
IBM System/360 Operating System:

Control Pro,gram With MFT I

Program Logic Manual,

Program Number 360S-CI-505

File No. S360-36 (OS)
GY27-7128-5

Program Logic

This publication describes the internal logic of
the IBM System/360 Operating system Control Pro
gram with MFT. The publication provides an intro
duction to control program logic and describes the
components of the program. It also describes the
initialization of the operating system. the func
tions of the supervisor that differ from those of
the PCP and MVT supervisors and the functions of
job management that differ from those of PCP and
MVT job management.

The appendix contains a description of all rou
tines. major tables. and work areas used by MFT .•
and flowcharts of the routines of MFT that differ
from those of either of the other control
programs.

This manual is intended for persons involved in
program maintenance. and system programmers who
are altering the program design. Program logic
information is not necessary for use and operation
of the program.

Sixth-Edition (June. 1970)

This is a major revision of. and obsoletes, Y27-7128-4. The
text and illustrations have been changed to reflect the addi
tion of the following:

• system management facilities.
• Direct system output processing.
• The multitasking capability and a revision of the ABEND

and DAR routines.
• Write-to-programmer facility.

In addition. the text has been revised to include descrip
tions of: 7094 emulator support for the model 85; device
independent. operator-display console support; input/output
recovrry management support; channel-check handler dynamic
loading; the express cancel facility; instream procedures;
unit status display command; initiator modifications; changes
to the UCB and the UCME; the resolution of the transient area
contention problem; and revisions to the define command pro
cessing routines.

Other changes to the text. and small changes to illustra
tions. are indicated by a vertical line to. the left of the
change; changed or added illustrations are denoted by the
symbol • to the left of the caption.

I This edition applies to release 19 of the IBM System/360
operating System. and to all subsequent releases until other
wise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein;
before using this publication in connection with the opera
tion of IBM systems" consult the latest IBM Systenv360 SRL
Newsletter. Order No. GN20-0360. for the editiOns that are
applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation.. Programming Systems Publica
tions. Department D58, PO Box 390, Poughkeepsie, N. Y. 12602

CCopyright International Business Machines corporation 1967,.1968,1969,1970

This publication describes the differences
in internal logic of the control program
that result from the inclusion of multipro
gramming with a fixed number of tasks
(MFT). It is assumed that the reader of
this publication is thoroughly familiar
with the basic operation of the control
program. Only areas of difference are dis
cussed in this publication.

The manual is divided into four major
sections. The Introduction describes con~
trol program functions, control program and
main storage organization, and control pro
gram processing flow. The Initialization
of the operating system section describes
differences introduced by MFT into system
initialization. The supervisor section
describes supervisor functions including an
explanation of task dispatching in MFT.

The Job Management section contains the
changes to the job management components
made by MFT. Job management is divided
into three major components: reader/
interpreter, initiator/terminator, and out
put writer ..Also described are the Queue
Manager which is used by all three major
job management components, the Communica
tions Task which handles operator-system
communication, and the Master Scheduler
Task which processes operator commands.

Appendix A contains descriptions of
major tables and work areas used by MFT.
Appendix B contains descriptions of modules
used by MFT. Appendix C contains MFT
flowcharts.

PREREQUISITE PUBLICATIONS

:Knowledge of the information in the follow
ing publications is required for a full
understanding of this manual.

Preface

IBM SYstem/360 Operating system:

Principles of Operation, GA22-6821

Introduction to Control Program Logic,
Program Logic Manual, GY28-6605

PCP Supervisor, Program Logic Manual,
GY28'-6"612

MVT Job Management,Proqram Logic Manu
al, GY28-6660

Initial Program Loader and Nucleus
Initialization Program, GY28-6661

MFT Guide, GY27-6939

The following publications may be useful
for reference although they are not prere
quisites for this publication.

IBM ststem/36 0 operating system:

Concepts and Facilities, GC28-6535

Linkage Editor, GC28-6538

System Programmer's Guide, GC28-6550

system Generation, GC28-6554

MVT . Control Program·. Logic' Summary,
GC28-6658

Input/Output supervisor, Program Logic
Manual, GY28-6616

MVT supervisor, Program Logic Manual,
GY28-6659

Preface J

SUMMARY OF MAJOR CHANGES -- RELEASE 19 • 11

INTRODUCTION • • • • •• • • • • • • •
FUnctions of the Control Program With

• 17

MFT •• • • • • • • 18
Job Management • • • 18
Task Management • • • • • • • i8
Data Management • • • • • • • 18

Control Program Organization • • • • 19
Resident Portion of the Control
PrOCjram • • • • • •• .• • • •
Nonresident Portion of the Control
Program • • • • • • • •

Main Storage Organization
Fixed Area • • • • • • •

System Queue Area • • • •
Dynamic Area • • • • •

Theory of Operation

• • 19

• ,. 20
• • 20
• • 20
• • 20
• • 20
• • 22

INITIALIZATION OF THE OPERATING SYSTEM • 26
Main Storage Preparation • • • • • • 26

Initializing the Partitions • • 26

SUPERVISOR • • • • • • • • • • •
Interruption Supervision • • • •

The Dispatcher (Macro IEAAPS)
Dispatching a Task • • • • •
Handling Job Step Timing When a

29
• • 29
•• 29

32

Task Switch is to Occur • • • • • • 33
Dispatching the Communications
Task and Master Scheduler Task • • • 36
Dispatching Tasks by Partition
Priority • • • • • • • • ,. • • • • • 36
Dispatching a Task (With Time
Slicing) . • . . . • . . . '. . .
Dispatching the 7094 Emulator

37

Program for the Model 85 • • • • • • 38
SVC Second Level Interruption Handler 38
EXIT (Macro IEAATA) ••••• • • 38
STAE Service Routine • • • • 39
ABEND Service Routine 39

Normal Termination • • • 40
Abnormal Termination • • 40
ABEND Normal Termination
Processing and Abnormal
Termination Router Routine
(IEANTMOO) • • • • • • • • • • • • • 41
ABEND/STAE Graphics I Linkage Routine
(IEANTM01) • • • • • • • • • • • • • 41

ABEND I/O,Purge Routine (IEANTM02) • 41
ABEND Control Block Validity Check
Routine CIEANTM03) • • •• • • • •• 41
ABEND Dump Te.st Routine (IEANTM04) • 42
ABEND Open Dump Data Set Routine
(IEAMTM05) (MFT without subtasking) 42

ABEND Open Dump Data Set Routine
(IEANTM05) (MFT with subtasking) • • 42

ABEND Dump Routine (IEANTM06) ••• 42
ABEND Termination Routine
(IEANTM07) • • • • • • • • .. • • • • 42
ABEND Indicative Dump Routine
(IEANTM08) • • • • • • • • • • • • • 43

Contents

ABEND Recursion Processing Routine
CIEANTM09) • • • • • • • • • • • • • 43
ABEND Steal Main Storage Routine
(IEANTMOA) • • • • • • • • • • • 43
ABEND WTOR Purge Routine
(IEANTMOB) (MFT Without MCS) •

ABEND WTOR Purge Routine
• 43

CIEACTMOB) (MFT,With MCS) ••••• 43
ABEND Loading Program Purge Routine
(IEANTMOC) (MFT With Subtasking
only) •••••••• ~ • • • •
ABEND subtask ENQ Purge Routine
(IEANTMOD) (MFT With Subtasking
Only) • • • • • • • ~ • • •
ABEND IQE Purge and Data Set Close
Routine (IEANTMOE) (MFT With
Subtasking Only) • • • • • • •

Damage Assessment Routines. • •
DAR Core Image Dump Routine

43

• 44

• 44
• 44

CIEADTM22) • '. .. • • • •• • • • • • 44
DAR Task Reinstatement Routine
CIEADTM23) • • • • • • • • • • • 44

Task supervision • • • • • • • • •
The ATTACH Routine (MFT without
subtasking) (Macro IEAAAT) • •
The Attach Routine (MFT with
Subtasking) (Macro IEAQATOO)
The CHAP Routine (MFT with
subtasking) • • '. • •
The Detach Routine (MFT with
subtasking) ••••••
The Extract Routine (MFT with
Subtasking) ••••••••••
The Extract Routine (MFT Without
Subtasking) ••••• '. • '. • •
The Wait Routine (Macro IEAAWT)
The Post Routine (Macro IEAAPT)
TheENQ/DEQ Routine (IEAGENQ1) •

Contents Supervision • • ,. • • • •

• 45

• 45

• 45

• 46

• 46

• 47

• 47
• 47
• 48
• 48
• 48

Contents supervision in an MFT System
Without Subtasking • .'. • • • • • '. • 49

LINK serVice Routine (Macro IEAATC) 49
ATTACH Service Routine (Macro
IEAAAT) • • • • '. • • • • • • • 49
LOAD Service Routine (Macro IEAATC) 50
XCTL Service Routine (Macro IEAATC) 50
IDENTIFY Service Routine (IEAAIDOO) 50
DELETE Service Routine (IEAADLOO,
I EABDL 0 0) ••••••••••••• 50
SYNCH Service Routine (IEAASYOO)._ • 50
FINCH Service Routine CIEAATCOO) ,. • 50

Contents supervision in an MFT
system with Subtasking ••••• • 54

LINK Service Routine (MFT With
Subtasking) (Macro IEAATC) • • • • • 54
LOAD Service Routine (MFT With
Subtasking) (Macro IEAATC) • 56
DELETE Service Routine • • • •

Main Storage supervision. • • • ,.
Timer supervision •• • • • • • •

Timer Second Level Interruption
Handler (IEAOTIOO) • • • • •

• 56
• 56
• 58

• 58

Contents 5

SMF Processing • • • • • • • • • •
Timing Procedure. • • • • • .• • • •
Timer Pseudo Clock Routine (IEATPC)

• 58
• 58
• 59

overlay supervision • • • • • 59
MFT Recording/Recovery Routines

Machine-Check Routines • • • • •
• 59
• 59

Alternate Path Retry Routine ••
Dynamic Device Reconfiguration

• • • 60

RoUtine • • • • • . . • • . . • . . • 60
Systems Without Recording/Recovery
Routines • • 60
Entry to Recording/Recovery Routines • 60

Checkpoint/Restart Routines • 60
System Management Facility • • • • • • • 61

SMF Routines • • • • • • • • • • • • • 62
SMF Time/output Limit Expiration
Routine (IEATLEXT) • • • • • • • • • 62

JOB MANAGEMENT • • • • • • • • • • • 64
• 64 Job Scheduler Functions

Communications Task Functions
Master Scheduler Task Functions
Job Management Control Flow

• • 64
• • • 64

Entry to Job Management FOllowing
Initial Program Loading •••••
Entry to Job Management Following

• 66

• 66

Step Execution • • • • • • • • • • • 67
Command Processing • • • • • • • • • • • 67
Communications Task • • • • • • • • • • 67

WTO/WTOR Macro Inst~uction Processing 68
External Interruption Processing • 68

Communications Task Modules 69
Console Attention Interruption
Routine (IEECVCRA) • • • • • • •
Communications Task Wait Routine

• 69

(IEECVCTW) • • • • • • • • • • • • • • 70
Communications Task Router (IEECVCTR) 70
Console Device Processor Routines
(IEECVPMX, IEECVPMC, IEECVPMP) • • • • 70
Write-to-Operator Routines (IEECVWTO
and IEEVWTOR) •••••••••••• 71
External Interruption Routine
(IEECVCRX) • • • • • • • • • • • • 71

Communications Task With Multiple
Console Support • • • • • • • • • • • • 71
Master Scheduler Task • • • • 72

6

Multiple Console Support Requirements 72
sve 34 Functions ••••••••••• 72

DEFINE and MOUNT Routine (IEESD571) 73
CANCEL Command Routine (IEE2803D) • 73
STOP INIT and START Commands
Processing Routines (IEESD561 and
IEE3903D) ••••••••••••• 73

Write-to-Programmer Message
Processing Routines (IEFWTPOO,
IEFWTP01, and IEFWTP02)
System Initialization ••••
Master Scheduler Service Routines

• • 74
• • 74
• • 75

Master Scheduler Router Routine
(IEECIR50) • • • • • • • • • • • • • 75
Syntax Check Routine (IEESD562) •• 75
Queue Search Setup Routine
(IEESD563) • • • • • • • • • • • • • 75
Queue Search Routine (IEESD564) •• 75
service Routine (IEESD565) • • • • • 75
DISPLAY A Routine (IEESD566) •••• 76
DISPLAY CONSOLES Routine (IEEXEDNA) 76

DISPLAY U Routines (IEEUNIT1,
IEEUNIT2, IEEUNI'I3, IEEUNIT4) • 76
Queue Scratch Setup Routine
(IEESD575) • • • • • • • • • 76
Queue Alter Delete Routine
(IEESD576) • • • • • • • • • • • 76
Queue Restart Enqueue Routine
IEESD577 • • • • • • • • • • • • • • 76
Queue Message Class Setup Routine
(IEESD578) ••••••••••••• 76
Queue 5MB Routine (IEESD579) • • •• 76
Specific Cancel Message Routine
(IEESD580) ••••••••••••• 76
Queue Scratch Routine (IEESD581) 77

Partition Definition by .the Master
Scheduler • •. • • • • • • • • • • • • 77

DEFINE Command Initialization
Routine (IEEDFIN1) • • • • • •• 77
syntax Check Routine (IEEDFIN2) •• 77
Validity Check Routine --
Processor storage (IEEDFIN3) • • •• 79
Validity Check Routine -- Core
Storage (IEEDFINC) • • • • • •• 79
Listing Routine (IEEDFIN4) • • • • • 79
Message Routine (IEEDFIN5) •• • 79
Time-Slice. Syntax Check Routine
(IEEDFIN6) • • • • • • • • • • • • • 79
Keyword Scan Routine (IEEDFIN7) •• 79
System Reinitialization Routine 1
(IEEDFIN8) • • ••••••••••• 80
Command Final Processor Routine
(IEEDFIN9) • • • • • • • • • • • • • 80
MFT storage Configuration Record
Creation Routine (IEEDFINA)
System Reinitialization Routine 2

• 80

(IEEDFINB) • • • 80
Job processing • • 80
Queue Manager 81

Work Queues • 81
Queue Management • • • • • • • • 81
Job Queue Initialization • • • • 81
Queue Manager Modules ••••• 82

Assign/Start Routine (IEFQAGST) 83
Assign Routine (IEFQASGQ) • • • 83
Interpreter/Queue Manager
Interlock Routine (IEFSD572) •
Queue Manager Enqueue Routine
(IEFQMNQQ) • • • • • • • • • • •
Dequeue Routine (IEFQMDQQ) • •
Delete Routine (IEFQDELQ)

86

86
• 86
• 86

86 Table Breakup Routine (IEFSD514)
Transient Queue Manager Routines
(IEFXQMOO, IEFXQM01, and IEFXQM02) 88

Reader/Interpreter • • • • • • • • • • • 88
Resident Readers • • • • • • • • 88
Transient Readers •••• • • • 88
Reader Control Flow 88

Transient Reader SUspend Routine
(IEFSD530) • • • • • • • • • • • • • 89
Transient Reader Restore Routine
(IE:FSD531) • • • • • • • • • • • • • 89

Initiator/Terminator (Scheduler). • 90
Job Selection (IEFSD510)-: • • • 90

Command processing services • • 91
Small Partition Scheduling • • • 92

Initiating a Problem Program • • • • 92
Initiating a Writer ••••• 92
Terminating the small Partition • ,. 92

Small Partition Module (IEFSD599) • 93
lnitiatorlTerminator Control Flow 95

Job Initiation Routine (IEFSD511) • 96
1 Data Set Integrity Routine

(IEFSD541) • • • • • • • • • • • • • 96
Step Initiation Routine (IEFSD512) • 96
SMF User Initiation Exit Routine
(.IEF SlOi'IE) • • • • • • • • • • • •
Problem. Program Interface Routine
(IEFSD513) '. • • • • • • • • • •
SMF TCTIOT Construction Routine
(IEFSMFAT) • • • • • • • • • • • •

•
98 1 98

• 99
.100
.101

Step Deletion Routine (IEFSD515) •
ENQ/DEQ Purge Routine (IEFSD598) •
Alternate Step Deletion Routine
(IEFSD516) • •• • • • • • • • • • .101
Job Deletion Routine (IEFSD511) •• 101
Partition Recovery Routine
(IEFSD518) • • • • • • • • • • • • .101
Dequeue by Jobname Interface
Routine (IEFSD519) • • • • • • • • .102

System Output Writers • • • •• .102
Resident WriteJ;:s '. • •• '. • • ,.102
Nonresident Writers •••.•••• •• 102
System OUtput Writer Modules • ..103

Data set Writer Linkage Routine
(IEFSD010) ••••••••••••• 103
Linkage to Queue Manager Delete
Routine (IEFSD019) • • • • • • • • .103

•103 1 .103
Wait Routine (IEFSD084) •••••
DSB Handler Routine (IEFSD085) ••
Standard Writer Routine (IEFSD081)

Direct System Output Processing
System Task Control ••••• • •

Initiating System Tasks ••••
S~RT Syntax Check Routine

.103

.103
• 104
.104

(IEEVSTAR) • • • • • • • • • • • • .104
Reader Control Routine (IEEVRCTL) .105
Allocation Interface Control
Routine (IEEVACTL) • • • • • • • • .105
QMPA Builder Routine (.1 EEVS MBA) •• 106

Write TIOT on Disk Routine
(IEESD590) • • • • • • • •
Linkor Routine (IEESD591)
Termination Interface COntrol
Routine (IEEVTCTL) • • • •
POST Routine (IEESD592)

System Restart • • • • • •
System Management Facility

Comparison of SM!' in MFT and MVT
SMF Initialization • •
The SMF Writer Routine (IEESMFWT)

.106
• .106

• .106
.106
.106

• .106
.101
.101
.110

APPENDIX A: TABLES AND WORK AREAS .111
Command Scheduling Control Block
(CSCB) • • • • • • • • • • • • • • • .111
Data Set Enqueue Table (OSENQ) • • • .115
Interpreter Work Area (IWA) •• ,.115
Job COntrol Table (JCT) •••• .124
Job File Control Block (JFCB) and
Extension (.:JFCBX) •••••• • ..121
Life-of-Task (LOT) Block • • • .121
Linkage Control Table (LCT). .121
Master Scheduler Resident:bata Area .121
Partition Information Block •• • • .132
Small Partition Information List
(SPIL) • ,. • • • '. • • • • • .. •
step Control Table (SCT) • • • • •
Step ~nput/Output Table (SlOT) ••
Task Input/Output Table (TIOT) • •
Write-to-Programmer Control Block

,.135
• .136
• .137
• .139

(WTPCB) •••••••• • ••• 141

APPENDIX B: MFT MODULES ••••
Unique MFT Modules • • • • • • •
Major component Modules ••••
Module Cross Reference • •
Module Desriptions • • • • • • •

APPENDIX C: FLOiiCHAR'lS

INDEX

• .142
.142

• • • .143
• .149
• .155

.209

• • .243

Contents 7

Illustrations

Figures

Figure 1. Main Storage Organization
in ~T • '. II 17
Figure 2. Division of Main Storage • 21
Figure 3. MFT Theory of Operation
(Part 1 of 4) ••••••••••
Figure 4. Main Storage During
Execution of NIP ••••••••
Figure 5. Main Storage at
Termination of Master Scheduler
Initialization •••••
Figure 6. MFT Supervisor
Figure 7. TCB Queue
Figure 8. Dispatching Communications
and Master Scheduler Tasks

• 22

• 27

• 28
• 30
• 31

• 34
Figure 9. Task switching • • • 35
Figure 10. System Control Block
Relationship ••••••••••
Figure 11. The SVRBs Controlling the
Loading of the Transient Area and the
Execution of the Loaded SVC Routines

• 46

• 52
Figure 12. The Transient Area Request
Queue and the TCB/RB Queue •••••• 55
Figure 13. Job Management Data Flow • 66
Figure 14. ·Command Processing Flow • • 67
Figure 15. WTO/WTOR Macro Instruction
Processing Flow • • • • • • • • • • • • 68
Figure 16. External Interruption
Processing Flow • • • • • • • • • • • • 68
Figure 17. START Command Processing
Flow '. 73
Figure 18. DEFINE Command Processing
Flow 78
Figure 19. Master Queue Control Record -
(Master QCR) Format • • • • • • • • • • 82
Figure ~O. Job Queue Control Record
(QCR)
Figure 21. Logical Track Header (LTH)
Record Format • • • •
Figure 22. Sampl& Job Queue
(SYSl.SYSJOBQE) Format After
Initialization ••••••
Figure 23. Input and Output Queue
Entries

8

• 83

• 83

• 84

85

Figure 24. Table Breakup Parameter
List • • • • • • • • • • • •• 87
Figure 25. Scheduling a Problem
Program in a Large Partition • 91
Figure 26. Scheduling a Problem
Program in a Small Partition ••••• 93
Figure 27. Scheduling a ~riter in a
small Partition • • • • • • • • • 94
Figure 28. Allocate/~erminate
Parameter List •••••••••••• 97
Figure 29. User's Parameter List • 99
Figure 30. Scheduling a Writer in a
Large Partition • • • • • • • • • .104
Figure 31. START Descriptor ~able
(SDT) • • • • • • • • • • .105
Figure 32. SMF Initialization
Processing Flow • • • • • • • • • .108
Figure 33. Command Scheduling Control
Block (CSCB) (Part 1 of 2) • • .113
Figure 34. Data Set Enqueue ~able
(DSENQ) ••••••••••••• .115
Figure 35. Interpreter ~orkArea
(IWA) (Part 1 of 4) ••••••••• .120
Figure 36. Job Control ~able (JCT) • .125
Figure 37. Job F'ile Control Block
(JFCB) and Extension (JFCBX) • .126
Figure 38. Life-of-~ask (LOT) Block .128
Figure 39. Linkage Control ~able
(LCT) •.•••••••••••••• 129
Figure 40. Master Scheduler Resident
Data Area (Part 1 of 2) •••• .131
Figure 41. Partition Information
Block (PIB) •••••••• • .134
Figure 42. small Partition
Inforll".ation List (SPIL) • • .135
figure 43. Step Control Table (SCT> .138
Figure 44. Step Input/Output Table
(SLOT) •••••••••••••••• 140
Figure 45. Task Input/Output Table
(TIOT) II141
Figure 46. Write-to-Programmer
Cont rol Block (WTPCB) ••••• • .141

Tables

Table 1. Responders to Commands
After Initial Processing · · · • · . 65
Table 2. MFT Modules . · · · · · .142
Table 3. ABEND Modules · · · · · .143
Table 4. Communication Task. Modules .143
Table 5. Direct System output Modules 144
Table 6. Initiator Modules · · · .144
Table 7. I/O Device Allocation
Modules (Part 1 of 2) . · · · · · . . .144

Charts

Chart 01. Task Dispatcher (Without
Time Slicing) •••••••••••• .209
Chart 02. Task Dispatcher (With Time
Slicing (Part 1 of 2) .210
Chart 03. Task Dispatcher (With
Time-slicing) (Part 2 of 2)
Chart 04. Normal Termination

.211
• • .212

Chart 05. Small Partition Routine
(Part 1 of 4) ••••••••••
Chart 06. Small Partition Routine
(Part 2 of 4). • • • • • • • • •
Chart 07. Small Partition Routine
(Part 3 of 4) ••••••••••
Chart 08. Small Partition Routine
(Part 4 of 4) ••••••••••
Chart 09. Master Scheduler Task •
Chart 10. Queue Alter • • • • • •
Chart 11. Queue Manager Table Breakup

.213

.214

.215

.216

.217

.218

Routine219
Chart 12. Master Scheduler Resident
Command Processor • • • • • • • • • ..220
Chart 13. SVC 34 Command Processing
(Part 1 of 3)221
Chart 14. SVC 34 Command Processing
(Part 2 of 3)222
Chart 15. SVC 34 Command Processing
(Part 3 of 3) •••••••••••• .223
Chart 16. Communications Task • • •• ,.224

Table 8.
(Part 1 of

Table 9.
(Part 1 of
Table 10.
Table 11-
Table 12.
Table 13.
Table 14.
Table 15.

Interpreter Modules
2) ••••••••••••• 145
Master scheduler Modules
2) •••••••••••• .146
Queue Management Modules • .146
SVC 34 Modules •••••• .147
System Output Writer Modules 147
System Restart Modules .147
System ~ask Control Modules .148
Termination Module~ • • • • .148

Chart 17. IEFSD518 -- Partition
Recovery Routine • • • • • • • • .225
Chart 18. Initiator Control Flow .226
Chart 19. Job selection Routine (Part
1 of 5) • • • • • • • • • .227
Chart 20. Job Selection Routine (Part
2 of 5) • • • • • • • • • .228
Chart 21. Job Selection Routine (Part
3 of 5) • • • • • • • • • .229
Chart 22. Job Selection Routine (Part
4 of 5) • • • • • • • • • .230
Chart 23. Job Selection Routine (Part
5 of 5) • • • • • • • • • .231
Cha~ 24. Reader/Interpreter (Part 1
of 3) • • • • • • • • • • • • • • .232
Chart 25. Reader/Interpreter (Part 2
of 3) • • • • • • • • • • • • • • .233
Chart 26. Reader Interpreter (Part 3
of 3) • • • • • • • • • • • • .234
Chart 27. JCL statement Processor • • .235
Chart 28. Job and step Enqueue Routine 236
Chart 29. Transient Reader Suspend
Routi"ne •••• • • • • • . • • • • • .237
Chart 30. Transient Reader Restore
Routine ••.• • . . • • • • • • • . .238
Chart 31. System Output Writer
Control Flow • • • • • • • • • • • • • .239
Chart 32. System Output Writer •• 240
Chart 33. System Task Control • • • • .241
Chart 34. Abnormal Termination ••• .242

Illustrations 9

Summary of Major Changes--Release 19

r------------------T-----------------------------T--------------------------------------, I Name of Item I Description IArea of Publication Affected I
j I I (Areas correspond to entries in the I
I I ITable of Contents) I
I~-----------------+-----------------------------+--------------------------------------~
System Management IA set of routines and exits I supervisor
Facilities I for user-supplied routines I Interruption Supervision --
(1) Follow-On Ithat gather information on IThe Dispatcher (Macro IEAAPS)

Isystem operation and place I
the information in special IInterruPtion Super.vision --
data sets. IThe Dispatcher (Macro IEAAPS):

IDispatching a Task
I
IMain Storage supervision
I
ITask supervision -- The Wait Routine
I
ITimer supervision -- Timer second
ILevel Interruption Handler (IEAOTIOO):
ISMF Processing
I
Isystem Management Facility
I
IJob Management
IMaster Scheduler Task -- System
I Initialization
I
IMaster Scheduler Task -- Partition
IDefinition by the Master Scheduler:
ICommand Final Processor Routine
I(IEEDFIN9). MFT Storage Configuration
IRecord Creation Routine (I~EDFINA)

I
IReader/Interpreter -- Reader Control
IFlow: Transient Reader suspend Rou
Itine (IEFSD530). Transient Reader
IRestore Routine (IEFSD531)
I
IInitiator/Terminator (Scheduler) -
IInitiator/Terminator Control Flow:

Ie Istep Initiation Routine CIEFSD512).
I I SMF User Initiation Exit Routine
I I(IEFSMFIE). Problem Program Interface
I IRoutine (IEFSD513). SMF TCTIOT Con-
I I struction Routine (IEFSMFAT)
I I
I I System Management Facility
~-----------------+-----------------------------+--------------------------------------~
IJob Step Timing IA facility that provides for ISupervisor
I Ithe accumulation of the IInterruption Supervision -- The
I ICPU time used by a job step .• IDispatcher (Macro IEAAPS):
I land prevents a step from IDispatching a Job. Handling Job Step
I lentering a wait state for ITiming When a Task Switch is to Occur
I Imore than 30 minutes. I
I I ITask supervision -- The Wait Routine
I I I (Macro IEAAWT)
I I I
I I ITask Supervision -- The Post Routine
I I I (Macro IEAAPT)
~------------------~-----------------------------~--------------------------------------(Part 1 of 6)

Summary of Major Changes -- Release 19 11

r------------------T-----------------------------T--------------------------------------,
I Name of Item I Description IArea of Publication Affected I
I I I (Areas correspond to entries in the 1
I I ITable of Contents) 1
~------------------t-----------------------------+-------------------------------------~
Job step Timing Tireer supervision -- Timer Second I
(Continued) Level Interruption Handler <IEAOTIOO) I

I
Job Management I
Job Processing

Initiator/Terminator (Scheduler) -
Small Partition Scheduling: Terminat
ing the Small Partition, small Parti
tion Module (IEFSD599)

Initiator/Terminator (Scheduler) -
Initator/Terminator Control Flow:
Step Initiation Routine (IEFSDS12),
SMF User Exit Initiation Routine
(IEFSMFIE) Problem Program Interface
Routine (IEFSDS13), step Deletion Rou-

ttine UEFSD51S)
.------------------+-----------------------------+--------------------------------------~
System Management An extension to SMF (1) that Isupervisor I
Facilities (2) provides the user with the I System Management Facility I

information required to I I
keep track of the instal- I Job Management I
lation's data set activity IInitiator/Terminator (Scheduler) I
and status. I Initiator/Terminator Control Flow: I

ISMF User Exit Initiation Routine I
1 (IEFSMFIE) 1
I 1
I System Management Facility -- Compari-I
Ison of SMF in MF'I and MVT: SMF 1
I Initialization I

.------------------+-------------------~---------+-------------------------------------~
17094 Emulator IA facility that decodes 7094 Isupervisor 1
ISUpport for linstructions and passes I Interruption supervision -- I
IModel 85 Icontrol to the emulator for IThe Dispatcher (Macro IEAAPS): I
I I simulation. I Dispatching the 7094 Emulator I
I 1 I Program for the Model 85 1_
r-----------------+-----------------------------+--------------------------------------~
IDevice IndependentlA facility that provides IJob Management I
1 Display Operator I uniform operator console I COIrnlunications Task with Multiple I
IConsole Support Icapabilities across a range IConsole SUpport 1
I (DIDOCS) lof CRI' devices. 1 I
.------------------+-----------------------------+-------------------------------------~
I Input/Output IAlternate Path Retry (APR) 1 Supervisor I
1 Recovery I allows an I/O operation that IContents Supervision -- I
Management Support has developed an error on IContents Supervision in an MFT System I

one channel to be retried on Iwithout Subtasking: FINCH Service I
another channel. Dynamic IRoutine (IEAATCOO) I
Dev~ce Reconfiguration (£DR) I I
allows a demountable volume IMFT Recording/Recovery Routines I
to be moved to another de- IAlternate Path Retry Routine I
vice without the occurrence 1 I
of abnormal termination or IMFT Recording/Recovery Routines I
the necessity of reperforminglDynamic Device Reconfiguration Routine I
IPL. I I

I I
IMFT Recording/Recovery Routines -- 1
IEntry to Recording/Recovery Routines I __________________ ~ _____________________________ ~ _____________________________________ -J

(Part 2 of 6)

12

r------------------~----------------------------T--------------------------------------1
I Name of Item I Description IArea of Publication Affected I
I I I (Areas correspond to entries in the I
I I ITable of Contents) I
~------------------+-----------------------------+--------------------------------------~
I Input/Output I IJob Management I
I Recovery I IMaster Scheduler Task Functions I
IManagement support I ICommand Processing I
I (continued) I I I
~-----------------+-----------------------------+--------------------------------------~
IChannel Check IA modification that consists ISupervisor I
IHandler Dynamic lof new internal CCH inter- IMFT Recording/Recovery Routines I
I Loading Ifaces that enable the main IMachine Check Routines I
I lpart of CCH (channel and I I
I Imodel independent) to link IMFT Recording/Recovery Routines -- I
I Ito various channel dependent IEntry to Recording/Recovery Routines I
I I analysis routines. I I
~-----------------+-----------------------------+--------------------------------------i IDirect system A facility that provides the IIntroduction
output Facility capability of writing system ITheory of Operation

output directly to an output I
device. IJob Management

IJob Scheduler Functions
I
IJob Management Control Flow
I
IJob Processing
I
IInitiator/Terminator (Scheduler)
IJob Selection (IEFSD510)
I
IInitiator/Terminator (Scheduler)
IInitiator/Terminator Control Flow:
IJob Initiation Routine (IEFSD511).
IStep Initiation Routine (IEFSD512),
IStep Deletion Routine (IEFSD515)~ Par
Itition Recovery Routine (IEFSD518)
I
ISystem Output Writers -- Direct System \
IOutput Processing I

~-----------------+-----------------------------+-------------~------------------------i Express CANCEL IA modification to the CANCEL IJob Management J
Iprocessing that provides the IMaster Scheduler Task -- SVC 34
Ifacility for complete re- I Functions: DEFINE and MOUNT Routine
Imoval of a job from the sys- I(IEESD571), CANCEL Command Routine
Item by the deletion of all IIEE2803D)
lof the job's queue entries, I
land the scratching of all of I Master scheduler Task -- Master
lits data sets. Ischeduler Service Routines: Queue
I ISearch setup Routine (IEESD563), Queue
I IScratch Setup Routine (IEESD575).
I IQueue Alter Delete Routine (IEESD576),
I IQueue Restart Enqueue Routine
I I(IEESD577), Queue Message Class Setup
I IRoutine (IEESD578), Queue 5MB Routine
I. I UEESD579) " Specific Cancel Message
I IRoutine (IEESD580), Queue Scratch Rou-
I Itine (IEESD581)

~-----------------+_-------------------------~--+--------------------------------------i
IUnit status IA facility that allows the IJob Management I
I Display loperator, via the DISPLAY U IMaster scheduler Task Functions I
I I command, to request a dis- I I
I Iplay of detailed information IMaster scheduler -- Master Scheduler I
I labout the input/output de- Iservice Routine: Syntax Check Rqutine I
I Ivices specified for system I(IEESD562), DISPLAY U Routines I
I I generation. I(IEEUNIT1.IEEUNIT2.IEEUNIT3,IEEUNIT4) I L __________________ ~ _____________________________ ~ ______________________________________ J

(Part 3 of 6)

Summary of Major Changes -- Release 19 13

r------------------T-----------------------------T--------------------------------------,
I Name of Item I Description IArea of Publication Affected I
I I I (Areas correspond to entries in the I
I I ITable of Contents) I
.------------------t-----------------------------t-------------------------------------~
ATTaCH in MFT A facility that allows the Introduction I

user to have, withip a par- I
tition, multitaskineg SUpervisor I
capabilities compatible with Interruption supervision I
the current MVT ATTACH I
function. Interruption supervision I

The Dispatcher (Macro IEAAPS) I

Interruption supervision -- The Dis
patcher (Macro IEAAPS): Dispatching
Task with Time-Slicing

I
I

al
I
I

Interruption supervision
ILevel Interruption Handler

SVC Second I

I
IInterruption Supervision
I (Macro IEAATA)

EXIT

I
I
I
I

I
IInterruption supervision
Ivice Routine

I
-- ABEND ser-I

I
I*Interruption Supervision
I Service Routine: Normal
I Abnormal Termination

I
I

-- ABEND I
Termination, I

I
IInterruption supervision -- Damage
IAssessment Routines: DAR Core Image
lDump Routine (IEAD'IM22), DAR Task
IReinstatement Routine (IEADTM23)
I
ITask Supervision -- The ATTACH Routine
I (MFT with subtasking) (Macro IEAQATOO)
I
ITask supervision -- The CHAP Routine
I (MFT with subtasking)
I
ITask Supervision -- The Detach Routine
I (MFT with SUbtasking)
I
ITask Supervision -- The Extract Rou
Itine (MFT with Subtasking)
I
ITask supervision --
IThe ENQ/DEQ Routine (IEAGENQ1)
I
IContents Supervision -- Contents
ISupervision in an MFT System with
I subtasking
I
IMain storage supervision
ICheckpoint/Restart Routines
I
I Job Management

I
I
I

IMaster Scheduler Task -- Master Sched-I
luler Service Routines: DISPLAY A Rou-I
Itine (IEESD566) I
~.--~-----------~---------------------~
I*All of the ABEND routines described I
I in this section are affected by I
I "ATTACH in MFT" except those speci- I
I fied as being used by MFT without I
I subtasking. I L-_________________ .L-____________________________ l. ___ -I~ _________________________________ J

, (Part 4 of 6)

r------------------T-----------------------------T--------------------------------------,
I Name of Item I Description IArea of Publication Affected I
I I I (Areas correspond to entries in the I
I I ITable of Contents) I
~------------------+-----------------------------+-------------------------------------~
New ABEND and I The ABEND and "DAR routines supervisor
DAR routines Ifor MVT have been rewritten Interruption supervision

Ito support MFT with the sub-
tasking option. Interruption Supervision

STAE service Routine

*Interruption Supervision -- ABEND
service Routine

Interruption supervision -- Damage
Assessment Routines: DAR Core Image
Dump Routine (IEADTM22). DAR Task
Reinstatement Routine (IEADTM23)
~-------------------------------------~
I*This section of the publication has I
I been completely rewritten to describe I
I the new ABEND processing. I

~------------------+-----------------------------+--------------------------------------~
Write-to- A facility that allows the I supervisor
Programmer system and/or a problem pro- IMain Storage Supervision

gram to write messages to I
the programmer via a macro I Job Management
instruction. ICommunications Task --

IwTO/WTOR Macro Instruction Processing
I
ICommunication Task Modules -- write
IRoutines (IEECVWTO and IEEVWTCR)
I
IMaster Scheduler Task -- Write-to
IProgrammer Message Processing Routines
I (IEFWTPOO. IEFWTP01. and IEFwTP02)
I
I Queue Manager
I
IQueue Manager -- Queue Manager
IModules: Transient Queue Manager Rou
Itines (IEFXQMOO. IEFXQM01. IEFXQM02)

Initiator/Terminator (Scheduler) -
small Partition Scheduling: small
Partition Module (IEFSD599)

Initiator/Terminator (Scheduler)
Initiator/Terminator Control Flow:
Problem Program Interface Routine
CIEFSr:513). Step Deletion Routine
(IEFSr:515)

System Task Control -- Initiating Sys
Iterr 'Lasks: START Syntax Check Routine
I (IEEVSTAR)

.------------------+-----------------------------+--------------------------------------~
IL-Shape/lnitiator IThe combination of System IJob Management I
I Merge ITask Control and the Initia- I System Task Control -- I
I I tor into one basic set of I Initiating system Tasks: I
I I routines. IAllocation Interface Control Routine I
I I I (IEEVACTL). QMPA Builder Routine I
I I I (IEEVSMBA). 'Termination Interface I
I I I Central Routine (IEEVTCTL) I ~ _________________ L _____________________________ ~ __________ ~ ___________________________ J

(Part 5 of 6)

Summary of Major Changes -- Release 19 15

.-----------T--------------------T--------------------------------, I Name of Item I Description I Area of. Publication Affected I
I I I (Areas correspond to entries in the I
I I ITable of Contents) I
i---------t------------------t------------------------------i
IResolution of the IA modification that places I supervisor
ITransient Area ISVRBs representing requests IInterruption supervision --
Icontention problemlfor SVC transient area load- IThe Dispatcher (Macro IEAAPS)
I ling in await state, and I
I Iprovides for the loading IInterruption Supervision --
I ftask to operate under con- IThe Dispatcher (Macro IEAAPS):
I Itrol of a system TeB. IDispatching a Task

" I " IContents supervision -- Contents
" Isupervision in an MFT system Without
I I Isubtasking: FINCH Service Routine
I I I (IEAATCOO)
i----------t--------------------t-------------------------------1
Iseparation of a IA modification that separateslJob Management I
,Module of the Ithe STOP INIT and START Com- IMaster Scheduler Task -- I
Icommand Schedulinglmands Routine into the STOP ISVC 34 Functions: I
IRoutines (SVC 34) IINIT and START Commands Syn- ISTOP INIT and START Commands Process- I
I Itax Check Routine and the ling Routines (IEESD561) and (IEE3903D)I
I ISTOP INIT and START Commands I I
I I Processor Routine. I I
~--------------t----------------------t-----------------------------------i
Iseparation of two IA modification that separateslJob Management I
IModules of the Ithe System Reinitiali~ation IMaster scheduler Task -- I
IMaster Scheduler IRoutine into the System Re- IPartition Definition by the Master I
IPartition Defini- linitialization Routine (Part I Scheduler: Validity Check Routine-Pro-I
Ition Routines 11) and the System Reinitial- I cessor Storage UEEDFIN3). Validity I
I lization Routine (Part 2) and ICheck Routine-Core Storage (IEEDFINC).I
I lalso separates the DEFINE ISystem Reinitialization Routine-1 I
I Icommand Validity Check Rou- I(IEEDFIN8). System Reinitialization I
I Itine into the DEFINE Command IRoutine-2 (IEEDFINB) I
I IValidity Check Routine (Pro- I I
I Icessor Storage) and the I I
I IDEFINE Command Validity I I
I ICheck Routine (Core Storage). I I
~--------------t------------------------t-------------------------------------i
IResolution of De- IFor a 30K scheduler. load IJob Management I
Isign-point Problemlmodule IEFSD515 has been IInitiator/Terminator (Schedule) -- I
lin Termination Isplit into three separate IInitiator/Terminator Control Flow: I
I Iload modules; IEFSD515w IStep Deletion Routine (IEFSD515) I
I IIEFSD517 and IEFSD168. I I
I IIEFSD517 now performs the jobl I
I Itermination function and I I
I IIEFSD168 performs the job I I
I Isuspension function. I I
~-------------t-----------------------------t------------------------------------i
IResolution of De- Istep initiation routine IJob Management I
Isign-Point problemlIEFSD515 now passes control IInitiator/Terminator (Scheduler) -- I
lin AlI.ocation Ito Allocation via an XCTL I Initiator/Terminator Control Flow: I
I Imacro instruction rather thanlStep Initiation Routine IEFSD512 I
I I a LINK macro instruction. I I
~----------_---.L----------------------.L----------------------------------i
ITables and work areas in Appendix A. module descriptions in Appendix B. and flowcharts I
lin Appendix C have been changed to reflect the revisions. . I
I I
IThe Command scheduling Control Block and the Interpreter Work Area in Appendix A have I
lbeen redrawn to include the symbolic field names and more detailed descriptions. Prose I
Idescriptions of the bit settings in the switch fields have also been included. The I
Iremaining tables and work areas in Appendix A will be described in this manner in I
Ifuture revisions of the publication. I '-___ J

(Part 6 of 6)

16

In a single task environment, main storage
is divided into two areas: the fixed area,
and the dynamic area. In multiprogramming
with a fixed number of tasks (MFT), the
dynamic area is divided further into as
many as fifty-two discrete areas called
partitions. Figure 1 shows the division of
main storage.

The fixed area, located in the lower
portion of main storage., contains the resi
dent portion of the control program, and
control blocks and tables used by the sys
tem. The size of the fixed area depends on
the number of partitions established by the
user, and the control program options
selected at system generation.

Partitions are defined within the dynam
ic area, located in the upper portion of
main storage, at system generation. The
number of partitions may be varied within
the number specified at system generation,
and the sizes and job classes of partitions
may be redefined at system initialization
or during operation. See the MFT Guide
SRL. Each partition may be occupied by a
processing program, or by control program
routines that prepare job steps for execu
tion (job management routines). or handle
data for a processing program (access
method routines>.

Provided the total number of partitions
does not exceed 52 and enough computing
system resources are available" MFT pro
vides for the concurrent execution of as

Low Address

•
Fixed Area

Legend: tft':f41 Required Portion of the Fixed Area

.. Optianal Features

n Number af Partitions Generated

• Figure 1. Main Stc;>rage Organization in MFT

Introduction

many as 15 problem programs. 3 input
readers. and 36 output writers, each in its
own fixed partition of main storage. The
MFT system provides for task switching
among the tasks operating in the parti
tions, and between those tasks and the com
munications task and master scheduler task
in the system area.

Task dispatching in MFT differs from the
primary control program (PCP) primarily in
that task switching is required,. and that
certain system functions such as abnormal
termination must be carried out so that
other, unrelated. tasks are not affected.

The dispatching priority of a task is
determined by the relative position of the
task control block (TCB) on the dispatching
queue. (The dispatching queue is the chain
of TCBs indicated by the TCBTCB fields. If
the MFT system does not have the subtasking
option, all TCBs are established in the
nucleus at system generation. These are
ordered to provide a dispatching priority
starting with resident system task TCBs,
through the job-step task TCB of the high
est priority partition (PO), to the succes
sively lower priority partitions' TeBs
(P1-PS1). Control of the CPU is given to
the program represented by the highest
priority ready TCB.

If the MFT system has the subtasking
option, TCBs established at s·ystem genera
tion in the nucleus represent the resident
system tasks and the job-step task of each

Partition
(n-I) Partition 0

•
Dynamic Area

High Address I

Introduction 17

partition. However, each job-step task can
attach subtasks, each of which will have
TCB located in the system queue area. The
dispatching priority is initially the same
as the partition priority. The dispatching
priority differs from the partition priori
ty when a job-step task issues a CHAP
(change priority) macro instruction to
change its dispatching priority. If dis
patching priorities are changed, each par
tition job-step task is dispatched before
its subtasks, which are then dispatched in
the order in which they were attached.
When all of a jOb-step's subtasks have been
dispatched, the job-step task of the next
lower partition can be dispatched.

The integrity of programs operating
under MFT is preserved if the storage pro
tection feature is included. MFT uses the
16 protection keys to prevent a user job
from modifying the control program or
another job; it uses the two operating
states of the CPU to restrict the use of
control and I/O instructions.

Because many components of MFT are S1m1-
lar to those of PCP and multiprogramming
with a variable number of tasks (MVT), many
of the modules for a given MFT component
are the same for the comparable component
in either PCP or MVT. Therefore, this pub
lication describes differences between MF£
and the other configurations. The corres
ponding PCP and MVT routines are described
in the following IBM system/360 Operating
System program logic manuals and are
referenced where applicable:

PCP Supervisor, GY28-6612

MVT Supervisor, GY28-6659

MVT Job Management, GY28-6660

Information on modified or new routines for
MFT is contained in the three sections that
follow this introduction.

The Initialization of the Operating Sys
tem section describes how the dynamic area
of main storage is prepared by the master
scheduler task after completion of the Nuc
leus Initialization Program.

The supervisor section describes the
task management modifications made to the
supervisor for MFT. The major area of
change has been in the initialization of
main storage.

The Job Management section describes
modifications and additions to the routines
for processing communications with the pro
grammer and the operator. The major
changes are in the master scheduler task,
and the MFT initiator. Other modifications

have been made to the queue manager, the
reader/interpreter, system output writer,
direct system output processing, and system
task ccntrol routines.

Functions of the Control Program with MF'
As in PCP and MVT, the control program rou
tines of MFT have three major functions:
job management, task management, and data
management.

JOB MANAGEMENT

Job management is the processing of com
munications from the programmer and opera
tor to the control program. There are two
types of communications: operator com
mands, which start, stop, and mOdify the
processing of jobs in the system, and job
control statements, which define work being
entered into the system. Processing of
these commands and statements is referred
to as conmand processing and job proces
sing, respectively.

TASK MANAGEMENT

Task management routines monitor and con
trol the entire operating system, and are
used throughout the operation of both the
control and processing programs. Task man
agement has six major functions:

• Interruption supervision.
• Task supervision.
• Main Storage supervision.
• Contents supervision.
• overlay supervision.
• Tiw.er supervision.

The task management routines are collec
tively referred to as the wsupervisor.w

DATA MANAGEMENT

Data management routines control all opera
tions associated with input/output devices:
allocating space on volumes, channel sched
uling, storing, naming, and cataloging data
sets, movins data between main and auxili
ary storage, and handling errors that occur
during input/output operations. Data man
agement routines are used by processing
programs and control program routines that
require data movement. Processing programs
use data management routines primarily to
read and write required data, and also to
locate input data sets and to reserve aux
iliary storage space for output data sets
of the processing program.

Data rr~nagement routines are of five
categories:

• Input/Output (I/O) supervisor, which
supervises input/output requests and
interruptions.

• Access methods, which communicate with
the I/O supervisor.

• Catalog management, which maintains the
catalog and locates data sets on auxil
iary storage.

• Direct access device space management
(DADSM), which allocates auxiliary
storage space.

• Open/Close/End-of-Volume, which per
forms required initialization for I/O
operations and handles end-of-volume
conditions.

The operation of these routines is identic
al with MVT and is described in the follow
ing IBM system/360 Operating system program
logic manuals:

Input/Output supervisor, GY28-6616

sequential Access Methods, GY28-6604

Indexed sequential Access Methods,
GY28-6618

Basic Direct Access Method, GY28-6617

Graphics Access Method, GY27-7113

Catalog Management, GY28-6606

Direct Access Device Space Management,
GY28-6607

Input/Output support (OPEN/CLOSE/EOV),
GY28-6609

Control Program Organization
The control program is on auxiliary storage
in three partitioned data sets created when
the system is generated. These data sets
are:

• The NUCLEUS partitioned data set
(SYS1.NUCLEUS), which contains the Nuc
leus Initialization Pro9ram (NIP) and
the resident portion of the control
program.

• The SVCLIB partitioned data set
(SYSl..SVCLIB), which contains nonresi
dentSVC routines, nonresident error
handling routines, and the access
methods routines.

• The LINKLIB partitioned data set
(SYS1.LINKLIB), which contains other
nonresident control program routines
and IBM-supplied processing programs.

RESIDENT PORTION OF 'I'HE CONTROL PRCGRAM

The resident portion (nucleus) of the con
trol program is in SYS1.NUCLEUS. It is
made up of those routines, control blocks,
and tables that are brought into main
storage at initial program loading (IPL)
and are never overlaid by another part of
the operating system. The nucleus is
loaded into the fixed area of main storage.

The resident task management routines
include all of the routines that perform:

• Interruption supervision.
• Main storage supervision.
• Tirrer supervision.

They also include portions of the routines
that perform:

• Task supervision.
• Contents supervision.
• Overlay supervision.

These routines are described in the Super
visor section of this publication, and in
the PCP supervisor PLM. .

The resident job management routines are
those routines of the communications task
that receive commands from the operator.
The MFT communications task is described in
this publication.

The resident data management routines
are the input/output supervisor and,
opticnally, the BLDL routines of the parti
tioned access method. These routines are
described in the following IBM System/360
Operating system program logic manuals:

Input/Output Supervisor, GY28-6616

sequential Access Method, GY28-6604

The user may also select resident reen
terable routines, which are access method
routines from SYS1.SVCLIB, and other reen
terable routines from SYS1.LINKLIB. At
system generation, the user specifies that
he wants such routines resident in main
storage. At IPL, he identifies the specif
ic routines desired in the RAM=entry. The
selected routines are loaded during system
initialization andj;reside adjacent to the
higher end of the system queue area unless
the BLDL table is also resident (see Figure
1)'

Normally-transient SVC routines (i.e.,
types 3 and 4 SVC routine~) can be made
resident through the RSVC option, specified
by the user. NIP loads these routines
adjacent to the higher end of the resident
reenterable routines. If there is no resi
dent BLDL table or resident reenterable
routines, the routines are loaded adjacent

Introduction 19

to the higher end of the system queue area.
(See Figure 1.)

NONRESIDENT PORTION OF THE CONTROL PROGRAM

The nonresident portion of the control pro
gram comprises routines that are loaded
into main storage as they are needed, and
which can be overlaid after their comple
tion. The nonresident routines operate
from the partitions and from two sections
of the nucleus called transient areas
(described below).

Main Storage Organization
Main storage in MFT is organized similarly
to main storage in MVT, except that the
optional resident areas are adjacent to the
nucleus.

Main storage may be expanded by includ
ing IBM 2361 Core Storage (core storage)
units in the system. Main Storage Hierar
chy Support for IBM 2361 Models 1 and 2
permits access to either processor storage
(hierarchy 0) or core storage (hierarchy
1). Each partition established during sys
tem generation is described by a boundary
box. The first half of the boundary box
describes the processor storage partition
segment and the second half describes the
core storage partition segment. Any parti
tion segment not assigned main storage in
the system has the applicable boundary' box
pointers set to zero. If a partition is
established entirely within hierarchy 1,
the processor storage pointers in the first
half of the partition's boundary box are
set to zero. If a partition segment is not
generated in core storage, the core storage
pointers in the second half of the parti
tion's boundary box are set to zero. If
core storage has been included in the sys
tem, but is offline, the second half of the
boundary box will contain zeros. If core
storage is excluded from the system, the
second half of the boundary box is not
generated.

FIXED AREA

In MFT (as in PCP and MVT) the fixed area
is that part of main storage into which the
nucleus is loaded at IPL. The storage pro
tection key of the fixed area is zero so
that its contents can be modified by the
control program only. The fixed area also
contains two transient areas into which
certain nonresident routines are loaded
when needed: the SVC transient area (1024
bytes) and the I/O supervisor transient
area (1024 bytes). These areas are used by

20

nonresident SVC routines and nonresident
I/O error-handling routines, respectively,
which are read from SYS1.SVCLIB.

Each transient area contains only one
routine at a time. When a nonresident SVC
or error-handling routine is required, it
is read into the appropriate transient
area. ~he transient area routines operate
with a protection key of zero, as do other
routines in the fixed area.

System Queue Area

The system queue area (SQA) is established
by NIP adjacent to the fixed area and pro
vides the main storage space required for
tables and queues built by the control pro
gram. The SQAmust be at least 1600 bytes
for a minimum two-partition systerr.. Its
stcrage protection key is zero so that it
can oe modified by control program routines
only. Data in the system queue area indi
cates the status of all tasks.

DYNAMIC AREA

Figure 2 shows how the contents of each
partition in the dynamic area are organized
and how they are related to the rest of
main storage. Routines are brought into
the high or low portion of an ME'T partition
siIr.ilarly to the way routines are brought
into the entire dynamic area of PCP. Job
management routines, processing programs,
and routines brought into storage via a
LINK, ATTACH, or XCTL macro instruction,
are leaded at the lowest available address.
The highest portion of the partition is
occupied by the user parameter area and
user save area. The next portion of the
partition is occupied by the task input/
output table (TIOT) which is built by a job
management routine (I/O Device Allocation
routine). This table is used by data man
agement routines and contains information
about DD statements.

Each partition may be used for a problem
program as well as for system tasks
(readers, initiators, and writers). When
the control program requires main storage
to build control blocks or work areas, it
obtains this space from the partiticn of
the processing program that requested the
space. Access method routines and routines
brought into storage via a LOAD macro
instruction are placed in the highest
available locations below the task inputl
output table.

Working storage and data areas are
assigned from the highest available storage
in a partition.

Processing
Program

or
Job
Management
Routine

Non-Resident
Control Program
Routines or
Processing Program

Routines
Brought
In Via
LINK,
ATTACH,

and
XCTL
Macro

Partition

Access
Method
Routines

nOT

Instruction

User
Parameter

Area

User
Save
Area

(Typical for Each) /
/

/

105
Transient
Area (~west

Priority

?
I

?)

Partition) (

SVC)
Transient (

/
/ High Address

(Highest
Priority
Partition)

Area)

~~-w-A~d~d-re-s-s----~------~---------P-(n---l-)------~--------~ ~------~----------P-l--------~----------PO--------~
~ ________ ~yr __________ -,Jl~ __ ~yr __ ~

Fixed Area Dynamic Area

n = number of partitions generated

Figure 2. Division of Main Storage

Introduction 21

Theory of Operation

Figure 3 describes the overall processing flow through each job cycle. These paragraphs
describe the processing performed by various components of the control program as it
loads the nucleus, reads control statements, initiates the job step, causes processing to
begin or end in other partitions, and terminates the job step.

r---,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

IPL

Load Nuc I eus

NIP

Initialize Nucleus

MASTER SCHEDULER

Initialize System

COMMUNICATIONS
TASK

Initialize
Work

Queues

Interpret
Commands

Yes

Definition Routine

Make
Requested
Changes

START Reader
START Writer
START INIT
SET

To lead the nucleus, the operator sets
the LOAD UNIT switches to the device on
which the system residence volume is
mounted, and presses the LOAD button on the
operator control panel. This causes an IPL
record to be read and to be given control.
This record causes the second IPL record to
be read, which in turn, enables the rest of
the IPL program to be read into main
storage.

The IPL program searches the volume
label of the system residence volume to
locate the volume table of contents (VTOC).
The VTOC is then searched for the address
of the nucleus data set (SYS1.NUCLEUS).
The nucleus is brought into the system
area, and NIP is brought into the dynamic
area. NIP receives control from the IPL
program. It performs both required and
optional initialization for control program
operation including initializing the Com
munication Vector Table (CVT), and general
system initialization, such as determining
user options. After completing its proces
sing, NIP passes control to the master
scheduler task (MST) which initializes main
storage.

Partitions are established by the master
scheduler at system initialization accord
ing to the sizes and job class(es) estab
lished at system generation by the PARTITNS
macro instruction. The MST also places a
copy of the Initiator/Terminator into each
scheduler-size partition; a copy of the
small partition module is placed in each
small partition. The communications task
receives control from the MST and comrouni
cates with the operator to request any par
tition changes. After the requested
chanqes, if any, have been made by the
definition routines, the work queues are
initialized. The autamatic commands are
displayed, and the READY message is issued.

___ J

Figure 3. MFT Theory of Operation (Part 1 of 4)

22

r---,

cr
SUPERVISOR

Bring Writer
Into Its

Assigned
Partition

(See Part 4 of 4)

Bring Reader
Into Its
Assigned
Partition

~
READER

Read and
Interpret

Control Statements

Bui Id Tables and
Enter Job on

Appropriate Input
Work Queue

Write Data in
Input Stream

onto Direct-Access
Storage Devi ce

~
SUPERVISOR

Bring
Initiator/
Terminator

Into
Partition

~

(Data

LDD
(EXEC

JOB

I -

Input
Work
Queues

..... ::::
Input
Data
Sets

r-
-

When the required SET command is
entered, the communications task calls the
master scheduler command schedulin9 routine
to have the command executed. An automatic
START reader command or a subsequent opera
tor entered START reader command causes a
copy of the Reader/Interpreter (reader) to
be brou9ht into its appropriate partition.
If a START writer command is entered, a
copy of a writer is also brou9ht into the
specified partition(s).

When the reader 9ets control" it reads
control statements and data from the input
job stream. Information from the JOB,
EXEC, and DD statements controls the execu
tion of each job step. This information is
placed in the followin9 tables:

• Job control table (JCT) for the job
being read.

• Step control table (SCT) for the step
being read.

• Data set enqueue table (DSENQ) for the
job being read.

• Job file control block (JFCB) and step
input/output table (SlOT) for each data
set being used or created by the job
step.

• Volume table (VOLT) containing each
volume serial number to be used by the
job.

Information from these tables and control
blocks is updated with information in the
data control block (DCB) and data set con
trol block (DSCB) or volume label when a
data set is opened during step execution.

The reader then places these updated
control blocks into the input work queue
corresponding to the CLASS parameter on the
JOB statement. Data sets in the input
stream are written onto a direct-access
storage device for later use by the problem
program.

After the reader has completed proces
sing all input for a job and has entered
the job on an input work queue, all initia
tors that are waiting for that job class
are posted. If the job is for a small par
tition, the small partition module is also
posted.

L-___ _

Figure 3. MFT Theory of Operation (Part 2 of 4)

Introduction 23

I

r---,

INITIATOR/fERMINATOR

Determine Step to
Be Initiated

Locate Input
Data Sets

Assign
Input/Output

Devi ces to Data
Sets

Allocate
Auxiliary
Storage Space

Write Tables
and

Control Blocks

SUPERVISOR

Bring Problem
Program Into

Partition

Input
Work
Queues

After receiving control, the initiator/
terminator prepares to initiate the highest
priority job in its primary input work
queue. Using information which the reader
extracted from the DD statement~ the
initiator/terminator processes the user
accounting routine, in addition to the
following:

Locates Input Data Sets: The Allocation
routine, running as a subroutine of the
initiator/terminator, determines the volume
containing a given input data set by
examining the JFCB, or by searching the
catalog. This search is performed by a
catalog management routine ente~ed £rom
allocation. (A description of the routines
that maintain and search the catalog is
given in IBM system/36 0 Operating system:
Catalog Management, Program Logic Manual,
GY28-6606.)

Allocates I/O Devices: A job step cannot
be initiated unless there are enough I/O
devices to fill its needs. Allocation
determines whether the required devices are
available, and makes specific assignments.
If necessary, messages are issued to the
operator to request the mounting of
volumes.

Allocates Auxiliary storage space: Direct
access volume space required for output
data sets of a job step not using direct
system output (DSO) processing is acquired
by the allocation routine, which uses the
Direct Access Device Space Management
(DADSM) routines. (A description of the
operation of the DADSM routines is given in
the publication IBM System/360 Operating
system: Direct Access Device Space Manage
ment, Program Logic Manual, GY28-6607.)

The JFCB, which contains information
concerning the data sets to be used during
step execution, is written on auxiliary
storage. This information is used when a
data step is opened~ and when it is closed"
the job step is terminated.

The initiator causes itself to be
replaced by the problem program it is
initiating (if for a large partition), or
initiates the job in a small partition.

The problem program can be an IBM
supplied processor (e.g., COBOL, linkage
editor), or a user-written program. The
problem program uses control program ser
vices for operations such as loading other
programs and performing I/O operations.

I
I
I
I L-__ J

Figure 3. MFT Theory of Operation (Part 3 of 4)

24

r---,

Allow Highest
Priority Ready

Task to
Execute

SUPERVISOR

OPEN/CLOSE/
EOV

Set Up for Dump,
if Required

Load
Initiator/

Terminator

INITIATOR/TERMINATOR

User
Accounting

Routine

Dispose of
Data Sets,

Write Messages

Enqueue Work
for Output
Writer on
Output Work
Queue

SYSTEM OUTPUT WRITER

Dequeue Entry From
Appropriate Sysout

Queue

Write Data and
Messages onto

User - Specified
Device

Delete Entry
From the Queue

Dequeue the Next
Entry F rom the

Queue

Input
Data
Sets

Yes

Output
Work
Queues

No

Output
Data
Sets

Output
Data
Sets

Printer

The problem program processes until it
terminates either normally or abnormally,
though it may not retain exclusive control
of the cpu. Control always is received by
the highest priority task that is ready to
execute.

When the problem pl<ogram terminates., the
supervisor receives control. The supervi
sor uses the OPEN/CLOSE/EOV routines to
close any open data control blocks. (These
routines are described in IBM system/360
Operating System: Input/Output Support
(OPEN/CLOSE/EOV)« Program Logic Manual.,
GY28-6609.)

Under abnormal termination conditions,
the supervisor may also provide special
termination procedures, such as a storage
dump. The supervisor passes control to the
initiator/terminator, which is either
brought into the partition in which ter
mination is to occur, or is brought into
the large partition to terminate a small
partition.

The initiator/terminator releases the
I/O devices, and disposes of data sets used
and/or created during the job step by read
ing tables prepared during initiation (JCT"
SCT, TIOT, etc.). These tables include
information such as disposition of data
sets. It then executes an installation
accounting routine if one is provided.

At termination, of a job not using
direct system output processing, an entry
is made on the user specified output work
queue; later the problem program output
data can be written by a system output
writer from a system direct-access storage
device to a user-specified device. The
initiator/terminator then initiates the
next job step.

An output writer operates concurrently
with readers, problem programs, and other
writers. When the START command is issued
for a writer, the writer dequeues the first
entry in the specified output (SYSOUT)
queue. If no requests have been enqueued
in that out.put queue from the problem pro
grams, the writer is placed in a wait con
dition until a job is terminated that has
system messages or output data sets. After
the entry is dequeued from the output
queue, the writer transmits the data sets
to the specified card punch, magnetic tape
unit, or printer. When the last record has
been processed, the writer deletes the
queue entry before dequeuing the next
entry.

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

I I L ___ J

eFigure 3. MFT Theory of Operation (Part 4 of 4)

Introduction 25

Initialization of the Operating System

When the system is loaded, routines perform
required and optional initialization of
functions needed for control program opera
tion. (These routines are described in the
Initial Program Loader and Nucleus Initia
lizationProgram, Program Logic Manual.)
When the Nucleus Initialization Program
(NIP) has defined the fixed area, it then
assigns the rest of main storage to the
master scheduler task to be prepared as the
dynamic area for control program operation.

Main Storage Preparation

When NIP completes its functions it con
structs a request block (RB) and an XCTL
macro instruction (specifying master sched
uler initialization routine IEFSD569) at
the low address of the temporary master
scheduler area. NIP places the address of
this RB in master scheduler task TCB field
TCBRBP. (The original contents of TCBRBP
are saved and passed to IEFSD569 in a pa
rameter list along with the original master
scheduler task boundary box contents.) NIP
sets master scheduler task TCB field
TCBFLGS to make the master scheduler task
dispatchable, and then branches to the
dispatcher.

/
The dispatcher gives control to the

master scheduler task causing execution of
the XCTL instruction which NIP placed in
the temporary master scheduler area. The
master scheduler initialization routine is
brought into the temporary master scheduler
area and begins executing. Figure 4,
excluding the medium shaded area, illus
trates main storage at completion of NIP
before branching to the dispatcher. Figure
4, excluding the light shaded area, illus
trates main storage when the master sched
uler initialization routine receives con
trol from the dispatcher.

For a description of the master schedul
er initialization routine see "Master

26

Scheduler Task" in the Job Management sec
tion. Figure 5 illustrates main storage
(four partition example) at completion of
master scheduler initialization. When the
initialization routine completes prQces
sing, it branches to the dispatcher.

Initializing the Partitions

During master scheduler initialization the
operator must accept automatic START com
mands or enter START commands manually.
When a START command is processed, the par
tition number specified in the comrrand is
determined, and a CSCB is built. The CSCB
(see Appendix A) is used for communication
between the command scheduling routines
(SVC 34) and the command execution rou
tines. The address of the CSCB is placed
in the partition information block (PIB) of
the specified partition, and the partition
is posted. The PIB for each partition con
tains information used by command proces
sing and scheduler routines. (See Appendix
A for a description of the PIB, and
"Initiator/Terminator" in Job Management
for a discussion of its use.)

After the initialization routine com
pletes processing, the dispatcher gives
contrcl to the master scheduler router rou
tine. When this routine completes proces
sing, it returns to the dispatcher which
begins searching the TCB queue. The high
est priority task posted through S~RT com
mand processing receives control. The XCTL
macro instruction addressed by the parti
tion's RB is executed and the Job Select
module (IEFSD510) or Small Partition module
(IEFSD599) is brought into the partition.
When an interruption occurs and the parti
tion can no longer retain control, the dis
patcher gives control to the next posted
partition. This process continues, ena
bling all posted partitions to receive con
trol and to execute the XCTL instruction
placed in them by the initialization
routine.

Temporary
Master
Scheduler
Area

BlDl
RSVC
Reside~t
Reenterab Ie
Routines

System
Queue Area

Nucleus

High Address

0000 FQE

Communications Task Master Scheduler

MSTCB
TCBRBP

TCBMSS

SQA BBOX

legend:

RB

MS BBOX
HI

LO

Contents of the Dynamic Area During IPl and NIP.

Contents of the Dynamic Area After The Master Scheduler Task
Receives Control on Completion of NIP.

Optional Features

Dynamic
Area

Fixed
Area

Figure 4. Main storage During Execution of NIP

Initialization of the operating system 27

Partition
0

Partition
1

Partition
2

Partition
3

BLDL
RSVC
Resident
Reenterable
Routines

System
Queue
Area

Nucleus

High Address

RB XCTL IEFSD510 0000 FQE

RB XCTL IEFSD510 0000 FQE

(Small Partition)

RB XCTLIEFSD599 0000 FQE

Master Scheduler

MSTCB
TCBRBP -+--~ RB

'---------'

SQA MS BBOX
HI
LO

Low Address

Figure 5. Main Storage at Termination of Master Scheduler Initialization

28

Dynamic
Area

Fixed
Area

The MFT supervisor manages the operation of I
the control program and processing pro
grams. Job management selects jobs for
execution, allocates devices and storage to
the step to be executed, and gives control
to the program that represents the step.
After receiving control, a program is known
as a task and becomes the responsibility of
the supervisor. As many as 15 job-step
tasks may operate in the system concurrent
ly with system tasks. Each task must be
isolated so it does not interfere with any
other task. To do this, each job-step task
operates in its own partition in main
storage. If the system has the optional
storage protection feature, each partition
is assigned a unique protection key (1-15).
The resident portion of the control pro
gram, including some supervisor routines,
occupies a fixed area of main storage and
operates under a protection key of z~ro.

To maintain control of the computing
system, the supervisor must perform many
services. Routines within the supervisor
are grouped into general categories depend
ing upon the services which they perform.
These categories are:

Interruption Supervision: All supervisor
activity begins with an interruption. The
five types of interruptions are: supervi
sor call, timer/external, input/output,
program, and machine. When an interruption
occurs, the interruption handling routine
for the type of interruption that occurred
gains control. The interruption handling
routine then passes control to those parts
of the control program that perform the
services required as a result of the inter
ruption. Many of the services which must
be performed are included in othe.r general
categories of the supervisor.

Task Supervision: The supervisor maintains
control information including the current
status of program and interruption request
blocks, task control blocks, and event con
trol blocks.

Contents supervision: The supervisor keeps
records of the status and characteristics
of all programs in each partition of main
storage, initiates program fetch for the
dynamic loading of programs, and maintains
the active request block queue.

Main storaqesupervision: Within each par
tition, the supervisor allocates and
releases main storage space for a task on
request, and maintains a record of all free
storage space within each partition. In

Supervisor

MFT systems with subtasking, the supervisor
also records the main storage allocated by
the system to attached subtasks.

Timer supervision: The supervisor sets and
maintains a clock, and honors requests for
time intervals and exact time.

Overlay Supervision: The supervisor mon
itors the flow of control between segments
of a program operating in ·an overlay struc
ture established by the user through the
linkage editor.

Interruption Supervision
The interruption supervision routines in
MFT function in the manner described in the
PCP Supervisor PLM with the exception of:

• The Dispatcher
• The supervisor call second level inter-

ruption handler (SVC SLIB).
• The Exit routine.
• The ABEND routines.
• The timer second level interruption

handler (TSLIB).

The timer second level interruption handler
is described in the "Timer supervision"
section of this publication. The other
routines are described below.

When an interruption occurs and is ser
viced, the task which had been executing
may relinquish control of the cpu. Control
must always be given to the highest priori
ty ready task. The transfer of control
from one task to another is called task
switching and is accomplished by the task
dispatcher. When an interruption handling
routine completes processing an interrup
tion, it branches to the task dispatcher
rather than returning control to the inter
rupted program. Type 1 EXIT is the only
interruption handling routine which may
return control directly to the interrupted
program. Figure 6 illustrates how the task
dispatcher receives control after an inter
ruption has been serviced.

THE DISPATCHER (MACRO IEAAPS)

The dispatcher gives control to the highest
priority task ready to execute. It uses
information located by communication vector
table (CVT) fields CVTHEAD and CVTTCBP., and
if the time-slicing feature is in the sys
tem, field CVTTSCE.

Dispatcher 29

INTERRUPTIONS

Recovery
Management
(Optional)

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Transient Area
Handler for Non
Resident SVCs

SVC
Service

No

Yes

Mark
Task for
ABEND

EXIT

Userls
Routine

Time
Supervision

Input/
Output

. Supervisor

L---------------_t----------'

Figure 6. MFT Supervisor

Field CVTHEAD addresses a queue of task
control blocks (TCBs). This TCB queue is
arranged in dispatching priority order
beginning with the highest priority task.

The TCBs for the system tasks have the
highest priority and are arranged in the
following dispatching sequence. When
optional system tasks are selected, their
TCBs always appear in the .order indicated.

1. The transient area loading task TCB.
2. The system error TCB, when the sub

tasking option is specified.

30

Task Dispatcher

3. The optional LOG task ~CB.
4. The optional dynamic device reconfi-

guration task TCB.
5. The communication task TCB.
6. The master scheduler task TCB.
7. The optional system management facili

ty task TCB.

These system TCBs are followed by ~CBs for
each task in the dynamic area arranged in
descending order based on the value in dis
patching priority field TCBDSP. (If th~
systerr does not have the subtasking option, '(
the dispatching priority values are always \

ordered by partition number, PO through
PSi.) Figure 7 illustrates a TCB queue in
a system without any options.

Note: If MFT with subtasking is included
in the system, the SIRB for the error
recovery procedures is queued totbe system
error TCB, not the TCB for the failing
task.

Any number of partitions (up to 52) may
be specified during system generation.
Partitions must be numbered consecutively
beginning with zero. Note that in Figure 7
there is a TCB for partition 1, but parti
tion 1 is assigned no storage space. This
illustrates a partition which was specified
at system generation but which has been
made inactive. If a partition is not spe
cified during system generation, no TCB is

Main Storage

Low Address (Not to Scale)

constructed. If, for example, only 3 par
titions (0 through 2) are specified at sys
tem generation, then only three TCBs are
constructed and partitions 3 through 51 do
not exist.

All of the TCBs in the system are
chained together through TGB field TCBTCB.
In each TCB, this field contains the
address of the next TCB on the queue. The
TCBTCB field of the last TCB on the queue
contains zero.

CVT field CVTTCBP addresses two full
words called NEW and OLD. The first word
(NEW) contains either zero or the TCB
address for the task to be given control.
The second word (OLD) contains the TCB
address for the task currently in control.

Fixed
Area

Wai t Routi ne

Master Schedulo:r Router Routine

Partition 2

Partition 0

• Figure 7. TCB Queue

Dispatcher 31

N~W can be set by any of the supervisory
routines associated with task switching:

• WAIT, POST, ENQ/DEQ, and Manual Purge
and in addition;

• For systems with subtasking, ATTACH,
CHAP, LOAD, EXIT and Stage 3 En t
Effector.

When a supervisory routine determines
that the task currently in control can no
longer retain control, it sets,NEW to zero.
When a supervisory routine determines the
new task to be given control, it inserts
the TCB address for that task in NEW.

CVT field CVTTSCE contains the address
of the time-slice control element (TSCE).
This field is used by the dispatcher in
determining the next time-slice task to
receive control, providing time-slicing was
specified as a system generation option.
The format of a TSCE is explained later in
this section.

Dispatching a Task

When the dispatcher receives control, it
first schedules any requests for system
asynchronous exit routines. Then it deter
mines if NEW equals OLD (see Chart 01). If
so, no task switch is indicated. If neces
sary, the dispatcher enqueues timer ele
ments for the task. It then returns to the
task currently in control.

If NEW does not equal OLD, a task switch
is indicated. The contents of registers 2
through 9 and the floating point registers
are stored in OLD's TCB. If job-step CPU
timing is included in the system, and OLD'S
TCB has an address in its TCBPIB field,
(indicating that OLD is not a system task),
the dispatcher enques the job-step timer
queue element. If necessary, the dispatch
er enqueues timer elements associated with
the task currently in control. Then it
determines if NEW equals zero.

If NEW does not equal zero, it contains
the TCB address of the task to be given
control. The dispatcher sets OLD equal to
NEW, goes to the trace routine (if present)
to trace the save areas, and restores the
floating point registers (if present). If
job-step CPU timing is included in the sys
tem, the dispatcher determines if the TCB
to receive control has a PIB pointer in its
TCBPIB field. If there is a pointer, the
task is not a system task, and the dis
patcher enqueues the job-step timer queue
element. The dispatCher then branches to a
transient area refresh subroutine. Upon
return, the dispatcher branches to the task
pOinted to by NEW.

32

If NEw equals zero, the dispatcher must
examine the TCB queue to determine which
task should be given control. This
examination begins with the TCB addressed
by OLD. (For a task of higher priority
than OLD to receive control, the address of
its TCB must be inserted in NEW by a super
visory routine.)

When examining a TCB to determine if its
associated task should be given control,
the dispatcher first determines if the re
quest block (RB) of the program executing
under the TCB is waiting. This is done by
examining field XRBWT in the RB addressed
by TCB field TCBRBP. If the RB is not
waiting, the dispatcher examines TCB field
TCBFLGS to determine if the task is dis
patchable. If so, the dispatcher sets NEW
and OLD to the address of the TCE and
enqueues timer elements (if necessary).
Control then passes to the new task.

The dispatcher does not pass control
directly to the new task when the TCBRBP
field for the task to be given control
addresses an SVRB for a loaded transient
SVC routine which is no longer present in
the SVC transient area. In this case, the
SVC routine was overlaid (before its execu
tion completed) by another SVC routine.
The dispatcher determines if the SVC rou
tine currently in the transient area is the
one required for the new task by comparing
the contents of the doubleword XSNTCC with
the XRENM field of the SVRB. (XSNTCC is
looated in the SVC Second Level Interrup
tion Handler-IEAATAOO, and contains the
name of the SVC routine currently in the
transient area.) If the fields are identi
cal, the SVC routine currently in the tran
sient area is the, one required for the new
task, and the dispatcher passes control to
the new task. If they are not identical,
the dispatcher prepares to reload the SVC
transient area with the SVC routine indi
cated in the XRBNM field. It issues a
branch and link to the SVC SLIB for crea
tion and initialization of a new SVRB.
This SVRE represents the refresh request
for the SVC routine that was overlaid
before its execution completed. The dis
patcher then branches to the FINCH routine
requesting the loading of the SVC transient
area with the desired SVC routine. (See
the discussion of the transient area load
ing task in the "Contents Supervision" sec
tion of this publication for an explanation
of the processing required to bring the
appropriate SVC routine into the SVC tran
sient area.)

If the RE for a task is waiting or the
task is nondispatchable, the task is not
ready to receive control. The dispatcher
examines TCB field TCBTCB to obtain the
address of the next TCB on the queue. The
dispatcher then examines this TCE to iden-

tify whether it is ready to receive con
trol. This process continues until a ready
task is found or until the end of the queue
is reached (indicated by a zero in TCBTCB).

If no task is able to receive control,
the dispatcher sets the resume PSW wait bit
of the TCB addressed by OLD. This PSW is
then loaded, placing the CPU in a wait con
dition. The resume PSW is located in field
XRBPSW of the RB addressed by TCB field
TCBRBP.

If the system management facility is
included in the system, the Dispatcher
records the beginning of a system wait
before loading the RB old PSW. It reads
the interval timer and stores its value in
the first word of a special save area,
~YSWSAVE. This value is later used by the
SMF wait time collection routine to calcul
ate elapsed system wait time.

Figures 8 and 9 illustrate how control
is switched assuming a three partition sys
tem in which Pi is inactive (see Figure 7).
All tasks are dispatchable except task Pl.
Initially, only the communications task and
master scheduler task are waiting. Because
task PO is the highest priority task which
is dispatchable and not waiting, it is
given control. Task PO has already
enqueued and received exclusive control of
a resource which task P2 will later enqueue
(see Figure 9).

Handling Job Step Timing When a Task Switch
is to Occur

Job step timing is requested by a job
step's Initiator via a STlMER macro
instruction that specifies the TASK
operand. The D~spatcher handles job step
timing if two conditions are met:

• A task switch is needed.

• The job step timing option was speci
fied at system generation.

If these conditions are met, the Dis
patcher suspends timing of the job-step
task that is giving up control by branching
to the timer dequeue routine (IEAQTD01) to
dequeue the "old" task's TQE. It then
restarts timing of the job step whose task
is next to be dispatched by branching to
the timer enqueue routine (IEAQTEOO) to add
the "new" task's TQE to the timer queue.

REMOVING FROM THE TIMER QUEUE THE TQE FOR
THE JOB-STEP ASSOCIATED WITH THE TASK THAT
IS GIVING UP CONTROL: The Dispatcher per
forms two tests to determine if job step
timing is being performed for the job step
associated with the task that is giving up
control:

• It tests the TCBPIB field of the TCB
for the address of a PIB. If this
field contains zeros, a system task is
giving up control and therefore has no
job step timing associated with it.

• If the TCBPIB field contains a PIB
address, the Dispatcher tests the high
order bit in the job step timing status
bits field of the PIB. If this bit is
off, an initiator, a reader, or a writ
er is executing in the partition and
also has no job step timing associated
with it.

If the bit is ,on, the Initiator has
requested job ,step timing for a problem
program and a job step T~E is on the timer
queue. The Dispatcher therefore examines
the TQEFLGS field to determine the TQE
type. If the TQE is a REAL type, it will
not be removed from the timer queue because
it represents a wait time limit interval.
It was established as a wait time limit TQE
and enqueued by the WAIT routine (IEAAWT)
and it will be dequeued by the POST routine
(IEAAPT) •

If the TQE is a TASK type, the Bispatch
er branches to the timer dequeue routine
(IEAQTD01) in the timer second level inter
ruption handler, to suspend job step timing
for the "old" task.

PLACING ON THE TIMER QUEUE THE JOB STEP TQE
FOR THE JOB STEP ASSOCIATED WITH THE TASK
TO BE DISPATCHED: The Dispatcher performs
two tests to determine if job step timing
is being performed for the job ~tep asso
ciated with the task that is about to be
dispatched:

• It tests the TCBPIB field of the TCB
for the address of a PIB. If this
field contains zeros, a system task is
receiving control and therefore has no
job step timing associated with it.

• If the TCBPIB field contains a PIB
address, the Dispatcher tests the high
order bit in the job step timing status
bits field of the PIB. If this bit is
off, a reader, a writer, or an initia
tor is receiving control and also has
no job step timing associated with it.

If the bit is on, job step timing has
been requested for the problem program in
the partition via a STIMER macro instruc
tion issued by the Initiator. The Dis
patcher therefore branches to the timer
enqueue routine (IEAQTEOO) in the timer
second level interruption handler to add
the TQE to the timer queue and restart job
step timing for the task that is about to
be dispatched.

Dispatcher 33

II
NEW OLD

PO TeB II PO TeB I
I I L-_...L.. ____ _

,-------

I
I
I
I

I i
L_l __ _

,-----------

~ I t eTTeB I
I

L-_1-__ _

,---- ,----- --

* * I t MS TeB I t MS TeB I
,-------

1 11 M~TeBI
L--_L-_____ _

11

r--,------

t t
POTeB Ii pOTeB I

Dispatcher

Int

Int

Int

Search
TeB Queue

Int

Search
TeB Queue

Enter
DEFINE

L-----------~eomma~

Partition 0 Task

Communications Task

sve 34

Communications Task

WAIT

Master Scheduler Task

WAIT

Partition 0 Task

Figure 8. Dispatching Communications and Master Scheduler Tasks

34

NEW OLD

t PO TeB t PO TeB

I I
L_~ ____ _ -

,-------- -

; t PO TeB

-
--,--,------

* * t P2 TeB I t P2 TeB

,----------

; I t ",TCB I
L __ I _____ _ --.

,-------- -

_.+

1-----

I

I
I I

--

L __ L ____ _ -
Figure 9. Task Switching

Dispatcher A

Partition 0 Task

Int J-- WAIT

Wait Routine

B

Dispatcher

Search TeB Queue
Partition 2 Task

r Int r- ENQ

Enqueue Routine

Resource Unavailable

e

Dispatcher

Search TeB Queue

NaT ask ean Execute

Machine Wait

Int)---

Post Routi ne

Post PO

D

Dispat,cher

Partition 0 Task

Int J-- DEQ

Dequeue Routine

1
Dispatcher

Partition 0 Task

Dispatcher 35

Dispatching the Communications Task and
Master.Scheduler Task

Figure 8 illustrates how control passes to
the communications task and master schedul
er task through the dispatcher. In the
example illustrated, the communications
task receives control in order to read a
DEFINE command from the operator console.

Initially, the task in PO has received
control from the dispatcher and is execut
ing. The operator presses the REQUEST key
to indicate that he wishes to enter a com
mand from the console. An I/O interruption
is generated and control passes to the I/O
supervisor which identifies the interrup
tion as an attention signal. The I/O
supervisor then passes control to the con
sole interruption routine which issues a
POST macro instruction. The POST routine
posts the attention ECB and sets the com
munications task RB to a non-wait condi
tion. Because the communications task is
of higher priority than the task in parti
tion O. the POST routine places the address
of the communications task TCB in location
NEW. Control then passes to the
dispatcher.

The dispatcher gives control to the com
munications task which passes control to
resident device-support routines or issues
SVC 72 for transient device-support rou
tines. The device-support routines read
the console" s command and then issue SVC 34
to process the command. SVC 34 processes
some commands completely but must pass con
trol to the master scheduler resident com
mand processor routine to complete proces
sing the DEFINE command. (See ·Command
Processing" in the Job Management section
for a complete description of SVC 34 and
the master scheduler task.) SVC 34 issues
a POST macro instruction to post the master
scheduler task. The POST routine sets the
master scheduler RB to a ~on-wait condition
and gives control to the dispatcher.
Because the master scheduler task is of
lower priority than the communications
task, locations NEW and OLD remain
unchanged and the dispatcher returns con
trol to the communications task.

The communications task issues a WAIT
macro instruction and waits on an ECB. The
WAIT routine sets the communications task
RB in a wait state and sets location NEW to
zero. The dispatcher then receives control
and searches the TCB queue. Since the
master scheduler task is the next ready
task on the TCB queue, the address of the
master scheduler TCB is placed in locations
NEW and OLD, and the dispatcher passes con
trol to the master scheduler.

The master scheduler comple~es proces
sing the DEFINE command and then issues

36

WAIT. The WAIT routine sets location NEW
to zero and passes control to the dispatch
er which searches the TCB queue until it
finds a task ready to receive control. In
Figure 8. control returns to the task which
was executing before the operator entered
the DEFINE command.

Dispatching Tasks by Partition Priority

Figure 9 illustrates task switching among
tasks executing in partitions.

A. The task in partition PO (task PO) is
the highest-priority ready task and is
given control by the dispatcher. When
task PO issues a WAIT on an ECB. an
interruption occurs and control passes
to the WAIT routine.

B. The WAIT routine places the RB for
partition 0 in a wait condition and
sets location NEW to zero. It then
passes control to the dispatcher which
searches the TCB queue beginning with
the TCB for partition o. Since task
PO is waiting and task P1 is non
dispatchable. the dispatcher passes
control to task P2, the highest
priority task ready to execute. When
task P2 attempts to enqueue a resource
through use of the ENQ macro instruc
tion, an interruption occurs and con
trol passes to the ENQ routine.

C. The resource is unavailable because
task PO has already enqueued it.
Therefore. task P2 cannot continue
executing. The enqueue routine places
zero in location NEW and then passes
control to the dispatcher which
searches the TCB queue. Since task P2
is the last task on the queue, the
dispatcher sets the wait bit in the
resume PSW of task P2. The dispatcher
passes control to taskP2, placing the
CPU in a machine wait condition.

D. While the CPU is waiting, an interrup
tion occurs signifying the completion
of the event for which task PO was
waiting. The POST routine receives
control and posts the ECB for task PO
which is now able to resume control.
The POST routine places the TCB
address for task PO in location NEw
and gives control to the dispatcher.
The dispatcher sets OLD equal to NEW
and gives control to task PO. Task PO
executes and when finished using the
resource it has enqueued, it issues a
DEQ macro instruction.

E. An interruption occurs and the DEQ
routine receives control. The queue
element for task PO is removed from
the resource queue. The next element
on the resource queue is for task P2.

The resource is assigned to task P2
and its RB is placed in a non-wait
condition. The DEQ routine then com
pares the priority of the task which
has been in control with the priority
of the task which is now ready.
Because task PO has a higher priority
than task P2, location NEW remains
unchanged. The DEQ routine passes
control to the dispatcher which
returns control to task PO.

Dispatching a Task (With Time slicing)

If the time-slicing option is selected at
system generation in an MFT system without
subtasking, one or more contiguous parti
tions will contain tasks that share CPU
time. The number of time-slicing parti
tions, and the maximum amount of time each
task will have, are determined by the time
slice parameters set at system generation.
Both may be modified by the DEFINE command.

When a TCB of a partition within the
time-slice partitions is the highest ready
TCE, the dispatcher will share the CPU time
among all the ready TCEs within the time
slice partitions. These TCEs will share
the CPU until none of the TCEs are dis
patchable or a higher priority task is
ready, at which time the dispatcher will no
longer be limited to the time-slicing
tasks.

The dispatcher determines whether the
tasks are to share the CPU by testing the
time-slice control element (TSCE). The TCE
of the highest priority partition within
the time-slice group is addressed by the
field °FIRST"; the lowest priority parti
tion within the group is addressed by the
field "LAST". The time-slice dispatching
queue is that portion of the dispatching
queue starting with the FIRST TCE and end
ing with the LAST TCB. The dispatcher
stores the address of the TCE to next
receive control in the f~eld "NEXT", and
allows each task to run for the interval
given in the field "LENGTH".

4-
FIRST - Address of the fist time-slice TCB on the rCB queue

4

LAST - Address of the last time-slice TCB on the rCB queue

4

NEXT - Address of the next time-slice TCB to be dispatched

4

LENGTH - Time-slice length (in milliseconds)

If time-slicing is selected in a system
with subtasking, two additional fields are
added to the TSCE as shown below. In addi
tion to the address of the FIRST and LAST
TCEs, the dispatching priorities given to
the time-slicing group are included. The
value for first is the limit priority of
the job-step TCE in the highest priority
partition in the time-slice group; the
value for LAST is one more than the limit
priority of the partitiontbelow the LAST
partition. Any TCE whose dispatching
priority falls within the range of values
from FIRST to LAST will be dispatched as a
time-slice task.

Highest
Dispatching FIRST - Address of the first time-slice TCB
Priority

Lowest
Dispatching LAST - Address of the last time-slice TCB
Priority

NEXT - Address of the next time-slice TCB

LENGTH - Time-slice length (in milliseconds)

When time-slicing is selected, the dis
patcher performs functions in addition to
those explained in the preceding para
graphs. The following text describes the
additional dispatcher functions, and paral
lels the flow of data shown in Chart 02.

NEW EQUALS OLD: The dispatcher first
determines if NEW equals OLD. If it does,
the dispatcher further determines if the
task represented by OLD is a time-slice
task.

OLD a Time-Slice Task: If OLD is a time
slice task, the dispatcher determines if
the time-slice interval has expired; i.e.,
if the time-sli'ce queue element (TQE) has
been removed from the timer queue.

If the interval has expired, the next
ready time-slice task must be, dispatched.
The dispatcher searches the time-slice
group beginning with the TCE addressed by
TSCE NEXT (see preceding explanation of
TSCE fields). When the TCE addressed by
TSCE LAST is reached, the dispatcher checks
the TCE addressed by TSCE FIRST, until a
ready task is found or until all time-slice
TCEs have been checked.

When a ready task is found" TSCE NEXT is
updated, the time-slice TQE is enqueued,
and the ready task is dispatched. If no
time-slice tasks are ready, the dispatcher

Dispatcher 37

searches the TCB queue for the highest
priority ready task.

If the interval has not expired, i.e.,
the time-slice TQE has not been dequeued,
control is returned to the interrupted
task.

OLD Not a Time-Slice Task: If OLD is not a
time-slice task, control is returned to the
interrupted task.

NEW . NOT EQUAL TO OLD: If NEW does not
equal OLD, the dispatcher determines if OLD
is a time-slice task.

OLD Time-Slice Task-- NEW Equal Zero: If
OLD is a time-slice task and NEW equals
zero, the time-slice TQE is dequeued for
the current task. The dispatcher then
searches (using the TSCE) for the next
ready TCB in the time-slice group. If no
time-slice TCBs are ready, the dispatcher
searches .the TCB queue for the highest
priority ready task.

OLD Time-slice Task -- NEW Not Equal to
. Zero: If OLD is a time-slice task and NEW
does not equal zero, the dispatcher deter
mines if NEW is a time-slice task.

If NEW is a time-slice task, the task
represented by OLD, if ready, is redis
patched. (The time-slice TQE remains on
the queue.) If the task represented by OLD
is not ready, the time-slice TQE is
dequeued, and the dispatcher searches
(using the TSCE) for the next ready time
slice task. If no time-slice tasks are
ready, the dispatcher searches the TCB
queue for the highest-priority ready task.

If NEW is not a time-slice task, the
time-slice TQE is dequeued and the NEW task
is dispatched.

OLD Not a Time-Slice Task: If OLD is not a
time-slice task, the dispatcher finds the
next highest-priority ready task. It does
this by either obtaining the TCB address
from NEW or, if NEW is zero, by scanning
the TCB queue. If the highest-priority
ready task is not a time-slice task, it is
dispatched. If the highest-priority ready
task is a time-slice task, the dispatcher
finds (using the TSCE) the next ready task
in the time-slice group. The time-slice
TQE is enqueued, and the task is
dispatched.

Dispatchinq the 7094 Emulator Program for
the Model 85

If the 7094 Emulator option is specified at
system generation for a Model 85, the dis
patcher uses the Diagnose instruction to
enter or leave the emulator mode. Each
time the dispatcher receives control, it

38

checks bit 3 of the TCBTRN field of the
TCBs addressed by NEW and/or OLD to deter
mine if either TCB is that of the 7094 emu
lator program. If it is, the dispatcher
issues a Diagnose instruction to enter or
leave the emulator mode.

SVC SECOND LEVEL INTERRUP.TION HANDLER

The SVC second level interruption handler
(SVC SLIB) differs from that described in
the PCP Supervisor PLM in the following
manner:

If main storage space is not available
for the construction of an SVRB for the
abnormal termination routines, the SVC SLIB
determines from the TCB if the task re
questing abnormal termination is a job-step
task. If the requesting task is a job-step
task and if the system log option is
included, the SVC SLIB determines whether
the job-step task is the optional system
log task. If the job-step task is the sys
tem-leg task, the svc SLIB branches to the
system log routine •

If the job-step task is not the system
log task, the SVC SLIB increments the wait
count (if the wait count is less than 255);
turns on the wait flags in the TCBWAT
field; sets the DAR bytes in the TCBDAR
field; enables the resume PSW for interrup
tions; and indicates that a task switch is
needed. The SVC SLIB than branches to the
dispatcher.

If the system has subtasking, and the
requesting task is a subtask, the SVC SLIB
schedules the abnormal termination of the
job-step task unless the job-step task is
already terminating, and indicates that a
task switch is needed. The SVC SLIH then
branches to the dispatcher.

EXIT (MACRO IEAATA)

In MFT without sUbtasking, the Exit routine
operates as described in the PCP supervisor
PLM. In MFT with subtasking, the Exit rou
tine differs from that described in the PCP
supervisor PLM in that an end-of-task roU=
tine is included and special handling of
subtask exits is provided. The differences
are described below:

• If the exiting program' s RB is the only.
RB on the RB queue and subtask end is
not indicated in the TCB, the Exit rou
tine determines whether the TCE has any
active subtasks. If there is an active
subtask, the Exit routine schedules the
exiting program for abnormal
termination.

• If the exiting program is a subtask,
the Exit routine determines whether
there are any outstanding enqueue
requests (that is, requests for which
there are no corresponding dequeue
requests). If there are outstanding
requests, the Exit routine schedules
the subtask for abnormal termination.

The end-of-task (EOT) routine is included
as a subroutine of the exit routine in MFT
with subtasking. The EOT routine is
entered only if the exiting program's RB is
the only RB on a subtask's RB queue and the
subtask's TeB is flagged for subtask end.
The EOT routine functions as follows:

• The EOT routine moves the contents of
the task's registers to the TCB from
the SVC save area and zeros the RB
queue pointer in the TCB.

• If the ETXR (End-of-Task Exit Routine)
operand was specified in the ATTACH
macro instruction, the EOT routine
branches to the Stage 2 Exit Effector
to schedule the interruption queue ele
ment (IQE).

• The EOT routine removes the subtask's
TCB from the dispatching queue and
changes the address in location OLD to
the address of the TCB immediately pre
ceding the subtask TCB on the dispatch
ing queue. The EOT routine then tests
the address in location NEW to deter
mine whether it points to the exiting
subtask's TCB. If it does, the EOT
routine changes the address in location
NEW to the address of the TCB immedi
ately preceding the subtask TCB.

• The EOT routine removes the subtask
address from the TSCE if it is first,
next, or last and updates the TSCE to
reflect the removal of the subtask.

• If an ECB was specified in the ATTACH
macro instruction, the EOT routine
branches to the Post routine to post
the ECB.

• The EOT routines dequeues the IQEs for
job-step timing and time-slicing if
either or both are enqueued.

• The EOT routine loads the registers
with the contents stored in OLD's TCB
and branches to the dispatcher.

STAE SERVICE ROUTINE

The STAE service routine is a type 3 SVC
routine which prepares the task to inter
cept scheduled abnormal termination (ABEND)
processing. When the STAE macro instruc
tion (resulting in an SVC 60) is issued,
the STAE service routine is invoked. The
STAE service routine creates a 16-byte STAE
control block (SCB), which contains the
addresses of a user-written STAE exit rou
tine and parameter list. When the task
becomes scheduled for abnormal termination,

the AEEND/STAE interface routine (ASIR) is
given control by the ABEND routine. ASIR
returns control to the user at the STAE
exit routine address. After the S'IAE exit
routine has been executed, control is
returned to ASIR. ABEND processing con
tinues for the task as previously scheduled
unless the STAB exit routine has requested
that a STAE retry routine be scheduled. If
a STAE retry routine is provided by the
user, ASIR reestablishes the task scheduled
for AEEND processing and exits, giving con
trol to the dispatcher so that the STAE
retry routine is executed next. See the
System Programmer's Guide SRL for further
explanation of the STAE macro instruction.

The five routines that perform the func
tions of the STAE macro instruction are the
STAE routine (IEAASTOO) and the four ABEND/
STAE interface routines (IEASTMll,
IEASTM12, IEAS~113, and IEASTM14). These
routines perform the same functions as the
STAE routines described in the MVT Supervi
sor PLM with the exception that both
IEASTM12 and IEASTM14 pass control to the
ABEND routine (IEANTMOB) to purge WTOR
requests before passing control to the next
STAE routine (IEASTM13). If MCS is
included in the system, STAE uses IEACTMOB
to purge WTOR requests.

ABEND SERVICE ROUTINE

AEEND is a type 4 SVC routine that performs
both normal and abnormal task termination
by freeing the resources and control blocks
associated with the terminating task. The
freed resources thus become available for
use by other tasks in the system. The con
trol blocks affected are:

• Task Control Blocks (TCBs).
• Data Extent Blocks (DEEs).
• Free Queue Elements (FQEs).
• Request Blocks (RBs).
• Interrupt Queue Elements (IQEs).
• Timer Queue Elements (TQEs).
• Gotten Area Subtask Queue Elements

(GQEs) •
• Program Interrupt Elements (PIEs).

ABEND can be entered directly from a
problem program or system task via an ABEND
macro instruction, or indirectly through
the AETERM service routine. (In cases
where a system routine detects an error but
cannot issue an ABEND macro instruction,
ABTERM schedules the execution of ABEND.)
The SVC second level interruption handler
(SLIH) causes the first load module of

ABEND (IEANTMOO) to be brought into the SVC
transient area and passes control to it.
Control is passed between ABEND modules via
an XCTL macro instruction (SVC 7).

To return control to the job management
step deletion routines IEFSD515 or

Dispatcher 39

IEFSD599, ABEND constructs a dummy PRB and
a dummy program at the beginning of the
partition. This dummy program contains an
LPSW instruction followed by an XCTL macro
instruction specifying the name of the job
management routine that is to receive con
trol. ABEND adds the PRB to the beginning
of the TCB/RB queue and branches to the
dummy program. .

ABEND processing will vary depending on
the type of termination <normal or abnor
mal}, the type of task terminating <job
step or subtask}, options included in the
system, conditions causing the termination,
and conditions arising within ABEND during
processing (macro failures, etc). Charts 4
and 34 and the following paragraphs
describe the normal and abnormal task ter
mination functions of ABEND. For a more
detailed description of ABEND processing,
refer to the module descriptions.

Normal Termination

ABEND stores the normal completion code of
the terminating task in the TCBCMP field in
the TCB of the terminating task. If the
system has an interval timer, ABEND clears
the IQE address in the TQE. If the TQE is
in use, it issues a TTl MER macro instruc
tion to cancel the timer. If a job step
task is terminating, ABEND closes all data
sets whose DCEs and main storage areas are
queued to the TCB, purges any WTOR
requests, and dequeues all IQEs associated
with the task. It frees all main storage
within the partition, except that for the
dummy program, and uses the created dummy
program to branch to the job management
routines IEFSD51S or IEFSD599.

If the terminating task is a subtask,
ABEND purges the IQEs for the task, closes
open data sets, dequeues all GQEs and frees
the area they describe, and removes from
the active RB queue all request blocks
except the SVRB for ABEND. ABEND sets the
current task nondispatchable and passes
control to the SVC EXIT routine lEAATA.

Abnormal Termination

ABEND first tests for a DAR recursion and,
if found, passes control to the DAR service
routines. If a subtask is terminating and
an invalid recursion has occurred, ABTERM
is used to terminate the job step. ABEND
then issues a WAIT macro instruction.

If a CLOSE, OPEN, ABDuMP, or message
recursion (WTO failure) has occurred, ABEND
halts all I/O operations for this task and
dequeues all request blocks created as a
result of the recursion. Processing con
tinues with the test for dump described
below.

40

If this is a nonrecursive termination,
ABEND determines if STAE processing should
be initiated or, if purge failed in STAE,
resumed. If so, ABEND passes control to
the STAE interface routines. If no STAE
processing is indicated, ABEND purges IQEs,
active TQEs, SPIE requests, STAE requests,
and transient area requests for the ter
minating task and any subtasks. It also
purges WTOR requests, halts I/O, and vali
dity checks control blocks.

ABEND determines if a dump is requested
and what type of dump will be presented.
It ensures that sufficient main storage is
available for the dump by issuing a GETMAIN
macro instruction. If sufficient nain
storage is not available, it frees the pro
grams described by the load list to obtain
this main storage. ABEND searches the TIOT
for a SYSABEND or a SYSUDUMP DDNAME. If
neither is found and the terminating task
is a job step task, ABEND stores pertinent
information in main storage for the eventu
al printing of an indicative dump by the
job management routines. If a SYSABEND
entry is found in the TIOT, ABEND opens a
DCB for the dump data set if it has not
been opened already, and calls ABDUMP to
dump the nucleus, the system queue area,
and that area within the task's partition
that is not free. If a SYSUDUMP entry is
found, ABEND opens a DCB for the dump data
set if it has not been opened already, and
calls ABDUMP to dump only that area within
the task's partition that is not free.

Upcn completion of the dump, or if no
dump was provided, ABEND determines the
type of task that is terminating. If the
task is a job step task with no subtasks,
ABEND closes all data sets associated with
the task, dequeues IQEs, and clears the
pointers to the ABEND appendages and tran
sient area queues. ABEND passes centrol to
the jcb management routines to print the
indicative dump if one will be provided,
and to initiate the next task.

If the terminating task has subtasks, or
is itself a subtask, ABEND frees IQEs for
the terminating task and any subta~ks,
chains all subtask data sets to the TCB of
the current task, dequeues subtask 'ICBs
from the ready queue and frees the asso
ciated main storage. If the terminating
task is a job step task with subtasks,
ABENB purges resources for its subtasks if
any resources are enqueued, and processing
continues as for a job step task without
subtasks described above. If the terminat
ing task is itself a subtask, ABENB frees
main storage for partially loaded programs,
minor LPRBs, and GQEs and the area they
describe. It closes all data sets queued
to the TeB of the terminating task, purges
subtask resources, and truncates the TCB/RB
queue, leaving only the SVRB for ABEND.

ABEND sets the subtask nondispatchable and
passes control to the SVC EXIT routine
lEAATA.

Detailed descriptions of the 17 ABEND
load modules follow. In the "condition-
action" tables, execution within the module
is shown sequentially from top to bottom in
the table. If the condition slot corres-
ponding to an action is blank, the action
is always taken. An asterisk (*) denotes a
condition and action that will occur only
if MFT with the subtasking option is
included in the system.

ABEND Normal Termination processing and
Abnormal Termination Router Routine
(IEANTMOO)

lEANTMOO is entered from the SVC SLIH to
process normal or abnormal task or subtask
terminations. It may also be reentered
from lEANTMOB if normal termination
required purging of WTOR requests or if MCS
is included in the system. The following
tables show the possible conditions within
the routine and the actions taken.

Normal Termination

CONDITON ACTION

Store completion code in TCBCMP

Timer included Set IQ E poi nter in TQ E to zero

TQE in use Issue TTIMER CANCEL

Close DCBs, dequeue DEBs for task

MCS in system Pass control to IEACTMOB

WTOR requests to purge Pass control to IEANTMOB

* Subtask terminating Pass control to IEANTMOE

Entry from IEANTMOB Dequeue IQEs for terminating task

* Limit priority does not
Issue CHAP macro instruction

equal dispatching priority

Initialize boundary box and FQE for hierarchy
o (and hierarchy I if applicable), clear
pointers to TlOT and problem program save
area

'Small partition Pass control to IEFSD599

Pass control to IEFSD515

Abnorma I Termi nation

CONDITION ACTION

ABE ND in progress This is a recursion - test for type

Primary DAR recursion Pass control to IEADTM22

Secondary DAR recursion Pass control to IEADTM23

* Invalid subtask recursion Use ABTERM to terminate job step, issue a
WAIT macro instruction

OPEN, CLOSE,
ABDUMP, or message Pass control to IEANTM02
recursion

Non recursive terminati on Pass control to IEANTMOI

Before issuing the XCTL macro instruc
tion, lEANTMOO determines if there is suf
ficient main storage available for the XCTL
SVRB. If not, and if the task to be ter
minated is a subtask, it uses ABTERM to
terminate the job step and then issues a
WAIT macro instruction. If the task being
terminated is a job step, lEANTMOO obtains
main storage from the partition for crea
tion of the XCTL SVRB.

ABEND/STAE Graphics Linkage Routine
(IEANTMOl)

IEANTM01 processes nonrecursive termina
tions for job step tasks, for failures when
the terminating program has issued a STAE
macro instruction., or for failures when GJP
is included in the system. The following
table shows the possible conditions within
the routine and actions taken.

CONDITION ACTION

Purge failed in STAE Issue SVC EXIT to pass control to STAE

Valid STAE issued, ABEND Free PIE, indicate ABTERM entered,
not caused by operator IS indicate first ABEND entry from STAE,
cancel, timer expiration, pass control to IEASTM II
invalid detach, or STAE
recursion

Graphics Job processor, no
graphi cs recursion, user Issue SVC EXIT to pass control to
wishes to resume, and user user routine.
has issued ABEND

Indi cate task as highest terminating task

Purge task and subtasks of IQEs, active
* Terminating task has TQEs, SPIE requests, transient area requests,
subtasks and STAE requests, and pass control to

IEANTMOB (IEACTMOB for MCS)

Purge task of IQEs, active TQEs, SPIE
requests, transient area requests, and STAE
requests; stop trace table; pass control to
IEANTMOB (IEACTMOB for MCS)

ABEND I/O Purge Routine (IEANTM02)

For a nonrecursive ABEND, IEANTM02 purges
I/O for the terminating task and any sub
tasks. For a recursive ABEND, it purges
I/O for the terminating task only. For
either a recursive or nonrecursive ABEND,
if the task is a system task or is in "must
complete" status, IEANTM02 passes control
to IEADTM22. Otherwise, IEANTM02 passes
control to lEANTM03 for a nonrecursive
ABEND .• or to IEANTM09 for a recursive
ABEND.

ABEND Control Block Validity Check Routine
(IEANTM03)

IEANTM03 tests the validity of the control
blocks associated with a nonrecursive ter
minating task and, for MFT with subtasking,

Dispatcher 41

its subtasks. This validity testing
ensures system integrity by preventing an
abnormal termination within ABEND. If a
control block is found to be invalid, the
rou~ine truncates the queue on which it
resides up to the last valid control block.
The table below shows the various validity
checks performed on each control block. A
bullet (e) indicates that an FQE found to
be invalid will be dequeued. Its queue
will not be truncated. GQE and JPAQ con
trol blocks exist only if MFT with subtask
ing is included in the system.

LOAD ACTIVE
VALIDITY REQUIREMENTS FQE LIST DEB RB GQE JPAQ

Alignment on a fullword
X boundary

Alignment on a doubleword
X X X X X boundary

Block not in free core X X X X X

Maximum of 300 blocks on queue X X X X X

Valid forward and backward
X X pointers

Block size is a multiple of 8 • X

Block does not extend beyond
• X partition boundary

Block does not describe an area
X described by an FQE •

Block resides in the partition X X X X X X

Blocks are queued in descending
order •

ABEND Dump Test Routine (IEANTM04)

IEANTM04 determines if a dump is required,
and ensures that sufficient main storage is
available for any type of dump., for an ENQ
purge, or for a CLOSE. A dump will not be
provided if the system writer is abnormally
terminating, if a SYSABEND or SYSUDUMP
DDNAME is not found in the TIOT, or if
there is insufficient free main storage
available for the dump. The following
table shows the conditions possible within
the routine and the exits taken.

CONDITION EXIT TAKEN

* Fu II dump requested IEANTM05

Fu II dump requested IEAMTM05

Indi cative dump requested IEANTM08

Insufficient main storage available for
IEANTMOA

providing dump

* ABEND is for subtask IEANTMOC

* Subtasks need ENQ purge IEANTMOD

* Subtasks do not need E NQ purge IEANTMOE

Job step termination IEANTM07

* Job step, no subtasks IEANTM07

42

ABEND Open Dump Data Set Routine (IEAMTMOS)
(MFT without subtaskinq)

IEAMTM05 opens the dump data set for the
terminating task and passes control to
IEANTM06. If a SYSABEND or SYSUDUMP DDNAME
is not found in the TIOT, or if the data
set cannot be opened, IEAMTM05passes con
trol to IEANTM09.

ABEND Open Dump Data Set Routine (IEANTM05)
(MFT with subtaskinq)

IEANTM05 opens the dump data set, if it is
not already open, for the terminating task.
This data set will remain open until ter
mination of the job step task, and will not
be re-opened for subsequent ABEND proces
sing. Any subtasks of the terminating task
that are enqueued on the dump data set are
dequeued via a branch entry to DEQ. (These
subtasks are nondispatchable.) IEANTM05
issues an ENQ macro instruction specifying
the dump data set to prevent other tasks
from using it until the dump is finished.
If the data set cannot be opened, or if a
SYSABEND or SYSUDUMP entry is not found in
the TIOT, IEANTM05 passes control to
IEANTM09. If any task in the job step is
in the process of opening the dump data
set, the routine sets the current task non
dispatchable, and sets its resume PSW to
re-enter IEANTM05. It then passes control
to the dispatcher. If the OPEN is success
ful, IEANTM05 resets dispatchable all tas~s
in the job step that were set nondispatch
able waiting for the dump data set to open.
It then passes control to IEANTM06.

ABEND Dump Routine (IEANTM06)

IEANTM06 prints appropriate messages per
tinent to the dump and issues a SNAP macro
instruction (SVC 51) to call ABDUMP for the
terminating task and, for MFT with subtask
ing, any subtasks. The following table
shows the conditions within the routine and
the exits taken.

CONDITION EXIT TAKEN

* Job step task has no sub tasks IEANTM07

SNAP macro instruction failed IEANTM09

* Subtask is terminating IEANTMOC

* Subtask needs ENQ purge IEANTMOD

* Subtasks do not need E NQ purge IEANTMOE

Job step termi nation IEANTM07

ABEND Termination Routine (IEANTM07)

IEANTM07 closes all data set chained to the
TCB of the terminating task, dequeues IQEs,

and clears the pointers to the ABEND appen
dages and transient area queues. If an
indicative dump has been created, the ABEND
termination routine moves it to the upper
part of the partition. If MFT with sub
tasking is included in the system, this
routine is entered only if a job step task
is terminating and its subtask's TCB has
been freed. IEANTM01 passes control
through the dummy program to IEFSD515 (GO>
for a large partition, or to IEFSD599
(SMALLGO) for a small partition.

ABEND Indicative Dump Routine (IEANTM08)

IEANTM08 creates an indicative dump area
containing the following information:

• Register contents at entry to ABEND.
• Floating point register contents, if

any.
• completion code.
• Program check instruction.
• TCB flags.
• Program name.
• Entry point.
• Resume PSW.
• Active RBs.
• Loaded RBs.

IEANTM08 passes control to IEANTM01 for
job step termination. If subtasking is
included in the system, IEANTM08 passes
control to IEANTMOD if subtasks need ENQ
purge, or to IEANTMOE if subtasks do not
need ENQ purge.

ABEND Recursion processing Routine
(IEANTM09)

IEANTM09 dequeues all request blocks
created as a result of the recursion and
processes all OPEN, CLOSE, ABDUMP, and mes
sage recursions. The following table shows
the conditions possible within the routines
and the actions taken.

CONDITION ACTION TAKEN

Messa.ge recursi on Pass control to IEANTM04

* OPEN recursion Reestablish JPAO Chain, reset dispatchable
any tasks waiting for open of the dump data set

* Subtask ABEND Reestablish GOE chain

Set switch for indicative dump, reset
OPEN recursion dispatchable any tasks waiting for open of the

dump data set

CLO SE recursi on Indi cate no dump

* ABDUMP recursion Set switch for indicative dump, dequeue task
from dump data set

ABDUMP recursion Set switch for indicative dump

Issue WTO macro instruction to print
appropriate message and pass control to
IEANTM04

ABEND Steal Main Storage Routine (IEANTMOA)

IEANTMOA frees main storage for all LRBs,
LPRBs for the job step task, and, for MFT
with subtasking, all LPRBs for the subtasks
queued on the load list. The following
table shews further conditions possible
within the routine and actions taken.

CONDITION ACTION

Dump requested Test for sufficient main storage

Sufficient main storage Pass control to IEANTM04
available now

Insuffi cient main Turn off switch indicating dump, issue WTO
storage available for macro instruction for II insufficient storage
providing dump avai lobI e .. message

Dump cannot be
provided or is not Test for freeing main storage
requested

* ABEND for job step Free main storage for LRBs on JPAO chain
task

* SVRB for ABE ND is in
Move SVRB to top of partition

PRB area

* FOE is in PRB area Dequeue FOE

Free main storage for all PRBs for terminating
task

* Terminating task has
Free main storage for all PRBs for subtasks

subtasks

Pass control to IEANTM04

ABEND WTOR Purge Routine (IEANTMOB) (MFT
Without MCS)

IEANTMOB purges outstanding WTOR requests
for the terminating task and, for MFT with
subtasking, its subtasks. IEANTMOB passes
control to IEANTMOO for normal job step
termination, to IEANTM02 for abnormal ter
mination, to IEANTMOE for normal subtask
termination (MFT with subtasking only), or
to IEASTM13 if STAE requested its
processing

ABEND WTCR Purge Routine (IEACTMOB) (MFT
With MCS)

IEACTMOB has the same functions and exits
as IEANTMOB (above).

ABEND Loading Program purge Routine
(IEANTMOC) (MFT With Subtasking Only)

IEANTMOC is entered only when the terminat
ing task is a subtask. It frees partially
loaded programs and FRBs for the terminat
ing task and its subtasks and passes con
trol to IEANTMOD.

Dispatcher 43

ABENDSUbtask ENQ Purge Routine (IEANTMOD)
(MFTWith SUbtasking Only 1

lEANTMOD performs an ENQ purge for all sub
tasks of the terminating task and for the
terminating task itself if it is a subtask.
Resources are therefore freed (e.g., data
sets, devices, etc.) for use by other
tasks. Outstanding ENQs for the job step
task will be purged by the job management
routines IEFSD597 or IEFSD598 at step ter
mination. IEANTMOD passes control to
lEANTMOE.

ABENDIQE Purge and Data set Close Routine
(IEANTMOE) (MFT With Subtasking only)

IEANTMOE purges IQEs for the terminating
task and any subtasks. If the task is ter
minating abnormally, lEANTMOE chains the
data sets for all of its subtasks to the
TCB for the terminating task. It also
frees main storage for its sUbtask's TCBs,
minor LPRBs, and GQEs. If the terminating
task is a job step task. IEANTMOE passes
control to IEANTM07. If the terminating
task is a subtask terminating normally or
abnormally, IEANTMOE closes all open data
sets for the terminating task, dequeues all
request blocks except the SVRB for ABEND
from the active RB chain, and frees main
storage for all GQEs and their associated
areas. lEANTMOE sets the terminating task
nondispatchable and passes control to the
SVC EXIT routine (IEAATA).

DAMAGE ASSESSMENT ROUTINES

The damage assessment routines (DAR) pro
cess, and attempt to recover from the fol
lowing failures:

• System tasks (log, communication, or
master scheduler).

• Tasks in "must complete" status.
• Tasks experiencing invalid ABEND

recursion.

A record of the failures is provided in a
main storage dump. A primary DAR recursion
results when a failure occurs while writing
the main storage dump. A secondary DAR
recursion results when a failure occurs
during partition recovery. The damage
assessment routines also advise the opera
tor of the failure-and subsequent
reinstatement of the task.

DAR Core Image Dump Routine (IEADTM22)

The DAR core image dump routine IEADTM22
writes on the SYS1.DUMP data set an image
of main storage at the time of failure.
When ente~ed, the routine sets all tasks
except the failing task and the communica
tions task nondispatchable. If MFT with
subtasking is included in the system, any

44

subtasks of the terminating task are indi
cated for ABEND processing. 'Ihe routine
then writes the image of main storage and
passes control to the DAR task reinstate
ment routine lEADTM23.

If the SYS1.DUMP data set has not been
allocated, the routine informs the operator
via a WTO macro instruction. If the rou
tine is entered as a result of a primary
DAR recursion, which is caused by a failure
to write the image of main storage, the
routine does not try to rewrite but informs
the o~erator of the failure via a WTO. In
both cases the routine passes control to
IEADTM23.

If the communications task is the fail
ing task, messages are queued pending rein
statement of the communications task by
IEADTM23.

DAR Task Reinstatement Routine (IEAD'IM23)

If the DAR task reinstatement routine
IEADTM23 is entered as a result of a fail
ing system task, the routine attempts to
reinstate the task. It pOints the resume
PSWs of all but the highest level RB of the
task's TCB to an SVC 3 instruction in the
CVT. It points the highest level RB to
entry ~oint IEECIR50 for the Master Sched
uler task, entry point IEECIR45 for the
Communications task, or entry point IEEVLIN
for the Log task. The routine then passes
control to the dispatcher via a branch
instruction. If the system error task is
failing, ABTERM is used to terminate the
requesting task. The resume PSWs of all
RBs except the two highest level RBs (the
SIRB and the wait RB) are pointed to the
SVC 3 instruction in the CV'I. lEADTM23
points the resume PSW in the SIRB to the
entry point IEAMSERB for the system error
task and exits to the dispatcher.

If the routine is entered as a result of
a seccndary DAR recursion, which is caused
by a failure to reinstate the failing task,
the routine informs the operator via a WTO,
sets all tasks dispatchable except the
failing task, and passes control to the
dispatcher via a branch instruction.

If the failing task is in "Must Com
plete" status, the task reinstatement rou
ti-ne issues a message to the operator list
ing the major and minor names of the
enqueued resources that have caused the
"Must complete" condition and asking the
operator to reply whether the resources are
critical. If the reply indicates the
resources are critical, processing is iden
tical to the processing of a secondary DAR
recursion described above. If the reply
indicates the resources are not critical,
the "Must Complete" status is removed, and
the resources are designated as shareable.

The task is processed as a failing non
system task as described below.

If the routine is entered as a result of
a failing non-system task. it sets indica
tors showing that a dump has been taken by
DAR and issues a message to the operator
indicating that the system has been rein
stated. The routine then sets all tasks,
except the subtasks, if any. of the ter
minating task, dispatchable and passes con
trol to lEANTM07 if the terminating task is
a job step task with no subtasks, to
lEANTMOC if the terminating task is itself
a subtask, to IEANTMOD if the terminating
task has subtasks that need ENQ purge. or
to lEANTMOE if the terminating task has
subtasks that do not need ENQ purge.

Task Supervision

The task supervisor maintains the status of
tasks within the system. Task supervision
service routines:

• Maintain task control blocks.
• Enter tasks into the wait state.
• Post completed events in the event con

trol block (ECB).
• Maintain control levels indicated by

request blocks.

The routines which accomplish these
functions are WAIT. POST, ENQ, and DEQ.

In addition. if subtasking is included
in the system, task supervision service
routines:

• Attach subtasks when requested by the
user.

• Detach subtasks previously created by
the requester.

• Change the dispatching priority of a
requesting task or of a task under the
control of the requester.

The routines that accomplish these func
tions are ATTACH, DETACH, and CHAP.

Each task within the operating system
has an associated task control block (TCB).
The TCB contains task-related information
and pointers to additional control blocks
containing task-related information. The
control blocks used by MFT are the same as
those used by PCP except for the addition
of the partition information block (PIB)
which is described in Appendix A. The last
three bytes of the word at displacement 124
(decimal) of each partition TCB contain the
address of the associated PIB. Figure 10
shows the major control blocks maintained
by the supervisor and their relationship to
the TCB.

Task supervision in MFT without subtask
ing is similar to that described in the PCP
supervisor PLM. Task supervision in MF~--
systems wit~ subtasking is similar to task
supervision in an MVT system and is
described in the MVT Supervisor PLM. Addi
tional information applicable to MFT is
presented in the following paragraphs.

THE ATTACH ROUTINE (MFT WITHOUT SUBTASKING)
(MACRO IEAAAT)

In MFT without subtasking, the ATTACH and
LINK macro instructions are handled
identically. An RB is created for the
requested program, the program is brought
into the requesting task's partition, and
its RE is chained to the RB queue for that
partition. See the supervisor and Data
Management Services SRL, GC28-6646 for
further explanation of the ATTACH rr.acro
instruction with MFT.

THE ATTACH ROUTINE (MFT WITH SUBTASKING)
(MACRO lEAQATOO>

A task issues an ATTACH macro instruction
to cause the supervisor to schedule execu
tion of a requested program as a subtask of
the calling task. A subtask competes for
CPU time and for resources allocated to the
calling task. When the ATTACH macro
instruction is issued. the Attach routine
gains control and performs the following
main functions:

• Obtains storage space in the system
queue area for a new task control block
(TCB).

• Places in the new TCB information
needed for controlling the subtask
(refer to MVT supervisor PLM).

• Allocates to the subtask the main
storage belonging to the calling task.

• Places the address of the new ~CB on
two TCB queues:

The subtask gueue of the calling task
and the dispatching queue (according
to dispatching priority).

• Places a dummy request block on the
TCB's active request block queue and
schedules linkage to contents supervi
sion to locate the first program to be
executed for the new subtask, fetch the
program if necessary, and schedule its
execution.

In addition to performing the main func
tions, the Attach routine also performs the
following minor functions: If the ATTACH
macro instruction contains the ETXR
operands, storage space is obtained for and

Dispatcher 45

Save Area

HOT

JOBUB DCB

Task
Control.
Block

Partition
Information
Block

I
r--..1..._--,
I SPIL I L..-___I

Figure 10. System Control Block Relationship

control information is placed in, either or
both the interruption queue element (IQE)
and the interruption request block (IRB) to
be used for scheduling and controlling an
end-of-task exit routine. (If an IQE or
IRE already exists for the specified exit
routine, the Attach routine does not build
another one.)

The TCB that is created will be initial
ized by the Attach routine to contain sta
tus information and list origins for queues
needed by programs being executed for the
subtask. For example, this information
includes the address of the Attach. event
control block (ECB), if specified, and the
limit and dispatching priorities of the new
TCB. The Attach routine also determines
whether the calling routine or the newly
created routine receives control by compar
ing the dispatching priority of the re
questing task with that of the newly
created subtask. The Attach routine places
the address of the higher priority TCB in
the "new· TCB pointer (IEATCBP) to be later
tested by the dispatcher when it receives
control during the exiting procedure.

46

Active RB Queue
RB

RB

RB

Loaded Program List

RB

THE CHAP ROUTINE (MFT WITH SUBTASKING)

The CHAP (Change Priority) macro instruc
tion allows a problem program to change its
own dispatching priority, or that of any
subtask created by the problem program. A
CHAP macro instruction can change the dis
patching priority of a task to any value
from zero through the limit priority of the
issuer. The CHAP macro instruction in MFT
with subtasking is the same as that
described in the MVT supervisor PLM. A
complete discussion of task priorities can
be found in the Supervisor and Data Manage
ment services SRL, GC28-6646.

THE DETACH ROUTINE (MFT WITh SUBTASKING)

The o~eration of the Detach routine in MFT
with subtasking is the same as the opera
tion of the Detach routine as. described in
the MVT Supervisor PLM, with the following
exceptions:

• In MFT with subtasking, validity check
ing is performed by the Detach routine.
The Detach routine checks for boundary

alignment and determines whether the
TCB address passed by the caller repre
sents a valid subtask.

• The subtask's save area, freed in MFT
with subtasking by the Detach routine,
is not located in a subpool. The TCB,
floating point register save area, and
the timer queue element area (if pre
sent in storage) are freed from the
system queue area.

• After freeing the subtask's main
storage, the Detach routine decrements
by one the subtask count stored in the
PIB, and zeros the TCB table address
entry that pointed to the detached
subtask.

• The Detach routine does not validity
check the user's ECB. However, it does
issue a POST SVC instruction to post
the ECB.

THE EXTRACT ROUTINE (MFT WITH SUBTASKING)

The operation of the extract routine in MFT
with subtasking is the same as that
described in the MVT supervisor PLM except
that it is a type 3 SVC routine and returns
control to the SVC second level interrup
tion handler.

THE EXTRACT ROUTINE (MFT WITHOUT
SUBTASKING)

The operation of the Extract routine in MFT
without subtasking is the same as that
described in the PCP Supervisor PLM.

THE WAIT ROUTINE (MACRO lEAAWT)

The MFT configuration of the operating sys
tem uses the WAIT routine described in the
PCP supervisor PLM, with the addition of
imposing job step wait time limiting if the
job step timing option was specified at
system generation.

If the job step timing option was speci
fied at system generation, the WAIT routine
imposes a wait time limit on a job step
that is being job step timed. This action
is taken so that a job step will not wait
on an ECB that, for some reason, is never
posted. The POST routine removes an unex
pired wait time limit imposition when the
job step's wait is satisfied via a POST
macro instruction or a branch entry to
POST. If the wait time limit established
in the TQE by the WAIT routine expires, the
timer second level interruption handler
abnormally terminates the task unless SMF
is in the system and SMF user time limi t
expiration routine IEFUTL is specified.

The WAIT routine implements wait time
limiting by converting a TASK type 'IQE (the
job step TQE associated with job step tim
inq) to a REAL type TQE containing a speci
fied wait time limit.

After the WAIT routine places the wait
count in the caller's RB, it perforrrs two
tests to determine if job step timing is in
effect for the task under which the WAIT
macro instruction was issued:

• It tests the TeEPIB field of the TCB
for the address of a PIB. If this
field contains zeros, the task is a
system task and therefore has no job
step timing associated with it. In
this case the WAIT routine bypasses the
processing for job step wait time
limiting.

• If the TCBPIB field contains a PIB
address, the WAIT routine tests the
high-order Pit in the job step timing
status bits field of the PIB. If this
bit is off, an initiator, a reader, or
a writer is executing in the partiticn
and also has nc job step timing asso
ciated with it. Processing for job
step wait time limiting is therefore
bypassed.

If the bit is on, the Initiator has
requested job step timing for a problem
program via the STIMER macro instruction
and a job step TQE is on the timer queue.
The WAIT routine examines the TQEFLGS field
to determine the TQE type. If the TQE is a
TASK type, the WAIT routine branches to the
timer dequeue routine (IEAQTD01) in the
timer second level interruption handler to
remove the TQE from the timer queue. It
saves the CPU job step time remaining in
the TQESAV field. It then stores a 30-
minute wait time limit value in the TQEVAL
field. (If SMF is supported, the WAIT rou
tine obtains the wait time limit value from
the TC'IWLMT field of the timing control
table (TCT), and stores this value in the
TQEVAL field.) The WAIT routine then con
verts the job step TQE from a TASK type to
a wait time limit TQE (REAL type). It
branches to the timer enqueue routine
(IEAQTEOO) in the timer second level inter
ruption handler to place the REAL type TQE
on the timer queue, and then continues with
normal WAIT processing.

If the TQE is a REAL type, processing
for job step wait time limiting is
bypassed.

Note: If the optional validity checking
feature is included in the system and the
program issuing the WAIT macro instruction
is not in supervisor mode, the WAIT routine
checks that:

Dispatcher 47

1. The boundary alignment of the ECBs is
correct.

2. The storage protection key of the ECBs
is that of the issuing program.

3. The addresses specified do not exceed
main storage boundaries of the
machine.

Because of point 2. it is not possible for
one partition to WAIT on an ECB within
another partition.

THE POST ROUTINE (MACRO lEAAPT)

The POST routine, like the WAIT routine. is
unchanged from that described in the PCP
supervisor PLM. except for the addition-of
processing for job step wait time limiting,
if the job step timing. option was specified
at system generation.

If the job step timing option was speci
fied at system generation, the POST routine
performs the additional function of restor
ing a REAL type TQE (established as a wait
time limit TQE by the WAIT routine) that is
on the timer queue, to a TASK type TQE.
This action is taken so that the Dispatcher
is able to continue job step timing for the
task the next time that it is dispatched.

When the wait count in the caller's RB
becomes zero, the POST routine performs two
tests to determine if job step timing is in
effect for the task whose top RB wait count
has become zero. It bypasses the restoring
processing if job step timing is not asso
ciated with the task.

• It tests the TCBPIB field of the TCB
for the address of a PIB. If this
field contains zeros, the task is a
system task and therefore has no job
step timing associated with it.

• If the TCBPIB field contains a PIB
address, the POST routine tests the
high-order bit in the job step timing
status bits field of the PIB. If this
bit is off, an initiator, a reader, or
a writer is executing in the partition
and also has no job step timing asso
ciated with it. If the bit is on, job
step timing is in effect for a problem
program, and a job step TQE is on the
timer queue. The POST routine examines
the TQEFLGS field to determine the TQE
type. If the TQE is a TASK type,
restoring processing is also bypassed.

If the TQE is a REAL type. it was estab
lished as a wait time limit TQE by the. WAIT
routine. In this case the POST routine
must restore the TQE to a TASK type. It
branches to the timer dequeue routine

48

(IEAQTD01) in the timer second level inter
ruption handler to remove the REAL type TQE
from the timer queue. It then restores the
TQEVAL field with the actual CPU job step
time remaining. (The WAIT routine origi
nally saved this value in the TQESAV
field.> The POST routine then sets the
TQEFLGS field to mark the TQE as a TASK
type to allow the Dispatcher to once again
begin job step timing for the task the next
time it is dispatched. It then continues
with normal POST processing.

Note: Validity checking applies to POST in
the same way that it applies to WAIT.

THE ENQ/DEQ ROUTINE (IEAGENQ1)

The ENQ/DEQ routine provides a means of
controlling serially reusable resources.
This is done by assigning unique names con
sisting of a Qname and an Rname to each
serially reusable resource. The ENQ/DEQ
routine controls access to resources by
building resource queues consisting of a
queue control block (QCB) for each Qname
and Rname specified in an ENQ macro
instruction and a queue element (QEL) to
represent each actual request. ENQ/DEQ is
fully described in the MVT.supervisorPLM.
ENQ/DEQ for MFT is identical to MVT except
as described below.

In MFT, resource queues are located in
the system queue area and are obtained via
GETMAIN macro instructions specifying sub
pool 255. The address of the first queue
control block in the queue can be found at
location lEAOQCBO in the ENQ/DEQ routine.

In a system without the subtasking
option, the "must complete" function of
ENQ/DEQ applies only to system tasks, not
to job steps. If "must complete" is speci
fied for a system task, all other tasks are
set non-dispatchable until the task com
pletes its processing.

In a system with the subtasking option,
the "step must complete" function may be
specified for a non-system task as well as
a system task. If "step must complete" is
specified for a non-system task., all other
tasks in the job step are set non
dispatchable until the specified task com
pletes its processing.

Contents Supervision
Contents supervision routines determine the
type and location of requested modules and
bring them into main storage within the
requester's partition if necessary. Con
tents supervision also maintains records of
all modules in main storage within each
partition. The first part of this section

describes the records and routines used by
contents supervision in an MFT system
without subtasking. The second part of
this section describes the additional rec
ords used by contents supervision and the
routines that are changed in an MFT system
with subtasking.

CONTENTS SUPERVISION IN AN MFT SYSTEM
WITHOUT SUBTASKING

There are six types of request blocks in
MFT systems without subtasking:

• Program Request Block (PRB) -- repre
sents a nonsupervisory routine that
must be executed in the performance of
a task. PRBs are created by the con
tents supervision routines that perform
the LINK or XCTL functions.

• Supervisor Request Block (SVRB)
represents a supervisory routine.
SVRBs are created by the SVC interrup
tion handling routines.

• Interruption Request Block (IRB) -
controls a routine that must be
executed in the event of an asynchron
ous interruption. IRBs are created in
advance of an interruption by the CIRB
routine at the user's request, but not
placed on an RB queue until an inter
ruption actually occurs.

• System Interruption Request Block
(SIRB) -- used only for the system I/O
error task. There is only one SIRB in
the system.

• Loaded Program Request Block (LPRB) -
controls modules brought in by a LOAD
macro instruction. LPRBs also control
section of modules that are specified
by the IDENTIFY macro instruction.
LPRBs are created by the contents
supervision routines that perform the
LOAD function.

• Loaded Request Block (LRB) -- a
shortened form of LPRB and controls
load modules that have the "load only"
attribute. It is invalid to issue
ATTACH, LINK, or XCTL macro instruc
tions to these load modules because
they may not follow the linkage conven
tions for the macro instructions. LRBs
are created by the routines that per
form the LOAD function.

There are two types of records of the
modules that are in the partition's main
storage or have been requested to be
brought into the partition's main storage.
The first is the requesting task's active
request block queue. This queue is the
chain of request blocks associated with the

load modules and SVC routines being used by
the task and pOinted to by the TCB/RBP.
The queue can contain any type of request
block as long as it is in use by the re
questing task. When the modules repre
sen~ed by the RB has completed exection,
contents supervision will remove the RB
from the queue.

The second record of modules in the par
tition's main storage is the loaded program
list pointed to by TCBLLS. This list con
sists of LPRBs and LRBs (that is, modules
requested by a LOAD macro instruction).
These modules are assumed to be reusable
and as such can be shared by other routines
within the partition. The request blocks
include a use count which indicates the
number of tasks that have requested the
module via a LOAD macro instruction and
have not indicated completion via a DELETE
macro instruction. A module's RB will not
be deleted from the loaded program list
until its request count is zero.

Contents supervision routines alter the
active RB queue and the loaded program
list, and bring nonresident progra~s into
the problem program partitions in response
to LINK, ATTACH, LOAD, and XCTL macro
instructions. Additional contents super
vision services are provided by the use of
IDENTIFY, DELETE, and SYNCH macro instruc
tions. IDENTIFY and DELETE alter the
loaded program list. SYNCH alters the
active request block queue. The routines
that service these macro instructions are
described below.

LINK Service Routine (Macro IEAATC)

The LINK service routine determines if the
RB of the requested module is on the loaded
program list. If it is and is inactive,
LINK places the RB on the active RB queue.
If the requested RB is not on the loaded
program list (or· if it is on the list, but
is active), and the resident reenterable
module option was selected at system
generation, the routine searches the resi
dent area. If the module is found in the
area, a dummy LPRB for the module is placed
on the loaded program list, and processing
continues as if the module were originally
found on the load list. If the module is
not found, the LINK routine constructs an
RB for the requested routine, places the RB
on the active RB queue, and fetches the
requested module into main storage.

ATTACH Service Routine (Macro IEAAAT)

The ATTACH macro instruction is handled as
a LINK macro instruction. For a complete
explanation, see "The ATTACH Macro Instruc
tion" under the topic Task Supervision.

Dispatcher 49

LOAD Service Routine (Macro IEAATC)

The LOAD service routine first determines
if the requested module is in the resident
reenter able module area (if the resident
module option was specified at system
generation). If so, the entry point of the
module is passed to the requesting routine
in register zero. If the module is not
resident, LOAD searches the loaded program
list for the RB of the requested routine.
If it is found, the LOAD routine increments
the RB use count by one and returns the
entry point of the requested module in reg
ister zero.

If the requested module is not found on
the loaded program list, the LOAD routine
branches to the FI NCH routine to load the
requested module into storage. On return
from the FINCH routine, the LOAD routine
initializes the requested module's RB and
places it on the loaded program list, sets
the RBs use count to one and. branches to
the LINK routine to issue the SVC EXIT
instruction.

XCTL service Routine (Macro IEAATC)

The XCTL service routine first determines
if XCTL was issued by a transient SVC rou
tine. It then determines if the resident
SVC (RSVC) option was chosen at system
generation and determines if the requested
SVC module is an RSVC module. If it is,
the module need not be brought into main
storage. If the requested module is not an
RSVC, the XCTL routine branches to the
FINCH module to locate the routine on the
svc library and to bring it into the SVC
transient area. In either case the XCTL
routine initializes the module's RB and
executes an SVC EXIT instruction.

If the XCTL macro instruction was not
issued by a transient svc routine, the XCTL
routine dequeues the primary RB and each
minor RB of the issuer from the active RB
queue. The routine which issued the XCTL
macro instruction and its RB are ren:oved
from storage unless it was brought in via a
LOAD macro instruction. If the requested
module is on the loaded program list and is
inactive, the XCTL routine branches to the
LINK routine to place the RB on the active
queue and to issue an SVC EXIT instruction.

If the RB of the requested module was
not found inactive on the loaded program
list, and the resident reenterable module
option was selected at system generation,
the routine searches the resident area. If
the module is found in the area, a dummy
LPRB for the module is placed on the loaded
program list, and processing continues as
if the module were originally found on the
load list. If the module is not found, the
XCTL routine branches to the FINCH routine

50

to bring in the module. On return from the
FINCH routine, the XCTL routine branches to
the LINK routine to place the RB on the
active queue and issue an SVC EXIT
instruction.

IDENTIFY Service Routine (IEAAIDOO)

The IDENTIFY service routine builds and
initializes a minor request block to
describe a module specified in the parame
ters of the IDENTIFY macro instruction.
The IDENTIFY routine chains this minor RB
to the loaded program list and to the RB of
the module that contains the identified
routine. The IDENTIFY routine returns to
the issuer by issuing an SVC EXIT
instruction.

DELETE Service Routine (IEAADLOO, IEABDLOO)

The DELETE service routine determines if
the medule specified in the DELETE macro
~struction is resident. If it is, the
DELETE routine exits immediately. If the
module is not resident, the DELETE module
finds the module's RB on the loaded program
list and decrements the use count in the RB
by one. If the use count reaches zero, the
DELETE routine dequeues the routine from
the leaded program list and issues a FREE
MAIN macro instruction to release the
storage occupied by the specified module
and its RB. On return from the FREEMAIN
routine, the DELErE routine repeats the
deleting process for each minor RB belong
inq to the specified module. The DELETE
routine returns by branching to the type 1
SVC exit.

SYNCH service Routine (IEAASYOO)

The SYNCH service routine uses GErMAIN to
obtain 32 bytes of main storage from the
lower end of the partition for the creation
of a program request block (PRB). The PSW
in the PRB is initialized by the SYNCH rou
tine to address the location specified in
register 15 by the issuer of the macro
instruction. The SYNCH routine sets the
PSW completely enabled in problem program
mode, with the protection key recorded in
the task control block. After the PRB is
created and initialized, the SYNCH routine
queues it on the active request block queue
below the SVRB for SYNCH, and returns by
issuing an SVC EXiT instruction.

FINCH Service Routine (IEAA'ICOO)

The functions performed by the FINCH ser
vice routine are the same for PCP and MFT
with the following exceptions:

• I/O error handling.
• SVC transient area loading.

These functions are described below.

I/O ERROR HANDLING: In PCP, when control
is returned from program FETCH, FINCH. tests
for a permanent I/O error in the process
ing. If no error condition exists, control
is returned to the mainline routine that
requested the program fetch. If an error
is detected, a branch is taken to abnormal
ly term~nate the requesting task.

In MFT, when control is returned from
Program FETCH on a system fetch task, if
FINCH detects a permanent I/O error, the
FETCH operation is recycled five times.
The recycle count is kept in FINCH's work
area. If the error persists after five
recycles of the operation, FINCH passes
control to the Dynamic Device Reconfigura
tion (DDR) SYSRES Effector routine, if DDR
SYSRES support is in the system. DDR
SYSRES returns to FINCH with a return code
of 0 or 4. If the return code is 0, FINCH
again recycles the Program FETCH operation.
If the return code is 4, permanent-error
processing takes place. If the renewed
attempt to recycle the operation results in
another permanent I/O error, DDR SYSRES is
not invoked again. Instead, permanent
error processing takes place.

SVC TRANSIENT AREA LOADING (IEAOFNOO): In
MFT there is only one SVC transient area.
Because more than one request for the use
of this transient area may be issued at the
same time, a method for resolving conten
tion for the use of this area must be es
tablished. Therefore, in order to control
the loading of the SVC transient area, a
separate transient area loading task TCB
and supervisor request block (SVRB) are
constructed in the nucleus when the system
is generated. The transient area loading
task's TCB, which is the highest priority
system TCB, is marked dispatchable by set
ting the TCBFLGS field to X'OO'. The SVRB
is placed in an RB wait state by setting
the XRBWT field. to a wait count of 1. The
resume PSW field (XRBPSW) and the XRBEP
field of the SVRB"are initialized to con
tain the address of the entry point in
FINCH (IEAFNCH) where the code for execu
tion of the transient area loading task is
located.

There are three. kinds of requests for
the loading of an SVC module into the SVC
transient area that require the services of
FINCH:

• A request for the loading of a non
resident type 3 or 4 SVC module.

• A request for loading the transient
area resulting from the issuance of an
XCTL macro instruction by a type 4 SVC

routine for the load of a nonresident
SVC module.

• A refresh request for loading an SVC
mcdule previously executing in the
transient area but overlaid, before its
execution completed, by another SVC
module.

Each of these reques~s for the loading of
an SVC module into the transient area is
governed by an SVRB which mayor may not be
the same SVRB governing the execution of
the SVC routine. (See Figure 11.)

When any task issues an SVC resulting in
a request for the loading of a non-resident
type 3 or 4 SVC module, the SVC second
level interruption handler (SVC SLIH)
creates and initializes an SVRB to govern
the request, and adds it to the task's TCB/
RB queue as the active RB. (This procedure
is described in the "Interruption Super
vision- section of the PCP Supervisor PLM.)
This SVRB, whicn represents the loading re
quest, also governs the execution of the
SVC routine when it has been loaded into
the transient area.

When a type 4 SVC routine issues an XCTL
macro instruction, a new SVRB is created,
initialized, and added to the controlling
task's TCB/RB queue as the active RB by the
SVC SLIH. (The expansion of the XCTL macro
instruction contains a type 2 SVC which
requires this creation of a new SVRB.)
This new SVRB governs the execution of the
XCTL routine and the request for the new
SVC module load. It is removed by EXIT
when the requested loading is complete.
(The functions of EXIT are described in the
"Interruption Supervisionn section of the
PCP Supervisor PLM.) FINCH reinitializes
the SVRB originally created for the SVC
routine to govern the execution of each
succeeding load of the SVC module.

The dispatcher and the SVC SLIH set up
the SVRB representing a refresh request for
an SVC routine that has been overlaid
before its execution completed. It is
marked as an IRB by setting its XSTAB field
to X'40'. (Because this SVRB is created
for the sole purpose of controlling the re
quest for an SVC routine load, it is marked
as an IRB so that EXIT will not treat it as
an SVRB when removing it from the TCB/RB
queue.) This SVRB is removed by EXIT when
the desiredSVC routine is loaded into the
transient area so that the SVRBcontrolling
the initial load and execution of the SVC
routine will once again control the SVC
routine's execution.

Dispatcher 51

Request for the
Loading of a
Type 3 or4
Non-resident
SVC Routine

XCTL Issued
by a Type 4
SVC Routine

Refresh Request
for an Overlai d
SVC Routine

Request for Loading an SVC Routine

TCB PRB SVRB

FI NCH executes under control of the active SVRB.
It is entered from and returns to the SVC 5 LI H.

TCB PRB SVRB

FINCH executes under control of the active SVRB,
It is entered from and returns to the XCTL Routine
(lGCOO7).

TCB PRB SVRB

FINCH executes under control af the active SVRB.
It is entered from and returns to the Dispatcher"

TCB

SVRB TCB

SVRB TCB

~ SVRB Controlling the Loading of the SVC Transient Area

[[]]] SVRB Controlling the SVC Routine Execution

Execution of the SVC Rautine

PRB SVRB

PRB SVRB

PRB SVRB

• Figure 11. The SVRBs Controlling the Loading of the Transient Area and the Execution of
the Loaded SVC Routines

52

FINCH is entered operating under control
of the SVRB governing the request for the
loading of the SVC routine into the tran
sient area. It tests to determine if the
desired svc routine is already present in
the transient area by comparing the tran
sient area contents field (XSNTCC located
in the svc SLIH) with the name contained in
the XRBNM field of the SVRB of the request
ing task. If the contents of these areas
match. FINCH sets the XSTAB field of the
SVRB to X'DO' to indicate that the desired
SVC routine is loaded and then exits to the
routine indicated in Figure 11. If the
desired SVC routine is not already present
in the SVC transient area. FINCH checks to
determine if that area is available by
testing the load switch (LOADSW located in
FINCH). A X, 00' value indicates that the"
area is not already in use and may there
fore be loaded.

In this case FINCH prepares for task
switching from the requesting task to the
transient area loading task. It zeros out
the XSNTCC field and turns on the load
switch (X'FF') to indicate that the tran
sient area is no longer available for load
ing. It then takes the transient area
loading task's SVRB out of the RB wait
state by setting the XRBWT field to a wait
count of O. FINCH then adds the requesting
task's SVRB to the transient area request
queue and puts it in an RB wait state by
setting the XRBWT field to a wait count of
1. It sets the address in the re.sume PSW
field of the requesting SVRB to contain the
address of a re-entry point in FINCH
(labeled XSNTQUES) where the check is made
to determine if the desired SVC routine is
present in the transient area.

FINCH then sets NEW in the dispatcher's
IEATCBP field to contain the address of the
transient area loading task's TCB to indi
cate to the dispatcher that a task switch
is required between the requesting task and
the transient area loading task. (See the
description of the dispatcher in this pub
lication for an explanation of the OLD and
NEW fields.) FINCH then branches to the
dispatcher for the dispatching of the tran
sient area loading task.

If the transient area is not available
for loading. FINCH prepares for task
switching from the requesting task to the
highest priority ready task. It adds the
SVRB of the requesting task to the tran
sient area request queue and puts it in an
RB wait state. (If an SVRB representing
another request from the same task is
already on the queue. it is removed and
tak en out of the RB wait sta te. Thi s
action is taken because the SVRB represent
ing the previous request is no longer the
active RB and will not regain control until
the SVRB representing the current request

completes its utilization of the SVC tran
sient area.) FINCH then sets the address
of the XSNTQUES re-entry point in the
resume PSW field of the requesting task's
SVRB. It sets NEW in the dispatcher's
IEATCBP field to 0 to signal the dispatcher
to search the ready queue for the highest
priority dispatchable task. FINCH then
branches to the dispatcher for dispatching
of the highest priority ready task.

When the transient area loading task is
disp.atched. execution begins at entry point
IEAFNCH in FINCH. ~he transient area load
ing task issues a branch and link instru~
tion to the FETCH routine for bringing the
desired SVC'routine into the transient
area. (The FETCH routine is described in
the "Program Fetch" section of the PCP
Supervisor PLM.) Upon return from FETCH.
the transient area loading task tests to
determine if an error occurred. If so, it
branches to ABTERM to schedule the task re
questing the loading of the transient area
for AEEND. If no ~rror is found, the tran
sient area loading task performs the fol
lowing operations:

• It moves the contents of the XRBNM
field of the SVRB governing the loading
request to the XSNTCC field so that the
transient area contents field is ini
tialized to contain the name of the
loaded SVC module.

• It turns off the loading switch to in
dicate that the transient area is now
available for loading other SVC
mcdules.

• It removes all of the SVREs on the
transient area request queue by zeroing
out the pointer fields and it takes
them out of the RB wait state by set
ting their XRBWT fields to a wait count
of o.

• It places the address of the IEAFNCH
entry point in FINCH in the resume PSW
field of the transient area loading
task's SVRB and it places the SVRE in
an RB wait state.

• It sets NEW in the dispatcher's IEATCEP
field to 0 to signal the dispatcher to
search the ready queue for the highest
priority dispatchable task. (~his task
mayor may not have issued a request
for loading an SVC module which is the
same as the SVC module which has just
been loaded.)

The transient area loading task then
branches to the dispatcher for dispatching
of the highest priority ready task.

Dispatcher 53

The Transient Area Request Queue: The
transient area request queue is necessary
for keeping track of the SVRBs put in the
RB wait state by FINCH while the transient
area loading task is loading an SVC routine
into the SVC transient area. Each SVRB
representing a request for the loading of
the transient area is put into an RB wait
state and added to the queue as FINCH is
entered. The SVRBs are therefore queued in
'last in first out' order. (See Figure 12.)

The transient area request queue oon
sists of a doubleword located at displace
ment -16 from the address of the boundary
box for each task, including tasks created
by ATTACH. The first fullword contains the
chain pointers. A zero value indicates
that the SVRB is the last on the queue.
The second full word contains the address of
the SVRB of the task requesting the load.
A zero value'in this field indicates that
the task has not issued a request for the
loading of the transient area. The head of
the transient area request queue (TAQUE) is
a fullword located in FINCH. It contains
the address of the SVRB most recently added
to the queue.

When the transient area loading task has
completed loading the SVC transient area,
it removes all of the SVRBs from the queue
by zeroing out the pointer fields. It
removes them from the RB wait state so that
they may contend for use of the transient
area.

CONTENTS SUPERVISION IN AN MFT SYSTEM WITH
SUBTASKING

This section describes the additional rec
ords used by contents supervision in an MFT
system with subtasking and the changes in
contents supervision routines caused by the
additional records.

• FINCH Request Block (FRB) -- represents
a request from the LOAD routine to the
FINCH routine to bring a module into
main storage within the requester's
partition. LOAD places the FRB on the
partition's job pack area queue (JPAQ),
described below, and it remains there
until FINCH has completed bringing the
modUle into main storage. The FRB
allows the LOAD service routine to
recognize that the module is in the
process of being loaded when subsequent
requests for the same module are made.

The records of the modules that are in main
storage or have been requested are changed
in MFT systems with subtasking. Each
task's active request block queue will con
tain all but FRBs for the tas.k. The 're
quest represented by the FRB on the JPAQ is
represented by an SVRB on the active re-

54

quest block queue. The active request
block queue of each task or subtask con
tinues to be pointed to by the TCBRBP
field.

A separate loaded program list is
pointed to by TCBLLS of each TCB, (job-step
or subtask). The list contains the LRBs
and LPRBs for each module in the parti
tion's main storage that was requested by a
LOAD macro instruction issued by tasks of
that TCB.

A new record of modules in main storage
is the job pack area queue (JPAQ). ~his
queue has the same name as an MVT queue but
it does contain the same information. The
MFT jcb pack area queue is a queue qf the
LPRBs of all reenterable modules brought
into the partition by LOAD macro instruc
tion~ issued by any of the tasks within the
partition. The queue also contains FRBs
for all modules during the time they are
being searched for and/or brought into the
partition by the contents supervisor. The
JPAQ is located by referring to the parti
tion information block which points to the
first RB on the queue.

The contents supervision routines have
been modified for MFT with subtasking to
include the JPAQ and the FRB in their pro
cessing. The descriptions that follow
describe the additional or changed func
tions of the service routines.

LINK Service Routine (MFT With SUbtasking)
(Macro IEAATC)

The LINK service routine in MFT systems
with subtasking differs from the Link ser
vice routine in MFT without suhtasking as
follows:

The Link routine searches the job pack
area queue (JPAQ) before searching the
loaded program list. If an LPRB for a
module is found on the JPAQ, the Link rou
tine queues the RB to the requester's
active request block queue. If the
requested module is in the process of being
loaded (that is, an FRB for the module is
found), the Link routine places the
requester in a wait state until the module
is loaded.

After finding a usable copy of a module
or having FINCH bring one into main
storage, the Link routine checks whether
the routine was requested as the result of
an Attach macro instruction. If an Attach
macro instruction was the cause, the Link
routine removes the dummy RB from the sub
task's TCB active request block queue and
frees the dummy RBiS main storage space.
The Link routine then constructs an RB and
places it on the active request block
queue.

'TAQUE', which is located in
FINCH, is the head 'of the
transient area request queue.
The ·shaded areas located at a
displacement of 4 fu II words
before the boundary boxes of
each TCB represent the rest of
the transient area request queue •

,..

.....
"'t:

Problem Program TCBs
and Boundary Boxes

Partition 0 TCB

Task Issues
2nd Load Reque st

Boundary Box

Partition 1 TC B

Task Issues

Partition 2 TCB

Task Has Not
Issued Load Request

0

0

Boundary Box

Partition 3 TCB

...... PRB .,..

• Figure 12. The Transient Area Request Queue and the TCB/RB Queue

TCB/RB Queue

IRB

Dispatcher 55

LOAD Service Routine (MFT with Subtaskinq>
(Macro.IEAATC)

The LOAD service routine first determines
whether an RB for the requested routine is
queued on the job pack area queue (JPAQ).
If the RB is queued on the JPAQ, and the
entry is a Finch request block (FRB), then
the LOAD service routine defers the new re
quest by queueing a wait list element onto
the FRB and placing the requesting routine
in a wait state, pending completion of the
original load request. If the entry on the
JPAQ is an LRB or LPRB the LOAD service
routine places the entry point of the
requested routine in register zero and
returns.

If the requested routine is not repre
sented by an RB, the LOAD service routine
builds an FRB for the requested routine and
queues it on the JPAQ. The LOAD service
routine then searches the resident reenter
able routine area for the module. If the
module is found in the resident reenterable
routine area, LOAD dequeues the FRB, sets
dispatchable all tasks waiting on the FRB,
and returns the address of the entry point
to the caller in register zero. If the
module is not in the resident reenterable
routine area, LOAD searches the task load
list. If the module is found on the task
load list, LOAD dequeues the FRB, sets dis
patchable all programs waiting on the FRB,
and returns the entry point address to the
call er • Otherwise, LOAD passes c ontral to
FINCH to bring a new copy into main
storage.

On return from FINCH, LOAD dequeues the
FRB and then tests the RB created by FINCH
to determine if the requested module is re
enterable. If the module is reenterable,
LOAD queues the RB on the job pack area
queue. If the module is not reenterable,
LOAD queues the RB on the loaded program
list. LOAD then sets dispatchable any
tasks waiting on the FRB and passes the
entry point address of the requested rou
tine to the caller.

DELETE Service Routine

The DELETE service routine determines if
the routine specified in the DELETE macro
instruction is a resident reentrant load
module (if the resident reentrant load
modul e option is in the system). If the
module resides in the resident area, DELETE
exits immediately. If the routine speci
fied does not reside in the resident area,
the Delete routine searches the load list.
If the routine is not on the load list and
the subtasking option is included in the
system, DELETE searches the job pack area
queue (JPAQ). If the module is not on
ei ther queue, DELETE returns to the caller.
If the module is found on either the load

56

list or the job pack area queue, DELETE
decrements the use count in the RB by one.
If the use count reaches zero, DELETE
dequeues the routines and issues a FREEMAIN
macro instruction to release the storage
occupied by the specified routine and its
RB. On return from the FREEMAIN routine,
the DELETE routine repeats the deleting
process for each minor RB belonging to the
specified routine. The DELETE routine
returns by branching to the type 1 ·SVC
exit.

Main Storage Supervision

In MFT, the main storage supervisor:

1. Allocates space via the GETMAIN SVC.

2. Deallocates space via the FREEMAIN
SVC.

3. Allocates space in the system queue
area.

4. Checks validity of requests that are
to be serviced.

5. Maintains the pointers and control
blocks necessary to supervise main
storage.

Each job is assigned to a partition in
which it must operate. Each partition has
an associated TCB which contains a pointer
(TCBMSS field) to the main storage boundary
box for that partition. The main storage
supervisor, in response to GETMAIN macro
instructions, obtains storage from either
the problem program partition or the system
queue area. Obtaining storage space from
the system queue area is the basic dif
ference in main storage supervision between
MFT and PCP. In MFT, a system task can
issue a GFTMAIN macro instruction specify
ing subpool 255 and the required storage
will be allocated from the system queue
area. The system queue area is used to
obtain space for system control blocks
which might be destroyed by problem pro
grams if they were placed in problem pro
gram partitions. The system tasks which
request storage space from subpool 255 are:

• The CSCB creation module of SVC 34, for
CSCBs.

• The Attach routine for subtask TCBs, if
the subtasking option is included in
the system.

• The ENQ/DEQ processing routines of task
supervision, for all control blocks
associated with ENQ/DEQ.

• The communications task, for write-to
operator (WTO) buffers if all WTO buff
er storage space specified during sys
tem generation is unavailable.

• The CIB creation routine of SVC 34 and
System Task Control for CIBs.

• The JSCB creation routine of System
Task Control for JSCBs.

• The DISPLAY R routine of SVC 34 for the
DISPLAY R WTO buffer.

Note: Although subpools are not created in
MFT (as in PCP and MVT), problem programs
and system tasks may specify subpools in
the GETMAIN macro instruction. However,
all main storage requests from problem pro
grams are allocated from the highest avail
able main storage in the partition which
issued the GETMAIN.

The boundary box for the system queue
area is located in master scheduler resi
dent data area IEESD568 (see Appendix A).
The master scheduler resident data area is
addressed by the CVTMSER field in the Com
munications Vector Table.

When problem programs issue GETMAIN
macro instructions specifying a subpool
from 0 through 127, storage is allocated
from the high-address portion of the parti
tion in which the GETMAIN macro instruction
was issued. When problem programs attempt
to issue a GETMAIN macro instruction speci
fying a subpool from 128 through 255, the
program is abnormally terminated.

When system tasks issue a GETMAIN macro
instruction specifying a subpool from 0
through 127, storage is allocated from the
low-address portion of the partition; when
specifying a subpool from 128 through 254,
storage is allocated from the high-address
portion of the partition. Subpool 255 is
handled as a special case as described in
preceding paragraphs.

If SMF is supported, the FREEMAIN and
GETMAIN routines, which are described in
the PCP supervisor PLM, are modifi~d to
pass control to SMF subroutines that main
tain storage usage information in the tim
ing control table (TCT).

If SMF is in the system, the FREEMAIN
routine passes control to its SMF storage
information subroutine (FMSMFCRE). The
subroutine first tests the TCBTCT field of
the TCB for the address of a TCT. If this
field contains zeroes, there is no TCT and
storage usage information can not be re
corded. If the TCBTCT field contains a TCT
address, the subroutine determines if the
newly released storage causes a change in
the low water mark (LWM) or the high water

mark (HWM) for the partition. (The LWM is
the value of the highest storage address
allocated from the bottom of the partition,
and the HWM is the value of the lowest
storage address allocated from the top of
the partition.) If either is changed, the
SMF storage subroutine stores the new value
in the appropriate TCT field (TCTLWM or
TCTHWM). It then returns control to the
FREEMAIN routine.

If SMF is in the system, the GETMAIN
routine also passes control to its SMF
storage information subroutine (GMSMFCRE).
It tests the TCBTCT field of the TCB for
the address of a TCT. If this field con
tains zeroes, there is no TCT' and storage
usage information cannot be recorded. If
the TCETCT field contains a TCT address,
the subroutine determines if the newly
allocated storage alters either the LWM or
the HWM. If either is altered, it stores
the new value in the appropriate TCT field.
It also calculates the all-time minimum
difference, in terms of 2048-byte blocks,
between the LWM and the HWM. If the new
allocation creates a new minimum dif
ference, the SMF storage subroutine records
the new difference in the TCTMINC field of
the TCT. It then returns control to the
GETMAIN routine.

If an unconditional GETMAIN macro
instruction cannot be satisfied by the rr.ain
storage supervisor, the requesting task is
usually abnormally terminated. However,
before scheduling the task for termination,
the main storage supervisor tests the
task's TCB for an ·AB~ND in progress" or
"AETERM scheduledn bit. If either bit is
on, the ABEND is not scheduled, but an
error code of four is placed in register 15
and control is returned to the requesting
task. This avoids a loop caused by resche
duling an abnormal termination for the
task.

Main storage supervision in MFT systems
without subtasking is fully described in
the PCP supervisor PLM. Main storage
supervision in MFT systems with subtasking
differs from that described as follows:

• In MFT systems with subtasking, the
supervisor builds a gotten area subtask
queue to describe the main storage
obtained for a subtask by a system
issued GETMAIN macro instruction. The
supervisor adds eight bytes to the
amount of requested main storage.
These eight bytes precede the rr.ain
storage available to the subtask and
contain the gotten area subtask queue
element (GQE). The gotten area subtask
queue originates in the TCBMSS field of
the subtask's TCB. This field contains
the address of a four-byte field that
contains the address of the first GQE.

Dispatcher 57

• When a subtask terminates, the normal
or abnormal termination routines refer
to the GQEs chained to the subtask's
TCB in order to free the main storage
belonging to the terminating subtask.
The GQEs are removed from the queue
whenever the subtask storage space is
freed.

Timer Supervision

Timer supervision routines are an optional
feature of MFT. If selected, the user may
request timer services through the TIME,
STIMER. and TTIMER macro instructions. The
TIME service routine IEAORTOO deterrrines
the date and time of day. The STIMER ser
vice routine IEAOSTOO sets a user specified
interval, and the TTIMER service routine
IEAOSTOO determines the amount of time
remaining in a previously specified inter
val. Whenever a timer interval is
requested in an STIMER macro instruction, a
timer queue element (TQE) is constructed.
These elements are chained together in a
timer queue. The queue is ordered so that
the TQE representing the next interval to
expire is always at the top of the queue.
When a requested interval expires, a timer
interruption occurs and the supervisor
timer second level interruption handling
routine IEAOTIOO takes appropriate action,
depending on the type of interval which has
expired.

TIMER SECOND LEVEL INTERRUPI'ION HANDLER
(IEAOTIOO)

The MFT configuration of the operating sys
tem utilizes the timer second level inter
ruption handler (TSLIH) described in the
PCP supervisor PLM with additional process
ing for handling expired job step time or
expired wait time if the job step timing
option was specified at system generation.

When the TSLIH determines that the timer
interruption occurred because of a job step
or wait time limit expiration, it prepares
to abnormally terminate the task whose time
expired. In this case there is a PIB
address in the TCBPIB field and the high
order bit in the job step timing status
bits field of the PIB is on, indicating
that job step timing for the problem pro
gram was originally requested by the
Initiator via the STIMER macro instruction.

The TSLIH examines the TQEFLGS field to
determine the TQE type. If the TQE is a
REAL type, a wait time.limit has expired.
The TSLIH branches to ABTERM with the
address of the TCB to schedule ABEND pro
cessing. It also passes to ABTERM an ABEND
code of 522 indicating that the wait time

58

lirrit expired. Upon return from ABEND, the
TSLIH reinstates the TQE as a TASK type
with the actual value of the CPU time
rerraining for the job step, by setting the
TQEFLGS to indicate a TASK type TQE and
moving the value of the cPU time remaining
for the job step from the TQESAV field to
the TQEVAL field. .

If the TQE is a TASK type, a job step
.time limit has expired. The 1:SLIH branches
to ABTERM with the address of the TCB to
schedule ABEND processing. It also passes
to ABTERM an ABEND code of 322 indicating
that the job step time limit has expired.

SMF Processing

When the system management facility is sup
ported, the timer second level interruption
handler is required to perform additional
processing for handling:

• An expired system wait time 10-minute
TQE.

• Expired job step time.
• Expired wait time.

If the timer interruption is due to the
expiration of a supervisor system wait time
10-minute TQE. the 1:·SLIH obtains the accum
ulated system wait time for the preceding
10 minutes from the second word in the save
area SYSWSAVE. It then adds this value to
the SMCAWAIT+4 field of the system manage
ment control area (SMeA), and zeroes out
the second word in SYSWSAVE. It places a
value of 10 minutes in the 10-minute TQE
and returns it to the timer queue. (Each
time that step termination is entered, the
SMCAWAIT field is checked. If it is non
zero, an SMF system lO-minute wait time
record (type l) is generated.)

If the timer interruption is due to the
expiration of a job step or wait time limit
TQE, the TSLIH checks the SMCAOPT field of
the SMCA to determine if user exits are
specified. If user exits are specified,
the 1:SLIH initializes a compiled-in IRB/IQE
to schedule the asynchronous SMF time/
output limit expiration routine IEATLEXT.

If user exits are not specified, the
TSLIH schedules the task for ABEND. (See
the "Timer Second Level Interruption Hand
ler" section above.)

TIMING PROCEDURE

The system/360 interval timer is a 32 bit
word in lower main storage which continual
ly decrements as long as the system is run
ning and the interval timer switch is on.
The timer supervision routines use this
hardware timer to accomplish their func
tions. The timer supervision routines can

set the hardware timer to any interval
between zero and six hours. An interrup
tion occurs when the hardware timer decre
ments to zero. Since the hardware timer
never exceeds six hours, four values are
needed to maintain elapsed time for a full
day. These values are:

• Hardware timer.
• Six Hour Pseudo Clock (SHPC).
• Twenty-four Hour Pseudo Clock (T4PC).
• Local Time Pseudo Clock (LTPC).

The SHPC is used to time intervals up to
six hours; the T4PC is used to time inter
vals up to twenty-four hours. The LTPC
contains the local time of day entered by
the operator during system initialization.

When an STIMER macro instruction is
issued, the STIMER supervisory routine
adjusts the time interval requested rela
tive to the intervals in the hardware
timers and pseudo clocks. This enables the
supervisory routines to place the newly
requested timer element in the correct
place oncthe timer queue.

TIMER PSEUDO CLOCK ROUTINE (IEATPC)

The timer pseudo clock routine (IEATPC)
contains all variable information that
would normally be included in the resident
timer routines. This information includes:

• Pseudo clocks.
• Work space used for incrementing CVT

date.

For a complete description of timer
supervisor, see PCP supervisor, Program
Logic Manual, and MVT Supervisor, Program
Logic Manual.

Overlay Supervision

The routines which supervise loading of
overlay program segments and assist flow of
control between segments of the overlay
program are identical in operation for PCP
and MFT. A complete description of PCP and
MFT overlay supervision can be found in the
PCP supervisor PLM.

MFT Recording/Recovery Routines
Operating System Recording/Recovery rou
tines are optional control program routines
which may be selected during system
generation.

They handle the following types of equip
ment malfunctions.

• Malfunctions of the central processing
unit (CPU).

• Malfunctions in a channel.
• Malfunctions of devices.

Operating System Recording/Recovery rou
tines are divided into two groups: System
Environment Recording and Recovery
Management.

System Environment Recording includes:

• System Environment Recording 0 (SERO,
described in the PCP supervisor PLM.·

• System Environment Recording 1 (SER1),
also described in the PCP Supervisor
PLM.

Recovery Management includes:

• Machine-Check Handler (MCH), described
in IBM system/36 0 Operating System:
Machine-Check Handler for IBM System/
360 Model 65, Program Logic Manual,
GY27-7155.

• Channel-Check Handler (CCH), described
in IBM system/360 Operating system:
Input/Output supervisor, Program Logic
Manual, GY28-66l6 .•

• Alternate Path Retry (APR), described
in IBM system/360 Operating system:
Input/Output Supervisor, Program Logic
Manual, GY28-66l6.

• Dynamic Device Reconfiguration (DDR),
described in IBM system/360, Operating
system: Input/Output Supervisor, Pro
gram Logic Manual, GY28-66l6.

MACHINE-CHECK ROUTINES

There are three machine-check routines.

The recording routines:

SERO, which records information about
the error and then places the sys
tem in a wait state.

SER1, which records information about
the error and attempts to associ
ate the error with a task. If it
can do this, it abnormally ter
minates the task and allows the
system to continue operation.

The recover~ routine:

MCH, which records information about
the error and attempts complete
recovery from it, including retry
of the instruction that caused the
error.

Dispatcher 59

For the Model 65, anyone of these three
routines may be selected during system
generation. For the Model 40, 50, 75, and
91, either SERO or SERl may be selected.
If no routine is selected, either SERO or
SERl is used by default. The version used
by default depends on the model (or models)
specified, and on the size of the system
(see the System Generation SRL).

Channel-Check Handler: The channel-check
handler (CCH) may be selected during system
generation for System/360 Models 65, 75,
and 91 using either the 2860 or 2870 Multi
plexor Channel. CCH is standard for the
Model 85.

CCH aids recovery from channel errors
(channel control checks and interface con
trol checks) by providing channel error
information to IBM-supplied device
dependent error recovery procedures (ERP).
CCH also builds a record entry which is
later written on SYS.LOGREC by the outboard
recorder (OBR) of the I/O supervisor.

ALTERNATE PATH RETRY ROUTINE

Alternate Path Retry (APR) allows an I/O
operation that has developed an error on
one channel to be retried on another chan
nel (if another channel is assigned to the
device performing the I/O operation). APR
accomplishes this by causing channel
detected errors to be retried in a selec
tive manner on the available paths to a
device. As paths are found to be inopera
tive, they are marked offline, thus pre
venting unnecessary retry from being
initiated to the failing paths.

APR also provides the capability to VARY
a path to a device online or offline, using
the VARY PATH command. The VARY PATH com
mand processor is part of the .Master Sche
duler (SVC 34). The last path to a device
will not be varied offline.

While it is not model dependent, APR
only performs its function usefully in a
system with alternate paths and CCH.

Four paths to each device are supported;
teleprocessing paths are not supported.

DYNAMIC DEVICE RECONFIGURATION ROUTINE

Dynamic Device Reconfiguration (DDR) allows
a demountable volume to be moved from one
device to another, and repositioned if
necessary, without abnormally terminating
the affected job or reperforming IPL. A
request to move a volume may be initiated
by the operator with the SWAP command. The
SWAP command processor is part of the Mas
ter Scheduler (SVC 34).

60

The system may request a SWAP after a
permanent I/O error for non-SYSRES devices
or after an error in a system fetch opera
tion for SYSRES devices.

DDR is not model-dependent.

SYSTEMS WITHOUT RECORDING/RECOVERY ROUTINES

A machine check or I/O interruption caused
by an equipment malfunction places in a
wait state those IBM System/360 models that
do not have Recording/Recovery routines. A
message is issued on the console telling
the operator to load the System Environment
Recording, Editing, and Printing (SEREP)
program. SEREP is"a model-dependent, stand
alone diagnostic program. Its use is
described in IBM system/360 Operating Sys
tem: Operators Guide, GC28-6540.

ENTRY TO RECORDING/RECOVERY ROUTINES

When a maChine-check interruption occurs,
the machine-check new PSW is loaded. This
causes control to pass directly to the
Recording/Recovery routine which was
selected during system generation.

When an I/O interruption occurs because
of a channel error, the I/O new PSW is
loaded; This causes control to pass to the
I/O FLIH and then to the I/O Supervisor.

If the Channel-Check Handler option was
not selected during system generation, the
I/O supervisor enters the SER Interface
subroutine (SERR04) within the I/O supervi
sor. This routine loads the machine-check
new PSW.

If the Channel-Check Handler was
selected during system generation, the I/O
Supervisor enters the Channel-Check Handler
Interface within the I/O supervisor.

When a permanent I/O error is indicated
(after retry by the device-dependent error
recovery procedures of lOS), the OBR/SDR
routine is entered to record the error.

If DDR was selected during system
generation, the OBR/SDR routine enters DDR
after recording the permanent I/O error.
When the permanent I/O error occurs on a
system fetch operation, the DASD ERP or
FINCH enters DDR SYSRES before OBR/SDR
receives control (if DDR SYSRES was
selected during system generation).

Checkpoint/Restart Routines
The checkpoint/restart routines used by MFT
allow a job to restart after an abnormal
termination. The checkpoint routine (SVC
63) is used by the programmer to create a

record of the job's main storage region at
selected points during the execution of a
job step. The routine is identical with
the PCP checkpoint routine described in the
PCP supervisor PLM.

The restart routine (SVC 52) allows jobs
to restart at a checkpoint. If the restart
is automatic. it will occur at the last
valid checkpoint taken by the job before it
abnormally terminated. If the restart is
deferred. it will occur at the checkpoint
specified by the job statement. Processing
of the restarting job is discussed in the
Job Processing section of this manual. The
restart routine is described in the PCP
supervisor PLM. --

In MFT systems with subtasking. a CHKPT
macro instruction must not be issued by a
subtask or by a job step task that has
active subtasks.

System Management Facility
The supervisor performs the following func
tions if the System Management Facility
(SMF) has been specified at system
generation:

• Maintains a record of ·system wait time
over a 10-minute period.

• Assists in handling job step or wait
time limit expirations.

• Records the number of references to
user data sets.

• Performs an output limiting functi on
for SYSOUT data sets.

• Records the number of 2048-byte blocks
of storage assigned to a user program.

Whenever the Dispatcher puts the system
in the wait state. it places the contents
of the interval timer in the first word of
a special save area. SYSWSAVE. When an
external or input/output interruption ends
the wait state. the appropriate interrup
tion handler branches to SMF wait time
collection routine IEAQWAIT. This routine
reads the interval timer again and compares
its value with the values stored by the
Dispatcher to determine the elapsed system
wait time. It then adds this elapsed time
to the value in the second word of SXS
WSAVE. to obtain the accumulated wait time
for the system. When the supervisor 10-
minute interval expires. the timer second
level interruption handler reads out the
value in the second word of SYSWSAVE. which
represents the total system wait time for
the preceding 10-minute interval. The
TSLIH adds this value to the value in a
field in the system management control
area. SMCAWAIT+4. Each time the step ter
mination routine of Job Management is
entered, it checks the total wait time re
corded in the SMCA. If it is nonzero. the

termination routine generates an SMF 10-
minute wait time record (type 1).

Whenever a job step or wait time limit
TQE expires and user exits are specified.
SMF time/output limit expiration routine
IEATLEXT passes control to SMF user time
liITit expiration routine IEFUTL. The user
routine determines whether or not to grant
a time limit extension. If an extension is
granted. IEATLEXT resets the TQE with the
value of the extension. If no extension is
granted. the routine prepares for abnormal
termination of the task whose job step or
wait time limit expired.

Whenever a reference is made to a user
data set. SMF EXCP counting routine IEASM
FEX. in the I/O supervisor. records the
references in an EXCP counter. ~here is a
counter for each SYSOUT data set/device
combinaton. The counters are part of the
TCTIOTBL segment of the timing control
table (TCT). IEASMFEX totals the EXCP
count fields and compares the sum of the
EXCP counts with the output limit value
placed in the output limit field of the
TCTIOT by the OPEN routine. If user exits
are specified in the SMF options field of
the SMCA (SMCAOPT). when the output limit
is exceeded. the routine tests the
compiled-in output limit IQE to determine
if it is already in use. If it is being
used, the routine increases the output
liITit value by one and returns to the I/O
supervisor. If the output limit ICE is not
in use, IEASMFEX initializes the IRB/IQE
for scheduling SMF time/output limit
expiration routine IEATLEXT. and marks the
IQE to indicate that it is now in use. The
user exit routine IEFUSO determines whether
or not an additional number of EXCPs will
be granted. If an additional number of
EXCPs is granted. IEATLEXT increases the
output limit and stores a new output limit
in the TCTIOT. If no additional EXCPs are
granted, the routine prepares for abnormal
termination of the task whose output limit
was exceeded. When lEATLEXT and the user
routine complete processing, the IQE is
once again marked available for use.

As the main storage supervision routines
allocate or release. storage within a parti
tion assigned to a user program, the fol
lowing information is recorded in the
appropriate TCT fields.

TCTLWM

TCTHWM

the highest address currently
allocated from the bottom of the
partition - low water mark
(LWM).

the lowest address currently
allocated from the top of the
partition - high water mark
(HWM).

Dispatcher 61

TCTMINC -- the smallest amount of space
within the partition that has
ever been unused at anyone time
(the all-time minimum difference
between the LWM and HWM).

This information is maintained by the SMF
storage usage information subr'outines,
GMSMFCRE and FMSMFCRE, which are part of
the GETMAIN/FREEMAIN routine (IEAAMS).
They are described in the ·Main Storage
supervision· section of this publication.

SMF ROUTINES

The major SMF routines that perform the
functions described above include:

• SMF wait time collection routine
lEAQWAIT.

• SMF time/output limit expiration rou
tine lEATLEXT.

• SMF EXCP counting routine IEASMFEX.

MFT and MVT use the same wait time
collection routine. MFT and MVT also use
the same BXCP counting routine except for
modifications for MFT. In MFT, the EXCP
counting routine schedules SMF time/output
limit expiration routine lEATLEXT by
initializing a compiled-in IRS/IQE. In
MVT, storage is obtained for the IRB/IQE
via a GETMAIN macro instruction. These
routines are described in the ·special Fea
tures· section of the MVT supervisor PLM.
SMF time/output limit expiration routine
IEATLEXT also performs the same functions
in MFT and MVT. However, these functi ons
are implemented differently. Two areas of
difference that should be noted include:

• In MFT, IEATLEXT executes under a
compiled-in IRE/IQE.

• In MFT, the user exit routines to which
it passes control (IEFUTL and IEFUSO),
are resident in the nucleus. These
routines reside in the link pack area
in MVT.

IEATLEXT is described below.

SMF Time/output Limit Expiration Routine
CIEATLEXT)

This routine, which is resident in the
nucleus, is part of the timer second level
interruption handler (IEAQTIOO). It
executes under a compiled-in IRB/IQE sche
duled by the TSLIH or the SMF EXCP counting
routine.

62

It receives control in two cases:

• When a job/step or wait time limit has
expired.

• When the SYSOUT output limit has been
exceeded.

When it is entered, IEATLEXT determines
if its IRE/IQE was initialized by the TSLIH
or the S~~ EXCP counting routine. If the
TSLIH requested its processing, a job/step
or wait time limit has expired and IEATLEXT
prepares to pass control to SMF user time
limit expiration routine IEFUTL.

The routine passes control to IEFUTL,
indicating the type of expiration in
register 15. It also passes the address of
a 72-byte save area and the contents of the
user data field (TC'!'UDATA) in the 'lCT.

The user routine determines whether or
not a time extension will be granted. It
returns control to the SMF time/output
limit expiration routine with a return code
of 0 to indicate no time extension, and 4
to indicate a tiIne extension has been
granted.

IEATLEXT takes various actions depending
on the return code and the type of time
liwi t that expired. If the job step time
limit expired and:

• If the user grants an extension, it is
returned in register 1. The routine
adds the value of the extension to the
'lCT field containing the total time
allocated to the task. It also places
the value of the extension into the
ex~ired TQE and branches to the timer
enqueue routine (IEAQTEOO) to add the
TQE to the timer queue.

• If the user does not grant an exten
sion, the routine abnormally terminates
the task by branching to ABTERM with an
ABEND code of 322.

If the wait time limit expired and:

• If the user grants an extension, it is
returned in register 1. The routine
places the value of the extension into
the expired TQE and branches to the
timer enqueue routine to add the TQE to
the timer queue.

• If the user does not grant an exten
sion, the routine abnormally terminates
the task by branching to ABTERM with an
ABEND code of 522.

If the SMF EXCP counting routine
requested its processing, the output limit
has been exceeded and lEATLEXT prepares to
pass centrol to SMF SYSOUT limit user exit
routine IEFUSO.

It passes control to IEFUSO with the
address of a two-word parameter list in
reqister 1. This parameter list contains

the address of the job naroe and time stamp
from the JMR and the address of the DCB for
the data set.

The user routine determines whether or
not an additional number of EXCPs (a SYSOUT
limit extension> will be granted. It
returns control to IEATLEXT with a return
code of 0 to indicate no extension, or 4 to
indicate that an additional number of rec
ords are to be added to the output limit.

lEATLEXT again takes various actions
depending on the return code:

• If the user grants an extension, it is
returned in register 1. The routine
a6ds the extension to the output limit
in the TCTIOT.

• If the user does not grant an exten
sion, the routine abnormally terminates
the task by branching to ABTERM with an
ABEND code of 722.

Dispatcher 63

Job Management

The primary job management function is to
prepare job steps for execution and, when
they have been executed, to direct the dis
position of data sets created during execu
tion. Prior to step execution, job
management:

• Reads control statements from the input
job stream

• Places information contained in the
statements into a series of tables.

• Analyzes input/output requirements.

• Assigns input/output devices.

• Passes control to the job step.

Following step execution, job management:

• Releases main storage space occupied by
the tables.

• Frees input/output devices assigned to
the step.

• Disposes of data sets referred to or
created during execution.

Job management also performs all pro
cessing required for communication between
an operator and the control program. Major
components of job management are the job
scheduler, which introduces each job step
to the system (job processing), and the
communications and master scheduler tasks,
which handle all operator-system communica
tion (command processing).

JOB SCHEDULER FUNCTIONS

The job scheduler includes: the reader/
interpreter, the initiator/terminator, the
system output writer, and direct system
output (DSO) processing. The functions of
the reader/interpreter are similar to the
MVT reader; additional information can be
found in the MVT Job Management PLM.

After all control statements for a job
have been processed, all initiators that
are waiting for that job class are posted
and the initiator residing in the highest
priority partition is given control. The
MFT initiator is described in the Job Man
agement section of this publication; for
information on allocation and termination,
refer to the MVT Job Management PLM.

64

When the job step has been executed,
control is returned to the initiator/
terminator which performs data set disposi
tions and releases input/output (I/O)
resources. If the entire job is to be ter
minated and DSO was not used, the termina
tor enqueues all data sets on the appropri
ate system output (SYSOUT) queues.

When the system output writer receives
control, it dequeues a job from an output
queue, and transcribes the data sets to the
user-specified output device. (See the MVT
Job Management PLM for further information
on the system output writer.)

COMMUNICATIONS TASK FUNCTIONS

The routines of the communications task
process the following types of communica
tion between the operator and the system:

• Operator commands, entered through a
ccnsole.

• write-to-operator (WTO) and write-to
operator with reply (WTOR) macro in
structions •

• Interruptions caused when the INTERRUPT
key is pressed, to switch functions
from the prin;ary console/master console
to its alternate console.

• If the system has Multiple Console Sup
port, the communications task processes
the delete operator message (DOM) macro
instruction and provides buffer manage
ment for all console devices.

MASTER SCHEDULER TASK FUNCTIONS

The master scheduler task consists of SVC
34 and the master scheduler resident com
mand processor routines. The SVC 34 com
mand scheduler routines process all com
mands initially. The job queue manipula
tion and partition definitions, which are
not fully processed by SVC 34, are passed
to the master scheduler resident command
processor. Table 1 lists the commands used
in MFT and indicates the routine which
responds to the commands after initial
processing.

-Table 1. Responders to Commands After Initial processing
r---r---,
I Command I Responder I
~---t---~
I CANCEL (active jobs) I Initiator I
~---t--~
I CANCEL (job in queue) I Master Scheduler I
~---t---~
I DEFINE I Master scheduler I
~---t---~
I DISPLAY STATUS, JOBNAMES, DSNA~ I Initiator I
r---t---~ II DISPLAY A,N,Q,U,jobname, CONSOLES I Master scheduler I
~---t---~
I DISPLAY R I Master Scheduler I
r---t---~
I DISPLAY SPACE I I/O Device Allocation I
~---t---~
I DISPLAY T I ~imer Maintenance Routine * I
r---t---~
I HALT I Statistics Update Routine * I
~---t---~
I HOLD I Master Scheduler I
t---t---~
I LOG I System Log I
~---t--~
I MODE I Master scheduler I
t---t---~

I I MODIFY I Writer or DSO Writer I
~---t--------------------------.-----------------~
I MOUNT I Master scheduler I
t---t---~
I RELEASE I Master Scheduler I
~---t---~
I REPLY I Master Scheduler I
t---t---~
I RESET I Master Scheduler I
~---t--~
I SET CLOCK, DATE I Timer Maintenance Routine * I
t---t---~
I SET PROC, Q, AUTO I t-jaster Scheduler I
~---t---~

It-----;;.~~~~~~~~-----------------t_-------~i~~~~~-------------------------1
~---t---~
I START/STOP Reader I Reader/Interpreter I
t---t---~
I START/STOP Writer I Writer I
~---t--~
I SWAP I Master Scheduler I
t---t---~
I UNLOAD I Initiator I
~---t--~

It-----~~:-~::~;~:-;~~~:-~~~;--------------t_-------~~~~~;~~~~~d~1~~-------------------1
~---t---~
I WRITELOG I System Log* I
t---~---~
I *See the publication IBM System/360 Operating system: MVT Supervisor, Program Logic I

I I Manual, GY28-6659. I L ___ J

Job Management Introduction 65

JOB MANAGEMENT CONTROL FLOW Entry to Job Management Following Initial
program Loading

Figure 13 shows the major components of job
management and the general flow of control.

Following IPL. certain actions must be
taken by the operator before job processing
can begin. Therefore, control passes to
the communications task which issues a mes
sage to the operator instructing him to
enter commands, or to redefine the system.
If he chooses to redefine the system. con
trol passes to the master scheduler task to
handle the redefinitions. If not, the
initialization commands (SET. START reader,
START writer, and START INIT) are issued
either automatically by the master schedul
er task or by the operator performing the
IPL, and job processing begins.

Control is passed to job management
whenever the supervisor finds that there
are no program request blocks in the requ
est block queue. This can occur for two
reasons: either the initial program load
ing (IPL) procedure has just been com
pleted, or a job step has just been
executed.

~-I ~g~~~:'~
I-- COMMUNICATIONS Commands

SVC 34
COMMAND COMMAND RETURN TO
SCHEDULING r---- EXECUTION -- CALLER OF COMMAND PROCESSING

~_r--
TASK

ROUTINES ROUTINES SVC 34

I ~~o~~~;~ 1------,1.----....1
WTOs and WTORs
I nd i cat i ng Errors I

DISK

TAPE

r CARD I
READER I

JCL, Commands,
and Data

SVC 34 Commands

READING
TASKS

PROCEDURE
LIBRARY

Input Job
Descr i pt i on

System Input
Data Sets

• Figure 13. Job Management Data Flow

66

WORK
QUEUES

~f

INITIATING
TASKS

t
See
Table 1.

System Output Job Description JOB PROCESSING

WRITING
TASKS

1 Initiate

Terminate
PROCESSING
PROGRAM Y

tl--_______ ~, DSON: ~~eS~L-----r-~r-_TA_P_E __ ~

~....- I ... ~ CARD I
DATA I PUNCH '
QUEUES

~-
T System Output Data Sets

Entry to Job Management Following step
Execution

Following step execution, control is passed
to the step termination routine of the
initiator/terminator. If no further job
steps are to be processed, control is also
passed to the job termination routine of
the initiator/terminator. Bot~ routines
are described in the topic
"Initiator/Terminator."

MFT job management is similar in many
respects to MVT job management. However,
certain major differences in logic exist.
These differences are described in two
major topics. "Command Processing"
includes the communications task and master
scheduler task. "Job Processing" includes:

• Queue Management.
• Reader/Interpreter.
• Initiator/Terminator.
• System output writer.
• System task control.
• System restart.
• Direct system output.

References to the MVT Job Management PLM
are made in the topics where the logic is
the same as in MVT.

Tables and work areas used by MFT, MFT
module descriptions, and MFT flowcharts are
included in the appendixes.

Command Processing
Operator commands control system operation
and modify system tasks. Command process
ing in MFT is handled by the communications
task and the master scheduler task. With
the exception of DEFINE, HALT, and SWAP,
commands can be entered into the system
through the console or the input job
stream. The DEFINE, HALT, and SWAP com
mands can be entered only through the con
sole. Commands entered through the console
are read by the communications task and
routed to the master scheduler (see Figure
14). The communications task also communi
cates between the system and the operator;
it handles WTO/WTOR macro instructions,
assigns message identifiers <including par
tition numbers), and maintains reply queue
elements. It also deletes messages from
the CRT display of the Model 85 operator
console via the DOM macro instruction.

When a command is encountered in the
input stream, the reader/interpreter passes
control to SVC 34 to process the command.
SVC 34 processes most commands completely
and returns control to the interrupted
routine.

The commands accepted and processed by
MFT are the following:

CANCEL
DEFINE
DISPLAY
HALT
HOLD
LOG
MODE
MODIFY
MOUNT
RELEASE
REPLY
RESET
SET
START
STOP
SWAP
UNLOAI:
VARY
WRITELOG

The format and syntax of these commands
can be found in the operator's Guide SRL.

,.------1~ ~
I

Master Scheduler Task

Command is
Processed

Start No
Reader or Writer>-+------l~

Command

System
Task
Control

Yes

Initiates the
Reader or Writer

Communication Task

Reads Request
from the Console

Appropriate Action is
Taken. Messages are issued
if the Command is Rejected.

If DISPLAY JOBNAMES
Cammand has been Entered,
Returns a Message ta the
Operator Stating that
the Reader or Writer
has been Started.

Figure 14. Command Processing Flow

Communications Task

I--

The routines that handle operator-system
cowmunication are contained in the communi
cations task. Communication may take one
of two forms: commands, which allow the

Job Management Introduction 67

operator to change the status of the system
or of a job or job step; and WTO or WTOR
macro instructions, which allow problem
programs or system components to issue mes
sages to the operator. The communications
task routines also switch functions from
the primary console device to an alternate
console device when the INTERRUPT key is
pressed.

The WTO macro instruction processor also
provides initial processing for write-to
programmer instructions.

WTQ/WTOR MACRO INSTRUCTION PROCESSING

Whenever a WTO or WTOR macro instruction is
issued, a supervisor call (SVC 35) inter-

Program Issues
WTO/WTOR Macro Instruction

Communication Task

If WTP Specified, XCTL
to WTP Processor.
Otherwise, Write Message.
(Bui Id Reply Queue
Element if WTOR.)

WTP

P lace Message
in 5MB in
SYSOUT Queue

A. Message Processing

Supervisor

,

Identifies Type
of Interruption

Returns Contro I
to Point of
Interruption

1

ruption occurs. The supervisor identifies Operator presses Supervisor
REQUEST KEY the type of interruption and passes control

to the WTO routine. If a routing code of
11 is not specified, control is passed to
the communications task to issue messages
and/or to read replies.

If the WTO or WTOR macro instruction
specifies a routing code of 11, then the
message is a write-to-programmer, and the
WTO routine passes control to the write-to
programmer routines. Upon completion of
write-to-programmer processing, control is
returned to the WTO routine which will pro
cess any WTO macro instruction with an

B.

Communication Task

Reads Reply

Places Reply in Buffer;
POSTS ECB Specified
in the WTOR

Reply Processing

Identifies Type
of Interruption

Returns Control
to Point of
Interruption

additional routing code. All WTOR macro eFigure 15. WTO/WTOR Macro Instruction Pro
cessing Flow instructions are also processed by the WTOR

routine, regardless of the routing code of
11. (See Figure 15.)

Write-to-programmer processing is
described in the section "Master scheduler
Task. "

EXTERNAL INTERRUPTION PROCESSING

When the operator presses the INTERRUPT
key, an external interruption occurs. The
communications task then switches from the
primary console/master console to its
alternate device. (See Figure 16.)

68

Supervisor
Operator Presses
INTERRUPT Key

Identifies Type of

Communication Task
Interrupti on, Posts
Communication Task
ECB

Switches Between
Primary and Alternate
Console

Returns Control to
Point of Interruption

Figure 16. External Interruption Process
ing Flow

Communications Task Modules
The communications task (Chart 16) receives
control through interruptions which occur
when commands are entered or messages are
written. The following paragraphs describe
the seven major routines of the communica
tions task.

Console interruption routine (IEECVCRA):
notifies the communication.s task wait rou
tine that a console read has been
requested.

Communications task wait routine
(IEECVCTW): waits for all WTO/WTOR
requests and console interrupts and calls
the communications task router routine.

Communications task router routine
(IEECVCTR): determines the type of request
or interruption that occurred and passes
control to the appropriate processing
routine.

Console device processor routines
(IEECVPM): performs console read and write
operations write operations and error
checking.

Write-to-operator routine (IEECVWTO): man
ages WTO buffers.

Write-to-operator with reply routine
(IEEVWTOR) : manages WTOR buffers.

External interruption routine (IEECVCRX):
switches to the alternate console device
when an external interruption occurs.

Commands are issued through the console
device or the input reader. Before enter
ing commands through the console device,
the operator must cause an I/O interruption
by pressing the REQUEST key. When he does,
control is given to the supervisor, which
recognizes the interruption and passes con
trol to the I/O supervisor. The I/O super
visor determines that the interruption is
an attention signal and passes control to
the communications task console interrup
tion routine in the nucleus. The console
interruption routine posts the attention
event control block (ECE) in the unit con
trol module (UCM) and sets the attention
flag in the UCM list entry corresponding to
the device from which the interruption
came. Posting of the attentionECB causes
the communications task wait routine to be
dispatched.

The communications task wait routine
waits on all communication ECBs associated
with WTO/WTOR. The wait routine issues a
mol tiple WAIT macro instruction on a list
of ECEs contained in the UCM. When one of
the ECBs is posted, as by attention or

external interruptions, the wait is satis
fied and the communications task thus
becomes ready. When it becomes the active
task, it issues SVC 72. This SVC includes
the console communication service routines
and the router.

The communications task serves a number
of purposes. The first segment of SVC 72,
called the router, distinguishes among
these purposes and establishes the order of
res pense. When a posted ECB is found by
the router, the router passes control to
the specified processor routine via an XC~L
macro instruction.

The console-device processor routines
read and write using the EXCP macro
instruction. The processor routines con
sist of a routine to service external
interruptions and three device-oriented
routines: 1052 Printer-Reyboard routine,
card reader routine, and printer routine.
Each of the three console input/output pro
cessor routines is associated with an OPEN/
CLOSE support routine, which provides data
management and input/output supervisor con
trol blocks. The specified processor rou
tine reads the input message into a buffer
area and calls the master scheduler task
via an SVC 34.

The write-to-operator routine moves the
text from the requesting program's area to
a tuffer area within the nucleus and posts
the communication ECB for write-to
operator.

The write-to-operator with reply routine
generates a message ID, including a parti
tion identifier, and creates a reply queue
element (RPQE) to handle the operator's
reply.

The external interruption routine,
residing in the nucleus, switches to an
alternate console device when the operator
presses the INTERRUPT key on the console.

CONSOLE ATTENTION INTERRUPTION ROUTINE
(IEECVCRA)

The console attention interruption routine
(IEECVCRA), operating in privileged mode,
posts the communications task attention ECB
to request reading of the console. Input/
output interruptions are disabled without
destroying register contents, and without
macro access to supervisor services. using
the address of the UCB (found in register
7), the UCB address is matched to a UCM
entry. The attention flag for the entry is
turned on. Control then passes to the POST
routine, indicating the attention ECB in
the UC~. The address in register 14 is
used for return to the input/output super
visor (lOS).

Job Management Introduction 69

COMMUNICATIONS TASK WAIT ROUTINE (IEECVCTW)

Upon entry from the dispatcher, the com
munications task wait routine (IEECVCTW)
issues a WAIT (with a count of one) speci
fying the list of ECBs whose address is
contained in the Event Indication List
(ElL). Thus the communications task can
respond to a variety of events since the
posting of anyone ECB satisfies the wait.
The POST macro instruction issued in the
console attention interruption routine
satisfies the wait, causing the TCB to be
placed on the ready queue. When next dis
patched, the wait routine issues an SVC 72
whiCh results in creation of a supervisor
request block (SVRB), and fetching of the
first segment of the console processor rou
tines into the system transient area.

COMMUNICATIONS TASK ROUTER (IEECVCTRl

The communications task router (IEECVCTR)
is the first segment of SVC 72 brought into
the transient area. Because the communica
tions task serves a number of purposes, and
many service requests may be pending, the
router establishes the order of response.
The order is: external interruption,
input/output list completion, attention
(console interruption), and WTO/WTOR. Mul
tiple attentions are treated in order of
appearance in the UCM. Multiple input/
output completions are treated in order of
first use of the device. The router
responds to an attention by building a
parameter list in the SVRB extended save
area. The parameter list consists of a
remote XCTL parameter list, the address of
the appropriate UCM entry, and the address
of (contents of CVTCUCB) the UCM. The
router then passes control to a processor
routine by issuing an XCTL macro instruc
tion to the remote parameter list, using
the name obtained from the unit control
block (UCB) entry. The flag signifying the
request to be serviced by the processor
routine is turned off by the routine. Con
sequently, processor routines return con
trol to the router by issuing an XCTL macro
instruction to allow the router to schedule
service for other requests. If no requests
are pending, the router exits to the wait
routine using the address in register 14.

In addition to distinguishing the output
request from other requests, the router
selects the device to which the message is
to be sent. The router establishes the
output device by checking UCB entry attri
bute indicators. The appropriate entry is
the first active UCB entry that supports
WTO. As before, the router builds a remote
interface for, and passes control to, a
processor routine via an XCTL macro
instruction.

70

CONSOLE DEVICE PROCESSOR ROUTINES
(IEECVPMXw IEECVPMC, IEECVPMP)

Control flow in a processor routine is
determined by the setting of flags in the
router-selected UCM entry. The close flag
is tested first. If this flag is on, any
pending input/output activity is suspended
by issuing a WAIT macro instruction. Con
trol is then passed to an associated OPEN/
CLOSE support routine via an XCTL macro
instruction for release of various control
blocks. If the close flag is off, the busy
flag is tested to determine input/output
status. If there is outstanding input/
output activity, error checking and buffer
disposition occur if the activity has been
posted complete. Otherwise, any attention
reque.st is temporarily abandoned (as are
output requests), and control returns to
the router via an XCTL macro instruction.
If the busy flag is off, the attention flag
is tested; if it is on, the status of the
device is examined. If the device has not
been opened, control passes to an asso
ciated OPEN/CLOSE support routine via an
XCTL macro instruction to obtain storage
for a DCB and access-method dependent con
trol blocks, and for execution of the OPEN
macro instruction.

When return is made from the OPEN/CLOSE
support routine, a resPOnse to the atten
tion flag is prepared. A fixed buffer in
the UCB is reserved and an access-method
dependent interface is constructed. Input/
output activity is initiated by issuing an
EXCP macro instruction for a 1052, and by
issuing a READ macro instruction for a unit
record device. In no case does the proces
sor routine await comt:letion of this acti
vity. Control immediately returns to the
router via an XCTL macro instruction.

Control flow within the processor rou
tine is as described previously up to the
point at which the output request flag is
tested. If the flag is on, the processor
routine obtains the address of an output
buffer from the UCM. The element is not
removed from the queue at this time; this
occurs only on successful completion of
input/output activity. This preserves a
means of retrying the message if an extern
al interruption intervenes before the mes
sage is successfully presented to the cur
rent device. Since output buffers are
always selected from the top of the queue,
the initiation of output to an alternate
device is unaffected by previous attempts
to present the message to the primary
device.

Having selected a buffer, the processor
routine establishes data management and
input/output supervisor (lOS) control block
linkages. The routine then issues an EXCP
macro instruction for a 1052, or a WRITE

(
\.

macro instruction for a printer. Without
awaiting completion of the input/output,
the processor routine returns to the router
via an XCTL macro instruction.

WRITE-TO-OPERNI'OR ROU'I'INES (IEECVWTO AND
IEEVWTOR)

The wri te-to;-operator routine (SVC 35)
writes operator messages on the console
when a WTO or WTOR macro instruction is
issued by system component programs or pro
blem programs. Messages and replies are
buffered; the period of time between issu
ing the message and receiving the reply is
available for processing. Issuance of
either macro instruction causes an SVC
interruption. When the SVC interruption is
handled, the supervisor causes the write
to-operator routine to be loaded into the
transient area of the nucleus and passes
control to it.

The write-to-operator routine tests the
macro instruction for a routing code of 11.
A routing code of 11 indicates a write-to
programmer message. If there is such a
routing code, control is passed via an XCTL
macro instruction to the write-to
programmer routines. After write-to
programmer processing is completed, control
is returned to either the WTO routine or to
the program that issued the macro
instruction.

Control is returned to the WTO routine
for processing as described below if any
one of the following conditions is true:

• MCS is in the system and a specific
console is designated to receive rout
ing code 11 messages, or

• An additional routing code is specified
in the macro instruction, or

• The macro instruction is a WTOR.

Otherwise, control is returned to the pro
gram that issued the macro instruction.

There are two console queues: the buff
er queue and the reply queue. The extent
of both queues is defined by specifying the
number of buffers at system generation. An
attempt to exceed this value results in the
requesting task being placed on a queue to
wait for service; i.e., the task is placed
in a wait condition. Each WTO and WTOR
macro instruction results in the addition
of a WTO Queue Element (WQE) to the buffer
queue; each WTOR results in the addition of
a Reply Queue Element (RPQE) to the reply
queue. SVC, 35 (IEECVWTO) sets up the pro
blem program message. If it is a WTOR, the
write-to-operator-with-reply routine (IEEV
WTOR) inserts the message identification
(10) in addition to a partition identifier.
The same message ID (which the operator

must use for his reply) is placed in the
RPQE with other information to insure pas
sing the reply, when received, to the prop
er area. WTO messages are always written;
a ~TOR message may be purged (removed from
the queue) if the issuing task terminates
while the message is on the buffer queue.
Therefore, an RPQE differs from a WQE in
that it contains the address of the issuing
task's TCB. The buffer queue is accessed
through the entry U~lWTOQ in the UCM.

The reply queue contains RPQEs for
operator replies to WTOR. Like WTOR ele
ments in the buffer queue, RPQES contain a
TCB address to permit their being purged
from the queue if the issuing task is
abnormally terminated.

For a REPLY (to WTOR) , the processor
issues SVC 34 (see "Master Scheduler
Task"). The SVC routine determines that
the incoming command is a REPLY, processes
the reply, posts the user's ECB and
branches back to the processor.

EXTERNAL INTERRUPTICN ROUTINE (IEECVCRX)

The external interruption routine assigns
functions performed by the primary console
device to an alternate console device.
When the operator presses the INTERRUPT key
on the console, an external interruption
occurs and control passes to the supervi
sor. The supervisor identifies the inter
ruption and passes control to the external
interruption routine which switches con
soles and returns ·control to the supervi
sor. Console functions may later be reas
siqned to the primary console device, if
the operator causes another external
interruption.

Communications Task with
Multiple Console Support
The MFT communications task with Multiple
Console support (MCS) is similar to the MYT
communications task except that MF'I does
not obtain buffers dynamically. The MCS
cOIrmunications task receives control as a
result of an external interruption, an
operator console attention, an I/O inter
ruption for a console, or a WTO (R) or DOM
macro instruction. The following para
graphs describe the communications task
routines with MCS (for a detailed descrip
tion of these modules see the MVT supervi
sor PLM):

Communications Task Router Routine
(IEECMAWR) : waits for the posting of an
external, attention, I/O, WTO(R), or DOM
ECB. Control is passed to the appropriate
routine to handle the posted ECB, to pro-

Job Management Introduction 71

vide console switching, or to provide buff
er management.

CommunicatioWo/Task Device Interface Rou
tine (IEECMDSV): passes control to the
device suppor~ routine for the device on
which I/O is to be performed, or consoli
dates system and console output queues.

Communications Task Console Switch Routine
(IEECMCSW): performs console switching as
a result of an external interruption, an
unrecoverable I/O error, or a VARY command.
It also switches the hard copy log to the
master console when both log data sets are
full.

Communications TaskWTO(R) Routine
(IEECMWSV): marks WTO queue elements to
appropriate console output queues.

Communications Task DOM Routine (IEECMDOM):
marks WTO queue element s on the system out
put queue to be purged.

Console-Device Support Routines: provide
read and write functions for the associated
console devices.

The following modules remain unchanged with
MCS:

Write-to-operator (IEECVWTO)
Write~to~operator with reply (IEEVWTOR)
External Interrupt (IEECVCRX)
Console Interrupt (IEECVCRA)

Note: The routines that support the
cathode ray tube (CRT) display operator
consoles (that is, the 2260 Display Sta
tion, the 2250 Display Unit, and the Model
85 Operator Console) are identical with
those used with MVT. For a complete
description of these routines, see the MVT
supervisor PLM.

Master Scheduler Task
The MFT master scheduler task (MST) pro
cesses all commands, and initializes main
storage at system initialization. It is
composed of the SV~ 34 routines and the
master scheduler resident command processor
routines. SVC 34 processes all commands
completely except CANCEL (inactive jobs),
DEFINE, DISPLAY (A, Q, N, U, jobname),
HOLD, RELEASE, RESET, START and WRITELOG.
SVC 34 does preliminary processing of these
commands and passes control to the resident
command processor to complete the process
ing of all but the WRITELOG command. When
a WRITELOG command is found, SVC 34 stores
it and posts the System Log task ECE.

The master scheduler resides in the
nucleus and operates under control of its
own TCB. The master scheduler TCB is

72

always dispatchable and is of higher
priority on the TCB queue than the TCBs for
the partitioned area (the problem program
area) of storage. Therefore, when a com
mand is issued, the master scheduler always
gains control of the CPU after the communi
caticns task for processing the command.

When processing commands, interruptions
are disabled so that command processing may
be compl~ted before any other interruptions
are serviced. Although commands are pro
cessed when issued, the command may not
take effect immediately. An example of
this is the STOP writer command. The mas
ter scheduler marks a command scheduling
control block (CSCB) which is checked by
the writer between jobs. The command does
not take effect until the writer completes
the job it was processing when the command
was issued.

MULTIPLE CONSOLE SUPPORT REQUIREMENTS

In systems that include Multiple Console
Support (MCS), a hard copy of all operator
and system messages is required when there
is an active graphic console or more than
one active non-graphic console. Because of
this requirement, a system log function is
provided which may be specified as the hard
copy log. In MFT, the System Log operates
under its own TCB created at system genera
tion. The System Log task is the highest
priority task in the operating system. The
master scheduler routine IEFSD569 calls the
log initialization routine IEEVLIN which
initializes control blocks and obtains
storage for the Log Control Area and the
log buffer. The Log Support routines in an
MFT environment function similarly to those
in an MVT environment. For a further
description of the system log and the Log
Support routines with MCS, see the MVT
supervisor, Program Logic Manual.

SVC 34 FUNCTIONS

SVC 34 (Charts 13, 14, and 15) is called to
process all commands. As previously noted,
it processes some of these commands com
pletely and calls the resident command pro
cessor to process the remaining commands.
The commands processed completely by SVC 34
with respect to the master scheduler are:

CANCEL (active jobs only)
DISPLAY (JOBNAMES, R, SPACE, DSNAME,
T, or STATUS)
HALT
MODIFY
MODE
MOUNT
REPLY
S'!'OP
SWAP
UNLOAD
VARY

For CANCEL (inactive jobs or with the IN
or OUT parameter), DEFINE, DISPLAY (A, Q,
N, U, jobname), HOLD, RELEASE, and RESET,
SVC 34 does preliminary processing before
passing control to the resident command
processor. If the resident command pro
cessor is processing a DEFINE command, SVC·
34 will queue all commands until the DEFINE
command has been completely processed.

For the LOG command, SVC 34 issues a WTL
(SVC 36) to have the LOG command processed
in manner similar to a Write-to-Iog macro
instruction issued from a problem program.

The SWAP command is accepted and pro
cessed only if Dynamic Device Reconfigura
tion (DDR) is in the system. The VARY PATH
command is accepted and processed only if
Alternate Path Retry (APR) is in the
system.

With four exceptions, the routines used
for MFT SVC 34 processing are those used
for MVT SVC 34 processing. The four rou
tines unique to MFT are routine IEESDS71
(used for the DEFINE and MOUNT commands);
routines IEESDS61 and IEE3903D (used for
the STOP INIT and START commands); and rou
tine IEE2803D (used for the CANCEL com
mand) • These routines are described in the
following paragraphs.

DEFINE and MOUNT Routine (IEESDS71)

This routine processes the DEFINE command
by setting the necessary indicators in the
master scheduler resident data area. It
then posts the ECB for the resident command
processor IEECIRSO.

This routine processes the MOUNT command
as that command is processed in PCP. It
builds a parameter list for, and issues an
XCTL macro instruction to, the PCP master
command EXCP routine IGC0103D.

CANCEL Command Routine (IEE2803D)

This routine processes the CANCEL command
by scanning the CSCBs for the job name
given in the CANCEL command. If the job
name is found, indicating that the job is
active, and if the command did not have an
IN or OUT parameter, the CSCB is checked to
determine if it is cancelable, that is, if
it represents a problem program. If it
does, IEE2803D issues a BALR to ABTERM,
passing the address of the job's TCB and
indicating a completion code of 222 if no
dump is to be taken, or 122 if a dump is to
be taken.

If the CSCB is not cancelable, that is,
if it represents a system task, the CSCB is
marked canceled and is posted.

If the job is represented on the CSCB
chain, but the command specified IN or OUT,
the "Job Selected" message is written to
the operator and control is returned to the
caller.

If the job is not represented on the
CSCB, indicating that the job is either in
the input or output queue(s) or that it
does not exist, IEE2803D passes control via
an XCTL macro instruction to CSCB creation
routine IEE0803D to build a CSCB for the
CANCEL command. (see the MVT Job Manage
ment PLM for a description of IEE0803D.)

STOP INIT and START Commands Processing
Routines (IEESDS61 and IEE3903D)

These routines perform the initial process
ing for all the START commands and the STOP
INIT command. When a START command is
received, STOP INIT and START command syn
tax Scan routine IEESDS61 examines the com
mand parameters. If anything other than a
system reader or writer is to be started,
the routine determines the number and sta
tus of the partition named in the command.
If the cOlrmand is a STOP INIT command,
IEESDS61 determines which partition con
tains the initiator to be stopped. The
routine then passes control via an XCTL
macro instruction to STOP INIT and START
comrand processor routine IEE390 3D.

\START Command/
\ at Console /

SVC 34

Check

'\

TART comman,;
in Input
Stream

Communication (SVC 34) Command Route (SVC 34) Reader/
Task Processing and Interpreter

Authority

Build and
Chain CSCB

Put CSCB
in PIB, Post
"No Work" ECB

C Return to lOS

Figure 17. START Command Processing Flow

Master Scheduler Task 73

If the command is a START command, com
mand processor ~outine IEE3903D builds and
chains a CSCB, places the address of the
CSCB in the partition's PIB, and posts the
partition. If a system reader is to be
started, the routine searches for a
scheduler-size problem program partition
which is inactive~ if a system writer is to
be started, the routine searches for any
inactive problem program partition. If a
partition is located, the routine builds
and processes a CSCB as s.tated above. If a
partition cannot be found, the routine
issues a message to the operator stating

. that the command has failed. If the co~
mand is a STOP INIT command, the routine
verifies that the partition contains an
initiator and sets the STOP INIT indicator
in the partition's PIB.

The section "system Task Control"
describes the further processing of the
START command CSCB. The processing of a
STOP INIT indicator is completed by the
Initiator/Terminator.

WRITE-TO-PROGRAMMER MESSAGE PROCESSING
ROUTINES (IEFWTPOO, IEFWTP01, AND IEFWTP02)

A write-to-programmer (WTP) message is
issued by including a routing code of 11
(ROUTCDE=ll) with a WTO or WTOR macro
instruction. The WTO routine will identify
the macro instruction as containing a WTP
message, and pass control via an XCTL macro
instruction to write-to-programmer initial
ization routine IEFWTPOO. The initializa
tion routine passes control to message pro
cessing routine IEFWTP01, which uses the
transient queue manager (SVC 90) to write
the message in a system message block in
the system message class data set.

If I/O errors are encountered by the
transient queue manager, control is passed
to error handling routine IEFWTP02.

Upon completion of WTP processing con
trol is returned to the WTO routine for
further processing if anyone of the fol
lowing conditions is true; otherwise, con
trol is returned to the program that issued
the macro instruction.

• MCS is in the system and a specific
console is designated to receive rout
ing code 11 messages, or

• An additional routing code is specified
in the macro instruction, or

• The macro instruction is a WTOR.

SYSTEM INITIALIZATION

The master scheduler task (Chart 09) per
forms the function of initializing main
storage. In MVT this 'is done by NIP. In

74

MFT it is done by the master scheduler to
facilitate redefinition of main storage.
The follcwing paragraphs describe the
action of the master scheduler in defining
main storage at system initialization.

The master scheduler task is loaded with
the nucleus. Its task control block ('I'CB)
points to the master scheduler request
block (RB) in the nucleus. NIP saves the
RB address and the contents of the boundary
box describing the normal master scheduler
task partition, for later use by the master
scheduler initialization routine IEFSD569.
(Note: IEFSD569 is brought into main
storage by the macro instruction SGIEEOVV
generated during system generation.)

The boundary box (BBX) is then changed
by NIP to describe a partition including
all of storage except the nucleus. The
address of an RB at the low address of this
partition is placed in the master scheduler
TCB. NIP then creates the RB. The RB
points to an XCTL to IEFSD569. NIP then
sets the master scheduler task dispatchable
and branches to the dispatcher.

The master scheduler initialization rou
tine is given control to. perform scheduler
initialization. First it passes control to
the communications task initialization rou
tine (IEECVCTI) via a LINK macro instruc
tion. After the communications task is
initialized, the master scheduler initiali
zaticn routine passes control to the
definition routine, IEEDFIN1, via a LINK
macro instruction. IEEDFIN1 communicates
with the operator, or prepares the parti
tion as it was described at system genera
tion. IEFSD569 then issues the READY mes
sage, and if the system log was requested,
passes control to IEEVLIN to initialize the
system log. It then types the automatic
conmands, and issues a WAIT macro instruc
tion.

When the operator presses the REQUEST
key, control is given to the supervisor
which recognizes the interruption and
passes control to the input/output supervi
sor. The input/output supervisor deter
mines that the interruption is an attention
signal and passes control to communications
task console attention interrupt routine
(described above). The interrupt routine
posts the communications task attention ECB
to request reading of the console. The
operator enters a SET command. SVC 34
posts the WAIT and places the parameters of
the SET command in the master scheduler
resident data area. The master scheduler
initialization routine then regains control
to continue processing. Control blocks for
the jcb queue and frocedure library are
created. To format the job queue, the rou
tine passes control to queue initialization
routine IEFSD055 via a LINK macro instruc-

tion which places a queue control record
(QCR) in the nucleus after the DCB and DEB.
Control then passes to queue manager for
matting routine IEFORMAT which formats the
job queue and returns control to the queue
initialization routine. (For a discussion
of these two modules, see the topic "Queue
Manager.") After return from the queue
manager initialization routine, the master
scheduler initialization module displays
and processes any automatic commands.

If the system management facility is
specified, the routine stores the SMF
options in the first byte of the CVTSMCA
field of the CVT. It then passes control
via a LINK macro instruction to SMF ini
tialization routine IEESMFIT to initialize
the system management facility. (see the
·SMF Initialization" section in this
publication.)

The master scheduler initialization rou
tine then establishes partitions based on
information in the TCBs. It constructs an
RB in each partition, with an XCTL macro
instruction addressing job selection module
IEFSD510 (for large partitions), or small
partition module IEFSD599 (for small parti
tions). The master scheduler initializa
tion routine then readjusts the pointers to
the master scheduler area, and returns to
the dispatcher. The dispatcher returns
control to the master scheduler task, but
the TCB now points to master scheduler
router routine IEECIR50, in the nucleus.

I MASTER SCHEDULER SERVICE ROUTINES

Master Scheduler Router Routine (IEECIR50)

Resident master scheduler router routine
IEECIRSO waits on an ECB which is posted by
SVC 34 when a command has been scheduled
for processing. This router (Chart 12)
scans the CSCB chain for any outstanding
commands to be processed. If a command is
found, the CSCB is removed from the chain.
The router routine. then passes control tp
syntax check routine IEESD562 via a LINK
macro instruction, passing the address of
the CSCB.

After all commands are processed,. or if
none are found, the router routine deter
mines if a DEFINE command has been entered.
If so, the router routine passes control to
IEEDFIN1. the first module of the defini
tion routines, via a LINK macro instruc
tion. If no DEFINE command has been
issued. the router routine returns to wait
on its ECB. No test is made for DEFINE
command scheduling until all other commands
have been processed.

Syntax Check Routine (IEESD562)

Syntax check routine IEESD562 checks the
syntax of the command parameter in the CSCB
(Chart 10). If a search of the input work
queues (SYS1.SYSJOBQE) is required for pro
cessing the command, the syntax check rou
tine sets internal codes for the queue
search, issues a GETMAIN to obtain storage,
and constructs an event control block (ECB)
and an input/output block (lOB). Control
is then passed to queue search setup rou
tine IEESD563. If the command was a DIS
PLAY A 'command. control is passed to DIS
PLAY A routine IEESD566. If it was a DIS
PLAY CONSOLES command, control is passed to
DISPLAY CONSOLES routine IEEXEDNA. If it
was a DISPLAY U command, control is passed
to DISPLAY U routine IEEUNIT1.

Queue Search Setup Routine (IEESD563)

If the CANCEL command is being processed,
queue search setup routine IEESD563 passes
control to queue scratch setup routine
IEESD575. Otherwise, IEESD563 determines
which of the queues is to be searched and
reads the queue control record (QCR) for
that queue. If the queue must be searched,
the queue search setup routine establishes
parameters for the search. The queue
search setup routine then passes control to
queue search routine IEESD564 via an XCTL
macro instruction. When the queue search
setup routine regains control. the QCR is
scanned and if any information in the reco
rd has been changed, the updated informa
ticn is rewritten on S¥Sl.SYSJOBQE. The
queue search setup routine then establishes
a parameter list and passes control to ser
vice routine IEFSD565 'via an XCTL macro
instruction.

Queue Search Routine (IEESD564)

Queue search routine IEESD564 reads the
entries of a queue based on the parameter
infor~ation passed by setup routine
IEESD563. If the command processing
requires changes in the chaining informa
tion in a queue entry or control record,
the updated ~nformation is written on the
queue. Action indicators are passed as
parameters when control returns to setup
routine IEESD563.

ServiCE Routine (IEESD565)

Based on the information passed by the
calling routine, service routine IEESD565
performs the following:

1. Passes control to queue manager
enqueue routine IEFQMNQQ via a LINK
~acro instruction to enqueue an entry
or QCR.

Master Scheduler Task 75

2. Issues a FREEMAIN macro instruction to
free the ECB/IOB which was used to
read SYS1.SYSJOBQE.

3. Passes control to the master scheduler
message module (IEE0503D) via a LINK
macro instruction to write a message.

4. If another queue needs to be searched,
it passes control to queue search set
up routine IEESD563 via an XCTL macro
instruction.

After the requested processing has been
performed, the service routine transfers
control to router routine IEECIR50.

DISPLAY A Routine (IEESD566)

DISPLAY A routine IEESD566 receives control
from syntax check routine IEESD562 when the
DISPLAY A (active) command is entered.
This routine constructs WTO messages con
taining the active job and stepnames and,
if subtasking is included, a count of the
number of subtasks within the job step.
The DISPLAY A routine returns control to
the router routine.

DISPLAY'CONSOLES Routine (IEEXEDNA)

DISPLAY CONSOLES routine IEEXEDNA receives
control from the Syntax Check routine
IEESD562 when the DISPLAY CONSOLES command
is entered. This routine issues a header
message that describes the status message.
It then constructs and issues a message
describing the status of the hard copy log
(if one exists) and each console in the
system, both active and inactive. when the
message is issued, it returns to the Master
scheduler Router routine IEECIR50.

DISPLAY U Routines (IEEUNIT1, IEEUNIT2,
IEEUNIT3, IEEUNIT4)

The DISPLAY U routines create a tabular
display of unit status, as requested by the
DISPLAY U command, based on information in
the UCBs. They construct the WTO messages
to report on the status of the devices spe
cified by the operands of the DISPLAY U
command. DISPLAY U routine (1) IEEUNITl
receives control from syntax check routine
IEESD562 when a DISPLAY U command is
entered. When all messages have been
issued to the console device, DISPLAY U
routine (3) IEEUNIT3 returns control to the
Master Scheduler router routine IEECIR50.
For a description of each DISPLAY U rou
tine, see the module descriptions in Appen
dix B of this publication.

~ueue Scratch Setup Routine (IEESD575)

Queue scratch setup routine IEESD575 builds
the parameter list for the SCRATCH macro

76

instruction (SVC 29) according to whether
the canceled job was found on the input or
output queue(s). If the job was found on
the in{:ut queue, IEESD575 determines wheth
er there are SYSIN data sets to be
scratched. If not, IEESD575 passes control
to queue alter delete routine IEESD576. If
the job was found on the input or output
queue with data sets to be scratched,
IEESD575 passes control to queue scratch
routine IEESD581. When IEESD581 has
scratched all data sets, IEESD575 passes
control to queue alter delete routine
IEESD576.

Queue Alter Delete Routine CIEESD576)

Queue alter delete routine IEESD576 passes
control to queue manager delete routine
IEFQDELE to delete the queue entries asso
ciated with the canceled job. For a job cn
the output queue, with more queues to be
searched, control is passed to IEESD563.
If the cancel command was issued for an
output class other than the message class,
control is passed to specific cancel mes
sage routine IEESD580, otherwise control is
passed to queue message class setup routine
IEESD578.

Queue Restart Enqueue Routine IEESD577

Queue restart enqueue routine IEESD577
passes control to the queue manager enqueue
routine IEFQMNQQ to enqueue the SYSOUT data
sets for canceled restarting jobs. Upon
return from IEFQMNQQ, IEFSD577 passes con
trol to IEESD579.

Queue Message Class setup Routine
(IEESD57 8)

Queue Il'essage class setup routine IEESD578
zeroes out the DSBs in the message class
and sets up the queue manager parameter
area for enqueuing the message class. If
the jcb was a restarting job, IEESD578
passes control to IEESD577. otherwise,
contrel is passed to queue 5MB routine
IEESD579.

Queue 5MB Routine (IEESD579)

Queue 5MB routine IEESD579 places the
ap~ro{:riate cancel message into the first
5MB and passes control to the queue manager
enqueue routine IEF·Q~.iNQQ to enqueue the
message class. IEESD579 issues the cancel
message to the operator and returns control
to master scheduler router routine
IEECIR50.

specific Cancel Message Routine (IEESD580)

Specific cancel message routine IEESD580
issues the cancel message to the operator
if .the cancel command specified an output

class other than the message class. This
routine then returns control to master
scheduler router routine IEECIR50.

Queue Scratch Routine (IEESD581)

Queue scratch routine IEESD581 issues the
SCRATCH macro instruction (SVC 29). Upon
return from the Scratch service routine,
IEESD581 issues a "data set not deleted"
message if the return code is nonzero.
IEESDS81 returns control to queue scratch
setup routine IEESDS75.

PARTITION DEFINITION BY THE MASTER
SCHEDULER

The master scheduler uses the DEFINE com
mand proceSSing routines (shown in Figure
18) to initialize or change partition
definitions in MFT. These routines handle:

• Commands from the operator via a con
sole, issued after nucleus initializa
tion, to change the size and descrip
tion of any partition while processing
continues in unaffected partitions.

• Commands from the system at IPL time to
prepare the partition as it was
described at system generation.

All transfers of control among the process
ing routines are accomplished via an XCTL
macro instruction.

DEFINE Command Initialization Routine
(IEEDFINl)

The master scheduler passes control to
DEFINE command initialization routine IEED
FIN1 whenever a DEFINE command is entered
by the operator. The routine also receives
control from the master scheduler during
system initialization, after the nucleus
initialization program (NIP) completes its
preparation of the system. In either case
the routine builds the DEFINE data area
containing the size and description (job
classes A-O. or R or W)·of each partition
If Main Storage Hierarchy Support is
included in the system. the data area con
tains the size of the partitions in terms
of hierarchies. Hierarchy 0 represents
processor storage and hierarchy 1 repre
sents 2361 Core Storage.

If the time-slicing feature is included
in the system, the data area also contains
a doubleword of time-slicing information,
incluQing the first and last partition num
bers in the time-slicing group and the time
interval (in milliseconds) assigned to the
group of partitions. This data is used at

completion of DEFINE processing to define
the partitioning of main storage.

If the DEFINE command initialization
routine was entered as the result of a
DEFINE command, the routine issues a DEFINE
COMMAND BEING PROCESSED message to all
active consoles. It then determines wheth
er LIST was specified and if so, passes
control to listing routine IEEDFIN4. If
not, the routine passes control to message
routine IEEDFINS for issuance of an ENTER
DEFINITION message.

If the DEFINE command initialization
routine was entered during the system ini
tialization, the routine also issues a
DEFINE COMMAND BEING PROCESSED message to
all active consoles. It then determines
whether partition redefinition or LIST was
specified by the operator" and if not,
passes control to validity check routine
IEEDFIN3. If either LIST or partition
redefinition was specified, the routine
continues processing as if a DEFINE command
had bEen entered by the operator.

Syntax Check Routine (IEEDFIN2)

When syntax check routine IEEDFIN2 receives
control at primary entry pOint IEEDFIN2, it
translates the statements entered by the
operator to upper case. When the routine
receives control at secondary entry point
IEEDPART, this operation is bypassed.

The statement is scanned and each entry
in the statement -- a partition definition,
a time-slicing change. or a keyword -- is
processed separately.

If the entry is a partition definition .•
the routine checks the entry for syntax
errors. If a syntax error is found, the
routine passes control to message routine
IEEDFIN5 for issuance of the appropriate
syntax error message. The erroneous entry
and all following entries are ignored. If
the syntax is correct, IEEDFIN2 updates the
DEFINE data area with the partition infor
mation and gets the next entry for
processing.

If the entry is a time-slicing change,
the routine passes control to time-slice
check routine IEEDFIN6.

If the entry is neither a partition
definition, nor a time-slicing change, the
routine assumes that it is a keyword and
passes control to keyword scan routine
IEEDFIN7.

Master Scheduler Task 77

From NIP or DEFINE Command

• Figure 18. DEFINE Command Processing Flow

78

Validity Check Routine -- Processor Storage
UEEDFIN3)

Validity check routine IEEDFIN3 (for pro
cessor storage) makes final checks to
determine whether the information entered
by the operator is correct (e.g •• that the
definition changes which have been
requested are within legal bounds or that
the time-slicing specification is valid).
If an error is detected. the routine passes
control to IEEREXIT, a secondary entry
point in command final processor routine
IEEDFIN9. If the information is valid, the
routine determines the partitions affected
by the DEFINE command constructs a list of
PIB pointers (one for each affected active
partition) and passes control to validity
check routine IEEDFINC.

Validity Check Routine -- Core Storage
CIEEDFINC)

Validity check routine IEEDFINC (for core
storage) determines whether Main Storage
Hierarchy Support is in the system. If it
is not. control is passed to system
reinitialization routine IEEDFINB. If it
is, IEEDFINC determines whether a partition
has been defined in two segments. If both
HO and H1 size have been reduced to zero,
the routine marks the partition inactive in
the DEFINE data area. It also checks to
determine if a partition has been specified
for excess bytes resulting from a redefini
tion in either HO or H1 of an adjacent par
tition. If no partition has been speci
fied, the routine passes control to secon
dary entry point IEEREXIT in command final
processor routine IEEDFIN9. Otherwise. it
sets up a message indicating the number of
excess bytes. the partition, and the
hierarchy to which they have been added.
It then passes control to IEEREXIT.

I If the information is valid. IEEDFINC
passes control to system reinitialization
routine IEEDFINB.

Listing Routine (IEEDFIN4)

Listing routine IEEDFIN4 lists partition
definitions and job classes. If the time
slicing feature is in the system, it also
lists the time-slicing attributes. After
performing the listing function. the rou
tine determines whether an END keyword has
been read from the console, and if so,
passes control to validity check routine
IEEDFIN3. If not, it passes control to
message routine IEEDFINS.

Message Routine (IEEDFINS)

Message routine IEEDFINS handles the mes
sages required by the DEFINE command pro
cessing routines. These messages, which

are written to the operator, are concerned
with:

• Entering and continuing the definition
of partitions.

• Syntax, parameter, and time-slicing
errors.

• Illegal number of partitions or Over
size partitions.

• Completing the definition of
partitions.

After issuing the appropriate message. the
routine determines whether processing is
cOIrplete and if so. issues a DEFINITION
COMPLETED message to all active consoles.
It then determines if a DEFINITION CAN
CELLED message has previously been issued
and if so. tests to see if the system is
being initialized. If the message has been
issued and it is IPL time. IEEDFIN5 passes
control to command initialization routine
IEEDFIN1 to repeat the DEFINE command pro
cessing. If the DEFINITION CANCELLED mes
sage has not been issued, or if it has been
issued at other than IPL time. the routine
returns control to the caller.

If processing is not complete, IEEDFIN5
passes control to syntax check routine
IEEDFIN2.

Time-Slice Syntax Check Routine (IEEDFIN6)

Time-slice syntax check routine IEEDFIN6
checks the time-slicing entry for syntax
errors. If a syntax error is found. the
routine passes control to message routine
IEEDFINS for issuance of a PARAMETER ERROR
message. It ignores the erroneous entry
and all following entries. If there are no
syntax errors. the routine updates the
DEFINE data area with the time-slicing
information. gets the next entry in the
statement being processed, and passes con
trol to secondary entry point IEEDPART in
syntax check routine IEEDFIN2.

Keyword Scan Routine (IEEDFIN7)

Keyword scan routine IEEDFIN7 determines
whether the entry being processed is a
valid keyword. If it is not a valid key
word, the routine passes control to message
routine IEEDFINS for issuance of a PARAMET
ER ERROR message. It ignores the erroneous
entry and all following entries. If a
valid keyword is found, the routine sets
the appropriate keyword indicator in the
DEFINE data area.

If there are more entries to be pro
cessed, the routine gets the next entry and
passes control to secondary entry point
IEEDPART in syntax check routine IEEDFIN2.

Master scheduler Task 79

If there are no more entries to be pro
cessed (end of input>, the routine deter
mines whether a LIST keyword has been
entered and if so, passes control to list
ing routine IEEDFIN4. If LIST was not spe
cified, a check for the END keyword is
made. If an END entry is found, the rou
tine passes control to validity check rou
tine IEEDFIN3. If an END entry is not
found, the routine passes control to mes
sage routine IEEDFIN5 for issuance of a
CONTINUE DEFINITION message.

system Reinitialization Routine 1
CIEEDFINS)

After the partitions have quiesced, IEED
FIN8 assigns protection keys (if the system
is protected) and marks dispatchable parti
tions not of zero size. It makes one final
check to determine that no more than 15
problem program partitions have been
defined. If an error is found, the routine
passes control to secondary entry point
IEEREXIT in command final processor routine
IEEDFIN9.

If no error is found, IEEDFINS uses the
information in the DEFINE data area to
build request blocks and boundary boxes and
to update the TCBPIB field and the PIB for
the defined partition. The routine then
passes control to IEEDFIN9 at its primary
entry pOint, IEEDFIN9.

Before passing control to IEEDFIN9 at
either entry point, IEEDFINS issues the
DEQUEUE macro instruction specifying the
boundary boxes.

Command Final Processor Routine (IEEDFIN9)

Command final processor routine IEEDFIN9
updates the time-slice control element and
tbe task control blocks affected by time
slicing if this feature is specified.

It then tests to determine if successful
partition definition has taken place. If
so, it tests the CVTSMCA field of the CVT
for the address of the system management
control area (SMCA). If this field con
tains zeroes, one of two possible situa
tions exists:

• SMF is not supported •
• SMF is supported, but has not been com-

pletely initialized at this time.

In either of these cases, or if partition
definition has not completed successfully,
lEEDFIN9 issues a FREEMAIN macro instruc
tion to free the work area previously
obtained by IEEDFIN3. It then passes con
trol to IEEDFIN5 for issuance of the appro
priate message specified by its caller
(IEEDFIN3 or IEEDFIN8).

80

If the CVTSMCA field contains the
address of the SMCA, SMF is supported and
its initialization is complete. Partition
definition has also completed successfully.
Therefore, IEEDFIN9 passes control to IEEDJ
FINA for creation of the SMF storage con
figuration record (type 13). Upon return
from IEEDFINA, the command final processor
routine passes control to IEEDFIN5 for
issuance of the appropriate message.

MFT storage Configuration Record Creation
Routine (IEEDFINA)

MFT storage configuration record creation
routine IEEDFINA creates the SMF storage
configuration record (type 13). It
receives control from SMF initialization
routine IEESMFI2 during SMF initialization,
and from command final processor routine
IEEDFIN9 whenever a DEFINE command is
issued. It creates the SMF storage config
uration record and issues an SVC S3 to have
it transferred to the SMF buffer. It then
returns control to its caller.

system Reinitialization Routine 2
CIEEDFINB)

system reinitialization routine IEEDFINB
places the ECB that must be posted by the
affected partition in the PIB of the parti
tion. If a partition has been marked inac
tive (i.e., no HO or Hi size is contained
in the DEFINE data area), IEEDFINB sets the
partition's TCE nondispatchable. If any
partition being redefined contains a system
writer, the routine posts the STOP ECB in
the Start Parameter List to stop the writer
as if a ·Stop WriterW command had been
issued froio the console. Therefore the
operator must issue a WStart WriterW com
mand for any writer partition involved in
the redefinition.

The routine then issues the WAIT macro
instruction for the posting of the ECB
list. After the ECB is posted, IEEDFINB
issues the ENQUEUE macro instruction speci
fying the boundary boxes.

Job Processing
Job processing is accomplished by three
types of tasks:

• Reading tasks, which control the read
ing ,of input job streams and the inter
preting of control statements in these
input streams.

• Initiating tasks, which control the
initiating of job steps whose control
statements have been read and inter
preted. (Terminating procedures are
also part of initiating tasks.)

• Writing tasks, which control the
transferring of system messages and
user data sets from direct-access
volumes on which they were written ini
tially to some other external storage
medium.

These tasks are created in response to
START commands entered for readers, initia
torsi and writers. Whenever a START reader
,or writer command is entered, the resulting
command processing brings a reader or writ
er into the associated partition. Initia-

-tors are brought into all scheduler-size
partitions at system initialization~ and
after a START INIT command has been issued
following partition redefinition. An
initiator is also brought into a partition
that is specified in a STOP INIT command to
terminate the initiator.

There may be more than one of each of
the job processing tasks so long as the
total does not exceed 52. Input job
streams may be read simultaneously from
three input devices by issuing a START
reader command for each input stream. Sys
tem messages or data sets may be written by
system output writers to as many as 36 out
put devices by issuing a START command for
each device. Up to 15 initiating tasks can
exist concurrently. Each initiating task
is created in response to a START INIT com
mand issued for a specific partition, or a
START INIT.ALL command. In addition, each
problem program may use direct system out
put (DSO) processing. DSO is stated by
entering a START DSO command for a parti
tion naming a system output class and a
device. DSO processing is limited only by
the number of available devices. (See the
Operator"s Guide SRL, GC28-6540).

This section is divided into seven
topics~ including the three major tasks
discussed above, and three other areas
associated with the major tasks: Queue
Manager, System Task Control, System
Restart, and System Management Facility.

Queue Manager

MFT uses the MVT Queue Manager.. However,
to reduce possible interlocks due to
unavailability of requested tracks, the
assign routine (IEFQASGQ) has been modi
fied, and a new module (IEFSD572) has been
added. A table breakup routine CIEFSD514)
has also been added to subdivide variable
size tables located in main storage into
176-byte data records on disk. The discus
sion of the queue manager includes descrip
tions of some MVT modules to provide a more
complete explanation of the relationship of
these modules to the entire system. A dis
cussion of the transient queue manager (SVC
90) is also included.

WORK QUEUES

An MFT system contains 54 work queues which
form the job queue data set (SYS1.
SYSJOBQE). These 54 work queues are:

• Automatic SYSIN blocking queue.
• HOLD queue.
• Remote job entry (RJE) queue.
• 36 output class queues.
• 15 input job class queues.

The job entries are enqueued in priority
order within each job class on the appro
priate job class queue. Jobs are selected
for processing according to the job class
designation of the partition requesting
work.

QUEUE MANAGEMENT

Queue Manager is a general term describing
a group of routines used by various system
components, such as the reader/interpreter,
initiator/terminator, and output writer.
The queue manager performs some common
functions for all system components. It
performs all input/output for accessing the
job queue data set and keeps track of all
space on this queue. The queue manager
assigns space on the job queue in logical
track increments for control blocks,
tables, and system messages built by the
~cheduler. When the control blocks and
tables have been created, the reader/
interpreter enqueues (ENQs) the job using
the queue manager. After the job is
enqueued, the initiator dequeues (DEQs) the
job for execution when a partition that is
assigned to service that job class becomes
available for work. The terminator places
control information needed by the system
output writer on the job queue. At job
termination, the terminator enqueues the
output work description. The writer then
dequeues the output work according to out
put class and priority within the class;
and transcribes it to the appropriate
device, specified by the user.

At system generation, the space for the
job queue data set is allocated. The
device upon which the job queue resides is
considered a non-demountable system resi
dence volume.

JOB QUEUE INITIALIZATION

At system initialization, queue initializa
tion routine IEFSD055 receives control from
the SET command processor to construct a
data control block (DCB) in the nucleus,
and to issue an OPEN macro instruction
which causes a data extent bloc~ (DEB) to
be built for accessing SYS1.SYSJOBQE. It
also places a queue manager master queue

Master Scheduler 'Iask 81

control record (master QCRl in the nucleus
after the DCB and DEB. (See Figure 19 for
the format of the master QCR.) Control
then passes to queue formatting routine
IEFORMAT.

0(0)

8 byte disk address of the Master QCR

MBBCCHHR

8 (8) 1 2

Reserved
Displacement of first track

Reserved of the free queue

12 (C) 2
Number of logical tracks in Number of logical tracks in
the job queue data set the free-track queue

Number of tracks reserved
2

Number of tracks reserved
for cance II i ng of job steps

for any initiator
when queue full

16 (10)

2
Displacement of first track Displacement of last

20 (14)

available logical track containing only job queue
records

24 (18) 2
Number of QCRs per Number of job queue records
physical track per physico I track

2
Number of logical tracks Number of records per

logical track for each Prob I em Program

28 (1C)

partition

2
Address of first record on Number of QCRs on the

. mixed track first track containing only
job queue records

32 (20)

36 (24)

Figure 19. Master Queue Control Record
(Master QCRl Format

8

1

2

2

2

2

2

2

The queue formatting routine divides the
job queue data set into a control record
area and a logical track area. The control
record area contains a copy of the master
QCR,. a control record for the automatic
SYSIN bat ching (ASB) queue, a control rec
ord for the HOLD queue, a control record
for the Remote Job Entry (RJE) queue, a
control record for each of the 36 SYSOUT
writer classes" and a control record for
each of the 15 input work queues. (See
Figure 20 for the format of an input queue
control record.)

Note: The first position of the job queue
control record (job QCRl contains zeros if
no work exists. The job QCR contains a
minimum of two entries if work exists for
at least one priority.

The job class specified by the user (on
the JOB statement or in a START command) is
converted by the system to match the
system-assigned job class identifiers. The
user-assigned job class and corresponding
system job class identifiers are:

82

User-Assigned
Job Class

A
B
C
D
E
F
G
H
I
J
1<
L
M
N
o

System-Assigned
Identifier

(Hexadecimal>

28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36

The logical track area length is vari
able. Logical tracks are used instead of
physical tracks so that the job queue can
reside on different device types. Each
logical track contains a 20-byte header
record (LTH) (as shown in Figure 21) which
includes a pOinter to the next track. 'l'he
header record is used to chain all tracks
of a job together. When the job is
enqueued, the header record is used to
chain jobs first-in/first-out (FIFO)
according to priority. All jobs of the
same job class are chained together.Fol
lowing the header record are a variable
number of 176-byte data records. The numb
er of records per logical track is deter
mined at system generation and may range
from 10 to 255 records. The number may be
modified within this range at IPL. All
tables, control blocks, and system messages
are in 176-byte increments.

At system initialization. all tracks are
members of the free track queue. The free
track queue is a list of logical tracks
available for assignment to work queues.
As tracks are needed. they are taken from
the free track queue. When the system is
finished with tracks, they are returned to
the free track queue. After system ini
tialization. SYS1.SYSJOBQE appears as shown
in Figure 22. Figure 23 illustrates typic
al input and output work queues. Each
input and output QCR contains the address
of the last entry in each priority queue.

QUEUE MANAGER MODULES

As jobs are read into the system. they are
placed into each job class queue according
to priority (established by the PR~Y para
meter on the JOB statement). When the
reader/interpreter reads a job or estab
lishes a new queue for an output class. it
establishes a queue entry. This is done by
Assign/Start Routine IEFQASGT.

0(0)

Address of last LTH of highest priority entry on queue.

4 (4)

13

8 (8)

11

12 (C)

9

16 (10)

7

20 (14)

5

24 (18)

3

28 (1C)

1

32 (20)
I

1

2

14

2

12

2

10

2

8

2

6

2

4

2

2

2

0

2

2

2

2

2

2

2

2

3

Addresses
LTH of 10
entry hav
indicated

of last
test
ing
priority.

Hold Highest
I Address of ECB for first tosk requesting work

Queue Priority :

Figure 20. Job Queue Control Record (QCR)

0(0)

4 (4)

8 (8)

12 (C)

16 (10)

20 (14)

Type:

Reserved

Reserved

1 2

Reserved First logical track of the job Reserved

2 1

Next logical track of the job Number of Type*
tracks assigned

1 1
Reserved Jobclass of Last logical track of the

the job

1 = HOLD queue
2 = ASB queue

3-38 = Output class queues

next job

, . 39 = RJE queue
40-54 = Input work queues

4

4

1

1

2

Figure 21. Logical Track Header (LTH) Rec
ord Format

Assign/Start Routine (IEFQAGST)

The Assign/start routine takes the first
track from the available track pool and

establishes it as the first track for a
jol:. The queue manager parameter area
(QMPA) is updated accordingly. (See the

MVT Job Management PLM for a description of
QMPA.) An lOB and an ECE are created for
subsequent input/output operations. The
actual reserving of tracks is done by the
assign routine, IEFQASGQ.

Note: MF'T does not support the track
stacking facility of MVT.

Assign Routine (IEFQASGQ)

The assign routine assigns record space cn
the jcb queue, and determines whether the
requested blocks can be assigned to the
current track. If so, the record addresses
are placed in the external parameter list
of the QMPA, and the records-available
field of the CMPA is decremented to reflect
this assignment. If additional logical
tracks must be assigned, this routine
issues an ENQ macro instruction on the mas
ter QCR to prevent concurrent access by
other tasks. The master QCR is read into
main storage.

The primary user of this assign routine
is the reader/interpreter, although the
initiator/terminator also uses it. To pre
vent the possibility of the reader/
interpreter taking all the space and making

Master Scheduler Task 83

,--- Master QCR 36
1

Hold QCR 36
1

36 Output QCRs
(Classes A - Z and 0 - 9)

15 Input QCRs
(Classes A - 0)

ASB QCR 36
1

1
RJE QCR

I

1296 1
36

540

7~ I
Control
Record
Area

1 Reserved
(21 Unused QCRs)

176 r--- __ LTH
First 176 - ~yte record

~~~ 
First 
Logical 
Track I Add itional 176 - byte records 

, 
176 

LTH 
\ 

176 - byte records 

Logical 
Track 

'Area 

1 
r , 

LTH 
Last 
Lodcal 176 - byte records 

Track 
'-

Figure 22. Sample Job Queue (SYS1.SYSJOBQE) Format After Initialization 

it impossible for jobs to be initiated or 
terminated, two limit values have been 
added: the number of tracks reserved for 
initiating a job, and the number of tracks 
reserved for terminating a job. 

If logical tracks are available, the 
requested tracks are acquired. The address 
of the first available logical track is 
updated and the newly assigned tracks are 
chained to the tracks assigned to the job. 
The master QCR is written to the control 
record area of the job queue data set. A 
DEQ macro instruction is issued to make the 
master QCR available to the next user. 

If there are no available logical 
tracks, and the requesting routine is a 
reader/interpreter, the assign routine 
passes control to queue manager/interpreter 
interlock routine IEFSD572. If the reader/ 
interpreter is resident, control returns to 
the assign routine to wait for tracks to 
become available. If the reader/ 
interpreter is transient, IEFSD572 issues a 
message to the operator requesting him to 
reply -WAIT-~or -CANCEL-. If the reply is 
WAIT, control returns to the assign rou
tine, otherwise control is passed to the 
ABEND routines to cancel the 
reader/interpreter. 

84 

If there are no available logical tracks 
and the requesting routine is an initiator/ 
terminator, the assign routine issues a 
message to the operator stating that queue 
space has been exceeded and passes control 
back to the initiator/terminator to cancel 
the jcb. 

When the requesting routine is assigned 
the record TTRs, it can read and write rec
ords on the job queue. The master QCR is 
written, and a DEQ macro instruction is 
issued to make the master QCR available to 
the next user. The record addresses in 
storage and TTR pointers are contained in 
the external parameter list of the QMPA. 
When available space on the job queue 
beccmes critical, a warning is sent to the 
requesting task. Logical tracks are 
re~oved from the pool of available tracks 
and assigned to the job. 

If the reply is CANCEL, the interlock 
routine deletes all queue space assigned to 
the job, cancels the job, and returns con
trol to the assign routine. Normal initia
tor operation recovers the partition for 
further us e • 



Highest Priority J 

I Last Pri ori ty 6 

1 Last Priority 2 

Output Work QCR 

/ y- 7 

/ 
/ 

/ 
/ 

M--- I 

8 
~ 

JOB QUEUE 

I :1 
;f 

\ / 
\ / 

/ \ 

/ \ 
Input Work QCR 

Highest Priority J 

1 Last Priority 1 0 

1 Last Pri ority 6 

1 Last Priority 2 

(I LTH J 
~ 

1 LTH 1 
! 

LTH 1 
I 

~I LTH 1 
j 

LTH 1 
1 

(I LTH 1 
j 

~L7 1 
:--r LTH J 

! I 
Logical 
Track 
Header 

i 
~I LTH 1 

j 
LTH J 
I 

~I LTH 1 

1 

~ 
LTH 1 
1 
LTH 1 
J 

\! LTH 1 
~ 

LTH 1 

1 
LTH 1 
1 

~l LTH J 
~ 

1 LTH 1 

~ 
~ LTH 1 

Figure 23. Input and Output Queue Entries 

1 

First Logical Track 

Second Logical Track 

Last Logical Track 1 

176-byte data records 
(Number of data records per logical .. track IS specIfIed at SYSGEN) 

First Logical Track 

Last Logical Track J 

1 

1 

J 

J 

J 

J 

J 

J 

J 
: 
I 
I 
I 

I 

J 

J 

1 

J 

J 

J 

J 

J 

J 

J 

J 

Only Priority 6 
Entry Enqueued 

} 
First Priority 2 
Entry Enqueued 

Last Priority 2 
Entry Enqueued 

} 
First Priority 10 
Entry Enqueued 

Last Priority 10 
Entry Enqueued 

} 
First Priority 6 
Entry Enqueued 

Last Priority'6 
Entry Enqueued 

Only Priority 2 
Entry Enqueued 

Master Scheduler ~ask 85 



Interpreter/Queue Manager Interlock Routine 
<IEFSD572) 

When the reader/interpreter requests tracks 
for the job it is processing, and no space 
is available, IEFQASGQ passes control to 
interlock routine IEFSD572 to identify 
whether an interlock can occur. If the 
reader is transient, the possibility exists 
that space needed by the reader/interpreter 
can be provided only by the termination 
routines, which must operate in the parti
tion that the reader occupies. Because the 
requested space is not available, the rou
tine issues a message to the operator requ
esting a reply of 'WAIT' or 'CANCEL'. If 
the reply is WAIT, this routine returns to 
the assign routine to wait for available 
space. (If the reader requesting space is 
a resident reader, no message is issued, 
and a reply of WAIT is assumed.) 

If the reply is CANCEL, control passes 
to delete routine IEFQDELQ to delete all 
queue space assigned to the job being pro
cessed (if any space had already. been 
assigned). When control returns, the 
interlock routine abnormally terminates the 
job with a job-canceled code of 222. Nor
mal initiator operation recovers the parti
tion for further use. 

2ueue Manager Enqueue Routine (IEFQMNQQ) 

After all control blocks for a job have 
been written, the job is eligible for 
selection by an Initiator. Declaring a job 
ready for selection (enqueuing) is done by 
Queue Manager Enqueue routine IEFQMNQQ. 

When an interpreter has completed the 
processing of a job, (all records generated 
by the interpreter have been written on the 
queue), it uses this routine to enqueue the 
job, in priority order, on the appropriate 
job class input work queue. When a job 
completes processing, the terminator uses 
this routine to enqueue output data sets, 
in priority order, on the appropriate out
put work queues. 

To prevent concurrent updates, this rou
tine issues an ENQ macro instruction for 
the queue control record (QCR) of the prop
er queue. When the QCR becomes available, 
it is read into main storage. The enqueue 
routine then places the new queue entry 
after the last entry with the same priority 
as shown in Figure 23. The address of the 
new entry is then placed in the track head
er of the prior entry (maintaining a 
chain), and in the QCR position for that 
priority. The job control table (JCT) is 
written. The updated QCR is written on the 
job queue. A DEQ macro instruction is 
issued making the QCR available. Control 
is then returned to the calling routine. 

86 

Dequeue Routine (IEFQMDQQ) 

In addition to dequeuing a job from the 
input queue for an initiator, the dequeue 
routine (IEFQMDQQ) removes the output data 
from an output queue for processing by a 
system output writer. 

The routine issues an ENQ macro instruc
tion on the QCR of the selected queue. 
When the QCR becomes available, the dequeue 
routine reads it into main storage. The 
QCR is examined for a job belonging to the 
sa~e job class as the partition. Upon 
finding a job, this routine adjusts the 
chain. If none is found, the requesting 
task tries the next job class. If no work 
is found on any of the selected queues (up 
to three), the requester places itself in a 
wait state. In the case of an output writ
er, a pointer to the "no work" ECB is 
placed in the QCR. If a pointer already 
exists, the ECB is chained to the last ECB 
waiting for that output class. Then the 
updated QCR is written and a DEQ macro 
instruction is issued making the QCR 
available. 

Once a job has completed processing, or 
the output writer has written all records 
for a job, the tracks are returned to the 
system. This is known as deleting a job 
and is handled by the queue manager delete 
routine IEFQDELQ. 

Delete Routine (IEFQDELQ) 

The Delete routine first issues an ENQ 
macro instruction on the master QCR of the 
free chain of tracks. After control is 
returned, the record is updated to reflect 
the new available tracks. The prior last 
track of free storage is updated to point 
to the new set of free tracks. After the 
master QCR is updated, it is written and a 
DEQ macro instruction is issued against it. 
The ECB indicating wait-for-space is 
posted. 

Table Breakup Routine (IEFSD514) 

When a reader must be suspended, the job 
scheduler must prevent the destruction of 
variable size tables in main storage. To 
do this, it calls the queue manager table 
breakup routine, IEFDS514, (Chart 10) which 
subdivides tables in main storage and 
writes them on disk as 176-byte data rec
ords. The data records are written in a 
queue entry related to the caller. The job 
scheduler calls IEFSD514 to retrieve the 
176-byte data records and to reconstruct 
the tables in main storage. ~hether read
ing or writing tables, the caller must 



build a parameter list (see Figure 24) and 
place the address of the list in general 
register 1 before calling the TBR. 

0(0) 4 

Address of QMPA 

4 (4) 4 

Address of First Record (Head TTR) 

8 (8) 
4 

Address of Tab leI 

12 (e) 1 3 
Table 1 Size of Table 1 
Subpool 

16 (10) 4 

Address of Table 2 

20 (14) 1 3 
Table 2 

Size of Table 2 Subpool 

24 (18) 
::~ ~ 

4 

Address of Table n 

1 3 

Table n Size of Table n 
Subpool 

4 

Zeros 

Figure 24. Table Breakup Parameter List 

When the tables are written initially, 
the TBR parameter list must contain the 
address of a QMPA specifying the queue 
entry into which the tables are to be writ
ten. The function code field (QMPOP) of 
QMPA must specify a write operation.. The 
TBR parameter list must also contain the 
address, subpool, and size of eacp table to 
be written. The last word of the TER 
parameter list must be zero. The TER 
returns a Head TTR address which locates 
the beginning of the tables on disk. This 
TTR must be saved for subsequent retrieval 
of the tables.· 

The initial write establishes disk data 
records for the tables for the duration of 
the associated queue entry (i.e., until the 
entry is deleted). Therefore, further 
write requests must specify the Head TTR in 
the TBR parameter list. Before issuing a 
write request, the caller must retrieve any 
previously written tables to prevent their 
being overlaid by the new write request. 

If the request is for output of tables, 
(transferring from main storage to direct 
access device), the Head TTR (passed in the 

parameter list) is used to read the first 
table queue control record .(TQCR). If the 
Head TTR is zero, the assign routine, 
IEFQASGQ, is called to assign space for a 
new TQCR. The TQCR is a 176-byte record 
containing a 4-byte forward-chain pointer 
and s~ace for 43 TTRs. These spaces are 
filled in as the tables are written, using 
the assign routine to assign the TTRs, and 
the Read/Write routine, IEFQMRAW, to write 
the tables in 176-byte segments. If more 
than 43 records are required to hold the 
tables, a new TQCR is chained to the first, 
and processing continues. The low-order 
byte of the last TTR used in writing the 
tables is set to 'FF' (hexadecimal) to"in
dicate end-of-tables. After these 'rTRs are 
assigned, 'they are used each time the table 
breakup routine is called to write tables, 
as lcng as the Head TTR is preserved by the 
caller. 

Once a queue entry has been deleted, a 
caller must issue another initial write 
request (Head TTR is zero in the table 
breaku~ routine parameter list) to estab
lish a new string of table data records. 
IEFSD514 does not free table storage areas. 

In retrieving tables, the TBR parameter 
list must contain the address of an asso
ciated QMPA. The function code (QMPCP) 
field must specify a read operation. The 
TBR parameter list must also contain the 
Head TTR address. sufficient space must be 
allowed for the TBR to return the new main 
storage address of each table, and the sub
pool and size of each table as specified 
when they were written by the TBR. 

If the request is for input (reading 
into storage) of tables, the first TQCR is 
read into storage using the Head TTR passed 
in the parameter list. The first record of 
the first table is read, using the first 
record in the TQCR. T·his record contains 
the size of the table and the number of the 
desired subpool. IEFSD514 issues a GET~~IN 
specifying the subpool and the amount of 
storage required for the table. The 
rerrainder of the table is then read into 
the storage obtained, using read/write rou
tine IEFQMRAW. Each table specified in the 
parameter list is processed in this manner 
until 'FF·' (hexadecimal), indicating end
of-tables, is found. As each table is read 
into main storage, the parameter list is 
updated with the main storage address of 
that table. When all tables have been 
read, control is returned to the caller. 
The address of the updated parameter list 
is returned in register 1. Tables are 
always written in the same sequence that 
they appear in the TBR parameter list, 
beginning with the Head TTR. They are 
retrieved, totally, in the same sequence; 
they cannot be read selectively. 

Master Scheduler Task 87 



Transient Queue Manager Routines (IEFXQMOO, 
IEFXQM01, and IEFXQM02) 

The transient queue manager consists of 
initialization and read/write routine 
IEFXQMOO, track assignment routine 
IEFXQM01, and record assignment routine 
IEFXQM02. These routines provide the ser
vices of assign/start routine IEFQAGST, 
assign routine IEFQASGQ, and read/write 
routine IEFQMRAW. The transient q~eue 
manager is in SYS1.SVCLIB and operates in 
the transient SVC area. 

When the transient queue manager ini
tialization and read/write routine IEFXQMOO 
receives control it first initializes an 
ECB/IOB and prepares the QMPA. If the 
queue manager was requested to provide a 
track or record, IEFXQMOO branches via an 
XCTL macro instruction to track assignment 
routine IEFXQMOl or record assignment rou
tine IEFXQM02. If the queue manager was 
requested to read or write a record onto 
the job queue, IEFXQMOO performs the read 
or write. IEFXQMOO returns control to the 
caller upon completion, as does IEFXQMOl 
and IEFXQM02. 

Reader/Interpreter 
MFT uses the MVT reader/interpreter (read
er). However, because of job class, 
possible MFT interlocks, and the capability 
of using transient readers, some modifica
tions have been made to the MVT modules, 
and six new modules have been added. These 
modifications and additions are described 
below. 

MFT allows as many as three input 
readers to execute concurrently with pro
blem programs and writers. Resident 
readers operate in previously defined read
er partitions, and transient readers oper
ate in problem program partitions large 
enough to accommodate them. Input stream 
data for the step being read is transcribed 
onto direct-access storage where it is held 
until execution of the associated job 
begins. Problem programs retrieve this 
data directly from the storage device. 

In MFT there are three types of system 
input readers: 

• Resident reader. 
• user-assigned transient reader. 
• system-assigned transient reader. 

Resident and transient readers may operate 
in the same system, provided n~ more than 
one system-assigned reader is specified, 
and the total number of readers does not 
exceed three. The primary difference 
between the user-assigned and system-

88 

assigned transient readers is the manner in 
which the transient reader resumes opera
tion after it is suspended. 

RESIDENT READERS 

A resident reader operates in a partition 
desi.gnated as such at system generation (by 
replacing the job class identifier with R), 
or during system initialization or parti
tion definition (by specifying RDR for the 
job class identifier). A resident reader 
reads its input stream, enqueuing jobs 
until the input stream reaches end-of-file 
or until it is terminated by a STOP command 
entered for that partition. 

Note: The STOP con,mand does not take 
effect until the current job is completely 
read. 

TRANSIENT READERS 

A transient reader operates in a problem 
program partition large enough to acconrrno
date it. A transient reader can be ter
minated by issuing a STOP command or by 
reaching end-of-file, as can the resident 
reader. In addition, a transient reader is 
suspended when a job is enqueued either for 
the partition occupied by the reader, or 
for a small partition. (Note that this is 
possible only when a reader completes read
ing an entire job.) 

If a transient reader is started in a 
specific partition by including the parti
tion assignment in the START command, it 
always resumes operation in that same par
tition, and only when that partition be
cones free. This type of transient reader 
is referred to as user-assigned. If 's' is 
substituted for the partition number in the 
START command, the system assigns the read
er to any available large problem program 
partition. This type of transient reader 
is called system-assigned. 

READER CONTROL FLOw 

After a START command is entered to acti
vate a reader, master scheduler routine 
IEECIR50 determines if the size of the 
requested partition is large enough, and 
posts the partition. Job selection routine 
IEFSD510 determines that a START command 
has been entered, and passes control to 
systere task control (STC> syntax check rou
tine IEEVSTAR. The syntax check routine 
validates the syntax of the START command, 
builds job control language tables, and 
retrieves the reader cataloged procedure 
specified in the START command. Each read
er is assigned to an input device specified 
in the START command. Control is then 



passed to interface routine IEFSD533 which 
sets up an interpreter entrance list (NEL) 
for a reader. It also allocates job queue 
space for a transient reader by issuing a 
dummy WRITE macro instruction. Control is 
then passed to linkage routine IEFSD537 
which issues a LINK macro instruction to 
reader initialization routine IEFVH1 to 
begin reading the input job stream (Chart 
24-26). 

When reader initialization routine 
IEFVH1 receives control, it reads its input 
stream using QSAM. and translates job pro
cessing information into convenient form 
for subsequent processing by an initiator 
and system output writer. Each job read in 
by the readers is converted into tables 
that are placed in the appropriate job 
class input work queue specified by the 
CLASS parameter on the JOB statement. One 
input work queue exists for each of the 
fifteen problem program job classes (A 
through 0). 

For systems that include Multiple Con
sole Support (MCS), the PARM field on an 
EXEC statement includes a command authority 
code. This code is included in the option 
list created by interface routine IEFSD533. 
and placed in the interpreter work area 
(IWA) by reader initialization routine 
IEFVH1. This code is passed by the reader 
when it issues an SVC 34 due to a command 
read in the input stream. 

After the reader has completed reading a 
job, control passes to queue manager 
enqueue routine IEFQMNQQ which enqueues the 
job on the appropriate input work queue 
according to the PRTY parameter on the JOB 
statement (see "Queue ~anagement" in this 
section) • 

Note: If the reader is being used as a 
subroutine by a problem program, it does 
not enqueue the job on the input work 
queue. but returns control to the problem 
program passing the addresses of the JCT 
constructed for that job, and the QMPA 
associated with that input queue entry. 

If data is encountered in the input 
stream, control is passed to interpreter 
CPO routine IEFVHG to transcribe the data 
onto direct-access storage for later retri
eval by the problem program. If there is 
no space for the data, control passes to 
interpreter operator message routine 
IEFSD536 to issue a DISPLAY active command 
and a WTOR message. The operator replies 
with either 'WAIT' or 'CANCEL'. If 'WAIT' 
is specified, the reader waits for space to 
become available. If 'CANCEL' is speci
fied, the reader is canceled and a READER 
CLOSED message is issued. IEFSD536 then 
sets indicators which cause cleanup of the 
current JOD, and control to be passed to 

interpreter termination routine IEFVHN to 
terJl'.inate the reader. 

After a reader enqueues each job. con
trol passes to transient-reader suspend 
tests routine IEFS~532. This routine 
decides whether to 1) terminate the reader, 
2) suspend the reader, or 3) have the read
er ccntinue reading the job stream. ('Ihe 
decision to suspend the reader would never 
be Jl'ade if the reader· is resident.) If the 
reader is to be terminated, control passes 
to termination routine IEFVHN. If the 
reader is to be suspended, control passes 
to transient reader suspend routine 
IEFSD530. Otherwise, control returns to 
job and step enqueue routine IEFVHH to con
tinue reading the job stream. 

Transient Reader suspend Routine (IEFSD530) 

When a transient reader is suspended, tran
sient reader suspend routine IEESD530 
(Chart 29) writes the tables and work areas 
used by the reader onto the work queue data 
set (SYS1.SYSJOBQE). 

The routine closes the reader and proce
dure library. Data needed to restore the 
reader is temporarily saved in the inter
preter work area (IWA). The IWA is then 
written to the work queue data set. When a 
user-assigned transient reader is sus
pended, the address of the reader space on 
the work queue is placed in the partition 
information block (PIB). When a system
assigned transient reader is suspended, the 
address of the IWA is placed in the master 
scheduler resident data area (IEFSD568). 
(See Appendix A for the format of 
IEFSD568.) The work queue data set is 
later used by transient reader restore rou
tine IEESD531 to restore the reader when 
the assigned partition becomes available 
after job termination. "No work" ECBs for 
problem program partitions are posted (see 
"Job selection"), and the JCTJMR field of 
the JCT is tested to determine if SMF is 
supported. If this field contains zeroes. 
there is no JMR and SMF is not supported. 
If SMF is supported, the user's SMF exit 
routine IEFUJV (whose address is contained 
in the JMRUJVP field of the J~~) is deleted 
if it is present in main storage. Storage 
for the JMR is also freed via the FREEMAIN 
macro instruction. 

The transient reader suspend routine 
then returns control to system task 
control. 

Transient Reader Restore Routine (IEFSD531) 

Once a partition is again free for the 
reader, transient reader restore routine 
IEFSD531 (Chart 30) receives control and 
issues a GETMAIN for the lWA, Local Work 
Area (LWA), reader DCB, and procedure 

Master Scheduler'Iask 89 



library DCB. The direct:..access device 
address of the IWA is retrieved from the 
PIB if a user-assigned reader is to be 
restored, or from the master scheduler 
resident data area, if a system-assigned 
reader is to be restored. The IWA is then 
read in from the job queue. The TIOT is 
read into storage and the TCB pointer is 
updated; other tables and work areas neces
sary to restore the reader are reset from 
the information saved in the IWA. 

If SMF is in the system and if SMF 
options are specified, a GETMAIN macro 
instruction is issued to obtain main 
storage for the job management record 
(JMR). The JMR is then initialized with 
the SMF options and the RDR device type and 
name. If SMF exits are specified, the name 
of SMF user exit routine IEFUJV is placed 
in the NEL. The routine is then loaded and 
its address is placed in the JMRUJVP field 
of the JMR. The reader and procedure 
library DCBs are opened and the reader 
resumes operation to start reading at the 
point in the job stream where it was sus
pended. Control is then passed to inter
preter routine IEFVHCB to continue reading 
the job stream. 

Initiator/Terminator (Scheduler) 
To provide independent scheduling, schedu
lers operate in any problem program parti
tion of sufficient size. A partition large 
enough to accommodate the scheduler is 
referred to as a "large partition." A par
tition not large enough to accommodate the 
scheduler is referred to as a "small parti
tion". Within a given large partition, a 
scheduler operates independently of schedu
lers in other large partitions. Because 
small partitions cannot accommodate the" 
scheduler, they rely on large partitions to 
perform their initiation, allocation, and 
termination operations. Scheduling for 
small partitions is described in "Small 
Partition Scheduling" in this section. 

An MFT initiator (Chart 18) dequeues a 
job (entry) for its partition based on a 
job class designated for the partition. 
Once dequeued, the job is scheduled accord
ing to the information contained in the 
entry. 

During allocation and termination of 
each job step, the allocation and termina
tion routines place messages and output 
data set pointer blocks in a specified out
put queue. The queue entry is created by 
the reader/interpreter. (The output queue 
entry becomes input to an output writer 
when the job is completed.) 

90 

An initiator functions as a control pro
gram for the scheduling process, using the 
allocation and termination functions as 
closed subroutines. The MFT initiator is 
composed of the following routines: 

• Job Selection 
• Small Partition 
• Job Initiation 
• Data Set Integrity 
• Step Initiation 
• Problem Program Interface 
• Step Deletion 
• ENQ/DEQ Purge Routine 
• Alternate Step Deletion 
• Job Deletion 

JOB SELECTION (IEFSD510) 

The jcb selection routine (Charts 19-23) 
acts as the control routine for the MFT 
initiator. The routine is brought into all 
large problem program partitions by the 
master scheduler at system initialization, 
by the job deletion routine when a job has 
terminated, or by system task control when 
a writer has been sCheduled for a small 
partition or a reader has been suspended. 

Job selection first waits on a "no work" 
ECB in the PIB. This ECB is posted com
plete by the command processing routines, 
the job deletion routine, system task con
trol, or the small partition module when a 
small partition needs scheduler services. 

When the "no work" ECB has been posted 
complete, the job selection routine checks 
the PIB to determine if a life-of-task 
(LOT) block exists (see Appendix A for a 
description of the LOT block). If not, it 
creates one for the task. 

Job selection then checks the PIB for a 
small partition information list (SPIL) 
pointer (see Appendix A for a description 
of SPILl. If one exists, scheduling is 
performed for the small partition by pas
sing control to IEFSD599. If no SPIL 
pOinter exists, the PIB is checked for any 
pending STOP DSO or MODIFY DSO commands. 
These are processed by passing control to 
stop and modify command processing routine 
IEFDSOSM. 

Upon return from IEFDSOSM, the PIB is 
checked to determine if the partition is 
involved in partition redefinition; if the 
partition is to be changed, the PIB is 
checked further. If a job is queued on the 
checkpoint/restart internal queue it is 
processed: if a restart reader is pending, 
it is started. If neither exists, any DSO 
processing is stopped, no further schedul
ing is allowed in the partition and the 
partition can be .·redefined. (See "Master 
SCheduler Task." ) 



If the partition in which the initiator 
is operating is not part of a partition 
redefinition, a test is made for a pending 
Restart Reader command. If no command is 
pending" a test is made to determine if a 
system-task reader or writer is to be 
started. If a restart reader or a system
task reader or writer is to be started. 
control passes to system task control which 
initiates readers and writers. If a 
restart reader is being started, and a 
user-assigned reader had been rolled out of 
the partition, the PIB is marked 
accordingly. 

If no small partition is requesting ser
vice. n~ reader or writer is to be started, 
and the partition is not part of a rede
finition operation, a final check is made 
to determine if a START INIT command has 
been issued; if so, job selection attempts 
to dequeue work from the input work queue 
(see Figure 25). If a STOP INIT command 
has been issued, the attempt to dequeue a 
job is bypassed. 

~ 

START 
INIT .... 

JOB 
SELECTION 

I~ 

CANCEL 

~ ALLOCATION 
ALLOCATION/ 

+m PROBLEM 
PROGRAM 
INTERFACE 

----l 
~nE"oc : 

1 I 
I 

® PROBLEM LOT 
PROGRAM 

I 

I 
I 

1 
I~ STEP/ ~ ABEND JOB TERMINATION 

DELETE 

I" 

Step Deletion 

Job Deletion 

Figure 25. Scheduling a Problem Program in 
a Large Partition 

A threshold check is then made to deter
mine if enough logical tracks are available 
on SYS1.SYSJOBQE to start the initiator. 
If not, message IEF427I COMD REJECTED FOR 
INITIATOR 'ident' - INSUFFICIENT QUEUE 

SPACE is sent to the operator and job 
selection again waits on the "no work" ECB. 

The job selection routine obtains 
storage for the job control table (JCT) and 
checks to determine if a job is queued on 
the checkpoint/restart internal queue. If 
a job exists. dequeue by jobname routine 
(IEFLOCDQ) is used to remove it from the 
hold queue for processing. If no job is on 
the internal queue, the routine then uses 
the queue manager dequeue routine 
(IEFQMDQQ) to obtain work from one of the 
input job queues according to the job class 
assignment of the partition. If work is 
found" IEFQMDQQ constructs a CSCB for the 
job and an lOB to be used when reading or 
writing the input queue. The CSCB is con
structed in the system queue area and the 
address of the CSCB is placed in the LCT. 
The address of the lOB is placed in QMGRl 
When a user accounting routine is supplied, 
the job selection routine sets all four 
fields of the timer work area in the LCT to 
zero. These fields are used in calculating 
the execution time of a job step. Job 
selection then branches to job initiation 
routine IEFSD511. 

If the search for work for the partition 
is unsuccessful (i.e •.• no work has been 
enqueued for any of the job classes 
assigned to the partition) tests are made 
to determine if a transient reader is to be 
restored in the partition or if a START 
command has been entered for a system
assigned transient reader. If so, system 
task control is called. If a reader is to 
be restored in the partition, job selection 
passes control to special entry point 
IEE534SD in system task control. 

Command Processing services 

In response to system commands entered in 
the input stream or from a console, the 
command processing routines request a ser
vice by storing information in the PIB of 
the affe€ted partition or in the master 
scheduler resident data area for START and 
STOP commands issued for system-assigned 
transient readers and writers. The job 
selection routine recognizes these requests 
and takes one of the following actions: 

• Inhibits further job scheduling for the 
partition in preparation for the pro
cessing of a DEFINE command. (The 
DEFINE command can be entered only from 
a console .• ) 

• Prevents execution of problem programs 
in large partitions in response to a 
STOP INIT command. 

• Passes control to system task control 
in response to a START reader or START 
writer command. 

• Schedules problem program execution in 
response to a START INIT command. 

Master Scheduler Task 91 



SMALL PARTITION SCHEDULING 

A partition is defined as "small" when its 
size is at least 8K bytes but less than the 
job scheduler generated for-the system. 
small partition scheduling is performed by 
an initiator in a scheduler-size partition 
at the request of small partition module 
IEFSD599 (IEFSD599 is described later in 
the topic "small Partition Module"). The 
small partition is therefore temporarily 
dependent on a large partition while sche
duler services are being performed. Sche
duling for a small partition is independent 
of scheduling for other small partitions in 
the system. 

The small partition module interfaces 
with job selection module IEFSD510 to sche
dule a problem program, or with system task 
control to schedule a writer in a small 
partition. communication between the small 
partition module and job selection or sys
tem task control is maintained through a 
small partition information list (SPIL). 
(The format of a SPIL is shown in Appendix 
A. ) 

Small partition module IEFSD599 requests 
the scheduling function by placing the 
address of a SPIL in the partition informa
tion block (PIB) of each scheduler-size 
partition in the system. Each time job 
selection is entered between jobs, the PIB 
is checked for a nonzero SPIL address. If 
the PIB contains a valid address, the SPIL 
is analyzed, the job class queues for small 
partitions are searched for work, and con
trol is passed to one of the following: 

• Job Initiation (IEFSD511), if work has 
been found for a small partition. 

• Step Deletion (IEFSD515), if a small 
partition is waiting for termination. 

• System Task Control (IEEVSTAR), if a 
writer is to be started in the small 
partition. 

These routines perform the requested 
service in the large partition and use the 
SPIL to indicate their action to IEFSD599. 
When the requested service has been per
formed, these routines return to IEFSD510. 

Initiating a Problem Program 

As shown in Figure 26, initiation ~f a pro
blem program in a small partition 1S per
formed by a large partition. If a small 
partition is waiting for work, job selec
tion module IEFSD510 dequeues a job from an 
input work queue that the small partition 
is assigned to service. The large parti
tion posts a completion code in field ECBA 
of the SPIL when initiation services have 
been performed. 

92 

A completion code of one indicates that 
no work was found for the small partition. 
The small partition then waits on the BCE 
list in the SPIL. The posting of any of 
the listed ECEs causes the small. partition 
to request initiation services. 

A completion code of zero indicates that 
initiation services have been performed and 
the problem program job step is ready to be 
executed. The small partition, using the 
allocate parameter list (APL), moves the 
task input/output table (TIOT) and life-of
task (LOT) block from the large partition, 
opens required DCBs, and establishes pro
blem program mode. (If the system has the 
storage protection feature, the protection 
key is set.) If the job has not been can
celed, control passes to the problem pro
gram, thus freeing the large partition to 
continue processing. 

Initiating a Writer 

As shown in Figure 27, if a writer is to be 
started in the small partition, small par
tition module IEFSD599 requests initiation 
of the writer by system task control. A 
large partition responds to the request by 
bringing system task control routine 
IEEVSTAR into the large partition. 
IEEVSTAR initiates the small partition to 
the point of calling in the. writer. 
IEEVSTAR then posts ECBA in the SPIL with a 
cOJrpleticn code of zero to indicate to 
IEFSD599 that initiation services have been 
performed, and the writer is ready to be 
executed. Small partition module IEFSD599, 
using the link parameter list (LPL), moves 
the TIOT from the large partition to the 
small partition. ECBC in the SPIL is post
ed, thus freeing the large partition to 
continue normal processing. Problem pro
gram mode is established, the SPIL is 
freed, and control passes to the writer via 
an XCTL macro instruction. 

Terminating the Small Partition 

When the job step is completed, or a writer 
is stopped, small partition module IEFSD599 
is brought back into the partition and 
entered at special entry point SMALLGO. A 
check is made to determine whether a sched
uler AEEND occurred. If it did, a message 
is issued to the operator with a completicn 
code, and all CSCBs associated with that 
job are removed from the CSCB chain. Con
trol then passes to the normal entry point 
of IEFSD599. If no scheduler ABEND 
occurred, IEFSD599 determines if job step 
tiJr,ing is being performed by testing the 
high-order bit in the job step timing sta
tus bits field of the PIB. If the bit is 
on, the TQE is being used for job s~ep tim
ing and the routine issues a TTIMER macro 
instruction to stop the timing and to 
obtain the step time remaining for use in 



~ I CO~NsOLE' ~ 

START INIT 
Allocation Error 

I 
SMALL PARTITION 

MODULE 

I 

I 

SMALL 
PARTITION 

CANCEL 

PROBLEM 
PROGRAM 

~ 
ABEND 

-,-- ------------------- ----------

LARGE 
PARTITION 

INITIATION/ 
ALLOCATION 

r--_8 --_ 
~ 

TERMINATION 

Figure 26. scheduling a Problem Program in a Small Partition 

updating the SPIL. It then turns off the 
bit and saves the step time remaining in a. 
register until the SPIL is created. When 
the SPIL is created, the routine updates it 
with the step time remaining and sets the 
status bit indicating that termination ser
vices are requested. The small partition 
module then begins a search for a large 
partition to perform the job termination 
required. 

After an initiator in a large partition 
has performed the termination services, 
ECBA in the SPIL is posted with a comple
tion code of two to indicate that job ter
mination has taken place. A check is made 
to determine if the small partition is 
involved in a redefinition operation. If 
it is, the small partition is made quies
cent. If the small partition is not asso
ciated with a redefinition operation, it 
requests additional services from an 
initiator in a large partition .• 

Note: If the initiator in a large parti
tion performs step termination instead of 
job termination, the next step of the job 

in the small partition is scheduled before 
the initiator schedules a job into its par
tition, or before it performs scheduling 
services for another small partition. 

small Partition Module (IEFSDS99) 

Small partition module IEFSDS99 (Charts 
OS-OS) is entered from the redefinition 
routines at system initialization or when a 
DEFINE command is issued or from the master 
scheduler. The module is entered at spe
cial entry point SMALLGO from the ABEND 
routines when a step has completed execu
tion. IEFSDS99 first waits on a "no work" 
ECB located in the partition's PIB. When 
this ECB is posted complete, the PIB is 
checked to determine if a SPIL has been 
created. If not, one is created and an 
indicator is set in the PIB. The FIB is 
then checked for pending STOP DSO or MODIFY 
DSO commands. IEFSDS99 passes control to 
stop and modify command processing routine 
IEFDSOSM to process any such pending DSO 
commands. 

~aster Scheduler Task 93 



~ I ~;~~~~ 
START Writer 

Allocation Error 

! 
SMALL PARTITION 

MODULE 

I 

I 

SMALL 
PARTITION 

OUTPUT 
WRITER 

ABEND 

--- ------~------r_---- -- ----------

I 
JOB SELECT 

MODULE 

I 
LARGE 
PARTITION 

SYSTEM 
TASK 
CONTROL 

---8 --~ TERMINATION 

Figure 27. scheduling a Writer in a Small Partition 

I Upon return from IEFDSOSM, IEFSD599 
checks the PIB to determine if the parti
tion is involved in a redefinition opera-
tion. If a redefinition is pending, the 
internal job queue of checkpoint/restart 
jobs is checked and any jobs on the queue 
are processed before the partition rede
finition. If there is nothing on the 
internal job queue and redefinition is 
pending, assigned tracks are deleted, the 

I SPIL is freed, any DSO processing is 
stopped, and pending CSCBs are freed. The 
'DEFINE' ECB in the PIE is pcsted to indic-
ate that the partition has been made quies
cent, and a return is made to wait on the 
"no work n ECB. 

If no redefinition operation is pending, 
the PIB is checked to determine if a writer 
is to be started in the partition. If so, 
an indicator is set in the SPIL, assigned 
bracks are deleted, and a request for sche
duling is made to a large partition 
(described below). If a.writer is not to 
be started, the STOP INlT bit in the PIE is 
checked. If this bit is on, assigned 
tracks are deleted, the SPIL is freed, and 

94 

a return is made to wait on the 'no work' 
ECE. If the STOP INIT bit is not on, the 
PIB is checked for track assignment. If 
needed, tracks are assigned and indicated 
in the PIB. The SPIL is updated to indic
ate a request for initiation of a problem 
program. 

A request is made for a large partition 
to service the small partition based on the 
contents of the SPIL. First, an exclusive 
ENQ ITacro instruction is issued to prevent 
concurrent service requests by small parti
tions. Interruptions are disabled to pre
vent interference with the address of the 
SPIL in the large partition's PIB. 
IEFSD599 then searches for a scheduler-size 
partition. The TCEs are tested for problem 
program status; when a scheduler-size par
tition is found, a deterreination is made of 
whether the small partition is involved in 
a DEFINE operation. 

If the small partition is involved in a 
DEFINE operation, the test for the large 
partition involved in a DEFINE operation is 
bypassed. If the small partition is not 



involved in a DEFINE operation, the large 
partition is tested to determine if it is 
involved in a DEFINE operation. If so, the 
large partition is bypassed and the TCB 
search is continued. 

The address of the SPIL is stored in the 
PIB of the large partition, thus constitut
ing a request. An indication is made when 
storing occurs. If a large partition is 
waiting on its 'no work' ECB (in its PIB), 
the large partition is posted and the large 
partition routine clears the SPIL addresses 
in the other large partition PIBs. When a 
large partition is posted, or all applic
able TCBs are checked, interruptions are 
enabled. 

If no SPIL pointers were stored during 
the search, a DEQ macro instruction is 
issued (to allow other small partitions to 
make requests), and a WAIT macro instruc
tion is issued on a 'dormant' ECB in the 
small partition's PIB. (When later posted 
by the command processing routines, the 
small partition module will repeat its 
search). If at least one SPIL pOinter was 
stored, a WAIT macro instruction is issued 
on ECBB in the SPIL. This allows a large 
partition, immediately upon recognition of 
the request, to post the ECB complete. The 
small partition module may then issue a DEQ 
macro instruction to release the SPIL 
pointer field so other small partitions may 
make requests. 

Next, a WAIT macro instruction is issued 
on ECBA (in the SPILl to delay the small 
partition until the requested service has 
been performed. When ECBA is posted com
plete by the large partition, the comple
tion code is tested to determine the action 
which occurred. If the completion code is 
two, job termination occurred and return is 
made to the point of determining the DEFINE 
status of the small partition. If the com
pletion code is one, 'no work' was found 
for the small partition and a return is 
made to WAIT on the ECB list in the SPIL. 
If the completion code is zero, the large 
partition is at the point of calling either 
the problem program or a writer. The large 
partition is waiting on ECBC (in the SPILl 
to allow transfer of information into the 
small partition by the small partition 
module. 

If a problem program is to be initiated, 
IEFSD599 uses the allocate parameter list 
(APL) to move the TIOT and user parameter 
area into the small partition. It then 
posts ECBC (freeing the large partition), 
and opens Fetch and/or JOBLIB DCBs if 
required. To process write-to-programmer 
messages during problem program execution, 
IEFSD599 puts the address of the SYSOUT 
QMPA into the WTPCB, which is located in 
the CSCB. 

The routine then determines if job step 
timing will be performed by testing the 
step time limit in the timer work area of 
the LOT block. If this value is equal to 
24 hours, the job step will not be timed. 
If the job step is to be timed, IEFSD599 
issues the STIMER macro instruction to set 
up the step time interval. The routine 
then sets bit zero of the job step timing 
status bits field of the PIB to one indic
ate that the job step TQE is being used by 
the Initiator. It also sets bit one to one 
to indicate to s~ep deletion routine 
IEFSDS15 that the STlMER macro instruction 
was issued specifying the TQE addressed in 
the PIB. 

The small partition routine establishes 
the partition in the problem program pro
tection mode and frees the SPIL. If the 
program to be initiated is the DSDR pro
cessing step of a checkpoint restart, 
IEFSD599 uses the APL to move the TIOT and 
user parameter area tnto the small parti
tion, and posts ECBC. The routine moves 
the job QMPA and the SYSOUT QMPA from the 
LOT to the CSCB, and bypasses opening the 
JOBLIB and FETCH DCBs. The routine also 
bypasses setting the storage protection key 
but frees the SPIL. 

A check is made to determine if the job 
has been canceled. If so., an ABEND macro 
instruction is issued. If the job has not 
been canceled, an XCTL macro instruction is 
issued to call the problem program into the 
small partition (the problem program passes 
control to ABEND at completion of its 
execution). 

ABEND recalls the small partition rou
tine and enters at special entry point 
SMALLGO. The routine changes the small 
partition protection key to zero. If job 
step timing is being performed, it issues 
the TTIMER macro instruction to stop the 
timing and to obtain the step time remain
ing for use in updating the SPIL. It sets 
bit zero of the job step timing status bits 
field in the PIB to zero to indicate that 
the jcb step TQE is no longer active. 
After it it creates the SPIL, the routine 
updates 'it with the step time remaining and 
turns on the status bit indicating that 
termination services are requested. 
IEFSD599 then begins the search for a large 
partition to service the request. 

If DSO processing or a writer is to be 
initiated, the control flow is the same as 
described above in Dlnitiating a Writer." 

INITIATOR/TERMINATOR CONTROL FLOW 

There are no terminator routines that are 
unique to MFT; the modules used in MFT task 

Master Scheduler Task 95 



termination are described in the MVT Job 
Management PLM. 

In addition to IEFSD510 and IEFSD599, 
several other initiator routines are unique 
to MFT. These are described in the follow
ing paragraphs. Descriptions of the MVT 
allocation and step initiation routines 
that have not been modified by MFT can be 
found in the MVT Job Management PLM. 

Job Initiation Routine (IEFSD511) 

Job initiation routine IEFSD511 issues a 
GETMAIN specifying subpool 0 to obtain 
space for the system output class directory 
(SCD). The SCD is then read into the area 
and the contents of the SCD are used to 
initialize QMGR2 in the LOT block. (QMGR2 
is the queue manager parameter area which 
is used for referencing the output data 
set.) After QMGR2 has been initialized, 
the storage obtained for the SCD is freed. 
A GETMAIN is then issued to obtain storage 
for IOB2, the lOB used in conjunction with 
QMGR2. A GETMAIN is issued (specifying 
subpool 253) to obtain space for the step 
control table (SCT). The SCT is read into 
the area thus obtained. Job initiation 
then branches to data set integrity routine 
IEFSD541. 

oIf direct system output (D80) processing 
is available in the partition, job initia
tion uses the SCD to build a table of all 
classes ofSYSOUT, including the message 
class, contained in the job stream. Job 
initiation uses this table to determine if 
DSO is available for the job; if so, it 
selects DSOCBs for the job. Selection of a 
DSOCB is indicated by placing the problem 
program's protection key into the DSOCB and 
flagging the job's JCT. 

Data· set Integrity Routine UEFSD541> 

The data set integrity routine is entered 
only once per job, from job initiation rou
tine IEFSD511. It first determines whether 
data set integrity processing is required. 

If the JCT indicates a 'failed' job or 
if there are no explicit data sets (DSNAME 
parameter in a DD statement) for the job, 
processing is bypassed and exit is made to 
step initiation routine IEFSD512. If data 
set integrity processing is required, the 
DSENQ table records are read from the job's 
entry in the input job queue (SYS1. 
SYSJOBQE). Duplicate DSNAMEs are eli
minated from the table and each unique 
DSNAME is placed in a minor name list. The 
most restrictive attribute (exclusive or 
share) is chosen for each DSNAME placed in 
the minor name list. After this processing 
is complete, an ENQ supervisor list is con
structed which contains an entry for each 

96 

DSNAME in the minor name list. Each entry 
is initialized with the following: 

• RE~=TEST option of ENQ. 
• SYSTEM option of ENQ. 
• Attribute (E/S) of the corresponding 

DSNAME. 
• Address of the common major name 

'SYSr;SN' • 0 

• Address of the corresponding DSNAME 
(considered the minor name) in the 
minor name list. 

The DSNAME (minor name) length is contained 
in the first byte of each DSNAME field in 
the minor name list. 

When the ENQ supervisor list is con
structed, the system is disabled and an ENQ 
supervisor call is issued against the list 
to test the availability of the DSNAMEs. 
If the DSNAMEs are available, the ENQ 
supervisor list is updated so that each 
entry reflects the RET=NONE option of ENQ. 
A second ENQ supervisor call is issued 
against the list to reserve DSNAMEs for the 
job. The system is enabled and exit is 
made to step initiation routine IEFSD512. 

If the DSNAMEs are unavailable for the 
job (already reserved with conflicting 
attributes by other task(s) in the system), 
the o~erator is notified of the condition. 
In notifying the operator, the return code 
field of each entry in the ENQ supervisor 
list is tested for a nonzero setting. If 
the setting is nonzero, the associated 
DSNAME (minor name) is identified to the 
operator as unavailable. The operator is 
given the following reply options: 

• RETRY, in case the resources have been 
freed by the other task(s) (processing 
is delayed until the operator replies). 

• CANCEL the job. 

If RETRY is entered by the operator, pro
cessing continues at the initial ENQ super
visor call to again test the availability 
of the DSNAMEs. The operator is again 
notified, and he can reply either RETRY or 
CANCEL. If the job is canceled by the 
operator, the 'job fail' bit in the JCT is 
set and exit is made to step initiation 
routine IEFSD512. 

step Initiation Routine (IEFSD512) 

step initiation routine IEFSD512 first 
issues a GETMAIN macro instruction to 
obtain storage for a 72-byte register save 
area for SMF user initiation exit routine 
IEFSMFoIE and branches to IEFSMFIE. Upon 
return, it frees the register save area and 
tests to determine if job step timing will 
be performed. If the job time limit in the 
JCT is equal to 24 hours, the job step will 
not be timed. In this case the step 



initiation routine moves the, 24 hour 1imit 
to the timer work area in the life-of-task 
(LOT) block. and bypasses the procedure for 
setting up the step time limit. 

If the job time limit in the JCT is 
equal to any value other than 24 hours. 
IEFSD512 determines the value to be used as 
the step time limit in the timer work area 
of the LOT block. For each step of the 
job. the routine determines if allowing the 
step to use the full amount of time speci
fied for it would cause the job time limit 
to be exceeded: IEFSD512 calculates the 
amount of job time remaining by subtracting 
the job time used from the job time limit 
and compares this figure with the step time 
limit. It establishes the step time limit 
by placing the smaller of the two figures 
in the step time limit field of the timer 
work area. If the smaller of the two 
figures is the job time remaining. the rou
tine turns on the high order bit in the 
step time remaining field of the timer work 
area to indicate that the job time remain
ing is being used as the step time limit. 

IEFSD512 then issues a GETMAIN specify
ing subpool 253 to obtain storage for an 
allocate register save area (ARSA) and an 
allocate parameter list (APL). The APL 
(Figure 28) is initialized containing 
addresses of the LOT. JCT. and SCT. and two 
words of zeros. 

0(0) 

Address of the LCT 

4 (4) 

Address of the JeT 

8(8) 

Address of the SCT 

12 (C) 

Address of the nOT Li st 

16 (10) 

Zeros 

20 (14) 

Figure 28. Allocate/Terminate Parameter 
List 

4 

4 

4 

4 

4 

The step initiation routine checks the 
current step to determine if it is either 
the checkpoint/restart data set descriptor 
record (DSDR) processing step or the 
restart step. If the step is a DSDR pro
cessing step being scheduled for a small 
partition containing less than 12K ~ytes. 
the PIB of the partition containing the 
step initiation routine will be tagged to 
indicate that the DSDR step is to execute 
in that partition. The step initiation 

routine will place the address of its TCB 
and PIB in the LOT and pass control to 
allocation via an XCTL macro instruction. 
If the DSDR step is to be processed in a 
large ~artition. normal processing is 
continued. 

If the step is the restart step. the 
step initiation routine will pass control 
to partition recovery routine IEFSD518 via 
a LINK macro instruction. If the return 
code from IEFSD518 is a zero. normal pro
cessing is continued; if the return code 
from IEFSD518 is a four. the address of the 
LOT is placed in register 1 and control is 
passed to job selection IEFSD510 via an 
XCTL Eacro instruction. 

If the job is using DSO. a message to 
that effect is placed in the first 5MB. 
step initiation then passes control to 
Allocation via an XCTL macro instruction. 
Allocation returns the addresses of a task 
in~ut/output table (TIOT) list (which 
points to the TIOT) in the first word of 
zeros in the APL. On return from alloca
ticn. the return code is tested to deter
mine if allocation was successful. If not. 
step initiation branches to alternate step 
deletion routine IEFSD516 via an XCTL macro 
instruction. 

If allocation was successful. the ARSA 
is freed. and the "step started" bit in the 
SCT is turned on. The address of the job's 
CSCB is stored in the APL (in the last word 
of the list). If the job is using DSO. and 
if job separator and/or system message pro
cessing is required. step initiation links 
to system message and job separator writer 
routine IEFDSOWR. If IEFDSOWR is unable to 
process due to a job queue I/O error. the 
initiator will ABEND with an error code of 
OBO; if IEFDSOWR is unable to process due 
to I/O errors. step initiation will set the 
jot failed bit (~hich is tested later by 
IEFSD513). 

Step initiation then uses queue manager 
read/~rite routine IEFQMRAW to write the 
JCT and SCT back on the input queue. The 
disk addresses of the JCT and SCT are saved 
in the LCT. A GET!'.AIN specifying subpool 
253 is issued for the table breakup routine 
(TBR) parameter list and register save 
area. The TBR parameter list is initia
lized with the address. size. and subpool 
specifications for the TIOT and LeT block. 
The TIOT and LOT are then written into the 
jot's entry in the job queue. and the Head 
TTR is saved in the JCT. The storage 
obtained for the TER parameter list and 
register save area. lOBI. and IOB2 is 
freed. The JCT is then written out. Step 
initiation then passes control to problem 
program interface routine IEFSD513 via an 
XCTL :macro instruction. 

Master Scheduler Task 97 



SMF User Initiation Exit Routine (IEFSMFIE) 

SMF user initiation exit routine IEFSMFIE 
receives control from step initiation rou
tine IEFSD512. It first determines if SMF. 
is supported by testing the JCTJMROP field 
of the JCT for a zero value. A zero value 
indicates that SMF is not supported. In 
this case the routine immediately returns 
control to the caller (IEFSD512). If SMF 
is supported, the SMF user initiation exit 
routine performs the following functions: 

• It initializes and updates the timing 
control table (TCT). 

• It updates the job log portion of the 
job management record (JMR). 

• It passes control to the user's job 
initiation exit routine., IEFUJI, or 
step initiation exit routine, IEFUSI. 

• It constructs the SMF Job Commencement 
Record (type 20). 

When it is entered, IEFSMFIE issues the 
TIME BIN macro instruction and stores the 
job initiation start time and date in the 
JCT. It then determines if the step being 
initated is the first step of the job. If 
so, it issues a GETMAIN macro instruction 
specifying the system· queue area to obtain 
main storage for the TCT and for the first 
40 bytes of the JMR. The routine initiali
zes the TCT and stores its address in the 
TCBTCT field of the TCB. It then uses the 
Queue Management ReadIWrite routine to 
bring the JMR into main storage. It copies 
the first 40 bytes of the JMR into the area 
reserved for it and updates it with the job 
initiation start time and date. If user 
exits are specified, the routine brings the 
job account control table (ACT) into main 
storage and then passes control to user job 
initiation exit routine IEFUJI. 

If the step being initated is not the 
first step of the job, the TCT and JMR are 
already in main storage.. IEFSMFIE stores 
the step initiation start time and date in 
the JMR. If user exits are specified, the 
routine brings the job ACT into main 
storage and then passes control to user 
step initiation routine IEFUSI. 

Upon return from the user exit routine, 
IEFSMFIE inspects the return code. If the 
return code specifies that the job is to be 
canceled, the routine sets the job-failed 
bit in the JCT. 

For each job, the SMF user initiation 
exit routine also determines if the data 
set accounting option is specified by test~ 
ing the SMCAOPT field in the SMCA. If the 
option is not specified, or if the job was 
cancelled, the routine bypasses construc
tion of a Job Commencement Record (type 
20). otherwise, IEFSMFIE builds the record 
using the accounting information in the job 

98 

ACT and issues an SVC 83 to have the record 
transferred to the SMF buffer. 

When processing is complete, IEFSMFIE 
returns control to the caller (IEFSD512). 

Note: Fcr the format and description of 
the J~R and TCT, see .. Appendix A" in the 
MVT Job Management PLM. 

Problem Program Interface Routine 
(IEFSD513) 

The problem program interface routine pre
pares the partition for execution of the 
job step. It first passes control to SMF 
TCTIOT construction routine IEFSMFAT. Upon 
return the routine determines if SMF is 
supported by testing register 15. A zero 
value indicates that SMF is not supported 
and in this case IEFSD513 bypasses the pro
cedures for updating the TCT with the job 
wait time limit. 

If SMF is supported, register 15 con
tains the address of the TCT and register 0 
contains the job wait time limit obtained 
from the system management control area 
(SMCA) by IEFSMFAT. In this case IEFSD513 
places the job wait time limit in the 
TCTWLMT field of the TCT. It also initial
izes bit zero of the TCTSW field to corres
pond with the bit set in the time remaining 
field of the timer work area by IEFSD512 
indicating whether the job time remaining 
or the step time limit was established as 
the time limit for the step about to 
receive control. 

The problem program interface routine 
then tests to determine if scheduling was 
performed for a small partition. If so, 
this routine tests its partition's PIB to 
determine whether a checkpoint/restart data 
set descriptor record (DSDR) is to be pro
cessed. If the DSDR step is to be pro
cessed, the SPIL pointer in the LOT is 
ignored; otherwise the address of the APL 
is placed in the SPIL, ECBA in the SPIL is 
posted to indicate that scheduling is com
plete, and a WAIT is issued on ECBC. This 
WAIT allows the small partition module to 
copy tables and work areas into the small 
partition. When the tables have been 
copied, ECEC is posted complete, and the 
interface routine frees all storage 
obtained for tables and work areas except 
for the LOT block, which is retained. The 
address of the LOT block is placed in 
reqister 1 and this routine passes control 
to job selection, IEFSD510, via an XCTL 
macro instruction. 

If scheduling was not performed for a 
small partition, a test is made to deter
mine if the job has been canceled. If so, 
exit is made by issuing an ABEND macro 
in struction. 



If the job has not been canceled, the 
job OMPA and the SYSOUT QMPA are moved from 
the LOT to the CSCB, the TIOT is moved to 
the lowest possible location (subpool 0) in 
the partition, and a GETMAIN macro instruc
tion specifying subpool 253 is issued for 
the user's parameter list (UPL). The UPL 
(Figure 29) is initialized from the SCT. 
Another GETMAIN macro instruction (subpool 
253) is issued to create a register save 
area for the user's problem program. If 
STEPLIB" JOBLIB, and/or FETCH have been 
specified, their DCBs are created (but not 
opened) in subpool 253. The JCT" SCT, and 
APL are now freed, the STEPLIB or JOBLIB 
and FETCH DCBs are opened, and the TIOT is 
then moved to subpool, 253. A single DCB is 
used for STEPLIB or JOBLIB, with STEPLIB 
overriding JOBLIB if both are present. 

o 11 
Reserved I Address of length field 

3 

4 21 
Length of PARM values J 

8 

PARM values 
(from EXEC statement) 

(Maximum length = 40 bytes) 

J 
Figure 29. User's Parameter List 

If the job being started in the parti
tion is a checkpoint/restart data set 
descriptor record (DSDR) processing joh, 
the routine bypasses opening the STEPLIB, 
JOBLIB, and FETCH DCBs and also bypasses 
setting the storage protection key. 

~: The use of subpools, and the order 
in which control blocks and tables are 
created" moved, or deleted, follows a par
ticular sequence even though this handling 
occurs within different modules. This is 
done to prevent fragmenting main storage 
within the partition. 

The routine then sets the PSW to the 
problem program mode. IEFSD513 then tests 
to determine if job step timing will be 
performed. If the step time limit in the 
timer work area of the LOT block is equal 
to 24 hours, the job step will not be 
timed. If the step time limit is equal to 
any value other than a 24 hours, the pro
blem program interface routine issues the 
STIMER macro instruction to set up the step 
time interval. It then sets bit zero of 
the job step timing status bits field in 

the PIB to one to indicate that the job 
step TQE is being used by the Initiator. 
It also sets bit one to one to indicate to 
step deletion routine IEFSD,515 that the 
STIMER macro instruction was issued speci
fying the TQE addressed in the PIB. 

Whether or not job step timing is per
formed, IEFSD513 frees main storage for the 
LOT block, moves the TIOT to the highest 
available position within the partition, 
updates the TCB, and passes control to the 
problem program via an XCTL macro 
instruction. 

SMFTCTIOT Construction Routine (IEFSMFAT) 

If SMF is in the system and if the user 
accounting option is specified. the SMF 
TCTIOT construction routine IEFSMFAT builds 
and initializes a timing control task 
input/output table (TCTIOT). The routine 
first determines if SMF is supported by 
testing the TCBTCT field of the TCB for a 
zero value. A zero value indicates that 
SMF is not supported. In this case the 
routine places a return code of zero in 
register 15 and returns control to the 
caller (IEFSD513). 

If SMF is in the system, the TCBTCT 
field contains the address of a, TCT built 
by SMF user initiation exit routine 
IEFSMFIE. In this case the routine obtains 
the job wait time limit from the system 
management control area (SMCA) for return 
in register 0 to IEFSD513 for updating the 
TCT. If user exits are specified, IEFSMFAT 
places the address of SMF user time limit 
expiration routine IEFUTL in the TCT. 

The routine next determines if the user 
step option is specified by testing the 
SMCA options field for a X·40'. Forany 
other value the option is not specified and 
the TCTIOT construction is bypassed. If 
the user step option is specified, IEFSMFAT 
constructs a TCTIOT to contain the informa
tion necessary for the SMF termination rec
ord. The routine issues a GETMAIN macro 
instruction specifying the system queue 
area to obtain storage for the TCTIOT and 
initializes the TCT EXCP counter lookup 
table. 

Whether or not the routine constructed a 
TCTIOT, it initializes the TCT core map for 
both hierarchies (0 and 1). It utilizes 
the boundary box describing the partition 
to determine the lowest addresses allocated 
at the high end of hierarchies 0 and 1" and 
the highest addresses allocated at the low 
end of hierarchies 0 and 1. It then calcu
lates the amount of storage unused and 
stores these figures in the TCT. 

Master Scheduler Task 99 



Finally, IEFSMFAT places the TCT address 
in register 15 and returns control to the 
caller (IEFSD513). 

Note: For the format and description of 
the SMCA and the TCTIOT, see "Appendix Aft 
in the MVT Job Management PLM. 

Step Deletion Routine (IEFSD515) 

Step deletion routine IEFSD515 is entered 
at the end of step execution to prepare the 
partition for continued execution of the 
job, to interface with the termination sub
routine, to prepare for the initiation of 
the next step, or to branch to job deletion 
if there are no more steps in the current 
job. 

When step deletion is entered, a check 
is made to determine whether the routine 
was entered due to an ABEND with the sched
uler in control. If so, a message stating 
that the scheduler has ABENDed is issued to 
the operator and all CSCBs are removed from 
the CSCB chain. DSO processing, if any, in 
the partition is marked for stopping. Con
trol passes to job selection routine 
IEFSD510 which passes control to DSO stop 
and modify command processing routine 
IEFDSOSM. 

If the scheduler ABENDs again while try
ing to stop DSO, the DSOCB will be marked 
as being no longer available for selection. 
The DSOCB I/O device will remain allocated 
to DSO, and the device will not be avail
able until the system is reinitialized. 

If an ABEND did not occur, the step 
deletion routine prepar~s to calculate the 
amount of time used by the step and the job 
when the last step completed execution. It 
determines if job step timing is being per
formed by testing the high-order bit in the 
job step timing status bits field of the 
PIB. If the bit is off, the following pro
cessing is bypassed. If it is on, the TQE 
is being used for job step timing and 
IEFSD515 issues a TTl MER macro'instruction 
tp stop the timing started by problem pro
gram interface routine IEFSD513. It also 
obtains the step time remaining for use in 
updating the timer work area when the LOT 
block is read back in. It then turns off 
the high-order bit in the job step timing 
status bits field of the .PIB. 

Whether or not job step timing is being 
performed, the step deletion routine 
branches to ENQ/DEQ purge routine IEFSD598 
via a BALR instruction to remove any con
trol blocks which were enqueued, but not 
dequeued, by the problem program step. 

step deletion then issues a series of 
GETMAIN requests to obtain storage for 
queue manager lOBs (IOBl and IOB2), a tem-

100 

porary QMPA, and a register save area and 
parameter list for the table breakup rou
tine. These blocks and tables are initia
lized·and step deletion branches to queue 
manager table ~reakup routine IEFSD514, to 
read in the TIOT and LOT blocks for the job 
step. 

IEFSD515 updates the step time remaining 
field of the timer work area in the LOT 
block with the step time remaining value 
obtained from the TTIMER macro instruction. 
It restores the addresses in the TIOT and 
LOT blocks, and frees the temporary wo~k 
areas. ~. 

It returns the job QMPA and the SYSOUT 
QMPA to the LOT block from the CSCB to 
reflect any activity that occurred during 
problem program executi0n. 

A GETMAIN (subpool 253) is issued to 
obtain storage for the SCT and JCT. The 
SCT is read into storage from the job 
queue, the JCT from its temporary area. 
The JCT is updated with the address of the 
next SCT and written back on the job queue. 

A test is made to determine if job step 
timing is being performed. If the step 
titre limit in the timer work area is equal 
to 24 hours and if bit one of the job step 
timing status bits field in the PIB is set 
to zero, neither the job nor the step has 
been timed and the routine bypasses the 
following processing and obtains storage 
for the terminate register save area and 
parameter list. If the step has been 
timed, the values in the timer work area 
must be updated to reflect the time used by 
the step that just completed execution. If 
SMF is supported (determined by a nonzero 
value in the TCBTCT field of the TCB), the 
time extension specified is calculated and 
added to the step time limit. 

The information in the timer work area 
is then used to calculate the new values 
for job time used, job time remaining, step 
tine used, and step time remaining, and the 
timer work area is updated with these 
calculations. 

The Queue Management Read/Write routine 
is used to read in the job and step ACTs. 
They are updated with the new values for 
the jcb and step time, and then written 
back out. 

Storage is obtained for a terminate 
register save area and a terminate paramet
er list. The terminate parameter list is 
initialized with addresses of control 
blocks (LOT, JCrI', SCT, and TIOT list) and 
the step deletion routine branches to the 
termination subroutine via a BALR instruc
tion. When termination returns control, 
step deletion frees the terminate register 



save area and terminate parameter list and 
then reinitializes the WTPCB for the next 
step of the job or the next job. If the 
partition was executing the DSDR step for a 
small partition, step deletion places the 
,addresses of the small partition's TCB and 
PIB into the LOT block. Step deletion then 
checks the return code from termination. 

If the return code indicates that the 
job is to be suspended, step deletion loads 
t~e address of the LOT block in register 1. 
In MFT systems with the 44K scheduler, step 
deletion then passes control to IEFSD168 
via a BALR instruction. In MFT systems 
with a 30K scheduler, however., step dele
tion branches to linkage routine IEFSD167 
to pass control to IEFSD168 via an XCTL 
macro instruction. If the return code 
indicates that job termination was entered, 
step deletion branches to job deletion rou
tine IEFSD517 and, in MFT systems with the 
44K scheduler, receives control again. In 
MFT systems with the 30K scheduler, howev
er, control does not return to step dele
tion. It is passed immediately to 
IEFSD517. If job termination was not 
entered, the SCT for the next step of the 
job is read from the job queue., and step 
deletion passes control to IEFSD512 via an 
XCTL macro instruction. 

Note: If a small partition is requesting 
termination, entry to the step deletion 
routine is made at special entry point 
SMALTERM. When the routine is entered at 
this point, it performs the following func
tions before·invoking ENQ/DEQ purge routine 
IEFSD598. It obtains the step time remain
ing for the step which executed in the 
small partition from the SPIL and saves 
this value for updating the step time 
remaining field of the timer work area in 
the LOT block, when the block is read back 
in. IEFSD515 also establishes pointers to 
the SPIL and the small partition's TCB. 

ENQ/DEQ PurqeRoutine (IEFSD598) 

At job termination, this routine purges all 
ENQ/DEQ control blocks associated with the 
TCB address passed in Register 4 by the 
caller. If step termination was completed 
instead, this routine purges all ENQ/DEQ 
control blocks except the data set integri
ty blocks associated with the major name 
SYSDSN. 

When a given resource is dequeued for 
the subject TCB., a task switch may occur 
for a higher priority requestor whose wait 
count becomes zero, due to ava~lability of 
the resource. (This purge routine operates 
in a disabled state to prevent concurrent 
updating of the ENQ/DEQ control blocks.) 

Alternate Step Deletion Routine (IEFSD516) 

Alternate step deletion routine IEFSD516 is 
entered from step initiation routine 
IEFSD512 when allocation for a step has not 
been successful. Using the APL and ARSA 
(created by the step initiation routine) as 
the terminate parameter list and terminate 
register save area, this routine branches 
to termination subroutine IEFSD22Q via a 
BALR macro instruction. When control is 
returned from termination, the storage used 
for the parameter list and register save 
area is freed and a test is made to deter
mine if job termination was entered. If 
so, this routine branches to job deletion 
routine IEFSD517. If job termination was 
not entered, the SCT for the next job step 
is read from the job queue and this routine 
branches to step initiation routine 
IEFSD512. 

Job Deletion Routine (IEFSD517) 

The job deletion routine is called at job 
termination to delete the job from the. 
input queue and to prepare the partition 
for initiation of the next job. The rou
tine sets the high-order byte of the 
LCTTCBAD field of the LCT to '80' (hexade
cimal) to indicate to the ENQ/DEQ purge 
routine that it is job termination instead 
of step termination. The routine then 
branches to ENQ/DEQ purge routine IEFSD598 
to purge the control blocks. On return 
from the purge routine, the high-order byte 
is reset to '00'. 

The job deletion routine then deletes 
the job from the input queue, using queue 
manager delete routine IEFQDELQ. All areas 
of storage in the partition which were used 
for the job (except the LOT block) are 
freed, and the job's CSCB is freed by issu
ing an SVC 34. The PIB fields used ~or the 
disk address of the TIOT and the LOT block 
are set to zero. If termination was for a 
small partition, ECBA in the SPIL is posted 
with a code of two (indicating job termina
tion for the small partition). If termina
tion was for a large partition (or after 
ECBA has been posted) the "no work" ECB in 
the PIB is posted and the job deletion rou
tine branches to job selection routine 
IEFSD510. 

Partition Recovery Routine (IEFSD518) 

Partition recovery routine IEFSD518 deter
mines the location of main storage required 
for a checkpoint restart. If the partition 
being scheduled for the job to be restarted 
contains the required main storage, the JCT 
is checked to determine if the job used 
DSO. If it did, the job's SlOTs are 
checked to determine which types of I/O 
devices were used. If any needed type is 
not available~ a message informing the 

Master Scheduler Task 101 



operator of the missing devices is sent and 
the job is placed on the hold queue. If 
all devices are available, the routine 
returns to the step initiation routine for 
normal processing. If the nucleus has 
expanded past the lower boundary of the 
partition containing the required main 
storage, the routine sets the job fail bit 
in the JCT, issues a message stating that 
main storage is not available for the job, 
and returns to the step initiation routine 
IEFSD512 with a return code of zero. 

If the partition being scheduled does 
not contain the required main storage, the 
routine places·the job on the hold queue, 
updates the SCD and places the SCD back on 
the job queue. The job's CSCB is unchained 
and the space containing the CSCB and the 
ECB/IOBs is freed. If the job used DSO, 
the routine links to release DSOCB routine 
IEFDSOFB to release any 050 processor allo
cated to the job. The routine then 
branches to ENQ/DEQ purge routine IEFSD598. 

Upon return from ENQ/DEQ purge routine, 
if a problem program partition exists that 
contains the required main storage, this 
routine will create an internal queue ele
ment and chain it to the partition's PIB. 
The partition's Wno workW ECB will be post
ed and a message will. be issued stating 
that the job will start in the partition. 
If an existing partition contains the 
required main storage and is defined as a 
reader or writer partition, this routine 
issues a message indicating that the parti
tion must be redefined to accept the 
desired jobclass.. If no partition contains 
the required main storage or the partition 
that contains the required main storage is 
about to be redefined. this routine issues 
a message stating the length and displace
ment of the required main storage. If the 
partition being scheduled was a large par
tition its no-work ECB is posted; if it was 
a small partition, the SPIL is posted indi
cating job termination. The partition 
recovery routine frees the JCT and SCT 
areas of the partition and returns control 
to step initiation routine IEFSD512 with a 
return code of four. 

Dequeue by Jobname Interface Routine 
UEFSD519) 

Dequeue by jobname interface routine 
(IEFSD519) builds a parameter list used by 
dequeue by jobname routine IEFLOCDQ to 
locate a job named on the checkpoint/ 
restart internal job queue. When a 
checkpoint/restart job is indicated by an 
entry in the internal job queue pointer in 
the PIB being processed by job selection 
routine IEFSD510, job selection branches to 
IEFSD519 which builds the seven-word para
meter list required by IEFLOCDQ. When the 

102 

job is dequeued, IEFLOCDQ returns control 
to IEFSD519. 

Tbe interface routine marks the job as 
ready and returns to job selection with a 
code of zero in register 15, indicating 
that the job has been found, and a pOinter 
to the LOT in register 1. If the job is 
not found by IEFLOCDQ, a return code of 
four is returned in register 15 to job 
selection. (A description of IEFLOCDQ is 
in the MVT· Job Management PLM.) 

System Output Writers 

MFT uses the MVT system output writer 
(Charts 31-32) with minor changes to five 
of the modules. As in MVT, the user may 
have up to 36 system output writers operat
ing concurrently in the system. Each out
put writer can handle eight output classes; 
output classes may be shared by writers. 
However, in MFT, system output writers are 
classified as either resident or nonresi
dent. A resident writer operates in its 
own partition. A nonresident writer 
operates in any problem program partition 
large enough to accommodate it. 

RESIDENT WRITERS 

Resident output writer partitions are 
des ignated in the TCB by a setting of '10' 
in the first two bits of the pointer to the 
partition information block (PIB). This 
designation is made at system generation by 
assigning W to the partition in place of 
the jeb class or by redefining a partition 
and assigning WTR to it. 

A resident writer is activated by issu
ing a START command specifying a partition 
designated previously as a writer parti
tion. A resident writer can be terminated 
only by issuing a STOP command specifying 
the device assigned to that writer. 

NONRESIDENT WRITERS 

A nonresident system output writer may be 
started in a problem program partition 
large enough to hold the writer by issuing 
a START command specifying either that par
titien or by replacing the partition number 
with an '5' to specify a system-assigned 
nonresident writer. 

When the writer has started, it executes 
in the same way as a resident writer and 
must be terminated by a STOP command to 
allow ~rocessin9 of problem programs to be 
resumed in the partition. 



SYSTEM OUTPUT WRITER MODULES 

The following five MVT system output writer 
modules are modified for MFT. 

• IEFSD070 - Data Set Writer Linkage 
Routine. 

• IEFSD079 - Linkage to Queue Manager 
Delete Routine. 

• IEFSD084 - Wait Routine. 
• IEFSD085 - Data set Block (DSB) Handler 

Routine. 
• IEFSD087 - Standard writer Routine. 

Descriptions of all other system output 
writer modules can be found in the MVT Job 
Management PLM. 

Data Set Writer Linkage Routine (IEFSD070) 

This routine passes control to the appro
priate writer routine via a LINK macro 
instruction. The normal linkage is to the 
standard writer, IEFSD087. If a special 
user-written output writer routine is 
requested, this routine passes control to 
that writer. Upon return from either writ
er, the routine passes control to data set 
delete routine IEFSD171 via an XCTL macro 
instruction which deletes the output data 
sets from the output queue. 

Linkage to Queue Manager Delete Routine 
UEFSD079) 

Upon completion of a job, linkage module 
IEFSD079 passes control to queue manager 
delete routine IEFQDELQ via an XCTL macro 
instruction to.delete all control blocks 
and 5MBs associated with the output job 
from the job queue. Following deletion, 
the routine then posts all reader ECBs that 
are waiting for space to indicate that 
space is now available. (The reader ECB 
chain address is obtained from the master 
scheduler resident data area.) When all 
ECBs have been posted, control is returned 
to main logic routine IEFSD082. 

Wait Routine (IEFSD084) 

This routine serves as a multiple WAIT when 
there is no work in any of the output 
classes associated with the writer. It 
issues a WAIT macro instruction on the ECB 
list created by class name setup routine 
IEFSD081. When the system output writer 
enters a wait state, the wait routine 
issues a message informing the operator 
that the writer is waiting for work. Any 
posting (such as a command, or work for the 
writer) causes control to be given to 
IEFSD082. 

DSB Handler Routine (IEFSD085) 

DSB handler routine IEFSD085 is the setup 
module for printing data sets. It issues a 

GETMAIN macro instruction for the input LCE 
if it was not obtained before, and con
structs a new TIOT containing an entry for 
the input data set. It also sets up any 
user-written output writer program. A 
check is then wade to determine if a pause 
is required between data sets or only at 
forres change. If a special form is to be 
used, the routine writes a message to the 
operator telling him what form to put in 
the output device. The form change only 
occurs if the output device is unit record. 
This routine then passes control to linkage 
routine IEFSD070 via an XCTL macro instruc
tien. 

Standard writer Routine (IEFSD087) 

This routine first issues an OPEN macro 
instruction to open the output data set. 
If the data set was not opened by the pro
blem program, no attempt is made to process 
the data set. After OPEN, a test is made 
to check for machine control characters. A 
switch is set that is interrogated by PUl 
routine IEFSD089. The writer then passes 
control to transition routine IEFSD088 
which creates header and trailer records. 
Upon return from IEFSD088, the writer rou
tine checks the CANCEL ECB in the CSCB to 
determine if a CANCEL command has been 
issued for this writer. If the CANCEL ECE 
has been posted complete, control passes to 
transition routine IEFSD088 to create a 
trailer record. When control is returned 
from IEFSD088, the writer is closed. Cen
tral is then returned to linkage routine 
IEFSD078 via a RETURN macro instruction. 

If the writer is not to be canceled, the 
writer routine issues a GET macro instruc
tion to read a record and checks for a con
trol character. If no control character 
exists, the writer puts one in which causes 
the printer to skip one line or the punch 
to feed into the normal pocket. If the 
printer has overflowed, a skip is Ir;ade to 
the next page. 

The writer then adjusts the pointer to 
the record so that it points to the first 
data character (instead of control charact
er) and passes control to transition rou
tine IEFSD088 for trailer records. It then 
issues a CLOSE macro instruction to close 
the input data set, a FREEPOOL macro 
instruction to free the buffers, and 
returns control to linkage module IEFSD078 
via a REl'URN macro instruction. 

DIRECT SYSTEM OUTPUT PROCESSING 

Direct system output (nse) processing 
operates in MFT in the same manner as in 
MVT. The reain difference between DSO in 
MFT and MVT is that DSO started in an MFT 
partition can only process output from jobs 

Master Scheduler Task 103 



within that partition whereas DBO started 
in an MVT system is not restricted by par
tition boundary. 

System Task Control 

System task control (STC) (Chart 33) 
initiates all tasks ~xcept the initiator 
(START INIT). When the master scheduler 
determines that a START command with an 
identifier operand has been issued, it 
checks the validity of the partition speci
fied in the command, builds and chains a 
CSCB, places a pointer to the CSCB in the 
partition's PIB, and posts the partition. 

Note: If the procedure being started is 
for a system-assigned reader or writer, the 
CSCB pOinter is placed in the master sched
uler resident data area. (See Appendix A 
for the format of the master scheduler 
resident data area). 

As shown in Figure 30, job selection 
module IEESD510 responds when the partition 
is posted, and calls STC when a START com
mand for a reader or writer is recogni~ed. 
If a reader or system output writer is to 
be started, STC must process a job descrip
tion similar to a user's job description. 

.. 

START 
Reader/Writer 

1 
JOB 
SELECTION 

SYSTEM 
TASK 
CONTROL 

~ ,.. 

INPUT 
READER 
OR 
OUTPUT 
WRITER 

.. I 
ABEND J 

Allocation Error 

r------i 

$ 
t ' Ir 

TERMINATION 

Figure 30. Scheduling a Writer in a Large 
Partition 

104 

Tte job description information for a 
reader or writer comes from three sources: 
the procedure library, Job Control Lan
guage (JCL) statements, and the operator. 
The procedure library contains standard 
descriptions of a reader and writer. JCL 
statements (corresponding to input stream 
JCL) are stored internally; these state
ments invoke and modify the reader or writ
er procedure. The operator furnishes addi
tional information in the operand of the 
START command; this information is edited 
into the internally stored JCL statements 
before they are used to invoke and modify 
the procedure. 

INITIATING SYSTEM TASKS 

When initiator job selection routine 
IEESD510 determines that a START command 
for a reader or writer has been entered, it 
passes control to START syntax check rou
tine IEEVSTAR via an XC'lL macro 
instruction. 

START Syntax Check Routine (IEEVSTAR) 

The START syntax check routine gets main 
storage for, and builds, the start descrip
tor table (SDT) (see Figure 31). Seven 
entries are provided in the SDT: the first 
contains the JOB statement, the second con
tains the EXEC statement that calls the 
prOcedure specified in the START command, 
the rerr,aining entries are provided for a DD 
statement and continuations of the EXEC and 
DD statements. Each entry contains a one
byte identification flags field, whose 
bits, when set to one, have the following 
meanings: 

• Bit 0 indicates a JOB statement. 
• Bit 1 indicates an EXEC statement. 
• Bit 2 indicates a DD statement. 
• Bit 3 indicates a DD statement 

continuation. 
• Bit 4 indicates an EXEC statement 

continuation. 
• Bits 5 through 7 are reserved. 

The routine generates the JOB, EXEC, and 
DD statements that are placed in the SDT. 
The keyword parameters in the START command 
are compared with a list of keyword parame
ters that are allowable in a DD statement; 
they are not compared with DD subparame
ters. If the keyword corresponds to a 
merr·ber of the list, the routine stores it 
in the DD statement in the SDT. This DD 
statement overrides the IEFRDER DD state
ment in the procedure specified in the 
START command. If the keyword does not 
correspond to a member of the list, it is 
assumed to be a symbolic parameter keyword 
and is placed in the EXEC statement in the 
SDT. The routine then constructs the ( 



required allocate parameter list. and a 
JSCB and WTPCB in subpool 255 (SQA). It 
then stores the JSCB address in the TCB and 
CSCB. 

Finally. the Syntax Check routine passes 
control to the JCL Edit routine (module 
IEEVJCL) '. which builds the job control lan
guage set (JCLS). Using the information in 
the SDT. the JCL Edit routine puts the JCL 
in the form appropriate for the interpret
er. Each statement is built in an 88-
character buffer (obtained with a GETMAIN 
macro instruction). A pointer to the first 
buffer is placed in the CSCB associated 
with the START command. Each buffer con
tains a pointer to the next buffer. 4 bytes 
of reserved space. and a "card image" of 
the statement in the last 80 bytes. 

0(0) 
211dent Flags II 

I 
SDT SIZE Reserved 

4 (4) 72 
~ JCL Statement ~r-

Ident Flags II II 
72 

Reserved 

~ 

76 (4C) 

JC L Statement 
,1.. 

Reserved 

152 (98) 72 

'1"" JCL St t a em en '1"" 

224 (EO ) 
11 II 

72 
Ident Flags Reserved 

~~ 

JC L Statement 

::~ 
I Ident Flags II 

I 
Reserved 

300 (12C ) 72 

.i:: JCL Statement ;.~ 

) 
Ident Flags II II 

72 
Reserved 

~:; 

372 (174 

JC L Statement 

-r- I Ident Flags I Reserved 

448 (IC 0) 72 ..... 
T 

JC L Statement 

519 (207) T 
Figure 31. START Descriptor Table (SDT) 

Reader Control Routine (IEEVRCTL) 

Reader control routine IEEVRCTL then 
receives control and builds the interpreter 
entrance list (NEL). option list, and exit 
list. The interpreter entrance list con
tains the address of the JCLS in its third 
word. The reader control routine passes 
control to the reader via a LINK macro 
instruction. 

The reader. used as a closed subroutine, 
is the same routine that performs the read
ing task. The nonzero value of the third 
word of the entrance list indicates that 
the input stream is an internal data set. 
Since the input stream is internal. the 
reader issues a pseudo OPEN macro instruc
tion to bring a special access method (a 
modified QSAM) into storage and places a 
pointer to the access method in the input 
DCB. This special access method reads the 
JCLS; it is entered from the expansion of 
the standard GET macro instruction. 

The internally-stored job control lan
guage statements. and the statements from 
the procedure library are analyzed and com
bined. The standard job description tables 
are built. and an input queue entry is ccn
structed; however. because bit 7 of the 
option switches field of the option list is 
off. the entry is not enqueued. and the 
reader or writer njob" cannot be selected 
by an initiator. If errors are detected 
during reader processing. appropriate mes
sages are placed in system message blocks. 
which are enqueued in the message class 
queue. When processing is com~lete. the 
reader places the main storage address of 
the job control table (JCT) in the NEL and 
returns control to the reader control rou
tine with a code that indicates whether 
processing was successful. The reader cen
trol routine then passes control to alloca
tion interface control routine IEEVACTL. 

Allocation Interface Control Routine 
CIEEVACTL) 

The reader control routine passes control 
to allocation interface control routine 
IEEVACTL, with an indication of whether the 
reader had encountered errors. The alloca
tion interface control routine uses message 
interface routine IEEVMSGl to set up the 
necessary parameter list for IEEVSMSG to 
issue the WTO macro instruction to inform 
the operator of any errors that have been 
found. Finally it passes control to the 
I/O device allocation routine via a LINR 
macro instruction. 

I/O device allocation routine IEFSD21Q 
uses the JCT to find the appropriate tables 
in the input queue, allocates the necessary 
devices to the reader or writer. and issues 
any necessary mounting messages. ~he allo
cation recovery routines issue WTO macro 
instructions to inform the operator of any 
errors found during allocation. When allo
cation is complete. or if allocation cannot 
be performed, control is returned to the 
allocation control interface routine. 

Allocation control interface routine 
IEEVACTL determines if the routine to be 
given control is an authorized routine and 

Master Scheduler Task 105 



then transfers control to Write TIOT rou
tine IEESD590. 

Note: A list of "authorized" routines is 
contained in a table in link-table routine 
lEEVLNKT. 

QMPA.Builder Routine (IEEVSMBA) 

The QMPA builder routine obtains main 
storage for and builds: 

• The message class queue manager para
meter area (QMPA). 

• Its associated ECB/IOB. 

It uses the Queue Management Read/Write 
Routine to read in the SYSOUT class direc
tory (SCD) for the task from the job queue. 
It uses information in the SCD to initia
lize the QMPA. IEEVSMBA then builds the 
ECB/IOB for the QMPA and stores the address 
of the QMPA in the LCT. 

The QMPA builder routine then returns 
control to its caller. 

WriteTIOT on Disk Routine (IEESD590) 

Write TIOT on disk routine IEESD590 checks 
that a reader has not been started in a 
small partition, writes the TIOT which is 
used for job selection, and checks for a 
small partition writer. If a writer is to 
be started in a small partition., this 
module issues a POST macro instruction and 
a WAIT macro instruction for the SPIL and 
then passes control to job selection rou
tine IEFSD510 via an EXIT macro instruc
tion. If it is not for a small partition 
writer~ control is transferred to linkor 
routine IEESD591. 

Link or Routine (IEESD591) 

The linkor routine passes control to the 
requested routine via a LINK macro instruc
tion. When the reader or writer stops, it 
returns control to the linkor routine, 
which checks for a small partition writer. 
If a small partition writer returned con
trol to the linkor routine, control then 
passes to IEFSD510. If a resident reader 
or large partition writer returned control, 
termination interface routine IEEVTCTL is 
given control via an XCTL macro instruc
tion. If a transient reader was suspended, 
IEFSD591 returns to job selection routine 
IEFSD510. 

Termination Interface Control Routine 
(IEEVTCTL) 

The termination interface control routine 
sets up the necessary tables and parameters 
for termination processing and passes con
trol to termination entry routine IEFSD42Q 

106 

via a LINK macro instruction. Upon return 
from termination, it frees main storage 
used for the various tables and passes con
trol to POST routine IEESD592 via an XCTL 
macro instruction. 

POST Routine (IEESD592) 

POST routine IEESD592 checks the CSCB to 
determine if it has been freed; if not, it 
is freed. It also checks for a small par
tition. The valid condition is posted in 
the SPIL or the PIB. The post routine then 
passes control to IEFSD510 via an EXIT 
macro instruction. 

System Restart 
The system restart functions may be 
requested at any time that a system restart 
becomes necessary; e.g., end-of-day, end
of-shift, system malfunction, power fai
lure. This feature provides a means where
by a maximum amount of information concern
ing input work queues, output work queues, 
and jobs in interpretation, initiation, 
execution, or termination can be preserved. 
System restart permits reinitialization, 
rather than a complete reformatting, of the 
job queue data set (SYS1.SYSJOBQE). 

MFT uses the MVT system restart modules. 
For a complete description of these 
modules, and how they function, see the ~ 
Job ManaqementPLM. 

System Management Facility 
The system management facility is an 
optional feature of the control program 
that provides a means for gathering and 
recording the type of information that can 
be used to evaluate system usage. It con
sists of routines that collect data, rou
tines that record the collected data in a 
data set, and routines that provide inter
face~ for exits to user-supplied data 
collection routines. The system management 
facility may include either one tape data 
set (SYS1.MANX) or two direct access data 
sets (SYS1.MANX and SYS1.MANY). In the 
latter case, the two data sets are filled 
alternately: while one is in use, the 
other may be dumped via the SMF dump rou
tine (IFASMFDP). 

SMF data collection routines and exits 
for user-supplied data collection routines 
are in the supervisor, the Interpreter, the 
Initiator, and the Termination routines. 
IBM-supplied data collection routines are 
in the Supervisor" the System Output Writer 
and the Vary Command Processor. 



The routines that record the data in the 
SMF data set include the SMF SVC routines 
(SVC 83) and the SMF writer routine 
(IEESMFWT). 

COMPARISON OF SMF IN MFT AND MVT 

The areas of SMF processing that are the 
same in MFT and MVT include: 

• The SMF SVC routines (SVC 83). 
• The SMF dump routine. 
• The SMF processing in the Interpreter., 

the system Output Writer, the VARY Com
mand Processor, and the Termination 
routines. 

This processing is described in the MVT Job 
Management PLM. 

Additional SMF p~ocessing in MFT differs 
from MVT only in the manner in which it is 
implemented. The areas of difference in 
implementation occur in: 

• The SMF initialization procedure. 
• The SMF writer routine. 
• The SMF processing in the supervisor 

and the Initiator. 

SMF processing in the Supervisor and the 
Initiator is described in the "Supervisor" 
and "Job Management" sections of this pub
lication. The SMF writer routine and the 
processing for SMF initialization is 
described below. 

The SMF records are the same for MFT and 
MVT, except for the addition of an SMF 
storage configuration record (type 13) in 
MFT. A description of the SMF records, 
showing the data elements that occur in 
each record type and the source from which 
each data element is obtained, is found in 
the "Common Elements of Job Management" 
section for the MVT Job Management PLM. 

SMF Initialization 

In MFT the routines initializing the system 
management facility operate under the SMF 
TCB and the master scheduler TCB. (See 
Figure 32.) SMF writer routine IEESMFWT 
executes under the SMF TCB. It is initial
ly involved in a WAIT/POST interchange with 
the SMF initialization routines operating 
under the master scheduler TCB. (This is 
to ensure that the system management con
trol area (SMCA) is initialized and that 

IEESMFWT has access to it before the writer 
routine begins initialization processing.) 
The SMF writer routine's primary initiali
zation function is to issue an SVC 83 for 
the opening and allocation of the SMF data 
sets. 

The other SMF initialization routines 
execute under the master scheduler ~CB. 
SMF initialization routine IEESMFIT adds 
the SMF DD names to the master scheduler 
task input/output table (TIOT) and reads 
the SMF parameter member SMFDEFLT from 
SYS1.PARMLIB. SMF parameter processing 
routine IEESMFI3 processes the SMFDEFLT 
parameters and/or the SMF parameters 
entered from the console. SMF initializa
tion routine IEESMFI2 initializes the 10-
minute timer queue element (TQE) and con
structs the SMF IPL and online device rec
ords. SMF open initialization routine IEE
SMFOI initializes the job file control 
blocks (JFCBs) for the SMF data sets and 
posts the SMF writer routine for the open
inq and allocation of these data sets. SMF 
storage configuration record creation rou
tine IEEDFINA constructs the SMF storage 
configuration record (type 13). 

When the SMF writer routine is dis
patched, it stores the address of a local 
ECE in the TCBTCT field of the SMF TCB. 
(This local ECB provides communication 
between the master scheduler and SMF tasks. 
It is posted by IEESMFIT or by IEESMFOI 
after the address of the SMCA has been 
stored in the CVTSMCA field·of the CVT.) 
The SMF writer routine then issues a WAIT 
macro instruction specifying the local ECB. 

SMF initialization routine IEESMFIT 
receives control from master scheduler ~n~
tialization routine IEFSD569 via a LINK 
macro instruction. When it is entered, it 
adds the compiled-in DD names SMFMANX and 
SMFMANY to the master scheduler TIOT and 
stores the address of the master scheduler 
TIOT in the SMCATIOT field of the SMCA. 
(For the format and description of the 
SMCA, see "Appendix A" in the MVT Job Man
agement PLM.) 

The SMF initialization routine then 
checks SYS1.PARMLIB for the existence of 
the SMF parameter member, SMFDEFLT. If it 
does not exist, the routine passes contrel 
to IEESMFI3 at entry point IEESMFMS. 
Otherwise. it opens the SYS1.PARMLIE data 
set and reads SMFDEFLT into main storage. 
If an I/O error occurs during the reading 
of the data set, lEESMFIT passes control to 
IEESMFI3 at entry point lEESMFIO. 

Master Scheduler Task 107 



A 

• Figure 32. 

108 

NIP 

Store Pointer to SMF 
nOT in SMCATIOT 

SMF Initialization Processing Flow 

Master Scheduler Task SMF Task 



When it has completed reading in the SMF 
parameter member, IEESMFIT passes control 
to IEESMFI3 to determine if all of the 
parameters have been entered correctly. If 
so, IEESMFI3 stores the SMF parameter 
values in the SMCA. If any required 
parameters are missing or incorrectly spe
cified, or if IEESMFI3 was entered at 
lEESMFMS or IEESMFIO, the routine issues a 
WTOR macro instruction to request the 
operator to enter the SMF parameters to 
make the appropriate corrections. When he 
has entered the parameters correctly, IEES
MFI3 stores the value's in the SMCA. The 
routine then issues a WTO macro instruction 
to display the parameters. It then 
inspects the parameter associated with the 
OPI keyword. If the parameter is "YES·, 
operator intervention is allowed. IEESMFI3 
therefore issues a WTOR macro instruction 
to allow the operator to make changes. 
When the changes, if any, have been stored, 
lEESMFI3 returns control to IEESMFIT at 
entry point IEESMFI4. 

IEESMFIT then determines if an SMF data 
set is specified by testing the SHCAMAN bit 
in the SMCAMISC field of the SMCA. If the 
bit is off, an SMF data set is not speci
fied. In this case, IEESMFIT prepares to 
return to the master scheduler initializa
tion routine, because SMF recording will 
not be possible. It stores the address of 
the SMCA in the CVTSMCA field of the CVT. 
It then issues a POST macro instruction 
specifyi~g the local ECB to indicate to the 
SMF writer routine that the SMCA is initia
lized and its address stored in the CVT. 
IEESMFIT then issues a WAIT macro instruc
tion specifying the buffer ECB (SMCABECB). 

When the local ECB is posted the SMF 
writer routine has access to the SMCA. It, 
therefore issues a POST macro instruction 
specifying the buffer ECB, to indicate that 
the writer is ready and waiting for work. 
The SMF writer routine will now wait on the 
writer ECB (SMCAWECB). 

When the buffer ECB is posted, the SMF 
initialization routine is activated. It 
returns control to master scheduler ini
tialization routine IEFSD569. 

If an SMF data set is specified, IEESM
FIT continues with initialization process
ing. It issues a GETMAIN macro instruction 
specifying the system queue area to obtain 
main storage for the SMF buffer. It then 
passes control to SMF open initialization 
routine IEESFMOI via a LINK macro 
instruction. 

The SMF open initializer prepares to 
have the SMF data sets opened and allo-

cated. It compiles the JFCBs for the data 
sets (SYS1.MANX and SYS1.MANY) and uses the 
Queue Management Assign/Start and Read/ 
Write routines to obtain space in the work 
queue data set and to write the JFCBs.1 It 
stores the JFCB dddresses in the master 
scheduler TIOT and stores the address of 
the SMCA in the CVTSMCA field of the CV'I'. 
It indicates completion of this action to 
IEESMFWT by issuing a POST macro instruc
tion specifying the local ECB. It then 
issues a WAIT macro instruction specifying 
the buffer ECB. 

When the local ECB is posted the SMF 
writer routine has access to the SMCA. It 
therefore issues a POST macro instructicn 
specifying the buffer ECB, to indicate that 
the writer is ready and waiting for work. 
The SMF writer routine stores pointers to 
the CCEs for the SMF data sets in the SMCA 
and then waits on the writer ECB. 

When the buffer ECB is posted the SMF 
open initialization routine is activated. 
It sets the "first time switch" (SMCAFIRTl 
in the SMCA miscellaneous indicators field 
to specify that the primary data set is to 
be opened. It also sets the nunconditional 
switch bitn in the SMCASWA switches field 
to specify an unconditional data set 
switch. (This bit is set to indicate to 
the SMF writer routine that register 1 must 
be negative when the SVC 83 for opening and 
allocation of the SMF data sets is issued.) 
IEESMFOI then issues a POST macro instruc
tien s~ecifying the writer ECB to activate 
the SMF writer routine. 

When the SMF writer routine determines 
that the "unconditional data set switch 
bit n is set, it loads register 1 with the 
address of the SMCA. It then sets register 
1 negative and issues an SVC 83 for the 
opening and allocation of the SMF data 
sets. (The SVC processing for SMF initial
ization is described in the "Initialization 
and Restart" section of the MVTJob Manage
~t PLM.) 

Upon return from the SMF SVC routines, 
the SMF writer routine issues a POST macro 
instruction specifying the buffer ECB, to 
indicate to IEESMFOI that opening and allo
cation are completed. It will now wait on 
the writer ECB until its services are again 
requested. 

1The JFCB records appear as an incomplete 
queue entry. In the event of a system 
restart, the system restart routines 
return the space occupied by the JFCB rec
ords to the free-track queue, and the SMF 
open initialization routine replaces them 
when it is executed again. 

Master Scheduler Task 109 



When the buffer ECB is posted, IEESMFOI 
is activated and it returns control to IEE
SMFIT. The SMF initialization routine 
tests the SMCA miscellaneous indicators 
field to determine if SMF recording will be 
performed. If not, IEESMFIT returns con
trol to master scheduler initialization 
routine IEFSD569. 

If SMF recording is implemented, IEESM
FIT passes control to SMF initialization 
routine IEESMFI2. This routine constructs 
the SMF IPL record (type 0) and the SMF 
online devices records (type 8). If volume 
accounting is specified, it also issues an 
SVC 78 for construction of the SMF LSPACE 
records (type 19). It issues an SVC 83 to 
have the records transferred to the SMF 
buffer. 

IEESMFI2 then branches to the timer 
enqueue routine (IEAQTEOO) in the timer 
second level interruption handler to add a 
compiled-in timer queue element (TQE), 
requesting 10-minute time intervals, to the 
timer queue. It then passes control to 
IEEDFINA via a LINK macro instruction. 

IEEDFINA constructs the SMF storage con
figuration record (type 13). It issues an 
SVC 83 to have the record transferred to 
the SMF buffer. Upon return frOll". the SVC 
routines, IEEDFINA returns to IEESMFI2, 
which returns to IEESMFIT, which returns to 
master scheduler initialization routine 
IEFSD569. 

110 

The SMF Writer Routine (IEESMFWT) 

The SMF writer routine is the resident wait 
routine of the SMF task. It executes under 
a system TCB (the SMF TCB). It is initial
ly involved in a WAIT/POST interchange with 
the SMF initialization routines executing 
under the master scheduler ~CB. This is to 
ensure the SMF writer routine that the SMCA 
is initialized and its address stored in 
the CVT, before the writer routine performs 
its SMF processing. 

When the SMCA is initialized, IEESMFw~ 
issues a WAIT macro instruction specifying 
the writer ECB. The SMF writer routine 
regains control each time the ECB is post
ed, and performs one of the following 
functions: 

• It requests opening of the SMF data 
sets. 

• It requests data set switching. 
• It writes the contents of the SMF buff

er in the SMF data set. 
• It determines if the SMF data set con

tains enough storage space for a record 
that must be written in segments. 

These functions are implemented in the 
same manner for MFT and MVT. They are 
described in the "Cammon Elements of Job 
Management" section of the MVT Job Manage
ment PLM. 



Appendix A: Tables and Work Areas 

This appendix contains descriptions and format diagrams of the major tables and work 
areas that are used by MFT job management. The tables and work areas are in alphabetical 
order. as shown below: 

• Command Scheduling Control Block (CSCB) 
• Data Set Enqueue (DSENQ) Table 
• Interpreter Work Area (IWA) 
• Job Control Table (JCT) 
• Job File Control Block (JFCB) 
• Job File Control Block Extension (JFCBX) 
• Life-of-Task Block (LOT) 
• Linkage Control Table (LCT) 
• Master Scheduler Resident Data Area 
• Partition Information Block (PIE) 
• Small Partition Information List (SPIL) 
• Step Control Table (SCT) 
• Step Input/Output Table (SlOT) 
• Task Input/Output Table (TIOT) 
• Write-to-Programmer Control Block (wTPCB) 

Tables and work areas are shown four or eight bytes wide for convenience. but are not 
necessarily drawn to scale. Tables that are stored in work queue entries are limited. by 
convention. to a length of 176 bytes. 

The names of most fields are sufficient to describe the fields; those that require 
further explanation are described in the text accomranying the tatle. Where a macro 
instruction may be used to include a DSECT of a table in routines using the table. the 
name of the mapping macro instruction is also given. The displacement of each field is 
shown to the left of each table; th~ values in parentheses show the hexadecimal 
displacement. 

COMMAND SCHEDULING CONTROL BLOCK (CSCB) 

Description: A command scheduling control block (CSCB) (Figure 33) is an area for 
communications between the command soheduling routine (SVC 34) and the cOIrmand executicn 
routines. Input CSCBs are created by several system routines. When an input CSCB is 
created. it is placed in a chain of CSCBs by the command scheduling routine. It remains 
in the chain until it is deleted from the chain by the command scheduling routine. which 
may also free the main storage occupied by the CSCB. An input CSCB is created under the 
following circumstances: 

• A CSCB is created by the command scheduling routine each time a task-creating command 
is encountered. If the task is a reading or writing task. the CSCB is deleted frcIrI 
the chain. and its main storage released. when the task terminates. 

• A CSCB is created by the queue management dequeue routine each time the initiator 
dequeues a job. This CSCB is deleted from the chain. and its main storage released. 
when the last step of the job has terminated. 

• A CSCB is created by a system output writer each time it encounters a DSB that was 
not preceded by another DSB in the current queue entry. The CSCB serves as a 
communication area. allowing the cancelation (by orerator command) of the subtasks 
established by the writer. The CSCB is deleted from the chain. and its main storage 
released. when the writer encounters an 5MB (or the last block in the current queue 
entry) • 

A control CSCB is updated (and changed to the control format if necessary) by the 
command scheduling routine when a CANCEL jobname (job selected). CANCEL writer device. 
MODIFY. or STOP command is encountered. 

Appendix A: Tables and Work Areas 111 



Although most of the fields are self-explanatory, the following require further 
description: 

• status Flags: This byte indicates the status (pending/not pending) of the CSCB, and 
the action to be taken by the command scheduling routine. In addition to corrmand 
processing, the command scheduling routine may be entered to add the CSCB to the 
chain, delete it, free its main storage, or to branch to the abnormal termination 
routine. 

Name Bit setting 

CHAP 0 1 
CHAC 1 
CHHIAR 2 0 

1 
CHDEF 3 0 

1 
CHAD 4 1 
CHDL 5 1 
CHFC 6 1 
CHABTERM 7 1 

• Activity Flaqs: This 
associated. 

Name Bit Setting 

CHPROC 0 
CHRSV 1 
CHIN 2 1 
CHSP 3 1 
CHCL 4 1 
CHCLD 5 1 
CHAIFX 6 1 
CHIFY 7 1 

• Communication Flags: 
processing routine. 

Name Bit Setting 

CHSTP 0 1 
CHJCT 1 1 
CHPSD 2 1 
CHPSF 3 1 
CHSYS 4 1 
CHPPF 5 
CHSWY 6 
CHSWZ 7 

• EXQress CANCEL Flags: 
command to the CANCEL 

Meaning 

Assig nment pending 
Reserved 
HO specified START command 
H1 specified on STAR~ corr,mand 
Use hierarchy specified by bit 2 
Default to HO 
Add this CSCB to the chain 
Delete this CSCB frerr the chain 
Free this CSCB's core 
Execute branch entry to ABTERM 

byte indicates the type of activity 

Reserved 
Reserved 

Meaning 

Initiator waiting for work 
Special 
Cancelable job step 
Cancel communication switch 
Cancelable (MFT only) 

with which the CSCB is 

System assigned procedure (MFT only) 

TQis byte indicates the function to be performed by the commano 

Meaning 

Stop 
Reader return with in-core JCT 
Writer pause data set 
Writer pause forns 
System task 
Reserved 
Reserved 
Reserved 

This byte indicates the parameters 
processor. 

passed with the CANCEL 

Name Bit setting Meaning 

CHALL 0 1 ALL specified 
CHINN 1 1 IN specified 
CHOUT 2 1 OUT specified 
CHHOLD 3 1 HOLD queue specified 
CHQUE 4 1 specific queue specified 
CHDUMP 5 1 Dump specified 
CHJB 6 ,1 End scan 
CHSOUT 7 1 Cancel all SYSOUT 

MaQPing Macro Instruction: IEECHAIN 

112 



o (0) 
CHPTR 

Address of the Next CSCB in the Chain 

8 (8) 

... Reserved 
24 (18) 

32 (20) 

;: 

160 (AO ) CHCSYSO 1 

Express 
CANCEL Flags 

Input CSCB 

4 CHVCD 
Verb 
Code 

CHBUF 
Command Operand 

1 

CHXXX 

CHSZE 
Size of 
CSCB 

CHUCMP 
UCMI 

Storage Key for the 
Initiator 

Reserved 

1 

2 

CHSTS 1 CHACT 
Status Activity 
Flags Flags 

This Field 
Contains Zeroes 

CHINC 
Counter for the 
Interpreter 

1 

: 

2 

124 

2 

15 

-Figure 33. Command scheduling Control Block (CSCB) (Part 1 of 2) 

Appendix A: Tables and Work Areas 113 



0 (0) 

8 (8) 

16 (10) 

24 (18) 

32 (20) 

40 (28) 

48 (30) 

56 (38) 

64 (40) 

72 (48) 

80 (SO) 

116 (74) 
; 

152 (98) 

160 (AO) 

168 (A8) 

CHPTR 4 CHVCD 1 CHSZE 1 CHSTS 

Address of the Next CSCB in the Chain Verb Size of Status 
Code CSCB Flags 

CHKEY 

Procedure Identification or Taskname 

CHUNIT 3 
Unit Address of the Device 
Assigned to the Procedure 

CHECBP 
Address of the STOP I MODIFY ECB 

CHECB 
STOP I MODIFY ECB 

CHSWT 1 
CHTCB 

Communi- Address of the STC TCB 
cations Flags 

CHSPA 1 
Error 
Code 

CHRSA 
Return Address for STC Exit 

Reserved 

CHQPA 
Queue Manager Parameter Area 

(Input Queue) 

CHSPC 
Completion Code for ABTERM 

CHCSYSO 1 
Express Reserved 
CANCEL Flags 

Control CSCB 

CHCLS 
Procedure Name 

CHPKE 1 
Protect Reserved 
Key 

4 

Reserved 

4 

3 

4 

3 

4 

3 

Reserved 

1 CHUCMP 1 CHCIBCTR 

UCMI Cllt 
Count Field 

CHCIBP 
Address of the CIB 

CHCECB 
CANCEL ECB 

CHJCl 
Address of the JCLS or JCT 

Q 

CHUSC 
Address of the SOT 

CHSPB 
Address of TC B for ABTERM 

ueue M 

CHSQA 

P t A anager arome er 
(Output Queue) 

CHPEND 
Address of the Chain of 

rea 

Pending START Commands 

CHJSCB 
Address of the JSCB 

.Figure 33. Command Scheduling Control Block (CSCB) (Part 2 of 2) 

114 

1 CHACT 1 

Activity 
Flags 

8 

8 

1 1 

Reserved 

4 

8 

4 

4 

4 

4 

36 
; 

36 

. 

4 

4 

8 



DATA SET ENQUEUE TABLE (DSENQ) 

Description: The data set enqueue table (DSENQ) (Figure 34) is built by the DD statement 
processor routine of the interpreter, and is used by the initiator to construct an ENQ 
macro instruction parameter list to prevent routines performing different tasks from 
using the same exclusive data sets concurrently. The table contains an entry for each 
data set (except temporary data sets) required fcr a job. 

0(0) 3 1 

Queue Address of This DSENQ Table Table ID 

4 (4) 3 1 

Queue Address of Last DSENQ Table Zeros 

8 (8) 4 

Name of Characters in all DSNAME Entries to Date 

12 (C) 2 
Number of DSNAME Entries 
to Date 

16 (10) 

* 

- --

Exclusive/ Length of 
Shared DSNAME 

First DSNAME Entry* 

,...."....-

Last DSNAME Entry * 

Data Set ) 
) 

-
-

Zeros - ** 
End of DSENQ 

** If the last entry uses the last available space in the tables but no overflow occurs, 
the zero bytes are omitted. 

.... 

--

Figure 34. Data Set Enqueue Table (DSENQ) 

INTERPRETER WORK AREA (IWA) 

Description: The 2048-byte interpreter work area (IWA) (Figure 35) is obtained from 
subpool zero by a GETMAIN macro instruction in the interpreter initialization module 
(IEFVHl). The IWA contains information used by the interpreter routines~ it is the area 
in which job description tables are built before they are placed in the work queues. 

Although most of the fields in the interpreter work area are self-explanatory, the 
following require further description: 

• Default Parameters: The PARM field of the EXEC statement in the reader procedure 
contains parameters to be used when no explicit specification is made. These 
parameters specify whether the installation requires a programmer's name or account 
number on each JOB statement, the priority to be assigned to a job if no priority has 
been specified, whether commands in the input stream should be processed (or 
ignored). and the device. primary quantity, and secondary quantity to be allocated to 
system output data sets • 

• Switches A-I: These fields contain internal switches used for communicating status 
information among the interpreter routines. 

Appendix A: Tables and Work Areas 115 



116 

switch A: 

JTOP 
JHS 
JCTTQ 
SCTTQ 
DFSH 
JFSH 
EOFR 
SAFSH 

Switch B: 

CXP 
CXPN 
CXPC 
CANDO 
DDAST 
DDATA 
FRCV 
SFJN 

Switch C: 

JCTRTN 
IOERR 
NRC V 
PEXP 
VOLTQ 
DSNTQ 
PLSMB 
QMERR 

Switch D: 

o 
1 
2 
3 
4 
5 
6 
7 

o 
1 
2 
3 
4 
5 
6 
7 

o 
1 
2 
3 
4 
5 
6 
7 

JOBROLLF 0 
JOBREGNS 1 
FEXRCV 2 
FDDRCV 3 
DBFST 4 
DBLST 5 
DCTFST 6 
SYMPRC 7 

switch E: 

PROC 
GPI 
PREF 
PRCV 
CON CAT 
POVRD 
POVRX 

o 
1 
2 
3 
4 
5 
6 
7 

Setting Meaning 

1 Job to process 
1 Job has a step 
1 JCT to put cn queue 
1 SCT to put on queue 
1 Data flush 
1 Job flush 
1 End-of-file received 
1 Flush to a /* 

setting Meaning 

1 Continuation expected by Scan 
1 Continuation expected and not received 
1 Continuation ex~ected and canceled 
1 DO * generated 
1 DD * or DD data 
1 DD data 
1 First statew.ent received 
1 search for job name 

setting Meaning 

1 CSCB return 
1 I/O error on input 
1 Null statement received 
1 Procedure EXEC statement expected 
1 Volume table to put on queue 
1 Data set name table to put on queue 
1 Put last 5MB for this step on queue 
1 Queue manager I/O error 

setting Meaning 

1 Roll on job statement 
1 Region on job statement 
1 First EXEC received this job 
1 First DD received this job 
1 First entry to DSENQ 
1 Last entry to DSENQ 
1 First dictionary entry received 
1 First access of a procedure 

Setting Meaning 

1 Procedure library being used 
1 Get procedure lihrary input 
1 Procedure library end-of-file 
1 Prime procedure buffer 
1 Concatenation in merge 
1 OVerride procedure DD.stateroent 
1 Override procedure EXEC statement 

Unused 



Switch F: 

ORPARMOR 
ORPARMBL 
ORCONDOR 
ORTIMEOR 
ORTIMEO 
ORACTOR 
ORREGOR 
ORROLLOR 

switch G: 

ORRDOR 
ORSDPOR 

Switch H: 

PCPCOMM 
RDRDCBO 
PROCDCBO 
CPSYSFLG 
CPFLGXX 
PROCSW 
CPSTPFL 
PCPSYSIN 

SWitch I: 

BLKPRC 
IWABAS 
IWADDNM 
IWAKGSW 
BLKMLTER 
DSNLIT 

SPOOLDD 

o 
1 
2 
3 
4 
5 
6 
7 

Setting Meaning 

1 Parameter override 
1 PARM parameter present 
1 Condition override 
1 TIME override 
1 TIME = zero 
1 ACCT override 
1 Region override 
1 Roll override 

Bit Setting Meaning 

o 1 Reader override 
1 1 
2-7 

Step dispatching priority override 
Unused 

o 
1 
2 
3 
4 
5 
6 
7 

o 
1 
2 
3 
4 
5 
6 
7 

Setting Meaning 

1 PCP working on command 
1 Reader opened 
1 Procedure library opened 
1 Checkpoint restart EXEC statement 
1 Reserved for checkpoint restart 
1 Statement invokes a procedure 
1 Checkpoint restart step flush 
1 SYSIN DD * encountered in PCP 

Setting Meaninq 

1 Block procedure library 
1 Bypass Assign/start 
1 DDNAME = Key this card 
1 Blocked procedure PCP 
1 Procedure library blocksize 
1 IlSN = 'LITERAL' 

Reserved 
1 DD * or data indicator 

• switch K: This field contains the Priority Change Value for the CHAP macro 
instruction. 

• Switch L: This field contains the Default Allocation level in MSGLEVEL. 

• Switch M: This field contains the Default JCL level in MSGLEVEL. 

• switch N: This field contains the length of the fixed part of the message for 
symbolic parameter substitution. 

• switch Xl: This field is set to X'SO' for a search of the DDNAME reference table or 
to X'40' for SYSOUT. 

Appendix A: Tables and Work Areas 117 



• Checkpoint/Restart Switches: These fields contain switches that communicate 
checkpoint/restart status information to the interpreter routines. 

CHECKPOINT RESTART 

Name Bit 

0-1 
JOBRDNR 2 
JOBRDNC 3 
JOBRDR 4 

5-7 

CHECKPOINT RESTART 

CPFLG 

CPDUM 
CRRES1 
CRRES2 
CRRES3 
CRRES4 
CRIMRS 

o 
1 
2 
3 
4 
5 
6 
7 

SWITCHES A: 

Setting Meaning 

Unused 
1 RD=NR 
1 RD=NC or RD=RNC 
1 RD=R or RD=RNC 

Unused 

SWITCHES B: 

setting Meaning 

1 GET/FREE SYSCHECK DD statement core 
Unused 

1 Dummy step control table required step flush 
Reserved 
Reserved 
Reserved 
Reserved 

1 Immediate restart (PCP) 

• Scan Switches: This field contains internal switches used by the Scan routines. 

Name. 
RPRSW 
PDELSW 
ASTSW 
FLUSHSW 
LDL 
DCBSW 
JGC 
FERROR 

Bit 
o 
1 
2 
3 
4 
5 
6 
7 

Setting 
1 
1 
1 
1 
1 
1 
1 
1 

Meaning 
Right parenthesis switch 
Period delimiter switch 
Asterisk switch 
Flush switch 
Last delimiter switch 
DCB switch 
Text sublist switch 
Error switch 

• Control and Scan Joint Switches: This field contains switches set by the Control 
routines to pass information to the Scan routine. 

Name Bit setting Meaning 

CMT 0 1 Comment switch 
DDOV 1 1 DD override switch 
ENDS 2 1 End scan switch 
COLST 3 1 Column 72 (continuation) switch 
JOBSW 4 1 JOB switch 
EXECSW 5 1 EXEC switch 
DDSW 6 1 DD switch 
SNPSW 7 1 Statement SYSOUT switch 

• Exit Switches: This field contains switches indicating conditions which cause exits 
to user routines. 

Name Bit Setting Meaning 

0-3 Unused 
IWATRKS 4 1 Track stacking 
IWAQFIOE 5 1 Job queue full 
IWASFIND 6 1 Special procedure library FIND 
IWAQENTR 7 1 special queue manager entry 

• System Input Allocation Table: This area contains a list of pointers to the UCBs 
corresponding to units available for allocation to system input data sets. 

118 



• Queue Address-Table: This area contains the addresses (in TTR form) of the next two 
records assigned to the job's input queue entry, and the addresses (in TTR form) of 
the first joblib SlOT, the first scan dictionary record~ and the DD override table. 

• Input Stream Parameter List: This area describes the statement last encountered in 
the input stream, and contains a pointer to the field currently being processed. 

• Procedure Library Parameter List: This area describes the statement last read from 
the procedure library, and contains a pointer to the field currently being processed. 

• procedure-Library Merqe control Data: This area contains information used in merging 
statements from the input stream with statements from the procedure library. The 
information includes the statement names, the step names, and the names of the 
previous and next procedure steps. 

MappinqMacrolnstruction: IEFVMIWA 

Appendix A: Tables and Work Areas 119 



o (0) 

8 (8) 

16 (10 ) 

24 (18 ) 

32 (20 ) 

40 (28 ) 

48 (30 ) 

72 (48 ) 

80 (50 ) 

88 (58 ) 

96 (60 ) 

104 (68 ) 

112 (70 ) 

120 (78 ) 

176 (BO) 

184 (B8) 

192 (CO) 

200 (C8) 

208 (DO) 

216 (08) 

4 4 
IWAl IWAID 

IWA length IWA Identifier 

1 3 4 
IWAEXTS IWAFINDP CSCBP 

Exit Switches Entry Point of FIND NEl Address 

4 4 
RDCBP PDCBP 

Input Stream DCB Address Procedure library DCB Address 

1 1 3 3 
OSWI DINPRTY DTIME DPQTY 

Option Switche Job Priority Step TIme Primary Quantity 

l-

3 2 OSW2 1 DINBPLPI 1 
DSQTY DINMMEM Option Bypass lobe I DUNAME Secondary Quantity Region Size Switches Processing 

8 1 
DUNAME (cont.) DROllFlT 

Default SYSOUT Unit Name Roll Defaults 

4 23 
DINTPPRI 

Interpreting Priority UNQNAME 
Unique Name Qualifier 

1 2 DJBCLAS 1 DMSCLAS 1 
UNNU Maximum Default 

Reserved Unique Name Seriol Number Jobclass Msgclass 

4 1 1 1 1 
QMGRP SWA SWB SWC SWD 

Queue Manager Entry Point Switch A Switch B Switch C Switch 0 

1 1 JEDSWS 2 2 2 
SWE SWF JOB, EXEC, or JCTS SCTS 

Switch E Switch F DO Switches (lWA) JCT Address (IWA) SCT Address (lWA) 

2 2 2 2 
JACTS SlOTS JfClIS JFCBXS 

JACT Address (lWA) SlOT Address (lWA) JFCB Address (lWA) JFCBX Add!"",s (lWA) 

2 2 2 2 
VOLTS DSNAMES SREF85 DREFBS 

VOLT Add,ess (JWA) DSNAME Address (lWA) Dictionary 1 Address (IWA) Dictionary 2 Address (IWA) 

2 2 4 
POVRRDS ACTS SYSNJFCB 

POVRRD Address (IWA) ACT Address (IWA) JFCB Address 

60 

System I~put Allocation Table 

SYSNTTR 
TTR of JFCB (I£FDATA) 

IWAFDATA 
Unit Type For CPO Step I/O Table 

IWAINTSO 
Master Scheduler Register Save Area Address 

SWH 
Switch H 

IWAINTS3 
Exit list Accounti ng Entry Address 

, IWAINTS5 
Job Management Record Address 

SWG 
Switch G 

IWAINTs8 1 
Ckpt/Restrt 
Switches A 

SWI 
Switch I 

4 

4 

4 

IWAINTSI 
Spool DCB Address 

IWAINTS4 
Blocked PROCllB Buffer Address 

IWAINTS6 
Reserved 

2 IWANlRC 
No. of Blocked 
PROCllB Records 

4 

8 

4 

4 

2 

~------~------~------~------~ 
(eontinued) 

. 

• Figure 35. Interpreter Work Area (IWA) (Part 1 af ") 

120 

l 
Default 
Parameters 

J 
Task 
Infarma tion 

1 
Offsets 
to Table 
Areas 

J 



(continued) 220 (DC) 

J. 
256 {100 ) 

TNEXT 
Next 2 Avai lable TTRs 

264 {108 ) 4 
TSIOT 

Next Available SlOT TTR 

272 {110 ) 4 
TSREFB 

TTR af First Dictionary 

280 {118 ) 4 
TPROC 

Next PROC Step Override Table 

288 {120 ) 8 
RSTMT (cont.) 

Input Stream Parameter List 

296 {128 ) 8 
PSTMT (cont.) 

Procedure library Statement Parameter List 

304 {130 ) 8 
PDNM (cont.) 

Procedure DD Name 

312 (138 ) 8 
PSNM (cont.) 

Procedure Step Name 

320 {140 ) 8 
RDNM (cont.) 

Reader DD Name 

328 {148 ) 8 
RSNM (cont.) 

Reader Step Name 

336 (150 ) 8 
PPSN (cont.) 

Previous Procedure Step Name 

344 (158 ) 8 
ORIDSNM (cont.) 

Name of Next Procedure Step Overriden 

352 (160 ) 4 
IWAPARM 

Address of Parameter list for Processing In-Stream Procedures 

360 (168 ) 4 
RElPGM 

Address of PGM Referback Di cti onary 

368 (170 ) 

I.. SREFB 

QPARM 
Queue Manager Parameter Area (QMPA) 

T JOBUB 
TTR of JOBUB SlOT 

TACT 
TTR of Override ACT 

RSTMT 

PSTMT 

PDNM 

PSNM 

RDNM 

RSNM 

PPSN 

ORIDSNM 

QPARMP 
Address of QMPA 

RElPROC 
Address of PROC Referback Dictionary 

DSENQTP 
Address of DSENQ Table 

36 

8 

4 

4 

4 

4 

4 

176 

-r-

Procedu re 
library 
Merge 
Control 
Data 

J ob 
formation In 

.-~ 

.. 
544 I Referback Dictionary (Input) f 

(220) 1-------------------------------------17-16 
DREFB 

896 (380) 
SCTCNT 

No. of SCTs 

JBCONCAT 1 
No. af 

JOBUB SlOTS 

IWAJBROl 1 
Rollin/Rollout 

P"ram 

Referback Dictionary (Search) 

JCT 
Job Control Table (JCT) 

CRSWI 
Ckpt/Restrt 
Switches B 

4 
SYMTTR 

Symboli c Parameter Address 

• Figure 35. Interpreter Work Area (IWA) (Part 2 of 4) 

Appendix A: Tables and Work Areas 121 



904 (388 ) 8 
IWAJOBSI 

Calling Step name for Checkpoint/Restart 

912 (390) 8 
IWAJOBS3 

Procedure Step name for Checkpoint/Restort 

) 4 4 
Job IWAJOBS5 IWAJOBS6 

SYSCH K DD Statement Address Jab Statement Region Size Informa tion 

920 (398 

) 
IWAWKBF 4 3 

Address of Work Area Gotten When IWAVOLTB IWAVOLTL 

First In-Stream Proc. Encountered Queue Address of VOLT 

928 (3AO 

) IWAVOLTL 1 IWABSAM ~ DDINO 1 1 78 

(cant.) Addr. of BSAM Access Method DD Internal DDSWXI 

VOLT Length for In-Stream Proc. Processing Number Switch XI 

936 (3A8 

944 (3BO ) 
~~ 

DRNT 
DD Name Reference Table 4 

Reserved 

1024 (400) 176 

SCT 
Step Control Table (SCT) 

1200 (4BO) 176 

5MB 
System Message Block (SMB) 

1376 (560) 176 

DSNAME Step 
Data Set Name Table (DSNAME) Information 

1552 (610) 176 

VOLT 
Volume Serial Table (VOLT) 

1728 (6CO) 4 28 
IWASTPSO 

T rae k Stac k Work Space 

~ Reserved 

1736 (6EO) 8 
IWASTPS8 

Checkpoint/Restart Reinterpretation of JCL (MVT) 

• Figure 35. Interpreter Work Area (IWA) (Part 3 of 4) 

122 



1768 (6E8) 

1792 (700) 

1968 (7BO ) 

1976 (7B8 ) 

1984 (7CO ) 

1992 (7C8 ) 

2000 (7DO ) 

2008 (7D8 ) 

2016 (7EO ) 

2024 (7E8 ) 

2032 (7FO ) 

2040 (7F8 ) 

swz 
SWY Cont. and Scan 

Scan Switches Joint Switches 

IWARET 
Return Codes 

2 

Reserved 

TEXTBUF 
Intermediate Text Buffer 

4 
TBEGP TKEYP 

Text Begin Address Text Key Address 

4 
TNUMP TLENP 

Text Number Address Text Length Address 

4 2 
TENDP CURLE LASLE 

T ext End Address Current level lost level 

4 
SAVEPTR CTRLWAP 

Current Register Save Area Control Routine Work Area 

4 
DEBUG IWASTMSO 

DCB Address Reserved 

4 

20 

176 

4 

4 

2 

4 

4 

SWY2 1 
IWASTMSI IWASTMS2 Add'i Scan 

SYSIN Address During Rollout Reserved Switches 

8 
Reserved 

4 4 
IWASTMS5 IWANELJC 
Reserved Nfl JCL Address - Input to Post Scan Routine 

1 1 1 1 1 1 2 
IWASTMS7 IWANELEN IWAPCV IWAJDALL IWAJDJCL IWAMSLEN I'J!AMCSCA 
Reserved NEL Length Switch K Switch L Switch M Switch N MCS Command Authority 

4 4 
IWACONID Reserved 

MCS Console ID Address 

Statement 
Information 

Task 
Information 

~ 
• Figure 35. Interpreter Work Area (IWA) (Part 4 of 4) 

Appendix A: Tables and Work Areas 123 



JOB CONTROL TABLE (JCT) 

Description: The job control table (JCT) (Figure 36) is created in the interpreter work 
area by the job statement processor routine of the interpreter. It contains information 
from the JOB statement, job status information" and pointers to other tables in the job' s 
input queue entry. When the interpreter has processed all steps of a job, the JCT is 
written into the appropriate input queue according to priority; it is read back into main 
storage by the initiator job selection and job delete routines. 

Although most of the fields in the job control table are self-explanatory, the 
follow1ng require further description: 

• Job-Status Indicators: The sixth byte of the JCT indicates the status of the job as 
shown below: 

Bit 
-0-

1 
2 
3 
4 
5 
6 
7 

Setting 
1 
1 
1 
1 
1 
1 
1 
1 

Meaning 
A JOBLIB DD statement is included with the job 
Job flush 
Job step canceled by condition codes 
Step flush 
JCT ABEND 
Job failed 
Job includes a cataloged procedure 
Job is a -no setup· job 

• Additional Job-Status Indicators: The byte indicates the status of the job as 
follows: Bit 0 is set to 1to indicate spooled SYSIN data for the job. Bits 1 
through 7 are reserved. 

• Checkpoint/Restart Indicators: This two byte field indicates the checkpoint/restart 
status as shown below: 

Byte 1 
Bit 
-0-

1 
2 
3 
4 
5 
6-7 

Byte 2 
Bit 
0-

1 
2 
3 
4 
5 
6 
7 

Setting-
1 

1 
1 
1 
o 

Setting 
1 
1 
1 
1 
1 
1 
1 
1 

Meaning 
Warm start 
Not used by MET 
Not used 
Checkpoint taken for this step 
Intra-step checkpoint/restart to be done 
Step restart to be done 
Must be set to zero 

Meaning 
SYSCHR DD statement is included with the job 
RD keyword parameter is not NC 
No restart is to be done 
No checkpoints are to be taken 
Do restart if necessary 
Direct SYSOUT writer active at checkpoint 
Job is eligible for direct SYSOUT facilities. 
DSDR processing has not successfully ended 

• SYSOUT-Classes: The first 36 bits of the five-byte field are used to indicate the 
system output classes that contain data. The four remaining bits are reserved. 

Mapping Macro Inst.ruction: IEFAJCTB 

124 



a (0) 3 Internal Job Message Message 
Address in Queue of JCT Table ID = 00 Job Serial Status Class level and 

Number Indicators Job Priority 

8 (8) 8 
Job Name 

16 (10) 8 

Teleprocessing Terminal Name 

24 (18) 3 3 

Address in Queue of PDQ Reserved 
Address in Queue of GO G 

Reserved Bias Count Table 

32 (20) 3 3 

Address in Queue of First SCT Reserved Address in Queue of First 5MB Reserved 

40 (28) 3 3 

Address in Queue of Job ACT Reserved Address in Queue of First SCD Reserved 

48 (30) 3 2 2 

Address in Queue of last 0 SB Reserved Key of 5MB Track First Job Condition Code 

56 (38) First job 
28 

Condition Reserved 
Operator 

~ 

Reserved for Seven Additional Job Condition Codes and Operators 

~ 

Checkpoint/ 2 

Restart 
Indicators 

88 (58 ) 3 1 2 Queue 1 1 
TTR of DSENQ Table Zeros Region Parameter Ident. No. of 
(MVT Only) (MVT Only) (MVT Only) Steps 

96 (60 ) 3 1 4 
TTR of Compressed lIOT 

Zeros Checkpoint Data Set Device Type (MVT Only) 

) 3 No. of Job 1 2 Vol. of 1 1 
TTR of JFCB for Tracks on Number of Checkpoint Reserved 
Checkpoint Data Set SYS1.JOBQE Checkpoints 

(MVT only) Data Set 

104 (68 

) 4 Add'i Job 1 Length of 1 
TTR of SCT for Status Checkpoint Queue Address of JMR 

112 (70 

First Step to Run Indicators 10 

3 1 1 1 3 
JMR Address Date SMF Cancel 

Job Time Limit Step Start Ti me (Conl'd.) Difference Options Flags 

88 (136) 

90 (144) 3 3 3 

Step Start Time (Cont'd.) Job Start Time Jab Start Date 

98 (152) 5 19 

SYSOUT Classes 
~ 

~~ 

AO (160) J T Reserved 

.Figure 36. Job Control Table (JCT) 

Appendix A: Tables and Work Areas 125 



0(0) 1 
Data Set Name 

P' 
i 

Element Name or Relative Generation Number 

48 (30) 8 I 13 
Element Name or Relative J/M +D/M 
Generation Number (continued) Interface 

56 (38) 

Reserved 

I I 2 2 

Label Type Reserved File Sequence Number Val ume Sequence Number 

72 (48) 8 

Data Management Mask 

80 (50) 3 3 I I 

Data Set Creation Date Data Set Expiration Date Indicator Indicator 
Byte I Byte 2 

Number I I 2 I 
Device 

I I I 

of 
Buffering 

Buffer Length Error 
Character- Tape Reserved 

Buffers 
Technique Options 

istics Density 

88 (58) 

96 (60) 2 2 I I 2 

Reserved Data Set Organization Record Option 
Maximum Black Size 

Format Codes 

104 (68) 2 I 
Number of I 

2 2 
Number of Relative Location 

Logical Record Length Chonnel Master of Key in Logical RCD Reserved 

Programs Index Tracks 
112 (70) 4 

Number of I Number of I 30 

Reserved Overflow Volume 
Tracks Serials ~~ 

First Five Volume Serials 

~ I 3 
Length of Queue Address of First JFCBX 
JFCBX 

152 (98) 3 I 3 I 
Space 

Secondary Quantity Indicator Primary Quantity Type 
Requested 

Byte 3 

160 (AO) 3 3 Relative Address 2 

Directory Quantity 
Main Storage Address of of First Track 
Split Cylinder JFCB 

to be Allocated 

168 (A8) 3 3 1 Number of I Main Storage Address Volume 
of SUBALLOC JFCB 

Average Data Record Length Count Tracks per 
Cylinder 

176 (BO) 

Job File Control Block 

0(0) 3 

Queue Address of Next J FCBX Reserved 

I 82 

15 Additional Volume Serials 

Reserved T 
Job File Control Block Extension 

Figure 37. Job File Control Block (JFCB) and Extension (JFCBX) 

126 



JOB FILE CONTROL BLOCK (JFCB) AND EXTENSION (JFCBX) 

Description: A job file control block (JFCB) (Figure 37) is constructed in subpool zero 
(from information in a DO statement) by the interpreter DO statement processor routine. 
The JFCB is written into the job's input queue entry, and retrieved when a DCB with the 
corresponding name is opened. The information in the JFCB, which describes the 
characteristics of a data set" may be modified by the open routine. 

A JFCB contains enough space to record five volume serials. If more than five volume 
serials are specified., enough job file control block extensions (JFCBXs) to contain the 
additional volume serials are constructed; each JFCBX can contain up to fifteen 
additional volume serials. 

Additional information on the contents of the JFCB and JFCBX may be found in the 
publication, IBM.System/360 Operating System: System Control Blocks, GC28-6628. 

Mapping Macro Instruction: IEFJFCBN 

LIFE-OF-TASK (LOT) BLOCK 

Description: The 384-byte life-of-task (LOT) block (Figure 38) is built in a main 
storage area obtained from suhpool 253. It contains information for scheduling 
functions, and is used by system task control and initiators. It is created by the Job 
select module for initiating problem programs. 

The LOT block contains the linkage control table (LCT), a two-level register save area 
(REGSAVE), an input queue manager parameter area (QMGR1), an output queue manager 
parameter area (QMGR2)w the address of the ECB list~ the address of the PIB, the address 
of the SPIL, and the ECB List. 

LINKAGE CONTROL TABLE (LCT) 

Description: The linkage control table (LCT) (Figure 39) is part of the LOT block 
constructed by the Job Select module in subpool 253. It is also built separately by 
System Task Control, in which case its storage is obtained from subpool zero. It is a 
communications area used by the routines of the Initiator, System Task. Control, 
Allocation, and Termination. 

Most of the fields in the LCT are self-explanatory; it should be noted, however, that 
the job termination status bit is the low-order bit of the one-byte device features 
field. 

Mapping-Macro Instruction: IEFALLCT 

MASTER SCHEDULER RESIDENT DATA AREA 

Description: The master scheduler resident data area (Figure 40), which is in the 
nucleus area of main storage, contains information used by the queue initialization, 
command scheduling, initiator, and I/O device allocation routines. Its location is 
stored in the CVTMSER field of the communication vector table. 

Most of the fields in the master scheduler resident data area are self-explanatory; 
those fields that require further explanation are described below: 

• Queue Formatting Switch: If the high-order bit of this field is on, it indicates 
that the queue data set must be formatted. 

• Transient Reader TTR: This field is used by the transient reader suspend routine to 
store the address of the work queue data set where the reader information was placed 
when the reader was suspended. 

• DEFINE Control Information: If the high-order bit of this field is on, it is a 
DEFINE operation; if off, it is IPL time. The second bit indicates that a list of 
the partitions' sizes and job class(es) has been requested; the third bit indicates 
that there is an adjacent partition check; the fourth bit is set when initialization 

Appendix A: Tables and Work Areas 127 



is complete to allow DEFINE commands to be accepted; the fi£th bit is set on when the 
operator has requested partition chanqes at IPL; the sixth bit indicates that a small 
partition cannot terminate because of the DEFINE operation; the seventh bit indicates 
that a DEFINE command has been issued during operation; the ei~hth bit indicates that 
the system has !?torage protection. 

• status Flags: 

0(0) 1 

104 (68) 

176 (BO) 

:,;. 

248 (F8) 

Bit 
-0-

1 
2 
3 
4 
5 

6-7 

When set on. status flags indicate: 

Meaning 
System Initialization in progress 
DISPLAY JOBNAMES 
Reserved 
VARY/uNLOAD summary 
QUeue hold-release 
DISPLAY ACTIVE processing 
Reserved 

Linkage Control Table 

Reg ister Save Area 1 

Register Save Area 2 

Input Queue Man.ager Parameter Area 

''''"CJ· . ~ 

Output Queue Manager Parameter Area 

320 (140) 1 3 
Number of 

Stae k Address Queue Breaki n9 Information 
Buffers 

328 (148) 4 

Address of ECB List Address of PIB 

336 (150) 4 

Address of SPIL 

ECBLlST Used to ~queue Jabs 

376 178 

Reserved 

• Figure 32. Life-of-Task (LO'r) Block 

128 

72 

. 

72 

36 

~ 

4 

4 

40 

4 

} 

Track 
Stacking 
Information 
(MVT) 

L. 



o (0) 1 3 
LPMOD 
Value Address of Job Step CSCB Address of I/o Supervisor UCB Lookup Table 
(MVT) 

4 1 
Device 

8 (8) 
TCB Address 

Features 
Linkor's Register Save Area Address 

16 (10) 4 

JCT Address SCT Address 

24 (18) 4 

Queue Address of Current SCT Allocate/IEFVPOST Communication Block Address 

32 (20) 4 

Error Code 

Communi'cations Area 

Address of Register 
Save Aceo for 
Allocation and Termination 

1 JFCB 1 1 1 

Reserved Housekeeping Current Step Action Code Address of Current 5MB 
Indicators Number 

56 (38) 

64 (40) 4 
Counter for Assigning Unique Volume 

Address of Message Closs QMPA 
Serials to Passed Data Set Volumes 

72 (48) 4 
Initiator 

1 

Return Address to System Task Control Routine Internal PARM Field Address (MVT) 
Switches (MVT) 

Timer Work Area 

96 (60) 4 

JOBUB DCB Address 

• Figure 39. Linkage Control Table (LCT) 

• Log status Flags: 

Bit 
o 
1 

• MFT Switches: 

Meaning 
Log Data set Sysout Scheduling 
Log Threshold Reached 

When set on. flags indicate: 

Bit Meaning 
o Transient Reader Active 
1 Transient Reader in Core 

Allocate/Terminate Parameter List Address 

2 Pending START command for transient reader 
3 MFT Environment switch 
4 System Assigned Reader is Running 
5 Core storage is in System 

4 

3 

4 

4 

16 

4 

4 

4 

3 

16 

4 

Appendix A: Tables and Work Areas 129 



• Initialization Switches: When set on, flags indicate: 

Bit Meaning 
--0- IPL switch 

1 SYSOUT IPL 
2 SYSOUT job start 

3-4 Reserved 
5 34 security 
6 Queue initialized 
7 Procedure catalog initialized 

• System Exclusive Switches: When set on, switches indicate: 

Bit Meaning 
0-- Console flag (PCP only) 
1 CANCEL flag for ABEND (PCP only) 
2 Roll-out flag (PCP only) 
3 spinoff flag (PCP only) 
4 Display data set name 
5 Display space 

• pending Flags: When set on, flags indicate: 

Bit Meaning o IPL Date 
1 Region busy 
2 Command move completed 
3 Interpreter command return 
4 System Input control purge request 
5 System output control purge request 
6 Blank start pending (REQ=l,START BLANK=O) 
7 Console command suppressed by WTO/WTOR Exit Routine 

• ECB Flags: When set on, flags indicate: 

Bit 
-0-

1 
2 
3 
4 
5 
6 
7 

Meaning 
External interrupt 
WTO or WTOR 
WTL 
Console Attention key hit 
System Input 
System Output 
Master command routine 
Summary bit, Vary UCB scan required 

• Resident SWitches: When set on, switches indicated: 

Bit Meaning 
--0- IPL has been completed 

1 WTO or WTOR pending 
2 Console usage, Primary or alternate 
3 Log purge request 
4 Reader has reached end of file, or start reader 
5 New reader pending 
6 New writer pending 

New writer pending (Modify) 
7 Job notification (l=yes) 

130 



- Fetch Flags: When set on, flags indicate: 

Bit Meaning 
-0- Named Fetch 

1 Defer current command execution sequence 
2 TCB Tree Trace Fetch (Locate) 
3 Auxiliary FETCH given 
4 Reply bit to Request attention 
5 Pseudo-SYSQUT flag 
6 DISPLAY STATUS 
7 Queue hold-release 

- Mapping Macro Instruction: IEEBASEB. 

o (0) 4 4 

Address of CSC B Cha in 
Group Queue Pointer 

(MVT only) 

8 (8) 4 4 

Master Schedu ler ECB Communications Task IPL ECB 

16 (10) 4 4 

Address of Jab Queue UCB Address of PROCLIB UCB 

Queue 1 3 4 

Formatting 
Address of Set Auta 

Address of System Log Cantral Table 
Switch 

Cammand Parameter List 

24 (18) 

32 (20) 1 Number 1 2 2 2 
Status af Tracks Initiator Minimum Initiator 
Flags in Initiatar I nterpreter Counter Protection Key Mask Partition Size 

Stack 

2 1 1 4 
Minimum Problem Log Status Reserved System Log ECB Program Partition Size Flags 

40 (28) 

48 (30) 46 

I'"' 

Reserved 

ID of console 1 1 

that entered Reserved 
DEFINE 

96 (60) 4 Subpool 255 Boundary Box 4 

Core Storage Low Boundary -------
First FQE Pointer 4 

104 (68) 4 4 
Low Boundary Poi nter High Boundary Pointer 

112 (?O) 4 3 

Transient Reader, Pending CSCB Pointer 
MFT 

Transient Reader CSCB Pointer Switches MFT 
Area 

120 (78) 4 4 

Transient Reader TTR DEFI NE Control Information 

128 (80) 4 4 

Reserved Address of ECB Chain for Readers 

-Figure 40. Master Scheduler Resident Data Area (Part 1 of 2) 

Appendix A: Tables and Work Areas 131 



Initialization 
1 System 1 1 1 Resident 1 1 

Exclusive 
Pending ECB 

Switches 
Fetch Command 

Switch 
Switches 

Flags Flags 
Status Flags 

Flags Verb 

136 (88) 

144 (90) 8 Variable 
Command Verb (cant.) Communication 

Field 

152 (98) 8 Msg. 2 

Variable Communication Field (cant.) Generation 
Control 

4 4 
Poi nter to Character Com 
Before list Master ECB 

Area 
man 

160 (AO) 

168 (A8) 4 4 
Pointer to ECB in SJQ Entry of 

ECB for Allocation 
Job Using Console 

4 4 
Pointer to Pointer to 

176 (80) 

Primary UCB Alternate UC8 

184 (B8) 4 4 
Pointer to Reserved 
Pseudo-Disable Switch 

192 (CO) 4 
Reserved 

eFigure 40. Master Scheduler Resident Data Area (Part 2 of 2) 

PARTITION INFORMATION BLOCK 

The 48-byte partition information block (PIB) (Figure 41) contains information used by 
the command processing and scheduler routines. Its location is stored in the TCBPIB 
field at displacement 124 (decimal) of the task control block (TCB). 

Although most of the fields in the partition information block are self-explanatory, 
the following require further description: 

• ECB Address: Contains the address of ECB to be posted by job selection when the 
partition is made quiescent for partition redefinition. 

• "No Work" ECB for the Initiator: This ECB is posted by small partitions requesting 
service~ the queue manager when a job has been enqueued, and by the DEFINE and START 
command routines. 

• Status A Information: 

Bit setting Meaning 
0 0 Stop initiator 

1 START INIT issued 
1 1 Partition active 
2 1 Reserved 
3 1 Transient reader is suspended 
4 1 Partition is to be terminated by IEFSD599 when it next gets 

control 
5 1 Partition is involved in redefinition 
6 1 system-assigned transient reader operating in this partition 
7 1 Problem program is running 

132 



I 

• Status B.Information: 

Bit 
-0-

1 
2 
3 
4 
5 
6 
7 

Setting 
1 
1 
1 
1 
1 
1 
1 
1 

Meaning 
Logical tracks added for initiator 
LOT block exits 
SPIL has been created 
Reserved 
Unending task present in partition 
JOBLIB Switch 
STEPLIB switch 
FETCHLIB switch 

• SPILAddress: The small partition information list (SPIL) is applicable to large 
partitions only. 

• Job Class Codes: Contains one to three codes for the partition, arranged in 
descending numerical order, i .. e., GRP3 is in the second byte of the field., followed 
by GRP2 and GRP1. The first byte contains the protection key for the partition, if 
the system has the storage protection feature. 

• Internal Queue status Bits: 

Bit 
o 

1 
2 

3-7 

Setting 
1 

1 
1 

Meaning 
A large partition in which the DSDR processing step for a 
small partition (less than 12K) is to be executed 
Reserved 
A DEFINE command has been received and the partition is 
processing jobs on its internal queue. 
Reserved 

• Job Step Timing Status Bits: 

Bit 
0-

1 

2-7 

Setting 
1 
1 

Meaning 
The job step TQE is being used for job step timing. 
Indicates to the Initiator that the step being terminated 
was timed. 
Reserved. 

Appendix A: Tables and Work Areas 133 



0 (0) 4 

CSCB Address of Pending Command 

4 (4) 4 

ECB Address 

8 (8) 4 

"No Work" ECB for the Initiator 

12 (C) 1 3 

Status Bi ts - A Address of Current Job Step CSCB 

16 (10) 1 3 

Status Bits - B S PIL Address 

20 (14) 4 

CSCB Address of Current Task in Partition 

24 (l8) 1 3 

Protection Key Job C lass Codes 

28 (1C) 4 

CSCB Address of Suspended Reader 

32 (20) 4 

Address of the Direct SYSOUT Control Block (DSOCB) Chain 

36 (24) 1 3 
Internal Queue Address of Internal Queue of Job Names to be Restarted 
Status Bits 

40 (28) 1 3 
Job Step Timing Address of the Job Step TQE 
Status Bits 

44 (2C) Count of 1 3 
Address of the RB of the Most 

Active Recently Loaded Module on the JPAQ 
Subtasks 

• Figure 41. Partition Information Block (PIB) 

134 



SMALL PARTITION INFORMATION LIST (SPIL) 

I Description: The SO-byte small partition information list (SPIL) (Figure 42) is a 
storage area for information pertaining to small partition scheduling. It is built in 
main storage obtained from subpool O. The address of the ECBs provides for information 
to b€ passed between the small partition and the large partition that is performing 
initiation, allocation, or termination functions for the small partition. 

MOst of the fields in the small partition information block are self explanatory; 
however, the status bits field is described below. 

Bits 0 and 1 contain ones if a START writer or reader command has been entered~ 

Bit 2 contains a one if a SPIL pointer has been stored in the PIB. 

Bit 3 contains a one if a problem prograrr has requested termination. 

Bit 4 contains a one if an indicative dump was requested. 

Bits 0-7 contain zeros if a START INIT corrmand was entered. 

o (0) 
(ECBA) 

Event Control Block 

4 (4) 
(ECBB) 

Event Control Block 

8 (8) 
(ECBC) 

Event Control Block 

12 (C) 

Address of Small Partition TCB 

16 (10) 1 

Status Bits Reserved 

20 (14) 
Address of Allocate Parameter list (In Large Partition) if a Problem Program; 

TIOT, if a Reader or Writer 

24 (18) 

Address of CSCB for Writer 

28 (1C) 

... ECB list for DEQUEUE 

68 (44) 

Address of LINK Parameter list (In Large Partition) 

72 (48) 

Address of 3- Word Parameter list for IEESD590 and IEESD591 

76 (4C) 

Step Time Remaining for Problem Program Executing in a Small Partition 

.Figure 42. Small Partition Information List (SPIL) 

4 

4 

4 

4 

3 

4 

4 

40 

~ 

4 

4 

4 

Appendix A: Tables and Work Areas 135 



STEP CONTROL TABLE <SCT) 

Description: The step control table (SCT) (Figure 43), is used to pass control 
information to the DD routine of the interpreter and to the initiator routines, which 
also contribute information to the table. This table is created and initialized by the 
execute statement processor routine of the interpreter when an EXEC s~tement is read. 
One SCT is created for each step of a job. 

If the step is part of a previously cataloged procedure, the name of the step that 
called the procedure, if any, is entered. The following variable-content and indicator 
fields are included in the table: 

BYTE 4: Internal Step Status Indicators: 

Bit o 
1 
2 
3 
4 
5 
6 
7 

Setting 
1 
1 
1 
1 
1 
1 
1 
1 

Meaning 
Step can be rolled out 
Roll step out if necessary 
Do not restart step 
Do not take a checkpoint 
Restart if necessary 
Graphics - alter protect key 
GraPhics - ABEND exit 
step failed 

PARM Count or Step Status Code: 

a. Interpreter: The number of characters specified in the FARM parameter of the 
EXEC statement is placed in this entry. 

b. Initiator: This table entry contains the condition code returned by the 
processing program. 

BYTE 67: Step Type Indicators: 

Bit o 
1 
2 
3 

4-6 
7 

Setting 
1 
1 
1 
1 

Meaning 
EXEC statement contains PGM=*.stepname.ddname 
SYSIN is specified as DD* 
SYSOUT is specified 
JFCB housekeeping is complete 
Initiator Indicator 
Reserved 

BYTE 104: Extension of Internal Step status Indicator 

Bit 
o 
1 

2 
3 
4 
5 
6 
7 

setting 

1 

1 

1 
1 
1 

Meaning 
Reserved 
Direct system output'facilities required to output job 
separator or system messages. 
Allocation for control volume 
Reserved 
STEPLIB present 
Spooled SYSIN for step 
Job ended 
Reserved 

Mapping Macro Instruction: IEFASCTB 

136 



STEP INPUT/OUTPUT TABLE (SlOT) 

Description: The Step Input/Output Table (SlOT) (Figure 44), makes DD statement 
available to the initiator for use as a source of information for the TIOT and for 
providing DD information to allocation and disposition routines. When a DD statement is 
read, the interpreter creates a new SlOT and places the DD information into it. The 
individual bits of the disposition byte and of indicator bytes 56 through 59 in the SlOT 
are set to one to indicate the following conditions: 

BYTE 55: scheduler Disposition 

Bit Meaning 
--0- Reserved 

1 Retain volume 
2 Private volume 
3 Pass data set 
4 Keep data set 
5 Delete data set 
6 Catalog data set 
7 Uncatalog data set 

BYTE 56: Indicator Byte.Number 1 

Bit Meaning 
--0- Dummy data set 

1 SYSIN data set 
2 Split (primary) 
3 Split (secondary) 
4 suballocate 
5 Parallel mount 
6 Unit affinity 
7 Unit separation 

Appendix A: Tables and Work Areas 137 



0 (0) 

8 (8) 

16 (10) 

24 (18) 

32 (20) 

40 (28) 

48 (30) 

56 (38) 

64 (40) 

72 (48) 

80 (50) 

88 (58) 

96 (60) 

104 (68) 

112 (70) 

120 (78) 

. 

160 (AO) 

168 (A8) 

176 (BO) 

3 1 Internal I 
Table ID 

Queue Address af SCT (02) Step Status Maximum Step Running Time 
Indicators 

2 2 3 
PARM Count or Step Status Length of Allocate Work 

Queue Address of First SlOT Entry Reserved Code at Termination Area, or Number of SlOTs 

3 1 3 

Queue Address of Allocate Work Area Reserved Queue Address of Next SCT Reserved 

3 1 3 
Queue Address of Fi rst 5MB 

Reserved 
Queue Address of Last 5MB 

Reserved 
for Next Step for Thi s Step 

3 1 3 
Queue Address of First ACT Entry 

Reserved Queue Address of VOLT Reserved 
for This Step 

3 1 
Queue Address of Dsname Table 

Reserved Name of Step That Called Procedure 
for This Step 

8 

Name of Step That Called Procedure (Continued) Step Name 

8 2 

Step Name (Continued) 
Relative Pointer to 

Length of VOLT 
Step Entry in AG:T 

Number of 1 Number of 1 Number of 1 1 

SlOTs in Setup JFCBs to 
Step Type 

Queue Address of SCTX 
This Step Messages Allocate 

Indicators 

1 3 1 

X'OO' 
Hierarchy 0 

X'Ol' 
Hierarchy 1 

Region Address Region Address 

3 3 
Queue Address of Checkpoint 
Restart First WTP 5MB Number of WTP 5MBs in Step Reserved 

2 2 2 Step Dispatching 
Hierarchy 0 Hierarchy 1 Reserved Priority 
Region Size Region Size (MVT only) 

4 
Step SYSI N count for SMF 

Queue Address of PGM = ., 
stepname, ddname SlOT 

Extension 1 3 
of Internal Queue Address of 

Program Name Step Status the Step TlOT 
Indicators 

8 2 

Program Name (Continued) 
Length (i n Bytes) of 

First Step Condition Code Dsname Table for This Step 

First Step 1 3 

Condition Queue Address of First Condition SCT 
Operator 

Second Through Seventh Step Condition Entries 

2 

Eighth Step Condition Code 
Eighth Step 
Condition 
Operator 

Queue Address of the Fi rst 
DSB in Message Class 

Queue Address of Eighth Condition SCT 

3 Number of 1 
Message 
Class DSBs 
for this Step 

Step 
Status 

3 

Reserved 

Queue Address of 
last Legitimate 5MB 

• Figure 43. Step Control Table (SCT) 

138 

3 

1 

1 

1 

1 

2 

4 

3 

2 

2 

4 

4 

2 

36 

-;:: 

2 

3 



BYTE 57~ Indicator Byte Number 2 

Bit Meaning 
--0- Channel affinity 

1 Channel separation 
2 Volume affinity 
3 JOBLIB DD statement 
4 Unlabeled (no labels) 
5 Pool DD statement 
6 Defer mounting 
7 Received data set 

BYTE 58: Indicator Byte Number 3 

Bit Meaning 
-0- Volume reference 

1 SYSIN expected (procedures only) 
2 Allocate work table volume block indicator 
3 Volume reference in step 
4 SYSOUT was specified 
5 NEW data set 
6 MOD data set 
7 OLD or SHR data set 

BYTE 59: Indicator Byte Number 4 

Bit Meaning 
--0- Set by reader to indicate GDG single 

4 Step processed 
5 Intra-step volume affinity 
6 Data set is in passed data set queue (PDQ) 
7 1 = old or modified data set 

o = new data set 

BYTE 92: Conditional Disposition 

Bit Meaning 
0-3 Reserved 

4 Keep data set 
5 Delete data set 
6 Catalog data set 
7 Uncatalog data set 

Mapping Macro Instruction: IEFASIOT 

TASK INPUT/OUTPUT TABLE (TIOT) 

Description: The Task Input/OUtput Table (TIOT) (Figure 45) provides data management 
routines with the addresses of the JFCBs and devices allocated to the data sets in a job 
step or system task. It is constructed by the I/O device allocation routine in main 
storage obtained from subpool zero. The allocation routine also places a copy of the 
TIOT on the appropriate job class queue with the other tables for the job step. After 
the step completes processing, the TIOT is brought in from the job queue and placed in 
the upper portion of the partition. The step is then terminated, and the TIOT is 
deleted. 

For further information on the TIOT, see IBM system/360 Operating System: system 
Control Blocks, GC28-6628. 

Appendix A: Tables and Work Areas 139 



4 (4) 

12 (C) 

20 (14) 

28 (1C) 

36 (24) 

44 (2C) 

52 (34) 

60 (3C) 

68 (44) 

76 (4C) 

84 (54) 

92 (5C) 

~ 

124 (7C) 

132 (84) 

3 

Queue Address of Next SlOT 

3 

Queue Address of SlOT 
for VOLREF or SUBALLOC 

3 

Reserved 

1 Number of 1 1 
Internal Units for Volume 
DD Number This Dato Set Count 

System Output Form Number 

Queue Address of DSB fortnis Data Set 

1 
Conditional TTR of SlOT 
Disposition be i ng passed 

0 (0) 3 

Queue Address of SlOT Table ID 

DD Name 

Channel Separation and Affinity 

Unit Separation and Affinity 

1 3 

Reserved Queue Address of JFCB Reserved 

1 3 

Reserved 
Queue Add ress of SIO T System 

Reserved 
Output/Dependency Block 

2 Number of 1 

Reserved Volumes in Relative Pointer to 

VOLT 
Volume Table Entry 

1 

Disposition Indicator Bytes 

Unit Type 

System Output Program Name 

4 System 
Output 
Class 

4 

3 

Reserved 

1 DD Statement 1 

Duplicate Reserved 
Number 

Queue Address of Next DSB 

8 

& NAME from DSNAME = 
for Dedicated Work Files 

& NAME fram DSNAME = for Dedicated Work Files 
. (Continued) 

DCB Reference Name 

• Figure 44. Step Input/Output Table (SlOT) 

140 

1 

8 

8 

8 

1 

1 

2 

4 

8 

8 

2 

4 

26 

~ 

44 



0(0) 8 

Job Name 

8 (8) 8 

Step Name 

16 (10) 8 

Name of Step Call ing Procedure, or Zeros 

1 1 2 4 

I Entry Status Allocation 
Length Bits Data DD Name 

4 3 1 Fir 

DD Name (continued) 
Address in Queue of Status DD 
JFCB or SlOT Bits En 

st 

24 (f8) 

32 (20) 

try 

40 (28) 1 3 1 3+ 
Status Address of UCB Status Address of UCB Device 

Bits or Link Value Bits or Link Value Entres 

- - ---- -- -
Last 

~1--------:-141r-----_-----IT~~;" l Zeros - End of nOT • 

Figure 45. Task Input/Output Table (TIOT) 

WRITE-To-PROGRAMMER CONTROL BLOCK (WTPCB) 

Description: The write-to-programmer control block (WTPCB) (Figure 46) is built by 
allocation interface control routine IEEVACTL in the system queue area. It is used by 
system tasks and problem program tasks when write-to-programmer messages are issued. The 
-Flags· field is defined below: 

o (0) 

4 (4) 

8 (8) 

12 (C) 

Bit 
0-

1 
2 
3 
4 
5 
6 
7 

Number of 

setting 
1 
1 
1 
1 
1 
1 
1 
1 

WTP's issued • 

1 

Meaning 
Job queue problem 
Limit message processed 
Step contains SYSOUT 
Return to IEFWTPOl upon completion 
No record message processed 
Last 5MB used for job 
WTP invoked for this step 
WTOR or WTO with additional routing codes being processed by 
WTP 

3 1 

TTR Bei n9 Used by WTP Flags 

4 

Address of Message Class QMPA 

3 1 
TTR of First WTP 5MB in Step Remaining 
(Needed for Checkpoint/Restart) Bytes in 5MB 

3 

Number of Reserved 5MBs for WTP. 

• Figure 46. Write-to-Programmer Control Block (WTPCB) 

Appendix A: Tables and Work Areas 141 



Appendix: B: MFT Modules 

This appendix contains a table of unique MFT modules, a group of tables showing the 
modules of each major component, a list matching entry point and control section names 
with source module names, and a brief description of each of the modules used by MFT. If 
you are looking for a specific module and know only the major component and routine name, 

I use Tables 3-15 which give a cross-reference to the source module. The source modules 
are in turn listed alphamerically for easy access. If you know the source module name, 
go directly to the module descriptions. 

Unique MFT Modules 
Table 2 lists all modules that are unique to MFT. This table is organized by major 
component • 

• Table 2. MFT Modules 
r---------------------------------------------------------------------------------------, ABEND: Initiator: . Master scheduler Task: 

IEACTMOB IEFSD167 IEECIR50 
IEADTM22 IEFSD3BQ IEEDFINA 
IEADTM23 IEFSD510 IEEDFINB 
IEAMTM05 IEFSD511 IEEDFINC 
lEANTMOA IEFSD512 IEEDFIN1 
IEAN'l'MOB IEFSD513 IEEFIN2 
IEANTMOC IEFSD515 IEEDFIN3 
IEAN'l'MOD IEFSD516 IEEDFIN4 
IEANTMOE IEFSD517 IEEDFIN5 
IEANTMOO IEFSD518 IEEDFIN6 
IEANTM01 IEFSD519 IEEDFIN7 
IEANTM02 IEFSD540 IEEDFIN8 
I EANTMO 3 IEFSD541 IEEDFIN9 
IEANTM04 IEFSD553 IEESD566 
IEANTM05 IEFSD554 IEFSD569 
IEAN'l'M06 IEFSD555 
IEANTM07 IEFSD556 
IEAN'l'M08 IEFSD558 
IEANTM09 IEFSD559 

Communication Task: 
IEEC1R45 
lEEVWTOR 

I/O Device Allocation: 
IEFSD551 
IEFSD552 
IEFSD557 
IEF41DUM 

Nucleus: 
IEESD567 
IEESD568 

IEFSD589 
IEFSD598 
IEFSD599 

Reader/Interpreter: 
IEFSD530 
IEFSD531 
IEFSD532 
IEFSD533 
IEFSD536 
IEFSD537 

System Management Facility: 
IEESMFwr 

SYstem Task Control: 
IEESD590 
IEESD591 
IEESD592 
IEEVAcrL 
IEEVSMBA 
IEEVTcrL 
IEFSD534 
IEFSD535 
IEFSD587 
IEFSD588 

SVC 34: 
IEESD561 
IEESD571 

system Error Task: IEE2803D 
IEAMSERB IEE3903D L ______________________________________________________________________________________ -1 

142 



Major Component Modules 

Tables 3 through 15 list all MFT modules according to major component. The tables appear 
in alphabetical order by component name. Within each component, routine names are listed 
alphabetically with a cross-reference to the module name. 

_ Table 3. ABEND Modules 

r--------------------------~------------1 1 1 Source 1 
1 Routine 1 Module I 
~--------------------------__t------------~ 
IControl Block Validity CheckilEANTM03 
IDAR Core Image Dump IIEADTM22 
IDAR Task Reinstatement IIEADTM23 
1 Dump IIEANTM06 
IDump Test IIEANTM04 
IIndicative Dump IIEANTM08 
11/0 Purge IIEANTM02 
IIQE Purge and Data Set ClosellEANTMOE*** 
ILoading Program Purge IIEANTMOC*** 
INormal Termination and 1 
1 Abnormal Termination RouterllEANTMOO 
IOpen Dump Data Set 1 I EAMTM 0 5 
IOpen Dump Data Set 1 I EANTM 0 5* 
IRecursion Processing 1 I EANTM 0 9 
ISTAE and Graphics Test IIEANTM01 
ISteal Main Storage IIEANTMOA 

.1 Subtask ENQ Purge 1 lEANTMOD*** 
1 Termination I I EANTMO 7 
IWTOR Purge IIEACTMOB** 
IWTOR Purge 1 I EANTMOB 
~~--------------------------~~-----------~ 
1 *Replaces lEAMTM05 for MFT with I 
I subtasking. I 
I **Replaces lEANTMOB for MFT with MCS. 1 
I***MFT with Subtasking only. I L _________________________________________ J 

-Table 4. communication Task Modules 
r----------------------------T------------, 1 I Source I 
I Routine I Module 1 
~----------------------------+------------~ 

Console Device Processor I IEECVPM 
Console Interrupt I IEECVCRA 
External Interrupt 1 IEECVCRX 
Initialization Routine 1 IEECVCTI 
Purge RQE 1 IEECVED2 
Router I IEECVCTR 
Wait I IEECVCTW 
Write-to-Operator t IEECVWTO 
Write-to-Operator-With
Reply 
EXCP OPEN/CLOSE 
MCS Comm Task Router 
MCS Console switch 
MCS Device Interface 
MCS 1052 Device Support 
MCS 1403/1443 Device 

Support 
MCS 2540 Device Support 
MCS 2740 Device support 
MCS Delete Operator Message 
MCS WTO/WTOR Processor 

IEEVWTOR 
IEECVOC 
IEECMAWR 
IEECMCSW 
IEECMDSV 
IEECMPMX 

IEECMPMP 
IEECMPMC 
IEEC2740 
IEECMDOM 

(SVC 35) IEECMWSV 
NIP Message Buffer Writer IEECMWTL 
User Dummy WTO/WTOR Exit IEECVCTE 
WTOR Purge (End of Job) IEAGTM07 

----------------------------~-~----------

Appendix B: MFT Modules 143 



e Table 5. Direct System Output Modules 
r------------------------------T----------, I I Source I 
I Routine I Module I 
~------------------------------+----------~ I Initialization I IEFDSOCP I 
I Release DSOCB Routine I IEFDSOFB 1 
I' SlOT and JFCB Modification 1 IEFDSOAL I 
I STOP and MODIFY Command I I 
I Processor I IEFDSOSM I 
I System Messages and Job I I 
I Separator Writer I IEFDSOWR I 
I Tape to Printer or card I I 
I Punch I IEFPRINl' I L ______________________________ ~ _________ _J 

e Table 6. Initiator Modules 
r-----------------------------~----------, I I Source 1 
1 Routine 1 Module 1 
~-----------------------------+----------~ 

Alternate step Deletion I IEFSD516 1 
Data set Integrity I IEFSD541 1 
Dequeue by Jobname I 1 

Interface I IEFSD519 I 
Dummy User Job Initiation I I 

Exit Routine I IEFUJI I 
Dummy User step Initiation I 

Exit Routine IEFUSI 1 
ENQ/DEQ Purge IEFSD598 I 
Job Deletion IEFSD517 I 
Job Initiation IEFSD511 1 
Job Selection IEFSD510 1 
Job suspension IEFSD168 
Linkage from Job Termina-

tion to Initiator for the 
30K scheduler 

Linkage from Job Termina
tion to Initiator for the 
44K Scheduler 

Linkage to IEFSD168 
Linkage to IEFSD510 
Linkage to IEFSD511 
Linkage to IEFSD512 
Linkage to IEFSD515 
Linkage to IEFSD516 
Linkage to IEFSD534 I' 
Linkage to IEFSD541 1 
Partition Recovery I 
Problem Program Interface 1 
Set Problem Program State 1 
Small Partition Module 1 

,Step Deletion 1 
Step Initiation 1 
TCTIOT Construction 1 
User Exit Initialization 1 

IEFSD33Q 

IEFSD32Q 
IEFSD167 
IEFSD555 
IEFSD558 
IEFSD553 
IEFSD559 
IEFSD554 
IEFSD589 
IEFSD540 
IEFSD518 
IEFSD513 
IEFSD556 
IEFSD599 
IEFSD515 
IEFSD512 
IEFSMFAT 

Routine 1 IEFSMFIE 1 L ______________________________ ~ __________ J 

144 

eTable 7. I/O Device Allocation Modules 
(Part 1 of 2) 

r------------------------------T----------, 
1 1 Source 1 
I Routine I Module 1 
.------------------------------t----------i 
1 Allocation Control IEFXCSSS 
I Allocation Entry IEFSD21Q 
I Allccation Exit IEFSD41Q 
I Allocation Recovery 
I Messages 
I Allocation Recovery 
I Automatic Volume 
I Recognition 
I Automatic Volume Recogni
I tion Messages 
I Automatic Volume Recogni
I tion Nonstandard Label 
I Routine 

Bit Pattern Scan Routine 
DADSM Error Recovery 
Decision Allocation 
Demand Allocation 
Device Bit Pattern 
Device Strikeout 
EXEC Statement Condition 

Code Processor 
EXEC Statement Condition 

Code Processor Messages 
External Action Messages 
External Action 
Interface 
JFCB Housekeeping Control 

and Allocate processing 
JFCB Housekeeping Error 

Message Processing 
JFCB Housekeeping Error 

Messages 
JFCB Housekeeping Fetch DCB 

Processing 
JFCB Housekeeping GOG All 

Processing 
JFCBHousekeeping GDG 

Single Processing 
JFCB Housekeeping Pattern

ing DSCB 
JFCB Housekeeping Unique 

Volume ID 
Mount Control-Volume 

IEFSJMSG 
IEFXJIMP 

IEFXVOOl 

IEFVMSG 

IEFXVNSL 
IEFSCAN 
IEFXT003 
IEFS5000 
IEFWAOOO 
IEFDEVPT 
IEFX300A 

IEFVKIMP 

IEFVKMSG 
IEFWDOOl 
IEFWDOOO 
IEFSD557 

IEFVMLSl 

IEFVMLS6 

IEFVMLS7 

IEFVM2LS 

IEFVM4LS 

IEFVM3LS 

I EFVM5LS 

IEFVM76 

Routine IEFMCVOL 
Linkage Module IEFWCFAK I 
Linkage Module IEFWDFA I 
Linkage Module IEFWSWIN I 
Linkage Module IEFXJFAK 1 
Lir~age to JFCB I 

Housekeeping IEF~jSll 
Linkage to JFCB I 

Housekeeping IEFVMFAK I 
Linkage to IEFXJIMP IEFSD551 I 
Linkage to IEFXJIMP IEFSD552 I ______________________________ ~ __________ J 

(Part 1 or 2) 



Table 7. I/O Device Allocation Modules 
(Part 2 of 2) 

r------------------------------T----------, 
I I Source I 
I Routine I Module I 
~------------------------------+-~--------f 

Linkage to IEFXV001 
Linkage to Mount Control 

Volume 
Message Module 
Message Module 
Non-Recovery Error 
Non-Recovery Error Messages 
Return to Initiator or Sys-

tem Task Control 
separation Strikeout 
Space Request 
VARY Interface and TIeYI' 

Compression 
TIOT Construction 
unsolicited Device Inter

rupt Handler 
Wait for Space Decision 
Wait for Unallocation 

I IEFAVFAK 

IEFCVFAK 
IEFWSTRT 
IEFXAMSG 
IEFXKIMP 
IEFXKMSG 

IEF41DUM 
IEFXHOOO 
IEFXTOOD 

IEFXT002 
IEFWCIMP 

IEFVPOST 
IEFSD097 
IEFSD195 L ______________________________ ~ _________ _J 

• Table 8. Interpreter Modules 
(Part 1 of 2) 

r------------------------------T----------, 
I I Source I 
I Routine I Module I 
~------------------------------+----------~ 

Command Statement IEFVHM 
CPO Allocation Subroutine IEFVSD12 
CPO IEFVHG 
Continuation Statement IEFVBC 
DD* statement Generator IEFVHB 
DD Statement Processor IEEFVDA 
Data Set Name Table 

Con str uction 
Dictionary Entry 
Dictionary Search 
Dummy User JCL Validation 

Exit Routine 
End-of-File 
EXEC Statement Processor 
Get Parameter 
Get 
Housekeeping 
In-stream Procedure Compre

ss Routine 
In-Stream Procedure Direc

tory Build Routine 
In-Stream Procedure Expand 

Routine 
In-Stream Procedure Expand 

Interface Routine 
In-Stream Procedure 

Processor 
In-Stream Procedure Search 

Routine 
In-Stream Procedure Syntax 

Check Routine 
Initialization 
Initialization 

IEFVDBSD 
IEFVGI 
IEFVGS 

IEFUJV 
IEFVHAA 
IEFVEA 
IEFVGK 
IEFVHA 
IEFVHHB 

IEZNCODE 

IEFVINC 

IEZDCODE 

IEFVIND 

IEFVINA 

IEFVINB 

IEFVINE 
IEFVHl 
IEFVH2 L ______________________________ ~ __________ J 

(Part 1 of 2) 

Table 8. Interpreter Modules 
(Part 2 of 2) 

r------------------------------T----------, 
I I Source I 
I Routine I Module I 
~------------------------------+---------~ 

Interface 
Job and Step Enqueue 
Job Statement Processor 
Job Validity Check 
Linkage Module 
Message Module 
Message Module 
Message Module 
Message Module 
Message Module 
Message Module 
Message Module 
Message Module 
Message Module 
Message Module 
Message Module 
Message Module 
Message Module 
Message Module 
Message Module 
Message Module 
Message Module 
Message Module 
Message Module 
Message Module 
Message Module 
Message Processing 
Null Statement 
Operator Message 
Post-Scan 
Pre-Scan Preparation 
Queue Management Interface 
Router 
Scan 
SCD Construction 
Symbolic Parameter 

Processing 
TerlI'ination 
Test and Store 
Transient Reader Restore 
Transient Reader Suspend 
Transient Reader Suspend 

IEFSD533 
IEFVHH 
IEFVHA 
IEFVHEC 
IEFSD537 
IEFVGM1 
IEFVGM2 
IEFVGM3 
IEFVGM4 
I EFVGM 5 
IEFVGM6 
IEFVGM7 
IEFVGM8 
IEFVGM9 " 
IEFVGM10 
IEFVGMll 
IEFVGM12 
IEFVGM13 
IEFVGM14 
IEFVGM15 
IEFVGM16 
IEFVGM17 
IEFVGM18 
IEFVGM70 
IEFVGM71 
IEFVGM78 
IEFVGM 
IEFVHL 
IEFSD536 
IEFVHF 
IEFVHEB 
IEFVHQ 
IEFVHE 
IEFVFA 
IEFVSD13 

IEFVFB 
IEFVHN 
IEFVGT 
IEFSD531 
IEFSD530 

Tests IEFSD532 
Vary Identification IEFVHCB ______________________________ .L _________ _ 

Appendix B: MFT Modules 145 



• Table 9. Master Scheduler Modules 
(Part 1 of 2) 

r------------------------------T----------, I I Source I 
I Routine I Module I 
r------------------------------t----------~ 

Console Initialization IEECVCTI 
DEFINE Command Final 

Processor 
DEFINE Command Validity 

Check (Core Storage) 
DEFINE Final Processor 
DEFINE Initialization 
DEFINE Keyword Scan 
DEFINE Listing 
DEFINE Message 
DEFINE Syntax Check and 

Router 
DEFINE System Reinitiali;a

tion (1) 
DEFINE System Reinitializa

tion (2) 

DEFINE Time-Slice Syntax 
Check 

DISPLAY A 
DISPLAY CONSOLES 
DISPLAY CONSOLES Get Region 
DISPLAY U (1) 
DISPLAY U (2) 
DISPLAY U (3) 
DISPLAY U (4) 
Log Open Initialization 
Look-Up Routine . 
Master Scheduler 

Initialization 
Master Scheduler Resident 

Data Area 
Message Module 
Queue Alter Delete 
Queue Message Class Set-Up 
Queue Restart Enqueue 
Queue Scratch 
Queue Scratch set-Up 
Queue Search 
Queue Search Set-Up 
Queue 5MB Routine 
Resident Volume 

IEEDFIN9 

IEEDFINC 
IEEDFIN3 
IEEDFIN1 
IEEDFIN7 
IEEDFIN4 
IEEDFIN5 

IEEDFIN2 

IEEDFIN8 

IEEDFINB 

IEEDFIN6 
IEESD566 
IEEXEDNA 
IEEPDISC 
IEEUNIT1 
IEEUNIT2 
IEEUNIT3 
IEEUNIT4 
IEELOG02 
IEEVRFRX 

IEFSD569 

IEESD568 
IEFK1MSG 
IEESD576 
IEESD578 
IEESD577 
IEESD581 
IEESD575 
IEESD564 
IEESD563 
IEESD579 

Initialization IEFPRES 
service IEESD565 L ______________________________ ~ _________ _ 

(Part 1 of 2) 

146 

Table 9. Master Scheduler Modules 
(Part 2 of 2) 

r------------------------------T----------, I I Source I 
I~~be IModu~ I 
~------------------------------+----------~ 

SMF Initialization (l) IEESMFIT 
SMF Initialization (2) IEESMFI2 
SMF MFT storage Configura-

tion Record Creation 
SMF Open Initializer 
SMF Parameter Processor 
Specific CANCEL Message 

System 
System 
System 
System 
System 
System 

Routine 
Log Dispatcher 
Log Initialization 
Log Open Initializer 
Log Output Writer 
Log SVC (SVC 36) 
Log svc (SVC 36 -
second load) 

System Log Wait Routine 
Syntax Check 
User Dummy WTO/WTOR Exit 
Wait/Router 
Write-to-Programmer Error 

Processing 
Write-to-Programmer 

Initialization 
Write-to-Programmer Message 

IEEDFINA 
IEESMFOI 
IEESMFI3 

IEESD575 
IEEVLDSP 
IE'EVLIN 
IEEVI.IN2 
IEEVLOUT 
IEE0303F 

IEE0403F 
IEELWAIT 
IEESD562 
IEECVCTE 
IEECIR50 

IEFWTP02 

IEFWTPOO 

Processor I IEFWTPOl 
--------------------__________ ~ __________ J 

• Table 10. Queue Management Modules 

r------------------------------T----------, I I Source I 
I Routine I Module I 
~----------------------------+----------~ I Assign IEFQASGQ 
I Assign/Start IEFQAGST 
I Branch IEFQMLKl 
I Control IEFQBVMS 
I Delete IEFQDELQ 
I Dequeue IEFQMDQQ 
I Dequeue by Jobname IEFLOCDQ 
I Dequeue by Jobname 

Interface 
Dummy 
Enqueue 
Interpreter/Queue Manager 

Interlock 
Message Module 
Queue Formatting 
Queue Initialization 
Queue Manager Table Breakup 
Read/Write 
Resident Main Storage 

Reservation 
Transient Queue Manager 

Initialization 
Transient Queue Manager 

Record Assignment 
Transient Queue Manager 

IEFSD519 
IEFQMDUM 
IEFQMNQQ 

IEFSD572 
IEFSD311 
IEFORMAT 
IEFSD055 
IEFSD514 
IEFQMRAW 

IEFPRESD 

IEFXQMOO 

IEFXQM02 

Track Assignment I EFXQM 0 1 
Unchain IEFQMUNQ 

------------------------------~----------



• Table 11. SVC 34 Modules 
,------------------------------T----------, 
I I Source I 
I Routine I Module I 
~------------------------------t----------~ 

CANCEL Processor IEE2803D 
Command Translator IEE5403D 
CSCB and CIB Chain 

Manipulator 
CSCB Creation 
DEFINE, MOUNT Routine 
DISPLAY Request Processor 
DISPLAY Router 
HALT (EOD Routine) 
HARDCPY Message Routine 
LOG and WRITE LOG Routine 
Machine Status Control Rou-

tine (1) 
Machine Status Control ROu-

tine (2) 
MCS Reply Processor 
MCS Reply Messages 
MCS VARY Syntax Check 
Message Assembly 
Message Assembly 
Periodic STOP Handler (JOB

NAMES, STATUS, DSNAME, 
SPACE) 

REPLY Processor 
RJE Command Processor 
Router 
SET Command Processor 
START and STOP INIT Pro-

cessor (1) 
START and STOP INIT Pro-

cessor (2) , 
STOP and MODIFY Scheduling 
SWAP Command Processor 
System Management Facility 

VARY Record Handler 
Timer Maintenance 
VARY CONSOLE Keyword Scan 
VARY CONSOLE Processor 
VARY CONSOLE Information 

Message Routine 
VARY HARDCPY Processor 
VARY HARDCPY OFF Processor 
VARY Keyword Router 
VARY MSTCONS Processor 
VARY ONGFX/OFFGFX Handler 
VARY ON/OFFLINE of Consoles 

IEE0303D 
IEE0803D 
IEESD571 
IEE2903D 
IEE3503D 
IEE1403D 
IEE4103D 
IEE1603D 

IGF2603D 

IGF2703D 
IEE1A03D 
IEElB03D 
IEE3303D 
IEE0503D 
IEE2103D 

IEE4503D 
IEE1203D 
IEE1503D 
IEE0403D 
IEE0603D 

IEESD561 

IEE3903D 
IEE0703D 
IGF2503D 

IEE2303D 
·IEE0903D 
IEE4403D 
IEE4903D 

IEE4803D 
IEE4703D 
IEE5703D 
IEE3203D 
IEE4303D 
IEE1703D 

and Message Handler IEE4603D 
VARY PATH Command Processor IGF2403D 
VARY secondary Syntax Scan IEE4203D 
VARY and UNLOAD Router IEEll03D 
VARY and UNLOAD Processor IEE3103D 
------------------------------~----------

Table 12. System Output Writer Modules 
r------------------------------T----------, 
I I Source I 
I Routine I Module I 
.------------------------------t----------i 

Class Name Setup IEFSD081 I 
Command Processing IEFSD083 I 
Data set Delete IEFSD171 I 
Data set Writer Interface IEFSD070 I 
DSB Handler IEFSD085 I 
Initialization IEFSD080 I 
Job Separator IEFSD094 I 
Linkage Module IEF078SD I 
Linkage Module IEF079SD 
Linkage Module IEF082SD 
Linkage Module IEF083SD 
Linker IEFSD078 
Linkage to Queue Manager 

Delete IEFSD079 
Main Logic IEFSD082 
Message Module IEFSD096 
Pri"nt Line IEFSD095 
Put IEFSD089 
5MB Handler IEFSD086 
St~ndard Writer IEFSD087 
Transition IEFSD088 
wait IEFSD084 

------------------------------~----------

Table 13. system Restart Modules 
r------------------------------T----------, 
I I Source I 
I Routine I Module I 
.------------------------------t----------i 
I Delete IEFSD303 
I Initialization IEFSD300 
I Jobnames Table IEFSD302 
I Linkage Module IEF300SD 
I Linkage Module IEF304SD 
I Message Module IEFSD312 
I Purge Queue Construction IEFSD301 
I Reenqueue IEFSD305 
I Scratch Data sets IEFSD304 
I Scratch Data Sets IEFSD308 
I TTR and NN to MBBCCHHR 
I Ccnversion IEFSD310 L ______________________________ ~ _________ _ 

Appendix B: MFT Modules 147 



• Table 14. System Task Control Modules 
r------------------------------~---------, I I Source I 
I Routine I Module I 
l-----------------------------+----------i I Allocation Interface I IEEVACTL 
I Internal JCL Reader I IEEVRJCL 
I Interpreter Control I IEEVRCTL 
I JCL Edit I IEEVJCL 
~ Linkage to IEFSD535 IEFSD587 

Linkage to IEESD591 IEFSD584 
Linkage to IEFDSOSM IEFSD585 
Linkage to IEFSD585 IEFSD586 
Linkage to IEE534SD IEFSD588 
Linker IEESD591 
Link-Table IEEVLNKT 
LPSW IEFSD534 
Message Writer IEEVMSG1 
Message Writer IEEVSMSG 
Message Writing IEEVOMSG 
POST IEESD592 
Problem Program Mode IEFSD535 
QMPA Builder IEEVSMBA 
START Syntax Check IEEVSTAR 
Termination Interface IEEVTCTL 
Write TIOT on Disk IEESD590 L ______________________________ ~ ________ _ 

148 

J Table 15. Termination Modules 

I 

r------------------------------T----------, I I Source I 
I Routine I Module I 
.-----------------------~------+----------i 

Disposition and Unalloca-
tion Messages IEFZGMSG 

VARY Interface and Disposi-
tion and Unallocation 
Messages 

Disposition and 
Unallocation 

Disposition and 
Unallocation 

DSB Processing 
Dummy Accounting 
Job statement Condition 

Code Processor 
Job Statement Condition 

Code Processor Messages 
Job Termination Control 
Job Termination Exit 
Message Blocking 
Message Module 
Message 
Restart preparation 
SMF Writer Interface 
Step Termination Control 
Step Termination Control 

Routine Messages 
Step Termination Data Set 

Driver 
Step Terminate Exit 
Step Termination Messages 
System Output Interface 
Termination Entry 
User Accounting Routine 

IEFZHMSG 

IEFZGJB1 

IEFZGST1 
IEFYTVMS 
IEFACTRT 

IEFVJIMP 

IEFVJMSG 
IEFZAJB3 
IEFSD31Q 
IEFYSVMS 
IEFWTERM 
IEFIDMPM 
IEFRPREP 
IEFSMFWI 
IEFYNIMP 

IEFYNMSG 

IEFYPJB3 
IEFSD22Q 
IEFYPMSG 
IEFSD017 
IEFSD42Q 

Linkage IEFACTLK 
User Dummy Accounting IEFACTFK I L ______________________________ ~ __________ J 



Module Cross Reference 
This section contains an alphameric list of 
entry point and control section names, 
together with the name of the module that 
contains them. For further information on 
the modules, refer to the module 
descriptions. 

r---------------------T-------------------, 
I Entry Point or I I 
I Control section I Module Name I 
I Name I I 
~---------------------+-------------------~ 

GO I lEFSD515 I 
lEAGENQ1 I lEAGENQ1 I 
lEAGENQ2 I lEAGENQ2 I 
lEAMSERB I lEAMSERB I 
lEAQOTOO I lEE0903D I 
lEAOTl01 I lEAOTl01 I 

I I 

lEEBA1 lEECVCRA 
lEEBC1PE lEECVCRX 
lEEClR45 lEECVCTW 
lEEClR50 lEEClR50 
lEECMDOM lE~MDOM 

lEECMDSV lEECMDSV 
lEECMWRT lEECMAWR 
lEECMWSV lEECMWSV 
lEECMWTL lEECMWTL 
lEECVCTl lEECVCTl 

lEECVCTR lEECVCTR 
lEECVCTW lEECMAWR 
lEECVPM lEECVPM 
lEECVPRG lEECVED2 
lEECVXlT lEECVCTE 

lEEDFlNA lEEDFlNA 
lEEDFlNB lEEDFlNB 
lEEDFlNC lEEDFlNC 
lEEDFlN1 lEEFlN1 
I EEDFlN2 lEEDFlN2 

I EEDFlN3 lEEDFlN3 
lEEDFlN4 lEEDFlN4 
lEEDFlN5 lEEDFlN5 
I EEDFlN6 lEEDFlN6 
lEEDFlN7 lEEDFlN7 

lEEDFlN8 lEEDFlN8 
lEEDFlN9 lEEDFlN9 
lEEDPART lEEDFlN2 
lEELOG02 I EELOG 0 2 
lEELWAlT lEELWAlT 

lEEMSER lEESD568 
lEEMSTWO lEESD579 
lEEPDlSC lEEPDlSC 
lEEPSN lEEPSN 
lEESD562 lEESD562 L _____________________ ~ ___________________ J 

r---------------------T-------------------, 
I Entry Point or I I 
I Control Section I Module Name I 
I Name I I 
~---------------------+-------------------~ 
I lEESD563 I lEESD563 
I IEESD564 I lEESD564 
I lEESD565 I lEESD565 
I lEESD566 I lEESD566 
I lEESC567 I lEESD567 
I I 
I IEESD575 I 
I IEESD576 I 
I IEESD577 I 
I IEESD578 I 
I lEESD579 I 
I I 
I lEESD580 I 
I lEESD581 I 
I lEESD590 I 
I lEESD591 I 
I IEESD592 I 
I I 
I IEESMFAL I 
I IEESMFIO I 
I IEESMFlT I 

IEESMFl2 I 
IEESMFl3 I 

lEESMFl4 
IEESMFMS 
IEESMFOl 
IEESMFOP 
IEESMFWT 

IEEUNIT1 
lEEUNlT2 
IEEUNlT3 
IEEUNlT4 
IEEVACTL 

lEEVJCL 
IEEVLlN 
lEEVLDSP 
lEEVLNKT 
lEEVLOUT 

lEEVMSG1 
lEEVOMSG 
lEEVRCTL 
lEEVRFRX 
lEEVSMBA 

lEEVSMSG 
IEEVSTAR 
IE EV'ICTL 
lEEXEDNA 
IEE0303D 

I 
I 
I 

IEESD575 
lEESD576 
lEESD577 
IEESD578 
lEESD579 

lEESD580 
lEESD581 
lEESD590 
lEESD591 
lEESD592 

IEESMFAL 
lEESMFI3 
lEESMFlT 
IEESMFl2 
lEESMFI3 

lEESMF'lT 
lEESMFI3 
IEESMFOl 
lEESMFOP 
IEESMFWT 

IEEUNIT1 
IEEUNlT2 
lEEUNl'I3 
lEEUNl'I4 
lEEVACTL 

IEEVJCL 
lEEVLlN 
lEEVLDSP 
lEEVLNKT 
lEEVLOUT 

lEEVMSG1 
IEEVOMSG 
lEEVRCTL 
lEEVRFRX 
IEEVSMBA 

lEEVSMSG 
IEEVSTAR 
lEEVTCTL 
lEEXEDNA 
lEE0303D 

I 
lEE0303F lEE0303F I 
lEE0403D lEE0403D I 
lEE0403F lEE0403F I 
lEE0503D lEE0503D I 
lEE0603D I lEE0603D I _____________________ ~ ___________________ J 

(Continued) 

Appendix B: MFT Modules 149 



r---------------------r-------------------, I Entry Point or I I 
I Contro~ Section I Module Name I 
I Name I I 
~--------------------_+-------------------i I IEE0703D IEE0703D 
I IEE0803D IEE0803D 

I I IEE0903D IEE0903D 
I IEEll03D IEEll03D 
I IEE1203D IEE1203D 
J 
J 
J 

IEE1403D 
IEE1603D 
IEE1703D 
IEElA03D 
IEE1B03D 

IEE2103D 
IEE2303D 
IEE2603D 
IEE2803D 
IEE2903D 

IEE3103D 
IEE3203D 
IEE3303D 
IEE3503D 
IEE3903D 

IEE4103D 
IEE4203D 
IEE4303D 
IEE4403D 
IEE4503D 

IEE4603D 
IEE4703D 
IEE4803D 
IEE4903D 
IEE5403D 

IEE5703D 
IEE591SD 
IEFACTLK 
IEFACTLK 
IEFACTRT 

IEFALRET 
IEFCVOLl 
IEFCVOLl 
I EFCVOL 2 
IEFCVOL2 

IEFCVOL3 
IEFCVOL3 
IEFDPOST 
IEFDSDRP 
I EFDSOAL 

IEE1403D 
IEEl603D 
IEE1703D 
IEElA03D 
IEElB03D 

IEE2103D 
IEE2303D 
IEE2603D 
IEE2803D 
IEE2903D 

IEE3103D 
IEE3203D 
IEE3303D 
IEE3503D 
IEE3903D 

IEE4103D 
IEE4203D 
IEE4303D 
IEE4403D 
IEE4503D 

IEE4603D 
IEE4703D 
IEE4803D 
IEE4903D 
IEE5403D 

IEE5703D 
IEESD591 
IEFACTFK 
IEFACTLK 
IEFACTRT 

IEFSD512 
IEFCVFAK 
IEFMCVOL 
IEFCVFAK 
IEFMCVOL 

IEFCVFAK J 
IEFMCVOL I 

I IEFVPOST I 
I IEFDSDRP I 
I IEFDSOAL I 
I J 

IEFDSOCP I IEFDSOCP I 
IEFDSOFB I IEFDSOFB I 
IEFDSOSM I IEFDSOSM I 
IEFDSOWR I IEFDSOWR I 
IEFICR I IEEVRJCL I _____________________ ~ ___________________ J 

150 

r---------------------T-------------------, 
J Entry Point or I I 
I Control Section J Module Name I 
I Name I I 
~---------------------+-------------------i 

IEFII:MPM I IEFIDMPM 
IEFIRC I IEFSD533 
IEFJOB J IEFQRESD 
IEFKG I IEFSD532 
IEFORMAT I IEFORMAT 

IEFPH2 
IEFQAGST 
IEFQASGN 
IEFQASNM 
IEFQDELE 

IEFQMDQ2 
IEFQMDUM 
IEFQMNQ2 
IEFQMSSS 
IEFQMSSS 

IEFQMSSS 
IEFQMRAW· 
IEFQMUNC 
IEFRCLNl 
IEFRCLN2 

IEFRPREP 
IEFRSTRT 
IEFSD012 
IEFSD017 
IEFSI:055 

IEFSD068 
IEFSD068 
IEFSD070 
IEFSD071 
IEFSD078 

IEFSD078 
IEFSD079 
IEFSD079 
IEFSD080 
IEFSD081 

IEFSD082 
IEFSD082 
IEFSD083 
IEFSD083 
IEFSD084 

IEFSD085 
IEFSD086 
IEFSD087 
IEFSD088 
IEFSD089 

IEFSD090 
IEFSD094 
IEFSD095 
IEFSD095 
IEFSD096 

I 
I IEFSD531 

IEFQAGST 
IEFQASGQ 
IEFQASGQ 
IEFQDELQ 

IEFQMDQQ 
IEFQMDUM 
IEFQMNQQ 
IEFQBVMS 
IEFQMDUM 

IEFQMLKl 
IEFQMRAW 
IEFQMUNQ 
IEFRCLNl 
IEFRCLN2 

IEFRPREP 
IEFRSTRT 
IEFVSD12 
IEFSD017 
IEFSD055 

IEFSD167 
IEFSD168 
IEFSD070 
IEFSD171 
IEFSD078 

IEF078SD 
IEFSD079 
IEF079SD 
IEFSD080 
IEFSD081 

IEF082SD 
IEFSD082 
IEFSD083 
IEF083SD 
IEFSD084 

IEFSD085 
IEFSD086 
IEFSD087 
IEFSD088 
IEFSD089 

IEFVSD13 
IEFSD094 
IEFSD095 
IEFSD195 
IEFSD096 _____________________ ~ _________________ __J 

(Continued) 



,----------------T--------------, I Entry Point or I I 
I Control Section I Module Name I 
I Name I I 
r-------------------+----------------~ 

IEFSD097 IEFSD097 
IEFSD300 IEF300SD 
IEFSD300 IEFSD300 
IEFSD301 IEFSD301 
IEFSD302 IEFSD302 

IEFSD303 IEFSD303 
IEFSD304 IEFSD304 
IEFSD304 IEF304SD 
IEFSD305 IEFSD305 
IEFSD308 IEFSD308 

IEFSD310 IEFSD310 
IEFSD311 IEFSD311 

I i IEFSD312 IEFSD312 
IEFSD41R IEF41DUM 
IEFSD510 IEFSD510 

IEFSD511 IEFSD511 
IEFSD512 IEFSD512 
IEFSD512 IEFSD553 
IEFSD513 IEFSD513 
IEFSD514 IEFSD514 

IEFSD515 IEFSD515 
IEFSD516 IEFSD516 
IEFSD517 IEFSD517 
IEFSD518 IEFSD518 
IEFSD519 IEFSD519 

IEFSD530 IEFSD530 
IEFSD531 IEFSD531 
IEFSD534 IEFSD534 
IEFSD535 IEFSD535 
IEFSD537 IEFSD537 

IEFSD540 IEFSD540 
IEFSD541 IEFSD541 
IEFSD554 IEFSD554 
IEFSD555 IEFSD555 
IEFSD556 IEFSD556 

IEFSD557 IEFSD557 
IEFSD558 IEFSD558 
IEFSD559 IEFSD559 
IEFSD567 IEFSD567 
IEFSD569 IEFSD569 

IEFSD572 IEFSD572 
IEFSD573 IEFSD572 
IEFSD584 IEFSD584 
IEFSD585 IEFSD585 
IEFSD586 IEFSD586 

J 
IEFSD587 IEFSD587 'II 
IEFSD588 IEFSD588 
IEFSD589 IEFSD589 I 
IEFSD598 IEFSD597 I 
IEFSD598 IEFSD598 I L __________ . _________ ~ _________________ J 

,-------------~--~-------------------, I Entry Point or I I 
I Control Section I Module Name I 
I Name I I 
~------------------+-------------------~ I IEFSD599 IEFSD599 I 
I IEFSD71M IEFSD171 I 

'IEFSD83M IEFSD083 I 
IEFSD85M IEFSD085 I 
IEFSD86M IEFSD086 I 

I 
IEFSD817 IEFSD087 
IEFSD897 IEFSD089 
IEFSMFAT IEFSMFAT 
IEFSMFIE IEFSMFIE 
IEFSMFWI IEFSMFWI 

IEFSMR IEFRSTRT 
IEFUCBL IEFWAOOO 
IEFUJI IEFUJI 
:j:EFUJV IEFUJV 
IEFUSI IEFUSI 

IEFUSO IEFUSO 
IEFUTL IEFUTL 
IEFVAWAT IEFSD195 
IEFVDA IEFVDA 
IEFVDBSP IEFVDBSD 

IEFVEA IEFVEA 
IEFVFA IEFVFA 
IEFVFB IEFVFB 
IEFVGI IEFVGI 
lEFVGK IEFVGK 

IEFVGM IEFVGM 
IEFVGMl IEFVGMl 
IEFVGM2 IEFVGM2 
IEFVGM3 IEFVGM3 
IEFVGM4 IEFVGM4 

IEFVGM5 IEFVGM5 
IEFVGM6 IEFVGM6 
IEFVGM7 IEFVGM7 
IEFVGM8 IEFVGM8 
IEFVGM9 IEFVGM9 

IEFVGM10 IEFVGM10 
IEFVGMll IEFVGMll 
IEFVGM12 IEFVGM12 
IEFVGM13 IEFVGM13 
IEFVGM14 IEFVGM14 

IEFVGM15 IEFVGM15 
IEFVGM16 IEFVGM16 
IEFVGM17 IEFVGM1M 
IEFVGM18 IEFVGM18 
IEFVGM19 IEFVGM19 

IEFVGM70 IEFVGM70 
I IEFVGM71 IEFVGM71 
r IEFVGM78 IEFVGM78 
I IEFVGS IEFVGS 
I IEFVGT IEFVGT L ____________________ i __________________ _ 

(Continued) 

Appendix B: MFT Modules 151 



r---------------------T------------------, I Entry Point or I I 
I Control Section I Module Name I 
I Name I I 
r--------~------------+-------------------i 

IEFVHA I IEFVHA . 
IEFVHAA I IEFVHAA 
IEFVHB I IEFVHB 
IEFVHC I IEFVHC 
IEFVHCB I IEFVHCB 

IE-FVHE 
IEFVHEB 
IEFVHEC 
IEFVHF 
IEFVHG 

IEFVHH 
IEFVHHB 
IEFVHL 
IEFVHM 
IEFVHN 

IEFVHQ 
IEFVHR 
IEFVHl 
IEFVH2 
IEFVINA 

IEFVINB 
IEFVINC 
IEFVIND 
IEFVINE 
IEFVJ 

IEFVJA 
IEFVJMSG 
IEFVK 
IEFVKMJ1 
IEFVKMSG 

IEFVM 
IEFVMCVL 
IEFVMCVL 
IEFVMQMI 
IEFVMSGR 

IEFVMl 
IEFVMl 
IEFVM2 
IEFVM3 
IEFVM4 

IEFVM5 
IEFVM6 
IEFVM7 
IEFVM76 
IEFVRRC 

IEFVRRCA 
IEFVRRCB 
IEFVRRl 
IEFVRR2 
IEFVRR3 

I 
I 
I 
I 
I 
I 
I 

IEFVHE 
IEFVHEB 
IEFVHEC 
IEFVHF 
IEFVHG 

IEFVHH 
IEFVHHB 
IEFVHL 
IEFVHM 
IEFVHN 

IEFVHQ 
IEFSD536 
IEFVH1 
IEFVH2 
IEFVINA 

IEFVINB 
IEFVINC 
IEFVIND 
IEFVINE 
IEFVJIMP 

IEFVJA 
IEFVJMSG 
IEFVKIMP 
IEFVKMSG 
IEFVl{MSG 

IEFVMLS1 
IEFVMFAK 
IEFVMLSl 
IEFVMLS1 
IEFVMLS6 

IEFVMLSl 
IEFVMMSl 
IEFVM2LS 
IEFVM3LS 
IEFVM4LS 

IEFVM5LS 
IEFVMLS6 
IEFVMLS7 
IEFVM76 
IEFVRRC 

IEFVRRC 
IEFVRRC 
IEFVRRl 
IEFVRR2 
IEFVRR3 L-_________________ .L ___________________ 

152 

r---------------------T-------------------, I Entry Point or I I 
I Control Section I Module Name I 
I Name I I 
~-------~-------------+-------------------i I IEFVSDRA I IEFVSDRA 

IEFVSDRD I IEFVSDRD 
IEFVSMBR I IEFVSMBR 
IEFV15XL I IEFXJIMP 
IEFV15XL I IEFSD551 

IEFVR2AE 
IEFVR3AE 
IEFWAOOO 
IEFWA002 
IEFWA7 

IEFWCOOO 
IEFWCOOO 
IEFWCOO2 
IEFWDOOO 
IEFWDOOO 

IEFWDOO1 
IEFWDMSG 
IEFWLISD 
IEFWSTRT 
IEFWSWIT 

IEFWTERM 
IEFW1FAK 
IEFW1FAK 
IEFW2FAK 
IEFW2FAK 

IEFW21SD 
IEFW21SD 
IEFW22SD 
IEFW31SD 
IEFW32SD 

IEFW32sD 
IEFW41SD 
IEFW41SD 
IEFW42SP 
IEFXA 

IEFXAMSG 
IEFXHOOO 
IEFXJMSG 
IEFXJX5A 
IEFXJX5A 

IEFXJOOO 
IEFXJOOO 
IEFXKMSG 
IEFXKOOO 
IEFXTOOO 

IEFXTOO2 
IEFXTOO3 
IEFXVMSG 
IEFXVNSL 
IEFXVOO1 

I 
I 
I 
I 
I 
1 

IEFVRR2 
IEFVRR3 
IEFWAOOO 
IEFWAOOO 
IEFWAOOO 

IEFWCFAK 
IEFWCIMP 
IEFWCIMP 
IEFWDFAK 
IEFWDOOO 

IEFWDOO1 
IEFWDOOO 
IEFSD21Q 
IEFWSTRT 
IEFWSWIN 

IEFWTERM 
IEFSD41Q 
IEF41FAK 
IEFSD41Q 
IEF41FAK 

IEFSD21Q 
IEFSD557 
IEFSD22Q 
IEFSD31Q 
IEFSD32Q 

IEFSD33Q 
IEFSD41Q 
IEF41FAK 
IEFSD42Q 
IEFXCSSS 

IEFXAMSG 
IEFXHOOO 
IEFXJMSG 
IEFSD552 
IEFXJIMP 

IEFXJFAK 
IEFXJIMP 
IEFXKMSG 
IEFXKIMP 
IEFXTOOD 

IEFXTOO2 
IEFXTOO3 
IEFXVMSG 
IEFXVNSL 
IEFAVFAK _ ____________________ .1.-__________________ 

(Continued) 



r---------------------T-------------------, r---------------------T-------------------, I Entry Point or I I I Entry Point or I I 
I Control Section I Module Name I I Control section I Module Name I 
I Name I I I Name I I 
~--~------------------+-------------------~ ~---------------------+-------------------~ 

IEFXVOOl IEFXVOOl I IGC048 IEAGENQ2 
IEFXV002 IEFXV002 I IGC0501C IEAMTM05 
IEFX3000 IEFX300A I IGC0501C IEANTM05 
IEFX5000 IEFX5000 J IGC0601C IEANTM06 
IEFYN IEFYNIMP IGC0701C IEANTM07 

IEFYNMSG IEFYNMSG 
IEFYP IEFYPJB3 IGC0801C IEANTM08 
IEFYPMSG IEFYPMSG IGC0901C IEANTM09 
IEFYS IEFYSVMS IGC0907B IEECMWTL 
IEFYT IEFYTVMS IGCOA01C IEANTMOA 

IGCOB01C IEACTMOB 
IEFZA IEFZAJB3 
IEFZG IEFZGSTl 
IEFZGJ IEFZGJBl IGCOB01C IEANTMOB 
IEFZGMSG IEFZGMSG IGCOC01C IEANTMOC 
IEFZH IEFZHMSG IGCOD01C IEANTMOD 

IGCOE01C IEANTMOE 
IEF08SSD IEFSD08S IGC1803D IEESDS71 
IEF086SD IEFSD086 
IEF8S0SD IEFSD08S 
IEGOS6 lEAGENQl IGC1903D IEESDS61 
IEGOS6 lEAGENQ2 IGF2403D IGF2403D 

IGF2503D IGF2503D 
IEZDCODE IEZDCODE IGF2603D IGF2603D 
IEZNCODE IEZNCODE IGF2703D IGF2703D 
IGCXL07B IEECMCSW 
IGCXM07B IEECMCSW 
IGCXN07B IEECMCSW LCC IEFLOCDQ 

LCCCAN IEFLOCDQ 
IGCXOO7B IEECMCSW LCCDQ IEFLOCDQ 
IGCOOO1C lEANTMOO MSOFF IEFXJMSG 
IGCOOO3E IEECVWTO MSRCV IEFXJMSG 
IGCOOOSB IEFVSMBR 
IGCOOO60 lEAASTOO 

MSSYS IEFXJMSG 
IGCOOO83 IGCOOO8C SD304MGl IEFSD312 
IGCOOO90 IEFXQMOO SD304MG2 IEFSD312 
IGC0101C lEANTM01 SD30SMG1 IEFSD312 
IGC0103D IGC0103D SD55MSGl IEFSD311 
IGC0103E IEEVWTOR 

IGC01090 IEFXQMOl SD5SMSG2 IEFSD311 
IGC0111C IEASTM11 SD55MSG3 IEFSD311 
IGC0201C lEANTM02 SMALLGO IEFSD599 
IGC0203E IEFWTPOO SMALTERM IEFSDS15 
IGC02090 IEFXQM02 SMALTERM IEFSD559 

IGC0211C lEASTM12 SPRINTER IEFPRINT 
IGC0221C lEADTM22 STRMSG01 IEFYNMSG 
IGC0301C lEANTM03 VM7000 IEFVMLS1 
IGC0303E IEFWTP01 VM7055 IEFVMLS1 
IGC0311C lEANTM13 VM7055AA IEFVMLSl 

IGC0321C lEADTM23 VM7060 IEFVMLS1 
IGC0401C lEANTM04 VM7065 IEFVMLSl 
IGC0403E IEFWTP02 VM7070 IEFVMLS1 
IGC0411C lEANTM14 VM7090 IEFVMLS1 
IGC048 lEAGENQ1 VM7100 IEFVM2LS _____________________ ~ ___________________ J 

---------------------~-------------------
<Continued) 

Appendix B: MFT Modules 153 



r-------------T------------1 I Entry Paint or I I 
I Control Section I Module Name I 
I Name I I .-----------------t-------------i VM713 0 I IEFVMLSl 

VM7150 I IEFVM3LS 
VM7200 I IEFVM4LS 
VM7300 IEFVM5LS 
VM737 0 IEFVMLS1 

VM7600 
VM7700 
VM7742 
VM7750 
VM7850 

IEFVM76 
IEFVMLS1 
IEFJMLS1 
IEFVMLS1 
IEFVMLS1 

VM7900 IEFVMLS1 
VM7950 IEFVMLSl 
XIIB32 IEFX5000 
XTTEAO IEFXT002 
XTTEA1 IEFXT002 _________________ J. __________ _ 

154 

r------------------T-------------------, I Entry Point or I I 
I Control Section I Module Name I 
I Name I I 
r----------------t-----------------i 

XTTEB3 IEFXT002 
XTTPOO IEFXTOOD 
XTTRDJ IEFXT002 
XUUBOO IEFXT003 
XUUH06 IEFXT003 

X33B42 
X55C86 
X55D3G 
YPPMSG1 
YPPMSG2 

IEFX300A 
IEFX5000 
IEFX5000 
IEFYPMSG 
IEFYPMSG 

XPS631 IEFZHMSG 
ZGOE60 IEFZHMSG 
ZROD1 IEFZHMSG 
ZROE1 IEFZHMSG 
ZPOQM IEFZGJB1 
ZPOQMGR1 IEFZGST1 I ___________________ J. ___________________ J 



Module Descriptions 
This section contains a brief description 
of each of the modules used by MFT. 
Modules are listed alphamerically by module 
name; associated with each module is a 
descriptive name, which indicates the major 
component of the system to which the module 
belongs. Each module contains a brief 
statement of the purpose of the module. 
Where applicable, the description includes 
the names of the module's entry points, the 
names of the modules to which it passes 
control, the major tables and work areas to 
which it refers. its attributes and the 
names of the control sections it contains. 

IEAASTOO: Supervisor -- STAE service 
Routine 

This routine is entered when the STAE macro 
instruction (SVC 60) is issued. It 
creates, cancels, or overlays a STAE con
trol block according to the options speci
fied. It prepares the task to intercept 
the scheduled abnormal termination (ABEND) 
processing. 

• Entry: IGC00060 

• Attributes: Non-resident" reentrant 

• Control section: IGC00060 

IEACTMOB: Supervisor ABEND WTOR Purqe 
Routine (MFT with MCS) 

This routine purges outstanding WTOR 
requests. 

• Entry: IGCOB01C from IEANTMOO or 
I FANTMO 1 

• Exits: IFANTMOO for normal job step 
termination. 
IEANTM02 for abnormal 
termination. 
IFANTMOE for normal subtask 
termination (MFT with subtask
ing only). 
IFASTM13 for STAE processing. 

IEADTM22: Supervisor DAR Core Imaqe 
Dump Routine. 

This routine attempts to write a core image 
dump to a preallocated data set. It also 
processes primary DAR recursions. 

• Entry: IGC0221C 

• Exits: XCTL to IEADTM23 to continue 
DAR processing 

• Attributes: Refreshable, disabled. 
privileged 

• Control Section: IGC0221C 

IEADTM23: Supervisor -- DAR Task 
Reinstatement Routine 

This routine attempts reinstatement of 
failing system tasks. It also processes 
secondary DAR recursions and failing tasks 
which are in "Must complete" status. 

• Entry: IGC0321C 

• Exits: XCTL to IEANTM07 if a jobstep 
task with no subtasks 

IEANTMOC if a subtask 
IEANTMOD if task has subtask 
that needs ENQ purge 
IEANTMOE if subtasks do not 
need ENQ purge 

• Attributes: Refreshable., disabled, 
privileged 

• Control Section: IGC0321C 

IEAGENQ1: supervisor Enqueue Service 
Routine 

This routine constructs and processes con
trol blocks to serialize the use of 
resources in a multiprogramming 
environment. 

• Entry: IEAGENQ1 

• Exit: EXIT routine or to the 
dispatcher 

• Tables/Work Areas: Minor QCB, Major 
QCB, Queue element 

• Attributes: Reenterable 

• Control Sections: IGC048 AND IEG056 

IEAGEN02: supervisor -- Shared DASD 
Enqueue Service Routine 

This routine is the enqueue service routine 
for systems that include the Shared DASD 
option. It is identical to IEAGENQ1 except 
that additional processing is performed 
when a shared direct-access device is 
requested through the RESERVE macro 
instruction. 

• Entry: IEAGENQ2 

• Exits: EXIT routine or to the 
dispatcher 

• Tables/Work Areas: Minor QCB, Major 
QCB, Queue element 

• Attributes: Reenterable 

• Control Sections: IGC048 and IEG056 

Appendix B: MF'T Modules 155 



lEAMSERB: System Error Task 
Reinitialization 

This routine contains the wait RB for the 
system error task. It creates an FQE for 
the main storage occupied by the system 
error task when reinstatement of the fail
ing system error task is attempted. 

• Entry: IEAMSERB from IEADTM23 

• Exit: lEA ODS (dispa teher) via SVC 3 

• Attributes: Resident, reusable, 
disabled 

• Control section: I EAM SERB 

lEAMTM05: supervisor -- ABEND open Dump 
Data Set Routine (MFT without subtasking) 

This routine opens the dump data set for 
the terminating task. 

• Entry: IGC0501C from lEANTM04 

• Exits: IEANTM06 for normal open 
IEANTM09 if SYSABEND or SYS
UDUMP entry not found in TIOl', 
or OPEN macro instruction 
failed 

• Attributes: Reentrant, refreshable 

• Control section: IGC0501C 

lEANTMOA: supervisor -- ABEND Steal Main 
Storage Routine 

This routine steals main storage to enable 
further successful ABEND processing. 

• Entry: IGCOA01C from lEANTM04 

• Exits: I EANTM 0 4 

• Attributes: Reentrant, refreshable 

• Control section: IGCOA01C 

lEANTMOB: Supervisor -- ABEND WTOR Purge 
Routine (MFT without MCS> 

This routine purges outstanding WTOR 
requests for the terminating task. 

• Entry: IGCOBOIC from lEANTMOO or 
IEANTM01 

• Exits: IEANTMOO for normal job step 
termination. 

156 

lEANTM02 for abnormal job step 
termination. 
lEANTMOE for normal subtask 
termination (MFT with subtask
ing onry> 

lEASTM13 for STAE processing 

• Attributes: Reentrant, refreshable 

• Control Section: IGCOB01C 

IEANTMOC: SUpervisor..,- ABEND Loading 
Program Purge Routine (MFT with subtasking 
only) 

This routine frees partially loaded pro
grams and FRBs for the terminating task. 

• Entry: IGCOC01C from IEANTM04 or 
IEANTM06 

• Exit: lEANTMOD 

• Attributes: Reentrant, refreshable 

• Control Section: IGCOC01C 

IEANTMOD: supervisor -- ABEND Subtask ENQ 
Purge Routine (MFT with subtasking only) 

This routine performs an ENQ purge for all 
subtasks of the terminating task. 

• Entry: IGCODOIC from IEANTM04, 
IEANTM06, I~NTM08, lEANTMOC 

• Exit: IEANTMOE 

• Attributes: Reentrant, refreshable 

• Centrol Section: IGCOD01C 

IEANTMOE: supervisor -- ABEND IQE Purge 
and Data Set Close Routine (MFT with 
subtaskinq only) 

This routine purges IQEs for the subtasks 
of the terminating task and closes data 
sets for all tasks and subtasks except an 
abnormally terminating job step task. 

• Entry: IGCOEOIC from IEANTMOO, 
IEANTM04, lEANTM06, lEANTM08, IEACTMOE, 
IEANTMOB, lEANTMOD 

• Exits: IEANTM07 for abnormally ter
minating job step task, SVC EXI~ rou
tine for subtask terminating abnormal
ly, or job step task terminating 
normally. 

• Exits: 

IEANTMOO: supervisor -- ABEND Normal 
Termination Processing and Abnormal 
Termination Router Routine 

This routine processes normal task termina
tions or passes control to other ABEND 
modules for further processing of abnormal 
terminations. 

• Entry: IGC0001C from SVC SLIB 
from IEACTMOB if MCS is in tile 
system. 



• Exits: 
Normal 

from IEANTMOB after WTOR 
requests are purged 

IEFSD515 for a large partition 
IEFSD599 for a small partition 
IEACTMOB When MCS is included 
in the system 
IEANTMOB when there are WTOR 
requests to purge 
IEANTMOE when the terminating 
task is a subtask (MFT with 
subtasking only) 

Abnormal 
IEADTM22 for primary DAR 
recursion 
IEADTM23 for secondary DAR 
recursion 
IEANTM02 for OPEN, CLOSE,. 
ABDUMP, or message recursion 
IEANTMOl for nonrecursive 
termination 

• Attributes: Reentrant, refreshable 

• Control Section: IGC0001C 

IEANTM01: supervisor -- ABEND/STAE 
Graphics Test Routine 

This routine processes nonrecursive ter
minations for job step tasks, failures 
after a valid STAE has been issued, purge 
failures in STAE, or failures when GJP is 
included in the system. 

• Entry: IGC0101C from IEANTMOO 

• Exits: IEASTMll for failure after a 
STAE was issued or if a purge 
failure occurred within STAE. 
To caller if graphics program 
(GJP) • 

IEANTMOB to further process 
nonrecursive terminations 
IEACTMOB to further process 
nonrecursive terminations if 
MCS is included in the system 

• Attributes: Reentrant, refreshable 

• Control Section: IGC0101C 

IEANTM02: Supervisor -- ABEND I/O Purge 
Routine 

This routine purges I/O operations in pro
cess and I/O requests for the terminating 
task. 

• Entry: IGC0201C from IEANTMOO, 
IEACTMOB if MCS is in the sys
tem, IEANTMOB 

• Exits: IEADTM22 when the abnormally 
terminating task is a system 

task or is in "must complete" 
status 

I EANTM 0 3 for nonrecursive 
ABENDs 

IEANTM09 for recursive ABENDs 

• Attributes: serially reusable 

• Control section: IGC0201C 

IEANTM03: supervisor -- ABEND Control 
Block Validity Check Routine 

This routine ensures the validity of FQEs, 
DEBs, active RBs, GQEs" load list RBs, and 
JPAQ RBs. If an invalid control block is 
discovered, it truncates the chain up to 
the last valid control block with the 
exception of an invalid FQE, which is mere
ly dequeued. 

• Entry: IGC0301C from IEANTM02 

• Exit: I EANTM 0 4 

• Attributes: Reentrant, refreshable 

• Control Section: IGC0301C 

IEANTM04: Supervisor -- ABEND Dump Test 
Routine 

This routine determines the type of dump, 
if any, that is required, and determines if 
enough main storage is available for pro
viding the dump. 

• Entry: IGC0401C from IEANTM03, 
IEANTM09, IEANTMOA 

• Exits: IEANTM05 for full dump (MFT 
with subtasking only) 
IEAMTM05 for full dump 
IEANTM08 for indicative dump 
IEANTMOA when there is insuffi
cient main storage available 
IEANTMOC when the ABEND is for 
a subtask (MFT with subtasking 
only) 
IEANTMOD when subtasks need ENQ 
purge (MFT with subtasking 
only) 
IEANTMOE when subtasks do not 
need ENQ purge (MFT with sub
tasking only) 
IEANTM07 for termination of a 
job step with no subtasks 

• Attributes: Reentrant, refreshable 

• Control Section: IGC0401C 

Appendix B: MFT Modules 157 



IEANTM05: supervisor -- ABEND Open Dump 
Data Set Routine (MFT with subtasking) 

This routine replaces IEAMTM05 when MFT 
with subtasking is included in the system. 
In addition to opening the dump data set, 
IEANTM05 also dequeues any subtasks of the 
terminating task that are enqueued on the 
dump data set. It issues an ENQ macro 
instruction on the dump. data set to prevent 
other tasks from using it until, the dump is 
finished. 

• Entry: IGC0501C from IEANTM04 

• Exits: IEANTM06 for a successful OPEN 
IEANTM08 if a SYSABEND or SYS
UDUMP entry is not found in 
TIOT, or the OPEN failed 
IEAODS if a subtask is in the 
process of opening the dump 
data set 

• Attributes: Reentrant, refreshable 

• Control Section: IGC0501C 

IEANTM06: Supervisor -- ABEND Dump Routine 

This routine issues a WRITE macro instruc
tion to print appropriate messages per
tinent to the dump and issues a SNAP macro 
instruction to call ABDUMP for the ter
minated task. 

• Entry: IGC0601C from IEANTM05 

• Exits: IEANTM07 when the terminating 
task is a job step task with no 
subtasks 
IEANTM09 if' ABDUMP failed 
IEANTMOC if a subtask is ter
minating (MFT with subtasking 
only) 
IEANTMOD if subtasks need ENQ 
purge (MFT with subtasking 
only) 
IEANTMOE if subtasks do not 
need ENQ purge (MFT with sub
tasking only) 

• Attributes: Reentrant, refreshable 

• Control section: IGC0601C 

IEANTM07: Supervisor -- ABEND Terll'ination 
Routine 

This routine closes all data sets asso
ciated with the terminating task, and 
dequeues IQEs. 

• Entry: IGC0701C from IEANTM04, 
IEANTM06, IEANTM08, IEANTMOE 

• Exits: IEFSD515 for a large partition 
IEFSD599 for a small partition 

158 

• Attributes: Reentrant, refreshable 

• Control section: IGC0701C 

IEAN'IM08: Supervisor -- ABEND Indicative 
Dump Routine 

This routine stores pertinent information 
in a dump area for printing by the job man
agell'ent routines. 

• Entry: IGC0801C from IEANTM04. 

• Exits: IEANTM07 when terminating task 
is a job step task with no 
subtasks 
IEANTMOD when subtasks need ENQ 
purge (MFT with subtasking 
only) 
IEANTMOE when subtasks do not 
need ENQ purge (MFT with sub
tasking only) 

• Attributes: Reentrant, refreshable 

• Control Section: IGC0801C 

IEAN'IM09: supervisor -- ABEND Recursion 
processing Routine 

This routine dequeues all request blocks 
created as a result of the recursion and 
processes OPEN, CLOSE, AEDOMP 1 and message 
recurs ions • 

• Entry: IGC0901C from IEANTM02, 
IEANTM05, IEANTM06 

• Exits: IEANTM04 

• Attributes: Reentrant, refreshable 

• Control Section: IGC0901C 

IEASTM11: supervisor -- ABEND/STAE 
Interface Routine 

This routine purges I/O for the terminating 
task and schedules the user exit routine. 

• Entry: IGC0111C 

• Exits: IEANTMOO (IEACTMOB for MCS) if 
the failing task is in Wmust 
complete" status and the STAE 
user is a problem program, or 
if the STAE control block is 
not associated with an RE, the 
retry without RB purge option 
is selected and the user is a 
problem program 
IEASTM12 if the retry with 
purge of RBs option is selected 
IEASTM13 if the retry without 
purge of RBs option is selected 



• Attributes: Reentrant, refreshable, 
disabled, privileged, 
non-resident 

• Control section: IGC0111C 

IEASTM12: Supervisor -- ABEND/STAE 
Interface Routine 

This module closes data sets associated 
with RBs on the queue between the request 
block for the failing problem program and 
the request block for the current STAE 
processing. 

• Entry: IGC0211C from IEASTM11 

• Exits: IEANTMOB for WTOR request purge 
(IEACTMCB for MCS) 
IEASTM14 for data sets using 
ISAM, BTAM, or QTAM. 

• Attributes: Reentrant, refreshable, 
disabled, privileged, 
non-resident. 

• Control Section: IGC0211C 

IEASTM13: supervisor -- ABEND/STAE 
Interface Routine 

This routine creates, initializes and 
queues a request b~ock for a retry routine 
if the RB purge option was not selected. 
Otherwise, the STAE requestors RB is used 
for the retry routine. 

• Entry: IGC0311C from IEANTMOB (IEACT
MOB for MCS) 

or from IEASTM11 

• Exits: SVC EXIT routine 

• Attributes: Reentrant, refreshable, 
disabled, privileged, non-resident 

• Control section: IGC0311C 

IEASTM14: Supervisor -- ABEND/STAE 
Interface Routine 

This routine closes ISAM, BTAM, and QTAM 
data sets associated with REs on the queue 
between the request block for the failing 
problem program and the request block for 
the current STAE processing. 

• Entry: IGC0411C from IEASTM12 

• Exit: IEANTMOB to purge WTOR requests 
(IEACTMOB for MCS) 

• Attributes: Reentrant, refreshable, 
disabled, provileged, non-resident 

• Control Section: IGC0411C 

IEAOTI01: Supervisor -- Timer Second Level 
Interruption Handler 

This routine maintains the timer queue when 
the tirrer option is not specified during 
system generation. It handles only the 
normal six hour interruptions. 

• Entry: IEAOTI01 

• Exit: To Timer/External FLIH 

• Tables/work Areas: SHPC, T4PC, L.TPC 

• Attributes: Reenterahle, disabled for 
system interruptions, resident, super
visor mode 

• Control Section: IEAOTIOl 

IEECIR50: Master scheduler -- Wait/Router 
Routine 

This routine waits until a command is 
issued, analyzes the command and passes 
contrcl to the appropriate processing 
module. 

• Entry: IEECIR50 

• Exits: IEESD562, IEEDFIN1 

• Attributes: Read-only, reenterable, 
resident in nucleus. 

• Control Section: IEECIR50 

IEECMAWR: Communications Task -- Router 
Module 

This reodule waits for the posting of a com
munications task ECB, determines the type 
of interruption service required (external, 
attention, I/O, WTO, or DOM), and passes 
control to other communications task 
modules for further processing. 

• Entry: IEECMWRT 

• Exit: IEECMCSW, IEECMDSV, IEECMWSV, 
IEECMwTL, IEECMDOM, Dispatcher 

• Tables/Work Areas: CVT, ElL, UCM, WQE 

• Attributes: Reentrant, refreshable 

• Control Section: IEECVCTW 

IEECMCSW: Communications Task -- Console 
Switch Module 

This routine provides console switching as 
a result of an unrecoverable I/O error on a 
console device, as a result of an external 
interruption, or as a result of a VARY com
mand. and provides hard copy switching from 
a console device of SYSLOG. 

Appendix B: MFT Modules 159 



• Entry: IGCXL07B 

• Exit: IEECMAWR, IEECMDSV 

• Tables/Work Areas: CVT~ CXSA, RQE, 
UCM, WQE 

• Attributes: Reentrant" refreshable 

• Control. Sections: IGCXL07B. IGCXM07B, • 
. IGCXN07B, IGCX007B 

IEECMDOM: . Communications Task--DOM 
Service.Module 

This module marks for deletion specified 
WQEs on the system output queue. 

• Entry: lEECMDOM 

• Exit: IEECMAWR. IEECVDTl 

• Tables/WorkAreas: CVT~ DCM, UCM, WQE 

• Attributes: Reentrant,. refreshable 

• Control section: IEECMDOM 

IEECMDSV:. Communications Task -- Device 
Service Module 

This module provides the interface with 
device support processors and provides con
sole and system output queue management. 

• Entry: lEECMDSV 

• Exit: IEECMAWR, IEECMWSV, IEECMCSW, 
Device Support Processors 

• Tables/Work Areas: IEEBASEB, CVT, ElL, 
UCM" WQE 

• Attributes: Reentrant~ refreshable 

• Control section: IEECMDSV 

IEECMWSV: Communications Task -- WTO(R) 
Service.Module 

This module puts unprocessed WQEs on appro
priate console output queues. 

• Entry: lEECMWSV 

• Exit: IEECMDSV, IEECMAWR 

• Tables/Work Areas: UCM, WQE 

• Attributes: Reentrant, refreshable 

• Control Section: IEECMWSV 

160 

IEECMWTL: Communications Task ~- NIP 
Message Buffer Writer Module 

This module issues SVC 36 to write NIP mes
sages to SYSLOG. If SYSLOG has not been 
initialized or not specified as the hard 
copy log, it issues SVC 35 to write the NIP 
messages to the operator. 

• Entry: IEECMWTL 

• Exit: Return to caller 

• Control.Section: IGC0907B 

IEECVCRA:Communications Task --Console 
Interruption Routine 

This routine notifies the wait routine that 
a console read has been requested. 

• Entry: IEEBAl 

• Exit: Return to lOS 

• Tables/Work Areas: ECB, UCM, UCB 

• Attributes: Reenterable 

• Control Section: IEEBAl 

IEECVCRX: Communications.Task -~External 
Interruption Routine 

This routine switches control from the pri
mary console device to an alternate console 
device when an external interruption 
occurs. 

• Entry: IEEBC1PE 

• Exit: Return to lOS 

• Tables/Work Areas: UCM 

• Attributes: Reenterable 

• Control section: IEEBC1PE 

IEECVCTE: Communications Task -- User 
DummyWTO/WTORExit Routine 

This routine takes the place of the user's 
WTO/WTOR exit routine when an exit routine 
was specified at system generation" but 
none was supplied .• 

• Entry: IEECVXIT, from IEECMWSV 

.~: Return to caller 

• Control Section: IEECVXIT 

IEECVCTI: Console Initialization Routine 

This routine prints out the NIP message 
buffer in systems with the MCS option, and 
initializes the console configuration. 



• Entry: IEECVCTI, from IEESD569 

• Exit: To IEESD569 

• Tables/Work Areas: CVT, ELL, UCB, and 
UCM 

• Attributes: 

• Control section: IEECVCTI 

IEECVCTR: Communications Task -- Router 
Routine 

This routine determines the type of request 
or interruption that occurred, and passes 
control to the appropriate processing 
routine. 

• Entry: IEECVCTR 

• Exits: XCTL to IEECVPMX (IGC0107B), 
IEECVPMC (IGC1107B), or IEECVPMP 
(IGC2107B) 

• Tables/Work Areas: UCM, SVRB, UCB 

• Attributes: Reenterable 

• Control Section: IEECVCTR 

IEECVCTW: Communications Task -- Wait 
Routine 

This routine waits on all communications 
task ECBs associated with WTO/WTOR macro 
instructions. 

• Entry: IEECIR45 

• Exit: None 

• Tables/Work Areas: TCB, ECB, UCM 

• Attributes: Reenterable 

• Control section: IEECIR45 

IEECVED2: Communications Task -- Purge RQE 
Routine 

This routine scans and purges all outstand
ing request queue elements (RQEs) pertain
ing to the terminating task. 

• Entry: IE;ECVPRG 

• Exits: End-oi-task, and ABEND 

• Tables/Work Areas: RQE, WQE, JCM, CVT 

• Attributes: Reenterable 

• Control Section: IEECVPRG 

IEECVPM: Communications Task -- Console 
Device Processor Routine 

This routine performs console read and 
write cperations and checks for errors. 

• Entry: IEECVPM 

• Exit: XCTL to IEECVCTR (IGC0007B) 

• Tables/Work Areas: DCB, UCB, UCM 

• Attributes: Reenterable 

• Control section: IEECVPM 

IEECVWTO: Co~munications Task -
Write-to-Operator Routine 

This routine processes all WTO macro 
instructions. 

• Entry: IGC0003E 

• Exit: Return to calling program or 
XCTL to IEFWTPOO for write-to
prcgrammer processing 

• Tables/Work Areas: WQE, UCM, CV'l', RQE 

• Attributes: Reenterable 

• Control Section: IGC0003E 

IEEDFINA: Master Scheduler -- SMF MFT 
Storage Configuration Record Creation 
Routine 

This routine creates the SMF dynamic 
storage configuration record for MFT. It 
is entered during SMF initialization and 
whenever a DEFINE Command is issued. 

• Entry: IEEDFINA from IEESMFI2 during 
SMF initialization. 
From IEEDFIN9 whenever a DEFINE 
corr~and is issued. 

• Exit: Return to caller. 

• Tables/Work Area: CVT, M/S resident 
data area, PIB, TCB, SMCA 

• Attributes: Reentrant 

• Centrol Sections: IEEDFINA 

IEEDFINB: Master Scheduler systen: 
Reinitialization Routine 2 

This reutine waits for partitions to 
quiesce and then issues an ENQUEUE macro 
instruction specifying the boundary boxes. 

• Entry: IEEDFINB 

• Exits: IEEDFIN8 

Appendix B: MF'I Modules 161 



• Attributes: Read/only, reenterable 

• Control sections: IEEDFINB 

IEEDFINC: Master Scheduler -- DEFINE 
Command Validity Check Routine (Core 
storage) 

This routine determines whether all infor
mation for the partition redefinition of 
core storage is correct. 

• Entry: IEEDFINC 

• Exits: IEEDFINB, IEEREXIT 

• Tables/Work Areas: DFINDATA, CVT, M/S 
resident data area. 

• Attributes: Read-only, reenterable 

• Control Section: IEEDFINC 

IEEDFIN1: Master Scheduler -- DEFINE 
Command Initialization Routine 

This routine sets up data areas for parti
tion definition, issues a DEFINE COMMAND 
BEING PROCESSED message to all active con
soles, and passes control to the appropri
ate processing module. 

• Entry: IEEDFIN1 

• Exits: IEEDFIN3, IEEDFlN4" IEEDFIN5 

• Attributes: Read-only, reenterable 

• Control Section: IEEDFIN1 

IEEDFIN2: Master Scheduler -- DEFINE 
Command Syntax Check and Router Routine 

This routine checks the syntax of DEFINE 
command statements. If a syntax error is 
discovered, the statement is ignored and an 
error message is issued. If the syntax is 
correct, the information is stored and con
trol is passed to the appropriate routine. 

• Entry: IEEDFIN2, IEEDPART 

• Exits: IEEDFIN5, IEEDFIN6, IEEDFIN7 

• Attributes: Read-only, reenterable 

• Control section: IEEDFIN2 

IEEDFIN3: Master Scheduler -- DEFINE 
Command Validity Check Routine (Processor 
Storage) 

This routine determines whether all infor
mation for the partition redefinition of 
processor storage is correct. 

• Entry: IEEDFIN3 

162 

• Exits: IEEDFINC, IEEREXIT 

• Attributes: Read-only, reenterable 

• Control Section: IEEDFIN3 

IEEDFIN4: Master Scheduler -- DEFINE 
Command Listing Routine 

This routine lists partition definitions. 

• Entry: IEEDF'IN4 

• Exits: IEEDFIN3, IEEDFIN5 

• Attributes: Read-only, reenterable 

• Control Section: IEEDFIN4 

IEEDFlN5: Master Scheduler -- DEFINE 
Corrroand Message Routine 

This routine contains texts for operator 
messages required for DEFINE command pro
cessing. The message is constructed 
according to a code passed by the calling 
routine. IEEDFIN5 issues the requested 
message and passes control to IEEDFIN2 or 
the dispatcher. 

• Entry: IEEDFIN5 

• Exits: IEEDFIN1, IEEDFIN2 or return to 
calling program 

• Attributes: Read-only, reenterable 

• Control Section: IEEDFIN5 

IEEDFIN6: Master scheduler -- Time-Slice 
Syntax Check Routine 

This routine checks the TMSL subparameters 
for ~roper syntax. 

• Entry: IEEDFIN6 

• Exits: IEEDFIN2, IEEDFIN5, IEEDPART 

• Attributes: Read-only, reenterable 

• Control Section: IEEDFIN6 

IEEDFIN7: Master scheduler -- Keyword Scan 
Routine 

This routine checks keyword parameters for 
syntax errors. If a syntax error is disco
vered, the erroneous entry and all follow
ing entries are ignored, and an error mes
sage is generated. If the syntax is 
correct, the information is stored. 

• Entry: IEEDFIN7 



• Exits: IEEDFIN2, IEEDFIN3, IEEDFIN4, 
IEEDFINS, IEEDPAJlT 

• Attributes: Read-only, reenterable 

• Control Section: IEEDFIN7 

IEEDFIN8: Master Scheduler -- System 
Reinitialization Routine - Part 1 

This routine assigns protection keys, marks 
dispatchable partitions that are not of 
zero size, and checks that the number of 
problem program partitions does not exceed 
15. If no error is found, IEEDFIN8 builds 
request blocks and boundary boxes and 
updates the PIB and the TCBPIB field for 
the defined partition. 

• Entry: IEEDFIN8 

• Exits: IEEDFIN9, IEEREXIT 

• Attributes: Read-only, reenterable 

• Control Section: IEEDFIN8 

IEEDFIN9: Master Scheduler -- Command 
Final Processor Routine 

This routine updates the time-slice control 
element, if time-slicing is specified, and 
issues a message to all active consoles 
that processing is complete. 

• Entry: IEEDFIN9, IEEREXIT 

• Exits: IEEDFIN5, IEEDFINA 

• Attributes: Read-only, reenterable 

• Control section: IEEDFIN9 

IEELOG02: Master Scheduler Log Open 
Initialization Module 

This routine opens the system log at IPL 
time. 

• Entry: IEELOG02 

• Exit: IEESDS69 

• Tables/Work Areas: CVT, UCB, UCM, 
TIOT, M/S resident data area, JFCB, 
IEELCA, DCB. 

• Attributes: Refreshable 

• Control Section: IEELOG02 

IEELWAIT: Master Scheduler -- Log Wait and 
Wri ter Module 

This module writes data from the log buffer 
to the system log. 

• Entry: IEELWAIT 

• Exit: To Dispatcher 

• Tables/Work Areas: CVT, LCA, MRC 

• Attributes: Resident 

• Control Section: IEELWAI'I' 

IEEPDISC: Display Consoles Get Region 
Routine 

This routine obtains a region of main 
storage, and sets up an environment for the 
execution of the DISPLAY CONSOLES corr.mand, 
and then frees the region when control is 
returned. 

• Entry: IEEPDISC, from IEEVATT1 

• Exit: 'Io IEEXEDNA, Return to Master 
Task (SVC 3) 

• Attributes: Read-only, reentrant, 
resident 

• Control Sections: IEEPDISC 

IEESD561: SVC 34 -- STOP IN IT and S'IART 
ComEand Processor (Part 1) 

This routine initially processes the STOP 
INIT and START commands. 

• Entry: IGC1903D 

• Exit: IEE3903D, IEE0503D for error 
messages 

• Tables/Work Areas: CVT, XSA 

• Attributes: Read-only, transient 

• Control Section: IGC1903D 

IEESD562: Master Scheduler -- syntax Check 
Routine 

This routine checks syntax of the command 
and sets internal codes for queue search, 
if required. 

• Entry: IEESDS62 

• Exits: XCTL to IEESD563 for queue 
search, to IEESD566 for DISPLAY active, 
to IEEUNIT1 for DISPLAY units, or to 
IEEXEBNA for DISPLAY CONSOLES 

• Attributes: Read-only, reenterable 

• External References: None 

• Centrol section: IEESDS62 

A~pendix B: MFT Modules 163 



IEESD563: Master scheduler -- Queue Search 
setup Routine 

This routine determines which queue is to 
be searched, reads and scans the queue con
trol record, establishes parameters for the 
search, and transfers control to the queue 
search module. IEESD563 will write out 
updated queue control records. 

• Entry: IEESD563 

• Exits: XCTL to IEESD564 to search 
queue; XCTL to IEESD565 at completion, 
XCTL to IEESD575 for CANCEL. 

• Tables/Work Areas: QCR, QMPA, CVT, 
CSCB 

• Attributes: Read-onlYI reenterable 

• Control Section: IEESD563 

IEESD564: Master Scheduler -- Queue Search 
Module 

This routine searches the work queues for 
the execution of the queue manipulation 
commands. 

• Entry: IEESD564 

• Exit: XCTL to IEESD563 

• Tables/Work Areas: QCR, CSCB, CVT, 
QMPA, XSA 

• Attributes: Read-only, reenterable 

• Control section: IEESD564 

IEESD565: Master Scheduler -- service 
Routine 

This routine frees storage obtained by 
IEESD563, links to the queue manager to 
enqueue an entry or queue control record on 
SYS1.SYSJOBQE, or links to write a xr:essage. 

• Entry: IEESD565 

• Exit: Return to caller 

• Tables/Work Areas: QMPA, CSCB, QCR, 
CVT 

• Attributes: Read-only, reenterable 

• External References: IEFQMNQ2, 
IEE0503D 

• Control section: IEESD565 

164 

IEESD566: Master Scheduler --.DISPLAY A 
Routine· 

This rcutine builds a table and constructs 
operator messages according to the process
ing required by a DISPLAY A command. 

• Entry: IEESD566 

• Exit: Return to caller (IEECIR50) 

• Tables/Work Areas: QMPA, CSCB, XSA, 
QCR, CVT 

• Attributes: Read-only, reenterable 

• Centrol Section: IEESD566 

IEESD568: Nucleus -- Master Scheduler 
Resident Data Area 

This reutine contains the master scheduler 
resident data area. 

• Entry: IEEMSER 

• Exit: None 

• Attributes: Not reusable 

• Centrol Section: IEEMSER 

IEESD571: SVC 34 -- DEFINE, MOUNT Routine 

This routine schedules the execution of the 
DEFINE and MOUNT commands. 

• Entry: IGC1803D 

• Exits: 
~OUNT - XCTL to IGC0103D 
DEFINE - Return to caller 
XCTL to IEE0503D and IEE2103D due to 

error. 

• Tables/Work Areas: CSCB, PIB, M/S 
resident data area, CVT 

• Attributes: Reenterable 

• Control Section: IGC1803D 

IEESD575: Master Scheduler Queue 
Scratch Setup Routine 

This routine sets up the scratch parameter 
list. 

• Entry: IEESD575 from IEESD563 

• Exit: XCTL to IEESD581 to Scratch or 
te IEESD576 to delete queue entries. 

• Tables/Work Areas: CSCB, CVT, JCT, 
JFCE, QMPA, SCT, SlOT, TIOT, UCB, UCB 
Leek up Table 



• Attributes: Read-only, reenterable 

• Control Section: IEESD575 

IEESD576: Master Scheduler -- Queue Alter 
Delete Routine 

This routine goes to the Queue Manager 
delete routine IEFQDELQ to delete queue 
entries. 

• Entry: IEESD576 from lEESD575 

• Exit: XCTL to IEESD563 for queue 
search; XCTL to IEESD578 for message 
class setup; XCTL to IEESD580 for 
message 

• Tables/Work Areas: CSCB, CVT, DSB, 
JCT, SCD, 5MB 

• Attributes: Read-only, reenterable 

• Control Section: IEESD576 

IEESD577: Master Scheduler Queue 
Restart Engueue Routine 

This routine links to the queue manager 
enqueue routine IEFQMNQQ to enqueue data 
sets for a canceled restarting job. 

• Entry: IEESD577 from IEESD578 

• Exit: XCTL to IEESD579 

• Tables/Work Areas: CSCB, QMPA, SCD, 
5MB 

• Attributes: Read-only, reenterable 

• Control Section: IEESD577 

IEESD578: Master Scheduler . Queue 
Mess?ge Class Setup 

This routine zeroes out the DSB's in the 
message class and sets up the QMPA for 
enqueuing the mes~age class. 

• Entry: lEESD578 from IEESD576 

• Exit: XCTL to IEESD579 to enqueue the 
message class; XCTL to IEESD577 to 
enqueue the sysout data sets for a 
restarting job. 

• Tables/Work Areas: CSCB, CVT, JCT, 
QMP A, SCD, 5MB 

• Attributes: Read-only, reenterable 

• Control Section: IEESD578 

IEESD579: Master Scheduler -- Queue 5MB 
Routine 

This routine places the appropriate CANCEL 
message in the 5MB and goes to the queue 
manager enqueue routine to enqueue the mes
sage class. The operator message is also 
issued from this routine. 

• Entry: IEESD579 from IEESD577 or 
IEESD578 

• Exit: Return to IEECIR50 

• Table/Work Areas: CSCB, CVT, QMPA, 5MB 

• Control sections: IEESD579, IEEMSWTO 

IEESD580: Master Scheduler Specific 
CANCEL Message Routine 

This routine issues the WTO if the CANCEL 
command was for a specific output class 
other than the message class. 

• Entry: IEESD580 from IEESD576 

• Exit: Return to IEECIR50 

• Tables/Work Areas: CSCB, QMPA 

• Control Sections: IEESD580 

IEESD581:· Master SCheduler -- Queue 
Scratch Routine 

This routine issues the SCRATCH macro (SVC 
29) or an error message. 

• Entry: IEESD581 from IEESD575 

• Exit: XCTL to IEESD575 

• Attributes: Read-only, reenterable 

• Control Section: IEESD581 

IEESD590: System Task Control -- Write 
TIOT on Disk 

This routine writes the TIOT which is used 
by Job Selection (IEESD510) and checks for 
a small partition writer. 

• Entry: IEESD590 

• Exits: XCTL to IEFSD510 (small parti
~writer) or XCTL to IEFSD591 

• Tables/Work Areas: TIOT, SPIL 

• Attributes: Reenterable 

• Control Section: IEESD590 

Appendix B: MFT Modules 165 



IEESD591: System Task Control -- Linker 
Routine 

This routine transfers control between sys
tem task control and an interpreter or sys
tem output writer. 

• Entry: IEESD591, IEE591SD 

• Exit: XCTL to IEEVTCTL 

• Tables/Work Areas: CSCB, CVT, PIB, 
IWA, QMPA 

• Attributes: Reenterable 

• Control Section: IEESD591 

IEESD592: system Task Control -- POST 
Routine 

This routine checks for an error indication 
in the CSCB. It posts the error condition 
or a valid condition. 

• Entry: IEESD592 

• Exit: XCTL to IEFSD5l0 

• Tables/Work Areas: None 

• Attributes: Reenterable 

• Control Section: IEESD592 

IEESMFAL: SVC 83 -- SMF Allocation Routine 

This routine allocates devices f or the SMF 
data sets. 

• Entry: IEESMFAL 

• Exit: IEESMFOP 

• Attributes: Reentrant 

• Tables/Work Areas: SMCA, CVT 

• Control Sections: IEESMFAL 

IEESMFIT: SMF Initialization Routine (1) 

This routine obtains storage for and 
initializes the SMCA, and reads the 
SMFDEFLT parameters from SYS1.PARMLIB. 

• Entry: IEESMFIT, IEESMFI4 

• Exit: IEFSD569, IEESMFOI, IEESMFI2, 
IEESMFI3 

• AttriDutes: Non-reentrant 

• Tables/Work Areas: CVT, DCB, JFCB, M/S 
Resident Data Area, SMCA, TIOT, UCB 

• Control Sections: IEESMFIT 

166 

IEESMFI2: SMF Initialization Routine (2) 

This routine constructs the S~E IPL and 
initial online I/O device records, and 
enqueues the 10-minute TQE on the timer 
queue. 

• Entry: IEESMFI2 

• Exit: To IEEDFINA, IEESMFIT 

• Attributes: Non-reentrant 

• Ccntrol Sections: IEESMFI2 

IEESMFI3: SMF Parameter Processing Routine 

This routine processes the SMFDEFLT parame
ters and/or the SMF parameters entered from 
the 0Ferator's console. 

• Entry: IEESMFI3, IEESMFIO, IEESMFMS 

• Exit: IEESMFIT (at entry point 
IEESMFI4) 

• Attributes: Serially Reusable 

• Tables/Work Areas: CVT,M/S Resident 
Data Area. SMCA. UCB 

• Control Section: IEESMFI3 

IEESMFOI: SMF Open Initializer 

This routine stores the DCBs and JFCBs for 
the SMF data sets. 

• Entry: IEESMFCI 

• Exit: IEESMFIT 

• Attributes: serially reusable 

• Tables/Work Areas: DCE, JFCE, SMCA. 
TIOT 

• Ccntrol Sections: IEESMFOI 

IEESMFCP: SVC 83 -- Open Routine 

This routine opens the SMF data sets, and 
switches between the primary and alternate 
data sets. 

• Entry: IEESMFCP 

• Exit: IEESMFAL, return to caller 

• Tables/Work Areas: DCB, JFCB, SMCA, 
TIOT 

• Attributes: Reentrant 

• Control Sections: IEESMFCP 



IEESMFWT:SMF Writer Routine 

This routine writes the contents of the SMF 
buffer in the SMF data set. 

• Entry: IEESMFWT 

• Exit: return to caller 

• Tables/Work Areas: CVT, DeB, SMCA 

• Attributes: Reentrant 

• Control section: IEESMFWT 

IEEUNIT1: Master Scheduler -- DISPLAY U 
Routine. (1) 

This routine syntax checks the DISPLAY U 
command and, for valid commands, defines 
the type of output requested. For invalid 
commands it passes control to IEEUNIT3 for 
issuance of the appropriate error message. 

• Entry: IEEUNIT1 

• Exits: 
Normal 

Error --

IEEUNIT4 to continue DISPLAY 
U processing 
IEEUNIT3 to issue error mes
sages and return control to 
the Master Scheduler 

• Tables/Work Areas: CvT, CSCB, UCB, 
Device Name Table, UCM, DCM, M/S resi
dent XSA data area, XSA 

• Attributes: Reenterable 

• Control Section: IEEUNIT1 

IEEUNIT2: Master Scheduler -- DISPLAY U 
Routine (2) 

This routine constructs the lines of the 
tabular display of the unit status based on 
information in the UCBs and the Device Name 
Table. 

• Entry: IEEUNIT2 

• Exits: 
Normal 

Error 

IEEUNIT3 to scan a data cell 
UCB 
IEEUNI T4 to write aline of 
text 
IEEUNIT3 to issue error mes
sages and return control to 
the Master Scheduler 

• Tables/Work Areas: CSCB, CVT, DEVICE 
Name Table, UCB, XSA 

• Attributes: Reenterable 

• Control Section: IEEUNIT2 

IEEUNIT3: Master scheduler-- DISPLAY U 
Routine (3) 

This rcutine issues all of the error mes
sages for the DISPLAY U command processing. 
It also constructs the display lines that 
contain the data cell information. 

• Entry: IEEUNIT3. 

• Exits: 
Normal IEEUNIT2 when the data cell 

scan is complete but the line 
of text is not full 
IEEUNIT4 to write a full line 
of text 
IEECIR50 to return control to 
the Master Scheduler 

Error -- None 

• Tables/Work Areas: CSCB, CVT, DCM, 
Device Name Table,. M/S Resident Data 
Area, UCB, UCM, XSA 

IEEUNIT4: Master scheduler -- DISPLAY U 
Routine (4) 

This routine displays, via the WTO macro 
instruction, the lines of text prepared by 
IEEUNIT2 or IEEUNIT3. It also builds a 
list of valid UCB addresses for processing 
by IEEUNIT2 or IEEUNIT3. 

• Entry: IEEUNIT4 

• Exits: 
Normal 

Error --

IEEUNIT2 to complete the 
display 
IEEUNIT3 to complete the data 
cell scan or to return to the 
Master Scheduler 
IEEUN IT·3 to issue error mes
sages and to reutrn to the 
Master Scheduler 

• Tables/Work Areas: CSCB, CVT, UCB, XSA 

• Attributes: Reeenterable 

• Control section: IEEUNIT4 

IEEVACTL: System Task Control 
Allocation Interface Routine 

This routine sets up the interface between 
system task control and the I/O device 
allocation routine. 

• Entry: IEEVACTI 

• Exits: To IEFSD21Q, IEEVMSG1, 
IEEVSMSG, IEEVTCTL, or IEEVSMBA 

• Attributes: Reenterable 

• Control Section: IEEVACTL 

Appendix B: MFT Modules 167 



IEEVICLR: Internal JCL Reader 

This routine reads the internal job control 
language used in starting a reader or 
writer. 

• Entry: IEEVICLR, IEFICR 

• Exit: Return to caller 

• Tables/Work Areas: DCBD 

• Attributes: Read-only, reenterable 

• Control Section: IEEVICLR 

IEEVJCL: system Task Control -- JCL Edit 
Routine 

This routine constructs the internal job 
control langu.age used in the START reader 
and START writer command execution 
routines. 

• Entry: IEEVJCL, from IEEVSTAR 

• Exit: XCTL to IEEVRCTL 

• Tables/Work Areas: SDT, CSCB 

• Attributes: Reenterable 

• Control Section: IEEVJCL 

IEEVLDSP: Master Scheduler Log 
Dispatcher Routine 

This routine puts the log data set on the 
system output queue. 

• Entry: IEEVLDSP 

• Exit: Master Scheduler 

• Tables/Work Areas: IEEBASEA, CT, IEEL
CA, UCB, JFCB. 

• Attributes: Reentrant 

• Control Section: IEEVLDSP 

IEEVLIN: Master Scheduler Log 
Initialization Routine 

This routine initializes the system log. 

• Entry: IEEVLIN 

• Exit: IEFSD569, IEEVLIN2 

• Tables/Work Areas: UCM, CVT, UCB, 
TIOT, MIS resident data area, IEELCA. 

• Attributes: Refreshable 

168 

• Ccntrol section: IEEVLIN 

IEEVLNKT: system Task Control -
Link-Table Module 

This routine contains the table of routines 
that is scanned by IEEVACTL as a validity 
check for program linking. 

• Entry: I EEVLNRT 

• Attributes: Non-executable 

• Control Section: IEEVLNKT 

IEEVLOUT: Log Data Set Reinitialization 
Routine 

This routine opens and closes the log data 
set to reinitialize the DS1LSTAR and 
DS1TREAL fields of the DSCE associated with 
the log data set. 

• Entry: IEEVLOUT, from IEFSD171 

• Exit: IEFSD171 

• Tables/Work Areas: CVT, DSCE, LCA, M/S 
Resident Data Area 

• Attributes: Reenterable 

• Control Section: IEEVLOUT 

IEEVMSG1: system Task Control Message 
Interface Routine 

This routine sets up the parameter list for 
the wessage writing routine. 

• Entry: IEEV~SGl from IEEVRCTL, IEE
VACTL, or IEEVTCTL 

• Exit: IEEVSMSG, return to caller 

• Ccntrol Section: IEEVMSG1 

IEEVOMSG: System Task Control Message 
Writing Routine 

This routine assembles and writes messages 
to the operator. 

• Entry: IEEVOMSG 

• Exit: Return to caller 

• Ccntrol Section: IEEVOMSG 

IEEVRCTL: System Task Control 
Interpreter Control Routine 

This routine provides an interface between 
system task control and an interpreter. 



• Entry: IEEVRCTL 

• Exits: To IEFVH1 and IEEVACTL 

• Tables/Work Areas: CVT, CSCB 

• Control Section: IEEVRCTL 

IEEVRFRX: Master Scheduler -- Table Lookup 
Routine 

This routine can be used to obtain the fol
lowing information; the CVT address, the 
contents of a CVT entry, or the contents at 
the CVT pointer address, a pOinter to the 
TCB or the RB, the TIOT pointer, the TIOT 
entry, the TIOT TTR, or the TIOT UCB pOint
er. The routine can also be used to insert 
a TIOT pointer, a TIOT TTR, or a TIOT UCB 
pointer in the CVT. 

• Entry: IEEVRFRX 

• Exit: Return to calling prograrr. 

• Tables/Work Areas: CVT, TCE, RB, 'I'IOT, 
UCB 

• Attributes: Reenterable 

• Control section: IEEVRFRX 

IEEVRJCL: System Task Control -- Internal 
JCL Reader 

This routine reads the internal job control 
language used in starting a reader or 
writer. 

• Entry: IEEVRJCL, IEFICR 

• Exit: Return to caller 

• Tables/Work Areas: DCED 

• Attributes: Read-only, reenterable 

• Control Section: IEEVRJCL 

IEEVSMBA: System Task Control -- QMPA 
Builder 

This routine constructs a queue manager 
parameter area (QMPA) referring to the mes
sage class queue for the use of the I/O 
Device Allocation routine. 

• Entry: IEEVSMBA 

• Exit: To IEEVACTL 

• Tables/Work Areas: QMPA, LCT, 5MB, lOB 

• Control section: IEEVSMBA 

IEEVSMSG: System Task Control -- Message 
Writer Rcutine 

This rcutine writes messages to the opera
tor as required by the master scheduling 
task and system task control. 

• Entry: IEEVSMSG, from IEEVMSG1, 
IEFSLS33, IEFVB1, or IEEVACTL 

• Exit: Return to caller 

• Centrol section: IEEVSMSG 

IEEVS'IAR: system Task Control -- Start 
Command Syntax Check Routine 

This reutine checks the syntax of a START 
conrrand, and builds a start descriptor 
table (SDT) containing the parameters of 
the ccnmand. 

• Entry: IEEVSTAR 

• Exits: To IEEVJCL, or IEEOS03D 

• Tables/Work Areas: SDT, M/S Resident 
Data Area, CVT, M/S TIO'I', UCB XSA, and 
CSCB. 

• Attributes: Reenterable 

• Control section: IEEVSTRT 

• Page Reference: 74 

IEEVTCTL: system Task Control 
Terrrinatien Interface Routine 

This routine initializes the necessary 
ta~les for terminating a task that was 
established via a START command, and 
releases storage obtained by IEEVS'IAR for 
the task's JSCB and WTPCE. 

• Entry: IEEV'ICTL, from IEESDS90, IEE
VACTL or IEFW31SD 

• Exit: IEFQMSS, IEEVMSG1, IEFW42SD, 
IEFQCELE, IEEPRTN2, IEEVOMSG 

• Tables/Work Areas: TCE, JCT, SCT, LCT, 
and CSCE 

• Attributes: Reenterable. Character 
De~endence Type C 

• Control Section: IEEVTCTL 

IEEVWTOR: Communications Task -
Write-to-Cperator With Reply Routine 

This routine processes all WTOR w.acro 
instructions. 

Appendix B: MFT Modules 169 



• Entry: IGC0103E 

• Exit: Return to calling program 

• Tables/Work Areas: WQE, RQE, UCM, CVT 

• Attributes: Reenterable 

• Control Section: IGC0103E 

IEEXEDNA: DISPLAY CONSOLES Processor 

This routine processes the DISPLAY command 
with the CONSOLES operand and displays the 
system console configuration on the reqU
esting console. 

• Entry: IEEXEDNA to IEESD562 

• Exit: To IEECIR50 

• Attributes: Reentrant 

• Control sections: IEEXEDNA 

IEE0303D: SVC 34 -- CSCB and CIB Chain 
Manipulator 

This routine manipulateslthe CSCB and CIB 
chain as requested by the caller of SVC 34. 

• Entry: IEE0303D 

• Exit: To'IEE5403D, or return to caller 

• Tables/Work Areas: CVT, M/S resident 
data area, CSCB~ XSA 

• Control Section: IEE0303D 

lEE0303F: SVC 36 -- WRITE-TD-LOG 

This module copies text records from an 
input area to the log buffer and posts the 
log ECB when the buffer is full. 

• Entry: IEE0303F 

• Exit: Returns to Master scheduler, 
IEE0403F. 

• Tables/Work Areas: IEEBASEA, IEELCA, 
CVT 

• Attributes: 

• Control Section: IEE0303F 

I lEE0403D: SVC 34 -- Router Routine 

This routine identifies the command verb, 
ensures that the console has authority to 
enter the command, and passes control to 
the appropriate routine. 

170 

• Entry: IEE0403D 

• Exit: Bepending on command verb, via 
XCTL to another SVC 34 module 

• Tables/Work Areas: M/S resident data 
area, XSA, CSCB 

• Centrol Section: IEE0403B 

IEE0403F: SVC 36 (Load 2) -- Log Buffer 
Management Module 

This wedule opens, closes, and switches 
system log buffers. 

• Entry: IEE0403F 

• Exit: IEE0303F 

• Tables/Work Areas: IEEBASEA, IEELCA, 
UCB, JFCB, DCB, CVT, TIOT. 

• Attributes: Reentrant 

• Centrel Section: IEE0403F 

IEE0503D: SVC 34 -- Message Assembly 
Routine 

This reutine assembles and edits messages 
for the command scheduling routine, and 
writes the messages to the operator. 

• Entry: IEE0503D 

• Exit: Branch on register 14 

• Attributes: Reenterable, read-only 

• Control section: IEE0503D 

IEE0603D: SVC 34 -- SET Command Routine 

This routine processes the SET command. 

• Entry: IEE0603D 

• Exits: To IEE0903D, IEE0503D, or 
return to caller 

• Tables/Work Areas: XSA, CVT, M/S resi
dent data area 

• Attributes: Reenterable, self
relocating, read only transient 

• Control Section: IEE0603D 



IEE0703D: SVC 34 -- STOP and MODIFY 
Scheduling 

This routine schedules the execution of the 
STOP and MODIFY commands by finding and 
updating the appropriate CSCB and by issu
ing a POST macro instruction to the master 
scheduling task. 

• Entry: IEE0703D 

• Exits: Branch on register 14, or XCTL 
to IEE0503D or IEE2103D. 

• Tables/Work Areas: M/S Resident Data 
Area, XSA, CVT, CSCB 

• Attributes: Reenterable, self
relocating, read-only, transient 

• Control section: IEE0703D 

IEE0803D: SVC 34 -- CSCB Creation Routine 

This routine schedules the execution of 
commands that cannot be completely pro
cessed by the command scheduling routines. 
It performs this function by adding a CSCB 
to the CSCB chain and issuing a POST macro 
instruction to the master scheduling task. 

• Entry: IEE0803D 

• Exit: IEE0503D. IEE2103D, or return to 
caller 

• Tables/Work Areas: XSA, M/S resident 
data area, CVT, CSCB, and UCM 

• Attributes: Reenterable, transient, 
partially disabled. 

• Control section: IEE0803D 

IEE0903D: SVC 34 -- Timer Maintenance 
Routine 

This routine processes the date and time 
operands of the SET command. 

• Entry: I EAQOT 0 0 

• Exit: SVC 3 

• Tables/WOrk Areas: CVT 

• Attributes: Reenterable , supervisor 
state, disabled for system interrupts, 
transient 

• Control section: IEAQOTOO 

IEE1103D: SVC 34 -- VARY and UNLOAD Scan 
Routine for Non-MCS systems 

This rcutine examines the command and its 
operand. 

• Entry: IEE1103D 

• Exit: IEE2203D for multiprocessing 
VARY commands, IEE2303D for VARY ONLINE 
and CONSOLES o~erands when SMF is pre
sent, to IEE3103D for all other VARY 
operands and UNLOAD, and to IEE0503D 
for errors. 

• Tables/Work Areas: XSA, CVT, M/S resi
dent data area, and UCM. 

• Attributes: Reenterable, self
relocating, read-only, and transient. 

• Control Sections: IEE1103D 

IEE1203D: SVC 34 -- Reply Processor 

This routine checks the validity of the 
operator's reply command, and moves the 
operator's reply (if valid) to the buffer 
of the user that issued the respective 
WTOR. 

• Entry: IEE1203D 

• Exit: Return to caller 

• Tables/work Areas: CVT, UCM, WQE, RQE, 
CXSA 

• Attributes: Reenterable 

• Centrol section: IEE1203D 

IEE1403D: SVC 34 -- HALT Routine 

This routine schedules the execution of the 
HALT command by adding a CSCB to the CSCE 
chain and by 1ssu1ng a POST macro instruc
tion to the master scheduling task. 

• Entry: IEE1403D 

• Exit: IFBSTAT 

• Tatles/Work Areas: XSA, M/S resident 
data area, CVT, and CSCB 

• Attributes: Reenterable 

• Centrol Section: IEE1403D 

IEE1603D: SVC 34 Log and Writelog 
Processor Routine 

This reutine issues a WTL macro instruction 
when a LOG command is issued, and stores 
the WRITELOG command and posts the Log ECE, 
for WRITELOG processing. 

Appendix B: ~~~ Modules 171 



• Entry: IEE1603D, from IEE0403D 

• Exit; IEE0503D for erroxrs" and return 
to caller of SVC 34. 

• Tables/Work Areas: XSA, CVT, LeA, and 
M/S resident data area. 

• Attributes: Reentrant" self
relocating" read:""only" and transient. 

• Control.Sections: IEE1603D 

IEE1703D: ·SVC 34-~ VARY ONGFX/OFFGFX 

This routine processes the GVARY command. 
It checks the parameters for validity and 
if an error is found, it passes control to 
IEE0503D via an XCTL macro instruction. If 
the parameters are valid" the routine sets 
appropriate bits in the Overall Control 
Table (OCT) of the GFX reader task. It 
then issues a POST macro instruction on the 
ECB in the OCT for each graphics device 
(2250) placed in the online status. 

• Entry: lEE1703D 

• Exit: IEE0503D, return to issuer of 
SVC 34 

• Tables/Work Areas: CVT, OCT, XSA 

• Attributes: Reenterable, read-only, 
self-relocating 

• Control Section: IEE1703D 

IEE1A03D: ·SVC 34~- MCS Reply Processor 
Routine. 

The purpose of this routine is to process 
valid operator replies to WTOR macro 
instructions. 

• Entry: IEElA03D 

• Exit: To IEE1B03D to issue error mes
sages or return to the caller of SVC 
34. 

• Control Sections: IEE1A03D 

IEE1B03D: SVC 34 -~ MCS Reply Message 
Routine 

This routine assembles, edits" and broad
casts the accepted reply to a WTOR macro 
instruction for the MCS Reply Processor 
routine (module IEElA03D)of the Command 
Scheduling routine, and to write error mes
sages to the operator whose command is in 
error. 

• Entry: IEE1B03D, from IEE1A03D 

172 

.• Exit: Return to the caller of SVC 34 

• Control Sections: IEE1B03D 

IEE2103D: SVC.34 -- Message Assembly 
Routine 

This routine assembles and edits messages 
for the command scheduling routine, and 
writes the messages to the operator. 

• ~ntry: IEE2103D 

• ~it: Branch on register 14 

• Attributes: Reenterable, self
relocatory" read-only" transient 

• control Section: IEE2103D 

IIEE2303D: SVC34 -- SMF VARY Processor 

This routine initially processes the ONLINE 
and CONSOLES operand of the VARY command, 
when the system has the SMF option. It 
builds and issues an SMF record for each 
device placed in online status. 

• Entry: IEE2303D from IEE1103D or 
IEE3303D 

• Exit: IEE3103D, IEE4203D, or IEE4403D 

• Tables/Work Areas: CVT, SMCA, XSA 

• Attributes: Reentrant, read-only" 
self-relocating 

• Control Sections: IEE2303D 

IEE2803D: SVC 34 -- CANCEL Command 

This routine checks the syntax and pro
cesses the CANCEL command. 

• Entry: IEE2803D 

• Exit: BALR to ABTERM 
XCTL to IEE0803D 
XCTL to IEE0503D and IEE2103D for 
messages 

• Tables/Work Areas: CSCB, TCB, M/S 
Resident data area 

• Attributes: Read-only, reenterable 

• Control Section: IEE2803D 

IEE2903D: SVC 34 -- Display Reguests 
Routine 

o 
This routine displays to the requesting 
operator the ID of all outstanding WTORs, 
the unit name of each device for outstand-



ing MOUNT messages, and an indication as to 
whether any AVR mount messages are pending. 

• Entry: IEE2903D, from IEE0803D 

.~: Return to caller of SVC 34 

• Tables/Work Areas: Message work area 

• Attributes: Reentrant, Refreshable, 
transient 

• Control.sections: IEE2903D 

IEE3103D: ·SVC 34 -- VARY and UNLOAD 
Processor Routine 

This routine processes the UNLOAD command, 
all VARY command operands in a system 
without the MCS option, and VARY ONLINE and 
OFFLINE operands for non-console devices in 
a system with the MCS option. 

• Entry: IEE3103D, initially from 
IEEII03D or IEE2303D and returns from 
IEE4603D. 

• Exit: Return to Caller 

• Tables/Work Areas: XSA, UCM, CVT, M/S 
resident data area, and UCB. 

• Attributes: Reentrant, self
relocating. read-only, transient. 

• Control sections: ~EE3103D 

IEE3203D: SVc34 - Vary Keyword.Router 
Routine 

This routine identifies the first keyword 
in a VARY command, checks its validity, and 
passes control to the appropriate command 
keyword processing routine. 

• Entry: IEE3203D from IEE0403D 

• Exit: To IEEII03D, IEE3303D, IEE4303D, 
IEE4703D, IEE2403D, IEE1703D 

• Tables/Work Areas: XSA 

• Attributes: Reentrant, read-only, 
self-relocating 

• Control .Sections: IEE3203D 

IEE3303D: SVC 34 ~~ MCS VARY Syntax Check 
Routine 

This routine scans the command syntax in an 
MeS environment. 

• Entry: IEE3303D from IEE3203D 

• Exit: IEE2303D, IEE2203D" IEE4203D, or 
IEE4403D 

• Tables/Work Areas: XSA, UCB, UCM, CVT 

• Attributes: Reenterable. self
relocating, read only 

• Control Sections: IEE3303D 

IEE3503D: SVC 34 -~ Display Commands 
Router Routine 

This routine examines the operand of DIS
PLAY commands and routes to the task which 
processes the command. 

• Entry: IEE3503D from IEE0403D 

• Exits: IEE0503D, IEE0803D, IEE3103D, 
IEE2903D, or return to caller 

• Table/Work Areas: M/S resident data 
area, ·XSA, CVT, and UCM 

• Attributes: Reenterable, transient 

• Control Section: IEE3503D 

IEE3903D: SVC 34 -- STOP INIT and START 
Command Processing Routine (Part 2) 

This routine completes the processing of 
the STOP INIT and START commands. 

• Entry: IGC3903D 

• Exit: Return to caller 

• Tables/Work Areas: CVT, XSA, CSCB, 
PIB, M/S resident data area 

• Attributes: Read-only, transient 

• Control Section: IEE3903D 

IEE4103D: SVC34 Hardcopy Message 
Issuing Routine 

This routine issues messages concerning the 
I status of the hard copy log. 

• Entry: IEE4103D, from IEE4703D 

.~: Return to caller 

• Tables/Work Areas: XSA, message area, 
UCB, CVT, XSA, and UCM 

• Attributes: Reentrant, transient 

• Control Sections: IEE4103D 

Appendix B:MFTModules 173 



IEE4203D: SVC 34 -- VARY ONLINE/OFFLINE 
and CONSOLE secondary SCanner Routine 

This module performs authority and operand 
validity checking, and passes control to 
the routine that will process the command. 

• Entry: IEE4203D, from IEE3303D or 
IEE2303D 

• Exit: To IEE3103D, IEE4603D, or 
IEE4903D 

• Tables/Work Areas: XSA, CVT, UCM, and 
UCB. 

• Attributes: Reenterable, self
relocating, read-only, transient 

• Control sections: IEE4203D 

IEE4303D: SVC 34 -- VARY MSTCONS Routine 

This routine processes the VARY MSTCONS 
command. 

• Entry: IEE4303D from IEE3203D VARY 
CONSOLE 

• Exit: To IEE0503D or IEE2103D on 
errors, SVC 72 to Console Switch Rou
tine (module IEECMCSW) and upon return 
to caller of SVC 34 

• Tables/Work Areas: UCB, CVT, XSA, and 
UCM 

• Attributes: Reentrant, self
relocating, read-only, transient 

• Control Sections: IEE4303D 

IEE4403D: SVC 34 -- VARY CONSOLE Keyword 
Scan Routine 

This routine determines the validity of 
VARY CONSOLE and sets appropriate bits in 
the XSA. 

• Entry: IEE4403D, from IEE3303D or 
IEE2303D 

• Exit: To IEE4203D for VARY CONSOLES or 
to IEE0503D for errors. 

• Tables/Work Areas: XSA, UCM, CVT, and 
UCB 

• Attributes: Reentrant, transient 

• Control Sections: IEE4403D 

IEE4503D: SVC 34 -- Periodic STOP Command 
Handler Routine 

This routine processes the commands STOP 
JOBNAMES/STATUS/SPACE/DSNAME. 

174 

• Entry: IEE4503D, from IEE0403D 

• Exit: IEE0503D for errors, and return 
to caller of SVC 34 

• Tables/Work Areas: XSA, M/S resident 
data area, CVT, and UCM 

• Attributes: Reentrant, self
relocating, read-only, transient 

• Control Section: IEE4503D 

IEE4603D: SVC 34 -- VARY ONLlNE/OFFLINB 
Routing Routine for Console Devices 

This routine processes VARY ONLINE/OFFLINE 
for all MCS consoles. 

• Entry: IEE4603D, from IEE4203D to pro
cess VARY ONLINE-OFFLINE 

• Exit: IEE3103D or return to caller 

• Tables/Work Areas: XSA, CVT, UCB, UCM, 
and M/S resident data area 

• Attributes: Reentrant, self
relocating, read-only, transient 

• Control Sections: IEE4603D 

IEE4703D: SVC 34 -- VARY HARDCPY Processor 
Routine 

This routine processes VARY HARDCPY 
commands. 

• Entry: IEE4703D from IEE3203D 

• Exit: To IEE4103: or IEE5703D 

• Tables/Work Areas: XSA, UCM, M/S resi
dent data area, CVT and UCB 

• Attributes: Reentrant, transient 

• Control Sections: IEE4703D 

IEE4803D: SVC 34 -- VARY CONSOLE 
Information Message Routine 

This routine constructs a message which 
shows the current status of the varied 
console. 

• Entry: IEE4803D, from IEE4903D 

• Exit: Return to caller 

• Tables/Work Areas: XSA, message area, 
UCB, CVT, and UCM 

• Attributes: Reentrant, transient 

• Control Sections: IEE4803D 



IEE4903D: SVC 34 -- VARY CONSOLE Processor 
BQutine 

This module processes the VARY CONSOLE 
command. 

• Entry: IEE4903D, from lEE4203D 

• Exit: To IEE4803D to construct console 
message 

• Table/Work Areas: XSA, CVT, UCB, and 
UCM 

• Attributes: Reentrant, self
relocating, read-only, transient 

• Control Sections: IEE4903D 

IEE5403D: SVC 34 -- Command Translator 
.Bouti~ 

This routine translates lower case letters 
(except those within apostrophes) into 
upper case letters. 

• Entry: IEE5403D 

• ~xit: IEE0403D 

• Tables/Work Areas: CVT, Internal Tran
slation Table, UCM, UCME, XSA 

• Control section: IEE5403D 

IEE5703D: SVC 34 -- VARY Hardcopy OFF and 
Message Routing Routine 

This routine removes the hardcopy log and 
routes any error messages to the appropri
ate error message routines. 

• Entry: IEE5703D from IEE4703D 

• Exit: IEE0503D or IEE2103D 

• Tables/Work Areas: XSA, UCM, UCB, CVT, 
MRC 

• Attributes: Reenterable, transient 

• Control sections: IEE5703D 

IEFACTFK: Termination -- User Dummy 
Accounting Routine 

This routine takes the place of the user's 
accounting routine when a user accounting 
routine was specified at system generation, 
but none was supplied. 

• Entry: IEFACTLK 

• §xit: Return to caller 

• Control Section: IEFAC'I'LK 

IEFACTLK: Termination -- User Accounting 
Routine Linkage Routine 

This routine provides linkage between the 
termination routine and the user's account
ing routine. It also sets up the required 
parameter list -- including the execution 
time of the job step -- and reads the first 
record of the account control table. 

• Entry: IEFACTLK 

• Exits: To user's accounting routine, 
return to caller. 

• Tables/Work Areas: LCT, JCT, SCT, 
JACT, SACT, QMPA 

• Control Section: IEFAC'I'Ll{ 

IEFACTRT: Termination -- Dummy Accounting 
Routine 

This routine takes the place of the user
supplied accounting routine. 

• Entry: IEFACTRT 

• Exit: Return to caller 

• Control Section: IEFACTRT 

IEFAVFAK: I/O Device Allocation Linkage 
to IEFXVOOl 

This routine passes control to the AVRrou
tine (IEFXV001) via and XCTL macro 
instruction. 

• Entry: IEFXVOOl 

• Exit: XCTL to IEFXVOOl 

• Control Section: IEFXVOOl 

IEFCVFAK: I/O Device Allocation Linkage 
to IEFMCVOL 

This routine passes control to Mount 
Control-Volume Routine IEFMCVOL via an XCTL 
macro instruction to one of three entry 
pOints, IEFCVOL1, IEFCVOL2, or IEFCVOL3. 

• Entries: IEFCVOL1, IEFCVOL2, IEFCVOL3 

• Exits: XCTL to IEFCVOL1, IEFCVOL2, 
IEFCVOL3 

• Control Section: IEFCVOLl 

IEFDSDRP: Data Set Descriptor Record 
Processing Routine 

This routine processes the job queue infor
mation in the DSDR record to make a 
restarting job's queue entry reflect the 
environment when the checkpoint was taken. 

Appendix B: MFT Modules· 175 



• Entry Point: IEFDSDRP 

• Exit: Return to caller 

• Table/Work Areas: JCT, SCT, S lor , 
JFCB, TIOT, UCB, CVT, VOLT, TCB, QMPA, 
CSCB, DCBD, DCB, JFCBX, SCTX, LCT 

• Attributes: Reenterable 

• Control Section: IEFDSDRP 

IEFDSOAL: Direct System Output -- SlOT and 
JFCB Modification 

This routine modifies the SYSOUT SIors and 
JFCBs of steps that will use DSO. 

• Entry: IEFDSOAL from IEFVMLSl 

• Exit: IEFVMLSl or IEFQBVMS 

• Tables/Work Areas: CVT, LCT, QMPA, 
DSOCB, JCT, SCT, SlOT, JFCB, PIB, UCB 

• Attributes: Reenterable 

• Control sections: IEFDSOAL 

IEFDSOCP: Direct System Output 
Initialization Routine 

This routine initializes DSO by construct
ing the DSOCB and performing DSO 
housekeeping. 

• ~try: IEFDSOCP 

• ~xit: Return to caller 

• Tables/Work Areas: TCB, DSOCB, TIOT, 
JFCB, UCB, CVT, ECB/IOB, QMPA, PIB 

• Attributes: Reenterable 

• Control sections: IEFDSOCP 

IEFDSOFB: Direct System Output -- Release 
DSOCB Routine 

This routine frees DSOCBs allocated to a 
job. 

• Entry: IEFDSOFB from IEFSD168, or 
IEFSD518 

• Exit: Return to caller 

• Tables/Work Areas: LCT, DSOCB, CVT, 
PIB, M/S resident data area, JCT 

• Attributes: Reenterable 

• Control Sections: IEFDSOFB 

176 

IEFDSOSM: Direct System Output -- Stop and 
Modify Command Processing Routine 

This routine processes stop and Modify com
mands for DSO. 

• Entry: IEFDSOSM 

• Exit: SVC 3 

• Tables/Work Areas: CVT, JCB, DSOCB, 
UCB, PIB, CSCB, JCT, ECB/IOB, QMPA 

• Attributes: Reenterable 

• Control Sections: IEFDSOSM 

IEFDSOWR: Direct system Output -- System 
Messages and Job Separator Writer 

This routine writes job separators and sys
tem messages to the assigned DSO device. 

• Entry: IEFDSOWR from IEFSD512 or 
IEFSD31Q 

• Exit: IEFSD512, IEFSD31Q, IEFQMRAW, 
IEFSD094 or the user's separator 
program 

• Tables/Work Areas: TCB, LeT, QMPA, 
DSOCB, JCT, SCT, PIB, UCB, CVT, TIOT, 
DCB, 5MB 

• Attributes: Reenterable 

• Control Sections: IEFDSOWR 

IEFIDMPM: Termination -- Message Module 

This routine contains the messages used by 
the Indicative Dump routine. 

• Entry: IEFIDMPM 

• Attributes: Non-executable 

• Control Section: IEFIDMPM 

IEFLOCDQ: QU eue M:=a::;n:.;:a::..;:gL:em=.;en=t=-_-=Dc.::e:.;::qL.;u=-:e=..u=.e=---cD=.' .Ly 
Jobname Routine 

This routine searches a queue for a named 
job or list of named jobs, and can return 
information, or dequeue or cancel the job. 

• Entry: LOCDQ, LOCCAN, LOC 

• Exit: Return to caller 

• Tables/Work Areas: QCR, LTH 

• Attributes: Reenterable 

• External References: IEFCNVRT, 
IEFRDWRT 



IEFMCVOL: I/O Device Allocation -- Mount 
Control-Volume Routine 

This routine will have a control volume 
mounted when a data set called for in a job 
step cannot be located on any currently 
mounted control volume. . 

• Entries: IEFCVOLl, IEFCVOL2, IEFCVOL3 

• Exits: IEFVM1, IEFVMCVL, IEFVM6, IEFYN 
(IEFW41SD) 

• Tables/Work Areas: LCT, JCT, SC'l', 
SlOT, JFCB, VOLT, QMPA, UCB 

• Attributes: Reusable 

• Control Sections: IEFCVOLl, IEFCVOL2, 
IEFCVOL3 

IEFORMAT: Queue Management 
Formatting Routine 

Queue 

This routine places the work queue data set 
in the format required by the MFT queue 
management routines. 

• Entry: IEFORMAT, from IEFSD055 

• Exit: Return to IEFSD055 

• Tables/Work A+eas: DCB, DEB 

• Attributes: Reusable 

• Control section: IEFORMAT 

IEFPRINT: Direct system Output Tape to 
Printer or Card Punch Routine 

This routine writes a DSO - written tape to 
a printer or card punch. 

• Entry: SPRINTER 

• Exit: Return to caller 

• Control Sections: SPRINTER 

IEFQAGST: Queue Management 
Routine 

Assign/Start 

This routine sets up an ECB/IOB and pre
pares the queue manager parameter area for 
the assign routine. 

• Entry: IEFQAGST 

• ~xit: Return to caller 

• Tables/Work Areas: Q/M resident data 
area, QMPA, CVT 

• Attributes: Reenterable 

• Control Section: IEFQAGST 

IEFQASGQ: Queue Management Assign 
Routine 

This routine assigns records to a queue 
entry and assigns logical tracks as 
required. 

• Entry: IEF~ASGN 

• Exit: Return to caller 

• Tables/Work Areas: Q/M resident data 
area, QMPA, CVT 

• Attributes: Reenterable 

• Control Sections: IEFQASGN, IEFQAtiNM 

IEFQBVMS: Queue Management -- Control 
Routine 

This routine inspects the function code in 
the queue manager parameter area and, on 
the basis of this code, branches to the 
appropriate queue management routines. 

• Entry: IEFQMSSS 

• Exits: To IEFQAGST, IEFQMRAW, 
IEFQMNQQ, or IEFQASGQ, return to caller 

• Tables/Work Areas: QMPA 

• Attributes: Reenterable 

• Control Section: IEFQMSSS 

IEFQDELQ: Queue Management -- Delete 
Routine 

This routine makes those logical tracks 
assigned to a queue entry available for 
assignment to other queue entries. 

• Entry: IEFQDELE 

• Exit: Return to caller resident data 
area, CVT 

• Attributes: Reenterable 

• Control Section: IEFQDELE 

IEFQMDQQ: Queue Management Dequeue 
Routine 

This routine removes the highest priority 
entry from an input queue or a system out
put queue. 

Appendix B: MFT ~JOdules 177 



• Entry: IEFQMDQ2 

• Exit: Return to caller 

• Tables/Work Areas: CVT, Q/M resident 
data area, QCR, LTH 

• Attrioutes: Reenterable 

• Control Section: IEFQMDQ2 

IEFQMDUM: Queue Management -- Dummy Module 

This routine prevents the occurrence of an 
unresolved external reference to module 
IEFQMSSS during system generation. 

• Entry: IEFQMDUM 

• Attributes: Non-Executable 

• Control Section: IEFQMSSS 

IEFQMLK1: Queue Management -- Branch 
souti~ 

This routine branches to the appropriate 
queue management routine on the basis of an 
assign or read/write function code issued 
by an initiator. 

• Entry: IEFQMSSS 

• §xits: To IEFQASGQ or IEFQMRAW 

• Tables/Work Areas: QMPA 

• Attributes: Reenterable 

• Control section: IEFQMSSS 

!~~~NQQ: Queue Management 
Routine 

Engueue 

This routine places an entry in an input 
queue or an output queue at the requested 
priority. 

• ~ntry: IEFQMNQ2 

• Exit: Return to caller 

• Tables/Work Areas: CVT, Q/M resident 
data area, QMPA, QCR, LTH 

• Attributes: Reenterable 

• Control section: IEFQMNQ2 

!~~~RAW: Queue Management -- Read/Write 
SQ~.tin~ 

This routine performs the conversion of a 
T1R into a MBBCCHHR and reads or writes up 
to 15 records of the work queue data set. 

178 

• Entry: IEFQMRAW 

• Exit: Return to caller 

• Tables/Work Areas: Q/M resident data 
area, QMPA, CVT, IOB/ECB 

• Attributes: Reenterable 

• Control Section: IEFQMRAW 

IEFQMUNQ: Queue Management -- Unchain 
Routine 

This routine removes a task from the queue 
management no-work chain. 

• Entry: IEFQMUNC 

• Exit: Return to caller 

• Tables/Work Areas: CVT, Q/M resident 
data area, QCR 

• Attributes: Reenterable 

• Control Section: IEFQMUNC 

IEFQRESD: Queue Management -- Resident 
Main storage Reservation Module 

This routine reserves 140 bytes of resident 
main storage for the queue-management
opened DCB/DEB and the master queue control 
record at nucleus initialization time. 

• Attributes: Non-executable 

• Control Section: IEFJOB 

IEFRCLN1: Restart Reader Linkage 

This routine receives control from IEFVRRC 
and LINKS to interpreter initialization 
routine IEFVH1. 

• Entry: IEFRCLN1 

• Exit: XCTL to IEFVRRC at entry 
IEFVRRCA 

• Attributes: Reenterable 

• Control section: IEFRCLN1 

IEFRCLN2: Restart Reader Linkage 

This routine receives control from IEFVRRC 
and LINKS to interpreter initialization 
routine IEFVH1. 

• Entry: IEFRCLN2 

• Exit: XCTL to IEFVRRC at entry 
lEFVRRCB 



• Attributes: Reenterable 

• Control Section: IEFRCLN2 

IEFRPREP: Termination -- Restart 
E~~aration Routing 

This routine determines whether a job step 
that has been abnormally terminated can be 
restarted. 

• ~try: IEFRPREP from IEFYNIl'"IP 

• ~xit: Return to caller 

• Attributes: Reenterable 

• 'I'ables/Work Areas: LCT, JCT, SCT, PDQ, 
QMPA 

• Control section: IEFRPREP 

!~FRSTRT: Restart SVC Issuing Routine 

This routine issues the Restart SVC. Wlaen 
called by its alias, IEFSMR, it issues the 
Restart SVC and then returns to the caller. 

• Entry: IEFRSTRT, IEFSMR 

• ~xit: SVC 52 (RESTART), return to 
caller 

• Attributes: Reenterable 

• Control Sections: IEFRSTRT 

IEFSD017: Termination 
Interface Routine 

System Output 

This routine provides an interface between 
the termination entry routine and system 
output processing. 

• Entry: IEFSD017 

• Exit: To IEFSD42Q 

• Control Section: IEFSD017 

IEFSD055: Queue Management Queue 
Initialization Routine 

This routine constructs a resident DEB/DCB, 
~asses control to the queue formatting rou
tine or the first phase of system restart, 
initializes the queue manager resident data 
area, and (if required) passes control to 
the second phase of the system restart 
routine. 

• Entry: IEFSD055, from IEFQINTZ 

• ~xits: To IEFORMAT, IEF300SD, or 
IEF304SD 

• Attributes: Reusable 

• Control Section: IEFSD055 

IEFSD070: system output Writer -- Data Set 
Writer Interface Routine 

This routine passes control to the standard 
data set writer or to the user-supplied 
data set writer routine. 

• Entry: IEFSD070 

• Exits: To IEFSD087 or user-supplied 
routine via LINK, or to IEFSD171 via 
XCTL 

• Attributes: Reenterable 

• Control section: IEFSD070 

IEFSD078: System output Writer -- Linker 
Routine 

This routine determines whether the record 
obtained from the output queue entry is a 
DSB or 5MB, and passes control, according
ly, to the DSB or 5MB processor. 

• Ent~: IEFSD078 

• Exits: To IEFSD085, IBFSD086, or 
IEFSD079 

• Attributes: Reenterable 

• Ccntrol section: IEFSD078 

IEFSD079: system output Writer -- Link to 
Queue Manager Delete Routine 

This routine passes control to the delete 
routine to delete the current output queue 
entry. 

• Entry: IEFSD079 

• Exits: To IEFQDELQ and IEFSD082 

• Tables/Work Areas: QMPA 

• Attributes: Reenterable 

• Control Section: IEFSD079 

IEFSD080: System output Writer 
Initialization Routine 

This routine initializes the system output 
writer by obtaining main storage for a 
parameter list and the output DCB, and 
opening the output DCB. 

• Entry: IEFSD080 

Appendix B: MFT Modules 179 



• Exit: To IEFSD081 

• Tables/Work Areas: DCB, CSCB, TIOT, 
JFCB 

• Attributes: Reenterable 

• Control section: IEFSD080 

IEFSD081: system OUtput Writer -- Class 
Name setup Routine 

This routine obtains main storage for, and 
initializes, a list of ECB pointers, ECBs, 
and queue management communication ele
ments, depending on the system output 
classes specified for the writer. 

• Entry: IEFSD081 

• Exit: To IEFSD082 

• Tables/Work Areas: CSCB, ECB 

• Attributes: Reenterable 

• Control section: IEFSD081 

IEFSD082: system OUtput Writer -- Main 
Logic Routine 

This routine obtains main storage for QMPAs 
and internal work areas, dequeues output 
queue entries, checks for operator com
mands, and passes control to the appropri
ate routine. 

• Entry: IEFSD082 

• Exits: IEFSD083, IEFSD084, IEFSD078 

• Tables/Work Areas: CSCB, ECB 

• Attributes: Reenterable 

• Control Section: IEFSD082 

IEFSD083: System OUtPUt Writer -- Command 
Processing Routine 

This routine processes MODIFY and STOP com
mands that apply to the writer. 

• Entry: IEFSD083 

• Exits: To IEFSD081 or IEEVTCTL 

• Tables/Work Areas: CSCB, DCB, QMPA, 
ECB 

• Attributes: Reenterable 

• Control Sections: IEFSD083, ~EFSD83M 

180 

IEFSD084: System Output Writer -- Wait 
Routine 

This routine waits for an entry to be 
enqueued in an output queue corresponding 
to a class available to the writer. 

• Entry: IEFSD084 

• Exit: To IEFSD082 

• Attributes: Reenterable 

• Control Section: IEFSD084 

IEFSD085: System Output Writer -- DSB 
Handler Routine 

This routine initializes for data set pro
cessing, and informs the operator of the 
pause option in effect. 

• Entry: IEFSD085, IEF085SD, or IEF850SD 

• Exit: To IEFSD171 

• Attributes: Reenterable 

• Control Sections: IEFSD085, IEFSD85M 

IEFSD086: System Output Writer -- 5MB 
Handler . 

This routine initializes for message pro
cessing, and extracts each message from the 
current 5MB. 

• Entry: IEFSD086, IEF086SD 

• Exits: To IEFSD088, IEFSD089, 
IEFQMNQQ, IEFQMRAW,IEFSD085, IEFSD078 

• Tables/Work Areas: 5MB, UCB, QMPA, 
TIOT, CSCB, TCB 

• Attributes: Reenterable 

• Centrol sections: IEFSD086, IEFSD86M 

IEFSD087: System Output Writer -- Standard 
Writer Routine 

This routine gets records from a data set. 

• Entry: IEFSD087 

• Exits: To IEFSD088, IEFSD089, IEFSD078 

• Tables/Work Areas: DCB 

• Attributes: Reenterable 

• Centrol Sections: IEFSD087, IEFSD87M 



IEFSD088: System Output Writer -
Transition Routine 

This routine handles the transition between 
messages and data sets, and between data 
sets. 

• Entry: IEFSD088 

• Exit: To IEFSD089 

• Tables/Work Areas: DCB 

• Attributes: Reenterable 

• Control Section: IEFSD088 

IEFSD089: System Output Writer -- Put 
Routine 

-Ihis routine formats records as required 
and issues PUT macro instructions to write 
them on the output unit. 

• Entry: IEFSD089 

• ~xit: To IEFSD088 

• Tables/Work Areas: DCB 

• Attributes: Reenterable 

• Control Sections: IEFSD089, IEFSD89M 

IEFSD094: system Output Writer -- Job 
Separator Routine 

~his routine prints or punches a job name 
and system output class designation on the 
writer's output device. 

• Entry: IEFSD094 

• Exits: To IEFSD088, IEFSD089, 
IEFSD095, IEFSD078 

• Attributes: Reenterable 

• Control Section: IEFSD094 

IEFSD095: system output Writer -- Print 
Line Routine 

This routine constructs the block letters 
used to separate jobs processed by a system 
output writer when the output data set is 
to be printed. 

• ~try: IEFSD095 

• Exit: Return to caller 

• Attributes: Reenterable 

• Control Section: IEFSD095 

IEFSD096: System Output Writer -- Message 
Module 

This routine contains message headers and 
texts for messages to the operator. 

• Entry: IEFSD096 

• Attributes: Non-executable 

• Ccntrol section: IEFSD096 

IEFSD097: I/O Device Allocation -- Wait 
for Space Decision Routine 

This routine makes the decision whether to 
wait for direct access space, and provides 
an interface with the I/O device allocation 
space request routine so that retry and 
additional recovery passes may be made. 

• Entry: IEFSD097 

• Exit: Branch on register 14 

• Tables/Work Areas: LCT, TIOT, UCB 

• Attributes: Read-only, reenterable 

• Centrol Section: IEFSD097 

IEFSD167: Initiator -- Linkage to IEFSD168 

This routine passes control via an XCTL 
macro instruction to IEFSD168 in the 30K 
scheduler. 

• Entry: IEFSD068 

• Exit: IEFSD168 

• Tables/Work Areas: None 

• Attributes: Reenterable 

• Control Section: IEFSD068 

IEFSD168: Initiator -- Job Suspension 

This routine causes a terminated job to be 
reenqueued so that the job can be 
reactivated. 

• Entry: IEFSD068 

• Exit: Branch to IEFSD598 to purge 
resources, branch to IEFSD510 to rein
itiate job, link to IEFDSCFB 

• Tables/Work Areas: QMPA, LCT, JCT, 
SCD, SCT 

• Attributes: Reenterable 

• Control Section: IEFSD068 

Appendix B: MFT Modules 181 



• External Reference: IEFQMRAW, 
IEFQMNQ2, IEFVSDRA 

IEFSD171:. system Output Writer -- Data Set 
Delete.Routine 

This routine obtains records from an output 
queue entry, and deletes system output data 
sets. 

• Entry: IEFSD071 

• Exits: To IEEVLOUT, IEFQMNQ2, 
IEF850SD, IEF086SD" IEFSD078, or 
IEFQMRAW 

• Tables/Work Areas: DCB, 5MB, UCB, CVT, 
QMPA, TIOT, CSCB, TCB 

• Attributes: Reenterable 

• Control sections: IEFSD071, IEFSD71M 

IEFSD195: I/O Device Allocation-- Wait 
for. Deallocation Routine 

This routine provides the I/O device allo
cation routine with the ability to wait for 
deal location to occur during the execution 
of another task, when allocation cannot be 
completed because of current allocations. 

• Entry: IEFVAWAT 

• Exit: Return to caller 

• Tables/Work Areas: JCT, SCT, SlOT, 
LCT" ECG, CSCB 

• Attributes: Read-only, reenterable 

• Control Section: IEFSD095 

IEFSD21Q:I/0 Device Allocation 
Allocation Entry Routine 

This routine provides an interface for 
entry to the I/O device allocatiOn routine 
operating in a multiprogramming environ
ment. 

• Entry: IEFW21SD 

• Exits: To IEFVK, IEFVM or IEFWDOOO 

• Tables/Work Areas: JCT" LCT, SCT, 5MB, 
QMPA, CVT 

• Attributes: Read-only, reenterable 

• Control Section: IEFWLISD 

IEFSD22Q: Termination Routine Step 
Terminate Exit Routine 

This routine provides an interface between 
the termination routine and the step delete 

182 

or alternate step delete routine when a 
step has been terminated. 

• Entry: IEFW22SD 

• Exit: Return to caller of termination 
routine 

• Tables/Work Areas: JCT, SCT, 5MB, LCT, 
QMPA, ECB 

• Attributes: Read-only. reenterable 

• Control Section: IEFW22SD 

IEFSD300: system Restart -- Initialization 
Routine 

This routine reads all QCRs and logical 
track header records into main storage, 
builds tables A,. B" and C,' and removes from 
Table A all the LTH entries corresponding 
to logical tracks in the free-track queue 
or in one of the other queues. 

• Entry: IEFSD300 

• Exit: To IEFSD301 

• Tables/Work Areas: System restart work 
area, Table A. Table B" Table C 

• Attributes: Reenterable 

• Control Section: IEFSD300 

IEFSD301: system Restart Purge Queue 
Construction Routine 

This routine searches Table A for the last 
LTH corresponding to each queue entry" 
determines the type of entry. and con
structs the purge queue. 

• Entry: IEFSD301 

• Exit: To IEFSD302 

• Tables/Work Areas: System restart work 
area, Table A" Table C purge queue,. 
interpreter jobnames table 

• Attributes: Reenterable 

• Control Section: IEFSD301 

IEFSD302: System Restart -- Jobnames Table 
Routine 

This routine removes from Table A all log
ical tracks assigned to dequeued input or 
RJE queue entries, and builds a table of 
jobnames for incomplete input and RJE queue 
entries and dequeu'ed input queue entries. 

• Entry: IEFSD302 



• Exit: TO IEFSD303 

• Tables/Work Areas: system restart work 
area, Table A, Table C, and the 
interpreter/initiator jobnames table 

• Attributes: Reenterable 

- Control Section: IEFSD302 

IEFSD303: system Restart -- Delete Routine 

This routine creates a queue entry of the 
remaining logical tracks and deletes that 
entry, thus assigning those tracks to the 
free-track queue. 

• Entry: IEFSD303 

- Exit: Return to caller 

- Tables/Work Areas: System restart work 
area, QMPA, Table A 

• Attributes: Reenterable 

• Control Section: IEFSD303 

IEFSD304: System Restart -- Scratch Data 
Sets Routine 

This routine informs the operator of the 
names of jobs being processed by an inter
preter, and scratches temporary data sets 
generated for incomplete input queue 
entries. 

• Entry: IEFSD304 

• Exits: To IEFSD055, IEFsD308 

• Tables/Work Areas: CVT, UCB address 
look-up table 

• Attributes: Reenterable 

• Control section: IEFSD304 

IEFSD30S: system Restart -- Reengueue 
Routine 

This routine dequeues th~ entries in the 
purge queue and reenqueues them in the 
appropriate input or output queue and 
informs the operator of the names of jobs 
in the process of initiation. 

-Entry: IEFSD30S 

• Exit: IEFSD304 

• Tables/Work Areas: System restart work 
area, purge queue, JCT, SCT, JFCB. DSB, 
SCD, SlOT. 

• Attributes: Reenterable 

• Control Section: IEFSD30S 

IEFSD308: System Restart -- Scratch Data 
Sets Routine 

This routine scratches the temporary data 
sets generated for incomplete input queue 
entries. 

• Entry: IEFSD308 

- Exit: Return to caller 

- Tables/Work Areas: DSCB, DCB, UCB, 
CVT, VTOC, DEB 

- Attributes: Reenterable 

- Control Section: IEFSD308 

IEFSD31Q: Termination Routine -- Job 
Termination Exit Routine 

This routine provides an interface between 
the termination routine and the step delete 
or alternate step delete routine when the 
last'step of a job has been terminated. If 
DSO was used, the DSOCBs are released; if 
the message class is assigned to DSO, the 
routine links to IEFDSOWR. 

• Entry: IEFW31SD 

• Exit: IEFSD32Q (44K Scheduler), 
IEFSD33Q (30K scheduler), or IEFDSOWR 

• Tables/Work Areas: JCT, SCT, S~ffi, 
QMPA, ECB, CVT, M/S resident data area, 
DSOCB, PIB 

- Attributes: Read-only, reenterable 

• Control Section: IEFW31SD 

IEFSD310: System Restart -- TTR and NN to 
MBBCCHHR Conversion Routine 

This routine converts a relative record 
address (NN) or a relative track and record 
address (TTR) to an actual disk address 
(MBBCCHHR). 

- Entry: IEFSD310 

- Exit: Return to caller 

- Tables/Work Areas: CVT 

- Attributes: Reenterable 

- Control Section: IEFSD310 

IEFSD311: Queue Management Message 
Module 

This routine contains the messages required 
by the queue initialization routine 
(IEFSDOSS) • 

Appendix B: MFT Modules 183 



• Entry: IEFSD311, SD55MSGl, SD55MSG2, 
SD55MSG3 

• Attributes: Non-executable 

• Control Section: IEFSD311 

IEFSD312: System Restart -- Message Module 

This routine contains the messages required 
by the system restart routines. 

• Entry: IEFSD312, SD304MG1, SD304MG2, 
SD305MGl 

• Attributes: Non-executable 

• Control Section: IEFSD312 

IEFSD32Q: Initiator -- Linkage From Job 
Termination to the Initiator for the 44K 
Scheduler 

This routine receives control from job ter
mination exit routine IEFSD31Q in MFT sys
tems with the 44K scheduler. It returns 
control to step deletion routine IEFSD515 
via the RETURN macro instruction. 

• Entry: IEFW32SD 

• Exit: Return to IEFSD515 

• Tables/Work Areas: None 

• Attributes: Reenterable 

• Control section: IEFW32SD 

IEFSD33Q: Initiator -- Linkage From Job 
Termination to the Initiator for the 30K 
Scheduler 

This routine receives control from job ter
mination routine IEFSD31Q in MFT systems 
with the 30K scheduler. It passes control 
to job deletion routine IEFSD511 with the 
address of the Life-of-Task block in 
register 1. 

• Entry: IEFW32SD 

• Exit: Branch to IEFSD511 

• Tables/Work Areas: None 

• Attributes: Reenterable 

• Control Section: IEFW32SD 

IEFSD41Q: I/O Device Allocation 
Allocation Exit Routine 

This routine provides an interface for exit 
from the I/O device allocation routine 
operating in a multiprogramming environ
ment. 

184 

• Entry: IEFW41SD, IEFWIFAK, IEFW2FAK 

• Exits: To IEFVM, or return to caller 

• Tables/Work Areas: JCT, LCT, SCT, 5MB, 
QMPA 

• Attributes: Read-only, reenterable 

• Control Section: IEFW41SD 

IEFSD42Q: TerminationRoutine 
Termination Entry Routine 

This routine provides an interface for 
entry to the termination routine operating 
in a multiprogramming environment. it also 
provides an interface for entry to the LOG 
function if a LOG data set is scheduled to 
be added to the SYSOUT queue. 

• Entry: IEFW42sD 

• Exit: To IEFYN 

• Tables/Work Areas: JCT, SCT, 5MB, LCT, 
TIOT 

• Attributes: Read-only, reenterable 

• Control section: IEFW42SD 

IEFSD510: Initiator -- Job selection 
Routine 

This routine selects a system or problem 
program job. This module executes only in 
a large (scheduler-size) partition. 

• Entry: IEFSD510 

• Exits: Branch to IEFSD511 or IEFSD515, 
LINK to IEFSD519, XCTL to IEFSD586, 
IEFSD589, SMALTERM 

• Tables/Work Areas: LOT block, CSCB, 
SPIL, CVT, TCB, PIB, DSOCB 

• Attributes: Read-only, reenterable 

• Centrol Section: IEFSD510 

• External References: IEFQMDQQ, 
IEFQMUNC 

IEFSD511: Initiator -- Job Initiation 
Routine 

This routine initializes information per-I taining to a job. If DSO is available for 
the job's system output classes, the rou
tine sel~cts the DSOCBs to be used by the 
job. 



• Entry: IEFSD511, IEFDSOSL 

• Exit: Branch to IEFSD541 

• Tables/Work Areas: Life-of-Task Block, 
CSCB, JCT, SCT, SCD, PIB, IOB2, DSOCB 

• Attributes: Read-only, Reenterable 

• Control Section: IEFSD511, IEFDSOSL 

• External References: IEFQMRAW 

IEFSD512: Initiator -- step Initiation 
Routine 

This routine passes control to allocation 
as a closed subroutine via an XCTL macro 
instruction and receives control back from 
Allocation at entry point IEFALRET. If an 
allocation error occurs, it passes control 
to the Alternate step Deletion routine. 
Otherwise, it continues normally and sche
dules a job step. 

• &ltry: IEFSD512, IEFALRET 

• Exits: Branch to IEFSD513, IEFSD516, 
or IEFSD518, XCTL to IEFSD510, IEFSD556 

• Tables/Work Areas: LOT Block, JCT, 
SCT, APL, TIOT, CSCB, IOB1, IOB2, QMPA, 
5MB, DSOCB 

• Attributes: Read-only, reenterable 

• Control Section: IEFSD512 

• External References: IEFQMRAW, 
IEFSD556, IEFSD514, IEFDSOWR 

IEFSD513: Initiator -- Problem Program 
Interface 

This routine prepares the partition for 
problem program execution by moving the 
TrOT to the highest available storage area. 

The routine also opens JOBLIB and FETCH 
DCBs, if required. A final check is made 
to determine if a CANCEL command has been 
received for the job before the problem 
program is brought into the partition and 
given control. If scheduling was performed 
for a small partition, IEFSD513 communi
cates with the small partition. 

• Entry: IEFSD513 

• Exits: XCTL to problem program, ABEND, 
or to IEFSD510 

• Tables/Work Areas: LOT Block, Transfer 
Parameter List, TIOT, User's Parameter 
List, TCB, CVT, PIB, CSCB, SPIL, APL, 
JCT, SCT, DCB 

• Attributes: Read-only, reenterable 

• Control Section: IEFSD513 

IEFSD514: Queue Management -- Table 
Breakup Routine 

This routine reads and writes tables which 
may be required by tbe job scheduler. The 
routine breaks the tables into 176-byte 
records, writes the records on disk, and 
retrieves the records from disk to recon
struct the tables in main storage. 

• Entry: IEFSD514 

• Exit: Return to caller 

• Tables/Work Areas: QMPA, TBR Parameter 
List 

• Attributes: Read-only, reenterable 

• Ccntrol Section: IEFSD514 

• External References: IEFQASGN, 
IEFQMRAW 

IEFSD515: Initiator step Deletion 
Routine 

This routine retrieves the TIOT and Life
of-Task Block from disk, reads in the JCT 
and SCT, and branches to termination, which 
is used as a closed subroutine. It also 
reads in the SCT for the next step to be 
scheduled, if required. 

• Entry: IEFSD515, SMALTERM, or GO 

• Exits: XCTL to IEFSD512 or Branch to 
IEFSD517, IEFSD558, IEFSD167 (30K 
Scheduler), IEFSD168 (44K scheduler), 
or BALR to IEFSD42Q 

• Tables/Work Areas: Life-of-Task Block, 
Terminate Parameter List, CVT, TCB, 
PIB, lOB, CSCB, DCB, JCT, SCT, SPIL, 
DSOCB 

• Attributes: Read~only, reenterable 

• Control section: IEFSD515 

• External References: IEFQMRAW, 
IEFSD514, IEFSD42Q, IEFSD598 

IEFSD516: Initiator Alternate Step 
Deletion Routine 

This routine provides an interface with 
termination when an allocation error occurs 
during step initiation. Termination is 
used as a closed subroutine. If required, 
this routine reads the SCT of the next step 
to su~~ort job flushing. 

Appendix B: MFT Modules 185 



• Entry: IEFSD516 

• Exits: Branch to IEFSD512 or IEFSD511 

• Tables/Work Areas: Life-of-Task block, 
CSCB, Terminate Parameter List, SCT 

• Attributes: Read-only, reenterable 

• Control Section: IEFSD516 

• External References: IEFQMRAW, 
IEFSD42Q 

IEFSD517: Initiator -- Job Deletion 
Routine 

This routine deletes the disk queue entry 
for a terminated job and unchains and 
deletes the CSCB for the job. 

• Entry: IEFSD517 

• Exit: Branch to IEFSD510 

• Tables/Work Areas: CSCB, Life-of-Task 
block, SPIL 

• Attributes: Read-only, reenterable 

• Control Section: IEFSD517 

• External References: IEFQDELE, 
IEFSD598 

IEFSD518:Initiator -- Partition Recovery 
Routine 

This routine determines the status of main 
storage required for a checkpoint/restart. 

• Entry: IEFSD518 

, .~: Return to IEFSD512 

• Tables/Work Areas: SPIL, CVT, TCB, 
JCT, PIB, LOT, QMPA, CSCB, DSOCB 

• Attributes: Reenterable 

• Control Section: IEFSD518 

• External Reference: IEFQMRAW, 
IEFQMNQ2, IEFSD598, IEFDSOFB 

IEFSD519: Queue Management -- Dequeue by 
Jobname Interface Routine 

This routine builds a seven-word parameter 
list used by IEFLOCDQ to locate a job by 
jobname on the checkpoint/restart internal 
queue. 

• Entry: IEFSD519 

• Exit: Return to IEFSD510 

186 

• Tables/Work Areas: LOT, PIB 

• Attributes: Reenterable 

• Control Section: IEFSD519 

• External Reference: IEFLOCDQ, IEFQMRAW 

IEFSD530: Interpreter -- Transient Reader 
Suspend Routine 

This routine closes the reader input data 
set and procedure library, and saves data 
required to restore the reader. 

• Entry: IEFSD530 

• Exit: Return to caller 

• Tables/Work Areas: IWA, TIOT, LWA, 
QMPA, CVT, UCB, MSRC, PIB, CSCB 

• Attributes: Read-only, reenterable 

• Centrol Section: IEFSD530 

• External References: IEFSD514, IEF
QMRAW, IEFQASNM, IEFQASGN 

IEFSD531: Interpreter -- Transient Reader 
Restore Routine 

This routine restores the information 
required to "restart" a transient reader 
after it has been suspended. It reopens 
the reader input data set and procedure 
library. 

• Entry: IEFSDS31 

• Exit: XCTL to IEFVHCB 

• Tables/work Areas: IWA, TIOT, QMPA, 
CVT, UCB, MSRC, PIB, CSCB 

• Attributes: Read-only, reenterable 

• Control Sections: IEFSDS31, IEFPH2 

• External References: IEFSD514, IEF
QMRAW, IEFQASNM, IEFQASGN 

IEFSD532: Interpreter -- Transient Reader 
Suspend Tests 

This routine determines the status of a 
transient reader. IEFSD532 receives con
trol from IEFVHH after a job has been 
enqueued. 

• Entry: IEFKG 

• Exits: .XCTL to IEFVHN or IEFSD530, or 
branch to IEFVHHB 

• Tables/work Areas: lWA, LWA, QMPA, 
PIB, CVT 



• Attributes: Read-only, reenterable 

• Control section: IEFKG 

IEFSD533: Interpreter -- Interface Routine 

This routine provides an interface between 
the reader/interpreter and system task 
control. 

• Entry: IEFIRC 

• Exits: XCTL to IEFSD537. RETURN to 
STC if error. 

• Tables/Work Areas: CSCB, CVT, QMPA 

• Attributes: Reenterable, read-only 

• Control Section: IEFIRC 

IEFSD534: System Task Control -- LPSW 
Routine 

This routine places system task control in 
problem program mode by loading a PSW. 

• Entry: IEFSD534 

• Exit: IEFVSTRT 

• Tables/Work Areas: None 

• Attributes: Reenterable 

• Control section: IEFSD534 

IEFSD535: system Task Control -- Problem 
Program Mode Routine 

This routine puts system task control in 
problem program mode for ABEND. 

• Entry: IEFSD535 

• Exit: IEEVTCTL 

• 'l'ables/Work Areas: None 

• Attributes: Reenterable 

• Control Section: IEFSD535 

IEFSD536: Interpreter Operator Message 
Routine 

This routine writes a message to the opera
tor when an I/O error or CPO full condition 
has occurred. The routine also sets proper 
indicators to cause a cleanup of the cur
rent job. 

• Entry: IEFVHR 

• ~xits: Return to caller, XCTL to 
IEFVHN, or LINK to IEFSD308 

• Tables/Work Areas: IWA, JCT, LWA, UCE, 
CV'I', PIB, CSCB, ~aster Scheduler resi
dent data area 

• Attributes: Read-only, reenterable 

• Control section: IEFVHR 

IEFSD537: Interpreter -- Linkage Module 

This routine provides an interface between 
system task control and a reader. It also 
frees the interpreter entrance list (NEL) 
and associated areas if a reader is being 
terminated or suspended. 

• Entry: IEFSD537 

• Exits: LINK to IEFVH1, or IEFSD531, or' 
Return to system task control 

• Tables/Work Areas: NEL 

• Attributes: Read-only, reenterable 

• Control section: IEFSD537 

IEFSD540: Initiator -- Linkage to IEFSD541 

This routine provides an interface linkage 
to IEFSD541 via an XCTL macro instruction. 

• Entry: IEFSD540 

• Exit: XCTL to IEFSD541 

• Tables/Work Areas: Same as caller 

• Attributes: Read-only, reenterable 

• Control section: IEFSD540 

IEFSD541: Initiator -- Data Set Integrity 

This routine enqueues on explicit data sets 
and thus prevents concurrent, and impair
ing, access between tasks. 

• Entry: IEFSD541 

• Exit: Branch to IEFSD512 

• Tables/Work Areas: LOT Block, IOB1, 
IOB2, JCT, SCT, CSCB, SPIL, DSENQ 
Table, Minor Name List, ENQ supervisor 
list. 

• Attributes: Read-only 

• Control section: IEFSD541 

• External References: IEFQMRAW 

Appendix B: MFT Modules 187 



IEFSD551: I/O Device Allocation -- Linkage 
to IEFXJIMP 

This routine provides an interface linkage 
to IEFXJIMP via an XCTL macro instruction 
in the 30K design package. 

• Entry: IEFV15XL 

• Exit: XCTL to IEFXJDIP 

• Tables/Work Areas: Same as caller 

• Attributes: Read-only. reenterable 

• Control Section: IEFV15XL 

IEFSD552: I/O Device Allocation -- Linkage 
to IEFXJIMP 

This routine provides an interface linkage 
to IEFXJIMP via an XCTL macro instruction 
in the 30K design package. 

• Entry: IEFXJX5A 

• Exit: XCTL to IEFXJIMP 

• Tables/Work Areas: Same as caller 

• Attributes: Read-only. reenterable 

• Control Section: IEFXJX5A 

IEFSD553: Initiator -- Linkage to IEFSD512 

This routine provides a linkage to IEFSD512 
via an XCTL macro instruction. 

• Entry: IEFSD512 

• Exit: XCTL to IEFSD512 

• Tables/Work Areas: Same as caller 

• Attributes: Read-only. reenterable 

• Control Section: IEFSD512 

IEFSD554: Initiator -- Linkage to IEFSD516 

This routine provides a linkage to IEFSD516 
via an XCTL macro instruction. 

• Entry: IEFSD554 

• Exit: XC'l'L to IEFSD516 

• Tables/Work Areas: Same as caller 

• Attributes: Read-only. reenterable 

• Control Section: IEFSD554 

188 

IEFSD555: Initiator -- Linkage to IEFSD510 

This routine provides linkage to IEFSD510 
via an XCTL macro instruction. 

• Entry: IEFSD555 

• Exit: XCTL to IEFSD510 

• Tables/Work Areas: Same as caller. 

• Attributes: Read-only. reenterable 

• Control Section: IEFSD555 

IEFSD556: Initiator -- Set Problem Program 
State Return 

This routine establishes the allocation 
routine in a problem program state. upon 
entry. 

• Entry: IEFSD556 

• Exit: LPSW to IEFW21SD 

• Tables/Work Areas: Same as caller. 

• Attributes: Read-only. reenterable 

• Centrol Section: IEFSD556 

IEFSD557: I/O Device Allocation -
Interface Routine 

This routine provides an interface between 
system task control and allocation. 

• Entry: IEFW21SD 

• Exit: IEFWSD21 

• Tables/Work Areas: ECB. lOB 

• Attributes: Reenterable 

• Centrol Section: IEFSD557 

IEFSD558: Initiator Linkage to IEFSD511 

This routine provides a linkage to IEFSD511 
via an XCTL macro instruction. 

• Entry: IEFSD558 

• Exit: IEFSD511 

• Attributes: Read-only. reenterable 

• Control Section: IEFSD558 

IEFSD559: Initiator Linkage to IEFSD515 

This routine provides a linkage to IEFSD515 
via an XCTL macro instruction. 



• Entry: SMALTERM 

• Exit: IEFSD515 

• Attributes: Read-only, reenterable 

• Control section: IEFSD559 

IEFSD567: Nucleus -- Device-End Interrupt 
dandler Routine 

This routine handles unsolicited device-end 
interrupts from a disk storage unit. 

• Entry: IEFSD567 

• Exit: Return to caller 

• Tables/Work Areas: None 

• Attributes: Reenterable 

• Control section: IEFSD567 

• External Reference: Communications 
Task TCB 

IEFSD569: Master Scheduler 
Initialization Routine 

This routine initializes the communications 
task and the system 109. It issues the 
READY message and formats the job queue, as 
well as typing out the a utomatic commands 
and invoking processing of the automatic 
commands. This routine establishes parti
tioning of main storage at system initiali
zation and readies the partitions for the 
START command. This routine is called out 
at system generation by the macro, 
SGIEEOVV. 

• Entry: IEFSD569 

• Exit: IEE0503D, Branch to dispatcher 

• Attributes: Read-only, non-reenterable 

• Control Section: IEFSD569 

IEFSD572: Queue Management -- Interpreter/ 
2ueueManaqer Interlock Routine 

This routine determines if a possible 
interlock condition exists between the 
queue manager and the reader. The routine 
issues a message requesting the operator to 
reply with either WAIT, to wait for space 
to be freed, or CANCEL, to cancel the job. 

• Entry: IEFSD572 

• Exits: ABEND, or return to caller 

• Attributes: Read-only, reenterable 

• Control Section: IEFSD572, IEFSD573 

• External Reference: IEFQDELQ 

IEFSD584: System Task Control -- Linkage 
to IEESD591 

This routine places system task control in 
the problem program mode. 

• Entry: IEFSD584 

• Exit: XCTL to IEESD591 

• Control section: IEFSD584 

IEFSD585: system Task Control -- Linkage 
to IEFDSOSM 

This routine places the DSO processor in 
the problem program mode. 

• Entry: IEFSD585 

• Exit: XCTL to IEFDSOSM 

• Control Section: IEFSD585 

IEFSD586: System 'I'ask Control Linkage 
to IEFSD585 

This routine links to IEFSD585 so that upon 
return the initiator will be in supervisor 
state. 

• Entry: IEFSD586 

• Exit: Link to IEFSD585 

• Control Section: IEFSD586 

IEFSD587: System Task Control Linkage 
to IEFSD535 

This routine provides a linkage to IEFSD535 
via a LINK macro instruction. 

• Entry: IEFSD587 

• Exit: IEFSD535 

• Attributes: Read-only, reenterable 

• Control Section: IEFSD587 

IEFSD588: System Task Control Linkage 
to IEE534SD 

This routine links to IEE534SD to bring the 
suspended reader into the assigned parti
tion so that upon return, the initiator 
will be in supervisor state. 

• Entry: IEFSD588 

• Exit: LINK to IEE534SD 

• Tables/Work Areas: Same as caller 

Appendix B: MFT Modules 189 



• Attributes: Read-only, reenterable 

• Control section: IEFSD588 

IEFSD589: Initiator -- Linkage to IEESD534 

'!'hi s routine links to system task control 
so that upon return, the initiator will be 
in supervisor state. 

• Entry: IEFSD589 

• Exit: LINK to IEFSD534 

• Tables/Work Areas: Same as caller 

• Attributes: Read-only, reenterable 

• Control section: IEFSD589 

IEFSD597: Initiator -- Shared DASD ENQ/DEQ 
Purge Routine 

This routine is the purge routine for sys
tems that include the shared DASD feature. 
In addition to purging all resources 
enqueued by a job step, but not dequeued, 
IEFSD597 also releases reserved devices. 

• Entry: IEFSD598 

• Exit: Return to caller 

• Tables/Work Areas: Major QCB, Minor 
QCB, QEL, TCB, SVRB, CVT, ABTERM 

• Attributes: Read-only, reenterable, 
disabled 

• Control section: IEFSD598 

IEFSD598: Initiator ENQ/DEQ Purge 
Koutine 

This routine purges all resources enqueued 
by a job step, but not dequeued. 

• ~ntry: IEFSD598 

• Exit: Return to caller 

• Tables/Work Areas: Major QCB, Minor 
QCB, QEL, TCB, SVRB, CVT, ABTERM 

• Attributes: Read-only, Reenterable, 
disabled 

• Control section: IEFSD598 

IEFSD599: Initiator -- Small Partition 
Module 

This routine provides an interface with the 
scheduler in a large partition to initiate 
and terminate small partitions. 

• Entry: IEFSD599,SMALLGO 

190 

• Exits: ABEND, or XCTL to IEF589SP or 
IEFSr:586 

• Tables/Work Areas: SPIL, allocate 
parameter list (APL), DSOCB, PIB 

• Attributes: Read-only, reenterable 

• Centrol section: IEFSD599 

• External Reference: IEFQMUNC 

IEFSMFAT: Initiator -- TCTro'!' Construction 
Routine 

This routine constructs the TCTIOT, appends 
it to the TCT, initializes the TCT storage 
map, and stores the user routine address in 
the TCT. 

• Entry: IEFSMFA'!' 

• Exit: Return to caller 

• Tables/Work Areas: PQE, SMCA, '!CB, 
TCT, TCTIOT, TIOT 

• Attributes: Reentrant 

• Control sections: IEFSMFAT 

IEFSMFIE: Initiator -- User Exit 
Initialization Routine 

This routine initializes the parameter 
lists for the Job Initiation and step 
Initiation user exits. 

• Entry: IEFSMFIE 

• Exit: Return to caller 

• Tables/Work Areas: JCT, JMR, DCT, SCT, 
TC'! 

• Attributes: Reentrant 

• Control Sections: IEFSMFIE 

IEFSMFLK: Termination Routine -- User Exit 
Initialization Routine 

This routine initializes the parameter 
lists for the Job Termination and step Ter
mination user exits. 

• Entry: IEFACTLK 

• Exit: Return to caller 

• Tables/Work Areas: JCT, JMR, LCT, SCT, 
SMCA, TCB, TCT 

• Attributes: Reentrant 

• Control Sections: IEFACTLK 



IEFSMFWI: Termination Routine -- SMF 
Writer Interface Routine 

This routine constructs the SMF job ter
mination and step termination records. 

• Entry: IEFSMFWI 

• Exit: Return to caller 

• Tables/Work Areas: JCT, JMR, LCT, SCT 

• Attributes: Reentrant 

• Control sections: IEFSMFWI 

IEFUJI: Initiator -- Dummy User Job 
Initiation Exit Routine 

This routine simulates the presence of a 
user-supplied job initiation exit routine. 

• Entry: IEFUJI 

• Exit: Return to caller 

• Attributes: Reentrant 

• Control sections: IEFUJI 

IEFUJV: Interpreter -- Dummy User JCL 
Validation Exit Routine 

This routine simulates the presence of a 
user-supplied JCL validiation routine. 

• Entry: IEFUJV 

• Exit: Return to caller 

• Attributes: Reentrant 

• Control Sections: IEFUJV 

IEFUSI: Initiator -- Dummy User step 
Initiation Exit Routine 

rhis routine simulates the presence of a 
user-supplied step initiation exit routine. 

• Entry: IEFUSI 

• Exit: Return to caller 

• Attributes: Reentrant 

• Control Sections: IEFUSI 

IEFUSO: Dummy User SYSOUT Limit Exit 
SQutine 

This routine simulates the presence of a 
user-supplied SYSOUT limit exit routine. 

• Entry: IEFUSO 

• Exit: Return to caller 

• Attributes: Reentrant 

• Control Sections: IEFUSO 

IEFUTL: Dummy User Time Limit Exit Routine 

This routine simulate's the presence of a 
user-su~plied time limit exit routine. 

• Entry: IEFUTL 

• Exit: Return to caller 

• Attributes: Reentrant 

• Control sections: IEFUTL 

IEFVDA: Interpreter -- DO Statement 
Processor 

This routine constructs and adds ,entries to 
a JFCB and SlOT from the complete logical 
DO statement in the internal text buffer. 

• Entry: IEFVDA 

• Exit: To IEFVHF 

• Tables/Work Areas: IWA, LWA, SlOT, 
JFCB, JCB, SCT 

• Attributes: Read-only, reenterable 

• Control section: IEFVDA 

IEFVDBSD: Interpreter -- Data set Name 
Table Construction Routine 

This routine creates a data set name table. 

• Entry: IEFVDBSD 

• Exit: '10 IEFVDA 

• Attributes: Reenterable 

• Control Section: IEFVDBSD 

IEFVEA: Interpreter -- EXEC Statement 
Processor 

This routine constructs or updates an SCT, 
and, if necessary, a joblib JFCB and SlOT 
from the complete logical EXEC statement in 
the internal text buffer. 

• Entry: IEFVEA, from IEFVFA 

• Exit: To IEFVHF, IEFVINB 

• Tables/Work Areas: IWA, EXEC work 
area, interpreter key table, JCT, SCT, 
SlOT, QMPA, procedure override table, 
DCED, P ARML 1ST, WORKAREA 

• Attributes: Read-only, reenterable 

Appendix B: MFT Modules 191 



• Control Section: IEFVEA 

IEFVFA: Interpreter -- Scan Routine 

This routine scans the card image of a JOB, 
EXEC, or DD statement, performs error 
checking of JCL syntax, builds internal 
text, and, when a complete logical state
ment (including continuations and over
rides) has been scanned, passes control to 
the appropriate statement processor. 

• Entry: IEFVFA 

• Exits: To IEFVGM, IEFVHQ, IEFVHF, IEF
VJA, IEFVDA, IEFVEA 

• Tables/Work Areas: IWA, scan routine 
work area, interpreter key table, QMPA, 
internal text buffer, scan dictionary. 

• Attributes: Read-only, reenterable 

• Control Section: IEFVFA 

IEFVFB: Interpreter symbolic Parameter 
Processing Routine 

This routine processes symbolic parameters 
by creating symbolic parameter table buffer 
entries to assign values to symbolic para
meters, and extracts those values and 
places them in the intermediate text buffer 
when a symbolic parameter is used. 

• Entry: IEFVFB 

• Exit: Return to caller 

• Tables/Work Areas: IWA, LWA SYMBUF, 
Intermediate Text Buffer, QMPA 

• Attributes: Read-only, reenterable 

• Control section: IEFVFB 

IEFVGI: Interpreter Dictionary Entry 
Routine 

This routine constructs entries for the 
refer-back dictionary. 

• Entry: IEFVGI 

• Exit: Return to caller 

• Tables/Work Areas: Refer-back dic
tionary, auxiliary work area, IWA, QMPA 

• Control Section: IEFVGI 

IEFVGK: Interpreter -- Get Parameter 
Routine 

This routine searches the internal text 
buffer for the next parameter, performs 

192 

basic error checking, and passes control to 
the appropriate keyword routine. 

• Entry: I EFVGK 

• Exit: Return to caller 

• Tables/Work Areas: Local work area, 
IWA, internal text buffer, KBT, PDT. 

• Control section: IEFVGK 

IEFVGM: Interpreter Message Processing 
Routine 

This routine constructs 5MBs containing 
interpreter error messages and JCL state
ment images, assigns space for these 5MBs 
in the message class, output queue entry, 
and writes the 5MBs into the entry. 

• Entry: IEFVGM 

• Exit: Return to caller 

• Tables/Work Areas: QMPA, 5MB, SCD, 
IWA, JCT 

• Attributes: Reenterable, character 
dependence type C 

• Control Section: IEFVGM 

IEFVGM1: Interpreter -- Message Module 

This routine contains interpreter messages 
01-07. 

• Attributes: Non-executable 

• Control Section: IEFVGM1 

IEFVGM2: Interpreter -- Message Module 

This routine contains interpreter messages 
OS-OF. 

• Attributes: Non-executable 

• Control Section: IEFVGM2 

IEFVGM3: Interpreter -- Message Module 

This routine contains interpreter messages 
10-17. 

• Attributes: Non-executable 

• Control section: IEFVGM3 

IEFVGM4: Interpreter -- Message Module 

This routine contains interpreter messages 
1S-lF. 



• Attributes: Non-executable 

• Control section: IEFVGM4 

IEFVGM5: Interpreter -- Message Module 

This routine contains interpreter messages 
20-21. 

• Attributes: Non-executable 

• Control section: IEFVGM5 

IEFVGM6: Interpreter -- Message Module 

This routine contains interpreter messages 
28-2F. 

• Attributes: Non-executable 

• Control section: IEFVGM6 

IEFVGM1: Interpreter -- Message Module 

This routine contains interpreter messages 
30- 31. 

• Attributes: Non-executable 

• Control Section: IEFVGM1 

IEFVGM8: Interpreter -- Message Module 

This routine contains interpreter messages 
50-51. 

• Attributes: Non-executable 

• Control Section: IEFVGM8 

IEFVGM9: Interpreter -- Message Module 

This routine contains interpreter messages 
58-SF. 

• Attributes: Non-executable 

• Control section: IEFVGM9 

IEFVGM10: Interpreter -- Message Module 

This routine contains interpreter messages 
60-61. 

• Attributes: Non-executable 

• Control section: IEFVGMlO 

IEFVGMll: Interpreter -- Message Module 

This routine contains interpreter messages 
68-6F. 

• Attributes: Non-executable 

• Control section: IEFVGMll 

IEFVGM12: Interpreter -- Message Module 

This routine contains interpreter messages 
10-11. 

• Attributes: Non-executable 

• Control section: IEFVGM12 

IEFVGM13: Interpreter -- Message Module 

This routine contains interpreter messages 
18-1F. 

• Attributes: Non-executable 

• Control Section: IEFVGM13 

IEFVGM14: Interpreter -- Message Module 

This routine contains interpreter messages 
8S-8F. 

• Attributes: Non-executabl~ 

• Control Section: IEFVGM14 

IEFVGM1S: Interpreter Message Module 

This routine contains interpreter messages 
90-91. 

• Attributes: Non-executable 

• Control Section: IEFVGM1S 

IEFVGM16: Interpreter -- Message Module 

This routine contains interpreter messages 
AO-A1. 

• Attributes: Non-executable 

• Control section: IEFVGM16 

IEFVGM17: Interpreter -- Message Module 

This routine contains interpreter messages 
S6-SD. 

• Attributes: Non-executable 

• Control Section: IEFVGM17 

IEFVGM18: Interpreter -- Message Module 

This routine contains interpreter messages 
80-87. 

• Attributes: Non-executable 

• Control section: IEFVGM18 

IEFVGM19: Interpreter -- Message Module 

This routine contains interpreter messages 
3E-4S. 

Appendix B: MFT Modules 193 



• Attributes: Non-executable 

• Control Section: IEFVGM19 

IEFVGM70: Interpreter -- Message Module 

This routine contains interpreter messages 
38-3F. 

• Attributes: Non-executable 

• Control Section: IEFVGM70 

IEFVGM71: Interpreter -- Message Module 

This routine contains interpreter messages 
40- 47. 

• Attributes: Non-executable 

• Control section: IEFVGM71 

IEFVGM78: Interpreter -- Message Module 

This routine contains interpreter messages 
OS-OD. 

• Attributes: Non-executable 

• Control Section: IEFVGM18 

IEFVGS: Interpreter 
Bouti~ 

Dictionary Search 

This routine searches the refer-back dic
tionary for the address of a previously
defined SCT, SlOT, or JFCB. 

• ~ntry: IEFVGS 

• ~xit: Return to caller 

• Tables/Work Areas: Auxiliary work 
area, IWA, QMPA, refer-back dictionary 

• Control section: IEFVGS 

IEFVGT: Interpreter -- Test and Store 
SQutine 

This routine performs operations on a para
meter as indicated in the appropriate para
meter descriptor table entry. 

• Entry: IEFVGT 

• Exit: Return to keyword routine 

• Tables/Work Areas: Internal text buff
er, PDT, local work area, IWA 

• Control Section: IEFVGT 

194 

IEFVHA: Interpreter -- Get Routine 

This routine reads statements from the 
input stream and the procedure library. 

• Entry: IEFVHA 

• Exits: IEFVHC, IEFVHB, IEFVHAA, 
IEFSD536, IEFVGM 

• Tables/Work Areas: IWA, JCT, DCB 

• Attributes: Read-only, reenterable 

• Control section: IEFVHA 

IEFVHAA: Interpreter -- End-of-File 
Routine 

This routine determines the conditions 
under which an end-of-file condition has 
occurred, and sets switches and passes con
trol accordingly. 

• Entry: IEFVHAA 

• Exits: IEFVHC or IEFVHN 

• Tables/Work Areas: lWA, JCT 

• Attributes: Read-only, reenterable 

• Centrol Section: IEFVHAA 

IEFVHB: Interpreter -- DD * Statement 
Generator Routine 

This routine generates a ·SYSIN DD *" sta
tement for data in the input stream, when 
no such statement was included. 

• Entry: IEFVHB 

• Exits: To IEFVHC, IEFVHA, IEFVGM 

• Tables/Work Areas: IWA, JCT 

• Attributes: Read-only, reenterable 

• Control section: IEFVHB 

IEFVHC: Interpreter -- Continuation 
Statement Routine 

This routine determines whether the current 
statement should be a continuation, and, if 
so, determines whether it is a valid con
tinuation statement. 

• Entry: IEFVHC 

• Exits: To IEFVHEB, IEFVHCB, IEFVGM 

• Tables/Work Areas: IWA, JCT, DCBD 

• Attributes: Read-only, reenterable 



• Control Section: IEFVHC 

IEFVHCB: Interpreter -- Verb 
Identification Routine 

This routine identifies the verb in a con
trol statement. 

• Entry: IEFVHCB 

• Exits: To IEFVHE, IEFVHM, IEFVHA, 
IEFVGM, IEFVHL 

• Tables/Work Areas: IWA, JCT, DCBD, 
PARMLIST, WORKAREA 

• Attributes: Read-only, reenterable 

• Control Section: IEFVHCB 

IEFVHE: Interpreter -- Router 

This routine determines the conditions 
under which it was entered, and passes con
trol to the appropriate routine. 

• Entry: IEFVHE 

• Exits: To IEFVHEB, IEFVHH, IEFVHEC 

• Tables/Work Areas: IWA 

• Attributes: Read-only, reenterable 

• Control Section: IEFVHE 

IEFVHEB: Interpreter -- Pre-Scan 
preparation Routine 

This routine determines whether a message 
is required or additional work queue space 
is required before a statement is scanned. 
If so, it causes the message to be written 
or the work queue space to be assigned. 

• Entry: IEFVHEB 

• Exits: To IEFVHQ, IEFVGM, IEFVHG, 
IEFVFA 

• Tables/Work Areas: IWA, JCT, SCT, QMPA 

• Attributes: Read-only, reenterable 

• Control Section: IEFVHEB 

IEFVHEC: Interpreter -- Job Validity Check 
Routine 

This routine determines whether an SCT has 
been built for the current job; if not, the 
routine constructs an SCT. 

• En try: IEFVHEC 

• Exits: To IEFVGM, IEFVHH 

• Tables/Work Areas: IWA, JCT, SCT 

• Attributes: Read-only, reenterable 

• Control Section: IEFVHEC 

IEFVHF: Interpreter -- Post-Scan Routine 

This routine determines the conditions 
under which it was entered, and passes con
trol accordingly. 

• Entry: IEFVHF 

• Exits: To IEFVHG, IEFVHEB, IEFVHCB, 
IEFVHA 

• Tables/Work Areas: IWA, CWA 

• Attributes: Read-only, reenterable 

• Control Section: IEFVHF 

IEFVHG: Interpreter -- CPO Routine 

This routine writes system input data sets 
on a direct-access device. If IEFVHG is 
unable to obtain enough space to complete 
writing a data set, control passes to 
IEFVHR. If the input reaches end-of-file, 
contrcl passes to lEFVHAA. If a /* is 
found following DD DATA, control passes to 
IEFVHA to read the next record. If a // is 
found, control passes to IEFVHC to identify 
the verb. 

• Entry: IEFVHG 

• Exits: To IEFSD536, IEFVGM, IEFVHQ, 
IEFVHAA, lEFVHA, IEFVHC, or IEFVHB 

• Tables/Work Areas: IWA, JCT, SlOT, 
VOLT, TIOT, LWA, SCT, JFCB, UCB, QMPA, 
CWA 

• Attributes: Read-only, reenterable 

• Ccntrol Section: IEFVHG 

IEFVHH: Interpreter -- Job and step 
Enqueue Routine 

This routine places the SCT, r;SNT, VOLT, 
and JCT in the job's queue entry, and 
determines whether the interpreter is to 
enqueue jobs. 

• Entry: IEFVHH 

• Exits: To IEFKG, IEFVHQ, IEFSD532, 
IEFVHHB, IEFVHN 

• Tables/Work Areas: IWA, JCT, SCT, 
QMPA, NEL 

• Attributes: Read-only, reenterable 

Appendix B: MFT Modules 195 



• Control Section: IEFVHH 

IEFVHHB: Interpreter 
.Bouti~ 

Housekeeping 

This routine initializes for merging a 
cataloged procedure. 

• Entry: IEFVHHB 

• Exits: IEFVHA, IEFVHEB 

• Tables/Work Areas: IWA 

• Attributes: Read-only, reenterable 

• Control Section: IEFVHHB 

IEFVHL: Interpreter -- Null statement 
Routine 

This routine determines the conditions 
under which the null statement was encoun
tered, and passes control to the proper 
routine. 

• Entry: IEFVHL 

• Exits: To IEFVHCB, IEFHEC, IEFVHE, 
IEFVHA 

• Tables/Work Areas: IWA, JCT 

• Attributes: Read-only, reenterable 

• Control section: IEFVHL 

IEFVHM: Interpreter -- Command Statement 
Routine 

This routine tests for valid command verbs, 
and, if the verb is valid, issues SVC 34 to 
schedule execution of the command. 

• Entry: IEFVHM 

• Exits: To IEFVHA, IEFVGM 

• Tables/Work Areas: IWA, JCT 

• Attributes: Read-only, reenterable 

• Control Section: IEFVHM 

IEFVHN: Interpreter Termination Routine 

This routine closes the input stream and 
procedure library data sets, frees main 
storage used by the interpreter, and builds 
the interpreter exit list. 

• Entry: IEFVHN 

• Exit: Return to caller 

• Tables/Work Areas: IWA, JCT, CSCB, 
QMPA 

196 

• Attributes: Read-only, reenterable 

• Centrol Section: IEFVHN 

IEFVHQ: Interpreter Queue Management 
Interface Routine 

This routine is a common interface between 
the queue management routines and the 
interpreter., If an I/O error occurs, 
IEFVHR receives control. Queue management 
may be unable to allocate space for a job's 
input data.' If, in this case, the operator 
replies CANCEL to the message which is 
issued, IEFVHG receives control. 

• Entry: IEFVHQ 

• Exits: Return to caller, IEFSD536, or 
IEFVHG 

• Tables/Work Areas: lWA, JCT, QMPA, 
CSCB 

• Attributes: Read-only, reenterable 

• Control section: IEFVHQ 

IEFVHl: Interpreter -- Initialization 
Routine 

This routine initializes the interpreter; 
it obtains main storage for and initializes 
the IWA, local work areas, and DCBs. 

• Entry: lEEVHl 

• Exit: To IEFVtl2 

• Tables/Work Areas: UCB, CSCB, IWA, 
DCB, local work area 

• Attributes: Not reusable 

• Centrol Section: IEFVHl 

IEFVH2: Interpreter -- Initialization 
Routine 

This routine opens the input stream data 
set and the procedure library data set, and 
obtains main storage for a buffer for pro
cedure library records. 

• Entry: IEFVH2 

• Exit: To IEFVHA 

• Tables/Work Areas: IWA, UCB, TIOT 

• Control Section: IEFVH2 

• Attributes: Not reusable 



IEFVINA: Interpreter -- In-stream 
Procedure Processor 

This routine processes the in-stream proce
dure. It uses the other in-stream proce
dure routines as subroutines to perform 
additional processing. 

• Entry: IEFVINA 

• Exit: IEFVHA, IEFVHCB 

• Tables/Work Areas: EWA, IWA, JCT, PAR
MLIST, QMPA, WORKAREA 

• Attributes: Reenterable 

• Control section: IEFVINA 

IEFVINB: In~stream Procedure Search 
Routine 

This routine searches the in-stream direc
tory.for a procedure. 

• Entry: IEFVINB 

• Exit: Return to caller 

• Tables/Work Areas: IWA, PARMLIST, 
QMPA, WORKAREA 

• Attributes: Reenterable 

• Control Section: IEFVINB 

IEFVINC:· In-stream Procedure Directory 
Build Routine 

This routine builds a directory entry, if 
one is needed, for an in-stream procedure. 

• Entry: IEFVINC 

• Exit: Return to caller 

• Tables/Work Areas: IWA, PARMLIST, 
QMPA" WORKAREA 

• Attributes: Reenterable 

• Control Section: IEFVINC 

IEFVIND: In-stream Procedure Expand 
Interface Routine 

This routine reads a record from the job 
queue and issues a LOAD macro instruction 
specifying the expand routine IEZDCODE to 
expand the record. 

• Entry: IEFVIND 

• Exit: Return to caller 

• Tables/Work Areas: DCBD, IWA, PARM
LIST, QMPA 

• Attributes: Reenterable 

• Control Section: IEFVIND 

IEFVINE: In-stream Procedure syntax Check 
Routine 

This routine syntax checks the PRoe and END 
statements for invalid or non-existant 
labels and/or null operands with comments. 

• Entry: IEFVINE 

.~: Return to caller 

• Tables/Work Areas: 256 byte translate 
and test table 

• Attributes: Reenterable 

• Control Section: IEFVINE 

IEFVJA: Interpreter -- Job statement 
Processor 

This routine initializes a JCT and job ACT 
from the complete logical job statement in 
the internal text buffer. 

• Entry: IEFVJA 

• Exit: To IEFVHF 

• Tables/Work Areas: IWA, job work area, 
interpreter key table, JCT, ACT, QMPA 

• Attributes: Read-only, reenterable 

• Control Section: IEFVJA 

IEFVJIMP: Termination -- JOB Statement 
Condition Code Processor 

This routine tests the condition codes spe
cified in the JOB statement to determine 
whether the remaining steps in the job are 
to be run. 

• Entry: IEFVJ 

• Exits: To IEFVK or IEFZA 

• Tables/Work Areas: LCT, JCT, SCT 

• Control Section: IEFVJ 

IEFVJ~SG: Termination -- JOB~tatement 
Condition Code Processor Messages 

Appendix B: MFT Modules 197 



This routine contains the messages issued 
to the programmer by the JOB statement con
dition code processor. 

• Entry: IEFVJMSG 

• Attributes: Non-executable 

• Control Section: IEFVJMSG 

IEFVKIMP: I/O Device Allocation-- EXEC 
Statement Condition Code Processor 

This routine tests the condition codes spe
cified in the EXEC statement to determine 
whether the next step of the job is to be 
run. 

• En try: IEFVK 

• Exits: IEFVS, IEFLB 

• Tables/Work Areas: JCT, LCT, SCT 

• Control section: IEFVK 

IEFVKMSG: I/O Device Allocation -- EXEC 
Statement Condition Code Processor Messages 

This routine contains the messages issued 
to the programmer by the EXEC -- statement 
condition -- code processor. 

• Entry: IEFVKMJl 

• Attributes: Non-executable 

• Control Section: IEFVKMSG 

IEFVMFAK: I/O Device Allocation Linkage 
to IEFVMLSI 

This routine passes control to entry pOint 
IEFVMCVL of the JFCB housekeeping module 
IEFVMLSl via the XCTL macro instruction. 

•. Entry: IEFVMCVL 

• Exit: To IEFVMCVL 

• Control section: IEFVMCVL 

IEFVMLS1: I/O Device Allocation -- JFCB 
Housekeeping Control Routine and Allocate 
Processing Routines 

The control routine obtains the required 
SlOTs, determines the processing required 
for each, and passes control to the appro
priate routine. The allocate processing 
routine performs the processing required in 
certain refer-back situations, when the 
data set is cataloged or passed. and when 
unit name is specified. 

• Entry: IEFVM, IEFVMCVL, IEFVMQMI, 
VM7000, VM7055, VM7055AA, VM7060, 

198 

VM7070, VM7090, VM7130, VM7370, VM7700, 
VM7742, VM7750, VM7850, VM7900, VM7950 

• Exits: To IEFVM2LS, IEFVM3LS, 
IEFVM4LS, IEFVM5LS, IEFVM6LS, and 
IEFXCSSS, lEFDSOAL 

• Tables/Work Areas: LCT, JCT, PDQ, 
SlOT, JFCB, QMPA 

• Control Section: IEFVMl 

IEFVMLS6: I/O Device Allocation -- JFCB 
Housekeeping Error Message Frocessing 
Routine 

This routine prepares error messages for 
the JFCB housekeeping routines. 

• Entry: IEFVMSGR 

• Exit: Return to caller 

• Tables/Work Areas: JCT, LCT 

• Control section: IEFVM6 

IEFVMLS7: I/O Device Allocation -- JFCB 
Housekeeping Error Messages 

This routine contains the messages issued 
by the JF'CB housekeeping routines. 

• Entry: IEFVM7 

• Attributes: Non-executable 

• Control Section: IEFVM7 

IEFVMMSl: I/O Device Allocation -- Linkage 
to JFCB Housekeeping 

This routine provides a linkage to the JFCB 
housekeeping routines for the step flush 
functicn. 

• Entry: IEFVMl 

• Exit: XCTL to IEFVMLSI 

• Attributes: Read-only, reenterable 

• CcntrolSection: IEFVM1 

lEFVPOST: I/O Device Allocation -
Unsolicited Device Interrupt Handler 

This routine handles the posting of unsoli
cited device interruptions for I/O device 
allocation operating in a multiprogramming 
environment. ( 



• Entry: IEFDPOST 

• Exits: To lEAOPT01 or Return to caller 

• Tables/Work Areas: CSCB.. ECB. TCB 

• Attributes: Read-only. reenterable l 

disabled. resident 

• Control Section: IEFDPOST 

IEFVM2LS: I/O Device Allocation -- JFCB 
Housekeeping FetchDCB Processing Routine 

This routine updates the SlOT. SCT. JFCB 
and VOLT with information required for the 
allocation of devices for the fetch DCB. 

• Entry: VM7100 

• Exit: To IEFVMLS1 

• Tables/Work Areas: LCT. SCT. SlOT. 
JFCB. VOLT 

• Control Section: IEFVM2 

IEFVM3LS:. I/O Device Allocation --JFCB 
HousekeepingGDG single Processing Routine 

This routine obtains. the fully qualified 
name of a member of a generation data group 
(GDG). and completes the required informa
tion in the JFCB. VOLT. and SlOT for that 
member. 

• Entry: VM7150 

• Exit: To IEFVMLS1 

• Tables/Work Areas: LeT, SlOT.. GDG Bias 
Count table. JFCB 

• Control Section: IEFVM3 

IEFVM4LS: I~O Device Allocation -- JFCB 
Housekeeping GDG All Processing Routine 

This routine builds an SlOT I JFCB. and 
VOLT. and PDQ entries for each member of 
the GDG. 

• Entry: VM7200 

• Exit: To IEFVMLS1 

• Tables/Work Areas: LCT 1 SCT1 VOLT. 
PDQ. SlOT, JFCB 

• Control Section: IEFVM4 

IEFVM5LS: I/O Device Allocation-- JFCB 
Housekeeping Patterning DSCB Routine 

This routine establishes DCB control infor
mation within a JFCB. 

• Entry: VM7300 

• Exit: To IEFVMLS1 

• Tables/Work Areas: LCT, SCT, SlOT, 
DSCB .• JFCB 

• Control Section: IEFVM5 

IEFVM76: I/O Device ,Allocation -- JFCB 
Housekeeping Unigue VolumeID Routine 

This routine creates unique volume serials 
for unlabeled tape data sets, when the dis
position is "PASS". 

• Entry: VM7600 

• Exit: Return to caller 

• Tables/Work Areas: SlOT, JFCB, JFCBX 

• Control Section: IEFVM76 

IEFVRRC: Reinte~pretation Control Routine 

This routine passes control among the rou
tines that modify the queue entry of a 
restart step so that they appear as they 
were prior to the initiation of the step. 

• Entry: IEFVRRC, IEFVRRCA, IEFVRRCB 

• Exit: Return to caller 

• Attributes: Read-only reenterable 

• Tables/Work Areas: NEL, JCT, SCT, 
SlOT, JFCB, JFCBX. VOLT, 5MB, DSENQ, 
SCD. DSB. QMPA 

• Control Section: IEFVRRC 

IEFVRR1: Degueue Interface Routine 

This routine interfaces with queue manage
ment to cause a specific job to be dequeued 
and the JCT fo~ that job to be read into 
main storage. 

• Entry: IEFVRR1 

• Exit: Return to caller 

• Tables/Work Areas: QMPA., JCT 

• Attributes: Read-only, reenterable 

• Control Section: IEFVRR1 

IEFVRR2: Table Merge Routine 

This routine merges the reinterpreted queue 
entry tables of a restart step with the 
original queue tables for that step. 

Appendix B: MFT Modules 199 



• Entry: IEFVRR2, IEFVR2AE 

• Exit: Return to caller 

• Tables/Work Areas: QMPA, JCT, ACT, 
5MB, SCT, SlOT, JFCB, DSENQ, VOLT, 
JFCBX, NEL 

• Attributes: Reenterable 

• Control Section: IEFVRR2 

IEFVRR3: Reinterpretation Delete/Enqueue 
Routine 

This routine deletes the reinterpreted 
input and output queue entries of a restart 
step, constructs the internal JCL necessary 
for processing a checkpoint restart, and 
reenqueues the job's queue entry. 

• Entry: IEFVRR3, IEFVR3AE 

• Exit: Return to caller 

• Tables/Work Areas: QMPA, JCT, SCT, 
SlOT, JFCB 

• Attributes: Reenterable 

• Control Section: IEFVRR3 

IEFVSDRA: Restart Activation Routine 

This routine issues a START Restart Reader 
command for one or more jobnames. This 
routine is entered from IEFSD168 during a 
problem program restart or IEFSD30S during 
a warm start. 

• Entry: IEFVSDRA 

• Exit: Return to caller 

• Tables/Work Areas: CSCB, CVT, TCB 

• Attributes: Reenterable 

• Control Section: IEFVSDRA 

IEFVSDRD: Restart Determination Routine 

This routine initiates automatic restarts. 

• Entry: IEFVSDRD 

• Exit: To IEFSD30S 

• Tables/Work Areas: JCT, SCT, QMPA, 
CVT, TIOT, LCT 

• Attributes: Reenterable 

• Control Section: IEFVSDRD 

200 

IEFVSD12: Interpreter -- CPO Allocation 
Subroutine 

This routine sets up a JFCB and allocates 
space on a direct-access device for a sys
te« input data set. 

• Entry: IEFSD012 

• Exit: Return to caller 

• Attributes: Reenterable 

• Tables/Work Areas: IWA, CMPA, LWA, 
SlOT, TIOT, UCB, JFCB, JCT, CSCB 

• Control Section: IEFSD012 

• External References: IEFVHQ 

IEFVSl:13: Interpreter -- SCD Construction 
Routine 

This reutine constructs an SCl: entry for 
eaeh system output class defined for a job, 
and assigns space for all DSBs that will be 
required. 

• Entry: IEFSD090 

• Exit: Return to caller 

• Tables/Work Areas: IWA, CMPA, l:D work 
area, SCD, SCT, SlOT, JCT, JFCE 

• fontrol section: IEFSD090 

IEFVS~BR: 5MB Reader Routine 

This routine reads the 5MBs associated with 
a restarting job and converts the JCL sta
te«ents to their original format. 

• Entry: IGCOOOSB 

• Exits: If called during restart reader 
processing, return to caller~ if called 
during restart, XCTL to the first load 
of restart housekeeping. 

• Tables/Work Areas: QMPA, DCB, JCT, 
5MB, RRCWKAR, SCT 

• ~ttributes: Reenterable 

• Centrol Section: IEFVSMBR 

IEFWAOOO: I/O Device Allocation -- Demand 
Allocatien Routine 

This routine establishes data set device 
requirements, and allocates in response to 
specific unit requests. 

• Entry: IEFWAOOO, IEFUCBL 



• Exits: To IEFWDOOO, IEFX3000, IEFX5000 

• Tables/Work Areas: UCB Address List, 
DMT, UCB, LCT, SCT, SLOT, VOLT, AWT 

• Control sections: IEFWA7, IEFWA002 

IEFWCFAK: I/O Device Allocation -- Linkage 
Module 

This routine passes control to the TIOT 
construction routine. 

• Entry: IEFWCOOO, IEFWC002 

• Exit: To IEFWCIMP 

• Control section: IEFWCOOO, IEFWC002 

IEFWCIMP: I/O Device Allocation -- TIOT 
Construction Routine 

This routine calculates the main storage 
required for the TIOT, builds the TIOT, and 
processes requests for direct-access space. 

• Entry: IEFWCOOO 

• Exits: To IEFXJIMP, IEFWDIMP 

• Tables/Work Areas: JCT, SCT, LCT, 
SLOT, VOLT, AWT, TIOT 

• Control section: IEFWCOOO 

IEFWDFAK: I/O Device Allocation Linkage 

This routine passes control to the external 
action routine. 

• Entry: IEFWDOOO 

• Exit: To IEFWDOOO 

• Control section: IEFWDOOO 

IEFWDOOO: I/O Device Allocation 
External Action Routine 

This routine causes the correct volumes for 
the step to be mounted on the appropriate 
units. 

• Entry: IEFWDOOO, IEFWDMSG 

• Exits: To IEFXTOOO, IEFW41SD, IEFXKOOO 

• Tables/Work Areas: SCT, LCT, TIOT, UCB 

• Control section: IEFWDOOO, IEFWDMSG 

IEFWD001: I/O Device Allocation 
External Action Messages 

This routine contains a directory and the 
messages used in the external action 
routine. 

• Entry: IEFWD001 

• Attributes: Non-executable 

• Centrol Section: IEFWD001 

IEFWS!RT: I/O Device Allocation-- Message 
Module 

This routine contains the message issued to 
the operator when a job is started and the 
messages issued to the operator when a job 
is terminated due to ABEND, condition 
codes, or JCL errors. 

• Entry: IEFWSTR! 

• Attributes: Non-executable 

• Control Section: IEFWSTRT 

IEFWSWIN: I/O Device Allocation Linkage 
Module 

This routine ~asses control to the decision 
allocation routine. 

• Entry: IEFWSWIT 

• Exit: To IEFX5000 

• Centrel section: IEFWSWI! 

IEFWTERM: Termination -- Message Module 

This rcutine contains the message issued to 
the of era tor when a job is terminated norrr,
ally, or when it is terminated because of a 
JCl error found in the inter~reter or 
initiator. 

• Entry: IEFWTERM 

• Attributes: Non-executable 

• Control Section: IEFWTERM 

IEFWTPOO: Write-to-programmer 
Initialization Routine 

This routine initializes storage and regis
ters tc frocess write-to-programmer mes
sages if the WTP call is valid. 

• Entry: IGC0203E from IEECVWTO 

• Exits: Normal to IEFWTP01, to calling 
program if only a WTP is requested and 
the WTP limit has been exceeded, to 
IEECVWTO if WTP request cannot be pro
cessed or a WTO message was also 
requested. 

• Tables/Work Areas: WTPCB, JSCB, ~M, 
CVT, WPL, IEFQMNGR, IEFQ~~ES 

• Attributes: Reenterable 

A~pendix B: MFT Modules 201 



• Control section: IGC0203E 

IEFWTP01: Write-to-proqrammer Message 
Processing Routine 

This routine processes the WTP messages and 
writes them on the job queue using the 
transient queue manager (SVC-90). 

• Entry: IGC0303E from IEFWTPOO or 
I EFWTP 02 

• Exits: Normal to IEECVWTO or to cal
ling program if only a WTP is 
requested; to IEFWTP02 for processing 
I/O errors which occur while writing a 
WTP message or for job queue problems. 

• Tables/Work Areas: WTPCB, JSCB, UCM, 
CVT, WPL, IEFQMNGR, IEFQMRES 

• Attributes: Reenterable 

• Control Section: IGC0303E 

IEFWTP02: Write-to-programmer Error 
Processing Routine 

This routine handles WTP processing using 
the reserved WTP 5MBs for messages when 
there are I/O errors in the job queue or 
when WTP is unable to get a record assigned 
for a WTP message using the transient queue 
manager. 

• Entry: IGC0403E from IEFWTPOl 

• Exits: Return to IEECVWTO, to calling 
program if only a WTP was requested, or 
IEFWTPOl if a system WTP message is to 
be processed follOWing a NO RECORD 
message. 

• Tables/Work Areas: WTPCB, JSCB, UCM, 
CVT, WPL, IEFQUNGR, IEFQMRES 

• Attributes: Reenterable 

• Control Section: IGG0403E 

IEFXAMSG: I/O Device Allocation Message 
Module 

This routine contains the messages issued 
by the allocation control routine. 

• Entry: IEFXAMSG 

• Attributes: Non-executable 

• Control Section: IEFXAMSG 

IEFXCSSS: I/O Device Allocation 
Allocation Control Routine 

This routine calculates table space 
requirements and obtains the main storage 

202 

for the tables used or built during 
allocation. 

• Entry: IEFXA 

• Exits: To IEFXJ, IEFWA, IENC 

• Tables/Work Areas: .JC'I, SCT, LCT, UCB, 
SlOT, VOLT, AWT 

• Control Section: IEFXA 

IEFXBOOO: I/O Device Allocation 
separation Strikeout Routine 

This routine strikes from AWT entries, the 
bits ccrresponding to devioes that would 
violate separation or affinity requests. 

• Entry: IEFXHOOO 

• Exit: Return to caller 

• Tables/Work Areas: LCT, AWT, AVT, UCB 

• Control Section: IEFXHOOO 

IEFX.JFAK: I/O Device Allocation Linkage 
Module 

This routine passes control to the alloca
tion recovery routine. 

• Entry: IEFX.JOOO 

• Exit: To IEFX.JIMP 

• Control Section: IEFXJOOO 

IEFX.JIMP: I/O Device Allocation 
Allocation Recovery Routine 

This routine informs the operator of the 
allocation recovery options available, and 
passes control to the proper routine to 
corrply with his request. 

• Entry: IEFX.JOOO, IEFV15Xl., IEFXJX5A 

• Exits: To IEFXCSSS, IEFSD095, IEFW41SD 

• Tables/Work Areas: LCT, AWT, .JCT, CVT, 
UCE, SCT, SlOT 

• Central Section: IEFXJOOO 

IEFXJMSG: I/O Device Allocation 
Allocation Recovery Messages 

This routine contains the messages used by 
the allocation recovery routine. 

• Entry: MSRCV, MSSYS, MSCFF 

• Attributes: Non-executable 

• Centrcl Section: IEFXJMSG 



IEFXKlMP: I/O Device Allocation 
Non-Recovery Error Routine 

This routine cancels the step when a lack 
of available devices has been discovered 
after the TIOT is constructed. 

• Entry: IEFXKOOO 

• Exit: To lEFW41SD 

• Tables/Work Areas: LCT, SCT, UCB, TlOT 

• Control Section: IEFXKOOO 

IEFXKMSG: I/O Device Allocation -
Non~Recovery Error Routine Messages 

This routine contains the messages used by 
the non-recovery error routine. 

• Entry: IEFXKMSG 

• Attributes: Non-executable 

• Control Section: IEFXKMSG 

IEFXQMOO: Transient Queue Manager 
Initialization and Read/Write Routine 

This routine initializes tables and read or 
writes job queue records. 

• Entry: IGC00090 

• Exits: XCTL to IGCOI090 or return to 
caller 

• Tables/Work Areas: Q/M resident data 
area, QMPA, CVT~ ECB/IOB 

• Attributes: Reenterable 

• Control Section: IGC00090 

IEFXQM01: Transient Queue Manager Track 
Assignment Routine 

This routine assigns logical tracks as 
required. 

• Entry: IGCOI090 

• Exits: XCTL to IGC02090 or return to 
caller 

• Tables/Work Areas: QM resident data 
area, QMPA, CVT, ICB/IOB 

• Attributes: Reenterable 

• Control Section: IGCOI090 

IEFXQM02: Transient Queue Manager Record 
Assignreent Routine 

This routine assigns records to a queue 
entry. 

• Entry: IGC02090 

• Exits: Return to caller 

• Tables/Work Areas: QM resident data 
area, QMPA, CVT, ECB/IOB 

• Attributes: Reenterable 

• Ccntrol Section: IGC02090 

IEFXTOOD: I/O Device Allocation -- Space 
Reguest Routine 

This routine obtains space on direct-access 
devices for requesting data sets. 

• Entry: IEFXTOOO 

• Exits: To IEFW41SD, IEFXKOOO, lEFWDOOO 

• Tables/Work Areas: LCT, TIOT, UCB, 
JCT, SlOT, JFCB, PDQ 

• Control Section: XTTPOO, IEF'X'IOOO 

IEFXT002: I/O Device Allocation -- VARY 
Co~reand Interface TICT Compression Routine 

This routine reduces the TIOT to its final 
size and provides an interface with the 
VARY ccmmand. 

• Entry: IEFXT002, XTTRDJ, XTTEE3, 
XTTEA1, XTTEAO 

• Exits: to IEFXKIMP, IEFXT003, IEF41FAK 

• Tables/Work Areas: LCT, TIOT, UCB, 
JC'I, SlOT, JFCB 

• Control section: IEFXT002 

lEFXT003: I/O Device Allocation -- DADSM 
Error Recovery Routine 

This rcutine determines what action should 
be taken when the request for space on a 
particular volume fails. 

• Entry: IEFXT003, XUUH06, XUUBOO 

• Exits: To IEFX'IOOD, IEFXT002 

• Tables/Work Areas: LCT, TIOT, UCB, 
JCT, SlOT, JFCB 

• Contrel section: IEFXT003 

Appendix B: MF'I Modules 203 



lEFXVMSG: I/O Device Allocation~
Automatic Volume Recognition Messages 

This routine contains the messages used by 
the automatic volume recognition (AVR) 
routine. 

• Entry: lEFXVMSG 

• Attributes: Non-executable 

• Control Section: lEFXVMSG 

lEFXVNSL: I/O Device Allocation 
Automatic Volume Recognition 
Non~Standard-LabelRoutine 

This routine processes non-standard labels 
for the AVR routine. 

• Entry: lEFXVNSL 

• Exit: Return to caller 

• Control Sections IEFXVNSL 

lEFXV001: - I/O Device Allocation 
Automatic Volume Recognition Routine 

This routine finds and allocates volumes 
pre-mounted by the operator. 

• Entry: lEFXVOOl 

• Exits: lEFWCOOO, lEFX5000, lEFXJOOO 

• Tables/Work Areas: JCT, SCT, AWT, AVT~ 
VOLT, SlOT, LCT, UCB 

• Control Section: lEFXVOOl 

lEFXV002: I/O Device Allocation--
Automatic Volume Recognition" Label 
Processing 

This routine reads the label of a newly 
mounted volume" extracts the serial number, 
and places it into the UCB for the corres
ponding device. 

• Entry: lEFXV002 

• Exits: To lEFXVNSL via CALL, return to 
caller. 

• Tables/Work Areas: LOT, UCB" CVT, DEB" 
lOB 

• Attributes: Reusable 

• Control Section: lEFXV002 

lEFX300A: I/O Device Allocation~- Device 
Strikeout Routine 

This routine modifies the primary and 
secondary bit patterns in AWT entries to 

204 

complete the allocation to a data set. 

• Entry: lEFX3000, X33B42 

• Exit: Return to caller 

• Tables/Work Areas: AWT, AVT, UCB, LCT 

• Control Section: lEFX3000 

IEFX5000: I/O Device Allocation 
Decision Allocation Routine 

This routine selects devices for data sets 
with multiple unit possibilities. 

• Entry: IEFX5000, XIlB32" X55C86, 
X55D3G 

• Exits: To lEFWCOOO, lEFXJOOO 

• Tables/Work Areas: LCT, AWT, AVT, UCB 

• Control section: IEFX5000 

lEFYNlMP: Termination -- step Termination 
Control Routine 

This routine passes control among the 
modules of the step termination routine 
and, when required, passes control to the 
job termination routine. 

• Entry: lEFYN 

• Exits: TO lEFW22SD, lEFYPJB3, lEF
VJlMP~ lEFZAJB3~ IEFRPREP 

• Tables/Work Areas: JCT, SCT, LCT 

• Control Section: lEfYN 

lEFYNMSG:Termination -- Step Termination 
Control Routine Messages 

This routine contains the messages required 
for the step termination control routine. 

• Entry: lEFYNMSG, STRMSGOl 

• Attributes: Non-executable 

• Control Section: IEFYNMSG 

lEFYPJB3: Termination-- Step Termination 
Data Set Driver Routine 

This routine obtains SIOTs and to pass con
trol to the disposition and unallocation 
routine. 

• Entry: IEFYP 

• Exits: To lEFZG, lEFYNlMP 



• Tables/Work Areas: LCT, TIOT, UCB, 
QMPA, SlOT, TCB 

• Control Section: IEFYP 

IEFYPMSG: Termination -- step Termination 
Messages 

This routine contains the messages required 
by the step termination routine. 

• Entry: IEFYPMSG, YPPMSG1, YPPMSG2 

• Attributes: Non-executable 

• Control section: IEFYPMSG 

IEFYSVMS: Termination -- Message Blocking 
Routine 

This routine blocks system messages into 
5MBs, and places 5MBs into the message 
class queue entry. 

• Entry: IEFYS 

• Exit: Return to caller 

• Tables/Work Areas: LCT, SCT, 5MB 

• Attributes: Reenterable 

• Control Section: IEFYS 

IEFYTVMS: Termination -- DSB Processing 
Routine 

This routine places data set blocks iD the 
space reserved for them in the output queue 
entries. If a job used 050, the data set 
blocks are marked inactive. 

• Entry: IEFYT 

• Tables/Work Areas: JCT, SCT, TIOT, 
SlOT, QMPA, DSCB, LCT, CVT, JFCB, 
DSOCB, PIB 

• Attributes: Reenterable 

• Control section: IEFYT 

IEFZAJB3: Termination -- Job Termination 
Control Routine 

This routine provides entry to the job ter
mination routine, obtains PDQ blocks, and 
passes control to the disposition and unal
location routine. 

• Entry: IEFZA 

• Exits: To IEF ZGJ, IEFW31SD 

• Tables/Work Areas: LCT, JCT, PDQ, UCB, 
QMPA 

• Control Section: IEFZA 

IEFZGJB1: Termination Disposition and 
Deallecaticn Routine 

This rcutine directs the disposition and 
deallecatien of these data sets that remain 
to be processed at job termination: passed 
data sets that were not received, and 
retained data sets that were not referred 
to. 

• Entry: IEFZGJ, ZPOQM 

• Exit: Return to caller 

• Tables/Work Areas: JCT, PDQ, JFt.:B, 
LC'I, QMPA, UCB 

• Centrol Section: IEFZGJ 

IEFZGMSG: Termination Disposition and 
Deallccation Messages 

This routine contains the messages required 
for the disposition and deallocaticn rou
tine (IEFZGJB1). 

• Entry: IEFZGMSG 

• Attributes: Nen-executable 

• Control Section: IEFZGMSG 

IEFZGS'Il: Termination Disposition and 
Deallocation Routine 

This routine directs the disposition of 
data sets as specified in the DISP field of 
the DD statement, and makes the associated 
units available for allocation to other 
data sets. 

• Entry: IEFZG# ZPOQMGRl 

• Exit: Return to caller 

• Tables/Work Areas: LCT, PDQ, SlOT, 
TIOT, UCB, JFCB, QMPA 

• Centrol Section: IEFZG 

IEFZGST2: Termination -- Unallocation 
Routine 

This routine makes available to other data 
sets the units used by the terminating job 
step. 

• Entry: IEFZG2, ZGOK09, Z00A1, ZOOE10, 
ZPOC10, ZPOQMGR2 

Appendix B: MF'I Modules 205 



• Exit: Return to caller 

• Tables/Work Areas: LCT, PDQ, SlOT, 
TIOT, UCB, JFCB, QMPA 

• Control Section: IEFZG2 

IEFZHMSG: Termination -- VARY Command 
Interface and Disposition and Deallocation 
Message Routine 

This routine prepares messages to tbe pro
grammer and to the operator for the dispo
sition and allocation routines. It also 
provides an interface with the VARY 
command. 

• Entry: IEFZH, ZGOE60, ZROD1, ZROE1, 
XPS631 

• Exit: Return to caller 

• Tables/Work Areas: LCT, QMPA, 5MB 

• Control Section: IEFZH 

IEF078SD: System Output Writer -- Linkage 
Module 

This routine transfers control to module 
IEFSD078. 

• Entry: IEFSD078 

• Exit: TO IEFSD078 

• Attributes: Reenterable 

IEF079SD: System Output Writer -- Linkage 
Module 

This routine transfers control to IEFSD079. 

• Entry: IEFSD079 

• Exit: TO IEFSD079 

• Attributes: Reenterable 

IEF082SD: System OUtput Writer -- Linkage 
Module 

This routine passes control to the system 
output writer main processing routine. 

• Entry: IEFSD082 

• Exit: To IEFSD082 

• Control Section: IEFSD082 

206 

IEF083SD: system cutput Writer -- Linkage 
Module 

This routine passes control to the systerr 
output writer command processing routine. 

• Entry: IEFSDO 83 

• Exit: IEFSD083 

• Control Section: IEFSD083 

IEF300SD: system Restart -- Linkage Module 

This rcutine provides a linkage to the sys
tem restart initialization routine. 

• Entry: IEFSD300 

• Exits: To IEFSD300, IEFSD055 

• Attributes: Reenterable 

IEF304SD: System Restart -- Linkage Module 

This rcutine provides a linkage to the sys
tem restart scratch data sets routine. 

• Entry: IEFSD304 

• Exits: To IEFSD304, IEFSD055 

• Attributes: Reenterable 

• Control section: IEFSD304 

IEF41DUM: Allocation Return to 
Initiator or System Task Control 

This routine returns control to the Initia
tor or to System Task Control after device 
allocaticn has comfleted. If allocation 
was called by the Initiator, the routine 
returns control to step initiation routine 
IEFSD512 at entry point IEFALRET via an 
XC1L macrc instruction. If allocation was 
called by System Task Control, the routine 
returns control to the caller. 

• Entry: IEFSD41R 

• Exits: IEFALRET or return to caller 

• Tables/Work Areas: CSCB, LCT 

• Attributes: Reenterable 

• Ccntrol Section: IEFSD41R 

IEF41FAR: I/O Device Allocation -- Linkage 
Module 

This routine provides a linkage to the 
allocation exit routine during step flush. 



• Entry: IEFW41SD, IEFW1FAR, IEFW2FAR 

• Exit: To IEFW41SD 

• Attributes: Read-only, reenterable 

• Control section: IEFW41SD 

IEFS89SP: Initiator -- Linkage to IEFSDS84 

This routine links to system task control 
so that upon return, the initiator will be 
in supervisor state. 

• Entry: IEFS89SP from IEFSDS99 

• Exit: Link to IEFSDS84 

• Control section: IEF589SP 

IEZDCODE: Interpreter -- In-stream 
Procedure Expand Routine 

This routine expands a given statement to 
its original form by inserting a given 
character. 

• Entry: IEZDCODE 

• Exit: Return to ca.ller 

• Tables/WOrk Areas: IEZPARM 

• Attributes: Reenterable 

• Control Section: IEZDCODE 

IEZNCODE: Interpreter -- In-stream 
Procedure Compress Routine 

This routine compresses a given statement 
by removing a given character. The new 
statement that is formed contains the numb
er of the removed character. 

• Entry: IEZNCODE 

• Exit: Return to caller 

• Tables/Work Areas: IEZPARM 

• Attributes: Reenterable 

• Control Section: I EZNCODE 

IGC0008C: SVC 83 -- SMF Buffer Manager and 
Writer Routine 

The purpose of this routine is to move SMF 
records into the SMF buffer, and to cause 
the records to be written when the buffer 
is full. 

• Entry: IGC00083 

• Exit: IEESMFOP, return to caller 

• Tables/Work Areas: CVT, SMCA 

• Attributes: Reentrant 

• Control Sections: IGC00083 

IGC0103D: SVC -- ~aster Command EXCP 
Routine 

This routine processes the MOUNT COIrIRand. 

• Entry: IGC0103D 

• Attributes: Reenterable, transient 

• Centrol Section: IGC0103D. 

IGF2403D: SVC 34 - VARY PA'IH Command 
Processor 

This reutine is used only if the Alternate 
Path Retry option is supported. It pro
cesses an operator's request for varying a 
PA'IH to a device and causing that path to 
be either logically brought online or log
ically removed from the system. 

• Entry: IGF2403D from IEE3202D 

• Exit: To IEEOS03D, IEE2103D 

• Attributes: Reenterable 

• Tables/Work Areas: Test Channel Table, 
SVRB Extended Save Area 

• Ccntrol sections: IGF2403D 

IGF2S03D: SVC 34 - SWAP Command Processor 

This routine is used only if Dynamic Device 
Reconfiguration is in the system. It pro
cesses the operator's command to SWAP 
voluRes for Dynamic Device Reconfiguratien. 
The routine checks the command for proper 
format, sets a switch if the status of DDR 
is to be changed, validates CUAs, and fills 
in certain fields of the I/O RMS CORrr:unica
tiens Area. 

• Entry: IGF2S03D from IEE0403D or from 
IGF0408E (DDR Tape Reposition) 

• Exit: To IEE0503D, IEEZ103D, IGF0408E 
(££R Tape Reposition) 

• Attributes: Reenterable 

• Tables/Work Areas: I/O RMS Communica
ticns Area, SVRB Extended Save Area 

.Centrel Sections: IGF2S03D 

Appendix B: MF'I Modules 207 



IGF2603D: SVC 34 -- Machine status Control 
Routine 

This routine is available only for the 
model 85. It processes the status paramet
er of the MODE command. 

• Entry: IGF2603D 

• Exit: IGF2703D 

• Tables/Work Areas: CVT, XSA 

• Attributes: Reenterable, read-cnly, 
self-relocating 

• Control Section: IGF2603D 

208 

IGF2703D: SVC34 - Machine Status Control 
Routine 

This rcutine is available only for the 
model 85. It processes all pararr.eters of 
the MCBE co~mand but the status parameter. 

• Entry: IGF2703D 

• Exit: Return to issuer of SVC 34 

• Tables/Work Areas: CVT, XSA 

• Attributes: Reebterable, read-only, 
self-relocating 

• Control Sections: IGF2703D 



Appendix C: Flowcharts 

This appendix includes the MFT flowcharts that are different froID MVT. For the flow
charts on allocation, termination, and system restart, see IBM System/360 Cperatinq sys
tem: MVT Job Management, Program Logic Manual, GY28-6660. 

Chart 01. Task Dispatcher (Without Time Slicing) 

A2 

Enqueue Timer 
Element 

Enqueue 
Job Step TOE 

E2 

Note - 'Old' Is the TeB Address 
of the Task Currently 
in Control. 'New' Is the 
Te B Addre" of the 
Task to be Given Control .• 

B3 

Schedule 
Asynchronous 
Exit Routines 

'Old' = 'New' 

D3 

E3 

'New' = TC8 to 
Be Dispatched 

Yes 

H3 

Place 'Old' 
Task in Wait 

State 

J3 

Record Start of 
System Wait 

No 

No 

Yes 

e4 

Dequeue 
Job Step TOE 

Examine 'Old' 
TeB 

Find Next leB 
on Queue 

Appendix C: 

Dequeue 
Timer Element 

Flowcharts 209 



Chart 02. Task Dispatcher (With Time Slicing (Part 1 of 2) 

Al 

OSPAI 

Is 
New Task TeB 0y'e 
G 

210 

Schedule 
Asynchronous 
Exit Routines 

82 

e2 

Dequeue 
Job Step 
TQe 

F2 

TMS1.3 G2 

Dequeue Time 
Slice Timer 
Queue Element 

Yes 

Yes 

e3 

Restore 
Registers 10-1 __ 

Save F footi n9 
Point Registers 

Dequeue Task 
Timer Queue 
Element 

H3 

J3 

Enqueue Task 
Timer Queue 
Element 

Enqueue Job 
Step TQe 

C4 

04 



Chart 03. Task Dispatcher (With Time-slicing) (Part 2 of 2) 

Is 
C2 

Set Old Yes 
Equal New Task TCB 
to New Dispatchable 

"--/ 
02 

Yes Restore Floating 
Point Registers 

No 

OS PC El 

Restore 

Registers 
0-9 

Area Refresh 

No 

Set 'Wait' 
Bit Old PSW 

Record Start 
of System Wait 

Restore 
Registers 
2-9 

F3 

G3 

A5 

Enqueue Time 
Slice Timer 
Queue Element 

TMSL9 

Update 'Next I 
Field of Time 
Slice Control 
Element (TSCE) 

Yes 

B5 

Is C5 

New Task TCB 
Dispatchoble 

Na 
f---------' 

Appendix C: Flowcharts 211 



Chart 04. 

212 

NOrmal Termination 

Decision is Mode } __ 
In IEANTMOO or 
IEANTMOB 

Small Partition 

SMALL GO XCTL 

Step Deletion 
Routine IEFSD599 

F2 

Store Completion 
Code, Close Dota 
Sets for Task 

Purge fQEs, Clear 
TeB Fields, Create 
Dummy Program 

A3 

83 

WTOR 
Requests 

Subtosk 

E3 

-{ 
With MCS This 
Module Name 
is IEACTMOB 

D4 

Scheduler Size Partition 

GO XCTL 

Step Deletion 
Routine IEFSD515 

F4 



Chart 05. 

Note -
At Entry, 
Small Partition 
Has Zero 
Protection 
in TCB, PSW 
and Hordwant. 
AI.o, PSW is 
Supervisor 
State. 

Small Partition Routine (Part 1 of 4) 

Wait on INo 
won.' ECB in 

PIB 

Create Small 
Partition Info 

List 

Indicote (in 

·F2 

PI B) that SPIL 
Created 

If Asgn'd, Free 
Tracks for 
Small Part. 

Mod. 

If Created, 
Fr •• SPIL 

If (I1y, Free 
Pending CSCB 

Post 'Define' 
ECB in PIB 

No 

E4 

F4 

Appendix C: 

Free 
SPll 

XCTl 
F5 

IEFSD586 

Linkage to 
DSO Processing 

Flowcharts 213 



Chart 06. 

214 

Small Partition Routine (Part 2 of 4) 

Indicate (in 
SPI L) System 

Task Cont. 

If ""'n'd Fr •• 
Tracks fer 

Small Port Mod 

If Created, 
Free SPIL 

02 

Assign Tracks 
for this Small 

Port. Mod. 

Ves 

03 

E3 

Indicated (In 

PIB) Tracks "'. 
Assigned. 

Indic .. (in 
SPlL)hb. 

Pros. 
Initiation 

Not Enough 
Tracks Available 

i t 

E4 

WTO 'Start Init 
Rejected' 

If Created, 
F_ SPIL 

F4 



Chart 07. Small Partition Routine (Part 3 of 4) 

BI 

Enq (EXCL.) on 
Maior 

'SYSIEFSO' 
Minor'SP' 

CI 

~isable I/O and 
External 

Interrupti 

Point to First 
TCB 

Point to Next 
TCB 

01 

No 

Indicate SPIL 
Address Stored 

Post 'No Work' 
ECB in Sched. 

Part. Bit 

E3 

55 

EnableI/O and 
External 
Interrupts 

Oeq Off Major 
'SYSIEFSO' 
Minor 'SP' 

ES 

Wait on Dormant 
ECB in PIB 

Appendix C: 

H5 

Wait on I ECBS' 
in SPIL 

J5 

Oeq Off Mai or 
'SYSIEFSO' 
Minor 'SP' 

Flowcharts 215 



Chart 08. ~11 Partition Routine (Part 4 of 4) 

216 

Wait on 'ECIA' 
In SI'IL 

81 

Poot Cod. = 0, 
Means Step has 
Been Schecjuled by Scheduler 
Partition 

No 

Move Table. 
into Small 
Partition 

Post I ECBC' in 
Spil 

Issue 
STIMER 

K2 

Set Indicators 
in Job Step Timing 

Status Bits 
Field of PIB 

Post Code=2 
Means Job 
T_nGled 
in Sch.ler 
Partition 

Post Code=1 
~ans 
·NoW" ... .' 
Found by 
Scheduler 
Partition 

G2 

If any, Open 
JOBUB DCB 

If any, Open 
Fetch DCB 

H2 

J2 

Set Prob, Prog. 
P .K. in TCB and 

Hardware 

K2 

Free SPIL 

XCTL 

Post 'EeBC' 1n 
SPIL 

Allows 
Large 
Partition 
to Cont!nue 

Move Tables 
into Small 
Partition 

Post ECBC in 
SPIL 

C3 

El 

F3 

G3 

MoveQMPAS to 
CSCB 

H3 

Free SPIL 

XCTL 

Set Zero P.K. 
in TCB ond 
Hardwcre 

Issue 
TTl MER 

G4 

Remove Indicator 
in Job Step Timing 

Status Bits 
Field of PIB 

H4 

Create 
SPIL 

Indicate (in 
PIB) thot 

S PI L Created 

H5 

J5 

Indicate (in 
SPI L) Termination 

K5 

Save Step 
Time Remaining 

in SPIL 



Chart 09. Master Scheduler Task 

Scheduler 
Initialization 

C2 

IEEDFINI 

Establish 
Partition 

Format 

Display 
Automatic 

Commands Issue 
'Ready' 

D2 

Yes 

IEECVCTI 

Communications 
Task 

Initialization 

B3 

IEEVlIN 

System Log 
Initialization 

E3 

IEFSQINT 

Job Queue 
Format or 

System Restart 

B4 

C4 

Enter Automatic 
Commands to 

System, if Any 

Establish 
Partitions 

Yes 

IEESMFIT 

SMF 
Initialization 

D5 

Appendix c: Flowcharts 217 



Chart 10. Queue Alter 

A3 

( LINK from 
IEECIR50 

B 1 
B2 

83 B4 

IEES0564 
IEES0563 

IEES0562 IEES0566 

--@ Set Up Queue, XCTL XCTL 
Queue Search Read Queue Syntax Check Display Active 
Routine ,--- Control Record, Routine 

Test Results 

l XCTL 

03 04 05 

Y. 
IEES0565 IEEXEONA IEEUNITl 

CANCEL No Job ENQ link, 
Display Consoles Display Unit Command Message link, 

Clean Up Routine Routine 

Yes t LINK RETURN I 
E2 

K2 
E3 , E4 

K2 

IEES0575 Data Sets to IEES0581 IEE05030 
be Scratched 

RETURN to 
Queue Scratch Issue SCRATCH Message Assembly IEECIRSO 
Setup Macro (SVC 29) 

F2 F3 

IEES0576 IEES0578 

Delete Queue ,- Set Up Message 
Entries Class 

G4 

G2 ~ IEES0577 

Yo. Mare 
Restarting Job Yes Output Enqueue DSBs in 

Queues Message Class 

No No 

H2 
Specific No 

Cancel Msg 

Yes 

J2 J3 

IEES0580 IEES0579 

Issue WTO Enqueue Message 
Class and WTO 

K2 -t K2 

Retum 

218 



Chart 11. Queue Manager Table Breakup Routine 

Bring in 
Existing TQeR 

Write Out Part 
of Table 

No 

No 

B2 

EFQMRAW 

Read in First 
TOCR 

e2 

IEFGASGN 

A.ign HTTR 

E2 

IEFGMRAW 

Write Out 
Updated TaeR 

IEFaMRAW 

Write Out Old 
TaeR Rend in 

New TaeR 

IEFQASGN 

H2 

J2 

Assign New TTR 

No 

83 

IEFOMRAW 

Read in Fint 
"-t oFT .. I. 

e3 

Get Storage fPl' 
Table ond Move 

Buff ... in 

Reod in Next 
"'" of T obi. 

Yes 

Yes 

G3 

IEFQASGN 

Assign New Tael 

IEFGMRAW 

Write Out Old 
TaeR 

H3 

IEFQMRAW 

Get Next TaeR 

Appendix c: Flowcharts 219 



Chart 12. 

220 

Master Scheduler Resident Command Processcr 

v'" 
Link 

Yes 

Note - The Resident 
Command Processor 
Never Terminates 

C3 

IEES0562 

Job Queue 
Secrch Routines 

IEEOFINI 

03 

Link Define Routines 



Chart 13. SVC 34 Command Processing (Part 1 of 3) 

Entry ) Command 

~ Processing 

IEE0303D IEE5403D IEE0403D 
Error - -- --Chain Command Router STOP JOB NAMES Message Routine 

Man i pulator Translator STATUS 

~ SPACE 
STOP (Except IEE4503D DSNAME 

( ) STOP INIT) 
Return 

Periodic Stop I Error 

lNon-periodic 
STOP 

Message Routine ~ 
IEE0703D ~ 

MODIFY STOP and 
MODIFY STOP MODIFY 
Scheduling 

CANCEL 
IEE2B03D Active 

CANCEL ~ Processor 

HOLD 
! Inactive 

RELEASE IEE0803D c----
RESET I Error - Message. Routine 

CSCB Creation 

iTaSk Creating 
Commands 

IEE3503D Error 
Note: The message routine blocks DISPLAY 

DISPLAY IEE2903D 
represent two routines. 

Router --- DISPLAY Depending upon the ~rror DISPLAY 
Request message to be issued, 

I 
R Only 

Processor-either I EEOS03D or 
IEE2103D receives control. 

LOG IEEI603P 
WRITE LOG LOG and I Error 

WRITE LOG 
Processor 

Message Routine 
IEE0603D' ~ 

SET 
SET Command IEE0903D 
Processor ---SET Timer 

CLOCK Maintenance 

SET DATE 

IEE3903D 

START IEESD561 f-.--..--.-- START and 
STOP INIT START and STOP INIT 

STOP INIT n Processor (Part 2) 
Processor (Part I) I 

Message Routine, 

14 

( Return ) 

Appendix c: Flowcharts 221 



Chart 14. SVC 34 Command Processing (Part 2 of 3) 

14 

IEE1203D 
NoMCS 

REP L Y Processor 

~ 
MCS 

IEE1A03D IEE1B03D 

MCS REPLY REPLY Message 

BRDCST Processor Routine 

CENOUT 
MSG 
SHOW IEE1503D 
USER ID 

RJE Processor I Error 

IEE1403D Message Routine 
HALT I Error 

feD Routine 

IGF2703D 
IGF2603D 

MODE Machine Status 

Machine Status Control (Part 2) 
Control (Part 1) II MODE Status 

IEE3103D 
IEE1103D 

UNLOAD VARYjUNLOAD Error 

VARY/UNLOAD Err<>r 
Router Ii Processor 

• IEE3203D Error 
VA~Y 

VARY Keyword 
r--"' 

Message Routi ne 
Router 

15 

IGF2503D Error 

SWAP 
SWAP Command 
Processor 

DEFINE IEESD571 DEFINE 
MOUNT 

DEFINE, MOUNT rt 
Routine IGC0103D 

PCP Master 
Command 
EXCP Routine 

Retum 

222 



Chart 15. SVC 34 Command Processing (Part 3 of 3) 

15 From IEE3203D 
VARY Keyword Router 

PATH IGF2403D 
(APR Only) 

VARY PATH Error 

Processor • 
Message r--

ONGFX Routine 
OFFGFX IEEI703D 

. (Grophics Only) 
Graphics 
Processor 

Message r-
No Error Error IEEll03D No IEE3103D Routine 

~ VARY/UNLOAD f--~ Syntax Scan 
VARY/UNLOAD 
Processor --

ONLINE tNo MCS VARY ONLINE/ Non-Console 

OFFLINE SMF IEE2303D 
OFFLINE Non- Units to 
Console Units Process 

SMF VARY 

~ 
Record VARY 

IEE4603D 
Handler ONLINE/ 

OFFLINE VARY ONLINE/ CONSOLE 

~ {with no MCS IEE3303D OFFLINE For 
MCS Console Devices additional 

keywords} MCS VARY No IEE4203D I--
Syntax Check ~ VARY 

Secondary IEE4803D 
Error r-- VARY IEE4903D 

Syntax Scan CONSOLE r---- VARY CONSOLE -i 
VARY CONSOLE Information 

A Processor Message 

No IEE4403D 

CONSOLE Error ~ VARY ~ 
(with additional IEE3303D CONSOLE 
keyword5) Keyword Scan 

MCS VARY - t Syntax Check y IEE2303D 

~ SMF VARY 
Record 
Handler 

Error Message -IEE4303D Routine 

MSTCONS VARY 
MSTCONS 

SVC 72 Processor 

• IEECMCSW 

Console 
Switch 

I 
VARY 
HARDCPY, IEE5703D 

IEE4703D OFF 

HARDCPY VARY HARDCPY, Error 
VARY OFF Processor II 
HARDCOPY 
Processor L 

Message r--
Routine 

IEE4103D 

Hardcopy 
Message 
Issuer e Return 

Appendix C: Flowcharts 223 



Chart 16. Commu~ications Task 

SV C34 02 

I GCOOO3D 

Detail on 
Separate Chari 

Commu' "Ications Task • h MCS Wit 

Nanna I Processing 

IEEC VCRA GI 

Post Attention 
ECB 

IEECM CSW 1 HI IEECMDSV '- H2 

IGCXL07B 
Device Service 

Con.ole Switch Routine 
Routine 

1 J2 

Device Support 
Routines for 
Each Device 

Initialization 

Console 
Initialization 

Routine 

224 

A3 

Entry from 
Dispatcher 

IEECVCTW 1 B3 

Wait Module 

SVC72 1 C3 

IEECVCTR 

Router 

IEECVPM I 03 

Processor 

IEECVOC 1 E3 

Open/Close 

F3 

Entry from 
Dispatcher 

IEECMAWR 1 G3 

Wait on ECBS 

, 
IEECMWSV t H3 

WTO/WTOR 
Service Routine 

Note: IEECVINT I. Entered Via 
Link Only Once by 
I EFSD569 and Return. 
Control to I EFSD569 

IE VCTX C4 

External 

Inter~pt 
Handler 

IEECVPM and IE ECVOC Are Csecll of Device 
es. The Console Devices (sJ 

Wh,ich Modules are Used. 
Dependent Modu I 
Will Detennine 

IEECVCRX 

Post External 
ECB 

IEECMDOM l H4 lEE MWTL t 

Delete Operator Nip Message 
Message Routine Buffer Writer 

G5 

H5 



Chart 17. IEFSD518 -- Partition Recovery Routine 

Cl 

Issue Message 
IEF2091 and 
Set Job Foil 
Bit~in JeT 

D3 D4 D5 

Enter DSO Issue Message 
Data Needed IEF3901 for 
(if any) in Read In SlOT Each Device 
Table for Step Type Needed 

EI E4 

IEFDSOFB 
Issue 
Message 

Release IEFI89E 
DSOCBs 

F4 F5 

Issue Dequeue on 
Unchain and Message Partition 
Free CSCB IEFI83E Boundaries 

G2 G4 

IEFSD598 
Issue 

G5 

Eng/Deg Message 

Purge Routine IEFI841 

Yes 

H2 H5 

Update SCD Po,t 'ECBA' 
Enqueue Job on (in SPIL) with 
Hold Queue Term Code of 1 

J2 J4 J5 

Enq on Required Issue Post 'No Work 
Partition Partition Message EeB 'in Current 
Boundaries Internol IEFI821 Partition 

Queue 

Appendix c: Flowcharts 225 



Chart 18. .Initiator Control Flow 

Initial Start 
RDR,/WTR 

A3 

( Entry 

I 
B3 

J B3 B4 

Sp IEFSDS10 
Unk Ret 

IEFSDS19 

r Dequeue Job 
Job Selection on Internal 
Routine '=l Queue 

J3 C4 Cl C2 C3 t C4 

IEFSD541 IEFSD540 IEFSD511 IEFSD533 
XCTL 8r 

Dota Set linkage to Job Initiation [ Linkogeto 
Integrity Routine IEFSD541 Routine IEFSD512 

Chkpt Restart IXCTL Br 
01 02 , L" 04 

IEFUSI IEFDSOWR Ret link IEFSD512 Link Ret IEFSD518 

SMF User Job - DSO 
Step Partition 

Initiation 
Writer r= Initiation XCTL Recovery 

Exit Routine Routine Routine 
SMF 

XCTL 8r ! link 83 
El t E2 Ret E4 

IEFUJI ~ IEFSMFIE Error Code 
IEFDSOFB from 

SMF User Step BALR SMF User IEFSD518 
Free Initiation Initiation 

Exit Routine Exit Routine DSOCBs 

Allocation Error 
Fl SP t F2 XCTL F3 + F 

IEFSD555 Initiation" IEFSDS13 IEFSD556 Job IEFSD544 
Br 

11 
~el 

Unkoge to Prob lem Program Allocation linkage to 
IEFSD510 Interface Routine Routine IEFSD516 

J;' SMFIBo'r 
G2 + G3 

83 IEFSMFAT 

SMF TCTICT Problem 
Construction Program 

? Routine 

H3 
./Return 

HI -+ H3 H4 

IEFSD167 IEFSD598 

Linkage to 

~ 
Abend I-- - Enqueue/Dequeue 

IEFSD168 

cr. 
Purge Routine 

lXCTL XCTL 

Jl + Br J2 (44 K ' .'Go' J3 
I IEFDSOFB Bolr IEFSD168 

Scheduler) 
IEFSD515 ~olr 

Job Automatic Step 8r 
Free Restart 
DSOCBs ~ Suspension Deletion tk-Routine Br Routine 

! Bolr C4 
Bolr~ 

Kl K2 More Steps K3 K4 
IEFSD598 IEFVSDRA IEFSD42Q IEFSD587 

Enqueue/ I-- Restart Termination L.., Linkage to 
Dequeue Activation Routine IEEVTCTL 
Purge Routi ne 

M_"" .~ (30 K 
Termination 
(30 K Scheduler) 

Scheduler) 

J5 HI· 

226 

r---"' 

"----

XCTL 

More 
Ste 

C4 

0-

-® 

AS 
IEFSDS89 

System 
Task 
Control 

dv 
Terminate 
RDR,/WTR 

After Suspendi ng 
RDR,/WTR 

C5 

IEFSD588 

-System Task 
Control 

dv 
Restore Transient 
ROR or T enninate 
RORer WTR 

E After J ob 
IEFSD42Q 

lennination 
Routine 

Balr 

IEFSD516 

A I ternate Step 
Deletion Routine 

Br 

IEFSDS17 

Job 
Deletion 
Routine 

Tennin ation 
Scheduler) (30 K 

--C-

F 

JS 

~- .. 
B3 



Chart 19. Job Selection Routine (Part 1 of 5) 

Note- At Entry Partition Has 
Zero Protection in 
TC B, p~, and Hond
ware. Also PSW is 
Supervisor State 

Wait on INo 
Work' EeB in 

PIB 

Create 
LOT 

Block 

Indicate (in 

F2 

PI B) That LOT 
Block Created 

H2 

Oi ..... l. I/O and 
Ext .... al 
Interrupti 

Point to S-II 
Partition. PIB 

G3 

v .. 

-Retain Pointer 
to SPIL 

Zero SPIL 
Pointer in All 

Lorge Partition. 

04 

Enable I/O and 
External 
Interrupts 

Poot '£CBB' 
in 'ECII' 

SPIL 

Request for .lni ti.tl on 
for Fint Step 01 a 
Job in Small "'rtition 

No 

B5 

Enable 110 and 
Extornal 

Interrupts 

Allows Small Partition to 
OEQ Off SPIL Pointer a. 
an Exclusive Resource 

Request for Tennination for 
Current Step ond, If Any, 
Initiation for Next Step 
in Small PartitIon 

IIC.-..I, 
F_lOT lIack 

J5 

Appendix C: Flowcharts 227 



Chart 20. 

228 

Job Selection Routine (Part 2 of 5) 

Link to 
IEFSD519 to 
D_eJob JobS .... end 

BALl L...:;;BA.;;:lR=-_---. 
~wn 03 

Step Del.tion 

nf~5ft ~1=EFS~D5~1~7----~ 

.Codod in 
IEFSD513 

Jl 
Wait '£CBC' (in 

SPI L ) for Move 
of Tables By 
Small Part. 

Coded in 
IEFSD513 

1 
Post 'ECBA'·(in 
SPIL) with 

'XeTL/ Cancel' 
Cod. of Zero 

Request Work 
for Jobel_ 

ViaQ-MGR 

Write Messages 
and/or Job 
Separator 

K2 

IEFSD513 

Problem Program 
Interface 

ENQ/DEQ'
Ib.ttine 

F3 

IEFVSDRA " 

Iteot.! 
Activet·1an Return 

G3 

Step Initiation 

Job Deletion 

Coded in 

,..------'0...;.;1 EF:;..;;;SD;,;5,17 E4 

Post· I ECBAI (in 
SPIL) with' Job 

Torm' Code of 
Two 

Link to 
IEFSD518 

.-____ ....:.;K'-:,4 Another 
Step 

1------1 
IEFSD516 

Alternate Step 
Delete 

End of 
Job 

Run DSD R Step in 
large Pqrtition 



Chart 21. Job Selection Routine (Part 3 of 5) 

link to 
IEFSD519 to 
Dd'queue Job 

No 

If Assigned, 
Free Tracks 
for this 
Initiator 

If Created, 
Free LOT 
Siock 

If Any, Free 
Pending CSCBs 

No 

Ves 

J2 

K2 

Free LOT 
Siock 

If Assigned, 
Free Tracks 
for the 
Initiator 

If Created, 
Free LOT 
Block 

STOP DSO 

Post 'DEFINE' 
ECB in PIS 

S3 

03 

E3 

G3 

K3 

IEFS0586 

linkage 
to OSO 
Processing 

Assign 
Tracks 
for this 
Initiator 

Indicate 
(in PIS) that 
Tracks Are 
Assigned 

Link to 
IEFSD519 to 
Dequeue Job 

B4 

04 
Not Enough 
Tracks Available 
for Assignment 

E4 E5 

WTO 'Start 
Init Rejected' 

F5 

If Created, 
Free LOT 
Block 

Appendix c: Flowcharts 229 



Chart 22. 

El 

230 

Job selection Routine (Part 4 of 5) 

Request Work 
for Jobel ... 

ViaQMGR. 

Job Initiation 

IEFSOS12 

81 

El 

Step Initiation 

IEFVSDRA 

Rootart 
ActIvatIon 

DSDR 
Executed 
for Small 

Link to 
IEFSOS18 

os 

E3 

XCTLt'I=:EF..:cSD::;.;S::;.;I.;:.3 __ --i 
~--------------------~~ Problem Program 

Interface 

Job 
Cancel 

Partition I"'I.;;EF..;:S"'D.;:.SI.;.;S'--__ -t 

J2 

IEFSDI68 

BALR 

..-___ ....L.:;RETURN 
K2 IEFSD598 

Enq/Deq Purge 
RoutIne 

Step Deletion 



Chart 23. Job Selection Routine (Part 5 of 5) 

Cl 

Load GRI with 
CSC B Addre .. in 

PIS 

Zero CSCB 
Address in PI B 

If Created, 
Free LOT Siock 

Indicate (in 
PIB) System 
Task Control 

Routine. 

01 

El 

Fl 

Allows System Task Control Routi ne 
to Initially Start On. of the Following 

1. Resi dent Reader 

Disable I/O and 
External 

Interrupts 

2. Transient Reader, User-Assigned Partition 
3.. Transient Reader, System-Assigned Partition 
4. Writer, This Partition 
S. Writer, Small Partition 

B2 

Load GRI with 
CSCS Addr. in 
M.S. Res. Data 

Area 

03 

Zero CSC B Addr. 
in Mast. Schad. 
Res. Data Area 

Enable I/O and 
External 

Interrupts 

E3 

No 
Enable I/O and 

External 
Interrupts 

B4 

C4 

Wait on ECSlIST If Created, 
Free LOT Block 

Indicate (in 
PIB) Restore 

Reoder 

05 

To Restore One of the Following 
1. Transient Reader, 

User-Assigned Partition 
2 • Transient Reader, 

System-Aisigned Partition 

Appendix c: Flowcharts 231 



Chart 24. 

232 

Reader/Interpreter (Part 1 of 3) 

Linkage Module 
to Free NEL and 

NEL Lists Upon 
Return 

IEFS0531 

Transient 
Reader Rostore 

01 

Reader Restore, 
Open Reoder. 
Open Proc:lib 

IEFVGM 

From: 
2582 
2505 
25E4 
25G2 
26Gl 
28C4 

02 

First Pass 

Interpreter 
Initialization 
Build IWA Input 

OCBS 

IEFVH2 C3 

Open Reader for 
QSAM. Open 
Pro.lib for 

BPAM 

XCTL 

03 

5MBMeaoge Link 

Interpreter 
C ... 1I'o1 IIood 
Inpot from 
Problib 01' Blocking 

IEFVj.'H:.B ____ -'E2'''' 

Creole II Syoin 
DO· 

No 

Return Input Stream 

v .. 

IEFS0537 14 

link 
Linkage Modul. 

to Free NEL ond 
NEL Usts Upon 
- Return 

Sot EOF Flag 
and Build Null 

Statement 

F4 

C .. tinuation Vea 
Check 

SMIM_ 
liocking 

XCTL 
Set Up NEL and 

NEL Usts. 
Assign Queue 

Space for 
Transient RDR 

( 



Chart 25. Reader/Interpreter (Part 2 of 3) 

B2 

Set Switch in Vos 

IEFVHL 

IWA 

02 

Null Statement 
Processor 

Card 

Yes 

Verb 
Identification 
and PROCLIB 

Merge 

Job Control 
Router Module 

A3 

H3 

If New Job 
Assign/Start 

and Get 5 
Records 

No 

Yes 

Yes 

IEFVHM C4 

Scan Command 
Table for Valid 

Command 

Check 
Authorization 
and Issue SVC 

34 

IEFVHEC 

Job Enqueue 
Validity Check 

Module 

IEFVHH G4 

Job and Step 
Enqueue Routi ne 

To Enqueue 

No 

IEFVGM 05 

SMIM ... age 
Blocking 

A Block for I EFVHH 
is Shown Here for 
Module Flow Clarity. 
Chart 26 Depicts 
IEFVHH in More Detail 

Appendix c: Flowcharts 233 



Chart 26. 

234 

Reader Interpreter (Part 3 of 3) 

Al 

lnt ... preter CPO 
Routine 

81 

Perform Card to 
Disk Function 

Indicate Job 
Fail and Close 

Reader 

Wait 

Wait for Writer 
or Termination 
to Free Space 

Wait for Writer 
« Termination 
to Fre. Space 

C2 

E2 

Scan Routine 
Scan Card and 

Route 
Processing 

Accordi I 

lEFS0012 

A3 

C3 

Allocate CPO 
Space 

Indicate Fail 
Job and C los. 

Reader 

F3 

Yes 

Processor 

IEFVHF 04 

Post Processor 

A5 

IEFVJA 27A3 

Job Card 
Processor 

85 

IEFVEA 27A3 

IEFVOBSO 

Exec Card 
Processor 

8uild OS Name 
Table 

C5 



Chart 27. JCL Statement Processor 

JCl Processing Module. 
IEFPJA, IEFVEA and IEFVDA 
Function by Driving 
Subroutines. Their 
General Flow is Described 
on this Chart 

Initialization 

IEFVGK C3 

IEFVHQ H2 

Queue Manager v. 
Interface 

Get Parameter 

Keyword 
I'roceuor 

Store Info in 
Par. Descriptor 

Tabl. 

Cleanup 

D3 

IEFVGI E4 

Maintain 
Y. Backwcml 

Reference 
Diction"')' 

IEFVGS F4 

Yes Backward R.f. 
Dictionary 

Search 

IEFVGM J4 I EfSD091 JS 

..,l"'ink"'-_ ...... Cr;y'S~JS for link 
SM. Jab Qu .... 

Spao. 
AIII ....... t 

Appendix C: Flowcharts 235 



Chart 28. Job and Step Enqueue Routine 

236 

Ftom, 
25G4 

Job cmd step 
E"'I'M" Modul. 

IEFSD537 

Free NEL ond 
NEL Lists 

B2 

J2 

IEFVHQ 

Read. 
Interpret .. 

Qu .... ~ 
Inlefface 

B3 

IEFOD~EL!:.:E'-___ ...!D::.3 

y 

D.I.te JobQ 
Tracks 

J3 

IEFSD530 29A2 

Transient 
Reader Suspend 

Rou.tine 



Chart 29. Transient Reader Suspend Routine 

.A3 
Al IEFSD514 

( entry from 
IEFKG Write Tiot and 

IWA on Jobqueue 

1 XCTL 

81 83 

Save Fixed Free IWA, 
length Data Exitlist, and 

. Necessary for ECS/I08 
Restore in IWA 

1 C1 C4 

~ Tum Off 

Free Option his a User No 
F~oating Reader 

List Assgnd Transient Operating 
RDR Switch 

(SD33STAT) 

1 v .. 1 0.1 04 

Set Bit to Turn Transient 
Prevent Rewind RDR SW Off 
if Tape SVSIN (BASFL2) 

1 E1 E4 

Is E3 
C lose and Free ere a Car 

-RDR DC8 Buf. from Prev. 
Ves 

Free It 
-Proclib DCB Rest. 

1 
No I 

Fi • F3 

Delete 
Q-Manager Free LWA 
IEFQMSSS 

1 G1 G3 

Set Up 514 Parm Post Non-System 
List in LWA No Work ECB', 

H2 H5 

i? H3 H4 

there a Yes 
Is the 

Free It 
Is SMF Ves User Exit Yes Delete 

P.I.E. Supported y. It 
Addr. Storeg 

No I No No I 
~- Jl J3 1 J5 

Save CSCB 
Pointer in Set Return Code Free 

SD33TTR in PI B to 1 in R15 JMR 

Zero SD33HTTR 

1 Kl K2 K3 IEFSD537 K4 
K5 

Turn On 
Restore Retum to STC) IReader Suspend! Free - Free NEl 

Flag in PIS NEl Registers and NEl Lists (lEESD591) 

Appendix C: Flowcharts 237 



Chart 30. Transient Reader Restore Routine 

84 

S"" ....... _. load Queue 

Chain SaY. Manoger 

", .. IEEQMSSS 

C3 

Restor. 
Regid_ 

IEFS0537 03 

Getma'nfor Free NEL and 
Local Work ~a NEL Lists 

E2 

Set Up QMPA and 
514 ,ami Lid Get Storage 

for ....... 'n for 
LWA JMR 

F2 F4 

Initialize 
Set Up EC B/I 08 the JMR 

G2 

IEFDS514 

Return IWA and 
Tiot and NB. EX 
Lilt from JOBQ 

Get Storage for 
Place Name 
of SMF'Us.r 

N EL and Relotad Exit Routine 
A~ in Nfl 

J2 J4 

Restore load the SMF 
Pointen TlOT User Exit 
Addr to TCB Routine 

K2 K3 K4 

Pre-Suspend Set Up Reader Open Reader, 
l"Rut Card from and Proclib Open Praclib. 

IWA to Gatten DCB'. Complete Reader 
Buffer Restore 

to Start 
Processing 

238 



Chart 31. System OUtput Writer Control Flow 

C3 From System T cnk 

Entry from 
Control Routine 

IEESD591 
(Chart 33) 

lLink 

D3 

IEFSDoeo 

Writer 
Initialization 

L 
j, f3 

IEFSDOI!l 

CI_nam. Setup MODIFY 
Command 

I 
F2 -, F3 

IEFSD084 IEFSD0I!2 IEFSDOI!3 F4 STOP 
FS 

No Command CommancL ) r---- Re""n 
Wait Routine Work 

Main Logic ECB Command lIoutine or I/O \ Control lIoutine Posted Error 

G2 
1 Entry Dequeued 

G3 

IEFSD079 IEFSD078 32Bl 

'---
Entry LInk 

Job D.I.t. Dato S.t 
Routine 

Finished Processor 
Return 

H2 
I link 

Return H H4 

IEFSDOBS 32M IEFSD086 3282 
Optional User Link Link 

Routine Data Set Return 5MB Processor Return Processor 

Appendix C: Flowcharts 239 



Chart 32. System Output Writer 

240 

IEFSD088 Cl 

Create Header 
of Trailer 

Record. 

Ves 

Decision is 
in IEFSD086 

N 

5MB Get Routine 
U .. IEFQMRAW to 

Read 

v.,. 

02 

Control 
Character 

Translation and 
Put 

Delete Spoce on 
Job Queue 

Ves 

J2 

IEFSD0B5 A4 

Set Up for Data 
Set Change 

Forms 

Control 
Chcracter 

Translate and 
Put 

Scratch Data 
Se! if Purge 

Data Allows 

User Program 

The User Program 
Must Incorporate 
the Logic Found 

BS 

in Modules IEFSD087, 
IEFS0088, and IEFS0089. 

IEFSD088 05 

Create Header 
or Trailer 

Records 

Decis10n is 
in IEFS0087 



Chart 33. system Task Control 

A2 

I "terFace to 
Maintain lIT 
in Supv State 

XCTL 

Link 

Supervisor Stare 

A3 

1"1 E:;.F.:;SO:..:5;,:8;:;,8 -----I LO,nk 
Interface to 

Maintain lIT 
in Supv State 

Interface to 
Maintain I/T 
in 5upv State 

XCTL 

Note 

Enter at 
Point A2 to 
Use Large 
Partition to 
Terminate Writer 

----------------------------------------~-------

01 
Problem Program State 

03 

IEFS0534 IEEVSTAR 
02 

IEEVJCL 
XCTL Branch 

LPSW Getmain 
Start Syntax 

JCL 8uild Check 

~ ~n ~ 1 XCTL E3 
Error E4 

Link 
J4 IEEVRCTL 

Reader Control Reader/ 

Interface Return Interpreter 

1 XCTL 
F3 

Linlc 
F4 

IEEVACTL 

~ Allocate I/O Device 
Error ,Control Allocation 

Interface 
Return 

1 XCTL 

G3 
G2 IEES0590 

( Exit to '~ If Small ( From I EFS0599 
IEFS0515 

Error Write Tiot Partition 
Writer 

Link T Inltiatio i Large ®i Writ.r 

t~rtitjon H3 H4 

n of 

HI 
Small 

H5 Partition IEES0591 
Exit to Writer Reader or Link Exit to 

Writer Abend 
IEFS0599 &rar Retum L ink or Routi ne If Small IEFS0599 

Partition 

G-i 
Writer 

BI J2 J3 J4 

IEFS0535 IEEVTCTL IEES0592 Return to 

0-- XCTL ~ 
Calling 

Tenninate 

~ 
Post Small Routine 

LPSW Contra I Partition at 82, 83, 
or 84. 

Appendix c: Flowcharts 241 



Chart 34. Abnormal Termination 
A3 

~C SliH 

Invalid subtask recursion 
IGCOOOlC B3 

DAR recursion or invalid job step recursion 

! 

IEANTMOO 
OPEN, CLOSE, 

B2 Determine Type ABDUMP message recursion 

of Termination 

ABTERM 

IGCOlOIC C3 C5 
IEANTMOI ( Valid I! Graphics ! DAR 

STAE Issued Cl User Resume C2 Purge IQEs, TQEs, 
SPIE, STAE, and 

( IEASTMll ( User 
Transient Areas 

IGCB01C D3 ICG0201C D4 System Task or 

With MCS This ) 
I IEANTMOB I r IEANTM02 I "Must Complete II 

Module Nome - - - Purge WTOR Requests 1 Purge I/o Requests 
is IEACTMOB 

IIGC0901C 1 
IGC030lC E3 E4 

IEANTM03 
IEANTM09 

1 1 Validity Check Process Recursion 

I 
IGC0401C t F3 

IGC050lC F2 IEANTM04 IGCOAOIC F4 

'.Mm_w" .... } IEANTM05 
Insufficient Main 

I IEANTMOA 1 Storage Subtasking This Module 

-I OPEN Dump 
Full Dump Determine Type 

Steal Needed 1 Name is IEAMTM05 
Doto Set I of Dump Required 

~P 1 Mai n Storage 

Indi cative Dump 

IGC0601C G2 
IEANTM06 IGC080lC G3 

I I I IEANTM08 I 
Snap Dump 

B!Jild Indicative 
Dump 

IGCOC01C H2 
H3 

I IEANTMOC I Subtask Terminating Decision 
Job Step Terminating 
Wi thout Subtaski n9 

1 
Purge Loading 

I 
Made in Dump 

Programs Routines 

ENQ Purge Needed for Subtasks ENQ Purge Not Needed for Subtosks No Subtasks 

IGC070lC J4 
IGCODOIC J2 IGCOEOlC J3 IEANTM07 
I IEANTMOD I I IEANTMOE I 

I Purge Subtask 
Close All Data 

I Terminate Subtask Sets of Task, 
Resources Sequence IQEs 

Small Partition Scheduler Size Partition 

SMALLGO ! XCTL GO ~ XCTL 

( Step Deletion ") ( Step Deletion 
Routine IEFSD599 Routine IEFSD515 

242 



Indexes to program logic manuals are 
consolidated in the publication IBM 
System/360 Operating System: Program Logic 
Manual Master Index, GY28-6717. For 
additional information about any subject 
listed below, refer to other publications 
listed for the same subject in the Master 
Index. 

Where more than one page reference is 
given, the major reference is first. 

ABDUMP 40 
ABEND service routine 39-44 
ABEND/STAE interface routine 39 
Abnormal termination processing 39-44 
ABTERM 39 
Access methods 18-19 
Account control table 98 
Accounting routine 91 
ACT (see account control table) 
Active request block queue 49 
Allocate parameter list (APL) 95,101 
Allocate register save area (ARSA) 97,101 
Alternate console 68 
Alternate path retry routine (APR) 60 
APL (see allocate parameter list) 
APR (see alternate path retry routine) 
ARSA (see allocate register save area) 
ASB (see automatic SYSIN hatching) 
ASIR (see ABEND/STAE interface routine) 
Assign/Start routines 83-84 
ATTACH routine 45-46,49 

MFT with subtasking 45-46 
MFT without subtasking 45 

Automatic commands 26,66 
Automatic SYSIN batching 82 

BBX (see boundary box) 
BLDL routines 19 
Boundary box (BBX) 57.,20 

CANCEL command 73,72 
Catalog management 19,24 
CCH (see Channel-check handler) 
CHANGE PRIORITY macro instruction (see CHAP 
routine) 

Channel-check handler (CCH) 60,59 
CHAP routine 46 
Checkpoint/Restart 60-61 
Command input buffer (CIB) 57 
Command processing 67,72-74 
Command scheduling control block 

(CSCB) 111-114,91 
chain 75 
creation routine 73,56,26 

Communication task 67-72.,57,64 
control flow 70 
dispatching 34,36 
SVC 72 69 

Index 

Communication vector table (CVT) 28-32,22 
Contents supervision 48-58 

MFT with subtasking 49-54 
MFT without subtasking 54-58 

Control program functions 19-20 
(also see data management., job 
management, and task management) 

Control program organization 19-20 
non-resident portion 20 
resident portion 19 

Core storage 
(see main storage hierarchy support) 

CSCB (see command scheduling control block) 
CVT (see communication vector table) 

DADSM (see direct access device space 
management) 

Damage Assessment routine 44-45 
DAR (see Damage Assessment routine) 
Data control block (DCB) 23,81 
Data event block (DEB) 81 
Data set 23-24 
Data set block (DSB) 103 
Data set control block (DSCB) 23 
Data set descriptor record (DSDR) 97 

(also see checkpoint/restart) 
Data set enqueue table (DSENQ) 96,115 
Data set input stream 23 
Data set integrity 96 
DCB (see data ccntrol block) 
DDR (see dynamic device reconfiguration 
routine) 

DEB (see data event block) 
DEFINE command processing 73,77-80 
Defining control program areas 26 
Definition routines 77-80 
DELETE routine 

MFT with subtasking 56 
MFT without subtasking 50 

Delete operator-message (DOM) macro 
instruction 64,67#71 

DEC macro instruction 48,86 
DETACH routine 46-47 
Dequeue 

queue manager dequeue routine 86 
supervisory routine 48 

Device allocation 24 
Direct access device space management 

(DADSM) 19,24 
Direct system output control block 

(DSOCE) 96 
Direct system output processing 

(DSO) 103-104 
job initiation 96 
step deletion 100 
step initiation 97 

Dispatcher 29-38 
with time-slicing 37-38 
without time-slicing 29-37 
(also see corr.municaticn vector table, 
task control block, and task 
dispatching) 

Index 243 



Dispatching queue 17 
DISPLAY command 72,76,65 

(also see command processing) 
DOM macro instruction (see delete 
operator-message macro instruction) 

DSB (see data set block) 
DSCB (see data set control block) 
DSDR (see data set descriptor record) 
DSENQ (see data set enqueue table) 
DSNAME parameter 96 
DSO (see direct system output processing) 
DSOCB (see direct system output control 
block) 

Dynamic area 20,17 
partition organization 17 

Dynamic device reconfiguration routine 
<nOR) 60,30,51 

ECB (see event control block) 
ECB/IOB 75 

(also see event control block and 
input/output block) 

ElL (see event indication list) 
End-of~task exit routine 45-46,39 
End-of-task routine" 39,38 
End-of-volume 

(see open/close/end-of-volume) 
ENQ macro instruction 48 
ENQ/DEQ Purge routine 101 
ENQ/DEQ routine 48 
Enqueue 

queue manager enqueue routine 86 
supervisory routine 96 

Entering commands 69 
Entry to job management 

after IPL 66 
following step execution 67 

EOT (see end-of-task routine) 
EOV (end-of-volume) 

(see open/close/end-of-volume) 
Error handling 59-60 
ETXR (see end-of-task exit routine) 
Event control block (ECB) 45,69 
Event indication list (ElL) 70 
Exit routine 38-39,29 
EXTRACT routine 

MFT with subtasking 47 
MFT without subtasking 47 

FINCH request block (FRB) 54 
FINCH routine 50-54 

I/O error handling 51 
SVC transient area loading 51-54 

Fixed area 17,20 
(also see input/output error handling, 

SVC transient area, SVCLIB partitioned 
data set, and system queue area) 

FRB (see FINCH request block) 
Free track queue 82 
FREEMAIN macro instruction 56-57 

GOG (see generation data group) 
General system initialization 26,74-75 
Generation data group (GOG) 199 

244 

GETMAIN macro instruction 56-57 
unconditional 57 

Gotten area subtask queue element 
(GQE) 57-58 

Graphic console 72 
GQE (see gotten area subtask queue element) 

HALT command 65,72 
Hierarchy support (see main storage 
hierarchy support) 

High water mark (HWM) 61 
HOLD command 65 
HWM (see high water mark) 
HO (see main storage hierarchy support) 
H1 (see main storage hierarchy support) 

I/O supervisor (see input/output 
supervisor) 

IDENTIFY routine 50 
Inactive partition 31 
Initial program loading (IPL) 19,20 
Initiating system tasks (see systemCtask 
control) 

Initiator/Terminator 90-102 
(also see data set integrity, ENQ/DEQ 
purge routines, job deletion, job 
ini tiation, job selection" small 
partition scheduling, and step 
deletion) 

Input job queue 81-85,91 
Input stream 

data sets 23 
Input/output 

device allocation 24 
error handling 59-60 
supervisor 19 

Interlocks, system 86 
(also see queue manager) 

Interpreter entrance list (NEL) 89,105 
Interpreter work area (IWA) 115-123,89 
Interruption queue element 39 

(also see task dispatching and task 
sllOitching) 

Interruption request bleck (IBE) 49 
Interruption supervision 29 
lOS (see input/output superviscr) 
IPL (see initial program loading) 
IQE (see interruption queue element) 
IRB (see interruption request block) 
IWA (see interpreter work area) 

JCL (see job control language) 
JCLS (see job control language set) 
JCT (see job control table) 
JFCB (see job file control block) 
JFCBX (see job file control block 
extension) 

JMR (see job management record) 
Job class 82 
Job control language (JCL) 104 
Job control language set (JCLS) 105 
Job control table (JCT) 124-125,23,86 
Job deletion 101,95 
Job file control block (JFCE) 126-127,23 
Job file control block extension 

(JFCBX) 187 



Job initiation 96 
(also see step control table) 

Job management 64,23 
control flow 66 
job scheduler fUnction 64 
(also see command processing, 
communication task, and master 
scheduler) 

Job management record (JMR) 90,89,98 
Job pack area queue (JP~Q) 54 
Job processing 80 

(also see initiator/terminator, input 
stream, reader/interpreter, START, and 
system output writers) 

Job queue 81-87,75 
initialization 81-82 
(also see queue control record) 

Job scheduler 64 
Job selection 90-91 

(also see command processing, life of 
task block, and partition information 
block) 

Job step timing 33 
POST routine 48 
small partition module 95 
step deletion 100 
step initiation 96-97 
timer SLIH 58 
WAIT routine 47-48 

Job stream (see input stream) 
·1 Job termination 25 

(also see job deletion) 
JPAQ (see job pack area queue) 

Large partition 90 
LCS (see main storage hierarchy support) 
LCT (see linkage control table) 
Life of task block (LOT) 127-128 
Link library option (see resident 
reenterable routine area) 

LINK routine 
MFT with subtasking 54 
MFT without subtasking 49 
(also see ATTACH routine) 

Link pack area (LPA) 
(see resident reenterable routine area) 

Link parameter list (LPL) 92 
Linkage control table (LCT) 127,129,101 
LINKLIB partitioned data set 19 
LOAD routine 

MFT with subtasking 56 
MFT without subtasking 50 

Loaded program list 49 
Loaded program request block (LPRB) 49 
Loaded request block (LRB) 49 
Local work area (LWA) 89 
Log task 30,72 
Logical track 82-87 
Logical track header (LTH) 83 
LOT (see life of task block) 
Low water mark (LWM) 61 
LPA (link pack area) (see resident 
reenterable routine area) 

LPL (see link parameter list) 
LPRB (see loaded program request block) 
LRB (see loaded request block) 
LTH (see logical track header) 

LWA (see local work area) 
LWM (see low water mark) 

M/S resident data area (see master 
scheduler resident data area) 

Machine check handler (MCB) 59 
Main storage hierarchy support 20 
Main storage initialization 27-28,74-75 

(also see job queue initialization, 
master scheduler initialization" 
nucleus initializatton program, and 
READY message) 

Main storage organization 19 
Main storage supervision 29,56 
Master scheduler task (MST) 72-80 

dispatching 34,36 
initialization 22,.74-75 
resident data area 127-132,.57 
(also see SVC 34 and task control block) 

MCH (see machine check handler) 
MCS (see multiple console support) 
MODE command 72,65 
MOUNT command 73,72,65 
MST (see master scheduler task) 
MSTCON (master console) (see VARY command) 
Multiple console support (MCS) 71-72 
Must complete 48 

NEL (see interpreter entrance list) 
NIP (see nucleus initialization program) 
No work ECB 86 
Nondispatchable tasks 32 
Nonresident 

readers (see transient reader) 
SVC routines (see SVC transient area) 
writers (see system output writers) 

Nucleus 20,26 
Nucleus initialization program (NIP) 26 

(also see general system initialization) 

ONGFX/OFFGFX (see VARY command) 
ONLINE/OFFLINE (see VARY command) 
OPEN macro instruction 103 
Open/close/end-of-volume 19 
Output work queue 81,103 
Output writer 102-104 
Overlay supervision 59,29 

Partition 17,56 
definition 77-80 
organization 20-21 
recovery 101-102 
task control block 30-31 

Partition information block 
(PIB) 132-134,26,90 

location 45 
Passed data set queue (PDQ) 139 
PDQ (see passed data set queue) 
PIB (see partition information block) 
PIE (see program interrupt element) 
POST routine 48 
PRB (see program request block) 
Priority 

dispatching 17-18 
job 82 

Index 245 



Program interrupt element (PIE) 39 
Program request block (PRB) 49 
Program status word (PSW) 60 
Protection keys, storage 18,20,29 
PSW (see program status word) 
Purge routine 101 

QCB (see queue control block) 
QCR (see queue control record) 
QEL (see queue element) 
QMPA (see queue manager parameter area) 
Qname 48 
Queue control block (QCB) 48 
Queue control record (QCR) 75,81-88 
Queue element (QEL) 48 
Queue manager 81-88 

functions 81 
job queue initialization 81-82 
parameter area (QMPA) 83 
(also see input work queue and output 
work queue) 

Queues (see free track queue, input work 
queue, job queue, output work queue, and 
task control block) 

RAM (see resident access method) 
RB (see request block) 
Reader/Interpreter 88 

resident reader 88 
transient reader 88 
(also see input stream, input work 
queue, and system task control) 

READY message 74 
Recording/Recovery routines 59-60 

(also see Damage Recovery routines) 
Recovery management 59 
RELEASE command 65,73 
Remote job entry (RJE) 81,82 
Reply queue element (RPQE) 69 
Request block (RB) 39 
RESET command 65,73 
Resident access method (RAM) 19 
Resident reenterable load module option 19 
Resident reenterable routines 19 
Resident SVC (RSVC) area 19,50 
Restart reader 90-91 
RJE (see remote job entry) 
Rname 48 
RPQE (see reply queue element) 
RSVC (see resident SVC) 

SCD (see system output class directory) 
Scheduler (see initiator/terminator) 
SCT (see step control table) 
SDT (see start descriptor table) 
SER (see system environment recording) 
SEREP (see system environment recording) 
SET command 23,65 
SlOT (see step input/output table) 
SIRB (see system interruption request 
block) 

Small partition 

246 

information list (SPIL) 135,90 
module 93-95 
scheduling 92-95 

SMCA (see system management· control area) 
SMF (see system management facility) 
SPIL (see small partition information list) 
SQA (see system queue area) 
STAE (specify task asynchronous exit) 
service routine 39 

START command 26,65,.73 
Start descriptor table (SDT) 104 
STC (see system task control) 
Step control table (SCT) 136,138,96 
Step deletion 100-101 
Step initiation 93 
Step input/output table (SlOT) 137-140,23 
Step termination (see step deletion) 
STlMER macro instruction 58,33 
STOP command 72 
Storage protection (see protection keys) 
subpool 255 (see system queue area) 
subpools 57 
Supervisor request block (SVRB) 49 

XRBNMfieid 32 
SVC second level interruption handler (SVC 

SLIH) 38,29 
SVC transient area (see transient area) 
SVC 34 72,36 
SVC 35 68,71 
SVC 52 61 
SVC 72 69,36 
SVC 83 107 
SVC 90 88,81 
SVCLIB partitioned data set 19 
SVRB (see supervisor request block) 
SWAP command 60,65,72 
SYNCH routine 50 
Syntax check 

DEFINE command 77 
master scheduler 75 

SYSOUT limiting (see system management 
facility - EXCP counting) 

System area' (see fixed area) 
System environment recording 59 
System error task 30 
System initialization 26,74-75 
System input readers (see 
reader/interpreter) 

System interruption request block 
(SIRB) 49 

System management control area (SMCA) 100 
System management facility 

job management processing 
comparison of MFT and MVT 107 
data sets 106 
dump routine 106,107 
initialization 107-110,75 
records 107 
step initiation routine 96-97 
storage configuration record 80 
SVC 83 107 
TCTIOT construction routine 99-100 
user initiation exit routine 98 
writer 110 

supervisor processing 
EXCP counting 61,62 
in the timer SLIH 58 
SMF ro~tines 62-63 
storage usage recording 57,61 
system wait time recording 33,61,62 
task control block 30 



supervisor processing (continued) 
time/output limit 

expiration 61,62-63 
System output class directory (SCD) 96 
System output writers 102-104 

nonresident 102 
resident 102 

System queue area (SQA) 56-57,20 
boundary box 57 

System restart 106 
System task control (STC) 104-106 
System wait time (see system management 
facility) 

Table breakup parameter list 87 
Table Breakup routine (TBR) 86-87 
Table queue control record (TQCR) 87 
Task control block (TCB) 45,56 

dispatching priorities 17-18 
TCB queue 26,30-32 
TCBRBP field 26,32 
TCBFLGS field 26 
TCBTCB field 17,31 

Task creation 81 
Task dispatching 29-38 
Task input/output table (TIOT) 139,141 
Task management 18 

(also see contents supervision, 
interruption supervision, main storage 
supervision, overlay supervision, task 
supervision, and timer supervision> 

Task supervision 45 
Task switching 35,29 
TBR (see Table Breakup routine) 
TCB (see task control block) 
TCB/RB queue 51,54 
TCT (see timing control table) 
TCTIOT (see timing control task 
input/output table) 

Terminator routines 95-96 
(also see initiator/terminator) 

TIME BIN macro instruction 98 
TIME macro instruction 58 

Transient area 
contents field 32 
I/O supervisor 20 
loading task 51-53 
request queue 54,55 
SVC 20,51-54 

Transient queue management routines 88 
Transient reader 88 

system assigned 88 
user assigned 88 

TSCE (see time slice control element) 
TSLIH (see timer second level interruption 
handler) 

TTIMER macro instruction 58 

UCB (see unit control block) 
UCM (see unit control module) 
Unit control block (UCB) 69 
Unit control module (UCM) 69 
UNLOAD command 72 
UPL (see user's parameter list) 
User options 19 

(also see BLDL list, residen~ access 
method, resident SVC, and system queue 
area) 

User's parameter list (UPL) 99 

Validity check 79 
Volume table (VOLT) 23 
Volume table of contents (VTOC) 22 
VTOC (see volume table of contents) 

WAIT routine 47-48 
WQE (see WTO queue element) 
Write-to-operator (WTO) 

macro instruction 68-72 
queue element (WQE) 71 

Time slice control element (TSCE) 
Time-slicing 79,29,32 

CVTTSCE field of CVT 32,29 
dispatcher 37-38 

37-38, 32 1 
reply queue element (WTOR) 68 

Write-to-programmer (WTP) 
control block (WTPCB) 141,104 
processing 71,68 

Timer second level interruption handler 
(TSLIH) 58 

Timer supervision 58 
timer pseudo clock 59 
timer queue element (TQE) 58 

Timing control table (TCT) 98 
Timing control task input/output table 

(TCTIOT) 99-100 
TIOT (see task input/output table) 
TQCR (see table queue control record) 
TQE (see timer supervision timer queue 
element) 

Track stacking 83 

Writer (see system output writers) 
WTO (see write-to-operator) 
WTOR (see write-to-operator reply queue 

element) 
WTP (see write-to-programmer) 
WTPCB (see write-to-programmer control 

block) 

XCTL routine 50 
XSNTCC (see transient area contents field) 

I 7094 emulator program 38 

Index 247 



GY27-7128-5 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.10BOl 
IUSAOnly] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
!International] 



. . 
, 

., 

, 

READER'S COMMENT FORM 

IBM System/360 Operating System 
Control Program With MFT 
Program Logic Manual 

Order No. GY27-7128-5 

• Is the material : Yes No 
Easy to read? ............ ........................................................................... D D 
Well organized? ...... ...... ..... .. . ............. .......................... D D 
Complete? ............................................................................................ D D 
Well illustrated? .... ................ ......................... .................................. D D 
Accurate? .. ................ ............ D D 
Suitable for its intended audience? . . . .................................. D D 

• How did you use this publication? 
D As an introduction to1he subject 
D For additional knowledge 

Other .................... . 

• Please check the items that describe your position: 
D Customer personnel D Operator 
D IBM personnel D Programmer 
o Manager D Customer Engineer 
D Systems Analyst D Instructor 

D Sales Representative 
D Systems Engineer 
D Trainee 
Other. 

• Please check specific criticism ( s ), give page number ( s ), and explain below: 
D Clarification on page ( s ) D Deletion on page ( s ) 
D Addition on page ( s ) D Error on page ( s ) 

Explanation: 

• Thank you for your cooperation, No postage necessary if mailed in the U.S.A. 



-'"' 
GY27-7128-5 

YOUR COMMENTS I PLEASE . . . 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers and operators of IBM systems. Your answers to the questions on the back 
of this form, together with your comments, will help us produce better publications for 
your use. Each reply will be carefully reviewed by the persons responsible for writing 
and publishing this material. All comments and suggestions become the property of IBM. 

Note: Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Attention: Programming Systems Publications 
Department 058 

POSTAGE WILL BE PAID BY ••• 

IBM Corporation 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

Fold 

FIRST CLASS 
PERMIT NO. 81 
POUGHKEEPSIE, N.Y. 

------------------------------------------------
Fold 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.IOSOI 
IUSAOnly) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
!International) 

Fold 



.. 
· · · · 

READER'S COMMENT FORM 

· IBM System/360 Operating System 
Order No. GY27-7128-5 · Control Program With MFT . 

'. 

· 

· . 

· · 

· · · . 

· . 

· 
· 
· 
· 

Program Logic Manual 

• Is the material: Yes No 
Easy to read? .............................................................................. . o 0 
Well organized? ................................................................................ . o 0 
Complete? ......................................................................................... . o 0 
Well illustrated? ..... ...... ...... .............. .... ....... . ......................... . o 0 
Accurate? ....................................................... . .................. . o 0 
Suitable for its intended audience? ..................... . o 0 

• How did you use this publication? 
o As an introduction to the subject Other ........................................................ . 
o For additional knowledge 

• Please check the items that describe your position: 
o Customer personnel 0 Operator 
o IBM personnel 0 Programmer 
o Manager 0 Customer Engineer 
o Systems Analyst 0 Instructor 

o Sales Representative 
o Systems Engineer 
o Trainee 
Other .. 

• Please check specific criticism ( s ), give page number ( s ), and explain below: 
o Clarification on page ( s ) 0 Deletion on page ( s) . 
o Addition on page ( s ) . . . . . . . . . . . 0 Error on page ( s ) 

Explanation: 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



-~ GY27-7128-5 J )<J 
YOUR COMMENTS I PLEASE 0 01 0 /"//.,.. // 

;' J". ~ \ ~ 
. '. "" '-./ 

This manual ispa.rt of a.lib~ary that serves as a rMerence source for syste~ analysts, 
programmers and operators of mM systems. Your answers to the questions on the back 

jf pf this form, together with your comments, will help us produce better publications for 
. your use. Each reply will be carefully reviewed by the persons respOnsible for writing 
an~ publishing this material. All comments and suggestions become the property of mM. 

,7 , 

Note: Please direct any requests for copies of publications, or for assistance in using your 
mM system, to your IDM representative or to the IDM branch office serving your locality. 

Fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Attention: Pfl)9ramming Systems Publications 
Department 058 

Fold 

POSTAGE WILL BE PAID BY ••• 

IBM Corporation : 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N. Y.lOSOl 
IUSAOnly) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, NewYorklO017 
(International] . 

Fold 

FIRST CLASS 
PERMIT NO. 81 
POUGHKEEPSIE, N.Y. 

Fold 

I. 
I 
I 
I 
I 
1 
I 


