written
onto the direct access device, the data may be blocked. The block size
and number of buffers used for blocking the data is established in the
input reader procedure assigned to read the input stream. If you want
shorter blocks than would be the case if the block size in the input
reader procedure were assumed, you can specify the desired block size.
(You cannot request larger blocks.)

To specify the desired block size, code DCB=BLKSIZE=blocksize on the
DD #* statement. To decrease the number of buffers, include the DCB
subparameter BUFNO, e.g., DCB=(BLKSIZE=80,BUFNO=1). (When a job is
submitted via remote job entry and the DCB subparameter BUFNO is coded
on a DD * statement, BUFNO is ignored.)

BLKSIZE and BUFNO may be coded on a DD statement that contains the
DDNAME parameter, which refers to another DD statement. (You cannot use
a backward reference to a previously-defined DD statement to obtain
these DCB subparameters; they must be coded explicitly on the DD
statement that contains the DDNAME parameter.) If, in turn, the
referenced DD statement defines data in the input stream, these DCB
subparameters are used to block the data. However, if the referenced DD
statement contains its own DCB subparameters BLKSIZE and BUFNO, these
values override those on the DD statement that contains the DDNAME
parameter.

Examples of the * Parameter

1. //INPUT1 DD =*
daia
/%)
//INPUT2 DD *
daéa
/*)

Defining several groups of data in the input stream.

124 JCL Reference (Release 20.1)

//STEP2 EXEC PROC=FRESH
//SETUP .WORK DD UNIT=2400,LABEL= (,NSL)
//SETUP. INPUT1 DD *
data
/¥)
//PRINT.FRM DD UNIT=180
//PRINT.INP DD *
data
/¥)

statement named SETUP.INPUT1 is for use by the cataloged procedure
step named SETUP; the input defined by the DD statement named
PRINT.INP is for use by the cataloged procedure step named PRINT.

//INPUT2 DD *,DCB=(BLKSIZE=1600,BUFNO=2)

/%

Defining data in the input stream. These DCB subparameters override
those specified in the input reader procedure.

Section IV: The DD Statement -- * Parameter 125

Defining data in the input stream. The input data defined by the DD u

The DATA Parameter
r()/ddname DD DATA

DATA
specifies that the data following this statement is to be entered
through the input stream for use by a processing program. This
data contains job control statements (i.e., these statements have
the characters // in columns 1 and 2.)

Rules for Coding
1. The data may not contain statements with /* in columns 1 and 2.
2. You may code more than one DD DATA statement per job step.

3. When you call a cataloged procedure, you may add more than one DD
DATA statement to a procedure step.

4. Each group of data must be preceded by a DD DATA statement and
followed by a delimiter statement (/#%).

5. Only the DCB subparameters BLKSIZE and BUFNO have meaning when
coded on a DD DATA statement. Any other parameters coded on a DD
DATA statement are not used but are checked for syntax.

6. A cataloged procedure cannot contain a DD DATA statement.

7. The * parameter may be coded instead of the DATA parameter when the
data does not contain job control statements.

Defining Data in the Input Stream

|The input stream can be on a card reader, a magnetic tape, or a direct
access device.

If the EXEC statement for the job step specifies a program name, you
can include the data for the job step in the input stream. If the EXEC
statement for the job step calls a cataloged procedure, you can include
the data for each procedure step in the input stream.

If the processing program does not read all the data in an input
stream, the remaining data is flushed without causing abnormal
termination of the job.

You can include several distinct groups of data in the input stream
for a job step or procedure step. The system can recognize each group
of data only if you precede each group with a DD DATA statement and
follow each group with a delimiter statement (/#%).

The following rules apply when data is entered through an input
stream:

e The input stream can be on any device supported by QSAM.
e The characters in the records must be coded in BCD or EBCDIC.

Note: When the automatic SYSIN batching reader is used to read the
input stream, a DD DATA statement does not appear in the output listing.
Instead, an identically named DD statement describing the temporary data
set created from the input data appears.

Section 1IV: The DD Statement -- DATA Parameter 127

The DCB Subparameters BLKSIZE and BUFNO

The input reader procedure causes data in the input stream to be written
onto a direct access device so that the data can be retrieved rapidly
when it is required by a processing program. 'As the data is written
onto the direct access device, the data may be blocked. The block size
and number of buffers used for blocking the data is established in the
input reader procedure assigned to read the input stream. If you want
shorter blocks than would be the case if the block size in the input
reader procedure were assumed, you can specify the desired block size.
(You cannot request larger blocks.)

To specify the desired block size, code DCB=BLKSIZE=blocksize on the
DD DATA statement. To decrease the number of buffers, include the DCB
subparameter BUFNO, e.g., DCB=(BLKSIZE=80,BUFNO=1). (When a job is
submitted via remote job entry and the DCB subparameter BUFNO is coded
on a DD DATA statement, BUFNO is ignored.)

BLKSIZE and BUFNO may be coded on a DD statement that contains the
DDNAME parameter, which refers to another DD statement. If, in turn,
the referenced DD statement defines data in the input stream, these DCB
subparameters are used to block the data. However, if the referenced DD
statement contains its own DCB subparameters BLKSIZE and BUFNO, these
values override those on the DD statement that contains the DDNAME
parameter.

Examples of the DATA Parameter

1. //INPUT1 DD DATA

7%

Defining data in the input stream.

2. //STEP2 EXEC PROC=UPDATE _
//PREP.DD4 DD DSNAME=A.B.C,VOLUME=SER=D8S, X
77 UNIT=2311,SPACE=(TRK, (10, 5)) , DISP=(, CATLG, DELETE)

//PREP.INPUT DD DATA

data
/%)
//ADD.DD6 DD SPACE=(TRK, (5,1))
//ADD.IN DD =*
data
/*)

Defining data in the input stream. The input defined by the DD
statement named PREP.INPUT is for use by the cataloged procedure
step named PREP. This data contains job control statements. The
input defined by the DD statement named ADD.IN is for use by the
cataloged procedure step anmed ADD. Since this data is defined by a
DD * statement, it must not contain job control statements.

128 JCL Reference (Release 20.1)

//INPUT2 DD DATA,DCB=(BLKSIZE=400,BUFNO=1)

data

Ve
//INPUT3 DD DATA

data

Ve

Defining several groups of data in the input stream. The DCB
subparameters coded on the DD statement named INPUT2 are used to

block the data that follows that statement. ﬂ

Section IV: The DD Statement -- DATA Parameter 129

The DUMMY Parameter

r/;/ddname DD DUMMY

DUMMY
specifies that no devices or external storage space is to be
allocated to the data set, no disposition processing is to be
performed on the data set, and, for BSAM and QSAM, specifies that
no input or output operations are t¢ be performed on the data set.

Rules for Coding

1. You can code the DUMMY parameter by itself or follow it with all
the parameters necessary to define a data set.

2. If the DUMMY parameter is coded and an access method other than the
basic sequential access method (BSAM) or queued sequential access
method (QSAM) is requested to read or write the data set, a
programming e€rror OCCurs.

What the DUMMY Parameter Does

When you use either the basic sequential or queued sequential access
method, the DUMMY parameter allows your processing program to execute
without performing input or output operations on a data set. When the
processing program asks to write a dummy data set, the write request is
recognized, but no data is transmitted. When the processing program
asks to read a dummy data set, an end-of-data-set exit is taken
immediately.

Besides bypassing input or output operations on a data set, the DUMMY
parameter causes the UNIT, VOLUME, SPACE, and DISP parameters, when
coded on the DD DUMMY statement, to be ignored (if coded, these
parameters are checked for syntax). Therefore, no devices or external
storage space is allocated to the data set and no disposition processing
is performed on the data set.

If you know that certain parts of a program "work" and need not be
processed each time the job is submitted for testing, the DUMMY
parameter can help save time. The DUMMY parameter can also be used to
suppress the writing of data sets, such as output listings, that you do
not need.

Coding the DUMMY Parameter

You can code the DUMMY parameter by itself or follow it with all the
parameters you would normally code when defining a data set. However,
in one case you must code another parameter after the DUMMY parameter:
when certain DCB information, not supplied in the DCB macro instruction,
is required for the processing program to execute successfully. For
example, when an OPEN routine requires a BLKSIZE specification to obtain
buffers, and BLKSIZE is not specified in the DCB macro instruction, you
should supply this information by coding the DCB parameter after the
DUMMY parameter. When a DD statement that overrides a procedure DD

Section IV: The DD Statement -- DUMMY Parameter 131

statement contains the DUMMY parameter, all of the parameters coded on
the procedure DD statement are nullified.

When you want input or output operations performed on the data set,
replace the DD statement that contains the DUMMY parameter with a DD
statement that contains all of the parameters required to define this
data set. When a procedure DD statement contains the DUMMY parameter,
you can nullify it by coding the DSNAME parameter on the overriding DD
statement. However, be sure the data set name is not NULLFILE.
Assigning the name NULLFILE in the DSNAME parameter has the same effect
as coding DUMMY.

1f you code DUMMY on a DD statement and a later DD statement in the
same job refers to this DD statement when requesting unit affinity

(UNIT=AFF=ddname) or volume affinity (VOLUME=REF=+%.stepname.ddname), the
data set defined on the later DD statement is assigned a dummy status.

Examples of the DUMMY Parameter

i. //0UTPUT3 DD DUMMY,DSNAME=X.Y.Z,UNIT=2311, X
7/ ~ SPACE=(TRK, (10,2)) ,DISP=(,CATLG)

This DD statement defines a dummy data set. The parameters coded
with the DUMMY parameter are not used.

2. //7IN DD DUMMY,DCB=(BLKSIZE=800,LRECL=400,RECFM=FB)
This DD statement defines a dummy data set. The DCB parameter is
coded to supply information for the data control block that was not
supplied in the DCB macro instruction.

3. If you are calling a cataloged procedure that contains the following
DD statement in STEP#4 ’

//IN DD DUMMY,DSNAME=ELLN,DISP=0LD,VOL=SER=11257,UNIT=2314
you can nullify the effects of the DUMMY parameter by coding:
//STEP4.IN DD DSNAME=ELLN

4. If you are calling a cataloged procedure that contains the following
DD statement in STEP1

//TAB DD DSNAME=APP.LEV12,DISP=OLD
you can make this DD statement define a dummy data set by coding:
//STEP1.TAB DD DUMMY

5. If you are calling a cataloged procedure that contains the following
DD statement in a procedure step named LOCK

//MSGS DD SYSOUT=A
you'can make this DD statement define a dummy data set by coding:

//LOCK.MSGS DD DUMMY

132 JCL Reference (Release 20.1)

The DYNAM Parameter ——- MVT With TSO

(4;ddname DD DYNAM
DYNAM

used in the TSO LOGON procedure to specify that dynamic allocation
of data sets is to be used. This allows you to defer definition of
a data set until you require it. If DYNAM is used in the
background (batch environment), it means the same as DUMMY.

Rules for Coding

1. The dynamic allocation meaning of DYNAM is only effective for
foreground jobs using an MVT system with TSO. For MFT, or MVT
without TSO, DYNAM has the same meaning as coding DUMMY. Like
DUMMY, DYNAM is a positional parameter.

2. No other parameters may be coded with the DYNAM parameter.

3. The DDNAME parameter cannot be used to refer to a DYNAM DD
statement.

What the DYNAM Parameter Does

During LOGON processing for TSO, no devices or external storage are
allocated to a data set defined by a DD DYNAM statement. The DYNAM
parameter reserves space in internal tables so that data set
requirements that arise during the terminal session may be satisfied.
When you require a data set, the actual device and external storage for
the data set can then be allocated.

When DYNAM is used in the background (batch environment) or in the
foreground before allocation, it has the same effect as coding DUMMY.

Refer to the section on the DUMMY parameter in this boock for more
information.

Coding the DYNAM Parameter

DYNAM is a positional parameter. However, no other parameters may be
coded with DYNAM.

To nullify the DYNAM parameter in a cataloged procedure, code the

SYSOUT or DSNAME parameter in the overriding DD statement, but do not
use the DSNAME of NULLFILE.

Example of the DYNAM Parameter

1. //INPUT DD DYNAM

For TSO, this statement specifies dynamic allocation is requested.
For background jobs, DYNAM has the same meaning as DUMMY.

Section IV: The DD Statement -- DYNAM Parameter 133

The AFF Parameter

AFF=ddname

ddname
the name of an earlier DD statement in the same job step that
requests processing of a data set on a separate channel from the
one on which certain other data sets are being processed.

Rules for Coding

1. The DD statement that the AFF parameter refers to must contain the
SEP parameter.

2. If channel separation is critical, use the UNIT parameter to
specify a particular channel, using an absolute unit address or
group name. (How to specify a particular channel is descrlbed in
the chapter "The UNIT Parameter.")

3. The AFF, SEP, DDNAME, and SYSOUT parameters are mutually exclusive
parameters; therefore, when SEP, DDNAME, or SYSOUT is coded, do not
code the AFF parameter.

OPTIMIZING CHANNEL USAGE

The devices that the system allocates for data sets used in a job step
are attached to channels. These channels transmit the data in the data
sets from the device to the CPU. When two or more data sets are to be
used in a job step, processing time may be shortened if the system
transmits data over separate channels.

Requesting Channel Separation

The SEP and AFF parameters can be used to request channel separation.
You list in the SEP parameter the names of up to eight earlier DD
statements that define data sets from which channel separation is
desired. (The SEP parameter is described in the chapter "The SEP
Parameter" which appears later in this section.) Coding the AFF
parameter is a shortcut method of requesting channel separation, since
you list only one ddname and that ddname refers to an earlier DD
statement in the same job step that contains the SEP parameter. The AFF
parameter tells the system that you want the data set defined on this DD
statement to have the same channel separation as the data set defined on
the named DD statement. The AFF parameter does not tell the system that
these two data sets are to be assigned to the same channel -- the system
will decide that based on what devices are available for allocation.

If the system finds it impossible in the current environment to
satisfy the channel separation request, the system may try to alter the
current environment through some operator action. The operator is given
the option of bringing a device online, cancelling the channel
separation request, or cancelling the job. In certain environments, the
operator may also be able to tell the system to wait for devices to
become free. If you make a nonspecific request for a direct access
volume and request channel separation, your request for separation may
be ignored. This happens when the algorithm used to allocate data sets

Section IV: The DD Statement -- AFF Parameter 135

to devices is not able to select the device that would permit the
desired channel separation.

Requests for channel separation are ignored for any data sets that
have been allocated devices by the automatic volume recognition (AVR)
option.

If it is essential that data be transmitted via a particular channel,
you can specify an absolute unit address or group name (if the group of
devices is associated with one channel) in the UNIT parameter.

If neither the SEP nor AFF parameter is coded, any available channel,

consistent with the UNIT parameter requirement, is assigned by the
system.

Example of the AFF Parameter

1. J//STEP1 EXEC PGM=CONVERT ,
//INPUT1 DD DSNAME=A.B.C, DISP=OLD

//INPUT2 DD DSNAME=FILE,DISP=0OLD,UNIT=2400, X
/7 VOLUME=SER=54333
//BUF DD UNIT=2400,SEP=(INPUT1,INPUT2)

//70UTPUT DD DSNAME:ALPHA,UNIT=TAPE,DISP=(,KEEP),AFF=BUF

The system attempts to assign the data sets defined by the DD
statements BUF and OUTPUT to a channel other than the ones assigned
to the data sets defined by the DD statements INPUT1 and INPUT2.

The data sets defined by the DD statements BUF and OUTPUT may or may
not be assigned to the same channel. The parameter .
SEP=(INPUT1,INPUT2) could have been coded instead of AFF=BUF.

136 JCL Reference (Release 20.1)

The DCB Parameter

DCB=(list of attributes)

DCB=(| dsname [,1ist of attributesl)
* ,ddname
*.stepname. ddname
* .stepname.procstepname.ddname

list of attributes
those DCB keyword subparameters that describe the data set and are
needed to complete the data control block. DCB keyword
subparameters are listed in this chapter under "Glossary of DCB
Subparameters."

dsname
specifies that the system is to copy DCB information from the data
set label of a cataloged data set named "dsname."™ The cataloged
data set must reside on a direct access volume and the volume must
be mounted before execution of the job step.

*.ddname
specifies that the system is to copy DCB information from an
earlier DD statement in the same job step named "ddname."

*.stepname.ddname
specifies that the system is to copy DCB information from a DD
statement named "ddname," which appears in an earlier job step
named "stepname."

*.stepname.procstepname.ddname
specifies that the system is to copy DCB information from a DD
statement named "ddname,® which appears in a procedure step named
"procstepname"; the procedure step is part of a cataloged procedure
that was called by an earlier jobstep named "stepname."

Rules for Coding

1. Separate each DCB keyword subparameter with a comma.

2. If the DCB parameter value consists of only one keyword
subparameter, a data set name, or a backward reference, you need
not enclose it in parentheses.

3. All DCB subparameters, except BLKSIZE and BUFNO, are mutually
exclusive with the DDNAME parameter; therefore, when the DDNAME
parameter is coded, do not code any DCB subparameters except
BLKSIZE and BUFNO. The DCB subparameters BLKSIZE and BUFNO have
meaning when coded with the DDNAME parameter.

Completing the Data Control Block

Each data set that is to be read or written must have a data control
block associated with it. The data control block is originally
constructed in the processing program by a DCB macro instruction. This
data control block can be completed when the DCB macro instruction is
issued or at execution time through the DCB parameter on the DD ’
statement and the data set label, if one exists.

Section IV: The DD Statement -- DCB Parameter 137

When more than one source is used to complete the data control block,
a merging process takes place (see Figure 4): first, information coded
with the DCB macro instruction is placed in the data control block;
then, information coded on the DD statement is placed in unfilled
sections of the data control block; and, finally, information in the
data set label, if one exists, is placed in still unfilled sections of
the data control block. (DCB information may also be provided by
default options assumed in the OPEN macro instruction and by your
program, either before the data set is opened, by using the DCBD macro
instruction, or in the DCB exit routine. Refer to the chapter
"Interface With the Operating System" in Supervisor and Data Management
Services publication and Supervisor and Data Management Macro
Instructions publication for details.)

DCB Macro

DCB Area

Step 1

Macro Fills Field

DD Statement

DCB Area

Step 2

DD Statement
Fills Field

Data Set Label

DCB Area

B E A Step 3

Label Completes
DCB Area

Figure 4. How the Data Control Block Is Filled

DCB Macro Instruction

The DCB macro instruction includes information about the data that is
unlikely to change each time the processing program is executed. Also,
it includes any information that is not related to the DCB parameter and
the data set label (e.g., MACRF, DDNAME, EXLST).

138 JCL Reference (Release 20.1)

DCB_ Parameter

The DCB parameter is coded on the DD statement and includes all the
information that is not specified by any other source. How to specify
DCB information on the DD statement is described in "Specifying DCB
Information on the DD Statement."

Data Set Label

If the data set already exists and has standard labels, certain
information is contained in the label that can be used to complete the
data control block. For tape, the data set label can contain the data
set's record format, block size, logical record length, tape recording
density, and, for seven-track tape, tape recording technique. For
direct access, the data set label can contain the data set's
organization, record format, block size, logical record length, and if
the data contains keys, the key length and relative key position.

Specifying DCB Information on the DD Statement

The DCB parameter must be coded on the DD statement unless the data
control block is completed by other sources. There are several ways of
specifying DCB information on the DD statement. You can:

e Supply all pertinent DCB keyword subparameters on the DD statement.

e Tell the system to copy DCB information from the data set label of
an existing cataloged data set.

e Tell the system to copy DCB information from an earlier DD statement
in the same job.

SUPPLYING DCB KEYWORD SUBPARAMETERS

The DCB information required to complete the data control block can be
listed as keyword subparameters in the DCB parameter; subparameters are
separated by commas. If the processing program and the DCB parameter
supply the same subparameter, the subparameter on the DD statement is
ignored. Valid DCB keyword subparameters and the values that can be
assigned to them are listed in this chapter under "Glossary of DCB
Subparameters."

COPYING DCB INFORMATION FROM A DATA SET LABEL

To save time in coding the DCB parameter, you can tell the system to
copy the DCB information from the data set label of a cataloged data set
on a currently mounted direct access volume. The data set must have
standard labels. A permanently resident volume is the most likely place
from which to copy such information because it is always mounted. Code
in the DCB parameter the data set name of the cataloged data set. The
name you code cannot contain special characters, except for periods used
in a qualified name.

The following DCB keyword subparameters can be copied from the data
set label: DSORG, RECFM, OPTCD, BLKSIZE, LRECL, KEYLEN, and RKP. The
volume sequence number and expiration date of the cataloged data set are
also copied unless you specify these in the DD statement. If you code
any DCB keyword subparameters following the name of the cataloged data
set, these subparameters override any of the corresponding subparameters
that were copied. Valid DCB keyword subparameters and the values that
can be assigned to them are listed in this chapter under "Glossary of
DCB Subparameters."

Section IV: The DD Statement -- DCB Parameter 139

COPYING DCB' INFORMATION FROM AN EARLIER DD STATEMENT

Another way to save time in coding the DCB parameter is to tell the
system to copy the DCB information from an earlier DD statement in the
same job. The earlier DD statement can be contained in the same job
step, an earlier job step or cataloged procedure step. If you code any
DCB keyword subparameters following the reference to the DD statement,
these subparameters override any of the corresponding subparameters that
were copied. 1If the DD statement defines an existing data set and
contains the DCB parameter, the system copies those subparameters from
the earlier DD statement that were not previously specified for the
existing data set. Valid DCB keyword subparameters and the values that
can be assigned to them are listed below.

Clossary of DCB Subparameters

This glossary lists the keyword subparameters that you can code in the
DCB parameter on a DD statement, their definitions, and the wvalues that
can be assigned to them. Across from each subparameter is a list of the
access methods that use the subparameter.

Certain required subparameters cannot be coded in the DCB parameter,
but must be coded in the DCB macro instruction. These subparameters are
described in the Supervisor and Data Management Macro Instructions
publication.

BFALN=\F Can be used with BDAM, BISAM,
D BPAM, BSAM, EXCP, QISAM, QSAM

Specifies the boundary alignment of each buffer as follows:

F -- each buffer starts on a fullword boundary that is not also a
doubleword boundary.
D -- each buffer starts on a doubleword boundary.

If not specifed by any source, doubleword boundary alignment (D) is
assumed.

Note for QSAM: Buffer alignment information must be supplied from
the same source as the type of buffering (BFTEK) information or
both must be omitted.

BFTEK=|S Can be used with EXCP, QSAM, BTAM

el ol

Specifies the type of buffering to be used by the control program
as follows:

For EXCP:

S -- simple buffering.
E -- exchange buffering.

140 JCL Reference (Release 20.1)

For QSAM:
S -- simple buffering.

E -- exchange buffering (track overflow cannot be specified in the
RECFM subparameter). Exchange buffering cannot be used with
variable-length blocked or spanned recoxds.

A -- record area buffering. 1In the locate mode with
variable-length spanned records, the control program reads and
writes entire logical records rather than segments.

If neither is specified by any source, simple buffering (S) is
assumed.

Note for OSAM: The type of buffering information must be supplied
from the same source as the boundary alignment (BFALN) information
or both must be omitted.

For BTAM:

D -~ dynamic buffering. If dynamic buffering is specified, a
buffer pool must be defined.

For BDAM or BSAM:

R -- record buffering. For writing records in the create BDAM
mode, this specification allows a logical record to span one
or more tracks. For reading a data set, segments without keys
are offset in the buffer by the key length. This means that
the actual data starts in the same place in the buffer by the
key length. This means that the actual data starts in the
same place in the buffer for each read.

BLKSIZE=block size Can be used with BDAM, BPAM,
BSAM, QISAM (output only),
QsSAM, TCAM

For BDAM, BPAM, BSAM, QISAM, QSAM:

Specifies the maximum length, in bytes, of a block. The maximum
length that can be specified is 32,760. For blocks of ASCII
records on magnetic tape, the maximum length is 2048 and the
minimum length is 18.

e If RECFM=F, then BLKSIZE must be > logical record length.

e If RECFM=FB, then BLKSIZE must be an integral multiple of the
logical record length.

e If RECFM=V, then BLKSIZE must be = (maximum block size + 4).

e If RECFM=VB, then BLKSIZE must be (n times logical record length)
+ U; where n is the number of logical records in the block.

e If RECFM=D or DB, then BLKSIZE must be > (maximum record length +
block prefix length).

Note for QISAM: The block size that is specified must be at least
10 bytes less than the number of data bytes available on one track
of the allocated direct access device. Block size information is

required only when creating a data set containing blocked records.

Section IV: The DD Statement -- DCB Parameter 141

Note for BDAM, BPAM, BSAM, Q0SAM: If you code the BLKSIZE
subparameter in the DCB macro instruction or on a DD statement that
defines an existing data set and the data set has standard labels,
the subparameter overrides the block size specified in the label.

Note for BSAM and OSAM with RECFM=FB: If the BLKSIZE subparameter
on a DD statement for a SYSOUT data set (an output data set being
routed through the output stream) is not an integral multiple of
and larger than the logical record length (LRECL), the block size
will be adjusted to the nearest lower multiple of the logical
record length (ILRECL).

For TCAM:

Specifies the length in bytes of the application program's work
area into which TCAM will move message units to be processed. The
number specified should be at least equal to the record length as
specified by the LRECL operand and must not exceed 32,760. If
OPTCD=W is specified, eight bytes must be included for the source
of the message. If OPTCD=C is specified, one byte must be included
to indicate the message segment. For variable length records, four
bytes must be included for umblocked records or eight bytes for
blocked records.

BUFIN=number of buffers Can be used with TCAM

Specifies the number of buffers to be assigned initially for
receiving operations for each line in the line group. The number
specified must be less than the number of buffers in the buffer
pool for this line group and may not exceed 15. The number of
buffers specified in the combined BUFIN and BUFOUT operands must be
no greater than the number of buffers in the buffer pool for this
line group (not including those for disk activity only). If this
operand is omitted, 1 is assumed.

BUFL=buffer length Can be used with BDAM, BISAM,

142

BPAM, BSAM, EXCP, QISAM, QSAM, TCAM
For BDAM, BISAM, BPAM, BSAM, EXCP, QISAM, QSAM:

Specifies the length, in bytes, of each buffer in the buffer pool.
The maximum length is 32,760 bytes. Requirements for supplying
buffer length information vary with the different data
organizations and access methods as follows:

BDAM -- required only if dynamic buffering is specified in the
MACRF subparameter of the DCB macro instruction.

BPAM, BsAM, and QSAM -- optional. If omitted and the control
program acquires buffers automatically, the block size and
key length information is used to establish buffer length.
If card image is specified (MODE=C), BUFL=160 must be
specified.

BISAM and QISAM -- not required if the control program acquires ,
: buffers automatically or if dynamic buffering is specified.
(For BISAM, dynamic buffering is specified in the MACRF
subparameter of the DCB macro instruction).

For TCAM:
Specifies the length in bytes of each of the Message Control
Program buffers that handle messages received and sent by an

application program. The length must be at least 31 bytes but may
not exceed 65,535 bytes.

JCL Reference . (Release 20.1)

BUFMAX=number of buffers Can be used with TCAM

Specifies the maximum number of buffers to be allocated to a line
at one time. The number specified must be greater than 1 but may
not exceed 15 and must be at least equal to the larger of the
numbers specified by BUFIN and BUFOUT. If this operand is omitted,
2 is assumed.

BUFNO=number of buffers Can be used with BDAM, BISAM,
BPAM, BSAM, BTAM, EXCP, QISAM,
QSAM

Specifies the number of buffers to be assigned to the data control
block; the maximum number is 255, but the actual number allowed may
be less than 255 because of limits established when the system was
generated. Requirements for coding the BUFNO subparameter are as

follows:
Method of Obtaining the ‘Requirement for Indicating
Buffer Pool ' Number of Buffers
BUILD macro instruction (BDAM, Must be specified.
BISAM, BPAM, QISAM, QSAM)
GETPOOL macro instruction (BDAM, Control program uses the
BISAM, BPAM, BSAM, QISAM, QSAM) number specified in the

GETPOOL macro instruction.

Automatically (BPAM and BSAM) Must be specified.
Automatically (QISAM and QSAM) Optional; if not specified,

two buffers are obtained.

Dynamic buffering (BDAM and BISAM) Optional; if not specified,
two buffers are obtained.

n
BUFOFF= Can be used with BSAM, QSAM
L

Specifies the buffer offset. The buffer offset is the length of an
optional block prefix that may precede a block of one or more ASCII
records on magnetic tape. ‘

n -- the length of the block prefix. For input, n may be any
unsigned decimal number from 0 through 99. For output, n can
only be 0.

L -- the block prefix field is four bytes long and contains the
block length. L may be specified only when record format
(RECFM) is D.

BUFOUT=number of buffers Can be used with TCaM

Specifies the number of buffers to be assigned initially for
sending operations for each line in the line group. The number
specified must be less than the number of buffers in the buffer
pool for this line group and may not exceed 15. The number of
buffers specified in the combined BUFIN and BUFOUT operands must be
no greater than the number of buffers in the buffer pool for this
line group (not including those for disk activity only). If this
operand is omitted, 2 is assumed. '

Section IV: The DD Statement -- DCB Parameter 143

BUFRQ=number of buffers Can be used with QTAM

Specifies the number of buffers to be requested in advance for the
GET macro instruction. The maximum number is 255. If not
spe01f1ed by any source or if a value of less than 2 is specxfled
2 is assumed. For information on calculating BUFRQ, refer to the
publication IBM System/360 Operating System: Telecommunications
Access Method Message Control, GC30-2005.

BUFSIZE=number Can be used with TCAM

Specifies the length in bytes of each of the buffers to be used for
all lines in a particular line group. This length must be at least
31 bytes, but may not exceed 65,535. The buffer size should be an
even multiple of the buffer-unit size as specified in the INTRO
macro; the maximum number of buffer-units per buffer is 255.

CODE=/ A Can be used with BsAM, EXCP, QSAM
B
C
F
I
N
T
Specifies the paper tape code in which the data is punched.
A -- USASCII (8 track).
B -- Burroughs (7 track).
C -- National Cash Register (8 track).
F -- Friden (8 track).
I -- IBM BCD perforated tape and transmission code (8 track).
N -- No conversion required.
T -- Teletype (5 track).
If not specified by any source, I is assumed.
The subparameters CODE, KEYLEN, MODE, PRTSP, STACK, and TRTCH are
mutually exclusive subparameters. Therefore, if CODE is coded, do
not code any of these other subparameters.
CPRI= |R Can be used with QTAM

[N]

Specifies the relative priority to be given to sending and
receiving operations, as follows:

R -- receiving has priority over sending. An output message is
sent on a given line only during a polling interval.

E -- reéeiving and sending have equal priority. After each full

polling sequence on a given line, all output messages queued
for that line are transmitted.

144 JCL Reference (Release 20.1)

S -- sending has priority over receiving. For nonswitched lines
after QTAM polls a terminal on a line, the line is made
available for outgoing messages, and the next terminal is
polled only when there are no output messages in the queue for
the line. For Auto Poll lines, the line is made available for
outgoing messages after a message ending in EOT is received by
a terminal on the line, or when the end of the polling list is
reached. S must be specified for IBM 2740 Communications
Terminals Types I and VI, and if the line group includes IBM
2740 Model 2 terminals.

If this subparameter is not specified by any source, CPRI=S is
assumed.

This subparameter must be omitted if this line group consists of
switched lines.

For WITA lines: u

R or E -- output messages are sent when there is no traffic over
the line, after an EOT character has been received, or after a
time-out has occurred.

S -- output messages are sent when there is no traffic over the
line, after an EOT or EOM character has been received, or
after a time-out has occurred.

CYLOFL=number Can be used with QISAM

DEN=

(output only)
Specifies the number of tracks on each cylinder to hold the records

that overflow from other tracks on that cylinder. The maximum
number is 99.

Can be used with BSAM, EXCP, QSAM

WP O

Specifies the magnetic tape density in number of bits-per-inch used
to write a data set, as follows:

r T 1 1
| DEN=|7 track|9 track|
L 4L 4 i |
L] L] L 1
| 0 | 200 | - |
1 | 556 | - |
| 2 | 800 | 800 |
| 3 | - | 1600 |
L L L h]

If not specified by any source, 800 bits-per-inch is assumed for
7-track tape, 800 bits-per-inch for 9-track tape without dual

~density, and 1600 bits-per-inch for 9-track tape with dual density

or phase-encoded drives.

For 7-track tape, all information on the reel must be written in
the same density (i.e., labels, data, tapemarks). Do not specitfy
DEN for a SYSOUT data set.

Section IV: The DD Statement -- DCB Parameter 145

DSORG=data set organization Can be used with BDAM, BISAM,
BpPAM, BSAM, BTAM, EXCP, GAM,
QISAM, QSAM, QTAM

Specifies the organization of the data set and whether the data set
contains any location-dependent information that would make the
data set unmovable (U). The values that can be used are as
follows:

DA -- Direct access
DAU -- Direct access unmovable
CQ -- Direct access message queue or the checkpoint for a
' message control program. If this subparameter is not
specified by any source, the telecommunications job, when
executed, is terminated.
CX -- Communications line group
GS -- Graphic data control block
IS -- Indexed sequential
ISU -- Indexed sequential unmovable
MQ -- Data control block governing message transfer to or from
a telecommunications message processing queue. If this
subparametexr is not specified by any source, the
telecommunications job, when executed, is terminated.
PO -- Partitioned organization
POU -- Partitioned organization unmovable
Ps -- pPhysical sequential
PSU -- Physical sequential unmovable

The values used with each access method are listed below.

DSORG must always be coded in the DCB macro instruction, and, with
certain access methods, must be coded on the DD statement.

BDAM -- DA or DAU (PS or PSU when creating the data set). The
DSORG subparameter must be coded on the DD statement
that defines the data set. When creating the data
set, the DSORG subparameter must be coded as DA or DAU
on the DD statement that defines the data set and PS
or PSU in the DCB macro instruction.

BISAM -- 1IS; must be coded on the DD statement.

BPAM -- PO or POU

BSAM -- PS or PSU

BTAM -- CX
EXCp -- PS, PO, DA, or IS
GAM -- GS

QISAM -- IS or ISU (ISU can be specified only when creating the
data set). ' The DSORG subparameter must be coded on
the DD statement that defines the data set.

QSAM -- PS or PSU
QTAM -- MQ, CQ, or CX

EROPT=\|ACC Can be used with QSAM
SKP
ABE

Specifies the option to be executed if an error occurs in writing
or reading a record, as follows:

ACC -- Accept the block causing the error.
SKP .-~ Skip the block causing the error (implies RELSE).
ABE -- Cause abnormal end of task.

If the subparameter is not specified by any source, ABE is assumed.

146 JCL Reference (Release 20.1)

GNCP=number Can be used with GaM

Specifies the maximum number of input/output macro instructions
that will be issued before a WAIT macro instruction. The value of
GNCP must be from 1 to 99 at execution time. If the value of GNCP
is not specified by any source, a value of 1 is assumed. The
subparameters GNCP, BFTEK, BFALN, and HIARCHY are mutually
exclusive subparameters. Therefore, if GNCP is coded, do not code
any of these other subparameters. For additional information on
the GNCP subparameter, refer to the publication IBM System/360

Operating System: Graphic Programming Services for IBM 2250
Display Unit, GC27-6909.

HIARCHY=) 0

1

Can be used with BDAM, BISAM,
BPAM, BSAM, EXCP, QISAM, QSAM

Specifies the storage hierarchy in which the buffer pool is to be
formed as follows:

0 -~ forms the pool from available space in processor storage.

1 -- forms the pool from available space in IBM 2361 Core
Storage.

If the HIARCHY subparameter is not specified by any source, and if
a hierarchy designation is not supplied by the GETPOOL macro
instruction, hierarchy 0 is assumed.

The buffer pool is formed in the user partition or region within
the indicated hierarchy. If space is unavailable within the
hierarchy specified, the task is abnormally terminated.

INTVL=number Can be used with QTAM

Specifies the polling interval (i.e., the number of seconds of
intentional delay between passes through a polling list) for the
lines in this line group. After all the terminals in a polling
list for a given line have been polled (beginning to end), a delay
equal to the number of seconds specified in this subparameter
occurs before polling is restarted at the beginning of the list.
The number specified must not be greater than 255.

If this subparameter is not specified by any source, INTVL=0 is
assumed. This subparameter must be omitted if the line group
consists of switched lines, WITA lines, or if the Auto Poll feature
is used.

KEYLEN=number Can be used with BDAM, BPAM,
BSAM, EXCP, QIsaM (output only)

Specifies the length, in bytes, of the keys used in the data set.
Except for QISAM, the keys are associated with blocks on direct
access devices; the keys for indexed sequential data sets are
associated with records. The maximum key length is always 255
bytes.

The subparameters KEYLEN, CODE, MODE, PRTSP, STACK, and TRTCH are
mutually exclusive subparameters. Therefore, if KEYLEN is coded,
do not code any of these other subparameters.

Note for BDAM: If standard labels are used, the key length
information can be supplied from the data set label for an existing
data set. If a key length is not supplied by any source, no input
or output requests that require a key may be issued. .

Section IV: The DD Statement -- DCB Parameter 147

Note for BPAM and BSAM: If standard labels are used, the key
length information can be supplied from the data set label for an
existing data set. If a key length is not supplied by any source
before the OPEN macro instruction is issued, a length of zero (no
keys) is assumed.

Note for QISAM: For an existing data set with standard labels, the
key length can only be supplied from the data set label.

LIMCT=number Can be used with BDAM

Specifies the number of blocks, if relative block addressing is
used, or the number of tracks, if relative track addressing is
used, that are to be searched for a block or available space when
the extended search option (OPTCD=E) is specified. The number may
equal or exceed the number of blocks or tracks in the data set, in
which case the entire data set is searched.

If the extended search option is not specified, the LIMCT
subparameter is ignored.

LRECL=number Can be used with BPAM, BSAM,

148

QIsAM (output only), QSAM, TCAM

specifies the actual or maximum length, in bytes, of a logical
record. The record length is required for fixed-length and
variable-length records; for variable-length records, the maximum
record length should be specified. The length cannot exceed the
block size (BLKSIZE) value except for variable-length spanned
records.

e If RECFM=V or VB, then LRECL must be equal to the maximum

record length + 4.

e If RECFM=F or FB, then LRECL must be equal to the logical
record length.

e If RECFM=U, then LRECL should be omitted.

e If RECFM=D or DB, then LRECL must be equal to the maximum
record length +4.

Note for BPAM: The record length is required for fixed-length
records only.

Note for BSAM: The record length can be omitted from all sources,
in which case the block size specification (BLKSIZE) is used. For
variable-length spanned records (VS or VBS) processed under BSAM,
if logical record exceeds 32,756, specify LRECL=X. For ASCII
records on magnetic tape, the maximum record length is 2048 bytes
and the minimum record length is 18 bytes.

Note for QISAM: For unblocked records, with a relative key
position (RKP) of zero, the record length includes only the data
portion of the record. The record length can be specified only
when creating the data set.

Note for QsAM: For variable-length spanned records (VS or VBS)
processed under QSAM (locate mode), if logical record exceeds
32,756, specify LRECL=X. For ASCII records on magnetic tape, the
maximum record length is 2048 bytes and the minimum record length
is 18 bytes. '

Note for TCAM: The record length should include the source and

control bytes if these are specified by the OPTCD suboperands. The
record length is required for fixed-length records only.

JCL Reference (Release 20.1)

MODE= gcz Can be used with BSAM, EXCP, QSAM
E

Specifies the mode of operation to be used with a card reader, a
card punch, or a card-read punch, as follows:

C -- the card image (column binary) mode.
E -- the EBCDIC mode.

If this information is not supplied by any source, E is assumed.

The subparameters MODE, CODE, KEYLEN, PRTSP, and TRTCH are mutually
exclusive subparameters. Therefore, if MODE is coded, do not code
any of these other subparameters.

NCP=number Can be used with BISAM, BPAM,
BSAM

Specifies the maximum number of READ or WRITE macro instructions
issued before a CHECK macro instruction is issued. The maximum
number allowed is 99, based on limits established when the system
was generated. If chained scheduling is used, NCP must be
specified as more than 1.

If not specified by any source, 1 is assumed.

NTM=number Can be used with QISAM

Specifies the number of tracks to be used for a cylinder index.
When the specified number of tracks has been filled, a master index
is created. This information is required only when the master
index option (OPTCD=M) is selected.

If not specified by any source and OPTCD=M is specified, the master
index option is ignored.

OPTCD= A\ Can be used with BDAM, BPAM,
B
C BsaM, EXCP, QIsAaM (output only),
E QSAM, TCAM

e N
cHTOOREHEIS
\r

W
\:/
Z
Specifies the optional services to be performed by the control
program. All optional services must be requested by the same

source. The characters may be coded in any order and, when used in
combination, no commas are permitted between characters.

A -- Actual device addresses are to be presented ("block
address" operand) in READ and WRITE macro instructions.
For BDAM, R requests the same option as A, and either can
be coded.

Section IV: The DD Statement -- DCB Parameter 149

B -- Requests that end-of-file recognition be disregarded for
tapes.

C -- For BPAM,BSAM,QSAM: requests that chained scheduling be
used.

For TCAM: specifies that one byte of the work area be
used to indicate if a segment of a message is the first,
intermediate, or last segment.

E -- An extended search (more than one track) is to be
performed for a block or available space. (The LIMCT
subparameter must also be specified; otherwise, this
option is ignored.)

F -- Feedback may be requested in READ and WRITE macro
instructions and the device address returned is to be of
the form presented to the control program.

H -- Requests hopper empty exit for Optical Readers (BSAM).

I -- Requests that the control program use the independent
overflow areas for overflow records.

L -- Reguests that the control program delete records that
have a first byte of all ones; records so marked may be
deleted when space is required for new records. Do not
specify this option for blocked records if RKP=0.

M -- Requests that master indexes be created as required,
according to the information in the NTM subparameter.
This option is ignored if the subparameter NTM=number is
not specified.

O ~-- Requests online correction for Optical Readers (QSAM).

Q -- Specifies that translation from ASCII input to EBCDIC is
required or that translation from EBCDIC to ASCII output
is required.

‘R ~-- For BDAM, actual device addresses are to be presented
("block address" operand) in READ and WRITE macro
instructions.

For QISAM, requests the control program to place
reorganization criteria information in the RORG1l, RORG2,
and RORG3 fields of the data control block. This option
is provided whenever the OPTCD subparameter is omitted
from all sources.

T -- Requests user totaling facility.

U -- For BSAM,QSAM: Only for 1403 printers with the Universal
Character Set feature. Unblocks data checks and allows
analysis by an appropriate error analysis (SYNAD)
routine. If U is omitted, data checks are blocked (not
recognized as errors). :

For ISAM: specifies the full track index write feature.
For TCAM: specifies that the work unit to be handled is

a message. If U is omitted, the work unit is assumed to
be a record.

150 JCL Reference (Release 20.1)

W ==

For BDAM,BPAM,BSAM,QSAM: Requests a validity check for
write operations on direct access devices. If the device
is a 2321 data cell, validity checking is always
performed whether requested or not.

For TCAM: Specifies that the name of each message source
is to be placed in an eight-byte field in the work area.

Requests that the control program use the cylinder
overflow areas for overflow records.

For input from a magnetic tape: Requests the control
program to shorten its normal error recovery procedure.
when Z is specified, a data check is considered permanent
after five unsuccessful attempts to read a record. This
option is available only if selected at system
generation. It should be used only when a tape is known
to be faulty and there is no need to process every
record. The error analysis (SYNAD) routine should keep a
count of the number of permanent errors, and should
terminate processing if the number becomes excessive.

For input from a direct access storage device (DASD):
Specifies search direct (SD) for sequential data sets.

Only certain options can be selected with each access method, as
follows:

For

For

For

For

For

For

For

For

BDAM:
A or
BPAM:

C W

R E F W

WC

BSAM and QSAM:

B C
EXCP:
Z
QISAM:

I L

Q T U W Z UC WC ZC

M R W Y

Section IV: The DD Statement -- DCB Parameter 151

N «N

PCI=(|R «R]) Can be used with TCAM

PRTSP=

A A

specifies if and how a program-controlled interruption (PCI) is to
be used to control the allocating and freeing of buffers. The
suboperands apply to receiving and sending operations respectively.

N -- specifies that no PCIs are taken during filling (on
receiving operations) or emptying (on sending operations)
of buffers. Buffers are freed at the end of
transmission.

R -- specifies that after the first buffer is filled (on
receiving operations) or emptied (on sending operations),
a PCI occurs during the filling or emptying of each
succeeding buffer. The completed buffer is freed, but no
new buffer is allocated to take its place.

A -- specifies that after the first buffer is filled (on
receiving operations) or emptied (on sending operations),
a PCI occurs during the filling or emptying of the next
buffer. The first buffer is freed. A buffer is
allocated in place of the freed buffer.

If this operand is not specified by any source, PCI=(A,A) is
assumed.

0 Can be used with BSAM, EXCP,
1 QSAM
2
3

Specifies the line spacing on a printer as 0, 1, 2, or 3 lines
between printout. This subparameter is valid only if control
characters are not present (A or M is not specified in the RECFM
subparameter).

If not supplied by any source, 1 is assumed.
The subparameters PRTSP, CODE, KEYLEN, MODE, STACK, and TRTCH are

mutually exclusive subparameters. Therefore, if PRTSP is coded, do
not code any of these other subparameters.

RECFM=type Can be used with BDAM, BPAM,

152

BSAM, EXCP, QISAM (output only),
QSAM, TCAM

Specifies the format and characteristics of the records in the data
set. The format and characteristics must be completely described
by one source.

If this subparameter is omitted, an undefined-length record is
assumed with no optional features provided, except for QISAM where
variable-length records are assumed, and QTAM where a message
segment is assumed.

Both the record format and characteristics are specified using the
characters defined below. The allowable combinations of characters
are indicated for the associated access methods; the characters
must be coded in the order shown.

JCL Reference (Release 20.1)

Character Definitions

A The record contains ASA printer control characters.
B The records are blocked.
D The ASCII records are of variable length. Each record on

magnetic tape has a four-byte record descriptor field
giving the record length in decimal.

F The records are of fixed length.
G The message data provided in the work unit is a
complete message.
M The records contain machine code control
characters. ﬂ
R The message data provided in the work unit is a

complete record.
S For fixed-length records, the records are
written as standard blocks, i.e., no truncated

blocks or unfilled tracks within the data set,
with the exception of the last block or track.

For variable-length records, a record may
span more than one block. Exchange buffering
(BFTEK=E) cannot be specified.

For QTAM, the message data provided in the work
unit is a message segment.

T The records may be written onto overflow tracks
if required. Exchange buffering (BFTEK=E) or
chained scheduling (OPTCD=C) cannot be used.

U The records are of undefined length.

v The records are of variable length. (Variable length
records cannot be in ASCII.)

Only certain characters and combinations of characters can be
selected with each access method. The allowable combinations of
characters are indicated for the associated access methods; the
characters must be coded in the order shown.

For BDAM:

U
.
F [T]
For BPAM: _
(al)
U I[T] |M

- HIRK

\f ET] La] /

Section IV: The DD Statement -- DCB Parameter 153

For BSAM and QSAM:

A
U (T] M

3 b

B
S
T
V |BS

F | BS
BT

st |[a
| BST| |M

For BSAM and QSAM using ASCII data sets on tape:

D [Bl [a]
U [al
F [B]l I[a]

Note: A or M cannot be specified if the PRTSP subparameter is

specified.
For QISAM:
Vv [B]
F [B]
For QTAM:
G
R
S
For TCAM:
| U
vV [B]
F

REPOS=3Y§ Can be used only with EXCP.
N

Specifies repositioning for tape devices.

Y -- Repositioning. A bit will be set to indicate that the user is
keeping an accurate block count, and, if a permanent error
occurs, Dynamic Device Reconfiquration (DDR) can use the block
count to reposition.

N -- No repositioning. DDR will not attempt repositioning.

154 JCL Reference (Release 20.1)

RESERVE=(numberl, number 2) Can be used with TCAM

specifies the number of bytes (from 0 to 255) to be reserved in a
buffer for insertion of data by the DATETIME and SEQUENCE macros.
numberl indicates that space is to be reserved in the first buffer
of each incoming message; number2, that space is to be reserved in
all buffers except the first. If RESERVE is not coded, no space is
reserved.

RKP=number Can be used with QISAM (output
. only)

Specifies the position of the first byte of the record key,
relative to the beginning of each record. (The beginning byte of a
record is addressed as 0.)

If RKP=0 is specified for blocked fixed-length records, the key
begins in the first byte of each record, and the delete option
(OPTCD=L) must not be specified. If RKP=0 is specified for
unblocked fixed-length records, the key is not written in the data
field; the delete option can be specified.

For variable-length records, the relative key position must be 4 or
greater, when the delete option (OPTCD=L) is not specified. The
relative key position must be 5 or greater if the delete option is

specified.
If this information is not specified by any source, a relative key
position of zero is assumed.

SOWA=number Can be used with QTAM
Specifies the size, in bytes, of the user-provided input work
areas. The value must be less than 32,768 and must include the

4-byte user prefix.

If this subparameter is not specified by any source, the
telecommunications job, when executed, is terminated.

STACK={1$ Can be used with BSAM, EXCP, QSAM
12

Specifies the stacker bin to receive the card, and is either 1 or
2'

If not specified by any source, 1 is assumed.
The subparameters STACK, CODE, KEYLEN, PRTSP, and TRTCH are

mutually exclusive subparameters. Therefore, if STACK is coded, do
not code any of these other subparameters.

THRESH=number Can be used with TCAM

specifies the percentage of the nonreusable disk message queue
records to be used before a flush closedown occurs. If this
operand is omitted, closedown occurs when 95% of the records have
been used.

Section IV: The DD Statement -- DCB Parameter 155

TRTCH=[C Can be used with BSAM, EXCP, QSAM

| E
T
ET

Specifies the recording technique for seven-track tape.

C -- Data conversion feature is to be used, with odd parity
and no translation.

E -- Even parity, with no translation and no conversion.

T -- 0dd parity and no conversion, and BCD to EBCDIC
translation is required when reading; EBCDIC to BCD
translation when writing.

ET -- Even parity and no conversion, and BCD to EBCDIC
translation is required when reading; EBCDIC to BCD
translation when writing.

If this subparameter is not specified by any source, odd parity and
no translation or data conversion is assumed.

The subparameters TRTCH, CODE, KEYLEN, MODE, PRSTP, and STACK are
mutually exclusive subparameters. Therefore, if TRTCH is coded, do
not code any of these other subparameters.

Examples of the DCB Parameter

1.

//7DD1 DD DSNAME=ALP,DISP=(,KEEP),VOLUME=SER=44321, X
7/ UNIT=2400,DCB=(RECFM=FB, LRECL=240,BLKSIZE=960, X
/77 DEN=1, TRTCH=C)

This DD statement defines a new data set and contains the
information necessary to complete the data control block.

/7/DD2 DD DSNAME=BAL,DISP=0LD,DCB=(RECFM=F,LRECL=80, X
// BLKSIZE=80)

//DD3 DD DSNAME=CNANN, DISP=(,CATLG,DELETE),UNIT=2400, X
/77 LABEL=(,NL) ,VOLUME=SER=663488 ,DCB=#.DD2

The statement named DD3 defines a new data set and requests the
system to copy the DCB subparameters from the DD statement named
DD2, which is in the same job step.

//DD4 DD DSNAME=JST,DISP=(NEW,KEEP) ,UNIT=2311, X
// SPACE=(CYL, (12,2)),DCB=(A.B.C,KEYLEN=8)

This DD statement defines a new data set and requests the system to
copy DCB information from the data set label of the cataloged data
set named A.B.C. If the data set label contains a key length
specification, it is overridden since KEYLEN is coded on the DD
statement.

//DD5 DD DSNAME=SAME,DISP=OLD,UNIT=2311, X
/77 DCB= (*.STEP1. PROCSTP5.DD8, BUFNO=5)

This DD statement defines an existing data set and requests the
system to copy the DCB subparameters from the DD statement named
DD8, which is contained in the procedure step named PROCSTPS5. The
cataloged procedure was called by the job step named STEP1i. If any
of the DCB subparameters coded on the procedure DD statement have
been previously defined for this data set, they are ignored. If the
BUFNO subparameter has not been previously specified for the data
set, then five buffers are assigned to the data control block.

156 JCL Reference (Release 20.1)

The DDNAME Parameter

DDNAME=ddname

ddname
the name of a following DD statement in the same job step that
defines this data set.

Rules for Coding

1. The only parameters that can be coded with the DDNAME parameter are
the DCB subparameters BLKSIZE and BUFNO.

2. The DDNAME parameter cannot appear on a DD statement named JOBLIB.

3. You can code the DDNAME parameter up to five times in a job step or
procedure step. However, each time the DDNAME parameter is coded,
it must refer to a different ddname.

4. If the data set, which will be defined later in the job step, is to
be concatenated with other data sets, the DD statements that define
these other data sets must immediately follow the DD statement that
includes the DDNAME parameter.

5. The DDNAME parameter must not be used to refer to a DD statement
that has DYNAM coded on it.

6. A DD statement to which a DDNAME parameter refers cannot contain
any reference to a DD statement that follows the one with the
DDNAME parameter.

What the DDNAME Parameter Does

The DDNAME parameter allows you to postpone defining a data set until
later in the same job step. In the case of cataloged procedures, this
parameter allows you to postpone defining a data set in the procedure
until the procedure is called by a job step.

The DDNAME parameter is most often used in cataloged procedures and
in job steps that call procedures. It is used in cataloged procedures
to postpone defining data in the input stream until a job step calls the
procedure. (Procedures cannot contain DD statements that define data in
the input stream, i.e., DD * or DD DATA statements). It is used in job
steps that call procedures to postpone defining data in the input stream
on an overriding DD statement until the last overriding DD statement for
a procedure step. (Overriding DD statements must appear in the same
order as the corresponding DD statements in the procedure.)

When You Code the DDNAME Parameter

When the system encounters a DD statement that contains the DDNAME
parameter, it saves the ddname of that statement. The system also
temporarily saves the name specified in the DDNAME parameter so that it
can relate that name to the ddname of a later DD statement. Once a DD

Section IV: The DD Statement -- DDNAME Parameter 157

statement with that corresponding name is encountered, the name is no
longer saved. For example, if the system encounters this statement

//XY¥Z DD DDNAME=PHOB

the system saves XYZ and, temporarily, PHOB. Until the ddname PHOB is
encountered in the input stream, the data set is a dummy data set.

When the system encounters a statement whose ddname has been
temporarily saved, it does two things. It uses the information
contained on this statement to define the data set; it associates this
information with the name of the statement that contained the DDNAME
parameter. The value that appeared in the DDNAME parameter is no longer
saved by the system. To continue the above example, if the system
encounters this statement

//7PHOB DD DSNAME=NIN,DISP=(NEW, KEEP),UNIT=2400

the system uses the data set name and the disposition and unit
information to define the data set; it also associates the ddname of the
statement that contained the DDNAME parameter with this. information. In
this example, the ddname used is XYZ; the ddname PHOB is no longer
saved. The data set is now defined, just as it would be if you had
coded

//XYZ DD DSNAME=NIN,DISP=(NEW,KEEP),UNIT=2400

The system associates the ddname of the statement that contains the
DDNAME parameter with the data set definition information. It does not
use the ddname of the later statement that defines the data set.
Therefore, any references to the data set, before or after the data set
is defined, must refer to the DD statement that contains the DDNAME
parameter, not the DD statement that defines the data set. The
following sequence of control statements illustrates this:

//DD1 DD DDNAME=LATER -

//LATER DD DSN=SET12,DISP=(NEW,KEEP),UNIT=2311,VOLUME=SER=46231, X
/77 SPACE= (TRK, (20,5))
//DD12 DD DSN=SET13,DISP=(NEW,KEEP),VVOLUME=REF=+,DD1, X
Va4 SPACE=(TRK, (40,5))

When you want to concatenate data sets, the unnamed DD statements

- must follow the DD statement that contains the DDNAME parameter, not the
DD statement that defines the data set. The following sequence of
control statements illustrates this:

/7/DDA DD DDNAME=DEFINE
7/ DD DSN=A.B.C,DISP=OLD
/7 DD DSN=SEVC,DISP=OLD,UNIT=2311,VOL=SER=52226

//DEFINE DD *
data
/%

You can use the DDNAME parameter up to five times in a job step or

procedure step. However, each time the DDNAME parameter is coded, it
must refer to a different ddname.

158 JCL Reference (Release 20.1)

THE DCB SUBPARAMETERS BLKSIZE AND BUFNO

Two DCB subparameters can be coded with the DDNAME parameter -- BLKSIZE
and BUFNO. This allows you to assign these DCB characteristics to the
data set defined in the referenced DD statement. When the DCB
subparameters BLKSIZE and BUFNO are coded both on the DD statement that
contains the DDNAME parameter and on the referenced DD statement, the
subparameters coded on the former are ignored.

These subparameters would most often be coded with the DDNAME
parameter when the referenced DD statement defines data in the input
stream. Data in the input stream is written onto a direct access
device, and the records are blocked as they are written. The input
reader procedure normally assigns a block size and number of buffers for
blocking. Coding the BLKSIZE subparameter allows you to specify that
you want shorter blocks. Coding the BUFNO subparameter allows you to
specify that you want fewer buffers. You cannot specify that you want
larger blocks or more buffers than would be assigned by the input reader
procedure. (When a job is submitted wvia remote job entry and the BUFNO
subparameter is coded, the BUFNO subparameter is ignored.)

Examples of the DDNAME Parameter

1. //STEpPl EXEC PGM=PROGRAMS
//DD1 DD DDNAME=INPUT
//DD2 DD DSNAME=WELL, DISP=01D

The above statements make up the statements for a procedure step
named STEP1, which is the first step of a procedure named MENT. The
following statements illustrate how you would define DD1 as a data
set in the input stream:

//STPA EXEC PROC=MENT
//STEP1.INPUT DD *

/%

2. //ST4 EXEC PGM=FIFTY
/7/0D1 DD DDNAME=DD5
//DD2 DD UNIT=2400
//DD3 DD UNIT=2400
//DD4 DD SYSOUT=B
//DD5 DD DSNAME=ADDN,DISP=(,PASS) ,UNIT=2400
//STS EXEC PGM=FINE
//DD6 DD DSNAME=%, ST4.DD1,DISP= (OLD,KEEP)

The DD statement named DD5 defines the data set for the statement
named DD1. The DD statement of the second job step wants the system
to obtain the data set name, unit and volume information of this
data set. This is done by referring to the DD statement that
contains the DDNAME parameter.

Section IV: The DD Statement -- DDNAME Parameter 159

//STEP8 EXEC PGM=BLOCK

//DD1 DD DDNAME=SK1P

7/ DD DSNAME=A.B.C,DISP=OLD

/7 DD DSNAME=LEV.FIVE,DISP=OLD

//SKIP DD DSNAME=SEF, DISP=0OLD, UNIT=2311, VOLUME=SER=111111

The DD statement named SKIP defines the data set for the statement
named DDl1. The two data sets, A.B.C. and LEV.FIVE, are
concatenated with the data set named SEF.

//STEPX EXEC PGM=PROG12

//DD1 DD DDNAME=LATER, DCB= (BLKSIZE=1600, BUFNO=2)
//DD2 DD UNIT=2400

//DD3 DD SYSOUT=F

//LATER DD *

data
Vil

The DD statement named LATER defines the data set for the statement
named DD1. The DCB subparameters coded with the DDNAME parameter
are used to block the input data.

//STEPX EXEC PGM=B403
/7/7DDA DD DSNAME=SEL, DISP=0LD, VOLUME=SER=X3220, UNIT=2400
//DDB DD SYSoUT=B

The above statements make up the statements for a procedure step
named STEPX, which is the first step of a procedure named TYPE. The
following statements illustrate how you would use the DDNAME
parameter when overriding both of the DD statements and the first
overriding DD statement is to define data in the input stream:

//CALL EXEC PROC=TYPE
//STEPX.DDA DD DDNAME=IN
//STEPX.DDB DD SYSOUT=G
//STEPX.IN DD *

data
/*)
//MAR EXEC PGM=DEPT12
//CARD1 DD DDNAME=CARDY4
//CARD2 DD UNIT=2400
//CARD3 DD DSNAME=NINE.SCR, DISP=0LD
//COGH EXEC PGM=DEPT13

The DD statement named CARD1 contains the DDNAME parameter. This
statement defines a dummy data set since there is no DD statement
named CARD4 in the step.

160 JCL Reference (Release 20.1)

The DISP Parameter

DISP=([NEW +DELETE » DELETE)
OoLD +KEEP +KEEP
SHR +« PASS + CATLG
MOD +CATLG +» UNCATLG
+ UNCATIG

14

NEW
specifies that the data set is to be created in this job step.

OLD
specifies that the data set existed before this job step.

SHR
specifies that the data set existed before this job step and can be
used simultaneously (shared) by another job, since it will only be
read.

MOD
specifies that the read/write mechanism is to be positioned after
the last record in the data set, and, if the system cannot find
volume information for the data set, specifies that the data set is
to be created.

» DELETE
specifies that the data set is no longer needed and its space on
the volume is to be released at the end of this job step for use by
other data sets.

+KEEP
specifies that the data set is to be kept at the end of this job
step on the volume.

+PASS
specifies that the data set is to be passed for use by a subsequent
job step in the same job.

,CATLG
specifies that the data set is to be kept at the end of this job
step and an entry pointing to the data set is to be placed in the
system catalog.

(UNCATLG
specifies that the data set is to be kept at the end of this job
step but the entry pointing to the data set in the system catalog
is to be removed.
specifies that a disposition is not explicitly specified for the
data set, but a conditional disposition follows. A new data set is
to be deleted and a data set that existed before execution of the
job is to be kept at the end of this job step.

+ DELETE
specifies that the data set is no longer needed and its space on
the volume is to be released for use by other data sets if this
step abnormally terminates.

+XEEP

specifies that the data set is to be kept on the volume if this
step abnormally terminates.

Section 1IV: The DD Statement -- DISP Parameter 161

+« CATLG
specifies that an entry pointing to the data set is to be placed in
the system catalog if this step abnormally terminates.

, UNCATLG
specifies that the entry pointing to the data set in the system
catalog is to be removed if this step abnormally terminates.

Rules for Coding

1. If only the first subparameter is coded, you need not enclose it in
parentheses.

2. If the data set is new, you can omit the subparameter NEW.
However, if you specify a disposition or conditional disposition,
you must code a comma to indicate the absence of NEW.

3. You can omit the DISP parameter if a data set is created and
deleted during a job step.

4, If you do not want to change the automatic disposition processing
performed by the system, you need not code the second subparameter.
(When the second subparameter is not coded, the system
automatically keeps data sets that did exist before the job and
automatically deletes data sets that did not exist before the job.)
If you omit the second subparameter and code a conditional
disposition, you must code a comma to indicate the absence of the
second subparameter.

5. The DISP, SYSOUT, and DDNAME parameters are mutually exclusive
parameters; therefore, when SYSOUT or DDNAME is coded, do not code
the DISP parameter.

WHAT THE DISP PARAMETER DOES

The DISP parameter describes to the system the status of a data set and
indicates what is to be done with the data set after termination of the
job step that processes it or at the end of the job. You can indicate
in the DISP parameter one disposition to apply if the step terminates
normally after execution and another to apply if the step terminates
abnormally (conditional disposition).

Specifying the Data Set’s Status

A data set is either a new data set or an existing data set. What you
plan to do with the data set determines which status you code as the
first subparameter of the DISP parameter. Ther are four different
subparameters that can be coded. These subparameters allow you to tell
the system:

e The data set is to be created in the job step —-- NEW.

e The data set existed before this job step -- OLD.

e The data set can be used by other concurrently executing jobs --
SHR.)

e The data set is to be lengthened with additional output -- MOD.

At the begining of each job, the system determines by the status you
specify in the DISP parameter whether a job is to have exclusive control
of a data set. By specifying OLD, NEW, or MOD, you are requesting
exclusive control of a data set for the duration of your job. In order

162 JCL Reference (Release 20.1)

to modify an existing data set, you must have exclusive control. If you
plan for your job step or job to only read a data set and not to modify
it, then you can request shared control of the data set.

The status of a data set that is defined and used in more than one
step of a job is determined by the most restrictive status specified.
The status that the system assigns to a data set from the information on
the DD statement is not for the duration of the step but for the
duration of the job. Therefore, in a three step job, if OLD is
specified as the status in one step and SHR as the status in the other
two steps, the status of the data set for all three steps would be OLD.
OLD is a more restrictive status than SHR. This means that if exclusive
control of a data set is requested anywhere in a job the data set cannot
be shared. 1In order to share a data set, SHR must be specified every
time the data set is defined in the job.

When you Specify NEW as the Data Set's Status

Specifying NEW as the first subparameter of the DISP parameter tells the
system that the data set is to be created in the job step and may be
used by the processing program to contain output data. If you omit the
subparameter NEW, the system assumes the data set is to be created in
the job step. (If you omit the subparameter NEW and specify a
disposition or conditional disposition, you must code a comma to
indicate the absence of NEW.) When the status of a data set is NEW, you
must code on the DD statement all of the parameters necessary to define
the data set. ’

Coding NEW guarantees exclusive control of the nontemporary data set
name specified in the DSNAME parameter for the data set. Exclusive
control of the data set name means that no other job that requests the
data set can be processed until the job with exclusive control
terminates. This also means that the data set name itself is being
exclusively controlled. If a request is made for the same data set
name, the request will not be processed -- even though the request may
refer to an entirely different physical data set.

When You Specify OLD as the Data Set's Status

Specifying OLD as the first subparameter of the DISP parameter tells the
system that the data set existed before this job step.

Coding OLD quarantees exclusive control of the nontemporary data set
name specified in the DSNAME parameter for the data set. Exclusive
control of the data set name means that no other job that requests the
data set can be processed until the job with exclusive control
terminates. This also means that the data set name itself is being
exclusively controlled. If a request is made for the same data set
name, the request will not be processed -- even though the request may
refer to an entirely different physical data set.

When You Specify SHR as the Data Set's Status

Specifying SHR as the first subparameter of the DISP parameter tells the
system that the data set resides on a direct access volume and other
jobs that are executing concurrently with this job step may
simultaneously use (share) the data set. When SHR is specified, any job
step that uses the data set should only read the data set.

You must have exclusive control of a data set in order to add ox

update records. If you plan to modify a data set, you should specify
OLD or MOD in the DISP parameter. To protect other users of a shared

Section IV: The DD Statement -- DISP Parameter 163

data set, care should be exercised when specifying SHR if you plan to
modify the data set. Several users can share a data set and write into
it if exclusive control of the data set is acquired. For more
information on sharing a data set and on gaining exclusive control of a
data set when you have specified SHR, refer to the Superv1sor and Data
Management Services publication.

Caution should be observed when specifying SHR for IBM processor
output data sets since no provision is made for acquiring exclusive
control of the data sets prior to writing (e.g. S¥SGO for the
Assembler).

If you code DISP=(SHR,DELETE) the system assumes OLD instead of SHR.
Once you specify SHR for a data set, every reference to that data set
within the job must specify SHR or the data set can no longer be used by
concurrently executing jobs.

When You Specify MOD as the Data Set's Status

Specifying MOD as the first subparameter of the DISP parameter tells the
system that when the data set is opened for output, the read/write
mechanism is to be positioned after the last record in the data set.

MOD is specified when you want to add records to a data set with
sequential, indexed sequential, or partitioned organization. MOD should
not be specified for data sets with direct organization. When MOD is
specified and the number of volumes required to lengthen the data set
may exceed the number of units requested, specify a volume count in the
VOLUME parameter. This ensures that the data set can be extended to new
volumes.

When MOD is specified, the system first assumes the data set exists.
However, if the system cannot find volume information for the data set
-- on the DD statement, in the system catalog, or passed with the data
set from a previous step -- the system then assumes that the data set
does not exist and the data set is created for the job step. Specifying
MOD for a new sequential data set causes the read/write mechanism to be
positioned after the last record in the data set each time it is opened
for output.

Specifying MOD quarantees exclusive control of the nontemporary data
set name specified in the DSNAME parameter for the data set. Exclusive
control means that no other job that requests the data set can be
processed until the job with control terminates. This also means that
the data set name itself is being exclusively controlled. If a request
is made for the same data set name, the request will not be processed --
even though the request may refer to an entirely different physical data
set.

If MOD is specified and volume information exists, the first volume
of a multivolume data set will be mounted unless DEFER is specified in
the UNIT parameter or (for tape data sets only) the VOLUME=REF parameter
is used.

When you lengthen a data set that has standard labels, DCB
information in the data control block must agree with the DCB
information contained in the data set label. Conflicting DCB
information, specifically conflicting block sizes, may make the data set
unusable by later jobs. Therefore, do not code the DCB information
contained in the data set label on the DD statement. If this DCB
information is coded in the DCB macro instruction, be sure it agrees
with the information contained in the data set label.

164 JCL Reference (Release 20.1)

If you extend a data set that has fixed block standard (FBS) records
and the last block was a truncated one, an end-of-data set condition
occurs when the truncated block is encountered. If an attempt is made
to read the data set backward on magnetic tape, processing is terminated
immediately (with an end-of-data set condition) upon reading the
truncated block.

Specifying a Disposition for the Data Set

The second subparameter of the DISP parameter tells the system what is
to be done with the data set at the end of the job step. If you want
the data set to assume the same attributes it had before the job, you
need not code the second subparameter of the DISP parameter. However,
if a conditional dispostion is specified, you must code a comma to
indicate the absence of the second subparameter. When the second
subparameter is not coded, data sets that existed before the job
continue to exist and data sets that were created in the job step are
deleted. 1If you create a nontemporary data set in the job and assign a
disposition -of PASS to it, the data set is deleted at termination of the
job step that receives the passed data set and does not assign a
disposition to it. (The passed nontemporary data set is deleted at job
termination if the data set is never received by a later job step.)

The system ignores the disposition you have coded and automatically
keeps existing data sets and deletes new data sets when the step is
abnormally terminated before the step begins execution, e.g., primary
direct access space cannot be obtained.

Sometimes the system does not perform disposition processing. The
system does no disposition processing of data sets when:

e The job step is bypassed because of an error that is found during
interpretation of control statements, e.g., a control statement
containing errors is read.

e The job step is bypassed because a return code test is satisfied.

e The job step makes a nonspecific request for a tape volume and the
data set is never opened. There is one exception to this: If the
data set is defined as a new generation data set, the system
performs the requested disposition.

e The job step requests that the mounting of a direct access volume be
deferred and the data set is never opened.

Except for the cases mentioned above, the specified disposition is in
effect for the data set if the job step terminates normally or
abnormally and you have not specified a conditional disposition as the
third subparameter of the DISP parameter.

There are five dispositions that can be specified for a data set.
These dispositions allow you to:

Delete a data set -- DELETE.

Keep a data set -~ KEEP.

Pass a data set to a later job step -- PASS.
Catalog a data set -- CATLG.

Uncatalog a data set -- UNCATLG.

Section IV: The DD Statement -- DISP Parameter 165

When You Specify DELETE as the Disposition

Specifying DELETE as the second subparameter of the DISP parameter tells
the system that you want the data set's space on the volume released at
the end of the job step. If the data set resides on a tape volume, the
tape is rewound and the volume is available for use by other data sets
at the end of the job step. If the data set resides on a direct access
volume, the system removes the volume table of contents entry associated
with the data set and the data set's space is available for use by other
data sets at the end of the job step. However, if the direct access
data set's expiration date or retention period has not expired, the
system does not delete the data set. You can use the IEHPROGM utility
program to remove the volume table of contents entry.

If you are deleting a cataloged data set, the entry for the data set
in the system catalog is also removed, provided the system obtained
volume information for the data set from the catalog, i.e., the volume's
serial number was not coded on the DD statement. If the system did not
obtain volume information from the catalog, the data set is still
deleted but its entry in the catalog remains. If an error is
encountered while attempting to delete a data set, its entry in the
catalog will not be removed. You may use the IEHPROGM utility program
to delete an entry from the catalog.

When You Specify KEEP as the Disposition

Specifying KEEP as the second subparameter of the DISP parameter tells
the system that you want the data set kept intact until a subsequent job
step or job requests that the data set be deleted or until the
expiration date is passed. (You can specify a retention period or
expiration date in the LABEL parameter when the data set is created. 1If
neither is coded in the LABEL parameter, a retention period of zero days
is assumed by the system.)

When You Specify PASS as the Disposition

Specifying PASS as the second subparameter of the DISP parameter tells
the system that the data set is to be passed after it is used in a job
step. The system retains unit and volume information for a passed data
set; when you refer to the data set in a DD statement of a subsequent
job step, do not code the VOLUME parameter. A passed data set may be
referred to once in a later job step. You continue to code PASS each
time the data set is referred to until the last time it is used in the
job. At this time, you assign it a final disposition. If you do not
assign the data set a final disposition, the system deletes the data set
if it was created in the job and keeps the data set if it existed before
the job. '

When the data set is not in use, the volume that contains the passed
data set remains mounted; therefore, you need not code RETAIN in the
VOLUME parameter of a DD statement that specifies a disposition of PASS.
If the system must remove the volume that contains the passed data set,
it ensures through messages to the operator that the volume is remounted
before the data set is used again.

When a subsequent job step wants to use the passed data set, you must
include a DD statement for the step. On this DD statement, you must
always code the DSNAME and DISP parameters.

o The DSNAME parameter identifies the data set. Either code the data

set's name or make a backward reference to any earlier DD statement
in the job that defines the data set.

166 JCL Reference (Release 20.1)

e The DISP parameter specifies the data set's status and disposition.
(If a later job step is to use this data set, specify a disposition
of PASS; if this is the last job step that uses this data set,
specify the data set's final disposition.)

The other parameters you might code are UNIT, LABEL, and DCB.

e Code the UNIT parameter if you want more than one device allocated
to the data set.

e Code the LABEL parameter if the data set does not have standard
labels.

e Code the DCB parameter if the data set does not have standard@ labels
and the first DD statement that defines the passed data set contains
the DCB parameter.

If several data sets used in the job have the same name, you can only ﬂ
pass one of these data sets at a time. A job step must refer to a

passed data set and assign a disposition of other than PASS to the data
set before another data set with the same name can be passed.

When You Specify CATLG as the Disposition

Specifying CATLG as the second subparameter of the DISP parameter tells
the system to create an index entry in the system catalog that points to
this data set. The disposition CATLG also implies a disposition of
KEEP. Once the data set is cataloged, you can retrieve the data set in
later job steps and jobs by coding the DSNAME parameter and a status of
other than NEW in the DISP parameter.

You can specify a disposition of CATLG for an already cataloged data
set. This should be done when you are lengthening the data set with
additional output (a status of MOD is coded) and the data set may exceed
one volume. If the system obtained volume information for the data set
from the catalog and you code DISP=(MOD,CATLG), the system updates the
entry to include the volume serial numbers of any additional volumes.

If the data set's name is enclosed in apostrophes, the data set must
not be assigned a disposition of CATLG. If the data set you want
cataloged has a qualified name, e.g., A.B.C., you must first create all
but the lowest level of the name as indexes in the catalog. This is
done using the IEHPROGM utility program. Once the indexes are
established, you can request that a data set with a qualified name be
cataloged.

When You Specify UNCATIG as the Disposition

Specifying UNCATLG as the second subparameter of the DISP parameter
tells the system that you want the data set's entry in the system
catalog removed at the end of the job step, UNCATLG does not tell the
system to delete the data set. Later jobs that use this data set must
provide on the DD statement all of the parameters necessary to define
the data set.

Section IV: The DD Statemeni -~ DISP Parameter 167

Specifying a Conditional Disposition for the Data Set

The third subparameter of the DISP parameter tells the system what is to
be done with the data set if the step abnormally terminates. If you do
not specify a conditional disposition and the step abnormally
terminates, the system uses the disposition specified as the second
subparameter of the DISP parameter to determine what is to be done with
the data set. (There are a few exceptions and they are noted under
*specifying a Disposition for the Data Set.") If a passed data set has
not been received and a job step abnormally terminates, the passed data
set assumes the conditional disposition specified the last time it was
passed. In this case, conditional disposition processing is done at job
termination, not. at step termination.

There are four conditional dispositions. When a job step abnormally
terminates, these conditional dispositions allow you to:

Delete a data set -- DELETE.

Keep a data set -- KEEP.

Catalog a data set -- CATLG.
Uncatalog a data set -- UNCATLG. -

When You Specify DELETE as the Conditional Disposition

Specifying DELETE as the third subparameter of the DISP parameter tells
the system that if the step abnormally terminates you want the data
set's space on the volume released. DELETE is the only valid
conditional disposition that can be specified for a data set assigned a
temporary name or no name. If the data set resides on a tape volume,
the tape is rewound and the volume becomes available for use by other
data sets at the end of the job step. If the data set resides on a
direct access volume, the system removes the volume table of contents
entry associated with the data set and the data set's space is available
for dse by other data sets at the end of the job step. However, if the
direct access data set's expiration date or retention period has not
expired, the system does not delete the data set. You can use the
IEHPROGM utility program to remove the volume table of contents entry.

If the data set is cataloged, its entry in the system catalog is also
removed, provided the system obtained volume information for the data
set from the catalog, i.e., the volume's serial number was not coded on
the DD statement. If the system did not obtain volume information from
the catalog, the data set is still deleted but its entry in the catalog
remains. In this case, you may use the IEHPROGM utility program to
delete the entry.

When You Specify KEEP as the Conditional Disposition

Specifying KEEP as the third subparameter of the DISP parameter tells
the system that if the step abnormally terminates you want the data set
kept intact until a subsequent job requests that the data set be deleted
or until the expiration date has passed. (You can specify a retention
period or, expiration date in the LABEL parameter when the data set is
created. If neither is coded in the IABEL parameter, a retention period
of zero days is assumed by the system.)

Note: A scratch volume will be rewound, unloaded, and a KEEP message
issued to the operator during abnormal termination of a job step when:
(1) a temporary data set written on the scratch volume has been assigned
a nontemporary name, and (2) a conditional disposition of KEEP has been
assigned to the data set.

168 JCL Reference (Release 20.1)

when You Specify CATLG as the Conditional Disposition

Specifying CATLG as the third subparameter of the DISP parameter tells
the system that if the step abnormally terminates you want the system to
create an entry in the system catalog that points to this data set. The
conditional disposition of CATLG also implies a conditional disposition
of KEEP. Once the data set is cataloged, you can retrieve the data set
in later job steps and jobs by coding the DSNAME parameter and a status
of other than NEW in the DISP parameter.

If the data set's name is enclosed in apostrophes, the data set must
not be assigned a conditional disposition of CATLG. If the data set has
a qualified name, e.g., A.B.C., you must have created all but the lowest
level of the name as indexes in the catalog before asking that the
system catalog the data set. This is done using the IEHPROGM utility
program.

When You Specify UNCATLG as the Conditional Disposition

Specifying UNCATLG as the third subparameter of the DISP parameter tells
the system that if the step abnormally terminates you want the data
set's entry in the system catalog removed, UNCATLG.does not tell the
system to delete the data set. Later jobs that use this data set must
provide on the DD statement all of the parameters necessary to define
the data set.

Disposition Processing Chart

The system performs disposition processing of data sets at step
termination. This processing is based on whether the step terminated
normally or abnormally, the data set's status, the requested
disposition, and the conditional disposition. Table 1 shows the
disposition processing performed by the system based on these factors.
(You may want to remove this page from the publication and place it in a
convenient location, so that you and other programmers can refer to it.)

Section IV: The DD Statement -- DISP Parameter 169

adusxajzay Tor OLT

Table 1. Disposition Processing Chart

(T°0Z ©oseaTaq)

Action Taken Action Taken at Abnormal End of Sfep] , Action Tak
Status Requested Disposition | Conditional Disposition at Normal when Step Fails Due to: E::Z? J:b en af
End of Step! 3 7
A2, B c
none none deleted deleted deleted - deleted
KEEP none kept deleted kept deleted
DELETE none) deleted deleted deleted deleted
CATLG none cataloged deleted cataloged deleted
5 PASS none passed deleted passed passed deleted
NEW or MOD PASS any excepf6 conditional
UNCATLG _passed deleted passed passed disposition
any except requested
PASS KEEP disposition deleted kept kept
any except requested
PASS DELETE disposition deleted deleted deleted
any except requested
PASS CATLG disposition deleted cataloged cataloged
none none kept Y kept _ kept kept
KEEP none kept kept kept kept
DELETE none deleted kept deleted kept
CATLG none cataloged kept cataloged kept
UNCATLG none uncataloged kept uncataloged kept
PASS none passed kept passed passed kept
OLb OSr F{‘:OD PASS any passed kept . passed passed conditional
or disposition
any except requested
PASS KEEP disposition kept kept kept
any except requested
PASS DELETE disposition kept deleted deleted
any except requested .
PASS CATLG disposition kept cataloged cataloged
any except requested
PASS UNCATLG disposition kept uncataloged uncataloged

Footnotes :

‘See list of exceptions in right-hand column,

N

In the following cases, the data set is not allocated to the job step and, therefore, no
disposition processing is performed : a JCL error is encountered ; a return code test causes
the job step to be bypassed ; the job is cancelled before data set allocation ; the system
cannot allocate this data set to the job step.

This is the disposition processing that is performed when the job is cancelled after data
set allocation or a processing program error occurs,

This is the disposition processing that is performed when this data set has been allocated
to the step but the system cannot allocate some other data set fo the job step.

For MOD, a data set is considered to be a new data set if volume information is not
available to the system,

A conditional disposition other than DELETE is invalid for a data set that is assigned a
temporary name or no name, The system assumes DELETE,

List of Exceptions :

1.

When a nontemporary data set is passed and the receiving step does not assign it a disposition,
the system will, upon termination of this step, do one of two things. If the data set was new
when it was initially passed, it will be deleted, If the data set was old when initially
passed, it will be kept, Temporary data sets are deleted.

If a job step makes a nonspecuf‘c request for a tape volume and the data set is never opened,
no disposition processing is performed,

If a job step requests that the mounting of a direct access volume be deferred and the data set
is never opened, no disposition processing is performed,

If automatic step restart is to occur, all data sets in the restart step with a status of OLD or
MOD, and all data sets being passed to steps following the restart step, are kept, All data
sets in the restart step with a status of NEW are deleted,

If automatic checkpoint restart is to occur, all data sets currently in use by the job are kept,
When dedicated data sets are used in a job step, any disposition assigned to them is |nfernal|y
changed to PASS or KEEP to prevent deletion of the dedicated data sets,

Examples of the DISP Parameter

1.

//DD DD DSNAME=D99.GROUP.SIX,UNIT=2311,VOLUME=SER=111111, X
7/ D1IspP= (NEW, CATLG, DELETE) , SPACE=(TRK, (5,1))

This DD statement defines a new data set and requests the system to
create an index entry in the system catalog that points to this data
set if the step terminates nommally. It also requests the system to
delete the data set, instead of cataloging it, if the step
abnormally terminates. Because the data set's name is qualified,
the IEHPROGM utility program must be used to create the indexes in
the catalog for D99 and GROUP before you request the system to
catalog the data set.

//DD2 DD DSNAME=FIX,UNIT=2400-1,VOLUME=SER=44889,

X
77 DISP=(OLD, , DELETE)

This DD statement defines an existing data set and implies that the
data set is to be kept if the step terminates normally. (For an
existing data set, the system assumes it is to keep the data set if
no disposition is specified.) The statement requests the system to
delete the data set if the step abnormally terminates.

//STEP1 EXEC PEGM=FILL .

//DD1 DD DSNAME=SWITCH.LEVEI18.GROUP12,UNIT=2311 X
/77 _ VOLUME=SER=LOCAT3, SPACE= (TRK, (80, 15)),DISP=(, PASS)
//STEP2 EXEC PGM=CHAR

//DD2 DD DSNAME=XTRA, DISP=0LD

//DD3 DD DSNAME=#% , STEP1.DD1,DISP= (OLD,PASS ,DELETE)

//STEP3 EXEC PGM=T ERM

//DD4 DD DSNAME=# , STEP2.DD3,DISP= (OLD,CATLG, DELETE)

The DD statement named DD1 in STEP1 defines a new data set and
requests that the data set be passed. If STEP1 abnormally
terminates, the data set is deleted since it is a new data set and a
conditional disposition was not specified. The DD statement named
DD3 in STEP2 receives the passed data set and requests that the data
set be passed. If STEP2 abnormally terminates, the data set is
deleted because of the conditional disposition of DELETE. The DD
statement named DD4 in STEP3 receives the passed data set and
requests that the data set be cataloged at the end of the step. If
STEP3 abnormally terminates, the data set is deleted because of the
conditional disposition of DELETE.

Section IV: The DD Statement -~ DISP Parameter 171

The DSNAME Parameter

DSN dsname (member name)
dsname (generation number)
dsname(area name)
<€8dsname >

DSNAME s= (dsname \

& édsname (member name)
E Edsname (area name)
*,ddname

* .stepname.ddname
*.stepname.procstepname.ddnamey

dsname
jdentifies a data set name.

dsname(member name)

- identifies a nontemporary partitioned data set name and the name of
a member within that data set.

dsname (generation number)
jdentifies a generation data group by its name and a generation
data set by its generation number (a zero or signed integer.)

dsname(area name)

identifies a nontemporary indexed sequential data set name and an
area of that data set (INDEX, PRIME, or OVFLOW.)

&£&dsname ‘
specifies the name you want assigned to a temporary data set.

£&dsname (membexr name)
specifies the name you want assigned to a temporary partitioned
data set and to a member within that data set.

&§dsname(area name)
specifies the name you want assigned to a temporary indexed

sequential data set and identifies an area of that data set (INDEX,
PRIME, or OVFLOW.) :

*,ddname

specifies that the data set name is to be copied from the named DD
statement, which is an earlier DD statement in ‘the job step.

*,stepname.ddname)
specifies that the data set name is to be copied from an earlier DD
statement named ddname, which appears in an earlier step named
stepname in the same job.

*_.stepname.procstepname.ddname
specifies that the data set name is to be copied from an earlier DD
statement in a cataloged procedure. Stepname is the name of the
job step that calls the procedure, procstepname is the name of the
procedure step that includes the named DD statement, and ddname is
the name of the DD statement that contains the data set name.

Rules for Coding

1. An unqualified data set name may consist of 1 of 8 characters. The
first character must be an alphabetic or national (a,$,#) '
character; the remaining characters can be any alphameric or
national characters, a hyphen, or a plus zero (12-0 punch). A

Section IV: The DD Statement -- DSNAME Parameter 173

temporary data set name can consist of -1 through 8 characters,
excluding the ampersands; the first character following an
ampersand must be an alphabetic or national character.

2. A qualified name may consist of up to 44 characters including
periods. For each eight characters or less there must be a period,
and the character following a period must be an alphabetic or
national (a,$,#) character.

3. You need not code the DSNAME parameter if the data set is created
"and deleted in the job, i.e., if the data set is temporary.

4. The DSNAME and DDNAME parameters are mutually exclusive parameters;
therefore, when the DDNAME parameter is coded, do not code the
DSNAME parameter.

IDENTIFYING THE DATA SET

When you create a data set, you use the DSNAME parameter to assign a
name to the data set. The data set name is part of the information
stored with the data set on a volume. Later, when another job step or
job wants to use the data set, it identifies the data set name in the
DSNAME parameter; the system uses the data set name to locate the data
set on the volume.

How you code the DSNAME parameter depends on the type of data set and
whether the data set is nontemporary or temporary.

Creating or Retrieving a Nontemporary Data Set

I1f the data set is nontemporary, you can identify:

e A permanent data set by coding DSNAME=dsname.

e A member of a nontemporary partitioned data set by coding
DSNAME=dsname (member name).

e A generation of a nontemporary generation data group by coding
DSNAME=dsname (number) .

e An area of a nontemporary indexed sequential data set by coding
DSNAME=dsname (area name).

Nontemporary Data Sets

When a nontemporary data set is created, it is assigned a name in the
DSNAME parameter and is assigned a disposition of KEEP or CATLG. (A
data set assigned a disposition of KEEP may be assigned a disposition of
CATIG by a later job step or job.) The name you assign to a
nontemporary data set must be specified in the DSNAME parameter by all
other steps and jobs that want to use the data set. .

A nontemporary data set name can be either a unqualified or qualified
name. An unqualified data set name consists of 1 through 8 characters.
The first character must be an alphabetic or national (a,#,$) character;
the remaining characters can be any alphameric or national characters, a
hyphen, or a plus zero (12-0 punch).

A qualified data set name consists of 1 through 44 characters
(including periods), except when the qualified name identifies a
generation data group. In this case, the data set name may consist of
only 1 through 35 characters (including periods). For each eight
characters or less there must be a period, and the first character of
the name and the character following a period must be an alphabetic or
national (a,#,$) character.

174 JCL Reference (Release 20.1)

If you assign a qualified name to a data set that is to be cataloged,
all but the lowest level of the name must already exist as indexes in
the system catalog before you can request the system to catalog the data
set. An index level is created by using the IEHPROGM utility program.
Once the indexes are established, the data set can be cataloged.

When you request a data set that is cataloged on a control volume
other than the system catalog, the system attempts to mount this control
volume if it is not already mounted. After the system obtains the
pointer to this data set, the control volume may then be demounted by
the system if the unit on which it was mounted is required by another
volume. If you plan to delete, uncatalog, or recatalog the data set,
the volume must be mounted during disposition processing (at the end of
the job step) in order for the pointer to be deleted or revised. You
can ensure that the volume remains mounted by requesting the operator to
issue a MOUNT command for this volume before the job step is initiated.
If you do not use the MOUNT command to mount the volume and if the
volume is not mounted during disposition processing, then, after the job
has terminated, use the IEHPROGM utility program to delete or revise the
pointer in the control volume. (In order for the system to mount a
control volume, the control volume must be logically connected to the
system catalog. This is done using the CONNECT function of the IEHPROGM
utility program, which is described in the Utilities publication.)

Members of a Partitioned Data Set

A partitioned data set consists of independent groups of sequential
records, each identified by a member name in a directory. When you want
to add a member to a partitioned data set or retrieve a member, you
specify the partitioned data set name and follow it with the member
name. The member name is enclosed in parentheses and consists of 1 to 8
characters. The first character must be an alphabetic or national
(3a,$.,#) character; the remaining characters can be any alphameric or
national characters.

Generations of a Generation Data Group

A generation data group is a collection of chronologically related data
sets that can be referred to by the same data set name. When you want
to add a generation to a generation data group or retrieve a generation,
you specify the generation data group name and follow it with the
generation number. The generation number is enclosed in parentheses and
the number is a zero or a signed integer. A zero represents the most
current generation of the group; a negative integer (e.g., -1)
represents an older generation; a positive integer (e.g., +1) represents
a new generation that has not as yet been cataloged.

To retrieve all generations of a generation data group (up to 255
generations), code only the group name in the DSNAME parameter and the
DISP parameter.

A complete discussion of creating and retrieving generation data sets

is contained in "Appendix D: Creating and Retrieving Generation Data
Sets" in this publication.

Areas of an Indexed Sequential Data Set

The areas used for an indexed sequential data set are the index, prime,
and.overflow areas. When you are creating the data set and define any
of these areas on a DD statement, you must identify the data set name
and follow it with the area name you are defining. The area name is
enclosed in parentheses and is either PRIME, INDEX, or OVFLOW. If you

section IV: The DD Statement -- DSNAME Parameter 175

are using only one DD statement to define the entire data set, code
DSNAME=dsname or DSNAME=dsname (PRIME). When you retrieve the data set,
you code only the data set name; you do not include the term PRIME,
INDEX, or OVFLOW. For detailed information on how to create and
retrieve indexed sequential data sets, refer to "Appendix C: Creating
and Retrieving Indexed Sequential Data Sets" in this publication.

Creating or Retrieving a Temporary Data Set
If the data set is temporary, you can identify:
e A temporary data set by coding DSNAME=§&&dsname.

e A member of a temporary partitioned data set by coding
DSNAME=§ édsname (member name).

e An area of a temporary indexed sequential data set by coding
DSNAME=§ édsname (area name).

Temporary Data Sets

Any data set that is created and deleted within the same job is a
temporary data set. A DD statement that defines a temporary data set
need not include the DSNAME parameter; the system generates one for you.

If you do include the DSNAME parameter, the temporary data set name
can consist of 1 through 8 characters and is preceded by two ampersands
(¢€). The character following the ampersands must be an alphabetic or
national (a,#,3$) character; the remaining characters can be any
alphameric or national characters. (A temporary data set name that is
preceded by only one ampersand is treated as a temporary data set name
as long as no value is assigned to it either on the EXEC statement for
this job step when it calls a procedure, or on a PROC statement within
the procedure. If a value is assigned to it by one of these means, it
is treated as a symbolic parameter. Symbolic parameters are discussed
in Appendix A.)

The system generates a qualified name for the temporary data set,
which begins with SYS and includes the jobname, the temporary name
assigned in the DSNAME parameter, and other identifying characters.

If you attempt to keep or catalog a temporary data set (you specify a
disposition of KEEP or CATLG in the DISP parameter), the system changes
the disposition to PASS and the data set is deleted at job termination.
However, this change is not made for a data set on a tape volume when
the following conditions exist: (1) the data set is new; (2) the data
set is not assigned a name; and (3) DEFER is specified in the UNIT
parameter. The data set is deleted at job termination, but the system
tells the operator to keep the volume on which the data set resided
during the job.

Members of a Temporary Partitioned Data Set

When you want to add a member to a temporary partitioned data set or
retrieve a member during the job, you specify the partitioned data set's
temporary name and follow it with the member name. The member name is
enclosed in parentheses and consists of 1 to 8 characters. The first
character must be an alphabetic or national (a,$,#) character; the
remaining characters can be any alphameric or national characters.

176 JCL Reference (Release 20.1)

Areas of a Temporary Indexed Sequential Data Set

The areas used for an indexed sequential data set are the index, prime,
and overflow areas. When you are creating a temporary indexed
sequential data set and define any of these areas on a DD statement, you
must identify the data sets's temporary name and follow it with the area
name you are defining. The area name is enclosed in parentheses and is
either PRIME, INDEX, or OVFLOW. If you are using only one DD statement
to define the entire temporary data set, code DSNAME=§&dsname or
DSNAME=§édsname(PRIME). If you want to retrieve the temporary data set
in the same job, you code only the data set's temporary name; you do not
include the term PRIME, INDEX, or OVFLOW. For information on how to
create and retrieve indexed sequential data sets, refer to "Appendix C:
Creating and Retrieving Indexed Sequential Data Sets"™ in this
publication.

Using a Dedicated Data Set

If your installation provides dedicated data sets in a system with MVT,
you can use these data sets to contain your data instead of creating
your own temporary data sets. The use of dedicated data sets eliminates
some of the time required to schedule a job step since the data sets are
already allocated.

To use a dedicated data set, code DSNAME=&&name or DSNAME=&name on a
DD statement, along with all other parameters required to define your
temporary data set, e.g., UNIT, SPACE, DCB. Replace the term "name"
with the ddname of the DD statement in the initiator cataloged procedure
that defines the dedicated data set you want to use. If the system
cannot assign you this dedicated data set, the parameters coded on your
DD statement are used to create a temporary data set. (For detaiied
information on dedicated data sets, refer to the chapter "System Reader,
Initiator and Writer Cataloged Procedures™ in the publication System
Programmer®s Guide.)

Copying the Data Set Name From an Earlier DD Statements

The name of a data set that is used several times in a job, whether
specified in the DSNAME parameter or assigned by the system, can be
copied after its first use in the job. This allows you to easily change
data sets from job to job and eliminates your having to assign names to
temporary data sets. To copy a data set name, refer to an earlier DD
statement that identifies the data set. When the earlier DD statement
is contained in an earlier job step, you code DSNAME=*.stepname.ddname;
when the earlier DD statement is contained in the same job step, you
code DSNAME=#.ddname; when the earlier DD statement is contained in a
cataloged procedure step called by an earlier job step, you code
DSNAME=#*.stepname.procstepname.ddname.

Specifying the DSNAME Parameter ih Apostrophes

Sometimes, it may be necessary or desirable to specify a data set name
that contains special characters. If the name contains special
characters, you must enclose the name in apostrophes (5-8 punch), e.g.,
DSNAME="'DAT+5'. If one of the special characters is an apostrophe, you
must identify it by coding two consecutive apostrophes (two 5-8 punches)
in its place, e.g., DSNAME='DAY''SEND'. A data set name enclosed in
apostrophes can consist of 1 through 44 characters.

Section IV: The DD Statement -- DSNAME Parameter 177

There are cases when your data set name must contain required special
characters, which tell the system something about the data set (e.g., &§
in DSNAME=éé&éname are required special characters that tell the system
that this is a temporary data set). 1In these cases, the data set name
must not be enclosed in apostrophes because the system will not
recognize the required special characters as having any special
significance. The following data set names contain special characters
that tell the system something about the data set and, therefore, cannot
be enclosed in apostrophes:

DSNAME=name (member name)
DSNAME=name (area name)
DSNAME=name(generation number)
DSNAME=§ Ename

DSNAME=#* .stepname.ddname

Keep the following rules in mind:

1. If the data set is to be cataloged, the data set name cannot be
enclosed in apostrophes.

2. If the data set name begins with a blank character, the data set is
assigned a temporary data set name by the systemn.

3. If the data set name ends with a blank character, the blank is
ignored. '

4. TIf the only special character is a period or a hyphen, you need not
enclose the data set name in apostrophes.

Examples of the DSNAME Parameter

1. //DD1 DD DSNAME=ALPHA,DISP=(,KEEP), X
7/ UNIT=2400, VOLUME=SER=389984

This DD statement defines a new data set whose name is ALPHA. later
job steps or jobs may retrieve this data set by supplying the data
set name in the DSNAME parameter, unit information in the UNIT
parameter, and volume information in the VOLUME parameter.

: 2. //DD2 DD DSNAME=PDS(PROG12),DISP=(OLD,KEEP),UNIT=2311, X
// VOLUME=SER=882234

This DD statement retrieves a member of a partitioned data set named
PDS.

3. /s/DD3 DD DSNAME=§EWORK,UNIT=2400

This DD statement defines a temporary data set. Since the data set
is deleted at the end of the job step, the DSNAME parameter could be
omitted.

4. //STEP1 EXEC PGM=CREATE
//DD4 DD DSNAME=§§ISDATA (PRIME) , DISP=(,PASS),UNIT=(2311,2), X
7/ SPACE=(CYL, (10,,2) , ,CONTIG) , VOLUME=SER= (33489, 33490)
//STEP2 EXEC PGM=OPER
//DD5 DD DSNAME=# . STEP1.DD4, DISP= (OLD, DELETE)

The DD statement named DD4 in STEP1 defines a temporary indexed
sequential data set whose name is ISDATA. This DD statement is used
to define all of the areas of an indexed sequential data set. The
DD statement named DD5 in STEP2 retrieves the data set by referring
to the earlier DD statement that defines the data set. Since the
temporary data set is passed when it is defined in STEP1, STEP2 can
retrieve the data set.

178 JCL Reference (Release 20.1)

The FCB Parameter

FCB=(image-id|,ALIGN |)
+» VERIFY

image-id
the code that identifies the image to be loaded into the forms
control buffer.

+ALIGN
requests the operator to check the alignment of the printer
forms before the data set is printed.

+ VERIFY

requests the operator to visually verify the image displayed on
the printer as the desired one. The operator is also given an

opportunity to align the printer forms. ﬂ

Rules for Coding

1. The image-id can be 1 to 4 characters in length.

2. The FCB parameter is ignored if the data set is not written to
a 3211 printer.

3. The FCB and DDNAME parameters and the DCB subparameters RKP,
CYLOFL, and INTVL are mutually exclusive parameters; therefore,
if you code the DDNAME parameter or one of the DCB
subparameters RKP, CYLOFL, or INIVL is coded, do not code the
FCB parameter.

4. If you do not code ALIGN or VERIFY, you need not enclose the
image-id in parentheses.

IMAGE_ IDENTIFIER

The image-id is the code that identifies the image to be loaded into
the forms control buffer (FCB). It is retrieved from SYSl.IMAGELIB
or defined in the user's program through the exit list facility of
the DCB macro instruction. IBM provides two standard FCB images,
STD1 and STD2.

STD1 specifies that 6 lines per inch are to be printed on an 8.5
inch form. STD2 specifies that 6 lines per inch are to be printed
on an 11 inch form. The installation can provide additional
user-designed images.

If you omit the FCB parameter and the data set is written to a
3211 primter, the default image is used if it is currently in the
buffer. oOtherwise, the operator will be requested to specify an
image.

REQUESTING ALIGNMENT OF FORMS
If you want to request that the operator check the alignment of the

printer forms before the data set is printed, code ALIGN as the
second subparameter of the FCB parameter.

Section IV: The DD Statement -- FCB Parameter 179

REQUESTING OPERATOR VERIFICATION

By specifying VERIFY, you can request that the operator visually
verify that the image displayed on the printer is the desired one.
Specifying VERIFY also gives the operator an opportunity to align
the forms.

Examples of the FCB Parameter

1. //DD1 DD UNIT=3211,FCB=(IMG1l,VERIFY)

This DD statement defines the output data set that is to be
written to a 3211 printer. The FCB. parameter requests that the
data set be written using the control information corresponding
to the forms control image with the code IMGl. Since VERIFY is
coded, the forms control image is displayed on the printer
before the data set is printed and the operator is asked to
align the printer forms.

2. //DD2 DD SYSOUT=A,FCB=IMG2
This DD statement defines an output data set that is to be

written to the device that corresponds with class A. The FCB
parameter is ignored if the device is not a 3211 printer.

180 JCL Reference (Release 20.1)

The LABEL Parameter

- Y
LABEL=([data set sequence numberl[,SL + PASSWORD|{, IN 6,J‘EXPDT=yyddd)
+SUL|| , NOPWREAD|{,OUT RETPD=nnnn

«AL “9 \

JAULJL"
+»NSL
«NL
«BLP

~—

data set sequence number
specifies the relative position of a data set on a tape volume.
. SL
specifies that the data set has IBM standard labels.
+SUL
specifies that the data set has both IBM standard and user labels.

specifies that the data set has AMERICAN National Standard labels.
AUL
specifies that the data set has both American National Standard
labels and American National Standard user labels.
+NSL
specifies that the tape data set has nonstandard labels.
+NL
specifies that the tape data set has no labels.
BLP
specifies that the system is not to perform label processing for
the tape data set.

specifies that the data set has standard labels and another
subparameter follows.

+ PASSWORD
specifies that the new data set cannot be used by another job step
or job unless the operator can supply the system with the correct
password, i.e., the data set cannot be read, changed, extended, or

_ deleted.

+NOPWREAD
specifies that the data set can be read without the password, but
the operator must give the password before the data set can be
changed, extended, or deleted.

.specifies that another subparameter follows and, for a new data
set, the data set is not to be password protected.

specifies that the data set is to be processed for input only.
specifies that the data set is to be processed for output only.

- specifies that either the RETPD or EXPDT subparameter follows and
one or more subparameters precede it.

EXPDT=yyddd
specifies the date when the data set can be deleted or overwritten
by another data set. Assign a 2-digit year number and a 3-digit
day number.

RETPD=nnnn
specifies the length of time in days that the data set must be
kept. Assign the number of days that must pass before the data set
can be deleted or overwritten by another data set.

Section IV: The DD Statement -- LABEL Parameter 181

Rules for Coding

1. All the subparameters except the last subparameter in the LABEL
parameter are positional subparameters. Therefore, if you want to
omit a subparameter, you must indicate its absence with a comma.

2. If the only subparameter you want to specify is the data set
sequence number, RETPD or EXPDT, you can omit the parentheses and
commas and code LABEL=data set sequence number, LABEL=RETPD=nnnn,
or LABEL=EXPDT=yyddd.

3. If the data set has IBM standard labels, you can omit the
subparameter SL.

4. When you are defining a data set that resides or will reside on a
direct access volume, only SUL or SL can be specified as the second
subparameter.

5. 1If you are processing ASCII data on unlabeled (NL) tapes, you must
code OPTCD=Q in your DCB macro instruction or on your DD statement.

6. The LABEL, DDNAME, and SYSOUT parameters are mutually exclusive
parameters; therefore, if DDNAME or SYSOUT is coded, do not code
the LABEL parameter.

DATA SET LABELS

Labels are used by the operating system to identify volumes and the data
sets they contain, and to store data set attributes. Data sets residing
on magnetic tape volumes usually have data set labels. If data set
labels are present, they precede each data set on the volume. Data sets
residing on direct access volumes always have data set labels. These
data set labels are contained in the volume table of contents at the
beginning of the direct access volume.

A data set label may be a standard or nonstandard label. Standard
labels can be processed by the system; nonstandard labels must be
processed by nonstandard label processing routines, which the
installation includes in the system. Data sets on direct access volumes
must have standard labels. Data sets on tape volumes usually have
standard labels, but can have nonstandard labels or no labels.

Tape label definitions and associated tape label processing are
included in the Tape_ labels publication. Direct access label
definitions and associated direct access label processing are described
in "Appendix A: Direct Access Labels"™ in the Supervisor and Data

Management Services publication.

When to Code the LABEL Parameter

The LABEL parameter must be coded if:
e You are processing a tape data set that is not the first data set on
the reel; in this case, you must indicate the data set sequence
number.

° The data set labels are not IBM standard labels; you must indicate
the label type.

e You want to specify what type of labels a data set is to have when
it is written on a scratch volume; you must indicate the label type.

182 JCL Reference (Release 20.1)

* The data set is to be password protected; you must specify PASSWORD
when you create the data set.

e The data set is to be processed only for input or output and this
conflicts with the processing method indicated in the OPEN macro
instruction; you must specify IN, for input, or OUT, for output.

e The data set is to be kept for some period of time; you must
indicate a retention period (RETPD) or expiration date (EXPDT).

THE DATA SET SEQUENCE NUMBER SUBPARAMETER

When you want to place a data set on a tape volume that already contains.
one or more data sets, you must specify where the data set is to be
placed, i.e., the data set is to be the second, third, fourth, etc.,

data set on the volume. The data set sequence number causes the tape to
be positioned properly so that the data set can be written on the tape
or retrieved.

The data set sequence number subparameter is a positional
subparameter and is the first subparameter that can be coded. The data
set sequence number is a 1- to U-digit number. The system assumes 1,
i.e., this is the first data set on the reel, if you omit this
subparameter or if you code 0, unless the data set is a passed or
cataloged data set. If a data set is cataloged, the system obtains the
data set sequence number from the catalog; for a passed data set, the
data set sequence number is obtained from the passing step.

When you request the system to bypass label processing (BLP is coded
as the label type in the LABEL parameter) and the tape volume contains
labels, the system treats anything between tapemarks as a data set.
Therefore, in order for the tape with labels to be positioned properly,
the data set sequence number must reflect all labels and data sets that
precede the desired set. Section I of the Tape lLabels publication
illustrates where tapemarks appear.

THE LABEL TYPE SUBPARAMETER

The label type subparameter tells the system what type of labels is
associated with the data set. The label type subparameter is a
positional subparameter and must be coded second, after the data set
sequence number subparameter. You can omit this subparameter if the
data set has IBM standard labels.

The label type subparameter is specified as:

e SL ~- if the data set has IBM standard labels.

e SUL -- if the data set has both IBM standard and user labels.

e AL -- if the data set has American National Standard labels.

e AUL -- if the data set has American National Standard labels and

American National Standard user labels.

NSL -- if the data set has nonstandard labels.
NL -- if the data set has no labels.

e BLP -- if you want label processing bypassed.

SL or SUL is the only label type that can be specified for data sets
that reside on direct access volumes.

When SL or SUL is specified, or the label type subparameter is
omitted and the data set has IBM standard labels, the system can ensure
that the correct tape or direct access volume is mounted. When you
specify NSL, installation-provided nonstandard label processing routines
must ensure that the correct tape volume is mounted. When you specify

Section IV: The DD Statement -- LABEL Parameter 183

NL or BLP, the operator must ensure that the correct tape volume is
mounted. If you specify NL, the data set must have no standard labels.
When you specify AL or AUL, the system ensures that the correct American
National Standard labeled tape is mounted.

For cataloged and passed data sets, label type information is not
kept. Therefore, any time you refer to a cataloged or passed data set
that has other than standard labels, you must code the LABEL parameter
and specify the label type.

BLP is not a label type, but a request to the system to bypass label
processing. This specification allows you to use a blank tape or
overwrite a seven-track tape that differs from your current parity or
density specifications. Bypass label processing is an option of the
operating system, specified as a PARM field value in the reader
cataloged procedure. If the option is not selected and you have coded
BLP, the system assumes NL.

Note for BLP: When you request the system to bypass label processing
and the tape volume has labels, the system treats anything between
tapemarks as a data set. Therefore, in order for a tape with labels to
be positioned properly, the data set sequence number subparameter of the
LABEL parameter must be coded and the subparameter must reflect all
labels and data sets that precede the desired data set. Section I of
the Tape labels publication illustrates where tapemarks appear.

The label type subparameter can also be specified when you make a
nonspecific volume request for a tape volume (i.e., no volume serial
numbers. are specified on the DD statement) and you want the data set to
have a certain type of labels. If the volume that is mounted does not
have the corresponding label type you desire, you may be able to change
the label type.

When you specify NL or NSL and the operator mounts a tape volume that
contains standard labels, you may use the volume provided: (1) the
expiration date of the existing data set on the volume has passed; (2)
the existing data set on the volume is not password protected; and (3)
you make a nonspecific volume request. BAll of these conditions must be

met. If they are not, the system requests the operator to mount another
tape volume.

If you specify SL and make a nonspecific volume request, but the
operator mounts a tape volume that contains other than IBM standard
labels, the system requests the operator to identify the volume serial
number and the volume's new owner before the IBM standard labels are
written. If the tape volume has American National Standard labels, the
system asks the operator for permission to destroy the label. If you
specify SL and make a specific volume request, but the volume that is
mounted does not contain IBM standard labels, the system rejects the
tape and requests the operator to mount the tape volume specified.

THE PASSWORD AND NOPWREAD SUBBARAMETERS

The PASSWORD and NOPWREAD subparameters tell the system that you want
the data set to be password protected. If you specify PASSWORD, the
data set cannot be read from, written into, or deleted by another job
step or job unless the operator can supply the system with the correct
password. If you specify NOPWREAD (no password read), the data set can
be read without the operator supplying the password, but the password is
still required for writing or deleting data sets.

The PASSWORD and NOPWREAD subparameters are a positional subparameter

and must be coded third, after the data set sequence number subparameter
and the label type subparameter or the commas that indicate their

184 JCL Reference (Release 20.1)

absence. If you want the data set password protected, specify PASSWORD
when the data set is created. Password protected data sets must have
standard labels, either IBM standard or American National Standard
labels.

THE IN AND OUT SUBPARAMETERS

The basic sequential access method (BSAM) permits a specification of
INOUT oxr OUTIN in the OPEN macro instruction as the processing method.
If you have specified either of these processing methods in the OPEN
macro instruction and want to override it, you may be able to do so by
coding either the IN or OUT subparameter. For FORTRAN users, the IN and
OUT subparameters provide a means of specifying how the data set is to
be processed, i.e., for input or output.

When INOUT is specified in the OPEN macro instruction and you want
the data set processed for input only, you can specify the IN
subparameter. When the IN subparameter is coded, any attempt by the
processing program to process the data set for output is treated as an
error.

When OUTIN is specified in the OPEN macro instruction and you want
the data set processed for output only, you can specify the OUT
subparameter. When the OUT subparameter is coded, any attempt by the
processing program to process the data set for input is treated as an
errxor.

The IN and OUT subparameters are positional subparameters. If either
is coded, it must appear as the fourth subparameter, after the data set
sequence number subparameter, the label type subparameter, and the
PASSWORD subparameter, or the commas that indicate their absence.

THE RETPD AND EXPDT SUBPARAMETERS

When it is necessary that a data set be kept for some period of time,
you can tell the system how long it is to be kept when you create the
data set. As long as the time period has not expired, a data set that
resides on a direct access volume cannot be deleted by or overwritten by
another job step or job. (If it is necessary to delete such a data set,
you can use the IEHPROGM utility program to delete the data set. The
IEHPROGM utility program is described in the Utilities publication.)

There are two different ways to specify a time period: (1) tell the
system how many days you want the data set kept, the RETPD subparameter,
or (2) tell the system the exact date after which the data set need no
longer be kept, the EXPDT subparameter.

If you code the RETPD subparameter, you specify a 1~ to u4~digit
number, which represents the number of days the data set is to be kept.
If you code the EXPDT subparameter, you specify a 2-digit year number
and a 3-digit day number (e.g., January 1 would be 001, July 1 would be
182), which represents the date after which the data set need no longer
be kept. When neither the RETPD or EXPDT subparameter is specified for
a new data set, the system assumes a retention period of zero days.

The RETPD or EXPDT subparameter must follow all other subparameters
of the LABEL parameter. If no other subparameters are coded, you can
code LABEL=RETPD=nnnn or LABEL=EXPDT=yyddd. :

Section IV: The DD Statement -- LABEL Parameter 185

Examples of the LABEL Parameter

1.

2.

//DD1 DD DSNAME=HERBI,DISP=(NEW,KEEP) ,UNIT=TAPE, X
7/ VOLUME=SER=T2,LABEL~= (3, NSL, RETPD=188)

This DD statement defines a new data set. The IABEL parameter tells
the system: (1) this data set is to be the third data set on the
tape volume; (2) this data set has nonstandard labels; and (3) this
data set is to be kept for 188 days.

//DD2 DD DSNAME=A.B.C,DISP=(,CATLG,DELETE) ,UNIT=2400-2, X
7/ LABEL= (,NL)

This DD statement defines a new data set and requests the system to
catalog it. The catalog entry for this data set will not indicate
that the data set has no labels. Therefore, each time this data set
is referred to by a DD statement, the statement must include

LABEL= (,NL).

//DD3 DD DSNAME=SPECS,UNIT=2400, VOLUME=SER=10222, X
7/ DISP=0LD,LABEL=4

This DD statement defines an existing data set. The LABEL parameter
indicates that the data set is the fourth data set on the tape
volume.

//STEP1 EXEC PGM=FIV _

//DDX DD DSNAME=CLEAR,DISP=(0OLD,PASS) ,UNIT=2400-4, X
/7 VOLUME=SER=1257,LABEL=(,NSL)

//STEP2 EXEC PGM=BOS

//DDY DD DSNAME=#*,STEP1 . DDX, DISP=0LD, LABEL=(, NSL)

The DD statement named DDX in STEP1l defines an existing data set
that has nonstandard labels and requests the system to pass the data
set. The DD statement named DDY in STEP2 receives the passed data
set. Unit and volume information is not specified since this
information is available to the system; the label type is not
abailable to the system and must be coded.

186 JCL Reference (Release 20.1)

The OUTLIM Parameter

OUTLIM=number

number
the limit for the number of logical records you want included in
the output data set being routed through the output stream. The
maximum number that can be specified is 16777215.

Rules for Coding

1. The OUTLIM parameter has meaning only if the System Management
Facilities option with system, job, and step data collection was
selected at system generation.

2. The OUTLIM parameter is ignored unless SYSOUT is coded in the
operand field of the same DD statement.

3. The value specified for OUTLIM can be any number from 1 through
16777215.

4. If OUTLIM is not specified or if OUTLIM=0 is specified, no output
limiting is done.

What the OUTLIM Parameter Does

The OUTLIM parameter allows you to specify a limit for the number of
logical records you want included in the output data set being routed
through the output stream. When the number specified is reached, an
exit provided by the System Management Facilities option is taken to a
user supplied routine that determines whether to cancel the job or
increase the limit. If the exit routine is not supplied, the job is
cancelled.

Determining the Output Limit

The limit for the number of logical records you want as output must
include a system overhead factor. Generally, the value you add to the
limit is eight times the blocking factor for your data. (For those
programmers who need a more precise value, the system overhead is the
number of EXCPs issued each time the OPEN or CLOSE macro instruction is
issued for the data set.)

References:

1. For information on coding the SYSOUT parameter on the DD statement,
refer to the section "The SYSOUT PARAMETER -- MFT, MVT" in this
publication.

2. A discussion of the System Management Facilities Option is
contained in the publication Concepts and Facilities. Information
on user exit routines to be used with the System Management
Facilities Option is contained in the publication System
Programmer's Guide.

Section IV: DD Statement -- The OUTLIM Parameter 187

Example of the OUTLIM Parameter

1. //0UTPUT DD SYSOUT=F,OUTLIM=1000
The l1limit for the number of logical records is 1000.

188 JCL Reference (Release 20.1)

The OQNAME Parameter — MFT and MVT With TCAM

QNAME=process name

process name
specifies the name of a TPROCESS macro which defines a destination
queue for messages that are to be processed by an application
program and creates a process entry for the queue in the Terminal
Table.

Rules for Coding

1. The process name must consist of 1 through 8 alphameric and
national (#,$,d) characters. The first character must be an
alphabetic or national character.

2. The process name is identical to the symbolic name on the TPROCESS
mMacro.

3. The DCB parameter is the only parameter that can be coded on a DD
statement with the QNAME parameter. BLKSIZE, BUFL, LRECL, OPTCD,
and RECFM are the only operands that may be specified as
subparameters. These subparameters are defined in the Glossary of
DCB Subparameters in the section on the DCB parameter.

What the QNAME Parameter Does

The text portion of messages received from stations by means of the
Telecommunications Access Method (TCAM) may be processed by an
application program. The ONAME parameter is used to access these
messages for the application program. Like the DUMMY parameter used
with sequential access methods, the QNAME parameter does not perform
input or output operations on a data set. The process name specified by
the QNAME parameter names a TPROCESS macro which serves as the link
between the Message Control Program (MCP) and an application program.

An application program exists as a separate system task or subtask in
the same computer as the MCP. Messages that are to be processed are
placed in a destination queue by the Message Handler of the MCP. The
TPROCESS macro defines the destination queue and creates an entry for
the queue (a process entry) in the Terminal Table. The user can
indicate at execution time which destination queue is to be used by
specifying a particular TPROCESS macro in the QNAME parameter on the DD
statement. .

Example of the QONAME Parameter
//DYD DD QNAME=FIRST,DCB=(RECFM=F,LRECL~80,BLKSIZE=320)

This DD statement is used in an application program to define data that
is to be accessed by TCAM. "FIRST" is the name of the TPROCESS macro
that specifies the destination queue through which messages that must be
processed by the application program are routed. The DCB parameter is
coded to supply information for the data control block that was not
supplied in the DCB macro instruction.

Section 1V: DD Statement -- The QNAME Parameter 189

The SEP Parameter

SEP=(ddname,...)

ddname
the names of up to eight earlier DD statements in the same job
step.

Rules for Coding

1. Each ddname must be separated by a comma.

2. If only one ddname is coded, you need not enclose it in
parentheses. :

3. If channel separation is critical, use the UNIT parameter to
specify a particular channel, using an absolute address or group
name. (How to specify a particular channel is described under
"Unit Address" in the chapter "The UNIT Parameter.")

4. The SEP, AFF, DDNAME, and SYSOUT parameters are mutually exclusive
parameters; therefore, when AFF, DDNAME, or SYSOUT is coded, do not
code the SEP parameter.

OPTIMIZING CHANNEL USAGE

The devices that the system allocates for data sets used in a job step
are attached to channels. These channels transmit the data in the data
sets from the device to the CPU. When two or more data sets are to be
used in a job step, processing time may be shortened if the system
transmits data over separate channels. '

Requesting Channel Separation

The SEP and AFF parameters can be used to request channel separation.
You list in the SEP parameter the names of up to eight earlier DD
statements in the job step that define data sets from which channel
separation is desired. Coding the AFF parameter is a shortcut method of
requesting channel separation, since you refer to an earlier DD
statement in the same job step that contains the SEP parameter. (The
AFF parameter is described in the chapter "The AFF Parameter.")

If the system finds it impossible in the current environment to
satisfy the channel separation request, the system may try to alter the
current environment through some operator action. The operator is given
the option of bringing a device online, cancelling the channel
separation request, or cancelling the job. In certain environments, the
operator may also be able to tell the system to wait for devices to
become free. If you make a nonspecific request for a direct access
volume and request channel separation, your request for separation may
be ignored. This happens when the algorithm used to allocate data sets
to devices is not able to select the device that would permit the
desired channel separation.

Requests for channel separation are ignored for any data sets that

have been allocated devices by the automatic volume recognition (AVR)
option.

Section IV: The DD Statement -- SEP Parameter 191

If it is essential that data be transmitted via a particular channel,
you can specify an absolute unit address or group name (if the group of
devices is associated with one channel) in the UNIT parameter.

If neither the SEP nor AFF parameter is coded, any available channel,
consistent with the UNIT parameter requirement, is assigned by the

system.

Example of the SEP Parameter

1. //STEP1 EXEC
//DD1 DD
//DD2 DD
7/

//DD3 DD
//DDU DD
7/

PGM=STARTS
DSNAME=X. Y. Z,DISP=0LD
DSNAME=§EWORK, DISP=(,PASS) ,UNIT=2311, X

SPACE=(CYL, (3,1))

DSNAME=NABS, DISP=OLD, VOLUME=SER=7110, UNIT=2311
DSNAME=PARE, DISP=0LD,VOLUME=SER=E59, X
UNIT=2311, SEP=(DD2,DD3)

The system attempts to assign the data set defined by the DD
statement named DD4 to a channel other than the ones assigned to the
data sets defined by the DD statements DD2 and DD3. Since the SEP
parameter did not include the ddname DD1, the data set defined by
DD1 and the data set defined by DD4 may or may not be assigned to
the same channel.

192 JCL Reference

(Release 20.1)

The SPACE Parameter

SPACE=(| TRK ,(primary quantity| ,secondary quantity ,directory [)| ,RLSE ,CONTIG [,ROUND])
CYL 2 ,index "y ,MXIG
blocklength e JALX

4

SPACE=(ABSTR, (primary quantity,address [,direcfory])
,index

TRK
specifies that space is to be allocated by track.

CYL
specifies that space is to be allocated by cylinder.

block length

specifies the average block length of the data. The system
computes how many tracks to allocate.

primary quantity
specifies how many tracks or cylinders are to be allocated, or how
many blocks of data are to be contained in the data set.

,secondary quantity

specifies how many more tracks or cyllnders are to be allocated if
additional space is required, or how many more blocks of data may
be included if additional space is required.

specifies that the system is not to allocate additional space if it
is required, and either a directory space requlrement or index
space requirement follows.

,directory

specifies the number of 256-byte records that are to be contained
in the directory of a partitioned data set.

,index
specifies the number of cylinders that are required for the index
of an indexed sequential data set.

,RLSE
specifies that space allocated to the data set that is not used is
to be released.

/\

{ I\j

N~ specifies that space allocated to the data set that is not used is

not to be released and another subparameter follows.

,CONTIG
specifies that space allocated to the data set must be contiguous.

JMXIG
specifies that the space allocated to the data set must be the
largest area of contiguous space on the volume and the space must
be equal to or greater than the space requested. This subparameter
applies only to the primary space allocation.

Section IV: The DD Statement -- SPACE Parameter 193

specifies that up to five different contiquous areas of space are
to be allocated to the data set and each area must be equal to or
‘greater than the space requested.

r=I

A

t-d specifies that CONTIG, MXIG, or ALX is not specified and the ROUND
subparameter follows.

+ROUND
specifies that space is requested by specfying the average block
length of the data and the space allocated to the data set must be
equal to one or more cylinders. -

ABSTR

specifies that the data set is to be placed at a specific location
on the volume.

primary quantity
specifies the number of tracks to be allocated to the data set.

address
specifies the track number of the first track to be allocated.

gdirectory
specifies the number of 256-byte records that are to be contained
in the directory of a partitioned data set.

,index
specifies the number of tracks that are required for the index of
an indexed sequential data set. The number of tracks must be equal
to one or more cylinders.

Rules for Coding

1. The SPACE parameter has no meaning for tape volumes; however, if a
data set is assigned to a device class that contains both direct
access devices and tape devices, e.g., UNIT=SYSSQ, the SPACE
parameter should be coded.

2. If you do not code secondary, directory, or index quantities, you
need not enclose the primary quantity in parentheses.

3. Code the second format of the SPACE parameter when you want a data
set placed in a specific position on a direct access device.

4. The SPACE, SPLIT, SUBALLOC, and DDNAME parameters are mutually
exclusive parameters; therefore, if SPLIT, SUBALLOC, or DDNAME is
coded, do not code the SPACE parameter.

REQUESTING SPACE FOR A DATA SET

Every data set that is to be written on a direct access volume must be
allocated space on the volume before the data set can be written. There
are three different parameters that can be used to request space =--
SPACE, SPLIT, SUBALLOC -— and they are mutually exclusive. The SPLIT
and SUBALLOC parameters are discussed in the chapters "The SPLIT
Parameter" and "The SUBALLOC Parameter," respectively.

194 JCL Reference (Release 20.1)

SPECIFYING THE SPACE PARAMETER

Space for data sets is allocated before the job step is executed. 1If a
request for space cannot be satisfied, the job is terminated.

There are two different ways to code the SPACE parameter. One way
tells the system how much space you want and lets the system assign
specific tracks. The other way tells the system the specific tracks you
want.

Letting the System Assign Spécific Tracks

When you want the system to assign specific tracks, you must specify in
the SPACE parameter:

e The unit of measurement the system should use for allocating spaée;
specify TRK, for tracks, CYL, for cylinders, or the average block
length of the data, for blocks.

e The amount of space to be allocated; specify the primary quantity as
a number of tracks, cylinder, or blocks.

Optionally, you can specify in the SPACE parameter:

o That additional space is to be allocated to the data set if it is
required; specify a secondary quantity of tracks, cylinders, or
blocks.

e The size of a directory or index area; specify the number of
records required for a directory or the number of cylinders
required for an index.

e That unused space is to be released; specify the RLSE
subparameter.

e The format of the space allocated to the data set; specify the
CONTIG, MXIG, or ALX subparameter.

e That space is to begin with a cylinder; specify the ROUND
subparameter.

When a Disk Operating System (DOS) volume is mounted for use in an
IBM System/360 Operating System, you can let the system assign specific
tracks on the DOS volume for a new data set. (There are restrictions on
the use of an existing DOS data set in an IBM System/360 Operating
System; these restrictions are described in the chapter "Maintaining the
Catalog and the Volume Table of Contents" in System Programmer's Guide.)

SPECIFYING THE UNIT OF MEASUREMENT

The first subparameter of the SPACE parameter identifies the unit of
measurement to be used in allocating the data set and can be specified
as:

e TRK -- if you want space allocated by track.

® CYL -- if you want space allocated by cylinder. CYL must be
specified if you are creating an indexed sequential data set.

e a number of bytes which represents the average block length of the

data -- if you want the system to compute and allocate the least
number of tracks required to contain the blocks.

Section IV: The DD Statement -- SPACE Parameter 195

Since the next subparameter (primary quantity) tells the system how
many of these units you require, specify the unit that makes it most
convenient for you to express your space requirement. A request for
cylinders (CYL) provides the most efficient performance.

When you request space in units of blocks, the average block length
cannot exceed 65,535. If the blocks have keys, code the DCB
subparameter KEYLEN on the DD statement and specify the key length,
i.e., DCB=KEYLEN=key length.

SPECIFYING A PRIMARY QUANTITY

The primary quantity tells the system how many tracks or cylinders are
to be allocated to the data set or how many blocks of data will be
written. When the first subparameter of the SPACE parameter specifies
the average block length, the system computes the number of tracks (or
cylinders if the ROUND subparameter is coded) required based on the
number of blocks specified as the primary quantity.

There must be enough available space on one volume to satisfy the
primary quantity. If you request that a particular volume be used and
there is not enough available space on that volume to satisfy the space
request, the job step is terminated. If you make a nonspecific volume
request, i.e., no volume serial numbers are specified on the DD
statement, the system selects a mounted volume or causes a volume to be
mounted and then determines if there is enough space available on the
volume to satisfy the request for space. If there is not enough space
available, the system selects another volume.

The system attempts to allocate the primary quantity in contiguous
tracks or cylinders. If contiguous space is not available, the system
satisfies the space request with up to five noncontiguous blocks
(extents) of space. If a user label is requested, the system allocates
up to four noncontiguous blocks of space. You can override these system
actions by coding the CONTIG, MXIG, or ALX subparameter; these
subparameters are discussed later.

SPECIFYING A SECONDARY QUANTITY

The secondary quantity (incremental quantity) tells the system that you
want additional space allocated to the data set if it is required. You
specify as the secondary quantity how many more tracks or cylinders you
want allocated or how many more blocks of data may be written. (When
you request space in units of blocks, the system computes the number of
tracks required for the primary quantity based on the average block
length that you specified in the SPACE parameter. The system computes
the number of tracks required for the secondary quantity based on what
is specified in the DCB subparameter BLKSIZE. Therefore, include the
DCB subparameter BLKSIZE on the DD statement, i.e., DCB=BLKSIZE=maximum
block length.) Specifying a secondary quantity is optional.

If you do specify a secondary quantity and the data set requires
additional space, the system allocates this space based on the quantity
you specified. The system attempts to allocate the secondary quantity
in contiquous tracks or cylinders. If contiguous space is not
available, the system attempts to allocate the secondary quantity in up
to five noncontiguous blocks (extents) of space.

Each time the data set requires more space, the system allocates the
secondary quantity. This space is allocated on the same volume on which
the primary quantity was allocated until: (1) there is not enough space
available on the volume to allocate the secondary quantity, or (2) a
total of 16 extents have been allocated to the data set. If either of

196 JCL Reference (Release 20.1)

these conditions is satisfied, the system must allocate the secondary
quantity on another volume. However, this can be done only if you
request more than one volume in the VOLUME parameter (for a nonspecific
volume request, code PRIVATE; for a specific volume regquest, request -
more volumes than devices).

If a data set has used all the primary space allocated to it, a later
job step or job can lengthen the data set with additional output only if
a secondary quantity was specified when the data set was created and
only if there is enough space available on the volume. If a later job
step or job is lengthening a data set and specifies a secondary
quantity, this quantity overrides, for the duration of the step, any
secondary quantity specified when theé data set was created.

For indexed sequential data sets, a secondary quantity cannot be
requested. If you request a secondary quantity for a checkpoint data
set, the space cannot be used fOr a successful completion of the
checkpoint entry. To determine how the space is used, refer to the
chapter "Checkpoint and Restart" in the Supervisor Services publication.

The secondary quantity is a positional subparameter. If you specify
a secondary quantity, the quantity must. follow the primary quantity. If
you do not specify a secondary quantity and specify the size of an index
or directory as the next subparameter, you must code a comma to indicate
the absence of a secondary quantity.

" REQUESTING SPACE FOR A DIRECTORY OR INDEX

If the data set you are creating is a partitioned data set, you must
request the system to allocate space for a directory. A directory
consists of 256-byte records, and you specify, in the SPACE parameter,
how many of these records the directory is to contain. These records
contain entries for the members of the partitioned data set. You can
determine how many records you should request for the directory by
referring to the chapter "Processing a Partitioned Data Set" in the
Supervisor and Data Management Services publication.

If the data set you are creating is an indexed sequential data set,
you can tell the system, in the SPACE parameter, how many cylinders to
allocate for the index. (The alternate way to request space for the
index is to include, as one of the DD statements used to define an
indexed sequential data set, a DD statement that defines the index and
specifies the number of cylinders required for the index as the primary
quantity.)

The system can differentiate between a specification of the number of
records for a directory and the number of cylinders for an index by
examining the DCB parameter on the DD statement. Any DD statement that
defines an indexed sequential data set must include the DCB subparameter
DSORG=IS or DSORG=ISU. When neither is specified, the system assumes
you are requesting space for a directory.

RELEASING UNUSED SPACE -- RLSE

The RLSE subparameter allows you to request the system to delete unused
space when the data set is closed. If you requested space in units of
tracks, any unused tracks are released. If you requested space in units
of cylinders, any unused cylinders are released. If you requested space
in units of blocks, any unused tracks or cylinders, whichever the system
allocated to the data set, are released.

Section IV: The DD Statement -- SPACE Parameter 197

If you code the SPACE parameter on a DD statement that defines an
existing data set and include the RLSE subparameter, the data set's
unused space is released.

If you have specified RLSE and an ABEND occurs, unused spacé is not
released.

The RISE subparameter is a positional subparameter. If you omit the
RLSE subparameter and another subparameter follows, indicate the absence
of the RLSE subparameter with a comma.

The RLSE subparameter is ignored when the TYPE=T option is coded in
the CLOSE macro instruction.

SPECIFYING THE FORMAT OF ALLOCATED SPACE -- CONTIG, MXIG, OR ALX

The system attempts to allocate space in contiguous tracks or cylinders.
If contiguous space is not available, the system satisfies the space
request with up to five noncontiguous blocks of space. If a user label
is requested, the system allocates up to four noncontiguous blocks of
space. You can override these system actions by coding the CONTIG,
MXIG, or ALX subparameter.

The CONTIG (contiguous) subparameter tells the system that the space
it allocates to a data set must be contiguous. If the request cannot be
satisfied, the job is terminated. If secondary space is allocated to
the data set, it may not be contiguous to the original space allocated
to the data set.

The MXIG (maximum contiguous) subparameter tells the system to
allocate the largest area of contiguous space available on the volume.
The area must be at least as large as the primary quantity requested.
The MXIG subparameter cannot be specified for an indexed sequential data
set.

The ALX (all extents) subparameter tells the system to allocate up to
five different areas of contiguous space. If a user label is requested,
the system allocates up to four different areas of contiguous space.
Each area is to be at least as large as the primary quantity you
requested. The system allocates as many areas as are available. The
ALX subparameter cannot be specified for an indexed sequential data set.

Whichever of these subparameters you choose must follow either the
RLSE subparameter or the comma that indicates its absence. If you do
not specify one of these subparameters and the ROUND subparameter
follows, indicate the absence of the CONTIG, MXIG, and ALX subparameters
with a comma.

ALLOCATING WHOLE CYLINDERS -- ROUND

When you request space in units of blocks, you can request that the
allocated space be equal to one or more cylinders. To request this,
code ROUND as the last subparameter in the SPACE parameter. The system
computes the number of tracks required to hold the blocks, and ensures
that the space begins on the first track of a cylinder and ends on the
last track of a cylinder.

198 JCL Reference (Release 20.1)

Assigning Specific Tracks

You can place a data set in a specific position on a direct access
volume by specifying in the SPACE parameter:

e ABSTR as the first subparameter.

e How many tracks you want allocated.

e The relative track number of the beginning track on which you want
the data set placed.

If the data set is a partitioned data set, you must also specify how
many records you want allocated for a directory. If the data set is an
indexed sequential data set, you can also indicate how many tracks are
required for the index. (The number of tracks you specify must be equal
to one or more cylinders, and any other DD statement used to define the
indexed sequential data set must specify ABSTR in the SPACE parameter.
If either of these conditions is not met, the job is terminated.)

To determine the relative track number, count the first track of the
first cylinder on the volume as 0, and count through the tracks on each
cylinder until you reach the track on which you want your data set to
start. (Track 0 cannot be requested.) The system automatically
converts the relative track number to an address; this address varies
with different devices. For indexed sequential data sets, the relative
track number must correspond to the first track on a cylinder.
Capacities of a number of direct access devices are listed in "Data Set
Disposition and Space Allocation" in the Supervisor and Data Management
Services publication.

If the tracks you request have already been allocated to another data
set, the job is terminated.

Examples of the SPACE Parameter
1. //DD1 DD DSNAME=§§TEMP,UNIT=MIXED,SPACE= (CYL,10)

This DD statement defines a temporary data set and requests the
system to assign any available tape or direct access volume
(UNIT=MIXED specifies a group name of units that consists of tape
and direct access devices). If a tape volume is assigned, the SPACE
parameter is ignored; if a direct access volume is assigned, the
SPACE parameter is used to allocate space to the data set. The
SPACE parameter includes only the required subparameters (i.e., the
type of units and a primary quantity), and requests the system to
allocate 10 cylinders.

2. //DD2 DD DSNAME=ELLN,DISP=(,KEEP),UNIT=2314, X
/77 VOLUME=SER=11257,SPACE=(1024, (100,25),, ,ROUND) , X
V4 DCB=BLKSIZE=2048

This DD statement defines a new data set that is to be written on a
direct access volume. The SPACE parameter requests the system to
compute the space required for the primary quantity; the system
computes the space required based on an average block length of 1024
bytes, and up to 100 blocks of data will be written. If more space
is required, the system is to compute how much additional space to
allocate; the system computes the space required based on a maximum
block length of 2048 bytes (specified in the BLKSIZE subparameter),
and up to 25 blocks of data will be written. Since the ROUND
subparameter is coded, the system ensures that the allocated space
begins on the first track of a cylinder and ends on the last track
of a cylinder.

Section IV: The DD Statement -- SPACE Parameter 199

3. //DD3 DD DSNAME=PDS12,DISP=(,KEEP),UNIT=2311, X
/77 VOLUME=SER=26143, SPACE=(TRK, (200,,10), ,CONTIG)

This DD statement defines a new partitioned data set. The system
allocates 200 tracks to the data set and 10 256-byte records for a
directory. Since the CONTIG subparameter is coded, the system
allocates 200 contiguous tracks on the volume.

4. //DD4 DD DSNAME=INDSEQ (INDEX),UNIT=2314,DCB=DSORG=IS, X
7/ DIspP=(, KEEP), SPACE=(ABSTR, (20,40))

This DD statement defines the index area for a new indexed
sequential data set. The SPACE parameter allocates 20 tracks (for a
2314, 20 tracks equal 1 cylinder), beginning with the fortieth track
on the volume (the fortieth track on the volume is the beginning of
the third cylinder).

200 JCL Reference (Release'20.1)

THE _SPLIT PARAMETER

SPLIT= (n,CYL, (primary quantity[,secondary quantityl))
n
(percent,block length, (primary quantity [, secondary quantityl))
percent

the number of tracks per cylinder you want allocated to the first
data set.

CYL -
specifies that space is to be allocated by cylinder.

primary quantity
specifies how many cylinders are to be allocated for use by all the
associated data sets.

ssSecondary quantity
specifies how many more cylinders are to be allocated to a data set
if additional space is required.

n
the number of tracks per cylinder you want allocated to the data
set defined on the DD statement.

percent

the percentage of tracks per cylinder you want allocated to the
first data set, a number from 1 through 99.

block length
specifies the average block length of the data. The system
computes how many cylinders to allocate.

primary quantity
specifies the total number of blocks to be allocated for use by all
the associated data sets.

ssecondary quantity
specifies how many more blocks are to be allocated to a data set if
additional space is required.

percent
the percentage of tracks per cylinder you want allocated to the
data set defined on the DD statement.

Rules for Coding

1. The first DD statement that contains the SPLIT parameter must
contain volume and unit information. You need not code volume and
unit information on the following DD statements that contain the
SPLIT parameter.

2. 1If a secondary quantity is not specified, you need not enclose the
primary quantity in parentheses.

3. The SPLIT, SPACE, SUBALLOC, DDNAME, and SYSOUT parameters are

mutually exclusive parameters; therefore, if SPACE, SUBALLOC,
DDNAME, or SYSOUT is coded, do not code the SPLIT parameter.

Section IV: The DD Statement -- SPLIT Parameter 201

REQUESTING SPACE FOR A DATA SET

Every data set that is to be written on a direct access volume must be
allocated space on the volume before the data set can be written. There
are three different parameters that can be used to request space --
SPLIT, SPACE, SUBALLOC -- and they are mutually exclusive. The SPACE
and SUBALLOC parameters are discussed in the chapters "The SPACE
Parameter" and "The SUBALLOC Parameter," respectively.

Specifying the SPLIT Parameter

The SPLIT parameter is specified when data sets defined in a job step
require space on the same volume, and you want to minimize access-arm
movement by having the data sets share cylinders. The device on which
the volume is mounted is said to be operating in a split cylinder mode
when the SPLIT parameter is specified. 1In this mode, two or more data
sets are stored so that portions of each data set occupy tracks within
every allocated cylinder.

The cylinders allocated to the data sets must be on one volume. If
there are not enough cylinders available on the volume to satisfy the
request, the job is terminated. The SPLIT parameter cannot be used to
allocate space for direct, partitioned, and indexed sequential data
sets. If the SPLIT parameter is used to allocate space for data sets
that are to reside on a drum storage volume, space is allocated for the
data sets, but the data sets are not stored using the split cylinder
mode. The space occupied by a data set residing on a cylinder that has
been split is not available for reallocation until all data sets sharing
the cylinder have been deleted. ‘

The data sets that are to share cylinders are defined by a sequence
of DD statements. The first DD statement in the sequence specifies the
total amount of space required for all the data sets and the portion of
that space required by this data set. Each succeeding DD statement in
the sequence requests a portion of the total space.

In the SPLIT parametef, there are two ways to request the total
amount of space for data sets that are to share cylinders. You can
request the space in units of cylinders or in units of blocks.

-REQUESTING SPACE IN UNITS OF CYLINDERS

When you request space in units of cylinders, the first DD statement of
the sequence specifies in the SPLIT parameter:

¢ The number of tracks per cylinder to be allocated to this data set;
specify a number.

e Space is to be allocated in units of cylinders; specify CYL.

e How many cylinders are to be allocated for use by all the data sets;
specify the primary quantity as a number of cylinders.

Optionally, you can specify:

* That additional cylinders are to be allocated to a data set if
additional space is required; specify the secondary quantity as a
number of cylinders.

Each succeeding DD statement in the sequence specifies only the
number of tracks per cylinder to be allocated to the data set.

202 JCL Reference (Release 20.1)

If a secondary quantity (incremental quantity) is specified in the
SPLIT parameter on the first DD statement in the sequence, any data set
that exceeds its allocated space is allocated additional space in the
amount of the secondary quantity. This additional space is allocated
only to the data set that requires it and the space is not split with
the other data sets. If a secondary quantity is not specified and a
data set exceeds its allocated space, the job step is terminated.

REQUESTING SPACE IN UNITS OF BLOCKS

When you request space in units of blocks, the first DD statement of the
sequence specifies in the SPLIT parameter:

e The percentage of tracks per cylinder to be allocated to this data
set; specify a number from 1 to 99.

e The average block length of the data in the data sets; specify the
average block length in bytes.

e How many blocks are to be allocated for use by all the data sets'
specify the primary gquantity as a number of blocks.

Optionally, you can specify:

e That additional blocks are to be allocated to a data set if
additional space is required; specify the secondary quantity as a
number of blocks.

Each succeeding DD statement in the sequence specifies only the
percentage of tracks per cylinder to be allocated to the data set.

When you request space in units of blocks, the system computes for
you how many cylinders are required. The average block length cannot
exceed 65,535 bytes. If the blocks have keys, code the DCB subparameter
KEYLEN on the DD statement and specify the key length, i.e.,
DCB=KEYLEN=key length.

If a secondary quantity (incremental quantity) is specified in the
SPLIT parameter on the first DD statement in the sequence, any data set
that exceeds its allocated space is allocated additional space. The
secondary quantity is specified as a number of blocks, and the system
computes how many cylinders to allocate based on this number. This
additional space is allocated only to the data set that requires it and
the space is not split with the other data sets. If a secondary
quantity is not specified and a data set exceeds its allocated space,
the job step is terminated.

Section IV: The DD Statement -- SPLIT Parameter 203

Examples of the SPLIT Parameter

1. //STEP1 EXEC PGM=CREATE
//DD1 DD DSNAME=QUEST,DISP=(, KEEP) ,UNIT=2311, X
/7 VOLUME=SER=757500,SPLIT=(3,CYL, (30,1))
//DD2 DD DSNAME=APP,DISP=(, KEEP) ,SPLIT=U
//DD3 DD DSNAME=SET, DISP=(, KEEP) , SPLIT=3"

This job step contains a sequence of DD statements that define new
data sets and request that these data sets share the same cylinders.
The first DD statement of the sequence, named DD1, specifies: (1)
three tracks per cylinder are to be allocated to this data set; (2)
space is to be allocated in units of cylinders; (3) thirty cylinders
are to be allocated for use by all the data sets; and (4) any data
set that exceeds the space allocated to it should be allocated
another cylinder. The DD statement named DD2 requests that the
system allocate U4 tracks per cylinder to this data set. The DD
statement named DD3 requests that the system allocate 3 tracks per
cylinder to this data set.

2. //STEP2 EXEC PGM=PAGE
//DDX DD DSNAME=1ISSA,DISP=(,KEEP) ,UNIT=2314, X
/7 VOLUME=SER=49463,SPLIT=(18,1024, (700))
//DDY DD DSNAME=SEL12,DISP=(,KEEP) , SPLIT=48
//DDZ DD DSNAME=SEVE,DISP=(,KEEP) ,SPLIT=34

This job step contains a sequence of DD statements that define new
data sets and request that these data sets share the same cylinders.
The first DD statement of the sequence, named DDX, specifies in the
SPLIT parameter: (1) 18 per cent of the tracks per cylinder are to
be allocated to this data set; (2) the system is to compute how many
cylinders are to be allocated for use by all the data sets based on
an average block length of 1024 bytes and 700 blocks are required.
The DD statement named DDY requests that the system allocate 48 per
cent of the tracks per cylinder to this data set. The DD statement
named DDZ requests that the system allocate 34 per cent of the track
per cylinder to this data set. Since the first DD statement in the
sequence does not specify a secondary quantity, the job is
abnormally terminated when any of the data sets exceeds its
allocated space.

204 JCL Reference (Release 20.1)

The SUBALLOC Parameter

SUBALLOC =((TRK ,(primary quantity | ,secondary quantity [,directory]) { »ddname)
CYL , ,stepname .ddname
blocklength ,stepname .procstepname . ddname
TRK

speciifes that space is to be allocated by track.

CYL
specifies that space is to be allocated by cylinder.

block length »
specifies the average block length of the data. The system
computes how many tracks to allocate.

Primary quantity
specifies how many tracks or cylinders are to be allocated, or how
many blocks of data are to be contained in the data set.

sSecondary quantity
specifies how many more tracks or cylinders are to be allocated if
the additional space is required, or how many more blocks of data
may be included if additional space is required.

specifies that the system is not to allocate additional space if it
is required, and a directory space requirement follows.

y,directory
specifies the number of 256-byte records that are to be contained
in the directory of a partitioned data set.

» ddname
specifies that the system must allocate space from the data set
defined on the earlier DD statement named "ddname" that appears in
the same job step.

Stepname.ddname '
specifies that the system must allocate space from the data set
defined on the DD statement named “"ddname", which is contained in
an earlier job step named "stepname" that is part of the same job.

, St epname.procstepname.ddname
specifies that the system must allocate space from the data set
defined on the DD statement "ddname," which is contained in an
earlier procedure step named "procstepname"; the procedure step is
part of a cataloged procedure called by an earlier job step named
"stepname" that is part of the same job.

Section IV: The DD Statement -- SUBALLOC Parameter 205

Rules for Coding

1. Before you can use the SUBALLOC parameter, you must define a new
data set and request enough space in the SPACE parameter to contain
all of the data sets.

2. When you code the SUBALLOC parameter, omit the VOLUME and UNIT
parameters.

3. The SUBALLOC, SPACE, SPLIT, DDNAME, and SYSOUT parameters are
mutually exclusive parameters; therefore, when SPACE, SPLIT,
DDNAME, or SYSOUT is coded, do not code the SUBALLOC parameter.

REQUESTING SPACE FOR A DATA SET

Every data set that is to be written on a direct access volume must be
allocated space on the volume before the data set can be written. There
are three different parameters that can be used to request space --
SUBALLOC, SPACE, SPLIT -- and they are mutually exclusive. The SPACE
and SPLIT parameters are discussed in the chapters "The SPACE Parameter"
and "The SPLIT Parameter," respectively.

Specifying the SUBALLOC Parameter

The SUBALLOC parameter allows you to place a series of data sets on one
volume and in a certain sequence, in a contiguous area of space. This
area of space is first allocated to one data set, then later DD
statements defining new data sets in the same job may request parts of
this space. This is called suballocation. Suballocation is used to
minimize access-arm movement when data sets are processed serially. The
SUBALLOC parameter cannot be used to allocate space for an indexed
sequential data set.

To use suballocation, you must first define a data set on a DD
statement and use the SPACE parameter to request space. This data set
must be used only for suballocation purposes, i.e., the data set should
contain no data. The space you request must be large enough to contain
all of the data sets and the space must be contiguous. On this same DD
statement, you can request more than one device in the UNIT parameter or
more than one volume in the VOLUME parameter. This allows a
suballocated data set for which a secondary quantity was requested in
the SUBALLOC parameter to be continued on another volume if the data set
exceeds its primary quantity.

Once this data set has been defined, other data sets defined in the
job can use the previously allocated space by specifying the SUBALLOC
parameter. Each DD statement that specifies the SUBALLOC parameter
causes the new data set to be assigned to the next area of unused space
from the original data set.

You must specify in the SUBALLoc'parameter:

e The unit of measurement the system should use for allocating space;
specify TRK, for tracks, CYL, for cylinders, or the average block
length of the data, for blocks.

o The amount of space to be allocated; specify the primary gquantity as
a number of cylinders, tracks, or blocks.

e Where in the job the original data set is defined; specify the name

of the DD statement that defines the data set and the name of the
job step in which the DD statement appears.

206 JCL Reference (Reléase 20.1)

Optionally, you can specify in the SUBALLOC parameter:

e That additional space is to be allocated to the data set if it is
required; specify a secondary quantity of tracks, cylinders, or
blocks.

o The size of a directory; specify the number of records required
for a directory.

SPECIFYING THE UNIT OF MEASUREMENT

The first subparameter of the SUBALLOC parameter identifies to the
system the unit of measurement to be used in suballocating space for the
data set and can be specified as:

e TRK -- if you want space suballocated by track.
e CYL -- if you want space suballocated by cylinder.
e a number of bytes, which represents the average block length of

the data -- if you want the system to compute and allocate the
least number of tracks required to contain the blocks.

Since the next subparameter tells the system how many of these units
you require, specify the unit that makes it most convenient for you to
express your space requirement. A request for cylinders (CYL) provides
the most efficient performance.

When you request space in units of blocks, the average block length
cannot exceed 65,535 bytes. If the blocks have keys, you must specify
the key length in the DCB subparameter KEYLEN=n.

SPECIFYING A PRIMARY QUANTITY

The primary quantity tells the system how many tracks or cylinders are
to be suballocated for the data set or how many blocks of data will be
written. If there is not enough space available in the original data
set to satisfy the primary quantity request, the job is terminated.
When the first subparameter of the SUBALLOC parameter specifies the
average block length, the system computes the number of tracks required
based on the number of blocks specified as the primary quantity.

IDENTIFYING THE ORIGINAL DATA SET

Since you want space suballocated from a particular data set, you must
identify this data set each time space is to be suballocated for a new
data set. You identify this data set by referring the system to the DD
statement that originally defines the data set. This DD statement must
be contained in the same job, and can appear in the same job step, an
earlier job step, or in a procedure step that is part of a cataloged
procedure called by an earlier job step. Code as the last subparameter
in the SUBALLOC parameter:

e ddname -- if the DD statement appears in the same job step.

e stepname.ddname -- if the DD statement appears in an earlier job
step.

¢ stepname.procstepname.ddname -- if the DD statement appears in a

procedure step that is part of a cataloged procedure called by an
earlier job step.

Section IV: The DD Statement -- SUBALLOC Parameter 207

SPECIFYING A SECONDARY QUANTITY

The secondary quantity (incremental quantity) tells the system that you
want additional space allocated to the data set if it is required. You
specify as the secondary quantity how many more tracks or cylinders you
want allocated or how many more blocks of data may be written. (When
you request space in units of blocks, the system computes the number of
tracks required for the primary quantity based on the average block
length that you specified in the SPACE parameter. The system computes
the number of tracks required for the secondary quantity based on what
is specified in the DCB subparameter BLKSIZE. Therefore, include the
DCB subparameter BLKSIZE on the DD statement, i.e., DCB=BLKSIZE=maximum
block length.) Specifying a secondary quantity is optional.

If you specify a secondary quantity and the data set requires
additional space, the system allocates this space based on the quantity
you specified. This additional space is allocated from available space
onh the volume, not from the space in the original data set from which
the system suballocated space for this data set. If more than one
device or volume was requested on the same DD statement that requested
space for suballocation, the data set can be continued onto ancther
-volume.

A data set may use all the space allocated to it and a later job step
or job may then try to lengthen the data set with additional output. 1In
this case, the data set can be lengthened only if a secondary quantity
was specified when the data set was created and only if there is enough
space available on the volume. If a later job step or job is
lengthening a data set and specifies a secondary quantity, this quantity
overrides, for the duration of the step, any secondary quantity
specified when the data set was created.

The secondary quantity is a positional subparameter. If you specify
a secondary quantity, the quantity must follow the primary quantity. If
you do not specify a secondary quantity and specify the size of a
directory as the next subparameter, you must code a comma to indicate
the absence of a secondary quantity.

REQUESTING SPACE FOR A DIRECTORY

If the data set you are creating is a partitioned data set, you must
request that the system allocate space for a directory. A directory
consists of 256-byte records and you specify how many of these records
the directory is to contain. These records contain entries for the
members of the partitioned data set. You can determine how many records
you should request for the directory by referring to the chapter
"Processing a Partitioned Data Set" in the Supervisor and Data
Management Services publication.

If you request space for a directory in the SUBALLOC parameter, the
request must follow the secondary quantity or the comma that indicates
its absence. :

208 JCL Reference (Release 20.1)

Examples of the SUBALLOC Parameter

1.

//STEP1 EXEC PGM=PREP

//DD1 DD DSNAME=DUM,DISP=(,KEEP) ,UNIT=2302, X
V74 VOLUME=SER=ALLDS, SPACE=(CYL, 50, , CONT IG)

//STEP2 EXEC PGM=BSPED

//DD2 DD DSNAME=SPEC50, DISP=(, KEEP), X
/77 SUBALLOC= (CYL, (20, 1), STEP1.DD1)

//DD3 DD DSNAME=SPEC51,DISP=(,KEEP), X
77 SUBALLOC= (TRK, (44,7), STEP1.DD1)

//DD4 DD DSNAME=SPECS52,DISP=(,KEEP), X
/77 SUBALLOC= (CYL, 25, STEP1.DD1)

The data set from which space is to be suballocated is defined on
the DD statement named DD1 in STEP1l. Fifty cylinders are allocated
to the data set and the cylinders are contiguous. The DD statements
named DD2, DD3, and DD4 in STEP2 request a portion of this space in
the SUBALLOC parameter by referring the system to the data set
defined on the DD statement named DD1 in STEPl. The order of the
data sets on the volume, because of the request for suballocation,
will be DUM, SPEC50, SPEC51, and SPECS52.

//STEPX EXEC PGM=GARV

//DD5 DD DSNAME=SIMP,DISP=(,KEEP) ,UNIT=2311, X
7/ VOLUME=SER=315046, SPACE=(CYL, 100, , CONTIG)

//DD6 DD DSNAME=FIELD,DISP=(,KEEP), X
7/ SUBALLOC=(1024, (800,60) ,DD5)

//STEPY EXEC PGM=BERSS

//DD7 DD DSNAME=PDS,DISP=(, KEEP), X
/7 SUBALLOC= (CYL, (75, ,8) ,STEPX.DDS)

The data set from which space is to be suballocated is defined on
the DD statement named DD5 in STEPX. One hundred cylinders are
allocated to the data set and the cylinders are contiguous. The DD
statement named DD6 requests a portion of this space in units of
blocks. The system computes how many tracks or cylinders are
required for the data set. The DD statement named DD7 in STEPY also
requests a portion of the space allocated to the data set defined on
the DD statement named DD5 in STEPX. The DD statement named DD7
defines a partitioned data set and requests the system to allocate 8
256-byte records for a directory.

Section 1IV: The DD Statement -- SUBALLOC Parameter 209

The SYSOUT Parameter

SYSOUT=(classname{:,program name] [, form number])

classname
the class associated with the output device to which you want your
output data set written.

,Program name
the member name of a program in the system library that is to write
your output data set, instead of the system output writer, to a
unit record device.

specifies that the system output writer is to write your output
data set to a unit record device, and a form number follows.

form number
specifies that the output data set should be printed or punched on
a special output form.

Rules for Coding

1. The classname can be any alphameric character (A-Z, 0-9).

2. The form number is 1 to 4 alphameric and national (a,$5,#)
characters.)

3. If a program name and form number are omitted, you need not enclose
the classname in parentheses.

| 4. The UNIT, SPACE, OUTLIM, UCs, FCB, and DCB parameters can be coded
with the SYSOUT parameter. Besides the mutually exclusive
parameters listed below, other parameters coded with the SYSOUT
parameter are ignored.

5. The DISP, DDNAME, AFF, SEP, VOLUME, LABEL, SPLIT, and SUBALLOC
parameters and the SYSOUT parameter are mutually exclusive
parameters; therefore, if any of these parameters are coded, do not
code the SYSOUT parameter.

Advantages to Coding the SYSOUT Parameter

When you want a data set printed on an output listing or in the form of
punched cards, you can code the UNIT parameter and identify the unit
record device you want, or code the SYSOUT parameter and specify the
class that corresponds to the type of unit record device you want.
There are advantages to coding the SYSOUT parameter:

1. You can write your output data set to a direct access device and a
system output writer writes the data set to a unit record device at
a later time. This allows greater flexibility in scheduling print
and punch operations, and improves operating system efficiency.
You can also write your output data set directly to a unit record
or magnetic tape device.

Section IV: The DD Statement -- SYSOUT Parameter 211

N

2. The output data set and system messages resulting from the job can
be assigned to the same type of unit record device. This is
accomplished by specifying the same classname in the SYSOUT and
MSGCLASS parameters. (The MSGCLASS parameter is coded on the JOB
statement.)

3. When you want the output data set printed or punched on a special
output form, you can specify the form number in the SYSOUT
parameter and let the system inform the operator at the time the
data set is to be written what form is to be used.

THE CLASSNAME

When you code the SYSOUT parameter, you indicate a classname. A
classname is an alphameric character (A-%Z, 0-9) that corresponds to a
type of unit record device. Each installation specifies what classnames
correspond to what unit record devices. Therefore, when you specify a
classname, the operator knows what type of unit record device you want
and he ensures that a system output writer is available to write your
output data set to the desired unit record device.

The system determines where system messages resulting from a job are
to be written based on what is coded in the MSGCLASS parameter on the
JOB statement. If the MSGCLASS parameter is not coded, system messages
associated with your job are routed to the default output class
specified in the PARM field of the input reader procedure. The default
for the MSGCLASS parameter is A unless changed by your installation.
Class A corresponds to a printer. If you want your output data set and
the system messages resulting from the job written to the same unit
record device, you simply code the same classname in both the MSGCLASS
and SYSOUT parameters, or omit the MSGCLASS parameter and code your
installation's default output class in the SYSOUT parameter.

THE PROGRAM NAME

The system provides system output writers, which transfer your output
data set from a direct access volume to the desired unit record device.
If there is a special installation program to handle this transfer, you
can use this program, instead of a system output writer, by specifying
the program’s name as the second subparameter in the SYSOUT parameter.
The program must be a member of the system library (S¥S1l.LINKLiIB).

If you do not code a program name and code a form number as the last
subparameter in the SYSOUT parameter, you must code a comma to indicate
the absence of a program name.

THE FORM NUMBER

Each installation provides standard forms to contain printed or punched
output. If there is a special output form you want to use, you can
specify the form number as the last subparameter in the SYSOUT ‘
parameter. The system issues a message to the operator at the time the
data set is to be printed or punched, which informs him of the form to
be used. If you do not want system messages resulting from the job to
appear on the special form, assign a classname in the MSGCLASS parameter
on the JOB statement that is different from the classname assigned in
the SYSOUT parameter. : '

212 JCL Reference ‘(Release 20.1)

CODING OTHER PARAMETERS WITH THE SYSOUT PARAMETER

The UNIT, SPACE, OUTLIM and DCB parameters can be coded with the SYSOUT
parameter. The DDNAME, DISP, AFF, SEP, VOLUME, LABEL, SPLIT, and
SUBALLOC parameters are mutually exclusive with the SYSOUT parameter;
any other parameters that you code with the SYSOUT parameter are
ignored.

You can write output data sets destined for unit records devices to a
direct access device instead of immediately writing the data set to the
desired unit record device. Later, a system output writer writes the
data set to the desired unit record device. In the UNIT parameter, you.
can request what type of direct access device you want for writing the
output data set, how many devices you want (up to a maximum of five),
and unit separation from other data sets defined in the job step. 1In
the SPACE parameter, you can specify how much space should be allocated
to the data set and that unused space is to be released. If you omit
the UNIT parameter, the system assigns a device; if you omit the SPACE
parameter, the system assigns the amount of space to be allocated.
These values are part of the PARM parameter field in the input reader
procedure used to read the input stream.

You can also write an output data set directly to the desired unit
record or magnetic tape device. When direct system output is desired,
the operator selects a unit record or magnetic tape device for a class
by issuing a START DSO (direct system output) command. In addition to
the SYSOUT parameter, the DCB and UCS parameters can be coded. If the
SYSOUT subparameters other than classname are coded, the specified
information is ignored. The UNIT and SPACE parameters are also ignored
if direct system output processing is used. Since the type of
processing to be used may not always be known, it is advisable to code
these parameters in case an intermediate direct access device is used.

The DCB parameter can be coded with the SYSOUT parameter to complete
the data control block associated with the output data set. The
information contained in this data control block is used when the data
set is written to the direct access device and read by the system output
writer. However, the output writer's own DCB attributes are used when
the data set is written to the desired unit record device.

The OUTLIM parameter allows you to specify a limit for the number of
logical records you want included in the output data set being routed
through the output stream. The OUTLIM parameter has meaning only in
systems with the System Management Facilities option with system, job,
and step data collection. Unless the SYSOUT parameter is coded in the
operand field of the same DD statement, the OUTLIM parameter is ignored.

JOB SEPARATORS

Your output data is preceded by a job separator if your installation
incorporated routines to write job separators. A job separator is a
series of three listing pages or three punched cards that separates the
output data sets of different jobs. The output data sets from these
jobs were written to the same unit. Each page or card contains the name
of the job whose data follows, and identifies the output class. Job
separators make it easier for the operator to separate the data produced
by your job from the data of other jobs.

Section IV: The DD Statement -- SYSOUT Parameter 213

Examples of the SYSOUT Parameter

1.

214

. //DD1 DD SYSouT=P

This DD statement specifies that the data set is to be written to
the unit record device corresponding to class P. Since the UNIT and
SPACE parameters are not coded, the system obtains device and space
allocation information from the input reader procedure.

//J0OB50 JOB ¢ 'C. BROWN', MSGCLASS=C
//STEP1 EXEC PGM=SET
//DDX DD SYSOUT=C, DCB= (BUFNO=4, OPTCD=W)

The DD statement named DDX specifies that the data set is to be
written to the unit record device corresponding to class C. The DCB
parameter is coded to complete the data control block associated
with this data set. Since the classnames in the SYSOUT parameter
and the MSGCIASS parameter, on the JOB statement, are the same, the
system messages resulting from this job and the output data set are
written to the same unit record device.

//DD5 DD SYSOUT=A, UNIT=2314, SPACE=(CYL, (12,1) ,RLSE)

This DD statement specifies that the data set is to be written to
the unit record device corresponding to the standard output class A.
The system assigns a 2314 unit and allocates 12 cylinders to the
data set, rather than obtaining device and space allocation
information from the input reader procedure. Since the RLSE
subparameter is coded in the SPACE parameter, any unused space is
released.

//DDé6 DD SYSoUuT=(F,,7402)
This DD statement specifies that the data set is to be written to

the unit record device corresponding to class F and the output data
set is to be printed on a special form. The form number is 7402.

JCL Reference (Release 20.1)

The TERM Parameter -- MVT and TSO

TERM=TS

TS
indicates to the system that the input or output data being defined
is coming from or going to a time sharing terminal.

Rules for Coding

1. TERM=TS is effective only under the operating system with MVT and
the Time Sharing Option (TSO). The TERM parameter is ignored in
batch processing, in an MFT operatlng system, or in a system
without TSO.

2. TS is the only value that can be specified by the TERM parameter.
If any other value is used, a JCL error message is produced.

3. A DD statement with TERM=TS can only be concatenated if it is the
last DD statement.

4. Except for the DCB parameter, all other parameters (including
DUMMY, DYNAM and DSNAME=NULLFILE) coded on a DD statement with TERM
are ignored.

5. If the TERM parameter is coded for batch proce351ng, the parameter
is not used, but is checked for syntax.

What the TERM Parameter Does

The TERM parameter notifies the operating system that the data set
(represented by the DD statement that contains the TERM parameter) is
coming from or going to a time sharing terminal. TERM allows your time
sharing job to communicate with a terminal device. For example, your
program can put out messages to a terminal user requesting data input
records. Your program can then read in the data input records supplied
by the terminal user, perform operations with this data, and then put
out the results to the terminal.

Examples of the TERM Parameter

1. //DD1 DD TERM=TS
orx
//DD2 DD UNIT=2400,DISP=(MOD, PASS), TERM=TS

The above two DD statements are equivalent in effect. 1In the time
sharing environment, all the parameters coded on the second DD
statement are ignored except the TERM parameter. In a batch
processing environment, the UNIT and DISP parameters are used but
TERM is ignored.

2. //DD3 DD UNIT=2400,DISP=(MOD,PASS) ,DCB=(LRECL=80,BLKSIZE=80),
TERM=TS, LABEL~= (, NL)

In a time sharing environment, all the parameters in the above
example except TERM and DCB are ignored.

Section IV: The DD Statement -- TERM Parameter 215

The UCS Parameter

r

ucs=(character set code [,FOLD] [, VERIFY])

character set code
identifies the special character set you want for printing the data
Set' =

,FOLD .
specifies that you want the chain or train corresponding to the
desired character set loaded in the fold mode.

specifies that the chain or train is not to be loaded in the fold
mode and the VERIFY subparameter follows.

VERIFY

’
specifies that the operator is to verify that the correct chain o
train is mounted before the data set is printed.

" Rules for Coding

1. The character set code can be 1 through 4 characters.

2. If the FOLD and VERIFY subparameters are omitted, you need not
enclose the character set code in parentheses.

3. If the UCS parameter is coded and the data set is not written to a
printer with the universal character set (UCS) feature, the UCS
parameter is ignored.

4. The UCS and DDNAME parameters and the DCB subparameters RKP,
CYLOFL, and INTVL are mutually exclusive parameters; therefore, if
the DDNAME parameter or one of the DCB subparameters RKP, CYLOFL,
or INTVL is coded, do not code the UCS parameter.

Special Character Sets

The Universal Character Set (UCS) feature allows you to alternately use
different sets of print characters. It is available as a special
feature on the 1403 printer and as a standard feature on the 3211
printer.

In the UCS parameter you specify what character set you want to use;
the operator ensures that the corresponding chain or train is mounted on
the printer. In order to use a particular special character set, an

|image of the character set must be contained in SYS1.IMAGELIB and the
chain or train corresponding to the character set must be available for
use. IBM provides standard special character sets and the installation
may provide user-designed special character sets. How to include the

| images for these special character sets in SYS1.IMAGELIB is discussed in
the System Programmer's Guide.

If you omit the UCS parameter and the data set is written to a
printer with the UCS feature, a default character set is used. If the
chain or train mounted on the printer does not correspond to a default
character set, the operator is requested to identify a default character
set and mount the corresponding chain or train.

Section IV: The DD Statement -- UCS Parameter 217

|Note: When the UCS parameter specifying a 1403 image is coded with the
SYSOUT parameter and the data set is first written to tape, the UCS
specification is not kept. Therefore, when the operator writes the data
set from the tape to a 1403 printer, your data set may not be written
using the desired character set.

IDENTIFYING THE CHARACTER SET

The first subparameter of the UCS parameter identifies the character set
you want for printing your data set. Each character set has a unique 1-
through 4-byte code. '

The codes for the IBM standard special character sets are:

¥ r » T 1
|Codes for 1403|Codes for 3211| Characteristics |
L] i . J
¥ L] L) T
| AN | All | Arrangement A, standard ECBDIC character|
| | set. 48 characters.
| -
} - HN | H11 |Arrangement H, EBCDIC character set for
| | | FORTRAN and COBOL, 48 characters.
| |
| Gl1 |ASCII character set.
| | | ‘
PCAN | | Preferred alphameric character set,
| |arrangement A.
| | I
| PCHN | |Preferred alphameric character set, |
| | jarrangement H.
I I
| PN } P11 | PL/1 alphameric character set. |
| | I
ON		PL/1 preferred alphameric character set
		for scientific applications.
QNC		PL/1 preferred alphameric character set
		for commercial applications.
I		
RN		Preferred character set for commercial
		applications of FORTRAN and COBOL.
SN		Preferred character set for text
		printing.
] TN	T11	Character set for text printing, 120
		characters.
XN		High~-speed alphameric character set for
		1403, Model 2.
i YN		High-speed preferred alphameric
		character set for 1403, Model 3 or Ni.
L L L B |

For each user-designed special character set, the installation
assigns a unique code. If you want to use one of these, specify the
corresponding code in the UCS parameter. You can use the space that
follows to list the codes assigned to user-designed special character
sets available at your installation.

218 JCL Reference (Release 20.1)

REQUESTING FOLD MODE

FOLD can be coded as the second subparameter of the UCS parameter and
requests the fold mode. The fold mode is described in the publication
IBM 2821 Control Unit, GA24-3112. The fold mode is most. often requested
when uppercase and lowercase data is to be printed only in uppercase.

The FOLD subparameter is a positional subparameter. If you omit the
FOLD subparameter and code the VERIFY subparameter, you must code a
comma to indicate the absence of FOLD.

REQUESTING OPERATOR VERIFICATION

VERIFY can be coded as the last subparameter of the UCS parmeter and
requests that the operator visually verify that the character set image
corresponds to the graphics of the chain or train that was mounted.
When VERIFY is coded, the character set image is displayed on the
printer so that the operator can make the verification before the data
set is printed.

Examples of the UCS Parameter

i. /s/DD1 DD UNIT=1403,U0UCS=(¥YN, ,VERIFY)

This DD statement defines an output data set that is to be written
to a 1403 printer. The UCS parameter requests that the data set be
written using the chain or train corresponding to the special
character set with the code YN. Since VERIFY is coded, the
character set image is displayed on the printer before the data set
is printed.

2. //DD2 DD SYSOUT=G,UCS=PCHN

This DD statement defines an output data set that is to be written
to the unit record device that corresponds with class G. If the
device is a printer with the universal character set, the request in
the UCS parameter for the special character set with the code PCHN
is recognized. Otherwise, the UCS parameter is ignored.

Section IV: The DD Statement -- UCS Parameter 219

The UNIT Parameter

UNIT=(]unit address sunit count |[,DEFER] [,SEP=(ddname,...)])
device type P
group name ’

UNIT=AFF=ddname

unit address

identifies a particular unit by its address, which consists of the
channel, control unit, and unit numbers.

device type
identifies a particular type of device.

group name

identifies a particular group of devices. The group name and the

- devices that make up a group are specified during system
generation.

Jsunit count
indicates the number of devices you want assigned to the data set.

+P
specifies that each volume on which the data set resides is to be
assigned a device.

' - .
specifies that only one device is required and another subparameter
follows. (If the DEFER subparameter is not coded but the SEP
parameter is coded, this comma is optional.)

» DEFER
specifies that the system should assign a device(s) to the data sel
but the volume(s) on which the data set re31des should not be
mounted until the data set is opened.

»SEP=

indicates that this data set is to be assigned a different direct
access device than the devices assigned to certain other data sets,
i.e., unit separation.

(ddname, + . .)
the names of up to eight earlier DD statements in the job step that
define data sets from which you want unit separation.

AFF= .
indicates that the system should assign the data set to the same
device(s) as assigned to another data set, i.e., unit affinity.

ddname

the name of an earlier DD statement in the job step that defines a
data set with which you want unit affinity.

Rules for Coding

1. If the only subparameter coded in the UNIT parameter is the first
subparameter, you need not enclose it in parentheses.

Section IV: The DD Statement -- UNIT Parameter 221

2. If the SEP subparameter is the only subparameter you are coding in
the UNIT parameter, code UNIT=(,SEP=(ddname, ...)).

3. If the list of ddnames consists of only one ddname, you need not
enclose it in parentheses.

4. You need not code the unit count subparameter if you want only one
device assigned to the data set.

5. The UNIT and DDNAME parameters are mutually exclusive parameters;
therefore, if DDNAME is coded, do not code the UNIT parameter.

Providing Unit Information

Before the data set can be used as input to a processing program ox
written as output by a processing program, the volume on which a data
set resides or will reside must be mounted on an input/output device.
The UNIT parameter provides the system with the information it needs to
assign a device to the data set.

In order for the system to assign a device, you must provide in the
UNIT parameter:

e The specific unit you want: code the unit address; or a general
description of the device: code the device type or group name.

Optionally, you can:

e Specify how many devices you want assigned to the data set when
more than one device is required. You can code the unit count and
specify how many devices are required, or in certain cases, imply
how many devices are required by coding P.

e Request the system to assign a device to a data set and not to
cause the volume on which the data set resides to be mounted until
the data set is opened.

e Request the system to assign a data set to a device other than the
devices assigned to data sets defined in the same job step; code
the keyword subparameter SEP and identify the data sets from which
you want unit separation. '

Another way to provide unit information is to request unit affinity
with another data set by coding UNIT=AFF=ddname. The system obtains
unit information from the named DD statement.

Except in a few cases, the UNIT parameter is always coded on-a DD
statement that defines a data set that requires one or more devices. In
the following cases, the system obtains the required unit information
from other sources. Therefore, you need not code the UNIT parameter:

e When the data set is cataloged. For cataloged data sets, the system
obtains unit and volume information from the catalog. However, if
VOLUME=SER=serial number is coded on a DD statement that defines a
cataloged data set, the system does not look in the catalog. In
this case, you must code the UNIT parameter. If the VOLUME
parameter is not coded but you request a device in the UNIT
parameter, the request is ignored.

e When the data set is passed from a previous job step. For passed

data sets, the system obtains unit and volume information from an
internal table. However, if VOLUME=SER=serial number is coded on a

222 JCL Reference (Release 20.1)

DD statement that defines a passed data set, the system does not
look in the internal table. In this case, you must code the UNIT
parameter. If the VOLUME parameter is not coded but you request a
device in the UNIT parameter, the request is ignored.

e When the data set is to use the same volumes assigned to an earlier
data set, i.e., VOLUME=REF=reference is coded. In this case, the
system obtains unit and volume information from the earlier DD
statement that specified the volume serial number or from the
catalog.. If you request a device in the UNIT parameter, the request
is ignored.

e When the data set is to share space or cylinders with an earlier
data set, i.e., SUBALLOC or SPLIT is coded. In this case, the
system obtains unit and volume information from the earlier DD
statement that specifies the total amount of space required for all
the data sets. If the VOLUME parameter is coded, it is ignored. 1If
you request a device in the UNIT parameter, the request is ignored.

In all of these cases, you can code the UNIT parameter when you want
more devices assigned.

IDENTIFYING THE DEVICE

You must identify to the system the specific device you want or the type
of device you want. To identify a specific device, you must specify a
unit address. When a unit address is coded, the system assigns you that
unit.

There are two ways to identify the type of device you want: specify
a device type, which corresponds to a particular set of device features,
or specify a group name, which identifies a group of devices that may be
different models. When a device type is coded, the system assigns an
available device of that type. When a group name is coded, the system
assigns an available device that is part of that group. In all cases,
the block size specified for the data cannot exceed the maximum block
size permitted for the assigned device.

Unit Address

To identify a device by its unit address, you specify the 3-byte address
of the unit. The address is made up of the channel, control unit, and
unit numbers. For example, UNIT=180 indicates you want channel 1,
control unit 8, and unit 0.

To request a specific bin on a specific 2321, you should code
UNIT=addresss/bin, where "bin" is a number from 0 through 9. For
example, UNIT=293/5 indicates you want channel 2, control unit 9, device
3, and bin 5. If you code UNIT=293, you are requesting one of the
available bins on that unit.

If you identify a telecommunications device by its unit address, the
system will allocate that device on a shared basis whether or not, the
device is already allocated.

You should not identify a device by its address unless it is
absolutely necessary. Specifying a unit address limits unit assignment
and may result in a delay of the job if the unit is being used by
another job.

Section IV: The DD Statement -- UNIT Parameter 223

Device Type

Device types correspond to particular set of features of input/output
devices. When you code a device type, you allow the system to assign
any available device of that device type. For example, if the device
type you want is a 2302 Disk Storage Drive, you code UNIT=2302. The
system assigns an available 2302. If only one device in the system is
of that device type, the system assigns that device. If there is more
than one device in the system of that device type, there is a certain
degree of device independence. ’

The device types that can be coded and their descriptions are listed

below.

(You can code only those device types that were defined during

system generation.)

TAPE

Device Type Device

2400 2400 series Nine-Track Magnetic Tape Drive that can be
allocated to a data set written or to be written in
800 bpi when the dual-density feature is not installed
on the drive or in 1600 bpi when the dual-density
feature is installed on the drive.

2400-1 2400 series Magnetic Tape Drive with Seven-Track
‘Compatibility and without Data Conversion.

2400-2 2400 series Magnetic Tape Drive with Seven-Track
Compatibility and Data Conversion.

2400-3 2400 series Nine-Track Magnetic Tape Drive that can be
allocated to a data set written or to be written in
1600 bpi density.

2400~-4 2400 series Nine-Track Magnetic Tape Drive having an

DIRECT ACCESS

800 and 1600 bpi density capability.

Device Type Device
2301 2301 Drum Storage Unit.
2302 2302 Disk Storage Drive.
2303 2303 Drum Storage Unit.
2305-1 2305 Fixed Head Storage Facility Model 1
2305-2 2305 Fixed Head Storage Facility Model 2
2311 2311 Disk Storage Drive.
2314 2314 storage Facility.
l23191 2319 Disk Storage Facility
2321 any bin mounted on a 2321 data cell drive.
3330 3330 Disk Storage Drive

iTo indicate the 2319 in the UNIT parameter, specify UNIT=2314.
However, to designate the 2319 as the particular device for your data
set, specify UNIT=unit address.

224 JCL Reference

(Release 20.1)

UNIT RECORD

Device Type
1052

1275

1285
1287
1288
1403
1419
1442
1443
2495
2501
2520
2540
25640-2
2671
3210
3211

3215

GRAPHIC
Device Type
1053

2250-1
2250-3
2260-1
2260-2
2280

2282

Device
1052 Printer-Keyboard.

1275 Optical Reader Sorter (available through
World Trade branch offices only)

1285 Optical Reader
1287 Optical Reader

1288 Optical Reader

1403 Printer or 1404 Printer (continuous form only).

1419 Magnetic Character Reader

1442 Card Read Punch.

1443 Printer.

2495 Tape Cartridge Reader

2501 Card Reader.

2520 Ccard Read Punch.

2540 Card Read Punch (read feed).
2540 card Read Punch (punch feed).
2671 Paper Tape Reader.

3210 Printer-Keyboard

3211 Printer

3215 Printer-Keyboard

Device

1053 Model 4 Printer.

2250 Display Unit, Model 1.

2250 Display Unit, Model 3.

2260 Model 1 Display Station (Local Attachment).
2260 Model 2 Display Station (Local Attachment).
2280 Film Recorder.

2282 Film Recorder/Scanner.

Section IV: The DD Statement -- UNIT Parameter

225

Group Name

A group name is 1 through 8 alphameric characters and identifies a
device or a group of devices. The group of devices can consist of
devices of the same type or different direct access and tape device
types. Group names are established during system generation.

When you code a group name, you allow the system to assign any
available device that is included in the group. (If a group consists of
only one device, the system assigns that device.) . For example, if
all 2301 and 2303 Drum Storage Units are included in the group named
DRUM and you code UNIT=DRUM, the system assigns an available 2301 or
2303 device.

A group may consist of more than one device type. 1In this case, you
should not code this group's group name when you are defining an
existing data set, since the volume(s) on which the data set resides may
require a different device than the one assigned by the system, i.e., a
tape volume must be assigned to a tape device, not a direct access
device.

When the automatic volume recognition feature is included in the
system and you specify a group name, this feature will assign devices to
volumes already mounted, but will not request mounting of any volume
that is not mounted.

UNIT COUNT

The unit count subparameter indicates how many devices you want assigned
to a data set. If you do not code this subparameter, or code 0, the
system assigns one device. (If you receive a passed data set or refer
the system to a cataloged data set or earlier DD statement for volume
and unit information (VOLUME=REF=reference), the system assigns one
device, even if more devices were requested in an earlier DD statement.)
Only in one case may the system assign more than one device: when two
DD statements in a step request use of the same volume. If either of
these two DD statements requests any other volume(s), the system assigns
an additional device.

For operating efficiency, you can request multiple devices for a
multivolume data set or for a data set that may require additional
volumes. When each required volume is mounted on a separate device,
time is not lost during execution of the job step while the operator
demounts and mounts volumes. The maximum number of devices that can be
requested per DD statement is 59.

In the following cases, you should always code the unit count
subparameter when the data set may be extended to a new volume:s

e If the data set resides on a permanently resident or reserved
volume. In these two cases, the volume cannot be demounted in order
to mount another volume.

e If the data set is assigned space through suballocation. Code the
unit count subparameter on the DD statement that requests the space
to be suballocated.

The unit count subparameter is a positional subparameter, and it
shares the same position as the subparameter P. If neither of these
‘subparameters is coded and the DEFER or SEP subparameter follows, code a
comma to indicate the absence of the unit count subparameter and the
subparameter P. ' (If the DEFER subparameter is not coded but the SEP
parameter is coded, you may omit the comma.)

226 JCL Reference (Release 20.1)

PARALLEL MOUNTING

Requesting parallel mounting has the same effect as specifying a unit
count, i.e., more than one device is assigned to the data set. When
parallel mounting is requested, the system counts the number of volume
serial numbers specified on the DD statement and assigns to the data set
as many devices as there are serial numbers. (For cataloged data sets,
the system counts the number of volume serial numbers contained in the
catalog.) You request parallel mounting by coding the letter P in place
of the unit count subparameter.

The subparameter P is a positional subparameter, and it shares the
same position as the unit count subparameter. If neither of these
subparameters is coded and the DEFER or SEP subparameter follows, code a
comma to indicate the absence of the subparameter P and the unit count
subparameter. (If the DEFER subparameter is not coded but the SEP
subparameter is coded, you may omit the comma.)

DEFERRED MOUNTING

The DEFER subparameter requests the system to assign the required units
to a data set and to defer the mounting of the volume(s) on which the
data set resides until the processing program attempts to open the data
set. The DEFER subparameter should only be coded on DD statements that
define data sets residing on removable volumes. The DEFER subparameter
cannot be coded on a DD statement that defines an indexed sequential
data set or that defines a new data set that is to be written on a
direct access volume, because space cannot be allocated to the data set.

If you request deferred mounting of a volume and the data set on that
volume is never opened by the processing program, the volume is not
mounted during the execution of the job step. If a later job step
refers to that data set, the system may assign a different device to the
data set than was originally assigned to it.

UNIT SEPARATION

When you make nonspecific volume requests for data sets defined in a job
step, the system assigns volumes to the data sets. If the DD statements
that define these data sets request the same type of device, the system
may assign more than one data set to the same device.

If you do not want a data set to be assigned to the same device that
is assigned to other data sets, you can request this in the SEP
subparameter. A request for unit separation has meaning only for direct
access devices.

The SEP subparameter appears as the last subparameter in the UNIT
parameter. To identify the data sets that should not be assigned the
same device as this data set, follow SEP= with a list of up to eight
ddnames of the DD statements that define these data sets. The listed DD
statements must precede this statement and must be contained in the same
job step. The list of ddnames must be enclosed in parentheses, unless
there is only one ddname. If one of the listed DD statements defines a
dummy data set, the system ignores the unit separation request for that
data set.

When you make a specific volume request for a data set and request
unit separation for that data set, the system issues a message to the
operator if the request for unit separation cannot be satisfied. The
operator decides if the system should wait for devices to become
available, or if the request for unit separation should be ignored, or
if the job should be cancelled. When you make a nonspecific volume

Section IV: The DD Statement -- UNIT Parameter 227

request for a data set and request unit separation for that data set,
the request may be ignored, depending on how many disk drives are
available and how much space is available on those disk drives. A
message will not be issued in this case if unit separation cannot be
satisfied.

Unit Affinity

To conserve the number of devices used in a job step, you can request
that an existing data set be assigned to the same device or devices as
assigned to a data set defined earlier in the job step. When two data
sets are assigned the same device, the data sets are said to have unit
affinity. When the data sets reside on different volumes, unit affinity
implies deferred mounting for one of the volumes, since both volumes
cannot be mounted on the same device at the same time.

You request unit affinity by coding UNIT=AFF=ddname on a DD
statement. The ddname is the name of an earlier DD statement in the
same job step, and the system obtains unit information from this
statement. The data set defined on the DD statement that requests unit
affinity is assigned the same device or devices as the data set defined
on the named DD statement. If the ddname refers to a DD statement that
defines a dummy data set, the data set defined on the DD statement
requesting unit affinity is assigned a dummy status.

When unit affinity is requested for two data sets that reside on
different 2321 volumes, the data sets are assigned the same device but
may be assigned different bins. If the data sets are assigned different
bins, the implied deferred mounting is ignored.

Examples of the UNIT Parameter

i. /sDD1 DD DSNAME=AAG3,DISP=(,KEEP), X
7/ VOLUME=SER=13230,UNIT=2400

This DD statement defines a new data set and requests the system to
assign any 2400 9-Track Tape Drive to the data set.

2. //DD2 DD DSNAME=X.Y.Z%Z,DISP=OLD,UNIT=(,2)

This DD statement defines a cataloged data set and requests the
system to assign two devices to the data set. The device type is
obtained from the catalog.

3. //DD3 DD DSNAME=COLLECT,DISP=0LD, X
/77 VOLUME=SER=1095,UNIT=(DISK, ,DEFER)

This DD statement defines an existing data set that resides on a

direct access volume and requests the system to assign any device
that is part of the group named DISK. Since DEFER is coded, the

volume is not mounted until the data set is opened.

4. //STEP1 EXEC PGM=XTRA
//DDA DD UNIT=2311, SPACE=(1024, (150,20))
//DDB DD UNIT=2311,SPACE=(1024,(100,10))
//DDC DD UNIT=(2311,SEP=(DDA,DDB)) ,SPACE=(2048, (300,30))

The DD statements in this job step define temporary data sets. The
DD statement named DDC requests the system to assign the data set to
a different device than is assigned to either of the data sets
defined on the DD statements named DDA and DDB.

228 JCL Reference (Release 20.1)

//STEP2 EXEC PGM=POINT

//DDX DD DSNAME=EST,DISP=MOD, VOLUME=SER= (42569 ,42570), X
7/ UNIT=(2311,2)

//DDY DD DSNAME=ERAS,DISP=0LD,UNIT=2400-2

//DD7% DD DSNAME=RECK, DISP=0OLD, X
7/ VOLUME=SER=(40653,13262) ,UNIT=AFF=DDX

The DD statement named DDZ requests that the system assign the same
unit to this data set as it assigns to the data set defined on the
statement named DDX. Since DDX requests two devices, these two
devices are assigned to the data set defined on DDZ.

Section 1IV: The DD Statement -- UNIT Parameter 229

The VOLUME Parameter

I""'|

3 VOLUME E=([PRIVATE] [,RETAIN] [,volume sequence number:l [,volume count] I[,]. SER=(serial number,...))
VvOL N 0] . (g REF=dsname
REF=*,ddname
REF=*,stepname .ddname
REF=*.stepname . procstepname .ddname
PRIVATE
indicates that no output data set can be allocated to this volume
unless the volume is specifically requested, and the volume is to
be demounted after its last use in the job step, unless RETAIN is
coded or the data set is passed.
+RETAIN.
indicates that this volume is not to be demounted after its last
use in the job step.
IA\
fy

indicates that the volume does not need to be considered a private
volume and the volume sequence number or volume count subparameter
follows.

,volume sequence number
specifies which volume of an ex1st1ng multivolume data set you want
to begin processing with.

LAt

,

~- indicates that you want to begin processing of an existing
multivolume data set with the first volume, and the volume count
subparameter follows. :

svolume count
specifies the maximum number of volumes an output data set
requires.

r—-
1=
—_—

specifies that either the SER or REF subparameter follows and one
or more subparameters precede it.

SER= :
indicates that the serial numbers of the volumes on which the data
set resides or will reside follow.

(serial number,...)

the serial numbers of the volumes on which the data set resides or
will reside.

REF=
indicates that the serial numbers of the volumes on which the data
set resides or will reside are identified on an earlier DD
statement in the job or in the catalog.

dsname
the name of a cataloged or passed data set. The system locates the
information about the data set and assigns your data set to the
same volumes as are assigned to the cataloged or passed data set.

Section 1IV: The DD Statement -- VOLUME Parameter 231

*.ddname
specifies that the system must obtain the volume serial numbers
from an earlier DD statement hamed "ddname" in the same job step.

*_,stepname.ddnanme
specifies that the system must obtain the volume serial numbers
from a DD statement named "ddname," which was defined in an earlier
job step named "stepname."

*,stepname. procstepname.ddname
specifies that the system must obtain the volume serial numbers
from a DD statement named "ddname," which was defined in an earlier
procedure step named "procstepname"; the procedure step is part of
a procedure that was called by an earlier job step named
"stepname." . ;

‘Rules for Coding

1. The volume sequence number subparameter can be 1 to 3 digits.
2. The volume count subparameter is a number from 1 through 255.

3. If the only subparameter you are coding is PRIVATE, you need not
enclose it in parentheses.

4. If the only subparameter you are coding is SER or REF, code
VOLUME=SER=(serial number,...) or VOLUME=REF=reference.

5.. If the 1list of volume serial numbers consists of only one serial
number, you need not enclose the serial number in parentheses.

6. The VOLUME, DDNAME, and SYSOUT parameters are mutually exclusive
parameters; therefore, if DDNAME or SYSOUT is coded, do not code
the VOLUME parameter.

Providing Volume Information

A volume can be a tape reel, a disk pack, a data cell, a drum, or part
of an IBM 2302 Disk Storage device served by one access mechanism. The
VOLUME parameter provides information about the volume or volumes on
which an input data set resides or on which an output data set will
reside.

Before a data set can be read or written, the volume on which the
data set resides or will reside must be mounted. For an existing data
set, you must identify the volume or volumes on which the data set
resides by making a specific volume request. For a new data set, you
can make a specific volume request or let the system select a volume for
you by making a nonspecific volume request.

Specific Volume Request

A specific volume request informs the system of the volume's serial
number. Any of the following implies a specific volume request:

1. The data set is passed from an earlier step or is cataloged.

2. VOLUME=SER=serial number is coded on the DD statement.

3. VOLUME=REF=reference is coded on the DD statement, referring to an
earlier specific volume request.

' 232 JCL Reference (Release 20.1)

When you make a specific volume request, you can code the PRIVATE
subparameter or the PRIVATE and RETAIN subparameters in the VOLUME
parameter. For passed data sets, you can also code the volume count
subparameter. For cataloged data sets, you can also code the sequence
number and volume count subparameters.

Nonspecific Volume Request

A nonspecific volume request can be made only if you are defining a new
data set. When you make a nonspecific volume request, the system may
assign your data set to a volume that is already mounted or may cause a
volume to be mounted. What the system does depends on the volume state
of the volumes that are already mounted. The volume states that mounted
volumes can assume and how they affect volume selection are described
under "Volume States"™ at the end of this chapter.

When you make a nonspecific volume request, you can code the PRIVATE
subparameter, or the PRIVATE and RETAIN subparameters, and the volume
count subparameter in the VOLUME parameter. You should not code the
volume sequence number subparameter when you make a nonspecific volume
request.

THE PRIVATE SUBPARAMETER

When you make a specific or nonspecific volume request, you can code
PRIVATE as the first subparameter in the VOLUME parameter. The volume
assigned is called a private volume. This private volume cannot then be
assigned to any other data set for which a nonspecific volume request is
made. In addition, a private volume is demounted after its last use in
the job step unless RETAIN or PASS is coded or the volume is a
permanently resident or reserved volume. (Permanently resident and
reserved volumes are described under "Volume States"™ at the end of this
chapter.)

If PRIVATE is the only subparameter coded in the VOLUME parameter,
you need not enclose it in parentheses. :

When PRIVATE Is Not Coded

What occurs when PRIVATE is not coded depends on the type of volume
request and whether a direct access or tape device is requested.

Specific request for a direct access volume: If PRIVATE is not coded
and you make a specific request for a direct access volume, the volume
assigned is called a public volume. A public volume remains mounted
after its last use in a step so that it can be used again without the
need to remount it.

Nonspecific request for a direct access volume: If PRIVATE is not coded
and you make a nonspecific request for a direct access volume and the
data set is temporary, the system assigns a volume called a public
volume. If PRIVATE is not coded and you make a nonspecific request for
a direct access volume and the data set is nontemporary, the system
assigns a volume called a storage volume. Public and storage volumes
remain mounted after their last use in a step so that they can be used
again without the need to remount them. If it is possible that the data
set may require more space than was requested for it, request more than
one volume in the volume count subparameter of the VOLUME parameter and
more than one device in the unit count subparameter of the UNIT
parameter.

Section IV: The DD Statement -- VOLUME Parameter 233

Specific request for a tape volume: If PRIVATE is not coded and you
make a specific request for a tape volume, the system treats it as a
request for a private volume. (How this affects the volume is described
in the previous topic "The PRIVATE Subparameter.®)

Nonspecific request for a tape volume: If PRIVATE is not coded and you
make a nonspecific request for a tape volume and the data set is
nontemporary, the system treats it as a request for a private volume.
(As mentioned earlier, the system always considers certain requests to
be specific. For tape volumes, the system also considers the following
to be a specific request: a status of OLD or SHR and a disposition of
other than DELETE coded in the DISP parameter.) How a request for a
private volume affects the volume is described in the previous topic
"The PRIVATE Subparameter.”

If PRIVATE is not coded and you make a nonspecific request for a tape
volume and the data set is temporary, the system assigns a volume called
a scratch volume. A scratch volume remains mounted after its last use
in a step so that it can be assigned again without the need to remount
it. If it is possible that the data set may exceed one volume, request
more than one volume in the volume count subparameter of the VOLUME
parameter and more than one device in the unit count subparameter of the
UNIT parameter.

When PRIVATE is not coded, and the volume sequence number or volume
count subparameter is coded, you must code a comma to indicate the
absence of PRIVATE.

THE RETAIN SUBPARAMETER

If you have coded PRIVATE as the first subparameter in the VOLUME
parameter, you may want to code RETAIN as the second subparameter.
RETAEIN overrides the system action of demounting a private volume after
its use in a job step. Instead, the volume remains mounted until after
it is used in a subsequent step or at the end of the job, whichever
occurs first. If the data set resides on more than one volume and the
volumes are mounted in sequential order, only the last volume is
retained. ‘

The RETAIN subparameter need not be coded when the data set is to be
passed; the system automatically retains the volumes on which the data
set resides.

If the RETAIN subparameter is not coded and the volume sequence
number or volume count subparameter follows, code a comma to indicate
the absence of RETAIN. '

THE VOLUME SEQUENCE NUMBER SUBPARAMETER

When you are reading or lengthening an existing multivolume data set,
you can begin processing with other than the first volume of the data
set by coding a volume sequence number. The sequence number must be
less than or equal to the number of volumes on which the data set exists
and can range from 1 to 4 digits. A volume sequence number is normally
coded when volume serial numbers are not specified on the DD statement
(i.e., you are retrieving a cataloged data set or

VOLUME=(, ,seq#,REF=reference) is coded). If both a volume sequence
number and volume serial numbers are coded in the VOLUME parameter, you
will begin processing with the volume that corresponds with the volume
sequence number.

234 JCL Reference (Release 20.1)

The volume sequence number is a positional subparameter and must
follow the PRIVATE and RETAIN subparameters or the commas that indicate
their absence. If the volume sequence number subparameter is not coded
and the volume count subparameter follows, code a comma to indicate the
absence of a sequence number.

If a volume sequence number is used with a nonspecific volume
request, the results are unpredictable.

THE VOLUME COUNT SUBPARAMETER

The volume count subparameter tells the system the maximum number of
volumes an output data set may require. The number can range from 1
through 255. When you make a nonspecific volume request and the data
set may exceed one volume, request more than one volume in the volume
count subparameter and code PRIVATE or request the same number of
devices as volumes. When you request a non-specific tape volume for a
data set with no labels, the system assigns the volume serial numbers
required for the data set. If a volume count greater than 99 is
specified, duplicate volume serial numbers are assigned.

When you make a specific volume request and the data set may require
use of more volumes than there are serial numbers, specify in the volume
count subparameter the total number of volumes that may be used. By
requesting multiple volumes in the volume count subparameter, you can
ensure that the data set can be written on more than one volume if it
exceeds one volume.

If you make a nonspecific volume request and the volume count exceeds
the number of direct access devices requested in the UNIT parameter, you
should code PRIVATE, e.g., UNIT=(2311,4) ,VOLUME=(PRIVATE,,,6). When
PRIVATE is coded and all the mounted volumes are used, the system
demounts one of the volumes and then mounts another volume in its place
so that processing can continue. When PRIVATE is not coded and all the
mounted volumes are used, the system does not demount any of the
volumes; therefore, the job step abnormally terminates. For tape
devices, the PRIVATE subparameter is unnecessary; additional volumes are
mounted as they are required.

The volume count subparameter is a positional subparameter. If you
omit this subparameter, you ccde a comma to indicate its absence only if
PRIVATE, RETAIN, or the volume sequence number subparameter is coded and
the SER or REF subparameter follows.

SUPPLYING VOLUME SERIAL NUMBERS (SER)

To retrieve an existing data set, other than a cataloged or passed data
set, you must supply the system with the serial numbers of the volumes
on which the data set resides. When you are creating a data set, you
can supply the system with the serial numbers of the volumes on which
the data set will reside or let the system assign volumes to the data
set. One of the ways to supply the system with serial numbers is to
code the serial numbers on the DD statement. You can specify a maximam
of 255 volume serial numbers per DD statement and a maximum of #4095
volume serial numbers per job step.

A volume serial number must be 1 to 6 characters in length. If
volume serial number is not 6 characters, it will be padded with
trailing blanks. It can contain any alpaameric and national (#,35,3)
characters, and the hyphen. You must enclose any volume serial number
that includes special characters, other than a hyphen, in arostrophes
whenever you code that number in the VOLUME parameter. When using
various typewriter heads or printer chains, difficulties in volume

Section 1V: The DD Statement -- VOLUME Parameter 235

serial recognition may arise if you use other than alphameric
characters. Each volume at an installation should have a different
serial number regardless of the volume type, e.g., tape, disk; the
volume's serial number should be posted on the outside of the volume.

The SER subparameter appears as the last subparameter in the VOLUME
parameter. Follow SER= with the volume serial numbers. The serial
numbers must be enclosed in parentheses, unless there is -only one serial
number. If SER is the only subparameter you are coding, you can code
VOLUME=SER=(serial number,...) or VOLUME=SER=serial number.

SCRTCH should not be used as a volume serial number, because it is
used to notify the operator to mount a non-specific volume. For Optical
Readers, if no volume serial number is specified, VOLUME=SER=OCRINP is
assumed.

REFERRING THE SYSTEM TO AN EARLIER SPECIFIC VOLUME REQUEST (REF)

Another way to supply the system with volume serial numbers is to refer
the system to either a cataloged data set or a data set that is defined
earlier in the job. wWhen you do this, the system obtains volume
information, including volume serial numbers, and unit information from
the source you refer it to.

To refer the system to a cataloged data set or to a data set passed
earlier in the job that has not been assigned a temporary data set name,
you code REF as the last subparameter in the VOLUME parameter. Follow
REF= with the data set name of the cataloged or passed data set. The
data set name you code cannot contain special characters, except for
"periods used in a qualified name.

To refer the system to a data set defined earlier in the job that was
not passed or was passed but assigned a temporary name, you code REF= as
the last subparameter in the VOLUME parameter. Follow REF= with a
backward reference to the DD statement that contains the volume serial
numbers. This backward reference must be one of the following:

1. *.ddname. Use this form of backward reference when the DD
statement you are referring to is contained in the same job step.

2. *.stepname.ddname. Use this form of backward reference when the DD
statement you are referring to is contained in an earlier job step.

3. *.stepname.procstepname.ddname. Use this form of backward
reference when the DD statement you are referring to is contained
in a cataloged procedure step that is part of a procedure called by
an earlier job step.

In any case, if the ddname refers to a DD statement that defines a dummy
data set, the DD statement requesting use of the volumes assigned to
that data set is assigned a dummy status.

When you refer the system to a data set that resides on more than one
tape volume, the system assigns only the last volume. When you refer
the system to a data set that resides on more than one direct access
volume, the system assigns all of the volumes. In either case, you can
code the volume count subparameter if additional volumes may be
required.

If REF is the only subparameter you are codlng, you can code
VOLUME=REF=reference.

236 JCL Reference (Release 20.1)

Volume Affinity

Two or more data sets sharing the same volume have volume affinity.

This occurs when you specify the same volume serial numbers for the data
sets, or when you use the REF subparameter of the VOLUME parameter to
indicate that volumes identified in the catalog or on an earlier DD
statement in the job are to be assigned to the data set being defined.
The system ignores any request for a specific number of units made in
the UNIT parameter on the DD statement of a data set that has volume
affinity with at least one other data set. The number of units
allocated to the data set being defined will at least equal the number
of instances that volume affinity occurs. If the volume is a tape reel,
however, specifying unit affinity in the UNIT parameter will force the
system to honor the number of units requested. Unit affinity is
discussed in the section on the UNIT parameter of the DD statement.

Volume States

Every mounted volume is assigned several attributes by the system. The
attributes assigned to a mounted volume define the state of the volume;
the volume state controls when a volume is demounted and controls volume
sharing. Volume sharing is the allocation of a volume to two or more
data sets defined in the same job step, or, in a multiprogramming
environment, the allocation of a direct access volume to two or more
data sets defined in different job steps that are executing
concurrently. ’

The attributes that are assigned both to a tape or direct access
volume are the mount attribute and the use attribute. The nonsharable
attribute can also be assigned to a direct access volume. These
attributes are described in the next two topics.

THE MOUNT AND USE ATTRIBUTES

Every volume is assigned a mount and use attribute. The mount attribute
controls volume demounting. The use attribute is one of the factors
that controls allocation of mounted volumes to data sets. The mount and
use attributes are: :

(]] 1
| Mount | Use |
L 4 4
v T |
| o
Permanently resident	Public
Reserved	Private]
Removable	storage
I | Scratch|
L L b |

The following lists the mount attributes and describes how this
attribute and a use attribute are assigned to a volume.

1. Permanently resident volumes cannot be demounted. Only direct
access volumes can be permanently resident. While all direct
access volumes can be designated as permanently resident in a
special member of SYS1.PARMLIB named PRESRES, the following volumes
are always permanently resident:

¢ All volumes that cannot be physically demounted, such as a 2301
Drum Storage volume.

Section 1IV: The DD Statement -- VOLUME Parameter 237

e The volume from which the system is loaded (the IPL volume).

e The volume containing the system data sets SYS1.LINKLIB,
SYS1.PROCLIB, and SYS1.SYSJOBQE.

A permanently resident volume can be assigned the use attribute of
public, private, or storage. The use attribute is assigned to the
volume in the PRESRES member in SYS1.PARMLIB, or is public by
default. '

2. Reserved volumes remain mounted until an UNLOAD command is issued.
Both direct access and tape volumes can be reserved volumes. A
volume becomes reserved as a result of a MOUNT command or a PRESRES
entry. A volume is usually designated as a reserved volume to
avoid repeated mounting and demounting of the volume when it is to
be used by a group of related jobs.

A reserved direct access volume can be assigned the use attribute
of public, private, or storage. The use attribute is assigned to
the volume either in the PRESRES member in SYS1.PARMLIB or in a
parameter of the MOUNT command, depending on how the volume becomes
reserved.

A reserved tape volume is always assigned the use attribute of
private.

3. Removable volumes are those volumes that are neither permanently
resident nor reserved. Removable volumes are demounted either
after their last use in a job step or when the unit on which the
volume is mounted is required for another volume. Which occurs
depends on the use attribute assigned to the volume.

A removable direct access volume can be assigned the use attribute
of public or private. The use attribute of public is assigned when
the PRIVATE subparameter is not coded. The use attribute of
private is assigned when the PRIVATE subparameter is coded.

A removable tape volume can be assigned the use attribute of
scratch or private. The use attribute of scratch is assigned when
the PRIVATE subparameter is not coded, a nonspecific volume request
is made, and the data set is temporary. The use attribute of
private is assigned when the PRIVATE subparameter is coded, a
specific volume request is made, or the data set is nontemporary.

Note: 1If, when you make a nonspecific volume request for a tape
with IBM standard labels, the system allocates a device containing
a ready tape, the system will assume it is a scratch tape and use
it. This tape could be available for the following reasons:

e The operator had premounted the tape.

e The tape was left mounted as a scratch tape by another job
because the disposition specified for the data set on that tape
wads DELETE.

e The tape had been requested by another job, but the job
terminated before the tape became ready. As a result, no message
to demount the tape was sent to the operator. This situation can
be avoided by coding DEFER in the UNIT parameter to defer
mounting of the volume until the processing program attempts to
open the data set.

238 JCL Reference (Release 20.1)

Table 2 summarizes what type of volume can be assigned when you make
a specific or nonspecific volume request for a temporary or nontemporary
data set, how these attributes are assigned, and how the volume is

demounted.
Table 2. Combinations of Mount and Use Attributes
¥ Rl] 1
	Temporary	Nontemporary		
	Data set	Data Set		
b L		How		
Volume State	Type of Volume Request	How Assigned	Demounted	
t : T -+ : {				
Public/ [[
Permanently	Nonspecific	Specific	PRESRES Entry or	Always
llResident1 !or Speclflcl !by default !mounted !				
f L] l]] 1				
Privates	specific	specific IPRESRES Entry	Always i	
Permanently	I		mounted	
Resident?]	
F	+ t + !			
Storages lNonspec1flc	Nonspec1flc	PRESRES Entry	Always	
Permanently jor specific]or Specific		mounted		
Resident?				
¢ + i {				
Publicrs]Nonspec1f1c	Spec1f1c	PRESRES Entry or	UNLOAD	
Reserved?t	or Specific]	MOUNT command command		
} i 1 4				
fPrivate/ iSpecific fspecific PRESRES Entry or UNLOAD }				
Reserved (Tape			MOUNT command command	
and direct			(Oniy MOUNT	
access)			command for tape.)	
F t + t + {				
storages lNonspe01f1c	Nonspe01flc	PRESRES Entry or UNLOAD i		
Resexrved*	or specific	or Specific	MOUNT command command	
L [i 4]				
T T v 1				
Publics	Nonspecific	specific	VOLUME=PRIVATE is	When unit
Removablel	or specific		not coded on the	is required
			DD statement	by another
]	volume.		
F = + 1 i				
Private/	Specific Specific	VOLUME=PRIVATE is	After its	
Removable	jcoded on the DD luse, unless]			
(Tape and		statement	RETAIN or	
direct access)		(Specific request	PASS is	
			or a nontemporary	coded, in
		data set for tape	which case,	
		also causes this volume		
			assignment.)	demounted
[1	[jat job			
i	termination			
1 i 4 4				
{Scratch (Tape fNonspecific Nonspecific iAny tape data set	When unit i			
jonly)	or Specific	or Specific	(Scratch volume	is required
			becomes private	by another
		if VOLUME=PRIVATE	volume.	
		is coded, specific		
			request is made,	
	J]or data set is.			
		nontemporary.)	i	
} L L L L {				
*Direct access volumes only.				
1 J

Section IV

: The DD Statement -- VOLUME

Parameter 239

NONSHARABLE ATTRIBUTE

The nonsharable attribute is assigned by the system to direct access
volumes that may require demounting during execution of the step that
requested the volume. When a volume is assigned the nonsharable
attribute, the volume cannot be assigned to a data set defined in the
same step for which a nonspecific request is made or to any data set
defined in another step that is being executed concurrently.

The nonsharable attribute is never assigned to a permanently resident
or reserved volume or to a volume that was mounted to satisfy a
nonspecific request for a public volume. Except for these cases just
described, the nonsharable attribute is always assigned to a volume when
the following occurs:

1. You make a specific volume request and request more volumes than

' devices.

2. You request unit affinity with an earlier data set defined in the
job step. (The volumes on which the data sets reside must be on
different volumes.)

3. You request deferred mounting of the volume on which the data set

' resides.

4. You make a nonspecific request for a private volume.

SATISFYING SPECIFIC VOLUME REQUESTS

In the following cases the system can satisfy a request for a specific
volume that is already mounted:

1. The volume is permanently resident or reserved. The use attribute
of the volume does not affect assignment of the volume and the use
attribute is not changed.

2. The direct access volume is a removable volume that has not been
assigned the nonsharable attribute and is being used by a
concurrently executing step. (If your request would make the
volume nonsharable, the system waits to assign you that volume
until all other job steps using the volume have terminated.) The
volume remains private if its use attribute is private. The volume
becomes private if the use attribute is public and the request is
for a private volume. The volume remains public if its use
attribute is public and the request is for a public volume.

3. The direct access volume is a removable public volume and is not in
use. The use attribute (private or public) assigned to the volume
when it is allocated is determined by the presence or absence of
the PRIVATE subparameter.

4. The tape volume is a scratch volume and is not in use. The use
attribute of private is assigned to the volume.
SATISFYING NONSPECIFIC VOLUME REQUESTS
There are four types of nonspecific volume requests that can be made:
1. You can request a private volume for a temporary data set.
2. You can request a private volume for a nontemporary data set.
3. You can request a public volume for a temporary data set.
4. You can request a storage volume for a nontemporary data set.
How the system satisfies these different types of regquests are described

below. Since the system satisfied the first two types of requests in
the same way, these two requests are described together.

240 JCL Referepce (Release 20.1)

When you make a nonspecific volume request for a private direct
access or tape volume, the system assigns a volume that is mounted
but not in use or requests the operator to mount a volume. The
operator should mount a volume whose space is unused. This allows
you to have control over all space on the volume. Once mounted,
the volume is assigned the use attribute of private.

When you make a nonspecific volume request for a public direct
access volume that is to contain a temporary data set, the system
assigns a public or storage volume that is already mounted, or
requests the operator to mount a removable wvolume. If a mounted
volume is selected, its use attribute is not affected. 1If a
removable volume is mounted, it is assigned the use attribute of
public.

When you make a nonspecific volume request for a public tape volume
that is to contain a temporary data set, the system assigns a
scratch volume that is already mounted, or it requests the operator
to mount a tape volume. Once mounted, the volume is assigned the
use attribute of scratch.

When you make a nonspecific volume request for a public direct
access volume that is to contain a nontemporary data set, the
system assigns a storage volume if one is mounted. Otherwise, the
request is treated as a nonspecific volume request for a private
volume.

When you make a nonspecific volume request for a public tape volume
that is to contain a nontemporary data set, the request is treated
as a nonspecific volume request for a private volume.

Examples of the VOLUME Parameter

1.

//DD1 DD DSNAME=STEP,UNIT=2311 ,DISP=QLD, . X
/7 VOLUME= (PRIVATE, , , SER=548863) -

This DD statement defines an existing data set and informs the
system that the data set resides on the volume whose serial number
is 548863. Since PRIVATE is coded in the VOLUME parameter, the
system will not assign the volume to any data set for which a
nonspecific volume request is made and will cause the volume to be
demounted after its use in the job step.

//DDB DD DSNAME=COMM, DISP=(NEW, KEEP) , SPACE=(CYL, (30,2)), X
/7 VOLUME= (PRIVATE,,, 2) ,UNIT=2311

The DD statement named DDB defines a new data set for which the
system is to assign a volume. Since only one device is requested
(UNIT=2311) and the volume count is 2, PRIVATE is coded to ensure
that the additional volume can be mounted if required.

//DD2 DD DSNAME=QUET, DISP= (MOD,KEEP) ,UNIT=(2400,2), X
7/ VOLUME=(, , ,4,SER=(96341,96342))

This DD statement defines an existing data set, which resides on the
volumes whose serial numbers are 96341 and 96342, and requests that
a total of 4 volumes be used to process the data set if required.
//7DD3 DD DSNAME=§60UT, DISP=NEW,UNIT=2400

This DD statement defines a temporary data set and, by omission of

the VOLUME parameter, requests the system to assign a suitable
volume to the data set.

Section IV: The DD Statement -- VOLUME Parameter 241

Section V: The Commandv Statement

Commands are issued to communicate with and control the system. All
commands may be issued to the system via the operator's console; some
commands may be also issued via a command statement in the input stream.
In most cases, the operator issues the command. If you include a
command statement as part of your job control statements, the command is
usually executed as soon as it is read. (Disposition of commands read
from an input stream is specified as a PARM parameter field in the
cataloged procedure for the input reader.) Since a command is usually
executed as soon as it is read, it is not likely that the command will
be synchronized with the execution of the job step to which it pertains.
Therefore, you should tell the operator which commands you want issued
and when they should be issued, and let him issue them.

A command statement may appear immediately before a JOB statement, an-

EXEC statement, a null statement, or another command statement.

The Command Statement Format

r?:ﬁcommand operand comments

The command statement consists of the characters // in columns 1 and 2,
and three fields -- the operation (command), operand, and comments
fields.

Rules for Coding

Code the command statement in the following order:

1. Code // in columns 1 and 2.

A T T O U I I P RN SN AU PSP WA I SPA S SN O

2. Follow // with one or more blanks.

3. Code the command.

i123laf5[e[7l8lsol { [2[3[a[5[el7Iele]ol i [2]3[4]5[6[7[8[S][o]1 [2]3[a[5[6[7]8]S[0i 1 [2[3[4l6[6[7[8]o] i [2[3[a[5[6[7]8Io]0[T2[3[4[5[6]7[89lo] 1 [2[3]4]5[6[7]8]S0,

L =10 71-80
l
WL DISPLAY o e e e

4. Follow the command with one or more blanks.

Section V: The Command Statement 243

5. Code any required operands follo%ing the blank or blanks. Separate
each operand with a comma.

31-40 5160 71-80

@ =10 '
T2ElafElelTIeIolo 1 [2[3T4]SIe 17 [BISI0] 1 [2[3[Al5 6 7IelS ol [ZBIAlS e[7[B[a [0 1 [2[3AIsTe 7 BIS[o] 1 [2[3[A[5]6] 7 [eI3]0[1 [2[3[AI5Tel FIelSIOl i 12 [3[AIS[6[7IESIO)
) DISPLAY) TOBMAMES T oy Ly e b Ll i L e i L

6. Follow the operands with one or more blanks.

7. Code any comments following the blank or blanks.

1-10 | 11-20] 21-30] 31-40 ! 41-50 I 51-60] 61-70 1 71-80
(RlAEIe[e o012 3lAlsTel7IBI30 [P BIAl5 (el [BIel0l1 [213[a 156l 7IB[B [0l 1]2 [B1A (5 6] TIBlS]0] 1 2 [3[4 (6l 7 8910 11213 4I5Sl F18[S[ol 1 [2[3[4[s16[7IBI3I0,

N DJSPLMQ JOBNANES, T, B.. AKIN ReQueSTED (CoMMAND, BE, LSSWED . . VIS I I SR

8. The command statement cannot be continued.

Commands That Can Be Entered Through the Input Stream

|The commands that can be entered through the input stream in MFT or MVT
are listed below, with a brief explanation of what each command requests
the system to do. Most command statements consist of an operation
(command) field and an operand field, which includes options associated
with the command. The operand field is not described here; a complete
discussion of the commands and operands is presented in the Operator's
Guide publication.

MFT

In MFT, the following commands can be entered through the input stream.

CANCEL: The CANCEL command tells the system to immediately terminate

the scheduling or execution of a job, to cancel a job on the queue, or
to stop the writing of an output data set currently being processed by
an output writer.

DISPLAY: The DISPLAY command causes a console display of certain system
status information.

HOLD: The HOLD command causes the system to temporarily prevent one job
or all jobs from being selected for processing.

LOG: The LOG command is used to enter information into the system log.

MODIFY: The MODIFY command tells the system to change the
characteristics of a functioning output writer.

MOUNT: The MOUNT command tells the system to assign a device so a
particular volume can be mounted on it. This device can then be
assigned by the system to any job step that requires that volume.

RELEASE: The RELEASE command tells the system to resume job selection,
which had been suspended by the HOLD command or TYPRUN=HOLD on the JOB
statement.

REPLY: The REPLY command is used to reply to messages from the system
or from a processing program that requests information.

244 JCL Reference (Release 20.1)

RESET: The RESET command tells the system to change the class or
priority, or both, of a job in an input, hold, or system output queue.

SET: The SET command is used to establish the values of certain
variables, such as the time of day and the date.

START: The START command tells the system to start a particular system
process, e.g., an input reader, graphic job processor, initiator, etc.

STOP: The STOP command tells the system to stop a system process that
had been previously started by a START command, or to stop the console
display effected by the DISPLAY command.

UNLOAD: The UNLOAD command tells the system to remove the volume
previously mounted in response to a MOUNT command.

VARY: The VARY command tells the system to place an I/0 device or path
into an online or offline status.

WRITELOG: The WRITELOG command tells the system to have the system

output writer write out the contents of the system log.

MVT
In MVT, the following commands can be entered through the input stream.

CANCEL: The CANCEL command tells the system to immediately terminate
the scheduling or execution of a job, to cancel a job on the queue, or
to stop the writing of an output data set currently being processed by
an output writer.

DISPLAY: The DISPLAY command causes a console display of certain system
status information.

HOLD: The HOLD command causes the system to temporarily prevent one job
or all jobs from being selected for processing.

10G: The LOG command is used to enter information into the system log.

MODIFY: The MODIFY command tells the system to change the
characteristics of a functioning initiator or output writer.

MOUNT: The MOUNT command tells the system to assign a device so a
particular volume can be mounted on it. This device can then be
assigned by the system to any job step that requires that volume.

RELEASE: The RELEASE command tells the system to resume job selection,

which had been suspended by the HOLD command or TYPRUN=HOLD on the JOB
statement.

REPLY: The REPLY command is used to reply to messages from the system
or from a processing program that requests information.

RESET: The RESET command tells the system to change the class or
priority, or both, of a job in an input, hold, or system output gqueue.

SET: The SET command is used to establish the values of certain
variables, such as the time of day and the date.

START: The START command tells the system to start a particular system
process, e€.g., an input reader, graphic job processor, initiator, etc.

Section V: The Command Statement 245

STOP: The STOP command tells the system to stop a system process that
had been previously started by a START command or to stop the console

. display effected by the DISPLAY command.

UNLOAD: The UNLOAD command tells the system to remove the volume
previously mounted in response to a MOUNT command.

VARY: The VARY command tells the system to place an I/0 device or path
into an online or offline status. In a Model 65 multiprocessing system
(M65MP), this command is used to place I/0 devices, paths, CPU, channel,
and storage units in online or offline status.

WRITELOG: The WRITEILOG command tells the system to have the system
output writer write out the contents of the system log.

Example of the Command Statement

i. // START INIT,,,AB START AN INITIATOR FOR MFT
This command tells the system to start an initiator. The characters

A and B indicate that the initiator is to select for execution only
jobs of job classes A and B.

246 JCL Reference (Release 20.1)

Section VI: The Comment Statement

The comment statement can be used to contain information that may be
helpful to yourself or ancther person that may be running your job or
reviewing your output listing.

The comment statement may appear anywhere except before the JOB
statement. A comment statement cannot be continued using continuation

conventions; however, it can be followed by one or more comment
statements.

The Comment Statement Format

(A;/*comments

The comment statement consists of the characters //%* in columns 1, 2,
and 3, and the comments field.

Rules for Coding

Code the comment statement in the following order:

1. Code //#* in columns 1, 2, and 3.

1-i0 2i-30 31-40 41-50 51-60 61-70 [71-80
..[231a15[e[7]8lol0{ 1T2[3[a[5[6[7]8[o[ol 1 [2[314 (516l 7[8[s]o] i [2[3[al5 el 7[8[o]0(1 [2[3]4[5]6[78[5]0] 112 3[A[5[el 78S [0l 1T2]3[4lsel7[8[9[o] 1 T2[3l4l5[6[7Ie[SI0

{/J.*..i....p..c....g.,.‘r....!..‘.l....5..,Af....g.u,|.,..!...‘l...‘;....f....

2. Code the comments in columns 4 through 80.

: 1-10 11-20 2i-30 1 31-40 | 41-50 | 51-60 61-70 71-80
TeBlaBe] 7]8"1‘[2{3]415 s[7[e[9fol112134]5[6l718[o[0 1 [2[3[4I5[6l7]8[S10] i [2[3]al56[7 [e]ofol1 [2[3[4l56l 7 [8[[0] i 121 3[4[5]617[8]9[0} 1 [2[3[4]5[6[7[eIS]0

LIXTHTS T4, BE USED, P, CT] 1.8, Wi, £ST: o PSE,

3. If all of the comments cannot be included on this comment
statement, follow it with another comment statement.

OUTPUT LISTINGS

In the MSGLEVEL parameter, you can request an output listing of all the
control statements processed in your job. If you do, you can identify
comment statements by the appearance of ###* in columns 1, 2, and 3.

Example of the Comment Statement

1. //*THE COMMENT STATEMENT CANNOT BE CONTINUED,
//*BUT IF YOU HAVE A LOT TO SAY, YOU CAN FOLLOW A
//*COMMENT STATEMENT WITH ONE OR MORE COMMENT
//*STATEMENTS.

Section VI: The Comment Statement 247

Section VII: The Delimiter Statement

When you submit data through an input stream, you must indicate to the
system the beginning of the data and the end of the data. The beginning
of the data is indicated by a DD * or DD DATA statement. The end of the
data is indicated by a delimiter statement. The delimiter statement,
however, is not required if the data is preceded by a DD # statement.

The Delimiter Statement Format

(4; comments

The delimiter statement consists of the characters /* in columns 1 and 2
and the comments field.

Rules for Coding

Code the delimiter statement in the following oxder:
1. Code /* in columns 1 and 2.

1-10 1 11-20 i 21-30 | 31-40 4150 51— 60 61-70 71-80
1[2[3]a[5]6[7[8[9[ol 1]12]3]4[516[7[BI9]0 T [2[3[4I5[6l7]8]9]0] i [2[3[4]5[6l7 8I0l0] 1 [2[3]4]516]7 [8[ol0l 1 [23 a6 6[718]9]0L I [2]314]5]6] 7[8[9]0[1 12[3]41616] 7[8[9]0

1. S S D S PR IR S P I S P I S B P B

2. Code any desired comments.

1% TH H S7. 105 DATA, Fo 10) 4 ST, T

3. The comments cannot be continued.

Example of the Delimiter Statement

i. //J0B54 JOB,"C BROWN',MSGLEVEL=(2,0)
//STEPA EXEC PGM=SERS
//DbD1 DD =*

/% END OF DATA FOR THIS STEP

Section VII: The Delimiter Statement 249

Section VIII: The Null Statement

The null statement can be placed at the end of a job's control
statements and data or at the end of all the statements in an input
stream. The null statement tells the system that the job just read
should be placed on the qgueue of jobs ready for processing. If there
are any control statements or data between a null statement and the next
JOB statement, these are flushed by the system.

If you do not follow your job's control statements and data with a
null statement, the system places your job on the queue when it
encounters another JOB statement in the input stream. If your job is
the last job in the input stream and a null statement does not follow
it, the system recognizes that this is the last job in the input stream
and it places your job on the queue.

If a null statement follows a control statement that is being
continued, the system treats the null statement as a blank comment field
and assumes that the control statement contains no other operands.

The Null Statement Format

//

The null statement consists only of the characters // in columns 1 and
2. The remainder of the statement must be blank.

Example of the Null Statement

i. //7MYJB JOB ¢ 'C BROWN' ,MSGLEVEI~=(1,1)
//STEP1 EXEC PROC=FIELD
//STEP2 EXEC PGM=XTRA
//DD1 DD UNIT=2400

//DD2 DD *
data

/*)

7/

Section VIII: The Null Statement 251

Section IX: The PEND Statement

The PEND statement is used to mark the end of an in-stream procedure.
The name field of the PEND statement can contain a name. If comments
are to be used, a blank must separate the operation field from the
comment field. The PEND statement may not be continued.

The PEND Statement Format

ré&name PEND comments
The PEND statement consists of the characters // in column 1 and 2 and

four fields -- the name field, the operation (PEND) field, and the
comments field.

Rules for Coding

Code the PEND statement in the following order:

i. Code // in columns 1 and 2.

[| l e ST RR B,
ft EJBHEEIEE]EIIEE]E]IEI |2|3\4'5|6|7|s|9|ol1 Izlaqus[sme@loln |2|5|4[5|s|7!s S[olT [2[31al516] 7 8/e]0l 12 3[4l5[6] 71890 1 [2]3[al516]7 18]S [0

/_.‘I..n....;....l,...!..‘.l..Hl,‘.‘l...LjJ..‘|.‘..|....1...,x....4..,.|....1.‘.,

T T T T T

2. Pollow // with a 1- to 8-character name Oor one or more blanks.

3. If a name is coded,
Follow the name with one or more blanks.

4. Code PEND.

31-40 | 41-5| T | 61-70 |
7i8[8]o[T 234567890 545678901234¢e7990x234567390

l!l'\!IIA(IIIII!(IIIIIAII!IAIIII(XI!Illll\llI!llllllltk&bi»lll'lj

5. Follow PEND with one or more blanks.

6. Code any desired comments follow1ng the blank or blanks.

EEIHBEIEIE@IIBBE! e 7 BECHHEE 41_1—6'[7@51—|-I_|—2T3'|7‘675 6[7[819] IIBEEIEIE EBEEIGQEIIBBBEIIE nﬂmamm
THIS CoN. PROC o o i

A PEND statement cannot be continued.

Section IX: The Pend Statement 253

Examples of the PEND Statement

1.//PROCEND1 PEND THIS STATEMENT IS REQUIRED FOR INSTREAM
This PEND statement contains a comment.
2.// PEND

A PEND statement can contain only the coded operation field preceded by
// and one or more blanks and followed by blanks.

254 JCL Reference (Release 20.1)

Section X: The PROC Statement

The PROC statement is the first control statement in an in-stream
procedure. Optionally, the PROC statement can also be the first control
statement in.a cataloged procedure. If a PROC statement is included in
a cataloged procedure, it is used to assign default values for symbolic
parameters in the procedure. In an in-stream procedure, the PROC
statement is used to mark the beginning of the procedure and can be used
to assign default values to symbolic parameter in the procedure. A
default value appearing on a PROC statement can be overridden by
assigning a value to the same symbolic parameter on the EXEC statement
that calls the procedure.

The PROC Statement Format

7//name PROC operands comments
The PROC statement consists of the characters // in columns 1 and 2 and

four fields -- the name field, the operation (PROC) field, the operand
field, and the comments field.

Rules for Coding

Code the PROC statement in the following order:

1. Code // in columns 1 and 2.

-0 1|-20 21-30 3i-40 41-50 51-60 6i-70
l234567890l234567890|234567890l234567890!234567890!234567890!234537390I234567890

/L..l..A.I-..,I,‘..l....l....I.A..I‘..,!.. T PRI B P P I
|

2. Follow // with a 1- to 8-character name or one or more blanks.
A name is required for in-stream procedures.

[~ n-20 . 71-80
o[T]2[3[4]5[6][7, mmmnEBEEGIBEEHEBBB@IBBEHEBMBIBEEHEE}HEEIEQEIIEEBEBIEEEIIIEJEIE]BBIEIE

IZERBEITE]
[/ﬁ&ﬂAMD.g....i...,!....1....9....1.,..5....|,L..;..L.|....!....1.‘..!....1p.

3. If a name is coded, follow the name with one or more blanks.

4. Code PROC.

,JLELﬂ&MAuﬂEOG N I B I IV BT U IR S IV BN A I
| } i | } |

5. Follow PROC with one or more blanks.

Section X: The PROC Statement 255

6. Code the symbolic parameters and their default values following the
blank or blanks. Separate each symbolic parameter and its default
value with a comma. In a cataloged procedure, this field is not
optional. In an in-stream procedure, this field is optional; if no
operands are included, comments may not be coded.

7. Pollow the operands with one or more blanks.

8. Code any desired comments following the blank or blanks.

3140

N 0 UM =0kl A = LEVEL = (712430, DO_NOT, NWLLLE .

9. The PROC statement can be continued onto another statement.

=10 1i<20 21-30 3i-40 21-50 51-60 61-70 71-80
[(2[Zl4]slel7[eIS[ol 12345 16l7Ieolo! T 12[3a[sI6l7[eolo] 1 T2[3][a]slel7I8[s o] 1 [2]314[5[e[7]8[olol [2[3la5 el 7890 1T2[3[415[6[7[8[9[0] [2[3[4]5]6]7[8I9[0
i SYMBOLT S, M4, LTBRARM e e e

If PROC statement is to be included in a cataloged procedure, it must
appear as the first control statement. For an in-stream procedure, the
PROC statement is required; it must appear as the first control
statement of the in-stream procedure.

Assigning a Value on a PROC Statement to a Symbolic Parameter
To assign a value on a PROC statement to a symbolic parameter, code:
symbolic parameter=value

Omit the ampersand that precedes the symbolic parameter in the
- procedure.

You can also nullify a symbolic parameter on the PROC statement.
Code:

symbolic parameter=

Omit the ampersand that precedes the symbolic parameter and do not
follow the equal sign with a value.

There are some things you should keep in mind as you assign values to
symbolic parameters:

1. The value you assign can be any length, but it cannot be continued
onto another statement.

2. If the value contains special characters, enclose the value in

° apostrophes (the enclosing apostrophes are not considered part of
the value). If the special characters include apostrophes, each
must be shown as two consecutive apostrophes.

256 JCL Reference (Release 20.1)

3. If you assign more than one value to a symbolic parameter on the
PROC statement, the first value encountered is assigned.

4. TIf the symbolic parameter is concatenated with some other
information (e.g., &JOBNO.321), this information and the value you
assign to the symbolic parameter cannot exceed a combined total of
120 characters.

Examples of the PROC Statement

1. //DEF PROC STATUS=OLD,LIBRARY=SYSLIE,NUMBER=777777
//NOTIFY EXEC PGM=ACCUM
//DD1 DD DSNAME=MGMT, DISP= (§STATUS,KEEP) , UNIT=2400, X
/77 VOLUME=SER=888888
//DD2 DD DSNAME=§LIBRARY, DISP=(OLD,KEEP) , UNIT=2311, X
7/ VOLUME=SER=§NUMBER

Three symbolic parameters are defined in this cataloged procedure:
§STATUS, ELIBRARY, and &éNUMBER. Values are assigned to the symbolic
parameters on the PROC statement. These values are used when the
procedure is called and values are not assigned to the symbolic
parameters by the programmer.

2. //CARDs PROC

This PROC statement can be used to mark the beginning of an
in-stream procedure named CARDS.

Section X: The PROC Statement 257

Section XI: Appendixes

Appendixes

Section XI: Appendixes 259

Appendix A: Cataloged and In-stream Procedures

A cataloged procedure is a set of job control statements that has been
assigned a name and placed in a partitioned data set known as the
procedure library. (The IBM-supplied procedure library is named
SYS1.PROCLIB; at your installation, there may be additional procedure
libraries, which would have different names.) An in-stream procedure is
a set of job control statements in the form of cards that have been
placed in the input stream of a card reader. An in-stream procedure can
be executed any number of times during the job in which it appears.

Both cataloged and in-stream procedures can consist of one or more
steps; each step is called a procedure step. Each procedure step
consists of an EXEC statement and DD statements. The EXEC statement
identifies to the system what program is to-be executed. The DD
statements define the data sets to be used by the program.

You can use a cataloged procedure by coding the procedure name on an
EXEC statement. You can use an in-stream procedure by coding the
procedure name that is on the PROC statement on an EXEC statement. With
both cataloged and in-stream procedures, you can follow this EXEC
statement with DD statements that modify the procedure for the duration
of the job step.

Appendix A consists of two chapters. The first chapter "Using
Cataloged and In-stream Procedures" describes how to call a procedure,
how to assign values to symbolic parameters, how to override parameters
on the EXEC and DD statement, and how to add DD statements to a
procedure. The second chapter "Writing Procedures: Cataloged and
In-stream" describes the makeup of a procedure, how to use symbolic
parameters, how to place a set of job control statements in the
procedure library, and how to modify a procedure.

Appendix A: Cataloged and In-stream Procedures 261

Using Cataloged and In-stream Procedures

How to Call a Cataloged Procedure

To use a cataloged procedure, submit a JOB statement followed by an EXEC
statement. On the EXEC statement you identify the cataloged procedure
in one of two ways:

1. Code, as the first operand, the name assigned to the procedure; or
2. Code PROC= followed by the name assigned to the procedure as the
first operand.

When you call a procedure, the system finds the control statements in
the procedure library and then executes the programs identified on the
EXEC statements in the procedure.

Besides identifying the procedure on the EXEC statement, you can
assign values to symbolic parameters and override parameters that are
coded on the EXEC statements contained in the procedure. You follow the
EXEC statement with DD statements when you want to override DD
statements in the procedure or add DD statements to the procedure.

When a cataloged procedure is written as part of the system output
listing (i.e., MSGLEVEL=(1,0), MSGLEVEL=(1,1), or MSGLEVEL=1l is coded on
the JOB statement), the procedure statements can be easily identified.
An XX appears in columns 1 and 2 of a procedure statement that you did
not override; X/ appears in columns 1 and 2 of a procedure statement
that you did override; XX* appears in columns 1 through 3 of a procedure
statement, other than a comment statement, that the system considered to
contain only comments; and *** appears in columns 1 through 3 of a
comment statement. In addition, if the procedure contains symbolic
parameters, the output listing will show the symbollc parameters and the
values assigned to them.

How to Call an In-stream Procedure

To use an in-stream procedure, include the procedure, beginning with a
PROC statement and ending with a PEND statement, with the job control
language for your job. The in-stream procedure can appear immediately
following the JOB statement, the JOBLIB DD statement, or the SYSCHK DD
statement. The in-stream procedure cannot appear before the JOB
statement or after the EXEC statement that calls it. An in-stream
procedure can appear after a SYSIN DD * statement; however, this is not

advisable because the SYSIN DD * statement causes the input reader to
obtain direct access space for a system input data set. Appendix A
To call the procedure, you identify the in-stream procedure on an

EXEC statement in one of two ways:

1. Code, as the flrst operand, the name on the PROC statement of the
procedure; or

2. Code PROC= followed by the name on the PROC statement of the
procedure.

When you call an in-stream procedure, the system finds the control
statements that have been written on a direct access device and then
executes the programs identified on the EXEC statements of the
procedure.

Appendix A: Cataloged and In-Stream Procedures -- Using Procedures 263

Besides identifying the procedure on the EXEC statement, you can
assign values to symbolic parameters and override parameters that are
coded on the EXEC statements contained in the procedure. You follow the
EXEC statement with DD statements when you want to override DD
statements in the procedure or add DD statements to the procedure.

When an in-stream procedure is written as part of the system output
listing (i.e., MSGLEVEL~(1,0), MSGLEVEL=(1,1), MSGLEVEL=1, or MSGLEVEL=2
is coded on the JOB statement), the procedure statements can be easily
identified. An ++ appears in columns 1 and 2 of a procedure statement
that you did not override; +// appears in columns 1 and 2 of a procedure
statement that you did override; ++* appears in column 1 through 3 of a
procedure statement, other than a comment statement, that the system
considered to contain only comments; and **#* appears in columns 1
through 3 of a comment statement. 1In addition, if the procedure '
contains symbolic parameters and you assign values to these on the EXEC
statement that calls the procedure, the output listing will show the
symbolic parameters and the values assigned to them.

Asgsigning Values to Symbolic Parameters

The cataloged or in-stream procedure you call may contain symbolic:
parameters. A symbolic parameter is characterized by a name preceded by
an ampersand (&) and appears in the operand field of a cataloged oxr’
in-stream procedure statement or a DD statement used to override a DD
statement in the procedure. A symbolic parameter stands as a symbol for
a parameter, a subparameter, or a value. Symbolic parameters are used
so that the procedure can be modified easily when it is called by a job
step.

The following are examples of symbolic parameters:
//STEP1 EXEC PGM=COB,PARM="P1,§P2,P3"
//DD1 DD DSNAME=FIX,UNIT=§DEVICE,SPACE= (CYL, (§SPACE,10))
//DD2 DD DSNAME=CHAG,UNIT=2400,DCB=BLKSIZE=§LENGTH

Symbolic parameters must either be assigned values or nullified
before the procedure is executed. There are two ways that a symbolic
parameter can be assigned a value:

1. You assign a value to the symbolic parameter on the EXEC statement
that calls the procedure.

2. The PROC statement, which can appear as the first statement in a
cataloged procedure and must appear as the first statement in an
in-stream procedure, assigns a default value to the symbolic
parameter.

Any default value assigned to a symbolic parameter on the PROC statement
is overridden when you assign a value to the same symbolic parameter on
the EXEC statement that calls the procedure.

If cataloged procedures contain symbolic parameters, the installation
should provide you with a list of the symbolic parameters used, what
‘meaning is associated with each symbolic parameter, and what default
value has been assigned to each of the symbolic parameters on the PROC
statement. (The PROC statement is optional for catalog procedures;
therefore, there may be no default values assigned to the symbolic
parameters used in a catalog procedure.) You need this information to
determine what the symbolic parameter represents and to decide whether
to use the default value or to assign a value to the symbolic parameter
on the EXEC statement that calls the procedure.

264 JCL Reference (Release 20.1)

To assign a value to a symbolic parameter, you code on the EXEC
statement that calls the procedure:

symbolic parameter=value

Omit the ampersand that precedes the symbolic parameter. For example,
if the symbolic parameter &§NUMBER appears on a DD statement in the
procedure, code NUMBER=value on the EXEC statement that calls the
procedure. Any value you assign to a symbolic parameter is in effect
only during the current execution of the procedure.

There are some things you should keep in mind as you assign values to
symbolic parameters:

1. The value you assign can be any length, but it cannot be continued
onto another statement.

2. If the value contains special characters, enclose the value in
apostrophes (the enclosing apostrophes are not considered part of
the value). If the special characters include apostrophes, each
must be shown as two consecutive apostrophes.

3. If, on the EXEC statement, you assign more than one value to a
symbolic parameter, the first value encountered is used.

4, If the symbolic parameter is concatenated with some other
information (e.g., &§J0OBNO.321), this information and the value you
assign to the symbolic parameter cannot exceed a combined total of
120 characters.

5. If the symbolic parameter is a positional parameter followed by
other parameters in the statement, it should be delimited in the
procedure by a period instead of a comma. Then, if the parameter
is nullified on the PROC statement or on an EXEC statement calling
the procedure, the statement containing the symbolic parameter will
not begin with a comma. The system recognizes the period as a
delimiter; the period does not appear in the statement when you
nullify or assign a value to the symbolic parameter. When you do
assign a value to a symbolic parameter that is a positional
parameter, you should follow the value with a comma; the value must .
then be enclosed in apostrophes since a comma is a special
character.

For example, in the following DD statement contained in a cataloged
procedure named EXAMPLE, &6POSPARM represents a positional
parameter.

//DEFINE DD &§POSPARM.DSN=ATLAS,DISP=0LD

To replace the symbolic parameter §POSPARM with the parameter

DUMMY, you would code on the EXEC statement calling the procedure:

//DOTHIS EXEC EXAMPLE,POSPARM='DUMMY,'

When the cataloged procedure named EXAMPLE is executed, the DD
statement named DEFINE appears as:

//DEFINE DD DUMMY, DSN=ATLAS,DISP=OLD

Note: Do not confuse positional parameters with positional
subparameters. For a list of the positional parameters you can
code on the DD statement, see "Positional and Keyword Parameters"
in the section on the DD statement.

Appendix A: Cataloged and In-Stream Procedures -- Using Procedures 265

NULLIFYING A SYMBOLIC PARAMETER
Besides assigning values to symbolic parameters, you can nullify a

symbolic parameter, i.e., tell the system to ignore the symbolic
parameter.

To nullify a symbolic parameter, code on the EXEC statement that
calls the procedure:
symbolic parameter=

Omit the ampersand that precedes the symbolic parameter in the procedure
and do not follow the equal sign with a value.

For example, if a DD statement in a procedure named TIMES is
//DD8 DD UNIT=1403,UCS=§UCSINFO
and you want to nullify the symbolic parameter &§UCSINFO, you would code:

//CALL EXEC TIMES,UCSINFO=

266 JCL Reference (Release 20.1)

Example of Assigning Values to Symbolic Parameters

1. The following are the first four statements of a cataloged
procedure named ASSEMBLE that contains symbolic parameters. The
PROC statement assigns a default to the symbolic parameter §OBJECT
and nullifies the symbolic parameter &§LIST. Notice that the
symbolic parameter &DEPT is not assigned a value on the PROC
statement; therefore, the job step that calls this procedure must
assign a value to §DEPT.

//DEF PROC OBJECT=NODECK,LIST=

//ASM EXEC PGM=IEUASM, PARM=(°®LINECNT=50", X
7/ §LIST.LIST, §OBJECT)

//SYSLIB DD DSNAME=SYS1.MACLIB,DISP=0OLD

V4 DD DSNAME=LIBRARY. §DEPT.MACS, DISP=OLD

When you call this procedure, you can assign values to the symbolic
parameters by coding:

//STEP3 EXEC ASSEMBLE,DEPT=D82, OBJECT=DECK

The value assigned to §OBJECT in this EXEC statement overrides the value
assigned to §OBJECT in the PROC statement. Since no value is assigned
to SLIST in this EXEC statement, LIST is nullified -- because that is
the default specified in the PROC statement.

While the procedure is being executed, the first four statements of
this procedure would appear as shown below. :

//DEF PROC OBJECT=NODECK,LIST=

//RASM EXEC PGM=IEUASM, PARM=('LINECNT=50"', X
/7 LIST,DECK)

//SYSLIB DD DSNAME=SYS1.MACLIB, DISP=0LD

7/ DD DSNAME=L IBRARY . D8 2MACS, DISP=OLD

The above example applies to in-stream procedures as well as cataloged
procedures. However, you must refer to the name on the PROC statement
of the in-stream procedure when calling the procedure.

2. The following is an in-stream procedure that contains symbolic
parameters. The PROC statement marks the beginning of the
in-stream procedure and in this example assigns defaults to
symbolic parameters &D, &U, §V, and &€S. The procedure is named

INSTREAM.
//INSTREAM PROC D=' (NEW,CATIG)',U=2311,V="SER=66655",
7/ S=*(TRK,(1,1,1))"* Appendix A
//71IN1 EXEC PGM=IEWL,PARM='XREF,LIST,NCAL'

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSNAME=UTC,DISP=0LD,UNIT=2311,VOLUME=SER=66651
//SYSLIN DD DSNAME=UTE, DISP=OLD, UNIT=2311, VOLUME=SER=66652
//SYSLMOD DD DSNAME=§&LOAD,DISP=§D,UNIT=6U, VOLUME=&V , SPACE=§S
7/ PEND : . ‘

Appendix A: Cataloged and In-Stream Procedures -- Using Procedures 267

When you call this procedure, you must code the name on the PROC
statement on the EXEC statement. You can assign values to the symbolic
parameters by coding:

//CALL EXEC INSTREAM,D='(NEW, PASS)"',V="SER=66653"

The values assigned to &D and &V in this EXEC statement override the
values assigned to these symbolic parameters in the PROC statement.

Since no value is assigned to &U OR &S, the defaults specified on the
PROC statement are used when the procedure is executed.

While the procedure is being executed, it would appear as shown
below.

//INSTREAM PROC D='(NEW,CATLG)"',U=2311,V="'SER=66655",

/7 S=*(TRK, (1,1,1))

//7IN1 EXEC PGM=I1EWL,PARM='XREF,LIST,NCAL"

//SYSPRINT DD SYSOUT=A

//5YSUT1 DD DSNAME=UTC, DISP=0LD, UNIT=2311, VOLUME=SER=66651
//SYSLIN DD DSNAME=UTE, DISP=OLD,UNIT=2311,VOLUME=SER=66652
//SYSLMOD DD DSNAME=§&LOAD, DISP=(NEW, PASS), UNIT=2311,

// VOLUME=SER=66653,SPACE= (TRK, (1,1,1))

The PEND statement is printed but is not executed.

3. The following are the first four statements of a cataloged
procedure named TEST that contains symbolic parameters. The PROC
statement nullifies the symbolic parameter &DUM1 and assigns a
default value to the symbolic parameter §DUM2.

//TEST PROC DUM1=,DUM2="*DUMMY, *
//STEP1 EXEC PGM=IEFBR14

//DD1 DD §DUM1.DSN=ABLE, DISP=0OLD
//DD2 DD &§DUM2.DSN=BAKER, DISP=OLD

§DUM1 and &DUM2 are positional parameters. They are delimited by a
period so that, if they are nullified, the DD statement does not begin
with a comma. The system recognizes the period as a delimiter; the
period does not appear in the statement when you nullify or assign a
value to the symbolic parameter. The value assigned to DUM2 in the PROC
statement is followed by a comma so that a comma will delimit the value
when it appears in the statement in the procedure. The value must be
enclosed in apostrophes because the comma is a special character.

When you call this procedure, you can reverse the default values on the
PROC statement so that the DD statement named DDl defines a dummy data
set and the DD statement named DD2 defines an existing data set:

//STEPUP EXEC TEST,DUM1="DUMMY,',DUM2=

The value assigned to §DUM1 on the EXEC statement overrides the
nullification of €DUM1 on the PROC statement. §&DUM2 is nullified on
this EXEC statement, so the value assigned to §DUM2 on the PROC
statement is ignored.

While this procedure is being executed, the first four statements will
appear as shown below:

//TEST PROC DUM1=, DUM2="'DUMMY, '
//STEP1 EXEC PGM=IEFBR1Y

//DD1 DD DUMMY, DSN=ABLE, DISP=OLD
//DD2 DD DSN=BAKER,DISP=0OLD

268 JCL Reference (Release 20.1)

Overriding, Adding, and Nullifying Parameters on an EXEC Statement

You can override, add, or nullify parameters coded on EXEC statements
contained in a cataloged or in-stream procedure. You make these changes
on the EXEC statement that calls the procedure. You should override
parameters only when you want to change their values. Do not override
parameters to correct syntactical errors in the procedure. You cannot
change the PGM parameter. The changes you make are in effect during the
current execution of the procedure.

OVERRIDING EXEC STATEMENT PARAMETERS

To override an EXEC statement parameter in a procedure, identify on the
EXEC statement that calls the procedure the parameter you are
overriding, the name of the EXEC statement on which the parameter

appears, and the change to be made. The format required to override a
parameter is:

parameter.procstepname=change

For example, if one of the EXEC statements in the procedure named FILL

//STEP3 EXEC PGM=DEF,REGION=100K
and you want to change REGION=100K to REGION=80K, you would code:
//CALL EXEC FILL,REGION.STEP3=80K
You can change more than one EXEC statement parameter in the
procedure. For example, if one of the EXEC statements in the procedure
name JKW is:
//STEP2 EXEC PGM=OUT,TIME=(2,30),REGION=120K
and you want to change TIME=(2,30) to TIME=4 and REGION=120K to
REGION=200K, you would code:
//STEP3 EXEC JKW,TIME.STEP2=4,REGION.STEP2=200K
If you want to change different parameters that appear on different
EXEC statements in the procedure, you must code all overriding

parameters for one procedure step before those for the next step. For
example, if the first three EXEC statements in a procedure named DART

are:
//STEP1 EXEC PGM=JCTSB, PARM='#*14863", REGION=100K Avoendix A
//STEP2 EXEC PGM=JCTRC,REGION=80K PP

//STEP3 EXEC PGM=JCTQD,COND=(8,LT),TIME=3

Appendix A: Cataloged and In-Stream Procedures -- Using Procedures 269

You want to make the following modifications:

1. Override the PARM parameter on the first EXEC statement.
2. Override the REGION parameter on the first EXEC stadatement.
3. Override the REGION parameter on the second EXEC statement.
4. Override the TIME parameter on the third EXEC statement.

The EXEC statement that calls the procedure would appear as:

//STEPC EXEC DART,PARM.STEP1="*86348"', ’ X
7/ REGION.STEP1=120K, REGION.STEP2=100K, X
144 TIME.STEP3= (4, 30)

You can code an EXEC statement parameter and omit the term
"procstepname." When you do this, the procedure is modified as follows:

e If the PARM parameter is coded, it applies only to the first
procedure step. If a PARM parameter appears in a later EXEC
statement, it is nullified.

e If the TIME parameter is coded, it applies to the total procedure.
If the TIME parameter appears on any of the EXEC statements in the
procedure, it is nullified.

e If any other parameter is coded, it applies to every step in the
procedure. If the parameter appears on an EXEC statement, it is
overridden; if the parameter does not appear on an EXEC statement,

it is added.

For example, assume the EXEC statements in a procedure named RYIN
are:

/7/STEP1 EXEC PGM=SECT,PARM=140947,REGION=100K
//STEP2 EXEC PGM=PARA,PARM=105600,COND=EVEN
//STEP3 EXEC PGM=SENT,PARM=L1644,REGION=80K
You want to make the following modifications to the procedure:

1. Override the PARM parameter in the first procedure step, and
nullify all other PARM parameters in the procedure.
2. Assign the same region size to all steps in the procedure.
The EXEC statement that calls the procedure would appear as:

//SPAA EXEC RYIN,PARM=L1644,REGION=136K

While the procedure named RYIN is being executed, these three EXEC
statements would appear as:

//STEP1 EXEC PGM=SECT,PARM=L1644, REGION=136K

//STEP2 EXEC PGM=PARA,COND=EVEN,REGION=136K
//STEP3 EXEC PGM=SENT,REGION=136K

270 JCL Reference (Release '20.1)

ADDING EXEC STATEMENT PARAMETERS

To add a parameter to an EXEC statement in the procedure, identify on
the EXEC statement that calls the procedure the parameter you are
adding, the name of the EXEC statement to which you want to add the

parameter, and the value you are assigning to the parameter. The format
required to add a parameter is:

parameter.procstepname=value
Parameters you are adding and overriding for a step must be coded before

those parameters you are adding and overriding for the next step.

For example, if the first two EXEC statements of a procedure named
GLEAN are:

//STEP1 EXEC PGM=FAC,COND=(8,LT).
//STEP2 EXEC PGM=UP,PARM=377685

You want to make the following modifications to the procedure:
1. Override the COND parameter on the first EXEC statement.
2. Add the ROLL parameter to the first EXEC statement.
3. Add the REGION parameter to the second EXEC statement.
The EXEC statement that calls the procedure would appear as:
//STPA EXEC GLEAN,COND.STEP1=(12,LT), X

7/ ROLL.STEP1=(NO,NO) ,REGION.STEP2=88K

NULLIFYING EXEC STATEMENT PARAMETERS

To nullify a parameter on an EXEC statement in the procedure, identify,

on the EXEC statement that calls the procedure, the parameter you want

to nullify and the name of the EXEC statement on which the parameter

appears. The format required to nullify a parameter is:
parameter.procstepname=

Parameters that you are nullifying, overriding, and adding to a step
‘must be coded before those for the next step.

For example, if the first two EXEC statements of a procedure named

GINN are:
_ e . _ Appendix A
//STEP1 EXEC PGM=INV,PARM="146,899",RD=R

//STEP2 EXEC PGM=DET,PARM=XYA34,COND=(80,GT)

You want to make the following modifications to the procedure:
1. Nullify the PARM parameter on the first EXEC statement.
2. Add the COND parameter to the first EXEC statement.
3. Override the COND parameter on the second EXEC statement.
The EXEC statement that calls the procedure would appear as:
//STEPY EXEC GINN,PARM.STEP1=,COND.STEP1=(25,EQ), X

7/ COND.STEP2=(80,GE)

Appendix A: Cataloged and In-Stream Procedures =-- Using Procedures 271

Example of Overriding, Adding, and Nullifying Parameters on an EXE(
Statement

1.

You want to call the following cataloged procedure named ESEAP:

//STEPA EXEC PGM=FLIER,PARM=7121190,ACCT=(4805,UNASGN)
//DDA DD DSNAME=LIBRARY.GROUP67 ,DISP=0OLD

//DDB DD DSNAME=STAND.FIVE,DISP=CLD

//STEPB EXEC PGM=VERSE,DPRTY=(11,13) ,PARM=780684,RD=R
//DDC DD UNIT=2311,SPACE=(TRK, (10,2))

//DDD DD DSNAME=COL, DISP=OLD

//DDE DD DDNAME=IN

You want to make the following modifications to the procedure:

1.
2.
3.
4.
5.

Add the REGION parameter to both EXEC statements.’

Add the DPRTY parameter to the first EXEC statement.
Override the ACCT parameter on the first EXEC statement.
Nullify the RD parameter on the second EXEC statement.
Add the COND parameter to the second EXEC statement.

The EXEC statement that calls the procedure would appear as:

//MINC EXEC ESEAP,REGION=86K,DPRTY.STEPA=(11,13), X

7/ ACCT.STEPA= (4805, 7554) , RD.STEPB=, COND.STEPB= (60, LE)

The two EXEC statements in the procedure would appear as shown below
while the procedure is being executed. These modifications do not
appear on an output listinge.

2.

You
1.
2.
3.

The

272

//STEPA EXEC PGM=FLIER,PARM=7121190,ACCT=(4805,7554), X
// REGION=86K,DPRTY=(11,13)
//STEPB EXEC PGM=VERSE,DPRTY=(11,13),REGION=86K,COND=(60,LE)

You want to call the following in-stream procedure named INLINE:

//INLINE PROC
//STEP1 EXEC PGM=COMP,ACCT=(7037,2361),REGION=86K

//DD1 DD DSNAME=INFORM,DISP=0LD,UNIT=2311,VOLUME=SER=75250
//DD2 DD DSNAME=LCJWC, DISP=0LD, UNIT=2311, VOLUME=SER=76250
//STEP2 EXEC PGM=CHECKS,PARM=212334,COND=(50,LE) ,ACCT=(2001,0539)
//DD3 DD DSNAME=PAY, DISP=0OLD, UNIT=2311, VOLUME=SER=MEMORY
/7/DDU4 DD DSNAME=INCREAS,DISP=0LD,UNIT=2311, VOLUME=SER=33333
7/ PEND

want to make the following modifications to the procedure:

Add DPRTY parameter to both EXEC statements.

Nullify the REGION parameter on the first EXEC statement.

Override the ACCT parameter on the second EXEC statement.

EXEC statement that calls the proceduie would appear as:

//CALLER EXEC INLINE,DPRTY=(11,13) ,REGION.STEP1=,ACCT.STEP2=(4710,

/7 5390)

JCL Reference (Release 20.1)

The two EXEC statements in the procedure would appear as shown below
while the procedure is being executed. These modifications do not
appear on an output listing.

//STEP1 EXEC PGM=COMP,ACCT=(7037,2361),DPRTY=(11,13)
//STEP2 EXEC PGM=CHECK,PARM=212334,COND=(50,LE),DPRTY=(11,13)

7/ ACCT=(4710,5390)

Overriding, Adding, and Nullifying Parameters on a DD Statement

You can override, add, or nullify parameters coded on a DD statement
contained in a cataloged procedure. You make these changes at the time
the procedure is called; these changes are in effect during the current
execution of the procedure. Use one DD statement to override, add, and
nullify parameters on the same DD statement in the procedure.

OVERRIDING DD STATEMENT PARAMETERS

To override a parameter on a DD statement in the procedure, you must
include a DD statement following the EXEC statement that calls the
procedure. The ddname of this DD statement must identify the DD
statement that contains the parameter you are overriding and the
procedure step in which the DD statement appears. Code, in the operand
field of this DD statement, the parameter you are overriding and the
change; or code a mutually exclusive parameter that is to take the place
of a parameter. The format required for a DD statement following the
EXEC statement is:

//procstepname.ddname DD parameter=change
or
//procstepname. ddname DD mutually exclusive parameter=value

For example, if one of the DD statements in a procedure step named
STEPU is:

//DD2 DD DSNAME=ABIN,DISP=0OLD,VOLUME=SER=54896 ,UNIT=2400
and you want to change UNIT=2400 to UNIT=180, you would code:
//STEP4.DDZ DD UNIT=180

When you code a mutually exclusive parameter on an overriding DD
statement, the system replaces the parameter on the specified DD

statement with the mutually exclusive parameter. For example, the
parameters SYSOUT and DISP are mutually exclusive parameters. If one of (.USESWING.{
the DD statements in a procedure step named PRINT is: , g »

//DD8 DD SYSOUT=C
and you do not want the data set printed, you could code:
//PRINT.DD8 DD DUMMY,DISP=(NEW,DELETE)
You have replaced the SYSOUT parameter with the DISP parameter and added

the DUMMY parameter. (The DUMMY parameter causes this DD statement to
define a dummy data set.)

Appendix A: Cataloged and In-Stream Procedures -- Using Procedures 273

You can change more than one parameter that appears on a DD statement
in the procedure. For example, if one of the DD statements in a
procedure step named STEPS5 is: ,

//DDX DD DSNAME=FIES,DISP=OLD,UNIT=2400—2,VOLUME=REF=*.STEP2.DDC
and you want this DD statement to define a new data set, you would code:
//STEP5.DDX DD DSNAME=RVAl,DISP=(NEW,KEEP)

If you want to change parameters that appear on different DD
statements in the same procedure step, the overriding DD statements must
be in the same order in the input stream as the corresponding DD
statements in the procedure step. For example, if the first step of a

procedure named AJG is:

//STEP1 'EXEC PGM=MGR,REGION=80K

//DD1 DD DSNAME=LONE, DISP= (NEW,DELETE) , X
/77 UNIT=2400,VOLUME=SER=568998
//DD2 DD UNIT=TAPE

//DD3 DD UNIT=2311,DIsp=(,PASS) ,SPACE=(TRK, (20,2))

You want to make the following modifications to the procedure:

1. Change the UNIT parameter on the first DD statement.
2. Change the VOLUME parameter on the first DD statement.
3. Change the SPACE parameter on the third DD statement.

The statements in the input stream would appear as:

//CATP EXEC AJG
//STEP1.DD1 DD UNIT=2400-3, VOLUME=SER=WORK18
//STEP1.DD3 DD SPACE= (CYL, (4,1))

If you want to change parameters that appear in different procedure
steps in the cataloged procedure you are calling, the overriding DD
statements must be in the same order as are the procedure steps.

The DCB parameter: If you want to change some of the keywoxrd
subparameters in the DCB parameter, you need not recode the entire DCB
parameter. Instead, code only those subparameters that you are changing
and any mutually exclusive subparameters that are to replace particular
subparameters. For example, if one of the DD statements in a procedure
step named NED is:

//DD3 DD DSNAME=PER,DISP=(,KEEP),UNIT=2311,SPACE=(TRK, (88,5)), X
/7 DCB=(BUFNO=1, BLKSIZE=80, RECFM=F,BUFL=80)

and you want to change BLKSIZE=80 to BLKSIZE=320 and BUFL=80 to
BUFL=320, you would code:

//NED.DD3 DD DCB=(BLKSIZE=320,BUFL=320)
The DCB subparameters BUFNO and RECFM remain unchanged.
When you are overriding a procedure DD statement that contains a DCB
parameter and the overriding DD statement uses a backward reference to

copy the DCB information on an earlier DD statement, the DCB information
on the procedure DD statement overrides any of the corresponding

274 JCL Reference (Release 20.1)

subparameters that are copied. For example, if one of the DD statements
in a step named NED of a procedure named CATROC is:

//DD5 DD DSNAME=PER,UNIT=2311,SPACE= (TRK, (88,5)), X
/77 DCB=(BLKSIZE=640, RECFM=FB)

and you have in your input stream:

/7/STP1 EXEC PGM=A

//DD1 DD DSN=AIR,UNIT=2311,SPACE=(TRK, (10,1)), X
/77 DCB=(BLKSIZE=320, RECFM=FBA,BUFL=320)
//5TP2 EXEC CATROC

//NED.DD5 DD DCB=%.STP1.DD1

The DD statement DD5 in cataloged procedure would appear as shown below
while the procedure is being executed. This modification does not
appear on output listing.

//DD5 DD DSNAME=PER,UNIT=2311,SPACE= (TRK, (88,5)), X
’/ DCB=(BLKSIZE=640, RECFM=FB, BUFL=320)

If you want to override a DD statement that contains a dsname
positional subparameter in the DCB parameter, you must recode the dsname
supbparameter, even though you do not want to change it. For example, if
one of the DD statements in a procedure step named BANK is:

//DD5 DD DSNAME=SAVE,DISP=(NEW, KEEP) ,UNIT=2311, X
7/ SPACE=(CYL, (12, 2)), DCB=(ACCNT, BUFNO=5, KEYLEN=2)

and you want to change BUFNO=5 to BUFNO=3, you would code:
//BANK.DDS5 DD DCB=(ACCNT, BUFNO=3)

Both the dsname ACCNT and KEYLEN subparameters remain unchanged. You
must code ACCNT on the overriding DD statement.

ADDING DD STATEMENT PARAMETERS

To add a parameter to a DD statement in the procedure, you must include
a DD statement following the EXEC statement that calls the procedure.
The ddname of this DD statement must identify the DD statement to which
you are adding a parameter and the procedure step in which the DD
statement appears. Code, in the operand field of this DD statement, the
parameter you are adding. The format required for a DD statement
following the EXEC statement is:

//procstepname.ddname DD parameter=value

For example, if one of the DD statements in a procedure step named "
STPTWO is: Appendix A

//DDM DD DSNAME=TYPE,DISP=(,KEEP),UNIT=2400

and you want to add the VOLUME parameter, you would code:
//STPTWO.DDM DD VOLUME=SER=569433
If you want to add parameters or change parameters that appear on
different DD statements, the overriding DD statements must be in the

same order in the input stream as the corresponding DD statements in the
procedure.

Appendix A: Cataloged and In-Stream Procedures -- Using Procedures 275

NULLIFYING DD STATEMENT PARAMETERS'

There may be parameters on a DD statement that you do not. want to
override, but you want the system to ignore. Also, when you modify a DD
statement in a procedure by overriding certain parameters or adding
parameters, there may be some parameters remaining that no:longer have
meaning for your data set definition but would effect processing of the
data set. To temporarily remove these parameters, you can nullify them.
(If you are replacing a parameter with a mutually exclusive parameter,
do not nullify the parameter that is being replaced.)

To nullify a parameter on a DD statement in the procedure, you must
include a DD statement following the EXEC statement that calls the
procedure. The ddname of this DD statement must identify the DD '
statement that contains the parameter you are nullifying and the
procedure step in which the DD statement appears. Code in the operand
field of this DD statement the parameter you are nullifying followed by
an equal sign; do not follow the equal sign with a value. The format
required for a DD statement following the EXEC statement is:

//procstepname. ddname DD parameter=

For example, if one of the DD statements. in a procedure step named
SALLS is:

//DDP DD DSNAME=STEP,DISP=0LD,UNIT=2314, X
4 VOLUME=SER=556978 o :

and you are overriding the DSNAME, DISP, and UNIT parameters, adding the
DCB parameter, and want the VOLUME parameter ignored, you would code:

//SALLS.DDP DD DSNAME=§§TEMP,DISP=(,PASS), UNIT=2400~2, X
/7 . DCB=(DEN=2, TRTCH=ET) , VOLUME=

If you want to override a DD statement that contains a dsname
positional subparameter in the DCB parameter, you must recode the dsname
subparameter, even though you do want to change it. For example, if one
of the DD statements in a procedure step named BANK is:

//DD5 DD DSNAME=SAVE,DISP=(NEW,KEEP),UNIT=2311, X
7/ SPACE=(CYL, (12,2)) ,DCB=(ACCNT ,BUFNO=5,KEYLEN=2)
and you want to change BUFNO=5 to BUFNO=3, you would code:
//BANK.DD5 DD DCB=(ACCNT,BUFNO=3)
Both the dsname ACCNT and KEYLEN subparameters remain unchanged. You

must code ACCNT on the overriding DD statement.

To nullify the DCB parameter, each DCB subparameter must be nullified
individually. For example, if a DD statement contains
DCB=(RECFM=FBA, BLKSIZ2E=160,LRECL=80), then DCB=(RECFM=,BLKSIZE=, LRECI~)
must be coded on the overriding DD statement in order to nullify the DCB
parameter.

To nullify a DUMMY parameter, code the DSNAME parameter on the
overriding DD statement, but do not use the data set name NULLFILE.
(Coding DSNAME=NULLFILE has the same effect as coding the DUMMY
parameter.)

276 JCL Reference (Release 20.1)

Caution: When you are overriding a procedure DD statement that contains
the SPACE parameter and the overriding DD statement defines an existing
data set, be sure to nullify the SPACE parameter. When a secondary
quantity is coded on the procedure DD statement, the system uses this
value to assign additional space to the data set instead of the
secondary quantity you may have specified when the data set was created.
Also, the RLSE subparameter, when specified on the procedure statement,
causes the system to release any of the existing data set's unused
space.

If you want to nullify, add, or override parameters that appear on
different DD statements, the overriding DD statements must be in the
same order in the input stream as the corresponding DD statements in the
procedure. .

Examplesof Overriding, Adding, and Nullifying Parameters on a DD
Statement

1. You want to call the following procedure named SALL:

//STPl1 EXEC PGM=GLF1l4

//7DD11 DD DSNAME=XTRA.LEVEL, DISP=0OLD

//DD12 DD DSNAME=CONDS, DISP=(,PASS) , UNIT=2400

//DD13 DD DUMMY, DSNAME=LAST, VOLUME=REF=%*.DD11,DISP=(, CATLG)
//STP2 EXEC PGM=FAIR '

//DD21 DD DSNAME=#,STPl1.DD12,DISP=(OLD,DELETE)

/7/DD22 DD DSNAME=JETZ, DISP= (NEW, KEEP), UNIT=2311, X
7/ SPACE=(CYL, (3,1) ,RISE)

//DD23 DD SYSOUT=G

You want to modify the procedure as follows:

1. Change the data set name on the statement named DD12 from CONDS to
c8495.

2. Add the VOLUME parameter to the statement named DD12.
3. Nullify the DUMMY paramete: on the statement named DD13.

4. Change the disposition on the statement named DD21 from DELETE to
KEEP.

5. Define an existing data set on the statement named DD22.
‘ Appendix A
6. Add the parameter UNIT on the statement named DD23.

7. Add the parameter SPACE on the statement named DD23.

The EXEC statement that calls the procedure and the overrldlng DD
statements that follow it would appear as:

//CALL ‘ EXEC SALL

//STP1.DD12 DD DSNAME=C84 95, VOLUME=SER=979354

//STP1.DD13 DD DSNAME=LAST

//STP2.DD21 DD DIsP= (OLD, KEEP)

//STP2.DD22 DD SPACE=, DSNAME=GR1833,DISP=0OLD, LABEL= (,NL) , X
/7 VOLUME=SER=577632

//STP2.DD23 DD UNIT=2314,SPACE=(TRK, (150,15))

Appendix A: Cataloged and In-Stream Procedures -- Using Procedures 277

The cataloged procedure would appear as shown below while the
procedure is being executed. These modifications do not appear on an
output listing.

/7/STP1
//DD11
/7/DD12
4

//DD13
//STP2
//DD21
//DD22
7/

//DD23

EXEC
DD
DD

DD
EXEC
DD
DD

DD

PGM=GLF14

DSNAME=XTRA .LEVEL, DISP=0OLD
DSNAME=C8495,DIsP=(,PASS) ,UNIT=2400,
VOLUME=SER=979354

DSNAME=LAST ,VOLUME=REF=#,DD11,DISP=(, CATLG)
PGM=FAIR

DSNAME=#.8TP1.DD12,DISP=(OLD,KEEP)
DSNAME=GR1833,DISP=0LD,UNIT=2311, LABEL=(,NL),
VOLUME=SER=577632

SYSOUT=G,UNIT=2314, SPACE=(TRK, (150,15))

2. You want to call the following in-stream procedure named CARDS:

//CARDS
//STEPA
//DDAl
//DDA2
Va4
//STEPB
//DDB1
//DDB2
//DDB3
/7

You want to

1. Change
NAMES .

PROC
EXEC
DD
DD

EXEC
DD
DD
DD
PEND

PGM=FIGURE
DSNAME=NUMBERS, DISP=OLD
DSNAME=PROCESS, DISP=(, PASS) ,UNIT=2311,
SPACE=(TRK, (1,1,1))

PGM=RESULT

DSNAME=VSC, DISP=0OLD

DSNAME=+% .STEPA.DDA2,DISP= (OLD,KEEP)
SYSOUT=C

modify the procedure as follows:

the data set name on the DDAl statement from NUMBERS to

2. Add the VOLUME parameter to the DDA2 statement.

3. Add the parameters UNIT and SPACE on the DDB3 statement.

The EXEC statement that calls the procedure and the overriding DD
statements that follow it would appear as:

//CALL

//STEPA.DDAL

//STEPA.
//STEPB.

DDAZ
DDB3

EXEC CARDS

DD DSNAME=NAMES

DD VOLUME=SER=5858

DD UNIT=2311,SPACE=(TRK, (150,15))

The in-stream procedure would appear as shown below while the
procedure is being executed. These modifications do not appear on an
output listing.
symbolic parameters.

//STEPA
//DDAl1
//DDA2
7/
//STEPB
//DDB1
//DDB2
//DDB3

278 JCL Reference

EXEC

DD
DD

EXEC

DD
DD
DD

The PROC statement is processed only when it contains

PGM=FIGURE
DSNAME=NAMES, DISP=01D

DSNAME=PROCESS, DISP=(,PASS) ,UNIT=2311,
SPACE=(TRK, (1,1,1)),VOLUMES=SER=5858
PGM=RESULT

DSNAME=VSC,DISP=0LD

DSNAME=*. STEPA . DDA 2, DISP= (OLD, KEEP)
SYSOUT=C, UNIT=2311,SPACE= (TRK, (150,15))

(Release 20.1)

Overriding DD Statements That Define Concatenated Data Sets

When a concatenation of data sets is defined in a cataloged procedure

and you attempt to override the concatenation with one DD statement,
only the first (named) DD statement is overridden.
you must include an overriding DD
DD statements in the input stream

statements in the procedure. The second and subsequent overriding
statements must not be named. If you do not wish to change one of the

concatenated DD statements, leave
corresponding DD statement in the
where a blank operand field for a

the operand field blank on the
input stream.

To override others,
statement for each DD statement; the
must be in the same order as the DD

(This is the only case

DD statement is valid.)

For example, suppose yoﬁ are calling a procedure that includes the

following sequence of DD statements in STEPC:

//7DD4 DD
7/ DD
/7/ DD
7/ DD

If you want t

named STRP and
would appear as:

//STEPC.D
7/
/7
/7

DSNAME=A.B.C,DISP=0OLD
DSNAME=STRP, DISP=OLD, UNIT=2311, VOL=SER=X12182
DSNAME=TYPE3,DISP=OLD, UNIT=2311, VOLUME=SER=BL142

o

D4

DD
DD
DD
DD

DSNAME=A.B.D, DISP=0LD

DSNAME=INV.CLS, DISP=0OLD

override the DD statements that define the data sets
A.B.D, the sequence of DD statements in the input stream

DSNAME=PALS8,DISP=0LD,UNIT=2311,VOL=SER=125688

Adding DD Statements to a Procedure

You can add DD statements to a procedure when you call the procedure.
These additional DD statements are in effect only while the procedure is

being execute

d.

To add a DD statement to a procedure step, follow the EXEC statement
that calls the procedure and any overriding DD statements for that step

with the additional DD statement.

The ddname of this DD statement must

identify the procedure step to which this statement is to be added and
must be assigned a name that is different from all the ddnames in the
The format required for a DD statement following the
EXEC statement is:

procedure ste

D

//procstepname.ddname DD parameters

For example, if the first step of a cataloged procedure named MART

is:

//STEP1 EXEC

//DDM
7/
//DDN

You want to make the following modifications to

1. Change the UNIT parameter on the statement

DD

DD

PGM=DATE

DSNAME=BPS (MEMG) , DISP=0OLD,
UNIT=2311,VOLUME=SER=554982

UNIT=SYSQE

2. Add a DD statement.

The statements in the input stream would appear

//PROC

EXEC MART

/7/STEP1.DDN DD
//STEP1.DDO DD

Appendix A: Cataloged and In-Stream Procedures

UNIT=180
UNIT=181

the procedure:

named DDN.

—-- Using Procedures

X

279

Examples of Adding DD Statements to a Procedure

1. You want to call the following procedure named D995A:

//SA EXEC PGM=ANALY

/7/DDA1 DD DSNAME=PROJ.C843, DISP=0OLD
//DDAZ2 DD DDNAME=SYSIN

//7DDA3 DD SYSOUT=B

//SB EXEC PGM=MANMO3

//DDB1 DD UNIT=2400

//DDB2 DD UNIT=2400 }

//DDB3 DD DSNAME=X54 ,VOLUME=SER= (36544 ,36545), X
/7 UNIT=(2400,2),DISsP=(OLD,KEEP)

You want to modify the procedure as follows:

1. Supply the data set definition for the DDA2 statement by adding a
DD statement.

2. Change the SYSOUT parameter on the DDA3 statement to UNIT=1403.

3. Add a DD statement to the step named SB.

The EXEC statement that calls the procedure and the overriding and
additional DD statements that follow it would appear as:

//PROCED EXEC D995A
//SA.DDA3 DD UNIT=1403,DISP=NEW
//SA.SYSIN DD *

/%
//SB.DDB4 DD UNIT=(2400,,SEP=(DDB1,DDB2))

The cataloged procedure would appear as shown below while the
procedure is being executed. These modifications do not appear on
output listing.

//SA EXEC PGM=ANALY
//7DDA1 DD DSNAME=PROJ.C843,DISP=0LD
/7/DDA2 DD *

//DDA3 DD UNIT=1403,DISP=NEW

//SB EXEC PGM=MANMO3

//DDB1 DD UNIT=2400

//DDB2 DD UNIT=2400 : ,

//DDB3 DD DSNAME=X54 , VOLUME=SER= (36544 ,36545) , X
V4 UNIT=(2400,2),DISP=(OLD,KEEP)

//DDB4 DD UNIT=(2400,,SEP=(LDB1,DDB2))

2. You want to call the following in-stream procedure named WORK:

//WORK PROC
//STP1 EXEC' PGM=PROD

//DD1 DD DSNAME=PROJECT, DISP=0LD
/7/DD2 DD DDNAME=SYSIN
/77 PEND

You want to modify the procedure by supplying the data set definition
for the DD2 statement by adding a DD statement.

280 JCL Reference (Release 20.1)

The EXEC statement that calls the procedure and the additional DD
statement that follows it would appear as

//ADD EXEC WORK
//STP1.SYSIN DD *

data

/¥)

The in-stream procedure would appear as shown below while the

procedure is being executed. These modifications do not appear on the
output listing.

//STP EXEC PGM=PROD

//DD1 DD DSNAME=PROJECT, DISP=0OLD
//DD2 DD *

Appendix A: Cataloged and In-Stream Procedures -- Using Procedures 281

Writing Procedures: Cataloged and In-stream

Why Catalog Job Control Statements

Applications performed at your installation on a regular basis and
applications that require many control statements can be simplified when
the control statements for these applications are cataloged. Once the
job control statements for an application are cataloged on the procedure
library, any programmer who wants to perform the application need only
submit a JOB and EXEC statement. On the EXEC statement, he refers the
system to the control statements required to perform the application.

If there are modifications the programmer wants to make for the duration
of the job step, he assigns values to symbolic parameters on the EXEC
statement and follows the EXEC statement with overriding DD statements.

Why Use In-stream Procedures

In-stream procedures appear within the job stream instead of in the
procedure library. Like cataloged procedures, they eliminate the
necessity of repeating the same set of control statements in a job. An
in-stream procedure can be executed any number of times during a job in
which it appears and fifteen uniquely named in-stream procedures can
appear in one job. In-stream procedures can be modified just as
cataloged procedures. ' They also provide you with a means of testing
procedures before adding them to the procedure library as cataloged
procedures. Because an in-stream procedure may exist in the form of
cards, it can be considered a "portable procedure" in that it can easily
be moved from one input stream to another.

THE CONTENTS OF CATALOGED AND IN-STREAM PROCEDURES

Cataloged and in-stream procedures contain one or more EXEC statements,
each followed by associated DD statements. Each EXEC statement
identifies the program to be executed, and the DD statements that follow
define the input, output, and work data sets to be used by the program.
Each EXEC statement and its associated DD statements are called a
procedure step.

Cataloged and in-stream procedures cannot containg

1. EXEC statements that refer to other cataloged procedures.
2. JOB, delimiter, or null statements.

3. DD statements with the ddname JOBLIB.

4. DD statements with * or DATA coded in the operand field.

A cataloged procedure can contain a DD statement with the ddname
STEPLIB. If a procedure step requires use of a program in a private
library other than SY¥S1.LINKLIB, you define that library on this DD
statement. If the DD statement is not overridden when the procedure is
called, it makes the private library available to the step. (For
information on the STEPLIB DD statement, see the chapter "Special
Ddnames" in Section IV of this publication.)

For ease in modifying a cataloged procedure, you can include symbolic
parameters in the procedure. How to use symbolic parameters is
described next.

282 JCL Reference (Release 20.1)

USING SYMBOLIC PARAMETERS IN A PROCEDURE

When you prepare the control statements that you plan to catalog or use
as an in-stream procedure, you can include symbolic parameters. A
symbolic parameter is characterized by a name preceded by an ampersand
(6) and appears in the operand field of a cataloged procedure statement.
A symbolic parameter stands for a parameter , a subparameter, or a
value.

Symbolic parameters allow a programmer who calls the procedure to
easily modify the procedure for the duration of the job step. When the
programmer calls the procedure, he assigns values to the symbolic
parameters on the EXEC statement. When you prepare control statements
that you plan to catalog, you can include a PROC statement and assign
default values to any of the symbolic parameters that are included.

When you prepare control statements to be used as an in-stream
procedure, you must include a PROC statement which can be used to assign
default values to any of the symbolic parameters that are included.

A symbolic parameter is one to seven alphameric and national (#,a,$)
characters preceded by a single ampersand. The first character must be
alphabetic or national. Since a single ampersand defines a symbolic
parameter, you code double ampersands when you are not defining a
symbolic parameter. For example, if you want to pass S5U3§LEV to a
processing program by means of the PARM parameter on an EXEC statement,
you must code PARM="54§§LEV'. The system treats the double ampersands
as if a single ampersand has been coded, and only one ampersand appears
in the results.

The following are examples of symbolic parameters:
//STEP1 EXEC PGM=COB,PARM="P1,§P2,P3"
//DD1 DD DSNAME=EEFIX,UNIT=£DEVICE, SPACE=(CYL, (§SPACE,10))
//DD2 DD DSNAME=§§CHAG, UNIT=2400, DCB=BLKSIZE=§LENGTH

Keyword parameters that can be coded on an EXEC statement cannot be
used to define symbolic parameters. For example, &§PGM and §REGION
cannot be used as symbolic parameters.

Any parameter, subparameter, or value in the procedure that may vary
each time the procedure is called is a good candidate for definition as
a symbolic parameter. For example, if different values can be passed to
a processing program by means of the PARM parameter on one of the EXEC
statements, you might define the PARM parameter field as one or more
symbolic parameters, PARM=6ALLVALS or PARM=§DECKECODE.

If symbolic parameters are defined in the cataloged or in-stream
procedures used at your installation, the definitions should be
consistent. For example, every time the programmer is to assign his
department number to a symbolic parameter, no matter which procedure he
is calling, the symbolic parameter could be defined as &DEPT. In
different procedures you could code ACCT=(43877,8DEPT) and
DSNAME=LIBRARY. §DEPT.MACS. The programmer would assign his department
number on the EXEC statement that calls the procedure whenever &DEPT
appears in a procedure. Of course, in order for the programmer to know
that he is to assign his department number to the symbolic parameter
§DEPT, the installation must make this information available to all the
programmers that may be using the cataloged procedures.

You can define two or more symbolic parameters in succession without
including a comma to delimit the symbolic parameters, for example,
§P16P2. You can also define a portion of a parameter, subparameter, or
value as a symbolic parameter. You do this by placing the symbolic

Appendix A: Cataloged and In-Stream Procedures--Writing Procedures 283

parameter before, after, or in between the information that is not
variable.

If you place a symbolic parameter after some information that does
not vary, it is not necessary to code a delimiter. The system
recognizes a symbolic parameter when it encounters the single ampersand.

If you place a symbolic parameter before some information that does
not vary, a period may be required following the symbolic parameter to
distinguish the end of the symbolic parameter and the beginning of the
information that does not vary. A period is required following the
symbolic parameter when:

1. The character following the symbolic parameter is an alphabetic or
numeric character.

2. The character following the symbolic parameter is a left
parenthesis or a period.

In these cases, the system recognizes the period as a delimiter, and the
period does not appear after a value is assigned to the symbolic
parameter. (A period will appear after a value is assigned to the
symbolic parameter when two consecutive periods are coded.)

The following examples are valid ways of combining symbolic
parameters and information that does not vary.

Placing a symbolic parameter after information that does not vary:
1. LIBRARY(EMEMBER) |

2. USERLIB.&LEVEL

Placing a symbolic parameter before information that does not vary:
1. ‘'&OPTION+15"

2. &PASS.AUL3BS8

The period is required because an alphabetlc character follows the
symbolic parameter.

3. §&URNO.54328
The period is required because a numeric character follows the
symbolic parameter.

4. ELIBRARY. (MEMG)
The period is required because a left parenthesis follows the
symbolic parameter.

5. &FILL..GROUPS
A period is to appear in the results; therefore, two consecutive
periods are coded.

When a value is assigned to the symbolic parameter, this value and
the parameter, subparameter, or value that this is a portion of cannot
exceed 120 characters. h

The programmer who calls a procedure assigns values to the symbolic
parameters contained in the procedure. He can also nullify symbolic
parameters. A delimiter, such as a leading comma or a trailing comma,
next to a symbolic parameter is not automatically removed when the
symbolic parameter is nullified. For example, if the operand field
contains VOLUME=SER=(111111,&KEY), the comma preceding &KEY is not
removed when EKEY is nullified. If the symbolic parameter that is
nullified is a positional parameter, a comma must remain to indicate its

284 JCL Reference (Release 20.1)

absence. In other cases, a delimiter that is not removed when the
symbolic parameter is nullified may cause a syntax error. To help the
programmer who nullifies a symbolic parameter avoid this error
condition, define those symbolic parameters that may be nullified
without the delimiter. -For example, you could code
VOLUME=SER=(1111116KEY). The delimiter is included when a value is
assigned to the symbolic parameter. For example, the programmer would
code KEY=",222222".

A cataloged or in-stream procedure statement may utilize DDNAME and
DCB parameters to define data in the input stream. Such a statement
should not contain symbolic parameters when the automatic SYSIN batching
reader is used. (Information on the cataloged procedure for the
automatic SYSIN batching reader is contained in the chapter "System
Reader, Initiator, and Writer Cataloged Procedures" in the System
Programmer's Guide publication.)

The PROC statement: When establishing cataloged or in-stream procedures
that contain symbolic parameters it is generally good practice to assign
default values to the symbolic parameters. -These default values are
used if the programmer who calls the procedure does not assign values to
one or more of the symbolic parameters.

You assign default values on a PROC statement. The PROC statement is
optional in cataloged procedures; if it is used, the PROC statement must
be the first statement in the procedure. The PROC statement is
described in Section X of this publication. The PEND statement which is
used to mark the end of an in-stream procedure is described in Section
IX.

ADDING AND MODIFYING CATALOGED PROCEDURES

You add procedures to the procedure library by using the IEBUPDTE
utility program. You also use this utility program to permanently
modify existing proedures. How to use this utility program for adding
and modifying cataloged procedures is described in the chapter "The
IEBUPDTE Program" in the Utilities publication.

When you add a cataloged procedure to the procedure library, that
procedure cannot be executed before the job that adds it to the
procedure library terminates. When you modify an existing cataloged
procedure, the operator must be notified. What the operator must do
before he allows the job to be executed is described in the chapter "“How
to Run Jobs That Update System Data Sets" in the QOperator's Reference
publication. '

Appendix A: Cataloged and In-Stream Procedures--Writing Procedures 285

Appendix B: Using the Restart Facilities

When a job step abnormally terminates, you may have to resubmit the job
for execution. This means lost computer time and a delay in obtaining
the desired results. To reduce these effects, you can use the restart
facilities.

If a job step abnormally terminates or if a system failure occurs,
the restart facilities allow you to request that the job step be
restarted either at the beginning of the step (step restart) or within
the step (checkpoint restart). Furthermore, restart can occur
automatically after abnormal termination, or it can be deferred until
the job is resubmitted.

Restarts

For automatic step restart to occur, the RD parameter must request it on
the JOB statement or on the EXEC statement associated with the step that
abnormally terminates. (The RD parameter on the JOB statement is
described in Section II of this publication; the RD parameter on the
EXEC statement is described in Section III.) Automatic checkpoint
restart can occur only if a CHKPT macro instruction is executed in the
processing program prior to abnormal termination.

1f restart is deferred until the job is resubmitted, the RESTART
parameter must be coded on the JOB statement of the resubmitted job.
(The RESTART parameter is described in Section II of this publication.)
The RESTART parameter identifies the step or the step and the checkpoint
at which execution is to be resumed. A deferred restart may be
initiated regardless of how the resubmitted job was previously
terminated (normally or abnormally) and regardless of whether an
automatic restart occurred during the original execution.

AUTOMATIC STEP RESTART

If an abnormally terminated step is to be automatically restarted, the
RD parameter must be coded as RD=R or RD=RNC. Execution resumes at the
beginning of the abnormally terminated step.

AUTOMATIC CHECKPOINT RESTART

After an automatic checkpoint restart, execution resumes at the
instruction immediately following the last CHKPT macro instruction that

was successfully executed in the abnormally terminated step. An

automatic checkpoint restart cannot occur if you suppress the action of

the CHKPT macro instruction; you do this by coding RD=NC or RD=RNC.

Also, an automatic checkpoint restart cannot occur if you code RD=NR;

however, RD=NR allows the CHKPT macro instruction to establish a

checkpoint.

DEFERRED STEP RESTART
To perform a deferred step restart, the RESTART parameter must identify

the step at which execution is to be resumed. Steps preceding the
restart step are interpreted but are not initiated.

Appendix B: Using the Restart Facilities 287

Since dispostion processing occurred during the original execution of
the job, you may have to modify control statements associated with the
restart step before you resubmit the job. Modifications may be required
in two cases:

1. A data set was defined as NEW during the original execution. If it
was created during the original execution, you must change the data
set's status to OLD, define a new data set, or delete the data set
before resubmitting the job.

2. A data set was passed and was to be received by the restart step or
a step following the restart step. If the passed data set is not
cataloged, you must supply, in the receiving step, volume serial
numbers, ‘device type, data set sequence number, and label type.
(Label type cannot be retrieved from the catalog.)

To limit the number of modifications required before you resubmit the
job, you can assign conditional dispositions during the original
execution. (Data sets assigned a temporary name or no name can only be
assigned a conditional disposition of DELETE.) If deferred step restart
will be performed, conditional dispositions should be used:

e To delete all new data sets created by the restart step.

e To keep all old data sets used by the restart step, other than those
passed to the step. (If a nontemporary data set is defined as
DISP=(OLD,DELETE), it is very important that you assign a
conditional disposition of KEEP.)

e To catalog all data sets passed from steps preceding the restart
step to the restart step or to steps following the restart step.

Additional changes can be made to your control statements before
resubhmitting the job. For ‘example, you can vary device and volume
configurations and request step restart on an alternate system with the
same confiquration as used originally. You can also make changes to
your data.

DEFERRED CHECKPOINT RESTART

To perform a deferred checkpoint restart, the RESTART parameter must
identify the step and the checkpoint at which execution is to be
resumed. The SYSCHK DD statement, which defines the checkpoint data
set, must also be included. (The SYSCHK DD statement is described in
the chapter "Special Ddnames" in Section IV.

An internal representation of your statements is kept as control
information within the system. Some of the control information for the
restart step or steps following the restart step may have to be modified
before execution can be resumed at a checkpoint. The following
modifications for the restart step are automatically made by the system,
using information contained in the checkpoint entry:

e The status of data sets used by the step is changed from NEW to OID.
(If a new data set was assigned a nonspecific volume and had not
been opened before the checkpoint was established, this change is
not made.) ‘

e If nonspecific volumes were requested for a data set used in the
restart step, the assigned device type and volume serial numbers are
made part of the control information.

e For a multivolume data set, the volume being processed when the
checkpoint was established is mounted.

288 JCL Reference (Release 20.1)

The only required modification that you must make to a control
statement is to supply certain information about a data set that was
being passed by a step preceding the restart step to a step following
the restart step. You must supply, in the receiving step, volume serial
numbers, device type, data set sequence number, and label type. You
will not have to make these modifications if, during the original
execution, you assigned a conditional disposition of CATLG to such data
sets. If the data is cataloged, the system can retrieve this
information from the catalog. (Label type cannot be retrieved from the
catalog.) You should also use conditional dispositions to keep all data
sets used by the restart step. Data sets assigned a temporary name or
no name can only be assigned a conditional disposition of DELETE.
Therefore, if you plan a deferred checkpoint restart, you should not
define you data sets as temporary. (For any nontemporary data set that
may be deleted, it is very important that you assign a conditional
disposition of KEEP.)

Before resubmitting the job for checkpoint restart, you can make
other modifications to control statements associated with the restart
step or steps following the restart step. The following items apply to
the step in which restart is to occur:

e The DD statements in the restart step can be altered, but the
statements must have the same names as used originally. You can
also include additional DD statements.

e If a data set was open at the time a checkpoint was established and
restart is to begin at that checkpoint, DD statements in the restart
step can define the same data set. If there is no need to process a
data set after restart, you can define the data set by coding the
DUMMY parameter or DSNAME=NULLFILE on a DD statement provided that:
(1) the basic sequential access method (BSAM) or the queued
sequential access method (QSAM) was being used to process the data
set when the checkpoint was established, (2)the data set is not the
checkpoint data set that is being used to restart the jub step, and
(3) the job step is not restarted from a checkpoint that was
established in an end-of-volume exit routine for the data set. The
name of the DD statement must be the same as the one used for the
data set during the original execution of your program.

e If DUMMY is not specified, the DD statements must define the same
data sets. Also, the data sets must not have been moved on the
volume or onto another volume.

e If a data set was not open when the checkpoint was established and
is not needed during restart, you can replace the parameters used to
define the data set with the DUMMY parameter.

e You can alter the data in the restart step. If you omit the data, a
delimiter statement (/#*) is not required, unless the data was _
preceded by a DD DATA statement.
Modifications you might want to make to control statements following
the restart step are: varying device and volume configurations,
altering data, and possibly, requesting checkpoint restart on an
alternate system with the same configuration as used originally. If the
parameters PGM, COND, SUBALLOC, and VOLUME=REF refer to steps preceding
the restart step, you must resolve these references before resubmitting

the job. (A backward reference of VOLUME=REF is allowed if the
referenced statement includes VOLUME=SER=(serial number).)

Appendix B: Using the Restart Facilities 289

Examples of Using the Restart Facilities

1.

The following control statements illustrate the preparations that
would be made for either an automatic step or checkpoint restart
before the job is submitted for the first time.

//STMRG3 JOB 54321 ,A.USER, MSGLEVEI~(1,0), RD=R
//STEP1 EXEC PGM=S IMPSORT

//INPUT DD DSN=SORTIN,VOL=SER=100468,UNIT=2400, X
77 DISP= (OLD, DELETE)

//0UTPUT DD DSN=INV (+1),UNIT=2311,VOL=SER=555334, X
Vo4 SPACE= (3200, (200, 100)), DISP=(NEW, CATLG)

//WORK1 DD UNIT=2400,DISP=(NEW,DELETE)

//WORK2 DD UNIT=2400, DISP=(NEW, DELETE)

//CHKPT DD UNIT=2400,DISP=(NEW,DELETE)

//STEP2 EXEC PGM=MYMERGE

//MERG1 DD DSN=INV (+1) ,DISP=OLD

//MERG2 DD DSN=M5, VOL=SER=(092501, 092502, 092503), X
77 UNIT=(2400,3) ,DISP=(OLD,KEEP)

//RESULTS DD DSN=M6, UNIT=2400, VOL=SER=(100101, 100102, X
/77 100103) ,DISP=(NEW, KEEP)

Here, the RD parameter requests step restart for any abnormally
terminated job step. In STEP1, the DD statement CHKPT defines a
checkpoint data set. For this step, once a CHKPT macro instruction
is executed, only automatic checkpoint restart is performed. 2an
automatic checkpoint restart cannot occur in STEP2 since a
checkpoint data set is not defined.

The following control statements illustrate the preparations that
would be made for either an automatic or deferred step restart
before the job is submitted for the first time.

//STMRG3 JOB 54321, A.USER, MSGLEVEL=(1, 0), RD=R
7/STEP1 EXEC PGM=SIMPSORT '

/7 INPUT DD DSN=SORTIN,VOL=SER=100468,UNIT=2400, X
/7 DIsP=(OLD, DELETE, KEEP)

//0UTPUT DD DSN=INV(+1),UNIT=2311,VOL=SER=555334, X
/7 SPACE= (3200, (200,100)),DISP=(NEW, CATLG,DELETE)
//WORK1 DD UNIT=2400,DISP=(NEW,DELETE)

//WORK2 DD UNIT=2400, DISP=(NEW, DELETE)

//STEP2 EXEC PGM=MYMERGE

//MERG1 DD DSN=INV(+1),DISP=0OLD

//MERG2 DD DSN=M5,VOL=SER=(092501,092502,092503), : X
/7 UNIT=(2400,3),DISP=(OLD,KEEP)

//RESULTS DD DSN=M6 ,UNIT=2400, VOL=SER=(100101,100102, X
7/ ' 100103) ,DISP=(NEW,KEEP,DELETE)

If you are resubmitting this job for step restart, you must code
the RESTART parameter on the JOB statement and identify the step at
which execution is to be resumed. If execution is to be resumed
with STEP2, the MERG1 DD statement must be changed to refer to the
generation data set by means of its present relative generation
number, i.e., DSN=INV(0).

290 JCL Reference (Release 20.1)

The following control statements illustrate the preparations that
would be made for an automatic step or checkpoint restart or a
deferred checkpoint restart before the job is submitted for the
first time.

//STMRG3 JOB 54321 ,A.USER,MSGLEVEL=(1, 0} ,RD=R
//STEP1 EXEC PGM=SIMPSORT

//INPUT DD DSN=SORTIN, VOL=SER=100468, UNIT=2400, X
7/ DISP= (OLD,DELETE, KEEP)

//0UTPUT DD DSN=INV(+1),UNIT=2311,VOL=SER=555334, X
/77 SPACE= (3200, (200,100)) ,DISP=(NEW,CATLG,KEEP)
//WORK1 DD DSN=A,UNIT=2400, DISP=(NEW,DELETE,CATLG)

//WORK2 DD DSN=B,UNIT=2400,DISP= (NEW,DELETE, CATLG)

//CHKPT DD DSN=C, UNIT=2400, DISP=(NEW,DELETE, CATLG)

//STEP2 EXEC PGM=MYMERGE

//MERG1 DD DSN=INV (+1), DISP=0OLD

//MERG2 DD DSN=M5,VOL=SER=(092501,092502,092503), X
// ’ UNIT=(2400,3),DISP=(OLD,KEEP)

//RESULTS DD DSN=M6 ,UNIT=2400,VOL=SER=(100101,100102, X
7/ 100103),DISP=(NEW, KEEP)

Either an automatic checkpoint restart or a deferred checkpoint
restart can occur in STEP1 if the step abnormally terminates. To
perform a deferred checkpoint restart, the RESTART parameter must
be coded on the JOB statement and a SYSCHK DD statement must be
included before resubmitting the job. Only automatic step restart
can occur in STEP2. The data sets that would normally be defined
as temporary have been defined as nontemporary data sets so
conditional dispositions can be assigned to them.

Appendix B: Using the Restart Facilities 291

Appendix C: Creating and Retrieving Indexed
Sequential Data Sets

Indexed sequential (ISAM) data sets are created and retrieved using
special subsets of DD statement parameters and subparameters. Each data
set can occupy up to three different areas of space:

1. Prime area -- This area contains data and related track indexes.
It exists for all indexed sequential data sets.

2. Overflow area -- This area contains overflow from the prime area
when new data is added. It is optional.

3. 1Index area -- This area contains master and cylinder indexes
associated with the data set. It exists for any
indexed sequential data set that has a prime area
occupying more than one cylinder.

Indexed sequential data sets must reside on direct access volumes. The
data set can reside on.more than one volume and the device types of the
volumes may in some cases differ.

Creating an Indexed Sequential Data Set

One to three DD statements can be used to define a new indexed
sequential data set. When you use three DD statements to define the
data set, each DD statement defines a different area and the areas must
be defined in the following order:

1. Index area.
2. Prime area.
3. Overflow area.

When you use two DD statements to define the data set, the areas must be
defined in the following order:

1. Index area. 1. Prime area.
or
2. Prime area. 2. Overflow area.

When you use one DD statement to define the data set, you are defining
the prime area and, optionally, the index area.

When more than one DD statement is used to define the data set, '
assign a ddname only to the first DD statement; the name field of the Appendix C
other statements must be blank..

The only DD statement parameters that can be coded when defining a
new indexed sequential data set are the DSNAME, UNIT, VOLUME, LABEL,
DCB, DISP, SPACE, SEP, and AFF parameters. When to code each of these
parameters and what restrictions apply are described in the following
paragraphs.

Appendix C: Creating and Retrieving Indexed Sequential Data Sets 293

THE DSNAME PARAMETER

The DSNAME parameter is required on any DD statement that defines a new
temporary or nontemporary indexed sequential data set. To identify the
area you are defining, you follow the DSNAME parameter with the area:
DSNAME=name (INDEX), DSNAME=name (PRIME), or DSNAME=name(OVFLOW). If you
are using only one DD statement to define the data set, code
DSNAME=name (PRIME) or DSNAME=name.

When reusing previously allocated space to create an ISAM data set,
the DSNAME parameter must contain the name of the old data set to be
overlaid.

THE UNIT PARAMETER

The UNIT parameter is required on any DD statement that defines a new

indexed sequential data set unless VOLUME=REF=reference is coded. You
must request a direct access device in the UNIT parameter and must not
request DEFER.

If there are separate DD statements defining the prime and index
areas, you must request the same number of direct access devices for the
prime area as there are volumes specified in the VOLUME parameter, You
may request only one direct access volume for an index area and one for
an overflow area.

A DD statement for the index area or overflow area can request a
device type different than the type requested on the other statements.

Another way to request a device is to code UNIT=AFF=ddname; where the
named DD statement requests the direct access device or device type you
want.

THE VOLUME PARAMETER

The VOLUME parameter is required only if you want an area of the data
set written on a specific volume or the prime area requires use of more
than one volume. (If the prime area and index area are defined on the
same statement, you cannot request more than one volume on the DD
statement.) Either supply the volume serial number or numbers in the
VOLUME parameter or code VOLUME=REF=reference. In all cases, the VOLUME
parameter can be used to request a private volume (PRIVATE) and to
retain the private volume (RETAIN).

THE LABEL PARAMETER

The LABEL parameter need only be coded to specify a retention period
(EXPDT or RETPD) or password protection (PASSWORD).

294 JCL Reference (Release 20.1)

THE DCB PARAMETER

The DCB parameter must be coded on every DD statement that defines an
indexed sequential data set. At minimum, the DCB parameter must contain
DSORG=IS or DSORG=ISU. Othexr DCB subparameters can be coded to complete
the data control block if it has not been completed by the processing
program. When more than one DD statement is used to define the data
set, code all the DCB subparameters on the first DD statement. Code
DCB=*.ddname on the remaining statement or statements; ddname is the
name of the DD statement that contains the DCB subparameters.

When reusing previously allocated space and recreating an ISAM data
set, desired changes in the DCB parameter must be coded on the DD
statement. Although you are creating a new data set, some DCB
subparameters cannot be changed if you want to use the space the old
data set used. The DCB subparameters, you can change are: BFALN,
BLKSIZE, CYLOFL, DSORG, HIARCHY, KEYLEN, LRECL, NCP, NI'M, OPTCD, RECFM,
and RKP.

THE DISP PARAMETER

If you are creating a new data set and not reusing preallocated space,
the DISP parameter need only be coded if you want to keep, DISP=(,KEEP),
catalog, DISP=(,CATLG), or pass, DISP=(,PASS), the data set. If you are
reusing previously allocated space and recreating an ISAM data set, code
DISP=0LD. The newly created data set will overlay the old one.

In order to catalog the data set when DISP=(,CATLG) is coded or pass
the data set when DISP=(,PASS) is coded, the data set must be defined on
only one DD statement. If the data set was defined on more than one DD
statement and the volumes on which the data set now resides correspond
to the same device type, you can use the IEHPROGM utility program to
catalog the data set. Refer to the chapter "The IEHPROGM Program" in
the Utilities publication for details.

THE SPACE PARAMETER

The SPACE parameter is required on any DD statement that defines a new
indexed sequential data set. Use either the recommended nonspecific
allocation technique or the more restricted absolute track (ABSTR)
technique. If more than one DD statement is used to define the data
set, all must request space using the same technique.

Nonspecific Allocation Technique

You must request the primary quantity in cylinders (CYL). When the DD
statement that defines the prime area requests more than one volume,

each volume is assigned the number of cylinders requested in the SPACE
parameter. Appendix C

One of the subparameters of the SPACE parameter, the "index"
subparameter, is used to indicate how many cylinders are required for an
index. When one DD statement is used to define the prime and index
areas and you want to explicitly state the size of the index, code the
"index" subparameter.

The CONTIG subparameter can be coded in the SPACE parameter.
However, if CONTIG is coded on one of the statements, it must be coded
on all of them.

You cannot request a secondary quantity for an indexed sequential

data set. Also, you cannot code the subparameters RLSE, MXIG, ALX, and
ROUND.

Appendix C: Creating and Retrieving Indexed Sequential Data Sets 295

Absolute Track Technique

The number of tracks you request must be equal to one or more whole
cylinders. The address of the beginning track must correspond with the
first track of a cylinder other than the first cylinder on the volume.
When the DD statement that defines the prime area requests more than one
volume, space is allocated for the prime area beginning at the specified
address and continuing through the volume and onto the next volume until
the request is satisfied. (This can only be done if the volume table of
contents of the second and all succeeding volumes is contained within
the first cylinder of each volume.)

One of the subparameters of the SPACE parameter, the "index"
subparameter, is used to indicate how many tracks are required for an
index. The number of tracks specified must be equal to one or more
cylinders. When one DD statement is used to define the prime and index
areas and you want to explicitly state the size of the index, code the
"index" subparameter.

THE SEP OR AFF PARAMETER

The SEP or AFF parameter is coded only if you want channel separation
from the area or areas defined on the preceding statement or statements
in the group. In order for the areas to be written using separate
channels, you must also request devices by their actual address, e.g.,
UNIT=190.

Note: If the indexed sequential data set is to reside on more than one
volume and an error is encountered as the volumes are being allocated to
the data set, follow this procedure before resubmitting the job: Use
the IEHPROGM utility program to scratch the data set labels on any of
the volumes to which the data set was successfully allocated. This
utility program is described in the chapter "The IEHPROGM Program" in
the Utilities publication.

Area Arrangement of an Indexed Sequential Data Set

When you create an indexed sequential data set, the arrangement of the
areas is based on two criteria:

1. The number of DD statements used to define the data set.
2. What area each DD statement defines.

An additional criterion is used when you do not include a DD statement
that defines the index areas:

3. Is an index size coded in the SPACE parameter of the DD statement
that defines the prime area?

Table 3 illustrates the different arrangements that can result based
on the criteria listed above. In addition, Table 3 indicates what
restrictions apply on the number and types of devices that can be
requested.

296 JCL Reference (Release 20.1)

Table 3.

Area Arrangement of Indexed Sequential Data Sets

T 1
CRITERIA | |
i) i) I |
| | RESTRICTIONS ON | RESULTING |
|1.Number of |2.Area defined |3.Index |DEVICE TYPES AND |ARRANGEMENT |
DD | on a DD | size NUMBER OF DEVICES|OF |
statements| statement | coded? |REQUESTED. | AREAS |
k + + + t+ 1
i				
3	INDEX	- None	Separate	
	PRIME			index, prime,
	OVFLOW		}and overflow	
			areas.	
[1 1 L J
1)) ¥ L |
| | | | |
| 2 | INDEX | - | None | Separate]
| | PRIME } } |index and | | |
| | | | | prime |
| | | 1 |areas. 2 |
L i L [l 4 i]
L3 T L) T 1
| | | | | |
| 2 | PRIME | No | None | Separate |
| | OVFLOW | | | prime and |
| I | | | overflow |
| | | | |areas. An]
| | | | |index area is|
| | | | jat the end of|
| | | | | the overflow |
| | I | | area. |
L 1 1 1 1 d
r Ll 1 1] | i)
| | | | | |
2 | PRIME | Yes | The statement Separate |
| OVFLOW | |defining the prime and
| | | |prime area cannot|overflow
| | | |request more than|areas. An
| | | |one device. index area is
| | | embedded in
| i | the prime
} | | area.
[% L L 4 R J
[3 1} T 1B T T
| | | | | |
| 1 | PRIME i No | None Prime area
} | | | with index
| | | | area at its |
I | | | end.? |
L N 1 L 1 1
|] T L) L] 1
I | | | |
| 1 | PRIME | Yes | Cannot request | Prime area
| | | |more than one |with embedded
| A | | | device. | index area.
: 4 L 4 4L - _:
|*If both areas are on volumes that correspond to the same device - i
| type, an overflow area is established if one of the cylinders {
| allocated for the index area is only partially used. The overflow |
| area is established in the unused portion of that cylinder. |
|21If the unused portion of the index area is less than one cylinder, |
| it is used as an overflow area. |
L J
Appendix C: 297

Creating and Retrieving Indexed Sequential Data Sets

Retrieving an Indexed Sequential Data Set

If all areas of an existing indexed sequential data set reside on
volumes of the same device.type, you can retrieve the entire data set
with one DD statement. If the index or overflow resides on a volume of
a different device type, you must use two DD statements. If the index
and overflow reside on volumes of different device types, you must use
three DD statements to retrieve the data set. The DD statements are
coded in the following order:

1. First DD statement - defines the index area
2. Second DD statement - defines the prime area
3. Third DD statement - defines the overflow area

The only DD statement parameters that can be coded when retrieving an
indexed sequential data set are the DSNAME, UNIT, VOLUME, DCB, and DISP
parameters. When to code each of these parameters and what restrictions
apply are described in the following paragraphs.

THE DSNAME PARAMETER

The DSNAME parameter is always required. Identify the data set by its
name, but do not include the term INDEX, PRIME, or OVFLOW. If the data
set was passed from a previous step, identify it by a backward
reference.

THE UNIT PARAMETER

The UNIT parameter must be coded unless the data set resides on one
volume and was passed. You identify in the UNIT parameter the device
type and how many of these devices are required.

If the data set resides on more than one volume and the volumes
correspond to the same device type, you need only one DD statement to
retrieve the data set. Request one device in the UNIT parameter per
volume., If the index or overflow area of the data set resides on a
different type of volume than the other areas, you must use two DD
statements to retrieve the data set. On one DD statement, request the
device type required to retrieve the index or overflow area. On the
other DD statement, reguest the device type and the number of devices
required to retrieve the prime area and the overflow area if the
overflow area resides on the same device type. If the index and the
overflow areas reside on different device types from the prime area, a
third DD statement is needed.

THE VOLUME PARAMETER

The VOLUME parameter must be coded unless the data set resides on one
volume and was passed from a previous step. Identify in the VOLUME
parameter the serial numbers of the volumes on which the data set
resides. Code the serial numbers in the same order as they were coded
on the DD statements used to create the data set.

THE DCB PARAMETER
The DCB parameter must be coded unless the data set was passed from a
previous step. The DCB parameter must always contain DSORG=IS or

DSORG=ISU. Other DCB subparameters can be coded to complete the data
control block if it has not been completed by the processing program.

298 JCL Reference (Release 20.1)

THE DISP PARAMETER
The DISP parameter must always be coded. The first subparameter of the

DISP parameter must be MOD or OID. You can, optionally, assign a
disposition as the second subparameter.

Example of Creating and Retrieving an Indexed Sequential Data Set

1. The following job step includes the DD statements that could be
used to create an indexed sequential data set. Each area of the
indexed sequential data set is defined on a separate DD statement.

//70UTPUTYH4 EXEC PGM=INCLUDE

//GROUP1 DD DSNAME=PART86 (INDEX) ,DISP=(,KEEP) ,UNIT=2314, X
/77 VOLUME=SER=538762, SPACE=(CYL, 10, ,CONTIG), X
7/ " DCB=(DSORG=IS,RECFM=F,LRECL=80,RKP=1,KEYLEN=8)
7/ DD DSNAME=PARTS8 6 (PRIME), DISP=(,KEEP), UNIT=(2311,2), X
/77 VOLUME=SER=(538763,538764), X
/77 SPACE=(CYL, (25),,CONTIG),DCB=%*.GROUP1
7/ DD DSNAME=PART86 (OVFLOW) ,DISP= (,KEEP) ,UNIT=2311, X
/7 VOLUME=SER=538765, SPACE=(CYL,15,,CONTIG), X
/7 DCB=#%.GROUP1
The following job step includes the DD statements required to
retrieve the indexed sequential data set created above.
//INPUT12 EXEC PGM=ADD
//RETY DD DSNAME=PART 86, DCB=DSORG=IS,UNIT=2314, X
7’7/ DISP=0LD, VOLUME=SER=538762
/7 DD DSNAME=PART 86 , DCB=DSORG=1S ,UNIT=(2311,3), X
/77 DISP=0OLD, VOLUME=SER=(538763, 538764, 838765)

Two DD statements are required to retrieve the data set because the
index area resides omn a volume of a different device type than the
volumes on which the prime and overflow areas reside. :

Appendix C: Creating and Retrieving Indexed Sequential Data Sets 299

Appendix D: Creating and Retrieving
Generation Data Sets

A generation data set is one of a collection of successive, historically
related, cataloged data sets known as a generation data group. The
system keeps track of each data set in a generation data group as it is
created so that new data sets can be chronologically ordered and old
ones easily retrieved.

To create or retrieve a generation data set, you identify the
generation data group name in the DSNAME parameter and follow the group
name with a relative generation number. When creating a generation data
set, the relative generation number tells the system whether this is the
first data set being added during the job, the second, the third, etc.
when retrieving a generation data set, the relative generation number
tells the system how many data sets have been added to the group since
this data set was added. '

A generation data group can consist of cataloged sequential,
partitioned, indexed sequential (if the data set is defined on one DD
statement) , and'direct data sets residing on tape volumes, direct access
volumes, or both. Generation data sets can have like or unlike DCB
attributes and data set organizations. If the attributes and
organizations of all generations in a group are identical, the
generations can be retrieved together as a single data set (up to 255
data sets can be retrieved in this way).

Before You Define the First Generation Data Set

Before you define the first generation'data set, you must build a
generation data group index. This index provides lower-level entries
for as many generation data sets (up to 255) as you would like to have
in your generation data group. The system uses these lower-level
indexes to keep track of the chronological order of the generation data
sets. The index must reside on the system residence volume, or an
alternate control volume. You use the IEHPROGM utility program to build
your index; this program is described in the chapter "The IEHPROGM
Program™ in the Utilities publication.

Another requirement of generation data groups is that a data set
label must exist on the same volume as the index. The system uses this
label to refer to DCB attributes when you define a new generation data
set. There are two ways to satisfy this requirement: (1) create a
model data set label before you define the first generation data set; or
(2) use the DCB parameter to refer the system to an existing cataloged
data set each time you define a new generation data set.

Creating a Model Data Set label

To create a model data set label, you must define a data set and request
that it be placed on the same volume as the generation data group index.
" This ensures that there is always a data set label on the same volume as
the index to which the system can refer.

The name you assign to the data set may be the same or different than
the name assigned to the generation data group. (If you assign the same
name for both, the data set associated with the model data set label
cannot be cataloged.) You may request a space allocation of zero tracks
or cylinders. The DCB attributes you can supply are DSORG, CPTCD,
BLKSIZE, LRECL, KEYLEN, and RKP.

Appendix D: Creating and Retrieving Generation Data Sets 301

This is an example of creating a model data set label:

//bD1 DD DSNAME=PAY.WEEK,DISP=(NEW,KEEP),UNIT=2311, X
Ved VOLUME=SER=SYSRES, SPACE=(TRK, 0) , DCB=(RECFM=FB, X
Vo4 LRECL=240,BLKSIZE=960)

You need not create a model data set label for every generation data
group whose indexes reside on the same volume. Instead, you may create
one model data set label to be used by any number of generation data
groups. If you create only one model, you should not supply any DCB
attributes. When you create a generation data set, you specify the name
of the model in the DCB parameter and follow the name with a list of all
the DCB subparameters required for the new generation data set, i.e.,
DCB=(dsname, list of attributes).

Referring the System to a Cataloged Data Set

If there is a cataloged data set that resides on the same volume as your
generation data group index and you are sure that data set will exist as
long as you are adding data sets to your generation data group, you need
not create a model data set label. When you create a generation data
set, you specify the name of the cataloged data set in the DCB
parameter, i.e., DCB=dsname. If all the DCB attributes are not
contained in the label of the cataloged data set, or if you want to
override certain attributes,. follow the data set name with these
attributes, i.e., DCB=(dsname,list of attributes).

Creating a Generation Data Set

When defining a new generation data set, you always code the DSNAME,
DISP, and UNIT parameters. Other parameters you might code are the
VOLUME, SPACE, LABEL, and DCB parameters.

THE DSNAME PARAMETER

In the DSNAME parameter, you code the name of the generation data group
followed by a number enclosed in parentheses. This number must be 1 or
greater. If this is the first data set you are adding to a particular
generation data group during the job, code +1 in parentheses. Each time
during the job you add a data set to the same generation data group,
increase the number by one.

Any time you refer to this data set later in the job, you use the
same relative generation number as was used earlier. At the end of the
job, the system updates the relative generation numbers of all
generations in the group to reflect the additions.

THE DISP PARAMETER
New generations are assigned a status of NEW and a disposition of CATLG
in the DISP parameter, i.e., DISP=(NEW,CATLG). If you do not specify a

disposition, or specify a disposition other than CATLG, the system
assumes CATLG. .

302 JCL Reference (Release 20.1)

THE UNIT PARAMETER

The UNIT parameter is required on any DD statement that defines a new
generation data set unless VOLUME=REF=reference is coded. In the UNIT
parameter, you identify the type and number of devices you want (tape or
direct access).

Another way to request a device is to code UNIT=AFF=ddname; where the
named DD statement requests the device or device type you want.

THE VOLUME PARAMETER

You may assign a volume in the VOLUME parameter or let the system assign
one for you. The VOLUME parameter can also be used to request a private
volume (PRIVATE), to retain the private volume (RETAIN), and to indicate
that more volumes may be required (volume count).

THE SPACE PARAMETER

The SPACE parameter is coded only when the generation data set is to
reside on a direct access volume. The SPLIT or SUBALLOC parameter can
be coded in place of the SPACE parameter if the data set's organization
permits the use of these parameters.

THE LABEL PARAMETER

You can specify label type, password protection (PASSWORD), and a
retention period (EXPDT or RETPD) in the LABEL parameter. If the data
set will reside on a tape volume and is not the first data set on the
volume, specify a data set sequence number.

THE DCB PARAMETER

A model data set label that has the same name as the group name may
exist. If this is so, and if the label contains all the attributes
required to define this generation, you need not code the DCB parameter.
If all the attributes are not contained in the label, or if you want to
override certain attributes, code these attributes in the DCB parameter,
i.e., DCB=(list of attributes).

If a model data set label has a different name than the group name
and if the label contains all the attributes required to define this
generation data set, only the name of the data set associated with the
model data set label need be coded. Code the name in the DCB parameter,
i.e., DCB=dsname. If all the attributes are not contained in the label,

or if you want to override certain attributes, follow the data set name

with these attributes, i.e., DCB=(dsname,list of attributes).
If a model data set label does not exist, you must code the name of a

cataloged data set that resides on the same volume as the generation

data group index, i.e., DCB=dsname. If all the attributes are not

contained in the label for this data set, or if you want to override

certain attributes, follow the data set name with these attributes,
i.e., DCB=(dsname,list of attributes).

Appendix D: Creating and Retrieving Generation Data Sets 303

Retrieving a Generation Data Set

To retrieve a generation data set, you always code the DSNAME and DISP
parameters. Other parameters you might code are the UNIT, LABEL, and
DCB parameters.

THE DSNAME PARAMETER

In the DSNAME parameter, you code the name of the generation data group
followed by a number enclosed in parentheses. The number you code
depends on how many new generation data sets have been added to the
group since this generation data set was added. If none have been added
prior to the job, code a zero (0). If one has been added prior to the
job, code (-1). Decrement the number by 1 until you determine the
present relative generation number of the data set, then code this
number.

Any time you refer to this data set later in the job, you use the
same relative generation number as was used earlier, even if another
generation has been added during the job.

If you want to retrieve all generations of a generation data group as
a single data set, you specify the generation data group name without a
generation number, e.g., DSNAME=WEEKLY.PAYROLL. You can retrieve all
generations as a single data set only if the attributes and
organizations of all generations are identical.

THE DISP PARAMETER

The DISP parameter must always be coded. The first subparameter of the
DISP parameter must be OLD, SHR, or MOD. You can, optionally, assign a
disposition as the second subparameter.

THE UNIT PARAMETER

Code the UNIT parameter when you want more than one device assigned to
the data set. Code the number of devices you want in the unit count
subparameter, or, if the data set resides on more than one volume and
you want as many devices as there are volumes, code P in place of the
unit count subparameter. '
THE LABEL PARAMETER

Code the LABEL parameter when the data set has other than standard
labels.

THE DCB PARAMETER

Code the DCB parameter when the data set has other than standard labels
and DCB information is required to complete the data control block.

Resubmitting a Job for Restart

Certain rules apply when you refer to generation data sets in a job
resubmitted for restart (the RESTART parameter is coded on the JOB
statement).

304 JCL Reference (Release 20.1)

For step restart: If step restart is performed, generation data sets
that were created and cataloged in steps preceding the restart step must
not be referred to in the restart step or in steps following the restart
step by means of the same relative generation numbers that were used to
create them. Instead, you must refer to a generation data set by means
of its present relative generation number. For example, if the last
generation data set created and cataloged was assigned a generation
number of +2, it would be referred to as 0 in the restart step and in
steps following the restart step. In this case, the generation data set
assigned a generation number of +1 would be referred to as -1.

For checkpoint restart: If generation data sets created in the restart
step were kept instead of cataloged (i.e., DISP=(NEW,CATLG,KEEP) was
coded), you can, during checkpoint restart, refer to these data sets and
generation data sets created and cataloged in steps preceding the
restart step by means of the same relative generation numbers that were
used to create them.

Reference

1. Generation data sets can be created and retrieved using utility
programs. How to do this is described in "Appendix E: Generation
Data Groups" in the Utilities publication. Also described in this
appendix is how to put indexed sequential data sets in a generation
data group.

Example of Creating and Retrieving Generation Data Sets

1. The following job step includes the DD statements that could be
used to add three data sets to a generation data group.

//STEPA EXEC PGM=PROCESS

//DD1 DD DSNAME=A.B.C(+1),DISP=(NEW,CATLG) ,UNIT=2400, X
Vo4 VOL=SER=138 46, LABEL=(, SUL)

//DD2 DD DSNAME=A.B.C (+2),DISP=(OLD,CATLG),UNIT=2311, X
Vo4 VOL=SER=10311

//DD3 DD DSNAME=A.B.C (+3),DISP=(NEW,CATLG) ,UNIT=2301, X
7/ VOL=SER=289 29, SPACE= (480, (150, 20)),DCB=(LRECL=120, X
Vo4 BLKSIZE=480)

The first two DD statements do not include the DCB parameter;
therefore, a model data set label must exist on the same volume as
the generation data group index and must have the same name as the
generation data group (A.B.C). Since the DCB parameter is coded
on the third DD statement, the attributes LRECL and BLKSIZE, along
with the attributes included in the model data set label, are
used.

The following job includes the DD statements required to retrieve
the generation data sets defined above when no other data sets
have been added to the generation data group.

//JWC JOB CLASS=B

//STEP1 EXEC PGM=REPORT9

//DDA DD DSNAME=A.B.C(-2),DISP=0LD,LABEL=(,SUL)
//DDB DD DSNAME=A.B.C(-1) ,DISP=OLD

//DDC DD DSNAME=A.B.C(0),DISP=0LD

Appendix D: Creating and Retrieving Generation Data Sets 305

Appendix E: Default Parameter Values
Supplied in the Input Reader Procedure

As your control statements are read and interpreted, the input reader
assigns default values to specific parameters that are not coded and
checks for violations of certain restrictions. The default values for
specific parameters and the restrictions are specified in the cataloged
procedure for the. input reader.

The input reader is controlled by a reader/interpreter cataloged
procedure supplied by IBM or the installation. The default parameter
values and restrictions will probably differ in the IBM-supplied and the
installation-supplied procedures.

‘How to Keep Track of the Default Values and Restrictions

Table 4 lists the parameters for which default values are assigned when
they are not coded on specific control statements. The default values
assigned to these parameters when an IBM-supplied cataloged procedure is
used are also listed. Space is left in the right-hand portion of the
table so you can write in the default values that will be assigned when
an installation-supplied procedure is used. Table 4 also lists those
restrictions that must be checked as the control statements are read and
tells which apply when an IBM-supplied procedure is used. Space is left
in the right-hand portion of the table so you can write in which of
these restrictions apply when a installation-supplied procedure is used.

The page on which Table 4 appears may be removed from the publication
and placed in a convenient location, so that you and other programmers
can refer to it.

Appendix E: Default Parameter Values Supplied in the Input Reader Procedure 307

Table 4.

Default Values and Restrictions Supplied in the Input Reader

1. The default value differs in each of the three IBM-supplied
| procedures, as follows:

f f Procedure Name]
| | b T T 1
| | | RDR | RDR400 | RDR3200 |
| i k + + i
| I BLKSIZE] 80 | 400 | 3200 |
| BUFNO | 2 | 2 | 1|
L L L i r]

during any automatic restart.

These default values

2. The default values for the UNIT and SPACE parameters are used when
you do not include these parameters on a DD statement that defines
a data set being routed through an output stream (i.e., the SYSOUT
parameter is coded on the DD statement).
also apply to data sets being routed through an output stream

Procedures
r 1
| Default Parameter Values |
} B 1 L) ‘=
|] Installation-Supplied
| Parameter |statement IBM-Supplied ¢ T
| | Name: | Name 3
i A 1 4
| 1 i]
} IMSGCLASS | JoB A | |
MSGLEVEL JOB (0,1)			
PRTY JOB 1			
REGION	JOB and EXEC	50K	{
TIME	EXEC 30 minutes]		
ROLL JOB and EXEC	(YES,NO)		
UNIT (note 2) DD SYSDA			
SPACE (note 2)	DD (TRK, (50,10))	{	
BLKSIZE (note 3)	DD] (note 1) i		
BUFNO (note 3)	DD	(note 1)]	
} L L L " N {			
Restrictions			
T T T 1			
		Installation-Supplied	
Parameter or	statement	IBM-Supplied	- ¥ 4
Subparameter]	Name:	Name:
L l 1 4)			
i RJ 1 1 T			
Accounting			
Information	JOB jnot required		
,	Programmer's		
Name	JOB	not required	
BLP (note 4)	DD	NL. assumed	
', L L 1 L J'			
Notes:			

|
3. The default values for the DCB subparameters BLKSIZE and BUFNO are|
used when you do not include these subparameters on a DD statement|

statement).

4, BLP is a subparameter in the 1ABEL parameter that requests that

tape label processing be bypassed.

|
|
:
| that defines data in the input stream (i.e., DD * or DD DATA
|
|
|
|
L

bt e s e et s

Appendix E:

Default Parameter Values Supplied in the Input Reader Procedure

309

Appendix F: A Checklist

When you create or retrieve a data set, the system requires certain
information. This information is supplied on the DD statement that
defines the data set.

This appendix can be used as a checklist: As you code your DD
statements, find the function you are performing in the left-hand column
of Table 5. Across from the function are two separate lists of
parameters. These parameters describe the information that you must
supply to the system and the information that you may have to supply.
You can compare your DD statement with what is listed to make sure all
the required information is available to the system.

Following Table 5 are examples of the DD statements that might be
used when performing functions described in the table. Each example is
keyed by number to a particular block within the table, If you do not
understand why a parameter is listed for the function, either look at
the example that corresponds to the number within the block or refer to
the parameter description in Section IV of this publication.

Table 5. A Checklist (Part 1 of 3)

- T T . 3
| | | Information|
| FUNCTION: : | Information That Is | That May |
| Creating a Data Set |Always Required | Be Required|
L L L d
r 1
| Temporaxy Data Sets |
F T T 1
| Creating a Data Set | UNIT 1| DCB 2|
| on a Unit Record Device | | Ucs |
1 4 4 3
r b T]
| Creating a Data Set on | UNIT 3] DCB 4
| . a Tape Volume | | VOLUME

i | | LABEL

| Creating a Data Set in | sSyYsouT 7| DCB 8
| the Output Stream | | UNIT |
i | | SPACE

F + +

| Creating A Data Set | UNIT 9] DCB 10
] on a Direct Access | SPACE | VOLUME

| Volume | | LABEL

t L 1

| Nontemporary Data Sets

L

I T 1

| Creating a Data Set | UNIT 11} LABEL 12|
| on a Tape Volume | DSNAME | DCB

| | DISP | VOLUME |
b + + {
{ Creating a Generation | DISP 13| DCB 14
| Data Set on a Tape | UNIT | LABEL

| volume | DSNAME | VOLUME

L L '} J

Appendix F: A Checklist 311

Table 5. A Checklist (Part 2 of 3)
r T T 1
| . | Information
Creating a Nontemporary |Information That Is | That May
| Data Set (con't) |Always Required | Be Required|
IR 1 N { J
1) L} T B
Creating a Sequential | UNIT 15| LABEL 16
Data Set on a Direct Access| DSNAME | DCB
Volume (BSAM or QSAM) | DISP | VOLUME |
| SPACE, SPLIT, orSUBALLOC |
|8 : (| i
T L} T
Creating a Data Set With | UNIT 17| LABEL 18
Direct Organization on a | DSNAME | VOLUME
Direct Access Volume (BDAM) | DISP | '
' | SPACE or SUBALLOC |
| DCB |
F t } {
| Creating a Partitioned | UNIT 19| LABEL 20|
| Data Set on a Direct Access| DSNAME | VOLUME |
| Volume (BPAM) | DISP | DCB]
| | SPACE or SUBALIOC | |
F + + 1
| Creating a New Member | DISP 21| UNIT 22]
| for a Partitioned Data) DSNAME | VOLUME |
| Set | I |
| + + !
| Creating a Data Set With | UNIT 23| VOLUME 24|
| Indexed Sequential Organi- | DSNAME | LABEL |
| zation on a Direct Access | DISP | |
i Volume (QISAM) | DCB | |
| | SPACE | |
{ 4 '] J
| T T T
| Creating a Generation | SPACE 25| DCB 26|
| Data Set on a Direct | DISP | LABEL
| Access Volume | UNIT | VOLUME
| | DSNAME i |
[1 J
{ v T
FUNCTION: | | |
Retrieving a Data Set | |
1 |
1 1
Retrieving a Cataloged | DSNAME 27| DCB 28
| Data sSet | DISP | IABEL |
| | | UNIT |
+ + i
Retrieving a Noncataloged | DSNAME 29| LABEL 30|
| Data Set on a Tape | UNIT | DCB]
| Volume | VOLUME | |
| | DISP | |
t +-- 1
Retrieving a Noncataloged | UNIT 31y LABEL 32|
Sequential Data Set on a | VOLUME | |
Direct Access Volume | DSNAME | |
| (BSAM or QSAM) | DISP] |
L 4 } d
r ' H H 1
| Retrieving a Noncataloged | UNIT 33| LABEL 34|
Data Set with Direct | VOLUME | |
Organization on a Direct | DSNAME | |
| Access Volume (BDAM) | DISP | |
1 4 P |
1 1} 1
Retrieving a Member of | DISP 35| UNIT 36|
a Partitioned Data Set | DSNAME | VOLUME |
(BPAM) | | i
4 i 4

312 JCL Reference (Release 20.1)

Table 5 A Checklist (Part 3 of 3)

r T T q

|) Information|

| Information That Is That May]

| Retrieving a Data Set jAlways Required | Be Required|

b + t 4

| Retrieving a Data Set | DSNAME 37} |

| With Indexed Sequential | UNIT ' |

Organization on a Direct VOLUME |

Access Volume (QISAM or DCB |

BISAM) DISP | |

Il J

1 1

Retrieving a Passed] DSNAME 38| LABEL 39|

Data Set DISP | DcB |

| VOLUME |

| UNIT |

I + + {

| Retrieving a Generation | DSNAME 40| DCB 41|

| Data Set | DISP | LABEL |

| I | UNIT I

L L L J
Examples

() /sbDA DD UNIT=1404

@ //DDB .DD UNIT=1403,UCS=PCAN, DCB=PRTSP=2

(3 /s/DDC DD UNIT=2400

(®» //pDDD DD UNIT=2400-1,DCB=DEN=1,VOLUME=SER=14187,LABEL=2

(3 //pDDE DD SYSOUT=L

@ //DDF DD SYSOUT=G, DCB=PRTSP=2

(G) +s/DDG DD SYSOUT=(M,,7956)

//DDH DD SYSOUT=B,UNIT=2301,SPACE=(80,300),DCB=BLKSIZE=640

(® //DDI DD UNIT=SYSDA,SPACE=(TRK, (20,5))

//DDJ DD UNIT=2311,SPACE=(CYL, (2,1)),DCB= (RECFM=S,LRECL=X),
/7 LABEL= (, SUL) , VOLUME=SER=190853

() //DDK DD UNIT=2400,DSNAME=OUT,DISP=(NEW, KEEP)

(@ //DDL DD UNIT=2400-2,DSNAME=WLK18,DISP=(,KEEP),LABEL=(,NL), X
V24 NCB=TRTCH=C , VOLUME=SER=1540

(d /s/DDM DD DISP=(,CATLG),UNIT=2400,DSNAME=WEEK.PAY (+1)

//DDN DD DISP=(,CATLG),UNIT=2400-1,DSN=YEAR.MON(+1),
77 LABEL=(,SUL) ,DCB=A.B.C, VOLUME=SER=GDG18

Appendix F:

A Checklist 313

//DDO

® ®

//DDP

/77

®

7/

(® //DDR

7/
/77

//DDs
7/

®

//DDT
7/
//

®

® ®0
:

®
N
N
o
o
>

®

//DDZ

//DD1

//DD2

® ®

//DD3

//DD4

®®

//DD5

® ©

//DD6
7/

//DDQ

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

UNIT=2311,DSNAME=LNG,DISP=(,KEEP) ,SPACE= (TRK, (12,2))

UNIT=2314,DSNAME=CLB, DISP=(,CATLG),
SPACE=(1024, (100,25)) ,LABEL=(,SUL, , EXPDT=70180) ,
VOL=SER=S512148,DCB=(BLKSIZE=240,RECFM=FB,LRECL=60)

UNIT=2311,DSNAME=JCD, DISP=(NEW, KEEP),
SPACE=(CYL, (8,1)), DCB=DSORG=DA

UNIT=2302,DSN=MT12,DISP=(,PASS),
SPACE= (1024, (200,10)), DCB=(DSORG=DA, BLKSIZE=200,
KEYLEN=4, RECFM=F) , LABEL=(, SUL) , VOLUME=SER=49878

UNIT=2302,DSNAME=PDS14,DISP= (NEW,KEEP),
SUBALLOC=(CYL, (20,1,3),STEP1.DD1)

UNIT=2314,DSNAME=AHTRY, DISP=(,CATLG),
SPACE=(CYL, (8,2,2)),LABREL=(,,PASSWORD) ,
VOLUME=SER=158491, DCB=(RECFM=F, LRECL=80)

DSNAME=AHTRY (SET4) , DISP=OLD

UNIT=2302,VOLUME=SER=X13912 ,DISP=0LD,
DSNAME=SHTR (MEMB2)

UNIT=2311,DSNAME=DAT (PRIME), DISP=(NEW, KEEP),
DCB=DSORG=1S, SPACE=(CYL, (5,,1))

UNIT=2302,DSN=ISQ (PRIME) ,DISP=(,KEEP) ,DCB= (DSORG=IS,
BLKSIZE=240,CYLOFL=1, OPTCD=MYLR , RECFM=FB, LRECL=60,
RKP=19, KEYLEN=10) , SPACE=(CYL,2) ,VOL=SER=535861,
LABEL=EXPDT=70301

UNIT=2302,DSN=ISQ(OVFLOW) ,DISP= (,KEEP) ,DCB=*.DDX,
SPACE=(CYL,1) ,VOL=SER=538267, LABEL=EXPDT=70301

DSNAME=PAY.WEEK (+1) , DISP=(,CATLG) , UNIT=2314,
SPACE=(TRK, (3,2))

DSN=INV. FORMS8 (+2) ,DISP=(,CATLG),UNIT=2311,
VOLUME=SER=SA2103,LABEL=(,SUL) ,DCB= (MODEL2,RECFM=F,
LRECL=80) ,SPACE=(CYL, (2,1)) '

DSNAME=A.B.C, DISP=0OLD

DSN=KELL12,DISP=0LD,LABEL=(,NSL) , UNIT=(,P),
DCB=(BUFNO=4,HIARCHY=1)

DSNAME=FILE18,UNIT=2400,DISP=0OLD,VOL=SER=96977

DSNAME=MILS, UNIT=2400-2, DISP=(0OLD,PASS), VOL=SER=9818,
LABEL=(,NSL),DCB=(BLKSIZE=1600,LRECL=80)

DSNAME=GLOSS ,DISP=0LD,UNIT=2311, VOLUME=SER=P14992

DSNAME=LAB14,UNIT=2301,DISP=0OLD,VOLUME=SER=H69568,
LABEL=(,SUL, , IN)

314 JCL Reference (Release 20.1)

b

M M

®e e ©® ®e6® ©®®

//DD7
//DD8
/7
//DD%
//DD10
//DD1
/7
//DD12
//DD13
7/
//DD14

//DD15
7/

DD

DD

DD

DD

DD

DD

DD

DD

DD

DSNAME=SERNOS , DISP=0LD, UNIT=2311, VOLUME=SER=X20

DSN=BOLS, DISP=OLD, VOLUME=SER=W5898, UNIT=2302,

LABEL=(,SUL)

DSN=PGM(A81) ,DISP=OLD

DSNAME=LIBS(PROJ6),UNIT=2301,DISP=0LD, VOL=SER=DU4 762

DSNAME=IND31,UNIT=(2311, 2),DISP=0LD,VOLUME=SER(C2021,

C2022) ,DCB=DSORG=IS

DSNAME=CHAN, DISP= (OLD, KEEP)

DSNAME=*.STEP1.CREATE, DISP=(OLD, DELETE) , LABEL=(,NL),

UNIT=(, 2) ,VOLUME=(PRIVATE, ,4) ,DCB=%*.STEP1.CREATE

DSNAME=PAY .WEEK (~3) , DISP=0OLD

DSN=INV.FORMS (0) ,DISP=0LD,LABEL=(,SUL) ,UNIT={(,P),

DCB= (BLKS IZE=240,RECFM=FB, LRECL=60)

Appendix F:

A Checklist 315

* parameter: This parameter is coded as
the first parameter on a DD statement that
precedes data in the input stream.

ACCT parameter: This parameter is used to
supply accounting information for a job
step to an installation accounting routine
and is coded on an EXEC statement.

AFF parameter: This parameter is used to
request the same channel separation from
certain data sets as was requested earlier
in the job step. The AFF parameter is
coded on a DD statement.

alias: An alternate name that may be used
to refer to a member of a partitioned data
set.

allocation: The process of assigning a
resource to a job step.

automatic restart: A restart of a job
after a job step abnormally terminates.
The restart takes place during the current
run, that is, without resubmitting the job.

automatic volume recognition (AVR): A
feature that allows the operator to mount

labeled volumes on available input/output
devices before those volumes are required
by a job step.

auxiliary storage: Data storage other than
main storage; secondary storage.

background job: A job that is entered
through a time sharing terminal by means of
the SUBMIT command oxr through the input
stream (SYSIN).

backward reference: A facility of the job
control language that permits you to copy
information or refer to DD statements that
appear earlier in the job.

block prefix: An optional field that may
precede the first or only record in a
block. For D-format records, the block
prefix can contain the actual block length.

catalogs
1. The collection of all data set indexes

maintained by data management. Each
entry contains a data set name and
volume and unit information about the
data set.

Section XII: Glossary

2. To place an entry for a data set in
the catalog. To specify this on a
control statement, code
DISP=(status,CATLG) on the DD
statement that defines the data set
you want cataloged. A cataloged data
set is easy to retrieve.

cataloged data set: A data set that is
represented in an index or hierarchy of
indexes in the system catalog, the indexes
provide the means for locating the data
set.

cataloged procedure: A set of job control
statements that has been assigned a name
and placed in a partitioned data set known
as the procedure library. To use a
cataloged procedure, code the procedure
name on an EXEC statement.

checkpoint/restart: A facility of the
operating system that can minimize time
lost in reprocessing a job step that
abnormally terminated. The CHKPT macro
instruction, the RESTART parameter on the
JOB statement, and the RD parameter on the
JOB or EXEC statement are associated with
this facility.

checkpoint restart: A restart within a job
step. The restart may be automatic
(depending on an eligible completion code
and the operator‘'s consent) or deferred,
where deferred involves resubmitting the
job and coding the RESTART parameter on the
JOB statement of the resubmitted job.

CLASS parameter: This parameter is used to
assign a job class to your job and is coded
on a JOB statement. In multiprogramming
systems, jobs within a job class are
initiated according to their priority
numbers.

command statement: A job statement that is
used to issue commands to the system
through the input stream.

comment statement:
used to contain information that may be
helpful to yourself or another person that
may be running your job or reviewing your
output listing.

concatenated data sets: A group of input
data sets that are treated as one data set
for the duration of a job step. ‘

Section XII: Glossary 317

Glos-
A job control statement \GElag

'COND_parameter: This parameter is used to
test return codes issued by the processing
programs; any test that is satisfied causes
the job to be terminated or a job step to
be bypassed. The COND parameter is coded
on a JOB or EXEC statement.

control volume: A volume that contains one
or more indexes of the catalog.

data control block (DCB): A control block

used to contain certain attributes required

by an access method to store or retrieve a
data set. The DCB parameter is one means
of supplying attributes.

DATA parameter: This parameter is coded as
the first parameter on a DD statement that
precedes data in the input stream when the
data contains job control statements.

data set: An organized collection of
related data in one of several prescribed
arrangements. The information required to
store and retrieve this data is defined on
a DD statement.

data set control block: A data set label
for a data set on a direct access volume.

data set label: A collection of
information that describes the attributes
of a data set. The data set label for a
data set is normally on the same volume as
the data set it describes.

DCB: See data control block.
DCB_parameter: This parameter is used to
supply attributes about the data set that
are needed to complete the data control
block. The DCB parameter is coded on a DD
statement.

D format: A data set format in which ASCII
records are variable lengths.

DD (data definition) statement: A job
control statement that defines a data set
that is being created or retrieved in a job
step. DD statements follow an EXEC
statement.

ddname (data definition name): A name
assigned to a DD statement. This name
corresponds to the ddname appearing in a
data control block.

DDNAME parameter: This parameter is used
to postpone the definition of a data set
until later in the same job step and is
coded on a DD statement.

deferred restart: A restart that is
performed when a job is resubmitted and the
RESTART parameter is coded on the JOB
statement of the resubmitted job.

318 JCL Reference (Release 20.1)

delimiter statement: A job control
statement used to mark the end of data.

The characters /% appear in columns 1 and 2
of this control statement.

device type: A number that corxresponds to
a type of input/output device. Coding the
device type in the UNIT parameter is one
way of indicating what input/output device
you want allocated to a job step.

direct access device: An auxiliary storage
device in which the access time is
effectively independent of the location of
the data set.

direct data set: A data set whose records
are in random order on a direct access
volume. Each record is stored or retrieved
according to its actual address or its
address relative to the beginning of the
data set.

directory: A series of 256-byte records at
the beginning of a partitioned data set
that contains an entry for each member in
the data set.

DISP_parameter: This parameter is used to
describe the status of the data set and
indicates what should be done with the data
set after termination of the job step that
processes it, or at the end of the job.

The DISP parameter is coded on a DD
statement.

dispatching priority: The number assigned
to a task, which in a multitask
environment, determines the order in which
the tasks may use main storage and CPU
resources.

DPRTY parameter: This parameter is used to
assign a dispatching priority to a job step
and is coded on an EXEC statement.

DSN parameter: This parameter is used to
assign a name to a new data set or to
jdentify an existing data set and is coded
on a DD statement. Coding DSN is the same
as coding DSNAME.

DSNAME parameter: This parameter is used
to assign a name to a new data set or to
identify an existing data set and is coded
on a DD statement. Coding DSNAME is the
same as coding DSN.

DUMMY parameter: This parameter is used to
tell the system that the processing program
should be executed, but no input or output
operations should be performed on a
particular data set. The DUMMY parameter
is coded as the first parameter on a DD
statement.

DYNAM parameter: For TSO, this parameter
is used to specify that dynamic allocation
of data sets is to be used. This allows
you to defer definition of data set until
you require it. If DYNAM is used in the
background (batch environment), it means
the same as DUMMY. The DYNAM parameter is
coded on a DD statement.

dynamic storage: That portion of main
storage that is subdivided into partitions
or regions for use by the programs
associated with job steps and some system
tasks.

Exclusive control: This means that only
one job at a time can process a data set.
A request for an exclusively controlled
data set will not be processed until the
job with control terminates. Also a
request for the data set name itself will
not be processed -- even though the name
may not refer to the same physical data
set.

EXEC (execute) statement: A job control
statement that marks the beginning of a job
step and identifies the program .to be
executed or the cataloged or in-stream
procedure to be used.

extent: A contiguous area of storage on a
direct access volume in which a data set
resides. A data set may reside in more
than one area of storage on one or more
volumes.

F format: A data set format in which the
logical records are the same length.

FCB_parameter: This parameter is used to
specify the forms control image you want to
use to print an output data set on a 3211
printer. The FCB parameter is coded on a
DD statement.

fixed-length record: A record having the
same length as all other records with which
it is logically or physically associated.

foreground: The environment in which
programs invoked by commands are performed.
Programs are swapped in and out of main
storage as necessary to efficiently utilize
main storage.

foreqground job: Any job executing in a
foreground region, such as a command
processor or a terminal user's program.
Also called a "terminal job."

generation data group: A collection of
data sets that are kept in chronological
order; each data set is called a
generation. The DSNAME parameter is used
to define the generation you are creating
or retrieving.

generation data set:
generation data group.

One generation of a

group name: A 1- to 8-character name that
identifies a device or a collection of
devices. Coding a group name in the UNIT
parameter is one way of indicating what
type of input/output device you want
allocated to a job step.

index:
1. A table in the catalog used to locate
data sets.

2. A table used to locate the records of
an indexed sequential data set.

indexed sequential data set: A data set or
one or more direct access volumes whose
records contain a key portion, and the
location of each record depends on the
contents of the key portion. The location
of each record is computed through the use
of an index.

initiation: The process of selecting a job
step for execution and allocating
input/output devices for the job step.

input job queue: A queue of summary
information of - job control statements
maintained by the job scheduler, from which
it selects the jobs and job steps to be
processed.

input stream: The sequence of control
statements and data submitted to the
operating system on an input device
especially activated for this purpose by
the operator.

In-stream procedures: A set of job control
statements, beginning with a PROC statement
and ending with a PEND statement, that have
been placed in the input stream. An
in-stream procedure can be executed any

number of times during the job in which it

appears.
job: A total processing application that

consists of one or more processing programs
required to perform the application. A job
is identified by a JOB statement.

JOB statement: A job control statement
that marks the beginning of a job, and when
jobs are stacked in the input stream, marks

the end of the control statements for the
preceding job. Glos-
sary

job class: An alphabetic character of A
through O that characterizes the type of
job you are submitting. Each job class is
defined by the installation; you indicate
the type of job you are submitting in the
CLASS parameter on the JOB statement. 1In
multiprogramming systems, jobs within a job
class are initiated according to their
priority numbers.

Section XII: Glossary 319

job control language: A high-level
programming language used to code job
control statements, which describe a job to
the operating system and inform the system
of how the job is to be processed.

job _control statement: Any one of the
control statements in the input stream that
identifies a job or defines its
requirements.

job library: See private library.

job management: A general term that
collectively describes the functions of the
job scheduler and master scheduler.

job processing: The reading of control
statements and data from an input stream,
the initiating of job steps defined in
these statements, and the writing of system
output messages.

job_scheduler: A control program function
that controls input streams and system
output, obtains input/output devices for
jobs and job steps, and regulates the use
of the computing system by jobs. The job
scheduler is made up of the
reader/interpreter, initiator/terminator,
and output writer.

job_step:
one processing program or one cataloged
procedure, and related data. A job
consists of one or more job steps.

JOBLIB: A special ddname that when
specified on a DD statement indicates to
the system that you are defining a private
library.

jobname: The name assigned to a JOB
statement; it identifies the job to the
system.

K: 1024 bytes.

‘keyword: A symbol that identifies a
parameter or subparameter.

keyword parameter: A parameter that
consists of a keyword followed by an equal

sign, followed by a single value or a list
of subparameters. Keyword parameters must
follow positional parameters in the operand
field of a job control statement, but the
keyword parameters may appear in any order.

LABEL parameter: This parameter is used:
(1) to describe the data set label
associated with the data set; (2) to
describe the sequence number of a data set
that does not reside first on a reel; (3)
to assign a retention period; (4) to assign
password protection; and (5) to override
the OPEN macro instruction (BSAM only).

320 JCL Reference (Release 20.1)

The unit of work associated with

The LABEL parameter is coded on a DD
statement.

library:

1. In general, a collection of
information associated with a
particular use, and the location of
which is identified in a directory of
some type. In this context, see link
library, private library, system
library.

2. Any partitioned data set.

limit priority: A priority associated with
every task in an MVT system, representing
the highest dispatching priority that the
task may assign to itself or to any of its
subtasks.

link library: A partitioned data set named
SYS1.LINKLIB. Each member is a processing
program and is called in the PGM parameter
on the EXEC statement or in the ATTACH,
LINK, LOAD, and XCTL macro instructions.

logical record: A record that is defined
in terms of the information it contains
rather than by its physical traits. You
may have to specify the length of the
logical record to complete the data control
block; one way to specify this is in the
LRECL subparameter of the DCB parameter.

main storage: All addressable storage from
which instructions can be executed or from
which data can be loaded directly into
registers.

main storage hierarchy support: An option
that divides main storage into two blocks
known as hierarchies; hierarchy 0 is
assigned to processor storage and hierarchy
1 to the IBM 2361 Core Storage unit.

master scheduler: The part of the control
program that responds to operator commands
and returns required information.

member: An independent, sequentially
organized data set identified by a unigue
name in a data set directory.

Message Control Program (MCP): A set of
user-defined TCAM routines that identify
the teleprocessing network to the IBM
System/360 Operating System, establish the
line control required for the various kinds
of stations and modes of connection, and
control the handling and routing of
messages in accordance with the user's
requirements.

MFT (multiprogramming with a fixed number
of tasks): A control program that provides
priority scheduling of a fixed number of
tasks. A priority scheduler is used in
MFT.

MSGCLASS parameter: This parameter is used
to assign an output class to the system
messages for your job and is coded on a JOB
statement.

MSGLEVEL parameter: This parameter is used
to indicate what job control statements and
allocation/termination messages you want
displayed as output from your job and is
coded on a JOB statement.

multiprogramming: Executing more than one
job step concurrently.

mutually exclusive: The term applied to
two parameters that cannot be coded on the
same job control statement.

MVT (multiprogramming with a variable
number of tasks): A control program that
provides priority scheduling of a variable
number of tasks. A priority scheduler is
used in MVT.

MVT with Model 65 multiprocessing: An
extension of MVT. This control program is

used with the Model 65 multiprocessing
(M65MP) system.

M65MP: See MVT with Model 65
multiprocessing.

name: A 1- to 8-character term, beginning
with an alphabetic or national (#, 3, $§)
character, that identifies a data set, a
control statement, a program, or a
cataloged procedure.

nonspecific volume request: A request for
volumes that allows the system to select
suitable volumes. This type of request can
only be made when defining an output data
set.

nontemporary data set: A new data set that
exists after the job that created it
terminates.

NOTIFY parameter: This parameter indicates
to the system that a message is to be sent
to your time sharing terminal when your job
completes. The NOTIFY parameter is coded
on the JOB statement.

null statement: A job control statement
used to mark the end of a job's control
statements and data.

OUTLIM parameter: This parameter is used
to specify the maximum number of logical
records you want included for the output
data set being routed through the output
stream. The OUTLIM parameter is coded on a
DD statement that must also contain the
SYSOUT parameter.

output class: An alphabetic or numeric
character that characterizes the type of
output data to be written to a unit record
device. Each output class is defined by
the installation. For system messages, you
indicate the type of output data in the
MSGCLASS parameter on a JOB statement; for
output data sets, you indicate the type of
output data in the SYSOUT parameter on a DD
statement.

output listing: A form that is printed at
the end of your job that may contain job
control statements used by your job, .
diagnostic messages about your job, data
sets created by your job, or a dump.

output stream: Diagnostic messages and
other output data issued by the operating
system or the processing program on output
devices especially activated for this
purpose by the operator.

output writer: A part of the job scheduler
that writes output data sets onto a system
output device, independently of the
programs that produced the data sets.

PARM parameter: This parameter is used to
supply a processing program with
information it requires at the time the
program is executed and is coded on an EXEC
statement.

parameter: A character string that is
recognized as having meaning by the
reader/interpreter. For most of these
character strings, variable information is
provided to give a constant value for a
specific process or purpose.

partition: In systems with MFT, a
subdivision of the dynamic area of main
storage set aside for a job step or a
system task.

partitioned data set: A collection of
independent groups of sequential records on
a direct access volume, each of which is
called a member. Each member has a unique
name and is listed in a directory at the
beginning of the data set.

PEND statement: A job statement used to
mark the end of an in-stream procedure.

PGM parameter: This parameter appears as
the first parameter on an EXEC statement
when you want to execute a particular
program.

physical record: A record that is defined
in terms of physical qualities rather than
by the information it contains (logical
record).

Section XII: Glossary 321

Glos-
sary

positional parameter: A parameter that
must precede all keyword parameters in the
operand field of a job control statement.
Positional parameters must appear in a
specified order.

primary quantity: The initial amount of
space on a direct access volume that you
request in the SPACE, SPLIT, or SUBALLOC
parameter.

priority: A rank assigned to each job step
that determines the order in which job
steps are selected for execution and
requests for resources are satisfied.

priority scheduler: A scheduler that
processes complete jobs according to their
initiation priority within job classes.
Priority shcedulers can accept input data
from more than one input stream.

private:s The term applied to a mounted
volume that the system cannot allocate to
an output data set for which a nonspecific
volume request is made. A private volume
is demounted after its last use in a job
step.

private library: A partitioned data set
whose members are not used often enough to
warrant their inclusion in the link
library. To execute a program that resides
on a private library, you must define that
library on a DD statement that has the
ddname JOBLIB or STEPLIB.

PROC parameter: This parameter appears as
the first parameter on an EXEC statement
when you want to call a particular
cataloged or in-stream procedure.

PROC statement: A job control statement
used in cataloged or in-stream procedures.
It can be used to assign default values for
symbolic parameters contained in a
procedure. For in-stream procedures, it is
used to mark the beginning of the
procedure.

procedure step: That unit of work
associated with one processing program and
related data within a cataloged procedure.
A cataloged procedure consists of one or
more procedure steps.

processing program: Any program capable of
operating in the problem program mode.

This includes IBM-distributed language
processors, application programs, service
and utility programs, and user-written
programs.

PRTY parameter: This parameter is used to
indicate the job's initiation priority
within its job class and is coded on a JOB
statement.

322 JCL Reference (Release 20.1)

public: The term applied to a mounted
volume that the system can allocate to an
output data set for which a nonspecific
volume request is made. A public volume
remains mounted until the device on which
it is mounted is required by another
volume.

ONAME parameter: This parameter allows the
user to access messages received by means
of TCAM for processing by an application
program. It is coded on the DD statement.

qualified name: A data set name that is
composed of multiple names separated by
periods (e.g., A.B.C.). For a cataloged
data set, each name corresponds to an index
level in the catalog.

RD parameter: This parameter is used to
define the type of restart that can occur
and is coded on a JOB or EXEC statement.

reader/interpreter: A job scheduler
function that analyzes an input stream of
job control statements.

record: A general term for any unit of
data that is distinct from all others.

region: In systems with MVT, a subdivision
of the dynamic area of main storage set
aside for a job step or a system task. You
can specify in the REGION parameter on the
JOB statement or EXEC statement how large
this area of main storage should be.

REGION parameter: This parameter is used
to specify how much contiguous main storage
is required to execute a job step and can
be coded on a JOB or EXEC statement. If
main storage hierarchy support is included
in the system, the REGION parameter is also
used to identify the hierarchy or
hierarchies in which the storage is to be
allocated.

resource: Any facility of the computing
system or operating system required by a
job or task and includes main storage,
input/output devices, the CPU, data sets,
and control and processing programs.

restart: The process of resuming a job
after it abnormally terminates. When a
restart is performed, processing is
continued either at the beginning of a job
step that caused the abnormal termination
or at a checkpoint within this job step.

RESTART parameter: This parameter is used
to identify the step or the step and the
checkpoint within the step at which
execution of a job is to be resumed and is
coded on the JOB statement of a resubmitted
job that is to use the checkpoint/restart
facilities.

ROLL parameter: This parameter is used to
specify a job step's ability to be rolled
out or to cause rollout of another job step
and is coded on a JOB or EXEC statement.

rollout/rollin: An optional MVT control
program feature that allows the temporary
assignment of additional main storage to a
job step.

scheduler: See job scheduler.

secondary quantity: The additional amount
of space on a direct access volume that you
want allocated to a data set if the primary

quantity requested in the SPACE, SPLIT, or -

SUBALLOC parameter is not sufficient.

secondary storage: See auxiliary storage.

SEP_parameter: This parameter is used to
request channel separation from specific
data sets defined earlier in the job step
and can be coded on a DD statement.

sequential data set: A data set whose
records are organized on the basis of their
successive physical positions, such as they
are on magnetic tape.

Shared control: This means that jobs that
are executing simultaneously with a job
step that specifies SHR for a data set can
use that data set if they also specify SHR
for that data set name.

SPACE parameter: This parameter is used to
indicate how much space should be allocated
on a direct access volume for a new data
set and is coded on a DD statement.

specific volume request: A request for
volumes that informs the system of the
volume serial numbers.

SPLIT parameter: This parameter is used to
allocate space to two or more new data sets
that are to share cylinders. The SPLIT
parameter is coded on a DD statement.

station: In TCAM, either a remote
terminal, or a remote computer used as a
terminal.

STEPLIB: A special ddname that when
specified on a DD statement indicates to
the system that you are defining a private
library.

stepname: The name assigned to an EXEC
statement; it identifies a job step within
a job.

SYSCHK:

step restart: A restart at the beginning
of a job step that abnormally terminates.
The restart may be automatic (depending on
an eligible completion code and the
operator’s consent) or deferred, where
deferred involves resubmitting the job and
coding the RESTART parameter on the JOB
statement of the resubmitted job.

storage volume: The main function of a
storage volume is to contain nontemporary
data sets for which a nonspecific volume
request was made and PRIVATE was not coded
in the VOLUME parameter. A direct access
volume becomes a storage volume when so
indicated in a MOUNT command or in a member
of SYS1.PARMLIB named PRESRES.

SUBALLOC parameter: This parameter is used
to place a series of a new data sets in one
area of contiguous space on a direct access
volume and in a certain sequence. The
SUBALLOC parameter is coded on a DD
statement.

subparameter: One of the items of variable
information that follows a keyword
parameter and can be either positional or
keyword.

symbol: In the IBM System/360 Operating
System, any group of eight or less
alphameric and national characters that
begins with an alphabetic or national
(#,8,$) character.

symbolic parameter: A symbol preceded by
an ampersand that appears in a cataloged
procedure. Values are assigned to symbolic
parameters when the procedure in which they
appear is called.

SYSABEND: A special ddname that when
specified on a DD statement tells the
system you are defining a data set on which
a dump can be written if the step
abnormally terminates. The dump provided
includes the system nucleus, the processing
program storage area, and possibly a trace
table.

A special ddname that when
specified on a DD statement that precedes
the first EXEC statement in the job tells _
the system you are defining a data set that
contains checkpoint entries. This DD
statement is included in a job that is
being resubmitted for execution and
execution is to begin at a particular
checkpoint.

Glos-
sary

SYSCTLG: The name of a system data set
that contains the name and location of
cataloged data sets.

SYSIN: A name conventionally used as the
data definition name of a data set in the
input stream.

Section XII: Glossary 323

SYSOUT parameter: This parameter is used
to assign an output class to an output data
set and can be coded on a DD statement.

system data sets: The data sets that make
up the IBM System/360 Operating System.

system generation: The process of
producing an operating system made up of
standard and optional components.

system input device: A device specified as
a source of an input stream.

system library: One of the collection of
all cataloged data sets at an installation.

system management facilities: An optional
control program feature that provides the
means of gathering and recording
information that can be used to evaluate
system usage.

system messages: Messages issued by the
system that pertain to ‘a problem program.
These messages appear on an output listing
and may include such messages as error
messages, disposition messages, and
allocation/de-allocation messages.

system output device: An output device,
shared by all jobs, onto which specified
output data is written.

SYSUDUMP: A special ddname that when
specified on a DD statement tells the
system you are defining a data set on which
a dump can be written if the step
abnormally terminates. The dump provided
is the processing program storage area.

SYS1.LINKLIB: The name of a partitioned
data set that contains the IBM-supplied
processing programs and part of the
nonresident portion of the control program.
It may also contain user-written prograns.

SYS1.PROCLIB: The name of a partitioned
system data set that contains cataloged
procedures.

SYS1.SYSJOBQE: A system data set that
contains information about the input and
output streams, and contains the input and
output queues.

task: The smallest unit of work that can
be performed under the control program.

Telecommunications Access Method (TCAM):
The combination of an access technique and
a given data set organization in a
teleprocessing application that allows the
programmer to transfer data between main
storage and remote I/0 devices.

324 JCL Reference (Release 20.1)

temporary data set: A new data set that is
created and deleted in the same job.

TERM parameter: This parameter is used to
indicate to the system that the input or
output data being defined is coming from or
going to a time sharing terminal.

terminal table: An ordered collection of
information consisting of a control field
for the table and blocks of information on
each line, station, component, or
application program from which a message
can originate or to which a message can be
sent.

termination: The process of performing

-disposition processing, as specified in the

DISP parameter, de-allocating input/output
devices, and supplying control information
for writing job output on a system output
unit.

TIME parameter: This parameter is used to
assign a time limit on how long the job or
a particular job step can use the CPU and
is coded on a JOB or EXEC statement, or
both.

time_ sharing: A method of using a
computing system that allows a number of
users to execute programs concurrently and
to interact with the programs during
execution.

Time sharing Option (TSO): An option of

the operating system providing

conversational time sharing from remote
terminals.

time-slicing: The sharing or the CPU by
certain tasks for an equal, predetermined
length of time.

TYPRUN parameter: This parameter is used
to hold a job for execution until the
operator issues a RELEASE command and is
coded as TYPRUN=HOLD on a JOB statement.

UCS parameter: This parameter is used to

describe the character set you want to use
for printing an output data set on a 1403

printer. The UCS parameter is coded on a

DD statement.

unit address: A 3-byte number, made up of
the channel, control unit, and unit
numbers, that identifies a particular
device. Coding a unit address in the UNIT
parameter is one way of indicating what
input/output device you want allocated to
the job step.

UNIT parameter: This parameter is used to
describe what device and how many devices
you want assigned to a data set. The UNIT
parameter can be coded on a DD statement.

V_format: A data set format in which
logical records are of varying length and
include a length indicator; and in which V
format logical records may be blocked, with
each block containing a block length
indicator.

VOL parameter: This parameter is used to
identify the volume (s) on which a data set
resides or will reside and is coded on a DD
statement. Coding VOL is the same as
coding VOLUME.

volume: That portion of an auxiliary
storage device that is accessible to a
single read/write mechanism.

VOLUME parameter: This parameter is used

to identify the volume (s) on which a data -
set resides or will reside and is coded on
a DD statement. Coding VOLUME is the same
as coding VOL.

volume table of contents (VTOC): A table
in a direct access volume that describes
each data set on the volume.

Glos-
sary

Section XII: Glossary 325

326 JCL Reference ' (Release 20.1)

Indexes to systems reference library
manuals are consolidated in the publication
IBM System/360 Operating System: Systems
Reference Library Master Index, C28-6644.
For additional information about any
subject listed below, refer to other
publications listed for the same subject in
the Master Index.

Where more than one page reference is
given, the major reference is first.

{}
use 19
[1
use 19-20
use 20
& 283-284,176
§§ 176

purpose 25

* parameter on DD statement 123-125
coding BLKSIZE subparameter 124
coding BUFNO subparameter 124
examples of 124-125
glossary 317
read by automatic SYSIN batching reader

124

* 'subparameter in the RESTART parameter 59
*%*x 247,263 ,24
/

purpose 25
/7% 247,24
++ 264
+// 264
++* 264

ABEND dumps 119-120
absolute track technique
for ISAM data set 296
ABSTR subparameter in the SPACE parameter
199
for IsaM data set 295
accounting information
(see accounting information parameter
and ACCT parameter)
accounting information parameter on JOB
statement 35-36
continuing 35
example of 36
format of 35
requirement for coding 35,309
rules for coding 35
special characters in 35,26
ACCT parameter on EXEC statement 81
examples of 81
format of 81
glossary 317
overxriding the 81
rules for coding 81
special characters in

199

81,26

Index

adding
DD statements to cataloged procedure
279
parameters to
DD statements in cataloged procedures
275,277-278
EXEC statements in cataloged
procedures 271
address, unit 223
address subparameter in the SPACE
parameter 199
AFF parameter on DD statement 135-136
examples of 136
format of 135
glossary 317
requesting channel separation
135-136,191 °
rules for coding 135
affinity
channel (see channel separation)
unit 228
| volume = 237 _
AL subparameter in the LABEL parameter
181,183-184
alias 75
glossary 317
| ALIGN subparameter of FCB parameter
allocation
glossary 317
alphameric character set 25
ALX subparameter in the SPACE parameter
198
American National Standard labels
181,183-184
ANSI printer control characters
181,183-184
ANSI tape labels
apostrophes
data set name in 177
purpose 26
appendixes 259-315
area arrangement for ISAM data set 296-297
area name 293-294
areas of ISAM data set 293
ASB reader
* parameter read by 124
DATA parameter read by 127
restriction on use of symbolic
parameters 284-285
ASCII magnetic tape
DCB parameter 141,143,148,150,153,154
LABEL parameter 181-184
AUL subparameter in the LABEL parameter
181,183-184 ‘
attributes, DCB 140-156
automatic checkpoint restart 51,91,287
disposition processing with 52,90
automatic restart
(see also automatic checkpoint restar
automatic step restart)
glossary 317

179

181,183,184

Index 327

Index

automatic step restart 51,91,287
disposition processing with 52,90
automatic SYSIN batching reader
* parameter read by 124
DATA parameter read by 127
restrictions on use of symbolic
parameters 284-285
automatic volume recognition (AVR)
channel separation requests 191,136
glossary 317
specifying a group name 226
auxiliary storage
glossary 317
average block length
in SPACE parameter 195-196
in SPLIT parameter 203
in SUBALLOC parameter 207,208 .
AVR (see automatic volume recognition)

background job
glossary 317
backward reference 24
to a concatenation 25
in DCB parameter 140,24
with deferred restart 60
in DSNAME parameter 177,24
glossary 317
in PGM parameter 75-76,24
in VOLUME parameter 236,24
BDAM data set
creating 312
retrieving 312
BFALN, DCB subparameter 140
BFTEK 140-141
BFTEK, DCB subparameter 140-141
BFALN 140
BISAM data set (see indexed sequential data
set)
blank
purpose 25
BLKSIZE, DCB subparameter 141-142
coded with
* parameter 124
DATA parameter 128
DDNAME parameter 159
SPACE parameter 196
SUBALLOC parameter 208
default for data in input stream 309
block length subparameter
in SPACE parameter 195-196
in SPLIT parameter 203
in SUBALLOC parameter 207,208
blocking data in the input stream 124,128
default 309
blocks, directory,
(see directory)
BLP subparameter in the LABEL parameter
183-184
restriction on use 309
BPAM data set
(see also directory; member name)
creating 312
retrieving 312

in a BPAM data set

braces

use 19
brackets

use 19-20

328 JCL Reference (Release 20.1)

BSAM data set
creating 311-312
retrieving 312
BUFIN, DCB subparameter 142
BUFL, DCB subparameter 142
BUFMAX, DCB subparameter 143
BUFNO, DCB subparameter 143
coded with
* parameter 124
DATA parameter 128
DDNAME parameter 159
default for data in input stream 309
BUFOFF, DCB subparameter 143
BUFOUT, DCB subparameter 143
BUFRQ, DCB subparameter 144
BUFSIZE, DCB subparameter - 144
bypass label processing 183-184
restriction on use 309
bypassing 1/0 operations on a data set
131-132
bypassing a job step 84

catalog
glossary 317
cataloged data set
creating 169
generation data set 301-302
glossary 317
providing
data set sequence number 183
label type information 184
unit information 222,226,227 .
retrieving 312
cataloged procedure 261-285
adding to procedure library 285
assigning values to symbolic parameters
264-265
calling 263,79
contents of 282
DD statement
adding DD statements 279-281
adding parameters to 275
nullifying parameters 275-276
overriding concatenated data sets 279
overriding parameters on 273,275
EXEC statement
adding parameters to 271
nullifying parameters on 271
overriding parameters to 269-270
glossary 317
modifying 285
using 263-281
using the DDNAME parameter in 157
writing 282-285
CATLG subparameter in the DISP parameter
167,168,169
channel affinity (see channel separation)
channel separation
requesting 191,135
character set
alphameric 25
national 25
special 25
character set code, specifying 218
checkid subparameter in the RESTART
parameter 59
special characters in 59,26

checkpoint data set 121-122
specifying a secondary quantity for 197
checkpoint restart
automatic 51,91,287
deferred 59-61,288-289
glossary 317
checkpoint/restart facilities
checkid 59
checkpoint data set 121-122
checkpoint restart (see checkpoint
restart)
deferred checkpoint restart
59-61,288-289
deferred step restart 59-61,287-288
glossary 317
RD parameter on EXEC statement 91-93
RD parameter on JOB statement 51-53
RESTART parameter on JOB statement
59-61
step restart (see step restart)
SYSCHK DD statement 121-122
CHKPT macro instruction 51-53,59-61,91-93
class
job 39
message 43
system output 211-214
CLASS parameter on JOB statement 39
assigning a job class 39
default 39
examples of 39
format of 39
glossary 317
rules for coding 39
classnames
for output streams 211,212
CODE, DCB subparameter 144
mutually exclusive with

KEYLEN 147
MODE 149

PRTSP 152
STACK 155
TRTCH 156

coding form 26-27
coding special characters
comma
purpose 25
command statement
commands for
MFT 244~245
MVT 245-246
example of 246
format of 243
glossary 217
rules for coding 243-244
commands, operator 244-246
comment statement 247
example of 247
format of 247
glossary 317
rules for coding 247
comments field 21
continuation of 23-24
example of 21
concatenated data set
glossary 317
overriding 279
concatenating data sets
~example of 25

25-26

243-246

24-25

concatenation
of data sets 24-25
of private libraries 113-114,117
COND parameter on EXEC statement 83-85
examples of 85
format of 83
glossary 318
overriding 85
rules for coding 83
use of
bypassing a job step 84
executing a job step 84-85
COND parameter on JOB statement
examples of 42
format of 41
glossary 318
rules for coding 41
use of 41
conditional disposition of a data set
168-169
CATLG = 169
for deferred restart 288,289
DELETE 168
KEEP 168
UNCATLG 169
CONTIG subparameter in the SPACE parameter
198
continuing control statements
comments field 23-24
operand field 22-23
control volume 175
CPRI, DCB. subparameter
CPU time limit 65,101
creating data sets
nontemporary
to be cataloged 167
direct organization 312
generation data set on direct access

41-42

144-145

volume 302-303

generation data set on tape volume
302-303

indexed sequential organization
293-296

new member for a partitioned data set
312

partitioned data set 312
sequential data set on direct access
volume 312
on tape volume 311
temporary
on direct access volume
output stream 311
on tape volume 311
on unit record device 311
CYL subparameter
in SPACE parameter 195-196
in SPLIT parameter 202
in SUBALLOC parameter 207
cylinders
sharing 201-204
CYLOFL, DCB subparameter 145

311 .

data control block
completing the 137-140
glossary 318

data definition statement
(see also DD statement)

105-241

Index 329

data in the input stream
defining 123-129,157
DATA parameter on DD statement 127-129
coding BLKSIZE subparameter 128
coding BUFNO subparameter 128
~examples of 128-129
format of 127
glossary 318
read by automatic SYSIN batching reader
127
rules for coding 127
data set
creating a (see creating data sets)
glossary 318
retrieving a (see retrieving data sets)
data set control 162-164
data set control block
glossary 318
data set in the input stream
defining-a 123-129,157
data set integrity 162-164
data set label
completing the data control block
137-140
copying attributes from a 139
glossary 318
model 301-302
data set name
in apostrophes 178
copying name from earlier DD statement
177
nontemporary 174-175
qualified 174-175
temporary 176
unqualified 174
DCB
(see data control block)
DCB attributes 140-156
DCB macro instruction ‘
completing the data control block 138
DCB parameter on DD statement 137-156
backward references to 140,24
coded on
JOBLIB DD statement 113
STEPLIB DD statement 116,117
SYSCHK DD statement 121,122
coded when
creating generation data set 303
creating ISAM data set 293
retrieving generation data set 304
retrieving ISAM data set 298
retrieving passed data set 167
coded with
* parameter 124
DATA parameter 128
DDNAME parameter 159
DUMMY parameter 131
SYSOUT parameter 211,213
completing the data control block
137-140 ’
copying information from
data set label 139
earlier DD statement 140
examples of 156
format of 137
glossaxry 318

glossary of subparametexrs 140-156

- 330 JCL Reference (Release 20.1)

DCB parameter on DD statement
{Continued)
nullifying subparameters in the 276
overriding subparameters in the 274-275
rules for coding 137
subparameters, glossary of 140-156
DCB subparameters 140-156
D format 141,153
glossary 318
DD statement 105-241
adding parameters to 275
example of 276-278
examples of 107
fields in 105
format of 105
glossary 318
keyword parameters on 135-241,106-107
nullifying parameters on 275-276
example of 277-278
overriding parameters on
example of 277-278
positional parameters on 123-132,106
rules for coding 105-106
ddname
assigning a 109-122
when concatenating 24
when defining ISAM data set 293
duplicate 109
examples of 110
glossary 318
qualified 109
special 111-122
DDNAME parameter on DD statement 157-160
coded with)
BLKSIZE subparameter 159-160,124,128
BUFNO subparameter 159-160,124,128
examples of 159-160
" format of 157
glossary 318
rules for coding 157
dedicated data set
disposition of 170
using 177
default for
CLASS parameter 39
CPU time limit 101,309
data in the input stream
BLKSIZE subparameter 309
BUFNO subparameter 309
disposition 164
DPRTY parameter 88
MSGCLASS parameter 43
MSGLEVEL parameter 45,309
output class for system messages 43
PRTY parameter 49,309
REGION parameter 309
with main storage hierarchy support
57-58,97-98
without main storage hierarchy
support 55,95
region size 309
with main storage hierarchy support
57-58, 97-98
without main storage hierarchy
support 55,95
ROLL parameter 63,99,309
step priority 87

273-275

default for (Continued)
system output data set
SPACE parameter 309
UNIT parameter 309
TIME parameter 101,309
wait-state time limit 65,101
DEFER subparameter in the UNIT parameter
2217
deferred checkpoint restart 59-61,288-289
deferred mounting of volumes 227
nonsharable attribute 240
deferred restart
(see also RESTART parameter)
glossary 318
deferred step restart 59-61,287-288
defining restart
on EXEC statement 91-93
on JOB statement 51-53,59-61
DELETE subparameter in the DISP parameter
166,168
delimiter statement 249
* parameter 123
DATA parameter 127
example of 249
format of 249
glossary 318
rules for coding 249
DEN, DCB subparameter 145
device type 224-225
glossary 318
direct access devices
glossary 318
list of 224
directory
glossary 318
requesting space for
in SPACE parameter 197
in SUBALLOC parameter 208
DISP parameter on DD statement 161-171
coded on
JOBLIB DD statement 112
STEPLIB DD statement 116,117
SYSABEND DD statement 119
SYSCHK DD statement 121,122
SYSUDUMP DD statement 119
coded when
creating generation data set 302
creating ISAM data set 295
retrieving generation data set 304
retrieving ISAM data set 299
- conditional disposition subparameter
168-169

disposition subparameter 165-167
examples of 171

format of 161

glossary 318

rules for coding 162

status subparameter 162-165

dispatching priority 87,49
glossary 318

disposition of a data set 165-167
CATLG 167
conditional disposition 168-169
default 164
DELETE 166
KEEP 166
PASS 166-167
UNCATLG 167

disposition processing 164-170
bypassing 131
cataloging a data set 167,169
deleting a data set 166,168
keeping a data set 166,168
passing a data set 166-167
for restart 52,92
uncataloging a data set 167,169
DOS
assigning space in 195
DPRTY parameter on EXEC statement 87-88
default for 87
examples of 88
format of 87
glossary 318
overriding 88
rules for coding 87
time-slicing in MVT 87-88
DSN parameter on DD statement (see DSNAME

parameter)
DSNAME parameter on DD statement
173-178
backward references 177,24
coded on

JOBLIB DD statement 113
STEPLIB DD statement 116,117
SYSABEND DD statement 119
SYSCHK DD statement 121,122
SYSUDUMP DD statement 119
coded when
creating generation data set 303
creating ISAM data set 293-294
retrieving generation data set 304
retrieving ISAM data set 298
copying name from earlier DD 177
examples of 177-178
format of 173
glossary 318
name in apostrophes 177
nontemporary data set names
nullifying DUMMY 132,275
rules for coding 173-174
special characters in 177,26
temporary data set names 176-177

DSORG, DCB subparameter 146

dummy data set 131-132,157-158
(see also NULLFILE)

DUMMY parameter on DD statement
backward reference to 132
examples of 132
format of 131
glossary 318
nullifying 131-132,276
rules for coding 131

dump, abnormal termination
storing the 119
writing to unit record 119

DYNAM parameter on DD statement

133,106,157
example of 133
format of 133
glossary 319
nullifying 133
rules for coding 133

dynamic allocation 133

dynamic storage
glossary 319

174-176

131-132

Index 331

ellipsis
use 20
EROPT, DCB subparameter 146

EVEN subparameter in the COND parameter

83,84~-85
exclusive control 162-164
glossary 319
EXEC statement 69-103
adding parameters to 271
example of 271-273
examples of 71
fields in 69
format of 69
glossary 319
keyword parameters on 81-103,70
nullifying parameters on 271
examples of 272-273
overriding parameters on 269- 270
example of 272-273
positional parameters on 75-79,70
rules for coding 69-70
execute statement (see EXEC statement)
execution
of a cataloged procedure 79,263
of a processing program 75-77

EXPDT subparameter in the LABEL parameter

185
expiration date 185
(see also retention period)
effect on
DELETE subparameter 166,168
KEEP subparameter 166,168
extending a data set (see lengthening a
data set)
extent 196
glossary 319

FCB parameter 179-180
examples of 180
glossary 319
image identifier 179
requesting alignment of forms
rules for coding 179
F format 150
glossary 319
fields 20-21
comments 21
examples of 21
name 20
operand 20
operation 20
fixed-length record
glossary 319
FOLD subparameter in the UCS parameter
form number subparameter in the SYSOUT
parameter 212
format of
command statement 243
comment statement 247
DD statement 105
delimiter statement 249
EXEC statement 69
JOB statement 29
null statement 251
PEND statement 253
PROC statement 255
publication 17

179

332 JCL Reference (Release 20.1)

219

generation data group

creating 301-302

glossary 319

index 301

name 301
generation data set

creating 302-303

with deferred restart 304-305,60

glossary 319

name of 301

retrieving 304
generation number, relative.
GNCP, DCB subparameter 147
graphic devices, list of 225
group name 226

glossary 319

301

HIARCHY, DCB subparameter 147
hierarchy 0 57-58,97-98
hierarchy 1 57-58,97-98

HOLD subparameter in the TYPRUN parameter

67
holding a job 67

identifying the data set (see DSNAME)
IEFBR14 program 76

IN subparameter in the LABEL parameter

incremental quantity (see secondary
quantity)
index

glossary 319

requesting space for 295-296,197,199

index area 293
indexed sequential data set 291-297
area arrangement of 296-297
creating 293-296
example of 299
glossary 319
lengthening 164
name
nontemporary 174
temporary 176
requesting space for index
295-296,197,199
retrieving 298-299
example of 299
unit restrictions for 297
initiation
glossary 319
initiation priority 49
input data set
concatenating 24-25
identifying the data set 174-177
IN subparameter 185
providing
unit information 222-223
volume information 232-233
specifying

conditional disposition of 168-169

disposition of 164-168
status of 162-164
input job queue
glossary 319
input stream 123,127
defining data in the 123-129
glossary 319
input work queue 39

in-stream procedures 261-285
assigning values to symbolic parameters
264
calling 263
contents of 282
DD statement
adding DD statements
adding parameters to
nullifying parameters
overriding parameters
EXEC statement
adding parameters to
nullifying parameters
overriding parameters
glossary 319
modifying 285
using 263-281
writing 282-285
INTVL, DCB subparameter 147
ISAM data set (see indexed sequential data
set)

279
275
275-276
on 273-275

271
on 271
to 269-270

job
glossary 319
job class 39

default 39
glossary 319
priority 49

job control language
glossary 320

job control statement
glossary 320

job library 112-118
- job management
glossary 320
job processing
glossary 320
job scheduler
glossary 320
job separatorxrs 213
JOB statement 29-67
examples of 31
fields in 29
format of 29
glossary 320
keyword parameters on 39-67,30
positional parameters on 35-37,30
job step
glossary 320
jobclass subparameter in the CLASS
parameter 39
JOBLIB DD statement 112-115,76
(see also STEPLIB)
concatenating private libraries
examples of 114-115
glossary 320
parameters to code when
cataloged 113
not cataloged 113
rules for coding 112
jobname
assigning a 33
examples of 33
glossary 320

113-114

K
glossary 320
KEEP subparameter in the DISP parameter
166,168
kept data set
retrieving 312-313
KEYLEN, DCB subparameter 147-148
coded with
SPACE parameter 196
SPLIT parameter 203
SUBALLOC parameter 207
mutually exclusive with

CODE 144
MODE 149
PRTSP 152
STACK 155
TRTCH 156
keyword

glossary 320

keyword parameters
on DD statement 135-241,106-107
on EXEC statement 81-103,70
glossary 320
on JOB statement 39-67,30
rules for coding 21

LABEL parameter on DD statement 181-186
coded on SYSCHK DD statement 121,122
coded when

creating generation data set
creating ISAM data set 294
retrieving generation data set 304
retrieving passed data set 167
data set sequence number subparameter
183 '
examples of 185-186
EXPDT subparameter
format of 181
glossary 320
IN subparameter 185
label type subparameter
OUT subparameter 185
PASSWORD subparameter
RETPD subparameter 185
rules for coding 182
when to code 182-183

label types 183-184

labels
data set 182
direct access 182
nonstandard (NSL) 183,184
standard (SL) 183,184
standard and user (SUL)
tape 182 :

lengthening a data set
space requirements
SPACE parameter 196-197
SUBALLOC parameter 208
specifying status 162,164-165
volume sequence number subparameter
234-235
libraries, concatenating private
113-114,117

303

185

183-184

184-185

183

Index

333

library
glossary 320
private 112-118,76
procedure 79,261
system 76
temporary 75
LIMCT, DCB subparameter 148
OPTCD=E 150
limit priority
glossary 320
link library 76
glossary 320
logical record
glossary 320
LRECL, DCB subparameter 148

main storage
acquiring additional
glossary 320
REGION parameter on EXEC statement
95-99 .
REGION parameter on JOB statement
55-58
main storage hierarchy support 57-58,97-99
glossary 320
master scheduler
glossary 320
MCP (see Message Control Program)
member
glossary 320
member name, assigning a 175,176
Message Control Program {(MCP) 189
glossary 320
MFT (multiprogramming with a fixed number
of tasks)
glossary 320
MOD subparameter in the DISP parameter
. 164-165
MODE, DCB subparameter 149
mutually exclusive with
CODE 144
KEYLEN 147
PRTSP 152
TRTCH 156
model data set label 301-302
mount attributes 237-239
mounting
deferred 227
parallel 227
MSGCLASS parameter on JOB statement 43
assigning an output class 43
coded with SYSOUT parameter 43,212
default 43
examples of 43
format of 43
glossary 321
rules for coding 43
MSGLEVEL parameter on JOB statement
default 45,309
examples of 46
format of 45
glossary 321
restart in MFT, MVT 52,92
rules for coding 45
multiprogramming
glossary 321

63-64,99-100

45-46

334 JCL Reference (Release 20.1)

mutually exclusive parameters
glossary 321
overriding with 273.
MVT (multiprogramming with a variable
nunber of tasks)
glossary 321
MXIG subparameter in the SPACE parameter
198

name
glossary 321
name field 20
example of 21
national character set 25
NC subparameter in the RD parameter 52,92
NCP, DCB subparameter 149
new output data set
creating 311-312 ,
NEW subparameter in the DISP parameter 163
NL subparameter in the LABEL parameter
183,184 ,
nonsharable attribute 240
nonspecific volume request 233
for direct access volume 196,233
glossary 321
satisfying a 240-241
for tape volume 233,184
nonstandard labels
label type subparameter 183,184
processing reutines for 183
nontémporary data set
creating 311-312
glossary 321
NOPWREAD subparameter in “the LABEL
parameter 181,184-185
NOTIFY parameter on JOB statement 47,30
example of 47
format of 47
glossary 321
rules for coding 47
NR subparameter in the RD parameter 52,92
NSL subparameter in the LABEL parameter
183,184
NTM, DCB subparameter 149
OPTCD=M 150
null statement
example of 251
format of 251
glossary 321
NULLFILE 132,276
nullifying
DCB subparameters 275
DD statement parameters
DUMMY parameter 132,276
EXEC statement parameters 259

276-277

OLD subparameter in the DISP parameter 163
ONLY subparameter in the COND parameter
.84-85
operand field 20
blank 279
example of 21
keyword parameters 21
positional parameters 21
subparameters 21
operation field 20
example of 21

operator commands 244-246
operator subparameter in the COND
parameter 41,84
OPTCD, DCB subparameter 149-151
OUT subparameter in the LABEL parameter
185
OUTLIM parameter 187-188
coded with SYSOUT parameter 187
determining the output limit 187
example 188
glossary 321
rules for coding 187
output of
allocation messages U5
allocation recovery messages U5
disposition messages 45
job control statements U5
output class
glossary 321
for system messages 43
output class subparameter in the MSGCILASS
parameter 43
ocutput data set
allocating space for 193-209
creating 311-312
lengthening 164-165
OUT subparameter 185
printed using UCs feature
providing
unit information 222-223
volume information 232
routed through output stream 211-214
specifying
conditional disposition 168-169
disposition 165-167
status 162-165
output listing
glossary 321
output stream
glossary 321
routing data sets through the
output writer 211-212
glossary 321
overflow area 293
overriding
concatenated data sets 279
DCB subparameters 274-275

217-219

211-214

DD statement parameters 273-275,277-278

EXEC statement parameters 269-270
with mutually exclusive parameters
PARM parameter 270

TIME parameter 269-270

273

P subparameter in the UNIT parameter 227
parallel mounting 227
parameter
glossary 321
parentheses
to enclose a subparameter list 21
inclusion in variables 26
PARM parameter on EXEC statement
examples of 90
format of 89
glossary 321
overriding the 89,270
rules for coding 89
special characters in 89,26

89-90

partition
glossary 321
partitioned data set
concatenating 24-25
creating 312
executing programs in a
glossary 321
lengthening 164~-165
name
nontemporary 174
temporary 176
retrieving a member of 312
space for directory
in SPACE parameter 197,199
in SUBALIOC parameter 208
PASS subparameter in the DISP parameter
166-167
passed data set
providing
data set name 166
data set sequence number 183
DCB information 167
disposition 167
label type 184,167
unit information 222,167
retrieving 313
password protection 185-185
PASSWORD subparameter in the LABEL
parameter 184-185
PCI, DCB subparameter 152
permanently resident volume '237-239
PGM parameter on EXEC statement
75-77
backward references
examples of 76-77
executing programs from
private library 112-118,76
system library 76
temporary library 75
format of 75
glossary 321
physical record
glossary 321
positional parameters
on DD statement 123-132,106
on EXEC statement 75-79,70
glossary 322
on JOB statement 35-37,30
rules for coding 21
postponing definition of a data set
DDNAME parameter 157-160
PRESRES entry 237-238
primary quantity
glossary 322
in SPACE parameter
in SPLIT parameter
in SUBALLOC parameter
prime area 293
priority
glossary 322
initiation 49

75-76,24

196,199
202-203
207

job 49
job class 49
step 87
priority parameter
(see PRTY)

priority scheduler
glossary 322

Index

75-77,112-118

335

private
glossary 322
private libraries 112-118,75-76
concatenating 113-114,117
executing programs from 112-118,75-76
glossary 322
PRIVATE subparameter in the VOLUME
parameter 233-234
private volume 233,237-239 .
PROC parameter on EXEC statement 79,263
examples of 79
format of 79
glossary 322
PROC statement 255-257

assigning values to symbolic parameters

on 256-257
examplée of 257
format of 255
glossary 322
rules for coding 255-256
procedure
(see cataloged procedure; instream
procedure)
procedure library 79,261
procedure name 79,261
procedure step 261
glossary 322
processing program
glossary 322
processor storage 57-58,97-98
program
calling a 75-77
program name 75
subparameter in the SYSOUT parameter
212
programmer's name parameter on JOB
statement 37
examples of 37
format of 37
requirement for coding 309
rules for coding 37
special characters in 37,26
PRTSP, DCB subparameter 152
matually exclusive with
CODE 144
KEYLEN 147
MODE 149
STACK 155
TRTCH 156
PRTY parameter on JOB statement 49
default 49,309
examples of 49
format of 49
glossary 322
rules for coding 49
time-slicing in MVT 49
public '
glossary 322
public volume 233,237-239

QISAM data set
(see ISAM data set)
ONAME parameter on the DD statement 189
example of 189
format of 189
glossary 322
rules for coding 189

336 JCL Reference (Release 20.1)

qualified name
assigning a 174-175
glossary 322

R subparameter in the RD parameter 52,92
RD parameter on EXEC statement 91-93
defining restart 92
examples of 93
format of 91
glossary 322
overriding the 92
restart facilities 91
rules for coding 91
RD parameter on JOB statement 51-53
defining restart 52
examples of 53
format of 51
glossary 322
restart facilities 51
rules for coding 51
reader procedure
defaults supplied in the 307-309
reader/interpreter
glossary 322
RECFM, DCB subparameter 152-154
record
glossary 322
REF subparameter in the VOLUME parameter
236
references, backward (see backward
references)
region
glossary 322
REGION parameter on EXEC statement 95-99
glossary 322
with main storage hierarchy support
97-99
acquiring additional main storage 98
default 97-98,309
examples of 98
format of 97
overriding the 98
rules for coding 97
without main storage hierarchy support
95-96
acquiring additional main storage 95
default 95,309
examples of 96
format of 95
overriding the 95
rules for coding 95
REGION parameter on JOB statement 55-58
glossary 322
with main storage hierarchy support
57-58
acquiring additional main storage 58
default 57-58,309
examples of . 58
format of 57
rules for coding 57
without main storage hierarchy support
55-56
acquiring additional main storage 55
default 55,309
examples of 55-56
format of 55
rules for coding 55

relational operators in the COND parameter
41,84
relative generation number 301
relative track number 199
releasing unused space (see RLSE)
remote job entry
restriction on use of BUFNO subparameter
with * parameter 124
with DATA parameter 128
with DDNAME parameter 159
removable volume 238-239
REPOS, DCB subparameter 154
RESERVE, DCB subparameter 155

reserved volume 238-239
resource

glossary 322
restart

glossary 322
types of 287-289
restart definition (RD parameter)
on EXEC statement 91-93
on JOB statement 51-53
restart facilities
examples of 290-291
RD parameter on EXEC statement 91-92
RD parameter on JOB statement 51-52
RESTART parameter on JOB statement 59
REPOS, DCB subparaméter 154
RESTART parameter on JOB statement
examples of 60-61
format of 59
glossary 322
rules that apply when
defining generation data set 60
making backward reference 60
rules for coding 59
-RETAIN subparameter in the VOLUME
parameter 234
retention period 185
effect on
DELETE subparameter 166,168
KEEP subparameter 166,168
RETPD subparameter in the LABEL parameter
185 '
retrieving data sets
cataloged 312
generation data set 304,313
indexed sequential data set 298-299,313
member of partitioned data set 312
noncataloged
data set with direct organization 312
sequential data set on direct access
volume 312
on a tape volume 312
passed data set 166-167,313
return code 41,84
return code test 41,84
effect on disposition processing 164
RKP, DCB subparameter 155
RLSE subparameter in the SPACE parameter
197-198
effect on existing data set 198
when overriding 276
RNC subparameter in the RD parameter
52,92
ROLL parameter on EXEC statement
default 101,309
examples of 102

59-61

312-313

101-102

ROLL parameter on EXEC statement
(continued)
format of 101
glossary 323
overriding the 101
rules for coding 101
ROLL parameter on JOB statement 63-64
default 63,309
examples of 64
format of 63
glossary 323
rules for coding 63
rollout/rollin 63,101
glossary 323
ROUND subparameter in the SPACE parameter
198

scheduler
glossary 323 _
scratch volume 234,238-239
secondary quantity
glossary 323
when overriding 276
in SPACE parameter 196-197
in SPLIT parameter 202-203
in SUBALLOC parameter 208
secondary storage
glossary 323
Section I: Programming Notes 19-27
Section II: The JOB Statement 29-67
Section III: The EXEC Statement 69-103
Section IV: The DD Statement 105-241
Section V: The Command Statement 2U3-246
Section VI: The Comment Statement 247
Section VII: The Delimiter Statement 249
Section VIII: The Null Statement 251
Section IX: The PEND Statement 253
Section X: The PROC Statement 255-257
Section XI: Appendixes 259-315
Section XII: Glossary 317-325
Section XIII: Control Statement Foldout
Charts 341-345
SEP parameter on DD statement 191-192
examples of 192
format of 191
glossary 323
requesting channel separation 191
rules for coding 191
SEP subparameter in the UNIT parameter
227-228
separation
channel 191-192,135-136
unit 227-228
sequence -number
data set 183
volume 234-235
sequential data set
concatenating 24-25
creating 311-312
glossary 323
lengthening 164-165
retrieving 312
SER subparameter in the VOLUME parameter
235-236
shared control 163-164
glossary 323

Index 337

sharing
~cylinders 201-204
data set 163-164
SHR subparameter in the DISP parameter
163-164
SL subparameter in the LABEL parameter
183,184
SOWA, DCB subparameter 155
SPACE parameter on DD statement 193-200
(see also SPLIT; SUBALLOC)
assigning specific tracks 199
coded on '
SYSABEND DD statement 119
SYSUDUMP DD statement 119
coded when
creating deneration data set 303
creating ISAM data set 295
coded with SYSOUT parameter
212-214,309
examples of 199-200
format of 193
glossary 323
letting system assign specific tracks
195~-198
allocating whole cylinders 198
releasing unused space 197-198
requesting space for directory 197
requesting space for index 197
specifying format 198
specifying primary quantity 196
specifying secondary quantity
196~-197
unit of measurement 195-196
requesting space 194-199
rules for coding 194
special character set 25
with UCS parameter 217
using 25-26.
special ddnames 111-122
specific volume request 232-233
for direct access volume 233,196
glossary 323
satisfying a 240
for tape volume 234
split cylinder mode 202
SPLIT parameter on DD statement
201-204
(see also SPACE; SUBALLOC)
coded on
SYSABEND DD statement 119
SYSUDUMP DD statement 119
examples of 204
format of 201
glossary 323
requesting space 202-203
rules for coding 201
STACK, DCB subparameter 155
mutually exclusive with

CODE 144

KEYLEN 147
- PRTSP 152

TRTCH 156

states, volume 236-241
station 189
glossary 323
status subparameter in the DISP parameter
162-164
step dispatching priority (see DPRTY)

338 JCL Reference (Release 20.1)

step restart
automatic 51,91,287
deferred 59-61,287-288
glossary 323
STEPLIB DD statement 116-118,75-76
(see also JOBLIB)
concatenating private libraries 117
examples of 117-118
glossary 323
parameters to code when
cataloged 116
not cataloged or not passed 116-117

passed 117
rules for coding 116
stepname

assigning a 73
examples of 73
glossary 323
storage volume 237-238
glossary 323
stream, input, data sets in the 123-129
stream, output, routing data sets through
the 211-214
SUBALLOC parameter on DD statement 205-209
(see also SPACE; SPLIT)
coded on
SYSABEND DD statement 119
SYSUDUMP DD statement 119
examples of 209
format of 205
glossary 323
requesting space 206-208
rules for coding 206
suballocation 206
subparameter
glossary 323
rules for coding 21
SUL subparameter in the ILABEL parameter
i83
suppressing
CHKPT macro instruction 51,91
automatic restarts 51,91
symbol
glossary 323
symbolic parameters 282-284,263-266
assigning default values to 255-257
assigning values to 263-264
defining 282-284
definition of 282-283,22
examples of 283,263
glossary 323
nullifying 266
PROC statement 255-257,283
SYSABEND DD statement 119-120
(see also SYSUDUMP)
examples of 120
glossary 323
storing the dump 119
writing the dump to unit record device
119
SYSCHK ‘DD statement 121-122
with deferred restart 60,288
examples of 122
glossary 323
parameters to code when
cataloged 121
not cataloged 122
rules for coding 121

SYSCTLG
glossary 323
SYSIN as a ddname 123
glossary 323
SYSOUT parameter on DD statement 211-214
coded on
SYSABEND DD statement 119
SYSUDUMP DD statement 119
examples of 213-214
format of 211
glossary 324
rules for coding 211
specifying classname 212
specifying DCB parameter 213-214
specifying form number 214
specifying MSGCLASS parameter 212
specifying program name 212
specifying SPACE parameter 213,309,307
specifying UNIT parameter 213,309
system data set
glossary 324
system generation
glossary 324
system input devices
glossary 324
system library 76
glossary 324
system management facilities
glossary 324
with TIME parameter
system messages
glossary 324
output class 43
system output device
glossary 324
SYSUDUMP DD statement 119-120
(see also SYSABEND)
examples of 120
glossary 324
storing the dump 119
writing the dump to unit record device
119
SYS1.LINKLIB 76
glossary 324
SYS1.PROCLIB 79,263
glossary 324
SYS1.SYSJOBQE
glossary 324

65,101-102

tape devices, list of 224
tape labels, ANSI 181,183,184
task
glossary 324
TCAM (see Telecommunications Access Method)
Telecommunications Access Method (TCAM)
189
glossary 324
teleprocessing

what to code in ROLL parameter 63,99
temporary data set

creating 311

glossary 324
temporary library 75
TERM parameter on the DD statement 215,107

examples 215
format of 215
glossary 324
rules for coding 215

terminal table 189
glossary 324
termination
glossary 324
THRESH, DCB subparameter
time limit
CPU 65,101
wait state 65,101
TIME parameter on EXEC statement
affect of JOB limit 102
CPU time limit
default - 101,309
with SMF 101
without SMF 101
eliminating timing 102
examples of 102-103
format of 101
glossary 324
overriding the 102,269-270
rules for coding 101
wait-state time limit
with' SMF 101
without sMF 101
1440 102
TIME parameter on JOB statement 65-66
affect of JOB time limit 102
CPU time limit
with SMF 65
without SMF 65
eliminating timing 66
examples of 66
format of 65
glossary 324
rules for coding 65
wait-state time limit
with SMF 65
without SMF 65
1440 66
Time Sharing Option (TSO)
glossary 324
time sharing terminal 47,215
time-slicing
glossary 324
in MFT 87-88
in MVT 49,87-88
for a job 49
for a step 87-88
timing
CPU 101,65
eliminating 66,102
track number, relative 199
TRK subparameter
in SPACE parameter 195
in SUBALLOC parameter 207
TRTCH, DCB subparameter 156
for checkpoint data set 121,122
mutually exclusive with
CODE 144
KEYLEN 147
MODE 149
PRTSP 152
STACK 155
TSO (see Time Sharing Option)
TYPRUN parameter on JOB statement 67
exampie of 67
format of 67
glossary 324
rules for coding 67

155

47,133,215

Index

101-103

339

UCS parameter on DD statement 217-219
examples of 219
format of 217
glossary 324
identifying character set 218
requesting
fold mode 219
operator verification 219
rules for coding 217
special character sets 217
UNCATLG subparameter in the DISP parameter
167,169
unit address 223
glossary 324
unit affinity 228
nonsharable attribute 2uo
unit count subparameter in the UNIT
parameter 226
UNIT parameter on DD statement 221-229
coded on
JOBLIB DD statement 113
STEPLIB DD statement 117
SYSABEND DD statement 119
SYSCHK DD statement 122
SYSUDUMP DD statement 119
coded when)
creating generation data set 302-303
creating ISAM data set 294
retrieving generation data set 304
retrieving ISAM data set 298
retrieving passed data set 167
examples of 228-229
format of 221
glossary 324
identifying the dev1ce 223-226
providing unit information 222-228
rules for coding 221-222
specifying
deferred mounting 227
parallel mounting 227
SYSOUT parameter 212-214,309
unit affinity 228
unit count 226
unit separation 227-228
with suballocation 206
unit record devices
list of 225
writing dumps to 119
unit separation 227-228
universal character set (see UCS)
unqualified name, assigning 174
use attributes 236-239

V format
glossary 325
VERIFY subparameter
l of FCB parameter 180
of UCS parameter 219

VOL parameter on DD statement (see VOLUME

parameter) -
volume
glossary 325
permanently resident 237-239

340 JCL Reference (Release 20.1)

volume (Continued)
private 233,237-239
public 233,237-239
removable 238-239
reserved 238-239
scratch 234,238-239
storage 237-238
| volume affinity 237
volume count subparameter in the VOLUME
parameter 235
VOLUME parameter on DD statement
backward reference 236,24
coded on
JOBLIB DD statement 113
STEPLIB DD statement 117
SYSABEND DD statement 119
SYSCHK DD statement 121,122
SYSUDUMP DD statement 119
coded when
creating generation data set 303
creating ISAM data set 294
retrieving ISAM data set 298
examples of 241
format of 231
glossary 325
providing volume information 232-236
referring to specific request 236
rules for coding 232
specifying
PRIVATE subparameter 233-234
RETAIN subparameter 234
volume sequence number subparameter
234-235 ‘
volume count subparameter 235
with suballocation 206
supplying serial numbers 235-236
volume sequence number subparameter in the
VOLUME parameter 234-235
for checkpoint entry 121
volume serial number 235-236
for checkpoint entry 121,122
special characters in 235,26
volume states 236-241
volume table of contents (VTOC)
glossary 325
VOLUME=REF
backward references

231-241

236,24

wait state time limit

with SMF 65,101
without SMF 65,101

X/ 263
XX 263
XX+ 263,24

1440 66,102

2321 data cell drive
unit. address 223
unit affinity 228

2361 core storage 57,97

Section XIII: Control Statement Foldout Charts

The JOB Statement

//Name | Operation Operand P/K Comments
//jobname JOB ([account number] [,additional accounting information, .. 8 P | Can be made mandatory
[progrqmmer's nume] P 1 Can be made mandatory
] [CLASS=jobclass] K | Assign A-O,
[COND=((code ,operator), . . .)] K | Maximum of 8 tests
| [MSGCLASS=output class] K | Assign A-Z,0-9,
of[,0
MSGLEVEL=(| 1 ||, 1)) K
2
[NOTIFY=user idenﬁﬁcaﬁon] K | Notify user of job completion.
For MVT with TSO,
| [PRTY=priority] K | Assign 0-13,
R
RD=)RNC K | Restart definition
NC
NR
[ReGION=(fvaluek [valueik]) K | For MVT
valuegK
[*
RESTART=({stepname _[,éheckid]) K | For deferred restart
stepname , procstepname
ROLL=({YES}{,YES}) K | Rollout/rollin, For MVT.
NOS,NO
TIME={(minufes,‘secc‘mds)} K | Assigns job CPU time limit,
| 1440
[TYPRUN=HOLD] K | Holding a job in job queue.
Legend:
P Positional parameter.
K Keyword parameter,
{} Choose one.
[1 Optional; if more than one line is enclosed, choose one or none.
Chart 1

Section XIII:

Control Statement Foldout Charts

'

341

The EXEC Statement
//Name Operation Operand P/K Comments
~
//[stepname] EXEC program name
PGM={f‘.sfepname.ddnume } P | Identifies program or
* . stepname . procstepname ,ddname cataloged procedure
[PROC=]procedure name
. |ACCT=(accounting information,...) K | Accounting information for step
ACCT . procstepname=(accounting information,...)
(code ,operator)
COND=(|(code ,operator , stepname) reee[1] [EVEN]) K | Maximum of 8 tests, or 7 tests
(code ,operator ,stepname , procstepname) ONLY. if EVEN or ONLY is coded
) (code ,operator)
COND , procstepname=(| (code , operator , stepname) reee[r] EVEN |)
(code, operator, stepname . procstepname) ONLY
DPRTY=(valuel,value2) K | Assign values of 0-15, For MVT,
DPRTY .procstepname=(valuel, value2)
PARM=value K | Parentheses or apostrophes
PARM, procstepname=value enclosing value may be required
[¢
RD=JRNC K | Restart definition
NC |
NR
RD .procstepname= |JRNC
NC
NR
-REGION=({va|ueK }[,value]K]) K | For MVT
valuegK
REGION.procsfepname=({va|ueK }[,value]K])
L valuegK
ROLL=({YES}{,YES}) K | Rollout/rollin, For MVT,
NOf1,NO
ROLL, procsfepname=({YES}{,YES })
L NOf{,NO
-TIME={(minufes,seconds)} K | Assigns step CPU time limit.
| 1440
TIME. procsfepname={(minufes ,second s)}
L 1440
Legend :
P Positional parameter,
K Keyword parameter,
} Choose one.
[] Optional; if more than one line is enclosed, choose one or none.

Chart 2

Section XIII: Control Statement Foldout Charts 343

The DD Statement

//Name Operation Operand P/K Comments
* P To define a data set in the input stream,
// | ddname DD DATA
procstepname.
ddname [DUMMY] P To bypass /O operations on a data set
(BSAM and QSAM)
[DYNAM] P To request dynamic allocation.

For MVT with TSO,

[AFF=ddnc1me] K One way to request channel separation,
FDCB=(li t of atiributes) K To complete the data control block. See
dsname Glossary of DCB Subparameters.

DCB= * ,ddname [, list of a’n‘ribufes])
B=(* stepname ,ddname
L * stepname , procstepname ,ddname
[DD NAME=ddncme] K To postpone the definition of a data set,
(r ,DELETE
NEW ,KEEP ,DELETE
DISP=(OLb +PASS /KEEP) K To assign a status, disposition, and
SHR CATLG 1CATLG conditional disposition to the data set
| MOD L,UNCATLG| |,UNCATLG
r
L
dsname
dsname(mermber name) K T ign a fo a new data set or to
dsname(generation number) ,: a:?lfgn "af":’. © d r; w fo A
dsname(area name) iden I]?lf'(l: existing]?80 she . i'n
DSNAME|_ /) &&dsname ‘ Enq?a ifi E‘::,me lsl A b<:fc.rw: ers,f. |
DSN &&dsname(member name) :gmn;ng with an alphabetic or nationa
&&dsname(area name) character.
* .ddname
* _ stepname ,ddname
* ,stepname , procstepname .ddname,
L _
_(: 4 1 ,ALIGN K To specify forms control information. The FCB
FCB=(image-id [,VERIFY) parameter is ignored if the data set is not
- written to a 3211 printer,
,SL
SUL
IAL ,PASSWORD ,IN [,] EXPDT=yydd.
LABEL=([data set seq #] IAUL ,NOPWREAD | |,OUT RETPD=nnnn K To supply label information
7
MNSL L
SNL
LBLP
r
[OUTLiMmumber] K To limit the number of logical records you
want included in the output data set,
[Q NAME=process name] K Specifies the name of a TPROCESS macro

which defines a destination queue for
messages received by means of TCAM,

Chart 3

The DD Statement The DD Statement (con't)

Operand P/K Comments //Name Operation Operand P/K Comments
P To define a data set in the input stream,
TRK CONTIG
'SPACE=({CYL ,(primary|,secondary| {,directory [)| ,RLSE| |, MXIG [, ROUND)) K 1 To assign space on a direct access volume
P To bypass 1/O operations on a data set blocklength , ,index , JALX for a new data set
(BSAM and QSAM) ’

2To assign specific tracks on a direct access

P To request dynamic allocation, 28PACE=(ABSTR, (primary quonfi’ty,oddress[,direcfory]) volume for a new data set
For MVT with TSO. L ,index
K One way to request channel separation, N
. // | ddname DD (n,CYL ,{primary quantity [,secondary quantity]) K To assign space on a direct access volume’
K EI::EPI?: ng; (isir; zcr);':gleblock. See procstepname., SPLIT=]n for a new dafa set. Data sets share cylinders.
[' list of cm'ribufes]) 14 P il ddname (;l)ercent,b|ock|engfh,(primary quantity E,secondcry qucnﬁfy)])
L percent
Iname
K To postpone the definition of a data set. [TRK ,ddname
SUBALLOC=({CYL + (primary [, secondary] [directory]) { ,stepname .ddname) K To request part of the space on a dire<3f
. blocklength , ,stepname , procstepname .ddname access volume assigned earlier in the job
LETE L
S.PLG) K To assign a status, disposition, and
NCATLG conditional disposition fo the data set B K | To route a data set through the output
SYSOUT=(classname Eprogram namil Eform numbeEI), [OUTLIM=numbeﬂ) stream. For classname, assign A-Z or
’ 0-9.
K To assign a name to a new data set or to .
ber) idenﬁfg an existing data set, An [TERM:TSJ K | To indicfafe to .the sz/sfem .thorfthe input .cr output
unqualified name is 1-8 characters, d.cfa bem‘g defme.d is coming from or going to a
‘es beginning with an alphabetic or national -~ time sharing terminal,
character, UCS=(character set code| ,FOLD [,VERIFY]) K | To request a special character set for a
’ 1403 printer
ime ,ddname, -
- unit address | | ,unit count
K To specify forms control information, The FCB UNIT=(|device type || ,P [,DEFER] [,SEP=(ddname, .. .)]) K To provide the system with unit information
parameter is ignored if the data set is not group name [{ , i
written to a 3211 printer,
7 | |{UNIT=AFF=ddname
ASSWORD N ['_,] EXPDT=yyddd |) _
NOPWREAD | |,OUT RETPD=nnnn K To supply label information SER=(serial number, ...)
. REF=dsname
VOLUME | =([PRIVATE] [,RETAINT[, volume seq #][, volume count] [,] | REF=*.ddname) K | To provide the system with volume information
VoL ' ’ REF=* stepname ,ddname
] REF=*, stepname , procstepname ,ddname

K To limit the number of logical records you . '
want included in the output data set, .

K Specifies the name of a TPROCESS macro
which defines a destination queue for
messages received by means of TCAM, P Positional parameter.

Legend:

K Keyword parameter.
{ 'f Choose one.
[] Enclosing subparameter, indicates that subparameter is optional; if more than one line is enclosed, choose one or none.

[] Enclosing entire parameter, indicates that parameter may be optional, depending on what type of data set you are defining.

Section XIII: Control Statement Foldout Charts 345

GC28-6704-1

B

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

(96-09€5) @ous1849Y 1Df SO 098/ waisks

TVTSTN Ul paiulyd

1-¥0£9-8209

READER'S COMMENT FORM

IBM System/360 Operating System:
Job Control Language Reference Order No. GC28-6704-1

Please use this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. All suggestions

and comments become the property of IBM.

Please do not use this form to request technical information or additional copies of publications.
All such requests should be directed to your IBM representative or to the IBM Branch Office

serving your locality.

® Please indicate your occupation:

® How did you use this publication?
[0 Frequently for reference in my work.
0 As an introduction to the subject.
O As a textbook in a course.
! For specific information on one or two subjects.

e Comments (Please include page numbers and give examples.):

e Thank you for your comments. No postage necessary if mailed in the U.S.A.

GC28-6704-1

YOUR COMMENTS, PLEASE . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. - All comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your

IBM system, to your IBM representative or to the IBM branch office serving your locality.

FIRST CLASS
PERMIT NO. 81

POUGHKEEPSIE, N.Y.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation
P.O. Box 390
Poughkeepsie, N.Y. 12602

Attention: Programming Systems Publications
~ Department D58

BV

International Business Machines Corparation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{International]

aur Buoly 4n)

