
o

'£"'.
-,~j ..

IBM System/360 Operating System

MVT Supervisor

Program Number 3605-CI-535

File No. S360-36
Form Y28-6659-3

Program Logic

This publication describes the internal logic of the
MVT supervisor. The MVT supervisor is one part of the
control program of the IBM System/360 Operating System.
The supervisor controls the basic computing system and
programming resources needed to perform several data
processing tasks concurrently. Specifically, it was de
signed to:

• Handle interruptions.
• Supervise tasks.
• Control programs in main storage.
• Control main storage itself.
• Supervise the timer.
~ Supervise console communications and the

system log.
• Handle checkpoint restarts.
• Supervise exiting procedures.
• Supervise termination procedures.

Program Logic Manuals are intended for use by IBM
customer engineers involved in program maintenance, and
by system programmers involved in altering the program
design. Program logic information is not necessary for
program operation and use; therefore, distribution of
this manual is limited to persons with program mainte
nance or modification responsibilities.

The information in this publication applies only to
systems capable of multiprogramming with a variable
number of tasks (MVT).

Restricted Distribution

RESTRICTED DISTRIBUTION: This publication is intended
primarily for use by IBM personnel involved in program
design and maintenance. It may not be made available
to others without the approval of local IBM management.

Fourth Edition (November, 1968)

This 'edition corresponds to Release 17 of System/360
Operating System and obsoletes Y28-6659-2. It provides
information concerning the Main Storage Hierarchy Sup
port, Model 91, Checkpoint/Restart, and Multiprocessing
special features. It also provides information con
cerning the STAE macro instruction and fail soft
changes to the ABEND routine.

New or modified text is
the left of the change.
illustration caption
illustJ:ation.

indicated by a vertical line to
The symbol • to the left of an

indicates a new or modified

Significant changes or additions to the specifications
contained in this p~catiOD are continually being
made. When using this pUblication in connection with
the operation of IBM equipment, check the latest SRL
Newsletter for revisions or contact the local IBM
branch office.

This public~tion was prepared for'production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print train.

Copies of this and other IBM.publications can be obtained through IBM
branch offices.

A form for reader's comments appears at the back of this publication.
Address any additional comments concerning the contents of this
publication to IBM Corporation, Programming Publications, Department
637, Neighparhood Road, Kingston, New York 12401

C copyright International Business Machines Corporation 1967,1968

c

c

The information in this publication is
organized to enable you to read selective
ly: for an overview of a function per
formed by the MVT Supervisor, or for the
details of how that function is performed.
The "Introduction" section describes the
general operation of the MVT Supervisor.
The following sections: "Interruption Han
dling," "Task supervision," "Contents
Supervision," and so on, describe functions
first in general terms, and then in detail.

Many special features have been made
available under the System/360 Operating
System, and more are planned for future
releases. Release 15 included the Rollout/
Rollin feature; Release 16 added the Time
Slicing, Shared Direct Access Storage
Device, and 2250 System Operator's Console
features; Release 17 adds the Multiprocess
ing, Main Storage- Hierarchy Support, and
Model 91 features. A brief description of
the purpose and function of each is pro
vided in the Introduction section. Modifi
cations to MVT Supervisor operation are
indicated throughout the document; addi
tional detailed information if required, is
contained in Section 11: Special Features.

Your reading of this PLM will be aided
by the reference information that appears
in the sections at the back of the book.
The sections consist of "Control Blocks and
Tables," "Program Organization," and "Flow
Charts." The tables in the "Program
Organization" section tabulate varied
information about each supervisor routine:
entry point name, routine name, module
name, library name, invoking macro instruc
tion, etc.

Note: The area of main storage used exclu
sively by system routines is called, in
this manual, "supervisor queue area" or
"supervisor queue space. n In MVT Control
Program Logic Summary it is called "system
queue area."

PREREQUISITE PUBLICATIONS

IBM System/360 Operating System:

MVT Control Program Logic Summary, Form
Y28-6658

Supervisor and Data Management Services,
Form C28-6646

PREFACE

Supervisor and Data Management Macro
Instructions, Form C28-6647

Messages and Codes, Form C28-6631
(useful for the formats and meanings of
error codes)

PUBLICATIONS TO WHICH THE TEXT REFERS

IBM System/360 Principles of Operation,
Form A22-6821

(referred to in nInterruption Handling")

IBM System/360 Operating System:

Job Control Language, Form C28-6539
(referred to in "Abnormal Termination")

Linkage Editor, Program Logic Manual,
Form Y28-6610
(referred to in "Contents Supervision")

Linkage Editor, Form C28-6538
(referred to in "Contents Supervisionn)

MVT Job Management, Program Logic Manu
al, Form Y28-6660
<referred to in "Task supervision" and
"Checkpoint/Restartn)

I/O supervisor, Program Logic Manual,
Form Y28-6616
(referred to in the description of the
Program Fetch routine in • Contents
Supervision", in the description of the
rollout/rollin Start Transfer routine in
"Main storage Supervision", and in
·Interruption Handler")

Machine-Check Handler, Program Logic
Manual, Form Y27-7155
(referred to in "Interruption Handler")

System Generation, Form C28-6554
(referred to in "Interruption Handlern)

Utilities, Program
Y28-6614 (referred
Handler n)

Logic Manual, Form
to in "Interruption

IBM System/360 Component Descriptions, Form
A26-5988

(referred to in the description of the
rollout/rollin Start Transfer routine in
"Main Storage Supervision")

Preface

CONTENTS

SECTION 1: INTRODUCTION • • • • • •••••• 13
Task supervision • • • • • • • • • • • • • • • • 14
Contents supervision • • • • • • • • • • • 16
Main Storage Supervision • • • • • • • • • • • • • • 16
Timer Supervision. • • • • • • • • • • • • • • • • 17
Console Communications and System Log • • • • • • •• 17
Recording and Using Checkpoints. • • • • • • • • • • • • 17
Exiting Procedures • • • • • • • 18
Task Termination • • • • • 18
Special Features •••• • •• • • 18

Time Slicing • • • • • • • • • 18
Shared Direct Access Device •• • • • • • • • • 18
2250 System Operator's Console • 18
Rollout/Rollin •• • • • • • ~ • • • • 18
Multiprocessing • • • • • • • • • • • • • 18
Main storage Hierarchy Support •••••••• • 19

SUIIID.ary • • • • • • • • • • • • •

SECTION 2: INTERRUPTION HANDLING • • • • •
SVC Interruption Handling • • • •

Main Functions ••••••••••••
Saving the Status of the Interrupted Calling Routine
Ensuring That Both CPUs in a Multiprocessing System do not
Perform Supervisor Routines Simultaneously •• • • •
Determining Whether a Supervisor Request Block is Needed
Constructing, Initializing, and Queuing the SVRB • • • • •
Determining if the SVC Routine is Normally Resident in Main

• • • 19

• 21
• 21
• 21
• 21

• • • 22
• • 23

• 23

storage . 24
Fetching a Nonresident Routine From Auxiliary Storage • • • • • • 25
Deferring the Request • • • • • • • • • • • • '. • • • • • 28
Restarting Deferred Requests • • • • • • • 29
Minor Functions of SVC Interruption Handling • 29

Program Interruptions • 29
Multiprocessing Program Interruption Handler • • • 30
Model 91 Program Interruption Handler •• • • • • • 31

Handling Decimal Instructions • • • • • • • • • • • • • • 31
Entry From the Testran Interpreter • • 31

External Interruptions • • • • • • • • • • 31

I Uniprocessing System • • • • • • • • • • • 31
Multiprocessing System • • • • • • • • • • 32

Input/Output Interruptions • • • • • • • • • 33
Machine Interruptions • • • • • • • • 33

System Environment Recording • • • • • 34
SERO • • • • • • • • • • • • • 35
SERl • • • • • • • • • • • • • • • • • • 36

Machine-Check Handler for Model 65 (MCH/65) • • • • • • 37

SECTION 3: TASK SUPERVISION • • • • • 39
Services Directly Related to a Task Control Block • • • • • • 39

Attaching a subtask • • • • • • • • • • • • • • • • • • 39
Obtaining Storage Space • • • • • • • • • • • • • 40
Initializing the IQE, IRB, and TCB • • • • • • • • • 41
Propagating Fields From theTCB of the Attaching Program • • 41
Placing Parameter Information in the Fields of the Subtask TCB • 42
Special processing for Time Slicing • • • • • • • • • • • 42
Allocating Subpools of Main Storage to the Subtask • 43
Placing the Subtask TCB on Its Queues • • • • • • • • • • 43
Indicating to the Dispatcher the Need for a Task Switch • 44
Preparation for the Dispatching of the Caller and the Fetching
of the Specified Program • • • • • • • • • • •

Changing the priority of a Task • • • • • • • • •
Extracting Information From a Task Control Block

• 44
• 45
• 47

1

Detaching a Subtask • • ",' • • • • • • • • • • • •
Services Indirectly Related to a Task Control Block

Specifying a Program Interruption Exit Routine
Synchronizing a Program With One or More Events •

causing a Program to Wait for One or More Events

• 49
• 50

• • • 51
• 52
• 53

Indicating the Occurrence of an Event and Restarting a Waiting
program • • • • • • • • • • • • • •

Serializing the Use of a Resource • • •
Types of Resource Requests • • • • • • • • • •
Description of the Resource Queues
Requesting One or More Resources
Signaling That the Use of One or More Resources is Complete

Scheduling a User Exit Routine • • ••
The Stage 1 Exit Effector (CIRB Routine)
The Stage 2 Exit Effector •••••••
The stage 3 Exit Effector • • • • • ••
The Exit Routine • • • • • • • • • • •

• 55
• 58
• 58

58
• 61
• 66
• 70
• 72
• 72
• 72
• 74

Specifying A Task Asynchronous Exit Routine • • 76
The STAE Service Routine • • • •
ABEND/STAE Interface 1 Routine (ASIR1)
ABEND/STAE Interface 2 Routine (ASIR2)
ABEND/STAE Interface 3 Routine (ASIR3)

• 76
• 77

• • • 78
• • 79

Services Internal to the supervisor • • • 80
Testing and Indicating the Need for a Task Switch
Testing the Validity of User-Supplied Addresses •
Changing the status of Tasks •• • • • • • • • •

Setting or Resetting the Nonrolloutable Status
Setting or Resetting the "Must Complete" Status
setting or Resetting Nondispatchability • • • • • • • • • •

Determining the Relative Dispatching Priorities of Tasks
Testing the Dispatchability of Tasks •••••
Initiating An External Interruption In A Second CPU • • • • •

• 80
• 81
• 82

• • • 82
• 82

• • • 82
• 83
• 84
• 84

SECTION 4: CONTENTS SUPERVISION ••••• • • • • • • • 85
The Common FUnctions of contents Supervision • • • 85

General Description of the Common Functions •
Allocation of an Available Module • • • • •
Deferring the Request for an Unavailable Module
Preparing to Fetch a Module • • •
Fetching the Module • • • • • •
Updating the Contents Directory •
Restarting Deferred Requests • • • •

Detailed Descriptions of the Common FUnctions
Searching for the Module

• • • • • • • 85
• 86
• 86
• 86
• 87
• 87
• 87
• 87

• • • • • • • 87
Creating a Contents Directory Entry • •
Testing Module Status • • • • •
Fetching the Module • • • • • • • • • •

• • • • • • • • • • • • • 88

Performing Alias Processing
Deferring a Request • • • • • • • •
Restarting Deferred Requests • • • • •
Scheduling Execution of the Module

• 88
• 89
• 90
• 90
• 90
• 91

Special Functions of contents Supervision • • • • •
Final LOAD Processing • • • • • • • • • •

• 92
• 92

2

Special XCTL Processing • • • • • • • • • • • • • • 92
Processing if the Requestor is a User Program or a User Exit
Routine •• 92

• • • • • 93 Processing if the Requestor is an SVC Routine • • • • •
Informing the Supervisor of an Embedded Module Entry Point
Informing the Supervisor That a Loaded Module Is No Longer Needed

• 97

in Main Storage •
supervising the Loading of Segments of an Overlay Module

Preparatory Linkage Editor Functions • • • •
Functions of the Overlay Supervisor • • • • • • •
Linkage to the Overlay Supervisor • • •
Types of Processing • • • • • • • • • •
Determining the Segments That Must Be Loaded • • • • •
Controlling the Loading of Needed Segments
preparation for an Unassisted Branch to, the Loaded Segment

• 99
.100
.100

• •• 100
.101
.101
.101
.103
.103

()

c

Passing of Control ••••••••
Fetching Routines and Modules to Main

Fetching SVC and I/O Error-Handling
Fetching Nonresident Modules

Storage ••
Routines • • • •

.105

.105

.106

.106

SECTION 5: MAIN STORAGE SUPERVISION • • • .117
Interruption Handling for Main Storage supervision ••••• 118
Allocating Main Storage. • • • • • • • • • • .119

Allocating a Region. • • • • • • • • • • • • • • .119
Allocating Space within a Region • • • • • • • • • • • • • .122

Processing if the Requested Space is Available • • • • .122
Processing if the Requested Space is not Available • • • • .123

Allocating a Borrowed Region Through Rollout ••• j • .127
Determining Whether Rollout Should Be Performed • • .128
Obtaining the Needed Space from Unassigned Storage .129
Obtaining a Job Step Suitable to Be Rolled Out .129
Processing If a Job step Suitable for Rollout Cannot Be Found •• 131
Processing If a Suitable Job Step Can Be Found •• 131
Transferring the Contents of the Selected Region to the Rollout
Data set .
Allocating the Borrowed Region to the Requestor's Job Step
Processing If I/O Error Occurred During Rollout •

.135

.137

.138

.138

.138

.139

.139

.139

.139

.139

.140

Exiting From the Rollout/Rollin Module
Allocating Space in the System Queue Area

subpool 253 Allocation • • • •
subpool 254 Allocation ••• • • • • •
subpool 255 Allocation • • • • •

Freemain Routine • • • • •
Freeing Space Assigned to a Region
Freeing Space Within a Region • • • •
Freeing One or More Borrowed Regions Through Rollin •• 141

.141

.141
• 141
.142
.143
.143

Freeing the Borrowing Job Step's PQE •••••••••••
Determining Whether the Rolled-Out Job Step Should Be Rolled In
Transferring the Rolled-Out Job Step to Main Storage • • • • •
Restarting Deferred I/O Requests for the Rolled-In Job Step • •
Restarting Deferred Operator Replies for the Rolled-In Job Step
Making Dispatchable the Tasks of the Rolled-In Job Step
Performing Final Common Housekeeping .144

.144

.145
Scheduling Deferred Rollout Requests

Freeing Space in the System Queue Area

SECTION 6: TIMER SUPERVISION.
Timer SVC Interruption Handling • • • • •
Time Routine • • • • •
STIMER Routine • • • • • • • • • • •

.147

.147
• ••• 148

The Timer Queue • • . . • • • . • • • • • • • • • • •
.148

• •• 149
.149

• •• 150
.150
.150

Converting Times of Expiration to Intervals • • • • • •
Building Timer Queue Elements • • • • • • • • • • •

Timer Interruption Handling • • • • • • • • • •
Determining What Actions Are to be Performed
Returning 6-Hour and Midnight Elements to the Queue

TTIMER Routine •• • • • • • • • • • •
Determining Remaining Time • • • • •
Canceling an Interval • •• •• • • •

SECTION 7: CONSOLE COMMUNICATIONS AND SYSTEM LOG.
Supporting Console Communications

Reply Processing • • • •
Supporting the System Log • • •

SECTION 8: CHECKPOINT/RESTART
Checkpoint (SVC 63) • • • • • •

Parameter and environment check •
Parameter Check (IGC0006C)
Environment Check (IGC0106C)
JCT Processing (IGC0206C>
CANCEL Processing • • • • • •

Purging I/O Requests ••••

.••• •• 151
.152
.153
.153

• • • • .155
. •••• •• 155

• •• 156
.157

.159
• •• 159

.160

.160

.161

.161

.161

.162

3

Describing Data Set Status • • • • • • • • • • • •
Writing Out the CHR (IGCOA06C) •••• • • • '. •
Building and Writing DSDRs (IGCOD06C) • • • • • • • • • • •

Copying the Region • • • • • • • • • • • • •
Writing CIRs (IGCOF06C) • • • • • • • • • • • • •
Building and Writing SURs (IGCOG06C and IGCOH06C) • • •••

Restoring I/O Requests • • • • • •
Checkpoint Exit Routine • • • • • •

General Clean-up (IGCOQ06C) •
Message Module (IGCOS06C) • • • • • • •

.162

.162

.162

.163

.163

.163
• • .163

.163

.163

Restart (SVC S2) •••••••••••••••••••••
.164
.164
.16S Obtaining and formatting storage • • • •

Obtaining Storage (IGCOOOSC) •••••••••
Checkpoint Data Set Initialization (IGCOI0SB) •

Restoring the step to Main Storage ••• • • • •
Restoring Main Storage (IGCOSOSB) • • • • • •

• •• 165
• •• 16S

• • • • • .16S

SUR Processing (IGC060SB. IGC0705B. IGC080SB. IGC090SB)
.166
.166
.166 JFCB Processing • • • • • • • • • • • • • • •

Table Build Module (IGCOG05B) • • • •
Table complete Module (IGCOI05B) • • ••

Mounting and Verifying Volumes • • • • • • • • •
Non-pirect Access, Processing (IGDOKOSB):
Direct Access Mount/Verify Module (IGCOMOSB)

Positioning Open Data Sets • • • •
Restarting I/O Requests • • • • •
Restart Exit Routine • • • •

.166

.166

.166
• ••• •• 166

• •• 167
• ••••• 167

.168
• •• 168

SECTION 9: EXITING PROCEDURES •••• .169
.169
.169
.170
.170
.171
.171
.173
.174
.174
• 17S

Handling Return From Type-l SVC Routines • • • •
preparing for Return From Programs Other Than Type-1 SVC Routines •

Preparing for Return From a User Program Check Routine
Preparing for Return From Programs Controlled by RBs ••••

If the Returning Routine Is an SVC Routine
If the Returning Routine Is a User Program
If the Returning Program Is a User Exit Routine
Common Processing • • • • • • • • • • • • • • • •

The Transient Area Refresh Routine • • • • • • • • • • •
Dispatching (Performing the Actual Return of Control) • • • • • • •

Determining and Giving Control to the Current Routine of the Task
Next to be Dispatched • • • • • • • • • • • • • • • • • .17S

.176 Normal Dispatcher Processing (Without Time-Slicing) •
Dispatcher Processing with Time-Slicing,(Differences)

Completing the Scheduling of User Exit Routines • • • • •
•• 177

.177
• 177
.178

Handling Task and Job Step Timing • • • • • • • • • • •
Handling Task Timing • • • •
Handling Job step Timing • • • • • .178

SECTION 10: TERMINATION PROCEDURES • .181
.181
.18S

Normal Termination (EOT Routine) • • • • • •
Abnormal Termination • • • • • • • • • • • • • • •

4

Scheduling an Abnormal Termination (ABTERM) • • • • • • •• 186
processing if Specified Task Has Already Been Terminated
processing if the Task Has Already Been Scheduled for Abnormal

.186

Termination. • • • • • • • • • • • • • • • • • .186
processing if the Specified Task is the Job Step Task • • ,. • • .188
Processing if the Specified Task is not the Job Step Task •••• 191
Preparation for ABTERM Processing After a Program Interruption
(ABTERM Prologue) • • • • • • • • • • • • • • • • •

Dumping Selected Areas of Main Storage (ABDUMP) • • •• •
Processing During ABDUMPl (Entry Point IGCOOOSA) •••••
Processing During ABDUMP2 (Entry Point IGCOI05A)
Processing During ABDUMP3 (Entry Point IGC0205A)
Processing During ABDUMP4 (Entry Point IGC030SA)
Processing During ABDUMPS (Entry Point IGC040SA)
Processing During ABDUMP6 (Entry Point IGCOSOSA)
Processing During ABDUMP11(Entry Point IGCOBOSA) •••••
Processing During ABDUMP7 (Entry Point IGC060SA)
Processing During ABDUMP8 (Entry Point IGC0705A) ••••

.192
• •• 193
'. • .194

.196

.196

.196

.197

.198

.199
,.199

•• 200

,,f ~\
'~j

~,./

o

c;

processing During ABDUMP9 (Entry Point IGC0805A) •••••
Cleanup in the Where-to-Go Routine • • • • • •

Performing Abnormal Termination (ABEND Routine) •
Processing During ABEND1 (Entry Point IGC0001C)
Processing During ABEND2 (Entry Point IGC0401C) • •
Processing During ABEND3 (Entry Point IGCOA01C) • • • •

.200

.201

.201

.203

.203

Processing During ABEND4 (Entry Point IGC0101C) • , •••
.205
.209
.214 Processing During ABEND5 (Entry Point IGC0201C) • • • •

Processing During ABEND6 (Entry Point IGC0301C) • • •
Permitting the System to Quiesce (System Quiesce Routine)

SECTION 11. SPECIAL FEATURES • • • •
2250 System Operator's Console ••••

Communication Task Control Flow • • • • •
Unit Control Module Modification ••••
Console Device Support Routines • • • • •

• •• 220
•• 226

.229

.229

.229
• •• 229

.231
Model 91 Decimal Simulator (IEAXOSOO) Routine •

Relationship to the Operating System • • • •
Simulator Organization • • • • • • • • • • • • .• •

. ,. .231
• •• 231

Simulator Control (DECENT) Routine ,. • • • • • • •
Simulator Routine for Add, Subtract, Zero-and-Add Decimal
Instruction (DECASP) ••••••••••••••••••
Simulator Routine for Multiply Decimal Instruction (DECMP)
Simulator Routine for Divide Decimal Instruction (DECDP)
Simulator Routine for Compare Decimal Instruction CDECCP).
Analyzer/End Routine • • • •

.233
• •• 233

.236
• • ,.237

•• 239
.241
.241

SECTION 12: CONTROL BLOCKS AND TABLES • • • • • • • • • .243
SVC Table • • • • • • • • • • • • • • • • ,.21t5
Communications Vector Table (CVT) • • • • • • • .246
Task Control Block (TCB) ••••••• • •••• 250
supervisor Request Block (SVRB) -- for Resident Routine • .254
Supervisor Request Block (SVRB) -- for Nonresident Routine ••••• 255
Interruption Request Block (IRB) ••••• • • • • .256
System Interruption Request Block (SIRB) •• 257
program Request Block (PRB) • • • • • .258
Trace Table (Uniprocessing Systems) • • • • • .260
Trace Table (Multiprocessing systems) • • • • • • • • • • • .261
Transient Area Control Table (TACT) • • • • ..262
Program Interruption Element (PIE) •••• • ••••••• 263
Program Interruption Control Area (PICA) •• '. • • • • • .263
STAE Control Block (SCB) • • • • • • • • • • • .264
Event Control Block (ECB) • • • • • • • • • • • • '. • .265
Parameter List Element (for the ENQ/DEQ routines) • • • • ..266
Major Queue Control Block (QCB) • • • • • •••••••• 267
Minor Queue Control Block (QCB) • • • • • • • • • • • .267
Queue Element (QEL) • • • • • • • • • • • • • • .268
Interruption Queue Element (lQE) ••••• • • • • •• .269
Request Queue Element (RQE) •• • • • • • • • • • • .270
Contents Directory Element (CDE) ••••• • • • • • • • • .271
Load List Element (LLE) • • • • • • • • • • • • • • • '. • ,. • • .272
Partitioned Data Set Directory Entry • • • • • .272
scatter Extent List • • • • • • • • • • • • • '. • .275
Block Extent List and Note List • • • • • • '. .276
Scatter/Translation Record • • • • • .277
Program Fetch Work Area -- (Displacements in Bytes) •••••• 278
Program Fetch Buffer Table • • • • • • • • • •••••• 279
Control Record •• .280
Relocation Dictionary (RLD) Record • • • • • • • • .281
Control and Relocation Dictionary Record • • • • .282
Segment Table • • • • • • • • • • • • • • • • • .283
Entry Table. • • • • • • • • • • • • • .284
Subpool Queue Element (SPQE) • • • • .285
Descriptor Queue Element (DQE) •••••• • • • • .285
Free Queue Element (FQE) • • • • • • •• • .286
Allocated Queue Element (AQE) ••••••• 286
GOVRFLB (Origin list for Main Storage Queues) • • • • • • '. .287
Partition Queue Element (PQE) •••••••••••••••••••• 288

5

Dummy Partition Queue Element (DPQE) •••••••
Relationship of Dummy PQE to TCB and PQE Chain

Free Block Queue Element (FBQE) • • • • • •
Rollout I/O Queue Element (RIQE)
Reply Queue Element • • • • • • • • • • • •
SVC Purge Parameter List • • • •
Timer Queue Element (TQE) • • • • • • •
secondary Communications Vector Table •
ABDUMP Parameter List • • • • • •
Time-Slice Control Element (TSCE) • • • • •
Display Control Module (OCM)

Description of Fields • • • • •
Multiprocessing Communications Vector Table (MPCVT)
Vary Queue Element (VQE) • • • • • • • • •
Fail Soft Storage Element Map (FSSEMAP)
Sample Dump • • • •

SECTION 13: CHARTS

SECTION 14: PROGRAM ORGANIZATION • •
Module Directory • • • • •
Routine Synopses

INDEX •

6

• •••. •• 289
••• 289
••• 289

• • • • • .290·
.290

• ••••• 291
.292
.294

• •••• 295
• •••• •• 296
• • • • .297

• •••••••• 298
• • • • • • .300

• ••••• 300
•• 301

• •••• 302

· · · · .313

.459

· · · · .459
.483

· · · · .493

()

("
' .. -' ,

Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure

Figure

Figure
Figure

Figure
Figure
Figure
Figure

1-1.
1-2.

1-3.
2-1.
2-2.
2-3.
3-1.

3-2.
3-3.
3-4.
3-5.
3-6.

3-7.
4-1.

4-2.

4-3.

4-4.
4-5.

4-6.
4-7.
4-8.
4-9.

Figure 4-10.

Figure 4-11.

Figure 4-12 ..

Figure 4-13.
Figure 4-14.
Figure 4-15.

Figure 4-16.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.

Figure 5-.5.
Figure 5-6.
Figure 5-7.

Figure 5-8.
Figure 5-9.
Figure 5-10.

Figure 5-11.
Figure 5-12.

FIGURES

Overall Flow of the Supervisor • . • • • • . • • . •
Flow of Control After the ATTACH Macro Instruction

13

15
20
22
24
26

is Issued • • • • • • • • • • • . • •• • ..
Processing After an SVC Interruption • • . • • •
Status Savlng by the SVC Interruption Handlers
A Request Block Queue •• •.•••• •••
The Transient Area Queues ••.•••.• .
Queue Relationships Among a TCB, IQE, IRB, and
End-of-Task Exit Routine
TSCE Pointers • • • • •• ••••••.
The Task Control Block Queue • • • • . • • •
The Handling of Shared and Exclusive Requests
The Resource Queues •••••••.••
Determining if the Next Waiting Requestor Should
be Readied •• . • .. • .•..•••.•..
Scheduling of Asynchronous Exit Routines •..•
Subroutine CDSEARCH Uses the Load List and the Job
Pack Queue in its Search for the Module's Name
Further Search by the Common Subroutines of Contents
Supervision if the Module's CDE is not in the Job
Pack Queue • • • • • • • • • • • •
Manipulation of the Caller's RB Queue During
Servicing of an XCTL Request
The Transient Area Queues
Finding an Extent List by Searching the Job Pack
Queue or the Load List • • • • • •
Organization of an Overlay Module
Functional Flow of Overlay Supervision
Use of the Caller's ENTAB to Branch to a Segment
Organization of SEGTAB Entries for a Single-Region
Overlay Structure • • • • . • • • • • • • . • •
Relationships of Program Fetch Routine to Other
Routines for the Fetch of an SVC Routine or an
I/O Error Routine • • •• ••••
Control Blocks and Tables Used by the Program Fetch
Routine ••••••••••. •••• •.
Relationship of Program Fetch Routine to Other
Routines for the Fetch of a Module or Overlay
Segment Module or Overlay Segment • .
Extent List • • • • • • • . • • • • • • • . •
Note List as It Exists in Main Storage
Typical Load-Module Logical Format on Direct-Access
Device • • . • • • . • •• •.••
Overall Control Flow During the Loading of a
Module or Segment .• •••••••.•.•
GETMAIN/FREEMAIN SVC Instructions •.•••
Main Storage Supervision Interruption Handling
Element Relationships: Region Allocation ••.
List Structure for List Form of GETMAIN Macro
Instruction ••• ••••••••••••.
Element Relationships for Intra-Region Allocation
position of Rollout/Rollin TCB on TCB Queue • • •
Relationship of the Rollout/Rollin TCB, PRB, and IRB
During Scheduling of the Rollout/Rollin Task
Scheduling of Rollout: Overall Flow ••.•..•
Steps in the Scheduling of the Rollout/Rollin Task
Interfaces Between Rollout Module and SVC Purge
Routine. • . • • .• • ••••••.••
How lOBs for Deferred I/O Requests are Queued
Element Relationships for System Queue Area
Allocation • • • •• ••••••••••

41
46
47
59
60

• 68
• 71

• 88

89

94
• • 95

• 98
• .100
• .102

.103

.105

.107

.108

.109

.109

.110

· 111

.112

.118

.118
• .121

.122

.123

.124

.125

.125

.126

• .133
.134

.139

7

Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 9-1.
Figure 9-2.

Figure 10-1.
Figure 10-2.

Figure 10-3.

Figure 10-4.
Figure 10-5.
Figure 10-6.

Figure 11-1.

Figure 11-2.

Figure 11-3.

Figure 11-4.
Figure 11-5.

TABLES

Table

Table
Table
Table
Table
Table

Table

Table

Table
Table
Table

Table
Table
Table
Table
Table
Table
Table

2-1.

3-1.
3-2.
3-3.
3-4.
3-5.

3-6.

3-7.

4-1.
4-2.
4-3.

4-4.
4-5.
5-1.
6-1.

10-1.
10-2.
11-1.

Table 14-1.
Table 14-2.

Table 14-3.

8

Timer SVC Interruption Handling . . • . . .
Positioning of Elements on the Timer Queue
Timer Queue Element (TQE) • •
Timer Interruption Handling
Console Support: Input.
Console Support: Output •••••••
Log Functions . . • • • • .
Checkpoint Processing Routines
CHECKPOINT Header Record (CHR)
Restart Processing Routines •
Data Set Descriptor Records (DSDRs)
The Transient Area Queues . • . . .
Locating the Initiator TCB Associated with the

.147

.149
• • .151
• • .152
• • .156
• • .156
• • .158

.160

.162
• • .165

• .168
.172

Task Next to be Dispatched • . • • . • . . .
Scheduling of the ABEND Routine by the ABTERM Routine
A Tree of Subta.sks and a Possible Sequence

.179

.185

of - Examination • ••••..
Format of the Completion Code and the Dump Option
Flag in the Parameter Register •..•.••.
Pointers Used During the Save Area Trace • . . •
Task Relationships During an Abnormal Termination
Preparation for the Dispatching of ABEND5 for
the Selected Task • •
Control Flow of 2250 System Operator's
Console Support • • . . • .. •.
Relationship of the Decimal Simulator Routine
(IEAXDSOO) to the Operating System . . . • •
Decimal Simulator (IEAXDSOO) Routine Organization
and Flow of Control . • . • . • • . . • .
Storage Protection Checking • . • . . . •
Example of Division by Decimal Simulator

Control Block Fields Used by the SVC Second-Level
Interruption Handler • . . . • . •
Initialization of the Interruption Queue Element •
Processing if a Requested Resource is not in Use
Processing if a Requested Resource is in Use •
Return Codes for the ENQ Routine

.188

• .193
.198
.214

• .218

.230

.232

.234

.235

.240

38
41

• 62
• 62

63
TCB Flags That are Set if a Task is in "Must
Complete" Status • . • . .. •••.••••
Error Conditions When use of a Resource is
Signaled Complete • • • • • • •

• • • • 65

• 69
Mask Bit Numbers Used in the STATUS Macro
Instruction • • • • • . . • • • . . • .. ••••• 83
Types of Processing During Overlay Supervision ••••• 104
Processing of Segment Table Entries ••••••• 106
Channel-Program Switching After a Program-
Controlled Interruption . . • • • • • • • • .113
Program Fetch Return Codes •.••.•••••••••• j14
Termination Processing According to Module Type •••• 115
Subpool Numbers Used for Requesting Space ••••••• 120
Actions Taken After Timer Expiration. • .152
ABTERM Processing . . • . . • . . . • .187
The TCB Nondispatchability Flags. • • • .189
Organization of the Decimal Simulator
(IEAXDSOO) Routine

Module Directory . • . • . . . • • . .
Directory of Entry Point Names and Flowchart
Identifications .. . • .. .•...••
Table of Routines Invoked by SVC Instructions

.233

.460

• .471
• • .481

o

CHARTS

('1
J

Chart 00. Overall Control Flow of MVT Supervisor · · · · · · · · · .314
Chart AA. SVC First-Level Interruption Handler · · · · · · · · · · .315
Chart AB. SVC First-Level Interruption Handler (Multiprocessing

System . . . · · · · · · · · · · · · · · · · · .316
Chart AC. SVC Second-Level Interruption Handler · · · · · .317
Chart AD. Transient Area Availability Check Routine · .318
Chart AE. Transient Area Fetch Routine · · · · · · · · · · · · · · .319
Chart AF. Program Check First-Level Interruption Handler · · .320
Chart AG. Program Check First-Level Interruption Handler

(Multiprocessing System) · · · · · · · · · · · · · .321
Chart AH. Program Check First-Level Interruption Handler

for Model 91 · · · · · · · · · · · · · · .322
Chart AI. External First-Level Interruption Handler

(Uniprocessing System) · · · · · · · · · .323
Chart AJ. External First-Level Interruption Handler

(Multiprocessing System) · · · · · · · .324
Chart AR. I/O First-Level Interruption Handler .325
Chart AL. I/O First-Level Interruption Handler (Multiprocessing

System) · · · · · · · · .326
Chart AM. SERO Routine · · · · · · · · .327
Chart AN. SER1 Routine (for Models 40, 50, 60, 75) .328
Chart AO. SER1 Routine (for Model 91) · .329
Chart AP. SER1 Routine (for Model 91) .330
Chart BA. Attach Routine · · · · .331
Chart BB. Attach Routine · · · · · · · .332
Chart BC. Attach Routine · · · · · · · · .333
Chart BD. Attach Routine (With Time-Slicing) .334
Chart BE. Chap Routine · · · · · · · · · · .335

(~
Chart BF. Chap Routine (With Time-Slicing) · · · · · .336
Chart BG. Chap Routine (With Time-Slicing) · .337
Chart BH. Extract Routine .338
Chart BI. Detach Routine · · · · · · .339
Chart BJ. SPIE Routine · · · · · · · · · · · · · · · · .340
Chart BR. Wait Routine · · · · · .341
Chart BL. Wait Routine (Job Step Timing) .342
Chart BM. Post Routine · · · · · · · · · .343
Chart BN. Post Routine (Job Step Timing) · · · · · .344
Chart BO. ENQ Routine · · · · · .345
Chart BP. DEQ Routine · · · · · .346
Chart BQ. DEQ Routine (Shared DASD) .347
Chart BR. Stage 1 Exit Effector .348
Chart BS. Stage 2 Exit Effector .349
Chart BT. Stage 3 Exit Effector .350
Chart BU. Stage 3 Exit Effector · · .351
Chart BV. Task Switching Routine (Uniprocessing System) .352
Chart BW. Task Switching Routine (Multiprocessing System) .353
Chart BX. STAE Service Routine · · · · · · · · · · · .354
Chart BY. ABEND/STAE Interface 1 Routine (ASIR1) · · · · · .355
Chart BZ. ABEND/STAE Interface 2 Routine (ASIR2) · · · · · .356
Chart BO. ABEND/STAE Interface 3 and 4 Routines (ASIR3, ASIR4) .357
Chart CA. Link, Load, XCTL, and SYNCH Processing .358
Chart CB. Link, Load, XCTL, and SYNCH Processing .359
Chart CC. Link, Load, XCT'L, and SYNCH Processing .360
Chart CD. Identify Routine · · · · · .361
Chart CEo Delete Routine · · · · · · · · · .362
Chart CF. Program Fetch Routine · .363
Chart CG. Program Fetch Routine · · · · .364
Chart CH. Program Fetch Routine (Main Storage Hierarchies) · .365
Chart CI. Overlay Supervisor · · · · · .366
Chart DA. GETMAIN/FREEMAIN Routine · · .367

C
Chart DB. GETPART/FREEPART Routine · · · · · · · .368
Chart DC. Rollout Criterion Routine · .369

9

Chart DD.
Chart DE.
Chart DF.
Chart DG.
Chart DH.
Chart DI.
Chart DJ.
Chart EA.
Chart EB.
Chart EC.
Chart ED.
Chart EE.

Chart EF.

Chart FA.
Chart FB.
Chart Fe.
Chart FD.
Chart FE.
Chart FF.
Chart FG.
Chart FH.
Chart Fl.
Chart FJ.
Chart FK.
Chart FL.
Chart FM.
Chart FN.
Chart Fa.
Chart FP.
Chart FQ.
Chart FR.
Chart FS.
Chart FT.
Chart FU.
Chart GA.
Chart GB.
Chart GC.
Chart GD.
Chart GE.
Chart GF.
Chart GG.
Chart GH.

Chart GI.

Chart GJ.
Chart GK.
Chart GL.
Chart GM.
Chart GN.
Chart GO.
Chart GP..
Chart HA.
Chart HB.
Chart HC.
Chart HD.
Chart HE.
Chart HF.
Chart HG.
Chart HH.
Chart HI.
Chart HJ.
Chart HK.
Chart HL.
Chart HM.
Chart HN.

10

Rollin Criterion Routine .
Rollout/Rollin I/O Routine •
SVC Purge Interface
SVC Restore Interface
Rollout/Rollin GET STEP Routine •
Rollout/Rollin TESTSTEP Routine
Rollout/Rollin Reply Restore Routine
Time Routine •
STIMER Routine ••••.••••
TTIMER Routine • • . . . • • •
Timer Second-Level Interruption Handler
Timer Second-Level Interruption Handler
Dequeue and Engueue Subroutines . . • . • • • .
Timer Second-Level Interruption Handler
(Job Step Timing) •.•.•••
Checkpoint Housekeeping Routine
Checkpoint Housekeeping 2 Routine
Checkpoint Housekeeping 3 Routine
Check I/O Routine
Preserve 1 and 2 Routines
Checkmain 1 and 2 Routines
Checkmain 3 Routine
Resume I/O and Checkpoint Exit Routines
Checkpoint Message Module
Restart Housekeeping 1 and 2 Routines
Repmain 1 and 2 Routines
Repmain 3 and 4 Routines
Repmain 5 Routine
Repmain 5 Routine ..•
JFCB Processor 1 and 2 Routines
Mount/Verify 1 (Non Direct-Access) Routine
Mount/Verify 2 (Direct-Access) Routine . •
Sysin/Sysout Data Set Processor 1 and 2 Routines
Data Set Processor 1 (Non Direct-Access) Routine
Data Set Processor 2 (Direct-Access) Routine .
Access Method-Disposition and Restart Exit Routines
Type-1 Exit Routine
Exit Routine • • • .
Exit Routine . • . • . . .
Transient Area Exit Routine
Transient Area Refresh Routine
CDEXIT Routine . • • . • . • •
Dispatcher (Uniprocessing System)
Dispatcher (Uniprocessing System With Job Step
and Task Timing) • • • . .
Dispatcher (Uniprocessing System With Job Step
and Task Timing) • . . • . • • • . .
DJSEARCH Subroutine (Uniprocessing System) • •
Dispatcher (Uniprocessing System With Time-Slicing)
Dispatcher (Uniprocessing System With Time~Slicing)
Dispatcher (Uniprocessing System With Time-Slicing)
Dispatcher (Multiprocessing System) •.••
Dispatcher (Multiprocessing System) •.••
DJSEARCH Subroutine (Multiprocessing System)
EaT Routine . . • . •. .
Purge Timer Routine • . . . • •
Release Main Storage Routine • .
Release Loaded Programs Routine
ABTERM Routine • • • . . • • . .
ABTERM Routine -- SET SUBS Subroutine
ABTERM Prologue Routine
ABDUMP Routine •
ABEND 1 •
ABEND2
ABEND3
ABEND3
ABEND3 -- Steal Core Subroutine
ABEND4

.370

.371

.372

.373

.374

.375

.376

.377

.378

.379

.380

.381

.382

.383

.384

.385

.386

.387

.388

.389
• .390
• .391

.392

.393

.394

.395

.396

.397

.398

.399

.400

.401

.402

.403

.404

.405

.406

.407

.408

.409

.410

.411

.412

.413

.414

.415

.416

.417

.418

.419

.420

.421

.422
• .423

.424

.425

.426

.427

.428

.429
• .430

.431
• .432

.433

Chart HO. ABEND 5 .434
Chart HP. ABEND5 . · . . .435

(-'; Chart HQ. ABEND6 .436
Chart HR. ABEND6-RBREMOVE Subroutine . .437

""" Chart HS. ABEND6-RBREMOVE Subroutine .438
Chart HT. System Quiesce Routine · · .439
Chart IA. 2250 Processor Routine .440
Chart lB. 2250 Processor Routine · .441
Chart IC. 2250 Processor Routine · .442
Chart ID. 2250 Processor Routine . · .443
Chart IE. Display Routine .444
Chart IF. 1/0-1 Routine .445
Chart IG. 1/0-1 Routine · · .446
Chart IH. 1/0-2 Routine · .447
Chart II. Option Routine · .448
Chart IJ. Open/Close Routine . .449
Chart IK. Asynchronous Error Routine · .450
Chart IL. Simulator Control Routine (Model 91) · .451
Chart 1M. Compare Decimal Routine (Model 91) ·452
Chart IN. Add/Subtract/Zero-and-Add Decimal Routine (Model 91) .453
Chart 10. Add/Subtract/Zero-and-Add Decimal Routine (Model 91) .454
Chart IP. Multiply Decimal Routine (Model 91) · .455
Chart IQ. Divide Decimal Routine (Model 91) · · .456
Chart IR. Analyzer/End Routine (Model 91) • . · .457

11

()

o

(j

o

The MVT supervisor is one part of the
control program of IBM Systenv360 Operating
System; it controls the basic computing
system and programming resources needed to
perform several data processing tasks con
currently. The entire control program is
introduced in the publication IBM System/
360 Operating System: MVT Control Program
Logic Summary, Form Y28-6658.

Job steps, designated by the job manage
ment routines as tasks, are carried out
under the control of the supervisor, which
allocates needed resources on the basis of
priorities. The supervisor assigns the
resources to perform tasks, keeps track of
all such assignments, and ensures that the
resources are freed upon task completion.
If one resource is required for the perfor
mance of several tasks, queuing of requests
may be required. The supervisor thus main
tains control of resources that can be
shared. This enables more efficient use of
the central processing unit, main storage,
system and user programs, and the interval
timer.

All supervisor activity begins with an
interruption. In IBM System/360 the inter
ruption is a machine characteristic; it is
the means by which the supervisor gets
control of the CPU to provide resources for
the performance of tasks. An interruption
may be planned (specifically requested in
the program currently being executed by the
CPU) or unplanned (caused by an event that
may be either related or unrelated to the
task currently being performed).

There are five types of interruptions:

• Supervisor call (SVC) interruption: a
request for a particular supervisor
service.

• Timer/external interruption: an atten
tion signal from the System/360 inter
val timer, the console interrupt key,
or the direct control feature.

• Input/output interruption: the signal
that an input/output event has
occurred.

• Program
program
action.

interruption: a signal that a
has attempted an invalid

• Machine-check interruption: the signal
that a machine error has occurred.

SECTION 1: INTRODUCTION

Overall operation of the supervisor is
shown in Figure 1-1. The program being
executed ~n the performance of task A has
been interrupted, possibly because it con
tained a request for a supervisor service,
possibly because an input/output operation
has been completed for an entirely dif
ferent task.

The interruption-handling portion of the
supervisor (represented by the top box in
Figure 1-1) analyzes the interruption,
based on control information passed to it
at the time of the interruption. Each of
the five interruption types has associated
with it two program status words (PSWs)
called nold" (OPSW) and "new· (NPSW). The

Machine Loads
New PSW

Program Being Exec
for Task A

uted

Any
Interruption

------ '-

Program Being Exe
for Task B

cuted

"-
"-

\

-'-

\
\
\
\

"-
"-

\
\
\
\
\

,J
'j

Lood Old PSW

Interruption Handling

o Analyze the interruption

0 Determine control program action
required

0 Route control to appropriate part of
control program

Brorych /'
.r

Performing the Service

0 Establish, alter, or end a task

0 Establish linkage to a program in main
storage or on auxiliary storage

o Allocate or free main storage

0 Supervise use of interval timer

0 Handle console communications

0 Supervise input/output operations

0 Provide program monitoring service
(TESTRAN)

0 Provide system environment recording
and/or attempted recovery

Note: (Some of these services may require
another service, and may thus cause
the supervisor cycle to be restarted
with another interruption)

Branch ./ .-
Dispatching

0 Service requests for osynchronous exits

0 Determine which tosk that can be
performed has highest priority

0 Route control to a routine that performs
the task

Note: The dispatcher may determine that the
interrupted task should be resumed, or
that a different task should be
performed.

./
Figure 1-1. Overall Flow of the

Supervisor

Section 1: Introduction 13

OPSW contains the information needed by the
supervisor to analyze the interruption.
The NPSW contains the address of the appro
priate interruption handling routine.

When an interruption occurs, the CPU
stores the contents of the curr~nt PSW in
the OPSW for that type of interruption, and
loads the NPSW. By loading the NPSW, the
CPU places itself in supervisor state and
passes control to the interruption handling
portion of the super.visor. The supervisor
then passes control to those parts of the
control program that perform the services
required as a result of the interruption.

The supervisor itself performs many of
the services that are requested through an
interruption (these services are repre
sented by the middle box in Figure 1-1).
Services that the supervisor provides may
be grouped into these general categories:

14

• Task supervision. The supervisor
creates tasks at the request of the job
management routines or in response to a
request to attach a subtask to an
already existing task. The supervisor
determines in what order tasks are to
be performed.

• Contents superv1s10n. The supervisor
keeps records of all programs in main
storage, and assigns these programs to
perform tasks. The Program Fetch rou
tine brings requested programs into
main storage from secondary storage.

• Main storage superV1S10n. The supervi
sor assigns main storage needed to
per.form job steps and tasks within job
steps.

• Timer supervision. The supervisor con
trols the use of the System/360 inter
val timer.

• Console communications and system log.
The supervisor provides the means for
the operator to directly communicate
with the system, and for a program to
write a console message to the opera
tor. It also provides support for the
system log, which is a repository of
statistical information about system
usage.

• Recording and using checkpoints. On
request, the supervisor writes records
of a task's main storage region and the
necessary task control information so
that the task may be restarted from
that point at a later time.

• Exi.ting procedures. The supervisor
provid~s routines that prepare for the
return of control from a completed
program.

• Task termination. The supervisor pro
vides for normal and abnormal termina
tion of tasks.

• Recovery management. The optional ser
vice routines SERO and SERl provide for
the recording of information related to
a machine malfunction. . The optional
Machine-Check Handler for Model 65
(MCH/65), besides recording environ
mental data, attempts to analyze the
malfunction and restore the system to
normal operation.

After a control program service has been
performed, the supervisor determines what
task ·is to be performed next. The supervi
sor Dispatcher routine (represented by the
bottom block in Figure 1-1) returns control
to a processing program (or possibly to a
supervisor routine). As seen in Figure
1-1, the program to which control passes
need not be the one that was interrupted.
The Dispatcher may determine that as a
result of the. interruption. task B, which
has a higher priority than task A, should
be performed next.

TASK SUPERVISION

Each task to be performed by the system
is represented by a task control block
(TCB). The TCB contains control and status
information related to the task, and point
ers to system resources assigned to perform
the task.

When the operating system is generated,
certain key TCBs are built into the system.
These TCBs represent: the master scheduler
task of job management, the system error
task, the rollout/rollin task,1 the com
munications task. and one transient area
fetch task for each transient area. All
other task control blocks are constructed
by the supervisor Attach routine, at the
request of either the control program or a
user program. The Master Scheduler can
attach up to fifteen Initiator/Terminator
tasks, one for each storage protection key
available. Initiator/Terminator routines
attach job step tasks and subtasks. An
entire tree structure of related tasks may
thus be formed.

All the TCBs in the system are chained
together, according to dispatching priori
ty, to form the TCB queue. The transient
area fetch TCBs are at the top of the
queue, followed in order by the system
error TCB, the rollout/rollin TCB.1 the
communications TCB, and the master schedu
ler TCB. The dispatching priorities of

1This task is included if the rollout
feature is selected at system generation.

\,~-

c

other tasks are assigned by the supervisor
according to the parameters given in ATTACH
macro instructions. When several TCBs with
the same priority appear in the TCB queue.
they are ordered first-in, first-out.

Figure 1-2 shows the flow of control
that results from the issuance of the
ATTACH macro instruction. This flow is
typical of the processing that might follow
a supervisor macro instruction.

The Attach routine, like other SVC rou
tines" is entered as a result of an SVC
interruption. The SVC interruption han
dling routines analyze the, interruption,
determine what service is required, and
then branch to the Attach routine. The
Attach routine obtains main storage space
for a TCB by issuing the GETMAIN macro
instruction. This causes another SVC
interruption, called a nested interruption
because it is an interruption to the pro
cessing of an interruption. The nested
interruption is handled by the supervisor
in exactly the same way as the original
interruption for the ATTACH macro instruc
tion, except that this time the interrup
tion handler branches to the GETMAIN rou
tine. When the re~ired storage has been
allocated, the Attach routine regains con
trol. It initializes certain fields in the
TCB and places it on the TCB queue.

Program Performing
Task A

Attach Task B

-----~'\

SVC Interruption

\

SVC Interruption
Handler

Branch to Attach Routine

Attach Routine

After the Attach routine has initialized
the control block that represents the new
task, it branches to the Dispatcher. The
Dispatcher examines the TCB queue to find
the highest-priority task that is ready to
be performed. This task mayor may not be
the one that was being performed at the
time of the original SVC interruption. For
example, if task B has been attached as a
subtask of task A, and if B has a higher
dispatching priority than A, then task B
will be performed before task A is resumed.

The supervisor controls the order in
which tasks are performed. This control is
accomplished by the Dispatcher, working
through the TCB queue. The highest
priority task represented on the TCB queue
may not be the one to be performed; it may
be waiting for some event (through the WAIT
macro instruction, for example) or for a
resource that has been serialized (through
the ENQ macro instruction). The TCB queue
serves as a record of the status of every
task in the system.

When the time-slicing feature is
included in the system., the dispatcher will
contain special code for time-slicing
implementation. The dispatcher controls
time slicing through the time-slice control
element (TSCE); there is one TSCE,
assembled at system generation. for each
time-slice group.

SVC Interruption
Handler

\
\
\
\

Nested SVC

GETMAIN Macro- Interruption

instructi on

Branch to GETMAIN Routine

\
\
\

Program that Performs \

the New Task B "" \

-....., \
......

',- \
'-, \

',\

Branch to Dispatcher

Dispatcher

Load PSW to Program that Performs
Highest Priority Ready Task

GETMAIN Routine

Return to Caller

C' Figure 1-2. Flow of control After the ATTACH Macro Instruction is Issued

Section 1: Introduction 15

CONTENTS SUPERVISION

Contents Supervision is
through a structure of queues
closely related to the TCB
are the request block queues.

accomplished
that are very
queue. These

Request blocks (RBs) represent levels of
control within a task. contents supervi
sion routines construct an RB for the first
level of control in the performance of a
new task: this RB and RBs for subsequent
levels are chained on the TCB's RB queue.
For example, if program A issues a LINK
macro instruction specifying program B, the
Contents Supervision routines will con
struct a new RB to represent program B's
level of control. When program B has
completed its processing, control can pass
back to program A. The supervisor uses the
RB queue as a record of control levels: it
can pass control to succeeding levels and,
as the routines complete their operation,
pass control back up the line, regardless
of the number of times a task is
interrupte-:1.

There are four types of RBs:

• Program request blocks (PRBs), which
represent nonsupervisory routines that
must be executed in the performance of
a task. PRBs are created by the con
tents supervision routines that perform
the Attach, Link, or XCTL functions.

• Interruption request blocks (IRBS),
which control routines that must be
executed in the event of asynchronous
interruptions. IRBs are created in
advance of an interruption by the CIRB
routine at the user's request, but not
placed on an RB queue until an inter
ruption actually occurs.

• System
(SIRB),
system
SIRB in

interruption request block
which is used only for the
error task. There is only one
the system.

• Supervisor request blocks
which represent supervisor
SVRBs are created by the SVC
tion handling routines.
queued just as PRBs are.

(SVRBs),
routines.
interrup
They are

Contents Supervision routines construct
only one type of RB: namely, the PRB.

The supervisor maintains a record of all
programs in main storage -- their attri
butes, locations, and use statuses. This
record is called the contents directory.
The contents directory is made up of three
separate queues: (1) the link pack area
control queue (LPACQ): (2) the job pack
area control queue (JPACQ): (3) the load
list.

16

The LPACQ is a record of every program
in the system link pack area. This area
contains reenterable routines specified by
the control program or by the user. It is
loaded by the nucleus initialization pro
gram. The routines in the system link pack
area can be used repeatedly to perform any
task of any job step in the system.

The entries in the LPACQ are contents
directory entries (CDEs). When a program
represented in the LPACQ is requested for a
task, it will be represented in that task's
RB queue by a PRB: the address of this PRB
will be inserted in the CDE.

There is a JPACQ for each job step in
the system that uses a program not in the
link pack area. The JPACQ, like the LPACQ,
is made up of CDEs. It describes routines
in a job step region brought into main
storage by contents supervision routines to
perform a task in the job step. The
routines in the job pack area can be either
reenterable or not reenterable. Routines
in the job pack area cannot be used to
perform a task that is not part of the job
step.

The load list represents routines that
are brought into a job pack area or found
in the link pack area by the contents
supervision routines that perform the Load
function. The entries in the load list are
load list elements, not CDEs. Each load
list element is associated with a CDE in
the JPACQ or LPACQ: the programs repre
sented in the load list are thus also
represented in one of the other contents
directory queues.

MAIN STORAGE SUPERVISION

The MVT supervisor controls tasks
through the TCB queue and the RB queues: it
controls programs through the RB queues and
the contents directory. A third major
function, controlling main storage, is
accomplished through a system of main
storage queues.

When the job management routines desig
nate a job step as a task, they request a'
region of main storage to be used in
performing that task. The size of the
region is specified by the user: the region
contains the job pack area for the step,
and all additional working space needed.

All requests for main storage are
handled by the GETMAIN SVC routine. The
supervisor maintains main storage queues to
reflect storage assignments: the GETMAIN
routine simply adjusts these queues to
reflect new assignments.

..

When there are no job steps in the
system, all of the dynamic area of main
storage is treated as one region. It is
represented to the supervisor by a free
block queue element (FBQE) at the beginning
of the area and a partition queue element
(PQE) in supervisor queue space. The PQE
contains the address of the FBQE, and
therefore the address of the beginning of
the free area; the FBQE contains the extent
of the free area. When space is requested
for a job step, the GETMAIN routine sub
tracts the requested area from the free
area and builds a new FBQE and PQE for the
new region. The address of the PQE is
placed in the TCB of the job step task.

After job step initialization, a program
performing a task may request main storage
by issuing the GETMAIN macro instruction.
The GETMAIN SVC routine allocates the
storage only within the region1 assigned to
the job step being performed or within the
supervisor queue area. 2 The supervisor
maintains a separate chain of queue ele
ments for allocation within a region. This
chain keeps track of subpools within the
region. A subpool is all of the main
storage requested under a label called a
subpool number. The storage in a subpool
does not need to be contiguous. The chief
advantages of subpools are that the storage
be shared between tasks, and that all of
the storage identified by a subpool number
can be released with one FREEMAIN macro
instruction.

The supervisor FREEMAIN service routine
is used to free main storage space when it
is no longer needed to perform a task.
Space assigned to a job step, space within
a region, and space within the supervisor
queue space are all freed by the FREEMAIN
routine. The routine makes space available
by adding elements to chains in which are
recorded all free areas in main storage,
and by adjusting the queues of allocated
space.

Main storage may be expanded by includ
ing IBM 2361 Core Storage in the system.
Main Storage Hierarchy Support for IBM 2361
Models 1 and 2 permits selective access to
either the processor storage (hierarchy 0)
or 2361 Core Storage (hierarchy 1) portions
of main storage. If 2361 Core Storage is
not included and a region is defined to
exist in two hierarchies, a two-part region

11£ the rollout feature is in the system
and rollout can be performed, the GETMAIN
routine can allocate space to the job step
from a temporary region obtained through
rollout.

aStorage is allocated in the supervisor
queue area only if the requestor is a
supervisor routine.

is established within processor storage.
The two parts are not necessarily contig
uous. A hierarchy parameter (HIARCHY=) in
the GETMAIN and GETPOOL macro instructions
permits specification of either hierarchy
as desired.

TIMER SUPERVISION

The System/360 interval timer is a 32-
bit word in lower main storage, that auto
matically keeps decrementing as long as the
system is running and the interval timer
switch is on. The supervisor timer service
routines enable the programmer to obtain
the date and time of day, measure periods
of time, or schedule activity for a specif
ic time of day. These routines, performed
as a result of the macro instructions TIME,
STIMER, and TTIMER, are handled just like
any other SVC routines.

The timer queue is a chain of timer
queue elements; each element represents an
interval request. These queue elements are
constructed by the STIMER service routine.
The chain is ordered so that the request
for the next interval to expire is at the
top of the queue. When a requested inter
val expires, a timer interruption occurs.

The Timer Interruption Handler routine
of the supervisor removes the top element
from the timer queue and determines what
action is to be taken. Examples are sched
uling a timer exit or making a task ready
to be performed.

CONSOLE COMMUNICATIONS AND SYSTEM LOG

Console communications includes both
messages to the operator from a program and
messages to the system from the operator.
The SVC routines WTO and WTOR (Write to
Operator and Write to Operator with Reply)
perform output (system to operator) pro
cessing. Operator intervention at the con
sole causes an external interruption, which
is also handled by the console communica
tions service routines.

The system log is a pair of data sets
used by the system for recording statisti
cal information. The supervisor log sup
port routines perform input and output
services related to the log.

RECORDING AND USING CHECKPOINTS

The supervisor provides routines to
allow a job to be restarted after an
abnormal termination. The Checkpoint rou
tine creates a series of records at points
in the problem program where the programmer
wishes a reexecution to begin. These reo-

Section 1: Introduction 17

ords include a copy of the task's main
storage region, descriptions of data sets,
and system control information. The
Restart routine uses these records to
restore the task to main storage, mount,
verify and position its data sets, and give
it control at the point where the check
point entry was written.

EXITING PROCEDURES

The supervisor provides routines that
prepare for the return of control from a
completed program and perform the actual
return of control. Control may return to a
main-line program or to a supervisor rou
tine. The exiting procedures determine
what type of program has completed its
execution, and perform different clean-up
operations for the different types.

The Dispatcher routine is entered to
return control to a program belonging to
the highest priority ready task. The Dis
patcher, as we have previously noted, works
through the TCB queue. (There is one case
in which the Dispatcher is not entered to
return control: when the completed program
is a type-l SVC routine that has not
indicated the need for a task switch.)

TASK TERMINATION

The supervisor performs the processing
needed when a task is terminated, either
normally or abnormally. The termination
processing includes releasing system
resources that were assigned to perform the
task.

The End of Task (EOT) routine performs
normal termination processing. Abnormal
termination processing is performed by the
ABTERM and ABEND routines. The ABDUMP
routine provides a dump of TCBs and main
storage related to the terminating task.

SPECIAL FEATURES

Time Slicing

The time-slicing mechanism operates
within the dispatcher. A priority is
assigned to a group of tasks which are to
be time-sliced: time-slicing occurs only
among the tasks in the group and only when
the priority level of the group is the
highest priority level that has a ready
task. Each task in the group is dispatched
for the specified time slice. The dis
patching of tasks within the group con
tinues until all the tasks are waiting, or
a task of higher priority than that of the
group becomes ready.

18

The group of tasks to be time-sliced,
the length of the time slice, and the
priority of the time-sliced tasks, will be
specified by the installation. Any task in
the system that is not defined within the
group to be time sliced will be dispatched
under the current priority structure, i.e.,
when it is the highest priority ready task,
and until it either waits or a task of
higher priority becomes active.

Shared Direct Access Device

The Shared Direct Access Device (Shared
DASD) feature enables independently opera
ting data processing systems to share
direct access storage devices. The two
channel switch and its control commands,
device reserve and device release, are the
basis for control of direct access storage
device sharing between systems. The shared
DASD feature provides the control program
functions needed to control device reserva
tion and release. Essentially this feature
controls the use of a serially reusable
resource, the shared data and device.

2250 System Operator's Console

The IBM 2250 Display Unit Model 1 can be
used as a system operators console with the
IBM System/360 ModelS 50, 65, and 75: it is
standard with the Model 91. If this fea
ture is selected, 2250 System Operator's
Console programming support is provided for
displaying system states and reference
information, and system and problem program
messages to the operator.

Console support is part of the Communi
cations Task in Operating System/360 with
MVT.

Rollout/Rollin

Rollout/rollin allows the temporary,
dynamic expansion of a particular job step
beyond its originally specified region
size. A job step's region size can be
based on a minimum requirement, rather than
a maximum. When a job step needs more main
storage, this feature attempts to obtain
unassigned storage: failing that, another
job step is rolled out, i.e., its entire
region is transferred to secondary storage,
and its storage is made available to the
first job step. When released by the first
job step, the additional storage is again
available as unassigned storage, if that
was its source, or to receive the job step
to be transferred back into main storage
(rolled in).

Multiprocessing

The multiprocessing feature, available
with Model 65, enables a single control
program to use the productive capability of

o

(:

two CPUs (CPUA and CPUB) so that two tasks
can be executed simultaneously.

A multiprocessing system can operate in
two modes: multisystem mode or partitioned
mode. In the partitioned mode, a multipro
cessing system operates as two independent
systems, each CPU having its own control
program, main storage units and I/O
devices. In the multisystem mode, all
programs are run under one control program,
both CPUs having access to all of main
storage, and all I/O devices, except tele
processing equipment and the 1052 console,
being attached to both CPUs. Each CPU has
its own 4K byte prefixed storage area and
can interrupt the other CPU through a
direct hardware connection.

Main storage Hierarchy Support

Main Storage may be expanded by including
IBM 2361 Core Storage in the system. Main
Storage Hierarchy Support for IBM 2361
Models 1 and 2, is a control program option
that permits selective access to either the
processor storage (identified as hierarchy
0) or 2361 Core Storage (identified as
hierarchy 1) portions of main storage. If
2361 Core Storage is not included in the
system and a region is defined to exist in
two hierarchies, a two-part region is es
tablished within processor storage. The
two parts are not necessarily contiguous.

Normally, all storage requested by programs
of a given step or task is assigned from
its region, although the rollout/rollin
feature does provide the capability of
acquiring temporary additional storage. If
the Main Storage Hierarchy Support option
has been selected, a region may be defined
to consist of two parts: the first located
in hierarchy 0 and the second located in
hierarchy 1.

SUMMARY

The supervisor is a collection of pro
grams for handling interruptions and pro
viding services for them. These interrup
tions are the basic method by which the
control program manages data processing
tasks. The supervisor functions are large
ly performed by routines that manipulate a
network of control queues -- the TCB queue,
the RB queues, the contents directory, the
main storage queues, and the timer queue.

The processing after a timer/external,
input/output, program, or machine interrup
tion is generally straight forward. Figure
1-1 reflects what happens after one of
these interruptions. The processing after
an SVC interruption is a little more com
plicated. Figure 1-3 provides a more
detailed, although still simplified, pic
ture of this processing.

Section 1: Introduction 19

SVC Interruption)

~

SVC Interruption Handlers

Saves reg i ster cantents
of interrupted routine
(caller) and determines
type of SVC routine

0/ Resident SVC Non-Resident

Type

Program Fetch Routine

Fetches transient (non-
resident) SVC routine.

~

Resident SVC Routine Performs Transient SVC Routine
Requested
Service

~ SVC

Yes

•
Type 1 Exit Routine Prepares for Exit Routine EOT Routine

return to caller.

R~
Performs terminating

SVC procedures for normal
Routines end of task.
SVRB. ~, End yes

Switch of Task
,..

No No

t I

Dispatcher

~ ""ore, re,'''''''' T returns control to
No a.sk h program belonging to

SWltC highest priority ready
task

Return to caller Yes

Legend:

0= routine (T a current rout i ne of
-- = control flow

Return
highest priority ready task

Figure 1-3. Processing After an SVC Interruption

20

\
)

(

(o\.
...

The supervisor handles all five types of
interruptions.

• For sve interruptions, the supervisor
determines what sve service is
required, and routes control to the
appropriate service routine.

• For timer/external interruptions, the
supervisor determines the cause of the
interruption and branches either to a
timer service routine or to an external
service routine.

• For input/output interruptions, the
supervisor branches to the Input/Output
Supervisor, which performs input/output
error haondling and services.

• For program interruptions, the supervi
sor either terminates the task in which
the interruption occurred, or branches
to a user error handling routine.

• For machine interruptions, the
sor either places the machine
wait state, or branc~es to an
recovery management program.

supervi
in the

optional

This chapter contains a detailed
description of all five types of interrup
tion handling.

sve INTERRUPTION HANDLING

When a system or user program issues a
macro instruction, the last machine
instruction of the resulting macro
expansion at execution time is often an sve
instruction. The sve instruction causes
the computer to produce an sve interrup
tion. The part of the supervisor that
receives immediate control is called the
sve interruption handler.

Main Functions

The sve interruption handlers perform
the following main functions:

\
Save the register contents and sve old
PSW for the interrupted calling program
or routine.

• In a multiprocessing system, ensure
that both epus do not perform disabled
supervisor routines simultaneously.

• Determine whether a supervisor request
block (SVRB) should be constructed to

SECTION 2: INTERRUPTION HANDLI·NG

restart the needed sve routine if it is
interrupted or if it must wait.

• If ne~essary, construct an SVRB, place
in 1t 1nformation about the routine,
and queue the SVRB to the request block
queue for the current task.

• Determine if the needed sve routine is
normally resident in main storage.

• Pass control to a resident sve routine.

• Fetch a nonresident routine from auxil
iary storage and prepare for the pass
ing of control.

• Defer a request for a routine that
cannot be fetched.

• When possible,
requests.

restart deferred

In addition, the sve interruption han
dlers perform two minor functions. They
place in the so-called "environmental"
registers the addresses of three control
blocks needed by all sve routines -- the
,£,ommunicatiop§ .vector tahl P, the current
task control block> and the current request
~. They also set up the return address
to which the sve routine wjll return con
trol when it is com lete.

The sve interruption handlers are
divided physically and functionally into
two parts, the sve First-Level Interruption
Handler, abbreviated sve ~ and the sve
Second-Level Interruption Handler, abbre
viated SVC SLIH. The sve First-Level
Interruption Handler saves register con
tents and the sve old PSW, and determines
the type and location of the needed sve
routine. For certain commonly used sve
routines, the SVC FLIH also branches
directly to the routine to begin its execu
tion. For other sve routines, further
proceSSing by the sve ~ is needed. This
processing includes the construction of a
supervisor request block (SVRB) to control
an interruptable routine, and the fetching
of the routine if it is nonresident.

Saving the Status of the Interrupted
Calling Routine

The sve interruption handlers must save
the register contents and old PSW belonging
to the calling routine. The purpose is to
permit later return of control to the
caller at its next executable instruction.
The current PSW, containing the address of

section 2: Interruption Handling 21

the next executable instruction, is stored
by the machine in hexadecimal location 20
in lower main storage. (Refer to IBM
System/360 Principles of Operation, section
entitled -Interruptions.") The caller's
register contents are saved by the SVC
First-Level Interruption Handler in a spe
cial SVC save area in lower main storage,
called IEASCSAV. Figure 2-1, parts A and
B, show the saving of the caller's PSW and
register contents, respectively, by the
machine and by the SVC FLIH.

The caller's register contents and old
PSW remain in lower main storage or are
moved to other save areas, depending on the
type of SVC routine that will be executed.
If the routine is not allowed to issue.
directly or indirectly, an SVC instruction,
no SVC interruption can occur that would
cause the saved status information to be
overlaid. Accordingly, the caller's regis
ter contents and old PSW can safely remain

\

,in their lower main storage save areas.
ut if the needed SVC routine can cause a
ew SVC interruption. the status informa
ion can be overlaid and therefore must be
oved to new save areas. Such overlaying

of status information can occur if the SVC
routine issues an SVC instruction. or a
macro instruction that expands into an SVC
instruction, or is interrupted and loses
control t4 a routine of another task that
issues an SVC instruction.

Ensuring That Both CPUs in a
Multiprocessing System do not Perform
Supervisor Routines simultaneously

In a multiprocessing system, the SVC
FLIH routine determines whether the second
CPU is performing a disabled supervisor
routine by testing the supervisor lock and
CPU identity bytes in the multiprocessing
CVT. If the lock byte is not set, neither
CPU is performing a disabled supervisor

SVC First-Level Interruption Handler SVC Second-Level Interruption Handler

SVC Interruption

Curre'n! PSW

I

SVC old PSW

Lower
Main
Storage
(Location 20)

Legend:

c::>; Information flow

General Registers

Caller's
Register
Contents

Lower Mo inS torage'
(S VC Reg i ster Save
Area, IEASCSA¥)

TCB SVRB Caller's RB

D RBOPSW

Note: The caller's register contents and SVC old
PS Ware moved by the SVC Second -Leve I
Interruption Handler to the appropriate RBs.

Figure 2-1. Status Saving by the SVC Interruption Handlers

22

\. --.7

(~'\

C)
"

routine. The SVC FLIH routine sets the
supervisor lock byte and places the CPUID
in the CPU identity byte before proceeding
further. If the supervisor lock byte is
set, the CPU identity byte is tested to
determine which CPU set the byte. If set
by the executing CPU, the SVC routine
proceeds; if not, the SVC old PSW is set
(backed up) to reissue the SVC1
instruction.

If the SVC old PSW is enabled for
external interruptions, the SVC1 instruc
tion is reissued via the Type-l SVC Exit
routine which restores registers and loads
the SVC old PSW. The SVC1 instruction is
thus reexecuted until the second CPU
releases the supervisor lock byte.

If the SVC old PSW is disabled for
external interruptions, the executing CPU
branches to the External FLIH routine so
that external signals from the second CPU
(such as a malfunction .alert) can be
received. The SVC1 instruction will be
reissued when the calling task is next
dispatched. Before the External FLIH rou
tine is entered, the status of the task
that issued the SVC is saved. The regis
ters are stored in the TCB, the current RB
is set from the SVC old PSW to reissue the
SVC instruction, the External FLIH bit is
set in FLRETFLG to indicate that the regis
ters have been saved, and the External old
PSW is set equal to the SVC old PSW. The
External FLIH routine tests the supervisor
lock byte until it is reset by the second
CPU. Between repeated tests of the lock
byte, the CPU is enabled for external
interruptions. After the supervisor lock
byte has been reset and any external inter
ruptions which may have occurred have been
processed, the External FLIH routine
branches to the Dispatcher. When the call
ing task is dispatched, it reissues the
SVC1 instruction.

Determining Whether a Supervisor Request
Block is Needed

re~i&ti*it;!!PP:;!: ;;:wi;8h:r:;;;;;;r~
g:rtain commonly used resident SVC rou
tines, called type-l routines, are not
permitted to issue an SVC instruction.
Other types of routines are permitted to
issue an SVC instruction. The SVC FLIH
examines the SVC table to determine the
type of routine that is needed.

There are two parts in the SVC table,
one containing entries for IBM-supplied SVC

1Either an SVC instructipn or an
instruction that executes
instruction.

EXECUTE
an SVC

routines, the other containing entries for
user-supplied SVC routines. The number and
type of routines specified in the two parts
depends on the particular system that the
user generates at system generation time.
There is one entry for each SVC routine.
Each entry contains descriptive informa
tion, including a code showing SVC type,
and the main storage or disk address of the
SVC routine.

Whether an SVRB need be constructed
depends on the type of SVC routine. If the
routine is a type-l, as indicated by a test
of the SVC table entry, the SVC FLIH
branches to the routine whose address is
contained in the table entry. But if the\
routine is not a type-i, the SVC FLIH
branches to the SVC SLIH to create a
supervisor request block to hold the call
er's register contents and to contain
restart information· for the SVC routine.

An SVC routine may be restarted after
anyone of the following conditions has
stopped or delayed its execution:

• The routine issues an SVC instruction,
thus causing an SVC interruption.

• The routine is not resident and cannot
be loaded; its request must therefore
be deferred.

• The routine is overlaid in a transient
area block of main storage before it
can be executed.

• The routine may request a resource that
is not immediately available, and is
therefore placed in a wait condition
pending the availability of the
resource.

In any of these cases, restart information
old PSW, wait count, etc. -- is stored

in the supervisor request block (SVRB)
created for the routine by the SVC Second
Level Interruption Handler.

Constructing, Initializing, and
Queuing the SVRB

If the test of the SVC table entry (see
Section 12, "Control Blocks and Tables")
indicates that the needed routine is not
type 1, and therefore that additional pro
cessing is needed, the SVC SLIH constructs
an SVRB from space it obtained the last
time it was entered. The SVRB, when
initialized with status and descriptive
information about the SVC routine, will be
queued to the request block queue belonging
to the caller's TCB. If the SVC routine
cannot be executed, or is interrupted by
its issuance of an SVC, or cannot continue
its execution, its entry point address or
restart address, called the RB old PSW,

Section 2: Interruption Handling 23

will be stored in the SVRB by a supervisor
routine.

It is necessary for the caller's regis
ter contents and SVC old PSW, stored in
lower main storage by the SVC FLIH, to be
moved to safer areas in two request blocks.
Since a non-type-l routine may issue an
SVC, the register contents and old PSW
previously saved may be overlaid by the
register contents and old PSW of the call
ing SVC routine. To protect the original

'

caller's status information, the SVC SLIH
moves it from lower main storage to two
request blocks, the caller's RB and the
SVRB that is being constructed. As shown
in Figure 2-1, the SVC old PSW is moved
from lower main storage to the PSW save
area in the caller's RB. Since the call
er's RB may lack a register save area, the
caller's register contents are moved to the
save area of the SVRB. "Hereafter, if the
currently requested SVC routine itself
causes a new SVC interruption, the SVC
routine's register contents and old PSW may
be saved in lower main storage with no harm
to the original caller's status
information.

The SVC SLIH queues the new SVRB to the
head of the RB queue belonging to the
current or caller's TCB. The order of
request blocks on the RB queue determines
the order in which the supervisor places
into execution routines started or
requested for the given task. The request
block at the head of the RB queue repre
sents the routine that is next to be
executed for its task. The svc routine
represented by the SVRB, will be executed
next for the current task. Then, when the
supervisor's Exit routine has removed this
SVRB from its RB queue, the new head or
"current" RB will represent the interrupted
routine or caller. The Dispatcher will
then restore the caller to execution, pro
viding that there is no other ready task of
higher priority.

The SVC SLIH queues the SVRB to its RB
queue by setting two pointers, one in the

TCB, the other in the SVRB. The pointer1
in the TCB points to the SVRB which is the
"current- or head RB on the queue. The
other pointer2 in the SVRB points to the
previously current RB, which represents the
caller of the SVC routine. (Refer: to
Figure 2-2.)

The SLIB issues a GETMAIN macro instruc
tion to obtain storage to be occupied by
another SVRB the next time the SLIB is
entered. The resulting SVC interruption
produces linkage to the GETMAIN routine of
main storage supervision, which allocates
the requested space. Since the GETMAIN
routine is a type-i, no SVRB is added to
the current task's RB queue, but status
information belonging to the SVC SLIB is
stored in lower main storage, as explained
previously.

So far the SLIH has saved registers and
the SVC old PSW in the appropriate RBs, and
queued the SVRB to the TCB and to the
previously current RB. The SLIB next sets
certain status bits in the SVRB. These
status bits 3 flag the request block as an
SVRB and indicate that the associated SVC
routine is nonresident~, even though a
later test may prove that the routine is
really resident. (The initial assumption
is that the routine is nonresident.) The
type of request block, as indicated by the
status bits, determines the processing to
be performed during the exiting procedure
after the SVC routine has been executed.

Determining if the SVC Routine is Normally
Resident in Main Storage

The SVC
needed SVC
storage and
whether the

SLIB must determine whether the
routine is normally in main
may be reached via a branch, or
routine is normally nonresident

1In this chapter certain terms are accom
panied by superscripts. The terms repre
sent fields of control blocks that are
defined in Table 2-1 at the end of "Inter
ruption Handling."

Order in which control is returned by the supervisor

C TCB

TCBRBP

Task Control
Block

Legend:
_=pointer

SVRB Caller's RB

-f-~ -r

RBLINK

Request block
for the currently
executing type 2,
3, or 4 SVC
routine

RBLINK

Request block for Interrupted routine
(This RB was the current RB before the
SVC interruption.)

Figure 2-2. A Request Block Queue

24

- ------------ ---------

PRB

v 0
RBLINK

Request block for the first executed
main line program or routine
associated with this TCB

c

!" '
':~ .• 7-·

c

c'

and should be fetched from the SVC library.
The SLIH makes the determination by testing
the "type" bits of the SVC table entry that
was passed by the SVC FLIH. A type-2
routine is resident in the nucleus; a
type-3 or 4 routine is nonresident and is
located in the SVC library, unless it has
been preloaded into main storage by the
Nucleus Initialization Program at IPL time.
If the test of the sve table entry reveals
that the needed routine is resident in the
nucleus, the SVC SLIH prepares for entry to
the routine. The preparation consists of:
placing in the SVRB a "resident routine W

flag" to later inform the supervisor Exi.t
routine that it need not perform exit
processing for a nonresident routine, the
restoring of standard input registers that
the SLIH has altered. and the loading of a
return address for use by the SVC routine
when its execution is complete. The SLIH
then branches to the routine address con
tained in the SVC table entry. But if the
test of the SVC table entry indicates a
routine not resident in the nucleus. the
SLIH branches to a part of its coding
loosely termed the "transient area han
dler." The transient area handler's pur
pose is to determine the location of the
routine and, if necessary, attempt to fetch
the routine to a transient area block of
main storage.

Fetching a Nonresident Routine From
Auxiliary Storage

Introduction: The purpose of the transient
area handler of the SVC SLIH is to monitor
the transient areas of the nucleus and to
fetch nonresident SVC routines from auxili
ary storage. If the desired routine is not
in one of the transient areas, the tran
sient area handler fetches the routine from
the SVC library (SYSRES volume) and gives
the routine control. If there is no avail
able space in one of the transient areas
for the desired routine. the transient area
handler makes the associated SVRB non-ready
until space becomes available.

Determining if the Desired Routine is in
the Link Pack Area of Main Storage: The
transient area handler first determines if
the desired SVC routine has been preloaded
into the link pack area (LPA). The LPA
contains reenterable modules from the link
library and the SVC library that were
preloaded at IPL time by the Nucleus
Initialization Program (NIP). These
modules remain resident until the next IPL.

The transient area handler determines if
the requested SVC routine is in the link
pack area by searching the contents direc
tory entries 5 of the link pack area control
queue for an entry which contains the name
of the requested routine. The link pack

area control queue contains entries de
scribing all programs that reside in the
link pack area of main storage. (See
Section 12, "Control Blocks and Tables."
for the format and content of a contents
directory entry. For further information
on the use of the contents directory, refer
to Section 4. ·Contents Supervision.-) The
name of the SVC routine used in the search
is obtained from the interruption code that
the machine stored in the SVC old PSW when
the SVC instruction was executed. The old
PSW now is in the request block belonging
to the caller. The interruption code is
converted to decimal and unpacked to pro
vide a four-character value to be used as
the right half of the name. The left half
of the name is a constant value. IGCO.

Processing if the Routine is in the Link
Pack Area: If the requested SVC routine is
in the link pack area, the transient area
handler finds a contents directory entry in
the link pack area control queue that
contains the routine'S names. The tran
sient area handler then extracts the rou
tine's entry point address? from the con
tents directory entry and branches to the
routine in the same way as with a resident
SVC routine.

Determining if the Routine is Already in a
Transient Area Block of Main Storage: If
the SVC routine is not in the link pack
area, the transient area handler (location
TARESTRT) first determines if the routine.
is already in a transient area block. If
the routine is in a transient area block,
it need not be fetched. There are at least
two transient area blocks, each capable of
containing one SVC routine. The number of
transient area blocks, and thus the number
of nonresident SVC routines that may be
contained in the nucleus at one time, is
specified during system generation. The
transient area handler checks if the
desired routine is in any of the transient
area blocks by searching the entries of the
transient area control table (TACT) for the
routine name. (See Figure 2-3.) During
its search, the transient area handler
bypasses any TACT entry that indicates its
transient area block is being loaded.

The TACT (see Section 12, "Control
Blocks and Tables") contains one entry for
each transient area block. Each entry
contains four words: the address of the
transient area block, the address of a
·user queueW of SVRBs representing nonresi
dent routines currently sharing a transient
area, the relative track and record address
(TTR) for the routine currently residing in
the transient area block, and lastly the
address of a TCB for a tran.sient area fetch
task (to be described later).

Section 2: Interruption Handling 25

Request Queue

__ = Pointer

c:::::> = Information Flow

T ransi ent Area
Fetch SVRB

Transient Area
Fetch SVRB

TA Fetch
TCB 1

Used for
transient
area fetch
task to
load TAB 1

Addr of Request Queue

No. of TACT Entries
~--~--~----/---~--~

Addr /'
of User
Queue 1

Addr

TA Fetch
TCB 2

NOTES: 1. User queue 1 contains SVRBs whose SVC routine is in TAB 1,
or was overlaid in TAB 1.

User queue 2 contains SVRBs whose SVC routine is in TAB 2,
or was overlaid in TAB 2.

2. The request queue contains SVRBs awaiting an available TAB.

Figure 2-3. The Transient Area Queues

26

User Queue 1

Transient Area Block 1 (TAB 1)

Transient Area Block 2 (TAB 2)

(:

()

(

c

processing if the Routine is Already in a
Transient Area Block: If the transient
area handler determines from its search of
the TACT entriesS and the user queues, that
the desired routine is already in a tran
sient area block, it performs as follows in
order to bring the routine eventually under
the control of the caller's TCB. The
transient area handler queues the SVRB for
the requested routine to the user queue for
the transient area block that contains the
routine. The SVRB is now a part of two
queues, the RB queue belonging to the
caller's TCB and the user queue (also
called the transient queue) for a particu
lar transient area block. Within the SVRB
two different pointer fields are used for
the two queues. The RBLINK field points to
the next RB on the TCBs RB queue; the
RBSVTQN field points to the next SVRB on
the user queue.

Each user queue contains SVRBs whose
routines are or have been in a particular
transient area block. There is one user
queue for each transient area block. Thus,
if there are two transient area blocks,
there are two user queues. The queues are
built in the order in which routine
requests are received. The requests are
then serviced on a task priority basis.
The purpose of each user queue is to permit
the transient area handler to keep track of
SVRBs whose routines are in a transient
area block or have been overlaid in that
block.

After queuing the SVRB to a user queue,
the transient area handler sets up the
address of the transient area block as an
entry point for a branch to the SVC rou
tine. It then loads the input registers,
and branches to the transient area block to
begin execution of the routine.

Processing if the Routine is not Already in
a Transient Area Block: If the search o'f
the TACT entries and their associated user
queues indicates that the desired routine
is not already in a transient area block,
the transient area handler performs as
follows. It rechecks the TACT entries9 to
fina a transient area block that can be
"used" (overlaid) by the requested routine.
A transient area block can be ·used" or
overlaid in any of three cases: if it is
ftfree,ft if all of the user SVRBs for the
transient area block are not "ready," or if
the caller's task is of higher priority
than that of the tasks whose SVRBs are
"using· the transient area.

A transient area is "free" if the rou
tine residing therein is not being executed
for any task. A ·user" SVRB for a tran
sient area is not "ready" if one or more
nondispatchability bits~O are set in its
TCB, thus preventing the dispatching of the

routine for this task. The user SVRB is
also not ready if it is not the top RB in
the RB queue of its task. The top RE is
always pointed to directly by its TCB.

Preparation for the Overlaying of a Tran
sient Area: If the transient area handler
finds a transient area block that can be
·used" or overlaid, it prepares for over
laying the area. It first places into a
wait condition all using SVRBs whose rou
tine is in the transient area block. It
does this for each SVRB by saving the
current wait count and setting the number
'FF' in the wait count field of the SVRB.
This is done for each SVRB on the user
queue whose TTR field~~ equals th~ TTR
fieldS of the associated entry in the
transient area control table. The saved
wait counts, corrected for any intervening
POST macro instructions, are later restored
by the Transient Area Fetch routine during
exiting procedures. (See "Loading the Rou
tine.") If the routine in the located
transient area block is· not being executed,
there are no using SVRBs. There is there
fore no need to place them into a wait
condition.

The transient area handler next prepares
for the loading of the requested routine.
It stores in the newly created SVRB the
displacement12 of the TACT entry, thus
avoiding a new search of the TACT. It also
stores in this SVRB an RB old PSW pointing
to the transient area block. This PSW will
later be used by the Dispatcher to begin
execution of the routine. The transient
area handler then sets up the input regis
ters for the SVC routine and stores them in
the caller's TCB~3, in preparation for
later restoration by the Dispatcher when it
causes entry to the desired routine. Pend
ing the loading of the routine into the
available transient area block, the tran
sient area handler places the new SVRB into
a wait condition (sets a wait count into
its wait count field14). The wait condi
tion prevents the Dispatcher from starting
execution of the routine supposedly in the
transient area block but not yet loaded.
The transient area handler also queues the
new SVRB to the user queue for the tran
sient area block in order to keep track of
the request for use of the block.

The transient area handler determines
the address of the next TACT entry after
the one for the transient area block (TAB)
to be loaded. It saves the address in a
word, called TACTNEXT, in the transient
area-handler module. The TACTNEXT location
will be used to start the search.for a TAB
for the next-requested transient routine.
TACTNEXT originally contained the address
of the first TACT entry. Its contents are
modified each time a TAB is loaded for a
new SVC request or for an XCTL request

Section 2: Interruption Handling 27

issued by a type-4 SVC routine. A type-4
SVC routine is a nonresident routine that
has more than one load module. It uses an
XCTL macro instruction to cause linkage
from one module to the next.

Next, the transient area handler indi
cates to the Dispatcher that a task switch
must occur. This is necessary because the
loading of the SVC routine will be per
formed under the control of a transient
area fetch TCB to load the desired routine
from the SVC library. Although there is
only one Transient Area Fetch routine, it
may operate under the control of any of
several high-priority transient area fetch
TCBs. There is one such permanent TCB for
each transient area defined during system
generation. The minimum number is two.

The task-switch indication to the Dis
patcher is necessary because the Dispatcher
cannot otherwise dispatch the routine for a
task of higher priority than the current
task. The transient area handler indicates
the need for a task switch by placing the
address of the transient area fetch TCB in
a "new" TCB pointer15 in the nucleus. The
transient area handler then branches to the
Dispatcher, which restores registers and
gives control to the Transient Area Fetch
routine (TAHFETCH) to load the desired SVC
routine. During the loading process,
although the transient area fetch task is
of extremely high priority, other lower
priority tasks can be performed while the
Transient Area Fetch routine is waiting for
the completion of an I/O operation.

Loading the Routine: When the Transient
Area Fetch routine is given control, a
transient area block is now "free" or able
to be overlaid, as determined by previous
processing. All SVRBs in the user queue
for the transient area block are in a wait
condition, including the SVRB which will
soon control the awaited routine. The
Transient Area Fetch routine, hereafter
called the TA Fetch routine, extracts the
relative disk address11, and length16 of the
SVC routine from the caller's SVRB, and
places them in the control area for use by
the supervisor's Program Fetch routine.
The control area consists of a work area,
an input-output block (lOB), and a channel
program. The Program Fetch routine con
verts the relative track and record address
to an absolute disk address from which the
SVC routine may be fetched. By use of the
channel program, the Program Fetch routine
transfers the desired routine from the SVC
library to the available transient area
block.

If no I/O error has occurred during the
fetch process, the TA Fetch routine makes
ready all user SVRBs representing requests
for the loaded SVC routine. The purpose is

28

to allow the Dispatcher to eventually place
the routine into execution under the con
trol of the user SVRB belonging to the
highest priority ready task. In order to
find all using SVRBs for the newly loaded
routine, the TA Fetch routine searches the
user queue belonging to the transient area
block just loaded. The user SVRBs include
both the SVRB associated with the current
caller's task and SVRBs for other tasks.
The copies of the SVC routine represented
by the older SVRBs had previously been in
execution and had been overlaid before
thei~ execution was complete. When the TA
Fetch routine locates the using SVRBs for
the currently loaded routine, it tries to
remove the SVRBs from the wait condition.
It does this by restoring the saved wait
count, corrected for any POST macro
instructions that have been executed while
the SVRBs were waiting for the transient
routine to be reloaded.

The TA Fetch routine next dequeues and
makes ready each SVRB on the request queue.
This action later permits the transient
area handler to determine if these SVRBs,
whose requests had previously been
deferred, may now be serviced. That is,
the SVC routine just loaded may be the
routine needed for one or more of the
deferred requests.

To prevent redispatching of the,TA Fetch
routine, the TA Fetch routine places its
own SVRB in a wait condition. This action
is necessary, since the transient area
fetch tasks have the highest priority in
the system. The Dispatcher is thus pre
vented at its next execution from redis
patching the TA Fetch routine.

The TA Fetch routine then branches to
the Dispatcher. which passes control to the
current routine of the highest priority
ready task. This routine is represented
and controlled by the RB to which the TCB
points, called the "current" RB. The SVC
routine just loaded will receive control
when one of its user SVRBs or a deferred
request SVRB, is the current RB for the
highest priority ready task. The reader
should note that the SVRB that controls the
next execution of the loaded routine is not
necessarily the SVRB most recently created.
Task priority and readiness are the cri
teria that determine the order in whieh
requests are serviced.

Deferring the Reguest

During its search of the TACT and the
user queues. the transient area handler
routine may find that there is no available
transient area block. That is, all tran
sient area blocks contain routines that are
being executed; at least one user SVRB for
each transient area block is ready; and the i'," \ C·_"

(~

(

c

caller's task is not of higher priority
than that of the tasks whose SVRBs are
"using" the transient area blocks. With no
transient area block available, the tran
sient area handler defers the current re
quest for the SVC routine. It does this by
enqueuing the new SVRB to a special waiting
queue called the request queue. The re
quest queue is a queue of SVRBs that are
waiting for a transient area block to
become available. The request queue has a
preas sembled address called IEAQTAQ.

The reader should note that an SVRB in a
user queue or in the request queue is also
in the RB queue belonging to the TCB of the
calling or interrupted program. However,
the pointer field of the SVRB is different
in the two cases.

The transient area handler defers the
current request by queuing the new SVRB to
the request queue* and by placing the SVRB
into a wait condition (setting its RB wait
count field greater than zero). It places
in the SVRB an RB old PSW that points to a
deferred-request restart point (TARESTRT)
within the transient area handler. A
branch is then made to the Dispatcher to
give control to the current routine of the
next highest priority ready task.

Restarting Deferred Reguests

Deferred requests are restarted when the
loading of an SVC routine is complete, or
when the routine in a transient area block
is no longer executed (becomes "free").
When either condition occurs, the SVRBs for
deferred requests are dequeued from the
request queue and their wait condition
reset (each RB wait count field is cleared
to zero). When one of the TCBs associated
with the restarted SVRBs has the· highest
prior(ty among the ready TCBs, the Dis
patcher returns control to the deferred
request restart point to begin the search
of the TACT entries. The first check
determines if the requested routine is
already in a transient area block. Thus, a
restarted deferred request is processed
exactly like an original request.

Minor fUnctions of SVC Interruption
Handling)

Besides the major functions already
described, the SVC interruption handlers
perform two minor functions. One function
consists of making available the addresses
of th~ee important control blocks for use
by other supervisor routines during later
processing of the SVC interruption. The
other function is the loading of the return
register with the address of the appropri-

*The queuing field is RBSVTQN.

ate exit routine so that the SVC routine,
when complete, can begin the return of
control to the caller by means of a simple
branch, without the need for tests.

Making Available Control Block Addresses:
The SVC First-Level Interruption Handler
makes available to other supervisor rou
tines the addresses of three important
control blocks. It does this by placing in
general registers 3, 4, and 5, respective
ly, the addresses of the communications
vector ~able (CVT), the caller'S TCB, and
the current RB. The communications vector
table contains addresses of resident con
trol routines and addresses of certain
tables. These addresses are used by non
resident SVC routines.

preparing the Return Address for the svc
Routine: The return address is placed in
the return register, general register 14,
and depends on the type of SVC routine that
will be executed. Type-l routines, which
are a commonly used non-SVC-issuing type,
return control to the caller via the Type-l
Exit routine. Other types of routines
return control via the Exit routine. Since
most SVC routines are type-l, the SVC FLIH
initially assumes that the needed routine
is type-l, and places in the return regis
ter the address of the Type-l Exit routine.
If the FLIH later determines from the SVC
table that the needed routine is not type-
1, it branches to the SVC SLIH, which
reloads the return register with a dif
ferent return address appropriate for all
other routines. In this case, the return
address is the location of an SVC 3
instruction in the communication vector
table. The SVC 3 instruction, when
executed, causes a new SVC interruption and
resultant linkage to the supervisor Exit
routine. (For further information on the
two supervisor exit routines, refer to
Section 8, -Exiting Procedures.")

PROGRAM INTERRUPTIONS

If the program being executed attempts
an invalid action, a program interruption
occurs and a code describing the attempt is
stored in the program OPSW. Invalid
actions causing program interruptions
include using incorrect addresses, issuing
invalid operation codes, and attempting to
execute privileged instructions. Addition
al causes of program interruptions are
fixed-point overflOW, decimal overflow,
exponent underflow, and loss of signifi
cance; these events may be masked out .•

The program interruption handler is
automatically given control after any pro
gram interruption. It tests whether the
interruption occurred in the supervisor or
in user code, by examining the program

Section 2: Interruption Handling 29

OPSW. If the interruption occurred in the
supervisor, control is passed to the ABTERM
Prologue routine, which schedules abnormal
terrr~nation of the task being performed at
the time of cthe interruption.

If the interruption occurred in user
code, the supervisor tests the TCB for a
program interruption element (PIE) address.
A PIE is a control block associated with a
user's error handling routine. If the user
anticipates a program interruption and
wishes to perform his own error handling,
he issues a SPIE (set program interruption
element> macro instruction. The SPIE ser
vice routine constructs a PIE and inserts
its address in the TCB.

If the supervisor finds no PIE address,
that means that the user does not wish to
perform error handling; the ABTERN Prologue
routine is entered, as above. If the
supervi~or find~ a PIE address in the TCB,
it tests the high-order bit in the address.
This bit is set to one whenever control is
given to the user's error handling routine;
if the supervisor finds it on when handling
a program interruption, then a second pro
gram interruption has occurred in the error
routine, and the task must be terminated.

If a PIE exists and its high-order bit
is zero, the supervisor tes'ts whether the
particular kind of program interruption
that has occurred was specified by the user
in the SPIE macro instruction. If it was,
control is passed to the user's error
handling routine. In a multiprocessing
system, control is passed to the error
routine via the Dispatcher, so that the
error routine can be bypassed if the task
has been set nondispatchable by the second
CPU. If it was not, control is passed to
the ABTERM Prologue routine which, with the
ABTERM routine, schedules the abnormal ter
mination of the task. The supervisor Exit
routine is entered when a user error rou
tine completes its processing, and the
interrupted program, via the Dispatcher,
regains control.

MULTIPROCESSING PROGRAM INTERRUPTION
HANDLER

If the multiprocessing feature has been
selected, and the system is in multisystem
mode, the SSM instruction also causes a
program interruption. The multiprocessing
program interruption handler first deter
mines if the interruption was caused by an
SSM instruction. If it was, the system
mask to be set is examined. If complete
enablement is indicated, the supervisor
lock and CPU identity bytes in the multi
processing CVT are reset to zero only if
originally set by the executing CPU; other
wise, they are allowed to remain set.

30

Control is then returned to the interrupted
program with the system mask enabled. If
complete enablement is not indicated, the
supervisor lock and CPU identity bytes are
tested to dete~mine if the second CPU is
performing a disabled routine.

If the second CPU is not performing a
disabled routine, the supervisor· lock byte
is set, the CPUID is placed in the CPU
identity byte, and control is passed to the
interrupted routine with the system mask
set as indicated. If the second CPU is
performing a disabled routine (supervisor
lock byte set by second CPu>, the program
interruption old PSW is set (backed up) for
reexecution of the SSM1 instruction, and
the system mask of the program interruption
old PSW is examined.

If the program interruption old PSW is
enabled for external interruptions, regis
ters are restored, and the program inter
ruption old PSW is loaded. The SSM1
instruction is thus reexecuted until the
second CPU releases the supervisor lock
byte.

If the program interruption old PSW is
disabled for external interruptions, the
executing CPU branches to the External FLIH
routine so that external signals from the
second CPU (such as a MalfUnction Alert)
can be received. The SSM1 instruction will
be reissued when the calling task is next
dispatched. Before the External FLIH rou
tine is entered, the status of the task
that issued the SSM instruction is saved.
The registers are stored in the TCB, the
current RB is set from the program inter
ruption old PSW to reissue the SSM1
instruction, the External FLIH bit is set
in FLRETFLG to indicate that the registers
have been saved and the External old PSW is
set equal to the program interruption old
PSW. The External FLIH routine tests the
supervisor lock byte until it is reset by
the second CPU. Between repeated tests of
the lock byte the CPU is enabled for
external interruptions. After the supervi
sor lock byte has been reset and any
external interruptions which may have
occurred have been processed, the External
FLIH routine branches to the Dispatcher.
When the calling task is dispatched, it
reissues the SSM1 instruction.

If the interruption was not caused by an
SSM instruction, the program FLIH routine
determines if the second CPU is performing
a disabled supervisor routine by testing
the lock and CPU identity bytes in the
multiprocessing CVT. If the lock byte is

1Either on
instruction
instruction.

SSM instruction or an EXECUTE
that executes an SSM

(

not set, the program FLIH routine sets the
lock byte, places the CPUID in the CPU
identity byte, and the program FLIH routine
proceeds. If the lock byte was set by the
executing CPU, the program FLIH routine
proceeds. If the lock byte was set by the
second CPU, it is tested until reset.
Between repeated tests of the lock byte,
the executing CPU is enabled only for
external interruptions by loading an
enabled PSW so that the CPU can respond if
the second CPU experiences a machine inter
ruption and cannot reset the lock. Before
the enabled PSW is loaded, a bit is set in
a one-byte entry (FLRETFLG) in the Prefixed
Storage Area (PSA) to indicate that, if an
external interruption occurs, the External
FLIH routine is to return control to the
program FLIH routine. This bit is reset
when the program FLIH routine is able to
set the supervisor lock byte and proceed.

MODEL 91 PROGRAM INTERRUPTION HANDLER

For the Model 91, the program first
level interruption handler (PFLIH) routine
has been expanded to recognize decimal
instructions, the TESTRAN interpreter, and
imprecise interruptions. Depending on
options selected at system generation time,
the PFLIH routine may also include one or
more of the following sections:

• A section to handle interruptions due
to the presence of a decimal
instruction.

• A section to provide for return to the
TESTRAN interpreter if necessary. In
the case of multiple-imprecise inter
ruptions, it is necessary that the SPIE
macro instruction specify all possible
types of interruption conditions.

Handlinq Decimal Instructions

On the Model 91, an operation-exception
program interruption occurs when a decimal
instruction is encountered in the execution
of either a problem program or the TESTRAN
interpreter. If the Decimal Simulator
(IEAXDSOO) routine has been included in the
operating system at system 'generation time,
thePFLIH routine gives control to the
simulator to carry out the indicated
operation. 1

1A program interruption may be caused by an
EXECUTE instruction that makes reference
to a decimal instruction~ If this is the
case, the PFLIH routine constructs, in a
work area, a decimal instruction that is
equivalent to the original instruction as
it would be seen by the hardware.

If an error condition arises during the
instruction-processing operations of the
Decimal Simulator routine, control is
returned to the PFLIH routine for deter
mination of how the condition is to be
handled.

If the Decimal Simulator routine is not
in the operating system when a decimal
instruction interruption occurs, the PFLIH
routine considers this to be an error
condition and passes control to an appro
priate error-handling routine (e.g., to a
user exit, to the TESTRAN interpreter, or
to a system task-terminating routine).

Entry From the Testran Interpreter

On the Model 91, when the TESTRAN inter
preter is operating in either the 'trace'
or the 'go-back' mode, it gives control to
the PFLIH routine whenever a program inter
ruption for a decimal instruction is
encountered. Prior to giving control to
the PFLIH routine, the TESTRAN interpreter
sets a flag bit (the 'return-to-TESTRAN'
flag) to indicate that the interpreter is
in use. The action that is taken by the
PFLIH routine if the Decimal Simulator
routine is not in the system has been
described ,in the section, "Handling Decimal
Instructions."

If, because of an error, the Decimal
Simulator .routine returns control to the
PFLIH routine (a~d the TESTRAN interprete
had caused the PFLIH routine to be
entered), the 'return-to-TESTRAN' flag is
checked to verify the presence of the
interpreter in the system, and control is
returned to the TESTRAN interpreter for the
handling of the error condition.

EXTERNAL INTERRUPTIONS

External interruptions are handled dif
ferently in uniprocessing and multiprocess
ing systems. In a uniprocessing system,
the External First-Level Interruption
Handler (FLIH) receives control after an
external interruption. In a multiprocess
ing system, if the two CPUs are operating
in multisystem mode, the Second CPU Inter
ruption Analysis routine receives control.
Otherwise, the Second CPU Interruption
Analysis routine is bypassed, and the Ex
ternal FLIH routine receives control
directly.

UNIPROCESSING SYSTEM

In a uniprocessing system, the External
FLIH routine saves the registers in the
current TCB, saves the external old PSW in
the current RB, and determines the cause of
the interruption from the old PSW. Control

Section 2: Interruption Handling 31

is passed to the Timer Second-Level Inter
ruption Handler if it is a timer interrup
tion, or to the resident External routine
if it is an operator key interruption.

MULTIPROCESSING SYSTEM

The Second CPU Interruption Analysis
routine determines if the interruption was
caused by one of the following conditions
in the second CPU which requires ~mmediate
processing:

• A machine check interruption

• An unrecoverable channel failure

• A request to halt I/O that was started
on the first CPU

If a malfunction alert signal (issued to
the other CPU when a machine check occurs)
has caused the external interruption
(determined from the external old PSW), the
Second CPU Recovery Management System
Interface routine is entered~ This routine
tests a recovery management -time-out- flag
in the prefixed storage area (PSA) of the
second CPU to determine whether both CPUs
are malfunctioning. If so, this CPU enters
the wait state. Otherwise, the recovery
management -time-out" flag is set in the
PSA of this cPU, and an External Start (via
a write direct instruction) is issued to
the second CPU, causing it to enter the
Recovery Management Support (RMS) routine.
Before the External Start is issued, the
supervisor lock byte is set for the second
CPU, so that supervisor routines may be
performed on that CPU. While the second
CPU performs the RMS routine, a completion
flag (set when the second CPU completes
RMS) is tested. If the completion flag has
not been set after a period of testing,
this CPU enters the wait state. If the
completion flag has been set, but the
second CPU is in the wait state, this CPU
also enters the wait state with the same
error code. If the second CPU is not in
the wait state (that is, RMS was success
fully completed) control is returned to the
Second CPU Interruption Anqlysis routine.

If the external interruption was
initiated by an RMS routine because of an
unrecoverable channel failure on the second
CPU (bit 3 of STMASK:l), the Second CPU
Recovery Management System Interface rou
tine is entered. This routine operates as
described above except that (1) an External
Start is not issued since the RMS routine
is already in process, and (2) the supervi
sor lock byte is not set since the RMS
routine has already set it.

If a routine on the second CPU requests
a Halt I/O for I/O that was started on the

32

first cPu, an external interruption 'is
issued to the first CPU (via the First CPU
Signal routine) with an indication in
STMASK (BIT 7=1) that the Second CPU Halt
I/O routine should be entered. The Second
CPU Halt I/O routine scans the UCB table to
find each device which has been flagged for
this CPU to perform Halt I/O and branches
to the resident lOS routine. When Halt I/O
has been completed, the UCB flag is turned
off and also the Halt I/O request flag in
the second CPU's STMASK. Control is then
returned to the Second CPU Analysis
routine.

If there are any other external inter
ruptions, the External FLIH routine
receives control via a LOAD PSW instruc
tion. Otherwise, control is returned to
the interrupted program.

In addition to testing for operator key
and timer interruptions, the External FLIH
routine in a multiprocessing system pro
cesses exteinal interruptions which (1)
occur during FLIH supervisor lock-testing
routines when the CPU is enabled for exter
nal interruptions and (2) are caused by the
second CPU (via a WRITE DIRECT
instruction) •

The External FLIH routine first deter
mines if a FLIH routine was interrupted by
examining the PSA byte FLRETFLG. If a FLIH
routine, other than External FLIH, was
interrupted, registers are saved, and the
interruption code is saved in a PSA byte
RNEXCODE. Control is then returned to the
interrupted FLIH routine. The I/O and
Program Check FLIH routines exit to the
Dispatcher which tests FLRETFLG for unpro
cessed external interruptions and, if there
are any, gives control to the External FLIH
routine. If (1) the External FLIH routine
is entered because of an unprocessed exter
nal interruption or (2) if the External
FLIH routine was in process at the time of
interruption, the registers are not saved
(having already been saved by External
FLIH), and the supervisor lock byte is
tested and set. If a FLIH routine was not
interrupted by the external interruption,
registers are saved before the supervisor
lock byte is tested.

Prior to testing for timer, key or
second CPU interruptions, the.External FLIH
routine tests the supervisor lock byte. If
the lock byte is not already set, it is
set, the CPUID is placed in the identity
byte; and the FLIH routine continues. If
the lock has been set by the executing CPU,
the FLIH routine continues. If set by the
second CPU, the lock byte is tested until
it is reset by the second cpu. Before each
test, the CPU is enabled for external
interruptions, and a bit in FLRETFLG is set o

(

c

to indicate that the interruption occurred
during the External FLIH routine.

The multiprocessing External FLIH rou
tine also tests for external interruptions
caused by the second cpu. The word STMASK
in the PSA of the second cpu is examined,
and control is given to the appropriate
routine as follows:

Bit set to 1 Indication
1 Enter Dispatcher

16 QUIESCE
17 VARY cpu OFFLINE
24 Start I/O on Channel 0
25 Start I/O on Channel 1
26 Start I/O on Channel 2
27 Start I/O on Channel 3
28 Start I/O on Channel 4
29 Start I/O on Channel 5
30 start I/O on Channel 6

In each case except VARY cpu OFFLINE,
the STMASK bit is reset after execution of
the appropriate routine, and the external
FLIH is resumed. When all bits have been
accounted for, control is passed to the
Dispatcher.

INPUT/OUTPUT INTERRUPTIONS

The basic function of the supervisor in
handling input/output interruptions is to
branch to the Input/Output Supervisor. All
input/output services and error handling
are performed within the Input/Output
Supervisor.

When an input/output interruption
occurs, the Input/Output First-Level Inter
ruption Handler is automatically entered.
Because the system may become enabled for
input/uutput interruptions during the
interruption handling, the Input/Output
First-Level Interruption Handler may be
entered again before the completion of the
original interruption. To identify such a
second entry, the original entry sets the
I/O switch (IORGSW), which is tested
whenever the interruption handler is
entered. Only the first entry causes reg
ister saving and other initializing
instructions; subsequent entries bypass
these functions.

In a multiprocessing system, the super
visor lock and CPU identity bytes are
tested before the interruption is pro
cessed. If the lock byte is not already
set, it is set by the executing CPU which
also sets the CPU identity byte, and inter
ruption processing continues. If it has
already been set by the second CPU, it is
tested until reset. Between repeated tests
of the lock byte, the system is enabled for
~xternal interruptions by loading an
enabled PSW. Before loading of the enabled

PSW, a bit is set in FLRETFLG to indicate
to the External FLIH that control is to be
returned to the Input/Output FLIH routine.
This bit is reset after the lock byte has
been set.

Upon return from the Input/Output Super
visor, the pseudo-disable switch is tested.
If off, control is passed to the Dispatch
er. If on, registers are restored and
control is returned to the interrupted
routine by loading the input/output old
PSW. In the multiprocessing system, zeros
are placed in the lock and CPU identity
bytes if the system mask of the input/
output old PSW is completely enabled.

MACHINE INTERRUPTIONS

Anyone of three optional machine check
recovery programs and one optional channel
error recovery program may be selected by
the user, depending on the model of System!
360, as follows:

• SERO and SER1 routines are available
for Models 40, 50, 65, and 75. The
SER1 routine is available for Models 91
and 95.

• The Machine-Check Handler for Model 65
(MCH/65).

• The Channel-Check Handler for models
using 2860/2870 channels (CCH). This
program can be selected to accompany
either of the SER routines or the
Machine-Check Handler, or it may be
selected alone.

When a machine check occurs, the pro
cessing varies according to the recovery
option that the user has selected, as
follows:

• If no recovery program has been
selected, the machine loads the machine
check new PSW, and the CPU enters the
wait state.:1.

• If the SERO routine has been selected,
the machine loads the machine check new
PSW, and control is given to the resi
dent portion of the SERO routine to
record environmental data. When its
function is complete, the SERO routine
places the CPU in the wait state.:1.

:1.The operator may then load the System
Environment Recording, Editing,. and Print
ing (SEREP) program in order to format and
print the CPU logout area. The SEREP
programs are model-dependent stand-alone
diagnostic programs available for the
Model 30 and for each higher numbered
model.

Section 2: Interruption Handling 33

• If the SERl routine has been selected,
the machine load.s the machine check new
PSW, and control is given to the SERl
routine. This routine records environ
mental data, and either abnormally ter
minates the job step affected by the
machine check and causes the resumption
of processing, or places the CPU in the
wait state. 1

• If the Machine-Check Handler for Model
65 has been selected, the machine loads
the machine check new PSW, and control
is given to the Machine-Check Handler.
This program records environmental data
and attempts to recover from the
machine check. If recovery is not
possible, the Machine-Check Handler
places the CPU in the wait state. 1

If the multiprocessing feature has been
selected, and the system is operating in
multisystem mode, a machine interruption
causes a malfunction alert signal to be
sent to the second CPU. This CPU enters
the wait state via the machine check new
PSA. When the malfunction alert signal is
received by the second CPU, the Second CPU
Recovery Management System Interface rou
tine (See ftExternal Interruptions")
receives control on the second CPU and
issues an External Start to this CPU. The
External Start causes this CPU to enter the
Recovery Management Support routine.

When a channel failure occurs, the I/O
supervisor passes control to the selected
recovery program. Processing varies,
depending on the recovery option that the
user has selected, as follows:

34

• If no recovery program has been
selected, the I/O supervisor loads the
machine check new PSW, and the CPU
enters the wait state. 1

• If a SER routine or the Machine-Check
Handler has been selected, the I/O
Supervisor loads the machine check new
PSW and control is given to. the
selected recovery program. The
selected program records environmental
data and then places the CPU in the
wait state. 1

• If the Channel-Check Handler for models
using the 2860/2870 channels has been
selected, the I/O Supervisor branches
to it for possible recovery from the
channel error condition. This program
performs two main functions. It places
information in the error routine inter
face bytes so that the appropriate
device error routine may retry the
channel operation that was being per
formed when the channel check occurred.
It also records environmental data
regarding the channel failure. This

data is later written to the SYS1.
LOGREC data set by a routine of the I/O
Supervisor. (For a full description of
the Channel-Check Handler (CCH), refer
to the publication IBM System/~60
Operating System: Input/Output Super
visor, Program Logic Manual, Form
Y28-6616.)

SYSTEM ENVIRONMENT RECORDING
; . .

System Env1ronment Record1ng (SER) is a
set of control program routines which re
cord hardware malfunctions of the Central
Processing Unit and channels. There are
two versions of SER, called SERO and SERlo
At system generation the user may select
one of these two versions. If he selects
neither, the default option is used. The
version which is used as the default option
depends on the model (or models) specified
and the size of the system (see IBM System/
360 Operating system: system Generation,
Form C28-6554).

When a machine check interruption occurs
control is given to SER if that is the
recovery option selected. SER may also be
entered by the SER interface of the I/O
supervisor if a channel error occurs.

The less complex version of system
environment recording, SERO, determines the
type of malfunction and, if poSSible,
writes out a record describing the error on
a data set called SYS1.LOGREC. This data
set resides on the primary system residence
volume. If SERO cannot write the record,
the CPU is placed in a wait state and a
message is printed to the operator to use
SEREP. If the recording is partially or
fully completed, the CPU is placed in a
wait state and a message is printed to the
operator requesting him to reload the
Operating System.

The more complex version of System
Environment Recording, SER1, also collects
and writes out hardware environment data,
but in addition, it performs selective
termination analysis which attempts to
associate the error with a specific task.
If the error can be associated with a
specific task and if the control program
has not been damaged by the error, the task
is terminated abnormally; if not, the CPU
is placed in the wait state.

When the SYS1.LOGREC data set has been
filled, the operator runs the environment
recording edit and print (EREP) routine.
This routine formats and writes the records
placed on SYS1.LOGREC by SER onto printer,
tape, or disk according to user specifica
tions. EREP is described in the ~
System/360 Operating system: Utilities,
Program Logic Manual, Form Y28-6614.

/f''''" ~1

""-Fe

o

(,

c

SERO collects, formats, and writes error
information resulting from a machine check
or from a channel error. The program is
divided into two modules: the load nucleus
resident module IFBSROOO, and the link
library resident module, IFBSROXX (where XX
is the model number -- 40, 50, 65, or 75).

LOAD NUCLEUS RESIDENT MODULE IFBSROOO:
The resident portion of SERO is nonreusable
and does not require Operating System/360
facilities. The primary functions of this
module are to halt all I/O activity and to
read the first text record of the non
resident portion of SERO into an area which
begins 32 bytes past the nucleus.

If a machine check occurs, the resident
module gains control directly from the
machine-check new PSW. If a channel error
is detected, the module is entered from the
I/O supervisor which loads the machine
check new PSW.

This module saves information to be used
later by the non-resident portion of SERO
in a 22-byte field in lower storage. After
it has halted I/O on all devices, the
module reads the first 1024 bytes of
IFBSROXX into storage. If after ten re
tries, the resident module is not able to
read IFBSROXX into main storage, it sets up
the lOS wait state code OOOFOA and branches
to the Bell Ring/Wait State module which
sounds the console alarm and places the CPU
in the wait state. The code OOOFOA is
displayed in the instruction counter.

LINK LIBRARY RESIDENT MODULE IFBSROXX:
Like IFBSROOO, the IFBSROXX module does not
require any operating system facilities.
There is an IFBSROXX module for each
System/360 Model; the appropriate module is
selected at SYSGEN time.

After the module loads the remainder of
itself into main storage, it checks loca
tion 50 to determine which type of, error
has occurred. This location is preas
sembled to X'FF'. If the error is a
machine check, location 50 is overlaid by
the machine-check old PSW; a channel error
does not change location 50. Once the type
of error is established, the routine sets
up the appropriate kind of record entry in
which to place information about the error.

The routine enables itself for machine
check interruptions. If it is already
collecting error data and receives a
machine check interruption, the routine
stops all data collection and writes out
what it has accumulated up to that point.
If a third error occurs, the routine cannot
continue; it prints o~ an error message.

If IFBSROXX was entered because of a
machine check interruption, the general
purpose registers are checked for valid
parity on all models except Model 40.
Parity indicators are available for all
registers except 13, 14, and 15 on Models
50 and 75. Floating point registers are
also checked for valid parity if the model
is equipped with floating point.

The routine checks the busy bit in each
unit control block (UCB) to determine which
I/O units were busy when the error
occurred. The addresses of up to ten busy
I/O devices are collected. The routine
then fills in a record with the program
identification, day, and time. After
examining the seek address obtained from
the header record of the SYS1.LOGREC datR
set, the routine writes on that data set
the record it has just created and an
end-oi-file record.

If the routine records a partial or
complete error, record, it informs the
operator by printing a message or display
ing a code in the instruction counter.

1. IFBF05W: No machine check interrup
tions occurred during the data collec
tion phase of the routine and a, com
plete record entry describing the
error was placed on SYS1.LOGREC.

2. IFBF06W: A machine check interruption
occurred during the data collection
phase of the routine, but the attempt
to place a partial data record on
SYS1.LOGREC was successful.

3. The lOS display code 000F05 or 000F06
is set up and the routine branches to
the Bell Ring/Wait State module. This
indicates that the routine has com
pleted its functions as described in
either 1 or 2 above but was unable to
print a message to the operator.

If the routine does not write
record it issues one of the
messages identifying the error.

an error
following

1. IFBF07S: Successive machine check
errors have occurred during the data
collection phase of the routine and
the attempt to place a partial record
on SYS1.LOGREC was not successful.

2. IFBF08S: Because of I/O errors, the
data collected on the original error
was not entered on SYS1.LOGREC.

3. IFBF09S: The SYS1.LOGREC data set was
full or the safety byte in its header
record was off.

section 2: Interruption Handling 35

4. IFBFOAS: The link library resident
module, IFBSEROO, could not be read
into main storage.

Like SERO, SERl collects, formats, and
writes error information resulting from a
machine check or a channel failure. SER1,
unlike SERO, is a single, serially reusable
module that resides in the nucleus. In
addition to writing error records, it
attempts to identify the error with a
specific task. If a task/error relation
ship can be established, and if the control
program is in no way damaged by the error,
the task is terminated abnormally, but
system operation continues. If, however,
the error cannot be associated with a task,
or if the control program is affected by
the error, the system must be reloaded.

SERl is entered in the same manner
the r.esident portion of SERO. It
entered as the result of either of
following errors:

as
is

the

1. A machine check interruption. (The
machine-check new PSW points to SER1.)

2. A channel check (inboard). (lOS loads
the machine-check new PSW.)

3. An external machine check interruption
on the Model 91.

SERl checks location 50 to determine
which type of error occurred. Location 50
initially contains X'FF', which is overlaid
by the machine-check old PSW if the error
is a machine check. Location 50 is not
changed if SERl is entered because of a
channel error.

SERl gathers error data into either a
machine-check record entry or a channel
check r.ecord entry and writes the record on
SYS1.LOGREC. SERl functions within the
framework of the operating system; all I/O
communication with the SYS1.LOGREC data set
is via the EXCP macro instruction unless
the control program was affected by the
error. If the control program is damaged,
SERl uses its own I/O routines. The DEB
and DCB required when EXCP is used reside
in the nucleus and are opened at IPL time
by the nucleus initialization program
(NIP).

If SERl is able to associate the error
with a task and the control program has not
been damaged, SERl terminates that task by
branching to the abnormal termination ser
vice routine, ABTERM. When control returns
from ABTERM, SERl re-initializes itself and
branches to the dispatcher so that the
system can continue.

36

If the SER1 routine determines that only
a job step need be terminated, it performs
the following processing: SER1 sets all
TCBs in the system nondispatchable, except
certain system TCBs, and sets the "system
must complete- flag in the current TCB.
The system tasks that remain dispatchable
are: the communications task, the rollout/
rollin task (if that feature is present),
the . system error task, and the transient
area fetch task. The SERl routine then
halts all input/output activity associated
with the current TCB. It writes the error
environment data on the SYS1.LOGREC data
set and writes an error message to the
operator. The TCBs are then made dispatch
able and the ABTERM routine is entered for
the job step that was affected by the
failure. When control returns from the
ABTERM routine, the SER1 routine branches
to the Dispatcher.

Thus, the requirements for system con
tinuation are task/error relationship, a
complete record of the error, and success
ful termination of the task. In the fol
lowing cases, these requirements are not
met, so the system must be reloaded.

1. Additional failures occur while SER1
is handling an error. Data collection
on the original error stops, and SER1
attempts to write a partial record on
SYS1.LOGREC. The partial record con
tains the information gathered up to
the time the second error occurred.

2. A complete record was written, but the
error could not be associated with a
specific task.

3. A complete record was written, but the
control program was affected by the
error.

4. The control program was damaged by the
error and a complete record could not
be written.

In any of these cases, a message is printed
on the primary output device instructing
the operator to reload the operating sys
tem, and SER1 places the system in the wait
state.

The Model 91 can be interrupted by a
special machine check called an external
machine check. The SERl routine for the
Model 91 is given control when an external
machine check occurs. If the system mask
in the machine-check old PSW is not all
ones, the data (record) associated with the
machine failure is saved in the SER1 buffer
area, and an internal indicator that a
record has been saved is set. Control is
then returned to the point of interruption.
The record that SERl saves is recorded On
the SYS1.LOGREC data set if the next SER1 c

o

entry is caused by either a channel failure
or a CPU (normal machine check) failure.

• If this next entry is due to a channel
failure, the channel-failure record and
the saved external machine-failure rec
ord are processed as one record on the
SYSl. LOGREC data set, and the operating
system causes a termination of the
problem program as for a channel
failure.

• If, instead, the next entry is due to a
CPU failure, the CPU-failure record is
recorded first on the SYS1.LOGREC data
set, and then the external machine
check record is recorded on the same
data set. The normal SERl techniques
of handling a CPU failure are then
performed. That is, either the task or
the system is tenninated.

However, if the next entry to SERl is
due to an external machine check, the data
associated with the first failure is lost,
and an entry is made in the count of the
number of consecutive external machine
checks experienced. If the count reaches a
value of ten, a record with the count value
is written on SYS1.LOGREC, and the system
is terminated.

If the initial check of the system mask
in the old PSW (see preceding) showed that
the mask was all ones, the SERl routine is
placed in a waiting loop until all input/
output interruptions in the system have
been serviced. If a channel failure
occurs, the SERl routine processes both the
channel failure and the external (I/O)
failure as a single record and terminates
the system in the manner normally done for
channel failures. If there are no channel
failures and all the I/O interruptions are
taken care of, the SERl routine processes
the external machine-check record and the
system continues from the point of
interruption.

MACHINE-CHECK HANDLER FOR MODEL 65 (MCH/65)

This program consists of a resident
routine, and transient modules which reside
on the SYS1.SVCLIB data Set. It attempts

to recover from a machine check interrup
tion. It first determines if the instruc
tion that was being executed when the
machine check occurred can be retried.

If instruction retry is possible, the
Machine-Check Handler attempts reexecution
of the interrupted instruction. If, howev
er, instruction retry is not possible, it
tries to repair program damage. The pro
gram damage may be associated with either a
defective storage protection feature (SPF)
key or a defective main storage location.
The Machine-Check Handler may correct a
defective SPF key by issuing a Set Storage
Key (SSK) instruction." A main storage
location can sometimes be corrected by
reloading (refreshing) the module that was
being executed when the machine check
occurred.

If program damage can be repaired, the
Machine-Check Handler attempts to retry the
interrupted instruction. If the retry is
successful, the Machine-Check Handler has
recovered completely from the machine check
interruption.

If program damage cannot be repaired or
instruction retry is unsuccessful, the
Machine-Check Handler can either continue
partial system operation or place the CPU
in the wait state. The choice depends on
the type of task that was current at the
time of the machine interruption, the num
ber of tasks that are affected, and the
extent of the program damage. If limited
system operation is possible, it either
abnormally terminates the current job step
or sets the current task nondispatchable.
If even limited system operation is not
possible, because a critical system task is
permanently damaged, the Machine-Check
Handler issues an error message and places
the CPU in the wait state. _The operator
may then load the SEREP program in order to
format and print diagnostic information
from the CPU logout area.

For a full description of the Machine
Check Handler for Model 65 (MCH/65) refer
to the publication IBM System/360 Operating
System: Machine-Check Handler, Program
Logic Manual, Form Y27-7155.

Section 2: Interruption Handling 37

Table 2-1. control Block Fields Used by the SVC Second-Level Interruption Handler
r-----------T-------T--------T------------------T---------------------------------------,
I IName of I Formal I I . I
I superscript I Control I Name I Common Name of I Purpose of Field I
I I Block lof Fieldl Field (if any) I I
~-----------+-------+--------+------------------+---------------------------------------~

1 TCB I TCBRBP I Points to current or top RB of RB

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

I I queue.
I I

any RB IRBLINK I Points to next RB on RB queue
I I

any RB RBFTP I Indicates type of RB.

SVRB

CDE

I
RBFNSVRBI

I
I

CDEPRGNMIProgram name
I
I

Indicates whether SVRB is for a nonre
sident routine.

contains the 8-character name
gram represented by the CDE.

of pro-

any RB RBOPSW IRB old PSW The entry point or restart address fori
the routine controlled by the RB. I

I
CDE

TACT

TACT

TCB

SVRB

SVRB

TCB

CDEEPADR

ITTR
I
I
I
I FLAG
I
I
TCBFLGS

RBSVTTR

RBTABNO

TCBGRS

I
I

Entry point address of module repre-I
sented by~he CDE. I

I
Relative track and record address ofl
routine in a TAB. Used to identify thel
routine in the TAB. I

Indicates if TAB is being loaded or
I

isl
"free".

Flags that indicate to the
that it may not place into
any routine for the task.

I
I

Dispatcher I
execution I

I
I

track and record I Contains relative
laddress of routine. I

I
TACT entry within the

I
IDisplacement of
I TACT.
I

general register ISave area for general registers in a
sa ve area I TCB.

I
any RB IRBWCF wait count field IWhen greater than zero, signals Dis-

I Ipatcher not to place into execution the
I Iroutine controlled by the RB.
I I

none IIEATCBP ·new· TCB pointer IIndicates to the Dispatcher the TCE
I Iwhose current routine should next be
I I dispatched.
I I

any RB IRBSIZE length field IContains the size of the RB in double I
I I~r~. I ___________ ~ _______ ~ ________ ~ __________________ ~ _______________________________________ J

38

-------- ---------

c

Cl

Task Supervision consists of allocating
a requested service for a particular task.
Task Supervision may be divided into three
categories: services directly related to a
task control block, services indirectly
related to a task control block, and ser
vices internal to the supervisor.

Services directly related to a task
control block (TCB) involve the creation,
manipulation, or elimination of a TCB.
These services consist of:

• Attaching a subtask.

• changing the dispatching priority of a
task.

• Extracting information from a task con
trol block.

• Detaching a sUbtask.

Services indirectly related to a task
control block consist of:

• Specifying a program interruption exit
routine.

• Synchronizing a program with one or
more events.

• Serializing the use of a resource.

• Scheduling
routine.

an asynchronous exit

Services internal to the supervisor con
sist of:

• Testing and indicating the need for a
task switch.

• Testing the validity of user-supplied
addresses.

SERVICES DIRECTLY RELATED TO A TASK CONTROL
BLOCK

The attaching of a subtask, requested
via the ATTACH macro instruction, consists
of the creation of a TCB to represent the
subtask, the placing of control information
in the new TCB, the allocati~n of main
storage to the subtask, the placing of the
new TCB on two TCB queues, and the sched
uling of linkage to contents supervision to
obtain the program to be first executed for
the new task. When the new TCB is highest
priority among the ready TCBs, the speci
fied program is given control.

SECTION 3: TASK SUPERVISr.ON

The caller may request, via the CHAP
macro instruction, that the dispatching
priority of its own TCB or of one of its
subtask TCBs be changed. The dispatching
priority determines the order in which the
supervisor's Dispatcher places into execu
tion routines for competing tasks. The
CHAP routine computes a new dispatching
priority, tests the legality of the result,
places a dispatching priority value in the
specified TCB, queues the TCB to a new
position in the TCB queue, and tests wheth
er the current routine of the priority
altered TCB should receive control in place
of the caller.

Specified information may be extracted
from a particular TCB.' The TCB is the
caller'S or one of its subtask TCBs. The
control information, obtained via the
Extract routine, is placed in a table whose
address is provided as an operand of the
EXTRACT macro instruction.

The detaching of a subtask TCB from its
parent TCB's subtask queue is the final
step of normal or abnormal termination of
the subtask. The Detach routine also frees
storage areas belonging to the subtask.
The storage areas include the subtask TCB
itself and any associated problem-program
register save area.

ATTACHING A SUBTASK

A user or system routine issues an
ATTACH macro instruction to cause the
supervisor to begin the execution of a
specified prograro as a subtask of the
caller's task. As a subtask, the specified
program, and other programs later invoked
via LINK and XCTL macro instructions, can
compete for CPU time and can use resources
already allocated to the caller's task.
The ATTACH macro instruction, when executed
as a macro-expansion, causes an SVC inter
ruption. The interruption handling rou
tines branch to the Attach SVC routine to
perform the requested service.

The Attach routine performs the follow
ing main functions:

• Obtains storage space for a new TCB.

• Places in the new TCB information
needed to control the subtask.

• Allocates to the subtask subpools of
main storage belonging to its parent
task.

Section 3: Task Supervision 39

• Places the address of the new TCB on
two lists:

- the subtask queue of its parent task
- the TCB queue used by the Dispatcher.

• Schedules linkage to contents supervi
sion to locate the first program to be
executed for the new sUbtask, fetch the
program if necessary, and schedule it~
execution.

While performing the main functions, the
Attach routine also performs certain minor
functions:

• If the ATTACH macro instruction con
tains the ETXR operand, storage space
is obtained for one or two control
blocks (IQE, IRB) to be used for the
scheduling and controlling of an end
of-task exit routine.

• Places control information in these
control blocks.

• Decides the task whose current program
will next receive control from the
Dispatcher: the parent task or the new
subtask. In a multiprocessing system,
the new subtask may receive control on
the second cpu.

The TCB that is created will be initial
ized by the Attach routine to contain
status information and list origins for
queues needed by program being executed for
the subtask. For example, the ~CB will
contain a pointer to the top RB on the RB
queue, representing the currently executing
program for this TCB. (See Section 12,
·Control Blocks and Tables," for a detailed
description of the TCB fields.)

Obtaining Storage Space

The Attach routine first tests the
recursion bit in the TCBNSTAE field. If
the recursion bit is on, an ATTACH macro
instruction has been issued in the STAE
exit routine. This is an invalid action,
and a four is placed in register 15 to
indicate that the ATTACH request has not
been serviced. The Attach routine exits by
returning control to the Dispatcher.

If the ATTACH was not issued by the STAE
exit, routine, the Attach routine next
determines the amount of storage needed for
the new task.

The storage must include space for the
new TCB, and optionally space for one or
two control blocks used to schedule and
control an end-of-task exit routine for the
subtask. The control blocks are an inter
ruption request block (IRB), used to con-

40

trol the execution of the exit routine, and
an interruption queue element (IQE), which
helps schedule the execution of the rou
tine. (See "Scheduling User Exit
Routines.")

The amount of storage space that the
Attach routine must allocate depends on two
factors: whether the ETXR (end-of-task
exit request) operand has been specified in
the l}TTACH macro instruction, and whether
an interruption request block (IRB) already
exists for the specified exit routine. If
the ETXR operand is not specified, the
Attach routine needs space only for a new
TCB. For this purpose it issues a GETMAIN
macro instruction for 196-bytes from sub
pool 253, supervisor queue space. If the
ETXR operand has been specified and an
interruption request block (IRB) already
exits for the exit routine, space for a TCB
and for an interruption queue element (IQE)
-- a total of 208 bytes is similarly
obtained from subpool 253. But if the ETXR
operand has been specified, and an IRB does
not already exist for the desired exit
routine, the Attach routine obtains space
for an IRB, a TCB, and an IQE. It does
this by the issuance of a CIRB (construct
IRB) macro instruction, which causes a
branch to the supervisor's CIRB routine.
The CIRB routine is also called stage one
of the exit effector (refer to "Scheduling
User Exit Routines.")

The Attach routine determines in the
following manner whether an interruption
request block (IRB) already exists, and
therefore whether it should, via the CIRB
routine, create a new IRB. (Refer to
Figure 3-1.) The Attach routine searches
the subtask queue belonging to the caller's
TCB, looking for a subtask TCB which
indirectly points to the same end-of-task
exit address as that specified in the
caller'S ATTACH macro instruction. A sub
task's exit-routine address is determined
indirectly via the TCBIQE field of the
subtask's TCB. The TCBIQE field points to
an interruption queue element (IQE), if one
has been created for the subtask. If the
TCBIQE field is zero, this subtask has no
IQE, and thus no end-of-task exi t routine'
has been requested for the subtask. The
next subtask TCB on the subtask queue is
then examined. If a subtask's TCBIQE field
is not zero, it points to an IQE, which
pOints to an IRB, which points to an
end-of-task exit routine for the subtask.
If the exit-routine address in the sub
task's IRB is equal to the end-of-task exit
address specified in the caller's ATTACH
macro instruction, an IRB for the desired
exit routine already exists. In this case
the Attach routine need not create a new
IRB. o

(

IOE

Figure 3-1.

IRB

End-of-T osk
Exit Routine

Queue Relationships Among a
TCB, IQE, IRB, and End-of
Task Exit Routine

If the Attach routine finds that an IRB
does not already exist for the specified
exit routine, it issues a CIRB macro
instruction to cause a branch to the CIRB
(Construct IRB) routine. This routine
obtains space for an IRB, initializes the
IRB, and obtains a register save area for
the end-of~task exit routine. Space for
the new subtask's TCB and for the interrup
tion queue element (IQE) is obtained as an
extended save area belonging to the IRB.
After control is returned to the Attach
routine, it reduces the size of the IRB and
uses the extended save area to build the
TCB and the IQE.

Initializing the IQE, IRB, and TCB

If storage for an IQE was obtained, the
Attach routine initializes the fields of
the IQE as shown in Table 3-1.

Besides initializing the IQE, the Attach
routine increases by a count of one a "use"
count (RBUSE). This use count indicates
the number of subtasks that use the same
IRB to schedule and control an end-of-task
exit routine.. The supervisor Exit routine
decreases the use count by a count of one
each time that the end-of-task exit routine
completes its execution. When the use
count becomes zero, the supervisor Exit
routine frees the storage space occupied by
the IRB.

The Attach routine initializes the newly
created subtask TCB by first clearing all
areas except the register save area, then
placing needed information in the TCB. If
the ETXR operand was included in the call
er's ATTACH macro instruction, the address
of the IQE is placed in the TCB (TCBIQE
field), and a flag is set to indicate that
an end.-of-task exit routine has been
requested.

Propagating Fields From the TCB of the
Attaching Program

After initializing the newly created
subtask TCB, the Attach routine transfers
(propagates) from the caller's TCB to the
new TCB certain fields that are the same in
all TCBs within a job step. These fields
include the pOinter to the highest level
TCB of the job step (TCBJSTCB), the storage
protection key (TCBPKF), a pointer to the
partition queue element (TCBPQE) (see Sec
tion 5, -Main Storage supervision"), a
pointer to the task I/O table (TCBTIO), and
a pointer to the DCB for the job library
(TCBJLB). There is, however, a limitation
on the transferring of these fields. If
the calling, or attaching, program is the
Master Scheduler or an initiator, the

Table 3-1. Initialization of the Interruption Queue Element
r------------y------------------------------------y-------------------------------------,
I Field Name I Type of Information in Field I Initialization of Field I
~------------+------------------------------------+-------------------------------------~ I IQELINK I Address of next IQE in a queue of I Zero I
I I IQE's I I
~------------+------------------------------------+-------------------------------------~ I IQEPARAM I Parameter to be passed to the end- I Address of newly created subtask TCBI
I I of-task exit routine I I
~------------+------------------------------------+-------------------------------------~ I IQEIRB I Address of the IRB I Address of the IRB just created, or I
I I I the address of the IRB found during I
I I I the search of the subtask queue I

~------------+------------------------------------+-------------------------------------~ I IQETCB I Address of TCB to which the IRB is I Address of caller's TCB I
I I to b~queued I I L ____________ ~ ___________________________________ ~ _____________________________________ J

Section 3: Task Supervision 41

,
I

Attach ro~ne places the address of the
new TCB itself in the job-step TCB pointer,
TCBJSTCB. (In this case, the "supervisor
state" bit was set in the RB old PSW of the
current RB.) The TCBJSTCB field in a job
step TCB and in all higher level TCBs
points to the TCB itself.

Note: For information on the assignment of
a nonzero protection key for use by a job
step, refer to "Task creating Commands" in
the MVT· Job Management PLM.

Placing Parameter Information in the Fields
of the Subtask TCB

After unchanged information from the
caller's (attaching) TCB has been trans
ferred to the new subtask TCB, information
from the input parameters of the ATTACH
macro instruction is placed in the subtask
TCB. This information includes the super
visor mode bit, if needed; the address of
an event control block (ECB), if specified;
the limit and dispatching priorities for
the new subtask; the "nonrolloutable count"
field (TCBNROC); and the TCBFRA flag.
(These last two items are initialized only
if an initiator is attaching a job step
task.)

The supervisor mode bit (TCBFSM) is set
in the subtask TCB if two conditions exist:
the caller's TCB.is in supervisor mode, and
a special input parameter has been provided
by the caller. The supervisor mode bit, if
set, later indicates to contents supervi
sion that the RB old PSW for all programs
operating under control of this TCB should
be set in supervisor state.

If the "event control block" (ECB) pa
rameter has been specified, the Attach
routine checks the validity of the ECB
address, and if valid, places the ECB
address in the TCBECB field of the new TCB.
If the ECB address is invalid -- does not
specify a fullword boundary or violates
storage protection -- the Attach routine
abnormally terminates the caller'S task by
issuing an ABEND macro instruction with an
error code of "42A". The ABEND macro
instruction causes, via an SVC interrup
tion, linkage to the ABEND SVC routine to
abnormally terminate the task.

The Attach routine next determines the
limit and dispatching priorities from input
parameters and stores the priorities in the
new TCB. The limit priority of the subtask
is set according to the input parameter but
not higher than the limit priority of the
callerts' task. The dispatching priority
of the subtask is similarly set according
to the input parameter but not higher than
its own limit priority. If the priority
parameters have not been specified by the
caller, the Attach routine sets the subtask

42

priorities equal to the limit and dispatch
ing priorities of the caller's task.

If the Attach routine determines that an
initiator is attaching a job step, it
indicates in the job step TCB whether the
job step is eligible to be rolled out and
whether it can cause rollout. If the ROLL
parameter is ROLL=(NO,X), the Attach rou
tine initializes to '01' the TCBNROC field.
This marks the job step not eligible to be
rolled out. If, however, the parameter is
ROLL=(YES,X>, the Attach routine initial
izes the TCBNROC field to '00'. This marks
the job step eligible to be rolled out.
(The TCBNROC field is later altered by the
ENQ and DEQ routines to make the job step
ineligible to be rolled out while one of
its tasks is enqueued for a system
resource.> If the parameter is ROLL=(X,
YES), the Attach routine sets the TCBFRA
flag in the new TCB to indicate that the
job step is able to cause rollout. If,
however, the parameter is ROLL=(X,NO), the
TCBFRA flag is cleared to indicate that the
job step cannot cause rollout. If the ROLL
parameter is not specified, both the
TCBNROC field and the TCBFRA flag are
cleared to indicate that the new job step
can be rolled out but cannot cause rollout.
(The TCBFRA flag is later tested by the
GETMAIN routine, if the new job step
requests more storage space than can be
allocated from its region and if the roll
out feature is in the system. The TCBNROC
field is later tested by the rollout/rollin
module, during an attempted rollout, to
determine if the new job step is eligible
to be rolled out.>

Special Processing for Time Slicing

When the time-slicing feature is
included in the system, the ATTACH routine
tests whether the new TCB represents a
time-sliced task. ATTACH locates the first
time-slice control element (TSCE) throuqh a
pointer in the CVT, then compares the
dispatching priority of the new task with
that of each TSCE until a match is found or
the last TSCE is checked. If no match is
found, the new task is not a member of a
time-sliced group and further time-slice
processing is bypassed.

If a match is found, the new task is a
member of a time-sliced group. The ATTACH
routine sets the time-slice bit (TCBFTS) in
the TCB and updates the TSCE pointers in
the matched TSCE. If the new TCB repre
sents the only task in the group, its
address will be placed in the "First",
"Last", and "Next to be Dispatched" fields
of the TSCE. If the new task is not the
only one in the group, its TCB is lowest on
the TCB queue; the ATTACH routine places
the address of the TCB in the Last field of
the TSCE. o

CI

(~;
. ,

Allocating Subpools of Main Storage
to the Subtask

The ATTACH routine allocates subpools of
main storage to the attached TCB's programs
according to parameters passed in the
supervisor parameter list. These parame
ters were specified in the ATTACH macro
instruction. The "give" parameter causes
the allocation of specified subpools of
main storage to the programs of the
attached subtask for their exclusive use.
The "share" parameter permits the programs
of the subtask and the programs of the
parent task to share access to the same
subpools of main storage. The ATTACH rou
tine manipulates ownership of the subpools
by manipulating special Main Storage Super
visor queue elements, each representing a
subpool of main storage. Each subpool
queue element, originally queued to the
parent TCB, may be either dequeued and
placed on the subtask TCB's subpool queue
("give" parameter specified), or placed on
the subtask TCB's subpool queue as dupli
cate queue elements ("share" parameter
specified).

For each subpool specified in a "give"
parameter, the Attach routine searches the
subpool queue belonging to the caller's
task. The queue starts at the address
contained in the TCBMSS field of the call
er's TCB. If a subpool queue element
(SPQE) for the specified subpool is found
on the queue, it is dequeued and placed on
the new subtask's subpool queue. If the
subpool queue element is not found, a new
element for the subpool is created, placed
on the subpool queue belonging to the
subtask, and flagged as an "owned" subpool.

For each subpool specified in a "share"
parameter, the Attach routine similarly
searches the subpool queue chained from the
parent, or caller's, TCB. In this case,
however, if the subpool queue element is
found, a new subpool queue element for the
same subpool is created and placed on the
subtask's subpool queue. The elements
representing the same subpool (i.e., the
original queue element and its duplicate)
are both flagged as "shared" subpools. But
if an original subpool queue element is not
found on the parent task's subpool queue,
two queue elements are created. One is
flagged "owned" and "shared" and is queued
to the parent task's subpool queue. The
other element is flagged ftshared" and is
queued to the subtask's subpool queue.

There are two errors associated with the
allocation of main storage to an attached
subtask. Either error, when detected,
causes the Attach routine to abnormally
terminate the caller's task by issuing an
ABEND macro instruction and specifying an
error code. One error consists of the

\ \
\ \
\ '

specification of the "giveT "or "share"
parameter with a subpool number greater
than 127, the maximum number for a subpool
belonging to a user program. Such an error
produces an abnormal termination of the
caller's task and an error code of 22A.
The other error occurs if the "give" param
eter specifies a subpool whose . queue ele
ment, when found, contains both the "owned"
and "shared" attributes. In this case, the
subpool cannot be "given" to the subtask.
The resulting abnormal termination of the
caller's task includes the error code 12A.

A special subpool of main storage, sub
pool zero, is processed separately. Sub
pool zero is always shared by all the tasks
~n a job step. Therefore, if subpool zero
is specified with the "give" or "share"
parameters, the specification is ignored.

The Attach routine begins the allocation
of subpool zero to the subtask by testing
whether the caller is the Master Scheduler.
It checks the "supervisor mode" bit
(TCBFSM) in the caller's TCB. The Master
Scheduler cannot share subpool zero with
its subtasks, because it has its own region
of main storage, distinct from that of its
subtasks, the Reader, Writer, Initiator,
etc. If subpool zero were shared among the
Master Scheduler and its subtasks, the
subtasks could obtain storage from regions
other than their own. If the "supervisor
mode" bit is set in the caller's TCB, the
Attach routine bypasses the sharing of
subpool zero.

But if the caller is not the Master
Scheduler or in supervisor mode, the Attach
routine processes the allocation of subpool
zero in the same manner as with any other
subpool. That is, the subpool queue of the
parent task is searched and the needed
subpool queue elements are created and
chained from the parent and/or the subtask
TCB.

If subpool zero is specified, the Attach
routine obtains, via the issuance of a
GETMAIN macro instruction and resultant
supervisor linkage to the GETMAIN routine,
space for a regis~er save area for use by
the program specified in the ATTACH macro
instruction. The address of the save area
is stored in the subtask TCB. When the
specified program has been fetched to main
storage, the save area address will be
passed to the program in general register
13.

Placing the Subtask TCB on Its Queues

The new TCB for the attached subtask is
placed by the ATTACH routine on two TCB
queues: the subtask queue for the parent
TCB, and the main TCB queue. The subtask
queue indicates the order in which TCBs

Section 3: Task Supervision 43

I

I

were creatld.!and is used by the supervisor
ABEND routine during abnormal termination
to establish the order in which a job
step's resources are freed. The main TCB
queue, or simply the TCB queue, is the
queue of TCBs arranged in order of priori
ty. This queue is manipulated by the CHAP
SVC routine when it changes the dispatching
priority of a TCB. The TCB queue is also
used by the supervisor's Dispatcher routine
when it tests which program should next be
dispatched. The Dis~atcher sometimes scans
down this queue to determine the highest
priority ready TCB. Both queues, the sub
task queue for the parent TCB, and the TCB
queue, consist of the same physical TCBs.
The queues are created and manipulated by
means of different sets of pointers within
each TCB. (Refer to Section 12, "Control
Blocks and Tables," to note the meaning of
each pointer within the TCB). .

Indicating to the Dispatcher the Need for a
Task Switch

The Attach routine passes control to the
Task Switch routine to. determine if the
parent TCB's current program or the subtask
TCB's current program will receive control
when the Dispatcher gives control to a main
line program. The Task Switch routine
examines the dispatching priorities of the
two TCBs, parent and subtask, and stores
the address of the higher priority TCB in a
"new· TCB pointer (IEATCBP) to be later
tested by the Dispatcher, when it receives
control during the exiting procedure.

In a multiprocessing system, the parent
and subtask TCBs may both have higher
dispatching priorities than the current TCB
on the second CPU so the Task Switching
routine examines the dispatching priorities
of tsree TCBs: the subtask TCB and the two
"new" TCBs. If the "new" TCB pointer of
either CPU contains zero, the Task Switch
routine sets the "new" pointer of the other
CPU to zero so the Dispatcher will search
the TCB queue to determine the highest
priority tasks.

Preparation for the Dispatching of the
Caller and the Fetching of the Specified
Program

To prepare for return of control to the
caller, the Attach routine moves the call
er's register contents, saved in the SVRB
by the SVC Second Level Interruption Han
dler, to the save area of the caller's TCB.
It also stores the address of the new
subtask TCB in the register-l save area
location (TCBGRS) in the caller's TCB.
These values will be loaded into the gener
al registers by the Dispatcher when it next
returns control to the caller, or attaching
program. When the attaching program is
redispatched, it regains control at the

44

instruction immediately after the ATTACH
macro instruction. The address of the new
subtask TCB in register 1 is the return
parameter from the Attach routine.

In order to obtain execution of the
program specified in the ATTACH macro
instruction, the Attach routine must obtain
the assistance of one of the functions of
contents supervision, called the Link func
tion. The Link function will locate the
desired program in main storage or in one
of the auxiliary storage libraries, fetch
the program to main storage, and cause
linkage to the program for the newly
created subtask.

The Attach routine determines the input
register values for Contents Supervision
and stores them in the new TCB. It also
moves the entry point parameter either
an entry point name or a partitioned data
set directory entry from the input
parameter list to the SVRB. The purpose is
to prepare the SVRB for the control of
Contents Supervision when it has been dis
patched under the control of the new TCB.
Another purpose of moving the entry point
parameter is to permit the attaching pro
gram to reuse the parameter-list area if
the program is redispatched before the Link
function is complete.

The Attach routine schedules linkage to
the Link function of contents supervision
by dequeuing its SVRB from the caller's TCB
and queuing it as the current RB for the
new subtask. The Attach routine alters the
old PSW in the SVRB so that it points to a
special entry point in the Link function
(IEAQCS01). The Link function is thus made
the first routine to be executed for the
newly created subtask when it becomes
active.

By manipulating the register save areas
and the TCB and RB queues, the Attach
routine has effectively modified the two
TCBs so that both are ready to be dis
patched. The Attach routine branches
directly to the Dispatcher to give control
to the current routine of the higher
priority of the two tasks, the attaching
task or its newly created subtask. Note
that the Attach routine branches directly
to the Dispatcher, without the typical
intermediate step of the supervisor Exit
routine. The reason is that the Attach
routine has already performed or made un
necessary the functions which the supervi
sor ,Exit routine normally performs. For
example, the Exit routine normally removes
the current RB from the TCB of the exiting
program. Since the Attach routine has
already removed its SVRB from the caller's
TCB, it cannot branch to the Exit routine.

(

CHANGING THE PRIORITY OF A TASK

The CHAP SVC routine permits a problem
or system program to alter the dispatching
priority of its own TCB or the dispatching
priority of one of its subtask TCBs. The
subtask TCB must belong to the issuer's
TCB; that is, be attached by a routine
belonging to the caller's task, and there
fore reside on its subtask queue. A pro
gram issuing the CHAP macro instruction may
change the dispatching priority of a speci
fied TCB to any value between zero and the
limit priority of the issuer's TCB. The
distinction between dispatching and limit
priorities is as follows. Although both
priorities are specified as parameters of
the ATTACH macro instruction, they serve
different functions. The dispatching
priority determines the appropriate posi
tion of a TCB in the TCB queue, and
indirectly the routine to be next placed in
execution after an interruption. The Dis
patcher places in execution the current
program belonging to the ready TCB of
highest dispatching priority. In contrast,
the. limit priority of a TCB is used by the
CHAP SVC routine to determine the maximum
value to which it may increase the dis
patching priority of the TCB.

The CHAP routine can receive control as
a type-l SVC routine from the SVC FLIH, or
serve as a subroutine via a branch entry
from a supervisor routine. If it receives
control through the branch entry, or if the
caller is a system routine (protection
key=O), the CHAP routine bypasses the usual
validity checking of the input parameters.
The assumption in this case is that the
input parameters are valid and will not
cause a program check when they are used by
the CHAP routine.

After the CHAP routine has determined
the type of requestor, it checks the input
parameter for zero. If it is zero, the
caller's TCB is the TCB whose dispatching
priority is to be changed, and there is no
parameter whose validity need be checked.
But if the input parameter is not zero, i 1:
is the address of a word in Rain storage
pointing to the TCB whose priority should
be changed. In this case, the CHAP routine
branches to a validity check subroutinE~
used by many SVC routines to test an input
parameter. The test determines if the
parameter is a valid address and does not
violate storage protection. If the address
is not valid, the CHAP routine sets up an
error code (22C), and branches to the
ABTERM routine of the supervisor to sched
ule the abnormal termination of the call
er's task. But if the address is valid,
the CHAP routine determines if the speci
fied TCB is a valid subtask TCE of the
caller's task. It does this by searching
the subtask queue of the caller's task,

looking for the TCE address pa~nted to by
the input parameter. The se~rch is for a
match between the address of the . specified
TCB and the address of one Or"tne subtask
TCBs. If the search does not produce a
match, the assumption is that the input TCB
was incorrectly specified. The CHAP rou
tine in this case branches to the ABTERM
routine with an error code (12C) to sched
ule an abnormal termination of the caller's
task, since the requested service cannot be
provided. But if the address of the speci
fied TCB matches that of one of the TCBs on
the subtask queue, or represents the
issuer's TCB, validity checking is complete
and normal processing continues.

If the time-slicing feature is included
in the system, the CHAP routine tests
whether the specified TCB represents a
time-sliced task. CHAP does this by test
ing the time-slice bit (TCBFTS) in the 'I'CB.
If the bit is set, the task is time-sliced;
the CHAP routine then resets the bit, and
finds the time-slice control element (TSCE)
that corresponds to the task's dispatching
priority. If the address of the TCB is not
the same as the First, Last, or Next fields
in the TSCE, the new dispatching priority
is determined; no change is required in the
TSCE. (See Figure 3-2 for TSCE pointers.)
If the address of the specified TCB appears
as one of the above fields, the CHAP
routine modifies the pointers as follows:

Field Containing
TCB Address
First, Last, and

Next

First but not Last

Last and Next (not
First)

Last but not Next

Meaning and CHAP
processing
Specified task is the
only one in the group.
CHAP sets all fields to
zero to indicate the
group is now empty.

Specified
the only
group.
address
task on
First.

task is not
one in the
CHAP places

of next lower
TCB queue into

Specified task is last
in group and next t~o be
dispatched. CHAP places
address from First into
Next and address of next
higher TCE on TCE queue
into Last.

CHAP places addreSS of
next higher TCB on TCB
queue into Last.

The remainder of the CHAP routine con
tains several tests to determine the extent
of the priority change that can be per
mitted. The first test checks whether the
result of the change in dispatching priori
ty is zero or negative. In either case the

Section 3: Task Supervision 45

TCB QUEUE

TSCE r---i--
I

--,

FIRST
I
I

LAST - I I
I

NEXT
I

~I
I Length of
I I Time-Slice

I
TSC E poi nters after fi rst I time-sliced task has completed
its time-slice interval. I

I 1
I
I

TlME-SUCE I t
GROUP L ____ __ .J

Figure 3-2. TSCE Pointers

CHAP routine sets the dispatching priority
field (TCBDSP) of the specified TCB to
zero. (A negative dispatching priority is
meaningless and is treated as a request for
a change to zero priority.)

The remaining tests will be discussed as
separate cases. as follows:

Case 1: The result of the requested change
would be a dispatching priority greater
than zero. but equal to or less than the
TCE. The CHAP routine algebraically adds
the desired change to the original dis
patching priority of the specified TCB and
places the result in the dispatching
priority field (TCBDSP) of the TCB. The
request is thus satisfied.

Note: The remaining cases consider condi
tions in which the result of the change is
greater than the limit priority (TCBLMP) of
the specified TCB.

Case 2: The specified TCB represents a
subtask of the issuer's TCB, and the
desired change would make the dispatching
priority of the subtask TCD greater than
the limit priority of its parent (issuer's)
TeD. In this case, the CHAP routine cannot
quite satisfy the request. It sets both
the dispatching priority (TCBDSP) and the
limit priority (TCBLMP) of the specified
TCB equal to the limit priority of the

46

parent TCB. The request is thus satisfied
within the limits of the system.

Case 3: The specified TCB represents a
subtask of the issuer's TCB, and the
desired change would not make the dispatch
ing priority of the subtask TCB greater
than the limit priority of its parent TCB.
In this case the CHAP routine sets both the
dispatching priority and limit priority of
the specified TCB to the value produced by
the change. This time the request can be
completely satisfied' without any
compromises.

Case 4: The specified TCB is the issuer's
TCB. In this case. since the result of the
desired change would be a dispatching
priority that exceeds the limit priority of
the issuer's TCB. the request cannot be
completely satisfied. The CHAP routine
sets the dispatching priority of the
issuer's TCB equal to its limit priority.

If the time-slicing feature is included
in the system, the CHAP routine tests
whether the new dispatching priority is
time-sliced. If there is a TSCE for the
priority, the CHAP routine sets the time
slice bit (TCBFTS) in the TCB. The CHAP
routine tests the Next field in the TSCE;
if it contains zero. the specified task is
the only member of the time-sliced group,
and the CHAP routine places its TCB address
in the First, Next, and Last fields in the
TSCE. Otherwise. the new TCB address is
stored in the Last field.

Having changed the dispatching priority
of the TCB, the CHAP routine must next
realign the TCB queue so that it is ordered
from high to low dispatching priority.
This queue is sometimes used by the Dis
patcher during the exiting procedure to
determine the highest priority ready task
whose current routine it should dispatch.

In order to reorder the TCB queue, the
CHAP routine searches the TCB queue for two
TCBs. One is the specified TCB whose
dispatching priority it has just changed;
the other is the first TCB that has a lower
dispatching priority than the new priority
of the specified TCB. The CHAP routine
begins its search at the highest priority
TCB, located at address IEAHEAD. (See
Figure 3-3.) The address IEAHEAD is con
tained in a field (CVTHEAD) of the communi
cation vector table. This table. also
called the CVT, contains pointers to major
control blocks used by the control program.
Note on Figure 3-3 that the pointer
(TCBTCB) in each TCB points to the next
lower priority TCB on the queue. (Refer to
the TCB description in Section 12. "Control
Blocks and Tables," for the positions of
the permanent system TCBs on the TCB
queue.)

,
"+- .7

o

(

I

Location CVTHEAD
in Communications
Vector Table

Painter to
Addr IEAHEAD

TCB A (Addr IEAHEAD)

r-- TCBTCB

DP = 10

(TCBC
TCBTCB

DP = 8

C TCBD
TCBTCB

DP= 2

l TCBE
TCBTCB
(Contains Zero)

DP = 1

TCB B

TCBTCB

DP = 8

Legend: DP = dispatching priority value

D
)
)

~

Note: Each TCBTCB field points to the TCB of next lower dispatching priority.

Figure 3-3. The Task Control Block Queue

When the CHAP routine finds the two TCSs
(the specified TCB and the next lower
priority TCB) it rearra.nges pointers so
that the specified TCB is removed from its
current position on the queue and rein
serted just above the next lower priority
TCB. If other TCBs on the queue have a
priority equal to the new dispatching
priority of the specified TCB, it is placed
below them on the queue.

During its search of the TCB queue, the
CHAP routine branches to the Task switching
routine to determine if there is a ready
TCB whose dispatching priority is now high
er than that of the caller's TCB. This
situation can occur in two different ways.
The caller may have changed one of its
subtasks to a priority higher than that of
its own tasks, or the caller may have
changed its own tasks to a lower priority.
When the TCB queue is reordered, a TCB
previously of lower priority than the call
er's, now exceeds the caller's priority.
In a multiprocessing system, there also may
be a ready TCB whose dispatching priority

is higher than that of the current task on
the second CPU.

If the Task switching routine finds a
ready TCB with a higher dispatching priori
ty, it indicates to the Dispatcher the need
for a task switch. The indication, also
performed by other supervisor routines,
consists of storing the address of the
higher priority TCB in a one-word "new" TCB
pointer at address IEATCBP. During the
exiting procedure that follows the execu
tion of an SVC routine, the Dispatcher
inspects the "new" TCB pointer to determine
if it should redispatch the interrupted
routine or the current routine belonging to
another ready task.

After the CHAP routine has realigned the
position of the specified TCB in the TCB
queue, it returns control either to the
caller or the current routine of another
ready task. If the CHAP routine was
entered via a branch from a supervisor
routine, it returns control directly to the
caller, deferring any indicated task switch
to the next time the Dispatcher is entered.
But if the CHAP routine was entered from
the SVC FLIH, via an SVC interruption, it
branches to the Type-l Exit routine. The
Type-l Exit routine tests whether the CHAP
routine has indicated the need for a task
switch. If it has, the Type-l Exit routine
branches to the Dispatcher to give control
to the current routine of the higher
priority task. But if the need for a task
switch has not been indicated, the Type-l
Exit routine returns control directly to
the caller.

EXTRACTING INFORMATION FROM A TASK CONTROl,
BLOCK

The purpose of the Extract SVC routine
is to permit the macro-issuing or calling
program to obtain from a specified TCE the
information contained in seven of its
fields. The specified TCB must be either
the TCB of the issuing program or of one of
its subtasks tasks attached by the
issuing program. The information may be
extracted from any combination of the seven
fields or from all of the seven fields.
When extracted, the information is placed
in a user-specified list. The fields from
which information may be extracted and the
information contained in each field are
described in the publication Supervisor and
Data Management Macro Instructions, under
the heading of "Extract."

Besides extracting information from a
specified TCB, the Extract routine performs
several checks to determine if the input
parameters passed by a problem program are
valid. This validity checking prevents the
extraction of meaningless data, or the

Section 3: Task supervision 47

later occurrence of a program interruption
whose cause may be difficult to interpret.
Input parameters, if incorrectly specified
by the using program, cause the routine to
generate an error code and cause an abnor
mal termination of the offending task.

Like certain other type-1 SVC routines,
the Extract routine may be entered either
from the SVC FLIH during an SVC interrup
tion, or via a branch from a Supervisor
routine. The routine first tests the type
of entry and sets indicators accordingly.
It also determines whether information is
to be extracted from the current TCB (call
er's TCB) or from the TCB of one of its
subtasks. If information is to be
extracted from the current TCB, its address
is set up, and the following test and
precautionary measure for a subtask is
bypassed.

If the specified TCB represents a sub
task of the caller's TCB, the Extract
routine prevents a possible program inter
ruption by forcing the TCE pointer (second
word of the input parameter list) to a
fullword boundary. The routine then scans
the subtask queue of the caller's TCB. Its
purpose is to determine if the specified
TCB address truly represents a subtask of
the caller's TCB. If no match of TCB
addresses can be obtained, the caller must
have incorrectly specified the TCB address.
since useful information cannot be obtained
from the specified TCB, the Extract routine
schedules an abnormal termination similar
to that previously discussed. An error
code (328) defining the incorrect address
specification is passed to the ABTERM
routine.

'l'he Extract routine next determines
whether it should check the validity of the
input parameters supplied by the calling
program. If the caller' is a system rou
tine, as indicated by a protection key of
zero in the SVC old PSW, the assumption is
that the caller has checked its parameters
before passing them to the Extract routine.
In this case no linkage to the Validity
Check routine occurs, and the Extract rou
tine immediately obtains the desired infor
mation. The Validity Check routine is used
by SVC routines to check the validity of
input parameters passed to the routines by
a user program. If the caller is not a
system routine, its input parameters must
be checked. Accordingly, the Extract rou
tine passes control to the supervisor's
Validity Check routine to perform the
needed checking.

The Validity Check routine performs
three tests to determine the correctness of
the extract list address. The extract
listis the user-specified table in which
the Extract routine places the requested

48

TCB information. One test determines if
the list address lies on a full word bounda
ry, as required. Another test checks
whether the list address lies within the
boundaries of main storage. The rema1n1ng
test determines if the list address speci
fies a storage area whose storage protec
tion key matches the protection key in the
caller's TCB. If any of these tests fail,
indicating that the calling program has
incorrectly specified the extract list
address, the Extract routine branches to
the ABTERM routine, passing to it an error
code (128) indicating the type of incorrect
specification. The ABTERM routine will
schedule linkage to the ABEND routine,
which will abnormally terminate the call
er's task.

The validity checking detects an invalid
list address that could cause a program
check if it were used by the Extract
routine. More important, the validity
checking detects whether the caller has
passed a list address pointing to a storage
area which is not owned by the caller.
Therefore, Extract can avoid storing into
locations specified by the list. If the
Extract routine used the list address
without validity checking, it could store
anywhere in' storage, destroying data or
programs belonging to another job step or
to the supervisor. It could do this, since
it operates with a storage protection key
of zero. Note that validity checking does
not prevent the caller from passing an
invalid list address which causes the
Extract routine to destroy the ca;Ller's
data or program or the data or programs of
another task in the caller's job step.

If input parameters have been specified
correctly, as indicated by the several
validity checks, or if validity checks have
been bypassed, normal processing of the
requested TCB information continues. The
Extract routine tests each bit of an
extraction byte, a part of the parameter
list, which represents the FIELDS parameter
of the EXTRACT macro instruction (see
"Extract" in Supervisor and Data Management
Macro Instructions). For each bit that is
set, the Extract routine places the appro
priate information from the specified TCB
into the user list. If a bit is not set,
the routine makes no entry in the list for
the field represented by that bit. The
resulting list is of variable length and
packed in a standard order. (See Supervi
sor and Data Management Macro Instruc
tions.)

may be
in the

Note that some of the fields that
requested are not directly contained
specified TCB. These fields are
requested by the following parameters:

those

(general register save area),
(floating-point register save area),

GRS
FPS
and

~~---~-~ ---- ----~------

()

()

the ETXR (end-of-task exit routine). For
the first two parameters the returned value
is the address of the appropriate save
area. The value is calculated from the
address of the specified TCB. The returned
value points to the save areas which are in
the TCB. For the third parameter, ETXR,
the returned value (address of the exit
routine) is obtained indirectly from the
TCB. The TCBIQE field in the TCB points
indirectly to the end-of-task exit routine,
via pOinters in two other control blocks,
an interruption queue element (IQE) and an
interruption request block (IRB). The
address of the end-of-task exit routine is
obtained from the IRB. (See Figure 3-1.>

When the Extract routine has placed all
the requested information in the user
specified list, it either returns control
directly to the caller, or prepares for a
return to a program by branching to the
Type-1 Exit routine. The Type-l Exit rou
tine, after making certain tests, will
either return control directly to the call
er, or branch to the Dispatcher to return
control to the current routine belonging to
another TCB. If. however, entry to the
Extract routine occurred from a supervisor
routine via a branch, the Extract routine
returns control directly to the caller.

DETACHING A SUBTASK

The Detach SVC routine permits a program
being executed. for a "parent" task to
detach its subtask if the subtask has been
normally or abnormally terminated. The
Detach routine checks that the address of
the subtask's TCB passed to the Detach
routine is valid, and that the subtask has
been terminated. It dequeues the subtask
TCB from the subtask queue of its parent
TCB and frees storage areas belonging to
the subtask, including the subtask TCB
itself. If the caller specifies an invalid
subtask TCB address, the Detach routine
abnormally terminates the caller's task.
But, if the subtask has not been normally
or abnormally terminated previously. it is
now abnormally terminated.

The Detach routine is entered from the
SVC SLIH. To determine if the caller has
passed a valid TCB pointer, the Detach
routine first branches to the supervisor's
Validity Check routine to test the supposed
subtask TCB address. The Validity Check
routine does not determine if the address
belongs to a TCB but only that it will not
later cause a program check. If any valid
ity check fails, fhe check routine informs
the Detach routine by supplying a return
code. In this case, the Detach routine
sets up an error code (0023EOOO) and issues
an ABEND macro instruction to obtain super
visor linkage to the ABEND routine to

abnormally terminate the caller's task. If
the input address is valid, the Detach
routine proceeds as follows.

The routine next determines if the call
er belongs to the parent task of the
specified subtask. It does this by search
ing the subtask queue of the caller's TCB
for the specified TCB address. The list
,origin for the parent task's subtask queue
is the TCBLTC field of the parent's TCB.
If the subtask TCB address is not found,1
the Detach routine sets up the same error
code {0023EOOO} as that for an invalid TCB
address, and obtains linkage, via an ABEND
macro instruction. to the ABEND routine to
abnormally terminate the caller's task.
But if the specified subtask TCB address is
found in the subtask queue, processing
continues.

The Detach routine next determines if
the subtask is complete, that is, whether
the task has been terminated by either the
EaT routine or the ABEND routine. The
Detach routine makes this determinat.ion by
testing the ·completion" indicator TCBFC in
the TCBFLGS field of the subtask TCB. This
indicator bit is set by the EaT routine or
by the ABEND routine. If the subtask has
not terminated, normally or abnormally,
detaching cannot occur. In this case, the
Detach routine performs processing to
abnormally terminate the subtask. {This
processing will be described later in this
discussion.> But if the subtask has been
terminated. normally or abnormally, the
Detach routine proceeds with its process
ing, as follows.

Since the subtask is terminated. the
routine must remove the subtask TCB from
the subtask queue of the caller's TCD.
This is necessary since the ABEND or EaT
routines during a later termination of the
caller's task will try to release resources
supposedly belonging to its subtasks.

After removing the subtask TCB from its
subtask queue, the Detach routine frees
storage areas belonging to the subtask that
were not freed during the termination pro
cess. These storage areas include a
problem-program register save area, if the
subtask has such an area, and the space
occupied by the subtask's TCB. The save
area consists of 72 bytes in subpool 250;
the TCB contains 192 bytes in subpool' 253,
supervisor queue space. If the subtask has
a problem-program register save area, its

1The subtask TCB is not found if neither an
ECB nor an ETXR was specified when the
subtask was attached. and the subtask has
been terminated. normally or abnormally.
In this case, the subtask TCB has been
purged.

Section 3: Task Supervision 49

address is contained in the TCBFSA field of
its TCB. After freeing the sUbtask's
storage areas for reuse, the Detach routine
returns control to the caller, via the Exit
routine and the Dispatcher.

If the Detach routine discovers that the
subtask was not normally or abnormally
terminated, it initiates abnormal termina
tion of the subtask, unless it is already
being terminated. (The TCBFC flag, if set,
indicates that the subtask has been normal
ly or abnormally terminated.) If the sub
task is not already being terminated, the
Detach routine sets up an error code (13E),
and branches to the ABTERM routine to
schedule the abnormal termination. The
Detach routine cannot invoke the ABEND
routine directly, since the caller's task
is not to be terminated. The ABEND rou
tine, when invoked directly, can terminate
only the current or calling task.

The Detach routine next performs pro
cessing whose purpose is to inform the
Detach routine, and if possible a routine
of the parent task, that the subtask has
been abnormally terminated. The Detach
routine first saves in its SVRB the address
of the subtask's event control block (ECB),
if one was specified when the subtask was
attached. (The ECB address is contained in
the subtask's TCBECB field). The Detach
routine then obtains four bytes of space
(subpool 250) for a new ECB in which the
ABEND routine~ can post the subtask's ter
mination. The Detach routine initializes
the new ECB to zero and places its address
in the subtask TCB (TCBECB field). The
routine also clears the IQE pointer
(TCBIQE) in the subtask TCB, so that an
end-of-task exit routine (if one exists)
will not be scheduled by the EDT routine
when the subtask is terminated. (The
TCBIQE f.ield contains an indirect pointer
to an end-of-task exit routine (ETXR), if
the caller specified the ETXR operand when
it attached the subtask.>

The Detach rout~ne then waits (issues a
WAIT macro instruction) for the ABEND rou
tine to complete the abnormal termination
of the subtask. The abnormal termination
of the subtask is signaled by the automatic
release of the Detach routine from its wait
condition, and the posting of the new ECB
by the EDT routine. The Detach routine
then frees the storage occupied by the
special ECB it had created and tests wheth
er the subtask has its own ECB. (The
Detach routine saved the subtask's ECB
address if it had an ECB -- in the
current SVRB.)

1The actual posting is performed for the
EDT routine, which is invoked by the ABEND
routine when the termination is complete.

50

If the subtask does not have' an ECB
which the Detach routine can post to inform
the caller of the subtask termination, the
Detach routine returns control to the call
er. The return path includes the Exit
routine and the Dispatcher.

If, however, the subtask has an ECB, the
Detach routine checks the ECB in prepara
tion for posting. It branches to a validi
ty check subroutine belonging to the EDT
routine. The subroutine checks whether the
ECB contains valid information and has not
been altered by a user program. This check
is needed since the Post routine will not
make the check when it posts the ECB. If
the user program has altered the ECB con
tents, and this alteration remains unde
tected, processing of the ECB by the Post
routine will cause a program check.

To avoid the possibility of a program
check, the validity check subroutine
examines the RB address supposedly con
tained in the ECB. If any of the tests
fail, indicating that the ECB does not
contain a valid RB address, the Detach
routine sets up an error code (00202000)
and invokes the ABEND routine to abnormally
terminate the caller'S task. A serious
user error has been detected. If, however,
the validity check suggests a valid ECB,
the Detach routine posts the ECB, as an
indication to the caller that the subtask
has been abnormally terminated. Then, via
the Exit routine and the Dispatcher, it
returns control to the caller.

SERVICES INDIRECTLY RELATED TO A TASK
CONTROL BLOCK

These varied services consist of:

• Specifying a program interruption exit
routine.

• Sychronizing a program with one or more
events.

• Serializing the use of a resource.

• Scheduling an asychronous exit routine.

• Specifying a task asynchronous exit
routine.

A user program may specify a program
interruption exit routine which will handle
program interruptions occurring during any
program executed for the user's task. The
supervisor must be able to test for the
existence of a user routine. The SPIE
routine therefore places in the TCB of the
macro-issuing program an indirect pointer
to the user routine. If after a program
interruption has occurred, the Program
interruption First-Level Interruption Han- c

c)

dler finds an address in the pointer field,
it passes control to the user routine to
handle the interruption. Otherwise, the
FLIH uses '::he ABTERM routine to schedule an
abnormal termination of the task whose
error caused the interruption.

By use of the Wait and Post routines, a
user or system program may synchronize its
execution with the occurrence of one or
more events, such as the completion of an
I/O operation. The Wait routine stops the
execution of the requestor until the speci
fied events have occurred. When they have
occurred, the Post routine indicates their
occurrence by altering bits in one or more
event control blocks. It then makes ready
the waiting requestor so that it may be
placed into execution by the Dispatcher.

By serializing the use of resources, the
ENQ and DEQ routines permit requestors
representing different tasks to gain one
at-a-time access to a resource or set of
resources. The resources may include one
or more data sets, records within a data
set, programs, or work areas within main
storage. If the resource is available,
control is returned to the requestor,
optionally with a return code indicating
the availability of the resource. If the
resource is not available, either of two
functions are performed, depending on the
RET parameter that is supplied by the
requestor. The requestor is placed in a
wait condition, pending the availability of
the resource, or control is returned to the
requestor with a code indicating that the
resource is not available. When a routine
has issued a DEQ macro instruction to
signal that it is no longer using the
resource, the DEQ routine reduces the wait
count of a waiting requestor and tests it
for readiness. If the requestor is now
ready, the DEQ routine determines if the
requestor can be executed in place of the
DE~-issuing routine.

An asynchronous exit routine is sched
uled by the supervisor to provide special
handling of an unpredictable event, such as
an end-of-task condition or the expiration
of a timer interval. The scheduling of the
exit routine, begun when the event actually
occurs, is a multipart procedure interwoven
with the performance of different tasks.
Preparation for the event takes place when
a' system routine issues a CIRB macro
instruction to cause the Exit Effector,
stage 1, to construct an interruption re
quest block or IRB. The IRB will control
the future execution of the asynchronous
exit routine when it is scheduled. When
the unpredictable event occurs, the super
visor invokes stage 2 of the Exit Effector
to begin the scheduling by placing an
interruption queue element on a push-down
exit queue. Final scheduling, performed by

stage 3 of the Exit Effector, moves the
interruption queue element to a queue
belonging to the IRB. The IRB is then
queued to the "head" position on the RB
queue belonging to the requestor's TCB.
When the TCB to which the IRB is queued is
the highest priority ready TCB, the Dis
patcher places the asynchronous exit rou
tine in execution for its assigned task.
When the asynchronous exit routine is
fintshed, the supervisor'S Exit routine
removes the old scheduling and prepares for
new scheduling. That is, it updates queue
elements and prepares to queue the IRB to
the RB queue of anoth'er TCB, if there are
other requests for the exit routine. If
there are no other requests, the supervi
sor's Exit routine dequeues the IRB from
its TCB, and if the IRB was dynamically
acquired, frees the storage space it
occupies.

An asynchronous exit routine can also be
specified to receive control when a task is
scheduled for ABEND processing. The STAE
macro instruction prepares the task to
intercept abnormal termination processing
through the STAE service routine, which
receives control via an SVC 60 when the
STAE macro instruction is issued. When the
task has entered ABEND processing, the
ABEND/STAE interface routine is invoked,
which schedules a user-written STAE exit
routine via the SYNCH macro instruction.
If the STAE exit routine indicates that a
retry routine should be scheduled, the
ABEND/STAE interface routine sets the
resume PSW to point to the address of the
STAE retry routine. The ABEND/STAE inter
face routine then exits, giving control to
the Dispatcher.

SPECIFYING A PROGRAM INTERRUPTION EXIT
ROUTINE

Before reading the following discussion,
the reader should carefully study "Program
Interruption processing" in Supervisor and
Data Management Services.

The SPIE routine completes the process
ing needed for a user to specify a program
interruption exit routine. The initial
processing -- creating and initializing the
fields of a program interruption control
area (PICA) -- is performed by executable
code produced by the e~pansion of the SPIE
macro during an assembly of the source
program. The execution of the instructions
of the macro expansion places in the fields
of the PICA a program mask, the address of
the user program-interruption exit routine,
and an interruption mask. If after the
execution of the SPIE routine a program
check occurs in a program being executed
for the issuer's task, the information
contained in the PICA will determine the

Section 3: Task Supervision 51

resultant processing of the program inter
ruption. In order for the supervisor to
pass control t.o the correct error handling
routind, the supervisor must be able to
test f·)r the existence of a user routine.
The ma.in fUnction of the SPIE routine is to
place in the TCB of the macro-issuing
program an indirect pointer to the user
routine. If after a program interruption
has occurred, the supervisor finds an
address in the pointer field, it will pass
control to the user routine to handle the
interruption. Otherwise, the supervisor's
Program FLIH will schedule an abnormal
termination of the task whose error caused
the program interruption.

After the user program has issued a SPIE
macro instruction, and the resulting macro
expansion has constructed and initializes a
PICA, an SVC interruption gives control to
the supervisor. The First and Second-Level
SVC Interruption Handlers pass control to
the SPIE routine to complete the prepara
tion for user processing of a possible
program interruption. The SPIE routim~
first determines whether to create a pro
gram interruption element (PIE). The
supervisor will store in the PIE, when a
program interruption occurs, the informa
tion needed by a user-specified exit rou
tine to handle the interruption. This
information consists of the program check
old PSW, general registers 14 through 2,
and the address of the current PICA. The
question of whether to construct a new PIE
hinges on whether the current PICA is the
first issued for the current task.
Although there can be several PICAs, one
for each issuance of the SPIE macro
instruction for a given task, only the last
specified PICA is active. The SPIE routine
places the address of the newly created
PICA in the PIE for the task. But the
problem is first to determine if a PIE
already exists for the current task.

The SPIE routine tests for the existence
of a PIE by examining the PIE pointer
(TCBPIE) in the current TCB. If there is
no PIE for the task, the current SPIE macro
instruction must be the first issued for
this task. In this case, the routine
issues a GETMAIN macro instruction for the
needed storage1 and places the address of
the new PIE into the current. TCB. The
GETMAIN routine assigns to the storage area
the task's storage protection key so that
the user-specified program check routine,
when given control, can modify the data
stored in the PIE.

After locating or creating the PIE, the
SPIE routine obtains the address of the
previous PICA from the PIE. If the PIE is

1space is allocated in subpool zero.

52

newly created this address is zero. The
previous PICA address is returned to the
caller in general register 1. If this
register contains zero, no previous SPIE
macro instruction was issued for the cur
rent task. The caller may use the old PICA
address in a later SPIE macro instruction
to restore to use the previous PICA.

The SPIE routine places in the PIE,
whether newly created or old, the address
of the new PICA that the macro expansion
provided as input. The PICA with its user
program-check routine address will then be
available to the supervisor in the event of
a program interruption. The PIE may al
ready contain the address of a PICA, the
one created by the last issuance of the
SPIE macro instruction for the current
task.

As a last major function, the routine
moves the program mask field of the PICA to
the RB old PSW. If the PICA address in the
PIE is zero, the current program mask field
of the RB old PSW is saved in the first
byte of the TCBPIE field of the current
TCB. The new program mask, supplied as an
input parameter, LS then placed in the RB
old PSW. By plaCing the program mask in
the RB old PSW, which the Dispatcher will
use to return control to the caller, the
SPIE routine is effectively issuing a Set
Program Mask instruction for the caller.

Finally, to begin the exiting procedure
that will complete the processing of the
SVC interruption, the SPIE routine requests
a supervisor-assisted linkage to the super
visor Exit routine. It obtains the linkage
to the Exit routine by branching to an SVC
3 instruction in the communications vector
table. The SVC-3 instruction causes an SVC
interruption which ultimately passes con
trol to the Exit routine.

If the PICA address provided as input is
zero, the SPIE routine ~erforms the pre
viously described functions. However,
since the PICA address stored in the PIE is
zero, if a program interruption occurs, the
Program-Check First-Level Interruption
Handler recognizes that a user program
check routine has not been requested. It
therefore branches to the ABTERM routine to
schedule an abnormal termination of the
task in which the program check occurred.

SYNCHRONIZING A PROGRAM WITH ONE OR MORE
EVENTS

Synchronizing a program with external
events consists of two actions:

1. Causing a program or routine to wait
for one or more events. o

()

(

2. Indicating the occurrence of an event
and restarting the waiting prosram or
routinE>.

Causing a Program to Wait for
One or More Events

The purpose of the Wait svc routine is
to permit a user or system program to stop
its execution until a specified number of
events have occurred, such as the comple
tion of onE'~ or more I/O operations. ~Jhen
the ~pecified events have occurred, the use
of the Post SVC routine will indicate the
occurrE'nce of the awaited event or events
and make the program ready (no longer
~~aiting), so that its execution may
continue.

The Wait routine performs the following
main functions:

• Places the program that issued t.he WAIT
macro instruction into a wait condition
so that it cannot be executed until the
awaited event or events have occurred.

• Recognizes those events that have al
ready occurred and reduces the number
of awaited events accordingly.

• Places in one or more special communi
cations areas, called event control
blocks (ECBs), an indication that one
or more events are awaited by the
issuing program. Each ECB represents a
unique event that is awaited.

• Performs job step wait limit timing for
the step under examination.

Like other type-l (resident and non
reentrant) SVC routines, the Wait routine
is entered from the SVC FLIH after an SVC
interruption. The wait routine first sets
the system mask field of the SVC old PSW to
all ones. It does this so that when the
SVC old PSW is loaded to redispatch the
caller, the caller will be enabled for I/O
and external interruptions. This is done
to prevent those supervisor routines that
operate disabled and use the Wait routine
from placing the caller into a disabled
wait state.

The Wait routine then checks whether a
wait count has been specified as an input
parameter. The wait count, or number of
awaited events, must be specified as an
operand of the WAIT macro instruction. If
no wait count has been specified, as indi
cated by a test of register 1, the Wait
routine ignores the request represented by
the macro instruction and branches to the
Type-l Exit routine to return control to
the caller or macro-issuing program. If a
wait count has been specified, the Wait
routine continues normal processing.

The Wait routine next compares the !lum
ber of await.ed events, l:epresented by thf~
wait count, with the number of event con
trol blocks (ECBs) that the caller has
specified. The caller has passed to the
Wai t routine, via the coding of the mCl.cro
expansion, the address of either a single
event control block (for a single awaited
event) or the address of a list of event
control blocks if it awaits more than one
event. The Wait routine checks the valid
ity of t.he list address and then counts thf:
number of specified ECBs. If the. caller
has specified a larger wait count than the
number of ECBs, the WAIT request cannot. be
processed. The caller has lrede a serious
error. In this case, the routine sets u['
an error code of 101 and branches to the
ABTERM routine in order to schedule an
abnormal termination of the calling task.
If the number of awaited events, as indi
cated by the wait count, is equal to the
number of specified ECBS, the Wait routine
can perforrr the next main step of its
processing -- determining whether to test
the validity of the input parameters passed
by the caller. But if the wait count is
less than the number of specified ECBs, the
routine sets a "search" flag in the request
block (RB) of the caller.

The reason for the setting of the search
flag (RBECBWT bit in RBSTAB field) in the
RB of the caller is as follows. The
calling program has specified a smaller
wait count than the number of ECBs. This
means that the caller awaits fewer events
than the maximum number that can occur.
For example, the caller may await the
completion of anyone of three possible I/O
operations. In this case, the wait count
would be one, and the number of ECBs would
be three. When an awaited event (in this
example, a single I/O completion) has
occurred, the Post SVC routine will post
the event in the ECB specified by the
caller of the Post routine. Part of the
posting action consists of clearing the
wait bit that was set previously by the
Wait routine. Since the WAIT request has
now been fulfilled, that is, the single
awaited completion of three possible I/O
operations has occurred, the wait bit
remaining set in each of the two ECBs not
yet posted is now misleading, and may cause
later incorrect processing by the Post
routine. The Post routine will examine the
search bit in the RB of the waiting pro
gram. If the search bit (RBECBWT) is set,
the Post routine will clear the wait bit in
each of the ECBs not yet posted and will
also clear the search bit. The misleading
indication is thus removed.

After the Wait routine has set the
search bit (RBECBWT) in the caller's RB (or
if this step was bypassed because the wait
count equals the number of EeBs), the

Section 3: Task Supervision 53

routine decides whether to check the valid
ity of an input parameter passed to the
Wait routine by the caller. This parameter
is either the address of a single ECB, or
of more than one ECB if a list of ECBs had
been passe·d. (Refer to the WAIT macro
instruction in supervisor and Data Manage
ment Macro Instructions.) If a system
routine is the caller, as determined by a
zero in the protection key field of the SVC
old PSW, the assumption is that the ECB
addresses are correct and need no validity
checking. But if the nonzero protection
key indicates that a user program is the
caller" the Wait routine decides to branch
to the supervisor's Validity Check routine
to test each ECB address that the user has
specified.

The Validity Check routine, as indicated
previously, performs three checks of each
input address. It determines if the
address lies on a fullword boundary, exists
within the boundaries of main storage, and
designates a storage area whose storage
protection key matches the protection key
in the caller's TCB. If any of these tests
fail, indicating that the caller has incor
rectly specified an ECB address, the Wait
routine sets up an error code and exits to
the ABTERM routine to schedule an abnormal
termination of the caller's task. If all
ECB addresses passed to the Wait routine
are valid, or if validity checking is
bypassed (caller is a system routine), the
Wait routine continues processing.

The routine next tests bits in each
specified ECB. (The reader should refer to
Section 12 of this manual to observe the
format of an ECB.) Wait tests the wait bit
and cgmpletion bit in each ECB to determine
the status of the event represented by the
ECB. For each status the processing is
different. If the wait bit is already set
in any specified ECB, an error condition
exists. One possible cause of such an
error condition is that two programs being
executed under the control of two different
TCBs have specified the same ECB as an
operand (i.e., the two programs are await
ing the identical event). If a wait bit is
already set in one of the ECBs, the Wait
routine sets up an error code (301) and
branches to the ABTERM routine to schedule
an abnormal termination of the caller's
task.

If the wait bit is not already set in an
ECB, Wait examines the completion bit to
determine if the event that the caller is
now awaiting has already occurred. A com
pletion bit that is set indicates that the
awaited event represented by the ECB has
already occurred and has been posted by the
Post routine. In this case, the Wait
routine reduces by a count of one the
specified wait count. This is necessary

54

because the caller should wait only for
those events that have not yet occurred.
When the routine has subtracted one from
the wait count, it tests the remainder to
determine if the wait count has been
reduced to zero. If the wait count is now
zero, all awaited events have occurred
(such as one I/O completion out of a
possible three completions), and the Wait
routine must perform special processing.
If a completion bit is not set (meaning
that the Post SVC routine has not posted
this event's occurrence), the Wait routine
sets the wait bit in the ECB (indicating
that the awaited event has not yet
occurred) and places in the ECB the addr'ess
of the call- er's RB. This RB address is
needed by the Post routine after an awaited
event has occurred, when it wishes to
adjust the wait count stored in the RB of
the waiting program.

It was previously stated that for each
completion bit that the Wait routine finds
set in an ECB, it subtracts one from the
specified wait count parameter. If the
resultant wait count is zero, the required
number of awaited events has occurred. If
the number of needed events is less than
the number of specified ECBs (as indicated
by the nsearchn flag in the caller's RB),
the Wait routine must clear the wait bit in
each ECB that has not been posted. The
purpose of clearing the wait bit in each
unposted ECB is to prevent the Post routine
from later confusing an uncleared wait bit
with a new WAIT request. This is the same
function that the Post routine performs
when it decreases a wait count to zero and
finds the search flag (RBECBWT) set in the
waiting RB.

When the Wait routine has processed all
ECBs specified in the input parameter list,
it inserts the final wait count in the wait
count field (RBWCF) of the caller's RB. If
the wait count is greater than zero, the
caller is now in the wait condition, or
just "waitingn, and cannot be dispatched.
In this case, the Wait routine must indi
cate to the Type-l Exit routine and to the
Dispatcher that the Dispatcher must perform
a task switch: i.e., the Dispatcher must
search the TCB queue for the next highest
priority ready TCB, and dispatch the cur
rent program associated with that TCB. The
wait routine indicates the need for a task
switch by clearing the "new" TCB pointer at
location IEATCBP. If the final wait count,
placed in the wait count field of the call
er's RB is zero, the awaited events have
already occurred and the caller must not
wait. Therefore the Wait routine does not
indicate to the Dispatcher the need for a
task switch.

After the routine has placed the wait
count in the caller's RB, and has or has o

(

not indicated the need for a task switch,
it must determine if the step under inspec
tion is being job-step timed. It does this
by determining if there is a job step TQE,
and by testing the TCBTME field of the
initiator TCB for a non-zero value. If the
field is zero, Wait branches to the Type-l
Exit routine, because the ·step under
inspection has not requested job step tim
ing. If the field is non-zero, indicating
that the step has requested job step tim
ing, the entire tr~e of tasks ·must be
examined to determine if the entire step is
in an SVC wait. Wait uses the task select
routine to examine all the TCB's in the
tree of tasks, beginning with the job step
TCB. When a TCB is found by the task
select routine, Wait determines if the TCB
which was just located is the TCB which
originated the wait. If this is the case,
the SVC old PSW is examined to determine if
the Wait routine was entered because of the
issuance of an SVC Wait (as opposed to a
branch entry to Wait). If an SVC wait was
issued, the task select routine is entered
again to find another TCB. If an SVC Wait
was not issued, and the TCB is that which
originated the wait, the Wait Routine
branches to the Type-l Exit routine. If
the TCB located by the task select routine
is not the TCB which originated the wait,
the wait routine tests the task ended bit
in the TCBFLGS bytes of the TCB. If the
ended bit is on, the task select routine is
entered once again to find another TCB. If
the ended bit is not on, the Wait routine
selects the top RB on the TCB's RB chain,
and examines the wait count field (RBWCF).
If this field is zero (indicating the task
is not waiting on any events), the Wait
routine branches to the type 1 Exit rou
tine. If the RBWTCF field is not zero, the
Wait routine examines the RB old PSW field
in the TCB's top RB. If the last instruc
tion executed by the task currently under
inspection (as indicated by the address
contained in the right half of the RB old
PSW, minus two) is an SVC Wait, the task
select routine is entered to locate another
TCB. If the last instruction executed was
not an SVC Wait, the Wait routine branches
to the Type 1 Exit routine.

When the task select routine can find no
more TCBs in the tree of tasks (indicating
that the entire tree of tasks is in an SVC
Wait), the Wait routine uses the Dequeue
TQE (entry point IEAQTD01) routine in the
Timer Second Level Interruption Handler to
remove the job step TQE from the timer
queue. The Wait routine next converts the
job step TQE from a task TQE to a 30-minute
wait limit TQE while saving the CPU remain
ing time in the reserved slot of the TQE.
The'TQE is then enqueued on the timer queue
by the Enqueue TQE routine (entry point
IEAQTEOO). The reason for this manipula-

tion of the job step TQE lies within the
job step timing algorithm.

When a tree of tasks is in an SVC wait,
the step is not CPU timed. But because of
the possibility of a Wait on an ECB which
will never be posted, job step timing
requires that a wait limit·TQE be imposed
on a step. The effect of the wait limit
TQE would be to abnormally terminate a step
which has waited on an event(s) for more
than a specified amount of time (30
minutes), without having the event(s)
occur.

After the routine has or has not con
verted the job step TQE, it·branches to the
Type-l Exit routine to start the return to
a main-line program. The Type-l Exit rou
tine tests the TCB pointers, IEATCBP and
IEATCBP+4. If the need for a task switch
has been indicated by the inequality of the
two TCB pointers, the Type-l Exit routine
branches to the Dispatcher to perform a
search of tQe TCB queue, and to return
control to the current program of another
task. If a task switch has not been
indicated, the Type-l Exit routine loads
the SVC old PSW to give control directly to
the caller. Since in ,this case all speci
fied events have already occurred, the
caller does not wait, except for supervisor
processing.

Indicating the Occurrence of an Event and
Restarting a Waiting Program

The Post SVC routine permits a program
(the "posting" program or caller) to signal
the occurrence of an event, such as t.he
completion of an I/O operation, awaited by
a waiting program. The routine signals
(posts) the event's occurrence by altering
one of two bits in a specified event
control block (ECB) shared by both waiting
and posting programs. The Post routine
places in the event control block a "post
code" supplied by the posting program. The
post code may later be inspected by the
waiting program, after it resumes execu
tion, in order to determine the type of
event that occurred. The Post routine
determines if the program that is awaiting
the posted event can be made ready (i.e.,
whether all awaited events have occurred).

If the waiting program can be made
ready, and belongs to a task of higher
dispatching priority than that of the post
ing program, the Post routine indicates to
the Dispatcher that a task switch is needed
(i.e., a ready program whose TCB is of
higher priority than that of the caller
should be dispatched). The Post routine
determines if the initiator TCB of the TCB
being posted has a TQE (the job step TQE)
which indicates the step is being job step
timed. If a job step TQE does exist, and

Section 3: Task Supervision 55

it is a 30 minute wait limit TQE, the Post
routine dequeues the TQE from the timer
queue and converts the element to a task
TQE.

There are three branch entry points to
the Post routine. One (IGC002+6) is used
exclusively by supervisor routines. A
second (IEAOPT01) is used exclusively by
the I/O supervisor. The third (IEAOPT02)
is used by both the I/O Supervisor and
supervisor routines when they need to check
the validity of user-specified ECBs. The
I/O Supervisor's branch entry permits the
I/O Supervisor to pass parameters in regis
ters different from the standard registers,
and also permits the saving of registers
across the Post routine.

On branch entry f:rom the I/O supervisor,
the Post routine saves the input registers,
places the input parameters in the standard
registers, and branches to the main-line
part of the Post routine. On return from
the main-line part of the Post routine, the
saved registers are restored and control is
returned to the I/O supervisor. In this
case, any task switch whose need is indi
cated by the Post routine will not occur
until the I/O Supervisor branches to the
Dispatcher, via the I/O FLIH.

On branch entry from a supervisor rou
tine, the Post routine assumes that the
input parameters are in the standard regis
ters. This entry allows a supervisor rou
tine to post an event without causing a
task switch until the caller of the Post
routine exits, instead of occurring when
the Post routine exits.

With any branch entry, the Post routine
returns control to the calling routine.
But if the Post routine is entered via an
SVC interruption, it exits via the Type-l
Exit routine.

The main-line part of the Post routine
first determines if validity checking is
necessary. validity checking is bypassed
if either of the exclusive branch entries
is used, or if the entry is from the SVC
FLIH and the calling program is a system
routine. (A system routine operates with
protection key of zero.) In these cases,
the assumption is that the calling routine
has passed a valid ECB address.

If validity checking is necessary, the
Post rout~ne determines that the ECB
address passed by the caller is valid.
Then, if the wait bit is set in the
specified ECB, it checks the validity of
the RB address contained in the ECB. The
Post routine branches to the supervisor's
validity Check routine to perform the
needed address checking.

56

The Validity Check routine, as indicated
in the discussion of the Wait routine,
performs three checks of an ECB address.
It determines if the address lies on a
fullword boundary, exists within the bound
aries of main storage, and designates a
storage area whose storage protection key
matches the protection key in the caller's
TCB. If any of these tests fails, indica
ting that the caller has incorrectly speci
fied an ECB address, the Post routine sets
up an error code (102) and exits to the
ABTERM routine to schedule an abnormal
termination of the caller'S task. However,
if the ECB address passed to the Post
routine is valid, or if validity checking
is bypassed, the Post routine continues
processing.

The Post routine next tests the wait bit
in the specified ECB. If the wait bit is
set, the Post routine must check the valid
ity of the RB address contained in the ECB.
This is the address of the RB for the
program that awaits the event now being
posted. The RB address was placed in the
ECB by the Wait routine when it serviced
the WAIT macro instruction issued by the
now-waiting program. Since the ECB is part
of user-specified storage, and may have
been modified by a user program after the
Wait routine stored the RB address of the
waiting program, the Post routine must now
check the RB address.

The Post routine performs the check by
making four tests. The first test deter
mines whether the RB address is on a
fullword boundary and is within macn1ne
specified storage. The second test checks
whether the old PSW field (RBOPSW) of the
RB specified by the address is enabled for
system interruptions. The third test com
pares the protection key in the RB old PSW
of the specified RB with the protection key
in the RB old PSW of the waiting program's
RB. The fourth test determines whether the
last-executed instruction of the waiting
program, located via its RB old PSW field,
was a WAIT macro instruction (SVC-1). If
any of these tests fail, indicating that
the RB address has been altered, the Post
'routine sets up an error code (202) and
branches to the ABTERM routine to schedule
an abnormal termination of the caller's
task. If, however, the RB address appears
valid, or the wait bit had not been set,
indicating that the now posted event is not
yet awaited, the Post routine continues
processing.

The next step is to check the completion
bit in the specified ECB. If the comple
tion bit is set, indicating that the event
now being posted has already been posted,
there is no need for further processing.
The Post routine treats this condition as a

(
'~

\

./

(

no-operation, and branches to the Type-1
Exit routine or to the caller.

If the Post routine was entered at a
branch entry, it branches to the calling
routine instead of to the Type-l Exit
routine. This is done without special
tests. The Post routine branches to the
address in the return register, general
register 14. If the routine was entered
from the SVC FLIH, general register 14
contains the address of the Type-1 Exit
routine. But if the routine was entered at
a branch entry point, general register 14
contains the return address of the caller.

If the completion bit is not set, the
event represented by the ECB has not pre
viously been posted, a.nd processing can
continue. The Post routine places in the
specified ECB information useful to the
waiting program and to the Wait and Post
routines. The routine stores in the ECB a
Post code specified as an operand of the
POST macro instruction. The post code can
supply to the waiting program, when it
resumes execution, information about the
event's occurrence. Besides storing the
post code in the ECB, the Post routine sets
the completion bit and clears the wait bit.
These bits now indicate to both the Wait
and Post routines, and also to a user
program if it inspects the ECB. that the
event represented by the ECB has occurred
and is not now awaited.

The Post routine must next determine
whether to decrease the wait count stored
in a waiting program's RB. The wait count,
stored in the RBWCF field of a waiting
program's RB, indicates the number of a
waited events that must occur before the
program can resume execution. As long as
the wait count stored in an RB is greater
than zero, the progralf. represented by the
RB may not be dispatched.

The Post routine tests if the wait count
in the waiting program's RB is already
zero. This can occur in the special case
in which the waiting program's task was
abnormally terminated, via ABTERM, because
of an event asychronous to the waiting
program. The ABTERM routine resets to zero
the wait count in the top RB on the RB
queue of the TCB for which it is scheduling
an abnormal termination. In this case, the
Post routine returns control to the caller
without changing the wait count in the
waiting program's RB.

If the event is awaited. as indicated by
a nonzero wait count, the routine subtracts
one from the wait count field (RBWCF) of
the waiting program's RB. It then tests
the remaining wait count to determine if
the waiting program can be made ready
(i.e •• whether the new wait count is now

zero). If the new wait count is not zero.
all events awaited by the program have not
yet occurred. and further processing is not
possible. In this case the Post routine
returns control to the caller, or posting
program, either directly if the caller is
the I/O Supervisor, or via the Type-1 Exit
routine. If, however, the new wait count
is zero, indicating that the posted event
is the last needed by the waiting program,
further processing occurs.

The Post routine next determines if the
posted ECB is part of a list of ECBs. In
other words, is the minimum number of
awaited events (the wait count) less than
the number of specified ECBs (e.g., one
needed I/O completion among three possible
I/O completions)? If the answer is yes,
one or more unposted ECBs exist whose wait
bits remain set. These ECBs will cause
error in future processing by the Post
routine. The wait bits must be cleared.
To determine if there are remaining unpost
ed ECBs associated with the program whose
wait count is now zero, the Post routine
tests the "search" bit (RBECBWT) in the RB
of the waiting program. If the bit is set
(see discussion of Wait), the Post routine
assumes that the number of awaited events
is less than the number of specified ECBs.
It obtains the address of the ECB list
belonging to the waiting program, checks
the validity of the list, and clears the
wait bit in each outstanding ECB of the
list.

After all unposted wait bits have been
cleared, or if no unposted wait bits
remained, the Post routine tests the TCBTME
field of the initiator TCB of the task
which is being posted. If the field is
zero, it indicates that job step timing is
not being performed for this step, and the
Post routine would test if the program may
be dispatched. If the field is non-zero,
the Post routine examines the TQE type-
REAL or TASK. If the TQE is TASK type, it
indicates that the entire tree of tasks was
not in an SVC wait, and the Post routine
would then test if the program may be
dispatched. If the TQE·is REAL and on the
timer queue, it indicates that a 30-minute
wait limit TQE had been placed on the timer
queue. If such is the case, the POSt
routine would branch ±o the Dequeue TQE
routine (entry point IEAQTD01) in the Timer
Second-Level Interruption Handler to remove
the element from the. queue. The Post
routine would reinstate the actual CPU time
remaining value in the TQEVAL field of the
TQE. It would then mark the TQE as TASK
type. This processing would allow the
Dispatcher to once again calculate the CPU
time used by this job step.

After the Post routine had or had not
manipulated the job step TQE, it tests if

Section 3: Task Supervision 57

the program whose wait count is now zero
may be dispatched. The Post routine
branches to the Task switching routine to
perform three tests. One test determines
that the RB of the waiting program is at
the top of its task's RB queue, and is
therefore the current program for its task.
An RB is at the top of its RB queue if it
is pointed to directly by its TCB. The
second test determines that special non
dispatchability bits (TCBFLGS field) have
not been set in the TCB for the waiting
program's task. If both tests are success
ful, a third test determines if the TCB of
the waiting program has a higher dispatch
ing priority than the TCB of the posting
program.

If any of the tests fails, the Post
routine returns control to the caller, or
posting program, either directly (if the
caller is the I/O Supervisor) or indirect
ly, via the Type-l Exit routine. If the
tests show that control should be returned
to the waiting program, the Post routine
indicates the need for a task switch by
setting the wnew· TCB pointer at IEATCBP to
the address of the waiting program's TCB.
The Post routine then returns control to
the caller. If the return is indirect
through the Type-l Exit routine, the Type-l
Exit routine branches to the Dispatcher to
perform the task switch. If the return,
after the branch to the Post routine, is
directly to the caller, the task switch
does not occur until the caller itself
branches to the Type-l Exit routine or to
the Dispatcher.

SERIALIZING THE USE OF A RESOURCE

The ENQ routine, working with the DEQ
routine, permits programs issuing the ENQ
macro instruction (or, in systems that
include the shared DASD feature, the
RESERVE macro instruction) to gain one-at
a-time access to' a resource or set of
resources. 'The requested resource may
include one or more data sets, records
within a data set, programs, or work areas
within main storage. The routine places in
a resource queue all resource requests
specified in the caller's macro instruc
tion. If no other ENQ-issuing program is
using any of the requested resources, the
ENQ routine, via the Exit routine and the
Dispatcher, returns control to the caller,
which then gains access to its resource(s).
But if any of the caller's resources are
already in use by another ENQ-issuing pro
gram, being executed for another task, the
ENQ routine places the caller in a wait
condition until the resource becomes avail
able. When the program that is using the
resource(s) completes its use, it issues a
DEQ macro instruction that causes the DEQ

58

routine to remove one or more elements from
the request queue, and reduce the wait
count for the waiting program. If the wait
count is now zero, the DEQ routine, via the
Exit routine and the Dispatcher, may return
control to the previously waiting (now
ready> program. The program then gains
access to its resource(s).

Separate although related functions are
needed when a resource is requested and
when the use of the resource is signaled
complete. The functions may be listed
under the headings of major and minor
functions. Major functions are those which
satisfy the principal purpose of the ENQ
and DEQ macro instruction. Minor func
tions, although also important, are not
related to the central purpose of the macro
instructions. For example, the validity
checking of input addresses may be consid
ered a minor function.

Types of Resource Reguests

There are two types of resource requests
which may be specified by the ENQ-issuing
program: an "exclusive" (E) request or a
"shared" (S) request. The ENQ routine
handles these two types of requests dif
ferently. An exclusive request is treated
strictly on a ,first-in, first-out basis.
That is, an exclusive request in the queue
may not be serviced until all earlier
requests of either type have been serviced.
Also, later requests of either type may not
be serviced until a previously entered
exclusive request has been handled. A
"groupW of shared requests, however, if
placed consecutively in the queue, may be
serviced as a group, if one of the shared
requests is at the top of the queue. That
is, the group of shared requests are
honored strictly on a task-priority basis.
Figure 3-4 illustrates the handling of
typical combinations of shared and exclu
sive resource requests.

Description of the Resource Queues

Before the discussion can proceed, the
reader must become familiar with the con
struction of the re~urce queues and the
nature of the search for already existing
resource requests. Each resource request
contained in the ENQ macro instruction
specifies a Qname, which names a set of
resources, and an Rname which names a
single resource within the set identified
by the Qname. The Qname, specifying a set
of resources, is represented on the
resource queues by a major queue control
block, or major QCB. Each major QCB con
tains, besides pointers to other control'
blocks, the Qname for a set of resources,
e.g., the name of a data set. A major QCB
thus represents a set of resources. c

(

r---,
condition 1:

A group of shared
requests is at the top
of the resource queue.

r-----------------,
, shared request I L _________________ J

r-----------------,
I shared request I L _________________ J

I
I

The resources are used by I
the shared requestors on I
a task-priority basis. I
The exclusive requestor I
waits until the shared I
requestors have completed I
their use of the resource I
and have removed their ,

r-----------------, requests from the queue. I
lexclusive request I I I L _________________ J I

I
~---~

Condition 2:

An exclusive request
at the top of the queue
is followed by a group
of shared requests.

r-----------------,
lexclusive request I L _________________ J

r-----------------,
, shared request , L _________________ J

r-----------------,
I shared request I L _________________ J

The exclusive requestor
has access to the re
source. The shared re
questors wait until the
resource is free. They
then share the resource
on a task-priority basis.

~---.--~ , I
, I
I Condition 3: r-----------------, The first (top) exclusive I
I lexclusive request I requestor uses the re- I
, An exclusive request L _________________ J source while the second I
I at tne top of the queue exclusive requestor waits. I
, is followed by a second r-----------------, When the first requestor I
, exclusive request. lexclusive request I has completed its use of I
, L _________________ J the resource, the second ,

I requestor can proceed. I
I I
~---~

Condition ~:

A group of shared
requests is at the top
of the queue, followed
by an exclusive request.
The exclusive request
is followed by a group
of shared requests.

r-----------------,
I shared request , L _________________ J

r-----------------,
I shared request , L _________________ J

r-----------------,
,exclusive request I L _________________ J

r-----------------,
I shared request I L _________________ J

r-----------------,
I shared request , L _________________ J

The resource is first
shared on a task-priority
basis by the shared
requestors whose requests
are at the top of the
queue. The exclusive
requestor waits until the
shared requestors have
completed their use of the
resource and have removed
their requests from the
queue. The exclusive
requestor then has
exclusive access to the
resource. The shared
requestors lower on the
queue wait until the re
source is available. They
then share the resource on
a task-priority basis.

___ ~ ___ J

Figure 3-~. The Handling of Shared and Exclusive Requests

Section 3: Task supervision 59

E;ach major QCB points to a minor QCB,
which represents a particular resource
within the set of resources, e.g., a spe
cific record within a data set. As the
reader may expect, a minor QCB contains,
besides pointers, an Rname which is the
name of the particular resource that has
been requested. Each minor .QCB, if another
resource within the set has been requested,
points to another minor QCB. Thus, each
minor QCB represents a particular resource
that has been requested within a set of
resources represented by a major QCB.

Each minor QCB contains the list origin
for a queue of one or more queue elements,
or QE;Ls. Each QEL represents a request for
a single resource by a program belonging to
a specific task. If a program requests
more than one resource, the ENQ routine
constructs two or more QELs, each repre
senting a request. If all the QELs that
represent resource requests by a program
are at the top of their respective QEL
queues, the program may use the resources.
That is, the program is not waiting and can
gain access to the resources as soon as it

Location IEAQQCBO

I

C ~
Minor QCB 1

Qname 1 T -r/
(QELI

Rname 1
Major
QCS

I
xt
r

-
Major QCB 2

Points to ne
or last mojo
QCB on the
(if one exis

queue
ts}

" 0

- /

/
Points to
another
minor
QCB queue
(if one
exists)

TCB A

1 I

is dispatched. But if all the QELs that
represent requests by a program are not at
the top of their respective QEL queues, the
requesting program must wait. The using
program must complete its use and issue a
DEQ macro instruction. The DEQ routine
then moves the needed QEL or QELs to the
top of the queues.

Figure
queues.

3-5 illustrates the resource

In Figure 3-5, program X is using, or is
about to use; the resources represented by
major QCB 1 and minor QCBs 1 and 2. Its
requests are at the top of the queues,
represented by QELs 1 and 2. Program Y has
requested one of the resources being used
by program X, that represented by major QCB
1 and minor QCB 2. Since the resource
desired by program Y is already in use, the
program must wait, its request remaining on
the queue as QEL 3.

Note that each requested resource is
represented by a combination of one major
QCB and one of its associated minor QCBs.

Minor QCB Queue

Minor QCB 2

/ ./

./
/'

Rname 2

QEL 2
... /

/
./
/ T

QEL
QEL 3 Queues

"'I

-' - ~

C
I I

~ ______ p_ro_9_ra_m_x ______ ~II~ _______ p_ro_9_ra_m __ Y ______ ~
NOTES: 1. Arrows represent pointers.

2. Each combinatian of a major QCB, a minor QCB, and a QEL represents a resource requested for a particular task.
3. Program Xis usi ng resources Rname 1 and Rname 2.
4. Program Y awaits resource Rname 2.

Figure 3-5. The Resource Queues

60

!
""I£t. .. -V

c

(

c

Each request is represented by a queue
element (QEL) " which points to the TCB
associated with the requesting program. If
there is not at least one QEL ,for a
previously requested resource, the DEQ rou
tine, when the DEQ macro instruction is
issued. removes the associated minor QCB.
(Under certain conditions the PEQ routine
also removes a major QCB.) Thus, if there
are control blocks -- major QCB, minor QCB.
and QEL on the resource queues, there
must be at least one request for a resource
whose USe has not yet ~een completed.

ReqUesting One or More Resources

The fUnctions needed when a resource is
requested may be listed under the headings
~f major and minor functions. Major func
tions are those which satisfy the principal
purpose of the ENQ macro instruction.
Minor functions. although also important~
are not related to the central purpose of
the macro instruction. For example, valid
ity checking of input addresses may be
considered a minor function.

MAJOR FUNCTIONS: When one or more
resources are requested. via the ENQ macro
instruction, the major functions are:

• If necessary, creation of one
queue control blocks (QCBs) to
sent the requested resource.
placing of these queue control
on the resource queues.

or more
repre

and the
blocks

• Depending on the RET parameter. the
creation of a queue element (QEL) to
represent the request. and the place
ment of the QEL on a QEL queue.

• If the resource is available. the
returning of control to the requestor.
with or without a return code that
indicates the availability of the
resource. depending on the RET
parameter.

• If the requested resource is not avail~
able. either of two functions are per
formed. depending on the RET parameter:

- The requestor is placed in a wait
condition. pending the availability
of the resource, or

- Control is returned to the requestor
with a code that indicates that the
resource is unavailable.

The first major function, performed by
the ENQ routine, is to search the resource
queues to determine if the requested
resource is already in use. The ENQ rou
tine searches the major QCB queue for a
major QCB that contains the specified
Qname. If it finds the Qname. at least one

resource ~n the set of resources is in use,
and the routine then searches the asso
ciated minor QCB queue for the Rname.

PROCESSING IF THE REQUESTED RESOURCE IS NOT
IN USE: If the requested resource is BQ!
in use, as indicated by the absence of QCBs
with the specified Qname and Rnanle, control
is returned to the caller. Depending on
the RET code supplied by the caller, a
return code mayor may not be issued, and a
QEL mayor may not be constructed and
placed on the resource queues. (Refer to
Table 3-2 for the various results.)

PROCESSING IF THE REQUESTED RESOURCE IS IN
USE: If another requestor has access to
the resource, as indicated by a major and
minor QCB containing the resource names,
the resultant processing varies. It
depends on the particular RET option that
the caller has specified, on the type of
request shared (S) or exclusive (E) -
and on the types of QEL'S already on the
queue. (The RET-parameter formats and the
QEL formats appear in Section 12 of this
manual.) Table 3-3 lists the different
forms of resultant processing.

Note in Table 3-3 that a QEL is con
structed and placed on a QEL queue if the
requestor wants access to the resource and
is willing to wait for it. The requestor's
willingness to wait for the resource is
indicated by a RET option of HAVE, NONE, or
the omission of the RET operand. The RET
option of TEST never causes creation of a
QEL, only the generation of a return code
(see Table 3-4) indicating whether the
resource is available. If RET is USE, a
QEL is created only if the requestor can
have immediate access to the resource (Part
2 of Table 3-3).

Note that if all previous QELs on the
queue and the present request are both for
"shared" resources, there is no need for
the caller to wait. The new requestor and
those represented by the "shared n previous
QELs on the queue may share the resource on
a task-priority basis. Thus, a requestor
need not have its QEL at the top of the
"shared" group of QELs. Any requestor
represented in the shared group may be
executed if other requestors represented in
the group are waiting for an event, such as
an I/O completion, provided at least one
member of the group is at the top of the
queue.

RETURNING CONTROL: Control is returned to
the caller if the requested resource or
resources are available. or to the current
routine of the next highest priority ready
task if the caller must wait because the
requested resource is in use. If the
caller is to receive control, the return
path is via the Exit routine and the

~ection 3: Task Supervision 61

Table 3-2. Processing if a Requested Resource is not in Use
r-------------T---------------------------------T--------------~-----------T-----------,
I I I IControl is I I
I I I QCB and/or QEL I Returned to I I
I I Iconstructed andlCaller WithlMeaning of I
I RET Parameter I Meaning of RET Parameter I Queued I Code of: I Return Code I
~-------------+---------------------------------+---------------+-----------+-----------~
I TEST I Tests the queues to determine if I no I 0 I·Resource is I
I Ithe caller can have immediate usel I I available I
I lof the resource. Never con- I I I I
I Istructs control blocks. I I I I
~-------------+---------------------------------+---------------+-----------+-----------~
IUSE IPlaces QCB and/or QEL on queues I yes I 0 IResource i81
I lonly if caller can have immediate I I I available I
I laccess to the resource. I I I I
~-------------+---------------------------------+---------------+-----------+-----------~
I HAVE IDelay can be tolerated. Places I yes I 0 IResource isl
I IQCB and/or QEL on queues. I I I available I
~-------------+----------~----------------------+---------------+-----------+-----------~
I NONE or I Same as HAVE but produces no I yes I no code I I
I omitted I return code. I I I I L _____________ ~~ _______________________________ ~ _______________ ~ __________ _i ___________ J

Table 3-3. processing if a Requested Resource is in Use
r---------------------------T---------------T---,
I Type of Previous QEL IRET parameter I I
I and Present Request I is: I Resul tant Processing I
~---------------------------+---------------+---~
11. The previous QEL on the I USE or TEST I Sets return code equal to 4 and, via the I
I queue is "exclusive,· I IExit routine and the Dispatcher, returns I
I or the present request I Icontrol to the caller. A QEL is not con- I
I is "exclusive." I Istructed to represent the request. I
I ~---------------+---~
I I HAVE, NONE or IPlaces requestor into wait condition by in-I
I I omitted Icreasing SVRB wait count, constructs a QEL I
I I land places it on a QEL queue, indicates I
I I Ithat a task switch is needed, branches to I
I I Ithe Dispatcher to perform a task switch. I
I I IIf RET is HAVE, a return code of 0 is also I
I I I produced. 1 I
~~--------------------------+---------------+---~
12. The previous QELs and ITEST I Sets return code equal to 0 and, via the I
I the present request arel IExit routine and the Dispatcher, returns I
I both ·shared,· QE I Icontrol to the caller. No QEL is con- I
I I I structed. I
I There is no previous ~---------------+---~
I QEL for the resource I NONE or omitted I Construct.s a new QEL, places it on a QEL I
I (i.e., the QEL queue isl I queue, and via the Exit routine and the I
I empty). I I Dispatcher, returns control to the caller. I
I t---------------+---~
I IUSE or HAVE Isets return code equal to 0, constructs a I
I I Inew QEL, places it on a QEL queue, and via I
I I Ithe Exit routine and the Dispatcher, I
I I I returns control to the caller. I
~---------------------------~---------------~---------------------------------------.---.-~
11 This return code is passed to the requestor only after the resource becomes available. I L ___ J

62

lrf~.
~""i

" (
"~

(

Table 3-4. Return Codes for the ENQ
Routine

r-----------T-----------------------------,
IReturn Code I Meaning I
~-----------+-----------------------------~
I 8 IThe caller's task is already I
I I enqueued. (This is an error I
I I condition.) I
~-----------+-----------------------------~
I 4 IThe resource is in use, andl
I Ithe caller's request has not I
I Ibeen enqueued. I
~-----------+----------------------------~
I 0 IThe resource is available, orl
I Ithe caller's request has been I
I I enqueued. I L ___________ ~ _____________________________ J

Dispatcher. But if the current routine of
another task is to receive control, the
return path is via the Dispatcher only. To
determine the appropriate return path, the
ENQ routine tests the RB wait count field
in the current SVRB. If the RB wait count
is zero, all requested resources are avail
able and the caller can receive control.
But if the RB wait count is greater than
zero, the caller is effectively in a wait
condition and cannot be given control.

If the caller can receive control, the
ENQ routine branches to the Exit routine to
remove the SVRB from its RB queue and free
the storage area it occupies. The Dis
patcher then returns control to the caller
by loading the RB old PSW contained in the
caller's RB.

If the caller cannot be given control,
the ENQ routine prepares for the caller's
future restart. It does this by changing
the SVRB old PSW to point to the SVC 3
instruction in the communication vector
table. When in the future the DEQ routine
perndts the caller's task to regain con
trol, the first instruction to be executed
will be the SVC 3, which causes supervisor
linkage to the Exit routine to remove the
SVRB.

After preparing for the caller's future
restart, the ENQ routine indicates to the
Dispatcher that it should search the TCB
queue for the next highest priority ready
TCB. The indication to the Dispatcher is
the setting of the "new" TCB pointer
(IEATCBP) to zero. Then the routine
branches to the Dispatcher to search down
the TCB queue to find the next highest
priority ready TCB. When it finds the TCB,
the Dispatcher places in execution the
current routine of the associated task, by
loading the RB old PSW contained in the
current RB.

MINOR FUNCTIONS: When one or more
resources are requested, the minor func
tions are the:

• Setting of the caller's task in Rmust
complete" status, if specified, and if
the caller is a system task.

• Detection of abnormal conditions that
can cause the generation of an error
code or the abnormal termination of the
caller's task.

• Purge of QELs from the resource queues
for an abnormally terminated task.

• Increasing of the "enqueue count" in
the requestor's TCB.

• Increasing by a count of one the "non
rolloutable count" (TCBNROC) in the
caller's job step TCB.

If the "set must complete" parameter is
specified, the ENQ routine permits accel
erated completion of the caller'S task by
setting nondispatchable all other tasks in
the job step or system. To prevent schedu
ling of an abnormal termination of the
caller's task, the ENQ routine places a
special "must complete" flag in the TCB for
the caller's task to serve as an indicator
to the ABTERM and ABEND routines.

Two types of errors are checked. Inval
id input-list addresses and duplicate
resource requests for the same task are
detected. A duplicate resource request is
caused by two ENQ macro instructions for
the same resource and task without an
intervening DEQ macro instruction. The two
types of error, when detected, result in
either a return code and return of control
to the caller, or an error code and the
abnormal termination of the caller's task,
via the supervisor linkage to the ABEND
routine.

The AUTOPRG subroutine is used when the
ABEND routine issues an ENQ macro instruc
tion during an abnormal task termination.
It consists of a purge of resource requests
(QELs), and if necessary QCBs, belonging to
tasks that are being abnormally terminated.
Since the QELs cannot be removed by their
original requestor, via the DEQ macro
instruction, they are removed from the
resource queues by the AUTOPRG subroutine,
to make the requested resource available to'
the ABEND routine.

As an additional minor function, an
"enqueue count" is maintained in the re
questor's TCB. The enqueue count is stored
in TCBQEL, the high-order byte of the
TCBFSA field. The count is increased by
the ENQ routine for each resource request
and decreased by the DEQ routine when the
use of the resource is signaled complete.
The enqueue count is tested by the supervi
sor's EOT routine when the requestor's task
is terminated normally. The test deter-

Section 3: Task Supervision 63

mines if all resource requests previously
created for the task, via ENQ macro
instructions, have been removed via corre
sponding DEQ macro instructions.

Placing the Caller's Task in "Must Com
plete" Status: The Rset must complete"
function is used by system programs1 to
allow the programs of one task to be
executed while the programs of other tasks
in the job step (STEP option) or other
tasks in the system (SYSTEM option) are
held nondispatchable, unable to be
executed. The pUrpose is to prevent the
abnormal termination of the Rmust complete"
task by a routine belonging to another task
in the job step or in the system. If a
routine being executed for the Rmust com
plete" task produces a program check, the
ABEND routine, via the system quiesce rou
tine, terminates the task by setting it and
its related tasks nondispatchable. The
system quiesce rqutine also issues a mes
sage to the operator indicating that a CPU
wait state has been averted and that no
more jobs should be scheduled. Jobs that
are already scheduled are allowed to reach
normal termination. (See the description
of ABEND2 and the system Quiesce routine in
RTermination Procedures. R)

The ENQ routine makes several
determine if the requestor's task
set in "must complete" status.
routine tests whether the
requirements have been met:

Checks to
should be

The ENQ
following

• The requestor is a system routine, as
indicated by a zero protection key in
the requestor's RB old PSW.

• The RET operand of the ENQ
instruction is not TEST.

macro

• The SMC ("set must completeR) operand
of the ENQ macro instruction has been
specified.

• The current SVRB is in a ready condi
tion. (A ready condition is indicated
by a RBWCF field of zero.)

The processing varies, depending on the
outcome of the tests. If all requirements
have been ~t, the ENQ routine performs
·set must completeR processing. To perform
Rset must complete" processing the ENQ
routine invokes the Set Status routine
(IGC079) via the STATUS macro instruction.
If the request is for step "must complete"
status, it sets the "step must complete"
nondi~.patchability flag (TCBSTP) in all
TCBs of the job step except the requestor's

1The test is for zero protection key in the
requestor's RB old PSW.

64

TCB. (The job step's Initiator is also set
nondispatchable.) If the request is for
system "must complete" status, the ENQ
routine sets the ·system must complete"
nondispatchability flag (TCBSYS) in all
TCBs of the system, except the requestor's
TCB and the TCBs of certain system tasks.
The system tasks that remain dispatchable
are the communications task, the rollout/
rollin task (if the rollout feature is
included), the system error task, and the
transient area fetch tasks. The "must
complete" nondispatchability flags indicate
to the Dispatcher that it may not place in
execution the routines controlled by these
TCBs.

AS part of "set must completeR process
ing, the ENQ routine also sets two flags in
the requestor's TCB. One flag, when set,
prevents the Stage 3 Exit Effector from
scheduling user exit routines for the
requestor's task. This precaution prevents
the initiation of an abnormal termination
in a user exit routine while the task is in
"must complete" status. The other flag,
when set, causes the ABEND routine to
branch to the system quiesce routine if an
abnormal termination is initiated during
performance of the Wmust complete" task.
The system quiesce routine terminates the
"must complete" task and its subtasks and
issues a message to the operator indicating
that a CPU wait state has been averted and
that the system should be allowed to
quiesce (i.e., no more jobs should be
scheduled and the jobs that are already
scheduled should be allowed to reach normal
termination).

If all requirements have not been met,
the ENQ routine processes as follows. If
the requestor is not a system routine, it
sets up an error code (338) and invokes the
ABEND routine to abnormally terminate the
requestor's task. If the RET operand is
TEST, or if the SMC operand has not been
specified, the ENQ routine bypasses "set
must complete- processing. If the current
SVRB is in a wait condition, meaning that
the requested resource is not available,
the ENQ routine temporarily bypasses "set
must complete" processing. Later, however,
before exiting, it will point the SVRB old
PSW to a restart point in the "set must
complete" coding. When the requestor's
task is redispatched, after the resource
becomes available, the restarted ENQ rou
tine will set the requestor's task in "must
completeR status.

Detecting Abnormal Conditions: The detec
tion of abnormal conditions consists of
checking the validity of input addresses,
and checking for duplicate requests issued
for the same task.

(~. ~\

\~.-,;/

c

(

-Table 3-5. TCB Flags That are Set if a Task is in "Must Complete" Status
r---------------T--------r-------------T----------------------T-------------------------,
I I Symbolic I Displacement I TCB(s) in Which Flag I I
I Common Name I Name I in TCB I Is Set I Purpose of Flag When Set I
t---------------+--------+-------------+----------------------+-------------------------~
I "Must Complete" I TCBSYS I 33.4 IAII TCBs in system, IIndicates to the Dis- I
Inondispatch- I I lexcept "must complete"lpatcher that it may not I
lability flag I I ITCB and certain systemlplace into execution any I
I (system or job I I I TCBs1 Iroutine associated with I
I step) t--------+-------------+-------------~--------~this TCB. I
I I TCBSTP I 33.5 IAII TCBs in job step I I
I I I lexcept "must complete" I I
I I I ITCB I I
t---------------+--------+-------------+----------------------+-------------------------~
I "Must Complete" I TCBFSMC I 30.3 I"Must complete" TCB I If this task is in error, I
I flag (systerr; orl I' I indicates to the ABEND I
Ijob step) t--------+-------------~ 'routine that the task I
I ITCBFJMC I 30.4 I Ishould be terminated and I
, '" I the system be allowed I
I 'I I I to quiesce via the I
I I I I I System Quiesce routine. I
t---------------+--------+-------------+----------------------+-------------------------~
IProhibit asyn- ITCBFX I 29.7 I"Must complete" TCB IIndicates to the Stage 3 I
Ichronous exits I I I IExit Effector that it I
I flag I I I I should not schedule a I
I I I I luser exit routine for I
I I I I Ithis task. I
t---------------~--------~-------------~----------------------~-------------------------~
11 The systew TCBs that are not flagged nondispatchable are the communications TCB, thel
I rollout/rollin TCB, the system error TCB, and the transient area fetch TCBs. I L ___ J

Checking the Validity of Input Addresses:
The ENQ routine checks the validity of
input parameters supplied by the caller.
The parameters are a list of main storage
addresses that point to names of resources
or sets of resources. The check is
designed to prevent a program check during
later processing when the resource queues
are being updated. The queues might be
seriously disrupted, thus interfering with
the perfor~.nce of other tasks.

The ENQ routine must first determine if
it is necessary to check the validity of
the input parameters. If the caller is a
system routine, as indicated by a zero
protection key in the caller's RB old PSW,
the assumption is that the input parameters
are valid. In this case, the ENQ routine
bypasses a validity check of the input
parameter list. But if entry is from a
user program, indicated by a nonzero pro
tection key in the RB old PSW, the ENQ
routine uses the supervisor's Validity
Check routine to test the attributes of
each input address. (For details see
"Testing the Vc.lidi ty of User-Supplied
Addresses.") If anyone of the tests fails,
indicating that the caller has incorrectly
specified the address of a resource, the
ENQ routine sets an error code (438) and
issues an ABEND macro instruction. The
ABEND macro instruction causes supervisor
linkage to the ABEND routine to abnormally
terminate the caller's task. Thus, the

cause of the abnormal termination is pin
pointed, avoiding the chance of a later
program check during queue manipulation.

Checking for Duplicate Requests Issued for
the Same Task: The ENQ routine determines
if the caller, or another routine within
the same task, has previously requested the
same resource and has not dequeued the
request from the queue. If the ENQ routine
finds QCBs on the queues containing the
same resource names as those requested by
the caller, and an associated QEL contain
ing the caller's 'rCB address, the caller
has made a program error. According to the
RET option that the caller has specified,
the caller's task is abnormally terminated,
or the caller is given control with a
return code indicating that the requested
resource is already enqueued for the call
er's task. If the RET option is NONE, or
has been omitted, the ENQ routine sets up
an error code (138), and by issuance of the
ABEND macro instruction, causes supervisor
linkage to the ABEND routine to abnormally
terminate the caller's task. But if the
RET option has been specified and is not
NONE, the ENQ routine sets up a return code
(8) that indicates that the desired
resource is already enqueued for the call
er's task, and after processing other
parameter-list elements, returns control to
the caller. The caller can then optionally
gain access to its requested resource.

Section 3: Task Supervision 65

Purqing Requests previously Enqueued for an
Abnorroa.lly Terminating Task: If the
requested resource is already enqueued, and
if the caller's task is being abnormally
terminated, the ENQ routine performs a
special service for the third load module
of the ABEND routine. It allows the ABEND
routine to gain access to the abnormal dump
data set, SYSABEND (or SYSUDUMP).

If the caller is the ABEND routine, it
has issued an ENQ macro instruction to gain
exclusive use of the dump data set, on
which the terminated task's resources will
be dumped. But the data set may already be
enqueued for a subtask of the caller's
task. The subtask may have been set in
abnormal wait state (nondispatchable), as
part of a higher level termination, before
a DEQ macro instruction could be issued and
the data set dequeued. In this case, the
data set may be needlessly unavailable.

The ENQ routine, via its Autopurge sub
routine, makes available the dump data set
by releasing the QELs that represent pre
vious requests for its use. It does this
by removing from the resource queues all
QELs belonging to the current task and its
subtasks. The current ENQ request for the
dump data set can then be serviced. (For
information on the need for enqueuing the
dump data set, refer to "processing During
ABEND3" in the chapter entitled "Termina
tion Procedures.")

Increasing the Nonrolloutable count: The
ENQ routine increases by a count of one the
Dnonrolloutable count" (TCBNROC) in the
caller's job step TCB. It does this for
each resource for which the ENQ macro
instruction is issued. To increase the
count, the ENQ routine invokes the Set
Status routine (IGC079), via the STATUS
macro instruction. The "nonrolloutable
count," when greater than zero, makes the
job step ineligible to be rolled out.

PROCESSING IN SYSTE~o1S WITH SHARED DASD:
When the shared DASD feature is included in
the system, the ENQ routine performs device
reservation functions in addition to its
normal functions. This section describes
the device reservation functions.

The RESERVE macro instruction must spec
ify a valid UCB address for a shared direct
access device. The ENQ routine checks the
DCB address, and if it is not valid issues
an ABEND macro instruction. This test
follows the verification of input addresses
that is a normal part of ENQ processing.

The QEL initialization function of the
ENQ routine is expanded for a reserve
request. When control of the requested
resource can be assigned to a task, the ENQ
routine places the UCB address in the QEL

66

and sets the QEL reserve flag. The reserve
count in the specified UCB is then incre
mented by one.

The requested resource cannot be
assigned to perform a new task when the
following conditions occur:

• Resource is in use.

• Previous QEL on the queue is exclusive,
or the present request is exclusive.

• RET operand of the RESERVE macro
instruction specifies HAVE, NONE, or is
omitted.

Under these conditions, the ENQ routine
prepares for a task switch. It increments
the SRVB wait count by one, thus placing
the task for which the resource was
requested in a wait condition. The ENQ
routine places the address of the SVRB in
the QEL for subsequent use by the DEQ
routine. The need for a task switch is
indicated and control is given to the
Dispatcher.

When the requested resource becomes
available because it is no longer needed in
the performance of another task, the DEQ
routine will remove the top QEL and deter
mine whether the task associated with the
new top QEL should be made ready. If it
should, the DEQ routine decrements the wait
count in the SVRB whose address is in the
new top QEL. When the wait count becomes
zero, the waiting task can be dispatched;
the ENQ routine then regains control. The
"reserve restart" subroutine of the ENQ
routine inserts the DCB address in the QEL,
sets the reserve flag, and increments the
reserve count in the UCB by one.

Signaling That the Use of One or More
Resources is complete

When a program that previously issued an
ENQ macro instruction (or, in systems which
include the shared DASD feature, a program
which issued a RESERVE macro instruction)
and has been using an enqueued resource
completes its use, it issues a DEQ macro
instruction. The DEQ macro instruction,
via an SVC interruption (SVC 48), obtains
supervisor-assisted linkage to the DEQ rou
tine. This routine removes one or more
QELs, a minor QCB, or a major QCB from the
resource queues. It also reduces the RB
wait count for the waiting program whose
QELs are at the top of one or more QEL
queues. If the RB wait count becomes zero,
thus making ready the waiting program, the
DEQ routine invokes the Task Switching
routine. The Task switching routine tests
the need for a possible task switch, and
branches to the Exit routine and the Dis
patcher to return control. The program

C\
.J'

that receives control is either the caller
or the previously waiting program, depend
ing on relative task priority. An addi
tional function of the DEQ routine, used
only by a supervisor routine, is to reset a
task in "must complete" status, set pre
viously by an ENQ macro instrpction issued
by the caller.

MAJOR FUNCTIONS: When the use of one or
more resources is signaled complete, via
the DEQ macro instruction, the major func
tions are:

• Updating the resource queues by dequeu
ing and freeing the queue element {QEL}
that represents the request for the
resource whose use is now complete. If
there are no more requests for the
resource, one or more queue control
blocks (QCBs) that represent the
resource are dequeued and their space
is freed.

• For the next requestor represented on
the QEL queue, reduction of the wait
count in its SVRB, and testing if the
requestor is ready to resume execution.

• Determining if a readied requestor can
replace the caller as the next-to-be
executed routine. This involves a com
parison of TCB dispatching priorities
by the Task switching routine.

• Returning control to the caller if no
readied requestor's task is of higher
priority than the caller's. If a
readied requestor's task is of higher
priority than the caller's, control is
returned to the requestor instead of to
the caller.

Updating the Resource Queues: In order to
update the resource queues, the DEQ routine
searches for the QEL that represents a
request that should now be dequeued. It
first finds both a major QCB and a minor
QCB containing the specified resource
names. The routine then examines the QEL
queue associated with the specified
resource. If the caller's TCB address
matches that stored in one of the QELs log
ically at the top of its queue, the DEQ
routine dequeues the QEL and, via supervi
sor linkage to the FREEMAIN routine, frees
the space that the QEL occupies.

The DEQ routine examines the QCB queues
to determine if any QCB may be released.
If there are no more QELs queued to the
minor QCB for the resource, there are no
further requests for the resource, and the
minor QCB can be released. In this case,
the routine dequeues the minor QCB from its
queue and frees the space that it occupies.
It then examines the minor QCB queue to

decide whether the major QCB is no longer
needed and can be similarly eliminated. If
there are no minor QCBS queued to the major
QCB, there are no outstanding requests for
the entire set of resources. In this case,
the DEQ routine removes the major QCB from
its queue and frees its space. The routine
then processes in a similar manner any
other input parameters which represent QELs
to be dequeued.

Determining if the Next Waitinq Requestor
Should be Readied: After the old top QEL
is dequeued, the DEQ routine determines if
the next waiting requestor, represented by
the new top QEL, should be readied. The
decision is based on the type of new top
QEL, shared or exclusive, and on the type
of dequeued QEL. According to the result
of the decision, the SVRB wait count for
the waiting requestor mayor may not be
reduced and tested for readiness (zero wait
count). The criteria and results for three
different situations are described in
Figure 3-6.

Determining if a Readied Reguestor Should
Be Dispatched: For each SVRB whose awaited
resources are available, as indicated by a
zero RB wait count, the DEQ routine tests
whether the associated requestor can be
dispatched. If the requestor's task is of
higher dispatching priority than the call
er's, the requestor may be dispatched in
place of the caller. For each SVRB that
has a zero wait count, the DEQ routine
invokes the supervisor's Task Switching
routine to compare dispatching priorities.
If the readied requestor's TCB has a higher
priority than the caller's, the Task
Switching routine indicates this fact to
the Dispatcher by placing the requestor's
TCB address in the "new" TCB pointer,
IEATCBP.

Returning Control: The DEQ routine returns
control to the caller or a readied request
or, via the Exit routine and the Dispatch
er. The Exit routine dequeues the SVRB
from its RB queue and frees the space that
the SVRB occupies. The Dispatcher decides
whether to return control to the caller or
to a readied requestor, depending on the
contents of the "new· TCB pointer, IEATCBP.
If the "new· TCB pointer contains the
address of the current TCB, the Dispatcher
returns control to the caller. Otherwise,
the Dispatcher returns control to the re
questor whose TCB address is in the point
er. In this case a task switch has
occurred.

MINOR FUNCTIONS: When the use of one or
more resources is signaled complete, via a
DEQ macro instruction, the minor functions
are:

Section 3: Task Supervision 67

r----------------------~-------------------------T-------------------------------------, I Conditions I Status of QEL Queue I Resultant Processing I
~-----------------------~-------------------------~-------------------------------------~ I Condi tion A I
I I
I dequeued QEL "shared" QEL Routine dOes not reduce I
I ------------------- wait count in requestor's I
I new top QEL "shared" QEL RB. (Requestor already I
I ------------------- has aCCeSS to the reSource.) I
I I
I ------------------- I
I I
I I ------------------- I I
I I
~---~ I Condition B I
I I
I dequeued QEL QEL of either type Routine reduces wait count I
I ------------------- in requestor's RB and if I
I new top QEL "exclusive" QEL new wait count is zero, it I
I ------------------- invokes the Task Switching I
I routine to test whether the I
I ------------------- requestor m~y be dispatched I
I instead of the c&ller. I
I I ------------------- I I
I I
~---~ condition C

dequeued QEL "exclusive" QEL Routine reduces wait count
------------------- in requestor's RB and if

new top QEL "shared" QEL new wait count is zero. it
------------------- invokes the Task Switching

routine. Since new top QEL
------------------- is the first QEL of a

"shared" group, the routine
------------------- repeats this procedure for

the other QELs of the
group. __ - ____ --______ J

Figure 3-6. Determining if the Next Waiting Requestor Should be Readied

68

• If the "reset must complete" parameter
is present, the clearing of the "must
complete" status of the caller's task.

• Checking the validity of input
addresses.

• checking if a specified resource was
originally requested for any task.

• Checking if the caller has access to a
specified resource.

• Reducing the "enqueue count" in the
caller's TCB. The enqueue count is
tested during normal task termination
by the EOT routine to determine if all
resource requests for the task have
been dequeued. (See "Termination
Procedures.")

• Decreasing by a count of one the " non
rolloutable count" (TCBNROC) in the
caller's job step TCB.

The Clearing of "Must Complete" Task Sta
tus: If the "reset must complete" parame
ter has been specified, the DEQ routine
restores multitask operation to the job
step or system. which temporarily had been
performing only the caller's task. This
restoration is done only if the caller is a
system routine (uses zero protection key).
If the caller is not a system routine, the
DEQ routine sets up an error code (330) and
invokes the ABEND routine to abnormally
terminate the caller's task.

The DEQ routine clears the "must com
plete" nondispatchability flag (see Table
3-5) in each TCB of the job step or system.
depending on the scope. This action allows
the Dispatcher to restart routines for
previously nondispatchable tasks~ The DEQ
routine also clears two flags in the call
er's TCB. One flag, when cleared. allow~
the Stage 3 Exit Effector to resume the
scheduling of user exit routines for the
caller's task. The other flag, when
cleared, permits the ABEND routine to

(~,

abnormally terminate the caller's task, if
the need arises, instead of placing the CPU
in a disabled wait state (see Table 3-5).

ITo clear the "must complete" status, the
DEQ routine invokes the Set Status routine
(IGC079), via the STATUS macro instruction.

Checking the Validity of User-Supplied
Addresses: The DEQ routine must check the
validity of a list of main storage
addresses supplied by a user program. The
addresses point to names of resources or
sets of resources. But if entry is from a
system routine, the assumption is that the
input parameters are valid, and no validity
check is made.

If entry is from a user program, as
indicated by a nonzero protection key in
the caller's RB old PSW, the DEQ routine
checks input parameters via the supervi
sor's Validity Check routine. The Validity
Check routine tests the typical three
attributes of each input address. (For
details, see "Testing the Validity of User
Supplied Addresses.") If any of the validi
ty checks fails, indicating that the caller
has incorrectly specified the address of a
resource, the DEQ routine sets an error
code (430) and issues an ABEND macro
instruction. The ABEND macro instruction
causes supervisor-assisted linkage to the
ABEND routine to abnormally terminate the
caller's task.

Determi.ning if a Specified Resource Was
Originally Reguested for Any Task: If the
input parameters are valid, the DEQ routine
searches the QCB queues to determine if the
specified resource was originally requested

for any task. The resource may be dequeued
only if it was previously enqueued. If the
resource was enqueued, the resource names
are represented on the QCB queues, con
tained in a major and a minor QCB. But if
the two QCBs representing the resource
cannot be found, a DEQ macro instruction
has been issued for a resource that was not
enqueued, or which has already been
dequeued. The DEQ routine recognizes an
error condition and reacts according to the
RET op~ion, as shown in Table 3-6.

Determining if the Caller Has Access to a
Specified Resource: The caller can right
fully dequeue a resource only if it has
access to it. To determine if the caller
has such access, the DEQ routine examines
the QEL queue associated with the resource.
The QEL containing the caller's TCB address
should be at the logical top of the queue,
or be one of a "shared" group of QELs at
the logical top of the queue. If neither
condition exists, the DEQ routine recog
nizes an error condition, as shown in Table
3-6.

Decreasing the "Nonrolloutable Count": The
DEQ routine decreases by a count of one the
"nonrolloutable count" (TCBNROC) in the
caller's job step TCB. It does this for
each resource for which a DEQ macro
instruction is issued by a routine of the
job step. To decrease the count. the DEQ
routine invokes the Set Status routine
(IGC079), via the STATUS macro instruction.
When the "nonrolloutable count" is zero,
the job step is eligible to be rolled out
to satisfy an unconditional storage request
from a job step of another job.

Table 3-6. Error Conditions When use of a Resource is Signaled Complete
r-----------------------------------T---------------T-----------------------------------,
I I RET Operand of I I
I Condition IDEQ Macro I Resultant Processing I
I I Instruction Is: I I
t-----------------------------------t---------------t-----------------------------------~ IResource names are not found in thel HAVE 1(1) Sets up return code of 8, in- I
IQCB queues, or a QEL containing thel Idicating that the resource is not I
Icaller's TCB address is not found. I I enqueued, and after processing I
I I lother parameter-list elements, I
I I Ireturns control to the caller, via I
I I Ithe Exit routine and the Dispatcher I
I t---------------t-----------------------------------~
I I omitted 1(2) Sets up an error code of 130 I
I I or NONE I and obtains supervisor linkage to I
I I Ithe ABEND routine to abnormally I
I I Iterminate the caller's task I
t-----------------------------------t---------------t-----------------------------------~ IQEL containing caller's TCB address I HAVE Isame as (1) but return code is 4, I
lis found, but is not at the logical I lindicating that the caller's task I
Itop of the QEL queue, nor is it one I Idoes not have access to the I
10£ a "shared" group of QELs at the I I resource. I
Ilogical top of the queue. ~---------------+_----------------------------------~
I I omitted ISame as (2) except that the error I
I I or NONE Icode is 230. I L _________________ ~ _________________ ~ _______________ ~ ___________________________________ J

Section 3: Task Supervision 69

PROCESSING IN SYSTEMS WITH SHARED DASD:
When the shared DASD feature is included in
the system, the DEQ routine performs device
release functions in addition to its normal
functions. This section describes the
device release functions.

A release request (a DEQ macro instruc
tion associated with a RESERVE macro
instruction) is indicated when the reserve
flag in the QEL is set. The DEQ routine
decrements by one the reserve count in the
UCB whose address is in the QEL; if this
reduces the count to zero, the associated
direct-access device must be released. The
EXCP ~nterface subroutine of the DEQ rou
tine i~sues a GETMAIN macro instruction to
obtain space for the control blocks
required for the EXCP macro. When all
control blocks (lOB, DCB, ECB, DEB, CCW,
AVT) have been initialized, the EXCP Inter
face subroutine issues an EXCP macro, fol
lowed by a WAIT macro instruction.

The effect of the execution of the EXCP
Interface subroutine is that I/O activity
is initiated at the specified direct-access
device. Because the reserve count was
reduced to zero before the I/O activity
started, lOS will physically release the
device.

When the WAIT macro instruction has been
satisfied, the EXCP Interface subroutine
regains control to remove the control
blocks it initialized. Normal DEQ process
ing then resumes.

The ABEND6 routine must also terminate
device reservations acquired through the
RESERVE macro instruction and not released
through a subsequent DEQ macro instruction.
These device reservations occur only in

. systems with the shared DASD option.

outs~anding reservations are reflected
in the TCB enqueue count (offset 112 in the
TCB); the enqueue count indicates the num
ber of outstanding ENQ requests (that is,
it is not directly related to outstanding
reservations). When the enqueue count is
not zero, the ABEND4 routin.e branches to
the ENQ/DEQ Purge subroutine in the ENQ/DEQ
module. If shared DASD is included in the
system, this routine determines whether the
terminating task has outstanding device
reservations. The QEL indicates whether it
was created as a result of a RESERVE or an
ENQ macro instruction. If the result of
RESERVE, the device is released.

SCHEDULING A USER EXIT ROUTINE

A user program may request the future
execution of its exit routine to handle an
unpredictable event, such as an end-of-task
condition, expiration of a timer interval,

70

or special I/O handling (e.g., tape label
checking or I/O error checking). The
scheduling of user exit routines (sometimes
called asynchronous exit routines) is han
dled by several supervisor routines: the
Stage 1 Exit Effector, the Stage 2 Exit
Effect()r, the Stage 3 Exit Effector, and
the Exit routine. Note that these routines
do not schedule the execution of user
program check routines. ABEND processing
that results from a program check can be
intercepted by a STAE macro instruction
which specifies a STAE exit routine
address. See "Specifying a Task Asynchro
nous Exit Routine" for a description of the
STAE routine.

As shown in Figure 3-7, the handling of
a request for the future execution of a
user exit routine is a multipart procedure,
interwoven with the execution of programs
executed for other tasks. The procedure
begins when the user program originally
issues a request for an exit routine. The
user program makes the request via operands
in such macro instructions as ATTACH (ETXR
operand), STIMER, and DCB. A system rou
tine (e.g., the Attach routine) then issues
a special system macro instruction (CIRB).
The CIRB macro instruction causes the Stage
1 Exit Effector to construct an interrup
tion request block (IRB) to handle future
scheduling of the user exit routine. In
addition, the system routine constructs an
interruption queue element (IQE) , which
stages 2 and 3 of the Exit Effector and the
Exit routine later manipulate to schedule
the execution of the user exit routine.
Data management routines, however, do not
construct IQEs, since I/O queue elements
already exist. These elements are called
request queue elements (RQEs) and are made
available by the I/O Supervisor.

After the Stage 1 Exit Effector con
structs the IRB to represent the user
routine, no scheduling occurs until the
unpredictable event takes place that
requ1res the exit routine. The Stage 2
Exit Effector, a supervisor subroutine,
performs initial scheduling of the user
exit routine by placing the previously
constructed queue element, an IQE or RQE,
on its appropriate exit queue. There are
two such queues whose elements represent
requests to use a particular exit routine.
One queue contains IQEs and represents
requests to use a routine such as a timer
exit routine or an end-of-task routine.
The other queue represents requests for
data management exits and contains only
RQEs. These RQEs are the same elements
that the I/O supervisor uses to schedule
I/O requests. Both exit queues operate in
first-in, first-out order, with no regard
to the task priority of each program re
questing the same exit routine. When an
element is placed on either exit queue, the

(
User program requests, via macro-instruction,
the use of an exit routine (e.g., STiMER or
ATTACH).

•
System routine constructs queue element
(lQEL if needed, and if interruption request
block (IRS) does not already exist, issues
CIRS macro-instruction to create IRS.

{ SVC Interruption

Exit Effector, Stage I

Constructs an iRS to be later used in
scheduling the execution of the user exit
routine

I
i Occurrence of the event
~i'requiring the user exit
/ routine (e. g", expiration

:'] of preset timer interval
I or on end-of-task)

•
Exit Effector, Stage 2

Performs initial scheduling of user exit
routine by placing the queue element (lQE)
on its appropriate exit queue.

•
Dispatcher

Recognizes that stage 2 has placed a queue
element on one of the exit queues. Passes
control to stage 3.

•
Exit Effector, Stage 3

Completes scheduling of user exit routine
by transferring the queue element
(representing request for the routine) from
an exit queue to a queue whose list origin
is the IRS for the routine. Places IRS an
the RS queue belonging to the requestor's
TCS.

0

Execution of
Programs for
Task A

Execution of
Supervisor
Routine

Execution of
Programs in
System, Based
on Task Priority

Execution of
Supervisor
Routines

Dispatcher

Returns control to a program belonging to a
task other than task A

t
Dispatcher

Gives control to the user exit routine
req uested for task A

•
User Exit Routine

t
Exit Routine

Removes top queue element from IRB's queue
and returns it to available list of queue
elements (If queue element is RQE, the
transfer to available list is done by the I/O
Supervisor; If queue element is an IQE for
rollout/rollin, the transfer to the available
list is dane by the rollout/rollin module.)
If there is another element on IRB's queue,
prepares for later reschedul ing of IRS on
RB queue of another TCB. If there are no
more queue elements on the IRB's queue,
removes IRS from its task's RB queue. If
IRS was dynamically acquired, frees
storage occupied by the IRS.

•
Dispatcher

Either passes control to an exit routine
requested for another task or returns control
to the current program of task A or another
ready task.

Execution of
Programs in
System, Sased
on Task Priority

Execution of
Supervisor
Routine

}
Execution of
User Exit
Routine for
Task A

Execution of
Supervisor
Routines

Figure 3-7. scheduling of Asynchronous Exit Routines

IRB that represents an exit routine is not
yet on a task's RB queue and cannot yet be
executed. The placing of a queue element
on an exit queue by the Stage 2 Exit
Effector is therefore only a "bookkeeping"
manipulation.

The stage 3 Exit Effector completes the
scheduling of the user exit routine. Stage
3, a subroutine of the Dispatcher, removes
queue elements from either of the two exit
queues and places them on another queue
whose list origin is the IRB representing
the ex·it routine. The transferred queue
elements are thus queued for a specific

exit routine. Stage 3 completes the sched
uling of the user exit routine by placing
the IRB on the RB queue of the requesting
program's task. The exit routine, so
scheduled, can compete for CPU time with
programs being executed for other tasks.
When the requesting program's TCB, which
points to the IRB, has highest priority
among the ready TCBs, the Dispatcher loads
the IRB's old PSW to place the user exit
routine in execution.

When the user exit routine
it invokes supervisor-assisted
the supervisor Exit routine.

is complete,
linkage to

The supervi-

Section 3: Task Supervision 71

sor Exit routine removes the top queue
element from the IRB'S queue of request
elements. The removed element represents
the satisfied request for the user exit
routine.

After removal from the IRB'S queue, the
queue element is returned to a free list.
If there are more elements on the IRB's
queue, representing other requests for the
routine, the Exit routine prepares for
later rescheduling of the IRB on the RB
queue ofa different task. If there are no
more queue elements on the IRB's exit
queue, the Exit routine dequeues the IRB
from the TCB's RB queue and, if the IRB is
dynamic and not a system RB, frees the
storage occupied by tht IRB. Thus, the
scheduling process, which began with the
construction of an IRB at macro-execution
time, ends with the possible release of the
IRB after the user exit routine is
complete.

The Stage 1 Exit Effector (CIRB Routine)

The Stage 1 Exit Effector is a resident,
aisabled, reenterable SVC routine that may
be called by a supervisor routine, such as
the Attach routine, or by a data management
routine. Its purpose is to create and
initialize, according to input parameters,
an interrupt.ion request block or IRB to
control a user exit routine whose future
use is requested by the caller. The rou
tine obtains a work area, in which the
caller may construct interruption queue
elements (IQEs), and optionally a 72-byte
register save area in which the user exit
routine may later save the registers of the
requesting program. The Attach SVC rou
tine, when it is executed, uses the work
area to construct both the new TCB for the
subtask and the IQE for the ETXR or end-of
task exit routine. The Stage 1 Exit Effec
tor obtains space for the IRB and the work
area, if requested, from supervisor queue
space, subpool 253. The work area follows
and is immediately contiguous to the IRB.
The register save area, if requested, is
obtained from subpool zero of the user
program's region of storage, and is there
fore not contiguous to the IRB and its work
area. After obtaining the needed storage
for the IRB and optional work and save
areas, the stage 1 Exit Effector initial
izes the IRB, as shown in Section 12. The
initialization is done according to flag
bits passed to the routine in register 1.
The information placed in the IRB during
the initialization includes the save area
address, the size of the IRB, the entry
point address of the user exit routine, and
the PSW to be loaded to start execution of
the user exit routine. When the stage 1
Exit Effector completes the initialization
of the IRB, it returns control to the

72

calling program via the supervisor Exit
routine and the Dispatcher.

The Stage 2 Exit Effector

When Stage 2 is entered, Stage 1 has
already created and initialized the IRB,
and the requesting system routine has
created and initialized the IQE. Stage 2
is entered as a subroutine by any supervi
sor routine wishing to schedule a user exit
routine. Two typical callers are the
supervisor EOT routine, during end-of-task
processing, and the Timer Second-Level
Interruption Handler, when a preset timer
interval has expired. Stage 2 places the
input queue element, whose address is
passed in register 1, onto either of two
exit queues. The queue element is queued
at the bottom of the appropriate queue. If
the input address appears in true form (a
positive address), Stage 2 places the queue
element on the queue of RQES, (called AEQA)
used for scheduling data management exits.
If, however, the input address is in com
plement form, stage 2 interprets the input
queue element as an IQE and places it at
the end of the IQE list (AEQJ), whose
elements are used to schedule non-data
management exits. (See Section 12, "Con
trol Blocks and Tables· for the format and
content of IQEs and RQEs.) Stage 2 then
sets a stage-3 switch (IEAODS01), which the
Dispatcher will test later to determine
whether to call Stage 3 to complete the
scheduling begun by Stage 2.

The Stage 3 Exit Effector

The Stage 3 Exit Effector operates as a.
subroutine of the Dispatcher. Its purpose
is twofold: to transfer IQEs and RQEs from
their exit queues to queues belonging to
particular IRBs (and thus specific to a
particular user exit routine), and if pos
sible, to place these IRBs on the RB queues
of the appropriate TCBs. As soon as an IRE
is on an RB queue, the exit routine repre
sented by the IRB may (if task priority
permits) be placed in execution by the
Dispatcher. An additional function of
Stage 3 is to schedule a request (RQE) for
an I/O error routine by placing its system
interruption request block (SIRB) on a
special high-priority system TCB.

Stage 3 is entered from the Dispatcher
if the Stage-3 switch (IEAODS01) has been
set by Stage 2, indicating that at least
one IQE or RQE is on an exit queue. (There
are two exit queues, one for IQEs, the
other for RQEs.) Stage 3 begins by pro
cessing the IQE queue. If there-are no
elements on the IQE queue, the routine then
processes the RQE queue.

If there is at least one IQE, stage 3
performs some tests to determine if each c

IQE on the queue may be removed from the
exit queue and placed on a queue belonging
to an IRB (which represents a particular
user exit routine). If any of the tests
indicates that an IQE should not be trans
fe~red to an IRB queue, stage 3 obtains the
next IQE on the list and repeats the tests.
One of the tests asks whether the IQE's
intended IRB is "active." (The IQE con
tains a pointer to its "intended" IRB.
(See Section 12, ·Control Blocks and
Tables.-) An IRB is considered -active- if
the IRB is already queued to a TCB. This
condition is indi~ted by the RBFACTV bit
in the RBSTAB field of the IRB. If the
IQE's intended IRB is already queued to a
TCB, i.e., is -active", the routine then
tests if the same TCB is specified by this
IQE. (The IQE contains a pointer to the
TCB for the task that needs the user exit
routine.) In other words, this test asks
whether the IRB that is already scheduled
(queued) is the intended IRB for this IQE.
If the IRB is queued to the correct TCB, or
if the IRB is inactive (not queued to any
TCB), Stage 3 removes the IQE from its exit
queue and queues it to the bottom of the
IRB's queue. (The list or~g~n for the
IRB's IQE queue is in the IRB and is called
the RBIQE field. See Section 12.) After
placing the IQE on the IRB's list of queue
elements, Stage 3 proceeds to initialize
the IRB as follows, in preparation for
entry to the user (asynchronous) exit
routine.

If the IRB is not already on the RB
queue of a TCB (as indicated by the pre
v~ous test of the RBFACTV bit in the IRB
status field), the routine places the IRB
on the appropriate task's RB queue. The
TCB then points to this IRB as the current
RB representing the routine next to be
executed for this task. Stage 3 then saves
register contents stored in the TCB (that
could later be overlaid and thus lost) by
moving the contents to the register save
area of the IRB. It initializes the PSW
and standard register settings for the user
exit routine. Then, in order to determine
if the newly queued IRB's task is of higher
priority than the current task, Stage 3
invokes the Task Switching routine to test
if a task switch is needed. If a task
switch is needed, the Task switching rou
tine indicates this need to the Dispatcher.
It does this by placing the address of the
higher, priority TCB in the "new· TCB point
er (IEATCBP). The address of the -new" TCB
pointer is contained in the CVT at location
CVTTCBP.

If there are one or more IQEs remaining
unprocessed on the IQE exit queue, Stage 3
processes these IQEs in a manner similar to
that just described.

When all elements on the IQE queue have
been processed, Stage 3 processes the queue
of RQEs in a similar fashion. The reader
may recall that the RQEs, supplied by the
I/O Supervisor, a~e used to schedule I/O
exit routines. One feature of RQE process
ing is different from IQE processing, and
deserves special mention.

One or more of the RQEs may represent a
request by an I/O routine for the use of a
system ',error handling routine. When Stage
3 examirtes each element on the RQE queue.
it tests if the queue element represents a
request to use an error routine. The "F"
bit in each RQE indicates whether the RQE
represents such a request. (See format of
an RQE in Section 12.) If one or more RQEs
represent requests for the use of an error
routine. Stage 3 performs special process
ing for these RQES. Other RQE's. not
representing requests for error routines,
are processed in a manner very similar to
IQE processing.

For each RQE representing a request to
use an error routine, Stage 3 tests first
whether a special system request block is
"active-. i.e •• already queued to its sys
tem error TCB. The system error TCB is a
permanent TCB of high priority whose cur
rent -dummy" RB is normally in a wait
condition. The request block that repre
sents a system error handling routine is
called a system interruption request block.
or SIRB.

If the SIRB is already queued to the
system error TCB, the Ractive" bit
(RBFACTV) is set in the SIRB's status
field. In this case, the error routine has
already been scheduled for another request.
The new request must then be deferred and
await the next execution of Stage 3, when
the Dispatcher is next entered.

If the SIRB is not "active". that is,
not queued to the system error TCB, Stage 3
clears the I/O error flag or 'F' bit in the
RQE. It removes the RQE from its asynchro
nous exit queue and queues it to the SIRB.
Stage 3 then initializes the SIRB. As part
of this initialization, it 'sets the RB old
PSW to provide reentry to the "error fetch
sequenceR (ERFETCH) of stage 3.

Besides altering the RB old PSW, Stage 3
queues the SIRB to the system error TCB.
The error TCB now points directly to the
SIRB, instead of to its permanent dummy RB.
When all RQEs on the asynchronous exit
queue have been processed, the Dispatcher
will cause reentry to Stage 3 at entry
point ERFETCH, under control of the system
error TCB.

If Stage 3 did not complete the process
ing of RQEs at the time it discovered a

Section 3: Task Supervision 73

request for a system error routine, it now
completes the processing of other RQES.
(If an RQE represents a request for an I/O
error routine, the 'F' flag appears set in
the RQE.) After Stage 3 queues the SIRB to
the system error TCB, it defers subsequent
error requests on the RQE queue. These
requests are not processed until the SIRB
becomes "inactive", removed from its TCB
during Exit routine processing.

In a multiprocessing system, the TCB
indicated by the IQE or RQE may be the
current TCB on the second cpu. If it is,
control is passed to the SHOLDTAP routine
which interrupts the second cpu with an
indication that the Dispatcher is to gain
control on the second cpu and place the IRB
on the appropriate RB Queue.

After processing the two lists, IQEs and
RQEs, Stage 3 returns control to the Dis
patcher. The Dispatcher passes control to
the interrupted program belonging to the
current task, or to a user exit routine
belonging to another task, or to the Stage
3 Exit Effector at entry point ERFETCH to
begin the loading of an error routine.

FETCHING AN ERROR ROUTINE: ERFETCH is the
entry point to a so-called "error fetch
sequence" that performs for error routines
the function that the Transient Area Fetch
routine performs for transient SVC rou
tines. That is, the Rerror fetch sequence"
searches for the desired error routine and,
if necessary, fetches it to the I/O Super
visor transient area.

The "error fetch sequenceD first checks
to see if the I/O Supervisor transient area
of main storage contains the needed error
routine. If the error routine is in the
transient area, its entry point address is
placed in the old PSW field of the SIRB.
When the Dispatcher next regains control,
it will load this PSW to begin execution of
the error routine. If the needed error
routine is not in the I/O Supervisor tran
sient area, the "error fetch sequence"
invokes the BLDL routine to get data set
directory information, in preparation for
fetching the I/O error module.

If there is an error during execution of
the BLDL routine, the error fetch sequence
sets up an error codel(806) and branches to
the ABTERM routine. The ABTERM routine
schedules abnormal termination of the task
for which the error routine was requested.
The error fetch sequence then returns con
trol to the current routine of the highest
priority'ready task, via the Exit routine
and the Dispatcher.

If there is no error during execution of
,the BLDL routine, the error fetch sequence
branches to the supervisor's Program Fetch

74

routine to load the error routine. If no
error is detected during the fetch process,
the error fetch sequence places in the RB
old PSW of the SIRB the entry point address
of the I/O supervisor transient area. The
error fetch sequence then branches to the
Dispatcher which will load the SIRB old PSW
to start execution of the error routine.
If, however, an error is detected during
the fetch process, the error fetch sequence
loads a special PSW to place the CPU in the
wait state. This is necessary since a
critical error has occurred. The operator
can cause reentry to the error fetch
sequence to retry the fetch by pressing the
Reset and Start keys on the Operator Con
trol Panel.

The Exit Routine

This discussion of the Exit routine will
include only that part of its processing
that affects the scheduling of user (asyn
chronous) exit routines. Other aspects of
its processing will be described late:!:: in
the topic entitled "Exiting Procedures."

The Exit routine, among its other .func
tions, deletes the scheduling performed by
the three Exit Effectors. The Exit routine
is given control by the SVC FLIH after a
user exit routine has issued a RETURN macro
instruction. For both types of RBs -- SIRB
and IRB -- if there are no other requests
(queue elements) for the user exit routine,
the Exit routine removes the RB from its
TCB. If the RB is an IRB, and therefore
was dynamically acquired by a GETMAIN macro
instruction, the Exit routine frees the
storage occupied by the IRB. The top IQE
or RQE, representing a request for the user
exit routine, is removed from the IRB's
list of queue elements, since the request
has been satisfied and is no longer needed.
If there is a list of available unscheduled
queue elements, the Exit routine returns
the removed element to the "available"
list. If, however, another element remains
on the RB'S queue, representing an addi
tional request to use the asynchronous exit
routine for another task, the Exit routine
prepares for future reentry to the exit
routine and does not remove the RB from its
TCB. In all cases except the last, the
Exit routine branches to the Transient Area
Refresh routine. If the asynchronous exit
routine must be reentered for another re
quest, the Exit routine branches to the
Dispatcher.

The above discussion is an overview of
the Exit routine's role in the scheduling
of user (asynchronous) exit routines. A
more detailed description of the same pro
cessing will now follow.

The Exit routine first determines the
type of RB under which the caller (RETURN-

(-

issuing program) is operating. If the type
is either SIRB or IRB (as indicated by the
RBFTP bits in the RBSTAB field), the Exit
routine assumes that the RETURN-issuing
program, or caller, is a user exit routine.
If the caller's RB is an SIRB, which means
that the RETURN-issuing program is a system
error routine, the Exit routine branches to
the routine that removes an RB from its TCB
and tests whether to free the RB's storage
space. Since the SIRB is a permanent RB,
its space is not freed. But the SIRB is
removed from the system error TCB. Since
there are no further requests for the error
routine (no RQEs queued to the SIRB), the
Exit routine branches to the Dispatcher to
return control to the current routine of
another task.

If the caller's RB is an IRB, the
returning program is a user exit routine
and not a system error handling routine.
In this case the Exit routine performs more
elaborate processing. It first checks the
type of queue element at the top of the
IRB's queue to determine if the element is
an IQE or an RQE. (A queue can contain
only one type, not both.) The Exit routine
makes this check by testing the RBSTAB
subfield called RBFIQETP, which indicates
the type of elements queued to the IRB:
RQEs or IQEs. (Refer to Section 12 for the
formats of this RB field.)

If the IRB's queue contains one or more
RQEs, the Exit routine removes the top RQE
(no longer needed) and places the RQE on a
list of available RQEs for use by the I/O
supervisor. The Exit routine obtains this
requeuing by branching to an entry point
(INT025) to a section of the I/O supervisor
that returns RQEs to an available list for
future use. The Exit routine then tests
whether another RQE is on the IRB's queue,
representing an outstanding request for use
of the I/O exi t routine by a program
belonging to the same task. If another RQE
is on the queue, the Exit routine initial
izes registers to prepare for future reen
try to the user exit routine and branches
to the Dispatcher.

If in its test of the RQE queue, the
Exit routine finds that there are no other
RQEs on the IRB'S queue, it performs pro
cessing somewhat similar to that performed
for an SIRB. The routine transfers the
contents of the caller's registers from the
IRB to the TCB's save area and removes the
IRB from the RB queue belonging to its TCB,
since there are no further requests for the
Exit routine and the IRB is no longer
needed. The Exit routine then tests wheth
er the space occupied by the IRB may be
freed. The test consists of checking the
RBFDYN bit in the IRB. If the bit shows
that the IRB was dynamically acquired and
is not a permanent RB (such as the SIRB)

the block may be freed. If the IRB was
dynamically acquired, the Exit routine
frees its storage area by invoking the
FREEMAIN routine, and branches to the Tran
sient Area Refresh routine. The Dispatcher
returns control to the current program
belonging to the user exit routine's task,
when that task next becomes the highest
priority ready task. The PSW for this
program is contained in the next RB on the
TCB's RB queue, after the IRB has been
removed from the RB queue.

If th~ previous test of the type of
queue element on the IRB's queue indicated
an IQE, a request for a non-I/O exit
routine, the Exit routine tests for a zero
"use count." The use count (stored in the
25th byte of the IRB) indicates to the Exit
routine the number of outstanding requests
to execute the same user exit routine. For
example, successive ATTACH macro instruc
tions issued for a parent task may have
specified in the ETXR operand the use of
the same end-of-task routine for different
subtasks. If the IRB use count is not
zero, the Exit routine decreases by one the
use count to indicate the remaining number
of requests, not yet scheduled, for the
user exit routine.

After decreasing the use count, or if
the use count is already zero (indicating
no outstanding requests for the user exit
routine), the Exit routine removes the top
IQE from the IRB. This is done because the
represented request has been serviced. The
Exit routine then tests whether the user
program has provided a work area at the end
of the IRB. It also tests whether the user
program wants the IQE to be queued on a
"next available" list. The IQE may be
queued in the work area as an "available"
element for use by the Stage 2 Exit Effec
tor in scheduling a new request.

The Exit routine tests for the existence
of the work area by determining the size of
the IRB. A work area exists if the size
exceeds 93 bytes (12 doublewords, as indi
cated by the RBSIZE field of the IRB). The
exit routine then determines whether to
queue the IQE to the "next available" list
(RBNEXAV). If the RBFIQETP field is '11',
it queues the IQE to the "next available"
list. Otherwise, the routine continues
processing.

The Exit routine next tests for another
IQE on the IRB'S queue of IQEs. The
processing from this point is similar to
that for RQEs, previously discussed.

Finally, after either initializing reg
isters for reentry to the user exit rou
tine, or removing the IRB and freeing its
storage, the Exit routine branches to the
Transient Area Refresh routine. The Tran-

Section 3: Task supervision 75

sient Area Refresh routine determines that
the exiting routine is not a transient SVC
routine. It then returns control to the
Dispatcher. The Dispatcher returns control
to either the user exit routine or another
routine. The other routine may be the
routine that was interrupted by the timer,
if a timer interruption had occurred; or it
may be the current routine belonging to
another task.

SPECIFYING A TASK ASYNCHRONOUS EXIT ROUTINE

The STAE macro instruction enables the
user to specify a STAE exit routine that is
entered asynchronously if the task enters
abnormal termination processing. The func
tions of the STAE service routine module
and the four ABEND/STAE interface routine
(ASIR) modules are:

76

+
• The STAE Service Routine (IGC00060)

Receives control via an SVC 60 when the
STAE macro instruction is issued.
Checks the validity of the STAE re
quest, and creates or modifies a STAE
control block.

• ASIR1 (IGCOB01C) Receives control
from ABEND1. Quiesces I/O operations
that are in progress for the ABENDing
task, establishes a work area, and
schedules the user-written STAE exit
routine. If the STAE routine does not
request that a STAE retry routine be
executed, ASIR1 returns to ABEND pro
cessing when the STAE exit routine
processing is finished. If a STAE
retry routine is requested, ASIR1
invokes ASIR2. If the program using
STAE is in supervisor mode and requests
a STAE retry routine without a purge of
the RB chain, ASIR1 invokes ASIR3.

• ASIR2 (IGCOC01C) Receives control
from ASIRl. Closes the data sets allo
cated to RB of the REs positioned
between the STAE issuer up to and
including the RB of the task scheduled
for ABEND. Invokes the WTOR Purge
routine. If any of the DCBs examined
by ASIR2 are using BTAM QTAM for a line
group, BISAM, or QISAM, ASIR2 invokes
ASIR4. If none of the above access
methods are indicated, ASIR2 invokes
ASIR3.

• ASIR3 (IGCOD01C) Receives control
from ASIR1, ASIR2, or ASIR4. Sets
dispatchable, the subtasks related to
the task using STAE, frees the storage
occupied by the STAE control block, and
schedules the STAE retry routine so
that it is the next program executed.

• ASIR4 (IGCOE01C>
from ASIR2. Repeats

Receives control
the search for

op:n data sets represented by DCBs
uS1ng BTAM, QTAM for a line group,
BISAM, or QISAM, closes these data
sets, and invokes ASIR3.

When the STAE macro instruction is
issued, the resulting macro expansion
places in register 0 a code indicating the
desired option (create, cancel, or over
lay), and, in register 1, the address of a
two-word parameter list containing the STAE
exit routine address and the STAE exit
routine parameter list address. If the
STAE request specifies that the user wants
the STAE environment to remain in effect if
he XCTLs to another routine, the high order
bit of register 1 is set" to one. The last
instruction of the macro expansion is an
SVC 60, which invokes the STAE service
routine.

The STAE Service Routine
+

The STAE service routine (IGC00060)
first examines the contents of the TCBNSTAE
field of the TCB (displacement dec. 160).
If the STAE has been issued in the STAE
exit routine (the high order bit in the
first byte of TCBNSTAE is on), an error
code of 8 is placed in register 15, and
control is returned to the user. The STAE
request is not serviced in this situation,
since STAE exit routine processing is
already attempting to deal with an error
situation.

The STAE service routine next tests the
contents of register 0 to determine the
option of the STAE request -- to create,
cancel, or overlay a STAE control block
(SCB). If register 0 contains a zero (the
create option), the STAE exit routine
address and the parameter list address
specified in the STAE macro instruction are
checked for validity. If eithe_r address is
invalid, an error code of 12 is placed in
register 15, and control is returned to the
user.

The STAE service routine issues a condi
tional GETMAIN to obtain 16 bytes of
storage for the SCB. The first word of the
Extended Save Area of the STAE service
routine SVRB is passed to GETMAIN to be
used for the address of the storage that is
obtained. If storage is not available,
control is returned to the user with the
return code of 4 in register 15. If
storage is available, the SCB is created by
placing the previous SCB address, or zero
in the first word, the address of the STAE
exit routine in the second word, the
address of the STAE exit routine parameter
list in the third word, and the address of
the user's RB in the fourth word. The
address of the newly-created SCB is placed
in the TCBNSTAE field of the TCB.

,I""" o

Iff"(~\

',,:,.-j

\ ; C'\

If the XCTL option is requested in the
STAE macro instruction (the high order bit
of register 1 is on), the STAE service
routine turns on the XCTL flag in the
TCBNSTAE field.

If the contents of register 0 is not
zero, or if register 0 contains a zero but
the STAE exit routine address is zero,
either the cancel or the overlay option is
being specified. The STAE service routine
tests the TCBNSTAE field to determine if an
SCB already exists. If it is zero, an
error code of 8 is placed in register 15,
and control is returned to the user since
an SCB that does not exist cannot be
cancelled or overlayed.

The STAE service routine next compares
the RB address of the current SCB with the
RB address of the program that is request
ing that the SCB be cancelled or overlayed.
If the RB addresses are not the same,' a
return code of 16 is placed in register 15,
and control is returned to the user. This
test prevents the unintentional destruction
of another program's SCB.

The STAE service routine now determines
whether the STAE request is the cancel or
overlay option. If register 0 contains a 4
or a zero with a STAE exit routine address
of zero, (the cancel option), the address
of the previous SCB, which is contained in
the fir.st word of the current SCB, is moved
into the TCBNSTAE field. A FREEMAIN is
then issued to free the storage occupied by
the cancelled SCB.

If register 0 contains an 8 (the overlay
option), the STAE exit routine address and
the STAE parameter list address are
obtained and checked for validity. If
either address is invalid, an error code of
12 is placed in register 15, and control is
returned to the user. If the STAE exit
routine address and the parameter list
address are valid, they are moved into the
second and third words respectively of the
current SCB. If the XCTL option is speci
fied, the XCTL option flag in the TCBNSTAE
field is turned on.

When the SCB has been successfully
created, cancelled, or overlayed, the STAE

. service routine returns control to the user
with a return code of zero in register 15.

ABEND/STAE Interface 1 Routine (ASIR1)

The ABEND/STAE interface routine, load
1, <IGCOB01C) receives control from ABEND1
(IGC0001C> when ABEND1 determines that an
SCB exists. ASIRl first turns on the STAE
recursion flag in the TCBNSTAE field of the
TCB. This bit is tested by ABENDl to
pEevent STAE processing from being invoked
twice for the same error.

ASIR1 tests for several conditions
before establishing a work area and schedu
ling the STAE exit routine. If the STAE
user is in -must complete- status but is
not a supervisor program, control is
returned to ABEND1 and abnormal termination
processing continues. If the RB address in
the current SCB cannot be found on the RB
chain, that SCB is cancelled and the next
SCB on the chain is tested. If none of the
RB addresses in any of the SCBs are on the
RB chain, ASIR1 returns control to ABEND1.
If an SCB is found that contains an RB
address on the RB chain, that SCB is used
for further processing.

If the STAE user is a supervisor rou
tine; ASIR1 sets a bit in the TCBNSTAE
field. This bit is later referenced by
SYNCH to ensure that the STAE exit routine
will be scheduled in the same mode as that
of the user.

ASIRl next determines if any I/O opera
tions are in progress for the task that was
scheduled fo~ ABEND processing. If the
TCBDEB field in the TCB contains a zero, no
I/O operations are in progress. If the
TCBDEB field contains a non-zero value, one
or more data sets are open. Since I/O
operations may be in progress for the task,
ASIR1 sets the purge-quiesce bit in the
TCBNSTAE field and invokes the Purge I/O
routine with the quiesce I/O option. If
the Purge I/O routine encounters an ABEND
situation while attempting to quiesce I/O,
ABEND 1 is reentered. ABENDl tests the
purge-quiesce bit and returns control to
ASIR1. If the Purge I/O routine did not
successfully quiesce I/O, the halt I/O bit
in the TCBNSTAE field is set to indicate
that I/O is not restorable, and the Purge
I/O routine is reinvoked with the halt I/O
option. Upon return from the Purge I/O
routine, if I/O operations were halted, or
if the Purge I/O routine was not called,
the first word in the extended save area
(ESA) of the SVRB is set to zero. If the
Purge I/O routine has successfully quiesced
I/O, the address of the first I/O block
(lOB) on the lOB restore chain is placed in
the first word of the ESA by the Purge I/O
routine for later restoration of I/O by the
user •

ASIR1 next attempts to get 176 bytes of
storage for a register save and work area
by issuing a conditional GETl4AIN macro
instruction. The request is conditional
because the STAE processing can continue if
storage cannot be obtained. If storage is
not available, registers 0, 1. and 2 are
initialized as parameter registers. A 12
is placed in register 0, the ABEND comple
tion code that appears in the TCBCMP field
in register 1, and the address of the STAE
exit routine parameter list in register 2.

Section 3: Task Supervision 77

If storage for the work area is
obtained, the starting address of this area
is placed in the ESA of the SVRB and in
register 1 to be passed to the STAE exit
routine. ASIR1 initializes the work area
with system status information at the time
the ABEND was scheduled. The address of
the STAE exit routine parameter list is
placed in word 1; the ABEND completion code
found in the TCBCMP field in word 2; the
PSW at the time of the ABEND in words 3 and
4; and the problem program PSW before the
ABE~~ occurred, or 0 if the task is a
supervisor task, in words 5 and 6. Words 7
through 22 contain the user's registers at
the time of the ABEND. If the STAE user is
a supervisor task, the RB address of the
ABENDing program is placed in word 23, and
zeros in words 24 through 26. If the STAE
user is a problem program, the program
name, or zero if the name cannot be found,
is moved into words 23 and 24, the address
of the entry point of the ABENDing program
into word 25, and zero into word 26. The
starting address of the remaining 72 bytes
of the work area is placerl in register 13,
to be passed to the STAE exit routine and
used as a register save area.

Based on the results of the Purge I/O
routine, ASIR1 places in register 0 a zero
if I/O operations have been quiesced, a
four if active I/O operations were halted,
or an eight if no I/O operations were in
progress at the time of the ABEND. The
ABTERM bit in the TCBFLGS field is set to
zero so that if a subsequent ABEND situa
tion occurs, the associated completion code
can be stored in the TCBCMP field.

ASIR1 effects the scheduling of the STAE
exit routine by issuing a SYNCH macro
instruction, which creates an RB for the
.STAE exit routine.

When STAE exit routine processing has
completed, control is returned to ASI~l
unless the STAE exit routine has requested,
or encounters, an ABEND situation: ASIR1
first frees the last 76 bytes of the work
area (the user's register save area) via a
FREEMAIN macro instruction. Register 15 is
examined to determine if the STAE user
indicated that a STAE retry routine be
scheduled. If register 15 contains a 0,
the STAE user has not provided a STAE retry
routine. ASIR1 returns control to ABEND1
via the EXIT SVC instruction and abnormal
termination processing continues as origin
ally scheduled.

If register 15 contains a four, the STAE
user has requested that a retry routine be
scheduled and that the RB chain be purged.
The address of the STAE retry routine,
passed to ASIR1 in register 0, and the
address of the STAE retry routine parameter
list, placed in the first word of the work

78

area by the STAE exit routine, are checked
for validity. If either is invalid, con
trol is returned to ABEND1 as previously
described. If both addresses are valid,
ASIR1 passes information contained in the
ESA to the other ASIR modules by placing
the address of the first lOB on the restore
chain or zero in register 7, the address of
the work area or zero in register 8, the
address of the STAE retry routine in
register 10, and. if the STAE user is a
problem program, the name of the program
scheduled for ABEND in registers 11 and 12,
and the entry point address of that program
in register 13. ASIR1 then invokes ASIR2
via the XCTI. macro instruction.

If register 15 contains an eight, the
STAE user has requested that a retry rou
tine be scheduled and that the RB chain not
be purged. If the STAE user is not a
supervisor program, as indicated by the
supervisor bit in the TCBNSTAE field, con
trol is returned to ABEND1, since the
option of not purging the RB chain is
reserved only for supe'rvisor program. If
the STAE user is in supervisor mode, infor
mation is stored in the parameter regis
ters, as described above. ASIR1 then sets
the NORBPG flag in the TCBNSTAE field and
invokes ASIR3 via the XCTL macro
instruction.

ABEND/STAE Interface 2 Routine (ASIR2)

The ABEND/STAE interface routine, load
2, CIGCOC01C) receives control from ASIR1
CIGCOBOIC> when ASIR1 determines that the
RB chain must be purged and the STAE retry
routine scheduled. Upon entry, ASIR2
stores the contents of the parameter regis
ters 7, 8, 10, 11, 12, and 13 in the ESA.

To determine if any I/O operations are
in progress for tasks represented by RBs
that are between the RB of the program
issuing STAE and the RB of the program
scheduled for ABEND, the TCBDEB field is
tested. If the TCBDEB field is zero, no
I/O is in progress, and the WTOR Purge
routine can be called immediately. IE the
contents of the TCBDEB field is not zero,
ASIR2 determines if the RB address of the
ABENDing program is the same as the RB
address of the program that issued the STA~
macro instruction. If the RB addresses are
equal, the ABENDing program is the program
that issued STAB, and no intervening RBs
exist. In this case also, thw WTOR Purge
routine can be invoked immediately.

If the TCBDEB field is not zero and the
RB addresses of the STAE issuer and the
ABENDing task are not equal, ASIR2 must
determine if any open data sets are asso
ciated with any of the intervening RBs.
The search is accomplished by determining

(

c

if the addresses of any of the DCBs on the
related DEB chains are contained in the
boundaries of a program represented by one
of the intervening RBs. The first inter
vening RB tested is that of the program
scheduled for ABEND. If an open DCB asso
ciated with one of the intervening RBs is
found, ASIR2 determines from the DCBDSORG
field if the access method being used is
BTAM, QTAM, for a line group, BISAM, or
QISAM. If the DCB is using one of these
access methods, the ISAMVTAM switch is set
to indicate that ASIR4 must be the next
module invoked to complete the close DCB
processing. ASIR2 continues the search by
examining the next DCB.

If an access method other than BTAM,
QTAM for a line group, BISAM, or QISAM is
used for the DCB to be closed, ASIR2 must
ensure that the user will not attempt to
restore I/O events associated with this
DCB. If no I/O operations were in progress
when the Purge I/O routine was called in
ASIR1, or if I/O operations were halted by
the Purae I/O routine, I/O is not restor
able, and the DCB in question is closed
without further processing. If the I/O
operations are restorable, an I/O event
related to the DCB to be closed may be
queued on the lOB restore chain that was
created by the Purge I/O routine. Depend
ing on the access method used, ASlR2 deter
mines the addresses of the lOBs related to
the DCB and cOffipares them with the
addresses of the lOBs on the restore chain.
If they are equal, the lOBs on the restore
chain are dequeued. The DCB is then closed
via the CLOSE macro instruction. The
search continues until all DCBs associated
with intervening RBs have been closed and
all lOBs related to these DCBs have been
removed from the lOB restore chain.

~~en the DCB search reaches the RB of
the STAE issuer, or if this search was not
necessary, ASlR2 invokes the WTOR Purge
routine. The address of this routine is
obtained from the secondary CVT. Upon
return from the WTOR Purge routine, parame
ter registers 7, 8, 10, 11, 12, and 13 are
initialized as previously described for
ASIR1. If the ISAM/TAM switch is on,
indicating that the ASIR2 found one or more
DCBs using BTAM, QTAM for a line group,
BISAIIIJ:, or QISAf!! during the DeB search,
ASIR2 invokes ASIR4 which repeats the DCB
search. If the switch has not been set,
ASIR4 invokes ASIR3 via the XCTL macro
instruction.

ABEND/STAE Interface 3 Routine (ASIR3)

The ABEND/STAE interface routine, load
3, (IGCOD01C) receives control from one of
the following ASIR modules:

• ASIRl (IGCOB01C) when the STAE exit
routine has requested that a STAE retry
routine be scheduled but that the RB
chain not be purged. (The user of STAE
must be a supervisor program.)

• ASIR2 (IGCOC01C) when all DCBs asso
ciated with RBs that exist between the
RB of the STAE issuer and the RB of the
task scheduled for ABEND have been
closed.

• ASIR4 (IGCOE01C) when all DCBs (using
BTAM, QTAM for a line group, BISAM, or
QISAM) associated with RBs that exist
between the RB of the STAE issuer and
the RB of the task scheduled for ABEND
have been closed.

ASIR3 stores the contents of the parame
ter registers in the ESA. Since this task
is to be reestablished when the STAE retry
routine is given control, all the subtasks
associated with the task scheduled for
ABEND must be set dispatchable. (The asso
ciated sUbtasks were previously set non
dispatchable if abnormal termination p~o
cessing was entered from ABATERM.) The
TCBLTC field, which contains the address of
the last TCB on the subtask queue, is
referenced to identify the associated sub
tasks. If the TCBLTC field is zero, no
associated subtasks exist. If the field
contains the address of a TCB, the nondis
patchability flags are turned off for that
TCB. The addresses of the TCBs of other
associated subtasks are obtained from the
TCBNTC field. These TCBs are also set
dispatchable.

If the NORBPG flag (set by ASIR1) in the
TCBNSTAE field is not on, indicating that
the user of STAE requested a purge of the
RB chain, ASIR3 must purge the RBs on the
chain that exist between the RB of the STAE
issuer and the RB of the program scheduled
for ABEND. The purge is accomplished by
setting the RBOPSW of these RBs to point to
an SVC 3 instruction located in the CVT.
Since the STAE retry routine will run under
the RB of the STAE user, a new RB need not
be created.

If the NORBPG flag is on, the user has
not requested a purge of the RB chain. An
RB must be built for the STAE retry rou
tine. ASIR3 issues an unconditional re
quest for 32 bytes of storage via the
GETMAIN macro instruction. The PSW is set
to reflect the same mode as that of the
STAE user, and the pointer fields in the RB
and the TCB are set so that the STAE retry
routine is the next program executed after
ASIR3 exits. The user's register 14 is set
to point to an SVC 3 instruction in the
CVT.

Section 3: Task Supervision 79

Before scheduling the STAE retry rou
tine, the TCBNSTAE field is updated to
point to the pr~vious SCB. The SCB that is
currently being processed is freed via the

To determine if a work area was obtained
by ASIR1, the work area address in the ESA
of the SVRB is tested. If the address is
zero, a work area was not obtained, and
ASIR3 must initialize parameter registers
to be passed to the STAE retry routine. A
12 is placed in register 0, the ABEND
completion code in register 1, and the
address of the first lOB on the restore
chain, or 0, in register 2. If a work area
was established by ASIR1, it is reinitial
ized with system status infor~tion as it
was in ASIRl except that the second word of
the work area now contains the address of
the first lOB on the restore chain, and the
last word now contains an address to be
passed to the Restore routine for restoring
purged I/O.

The RBOPSW of the STAE user is set to
point to the address of the STAE retry
routine, and the ABTFRM and prevent asyn
chronous exit flags in the TCB are cleared.
ASIR3 issues an EXIT macro instruction and
gives control to the dispatcher which will
schedule the STAE retry routine.

ABEND/STAE Interface 4 Routine (ASIR4)

The ABEND/STAE interface routine, load 4
(IGCOE01C) receives control from ASIR2
(IGCOC01C) when ASIR2 has set the I SAM/TAM
switch, indicating that, during the DeB
search, one or more DCBs using BTAM, QTAM
for a line group, BISAM, or QISAM were
found. ASIR4 repeats the search made by
ASIR2 and closes the DCBS, using BTAM,
QTAM, BISAM, or QISAM, that are related to
RBs that exist between the RB of the STAE
issuer and the RB of the program scheduled
for ABEND processing. As in ASIR2, the RB
of the program scheduled for ABEND is
examined .. first. The access method of all
DCBs on the DEB chains related to that RB
are tested. If the related DCBDSORG field
indicates that the DCB is using BTAM, QTAM
for a line group, BISAM, or QISAM, ASIR4
determines if that DCB is related to the
intervening RB. If it is., any I/O events
related to that DCB are removed from the
lOB restore chain. The DCB is then closed.
The search continues until all DCBs asso
ciated with intervening RBs have been
tested~ the related lOBs haft Beell removed
from the lOB restore chain, and the asso
ciated DCBs have been closed. The search
ends when the RB of the STAE issuer is
reached. ASIR4 initializes the parameter
registers and invokes ASIR3 via the XCTL
macro instruction.

80

SERVICES INTERNAL TO TRE SUPERVISOR

Supervisor internal services consist of
testing and indicatiftg the need for a task
switch, testing the validity of user
supplied addresses, and changing the status
of tasks. In a multiprocessing system,
additional supervisor internal services
include determining the relative priority
of tasks, testing the dispatchability of
tasks, and initiating aa external interrup
tion in a second CPU.

TESTING AND INDICATING THE NEED FOR A TASK
SWITCH

The Task switching routine is one of the
subroutines used by a number of supervisor
routines. The routine determines whether a
newly readied task, which may be of higher
priority than that of the caller's, should
be dispatched in place of the caller's
task.

The routine is entered if a supervisor
routine has reduced to zero a program's RB
wait count, or has cleared a non
dispatchability flag in a TCB. For
example, the Post routine may make ready a
program that was awaiting the completion of
an I/O operation, or the DEQ routine may
make ready a program that was awaiting a
serially reusable resource. In either
case, the supervisor routine does not know
if the readied routine belongs to a task
of higher priority than that of the caller,
and whether it should replace the caller as
the currently dispatchable program.

To answer this question, the supervisor
routine branches to the Task Switching
routine. The 'tAsk Switching rout] pC com
pares the dispatchIng pr1or1ty of the
readied routine's TCD with that of another
TCB. The other TCB i5 either the caller's
TCB or the TCE for an~her readied routine,
if more than one routine has just been
readied (e.g., duriDg DEQ processing).
According to the resalt of the comparison,
the Task Switching routine places the
address of the higher priority TCB in the
"new· TCB pointer IEATCBP.1 Later the Dis
patcher will consult this TCB pointer to
determine the task and routine it shoulo
dispatch.

The op~ation of the Task Switching
routine, just broadly discussed, will now
be described in greater detail.

Upon branch entry from the calling
supervisor routine, the Task Switching rou-

1The address of the BReW· TeB pointer is in
the communications vector table (CVT) at
location CVTTCEP.

tine compares the dispatching priority of
the readied routine's TeB, passed as an
input parameter, with the dispatching
priority of another TeB. The address of
the other TeB -- either the current TeB or
the TCB of a recently readied routine -- is
stored in either half of the doubleword TCB
pointer at location IEATCBP. The address
stored in the first word, the "new" TCB
pointer, has two possible values: zero, or
the address of a TCB for a previously
readied task.

If the first word of the 'J?CB pointer
contains zero, the Task Swi t.ching routine
compares the dispatching priority of the
current TCB with that of the TeB for the
newly readied routine. But if the first
word of the TCB pointer is not zero, the
routine compares the dispatching priority
of a previously readied task, whose TCB
address is in the "new" TeE pointer, with
the dispatching priority of the TeB for the
newly readied routine. (In this case, the
Task Switching routine has been invoked
more than once after the same interrup
tion.) If the· priority of the newly
readied task is higher than that of the
other, the Task Switching routine stores
the address of the readied TeB in the "new·
TeB pointer (IEATCBP) and returns control
to the invoking routine. Later the Dis
patcher will dispatch the current routine
whose TCB address has been placed in the
"new" TeB pointer. But if the priority of
the readied (input) TeB is lower than that
of the other TeB, the Task Switching rou
tine does not change the TeB pointer. It
merely returns control to the calling
supervisor routine. In this case, the
Dispatcher, when it gains control, will
dispatch the current routine for any of
three possible ready tasks: the current
task, if the w ne,,," TeB pOinter (IEATCBP)
points to the current TCB; a previously
readied task, if a previous use of the Task
switching routine has placed the TeB
address in IEATCBP; or another task found
by a scan of the TCB queue, if IEATCBP
contains zero.

A special case exists in which the Task
switching routine cannot make a comparison
between TeB priorities. This is the case
if the two TeBs have the same dispatching
priority. If the time-slicing feature is
included in the system, the Task Switching
routine tests the time-slice bit (TCBFTS)
in the TCB. If the bit is set, the Task
Switching routine returns control to the
calling supervisor routine without changing
the TCB pointer. In this case, the Task
Switching routine must search down the TCB
queue to discover which TCB is at a higher
relative pOSition on the queue. It begins
its search with the TCB pointed to by
lEATCBP or, if this location contains zero,
with the current TCB. The address of the

input or newly readied TCB is stored in the
"new" TeB pointer only if the input TCB is
not found below the other T~on the queue.
otherwise, the routi.ne does not change the
TCB poi.nter.

In a multiprocessing system, the Task
Switching routine also determines if the
newly readied task should be dispatched in
place of the current task on the second
CPU.

If the first word of the TCB pOinter of
either CPU contains zeros, zeros are also
placed in the first word of the second
CPU's TeB pointer. Later, the Dispatcher
will search from the top of the TCB queue
to find the two highest priority ready
tasks.

If the first word of the TCB pointer of
.neither CPU contains zeros, control is
passed to the Relative Priority routine
(RELPRIOR) TO compare the dispatching
priorities of the two TeBs whose addresses
are in the first words of the TeB pointers.
The TeB with the lower dispatching priority
is compared with the newly readied TCB. If
the priority of the newly readied task is
higher, the address of the readied TeB
replaces the address of the other TCB in
the first word of the TeB pointer.

The Task Switching routine then deter
mines if the TCB to be dispatched on the
executing CPU is the current TCB on the
second CPU or vice versa. If so, the
addresses in the first word of each TCB
pointer are interchanged.

The Task Switching routine then returns
control to the calling supervisor routine.
Later the Dispatcher will decide the pro
gram to be executed, as described above.

TESTING THE VALIDITY OF USER-SUPPLIED
ADDRESSES

supervisor routines use the Validity
Check routine as a subroutine to check main
storage addresses passed as input parame
ters by user programs. The Validity Check
routine tests the following attributes of
each input address: fullword boundary
alignment (optional>, whether the address
lies within the boundaries of main storage,
and if the address specified a storage area
whose storage protection key matches the
protection key in the TCB of the calling
mainline program. If any of these tests
fails, the routine informs the invoking
supervisor routine by altering the condi
tion code of the current PSW. Since the
calling main line program has made a
serious error, the invoking supervisor rou
tine abnormally terminates the current
task. Thus, the source of programming

section 3: Task Supervision 81

, occur
during

check
If it

the
thus
the

error is indicated at its point of
rence, avoiding a program check
later processing. Such a program
might be difficult to diagnose.
occurred during queue manipulation,
queues might be seriously disrupted,
interfering with the performance of
other tasks.

CHANGING THE STATUS OF TASKS

Supervisor-mode routines can use the Set
Status routine (IGC079) to set or reset the
status of particular tasks. The affected
task status can be either the "nonrollout
able· status, the "must complete" status,
or the "nondispatchability· status. (A
supervisor-mode routine operates under con
trol of a TCB whose supervisor-mode flag
(TCBFSM) is set. Such a routine belongs to
the supervisor or the Master Scheduler.)

The Set Status routine is invoked, via
supervisor linkage (SVC 79), through use of
the STATUS macro instruction. The routine
is entered either from the SVC First-Level
Interruption Handler, or via a branch from
a Type-l SVC routine. (A type-l SVC rou
tine may not cause anSVC interruption.)
Control is returned to the caller via the
Type-l Exit routine.

The Set Status routine sets (or resets)
the following conditions for a task or a
group of tasks:

• "Nonrolloutable" status, so that the
tasks of the job step are ineligible
(or eligible) to be rolled out.

• "Must complete" status, so that other
tasks of tne job step or system are
made nondispatchable (or dispatchable)
while the current task is being
performed.

• aNondispatchabilityn status, so that
the routines of the tasks cannot (or
can) be restarted by the Dispatcher.

Setting or Resetting the Norirolloutable
Status

When entered via the macro instruction
STATUS SET, NR, the Set Status routine adds
'one' to the nnonrolloutable count"
(TCBNROC) in the job step TCB. The job
step TeB is either that associated with the
specified TCB, or that associated with the
caller's TCB (if'S' or no TCB address is
specified). The "nonrolloutable count" is
later tested. by the rollout/rollin module
to determine if the job step is eligible to
be rolled out. A job step is eligible to
be rolled out if its "nonrolloutable count"
is zero.

82

When entered via the macro instruction
STATUS RESET, NR, the routine subtracts
'one' from the nnonrolloutable countn in
the job step TCB. (The particular job step
is defined in the previous paragraph.) The
Set Status routine schedules linkage to the
rollout/rollin module to restart deferred
rollout requests, if the "nonrolloutable
count" becomes zero while there is at least
one element on the rollout request queue
(IEAROQUE). If such scheduling is needed,
the routine obtains an interruption queue
element (IQE); via the GETIQE routine in
module IEAQPRTO, and branches to the Stage-
2 Exit Effector to place the IQE on the
asynchronous exit queue (AEQJ).

setting or Resetting the "Must Complete"
Status

When entered via the macro instruction
STATUS SET, MC, [STEP] [SYSTEM], the Set
Status routine sets the caller's task in
"step" or "system" must complete status.
(If the RESET operand is specified, the
"must complete" status that was prevously
set is cleared.) The routine sets the
"must complete" flag in the current TeB,
the "prohibit asynchronous exitsn flag in
the current TCB, and the step or system
nmust complete" nondispatchability flag in
other TCBs of the job step or system. (For
the names and meanings of these flags, see
Table 3-5 in "Serializing the Use of a
Resource. n)

In a multiprocessing system, after the
caller's task has been set in "must com
plete" status, control is passed to the
Task Removal subroutine. The Task Removal
routine (TESTDSP) determines whether the
current task on the second CPU has been set
nondispatchable, and, if it has, interrupts
the second CPU with an indication (in
STMASK) that the Dispatcher routine must
gain control. If the RESET operand is
specified, after the "must complete" status
is cleared, the Set Status routine indi
cates to the Dispatcher that the TCB queue
must be searched from the top to find the
two highest priority ready TCBs. This is
done by setting the "new" TCB pointer
(IEATCBP) of both CPUs to zero.

Setting or Resetting Nondispatchability

When entered via the macro instruction
STATUS SET, ND, [STEP] [SYSTEM] [tcbloc
addrx],(nn), the Set Status routine sets
the specified nondispatchability flag or
flags in the specified set of TCBs. (If
RESET is specified, the specified nondis
patchability f~ag or flags are cleared in
the specified set of TCBs.) Three sets of
tasks can be specified: the system, the
job step, or a specified task and its
descendants. If SYSTEM is specified, all
tasks of the system are set nondispatchable

(

eTable 3-7. Mask Bit Numbers Used in the STATUS Macro Instruction
r--------y---------T-------T--~-1
I I IOffset I I
IMask BitlFlag Namelof Flag I Meaning of Flag I
I Number I lin TCB I I
~--------+---------+-------+--.----~

1 TCBNDUMPI 32.0 Thi~ task is nondispatchable while the resources of a task I

2

3-5

6

7-8

9

10

11

12

13

14

15

I in this job step are being dumped. I
I I

TCBSER I 32.1 This task is nondispatchable while the SERl routine is I

TCBFC

TCBABWF

TCBWFC

TCBFRO

TCBSYS

TCBSTP

TCBFCD1

I being executed for this task. I
I I

32.5

33.0

33.1

33.2

33.3

33.4

33.5

33.6

reserved. I
I

This task is nondispatchable while VARY or QUIESCE pro- I
cessing is being performed in a multiprocessing system. I

reserved

This task is nondispatchable because it has been
or abnormally,terminated.

I
I
I

normally I
I
I

This task is nondispatchable as part of a tree of tasks I
that is being abnormally terminated. I

This task is nondispatchable because
requested storage space.

I
it is waiting for I

I
I

This task is nondispatchable
rOlled out job step.

because it is part of a I
I
I

task in the I This task is nondispatchable while another
system is in "system must complete" status. I

I
This task is nondispatchable while another task in the I
same job step is in "step must complete" status. I

I
This task is nondispatchable because it is an initiator 1
that is waiting for a requested region of main storage. I

I
16 I I reserved I _______ -i _________ i _______ i __ J

except the current task and the permanent
system task. 1 If STEP is specified, all
tasks of the job step are set nondispatch
able except the current task and the job
step's initiator. If a TeB address
(tcbloc-addrx) is specified, the task and
its descendants are set nondispatchable.

The particular nondispatchability flag
or flags that are set (or cleared) in each
TCB depend on the mask bit number (nn)
specified in the STATUS macro instruction.
(See Table 3-7.)

In a multiprocessing system, after the
nondispatchability flags have been set,

1The permanent system tasks are: the tran
sient area fetch tasks, the system error
task, the rollout/rollin task (if the
rollout feature is present), the communi
cations task, and the master scheduler
task.

control is passed to the Task Removal
(TESTDSP) subroutine which determines
whether the current task on the second CPU
has been set nondispatchable. If it has,
the second CPU is interrupted with an
indication (in STMASK) that the Dispatcher
routine should gain control.

DETERMINING THE RELATIVE DISPATCHING
PRIORITIES OF TASKS

The Relative Priority subroutine (entry
point RELPRIOR) is used by the Task Switch
ing and Dispatcher routines in a mUlti
processing system to determine which of two
TCBs has the higher dispatching priority.
Condition codes indicate the results as
follows:

Code
-0-

1
2

Indication
They are the same TCB.
Second TCB has higher priority.
First TCB has higher priority.

Section 3: Task Supervision 83

If the dispatching priority of both TCBs
is equal, the RELPRIOR routine searches
down the TCB queue, starting with the first
TCB being compared, to determine which TCB
is at a higher position on the queue. The
TCB higher on the queue will have the
higher dispatching priority.

TESTING THE DISPATCHABILITY OF TASKS

The Task Removal subroutine (entry point
TESTDSP) ensures, in a multiprocessing sys
tem, that a task which has been set nondis
patchable by a routine on one CPU does not
continue to run on the second CPU. The
address of TESTDSP is contained in the
multiprocessing CVT.

The Task Removal routine first deter
mines if the TeB whose address is in the
"old" TCB pointer (IEATCBP+4) for the
second CPU has been set nondispatchable.
If it has, the First CPU Signal routine is
invoked to cause the Dispatcher routine to
gain control on the second CPU. After the
Dispatcher on the second CPU has stored the
status of the "old" TCB, the Task Removal
routine determines if the ·old" TCB for
this CPU or the "new" TCB for either CPU
has been set nondispatchable. If so, the
nnew" TCB pointers (IEATCBP) for both CPus
are set to zero. This causes the Dispatch
er to search from the top of the TCB queue
to find the two highest ready tasks.

INITIATING AN EXTERNAL INTERRUPTION IN A
SECOND CPU

The First CPU Signal and SHOLDTAP sub
routines are used by supervisor routines in

84

a multiprocessing system to cause an exter
nal interruption in the second CPU. .11.6 a
result of the external interruption, a
routine specified in the word ST~ASK
receives control on the second CPU (see
description of External FLIH routine). The
word STMASK is located in the prefixed
storage area, and the bit designating the
routine to receive control On the second
CPU is set in STMASK by the calling roU
tine. The address of the SHOLDTAP routine
is contained in the multiprocessing CVT.

The SHOLDTAP routine first tests the
pending bit, bit 0 in the STMASK byte, to
determine if the previous external inter
ruption has been processed and the bit
reset to zero by the External FLIH routine.
If it is set to 1, the interruption has not
been processed, and control is returned to
the calling routine. Otherwise, bit 0 is
set to 1, and a WRITE DIRECT instrUction is
issued. This instruction causes an exter
nal interruption in the second CPU.

The First CPU Signal routine (entry
point FLASH) is used when the second CPU
must perform an irr~ediate service for the
first CPU. After issuing a WRITE DIRECT
instruction, the First CPU Signal routine
tests the word STMASK to determine if the
external interruption has been processed
and the immediate service performed. (The
appropriate bit in STMASK is cleared by the
External FLIH routine after the service has
been performed.) Control is returned to
the calling routine only after the immedi
ate service has been performed.

/r~
\~" ... -_;~J./

()

The contents supervision feature of the
supervisor determines the location of
requested programs, ' fetches the programs to
main storage if necessary, and schedules
the execution of these programs for their
tasks. As a byproduct of these functions,
records are kept of all programs in main
storage.

contents Supervision consists of two
types of functions: common functions and
special functions. The common functions
satisfy requests for linkage to a module or
requests to fetch a module to main storage
for future use. These common functions are
requested by the LINK, LOAD, XCTL, SYNCH,
and ATTACH macro instructions. These func
tions are performed by a group of subrou
tines that will be called the "common
subroutines." The special functions satis
fy a particular request from a system or
user routine, or assist one of the common
fUnctions. Examples of special functions
are the id,entification of an embedded
module entry point, or the loading of a
segment of a module in overlay mode.

The common functions consist of:

• Searching for the requested module in
the contents directory.

• Creating, if necessary, a contents
directory entry (CDE) to describe the
requested module, placing descriptive
information in the CDE from the input
parameters of the request, and queuing
the CDE on the appropriate contents
directory queue.

• Testing the module's status to deter
mine if it is available for use. The
module's status is tested if a CDE is
found in one of the contents directory
queues or if a BLDL procedure is per
formed for the module.

• Causing the fetching of a module that
is not in main storage or that is not
reusable.

• Determining the relocated alias entry
point and updating the appropriate con
tents directory queue if the module
request specifies an alias entry point.

• Deferring the request if the module is
not available.

• Restarting a deferred request when the
module becomes available.

SECTION 4: CONTENTS SUPERVISION

• Scheduling execution of the module by
creating a program request block (PRB),
and placing it behind the current SVRB
on the caller's RB queue.

The', special functions are used to assist
one of the common functions or to perform a
specialized service. special processing is
performed for a LOAD request, and for an
XCTL request issued by an SVC routine.
Through the servicing of an IDENTIFY re
quest, the supervisor is informed of an
embedded entry point within a specified
module. Through the servicing of a DELETE
request, the supervisor is informed that a
module fetched because of a LOAD request is
no longer needed in maln storage. If a
module must be loaded in overlay mode, the
Overlay Supervisor is invoked to prepare
for and control the loading of the appro
priate segments. Lastly, the actual load
ing of a module, although requested by
other contents supervision components, is
performed by the Program Fetch routine.
This routine acts as a loader for Contents
Supervision, the Transient Area Fetch rou
tine, the Overlay Supervisor, and the Stage
3 Exit Effector.

THE COMMON FUNCTIONS OF CONTENTS
SUPERVISION

The first part of this section describes
the common functions ~n the sequence in
which they are performed by the supervisor.
The second part of the section describes
each major function in greater detail in
the logical order previously listed.

GENERAL DESCRIPTION OF THE COMMON FUNCTIONS

The common subroutines are entered from
the SVC SLIH because of a LINK, LOAD, XCTL,
or ATTACH request. If the entry is because
of an ATTACH request, the program for which
linkage is desired is the first program to
be executed for the new subtask, as speci
fied by the ATTACH macro instruction. (See
"Attaching a Subtask" in Section 3, "Task
Supervision.")

contents Supervision performs initiali
zation and input processing peculiar to the
type of module request. Then the request
is serviced by a group of common subrou
tines which locate the requested module,
determine its status, and test whether it
is available. A module is available if it
is in main storage and is either reenter-

Section 4: Contents supervision 85

able, or serially reusable but not in use,
or is nonreusable but not yet used. If the
module is available, its execution is
scheduled. If it is not available, it is
fetched from auxiliary storage and then
scheduled. If, however, the module cannot
be fetched, the request is deferred.

In systems that include Main Storage
Hierarchy Support, contents superv~s~on
service routines for LINK, LOAD, XCTL, and
ATTACH requests direct program loading into
the appropriate hierarchy in main storage.
These service routines, upon entry from the
SVC SLIH, extract the hierarchy number from
the parameter list and, if a copy of the
requested program is to be loaded, pass the
number to the Program Fetch routine. The
GETMAIN request later uses the number when
it allocates storage for program loading.

If hierarchy is not specified in the
LINK, LOAD, XCTL, or ATTACH request, the
Program Fetch routine loads the program
into the hierarchy or hierarchies as stated
in the scatter table. The hierarchy number
(O or 1) is included in the GETMAIN request
issued for each CSECT of the requested
module.

Allocation of an Available Module

If a module is available for immediate
allocation, the "use/responsibility" count,
which records the number of outstanding
requests for the module, is increased and
the module is "allocated" to the requestor.
The expression "allocated" means different
things, depending on the type of request.
For a LOAD request, allocation means ensur
ing that a load-list element exists for the
request. A load-list element represents
one or more LOAD requests for the module.
It contains a -responsibility count" of the
number of outstanding LOAD requests for the
module, and a pointer to the contents
directory entry which describes the module.
For other types of requests, allocation (in
this case scheduling) means creating a
program request block (PRE) which will
control the module's execution, then plac
ing the PRE on the caller's RE queue, and
initializing the PRB's fields. After eith
er type of allocation is complete, the
appropriate subroutine, via the Exit rou
tine and the Dispatcher, passes control to
either the requested module or the caller.

Deferring the Request for an
Unavailable Module

If a module is unavailable, it cannot be
immediately allocated to its requestor. A
module is unavailable if it is being
fetched because of a previous request, or
if it is a serially reusable module that is

86

in use. In either case, the SVRB under
whose control the supervisor is operating
is placed on a list of waiting SVRBs. This
list represents requests for the module
which cannot yet be serviced. Subroutine
CDQUECTL places the SVRB in a wait condi
tion, ensures a task switch (since process
ing for the current task cannot proceed),
and branches to the Dispatcher to give
control to the current routine of another
task.

preparing to Fetch a Module

If a module is not in the link pack area
or in the job pack area for the requestor's
job step, or is nonreusable and has already
been used, a new copy must be fetched from
auxiliary storage. The search of the
appropriate library requires the retrieval
of the data set directory entry, whose
location may be indicated by parameters in
the caller's macro instruction. The data
set directory is obtained via the BLDL
routine of data management. When the
module is located, its attributes are re
corded in a contents directory entry (CDE)
that was built and initialized before the
execution of the BLDL routine.

If the data set directory entry indi
cates that the caller has specified an
alias entry point, special processing is
performed. This processing includes:

• Determining if the module is already in
main storage.

• calculating a relocated entry point
address.

• Ensuring that there are two CDEs for
the module, one containing the main
entry point name, the other containing
the alias entry point name.

In systems generated with storage
hierarchies, the expansions of the LINK,
LOAD, XCTL, and ATTACH macro instructions
include a one-byte -hierarchy ID" value.
This value is derived as follows:

Value
~

01
02

Derivation
No hierarchy specified
Hierarchy 0 specified (HIARCHY=O)
Hierarchy 1 specified (HIARCHY=l)

For LINK, XCTL, and ATTACH, the hierar
chy identification appears as the high
order byte of the second full word of the
parameter list pointed to by register 15.
For LOAD, the hierarchy ID is passed in the
high-order byte of register 1. When the
Program Fetch routine is entered, the ID is
placed into the high-order byte of register
5, which points to the address of BLDL.

Fetching the Module

After preparation for fetching the
module is complete, control is passed to
the Program Fetch routine to load the
module into main storaae. The hierarchy
identification is checked. The Program
Fetch routine then computes the module's
relocated entry point address. A cornmon
subroutine stores the address in the mod
ule's CDE for use in future linkage to the
module. If the data set directory informa
tion obtained from the BLDL procedure indi
cates that the module is in overlay mode or
contains TESTRAN symbol records, other rou
tines are invoked. If the module is in
overlay mode, contents supervision issues a
LOAD macro instruction to load nonresident
routines of the Overlay Supervisor (IEWS
ZOVR), in preparation for later linkage to
these routines. If the module contains
TESTRAN symbol records, the TESTRAN rou
tines are invoked via an SVC 61
instruction.

Updating the Contents Directory

Next, a check is made to determine if
the relocated entry point returned by the
Program Fetch routine is an alias entry
point, and therefore has been stored in a
"minor" contents directory entry (CDE). If
this is so, the relocated main entry point
is calculated and stored in the "major"
CDE. In addition, if there are other minor
CDEs for the module (meaning that there are
other alias entry points), relocated entry
points are calculated for all minor CDEs
pertaining to the module. Thus, all per
tinent CDEs pertaining to the module are
updated to contain relocated entry points.

Restarting Deferred Reguests

After calculating relocated entry points
for the contents directory, the subroutines
prepare deferred requests to compete for a
new search for their desired module. Any
other request blocks (RBs) queued to the
module's CDE are removed and made ready.
The RB belonging to the highest priority
ready TCB will control the resumed search
for the module, beginning at entry point
CDCONTRL.

After the RBs are made ready, a branch
to the Task Switching routine occurs in
order to test if any of the readied RBs
may, the next time the Dispatcher is
entered, replace the current RB as the
controller of the module. The common sub
routines later test whether the Task
Switching routine has indicated the need
for a task switch. This test occurs just
before a PRB is constructed to schedule the
execution of the module for the current
task. For a LOAD request, the test occurs
in the Dispatcher.

DETAILED DESCRIPTIONS OF THE COI-1MON
FUNCTIONS

Thus far, the general discussion of
"Contents Supervision" has followed the
sequence of processing used by the supervi
sor. Each major function will now be
described in greater detail, but not neces
sarily in the exact sequence in which it
occurs. For an aid in visualizing the time
relationships between the major functions,
the reader may refer to the flowcharts for
LINK, LOAD, XCTL, and SYNCH processing in
Section 11.

Searching for the Module

The first function of contents Sllpervi
sion is to search for the desired module.
The module may be in any of several loca
tions: the job step's region of main
storage, one of the libraries of auxiliary
storage, or the link pack area of main
storage. Contents Supervision first
searches the job step's region, then (if
appropriate) the libraries of auxiliary
storage, and lastly the link pack area of
main storage.

Initially, for all module requests
except SYNCH,1 subroutine CDSEARCH searches
the job step's region. In the region,
modules are assigned to subpools loosely
called a "job pack area." Subroutine
CDSEARCH searches for the module in the job
pack area by examining a contents directory
queue called a job pack area control queue.
Each job step in the system has its own job
pack area control queue (JPACQ). 2 Each
JPACQ contains contents directory entries
(CDEs) that represent user modules in. the
region's job pack area. These modules may
be used only by the job step in whose
region they are stored. Subroutine
CDSEARCH examines each CDE in the job
step's JPACQ, seeking a match between the
module name supplied as an input parameter
and the module name contained in the CDE.

For a LOAD request, before the examina
tion of the JPACQ, another subroutine
(CDLLSRCH) searches the load list for the
caller's task. The load list contains
elements, each of which points to a CDE for
a module that was loaded for the task, via
a LOAD macro instruction. The subroutine
examines each CDE pointed to by a load list
element, looking for a name match, as
described above. (See Figure 4-1.) There
are thus initially two ways to find a
module's CDE: a search of the job pack

1For a SYNCH request the supervisor assumes
that the module is in main storage, and
does not search for the module.

2The list origin for the JPACQ is the
TCBJPQ field of the job step TCB.

Section 4: Contents Supervision 87

Load List
Elements

1

Load List for
Coller's Task

Legend:

Job Step reB

---. .:::: pointer

eDE,

Q) = represents 0 module loaded for the caller's task

Figure 4-1. Subroutine CDSEARCH Uses the
Load List and the Job Pack
Queue in its Search for the
Module's Name

area control queue, or a search of the
task's load list.

If a CDE is found whose entry point name
matches that supplied as an input parame
ter, the module must be in the job step's
region of main storage. control is then
given subroutine CDALLOC to test the status
of the "found" module. The module is
either immediately available, not immedi
ately available, or is not available at all
(meaning that a new copy must be fetched).

If subroutine CDSEARCH cannot find the
required CDE in the JPACQ, it recognizes
that the desired module is not in the job
pack area, and branches to subroutine
CDSETUP to continue the search for the
module. (See Figure 4-2.)

According to the contents of the DCB
parameter, an operand of the requesting
macro instruction, the directory of the
appropriate library is searched. supervi
sor linkage to the BLDL routine of data
management causes the loading of a direc
tory entry from the specified data set for
exarrdnation by a subroutine of Contents
Supervision. If the DCB parameter is zero,
meaning that a library is not specified,
the directory of the job library, .if one is
present, is searched. otherwise, the di
rectory of the library specified by the DCB

88

parameter is searched. If the desired
module (actually the entry point name of
the module) is still not found, subroutine
CDSEARCH examines the other contents direc
tory queue, called the link pack area
control queue (LPACQ).

The LPACQ contains CDEs describing the
modules normally resident in the link pack
area of main storage. Modules in this area
are loaded by the nucleus initialization
program (NIP). They may be shared by
various job steps in the system. If the
search of the LPACQ does not locate the
module's name, the next step is to search,
via the BLDL procedure; the directory of
the link library. If the entry point name
is not found in this directory, the assump
tion is that the caller has made an incor
rect request. Accordingly, one of the
common subroutines sets up an error code
(806) and issues an ABEND macro instruction
to obtain linkage to the ABEND SVC routine
to abnormally terminate the caller's task.

Creating a Contents Directory Entry

During the search for the module, just
before the preparation for the BLDL proce
dure, subroutine CDSETUP determines if a
CDE exists. It does this by testing wheth
er a BLDL work area was created during a
previous request for the module. If the
module's CDE does not exist, space is
obtained by the GETMAIN SVC routine. The
CDE is then initialized and placed on the
JPACQ. The "attributes· field (CDATTR) is
initialized so that all bits are set.
Later, after the BLDL routine has obtained
the module'S data set directory entry, the
common subroutines will clear the bits that
are not applicable to the module'S status.
The entry point address field and the
extent list address field are initialized
to zero. (The extent list describes the
entry point and size of each loadable
section.) See Section 12, "Controls Blocks
and Tables· for a description of the CDE
fields.

Testing Module Status

There are two distinct times that the
attributes of a module may be checked in
order to determine its status. One time is
after a CDE is found in the JPACQ or the
LPACQ. In this case, the status-checking
subroutine (CDALLOC> checks the bits in the
attribu~es field of the CDE. Its purpose
is to determine if the module can be
immediately allocated~ whether the request
must be deferred and placed on a queue of
waiting requestors~ or whether a new copy
of the module should be fetched to main
storage. The other time that the module's
attributes may be tested is after the
execution of the BLDL routine has found a
data-set directory entry for the module. ~".

\l-.jf'

Examine link

No Yes

BLDL Routine

Search specified
library

BLDL Routine

Search job library

CDAlLOC Subroutine

Test status of module

Allocate or
fetch module,
or defer request

Set up error code
(806) and invoke
ABEND routine Examine link library

Figure 4-2. Further Search by the Common Subroutines of Contents supervision if the
Module's tOE is not in the Job Pack Queue

The attributes in the directory entry are
tested to determine if the module is in
main storage, recorded Qnder another entry
point name, or whether the module must. be
fetched.

Fetching the Module

After the BLDL routine has located the
module on auxili~ry storage, and if no
abnormal condition has been detected, the
appropriate subpool of main storage into
which the module shOQ}.d be loaded is deter
mined. The module's attributes, indicated
in the data-set directory entry, are tested
to decide the appropriate subpool. Subpool
252 is seV~cted if the module is reenter
able, and is in either the link library or
t;.he SVC library. Subpool 252 is a
supervisor-protected area within the call
er's region of main storage. otherwise,
subpool 251 is chosen. This subpool

belongs to the job pack area for the
caller's job step.

Interruptions are enabled, and the
module is loaded into the chosen subpool by
the Program Fetch routine. If there is no
I/O error, interruptions are again dis
abled, and the relocated module entry
point, returned by the Program Fetch rou
tine, is stored in the CDENTPT field of the
previously created CDE. The module'S
attributes, as indicated in the partitioned
data set directory entry, are.next tested.
If the module is in overlay mode, the
Overlay Supervisor (IEWSZOVR) is loaded
from the link library, via a LOAD macro
instruction. If the module contains
TESTRAN symbol records, the TESTRAN rou
tines are invoked via an SVC 61 instruc
tion. To indicate that the module is not
being loaded, the ftnot in storage n bit
(NIC) is Cleared. If the module is
refreshable (eligible to be reloaded by the

Section 4: Contents supervision 89

Machine-Check Handler for Model 65~). the
wrefreshablew indicator REFR is set. This
bit is tested by the Machine-Check Handler.
if this recovery program is included in the
system, when a machine check occurs. To
indicate that the module is in use. the
common subroutines set the "non-functional"
flag (NFN). These three bits belong to the
attributes fields (CDATTR and CDATTR2) of
the CDE representing the module.

performing Alias Processing

If the module request specifies an alias
entry pOint, two types of special process
ing occur: one after the BLDL routine has
obtained the data-set directory entry, the
other after the Program Fetch routine has
loaded the module.

If the module request specifies an alias
entry point name, two types of alias pro
cessing can occur, depending on whether the
module is already in main storage. The
first type determines if the requested
module is in main storage, recorded under
its major entry point name. This deter
mination is now possible, since the data
set directory entry is available for
examination. The second type of processing
ensures that all relocated module entry
point addresses have been recorded, both
main and alias, even though the current
request may specify only one alias entry
point name.

In the first type of processing, the
common subroutines determine if the module
is in main storage. recorded under its
major entry point name. A new search is
now necessary, since the original search
was made under the assumption that the
specified entry pOint name was a major
name. The major entry point name is
obtained from the data-set directory entry.
ana the JPACQ is searched for this name.
If the name is found, the JPACQ is updated
to include the alias entry point name, and
the Program Fetch routine is' not invoked.
If, however, the major entry point name is
not found, the Proqram Fetch routine is
invoked to load the module. If the module
is already being fetched, the current re
quest is defen:'ed.

In the second type of processing, the
subroutines ensure that all relocated entry
point addresses are recorded in the con
tents directory. The relocated major entry
point address is calculated and placed in
the module's major CDE. If there is at

~The Machine-Check Handler for Model 65
(MCH/65) is a system generation option
available with the System/360 Model 65.
Refer to Section 2, "Interruption
Handling. "

90

least one minor CDE queued to the majo.r CDE
(meaning that an alias or identified entry
point was previously requested), the relo
cated entry point address for each alias is
calculated and stored in its related minor
CDE. (There is one minor CDE for each
alias or identified entry pOint.)

The calculation of the relocated entry
points is performed by the Relocate subrou
tine, which is provided with certa.in
inputs. The inputs include the relative
alias entry point address, obtained from
the data-set directory entry and currently
in the minor CDE, and the address of the
extent list for the module, contained in
the major CDE. The extent list, created by
the Program Fetch routine when it loaded
the module, contains the starting address
of each block of main storage occupied by
the module and the length of each block.

Deferring a Request

A request for a module may be deferred
if the module is in main storage and is
serially reusable and in use, or if the
module is in the process of being fetched
to main storage. In either case, the
common subroutines (entered at CDQUECTL)
place the SVRB for the current request on a
list of wa.iting SVRBS, whose list origin is
the CDRBP field of the major CDE for the
module. Each SVRB on the list is queued to
the next waiting RB via its RBPGMQ field.
A new SVRB is placed on the list according
to the dispatching priority of its TCB.
After joining the list of waiting SVRBs,
the SVRB for the current request is placed
in a wait condition, its RBWCF field set
greater than zero. Since processing of the
current request cannot proceed, the need
for a task switch is indicated to the
Dispatcher. The indication is the setting
of the first word of the TCB pointer
CIEATCBP) to zero.

Just before the current SVRB is placed
on the list of waiting SVRBs, the list is
searched for an SVRB representing a pre
vious request from the caller's task for
the same module. If such an SVRB is found,
the module is permanently unavailable, and
an error code (A06) is set up. The reques
tor's task is then abnormally terminated by
the ABEND routine.

Restarting Deferred Requests

Periodically a deferred request may be
restarted. The purpose of such.restart is
to give control of the module to the
requestor representing the highest priority
ready task. When a module is available, an
SVRB that was previously waiting for the
module may compete with the current SVRB
for access to the module. According to the
relative task dispatching priorities, the

('\

C'

current request is serviced, or a deferred
request is restarted.

The restart procedure consists of two
parts: preparation for restart, and the
performance of a task switch. preparation
for restart can occur at two different
times during the execution of the common
subroutines. It can occur after the BLDL
routine has found a data-set directory
entry for the module. It can also occur
after the Program Fetch routine has loaded
the module into main storage. The task
switch, if needed, is performed by the
Dispatcher after the scheduling SUbroutine
of Contents Supervision (CDEPILOG) has been
entered.

PREPARATION FOR RESTART: During the prepa
ration for restart, the DQLOAD subroutine
makes ready the SVRBs on the waiting list,
and determines if one of these SVRBS may
replace the current SVRB as the controller
of Contents supervision.

The DQLOAD subroutine removes from the
waiting list any SVRBs queued to the cur
rent SVRB. (The current SVRB is the one
currently controlling the execution of the
subroutines of Contents Supervision.) For
each SVRB on the list, the subroutine
clears the wait bit (RBWCF), and sets the
RB old PSW to restart future execution at
the beginning of the search phase of Con
tents supervision (location CDCONTRL).
This is the point at which restart will
occur, if a task switch is performed.

Subroutine DQLOAD determines if any
deferred-request SVRB can replace the cur
rent SVRB by comparing task dispatching
priorities. The subroutine invokes the
supervisor's Task switching routine to com
pare the dispatching priority of each
deferred-request TCB with that of the cur
rent TCB. The result of the series of
invocations of the Task Switching routine
is that the TCB pointer (IBATCBP) contains
the address of the TCB whose current rou
tine will next be dispatched (see "Testing
and Indicating the Need for a Task
Switch"). Depending on the relative task
priorities, the current TCB may remain, or
may be displaced, as the next-to-be dis
patched TCB.

PERFORMANCE OF A TASK SWITCH: If the
p~eparation for restart has altered the TCB
pointer, a future branch to the Dispatcher
will cause the restart of Contents supervi
sion at its search phase, under the control
of one of its deferred-request SVRBs. The
branch to the Dispatcher, if warranted,
will occur during the execution of the
scheduling subroutine CDEPILOG.

CDEPILOG (entry point IEAQCS03) tests if
an available module should be allocated to

the current requestor, or whether the Dis
patcher should be entered to perform a task
switch. If the two words of the TCB
pointer, IEATCBP and IEATCBP + 4, are
unequal, the need for a task switch has
been indicated by the Task Switching rou
tine. CDEPlLOG prepares the current re
questor for restart by pointing the RB old
PSW in the current SVRB to the beginning of
CDEPILOG. The subroutine then branches to
the Dispatcher to perform the task switch.
The 'Dispatcher restarts Contents Supervi
sion at entry point CDCONTRL, under control
of the selected TCB and its deferred
request SVRB. A new search for the desired
module then begins, as if the restarted
request had just been issued.

Scheduling Execution of the Module

When the desired module is in main
storage and is immediately usable, asindi
cated by the test of the CDE attributes,
the allocation subroutine CDALLOC recog
nizes the need for the immediate allocation
of the module to a requestor. CDALLOC
clears the "release" flag in the CDATTR2
field of the major CDE for the module. The
major CDE contains the main entry point of
the module and a field (CDATTR) describing
its attributes, e.g., reentrant, "load
only," etc. The "release" flag (CDATTR2),
when cleared, indicates to the GETMAIN SVC
routine that the space reserved for the
module may not be reused to satisfy a later
request for space.

Subroutine CDALLOC branches to two other
subroutines, CDMOPUP and CDEPILOG, to per
form the allocation or scheduling of the
linkage to the module. The first step,
performed by CDMOPUP, is to increase the
"use/responsibility" count in the major
CDE. The use/responsibility count is a
record of the number of outstanding
requests for the module issued by LINK,
LOAD, XCTL, or ATTACH macro instructions.
The count is decreased by the Delete SVC
routine or by the Exit routine when each
execution of the module has been completed.

Subroutine CDEPILOG tests whether there
is a need for a task switch, to give
deferred requests a new chance to search
for their desired module. (See -Restarting
a Deferred Request.") If a task switch is
not needed, CDEPlLOG gets space for and
initializes a program request block (PRB)
to schedule and control the execution of
the requested module.

CDEPILOG obtains. the information for
initializing the P~ from information con
tained in the ~ields of the current SVRB.
It places in the ~ old PSW (RBOPSW field)
of the PRB the relocated module entry point
that was stored in the CDE. For an ATTACH
or SYNCH request, the mode bit and prQtec-

Section 4: Contents Supervision 91

tion key of the RB old PSW are duplicated
from the requestor's TCB. But for an XCTL
or LINK request. the first word of the old
PSW is obtained from the caller's RB. For
an XCTL request. the first word of the
caller's old PSW was saved in the register
zero save location of the caller's SVRB.
before contents Supervision was entered.

CDEPILOG places the newly created PRB on
the current task's RB queue behind the SVRB
used by contents supervision. Later. when
the Exit routine is entered. the SVRB will
be removed and freed, leaving the PRB as
the current RB for the requestor's task.
After queuing and initializing the newly
created PRB, which will control the mod
ule's execution, CDEPILOG passes control to
the module or to a restarted requestor, via
the Exit routine and the Dispatcher.

SPECIAL FUNCTIONS OF CONTENTS SUPERVISION

The special functions are used to assist
one of the common functions or to perform a
specialized service for a requestor. These
functions consist of:

• Final processing for a LOAD request.

• Special processing for an XCTL request.

• Informing the supervisor of an embedded
module entry point (IDENTIFY).

• Informing the supervisor that a module
fetched via a LOAD macro instruction is
no longer needed in main storage
(DELETE).

• Supervising the loading of segments of
an overlay module.

• Fetching a module to main storage.

FINAL LOAD PROCESSING

Final processing for a LOAD request is
performed after the desired module is in
main storage and is available. It consists
of checking the load list for the caller's
task to determine if a load-list element
exists for the requested module. .

The load list indirectly points to mod
ules requested for a task via the LOAD
macro instruction. If a module was loaded
by an alias entry point name, the load-list
element pOints to a minor CDE: otherwise
the load-list element contains a pOinter to
a module's major CDE. It also contains a
·responsibility· count (LLCOUNT) of the
number of LOAD requests for the module.

If a load-list element
for the module, a new

92

does not exist
element is con-

structed. initialized, and placed on the
load list for the caller's task. It is
queued from the load-list pointer (TCBLLS>
in the caller's TCB.

After the load-list element is created,
or if a determination is made that it
already exists. the responsibility count is
increased to include the current request.
Control is then returned to the requestor
or to the current program of the highest
priority ready task, via the Exit routine
and the Dispatcher.

SPECIAL XCTL PROCESSING

Special processing is performed when a
caller has issued an XCTL macro instruc
tion. If the macro instruction is issued
by a user program or a user exit routine,
processing is performed before control is
passed to the common subroutines. If,
however. an XCTL macro instruction is
issued by an SVC routine. special process
ing is done by the transient area handler.
The transient area handler schedules link
age to the desired SVC routine. and does
not use the common subroutines of Contents
Supervision. The simpler XCTL processing
will be discussed first.

Processing if the Requestor is a User
Program or a User Exit Routine

For both types of requestors (a user
program or a user exit routine) the reques
tor's RB must be eliminated, since an XCTL
request does not permit return of control
to the requestor. The Exit routine is used
to dequeue and free the RB of the exiting
program or routine. Depending on the type
of requestor, the RB is removed immediately
or is removed after the requested module
has been executed,.

If the requestor is a user program,
operating under control of a program re
quest block (PRB>, the requestor's PRB is
removed immediately, before the requested
module is obtained. This arrangement
allows the requested program to overlay the
requesting program, if necessary. To pre
pare for PRB removal, the positions of the
caller's PRB and the SVRB for Contents
Supervision are interchanged on the RB
queue., so that the PRB is at the "head" of
the queue (see Figure 4-3, part B).
Restart of Contents Supervision is sched
uled by pointing the RB old PSW in the SVRB
to the search phase of the common subrou
tines (location CDADVANS). The Exit rou
tine is then invoked to remove and free the
caller's PRB (see Figure 4-3,. part C).
After eliminating the PRB, the Exit routine
branches to the Dispatcher to restart Con
tents Supervision at CDADVANS. to begin the
search for the requested module~

()

If the requestor is a user exit routine,
operating under the control of an IRB, the
requestor's IRB is removed from its RB
queue only after the requested module has
been obtained and executed. This delay is
necessary because the IRB contains register
contents belonging to the program that was
interrupted by the asynchronous event. The
register contents remain in the IRB until
the Exit routine is entered after the
requested module has been executed.

The Exit routine is scheduled (but not
invoked) by placing in the RB old PSW of
the requestor's IRB the address Of an SVC 3
instruction. A branch is then made to the
common subroutines (location CDADVANS), to
search for the requested module. When the
module has been obtained and executed, the
Dispatcher gives control to the SVC 3
instruction. The instruction causes super
visor linkage to the Exit routine to
dequeue and free the requestor's IRB (see
Figure 4-3, part El).

Processing if the Reguestor is an SVC
Routine

If the requestor is an SVC routine
operating under the control of an SVRB, the
transient area handler"s XCTL routine
(entry point IEAQTH03) performs special
processing. The request is handled very
similarly to any SVC request that reaches
the svc Second-Level Interruption Handler.
The following discussion will first provide
an over.view of the transient area XCTL
fUnction, then a more detailed coverage.

After initial housekeeping, the Tran
sient Area XCTL routine performs the fol
lowing functions:

• Updates the transient area queue by
removing the requestor's SVRB.

• Tests for and passes control to a
requested routine in the link pack area
of main storage.

• Deter.mines if the requested routine is
in a transient area block.

• Preparing for linkage to the routine if
it is in a transient area block.

• Perfor.ms special processing to locate
an available transient area block
(TAB), if the routine is not already in
a TAB.

• Defers the request if a TAB is not
available.

• Prepares for overlaying a transient
area block, if one is available.

• Loads the routine into an available
TAB.

The Transient Area XCTL routine tests if
the requestor is a resident or nonresident
SVC routine. It tests the status bit
(RBFNSVRB) in the requestor's SVRB.

UPDATING ~HE TRANSIENT AREA QUEUE: If the
requestor is nonresident, the TAXEXIT sub
routine removes the requestor's SVRB from
the user queue for the TAB that contains
the requesting routine. (The user queues
are described in "Fetching a Nonresident
Routine from Auxiliary Storage" in Section
2, "Interruption Handling." (See Figure
4-4.)

The removing of the requestor's SVRB
from the user queue is necessary because
control will not be returned to the reques
tor. The requesting routine is no longer a
"user" of a transient area block. If the
requesting routine is resident in the link
pack area, the TAXEXIT subroutine is
bypassed, since the requestor's SVRB is not
on a user queue.

TESTING FOR AND PASSING CONTROL TO A ROU
TINE IN THE LINK PACK AREA: The Transient
Area XCTL routine (hereafter called the TA
XCTL routine) next tests if the requested
routine is in the link pack area. The test
consists of a search of the contents direc
tory entries on the LPACQ. If the desired
routine is in the link pack area, the
requestor's SVRB is flagged as "resident"
(the RBFNSVRB bit in the RBSTAB field is
cleared). The requestor's SVRB, rather
than the SVRB created by the SLIH after the
current SVC interruption, will control the
execution of the requested routine when it
is finally dispatched.

The TA XCTL routine prepares for the
passing of control to the routine as fol
lows. It sets up registers, and points the
RB old PSW in the requestor's SVRB to the
address of the desired routine. This is
the PSW that is loaded by the Dispatcher to
give control to the routine. The TA XCTL
routine then uses an SVC-3 instruction to
gain linkage to the Exit routine. The Exit
routine will remove from the RB queue and
free the SVRB created for the current XCTL
request, since it is no longer needed.
Control is then passed to the desired
routine, via the Dispatcher.

DETERMINING IF THE ROUTINE IS IN A TRAN
SIENT AREA BLOCK: If the requested routine
is not in the link pack area, as indicated
by the search of the LPACQ, the assumption
is that the routine is nonresident. The
TAXCTL routine then determines if the SVC
routine is in one of the transient area
blocks (TABs) of main storage into which
nonresident routines are loaded. If the

Section 4: Contents Supervision 93

A. Condition of RB queue before XCTL processing.

B. Caller's PRB and SVR8 are switched during
XCTL processing.

C. Caller's PRB is removed by first execution
of Exit routine.

O. New PRB for requested module is created
by COEPI LOG subroutine.

E. SVRB is removed by next execution of Exit routine.

AI. Condition of RB queue before XCTL processing.

B I. New PRB for requested module is created
by COEPI LOG subroutine.

CI. SVRB if removed by Exit routine when execution
of Contents Supervision is complete.

01. PRB for requested module is removed by the Exit
routine after the requested module is executed.

EI. Caller's IRB is removed by the Exit routine after
the ~ispatcher tries to restart the user exit routine.

SVRB is for Contents Supervision.
PRB - I is for colling user program.
PRB - 2 is new PRB for requested module.
IRB is for calling user exit routine.

User Program Issues XCTL Request

TCB

~
TCB PRB _ I SVRB

User Exit Routine Issues XCTL Request

TC8 *RB for routine being
SVR8 IRB RB executed when asynch.

~~'~~~

TCB

Figure 4-3. Manipulation of the Caller'S RB Queue During Servicing of an XCTL Request

94

()

{

(

(
~.

."

Transient Area
Fetch SVRB

TA Fetch
TeB 1

Used for
transient
area fetch

No. of TACT Entries
~--~--~----/---~--~

Addr /.
of User
Queue 1

Addr

Transient Area
Fetch SVRB

TA Fetch
TeB 2

- = Pointer

c:::::) = Informotion Flow

NOTES: 1. User queue 1 contains SVRBs whose SVC routine is in TAB 1,
ar was overlaid in TAB 1.

User queue 2 containsSVRBs whase SVC routine is in TAB 2,
or was overlaid in TAB 2.

2. The request queue contains SVRBs awaiting an available TAB.

Figure q-q. The Transient Area Queues

Section q:

User Queue 1

Transient Area Block 1 (TAB 1)

Transient Area Block 2 (TAB 2)

User Queue 2

Contents Supervision 95

routine's name is in the permanent SVRB for
a TA fetch task, the routine is currently
in a TAB. (See "Fetching a Nonresident
Routine From Auxiliary Storage- in Section
2, "Interruption Handling.") Accordingly,
the TA XCTL routine prepares for linkage to
the SVC routine.

PROCESSING IF THE ROUTINE IS IN A TRANSIENT
AREA BLOCK: The TA XCTL routine then
stores data in the requestor's SVRB that is
needed to "refresh" the routine in case it
is overlaid in the TAB before its execution
is complete. This data includes the rela
tive track and record address of the rou
tine on auxiliary storage <obtained from
the TACT entry), the routine length, the
right half of the routine name, and the
displacement of the TACT entry for the TAB
in which the routine currently resides.
The routine's name and length are obtained
from the permanent SVRB belonging to the
transient area fetch task associated with
the TAB. The displacement of the TACT
entry is calculCl.ted from the TACT address.

The TA XCTL routine then increases the
·user" count for the transient area blocks.
This count of the total number of user
SVRBs of all TABs is examined during the
execution of the TA Refresh routine when
the Dispatcher is next entered. After
increasing the user count, the TA XCTL
routine places the requestor's SVRB on
TAB's user queue, in order to keep track of
the users of the TAB (see Figure 4-4).

The
trol to
cal to
routine

preparation for the passing of con
the nonresident routine is identi
that previously described for a

resident in the link pack area.

PROCESSING IF THE ROUTINE IS NOT IN A
TRANSIENT AREA BLOCK: If the name of the
SVC routine is not in the permanent SVRB
for a TA fetch task, the routine is not
already in a TAB. The TA XCTL routine then
tries to obtain a TAB into which it may
place the routine. It examines the tran
sient area control table and the user
queues to find a TAB that is available.
(See Figure 4-4 and Section 12, "Control
Blocks and Tables.") A TAB is available in
any of the following cases:

• The TAB is not being used.

• The TAB has no using SVRBs that are
ready.

• The TAB may be overlaid by the
requested routine. It may be overlaid
if the task dispatching priority of its
cur.rent user is lower than that of the
requestor.

If a TAB is not available, the request
is deferred. If, however, a TAB is avail-

96

able, the requested routine is loaded into
it. When the fetch process is complete,
control is passed to the routine, via the
Dispa tcher.

DEFERRING THE REQUEST: This discussion
will first consider the case in which an
available TAB cannot be found. If a TAB is
not available, the TA XCTL routine defers
the current request by placing the current
SVRB on the transient area request queue
(see Figure 4-4). The request queue is a
list of SVRBs whose routines cannot be
immediately scheduled for execution. The
TA XCTL routine places the current SVRB
into a wait condition, since execution of
the current request cannot continue. To
schedule the restart of this request, the
TA XCTL routine points the RB old PSW in
the SVRB to the "retry" entry point, called
TAXRETRY. Then, to permit the Dispatcher
·to pass control to the current routine of
another task, the TA XCTL routine indicates
the need for a task switch <sets location
IEATCBP equal to zero) and branches to the
Dispatcher.

PREPARATION FOR THE OVERLAYING OF A TRAN
SIENT AREA BLOCK: If an available TAB is
found, the TA XCTL routine prepares to
fetch the SVC routine to the TAB. It sets
into a wait condition the SVRBs on the
TAB's user queue, which represent active
requests for the routine currently in the
TAB. Then, to delay attempted execution of
the requested routine until it is fetched,
the TA XCTL routine sets the requestor's
SVRB in a wait condition. Then, to permit
entry to the routine after it has been
fetched, the TA XCTL routine points the RB
old PSW in the SVRB to the address of the
TAB. This address will be the entry point
of the routine when the fetch is complete.
To prevent accidental overlay of the TAB
during the fetch process, the transient
area control table (TACT) entry is flagged
to indicate that the TAB is being loaded.

The extent of fetch processing (i.e.,
whether a BLDL macro instruction must be
issued> is determined by whether the DE
operand was specified in the XCTL macro
instruction. If the DE operand was speci
fied, the TA XCTL routine sets the RB old
PSW in the transient area fetch SVRB
(queued to a transient area fetch TCB) to
bypass the BLDL procedure. (See Figure
4-4.) But if the DE operand was not
specified, the RB old PSW in the transient
area fetch SVRB is set to enter the BLDL
procedure.

In either case, the TA XCTL routine
invokes the supervisor'S Task Switching
routine to prepare for a switch to a
transient area fetch task, under which the
fetch will be performed. Then, to schedule
removal of the SVRB for Contents Supervi- o

(

sion, the RB old PSW in that SVRB is set
for future entry to the Exit routine. The
Exit routine will be entered when the
Transient Area Fetch routine waits for I/O
completion and the requestor's task again
receives control. A branch is made to the
Dispatcher, which passes control to the
Transient Area Fetch routine to load the
requested SVC routine.

INFORMING THE SUPERVISOR OF AN EMBEDDED
MODULE ENTRY POINT

The Identify SVC routine informs the
supervisor of a module's embedded entry
pOint name that was not established by the
Linkage Editor. The routine informs the
supervisor by creating a CDE to represent
the e~bedded entry-point name. The Identi
fy roqtine is a type-2 SVC routine (resi
dent, SVC-issuing, disabled). It is
entered from the SVC Second-Level Interrup
tion Handler after an SVC (41) instruction
has been issued.

The Identify routine searches the con
tents directory queues (JPACQ and LPACQ)
for the specified entry-point name. The
name can be the major name of a module, an
alias name of a module, or a name specified
in a previous IDENTIFY macro instruction.
If the specified entry-point name cannot be
found, the routine then determines if the
specified entry-point address is valid.
The entry-point address is valid if it
exists in either the caller's module, or in
a module which was loaded for the caller'S
task.

If the entry-point name cannot be found
in the contents directory, and if the
entry-point address is valid, the routine
creates a minor CDE, which defines the
identified entry point, and queues it to
the module's major CDE. The Identify rou
tine then sets up a return code indicating
the result of its search, and returns
control to the caller, via the Exit routine
and the Dispatcher.

Upon entry {at location IGC041> the
Identify routine first tests if the caller
is a valid user program. The routine
determines if the caller is valid by test
ing the type of RB under which the caller
is operating. (The test is of the RBFTP
subfield in the RBSTAB field.> If the RB
is not a PRB, the caller is invalid.
Accordingly, the Identify routine sets up a
return code (hexadecimal 10), and via the
Exit routine and the Dispatcher, returns
control to the caller. If the test of RB
type indicates that the caller is valid,
the Identify routine begins its search for
a contents directory entry (CDE) that may
contain the desired entry-point name.

In order to perform its search, the
Identify routine must first determine which
contents directory queue may contain the
needed CDE: the link pack area control
queue (LPACQ), or the job pack area control
queue (JPACQ> for the caller's j'ob step.
The initial assumption by the Identify
routine is that the requested entry point
lies within the caller's module. The rou
tine therefore determines which queue it
should search by testing whether the cur
rent module was loaded by the Nucleus
Initialization Program (NIP). It tests the
NIP bit in the CDATTR field of the caller'S
CDE (the CDE pointed to by the caller's
RB). The NIP bit, if set by the Nucleus
Initialization Program, indicates that the
desired module is in the link pack area.

According to the result of the foregoing
test, the Identify routine prepares to
search either the link pack area queue, or
the job pack area queue for the caller's
job step. (Each job step has its job pack
area within its own region of main
storage.) The routine then searches the
CDEs of the selected queue for a match
between the input entry name, supplied as
an operand of the IDENTIFY macro instruc
tion, and the entry name in a CDE.

If a CDE is found whose entry-point name
agrees with the requested name, the Identi
fy routine determines if the CDE is a minor
CDE by testing the MIN flag of its CDATTR
field. A minor CDE contains either an
alias entry-point name (established by the
Linkage Editor), or an entry-point name
provided by a previous execution of the
Identify routine.

If the CDE is not a minor CDE, it
represents a major entry-point name for the
module. Since the located entry point is
not an alias, the Identify routine sets up
an error code (8), indicating that the
specified entry-point name is the same as
the major name of a module currently in
storage. The routine then returns control
to the caller, via the Exit routine and the
Dispatcher.

If, however, the CDE is a minor CDE, the
Identify routine compares the requested
entry-point address with the address con
tained in the CDE. If these addresses are
the same, a previous IDENTIFY macro
instruction specifying the same entry-point
address was issued. A return code (4) is
used to inform the caller. But if the two
entry-point addresses are unequal, a pre
viously issued IDENTIFY macro instructLon
specified the same entry-point name but a
different address. In this case, the rou
tine informs the caller with a return code
(hexadecimal 14), and returns control, via
the Exit routine and the Dispatcher.

Section 4: contents Supervision 97

If in its search of either of the COE
queues, the Identify routine does not find
a COE containing the specified entry-point
name, it makes an initial assumption-that
the entry point lies within the caller's
module. The routine then examines the
extent list for the caller's module to
determine if the desired entry-point
address is in the module. The extent list
for a module contains the starting address
and length in bytes for each control sec
tion of the module. The Identify routine
obtains the address of the extent list for
the caller's module from the module's COE
CDXLMJP field). See Figure 4-5. The
extent-list pointer was placed in the COE
by the Program Fetch routine. The address
of the COE for the current module, in turn,
is contained in the caller's PRB (RBCDE
field) •

If the entry-point address is found, the
Identify routine creates and initializes a

TCB for Coller's Task
-..,.

minor COE. If, however, the entry-point
address is not found, the routine continues
its search for a module that contains the
address. The continued search is made via
the load list for the caller's task. This
list represents the LOAD requests for
modules made for this task. (See "Load
List" in Section 12, "Control Blocks and
Tables.")

For each load-list element, the routine
first obtains the CDE pointer in that
element (LLCDPTR) to gain access to the
related CDE (see Figure 4-5). Each CDE, as
stated before, contains a pointer to an
associated extent list. The Identify rou
tine then examines the extent list in the
same way it had examined the extent list
for the caller's module. The routine
examines the extent list indirectly pointed
to by all elements in the load list belong
ing to the caller's task. If a module
containing the specified entry-point

- ~aller's RB Queue

Legend:

Load list for
Caller's Task

Load list
Element

- - - = Queue
- = Pointer

ED = CDE for module
loaded for caller's task

-SVRB for the Identify Routine- _ ------Caller's PRB _

Extent list

Entry-Point
Addresses

o 0

Extent list

Entry-Point
Addresses

DODO

Extent Li st for
Caller's Module

Entry-Point
Addresses

000

Extent List

Entry-Point
Addresses

000

Figure 4-5. Finding an Extent List by Searching the Job Pack Queue or the Load List

98

.~ ,
"~I

(
\
\,

(

address is not found, the Identify routine
indicates this result by a return code
(hexadecimal nC"). It then returns control
to the caller, via the Exit routine and the
Dispatcher.

If the desired entry-point address is
found, the Identify routine next decides
whether to create a minor CDE to represent
the desired entry-point name. since the
routine should not create a duplicate CDE,
it must determine if the needed CDE already
exists on the CDE queue that it did not
search. Accordingly, the Identify routine
searches the remaining CDE queue.

If an entry-point name match is
obtained, the routine does not create a new
CDE. ,Instead, it sets up a return code
(8), indicating that the desired entry
point is the same as that of a module
already in main storage. Then the Identify
routine returns control to the caller, via
the Exit routine and the Dispatcher.

If an entry-point name match is not
obtained, the Identify routine creates a
minor CDE to represent the desired entry
point name. It issues a GETMAIN macro
instruction to obtain space for the new CDE
(24 bytes from subpool 255, supervisor
queue area). The routine then initializes
the subfields of the CDE (MIN, REN, SER,
and NLR) to indicate that the CDE repre
sents a minor entry point and to indicate
the module's attributes. <See Section 12,
"Control Blocks and Tables" for a descrip
tion of these subfields.) After initial
izing the new CDE, the routine queues it to
the appropriate CDE queue.

Then, setting up a return code (0) to
indicate successful completion of the
IDENTIFY request, the routine returns con
trol to the caller, via the Exit routine
and the Dispatcher.

INFORMING THE SUPERVISOR THAT A LOADED
MODULE IS NO LONGER NEEDED IN MAIN STORAGE

The Delete SVC routine is used by a
system or user program to indicate to the
supervisor that a module previously fetched
via a LOAD macro instruction is no longer
needed in main storage. The routine
searches the current task's load list in
order to find the contents directory entry
(CDE) representing the module to be
deleted. If the routine does not find the
CDE, it returns control to the caller, via
the Exit routine and the Dispatcher, with a
return code indicating that no record of
the module can be found. If the routine
finds a record of the specified module, it
reduces a -responsibility· count of the
number of LOAD requests. In addition, if
the module is not ih use and there are no

outstanding requests for its use, the
Delete routine, via subroutine CDHKEEP,
frees the space occupied by the module, its
extent list, and its CDEs, thus removing
all traces of the module from main storage.
The Delete routine then returns control to
the caller, via the Exit routine and the
Dispatcher.

Upon entry (at address IGC009) the
Delete routine first searches the load list
for the caller'S task in order to find a
contents directory entry (CDE) containing
the specified entry-point name. If such a
CDE can be found, processing of the request
can continue. otherwise, the routine sets
up a return code (4) and returns control to
the caller, via the Exit routine and the
Dispatcher. The Delete routine obtains the
load-list origin from the TCBLLS field of
the current TCB (se'e Section 12, ·Control
Blocks and Tables"). It searches the ele
ments of the load list, examining each CDE
pointed to by each load list element. If
it does not find a match between the
specified entry-point name, supplied as an
input parameter of the macro instruction,
and the name in any of the CDEs indicated
by the load list, the return code is set up
and control is returned to the caller, as
stated previously. If the routine findS a
match, processing continues as follows.

The Delete routine subtracts one from
the nresponsibility" count (LLCOUNT) in the
load list element for the specified module.
This count is a record of the number of
outstanding LOAD requests for the module.
(See Section 12, "Control Blocks and
Tables.·) Each execution of the Delete
routine will similarly decrease the respon
sibility count until the count reaches
zero. The routine next checks whether this
count has reached zero. A responsibility
count of zero indicates that there are no
outstanding LOAD requests, that is, there
have been as many delete requests for the
module as there have been LOAD requests.
If the responsibility count in the load
list element is zero, the routine removes
the element from the load list, and issues
a FREEMAIN macro instruction to free its
space. This action is appropriate, since a
load list element merely indicates an out
standing LOAD request for a module, not
whether the module has been fetched via
another type of macro instruction, or
whether the module is still being used.

The Delete routine next subtracts one
from the ·use/responsibility· count in the
major CDE that it has found. This count,
unlike the responSibility count in a load
list element, records the total number of
requests for a module, via ATTACH. LINK,
LOAD, or XCTL macro instructions. The
count is increased for each such request

Section 4: Contents Supervision 99

and decreased for each DELETE or SVC 3
instruction.

The routine tests the use/responsibility
count in the major CDE to determine if the
module's storage areas may be freed. These
areas include the space occupied by the
module, its CDEs, and its extent list. If
the count is not zero, at least one re
questing program within the current task
has not completed its Use of the module.
That is, the module has nut yet issued a
RETURN macro instruction, nor has a· 'DELETE
macro instruction been issued for it.
Since the module'S storage areas cannot be
freed, the routine returns control to the
caller, via the Exit routine and the
Dispatcher .•

If, however. the use/responsibility
count is zero, the Delete routine acknowl
edges the lack of outstanding requests for
the module by branching to subroutine
CDHKEEP to free the storage space occupied
by the module, its extent list, and its
CDEs (both major and minor CDEs, if both
types exist). The address of the extent
list for the module is obtained from its
major CDE. After freeing the module's
storage space, the Delete routine returns
control to the caller, via the Exit routine
and the Dispatcher, with a return code of
zero.

SUPERVISING THE LOADING OF SEGMENTS OF AN
OVERLAY MODULE

The Overlay Supervisor directs the load
ing of segments of an overlay module.
Before the execution of an overlay module,
the Linkage Editor builds two sets of
tables, the segment table and the entry
tables, which it piaces in the overlay
module. Later, during execution of the
module, the Overlay Supervisor uses and
alters information in the tables to perform
its functions.

Preparatory Linkage Editor Functions

Before execution of an overlay module,
the Linkage Editor builds, from information
in the relocation list dictionary (RLD) and
the user's cont'rol statements, a segment
table and one or more entry tables. These
tables are made a part of the overlay
module and are used by the Overlay Supervi
sor during module execution.

There is only one segment table (SEGTAB)
in an overlay module, as shown in Figure
4-6. The segment table is used to keep
track of the relationship of the segments
in the module., and to determine which
segments are in main storage or are being
loaded.

100

ESD

SEGTAB

TXT

ENTAB

TXT

ENTAB

TXT

RLD

Figure 4-6. organization of an Overlay
Module

The Linkage Editor builds an entry table
for each segment that contains V-type
address constants. (See Figure 4-6.) A
table entry is made for each constant that
refers to a symbol whose segment must be
fetched via a CALL or branch instruction.
The Linkage Editor saves in each entry the
value it assigns to the constant. It
places in the value field of the constant
the address of the ENTAB entry.

During module execution, when the branch
instruction that uses the address constant
is executed, the branch will give control
to an instruction in the associated ENTAB
entry. Instructions in the ENTAB will
provide supervisor linkage to the Overlay
Supervisor if the desired segment is not in
main storage. If the segment haS been
fetched by the Overlay Supervisor, instruc
tions in the ENTAB will provide a branch to
the segment.

If Main storage Hierarchy Support is
included in the system, the loading of
overlay structure programs can be directed
into hierarchy 0 or hierarchy 1 by the
parameter HIARCHY=, but segments of a pro
gram written in overlay mode cannot be
loaded into different hierarchies. When
hierarchy is not specified, the overlay
structure exists in hierarchy o.

Functions of the Overlay Supervisor

The Overlay Supervisor receives control
either when an overlay segment issues a
SEGLD or SEGWT request for another segment,
or when a segment issues a CALL or branch
instruction to an external address in
another segment not in main storage. In

c;

both cases, the Overlay supervisor examines
the segment table to determine whether the
requested segment is already in main
storage, and whether all segments in its
path have been loaded. It then causes the
loading of the requested segment, if not
already in main storage, and any needed
segments in its path. The actual loading
is performed by the Program Fetch routine.

When loa.ding is complete, and the caller
has issued a CALL or branch instruction,
the OVerlay supervisor alters the entry
tables of the loaded segments. The modi
fied entry tables permit future branches to
the same points in the loaded segments
without help from the Overlay Supervisor.

Lastly, depending on the type of invok
ing macro instruction, control is given to
the:

• Caller before loading
(SEGLD) •

• Caller after
(SEGWT) •

loading

is complete

is complete

• Branch address in the requested segment
after it is loaded (CALL or branch
instruction) •

Linkage to the OVerlay supervisor

Linkage to the Overlay Supervisor is
initiated directly for a SEGLD or a SEGWT
macro instruction. It is initiated
indirectly for a CALL or branch
instruction.

DIRECT SUPERVISOR LINKAGE: When the expan
sion of a SEGLD or SEGWT macro instruction
is issued, an SVC (37) interruption occurs
and control is given, in turn, to the SVC
First-Level Interruption Handler, the SVC
Second-Level Interruption Handler, and to
resident module IGC037 of the Overlay
Supervisor. If direct branch ~ntry to the
requested segment, via the caller's ENTAB,
has been prepared through a previous branch
or CALL, control is returned to the caller
(see Figure 4-7). In this case, further
processing of the current request is not
needed. But if a direct branch entry has
not been prepared, module IGC037, after
performing initialization, issues a LINK
macro instruction to obtain supervisor
linkage to the nonresident module I EWSZOVR.
This module processes the request, as
described in "Types of Processing.-

SUPERVISOR LINKAGE VIA THE CALLER'S ENTRY
~: When a branch instruction or CALL
macro instruction in an overlay segment is
executed, specifying a v-type address con
stant, a branch is made to the associated
ENTAB entry, which branches to an SVC 45

instruction in the last ENTAB entry. The
SVC 45 instruction causes supervisor link
age, via the SVC First-Level and Second
Level Interruption Handlers, to resident
module IGC037 of the Overlay Supervisor
(see Figure 4-8, A, B, and C). After
performing initialization, module IGC037
issues a LINK macro instruction to obtain
supervisor linkage to the nonresident
module IEWSZOVR. This module processes the
branch request, as described in "Types of
processing."

Types of Processing

During execution of an overlay module,
the loading of a requested segment and the
passing of control depend on the type of
instruction that the caller has issued and
whether:

• The requested
storage.

segment is in main

• A SEGLD request is being processed.

• A CALL or branch instruction was pre
viously issued specifying the same
external address.

The type of processing for each set of
conditions is summarized in Table 4-1.

Determining the Segments That Must Be
Loaded

The nonresident module (IEWSZOVR) of the
OVerlay Supervisor determines which seg
ments should be loaded. It does this by
scanning the segment table of the overlay
module, which was loaded with the root
segment. It examines status indicators in
the segment table, previously set by the
Linkage Editor or the Overlay Supervisor,
to determine which, if any, segments in the
path of the requested segment must be
loaded. For each segment that must be
loaded, IEWSZOVR sets indicators to control
a subsequent fetch process.

The segment table, a part of the root
segment, was built by the Linkage Editor.
It contains one entry for each segment of
the overlay module. The entries are
ordered to correspond to the segment num
bers of the overlay structure. Each entry
contains the number of the preceding seg
ment in the path and a field of status
indicators. The segment table entries form
a tabular representation of the overlay
tree structure. Figure 4-9 illustrates a
typical segment table for a ·single-region"
overlay structure. (An overlay program can
be designed in single or multiple regions
of main storage -- not to be confused with
job-step regions. (See the Linkage Editor
SRL publication for further information.)

Section 4: Contents Supervision 101

&--
I
I
I
I
I
I
I
I
I

--

I
I
I
I

ENTAB{

r---
I I

~ I

I
I
I

I i
I I
I I
I l.-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I r--- ---,- - ---

I I
I I
I I
14,..------+------
I I

I Supervisor
I Exit from

I Supervisor
I Exit from
I SVC 37

~
I
I
I
I
I
I

I
I

V45
I
I
I
I
I
I
I
I
I
I
I
I
I

I :
I I
I I

t t
I I
I I
I I
I I
L-- 1 --...J

I
I

SEGTAB

SEG 1 (Root Segment)

SEGWT or SEGLD

BR 15

B DISP (15, 0)
Addre$$ of Fox
SVC 45
L15, 4 (0, 15)
BR 15

I GC037

IEWSZOVR

Update SEGTAB and
ENTABs for seg's to
be overlaid. Mark
SEGTAB entries for segls
to be loaded.

Yes

I No
L. _____ - ----f-----<

5VC (37) Interruption ----....,

SVC (45) Interruption

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I I
IG~3~ ____ ~_J

I
I ,
I
I

IG~~ ____ -,

Is
SEGLD

Attach Routine

Attach SEGLD
Processor routine

Wait for posting of ECB
by SEGlD Processor
routine

r------
I
I
I
I
I
I _____ J

Figure 4-7. Functional Flow of Overlay Supervision

102

SEGn

[J

- ----- - ------.

------eo

Legend:

,

Load requested segment

ABEND Routine

Abnormally terminate
catlerls task

--- ... = Supervisor linkage

+--e- = Repeated Invocation
of Subroutine

(

SEGTAB

R SEGI CSECT
o ENTRY
o l

~--T-- ------ BR
I •
IS.

, EASY
15,ADCONI
15

I E EASY SR 1,1

I G • ADCONI DC V(FOX) Step A

SEG2

I
I L __ _

B DISP(15,0)

E
N
T i--Step B-T-- - J
A Step B-1
B

r - -- --Step C---

I
l 15,4(0,15)

I

CSECT
ENTRY

I
I

--- - -StepD------.1

FOX

Address of FOX

I
I
I
I
I
I
I
I
I
I
I

SEG3

ADCON2

legend:
_--------StepE--------- -- J •

FOX AR 1,2 - - - .,. = control flow

• • •
.... 1---..... = loop processing with

a subroutine

+
Figure 4-8. Use of the Caller's ENTAB to Branch to a Segment

During
the entry
located
examined.
tabulated

the scan of the segment table,
for the requested segment is

and its status indicators are
The resultant processing is

in Table 4-2.

Controlling the Loading of Needed Segments

The loading of needed segments is per
formed in two different ways, depending on
whether the current request is made via a
SEGWT o~ a SEGLD macro instruction.

For a SEGWT request, IEWSZOVR, as part
of the caller's task, directly invokes the
Program Fetch routine to load each segment
whose SEGTAB entry is marked 01 ("loading
scheduled"). The caller is given control
only after all such segments have been
loaded.

For a SEGLD request, IEWSZOVR attaches
as a subtask the SEGLD Processor routine
(OVLALD02) which, under control of the
subtask TCB, invokes the Program Fetch

routine to load each segment. As with a
SEGWT request, each segment is loaded whose
SEGTAB entry is marked 01 ("loading sched
uled"). However, at the first I/O wait
interval, control is returned to the issuer
of the SEGLD macro instruction, although
the needed segments have not yet been
loaded. Later, if the caller tries to
branch to the requested segment before
loading is complete, its task is forced to
wait. While the caller's task waits, the
SEGLD Processor routine completes the load
ing of the needed segments, and then posts
an event control block to ready L~e waiting
task.

Preparation for an Unassisted Branch to the
Loaded Segment

When the requested segment and any
needed segments in its path have been
loaded, it is desirable to permit the
caller to branch to the requested segment
via its ENTAB, without help from the OVer
lay Supervisor. Such an unassisted branch

Section 4: Contents Supervision 103

Table 4-1. Types of Processing During Overlay Supervision
r------~------------------------------T----------------------,...------------.-,

I Instruc-I Conditions I Major Processing I
Ition I I I
~--------+--------------------------------+------------------------------------i

c
SEGLD 11. Requested segment and/or segments 11. Loading of needed segments is start-I

(SVC 37) I in its path are not in main stor- I ed. The caller's entry table is not I
I age, and are not in process of ,altered to prepare for a branch to I
I being loaded. I the requested segment. Control is I
I I returned to the caller while the I
I I segment or segments are being I
I I lQaded. The requested segment is I
I , not entered. 1
~----------------------------------+----------------------------------i
12. Requested segment is in main stor- 12. Control is returned to the caller. 1
I age or is being loaded. I I
, I 1
I I ,

~-------+--------------------------------------+--------------------------------------i
SEGWT 13. Same conditions as in (1). 13. Needed segments are loaded. The I
(SVC 37)1 I caller's entry table is not altered I

I I to prepare for a branch to the I
I I requested segment, control is I
I I returned to the caller only after I
I I the requested segment and any needed I
I I segments in its path have been I
I I loaded. The requested segment is I
I I not entered. I
~----------------------------------+-------------------------------------i
14. Requested segment is being loaded 14. processing of the SEGWT request ,
I for a SEGLD request. I waits until loading is complete. Nol
, I new loading occurs. Remaining pro-I
I I cessing is as in (3). I
~-------------------------------------+---------------------------------------i
15. Requested segment is in main stor- 15. Control is returned to the caller. I
, age. I ,
I I 1
I I I

~--------+------------------------------------+------------------------------------~-i
I CALL 16. Segment was requested via SEGLD or 16. The caller's entry table is altered I
I or I SEGWT and is in main storage. I to prepare for a future branch to I
I branch I I the same external address without ,
ICSVC 4S}I I entry to the Overlay Supervisor. I
I I I Control is then given to thel
I I 1 requested segment at the specified I
I I I address. I
I ~----------------------------------+----------------------------------i , ,7. Segment was requested via a SEGLD 17. Processing of the CALL or branch I
I ,and loading is not complete 1 request waits until loading is co~1

I 1 plete. No new loading occurs.,
I I Remaining processing is as in (6). I
~------------------------------------+------------------------T--------------i
18. Requested segment is not in main 18. Needed segments are loaded. When I
I storage, nor is it being loaded. I loading is complete, the remaining I
I I processing is the same as in C6}. ,
I I I
~------------------------------------+-------------------------------------i ,9. Caller previously issued a CALL or 19. Overlay Supervisor is not entered. I
, branch instruction specifying same I The caller's entry taQle, previously,
, external address. I altered as in (6), provides a direct I
I I branch to the requested segment. I ________ ~ ____________________________________ ~ ______________________________________ J

104

(

Segment'

2

3

4

5

6

7

,

2 3

4 5

6 7

Figure 4-9. Organization of SEGTAB
Entries for a Single-Region
Overlay Structure

would bypass the SVC 45 instruction in the
caller's ENTAB (see steps A, B-1, and E of
Figure 4-7).

The alteration of the caller's ENTAB
occurs after the caller has issued its
first CALL or branch instruction to obtain
linkage to the requested segment. The CALL
or branch instruction may itself cause the
loading of the segment (see Table 4-1 and
Figure 4-7).

When module IEWSZOVR is entered after an
SVC (45) interruption, it alters the call
er's ENTAB when it has determined that the
requested segment is in main storage, or
when it has loaded the segment. It adds 2
to the displacement (DISP) field of the
ENTAB entry through which the branch to the
SVC 45 instruction was routed (see Figure
4-8, Step B). When the caller executes
another branch to this ENTAB entry, the SVC
45 instrpction will be bypassed, and con
trol will be given to the second field of
the last ENTAB entry (see Figure 4-8, Step
Bl). Execution of the instruction in this
field will cause general register 15 to be
loaded with the value assigned to the
address constant (in the example, the
address of FOX). A branch to that location

in the requested segment will then be
executed.

All entry tables in the same overlay
region that have been altered to bypass the
SVC 45 instruction are chained together in
a "caller chain." A pointer to the last
altered erttry table is placed in the seg
ment table. When a segment is to be
overlaid, module IEWSZOVR uses the appro
priate caller chain to reset all modified
entry tables that refer to the segment to
be overlaid. Thus, an unassisted branch
cannot occur to a segment no longer in main
storage. The resetting of ENTAB entries in
a caller chain accompanies the processing
shown for condition 4 of Table 4-2. shown
for condition 4 of Table 4-2.

passing of Control

The last function of the Overlay Super
visor is to pass control. Control is given
to the requested segment or returned to the
calling segment, depending on the type of
invoking instruction (SEGLD, SEGWT. CALL.
or branch). See Table 4-1 and Figure 4-7.

FETCHING ROUTINES AND MODULES TO MAIN
STORAGE

The Program Fetch routine loads SVC
routines. I/O error-handling routines. and
other modules. As part of the loading
process, the Program Fetch routine obta~ns
needed storage space, performs I/O opera
tions. and relocates address constants when
necessary.

The Program Fetch routine is invoked,
via a branch instruction, by any of several
supervisor routines. depending on the type
of module or routine that is requested, as
follows:

r--------------------------T------------~-l
I I Routine I
IType of Requested IThat Invokes I
IModule or Routine IProgram Fetch I
r--------------------------+-----------~-~
INonresident SVC routine ITransient Area
I IFetch routine
I I
11/0 error handling routine I Stage 3
I IExit Effector
I I
INonoverlay module that ICommon sub-
lis not available in main Iroutines of
Istorage, or the root seg- IContents
Iment of an overlay module Isupervision
Ithat is not available in I
Imain storage I
I I
IA segment of an overlay I Overlay
Imodule (except the root I supervisor
I segment) I L __________________________ i _____________ _

Section 4: Contents Supervision 105

Table 4-2. Processing of Segment Table Entries

r------~--------------------------T---, I Conditions I Resultant Processing by IEWSZOVR I
~---------------------------------+---~
11. Requested segment is in main 1 If entry is for a SEGWT or SEGLD request, control I
1 storage. (indicator 10) 1 is returned to caller. If entry is for CALL or 1
1 1 branch, ENTAB entries are altered to provide future I
1 1 branch entry to segment. I
~---------------------------------+---~
12. Requested segment is not in 1 Sets indicator to show "loading scheduledn (01) and 1
1 main storage (indicator 11) I continues the scan. I
I I Determines if the preceding entry is for a segment 1
I I in the path of the requested segment. 1
~---------------------------------+---~ 13. The preceding entry is for 1 Checks status indicator of preceding entry to I
I a segment in the path of the 1 determine if its segment is in main storage. (Next 1
1 requested segment. I step is 5 or 6.) 1
1 1 I
~---------------------------------+---~ 14. The preceding entry is for a I Sets status indicator of preceding entry to nnot in 1
I segment not in the path of 1 main storag~· (11) in preparation for overlaying I
I the requested segment. I the segment. Continues scan. I
1 1 I
~---------------------------------+---~
15. Preced.ing entry is for a seg- I Scan is stopped. The assumption is that all seg- 1
I ment in the path, and indi- I ments in the path of the requested segment are in I
I cates its segment is in main I main storage (except the requested segment itself). I
I storage. I I
~---------------------------------+---~
16. Preceding entry is for a seg- I Sets the status indicator of the entry whose segment 1
I ment in the path, and indi- I is in the path to "loading scheduled" (01) and I
1 cates its segment is not in 1 continues the scan. 1
I main storage. 1 I L _________________________________ ~ ___ J

Fetching SVC and I/O Error-Handling
Routines

Either the SVC Second-Level Interruption
Handler or the Stage 3 Exit Effector deter
mines if a usable copy of the desired
routine is in a tranSient area block (TAB)
of main storage. If a usable copy is in a
TAB, control is given to the routine.
Otherwise, the Program Fetch routine is
invoked to load the requested routine into
a TAB. A nonresident SVC routine is placed
in an SVC transient area block: an I/O
error-handling routine is placed in the I/O
Supervisor transient area block (see Figure
4-10) •

If the Program Fetch routine must be
invoked, the caller places in a fetch work
area the relative disk address and the size
of the routine to be loaded. The caller
obtains this information from the data-set
directory entry belonging to the SYS1.
SVCLIB data set.

Note: A separate fetch work area precedes
each transient area block. Each work area
contains 68 bytes of space and is con
structed during system generation. (See
·Program Fetch Work Area in Section 12.)
The work area contains an input/output

106

block (lOB), an event control block (ECB),
and a channel program. (See Figure 4-11.)

The Program Fetch routine determines the
absolute disk address of the requested
routine and causes the loading of the
routine. It converts the relative disk
address of the routine to an absolute
address by means of a resident ·convert"
routine. It then issues an EXCP macro
instruction and a WAIT macro instruction.
The EXCP macro instruction causes the I/O
Supervisor to be invoked to fetch the
desired routine from the SYS1.SVCLIB data
set to the appropriate TAB. The routine'S
entry point address is the same as the
address of the TAB. No relocation is
needed, since a transient SVC routine con
tains no relocatable address constants.

When the requested routine has been
loaded, the Program Fetch routine checks
for I/O errors, places a return code in
register 15 to indicate that the fetch has
been successful or that I/O error or inval
id information has been detected, and
returns control to the calling routine.

Fetching Nonresident Modules

The Program
either by the

Fetch routine is invoked
common subroutines of Con- ()

SVC Interruption

SVC First--Level
Interruption
Handler

Va Error Interruption

I/O Supervisor

SVC
routine is
in a TAB.

XCTL macro- instr.
was issued by Nonresident SVC Routine

Exit Routine

Transient
Area Refresh
Routine

Contents
Supervision
(lEAQTR03)

SVC routine.

Transient Area
Fetch Routine

SVC Second-leve I Needed
Interruption SVC

L.Ha--r-nd_l_er-.. __ --' routine
is in a
TAB.

Request fetch-.......
of routine ,

Fetch is complete

SVC routine is not in a TAB, and no TAB
can be overlaid.

Legend:

TAB'" transient area
block

Dispatcher

Error routi ne
is not in
I/o Sup. TAB

Program Fetch
Routine

EXCP
macro-instr.

V a Superv isor
Transient Area Block

Va Error
Routine

Va Supvsr

SVC Transient
Area Block

SVC Routine

(-' \ ~ '" CPU control flow
''''/''._ J

c::::> '" information flow Current routine of
highest priority
task that can be
performed

Figure 4-10. Relationships of Program Fetch Routine to Other Routines for the Fetch of
an SVC Routine or an I/O Error Routine

tents Supervision or
Supervisor.

by the Overlay

It is invoked by the common subroutines
of Contents Supervision after a LINK,
ATTACH, LOAD, or XCTL macro instruction has
been issued, if a usable copy of the needed
module is not in main storage. It is
invoked by the OVerlay supervisor after a
SEGWT, SEGLD, or CALL macro instruction, or
a branch instruction has been issued, if
the needed segment of an overlay module is
not in main storage. The relationship of
the Program Fetch routine to other routines
for the fetch of a module or overlay
segment is depicted in Figure 4-12.

The major functions of the Program Fetch
routine for the loading of a nonresident
module or an overlay segment are:

Initialization
Initializes a fetch work area, builds
an extent list, and (if the module is
in overlay mode) fetches the module's
note list. If the module is to be
scatter-loaded., the routine fetches
the scatter/translation table.

Loading
Transfers text records and relocation
list dictionary (RLD) records from
auxiliary storage to main storage.
The text records constitute the pro
gram that is .loaded. The RLD records
are used for relocation.

Relocation
Changes the values of
stants in the loaded
relative addresses
addresses.

address con
program from
to absolute

Section 4: Contents Supervision 107

Program Fete h Work Area r---------r-:: DCB for library that

I I contains the module
I I to b. loaded

I
I
I
I
I
I
I

Event Control Block

Channel Program(s)

Data Set on
Direct Access Device

Pcrameters
in Registers

r---
I -Scatter/Translation Record

Non.Iveriar
Module in
Auxiliary
Storage

i
I
I
I
I
I
I
I
I

I
I

I I

First Text Record

J
I
t..---,

II i l t. __ ...1---------1

Note
List
(in main
storage)

Segment Table
1- - - - - - .J:======:===========I 0 I
I J===Se::::gm:e:::nt=I===l M:~~IO:in

J===Se::::gm:e:::nt::::2====I Auxiliary

'--__ S_e=..9m_e_nt_3 __ -t ""r ' Segment 4

Note List

legend:
-- = pointe:r
====!:> = information flow

Figure 4-11. Control
Used by
Routine

Blocks
the

and
Program

Tables
Fetch

Termi na.t ion
Checks the completion of I/O opera
tions, calculates the relocated module
entry-point address, initializes the
segment table (if the module is in
overlay mode), sets up a return code,
and returns control to the caller.

INITIALIZATION: The Program Fetch routine
can make available three areas or tables
for later use. They are the program fetch
work area, the extent list, and the note
list. The fetch work area is used by the
Program Fetch routine to load module rec
ords. The extent list is used by the common
subroutines of contents Supervision to pre
pare linkage to the module; it is used by
the CDEXIT routine to free the module's
storage areas during end-of-task and
abnormal termination procedures. The note
list is part of an overlay module; it
contains the relative disk address of each
seg~ent and, after main storage has been
obtained, contains the module's relocation
factor.

108

Initializing the Fetch Work Area: The
Program Fetch routine initializes a work
area whose address is furnished by the
caller. It places in the work area infor
mation that it will use to load the
requested module. This information con
sists of:

• An input/output block (lOB). The lOB
provides information that is needed by
the I/O Supervisor.

• Two event control blocks (ECBS). One
ECB is posted by the I/O Supervisor
when a channel-end condition occurs.
The other is posted by a PCI Appendage
routine when a program-controlled
interruption occurs in a channel pro~
gram. The posting of either ECB per
mits the restarting of the program
Fetch routine after an I/O wait
interval.

• Three channel programs. The channel
programs are similar. They are used to
overlap the reading of one or more
module records with the relocation of
address constants pointed to by a pre
viously loaded RLD record.

• Three RLD buffers. Each buffer is 260
bytes in length, and is capable of
holding an RLD record, a control rec
ord, or a composite control and RLD
record. (For record formats, see Sec
tion 12, "Control Blocks and Tables.")

• A buffer table. This table contains a
12-byte entry for each RLD buffer.
Each entry contains:

• A pointer to the next entry.

• The address of an RLD buffer.

• The address of a channel program.

Building an Extent List: The extent list,
when completed, contains the main storage
address and length of each loadable section
of a module (see Figure 4-13). The size of
the extent list and the procedures for
constructing it depend on whether the
module is to be block-loaded or scatter
loaded. During the construction of the
extent list, main storage' is obtained in
preparation for loading the module.

If the module is to be block-loaded, the
Program Fetch routine obtains space for an
extent list, and if necessary, a note list.
The routine places in the "lengthn field of
the extent list the total size of the
module. as shown in the data-set directory
entry. Next. the Program Fetch routine
issues a GETMAIN macro instruction to
obtain space for the module. The assigned

~,

(
~'

('.-~.\

--j

(\

SVC Interruption

I
SVC First-Level
Interruption
Handler

Assigned Program Area
of Main Storage

Attach
Routine

Attach macro
instruction
was issued

SVC Second-Level
Interruption
Handler

SEGLD, SEGWT, CALL macro
instruction or branch instruction
was issued.

Overlay
Supervisor

LINK,
LOAD,
XCTL, or SYNCH
macro instr issued

Segment not
in main --'"
storage.

Fetch is
complete.

Dispatcher

Module is not in main
storage but can be fetched.

V
EXCP

Contents
Supervision

Fetch is complete. Program Fetch
Routine

VO Supvsr.
~
~

Module-:'; Segment(s) are loaded. main storage ~ ________ -+ ____ ""; __ ';"' ______l
Any
Library

~

XCTL macro
ins truction was
issued by an SVC
routine (see
Fig. 4-10).

and is usa b Ie

Exit Routine
Module is being
loaded or is
serially reusable
and is in use.

Transient Area
Refresh Routine

Task Switch
Routine

-+= CPU control
flow

q = information
flow

Dispatcher

Current routine
of highest priority
tosk tho t can be
performed

Figure 4-12. Relationship of Program Fetch Routine to Other Routines for the Fetch of a
Module or Overlay Segment Module or Overlay Segment

r---,
INo. of Bytes in Extent List I
~---~
INo. of Relocation Factors I
~---~ ILength of First Storage Block I L ___ J

r---,
ILength of Last Storage Block I
~---~
IAddress of First Storage Block I L ___ J

r---,
IAddress of Last Storage Block I L ___ J

Figure 4-13. Extent List

main storage address returned by the GET
MAIN routine is then placed in the address
field of the extent list.

In systems generated with storage
hierarchies, a GETMAIN request is issued
for the creation of the block extent list,
followed by an unconditional GETMAIN re
quest using the specified hierarchy. If no
hierarchy is specified, the request is
satisfied from hierarchy O. If the uncon
ditional request made by Program Fetch
cannot be fulfilled, the GETMAIN routine
determines whether to invoke ABEND or
Rollout/Rollin functions.

If the module is to be
the program Fetch routine
list and obtains space for
follows:

scatter-loaded,
builds an extent
the module, as

Section 4: Contents Supervision 109

1. Determines the needed space for the
extent list. It does this by calcu
lating the size of the scatter list/
translation table from information
contained in the data set directory
entry. The scatter list and transla
tion table are placed by the Linkage
Editor in a module that can be
scatter-loaded (see Linkage Editor
PLM).

2. Issues a GETMAIN macro instruction for
space for the combined extent list and
scatter list/translation table.

3. Obtains the relative disk address of
the first scatter list/translation
table record from the data-set direc
tory entry and converts it to an
absolute disk address. The routine
obtains the size of the scatter list/
translation table from the data set
directory entry. It then issues an
EXCP macro instruction to read the
record(s). The scatter list/
translation record(s) are read from
auxiliary storage to the lower part of
the spa.ce allocated to the extent
list.

4. Initializes the extent list with the
length of the extent list itself, the
number of scatterable control sec
tions, and the length of each control
section of the module. The routine
determines the length of the extent
list from the number of entries in the
scatter list. It calculates the
length of each control section from
the relative addresses of the control
sections, recorded in the scatter
list/translation table.

5. Obtains space for each control section
by the issuance of a GETMAIN macro
instruction that specifies the list of
control-section lengths just calcu
lated (step 4). The GETMAIN routine
returns to the Program Fetch routine
the allocated address for each control
section.

6. Calculates the relocated address for
each control section from its allo
cat,ed address (obtained from the GET
MAIN routine) and its relative address
(obtained from the scatter list/
translation table).

When a request is made for a specific
hierarchy, a conditional GETMAIN request is
issued for the specified hierarchy. If
sufficient contiguous storage is not avail
able, Program Fetch builds a list of
lengths in preparation for the scatter
attempt for each CSECT. The GETMAIN re
quest is then issued for the specified
hierarchy.

110

If the request is made without specify
ing a hierarchy in a system generated with
storage hierarchies, initiation for hierar
chy loading is performed. The size of the
extent list for scatter and the size of the
scatter list/translation table record are
determined before the GETMAIN request is
issued. The scatter list/translation table
record is processed to determine the link
age editor hierarchy designator. If all
designators reference the same hierarchy.
an attempt is made to block load the
module. If this is unsuccessful, Program
Fetch builds a list of lengths for each
CSECT and an unconditional GETMAIN request
is issued for the proper hierarchy.

When the scatter list/translation table
record indicates that the module had been
link edited to utilize multiple hierar
chies, Program Fetch builds a list of
lengths for each CSECT and appends the
appropriate hierarchy designator to each
CSECT. An unconditional GETMAIN request is
then issued and space is obtained from both
hierarchies 0 and 1.

Obtaining the Note List: If the module to
be loaded is in overlay mode, the Program
Fetch routine must load the note list
before it fetches the root segment of the
module. The note list, placed in an over
lay module, by the Linkage Editor, contains
the relative disk address (TTR) of each
segment of the module. When the root
segment has been loaded, the Program Fetch
routine will store in the note list the
address of the segment table (SEGTAB), and
the relocation factor for the module. The
note list will remain in main storage
throughout the module's execution. (See
Figure 4-14.)

r--------~-----------------------·-,

I IRelocation factor for module I
r---------~-------------T-------------~
I I Concatenation I
I I Number I
~--------------------~-----------.-~
ITTR - relative (to beginning of data I
Iset) disk address of segment 1 I

t;;;-:-;~i~~i;~-(to-b~;i~~ing-Of-d~~~----1
Iset) disk address of segment 2 I L _______________________________________ J

r---------------------------------------,
ITTR - relative (to beginning of data I
Iset) disk address of segment N I L _______________________________________ J

Note: Concatentation Number - This
is a value specifying this data set's
sequential position within a group of
concatenated data sets.

Figure 4-14. Note List as It Exists in
Main Storage o

("

(

c'

To load the note list, the Program Fetch
routine follows a procedure similar to that
just described in steps 1, 2, and 3 in
"Building an Extent List."

LOADING OF MODULE RECORDS: The Program
Fetch routine loads module records of sev
eral types: control records, text records,
RLD records, and composite control/RLD
records. A typical logical sequence is
shown in Figure 4-15. Their formats are
described in Section 12, • Control Blocks
and Tables." (For a discussion of each
type, see the Linkage Editor PLM.)

The loading of module records consists
broadly of four fUnctions:

• Preparing for the execution of a chan
nel program. An absolute disk seek
address is computed and made available
to the I/O Supervisor.

• Starting a
Supervisor
operation
address.

channel proqram. The I/O
is invoked to start the I/O
at the specified disk

• Reading of module records. Text and
RLD or control records are read to main
storage blocks or to buffers.

• Switching of channel programs. Three
channel programs are switched to follow
the sequence of module records on the
direct-access device.

Preparing for Execution of a Channel Pro
gram: The Program Fetch routine, in order
to obtain the execution of a channel pro
gram, must furnish to the I/O Supervisor an
absolute disk address at which the first
I/O operation will begin. The routine
accomplishes this objective by:

• Obtaining the relative track and record
address (TTR) of the first text record
from the data set directory entry. or
obtaining the TTR of the needed segment
from the note list.

• converting the relative address to an
absolute address. via a branch to a
• convert" routine that is resident in
the nucleus.

• Placing the absolute
in the program fetch
(lOB), for later
Supervisor.

disk seek address
input/output block
use by the I/O

Starting a Channel Program: The Program
Fetch routine starts a channel program by
issuing an EXCP macro instruction to obtain
supervisor linkage to the I/O Supervisor.
The lOB address is provided as an operand
of the macro instruction.

The EXCP Supervisor, part of the I/O
Supervisor, obtains control from the I/O
First-Level Interruption Handler (I/O
FLIH). The. EXCP Supervisor issues a start
I/O instruction. followed by a Stand-Alone
Seek command. The Stand-Alone Seek command
moves the access arm of the direct-access
device to the seek address contained in the
lOB. The I/O Supervisor. via a Transfer in
Channel command. then passes control to a
fetch channel program, whose address the
Program Fetch routine placed in its lOB.
The fetch channel program causes the first
text record to be read to main storage.
beginning at the first assigned main
storage address contained in the extent
list.

After the channel program has been
started. the I/O Supervisor returns control
to the Program Fetch routine to await
posting of an event control block by the
I/O supervisor or an appendage routine.
Such posting indicates that one or two
records have been read and that further
processing can occur in the Program Fetch
routine.

Reading of Module Records: The channel
program causes the reading of two records,
a text record and an RLD or control record,
if the RLD or control record follows the
text record. The text record is placed in
its appropriate block of main storage. The
RLD or control record is placed in an RLD
buffer.

switching of Channel Proqrams: If an RLD
and control record. or a control record
alone, does not follow a text record,
control must be passed to another channel
program to read a single record. The
record must then be tested for control

r----------, r---------, r---------, r----------, r---------, r------------, r----------, 1 Record 1 1 IRecord 2 1 IRecord 3 1 1 Record 4 1 IRecord 5 1 1 Record 6 1 1 Record 7 I
1 Control 1 1 Text 1 1 Control 1 1 Text 1 1 RLD 1 1 Control-RLD-I 1 Text I
1 1 1 1 1 1 1 1 1 1 1 End-of-Seg. 1 1 1
1 20 bytes 1 1500 bytes 1 120 bytes 1 11024 bytes 1 1260 bytes 1 1 200 bytes 1 1 15 bytes 1 L ______ ----J L _________ J L-________ J L __________ J L _________ J L ____________ J L __________ J

Figure 4-15. Typical Load-Module Logical Format on Direct-Access Device

Section 4: Contents Supervision 111

LINK, LOAD, XCTL, or
ATTACH Macro-instruction

JrSVCI~;~
SVC Int. Handlers

Contents Supervision

,

Return
Program Fetch Routine

of
Control Initialize I
to + cal~ EXCP

WAIT

RLD Yes
Buffer

~ Busy

No I ~:Iocation I
All

No RLD Buffers
Full

Yes

Module
Yes No

BCR 14~ f-- Terminate or Segment
Loaded

"-

SEGLD, SEGWT, CALL,
or Branch Instruction

+SVCI" "~
SVC Int. Handlers

Overlay Supvsr.

Assigned Storage Space for
Module, or RLD Buffer

~
EXCP
Supvsr.

I--

I
I
I
I
I
I
I

JJ I
I
I
•

1----'--

I/O .1/0
Channel Device

f4-----
_______ J

I/O Interruption (PCI, Channel-End, I/O Error, etc.)

I/O FLiH

.I-
I/O Interrupt i on Program Fetch
Supervisor PCI Appendage

Routine

(Issues POSn

Load PSW

Dispatcher

I *--
Channel-End
Appendage Routine

Legend:

- = CPU control flow
- - .. = Control flow to or from the I/O channel
- = Loop processing with a subroutine
~ = Information flow

Figure 4-16. OVerall Control Flow During the Loading of a Module or Segment

112

Post Routi ne

I. 0_"'"

information. The Program Fetch PCI Appen
dage routine tests a record in the current
RLD buffer and, when necessary, causes a
channel-program switch between two-record
mode and single-record mode. The PCI
Appendage routine obtains control from the
I/O Supervisor during the execution of any
of the three fetch channel programs. (For
overall control flow, see Figure 4-16.)

A channel command word in each channel
program causes a program-controlled inter
ruption (PCI). The PCI (a type of I/O
interruption) causes supervisor linkage to
the I/O Supervisor, which determines the
cause of the interruption, and branches to
the PCI Appendage routine. The PCI Appen-

dage routine tests the buffer table and the
current RLD buffer to determine the
channel-program switching that is required.
The processing that results from these
tests is described in Table 4-3.

The I/O Supervisor processes a channel
end interruption, if the No-Operation com
mand in a channel program is not altered
before the channel program finishes. The
I/O Supervisor gives control to the Program
Fetch Channel-End Appendage routine. This
routine tests if the entire module or
segment has been loaded.

If the entire module or segment has been
loaded, the Channel-End Appendage routine

Table 4-3. Channel-Program Switching After a Program-controlled Interruption
r-------------------------T---,
I Conditions I Resultant Processing by PCI Appendage Routine I
~-------------------------+---~
11. The next RLD buffer isl1. Indicates in buffer table that all buffers are filled 1
I filled (busy). I ("busy"). Does not alter current channel program, which I
I 1 continues in execution. Performs Step 7. 1
~-------------------------+---~
12. The last record (in 12. Initializes the next channel program to read a pair of 1
I current buffer) was I records, starting with a text record. Alters the No- 1
I either an RLD and I Operation (Nap) command in the current channel program to I
I control record, or a I transfer-in-channel (TIC) to the next channel program to I
I control record alone. I read a pair of records. Tests the last record (control 1
I I information) to determine if the next text record is the 1
1 I last text record of the module or segment. (See Step 6.) 1
~-------------------------+---~
13. The last record was 13. If the entire module or segment has not been loaded (see 1
1 not an RLD record. I Step 5), alters the NOP command in the current channel 1
I I program to transfer-in-channel (TIC) to the next channel 1
I 1 program to read a single RLD or control record. Performs 1
I I Step 7. 1

~-------------------------+---~
14. An extent boundary wasl4. Obtains from the data extent block for the library the 1
I crossed on the direct 1 initial extent boundary for the next part of the module. 1
I access device. I Places the extent boundary into the appropriate unit con- I
I 1 trol block. Computes new absolute seek address and places I
I 1 it in the IOBSEEK field of the lOB. These actions are in 1
1 1 preparation for the issuance of another EXCP macro 1
1 I instruction. 1

t-------------------------f---~
15. The entire module or 15. Sets appropriate wend n flag and performs Step 7. 1
1 segment has been 1 1
1 loaded. I I
~------~------------------+---~
16. The next text record 16. Prepares for the reading of a single text record by clear-I
1 is the last text I ing the command chaining flag in the First Read Channel 1
I record of the module I command word of the next channel program. 1
1 or segment (as indi- I 1
I cated by the end-of- I 1
I segment (EOS) or end- I 1
I of-module (EOM) flag \ I
\ in the previous I I
\ control record). I I
t-------------------------+---~
17. Processing described \7. Posts the fetch event control block (ECB) to prepare the I
I in Step 1, 3, or 5 has I Program Fetch routine for restart by the Dispatcher. Re- I
I been performed. I start occurs at the instruction after the WAIT macro 1
I \ instruction. 1 L _________________________ ~ ___ J

Section 4: Contents Supervision 113

returns control to the I/O Supervisor to
post the I/O event control block (ECB), in
preparation for the restarting of the Pro
gram Fetch routine. Control is passed from
the I/O Supervisor to the Program Fetch
routine, via the I/O First-Level Interrup
tion Handler and the Dispatcher (see Figure
4-11). The Program Fetch routine then
performs termination procedures.

If, however, the entire module or seg
ment has not been loaded, the Channel-End
Appendage routine returns control to the
I/O supervisor to restart the channel
program.

RELOCATING ADDRESS CONSTANTS IN RELOCATION
LIST DICTIONARY (RLD) RECORDS: The Program
Fetch routine is restarted after the PCI
Appendage routine or the I/O supervisor has
posted an ECB. The Relocation subroutine
of the Program Fetch routine then examines
the buffer table to determine whether an
RLD record, containing relocatable address
constants, is in an RLD buffer. The sub
routine searches for a buffer table entry
whose "busy" indicator is set. The indica
tion means that the associated buffer con
tains an RLD record. When such a buffer is
found, the Relocation subroutine relocates
each address constant specified in the
record. When RLD records in all "busy"
buffers have been processed, the Program
Fetch routine either restarts a channel
program, if a buffer is empty, or issues a
\'lAIT macro instruction to await the loading
of another record.

The Relocation subroutine adjusts the
value of an address constant by combining
(adding or subtracting) a relocation factor
with the value of the constant. Each RLD
record contains the Linkage-Editor assigned
address of the constant and a flag that
indicates addition or subtraction of the
relocation factor. (See "Relocation List
Dictionary Record" in Section 12, "Control
Blocks and Tables.")

For a block-loaded module, the reloca
tion factor is the difference between its
Linkage-Editor assigned address (usually
zero) and the \ 'first byte of main storage
into which the module has been loaded. The
relocation factor is either added to or
subtracted from the value field of each
relocatable address constant. As an
example, assume that a module is block-

-loaded into main storage, beginning at
address 4000. If the flag bit in the RLD
record is positive, a relocation factor of
4000 is added to the value field of each
address constant. If, however, the flag
bit in the RLD record is negative, 4000 is
subtracted from the value field of the
constant.

114

For an overlay module, relocation is
similar to that just described, since an
overlay module is effectively block-loaded.
The root segment's relocation factor is
used to adjust the address constants of all
segments of the module. The Program Fetch
routine stores the relocation factor in the
note list, so that it is available in main
storage throughout the module's execution
(see Figure 4-14).

For a scatter-loaded module, each entry
of an RLD record contains the Linkage
Editor assigned address of an address con
stant, a relocation pointer" and a positi.on
pointer. The position pointer is used to
locate the address constant. The reloca
tion pointer is used to find the relocation
factor by which the address constant will
be adjusted.

The position pointer is used to index
the translation table to obtain a value
that indicates the c-ontro1 section in which
the address constant is located. The
translation table value is then used to
obtain a relocation factor from the scatter
list. The relocation factor, when combined
with the Linkage-Editor assigned address of
the constant, yields the location of the
address constant. (For more information on
the translation table and scatter list, see
the Linkage Editor PLM.)

The relocation pointer is similarly used
as an index to obtain the relocation factor
for the control section to which the
address constant refers. This relocation
factor is combined with the Linkage-Editor
assigned value of the constant. The resul
tant relocated value is then placed in the
value field of the constant.

TERMINATION: If the control record before
the last text record contains an "end"
indicator, the PCI Appendage routine sets
an "end" flag to inform the Termination
subroutine. After relocation has been per
formed, a test of the "end" flag causes the
subroutine to be entered.

Table 4-4. Program Fetch Return Codes

r---------T-------------------------------, I Code I Meaning I
r---------+-------------------------------~ I X, 00' I Successful Load I
I I I
I X'OC' I Invalid Scatter Information I
I I I
I X'OD' I Invalid Record Type I
I I I
I X'OE' I Invalid Address Encountered I
I I I
I X'OF' I Permanent I/O Error I l _________ L-______________________________ J

(~')

(

The Termination subroutine performs its
processing or waits, according to whether
all I/O operations have been completed.
When all I/O operations have been com
pleted. the subroutine places in the return
register a completion code to .inform the.
caller of the result of the attempted
loading (see Table 4-4).

The rest of the termination procedure
depends on the type of module that has been
loaded (see Table 4-5). When termination
is complete, the Program Fetch routine
returns control to the caller.

Table 4-5. Termination Processing According to Module Type
r-------------------T---,
IType of Module I Processing by the Program Fetch Routine I
~-------------------+---~
IBlock-loaded module I computes relocated entry-point address for the module, and places I
I I it in the fetch parameter list for use by the caller. I
~------------------+---~
I scatter-loaded , computes the relocation factor for the entry-point address and I
I module I places it in the fetch parameter list. The subroutines of I
I I contents supervision use this relocation factor to compute I
I I relocated entry-point addresses. Frees the space occupied by the I
I I scatter list/translation table. I
~-------------------+---~ IRoot segment of I Places in the segment table the main 'storage address of the data I
loverlay module I control block (DCB) and of the note list for use by the Overlay I
I I Supervisor. I L _____ ~ _____________ ~ __ J

Section 4: contents Supervision 115

(

(-

Main storage space is a resource and,
like other resources, is shared by many
users. Allocation of space must be con
trolled, and space must be requested when
it is needed and be freed when it is no
longer needed. Control over space alloca
tion is excercised by the routines of Main
Storage Supervision and by the routines of
the optional rollin/rollout module. The
Main Storage Supervision routines service
two macro instructions: GETI>1AIN, which is
used to allocate space; and FREEMAIN, which
is used to free space that was previously
allocated. Each macro instruction results
in an SVC interruption and entry to a
corresponding service routine.

Requests for allocation of main storage
space are serviced by t4ain Storage Supervi
sion elements collectively called the
G~TMAIN routine. This routine services all
requests for space, including requests for
a region, space within an existing region,
or space in the system queue area. By
keeping and continually updating control
blocks that record where space is avail
able, the GET MAIN routine can determine
where and how a request may be satisfied.

Requests to free main storage space are
serviced by Main Storage Supervision ele
ments collectively called the FREEMAIN rou
tine. This routine Updates control blocks
to reflect the change of stabus of the
freed space, thereby making the space
available for reallocation by the GETMAIN
routine.

An unconditional request for the alloca
tion of main storage space in an existing
region, if unsatisfied by the GETMAIN rou
tine, can cause the GETMAIN routine to
SChedule linkage to the rollout/rollin
module. This extra effort to obtain the
requested space is possible if the rollout
feature is included in the system and if
the requestor belongs to a job step eligi
ble to cause rollout. The rollout/rollin
module is not scheduled if the requestor is
a system routine, if the request is for
space in the system queue area, or if the
request is for a region in which to start a
new job step.

The rollout/rollin module, when executed
for the GETMAIN routine, tries to obtain a
temporary additional region for uSe by the
requestor's task and other tasks of its job
step. This is necessary since the request
ing job step needs more space than is
available in its existing region. The
rollout/rollin module first tries to alloc-

SECTION 5: MAIN STORAGE SUPERVISION

ate the temporary region from unassigned
space in the dynamic area. If sufficient
unassigned space is not available, the
rollout/rollin module then searches for a
suitable job step of another job that it
may rollout. A job step is suitable to be
rolled out if its dispatching priority is
lower than that of the requestor's job
step, its job step TCB is flagged e~igible
to be rolled out, and if it is not using or
waiting for a system resource for which it
nas issued an ENQ macro instruction.

If the rollout/rollin module finds a
suitable job step whose region is large
enough to satisfy the ~urrent request, it
waits for completion of active I/O com
mands, suspends pending I/O commands,
defers pending operator replies, and trans
fers (rolls out) to auxiliary storage the
contents of the selected job step's region.
It then builds and initializes control
blocks to allocate the rolled out region to
the requestor'S job step. The rollout/
rollin module returns control to the re
questor, which reissues its original
GETMAIN macro instruction, causing supervi
sor linkage to the GETMAIN routine. The
GET~IN routinp. then services the request
from the region just obtained through
rollout.

At key decision
processing there are
which the user may
optional appendages.
appendages may do the

points in the rollout
dummy user routines
replace with his own

The user-written
following:

• Determine whether more than
step can concurrently obtain
through rollout of other job
regions. such an option is
"multiple rollouts."

one job
space

steps'
called

• Decide whether a region belonging to a
job step of higher dispatching priority
than the requestor's job step should be
rolled out.

• Decide if a job step should be abnor
mally terminated, if there is no job
step s9itable to be rolled out.
Abnormal termination could be selected
in place of the standard alternative of
placing the requestor's job step on a
wait queue, pending a new attempt at
rollout.

• Specify additional criteria that must
be met by a job step before it can be
rolled out.

Section 5: Main Storage Supervision 117

After the requestor's job step has com
pleted its use of the borrowed region
(signalled by issuance of a FREEMAIN macro
instruction), the .FREEMAIN routine sched
ules linkage to the rollout/rollin module.
This time the module transfers (rolls in)
the contents of the rolled out job step's
region from auxiliary storage to its ori
ginally assigned location in main storage.
Deferred I/O commands and deferred operator
replies are then restored to the job step.
The rollout/rollin module returns control
to the current routine of the highest
priroity ready task, via the Exit routine
and the Dispatcher.

INTERRUPTION HANDLING FOR MAIN STORAGE
SUPERVISION

Both the GETMAIN and FREEMAIN macro
instruction may be expressed by programmers
in two forms. S (storage) type macro
instructions are used when parameters are
supplied in a parameter list, and R
(register) type macro instructions are used
when parameters are supplied in general
registers. Figure 5-1 shows the sve
instructions contained in expansions for
each type.

When any sve instruction is executed, an
sve interruption occurs and control is
given to the sve First-Level Interruption
Handler, 'lI1hich saves a record of the inter
rupted environment and routes control to an
appropriate sve service routine. A
description of sve first-level interruption
handling is contained in the section "sve
Interruption Handling-. Figure 5-2 shows
the handling of interruptions resulting
from issuance of GETMAIN and FREEMAIN macro
instructions.

For sve 4 and sve 5 instructions, the
sve First-Level Interruption Handler gives
control to the GETMAIN and FREEMAIN rou
tines, respectively. For sve 10 instruc
tions, it gives control to the REGMAIN
routine, which examines register' 1 to
determine whether a GETMAIN or FREEMAIN
macro instruction was given, and routes
control accordingly.

r-----------------T-------T---------------,
INacro Instruction I Type Isve Instruction I
~-----------------+-------+---------------~ I GETNAIN I s I sve 4 I
I I R I sve 10* I
~-----------------+-------+---------------~ I FREEMAIN I S I sve 5 I
I I R I sve 10* I
~-----------------~-------~---------------~
I*High-order bit of register 1 will con-I
I tain 1 for GETMAIN; 0 for FREEMAIN. I l ___ ~

Figure 5-1. GETMAIN/FREEMAIN sve
Instructions

118

5 VC Interrupti on

SVC
First·Level
Interruption
Handler

Type 1 SVC
Routine

Current routine
of highest
priority task
that can be
performed

Figure 5-2. Main Storage Supervision
Interruption Handling

When any sve instruction is executed, an
sve interruption occurs and control is
given to the sve First-Level Interruption
Handler, which saves a record of the inter
rupted environment and routes control to an
appropriate sve service routine. A
description of sve first-level interruption
handling is contained in the section "sve
Interruption Handling-. Figure 5-2 shows
the handling of interruptions resulting
from issuance of GETMAIN and FREEMAIN macro
instructions.

For sve 4 and sve 5 instructions, the
sve First-Level Interruption Handler gives
control to the GETMAIN and FREEMAIN rou
tines, respectively. For sve 10 instruc
tions, it gives control to the REGMAIN
routine, which examines register 1 to
determine whether a GETMAIN or FREEMAIN
macro instruction was given, and routes
control accordingly.

The GETMAIN, FREEMAIN, and REGMAIN rou
tines are type 1 sve routines. After the
GETMAIN and FREEMAIN routines have com
pleted their processing, they give control
to the Type-1 Exit Routine. The Type 1 o

Exit routine determines whether the task
for which the SVC instruction was executed
is to be reinstated. If so, it restores
the saved contents of registers and returns
control to the routine in which the SVC
instruction was encountered. If, however,
a different task is to gain control, the
Type-1 Exit routine saves register contents
in the current TCB, saves the SVC old PSW
in the current request block, and branches
to the Dispatcher. The Dispatcher routes
control to the current routine of the
highest priority ready task.

ALLOCAT·ING MAIN STORAGE

All requests for space are handled by
the GETMAIN routine. These include
requests for regions, space within regions,
and space in the supervisor queue area of
main storage. Basically, the GETMAIN rou
tine scans queues of elements that repre
sent available space to locate the amount
of space of the type requested. When the
space is found, the GETMAIN routine updates
the affected queues to reflect its subse
quent unavailability and returns the
address of the space to the requestor. If
the requested space is not available, the
GETMAIN routine responds according to the
type of storage that is requested: a new
region, space within an existing region, or
space in the system queue area.

If requested space for a new region is
not available, and the request is condi
tional, the GETMAIN routine sets up a
return code and returns control to the
requestor, via the Type-1 Exit routine.
If" however, the request is unconditional,
the GETMAIN routine makes the requestor's
task nondispatchable, pending the availa
bility of sufficient free space in the
dynamic area, and causes control to be
given to the current routine of the highest
priority ready task.

If requested space within an existing
region is not available, and the request is
conditional, the GETMAIN routine sets up a
return code and returns control to the
requestor, via the Type-1 Exit routine.
If, however, the request is unconditional,
the GETMAI'rt routine tries to find space
that may be freed and allocated to the
requestor's task. It first searches for
unused modules in the requestor's region
that may be purged. If sufficient space
cannot be made available by the module
purge,' 'and if the rollout feature cannot be
used. the GETMAIN routine causes the
abnormal termination of the requestor's
task. If, however, the rollout feature is
part of the system and the requestor's task
is eligible to cause rollout, the GETMAIN

routine schedules linkage to the rollout/
rollin module. The rollout/rollin module
tries to obtain temporary allocation of an
additional region for use by the reques
tor's job step. The additional region may
be obtained either from free space in the
dynamic area or by temporary reallocation
of a region previously allocated to a job
step of another job. If the rollout/rollin
module cannot find the needed region, it
either causes the abnormal termination of
the requestor's job step or another job
step, or makes the requestor's job step
temporarily nondispatchable pending the
availability of the needed region. The
choice depends on the option specified in a
user-written appendage.

If requested space in the system queue
area is not available, the GETMAIN routine
tries to expand that area. It does this,
if possible, by adding to the system queue
area the space that lies adjacent to it in
the dynamic area. If the request can now
be serviced, space is allocated to the
requestor. Otherwise, the GETMAIN routine
causes the CPU to be placed in the wait
state. In a multiprocessing system, if the
system queue area is expanded, the new size
and origin of the dynamic area is placed in
the PQE.

Following entry to the GETMAIN routine,
the subpool Check (CSPCHK) subroutine is
entered to determine what type of space is
requested. Table 5-1 shows the subpool
numbers associated with each type of
request.

ALLOCATING A REGION

Space for regions is obtained from the
dynamic area of main storage (see Figure
5-3). The PQEPTR field at offset 8 in
location GOVRFLB contains the address of a
two-word dummy partition queue element
(DPQE). Word one of the DPQE contains the
address of a partition queue element (PQE)
that describes unassigned processor storage
not belonging to any region. Word two of
the DPQE contains the address of the last
PQE constructed by NIP. Word three of the
PQE for hierarchy 0 contains the address of
the PQE that describes unassigned LCS not
belonging to any region. A free block
queue element (FBQE) is located in the
first three words of each type of storage.
The first two words of the corresponding
PQE contain the address of its FBQE. If
Main Storage Hierarchy Support is not
included in the system, only the PQE for
processor storage is constructed and the
last PQE's pointer to the next PQE (PQEPTR)
is set to zero.

section 5: Main Storage supervision 119

• Table 5-1. subpool Numbers Used for Requesting Space
r-----------T----------------------T----------------------T-----------------------------,
~:~~~~~-~~.:~:~~~:~::-~:~~:~-:~=~~:~~=:~:-~::-~::~g~:nt~------------~~~:=------------~S'
I 246 I Region I ISignifies request to free I
I I I lexisting region and assign I
I I I Inew region. I
~-----------+----------------------+----------------------+----------------------------~
I 247 I Region I ISignifies request to assign I
1 I I I new region or free existing I
I I I I region. I
~-----------+----------------------+----------------------+----------------------------~~
I 248 I Region I ISignifies request from I
I I I I Rollout/Rollin routine to 1
I I I 1 assign a region I
~-----------+----------------------+----------------------+----------------------------~
I 0-127 1 Space within region 1 Job step,' s storage I When subpool 0 is requested 1
I 1 Iprotection key (reset Iby programs executing in 1
1 1 Ito 0 when space is Isupervisor state, subpool 2521
I 1 1 freed) lis assigned. I
~------~----t----------------------+----------------------+----------------------------~ 1 250 ISpace within region IJob step's storage IWhen requested by programs 1
1 1 Iprotection key (reset lexecuting in supervisor I
1 1 Ito 0 when space is I state, subpoolO is assigned. 1
I 1 1 freed) 1 1
~-----------t----------------------+----------------------+-----------------------------~
1 251 ISpace within region IJob step's Storage I I
I 1 1 protection key (reset 1 I
1 1 I to 0 when space is I I
I 1 1 freed) I I
~-----------+----------------------+----------------------+----------------------------~
I 252 Ispace within region 10 storage protection I I
I I 1 key I 1
~-----------+----------------------+----------------------+---------------------------~~ 1 253 1 Space within system 10 storage protection IAssigned space will be freed I .'" ~
I I queue area I key I when task terminates. I '" ,:t

~-----,------+----------------------+----------------------+-----------------------------~
I 254 ISpace within system 10 storage protection IAssigned space will be freed I
I I queue area I key I when job step terminates. I
~-----------+----------------------+----------------------+-----------------------------~
I 255 ISpace within system 10 storage protection IAssigned space must be 1
1 Iqueue area I key I explicitly freed. I
L ______ -----~----------------------~--------------------__ ~ _____________________________ J

To assign a region, the GETMAIN routine
first determines the beginning address of
the region:

Beginning
Address

Size of Dynamic Area + Begin
ning Address of Dynamic Area
- Size of Region Requested

The GET MAIN routine then subtracts the
number of bytes to be occupied by the
region from the number of bytes in the FBQE
that represents the dynamic area.

For each region, the GETMAIN routine
builds a free block queue element (FBQE) at
the beginning of the region and a dummy
partition queue element and a partition
queue element (PQE) in the system queue
area (see Figure 5-3). The GETMAIN routine
places in the free block queue element a
count of the number of contiguous free
bytes that can be allocated in the region.
The dummy partition queue element is made

120

to point to the partition queue element,
which in turn is given a pointer to the
free block queue element. The GETMAIN
routine places in the PQE the size of the
region and the region address. It places
the address of the dummy PQE in the TCBPQE
field of the TCB of the job step task for
which the region was requested. If Main
Storage Hierarchy Support is included in
the system, regions may be requested in
either hierarchy, or a region segment may
be requested in both hierarchies. A PQE is
constructed for each region segment and
both PQES are chained (by way of a dummy
PQE, as associated with GOVRFLBl to the TCB
that represents the task for which the
region was requested. (For the formats of
the dummy PQE, PQE, and FBQE, see Section
12, -Control Blocks and Tables.-)

The GETMAIN routines additionally sup
port obtaining a region at a specific
storage address and quiescing the system if c

o

c

Form Y28-6659-3 Page Revised by TNL Y27-7190 4/28/69

Location GOVRFLB
If a request contains a specific address

which is not in either the dynamic area
(between the system queue area and the link

)
Nucleus pack area) or wi thin hierarchy one in

systems with Main Storage Hierarchy Sup
port, the GETPART module returns with a
code of X'08' in register 15. If the
address is valid, but not enough storage is I Dummy PQE ~(L

PQE ~ I Dummy PQE I L

reB

PQE

JJ
./

~

Supervisor available, the requester is placed in a
Queue Area wai t condition and no further requests,

FBQE

I FBQE I
Region

Figure 5-3. Element Relationships:
Region Allocation

Dynamic
Area

ink Pack
rea }~

a valid request for a region at a specific
address cannot be satisfied.

The fUnction of obtaining a region is
performed by the GETPART module, invoked by
expansion of the GETMAIN macro instruction.

In order to obtain a Iegion at a specif
ic main storage address, the list form of
the macro instruction must be used. The
list contains an address pointer and a
length pointer; the address pointer indi
cates the location of a list containing the
addresses at which storage is to be
obtained, the length pointer points to a
corresponding list of lengths specifying
the size of each of the requested regions.
Figure 5-4 shows the lists and pointers;
Table 5-2 shows the subpool use for list
and register forms of GET MAIN requests for
region allocation.

except for subpool 248 (from Rollout/
Rollin), are accepted until the first spe
cific address request is satisfied.

In a multiprocessing system, if the
requested storage area is not available,
GETPART determines from FSSEMAP whether any
of the storage has been logically removed
from the system. (See Section 12 ·Control
Blocks and Tables" for a description of
FSSEMAP.) A storage area may be marked
offline in FSSEMAP if (1) a VARY STORAGE
OFFLINE command has been issued, (2) the
storage address range is set disabled
(determined by the Multiprocessing NIP rou
tine), or (3) the storage area is malfunc
tioning (determined by the Multiprocessing
NIP routine). If any of the requested stor
age area is marked offline in FSSEMAP,
GETPART returns with a code of X'08' in
register 15, a message is issued that main
storage is not available, and the job is
abnormally terminated. If the storage is
not marked offline, the requestor is placed
in a wait condition until the request can
be satisfied.

If a list
entry cannot be
storage already
returned to the

request with more than one
completely satisfied, all
obtained for the request is
system.

A FREE/GET (EXCHANGE) request for a
specific address must be issued using the
list form and must specify subpool 246.
GETPART frees the region and replaces it
with one at the address specified. In
systems with Main Storage Hierarchy Sup
port, only the region in hierarchy 0 is
freed. All FREE/GET requests for specific
addresses are assumed to be within the
boundaries of the original region; no pro
vision is made to handle an invalid re
quest. In the list form, the address
entries must contain the hierarchy identi
fication in the high order byte if the
system includes Main storage Hierarchy
Support.

Section 5: Main Storage Supervision 121

Form Y28-6659-3 Page Revised by TNL Y27-7190 4/28/69

Table 5-2. Subpool Use for List and Register Forms of GETMAIN (GETPART Module)
r------------~-----------~----------------------T--------------------------------------, 0'
I Subpool No. I List Request I Register Request I

~------------+----------------------------------+--------------------------------------~
I 246 I Free, then get region I Free, then get region I
I I Address = 0, get region anywhere I I
I I Address ¢ 0, get region at I I
I I specified address I I
~-------------+----------------------------------+--------------------------------------~ I 247 I Address = 0, get region anywhere I Register 1 negative, get region I
I I Address ¢ 0, get region at I Register 1 zero or positive, free I
I I specified address I region I

~------------+----------------------------------+--------------------------------------~
I 248 I Request from Rollout/Rollin I Request frow Rollout/Rollin I L _____________ i __________________________________ i ______________________________________ J

If the dynamic area does not contain
sufficient free space for the requested
region, the GETMAIN routine responds
according to whether the GET~AIN request is
conditional or unconditional. If the re
quest is conditional, the GET~AIN routine
places a return code (4) in register 15 to
inform the requestor that space cannot be
allocated. It then returns control to the
requestor, via the Type-1 Exit routine.
If, however, the request is unconditional,
the GETMAIN routine makes the requestor's
task nondispatchable, prepares for future
reissuance of the request, and causes con
trol to be routed to the current routine of
the highest priority ready task. It does
this by:

• Setting the TCBFCD1 nondispatchability
flag in the requestor's TCE.

• Pointing the SVC old PSW to the invok
ing GETMAIN roacro instruction, and
storing this restart address in the
requestor's RB old PSW.

t Address Li st
Hier-
archy

Address

t Length List I--
Hier- Address

Code I SQ I SVC
archy

1:

Length

L..

• Indicating to the Dispatcher that a
task switch is needed. (It does this
by placing zero in the "new" TCB point
er IEATCBP.)

• Branching to the Type-1 Exit routine,
which detects the task switch indica
tion of the "new" TCB pointer. The
Type-l Exit routine then branches to
the Dispatcher to locate the highest
priority ready task whose current rou
tine will be given control.

ALLOCATING SPACE WITHIN A REGION

Any GETMAIN macro instruction in which
subpools 0-127, 250, 251, or 252 are speci
fied indicates that space within an exist
ing region is desired.

Processing If the Requested Space Is
Available

When the initial request for a subpool
is received, the GETMAIN routine builds a
subpool queue element (SPQE) in the super-

T

-

A "0" Address indicates
normal GETPART for region

A non -zero Address i ndi cates
specific region start address
for GETPART

I ~~. J
(A "1" in high-order bit indicates end of list

Figure 5-4. List Structure for List Form of GETMAIN Macro Instruction

122

~~~~~-~~~-

c 



( 

Form Y28-6659-3 Page Added by TNL Y27-7190 4/28/69 

visor queue area (see Figure 5-5). The 
SPQE contains the subpOol number and, -if 
other subpools exist, a pointer to another 
SPQE. (Each time a request is received, 
the chain of SPQEs is scanned by the 
GETMAIN routine to determine whether the 
requested subpool exists.) 

The GETMAIN routine also builds a 
descriptor queue element (DQE) in the 
supervisor queue area, and places the 
address of the DQE into the subpool queue 
element. The DQE contains a count of the 
number of bytes of main storage allocated 
to a block in the subpool (space within 
regions is assigned in 2048-byte blocks). 
For each subsequent request for space in 
the same subpool that cannot be satisfied 
with space defined by existing DQEs, the 
GETMAIN routine builds another DQE. All 
DQEs representing space in the same subpool 

are chained together. After each 2048-byte 
block ~s assigned, it is given a storage 
protection key (see Table 5-1). Then, when 
each block is freed, its storage protection 
key is reset to zero. 

If any free space exists within the 
2048-byte blocks defined by a DQE, the 
GETMAIN routine builds a free queue element 
(FQE) within the 2048-byte block that con
tains the free space, and places into it a 
count of the number of bytes available. 
All such FQEs within one contiguous area 
are chained together; the GETMAIN routine 
places the address of the first such FQE 
into the associated DQE. FQEs built in 
space assigned to subpools 0-127, 250, or 
251 are exposed to accidental damage by job 
steps, as the space is assigned the storage 
protection keys of the steps. These FQEs 
are the only supervisor queue elements so 

Section 5: Main Storage SUpervision 122.1 





c 

( reB I 
-

( SPQE Sp. 25 I , SPQE Sp. 30 I 

I FQE SP. 25 1/ 
I FQE Sp. 30 I 

I OQE Sp. 25 

~ I OQE Sp. 30 

Region 

} 

Nucleus 

Supervisor 
Queue Area 

Dynamic 
Area 

Link Pack 
Area 

Figure 5-5. Element Relationships for 
Intra-Region Allocation 

exposed. All others 
that are assigned the 
protection key. 

are built in areas 
supervisor storage 

To locate free space in an existing 
subpool, the GETMAIN routine first locates 
the subpool by scanning the chain of SPQEs. 
It then determines the address of the first 
DQE and scans the chain of DQEs to locate 
an FQE containing sufficient space to sat
isfy the request. If sufficient space 
exists, the GETMAIN routine decrements the 
count of available bytes in the FQE. If 
sufficient free space to satisfy the re
quest does not exist in the requested 
subpool, the GETMAIN routine locates space 
not yet assigned to any subpool, and adds 
the space to the requested subpool by 
building a DQE. 

After space is assigned, the GETMAIN 
routine places the address of the assigned 
space into register 1 if an SVC 10 instruc
tion caused entry, or places the address 
into the location specified by the pro
grammer if an SVC 4 instruction caused 
entry. 

processing if the Reguested Space is not 
Available 

If there is not 
region to satisfy 
routine enlarges 
by: 

enough free space in the 
the request, the GETMAIN 
the scope of its search 

• Purging unused modules in the region. 

• Examining a region previously borrowed 
by the requestor's job step through 
rollout, if the rollout feature is part 
of the system. 

• Testing whether to schedule linkage to 
the rollout/rollin module to "borrow" 
an additional region. 

ATTEMPTING TO FREE SPACE BY PURGING UNUSED 
MODULES: The GETMAIN routine branches to 
its CDPURGE routine to attempt to purge one 
or more unused modules in the requestor's 
region. The space freed by this purge may 
be sufficient to satisfy the current 
storage request. If the purge flag is set 
(hex. '80') in the TCBJPQ field of the job 
step TCB, the CDPURGE routine examines all 
contents directory entries (CDEs) in the 
job pack queue. Each CDE that has its 
nrelease" flag (REL) set in its attributes 
field represents a module in the region 
that is no longer needed. That is, there 
are no outstanding requests for the module 
by any routine in the job step. For each 
such module the CDPURGE routine branches to 
the CDDESTRY routine (in CDEXIT) to dequeue 
the CDE and free the associated module and 
its extent list. After all CDEs in the 
region's job pack queue have been examined 
and all unused modules purged, the CDPURGE 
routine returns control to the main line of 
the GETMAIN routine. 

If the module purge has freed enough 
space to satisfy the request, the GETMAIN 
routine allocates the needed space to the 
requestor's task. It then returns control 
to the requestor, via the Type-1 Exit 
routine. 

EXAMINING A PREVIOUSLY BORROWED REGION: If 
sufficient space cannot be freed by the 
module purge, the GETMAIN routine deter
mines if there is a possiblity of satisfy
ing the storage request from space outside 
the requestor's region. The requestor's 
job step may previously have "borrowed" an 
additional region through the action of the 
rollout feature. If so, the borrowed 
region is searched, via a branch to the 
GMCOMMON routine. If the request is condi
tional and there is no borrowed region or 
the borrowed region is searched to no 
avail, the GETMAIN routine sets up a return 
code (4) and returns control to the re
questor, via the Type-1 Exit routine. If, 
however, the request is unconditional and 
the rollout feature is not part of the 
system, the GETMAIN routine must cause the 
abnormal termination of the requestor's 
task. It sets up a condition code (hex. 
'804') and branches to the ABTERM routine 
to schedule the abnormal termination. 

Section 5: Main Storage Supervision 123 



DETERMINING WHETHER TO SCHEDULE LINKAGE TO 
THE ROLLOUT/ROLLIN MODULE: If requested 
space in an owned or borrowed region is not 
available, the GETMAIN routine determines 
if it can schedule the rollout/rollin 
module to borrow, if possible, an addition
al region for use by the job step. The 
GETMAIN routine schedules linkage to the 
rollout/rollin module only if the following 
requirements are met: 

• The request is unconditional. 

• The rollout feature is part of the 
system. 

• The request is made by a user routine. 

• The requestor's task belongs to a job 
step that is eligible to cause rollout. 
(The eligibility is indicated by the 
'set' condition of the TCBFRA flag in 
the job step TCB. Such eligibility was 
established by a JOB or EXEC statement 
parameter (ROLL) when the job entered 
the input stream. The eligibility was 
recorded in the job step TCB by the 
Attach routine when an initiator 
attached the job step.) 

Unless all of the above requirements are 
met, the GETMAIN routine cannot make space 
available to satisfy the storage request. 
It therefore sets up a condition code 
(hex. '804') to indicate that storage is 
unavailable, and branches to the ABTERM 
routine to schedule the abnormal termina
tion of the requestor's task. 

SCHEDULING LINKAGE TO THE ROLLOUT/ROLLIN 
MODULE: The GETMAIN routine schedules 
linkage to the rollout/rollin module (here
after called the RO/RI module) by means of 
the asynchronous exit mechanism. (This 
mechanism is described in "Scheduling a 
User Exit Routine" in Section 3, "Task 
Supervision.") Like the scheduling of other 
asynchronous exit routines, the scheduling 
of the RO/RI module involves the Stage 1 
Exit Effector, the Stage 2 Exit Effector, 
and the stage 3 Exit Effector. Only stages 
2 and 3, however, are involved directly in 
the GETMAIN routine's attempt to schedule 
the RO/RI module. The Stage 1 Exit Effec
tor is used by the Nucleus Initialization 
Program during system initializati4 ~. 

If the rollout feature is to bE part of 
the system, the Nucleus Initialization Pro
gram (NIP) uses the CIRB macro instruction 
to invoke the stage 1 Exit Effector. Stage 
1 then gets space for and initializes a 
special permanent system IRB and a 240-6yte 
work area. The IRB is called the rol I out/ 
rollin IRE and is used by the supervisor to 
schedule and control the RO/RI module. The 
NIP formats the 240-byte work area into ten 
combined interruption queue elements (IQEs) 

124 

and rollout/rollin parameter lists. Each 
IQE is used in scheduling linkage to the 
RO/RI module. Each associated parameter 
list provides input information, such as 
the requestor's TCB address, needed by the 
RO/RI module. (See the IQE format in 
Section 12, "Control Blocks and Tables· for 
the format of a rollout/rollin IQE parame
ter list.) 

Execution of the RO/RI module occurs 
under control of a special permanent system 
TCB of high dispatching priority. This 
TCB, called the rollout/rollin TCB, is 
created during the nucleus initialization 
procedure, if the rollout feature is to be 
part of the system •. The position of the 
RO/RI TCB on the TCB queue, and therefore 
its dispatching priority relative to the 
other permanent system TCBs, is shown in 
Figure 5-6. 

Rollout and rollin processing are per
formed as part of the rollout/rollin task 
(hereafter called the RO/RI task). This 
task is held nondispatchable when linkage 
to the RO/RI module is not needed. The 
task is nondispatchable because its TCB 
points directly to a permanent rollout/ 
rollin PRB that is kept in a wait condi
tion. While the task is nondispatchable, 
the rollout/rollin PRB, in turn, points to 
the rollout/rollin IRa. (See part 1 of 
Figure 5-7.) When linkage to the RO/RI 

CVTHEAD IEAHEAD 

Communications 
Vector Table 

Note: The TCBs are queued 
in descending order 
of dispatching priority 

Legend: 

_=pointer 

Transient Area TCB l 

Transient Area TCB2 

Transient Area TeBn 

System Error TCB 

Rollout/Rollin TCB 

Communications TCB 

Master Scheduler TCB 

Figure 5-6. Position of Rollout/Rollin 
TCB on TCB Queue C'l " J 



module is needed. the scheduling process 
reverses the position of the PRE and the 
IRB on the RO/RI task's RB queue. (See 
part 2 of Figure 5-7.) Since the RO/RI IRB 
is usually in a ready condition (its wait 
count equal to zero). the reversal of the 
position of the two RBs make the RO/RI task 
dispatchable. 

scheduling of the RO/RI module occurs in 
two phases. Initial scheduling is done by 
the SHEDRO routine. a subroutine of the 
GETMAIN routine. Final scheduling is per
formed by the Stage 3 Exit Effector. after 
the GETMAIN routine has exited and the 
Dispatcher has been entered. The Stage 3 
Exit Effector is a subroutine of the Dis
patcher. The Stage 3 Exit Effector readies 
the RO/RI task. which is then given control 
by the Dispatcher. The processing is 
described in the next two topics. (See 
Figure 5-8 for the overall flow and Figure 
5-9 for a pictorial summary of the 
processing.) 

Initial Scheduling of the Rollout/Rollin 
. Module: The GETMAIN routine uses its sub
routine. the SHEDRO routine, to perform the 
following main functions: 

• Obtains an interruption queue element 
(IQE) and rollout/rollin parameter 
list. Initializes both the IQE and the 
parameter list. 

• Places the IQE on the asynchronous exit 
queue (AEQJ). via a branch to the Sta~e 
2 Exit Effector. 

8 The rollout/rollin task is nondispatchable. 

Rollaut/Rollin TCB Rollout/Rollin PRB Roliout/Rollin IRB 

RB Wait Count = 01 RB Wait Count = 00 

o The rollout/rollin task is dispatchable. 

Rollout/Rollin TeB Rollout/Rollin IRB Rollout/Rollin PRB 

RB Wait Count = 00 RB Wait Count = 01 

Figure 5-7. Relationship of the Rollout/ 
Rollin TCB. PRB. and IRB Dur
ing Scheduling of the 
Rollout/Rollin Task 

( From a user routine that issues the GETMAIN macro instruction 
ENTRY as an unconditional request for space, 

~ 
Type - I 
Exit routine 

GETMAIN routine 

Determines that 
rollout is needed ~ K RETURN and is possible. Switch 

Needed 
SHEDRO routine To requestor 

Yes 
Obtains IQE. 
Initial izes JQE and ~ 
parameter I ist for Tal lout. 

Dispatcher 

i 
Stage - 2 

J Exit Effector 

Places IQE on Stage 3 

asynchronous Exit Effector 

exit queue. 
Completes scheduling 

~ of RO/RI module. 

Indicates the need Reodie, the RO/RI 

for a task switch. task. 

~ 
Task-Switching 
routine 

Determines thet 
RO/RI TCB i. of 

RO/RI Module Lood RB old PSW higher priority then 
of RO/RI IRB requestor's TCB. 

Pieces eddress of 
RO/RI TCB in 
"new" TeB pointer 
for use by 
dispatcher. 

Figure 5-8. scheduling of Rollout: Over
all Flow 

• Prepares 
eventual 
requestor. 

for a 
return 

task switch 
of control 

and for 
to the 

Obtaining a Rollout IQE and Parameter List: 
The SHEDRO routine obtains an IQE and 
parameter list to keep track of the rollout 
request. and to schedule and control the 
execution of the RO/RI module. It obtains 
the IQE and parameter list by means of its 
GETIQE routine (invoked at location 
IQEROUT). The GETIQE routine obtains them. 
if possible. from a "next available" list 
(RBNEXAV) queued from the RO/RI IRB. If 
there are no more available IQEs. the 
GETIQE routine obtains the needed space (24 
bytes, subpool 255)., via a branch to the 
GETMAIN routine. If it obtains space. the 
routine initializes the IQE and parameter 
list. After the GETIQE routine has 
obtained the IQE and parameter list, it 
returns control to the SHEDRO routine. The 
SHEDRO routine then initializes the IQE to 
indicate a rollout request. and places in 
the parameter list the address of the 
requestor's TCB and the size of the 
requested space. 

Section 5: Main storage Supervision 125 



STEP 1 STEP 2 STEP 3 

RO/RIIRS 

RSNEXAV 

Queue origin 

IINext
available" 
list of 
IQEs 

~A~t 
Queue for Non-I/O 
Exit Rautines (AEQJ) 

RS Queue of the 
Rollout/Rollin Task 

RO/RIIQE 

IEAQRORI 

=== } .01'0,,"'011;0 MoM. 

The SHEDRO routine obtains a rallout/rollin 
IQE either from an available I ist or by getting 
space and initializing a new IQE. The SHEDRO 
rautine then invakes the Stage 2 Exit Effector to 
place the IQE on the queue. 

IQE for,,"ollout/rollin is remaved from the asyn
chronous' ~xit queue and is queued from the roll out/ 
rollin IRS bY- the Stage 3 Exit Effector when the 
Dispatcher is next entered. 

The rollout/rollin TCB is readied by the Stage 3 
Exit Effector by its rearrangement of the task's 
RS queue. The rollout/rollin TCB naw points ta 
the rallout/rollin IRB, which is ready. Since 
the rollout/rollin task is nOW ready and of very 
high dispatching priority, the Dispatcher gives 
control to this task at location IEAQRORI in the 
rollout/rollin module. 

Legend: 

RO/RI = rollout/rollin 
RBOPSW = RB old PSW 
-=pointer 

Figure 5-9. Steps in the Scheduling of the Rollout/Rollin Task 

Placing the IQE on the Asynchronous Exit 
Queue: The SHEDRO routine uses its SCHE
DIRB subroutine to invoke the Stage 2 Exit 
Effector. The stage 2 Exit Effector then 
places the IQE representing the rollout 
request onto the asynchronous exit queue. 
(See Figure 5-9.> This is the same queue 
on which the Stage 2 Exit Eff~ctor places 
IQEs that represent requests for an end-of
task exit routine (ETXR) or" a timer exit 
routine. The Stage 3 Exit Effector will, 
when the Dispatcher is next entered. com
plete the scheduling of the exit routines 
whose IRBs are represented on the queue. 
Although the IQEs are placed on the asyn
chronous exit queue in first-in, first-out 
order, the represented requests will be 
serviced by the Stage 3 Exit Effector on a 
task-priority basis. 

Preparinq for a Task Switch and for Eventu
al Return of Control to the Requestor: The 
SHEDRO routine does three things to prepare 
for a task switch and to provide for 
eventual return of control to the 
requestor: 

• Indicates to the Type-1 Exit routine 
that a task switch is needed. 

126 

• Makes the requestor's task nondispatch
able (sets the TCBWFC flag). 

• Points the SVC old PSW to a restart 
address in the requestor's task. 

The SHEDRO routine indicates the need 
for a task switch by storing zero in the 
-new" TCB pointer (IEATCBP). Without such 
an indication, the Type-1 Exit routine, 
when entered during the exiting procedure 
from GETMAIN, would return control to the 
routine that had issued the GETMAIN macro 
instruction. With the task switch indica
tion, the Type-1 Exit routine will branch 
to the Dispatcher, which will then deter
mine the task to which it will give 
cont:r:ol. 

The SHEDRO routine makes the requestor's 
task nondispatchable to prevent accidental 
redispatching of the requestor's task 
before its needed storage space has been 
allocated. 

The SHEDRO routine points the svc old 
PSW to the GETMAIN macro instruction issued 
by the requestor. (This procedure is 
described in the program listing as -back
ing up the PSW,- since it causes the 



restart address to be two bytes earlier in 
the requesting routine than the normal 
address in the SVC old PSW.) The old PSW 
is altered so that when rollout is success
ful, the requestor can be redispatched to 
reissue its GETMAIN macro instruction. The 
GETMAIN routine will then be entered, via 
supervisor linkage, to satisfy the request 
from the newly borrowed region. 

Final Scheduling of the Rollout/Rollin 
Module: During the exiting procedure from 
the GETMAIN routine, the Type-l Exit rou
tine is entered, detects that a task switch 
is needed, and branches to the Dispatcher. 
The Dispatcher, finding that there is at 
least one IQE on the asynchronous exit 
queues, enters the stage 3 Exit Effector to 
complete the scheduling of the appropriate 
asynchronous exit routine. In this case 
the appropriate exit routine is the RO/RI 
module. To complete the scheduling of the 
RO/RI module, the Stage 3 Exit Effector 
performs the following main functions: 

• Removes the RO/RI IQE from the asyn
chronous exit queue and places it on 
the list of IQEs queued from the RO/RI 
IRB. (The IRB'S list origin for IQEs 
is RBIQE. (See Figure 5-9.) 

• Readies the RO/RI task. 

• Indicates to the Dispatcher that it 
should next dispatch the RO/RI task. 

• Moves the address of the RO/RI parame
ter list from the IQE to register 1 to 
serve as input information for the 
RO/RI module. 

The queuing of the IQE to the RO/RI IRB 
is recognition by the Stage 3 Exit Effector 
that the IQE represents a request for 
execution of the RO/RI module under control 
of the RO/RI TCB. The IQE will remain 
queued from the IRB throughout rollout 
processing. When the RO/RI module com
pletes its processing of the rollout re
quest, it will dequeue the IQE from the 
IRB's active queue and return it to the 
IRB's "next available" list (RBNEXAV). 

The Stage 3 Exit Effector readies the 
RO/RI task by reversing the order of the 
PRB and IRB on the RO/RI task's RB queue, 
as illustrated in Figures 5-7 and 5-9. 
Since the IRB is normally ready and the 
RO/RI TCB has no nondispatchability flag 
set, the task is dispatchable as soon as 
its RB queue is reordered. 

The Stage 3 Exit Effector then indicates 
to the Dispatcher that it should next 
dispatch the RO/RI task. Stage 3 does this 
by invoking the supervisor's Task switching 
routine and passing to it the address of 
the RO/RI TCB. The Task Switching routin'<:! 

compares the dispatching priority of the 
RO/RI TCB with that of the requestor's 
task, and determines that the RO/RI task is 
ready. Since the RO/RI task is of extreme
ly high dispatching priority and is ready, 
the Task Switching routine selects the 
RO/RI TCB and places its address in the 
nnew" TCB pointer as information for the 
Dispatcher. The invoking of the Task 
Switching routine is necessary, since 
otherwise the Dispatcher would remain 
unaware that a task is ready that is higher 
in priority than the current task. The 
Dispatcher can never discover a higher 
priority ready task by searching the TCB 
queue. When it searches the TCB queue, it 
searches in a downward-priority direction, 
beginning with the current TeB. 

The address of the RO/RI parameter list, 
when moved from the IQE to register 1, 
serves an important purpose. It indicates 
to the RO/RI module the type of service 
that it should perform. If the address is 
positive, the request is for rollout. If, 
however, the address is negative, the re
quest is for rollin. Lastly, if the 
address is zero, the request is to resched
ule rollout processing for deferred rollout 
requests. These requests had earl~er 
caused entry to the RO/RI module, but a job 
step suitable to be rolled out could not be 
found. (The handling of deferred rollout 
requests will be described later in "Pro
cessing If a Job Step Suitable for Rollout 
Cannot Be Found" and "Performing Final 
Common Processing.") 

ALLOCATING A BORROWED REGION THROUGH 
ROLLOUT 

Rollout is an attempt to allocate tem
porarily an extra region for a job step 
that needs more space than is available in 
its existing region or regions. The RO/RI 
module first tries to allocate the extra 
region from free space in the dynamic area. 
If, however, there is not enough contiguous 
free space, the RO/RI module writes the 
contents of another job step's region from 
main storage to auxiliary storage.. The 
"borrowed" region is then allocated to the 
requestor's job step. 

The RO/RI module consists of a central 
routine, called the Rollout/Rollin Criteri
on routine, and various subroutines. The 
RO/RI Criterion routine coordinates the 
rollout activities of the subroutines. 
These activities include deferring I/O 
requests for the job step to be rolled out, 
deferring its operator replies, setting its 
tasks nondispatchable, and causing the 
transfer of the contents of the selected 
region to the rollout data set. 

Section 5: Main Storage Supervision 127 



The main fUnctions 
rollout are: 

• Determining wnether 
performed. 

performed during 

rollout should be 

• Obtaining the needed space from unas
signed storage. 

• Finding a job step and region suitable 
to be rolled out. 

• Processing if a suitable job step and 
region cannot be found. 

• Processing if a suitable job step can 
be found. This processing includes 
allocating the selected region if its 
contents are already rolled out but the 
region is not in use. If the contents 
of the region are not already rolled 
out, the processing includes setting 
nondispatchable the tasks of the job 
step to be rolled out, deferring its 
I/O requests, and deferring its opera
tor replies. 

• Transferring the 
selected region 
set. 

contents of the 
to the rollout data 

• Allocating the borrowed region to the 
requestor's job step. 

• Processing if there was an unrecover
able I/O error during the rollout. 

• Preparing for exit from the rollout/ 
rollin module. 

Determining Whether Rollout Should Be. 
Performed 

The RO/RI Criterion routine, when dis
patched at entry point IEAQRORI, determines 
first whether rollout is being requested, 
then whether rollout should be performed. 
If rollout should not be performed, the 
RQ/RI Criterion routine defers the current 
rollout request and branches to the 
Rollout/Rollin Exit subroutine to pr~pare 
for exit from the RO/RI module. If rollout 
should be performed, the RO/RI Criterion 
routine' continues processing. In determin
ing whether rollout should be performed, 
the routine does the following: 

• Determines whether the current request 
is for rollout, rollin, or restart of 
deferred rollout requests. Routes con
trol to the appropriate part of the 
RO/RI Criterion routine to service the 
request. 

• Determines whether another job step has 
caused a rollout that is still in 
effect. 

128 

• Defers the current rollout request, if 
-multiple rollouts W are prohibited and 
if another job step has caused a roll
out that is still in effect. 

• Continues processing the current roll
out request if no other job step has 
caused a rollout that is still in 
effect, or if another rollout is still 
in effect but a user-written appendage 
permits multiple rollouts. 

DETERMINING WHETHER THE CURRENT REQUEST IS 
FOR ROLLOUT: The RO/RI Criterion routine 
determines the type of request by testing 
the parameter list address passed to the 
RO/RI module in register 1. If the address 
is pOsitive, the request is for rollout. 
(The polarity of the parameter list address 
in the RO/RI IQE was set by the GET MAIN 
routine's SHEDRO or SCHEDRRI routine when 
it scheduled linkage to the RO/RI module. 
The parameter list address was placed in 
register 1 by the Stage 3 Exit Effector 
during the final phase of scheduling.) 

DETERMINING WHETHER ANOTHER JOB STEP gAS 
CAUSED A ROLLOUT THAT IS STILL IN EFFECT: 
The RO/RI Criterion routine tests the 
wrollouts invokedw counter and, if neces
sary, examines the TCB queue to determine 
if a job step other than the requestor's 
has caused a rollout that is still in 
effect. These tests are made because con
current rollouts for different requesting 
job steps are not allowed, unless permitted 
by the choice of a user-written Coincident 
Rollout appendage (IEAQAPG1). Such nmul
tiple rollouts- are not normally permitted 
because concurrent requesting job steps 
could each attempt to rollout more than 
half of the main storage space available 
for rollout. In that case, the competing 
job steps would be placed on the deferred 
request queue, awaiting main storage space 
that would never be available. The system 
would thus be in an -interlock,- unable to 
continue processing. 

DEFERRING THE CURRENT ROLLOUT REQUEST: The 
RO/RI Criterion routine defers the current 
rollout request, if multiple rollouts are 
prohibited, and if another job step has 
caused a rollout that is still in effect. 
The routine defers the rollout request by 
transferring the requestor's lQE from the 
RO/RI IRB's queue of active IQES to wait 
queue called the Brollout request queue. n 

(The origin of the rollout request queue is 
defined' in the secondary communications 
vector table as lEAROQUE.) The IQES on the 
rollout queue are rescheduled for new link
age to the RO/RI module after either of two 
events has occurred: a region's contents 
have been rolled in, or the DEQ routine has 
marked a job step TCB as eligible to be 
rolled out (TCBNROC equals zero). Either 
event means that another region is avail-

() 

() 



able for possible rollout. (For further 
information on the restart of deferred 
rollout requests" see -perfo~ing Final 
Common processing.-) 

DE'l'ElYUNING IF PROCESSING OF THE CURRENT 
ROLLOUT REQUEST SHOULD BE CONTINUED: The 
RO/RI Criterion routine continues process
ing the current rollout request if no other 
job step has caused a rollout that is still 
in effect, or if another competing rollout 
is still in effect but a user-written 
appendage permits such multiple rollouts. 
Without a user appendage, the RO/RI Crite
rion routine continues the processing of 
the current request only if no other job 
step has caused a rollout that is still in 
effect. A user-written appendage, if pro
vided, can be substituted for the IBM
provided decision. Decisions made in the 
user appendage can provide flexible control 
of the number of job steps that can concur
rently invoke rollout. 

NOTE: If the user appendage allow;:; more 
than one job step to invoke rollout concur
rently, it is responsible for preventing 
interlocks. 

Obtaini·ng the Needed Space from Unassigned 
Storage 

If the RO/RI Criterion routine decides 
that rollout should be performed, it tries 
to obtain a new region from unallocated 
space in the dynamic area via a conditional 
GE'l'MAIN macro instruction that specifies 
subpool 246. The result is supervisor 
linkage to the GETMAIN routine. If there 
is insufficient space, the GETMAIN routine 
returns a code of "4', and the RO/RI 
Criterion routine then tries to find a job 
step and region suitable to be rolled out. 
If, however, the GETMAIN routine can allo
cate a new region, it builds a partition 
queue ~lement (PQE) and a free block queue 
element (FBQE), and queues the PQE from the 
RO/RI TCB. The GETMAIN routine in this 
case supplies the RO/RI Criterion routine 
with a code of '0'" indicating -t:hat the 
region has been allocated, and provides the 
address of the PQE representing the new 
region. (The POE address is returned in a 
parameter list.) 

When the RO/RI Criterion routine detects 
that a new region has been allocated, it 
does the following: 

• Removes the newly created PQE from the 
RO/RI task's PQE queue and places it on 
the PQE queue of the requestor's job 
step TCB. The routine reorders the PQE 
queue, if necessary, so that the PQES 
are queued according to ascending order 
of region addresses. 

• Initializes the TCB address (PQETCB) in 
the new PQE to zero to indicate that 
the region was allocated from free 
space. This field will be tested dur
ing rollin to determine whether the 
region should be freed,. 

• Increases the -rollouts invoked- count
er (IEAROICT) by a count of ' one' " to 
indicate that a rollout has been 
invoked and is still in effect. This 
counter is tested each time that the 
RO/RI Criterion routine is entered for 
rollout, to determine whether rollout 
should be performed. (See -Determining 
Whether Rollout Should Be Performed.-) 

• Sets the -borrowed- flag (PQEBOR) in 
the rollout flags field of the new PQE. 
This flag" when set, indicates that the 
region described by the PQE is not 
-owned- by the job step to which it is 
allocated. 

• Sets the -rollout invoked- flag 
(TCBFRI) in the requestor'S job step 
TCB. This flag; when set" indicates 
that the job step has invoked one or 
more rollouts that are still in effect. 

• Makes the requestor's task dispatchable 
by clearing the ·core wait· nondis
patchability flag (TCBWFC). This is 
done in preparation for the redispatch
ing of the requestor's task. 

• Branches to the RO/RI module's Retexit 
routine to prepare for exiting from the 
RO/RI module. (See -Preparation for 
Exit from the Rollout/Rollin Module.-) 

Obtaining a Job Step Suitable 
to Be Rolled out 

If 
free 
tries 
to be 
if: 

a new region cannot be allocated from 
space, the RO/RI Criterion routine 
to obtain a job step that is suitable 
rolled out,. A job step is sui table 

• It has not caused a rollout which is 
still in effect. 

• Its TCB is marked eligible to be rolled 
out. 

• It owns a region that is large enough 
to satisfy the current storage request 
and that is not already in use by a 
borrower. 

The process of obtaining a job step 
suitable to be rolled out consists of two 
functional parts: finding a job step" and 
testing the selected job step to see that 
is meets the above requirements~ 

Section 5: Main Storage SuperviSion 129 



FINDING A JOB STEP: The RO/RI Criterion 
routine branches to the GETSTEP routine to 
find a job step whose suitability can be 
tested. The GETSTEP routine receives as 
input parameters the address of the reques
tor's job step TCB and the address of the 
rollout parameter list. The parameter list 
contains the size of the requested storage. 
The GETSTEP routine performs the following 
functions: 

• Determines if the requestor's job step 
has previously caused a rollout that is 
still in effect. (The routine tests 
the TCBFRI flag in the requestor's job 
step TCB.) A requesting job step may 
invoke successive rollouts which are 
concurrently in effect. 

• If so. invokes the TESTSTEP routine to 
test if one or more regions previously 
borrowed by the requestor's job step 
contain enough free space to satisfy 
the current request. 

• Searches the TCB queue for a lower 
priority job step which may be tested 
for suitability. if the current request 
cannot be satisfied from a previously 
borrowed region. The TCB queue is 
searched in a downward priority direc
tion. starting with the requestor's job 
step TCB and ending with the last TCB 
on the queue. The routine saves the 
address of the lowest priority job step 
TCB that it finds. 

• Branches to the TESTSTEP routine to 
test the suitability of the selected 
job step. If the job step is not 
suitable. the GETSTEP routine repeats 
its search of the TCB queue. This 
time, however. the search ends with the 
previously selected TCB. The search is 
finished when a suitable job step has 
been found. or when all job steps lower 
in priority than the requestor's have 
been examined and none has proved 
suitable. 

• Branches to an optional user-written 
appendage (IEAQAPG2), if it cannot find 
a job step which is suitable to be 
rOlled out. The user (High Priority 
Pass) appendage, if present. dynamical
ly determines whether the GETSTEP rou
tine should make a new search of the 
TCB queue, this time exam1n~ng job 
steps that are higher in priority than 
the requestor's. 

• Searches the TCB queue for a higher 
priority job step which may be tested 
for suitability, if the High Priority 
Pass appendage so decides. The TCB 
queue is searched in a downward priori
ty direction, starting with the master 
scheduler TCB and ending with the 

130 

requestor's job step TCB. The search 
and examination of job steps is similar 
to the low priority search previously 
described. 

• Returns control to either of two return 
points in the RO/RI Criterion routine. 
after completing its examination of job 
steps that were candidates f.or rollout. 
The particular return point depends on 
whether a job step suitable for rollout 
has been found. If the GETSTEP routine 
finds a suitable job step. it places in 
register 0 the address of the PQE 
belonging to the job step. 

TESTING THE SELECTED JOB STEP: Each job 
step selected by the GETSTEP routine is 
further tested for suitability by the TEST
STEP routine. The TESTSTEP routine deter
mines that a selected job step is suitable 
to be rolled out if: 

• The job step has not invoked a rollout 
which is still ~n effect. (Although 
concurrent rollouts may be permitted by 
a user appendage (IEAQAPG1), nested 
rollouts are never permitted. A nested 
rollout is the rollout of a job step 
that has itself caused a rollout that 
is still in effect.) 

• The job step is eligible to be rolled 
out. The step is eligible if the 
nnonrolloutable countn (TCBNROC) is 
zero in its TCB. A zero count means 
that the job step was initialized as 
eligible when it was attached and is 
not currently using or waiting to use a 
system resource that requires the ENQ 
macro instruction. The nnonrolloutable 
count" was initialized to either zero 
or one by the Attach routine when an 
initiator attached the job step. The 
initialization reflects the job step's 
eligibility to be rolled out, as speci
fied by the ROLL operand of the JOB or 
EXEC statement when the job was placed 
in the input stream. The nnonrollout
able count." after initialization, is 
increased by one by the ENQ routine for 
each system resource for which an ENQ 
macro instruction is issued by the job 
step. The count is similarly decreased 
by the DEQ routine for each issuance of 
the DEQ macro instruction by the job 
step. 

• The job step's region is large enough 
to satisfy the current storage request. 

• The region is not being used by a job 
step that has invoked rollout. Such a 
borrower could be either the current 
requestor's job step, if it has pre
viously invoked rollout, or another 
requesting job step if concurrent roll
outs are permitted. If the region is 

. \ C"' 



( 

Cl 

not being used by a borrower, its nin 
use" flag (PQEUSE) in the PQERFLGS 
field is zero. 

• The job step and its region are 
approved by a user-written appendage, 
if such an appendage has been provided. 
The Criterion Selection appendage (IEA
QAPG4) can be provided by the installa
tion to make further tests of a job 
step already approved by the TESTSTEP 
routine. 

• Returns control to the caller (usually 
the GETSTEP routine), with the PQE 
address in register 0 if it has 
approved the job step and region. 

Processing If a Job Step Suitable for 
Rollout Cannot Be Found 

If the GETSTEP routine cannot find a job 
step suitable to be rolled out, the RO/RI 
Criterion routine can follow either of two 
possible courses of action. If can cause 
the abnormal termination of a job step. or 
it can defer the current rollout request by 
placing the requestor's IQE on a wait queue 
called the "rollout queue." The particular 
choice depends on the decision of a user
written ABEND appendage (IEAQAPG3), if the 
appendage is present. If the appendage is 
not present, the current rollout request is 
deferred. 

CAUSING THE ABNORMAL TERMINATION OF A JOB 
STEP: The ABEND appendage, if present, can 
request the abnormal termination of either 
the requestor's job step or another job 
step in the system. The appendage provides 
the address of the selected job step TCB in 
a.register. Termination of the requestor's 
job step removes it from the system if it 
cannot wait for storage to become avail
able. Termination of another job step 
results in the freeing of a region. After 
such termination is complete. the RO/RI 
module is reentered twice: first to per
form rollin, then to make a new attempt at 
rollout for the deferred request. (See 
"Scheduling Deferred Rollout Requests.") 

If the requestor's job step task is to 
be terminated, the RO/RI Criterion routine 
branches to the ABTERM routine, providing 
the address of the requestor's job step 
TCB. The A8TERM routine schedules the 
abnormal termination of the job step. then 
returns control to the RO/RI criterion 
routine. The RO/RI Criterion routine sets 
the requestor's task dispatchable (clears 
the TCBWFC flag), and branches to the 
RETEXIT routine. The RETEXIT routine pre
pares for exiting from the RO/RI module and 
eventual dispatching of a task of. an anoth
er job step. (See "Exiting from the 
Rollout/Rollin Module.") 

If a job step other then the requestor's 
is to be terminated, the RO/RI Criterion 
routine first determines that the TCB spec
ified by the ABEND appendage is really a 
job step TCB. If the TCE is really a job 
step TCB. the routine branches to the 
ABTERM routine to schedule the abnormal 
termination of the specified job step. It 
then defers the current rollout request. by 
placing the requestor's IQE on the rollout 
queue. If, however, the TCB specified for 
abnormal termination is not really a job 
step TCB, the RO/RI Criterion routine 
defers the current rollout request without 
scheduling an abnormal termination. 

DEFERRING THE CURRENT ROLLOUT REQUEST: The 
RO/RI Criterion routine defers the current 
rollout request if the ABEND appendage 
(IEAQAPG3) decides against a termination 
(or if there is no ABEND appendage). The 
rollout request is deferred until space is 
freed or until an ineligible job step is 
made eligible to be rolled out. (The 
method of deferring a rollout request is 
described in -Determining Whether Rollout 
Should Be Performed." The restart of 
deferred rollout requests is described in 
-Performing Final Common Processing. n) 
After deferring the current rollout re
quest, the RO/RI Criterion routine branches 
to the Rollout Exit routine to prepare for 
a task switch and for return of control to 
another task. (See "Exiting from the 
Rollout/Rollin Module.") 

Processing If a Suitable Job step 
Can Be Found 

If the GETSTEP routine finds a suitable 
job step to be rolled out, it returns 
control to the main line of the RO/RI 
criterion routine, providing the address of 
the selected PQE. This PQE describes the 
region that will be allocated to the re
questor's job step. The region's contents 
can be in either of two conditions: alrea
dy rolled out for a requestor but not in 
use, or not already rolled out. 

If the contents of the selected region 
have already been rolled out, the RO/RI 
routine does not attempt a second rollout. 
In this case, the routine merely allocates 
the selected region to the requestor's job 
step. 

If, however, the contents of the 
selected region have not already been 
rolled out, the RO/RI criterion routine 
prepares to rollout the region's contents 
to the rollout data set. (See -Preparing 
to RollOut the Contents of the Selected 
Region.") 

If Main Storage Hierarchy Support is 
included in the system, and a task whose 
region is selected for rollout has another 

Section 5: Main Storage supervision 131 



I region in either hierarchy 0 
remaining region is not 
rollout. 

or 1, this 
affected by 

. ALLOCATING THE SELECTED REGION: The 
selected region is allocated to the reques
tor's job step if two conditions are met: 
the region's contents have already been 
rolled out, and the region is not being 
used. The RO/RI Criterion routine tests 
only whether the region's contents have 
been rolled out. The TESTSTEP routine 
previously tested whether the region is in 
use. 

If the conditions are met, the RO/RI 
Criterion routine allocates the selected 
region to the requestor's job step by 
performing the following functions: 

• Sets the "rollout" flag (PQERO) and the 
"in use" flag (PQEUSE) in the owner's 
PQE to indicate that the contents of 
the region have been rolled out and 
that the region is being used by a 
borrowing job step. 

• Branches to the BUILDPQE subroutine to 
obtain space for and initialize a new 
PQE to describe the borrowed region. 
The RO/RI Criterion routine will later 
place this PQE on the PQE queue of the 
requestor's job step. The new PQE is 
initialized to point to a free block 
queue element (FBQE) that describes as 
free the entire borrowed region. The 
last four words of the new PQE are 
copied from the corresponding fields of 
the owner's PQE. (These fields contain 
the owning job step's TCB address, the 
region size, the region address, and 
flags. See Section 12, ftControl Blocks 
and Tables," for additional format 
information.) There are thus two PQEs 
describing the same region: the 
owner's PQE and the borrower's PQE, 
associated with different job step 
TCBs. The owner's PQE is flagged 
"owned," "rolled out," and "in use." 
The borrower's PQE is flagged 
n borrowed. " 

• Branches to the SETKEYS subroutine to 
set to zero the storage key of all 2K 
blocks in the region. This is done so 
that no user routine can store informa
tion in the region before the GET MAIN 
routine has been reentered to allocate 
the region's space to the current 
requester. 

• Branches to location RR004 to: 
increase the "rollouts invoked" count-

132 

er, set the "borrowed" flag1 (PQEBOR) 
in the new PQE, place the new PQE on 
the PQE queue of the requestor's job 
step, set the "rollout invokedft flag 
(TCBFRI) in the requestor's job step 
TCB, and clear the "core wait ft nondis
patchability flag (TCBWFC) in the 
requestor's TCB. (See "Obtaining the 
Needed Space from Unassigned Storage" 
for a discussion of these actions.) 

• Branches to the RETEXIT routine to 
prepare for exit from the RO/RI module 
and return control to the requestor's 
task. (See "Exiting from the Rollout/ 
Rollin Module. ft ) 

PREPARING TO ROLLOUT THE CONTENTS OF THE 
SELECTED REGION: The RO/RI Criterion rou
tine prepares to rollout the contents of 
the selected region, if they have not 
already been rolled out. Preparation con
sists of the following functions, performed 
for the job step to be rolled out: 

• setting nondispatchable the tasks of 
the job step. This is done to prevent 
the restart of these tasks by the 
Dispatcher while the job step is not in 
main storage. 

• Deferring the job step's I/O requests. 
I/O commands that are executed for the 
job step after it has been rolled out 
could cause information to be read into 
or written from main storage areas that 
no longer belong to the job step. To 
prevent thiS, queued I/O request ele
ments, which represent channel programs 
not yet executed, are purged. Pointers 
to I/O blocks (lOBs) associated with 
these request elements however, are 
saved to permit restart. The purged 
request elements will be reinstated 
when the rolled out job step has been 
rolled in. Active I/O requests how
ever, which represent channel programs 
being currently executed, are allowed 
to complete before the job step is 
rolled out. (Figure 5-10 illustrates 
the overall functional flow). 

• Deferring the job step's operator 
replies. Replies received while the 
job step is rolled out must not be read 
into main storage areas that no longer 
belong to the job step for which they 
were issued. These replies are there
fore saved in temporary buffers, and 
are later transferred to the appropri
ate user buffers when the rolled out 
step has been rolled in. 

1The "borrowed" flag is set in the new PQE 
to indicate that the represented region is 
not owned by the job step to which it is 
allocated. 

c 



(

-> 

",' 

c 

Ret 
to 
Cal 

urn 

ler 

-. 

( ENTRV 

! 
RO SVC Purge 
Interface Routine 

Builds and Initializes RIQE. 
Issues PURGE. 

Are All Ves ) Tasks of Job Step 
\ 

EXIT 
Processed 

Continue RO 
Processing 

No 

~ PURGE macro instruction 

SVC Purge Routine 
(S) 

Removes queued I/O requests. 
Determines that there ore active 
requests for I/O that have not 
quiesced. 

~ WAIT macro issued. 

Wait Routine 
(S) 

Wait for posting of purge ECB 
by Purge Completion Subroutine . 

. ~ 
Type - 1 Exit Routine 

~ 
Dispatcher 

~-- Operati on of other lower pr i or i ty tasks. 

SVC Purge Routine 

Complete purge of RQEs. 

I 

~ 1/0 Int Supvsr I 
I I 

I/O Complete I 
~ 

Purge Completion Subr 

Check count of incomplete 
I/O requests to be quiesced. 

~NO Return to I/O 
Count = 0 

Int Supervisor 

Ves 

! POST 

Post Routine 

Post purge ECB and 
make RO task ready. 

+ 
Dispatcher 

• Figure 5-10. Interfaces Between Rollout 
Module and SVC Purge Routine 

Setting Nondispatchable the Tasks of the 
Job Step: The RO/RI Criterion routine 
issues the STATUS macro instruction to 
cause supervisor linkage to the Set Status 
routine (IGC079). This routine sets non
dispatchable all tasks of the specified job 
step by setting the TCBFRO flag in each 
TCB. 

The operands 
instruction, as 
meanings: 

of 
used 

the STATUS 
above, have 

STATUS I SET ND, I (1) 1(12) 

macro 
these 

------+----------+-----------+-------------
ICauses I Indicates IThis mask 
Isetting of It hat the Inumber indi
Inondis- ITCB whose Icates that 
Ipatchabil-Iaddress is Ithe ·rolled 
lity flag lin registerlout- nondis
Ispecified 11 and its lpatchability 
Iby mask Idescendantslflag (TCBFRO) 
I operand Ishould be Ishould be 
1(12). Iset as Iset. 
I I specified. I 

Deferring the Job Step's I/O Requests: The 
RO/RI Criterion routine branches to the SVC 
Purge Interface routine (PRGIO) to defer 
the job step's I/O requests. The SVC Purge 
Interface routine performs the following 
functions for each task of the job step: 

• Obtains space for and initializes a 
rollout I/O queue element (RIQE)1. 
Each RIQE will serve as a list origin 
for a queue of I/O blocks (lOBs) that 
represent the task's deferred channel 
programs. The lOBs will be used to 
restart the channel programs after the 
job step has been rolled in. 

• Stores in the SVC purge parameter list1 
the address of the TCB whose queued 
request elements will be purged. Also 
places in the purge parameter list a 
pointer to the lOB list origin in the 
RIQE. The I/O supervisor's SVC Purge 
routine will use this parameter list 
during its purge of the task's request 
elements. 

• Issues a PURGE macro instruction to 
gain supervisor linkage to the I/O 
Supervisor'S SVC Purge routine 
(IGC016). Flags (hex. '02') in the 
purge parameter list specify the ·purge 
by TCBw and Wquiesce· options. The 
address of the purge parameter list is 
provided in register 1. (See the pub
lication I/O supervisor PLM for 
detailed information on the SVC Purge 
routine. ) 

1See Section 
Tables. W 

12, ·Control Blocks and 

Section 5: Main Storage Supervision 133 



The SVC Purge routine searches the 
system queues for I/O request elements 
belonging to the specified task. It 
removes from the logical channel queues 
and the seek queues the request ele
ments that are not yet active. It 
returns these request elements to the 
free list in the lOS. It queues their 
associated lOBs from the list origin in 
the input RIQE, so that the lOBs would 
be available when I/O operations are 
resumed. (See Figure 5-11.> 

The routine then waits for completion 
of active I/O requests. Such requests 
represent I/O operations in process. 
The routine waits by issuing a wait 
macro instruction specifying the purge 
ECB and a wait count equal to the 
number of I/O requests that must com
plete. (The address of the purge ECB 
is in the SVC purge parameter list.) 

During the subsequent wait period, con
trol is given to lower priority tasks 

IEAROIOQ 

legend: 

List Origin for 
RIQE Queue 

RIQE for TCB 1 

i Next 
RIQE 

o 

iJSTCB 

4 

8 

i TCB2 

8 

R1QE = Rollout 1/0 Queue Element 
numerals = offset in bytes 
---.. = pointer 

12 

i last lOB 
of lOB 
Queue 

12 

in the system. When each active I/O 
request completes, the I/O Interruption 
Supervisor received control and 
branches to the Purge Completion sub
routine. This subroutine, part of the 
SVC Purge routine, decreases and tests 
the count of I/O requests awaiting 
completion. (This count is kept at 
offset 8 in the SVC purge parameter 
list.) When the count reaches zero, 
the Purge completion SUbroutine posts 
the purge ECB complete, and the Dis
patcher returns control to the main 
line of the SVC Purge routine. The SVC 
Purge routine then completes the purge 
of queued request elements, and returns 
control to the RO/RI module's SVC Purge 
Interface routine. 

• Returns control to the RO/RI criterion 
routine to continue the preparation for 
rollout, after the SVC Purge routine 
has been invoked for all tasks of the 
job step. 

TCBlTC 

TCBl 

Job Step TCB for Step 
to be Rolled/Out 

TCB2 

Parameter List for SVC Purge Routine 

Points to 10BRESTR Field 
of last-Queued lOB 

Figure 5-11. How lOBs for Deferred I/O Requests are Queued 

134 

(f-"" 

',,--,.I 

() 



(~) 
.-;'" 

Deferring the Job Step's·Operator Replies: 
The RO/RI Criterion routine branches to the 
Reply Purge routine (PRGRQE). This routine 
sets the "rollout" flag in reply queue 
elements belonging to the job step to be 
rolled out. The reply queue elements 
represent operator replies not yet received 
by the job step. If a reply is received 
while the job step is rolled out, the 
communications task Reply Processor routine 
(IGC1203D) will determine that the rollout 
flag is set in the reply queue el€ment, and 
will save the reply in a temporary buffer 
until the job step is rolled in. (See 
-Reply Processing· in Section 7, ·Console 
Communications and system Log.") 

In order to flag outstanding replies, 
the Reply Purge routine: 

• Finds each reply queue element belong
ing to the job step being rolled out. 
It recognizes the element by its TCB 
pOinter (RQETCB) and the job step TCB 
pointer in the specified TCB. (See 
Section 12, ·Control Blocks and 
Tables,· for the format of a reply 
queue element.) 

• Ignores reply queue elements belonging 
to other rolled out steps (meaningful 
only if concurrent rollouts are per
mitted). Also ignores reply queue ele
ments flagged for purge. These latter 
elements were flagged by the WTOR Purge 
routine (IEECVPRG) because of a normal 
or abnormal task termination and will 
be purged by the Reply Processor rou
tine (IGC1203D). 

• Sets the rollout flag (RQERO) in the 
selected reply queue element as an 
indication for the Reply Processor 
routine. 

• Returns control to 
routine when all 
on the queue have 
elements belonging 
been flagged. 

the RO/RI Criterion 
reply queue elements 
been examined, and 
to the job step have 

Transferring the contents of the Selected 
Region to the Rollout Data Set 

When preparation for rollout is com
plete, the RO/RI criterion routine branches 
to the Start Transfer routine (STARTIO), 
passing the address of the PQE for the 
selected region. This routine starts and 
controls the transfer of the selected 
region's contents to the rollout data set. 
It is also used during rollin to transfer 
the rolled out job step from the rollout 
data set to its region of main storage. 

The start Transfer routine does the 
following: 

• Initializes the channel programs. 

• Starts the channel programs. 

• Reinitializes the channel programs. 

• Handles a normal channel-end condition. 

• Handles an end-of-cylinder condition. 

• Responds to the type of completion, 
normal or abnormal. 

INITIALIZING THE CHANNEL PROGRAMS: The 
Start Transfer routine first issues an SSM 
instruction. This instruction sets the 
system mask in the current PSW to permit 
I/O interruptions on all channels. This is 
necessary because the standard PSW under 
which the RO/RI module operates does not 
permit external and I/O interruptions. 
(The normally disabled mode of operation is 
typical of most supervisor routines.) 

The Start Transfer routine next branches 
to the Channel Program Initialization sub
routine (CPINIT). This subroutine initial
izes two channel programs and prepares for 
the starting of the I/O device by the I/O 
Supervisor. The subroutine's functions are 
as follows: 

• Determines from 
input PQE address 
rollin is needed. 

the polarity of the 
whether rollout or 

• Calculates and saves the address of the 
region's upper boundary, for use by the 
PCI appendage routine and the Channel 
End Appendage routine in determining 
when the last record has been trans
ferred. (Both appendages are part of 
the Start Transfer routine.) 

• Places the data address (the starting 
address of the region) in the Read/ 
Write channel command word (CCW) of 
each channel program. 

• Sets the command code to ·Write" in the 
Read/Write channel command word (CCW) 
of each channel program. (If the Start 
Transfer routine had been entered for 
rollin, the command code would be set 
to BRead".) 

• Stores in the lOBS TART field of the 
rollout input/output block (lOB) the 
address of the Search 10 Equal command 
of the first channel program. (The I/O 
supervisor will use this address in a 
Transfer in Channel (TIC) to the Search 
command to start the channel program.) 

• Sets the NOP command code in the NOP/ 
TIC command in both channel programs. 
(The PCI Appendage routine will later 
change one of these commands to a TIC.) 

Section 5: Main Storage Supervision 135 



• Calculates the relative disk address 
(TTR) at which writing (or reading) 
will begin in the rollout data set. 
This address, when converted to an 
absolute address, will be used in the 
Seek command to be issued by the I/O 
Supervisor. The following formula is 
used to calculate the relative disk 
address: 

TTR = «R - K~)/R )/N 

where: 

R = the address of the region whose 
contents are to be rolled out (or 
rolled in). 

K~ the address of the last byte of 
the system queue area plus one. 
(This address was stored in the 
GOVRFLB table by the Nucleus 
Initialization Program (NIP). 

R record size in bytes. 

N = number of records per track on the 
direct access device. 

• Branches to a convert routine 
(IECPCNVT) whose address is in the 
communications vector table. This rou
tine converts the relative disk address 
(TTR) to an absolute disk address 
(~BCCHHR). 

• Places the absolute disk address in the 
IOBSEEK field of the rollout lOB for 
use by the I/O Supervisor in its Seek 
canmand. 

STARTING THE CHANNEL PROGRAMS: The Start 
Transfer routine starts execution of the 
channel programs by issuing an EXCP macro 
instruction which specifies the rollout 
lOB. The EXCP macro instruction causes 
supervisor linkage to the EXCP supervisor, 
which starts the first channel program. 

After the first channel program has been 
started, the I/O supervisor returns control 
to the Start Transfer routine, via the I/O 
First-Level Interruption Handler and the 
Dispatcher. The Start Transfer routine 
then issues a WAIT macro instruction, spec
ifying the rollout event control block 
(ECB). The macro instruction causes super
visor linkage to the Wait routine, which 
places the Start Transfer routine and the 
RO/RI IRB in a wait condition. They await 
the posting of the rollout ECB by the I/O 
Supervisor. The posting will indicate 
either that the channel programs have com
pleted the data transfer or that an I/O 
error has occurred. until the rollout ECB 
is posted, control is given to other lower 
priority tasks, via the Dispatcher. 

136 

REINITIALIZING THE CHANNEL PROGRAMS: When 
the channel fetches the Read/Write command, 
it detects that the program-controlled 
interruption (PCI) flag is set in the 
command. (The PCI flag is bit 36 in the 
64-bit CCW.) The channel then interrupts 
the CPU, although continuing the execution 
of the channel command. The PCI Interrup
tion causes supervisor linkage to the I/O 
Supervisor. The I/O Supervisor determines 
the cause of the interruption and branches 
to the RO/RI module's PCI Appendage routine 
(PCIAPG). 

The PCI Appendage routine determines 
whether the last record is being trans
ferred. If so. the routine returns control 
immediately to the I/O Supervisor to await 
the channel-end interruption, when the last 
CCW is fetched by the channel. If, how
ever, the last record is not being trans
ferred, the routine prepares for a TIC to 
the next channel program to continue the 
transfer. The PCI Appendage routine: 

• Computes the data address for the Read/ 
Write CCW of the next channel program. 
It does this by adding the record size 
(1024) to the address field of the Ccw. 

• If the sum is greater than the upper 
boundary of the region, the last record 
is being transferred. In this case, 
returns control to the I/O Supervisor. 
Control is then routed to a lower
priority ready task, via the I/O First
Level Interruption Handler and the 
Dispatcher. 

• If the sum is not greater than the 
upper boundary of the region, stores 
the computed data address in the Read/ 
Write CCW of the next channel program, 
and continues processing. 

• Places a NOP command code (hex. '03') 
in the NOP/TIC CCW of the next channel 
program. This is necessary because the 
next record could be the last record. 
In that case, the channel's detection 
of no more CCW's would cause a needed 
channel-end interruption. 

• Updates by 1024 bytes the address field 
of the Search ID Equal CCW in the next 
channel program. The search will iden
tify the record to be transferred by 
the Read/Write command that follows the 
Search command. 

• Places the TIC command code (hex. 
'08') in the NOP/TIC CCW of the current 
channel program. It does this to con
tinue channel program execution, since 
the current record is not the last. 

• Switches the contents of the ·current· 
and Wnext" initialization pointers, so 

r"" .. 
I 
\oJ 



( 

that channel-program 
continue. 

switching can 

• Returns control to the I/O Supervisor, 
which then gives control to a lower 
priority ready task, via the I/O First
Level Interruption Handler and the Dis
patcher. Performance of the ready task 
continues, overlapping the data trans
fer, until it is interrupted by the 
next I/O interruption. 

HANDLING A CHANNEL-END CONDITION: A 
channel-end interruption occurs after the 
channel executes a NOP/TIC command that has 
not been changed to a .TIC by the PCI 
appendage. The interruption causes super
visor linkage to the I/O supervisor. which 
determines the cause of the interruption, 
and branches to the RO/RI module's Channel 
End Appendage. 

The Channel End Appendage determines if 
the last record has been transferred. If 
so, the appendage returns control to the 
I/O Supervisor. The I/O Supervisor then 
posts the rollout ECB, indicating in the 
completion code whether the transfer has 
completed normally or with error. 

The POST macro instruction causes super
visor linkage to the Post routine (IGC002), 
which places the completion code in the ECB 
and readies the waiting RO/RI IRB. The 
Post routine also alters the wnew· TCB 
pointer (IEATCBP), via the Task Switching 
routine, to indicate the need for a task 
switch. Then, the Post routine returns 
control to the RO/RI task's Start Transfer 
routine, via the Dispatcher. 

If however, the last record has not been 
transferred, the Channel End Appendage 
resets flags and an error count in the 
rollout lOB, and returns control to the I/O 
Supervisor to restart the channel programs. 

HANDLING AN END-OF-CYLINDER CONDITION: If 
an abnormal condition occurs at the direct
access device, the I/O Supervisor gains 
control via supervisor linkage, determines 
the cause, and- branches to the RO/RI 
module's Abnormal End Appendage routine. 
This routine (ABEAPG) determines if an 
end-of-cylinder condition exists. It does 
this by checking error indicators in the 
rollout lOB. If an end-of-cylinder condi
tion does not exist, the routine returns 
control to the I/O Supervisor for further 
error handling. If, however, an end-of
cylinder condition does exist, the routine 
obtains the address of a previously 
executed CCW, stores the address in the 
IOBSTART field of the lOB, and returns 
control to the I/O Supervisor. The I/O 
supervisor then restarts the channel pro
grams, beginning with the specified CCW. 

RESPONDING TO THE TYPE OF COMPLETION: The 
Start Transfer routine regains control from 
the Dispatcher when the I/O Supervisor has 
posted the rollout ECB. Control is 
returned to the instruction immediately 
following the WAIT macro instruction. The 
ECB is posted when any of the following 
conditions has occurred: 

• The region's contents have been trans
ferred without error. 

• An error has occurred after a channel
end interruption. This type of error 
may be recoverable. 

• An unrecoverable error has occurred. 

The Start Transfer routine determines 
the type of completion by examining the 
completion code in the rollout ECB. (See 
Section 12, • Control Blocks and Tables,a 
for the ECB completion codes~) 

If the region's contents have been 
transferred without error, the routine 
returns control to the RO/RI Criterion 
routine. The RO/RI Criterion routine then 
allocates to the requestor's job step the 
region whose contents have been rolled out. 

If an error has occurred after a 
channel-end interruption,~ the Start Trans
fer routine branches to the Channel Program 
Initialization routine (CPINIT) to rein
itialize the channel programs. The Start 
Transfer routine then reissues the EXCP 
macro instruction to restart the channel 
programs. It thus makes a new attempt to 
transfer the region's contents. 

If an unrecoverable error has occurred, 
the start Transfer routine issues an output 
message (IEA1001 jobname stepname). It 
then branches to do special processing that 
depends on whether rollout or rollin is 
being performed. If rollout is being per
formed, deferred I/O requests and deferred 
operator replies are restarted and the 
region is reallocated to its owning job 
step. A new attempt is then made to find a 
job step suitable to be rolled out. (See 
BProcessing If I/O Error Occurred During 
Rollout. B) If rollin is being performed, 
the job step that could not be rolled in is 
scheduled for abnormal termination, and 
queued rollout requests are restarted. 

Allocating the Borrowed Reqion to the 
Requestor's Job Step 

If the Start Transfer routine (STARTIO) 
determines that there was no permanent 

~For this type of error the BlOB intercepta 
code appears in the completion code field 
of the ECB. 

Section 5: Main Storage Supervision 137 



error during rollout, it returns control to 
the RO/RI Criterion routine. The RO/RI 
Criterion routine then does the following: 

• Issues a message to the operator in the 
form "IEA1231, jobname, stepname R/O of 
jobname, stepname". The routine issues 
the message by means of a WTO macro 
instruction and resulting supervisor 
linkage to the Write-to-Operator rou
tine (IGC0003E). 

• Disables I/O interruptions to prevent 
delay in returning control to the 
requestor's task. 

• Reallocates to the requestor's job step 
the region owned by the rolled-out job 
step. (The reallocation is done at 
symbolic location RR03.) The process
ing is similar to that previously 
described. (See "Processing If a Suit
able Job Step Can Be Found.") 

Processing If I/O Error Occurred During 
Rollout 

If the Start Transfer routine (STARTIO) 
determines that a permanent I/O error 
occurred during the attempted rollout, it 
branches to the Rollout Retry routine 
(RETRY). The Rollout Retry routine 
restores to readiness the partially rolled 
out job step. It does this by: 

• Restarting the job step's deferred I/O 
requests and operator replies, via the 
RSTRIO and RSTRQE routines. (See 
"Restarting Deferred I/O Requests for 
the Rolled-In Job Step· and "Restarting 
Deferred Operator Replies for the 
Rolled-In Job Step.") 

• Sets the 
(TCBNROC) for 
new attempt 
not be made. 

"nonrolloutable" count 
the job step, so that a 
to rollout the step will 

• Invokes the Set Status routine (IGC079) 
to reset the "rollout nondispatchabili
ty· flag (TCBRFO) in each TCB of the 
job step. The Set Status routine is 
invoked via the STATUS macro 
instruction. 

• Branches to the TESTSTEP routine to 
resume the search for a job step suit
able to be rolled out. The TEST STEP 
routine gives control to the GETSTEP 
routine to search the TCB queue, as 
previously explained. (See ·Obtaining 
a Job Step Suitable to Be Rolled Out.n) 
If the GETSTEP routine can obtain a 
suitable step, the RO/RI Criterion rou
tine rolls out the selected step. If" 
however, the GETSTEP routine cannot 
obtain a suitable step, the RO/RI Cri
terion routine either schedules a job 

138 

step for abnormal termination or places 
the current request on the rollout 
request queue. (See "Processing If a 
Job Step Suitable for Rollout Cannot Be 
Found. ") 

Exiting From the Rollout/Rollin ModUle 

The RETEXIT routine provides an exit 
from the RO/RI Module. It performs the 
follo~ing fUnctions: 

• Places on the'"next available" list the 
interruption queue element (IQE) that 
represents the current RO/RI request. 
The IQE is queued from the RBNEXAV 
field of the RO/RI IRB. This is done 
after the RO/RI module has been 
executed for any of its major fUnc
tions: rollout, rollin, or scheduling 
of deferred rollout requests (IQEs). 
This procedure is bypassed if rollout 
cannot be performed and the rollout 
request is deferred. (See "Deferring 
the Current Rollout Request" in "Pro
cessing If a Job Step Suitable for 
Rollout Cannot Be Found.") 

• Ensures a task switch by placing zero 
in the "new" TCB pointer (IEATCBP). 
This indication will cause the Dis
patcher to search the TCB queue for a 
ready task. 

• Issues an SVC 3 instruction to invoke 
the supervisor Exit routine (IGC003). 
The Exit routine de queues the RO/RI xRB 
from the RO/RI TCB. This action makes 
the RO/RI task nondispatchable. The 
supervisor Exit routine then gains 
linkage to the Dispatcher, via the 
Transient Area Refresh routine. The 
Dispatcher searches down the TCB queue, 
starting with the RO/RI TCB" and dis
patches the current routine of the 
highest priority ready task. 

ALLOCATING SPACE IN THE SYSTEM QUEUE AREA 

The system queue area is restricted to 
control program routines. Only those rou
tines that operate under a storage protec
tion key of zero can use space in this 
area. 

To obtain space in the system queue 
area" requestors must specify subpools 253, 
254, 255 in the GETMAIN macro instruction. 

• Space within subpool 253. unless expli
citly freed, will automatically be 
released when the task for which it is 
being used is terminated. 

• Space within subpool 254, unless ex
plicitly freed, will be released auto-



{ 

mati cally when the job step for which 
it is being used is completed. 

• Space within subpool 255 must be freed 
explicitly with a FREEMAIN macro 
instruction. 

Before the system is generated, users of 
System/360 Operating System must specify 
the amount of space needed for a system 
queue area. During execution of the nucle
us initialization program, a descriptor 
queue element (DQE) containing a record of 
the number of 2048-byte blocks assigned to 
the system queue area is built within the 
area (see Figure 5-12). Also built, adja
cent to the DQE., is a free queue element 
(FQE) that contains the number of bytes of 
available space (initially, all space is 
available) in the system queue area. Loca
tion GOVRFLB in the nucleus contains a 
pointer to the descriptor queue element: 
the descriptor queue element contains a 
pointer to the free queue element. 

Subpool 253 Allocation 

When subpool 253 is specified in the 
GETMAIN maCrO instruction, 8 bytes are 
added to the size requested, and the loca
tion of the beginning of the available 
space is determined. In the first 8 bytes 
of the requested area, the GETMAIN routine 
builds an allocated queue element (AQE), 
into which it places the number of 
requested bytes, plus eight. It then 
chains the AQE to an AQE queue whose origin 

Location GOVRFLB 

'\ 

::; 
AQE 

( ~ ., DQE I FQE I 

1 

Nucleus 

System 
Queue Area 

Dynamic 
Area 

Link Pack 
Area 

eFigure 5-12. Element Relationships for 
System Queue Area Allocation 

is in the TCB (TCBAQE field) of the task 
for which the space was requested. When 
that task is terminated, supervisor ter
mination routines will scan the AQE queue 
and give a FREEMAIN macro instruction to 
free all space associated with subpool 253. 

Subpool 254 Allocation 

When subpool 254 is specified in a 
GETMAIN macro instruction, the GETMAIN rou
tine builds an allocated queue element as 
it does for subpool 253, but chains the AQE 
to an AQE queue whose origin is in the TCB 
of the job step for Which the space was 
requested. When that job step is com
pleted, supervisor termination routines 
will scan the AQE queue and give a FREEMAIN 
macro instruction to free all space asso
ciated with subpool 254. 

Subpool 255 Allocation 

When subpool 255 is specified in a 
GETMAIN macro instruction, the GETMAIN rou
tine passes the address of a free area to 
the requesting routine in general register 
1 if an SVC 10 instruction caused entry, or 
in a prespecified location if an SVC 4 
instruction caused entry. No allocated 
queue element (AQE) is built. An AQE is 
not required. as it is the responsibility 
of the requestor to ensure that the space 
is freed with a FREEMAIN macro instruction. 

FREEMAIN ROUTINE 

The FREEMAIN routine services the 
FREEMAIN macro instruction, which is used 
to free space when it is no longer needed. 
Space assigned to a region. space within a 
region. space assigned to one or more 
borrowed regions. or space in the system 
queue area may be freed. Basically. the 
FREEMAIN routine returns the allocated 
space to availability by adding queue ele
ments representing the space to chains in 
which are recorded all free areas in main 
storage. 

FREEING SPACE ASSIGNED TO A REGION 

To free a region. the TCBPQE field of 
the TeB that represents the task for which 
the region is being used is checked to 
determine the address of the partition 
queue element of the appropriate region. 
The space (8 bytes) occupied by that parti
tion queue element is then released (see 
the section "Freeing Space in supervisor 
Queue Area"). Next, if the region to be 
freed is adjacent to an existing free area, 
it is combined with that area. This is 
done by adding the number of bytes in the 
region being freed to the size field of the 
free block queue element for the existing 

Section 5:· Main Storage Supervision 139 



free area and, if necessary, relocating the 
FBQE to the beginning of the newly enlarged 
free area. 

If a region being freed is not adjacent 
to a free area, the FREEMAIN routine builds 
an FBQE for the area and adds it to the 
chain of FBQEs that represents all space 
available for allocation as regions. 

In a multiprocessing system, after a 
region has been freed, control is passed to 
the Vary Storage Offline routine (IFSVRYOF) 
which determines whether any of the freed 
region has been scheduled to be logically 
removed from the system because of a VARY 
STORAGE OFFLINE command. The Vary storage 
Offline routine checks for Vary Queue Ele
ments (VQEs) which are created when a VARY 
command is issued. If there are none, 
control is returned. Otherwise, the area 
of main storage specified by each VQE is 
compared with that specified by the freed 
PQE. For each VQE which applies to the 
freed area, the FBQE(s) and FSSEMAP are 
modified to indicate the area of main 
storage that has been made unavailable. 
(See Section 12, "Control Blocks and 
Tables" for a description of FSSEMAP). The 
VARY task ECB is POSTed in each applicable 
VQE .to indicate that a partition within the 
range of that VQE has been processed. 

If the region being freed is not owned 
by the requestor, it may be possible to 
roll in the job step that owns the region. 
In this case, the FREEMAIN routine branches 
to the FREBRF routine. This routine tests 
the region's attributes, and if possible, 
releases the region from the current job 
step and schedules linkage to the RO/RI 
module (IEAQRORI). (For a description of 
the FREBRF routine, see "Freeing Space 
Within a Region.") 

FREEING SPACE WITHIN A REGION 

TO free space within a region, the 
CSPCHK subroutine is used by the FREEMAIN 
routine to locate the subpool queue element 
(SPQE) representing the subpool from which 
space is to be freed. The address of the 
SPQE queue is contained in the TCBMSS field 
of the task control block associated with 
the task to which the space is assigned. 
Then the descriptor queue element that 
represents the area in which the space is 
to be freed is located. Next, the two free 
queue elements between which the space 
exists are located and a new free queue 
element (FQE) to represent the newly freed 
space is constructed. This FQE is either 
added to the chain of FQEs or, if the space 
lies adjacent to another free area, is 
combined with the FQE of the adiacent free 
area. 

140 

A test is then made to determine if the 
resulting free area contains any free 2048-
byte blocks of space that begin on a 
2048-byte boundary. If it does, and the 
block is adjacent to an existing free 
2048-byte block, the number of bytes to be 
freed are added to the count field in the 
FBQE representing the existing free space 
and, if necessary, the FBQE is relocated. 
If the block being freed is not adjacent to 
any existing free 2048-byte block, a new 
FBQE is constructed. The number-of-bytes 
count in the appropriate DQE is then decre
mented to reflect the number of blocks 
being removed from the subpool. When this 
count reaches zero, the DQE is eliminated. 

The freeing of space in the region may 
permit a rollin to occur, if the region was 
obtained through rollout. If the rollout 
feature is included in the system, the 
FREE~~IN routine branches to the FREBRF 
routine. This routine tests the region's 
attributes, and if possible, releases the 
region from the current job step and sched
ules linkage to the RO/RI module 
(IEAQRORI) • 

The FREBRF routine performs the follow
ing functions for the job step whose space 
is being freed: 

• Examines the partition queue element 
(PQE) that describes each region allo
cated to the job step. 

• Determines if the region is "borrowed" 
and "free." The region is borrowed if 
its PQEBOR flag is set, indicating that 
the region is not owned by the job 
step. The region is "free" if none of 
its space is assigned to a subpool. 

• If the region is borrowed and free, 
does the following: 

1. Releases the region from the cur
rent (borrowing) job step. It does 
this by removing the PQE from the 
current job step's PQE queue. 

2. Schedules linkage to the RO/RI 
module to attempt the rollin of the 
job step that owns the region. 
This is done via a branch to the 
SCHEDRRI routine. 

3. Determines if the region was allo
cated from unassigned space in the 
dynamic area. <Such a condition is 
indicated by zero in the PQETCB 
field. ) 

4. Frees the region, if it was allo
cated from unassigned space, via a 
branch to the MRELEASE routine. 

o 

() 



5. If the multiprocessing feature was 
selected, and the region was allo
cated from unassigned space, deter
mines if any part of the region is 
to be removed from available main 
storage via a branch to the Vary 
Storage Offline routine (IFSVRYOF). 
(For a description of the Vary 
Storage Offline routine, see "Free
ing Space Assigned to a Region.") 

If r.ollin is warranted, the SCHEDID<I 
routine schedules linkage to the RO/RI 
module. The routine's processing is simu
lar to that of the SHEDRO routine, which 
schedules the RO/rtI module to perform roll
out. (See "Scheduling Linkage to the 
Rollout/Rollin Module" in ·Processing If 
the Requested Space Is Not Available. n) 

FREEING ONE OR MORE BORROWED REGIONS 
THROUGH ROLLIN 

The RO/RI module is entered at location 
IEAQRORI from the Dispatcher, when it dis
patches the RO/RI task via a Load PSW 
instruction. The RO/RI mOdule determines 
that rollin is needed by observing that the 
input parameter-list address is negative. 
Accordingly, it bra.nches to the RO/RI Cri
terion routine. 

The RO/RI routine (ROLLIN) coordinates 
all functions performed during rollin. 
These functions consist of: 

• Freeing the space occupied by the bor
rowing job step's PQE. 

• Determining whether the rolled out job 
step should be rolled in. 

• Transferring the rolled out job step to 
main storage, if the step should be 
rolled in. Performs special processing 
if I/O error occurred during the 
transfer. The processing consists of 
reconstructing free block queue ele
ments (FBQEs) and scheduling the 
abnormal termination of the partially 
rolled-in step. 

• Restarting deferred I/O requests for 
the rolled-in step. 

• Restarting deferred operator replies 
for. the rolled-in step. 

• Making dispatchable the tasks of the 
rolled-in step. 

• Performing final common housekeeping, 
primarily for the borrowing job step. 

• Scheduling rollout for deferred rollout 
requests. 

Freeing the Borrowing Job Step's PQE 

The RO/RI Criterion routine first saves 
from the borrower's PQE the addresses of 
the region and the owner's job step TCB. 
It then invokes the FREEMAIN routine 
(IGC010), via supervisor linkage. The 
FREEMAIN routine frees the space occupied 
by the borrower's PQE, since this PQE is no 
longer needed. There is now only one PQE 
that describes the region, the owner's PQE. 

Determining Whether the Rolled-Out Job Step 
Should Be Rolled In 

To determine whether the rolled out step 
should be rolled in, the RO/RI Criterion 
routine does the following: 

• Determines if the region was allocated 
to the borrower by means of a rollout. 
or whether the r~gion was allocated 
from free space in the dynamic area. 
(If the region was allocated from free 
space. the owner's TCB address in the 
PQE (PQETCB) is zero.) 

• Branches to location RINOS to do 
housekeeping, bypassing rollin, 
region was allocated from free 
(See nperforming Final 

final 
if the 
space. 
Common 

Housekeeping.n) 

• Determines if any of the owner's PQEs 
represent the region that is being 
freed. 1 If so. clears the win use" flag 
(PQEUSE) in the PQE to indicate that 
the region is not being used by a 
borrower. 

• Bypasses rollin if the owning job step 
has any borrowed region that is still 
in use. In this case. the RO/RI Crite
rion routine branches to location RINOS 
to perform final housekeeping. If, 
however, the owning step has no bor
rowed region that is still in use. the 
routine begins the rollin of the step. 

Transferring the Rolled-Out Job Step to 
Main Storage 

The RO/RI Criterion routine transfers to 
main storage the contents of the job step's 
region(s). It also does some housekeeping. 
For each region whose contents are to be 
rolled in. the routine does the following: 

• Changes the storage protection key of 
a112-K blocks from the borrower's key 
to that of the owner. This is done via 
a branch to location SETKEYS1. 

1A rolled out step normally has only 
PQE and region, since rollout of a 
that has itself caused rQllout 
forbidden. 

one 
step 

is 

Section 5: Main Storage Supervision 141 



• Branches to the Start Transfer routine 
(STARTIO) to enable I/O interruptions 
and transfer the region's contents to 
main storage. (See -Transferring the 
Contents of the Selected Region to the 
Rollout Data Set.") 

• Writes the rollin message wIEA1241 job
name, stepname ROLLIN,· if permanent 
I/O error did not occur during 'the 
transfer. The message is written via 
the Write-to-Operator routine 
(IGC003E). 

• Disables I/O interruptions and tests 
for I/O error during the transfer. If 
there was permanent I/O error. the job 
step cannot be returned to its region. 
The RI/RO Criterion routine. in this 
case. reconstructs the free block queue 
elements (FBQEs) of the region, so tha~ 
invalid FBQEs will not cause an ABEND 
recursion when the job step is abnor
mally terminated. The reconstruction 
is accomplished through the use of the 
MRELEASE routine in module IEAQMOO. 

• Resets the wrollout- flag (PQERO) in 
the owner's PQE to indicate that the 
region's contents are not rolled out. 

• Sets the free 2-K blocks of the region 
to zero protection key. This is done 
so that the blocks may not be used by 
the job step until they have been 
allocated by the GETMAIN routine. 
(Sets zero protection key by branching 
to location SETKEYS.) 

• If there was permanent I/O error during 
the transfer. branches to location 
ERRIN to invoke the supervisor's ABTERM 
routine. This routine schedules the 
abnormal termination of the partially 
rolled-in job step. As part of the 
abnormal termination. the ABEND routine 
(ABEND4) frees the region's space. via 
the Release Main Storage routine (IEAQ
SPET). The ABTERM routine returns con
trol to location RIN06 in the RO/RI 
module. (See wMaking Dispatchable the 
Tasks of the Rolled-In Job Step.·) 

Restarting Deferred I/O Requests for the 
Rolled-In Job Step 

The RO/RI Criterion routine uses its SVC 
Restore Interface routine (RSTRIO) to 
restart I/O requests belonging to the 
rolled-in job step. These I/O requests 
were deferred when the job step was rolled 
out. (See -Processing If a Suitable Job 
step Can Be Found.·) 

For each task of the rolled-in step. the 
SVC Restore Interface routine does the 
following: 

142 

• Selects the task's TCB address from a 
rollout I/O queue element (RIQE) on the 
RIQE queue. (See Section 12. wControl 
Blocks and Tables,· for the RIQE 
format. ) 

• Prepares for the redispatching of the 
SVC Restore Interface routine under 
control of the selected TCB. The I/O 
supervisor associates the restored I/O 
requests with the TCB under which the 
RESTORE macro instruction is issued. 
The preparation consists of: 

1. Dequeuing the RO/RI IRB from the 
RO/RI TCB (or from a previously 
selected TCB), and placing it at 
the head of the RB queue of the 
selected task. The Shifting of the 
IRB makes the RO/RI task 
nondispatchable. 

2. Sets the • prevent asynchronous 
exits· flag (TCBFX) in the selected 
TCB. The purpose is to prevent the 
scheduling of an asynchronous exit 
routine by the Stage 3 Exit Effec
tor when the Dispatcher is entered. 
Such scheduling would interfere 
with the issuance of the RESTORE 
macro instruction. 

3. Places in the IRB old PSW the 
reentry address (RSTRI04) of the 
SVC Restore Interface routine. 
This address is the point at which 
the routine will be redispatched to 
issue the macro instruction. 

4. Makes the selected task temporarily 
dispatchable by clearing nondis
patchability flags in its TCB. 
(The TCBFRO flag was set in each 
TCB of the job step during rollout 
processing.) The flags are saved 
so that they may later be restored. 

5. Saves the register contents that 
were stored in the selected TCB. 
Stores the RO/RI module's register 
contents in the selected TCB. This 
is necessary because the Dispatcher 
always loads registers from the TCB 
whose task it will dispatch. 

6. Indicates to the Dispatcher that it 
should dispatch the selected task. 
The routine does this by zeroing 
the wneww TCB pointer (IEATCBP) and 
invoking the supervisor's Task 
Switching routine. The Task 
Switching routine. detecting that 
the RO/RI task is nonready. places 
the selected TCB address in the 
wnew· TCB pointer. 



( 

( ._) 

,,/ 

• Branches to the Dispatcher to redis
patch the SVC Restore Interface routine 
at location RSTRI04. 

• Issues the RESTORE macro instruction, 
specifying the list origin (RIQEIOB) of 
a chain of lOBs. The lOBs represent 
channel programs deferred during roll
out. The RESTORE macro instruction 
causes supervisor linkage to the I/O 
Supervisor, which sets I/O request ele
ments to schedule the channel programs. 

• Dequeues the RIQE for the selected task 
and frees its storage space (via the 
FREEMAIN routine), since the RIQE is no 
longer needed. 

• Restores the selected task to its pre
vious status by restoring its saved 
"prevent asynchronous exits" flag and 
its nondispatchability flags. Places 
the task's saved general register con
tents in the selected TCB. 

When it has issued the RESTORE macro 
instruction for all tasks of the job step, 
the SVC Restore Interface routine causes 
the redispatching of the RO/RI task, as 
follows: 

• Dequeues the RO/RI IRB from the last
selected TCB and queues it from the 
RO/RI TCB. This action makes the RO/RI 
task ready. 

address (RSTRI06) of 
Interface routine in 

in preparation for the 
the RO/RI task. 

• Places the return 
the SVC Restore 
the IRB old PSW, 
redispatching of 

• Places the RO/RI module's saved regis
ter contents in the RO/RI TCB. The 
Dispatcher will load the registers from 
this TCB. 

• Branches to the Task Switching routine 
with the address of the RO/RI TCB. It 
does this to indicate to the Dispatcher 
that it should next dispatch the RO/RI 
task instead of the last-selected task. 

• Branches to the Dispatcher to redis
patch the RO/RI task. When redis
patched (at location RSTRI06), the SVC 
Restore Interface routine returns con
trol to the RO/RI Criterion routine. 

Restarting Deferred Operator Replies for 
the Rolled-In Job step 

The RO/RI criterion routine branches to 
the Reply Restore routine (RSTRQE) to 
restart operator replies that were received 
while the step was rolled out. The Reply 
Restore routine examines each reply queue 
element on the reply queue. Each element 
represents an operator reply that either 

was received or will be received. (The 
origin of the reply queue is UCMRPYQ in the 
unit control module.) The Reply Restore 
routine performs as follows for each reply 
queue element that is flagged "rolled out" 
and which belongs to the rolled-in step: 

• Clears the "rolled out" flag (RQERO) in 
the reply queue element. (This flag 
was set by the Reply Purge routine 
(PRGRQE) when the step was rolled out.) 
The cleared flag will indicate to the 
communications task Reply Processor 
routine (IGC1203D) that it may move the 
reply to the user's buffer. 

• Tests the "temporary-buffer" pOinter 
(RQEXB) in the reply queue element. 
(In the program listing, it is called 
the "purging message address.") If the 
pointer is nonzero, the Reply Processor 
routine received a reply and placed it 
in the temporary bufrer, while the job 
step was rolled out. 

• Issues an MGCR macro instruction to 
restart the reply, if it was received 
while the job step was rolled out. The 
macro instruction causes supervisor 
linkage to the Reply Processor routine 
(IGC1203D), via the Command Processing 
routine and the MGCR Router routine. 
The Reply Processor routine determines 
that the temporary buffer is full 
(RQEXB is nonzero), moves the reply to 
the user's nuffer, frees the temporary 
buffer, and completes the processing of 
the reply. (See "Reply ProcessingR in 
Section 7, "Console Communications and 
System Log. R ) 

• Continues the examination of the reply 
queue until all reply queue elements 
that belong to the rolled-in step have 
been processed. The routine begins 
each new scan at the reply queue ori
gin, because the Reply Processor rou
tine reorders the queue each time that 
it is entered. 

• Returns control to location RIN06 in 
the RO/RI Criterion routine. 

Making Dispatchable the Tasks of the 
Rolled-In Job Step 

The RO/RI Criterion routine next makes 
dispatchable the tasks of the rolled-in job 

I step if all the regions, in both hierarchy 
o and 1, belonging to the task are in 
storage. (These tasks were set' nondis
patchable during rollout by the RO/RI Cri-
terion routine, just before it deferred the 
job step's I/O requests.) 

The RO/RI Criterion routine (at location 
RIN06) issues the STATUS macro instruction 
to cause supervisor linkage to the Set 

Section 5: Main Storage Supervision 143 



Status routine (IGC079). This routine 
clears the "rolled out" nondispatchability 
flag (TCBFRO) in each TCB of the step. 

The operands 
instruction, as 
meanings: 

of 
used 

the STATUS 
above, have 

macro 
these 

1 RESET, ND 1(6) 1(12) 1 
~------~-----+-------------~+-------------~ 
Icauses the IIndicates thatlThis mask 1 
Iclearing of Ithe TCB whose Inumber indi- I 
Ithe nondis- laddress is in Icates that 1 
Ipatchabilitylregister 6 Ithe "rolled 1 
Iflag speci- 1 (JSTREG) and lout" nondis- I 
Ified by the lits descen- Ipatchability 1 
lmask operandldants are to Iflag (TCBFRO)I 
1(12). Ibe reset as Ishould be I 
1 1 specified. 1 cleared. 1 

Performing Final Common Housekeeping 

The RO/RI Criterion routine next per
forms final common housekeeping, primarily 
for the borrower's job step. The house
keeping, begun at location RIN08. is common 
to three types of rollin: 

1. A rollin of a job step that is com
pleted without I/O error. 

2. 

3. 

An attempted rollin of a job step that 
has produced a permanent I/O error. 

A rollin to a region that was allo
cated from free space in the dynamic 
area. 

The common housekeeping consists of: 

• Decreasing by a count of one the "roll
outs invoked" counter (ROICTR) to indi
cate that the current rollout is no 
longer in effect. The RO/RI criterion 
routine tests the count each time a 
rollout is requested. Unless permitted 
by a user appendage (IEAQAPG1) the 
RO/RI Criterion routine will prevent 
another rollout (defer the request) if 
the count equals one. 

• Clearing the "rollout invoked" flag 
(TCBFRI) in the borrower's job step 
TCB, if the job step has no other 
borrowed regions. The flag is tested 
by the TESTSTEP routine during rollout 
processi.ng, to determine if a selected 
Job step has invoked rollout. A job 
step is not suitable to be rolled out 
if it has itself invoked rollout. 

The RO/RI criterion routine then 
branches to its Dequeue routine to schedule 
rollout for deferred rollout requests. 

144 

Scheduling Deferred Rollout Requests 

A rollout request (IQE) was deferred 
during rollout and placed on the rollout 
request queue for either of two reasons: 
another rollout was in effect and concur
rent rollouts were prohibited, or a job 
step suitable to be rolled out could not be 
found. 

Detierred rollout requests are scheduled 
by the RO/RI module's Dequeue routine 
(DEQUEUE). This routine is entered either 
from the RO/RI criterion routine, via a 
branch, or from the Set Status routine 
(IGC079), during scheduling of the RO/RI 
module. In either case. a new region is 
available for rollout. 

The Dequeue routine schedules deferred 
rollout requests as follows: 

• Stores zero in the pointer to the 
rollout request queue (IEAROQUE). It 
does this because the queue is being 
temporarily eliminated. 

• Places zero in the count of deferred 
rollout requests (IEAROQCT) '. During 
rollout this count can be used by an 
optional user appendage (IEAQAPG3) to 
determine whether to abnormally termi
nate a job step, if a step suitable for 
rollout cannot be found. 

• If there are no 
request queue, 
routine to queue 
"next available 
exit from the 
"Exiting from 
Module.") 

IQEs on the rollout 
branches to the RETEXIT 
the current IQE to the 
list" (RBNEXAV) and 
RO/RI module. (See 
the Rollout/Rollin 

• If there is at least one IQE on the 
rollout request queue, does the follow
ing for each IQE: 

1. complements the IQE address to 
serve as an input parameter for the 
Stage 2 Exit Effector. This indi
cates to Stage 2 that the element 
is an IQE, not an I/O request 
element. (stage 2 handles both 
types of elements.) 

2. Clears the "wait for core" nondis
patchability flag (TCBWFC) in the 
requestor's TCB. '(This TCB is the 
one whose address is contained in 
the IQE.) The flag is cleared 
because the task's main storage 
request is being reactivated. 

3. Branches to the Stage 2 Exit Effec
tor (IEAOEFOO) with the comple
mented IQE address. Stage 2 sched
ules linkage to the RO/RI module 
for the request. It does this by 

o 

o 



c 

placing the IQE on one of the 
asynchronous exit queues (AEQJ). 
(See • Scheduling Linkage to the 
Rollout/Rollin Module· in ·Process
ing If the Requested Space Is Not 
Available. W) 

• Branches to the RETEXIT routine, when 
all IQEs on the rollout request queue 
have been sCheduled. (See WExiting 
from the Rollout/Rollin Module. W) 

FREEING SPACE IN THE SYSTEM QUEUE AREA 

To free space in the system queue area, 
the GETMAIN routine first locates the 
descriptor queue element that represents 

the system queue area. It next checks to 
determine whether space within subpools 253 
and 254 is to be freed. If so, 8 bytes are 
added to the size of the area to be freed 
(to include the AQE that is contained in 
the area). and 8 bytes are subtracted from 
the address of the space. 

For subpools 253 and 254, the address of 
the appropriate AQE is obtained from the 
TCBAQE field of the associated TCB. If the 
entire area defined by the AQE is to be 
freed, the AQE is Simply removed from the 
AQE queue. Otherwise, it is altered by 
changing its byte count. For all requests 
(subpools, 253, 254, and 255), any result
ing contiguous free areas are combined by 
combining FQEs~ 

Section 5: Main Storage supervision 145 



c 



The Timer Supervision routines extend 
the capabilities of the IBM System/360 
interval timer feature. By using the 
timer, these routines service the macro 
instructions by which programmers can 
obtain the date and time of day, measure 
periods of time, or schedule activity for a 
specific time of day. 

The need for timer services is always 
signaled by an interruption, after which 
control is automatically given to an appro
priate timer supervision routine. svc 
interruptions occur when a TIME, STIMER, or 
TTIMER macro instruction is executed, and 
timer interruptions occur when a value in 
the interval timer expires~ After an SVC 
interruption, one of three macro service 
routines is given control. 

The TIME routine supplies the current 
date and time of day. The operator ini
tially gives a starting date and time of 
day with a SET command. Thereafter, Timer 
Supervision routines change the date at 
midnight and keep track of elapsed time. 
The TIME routine obtains the current date, 
adds elapsed time to the starting time 
given by the operator, and returns both 
values in general registers. 

The STlMER routine processes requests 
for timed intervals by scheduling their 
placement into the interval timer to cause 
interruptions at requested times. For each 
STIMER macro instruction. this routine 
builds a queue element and places into it a 
summary of the information in the STIMER 
macro instruction, including the informa
tion that will be needed when the interval 
expires. It then positions the element in 
the timer queue by its time of expiration. 
When a timer interruption occurs (a value 
in the timer expires), timer interruption 
handling routines perform any requested 
actions and obtain new intervals to be 
placed into the timer from elements in the 
timer queue. 

The TTlMER routine supplies the time 
remaining in a previously requested inter
valor it cancels previous requests for 
remaining time. To determine remaining 
time, the TTIMER routine subtracts elapsed 
time from the time of expiration of the 
interval. To cancel previous requests. the 
TTIMER routine removes corresponding ele
ments from the timer queue. 

In a multiprocessing system, each CPU 
has an interval timer located in its pre
fixed storage area (PSA). One timer is 

SECTION 6: TIMER SUPERVISION 

designated as active and is used by timing 
routines; the second, alternate timer is 
always set to a value X'SOOOOOOO' greater 
than the active timer and thus never 
expires. In a partitioned multiprocessing 
system, the alternate timer is set, but 
does not decrement. Timer routines access 
the interval timer by adding the PSA dis
placement value of the timer to the value 
in PREFTMRA, an index to the PSA that 
contains the active timer. PREFTMRA is a 
PSA word which contains zeroes if the 
active timer is in the same PSA, or the 
address of the other PSA if the timer is 
located in the other PSA. 

TIMER SVC INTERRUPTION HANDLING 

The handling of interruptions resulting 
from issuance of timer-related macro 
instructions. is shown in Figure 6-1. 

SVC Interruption 

'-! j 

SVC SVC 
First - Level Type 2 Routine Second - Leve I 
Interrupt i on Interruption 
Handler Handler I 

Type 1 SVC 47 
Routine (STIMER) 

1 svc 11 
(TIME) 

lsvc 46 
(TTiMER) 

TIME TTlMER STiMER 
Routine Routine Routine 

~ ~ 

Type 1 Exit 
Exit 
Routine 

Routine 

~ 
~ 

I 
~ 

Transient 
Interrupted 

Dispatcher 
Area 

Routine Refresh 
Routine 

~ 
Current routine 
of highest 
priority task 
that can be 
performed 

Figure 6-1. Timer SVC Interruption 
Handling 

Section 6: Timer Supervision 147 



The expansions of the TIME, STIMER, and 
TTIMER macro instructions contain SVC 11, 
SVC 47, and SVC 46 instructions, respec
tively. When these SVC instructions are 
executed, SVC interruptions occur and con
trol is given to the SVC First-Level Inter
ruption Handler, which saves information 
about the interrupted program and routes 
control accordingly. 

Both the TIME and TTIMER routines are 
type-1 SVC routines, and control is given 
directly to them by the SVC First-Level 
Interruption Handler. The STIMER routine, 
however, is a type-2 SVC routine, and 
control is first given to the SVC Second
Level Interruption Handler, which creates a 
supervisor request block, places into it 
the information about the interrupted pro
gram, and then gives control to the STIMER 
routine. (For a complete description of 
SVC first-level and second-level interrup
tion handling, see ·SVC Interruption Han
dling" in Section 2. 

After type-1 SVC routines have been 
executed, control is given to the Type-l 
Exit routine, which determines whether the 
task for which the SVC instruction was 
given should be resumed. If so, the Type 1 
Exit routine restores the saved contents of 
registers and returns control to the rou
tine in which the SVC instruction was 
encountered. If another task is to be 
performed, the Type-1 Exit routine saves 
register contents in the appropriate TCB, 
saves the contents of the old PSW in the 
appropriate request block, and gives con
trol to the Dispatcher. 

After type-2 SVC routines have been 
executed, control is given to the Exit 
routine, which performs functions similar 
to the Type-1 Exit routine and also gives 
control to the Dispatcher. 

The Dispatcher 
highest priority 
performed. 

TIME ROUTINE 

routes 
task 

control 
that 

to 
can 

the 
be 

The TIME routine determines the current 
date and time of day and returns both 
values to requesting routines in general 
registers. It obtains the date from a 
location in the communication vector table, 
into which it was placed by the Job Manage
ment SET Command routine. (Each day at 
midnight, the date is changed by the Timer 
Second-Level Interruption Handler.) To 
determine the time of day, however, the 
TIME routine must first determine how much 
time has elapsed since the operator gave 
the SET command. 

148 

After the operator gives a starting 
ti.me, the interval timer must be kept 
continually operating, so that an elapsed 
time can be measured. The interval timer 
automatically decrements any value placed 
into it and causes an interruption when the 
value becomes negative. For timekeeping 
purposes, 6-hour intervals are used. Dur
ing initial program loading (IPL), a 6-hour 
value is placed into the interval timer, 
and, when this value expires, another 6-
hour interval is placed into the timer by 
the Timer Second-Level Interruption 
Handler. 

To measure elapsed time, two pseudo 
clocks are used with the interval timer. 
Each time a 6-hour value is placed into the 
timer, one is also placed into a 6-hour 
pseudo clock. However, the value in the 
timer decrements, while that in the 6-hour 
pseudo clock does not. Thus, an elapsed 
time of up to 6 hours can be determined by 
subtracting the value in the timer from 
that in the 6~hour pseudo clock. 

To measure intervals longer than 6 
hours, a 6-hour value is added into a 
24-hour pseudo clock each time one is 
placed into the 6-hour pseudo clock except 
for the first 6-hour interval. (Each time 
a 24-hour period elapses. the 24-hour pseu
do clock is reset to 0.) The TIME routine 
determines elapsed time by subtracting the 
value in the timer from the sum of the 
values in the 6-hour pseudo clock (SHPC) 
and the 24-hour pseudo clock (T4PC): 

Elapsed Time = (SHPC + T4PC) - Timer 

Elapsed time is added to the starting time 
given by the operator to arrive at the 
current time of day. 

The values used in the timer are timer 
units equalling 13 microseconds; the values 
used in the pseudo clocks are timer units 
equalling 26.04 microseconds. Timer values 
are converted to units of 26.04 microsec
onds for calculations. The TIME routine 
converts the time of day to packed decimal 
form if the decimal (DEC) option was speci
fied in the TIME macro instruction or to an 
unsigned binary value if the binary (BIN) 
option was specified. If the tiroer units 
(TU) option was given, no conversion is 
performed. The current time of day is 
returned to requesters in general register 
0, and the date is returned in general 
register 1. 

STIMER ROUTINE 

The STIMER routine builds and positions 
on the timer queue the elements that repre
sent time intervals requested with STIMER 
macro instructions. If necessary, this 

() 

c 



(' 

o 

routine first converts requested time from 
hours, minutes, and seconds to timer units. 
Theni using either an existing element or 
creating a new one, it places into the 
element information specified in the STIMER 
macro instruction. Finally, it uses the 
Timer Enqueue subroutine to position the 
elements on the timer queue. 

THE TIMER QUEUE 

The timer queue provides a means of 
scheduling values representing time inter
vals for placement into the interval timer 
to cause interruptions to occur at appro
priate times. 

All elements in the timer queue are 
arranged by a time of expiration. After a 
timer interruption, the topmost element 
always represents the expired interval. 
This element is removed from the queue and 
used to determine what action is to be 
taken. Meanwhile, the interval represented 
by the next element is placed into the 
interval timer, and the procedure begins 
again. 

The time of expiration, by which ele
ments are ordered on the timer queue, is 
based upon a 6-hour cycle. To determine a 
time of expiration (TOX>, the STIMER rou
tine subtracts the value in the interval 
timer from the value in the 6-hour pseudo 
clock (SHPe> and adds the interval 
requested: 

TOX = (SHPC - Timer) + interval requested 

For example, assume that no requests are 
pending and that 3 hours have elapsed since 
the operator issued a SET command. Figure 
6-2 shows the timer queue and the values in 
both the timer and the 6-hour pseudo clock 
at this time. Assume now that an STIMER 
macro instruction requests a timer inter
ruption in 5 hours. The time of expiration 
(TOX) is determined: 

TOX 
8 

= (SHPC 
= ( 6 

Timer) + interval requested 
3 ) + 5 

The element representing the 5-hour 
request is positioned on the timer queue 
between the 6-hour and midnight elements. 
Both the 6-hour and midnight elements 
always exist on the queue. When the 6-hour 
element expires, the Timer Second-Level 
Interruption Handler subtracts 6 hours from 
the times of expiration of all other ele
ments on the timer queue and repositions 
the 6 hour element. Thus the element 
representing the request then becomes the 
topmost element, and its 2-hour time of 
expiration is placed into the interval 
timer. A timer interruption will ~ccur on 

6 - Hour TOX 

Midnight TOX 

Dummy Element* 

6 Hour TOX 

8 Hour TOX 

Midnight Element 

Dummy Element* 

Timer SHPC 

6 

6 Hours 6 Hours 
~~ 

I" I I I II I I II I 
\~_---:-.,...-:-,-__ ~J 

Interruption scheduled to occur 
after 2 hours of the second 6 -
hour cycle. (A 2 - hour interval 
wi II be placed into the timer.) 

* Dummy element signifies end of timer queue. 

Figure 6-2. Positioning of Elements on 
the Timer Queue 

schedule 5 hours after receipt of the 
request. When the midnight element 
exp1res, the Timer Second-Level Interrup
tion Handler changes the date given by the 
operator and repositions the midnight 
element. 

CONVERTING TIMES OF EXPIRATION TO INTERVALS 

Using the STIMER macro instruction, pro
grammers can specify a time interval in 
three ways: the location of a doublewor~ 
containing the interval in decimal form; a 
singleword containing the interval in 
binary form; or a doubleword containing a 
desired time of expiration in binary form. 
In the latter case. the STIMER routine must 
first convert the desired time of expira
tion to a time interval. In all cases, it 
must convert the intervals to timer units 
(one timer unit = 26.04 microseconds> 
before using them to calculate the times of 
expiration by which elements are ordered on 
the timer queue. 

If a time of expiration is specified. 
the STIMER routine converts it to an inter
val by subtracting the current time of day 
from the specified time of expiration. It 
determines the current time of day with the 
following formula: 

Section 6: Timer Supervision 149 



Current Time of Day = LTPC + T4PC + (SHPC -
Timer) 

where: 

LTPC = Starting time given by the operator 
in the SET command. 

T4PC = Value in the 24-hour pseudo clock. 

SHPC Value in the 6-hour pseudo clock. 

Timer = Value in the timer. 

Because no int~rval that exceeds 24 hours 
is valid, the STlMER routine replaces any 
interval that exceeds 24 hours with a 
24-hour interval. 

BUILDING TIMER QUEUE ELEMENTS 

The STIMER routine builds queue elements 
using information provided by the program
mer in the STIMER macro instruction. It 
first checks to determine if an existing 
element can be used. A usable element may 
be available if an STIMER macro instruction 
has been given for the same task in which 
the current STIMER macro instruction was 
encountered. This element could be an 
expired element, an element in the timer 
queue, or one that was changed to an 
interruption request block by the Timer 
Second-Level Interruption Handler. The 
STlMER routine reuses expired elements and 
removes and reuses elements that are on the 
timer queue. If the existing element has 
been changed to an interruption request 
block that is being used, or if no usable 
element exists, the STIMER routine obtains 
space for and builds a new element. It 
places in the current TCB a pointer 
(TCBTME) to the timer queue element that it 
has created. The STI~mR routine then uses 
the Timer Enqueue subroutine to position 
the completed element on the timer queue 
(see Figure 6-3). 

TIMER INTERRUPTION HANDLING 

When a time interval that was placed 
into the timer expires, an external inter
ruption occurs and control is automatically 
given to the External First-Level Interrup
tion Handler (see Figure 6-4). 

Basically, the External First Level 
Interruption Handler saves information 
about the interrupted program, distin
guishes between timer and other types of 
external interruptions, and, for timer
caused interruptions, gives control to the 
Timer Second-Level Interruption Handler. 

The 
Handler 

150 

Timer 
takes 

Second-Level Interruption 
any actions the programmer 

specified (in the STIMER macro instruction) 
to be performed upon expiration, and places 
another interval into the timer. 

DETERMINING WHAT ACTIONS ARE TO BE 
PERFORMED 

When a timer interruption occurs, the 
topmost element in the timer queue repre
sents the expired interval. The Timer 
Second-Level Interruption Handler obtains 
the address of the topmost element from 
main storage location TQPTR, removes the 
element from the timer queue, and to deter
mine what action to take, examines bits 6 
and 7 of the first word in the element (see 
Table 6-1). 

If a TASK or REAL parameter was given in 
the STIMER macro instruction, and if an 
asynchronous exit routine was specified. in 
the STIMER macro instruction, the Timer 
Second-Level Interruption Handler (TSLIH) 
must make rurther tests to determine what 
action should be. taken. If no entry to an 
asynchronous exit routine is desired, the 
queue element is given an expired status. 
If an exit is specified and the timer queue 
element (TQE) is TAsK type, the TSLIH 
changes the TQE to an interruption request 
block (IRB) containing an interrupti.on 
queue element (IQE), and gives control to 
the stage 2 Exit Effector. If an exit is 
specified and the TQE is REAL, the TSLIH 
determines if the issuer of the STIMER was 
an initiator. If an initiator did not 
issue the STIMER macro instruction, the 
TSLIH proceeds as if an exit was specified 
and the TQE was TASK type. If an initiator 
did issue the STIMER macro instruction, 
further processing must be performed. 

If the TQE is REAL, if an exit is 
specified, and if an initiator issued the 
STIMER macro instruction, it indicates that 
the 30-minute wait limit (imposed by job 
step timing) has expired. When this case 
occurs, the problem program must be abnor
mally terminated while the timer queue 
element must be reinstated as TASK type 
with the actual CPU time remaining value. 
The Timer Second-Level Interruption Handler 
accomplishes this by branching to ABTE~1 

with the address of the problem program job 
step TCB (TCBLTC field of initiator TCB) to 
schedule the step for ABEND. The TSLIH 
also passes ABTERM a unique ABEND code 
(522) which indicates that the 30-minute 
wait limit expired. Upon return from 
ABTERM, the TSLIH marks the timer queue 
element as TASK type and off the queue, and 
moves the CPU time remaining value from its 
save slot (TQESAV) to the time of 
expiration/time remaining slot (TQEVAL) 
within the TQE. 

...... -.-/1 



( '-, 

I . 

( 

TQEFlGS 
TQETeB 

( Ind lcators ) (Address of TeB) 

o 1 

1 TQEFlNK 

Zeros (Address of next queue element) 

4 
1 TQEBlNK 

Zeros (Address of preceding queue element) 

8 

TQEVAL 

(Time of expiratio,ytime remaining) 
12 

TQELHPSW 

(First word of current PSW - used when TQE serves as IRB) 

16 

Reserved 

20 

TQESAADR 

( Address of processing program save area) 

24 

TQEEXIT 
Zeros 

(Addreu of timer asynchronous exit routine) 

28 29 

TQEGRS 

(Register save area - used when TQE 
serves (IS IRB) 

32r-__________________________ ~ __________________________________________ ~ 

TQEEeB (Used for interruption queue element when TQE serves as IRB) (16 bytes) 

TQEIQE (Used for EeB when WAIT parameter is given in STiMER macro-instruction. 

%~--------------------------------------------------------------------------~ 
~: See Section 12 for Description of Flags. 

Figure 6-3. Timer Queue Element (TQE) 

If a WAIT parameter was given in the 
STlMER macro instruction. the Timer Second
Level Interruption Handler gives control to 
the Post routine. directing it to post an 
appropriate event control block (contained 
within the timer queue element) and thus 
signal expiration of the interval. 

After either of the above actions have 
been completed, the time of expiration 
(TOX) value of the topmost element 1S 
placed into both the interval timer and the 
6-hour pseudo clock. (The element repre-

senting the recently expired interval has 
been removed from the queue.) 

RETURNING 6-HOUR AND MIDNIGHT ELEMENTS TO 
TliE QUEUE 

When intervals represented by' either the 
6-hour or midnight supervisor queue ele
ments expire. the elements must be returned 
to the timer queue. Before it returns the 
6-hour supervisor element. the Timer 
Second-Level Interruption Handler subtracts 

Section 6: Timer Supervision 151 



External Interruption 

1-
Ti mer - Caused Interruption 

External Timer 
First - Level Second - Level 
Interruption Interruption 
Handler Handler 

Real. 

Type or 
Wait 

of Interval Task 

Req 

..--
Dispatcher 

I 
Stage 2 
Exit 
Effector 

Highest priority 
task that can be Post 
performed Routine 

Figure 6-4. Timer Interruption Handling 

6 hours from the times of expiration of all 
elements in the timer queue to reflect the 
passing of 6 hours since the elements were 
queued. It also adds 6 hours to the 
24-hour pseudo clock unless its value is 18 
hours. in which case it resets the 24-hour 
pseudo clock to O. The Timer Second-Level 
Interruption Handler then uses the Enqueue 
subroutine to position and queue the 6-hour 
element on the timer queue .• 

Before the Timer Second-Level Interrup
tion Handler returns the midnight element 
to the timer queue. it changes the date in 
the communications vector table. 

TTIMER ROUTINE 

The TTIMER routine performs the two 
functions that can be requested with the 
TTIMER macro instruction. These are to 
provide the time remaining in a previously 
requested time interval or to cancel a 
previously requested interval. 

Table 6-1. Actions Taken After Timer Expiration 
r------T--------------------------T--------------------------T------------------------------, 
I Bits I I I Action Taken by Timer I 
16 i 7 I I I Second-Level Interruption I 
lof TQEI Indicate That: IElapsed Time Represents: I Handler I 
~------+---------------------------+-------------------------+-----------------. --------------~ 
I 00 ITASK parameter was used inlTime used to perform tasklchecks bit 5, which con- I 
I ISTlMER macro instruction. Ifor which the STlMER Itains a 1 if an asynchro- I 
I I lmacro instruction was Inous exit routine is to be I 
I I I given. I entered. If so. passes I 
I I I Icontrol to Stage 2 Exit I 
I I I I Effector. I 
~------+--------------------------+--------------------------+--------------------------------~ 
I 01 IWAIT parameter was used inlTotal elapsed time. IGives POST macro instruc- I 
I ISTIMER macro instruction. Imeasured from time that Ition. (Performance of I 
I I linterval was placed into Itask for which macro I 
I I I timer. I instruction was issued I 
I I I I cannot be resumed until I 
I I I IPOST is given.) I 
~------+----------------------------+----------------------------+---------------------------~ 
I 10 IInterval that expired was ITotal eiapsed time. IChecks bit 5, which will I 
I la 6-hour supervisor inter-Imeasured from time that Icontain a 1 if a 24-hour I 
I IvaI. linterval was placed into Iperiod has passed. If so, I 
I I I timer. I increments date by one. I 
~------+---------------------------+-------------------------+--------------------------.-1 
I 11 IREAL parameter was used inlTotal elapsed time, IChecks bit 5. which will I 
I ISTIMER macro instruction. Imeasured from time that Icontain a 1 if an asynchro-I 
I I linterval was placed into Inous exit routine is to be I 
I I I timer. I entered. If so. gives con-I 
I I I Itrol to Stage 2 Exit I 
I I I I Effector.· I 
~------~--------------------------~---------------------------~---------------------------~ 1* If an Initiator issued the STIMER macro instruction, the TQE will be converted tol 
I TASK type, and control will be passed to ABTERM. I L ___________________________________________________________________________________________ J 

152 

f\ '/ 



( 

DETERMINING REMAINING TIME 

Before the TTIMER routine can determine 
rema1n1ng time, it must first locate the 
queue element that represents the affected 
interval. It obtains the address of the 
element from the TCB of the task being 
performed when the TTIMER macro instruction 
was given. If no element exists, or if the 
interval represented by the element has 
expired, this routine places 0 time into 
general register O. If an unexpired 
interval exists, the TTIMER routine deter
mines remaining time by using the following 
formula: 

Remaining Time = TOX - (SHPC - Timer) 

where: 

TOX = Time of expiration of the element. 
SHPC = Value in the 6-hour pseudo clock. 
Timer ~ Value in the interval timer. 

The interval may have expired while the 
TTIMER routine was being executed, in which 
case the above calculation would yield a 
negative remaining time value. If so, a 0 
value is returned in general register O. 
If a positive remaining time value is 
obtained, it is placed unaltered (in timer 
units) into general register O. 

CANCELING AN INTERVAL 

If the CANCEL option was used in the 
TTIMER macro instruction, the TTIMER rou
tine uses the Timer Dequeue subroutine to 
remove the corresponding element from the 
timer queue. The TTIMER routine also 
clears the TQE pointer (TCBTME) in the 
current TCB. The current task thus no 
longer has a timer queue element. 

Section 6: Timer Supervision 153 



,,-~, 

I,,-.,?' 



o 

SECTION 7: CONSOLE COMMUNICATIONS AND SYSTEM LOG 

SUPPORT·ING CONSOLE COMMUNICATIONS 

The supervisor console support routines 
provide for input and output for one or 
more console devices. Input results from 
an unplanned interruption from an external 
device. or from the main console; output 
results from the macro instructions WTO 
(Write to Operator) and WTOR (Write to 
Operator with Reply). 

The operator causes an I/O interruption 
by pressing the REQUEST key on the 1052 
Printer-Keyboard, or the START key on a 
card reader. The I/O First-Level Interrup
tion Handler passes control to the I/O 
Supervisor, which determines that an opera
tor interruption service has been 
requested. Control then passes to the 
resident Attention routine. 

When the operator presses the INTERRUPT 
key on the operator control panel (OCP), he 
causes an external interruption. In this 
case, control passes from the External 
First-Level Interruption Handler to the 
communications task resident External 
Interruption Handler routine (IEEBC1PE). 

The basic function of both the Attention 
routine and the External Interruption 
Handler routine is to prepare for the 
performance of the communications task. 
This task is represented by a TCB built 
into the nucleus at system generation. 
Routines operating under this TCB perform 
all input/output functions related to con
sole communications. The communications 
task is performed by three modules in the 
system link library and by the transient 
SVC routine CHATR. The link modules are: 
an Initialization module, the Unit Control 
module, and a Wait module. The Initializa
tion module sets up control blocks when the 
nucleus is initialized. The Unit Control 
module (UCM) is set up by the Initializa
tion routine, and is the primary control 
table for console communications. The Wait 
module receives control when the communica
tions task becomes active. 

The Wait module issues a WAIT macro 
instruction. specifying a list of event 
control block (ECB) addresses. The address 
of this list is contained in the UCM. When 
one of the ECBs is posted, the communica
tions task becomes a ready task. When it 
becomes the active task. it issues the 
CHATR SVC macro instruction (SVC 72). This 
SVC includes a common module, the Router 
module, and four service modules. The 
services that are performed, in order of 

priority, are: external interruption pro
cessing, attention processing, input/output. 
completion processing, and WTO(R) 
processing. 

The Router routine selects the service 
to be performed and passes control to one 
of four process modules. One of the pro
cess modules provides external interruption 
services. The other three provide console 
input/output services: one handles input/ 
output for the 1052 Printer-Keyboard; the 
second handles input from unit record 
devices; and the third, output to unit 
record devices. Each of the three input/ 
output process modules is associated with 
an open/Close support module, which pro
vides control blocks for Data Management 
and the I/O Supervisor. 

The flow of control following an exter
nal or input/output interruption from a 
console is shown in Figure 7-1. This 
figure also serves as a module directory 
for console input services. 

Console output is initiated when a user 
or system program issues the WTO or WTOR 
macro instruction. Both macro instructions 
result in the performance of the transient 
SVC 35 routine. This routine adjusts the 
console queues and prepares for the perfor
mance of the communications task. 

There are two console queues, the buffer 
queue and the reply queue. The buffer 
queue points to messages that are to be 
written to the operator as a result of the 
WTO or WTOR macro instruction. The reply 
queue points to buffers for operator 
replies to the WTOR macro instruction. The 
SVC 35 service routine queues messages on 
the appropriate queue. 

The extent of both queues may be limited 
when the system is generated. An attempt 
to exceed the limit results in an ENQ macro 
instruction for the requesting task. The 
task will receive control again when the 
number of elements in the queue falls below 
the limit. 

The flow of control for console support 
output is similar to that for input. The 
Router module has the additional responsi
bility of selecting an output device. The 
process modules issue the EXCP command for 
the 1052 Printer-Keyboard, or the WRITE 
macro instruction for a printer. For an 
operator reply (to the WTOR macro instruc
tion), the I/O Completion Process module 

Section 7: Console Communications and System Log 155 



Interruption Hondling 

COnSOle SUpport -

C . t' T k ommunlca Ions as 

IEECVUCM 

Unit Control 
Tobie 

--- - -
SCB 72 (CHA TR) 

.. 
IEECVCTX 

External 
Processor 

External 
Interruption 

l 
External FLI H 

- -i- -
IEECVCRX 

External (Post Attention (Post 
Communications Communications 

Task) Task) 

IEECVCTI 
Initialization 
(Performed at 
NIP) 

1 
IEECVCTW 

Wait Routine 
(Waits on ECBs 
in UCM) 

- - - -l- - - -
IEECVCTR 

Router (~eie'cts 
Service to Be 
Performed) 

t .. • IEECVPMX IEECVPMC 

1052 Unit Record 
Processor Input Processor 

l ! 
IEECVOCX IEECVOCR 

Open/Close Open/Close 
Support Support 

I 0 Su vsr 

- - - --

• IEECVPMP 
Unit Record 

I Output 
Processor 

! 
IEECVOCP 

Open/Close 
Support 

Figure 7-1. Console Support: Input 

issues an SVC 34 instruction (Command Pro
cessing). The Command Processing service 
routine determines that the incoming com
mand is a response to the WTOR macro 
instruction, and passes control to the 
Reply Processor routine. 

Control flow for console support output 
is shown in Figure 7-2, which also serves 
as a routine directory. 

REPLY PROCESSING 

The WTOR macro instruction causes a 
message to the operator to be written on a 
console deVice, and permits a reply from 
the operator to be returned to the request
ing routine. A WAIT macro instruction is 
also issued by the requestor, specifying 
the ECB address contained in the WTOR macro 
instruction. When the operator enters his 
reply on a console device, the reply is 
placed in a buffer in the requestor's 
region, and the specified ECB, also in the 
requestor's region, is posted. 

An operator reply is processed by the 
communications task Reply Processor routine 
(IGC1203D). The routine is entered when a 

156 

reply is received, or when the Rollin Reply 
Processing routine (RSTRQE) restarts 
replies that were deferred during rollout 
of a job step. (See "Freeing One or More 
Borrowed Regions Through Rollin" in Section 
5, "Main storage Supervision.") 

The Reply Processor routine first edits 
the reply for proper format and length, 
then finds the reply queue element that 
represents the specified reply. Subsequent 
processing depends on whether the job step 
for which the reply was issued is currently 
rolled out. 

If the job step is currently rolled out 
(RQERO flag set), the Reply Processor rou
tine invokes the GETMAIN routine to obtain 
144 bytes from the system queue area. This 
space provides a temporary buffer in which 
the Reply Processor routine saves the reply 
until the job step is rolled in. The 
address of the temporary buffer, provided 
by the GETMAIN routine in register 1, is 
stored in the RQEXB field of the reply 
queue element. The Reply Processor routine 
then moves the current reply to the tem
porary buffer. Since further reply pro
cessing is not possible while the job step 
is rolled out, the routine returns control 

Interruption Handling 
WTO or WTOR 
SVC 

! 
SVC FLiH 

- ]- - -
SVC 35 

IEFCVWTO 
Buffer Adjustment. 
{Posts communication 
task.l 

Com~ic-;TonsTask -

IEECVUCM IEECVCTW 

Unit Control Table Wait Routine 

SVC72 (CHATii) - - - - - - - - -i-- - -
IEECVCTR 

Router - - - - -1 SVC 34 

I ~ 
SVC 34 I PMX, PMC, PMP 

Command Processing I Processor 

I 
I t 
I 

OCX, occ, OCP 

I Open/Close Support 
I 

Figure 7-2.. Console Support: Output 

o 



to the highest priority ready task, via the 
Exit routine and the Dispatcher. 

If the job step is not currently rolled 
out (RQERO flag not set), the Reply Proces
sor routine examines the RQEXB ("temporary 
buffer") pointer in the reply gueue ele
ment. (In the program listing this pointer 
is called the "purging message address.") 
If the RQEXB pointer is zero, there is no 
temporary buffer. This means either that 
the reply was not received during a pre
vious period when the job step was rolled 
out, or that the job step was not rolled 
out. In this case, the routine moves the 
reply from the system buffer to the user's 
buffer. It then returns control to the 
routine's main line to complete the pro
cessing of the reply. If, however, the 
RQEXB pointer is not zero, there is a 
temporary buffer in which the routine 
placed a reply during a previous period 
when the job step was rolled out. In this 
case, the routine moves the reply from the 
temporary buffer to the user's buffer, then 
clears the pointer to the temporary buffer, 
and invokes the FREEMAIN routine to free 
the buffer's space. It then returns con
trol to the routine'S main line to complete 
the processing of the reply. 

The Reply Processor routine completes 
the processing of the reply by: 

• Removing the reply queue element from 
the reply queue and freeing its storage 
space. 

• Returning (queueing) the reply identi
fication to the identification assign
ment pattern (UCMRPYI) in the unit 
control module. The reply identifica
tion is then available for reuse when a 
new WTOR macro instruction is issued. 

• Decreasing by a count of one the iden
tication assignment counter in the unit 
control module. This count indirectly 
indicates the number of reply identifi
.cations that are available for use. 

• Invoking the Post routine to post the 
message-issuing routine's ECB. 

'. Returning control to the highest 
priority ready task, via the Exit rou
tine and the Dispatcher. 

SUPPORT~NG THE SYSTEM LOG 

The system log is a pair of data sets 
maintained by the system for storage of 
statistical information; it is an optional 
feature of the operating system. The log 
is placed ona permanently mounted volume 
and cataloged when the system is generated. 
It is available for the use of any program. 

The log is initialized by the IEEVLIN 
routine during nucleus initialization. 
This routine operates as part of the master 
scheduler task. The IEEVLIN routine 
searches the catalog to locate the log. If 
the search is not successful, the operator 
is notified that the log option is not 
included in the system; in this case, log 
requests will be ignored by the control 
program. If the IEEVLIN routine locates 
the log, it opens one of the data sets, 
creates a DeB for the log, and sets up the 
resident log control area. 

Users communicate with the log through 
the macro instruction WTL (write to log) 
and the commands LOG and WRITELOG. The WTL 
routine (SVC 36) schedules the entering of 
designated information into the log. The 
LOG command is used to enter information 
into the log from the console. The WRITE
LOG command is used to request that the 
contents of the log be written by a SYSOUT 
writer of a paxticular class. 

The supervisor controls responses to all 
three types of requests through the log 
control area. This area is an a-word block 
that contains control information about the 
log. It includes an ECB that is used by 
the LOG command, and the address of an ECB 
that is used by the WTL macro instruction 
and the WRITELOG command. 

Figure 7-3 shows the internal organiza
tion and control flow of log-related activ
ity. The LOG and WRITELOG commands are 
both initially handled by the SVC 34 ser
vice routine (command processing). This 
processing includes issuing a POST macro 
instruction for the ECB associated with the 
particular command. In the case of a LOG 
command, the SVC 34 routine issues the WTL 
macro instruction after posting the ECB. 

The WTL routine (SVC 36) may be entered 
directly as a result of a WTL macro 
instruction, or indirectly through a LOG 
command. The routine obtains main storage 
for the requested message, places the mes
sage on a chain of requested messages 
(called the log chain), and issues a POST 
macro instruction, specifying the WTL ECB. 

When either log EeB is posted, the 
IEEVWAIT routine of the master task is made 
ready to be performed. This routine passes 
control to the Log Writer routine. If the 
request was to write a message on the log 
(either a WTL macro instruction or a LOG 
command), the Log writer routine writes the 
message. If the request resulted from a 
WRITELOG command, the Log Writer routine 
branches to the IEEVLOPN routine, which 
opens the SYSOUT data set. The Log Writer 
routine then attaches the Log Dispatcher 
task, which schedules the output operation. 

Section 7: Console Communications and System Log 157 



Command Pracessi ng 
SVC 34 

IEEll03D 

Log and Wri tel og Post Routi ne 

Posts ECB to 
Activate Master Task 

+ 
( Return 
'----------' 

IEEVIPL 

Initial Program Load 

j 
IEEVWAIT 

Master Wait Module 

Waits on ECB s in 
Log Control Area 

t ~ 
IEEVLWTR 

Log Writer Routine 

Services WTL 

Dispatches to SYSOUT 
if Writelog 

Log Issues S VC 36 
~--------------~ 

IEEVLlN 

Log Initialization Routine 

IEEVLOPN 

Opens Device for Writelog 

- - - - -~Attach - - - - - - - - - - - - - - --

IEEVLDSP 
Writelo!1 Dis~tch Routine 

Enqueues JFCB and DSB 

IEEVLOUT 

I SYSOUT Writer I Indicate Available Log Data Set 

Figure 7-3. Log Functions 

158 

( WTL 
SVC 36 

IEEVL03F 
WTL Routine 

Chains Log Element. 
Posts ECB to 
Activate Master Task 

( Return 
'------------' 

Transient Supervisor Log Routines 

,-----------I JFCBs Loaded by IEEVLOPN 

I 
I 
I 
I 
I 

IEEVLOGJ 

2 JFCB s for Log Data Sets 

____ L __________ _ 
Log Dispatcher Task 

SYSOUT Writer Task 



( ' 

/ 

The Checkpoint/Restart facility allows a 
job to be restarted after an abnormal 
termination. The retry can begin at the 
start of a job step, or within a job step, 
and prior steps and portions of a step can 
be skipped if they executed. successfully 
bo::!fore the termination. The supervisor 
provides the following two Type 4 SVC 
routines to handle restart within a job 
step (called a checkpoint restart): 

• The Checkpoint routine, called ?y the 
CHKPT IDa,cro instruction (SVC 63) ~n the 
problem program at points where the 
programmer wishes a reexecution to 
begin. 

• The Restart routine (SVC 52), called by 
a job management routine when the 
restarting step is scheduled. 

Restart at the beginning of a step (a 
step restart) is handled by job management, 
and is documented in the publication IBM 
System/360 Operating System: MVT Job Min= 
agement Program Logic Manual, Form 
Y28-6660. 

The Checkpoint routine creates a series 
of records (a checkpoint entry) in a data 
set provided by the calling task. The 
records include a copy of the task's main 
storage region, descriptions of data sets, 
and system control information. The 
Restart routine interprets the information 
in the checkpoint entry and uses it to 
restore the task to main storage, mount, 
verify and position its data sets, and give 
it control at the point where the check
point entry was written. 

CHECKPQINT (SVC 63) 

The Checkpoint routine is called by a 
problem program with the CHKPT macro 
instruction to create a checkpoint entry. 
The calling program supplies a DCB for the 
checkpoint data set and, optionally, a name 
(CHECKID) for the entry. The Checkpoint 
routine writes four types of records in the 
checkpoint entry: 

• A Checkpoint Header Record (CHR). The 
CHR describes a checkpoint and contains 
checkpoint/restart tables and flags. 

• Data Set 
Each DSDR 
contains 
(JFCB), a 

Descriptor Records (DSDRs). 
describes a data set and 
a Job File Control Block 

JFCB extension, or the 

SECTION 8 : CHECKPOINT/RESTART 

Generation Data Group Bias Count Table 
(GDGBCT). 

• Core Image Records (CIRs). The CIRs 
contain a copy of the caller's main 
stor;age region at the time he issued 
CHKPT. 

• Supervisor 
contain the 
that will 
task. 

Records ("SURs) • The SURs 
supervisor control blocks 
be needed to restart the 

The Checkpoint routine is logically 
divided into several functions, which are 
listed below with the names of load modules 
that implement them: 

• Checking parameters and system environ
ment (IGC0006C, IGC0106C, and 
IGC0206C). The Housekeeping routine 
tests the CHKPT operands for validity, 
and ensures that the task is eligible 
for a checkpoint. A work area is 
obtained and formatted, the Job Control 
Table (JCT) is read in, and the CHR is 
built. 

• Purging I/O reguests (IGC0506C). The 
Check I/O routine removes the caller's 
pending I/O requests from the logical 
channel queues, and allows any active 
requests to complete. 

• Describing the caller's data set status 
(IGCOA06C and IGCOD06C). The Preserve 
routine writes out the CHR, and then 
builds and writes out a DSDR for each 
data set. 

• Copying the caller's region (IGCOF06C, 
IGCOG06C, and IGCOH06C). The Checkmain 
routine creates the CIRs by copying the 
caller's region(s), except for the 
checkpoint work area, into the check
point entry, and then builds and writes 
out the SURs from information in system 
control blocks. 

• Reissuing the I/O reguests (IGCON06C). 
The Resume I/O routine returns the 
caller's pending I/O requests to the 
logical channel queues. 

• Clean up, report, and exit (IGCOQ06C 
andIGCOS06C). The Checkpoint Exit 
routine returns the storage obtained 
with GETMAIN, returns the JCT to the 
input queue, writes a console message 
noting success or failure to write a 
checkpoint, closes the checkpoint data 
set if checkpoint opened it, and 

Section 8: Checkpoint/Restart 159 



I 

···1 

returns to the caller with an SVC 3 
(EXIT) instruction. 

The first module of the Checkpoint rou
tine is loaded by the SVC SLIB, and subse
quent modules are called into the SVC 
transient area by XCTL. Figure 8-1 shows 
the order in which the routines are 
executed, and the information each routine 
processes. 

If an error is detected at any point 
during checkpoint processing, the Check
point Exit routine is called. An error 
message is written, and an error code is 
returned to the caller, so that execution 
may continue without the checkpoint. 

PARAMETER AND ENVIRONMENT CHECK 

The first three load modules of the 
Checkpoint routine test the calling parame
ters and system environment for conditions 
that would prevent successful checkpoint 
processing. If no errors are detected, a 
work area is obtained and formatted, and 
the JCT is read. A CBR is built in the 

output buffer, and the Check I/O routine is 
called. 

Parameter Check (IGC0006C) 

The first module sets the system mask to 
allow all interruptions, then inspects the 
checkpoint flags in the TCB to determine if 
checkpoint entries have been suppressed by 
the RD parameter of the job control state
ments. If they have been suppressed, SVC3 
(EXIT) is issued to return to the caller. 
A test is also made for the CANCEL operand 
of the CHKPT macro instruction. CANCEL 
processing is discussed below. 

For normal checkpoint processing, the 
first housekeeping module calls the super
visor's Validity Check routine (IEAOVLOO) 
to ensure that the addresses supplied for 
the checkpoint DCB and CBECKID field are 
within the problem program region. An 
invalid address prevents further process
ing, and the Checkpoint Exit routine is 
called. 

The checkpoint DCB, 
caller, shows whether the 

supplied by 
checkpoint 

the 
data 

13 t:~I ________________ M_a_in_s_ro_ro_g_e_~ __ i,o_n ______________ ~ 

System 
Cantrol 
Blocks 

SVC SlIH :) 

G 

"-

Legend 

Storase 
Supervisor 
Blocks G~G 

r- - - - - - - - _J I L - - - + -..., 
: , ____ J , __ .J : 

+ .. + .. t .. + 
Housekeepi ng Check I/o Preserve Checkmain 

Check and 

~ p =:> Build and ~ Initialize, 
Purge I/o Write CHR, 

GETMAIN, Build and Write CIRs 
Read JCT, Requests 

Write DSDRs and SURs 
Build CHR 

~ I J 
OPEN 

~ 
( ( 

Checkpoint Data Set Core Imase 
Header Descriptor 

I 
Records 

? ~ Record (CHR) Records (DSDRs) (CIRs) 

e CHECKPOINT ENTRY 

from Process to 

• Figure 8-1. Checkpoint Processing Routines 

160 

Contents 
Directory 

Resume I/o 

Restore =:> 
I/o Requests 

Supervisor 
Records 
(SURs) 

Exit 

p Replace JCT, 
WTO, CLOSE, 
Exit 

L 
CLOSE 

........ 
) 

) 
( 

\ 

.[; 

o 
Vi 
~ ..... 
n 
:I: 
m 

'" 

, 
\ 

\ , / 



(/ 

set has been opened. If it has not, an 
OPEN is issued for it, and a flag is set 
indicating it must be closed before exit. 
Then the size of the checkpoint work area 
is calculated by the following formula: 

WA = TIOT + 1108 + 48 (DEBs - 2) 

where TIOT 

1108 

is the length of the 
Task I/O Table (depen
dent on the number of DD 
entries) • 

is a fixed table area. 

48 (DEBs - 2) is the number of Data 
Extent Blocks less two, 
times 48. 

A conditional GETMAIN, specifying Sub
pool 250, is issued for this area. If the 
GETMAIN is not successful, the Checkpoint 
Exit routine is called. If an area is 
returned, its upper and lower boundaries 
are checked to see that it does not come 
within 18 bytes of the region limits. 
(Because the work area will not be copied 
into the checkpoint entry with the rest of 
the region, a 17-byte or smaller -leftover" 
would be too small to write as a tape 
record.) If the work area is too close to 
the upper region boundary, all but the 
invalid part is released with FREEMAIN, and 
a second GETMAIN is issued. If the second 
GETMAIN is successful, the invalid portion 
of the first area is released. If the 
second GETMAIN is not successful, or if the 
first area returned is too close to the 
lower region boundary, the Checkpoint Exit 
routine is called, and no checkpoint entry 
is written. 

When the work area is obtained, the 
region boundaries, the address of the 
checkpoint DCB, and offsets to input buff
ers are stored in it, and the second 
housekeeping module is called. 

Environment Check (IGC0106C) 

The second housekeeping module tests 
characteristics of the checkpoint data set 
and the calling task for checkpoint suita
bility. If any error is detected, the 
Checkpoint Exit routine is called and no 
checkpoint is written. The invalid condi~ 
tions, in the order tested, are: 

• Checkpoint data set not on a direct 
access or magnetic tape device. 

• Key length not equal to zero 
checkpoint data set is on 
access device. 

when ·the 
a direct 

• Record format is not "undefined." 

• Blocksize specified in the DCB is not 
zero or not greater than 600. 

• The data set was not opened for output. 

• Physical sequential or partitioned 
organization was not specified. 

• A timer interval is pending. 

• An IRB or SIRB is pending on the RB 
chain. 

• A Type 3 or 4 SVRB is pending (other 
than IGG0551A, EOV.) 

• Rollout is being invoked. 

• The calling task is or has a subtask. 

• A WTOR is pending. 

• The CHECKID is missing, is too long, or 
contains invalid characters. 

In addition to these tests, a check is 
made for active ENQs. If any are pending, 
a warning message ·will be issued, at com
pletion of processing, informing the pro
grammer it will be the program's responsi
bility to reestablish the ENQs on a 
restart. 

If the caller has not specified the 
checkpoint entry blocksize in the DCB, a 
DEVTYPE macro instruction is issued to 
obtain the maximum blocksize for the 
device, which is entered in the DCB. (The 
blocksize Will be reset to zero before 
return to the caller.) Normal exit from 
this module is to IGC0206C, for JCT 
processing. 

JCT Processing (IGC0206C) 

The third housekeeping module constructs 
a channel program and I/O control blocks in 
the work area, and reads in the JCT £~om 
the input queue. The Checkpoint Exit rou
tine is called if an I/O error occurs. 

The count of the number of checkpoints 
taken for the current job is incremented in 
the JCT, and, if no CHECKID was suppl.ied by 
the call.er, one is generated (C'C· plus the 
seven-digit number of checkpoints taken). 

A Checkpoint Header Record (CHR), shown 
in Figure 8-2, is constructed in the work 
area and padded to 400 bytes with binary 
l's. The CHR is left in the output buffer 
and written later. Normal. exit is to the 
Check I/O routine. 

CANCEL Processing 

The CANCEL operand of the CHKPT macro 
instruction indicates that the cal.ler does 

Section 8: Checkpoint/Restart 161 



o r----------------T-----------------, 
I Number of I CHECKID I 

dec hex I CHKPTS I Length I 
4 4 r---------------------,..----.L-------------.L----------------_I 

I CHECKID (left justified) I 
I (Checkpoint Entry Identification) I 

20 14 ~--------------------------------------------------------------_1 
I DDNAME of CHECKPOINT Data Set I 

28 1C ~----------------------T-----------------------------_I 
I Lower Boundary of Problem I Upper Boundary of Problem - I 
I Program Storage I Program storage I 

36 24 ~--------------~---------------+---------------------------_I 
I CHKPT , TIOT I CHECKPOINT Work Area Size I 
I Blocksize I Length I I 

44 2C ~-------~------.L------------+---------------------------------_I 
I CHECKPOINT Work Area Address I CHECKPOINT SVRB Address I 

52 34 ~----------------------------------+_----------------------------_1 
I Lower Boundary of IBM 2361 Core I Upper Boundary of IBM 2361 Core I 
I storage Area (Hierarchy 1) I Storage Area (Hierarchy 1) I L-______________________________ .L _______________________________ J 

• Figure 8-2. CHECKPOINT Header Record (CHR) 

not want a checkpoint entry to be created, 
but wants to suppress an automatic restart 
at any preceding checkpoints. If CANCEL is 
specified, IGC0006C issues a GETMA.IN for a 
small work area, and calls IGC0206C module 
to read the JCT. Control is then passed to 
the Checkpoint Exit module (IGCOQ06C), 
where the checkpoint taken flag is set off, 
the JCT is returned to the input queue, and 
control is returned to the caller. In case 
of a subsequent abnormal termination, there 
is no indication in the JCT that checkpoint 
entries exist for the failing step, and no 
checkpoint restart is performed. The 
entries are retained in the checkpoint data 
set; the programmer may restart the step 
from one of these entries by submitting the 
proper restart Job Control Language at a 
later time. 

PURGING I/O REQUESTS 

The Check I/O routine consists of one 
module, IGC0506C, which intercepts pending 
I/O requests initiated by the caller. 
Check I/O obtains a pointer to the chain of 
DEBs from the caller's TCB, and issues the 
PURGE macro instruction, specifying the 
QUIESCE option, for each DEB in the chain. 
The SVC Purge routine removes any I/O 
requests associated with the specified DEB 
from the Logical Channel Queues of the I/O 
Supervisor. If a request has already been 
started, SVC Purge allows it to complete 
normally before returning to Check I/O. 

If an error occurs in completing an 
active I/O request for a QSAM or QISAM data 
set, Check I/O tests if the user has 
specified the QSAM ACC option (ftaccept 
errors·) in the DCB. If ACC is specified, 
the error is ignored. Otherwise, the 
Resume I/O routine is called, and no check
point is written. An error message (IHJOO-

162 

01) is written to the operator indicating 
unsuccessful completion because of an I/O 
error. Data sets with other organizations 
are not checked for 1/0 errors. When all 
of the caller's I/O activity has subsided, 
the Preserve routine is called. 

DESCRIBING DATA SET STATUS 

The Preserve routine consists of two 
load modules, IGCOA06C and IGCOD06C. The 
first writes out the CHR already built (by 
IGC0206C) in the output buffer; the second 
builds and writes out Data Set Descriptor 
Records (DSDRs) for each data set. If 
either module detects an end-of-volume for 
the checkpoint data set on tape, IGC0206C 
is called to reprocess with a new tape. If 
the checkpoint data set is on a direct ac
cess device, or if end-of-volume is reached 
a second time on tape, the Resume I/O 
routine is called, and no further process
ing takes place. 

Writing Out the CRR (IGCOA06C) 

The Preserve routine writes out the CHR, 
which is always 400 bytes long. If the 
checkpoint data set is a partitioned data 
set, a NOTE macro instruction is issued, 
and the relative track address returned -LS 
saved in the work area. Control is ppssed 
to the second module. 

Building and Writing DSDRs (IGCOD06C) 

The second module of the Preserve rou
tine reads JFCBs from the input queue, 
obtaining the track addresses from the 
TIOT,. For each JFCB, a Type 1 DSDR, 
consisting of a 2-byte identification 
(X'OOOO'), the 176-byte JFCB, the DDNAME, 
and the UCBTYP field from the UCB, is 
constructed in the output buffer. If JFCB 



(I 

extensions are associated with the JFCB, 
they are read in, and a Type 2 DSDR is 
constructed for each, consisting of the 
identification X'0004', and the 116-byte 
JFCB extension. Whenever the 400-byte 
buffer is filled, it is written out to the 
checkpoint data set. When the end of the 
TIOT is reached, Preserve checks for the 
existence of a Generation Data Group Bias 
count Table (GDGBCT). If one exists, as 
many Type 3 DSDRs as necessary to contain 
it are built and written. A Type 3 DSDR 
has the identification code X'0008' and a 
l16-byte segment of the GDGBCT. The format 
of the DSDRs is shown in Figure 8-4. Normal 
exit is to Checkmain. 

COPYING THE REGION 

The Checkmain routine consists of three 
load modules, IGCOF06C, IGCOG06C, and 
IGCOH06C. The first copies the caller's 
region into the Checkpoint data set as 
CIRS, and the second and third create SURs 
from the main storage supervision and con
tents supervision control blocks. Any I/O 
error within these modules causes the 
Resume I/O routine to be called, with an 
error code returned to the caller. If 
end-of-volume is detected on tape for the 
first time, control is transferred to 
IG0206C to attempt reprocessing with a new 
tape. If end-of-volume is detected on tape 
for a second time, or on a direct access 
device, Resume I/O is called with an error 
code. 

Writing CIRs (IGCOF06C) 

The first checkmain module determines 
the limits of the checkpoint work area, 
which is the only portion of the caller's 
main storage region which will not be 
written in the checkpoint entry. The first 
area copied is the portion of the region 
extending from the top of the checkpoint 
work area to the upper limit of the region. 
The next portion copied is from the lower 
limit of the region up to the lower bounda
ry of the work area. If necessary, storage 
assigned to the task in hierarchy one is 
copied last. Blocks are written out 
according to the blocksize supplied by the 
caller, or the maximum blocksize of the 
device, if the caller did not specify 
blocksize. Data is not moved to a buffer 
for writing, but is copied from its loca
tion in the region. The last record writ
ten out for each of the three storage areas 
is normally shorter than the specified 
blocksize. such short records are extended 
to at least 18 bytes. 

Building and Writing SURs (IGCOG06C and 
IGCOH06C) 

The SURs are constructed in a 200-byte 
output buffer in the work area, which is 

written out whenever it is full. The 
fields within the SUR may vary in content 
and length, so each is prefixed by a 
one-byte type code and one-byte length 
field as it is placed in the buffer. 
IGCOG06C first inserts the PQES associated 
with the problem program TCB, then the 
SPQEs and DQEs associated with the TCBs of 
the system task control routine, the 
initiator, and the problem program. Next 
the SVRBs and PRBs are added in the order 
they are found on the RB chain, and the 
LLEs are added last. IGCOH06C adds CDEs, 
the address of the PIE, the address of the 
first problem program save area from the 
TCB, the address of the pointer to the 
problem program save area from the TQE, the 
general registers from the checkpoint SVRB, 
each problem program DEB, any IRBs attached 
to these DEBs, the floating-point regis
ters, the checkpoint DCB, the address of 
the SYNAD routine in the checkpoint DCB, 
and the TIOT. Normal exit is to the Resume 
I/O routine. 

RESTORING I/O REQUESTS 

The Resume I/O routine (IGCON06C) 
searches through the chain of DEBs from the 
caller's TCB. If a DEB has an entry in the 
DEBUSRPG field, it indicates I/O requests 
were purged for that data set. Resume I/O 
issues a RESTORE macro instruction for each 
DEB with such an entry. The Restore rou
tine returns the purged I/O requests to the 
Logical Channel Queues of the I/O Supervi
sor. When all the DEBs have been checked, 
the Checkpoint Exit routine is called. 

CHECKPOINT EXIT ROUTINE 

The Checkpoint Exit routine is normally 
entered from the Resume I/O routine, but 
may be called from prior modules if an 
error is detected. The routine consists of 
two modules: IGCOQ06C, a general clean-up 
procedure, and IGCOS06C, a message routine. 

General Clean-up (IGCOQ06C> 

The first exit module checks to see if a 
checkpoint work area was obtained. If no 
work area exists, processing did not begin, 
and the message module is called to report 
the error and return to the caller. A test 
is also made for the CHKPT CANCEL operand. 
Processing for CANCEL was discussed above 
under "Parameter and Environment Check." 

If the checkpoint entry was written, and 
the checkpoint data set has partitioned 
organization, a STOW macro instruction, 
specifying the CHECKID as member name, is 
issued to add the entry to the data set 
directory. If no checkpoint entry was 
written because of an error, a FREEMAIN is 

Section 8: Checkpoint/Restart 163 



issued for the checkpoint work area, and 
control is passed to the message module. 

The CHECKID is placed in the JCT to 
identify the most recent checkpoint entry 
for the job, and the checkpoint volume 
serial number or track address are placed 
in the appropriate JCT fields. (If auto
matic restarts have been suppressed by job 
control statements, only the CHECKID is 
moved to the JCT.) The updated JCT is writ
ten out to the input queue, the checkpoint 
work area is returned via FREEMAIN, and the 
message module is called. 

Message Module (IGCOS06C) 

The last checkpoint module issues a 
GETMAIN for a message buffer and small work 
area, and determines the type of message to 
be issued from the return code and error 
code passed in the extended SVRB save area. 
One of the following messages may be writ
ten: IHJOOOI, IHJ001I, IHJ002I, IHJ004I, 
or IHJ005I. The jobname, checkpoint 
DDNAME, and, if a checkpoint entry was 
created, the volume serial number, unit 
name, and CHECKID of the entry, are moved 
into the message area, and a WTO macro 
instruction is issued. 

If the Housekeeping routine opened the 
checkpoint data set, a CLOSE is issued. 
The message area is released via FREEMAIN, 
and one of the following return codes is 
placed in Register 15: 

X'OO' Valid CHECKPOINT entry written. 

X'OS' No CHECKPOINT written, calling 
error. 

X'OC' Permanent I/O error. 

X'10' A valid CHECKPOINT entry was 
written, but there were out
standing ENQs. It is the 
responsibility of the user to 
restore these ENQs at RESTART. 

SVC 3 (EXIT) is then issued to return to 
the Dispatcher. 

RESTART (SVC 52) 

Restart of a program within a job step 
is accomplished by using the information 
stored in a checkpoint entry to recreate 
the conditions that existed when CHKPT was 
issued. Interpretation of the checkpoint 
entry is done by both job management and 
supervisor routines. When the step to be 
restarted is scheduled, job management 
inserts an extra job step (IEFDSDRP) in 
front of it, which adjusts the input queue, 
and reads the DSDRs to build JFCBs for the 

164 

restarting step's data sets. IEFDSDRP also 
ensures device allocations that are compat
ible with those that existed at CHKPT time. 
Just before exit, IEFDSDRP changes the name 
of the restarting step to IEFRSTRT. When 
this program is brought into storage and 
given control, it issues SVC 52, causing 
the first load module of the Restart rou
tine to be brought into an SVC transient 
area. Restart uses the TCB and other 
control blocks assigned to IEFRSTRT to 
recreate the system environment for the 
resta~ting step. 

The major functions of restart, and 
their relationship to the job management 
routines and the checkpoint entry, are 
shown in Figure S-3. The functions are 
listed below, with the names of the load 
modules implementing them: 

• Obtaining and formatting storage 
(IGCOOOSB and IGC010SB). The House
keeping routine issues a GETMAIN for 
storage in the problem program region, 
builds work tables and buffers for the 
following routines, and positions the 
checkpoint entry to the first CIR. 

• Restoring the step to main storage 
<IGC0505B, IGC0605B, IGC0705B, 
IGCOS05B, and IGC0905B). The Repmain 
routine reads the CIRs to restore the 
step to its region in main storage, and 
processes the SURs to rebuild the task 
supervision control blocks and queues. 

• JFCB processing (IGCOG05B and IGC
OI05B). The JFCB processor interprets 
the JFCBs (already rebuilt by IEFDSDRP) 
and builds tables describing each open 
data set in the restart work area. 

• Mounting and verifying VOlumes 
(IGCOK05B and IGCOM05B). The Mount/ 
Verify routine processes volume lables 
(calling a user label routine if neces
sary), and requests the operator to 
mount missing volumes. 

• Positioning open data sets (IGCON05B, 
IGCOQ05B, IGCOP05B and IGCOR05B). The 
Data Set Processor adjusts the problem 
program's data sets to the record being 
processed when CHKPT was issued. 

• Restarting I/O requests (IGCOT05B). If 
the problem program had I/O requests 
pending when CHKPT was issued, the 
Access Method-Disposition routine 
returns these requests to the Logical 
Channel Queues to be restarted. . This 
routine also adjusts Partitioned Data 
Set directories. 

• Returning control to the step 
(IGCOV05B). The Restart Exit routine 
frees the restart work area, writes a 

/ 

() 



( 

a 
I"~------------- CHECKPOINT ENTRY 

Checkpoint Dota Set 
Header Descriptor 
Record (CHR) Records (DSDRs) 

) Core ( 
Image ) 
Records (CIRs) 

Supervisor 
Records 
(SURs) 

I 
r- - - - __ J : 

_---------------J 

System 
Control 
Blocks 

Legend 

---..) Processing ~ 
Info Info 
from to 

I 

Main Storage Region 

• Figure 8-3. Restart Processing Routines 

message to the console, and returns 
control to the restarting step through 
the Dispatcher. 

OBTAINING AND FORMATTING STORAGE 

The Housekeeping routine consists of two 
load modules, IGCOOOSB and IGC010SB. The 
first obtains storage, transfers informa
tion into it, and opens the checkpoint data 
set. The second constructs the I/O blocks 
and channel programs needed to read the 
checkpoint entry. 

Obtaining Storage CIGC0005C) 

The f-irst load module of Restart 
receives a parameter list in the extended 
SVRB save area containing information fro~ 
the checkpoint header record and DSDRs, 
processed by IEFDSDRP. From this parameter 
list, the Housekeeping routine obtains the 
limits of the restarting step's region, and 
issues a GE~MAIN for all of it. The 
parameter list also contains a pointer to 
the checkpoint work area within the region, 
and Restart Housekeeping sets up the same 
area as a work area. A BSAM DCB for the 
checkpoint data set is constructed in the 
work area, and an OPEN is issued. Part of 
the problem program region is temporarily 

Exit 

wro, 
Restart User 

freed with FREEMAIN for the OPEN routine. 
The second module of the Housekeeping rou
tine is called after the OPEN. 

Checkpoint Data Set Initialization 
CIGC010SB) 

The second Housekeeping routine module 
moves the checkpoint data set lOB and 
channel program to the work area. If the 
data set is on a tape device, successive 
records are read until the tape is posi
tioned at the first CIR. If the data set 
is on a direct access device, a POINT macro 
instruction is issued to position the data 
set at the first CIR. Exit is to the 
Repmain routine. 

RESTORING THE STEP TO MAIN STORAGE 

The Repmain routine consists of five 
modules (IGCOSOSB, IGC0605B, IGC0705B, 
IGC080SB, and IGC0905B). The first 'copies 
the CIRs into their original positions in 
the step's region; the other four read and 
process the SURs to recreate the system 
control blocks and queues that existed for 
the restarting task at CHKPT time. An I/O 
error or end-of-volume in any of the 
modules causes transfer to the Restart Exit 
routine for termination. 

Section 8: Checkpoint/Restart 165 



Restoring Main Storage (IGCOS05B) 

The first module of the Repmain routine 
reads CIRs into the areas of main storage 
from which they were written. The first 
CIRs are read into the area between the 
upper limit of the restart work area (which 
corresponds to the checkpoint work area) 
and the top of the region. The second area 
copied is from the lower limit of the 
region to the bottom of the restart work 
area. Hierarchy 1 is restored last, if 
present. The first Repmain module also 
restores the PQEs, the SPQEs and the DQEs 
for the TCBS of the initiator, the system 
task control routine, and the restarting 
task. These elements are the first fields 
in the SORs. 

SUR processing UGC0605B, IGC0705B, 
IGC080SB, IGC090SB) 

The other Repmain modules continue the 
processing of, the SURs. The contents 
supervision blocks are replaced with the 
saved CDEs, Extent List, and LLEs. The 
contents supervision blocks are then freed. 
Internal queue pointers within these blocks 
are adjusted as they are returned to system 
queue space. Finally the current TeB (orig
inally assigned to IEFRSTRT) is updated 
with the information saved from the 
restarting task's TeB. The TIOT is the 
last control block read in, before control 
is passed to the JFCB Processing routine. 
If an I/O error or EOV occurs, control is 
passed to IGC090SB which frees all partial
ly restored chains. 

JFCB PROCESSING 

This routine counts the data sets that 
were open at CHKPT time, and builds a data 
set description table in the restart work 
area for each data set. In another part of 
the work area, a' set of I/O control blocks 
(DCB, lOB, DEB, ,and a channel program) is 
constructed for each data set. The JFCBs 
processed were constructed from the DSDRs 
in the checkpoint entry by IEFDSDRP. The 
first module of the JFCB Processing routine 
(IGCOGOSB) builds the tables and control 
blocks, the second (IGCOIOSB) makes adjust
ments for data sets residing on more than 
five volumes. 

Table Build Module (IGCOGOSB) 

The JFCB Processing routine assigns a 
304-byte section within the restart work
area to each DEB chained to the restarting 
task's' 'TCB. Then 'the "new" TIOT is 
searched for the DDNAME corresponding to 
each open data set. The disk addresses of 
the JFCBs are obtained from the TIOT, and 
the JFCBs are read in. If an I/O error 
occurs, or a DDNAME is missing, control is 

166 

passed to the Restart Exit routine. When 
all JFCBs have been read in, a DCB, DEB, 
lOB, ECB, and channel program are con
structed for each data set. Up to five 
volume identifications are moved from the 
JFCB to the associated data set description 
table, and a flag is set if it will be 
necessary to read JFCB extensions later for 
additional volumes. 

Table complete Module (IGCOIOSB) 

The second JFCB processing module reads 
the JFCB extension for those data sets 
residing on more than five volumes. For 
non-concatenated partitioned data sets and 
sequential data sets, the volume in use at 
CHKPT time is placed at the top of the 
description table list of volumes, and it 
will be the only one mounted later. A flag 
is set for mUlti-volume ISAM, BDAM, and 
concatenated partitioned data sets to indi
cate that all volumes on which they reside 
will have to be mounted. 

MOUNTING AND VERIFYING VOLUMES 

The Mount/Verify routine ensures that 
the correct volumes are mounted for the 
user's data sets, and requests the operator 
to mount any that are missing. The user's 
non-standard tape label routine is c~lled 
to verify data sets with non-standard 
labels. The routine consists of two 
modules: IGCOOKOSB, which processes all 
data sets not on a direct access device, 
and IGCOM05B, for direct access device data 
sets. 

Non-Direct Access Processing (IGDOKOSB): 

The non-direct access Mount/Verify 
module checks each of the data sets 
description tables, and processes all 
except those for direct access data sets 
and null data sets. For SYSIN, SYSOUT, 
unit record, and graphic data sets, the DEB 
is adjusted, and no mount verification is 
performed. 

For data sets on magnetic tape, the 
volume serial number in the data sets 
description table (the number saved at 
CHKPT time) is compared to the volume 
serial number in the primary UCB specified 
by the data set's TIOT entry. If the 
volume serial numbers do not match, the 
secondary UCBs, if any are checked. If no 
match is found, a suitable UCB is selected 
from the TIOT list, and the operator is 
requested to mount the volume. 

When the volume serial number is 
located, or when the volume is mounted, the 
tape label is read and checked, and the 
tape is rewound. If it is not the correct 
volume, or if a standard label is present o 



( 

() 

and the JFCB indicates it should not be, a 
message is written to the operator, and the 
tape is unloaded. If it is the correct 
volume, the UCB and DEB are adjusted, and 
the UCB becomes the primary UCB in the TIOT 
entry. 

When the end of the· description tables 
is reached, a second pass is made through, 
checking for input volumes with non
standard labels. A user-supplied label 
verification routine is called if any are 
present. On completion, the direct access 
Mount/Verify module is called, unless there 
are no direct access data sets. In this 
case the first Position I/O module is 
called. 

Direct Access Mount/Verify Module 
(IGCOMO.5B) 

The second module of the Mount/Verify 
routine compares the volume serial number 
in the data set description table (saved at 
CHKPT) with the volume serial number in the 
primary UCB listed in the TIOT entry for 
each direct access data set. If the num
bers match, the DEB and OCB are adjusted. 
If the numbers do not match, the secondary 
UCBs listed in the TIOT are checked. If no 
match is found, a suitable UCB is selected, 
and the operator is requested to mount the 
volume. 

For sequential and single partitioned 
data sets, only the volume in use at CHKPT 
time is mounted. All volumes on which 
ISAM, BDAM, or concatenated partitioned 
data sets reside are mounted. If neces
sary, JFCB extensions are read to find the 
volume identifications. 

If an error occurs in either of the 
Mount/Verify modules, Restart is terminated 
by calling the Exit routine. If no error 
occurs, control is passed to the Data Set 
Processor routine. The tape module is 
called first, unless all data sets are on 
direct access devices. 

POSITIONING OPEN DATA SETS 

The SYSIN/SYSOUT Data Set Processor 1 
module (IGCONOSB) adjusts the DCB, DEB and 
channel programs for SYSIN or SYSOUT direct 
access data sets on a deferred restart. 
These data sets which existed at the time 
checkpoint was issued have been deleted, 
and new SYSIN or SYSOUT data sets have been 
allocated at restart time. The name of the 
reallocated data set is obtained from the 
JFCB, and the VTOC is searched for the 
DSCB. Extents from the DSCB are used to 
construct a new DEB. If the number of 
extents in the OSCB equal the number of 
extents in the old DEB in use at checkpoint 
time, the new DEB is constructed in the 

same space as the old DEB. Otherwise, 
GETMAIN is issue~ to obtain space for the 
new DEB, and the old DEB space is freed. 

For SYSIN data sets, the following abso
lute disk addresses (MBBCCHHR) that point 
to the old data set are changed to absolute 
disk addresses that point to the same 
positions in the new data set: 

Full disk address 
address is changed 
next record to be 
the new data set. 

in the DCB - This 
to point to the 
read from SYSIN in 

2. lOB seek addresses of the current and 
next rOB At Restart time, these 
addresses point to the old data set 
(because the channel program for the 
next read is built during the current 
read) and now are changed to point to 
the new data set. 

The old disk addresses (MBBCCHHR) are con
verted into TTR form using the old DEBi 
after the new DEB is constructed, the 
addresses are converted back into MBBCCHHR 
form using the new DEB. The TTR to 
MBBCCHHR conversion is performed in the 
next module, IGCOQOSB. 

The SYSIN/SYSOUT Data Set Processor 2 
(Direct-Access) module (IGCOQOSB) calcu
lates the number of tracks in each extent 
in each SYSIN or SYSOUT DEB and places the 
number in the DEB. For SYSOUT data sets, 
the lower limit of the first extent is 
placed in the full disk address field of 
the DCBi the track capacity for the device 
is also placed in the DCB. For SYSIN data 
sets, the absolute disk addresses which 
were converted to TTR form in IGCON05B are 
now converted back to MBBCCHHR form using 
the new DEB. Control is then passed to the 
Data Set Processor 1 module (IGCOP05B) if 
there are any non direct-access data sets. 
Otherwise, control is passed to the Data 
Set Processor 2 module (IGCOROSB). 

The Data Set Processor 1 (IGCOPOSB) 
module works from the data set description 
tables, proceSSing only entries for magnet
ic tape data sets. On entry, all but two 
types of tape volumes are poSitioned at the 
load point. The exceptions are SYSIN data 
sets, which are pOSitioned to read the 
first user input record, and non-standard 
labeled tapes, which are positioned at the 
first data record by the user label 
routine. 

Data Set Processor 1 first advances the 
tape past the label, if necessary, to the 
correct data set, using the file sequence 
number. Then the OCB block count field 
(DCBBLKCT), saved at CHKPT, is used to 
advance the data set to the correct record. 
If the BLKCT field is zero or negative, the 

Section 8: Checkpoint/Restart 167 



data set is positioned at the first record 
or end-of-file, depending whether the for
ward or backward processing was taking 
place at CHKPT time. An I/O error in 
repositioning causes Restart termination. 
The Data Set Processor 2 module is called 
on completion, unless there are no direct 
access data sets. 

The Data Set Processor 2 module 
{IGCOR05B} checks each data set residing on 
a direct access device for a difference in 
the space allocation limits in the DEB 
saved at CHKPT time, and the space alloca
tion limits in current Data Set Control 
Blocks (DSCBs) in the Volume Table of 
contents (VTOC). Any discrepency between a 
DEB and the associated DSCB for input data 
sets causes Restart termination, since the 
data set has been modified since CHKPT. 

For output data sets, the smaller of the 
two space allocations is placed in both the 
DEB and the DSCB. If the DSCB extents are 
reduced, the Partial Release module of the 
CLOSE routine is called to return the 
released space to the free area on the 
volume. ENQ and DEQ are used to protect 
the VTOC from other users during any modi
fication. When all direct access data sets 
have been checked, the Access Method
Disposition module is called. 

RESTARTING I/O REQUESTS 

The Access Method-Disposition module 
(IGCOT05B) checks each output partitioned 
data set for members added since CHKPT was 
issued. The partitioned data set directory 
is read, ana if the relative track and 
record address of any member is greater 
than that of the member being processed at 
CHKPT, it is deleted, using the STOW macro 
instruction. 

TYe! I DSDR 

0 2 178 186 

After all partitioned data sets have 
been checked, the chain of DEBs associated 
with the problem program TCB is inspected 
for entries in the DEBUSRPG field. These 
entries point to a chain of lOBs for user 
I/O requests which were pending at CHKPT 
time. The RESTORE macro instruction is 
issued for each DEB with intercepted 
requests. This returns the I/O requests to 
the I/O Supervisor's logical channel 
queues, where they will be started. Con
trol is then passed to the Exit module. 

RESTART EXIT ROUTINE 

The Restart exit module (IGCOV05B) tests 
the error code field in the restart work 
area to determine if entry was caused by an 
error in one of the earlier modules. If an 
error code is present the exit. routine 
places it in the wnnw field of the console 
message IHJ001I. The message is written 
with WTO, and ABEND is issued to return to 
the Dispatcher. 

If no error code is found, wro is used 
to write console message IHJ008I. The 
restart work area is released with FREE
MAIN, and if the checkpoint routine opened 
the checkpoint data set, the restart exit 
routine issues a CLOSE for it. 

The exit routine places a return code of 
X'Oq' in register 15 to inform the restart
ing program that a restart has taken place, 
and exits with an SVC 3 (EXIT). Since the 
TCB and SVRB have been updated with infor
mation saved at CHKPT time, the problem 
program will be started as though CHKPT had 
just been issued. 

190 

I X'oooo' 1 
J;1

B 
DDNAME UCBTYP 

I 
Type 1 OSOR Job File 
Identifier Control Block 
(2 byte,) (176 byte,) 

T~pe 2 OS DR 

2 

I X'OOO4' ( 

I 
JFCB ~rn,jon 

I 
Type 2 DSDR Job File Control 
Identifier Block Extension 
(2 byte,) (176 byte,) 

Special Identifiers 

o B Indicates that the 
X'0010' previous DSDR is the 

last one • 

178 

o 

ODNAME of the 
CHECKPOINT Data Set 
(8 byte.) 

Type 3 DSOR 

o 2 

I 
Unit Control Block 
Type Field 
(4 byte,) 

',--X'OOO8,-' .1.--1 _~G+I! BCT 

I 
Type 3 DSDR Generation Dato Group 
Identifier Bias Count Table 
(2 byte,) (176 byte,) 

B Indicates that the 
X'00141 previous DSDR is the 

last one in the block. 

• Figure 8-4. Data Set Descriptor Records (DSDRs) 

168 

178 



( 

Exiting procedures consist of the prepa
ration for return and the actual return of 
control from a completed program or rou
tine. The program ma~ be a user or 'system 
program that has issued a RETURN macro 
instruction, a completed SVC routine, or a 
user (asynchronous) exit routine. Control 
may pass to a user program or to a supervi
sor termination routine that performs norm
~l termination of the completed program's 
task. Exiting procedures fall into three 
main classes: 

• Preparing for return from a type-l SVC 
routine. This class of exiting proce
dure is performed, by the Type-1 Exit 
routine. 

• Preparing for return from all other 
types of programs. This class of exit
ing procedure is performed by the Exit 
routine. 

• Per£orming the actual return of con
trol. This class of exiting procedure 
is performed by the Dispatcher (except 
when the return is from a type-1 SVC 
routine that returns control directly 
to the caller). 

HANDLING RETURN FROM TYPE-l SVC ROUTINES 

The Type-l Exit routine handles the 
return to a user program from a completed 
type-1 SVC routine. It determines whether 
control should be returned directly to the 
caller of the SVC routine, or to the 
Dispatcher. Control will pass to the Dis
patcher. if the completed SVC routine has 
indicated the need for a task switch by 
altering the "new" TCB pointer, IEATCBP. 

The Type-1' Exit routine is entered from 
any Type-1 SVC routine via a branch. Its 
first step, a housekeeping step, is to 
reset the "type-1 switch" to indicate that 
registers are no longer stored in the lower 
main storage save area. The ABTERM routine 
tests this switch during an abnormal task 
termination to determine whether the rou
tine that called the ABTERM routine is a 
type-1 SVC routine. 

The Type-1 Exit routine then determines 
whether to return control directly to the 
caller or to branch to the Dispatcher; it 
does this by testing if the exiting SVC 
routine has indicated the need for a task 
switch. Some type-1 SVC routines, such as 
the Wait and Post routines, normally place 
a program in a wait condition or make a 

SECTION 9: EXITING PROCEDURES 

program ready, thus requiring a task 
switch. The Type-1 Exit routine recognizes 
this condition by testing the doubleword 
TCB pointers IEATCBP and IEATCBP+4. If 
both pointers contain the address of the 
current TCB, no task switch is required; 
the Type-1 Exit routine restores registers 
from lower main storage and returns control 
to the caller. If the two pointers are not 
equal, a task switch has been indicated, 
and the Type-1 Exit routine must branch to 
the Dispatcher. Before branching, the 
Type-1 Exit routine saves the SVC old PSW 
in the current request block. and the 
contents of the caller's registers in the 
current TCB; this is for eventual return to 
the caller. 

In a multiprocessing system, the routine 
also inspects the doubleword TCB pOinters 
of the second CPU. If they are unequal, a 
task switch is required, and the Dispatcher 
must be entered. The Dispatcher is also 
entered if the External FLIH bit in 
FLRETFLG is set, indicating that an exter
nal interruption has not been processed (in 
which case the Dispatcher then passes con
trol to External FLIH). In addition, in a 
multiprocessing system, before returning 
control to the caller, zeros are placed in 
the supervisor lock and CPU identity bytes 
(the system is unlocked) if the SVC old PSW 
is completely enabled for interruptions. A 
completely enabled SVC old PSW indicates 
that the system was unlocked during the 
calling routine and must be returned to an 
unlocked state after completion of the 
type-1 SVC routine. 

PREPARING FOR RETURN FROM PROGRAMS OTHER 
THAN TYPE-1 SVC ROUTINES 

The Exit routin~, itself a type-1 SVC 
routine, handles the exiting procedures for 
all programs other than type-1 SVC rou
tines. User or system programs gain 
supervisor-assisted Linkage to the Exit 
routine by issuing a RETURN macro instruc
tion; SVC routines obtain a similar result 
by using an SVC-3 instruction. The Exit 
routine determines the type of program that 
is exiting. The program can be a user 
program-check exit routine, a user asyn
chronous exit routine, an SVC routine, or a 
user program. For each type of exiting 
program, some special processing is 
performed. 

If the completed program was the first 
executed program of its task, and therefore 
is considered to be at the "highest control 

Section 9: Exiting Procedures 169 



level" within that task, the Exit routine 
recognizes an end-of-task condition, and 
branches to the End-of-task routine (EOT) 
to perform normal termination of the call
er's task. 

The Exit routine dequeues the RB under 
which the completed program was operating 
for all types of completed programs except 
user program check routines, which have no 
RBs. If the RB had been dynamically 
acquired via a GETMAIN macro instruction, 
the Exit routine frees the space occupied 
by the RB. 

When it has completed its processing, 
the Exit routine branches to the Transient 
Area Refresh routine, which determines 
whether an SVC routine that was overlaid in 
its transient area block (TAB) may be 
restored to the block. The process of 
restoring an overlaid SVC routine is called 
"refreshing" the TAB. If a TAB may be 
refreshed, the Transient Area Refresh rou
tine initiates the refresh process before 
branching to the Dispatcher. If no SVC 
routines were using a TAB, no processing 
occurs, and the Transient Area Refresh 
routine branches to the dispatcher. 

PREPARING FOR RETURN FROM A USER PROGRAM 
CHECK ROUTINE 

The Exit routine tests whether to per
form special processing needed during the 
return from a user program check routine. 
When a user program check routine issues a 
RETURN macro instruction, a branch to an 
SVC-3 instruction results. The SVC 
instruction is located in lower main 
storage, just before the entry point to the 
Program Interruption FLIH. When the SVC 
interruption occurs, the address of th~ 
next executable instruction (the entry 
point of the Program Interruption FLIH) is 
placed by the CPU in the SVC old PSW. The 
Exit routine compares the address in the 
SVC old PSW with the address in the program 
interruption new PSW; if the two addresses 
are equal, the return is from a user 
program check routine. 

The Exit routine clears the "first-time 
logic" switch in the user's program inter
ruption element (PIE). The first execution 
of the SPIE routine for the current task 
had created a PIE, in which the program old 
PSW and certain registers are stored during 
a program interruption. The "first-time 
logic· switch must be cleared to indicate 
to the Program Interruption FLIH that the 
PIE is not active; without such a resetting 
of the switch, the FLIH would interpret a 
second program interruption as occurring in 
the program check routine, and would cause 
abnormal termination of the current task. 

170 

The Exit routine then transfers register 
contents and the RB old PSW, belonging to 
the user program that had been interrupted 
by the program check, to the current TCB. 
The Exit routine sets up the right half of 
the RB old PSW in the program's RB from 
information stored in the PIE. It sets up 
the left half of the PSW by transferring 
information from the left half of the SVC 
old PSW, which was stored when the user 
program check routine issued a RETURN macro 
instruction. The reason for constructing 
the RB old PSW from these two different 
sources is that (1) the user program check 
routine has the option of specifying a 
return point in the interrupted program 
that is different from the point of inter
ruption, and therefore may store this 
return address in the right half of the 
program old PSW in the PIE; and (2) the 
user program check routine may have acci
dently altered the left half of the program 
old PSW stored in the PIE. 

After transferring register contents to 
the TCB and setting up the RB old PSW in 
the RB, the Exit routine branches to the 
Dispatcher, which returns control to the 
interrupted user program. The Dispatcher 
loads the user's register contents from the 
current TCB and loads the RB old PSW set up 
by the Exit routine in the RB. This branch 
to the Dispatcher is an exception to the 
normal procedure of branching to the Tran
sient Area Refresh routine. 

PREPARING FOR RETURN FROM PROGRAMS 
CONTROLLED BY RBS 

If the returning program is not a user 
program check routine, the Exit routine 
determines the type of program by finding 
out the type of RB under whose control the 
returning program was operating. The actu
al test is of the RBSTAB field of the 
current RB queued to the caller's TCB; this 
RB is the one which was controlling the 
returning program. Depending on the type 
of RB, the Exit routine performs one of 
three general types of processing. 

• If the RB is an SVRB, representing a 
type 2, 3, or 4 SVC routine, the Exit 
routine branches to the SVC Second 
Level Interruption Handler to perform 
special handling for transient 
routines. 

• If the RB is an SIRB or an IRB, 
representing a user exit routine, the 
Exit routine performs speciai process
ing for exit routines. 

• If the RB is a PRB, representing a user 
program, the Exit routine performs an 
exiting procedure needed for contents 
supervision. 

/ 



If the Returning Routine Is an SVC Routine 

For an SVC routine, the Exit routine 
branches to the TAHEXIT subroutine (entry 
point IEAQTR01). The TAHEXIT subroutine 
performs two functions. (1) It moves saved 
registers from the SVRB to its TCE, and 
stores registers 0, 1, and 15 in the TCB. 
It does this so that the caller of the SVC 
routine will be redispatched with the prop
er register values. (2) It removes the 
SVRB for an exiting transient routine from 
the transient area queues. Both functions 
are performed if the exiting program is a 
transient SVC routine. 

The TABEXIT subroutine manipulates the 
register save areas so that when the caller 
of the exiting SVC routine is reentered, 
its registers 2-14 will contain the same 
values they had when the SVC was issued. 
Registers 15, 0, and 1 will contain the 
values which the SVC routine provided -
normally parameters passed back to the 
caller. 

If the exiting routine is resident (type 
2), the TAHEXIT subroutine returns control 
to the Exit routine. But if the exiting 
routine is nonresident, TAHEXIT performs 
additional processing to remove the SVRB 
from the transient area queues. To do 
this, the TAHEXIT routine determines the 
address of the TACT entry for the transient 
area occupied by the exiting routine. This 
address is obtained by adding the displace
ment of the TACT entry (contained in the 
exiting SVRB) to the address of the tran
sient area control table (IEAQTAQ). (See 
Figure 9-1.) The TAHEXIT subroutine then 
searches the user queue associated with the 
TACT entry, looking for an SVRB which is 
"using" the exiting routine. (An SVRB is 
"using" the exiting routine if the TTR 
address in the SVRB is the same as the TTR 
address in the TACT entry.) 

When an SVRB that is using the exiting 
routine is found, the TAHEXIT subroutine 
checks if it is the SVRB that was control
ling the exiting routine. If it is, it is 
dequeued. If it is not, the SVRB repre
sents another request for the routine, and 
the TAHEXIT subroutine cannot flag the 
transient area as free. In either case, 
the entire queue is checked. 

When the end of the queue is reached, 
the TAHEXIT subroutine decreases by one the 
count of the total number of users of all 
the transient areas. This count is used by 
the Transient Area Refresh routine to 
determine if a search for a routine that 
should be refreshed is necessary. 

The TAHEXIT subroutine flags the asso
ciated TACT entry either "in use" or 
"free,n according to whether or not another 

SVRB for the exiting routine is still in 
the user queue. The TAHEXIT subroutine 
then returns control to the Exit routine. 

If the Returning Routine Is a User Program 

If the test of the RB type indicates a 
PRB, meaning that a user program is return
ing control, the Exit routine first moves 
the qser's register contents from their 
save a~ea in lower main storage, where they 
had been saved by the SVC FLIH, to the save 
area in the current TCB. This action is in 
preparation for the Dispatch- er's restor
ing of registers just before it returns 
control to the caller'S task. 

If the returning program is the last to 
be executed for its task, the Exit routine 
branches to the End-of-Task (EOT) routine 
to perform normal task termination. The 
Exit routine determines this condition by 
testing the RBTCBNXT flag of the PRB. This 
flag, if set, indicates that the RBLINK 
field points directly to the TCB. In this 
case, the PRB represents the last executed 
routine of its task. 

If the returning program is not the last 
to be executed for its task, the Exit 
routine branches to the CDEXIT subroutine 
to determine if there are other requests 
for the use of the completed program, and 
to prepare for reentry to t.he program if 
there are such requests. The CDEXIT rou
tine tests if the exiting program has a 
contents directory entry (CDE); the exis
tence of a CDE is indicated in the CDE 
field of the PRB. If there is no CDE, the 
exiting program was entered via use of the 
SYNCH macro instruction, which does not 
build a CDE; in this case, the CDEXIT 
routine returns control to the Exit rou
tine. If there is a CDE, the CDEXIT 
routine continues processing. 

The CDEXIT routine determines the type 
of CDE. There are two types of CDE a 
major CDE, which is associated with the 
major entry-point of its program; and a 
minor CDE, which is associated with an 
alias or with an entry point set up by the 
execution of an IDENTIFY macro instruction. 
If the CDE pointed to by the PRB is a minor 
CDE, the CDEXIT routine finds the asso
ciated major CDE. It then reduces the 
use/responsibility count in the major CDE. 

The use/responsibility count is the 
number of times the ATTACH, LINK, XCTL, or 
LOAD macro instructions have been issued 
for the module. It is used to keep track 
of the number of outstanding requests for a 
completed load module or program. 

If the exiting program is serially reus
able and there is at least one outstanding 
request for its use (indicated by a nonzero 

Section 9: Exiting Procedures 171 



Transient Area 
Fetch SVRB 

Transient Area 
Fetch SVRB 

TA Fetch 
TCB 1 

No. of TACT Entries 
~--~--~----/---~--~ 

Addr Addr /. 
Flag of 

TAB 1 

Addr 

TA Fetch 
TCB 2 

- = Pointer 

c:::::::> = Information Flow 

NOTES: 1. User queue 1 contains SVRBs whose SVC routine is in TAB 1, 
or was overlaid in TAB 1. 

User queue 2 contains SVRBs whose SVC routine is in TAB 2, 
or was overlaid in TAB 2. 

2. The request queue contains SVRBs awaiting an available TAB. 

Figure 9-1. The Transient Area Queues 

172 

User Queue 1 

Transient Area Black 1 (TAB 1) 

Transient Area Black 2 (TAB 2) 

User Queue 2 

o 



(' 

( 

RBPGMQ field in the PRB), the CDEXIT rou
tine updates the RB address in the CDE so 
it points to the next PRB that will control 
the program. This next PRB is associated 
with a task different from that of the 
caller. The address of the next PRB is 
obtained via the RBPGMQ field of the PRB. 
The CDEXIT routine makes the new PRB ready 
by placing zero in its wait count field; 
the Dispatcher will test this field before 
dispatching the program. The CDEXIT rou
tine also sets the right half of the old 
PSW field in the new PRB, in preparation 
for later entry to the contents Supervision 
subroutine CDEPILOG. 

The CDEPILOG subroutine will be executed 
when the Dispatcher recognizes the new 
PRB's task as the highest priority ready 
task. (The CDEPILOG subroutine performs 
final preparation for linkage to the 
requested program.) 

After preparing the next PRB to control 
the program, the CDEXIT routine branches to 
the Task Switching routine. This routine 
tests whether the TCB for the previously 
waiting PRB may replace the current TCB. 
It does this by comparing dispatching 
priorities. If a task switch is needed, 
the Task switching routine places the 
address of the new TCB in the "new" TCB 
pointer. This pointer will later be tested 
by the Dispatcher. The Task Switching 
routine returns control to the CDEXIT rou
tine, which in turn returns control to the 
Exit routine. 

If there are no other requests for the 
exiting program, the CDEXIT routine uses 
its subroutine, the CDHKEEP routine. The 
CDHKEEP routine sets the "non-functional" 
flag in the CDE tp indicate that the 
program has been executed. Although this 
flag is meaningful only for nonreusable 
programs, it is always set at this point in 
the processing. 

The CDHKEEP routine tests the use/ 
responsibility count in the CDE to deter
mine if there are other requests for the 
exiting program. (This test is necessary, 
since CDHKEEP can be invoked separately by 
other parts of the supervisor.) If the 
use/responsibility count is not zero, there 
is at least one outstanding request for the 
program, and CDHKEEP returns control to the 
Exit routine (or to CDHKEEP's caller). If, 
however, the use/responsibility count is 
zero, there is no outstanding request for 
the program. In this case, the routine 
tests the program's attributes. If the 
program is in the link pack area, control 
is immediately returned to the caller, 
since the program must not be purged. If 
the program is not in the link pack area 
and is either serially reusable or reenter
able, the routine sets the "release- flag 

(CDATTR2 field) in the program's CDE and 
the npurge" flag1 for the job pack queue. 
These flag,s will be tested by the GETMAIN 
routine (CDPURGE subroutine) to determine 
which program's space should be freed, if 
space is requested and is otherwise 
unavailable. If the program is neither 
serially reusable nor reenterable, or was 
fetched2 by a job step that has invoked 
rollout, the CDHKEEP routine branches to 
another subroutine of CDEXIT, the CDDESTRY 
routine. The CDDESTRY routine frees the 
storage areas used by the program frees the 
storage areas used by the program and 
certain related control blocks. 

The CDDESTRY routine uses the extent 
list for the exiting program to set up 
input parameters to be passed to the FREE
MAIN routine. The extent list is a control 
block set up by routines of contents super
vision; it contains the length of the 
module (program) and its starting address, 
or the length and address of each separate
ly loaded control section of a module that 
was scatter loaded. After setting up th,~ 
parameters, the CDDESTRY routine branches 
to the FREEMAIN routine, which then frees 
the storage space occupied by the exiting 
program. 

When control returns from the FREEMA1N 
routine, the CDDESTRY routine branches to 
the ORDERCDQ routine. This routine locates 
the contents directory queue on which the 
CDE resides, searches for the CDE, and 
dequeues the major CDE and any minor CDEs 
that may have been created for the program. 
Such dequeuing is necessary so that the job 
pack queue of the contents directory 
reflects the freeing of the space occupied 
by the program. The ORDERCDQ routine 
returns control to the CDDESTRY routine, 
which again branches to the FREEMAIN rou
tine to free the space occupied by the 
dequeued CDEs and their associated extent 
list. After this operation has been per
formed, the CDDESTRY routine returns con
trol to the Exit routine (or to CDDESTRY's 
caller) • 

If the Returning Program Is a User Exit 
Routine 

If the exiting program was controlled by 
an SIRB, special processing is 
required; control passes to the 
handling portion of the Exit routine, 
right back to a user program. If 

not 
1RB
then 
the 

1The npurge" flag is the high order bit of 
the TCBJPQ field of the current TCB. 

21f the program was fetched via the LOAD 
macro instruction, the CDHKEEP routine 
returns control to the caller, and does 
not branch to the CDDESTRY routine to 
purge the program. 

Section 9: Exiting Procedures 173 



-I 

program was controlled by an IRB, special 
processing is required. 

The Exit routine checks whether the use 
count in the IRB is zero. The use count 
may indicate that the parent task has 
requested multiple use of the same end-of
task exit routine (ETXR) for diff~rent 
subtasks. If the use count is not zero, 
indicating an additional need for the exit
ing user routine, the Exit routine branches 
to the Transient Area Refresh routine. But 
if the use count is zero, indicating that 
the IRB is no longer needed, the Exit 
routine tests whether there is a register 
save area that the requestor of the user 
Bxit routine had originally reserved, that 
may now be freed for reuse. If there is 
such an area, which is indicated by a 
nonzero RBPPSAV field in the IRB, the Exit 
routine branches to the FREEMAIN routine to 
free it. When return is made from the 
FREEMAIN routine, the area occupied by the 
RB is freed. 

Common .Processing 

Regardless of the type of special pro
cessing required (depending on RB type), 
control always returns to the same pOint in 
the Exit routine. This return point 
(EDTNX) is the address of a test. The test 
determines if the exiting program is under 
the control of the last RB on its RB queue. 
If it is, the Exit routine removes the 
current TCB from the TCE queue, since it is 
no longer needed. In addition, the Exit 
routine sets the "normal termination" flag 
(TCBFE) in the TCB as an indicator to the 
Detach routine. The purpose of this indi
cator is to avoid an incorrect branch to 
the ABTERM routine when the subtask is 
eventually detached. 

The Exit routine next tests if the next 
RB on the RB queue is in a wait condition. 
If this RB is in wait condition -- indi
cated by a nonzero RBWCl!' field -- the Exi t 
routine tests if a task switch has been 
indicated. The test is a comparison of the 
two words of the TCB pOinter (IEATCBP and 
lEATCBP+4). If these two words are equal, 
the need for a task switch has not already 
been indicated by another routine, and the 
Exit routine sets the first word to zero. 
This later indicates to the Dispatcher that 
it should search down the TCB queue for a 
TCB representing the next highest priority 
ready task. 

The Exit routine then flags the RB for 
the exiting program "inactive" and removes 
the RB from the RB queue. Inactive status 
means that the RB is not queued from a TCB. 
The RB is removed so that its program will 
not be mistakenly rescheduled for 
execution. 

174 

The Exit routine next determines whether 
to free the storage space occupied by the 
RB of the exiting program. If the RB was 
dynamically acquired, the space may be 
freed. This condition is indicated in the 
RBSTAB field of the RB. If the RB is a 
permanent system request block, such as an 
SIRB, its space may not be freed. If the 
space may not be freed, the Exit routine 
branches directly to the Transient Area 
Refresh routine; otherwise, it first frees 
the space. 

THE TRANSIENT AREA REFRESH ROUTINE 

The Transient Area (TA) Refresh routine 
is contained in the Transient Area Handler 
module at entry point lEAQTR02). It deter
mines if it is necessary to reload an 
overlaid SVC routine in a tra.nsient area. 
If reloading (refreshing) is necessary, the 
routine initiates a task switch to the 
appropriate transient area fetch task to 
reload the needed routine. 

The TA Refresh routine first checks if 
there are any "user" SVRBs for the tran
sient areas by checking the user count for 
the transient area. If the count is zero, 
the TA Refresh routine branches to the 
Dispatcher, since there are no users for 
any transient area. If the count is not 
zero, the TA RefreSh routine searches the 
user queue associated with each entry of 
the transient area control table (TACT). 
The routine searches for indication of a 
routine that needs to be refreshed (see 
Figure 9-1). 

If a flag in the TACT entry indicates 
that the associated transient area is in 
process of being loaded, the user queue for 
that TACT entry is not searched. Other
wise, the queue is searched for the highest 
priority "ready user" SVRB •• A user SVRB is 
an SVRB that was created when the asso
ciated SVC routine was requested. It i's 
ready if it is the top RB on its RB queue 
and its TCB is not set nondispatchable. If 
a ready user SVRB is found, the TA Refresh 
routine checks if the associated routine is 
already in the transient area. If the TTR 
field in the SVRB is the same as that in 
the TACT entry, the routine is in the 
transient area. If the routine is not in 
the area, the TA Refresh routine prepares 
to overlay the routine that is currently in 
the area. 

The TA Refresh routine saves the RB wait 
count of the cur,rent RB and sets a new wait 
count of 'FF' (decimal 255) in each user 
SVRB. The routine readies the TA Fetch TCB 
pointed to by the TACT entry. It then 
branches to the Task Switching routine to 
prepare for a task switch to the TA Fetch 
task by the Dispatcher. The TA Fetch TCB () 



(-

controls the TA Fetch routine. (see "Load
ing the Routine" in "Fetching a Nonresident 
Routine from Auxiliary Storage" in Section 
2.) 

The TA Refresh routine then tests the 
next TACT entry. 

If no ready user SVRB is found tor a 
transient area, either the transient area 
is free or all user SVRBs are waiting. The 
TA Refresh routine indicates that deferred 
requests can be removed from the request 
queue, and then checks the next TACT entry. 

When all TACT entries have been checked, 
the TA Refresh routine tests whether it has 
indicated that deferred requests can be 
removed. If they cannot, the routine 
branches to the Dispatcher. If they can, 
the routine removes all SVRBS on the re
quest queue, clears the wait count field in 
each SVRB, and invokes the Task Switching 
routine to determine if the associated task 
is of higher priority than the current 
task. If the selected task is of higher 
priority, the Task Switching routine indi
cates to the Dispatcher the need for a task 
switch, by placing in the "new" TCB pOinter 
the address of the selected TCB. The TA 
Refresh routine then branches to the 
Dispatcher. 

DISPATCHING (PERFORMING THE ACTUAL RETURN 
OF CONTROL) 

The Dispatcher is entered via a branch 
at the end of most interruption processing 
sequences. It receives control from any of 
the following supervisor routines, depend
ing on the type of routine that is return
ing control and/or the type of processing 
that should next be performed: 

• Type-l Exit routine, when a type-l SVC 
routine has been completed and the need 
for a task switch has been indicated. 

• Exit routine, when a user program-check 
routine has been completed. 

• Transient Area Refresh routine, when 
the return is from any routine except a 
type-l SVC routine, a user program
check routine, or the I/O Supervisor. 

• I/O First-Level 
when the return 
Supervisor. 

Interruption Handler. 
is from the I/O 

• External First-Level 
Handler. when an external 
has been serviced. 

Interruption 
interruption 

• Program Check First-Level Interruption 
Handler when the multiprocessing fea
ture has been selected. 

• SVC Second-Level Interruption Handler, 
when a transient area fetch task is to 
be given control to load a transient 
SVC routine. 

• Transient Area Fetch routine. when a 
transient SVC routine has been loaded 
and no error has been detected by the 
Program Fetch routine. 

- ABEND3. when it has selected another 
terminating task whose resources are to 
be purged. 

In a multiprocessing system, the first 
operation of the Dispatcher is a test for 
external interruptions that have occurred 
during program check or I/O FLIH routines 
and have not been processed. If there are 
any (FLRETFLG is not equal to zero), con
trol is passed to the External FLIH 
routine. 

The main, function of the Dispatcher is 
to determine the next task whose current 
routine is to be given control, and to pass 
control to that routine. 

Other functions of the Dispatcher are: 

- completing the scheduling of user 
(asynchronous) exit routines. 

II-
-

Handling task and job step timing. 

Recognizing that a priority level is 
time-sliced, determining which task 
within the group to dispatch, and dis
patching the task for the maximum time 
interval (if time-slicing is included 
in the system). 

DETERMINING AND GIVING CONTROL TO THE 
CURRENT ROUTINE OF THE TASK NEXT TO BE 
DISPATCHED 

The Dispatcher decides 
be dispatched and passes 
current routine of that 
next to be dispatched 
following: 

the task next to 
control to the 
task. The task 

is one of the 

• The current task, whose performance is 
being resumed. 

- Another ready task of 
than the current task. 

higher priority 

• Another ready task of lower priority 
than the current task, if the current 
task is waiting or is nondispatchable. 

- Another task in the same time-sliced 
group (if time slicing is included in 
the system). 

section 9: Exiting Procedures 175 



The interrupted routine of the current 
task is given control if no supervisor 
routine has indicated the need for a task 
switch. If, however, a task switch has 
been indicated, the Dispatcher gives con
trol to the current routine of the highest 
priority ready task. This task may be of 
higher or lower priority than the current 
task. The address of the ·new· task's TCB 
is found either in the anew· TCB pointer 
(IEATCBP), or through a search of the TCB 
queue. 

If the Dispatcher does not find a ready 
TCB whose current routine it may dispatch, 
it dispatches a special pseudo, or dummy, 
task which is part of the nucleus. The 
pseudo task has no associated routines, and 
places the CPU in an enabled wait state. 
After a future interruption, one of the 
nonready tasks may be readied by an inter
ruption handler, and CPU execution can 
continue. 

The preceding paragraphs have provided a 
general discussion of the Dispatcher's main 
fUnction. The following text is a detailed 
explanation of the same information. Dis
patcher processing in a system without the 
time-slicing feature will be discussed 
first, followed by a description of the 
differences when the feature is present. 

Normal Dispatcher processing (Without 
Time-Slicing) 

The Dispatcher determines which task 
~hould be performed next: the current task 
or another ready task. It does this by 
comparing the contents of the "old" and 
"new· TCB pointers, IEATCBP+4 and IEATCBP. 
These locations are obtained via a pointer 
in the communications vector table, called 
CVTTCBP. They contain the addresses of ·the 
current ("old") TCB and the "new· TCB for 
the task next to be dispatched. 

If the two TCB pointers are equal, no 
supervisor routine has indicated the need 
for a task switch since the Dispatcher was 
last executed. The Dispatcher restores 
registers from the save area of the current 
TCB, and returns control to the interrupted 
routine by loading the RB old PSW from the 
routine's RB. 

If the two TCB pointers are not equal, a 
task switch is required. The Dispatcher 
saves the floating point register contents 
in the floating point register save area of 
the current TCB. The general register 
contents were previously saved in the cur
rent TCB by one of the following routines, 
depending on the linkage path to the 
Dispatcher: 

176 

Type-l Exit Routine 
Exit routine 
Transient Area Exit routine 
SVC Second-Level Interruption Handler 
External First-Level Interruption Handler 
I/O First-Level Interruption Handler 
ABEND3 

The Dispatcher then determines the next 
task whose current routine it will give 
control. 

If the two TCB pointers are not equal 
and the "new· TCB pointer (IEATCBP) does 
not contain zero, it pOints to the "new" 
TCB whose current routine will be given 
control. This condition is usually the 
result of recognition by the Task Switching 
routine that a task higher in priority than 
the current task is ready. The Dispatcher 
restores registers, both general and float
ing point, from the ·new· TCB. It then 
gives control to the new task's current 
routine by loading the RB old PSW from the 
task's current RB. (The TCBRBP field of 
the TCB points to the task's current RB.) 
In a multiprocessing system, if the two TCB 
pointers are not equal, and the "new· TCB 
pointer does not contain zero, the Dis
patcher searches down the TCB queue. The 
search begins with the TCB whose address is 
in the "new" TCB pointer of the. executing 
CPU. The address of the next highest 
priority ready task is placed in the "new" 
TCB pointer of the second CPU. 

If the two TCB pointers are unequal and 
the "new" TCB pointer contains zero, then 
the current task has been placed in a wait 
condition. In this case, the Dispatcher 
must determine the next highest priority 
ready task. The Dispatcher searches down 
the TCB queue, starting from the current 
TCB. It locates each successive TCB 
through the TCB link field (TCBTCB). The 
current routine associated with the first 
TCB that meets the following conditions is 
given control, via a Load PSW instruction: 

1. The TCB's current RB must not be in 
wait condition (i.e., the RBWCF field 
must contain zero). 

2. The nondispatchability flags in the 
TCB must not be set (see Table 9-2). 

In either of the two cases in which the 
two TCB pointers are not equal, the Dis
patcher sets both pointers equal to the 
address of the anew· TCB. Thus, for future 
processing the TCB pointers no longer indi
cate the need for a task switch. 

In a multiprocessing system, if the two 
TCB pointers are unequal and the "new· TCB 
pointer for the executing TCB contains 
zero, the Dispatcher searches down the TCB 
queue to determine the two highest priority 

() 



( 

ready tasks. The search begins from the 
top of the queue when the "new" TCB pointer 
of the second CPU also contains zero: 
otherwise, the Relative priority routine 
determines whether the current TCB on the 
executing cPU, or the TCB whose address is 
in the "new· TCB pointer of the second CPU, 
is higher on the TCB queue, and the search 
begins from the higher TCB. The highest 
priority ready task that is not the current 
task on the second CPU becomes the new TCB 
on the executing CPU. If the highest 
priority ready task is not the current TCB 
on the second CPU and the "new· TCB pointer 
for that CPU is not set, the search con
tinues down the TCB queue for the next 
ready TCB. The address of this TCB is 
placed in the • new· TCB pointer of the 
second CPU. 

If the Dispatcher in its search of the 
TCB queue finds no ready task, it selects a 
special TCB that represents a pseudo task. 
The Dispatcher then loads the RB old PSW 
from the permanent RBthat is part of the 
pseudo TCB. This RB old PSW, when loaded, 
places the CPU in an enabled wait state. 
After a future interruption, one of the 
nonready tasks may be made ready by an 
interruption handler, and CPU processing 
can continue. 

In a multiprocessing system, if the two 
TCB pOinters of the second CPU are not 
equal (after the TCB queue has been 
searched) control is given to the SHOLDTAP 
routine which interrupts the second CPU 
with an indication (in STMASK) that the 
Dispatcher routine must gain control. 
Before dispatching the next task on the 
executing CPU, the old PSW is examined, 
and, if it is completely enabled, zeros are 
placed in the supervisor lock and CPU 
identity bytes. An enabled old PSW indi
cates that the supervisor lock byte was not 
set by the task that is to be dispatched, 
and therefore the lock byte is cleared 
before this task receives control. 

Dispatcher Processing with Time-Slicing 
(Diffe·rences) 

When the "new· and ·old" TCB pointers 
are equal, the Dispatcher tests whether 
"oldW represents a time-sliced task. If it 
does not, normal dispatcher processing con
tinues. If it does the Dispatcher tests 
whether the time-slice interval has 
expired: it has expired if the time-slice 
TQE is off the timer queue. When this is 
the case, a task switch (to the next ready 
TCB in the time-slice group) is indicated, 
and the Dispatcher sets "new· to zero to 
force the task switch. If the interval has 
not expired, special processing is not 
required. 

When the "new" TCB poUlter; contains 
zero, it indicates the current task has 
been forced to wait and no higher-priority 
task is dispatchable. The Dispatcher again 
must test Wold" for time-slicing: if it 
represents a time-sliced task, the next 
ready task in the time-slice group should 
be dispatched. 

When "new" contains an address not equal 
to the TCB address in ·old," it indicates 
(1). a higher-priority task has become ready 
to 'be dispatched, or (2) another task in 
the same time-slice group has become ready. 
The Dispatcher tests to determine the case. 
If the task represented by "new" is in the 
same time-slice group as the one repre
sented by ·old·, the Dispatcher ignores 
therequested task switch: the new task must 
wait its turn. 

When the next task to be dispatched isa 
time-sliced task (whether or not it is in 
the same time-slice group as the previous 
task), the Dispatcher updates the TSCE 
pOinters for the new task's group. The 
Dispatcher findS the next TCB in the time
slice group on the TCB queue and places its 
address in the Next field of the TSCE. It 
also enqueues the time-slice TQE. 

COMPLETING THE SCHEDULING OF USER EXIT 
ROUTINES 

A minor fUnction of the Dispatcher is to 
ensure that user (asynchronous) exit rou
tines, partially scheduled by the Stage 2 
Exit Effector, are completely scheduled. 
The Dispatcher tests the stage 3 switch 
(IEAODS01) to determine whether there is at 
least one queue element (interruption queue 
element or request queue element) on a user 
(asynchronous) exit queue. (The switch is 
set by the Stage 2 Exit Effector when it 
places a queue element on either of the 
exit queues.) If the stage 3 switch is 
set, the Dispatcher branches to its subrou
tine, the stage 3 Exit Effector (IEAOEF03), 
to complete the scheduling of the user exit 
routine(s). (See "Scheduling a User Exit 
Routine" in Section 3, Task Supervision.) 

HANDLING TASK AND JOB STEP TIMING 

If a task switch is to occur, the 
Dispatcher updates the timer queue, and if 
necessary, the timer itself. The purpose 
is to alter the timing of task intervals 
because a different task is about to con
trol the CPU. The processing is different 
for the two types of timing handled by the 
ispatcher, task tirrdng and job step 
iming. 

Section 9: Exiting Procedures 177 



Task timing is requested by a routine of 
a task, via an STIMER macro instruction 
that specifies the TASK operand. If a task 
switch is needed, the Dispatcher tests 
whether the current task has an unexpired 
task-type1 interval. If it has, the Dis
patcher stops the timing of the current 
(WoldW ) task's interval. If the ("new") 
task to be dispatched has requested the 
timing of a task-type interval, the Dis
patcher restarts the timing of the Wnew" 
task's interval. 

Job Step Timing is requested by a job 
step's initiator, via an STlMER macro 
instruction that specifies the TASK 

,
operand. The Dispatcher handles job step 
timing if two conditio~are met:~a task 
switch is needed, and th~ob step timing 
option was specified during system genera
tion. If these conditions are met, the 
Dispatcher suspends timing of the job step 
whose task has given up control and 
restarts timing of the job step whose task 
is next to be dispatched. 

The handling of task and job step tim
ing, just described in general, will now be 
discussed in greater detail. 

Handling Task Timing 

If a task switch is needed, the Dis
patcher performs task timing. The need for 
a task switch is indicated by the inequali
ty of the two TCB pointers, IEATCBP and 
IEATCBP+4. (The address of these pointers 
is in the CVTTCBP field of the communica
tions vector table.) 

If the task that is relinquishing con
trol (the woldR or current task) requested 
task timing, the Dispatcher branches to the 
Timer Second-Level Interruption Handler 
(entry point lEAQTD01) to stop the timing 
of the requested interval. The "oldR task 
requested task timing if it has a timer 
queue element (TQE) and if a task-type 
request is indicated in its TQE. The task 
has a TQE if the TCBTME field of its TCB 
does not contain zero. 2 

1The type of interval request is indicated 
in the TQEFLGS field of the task's timer 
queue element. 

2The TCBTME field is set by the STlMER 
routine when it services a "set timer" 
request. It contains zero in any of the 
following cases: no STlMER macro instruc
tion,has been issued for this task~ or the 
TTIMER routine has serviced a TTIMER macro 
instruction for this task that specifies 
the CANCEL operand~ or the task has been 
terminated, normally or abnormally. (See 
Charts EC and GB in Section 11.) 

178 

The Timer Second-Level Interruption Han
dler (see Chart EE) tests whether the RoldR 
task's TQE is on the timer queue. If the 
TQE is not on the queue, the ·old" task's 
interval is not being timed, and the Timer 
Second-Level Interruption Handler (here
after called the Timer SLIH) returns con
trol to the Dispatcher. If, however, the 
·old" task's TQE is on the timer queue, an 
interval is being timed for this task. In 
this case, the Timer SLIH determines the 
absolute time remaining in the requested 
interval, stores this time in the TQE for 
future use, and removes the TQE from the 
timer queue. If the removed TQE was at the 
top of the timer queue, the Timer SLIH 
updates the interval timer. It places the 
time of expiration (TOX) value of the new 
top TQE in both the interval timer and the 
six-hour pseudo clock (see Charts EE and 
ED). The Timer SLIH then returns control 
to the Dispatcher. 

If the "new" task to be given control 
requested interval timing, the Dispatcher 
branches to the Timer SLIH (entry point 
IEAQTEOO) to restart timing of the inter
val. The "new· task requested interval 
timing if it has a TQE,. as indicated by a 
nonzero TCBTME field in its TCB. The Timer 
SLIH tests whether the TQE for the "newW 
task is on the timer queue. (The TQEFLGS 
field of the TQE indicates if the TQE is on 
the timer queue.) If it is, the requested 
time interval is already being timed. In 
this case, the Timer SLIB immediately 
returns control to the Dispatcher. If, 
however, the "new· task's TQE is not on the 
timer queue, processing is needed to 
restart the timing of the requested inter
val (see Chart EE). 

The Timer SLIH computes a new time of 
expiration (TOX) for the requested interval 
and places the recomputed TOX value in the 
-newR task's TQE. (See Section 6, "Timer 
Supervision- for information on the compu
tation of the TOX.) If the recomputed TOX 
value is smaller than the current value in 
the interval timer, the Timer SLIH places 
the new value in the timer. It then places 
the TQE on the timer queue in the relative 
position that is appropriate for the new 
TOX value. (TQEs are ordered on the queue 
according to their relative times of 
expiration.) When the TQE is on the timer 
queue, timing of the "new· task's requested 
interval is resumed. The Timer SLIH then 
returns control to the Dispatcher. 

Handling Job Step Timing 

The Dispatcher performs the following 
main functions for job step timing, if the 
need for a task switch is indicated, and if 
the job step timing option was specified 
during system generation: 

".-" 
\"--l."/ 



o 

C 1 .# 

• Removes from the timer queue the 
for the initiator of the job 
associated with the ·old" task if 
TQE is TASK type. 

TQE 
step 
the 

• Places on the timer queue the TQE for 
the initiator of the job step asso
ciated with the "new" task to be dis
patched if the TQE is TASK type. If 
the TQE is REAL and off the'timer 
queue, it must be converted to TASK 
type and placed on the timer queue. If 
the TQE is REAL and on the timer queue, 
it must be removed from the queue, 
converted to a TASK TQE and placed on 
the queue. 

REMOVING FROM THE TIMER QUEUE THE TQE FOR 
THE INITIATOR OF THE JOB STEP ASSOCIATED 
WITH THE TASK WHICH HAS GIVEN UP CONTROL: 
The Dispatcher must determine whether the 
Wold" task was the dummy (pseudo) task. 
For the meaning of the dummy (pseudo) task, 
see "Normal Dispatcher Processing (Without 
Time SlicingW). It does this by comparing 
the "oldW TCB address to the RB pointer 
(TCBRBP) in the Wold" TCB. If they are 
equal the dummy task had previously been 
dispatched, and there is no TQE to be 
removed from the timer queue. If the woldw 
TCB was not the dummy task, the Dispatcher 
finds the address of the TCB for the 
initiator of the job step whose task has 
just given up control. It finds this 
initiator TCB by following the TCB pointers 
illustrated in Figure 9-2. The Dispatcher 
then determines if the step requested tim
ing by testing for the presence of a TQE 
pointer (TCBTME) in the initiator TCB. If 
the field is zero, the user has specified 
that job step timing is not to be applied 
to this job and there is no TQE. If there 
is a TQE, the Dispatcher tests it for 
non-expired TASK type TQE. If the TQE is 
REAL, it should not be removed from the 
timer queue because it represents a 30-
minute interval enqueued by WAIT and 
dequeued by POST. When the Dispatcher 
finds an unexpired TASK type TQE as the 
initiator's TQE, it branches to the Timer 
Second-Level Interruption Handler (entry 
point lEAQTD01) to suspend job step timing 
for the wold w task. 

In a multiprocessing system, when two 
tasks of the same job step are running 
concurrently, the time to expiration value 
of the job is halved. Therefore, when job 
step timing is suspended for a task, the 
Dispatcher must determine whether the task 
on the second CPU belongs to the same job 
step. If so, the Dispatcher must double 
the time to expiration value of the job 
step TQE to restore nonconcurrent timing. 
The Dispatcher branches to a subroutine 
(entry point DJSOO) to obtain the address 
of the job step TQE for the task on the 
second CPU. If this is the same TQE 

, 
I 
I 

scheduled for removal ,from the timer queue. 
because it is associated with the "old" 
task on the first CPU, the TQE is not 
removed, and the time to~xpiration value 
is doubled. 

PLACING O~N-7T=H=E~~~~~~~~~~~~~T~.=H~E 
INITIATOR OF 

TME). e f~ conta~ns~ 
job ste~tim~n*, W~ I be done. If the field 
~ non-zero. t e 'bi43pa!c~el' examines 'the 
TQE type for a non-expired TASK TQE. If 
the TQE is this type, the Dispatcher 
branches to the Timer SLIH (entry point 
IEAQTEOO) to restart job step timing for 
the task it i~ about to dispatch. If the 
TQE is REAL. it indicates that a user's 
asynchronous exit is to be given control 
and it should be job step timed. There
fore, the Dispatcher branches to the Timer 
SLIH (entry point lEAQTD01) to remove the 
element from the timer queue. Next. the 
dispatcher moves the job step time remain
ing value from the saved field to the 
TQEVAL field. and changes the TQE type from 
REAL to TASK by setting to an off position 
the two low-order bits (bits 6 and 7) in 
the flag byte in the TQE (TQEFLGS). The 
Dispatcher then branches to the Timer SLIH 
(entry point IEAQTEOO) to restart job step 
timing for the task it is about to 
dispatch. 

Legend: - ~ pointer 

TeB for Task Next 
to Be Dispatched 

TeBJS~eB 

CJ 

Initiator TeB 

D 

Figure 9-2. Locating the Initiator TeB 
Associated with the Task Next 
to be Dispatched 

Section 9: Exiting Procedures 179 



In a multiprocessing system, the Dis
patcher branches to a subroutine (entry 
point DJSOO) to obtain the address of "the 
job step TQE for the task on the second 
cpu. If this is the TQE scheduled for 
placement on the timer queue, because the 
task to be dispatched on this cpu belongs 
to the same job step as the task on the 
second CPU, the time to expiration value of 
the TQE is halved. In this way, the 
execution time of the job step is the same 
as if two tasks were not running 
concurrently. 

180 

,-"'. 
" 

',"C-"" 



Termination procedures free the 
resources and control blocks belonging to 
the terminating task. The freed resources 
include exclusively used programs in main 
storage, enqueued resource requests, unex
pired timer requests, incomplete operator 
communications, exclusively used data sets, 
and unshared subpools of main storage. The 
control blocks that are removed from their 
queues and freed include one or more: 

• Task control blocks (TCBS). 

• Request blocks (RBs). 

• Interruption queue elements (IQEs). 

• Queue elements (QELs). 

• Queue control blocks (QCBs). 

• Subpool queue elements (SPQEs). 

• contents directory elements (CDEs). 

• Timer queue elements (TQEs). 

• The Program Interruption Element (PIE) 
for the task, if one exists. 

There are two types of termination pro
cedures, normal and abnormal. Normal ter
mination occurs when a task is complete 1 
that is, when the last program to be 
executed for the task has complete1 its 
execution. Abnormal termination occurs 
when some type of unrecoverable error, such 
as a machine check, I/O error, or program 
check, has taken place. The task must be 
terminated to prevent waste of system 
resources. 

Normal and abnormal termination differ 
in their scope of action. Normal termina
tion frees resources only for the completed 
task, not for its subtasks or higher level 
tasks. Abnormal termination allows two 
options, task and step termination. In 
task termination the resources of only the 
malfunctioning task and its incomplete sub
tasks are freed. This option permits a 
program belonging to a higher level task in 
the job step to decide whether to continue 
the job step. But in step termination the 
resources used for the entire job step are 
freed, and the job scheduler ignores later 
steps of the same job. A task termination 
of the job step task, the highest level 
task in the job step, produces the same 
result as a step termination. 

SECTION 10; TERMINATION PROCEDURES 

NORMAL TERMINATION (EOT ROUTINE) 

Normal task termination is performed by 
the End-of,Task (EOT) routine, which 
receives cohtrol from the Exit routine upon 
its detecting an end-of-task condition. 
The EOT routine is strictly an internal 
supervisor routine; that ~s, it does not 
receive control directly via an SVC. It 
frees the previously mentioned resources 
and their control blocks. If an event 
control block (ECB) had been specified when 
the terminating task was attached. the EOT 
routine posts the ECB with a completion 
code for examination by a program belonging 
to the parent task. To allow other pro
grams to continue execution, the EOT rou
tine modifies the TCB pointer to ensure a 
task switch, and then branches to the 
Dispatcher to return control to the current 
routine of the highest priority ready task. 

The EOT routine 
longer needed when a 
Its functions include: 

releases resources no 
task is completed. 

• purging 
queues. 

the operator communication 

• closing data sets opened for the corn
pleted task. 

• Releasing unexpired timer elements. 

• Releasing the program interruption ele
ment (PIE), if one exists. 

• Freeing storage acquired for this task. 

• Releasing programs loaded for the task. 

• Removing the 
requests (if 
request queue. 

task's deferred rollout 
any) from the rollout 

• Dequeuing the TCB for the task from the 
TCE queue and (conditionally) from the 
subtask queue and freeing its space. 

• Ensuring that the need for a task 
switch has been indicated. 

After performing these functions, the 
EOT routine returns control to the Exit 
routine to free the RB for the last 
executed program of the task. Then, via 
the Dispatcher, control is given to the 
current program of the highest priority 
ready task. 

The 
branch, 

EOT routine receives control, via a 
from the Exit routine when it 

Section 10: Termination Procedures 181 



detects an end-of-task condition. The Exit 
routine recognizes that the PRB for an 
exiting user program points to its TCB 
instead of to another RB. (The RBTCBNXT 
status bit in the PRB, when set, indicates 
that the RBLINK field points to a TCB.) 

The first step of EDT processing is to 
check whether there are any subtasks of the 
completed task that have not been detached. 
All subtasks should have been previously 
removed for the completed task. If there 
is at least one sUbtas.k that has not been 
detached (as indicated in the TCB by the 
subtask pointer TCBLTC), the EDT routine 
sets up an error code (hexadecimal 
80A03000). It then issues an ABEND macro 
instruction to produce supervisor linkage 
to the ABEND routine in order to abnormally 
terminate the completed task. 

If there are no remaining subtasks, the 
EDT routine stores in the task's TCB the 
completion code that will be provided to 
its parent task in the return code regis
ter. The parent task will examine the 
completion code to determine the status of 
its subtask. (The status of the subtask is 
examined by the parent task only if the 
subtask was attached with either the ECB or 
the ETXR operand specified.) 

After storing the completion code, the 
EDT routine tests whether a program inter
ruption element (PIE) exists and should be 
freed. If a PIE exists, its address 
appears in the TCBPIE field of the TCB, 
placed there earlier when the SPIE routine 
created the program interruption element. 
If the PIE exists, the EDT routine makes 
its space available for reuse by branching 
to the FREEMAIN SVC routine to release the 
space. 

After freeing the PIE, or if no PIE 
existed for the task, the EDT routine 
branches to the Purge Timer subroutine. 
The subroutine's purpose is to test for and 
remove any remaining timer queue elements. 
Such an element represents a request for a 
timer interval that has not yet expired. 
If a timer element exists (queued from the 
TCBTME field of the TCB), the subroutine 
cancels the timer request and frees, via 
the FREEMAIN routine, the space occupied by 
the timer queue element (TQE) and any 
associated problem-program register save 
area. 

The EDT routine next tests for any 
serially reusable resources that were 
enqueued and not later dequeued. If there 
is such a resource, the ·enqueuew count 
(TCBQEL) in the TCB is not zero. (The 
enqueue count in the TCB is increased by 
the ENQ routine and decreased by the DEQ 
~outine. The count·is stored in the high
order byte of the TCBFSA field.) If the 

182 

enqueue count indicates that a resource was 
not dequeued, the EDT routine sets up an 
error code (hexadecimal 80D03000), and 
issues an ABEND macro instruction to 
abnormally terminate the task. 

Next, a branch is made to the ·WTDR 
purgeW routine (IEECVPRG). The routine 
removes from the buffer queue and the reply 
queue those elements that are associated 
with the completed task. The elements 
represent messages to the operator and the 
operator's replies. The ·WTOR PurgeW rou
tine issues a ·voiding" message to inform 
the operator to cancel out.standing replies. 

To ensure that all data sets used for 
the task have been closed, the EDT routine 
next branches to the "close data sets W 

subroutine. This Subroutine checks the 
TCBDEB field of the TCB. If the field is 
not zero, it contains the address of a data 
extent block, or DEB. The subroutine uses 
the DEB to obtain the address of a data 
control block, or DCB, which it supplies as 
an input parameter to the Close routine of 
data management. The subroutine then 
issues a CLOSE macro instruction to gain 
supervisor linkage to the Close routine. 
As part of its processing, the Close rou
tine updates the DEB address in the TCBDEB 
field. The ·close data sets· subroutine 
repeats the CLOSE macro instruction for 
each DEB on the queue. When the DEB chain 
has been exhausted, all data sets for the 
task have been closed. 

After each execution of the Close rou
tine, the ·close data. sets" subroutine 
checks for an error that might have 
occurred during execution of the Close 
routine. It does this by noting whether 
the TCBDEB field has been updated. If the 
field has not been updated, the subroutine 
recognizes that incorrect DEB information 
has been supplied. The subroutine sets up 
an error code (hexadecimal 80C03000) and 
issues an ABEND macro instruction to 
abnormally terminate the task. 

If there is no error detected during the 
clOSing of data sets, the EOT routine 
branches to the CDEXIT subroutine. The 
CDEXIT subroutine either frees the task's 
last executed program, or schedules the 
program's execution for a waiting reques
tor. (For a detailed discussion, see wlf 
the Returning Routine Is a User Program" in 
Section 9, "Exiting Procedures. W) 

The EOT routine next releases modules 
that were loaded for the task (via the LOAD 
macro instruction) and are no longer needed 
for other tasks. It does this by branching 
to the wrelease loaded programs" subroutine 
(IEAQABL) • 



( 

This subroutine ~eleases modules that 
were loaded for the task, via a LOAD macro 
instruction, but which were not released 
via a DELETE macro instruction. 

To determine the number of outstanding 
requests for each module, the "release 
loaded programs" subroutine examines, in 
turn, each load list element in the task's 
load list. Each load list element repre
sents a module that was loaded for the 
task, via a LOAD macro instruction. (The 
list origin of the load list is the TCBLLS 
field of the TCB.) To determine the number 
of outstanding requests for the module, the 
subroutine subtracts the responsibility 
count from the use/responsibility count. 
The responsibility count in the module's 
load list element records the number of 
load requests for the module. The use/ 
responsibility count in the module's con
tents directory entry records the total 
number of requests for the module. (Each 
load list element points to an associated 
contents directory entry.) 

The "release loaded programs" subroutine 
then branches to subroutine CDHKEEP to test 
the number of outstanding requests for the 
module. If there is a least one outstand
ing request for the module, CDHKEEP immedi
ately returns control to the "release 
loaded programs" subroutine. If, however, 
there are no outstanding requests for the 
module, CDHKEEP either frees the module and 
its control blocks, or sets flags to inform 
Main Storage Supervision that space may be 
purged, depending on the attributes of the 
module. (For further details, see "If the 
Returning Routine Is a User Program" in 
Section 9, "Exiting Procedures.") 

On return from the CDHKEEP subroutine, 
the "release loaded programs· subroutine 
frees the load list element for the module 
just tested and perhaps freed. The process 
is repeated until all the load list ele
ments, and possibly their associated 
modules, have been freed. 

The EOT routine ne*t branches to the 
"release main storage" subroutine 
(IEAQSPET) to release space that was 
obtained for the task via a macro instruc
tion. This subroutine performs an addi
tional function if the completed task is 
the job step task (the highest level task 
in the job step). The subroutine ensures 
that programs remaining in the job pack 
area are freed. Such programs are reen
trant or serially reusable programs that 
were used during the execution of the job 
step. Their release was previously 
invoked, but since they were still needed 
for other tasks of the job step, their 
storage space was not freed. 

For any terminating task, the "release 
main storage" subroutine frees unshared 
subpools of main storage allocated to the 
task. The subpools are represented by 
subpool queue elements (SPQEs), which have 
their list origin in the TCBMSS field of 
the TCB. The subroutine examines each SPQE 
on the main storage queue. If an SPQE 
represents a subpool not shared with anoth
er task, the subpool and the SPQE are 
freed, via a branch to the FREEMAIN SVC 
routine. The main storage queue is 
updated, and the next element is examined. 
If, however, an SPQE represents a shared 
subpool, that subpool cannot be freed. The 
"release main storage" subroutine updates 
the queue to indicate that the subpool is 
no longer shared. When all elements have 
been examined, subpool 253 (supervisor 
queue area) is explicitly freed, since 
there is no SPQE for this subpool. As a 
minor additional function, the subroutine 
frees space occupied by a parameter list 
created during the execution of the "close 
data sets· subroutine. 

If the completed task is the job step 
task, any remaining modules in the job pack 
area must be freed. A check is made of the 
job pack area queue (whose list origin is 
the TCBJPQ field) to discover if there is 
at least one contents directory entry (CDE) 
on the queue. If there is at least one 
CDE, the "release main storage" subroutine 
branches to entry point CDDESTRY in the 
CDEXIT routine to free remaining modules, 
CDEs, and extent lists. (For further 
information, see "If the Returning Routine 
Is a User Program" in Section 9, "Exiting 
Procedures.") 

After freeing unshared subpools of main 
storage, the EOT routine initiates the 
scheduling of an end-of-task exit routine 
(ETXR), if one had been originally 
requested by the ETXR operand when the task 
was attached. If the use of the ETXR 
routine had been requested, the Attach 
routine would have created an interruption 
request block (IRB) and an interruption 
queue element (IQE). The lRB provides 
future control of the ETXR routine and aids 
in its scheduling, while the IQE represents 
the queued request. In addition, the 
Attach routine would have placed the 
address of the IQE in the newly created 
TCB, and set the TCBFETXR flag in the 
TCBFLGS field to indicate the presence of 
the ETXR request. NOW, during end-of-task 
processing, the EOT routine checkS the 
TCBFETXR flag to learn whether the use of 
an ETXR routine had been requested when the 
task was attached. If the flag is set, the 
EOT routine initiates scheduling of the 
ETXR by passing the address of the IQE to 
the Stage 2 Exit Effector. (See "Schedu
ling User Exit Routines" in Section 3, 
"Task Supervision.") The Stage 2 Exit Ef-

Section 10: Termination Procedures 183 



fector places the IQE representing the ETXR 
request on a queue of requests for user 
exit routines. Later, during the execution 
of the Dispatcher, the Stage 3 Exit Effec
tor will complete the EXTR scheduling. It 
will place the IQE on a queue of IQEs 
belonging to the IRB, and place.the IRE as 
the ftcurrentft RB on the RB queue of the 
attaching task. The ETXR routine is thus 
scheduled as the next program to be 
executed for the parent of the terminating 
task. 

Any deferred rollout requests (IQEs) 
belonging to the terminating task are next 
removed from the rollout request queue. 
(This queue's address is IEAROQUE in the 
rollout/rollin· module, IEAQRORI. ) The 
rollout request queue represents rollout 
requests that could not be serviced either 
because another rollout was in effect for a 
different requesting job step, or because a 
job step suitable for rollout could not be 
found. 

The EOT routine, via its ftdequeue TCE
subroutine, removes the TCE of the ter
minating task from the TCB queue. Since 
the current task is now terminated, its TCB 
must be removed from consideration by the 
Dispatcher. 

If the time-slicing feature is included 
in the system, the EOT routine tests the 
time-slice bit (TCBFTS) in the TCB. If it 
is not set, normal EOT processing con
tinues. If it is set, indicating that the 
terminating task is a member of a time
sliced group, the EOT routine locates the 
TSCE for the group. The address fields 
(First, Last, and Next) in the TSCE are 
compared to the address of the terminating 
TCB. 

• If none of the address fields match the 
TCB, the EOT routine turns off the 
time-slice bit and normal EOT process
ing continues. 

• If all of the address fields match the 
TCB, the EOT routine places zeroes in 
them to indicate that the time-sliced 
group is without members. Normal EOT 
processing then continues. 

• If the First field matches, the EOT 
routine places the address of the next 
lower TCB on the TCB queue in First. 

• If the Next field matches and Last does 
not, the EOT routine places the address 
of the next lower TCB on the TCB queue 
in Next. 

• If the Last field matches, the address 
of the next higher TCB on the TCB queue 
is placed in Last, and the address of 
the First TCB is placed in Next. 

184 

Normal EOT processing continues after 
each case. 

The EOT routine next sets two completion 
flags in the TCB: the ftnormal completion" 
flag (TCBFE) and the ftnondispatchable co~ 
pletion" flag (TCBFC). The "normal comple
tion" flag is of significance only during 
completion of the job step task. If the 
terminating task is the job step task, the 
ftnormal completion" flag indicates to an 
initiator of the Job Scheduler that the job 
step has been normally terminated. The 
ftnondispatchable completion" flag is tested 
by the Detach SVC routine to determine 
whether to remove the subtask TCB from the 
TCB queue, or to abnormally terminate the 
subtask. If this flag is not set, the 
Detach routine assumes that the subtask to 
be detached is incomplete, and therefore 
schedules it for abnormal termination. 

If the attaChing routine of the parent 
task had specified an event control block 
(ECB), the EOT routine must now post the 
normal completion of the subtask for 
examination by a routine of the parent 
task. If no ECB was specified, posting is 
bypassed. For any terminating task except 
the job step task, the "EDT posting" sub
routine checks for an ECB address in the 
TCBECB field of the current TCB. If an ECB 
address exists, the subroutine tests its 
validity by determining ~f the ECB contains 
a valid RB address~ This is necessary, 
since the Post routine will not check the 
ECB address. The ECB resides in a user 
storage area and therefore is subject to 
alteration by a user program. If the job 
step task is being terminated, the validity 
of the ECB address is not checked, since 
this ECB resides in syste~protected 
storage and cannot be altered by a user 
program. Validity checking, performed by a 
check SUbroutine, consists of.a series of 
tests that reasonably ensure that the spec
ified ECB address is valid and will not 
produce a program check during Post pro
cessing. The EOT routine branches to the 
Post SVC routine to place in the ECB of the 
parent task the completion code that was 
stored in the subtask TCB. 

The EOT routine next determines whether 
to remove the TCB for the terminating task 
from its parent's subtask queue, and free 
the TCB's storage space. If neither an ECB 
nor an ETXR routine was specified when the 
task was attached, information in the sub
task's TCB will not be needed by any 
program of the parent task. In this case, 
the -erase phaseft subroutine removes the 
TeB from its parent task's subtask queue 
and frees its storage space. But if either 
an ETXR routine or an ECB was specified 
when the task was attached, a program 
belonging to its parent task may later 
examine information in the terminating 



c,. 

task's TCB. In this case, the TCB and the 
pointers needed to gain access to it must 
be retained. The Detach SVC routine, later 
invoked for the parent task, will remove 
the TCB from its parent's subtask queue and 
free its space. 

The EOT routine next ensures that the 
need for a task switch is indicated. . The 
routine sets the wneww TCB pointer 
(IEATCBP) equal to z~ro, as an ind~cation 
to the Dispatcher that it must search down 
the TCB queue to find the highest priority 
ready task. Control is returned to the 
Exit routine to free the space occupied by' 
the last RB of the terminating task. 

The Exit routine then branches to the 
Transient Area Refresh routine to·wrefreshw 
a transient area block that may have been 
overlaid by .the terminating task. {See 
wThe Transient Area Refresh Routine- in 
section 9, -Exiting.Procedures. W} The Tran
sient Area Refresh routine will branch to 
the Dispatcher to give control to the 
current routine of the highest priority 
ready task. 

ABNORMAL TERMINATION 

Abnormal termination is 
marily by three supervisor 
ABTERM routine, the ABEND 
ABDUMP routine. 

implemented pri
routines: the 

routine, and the 

The ABTERM routine schedules the execu
tion of the ABEND routine. It does this 
for system routines that detect an error 
but cannot themselves issue an ABEND macro 
instruction. The ABTERM routine ensures 
that, after redispatching, the first 
instruction to be executed for the defec
tive task is an SVC 13 (ABEND) instruction. 
Thus, the ABTERM routine indirectly issues 
an ABEND macro instruction for the task 
specified for termination. (See Figure 
10-1. ) 

The ABEND routine frees resources for 
the terminating task and its incomplete 
subtasks. The resources include programs, 
main storage, data sets, queued requests 
for ser.ially reusable resources~ and the 
control blocks that implement the alloca
tion of these resources to the task. 

The ABEND routine, if the terminating 
task is the job step task, frees the 
resources belonging to all tasks of the job 
step. The job step task is terminated in 
any of the following cases: 

• The invoking ABEND macro instruction 
specifies the STEP option. 

• The operator has issued 
command. 

a CANCEL 

I The I/O Fli Hand 
Dispatcher return control. 

~Execution of 
IChannel Program 

"'---- ~ ___ ,SVC library 

Legend: 

----. = control now 

r:=:=:::::> = information flow 

Routine) 

Figure 10-1. Scheduling of the ABEND Rou
tine by the ABTERM Routine 

• The job step 
expired. 

timer interval has 

• The Machine-Check Handler for Model 65 
(MCH/65)1 is unable to recover from a 
machine check that occurs during the 
job step"but determines that the fail
ure is not permanent. 

The ABDUMP routine may be invoked by the 
ABEND routine as part of an abnormal ter
mination, or it may be invoked at any time 
to perform a dynamic dump for a normal 
task. When invoked by the ABEND routine. 
the ABDUMP routine displays programs and 
control blocks belonging to the terminating 
task. and control blocks belonging to the 
task's descendants and direct ancestors. 
The ABDUMP routine is always invoked via a 
SNAP macro instruction. 

1The Y~chine-Check Handler for Model 65 
(MCH/65) is a system generation option 
available with System/360 Model 65. 

Section 10: Termination Procedures 185 



SCHEDULING AN ABNORMAL TERMINATION (ABTERM) 

The ABTERM routine is a disabled, seri
ally reusable, resident non-SVC routine. 
It schedules the execution of the ABEND 
routine. It does this for the following 
types of callers: 

• First-level interruption handlers. 

• Type-1 SVC routines, which cannot issue 
an SVC instruction. 

• System routines that must terminate a 
task other than the current task. 

.' The SER1, System Environment Recording 
routine or the Machine-Check Handler. 

• The Program-Check First-Level Interrup
tion Handler. Since it has special 
requirements, it cannot branch to the 
ABTERM routine directly, but must enter 
via a preliminary routine called the 
ABTERM Prologue routine. This routine 
performs housekeeping functions for the 
ABTERM routine. 

In scheduling the execution of the ABEND 
routine, the ABTERM routine performs the 
following major functions: 

• Interrogates flags to decide if the 
specified task should be scheduled for 
ABEND processing and/or if its subtasks 
should be set nondispatchable. 

• Saves the address of the next execut
able instruction at the time of the 
last interruption (contained in either 
the SVC old PSW or in the RB old PSW of 
the current RB) for display by ABDUMP 
during ABEND processing. 

• Stores the completion code and dump 
option in the TCB of the terminating 
task, for use by the ABEND routine. 

• Schedules abnormal termination of the 
specified task by pointing either the 
RB old PSW of the current RB or the SVC 
old PSW to an SVC 13 (SVC ABEND) 
instruction, in the communication vec
tor table. conditionally indicates to 
the Dispatcher that a task switch to 
the scheduled task is needed. 

• Sets nondispatchable incomplete sub
tasks of the terminating task, except 
for subtasks that are either being 
terminated or are in "must complete" 
status. 

• In a multiprocessing system, deter
mines, through a branch to the Task 
Removal routine, whether the current 
task on the second CPU has been set 
nondispatchable. If it has, the second 

186 

CPU is interrupted with an indication 
(in STMASK) that the Dispatcher routine 
must gain control. 

• Returns control to an address specified 
by the caller. 

There are two entry points to the ABTERM 
routine: one (IEAOAB01) is for type-1 SVC 
routines, which need special processing; 
the other (IEAOABOO) is for all other 
system routines that wish to schedule an 
abnormal termination. 

If entry is from a type-1 SVC routine, 
the ABTERM routine first obtains the TCB 
address of the current task, then adds the 
dump option flag to the completion (error) 
code that was passed by the SVC routine. 
The dump option flag specifies to the ABEND 
routine that it must invoke the ABDUMP 
routine, if possible, during ABEND process
ing. A branch is then made to the main 
entry point of the ABTERM routine 
(IEAOABOO) • 

The ABTERM routine, when entered at 
IEAOAEOO, first saves the caller's register 
contents. Then it interrogates flags to 
determine if the specified task should be 
scheduled for ABEND processing, and/or if 
its subtasks should be set nondispatchable. 
Various combinations of ABTERM processing 
are possible, depending on the condition of 
the task specified for termination. The 
following discussion will describe each 
condition of the specified task and the 
resultant processing, as outlined in Table 
10-1. 

Processing if Specified Task Has Already 
Been Terminated 

(See Table 10-1, condition 1.) In this 
case, the ABTERM routine does not schedule 
entry to the ABEND routine, nor does it 
attempt to set subtasks nondispatchable. 
Instead, the ABTERM routine simply restores 
the caller's register contents, and returns 
control to the routine whose address the 
caller had placed in the return register. 
A terminating task can be specified for 
abnorroal termination if an operator's 
CANCEL command or the expiration of a 
job-step timer interval occurs concurrently 
with the execution of the EOT routine or 
the ABEND routine for the task. 

Processing if the Task Has Already Been 
Scheduled for Abnormal Termination 

(See Table 10-1, condition 2.) If the 
specified task has already been scheduled 
for abnormal termination but the ABEND 
routine has not yet been entered, the 
ABTERM routine does not reschedule ABEND 
processing for the task. It conditionally 
sets incomplete subtasks nondispatchable to 



Table 10-1. ABTERM Processing 
r-------------------------------------------T-------------------------------------------, 
I Conditions I Resultant Processing I 
~-------------------------------------------+-------------------------------------------~ 
11. Specified task1 has already been termi-INo processing beyond the restoring of the I 
I nated. normally or abnormally (TCBFC lcaller's register contents and return of I 
1 flag is set). Icontrol to an address specified by thel 
I I caller. 2 I 
~-------------------------------------------+-------------------------------------------~ 
12. Specified task has already been sched- IABTERM conditionally sets the incomplete I 
I uled for abnormal termination. Isubtasks of the specified task 1 
I Inondispatchable. 1 
~-------------------------------------------+-------------------------------------------~ 
13. Specified task is the job step task I I 
I and is: I I 
I a. Not already in the process IPrepares for scheduling of the termination I 
I of abnormal termination (TCBFA Iby clearing nondispatchability flags I 
I is not set). I (except "must completeR nondispatchability)1 
I lin the specified task's TCB. Stores param-I 
I leters (dump option flag and completion I 
1 lcode) in the TCB. Saves old PSW and wait I 
I I count (if applicable). Schedules the taskl 
1 Ifor entry to ABEND. Conditionally sets I 
I lincomplete subtasks nondispatchable. I 
~-------------------------------------------+-------------------------------------------~ 
I b. Already being abnormally termi- ISchedules the task for entry to ABEND. I 
I nated. and the Initiator is not thelConditionally sets incomplete subtasks non-I 
1 caller. Idispatchable. I 
~-------------------------------------------+-------------------------------------------~ 
I c. Already being abnormally termi- I I 
I nated. and the Initiator is the I I 
I caller and: I I 
I (1) Dump option flag specifies a IABTERM assumes that a CANCEL command hasl 
I dump. loccurred or job-step timer has expired. I 
I Iconcurrently with ABEND execution. Thel 
I I processing is the same as in step 2. I 
~-------------------------------------------+-------------------------------------------~ 
I (2) No dump is specified. IABTERM assumes that a CANCEL command hasl 
I Ibeen issued to stop a prolonged dump (pos-I 
I Isible infinite loop). Se~s flags in thel 
I Itask's TCB to give the appearance of al 
I lfirst-time entry to ABEND. Remainder ofl 
I Iprocessing is the same as in step 3a.1 
I lexcept that parameters are not stored inl 
I Ithe TCB and the old PSW and wait count arel 
I Inot saved during scheduling of thel 
I I termination. I 
~-------------------------------------------+-------------------------------------------~ 
14. Specified task is not the job step task I I 
I and: I I 
1 a. Specified task was previously set Isame processing as in step 2. I 
I nondispatchable by ABTERM or I I 
1 ABEND (TCBABWF is "set"). I I 
~-------------------------------------------+-------------------------------------------~ 
I b. Specified task is not in the pro- ISame processing as in step 3a. except that I 
I cess of termination by ABEND. Inondispatchability flags, if previously I 
I ' I set, are not cleared. I 
~.------------------------------------------+-------------------------------------------~ 
I c. specified task is in the process oflsame processing as in step 3b. I 
I termination by ABEND. I I 
~-------------------------------------------~-------------------------------------------~ 
11 The "specified" task is the one whose TCB address is passed by the caller to ABTERM. I 
12All processing options include the processing performed under condition 1. I L _____ ~ _________________________________________________________________________________ J 

Section 10: Termination Procedures 187 



prevent their competing for system re
sources for the terminating parent task. 
This condition, wherein the task has been 
scheduled for abnormal termination but has 
not yet been terminated, can readily occur. 
The Dispatcher can allow other tasks to be 
performed after ABTERM processing, before 
it dispatches the ABEND routine for the 
given task. 

If the specified task has at least one 
subtask (TCBLTC is not equal to zero), the 
ABTERM routine branches to its SETSUBS 
subroutine to determine which subtasks 
should be set nondispatchable. 

The SETSUBS subroutine uses its SCANTREE 
subroutine to find each TCB that represents 
a subtask or descendant (subtask of a 
subtask) of the specified task. (See 
Figure 10-2.) For each such TCB that the 
SCANTREE subroutine finds, the SETSUBS sub
routine tests if the associated subtask or 
descendant should be set nondispatchable. 
The tests are repeated for each subtask or 
descendant in the -subtask tree.-

A subtask or descendant is set nondis
patchable if none of the following condi
tions exists: 

• Subtask is complete (thus no need for 
setting the subtask nondispatchable). 

• Subtask is in the process of abnormal 
termination (the ABEND routine is being 
executed for the subtask). In this 
case, nondispatchability would prevent 

/ 

/ 

/ 
/ 

I 
/ 

/ 
/ 

/ 
/ 

/ 

I E 

{------ -- -, 
E is Second Subtask of A / 

I 

A is Task Specified for Termination 

\ 
\ B is First Subtask of A 

\ 

\ 
\ 

I D C '\ C is First Subtask of B 
~ ___________ j ("Descendant" of A) 

Leaend: o =atask 

--.,.:;;; a pointer 

D is Second Sub task of B 
("Descendent" of A) 

-----~= a possible sequence of subtask examination by the SCANTREE 
subroutine 

Figure 10-2. 

188 

A Tree of 
Possible 
Examination 

Subtasks 
Sequence 

and a 
of 

the further execution of the ABEND 
routine for the subtask. 

• Specified task is nondispatchable, 
but its subtask is dispatchable. This 
subtask may be in "must complete" sta
tus and should-not be terminated or set 
nondispatchable. (For further discus
sion of the "must complete" status, 
refer to -Serializing the Use of a 
Resource- in Section 3, "Task 
Supervision.") 

The SETSUBS subroutine sets a subtask 
nondispatchable by setting the TCBABWF flag 
in the TCBFLGS field of the subtask's TCB. 
The subroutine also prevents the scheduling 
of asynchronous exits for the subtask. The 
Dispatcher will test the nondispatchability 
flags and will not dispatch any routine for 
the subtask, until the ABEND routine later 
clears the flags in preparation for ter
minating the subtask. 

Processing if the Specified Task is the J-ob 
Step Task 

(See Table 10-1, condition 3.) A job 
step task is a task attached by an Initia
tor of the job scheduler and is the highest 
level task within the family of tasks of a 
job step. The entry to the ABTERM routine 
may be the result of a direct branch from 
the Initiator because of either an opera
tor's CANCEL command or the expiration of 
the job-step timer interval. Another pos
sibility is that an error has occurred in 
an routine operating for the job step task. 
The type of ABTERM processing depends on 
the particular condition of the task. Pro
cessing for each of the following condi
tions will be discussed separately: 

• The task is not already in the process 
of abnormal termination. 

• The task is already being abnormally 
terminated and the Initiator is not the 
caller. 

• The task is 
terminated 
caller. 

already 
and the 

being abnormally 
Initiator is the 

THE TASK IS NOT ALREADY IN THE PROCESS OF 
ABNORMAL TERMINATION: (See Table 10-1, 
condition 3a.) In this case, the ABTERM 
routine proceeds to schedule the task for 
abnormal termination. (The clear state of 
the TCBFA flag in the job step TCB indi
cates that the job step TCB is not being 
terminated.) The ABTERM routine schedules 
the termination by: 

• Ensuring that the task is dispatchable. 

• Storing parameters for use by the ABEND 
routine. c 



( -\ 
i 

/ 

• Scheduling the dispatching of the ABEND 
routine. 

• Conditionally setting 
tasks of the 
nondispatchable. 

incomplete 
specified 

sub
task 

• Returning control to the 
return address. 

preloaded 

Note: The nondispatchability flags are set 
by the supervisor for reasons such as: the 
resources of a task in the job step are 
being dumped by the ABDUMP routine, or the 
SER1 routine is in progress, or another 
task is in "must complete" status. (For 
further information on the TCB nondispatch
ability flags, refer to Table 10-2.) 

The ABTE~1 routine ensures that the 
ABEND routine can be dispatched for the 
terminating task. It does this by clearing 
all nondispatchability flags in the termi
nating task's TCB, except the "must com
plete" nondispatchability flags (TCBSYS and 
TCBSTP). The Dispatcher will later examine 
all these flags to determine that they are 
clear before dispatching the ABEND routine 
as the "current" routine for the termina
ting task • 

The ABTERM routine next stores in the 
specified task's TCB the parameters that 
are needed by the ABEND routine. These 
parameters consist of the dump option flag, 
if a dump has been requested, and the 
completion code supplied by the caller. 
The parameters are stored in the ·comple
tion codeR field of the TCB, called TCBCMP. 
The dump option flag, if set, later causes 
the ABEND routine to invoke the ABDUMP 
routine to display the programs and control 
blocks of the terminating task. The com
pletion code is displayed during the dump 
as part of the TCB, and is made available 

• Table 10-2. The TCB Nondispatchability Flags 
r------------T---------------------T----------------------------------------------------, 
IName of FlaglOffset of Flag in TCBI Meaning of Flag I 
~------------+---------------------+----------------------------------------------------~ 

TCBNDUMP 32.0 This task is nondispatchable while the resources 

TCBSER 

TCBONDSP 

TCBFC 

TCBABWF 

TCBWFC 

TCBFRO 

TCBSYS 

TCBSTP 
I 
I 
I 
I TCBFCD1 
I 

32.1 

32.5 

32.7 

33.0 

33.1 

33.2 

33.3 

33.4 

33.5 

33.6 

of a task in this job step are being dumped. 

This task is nondispatchable while the SER1 rou
tine is being executed for this task. 

This task is nondispatchable while VARY or QUIESCE 
processing is being performed in a multiprocessing 
system. 

This task is nondispatchable while the Open rou
tine is being executed for this task as part of 
ABEND processing. 

This task is nondispatchable because it has been 
normally or abnormally terminated. 

This task is nondispatchable as part of a tree of 
tasks being abnormally terminated. 

This task is nondispatchable because it has issued 
an unconditional GETMAIN not yet satisfied by 
rollout. 

This task 
rolled out. 
task TCBs.) 

is nondispatchable because it has been 
(Meaningful in all TCBs except system 

This task is nondispatchable while another task in 
the system is in ·system must complete" status. 

This task is nondispatchable while another task in 
the same job step is in "step must complete" 
status. 

This task is nondispatchable 
initiator task that is waiting 

because 
for a 

it is an 
requested 

I I region of main storage. L ____________ i _____________________ i _________________________________________________ ~_ 

SectiOn 10: Termination Procedures 189 



to the parent task, via the ABEND routine. 
(The parent of the job step task is the 
Initiator.) 

The ABTERM routine next schedules the 
dispatching of the ABEND routine for the 
specified task. In essence, the scheduling 
consists of: 

• Determining if the caller of the ABTERM 
routine is a type-1 SVC routine. 

• Modifying the old PSW for the current 
routine so that it points to an SVC 13 
instruction in the communication vector 
table (CVT). The old PSW may be either 
the RB old PSW of the task's "top" RB, 
or the SVC old PSW in lower main 
storage (if the task's current routine 
has no SVRB). 

• Removing an RB wait condition (if it 
exists) • 

• Permitting the Dispatcher, on a task 
priority basis, to cause execution of 
the SVC 13 instruction. 

When the SVC instruction is eventually 
executed, the SVC Second-Level Interruption 
Handler will fetch the ABEND routine from 
auxiliary storage (if it is not already in 
a t:r:ansient area of main storage) and pass 
control to it. The ABEND routine is con
trolled during its execution as a part of 
the terminating task. 

As a first step in the "scheduling" of 
the ABEND routine, the ABTERM routine 
determines which of two possible paths of 
processing will be followed. One path is 
used if the caller of the ABTERM routine is 
a type-1 SVC routine, and therefore is not 
controlled by an RB. The other path is 
followed if the caller is not a type-1 SVC 
routine, and therefore is controlled by an 
RB. This discussion will first consider 
the case in which the caller is not a 
type-1 SVC routine, as determined by a test 
of the "type-1" switch, IEATYPE1. 

The caller is not a Type-l SVC Routine: If 
the caller is not a type-1 SVC routine, the 
RB old PSW and the wait count to be altered 
are in the "top" or current RB for the 
specified task. (The current RB is the one 
pointed to directly by the TCB.) Before 
pointed to directly by the TCB.) Before 
altering these fields, the ABTERM routine 
must first save the existing RB old PSW and 
the wait count, for display during ABDUMP 
processing. The second word of the RB old 
PSW, which contains the restart address, is 
saved in the RBABOPSW field of the current 
RB. For the same reason, the RB wait 
count, which the ABTERM routine clears, is 
alSO saved in the current RB. (If the 
current RB is an IRB, however, the wait 

190 

count is not saved.> 
cleared to prepare for 
to the ABEND routine. 

The RB wait count is 
supervisor linkage 

To permit the Dispatcher to place in 
execution an SVC-13 instruction for the 
terminating task, the ABTERM routine 
branches to the supervisor'S Task switching 
routine. The ABTERM routine passes to the 
Task switching routine the TCB address of 
the specified task. The Task Switching 
routine compares the dispatching priority 
of the task to be terminated with the 
dispatching priority of the current task. 
If the task to be terminated is of higher 
priority than the current task, the Task 
switching routine informs the Dispatcher by 
placing the higher priority TCB address in 
the "new" TCB pointer, IEATCBP. Without an 
alteration of the "new· TCB pointer, the 
Dispatcher would dispatch a routine belong
ing to either the current task or a lower
priority ready task. 

After control is returned from the Task 
Switching routine, the ABTERM routine com
pletes the scheduling of entry to the ABEND 
routine by pointing the previously men
tioned RB old PSW to the SVC-13 instruc
tion. It then sets the ABTERM flag 
(TCBABTRM) in the specified task's TCB, as 
an indication to both the ABTERM and ABEND 
routines that this task has been scheduled 
via the ABTERM routine. This indication, 
as described previously, limits ABTERM pro
cessing if a second branch to the ABTERM 
routine occurs for the same task. 

In addition, the routine sets the "pre
vent asynchronous exits" flag (TCBFX) in 
the specified task's TCB. Its purpose is 
to prevent the scheduling of a user exit 
routine for the task by the Stage 3 Exit 
Effector during Dispatcher proceSSing, 
before entry to the ABE~D routine occurs. 
The execution of a user exit routine would 
be a waste of CPU time for a task that is 
no longer productive, and is potentially 
harmful. Before returning control to the 
caller, the ABTERM routine conditionally 
sets incomplete subtasks of the specified 
task nondispatchable, as discussed in ftPro
cessing if the Task Has Already Been Sched
uled for Termination." 

The Caller is a Type-l SVC Routine: If the 
caller has been a type-1 SVC routine, the 
processing is similar to the foregoing. 
Instead of saving and altering the RB old 
PSW in the "top" RB of the specified task, 
the ABTERM routine does the saving in the 
fttop" RB and the altering in the SVC Qld 
PSW in lower main storage. This variation 
is necessary, since type-1 SVC routines do 
not operate under the control of an RE. In 
addition, the Task Switching routine is not 
invoked, since the caller'S register con
tents are still in their lower main-storage 



( 

C> 

save area (IEASCSAV) , and may be lost by 
another SVC interruption following a task 
switch. 

THE TASK IS ALREADY BEING ABNORMALLY TER
MINATED AND THE INITATOR IS NOT THE CALLER: 
(See Table 10-1, condition 3b.Y If the job 
step task is in the process of abnormal 
termination by the ABEND routine and the 
Initiator is not the caller, an attempt is 
being made to repe?t an abnormal ~ermina
tion for the same task. This means that an 
error condition has occurred during ABEND 
processing, which leads to a new request 
for abnormal termination of the task that 
is al~eady being terminated. A new entry 
to the ABEND routine must be scheduled so 
that it can try, if possible, to complete 
termination procedures. such a reentry to 
the ABEND routine for the same task is 
called a recursion. A recursion is valid 
only if an error occurs during the execu
tion of the ABDUMP, Open, or Close routine 
during ABEND processing. If the recursion 
is valid, the ABEND routine continues the 
termination procedures. If, however, the 
recursion is invalid, the ABEND routine 
branches to the System Quiesce routine, 
which averts a CPU wait state by abnormally 
terminating only the failing task and its 
subtasks and by permiting the system to 
quiesce. 

Since the original ABEND parameters 
(completion code and the dump option flag) 
must be used by the ABEND routine, new 
parameters are ignored and are not placed 
in the specified TCB. The scheduling of 
the ABEND routine and the flagging of 
incomplete tasks as nondispatchable are 
performed, as described in the topic -The 
Task is Not Already in the Process of 
Abnormal Termination." Similar also is the 
return of control. There are, however, two 
differences. The old PSW and the RB wait 
count, if applicable, are not saved, since 
on a recursion to ABEND, a dump is not 
provided. 

THE TASK IS ALREADY BEING ABNORMALLY TER
MINATED AND THE INITIATOR IS THE CALLER: 
(See Table 10-1, condition 3c.) There are 
two possible causes of an ABEND ~equest by 
the Initiator while the job step task is 
already being abnormally terminated. The 
operator has issued a CANCEL command, or 
the job step timer has expired. 

The processing varies, depending on 
whether a dump is specified. If a dump is 
specified, the ABTERM routine does not 
schedule entry to the ABEND routine, since 
the ABEND routine is already in execution 
to terminate the same task. But to prevent 
waste of system resources, the ABTERM rou
tine condi~ionally sets any incomplete sub
tasks nondispatchable, as previously de-

scribed. It then restores registers ahd 
returns control to the caller. 

If a dump option is not specified, a 
CANCEL command was issued, probably to stop 
a prolonged dump that may be in an infinite 
loop. In this case, entry to the ABEND 
routine is urgent. In order to stop the 
dump, the ABTERM routine must give the 
appearance of a first-time request for 
termination, this time with a dump not 
requested. 

The ABTERM routine gives the appearance 
of a first-time request for termination by 
clearing those flags in the TCB of the 
term~nating task that indicate ABEND pro
cessing. The flags to be cleared are: 
TCBOPEN, which indicates that an OPEN macro 
instruction has been issued by the ABEND 
routine for the dump1 data set: TCBFOINP, 
which indicates that the dump data set is 
in the process of being opened: and the 
dump option flag in the completion code. 
After clearing the flags, the ABTERM rou
tine clears' all nondispatchability flags, 
except the -must completeft non
dispatchability flag, that may be set in 
the job step TCB. The purpose is to force 
the dispatching of ABEND for the job step 
task to end the prolonged dump. The ABTERM 
routine does not save the RB old PSW and 
the wait count of the current RB, since the 
new termination request will not cause a 
dump. 

The remainder of ABTEF.M processing is 
similar to that previously described: the 
Task Switching routine 1S invoked, the 
ABEND routine is scheduled (RB old PSW and 
wait count are altered), the ABTERM flag 
and the ftprohibit asynchronous exits" flag 
are set, incomplete subtasks are condition
ally set nondispatchable, and control is 
returned as specified by the caller. 

processing if the Specified Task is not the 
Job Step Task 

If the task specified for abnormal ter
mination is not the job step task, as 
indicated by the TCBJSTCB field in its TCB, 
there are three possible paths of process
ing. The path taken depends on whether the 
specified task had been previously set 
nondispatchable by either the ABTERM or 
ABEND routine. and on whether the branch to 
the ABTERM routine represents an attempted 
recursion. The following discussion will 
consider each case separately. 

THE TASK WAS PREVIOUSLY SET NONDISPATCHABLE 
BY ABTERM OR ABEND: (See Table 10-1, 
condition 4a.) In this case. entry to the 

1The dump data set is either SYSABEND or 
SYSUDUMP. 

Section 10: Termination Procedures 191 



ABEND routine is not scheduled. The reason 
is that an ancestor of the specified task 
is already in the process of abnormal 
termination. There is no need for an 
explicit request for termination of the 
specified task, since its resources will be 
released as part of the termination of its 
ancestor. 

The processing for this condition con
sists of setting subtasks of the specified 
task nondispatchable (TCBABWF flag set), if 
they were not all previously placed in this 
condition. This prevents any use of system 
resources by a subtask of the terminating 
task. possibly during a previous entry to 
the ABTERM routine, a subtask was not set 
nondispatchable because it was in "must 
complete" status. If a routine of the 
subtask has reset the "must complete" sta
tus, the subtask can now be set nondis
patchable. The ABTERM routine then re
stores the caller's register content~ from 
the TCB, and returns control to an address 
the caller specified. 

THE TASK IS NOT IN THE PROCESS OF TERMINA
TION BY ABEND: (See Table 10-1, condition 
4b.) For this condition (indicated by the 
clear state of the TCBFA flag), the pro
cessing is similar to that performed if the 
caller specified the job step task. The 
only difference is that in this case the 
ABTERM routine does not clear nondispatcha
bility flags in the TCB of the specified 
task. These flags must be cleared by the 
routine that set them, before the ABEND 
routine can be executed for the task. 

THE TASK IS IN THE PROCESS OF TERMINATION 
BY ABEND: (See Table 10-1, condition 4c.) 
In this case, it is necessary to schedule 
reentry to the ABEND routine to test for 
valid recursion. 

Preparation for ABTERM Processing After a 
Program Interruption (ABTER~ ProlOgue) 

After a program interruption, the 
Program-Check First Level Interruption 
Handler (PC FLIH) cannot branch directly to 
the main entry point of the ABTERM routine 
(IEAOABOO). First, certain housekeeping 
functions needed by the ABTERM routine must 
be performed. These functions are per
formed by a routine of ABTERM, called the 
ABTERI'" Prologue routine. 

Note: If a program check occurs in a user 
program, the Program Check FLIH does not 
branch to the ABTERM Prologue routine if 
both of the following conditions exist: 

• A program interruption element (PIE) 
has been specified, and 

• The program interruption control area 
(PICA) specifies this particular inter-

192 

ruption type to be handled by a user 
routine. 

The ABTERM Prologue routine performs 
five main functions: 

• Obtains the TCB 
be terminated and 
eter register for 
routine. 

address of the task to 
places it in a param
use by the ABTERM 

• Sets up a completion code (system error 
code) that indicates the type of pro
gram check and places the error code in 
a parameter register for initial use by 
the ABTERM routine and ultimate use by 
the ABEND routine. 

• Conditionally saves the program-
interruption old PSW for later display 
by the ABDUMP routine. address for the 
ABTERM routine represents a location 
ABTERM routine will return control when 
its processing is complete. 

• Sets up the dump option flag as an 
indication to the ABEND routine that it 
should invoke the ABDUMP SVC routine. 

The ABTERM Prologue routine (hereafter 
called the Prologue routine) first gets the 
current TCB address. The TCB address spec
ifies the task to be scheduled for abnormal 
termination. If the program check occurred 
in the I/O Supervisor, as indicated by the 
"set" condition of the "I/O original inter
ruption" switch (IORGSW), the Prologue rou
tine gets the TCB address from a request 
queue element (RQE) whose address has been 
placed in register 1 by the I/O Supervisor. 
If the program check did not occur in the 
I/O Supervisor, the Prologue routine 
obtains the TCB address from the ·current
TCB pOinter (IEATCBP+4). 

After the determination of the TCB 
address, there are three streams of pro
cessing, depending on the source of the 
program check: a system or user program, a 
type-l SVC routine (or the SVC FLIH), or 
the I/O Supervisor. The source of the 
program check is determined by tests of the 
"I/O original interruption" switch and the 
"type-l" switch. This discussion will 
first consider the path followed if the 
program check occurred in a routine of a 
system or user program. 

The first stream of processing is for a 
system routine (except the I/O supervisor 
or a type-l SVC routine) or for a user 
program. The Prologue routine saves the 
registers and the address of the next 
executable instruction of the interrupted 
routine. This information is displayed 
during the dump that later occurs as part 
of ABEND processing. the Prologue routine 
saves the address of the instruction by /-', 

'~.'" 



storing the program interruption old PSW in 
the RB old PSW field of the current RB. 
This RB is the "top" RB on the RB queue for 
the current TCB. The old PSW, so saved, 
cannot be lost by a new program check 
occurring before the original information 
can be displayed by ABDUMP. The register 
contents belonging to the interrupted pro
gram are moved from the program
interruption save area in lower main 
storage to the register save area of the 
current TCB (TCBGRS field). They will 
eventually be placed in the ABEND routine's 
SVRB. 

The Prologue routine next sets up a 
completion code (system error code) and a 
return address for later use by the ABTERM 
routine. The completion code indicates the 
type of interruption and suggests the 
source of the error, e.g., OC6 = specifica
tion error. (See the publication Messages 
and Codes.) The ABTERM routine stores the 
completion code in the TCB for the task to 
be terminated. It then places in the 
return register the address of the Dis
patcher, to which the ABTERM routine will 
return control when its processing is 
compl.ete. 

If the program check has occurred in a 
type-l svc routine (or in the SVC First
Level Interruption Handler), as indicated 
by the "type-l" switch (IEATYFE1), the 
Prologue routine sets up a completion code 
and a return address for use by the ABTERM 
routine. This proceSSing is similar to 
that previously described, except that the 
error code is OF2, indicating that a pro
gram check occurred in a type-l SVC routine 
(or in the svc FLIH). The purpose is still 
the same: to indicate to the programmer, 
via a later dump, the type of program in 
which the error occurred. The ABTERM rou
tine will store the completion code in the 
TCB belonging to the task to be terminated. 
After setting the completion code, the 
Prologue routine places in a register the 
address of the Type-l Exit routine, to 
which the ABTERM routine will return 
control. 

In the third case, if the program check 
has occurred in the I/O Supervisor, as 
indicated by the "I/O original interrup
tion" switch (IORGSW), the Prologue routine 
ignores the TCB address that it had pre
viously obtained from the "current" TCB 
pointer. Instead, it gets the TCB address 
for the task to be terminated from a 
request queue element (RQE), whose address 
has been placed in register 1 by the I/O 
Supervisor. The TCB address so obtained 
may possibly not be that of the current 
TCB, since I/O errors do not occur synchro
nously with the operation of the CPU. The 
TCB address for the terminating task is 

then placed in a parameter register for use 
by the ABTERM routine. 

The Prologue routine then sets up a 
completion code and return address for the 
ABTERM routine, in a manner similar to that 
previously described. In this case, howev
er, the I/O error is indicated by a code of 
"OF1", indicating that a program check 
occurred in the I/O Supervisor. The return 
address for the ABTERM routine represents a 
locat~on in the I/O First-LeVel Interrup
tion Handler, called DISMISS. 

Regardless of the source of the program 
check, the Prologue routine sets the dump 
option flag and places the flag and the 
completion code in the parameter register. 
The dump option flag will cause the ABEND 
routine to invoke the ABDUMP SVC routine. 
The position of the completion code in the 
parameter register indicates to the ABDUMP 
routine whether a system error or a user 
error has occurred (see Figure 10-3). 

The Prologue routine next branches to 
the main entry point of the ABTERM routine 
UEAOABOO) • 

DUMPING SELECTED AREAS OF MAIN STORAGE 
(ABDUMP) 

ABDUMP is an SVc routine which may be 
invoked through issuance of a SNAP macro 
instruction, either by the ABEND routine 
during an abnormal termination. or at any 
time by a user program. It can therefore 
provide an abnormal dump or a dynamic dump. 
If it is invoked by the ABEND routine, it 
displays major control blocks. programs, 
and dynamically acquired storage belonging 
to the terminating task, its subtasks, and 
its direct ancestors. 

In systems with Main storage Hierarchy 
Support, ABDUMP dumps main storage in each 
hierarchy associated with the terminating 

Dump 
Option 

Completion code is Completion code is Flag r placed here if a use~ placed here if a system T Not used1 r 
error has occurred I error has occurred 

Bit 0 12 25 31 

Figure 10-3. Format of the completion Code 
and the Dump Option Flag in 
the Parameter Register 

Section 10: Termination Procedures 193 



job step. Storage limits are determined by 
examining the PQE chain. 

The SNAP macro instruction (whose expan
sion contains an SVC 51 instruction) causes 
the SVC Second-Level Interruption Handler 
(SLIH) to search for and fetch the ABDUMP 
routine, one module at a time. Only those 
modules of the ABDUMP routine whose func
tions are requested are fetched and 
executed. 

The ABDUMP routine consists of nine 
nonresident modules each of which is sepa
rately fetched and executed, and one "resi
dent" module, which remains in main storage 
for the entire dump procedure. The multi
processing ABDUMP routine includes one 
additional non-resident module. The resi
dent module (IEAQADOA), loaded by the first 
segment of the ABDUMP routine, contains 
several format and output subroutines used 
by the other modules. The ABDUMP routine 
provides either a formatted printed dis
play, or a series of blocked records on 
tape or on a direct-access medium, such as 
disk. In either case, the output consists 
of a group of control blocks, followed by 
the programs and/or dynamically acquired 
storage of the task, depending on the areas 
requested. 

The first module, ABDUMP1, tests that a 
dump data set has been opened for the BSAM 
access method, provides a work area for use 
by the entire routine, loads the so-called 
"resident" module (format and output rou
tines), conditionally gets storage space 
for pr.eserving the trace table and for the 
blocking of records, and displays "indica
tive" information, such as job name, step 
name, time, date, etc. 

ABDUMP2 formats and displays the old 
PSW, if requested, the TCB for the speci
fied task, the request blocks on its RB 
queue, and the load list for the task. 
Optionally, it displays the TCB register 
save area. 

ABDUMP3 formats and 
directory entries, their 
for each major CDE), the 
(DEBs), and the task I/O 

displays contents 
extent lists (one 
data extent blocks 
table (TIO'!'). 

ABDUMP4 identifies, formats, and dis
plays the control blocks of main storage 
supervision: subpool queue elements 
(SPQES), descriptor queue elements (DQEs), 
free queue elements (FQEs), the dummy par
tition queue element, the partition queue 
elements (PQEs), and the free block queue 
elements (FBQES). 

ABDU~~5 formats and displays the control 
blocks that schedule serially reusable 
resources queue control blocks (QCBs) 
and queue elements (QELs) and register 

194 

save areas belonging to interruption re
quest blocks (IRBs). 

ABDUMP6 formats and displays the regis
ter save areas for each user program of the 
task. For each save area the following 
information is displayed: the address of 
the save area, the contents of the save 
area, the type of linkage (LINK or CALL), 
the entry point identification, and a 
·call" identification (if the CALL macro 
instruction was used to obtain linkage). 

ABDUMP11, executed in a multiprocessing 
system between ABDUMP6 and ABDUMP7, dis
plays the trace table, if requested, and 
displays the prefixed storage area in the 
nucleus. If the multisystem mode is 
operating, the prefixed storage area at 
upper main storage is also displayed. 

ABDUMP7 formats and displays the nucleus 
of main storage, the register contents of 
the user program at entry to ABDUMP, and 
dynamically acquired storage (if STORAGE is 
a keyword operand included with the SNAP 
macro instruction). 

ABDUMP8 formats and displays load 
modules represented by contents directory 
entries. Each module fetched to main 
storage for the terminating or requesting 
task is displayed. 

ABDUMP9 formats and displays storage 
obtained dynamically by user programs 
within the task. Each block of ma1n 
storage is identified by a search of the 
subpool queue element (SPQE) queue. If 
requested, the trace table is displayed. 
The trace table provides information on 
most interruptions, start I/O instructions, 
and executions of the Dispatcher. 

Processing During ABDUMPl 
(Entry Point IGC0005A) 

After having been fetched by the SVC 
SLIH, ABDUMPl first tests two input parame
ters: the DCB for the dump data set, and 
the TCB for the task whose resources are to 
be displayed. (See Section 12, "Control 
Blocks and Tables," for the content and 
format of the ABDUMP parameter list.) The 
DCB is associated with the data set on 
which the dump will appear. The caller -
either the ABEND routine or a user program 

must previously have opened the DCB for 
the dump data set. If the DCB has not 
beenopened, ABDUMPl sets up an error return 
code (4) and, via the Exit routine and the 
Dispatcher, returns control to the caller. 
Otherwise, processing continues. If a TCB 
address is provided as an input parameter, 
the resources of a task other than the 
current task are to be dumped. To avoid a 
program check, ABDUMPl checks the validity 
of the TCB address. If the address is c 



( ', 

" 

invalid, the routine sets up an error code 
(8), and returns control to the caller, via 
the Exit routine and the Dispatcher. If 
the test suggests a valid TCB address, 
processing continues. 

If the task whose resources are to be 
dumped is not the current task (as indi
cated by the TCB address), ABDUMP1 sets all 
tasks of the job step nondispatchable 
except the current task. It does this to 
prevent concurrent_ dump requests issued by 
programs belonging to different tasks of 
the same job step from causing a possible 
"interlock" if one of the tasks abnormally 
terminates. Later, during ABDUMP9, when 
dynamically acquired storage has been dis
played, the tasks will again be set dis
patchable. If the multiprocessin~ feature 
was selected, control is passed to the Task 
Removal subroutine, which determines wheth
er the current task on the second CPU has 
been set nondispatchable. If it has, the 
second CPU is interrupted with an indica
tion (in STMASK) that the Dispatcher must 
gain control. 

To provide a work area for use by all 
load modules of the ABDUMP routine, ABDUMP1 
next obtains storage space. This area will 
later be used to save registers, to serve 
as an output buffer and as a work area, and 
to hold pointers and flags. Later, after 
ABDUMP9, the Where-to-Go routine of the 
"resident" module will free the space 
obtained by ABDUMP1. 

ABDUMP1, via a LOAD macro instruction, 
next causes the fetching of the "resident" 
module of the ABDUMP routine (IGCOA05A) to 
the job step's region of main storage. If 
the "r.esident" module is resident in the 
link pack area, its execution is SCheduled 
by the common subroutines of contents 
Supervision. This module consists of for
mat and output routines that are used 
during the entire dump. Included are three 
format routines, an output routine, a 
Where-to-GO routine, and a "TCB selection" 
routine. 

One format routine determines the posi
tion a labeled field will occupy on a print 
line. Another format routine determines 
the number of 32-byte lines of print needed 
to format a block of storage, and the 
number of bytes to be placed in the last 
incomplete print line. The third format 
routine unpacks a block of main storage and 
formats it in 4-byte fields in preparation 
for printout. 

The Output routine issues the WRITE and 
CHECK macro instructions to print a line on 
a printer or write a block of storage on 
tape or a direct access device. 

--- -~------ -----

The Where-to-Go routine tests the flags 
in the input parameter list to determine 
which of several possible transient load 
modules of the ABDUMP routine should next 
receive control, after a given module's 
processing is complete. It also performs 
final housekeeping before control is 
returned to the caller of the ABDUMP 
routine. 

The "TCB selection" routine permits cer
tain modules of the ABDUMP routine to scan 
the TCBs of the job step in order to set 
the tasks nondispatchable or dispatchable. 
It is necessary to set tasks other than the 
current task nondispatchable. This pre
vents routines for other tasks from alter
ing control blocks while the blocks are 
being displayed. If the multiprocessing 
feature was selected, control is passed to 
the Task Removal subroutine. which deter
mines whether the current task on the 
second CPU has been set nondispatchable. 
If it has, the second CPU is interrupted 
with an indication (in STMASK) that the 
Dispatcher must gain control. After load
ing the resident module, if entry is not 
from the ABEND routine, ABDUMP1 issues an 
ENQ macro instruction for the dump data 
set. (The ABEND routine issues its own ENQ 
macro instruction for the dump data set.) 
It does this to prevent a program belonging 
to task in the same job step from concur
rently causing a new dump to the same data 
set. This could occur during a period of 
dispatchability, before the current dump is 
complete. 

Next, if a display of the trace table 
was requested as an option of the SNAP 
macro instruction, ABDUMP1 issues a condi
tional GETMAIN macro instruction for space 
so that it can move the contents of the 
table. The purpose is to prevent the 
table's further alteration during the 
ABDUMP and ABEND routines. If the table is 
moved, ABDUMP1 sets an indicator for 
ABDUMP9. If no space is available to which 
the trace table can be moved, the message 
"NO SPACE FOR TRACE TABLE" is issued. In 
this case, during ABDUMP9, the trace table 
will not be displayed. 

The trace table was built by the Trace 
routine, a part of the nucleus. The trace 
table contains entries describing certain 
conditions at each SVC interruption, 
external interruption, program interrup
tion, and I/O interruption. Other entries 
indicate conditions at each issuance of a 
Start I/O instruction and at each executi-on 
of the Dispatcher. Most entries contain 
the old PSW, the contents of three regis
ters, the current TCB address, and the time 
of the interruption. In a multiprocessing 
system. the trace entries also contain the 
address of the TCB current on the second 
CPU and the contents of the CPU identity 

Section 10: Termination Procedures 195 



byte. (For the format of the trace table, 
see Section 12, "Control Blocks and 
Tables. ") 

If the output device for the dump data 
set is not a printer, records must be 
blocked. ABDUMP1 issues a conditional 
GETMAIN macro instruction to obtain space 
for the blocking of records. If space is 
not available, the processing continues 
without the setup for the blocking of 
records. 

ABDUMP1 enables interruptions and 
initializes the work area it previously 
obtained. It then displays, via a format 
routine and the Output routine, the identi
fication code (if specified), the job name. 
step name, time, and date. (See sample 
dump in section 12, "Control Blocks.") If 
the ABEND routine is the caller, ABDUI~l 
displays the completion code from the TCB 
for the specified task. Control is then 
passed to the next applicable module of the 
ABDUMP routine. via a branch to the Where
to-Go routine. This routine, by testing 
the dump option flags in the parameter 
list, determines the next module of the 
ABDUMP routine needed to satisfy the call
er's dump options. The Where-to-Go routine 
obtains the needed module by issuing an 
XCTL macro instruction. The XCTL request, 
via the SVC SLIB, fetches and causes con
trol to be given to the selected module of 
the ABDUMP routine. 

Processing During ABDUMP2 
(Entry Point IGC0105A) 

ABDUMP2. if entered. first displays (via 
the format and output routines) the old PSW 
stored when the ABDUMP routine was entered. 
The old PSW is displayed if it was 
requested as an operand of the SNAP macro 
instruction. Next, ABDUMP2 unconditionally 
displays all labeled fields of the task's 
TCB. except its register save area. The 
register save area is displayed only if the 
caller requests the durnp of task resources 
other than its own. 

ABDUMP2 scans the request blocks of the 
RB queue for the specified task in order to 
display the labeled fields of each request 
block (RB). If any RB contains more than 
32 bytes. as indicated by a test of the 
RBSIZE field. its register save area and 
extended save area. if they exist. are also 
displayed. 

After all RBs on the RB queue have been 
displayed. ABDUMP2 displays the load list 
for the task. if the TCB (TCBLLS field) 
indicates that a load list exists. The 
load list contains pointers to contents 
directory entries for all modules that were 
fetched for the task via the LOAD macro 
instruction. After all the load list ele-

196 

ments have been displayed, or if there was 
no load list for the task, ABDUMP2 invokes 
the next module, ABDUMP3. via an XCTL macro 
instruction. 

Processing During ABDUMP3 
(Entry Point IGC0205A) 

ABDUMP3 displays the contents directory 
entries for the task, their extent lists 
(one for each major CDE). the data extent 
blocks (DEBs) chained from the TCB, and the 
task I/O table (TIOT). The contents direc
tory entries and their associated extent 
lists are obtained via two searches. The 
first search consists of a scan of the RB 
queue to find PRBS, each of which may point 
to a CDE. The second search examines the 
load list for the task. Each load list 
element also points to a CDE. Each major 
CDE points to its associated extent list. 

When all CDEs and their extent lists 
have been displayed, the data extent blocks 
(DEBs) chained from the TCBDEB field and 
the task I/O table (TIOT) are displayed. 
This completes the processing of ABDUMP3. 
ABDUMP3 invokes ABDUMP4. via an XCTL macro 
instruction. 

Processing During ABDUMP4 
(Entry Point IGC0305A) 

ABDUMP4 displays all the main storage 
control blocks associated with the speci
fied task. if two conditions are met: the 
task is not complete (TCBFC flag is not 
set) and there is at least one subpool 
queue element (TCBMSS pointer is not zero). 
If these conditions exist. the following 
control blocks are displayed: 

For the Specified Task: 

subpool queue elements (SPQEs) 
descriptor queue elements (DQEs) 
free queue elements (FQEs) 

For the Job Step's Region(s): 

partition queue elements (PQEs) 
free block queue elements (FBQES). 

If the specified task is complete or 
there are no subpool queue elements, 
ABDUMP4 displays only the PQEs and the 
FBQES for the job step's region(s). 

ABDUMP4 then branches to the Where-to-Go 
routine of the resident module to determine 
·the next applicable module of the ABDUMP 
routine. 

The display of main storage control 
blocks is implemented as follows. The 
first step is to set nondispatchable all 
tasks in the job step except the current 
task. This is accomplished via a branch to () 



the Task Select routine of the resident 
module. (This action may already have been 
done in ABDUMPl if the specified task is 
not the current task.> The purpose is to 
prevent any program belonging to another 
task in the job step from being executed 
during an I/O wait condition of the current 
task. During such execution the program of 
the other task could issue a GETMAIN or 
FREEMAIN macro instruction, changing the 
main storage queues that are being dis
played for the specified task. If the 
multiprocessing feature was selected, con
trol is passed to the Task Removal subrou
tine, which determines whether the current 
task on the second CPU has been set nondis
patchable. If it has.- the second CPU is 
interrupted with an indication (in STMASK) 
that the Dispatcher must gain control. 

ABDUMP4 then formats and displays each 
SPQE in the SPQE queue and its associated 
DQEs and FQEs. If a subpool is shared. 
both the owner's and the sharer's SPQEs are 
displayed. When all SPQEs and their asso
ciated DQEs and FQEs have been displayed. 
if the current task is the one specified 
for the dump. ABDUMP4 branches to the Task 
Select routine to make dispatchable other 
tasks in the job step. Dispatchability is 
now feasible. since all main-storage con
trol blocks that are readily alterable have 
been displayed. But if the task specified 
for the dump is not the current task. the 
other tasks of the job step remain nondis
patchable, as set by ABDUMP1. and the 
branch to the Task Select routine is 
bypassed. 

After making other tasks dispatchable 
(if necessary). the partition queue ele
ments (PQEs) and the free block queue 
elements (FBQES) for the job step's re
gion(s) are displayed. ABDUMP4 then 
branches to the resident module's Where-to
Go routine to determine the next applicable 
module of the ABDUMP routine needed to 
satisfy the current dump request. 

ProceSSing During ABDUMPS 
(Entry Point IGC040SA) 

ABDUMP5 displays queue control blocks 
(QCBS) and queue elements (QELs) for the 
entire job step. and/or save areas belong
ing to interruption request blocks (IRBs). 
depending on the dump options requested. as 
indicated by the option flags of the param
eter list. If the ABDUMP routine was 
invoked by the ABEND routine, all these 
items are displayed. 

If a display of QCBs and QELs for the 
job step is requested, the first step is to 
obtain the QCB origin address in the nu
cleus. Then. if the current task is the 
one specified for the dump, all other tasks 
in the job step are (via the Task Select 

routine) set nondispatchable. The purpose. 
as with the display of the main storage 
queues, is to prevent alteration of the QCB 
queues and QEL queues by programs belonging 
to other tasks while these control blocks 
are being displayed. If the task specified 
for the dump is not the current task. all 
tasks but the current task have been non
dispatchable since the execution of 
ABDUMP1. If the multiprocessing feature 
was selected. control is passed to the Task 
Removal subroutine. which determines wheth
er the current task on the second CPU has 
been set nondispatchable. If it has, the 
second CPU is interrupted with an indica
tion (in STMASK) that the Dispatcher must 
gain control. 

The QEL queue chained from each minor 
QCB is searched to find QELs that belong to 
either the specified task's job step, or to 
its Initiator. For the first QEL that 
schedules a given job step resource. 
ABDUMP5 displays both the QEL and its 
associated QCB. For each other QEL for the 
resource, only the QEL is displayed. 
ABDUMP5 compares two PQE pointers to deter
mine whether a given QEL belongs to the 
current job step (including its Initiator). 
One of the PQE pointers (TCBPQE) is in the 
TCB whose address is contained in the QEL. 
The other PQE pointer is in the current TCB 
under whose control the ABDUMP routine is 
operating. If the two PQE pointers are 
equal. both TCBs belong to the same job 
step (or one represents the Initiator), 
since they both refer to the same region of 
main storage. In this case, the QEL is 
displayed.- The examination and display of 
QELs belonging to the job step continue 
until all QELs have been examined, as 
indicated by a major-QCB chain address of 
zero. 

If the current task is the one specified 
for the dump, all other tasks are next set 
dispatchable. But if the specified task is 
not the current task, other tasks are still 
nondispatchable as set by ABDUMP1. and this 
step is bypassed. 

The next step is to display user-program 
save areas belonging to IRBs, if a save
area trace has been requested. If a save
area trace has not been requested, no 
further processing occurs in ABDUMPS, and a 
branch is made to the Where-to-Go routine 
of the resident module to determine the 
next module of ABDUMP to be invoked. 

If a save-area trace has been requested 
as an option of the SNAP macro instruction, 
ABDUMPS examines each RB on the RB queue of 
the specified TCB. For each IRE on the 
queue, the register save area is displayed. 
When the save areas of all IRBs on the RE 
queue have been displayed, ABDUMPS process
ing is complete. ABDUMP6 is invoked. via 

Section 10: Termination Procedures 197 



an XCTL macro instruction, to continue the 
display of save-area information. 

Processing During ABDU~~6 
(Entry Point IGC0505A) 

ABDUMP6 provides the heading line "SAVE 
AREA TRACE." The heading identifies the 
following lines as a trace of the program
provided register save areas for the task 
being dumped. Each save area is displayed 
in three printable lines, starting with the 
supervisor-provided save area for the first 
user routine of the task. 

Save areas are displayed initially in a 
"forward" order, the order in which the 
associated routines were invoked by LINK or 
CALL macro instructions. The forward trace 
continues until all program-provided save 
areas have been displayed, or until incor
rect forward or back chaining of save areas 
is discovered. Then, ABDUMP6 performs a 
partial "backward" trace, displaying the 
save areas for the two most recently 
executed user routines. 

Besides the address and contents of each 
save area, ABDUMP6 displays the following 
messages: 

• An "interruption" message, giving the 
address of the next executable instruc
tion of the newest user routine of the 
task. 

TCB ABDUMP's SVRB 

• A message stating the type of linkage 
macro instruction (LINK or CALL) that 
was first used for the task. 

• A message identifying the display of 
the backward trace. 

The save area 
scribed in greater 
10-4.) 

trace will now be de
detail. (See Figure 

The forward trace begins as ABDUMP6 
obtains the address of the supervisor
provided save area for the first executed 
user routine of the task. This save area 
is pointed to by the TCBFSA field of the 
TCB. ABDUMP6 checks the validity of the 
save area address. If the address is 
invalid (zero or not on a fullword bounda
ry), most of the save area trace is 
bypassed and only the save areas for the 
two last executed routines of the task are 
displayed. But if the address of the 
supervisor-supplied save area is valid, 
information for the first-executed routine 
of the task is displayed (Figure 10-4, part 
1). The information includes the type of 
linkage (LINK or CALL), the module name 
(obtained from the module's CDE), and the 
entry point identifier (if it was specified 
as an operand of the LINK or CALL macro 
instruction>. 

SVRB PRB 

x 

I RBOPSW I 

j""'4f------------- Task's RB Queue ------">.;:--------------..j 

Legend: 

_ = painter 

Supervisor-provided 
save area for the 
first-executed 
routi ne of the task 

B = backward chain pointer 

F = forward chain pointer 

B F 

Save area for 
second-executed 
routine of the 
task 

Figure 10-4. Pointers Used During the Save Area Trace 

198 

B 

Save area for 
third-executed 
routine of the 
task 

~ 
F 

0) 
Save area for 
last-executed 
routine of the 
task 



AB DUMP 6 tries to complete the forward 
save area trace by performing the following 
steps: 

• It obtains the forward chain pointer 
from the third word of the supervisor
provided save area and checks the 
pointer for validity (Figure 10-4, part 
1. block F). 

• If the forward chain pointer is valid, 
it obtains the backward chain pointer 
from the second word of the next save 
area and checks the pointer for validi
ty (Figure 10-4, part 2, block B). 

• If the backward chain pointer is valid. 
it displays the save area and its 
address (Figure 10-4, part 2). 

These steps are repeated for each save 
area until all save areas have been dis
played, as indicated by a forward chain 
pointer of zero, or until an invalid for
ward chain pointer or backward chain point
er has been detected. If ABDUMP6 detects 
an invalid backward chain pointer, it 
issues o.n error message "INCORRECT BACK 
CHAIN n and displays the associated save 
area. 

ABDUMP6 next prepares for the partial 
backward trace that displays the register 
save areas for the two most recently 
executed user routines. It first obtains 
the address of the newest PRB on the task's 
RB queue (see Figure 10-4, part 5). This 
PRB represents the last executed user rou
tine. ABDUMP6 then writes the interruption 
message consisting of the words -INTERRUPT 
AT," followed by the second half (address 
word) of the RB old PSW in the PRB. As a 
heading for the backward trace, ABDUMP6 
issues the message "PROCEEDING BACK VIA REG 
13." 

ABDUMP6 then performs the partial back
ward trace. It first obtains the address 
of the save area for the last executed user 
routine of the task. This address is in 
the register-13 save location in the SVRB 
that precedes the newest PRB on the task's 
RB queue (Figure 10-4, part 6, block X). 
This save area address and the associated 
backward chain pointer (Figure 10-4, part 
4, block B) are validity checked, and the 
two save areas and their addresses are 
displayed (Figure 10-4, parts 3 and 4). 
ABDUMP6 then branches to the Where-to-Go 
routine of the resident module to determine 
the next transient module of the ABDUMP 
routine to be invoked. The Where-to-Go 
routine makes the decision on the basis of 
the dump options specified by the ABDUMP 
routine's caller (as indicated by the 
option flags in the dump parameter list). 

Processing During ABDUMPll 
(Entry Point IGCOBOSA) 

ABDUMP11 is executed only in a multi
processing system between ABDUMP6 and 
ABDUMP7. ABDUMP11 displays the trace table 
if it exists in the system and was 
requested as part of the dump. The trace 
table is displayed as in a uniprocessing 
system (see processing During ABDUMP9·). 
The character A or B is printed on each 
line/entry to identify the CPU to which the 
line/entry applies. 

ABDUMP11 also displays the prefixed 
storage area(s) in the nucleus of main 
storage. If the partitioned mode is 
operating, only the prefixed storage areas 
at the lower end of main storage is dis
played, preceded by the heading -CPU A PSA" 
or "CPU B PSA." If the multisystem mode is 
operating, both prefixed storage areas are 
displayed, preceded by the headings "CPU A 
PSA" and "CPU B PSA." 

In a multiprocessing system, ABDUMP7 
omits the prefixed storage area from the 
display of the nucleus, and ABDUMP9 does 
not display the trace table. 

processing During ABDUMP7 
(Entry Point IGC0605A) 

ABDUMP7 displays any combination or all 
of the following resources of the specified 
task, depending on the options requested by 
the caller. 

• The nucleus of main storage. 

• The register contents when the ABEND 
routine was entered, or when the SNAP 
macro instruction was issued. 

• Selected blocks of main storage (if 
STORAGE is included as a keyword 
operand of the SNAP macro instruction). 

If the caller has requested a dump of 
the nucleus of main storage, ABDUMP7 dis
plays the nucleus, preceded by the heading 
NUCLEUS. If there is a trace table in the 
system, and it lies in the nucleus, only 
the part of the nucleus below the trace 
table is displayed (see ABDUMP1 for a 
discussion of the trace table). Then the 
heading NUCLEUS CONT and the rest of the 
nucleus above the trace table are dis
played. ABDUMP7 bypasses the current copy 
of the trace table because the table now 
contains misleading information. This 
information was inserted after SVC inter
ruptions, I/O interruptions, and entries to 
the Dispatcher, during execution of the 
ABDUMP routine. The original copy of the 
trace table was saved by ABDUMP1, if space 
was available, and will be displayed by 
ABDUMP9. 

Section 10: Termination Procedures 199 



In a multiprocessing system. the pre
fixed storage area(s) are displayed by 
ABDUMP11 (IGCOBOSA) • Therefore, ABDUMP7 
displays the nucleus starting at location 
X'1000.' 

ABDUMP7 next displays the register con
tents as they appeared when the SNAP macro 
instruction was issued. If the ABEND rou
tine was the caller. the 'register contents 
are obtained from the ABEND routine's SVRB. 
Otherwise. the register contents saved in 
the ABDUMP routine's SVRB are used for the 
display. The display is preceded by either 
of two messages: "REGS AT ENTRY TO ABEND" 
or ·REGS AT ENTRY TO SNAP." 

If a SNAP macro instruction was issued 
with the keyword STORAGE, the areas of main 
storage requested by the caller are for
~atted and displayed. To protect private 
information. storage is displayed only if 
it lies within the caller's region. Each 
eight words of storage is preceded by its 
starting address. ABDUMP7, its processing 
now complete, brancHes to the Where-to-Go 
routine of the resident module to determine 
the next transient module of the ABDUMP 
routine to be invoked. 

Processing During ABDUMP8 
(Entry Point IGC0705A) 

ABDUMP8 displays load modules for the 
task whose resources are being dumped. The 
information needed to display each load 
module is obtained from the contents direc
tory entry (CDE) for the module and from 
the associated extent list. 

There are two possible sources of infor
mation needed to dump load modules. One 
source is the group of CDEs pointed to by 
PRBs belonging to the task. These CDEs 
represent modules requested by an ATTACH, 
LINK, or XCTL macro instruction. The other 
source is the group of CDEs pointed to by 
elements of the load list for the task. 
These tDEs represent modules requested by a 
LOAD macro instruction. (For a review of 
the contents directory and the load lists, 
see Section 4. ·Contents Supervision.") If 
the task specified for the dump has already 
been terminated, either normally or abnor
mally, as indicated by the "set" condition 
of the TCBFC flag. all PRBs have been 
removed from the task's RB queue and have 
been freed. To determine if the RB queue 
still exists and can be examined, ABDUMP8 
examines the TCBFC flag to test for pre
vious task termination. If the task was 
not terminated, both the RB queue and the 
load list are scanned for pointers to CDEs. 
(For the content and format of a PRB, a 
CDE, a load list element, and an extent 
list, see section 12. ·Control Blocks and 
Tables. ") 

200 

ABDUMP8 obtains the following informa
tion from the CDEs: 

• Whether the module is already in main 
storage or in the process of being 
fetched. 

• The address of the module'S extent 
list. The extent list contains the 
main storage address and length of each 
loadable section of the module. 

• The module's entry point name. 

• Whether the module is in the area of 
main storage specified by the caller 
(job pack area or link pack area). 

If the module is in the specified main 
storage area, ABDUMP8 displays a heading 
line, containing "LOAD MODULE" and the 
module's name, followed by the contents of 
the module itself. The normal line of the 
display contains eight words of storage 
preceded by their starting address. 

When the load modules described by all 
CDEs have been displayed, ABDUMP8 branches 
to the Where-to-Go routine of the resident 
module. This routine determines whether 
ABDUMP9 should be invoked, or whether con
trol should be returned to the caller of 
the ABDUMP routine. 

processing During ABDUMP9 
(Entry Point IGC0805A) 

ABDUMP9 displays the trace table if it 
exists in the system and was requested as 
part of the dump, and if the table was 
saved during ABDUMP1. (Refer to ABDUMPl 
for a brief description of the trace table. 
and to Section 12 for the format of its 
entries.) In a multiprocessing system. the 
trace table is displayed by ABDUMP11 (IGCO
BOSA) and, therefore, is not displayed by 
ABDUMP9. ABDUMP9 also displays user sub
pools of main storage that have subpool 
numbers not greater than 127. When all 
user subpools have been displayed, ABDUMP9 
branches to the Where-to-Go routine of the 
resident module (IEAQADOA). to prepare for 
and return control to the caller of the 
ABDUMP routine. 

The details of the processing in ABDUMP9 
will now be described. 

ABDUMP9 displays the trace table in two 
parts. (The program listing calls this 
procedure "unfolding" the trace table.) 
ABDUMP9 starts the display at the trace 
table entry immediately after the current 
entry, and proceeds to the end of the 
table. It then displays the rest of the 
table by starting at the first entry and 
proceeding to the current entry. Pointers 
to the trace table exist in a triple word () 



whose address is obtained from the second
ary communication vector table (see Section 
12, "Control Blocks and Tables"). The 
first word points to the address of the 
current entry of the trace table: the 
second word points to the start of the 
table: the third word points to the end of 
the table. 

After displaying the trace table, 
ABDUMP9 frees the space previously obtained 
for the table. 

ABDUMP9 next displays user-obtained main 
storage if two conditions exist: there is 
at least one subpool queue element (SPQE) 
on the task's main storage queues (TCBMSS 
flag is not zero), and the SPLS operand was 
specified in the SNAP macro instruction. 
Otherwise, ABDUMP9 branches to the Where
to-Go routine in the resident module (IEA
QADOA) to end the dump and return control 
to the caller. 

If user main storage is to be displayed, 
the job step is set temporarily nondis
patchable to prevent alteration of the main 
storage queues during the display. If the 
multiprocessing feature was selected, con
trol is passed to the TESTDSP subroutine 
which determines whether the current task 
on the second CPU has been set nondispatch
able. If it has, the second CPU is inter
rupted with an indication (in STMASK) that 
the Dispatcher must gain control. 

For each subpool queue element (SPQE), 
ABDUMP9 checks that the subpool number is 
for a user area of storage, as indicated by 
a subpool number not greater than 127, and 
that the SPQE does not represent a shared 
area of storage. (For the content and 
format of an SPQE see Section 12, "Control 
Blocks and Tables.") If the SPQE indicates 
that the area is shared, the "owner" SPQE 
is obtained via an SPQE pointer in the 
DQE-pointer field of the SPQE. The "owner" 
SPQE is the element created by the GET MAIN 
routine when the block of storage was first 
requested. 

AB DUMP 9 obtains from the descriptor 
queue element (DQE), pointed to by the 
SPQE, the starting address of the block of 
main storage for the original GETMA.IN re
quest and the number of bytes allocated for 
the request. ABDUMP9 displays a header 
line giving the subpool and block number. 
The subpool number is obtained from the 
SPQE, the block number from the DQE. It 
then formats the block, normally eight 
words to a line, and displays it. There 
may be one or more free areas in the block 
to be displayed, as indicated by the exist
ence of a free queue element (FQE) pointed 
to by the DQE. In this case, ABDUMP9 
divides the block into sections separated 
by free areas. It then formats and dis-

plays the block, bypassing each free area, 
so that free areas do not appear in the 
dump output. The process is repeated for 
each DQE belonging to an SPQE and for each 
SPQE in the queue. When all SPQEs have 
been processed, ABDUMP9 sets all other 
tasks of the job step dispatachable. Since 
the display of user-acquired main storage 
is finished, GETMAIN requests will not now 
affect the dump. ABDUMP9 then branches to 
the Where-to-Go routine of the resident 
module (IEAQADOA) to prepare for return of 
control to the caller: the ABEND routine 
or the issuer of the SNAP macro 
instruction. 

Cleanup in the Where-to-Go Routine 

The cleanup procedure of the Where-to-Go 
routine of the resident module (IGCOA05A) 
ends the dump and prepares for return of 
control to the caller by: 

• Displaying message "'END OF DUMP." 

• Freeing all areas obtained during the 
execution of ABDUMP1 (i.e., the work 
area and the optional area for the 
blocking of records). 

• Issuing a DEQ macro instruction for the 
dump data set, if the ABDUMP routine 
was invoked by a user routine. If the 
ABDUMP routine was invoked by the ABEND 
routine, the ABEND routine issues the 
DEQ macro instruction, specifying the 
dump data set. The data set can then 
be used by the ABDUMP routine for 
another caller specifying the same data 
set. 

• Deletes the resident module and returns 
control to the caller, via the Exit 
routine and the Dispatcher. It does 
this by moving a DELETE macro instruc
tion and an SVC-3 instruction to the 
extended save area of the ABDUMP rou
tine's SVRB, and then executing these 
instructions. In the program listing 
this process is called "self delete." 

PERFORMING ~~NORMAL TERMINATION 
(ABEND ROUTINE) 

Abnormal termination occurs when some 
type of unrecoverable error, such as a 
machine check, I/O error, or program check 
has taken place. It may also be initiated 
by a system or user program that detects an 
abnormal condition that could cause a pro
gram check or incorrect processing. The 
task whose program or I/O operation has 
malfunctioned is abnormally terminated 
because reliable results can no longer be 
obtained. The task must be terminated to 
prevent waste of system resources, such as 
CPU time or main storage. 

Section 10: Terwination Procedures 201 



The purpose of abnormal termination is 
to free the resources of the malfunctioning 
task so that they can be made available to 
other tasks in the system. The freed 
resources include programs in main storage, 
enqueued resource requests, unexpired timer 
requests, incomplete operator communica
tions exclusively used data sets, and 
unshared subpools of main storage (if 
dynamically acquired). These resources 
belong to the specified task itself and its 
previously unterminated descendants. In 
addition, control blocks used by the ter
minating task and its descendants are 
dequeued from their lists and in most cases 
freed. These control blocks include: 
TCBs, RBs, IQEs, QELs, QCBs, SPQEs, CDEs, 
TQEs, and PIEs (if they exist). 

Abnormal termination allows two options: 
task and job step termination. These are 
normally user options, specified by an 
operand of the ABEND macro instruction. In 
task termination the resources of only the 
malfunctioning task and its previously 
unterminated descendants are released. 
This option permits a program belonging to 
a higher level task in the job step to 
decide whether to continue or terminate the 
other tasks of the job step. But in step 
termination the resources used by all tasks 
of the job step are freed. step termina
tion may be elected by a user program (via 
the STEP operand of the ABEND macro 
instruction), or caused by the ABEND rou
tine if it cannot obtain sufficient storage 
for the closing of data sets, and must 
·stealn storage from a block shared with 
other tasks in the job step. 

The termination procedure is performed 
by the ABEND routine, a type-4 (reentrant, 
nonresident, segmented, partially disabled) 
SVC routine. As stated before, the ABEND 
routine frees resources and control blocks 
belonging to the offending task and its 
previously unterminated descendants (sub
tasks, tasks, and subtasks of subtasks). 
For several unusual conditions (a task in 
"must complete" status, a terminating sys
tem task, and an invalid recursion), the 
ABEND routine branches to the system 
quiesce routine which abnormally terminates 
only the failing task, sets its subtasks 
nondispatchable, and permits the system to 
quiesce. 

If the dump option had been selected 
(either by the user program or by the 
ABTERM routine), the ABEND routine causes 
the loading and execution of the ABDUMP SVC 
routine. The ABDUMP routine displays the 
programs, control blocks, and dynamically 
acquired storage of the terminating task, 
its descendants, and its ancestors, includ
ing the job step task. 

202 

The ABEND routine may be invoked direct
ly or indirectly. The invocation is direct 
when a system or user routine issues an 
ABEND macro instruction to terminate the 
current task. The invocation is indirect 
when a system routine, after detecting an 
abnormal condition, branches to the ABTERM 
routine. The ABTERM routine schedules the 
execution of an SVC 13 (ABEND macro 
instruction) for the task to be terminated. 
The SVC 13 instruction, executed when the 
task to be terminated is next dispatched, 
causes supervisor linkage to the ABEND 
routine. 

The entry is indirect in the following 
situations: 

• A type-1 SVC routine, which is not 
permitted to issue an SVC instruction, 
decides to terminate the current task. 

• A supervisor routine decides to termi
nate a task other than the current 
task. 

• The I/O Supervisor, whose execution is 
asynchronous with task performance, 
decides to terminate a task for which 
an unrecoverable I/O error has 
occurred. 

• A program check occurs during the per
formance of any task. 

The ABEND routine is composed of six 
nonresident or transient modules. The 
first module determines whether STAE pro
cessing, rather than ABEND process1ng, 
should be performed on the failing task. 
The other five modules perform normal ABEND 
processing, releasing task resources and 
invoking the ABDUMP routine. Each module 
is fetched and given control by the tran
sient area handler. The loading of the 
first segment occurs after the SVC 13 (SVC 
ABEND) instruction is issued (either by the 
caller or indirectly by the ABTERM rou
tine). The issuance of an XCTL macro 
instruction at the end' of each module 
causes supervisor linkage to the transient 
area handler to fetch and pass control to 
the next module. ABEND6, usually the last 
executed module of the ABEND routine, 
returns control to the current routine of 
the highest priority ready task, by branch
ing to the supervisor Exit routine and the 
Dispatcher (via an SVC 3 instruction). 

The System Quiesce routine, which is 
part of the nucleus, may be branched to by 
ABEND under special conditions to abnormal
ly terminate the failing task, set its 
related tasks nondispatchable, and permit 
the system to quiesce. 



( 

processing During ABENDl 
(Entry Point IGCOOOlC) 

The SVC SLIH fetches the first module of 
the ABEND routine (ABENDl) from the SVC 
library. The SVC SLIH then gives control 
to ABENDl, via the Dispatcher. 

The main function of ABEND1 is to deter
mine if normal ABEND processing should be 
executed for the failing task or if the 
ABENDing task issued a STAE macro instruc
tion and the ABENDISTAE interface routine 
(ASIR) should be invoked. ABEND1 first 
tests the TCBNSTAE field of the TCB to 
determine if a STAE was issued. If a STAE 
environment is not in effect (TCBNSTAE 
0), ABEND2 is invoked to continue normal 
ABEND processing. 

If a STAE was issued by the failing 
task,ABEND1 next determines, by testing a 
bit in the TCBNSTAE field, if the failure 
occurred while ASIR was attempting to 
quiesce I/O. If so, control is returned to 
ASIR which will halt the I/O in progress. 

EVen if the failing task has issued a 
STAE, normal ABEND processing will continue 
if one of the following conditions exists: 

• The completion code passed in register 
1 is a 13E, signifying that the job
step task issued a DETACH macro 
instruction during the processing of a 
subtask. 

• A bit in the TCBFLGS field of the job 
step TCB indicates that the ABEND was 
caused by either expiration of the job 
step timer or by an operator's CANCEL 
command. 

• The STAE recursion bit in the TCBNSTAE 
field indicates that ABEND was entered 
because of a failure during STAE pro
cessing (other than a failure during 
the quiesce I/O pruge operation). 

If anyone of the above conditions is 
indicated, ABEND2 is invoked and normal 
ABEND processing is continued. 

Before passing control to ASIRfor STAE 
processing, ABEND1 tests the TCBPIE field 
in the TCB, and, if a program interruption 
element (PIE) exit exists, it is .purged .• 
If the ABTERM bit in the TCBFLGS field 
indicates that the completion code passed 
in register one has not been stored in the 
TCBCMP field, ABEND1 stores it there. 
ABEND1 (via an SVC 7 instruction) passes 
control to ASIRl to begin STAE processing. 
(See the description of the STAE macro 
instruction in Section 3.) 

Processing During ABEND2 
(Entry Point IGC040lC) 

ABEND2 performs the following functions: 

• Determines if ~he task which is ABEND
ing is a graphics job. If so, branches 
to the graphics exit routine to attempt 
error recovery. 

• Clears the ABDUMP nondispatchability 
flag (TCBNDUMP) in all TCBs of the job 
step. 

• Recognizes whether a serious program 
error condition has occurred (such as a 
termination of a system task). If such 
a condition exists, branches to the 
system quiesce routine which terminates 
the failing task, sets its subtasks 
nondispatchable, and informs the opera
tor that a CPU wait state has been 
averted and the system must be allowed 
to quiesce. 

• Determines whether the entry to the 
ABEND routine is a first-time entry or 
a reentry from a previous execution of 
the ABEND routine. and thus decides 
whether to bypass ABEND3. 

• Determines if the rollout/rollin fea
ture is in the system. If so, invokes 
the Rollout Purge routine (ROLLPRGC) to 
remove the appropriate IQEs from the 
rollout queue. 

PROCESSING FOR GRAPHICS JOBS: If the task 
being terminated is a graphics job, ABEND2 
sets the subtasks of the ABENDing tasks 
nondispatchable. ABEND2 then determines 
whether (1) enough storage is available for 
a dump and (2) the task is resumable, i.e., 
the ABEND was issued by a user program or 
caused by a program check in a user rou
tine. Control is next passed to the Graph
ics Exit routine. At the completion of 
this routine if the task is resumable and 
the user chose to resume processing, the 
subtasks are set dispatchable, the right 
half of the PSW is set to the user's 
specifications and control is returned to 
the caller via an SVC3 instruction. Other
wise, control is passed to ABEND3. 

CLEARING THE ABDUMP NONDISPATCHABLE FLAG: 
The first main step for non-graphics jobs 
performed by ABEND2 is to clear in each TCB 
of the job step a non-dispatchability flag 
(TCBNDUMP) set during a possible previous 
execution of the ABDUMP routine. ABDUMP 
sets this flag in each TCB of the job step 
(except that of the current task) in order 
to prevent alteration of dynamic queues 
during their display. ABEND2 must now 
clear these non-dispatchability flags in 
order that the Dispatcher may restart nor
mal (nonterminating) tasks of the job step. 

Section 10: Termination Procedures 203 



If the multiprocessing feature was 
selected, control is passed to the TESTDSP 
subroutine, which determines whether the 
current task on the second CPU has been set 
nondispatchable. If it has, the second CPU 
is interrupted with an indication (in 
STMASK) that the Dispatcher must gain 
control. 

The following example illustrates this 
point. Assume that normal task A has 
requested a dynamic dump of task B's 
resources. The ABDUMP routine, when it 
gets control, sets all tasks in the job 
step nondispatchable to prevent alteration 
of dynamic queues during the dump. While 
the dump is in process and before the 
ABDUMP routine can reset non
dispatchability, an error occurs that 
abnormally terminates task A. All tasks of 
the job step would remain nondispatchable 
if the ABEND2 routine did not clear ABDUMP 
nondispatchability soon after it gained 
control. 

RECOGNIZING A SEVERE ERROR CONDITION: 
ABEND2 next tests whether the current entry 
to the ABEND routine represents an error 
condition serious enough to warrant branch
ing to the System Quiesce routine (entry 
point IECIWTST). This routine places the 
failing task in a wait state, sets its 
subtasks nondispatchable, and issues a mes
sage to the operator indicating that a CPU 
wait state has been averted and the system 
should be allowed to quiesce. The three 
conditions of extreme severity are: 

1. The attempted abnormal termination of 
any system task because of a program 
check during its performance. 

~: The CPU is not placed in the 
wait state, nor is an error message 
issued to the operator, if ABEND2 is 
entered from the Machine-Check 
Handler1 because of a machine check. 
In this case, the formatted dump nor
mally produced during ABEND5 is pre
vented by the setting of the "prevent 
dump· indicator (TCBPDUMP) by ABEND 2 
in the job step TCB. The dump is 
pr.evented because a dump is not infor
mative after a machine check. An 
entry to ABEND2 from the Machine-Check 
Handler is indicated by a condition 
code of OF3. 

2. The attempted abnormal termination of 
a task in "must complete" status. A 
task in "must complete" status must be 
completed in order for the system to 

1The Machine-Check Handler is 
generation option available 
System/360 Model 65. See 
"Interruption Handling." 

204 

a system 
with the 

Section 2, 

remain intact. It should not be 
abnormally terminated. 

3. An invalid reentry ("recursion") to 
the ABEND routine for a task that is 
already being terminated. A recursion 
is valid only if caused by an error in 
one of the following situations: 

• The execution of the Open routine of 
data management (during ABEND4) to 
open the SYSABEND or SYSUDUMP data 
set. 

• The execution of the Close routine 
of data management (during ABEND5) 
to close a data set belonging to the 
terminating task. 

• The execution of the ABDUMP routine 
(during ABEND5). 

If one of the severe error conditions is 
detected, ABEND2 branches to the system 
quiesce routine (IEAQTWST) whose address is 
obtained from word 72 (dec.) of the CVT. 
The system quiesce routine places the fail
ing task in a wait condition, sets its 
subtasks nondispatchable, isolates the 
region associated with the failing task for 
later analysis. and issues a message to the 
operator indicating that a CPU wait state 
has been averted and instructing him to 
permit the system to quiesce by not schedu
ling any additional jobs. If none of the 
extremely serious conditions exists (as 
indicated by flags in the current TCB), 
ABEND2 continues processing. 

DISCRIMINATING BETWEEN FIRST-TIME ENTRY AND 
VALID RECURSION: At this point in ABEND2 
processing there are two possible paths, 
depending on whether the entry for the 
current task is a first-time occurrence or 
a valid recursion. (A valid recursion is 
indicated by the set condition of both the 
TCBREC flag and anyone of three other 
flags: TCBADUMP, TCBOPEN, or TCBCLOSE.) 
If entry to the ABEND routine is due to 
valid recursion, most of ABEND2 processing 
is bypassed, since it was performed during 
a previous entry to the ABEND routine. 
.ABEND3 is invoked to handle the recursion. 
There are, however, several steps which are 
performed if the system has the rollout 
feature. These include the removal of IQEs 
from the rollout queue and the asynchronous 
exit queue. 

REMOvlNG IQES FROM THEIR QUEUES: IQES are 
removed from the rollout queue and from the 
asynchronous exit queue by the Rollout 
Purge routine. Input to this routine con
sists solely of the address of the TCB for 
the abending task. 

IQES on the rollout queue are examined 
first. If the TCB address in the first 



( 

word of the parameter list addressed by an 
IQE on the rollout queue is equal to the 
TCB address passed to this routine, the 
count of queued rollout requests is decre
mented by one, and the IQE is removed from 
the queue and returned to the available 
list (whose origin is the rollout IRB). 

If a TCB match is not made against an 
IQE on the rollout queue, or if the queue 
is empty, IQEs on the asynchronous exit 
queue (AEQ2) are examined. If a match is 
made against the TCB address in the parame
ter list addressed by an IQE on this queue, 
the IQE is removed from the queue and 
returned to the available list. 

If no match is obtained against an IQE 
on the AEQ2 or if the queue is empty, the 
queue of IQEs originating from the rollout 
IRB is examined. If a match is obtained 
against the TCB address in the parameter 
list addressed by an IQE on this queue and 
the IQE is not at the head of the queue 
(not addressed by the RBIQE field and 
therefore not currently being processed by 
Rollout), the IQE is removed from the queue 
and returned to the available list. If a 
match is made and the IQE is at the head of 
the queue (currently being processed by 
Rollout), a flag is set in the parameter 
list addressed by the IQE to indicate to 
the Rollout routine that the task is in the 
process of terminating abnormally. 

Processing During ABEND3 
(Entry Point IGCOA01C) 

ContI'ol is passed to ABEND3 from ABEND2 
after IQEs have been removed from the 
rollout queue or the asynchronous exit 
queue. 

ABEND3 performs the following functions: 

• Clears the nABTERM" and "valid recur
sion" flags in the task's TCB if entry 
is due to a valid recursion. 

• Purges those resources of the termina
ting task and its descendants that can 
operate asynchronously with the CPU and 
can cause needless processing during 
the course of the termination. The 
resources include unexpired timer 
intervals, I/O requests and 1/0 opera
tions that are in process, outstanding 
WTOR requests, unscheduled requests for 
user (asynchronous) exit routines, and 
the use of a program interruption rou
tine (if a PIE exists). 

• Checks the validity of free queue ele
ments in the main storage queues in 
order to avoid program checks during 
later issuance of GETMAIN and FREEMAIN 
macro instructions. 

~~~~,---- .. , 

• Tests for the availability of main
storage, to be used during the closing
of data sets by ABEND5. If main
storage is not available, ABEND3 pre
pares for a step termination, prevents
a dump, and "steals" main storage from
the job step for use by the Close
routine during ABEND5.

PROCESSING FOR A VALID RECURSION: The
first step for a valid recursion is to
clear the ABTERM and ·valid recursion"
flags in the TCB for the current task.
(The flags are TCBABTRM and TCBREC.) The
ABTERM flag, when set, prevents the ABTERM
routine from scheduling multiple entries to
the ABEND routine for the same task, before
the ABEND routine can be entered. Since
the ABEND routine has now been entered for
the task, the TCB ABTERM flag must be
cleared. The ·valid recursion" flag
(TCBREC), if set during a previous partial
termination of the task, must be cleared.
Otherwise,ABEND3 will miSinterpret as
valid a future invalid recursion. Remember
that the only valid recursions during ABEND
processing are those occurring during the
execution of the Open, ABDUMP, and Close
routines.

The next step is to purge I/O requests
and requests for asynchronous exit routines
that were possibly generated during the
previous entry to the ABEND routine. Older
requests of the same type, initiated by
system or user programs of the task, were
purged during the earlier ABEND3 execution.
New queue elements and I/O operations
created or begun for the ABEND open, dump,
and close functions must be eliminated.
This is done for two reasons: to prevent
waste of system resources, and to avoid the
posting by the I/O Supervisor of ECBs that
will no longer exist after the ABEND rou
tine has purged main storage.

The remainder of recursion processing in
ABEND3 is the same for both recursion and
first-time entry. This processing consists
largely of obtaining main storage for the
close function of ABEND5, and will be
described under the heading ·Stealing Main
storage."

PROCESSING FOR A FIRST-TIME ENTRY: When
ABEND 3 has determined that a severe error
has not occurred (such as the terminat~on
of a system task), and that the current
entry to the ABEND routine is not a recur
sion, it then tests the scope of the
termination request.

Determininq the Scope of the Termination
Request: The termination request may be
for a single task and its unterminated
descendants or for the entire job step.
The choice, an option of the ABEND macro
instruction, is indicated in the input

Section 10: Termination Procedures 205

parameter list. The tree of tasks to be
termina·ted originates wi th the current
task, unless the STEP option has been
specified in the ABEND macro instruction.
If the STEP option has been specified, the
terminating tree of tasks must originate
with the job step task.

An Walternate TCB" pointer is preloaded
with the address of the job step TCB, on
the initial assumption that the caller has
specified the STEP aption or belongs to the
job step task. If the assumption is incor
rect, ABEND3 places in the "alternate TCB"
pointer the address of the current or
caller's TCB. In this case, the "alternate
TCB" pointer specifies the current task as
the "top" task of the tree of tasks to be
terminated. The "top" or specified task
and all its previously pnterminated descen
dants are terminated during the course -of
ABEND processing.

Setting Descendants Nondispatchable and
Preventing Asynchronous Exits: ABEND3 sets
nondispatchable ,all incomplete descendants
of the specified task, and prevents asyn
chronous exits for these descendants. The
main purpose is to avoid the possibility of
a subtask gaining control during an I/O
wait period and causing a new abnormal
termination. Such a new termination would
be interpreted by ABEND4 as an invalid
recursion, and would cause a branch to the
System Quiesce routine. A secondary pur
pose is to prevent the waste of system
resources for subtasks that are planned for
termination but are not yet terminated.

To accomplish the foregoing purposes,
and to indicate that the tasks of the tree
are in the process of abnormal termination,
ABEND3 sets the following three flags in
the TCB of each des,cendant:

• "Abnormal
indicates
not place
the task.

wait" flag (TCBABWF) which
to the Dispatcher that it may
into execution any routine of

• ·Prevent asynchronous exits" flag
(TCBFX), which indicates to the Stage 3
Exit Effector that it may not transfer
interruption queue elements from an
asynchronous exit queue to a queue
belonging to an IRB. It also prevents
Stage 3 from queuing an IRB to a TCB,
and thus prevents the scheduling of an
asynchronous exit routine.

• RTermination in process flag" (TCBFA),
which indicates to ABEND3, on later
reentry for the same task, that a
recursion has occurred.

In order to obtain the address of each
TCB whose flags must be set, ABEND3 uses a
"task select" subroutine. This subroutine,

206

used in various modules of the ABEND rou
tine, and in the ABTERM and ABDUMP rou
tines, scans the tree of TCBs whose tasks
are to be terminated. It starts with the
newest descendant of the "top" TCB. It
then examines the tree of TCBs from the
newest descendant to the top TCB. For each
selected TCB, the three aforementioned
flags are set.

If, during the scan of the tree of
tasks, a TCB is found that indicates (by
its TCBOINP flag) that the SYSABEND or
SYSUDUMP data set is being opened for the
task, the task is not set nondispatchable.
(That is, the three flags in its TCB are
not set.) The opening of the dump data set
(SYSABEND or SYSUDUMP) must continue
without interruption. Otherwise, ABEND4
would prevent dumps for the entire job
step.

In addition, if the dump data set is
being opened for a task, its TCB ·top· flag
(TCBFT) is cleared. The reason is that the
task, partially terminated as the top task
of its tree, is no longer the top task.
Its ·top" flag is therefore altered to
reflect its more recent place in the tree.

When the three flags have been set in
all TCBs of the tree, ABEND3 clears the
"abnormal wait flag" (TCBABWF) in the cur
rent TCB, so that the next module of the
ABEND routine may be dispatched for the
current task when ABEND3 is complete. The
"top· flag (TCBFT) is also set in the TCB
for the top or oldest task of the tree, to
indicate to the ABEND routine that this
task and all its incomplete descendants are
to be terminated.

If the multiprocessing feature has been
selected, control is passed to the Task
Removal routine, which determines whether
the current task on the second CPU has been
set nondispatchable. If it has, the second
CPU is interrupted with an indication (in
STMASK) that the Dispatcher must gain
control.

Purging Resources for the Specified Task
and Its Descendants: ABEND3 (via separate
routines) purges for the tree of tasks the
timer queue, I/O requests and I/O opera
tions in process, the WTOR queues, the
asynchronous exit queue for non-I/O
requests, and the program interruption ele
ment (PIE), if one has been specified.
Using the ntaskselectn subroutine, and
starting with the newest descendant task of
the specified or "top" task, ABEND2 purges
the resources and resource requests for
each task in the tree. During the scan of
the tree of tasks, only resources belonging
to previously unterminated descendant tasks
are released. Tasks that were previously
terminated, either normally or abnormally c

()

(~:

as indicated by the "completion" flag
(TCBFC), are ignored and the next task
selected for release of resources.

purging the Timer Queue: The first group
of resource requests to be purged for each
task is contained in the timer queue. The
Timer Purge rout.ine removes from the timer
queue those elements that represent unex
pired timer requests for the task. It also
frees the space occupied by these elements.
The purpose is to minimize the number of
external interruptions for tasks that are
terminating. The Timer Purge routine also
frees the problem program register save
area associated with each user (asynchro
nous) exit routine. (The associated save
area is pointed to by its TQE.)

purging I/O Requests and I/O Operations in
Process: ABEND3 purges I/O requests and
I/O operations in order to avoid errors
that can cause recursion to the ABEND
routine. Since the ABEND routine frees
main storage, an I/O operation that is not
halted can cause information to be read
into main storage that may have been re
allocated. The result is that data or
programs can be destroyed. Furthermore, an
event control block may be posted in re
allocated main storage, thus causing an
additional error. ABEND3 removes (via the
SVC Purge routine) I/O requests (RQEs) that
have not yet been serviced. By Halt I/O
instructions, the SVC Purge routine stops
I/O operations in process for each task of
the tree. RQEs removed from the request
queue are returned to a list of available
RQES for reuse by the I/O supervisor.
Besides purging I/O operations in process
and outstanding I/O requests, the svc Purge
routine dequeues, from the SIRB, elements
representing scheduled requests for the use
of I/O error handling routines.

purging the Operator Communication Queues:
After removing I/O requests and halting
current I/O operations for a task, ABEND3
branches to the resident WTOR Purge rou
tine. This routine removes elements from
the buffer queue and from the reply queue
that represent both messages to the opera
tor and the operator's replies associated
with the terminating task. The purpose of
purging these elements from the queues is
threefold: to save processing time, to
prevent errors, and to prevent posting of
meaningless ECBs for the communications
task. These ECBs may not exist after
ABEND6 frees dynamically acquired main
storage.

Removing Reguests for User (Asynchronous>
Exit Routines: After purging the operator
communication queues, ABEND3 branches to
another subroutine to remove asynchronous
exit requests. Those IQEs on the asynchro
nous exit queue that represent exit

requests for the terminating task are
dequeued. The elements will be freed later
during ABEND6 when subpools of main storage
are released. Note that IQEs are removed
from the asynchronous exit queue but not
from an IRB'S queue if they have already
been scheduled by the Stage 3 Exit Effec
tor. The purpose of removing the IQEs from
the queue is to minimize the scheduling of
asynchronous exit routines that can occur
after the "prevent asynchronous exits" flag
is cleared at the end of ABEND3. The
execution of an asynchronous exit routine,
before ABEND processing is complete, can
cause invalid recursion if the exit routine
abnormally terminates. Such execution can
also slow up the termination processing.
(See "Scheduling of User Exit Routines" in
Section 3, "Task Supervision.")

Releasing the Program Interruption Element
(PIE): The release of the PIE, although
occurring later in ABEND3 (after the valid
ity checking of the main storage queues),
will be discussed now, since the processing
is functionally related to the release of
other task resources.

ABEND3 tests whether a program interrup
tion element (PIE) exists for the task.
(If a PIE exists, its address appears in
the TCBPIE field of the TCB, placed there
earlier when the SPIE routine created the
program interruption element.) If the PIE
exists, ABEND3 branches to the FREEMAIN SVC
routine to free the storage space.

Checking the validity of the Main storage
Queues: After purging the asynchronous
exit queue and before freeing the PIE's
space, ABEND3 checks the validity of the
addresses of free queue elements (FQEs>,
and checks the correctness of their length
fields. It does this for all subpools
belonging to the task currently selected by
the "task select" SUbroutine. (The reader
may recall that the "task select" subrou
tine selects in turn each task in the tree
of tasks being terminated.> The purpose of
checking the FQES is to prevent program
checks, with resulting recursions to the
ABEND routine, during the later issuance of
GET¥~IN and FREEMAIN macro instructions.

Since FQEs are not in supervisor
protected areas of main storage, they may
be altered by a user program, or by the
ABEND routine itself during the performance
of its ·steal core" function. When the
GETMAIN or FREEMAIN routine tries to gain
access to an altered FQE to satisfy a
request, the result is a program check.
The need for the validity check of FQES is
thus apparent.

ABEND3, via the MSSLOOP subroutine,
scans the subpool queue for a selected
task, searching for descriptor queue ele-

Section 10: Termination Procedures 207

ments (DQEs}, ABEND3 examines all FQEs for
each DQE for an owned subpool. It makes
three general checks for each FQE. ABEND2
first examines the validity of the free
area address in the FQE. It determines if
the address specifies a location that is on
a fullword boundary, is within the bounds
of main storage, and specifies a location
that is in the area described by the
associated DQE. ABEND3 next verifies that
the free-area length specified in the FQE
length field does not exceed the length
described by the associated DQE. As a last
test, ABEND3 verifies that the next FQE
(pointed to by the FQE being examined) is
at a higher main storage location than the
FQE under examination.

ABEND3 nullifies the effect of an inval
id FQE as follows. If a free-area address
is invalid, the address is replaced with
zero. If the length field is incorrect or
if the next FQE is out of sequence, ABEND2
replaces with zero either the length field
of the given FQE or the pointer to the next
FQE. In this case, the examination of
other FQEs associated with the same DQE
stops, and continues with the FQEs belong
ing to the next DQE of the subpool. When
all FQES belonging to all subpool queue
elements of the task have been examined and
altered if need be, the validity check of
the main storage queues is complete.

After the check of the main storage
queues, the PIE (if it exists for the
selected task) is f1-eed, as previously
described. When all tasks in the tree of
terminating tasks (the specified task and
its previously unterminated descendants)
have been processed, and their resources
freed or examined (as described), ABEND3
obtains main storage for its ·close data
sets" function. This processing and the
remainder of ABEND3 are performed for both
types of entry to the ABEND routine:
first-time entry and a recursion entry.

Obtaini-ng Main Storage for the "Close Data
Sets· Function: ABEND3 next (via its
"steal core" subroutine) tests whether
storage is available for use during ABEND5
by the Close routine of data management.
If sufficient storage is available (512
bytes), another module of the ABEND routine
can be invoked to continue the termination
procedures. But if the required storage
area cannot be obtained, ABEND3 follows
either of two paths, depending on whether
the current termination is for the entire
job step or only for the specified task and
its descendants.

If the current termination is for the
job step, ABEND3 "steals" (frees) previous
ly allocated main storage for the Close
routine, preferably from space allocated to
the job step task. This space is in

208

subpool 252. ABEND3 also sets a "prevent
dump" indicator (TCBPDUMP) in the job step
TCB to prevent dumps for all tasks of the
job step during ABEND5. The prevention of
dumps is necessary, since if space for the
Close routine is not available, space
needed to open the dump data set and space
for a dump work area are also not
available.

~f the current termination is not for
the job step task, the task termination
must be converted to a job step termina
tion. This is bec~use the ·stealing" of
allocated main storage has made impossible
the normal continuation of the job step.
ABEND3 prepares for a job step termination.
It does this by setting the top-task or
"alternate" task pointer to the address of
the job step TCB. It then branches to an
early point in ABEND2 to again purge task
resources, this time for an enlarged tree
of tasks whose "top· task is the job step
task. When the "steal core" subroutine is
entered for the second time, the test for
available main storage, and the "stealing"
of needed storage (if necessary) occur just
as they would for an original job step
termination.

Before dealing with the proceSSing that
occurs in ABEND4, the present discussion
will amplify the previous description of
the process by which the availability of
main storage is tested and unavailable
storage is "stolen."

The "steal core" subroutine, used by
ABEND3, tests for the availability of main
storage for the Close routine, as follows.
It issues a conditional GETMAIN macro
instruction for 512 bytes of main storage.
The availability or unavailability of this
amount of storage is indicated by the code
returned by the GETMAIN routine in the
return code register. If the space is
available, it is immediately freed, since
the purpose of the GETMAIN macro instruc
tion is merely to test availability. In
this case, the main-line ABEND3 processing
continues. The assumption is that if the
space needed for the Close routine is
available, additional space may also pe
available for the opening of the dump data
set and the creation of an ABDUMP work
area. (The opening of the dump data set
occurs in ABEND4; the closing of data sets
and the ABDUMP processing occurs in
ABEND5.)

If main storage is not available (as
indicated by the previous tests), the
"steal core" subroutine tests whether the
current termination is for the entire job
step. If it is not, the conversion to a
"step" termination and the purging of
resources for the enlarged tree of tasks
occurs as previously described. But if the

termination is for the entire job step. the
subroutine tries to obtain main storage for
the Close routine of ABEND5 by attempting
to ·steal" allocated storage from one of
the tasks of the job step.

The "steal core" subroutine next sets
the "prevent dump" indicator (TCBPDUMP) in
the job step TCB. ABEND5 will test this
indicator to determine whether to invoke
the ABDUMP routine. Dumps of any task in
the job step must be prevented for two
reasons:

• The freeing of any storage area allo
cated to the job step makes the results
of a dump misleading.

• Main storage is stolen only for the
ABEND5 function of closing data sets.
If storage is not available for this
function, additional space needed by
the Open routine (in opening the dump
data set), and space needed for an
ABDUMP work area, are also not
available.

The "steal core" subroutine tries to
find previously allocated subpool-252 space
belonging to the job step task. It tries
to locate this space in preference to other
subpools, since subpool 252 within a region
never holds data control blocks (DCBS).
Thus, the "stealing" of allocated space
from this subpool will not cause recursions
to the ABEND routine when ABEND5 refers to
the DCBS to close data sets. The subrou
tine searches the subpool queue of the job
step TCB, looking for a subpool queue
element (SPQE) for subpool 252. If it
finds such an SPQE before it exhausts the
SPQE queue, it issues a FREEMAIN macro
instruction to free the entire subpool, and
tests for the availability of main storage.
It makes this test by issuing a macro
instruction conditional GETMAIN for 512
bytes., followed by a FREEMAIN macro
instruction. If storage is now available
(as indicated by the condition code
returned by the GETMAIN routine), the work
of the subroutine is finiShed.

But if the ·steal core" subroutine can
not find an area assigned to subpool 252
that belongs to the job step task, it then
looks for any allocated subpool that
belongs to any task of the job step. By
use of the "task select" subroutine and the
MSSLOOP subroutine, the main storage queues
of each task in the job step are searched
for a descriptor queue element (DQE). If a
DQE exists, main storage is already allo
cated to the associated subpool. The
·steal core" subroutine places zero in the
"free-queue element" pointer in the DQE.
It does this to simulate an absence of free
storage in the blocks described by the DQE.
The purpose is to prevent the error of

trying to free an area that is already
free. To make storage available for the
Close routine, the subroutine frees (via a
branch to the FREEMAIN SVC routine) a block
of 2K bytes of the.area described by the
DQE. Its work finished, the "steal core"
subroutine returns control to ABEND3.

Deciding the Next Module of ABEND to Be
Invoked: ABEND3 next clears the ·prevent
asynchronous exits" flag (TCBFX) in the
current TCB. It does this to allow the
Stage 3 Exit Effector to schedule asynchro
nous exit routines for system functions
that may be needed during I/O operations in
ABEND4.

After allowing the scheduling of I/O
exit routines, ABEND3 performs tests to
determine which module of the ABEND routine
it should invoke: ABEND4 or ABEND5.
ABEND4 is invoked if the current entry to
the ABEND routine is either a first-time
entry or is a recursion due to an error
detected during the Open routine. If such
a recursion has occurred, ABEND4 during its
first execution set two flags in the cur
rent TCB: TCBREC and TCBOPEN. If neither
flag is set, a first-time entry to the
ABEND routine has occurred. ABEND 5 is
invoked if the current entry to the ABEND
routine is a recursion because of an error
detected in the Close routine or in the
ABDUMP routine. In this case, ABENDS dur
ing its first execution set two flags in
the current TCB: TCBREC, and either
TCBCLOSE or TCBADUMP.

Processing During ABEND4
(Entry Point IGC0101C)

ABEND4 performs several main functions.
If a dump is requested, it opens the dump
data set, if possible, in preparation for
the dump to occur during ABENDS. If the
data set can be opened, ABEND4 ensures that
it remains accessible for the duration of
the associated job step. If, however, the
current entry to the ABEND routine is a
recursion because of an error during the
Open routine, ABEND4 sets the ·prevent
dump· indicator in the job step TCB. It
does this to prevent abnormal termination
dumps for the entire job step.

ABEND4 also releases programs that are
in the process of being loaded for nondis
patchable tasks of the job step. so that
they will be available for other reques
tors. Of particular interest are the
ABDUMP and BSAM routines, which are needed
for ABEND processing.

Lastly, ABEND4 determines whether pro
ceSSing of the current ABEND request should
continue, or be stopped to allow a concur
rent ABEND request to be processed. The
concurrent request, if for a higher level

Section 10: Termination Procedures 209

task (e.g.,
task), would
larger tree
request.

the parent of the current
permit the termination of a
of tasks than does the current

To accomplish these purposes, ABEND4
performs the following main functions:

• Determines whether to open the dump
data set (SYSABEND or SYSUDUMP).

• Releases partially loaded modules.

• Prepares to open the dump data set.

• Ensures that the dump data set remains
open for the duration of the job step.

• Indicates whether the dwup data set has
been opened.

• Prepares to restart deferred
terminations.

• Determines whether the current termina
tion should continue.

• Ends its processing by either branching
to the Dispatcher or invoking ABEND5.

DETERMINING WHETHER TO OPEN THE DUMP DATA
SET: ABEND4 performs tests to determine
whether it should attempt to open the dump
data set (SYSABEND or SYSUDUMP) for use
during ABEND5. (The SYSUDU}W data set, if
allocated, permits the dump of the entire
job-step region of main storage.) These
tests determine:

• Whether the current entry to ABEND4 is
due to recursion.

• Whether the "prevent dump· indicator is
set.

• Whether the dump data set is already in
the process of being opened for another
task in the job step.

• Whether the caller of the ABEND routine
has requested a dump.

• Whether the SYSUDU~W data set was orig
inally allocated by means of a DD card.

• Whether the SYSABEND data set was orig
inally allocated by means of a DD card.

• Whether the dump data set was previous
ly opened for another task in the job
step.

Determining if the Entry to ABEND4 is Due
to Recursion: If the entry to ABEND4 is
due to recursion, the TCBREC and TCBOPEN
flags were set in the current TCB by
ABEND4. A previous execution of the Open
routine of data management for this task

210

produced an error. The error caused a
reentry to the ABEND routine. Since the
previous attempt to open the dump data set
for the current task failed, ABEND4 does
not try again. Instead, it sets the "pre
vent dump" indicator (TCBPDUMP) in the job
step TCB to prevent abnormal termination
dumps for any task in the job step.
ABEND5, finding this flag set, will bypass
the dump portion of its processing.

Determining if the "Prevent Dump· Indicato~
Is Set: If the entry is not a recursion,
ABEND4 next tests if the • prevent dump"
indicator (TCBPDUMP) is set in the job step
TCB. The indicator may have been set for
any of the following reasons:

• The test for availability of
storage failed during ABEND3.
the Op~~ and the ABDUMP routines
storage for their processing.)

main
(Both
need

• The Open routine could not open the
dump data set (SYSABEND or SYSUDUMP)
for a previously terminating task in
the same job step.

• An error that caused entry
routine occurred while the
tine was being executed
task in the same job step.

to the ABEND
ABDUMP rou
for another

If the "prevent dump" indicator is set,
ABEND4 cannot prepare for dumps. It there
fore bypasses the rest of its processing by
invoking ABEND5 to close the data sets used
by the terminating tasks.

Determining if the Dump Data Set is Already
Being Opened: If the "prevent dumpu indi
cator is not set in the job step TCB,
ABEND 4 tests whether the dump data set is
already in the process of being opened for
another task in the job step. (The test
checks the TCBFOINP flag in the job step
TCB.) If an open procedure is already in
process, a new OPEN macro instruction is
not issued. Instead, ABEND4 defers the
current ABEND request. It does this by
setting the SVRB RB old PSW for reentry to
ABEND4, and making the current task nondis
patchable (setting the TCBONDSP flag) until
the open procedure is complete. It allows
the system to continue the execution of
routines for other tasks by preparing for a
task switch and branching to the Dispatch
er. It signals the Dispatcher to search
the TeB queue for a ready task by storing
zero in the Unew" TCB pOinter (IEATCBP).
At a future execution of ABEND4, the task
for which the OPEN macro instruction was
issued will clear the non-dispatchability
flag of the "waiting" task, regardless of
whether the open procedure was successful. c

(

Note: The release of partially loaded
modules occurs next. Since it is unrelated
to the opening of the dump data set, it
will be discussed in a ~ater topic.

Testing the Dump Request and the Status of
the Dump Data Set: ABEND4 makes three
tests to determine if it should open the
dump data set, or whether it should invoke
ABEND 5 immediately. Two of these tests
check whether a dump cannot or should not
occur. The third test determines if the
dump data set has already been opened for
another task of the job step.

One test determines whether a dump was
requested by the caller of the ABEND rou
tine. ABEND 4 tests the high-order bit of
the completion code in the TCBCMP field of
the current TCB. Another test examines the
task I/O table (TIOT) to determine if a
SYSAB~ND or SYSUDUMP DD card was recognized
by the Reader/Interpreter of the Job Sched
uler, and thus whether the SYSABEND or
SYSUDUlIJP data set was allocated by the Job
Scheduler. If the caller did not request a
dump, or if neither data set was allocated,
ABEND4 sets the ftprevent dumpft indicator in
the job step TCB and invokes ABENDS. In
this case, ABEND5 wi~l close data sets
without causing a dump.

The remaining test determines if the
dump data set (SYSABEND or SYSUDUMP) has
already been opened for another task of the
job step, and therefore whether the open
function may be bypassed. (The test checks
the TCBDSOP flag in the job step TCB.) If
the data set was previously opened, ABEND4
obtains the associated DCB address, needed
by ABENDS, by searching the DEB queue of
the job step task for the DEB belonging to
the dump data set. It then extracts the
DCB address from the DEB for use during I/O
operations of the dump procedure of ABEND5.
ABEND4 sets a special identifier bit in the
DEB.

After obtaining the DCB address, ABEND4
invokes ABEND5 to perform both its major
functions.

RELEASING OF PARTIALLY LOADED MODULES: If
the open procedure is not in process,
before making the foregoing three tests,
ABEND4 releases ftpartially loadedw modules
for terminating tasks. Such modules are in
the process of being loaded for the current
task or for other tasks that are being
abnormally terminated (TCBABWF flag set).

When a task is set permanently nondis
patchable (TCBABWF flag set), the Contents
supervision routines do not complete the
loading of a module requested for the task.
The routines also do not begin a new fetch
of a mod~e whose loading process has
started. Other requestors waiting for the

module cannot gain access to it. Of pri
mary interest are the modules containing
the ABDUMP and BSAM routines, needed by
ABENDS. These modules may have been
requested by a subtask of a task that is
now terminating. Since ABEND 2 may have
placed the subtask in the abnormal wait
state (TCBABWF flag set), the routines may
be permanently unavailable. The problem of
"frozenft partially loaded modu~es is solved
by the ftreleaseft routine of ABEND4, called
PARRLSE.

For each module in
loaded for a terminating
routine performs the
functions:

process of being
task, the PARRLSE

following purge

• Frees the module's extent list and
program area, if they exist.

• Removes from the job pack area queue
one or more contents directory entries
(CDES), which represent the partially
~oaded module, and frees the space they
occupy.

• If there are other requestors which are
awaiting the loading of the module,
prepares one or more RBs for reentry to
Contents Supervision at CDCONTRL to
refetch the module for another task.

The PARRLSE routine searches the job
pack area queue for CDEs whose modules are
in the process of being loaded for a
terminating task. (The CDENIC flag was set
in each CDE whose module is being loaded.)
For each CDE whose module is being loaded,
the purge functions are performed if either
of two requirements is met: •

• The loading was initiated for the cur
rent task, for which ABEND4 is being
executed. In this case, the current
task is being terminated and its I/O
operations have already been purged by
ABEND2.

• The loading was initiated for another
task which is being abnormally ter
minated (TCBABWF flag set), and whose
I/O operations, initiated for loading,
have already been purged by ABEND3
(TCBFA flag set).

The CDE, its extent list, and program
area may not be freed until the task's I/O
operations have been purged by ABEND3.
Otherwise, the Main Storage Supervision
routines may reallocate for another task
the freed program area. The requested
module may later arrive in main storage,
overlaying the reallocated program area,
which now belongs to another task.

Section 10: Termination Procedures 211

PREPARING TO OPEN THE DUMP DATA SET: Pre
paration for the opening of the dump data
set occurs if the following conditions
exist, 'as indicated by the previously
described tests: dumps have not been pre
vented by ABEND3, an open procedure is not
already in process, a dump was requested by
the caller, the data set was not previously
opened for another task of the job step,
and the data set was allocated by the Job
scheduler.

If all these conditions exist, three
flags are set and space is obtained for a
preas sembled DCB. The flags indicate the
status of the current ABEND request. One,
the • open in process" flag (TCBOINP), is
set in the job step TCB to indicate that
the dump data set is in the process of
being opened. If another termination
should occur before the open procedure is
finished and the flag is reset, the new
terminating task is set ·open nondispatch
able" (i.e., the termination is deferred)
until the open 'process is complete. (The
TCBONDSP flag is set in the new requestor's
TCB.) The other two flags (TCBOPEN and
TCBREC) indicate a valid recursion to the
ABEND routine, if an error occurs during
the execution of the GETMAIN or Open rou
tine (soon to be executed). After setting
the three flags, ABEND4 issues a GETMAIN
macro instruction to obtain space for a
preas sembled DCB and moves the DCB to the
space. This DCB will be specified in the
OPEN macro instruction during ABEND4 and in
the I/O macro instructions used by the
ABDUMP routine during ABEND5.

ENSURING THAT THE DUMP DATA SET REMAINS
OPEN: Both before issuing the OPEN macro
instruction, and after the execution of the
Open routine (if the open request has been
successful), ABEND 4 tries to ensure that
the dump data set will remain • open" for
the remainder of the job step. By ·open"
is meant the retention of the BSAM access
method routines in main storage and the
retention of the DEB and DCB for the dump
data set. Special efforts are needed to
keep the dump data set open, since ABEND5
will close data sets belonging to the
terminating tree of tasks, and ABEND6 will
free the load lists belonging to these
tasks and the associated program areas (if
there are no outstanding reque~ts for the
programs). Unless special precautions are
taken, the DEB for the dump data set will
be removed and freed from its DEB list
during ABEND5, and the BSAM routines pos
sibly released during ABEND6. With the
dump data set no longer "open·, further
abnormal dumps during the remaining life of
the job step would not be possible.
Repeated opening of the data set, after it
has been initially opened, is avoided for
two reasons: such repetition would waste
time, and each reissue of the OPEN macro

212

instruction (if acted upon) could possibly
reposition the data set volume undesirably
(depending on the DISP operand of. the
user's DD card -- see Job Control Language
publication).

ABEND4 does two things to preserve the
"open" status of the durr~ data set:

1. It prevents the deletion of the BSAM
routines by forcing the creation of
new load list elements for them. It
queues the new load list element to
the load list for the job step TCB.

2. It places the DEB for the dump data
set on the DEB queue belonging to the
job step TCB.

These two steps will be discussed separate
ly in the following paragraphs.

ABEND4 prevents deletion of the BSAM
routines from main storage by saving the
load list pointer (TCBLLS) for the current
task and' replacing the pointer with zeros.
When ABEND4 issues the OPEN macro instruc
tion, the Open routine requests the loading
of the BSAM module. Since the Contents
Supervision routines cannot find load list
elements representing the BSAM routines on
the current task's load list (the zeroed
load list pointer indicates that there is
no load list), they create new load list
elements for the BSAM routines, and place
the load list pointer (TCBLLS) in the
current TCB.. After ABEND4 issues the OPEN
macro instruction, it places the newly
created load list elements for BSAM on the
load list belonging to the job step TCB.
Thereafter, the BSAM routines cannot be
deleted from main storage by the Close
routine of data management, until data sets
belonging to the job step TCB are closed at
normal or abnormal step termination.
ABEND4 then issues the OPEN macro instruc
tion. Regardless of whether the data set
is actually "opened", ABEND4 restores the
original load list pointer (TCBLLS) to the
current TCB. If a recursion entry to the
ABEND routine occurs because of an error
during the execution of the Open routine,
the load list pointer is also restored. It
is placed in the TCB that was current
during the previous execution of ABEND4.

If the open attempt is successful (as
indicated by a flag in the DCB of the dump
data set.), ABEND4 uniquely labels the data
extent block (DEB) associated with the dump
data set. ABEND4 uniquely labels the DEB
so that it can later find the DEB and
obtain from it the associated DCB address.
ABEND4 will pass the DCB address to ABEND5.
The position of the DEB in the DEB queue
can vary' because of processing by the
End-of-Volume (EOV) data management
routine.

"",

c

ABEND4 then places the DEB on the job
step task's DEB queue. It does this to
prevent ABEND5 from closing the dump data
set, when it closes data sets belonging to
the terminating tree of tasks.

INDICATING WHETHER THE DUMP DATA SET HAS
BEEN OPENED: When the request to open the
dump data set has been issued and the Open
routine of data management has been
executed, ABEND4 tests the appropriate flag
of the DCB to learn if the data set has
been actually opened. According to the
results of the test, ABEND4 indicates, via
flag bits in the Job step TCB and in the
current TCB, whether the open request has
been successful.

If the data set could not be opened, and
therefore abnormal dumps are not possible,
ABEND 4 sets the "prevent dump" indicator
(TCBPDU~W) in the job step TCB. This
action prevents ABEND5 from invoking the
ABDUMP routine to perform an abnormal dump
for any task of the job step. Althou~h
abnormal dumps requested by ABEND5 are
prevented for the rest of the job step,
dynamic dumps requested via a SNAP macro
instruction for unterminated tasks of the
job step can be performed.

If the dump data set was actually
opened, ABEND4 manipulates two other indi
cators in the job step TCB. It sets the
Rdata set open" indicator (TCBDSOP) so that
two types of ABEND requests (first-time
terminations and restarted deferred ter
minations) may bypass much of ABEND4 pro
cessing and invoke ABEND5. Deferred ter
minations are first-time ABEND terminations
that find an "open in process R and are set
nondispatchable (TCBONDSP), awaiting the
completion of the open process. (A later
phase of ABEND4 will clear Ropen nondis
patchability" for deferred terminations.)
Besides setting the "data set open" indica-
tor, ABEND4 clears the "open in process"
flag (TCBOINP) to prevent new or restarted
terminations from being deferred.

Regardless of whether the dump data set
could be opened, ABEND4 clears the "open"
and "recursion" indicators (TCBOPEN and
TCBREC) in the current TCB. It does this
to indicate that any new recursion is not
due to open processing and is invalid.

PREPARATION FOR THE RESTART OF DEFERRED
TERMINATIONS: Deferred terminations await
the completion of the open procedure that
was initiated for another terminating task.
Deferred terminations are prepared for
restart under any of three conditions: a
successful open procedure, an unsuccessful
open procedure, or a recursion to the ABEND
routine because of an error during the
execution of the Open routine. However,
only if the open procedure is successful

can abnormal dumps occur during the job
step. If the open procedure is unsuccess
ful, a permanent error probably exists
(such as an incorrectly specified data
set), and further attempts to open the dump
data set are useless.

In all three cases, ABEND4 (via the
"task select" routine) examines all TCBs in
the job step, clearing any "open nondis
patchable" flags (TCBONDSP) that it finds.
ABEND4 must examine all TCBs in the job
step, since it has no record of which tasks
represent deferred terminations. After the
flag is reset in any TCB, the supervisor's
Task Switching routine is inVOked to deter
mine if the associated task is ready and
can, by virtue of its dispatching priority,
replace the current task at the next entry
to the Dispatcher. (A task is ready if no
non-dispatchability flag is set in its TCB,
and its current RB has a wait count (RBWCF)
of zero.)

DETERMINING WHETHER THE CURRENT TERMINATION
SHOULD CONTINUE: After preparing to
restart deferred terminations, ABEND4 tests
whether the current termination should con
tinue, or whether it should be stopped to
allow one of the deferred terminations to
proceed. The deferred termination is
allowed to proceed if it is for a direct
ancestor of the current task. The advan
tage of the higher level termination is
that a larger array of resources is freed,
including the resources of the task whose
termination is stopped (see Figure 10-5).

As a result of its tests, ABEND4 either
continues the current termination, or stops
it in favor of the terminating ancestor.
It does this by setting the current task
nondispatchable and branching to the Dis
patcher. The Dispatcher causes reent.I:Y to
the ABEND routine for the higher level
task, if its dispatching priority exceeds
that of the current task.

The circumstances in which ABEND4 con
tinues the termination of the current task.
or discontinues its termination in favor of
its terminating ancestor, will now be
described.

ABEND4 continues the termination of the
current task for two cases:

1. The current task is the "top" task in
a tree of terminating tasKs, as indi
cated by the "topR flag (TCBFT) in its
TCB. In this case, no direct ancestor
is terminating.

2. A ·stepR termination has been
requested (the "top· flag is set in
the job step TCB), but the requesting
routine does not belong to the job
step task. The indication of this

section 10: Termination Procedures 213

Legend:

/
/-.(
, E , ,_/

/

,
/ ,

/ ,
/ ,

(G*-----{

o Represents a task

Notes: 1. Tasks shown by dashed
lines are not direct
ancestors of task D. -

D
Represents a poi r1ter

Represents the direct line of
ancestors and descendants
for task D within the job step.

2. The job step consists of all
the tasks shown in the
figure.

/\ Represents a "tree II of
/ '. term i nat i ng tasks whose
I. __ J top task is D.

3. The fi gure shows a tree of
tasks during a "task"
termination, as opposed to
a "step" termination.
During a step termination
the job step task is the top
task of the tree, and a II
tasks of the job step be long
to the tree.

Figure 10-5. Task Relationships During an
Abnormal Termination

condition is that the ABEND routine's
SVRB is not queued to the job step
TCB. ABEND4 must continue the current
task termination, since th~ ABEND rou
tine is controlled by one SVRB which
may not now be queued to another TCB.
(Such shifting of the SVRB can occur
during ABEND5.)

ABEND4 discontinues the termination of
the current task in favor of its termina
ting ancestor for two other cases:

1. A direct ancestor of the current task
has requested a "task" termination,
but this ancestor is not the job step
task. As evidence of this condition,
the "top" flag (TCBFT) has not been

214

set in either the current TCB or in
the job step TCB.

2. A routine belonging to the job step
task has requested a termination
(either step or task option). In this
case, the higher level ancestor whose
termination may proceed is the job
step task, and a step termination is
performed. The evidence of this con
dition is that the atop" flag is set
in the job step TCB, and the ABEND
routine's SVRB (with its unique iden
tifier) is queued to the job step TCB.
This condition involves two known
SVRBs for the ABEND routine: the one
belonging to the current task and the
one generated for the job step task.
The latter SVRB will be used to con
tinue the step termination; the SVRB
for the stopped current task will be
released during ABEND5.

CONCLUSION OF ABEND4: ABEND4 processing is
completed either by a branch to the Dis
patcher, if termination of the current task
must be stopped (as just described), or by
invocation of ABEND5 for the current task
if its termination will continue. ABEND5
is invoked according to the results of
tests already described in the topic
"Determining Whether to Open the Dump Data
Set".

I processing During ABEND5
(Entry Point IGC0201C)

ABEND5 has four main purposes:

• Determining
processing.

the scope of ABEND5

• Performing ABDUMP processing. This
includes the dump of resources belong
ing to the terminating tasks of the
tree (i.e., the specified task and its
descendants>.

• Closing data sets
terminating tasks of
includes the purge of
of data extent blocks

that belong
the tree.
associated
(DEBs) •

to the
This

queues

• Removing request blocks (SVRBs) belong
ing to transient svc routines that are
being executed for the terminating
tasks. The SVRBs are purged as the
first part of a general RB removal
begun in AREND5 and finished in ABEND6.
The SVRBs are removed from the RB
queues of their respective TCBs and
from the transient area queues, and
their space is then freed.

ABEND5 uses a number of SVC routines to
perform its functions. Of primary impor
tance are the ABDUMP routine and the Close
routine of data management. For each invo- c

(

cation, ABDUMP displays the resources of
the selected task. ABEND 5 invokes the
ABDUMP routine separately for the "top"
task, its descendants, and its direct an
cestors. The Close routine closes data
sets and purges the DEB queues.

There are two types of entries to
ABEND5, just as there were to ABEND2,
ABEND3, and to ABEND4: first-time entries
and recursion entries. A first-time entry
represents a first-time request for the
abnormal termination of a task. It occurs
via an XCTL macro instruction from ABEND4.
A recursion entry represents a request for
abnormal termination generated by either
the ABDUMP or Close routine because of an
error detected during its processing. A
recursion entry to ABEND5 is always made
directly from ABEND3, via an XCTL macro
instruction.

The scope of ABEND5 processing varies,
depending on the particular type of entry.
A first-time entry permits ABEND5 to per
form all its functions: causing dumps,
closing data sets and purging associated
DEBs, and dequeuing and freeing SVRBs for
transient SVC routines. A recursion
because of an ABDUMP error causes the
bypassing of the dump function, but permits
all other functiong to be performed. Last
ly, if a recursion occurs because of an
error detected during the Close routine,
the dump fUnction is bypassed, since it may
already have been performed, and the clos
ing of data sets and the purging of DEBs
continue from the point of error. As with
other types of entries, SVRBs for transient
routines are also purged.

DETERMINING THE SCOPE OF PROCESSING:
Before ABEND5 can perform any of its major
functions, it must test certain indicators
to learn the type of processing that it
must perform. It first tests for a recur
sion because of an error during ABDUMP
processing or during close processing.
(Either the ABDUMP or Close routine can
request a reentry to ABEND if it discovers
an error. For example, the Close routine
may find a DCB that has been overlaid by a
user program.)

If a recursion has occurred from the
Close routine (as indicated by the "set"
condition of the "Close recursion" flag
TCBCLOSE in the current TCB), ABEND5 per
f·orulS special processing in order to con
tinue the closing of data sets and purging
of DEBs. The special processing will be
described under "Special Handling of a
Recursion".

If a recursion has occurred from the
ABDUMP routine (as indicated by the "set"
condition of the "ABDUMP recursion" flag
TCBADUMP in the current TCB), ABEND5 resets

the flag to avoid a false indication, and
sets the "prevent dump" indicator
(TCBPDUMP) in the job step TCB to prevent
abnormal dumps now and for the remainder of
the job step. This is necessary because a
serious error detected during ABDUMP pro
cessing has made unreliable further dumps
on the same data set.

If no recursion from the ABDUMP routine
has occurred, ABEND5 makes two other tests
before performing ABDUMP processing. Eith
er of these tests can cause the bypassing
of ABDUMP processing. The first test
examines the "prevent dump" indicator in
the job step TCB to learn if ABEND3 or
ABEND4 had discovered an a.bnormal condi
tion. (ABEND3 sets the indicator if main
storage is not available and must be "sto
len". ABEND4 sets the indicator if the
dump data set has not been allocated by the
Job Scheduler, or if the data set cannot be
opened.)

If the "prevent dump" indicator is not
set, ABEND5 tests the DCB address passed by
ABEND4 in a register. If the address is
zero, the caller of the ABEND routine has
not requested a dump. Accordingly, ABEND5
bypasses the ABDUMP processing and closes
data sets. But if the address is not zero,
the DCB register contains the address of
the DCB that ABEND4 used to open the dump
data set.

If the "prevent-dump" indicator is set,
or if the DCB address is zero, dumps for
the current tree of terminating tasks is
bypassed. There is, however, an important
distinction between the meaning of the two
indicators. If the DCB address is zero,
abnormal dumps are bypassed only for the
processing of the current ABEND request,
since the ABEND routine's caller has not
requested dumps. But if the ·prevent dump"
indicator is set, no abnormal dump will be
performed for the remainder of the current
job step, since an error exists, possibly
associated with the dump data set for this
job step.

If the "prevent dump" indicator is not
set, and the DCB address passed to ABEND5
is not zero, ABDUMP processing is performed
as described in the following section.

PERFORMING ABDUMP PROCESSING: The ABDUMP
proceSSing consists of three functional
parts: preparation for the dumps, perfor
mance of the dumps, and a cleanup procedure
after the dumps. Each of the functional
parts will be explained_separately.

Preparation for the DumpS: Before ABEND5
can issue a SNAP macro instruction to
invoke ABDUMP for each task to be dumped,
it must take certain precautions. To pre
vent repetitious loading, it ensures that

Section 10: Termination Procedures 215

the ABDUMP routine's "resident" module
(IGCOA05A) remains in main storage through
out the series of dumps for the current
task, its descendants, and its ancestors.
Otherwise, the ABDUMP routine would load
its resident module before each dump, and
delete the module after each dump. ABEND5
issues a LOAD macro instruction to load the
resident module before it invokes the
ABDUMP routine for the first task, and
deletes the module after the ABDUMP routine
has been executed for the last task of the
tree. ABEND5 thus prevents the actual
reloading and deletion of the resident
module by the ABDUMProutine each time that
it is entered. (Although the ABDUMP rou
tine issues a LOAD macro instruction to
load the resident module, no loading occurs
since the module is already in main
storage.)

As another precaution, ABEND5 ensures
that the dumps associated with one ABEND
request will appear consecutively on the
dump data set, not interspersed with dumps
for a concurrently terminating tree in the
same job step. To prevent such interleaved
dumps, ABEND5 issues an ENQ macro instruc
tion (with the "exclusive" option) for the
dump data set before the first ABDUMP
execution and issues a DEQ macro instruc
tion after the last ABDUMP execution.

The ENQ routine, besides its normal
processing, performs a special service for
ABEND5. It makes possible the servicing of
the currently issued ENQ request for the
dump data set. Such action is necessary if
a subtask of the current task was previous
ly abnormally terminated. The data set may
still be enqueued for the previously
requested dump of the subtask's resources.
In this case, the servicing of the current
ENQ request would await the issuance of a
DEQ macro instruction by ABEND5, when the
dump of the subtask's resources is com
plete. But since the subtask is now non
dispatchable (its TCBABWF flag set during
ABEND2), the DEQ macro instruction cannot
be issued by ABEND5 for the subtask.

When the ENQ routine detects that the
ABEND routine is the caller, it removes
from the resource queues, via its " auto
purge" subroutine, all queue elements
belonging to the current task and any of
its subtasks. The current ENQ request
issued by ABEND5 can then be serviced.

After return of control from the ENQ
routine, ABEND5 again tests the "prevent
dump· indicator (TCBPDUMP) in the job step
TCB. This test is necessary because while
the current task was enqueued and waiting
for the data set, ABEND5, executed for
another task in the job step, may have
responded to an error in ABDUMP processing
by setting the "prevent dump" indicator.

216

If the indicator is set, the ABDUMP routine
is not invoked, and ABEND5 dequeues the
dump data set and deletes ABDUMP's resident
module. The remaining processing in ABEND5
(closing of data sets, purging of DEBs and
SVRBs for transient routines) is the same
as if dumps had originally been prohibited
or not requested.

Performing the Dumps: Dumps of the ter
minating tasks of the tree are made if the
following conditions have been met, tested
by both ABENDq and ABEND5: a dump data set
has been provided (as indicated by a search
of the TIOT by ABENDq), a preassembled DCB
can be opened (also by ABEND4), the caller
of ABEND has requested dumps, and no last
minute ABDUMP errors have been detected by
ABEND5.

Via issuance of the SNAP macro instruc
tion (SVC51), ABEND5 invokes the ABDUMP
routine separately for each task whose
resources are to be displayed. The current
task is dumped first, then its descendants,
then its direct ancestors, including the
job step task (see Figure 10-5).

Each task of the tree of tasks (D, G,
and F in Figure 10-5) is selected by means
of the "task select" (TASKSEL) subroutine.
As each task is selected by the subroutine,
ABEND 5 tests the "S" flag (TCBFS) in its
TCB to determine if the task's resources
have already been dumped. If the "S" flag
is set, the resources have already been
dumped, and the next task is selected. For
each task that has not already been dumped,
ABEND5 issues a SNAP macro instruction (SVC
51) to dump the task's resources. The
operands of the macro instruction include
the address of the selected TCB, the DCB
address received from ABENDq, and the fact
that the ABEND routine is the caller (via a
bit that is set in the ABEND routine's
SVRB). On each return of control from the
ABDUMP routine for a subtask, ABEND5 sets
the as· flag in the subtask TCB to indicate
that the subtask·s resources have been
dumped.

The ABDUMP routine displays for the
current task the following resources: job
name, step name, date, time, completion
code, PSW at entry to ABEND, TCB, RBs, load
list, CDEs, extent lists., TIOT, DEBs,
SPQEs, DQES, FQEs, PQEs, FBQES, save area
trace, QCBs, address of the last point of
interruption (old PSW), register contents
at entry to ABEND, the nucleus, load
modules, and the subpool blocks.

The resources displayed for the subtasks
and ancestors of the current task do not
include the following items: PSW at entry
to ABEND, register contents at entry to
ABEND, the nucleus, load modules, and the
subpool blocks. A subtask dump is identi-

c

tied by the number 001, that of an ancestor
by the number 002.

Cleanup After the Dumps: After the dumps
of the ancestors, ABEND5 performs several
cleanup steps. It first dequeues the dump
data set so that it is available for use by
the next requestor of the ABEND routine.
The parameters of the DEQ macro instruction
are obtained from the extended save area of
the ABEND routine's SVRB, where they were
stored when the ENQ macro instruction was
issued. Next, ABEND5 deletes the resident
module of ABDUMP (IGCOA05A), so that its
space, no longer needed for the current
dumps, may be freed for other use.
(Although the ABDUMP routine has already
issued a DELETE macro instruction for the
same module, it is ineffective in releasing
it, since the ABEND routine's request for
the module is still outstanding.) When
ABEND5 issues the DELETE macro instruction,
the Delete routine decreases the CDE use/
responsibility count. If the count is now
zero, the Delete routine releases the space
occupied by the module, its load list
element, CDE, and extent list.

After dequeuing the dump data set1 and
issuing a DELETB macro instruction for
ABDUMP's resident module, ABEND5 clears the
ABDUMP and recursion flags in the current
TCB. These had been set to indicate a
valid recursion if an error had occurred
during ABDUMP processing. Since this pro
cessing is finished, the bits are reset.
This action completes the post-dump cleanup
procedure.

CLOSING DATA SETS THAT BELONG TO THE TER
MINATING TASKS: Data sets that are opened
during t?sk operation are normally closed
(if they are not already closed) by the
End-of-Task (EOT) routine. But since ter
minating tasks cannot reach the end-of-task
condition, the ABEND routine must close all
their data sets that are still open.

The clOSing of data sets and the purging
of SVRBs are performed separately for each
task of the tree while the task is current
ly active. The "task select" subroutine
(TASKSEL) selects the tasks, one at a time,
starting with the newest descendant of the
task specified for termination. The pre
viously active task is set nondispatchable,
the newly selected task is made ready, the
ABEND routines's SVRB is queued to the
selected task's RB queue, a task switch is
invoked, and a branch is made to the
Dispatcher. When ABEND5 is dispatched for
the selected task it closes data sets,
purges DEBs, and removes SVRBs belonging to
transient routines. When all such SVRBs

1The dump data set can be specified as
SYSABEND or SYSUDUMP.

have been purged, the TASKSEL sub routine
selects the next higher level task in the
tree, and the process is repeated.

selectinq Each Task of the Tree: On each
iteration of the loop in which data sets
are closed and SVRBs are purged, the
TASKSEL subroutine selects another task of
the terminating tree. Its first selection
is the newest descendant of the task speci
fied for termination. For example, in
Figure 10-4 the newest descendant is task
G, and the task specified for termination
is task D. On each iteration, the next
higher level task is selected. The next
higher level task is F. On the final
iteration of the loop, the highest level or
"top" task of the tree is selected. The
top task of the tree is D. The direction
of selection is thus from bottom to top of
the tree.

For each selection, the TASKSEL subrou
tine tests the "completion" flag (TCBFC) to
learn whether the task has already been
terminated (either normally or abnormally).
If the selected task has already been
terminated, and its TCB is thus no longer
needed, ABEND5 branches to the resident
"erase" routine (part of the EOT routine)
with the address of the terminated TCB.
The "erase" routine dequeues the selected
TCB from the subtask queues (whose pOinters
are TCBLTC and TCBNTC in each TCB) and
frees the space it occupies. On return of
control from the "erase" routine, the
TASKSEL subroutine makes another selection
and again checks the ·completion" flag.
~ihen an incomplete or not-already ter
minated task has been selected, the next
part of ABEND5 is prepared for dispatching
under control of the selected TCB.

Preparation for the Dispatchinq of ABEND5
Under Control of the Selected Task: As
stated before, the closing of data sets and
the purging of SVRBs are done under the
control of the task to which these
resources belong. For this purpose, the
ABEND routine's SVRB must be queued to the
selected task's RB queue. The selected
task must then become the active task,
replacing that which was previously cur
rent. Under control of the newly selected
TCB, ABEND5 is redispatched (at location
ENTRY2) to begin execution of its "close
data sets" function.

Preparation for the redispatching of
ABEND5 occurs as follOWS. First, the cur
rent task is set nondispatchable (TCBABWF
flag is set) so that ABEND5 temporarily
cannot be redispatched for this task. The
task selected by the TASKSEL subroutine is
then made dispatchable (two bytes of non
dispatchability flags are cleared in its
TCB) in preparation for the branch to the
Dispatcher. ABEND5 stores in the RB old

Section 10: Termination Procedures 217

PSW field (RBOPSW) of ABEND's SVRB the
entry point (ENTRY2) to its ·close data
sets" function, for later use by the Dis
patcher. Then, to permit ABEND5 to control
processing for the selected task, the ABEND
routine's SVRB is placed at the head of the
selected task's RB queue. (The TCBRBP
field of the selected TCB is altered to
point to the ABEND routine's SVRB, and the
ABEND routine's SVRB points to the pre
viously "top" RB of the queue. (Refer to
Figure 10-6.) The ABEND routine's SVRB is
then removed from the RB queue of the
previously current TCB, since ABEND5 can
service only one task at a time.

To ensure that the registers will con
tain the correct values when ABEND5 is
redispatched for the selected task, the
address of the selected TCB is placed in
the TCB register (register 4), and the
current general register contents are
stored in the register save area (TCBGRS)
of the selected TCB. The Dispatcher, when
invoked, will load the registers from this
TCB save area.

ABEND5 next branches to the Task Switch
ing routine, making available the address
of the selected TCB. The Task Switching
routine compares the dispatching priority
of the input TCB with the dispatching
priority of the last dispatched (previously
current) TCB. If the selected task is of
higher priority, the Task switching routine
places the selected TCB address in the
"new" TCB pointer (IEATCBP) as an indica
tion to the Dispatcher. Otherwise, the
Dispatcher would try to select either the
previously current task (now nondispatch
able), or another lower priority task by a

Legend:
_ = pointer

Note: ABEND's SVRB is shifted to the RB Queue of the currentlv selected task.

search of the TCB queue in a downward
priority direction.

Finally, ABEND5 branches to the Dis
patcher to pass control to ABEND'S "close
data sets" function for the selected task.
When this task has highest priority among
the ready tasks (perhaps after a delay in
which other tasks are active), ABEND5 is
redispatched (at location ENTRY2) to purge
data sets and SVRBs for the selected task.

Closing Data Sets for a Selected Task: The
closing of data sets for a selected task
consists of the issuing of a CLOSE macro
instruction (with resulting supervisor
linkage to the Close routine of data man
agement) for each data set opened for the
task. Each data set is specified by a DeB
whose address is contained in a DEB whose
queue belongs to the task. After a data
set is closed, its associated DEB is
removed from the task's DEB queue, and its
space is freed. If a recursion to the
ABEND routine occurs because of a defective
DCB, or an incorrect DEB address in a DCB,
the DEB is dequeued and freed, although its
data set is not closed. When all DEBs on
the queue have been dequeued and freed,
ABEND 5 branches to its SVRB purge function
to release SVRBs representing transient
routines. After all such SVRBs have been
released, the "task select" (TASKSEL) sub
routine selects the next higher level task
for similar processing, unless the top task
has just been processed. When the top task
of the terminating tree has meen processed,
ABEND5 invokes ABEND6 to continue the purge
of resources.

ABEND 5

Entry 2

PRB

eFigure 10-6. Preparation for the Dispatching of ABEND5 for the Selected Task

218

/ -."

(""

1, ___ ._;:;:;,

("

The closing of data sets and the DEB
purge will now be discussed in greater
detail.

If the pointer to the task's DEB queue
(TCBDEB) is not zero, there are data sets
belonging to the task that must be closed.
To prepare for the issuance of CLOSE macro
instructions, ABEND5 stores in the parame
ter list for the Close routine the flag
byte, and the DC~ address wh~ch was
obtained from the first DEB. The parameter
list is the second word of the extended
save area of the ABEND routine's SVRB.
(See SVRB format in Section 12. "Control
Blocks and Tables.") The high-order bit of
the parameter list is set to indicate to
the Close routine that the specified data
set is the last in a list of data sets.
(See Supervisor and Data Management Mgcro
Instructions.)

After setting up parameters for the
Close routine, ABEND5 saves the current DEB
address in the extended save area of the
ABEND routine" s SVRB. The purpose is to
check whether the Close routine is able to
perform its secondary functions: the
updating of the DEB pointer (TCBDEB). and
the freeing of the current DEB. After
regaining control from the Close routine,
ABEND5 will compare the DEB pointer with
the saved DEB address to determine if the
Close routine has both removed the current
DEB from the DEB queue and freed its space.

Next, before invoking the Close routine.
ABEND5 sets the "Close" and "recursion"
flags (TCBCLOSE and TCBREC) in the selected
TCB. If an error occurs during the Close
routine (possibly caused by an invalid
DCB). the set condition of these indicators
indicates a valid recursion to the ABEND
routine. and causes reentry to ABEND5 from
ABEND2 to continue the DEB processing.

ABENDS invokes the Close routine of data
management by issuing a CLOSE macro
instruction specifying the parameters it
had previously stored in its SVRB. The
resultant SVC interruption causes the SVC
Second-Level Interruption Handler to create
an SVRB for the Close routine and to place
it on the RB queue of the selected task.
When the Close routine finishes its pro
cessing. the resultant SVC interruption
causes supervisor linkage to the Exit rou
tine. which removes the Close routine's
SVRB from the RB queue, and frees its
space. The ABEND routine's SVRB is then
left as the current RB for the task.

After the execution of the Close rou
tine. the Dispatcher returns control to
ABEND 5 as the current routine for the
still-active current task. ABEND5. to in
dicate that a recursion (if it now occurs)
is not valid, resets the "Close" and

"recursion" flags in the selected TCB.
They will again be set just before the
issuance of the CLOSE macro instruction for
the next data set.

The TCBDEB pointer is compared with the
saved DEB address to determine if the
current DEB was de queued and freed by the
Close routine. If the two DEB addresses
are unequal.. the current DEB has been
freed. ABEND5 then branches to location
ENTRY 2 within its own module to repeat the
processing for the next DEB on the queue.
But if the two DEB addresses are equal. the
Close routine did not process the current
DEB. Accordingly, ABEND5 removes the DEB
from the DEB queue. determines its size.
and frees the space it occupies. It then
branches to location ENTRY2 to repeat the
processing for the next DEB.

Special Handling of a Recursion: It is
possible for an error to occur during the
execution of the Close routine. causing a
recursion or reentry to ABEND. One possi
ble cause of such an error is the overlay
ing of one or more DCBs because of the
"steal core" function of ABEND2. Regard
less of the cause, a recursion because of
an error during the Close routine needs
special handling to permit the continued
closing of data sets after the point of
error.

If a recursion to the ABEND routine
occurs because of an error during the Close
routine, ABEND2 invokes ABEND5 directly.
The purpose is to continue the closing of
data sets and the purging of DEBs. A test
at the beginning of ABEND5 recognizes the
set condition of the "Close" indicator in
the selected TCB, and branches to perform
special handling.

ABEND5 must first locate the DEB on
which the Close routine was operating when
the error occurred. It locates the DEB
address by searching the RB queue to find
the SVRB that was used during the previous
execution of the ABEND routine. That SVRB
holds the last used DEB address in its
extended save area. This DEB address was
placed in the extended save area by ABEND5
during its previous execution, just before
it issued the last CLOSE macro instruction.
The last used DEB address, when found. is
saved in the extended save area of the SVRB
used for the current execution of the ABEND
routine.

ABENDS next purges two unneeded SVRBs on
the current task's RB queue that are con
suming supervisor queue space. One of the
SVRBs was created for the Close routine
during the ABEND routine's last execution.
The other SVRB was used for the previous
execution of the ABEND routine; during
which the "close" error occurred. ABEND5

Section 10: Termination Procedures 219

removes these SVRBs by removing and freeing
all SVRBs on the task's RB queue that
represent transient SVC routines, except
the SVRB controlling the current execution
of the ABEND routine. In addition, (via
the TAHABEND subroutine) ABENDS removes
from the transient area queues all pOinters
to these SVRBs. (The purge of the tran
sient area queues will be described in
greater detail under "Removal of Request
Blocks for Transient SVC Routines.")

After the purging of the extra SVRBs on
the RB queue, ABENDS continues processing
as if control had just been returned from
the Close routine after normal DEB process
ing. The "close" and "recursion" flags are
cleared, and the current DEB (since it was
not freed by the Close routine) is dequeued
from the DEB queue and freed. Normal DEB
processing for the next DEB then continues,
as previously described.

When all DEBs on the selected task's DEB
queue have been processed, ABENDS branches
to its ·purge SVRB" subroutine to dequeue
and free SVRBs representing transient rou
tines. (If an error has occurred during
the execution of the Close routine, these
SVRBs have already been released.)

REMOVAL OF REQUEST BLOCKS FOR TRANSIENT SVC
ROUTINES: The purge of SVRBs representing
transient routines is the beginning of a
general purge of request blocks that is
continued in ABEND6. The purge of SVRBs
for transient SVC routines is performed
immediately after the closing of data sets
and the DEB purge for a given task, while
that task is current and before the next
higher level task is selected.

ABENDS locates SVRBs for transient rou
tines by a search of the RB queue belonging
to the selected task. (Each next RB is
pointed to by the RBLINK field of the
previous RB, beginning with the ABEND-rou
tine's SVRB.) Each RB is examined to
determine that it is an SVRB and that it
represents a transient routine, as indi
cated by the bit settings in the RBSTAB
field. Each SVRB for a transient routine
is removed from the task's RB queue. Then
ABENDS branches to subroutine TAHABEND to
remove the SVRB from the transient area
queues.

The TAHABEND subroutine first tests the
transient area block number (RBTABNO field)
of the SVRB to determine if the represented
routine is currently in a transient area
block (TAB). If this field is zero, the
SVC routine is not in a TAB. In this case,
the SUbroutine searches the transient area
request queue for a pointer to the SVRB.
If the SVRB address is found, it is removed
from the request queue and the purge of the
transient area is complete.

220

If, however, the TAB number (RBTABNO) in
the specified SVRB is not zero, the SVRB
address is on a user queue and the asso
ciated routine is either in a TAB or was
overlaid before it could be completed. In
this case, the transient area user count is
decreased by one to indicate one less
outstanding request for the routine in the
TAB. Then, by use of the TAB number as a
displacement, the associated entry in the
transient area control table (TACT) is
found. By means of the TACT entry, the
appropriate user queue is located and
searched for the SVRB address. When the
specified SVRB address is found, it is
dequeued from the user queue, since the
requestor that originally generated the
SVRB is being terminated. The user queue
for the TAB is then searched to determine
if there are other users of the routine in
the TAB. (The relative track and record
address--TTR--in the TACT entry, represent
ing the routine now in the TAB, is compared
with the TTR in the remaining SVRBs on the
user queue.) If the search indicates that
there are other users of the routine, the
purge of the transient area queues is
complete. But if it indicates that there
are no other users of the routine in the
TAB, the associated TACT entry is flagged
to indicate a free TAB.

Upon return of control from the TAHABEND
subroutine, ABENDS determines the size of
the SVRB just processed (from its RBSIZE
field) and frees the space it occupies,
specifying subpool 2SS (one of the subpools
of supervisor queue space).

When all RBs on the selected task's RB
queue have been examined, and if necessary
dequeued and freed, the "task select"
(TASKSEL) routine is invoked to select the
next higher level task of the tree. Prepa
ration is then made for redispatching
ABENDS (at location ENTRY2) under control
of the selected TCB, a.s previously
discussed.

When data sets, DEBs, and SVRBS have
been purged for all tasks of the tree (as
indicated by a test after SVRB processing),
ABENDS invokes ABEND6, via an XCTL macro
instruction, to continue the purge of task
resources.

ProceSSing During ABEND6
(Entry Point IGC0301C)

ABEND6 performs the following main func
tions for each task of the tree:

• Purges request blocks (RBs) and updates
the contents directory.

• Purges the load list. c

(--

• Purges dynamically acquired
storage.

• Releases the task control block.

• Provides final processing for the
task of the tree.

main

top

ABEND6 completes the RB purge begun in
ABEND5, and purges the remaining resources
of the specified task and its descendants.
The released resources include: RBs not
yet purged (PRBs and IRBs); control blocks
of Contents Supervision and their asso
ciated load modules,- if they are no longer
needed; requests for enqueued resources
(QELs); the load lists; and dynamically
acquired main storage, if exclusively
owned.

Like ABEND5, ABEND6 purges the various
resources of each task of the tree, one
task at a time. Similarly, ABEND6 selects
each task by means of the previously de
scribed "task select" subroutine (TASKSEL),
starting with the newest descendant of the
specified task and ending with the speci
fied or "top" task itself. But unlike the
processing of ABEND5, in which each task
was redispatched under the control of
ABEND's SVRB to purge its own resources,
ABEND6's processing is all done under the
control of one task, the specified or top
task of the terminating tree. This task
remains currently dispatchable throughout
the execution of ABEND6 for the current
request.

After ABEND6 has purged all resources
belonging to a selected task, it removes
the task's TCB from the TCB queue and from
the subtask queues, and frees the storage
that the TCB occupies. The subtask queues
indicate task relationships of the tree.
The next higher level task is then selected
and its resources are purged in the same
way. The process continues until the top
task of the tree has been selected and its
resources purged. This time the TCE is not
removed from its queues, nor is its space
freed, since this TCB is still needed after
ABEND6 exits.

As a last function, ABEND6 loads the
return register with the completion code
obtained from the top TCB. This completion
code is then available to the top task's
parent, the next higher level task, for its
e'xamination.

ABEND6 at its completion twice causes
supervisor linkage to the Exit routine.
The Exit routine during its first execution
updates the transient area control table
and the transient area queues, vi~ its
TAXEXIT subroutine. It does this because
ABEND6, a transient SVC routine, is
finished. During its first execution the

Exit routine also removes the ABEND rou
tine's SVRB from the top task's RB queue
and frees its storage space. During its
second execution the Exit routine, detect
ing an end-of-task condition, branches to
the EOT routine.

The EOT routine performs final termina
tion procedures for the top task of the
tree. These procedures consist of:

• Passing control to an end-of-task exit
routine (ETXR), if one has been
specified.

• Posting an event control block (ECB)
for the parent task, if an ECB has been
specified.

• Removing the top TCB from its queues
and freeing its storage space.

Upon rega1n1ng control from the EOT
routine, the Exit routine removes the last
RB from the top task's RB queue and frees
its storage space. The Exit routine then
branches to the Transient Area Refresh
routine to refresh (if necessary) a tran
sient area. The transient area may have
been overlaid by the modules of the ABEND
routine.

The Transient Area Refresh routine, when
its processing is complete, branches to the
Dispatcher. The Dispatcher then gives con
trol to the current routine of the highest
priority ready task.

THE PURGING OF REQUEST BLOCKS AND THE
UPDATING OF THE CONTENTS DIRECTORY: The
resources first purged by ABEND6 for a
selected task are the request blocks (RBs).
The RBs are processed by a subroutine
called RBREMOVE. The processing var~es
according to the type of RB: SVRBs for
resident routines, IRBs, and PRBs. The
type of RB is determined by a test of the
RBFTP bits of the RBSTAB field. For the
format and contents of each type of RB, see
Section 12, ·Control Blocks and Tables."
The processing for each type of RB will be
separately discussed in the following
paragraphs.

Purging an SVRB: Since SVRBs for transient
routines have already been released by
ABEND5, any SVRB detected by the RBREMOVE
subroutine must represent a resident SVC
routine. If the SVRB is not the last RB of
the "top" TCB, the RBREMOVE subroutine
removes the SVRB from the task's RB queue,
determines its size from its RBSIZE field,
sets up the subpool operand (255) for a
FREEMAIN macro instruction, and frees the
space occupied by the SVRB. If the SVRB is
not the last RB on the selected task's RB
queue, the next RB is obtained and RB
processing for the task continues. But if

section 10: Termination Procedures 221

the released SVRB was the last RB on the
queue, the RBREMOVE subroutine branches to
theENQ/DEQ Purge routine to purge QELs
belonging to the selected task.

If the SVRB is the last SVRB on the top
task's RB queue, the RBREMOVE subroutine
does not release the SVRB. This last SVRB,
used for the ABEND routine, is released by
the Exit routine after ABEND6 is finished.

Purging an IRB: If the RBREMOVE subroutine
finds an IRB that represents a user or
system exit routine. it dequeues all IQEs
or RQEs that are queued to it. The subrou
tine then decreases the nuse count" in the
IRB. according to the number of IQEs or
RQEs that it removed. (The use count,
stored in the IRB when the user exit
routine was first requested, indicates mul
tiple use of the same exit routine for
different subtasks.)

The RBREMOVE subroutine removes the IRB
from the task's RB queue" and resets the
"active" flag (RBFACTV) in the IRB to
indic~te to the Stage 3 Exit Effector that
the IRB is not on a task's RB queue.

Then two tests are made to determine if
space belonging to the IRB may be freed.
If the IRB's storage space was not dynami
cally acquired (as indicated by a test of
the RBFDYN flag in the RBSTAB field), the
RB is a permanent system interruption re
quest block and may not be freed. Or if
the IRB's use count is greater than zero,
it is still needed, and should not be
freed. In either case. the RBREMOVE sub
routine processes the next RB on the
selected task's RB queue, or if there is no
other RB on the queue, branches to the
ENQ/DEQ Purge routine. But if the IRB is
not a system RB and contains a use count of
zero, it is no lpnger needed and its space
is freed. If it has a user register save
area, originally reserved by the requestor
of the user exit routine, the save area
space is freed. (Existence of the save
area is indicated by a nonzero RBPPSAV
field in the IRB.) The 72-byte save area
is freed from subpool 250 by a branch to
the FREEMAIN routine (address FMBRANCH).
The RBREMOVE SUbroutine then branches to
~he FREEMAIN routine to free the IRB's
space from subpool 253. If there is anoth
er RB on the selected task's RB queue. the
subroutine processes it. Otherwise, it
pranches to the ENQ/DEQ Purge routine to
purge QELs belonging to the task.

Purging a PRB and Updating the contents
Directory: If the RB examined by the
RBREMOVE subroutine is a PRB, there 1S an
associated contents directory entry (CDE)
which must be examined, and if necessary,
purged from the contents directory. To
examine the CDE. which represents a load

222

--------------- ---- -- --

module, the RBREMOVE subroutine branches to
its subroutine PRBPROC to test the CDE and
possibly update the associated queues.

If the CDE pointer (RBCDE) in the PRB is
zero, there is no CDE associated with the
PRB. There is therefore no need for
PRBPROC to update the contents directory.
It returns control to the RBREMOVE subrou
tine (at entry pOint TESTOCT) to test the
PRB and, if possible, remove the PRB from
the selected task's RB queue and free its
storage area.

If the CDE pointer (RBCDE) in the PRB is
not zero, there is a CDE, which means that
a load module is associated with the PRB.
The load module may be in the process of
being ,loaded, or may already be residing in
main storage. The status of the module may
be determined by a test of the CDE's CDATTR
flags. For the format and contents of a
CDE, see section 12, ·Control Blocks and
Tables."

If the module described by the CDE is in
the process of being loaded (as indicated
by the ·set" condition of its NIC flag)
PRBPROC frees the fetch work area, obtains
the major CDE if the currently examined CDE
is a minor (since alterations are always
made in the major CDE), and processes
according to two possible situations:

1. The module is being loaded under con
trol of another PRB, not the selected
PRB. A test of the CDERB field shows
that it does not point to the selected
PRB. The selected PRB is on a queue~

of PRBs waiting for the module to be
loaded for another task in the job
step. In this case, the removal of
the selected PRB from the waiting
queue has no effect on other tasks
whose PRBs are waiting. Accordingly,
PRBPROC branches to its DQRBS subrou
tine to remove the selected PRB from
the queue of waiting PRBs. PRBPROC
then returns control to the RBREMOVE
subroutine to remove the selected PRB
from its task's RB queue and free its
storage area.

2. The module is being loaded under the
control of the selected PRB. (The
test of the CDERB field shows that it
points to the selected PRB.) In this
case, the processing depends on wheth
er there are other PRBs queued~ to the
selected PRB.

Purging the Module
Areas: If a test
indicates that no
step are awaiting

and Related Storage
of the RBPGMQ field
,other {,RBs in the job
the loading of the

~Queuing field is RBPGMQ. ()

c
module. the CDE and its related areas can
be removed without adversely affecting
other tasks. Accordingly. the PRBPROC sub
routine branches to the FREEMAIN routine to
free the modul€:'s stora.ge area and its
associated extent list (if they exist). It
then dequeues the major CDE for the module
and any minor CDEs and. via the FREEMAIN
routine. frees the space they occupy.

Preparation for Refetching the ~10dule: But
if PRBs for other tasks of the job step are
queued. awaiting the loading of the module.
the loading process cannot be stopped
without ensuring that th~ module will be
loaded under the control of one of the
waiting PRBs. Otherwise, the tasks whose
PRBs are waiting would be permanently non
dispatchable, awaiting a resource that is
never available. Accordingly. the PRBPROC
subroutine prepares for the refetching of
the module by the routines of contents
Supervision (as described in the next para
graph). It then frees the program area and
extent list. if they exist. and dequeues
and frees the major CDE and any minors.

Preparation for the ref etching of the
module consists of making the waiting PRBs
ready to enter the CDSEARCH routine of
contents Supervision at entry point
CDCONTRL. This routine initializes the
request for the module. Other routines of
contents supervision perform the fetch and
update the contents directory. The PRBPROC
subroutine prepares the waiting PRBs for
entry to location CDCONTRL by performing
the following steps for each queued PRB.
via two subroutines. RBQUEUED and QDRBS:

1.

2.

3.

4.

Frees the fetch work area,
been allocated. (This
already been done for the
removed.)

if one
action
PRB to

has
has

be

Stores the address CDCONTRL in the old
PSW field of the PRB. in preparation
for the dispatching of the CDSEARCH
routine. mentioned above.

Reinitializes the RB by: placing zero
in its wait count field (RBWCF). thus
removing it from the wait condition:
placing zero in the CDE pointer
(RBCDE). since contents Supervision
will store a new CDE pointer in this
field: and placing zero in the queuing
field (RBPGMQ), since the RB is no
longer in the waiting queue. Contents
Supervision will create a new waiting
queue of requesting SVRBs during the
reinitialized fetch process.

Decreases by a count of one the use/
responsibility count in the major CDE.
in orjer to indicate that there is one
less outstanding request for the
module.

5. Locates the address of the TCB asso
ciated with the PRB by chaining
through the RB queue. following the
RBLINK fields. and branches to the
supervisor's Task Switching routine
with this TCB address. The Task
Switching routine may alter the nnewo
TCB pointer (IEATCBP) to permit the
Dispatcher to eventually pass control
to location CDCONTRL for a task which
is of higher priority than the current
task.

The reinitialized request for the module
will cause execution as soon as one of the
tasks whose RBs have been readied is next
dispatched.

After the PRBPROC subroutine has re~n~

tialized the module request. it frees the
program area and extent lists. if they have
been acquired. and dequeues and frees the
major CDE and any minors. When contents
Supervision is eventually dispatched, it
will not find a CDE for the module. since
the CDB has been removed from the contents
directory. contents Supervision therefore
begins the process of fetching the module.

Processing if the Module is Already in Main
Storage: If the module described by the
CDE is already in main storage, the PRBPROC
subroutine performs processing roughly
parallel to that which it performs if the
module is in the process of being loaded.
There are. however. several differences:

• No fetch work areas are freed. since
contents Supervision has already freed
these areas.

• Preparation for the ref etching of the
module occurs only if the module is
serially reusable. The reasoning is
that the module may now not be reus
able. either because of a program check
during its execution or because it
could not finish and therefore could
not reinitialize itself. In either
case. waiting queued PRBs are made
ready and pointed to location CDCONTRL.
as previously described. But to force
ref etch by Contents Supervision. the
PRBPROC subroutine clears the ·serially
reusableW flag and sets the wnonreus
ableR flag in the CDE.

• Instead of freeing the program area.
extent list. and the CDE unconditional
ly if the selected PRB is in control of
the module. the PRBPROC subroutine
branches to entry point CDHKEEP. a
subroutine of the Exit routine. to test
the CDE use/responsibility count. If
this count is zero. indicating that
there are no outstanding requests for
the module. the PRBPROC subroutine
branches to the CDHKEEP subroutine and

Section 10: Termination Procedures 223

to two other subroutines of the Exit
routine (CDDESTRY and ORDERCDQ) to free
the program area, extent list, and the
CDE. (For further information about
CDHKEEP, CDDESTRY, and ORDERCDQ, see
Section 9 "Exiting Procedures. D)

If contents directory processing by the
CDHKEEP subroutine is not needed because
the selected PRB is not in control of the
module, the selected PRB is removed from
the RB "wait" queue1 that originates in the
CDE. The use/responsibility count is then
decreased by a count of one to indicate
that there is one less outstanding request
for the module.

The result of the processing by PRBPROC
is that ~~e selected PRB has been removed
from the CDE's RB queue of waiting reques
tors, or the request for the module has
been reinitialized and, if necessary, the
program area, extent list, and CDE have
been freed.

Removing the PRB: The PRBPROC subroutine
then returns control to the RBREMOVE sub
routine (at location TESTOCT). The RBRE
MOVE subroutine removes the PRB from its
task's RB queue and frees its storage area.
The freeing of the PRB'S storage area is
similar to that for any other RB'S storage
area except that there is no user register
save area to be freed, and the RB size and
subpool number pertain to a PRB. The
RBREMOVE subroutine branches to the FREE
MAIN r.outine at entry point FMBRANCH to
free the PRB's storage space from subpool
255. Then, if there is another RB on the
selected task's RB queue, the RBREMOVE
subroutine purges that RB in the manner
previously described. But if there are no
more RB's belonging to the selected task,
the RBREMOVE subroutine branches to the
ENQ/DEQ Purge routine.

Special Processinq for the Last RB of the
"TOp" Task: If the RB just processed is
the last RB of the Atop" task of the
terminating tree, the RBREMOVE subroutine
performs special processing for this last
RB. (The last RB is not the ABEND rou
tine's SVRB but is the RB pointed to by its
RBLINK field.) The last RB needs special
processing to satisfy the needs of the
supervisor's Exit routine, where the final
purging of resources is performed after the
completion of ABEND6. The Exit routine
expects that the last RB belonging to a
completed task is a PRB. The RBREMOVE
subroutine therefore converts its last
processed RB into a PRB and ensures linkage
to the Exit routine by altering certain RB
fields. It converts the RB into a PRB by
clearing the RBFTP subfield of the RBSTAB

1Queuing field is RBPGMQ.

224

field. To avoid manipulation of the con
tents directory by the CDEXIT subroutine of
the Exit routine, the RBREMOVE subroutine
clears the CDE pointer (RBCDE). To permit
dispatching of the Exit routine for the top
task when ABEND6 processing is complete,
the RBREMOVE subroutine removes any exist
ing wait condition by clearing the RBWCF
field. Also for this purpose it points the
RB old PSW (second word of the RBOPSW
field) to an SVC 3 instruction in the
communication vector table (CVT) at loca
tion CVTEXIT. The SVC 3 instruction, when
placed in execution by the Dispatcher, will
cause supervisor linkage to the Exit rou
tine. After altering the last RB of the
top task to cause eventual linkage to the
Exit routine, the RBREMOVE subroutine
branches to the ENQ/DEQ Purge routine, as
it does after all RB's have been processed
for any selected task of the tree.

THE PURGING OF REQUESTS FOR ENQUEUED
RESOURCES: ABEND6 enters the resident ENQ/
DEQ Purge routine (at entry point IEAQEQ01)
to remove resource requests generated by
the issuance of the ENQ macro instruction
for the selected task. This is the task
selected by the TASKSEL subroutine from
those belonging to the terminating tree.
The queue elements (QELs), representing
resource requests, must be removed. This
is done so that routines belonging to other
tasks could gain access to the enqueued
resource, if the abnormal termination
occurred before the DEQ routine could be
executed for the selected task. Otherwise,
the resource would remain inaccessible.

The ENQ/DEQ Purge routine searches the
system QCB chain for QELs that. were con
structed by the ENQ routine for the
selected task. Each QEL contains a pointer
to the TCB under whose control it was
constructed. Each QEL helonging to the
selected task is removed from its:. QEL
queue, and its space is freed, via a branch
to the FREEMAIN routine. If all QELs
queued to a minor QCB are removed, the
minor QCB is also de queued from its major
QCB and its space is freed. If the major
QCB has no minor QCB, it is also removed
from its queue and its space is freed.
When all the task's enqueued requests have
been removed from the system QCB chain and
its related queues, the ENQ/DEQ Purge rou
tine branches to the Load List Purge rou
tine to continue the purging of the
selected task's resources.

The ABEND6 routine must also terminate
device reservations acquired through the
RESERVE macro instruction and not released
through a subsequent DEQ macro instruction..
These device reservations occur only in
systems with the shared DASD option.

(

Outstanding reservations are reflected
in the TCB enqueue count (offset 11.2 in the
TCB). When such a reservation is detected,
the ABEND6 routine branches to the EXCP
interface subroutine in the ENQ/DEQ module.
This subroutine prepares control blocks for
an EXCP command and issues theEXCP command
that results in the release of the reserved
device. (See "Processing in Systems With
Shared DASD".)

PURGING THE LOAD LIST: The resident Load
List Purge routine (entered at location
IEAQABL) releases load list elements and
modules that were loaded for the selected
task and are now no longer needed. This is
the same routine that performs a similar
function for the EOT routine during a
normal task termination. The Load List
Purge routine releases modules that were
loaded for the selected task, but which
were not released before the task was
abnormally terminated. The modules would
normally have been released by either the
Delete SVC routine or the CDEXIT subroutine
of the Exit routine.

The Load List Purge routine examines
each load list element in the load list,
representing all modules that were loaded
for the selected task. (The list or1g1n
for the load list is in the TCBLLS field of
the TCB.) The routine subtracts the
responsibility count (number of load
requests for each module) stored in its
load list element, from the use/
responsibility count (total number of
requests for the module) stored in the CDE
for the module. Each load list element
points to its associated_CDE. The purpose
of subtracting the responsibility count
from the use/responsibility count is to
determine the number of outstanding
requests for the loaded module.

The Load List Purge routine branches to
the CDEXIT subroutine (location CDHKEEP).
The subroutine tests the number of out
standing requests for the module. If there
is no outstanding request for the module,
the routine tests the module's attributes.
If the module is in the link pack area,
control is returned immediately to the
caller. If the module is not in the link
pack area and is either reenterable or
reusable, the routine sets the "release"
flag in the module'S CDE and the "purge"
flag for the job pack queue. (These flags
are tested by the GETMAIN routine to deter
mine which module's space may be freed, if
needed space is otherwise unavailable.) If
the module is neither serially reusable nor
reenterable, CDEXIT (via its CDDESTRY sub
routine) removes the module's CDE from the
job pack queue, and frees the space occu
pied by the module, its extent list, and
its CDEs (major and minor).

-----------~ ----- ----~----

On return of control from the CDHKEEP
subroutine, the Load List Purge routine
frees the load list element. The process
is repeated until all load list elements
have been examined.

THE PURGING OF DYNAMICALLY ACQUIRED MAIN
STORAGE: After control is returned from
the Load List Purge routine, ABEND6
branches to the Subpool End-of-Task routine
(SPEOT), whose entry point is IEAQSPET.
SPEOT is part of the EOT routine. The
SPEOT routine releases subpools exclusively
"owned" by the selected task and frees the
associated subpool queue elements (SPQEs).

The SPEOT routine frees unshared sub
pools of main storage allocated to the
selected task. The subpools are repre
sented by SPQEs. which have as their list
origin the TCBMSS field of the selected
TCB. The routine examines each SPQE on the
queue. If an SPQE repres~nts a shared
subpool tha~ may not yet be freed, the
queue is updated (the "shared" SQPE is
freed) to reflect the new unshared owner
ship of the subpool. If, however, an SPQE
represents a subpool not shared with anoth
er task of the job st,ep, the subpool and
its SPQE are freed, via a branch to the
FREEMAIN routine. The SPQE list is
updated, and the next element is examined.
When all elements have been examined, sub
pool 253, one of the numbers assigned to
supervisor queue space, is explicitly freed
since there is no SPQE for this subpool.

If the selected task is the job step
task, a job step termination must be occur
ring. In this case, besides freeing sub
pools and SPQEs, the SPEOT routine dequeues
and frees CDEs and extent lists that
describe modules in the job pack area
(subpool 251) and in the step link pack
area (subpool 252). These CDEs and extent
lists are released during termination of
the job step task because the SPQEs for
these two subpools are queued to the job
step TCB and have not previously been
released. The SPEOT routine checks the job
pack area control queue (JOBPACQ), whose
list origin is the TCBJQP field in ~he TCB,
to discover if there is at least one CDE.
If there is at least one CDE, the SPEOT
routine branches to a part of the CDEXIT
subroutine of the Exit routine (CDDESTRY)
to free the remaining CDEs and their asso
ciated extent lists.

RELEASING THE TASK CONTROL BLOCK (TCB):
After freeing main storage and SPQEs for
the selected task, ABEND6 follows either of
two paths of processing, depending on
whether the selected task is the top task
of the tree. If the selected task is the
top task, final processing is performed, as
described in "Final Processing for the Top
Task." But if the selected task is not the

Section 10: Termination Procedures 225

top task, ABEND6 sets the "completion" flag
(TCBFC) in the selected TCB, to indicate
that the task has been terminated, removes
the TeB from its queues, and frees its
space.

The dequeuing and freeing of the
selected TCB is performed by two resident
routines belonging to EOT: the "dequeue
TCB" routine (DQTCB), whose address is
IEADQTCB, and the "erase" routine (address
lEAQERA). The "dequeue TCB" routine
removes the address of the selected TCB
from the TCB queue. The reader may recall
that the TCB queue consists of pointers
connecting the TCBs of the system in the
order of their dispatching priorities. The
Dispatcher may examine this queue to deter
mine the next task whose current routine
should be dispatched. Since the selected
task is now terminated, its TCB must be
removed from consideration by the
Dispatcher.

The ABEND routine does not contain spe
cial code in systems with the time-slicing
feature. The EOT routine contains special
code for time-slicing, and this code' per
forms the preceding functions for ABEND6.

The "erase" routine removes the selected
TCB from its subtask queues, updating the
TCBLTC and TCBNTC pointers in the next
higher TCB of the tree. The "erase" rou
tine then branches to the FREEMAIN routine
to free the space occupied by the selected
TCB.

FINAL PROCESSING FOR THE TOP TASK: After
the release of a selected TCB, ABEND6
branches to its "task select" subroutine to
select the next higher level task of the
tree of terminating tasks. The resources
of the newly selected task are released in
a manner similar to that described. When
the resources of the "topft task of the tree
have been released, as indicated by a test
after the SPEOT routine has returned con
trol, ABEND6 begins final processing for
the top task. It loads the return register
with a completion code that it obtains from
the TCBCMP field of the top TCB. The
parent of the top task may examine the
completion code, via an end-of-task exit
routine or a posted ECB, when its current
routine is dispatched. After placing the
completion code in the return register,
ABEND6 causes linkage to the supervisor
Exit routine by issuance of an SVC 3
instruction.

The supervisor Exit routine and the EOT
routine provide final cleanup of the top
task. The Exit routine removes the ABEND
routine'S SVRB from the top task's RB queue
and frees its space. The Exit routine then
bI:anches to the Dispatcher to return con
trol to the current routine of the highest

226

priority ready task. When the top task of
the terminating tree is next dispatched,
its RB old PSW causes control to be passed
to an SVC 3 instruction in the communica
tion vector table (address CVTEXIT). Con
trol is passed to the Exit routine, via
supervisor linkage, this time to remove the
last RB from the top task's RB queue. This
RB is the one that was converted to a PRE
by the RBREMOVE subroutine (see "Special
Processing for the Last RB"). The Exit
routine, after removing the "dummied" PRB,
detects an end-of-task condition and
branches to the EOT routine.

The EOT routine, via its DQTCB and
"erase" routines, removes the top TCB from
the TCB queue and its subtask queues and
frees its space. (If, however, an end-of
task exit routine (ETXR) or an ECB was
specified when the top task was attached,
the top Tca is not removed from its subtask
queues.) The EOT routine next clears the
"new" TCB pointer UEATCBP) to zero, indi
cating to the Dispatcher that it must
search the TCB queue to find the highest
priority ready task from among those that
remain in the system. A task switch is
thus ensured. The EOT routine returns
control to the Exit routine to free the
space occupied by the last RB (the "dum
mied" PRB) of the top task. The Exit
routine then branches to its Transient Area
Refresh routine to refresh (if necessary) a
transient area block that was overlaid by
the various modules of the ABEND routine.
The Transient Area Refresh routine, after
performing its processing, branches to the
Dispatcher to return control to the current
routine of the highest priority task of
those that remain in the system.

Processing by ABEND6, the usually last
executed segment of ABEND, is now complete.

Permitting the System to Quiesce (System
Quiesce Routine>

System quiescence involves the abnormal
termination of the failing task a.nd its
associated tasks, the isolation of the
failing task's region, the scheduling of no
further jobs, and the attempt of the pre
viously schedUled tasks in the non-failing
regions of the system to reach normal
processing termination.

The System Quiesce routine (IEAQTWST,
entry point IECIWTST) serves as an emergen
cy exit for the ABEND routine. When a
severe error condition is detected during
ABEND processing, the System Quiesce rou
tine places the failing task in a wait
condition, sets the TCBs of, all related
tasks nondispatchable, frees the resources
allocated to the failing tasks, issues a
message to the operator indicating that a
CPU wait state has been averted and

("~ , .. -",'

instructing him to per.mit the system to
quiesce. Control is returned to the super
visor enabling the system for interrup
tions, and processing in the other regions
of the system is continued.

The address of the System Quiesce rou
tine is located in the CVTXWTO field of the
CVT. The routine is branched to by ABEND2
if any of the following three conditions is
detected:

• The task scheduled for ABEND processing
is in Wmust complete- status, indicated
by either the TCBFJMC or the TCBFSMC
flag.

• The task scheduled for ABEND processing
is a system task.

• Entry to the ABEND routine was caused
by an invalid recursion a failure
that occurred during a previous execu
tion of the ABEND routine. (A second
entry to the ABEND routine is consid
ered a valid recursion only if the
failure in ABEND processing occurred
during the Open routine, the ABDUMP
routine, or the Close routine. Second
entries from any other part of ABEND
processing are considered invalid
recursions.)

The System Quiesce routine causes the
printing of the appropriate error message,
which warns the operator that a severe
error has occurred, a CPU wait state has
been averted, and the system must be
allowed to quiesce.

The System Quiesce routine first saves
the program check new PSW. The wait state
code, passed to the.System Quiesce routine
in register 0, is translated and saved for
later incorporation in the error message.

To determine if the failing task is a
system task, the TIOT field in the current
TCB is tested. If the TIOT field is zero,
the failing task is a system task, and an
appropriate message is moved into the buff-

er area. If not, the step name in the
is replaced by the related wait state
and all related subtasks are
nondispatchable.

TIOT
code
set

The System Quiesce routine next branches
to the ENQ/DEQ Purge routine which frees
the resources that were allocated to the
TCB of the failing task. Upon return from
the ENQ/DEQ Purge routine, a branch is
executed to the POST routine to post the
Write-to-Log ECB in the Unit Control Module
witq a unique wait state code associated
with the communications task, which is
later recognized by the Router, module
IEECVCTR.

Upon re-entry to the system quiesce
routine from POST, the address of the
program check new PSW is now restored. The
region of the failing task must be isolated
to preserve the contents of main storage
for analysis. To accomplish this, the
system quiesce routine clears a dummy ECB,
and issues a WAIT macro instruction speci
fying this ECB.

The System Quiesce routine sets up two
different error messages, depending on
whether the failing task is a problem
program or a system task. Both error
messages contain the wait state code that
describes the error condition. If an in
valid recursion is detected, the message
contains the completion code for the orig
inal entry into the ABEND routine. When
the communications task is entered, module
IEECVCTB invokes the Router (SVC 72), which
schedules the error message by issuing a
WTO (SVC 35) specifying the address of the
system quiesce routine buffer area.

After the WAIT macro instruction has
been issued on the dummy ECB, the system
quiesce routine returns control to the
supervisor, enabling the system for inter
ruptions and permitting the other regions
of the system to continue processing. A
stand-alone dump program must be scheduled
when the system has quiesced.

Section 10: Termination Procedures 227

(

22S0 SYSTEM OPERATOR'S CONSOLE

The IBM 22S0 Model 1 Display Unit can be
used as a system operator's console with
the IBM System/360 Models SO, 6S, or 7S: it
is standard with the Model 91. If this
option is selected, 22S0 System Operators
Console programming support is provided for
displaying system status and reference
information, and system and problem program
messages to the operator.

Console support is part of the Communi
cation Task in Operating Systerr~360 with
MVT (see Section 7: Console Communications
and System Log). The following modifica
tions are made to the Communications Task
to accommodate the 22S0.

• Pointers to the 22S0 Processor routine
and Display Control Module (DCM) are
added to the Unit Control Module (UCM).

• The Console Device Support routines.
comprised of the 22S0 Processor, Dis
play, I/O, Options, Asynchronous Error,
and Open/Close routines, are added to
SVC 72.

COMMUNICATION TASK CONTROL FLOW

Control flow for the communication task
with 22S0 support is identical with normal
MVT flow up to the point when SVC 72 is
issued (see Figure 11-1). Where necessary,
these functions are described below to
provide continuity for the 22S0
information.

The Router routine, part of module
IEECVCTR (SVC 72), examines the UCM to
determine the ECB which has been posted and
the Console Device Support routine which
should get control. This is accomplished
by locating the first Device Control Entry
(DCE) which indicates it can process a
request to display a message or a request
to read a command. After completion of
processing by the Console Device Support
routines, control is returned to the Rout
er, which re-examines the UCM and returns
control to the Communication Task Wait
routine only if no other ECBs have been
posted. When a posted ECB is found by the
Router routine, the Router again passes
control to the appropriate Console Device
Support routine.

The Console Device Support routines per
form reading and writing operations on the
22S0 console by using the EXCP macro

SECTION 11. SPECIAL FEATURES

instruction. These support routines con
sist of the 22S0 Processor, Display, Input/
Output, Options, Open/Close, and Asynchro
nous Error routines.

The 22S0 Processor routine receives con
trol from the Router routine. After deter
mining the actions required, control passes
to the Open/Close, Display, Input/Output,
or Asynchronous Error routines.

To accomplish their functions, the Dis
play, Input/Output, and Options routines
access the DCM as necessary to (1) examine
information stored by the 22S0 Processor
routine, and to (2) store information to be
examined by the 22S0 Processor routine.
Upon completion of an input/output opera
tion involving the alternate console, the
22S0 Processor routine receives control so
that it can manage the message buffers and
access the DCM to record and obtain infor
mation pertinent to the 22S0 operator's
console.

The Input/Output routine reads a command
into a buffer area. The 22S0 Processor
routine calls the Command Processor routine
via an SVC. The Command Processor routine
analyzes the command: if the command is
acceptable, it is moved from the buffer
into which it was read to a local buffer,
and is processed by the appropriate command
execution routines. If the command is
invalid, a system message informing the
operator of the invalid command appears on
the screen. When a valid command has been
processed by the Command Processor routine,
control returns to the 22S0 processor
routine.

The Input/Output routines write messages
in the 22S0 buffer, causing them to be
displayed. After a message has been dis
played, control returns to the 22S0 Proces
sor routine.

UNIT CONTROL MODULE MODIFICATION

The Unit Control Module (UCM) is the
primary control table for console communi
cation. It is a non-executable module
containing ECBs used in the WAIT/POST
mechanism in the Write-To-Operator and Con
sole Interrupt routines. It contains
pointers to WQEs and RQEs, and pointers to
routines that support the 22S0, a typewrit
er, or a reader-printer as consoles. The
name of the 22S0 Processor routine is
contained in location UCMNAME of the UCM.

Section 11. Special Features 229

Communication Task

Standard OS/36O Communication Task

WTOjR Macro

SVC35 l I GC0003E IEECVUCM

UCM
WTOjR
Routine

r-____ .!~t__ _ ECBs
-. QDEs

Post
f---------

IEECVCTX

External
Interrupt
Routine

r- ---L-D_C_Es ______l

I

~-----.
I
I

I
I
I
I
I
I
I
I

Wait IEECVCTW

Communication
Task Wait
Routine

SVC72' I GC007B

Router
Routine

SVC35

IGC03D
SVC34

Command
Processor

Attention or
I/O Complete

Console
Interrupt
Routine

IEEBAI

IEECVPMX
IEECVPMP

Hard Copy
Processor

f------.-l--------l------ ----------_._)----
Console Device Support Routines I

I
I
I
L---.r--2- 2-50..L----J..------.J

Processor
Routines

IEECVDPI IEECVDP2

f
!

,------- --------- --10

,------
j4---------- ----~----1

I
I

~

Display
Routine

IEECVDRI

Options
Routine

~

IEECVDR4

DCM

IEECVDCM

T
I
I

1

1+--------1

~

Asynchronous
Error Routine

IEECVAE

I
I

~

Open/Close
Routine

IEECVOCG

'-----------1~ I/O Routines 1------------------'
IEECVDR2

UCM - Unit Control Module
ECB - Event Control Block
QDE - Queue Descriptor Entry
DCE - Device Control Entry
DCM - Display Control Module

IEECVDR3

Figure 11-1. Control Flow of 2250 System Operator·s Console Support

230

c

The modification in the UCM is the
insertion of a point~r to the Display
Control Module (DCM) at location UCMXB.
This pointer is inserted at system genera
tion when the user specifies a 2250 as
either a primary or an alternate console.

CONSOLE DEVICE SUPPORT ROUTINES

The Console Device Support routines per
form read and write operations to display
system and problem program messages to the
operator, cause a hard-copy of these mes
sages to be produced, receive commands
issued by the operator, process light pen
attentions, and display unit status and
command formats. The routines are:

• Display Control Module (IEECVDCM):
maintains an image and status of the
display according to the options
selected (non-executable).

• 2250 ProceSsor (IGC3107B): determines
the event that occurred and passes
control to the appropriate Console
Device Support routine, and to other
routines associated with the Communica
tion Task. It accesses the Display
Control Module to record and obtain
information pertinent to the 2250
operator's console.

• Display (IGC3407B): accepts input from
the 2250 Processor routine and alters
the main storage representation of the
display. It also relates a light pen
attention to a selected function and,
if necessary, computes a list of buffer
addresses for use by the Input/Output
routines in building channel programs.

• Input/Output Routines (IGC3507B,
IGC3607B): process alphameric keyboard
attentions including reading commands
and replies, perform delete functions
of WTOs and WTORs, and construct and
execute all necessary channel programs.

• Options (IGC3807B. IEECVDRS): displays
unit status and command formats if
sufficient storage is available.
Otherwise, a WTO message is displayed.

• Open/Close (IGC3I97B): performs open
and close functions for the DCB asso
ciated with the 2250 console device.

• Asynchronous Error (IGC3707B):
restores the 2250 buffer if an asyn
chronous error occurs during regenera
tion of the display, and initializes
the display after console switching has
occurred. Restoration of the buffer is
accomplished by rewriting the buffer
using the image maintained in the DCM.

MODEL 91 DECIMAL SIMULATOR (IEAXDSOO)
ROUTINE

The Decimal Simulator (IEAXDSOO) routine
is provided to perform decimal arithmetic
instructions since the decimal feature on
the Model 91 includes only the "EDIT" and
"EDMK n instructions.

Note: In this publication, the Decimal
Simulator routine is also referred to as
the simulator.

The execution of the following instruc
tions is simulated by the Decimal Simulator
routine:

Instruction

Add Decimal
Subtract Decimal
Zero-and-Add Decimal
Multiply Decimal
Divide Decimal
Compare Decimal

Assembler
Mnemonic

AP
SP
ZAP
MP
DP
CP

Operation
Code

X'FA'
X'FB'
X'F8'
X'FC'
X'FD'
X'F9'

RELATIONSHIP TO THE OPERATING SYSTEM

Figure 11-2 indicates the relationship
of the Decimal Simulator routines to the
operating system. On the Model 91, the
attempted execution of a decimal instruc
tion causes a precise interruption. This
interruption causes control of the CPU to
be given to the Program First-Level Inter
ruption Handler (PFLIH) routine.

After determining that the cause of an
interruption was due either to a decimal
instruction or to an EXECUTE instruction
that addresses a decimal instruction. the
PFLIH routine transfers control to the
Decimal Simulator (IEAXDSOO) routine. The
Decimal Simulator routine, operating in the
supervisor state with all interruptions
masked, interprets the instruction, checks
it for validity, and performs operations
that simulate the execution of the instruc
tion. At the completion of the Simulation,
control is given back to the CPU until
another decimal instruction is encountered.

A decimal instruction that causes an
interruption may have been fetched directly
from a problem program, or fetched remotely
while the TESTRAN interpreter routine wa.s
attempting to execute the instruction
indirectly. If the simulation of the
instruction execution is completed without
error, the Decimal Simulator routine refers
to the task control block (TCB) of the
current task to determine where control is
to be given. The possibilities are ,to
return control to either the TESTRAN inter
preter or the problem program containing
the decimal instruction.

Section 11. Special Features 231

MAIN STORAGE FOR THE MODEL 91

PFLIH

3c J---------'l~

The Program First-Level Interruption Handler (PFLlH)
routine is given control when an attempt is made to
execute a decimal instruction by either the problem
program (la) or the TESTRAN interpreter (lb).

The PFLIH routine analyzes the interruption, and, if
a valid decimal instruction exists, control is given to the
Decimal Simulator routine (20).

Nucleus

Decimal Simulotor

If an error exists, control is returned to
the PFLIH routine (3c). Otherwise, after
processing the instruction, the Decimal
Simulator routine refers to the TeB (3) to
determine if control should be returned to:

(3a) the problem program
(normal return) or

(3b) the TEST RAN interpreter.

If there has been an error, (entrance from (3c)) the PFLIH routine refers to the
TCB (3) to determine if control should be returned to the TESTRAN interpreter (2b)
or to other error-handling procedures •

Supervisor Queue Area

~~ _______ T_C_B ______ ~
Dynamic Area

3a t---j

3b ---'

TESTRAN Interpreter Problem Program

EX (AP) AP OP1, OP2

Link Pock Area I
T

• Figure 11-2. Relationship of the Decimal Simulator Routine (IEAXDSOO) to the Operating
System

232

('\.
• Table 11-1. Organization of the Decimal Simulator (IEAXDSOO) Routine

r--------------------T---,
I Routine I FUnction I

~-------------------_t---~
I Simulator I Main routine of the simulator: I
I Control (DECENT) I • Monitors overall operation. I
I I • Directs control to simulating routine I
I I opce 'per execution of the simulator. I
I I • Checks for errors in data validity, I
I I protection, and overlap. I

~--------------------+---~
I Add/Subtract I Simulates execution of the following I
I Decimal and I instructions: I
I Zero-and-Add I· Add Decimal I
I Decimal (DECASP) I • Subtrack Decimal I
I I • Zero-and-Add Decimal I
~-------------------_t---~
J Multiply Decimal I Simulates execution of the Multiply Decimal I
I CDECMP) I instruction. I

~-------------------_t---~
I Divide Decimal I Simulates execution of the DividIQDecimal I
I CDECDP) I instruction. I

~--------------------+---~
I Compare Decimal I Simulates execution of the Compare Decimal I
I CDECCP) I instruction. I
~-------------------_t---~
I Analyzer and End I Determines where control is to be returned I
I I after simulating a decimal instruction. I L ____________________ ~ ___ J

If an error has occurred during the
simulated execution of an instruction, the
Decimal Simulator routine gives control
back to the PFLIH routine routine as indi
cated in Figure 11-2.

SIMULATOR ORGANIZATION

Table 11-1 and Figure 11-3 indicate the
organization and flow of the Decimal Simu
lator routine. A discussion of the major
routines in the simulator is given in the
sections which follow.

Simulator Control (DECENT) Routine

The Simulator control routine
(hereinafter referred to as the control
routine) performs the initialization of the
Decimal Simulator routine. The control
routine is entered from the Program First
level Interruption Handler (PFLIH) routine
when it is determined that a decimal
instruction is to be simUlated. The func
tions of this control routine are to:

• Simulate address checking and protec
tion checking.

• Simulate data checking, except for a
decimal divide exception and a specifi
cation exception.

• Direct the processing to the appropri
ate arithmetic routine.

In performing the preceding functions,
the control routine first obtains the size
of main storage from the communications
vector table. The main storage addresses
of both the first operand and the second
operand of the decimal instruction are
determined, the length (in bytes) of each
operand is computed, and the Decimal Simu
lator routine's work area is cleared.

With the addresses established, the con
trol routine carries out the following
simulated hardware checks in the order
given.

1. The operand addresses are examined to
determine if either (or both) is
within the available storage limita
tions for the installation. If an
address is outside the storage limit,
an addressing exception occurs.

2. Using the data addresses and the
length of the data fields, a check is
made to determine if invalid overlap
ping has occurred. If it has, a
data-check exception results. This
check is not made for a Zero-and-Add
Decimal (ZAP) instruction.

3. If the program old PSW protection key
is zero, a protection check is not
made. otherwise, the addresses of the
left-most and the right-most bytes of
the data are checked for fetch and/or
store protection violations. This is
to ensure that boundary violations of

section 11. Special Features 233

TESTRAN
Interpreter

PFLIH

Problem
Program

rC~L~M~~~T~ _____________ ~ _____________ ,

DECASP

Add/Subtract
Decimal.
Zero and Add

A

DECENT fo------------

DECMP

Multiply
Decimal

Monitor Simulator.
Errar Checking:
a. Protection
b. Addressing
d. Data

Error

A

Error

ANALYZER/END 1--------
J----l~ Analyzer

End

Error

DECDP

Divide
Decimal

A

DECCP

Compare
Decimal

L _________ -, Normal
End r E;:;;-E;;;;--- ----- ---_..J

I _t

Problem
Program

I
I

l
Entry
Point

I
I
I

L.._ _...J

TESTRAN
Interpreter

PFLIH

• Figure 11-3. Decimal Simulator CIEAXDSOO) Routine Organization and Flow of Control

234

(

(2) The address of the first byte specified in operand 1
is checked against the address of the last byte specified in
operand 1 to see if both bytes are in the same 2K-byte

(1) The address of the lost byte specified
in operand 1 is checked for both fetch and
stare protection. * (For a Compare Decimal
instruction, only a fetch protection check
is mode.) If the check is satisfactory, step
(2) is performed. Otherwise, 0 protection
exception results.

storage block. If they are, a protection check is not made since
the storage block has already been checked in step (1). Step

MAIN STORAGE AREA CONTAINING
OPERAND 1 AND OPERAND 2

first

byte
Operand 1

(3) The address of the lost byte specified in
operand 2 is checked against the address of the
first byte specified in operand 1 to see if both
bytes are in the some 2K-byte storage block.
If they are, a protection check is not mode since
the storage block has already been checked in
either step (l) or step (2). Step (4) is then
performed. If 0 different 2K-byte storage block is
indicated, a fetch protection check is made. *
If the check is satisfactory, step (4) is performed.
Otherwise, a protection exception results.

last

byte

(3) is then performed. If a different 2K-byte storage block
is indicated, a complete fetch and store protection check is
mode. * (For a Compare Decimal instruction, only a fetch
protection check is mode.) If the check is satisfactory,
step (3) is performed. Otherwise, a protection exception
resul Is.

fist last
Operand 2

byte byte

(4) The address of the first byte specified in operand 2 is
checked against the address of the lost byte specified in
operand 2 to see if both bytes are in the some 2K-byte
storage block. If they are, a protection check is not made
since the storage block has already been checked in either
step (l), step (2), or step (3). If a different 2K-byte storage
block is indicated, a fetch protection check is mode. * If
the check is satisfactory, the protection checking procedure
is through, and the sign code checking is initiated.
Otherwise, a protection exception results.

* In the performance af the protection check, the protection key in the old PSW is compared with the protection key for the
2K-byte block of main storage in which the address (of the data) is located. The 2K-byte storage block address is determined
by setting to zero the eleven low-order bits of the address of the byte that is being checked. The remoining bits of the address
indicate the storage block address.

• Figure 11-4. Storage Protection Checking

Section 11. special Features 235

5.

restricted storage do not occur. (See
below for details of protection
check). Since the results of most
decimal operations are always placed
in the storage location given by the
first operand address of an instruc
tion, the check applied to a second
operand address is only for a fetch of
protection violation. Except for a
Compare Decimal instruction, the first
operand address of a decimal instruc
tion is checked for both a fetch and a
store violation before the data is
moved to the simulator's work area.
With a Compare Decimal instruction,
the first operand address is checked
only for a fetch type of protection
violation. If a violation occurs as a
result of any of the preceding checks,
a protection exception results.

4. The operands addressed in the
instruction are then moved into the
work area. (In the case of a Zero
and-Add Decimal instruction, only the
second operand is moved into the work
area, and the first operand is set to
a plus zero.)

Note: For all arithmetic operations,
all data handling and movement is done
in and/or between the operand work
areas.

Each operand is checked for a
sign code (i.e., decimal
10-15). An invalid sign code
in a data-check exception.

valid
values

results

~: If the instruction
instruction, the sign code
made for the first operand
ing against the value that
pre-set to prevent an error

is a ZAP
check is

by compar
has been

condition.

6. The digit codes of both the first and
second operands are checked against
the permissible codes for numeric-type
information. Invalid digit codes
result in a data-check exception.
Only the second operand of a ZAP
instruction is checked for validity.

After performing the preceding checks
for decimal arithmetic exceptions, the con
trol routine forces the sign code (in the
work area) of both the first and second
operands to EBCDIC format. These sign
codes, together with the EBCDIC sign code
for the result of the decimal operation are
recorded in the work area of the Decimal
Simulator routine.

If, during the simulated hardware
checks, an error condition (i.e., a condi
tion that would have caused an operation
exception to occur) is detected, further
checking by the control routine is ter-

236

minated and control is immediately given to
the Analyzer/End routine. Operands one and
two of the decimal instruction are not
changed. The old PSW indicates the appro
priate error condition as if the condition
had been detected by the hardware itself.

PROTECTION CHECK FEATURE: To ensure
against boundary violations, the complete
storage areas occupied by both operand 1
and operand 2 are checked in the order (1)
through (4) as indicated in Figure 11-4.

Simulator Routine for Add, Subtract,
Zero-and-Add Decimal Instruction (DECASP).

The DECASP routine is invoked by the
Simulator Control (DECENT) routine if eith
er the Add Decimal, the Subtract Decimal,
or the Zero-and-Add Decimal instruction has
been encountered and if the DECENT routine
has detected no error. Whenever it is
given control, this routine simUlates the
processing of one of the three mentioned
instructions.

If the instruction is a subtract Decimal
instruction, the sign of the second operand
is reversed so as to permit the processing
to be carried out in the same manner as for
an Add Decimal instruction. Then, fOl:' all
three instructions, depending on whether
neither, one, or both of the operands of
the instruction are zero, the processing is
performed with the following
considerations:

• If the first operand is not zero, then
each operand is converted to binary
format. The two operands are added
together if their signs are alike
(after the reversal of the sign of the
second operand as previously indi
cated). If the signs are unlike, the
smaller operand is subtracted from the
larger operand.

In the preceding processes, if the
actual length of either operand is
greater than five bytes (i.e., the
length code L2 or L1 1S greater than
four), the addition or subtraction is
done in groups of four bytes at a time.

At the completion of the arithmetic
operations, the condition code is set
in the PSW. If overflow has occured in
addition (as, for example, a result of
an indicated operation to add two num
bers of like signs), an exit is made to
the analyzer section of the Analyzer/
End routine. Otherwise, the exit is to
the end section of the Analyzer/End
routine.

• If the absolute values of the two
operands are equal and the signs of the c

operands are opposite, a plus zero
result is supplied.

• If the first operand is zero, the
second operand is moved to the first
operand work area, and the condition
code ~n the old PSW is set. If over
flow has occurred, an exit is made to
the analyzer section of the Analyzer/
End routine. Otherwise an exit is made
to the end section of the Analyzer/End
routine. If the instruction is a Zero
and-Add Decimal (ZAP) instruction, the
first operand has been previously
forced to zero (see Simulator control
section). Therefore, the ZAP instruc
tion is treated at this point as an Add
Decimal instruction.

• If both operands are zero, the first
operand is given a positive sign, and
the condition code in the PSW is set to
zero.

Simulator Routine for Multiply Decimal
Instruction (DECMP)

The Simulator Control routine (DECENT)
gives control to the DECMP routine if
either a Multiply Decimal or a Divide
Decimal instruction has been encountered.
If a specification exception exists for
either of the following conditions, control
is given to the Analyzer-End routine:

• The actual length of the second operand
is greater than eight bytes (i.e.,
instruction length field, denoted by
L2, is greater than seven).

• The actual length of the second operand
is equal to or greater than the actual
length of the first operand.

After performing the preceding specifi
cation checks, control either is given to
the divide decimal routine (DECDP), which
is discussed in the next section, if the
instruction is a Divide Decimal instruc
tion, or remains in the DECMP routine for a
Multiply Decimal instruction.

The first operand of the Multiply Deci
mal instruction is examined to See if it
has at least as many bytes of leading zeros
as there are bytes in the second operand.
If it does not have the required zeros,
control is given to the data-check portion
of the Analyzer/End routine. Otherwise,
multiplication is performed according to
one of the three following conditions:

• If either operand is zero, the product
field is cleared to zeros (if the first
operand was not already zero), and the
proper sign is inserted.

• If the multiplicand (the first operand)
does not exceed five bytes, both the
multiplicand and the multiplier are
changed to binary format (since the
multiplicand may then be contained in a
general register), and the multiplica
tion is carried out using binary
multiplication.

• For all other cases (i.e., both
operands non-zero and multiplicand size
over five bytes); both the multiplier
and the multiplicand are split into
groups of four digits starting with the
low-order sign positions. Initially,
the 'lowest-order' group actually con
sists of three digits and a sign, but
the sign is replaced by a zero for the
actual processing. For multiplication
purposes, each four-digit group is con
sidered to have a positive sign. The
algebraically-determined sign for the
final product is saved and affixed to
the result.

Each four-digit group is converted to a
binary format, and all possible combi
nation of products of the four-digit
groups are formed. (Note that each
combination consists of one group from
the multiplicand and one group from the
multiplier.) From these products, par
tial sums are then formed according to
the relative positions of the original
four-digit groups. Beginning with the
low-order partial sum, each partial sum
is converted to decimal, and the lo~
order four digits (five digits for the
first partial sum) of the sum are
placed ih the product field to the left
of the digits already there. The
remaining digits of the partial sum
constitute a carry-over that is added
to the next partial sum, the addition
being performed in binary. In the case
of the first (low-order) partial sum,
the two zeros that had replaced the
initial sign digits are truncated
(i.e., only three digits are moved'·to
the product field).

After the last partial sum has been
converted to decimal and moved into the
product field, the sign of the product
is inserted, and the multiplication is
finished. Control is then transferred
to the Analyzer/End routine.

EXAMPLE OF MULTIPLICATION BY DECIMAL SIMU
LATOR: Assume a 7-byte multiplicand
(operand 1) of OOOOG00099999C and a 4-byte
multiplier (operand 2) of 9999999C. The
four bytes o(leading zeros in the mUlti
plicand satisfies the requirement of pro
viding space to contain the complete an
swer. The low-order hexadecimal character
('C') of operand 1 is replaced by a 0, and
the resulting low-order four decimal digits

Section 11. Special Features 237

(9990) are converted to binary format
(27061). [Note: In this example, all
binary formatted numbers are expressed 1n
hexadecimal notation.] The next four digits
(0099) of operand 1 are also converted to
binary foramt (00631). The remaining
bytes in operand 1 remain as zeros.

In a similar manner, for operand 2, the
sign is replaced by a 0, and each group 'of

four digits,is
This results in
digits: 270F
(low-order) •

converted to binary format.
the two groups of four

(high-order) and 2706

The pertinent groups of digits from both
operands can be arranged in the following
manner for describing the next steps.

r--T----------------------T---------------------,
I I B I A I
~--+----------------------+---------------------~ I Operand 1 (Op1) I 0063 I 2706 I
~-------------------------------------..:.--+----------------------+--------------------.-~ I Operand 2 (OP2) I 270F I 2706 I L __ ~ ______________________ ~ _____________________ J

The partial products are formed and stor~d as the indicated partial sums:

OP2(A) x OP1(A) = 2706 x 2706 = Partial Sum A.

OP2(A) x OP1(B) = 2706 x 0063 = Partial Sum Bl.

OP2(B) x OP1(A) = 270F x 2706 = Partial Sum B2.
Partial Sum Bl + Partial Sum B2 equals Partial Sum B.

OP2(B) x OP1(B) = 270F x 0063 = Partial Sum C.

If a storage dump is taken at this point in the problem, the partial sums would appear
as the values shown in the boxes that follow.

Partial Sum C Partial Sum B = (Partial B2 + Partial Bl) Partial Sum A
r----------, r---------, r----------,
I 000F1ACDu I I 06034AACu I I 05F2D424u I L _________ J L __________ J L __________ J

The formation of the final product pro
cedes in the following manner:

• Sum A is converted to decimal with a
plus sign: (05F2D4241e =099800100C10).

• The two low-order hexadecimal charac
ters (OC) are dropped, and the next
three digits (010) are stored in the
operand 1 work area as the three low
order digits of the answer.

• The remaining digits (09980) are con
verted back to binary (26FC) and are
added to the initial Sum B to form a
new Sum B,
(06034AAC1e+26FC1e=060371A81e'.

• Sum B (060371A81.) is
decimal with a
(l00889000Cu) •

converted to
plus sign:

• The sign ('C') is dropped, and the
low-order four digits (9000) are placed
in the operand 1 work area as part of
the final product. The product (at
this point) is 9000010.

238

• The rema1n1ng digits (10088) are con
verted to binary (2768) and are added
to the initial Sum C to form a new Sum
C, (000F1ACD1e+27681e=000F42351e'.

• Sum C (000F42351e) is converted to
decimal with a ~lus sign:
(0999989C10). Since this 1S the last
partial sum in this example, the entire
number (without the sign) is placed in
the operand 1 area as the rest of the
final product. Thus the final value in
the operand 1 work area is
0999989900001010 •

• The sign of the product is determined
by the usual rules of multiplication
and replaces the low-order digit in the
operand 1 work area. In this example,
the sign is plus ('C').

• The answer that is returned to the
operand 1 area of the problem program
is the 7-byte value 0999989900001C10 •

(

Simulator Routine for Divide Decimal
Instruction (DECDP)

Routine DECDP simulates the decimal
divide feature for the)ecimal Simulator.
For a Divide Decimal instruction, the Mul
tiply Decimal (DECDMP) routine gives con
trol to the DECDP routine if the specifica
tion checks performed by the DECMP routine
do not result in an error exit.

Preceding the actual division, if the
second operand is found to be zero, a
divide check exception occurs, and the
error section of the Analyzer/End routine
is given control.

To determine if the quotient will fit
into the area (i.e., the number of bytes,
that is allotedto it, the divisor (the
second operand) is aligned with the next to
the left-most digit of the dividend (the
first operand). When so aligned, the divi
sor must be larger than the 'aligned'
portion of the dividend if the quotient is
to fit. If the quotient cannot fit, a
divide-check exception occurs, and control
is given to the error portion of the
Analyzer/End routine.

If the maximum length of the first
operand is five bytes or less, the operands
are converted to binary format and the
division is performed in a general regis
ter, using the fixed-point division
instruction. Otherwise, the division is
carried out by repeated subtraction of
multiples of the divisor. Before the actu
al subtraction process begins, the divisor
is left-aligned with the third digit from
the left of the dividend. The divisor
multiples have the values, respectively, of
8,· 4, 2, and 1 times the divisor, and they
are subtracted from the dividend at various
stages in the process. Each multiple of
the divisor corresponds to an appropriate
bit to be entered in each 4-bit BCD quo
tient digit that is formed. If a multiple
can be subtracted, its corresponding bit in
the appropriate quotient digit is set to 1.

After each quotient digit is formed, the
divisor and its multiples are shifted right
one di9it, and the subtractions are per
formed again to form the next quotient
digit. After each set of four divisor
multiples has been subtracted (or at least
checked to see if it can be subtracted)
from the dividend, the portion of the
dividend that remains is referred to as a
'partial dividend.' When the last quotient
digit has been formed (as indicated by the
divisor and its multiples being right
adjusted in their fields and the partial
dividend being less than the divisor), the
remaining contents of the dividend field
are moved to the remainder field of the
answer. The appropriate signs of the quo-

tient and the remainder are inserted, and
control is given to the end portion of the
Analyzer/End routine.

EXAMPLE OF DIVISION BY DECIJ¥1AL SIMULATOR:
Assume a six-byte dividend (operand 1) of
00097000000C, and a four-byte divisor
(operand 2) of 1000000D. The dividend has
been prefaced by leading zeros so that the
pre-division check will indicate that the
quotient can fit in the alloted area. When
this check is performed, the alignment of
dividend and quotient appears as follows:

Dividend 00097000000C
Divisor OIOOOOOOOOOC

where the divisor appears with a leading
zero and three low-order zeros for purposes
of alignment.. For comparison purposes dur
ing simulation, all signs are set positive.
When aligned as shown, the divisor is
greater than the dividend. This indicates
that the quotient wilY fit in the alloted
number of bytes.

To begin the actual simulated division,
the divisor is again shifted one digit
place to the right (toward the low-order
end), and multiples of the divisor are
formed. The alignment then looks like
this: (The divisor and its multiples are
given a plus ('C') sign.)

Divisor
Divisor
Divisor
Divisor

The
against
orders:

Dividend (0) 00097000000C
First Multiple (DIM) OOIOOOOOOOOC

Second Multiple (D2M) 00200000000C
Fourth Multiple (o4M) 00400000000C
Eighth Multiple <DaM) 00800000000C

divisor multiples are compared
the dividend in one of the three

• Fourth followed by Eighth followed by
First if the eighth multiple is less
than or equal to the dividend.

• Fourth followed by Eighth if the fourth
multiple is less than or equal to the
dividend, followed by Second if the
eighth multiple is greater than the
dividend, followed by the First.

• Fourth followed by Second if the fourth
multiple is greater than dividend, fol
lowed by First.

If the dividend is less than the first
multiple, a zero (0) is entered as the
corresponding quotient digit and all divi
sor multiples are shifted one place toward
the low-order side (to the right), and a
new round of comparisons is undertaken.

For each multiple that can be sub
tracted, the appropriate bit in the quo
tient digit is set to 1. Each round of

Section 11. Special Features 239

comparisons seeks to locate the largest
multiple(s) than can be subtracted from the
dividend.

Steps 1 through 3b in Figure 11-5
illustrate the compare and shifting opera
tions that are performed and the formation
of the quotient and remainder digits .•

r----------------------------~-----------------------T-----------------------T-----------------------,
I IStep 1 IStep 2 IStep 2a I
I ~-----------------------+-----------------------+-----------------------1
I Dividend (D) I00097000000C I00097000000C I00017000000C I
IDivisor First Multiple (D1M)I00100000000C 3rd compo I00010000000C I00010000000C 3rd compo I
IDivisor Second Multiple (D2M)I00200000000C 2nd compo I00020000000C I00020000000C I
IDivisor Fourth Multiple (D4M)I00400000000C 1st compo 100040000000C 1st compo 100040000000C I
IDivisor Eighth Multiple (DSM)I00800000000C 1000SOOOOOOOC 2nd compo 1000SOooooooe I
I I I I I
I ISince D1M>D, a zero is ISince D8M<D, the secondlSince a given quotient I
I lentered as the first Iquotient digit's "S- Idigit cannot be greater I
I Iquotient digit. All lbit" is set to 1. Ithan 9 and the second I

Imultiples are shifted IThe D8M is subtract- Idigit's "S-bit" is set I
lone digit to the right,led from D to for~RI a Ito 1, the only compar- I
and step 2 is per- Inew D (value) for lison that can be made I
formed. I step 2a. I is with the D1M (corre-I

I Isponding to a "l-bit").1
I ISince D1M<D, the second I
I Idigit's "l-bit" is setl
I Ito 1. Thus the second I
I I digit , is 9 as a result I
I lof both the "8-bit- andl
I Ithe "l-bit- being setl
I Ito 1. The D1M is sub-I
I Itracted from D to forml
I la new D (value) fori
I Istep 3. All multiples I
I lare shifted one digiti
I Ito the right. I L _____________________________ .L _______________________ .L _______________________ .L-____________________ .J

r---------------------------T-------------------~----------------------T----------------------,
I IStep 3 IStep 3a IStep 3b I
I ~-----------------------+----------------------+----------------------1
I Dividend (D) 100007000000C 00003000000e I00001000000e
IDivisor First Multiple (D1M)I00001000000e 00001000000c 100001000000C 4th compo
IDivisor Second Multiple (D2M)I00002000000C 00002000000c 3rd compo I00002000000e
IDivisor Fourth Multiple (D4M)I00004000000C 1st compo 00004000000c 100004000000e
Divisor "Eighth Multiple (DSM)100008000000C 2nd compo 00008000000 100008000000C

I I
ISince D4M<D, and Since D2M<D, the ISince both the "4-bit"
IDSM>D, the third quo- third digit's "2-bit" land the "2-bit" have
Itient digit's "4-bit" is set to 1. The D2M Ibeen set for this quo
lis set to 1. The D4M is subtracted from D Itient digit, the only
lis subtracted from D to form a new D (value) I comparison that can be
Ito form a new D (value) for step 3b. Imade is with the D1M
for step 3a. I (see step 2a). Because I

Ithe D1M=D, the "l-bit"I
Ifor this digit can bel
Iset to 1. Thus, the I
Ithird digit is 7 as al
Iresult of the "4-bit," I
Ithe "2-bit," and thel
l"l-bit" all being setl
Ito 1. The D1M is sub-I
Itracted from D to give I
Ithe value zero, which I
I becomes the remainder I
lin this example. (Both I
Ithe dividend and the I
Idivisor multiples arel
Inow right-adjusted sol
Ino further shifting I
loccurs and the division I
lis complete.) I

~-----------------------------.L---------------------.L------_______________ .L _____________________ -I
IAfter step 3b in the preceding process has been completed, the three quotient digits that were formed I
lare ,097, and the remainder is zero. The sign of the remainder becomes the same as the sign ofl
loperand 1 (the dividend). In this example, the sign is plus ('e'). The sign of the quotient is plus I
lif both operands have the same sign. Otherwise, the quotient sign is minus. In this example, thel
Iquotient sign is minus ('D'). The final result is 097DOOOOOOOC. I L ___ J

• Figure 11-5. Example of Division by Decimal Simulator

240

(

(.

Simulator Routine for Compare Decimal
Instruction (DECCP)

The comparison of the two decimal
operands is made by the DECCP routine. If
both operands are zero, they are considered
equal regardless of their signs. If one
operand is non-zero and the other one is
zero, the non-zero operand is considered
greater if it is positive, and it is
considered less if it is negative.

If two non-zero operands are to be
compared, each is extended in the work area
(by adding leading zeros) to 31 digits plus
the sign before comparison. The absolute
values of the operands are than compared
logically. The operand that is greater in
absolute value is considered to be greater
if it is positive but less if it is
negative.

If both operands have the same absolute
value and sign, they are equal. If the
absolute values are equal but the signs are
different, the positive operand is consid
ered to be the greater.

control is given to the end portion of
the Analyzer/End routine after the result
of the comparison has been determined.

Analyzer/End Routine

The Analyzer/End routine is given con
trol to handle the termination procedures
for the Decimal Simulator routine. If
errors have been recognized by any of the
preceding simulation routines, control is
given to the analyzer (or error-handling)
section of the routine. When the simula
tion of an instruction is completed
successfully, or. after the error-handling

section has performed certain functions,
control is given to the end section of the
Analyzer/End routine.

The analyzer section establishes the
appropriate interruption code and places
this code in .the old PSW. In the case of a
decimal overflow exception, bit 37 of the
PSW is checked to determine whether the
user or the operating system is to handle
the error. If the decimal overflow is to
be handled as a system error, the analyzer
section retains control. otherwise, con
trol is given to the end section.

If there exists data that is not to be
returned to the user, register addresses
are moved to preclude the transfer of this
data to the user's result area.

The end section of the Analyzer/End
routine handles the return of control to
the source from which the Decimal Simulator
routine received control. For a successful
simulation, the result obtained from the
appropriate simulation routine is moved to
the user's area. In the case of a decimal
overflow condition which the user chooses
to ignore, a result truncated to the length
specified in the instruction is moved to
the user's area.

The end section gives control to the
PFLIH routine if an error condition arises
during the simulation process. (Note: If
a decimal overflow condition is to be
ignored, the.Analyzer/End routine does not
consider the overflow as an error condi
tion.) Otherwise, by testing the 'return
to-TESTRAN' flag bit in the task control
block, the end section determines the rou
tine (e.g., problem program or TESTRAN) to
which control is to be returned.

Section 11. Special Features 241

SECTION 12: CONTROL BLOCKS AND TABLES

The following control blocks, ~ables, and related areas are included in this section.

Name of Table, Control Block, or Related Area

ABDUMP Parameter List.. 295

Allocated Queue Element (AQE) •••••••••••••••••••••••.•••.•••••••••••••.••••••• 286

Block Extent List and Note List ••.••.•••••••••••••.•••••••••••••••.••.••••••.• 276

Communications Vector Table (CVT) _". 246

Contents Directory Element (CDE) •• 271

Control and Relocation Dictionary Record •••••••••••••••••••••••••••••••••••••• 282

Control Record ~ 280

Descriptor Queue Element (DQE) •• 285

Display Control Module (DCM) •• 297

Dummy Partition Queue Element (DPQE) •• 289

Entry Table... ,284

(Event Control Block (ECB) ••• 265

Fail Soft Storage Element Map (FSSEMAP) ••••••••••••••••••••••••••••••••••••••• 301

Free Block Queue Element (FBQE} ••• 289

Free Queue Element (FQE) ••••.••••.••.•••.•••••••••••••••••••••••.•••••.•••.••• 286

GOVRFLB (Origin List for Main Storage Queues) ••••••••••••••••••••••••••••••••• 287

Interruption Request Block (IRB) •• 256

Interruption Queue Element (IQE) •••••••••••••••••••••••••••••••• ·•••••••••••••• 269

Load List Element (LLE) •••••.•.•••••••.••••••••••.•••.••••••••••••..••••••••.• 272

Major Queue Control Block (QCB) ••• 267

Minor Queue Control Block (QCB) ••• 267

Multiprocessing Communications Vector Table (MPCVT) ••••••••••••••••••••••••••• 300

Parameter List Element for the ENQ/DEQ Routines ••••••••••••••••••••••••••••••• 266

Partition Queue Element (PQE} ••••••••.••• 286

Partitioned Data Set Directory Entry •••••••••••••••.••••••••••••••••••••••••••• 272

Program Fetch Buffer Table... 279

Program Fetch Work Area ••• 278

Program lnterruption Control Area (PICA) •••••••••••••••••••••••••••••••••••••• 263

Section 12. Control Blocks and Tables 243

Name of Table, Control Block, or Related Area (Continued) Page

Program Interuption Element (PIE) •••.••••.•••••••••••••••••••••••••••••••••••• 263 '~j

Program Request Block (PRB) ••• 258

Queue Element (QEL) ••••••••••••••••••.•• 268

Relocation Dictionary (RLD) Record ••••••••••••••••••••.•••••••••••••••••••.••• 281

Rep1y Queue Element ••• 290

Request Queue Element (RQE) ••• 270

Rollout I/O Queue Element (RIQE) •• 290

Sample Dump ••.••.•••.••••••••••• Ii ••••• Ii ••••••••••••••••••••••••••••••••• ~ ••••• 302

Scatter Extent List•.........•.......•...............•.................... 275

scatter Translation Record ...•••••.••••••••.•••.•••••••.••••••••••••••••••••••• 277

Secondary Communications Vector Table ••••••••••••••••••••••••••••• ~ ••••••••••• 294

Segment Table•................................ ~••...••..•.•.•.... 283

STAE Control Block (SCB) ••••••••••.•••••••.•••••••••••••••••••.••••••••••••••• 264

Subpool Queue Element (SPQE) •• 285

supervisor Request Block (SVRB) for Nonresident Routine..................... 255

Supervisor Request Block (SVRB) for Resident Routine ••••••••••••••••••••••• 254

SVC Purge Parameter List ••••••••••••••••••••••••••••••••••.••.••••••.••••••••• 291

SVC Table •••••••••••.•••••••••••..•• 245

System Interruption Request Block (SIRB} •••••••••••••••••••••••••••••••••••••• 257

Task Control Block (TeB) •• 250

Time-Slice Control Element (TSCE) ••• 296

Timer Queue Element (TQE) ••••••..•.••• 292

Trace Table (Uniprocessing systems} ••• 260

Trace Table {Multiprocessing Systems) ••• 261

Transient Area Control Table (TACT) ••• 262

Vary Queue Element (VQE) .••••••••••••.•• 300

244

()

()

svc TABLE

Bytes

Entries for
resident
SVC routines

Entries for
tronsient
SVC routines

0 10

4 10 0

8 10 0

12 10 0

16 10 0

20 10 0

24 10 0

28 10 0

32 10 0

36 10 0

4(): '" 10 0

11 2

11

11

11

11

11

11

11

11

11

11

11

T
NOTE

1 b~e----------~)~IE~------------- 3 bytes --------------~~ I
Zeros 1 Mein Storoge Address

0 5

0 9

0 13

0 17

0 21

0 25

0 29

0 33

0 37

0;:: ~~

length 13 14 Relative Tra~k and Record Address 31

'I
::

Entry for each SVC routine = 4 bytes

'10' flog in two high-order bits indicates a resident routine.

'11' flog in two high-order bits indicates a tronsient (non-resident) routine.

Section 12. control Blocks and Tables 245

COMMUNICATIONS VECTOR TABLE (CVT)

The Communication Vector Table provides the means whereby nonresident routines may
refer to information in the nucleus of the control program. The CVT is part of the
resident nucleus.

The symbolic displacements below are generated in nonresident routines by use of the
CVT macro instruction. The address of the first location of the CVT is placed in main
storage location hex 10 during nucleus initialization.

The following table shows the relative locations of the entries in the CVT.

(Part 1 of 4)

Hex Dec IE 4 bytes ,.
CVTRELNO

-4 -4
release number of operating system in use

CVTTCBP

pointer to addresses for next and current TCB

CVTOEFOO

addr Stage 2 Exit Effector

CVTLlNK

add. of DCB fo. SYS1. L1NKLIB

CVTJOB

addr of work queue control blocks

C 12

CVTBUF

addr of buffer for Resident Console Interruption routine

10 16

CVTXAPG

addr of lOS appendage table

14 20

CVTOVLOO

entry-point addr of Validity Check routine

18 24

CVTPCNVT

entry-point addr of routine for converting relative track addr to absolute

IC 28

CVTPRLTV

entry-point addr of routine for converting absolute track addr to relative

20 32

CVTILK1

addr of channel and control unit section in UCB lookup table

24 36

CVTlLK2

addr of UCB addr Ibt section in UCB lookup table

28 40

CVTXTLER

entry-point addr to Stage 3 Exit Effector for system error routines

2C 44

CVTSYAD

addr of system residence volume entry in UCB lookup table

30 4E

CVTBTERM

entry-point addr of ABTERM routine

34 52

CVTDATE

current date in packed decimal

38 56

246

• COMMUNICATIONS VECTOR TABLE (CVT) (Part 2 of 4)

(~: Hex Dec

CVTMSLT

addr of master schedule linkage table

3C 60

CVTZDTAB

addr of I/O device characteristi c table

40 64

CVTXITP

addr of Ernor Interpreter rautine

44 68

CVTXWTO

addr of System Qiesce rautine

48 72

CVTOFNoo

reserved

4C 76

CVT EX IT CVTBRET

an SVC 3 instruction a BCR 15, 14 instruction

50 80

CVTSVDCB

addr of DCB for SYS 1. SVCLIB data set

54 84

CVTTPC

addr of pseudo c locks for timer rautine (SHPC fint)

CVTPBLDL
(58 88

branch and link entry-point addr to BLDL routine

5C 92

CVTSJQ

reserved

60 96

CVTCUCB

oddr of table of pointen to console unit control blocks

64 100

CVTQTEOO

addr of Timer Enqueue rautine (lEAQTEOO) in Timer Second-Level Interruption Hand ler

68 104

CVTQTDOO

addr of Timer Dequeue routine (IEAQTDOO) in Timer Second-Level Interruption Handler

6C 108

CVTSTB

oddr of I/O device ,tatistie, table

70 112

System Configuation CVTDCB
X' 10'- Unlprocessing

addr of DCB lor SYSI • LOGREC data set X' 14'- Multiprocessing
74 116

()
Section 12. Control Block$ and Tables 247

COMMUNICATIONS VECTOR TABLE (CVT) (Part 3 of 4)

Hex Dec

CVTlOQET

Addr of Vo Request Element Table

78 120

CVTIXAVL

Addr of lOS Free I ist Po inter

7C 124

CVTNUCB

Lowest Storage Addr Not in Nuc leus

80 128

CVBOSV

Addr of Program Fetch Routine

84 132

CVTODS

Entry-Point Addr of Dispatcher

88 136

CVTILCH

Addr of Logical-Channel Word Table

8C 140

CVTIERLC

Addr of Logical-Channe I Error Queue

90 144

CVTMSER

Addr of Master Scheduler Resident Data Area

94 148

CVTOPT01

Branch Entry-Point Addr of Post Routine Used by the VO Supervisor

98 152

CVTTRMTB

Addr of Terminal Table for QTAM

9C 156

CVTHEAD

Addr of Highest Priority TCB in TCB Queue

AO 160

CVTMZOO

Highest Storage Addr in Machine

A4 164

CVTl EFOO

Addr of Stage 1 Exit Effector

A8 168

AC 172

BO 176

248

.~--- -----._--._-

• COMMUNICATIONS VECTOR TABLE (CVT) (Part 4 of 4)

(Hex Dec

B4 180

CVTQCDSR

addr of search routine for contents directory

B8 184

CVTQLPAQ

pointer to address af first CDE in LPA queue

BC 188

CVTMPCVT

addr of Multiprocessing Communications Vector Table

CO 192

CVTQPGTM

entry-point addr to EOT Purge Timer routine
C4 196

CVTABEND

addr of secondary CVT

C8 200

CVTQABL

entry-point addr to Release Loaded Programs routine

CC 204

CVTQSPET

entry-point addr to Release Main Storage routine

DO 208

(CVTQABST

an SVC 13 instruction

D4 212

CVTTSCE

address of first time-slice cantrol element (TSCE)

D8 216

('

Section 12. ~ontrol Blocks and Tables 249

• TASK CONTROL BLOCK

Byte
Displacement

-32

-2 4

-1 6

a

0

a

6

4

2

4 0

4 a

5 6

6 4

7 2

a 0

a

9 6

4 10

11 2

12 0

12 a

13 6

144

15 2

16 0

0

1

0

9

TCBNROC
(See Description)

25

TCBFlGS

Cont.

0

41

TCBQEl

Enqueue Count

113

0
121

0

129

0

137

0

145

0

153

STAE
Flags

161

(TCB>

TCBFRSO Save Area for Floating Point Register Zero

TCBFRS~ Save Area for Floating Point Register 2

TCBFRS4 S<JVe Area for Floating Point Register 4

TCBFRS6 Save Area for Floating Point Register 6

TCBRBP

Address of Last RB in RB Queue 0

4

TCBDEB

Address of Last DEB in DEB Queue
0

12

TCBCMP

Task Completion Code 0

20

TCBMSS TCBPKF
Bits 0-3.= Protect

Address of Last SPQE in SPQE Queue Key; Bits 4-7 =0
28

TCBLMP TCBDSP
Limit Priority

Dispatching
0

34 35 Priority 36

TCBJlB JPQ

Addre .. of The Job Library DCB
Purge 0
Flag
44.0 44.1

TCBGRSO Save Area for Gen. Reg. 0

TCBGRS2

TCBGRS4

TCBGRS6

TCBGRSa

TCBGRS10

TCBGRS12

TCBGRS14

TCBFSA

Address of First P. p. Save 0

Area for This Task 116

TCBTME

Address of Timer Queue Element 0
for This Task 124

TCBNTC

Address of Next TCB Attached by 0
Originating Task (Always 0 in
Rollout TCB) 132

TCBlTC

Addre!=s of Lost TeB on Subtask Queue 0
(Alway. 0 in Rollout TCB)

140

TCBECB

Address of EeB to be Posted When 0

This Task is Complete 14a

TCBPQE

Address of Dummy PQE -a
0 (First Element on PQE list

for Job Step) 156

TCBNSTAE
Address of STAE Control 0
Block (SCB)

164

TCBUSER
Field to be used by users

16 a

250

TCBPIE

Address of PIE

5

TCBTlO

Address of Ta.k Vo Table
13

TCBTRN

Addr ... of TESTRAN Control

21 Area

TCBFLGS

Flags: See Description

29

TCBlLS
Address of last load list

37
Eltment in The load list

TCBJPQ

Address of The last CD E for

45 The Job Pack Area

TCBGRSI

TCBGRS3

TCBGRS5

TCBGRS7

TCBGRS9

TCBGRSII

TCBGRS13

TCBGRS15

TCBTCB
Address of Next TCB on TCB Queue
(In RolioutTCB, contains Address of

117 First Transient Area TCB)

TCeJSTCB

Addre .. of the Job Step TCB

125

TCBOTC

Address of Originating or

133 Parent TeB

TCBIQE
Address of The IOE for

141
Scheduling an End-of- Task
Exit Routine

Reserved

149

TCBAQE

List Origin of Allocated
157 Queue Elements for This Task

TCBTCT
Reserved

165

IC"~' I. .

(~

(

---~-------- -----,,-----

Description of Fiel.d

TCBNROC: "Nonrolloutable Count" field. Meaningful only in a job step TCB. When zero,
indicates that job step is eligible to be rolled out. When nonzero, indicates
that job step is not eligible for rollout. Initialized by the Attach routine
from input parameters provided by job step's initiator. The count is increased
by the ENQ routine and decreased by the DEQ routine; it is tested by the
TESTSTEP routine of the rollout module.

DescriEtion of TCB Flags

Offset Sl!mbol

29.0 TCBFA

29.1 TCBFE

29.2 TCBFERA

29.3- 29.4

29.5 TCBFT

29.6 TCBFS

29.7 TCBFX

30.0 TCBFOINP

30.1 TCBFSTI

30.2 TCBFRA

30.3 TCBFSMC

30.4 TCBFJMC

30.5 TCBFDSOP

30.6 TCBFETXR

30.7 TCBFTS

31.0 TCBFSM

31.1 TCBFRI

31.2 TCBABTRM

Meaning (when flag is set)

Indicates that abnormal termination, performed by the ABEND
routine, is in progress for this task.

Indicates that normal termination, performed by the EOT routine,
is in progress for this task.

Indicates that the Erase Phase routine is to be entered when the
ABEND routine is again executed for this task.

Reserved.

Indicates that this task is currently the top task of a tree of
tasks being abnormally terminated.

Indicates that an abnormal termination dump has been performed
for this task.

Prohibits asynchronous exits from being scheduled for this task.

Indicates that the dump data set for the job step is being
opened.

Indicates that a job step interval requested by an initiator has
expired. (Set in the TCB of an initiator task.)

Meaningful only in a job step TCB. When '1', indicates that job
step can cause rollout. When '0', indicates that job step cannot
cause rollout. Initialized by the Attach routine from input
parameters provided by job step's initiator.

Indicates that this task is in "system must complete" status.

Indicates that this task in in "job step must complete" status.

Indicates that the ABEND routine has previously opened the dump
data set for this job step. (Set in the job step TCB.)

Indicates that an end-of-task exit (ETXR) routine is to be
scheduled for the task that attached this task.

Indicates member of time-slice group.

Indicates that the RB old PSW for all programs executed as part
of this task shoul.d be set to supervisor state.

"Roll.out Invoked" flag. Meaningful only in a job step TCB. When
'1', indicates that job step has had one or more main storage
requests satisfied from outside its region (via the rollout
mechanism). "Borrowed" space is stil.l allocated to the step.
When "0", indicates that job step has not invoked rollout.

Prevents multiple scheduling of the ABEND routine by the ABTERM
routine. Also indicates that the operands of the ABEND macro
instruction have been saved in the TCBCMP field.

Section 12. Control Blocks and Tables 251

31.3 TCBOPEN

31.4 TCBADUMP

31.5 TCBPDUMP

31. 6 TCBCLOSE

31.7 TCBREC

32.0 TCBNDUMP

32.1 TCBSER

32.2 TCBRQENA

32.3-32.4

32.5

32.6

32.7 TCBONDSP

33.0 TCBFC

33.1 TCBABWF

33.2 TCBWFC

33.3 TCBFRO

33.4 TCBSYS

33.5 TCBSTP

33.6 TCBFCD1

33.7

252

Indicates that an OPEN macro instruction has been issued for the
dump data set for this task. Also used with TCBREC (31.7) to
indicate a valid reentry to the ABEND routine.

Indicates that the ABDUMP routine is in progress for this task.
Also used with TCBREC (31.7) to indicate a valid reentry to the
ABEND routine.

Indicates that no abnormal termination dumps are to be taken for
any task within the job step. Set in the job step TCB.

Indicates that a CLOSE macro instruction has been issued during
ABEND processing. Also used with TCBREC (31.7) to indicate a
valid reentry to the ABEND routine.

In conjunction with either TCBADUMP (31.4), TCBOPEN (31.3), or
TCBCLOSE (31.6), indicates a valid reentry to the ABEND routine.

Indicates that the ABDUMP routine has made this task nondispatch
able while it is displaying dynamic queues.

Indicates that this task is nondispatchable while the SER1
routine is being executed for this task.

Indicates to the I/O Supervisor that there are no more request
queue elements.

Reserved as status bits to indicate nondispatchability.

Indicates that this task is nondispatchable because VARY or
QUIESCE processing is being done in a multiprocessing system.

Reserved as status bit to indicate nondispatchability.

Indicates that the current task, which is abnormally terminating,
is nondispatchable while the dump data set is being opened for
another task in the same job step.

Indicates that this task has terminated, normally or abnormally,
and is nondispatchable.

Indicates that this task is nondispatchable because it is to be
terminated by the ABEND routine.

·Wait for Core" nondispatchability
this task is waiting for a space
rollout mechanism. Meaningful in
permanent system tasks.

flag. If set, indicates that
request to be satisfied by the
all TCBs except those for

"Rolled Out" nondispatchability flag. If set, indicates that
this task is nondispatchable because it has been rolled out.
This flag is set in all TCBs of a rolled-out job step, including
the TCB of the associated initiator.

Indicates that this task is nondispatchable because another task
is in "system must complete" status.

Indicates that this task is nondispatchable because another task
in the same job step is in "step must complete" status.

Indicates that this task is nondispatchable because it is an
initiator task that is waiting for a requested region of main
storage.

Reserved.

c

Description of STAE flags (byte 160)

(~--' Bit I,ndication

(

(:

o The ABEND routine was entered because of an error which occurred during STAE
processing.

1 Th~ STAE routine invoked the Purge I/O routine with the quiesce I/O option.

2 The current SCB has the XCTL=YES option.

3 The SCB was created by a program that is scatter loaded.

4 The Purge I/O routine did not successfully quiesce I/O, but I/O was halted.

5 The program using STAE is in supervisor mode.

6 The STAE user requested that a retry routine be scheduled but that the RB chain not
be purged.

7 The retry routine and parameter list addresses are both valid.

Positions of Permanent System TCBs on TCB Queue

CVTHEAD IEAHEAD

Communications
Vector Table

Note: The TCBs ore queued
in descending order
of dispatching priority

Legend:

_=pointer

Transient Area TCB 1

T ransi ent Areo TCB2

Transient Area TCB
n

System Error TCB

RolloutlRoliin TCB

Communications TCB

Master Scheduler TCB

Section 12. Control Blocks and Tables 253

SUPERVISOR REQUEST BLOCK (SVgB) -- FOR RESIDENT ROUTINE

&ttes 0

8

16

24

32

40

48

56

64

72

80

88

RBWCSA

Welit Count
Save Area

0

Reserved
4

RBSIZE RBSTAB * RBCDFlGS •

Size in Double Stotus and Attribute Bits Contents Control
Words, of R8 Flags

9 10 12

RBOPSW

RBPGMQ RBWCF

Queue Field for Serially Reusable Wait Count
25 Programs 28

Register 0
RBGRS AVE

36

Register 2 44

Register 4 52

Register 6 60

Register 8 68

Register 10 76

Register 12 84

Register 14 92

RBEXSAVE

RBABOPSW

Bits 32 - 63 of User PSW

RBCDE

Address of Contents Directory Entry
Used by The link Routine When

13 Forming a PRB

RBllNK

Address of Next RB on RB Queue
29

Register 1

Register 3

Register 5

Register 7

Register 9

Register 11

Register 13

Register 15

* Described under
"Description of RB Flags"

Extended Save Area for SVC Routines; length = 48 Bytes

254

...

(

(

SUPERVISOR REQUEST BLOCK (SVRB) -- FOR NONRESIDENT ROUTINE

RBTABNO RBRTLNTH RBABOPSW

Displacement of TACT Entry Length in Bytes of SVC Routine Bits 32 63 of User PSW
Bytes 0 2 4

RBWCSA RBSIZE RBSTAB * RBSVTON

Wait Count Size in Double Status and Attribute Bits Address of Next RB on Transient Area Queue

2
3

8
Save Area 9 Words of RB 10 12

RBOPSW

RB Old PSW
6

RBTAWCSA RBSVTTR RBWCF
Wait Count Save TTR for SVC Routine Wait Count
Area for Transient

4 Area Handling 25 28

2
Remaind~r of SVRB Same as SVRB for Resident Routine

T
* Described under "Description of RB Flags"

RBLINK

Address of Next RB on RB
Queue for Task

I...

T

Section 12. Control Blocks and Tables 255

INTERRUPTION REQUEST BLOCK (IRB)

Bytes 0

8

16

24

** 24

32

40

48

56

64

72

80

88

96

256

RBTMFLD 1 RBPPSAY
Flags for Timer Address of PP Register Save Area
Routines 1 4

RBWCSA RBSIZE RBSTAB J
Wait Count Save Size, in Double Status and Attribute Bits
Area 9 Words of RB 10 12

RBOPSW

RBUSE2 1~5 RBJQE3 RBWCF
~tach ~~~t 25 ____ list O....!ia!n~L!~ ___ Wait Count

Reserved . t R~JQE3.
26 list Origin for RQEs 28

Register 0 RBGRS AYE
36

Register 2 44

Register 4 52

Register 6 60

Register 8 68

Register 10 76

Register 12 84

Register 14 92

RBNEXAy 4 100

Address of Next Available IQE

- JQE Work S ace *** p

Described under topic "Description of RB Flags".

2 The RBUSE field is used only when the IRB schedules
an end - of - task exit (ETXR) routine.

3 The RBIQE field will be either 2 or 3 bytes in length, depending
on the type of queuing element (IQE or RQE).

4 The RBNEXAY field and the IQE work space are avai lable only in
IRBs for which this work space was requested via CIRB macro instruction.

RBABOPSW

Bits 32- 63 of User's PSW

RBEP
Entry Point Address

RBLJNK

Address of Next RB or RB

29

Register 1

Register 3

Register 5

Register 7

Register 9

Register 11

Register 13

Register 15

Queue

r
" \

SYSTEM INTERRUPTION REQUEST BLOCK (SIRB)

(~ RBEXRTNM
1 - 8 Character Name of Error Exit Routine. First Four Characters are IGEO.

Bytes 0 Last Four are Unpacked Decimal Characters.

RBWCSA RBSIZE RBSTAB* RBEP

8
Wait Count Size in Double Status and Attribute Bits Entry Point Address
Save Area 9 Words of RB 10 12

RBOPSW

16

RBIQE RBWCF RBLINK
Reserved List Origin for RQEs Wait Count Address of Next RB on RB Queue

24 26 28 29

32 Register 0
RBGRSAVE

Register 1 36

40 Register 2 44 Register 3

48 Register 4 52 Register 5

56 Register 6 60 Register 7

64 Register 8 68 Register 9

72 Register 10 76 Register 11

80 Register 12 84 Register 13

88 Register 14 92 Register 15

* Described under "Description of RB Flags"

(

(

section 12. Control Blocks and Tables 257

PROGRlU1 REQUEST BLOCK (PRB)

RBABOPSW
Reserved

Bits 32 - 63 of User's PSW

Bytes 0 4

RBWCSA RBSIZE RBSTAB • RBCDFLGS • RBCDE
Woit Count Save Size, in Double Status and Attribute Bits Contents Address of Contents Directory Entry
Area Words, of RB 12Control Flags

9 10 13 8

RBOPSW

16

RBPGMQ RBWCF RBLINK

0 Queue Field for Serially Reusoble Programs Wait Count Address of Next RB on RB Queue

24 25 2B 29

* Described under "Description of RB Flags"

Description of RB Flags

RBSTAB field (all RB types):

Offset

00-01

02

03

04

05

06

07

08

09

10

11

12-13

258

Symbol

RBFTP

reserved

RBFNSVRB

reserved

reserved

reserved

reserved

RBTCBNXT

RBFACTV

reserved

reserved

RBIQETP

~-- ---~ ----

Meaning (bit is set, unless otherwise indicated)

RB type: 00
01
10
11

=
=
=
=

PRB
IRB
SIRB
SVRB

Indicates SVRB for a transient (nonresident) SVC routine.

Indicates that the RBLINK field points to a TCB.

Indicates that the IRB or SIRB is queued to a TCB.

(Meaningful only with an IRB or SIRB.)
ronous exit queue element type:

Distinguishes asynch-

00 = RQE is not to be queued to "next available" list (IECNXAVL)
by the Exit routine. (Since the RB is an SIRB, the RQE has
already been queued by the error exit routine.)

01 = IRB has asynchronous exit queue elements that are RQES.

10* = IQE is not to be queued to -next available" list (RBNEXAV)
by the Exit routine. (These bit settings are used with the
rollout IRB.)

I ... /

i#'----'
"-./

("

(

C'"
(,

14 RBFDYN

15 RBECBWT

RBTMFLD field (IRB only>

00

01

02-03

04

05

06-07

RBTMQUE

RBTMTOD

RBTMINDl

RBTMCMP

RBTNIND2

RBTMIND3

11* = IRB has asynchronous exit queue elements that are IQEs.
IQE is to be queued to "next available" list by the Exit
routine.

*The RETIQE operand of the CIRB macro instruction determines i

these settings. If RETIQE = YES, '11" is set. If RETIQE = NO,
"10" is set. (If the operand is not specified, '11" is set.)
Note: If rollout is included during system generation, the
Nucleus Initialization Program issues the CIRB macro instruction
to create and initialize the rollout IRB.

RB space can be freed at exit.

o = Wait for single event or for N of N events.

1 = Wait for M of N events (where M is less than N).

Timer element not on queue

Local TOD option used

00 = TUINTVL requested

01 = BINTVL requested

10 = reserved

11 = DECINTVL requested

Interval is complete.

Indicates midnight supervisory timer element.

00 = task request

01 = Wait request

10 = Supervisory element

11 = RBAL request

RBCDFLGS field (PRB and SVRB for resident routine>

00 reserved

01 reserved

02 reserved

03 reserved

04 WAE Work area exists.

05 RBCDSYNC SYNCH macro instruction issued.

06 RBCDXCTL XCTL macro instruction issued.

07 RBCDLD LOAD macro instruction issued.

Section 12. Control Blocks and Tables 259

• TRACE

Words

Words

Word.

Words

Words

Words

Bytes

260

TABLE (UNIPROCESSING SYSTEMS)

NOTE: Each entry is eight words

SIO Instruction:

0

Channel
Address (See Below)
Word

First Word of SIO Entry:

0 2 3 13

I I I I 0 I Isio Condition Code

VO Interruption:

I/O Old PSW

SVC Interruption:

o
Bit 13 = 1
Bits 16-19=

0010

Program Interruption:

o
Bit 13 = 1
Bits 16-19=

0011

Program OPSW

External Interrupti')n:

o
Bit 13 = 1

I
Bits 16-19 =

0001

External Old PSW

Dispatcher:

o

2 3

I
Channel STUS Word

21 31

I
Device

I Address

2 3

Reg. 15 Reg. 0

2 3

I Reg. 15 I Reg. 0

2 3

I
Reg. 15 Reg. 0

3

4 5

Reg. 1

4 5

Reg. 1

4 5

Reg. 1

4 5

Reg. 1

4 5

Bit 13 = 1 I
I I I 1

Bits 16-9 = Reg. 15 Reg. 0 Reg. 1
1101

The oddresses of the trace table are contained in a 12 - byte field whose address is at
hex loc 54. The Format of the field is:

3 4 7 8

0

0

0

0

0

Addre .. of Lost Entry Address of Table Beginning Addr.., of Table End

r--'
i i "'-_/

6 7

Timer
TCB

Contents

6 7

Timer
TCB Contents

6 7

Timer
TCB Contents

6 7

TQE if Timer
Interrupti on Timer

Otherwi se I Zero Contents

6 7

Timer
TCB Contents

-TRACE TABLE (MULTIPROCESSING SYSTEMS)

TRACE TABLE (Multiprocessing Systems)
NOTE: Each entry is eight words
SIO Instruction:

Ward. 0

Words

Words

Words

Channel
(See Below) Address

Word

First Word of 510 Entry:
o 2 3 13

0

~
l, .. 510 Condition Code

I/O Interruption:
o

Bit 13 = 1
Bits 16 - 19 =

0101

I/O Old PSW

SVC Interruption:
o

Bit 13 = 1
BUs 16 - 19 =

0010

Program Interruption:
o 1

Bit 13 = 1
Bits 16-19=

0011

Program Old PSW

I
Channel Status Ward

I
21 31

Device
Address

3

Reg 15 Reg 0

Reg 15 Reg 0

Reg 15 Reg 0

SSM Program Interruption {Multisystem Mode}
Words

Words

Word.

o 1 2

Bit 13 = 1
Bits 16 - 19 =

0100

Program Old PSW

External Interruption:
o 1

Bit 13 = 1
Bit. 16 - 19 =

0001

Extemal Old PSW

Dispatcher:
o

Bit 13 = 1
Bits 16 - 19 =

1101

2

Reg 15 Reg 0

3

Reg 15 Reg 0

3

Reg ,5 Reg 0

The addresses of the trdce table ore contained in a 12-byte field whose
address is at hex lac 54. The format of the field is:

"

"

"

4

4

4

"

Bytes 0 34 78

Address of Last Entry Address of Table Beginning

5 7

C

'Old'TCB 'Old'TCB Timer
P

TCB U
of CPUA of CPUB Contents r

0

5 6 7

C

'Old'TCB 'Old'TCB Timer P
Reg 1

of CPUA of CPUB Contents U
I
0

5 6 7

C

'Old'TCB 'Old'TCB Timer P
Reg 1 of CPUA of CPUB Contents U

I
0

7

C

'Old'TCB 'Old'TCB Timer
P

Reg 1 U
of CPUA of CPUB Contents I

0

5 6 7

C

'Old'TCB 'Old'TCB Timer
P

Reg 1 of CPUA of CPUB Contents U
I

~ 0

L. CPUID of locking CPU

5 6 7

TQE if timer C
STMASK interruption Timer P

Reg 1 of other U
CPU

otherwise, Contents
I zero
0

5 6 7

C

'New'TCB 'New'TCB Timer P
Reg 1 of CPUA of CPUB Contents U

I
0

Addre .. of Tabl. End

Section 12. Control Blocks and Tables 261

TRANSIENT AREA CONTROL TABLE (TACT)

LEAQTAQ-+-.81-1 ___________________ ---1 . Request Queue Ptr

.4 No. of Tact Entries

TACT-

o

4

8

12

16

2()

24

28

Flag I,

Flag 117

TAB' Addr

User Queue Ptr
Entry 1

TTR

Address of Transient Area Fetch TCB

TAB 2 Addr

User Queue Ptr
Entry 2

TTR

Address of Transient Area Fetch TCB

Description of the Transient Area Control Table

There is one four-word entry for each transient area block (TAB) in the system. Each
entry has the format:

Byte

o

1-3

4-7

8-11

12-15

262

Contains

Flags: X'40' - TAB is being loaded
X'20' - TAB is free (unoccupied)
X'OO' - TAB is being used

Address of associated TAB.

Pointer to user queue for associated TAB.

Track address in SVC Library of the routine currently in the TAB. This
address is used to identify the routine.

Address of transient area fetch TCB under whose control routines are
fetched to the TAB.

(-.

(

(;

PROGRAM INTERRUPTION ELEMENT (PIE)

I Double Word Boundary

Bits to 1 78 31

Fr~e!~ PIEPICA

Address of the current PICA

// j Bytes 0

PIEPSW
4

PI Old PSW Stor~d at Program Interrupt time

8

PIEGR14
12 Save area for register 14

PIEGR15

16 Save area for register 15

PIEGRO

20 Save area for register 0

PIEGR1

24 Save area for register 1

PIEGR2

28 Save area for register 2

Description of Field

F: Flag bit which, if set to one, indicates that the task cannot accept further
PI's. (This bit is set whenever a user PI exit routine is entered. It is reset
by the SVC EXit routine).

This bit is called the first-time logic switch.

(All other fields are described in the figure above.)

PROGRAM INTERRUPTION CONTROL AREA (PICA)

F. W. boundary

Bits 0 4 8 31 32 33 47

~
0000 PICAPRMK PICAEXIT ~ PICAITMK

~
Bytes o 1-3 4 5

DescriBtion of Fields

PICAPRMK: Program mask to be used in the PSW when the programs of the task are executing.

PICAEXIT: Address of the user's program interruption exit routine to be given control
when a program interruption of specified type occurs.

PICAITMK: Mask which indicates on which program interruption types the exit routine is to
be used. The bits are numbered 0 through 15, left to right. A bit set to one
indicates user interest in that type. Bit 0 in the field is reserved.

section 12. Control Blocks and Tables 263

• STAE CONTROL BLocK (SeB)

Reserved Address of Previous SeB

Bytes 0 1

Address of STAE Exit Routine

4

Reserved Address of STAE Exit Routine Parameter List

8 9

Flogs Address of RB

12 13

Description of Fields

o

1-3

4-7

8

9-11

Contents

Reserved

Address of the previous seB for
this task or zero if this is the
first seB created for this task.

Address of the user-written
STAE exit routine as specified
in the STAE macro instruction.

Reserved

Address of the parameter list to
be passed to the STAE exit routine
as specified in the STAE macro
instruction.

12 STAE flags

13-15

264

Bit Indication
-0-- seB will not be cancelled by

Exit routine when XCTL is issued
1 ISAM/TAM switch
2-1 Reserved

Address of the Request Block of the
task issuing the STAE macro instruction.

(-

(

EVEN!' CON!'ROL BLOCK (ECB)

w C Completion code or RB address

Bits o 2 31

Description of ECB Fields

W = Wait flag
C = Completion flag

Condition of
Wand C Flags

W .£

o o

o 1

1 0

1 1

ComQletion
Code

111111

000001

000010

000100

001000

001111

Meaning of the Flags and the Contents of Bits 2-31

The event has not been awaited and has not been posted complete.
2-31 may contain meaningless information.

Bits

The event has been posted complete, but it has not yet been awaited.
Bits 2-31 contain the completion code in the high-order positions; O's
in the low-order positions.

The event has been awaited, but has not yet been posted complete. Bits
2-7 are zero, and bits 8-31 contain the address of the RB under which
the WAIT macro instruction was issued.

This combination of conditions cannot normally occur.

Meaning

Normal completion (no errors).

I/O permanent error code.

Extent permanent error code. This code indicates that the seek address
specified in the lOB is out of the extent specified in the DEB.

lOB intercept code. Whenever an error occurs after a channel end
interruption for a device, the I/O request for that device has already
been posted complete and the request element returned to the freelist.
To handle the error, the I/O supervisor sets the UCB intercept flag to
indicate that the next I/O request for that device must be intercepted.
When intercepted, the lOB for the new I/O request and the CSW and sense
data for the error are passed to the error recovery procedures for the
device. If a permanent error exists, the ECB for the intercepted lOB
is posted complete with the/lOB intercept code.

Not started or purged. This code signifies either that the I/O request
has not been started or that it has been purged.

Error could not be retried. This code signifies that the home address
and/or RO could not be read during error recovery procedures.

section 12. Control Blocks and Tables 265

PARAMETER LIST ELEMENT (FOR THE ENQ/DEQ ROUTINES)

LISTEND 11 LMINOR 12 PARMCDS Ia Return
Bytes 0

4
Major Name

8 Minor Name

Description of Fields

Field

LISTEND

Meaning (bit is set unless otherwise specified)

Indicates the last element in the parameter list. The last element
must have hexadecimal 'FF' in this field. All other elements in the
list may have any other value.

LMINOR The length of the minor name whose address is at offset 8, or zero. If
LMINOR contains zero, the length of the minor name is assumed to be in
the first byte of the name field whose address is at offset 8. In this
case. the length byte does not include its own length.

PARMCDS ENQ/DEQ parameters:

Bit 0 Indicates a shared request. If bit is 0, indicates an exclusive
request.

Bit 1 Indicates that the scope of the minor name is SYSTEM. If bit is 0, the
minor name is known only to the job step.

Bit 2 Indicates that "Set Must Complete" = SYSTEM.

Bit 3 Indicates that ·Set Must Complete" = STEP.

Bit 4 Reserved

Bit 5 Indicates that RET = TEST (see note below).

Bit 6 Indicates that RET = TEST/USE (see note below).

Bit 7 Indicates that RET = TEST/USE/HAVE (see note below).

~: Bits 5. 6, and 7 must have one of the following configurations:

RET = TEST
RET = USE
RET = HAVE
RET = NONE

RETURN

MAJOR NAME

MINOR NAME

266

111
011
001
000

Return code field for codes returned to the issuer of the ENQ or DEQ
macro instruction.

The address of the major resource name (Qname).

The address of the minor resource name (Rname).

c" '-,

(~i

MAJOR QUEUE CONTROL BLOCK (QCB)

Address of next mojor QCB (if lost, equols zero)

Bytes 01--------------------------------------1

Address of previous mojor QCB (if first, equols IEAQQCB)

4r---------------------------------------;
Address of first minor QCB on queue of minors

8~ __ ~

Major QCe name (first four characters) 12r-____________________________________ --;

Major QCB name (last four characters)
16~ ______________________________________ ~

MINOR QUEUE CONTROL BLOCK (QCB)

Bytes 0
Address of the first QEL on the QEL queue

4
Address af the previous minor QCB (If first, equals mojor QCB)

8
Address of the next minor QCB (If lost, equals zero)

Length of I QCBPKF J Minor QCB name (variable in length
QCB name 113 (see below) 14 from 1-255 characters) 12

....

DescriRtion of Field

QCBPKF: If field is 'FF', the name is known to the entire system.
If field is '00', '10', '20', '30', or 'FO', it is the protection key of the TCB
under which the request was enqueued. In this case, the name is known only to
the job step.

Section 12. Control Blocks and Tables 267

QUEUE ELEMENT (Q:EL)

Bytes 0 1

SMC Address of Next Q EL
Zero if this is last QEL

4 5 Address of Previ aus, Q E L
CODE Address of Minor QCB if This QEL

is First on QEL Queue

8
Address of TCB That Was Current When ENQ Macro
Instruction Was Issued

12

Address of SVRB for ENQ Routine

Description of Fields

Byte 0

Bytes 1-3

Byte 4

Bytes 5-7

Byte 8

Byte 12

268

Indicates whether or not the QEL represents a request for "must complete"
status.

X'20' represents a "system must complete" request
X'10' represents a "step must complete" request
X'OO' represents "must complete" status not requested

The address of the next QEL on the queue. In the last QEL the field is
zero.

Bit 0: If set to one, indicates a shared requesti
an exclusive request.
Bit 1: If shared DASD is included in the system:
that a UCB address appears at Byte 12 of this
associated with a RESERVE macro instruction,
instruction.

if set to zero, indicates

if set to one, indicates
QEL, and this QEL is

rather than an ENQ macro

The address on the previous QEL on the queue.
queue, this field points to the minor QCB.

In the first QEL on the

The address of the TCB under which the ENQ macro instruction was issued.

The address of the SVRB under which the ENQ routine is ~peratin9. In
systems with shared DASD, if the QEL represents a RESERVE request that has
been satisfied, this byte contains the address of the UCB of the direct
access device on which the requested resource resides.

(~\

V

o

INTERRUPTION QUEUE ELEMENT (IQE)

Rallout/Rallin
Parameter List
(Optional)

Bytes 0

8

Reserved

Reserved

IOELNK

1

IOEIRB

9

RPLTCB

IOEPARAM

4

Reserved IOElCB

12 13

Reserved RPLSZPOE

20 21

Description of Fields

IQELNK: Address of the next IQE on the IQE queue.

IQEPARAM: The parameter that is to be passed to the asynchronous exit routine .•

IQEIRB:

IQETCB:

RPLTCB:

Address of the IRB that is to be scheduled because of this request.

Address of the TCB with which this request is associated.

Address of the TCB for the task requiring or releasing an extension to a
region.

RPLSZPQE: Size of region requested (rollout request), or address of PQE describing area
(rollin request).

Section 12. Control Blocks and Tables 269

REQUEST QUEUE ELEMENT (RQE)

Contains 'FF'
if RQE, Is on The

RQELNK RQEUCB F Free list. Other- RQEIOB

Bytes 0 2 4 wise,Contoins Zero. 5

Contoins Protection
RQEPRI RQEDEB Key of Requestor's RQETCB

Task

B 9 12 13
,-

DescriBtion of Fields

RQELNK:

RQEUCB:

F:

RQEIOB:

RQEPRI:

RQEDEB:

RQETCB:

270

Pointer to next RQE on the RQE queue.

Pointer to UCB.

If 1, bit indicates that the RQE represents a request for a system error
routine that operates under an SIRB.

Address of the associated lOB.

Dispatching priority of requestor's task.

Address of the associated DEB.

Address of the TCB with which the I/O request is associated.

('"
'ol, ",,)

CONTENTS DIRECTORY ELEMENT (CDE)

CDATTR
Bytes 0 1

CDROll
4 5

8

12

CDUSE
16

CDATTR 2
20

Description of Fields

CDATTR: Attribute field.

Bit
-0-

1
2
3
4
5
6
7

Symbolic name
NIP
Nrc
REN
SER
NFN
MIN
JPA
NLR

CDCHAIN

CDRBP

CDNAME

CDNAME

CDENTPT

CDXlMJP

Meaninq (when set)
Module was loaded by NIP.
Module is in process of being loaded.
Module is reenterable.
Module is serially reusable.
Module may not be reused.
This is a minor CDE.
Module is in the job pack area.
Module is not loadable-only.

CDCHAIN: Address of next CDE in queue (either the JPACQ or the LPACQ).

CDROLL: Reserved

CDRBP: RB address. If the module is reenterable, this field contains the address of
the last RB that controlled the module. If the module is serially reusable,
this field contains the address of the RB at the top of the waiting (RBPGMQ)
queue. If the module was requested only through LOAD macro instructions,
contains zero.

CDNAME: Either a module name, an alias name, or a name that has been identified via an
IDENTIFY macro instruction.

CDUSE: The use/responsibility count.
requests for the module's use.

This represents the number of outstanding

CDENTPT: Entry point address.

CDATTR2: A second attribute field.

Bit S~bolic
0
1 REL

2 XLE
3 RLC

4 REFR
5-7

Name Meaninq (when set)
Reserved
Module is inactive and may be released by the GET MAIN routine
(CDPURGE) subroutine>.
An extent list has been built for the module.
This CDE contains a minor entry point address that has been
relocated by the Program Fetch routine.
Module is refreshable.
Reserved

CDXLMJP: Extent list address, or major CDE address if this CDE is a minor. (If this CDE
is a minor, the MIN bit is also set in its CDATTR field.)

Section 12. Control Blocks and Tables 271

LOAD LIST ELEMENT (LLE)

0 LLCHAIN LLCOUNT LLCElPTR

Bytes 0 1 4 5 6 7

Description of Fields

LLCHAIN: Address of the first byte of the next element on the load list.

LLCOUNT: Responsibility count. The number of requests for the module, via the LOAD macro
instruction.

LLCDPTR: The address of the COE for the module.

PARTITIONED DATA SET DIRECTORY ENTRY

Bytes 0

8

12

16

20

24

28

32

36

40

Name of load module (Member or alios name)

Alios indicator and
Relative (to beginning of dato set) disk address of module (TTR) miscellaneous information

11

Relative (to beginning of data' set) disk address of first text record (TTR)
Byte of binary zeroes

15

Relative (to beginning of data set) disk address of NOTE list or Scatter/ Number of entries in
translation record (TTR) 19 NOTE List *

Module Attributes (see description of attributes)'O, I, Toto I contiguous' main storage required for the
2,3,4,5,6,7,8,9,10,11,12,13,R,R

22-24 module.

Length (in bytes) of first text record Module's linkage

25 27

Editor assigned entry point address Linkage editor assigned arigin af first text record
30- 32

For loed modu les in scatter format, add:

Length of scatter list (in bytes) Length of translation table

33 35-36 (in bytes)

ESDID (CESD entry number of control section
ESDID (CESD entry number of

name) for first text record
control section name) cont-
aining entry point

37

41

41

39-40

For load modules WIth RENT or REUS attribute and
AI ias names add:

Entry point oddress of the member name
44r-----------------~---;

Member name

52
SS I Bytes - Aligned an a half-word baundary at the end of the PDS record

272

()

Description of Fields

Alias indicator and miscellaneous information:

Bit Number Meaning

o

1-2

3-7

Alias indicator: 0 signifies none, 1 signifies alias.

Number of relative disk addresses in user data field.

Length of user data field in half words

POB Director!: Record Size:

Block format 34 bytes (when rounded to a halfword boundary)

Block format with alias names 44 bytes

Scatter format 42 bytes

Scatter format with alias names 52 bytes

Note: For 551, add 4 bytes to sizes given above.

Module Attributes:

Bit nUJllber Attribute
0 RENT

1 REUS

2 OVLY

3 TEST

4 LOAD

5 Format

6 Executable

7 Format

8 Compatibility

9 Format

Bit setting
0
1

0
1

0
1

0
1

0
1

0
1

0
1

0

1

0

1

0

1

Indication
Not reenterable
Reenterable

Not reusable
Reusable

Not an overlay module
Overlay module

Not under test
Under test

Not loadable only
Loadable onlyi.

Block format
Scatter format

Not executable
Executable

Module contains more than one text record
and/or RLD record(s);,
Module contains only one text record and no
RLD record.

Module can be processed by all levels of
linkage editor.
Module cannot be reprocessed by Linkage
Editor-E.

Linkage editor assigned origin of first text
record is not zero.
Linkage editor assigned origin of first text
record is zero.

s'ModuI.e can be loaded only with the LOAD macro instruction. When the module is in main
storage, it will be entered directly and not through the use of an XCTL, LINK or ATTACH
macro instruction.

Section 12. Control Blocks and Tables 273

10 Format 0 Linkage editor assigned entry point is not
zero.

1 Linkage editor assigned entry point is zero.

11 Format 0 Module contains RLD record(s)
1 Module does not contain an RLD record.

12 Editability 0 Module can be reprocessed by linkage editor.
1 Module cannot be reprocessed by linkage

editor.

13 Format 0 Module does not contain TESTRAN symbol
records.

1 Module contains TESTRAN symbol records.

14 Reserved

15 Refreshability 0 Module is not refreshable.
1 Module is refreshable.

274

- ----------- ---

(~\

(

SCATTER EXTENT LIST

EXLLNTH (Total ,ize of ~xtent list)

Bytes 0

Numb~r of relocation factors

4

8
Length of first non-contiguous block

12
Length of second non-contiguous block

16
Length of third non-contiguous block

- 1 byte iOl"" 3 bytes

Hex. 80* Length of last non-contiguous block

0 Address of first non-contiguous block

0 Address of second non-contiguous block

0 Address of th i rd non-contiguous block

• • •
• • •
• • •
• • •

0 Address of last non-contiguous block

* Indicates the end of the immediately preceding length-of-block
list. Used by the GETMAIN routine.

Section 12.

~

:

Control Blocks and Tables 275

BLOCK EXTENT LIST AND NOTE LIST

Bytes 0

4

8

12

16

20

24

28

32

•
•
•

276

EXLLNTH

Toto I Size of Block Extent List

Number of Relocation Factors

Hex. 80 Length of Main Storage Block
9

Zero Address of Main Storage Block
13

Zero Relocation Factor
17

Relative Disk Address (TTR)
of First Segment of Modu Ie

Relative Disk Address (TTR)
of Second Segment of Module

Relative Disk Address (TTR)
of Third Segment of Module

Relative Disk Address (TTR)
of Last Segment of Modu Ie I

Concatenation

23 Number *

Zero
27

Zero
31

Zero
35

Zero

• Contotenation number is 0 volue that specifies this doto set's
sequential position in a grc>up of concotenated data sets.

•
•
•

Block
Extent

List

Note List
(overlay
modules only)

(

-----------~---------.

SCATTER/TRANSLATION RECORD

Up 10 and inc luding 1020 bytes

Data - may conloin translation table, translation table and scatter table or scatter table only

Count - in bytes, of data field

6!r2 - one byte of binary zeros

Identification - identifies this a. a .cotter-translation record - bit configuration is: 0001 0000

\ I I I I I I I
Padding (2 bytes) - if necessary, to force full-ward boundary alignment of scatter table.

Painter (2 bytes) - to the scatter table entry that contains the address of the control section
containing this CESD entry.
Number of translation table entries = number of CESD entries + 1.
Pointer will be zero if its corresponding CESD entry is not SO, PC, CM or LR.

6!!:!! - 2 bytes of bi nary zeras

t:!Q..![: (One 2-byte entry for each external symbol)

~ I
(4 bytes) - of a control section (SO, PC or CM) (one entry for each CSECT)

-.::..-------:-!...-~

Zero - 4 bytes of binary zeros

Translation Table and

~ I
Padding (2 bytes) if necessary 10 align scatter table 10 a full-word boundary.

Translation dolo

NOTE: Translation table follows extent list in main slorage.
Translation table entries are two bytes in length, scatter table entries four bytes in length.

Legend for Types of Entries in Composite External Srmbol Dictiono,), (CESD)

SO = section definition
LR = label reference
PC = pri vote code
CM= common

Section 12. Control Blocks and Tables 277

PROGRAM FETCH WORK AREA -- (DISPLACEMENTS IN BYTES)

Displacement

o

32

40

88

112

376

416

680

720

984

1024

1028

1032

1040

1076

1140

1144

1148

1152

1156

1160

1168

1176

Definition

lOB

lOB Seek Address

Seek Buffers (4)

Sear~h and TIC CCWs

RLD Buffer 1

Channel Program 1

RLD Buffer 2

Channel Program 2

RLD Buffer 3

Channel Program 3

I/O ECB

ECB

Buffer Table Pointer

Buffer Table

Register Save Area

Addr of Translation Table

Addr of Scatter List

Addr of R-Pointer

Addr of P-Pointer

Boundary Word for Relocation

Fetch Flags

ECB List

Last Table Entry

Length

8 full words

2 full words

12 full words

3 double words

33 double words

5 double words

33 double words

5 double words

33 double words

5 double words

1 full word

1 full word

2 full words

9 full words

16 full words

1 full word

1 full word

1 full word

1 full word

1 full word

2 full words

2 full words

1 full word

Description of Fetch Flags

Byte

o

1

2

278

Content Meaning

Reserved

FF Program is being scatter-loaded.

00 Program is being block-loaded.

FF

OF

All buffers are full.

Channel-End
because all
occurred.

Appendage routine is unable to restart a channel program
buffers were full when the channel-end interruption

------- --------

(

3

4-7

00 Normal condition. There is at least one empty buffer.

FF End condition. Only termination processing by the Program Fetch
routine is needed.

OF End condition. Buffer processing is needed.

o A read operation was just completed. A text record, followed by an RLD
or control record, was read. The restart buffer is the last one to be
filled.

Address A read operation was just completed. An RLD or control record was
read. The contents of the restart-seek address buffer is saved to be
used when channel-program restart is needed.

PROGRAM FETCH BUFFER TABLE

Buffer Pointer to TIC Address of
Code Next Entry (12) Command Channe I Progrom 2

Bytes 0 1 4 5

Buffer Pointer to TIC Address of
Code Next Entry (24) Command Channel Progrom 3

12 13 16 17

Buffer Pointer to TIC Address of
Code First Entry (0) Command Channel Progrom 1

24 25 28 29

Note: Each entry consists of 12 bytes·

Description of Buffer Codes

Conten.t
00
80

Meaning
Buff er Empty
Buffer Full

Zero Address of
Buffer 1

8 9

Zero Address of
Buffer 2

20 21

Zero
Address of
Buffer 3

32 33

Section 12. control Blocks and Tables 279

CONTROL RECORD

o 1- 3 4, 6, 8-15
5 7

\ Record length is 20 bytes
)

'---- Length of control section - specifies the length of the control section (in bytes)
thCIt the text in the following record belongs to (2 bytes)

L ___ CESO entry number - specifies the composite external symbol c;/ictionary entry
that contains the control section names of the control section thot this
text is port of (2 bytes)

L---Chonnel Command Word (CCW) - that could be used to read the text record that follows.
The data address field contains the linkoge editor assigned address of the first
byte of text in the text record that follows. (8 bytes)

'---Count - contains two bytes of binary zeros. The count field contains the length of the record.

- Count. - in bytes of the control information (CESO 10, length of control section) following the CCW
field (2 bytes)

I.......- Spare - contains three bytes of binary zeros

L---- identificatIon - specifies that thIS IS: (1 byte)

• A control record - 0000 0001

• The control record that precedes ,the last text record of this overlay segment - 0000 0101

• The control record that precedes the last text record of the madule - 0000 1101

280

(

RELOCATION DICTIONARY (RLD) RECORD

o I - 3 4,
5

6,
7

8-15 16-255
J
(

L RLD data -- see below

'-- Spare - contains 8 bytes of binary zeroes

Record length can be between 24 and
256 bytes

~ Count - in bytes of the relocation dictionary information 'following the spare 8 byte field (2 bytes)

'--- Count - contains two bytes of binary zeroes

-Spare - contains three bytes of binary zeroes

-Identification - specifies that thIs IS. {I byte}

R P F A

A relocation dictionary record - 0000 0010
The last recorcl of the segment - 0000 011 0
The last record of the modu Ie - 0000 1\ 10

F A F A R P F A

L
R P F A

- inka e editar a Address L g ssi gned
address of the address
constant (3 bytes)

~Flag - s pecifies miscellaneous information as fallows: (I byte) when byte format is xxxxLlST:
xxx>< specifies the type of this RLD item {address constant}
0000 -- non-branch type in assembler language, a DC A {name}
0001 -- branch type {in assembler language, a DC V {name}
0010 -- pseudo register displacement value
0011 -- pseudo register cumulative displacement value
1000 and 1001 -- this address constant is not to be relocated, because it refers to an
unresolved symbol.
LL specifies the length of the oddress constant
01 -- two byte
I o -- three byte
I 1 -- four byte
S specifies the direction of relocation
o -- pasition
1 -- negative
T specifies the type of RLD item follawing this one
o -- the following RLD item has a different relocation and/or position pointer
I -- the following RLD item has the same relocation and position painters as this one,
and therefore is omitted

'-- Position pointer - contains the entry number of the CESD entry {or translation table entry} that indicates which
section the oddress constant is in {2 bytes} control

-' -RelocatIon pointer contaIns the entry number of the CESD entry {or translation table entry} that indicates which symbol's
value is to be used in the computation of the oddress constant's value (2 bytes)

Section 12. Control Blocks and Tables 281

CONTROL AND RELOCATION DICTIONARY RECORD

1'1'·' I i' I ~'I'·"1111 II ~ [[ill l LMd.. l LLength of control section (2 bytes)

Flag

CESD entry number (2 byte~)

Address (3 bytes)

lli!i (1 byte)

Position painter (2 bytes)

Relocation pointer (2 bytes)

Channel Command Word (8 bytes)

Count of RLD information (2 bytes)

Count of control information (2 bytes) - the control information contains the
ID and length of control sections in the following text record.

~ (3 bytes)

Identification (1 byte) - specifies that this record is:

• A control and RLD record - 0000 0011

• A control and RLD record that is followed by the
last text record of a segment - 0000 0111

• A control and RLD record that is followed by the
last text "record of a modu Ie - 0000 1111

Note: For detailed descriptions of the data fields see:

282

Relocation. Dictionary Record
Control Record

The record length will vary from 20 ta 260 bytes.

('" ,

---------- -----~-------

SEGMENl' TABLE

Bytes 0

4

8

12

16

2J

24

28

TEST
indo

I Bit 1 = 0: Not in Test
Bit 1 = 1: In Test 1 Address of dato control block (DCB) used to load module *

0 Address of note list *

Last segment number of Highest segment no. in Last segment Highest segment no. in
region 1 storage-region 1 number of region 2 storage-region 2

9 10 11

Last segment number of Highest segment no. in Last segment Highest segment no. in
region J storage-region J number of region 4 storage-region 4

13 14 15

Address of ECB to be posted when SEGLD request has been serviced .

Previous segment
number for segment 1

Previous segment
number for segment 2

Previous segment number
for segment N

•
25

29

Reserved *

Status
Indctr

Address of entry table entry (when caller chain exists) . I Status
Indictr

Address of entry table entry (when caller chain exists)

4 ~res ----____________________________ ~~~I

Description of Fields

TEST indicator
specifies that this module is "under test" using TESTRAN. Is initialized by Program
Fetch routine.

Highest segment number in storage
is initially set to 00 except for region 1 which is initially set to 01 by linkage
editor.

Status indicator
indicates the status of this segment, with the two last bits of the entry table
address field as follows:

00 segment is in main storage as a result of a branch to the segment.
10 segment is in main storage, no caller chain exists.
01 segment is not in main storage, but is scheduled to be loaded.
11 segment is not in main storage.

The status indicator for segment 1 is initially set to 10. All the rest are
initially set to 11.

*Set to zero by linkage editor.

Note: "Region" refers to the regions of a multiregion overlay structure, not to a
job-steps's region of main storage (see Linkage Editor SRL).

Section 12. Control Blocks and Tables 283

ENTRY TABLE

Last
Entry

284

Unconditiona I bronch to ;'lSt entry- Address of referred to symbo I lito" seg Previous Caller
Be IS, DISP (15,0) number (zero initially)

0 4 8 9

Unconditional bronch to lost entry- Address of /'IIferred to symbol Uto" sag Previous Caller
Be 15, DlSP (15,0) number (zero initially)

12 16 20 21 22 23
I

Unconditional bronch to last entry-

I
Address of referred to symbo I lito" seg Previous Caller

BC 15, DlPS(15,0) number (zero initially)

SVC 45 L 15,4(0,15) Loads GRI5with BCR IS, IS "from II Address of segment
instruction the value of the ADCON. seg no. table (SEGTAB)

~ 2 bytes --l- 2 bytes -l-- 2 bytes ~ 2 bytes ---JI byte ~ 3 bytes ---.l
NOTE: DlSP = is the displacement, in bytes, of this entry from the last entry.

"to" segment number -- is the number of the segment containing the symbol being referred to.

"from" segment number -- is the number of the segment thot contains this entry table.

(t~
~/

("",,\,

, j

I •• -'

(

SUBPOOL QUEUE ELEMENT (SPQE)

Bits

01 1
1

2
1 Reserved SPQEPTR

1 Bytes 0

SPID DQEPTR

4 5

Description of Fields

Byte 0

Bit 0: When bit is zero, indicates that subpool belongs to the associated task. When
bit is one, indicates that the subpool is shared.

Bit 1: Is usually zero. When bit is one, indicates that this element is the last SPQE
on the queue.

Bit 2: When bit is one, indicates that the subpool is shared with another task.

SPQEPTR: Pointer to the next SPQE. When field is zero, indicates that this element is
the last SPQE on the queue.

SPID: Identifying number of the subpool.

DQEPTR: Pointer to the first DQE for the subpool. If subpool is shared, field points to
the wowningW SPQE.

• DESCRIP-TOR QUEUE ELEMENT (DQE)

Reserved FQEPTR
Bytes 0 1

Reserved DQEPTR
4 5

DQEHRID Block Address

8 9

Reserved Length

12 13

Description of Fields

FQEPTR: Pointer to first free area.

DQEPTR: Pointer to next DQE. Is zero in last DQE.

DQEHRID: Bit
0-6

7

Meaninq
zero
when 0 indicates that the DQE describes core obtained from hierarchy 0;
when 1 indicates that the DQE describes core obtained from hierarchy 1.

Block address: Address of the first 2K block described by this DQE.

Length: Length in bytes described by this DQE. (Length is always a multiple of 2K
bytes.)

section 12. control Blocks and Tables 285

FREE QUEUE ELEMENT (FQE)

Reserved FqEPTR
Bytes 0 1

Reserved LENGTH

4 5

Description of Fields

FQEPTR: Pointer to next lower free area.

LENGTH: Number of bytes in free area.

ALLOCATED QUEUE ELEMENT (AQE)

Reserved AQEPTR

Bytes 0 1

Reserved LENGTH

4 5
-

Description of Fields

AQEPTR: Pointer to next allocated area.

LENGTH: Number of bytes in allocated area.

286

(

(

• GOVRFLB (Origin list for Main Storage Queues)

Reserved SQBOUND

Bytes 0

Reserved DQESQES

4

Reserved PQEPTR

8

Reserved SZDPRS

12

Reserved SZDLCS

16

Reserved VQEPTR

20

DescriPtion of Fields

SQBOUND: Address of the first byte beyond supervisor queue area.

DQESQES: Address of the DQE describing supervisor queue area.

PQEPTR: Address of the PQE describing unassigned main storage (storage not assigned to
any region).

SZDPRS: Amount of storage available in hierarchy 0 after NIP.

SZDLCS: Amount of storage available in hierarchy 1 after NIP.

VQEPTR: Address of the first
multiprocessing system.

VQE describing storage areas scheduled for removal in a
Zero if no VQEs exist.

Section 12. Control Blocks and Tables 287

• PARTIT·ION QUEUE ELEMENT (PQE)

o PQEFFBQE

4 PQEBFBQE

8 PQEFPQE

12 PQEBPQE

16 PQETCB

20 PQESIZE

24 PQEREGN

28 PQERFLGS 129 PQEHRID 130 Reserved 131 Reserved

Description of Fields

PQEFFBQE: Address of the first FBQE in the region described by this PQE. If there are
no FBQEs, contains the PQE address.

PQEBFBQE: Address of the last FBQE in the region described by this PQE. If there are no
FBQEs, contains the PQE address.

PQEFPQE:

PQEBPQE:

PQETCB:

PQESIZE:

PQEREGN:

Address of the next PQE on the queue. Contains O's in the last PQE.

Address of the preceding PQE on the queue. contains O's in the first PQE.

Address of the TCB for the job step to which the space belongs. Contains O's
if the space was obtained from unassigned free space.

Size of the region described by this PQE. (Always a multiple of 2048)

Address of the first byte of the region described by this PQE.

Description of Rollout Flags (PQERFLGS)

o

1

2

3-7

Meaning

When 0, indicates space described by this PQE is owned. When 1, indicates
space is borrowed.

When 1, indicates region has been rolled out. Meaningful only if bit 0=0.

When 1, indicates region has been borrowed. Meaningful only if bit 0=0.

Reserved.

Descrigtion of Hierarchy Identifier (PQEBRID)

0-6

7

288

Meaning

zero

when 0 indicates that the PQE describes a region in hierarchy o.
when 1 indicates that the PQE describes a region in hierarchy 1.

/
'~ .1'

(

DUMMY PARTITION QUEUE ELEMENT (DPQE)

Address of First
PQE in Chain

Address of Last
PQE in Chain

O~ ____________________ ~4~ __________________ ~

• Relationship of Dummy PQE to TCB and PQE Chain

TCB
Dummy PQE-8

Dummy PQE
PQE

TCBPQE

FREE BLOCK QUEUE ELEMENT (FBQE)

Reserved FWDPTR

Bytes 0 1

Reserved BCKPTR

4 5

Reserved SIZE

8 9

Description of Fields

---------_ ... __ .•. _-_ ... _._- .

PQE PQE

FWDPTR: Pointer to the next higher address FBQE in the region. In the highest address
FBQE, contains the address of the PQE.

BCKPTR: Pointer to the next lower FBQE in the region. In the lowest FBQE, contains the
address of the PQE.

SIZE: Number of bytes in the set of 2K blocks.

Section 12. Control Blocks and Tables 289

ROLLOUT I/O QUEUE ELEMENT (RIQE)

Address of Address of
Address of Beginning

Next RIQE Rolled-Out
I/O-Purged TCB Address of

Job Step's TCB lOB Chain
o 4 8 12

REPLY QUEUE ELEMENT

o RQERQE

4
RQEID 16 RQEXA

8 RQETCB

12 RQEXB

16 RQELNTH 117 RQERPTR

20 RQEECB

Description of Fields

RQERQE:

RQEID:

RQEXA:

RQETCB:

RQEXB:

RQELNTH:

RQERPTR

RQEECB

290

Address of next reply queue element.

Reply identification number.

Flags, with the following meanings when on:

Bit 6.0: Associated reply will be purged.

Bit 6.1: Associated task has been rolled out.

Address of TCB for task that issued message for which this RPQE represents a
reply.

Address of purging message buffer, or temporary buffer if reply was deferred
by rollout.

Maximum length of reply.

Address of user's buffer.

Address of user's ECB.

o

SVC PURGE PARAMETER LIST

(':, PURGPARM

o PURGOPT 1 PURGDEB

4 5 PURGTCB/PURGECB

8 9 PURGIOB

Description of Fields

Offset

o PURGOPT: Purge options (always X'02' for rollout, requesting 'TCB' and 'quiesce'
options) •

1 PURGDEB: Address of DEB (not used for rollout>.

completion code to be placed in ECB.

5 PURGTCB: During input: Address of TCB whose request elements are to be purged.

8

PURGECB: During output: Address of ECB to be posted when purge is complete.

count field for quiesce option. Number of request elements whose I/O
operations have not yet completed.

9 PURGIOB: Address of an lOB chain field. The lOBs queued from the chain field
represent channel programs to be restarted by the SVC Restore routine
after rollin has occurred. These lOBs belong to the task whose TCB
address is recorded in the PURGTCB field.

Section 12. Control Blocks and Tables 291

TIMER QUEUE ELEMENT (TQE)

TOEFLGS TOETCB

o
(Indicators) (Addr~ss of TCB)

1

TQEFLNK
Zeros (Address of next queue element)

5 4

Zeros
TOEBLNK

9
(Address of preceding queue element)

8

TOEVAL

12
(Time of expiration/time remaining)

TOELHPSW

16
(First word of current PSW - used when TOE serves as IRB)

TQESAV

20
(Used to save contents of TOEVAL when TOE is converted from TASK to REAL)

TOESAADR

24
(Address of processing program save area)

Zeros
TOEEXIT

29
(Address of timer asynchronous exit routine)

28

TOEGRS
(Reg i ster save area - used when TO E serves as IRB)

32
~--~

TOEECB (Used for interruption queue element when TOE serves as IRB) (16 bytes)

TOEIOE (Used for ECB-when WAIT parameter is given in STIMER macro-instruction.

292

11"\.
.'t.,'#

(.\.
. ,

()

Description of Fields

TQEFLGS:

TQETCB:

Meaning (when bi~ is set)

o Timer element is not on timer queue.

1 Local TOD option used.

2-3 00 = TUINTVL requested
01 BINTVL requested
10 = reserved
11 = DECINTVL requested

4 Interval is complete.

5 Exit specified.

6-7 00 = task request
01 = wait request
10 = supervisory element.
11 = real request

*5-7 110 = Denotes the midnight supervisory timer element

Address of the TCB for the task for which this timer element is being used.

TQEFLNR: Forward link field. This field contains the address of the first byte of the
next TQE on the timer queue.

TQEBLNR: Backward link field. This field contains the address of the first byte of the
previous TQE on the timer queue.

TQELHPSW: Left half PSW. This field contains the left half PSW to be used when the TQE
serves as an IRB. The left half PSW determines the machine states (enabled,
supervisor, etc.) when a timer exit routine is entered •

TQEVAL: Interval value. This field contains the timer interval. If the element is on
the timer queue, the contents of this field represent the time of expiration
(TOX) of the interval relative to the 6-hour interval. If the element is off
the timer queue, the contents of this field represent the remaining time in the
interval.

The value of the interval in microseconds can be calculated by multiplying by
26 the decimal value represented by the field.

TQEEXIT: Exit routine address. This field contains the address of the timer exit
routine, if one was specified by the user in the calling sequence of the STIMER
macro instruction. Otherwise this field is zero.

TQEGRS: General register save area. This field becomes the general register save area
when the TQE is used as an IRB for the scheduling of a timer exit routine.

TQESAADR: Address of the problem program register save area.

TQEIQE:

TQEECB:

Interruption queue element (begins at offset 96). This field is used as the
IQE passed to the Stage 2 Exit Effector in order to schedule a timer exit
routine.

Event control block (begins at offset 96). ECB to be posted for a ·wait- type
interval.

A TQE is required in systems with the time-slicing feature. It is used by the
Dispatcher to set the time interval to the specified time-slice length when a time-sliced
task is dispatched. The first 16 bytes of the TQE are used in this application.

section 12. Control Blocks and Tables 293

SECONDARY COMMUNICATIONS VECTOR TABLE

This table appears in module lEAQEDOO., beginning at symbolic location IEABEND. It r'
consists of a list of address constants that point to routine entry points or system ~.
control blocks. The address constants that appear are:

Dis}2lacement
in Bytes Symbolic Name Meaning

0 IEAQPGTM Address of EOT Purge Timer routine.

4 IEECVPRG Address of WTOR Purge routine.

8 IEAQSPET Address of Release Main Storage routine.

12 IEAQTAQ Address of TACT.

16 IEAQERA Address of EOT Erase Phase routine.

20 IEAQQCBO Address of QCB origin.

24 IEAOEQOl Address of ENQ/DEQ Purge routine.

28 RMBRANCH Address of REGMAIN branch entry.

32 IGC016 Address of SVC Purge routine.

36 I ECXTRA Address of Trace routine switch.

40 IEAODS02 Address of Task Switching routine.

44 IEAQCS02 Address of CDCONTRL in common subroutines of Contents
Supervision.

)

,/

48 FMBRANCH Branch entry point to the FREEMAIN routine.

52 IEAQABL Address of Release Loaded Programs routine in EOT.

56 IEADQTCB Address of Dequeue TCB routine in EOT.

60 CDHKEEP Address of CDHKEEP in the CDEXIT routine.

64 TRPTR Address of trace table pointers.

68 GMBRANCH List Format GETMAIN branch entry point.

72 TAUSERCT Transient area user count.

76 IEARCTRS Address of rollout counters.

80 IEAROQUE Address of rollout queue.

84 IEAROIRB Address of rollout IRB.

88 IEAROTCB Address of rollout TCB.

(""\
~./

294

(

(

ABDUMPPARAMETER LIST

ID 0 Option Flags

Bytes 0 1 2

0 Pointer to DC B

4 5

0 Pointer to TCB

8 9

0 Pointer to Storage List

12 13

Description of Option Flags

Bit Symbolic Name

2 o PFABEND

1 PFTCB

2 PFSUPDAT

3 PFTRACE

4 PFNUC

5 PFSNAP

6 PFID

7 PFQCB

3 o PFSAVE

1 PFSAVE2

2 PFREGS

3 PFLPA

4 PFJPA

5 PFPSW

6 PFSPALL

7

Meaning (when bit is set)

o = Abend request; 1 SNAP request.

TCB address is given.

Display all supervisor data.

Display trace table (if possible).

Display the nucleus.

Snapshot list is given.

ID given.

Display the QCBs.

Save area (see next flag).

o = display entire save area; 1 = display headings
only.

Display registers on entry to Abend or SNAP.

Display link pack area.

Display job pack area.

Display PSW on entry to Abend or SNAP.

Display all subpools less than subpool 128.

Reserved.

Section 12. Control Blocks and Tables 295

TIME-SLICE CONTROL ELEMENT (TSCE)

Dispatching
Address of Fi rst TeB

0 Priority I

0 Address of Last TeB
4 5

0 Address of Next TeB to be Dispatched
8 9

12 TSeE Flags
13

Length of Time-Slice

There is one TSCE for each priority that is time-sliced. The address of the first TSCE
is in the CVTTSCE field of the CVT. All TSCEs are contiguous.

Description of Fields

Byte

o

1-3

contains

Dispatching priority of time-slice group.

Address of first TCB on the TCB queue that is a member of the time-slice group.

Zero

5-7 Address of the last TCB on the TCB queue that is a member of the time-slice
group.

8

9-11

12

13-15

296

Zero

Address of the next TCB to be dispatched when the priority obtains control.

TSCE
Bit
0-
1-7

Flags
Means (when
Last TSCE
Reserved

set to one)

Length of time-slice. In milliseconds before NIP~ in timer units after (26
micro-seconds per timer unit).

' -/

('" I. '

,/

• DISPLAY CONTROL MODULE (DCM)

(
Display Cantrol Module (DCM)

8 Bytes

DCMAPA
o

DCMHCP
8

DCMEXTN DCMUCM22
20 16

DCMUCMHC DCMWTBUF
24 28

32
DCMTCBl

36
DCMTCB2

DCMTCB3 DCMTCB4
44 40

Zeros DCMACT DCMDSRC I: DCMDSTA DCMAP
\53

DCMCS I~ DCMIOCI \. DCMIOC2
49 50 51 52 54 55 48

DCMIOC3 DCMIOC4 Data computed by the Display Routine and passed to the I/O Delete Routine.(10 bytes)
57 58 56

DCMSNSTS
68

Buffer addresses for points in the Basic Display Order program. (68 bytes)

Not Used
72 140

144
DCMENTLG

146
Not Used

148

DCMENTR2
(148 bytes)

DCMNULL
(148 bytes)

296 444

Basic Display Order program.(approximately 3616 bytes)

Work area for CCW chains. (80 bytes)

4060

Fields used by Console Device Support Routines to control displays of options and error messoges. (316 bytes)

4140

Section 12. control Blocks and Tables 297

Description of Fields

DCMAPA
contains the name of the routine to which control is to be passed when console
switching has occurred.

DCMHCP
contains the name of the Hard Copy Processor routine.

DCMGXTN
contains a pointer to the DCM extension which starts with the work area for CCW
chains.

DCMUCM22
contains a pointer to the 2250 UCM entry.

DCMUCMHC
contains a pointer to the hard copy UCM entry.

DCMWTBUF
contains a pointer to the message to be displayed.

DCMTCB1, 2, 3, 4
contains the pointers to the task control blocks associated with WTOR 1, 2, 3, and
4.

DCMACT
Bit Indication (when bit is set)

1 Light pen option
2 WTORl delete option
3 WTOR2 delete option
4 WTOR3 delete option
5 WTOR4 delete option

DCMDSRC
Bit Indication (when bit is set)
-0- Full buffer

1 Permanent Error
2 Input
3 Do not print hard copy
4 Retry bit for asynchronous

error routine

DCMDSTA
Bit Indication (when bit is set)
-0- Hol~ message

1 Unit Status displayed
2 Format Options displayed
3 Command Format displayed

DCMAP
Bit Indication (when bit is set)
0 Stop display regeneration

1 WTO Entry
2 WTOR Entry

DCMCS
Bit Indication (when bit is set)
-0- Closed request

1 Re-open condition

IOCl
Bit Indication (when bit is set)
-0- Write WTO

1 write WTOR
4 WTO delete

298

()

(

()

IOC2

IOC3

IOC4

5 WTOR delete
7 Stop display regeneration

Bit
-0-

1
2
3
4
6
7

Indication (when bit is set)
Message Print 'YES'
Message Print 'NO'
Message Hold 'YES'
Message Hold 'NO'
Keyboard Attention
WTO Heading delete
WTOR Heading delete

Bit Indication (when bit is set)
--0- WTO Warning is displayed

1 WTOR Warning is displayed
2 WTO Warning should be displayed
3 WTOR Warning should be displayed
4 CCW chain
5 Sound audible alarm

Bit Indication (when bit is set)
--0- Option 1 has been selected

1 Option 2 has been selected

DCMSNSTS
contains the contents of Register 15 when a wait state is entered due to a permanent
input/output or asynchronous error.

DCMASYN
contains the buffer address at which an asynchronous error occurred.

DCMGDl
contains the X,Y coordinates for MESSAGE PRINT NO.

DCMGD2
contains the X,Y coordinates for MESSAGE HOLD YES.

DCMENTLG
contains the length of the incoming keyboard message.

DCMENTR2
contains the incoming message as passed to the Log and WRITELOG Post routine (SVC
34) and the Write-to-Operator routine (SVC 35).

DCMNULL
contains an area used to blank the screen.

Section 12. Control Blocks and Tables 299

• MULTIPROCESSING COMMUNICATIONS VECTOR TABLE (MPCVT)

The Multiprocessing Communications Vector Table is part of the resident nucleus and ~~.
begins at symbolic location IEAMPCVT. The address of the first location of the MPCVT 1S I~
contained in the CVTMPCVT entry of the CVT and also in the MPCVTPTR field of the Prefixed
Storage Area. The entries in the MPCVT are:

Hex
Dec 1-01-1-------- 4 bytes ~I

o 0

CVTAFFLK
Supervisor CPU Identity

C1 =CPUA Lock Reserved
C2 = CPU B FF = Set

00 = Neither 00 = not Set

CVTSTPTR

addr af SHOLDTAP routine

4 4

CVTWTTCB

address of Dispatcher Wait Task

8 8

CVTTKRM

addr af task removal (TESTDSP) routine

C 12

CVTGOV
addr of GOVRFLB table

10 16

CVTlOTIO

address of Multiprocessing Unit TIO routine in 105

14 20

CVTIOTCH

address of Mul tiprocessing Channel TCH routine in 105

18 24

• VARY QUEUE ELEMENT (VQE)

The VQE describes the main storage area to be logically removed from a multiprocessing
system due to a VARY STORAGE offline command. The address of the Vary Queue is located
in the GOVRFLB table.

o 0 1
Address of next VQE on Vary Queue

4
0 5

Lower address of area specified in VARY command

0
9

Length of area specified in VARY command
8

0 13 ECB - pasted by FREE PART
12

300

(

FAIL SOFT STORAGE ELEMENT MAP (FSSEMAP)

The FSSEMAP is a 128-byte (1024 bits) field located at· hex location 300 in a
multiprocessing system. Each 2K block of main storage is described by two bits which can
have the following values:

Setting
00

10
01
11

Indication
Normal-described by an FBQE
or PQE
Reserved
Reserved
Logically removed from the
system - not described by an
FBQE or PQE

Given a main storage address (X), the corresponding 2K block (b) is:

x (disregard remainder).
b =

2048

The number (n) of the first of the two bits which describe the 2K block is: n = 2*b.

section 12. Control Blocks and Tables 301

Vol
o
N JOb OANNY STEP M TI ME 000609

CCMPlET ION CODE USER 0043

PSW AT ENTRY TO ABEND FFF5000D 40024FDA

TCb 017628

ACT! VE RBS

RBP
MSS
FSA
LTC
NSTAE

00017F70
010184F8
01030FElO
00000000
000184AO

PIE
PK-FlG
TCB
I QIO
TCT

00000000
F0850409
00000000
00000000
000000C8

DEB
FlG
TME
ECB
USER

DATE 99366

000174AC
00001BIB
00000000
00018028
8002BE24

TIO 000180DO
llS 00018078
JST 00017628
STA 00000000

CMP
JlB
NTC
D-PQE

8000002B
00018458
00300000
000197AO

TRN 00000000
JPQ 000180AO
OTe 000182BO
SQS 00017338

PAGE 0001

PRE! 0183E8 RESV 00000000 APSW 00000000 WC-SZ-STAB 00040082 FL-CDE 00018418 PSW FFF5000D 40024FDA
Q/TTR 00000000 WT-lNK 00017628

SVkB 0174F8 TAB-lN 004803BO APSW F2FOflC3 WC-SZ-STAB 0012D002 TQN 00000000 PSW 00040033 50009C6A
Q/TTR 00006104 WT-LNK 000183E8
RG 0-7 00000001 8000002B 00000000 50018034 00018130 000182BO 000180C8 00018908
RG 8-15 00018008 000103BO 00030FBO 00000000 40024D9E 00024FOO 30000000 00001742
EXTSA 000029BE 000317AO 200000FF 000315F8 FF030000 00017574 0001757C E2E8E2C9

C5CIFOFl C9C5C128 C1C2C5D5 C4000000

.:iVRB 017F70 TAB-lN 000803CO APSW flFOF5Cl WC-SZ-STAB 0012D002 TQN 00000000 PSW FF040001 4003EB64
Q/TTK OOOOAEOI WT-LNK 000174F8
RG 0-7 00000000 00017558 8000997C 0000A658 00017628 000174F8 00018418 00000000
RG 8-15 00017628 400098F2 00017&28 000317AO 00018100 0001757C 4000934A 00000000
EXTSA 00660EOO 00000000 C9C7C3FO FOFOF7C2 0000EB80 0000EB30 6000B67C 40404040

40404040 40404040 00000050 00017628

lUIlD LIST

NE 000180B8 RSP-CDE 020180AO NE 000180CO RSP-CDE 010193AO NE 000183C8 RSP-CDE 010192AJ
NE 00000000 RSP-COE 01019270

COE:

018418 ATRI OB NCDE 000000 ROC-RB 000183E8 NM TASKD USE 01 EPA 024D98 ATR2 20 XL/Jo.1J 018490
0180AO ATRI 30 NCDE 018418 ROC-RB 00000000 NM IGCOA05A USE 02 EPA 02F9EO ATR2 28 XL/Jo.1J 018390
0193AO ATRI 80 NCDE 0193DO ROC-RB 00000000 NM IGG019CO USE 04 EPA D3EOF8 ATR2 20 XL/Jo.1J 019390
0192AO ATRI til NCDE 019200 ROC-RB 00000000 NM IGG019BA USE 04 EPA 03EB98 ATR2 20 XL/Jo.1J 019290
019270 ATRI BO NCDE 0192AO ROC-RB 00000000 NM IGG019BB USE 04 EPA 03EB40 ATR2 20 XL/Jo.1J 019260

Xl LN ADR LN ADR LN ADR

018490 SZ 00000010 NO 00000001 80000268 00024D98
018090 SZ 00000010 NO 00000001 80000620 0002F9EO
019390 SZ 00000010 NO 00000001 80000208 0003EDF8
019290 SZ 00000010 NO 00000001 80000180 0003EB98

(CC~

•
I~
3:
'd
t:"'
I:'j

t:1
@
'd

en
(1)

g.
1-'.
g
~
IV .
n
o
~ a
I-'

OJ
I-'
g
~ en
III g.
8
III
tr
I-'
(1)
en

w
o
w

~.
'--- :'

019260 SZ 00000010 NO 00000001

DEB

017480
0174AO
0174CO
0174EO

0000020F 00002BEO
18000000 FF0317AO
C2C2C2C1 C3C40000

00000C76 00000C76
OEOOOOOO 00017628
04017488 10001A44
00000000 00000000

DANNY STEP M

80000058

00000C76
04000000
00000057
00000000

~.

0003EB40

00000C76 00000C76 00000000
88000000 8FOOOOOO 01000000
0000005B 00090032 00010000
00000000

TIOT JOB
DO
DO

14140100 JOBLIB
14040100 SY SABEND

00140800
00150600

80001AAC
80001A44

MSS ************ SPQE ************ *************** DQE ***************
FLGS NSPQE SPIo oQE BLK FQE LN NDQE

0184F8 00 0188A8 014 018118 00030000 00030000 00000800 00000000
0188A8 00 018970 251 018408 00024800 00024800 00000800 00000000
018970 80 019790 000 019738
019738 60 000000 000 0184EO 00030800 00030800 00000800 00000000
019790 40 000000 252 019758 00031000 00031000 00000800 00018080

0002F800 0002F800 00000800 00000000

O-PQE 000197AO FIRST 00018988 LAST 00018988
PQE 018988 FFB 00025000 LFB 00025000 NPQ 00000000

TCB 000182BO RSI 00000000 RAo 00024800

FBQE 025000 NFB 00018988 PFB 00018988 SZ 0000A800

QCB TRACE

MAJ 018300 NMAJ 00018060 PMAJ 000121AC FMIN OOO17BEO

MIN 017EEO FQEl 00018A28 PMIN 00018300 NMIN 00000000

NQEL 00000000 PQEL OOO17BEO TCB 000182BO

MAJ 018060 NMAJ 00000000 PMAJ 00018300 FMIN 00017F58

MIN 017F58 FQEl 00017f48 PMIN 00018060 NMIN 00000000

NQEL 00000000 PQEL 00017F58 TCB 00017628

SAVE AREA TRA("E

TASKD wAS ENTERED VIA LINK

PPQ 00000000
FLG 00

NM SYSDSN

NM FF DANlI B

SVRB 00017790

NM SYSIEAOI

NM FO lEA

SVRB 00017928

SA 030FBO wOl 00000000 HSA 00000000 LSA 00024FOO RET 00010A4A EPA 01024098
Rl 00030FF8 R2 00018020 R3 50018034 R4 00018130 R5 000182BO
1<7 00018908 R8 00018008 R9 o 00103BO RIO 00000050 Rll 00000000

.~

PAGE 0002

* *
* ...•............................•
* *
BBBACD •••••••••••••••••••••• 201C

******* FQE ********
NFQE LN

00000000 00000220
00000000 00000598

00000000 00000328
00000000 00000140
00000000 000001EO

RO FDOOOO06
R6 000180C8
R12 6003F45A

•

~
,J:I:j

~
....
I'd
III

~
IV

o
HI

~,

w
0

""
PO\GE 00)3

SA 024FCO WDI 0106A2D2 HSA 00030FBO LSA 2106A302 RET 2A06A329 EPA 3306A353 RO 3406A386
Rl 1906A3BA R2 LC06A3D3 R3 1606A3FF R4 2706A415 R5 3I06A43C R6 2006A460
R7 3006A49A R8 270oA4CA R9 2706A4F1 RIO 2006A518 Rll 2206A538 RI2 2E06A55A

INTERKUPT AT C24FDA

PRCCEEDING BACK VIA REG 13

SA 024FOO wOl 0106A2D2 HSA 00030fBO LSA 2106A302 RET 2A06A329 EPA 3306A353 RO 3406A386
Rl I906A3tiA R2 2C06A3D3 R3 1606A3Ff R4 2706A4I5 R5 3106A43C R6 2D06A46D
R7 3006A49A R8 2100A4CA R9 2106A4F1 RIO 2006A518 Rll 2206A538 RI2 2E06A55A

TASKD ~AS ENTERED VIA LINK

SA 030FdO WDI 00000000 HSA 00000000 LSA 00024FOO RET 00010A4A EPA 01024098 RO FDOOOO06
Rl 00030Ff8 R2 00018020 R3
R7 00018908 R8 00018008 R9

NUCLEUS

OOCOOO 00000000 OOO~OOOO 00000000 00000000
OOCO~O FF040001 6000f680 00000000 00000000
000040 000C87C8 OCOOOOOO 00000EE8 0000A658
000000 00040000 00006EfO 00040000 00006926
OOOOtlO 00000000 00000000 00000000 00000000

LINES 0000AD-000140 SAME AS ABOVE
000160 OOOCOOOO 00000000 00000000 82000170
000180 FF040001 4003Ed64 0000018A 018A018A
0001AO 000317AO 00030B30 0001738l:l 0003E840
0001CO 000001E7 A002FCOC 40008702 00017340
0001EO 00000000 00000000 00000000 00000000

LINE 000200 SAME AS ABOVE
000220 000COA82 00000000 41500800 lA551821
000240 5834002C 05022015 30194770 078091FO
000260 OE57AOIC 47700780 41FOOE48 45E00712
000280 91707012 47800298 4393001C 43A20020
0002AO 58820004 IBAA43A7 000A89AO 000341DA
0002CO 20000E48 927F2004 50180000 45800cE8
0002EO 181258EO ODE007FE 481000AC 12114740
000300 10045001 000C9200 10040300 100C0021
000320 402C4710 038491EA 70064770 800848AD
000340 00244BAO OE5250AO 002418BO 96208020
000360 02E04180 02D09111 70064770 03949102
000380 03809120 20004788 00084397 000748A9
0003AO 7014927E 2004D201 20027016 47F004A2
0003CO 201841AO OE1041CO 045450AO 00489120
0003EO 47F003FO 41E009DC 94F31006 47F006BC
000400 471C040A D3000048 100C4367 00059487
000420 04269250 004405AO 92140008 88A00018
000440 lA9S4079 Of7296AO 10069130 20104710
000460 04AA9110 00444780 04AA9458 70069120

-
~
\. ..).

50018034 R4 00018130 R5 000182BO R6 00·0180C8
000103BO . RIO 00000050 Rll 00000000 R12 6003F45A

0000A658 00000000 01040080 2003BAE2 * .•.....••...•..•...••.•••••..•. S*
OOOOFFOO 00000000 FF060190 00000000 * •••••• 6 ••••••••••••••••••••••••• *
083F9560 000030E4 00040000 00006888 * ••• H ••••••• y ••••••••••• U •••••••• *
00000000 00000330 00040000 000068F2 * ••••••• 0 •••••••••••••• L •••••••• 2*
00000000 00000000 00000000 00000000 * .•.........•••.....•••••......•. *

00040000 00038610 00000000 00000000 * •••••••••••••••••••••••••••••••• *
FF000190 FF000190 00000001 00017388 * ••••••••••••••••••••••••••••••• *
0002F9EO 00019800 000173D9 00030FBO * ••••••••••••••••• 9 •••••••• R •••• *
6002F010 0003EB40 00000000 00000000 * ••• X •••••• K •••••••••••••••••• *
00000000 00000000 00000000 00000000 * •.••••••••••••••••••••••••••••••• *

92800E5C 41C002B4 1B111804 58420014 * •••••••••••••••••••••••••••••••• *
00214780 02700300 OE573018 18A00500 * •••• N •••••••••• O •••••• L ••••••• N.*
1B9918A9 91FE3010 47700288 48730022 * 0 •••••••••••••••••••••• *
89A09000 587A3020 91F07002 41E00180 * ••••••••••••••••••••••••• 0 •••••• *
OF8007FC 4012001E 01082008 20080403 * ••••••••••••••••••••••• P ••••• M.*
47F002EO 47F00362 47000000 45E0068A * ••••••••••••••• Y.O ••• O •••••••••• *
033E9101 10014710 03344071 00029023 * •••••••••••••••••••••••••••••• *
D20100AC 10009102 20004710 032691CO * •••••••••• L ••••• K ••••••• ~ ••••••• *
000607F4 05022015 00E94780 02FA58AO * ••••••••••••••••••• N •••• Z •••••• *
92F009F5 1B9958AO 00005090 A00047FO * ••••••••••••••••• 0.5 ••••••••••• 0*
20004710 038A91CO 402C4780 038A4110 * ••••••••• ~ ••••••••••••••••••••• *
OF4A07FA 91107006 47800382 D201200C * •••••••••••••••••••••••••••• ~ ••• *
45E006BC 92482004 47FOOC5A 02000E10 * •••••• K •••••• O ••••• ~ ••••• O •• K ••• *
20004710 03F058F3 001C58FF 000405EF *•...........•.... 0.3 •••••••• *
92000048 91017006 41800404 91102001 *.0.0 ••••• 3 ••• 0 •••••••••••••••••• *
10064010 70144060 70049COO 60004700 * ..•• L ••••••••••••••••••••••••• *
42A20010 5890000C 05B91899 43907004 * ••••••••••• Q •••••••••••••••••••• *
049605CC 18E84180 06BC910E 00454770 * •••••••••••••••••••• Y •••••••••• *
00444718 00049608 70069608 OE5C9140 * ••••••••••••••••••••••••••••••• *

-- -

" ()

•
CIl
:xoo
3:
I'd
t'f
t>J

tI c:: :::;:
I'd

....
I'd
III

:+
w

0
I-h

I-"
I-"

w
0

'" 00A580
00A5AO
00A5CO
00A5EO
00A600
00A620
00A640
00A660
OOA680
00A6AO
00A6CO
OOAoEO
00A700
00A720
OCA740
00A760
00A780
00A7AO
OOA7L.O
00A7EO
00A800
DOA820
00A840
00A860
00A880
00A8AO
00A8Ci,l
00A8EO
OOA900
00A920
00A940
00A960
00A980
00A9AO
00A9CO
OQA9EO
OOAAOO
OOAA20
00AA40
00AA60
00AA80
OOAAAO
OOAACO
OOAAEO
OOAbOO
OOAB20
OOAB40
00Ai360
00AB80
OOABAO
OOAdCD
OOABEO
OOACOO
OOAC2D

f\
~)

LINES COA340-00A560 SAME AS ABOVE
0000A584 00000000 00000000 00000000
040GFE50 C0001AAC 00000006 00000055
OOOCOOOO 00000000 00000000 00000000
00000000 0000002A 0009012COO018ECO
8dOCOOOO 00000000 00000000 00002676
ABOCOOOO 00000000 00000000 00002676
00000000 00000000 80000000 00000000
0000A554 000100AO 00000000 00000E64
OOOOOFCC 00006E5C 00001A44 000101CE
00007550 00000000 OA0307FE 0000A58C
00007468 0000724E 00002CFA 100104CC
000C6A60 00000F80 0000018A 000103BO
00000000 00000000 00010608 00000000
00011674 00000000 00000000 OAOOOOOO
oooeoooo 00000000 05800200 806E0021
10084740 802C4710 80924500 83C047FO
41AAOOOO 05U047FO 807247FO 81845921
8tE25821 000058Bl 00044100 87C845EO
920C8062 471083AE 41220004 58B08EC6
00044500 83C047FO 80084500 8CC847FO
00001255 47B080C4 41000008 1B6019A6
818C58BO 8EC650AB 000447FO 83AE18F8
tiU9A9027 80D2909E 8DEE9200 8D6E92FF
058C5880 8C5A0200 806E0021 121147AO
41AAOOOO 18508850 001841BO 8086501B
450083CO 47F0816A 45008CC8 47F082E2
8BFE50FO 80EA41FO 812C47FO 80F44500
80634780 81B891CO 10084790 81A84590
83B85550 80A24720 820E47FO 82A45000
92FF8062 50608066 47F082E2 59608066
823A4100 00081B60 59620000 470081A8
47F082E2 55508DA2 4720820E 91FF8061
47F082c2 91F08D63 4780826A 95FA8063
91201008 471081BO 410083B6 50008D6A
58430000 58440004 91C04010 475082A4
472C82A4 58B080AA 589080B2 07F90705
9118601E 47708200 58660074 12664770
00105800 004807FO 459082EA 98B38EC6
8D8E47FO 83065844 00741244 4780831E
411COOOO 47F08CC8 184647Fl 832407F9
47FC82B2 59E08076 477082B2 5820807A
lAC719CE 4770839E 5AF70004 50F70004
582E0014 4B20805E 502E0014 58208076
02032080 807607F9 50fE0004 507EOOOO
IBFf0705 8u628062 07fE4590 8AF847FO
416COOOB 47F08038 41F00004 47F083B8
4700840C 45908484 47F0847C 12554740
459C8484 47F0844c 45908620 98B38EC6
866247FO 84221BBB 582C0004 14204780
07FF1816 lA6A1661 17614500 851047FO
47U0847C 186F98B3 8EC647FO 00041B66
84C65814 00985811 000C0502 20091019
471C850A 47F084C6 9180101C 4780850A
1BfA4789 00041AFA 19F64700 84E8186F

00000000 00000000 00000000 OFOOA55~
00090320 00000000 0000A5BC 00000000
00000000 OFOOA58C 0400FE50 COO01A44
7BOOOOOO 00000000 00000000 00002676
9BOOOOOO 00000000 00000000 00002676
BBOOOOOO 00000000 00000000 80002676
00000000 00000000 0000721C 00006984
00007018 0000C33E 0000C2CO 00000F98
00993~6F 000103BO 0000C3CC 00010478
000074CC 0000C088 00000000 0000EB30
000026C8 OOOOOOAC 00019800 0000F692
00007916 00000000 00007B78 0003FFEF
00010604 0000A5EC 00000000 00000000
0000A5FO 00007048 00000000 00000000
92F48063 9204806F 58F080CE 059F91CO
83AE47FO 8184182A 410083CO 58A20000
00000789 41700004 IB279680 20005020
86EA98B3 8EC69780 200007F9 91802000
41BB0004 410083C8 47F08032 182A58A2
821291FF 80614710 80B447FO 81CE58A2
472081A8 18A645DO 83C847FO 800847EO
05805880 8C8A50FO 80EA41FO 800A8000
806005EF 92008D60 982E8D02 07FEOOOO
812C92FA 80634160 000B920A 806F18AO
60009400 B0001211 47808732 47208718
47F0821A 181747FO 83B818F8 05805880
8CC847FO 821291FE 80614780 821A95EA
80449120 100847EO 81B841FO 000447FO
8D6A58BO 80AE07FB 95FF8D62 478081E2
4700820A 59620000 47B080B4 125547BO
47F0823A 58608066 47F081EA 92FE8064
471082A4 95FF8062 4780823A 92EF8D62
4780825E 91COI008 47908256 45908044
47F08272 41008194 47F081C4 58300010
5894007C 9120901E 478082A4 59A08082
80628062 4160000B_47F08038 5860808E
82B65800 8FOE47EO 82045800 8F125800
47F083EE 18644110 00024100 82FC5840
9180402C 478082FC 91104021 471082FC
41600800 IB1118Fl 457085E6 47F0833A
58720000 41770000 5862000C 58C70004
41660800 5062000C 58E08D7E 58EEOO08
41220800 50208076 502E0018 58200010
50E20000 47F08366 91201008 47E083B8
869012AA 47A083E6 91201008 4710830E
45908BF6 90B38EC6 5800809A' 555080A2
843447FO 841E4160 OFF0196A 4740843C
507BOOOO 50008D6A 58B080AE 07EB4590
845418C2 47f0843E 12AA4780 84224160
842254BO 8D9A4780 847A586B 000419F6
18B6582C 00041420 07895550 8DA24720
4740849C 95FF8062 478084BE 9180101C
18E2587E 00001470 4780850A 58F70004
18B718E7 9107E003 47708502 587EOOOO

r-,
"

PAGE ('020

* *
* *
* *
* *
* *
* *
* j •••••• *
* C ••• B ••••• *
* C ••••• *
* *
* H •••••••••• 6.*
*•.•.....••.....•.•.••••.•..• *
* ~ *
* 0 •••••••••••• *
* K •••••• 4 ••••••• 0 •••••• *
* ••. ••••••••••• 0 ••• 0 •••••••••••• *
* 0 ••• 0 •••••••••••••••••••• *
*.s H ••••••• F ••••• 9 •••• *
*•. F ••••••• H~0 •••••• *
* O.Q ••• H.O ••••••••••• O •••• *
* •..••.• D ••••••••••••••••• H.~.O.O*
* F ••••• 0 ••• 8 ••••••• 0 ••• 0 •••• *
* K ••••••••••••••••••••• K •••• *
* K ••••••••••••••••••••••••• *
* *
* •..•. O ••••• H.O.5~O ••••• O ••• 8 •••• *
* ... c ... O ••• O.4 ••• H.O •••••••••••• *
* 0 ••• 0*
* o s*
* 0.5 •••••••••••••••••••• *
* 0 ••••••• 0 •••••• *
*.o.s ••••••••••••••••• ~ •••••••••• •
*.0.5.0 •••••••••••••••••••••••••••
* o ..•...• o.n .••. *
* *
* 9P •••••••••• O •••••• *
* O.M •••••• *
* F.O ••••••••••••• *
* ... 0. • • • • • • • • • • • •• • •••••• .. ·r· . * * 0. H • •• 1 ••• 9 ••••••• 1 ••• w. C •• *
*.O ••••••••••••••••••••••••••• G •• *
*.G ••••••• 7 ••• 7 •••••••••••••••••• *
* *
*K •••••• 9 ••••••••• S ••• 0 •••••••••• *
* .. P •••••••••• 8.0 ••••••• W •••••••• *
* O ••• O ••• O ••••• 6 ••• F •••••••• *
* 0 ••••• ... 1).- 0 ••• •• :I<

* O ••••••••• F •••••••••••••••• *
* ... O ••••••••••••••• B.O •••••••••• *
* 0 ••••••••••••••• 6*
* F •••••••••••••••••••••• *
*.F •••••••• N •••••••••••••••••••• *
* O.F ••••••••• s :.7 •• *
* 6 ••• Y ••••• x ••••••••.••• *

t\
<! -j'~

•
C/l

~
t"'
1:>:1

t::l
c::
~
....
~
III

:+
IJ1

~
I-"
p

CIl
~ g.
g
I-"
IV
•
(')
o
~ a
I-'

ttl
I-' g
@
III

8.
t-3
III
t:T
I-'
~ en

w
o
-..J

,., ~ ~

r-- - - ----------....... -- ----- --,
0191E0
019200
019220
019240
019260
01'1280
0192AO
0192CO
0192EO
019300
019320
019.340
019360
019380
0193AO
0193CO
0193EO
019400
019420
019440
019460
019480
0194AO
0194CO
0194EO
019?00
019520
019540
019560
019580
0195AO
0195CO
0155EO
019600
019620
019640
019660
019680
0196AO
0196CO
0196EO
019700
019720
019740
019760
019780
0197AO
0197CO
()~97EO

B0019210 00000000 C9C7C7FO F1F9C3C5
00000010 00000001 800000B8 0003EA08
0203EA08 20019200 00019258 02019240
B0019270 00000000 C9C7C7FO F1F9C1C9
00000010 00000001 80000058 0003EB40
0403EB40 20019260 000192B8 030192AO
B1019200 00000000 C9C7C7FO F1F9C2C1
00000010 00000001 80000068 0003E018
0203E018 200192CO 00019318 02019300
B0019330 00000000 C9C7C7FO F1F9C3C9
000C0010 00000001 80000070 0003F038
0203F03B 20019320 00019378 02019360
B10193AO 00000000 C9C7C7FO F1F9C3C3
0003E800 00019100 0003E800 00000800
B0019300 00000000 C9C7C7FO F1F9C3C4
00000010 00000001 80000070 0003F100
0303F100 200193CO 00019418 02019400
B0019430 00000000 C9C7C7FO F1F9C108
000C0010 00000001 80000008 0003F1E8
0203F1E8 20019420 00019478 02019460
B0019490 00000000 C9C7C7FO F1F9C1C2
000C0010 00000001 80000068 0003F328
0203F328 20019480 00019408 010194CO
B90194FO 00000000 C9C5C6E2 C4F1FOF5
00000010 00000001 80000068 0003F3FO
0103F3FO 280194EO 00019538 01019520
B9019550 00018430 C9C5C6E2 C4F2F6F3
00000010 00000001 80000068 0003F6CO
0103F6CO 28019540 00019598 01019580
B90195BO 00000000 C9C5C608 C905E3E9
00000010 00000001 80000070 0003F728
0103F728 280195AO 00019608. 010195FO
00000010 00000001 80000068 0003F798
01D3F798 200195EO 00019638 01019620
B1019650 00000000 C9C5C5E5 0405E3F1
00000010 ·00000001 80000038 0003F8B8
0103F8B8 28019640 00019698 01019680
B90196CO 00000000 C9C5C5E5 E2E309E3
00000010 00000001 800001B8 0003F948
B9000000 00000000 C9C5C5E5 E6C9D302
000103B8 800196E8 80017018 00000000
00000000 00000000 00000000 00000000
OOOCOOOO 00000000 000179EO 00005000
00019608 FB017E70 00035800 00000000
00031000 00000800 000362F8 00017050
00039800 00000800 00019740 00019778
00019738 FBOOOOOO 00018988 00018988
OBOOOOOO 00017018 C9C5C5E5 E6CIC9E3
000CEB30 0000EB34 0000EB38 0000EB3C

REGS AT ENTRY TO ABEND

0303E998 20019100 00019228 02019210
B0019240 00000000 C9C7C7FO FIF9CI01
00000010 00000001 80000080 0003EACO
0303EACO 20019230 00019288 03019270
B00192AO 00000000 C9C7C7FO F1F9C2C2
00000010 00000001 80000180 0003EB98
0403EB98 20019290 000192E8 02019200
B0019300 00000000 C9C7C7FO F1F9C301
00000010 00000001 80000078 0003E080
0203E080 200192FO 00019348 02019330
B0019360 00000000 C9C7C1FO F1F9C3C8
00000010 00000001 80000058 0003FOA8
0203FOA8 20019350 000193B8 030193AO
00000010 00000001 80000208 0003EOF8
0403EOF8 20019390 000193E8 02019300
B0019400 00000000 C9C7C1FO FIF9CI09
00000010 00000001 80000018 0003FI10
0203F170 200193FO 00019448 02019430
B0019460 00000000 C9C7C7FO FIF9C102
00000010 00000001 80000068 0003F2CO
0203F2CO 20019450 000194A8 02019490
B00194CO 00000000 C9C7C7FO F1F9C1C1
00000010 00000001 80000060 0003F390
0103F390 280194BO 00019508 010194FO
B9019520 00000000 C9C5C507 0709C5E2
00000010 00000001 80000268 0003F458
0203F458 20019510 00019568 01019550
B9019580 00000000 C9C5C6E2 C4FIFOF2
00000010 00000001 80000058 0003F808
0103F808 20019570 000195C8 010195BO
BI0195FO 00000000 C9C5C507 03C4E207
0003FOOO 00019380 0003FOOO 00000800
B1019620 00000000 C9C5C507 CI03E309
00000010 00000001 80000058 0003F860
0103F860 28019610 00019668 01019650
B9019680 00000000 C9C5C507 09E30540
00000010 00000001 80000058 0003F8FO
0103F8FO 28019670 00000000 010196CO
0003FBOO 00019500 0003F800 00000800
0303F948 200196AO 40000000 FC0196BO
00018708 00001AAC 00001AAC 0003C802
00019798 FBOOOOOO 00031800 00031800
00031800 00000000 60000000 000184EO
00035800 00000800 00031000 00018080
00036000 00000800 00039800 00000000
40000000 FC019758 COOOOOOO 00019738
80018960 000188AO 00019718 00019718
01036F88 28017E80 050197F8 00000000
8000EB80 00000000 0000EB8C 00000000

PAGE 0049
* IGG019CE •• Z ••••••••••••• *
* IGG019AJ*
* ~ *
* IGG019AI •••••••••••••••• *
* IGGOIQBB*
* ~
* a.a •• I GGO 19B A ••••••••••• Y •••• *
* IGG019CJ*
* *
* IGG019CI ••••••• O •••••••• *
* •.•.....••...• O ••••••••• IGGOl~CH*
* .. 0 ••••••••••••••••••••••••••• 0 ••
* IGG019CC •• O ••••••••••••• *
* .. y ••••••• y •••••••••••••••••••• 8*
* IGG019CO ••• 8 ••••••• y •••• *
* 1 ••••••••• IGG019AR*
* .. 1 ••••••••••••••••••••••••••• 1.*
* IGG019AQ •• l •••• O •••••••• *
* Q •• IY •••••••• IGG019AK*
* .. lY •••••••••••••••••••••••••• 2.*
* IGG019AB •• 2 ••••••••••••• *
* •••••••••••••• 3 ••••••••• IGG019AA*
* .. 3 •••••••• Q •••••••••••••••••• 3.*
* ... O •••• IEFSDI05 •• 3 •••••••••••• 0*
* •••••••••••••• 30 •••••••• JEEPPRES*
* .. 30 •••••••••••••••••••••••••• 4.*
* IEFSD263 •• 4 ••••••••••••• *
* 6 ••••••••• IEFS~lQ2*
* .. 6 •••••••••••••••••••••••••• 8.*
* IEFQINTZ •• 8 •••••••• H •••• *
* 7 •••• 0 •••• IEEPLOSP*
* .. 7 •••••••••••• 0 •• 0 ••••••• 0 ••••• *
* 7 ••••••••• IEEP~LTP*
* .. 7 ••••••••••••••••••••••••••• 8.*
* I E EV MN T 1 •• p ••••••••••••• *
* 8 ••••••••• 1EEPRTN *
* .. 8 •••••••••••••••••••••••••• 80*
*~ ••••••• IEEVSTRT •• 80 •••••••••••• *
* q ••••••••••• 8 ••••• *
* IEEVWILK •• 9 •••••••••••• *
* y ••••••••••••••••••••• LH.*
* *
* *
* ... Q •••••••••••••••••••••••••••• *
* 8 •••••••••••••••••••• *
*. *
* ...•..................•......... *
* IEEVWAIT ••••••••••• 8 •••• *
* *

Fl TR 0-6 0501741040000060 3101765840000005 0801761000000000 C60174FCI0000060

REGS 0-7 00000001 8000002B 00000000 50018034 00018130 000182BO 000180C8 00018908

•
CIl

~
.. ~

.-.

~
~
0\

o
HI

I-"
I-"

w
o
00 REGS 8-15 00018008 000103BO 00030FBO 00000000 4002409E 00024,FOO 30000001)

PAGE 0050
00007742

LOAD MODULE TASKO

024080
0240AO
0240CO
0240EO
024EOO
024E20
024E40
024E60
024E80
024EAO
024ECO
024EEO
024fOO
024F20
024F40
024f60
024f80
024FAO
024fCO
024fEO

C16618AO 4100(162 500A0008 4510C030
E64OC905 40C30605 E3090603 40080A23
OAOA0700 4510C04E OE00050C 58010000
41E00030 89E00018 160EOA2f 47fOCOB4
E3C1E202 C440E3C9 04C540C~ 05E3C509
40C2C1C3 0240C905 40C30605 E3090603
00024ECC 004fOOOO E3C1E202 C440C406
C1C205C4 E3f06BC1 C205C401 F06BC1C2
C10568C7 C5E3F8f8 f86B0609 40070906
47fOC1AA C1C205C4 E3C40000 40000000
01fOC1C2 05C4E3C4 C1C205C4 01C4C7C5
0106A202 00030fBO 2706A302 2A06A329
1606A3ff 2706A415 3106A43C 2006A460
220bA538 2E06A55A 0505C126 C1324780
C13E4780 C21E0505 (126C14.4 4780C22E
4770C1EE 41200001 4"11=OC'036 0505C126
47fOC1f8 0505C126 C15C4770 COB40000
4000002A 5810C222 OA000700 47FOC236
C000002C 5810C242 OA005800 000498EC

LOAD MOGULE IGCOA05A

02f9EO
02fAOO
02fA20
02fA40
02fA60
02fA80
02fAAO
02fACO
02fAEO
02fBOO
02fB20
02fB40
02fB60
02fB80
02fBAO
02fBCO
02.fBEO
02fCOO
02fC20
02FC40
02fC60
02fC80
02fCAO
02fCCO
02fCEO
OlfOOO
02f020
02f040

~
~. '

41800099 IB114313 00001A81 41330001
43E30000 43030001 8CE00004 88FOOOl(
41818001 44F06076 F3840069 00690C07
413E3003 47F06010 41330001 47F060E2
P0695050 008C5000 012094FC 01235BOO
94FC0067 0703006C 006C1810 54006290
4A10006C 1B005000 66184000 006A1211
008C5860 012407f5 41200121 45B06236
88A00002 45B0623E 46A06104 96400112
012C4B10 006C5010 00704120 007145BO
45B0623E 50200120 96400112 4550620A
00105810 10A41921 47B061A6 18125B10
41110001 4010006E 41220020 50200120
611E47FO 60044810 006E1211 4780619E
00704120 00714810 006E0610 12114770
0200DOAA 62A29640 01124550 620A94Bf
619E0204 009F6290 41306297 45B0623E
41200071 4130629A 45B0623E 020000B2
009S95FF 30004780 627C1BOO 43030000
00700C07 007062C6 41111001 4410628A
07FE90C8 02000070 20000200 80000070
C5E240~2 C104C540 C1E240C1 C206E5C5
034B03Ff 0903ff12 03fF1B03 Ff2403ff
47806310 D27CfOOO 009441FF 007050FO
00900203 E0000090 41fE0004 50F00084
05Ef4110 004858EO 100858FO E03405EF
47206346 1A011A01 lA019240 00980277
005C9140 01120715 47F060E2 4810005E

00100000 E2E4C2E3
1B220700 4510C03E
OAOA1222 4770C036
FOfOF1F5 FOF3F2Fl
E5CI0340 C5E707C9
OA230703 C12EC12E
05C54009 C50703E8
05C4E3C4 6BCIC205
C7C30200 OA234110
05060904 C103C1C2
E304C105 C7C5E3F8
3306A353 3406~386
3006A49A 2706A4CA
(24C0505 C126C138
0505C126 C14A4780
C1564770 C2064100
00000000 41100029
8000002B 5810C232
000C92FF 000C41FO

90ECOOOC 05C05000
(IE20240 C4400506
000003E8 58010000
4110C072 4100C07A
4510COB2 00340000
09C5C460 E3(IE202
4510(116 06024EC4
40050609 04CI036B
C401C46B C7C5E304
C12E4100 00010AOI
05C4E3FO (IC205(4
F8F80709 06C7(302
1906A3BA 2C06A303
2706A4Fl 2006A518
4780C216 0505C126
C23E0505 C126(150
00084510 (2000AOA
OA000700 47FOC226
OA000700 47FOC246
000407FE 09C5C3E3

95fF3000 47806068 IBEEIBFF IBOOIBll
BC000004 8810001C lA2044EO 60701A1E
006962C6 41FfFOOI 44F0607C 418F8004
02008000 30020200 00692000 02008000
01201AI0 5B000120 41110003 50100064
19014780 60B(IBI0 4010006C 58100064
4770611(4810006A 12114770 60E85850
58200120 413062C4 48A0006A 4BA0006C
4550620A 94BF0112 47F0600E 18A15810
62364810 006C8810 00011A31 58200120
94BF0112 4810006C 12114770 61985BI0
6618051F 10002000 477061A6 4810D06E
46A0615E 47F061BO IB114010 006C46AO
58100120 4800006E 89000P05 IBI05010
62020203 009F6290 41306294 45B0623E
01120701 006E006E 12AA4780 600447FO
926000AB 58100120 5BI06618 50100070
62A247FO 61E64130 62B047FO 65744180
1B114313 00011A80 44106284 F3840070
41330002 41220004 47F0623E 41330001
FFFFFFEO OB02FFOC 02FF1302 FF03C905
0002FF09 0312031B 03240330 03390342
3003FF39 03FF4203 FF0098EO 008012EE
0084411F 00701910 47006330 1BFE40FO
41100048 92201005 58FI0008 58FOF030
41100001 4800005(95600098 47406348
00990098 41100038 190147BO 636C4000
41110001 4010D05E 92F10098 02030105

1
\.

* 0 ••••••••••••••••• *
A ••••• A ••••••••••••• SUBTASK D NO
*W IN CONTROL •••••••••.••••• Y •••• *
* *
* ••.•...•..••• O •• 00150321 •••• ~ ••• *
TASKOTI~E INTERVAL ~XpIREO.TASK

* BACK IN CONTROL •• P.A.A ••• A •••• 0*
* •••••••• TASKO DONE REPLY NORMAl.*
ABNOTO.ABNOJO.ABNOTO.ABNDJD.GETM
*AN.GET888.OR PROGCK ••••• A ••••••• *
.OA.ABNDTD ••••• NORMAlABNDTO~BND
JOABNDTDABNDJDGETMANGET888PROGCK
* ... K ••••••••••••••••••••••••••• L*
*•............... 1 •••• *
* ••...•.. N.A.A ••• B.N.A.A ••• R.~.A.*
A ••• B.N.A.A ••• B.N.A.A ••• B.N.A.A.
* .. A •••••• O •• N.A.A ••• B ••• ~ ••• B ••• *
.OA8N.A.A •••••••••••••••••••• OB.
* B •••••• 08 ••••••• 6 •••••• 06.*
* B •••••••••••••••• O •••• RECT*

* .•...•.........• ~ ...•........... *
*.T ••••••••••• O •••••••••••••••••• *
* ..•.. O •• 3 •••••••••• F •• O •• O •••• ~.*
* O ••••••• O.SK ••••• K ••••• K ••• *
* J ••• J ••• J ••••• J ••••••••• *
* P •••••••••••••••••••••••••• *
* y •• *
* J •• 5 •• J ••••••• J •••• D •••••••• *
* J ••••••• J •• O •••••• *
J •••••••••••••••••••••••••• ~ •• J.
* ...•.. J •• J ••••••• J ••••••••••••• *
* N ••••••••••••• *
* ... ~•... J.· ••••• O ••••••••• *
* ... O.M •••••••••••• J ••••••••••••• *
* ••••.•.. ~ •••.••.... K ••••••••••••• *
K •••••• J ••••••• J.P •••••••••• M.O
* .. K ••••••••••••••••••• J ••••••••• *
* K •••••• O.W ••••• O •••• *
* 3 ••• *
* F ••••••••••••••••• 0 •••••• *
* ... HK ••••• K •••••••••••••••••• LIN*
*ES SAME .AS ABOVE •••••••••••••••• *
* -.. ~ *
* K.O •••••••• O •••••••••••••• 0*
* .. K •••••••••• O ••••••••••• 1 ••• 00.*
* 0 ••••••••••••••••••• *
* K •••••••••••••••• *
* ... J •••• O.S •••••••••••• 1 •• K.J.*

.~
~ ~

•
CIl

~
1:"1
t>::I

g
:3:
'\l

....
'\l
III

~
..oJ

o
Hl

....

CIl
(1)

~
g
I-'
tv

()
o
;:l.
a
~

ttl
~
o
~
CIl

PI

8-
t-;I
PI
C'
~
(1)
CIl

w
o
ID

"
02F060
02f080
02FOAO
02FOCO
02fOEO
02fEOO
02fE20
02FE40
02FE60
02FE80
02FEAO
02FECO
02FEEO
02FfOO
02FF20
02Ff40
02FF60
02FF80
02ffAO
02ffCO
02FFEO

63AE4EI0 0078F333 010A007C 96FOOI00
0785411E 0004191F 078547FO 62FC07Cl
CIC2C3C4 C5C69120 01384710 646E9101
D1384750 64029120 01394710 64029118
01394710 64EE58E4 007C13EE 45506504
58601OC8 58660028 188E18AE 05E618E8
01240128 4550620A 4550639A 98790080
16091817 OAOA58EO 00609180 E0024780
58F00060 41FF0004 41300004 92FFI000
01305800 65681810 OAOA4100 65600205
D13841AO 653847FO 64FA41AO 654047FO
64FA94E7 013941AO 655047FO 64FA94FO
FOOOOA07 12EE47AO 650E13EE 07F518FE
47850004 58FF0084 47F06514 FOC505C4
C9C7C3FO F4FOF5Cl C9C7C3FO F6FOF5Cl
C9C7C3FO CIFOF5Cl F000013A E2E8E2C9
012088AO 000589AO 0005021F 7057AOOO
925C7077 91C07057 47106568 95407057
OCIF7037 6504987A 009C0213 009C009B
4B484B46 4BOI0203 04050607 08094B46
4B484646 FOFIF2F3 F4F5F6F7 F8F94B46

LOAO MOCULE IGG019CO

03EOEO
03EEOO
03EE20
03EE40
03EE60
03EE80
03HAO
03EECO
03EEEO
03EFOO
03Ef20
03EF40
03EF60
03EF80
03EFAO
03EFCO
03EFEO

4710F144 58A0200C 5810202C 48673006
F05A1B44 4340A007 18044340 20041604
203E4900 201247CO F1664900 A00447CO
OA002000 41202005 42730004 183F184E
589031FC lE091880 58F00010 58FOFOIC
95011010 4770310A 95011010 4770310A
43920000 89900004 43A91029 43691020
1808166A 58902007 43A09003 IBAB46AO
05EF18Fl 41900005 1B295880 20305830
18C618E4 48673006 9101203C 4780F13C
96013014 5843000C 92404000 47FOFIF4
91982024 47COF174 4840203E 4850AOOA
1F544840 20121645 40402012 02073028
914C3000 4710F1B8 4243002F 47FOFIEC
1A54D204 50002008 4B50F200 91802034
40650008 41430008 18140AOO 989A0040

LOAD MOCULE IGG0196A

03EB80
03E6AO
03EBCO
03E6EO
03ECOO
03EC20
03EC40
03EC60
03EC80
03ECAO
03ECCO

00085830 20445833 000094BF 20304103
80349228 100098E8 001407FE IB551B44
91802030 4780816E 16449680 203058FO
20304780 80724144 00101A43 50430018
1A439120 201i47EO 80964350 201091CO
100547EO 80085861 00OCIA65 02013006
91801004 47108008 48610006 47F0800C
50302044 05EF98E8 001407FE 43402042
91202011 47E08136 41EQ0008 91042030
20244710 8092947F 203047FO 809294FO

,.".

0201005C 63B247FO 620A98EO 008012EE
C7C5FFFF 07FEFOFl F2F3F4F5 F6F7F8F9
01384710 64CA9180'01394710 64CA910C
01394750 64E29110 01384710 64EE9102
47F06418 47F06434 947FE020 58100010
47F0640C 94FE4010 020B0098 652C0203
12774780 64661B97 41000000 89000018
649E4110 0070070B 10001000 41E0656C
42301001 50EOI004 50FOI008 OA3058AO
A06064B8 47FA0060 OA091BFF OA03940F
64FA94F3 0138940F 013941AO 654847FO
013994EF 013841AO 655841FO 007050AO
58EF0088 12EE0775 58EF0080 59FF007C
4006C640 C4E40407 C9C7C3FO FIFOF5Cl
C9C7C3FO F7FOF5Cl C9C7C3FO F8FOF5Cl
C5C1FOFI 41800099 907A009C 187858AO
4187001F 4197001F 41800001 925C7056
478065BC 920F7057 943F7057 877865A4
47F0623E 4BCIC2C3 C4C5C6C7 C8C94B4B
4B4B4B4B 464BE2E3 E4E5E6E7 E8E94B4B
4B4B4B4B 40000000 00000020 00000000

909A0040 9120203C
9101203C 4780F024 4860205A 12664740
91982024 4710F046 ·IE0647FO Fcr4A4AOO
F06C4810 F06A4100 00808900 00181610
185B186C 187058FO 001058FO F02005EF
05EF12FF 478030A8 96202037 47F0310A
91041008 47E0310A IB991BAA IBBBIBCC
43C20006 19CA4740 30E819BC 47B0310A
30FA89AO 00101EOA 58FOOOI0 58FOFOIC
204458AO 200C1807 IB774373 000418B5
4860205A 9120203C' 4780F158 9620203C
58A0200C 02012012 A0049200 200C1846
lC448E40 00094340 A0061E54 43402004
20051B44 4340200C 41440001 4240200C
43402040 18531A54 43402041 89400003
4780FIEO 40605000 IB444340 ~0101B64
07FEOOOO 00010000 00020700 07000700

90E80014 188F5821
00085001 00105013 000C95FF 30044770
91COI005 474080F4 91202011 47808050
204C4340 20409120 20114780 80729104
94013000 96403000 IB444340 20431874
202447BO 80C89140 20244780 80089120
60000201 ,60028010 48630006 47F0800C
4860203E lA654064 00060202 40011000.
18741A43 58F02048 94013000 96203000
4780811E IBEE410E 30285003 00189108
40005043 00189140 10054710 81629602'

~

PAGE 0051
* 3.J •••• OJ.K •••••• O •••••••• *
* ••••••••••• 0 •• PAGE •••• 012345S789*
*ABCDEF •• J ••••••• J ••••••• J ••••••• *
*J •••• K •• J •••• K •• J •••• s .. J ••••••• *
*J •••••• u ••••••••• O ••• O •••••••••• *
* ... H ••••••••••• y.o K ••••• K.*
*J.J ••••••••••••••••••••••••••••• *
* •..•••...••••....•.... P ••••• ~ ••• *
*.0 ••••••••••••••••••••••• 0 •••••• *
*J ••••••••••••• K ••••••••••••••••• *
J •••••• O •••••• O ••• 3J ••• J •••••• O
* ... XJ •••••• O •••• J ••• J •••••• O •••• *
*O •••••••••••• 5 •••• · •••••••• ~ ••••• *
* ••••••••• O •• OENO OF OUMPIGC0105A*
IGC0405AIGC0605AIGC0705AIGC0805A
*IGCOA05A •••• SYSIEA01 •••••••••••• *
*J ••••••••• K ••••••••••••••••••••• *
* *
* M •••• K •••••• O ••• ABCDEFG~I •• *
* ••••• JKLMNOPQR~ ••••••• STUVWXYZ •• *
* 0123456789 ••••••••••••••••• *

* ... 0 •••••••••••••••••••••••••• *
* .. 1 ••••••••••••••••••• 0 •••••••• *
*0 ••••••••••••••••••• 0 •••• 00 ••••
* 1 ••••••• 0 ••• 0 ••••••••••• *
* 0 ••• 00 ••• *
* 0 ••• 00 ••••.•••••••••• 0 •••
* *
* B •••••• v •••••• *
* 0 ••• 00.*
* .•. 3 ••••••••••• ~ ••••••• P •••••••• *
*.F.U •••••••••• 1 •• ~ •••••••• 1 ••••• *
* 014 •••• K •••.•••••••• *
* 1 ••••••••••••••••••••• *
*... ..K •• · •••••••••••••.•••
* ..•.. 1 •••••• 01.. ..*
* .. K ••••••• 2 ••••••• 1 ••••••••••• *
*•

* v ••••••••••• v •••••••
*•.........•.. *
* ••••••• y •••••.••••••••• 4 •••••••• *·
*•... 0...•
*•
* ••••••..•..••• ~ ••.••• H • ••••• Q •••
* Q •••••• K ••••• K •••••••••• O •• *
* ..•.... Q ••••• O ••••••••••• K. ' ••• *
* v •••••••••••• 0 •••••••••••
*•...........•......••...••••• * •.•..•... ~.o ••• o •••••••••••••••

•
CIl

~
t:'"
t;:r:J

g
~
....
"0
PI

~
co

g,
I-'
I-'

W
I-'
o

03ECEO
03EOOO

400(9150 201147CO 809691CO 202441CO
203041FO 80961851 18120A19 18151855

LOAD MOCULE IGG01966

03E640
03E660
03E880

SP 252

90t8D014 185F5821 00085831 00101841
00010A01 41F05010 18121803 48005008
05EF9801 00404111 00000A37 98E80014

031140 06500000 00104040 40FOF3C5 C2F6F040
031160 FOF1F040 F1F8F1F2 F1F8FOF3 40F4C2FO
031180 f04Cf4F1 F1FIFOFO FOF040fO CIF3F7F1
0311AO ~b464648 46F0464B 464B4B48 464B4B46
0311CO 5COC7040 4040FOF3 C5C2f8FO 404040FO
0311EO 40FOfOFO FOFOC1F3 F140F9f8 C5F8C4FO
031200 F7FCfOFO F1FOF040 40404040 40404040
031220 48464046 48464846 4846E846 484B484B
031240 4040FOE2 0140f2F5 f2404040 40404040
031260 40404040 40404040 40404040 40404040

LINE 031280 SAME AS A60VE
0312AO 404(4040 40404040 40404040 40404040
0312CO FOf3Flf1 F4F04040 40FOFbF5 C4FOFOFO
0312EO F3C3F540 C3F2C6F6 C6FOF4FO 40404040
031300 F040F4FO C3F6C6fO C3F640C6 F1C3F6Cb
031320 FOF4F040 404040F4 FOF4FOC6 FOCbF040
031340 f3FOF040 4040C6FO F4FOC6F4 C6F040C3
031360 40C6F1C3 F3C6F6C3 f6404040 40C6FOC3
031380 F3C6F5F4 FOC3F340 C6F2C3F6 C6F6C3F6
0313AO F1C3F6C6 fOC3f340 404046F3 C3F540C3
0313CO 404040C6 FOC6f4C6 FOF4F040 F4FOF4FO
0313EO C3F6C6FO F4F04040 4040C3Fb C6FOC3F6
031400 f4FOf4FO 40F4FOC6 fOC6f3C6 F1404040
031420 40C6fOC6 flC6fOC3 46484840 4040FOF3
031440 C6f3C6FO C6FOF4FO 40F4fOF4 FOC3F6C6
031460 fOC3F340 404040C6 F3C3F6C6 F6C3F340
031480 F640C6F4 C6fOC3F3 C6F64040 405CF3FO
0314AO F6C3F6C6 F040C3f3 C6F6f4FO C3F65COO
0314CO F6C6FIC3 F340C6F3 C3F6C6F6 C3F340C6
0314EO 404C4040 C6F3C3F6 C6F3C6F4 40C6FOF4
031500 F6C6f3f4 FOC3F340 40405C40 C6F1C3F3
031520 404C40C6 FOC3F3C6 F3F4f05C 00104040
031540 C3F640C6 FOC3F3C6 f3C3F640 C6F3C6F4
031560 40F4fOC6 FOC6F3C6 F140CbF3 C6F8C6FO
031580 C3F6C6F5 4040405C 404040C6 FOC3F3C6
0315AO 4040C6F3 C3F6C6F5 5C001D40 4040FOF3
0315CO C6fOC3F3 C6f3C3F6 40C6F3C3 F3C6F6F4
0315EO CbFOC6F5 C3F340F4 FOC6fOC6 FOC6F140
031600 F0404040 5CC3F640 C6FOC3F3 C6F3C3F6
031620 F4FC4040 405C0070 404040FO F3F1F5F6
031640 F6C6F3C3 F640C6Fl F4FOC3F6 C6F340C3
031660 FOC6F440 C6FOC6F4 C6FOC3F3 40C6F6C3
031680 405C40F4 FOC6FOC6 F3C6F140 C6F3C6F8
0316AO C6F65COO 10404040 fOF3F1F5 F8F04040

()

80969604 400041FO 8096960C 40009640
5013000C 41F08050

911F4000 4110504C 41405028 18144100
90010040 41110000 OA3112FF 41805010
01FE0100 01000100

4040FOFO FOF1FOCI FOF140F4 F1C6FOF5
FOF5FOFO F8404040 40F9FJFO FIC4FOF~
F2C6C640 F4F1F8FO F5FOF1FO 4040405C
48484840 48484848 4B4B484B 4B4B4B4B
F5C5C6F9 F8FOF140 C4FOF4FO F4FIFIFI
FIF44040 4040FOF1 C6C5FOF1 FOF040FO
40404040 40404040 40404040 5C4B484B
48484B48 4B4BE84B 4648464B 465C001D
40404040 40404040 40404040 40404040
40404040 40404040 40404040 40404040

40404040 40404040 40404000 1D4040FO
F040FOFO F1C4F4FO F4F040F4 FOC6FOC6
F4FOF4FO C6FOC6FO 40C6FOC6 FIC6FOC3
FOC3F340 40405CF3 C3F540C3 F2C6F6C6
C6FOC6F1 C6FOC35C 00704040 40FOF3F1
F3C6F6C3 F6C6F040 C3F3C6F6 F4FOC3F6
F3C6F3F4 F040F4FO F4FOF5C3 C6F340C3
4040405C F040F4FO C3F6C6FO C3F640C6
F2C6F6C6 5C001D40 4040FOF3 F1F3F2FO
F4FOC6F4 40C6FOC6 F4C6FOC3 F640C6FO
C6F140C3 F6C6FOC3 F3F5C340 FOFOF1C4
5CFOF4FO 40404040 F4FOF4FO C6FOC6FO
F15C001D 4C4040FO F3FIF3F4 F0404040
F040C6F4 C6FOC3F6 C6F440C3 F6C6FOF4
C6F6C3F6 C6FOF4FO 40C3F3C6 F3C3F6C6
F0404040 C6FOF4FO C6F4C6FO 40C3F3C6
1D404040 FOF3F1F3 F6F04040 40F4FOC3
F6F4FOF4 FOF4F040 F4FOC3F6 C6FOC3F3
FOC6F4C6 F040C6F4 C6FOC6F5 C3F340C3
C6F6C3F6 40404040 C6FOC3F3 C6F3F4FO
40fOF3F1 F3F8F040 4040C6F3 C3F6C6F5
C6FOF5C3 40FOFOF1 C4F4FOF4 F0404040
F4F040F4 FOF4FOC3 F6C6F340 C3F3C6F6
f3F4F04B 48464040 40FOF3F1 F3F8F040
F1F5F4FO 404040C3 F3C6F6F4 FOC3F640
F040C3F6 C6F3C3F6 C6F44040 4040C3F6
C3F4C6F4 C6fOC6F4 40C6FOF4 FOF4FOF4
40C6F3C6 F4C6FOF5 C340FOFO F1C4F4FO
F0404040 F4FOC6F4 C6FOC3F6 40C6FOC3
F6C6F8C3 F6C6F040 404040C6 F4C6FOF4
F6C6F3F4 F040C3F3 C6F3C3F6 C6F64040
C6FOF4FO 40F4fOF4 FOC3F6C6 F340C3F3
40C3F3C6 F6C3F6C6 F540F4FO F4FOF4FO

f
\ /

PAGJ:' 0052
* 0 •••••• *
* ... 0 ••••••••••••••••• 0 •••••••••• *

*.v................•. *
* 0 ••••••••••••••••••••••••••
••••••••••••• y ••••••••••• y •••••• *

...... 03EB60 00010A01 41F05
010 18121803 4600500Q 9~01004

0 41110000 OA3112FF 41805010 .
* 0 ••••••••••••••••••••••••• *
* •• ~ 03E680 05EF9801 D0404111*
* 00000A37 98E80014 01~F0100 0*
*1000100 •••• *
* y ••••••••••• y ••••••••• *
* OSP 252 *
* *
* 0*
031140 06500000 00704040 40FOF
3C5 C2F6F040 4040FO~O FOFIFOC
0 40C6FOC6 FIC6FQC3 .3C~ C2F6F
040 4040FOFO FOFl~OC... 031
300 F040F4FO C3F6C6FO C3F640C6
* F1C3F6C6 FOC3F340 40405CF3 c*
3F540C3 ~2C6F6C6 .0 4 0 CnF0:6 F
1C6FOC3 .3C5 C2F6F... 031320
* FOF4F040 404040F4 FOF4FOC6 FO*
C6F040 C6FOC6Fl C6~OC35C n07D
4040 40FOF3F1 .040 4040FnFO
* FOFIFOC... 031... 031340 *
F3FOF040 4040C6FO F4~OC6F4 C5F04
OC3 F3C6F6C3 F6C6F040 C3F3C6F
6 F4FOC3F6 .300 F040F4FO C3F
6C6FO (3F640C6... 031360 40C
6FIC3 F3C6F6C3 F6404040 40C6FOC3
* F3C6F3F4 F040F4FO F4FOF5C3 c*
6F340C3 • F1C3F6C6 FOC3F340
* FOC3F340... 031380 ~3:6F5*

*C6 FOC3F3C6 F3F4F05C 00704040 *
* 40FOF3F1 F3F8F040 4340C6F3 C3F6*
*C6F5 FOC3F340... 031380 *
* F3C6F5... 031540 C3F640r.6 *
FOC3F3C6 F3C3F640 C6F3C6F4 C6
FOF5C3 40FOFOF1 C4F4FOF4 F040404
0 .C6 FOC3F3C6 F3F4F05C 007040
40 031560 40F4FOC6 FOC
6F3C6 F140C6F3 C6F8C6FO F4F04
*OF4 FOF4FOC3 F6C6F340 C3~3C6F6 *
* . 40FOF3F1 F3F8F040 4040C6F3 C3*
F6... 031580 C3F6C6F5 404040

1'.::'4,

"'-:I

•
en

~
1:'4
t>l

g
~
-'1:!
DI

~
\Q

g,
I-'
I-'
'-'

en
(1)

~
~.

g
~
IV .
(')
o
~
Ii o
~

ttl
~

g
r%
III

8.
"'3
III
t::r
~
(1)
en

w
~
~

l~

0316CO
0316EO
031700
031720
031740
031760
031780
0317AO
0317CO
0317EO

SP 014

030220
030240
0302·60
030280
0302AO
0302CO
0302EO
030300
030320
030340
030360
030380
0303AO
0303CO
0303EO
030400
030420
030440
030460
030480
0304AO
0304CO
0304EO
030500
030520
030540
030560
030580
0305AO
0305CO
0305EO
030600
030620
030640
030660·
03~.680
0306AO
0306CO
0306EO
030700
030720
030740

F5C340F4 FOF4FOF4 FOC3F640 C6FOC3F3
40F4C2F4 C2F4FOF4 F040f4FO C6FOC6F3
F6C6f540 40404840 4040C6FO C3F3C6F3
00704040 40FOF3F1 F5C1F040 4040F4FO
C6F5C3F1 C6FOF4FO 40F4FOF4 FOC6F4C6
C6F3F4FO C3F340C6 F3C3F6C6 f6C3F340
40FCF3F1 F5CIF040 4040F4fO F4FOC3F6
00000100 14060000 00610009 0100C308
00000001 54000000 002C0020 000172A4
30040048 41030B28 0103EDF8 0003EOF8

C10C4335 00014155 OC020630 4430COFA
20041A53 lA731578 4780C146 4122000C
404000.00 40000202 BoB44004 4100B068
05C047FO COl4CCCC C9C5C6E2 C4F1F6F2
41003006 41EOOOFO 89E00018 160E4510
100C9680 10000630 12334740 C0504430
12554780 C07A4100 00484510 C06COAOA
F0000048 58010000 OAOA1801 4510C092
10045080 10000700 45FOCOBA 00030334
18211810 47FOCOCA F0000048 5800COC6
41EOOOFO 89E00018 160E1814 OAOA58FO
80684110 80B05010 90a09203 90089202
70005030 10045030 80105830 60005030
58FOC48A 05EF9200 902047FF C14C47FO
000C4100 00808900 00181610 OA005830
18030700 90089008 181958FO C4A605EF
4780C1A6 47FOC1A2 41300024 4100002C
C1COOAOA 07171000 100018B1 06304430
&0540502 6005C47A 4780CIFO 02021001
5010B02C 58306004 88300006 5430C4B2
5840500C 5040B010 07033000 400C0703
000C1BOO 91807005 4780C2C6 05027020
00F089EO 0018160E 4510C26A OAOA1831
30340202 30253035 02033034 C47E1812
42E10000 OA139101 30304710 C32~030
9540A01C 4780C2B2 91806043 478OC390
160E4510 C2E40AOA 18314440 C4AA0207
30350203 3034C47E 18129280 100094FO
91013030 4780C38C 0207B024 C4824100
5810BOOO 48410004 41040006 414000FO
414000FO 89400018 16044510 C36COAOA
96801000 02071006 A01C47FO C3905030
0703400C 300007033000400C 4110B020
C3C49680 B0341B33 43308000 88300004
00000000 00000000 00000000 00000000
58AOA094 02038030C47A0501 A028C47A
803260A6 41108018 5010B004 41308020
18170700 47FOC44A FOOOOOBO 5800C446
OAOA1812 47FOC46A F0000018 5800C466
89000000C9C5C6E2 C4FOE7E7 00030830
00030818 00030928 00030F08 02003000
0000000000000000 00000000 00000001

~

C6F3C3F6 40404040 C6F3C6F4 C6FOF4C2
C6F.l40C6 F3C6F8C6 FOF4F040 40405CC3
F4F04B4B 4B404040 FOF3F1F3 F8F0405C
F4FOC3F6 C6F340C3 F3C6F6C3 F6C6F540
F0404040 40C6F4C6 FOC3F3C6 F640C3F6
C6F6C3F6 C6F5F4FO 4040405C 4B484040
C6F340C3 F3C6F6C3 F6C6F540 5C0180AO
00210740 00000001 00004000 00000001
9203E898 0003EB40 OBOOOOOI 00000660
00000010 00000001 4510902E OAOA5010

41330001 02032000 C1084232 00019061
41FOCOB6 02007000 5000E2E8 E2C4E205
181A58FO C01605EF 41FFC122 47FOC142
05031966 CCCC1881 58608014 48306008
C0300AOA 18414030 10044100 10045000
C48E4190 80F85830 90181B55 43530000
18014110 80F858FO C4A205EF 4510C082
F0000018 58010000 OAOA5830 80105030
00000000 C9C5C6E6 F2FIE2C4 OA06183F
OAOA1233 4180COF4 48140004 41010006
C49E1812 01FF9680 60AC4190 80F84100
90205870 20045070 10005060 10085830
100C503080149200 100F9200 80111819
C16C4100 C14C4100 C14C4110 00B08BI0
90185833 00004133 00001233 4780C1A6
183F1810 41000048 OAOA4100 80681233
lA0341EO 00F089EO 0018160E 18004510
C4944100 802C5000 B0084200 B0084110
60055040 B0004110 B0240201 1000606C
5030B040 5830200C 5030B014 58508000
400C3000 01033000 400C5080 BOOC58A4
60004710 C2B04100 00381840 064041EO
4440C4AA 02073028 AOIC4110 30345010
92801000 94FOI000 43EI0000 50310000
80601800 4300A018 12004780 C3901AAO
41000038 18400640 41EOOOFO 89E00018
3028AOIC 41103034 50103034 02023025
100043E1 00005031 000042E1 00000A13
00384140 00F08940 00181604 18130AOA
89400018 16040AOA 41400008 41040006
50108000 40401004 41001004 50001000
B03058.40 BOI05830 B0140703 3000400C
0.1031000 10005010 B0349102 60044180
4230B046 47FOC3FA 00000000 00000000
00000000 40404040 40404040 58A00010
4180C422 050160A6 A02647BO C4220201
50301000 41405018 50401004 96801004
OAOA1816 41FOC45A FOOOOOBO 5800C456
OAOA181B 58FOC49A 01FFOOOO 00000000
02001006 60440203 B02CC306 00030170
C4B60000 03000000 00000000 00000000
00000200 00000001 00000001 00000000

~

PAGE 0053
5C 404040C6 FOC3F3C6 F3F4FC4B
* 48484040 40FOF3F1 F3FBFC40 .C*
6F5 FOC3F340... 031380.
*.. 0315AO 4040C6F3 C3F6C6F5 *
F5CIF040 4040F4FO F4FOC3F6 C6
*F340C3 F3C6F6C3 F6C6F540 *
* 0315AO 4040C6F3 C3F6C6F5 •••• *
* CQ... • •••• *
*•
* 8 ••• 8 •••••••••••••••• *

*A ••••••••••••••••••• K ••• A ••••••• *
* A •••••• O •• K ••••• SYSDSN*
* .K ••••••••••• O •••••• A •• OA.*
* ... O •••• IEFSD162 •••••••••••••••• *
* *
* 0 •••• 8 •••••••••• *
* J ••• 8.00 ••••••• *
* J •••••••••••••••••••• *
* O •••••••••• IEFW21SD •••• *
* O ••••••••• F ••••••• 4 •••••••• *
* 00 •••••••••••• 8 •• *
* *
* *
*.OD ••••••••• A •• OA ••• A ••• A ••••••• *
* A.*
*.lP •••••••• OD ••••••••••••••••••••
* .. A •• OA ••••••••••••••••••••••••• *
*A ••• P ••••••••••• D ••••••••••••••• *
* .. N ••• O ••• AOK •••••••••••• K ••••• *
* 0 •••••••••••••••• *
* P •••• P •••• P •••••••••• *
* BFN ••••••• B ••••••••• *
* 8 •••••• O.K ••••••••••• *
* .. K ••••• K ••• D.· ••••••• O •••••••••• *
* C ••••••••••••••• C ••• *
* B ••••••• C ••••••••••••••• *
* BU ••••• D.K ••••••••••••• K ••• *
* .. K ••• D •••••••• O •••••••••••••••• *
* C.K ••• D...... • ••••••• *
* *
* C ••••••••••••••••• *
* .•.. K •• ~ ••• OC •••••• •••••• P •••• *
*P •••• P •••••••• P ••••••••••••••• *
*CD ••••••••••••••••••• OC ••••••••• * *.................... • ... *
* K ••• D.N ••• D ••• D.N ••••••• D.K.*
* *
* .•••. OD ••••••• D •••••• OD~ •••••• D.*
* 00 ••••••• 0 •••••• 00 ••••••••• *
* •••• IEFSOOXX •••• K ••••• K ••• CO •••• *
* K ••• D ••••••••••••••• *
* *

•

~
~
....
It!
III

~
~
o

o
HI

~
~
'>oJ

W
f->
~

030760
030780
0307AO
0307CO
03C7EO

SP 000

030B20
030B40
030B60
030B80
030BAO
030BCO
030BEO
030COO
030cio
030C40
030C60
030C80
030CAO
030CCO
030CEO
030000
030020
030040
030060
030080
0300AO
0300CO
0300EO
030EOO
030E20
030E40
030E60
030E80
030EAO
030ECO
030EEO
030FOO
030F20
030F40
030F60
030F80
030FAO
030FCO
030FEO

F0404040 40404040 02000008 00000000
06081966 CCCC9827 10005880 70045877
0018180A 16014510'C0380AOA 41610008
70004170 71004160 61004B80 COA247FO
90144180 10085080 10001815 180AOAOA

41030828 48030650
40030B58 000317AO 00000000 00000000
08030858 00000000 10030878 A0000008
70189898 70241805 97809006 47F080AO
812C5950 90004780 812C5890 900047FO
40104144 00204122 00B04650 81381850
817458FO 821A05EF 58870018 12Ff4770
58870018 989B7~24 02019004 702212FF
18055990 A04C4780 81C45850 A04C1845
02039000 A04C5090 A04C5860 30205846
82060620 41C90008 41100060 1C021AC1
900647FO 8206U2AF 4000COOO 1BFF50FO
00030CA8 908892FF 05804860 B08050E7
801C9206 70104150 A05818C6 41000020
80404800 900447FO 80581822 80200008
00224820 B07A4BOO B0864740 807A1BCC
47F0808A 4AOOB086 4AOOB084 06208920
58103020 58010004 4110B034 50070034
5810301C 02071024 70000204 40007003
800C47FO 810A8COO 00108810 00184111
47B0810A 4820B084 4A208086 48208256
000741Ff 000142f7 00078910 00188000
89100018 80000010 4110B034 50070034
00340501 7003700B 47708170 02027005
41000018 4510817E OAOA4121 00044B50
41C00006 9240501C 40C0501E 41C05018
10067003 58C70014 4BC08258 182C58CC
47fC80CO 5810301C 58210014 50270010
OA005810 301C4100 00010A01 58270010
0000122C 47808238 58CCOOOO 5812000C
821e070a 00000000 IBFf5810 301C957f
00010008 00204900 90ECbooc 05801831
A04C1B66 91083008 4710807E 41000038
58990000 12994780 808447FO 802A1255
45E080C2 58870020 98467018 98987024
47708032 18174100 00380AOA 41000048
A048181A OAOA18F6 58603018 07026001
01024098 F0000006 00030Ff8 00018020
00018908 00018008 00010380 00000050

.END OF DUMP

,..~

\

05C047FO C014CCCC C9C5C6E2 C4FIF6F3
00001857 41A08008 1891411a aOFF8910
50810004 4980COA2 4740C060 D2Ff6000
C0421288 4780C06C 06804480 C09C5010
5889000C 18190700 45FOC09A 00030804

00000000 7f017388 00030878 OCOOOOOO
07000000 62000100 31030853 40000005
00031140 20000650 00620001 01000650
1B554960 90044780 8.19C4950 90044780
810C4850 B0804140 A0584120 90085020
18489046 7018909B 70249180 90064780
818E989B 70249780 900658FO 821A05EF
47808196 5807001C 47F08208 98467018
58550000 19594770 81A8D203 40009000
00001B22 80200008 88300008 12224780
95043008 4780820002AFCOOO 40009680
00101817 41000038 OAOA98EC 000C07FE
00309180 90064780 80189205 701047FO
lCCC1AD5 50070014 18409505 70104770
41100001 19128C20 00084780 80964807
4810B07E 1DC11A02 89000008 410COOOl
00081A02 41000000 89000008 47F0809E
18275880 001058FO B01C05EF 58070034
02005010 70104144 00054155 00204660
00015880 001058BO BOOC4820 B07A1902
47f0810E 4820B07E 19124720 813043F7
OD10947f 500047FO 80C04110 00011A01
41270008 58B00010 58F0801C 05EF5807
70009680 500047FO 80C00207 70007008
825A0207 10105018 50205018 920B5018
4A50825A 50C1000C 070B1000 10000201
000012EC 477081C2 50120000 58070034
58A70028 4120A058 50210014 41110004
50210014 58C70014 4BC08258 180C58CC
02071000 20101812 41000018 OAOA47FO
10004780 825041FO 000C58E7 003007FE
IB5558AO 301858AA 000041AA 00005890
451080260AOA1871 91809006 47108040
478080AE 18401868 90467018 909B7024
1804186F 12Ff4780 807047FO 80761255
45108086 OAOA0247 10000000 18015800
00000000 00000000 00024FOO 00010A4A
50018034 00018130 000182BO 000180C8
00000000 6003F45A 80030FFC 00000CA8

f

PAGE ('054
0 ••••••••••• O •••• IEFSJ163
* •.•.• ~ ...•...................... *
* K ••• *
* 0 •••••••••••••••• *
* •........................ 0 •••••• *

* *
* *
* -.......•
* N ••••• O •••••••••••••••••• *
* 0 ••••••••••••••• *
* *
* ... 0 ••••••••••••••••••••••• 0 •••• *
* K •••••••••••• p ••• O •••••• *
*.N ••••••• D •••••••••••••••• K •••• *
*K ••••••••••••••••••••••••••••••• *
* I ••••••••• A •••••••• K •••••• *
* ... O •• K •••••••••••••••••••••••• *
* X ••••••••••••••• O*
* F ••••••• N.P •••••••••• *
* O ••••••••••••••••••••••• p*
* A.K •••••••• *
*.0 ••••••••••••••••• K ••••••••• O •• *
* 0 •••••••• *
* K ••••• K •••• K ••••••••••••••• *
* ... 0 •••••••••••••••••••••••••••• *
* ••••••••••••••••• 0 ••••••••••••• 7*
* 7 ••••••••••••••• 0 •••••••• *
* 0 •••••• *
* .. N ••••••••• K •••••••••• O •• K ••••• *
* K ••••••••••••• *
..... A •• P ••••• K.
* G ••••••••••••••••• B •••••••• *
*.O •••••••••••••••••••••• ~ ••••••• *
* •.................... G ••••••••• ~*
~ •••••••• ~ •••••• K •••••••••••••• O
* .. P •••••••••••••••••••• O ••• X •••• *
* *
* *
* 0 •••••••••••••••••••• *
* ... B ••••••••••••• M ••••••••• O •••• *
*•... K •••••• J •• *
* 6 •••• P ••••••••••••••••••• *
* 8 ••••••••••••••••••• H*
* 4 ••••••••• *

,...-~.

\

•
~
"d
I:"'
tt:I

o
C

~ ...
"d
~

::l-
f->
f->

o
HI

f->
f->
......

(

(
~

.,.-

SECTION 13: CHARTS

The flowcharts are arranged, in general, in the order in which the routines are
described in this publication. Each flowchart contains entry point names, common routine
names, and labels that appear in the listings.

A subroutine block can contain as many as three names: the label from the listing
used when the subroutine was invoked, the subroutine's common name used in both the
listing and the manual, and the subroutine's entry point name. The label from the
listing appears at the top left of the block; the common name and the flowchart
identification appear inside the block; the entry point name appears at the top right of
the block. An (S) after the entry point name means that the subroutine (or routine) is
invoked via supervisor linkage (the SVC interruption handlers). The supervisor linkage
path is not shown on each flowchart. It is shown, however, in the overall control flow.
Chart 00.

LISTING LABEL ENTRY POINT NAME
r--,
IANY ROUTINE CDA2 (Flowchart ID) I
~--~
I I
I I
I I
I I L __ J

section 13: Charts 313

W
I-'
.c:-

l

Type
1

J.
I ABTERM

Routine I

J

SVC
Interruption

SVC FLiH

t
SVC SLiH

I

Program Check
I nterrupti on

Program Check FLI H

• • Prologue
Routine

I User - Written III
t--- Needed SVC Routine
r "' 'eok"'" ;, &c~ - "00<1;",

Routine is not
in Main Storage

SVC Routines

Type I Type I Type
2 3 4

(X CT L)
To Dispatcher if SVC
Routine Issues an l ABTERM

Routine

I I

I I

I

I Type. 1 Exit J l Exit Routine I
Routine I The Exit Routine is a Type 1
-l l Transient SVC Routine that Does not Pass

II nter.rupted I Area Refresh Control to the Type 1 Exit
Routine Routine Routine. It is Shown Separate I y

~
for III ustrati ve Purposes.

I Dispatcher

--t
Routine Represented by

• t

External
Interruption

External FLI H

• t

I/O
Interruption

I I I/O FLiH

• t
Console

I
I Timer FLiH J I ~O. I Switch upervisor

Routine

I

ABTERM

I Routine

I 1
I SERO

Routine

wL
State

Machi ne Check
Interru8tion

1
II SER 1 Routine

wl
State

I

ABTERM
Routine

I Highest - Priority "Ready" TCB J

Type 1 SVC Routines Type 2 SVC Routines Type 3 SVC Routines

CHAP Attach STAE Service
EXIT Delete WTO, WTOR,
EXTRACT DEQ WTL
FREEMAIN Detach
GETMAIN ENQ
POST Exit Effector, Stage 1 Type 4 SVC Routines
TIME Identify
TTl MER link, Load, XCTl and ABDUMP
WAIT Synch ABEND

Overlay Supervisor Checkpoint
Spie Comm. Task Router
STIMER Log and Writelog Post

Restart
---- -

p .. -,

SVC

Retrieval of Library Routines

Segm
Over
Progr

~ link, Load, I Overlay J XCT~, and Synch
Supervisor Routine

ent of Other
lay Routine
,m Needed

-----I Need ed

SVC
Library

I
I

Program Fetch Routine

• of
I/O Supervisor c:

The Overlay Supervisor and the Link,
Load, XCTL and Synch Routine are
Both Type 2 SVC Routines

,- -..

Link
Library,
Job
Library
or
Private
Library

'-

!
\

I

I

I

,;

•
(j
::r
Pi

~
o
o

~
(1)
11
Pi
I-'
I-'

(j

~
11
o
I-'

"J
I-'

~
o
H\

~
CIl c:
ro
(1)
11
<
en
o
11

• Chart AA.

(

SVC First-Level Interruption Handler

FROM
ABC2

IEAQSCOO

•••• ,.2 ••••••• *_
* * • ENTRY *
* * •••••••••••••••

• ENTERED FOLLOWING
svc I NTE RRUPTI ON

X
•••• *S2* ••• ***.* •
• PLACE REGISTER *
• CONTENTS I NYO •
• SVC REGt STER •
• SA VE AREA LOC •
• IEASCSAV • •••••••••••••••••

•••• NOTE - THIS EXIT APPLIES ONLY
• _AS • TO MULTIPROCESSING SYSTEMS
•• x. 81 •

* * * •••
T"SYC X

••••• C2 ••••••••••
• TRACE TRN •
-.--*-.-.-*-*-*

•• X.PLACE PERTI NENT*
INFO INTO TRAce
• TABLE • ••••••••••••••••• ;

* * _AI. •
• C2* •••••

X
••••• 02 ••••••••••
• USING • *svc NO. IN SYC •
OLD PSW. LOCATE
• ENTRY IN SVC •
• TABLE • •••••••••••••••••

x .*.
E2 * •

(OPTIONAL)

. *.. . ••• E3 •••••••••
•• •• NO. *

_.VALID SVC NO ••••••••••• X* EXIT • *. •• • •
.. •• ** •••• *** •••• •• • * * YES TO ASTERN

NOTE-REGISTER 14 SET TO
CAUSE DISPATCHER TO
BE ENTERED AFTER
ABTERM ROUTINE.

ROUTINE (IEAOABOO)
--CHART HE--

IBMSVC
x .*. F2 •• ..***F3******* •••• * * ****F4***** ••• * .* REQ FOR •• YES • SET *. *

••• !Y:gu~I~~c ••••• , •••••• X: TY~~;:}Y~::TCH •••••••••• X: EXIT : •..• • • .* •• ** •••••••• * •• •• • •••••• ****.**
,. NO TO TYPE-l

SVC ROUTINE (IEAOXEOO)
CHART GA

X * ••• G2** •••••••
* * • EXIT • ,. ,.
••••••• *** •• ***

TO svc SLIH (lEAQTROO)
-~CHART AC--

•• ***** •• ********.*** ••
• TYPE 1 SVC ROUTINES *
••• ***.****** •• **.*****
.CHAP ••• BE * * EX IT • • •• GB-GC •
• EXTRACT.. BH • * FREEMA IN • DB *
• GETMAIN ••• OA • * POST •• • BM • * TIME •••• EA * * TTIMER •• EC *
• WAIT •••• BK *
.**.************ •• *****

Section 13: Charts 315

• Chart AB.

316

SVC First-Level Interruption Handler (Multiprocessing System)

••• ** .AS • * 82.
* * • FROM
X AAB2

SZFLIHPS •••
82 * • • * •• • * SUPRVSR *. YES

•• LOCK BYTe SET •• " •••••••••• "' •••••• •. .* *. .* * •• * * NO

SZFLIHLK X
*.***C2.* •••• **** * SET *
• SUPR VSR LDC K •

x .*. C3 *. .* ••
Yes ". LOCK eYTe •• * BYTE. PLACE •

• CPUID IN • * IDENTITY BYTE * •••••• ** •••• * ••••
" •• "",,.. SET ev ••

· . • x
x

***** *AA •
• C2*
* * •

..EXECUTING ••
•• CPu .*

$ •• * * NO

X
••••• 03*** •••••••
.SET OLD PSW TO * * REISSUE svc *
INSTR OR EXEcur * INSTR THAT *
• EXECUTED SVC • • * •••• **.*.*.****

x .*.
E3 * • SZREEXEC

• *svc OLo*. ** •• e •••• ** ••••
• *PSW ENABLED._ YES. * *. FOR eXT. .* •••••••• x. eXIT *

.INTRPTNS . * •
.. * ••• *********** •• .* * NO

l(
••••• F3 ••••••••••

* * • SAVE •
• REGISTERS IN •
• CURRENT TeB • • • •••••••• *******.*

X
•••• *G3****.***** * SET RB *
• PSW ANO EXT. * * OLD PSW EQUAL *
*TO SVC OLD PSW *
• * •••• ** ••••• ******

X ••••• H3* •••• ****.
* * • SET EXTERNAL *
• FLIH BIT IN * * FLRETFLG *
• * **** ••• *** •••••••

X
....... 3* ••• *.***

* • * EXIT *
* * ** ••• **.****.**
TO EXTERNAL FLIH
(IEAQEXOO)
-CHART AJ-
VIA LOAD PSW

TO TYPE 1
EXIT ROUTINE
(TVPEIRET)
-CHART GA-

(:1

(

• Chart AC. SVC Second-Level Interruption Handler

JEAQTROO

****Al****.··**
* * * ENTRY *
* * -............. .

• FROM 5VC
• FL IH
• CHART AAG2

X
*****el***.*****_
_INIT IALIZE PRE-.
.ASSIGNED SUPVR * * REQUEST BLOCK * * SVRB QUEUE *
_ON CALLR'S rCB * •••••••• _-_ •••• **

X * •••• Cl._ ••• IIt. __ •
* INDICATE IN * * SYRB THAT * * ROUT INE IS * * TRANSIENT *
* * •••••••••••••••••

-* * ••••• _ ••• *.* •••••••• * TYPE 2 SVC ROUTINES * _.IItIlt.* _._ .•.. *.
* ATTACH • • SA-BellC * DELETE • • • • CE * * CEQ ••••• BP * * DETACH •••• al * * ENG ••••• eo * * STAGE 1 * * EXIT EFFECTOR. SR * * IDENTIFY ••• CD * * LINK,LOAO.XCTL * * AND SYNCH •• CA.-CC. * OVERLAY SUPER- _
• vISDR •••• CI * * SPIE ••••• BJ * * STINER •••• EB *
• *-*-* •• _*** •• * •• * ••• ** * TYPE 3 SVC RDUTI NES •
•• ** •• * •• * •• ***.**.****
• STAE SERVICE. BX •
* WTO~WTOR ••• -- *
• WTL •• ••• -- •
*.****.***.*****.******
* TYPE 4 SVC ROUTINES *
** •••• _-_.*******-***.* * ABDUMP • • • • HH • * ABEND •••• HI-HQ*
* CHECKPOINT •• FA-FI*
• CONN TA SK ROO- *
• TER..... *
• LOG AND WRITE- •
* LOG POST. • • •
• RESTART •••• F.I-FU.
•• *.*.* •• *****.*.**** ••

X IGC004(S)
*****01********* •
• GErMAIN OAAUc
--*-*-*-*-*-*-* * GET SPACE FOR *
.SYRB TO BE USED_
* FOR NEXT REQ * •••• IIt. __ •••••• __ •

x
.*.

EI *. *****E2*********. .* IS *. * •
.* REQUEST *. YES * INDICATE IN * *. FOR TYPE 2 .* ••••••• ~X* SYRB THAT •
. ROUTINE . • ROUTINE IS *
.. * RESIDENT • * •• 1Ie *.*.**.* ••• * •••••

TRANS lENT. NO
AREA
HANDLER

BUILD$VC X
*****FI*.********

• * * OBTAIN NAME *
* OF REQUESTED *
* ROUTINE •
* •
•• ******* •• *._.*.

X
* •• **G I **** •• **.*
* MOYE •
• LENGTH, TTR. *
• AND NAME OF *
* ROUT INE INTO *
* CALLER'S SYRB *
********* ••• **.**

: REENTRY OCCURS

• * * F2 *.X.

• * ****
X

*****F2**********
*svc RTN *
--*-*-*-*-*-*-.
* • * •
* * *****.****.* •••• *

X
****G2*****_**_ • • * EXIT * * •
.**-*-**-******

TO EXIT ROUTINE IGC003(S)
--CHART FB--

• HERE FOR DEFERRED
• REQUESTS
x

T ARESTRT .*.
HI *. .*.*.H2 •• *****.*. *** •• H3_*********

•• *. * * * * .* IS *. YES * INDICATE THAT * *QUEUE CALLER'S *
. ROUTINE IN . •••••••• X*TRANSIENT AREA * •••••••• X* SVRB ON USER *

. A TAB . *BLOCt((TAB) IS • • QUEUE FOR TAB.
.. * IN USE * _ _

. . •• _*******_.*.*-* **.***.**-*.*.*** * NO

X TATABCK
*****JI*****.****
* TA AVAIL. CHK *AOAI
-.--*-*-*-*-*-*
*FI ND AVA IL AEI,..E *
*TRANS lENT AREA •
• BLOCK TAB *
********** •• ***.*

x
**** • •

• A,4 •

• * ••• *

X
* •••• ~3.***.*****

* * * INCREMENT *
*TRANS I ENT AREA *
* USER COUNT •
* •
.* •• **.* ••• *** •• *

x
**.* * • * F2 *

* * *.**

*.**

* * * A4 *
* * ****

.*.
A4 *. *****AS**** •• ****

.* *. * PLACE CALLER *
•• •• NO * INTO WAIT *

. TAB FOUND . •••••••• X. STATE., QUEUE *
. . *SVRB ON REQUEST*
.. * QUEUE *

•• .* •••• **.****.*.***
* YES

TAHFREE X
*****B4.*********
* PREPARE TO *
* OVERLAY THE •
• ROUTINE IN *
• THE TAB •

* * .****.**** •• *****

X
*****C4*.*****.**

* * *QUEUE CALL.ER' S *
• SYRB ON USER *
• QUEUE FOR TAB.

* * ***.**** ••• *.* •• *

X
•• ***04.*********

• * * INCREMENT *
*TRANSIENT AREA.
• USER COUNT *

* * *****************

X
*.***e4*.* •••• *.*

* * * seT PO INTER *
* TO NEXT *
• AVAILABLE TAB *
* •
..****-**********

X
.F4*****.****
* SET UP INPUT *
*REGS AND PLACE *
* CONTENTS IN •
• CURRENT TCB *

• * *.** •••••• **.***.

X
** •• *G4 •• **.***** * PLACE CALLER *
INTO WAIT STATE
AND PREPARE FOR
* LOADING OF *
* RTN *
****.* •• ****.**.*

X
*****H4**.**.****
* SET *
*UP TASk SWITCH. * TO TRANSIENT *
• AREA FETCH •
* TASK *
*.**** •• *.*.*** ••

X
*.***~4*** •• *.*.*
TURN ON LOADING
* INDR IN •
*TRANSIENT AREA *
*CTL TeL. (TACT) *
* ENTRY •
* •• * ••• *.*** •••• *

X
.* •• K4* ••••••••

• * * EXIT *
* •

• * ••• * ••• * •• ***

X
*****85*.***.**** • *
• SET *
*UP TASK SWITCH *

* * * * ** ••• **** ••• *.***

X
****CS •• *.*.***

* * * EXIT *

* * ** •• *.* •• *.* •••

TO DI SPATCHER (IEAODS)
-- CHART GG --

RB OLD PSW IS
SET FOR ENTRY TO
TAB FROM THE DISPATCHER

THE TRANSIENT AREA
FETCH ROUTINE (CHART AD)
WILL CAUSE THE REQUESTED
ROUTINE TO BE LOADED.

TO DISPATCHER (lEA ODS)
--CHART GG--

section 13: Charts 317

Chart AD. Transient Area Availability Check Routine

TATABCK

****Al********* * • * ENTRY *
• * * ••••••••••••••

• FROM SVC SL.IH
-CHART AC-

X
*****81********** * SAVE * * ADDRESS OF *
*TRANSIENT AREA * * CONTROL TABLE * * (TACT) * ** •• *.** •••••••••
* •••

* *. * Cl *.X.

* * •• * * x .*. Ct *.
_. IS *.

•• LOADING *. YES
.INCR IN TACT . ••.•

•• ENTRY ON .*
. .

* •• *
• NO

x .•.

x * ••• * • * J 1 * • •
***.

01 *. *****02********** .* *. *PASS ADQRESS OF. .* IS *. YES * AVAILABLE *
.TAB AYAILABLE. •••••••• X*rRANSIENT AREA * *. .* *BLOCK (TAB) TO * *. _* * SVC SLIH * *. .* ** •••••••••••••••

• NO

X
*****El * •••••••••
*TAUSERCK *
--*-*-*-*-*-*-* * FIND HIGHEST *
*PR I READY USER * * OF RTN IN TAB * * ••••••••••••••••

x

X
****E2********* • • * EXIT * • • * ••••••••••••••

RE TURN TO SVC SLI H
CHART AC 44

.*. TATABCK4 .*.
Fl *. F2 * •

• * *. .* WAS * •

**** • • * A3 * • •

X
TATASCK3 .*.

A3 *. .* DOES *. • * TACT AOOR *. NO
.EQ INPUT TACT. ••••

. ADDR . *. •• * •• * * YES

x .•.

x
•• **

* * * Cl *
* * .***

83 •• *****84**********
.* WERE *. * * **.*65*.***.***

.* ANY READY *. NO * PASS ADDRESS * * *
. USERS FOUND . •••••••• X* OF AVAILABLE * •••••••• X* EXIT *

*. • * * T AS TO * * *
.. * SVC SLIH * ******* •••• ****

. . ***************** * YES

x . ..
C3 *. **.**C4**********

• * IS •• * *
• * PRTY OF *. NO * IND ICATE *

. CALLER GT . •••••••• X*THAT NO TAB IS *
. USER OF . * AVAILABLE *

•• TA •• * *
. . ***************** * YES

X
*****03******* ••• * •
* PASS ADDRESS *
* TAB TO BE •
* OVERLAID TO *
* SVC SLIH *
*.** ••• **.*******

X
•••• E3* ••• * ••••

• *
* EXIT *
* • * ••••• * ••• * ••••
RETURN TO SVC SLIH

CHART AC A4

X
.*04*******

* * • EXIT *
• •

RETURN TO SVC SL I H
CHART AC A4

RETURN TO SVC SLIH
CHART AC A4

• * *. NO .* READY *. YES
. USER FOUND . •••••••• X*. USER FOUND .* ••••

. . *PREVIOUSLY.*
.. *..*

* •• * * •• * * YES * NO

x .•.
Gl *. .* IS *.

•• USER'S PRTY*. NO
*. LT PREV ••••••

. USER'S .
.PRTY . •• .* * YES

X
*****Hl********** • • *SAVE ADDRESS OF*
*TACT ENTRY FOR *
*LOWER PRI USER.
• OF TAB *

**** • • * Jl *.X. • •
*.** •

x
**** • • * J 1 * • •
*.**

X
*****G2********** • • *SAVE ADDRESS OF*
* TACT-NO READY *
* USERS EXIST * • •

.*** .. .
..X* Jl * • •

TATASCK2 X

318

*****Jl**********
* l..OAD ADDRESS *
* OF NEXT TACT *
* ENTRY FOR •
* SEARCH *

• * .****************

x
**** • • * A3 * • • ••••

x
•• **

* * * Jl * • •

(

('I

Chart AE. Transient Area Fetch Routine

TABLDL

••• *,,2********. · . ,.. ENT~Y ,.. · . *****.**.*****.
FROM DISPATCHER
CHART GG .n VI A LOAD
PSW [NSTRUCTlON

X
.****82*********_
'" PREPARE FOR ..
'" ENTRY TO BLDL ,..
'" RTN~ USE TAfi '"
"'FOR CURR.::NT TeB*
'" AS WORK AREA ,..

"'* "'''''''''''''''''''. "''''. "''''''''''

X [ECPBLDL

*****C2 ••• *******
*BLDL RTN ..

--*-*-*-*-*-*-*
'" GET NAME OF '"
"'ENTRY POINT TO '"
'" REQUESTl::O RTN '"

.*. .*. TBNOTFND [EAOABOO
02 *. 03 *. *****04 •• ******** .* *. • '" *_ "'ABTERM RTN HEA2* .* ERROR •• YES .* PERMANENT *. NO *-*-*-*-*-*-*-*-* *. FOUND By."' X*.]/0 ERROR .* •..•.•.• X* MODULE NOT '"

.BLDL RTN . *. .* .FOUND, SCHEDULE. *..* *... '" TASK TERMJN '"

"' •• * *. • '" ********* •• ****** "'NO • YES

X
*****E2**********
'" PLACE ..
.TTR AND LENGTH *
* OF REQUESTED *
*RTN INTO USER'S.
* SVRB *

X
*****E4********.*
* IND [CATE THAT *
* TAB IS FREE *
* SET TTR IN *
* TACT ENTRY TO *
• 0 •
.* •• ***-***

**** .. .
•• x. K4 ...

• •

TAHFETCH X
.*.**F2 •••• *.****

* •• *FI •••• ***** * USE TTR AND *
* * * LENGTH OF RE- *
• ENTRY * •••••••• X*QUESTED RTN AS *
* * * INPUT TO PROG *

******* •••• *... • FETCH RTN *

FROM DISPATCHER
(CHART GG .,1) VIA
LOAD PSW INSTRUCT ION

X IEWFTRAN
*****G2 •• ****.***
PROG FETCH CFB5
--*-*-*-*-.-*-*
• LOAD •
* REQUESTED *
• ROUTINE *
••••• * •• ****.*.**

x it
.*. TBIOERR •••

H2 *. H3 * •
• *.. •• ANY *. ***.H4.*******.

•• ERROR *. YES •• TASK IN •• YES • LOAD WAIT *
.FOUND BY PROG. •••••••• X*.MUST COMPLETE.* •••••••• X* STATE PSW *

•• FETCH .* *. STATUS .* • •
•• RTN •• •••• .* •• *.*.***** ••

* •• * * •• *
* NO • NO COOE=!"IO

TAHCHECK X
** ••• J2 •• ******** X · . ****J3.**.*****
• RESET TAB • * LOAD WAIT •
* LOAOING I~ * * STATE PSW *
... OICATOR IN ... • • • TACT ENTRY • ***************
*.**** •• ***.*****

CODE = FOF

it

IF OPERATOR PRESSES RESET AND START KEYS
AFTER WAIT STATE PSW IS LOADEO. REENTRY
W ILL. OCCUR AT-

I. TABL.DL. IF ERROR WAS FOUND
BY BLDL. ROUTINE.

2. TAHFETCH IF ERROR WAS FOUND
BY PROGRAM FETCH ROUT! NE.

****.K2**** •• **** *****K3********** *****K4*** ••• ****
* PL.ACE USER. • REMOYE ALL. * * * ***.K5*.** •• ***
* SYRB'S FOR * * SYRB'S FROM • * PL.ACE TA * * *
.LOADED ROUTINE ••••••••• x. REQUEST QUEUE ••••••••• X*FETCH TASK INTO* •••••••• X. EXIT *
* INTO READY * • AND MAKE THEM. x * WAIT STATE *. *
* STATUS * • READY. * * *.*********.*.*
..******.****** .*.**** ••• *** •• **. ******* •• ** •• ** ••

**** TO DISPATCHER (lEAODS)
* * -- CHART GG --
* 1<.4 * • •
.**.

Section 13: Charts 319

• Chart M.

320

Program Check First-Level Interruption Handler

FROM
AG 02

IEAQPKOO

****A2*********
* * * ENTRY ,.

* * ***************
• ENTERED FOLLOWING
• PROGRAM CHECK
• [NTE::RRUPTI ON

X
*****82**********
.PLACE REGISTER '"
,. CONTENTS INTO ,.
,. PROGRAM CHECK ,.
,. REGISTER SAVE * * AREA ,.
.*.********

••• *
• *AG * •• x. 81 .NOTE - THIS EXIT APPLIES * * ONLY IN MULTIPROCESSING
• **** SYSTEMS
X TRPI

****.C2********** • TRACE RTN ,.
--*-*-*-*-*-*-* •• X*PLACE PERTI NENT*

* * * *"F * ,. C2*

• INFO INTO TRAce*(OPTIONAL)
,. TABLE *

X .*. 02 ._
_* WAS *. ****03*********

_* SuPVR RTN *. YES * * *. INTERRUPTED .* •••••••• X* EXIT *
. - * * ...* *************** * •• * * NO TO ASTERM PROLOG

ROUTINE (JEAOPLOO)
- CHART HG --

x .*.
E2 * • • * DOES *. ****E3**.*.*.*.

•• CURR Tce •• NO * *
.CONTAIN AOOR . •••••••• X. EXIT •

.OF A PIE . * • ...* .. **.* ••• * •••• *
* •• *

• YE S TO ABTERM PROLOG
ROUTINE (IEAOPLOO)
-- CHART HG --

X
* ••• *F2* ••••• * •• *
*PLACE PROG OLD •
• PSW ANO REGS •
• 2-14 INTO PROG •
* INTERRUPTION •
• ELI;:MENT PIE •
••••••••• **.***.*

X
*****G2**** ••• ***

* * * PLACE AOOR •
• OF PIE INTO •
• REGI STER 1 •

* * .****** •• *.*.* •••

x .*.
H2 * •

• * IS.. ..**H3*.*** ••••
•• PICA NOT •• YES. *

*.IN EFF..ECT OR •••••••••• X. EXIT •
•• BUSY.. • • *... ***._*****_.* ••

• NO TO ABTERN PROLOG
ROUTI NE (IEAOPL.OO)
-- CHART HG -

X
••••• ~2 •••••••••• * SET BUSY FLAG •
• IN PROGRAM •
• INTERRUPTION •
• CONTROL AREA •
• (PICA) • •••••••••••••• *.*

x
**.*

* * *.84 *
* * *.*.

•• *.
* * • 64 *
* * .**.

x .*. B4 ••
.* *. *.**BS.* ••••• **

•• CAN *. NO * •
•• INTRPTN BE •••••••••• X. EXIT *

•• HANDLED •• • • *... * ... -• YES
.** •

• .AG.
•• X. HI *

TO ABTERM PROLOG
ROUTINE (IEAOPLOO)
-- CHART HG --

* • NOTE - THIS EXIT APPLIES

X
•••• ONLY IN MULTI

PROCESSING SYSTEMS
••••• C4 ••••••••••
.PLACE ENTRY PT •
*OF INTERRUPTED * * ROUT tNE INTO •
* PROG OLD PSW *

* * * •••••• * •••• * ••••

X * •••• 04 ••••• * ••••
• PLACE •
.RETURN ADDRESS •
• INTO REGISTER.
• 14, RESTORE *
• REGISTERS •
•• ** ••• * ••••••• **

X ** •• E •••••• * •••
* * • EXIT •

* * ** •• ** •••• **.*.

TO USER-WR ITTEN
ERROR-HANDL ING
ROUTINE

• Chart AG. Program Check First-Level Interruption Handler (Multiprocessing System)

••••• .AG •
• 8U FROM
•• AFB2

>

••••••••• •• x.
x

• >.
BI ••

• * •• • •••
•• INTRPTN •• YES. •

.CAUSED BY SSM. •••• X. A4 • *. INSTR..* •• -* •••
> NO

:PIFL.TS .~. PIFLIHLK
Cl •• * •••• C2* •••• ** ••• • * IIC. • SET *

•• SUPRVSR •• NO • 5UPRVSR LOCK •
:II.LOCI(BYTE SET •••••••••• x. BYTE. PLACE •

•• •• • CPUID IN •
IIC... • IDENTITY BYTe. *. •• • ••••••••••••••••

* YES

••••••••••• x.
x .>. :PIFLGCLR x

01 •• ** ••• 02 •••••••••• > >
•• L.OCK BYTe •• YES • • RESET PROG. *

•• SET By •••••••• :
.EXECUTJNG.

•• CF'U •• ... -> NO

x
••••• e •• **** ••• *. • •
• SET PROG. •
• CHECK FL IH BIT •
• IN FLRETFLG •

• >
X

••••• F ••••••••••• * ENABLE. •
• THEN DISABLE * * CFtU FOR *
* EXTERNAL *
... INTERRUPTIONS *
.***********.****

*AG * * HI. FROM

* * AFB4 ·
x .'. HI •• • * IS ••

• * TASK *. YES
•• ASTERMED BY .* ••••

*.OTHER cPU •• *. •• * •••
• NO

X
••••• JI ••••••••••
• PL.ACE ENTRY *
• PT OF ERROR RTN.
• IN PROG OLD *
*PSW. SAVE REGS *
• IN TCB * ••• *.*.* •••• *.*.*

· . • x •••••••••••

X
***.K 1 •••••••• * • •

• EXIT •

• 0 •••••••••••••••
TO DISPATCHER
(IEAOOS)
CHART GN

_CHECK FLIH 81T • * 1 N FLRETFLG *
> > ._.-..... _ _.

x
*AF •
• C2_

> 0 •

• 0
• A4 *
• 0 * •••

x .0.
A4 *. *****A5********** .* DID *. • *

.* EXECUTE •• YES * GET *
. tNSTR EXEC . •••••••• X*SSM INSTRUCTION.

*.SSM INST... • *
.. * * *. •• ..* •••••••••• * •• *

• NO

· . • X •••••••••••••••••••••••••
X

PIFLSSMI •••
B4 *.

.*15 SSM * •
YES.* MASK *.

................... *. COMPLETELY .*
. ENABLED .

. .

X
PIFLSSM3 • *.

C3 *.
•• SUPRVSR •• YES

•• LOCK BYTE SET ••••••••
..BY OTHER .*

•• CPU .*
> NO

X
* ••• *03 •••••••• **

• 0 • CLEAR SUPRVSR •
• LOCK AND *
• IOENT ITY BYTES *

• 0 .** •• ***.******.*

* •••
o NO

X
SMFLIHTS •••

C4 ••
•• *.

•• SUPRVSR •• YES
..LOCK BYTE SET ••••••••••••••••••••" •• .*

• NO

X * •••• 04 ••••••••••

• SET * • SUPRVSR LOCK •
• BYTE, PLACE •
• CPUID IN •
• IDENTITY BYTE *
*.**.***.******.*

X
PIFLSSM2 ._.

os *.
YE 5 •• LOCK BYTE •• • ••••. *. SET BY .*

•• EXECUTING ••
. CPU . • •• *

• NO . . .
••••• •••••• X.x ••••••••••• . .

• •••••••••••••••••••••••• X.

PIFLSSM8 X
••• **E4 •••••• * •••
o •
• PLACE NEW •
• MASK IN PROG ••
• CHECK OLD PSW *
o 0 ••••• * ••••••••• **

SSMTRACE X

X
* ••• *ES.**** ••• *.
• SET • .PROG. CHECK OLD.
*PSW TO REI SSUE •
_SSM INSTRUCTION.

• • ••••••• * ••••••• * •

x .•.
.** •• F4 •• * •••• *** (OPTIONAL) FS *. • TRACE RTN.
.-*---.-.-.-.-*-. ... PLACE PERTIN ••
• INFO. INTO •
• TRACE TABLE •
•••••••• *.** •••••

YES .P.C. OLD PSW ••
•••••••• ENABLED FOR ••

EXT. INTRPTNS. •• • * * •• *
• NO · . • X

SSMEXIT X
••••• G4 •••••• * •••
... RESTORE •
.REG I STER S FROM •
*IEAPKSAY, ZERO.
• SSM INDIC IN •
• INTERRUPT COOE *
** •••••••••••••• *

X
• ••• H4 •••••••••

• •
• EXIT • · . ••••• *****.**.*

LOAD PROGRAM
CHECK OLD P sw

X
•• *.*G5* ••••• **.*
o •
* SAVE *
* REGISTERS IN •
* CURRENT TCB *
o •
*** ••• * •••••• *.*.

.. ..
X

* •• *.HS*.**.*****
• SET RS PSW •
* AND EXT. OLD •
* PSW EQUAL TO •
*PROG. CHECK OLD.
• PSW •
.** •• *****.*.****

X
* •••• JS***.******
* SET EXTERNAL *
* FLIH BIT IN •
*FLRETFLG, ZERO *
• SSM INDIC IN *
.1 NTERRUPT CODE *
.*** •• *** ••••••••

X
.*KS.*..**. • •

• EXIT • o 0
••• * •••••• *****

TO EXTERNAL
FLIH (JEAQEXOO,)
-CHART AJ-
VIA LOAO PSW

Section 13: Charts 321

• Chart AH. Program Check First-Level Interruption Handler for Model 91

IEAQPI(OO .0.
• ***Al********* • • *' ENTRY *' • • · **************.

• FROM ANALYZER/END
-CHART IR-

X
*****Bl********** • • • • .SAVE REGISTERS.
• • • • ****************.

A,3 * •
**** • * TEST *. **** *' * .* FOR *. YES * *' * A3 ••••• x •• SUPERVISOR •••••• x. J3 *'

*' * x *. INTERRUPT.. *' *
**** *..* **** * •• * o NO

x .•.
B3 *.

•• *. ****64********* .* IS *. YES * * *. TESTRAN IN .* •..•••.• X* EXIT •
•• USE .* * *

*. • * *************** *. .* * NO TO TE STRAN
ERROR ROUTINE

x
ENTRY2 X .•.

• ****Cl********** o •
*' LOAD OLD * *' ~sw INTO *' * REGISTER *' • •
***********.*****

x .0.
01 *. .* TEST *.

SEE NOTE
Cl BELOW

• * FOR *'. NO • *. INSTRUCTION •••••••••••••••••••••••••••••••• X. *. CHECK .*
. . * ••• *' YES

x .*. .*.
E 1 *'. E2 *. • * *. .* IS *. • * IS *. NO .* INSTR *. NO • *. INSTRUCTION .* •••••••• X*.LENGTH EQUAL •••••• X.

.5/$ TYPE . *. TO 2 .* *..* •• BYTES ••
* •• * * •• * * YES * YES

X
IEAAPi(EX .*.

Fl *. • * IS *. • * IT A *. NO *. DECIMAL .* .•••
. INSTR. .

. .
* •• * * YES

X
*****Gl******.***

x
**** o 0

* A3 * • • ****

• • *MOVE P/P REGS. *
*OEC. INSTR. TO *X ••• * DEC SIN • • • *****************

X
• ***HI********. • • * EXIT *

• 0 ***************
TO SIMULATOR

**** o •
* 61 * • • ****

x .•.
F2 * • .* IS *. .* I T AN *. NO • *. EXECUTE •••••• X. *. INSTR. .*

. . * •• * * YES

X
*****G2********** • • * LOCATE *
_INSTRUCTION TO * * BE ExeCUTED •
• • *****************

.•.
H2 *. .* IS * • • * I T A *. NO • *. DECI MAL .* •••••• *. INSTR. .*

*. • * * •• * * YES
CONTROL ROUTINE (DECENT)
-CHART IL-

X
*****~2** •• *.* •••

**** * SET UP * * • * DECIMAL *
* Gl *X.: ••• *INSTRUCTION IN * * • * WORK AREA *
****. *

***************.*

C3 *. .* IS *. .* SPIE *. NO *. INDICATED .* •.•.•.•..•.•.•••.••
. . *. .* * ••• * YES

X
* •••• 03********** • • * STORE * * OLD PSW AND * * REGS IN PIE * • • *****************

· .. E3 * • .* *. • *** •
•• IS SPIE •• YES X *. *. BUSY OR NOT .* ••••••••••••••••••••••••••••• X* .J3 *
.IN EFFECT. X * *

. . **** * •• * * NO

X
*****F3********** • • * SET *

• •• NO
F4 *.

.*15 THIS*. .* PRECISE *.
• SPIE BUSY * • •••• X*. INTERRUPT .* * INDICATOR *
o * *****************

x

.EXPECTED .
. . *. .* * YES

· .. IEAAPK$X
X G3 *. .* IS *. • ****G4********* .* THIS *. YES. * • *. INTERRUPT .* •.•.

. PRECISE .
••• X. EXIT •

. . *. .*
• NO

x · ..
H3 *. .* *. .* *. YES • *. seE NOTE H3 .* •••••.

. . *. .*
* •• * o NO

• O. * ..13 *.X.
o •

X
****..13********* • • * EXIT * • • ***************

TO ABTERN PROLOG
ROUTINE (IEAOPLOO)
-CHART HG-

• • ***************
TO SPIE ROUTINE
-CHART B..I-

NOTE H3 -
ARE ALL IMPRECISE INTERRUPTS •
WHICH HAVE BEEN RECEIVED, EXPECTED."

NOTE Cl IF THE DECIMAL SIMULATOR I S NOT IN THE SYSTEM. BLOCKS DI-Gl
AND E2-..I2 ARE NOT TO BE USED (I.E •• BLOCK Cl CONNECTS TO
B~OCK A3). IF THE TESTRAN INTERPRETER IS NOT IN THE

322

SYSTEM. BLOCK 83 AND AS ARE NOT TO BE USED C I.E., BLOCK A3
CONNECTS TO BLOCK C3).

(l
"-..j

Chart AI.

(;

External First-Level Interruption Handler (Uniprocessing System)

IEAQE XOO

****A2********* • • * ENTRY * • •
**************.

ENTER~O FOLLOWING
E xn".RNAL I NTERRUPTI ON

X
*****82********** .. PLACE ..
.. REGISTER ..
.. CONTENTS INTO ..
.. CURRENT ..
.. TCR ..

X
*****C2**********
... PLACE *
... EXTERNAL OLD ...
... PSW INTO •
• CURRENT REQUf: sr.
... BLOCK •

**** ••• ****** ••••

x TREX
*****02********** .TRACE RTN ...
• -*-*-*-*-*-*-*-*
*PLACE PERT1 NENT •
... INFO INTO TRACE. (OPTIONAL)
... TABLE ... *.* ••••••••••••••

• *. I EEBCIPE
E2 *. *****E3********** .* KEY *. .EXT INT HANDLER •

• * *. YES *-*-*-*-*-*-*-*-*
•• INTERRUPTION .* •••••••• x* POST ... *. .* *COMMUNICAT1DNS ... *..* ... TASK Eca ...

. . *****************
• NO

· . • x •••••••••••••••••••••••••
x .*. IEAOTIOO

F2 *. *****F3**********
.*TI MER- *. *TI MER SLIH EOA2*

.* CAUSED *. YES *-*-*-*-*-*-*-*-*
.INTERRUPTION . •••••••• X*CHECK TQE, TAKE*

. . *SPEC'D ACTION, * *..* * RESET TIMER *
* •• * *.*.****.**.** •• *

• NO

· . • x •••••••••••••••••••••••••

X
****G2********* • • * EXIT * • • ** ••• **** ••• **.

TO DISPATCHER (IEAOOS)
-- CHART GG --

Section 13: Charts 323

• Chart AJ. External First-Level Interruption Handler (Multiprocessing System)

IEAQEXOO

•• **A 1********.
* * • ENTRY *
* . * _. __ ..

x

ENTERED FOL..L.O'IIING
EXTERNAL INTERRUPTION

-*- .•. 61 *. B2 *. *****63** ••• ****. ****.84****.*** •• • * FLIH *. .*NESTED *. * PLACE. _PLACE EXTERNAL *
.RTN INTRPTEO*. YES EXT INTRPT (EX. NO • REG. CONTENTS * * OLD PSW [NTO *

.(FLRETFlG NOT. •••••••• X*. FLIH BIT [N •••••••••• X_ INTO RNSAVGPR ••••••••• X. RNSAVPSW IN * *. = 0) .* FLRETFLG IS ON) ., IN LOWER MAIN. .. LOWER MAIN .. *..* *.. * * STORAGE" .. STORAGE ., * •• * * •• lII •• * •••• _......... ***************** * NO * YES

. .
• x •••

EX NORMAL X ic
*****C I ••• * ••••••
.. SAVE .. * INTERRUFtT ION ..
* CODe IN *
.. RNEXCODE ..
* • •••• ** •••••••••••

X
••• *.01*********.
'" PLACE ..
.. REGISTER .. * CDNTENTS INTO .. * CURRENT TeB *
* •

_ X

*****C2********** • • * RESTORE EX *
* I NTRPN CODE *
* FROM RNEXCODE *
* •
**********.******

EXSZCOND X
*****02**********
• SAVE *
* INTERRUPTION *
* CODE IN *
* RNEXCOOE *
* •

ic .*.
E2 *. *****E3********** .* *. • * NO • [/0 OR PROG.*. YES * SET EXTERNAL. *

*****E 1 **********
* PLACE *
* E)(TERNAL OLD * * PSW INTO *
*CURRENT REQUEST.
* BLOCK *

•••••• *.CH. FLIH RTN .* •••••••• X* FL.tH BIT IN *

**** • • * * .X ••••••••••• * FI *.X. * •
***.

INTERRUPTEO * FLRETFLG *
.. • *

* •• * *********** ••• ***

* ••• * • *. * F3 _.X.
* •
***. •

EXFLIHTS .*. EXFSREST X
FI *. • * *. • * SUPRVSR *. YES

•• LOCK BYTE SET.*
. . *. .* * •• *

• NO

EXFLIHLIC X ic .*.
• ****G 1 ********** * SET *
* LOCK BYTE, *
• PLACE CPUID *
* I~TO IDENTITY *
* BYTE *

G2 *. .* *. YES .* LOCK BYTE *. •••••. *. SET BY .*
_.EXECUTING.*

. CPU .
* •• * * NO . .

.X •••••••••••

X
*****HI**,********
* • * RESET EXT. * *' FLIH B[T IN *
* FLRETFLG *
* •
* ••• *************

X
*****H2**********

• * • SET EXT. •
* FLIH BIT IN •
* FLRETFLG *

* * **.*********.** ••

TREX X X

324

*****J 1**********
TRACE RTN
--*-*-$-*-$-*-.
PLACE PERTINENT
INFO INTO TRACE
* TABLE *

x
-*.* * • * 04 * • * * •• *

(OPTIONAL)

•••• *J:2: •• ** •• ****
• ENABLE, *
* THEN DISABLE •
• CPU FOR •
• eXTERNAL *
• INTERRUPTI ONS *
.**********.*** ••

x
**** * * • Fl •

* •

****.F3*.**.*.***

* * * RESTORE *
* REGS FROM •
* RNSAVGPR •

* * *** •• *** •• ***.***

.
X

****403*.**.*.** * EXIT *
* LOAD RNSAYPSW •

* * ******.**** •• **

TO INTERRUPTED
PROGRAM

*.**

* * * 04 *
* * ****

x
.*. IEEBCIPE

04 *. *****05***.** ••• *
•• KEY *. *EXT.INT.HANOLER*

.* *. YES *-*-*-*-*-*-*-*-*
.JNTERRUPTJONS. •••••••• x. POST *

. . *COMMUNICATI ONS *
...* • TASK ECB *

••• * ** ••••• *.***** •• * * NO

· . • x •••••••••••••••••••••••••
x

••• JEAOT1QO
E4 *. *****ES** •• *.**.*

.* *. .n MER SLIH •
.TIMER-CAUSEO •• YES *-.-*-.-$-.-.-*-•

•• INTERRUPTIQN .* ~ ••••••• :X.CHECK TaE. TAKE*
(ACTIVE TJMER *SPEC'D ACTION, •

* .EXP) .* * RESET TI MER *
••• * .* •• * •• **** •• ** ••

* NO

· . .X."'
x .•.

F4 ••
.* * • .INTERRUPTION*. NO

III. CAUSED BY .* ••••
SECOND cpu.. • •• . ••• * * YES

X
.*64**** •••
* PASS CONTROL *
TO RTN S INOle
* IN STMASK AND *
.RET- IF TO OISP*
• RTN. BLOCK K4 •
. •••• * •• ***** ••

X
***.*H4 •• ** ••••• * • • • •
• CL.EAR STMASK * • •
• * * ••••• * •• *.** ••••

EXOISP X
** ••• J4**.*.* ••• *
* CLEAR •
* RNEXCOOE TO *
• INDICATE ALL *
* EXT.· INT. •
• PROCESSED *
• ••• **.* •• *.*.**.

· . • x •••••••••••

x . ..
K4 *.

NOTE G4 - IF TO VARY CPU
OFFLINE RTN,
CONTROL DOES NOT
RETURN TO EX
FLIH

.* I/O *. * •• *KS* ••••• ***
•• OR P.t. •• NO * •

*. FLIH •••• "' ••••• X. EXI·T •
•• INTERRUPT .* * •
.. * ••• * •••••• *.**

• YES TO 01 SPATCHER
RTM UEAODS)
-CHART GN-

X .. *. * * * F3 • • * * •••

(

• Chart AK. I/O First-Level Interruption Handler

IEAQIOOO

.***A2 •• ·* ••• ** * •
... ENTRY ...

• •

.ENTERED FOLLOWING

.1/0 INTERRUPTION

x .•.
82 *.

•• IS ••
YES.* THIS A ••

•••••• NESTED .* *. INTRPTN .** * •••
• 0 ... NO

X

.****C2****.*.*** * INDICATE ...
• 0 * THAT AN I/O ... * INTRPTN IS ...

... BEII\IG *
... PROCESSED *

X
*****02********** ... PLACE ...
... REGISTER * * CONTENTS INTO ...
... CURRENT *
... Tee ...
************.****

x
*****E2*.******** ... PLACE I/O ...
... OLD PSW INTO ...
... CURRENT ...
... REQUEST ...
... BLOCK ...
*************.***

• • **** ••••••••••• x. *AL'"
•• X. Bl *NOTE

* •
• **** X TRIO

*****F2********** *TRACE RTN ...
--*-*-*-*-*-*-*

•• X*PLACE PERTINENT.
*INFO INTO TRACE.
... TABLE ...

* • (OPTIONAL) FROM
AI.. Dl *AK ...

* F2*
***.*

DISMISS

•••• Gl •••••••••

* • • ENTRY lie

* * •••••••••• * ••••
:FROM ABTERN
.ROUTINE
.(CHART HE E5)

XIECINT
*****G2* •• **.** ••
• I/O tNT SPVSR *
--*-*-*-*-.-*-. * PROCESS *
• INTERRUPTION *
* * ••••• * •••••••••••

. .
••••••••••••••••••••••••• x.

X
•••• IIeH2 •••••• * •••
• RESET •
• INDICATION OF •
• I/O INTRPTN *
• PROCESSING •

* * •••••••••••••••••

x ••• * ... 2 ••••• * •••
* * • EXIT •
* * •••••••••••••••

TO DISPATCHER (JEAOOS)
-- CHART GG --

- THIS EXIT APPLIES
ONLY TO MULTI
PROCESSI NG SYSTEMS

section 13: Charts 325

• Chart AL. I/O First-Level Interruption Handler (Multiprocessing System)

_.*.
*"L *
• Bl* FROM I/O FLIH * * ALE2 •

xx •••••••••••••••••••••••••••••••••••••
IOFL IHTS .*.

Bl *. •• *-•• SUPRVSR *. YES
*.LOCK BYTE SET ••••••••••••••••••••

.
* •• * * NO

IDFLIHI..I< X x .*.
C2 *. •• *.

VES .* LOCK BYTE *.
*****Cl.******.*. * SET SPRVSR * * LOCK BYTE, *
*PLACE CPUID IN * * IDENTITY BYTE * .•••••••• SET BY .*
* * * ••••••••••••••••

. .

.x •••••••••••

IOFLGCLR X

326

*****01*********.
* * * RESET 1/0 * * FLIH BIT IN * * FLRETFLG *
* * * •••••••••••••• _.

x •••••
*AL * * F2*
* * *

*.EXECUTING •• *. CPU .*
* •• * * NO

X * •••• 02********** * SET I/O FLIH *
BIT IN FLRETFLG
*INDICATING I/O *
*FLIH IN PROCESS_

* * *_.* •••••• _ ••• _ ••

X
••• **E2********** * ENABLE, * * TH,EN DISABLE * * CPu FOR * * EXTERNAL * * INTERRUPTIONS *

"--.,,,
(", ",'

(

Chart AM. SERO Routine

lEAMCHOO

•••• Al ••••••••• · . '" ENTRY '" • •
IFBSEROO

* ••• "2 ••••••••• · . '" ENTRY '" ·

.... · .
• A3 • * • •• *.

• .•.
A3 ••

•• •• 40.50
•• MODEL NO. • •••••

• •••
• * • A4 • · . • •••

SERLA X
• •••• A4 ••••••••••
• USE SER DCB AND.
.OEB TO LOC ANO •
.REAO HEADER: RCO.
.FR SYS I.LOGREC •
• DATA seT •

:ENTERED FOLLOW ING
.MACHINE CHECK

• ENTERED WHEN
• PSW I S LOADED

..
65,75

x •••• • •
• C3 • • •

.
• INTERRUPT ION • BY IE::AMCHOO
x

••••• a •••• * •••• **
'" SAVE REGS 13, '"
'" 1_, AND 15. ...
• SAVE C5 •• PSW. '"
• ANO DIAGNOSTIC '"
'" SCAN-OUT AREA

X
••••• Ct ••••••••••
"'ENABLE MACHINE '"
• CHECK INTRPTNS. '"
.. HALT ALL [I'~ '"
.. ACT IvJTY '"

• *
X

••••• 01 ••••••••••
'" READ FIRST '"
.. PORT ION OF '"
'" IFBSEROO FROM '"
.. SYS1.LINKLIB '"
.. DATA SET '" . _ "'

X
••••• El ••••••••• *
'" seT UP PTR ..
*TO SAVED DATA. '"
• OISABLE MACHINE.
• CHECK INTRPTNS '" • •

X
•••• FI •••••••••

'" LOAD PSW FOR '"
.. ENTRY TO ..
'" lFBSEROO * •••••••••••••••

x .*.
82 *. •• *.

FPTEST X
• •••• 83 ••••••• ***
• CHK PARITY OF .. •• _. 40,65,75 * FLT POINT ..

•• MOOEL NO. • ••••• -. .. •• .* * •••
• 50

• ••••• C2.******** •
* USE DIAGNOSE •
.INSTRUCTION TO •
• CHECK GENERAL *
• REGISTERS * · . ••• * •• * ••••••••••

· . • x •••••••••••

X
••• _.02*********.
• ENABLE MACH I NE •
.CHECK INTRPTNS,.
• CLEAR WORK •
• AREA • · . • •••••••••••••• *.

• .•.
E2 ••

•• •• CHAN
..MACH CHK OR •• ERROR *. CHAN ERROR ••••••

*.CONDITION ••

-. .* * •••
.MACH CHK

x .•.
F2 ••

• lIt *. .
•• •• 40,50

•• MODEL NO. • ••••• *. .•
65,75

• REGS AND ST ••••• * CONTENTS • * IN RCD ENTRY •
****.*.** •••• * •••

•••• · . • C3 ••••

• *
x

• •••• C3* ••• *** •• *
• USE DIAGNOSE •
• INST TO CHK FLT* * POINT REGS. *
.COMPRESS GEN + •
• FL T POI NT REGS • ••••••• * •••••••••
• • .X ••••••••••• * 03 •• X.

• *
SERP X

• ••• *03.* ••• * ••• *
• OBTAIN DATE •
• AND TIME OF *
• F AI LURE FROM •
.CVT, PLACE INTO. * RCD ENTRY *

x .•.
E3 ••

•• •• MACH
•• MACH CHK DR •• CHK

•• CHAN ERROR ••••••
..CoNOITION ••

.
• CHAN
.ERROR

CSERB X
••••• F3 ••••••••••
.PLACE FIRST ANO •
• FAILING celli OF •
• CHAIN INTO *
• RCO ENTRY • • •

· .
• X •••••••••••

GPTEST X SER.I X
•• **.G2.**.** ••••
• CHK PARITY OF •
• GENERAL REGS *
• AND STORE •
• CONTENTS IN RCO. * ENTRY • ••••••••••• ** •• *.

· . .x •••••••••••

•••• *G3 •••••••• * •
.PUT CHAN TYPE, •
*ACTIVE I/O UNIT.
• ASSIGNMENTS, • * AND PROG NAME •
.INTO RCO ENTRY. ••••••••• * •••••••

•
RONXYMQD X • •

• A4 • • • ••••• H2 ••••••••••
• READ REMAINING.
• PORTION OF •
• IFBSEROO FROM.
• SYS1.LINKLIB •
* DATA SET •

it

••••

••• NOIFBSR
.12 •• • •••• .13 ••••••••••

•• I/O •• .USE FOA WAIT.
•• OPERATION •• NO • CDOE. SET UP •

•• SUCCESSFUL •••••••••• x. SEREP INTFCE ••
•• •• • PRINT MESSAGE. *. •• • ••••••••••••••••

• YES

x .*. K2 ••

.... .
• *. • K3 •• X. · .. •••• EXIT

x
MACH.. •• CHAN •••• K3 •••••••••
CHK •• MACH CHK DR •• ERROR

••••• CHAN ERROR ••••••

x •••• · . • A3 •

• * ••••

•• CONDITION ••
•

x .
• ••• · .

• 03 •

• * * •••

• PLACE CPU •
• INTO •
• WAIT STATE • • ••••••••••••••

x
••• LOGREC

B4 •• • •••• BS ••••••••••
•• 110 •• .USE FOg WAIT.

•• OPERATION •• NO • CODe, SET UP •
•• SUCCESSFUL •••••••••• x. SEREP INTFCE, ..

•• •• • PRINT MESSAGE. •• •• • •• * •••••••• * ••••
• YES

X * •••• C4 •••• * •••••
.UPOATE HOR RCD,.
• PREPARE ENV 1- •
.. RONMENT R:CO. •
• AND POSITION ..
• EOF •

•

IIIIRITENT X
** •• *04 •••• * •• ***
• WRITE HDR •
• RCD, •
• ENVIRONMENT •
• RCO, AND eOF • · . • ••••••••• * ••••••

X
COMPLETE •••

x _ ... · .
• K3 •

• * ••••

E4 •• • •••• e 5*.* •••••••
•• MACH •• • • .* CHK •• YES * USE F06 •

..INTERRUPTION •••••••••• X. WAIT CODE, •
•• •• • PRINT MESSAGE • •••• * •

• NO

X
• •• *.F4 ••••• ** •• * • • * USE F05 •
• WAIT cooe, •
• PRINT MESSAGE • • • • •• * •••••• * ••••••

•••• • * • • .X. K3 • . .
••••

x •••• · . • K3 • * • • •••

:. ·SECMCi············ •.•• Aooi TioNAL 'MAc~' CHK· AND'"
• ••• 64......... PROG CHK HANDLER • •

• ENTRY •

• * ..* .••.. * ••••••
:ENTEREO FOLLOWING
.UNEXPECTED MACH CHK
.OR PROG CHK INTRPTN
.DURING EXECUTION OF
.IFBSEROO
X . ..

H4 •• • •••• HS ••••••••••
•••• .USE F07 .AI T •

•• FIRST •• NO • CODE, SET UP •
..ENTRY TO THIS •••••••••• x* SEREP INTFce, •

•• RTN.. • PRI NT MESSAGE • •••• * •
• YES

X
• •••• .14 •••• * •••••
.INDICATE FIRST.

• • ENTRY. ENABLE •
• MACH CHK •
.INTRPTNS. DETM •
• REENTRY POINT. • ••••••••••••••••

X
AN ATTEMPT TO CONTINUE WI TH

x * ••• • •
• K3 • • • • •••

• THE NEXT LOGICAL. I/O OPERATION
IS MADE HERE

I. READ REMAINDER OF IFBSEROO (BLOCK H2).
2. READ HEADER RECORD (BLOCK A4>-
3. WRITE ENVIRONMENT RECORD (BLOCK 04).
4. AL.L I/O COMPLETE (BLOCK E4).

Section 13: Charts 327

Chart AN. SERl Routine (for Models 40, 50, 60, 75)

lEAMCHOO

•••• " 1 _._* · . *' ENTRY *' • •

• ENT~RED FOLLOWING
• MACHINE CHECK
• INTERRUPT ION

x .•.
Bl *'. *****62*.*.****** • * *. *' MOVE CHANNEL • .* CHANNEL *. YES *' LOG FROM *' *. FAILURE .* •••••••• X* DIAGNOSTIC *' *. .* *' SCAN-OUT AREA *' *... * TO Reo ENTRY '" *'. • *' •••••••••••••••••

• NO

X
*****Cl ••••••••••
*MOVE CPU LOGOUT.
.FRON DIAGNOSTIC. *' SCAN-OUT *' *' AREA TO *' *' Reo ENTRY *' •••••••••••••••••

X
*****01******.**. · . • Mav E MACH [NE *
• CHECK OLD PSW *' * TO Reo ENTRY '"

* * *.* ••••••••••••••

:x ••..•••••••••••••••••••• :
X

..*e •••••• ****.
* * * ENABLE AND '" * CLEAR PENDING *'
• MACHINE CHECKS *
* * •••••••••••••••••

x .•.
Ft *. *****F2.** •••••• * • * *. .MOVE CSW. CHAN '"

•• CHANNEL *. YES '" UNIT ADOR. •
•• FAILURE •••••••• · •• x* FIRST AND •••••

328

*. •• *FAILING CCWS TO* *.." • RCD ENTRY "
* •• * * •• "*.**.**,,.****

• NO

x .•.
GI *. ..* •• G2** ••• *** ••

•••• • PLACE •
•• •• 40.50 • CONTENTS OF •

.MODEL NUMBER . •••••• : •. X.GENERAL PURPOSE.
•• •• *REGISTERS INTO * *... . RCD ENTRY • "

*65.75

X
••••• Ht.* ••••• * ••
• CHECK. PAR ITY •
• AND PLACE •
*CONTENTS OF GEN.
*REGISTERS INTO * * RCD ENTRY *
* •••• * ••• * •••• * ••

X * 1 •••• * •••••
• CHECK PAR ITY •
" AND PLACE •
• CONTENTS OF FP *
.REGISTERS INTO *
• RCO ENTRY *
** •••••• * ••••••••

* •••
* "

X
••••• H2.* •••• *.* •
• IF AVAILABLE, •
• PLACE CONTENTS.
• OF FP REGI STERS*
• INTo •
• RCO ENTRY • •••••••••••••••••

• KI •• x. • * • .X ••••••••••••••••••••••••• ••• *
X

•••• *K 1 ••••••••••
" OBTAIN DATE •
• AND TIME OF •
• FAILURE FROM •
*CVT, PLACE INTO.
• RCD ENTRY • ••••• * ••••• _.*_ ..

x ••• *
• * • A3 _

• • _ ...

x
• • • KI •

* * .*.*

.* •• • • * A3 * * • ••••
X

••••• A3 ••••• *****
.MOVE CHAN TYPE. *
• ACTIVE I/O UNIT. * ASSIGNMENTS. •
• AND PROG NAME .,
*1 NTO RCD ENTRY .,
••••• * •••••• ** •• *

x .•.
83 ••

•• CHANNEL •• YES
. FAILURE . ••••

. . * ••• * NO

x .•.
C3 ••

" .* •• · '. • A4 •

• * ••••

•• OLD MC •• YES
•• PSW = SUPVR • * •••• *. MODE ••

• NO

x .•.
03 ••

• * *.

x * •••
* •
• A4 •

• * ••• *

•• PSW •• YES
•• STORAGE KEY ••••••

•• = 0 •• •• • *
• NO

x .'.
E3 *.

x ••••
* *
• A4 • • • ••••

•• ANY •• YES *. CHANNELS ••••••
•• RESET ••

• NO

X
..*F3 •• **.*** ••

• * • CHECK PARITY •
• OF MAIN •
• STORAGE •

• * ••• * •••••••••••••

x
.* •

G3 ••
•• BAD ••

x ••••
* *
• A4 * • *, ••••

•• PARITY •• YES
•• OUTSIDE OF ••••••

•• PP AREA ••
* NO

X
• •••• H3 ••••••••••
• SET ALL TASKS •
• NON 01 SPATCH- •
.ABLE, SET CUR- •
*RENT TASK MUST.
• COMPLETE • • ••••••••••••••••

X • •• * 3 ••••• * ••••
* * • READ AND •
• UPDATE HEADER •
• RECORD •

* * •••••••••••••••••

X
• •••• K3 ••••••••••
• WRITE HDR •
.. RCD, •
• ENVI RoNMENT •
• RCD, AND EOF •
* • •••••••••••••••••

x •••• * •
.. G4 •
• * • •••

x ••••
• * * A4 •
* •

. ...
• •
• A4 •

• * • •••
X ••••• "4 ••••••••• *

* * .. READ AND •
.. UPD"TE HEADER •
.. RECORD • · . ••••• * •••••••••••

X
••••• 64 ••• * ••••••
• WRITE HDR •
.. RCD, .. * ENVIRONMENT •
_ RCD. AND EOF •

* • .* •••••••••••••• *

X
• •••• C4 •••• * •••••
.RING BELL. RTN • .-.-.-.-.-.-4t-.-..
• SOUND •
• CONSOLE ALARM •

• * • ••••••••••••••••

x .•.
0"" •• • •••• 05 ••••••••••

•• RCO ENTRY •• NO • SET UP •
•• WRITTEN •••••••••• X.INTERFACE WI TH *

•• •• • SEREP • •• •• * ••••••••••••••••
• YES

. .

.X •••••••••••••••••••••••••

X
•••• E4 •••••••••

• PLACE CPU •
• INTO •
• WAIT STATE • •••••••••••••••

•••• * •
• G4 • • • ••••

X
• •••• G4 ••••••• **. • •
• REseT •
.DISP"TCHABIL ITV*
• "NO WTo •
• FL.AGS • •••••••••••••••••

X IEAOABOO
••••• H4 ••••••••••
.ABTERM RTN HEA2. .-*-.-.-.-.-*-:t:-.
• SCHEDULE •
• TERMIN OF JOB.
• STEP • •••••••••••••••••

X
• 4 •••••••• *. • •
• REINITIAL IZE •
_PI PSW, Me psw ••
.. ETC. •

• * • ••••••••••••••••

X • ••••••••••••• • • .. eXIT •
• • • ••••••••••••••
TO DISPATCHER (IEAODS)
-- CHART GG --

,~"\

',,-,/

• Chart AO. SERl Routine (for Model 91: Part 1 of 2)

.•. .•.
A3 •• AS *.

..A 1 **** •••• * •••• .* *. .._. .*** •• IS THIS •• • • * .. .* PROBLEM *. NO • * • * •• A SECOND *. YES
.. ENTRY A3 * •••• X*.PROGRAM CHECK.* •••• x. G3 • * A5 * •••• ·X •• MACHINE CHECK.* •••• · . ,... *. .* .,.. • * *. WITHIN .*
* •• ********.*.**. • •• * *.SERI ...

ENTERED FOLLOWING
• MACHINE CHECK
• EXTERNAL MACHINE CHECK

CHANNEL CHECK

X
****.e ,* ••• *****.
.. SAVE .. * REGISTERS ..
• INITIALIZE BAse.
.. REGISTERS • · '.

x

••• **
• "0 ..
.. C2* . -.

.=tI. STARTI X
C 1 *. ****.C2*** ••• **.* •• *. .. SAVE • • * CHANNEL ... YES .. CHANNEL. l.OG. '"

•• FAILURE •••••••••• X* SET RECORD .. •• .* *-ENTRY (PF) TYPE. *... .. TO tNBCARD .. •• •• • •• * •••••• *** ••••
• NO

STARTC X
••••• 01 ••••• ** •• _
.. SAVE CPU LOG ...
.. MACHINE CHECK ..
.. OL.D PSW. AND *
_INTERRUPT CODe ..
.. IN SF AREA ..
*.**** •••••• * ••••

STARTE X
•• *.*El******* •••
.. seT .. * UP MACHINE ..
.. CHECK AND ..
.. PROGRAM PSW' 5 * - . ** •••••••••••••••

· . • x •••••••••••••••••••••••••
SERE X

••••• F 1********** · -* CL.EAR PEND [NG *
MACHINE CHECKS.
• GET DATE AND • * TIME •
• *.*.**.**** •• **.

X
SEPH .*.

GI *. •• *.
• ,.. CHANNEL •• NO *. (INBCARD) •••••••••••••••••••• *. RECORD •• *. •• * •••

.. YES

CSEPB i
*****H I ******* •••
*SAVE csw. CUA1 ._ * FIRST CCW _ * FAILING CSW. *
*SET ACTIVE I/O • * POINTER •
********.*******.

X
* •• **H2******* •••

• * • SET CHANNEL ..
*TYPE AND ACTI ve.
• I/O POINTER • · . • ***************.

· . • X •••••••••••••••••••••••••

SERE X
.*J 1*.**.**
• SAVE *
• ACTIVE I/O •
.UNITS. FIND AND.
*SAVE PROGRAM 10. • • ••••••• *.**

x
OUTPUT .*. .*.

It 1 *. K2 *. • * *. .* *.

•• • * _ YES

x • *. SFPlK
83 *. • •••• S4****.****. • *.. • • •• *. YES • INDICATE _

.SCHEDULER IN . •••••••• X. SCHEDULER IN • *. CONTROL .* .. CONTROL .. *... ,.. . •• • * ••••••••••••• *.* •
* NO

x
• *.

C3 *.
NO •• IS CBe DR *. • ••• *. SOR IN .*

•• CONTROL .* *. ••
* •• *

• YES

x
** •• - . • 63 • • • ••••

* •••
• NO

x .-. 85 ••
.* * •

NO .1It IS STAND *. • •• *. ALONE 11'0 ••

x
.AP *
• at •
• • •

*. BEING ••
..USED ••

• YES

:x ••••••.••. :

PRINT X
.. •••• cs*.* •••• _** - . • PRINT A •
.. MESSAGE ON •
.. CONSOLE .. - . * •••• *.* ••• * •••••

.OBR=OUTBOARD RECORDING
SDR=STATISTICAL DATA

RECORDING
X * •••• 03 •••••• ****

• seT ..
• TERflillNATION *
.FLAG IN BF. SET*
5 T AND ALONE 1/ 0
• (SF811S]/0) *

••••••••••• X.

PTYCHKI X
** ••• E3 ••••• *.*.*
* •
• PARITY • * CHECK OF MAIN • * STORAGE •

• * * •• * ••• *.* •• *** ••

x .*. SYSTEMIO
F3 *. .* •. *F4* ••••• ** ••

•• BAD *. *SET OTHER TASKS* .* PARITY •• NO • NON-DISPATCH- *
•• OUTSIDE OF PP •••••••••• X.A.BLE. NO ASYNCH* *. AREA .* • EXITS. THIS • *... . TASK MUST END * *. .* •••• ** •••••••••••

• YES
**** .AO. •
• G3 *.X.
• • .X ••••••••••• x

SERLI X .-.
.G3*.*** •••• *
• seT ..
• ST AND ALONe ..

•• X* I/O. HALT * * SYSTEM 110 •
• ACTIVITY *

• ******** •••••• ***
.***

G4 •• •• *.
• NO .15 I/O PURGE ••
• ••••••• ON THIS TASK ••

.SUCCESSFUL •• *. .•
* •• *

• YES

* -,. G3 * · . .X ••••••••••••••••••••••••• . .

SERLA X
••••• H3******** ••
• seT UP FOR •
*AND READ HEADER.
• RCO USING EXCP •
• OR ST AND ALONE •
• 11'0 • * •••••• * •• * •• ** ••

WRITENT X • * ••• J3 •• **** ••••
• SET UP FOR •
• AND WRITE •
• RECORD US I NG *
• EXCP OR ST AND *
• ALONE I/O • •••••• ** ••• ***** •

WRTEOF X

x

. •• H4.: •••• ** ••
• Move •
• RECORD OA. TA •
*FROM BUFFER TO •
• RECORD AREA • · . • •• *** ••••••• ****

x

• YES .•.
J4 ••

.*ISAN*.
•• EXTERNA.L ••

• •• X •• RECORD IN A •• *. BUFFER .* -
• NO

:MDAILB X
.*.K4 ••• * ••••

it
• ••• 05 •• **.**.* · -• EXIT • · . .* •••• *.*** ••••

WAIT STATE

•••• *K3 ••••••••••
• SET UP FOR • • ... •• *. .* ... NO .* EXTERNAL *. YES • AND WRITE END • •
• OF FILE AND * ••••••
.REWRITE HEADER.

• INDICATE * • .. *. INBOARD .* ••••••.•• X*.MACHINE CHECK ••••••
•• RECORD .* •• .*
.. ...* *. .• • •••

• YES ,.. NO

x
•• *** _/loP •
• 85*
••
*

it
* • ,.. A3 •

* * • •••

x
•• *** .AP •
• 82*
* •
*

• 11'0 FINISt£D ••••• X" AS ..

• • * • • RECORD • ·
• * •• *.* •• * •• ** ••• .* .•• * ••••••• * •• *

1 CHANNEL UN IT AODRESS

section 13: Charts 329

• Chart AP. SER1 Routine (for Model 91: Part 2 of 2)

* ••••
*AP ,.
;I; Bl*
•• •
x .•.

BI ••
• *15 THIS ••

•• AN EXTER ••• YES
•• MACHINE CHECK ••••••

_ EXIT . *. .• * •••
• NO

SESP X
••••• C 1 ••••••••••
,. seT TASKS *
,. DlSPArCHABLE. ,.
*PERM IT ASYNCH ...
,. EXIT. WRITE ,.
,. OPERATOR MSG ,.

•••••••••••••••••

X
••• *.01 ••• ******.
*ABTERM •

--*-*-*-*-*-*-* ,. TERMINATE ,.
,. CURRENT TASK •

• • * ••••••••••••••••

EX ITHS!(,P X
****.El*** ••••••• • • * SERI ..
,. HOUSEKEEPING •

• • * • * ••••••••••••••••

X
.***Fl**** ••• **

* * * EXIT ,.

* * •••••••••••••••
TO DISPATCHER
ROUTINE (IOODS)
-CHART GG-

eXTEXlT X
••••• Hl •• *** •••••
• seT TASKS ,.
,. DISPATCHABLE. ,.
• PERMIT '" ,. ASYNCHRONOUS ,.
.. eXIT ,.

•••••••••••••••••

.x •••••••••••
eXITHSl(p X

* ••• *
• AP •
* B2.

* * *
it

• 0.
82 * • • * IS AN *.

•• eXT. MACIi ••• NO
• CHECK RECORD IN •••••

•• A BUFFER ••
* •• * * YES

X
•• *.*C2.***.***** * INCREMENT * * EXTERNAL * * MACHI NE CHECK *
• RECORD COUNTER *
* * .* •••• ** •• ****** •

· . • X •••••••••••

EXTI X
.****02* ** • •
.. MOVE NEW *
*E XTERNAL RECORD. * 1 NTO BUFFER *
* * *****.* •• *******.

it .•.
E2 *.

•• 1.10 ••
•• ENABLED *. NO *. (SYSTEM MASK ••••••

*.ALL ONES) •• *. ••
* •• *

• YES

EXTlO it
****.F2.******.**
5ET OTHER TASKS * 01 SPATCHABlE. * * NO ASYNCH •
• INTERRUPTS. •
ENABLE I/O LooP
****.************

EXTI2 X
• ****G2********** * DISABLE * * 1.10. CLEAR .. * CHANNEL. MOVE *
.RCD FROM BUFFER* * TO SF AREA ..
.** •• *.***** •• ***

SERL" it * ••••
.AO * * H3*

* * •

x············ .*.
.J2 *.

•• EXT. *. ••••• Jl ••••••••••
.. SERl ,.
• HOUSEKEEP ING. '" • NO.* COUNTER *.

330

,. RESTORE ,.
,. REGISTERS. •
o * ••••••••••••••• *.

X
•••• Kl •••••••••

.. EXIT TO •
• POINT OF •
• INTERRUPT • •••••••••••••••
LOAD OLD MACHINE
PSW

••••• • *. VALUE=9 OR • *
•• CPU INSTR.*

.ERROR.
* •• *

• YES

X
** •• *K2** •••• *.**
• MOVE • * RECORD FROM '"
.. Bl.FFER TO •
• RECORD ENTRY '"
• AREA • .."' ••••••••••••• *

X SERLI ••••• • AO.
* G3* •• •

* 3****** •••

* * • ENTRY *
• * *** •• ******** ••

ENTERED FOllO.ING
SECOND MACHINE CHECK

• SECOND EXTERNAL CHECK
CHANNa... CHECK

MCI2 X
• ****83*********. * •
• BASE • '* REGISTER • * RESTORATION ..

* * ****.******** •• *.

x .*.
C3 •• ***.*C4**** •• *.**

.* IS *. • * .* 1.10 *. YES • PRINT ..
. OPERATION •••••••••• X MESSAGE TO •

.COMPLETE •• ' OPERATOR •
.. • '*

* •• * •• * ••••• **.******
* NO

x .•.
03 *.

•• EXT. *. • * RECORD IN *. NO *. BUFFER FOR ••••••
•• CHANNEL .*

.CHECK.
* •• *

• YES

x .* •
E3 *.

•• IS *. • .* IT A *. NO X *. CHANNEL CHECK .* •••• *. ENTRY .*
. . ••• *

• YES

x
***** * 0 * * C2. •• •

x······•.
G3 ••

.* IS * • • * SECOND *. YES

X
****04********* • •

• EXIT *
• * ***************

WAIT STATE

.MACHINE CHECK. ••••••••••• .: ••••••
*.INDICATOR ••

. ON . * •• *
• NO

.!. SEPEP X
H3 •• ** ••• H4*** •••• ** •

•• STANO '*. * * .* ALONE 1.10 •• YES '* PRINT •
•• AND 1.10 IH •••••••••• x. MESSAGE ON •

.PROGRESS . '* CONSOLE •
. ON . '* * *. ... *.* •• ***.* •• * ••• *

* NO

X
***.*.J3** •• * •••••
• * * STOP ALL '* '* 1.10 WRITE • * RECORD ENT RY * _ • • •••• ** •• * ••••••• *

x
***.*
*"0 * * G3. •• •

X
•• ***..14*.*.* •• ** • • • • • .SEREP INTERFACE* • • • • .****.* ••••• ****.

X
• •• *K4.** ••• *** • •

• EXIT * • • •••• ** •••• *** ••

."IT STATE

..*
*AP ..
• B5*
• *
* ."
it

EXTMCHCH • * •
B5 * •

.*15 EXT ••
.*MACH. CHK ••• NO

*RECORD IN BUF •• * ••••
FOR CHAN CHECK

. . * •• * * YES ."

it
.*C5****.**
*MOVE DATA FROM *
• BUFFER TO RCD •
AREA. SHOW EXT.
*AND CHAN. DATA *
.IN SAME RECORD *
.."' •••• ******** . .

.x •••••••••••
SERLI X

•• *.*
*""0 * * G3 •

* * •

c

(

(

Chart BA. Attach Routine (Part 1 of 3)

IGC!042

•••• AI **.****** · . .. ENTRY .. · . ***************
.FROM SVC SLIH
.C CHART AC F2)

x .•.
Bl *. *****82******** •• • * *. * * ***.83********* • * ATTACH *. YES ... PLACE" * .. *. ISSUED IN •••••••••• X*RETURN CODE OF ••••••••• X* EXIT ...

*.STAE EXIT.. .. 4 IN REG 15 .. * ...
. RTN************** * •• * ********** •• ***** TO DISPATCHER .. NO (IEAOOS)

-CHART GG-

x .*. GETTeB [GC004 (S)
Cl *. *****C2******.*** .****C3******.*** *****C4*********_ • * *. *GETMAIN RTN *OA"I" INITIALIZE .. • * eTXR *. NO *-*-*-*-*-*-*-*-. .INITIALIZE TASK. .NON-ROLlOUTABLE •

•• PARAMETER •••••••••• x. GET SPACE FOR ••••••••• X. CONTROL BLOCK * •••••••• X*COUNT (TCSNRDC).
•• SPECIFIED.* .. TCB. sP 253 * .. ncs) TO ZERO * * FROM INPUT • ...* .. (192 BYTES) *. * * PARAMETERS •

•• •• ..* ••••••••• **... ..***.** ••• **.*** •• *******.*.*.***

***. · . * YE5

* 01 *.X. · . **** x
••• GET[RS IGC043 (5)

01 *. *****02****.***** **.**03******** ••
.* DOES *. *STGI EXIT EFCTR*CHART * *

•• SUBTASK TCS*. NO *-*-.-*-*-*-*-*-.BLA2 • INITIALIZE *
•• HAVE PTR TO .* •••••••• X* GET SPACE FOR ••••••••• X. INTERRUPTION * ••••

•• SPCD EXIT.. *IQE.TCB,IRS.SP=. • REQUEST BLOCK.
*. RTN •• • 253,,192 BYTES * • JRb ..

... •• * •••• *........... .* •• ** •• *********
• YES

x .•.
El *. *.***E2******** •• •• *. • •

•• DOES •• NO .. OBTAIN •
•• TCS POINT TO •••••••••• X.TCB DF ANOTHER * ••••

•• IOE.. X * SUS TASK *
.. • * •• • * .******* •• ** ••• *.

* YES

X
•••• *FI***.******
* OBtAIN IRB ..
.. ADDRESS FROM *
• INTERRUPT ION •
* QUEUE ELEMENT •
• (IOE) •
* ••• ** •• *********

x .•.
GI ••

•• EXIT *.
•• IRS ADDR IN*. NO •

. IRS ADDR OF . ••••••
.speD EX IT.

•• RTN ••
••• * * YES

X IGC004(S)
.****HI **********
GErMAIN RT DAAI
• -*-*-*-*-*-*-*-*
• GET SPACE FOR •
IQE AND Tce.sp=
* 253" 208 eYTES *
.********.***

X
•• ***,J 1 ****** •• **
> > · . *INIT IAL IZE]QE * * A.NO Tes •

• > ****.* ••• ***.*** •

• **. · .. * 1<1 •• X. • • *.*. •
ATOKI X

*****K 1*.******.*
*TRANSFER ,JS1CS •
.. AND POE •
• ADDRESSES FROM •
*ATT AeHER' S TCB *
.to CREATED TCB •
******* •• ****** ••

x ••• *
• >
• A5 *
> •
..

x · .
• 01 * · . •• **

x
**** · .

• K1 * · . ****

x

> • * K 1 • • •

**** • • .. AS ..

• > .***
x .•.

AS * • .* ••
NO .* IS *. • .. *. ATTACHER A •• *. SYSTEM ••

..TASK .*
x * •• *

**** • • .. G5 ..

.. YES

· . **** x
.> •

85 * • • * MODE ••
NO.* BIT seT * •

• ••• AND SUPVR PARA-*
.METER SPE-.*

.ClFIED ••
x * •• *

• > .. F5 ..

.. YES

• > *.*.
X

***.*C5*.** •• *** •
* SET * .PROTEC Tl ON KEY ..
*BIT (TCBPKF) OF •
.CREATED TeB TO •

• 0 • ••••• **.*********

X
.*05***.***
* SET MODE BIT •
* (TCBFSM) OF *
.CREATED TCB TO •
*1 (SUPVR MODE) • · . *************.**.

x .*.
E5 *. .* ••

NO.. MASTER * •
• ••• *. SCHEDULER .*

*.ATTACHER •• *. • •
* •• * .. YES

.* · .. * F5 •• X • • • ** •
ATOK1A X
*****F5*****.****
* POINT JSTee *
* FIELD OF * * CREATED Tce ..
• TO BEGI NN] NG ..
*OF CREATED TCB *
** ••• *****.******

**** · .. * G5 *.X. · . **** •
ATOKle x
.*G5******* * TRANSFER •
*PROTEC Tl ON KE V *
FROM ATTACHER' 5
*Tee TO CREATED * * TCB •
*** •• ***** •• ***** . .

••••••••••• X.

it
****.HS ••••••• *** * TRANSFER TJ OT ..
.AND JOSUS DCB •
*ADDRESSES FROM *
*ATTACHER I S TeB *
.TO CREATED Tee *
.*********.

x
••• **
.BB *
• AI* • >

•

section 13: Charts 331

• Chart BB. Attach Routine (Part 2 of 3)
* •• _.
*B8 ..
II< AI.

o •
• • f:"ROM
.BAH4-
X .•.

AI •• .* •.
NO _* EeB *. •••• *. PARAMETER .*

•• SPECIFIED ••
. . * •••

.. YES

X
*****81********** * PLACE ADDRESS .. * OF EVENT .. * CONTROL BLOCK ..
,.. (ECB) INTO *
,.. CREATED TeB * *._.* ... _

x .'.
Cl *.

.. ,.. ****C2*****.* ••
• * VALID *. NO * * *. Eca ADDRESS •••••••••• x. EXIT ...
. . * " *..* ••• * ••••••••• *. * •• * • * YES TO ABTERM ROUTINE

(IEAOABOO) ••••••••••• x. * •••
.. *BD * -- CHART HE --
•• x. Al ..

x NOTE - THIS EXIT APPLIes ONLY

ATOK2
.*.. TO SYSTEMS WITH TIME SLICING .•.

01 * • • * LIMIT *. • * PRIORITY *. NO *. PARAMETER .*
*.SPECIFIED ••

. . * ••• * YES

**** o •
* A3 * * •

*** •

x .0.
A3 *. *****A4**********

• * *. * * .***
•• RESULT *. YES * Pl..ACE 0 DISP. • •

. NEGATIVE OR . •••••••• x* PRIORITY INTO * •••• x* E3 *
*. ZERO • * * CREATED TCB * * •
.. * * ***. *. •• .**************"*

• NO

x .•.
83 *. *****B4.********.

.11' *. * SET DISP * .*.*
.* *. YES *PRIORITY LIMIT * • •

.RESULT GT 255. •••••••• x* PRIORITY AND * •••• X. E3 • *. .*)(* PLACE INTO. * •
*. • * * CREATED TCB * ****

* •• * ***.*.*********.*
• NO

**** · .. * C3 *.x. • • • *** . ..
C3 * • • * OISP * •

• * PRIORITY *. YES •
*. GT LIMIT ••••••••

.PRIORITY .
. . ••• *

• NO

x
*****03********** · . * PLACE *
• RESULT INTO * * CREATED TCB *
• * *.**.***.*.* •• ***

.aa * •
* E3 *.X. • •
**** x

FROM TIME/SLICE
ATT ACH (CHART eo)

X x
*****E2**********

ATOK" .'.

332

*****El ********** *' SUBTRACT ..
*SPECIFIED LIMIT.
.. PRIORITY FROM *
.. AlTACHER'S ..
.LIMIT PRIORITY *
********* •• ******

,., TRANSFER *
*L.IMIT PRIORITY.
FROM ATTACHER·S ••••
*TCS TO CREATED *

x
• 0.

* TCB *
..* •• * •• *.***.*

FI *. *****F2.*********
.*:11. * PLACE •

• * RESULT *. YES * ZERO L.IMI T *

x

• * • HI * • •

. NEGATIVE OR . •••••• · •• X* PRIORITY INTO * ••••
. ZERO. • CREATED TCB * ...* * *

* •• * *****************
• NO

X
•• **.GI*****.**** • •
* PLACE *
* RE5UL. T INTO *
* CREATED TCB •
• • **.**.***.*****.*

***. · .. * HI •• x. • •
**** x

it
.***

• * • HI * • • **.*

E3 •• .* IS *. • * GI VE SUB-•• NO
"'POOL PARAMETER.* ••••••••

*.SPECIFIED.. X
.. ***** *. •• *BC * * YES .. AI*

x .•.
F3 *. .* * • .* IS *. YES

•• •

*. SUSPOOL ••••••••••
*. SHARED • * x
.. * •• ** * •• * *BC *

* NO .. AI*

x .0.
G3 ••

•• •

• * *. .*.*G4***.**.** .* SPECIFIED *. YES. *
*. suapODL NO •• * •••••••• x* EXIT * *. 128-255 .* * *

•• • * * •• *.***.*****.
* •• *

• NO

x

TO ABENDt ROUTnlE
(IGCOOOIC)

- CHART HI -- VIA
SUPERVISOR LINKAGE

.•. SPSEARCH • *. SPSRCH.* •
HI *. *****H2*********.

• * DISP *. * TRANSFER •
.* PRIORITY *. NO * DISP PRIORITY * *. PARAMETER .* •••••••• X*FRDM ATTACHER '5* ••••

.SPECIFIED. *TCB TO CREATED *
.. * TCB ..

* •• * **.*** •• ***.*** •• * YES

X
** ••• .1 1**.******.
• ADD * *SPECIFIED DISP *
* PRIORITY TO *
.ATTACHER'S OISP.
• PRIORITy ..
* ••• **-*._*.*** ••

x
***. • • * A3 • • • ** ••

x
**** * •

• C3 • * •
• ***

H3 *. H4 *.
.* *. .* SPQE * •

• *SPQE QUEUED •• NO •• QUeUeD TO *,. yes
.TO ATTACHER'S •••••••••• X. CREATED ••••••••••

•• TCB .* •• TCB.*)(
*. • * *..* ****. * •• * *. •• *BC *

• YES • NO ... A I.

x .*. .13 •• .* IS •• • * SPECIFIED *. yes *. SUB POOL NO. .* ••.•
•• ZERO ••

. . * •• * o NO
**** · .. * K3 *.x. · .. *.*. it

*****1<3*****.* •• *
*SPCHAIN •
--*-$-*-*-*-*-*
* QUEUE SPQE • * TO CREATED * * Tce ..
** •• ** •••• ** •••••

x .*.* • • Be • . * AI* •• •

x

.BC •
* AI* • • •

X
.*J4*******
*BLOSPQE *
--.-*-* *-*-.-*
... CONSTRUCT *
* SUBPOOL. QUEUe *
*ELeMENT (SPQE) *
***************.*

x
*** • • • .. K3 •

• • .* ••

o •
•

(

('~ ~\

• Chart BC. Attach Routine (Part 3 of 3)

***** "'Be '" .. Al*

•• • .FROM

*.** • •
• A3 * · . .**.

.CHART BB
X

SPSHARE •• _ SETFIELD X
At *. _* SHARE *. • * SUBPOOL *. NO

•• PARAMETER ••••••
•• ~PECIF 1f~.D.*

. .

**** · .
* •• *

.. YES

* BI "'.X .. · . "'**'" X

*****81 ****.***** · . '" GET '"
'" SPECIFIED '"
'" SU8POOL NO. '" · . ** ••• ************

x .0.
Ct *.

x
**** o •

'" E2 '" o •

.* *. .***C2*******.* • * SPECIFIED *. YES'" '" *. SUBPOOL NO •• "' x", EXI T .. *. 128-255 .*
*..to ***********.*** * •• * TO ABTERM ROUTINE

'" NO IIEA0800)
-- CHART HE --

x .*. ."'.
01 *. 02 *. •• *. .* * • • * SPECIFIED *. YES _"'ADDITIONAL *. YES

.SUBPOOL NO. 0. •••••••• x •• SUBPQOL NOS •••••• *. .* •• SPECIFIED.'"
.. *..* *. -* * •• * * NO '" NO

x .0.
Et *.

• * *.

***. o o.
• E2 "'.x. . .
.'" SHARE 0

x . ..
E2 ••

•• 15 ••

x .* ••
o •
• 81 •

• 0
• * SPQE * .. YES •• MA STER "'. YES *. QUEUED TO *. CREATED .* *. TCB .*

* •• * o NO

• ***
• o • .. Fl *.x. · . • *** x

• 0.
Ft *.

• * *.

x
•• ** · . * .I t •

• * •• *'"

.*SPQE QUEUED*. YES
.TO ATTACHER·S. •••• *. Tce .*

. . * •• *
• NO *"''''* • • * • .. GJ *.X.

o 0

"''''
X

. •• Gt********** *BLDSPQE *
"'-*-*-.-*-*-*-*-.
• au ILD SPQE, .. * QUEUE TO *
.ATT ACHER' 5 Tce *
• * •• * •••••• ****.*
o ••

x *."'. • •
• HJ •

• * ***.

•• SCHEDULER ••••••
•• A TTACHER. • '"

•• .*
• NO

x .•.
F2 ••

•• * •

x · .
• A3 • o 0

•• 15 *. NQ
•• INI TIATOR • * ••••

*.ATTACHER ••

"'- -* •• • *
• YES

x
. *.

G2 *. • * SPQE *.

x
••• * • •

• Fl ... · . ••••

.*FOR SUBPOOL*. NO
•• 0 QUEUED ON ••••••

•• INI TIATQR.*
•• Tce .*

"' •• *
• yes

x · . • Gl • .. Ht •• X. •
.. • .X ••••••••••••••••••••••••• • 0 ••••

• •••• A3 ••••••••••
.. INITIALIZE •
• TC8NTC, TCBLTC,.
• AND TCBOTe •
• FIELDS OF ...
• CREATED TCB • * •••• * •••• "' ••••••

X
••• *.63* •••• *.* ••
• 0 • PLACE CREATED •
• Tce ONTO TCB •
• QUEUE •
o *

X~ IEAODS02
• •••• C3 ••••••••••
.T5K SWTCH BYA2.
-.-.--*-*-.-.-*
• DETERMINE IF •
.TASK SWITCH IS •
• NECESSARY • ••••• *.* •••••••••

X .* •.. 03* ••• * •••••
• PLACE ADDR •
• OF eDCONTRL •
.CHART CAG2 INTO.
.CAEATED TASK'S.
• SYRB •

X
• •••• E3 ••••••••••
• PLACE •
• ADDRESS OF •
• CREATED TCB •
"'I NTO ATTACHERI S.
• TeB •

X
• •••• F3* •••• *.* ••
• PLACE •
"'ADDRESS Of' S AV E.
• AREA INTO •
.CREATED TASK'S.
• SVRB • * •••••••• "' •••••••

x .•.
G3 •• • •• **G4* ••••••••• •• *. '" COMPLEMENT •

•• 'oe l •• YES .SPECIFIED ADDR •
•• PARAMETER .* •••.•••• X.AND PLACE INTO.

..SPECIFIED.. .REG 14 FIEl:D OF •
•••• .SVRB SAVE AREA. •• •• • •••••• * ••••• ** ••

• NO

....
X NOTDEAOR X

• ****Hl*.*.* •• * ••
• SLDSPQE •
-.-.--*-*-*-.-. • au ILD SPQE, •
• QUEUE TO • * CREATED Tce •
•• **.*.***.* •••• *
••• * * o.

• .II "'.x.
• * *.** x .'. .II ••

• * ••
•• ADDITIONAL *. YES

•• SUBPOOL NOS ••••••
*.SPECIFIED ••

. . * •• *
• NO

x

x
.*** · . • 81 • • •

••• IGC004(S)
K 1 ... *"'***K2***"'***.*. . *.. *GETMAIN DAAl.

•• CURRENT *. YES *-*-*-*-.-.-*-.-*
•• SUBPOOL 10 = .* •..••..•• X. GET SPACE FOR.

•• 0.. * SAVE AREA. 72 • *.... • BYTES, SP=250 '" •• • * ** ••••• *.** •• * •••
• NO

x
** ••

• 0
• E2 * • • *"''''.

x ••• * • •
• A3 *
• 0 ••••

•••• *ti3 ••••••••••
• Move ENTRY •
.POINT NAME INTO.
• REG 14 AND 15 *
.F I ELOS OF SVRB •
• REG SAVE AREA •
****.****.* ••••••

. .

.x
X

• •••• J3 •• *** •••••
• PLACE AODR OF •
• REG J4- FIELD OF •
.SVRe INTO REG J*
• FIELD OF Tce •
• -REG SAVE AREA • ."'

X
• ••• *K3 *.*.**** ••
• PLACE •
• ADDRESS GIVEN •
• WITH DCB •
*PARAMETER INTO.
• REG 0 • ..*.* ••• * ••• ** •• *

x
.*** * •

• AS • * • ••••

**** • 0
... A5 '"
• 0
.* ••

X • •• *.,,5 ••••••• *.*
• REMOVE SVRB •
.FRM ATTACHER' 5 •
.AB QUEUE it PLACE.
.ON CREAT=:D TASK •
• RB QUEUE • • ••••••••••• * •• *.

X
••••• e5 •••••••••• · . .PLACE CYT ADDR •
• AND SVRB ADDR •
• I NTO CREATED •
• TCB • •••••••••• * •••• "' •

EXIT
X

• •• *C5 ••• * ••••• · . • EXIT • ·
TO JISPATCHER (lEAODS)
-- CHART GG --

Section 13: Charts 333

• Chart BD. Attach Routine (With Time-Slicing)

***** -so '"
'" AI_
* 0

* FROM ATTACH
CHART BBCI

**** • * * A3 * o •

ATOK2 X
X

STNEWD .*.

334

*****Al.*********
'" GET *
'" ATTACHOR'S '"
*LIMIT PRTY FROM.
'" TeB '"
o * *****************

x .•.
Bl *. *****82*********.

• * *. * '" _.LIMIT PRTY *. NO .MOVE LIMIT PRTV* *. PARAM •••••••••• X_FROM ATTACHOR'S*
•• SPECIFIED.. .TCB TO CREATED *
.. * TCB * * •• * "'*"'****."'*.**"'''''''.

'" YES

X
*****Cl**********
'" SUBTRACT *
.SPECIFIED LIMIT*
'" PRTY FROM '"
'" ATTACHOR'S '"
'" LIMIT PRTY *
* "'*"''''''''''**'''* * *"''''*'''

x .0.
01 *.

• * *. •• RESULT *. YES

x
**** • • * FI '"

* * -**.

*. NEGATIVE OR ."' •••••••••••••••••••••••••••••••• *. ZERO .* *. .* * •••
o NO

A3 *.
.* *. .15 ATTACHOR'S. YES

.PLUS SPECIFIED.* ••••
DISP. PRTY GT

. 255 .
* •• *

• NO ****
• *. * 83 *.x. • • *.** • STNEWD X
*****83********** • • * MOVE RESULT •
*TO DISP PRTY OF.
* CREATED TCe *
• * ***.*************

· . • x •••••••••••

X
ATDPPROC .*.

C3 *.
.* * •

• *CREATED Tce •• YES
.LIMIT PRTY GT. ••••

*.DISP PRTY. *
. . * •. * * NO

X
*****03********** • •
MOVE LIMIT PRTY
TO DISP PRTY IN
* CREATED T CB *
o •
***************** . . .

••••••••••• x.x •••••••••••
••• ••••••• • x.

X
*****El**********
• * '" STORE '"
'" RESULT IN * * CREATED TCB *
• * .*"'**'" "'''''''*''''''''''''*'''*

**** · .. * Fl _.X.
* • "''''*. X
."'*.*FI."'** ••• *.*
'" GET '" *ATTACHOR'S DIS?*
PRTY FROM TC8 +
• ADD SPECIFIED * * DIS? PRTY *

x .•.
Gl *. • * *. • * RESULT *. YES • *. NEGATIVE .*

. . *. .* * •••
• NO

x .•.
HI *.

• * *. ****
•• DISP. PRTY.*. YES * * *. SPEC. IN .* •••• X* 63 * *. PARAM=O .* *.

.. *.** * •• * • NO

X
** •• *J 1********.* * • * MOVE 255 TO *
.DISP. PRTY. OF *
• CREATED Tea * * • •• ** ••••• ***** •••

x
**** • • * A3 •

* • • ***

x .*.
E3 * • • * *.

• *CREATED TCa*. NO *. DISP PRTY A .* ••.•
.T/S DISP .

.PRTY .
* •• * * YES

X
*****F3**********
* * * TURN ON *
• T/S SIT IN *
• CREATED Tea *
• * *****.***********

X
*****63********* • • • * STORE AOOR OF *
.CREATED Tee IN * * LAST SLOT IN *
* Tsce *
*.***************

x .*.
H3 * • .* *. • .* 1ST •• NO X

_.SLOT IN TSCE .* ••.• *. = 0 .* *. .* * •• * "* YES

X
*****J3********** * STORE *
AODR OF CREAT EO
*TeB IN FIRST + * * NEXT SLOT IN * ,. TSCE _

· . • x •••••••••••
x

***** .se *
,. E3.

• • •

('

(

('

• Chart BE. Chap Routine

r 0 "BT ERN ROUT INE
(]EAOA801)
-- CHART HE --

• ***Cl*** •• ***. • •
'" ex IT '" · . •••••••• ** •• **.

x

•• ** .. .
• x •• Cl '" . .

.***

[Ge044

..A2.******** • •
.. ENTRY '" · . ***.**** •••• *.*

:FROM svc. FLtlol
CHART AA

LOOP .*. a'WNTCS
62 *. * •••• 63*.* •• * •• * •

•• REQ TO *.
•• CHANGE DISP •• NO .. OBTAIN ..

"'.PRIORITY OF A •••••••••• X. CURRENT Tce .. *. SUBTASK .* .. ADDRESS* .. '"
'" YES

x ...
C2 ••

•• REQUEST"' • .* MADE BY •• YES *. SUPERVISOR ••••••
•• ROUTINE .* •• .*

* •• *
• NO

X IEAOYLOI

.****01.*.******* *** •• 02***.*.*.*. *VALI0.CHK RTN ..

.. seT UP .. INVAL 10*-*-.-*-*-*-*-.-*
'" ERROR CODE .X ••••• : •••• VALIDATE TCB •
.. 22C ADDRESS •

.. "'.. .. ****.*********.*. ****.*********.* •
**** · . .. Cl *x ••

> >

• VALIO

***. x
*****El********** E2··· *.
* '" .* DOES *. * SET UP '" NO •• Tca REPRE- *. * ERROR CODE .X •••••••••• SENT SUBTASK .*
* 12C * •• OF CALLER.* .. • *.. •
• ***.**.********* * •• * * YES · . .X •••••••••••

•••••• ••••• x.
IGC044+12 :DOCH"P x

..Fl * •• * •• * ••
> >.
• ENTRy •••••••
> >

* •• * •• ** •••• **.

BRANCH ENTRV

*** •• F2*** •• ***** * ADD PRIORITY *
.CHANGE TO OISP • •
• PRIORITY OF .X •••••••••••••••••
• SUBJECT TCB •
> • • *.* •• * ••••••••• *

it
••• STZERO

G2 •• *****G3********** .*.. .SET DISPATCHING* .* RESULT •• YES • PRIORITY *
"'. NEGATIVE OR •••••••••• X.OF SUBJECT Tee * •••••• *. ZERO.* • TO ZERO • '" '"

* •• * * ••• ** ••• * ••••• **
• NO

x .>.
H2 •• ** ••• H3* ••• *****. • •••• H4****.** •• * .* *. • seT DISP PRI. • .PLACE SUBJ TCB • •• *. YES • AND LIMIT PRI '" x '" ON Tce QUEUE- *

•• RESu... T GT 255.* •••••••• X.QF SUBJECT Tee ••••••••• X*SEAReH TeB QUE. *. .* '" LIMIT PRI OF • X _FOR HJGHER PRI •
.. • PARENT TASK • * READY TASK •

* •• * **********.****** ************ •• ***
• NO

x .•.
****.J 1**.******* .12 *. • ••• *J3 •••• *** •• * * PLACE RESULT • .*RESI.A..T *. * SET DISP PRI • * INTO DISP PRI * YES .lI' LT LIMIT •• NO * AND LIMIT PRI • •
* FIELD OF *X •••••••• *.PRI OF PARENT •••••••••• X.QF SUBJECT Tce * •••• X. * SUBJECT Tee • •• TASK •• • LIMIT PRJ OF • * • *..* .. PARENT TASK • •• *** ••• ** ••• ***. • •• * ******.** •••••••• •

• • >.
Kl *. .* ••• K2* ••••• * •• *

•• IS •• * •
•• DISP PRI •• YES _ SET LIMIT PRI • •

•• GT L. [MIT PRI .* ••.••••• X*OF SUBJECT Tee ••••••••••••••••••••••••••••••••• *. .* .= DI SP PRIORI TV. X
-... * • *. .• .*.* •• * ••• ***.*.* > NO

X IEAOOS02 ••• * • .14.*** ••••• _
.TSK SW ITCH eVA2*
--.-*-*-*-*-*-* .. DETEM. TSK SW •
.NECESS FOR EACH*
• Tee ON QUEUE .. • •••••• * •• ** •••••

X
•••• K4.*.**.**. • •

• EXIT .. • • *.****.*** •••• * TO TYPE 1 EXIT
ROUT INE (IEAOXEOO)
- CHART GA -- OR TO
CALL ING ROUT INE

Section 13: Charts 335

• Chart BF. Chap Routine (With Time-Slicing~ Part 1 of 2)

IGC044

****Al ********* • • .. ENTRY ..

• •

• FROM svc FL IH
(CHART AA)

x .*. OWNTCB
81 *. *****82*********.

• * *. * .. .* *. YES '" GET '" *. CHAP TO OWN .* •••••.•. X.ADDR OF CURRENT ••••••••••••••••••• *. TeB .* .. TeB*
* •• * *****************

• NO
**** • • .. C3 •• X.

X .. ****.. x .*. .*. C 1 *. *****C2********** C3 *. .* *.* *. • * *. YES .. GET.. .* CHAP *. YES *. SUPRV. TASK .* ••••.••• X*ADDR. OF Tce TO* •••••••• x*. TeB A T/5 •••••••••• *. • Itt * CHAP" *. TASK.* X *..* *..* ••• *. * •• * * •• * ••• "' •••••••• '" * •• * .BG ..
.. NO .. NO .. AU: *"'.. • SF.. • ..

.. 03 •• X. • •

**** . .
.. 85

X
.85****.***** • • * STORE TCB *
* ADDR IN LAST * * SLOT IN TSCE *
• * ***********.**.**

it
*****C5********** • • * TURN *
* ON B1 TIN TCB *
* FOR TI'S * • •

**** • DOCHAP X V'ALCHI(X x .•.
05 *. *****01********** * GET * • ABTERM ADDR-VAL*

* CIC ADOR-SAVE * * ADDR OF TeB *
• AOOR *

x .*. ERROR2
El *. *****E2********** .* *. .. * .* TCB *. NO * SET UP * *. ADDR VAL]D •••••••••• x* ERROR CODE •

. . * (22C) * *... .. *
•• •• **.*****.******** * YES

X
*****F 1 **.* .. ***** • • .. RESTORE· *
• I~PUT REG GET * * TCB ADOR * • •

it
.***F2********* • • * EXIT * . .
********.*****. x

*****03********** • • • GET OISP. PRTY ..
.. AND ADD CHAP ..

.*** .* *. * * NO. * 1 ST * •
* J3 *X •••• *.SLOT IN TseE .*

.. VALUE (+/-) .. * * *. = 0 .*
* * *****************

**** *..*

x
.*. STZERO

E3 *. *****e4-**********
• * *. * * .* ZERO * .. YES * STORE 0 IN *'

* .. OR NEGATIVE .* X* OISP. PRI. OF *'
.. .. * CHAPPED TCe *
.. * *

. . ***'************_.
• NO **** .. .

... x. H3 •

i • ****.

* •• * * YES

.' .:

X
.*ES*_***** • • *STORE TCB ADDR *
_IN 1ST AND NEXT*
* SL.OT IN TSCE *
* •
***********-*** ••

**** • * •
•• X* J3 • . .

.*. .*. STDPRI

F3 *. F4 *. *****F5**********
.* *. .* *. * • •• *. NO DISP. PRJ. LESS YES *STORE fEW DISP •• *. OVER 255 .* X*.OR = TO LIM •• * ••••••••. X.PRI. IN CHAPPED.

. . PRI. OF REQ.* .TCB DISP. PRI ••
.. *. TCB .. * • •

* •• * * •• * ** •• *************
TO ABTERN RTN • *' YES * NO

X
*****G 1 ********** • • * GET *
• SUBT ASK TCB .. * ADDR * • •
**********.*.****

• (lEAOABOl)
-CHART HE-

••••••••••• x.
X

• L.OOP .*. ERROR.

336

HI *. *****H2***.******
.* *. * * .*]S *. NO * SET trP * *. THERE A .* •••••••• x. ERROR CODE * *. SUBTASK .* * (12C) * *... * *

••• * ***************** * YES

x .'.
J I *.

• * *. ****
• * IS THIS •• YES. *

•• THE RIGHT .* •••• X* C3 • *. SUBTASK .* * *
.. **** * •• *

• NO

X
*****1(I ******.***
* • * GET NEXT •
* SUBTASK * * (COTASf() •
* •
.****.******.*.**

.' · . .. x

ADDEDHI X it .•.
*****G3**********
* STORE REQ.. *
* TCB LIM. PRTY *
IN OISP. + LIM.
*PRTY OF CHAPPED.

*****64.***.***** 65 *. '* * .* CHAP *.
.STORE NEW DI SP .. * YES •• TCB 01 SP. *.
*PRI. IN CHAPPED*X •••••••• *.PRI .. GREATER ••
• TCB LIM. PRl. * *.THAN LIN •• *

• TCB *

* '* •• PRI •• *
******* ••• **.**.* * *

• NO

• *. • * H3 *.x. X .. * * .. X
**** X .•.

H3 *.
.. * NEW *. ****

• *DISP .. PRTY * .. YES. '* *. OF CHAPPED • * X * B5 *
.TASK TI'S . * *

.TASK . **** * ... *
• NO **** · ..

• J3 * .. x. • • **.. •
LODPLACE X

• •• *.J3.********* *****.14******** ••
*PLACE SUB .. TCB * *TASK SWITCH BY •
*ON TCB ON QUEUE. *-*-*-*-*-*-*-*-•
*SEARCH TCB QUE * •••••••• X* PL.ACE AODR OF *
.FOR HIGHER PRI • *HIGHER PRI TCB •
* READY TASK * * IN 'NEW' PNTR *
.***.******** *********** •• *.**

X
****K4********* • • * EXIT * • • .**** •• *.**.***

TO TYPE 1 EXIT
ROUTlNE C IEAOXEOO)
-CHART GA- OR TO
CAL.L.ING ROUTINE

(

(

Chart BG. Chap Routine (With Time-Slicing; Part 2 of 2)

***** .B6 * * AI • • • •

• •• *.*,,1***.**.* ••
• * • TURN OFF T/S •
• BIT IN Tee • * BEING CHAPPED *
• * *.*.***** •••• ****

x .*. BI *. ****.e2******* ••• • * *. * • • * 1ST SLOT *. YES * ZERO 1ST *
•• = L.AST Sl.OT ·.* •••••••• X* NEXT ANO LAST •

•• IN TSCE .* * SLOTS IN TSCE * *... * •
. . *** •• *** ••••• ***.

• NO

x
****. X _SF * ••• * 03* .*.

Cl •• * * C3 *. •• *. * •• CHAPPEO ••
•• CHAP Tee *_ YES •• Tee *. NO *. AODR = 1ST •••••••••••••••••••••••••••••••••••• x*. AOOR=NEXT .*_ •••
. SLOT IN . •• SLOT IN .*

.TSCE . *.TSCE ••
* •• * *. .*

• NO * YES

x .*. . •.
01 •• 02 *.

• * *. .* *. •• CHAP Tee •• NO •• CHAPPED Tee •• NO *. AODR = NEXT •••••••••• X*. ADDR = L.AST ••••••
. SLOT IN . *. SLOT IN .*

.Tsce . *.TSCE .*
•• • * * •• *

• YES * YES •••• • * •• x. Gl *
* * x *.*. • *.

El *. *** •• E2****.***** •• *. • MOVE *
•• NEXT *. NO • TCSTCS FLO OF *

•• SL.OT=LAST •••••••••• X. NEXT Tee TO • *. SLOT IN •• * NEXT SL.OT IN •
•• Tsce •• • TSCE • * •• * .* •••••••••• ** ••• * YES

X
••• **Fl ••• *** •••• • • • Move 1ST * * SL.OT TO NEXT * * SL.OT IN TSCE * • • * ••••••••• *** ••• *
•••• * *.

• 61 *.x. * •
*.** X

*****Gl.***** •••• * MOVE Tea ADDR •
• THAT HAS TeSTes •
• PTR TO CHAPPED •
• Tee IN TO LAST • * SL..OT IN TSCE * •••••••••• ** •••••

x ••••• • SF •
• D3.
* * *

• ** •• *
.SF *
• 03*
• • •

• *****
*BF * * 03* • *

*

X
*****03** •••• *.* • * MOVE • * CHAPPED Tee *
*TCSTCS FL.D. TO • * NEXT SL.OW IN * * TSCE •
* ••• ********.****

:X •••••••••• :

• .****E3* •• ****.**
• MOVE • * CHAPPED T CB * * TeSTCS FLO TO * * 1ST SLOT IN *
• TSCE * .*** •••••••• ** •••

x
***.*
.SF *
• 03.
• *
*

Section 13: Charts 337

Chart BH. Extract Routine

16C040+8

****A I **.*.**** • • * ENTRY * • •
.********

BRANct-: EPIITRY

X
..*SI**** •••• *'" · . .. seT .. * BRANCH ENTRY ..
.. INDICATOR ..
o •

IGC040

•• *.A2** •••• **. · . .. ENTRY ..
o •
*** ••• ** •••••••

• FROM SVC FLIH
CHART AA

X ••• *.B2.*.*.*.* ••• • • .. se T SVC ..
• ENTRY INDICATOR. · . · . ••• *** ••••• ******

. .
••••••••••••••••••••••••• x.

x .•.
C2 •• *** •• C3 ••••••••••

•• REO TO *. .. ,.. .* EXTRACT ._ NO .. OBTAIN ..
•• FROM SUBTASK •••••••••• Xli' CURRENT TeB " *. TCB.* .. ADDRESS

.... •• * •• ** ••• ** •••••••
.. YES

x ...
02 *.

****01********* .* 1 S *.
.. .. NO •• SPECIFIED *.
.. EXIT *X •••••••• *.TASK SUBTASK ••
.. .. *.OF CALLER ...

338

..**....... *... .. * •••
TO ABTERM .. YE 5
ROUT tNE (IEAOAB01)
-- CHART HE -- . .

.x
x .*. E2 ...

.. * * .. •• *. YES
•• BRANCH ENTRY

. . * •••
o NO

X
VALCHECK .*.

F2 * •
.. *REaUEST* ..

x
.. o 0

• A4 • o •
**"'*

•• MADE BV * .. YES
•• Sl/PERVI SOR .* ••••

... ROUTINE ••* ••• *
o NO

x
• •
• A4 • · . ** ••

X IEAOVLOl .* ... G2.***.** •• *
.VAL ID .. CHK RTN •
--*-.-*-*-*-*-.
• VALIDATE '. * INPUT LIST *
• ADDRESS • •••••• * ••••••••••

X IEAOVLOI
••••• H2 ••••••••••
• VALID.CHK RTN '" .-*-*-*-.-*-"'-*-* .. VALIDATE •
• FIRST OUTPUT •
• LIST ADDRESS • ••• *.**.* •• *** •• *

X IEAOVLOI
* •• **J2** ••••••••
• VALID.CHK RTN • *-*-.-*-*-.-.-.-*
.. VALIDATE •
.. LA ST OUTPUT •
• LIST ADDRESS • •••••••••••••••••

x .0.
K2 ••

•••• • ••• K3 •••••••••
•• VALID •• NO. *

•• ADDRESses ."' •••••••• X'" EXIT • •• •• • * •• •• • •••••••• *.* ••• •• .* 'to ABTEAM ROUT I HE
• YES (lEAOAB01)

x •• *. • •
• A4 •

• 0 ••••

- CHART HE --

• ••• . . * A4 •
• 0

••••
TCSOK X

.** •• A4.***.*.*** • •
• DETERM INE •
• FIELDS TO BE •
• EXTAACTf!o • * • ••••••• * ••• * •••••

;:
••••• a •••••••• ***
• PLAce * .. EXTRACTED •
• F IEL.OS INfo •
• QUTPUT LIST • • • * •••••••••• * •••••

X
* •• *C4.***.** •• • •

• EXIT •
• 0 ••••••••••••••• TO TYPE 1 EXtT
ROUT INE (IEADX.EOG)
-- (HART GA -- OR TO
CALL lNG ROUTIN-E

c

c

("
Chart BI. Detach Routine

NOTE--DETACHER]5 TASK IN
WHICH DETACH MACRO
[NSTRUCTI ON 'WAS ISSUED

IGC062

.*.*A2.*******. • •
.. ENTRY '" · . • * •• * ••••• * •• "'.

FROM SYC SLIH
CHART AS

x IEAOVLOI
•• ***82*********.
*VALID.CHK RTN '"

--*-*-*-*-*-*-* '" VALIDATE ..
.. INPUT '"
'" TCB ADDR '"
*******.**.**.*.*

...
C2 *. • •• **C3*.**** ••••

.* *. '" '" .* IS *. NO '" SET UP ERROR '" *. TeB AODRESS •••••••••• X* CODE 23E '" *. VALID.* X '" '"
.. * '" * •• * ***********.*.***

'" YES

X
..*02 •• ********
'" SEARCH SUB- '"
'" TA SK OUEUE '"
.OF OETACHER FOR.
'" SPEC'O SUB- '"
'" TASK TeB '" •• ** •••••••••••••

x .•.
E2 *.

.* .-.* SPEC '0 *. NO .. *. SUBTASK, TeB
. FOUND . *. .* * •. *

• 'lES

X

X
..03* •• **.**. . .

'" EXIT '" . .
****.*.*.****** TO ASTERN ROUT [NE

(IEAOABOO)
-- CHART HE --

**** • •
• B4 • • •
**** x

F2 .*. *. *****F3********** .*.. • *
•• IS *. NO * SET UP * *. SUBTASt< .* ..••..•• x. ERROR CODE *
.COMPLETE . *' 13E * *..*' • * ••• * *****************

• YES

X
*****G2**********
*REMOVE SUBTASK * * TeB FROM *
• SUBTASK QUEUE *
.. OF OETAeHER .. · . ****************.

X
IGe005(51 DTFREE .*.

*****Hl********** H2 *.
FREEMAIN DBA1' .* Does *.
--*-.-*-*-*-*-* YES.* SUBTASK *.
* FREE PP REG *x •••••••• *. HAVE A PP .* * SAVE AREA. 72 ,.. •• REG SAVE .*
BTS. SUPPOOL250 •• AREA .*
***************** *' •• *

• NO

. .
••••••••••••••••••••••••• x.

DTFRTCB X IGC 005 (5)
.*J2 •••• **.
FREEMAIN DBAl
--*-*-*-*-*-*-*
.FREE SUBTASK'S •
*TCB. 192 BYTES *
• SUBPQOL 253 *
**********'*******

XRETN
X

** •• • • .. e. ".
• • ****

x
DTABN .*.

B4 * • .* IS *.
•• SU8TASK *. YES *. TERM INAT ING .* ••••
. . *. .* * •• *

• NO

X lEAOA800
*****C4********** .ABTERM RTN HEA1*
--*-*-*-*-*-*-* * TASK FOR * * ABNORMAL * * TERMINATION *
*****'************ . .

.x

DTSETECB X
*****0.**********
• SAVE * * TCSEeB OF * * SUBTASK IN * * SVRB OF *
.. OETACHER *

X IGe004(S)
*****e.********** *GETMAIN OAA1*
--*-*-*-*-*-*-* * GET SPACE FOR * * AN ECB. FOUR *
*BYTES. SP 250 *

X
*****F4**********
ZERO ECB~ STORE
*"DDR IN TeSECS *
FIELD .. AN,O ZERO * TCBIQE FIELD *
*OF SUBTASK TeB *
**********.******

X IGCOOl(5)

*****G4**********
WA IT RTN BKA 1
--*-*-*-*-*-*-* * WAIT FOR * * SUBTASK TO * * TERMINATE *
******.**********

X lGe005(S)

*'****H4********** .FREEMAIN DBA1*
--*-*-*-*-*-*-*
*FREE Eca SPAce. *
* ... aYTES~ * * SUSPOOL 250 *
.*******,,******.*

x .•.
J4 *. .* *. NO.* DID *.

..... *.SUBT ASIC. HAVE .* *. AN EeB .* *. .* * •• * '* YES

X IEAOPT02(5)

*****K4**********
****K2********* • • ****K3********* • *POST RTN BMO 1*

* EXIT .. • • ***************
TO EXIT ROUTt NE

(IGC003) --CHART GB--

* * x *-*-*-*-*-*-*-*-. * EXIT *X •••••••• * •
'* * *POST suliTAsl('S *

*************** '* ECB '*
TO EXIT ROUTINE *************'****

(lGe0031 --CHART G8--
VI A SUPERVISOR
lot NKAGE SVC3

Section 13: Charts 339

Chart BJ. SPIE Rb'ltine
. .,;

340

NOTE--THIS ADDRESS WILL
8E ZERO FOR THE
FIRST EXECUTION OF
SPIE.

tGCOt4

.***1..2.*.* •••••
* • * ENTRY * · . *.** ••••••• _ •••

• fROM SVC. SLIH
.. CHART At

x
*****e2**********
*OSTA IN POINTER * * TO PROGRAM ,.. * INTERRuPYlON '"
,.. ELEMENT (PIE.' ,..
'" FROM C URR TCB • •• * ••••• _ ••••••••

X
PtEPRES .*. IGC004CS)

<:2 *. • C3*********. *****C4******.... • •••• C5 • * Does *. .GErMAIN DAA1* * ,.. '" •
•• PIE EXIST *. NO *-*-*-*-*-*-*-*-* * ..,.. PLACe AODRE:SS '"

•• FoR CuRiO!: TASK •••••••••• x* GET SPACE FOR * •••••••• X*INJTIALIZE PIe ••••••••• x. OF PIE INTO ,.. *. .* *PIE. 32 BYTES. * ,.. TO ZERO" * CURReNT TCB * *. ." ,.. sP 250 * * *. ,.. *. •• ••••••••••••••••• • •• * ••• ***.*.***. *** •••••••••••••• * Ye.s

*****02.:."'****** ••••• 05*:
• 08TAIN AND SAVE* .. SAve CURRENT ..
• ADOR OF OLD • *PROG MASK FIELD.
.PROGRAM INTRPTN*X •• *FROM R8 OLD PS~"
• CONTROL AREA • *llll TeePlE FIEL.O.
.. (PICA) • .DF CURReNT reB.
** •••••• **** ••• *. • •• **.*.** ••••• *.

X
.****E2*****.* •• * · . • PLACE ADDRESS *
• OF NEW PICA * * INTO i='le .. · . • *.**.**.*****.*.

x
*****F2****** •• *. • •
• PLACE AOORE SS • * OF OLD PICA ,
.. INTO REG 1 .. • • ****** ••••• *** •• *

X
.G2.**,* ••• * •• • • * ZERO PRoGRAM • * MASi< FIELD IN .. * OLD PSW .. • • . • *.* •• *.*******.*

x ...
HZ •• *****H3*** ••••• * • • * *. • RESTORE PROG •

•• IS INPUT •• YES *MASIC. FIELD FROM.
•• PICA ADDR .* •••••••• x*TcePIE FIELD OF.

.. • ZERO • * • CURRENi' T CB * *... . . *. •• • ••••••••••• ** •••
• NO

X
•• *.*J2 •••••••• *.
*STORE NEW PICA *
.. MASK IN PROG •
• MASK FIELD OF' •
• ~B OLD P$W • • • **.*******.* •••••

. .

.x •••••••••••••••••••••••••

X
•••• K2 ••••••••• • •

• EXIT • • • ••••••••••••••• 1'0 ExtT ROUTINE (lGC()o3l
-- CHART GB --
VIA SUPERVISOR L1NkArGE ($YC3)

c

(,'
Chart BK. Wait Routine

IGCOOI

.***Al ***.*.*.* • • .. ENTRY .. · . •• * ••• * •• _ •••••
.FROM SVC FL IH
(CHART AA)

X
.*81 •••• *._
.SET SYSTEM MASK.
.. OF OLD PSW TO ..
.ENABLE 110 AND ..
.. EXTERNAL ..
.. INTERRUPT IONS • •••• * •••••••• _ •••

x .'. Ct *,.
•• WAIT *. • ••• C2 ••• ** ••••

•• COUNT NO" .. *. SPECIFIED .* ••••.••• X* EXIT ..
.* * •••••••• ** •••• * •• * TO TYPE 1 EXI T

.. YES ROUTINE (IEAOXEOOJ
-- CHART GA --

x
• 0.

01 ••
•• SINGLE *. ..** .* EVENT eTL *. NO *. BLK (EeB) .* X. A". ..

•• SPECIFIEO..

.. .*** *
.. YES

x . '.
£1 *.

•• IS *. ****e2 •••• *****
•• eeB'S (OM- *. YES" ..

•• PLETION FLAG •••••••••• X. EXIT .. *. seT.** * •• _ •••••••••••

••••
* •• 111 TO TYPE 1 eXIT

.. NO ROUTINE (JEAOXEOO)
-,...CHART GA--· FI •• X.

• • •• ** x .'.
FI *. .* IS *. • •• *F2********.

•• ECB'S WAIT *. YES * .. *. FLAG SET •••••••••• X* EXIT *
. . * * ...* *** •• **** •• ***. * •• * TO ABTER,.. ROUTINE * NO IEAOABOI

--CHART HE--

x
l.IST .*. IEAOVLOI

Gl •• *****G2** ••• *****
• * WAIT *. .VALIO.CHK RTN •

.* GIVEN BY •• NO *-.-*-*-*-*-.-*-.

•••• • •
• A4 .. · . ****

X IEAOVLOI
*****A4**********
*VALID.CHI(RTN *
--*-*-*-.-*-*-. * VAL IDATE * * L 1ST ADORES~ * • • •• ,. ••••• *** ••••• *

x .•.
B4 ••

.*.. ****f;lS •• ***** •• • * VAL 10 •• NO. *
.LIST ADDRESS . •••••••• X. C:XIT *

. . * • ...* **.***.* ••••• ** * •• * TO ABTERM ROUTINE * YES (IEAOAB01)

x
*****<:;4****.*.*** • • * COUNT *
.NUMBER OF Eces .. · . · . * ••• *.**.* ••••• **

X
ECBWT .* .

--CHART HE--

.****03*******.*. 04 * • * * .*COMPARE.. ****05* ••• **.** * SET SE.ARCH. LT .* IMT CNT TO *. GT * * * FLAG IN .x •••••• ~.*. NO. OF Eces .* ..•.•..• X. EXIT * * CALLER'S R8 .. •• .* • *
* • ...* ••• **** ••• *.*.*
.* •• ********* *. •• TO ASTERN Roun NE

x
.*** • • * E4 • • • *.**

****G3.*.* •• *.* • •

* EQ (lEAOA801)
.*** • -- CHART HE --· ..

• E4 *.X. · . * •• '" x . ..
E,4 *. .* IS ••

•• EeB'S eeMP *_ NO
•• FLAG SET .* to ••• •• .*

. . * •••
* "ES

X
.*F4**..*** · . * DECREMENT *
• RB WAlT COUNT.
• BY ONE * · . **.**.**~***.*.**

X
CFLAGON •••

G4 * • .* IS *.

it

• 0 • Fl * • •

.* RB'S *. NO *. SUPYR RTN •••••••••• X* VALIDATE * ••••• X* EXIT • *. WAIT COUNT •••••• *. •• * ECe ACORE 55 ..
..

* •• * **.*.*******.**.*
II' YES

.x •••••••••••
X

• ** •• Hl ••••• *** •• • •
x .•.

H2 ••
• * *. -

• • • **** •• ** •• ****
TO ASTERM ROUT I NE
(leAOABOI)
-- CHART HE --

****.H3** •• **.*** · .
• seT * • WAIT Fl.AG IN •

" YES.* VALID •• NO _ • ••••• *. fCB ADDRESS •••••• ... x: ~~~~¥ ~~~~ :
.. fCB ,.

• • **.**.*.** •••• * ••
* •• * · .. * J I •• X. • • **.* x .'. .II ••

•• MORE *. • * Eces TO •• YES
•• Be CHECKED •••••• *. ••

. . *.' .*
• NO

x .0.

x
•• ** . .

* E4 * • • •• **

. . *. .*
* •• * •

K'l •• .***.K2*** •• ***** .* TASk *. * .. • * SWITCH *. YES * SET • • *. NECESSARY .* •••••••• X. 'NEW' TeB PTR ••••••• *. .* • TO ZERO • *... * * *. ... • •• * •• *** ••••••••
• NO

x
** •• o •

* K3 .. • •

* CURRENT RS * • • • ••••• * ••••••••••

it
*****.13*.*.****** * PERFORM ..
*.I0B STEP TIMING.
:S~rE~~to O~~~~T:
* eL) * ••• * ••••• * ••••• *
•• · .. * K3 •• X. • •
*.**

it
* ••• K3 •• ***.*.* • • ... EXIT ... • • • * •••• ** •••• *.*

TO TVPE-I EX IT
~gMI~~E G!!!AOXEOO)

. ZERO . *. • • * ••• * YES

x
LOOP} .•.

H4 •• .* IS .~

x
**** • • * ~1 * • • • ***

•• RB'S *. NO
III. SEARCH FLAG .* *. SET ••

. . * •• * • YES

X .*.* ... 4 ••• * ••• *** * ZERO RB • * SEARCH FLAG, •
• CL.E"R WA IT *
• FLAGS OF *' * UN POSTED ECBS *
.****.**.* •• * . .

• X •••••••••••

X
•• **K4*****.*** • •

• EXIT * • • • ••• * ••• ** •••••
TO TVPE-,I EXIT
ROUTINE (IEAOXEOQ)
-- CHART GA --

,-.

Section 13:

,
~.

Charts 341

Chart BL.

342

W~it Routine (Job Step Timing)

IGCOOI

****-'3*********
* * * ENTRY *
* * * ••• _.** ••••• **

:FROM WAIT ROUTINE
.BKJ3

x . '.
B3 ••

•• *. *.* • • * IS THERE *. NO * *
•• AN tNITIATOR .IIC •••• X. J3 *

\' *. TOE.* * *
.. **** * •• * * YES

X
*****C3**********
* * * PICK * *up JOB STEP TeB_ • • • • •••••••••• * •••• * •
• * ••

* *. * 03 *.x.
* * * •• * x
*****03********** *****04**********
*TASK SELECT * *OEQUEUE EEA2*
--*-*-*-*-*-*-*NOT *-*-*-*-*-*-*-*-* * SELECT TASK ••••••••• X. REMOVE THE * * START) NG WITH .FOUND .Toe FROM TIMER * * JOB STEP TeB * * QUEUE * ••• * ••••••• **.... . .. IIe •••••••••• _ ••

• FDJNO

x .*. E3 •• _. *.
•• IS IT *. YES *. THE CU~RENT • * •••• *. TeB ••

. .- •• * * NO

x .*.
F3 *.

YES .* HAS ••
••••• TASK ENDEO .*

*. •• *. .•
x * ••• . *.. * NO

* * * 03 * * • •••• x .*. G3 ._ *... .* .-• * YES.. IS •• * J3 .X...... Tee'S RB ••
• * *.COUNT = 0 ••

* •••
.. NO . .
.x •••••••••••

x
• *. H3 *. .**. .* *. • * YES.. WAS *.

• 03 *X •••••• SVC 1 I SSUEO •• *. *. .** * ••• * NO
***. .. ".

X
.* ••• E4***.*** •••
* * * SAVE *
• THE CPU TIME •
.. *
* * *.* ••• * ••••••••••

X
*****F4***.*.***.
* INSERT * *30 MINUTE VALUE.
* .. * • •••••••••••••••••

X
*****G4.*********
• MARK * * TQE AS REAL * * TYPE • * .. • ••• * •• * •• ** •••••

X
*****H4********** *ENQUEUE EEA ...
--.-*-*-*-*-*-*
•] NSERT THE * * Toe ON THE • * TIMER QUEUE •
• ••••• **.**.** •••

* J3 •• x. • * * .x •••••••••••••••••••••••••
**

X
.*** ... 3*********

* *
• EXIT * * .. *.**** ••• ***.**
TO WAIT ROUTINE
CHART BKK3

(

("" .. I
j

Chart BM. Post Routine

IEAOPT02

IGC002

•••• A2 •••••••••
o 0
.. ENTRY .. ·

.FROM s\(C FLIH
• (CHART AA)

x .>.
e2 *. •• * • • * POST *. YES *. GIVEN By ••••••

... Sl,.IPVR RTN.*
. . * •••

• NO

x
••• *

* 0 * E2 * . .
•• **

• •• *
• 0 • A3 •

• *
x

••• RBTYPE •••
A3 *. • •••• A4 •••• "'**.*. AS •• ""

•• IS RS'S •• YES • * LOCATE. .* POST •• NO
•• SEARCH FLAG •••••••••• X* ECB LIST * •••••••• X •• GIVEN BY .* ..•.

. SET. • ADDRESS * •• SUPVR RTN.*
.. • • ••• •

*. •• ** ••• * ••• **.""o.... * •••
.. NO • YES

IEAOVLOl

•••• • * * •• X. F3 • . .
••••

• •••• S4* •• **..... • ••• *B5*.* ••• **.*
• RESET. .VALID.CHK RTN •
• RS'S SEARCH • .-.-.-.-.-.-.-.-..

••••••• FLAG. RESE;T .X. •••. •••• VALIDATE .X •.•
• EeB'S WAIT. • EeB ADDRESSES •
• FLAGS.. • *..... ** ••••••••••• * •••

X IEAOVLot TCBREADY ~ JEAODS02 RBCHECK
•••• *C2"' ••• *** •••
_VAL ID.CHK RTN ..
-.-.-.--*-*-*-*
.. VALIDATE '" * Eca ADORE 55 .. ·

x .•.
02 *.

··.··C3 ••••.••.•.
.TASK SW. RTN .BVA2 . -.-...... -.-.-.-.-.
• DETERMINE •
• HIGHEST PRJ •
• READY TASK •

• ••• C4 ••• **** ••
* • .. ENTRY ..
* • • ••• *.* •• *.**.*

:FROM POST
.ROUTINE
.(CHART 8M 021

x X .** •• 04* •••••••••
·.·*01 ***.***.. .* *. • ••• 03 •• *...... .. *

.. .. •• IS •• YES • •• OBTAIN *

.. ENTRY ••••••••• X*. eeB'S WAIT •••••••• • EX I T * .RB ADDRESS FRO"'.

.. .. •• FLAG seT .* • *' *' EeB • ••••••••••••• *** •••••• ** •••• *.. * * TO TYPE 1 EX IT ••••••••• o. •• *****
(BRANCH ENTRY) o NO ROUT I NE (I EAOX EOO) ••• * -- CHART GA--FROM I/O SUPERV I SOR
AND SUPERV ISOR · E2 •• x.

OR CALLI NG ROUT JNE
ROUT [NES · .. •••• X

IEAOPTOI POSTTEST .*.
E:2 *. ••.. EI......... .* *.* IS *. YES

.. ENTRY * •••••••• X*. EeB'S COMP ••••••

.. .. X _.FLAG SET ••
* •••• **.*** ••• * *..*

(BRANCH ENTRY) o NO
FROM 1/0 SUPERVISOR

x
1GC002+6 .0.

F2 *.
*.**Fl*""''''''*''*. .: •• DID ••

o 0

x ••••
o * • F3 •
o *
***.

x
. •• e3 •••••• ****
.ReCHECK • *-.-.-.-.-*-....... -. * VALIDATE •
.RS ADDRESS SEE •
.. BLOCK C4 •
o.**o.**.o. •• * ••• * ••

*.**
• 0 * •• x. E2 •

o •
***.

• ••• F3.** •• ****
* 0 • ENTRy

• * POST *. YES
•• OCCUR BEFORE .o. •••• ..x. eXIT *

o • •• WAIT •• * 0 .* •••• ** ••••••• "". .. ***** ••• * ••• *o.* • TO TYPE ... ! EX IT
(BRANCH ENTRY)
FROM SUPERV ISOR
ROUT [NES

• NO
• * ••• ROUTJNE (tEAOXEOO)
•• .. --CHART GA-- OR .* F3 • TO CALLING ROUTINE

X
·.··"'G2o. •••• o. ••• *
• PLACE POST cooe.
• JNTO SPEC JF JeD ..

.* * •• **
• •• **G3*** •• *****

. :i~~e s~~~iF ~~gE:
• ECB. SET COMPL •
• FLAG" AND CLEAR.
• WAIT FLAG • ••••••• * •••••••• *

• •••• XOEce, SET COMPL o. ••••
.FLAG, AND CLEAR*

x
• *.

H2 ••

• WAIT FLAG •
*.************* ••

• * *. • •••
•• IS RB'S *. YES * • *. WAIT COUNT .* .••• X. F3 •
•• ZERO.* ••
•••• ** ••

o NO

oeCDUNT X
•• **.J2**.***.**.
* 0 * DECREMENT •
• RB WAJT COUNT .. * BY ONE •
o 0
.* •• *** *

x .0.
K2 •• •• *. • ••• • * IS AB' S •• NO .. •

•• WAIT COUNT .* •••• X. F3 • *. ZERO.. ... •••• ** •• * •••
• YES

• •• ** . .
• A3 •
o * .***

x •••• o 0
... F3 ..
• 0 * •••

.*. E4 ••
•• RB ••

• *ADDRESS ON •• NO *. FULL WORD ••••••••
..BOUNDARY ••

* ••• * YES

x .•.
F4 ••

•• RS *. .* ADDRESS •• NO • *. W ITHJN MACH •••••• X • *. L [MITS •• * •••
• yes

x .0.
G4 ••

•• CAN * • .* SYSTEM *. NO •
..INTERRUPT IONS •••••• X •

•• OCCUR ••
. . * •••

• YES

x
.0 •

H4 o..
•• Ece'S ••

• .STORAGE KEY.. NO •
.eQ RB' 5 (OPSW) •••••• x.

•• KEY ••
* •• *

• YES

x .0.
J4 ••

.* LAST *. • ••• *JS.*.o..*.*.
•• eXECD INSTR •• NQ X • *

.IN W~ITJNG RTN.o. •••••••• X* EXIT •
..IS 5VC 1 .* • •
... ..*.* •• * •• * •• *

•• •• TO ABTERN ROUTINE
• YES (IEAQABOt)

X
• •• *K4 •• ** •.•• * * • * ExiT • • • • •• ** ••••••••••

RETURN TO POST
ROUTINE (CHART BM E2)

-- CHART HE --

Section 13: Charts 343

Chart BN.

344

,post Routine (Job Step Timing)

IGC002

.*.*-'3*** •• ***.
* * *' ENTRY *'
* * _•.•...

:FROM
• POST ROUT tHE
.81A3

it .*.
83 * • • *' IS *.

•• THERE *. NO *. AN INITIA- ••••••
•• TOR TQE ._ *. _.

* •• * *' YES

x .*.
C3 *.

•• IS *. • .* IS IT A *. NO x
•• REAL TOE + ON •••••• *. QUEUE ._ *. _.

* •• *
III YES

X
.*03*** •• *.
*OEQUEUE *'
--*-*-*-*-*-*-* *' REMOVE THE * *' TOE FROM THE *' *' TIMER QUEUE *' * ••••••••••••••••

X
*****E3**********
* * *' REPLACE * *' CPU TASK TIME *' *' IN TOE *'
* * * ••••••• _ ••••••••

X
.****Fa*******.*.
* * *' MARK *' *' TQe AS TASK *' *' TYPE *'
* *•..... -.... . . .x •••••••••••

x
****G3********.

* * *' EXIT •

* * •••••••••••••••
TO POST ROUTINE
-CHART SMC3-

c

Chart BO. ENQ Routine

NOTE SHADED AREAS APFtLY

• •••
* * * "3 *
* * ••••

ONLY TO SYSTEMS WITH SHARED DASD

I GC056

•• **Al •••••••••

* * • ENTRY *
* * _

FROM SVC SL 1 H
.(CHART AC)

TESTENOI X
TESTEND2 • *. .* ••• A2** •• ***... "3 •• *' • .* ALL ••

• GET NEXT * NO .* PARAMETER *. ENQ
• PARAME TER *X •••••••• *. ELEMENTS • *X •••••••
• ELEMENT *' *. CHECkED •• • • *.. • ••••••••••••••••• III •••

••••
• * * •• X. El *'

o •

.. YES

i ERROR CODE= ,. 438'
••••• 61 ••••••••••

••••

•••• • •
• A4 *'
• 0 ... -

..111 .
o 0

*' A5 *' o 0 • •••
it

• •••• AS· •••• • •••• * DO 'seT MUST * *' COMPLETe' •
PROCESSING IF * * NECESSARY *' ·0

.0

.;
x .•.

e5 * •
CHKLISTB2* •••• * ••• **.*e4 ••••• * •• * •• *.
-$--*-*-*-:tc-*-*ERROR * *' * • YES.* TASK •• *' VALIDATE ••••••••• X. EX]T • • EXIT *X •••••••• *.SWITCH NEEDED.*
• INPUT L [ST. X. • * * •• •• * ADDRESSES" ••••••••••••••• *.** •• *.**.* •• * *.. *
••••••••••••••••• TO ABENDI TO DISPATCHER * •• *

ROUTINE
(CHARTS HF-HH)

(IEAOes) • NO

•
• El • •

ENQTOP X

•••• o •
* C2 * •••
• .* •• III X

.*. ••• CALCI

-CHART GG-

C2 •• C3 *. ***.*C4.* •• **.*.*
•••• • *.. *CREATE3.

•• RET •• NO •• RET •• YES .-*-.-.-*-.-.-*-.
.PARAM = TE:.ST . ..••.... X*. PARAM=NONE •••••••••• X. •

•• •• •• .* X .CREATE A MA.JOR •
•• • * *... • Qce *

•• • III •• • * * •••• ** •• ****.*.*
• YE:.S * NO

RETO X * •••• 02 •• * ••••••• · .
• SET * • RETURN COOE=O • • • · . ••••• * •••••••••••

.*** · . •• X* A4 * • •

X
** ••• 03 •••• *.*.*. • •
• SET • •
• RETURN COOE=O •••••••
o • · . .*.* •••••• * ••••••

••• .*.- • *. CALC2 X
1:"2 *. E3 *. * •• **E4***** •••••

.* *. .* *. .CREATE2 *
.* RET •• NO •• RET *. YES .-*-*-*-*-*-*-*-*

••••• El •••• * •••••
NOT .FINDMAJ •
FOUNO*-.-.-.-.-*-*-*-*

•••• FIND MA.JOR • ••• X •• PARAM=TEST .* •••••••• x*. PARAM=NONE .* ••..•.•. X. •
• • QUeUE CONTROL • *. .• •. .• X .CREATE A MINOR *
• • eLOCK (Qce) • • 0 •• • * ...* • Qce •
x ••• * ••••••••••••• *. •• * •• * ************.****

'**'*:+ FOUND • YES * NO * •
... Co: '* . .

:t:t,.:t

ENQTOPI X :R~TO x
••••• F 1 ••••• * ••••
• F INOM IN •
.-*-*-.-.-.-*-*-. • · •......
*FIND MINOR aCB .NOT
• .FOUND
******* ••• ** •••• *

FOUND

. ~****F2.*.****.** · .
• SET * * RETURN CODE=O * · .
• * •••• ** •••• * •• * •••

**.*

• * * •• x* A4 * • • x ****
ENQTOP2 .*.

GI *. *****G2**********
• *15 CURR*. $AUTOPRG * • * TASK *. YES $-*-*-*-*-*-*-*-.

*.** · ..
• F4 *.X. • • • .*** •

X .CALC3 X
*****F3 •••••••• * • · . • SET _ •
_ RETURN CODE=O * ••••••

• • · . .**** •• * •••••••••

•• ***F 4*****.****
*CREATEI '"
--.-*-*-*-*-*-* • * * •..••.
... CREATE A QEL *

• •
-**********

.*. . •.
G3 *. G4 * •

.* *. .* * •
.* ALL QELS *. YES .*SHARED CTL *. YES

. TER~INATING x* PURGE QUEUE * ••• X*.HAVED SHARED .* X*. OF RESOURCE .* ••••
. . * OF ALL aEL'S *
.. '" FOR .JOB STEP *

••• * ***-**.**.*******
• NO

· . .. x •••••••••••••••••••••••••
ENQTOP2A X

*****HI**.****.**
.FINOQEL *
--*-*-*-*-:11-*-* • * FIND QUEUE
* ELEMENT (QEL) .NOT
* FOR TASK .FOUND
********** •• *.* ••

• FOUND

x

. STATUS . *.REQUESTED.*
.. *..* * •• * ••• * _ NO • NO

. .
• X •••••••••••••••••••••••••
x .'. H3 *. **.**H4*****.****

.* *. * * .* RET *. YES * INCREMENT * *. PARAM =HAVE •••••••••• X*SVRB WAIT COUNT*
*. OR NONE •• * *
.. * •

* •• * * ••• ****.***.****
• NO

.X

x
••• X .0.

.0

X
****Cs**.****** • •

• EXIT *

• * ***************
TO EXIT ROUTINE
(IGC003)

-CHART GB-

**** • •

J I *. .*.**J3* •• *****.* J 4 *. *****J5********** .* *. ****J2**.*****. * *
•• RET •• YES * *... SET *

. PARAM=NONE . •••••••• X* EXIT * * RETURN CODE=4 * ••••

. . * * * * *..* **.*****.*** •• * * *
* •• * TO ABEND 1 .***.************

* NO ROUTINE (JGCOOOIC)
VIA SUPERVISOR

X
.****K 1********** • • * SET •
* RETUKN CODE=8

• •
• 0 ***.*.* ••• * ••••••

LX NKAGE (CHART HI)
THRU I SSUANCE OF
svc 13 INSTRUCTION IN THE CVT

x
**** . .

* A3 * . .
•• **

x
** •• • • * A4 * . .
**.*

.*.. * • •• RET *. YES _ SET * *. PARAM=TEST .* •••••••• X* RETURN CODE=O •

. . * * *..* * •
* •• * .**.*** •• ********

• NO
**** .. .

•• X* A4 * • • X *** • .•.
K4 •• ****.KS ••• ***.***

.* *. * * .* RET *. NO * seT *
. PARAM=NONE . •••••••• x* RETURN CODE=O *

. . * *
... * *

* •• * ** ••• ************ * YES

x
.*** • •

• F4 • o •
.**.

x
*.** . .

* F4 * . .

section 13: Charts 345

Chart BP. DEQ Routine

**** o 0
,.. A4 ,..
o •
**** NOTE-SHADED AREA APPLlt:S ONLY TO SYSTEMS

WITH SHARED DAsa.
x

IGC048 .0. ._*.At_ ... _ .•. *
• • ,.. ENTRY *
o •

*************** ." .FROM SVC SLIH
.:c CHART AC)

X
*****81*********.

EQROR CODE==430

*CHKL 1ST * ****82********* *-*-*-*-*-*-*-*-*,.. ,.. ,.. VALIDATE ••••••••• X. EXIT ,..
* INPUT L 1ST "'ERROR ,.. ,..

* ADDRESSES'" **************. ***************** TO ABEND 1 ROUTI NE .NO ERROR (16COOOIC) - CHART HI -

**** SUPERVISOR LINKAGE
o •• (SVC 3)
,.. Cl •• x. · . **** •

A4 *. ** ••• A5******* •••
• * *. * * .* · •• YES * ,..

._ MORE QELS .* .•.•..•• X.OBTAIN TOPMOST ,..
•• ON QUEUE .* ,.. aEL * *..*

* •• * .*.************** o NO

PROCM]N X
*****S4*********. o 0

• 0 ,.. DEQUEUE lot INOR * ,.. ace ,..
• 0 ****************.

x .•.
BS *. .*. *.

NO.* ODES *.
••• *. QEL HAVE .*

x
**** o 0

* J5 * o 0
**.*

. SHARED .
STATUS. * ••• * YES

x
PARMLOOP X DQERR! .*. FREEUP X .0.

*****Cl********** C2 *.
*FINDMAJ *NOT .* *. ****C3*********
--*-*-*-*-*-*-.FOUND •• RET •• NO * •
* FIND MAJOR * •••••••• X*.PARAM = HAVE •••••••••• X* EXIT *
* QUEUE CONTROL * X X *. .* * *
* BLOCK (aCB) • •••• *.* •• *.**** •• **
** •• ************. * •• * TO ABENDI ROUT INE

• FOUND • **** * YES (IGCOOOIC) -CHART HI-.* * VI A SUPERVISOR LINKAGE
.* C2 * (SVC .3)
.0 0

X
*****01 ******.**.
*FINDMIN *
-$--*-*-*-*-*-*

• ****

.. FIND * ••••
* MINOR *NOT
* Qce *FOUND
****************.

.FOUND

.X •••••••••••

X
*****El**********
• 0 * OBTAIN NEW *
* TOP QUEUE •
* ELEMENT (QEL) *

• 0 ***********.*****

X
.02********** o 0 . .
SET RETURN COOE ••••
* =8 * o •
***************** x

• 0

* G4 * * 0

C5 *. .* DID ••
YES .* DEQUEUED *.

*****C4.*.*******
FREEMAIN DBAI
-.--*-*-*-*-*-*
* FREE SPACE *
* OCCUPIED BY *
* MINOR: QCB •

•••••• *. aEL HAVE .*

x .0.
04 *. .* *. •

.* *. YES. *. MORE .* •. X.
MINOR aces.

. . * •• * o NO

X
*****E4*.******.* o 0
o •
• DEQUEUE MA..IOR * * Qce * o 0
.*.**************

. SHARED .
STATUS.

**.*
o 0

* •••
o NO

* 05 *.X • · . ****
X

*****05********** o 0
* DECREMENT •
* SVRB WAIT * * COUNT IF GT 0 *
o •
*.******* •• ******

x .0.
ES * • • * *.

.* WAIT "'. NO
. COUNT = 0 . ••••

. . *. .* * •• *
'" YES

x .00
.*. QELL I ST .*. • *. FREEUP X X IEAODS02

.FS**********
*TASK SW.RTN .ev
--*-*-*-*-*-*-*A2
* INDICATE *

Fl *. F2 •• F3 *. .* Tee *. .* DOES *. .* *.
.*AOOR IN QEL*. NO .* QEL HAVE *. YES.* *. YES

. =CURRENT . •••••••• X*.SHARED STATUS.* •••••••• X*. LAST QEL .* ••••
.TCB ADDR . "'. .* *. .*
.. *..* *..*

* •• * * •• * * •• *
* YES * NO *

**** o •
* G2 *.X.
o •

**** x

x
.***

o 0

* C2 *
• 0

*****F4**********
FREEMAIN DBAI
--*-*-*-*-*-*-*
* FREE SP ACE *
* OCCUPIED BY *
* MAJOR QCB *

**** • • * * .X ••••••••••• * G4 *.X.
o 0

* TASK SWI TOt *
* IF NECESSARY *
.**.******* . .

.X •••••••••••

.0. NXTINPUT .*. X

*****H 1 ********** o 0 · . * DEQUEUE GEL. *
o 0 · . **.**************

G2 *. .* *. .'" *. NO
. MORE QELS . ••••

. . *. .* ••• * * YES

X
*****H2********** o 0
o 0
OBTAIN NEXT QEL
• 0
o 0

x
**** o 0

* C2 * • •

*****G3****"'***** G4 *. NO *****G5********.*
• * • * ALL *. MORE * *
'" GET NEXT * NO .* PARAMETER *. QELS * *
* PARAMETER *X •••••••• *. ELEMENTS .*X •••••••• * OBTAIN NEXT *
* ELEMENT. •• CHECKED .* • QEL *
* * *..* * * ***************** * •• * *****************

•• 0
•• X* Cl *

o 0

* YES

X
*****H3***,******* *****H4*******.**
* * *RMCONP *
* SET UP * INVALID *-*-*-*-*-II<-*-*-*
* ERROR CODE *X •••••••• *OO 'RESET MUST *
* (330) * REQUEST - *COMPLETE' PRoe ...
• * * IF NECESSARY •
*.*************** *****************

NOT E-NONROLLOUT ABL E
COUNT (TCBNROC) IS

• DECREASED BY • I' FOR
X EACH RESOURCE THAT

**** IS OEOOEUEO

x .0.
H5 * • • * ODES *.

NO .* aEL HAVE *.
••• *. SHARED • *

x
**** o •

* G4 * • •

. STATUS .
. . ••• * * YES

.*** .. .
•• x* 05 *

• 0

FREEUP X IGC005(S1
x .0. * •

• Kl *
• 0

346

*****..1 1**********
FREEMAIN DBAI
-.--*-*-*-*-*-*
* FREE SPACE * ••••
OCCUPIED BY OEL
o •

• 0 * KI * •••
• o. **** .:

x
**** o 0

• All. *
o •

..12 *.
.* *. **** **** .* *. NO * * *. SAME TCB .* .••• x* G2 *

. . *. *..* **** * •••
o YES

x .0.
X K2 *. *****K3***.*** •• *

****Kl********* .* *. * *
• * NO.* RET *. YES'" *
* EXIT *X •••••••• *.PARAM = HAVE .* •••••••• X*SET RETURN CODE ..
* * *. .* * =4 *

*************** *..* * *
TO ABEND I ROUTINE * •• * ••••• **** •• ******
(IGCOOOIC)-CHART HI- *
VIA SUPERV ISOR LINKAGE
(SVC 3)

x
**** · . * G4 *

• * ****

X
****..14********* o •

* EXIT * • •

TO EX IT ROUT INE
IIGC0003J-CHART Ga
v IA SUPERVISOR
LINKAGE (SVC 3)

.****JS*******.** • • • DECREMENT •
.. x* SVRe WAI T *
• * COUNT IF GT 0 * · . .
• ***.*************

• 0
• J5 * o •
***.

X
IEAODS02 .*.

****_4********** K5 *.
*TASK SW. RTN *eVA2 .* *.
--*-*-*-*-*-*-* YES.* WAIT *.
* INDICATE *X •••••••• *. COUNT = 0 .*
* TASK SWITCH * •• .*
* IF NECESSARY * *..*
***************** *. • *

x
**** • • * 64 * • •

• NO

x
**.* • •

... G4 * • •
.***

Chart BQ. DEQ Routine (Shared DASD)

(-

(

.A3.***.*
* * * ENTRY •
* * *_ •••••••••••••

FROM DEQ
ROUT INE (CHART BP)

X
*****e3 •••••• ***.
* * * DECREMENT * *' uee RESERve •
*' COUNT *'
* * ._._.*

x .*. C3 IIC. • *' uee *_ NO
:ill. RESERVE _* •••••••• *. CQUNT=O .* X

.. ***** *. •• *BP *'
,. yes *' HI.

x IGCOO.(5)
*****03.****.***.
*GETMAIN *'
--*-*-*-.-*-*-* *' FOR lOB, DeB, ,. * ECB,DEB,CCW, *
,. AVT *' *-_

X .* ••• E3*****.*.*.
* * *' INITIALIZe *' *' tOB,DCB,ECB, *' *' DEB,CCW,AVT *'
* * -._ ..•..••..

X
*****F3**********
*excp *'
--*-*-*-.-*-*-* *' TERMINATE *' * RESERV AT I ON *'
* * * ••• -••••••••••••

X
••••• G3********* •
• WAIT *'
--*-*-*-*-*-*-* *' WAIT ...
• FOR COMPLET ION *'
*' OF I/O *' _•..••..... -

X IGC005(5)
*****H3**********
*FREEMAIN *'
--*-*-*-*-*-*-*
• FOR lOB. DCB. * * ECB.DEB. *
• CCw"AVT *

x

1r:BP * * HI.

* * *

* * *

Section 13: Charts 347

Chart BR.

348

stage 1 Exit Effector

IGC043

** •• A2*********

• * * ENTRY *
* * ••••••••••••••• • FROM svc SLIH

.-CHART AC-

X IGC004{S)

*****62***.**.*.* .GETMAIN OAA1* .-.-lIe--.-.-.-.-.-. * GE.T SPACE FOR • *' INTERRUPTION • * REO B~K IRB * •••• * •••••••• _ •••

x .*.
C2 * • • * * • • * IS SAVE *. NO *. AREA .*

•• REQUESTED ••
*- •• *. _.

* YES

)(IGC004(5)
*****02***.***** •
• GETMAIN CAAI.

--*-*-*-*-*-*-* ,., GET SPACE *
* FOR PP REG * * SAVE ARt:A * ••• * ••••••••••• _.

. .

.x

X
*****E2*****.****
* • * INITIA!..I Ze * * IRS PER eIRB * * OPERANDS * • • • * •••••••••••••••

X
****F2******.** • • * EXIT *

• * ••• * ••• -. __ ••••
TO EXIT ROUTINE
(IGC003)

- CHART GB -
VIA SUPERVISOR
LINKAGE (SVC 3)

c

(.'.
~/

Chart BS.

(

(

Stage 2 Exit Effector

IEA-OEFOO

****A2********. o •
.. ENTRY ..
o •

x .0.

FROM ANY SYSTEM
ROUTINE

B2 *. *****83********* • • * *. • * IS *. NO .. RECOMPLEMENT ..
•• QUEUE ELEMENT.* •••••••• x* ADDRESS .. *. AN RaE .* .. OF ELEMENT ..

.. * .. *. .* *****************
.. YES

X
*****C2*********.
.. Q\.EUE ROE ..
.. 2 BYTe LINK ..
.. ADDR ON •
.. ASYNCHRONOUS ..
.. QUEUE ..

X

*****C3**********
.. QUEUE ELEMENT ..
.. 4 BYTe ..
.. LINK AoDR ON"
.. ASYNCHRONOUS ..
.. QUEUE ..
***** •• **********

. .

.x •••••••••••••••••••••••••
EFEXIT X

*****02******.
.. TURN ON *
.. STAGE 3 *
.. SWITCH *
.. (IEAODSOl) IN •
• DISPATCHER"

X
****E2********* o 0

.. EXIT ..
o 0

********** ••• **
RETURN TO CALLING
ROUTINE

Section 13: Charts 349

• Chart BT. stage 3 Exit Effector (Part 1 of 2)

NOTE - SHADED AREA APPLIES ONLY TO
MULTIPROCESSING SYSTEMS

IEAOEF03

•••• AI •••••••••

* * * ENTRY ..

* * _ .. -..... -
• FROM DISPATCHER
• CHART GG

•••• • CHART GH
.. ... CHART GN * Bt •• x.

..*A2**********
* * * RESET STAGE *
.. 3 SWITCH * •••• * «IEAOOSOl) ..

* * ••••••••••••••••• x
••••• .aT ..
.. 83.

* * • FROM
CHART au

• __ .*AIl ••• _ ••••••

* 0 * SET STAGE 3 *
.. SWITCH * •••• * (lEAOOSOl) ..
o 0 .* •••••••• * ••••••

x

EFEND * * ••• * x • YES X • NO .*. .*. .*. .t.
Bl •• 82 :II. 63 *. 84 _ • . *.. .. *. • .* *. •• *. • ** •• ss*** ••• *** .* ANY *. NO .* IS tOE *. NO X .* ANY •• NO .* IS ASYNCH *. YE$X" ..

.IOE5 ON QUEUE. •••••••• X*.ASYNCH QUEUE .* •••••••• X •• RQES ON QUEUE.* •••••••• x*. REQ QUEUE .* •••••••• X* EXIT * *. .* •. EMPTY.. X *. .* *. EMPTY .* • *
*..:11 *..* *..* *..* ••• ***.*.**** ••

* •• * * •• * •• •• * •• * RETURN TO
• YES * * YES * DISPATCHER

x
• 0.

Dl *.
• * *.

YES .*ARE ASYNCH *.
•• ••• EX ITS FOR TeB ••

SUPPRESSED.
. . x ••• * * •• * * NO

• * * Bl * * ..
*.**

x .*.
El *.

• * *.
.. *IS INTRPTN •• NO

•• REQ BLK IRS ••••••
. ACTIVE .

. . * ••• * YES

x .*. Fl *.
• * *.

NO.* IS IRB *. ••• *. QUEUED TO ••
. CORRECT . *. TCB ••

x . * •• *

* *
• Bl *

* YES · . .x •••••••••••

• * **.*

EFDQ X

350

*****Gl*********. .. *
*REMOV E I QE FROM * * ASYNCH QUEUE * * AND QUEUE ON •
* IRB *
•• ******** •• *****

X
*****Hl**********
*IRBINTL *
--*-*-*-*-*-*-*
INITIALIZE IRB.
• QUE TO TCB *
PNTED TO BY IOE
.*.**.**.****

X JEAODS02
*****Jl**********
TSK SW ITCH BVA2
--*-*-*-*-*-*-* * TSK SWITCH TO •
RDY TSK IF PRTY * GT CURR. TSK *
*.******** •• * ••••

x
* •• *

* * • Bl •

* * •• **

x
.* .

03 ••
• * ••

•• REQUEST *. YES *. FOR I/O ERR .* *. RTN .* *. .* * •• * .. NO

x
• *.

E3 ••

.* * •
• YE S •• ARE ASYNCH ••
.X •••• *.EXITS FOR Tes ••

.SUPPRESSED ••
. . • •• * * NO

x .*.
F3 * .

.* *.

x
.
*81) 0

* B2* ...
*

.* *. NO
.1$ IRB ACTIVE. ••••

. . *. .* * •• *
• YES

x .•.
G3 ••

.* *.
• NO. * I SIRS * •
• x •••••• "QUEUED TO .* *. CORRECT • * *. TeB .*

* •• * * YES

:X :

EFOQ2 X
*****H3********** .. *
REMOVE ROE FROM
• ASVNCH QUEUE *
• AND QUEUE TO •
* IRS •
•••• ****.*.**-*-.

X
.****J3****.*****
.IRSI NTL • $-.-.-.-.-*-*-*-. * ..
.INITIALIZE IRB •

* * * •• ** •••••• *** •••

(.• ~ ..

(

Chart BU.

RS OLD PSW IS SET
TO ENTER ERROR
FETCH SEQUENCE

ERFETCH

stage 3 Exit Effector (Part 2 of 2)

•••••
*BU * * 02. ••

*
FROM

X CHART BT
SYSERR .*.

B2 *.
• lI! ••

YES .lI! IS ••
•••••••••• SIRB ACTIVE .* X *. ._ ..•.• *...

_aT'" III •••
* B3* • NO •• •

x
** ••• C2*****lII***. • • * RESET *
*1/0 ERROR FLAG * * IN ROE •

* * •••••••••••••••••

X
••• **02***.*.* ••• • • * REMOVE ROE *
... FROM ASYNCH •
• QUEUE AND QUEUE.
• TO SIRB • •••••••••••••••••

X
•• ***E2** ••••••••
*SJRBINTL ...
--*-*-*-*-*-*-*
... INITIALI ZE ...
... SIRB. QUEUE •
... ON ERROR Tee ...
•••••••••••••••••

x
*****F2********.* • • ... DEVELOP ERROR ...
... RTN NAME FROM ... * CODE IN UCB ... • • •••• * ••••••• _-_ ••

x ••••• _BY'"
... 83*
• •
"

IECXTLER

***.A3 ••••••••• • • * ENTRY ...

• * • * •• _ ••••••••••
.FROM AN
.1/0 ERROR
• ROUTINE

X
.*.*.83******* •••
* • * DEVELOP ERROR *
... RTN NAME FROM *
*CODE IN REG 13 * • • ** •• * ••••••••••••

X
••••• C3 ••••••••••
• PLACE •
*NAME INTO SIRB •
• AND SET P5W TO •
• ENTER •
• ERFETCH • •••••••••••••••• *

X
•••• 03 •••••••• *

• * • EXIT • • • * ••••••••••••••
TO 01 SPATCHER
RrN (lEAODS)
-CHART GG-

ERFETCH

• ••• A4 •••••••••

• •
• ENTRY * * • • ••••••• ** •••••

:FROM DISPATCHER
.(CHART GG Jl) OR
.VIA OPERATOR RESET
.AND START KEYS

X .'. B4 *. • •••• BS ••••••••••
.* IS •• • PLACE ENTRY •

•• REQUESTED •• YES • POINT ADDRESS.
•• ERR RTN IN •••••••••• X. INTO OLD PSW •

*. STORAGE •• • FIELD OF SIRB • •• •• • •• *._ •••••••••••
• NO

X IECPBLDL(S)
_ •••• C4 ••••••••••
.BLDL RTN •

.-.-.-*-*-*-.-*-.
• OBTAIN ENTRY •
• POINT NAME OF _
• ERROR ROUTINE • _•....

X • •• *es.* •••••••
• •
• EXIT • • • • ••••••••• ***.*

TO DISPATCHER
(IEAODS) -CHART GG-

•••• • •
• G4 .X •• • • X ••• * •

••• ERBLDLER •• 1/0 ERROR
04 '*. 05 •• .*.. .* ••

•• •• YES •• DETERNI NE ••
•• BLDL ERROR .* .•.•••.. X.. TYPE OF ._ _. ._ •• ERROR •• ...* *.. •

• NO • NO I/O
.ERROR
.FOUND

X IEWFTRAN
••••• E4 •• * •••••••
PROG FETCH CFB~
--.-*-*-*-.-*-*
* LOAD *
* ERROR •
* ROUTINE •
••••• ** ••• * ••••••

x .•.

X
**.*.E5 ••• * ••••• * • •
• SET UP •
• ERROR COOE •
• (806) * • • • •••••••• ** •• ** ••

X IEAOABOO
.F3*......... F4 •• *** •• FS*.* ••••• **

*ASTERN RTN HEA2.
.-*-.-*-*-*-*-*-*

• PLACE ENTRY • .* ••
• POINT ADDRESS • NO •• ••
• INTO OLD PSw *X •••••••••• FETCH ERROR ••
• FIELD OF SIRB • •• •• · _....

X
•••• G3 ••• * •••••

• •
• EXIT • • • ••••••••••••••• TO DISPATCHER
RTN (IEAOeS)
- CHART GG -

• YES •••• · ..
• G4 •• x. • • •••• • ERFERR X •• * •• G4* •• **.* ••• • •
• SETUP *
• ERROR CODE •
• 806 • • • •••••••••••••••••

X
ERFERR .*.

H4 ••
•• ANY TASK •• NO

• .ON TeB QUEUE ••••••
•• IN MC ••

• STATUS ••
• YES

X
••••• J4 ••••••••••
• SET MUST •
• COMPLETE • * INDICATOR IN • * RB OLD PSW • • • ••••••••••••••••• · .

• SCHED *
* TERM OF TASK *
• REQ ERR RTN * * ••••• * •••• * •••••

X * ••• Gs**** •••• * • •
• EXIT • • • • •••••••••••••• TO EXIT ROUTINE
IG003 --e~ART GB-
VI A SUPERYI SOR
LINKAGE (SVC 3)

• X ••••••••••• NOTE-
REENTRY AT ERFETCH
WILL OCCUR WHEN
OPERATOR PRESSES

ERNMC ReSET AN') START KEYS
x

•••• K ••••••••••
• LOAD WAIT STATE.
• PSW • • • •••••••••••••••

Section 13: Charts 351

Chart BV. Task switching Routine (Uniprocessing System)

NOTE - SHADED AREA APPLIES ONLY TO
SYSTEMS WITH TIME-SL Ie ING.

352

IEAODSo2

****A2"'**.*.**_ • >
* ENTRY ,..
> •

FROM ANY
• SUPERVI SOR
• ROUTINE

x .•.
82 *. ****.83****.***** .* NEW *. .USE Tes AOOR IN.

•• Tee PNTR *. YES ,.. OLD Tee PNTR ,.. *. (IEATCBP) •••••••••• X* (IEATCBP+4) ,.. *. = 0 .* * FOR TEST ,.. *..* * ,.. * •• * ******.*******.*. > NO

· . • x •••••••••••••••••••••••••
SWOIX .>.

SUBJECT C2 *. SUBJECT
Tea IS •• COMPARE.. Tee IS ****C3*********

HIGH.* 01 SPCHG *. LOW'" ,..
•••••• PRIORITY OF .* •••••••• X* EXIT *

. '

.'

.-

. Teas . ,.. ,.. *... * •••• ****.***** * •••
_EQUAL RETURN TO
.PRIORITIES CALLING ROUTINE

x
*****E2********** ,.. SEARCH OOWN ,..
,.. Tee QUEUE. ,.. * STARTING * * WITH CURRENT * * Tee ,..
**************** •

x .>.
F2 *.

•• ~AS *. ***.F3********* .* SUBJECT *. YES * *
. INPUT Tce . •••••••• X* EXIT *

. FOUND. X * •
.. **.************ * •• * > NO . .

••••••••••• x.
RETURN TO
CALLING RClJTINE

X
SWSETNEW .*.

G2 * • • * IS * • • * SUBJECT *. NO • *. TASK DIS- .*•
.PATCHABLE.

. .
* •• * * YES

X
** ••• H2** ••••• *.*
* > * INDICATE TASK • * SWITCH TO * * SUBJECT TASK •
> •
***** •• ** ••• *****

X
** •• J2***.***** > > * EXIT •

• >
*.*** •••••• * •• *

RETURN TO CALLI NG
ROUTINE

NOTE-THE SUBJECT TASK IS
REPRESENTED ev THE
Tce WHOSE ADDRESS IS
PASSED TO THIS ROUTINE.

• Chart BW. Task switching Routine (Multiprocessing system)

IEAOOS02

•••• A2 ••••• ** ••
* * • ENTRY •

* * •••••••••••••••
FRON ANY
SUPERVISOR ROUTINE

x .•.
B2 ••

• *15 SUB.JECT •• NO *. TASK • * ••••••••••••••••••••••••••••••••
DISPATCHABLE* *. • •

,. YES

x .*. C2 _.

•• IS ••
•• SUB .. Tea *. YES •.

•• 1liE 'NEW' TCB •••••••••••••••••••••••••••••••• x •
•• OF EITHER ••

•• CPU ••
:II •••

o NO

x .0.
02 •• ..***03 ••• ****.* •

• ,. ill. ,. ,.. *.*.04.*.*.*** • • * 'NElli' Tee *. YES *' PLACE ZERO IN * X" ,.
:II. POINTER OF .* .•...•.. X*'NEIIII· Tee PNTR * •••••••• x* eXIT ,.

•• EI THR CPU." ,. OF OTHER CPU ,.,. ,.
ill. = 0 .,. ,. ,. ••••••••••••••• *. .,. •••••••••••••••••

,. NO RETURN TO
CALLING ROUTINE

SWNEIII2N2 X RELPRIOR
•••• *E2 ••••••••••
*RELATIVE PRIOR,. 'NEW' aN
.-.-*~*-*-.-*-*-. THI S CPU
.COMPARE DISPNG •••••••••••••••••••
• PRIOR OF TWO • IS LOW
• 'fEW' TCB'S • ••••••••• * •• ** •••

• 'NEW' ON
.SECOND CPU
.IS.LOW

X RELPRIOR
••••• F2 ••• * •••••• SWNEWILO X RELPRIOR

• •• **F3* •• * ••••••
•••• Fl ••••••••• SUBJ TCB *RELATIVE PRIOR. .RELATIVE PRIOR *SUBJ TeB * F ••••••••••

• .15 LOW .-.-.-.-.-.-.-*-. .-.-.-.-.-*-__ .-.15 LOW • •
• EXIT .X......... CNP OSP PRI • • CNP asp PRI ••••••••• X. EXIT • * • *SUBJ TCS + NEW • *SUB.J TeB + NEW •• •
••••••••••••••• *TCS OF SEC CPU.

•••• *** •• ** •••• *.
.Tee OF THIS CPU. • ••••••••••••••

RETURN TO
CALLING ROUTINE • SUB.JECT TeB

IS HIGH

• •••••• * •••••• * ••
• SUBJECT Tee

IS HIGH

SWCHNEW2 X SWCHNEWI X
* ••• *G2 •• * •••••••
• PLACE •
• ADDR OF SUS.J •
• TCS IN 'NEW' •
• Tes PNTR OF •
• SECOND CPU * •••••••••••••••••

it .0.
H2 ••

•• ~IS ••
NO • 'NEW' TCB OF ••

•• •••• SECOI«) CPU ••
CURRENT TeB OF

THIS CPU.
." • YES

••••• G3 ••••••••••
• PLACE •
• ADOR OF sus.J •
• TCS IN 'NEW' •
• TCB PNTR OF •
• THIS CPU • •••••••••••••••••

x .0.
H3 ••

.* IS * •
.'NEW' Tce OF •• NO *. THIS CPU ••••••
CURRENT Tce OF

SECOND CPU
• YES

.' · . • x
::SWINTCHG x

••••• J2 •••••••••• . ' . .
E XCHANGE ADDR' 5 .; * IN TWO 'NEW' •
.. TCB POINTERS •
* 0 .. "

eA ••••••••• x. · . • x •••••••••••••••••••••••••••••••••••••

it •••• a •••••••••
* * • EXIT •

• *
RETURN TO
CALLING ROUTINE

RETURN TO
CALLING ROUTINE

Section 13: Charts 353

• Chart BX. STAE Service Routine

+
IGC0060 .*.

354

*** •• A2**........ "3 * •
•••• .1.1 •• *...... . *' .111 IS •• *' •• * .* USER III. YES *' ENTRY ••••••••• X*OBTAIN USER RB ••••••••• X •• ISSUEING STAE •••••••• * • *' "OOR *' III. I N EXIT ._ ••••••••••••••• '" • *. RTN ••

• NO

x .'. ** ••• 82.......... 83 .. *' ., .* •• '" *' YES .. * CREATE •• * OBTAIN EXIT .x •••••••• *.STAE CONT BLK •• * ADDR *' *. (SeB) ••
• *' III... ••••••••••••••••• III •••

• NO

••••••••••• x.
x .•.

C2 *.
•• III. YES ..

•• EXIT "ODR = 0 ••••••••
.

III •••

• NO

i< .•. 01*......... 02 III .
., *' .* *. *' PLACE .. NO.* EXIT * ..
.RETURN CODE OF *x AOOR VALID .111 *' 12 IN REG 15 *' III. .* .. *' *... ••••••••••••••••• * •••

X
•••• El •••••••••

• •
'" EXIT • • • ••••••••••••••• XRETURN

• TO CALLER

• YES

X
••••• E2 ••••••••••

• •
• OBTAIN ..
*PARAM LIST AOOR. • • • • •••••••••••• ** •••

x
•••• *Fl ••• **..... F2·*· •• ·
• PLACE • NO.. PARAM ••
• RETURN OF 12 IN.X •••••••• *. LIST ADDR ••
• REG 15. •• VALID •• · _........

• YES

X IGC004(S)
• ** •• G2 ••• *.*.* ••
• GETMAIN OAAI.
-.-.--.... *-.-.-.
• FOR sca •
• (CONDITIONAL) •

• * •••••••••••••••••

· x .•.
H2 •• ..•. HI.........

• • NO.. STORAGE ••
• EXIT .X.......... AVAILABLE •• · ••••••••••••••• •••• RETURN TO :II •••

CALLER • YES

X
........ 2 ••••••••••
• MOVE AODR •
• PREV see INTO _
• NEW sce, NEW •
• sca ADDR INTO.
• TeBNSTAE • •••••••••••••••••

x .•.
C3 •• • •••• C •••••••••• *

.* *. • * • .* •. YES X. PLACE •
*.TCBNSTAE = 0 •••••••••• X*RETURN CODE OF •••••••

•• •• • 8 IN REG 15 • ...* • * * •• * * ••• ********.* •••
• NO

x .' . D3 •• .*.**04******** ••
•• *. • •• ****05*.** •••••

•• USER RB *. NO • PLACE • X. * *. ADDR = RS •••••••••• X.RETURN CODE OF ••••••••• X. EXIT •
•• ADDR IN •• • 16 IN REG 15 •• •

•• sce •• • • • ••••••••••••• * *. •• .* ..•....• *...... RE TURN
• YES YO CALLER

x
••• IGCO~(S) E3 *. • •••• E4-.......... . •.•. ES ••••••••••

•••• • SET REGS FOR * .FREENAI N 08A2.
•• CANCEL *. CANCEL • FREEMAIN-NOYE • .-.-*-.-.-.-.-.-.

•• DR OVERLAY •••••••••• X. ADOR PREV sce * •••••••• X. • ••••
•• sce •• • INTO TCBNSTAE • *FREE sca SPACE • •• •• ••••••••••••••••• • ••••••••••••••••

*
: OVERLAY

X •••• *F3.** ••••••• • •
• OBTAIN •
• EXI T ADDRESS • • • * • • ••••••••••••••••

x .•.
G3 •• *.* •• G" ••••••••• *

•• •• NO • PLACE • *. VALID EXIT •••••••••• X.RETURN CODE OF '*
•• ADDR •• • 12 IN REG 15 '*

• YES

i * ••• ~3 •••••••••• • •
• OBTAIN •
• PARAM LIST ADDR.

• • * • • ••••••••••••••••

X

X
• ••• H ••••••••••

* • • EXIT • • • • •••••••••••••• XRETURN
.TO CALL.ER

... 3···.. • 4 ••••••••••
•••• VALID •••• NO : PLACE :

•• PARAM LIST •••••••••• X.RETURN CODE OF •
•• AODR •• • 12 IN REG 15 • •• •• • ••••••••••••••••

• YES

• ••• HS ••••••••• • •
• EXIT • • • • •••••••••••••• xRETURN

.TO CALLER

• 5 ••••••••••

• • '* PLACE •
.RETURN CODE tF •
• 0 IN REG 15 • • • • •••••••••••••••• x

••••••••••••••••••••••••• x. . .
• .X •••••••. ;- •••

X X ••• NO .••.. K2.......... . ..•• K3.......... K" .. • •.•. KS ..•.•••..• '* •• '* •••• • •
• PLACE. • PLACE EXIT * •• •• yes • TURN •
• ADDR USER RB * •••••••• X. AODR, PARAM * •••••••• X •• XCTL OPTION •••••••••• X.ON XCTL OPTION.
• INTO SCB. • L.IST ADDR IN • •• •• • FLAG •
• •• sce. •••• • • ••••••••••••••••• ••••••••••••••••• •• •• • •••••••••••••••• . .

c·
.~

"

I

• Chart BY. ABEND/STAE Interface 1 Routine (ASIR1)

IGCOBOIC

* ••• Al •••• * •• *.
• 0 *' ENTRY ..
o 0 .*.* ••• *.** ••••

• FROM ABENDt
.-CHART H]-

X
** ••• 81 ********** o • *' SET ..
*STAE RECURSION ..
.. FLAG ..
* 0
*.**** •••• *******

x .*. .*.

**** . .
.. C3 *'
o 0

Cl •• C2 *. X
•• *. .* *. *.**C3******** • • * TASK *. YES .* STAE USER *. NO *' .. *. IN MUST •••••••••• x •• IN SUPERVI SOR •••••••••• X* EXIT ..

.COMpt...ETE . *. MODE.. X" *' •• * ••••••••••••
* •• * * •• * TO ABENO RTN

.. NO ,. YE S -CHART HI-

· . • x •••••••••••••.••••••••••••
x .•.

Dl * • • * •• • * STAE *. NO • *. USER .ON RS •••••••••••••••••••••••••••••••••• *. CHAIN .* •• .*
* •• * .. YES

x .*. lGCOO4.(S) •••
EI •• *****E2****.***** E3 *. ***.*e4.*******.* .* *. .GETMAIN DA..... •• *. ,. ,.

•• I/O *. NO *-*-*-*-*-*-*-*-* .* GETMAIN •• NO • SET ..
•• IN PROGRESS •••••••••• x. WORK AREA ••••••••• x •• SUCCESSFUL •••••••••• x. PARAMETER •

•• •• X. AND REG SAVE • •• .* * REGISTERS •
•• •• • AREA" *.. * * • •• • * * •••• * ••• *....... * •• * **.* •• * ••••••• *.*

• YES • YES

••••••••••• X.

X
••• *.Fl •• * •• * ••••
.PURGE • .-.-.-.-.-.-.-*-.
o * * QUIESCE I1'O *
o 0 ••• * •••••••••••••

x .•.
GI *.

X * •••• F3 ••••••••••

* * • INITIALIZE WORK. •
• AREA AND SET •••••••
• PARAMETER •
• REGISTERS * • *.** •• * •••••••••

X
••••• F4 •• ., •••••••
SYNCH • .-.--.-.-.-.-.-•
• SCHEDULE • * STAE EXIT *
• ROUTINE •
.****** ••••••••••

x .0.
G4 •• .• *. •• *. **** •• PURGE •• YES • *. SUCCESSFUL •••••• x. •• .* •. .* •• • * .:

• NO .:

X
••••• Hl ••••• * ••••
• PURGE • . -.-*-.-.-*-.-.-. o 0
• HALT .1'0 ..
* 0 *.* •• *.*.* ••• * •• *

•• RETRY •• NO • •. *. REQUESTED •••••• X. C3 • *. •• •• ...* ** •• * •••
• YES

x .*. H4 •• • •••• HS •••• *** •• *
•• •• .VALCHECK •

•• RETRY •• NO .-.-.-.-.-.-.-.-•
..WITHOUT PURGE •••••••••• x. VALIDITY •

•• OF RB'S •• • CHECK OF USER.
...* • PARAMS * •• •• • ••••••••••••• * ••

• YES

x
.0 •

.14 *. •••• •• *.
• • NO •• STAE USER ••
• C3 .x •••••• IN SUPERVISOR ••
... •• MODE •• •• ** ••••

• YES

X
•••• K4 •••••••••

o 0 * eXIT •
* 0 •••• ** •••••••••

TO ASIR3
(IGCOOOIC)
-CHART Bo-

X •• * • .15** ••••• *.
• 0
• EXIT •
* 0 • ••••••• ** •• * ••

TO ASIR2
([GCOCOIC)
-CHART BZ-

Section 13: Charts 355

• Chart BZ. ABEND/STAE Interface 2 Routine (ASIR2)

IGCOCOIC

****Al*********
o * * ENTRY *
* * •••••••••••••••

:FROM ASIRI
.-CHART BY-

x .*. .*. Bt *. .* .• *S2********** 83 *. •• *. *WTOR PURGE * .* *. • ••• S4***.**** •
• * I/O *. NO *-*-*-*-*-*-*-*-* .* ISAN/TAM •• YES * * •• IN PROGRESS .:tI •••••••• x. • •••••••• x_. SWITCH ON •••••••••• X_ EXIT *
. . x * * *. .* * * *..* • * *..* ••••••••••••••• * •• * * •• ** ••••••• *. __ • * •• * TO ASIR4

.. * YES * NO (IGCOE01C)
-CHART so-

: Cl :.X:
o * * •• - X
••• _.CI ••••••••• _
o 0
* EXAMINE * * REQUEST BL.OCt(* * (RB) *
o * _ --

x .0.
..

D1 *. ." •• *. •• *. YES •
•• RB uSING STAE.* ••••••

. .-. •• * ••• o NO

X
****C3********* • * * EXIT * • • *_ •••• _ •• -•••••

TO ASIR3
(IGCODOIC)
-CHART BO-

x ••••••••••• x.

X
•••• *EI •••••• _ •••
* 0 o •
• EXAM INE DEB *
• CHAIN •

* * ••••••••••• ** ••• *

x .0.
Fl.. ..***F2*** •••••••

.• *. * • **** •• *. YES * • * *
.END OF CHAIN . •••.•••• X*OBTAIN PREVIOUS* •••• X* Cl *'

. . * RB * • * ••.• • * .*.*
. . ***************** • NO

X
*****Gl********** • • • •
• EXAMINE DCB •

• * o * *****************

x .0.
HI *. *****H2********* • • * *. * • • * DCB QRG •• YES *' seT *'

*. = lSAM. TAM •••••••••• X*ISAM/TAM SWITCH* ••••••••••••••••••••••••••••••

. . * * *..* * *' * •• * ******* •• ******** * NO

x .*.
JI *. ****.J2********** *****J3********** .* *. * * .CLOSE * .* DCB *. YES * PURGE lOB * *-*-*-:tc-.-*-*-*-*

.RELATED TO RB. •••••• · •• X* RESTORE CHAIN * •••••••• X. *
. .' * FOR DCB * * CLOSE DCB *'
.. • * * *' * •• * ***************** ***************** • NO

• X X •
x •••

356

()

• Chart BO. ABEND/STAE Interface 3 and 4 Routines (ASIR3, ASIR4)

ASIR3
IGCOOOIC

****A 1 ••••••••• · . * ENTRY .. · . *************.* .. FROM ASIRl. 2 OR 4-
.CHARTS BY-BO

X
••• **81 ••• ******. • •
'" seT *
• SUBTASKS "
'" OISPATCHABLE '" • • ••••••••••••••• **

x
••• IGe004(S)

C 1 *.. • •••• C2** •••••••• •• *. "'GETMAIN DAAl *
.* PRUGE *. NO *-*-*-*-*-*-*-*-* *. RS CHAIN •••••••••• X. RS ..
. . '" FOR RETRY RTN '" ...* . . * •• * •• ** •••••••••••••

• yes

X • * ••• 01 •••••• * •••
• SET • * INTERVENING •
'" RB':S TO SVC 3 *
• AOOR • · . •••••••••••• * ••••

X
••• *.02 ••• *.* •••• · . · . • INITIALIZE •
• RETRY RB • • •

. .
.. X •••• _

X IGC005(S) •• * •• el* ••• * •••••
.FREEMAIN DBA2. • -.-.-.-*-*-.-..... • •
• FREE SCB * · . • * •••••••••••••••

x
• *. Fl... • ••• *F2 •• ** •• * •••

•• WORK ... • •
•• AREA •• NO • INITIALIZE • *. OBTAINED IN x. PARAMETER •
•• ASIRI _. • REGISTERS •
.. • • •• •• * •• * ••••• * •••••• * * yes

X
••••• Gl •••••••••• · . • •
• REINITIALIZE • * WORK AREA •
* • •••••••• * ••••••••

:x :
x

••••• Hl ••••••••••

• •
• SET UP TO •
• SCHEDULE RETRV •
• ROUTINE • • • ••••••• * •••••••••

X
•••• J 1 •••••••• * • •

• ExtT • • • * ••• * ••••••••••
TO EXIT RTH
(IGC003)
-CHART GB-

ASIR4-
IGCOEOIC

****A4********* • • * ENTRY '" · . ******* ••• ***.* .FROM AS]R2
.-CHART BZ-.... · .. * e4- •• X. · .. * •••
X

..*S4 ••••••••• * · . '" EXAMINE •
• REQUEST BLOCK •
• «RB) * • • "'

x .•.
C4 *.

... ... ****C5**.**** •• .* •• yES '" *
.RB USING STAE. •••••••• x. EXIT *

. •• • '" lIt.. *.*****.***** •• *. •• TO ASI R3
• NO (IGCOOOIC)

.............. x.
X * •••• 04 •••••••• * • • • · . • EXAMINE DEB •

• CHAIN • • • • ••••• * ••••••• * ••

.•.

-CHART 80-

E4- •• • •••• E5 ••••••• *.*
•• •• YES. •

..ENO OF CHAIN .* X.OBTAIN PR::VIOUS.
•• •• • RB • ...*

• NO

X
• •• _.F4-IIe •••••••••

• • • • • eXAMINE DCB • · . ·
.* •

64- ••
• NO... DCB ORG .••
..x = ISAM/TAM ••

* YES

x .*. H4- ••
• NO.. DCB *.
.X RELATEO TO RS ••

• yes

X
••••• J4-•••••••••• • • * PURGE taB • * RESTORE CHA IN •
• FOR DCB • · "'

X .** •• K4 •••••••• * •
• CLOSE • *-.-.-.-.-*-.-.-.
• * * CLOSE DeB •

• * •••••••••••••••••

x
• •
• B4- • • • • •••

Section 13: Charts 357

Chart CA. Link, Load, XCTL, and SYNCH Processing (Part 1 of 3)

JEAQCSOI 1GC006

••• *A 1 .*.****** ****42********* o 0 o • * ENTRY * •••••• * ENTRY * o 0

*************** FROM DISPATCHER
-CHART GGJ 1-
WHEN All ACH MACRO
INSTRUCTION HAS
BEEN ISSUED

**** o 0

* Cl * o 0

o 0

**********.*.*. .FROM SVC SLIH (CHART AC)
.. eOAOVANS .WHEN LINK MACRO INSTRUCTION **** .HAS BEEN ISSUED

*CA * ..
• 82 *.x.
• 0 .. * •••

• :COCONTRL .*.
82 *. IEAQCS02 .* DOES •• .. .* CDe EXIST *. NO ... x.. FOR NAMED .. If:

•• ENTRY .*

.POINT.
••• *

• YES

*CA * ..
• C2 •• x.
* •

x
o •
.. 02 •
• *
***. x ••• * x • *. CDALLOC ••• • ••

Cl *. C2 •• MODULE CAN C3 *. .* *. MODULE.* *. BE MADE ... ••
YES.* DOES *. AVAILABLE.* TEST *. AVAILABLE .* IS *. YES

•••• *.LLE EXIST FOR.. • •••• ATTRIBUTES OF •••••••••• X •• MOQULE BEING •••••• *. CDe .* *. MODULE •• *. LOADED .*
.. *... *...

•• •• x •• •• • •••
• NO **** .MODULE * NO

X
•••• *01.* •••• **** * GET MAIN FOR •
• LOAD LIST •
*ELEMENT (LLE). *
• QUEUE LLE TO *
* TCB TCBLLS *
.*.***** •• ***

: •••••••••• X:

X
*****'::1******.***
*STORE COE AOOR *
*IN LLE. INCRE- *
*MENT .RESPONSI- •
BIL ITY COUNT IN
* LLE *
*******.***.*.*.*

X
• **.Fl *********

o *
• EXIT *
• * **.**.*** ••• ***
TO EXIT ROUTINE
(IGC003) --CHART GB-
VIA SUPERV ISOR
LINKAGE (SVC 3)

• * .UNAVAILABLE
* K4 * · . *.** X

COSEARCH .*.
02 •• .* DOES *.

.* COE EXIST *. YES •• X_. FOR NAMED .* •••• *. ENTRY .*
.POINT.

.* • • * 02 * · . • *

* •• *
• NO

X'
*****E2**********
• GET SPACE FOR *
*caE VIA GETMAIN.
• PLACE CDE ON *
*JOB PACK QUEUE *
v IA CDEAOO SUBR
.****************

· . .X •••••••••••

x .•.
F2 *. • * IS * •

•• PDS DIRECT-t. YES
•• ORY ENTRY IN ••••••

. STORAGE . •• .* * •• *
• NO

XIECPBLD (S)
• ****G2****.*.*.*
*BLOL RTN *
--*-*-*-*-*-*-*-. ••••••••••••••••••• *

..........................
• TEST BLDL RETURN STATUS • . .:
• • SET UP ERROR •
• 11'0 ERROR .CoDE (806)

• GET INFO FROM.
• PD$ DIRECTORY *
•• ** •• ***********

X
.03*.*******. • • .. INCREMENT •
*USEI"ReSp COUNT • • • • • ***.* •• ** •••• ****
*CA" .X ••••••••••• * E3 *.x. · . *.*. .

COQUeCTL x
.****E3********** · . * QUEUE RB *
.. ON WAIT LIST *
• FOR MODULE *

• * •• **** •••• ** ••• **

X
• ••• *F3*** ••• *.*. · . * PLACE RB INTO.
* WAIT STATE. *
* • • • •• * •• ** •••• *.****

X IEAODS02
* •••• G3********* •
* TASK SW.RTN .eYA2
.-*-*-*-*-*-.-*-.
... SET TCB PNTR •
TO HIGHEST PRTY
.. READY TASK *
*****.**** •• * •• **

**** o •
.. AS * • • • *.*

it
"'''''''A ••• ***'''**.. *** •• A5 ••• *.**** •
* * * ... *PLACE RELOCATED'" * TEST RETURN *
* ENTRY POINT .X •••••••• * STATUS AFTER ..
* INTO COE. .. FETCH ..

* * * • **.*.******** •• *. ********.*.******

. ..
IF I/O ERROR, SET
UP ERROR CODe
106 AND INVOKE
ABEND ROUTI HE

B4 •• * •• **B5****** •• **
.IS MODULE. * LOAD *

.A SEGMENT OF*. YES * OVERLAY * *. AN OVRLY .* •••••••• X.SUPERVISOR INTO.
. MODULE . * MAIN STORAGE • *... * (SVC 8) • * •• * .*.********.***.*

• NO

· . .x •••••••••••••••••••••••••
x .•.

C4 •• ..***C5* •••• ****.
.* *. * * .* IS *. YES * INTERFACE •

.TESTRAN BEING. •••••••• X* WITH TESTRAN •
. USED. '* PROGRAM (SVC *
.. * 61) *

* •• * **.*******.*.****
• NO **.* .. .

..X* F4 * • • x **** . ..
04 *. *****05********** .* IS •• * INDICATE IN *

.* MODULE *. YES .MOD'S COJE THAT*
.ELIGIBLE TO BE.* •••••••• X*MOO IS ELIGIBLE*

.RELOADED . .TO BE RELOADED,* *... . SET REFR FLAG *
* •• * •••• *.**.****.**-

• NO

· . .X •••••••••••••••••••••••••
x .•.

E4 *. *****£5******.*** .* *. * SET *
•• *. YES * NFN FLAG IN *

.LOAO REQUEST . •••••••• X* CODE TO SHOW *
•• .*. • MODULE IS IN. ...* . USE *

* •• * ******** •• *******
• NO .*** · .. * F4 *.X. • * • .x •••••••••••••••••••••••••

***. X .0 •
F. *. *****F5*.**.***.*
.*.. * DETERMINE •

.*ANY REQUEST*. YES *RELOCATED ENTRY*
. FOR ALIAS . •••••••• X* POINT, PLACE *

.ENTRY PT . .INTO MAJOR CDE *
.. • •

* •• * *.***.*.*********
• NO

· . • X •••••••••••••••••••••••••
x .•.

G4 *. *.***GS •• *****.**
.- *. * * .* ANY MINOR •• YES * DETERMINE *

•• CDE'S ASSOC .* •••••••• X*RELOCATED ENTRV •
.w ITH MA.J •• .PDINTS FOR EACH

. COE . * MINOR CDe *
••• * ***** •••• *.*_ •• **

• NO

· . .x •••••••••••••••••••••••••
• AND INVOKE
.ABEND X DQLOAD X

········•• .. :iF·.:i*Lis···:
• JUST SEARCH- •
• ED, SET UP ER-.
.RDR CODE •
• (806) AND IN-.
.VOKE ABEND

• .ROUTINE •
• MODULE NOT •••••••••••••••

FOUND .IF L II'e<L IS
.NOT JUST •
• SEARCHEO,RE- •
• MOVE CDE FROM.
.JPACQ. SET UP.
• TO SEARCH
• LINKL IB, AND
.BRANCH TO

COCONTRL
• (BLOCK B2)

• MODULE .SET UP ERROR •
.EXECUTABLE.CODE (706)

.AND INVOKE •
• ABEND ROUT INE.
• IF LOAD MACRO.

• .INSTRUCTION •
.MODULE IS .HAS NOT BEEN •
• LOADABLE .ISSUEO, SET UP.

ONLY .ERROR CODE •
.(406) AND IN-.
.VOKE ABEND

• • ROUTINE _
• NO ERROR .CONTROL PAS- •
• IS .SES TO BLOCK •
• DET ECT ED .H2

358

*****H2.*.** ••• **
• PLACE *
• MODULE * •
*ATTRIBUTes INTO*X •••
• CDe * • •
..****** •• *.***

x

.*H3.*.**** • • * EXIT * • • * •• * •• *.**.*.*.
TO DISPATCHER

CIEAODS)
--CHART GG--

.*. . •.
.. 2 *. ..13 *.

•• *. .IS MODULE.
.* IS *. YES • *REENTERABLE.. YES

. REQUEST FOR •••••••••• X. OR SER RE- .* ••••
. ALIAS . •• USABLE ••
.. *..* * •• * * •••

FROM CBD4- .. NO * NO
**.*
*CA * •
• K2 •• X. • • * .X •••••••••••••••••••••••••
..** i IEWMSEPT * ••• *K2* •••• * •• **
• PROG FE TCH CEA5*
--*-*-*-*-*-.-.
.. LOAD MODULE *
• INTO. MAIN *
• STORAGE * .* •••••••••••••••

x * ••• • •
• AS • • • •. *.

x
.*.** *CB • * A3. •• •

*****H4*_.* •• **.*
* DEQUEUE ANY '*
* WAITING RB'S. _
*SET Assec PSW'S.
*FOR REENTRY AT *
• CDCONTRL CAB2 *
.**.* •••• *** •• **.

X IEAOOS02
* •• **J4* •• * •••• * •
.TASK SW.RTN * BVA2
.-*-*-*-*-.-*-*-.
.SET Tce PTR TO •
_ HIGHEST PRTY •
* READV TASK *
** •• * ••••• **.* •••

. • *CA. •
• K4 *.X •

* •• * • • * Cl *
• 0 • ••• x

: ••• * • : YES
COEMERGE X •••

• ****K ••••••• *.** K5 ••
* * .* •• * INCREMENT. •• LOAD ••
*USE/RESP COUNT * •••••••• X.. REQUEST .*
• IN MAJ COE * •• • •
* * *... ** •• * •• ** •• ** ••• * *. • *

• NO

it
..*.
*CB *
• Bt* • • •

o

c

(

• Chart CB. Link, Load, XCTL, and SYNCH Processing (Part 2 of 3)

IGC012

•••• -..1** ••• * ••• • •
... ENTRY *
• 0 * •••••••• -•••••

FROM SYC Sl.!H (CHART AC)
WHEN SYNCH MACRO INSTRUCTION

•••• • IS ISSUED
*cs.. •
... 81 *.x.
o •
•••• CDEPILOG ••• IEAQCS03

81 •• • •••• S2 ••••••••••
•••• ... seT PSW OF ...

•• IS TASK •• YES * CURRENT AS TO ...
.... sw lrCH •••••••••• X'" CAUSE REENTRY"

*.INDICATED.. ... AT CDEPILOG ... •••• * CBBI ... *. •• • ••••••••••• * ••••
• NO

x
••• *.C 1 ••• *.*.* ••
... GET MAIN FOR ...
"'AND INJTIALIZE ...
"'PROGRAM REQUEST.
... BLOCK PRS '"
'" FROM SYRB ... •••••••••••••••••

. x
••••• 01 ••••• * ••••
• •
• QUEUE ...
*PRB ON RS QUEue.
... OF CURR TASK ... • •

x
...... el ••••••••••
• IF PIE AODR IN ...
... CURR TCB, SET ...
... PROG MASK IN ...
... RBOPSW. PER *
... PICA MASK ... •••••• * ••••••••••

x .0.
Ft ••

• * *.

X
.***C2 •••••••••

• 0 • EXt T • o • •• * ••••••••••••
TO OISPATCHER
(IEAODS)
-CHART GG-

............. x .•.
02 ••

•• STAE *. NO *. SUPERVI SOR •••••• *. REQueST ••
• YES

x
••••• E2.* ••••••••

• •
• SET NEW RB •
• TO SUPERVI SOR •
• STATE • • • •••••••••••••••••

· .
•)C •••••••••••

X

•• *. YES •

• •••• F2 ••••••••••
o •
• SET PROTECT KEY.
.IN RBOPSW SAME •
• AS PROTECT KEY.
• OF TCB • •••••••• *.* ••••••

*.SYNCH REQUEST
.. . *. .* * •• *

• NO

X
****.Gl.*****.*** o •
*PLACE CDE ADDR * * INTO PRB. PRB • * ADOR INTO MAJ ..
* COE * * ••••••••••••• * ••

••••
• 0 0
•• X. Kl •

o 0

x .•. ······x
.: .•.

HI ••
•• •• YES •

•• XCTL REQUEST •••••••• •• .* * •••
• NO

X
•••• *J 1 •••••• ***.
*INITIALIZE psw • *" ITH INFO FROM *
• PREV] OUS LEVEL *
• PSW OR FROM * * TCB • •••••••••••••••••
•••• o ••

• kl ••)C.
• • .X ••••••••••• ••••

X
•••• Kl •••••••••

• 0 • eXIT • • • ••••••••••••••• TO EX IT ROUT tHE
«IGC003) -CHART Ga
VIA SUPERVISOR
LINKAGE «SVC 3)

H2 ••* STAE •• NO
•• xCTL OPTION ••••••

• YES

X * •••• J2 •••••••••• · . • PLACE •
.RB AODR 1 N see •
o •
o •

· . .X •••••••••••

X
••••• K2 ••••••••••

• 0 .INITLZE RBOPS ••
• IN PRB WITH •
*SAVEO INFO FROM.
• SYRB • • ••••••••••••••••

.
• CB •
• A3.

o 0
o
.FROM CHART
.CAJ3

X •• * •• A3 ••••••••••
• CDSEARCH • .-.-.-.-.-*-.-.-.
.SEARCH JOB PACK.
• QUEUE FOR CDe •
• OF MAJ NAME •

x .•.
B3 •• • •••• B4 ••••••••••

•••• • GET •
•• ODES COE •• NO • SPACE FOR •

•• EXIST FOR MA X.CONTENTS DIRCTY. *. NAME.. .. ENTRY (CDE) •
•••• * • *. •• • ••••••••••••••••

• YES

RETHREAD X
••••• C3 ••••••••••
o 0

• REMove MI N •
• COE FROM .. DB •
• PACK QUEUE • • •

OQLOAO X
••••• 03 ••••••••••
• OEQUEUE ANY •
• ~AITING RBIS ••
• SET RB'S FOR •
.. REENTRY AT •
• CDCONTRL CAB2 • • ••••••••••••••••

X IEAODS02 ..* .. E3 ••••••••••
.TASK SW. RTN .BPA2
--*-.-*-.-.-.-.
.SET TCB PTR TO •
• HIGHEST PRTY •
.. READY TASK .-.* •• * •••••••••• * •

X
• •••• F3 ••••••••••

• •
• QUEUE MI N caE •
.. FOR THIS REQ ..
.BEH I NO MAJ CDe • • • • ••••••••••••••••

x .*.
G3 ••

•• IS •• NO
•• MQDUL.E IN •••••• *. STORAGE •• *. ••

• YES

X
•••• *H3 ••••••••••
.. DETERMINE •
.RELOCATED MINOR •
.ENTRY POI NT AND •
*STORE IN MI NOR •
• CQE • • ••••• *.* ••••••••

x ••••• • CA •
• C2*

o 0

•

x ••••• • CA •
• E3.

o •
•

X
••••• C4 ••••••••••

• 0 • INITIALIZE •
• MAJ AND MIN •
.. CDE'S * • • • ••••••••••••••••

X .* •• *04*.** ••••••
o •
• QUEUE •
*MIN CDE BEHIND.
• MAJ coe • · . .* •••••••• * ••••••

x ••••• • CA •
• 1C2.

o 0
o

Section 13: Charts 359

• Chart CC. Link, Load, XCTL, and SYNCH Processing (Part 3 of 3)

IGC007 .•. IGCOOe

360

A2 *. .**.*,,3********** * ••• Al*.******* .*.. ***.,,0****.* ••• ·* STAE *. YES ... seT FLAG IN ..
.. ENTRY ••••••••• X.. WITH XCTL •••••••••• X* STAE CONTROL ENTRY ..
.. .. •• OPTION oil. .BLOCK FOR EXIT ..

• * ***************oil.. *****.****.**** •. oil. *********.* •••• ** FROM svc SL.IH (CHART AC)
FROM SVC SLIH (CHART AC)
WHEN XCTL MACRO INSTRUCTION
IS ISSuED

• NO
WHEN LOAD MACRO INSTRUCTION
IS ISSUED

· . • x •••••••••••••••••••••••••
x .•. X CDLLSRCH

• *.**Bl**** ••• *** 82 *. *.*.*83****.***** *****e4 •••• **.**. oil... .. SWITCH POS OF ..
• * *-*-.-*-.-*-.-*-. .. PI-ACE "DOR OF .. IRB oil. .. PRS .. SYRe AND PRB, ..

*SYC 3 INSTRUC- .X ••••• : ••••• DETERMlNE RS •••••••••• X*SET RB OLD PSW .. * SEARCH LOAD •
.. rlON INTO RB .. *. TYPE.. .. FOR ENTRY AT .. * LIST OF •
.. OLD PSW"* *CDCONTRL CABZ * * CALLER'S TASK •
******** •••• ***.* * •• * ** ••••• * •• ** •••• * •• *.*.* •••• ** ••••

x •••• *
*CA *
• 82.

• • •

• SVRB

X
IEAQTRQ3 ••• TA xeTL RTN

C2 * • .* ••
•• WAS XCTL *. NO *. I SSUED By ••••••

*.TRANSIENT ••
•• RTN ••

* •• * .. YES

X TAXEXIT
* •••• 02* •••• *.* ••
• TA EXI T RTN .FD.
-.-.-.-.--.-$-*C 1
• REMOVE CALLER' S.
• RB FROM USER •
.. QUEUE FOR TAB •
•••• * ••• **** •••••

· . • x •••••••••••

X
TASEARCH •••

X
*.**C3 •• * •• ***.

• * * EXIT .. • • • •••••• * •••••• *

x .*.
C4 *.

•• DOES * •
•• CDe EXIST •• NO

•• FOR NAMED ••••••
..ENTRY PT •• •• .*

TO EXIT ROUTINE (lGC003)
--CHART G3- EX IT
ROUTINE WILL REMOVE

* •• *
.. YES

x •• * ••
*CA *
.. 82* AND RELEASE PRB

X
CDALLOC •••

04 •• •• *.

••
*

UNAVAILABLE.* TEST *. BEING LOADED
•••••••• *.ATTRIBUTES OF.* ••••••••
X *. MOCULE •• X

.***. •••• .* •• *

.CA • * •• * *CA •

.. 82. *AVAILABLE *' £3* *. "u •• * .*CA* • ..x. K4 • . .
.**.

E2 •• * •••• E3.......... ..**.E4 •••••• * •• * .* IS •• * INDICATE. * SET UP. .* •• E5 ••• ** ••• *
•• REQUESTED $. YES • I N CALLER'S • • SYRB TO CAuse.. •

. RTN IN LINK •••••••••• X SYRB THAT ••••••••• X. ENTRY TO RTN ••••••••• X. EXIT ..
•• PACK AREA.. • ROUTINE IS * X .FROM DISPATCHER*. *
•••• • RESIOENT.. • ..* ••••••••••••

•• •• ••••••••••••••••• • ••••• *** •• *..... TO EXIT ROUTINE
• NO ([GC003) -CHART 68-

VIA SUPVSR LI NKAGE
••••••••••••••••••••••••••••••••••••••• (SVC3)

X

TAXRETRY F2·*· •• TAB~~~~F3 ••• ** ••• *. • •• **F4**........ .***.FS**.*.**.*.
•• IS *. YES • SAVE REFRESH • • INCREMENT. .QUEUE CALLER'S.

*.RTN IN A TAB •••••••••• X. I JlFO IN * •••••••• X.TRANSIENT AREA * •••••••• X. SYRB ON USER • *. •• • CALLER'S SVRB • • USER COUNT * * QUEUE FOR TAB *
*... * •• *. •*•... *.. * ••••• *.......... • ...•.•.•..•.•.•. * NO

X TATABCK
•• * •• G2* •••••••••
• TA AVAIL.CHK .AOA1 *-.-.-*-.-.-*-$-*
• FIND AVAILABLE *
• TRANSIENT A.REA • * SLOCK TAB •
. ••• * ••• * ••••

x .*. H2 •• *.*.*H3 ••••••••••
• * *. .MAKE SVRB WAIT.. * ••• H4 •• * •••• ** .* *. NO .PUT SVRB ON REQ.. •

•• TAB FOUND •••••••••• X.Q. PT RBOPSW TO ••••••••• X. EXIT •
•• •• • TAXRETRY. SET • * •
*... • UP TASK SW. • •••••••••••••••

•••• · . • GS •••• • • •••• x .0.
G5 ••

NO •• WAS 'DE' ••
••••• AN INPUT ••

x
•• PARAM •• •• *. • •

• .14 *
• *

• YES

••• *
X

• ••• *H!5 •••• ** ••••
• SET UP TASK •
• SWITCH TO TA •
• FETCH TASK AT •
.YAHFETCH CHART •

•• •• • ••••••••• **..... TO DISPATCHER (lEA ODS)
* "EFl * ••••••• * •• * ••••••

• YES -CHART GIS- REENTRY
W ILL OCCUR LATER AT
T AXRETRY. BLOCK F2

X X
••••• .12 ••• * ••••••
• SET INTO •
• WAIT CONOITION •
• ALL SYRe'S ON.
• TAB'S USER *

••••• J4.......... ** •• *.15.* •••••••• * SET UP.. •
.TASK SWITCH TO • * TURN ON •

•• X* TA FETCH TASK ••••••••• X. LOADING •
.AT TABLDL CHART* * INDICATOR IN •

• Gl.EUE * • AEA2 * • TACT ENTRY • ••••••••••••••••• • ••••••••••••••••• • ••••••••••••••••

X

• ••• • • ,. ., ..
• • ••••

••••• K2.......... • •••• K3*......... • ••• _ •••••••••••
• MAKE CALLER'S.. •• •
• SYR8 WAIT. SET. .QUEUE CALLER'S. * INCREMENT •
• PSW FOR ENTRy ••••••••• X. SVRB ON USER ••••••••• X.TRANSIENT AREA •••••
• TO TAB FROM .. • QUEUE FOR T AS • • USER COUNT *

: •• ~!:::~~:i: ••• : : .•••••••••••• *.: : ••••••••••••••• : x •••• • •
• GS. • • ••••

X
• ••• KS ••••••••• • •

• EXIT * • • .*.*.* •••••• * ••
TO DISPATCHER «IEAODS)
--CHART GG--

Chart CD.

(

Identify Routine

IGC041

****,,2********. • • * ENTRY .,
• • _ ..

• FROM SYC
.CHART AC

x .•.
B2 *.

•• I S It.

•••• *,,3*.**.**.*. • • * seT UP * ••• X_ RETURN CODE •
.. '10' .. • • SLIH. • •• _ •••••••••••••

X

*** • • • * 84 * • *

x . ..
84 *. .* IS *.

*****AS******.*** • • * SET UP *
• •• X*RETURN CODE 'C'*

* NOT FOUND *
• •

X

... CALLER •• NO •
• REPRESENTED By

III. A PRS ••

****83 •••••• * •• • • .. EXIT * • •
.* ENTRY *. NO •

.PT IN ANY MOO. •••••• *. ON LOAD ••

.***85 •• ******* • • * EXIT * • • IIC. •• ••••••••••••••• *.LIST .* ********.*****. * ••• TO EXIT ROUTINE
* YES (IGC003) -CHART GB- * •• * * YES

TO EXIT ROUTINE
(IGC003J --CHART G8--

x

.*** · ..
• C4 *.x. • • x .•. **** LEGALEP .*. IGC004 (5)

C2 *. • •••• C3* •••••• **. C4 *. *****C5***** ••••• •• *. • * CHECK *. NOT *GETMAIN OAA1*
•• IS MODULE *. NO * PREPARE FOR .. .* FOR SAME *. FOUND *-*-*-.-*-*-*-*-•

•• IN JOB PACK •••••••••• X.SEARCH OF LINk .. *.NAME IN LINK .* •••••••• X. GET SPACE FOR •
... AREA • * .PACK AREA QUEU E* ..PACK AREA.* .COE. 24 BYTES, * *..* * SP 255 * * •• 111 ••••••••••••••••• •• •• * ••••••• * ••• *** ••

.. YES *FOUND

NOMIN X
••••• 02** ••••••••

• * .. PREPARE FOR .. * SEARCH OF JOB •
.PACK AREA QUEUe_

• • -••• *.-••••••••••
. .
.x
X

••••• e2 •••••••• **
* •
.. SEARCH QUE UE •
* FOR MATCHING *
*MOO NAME IN CDE_ • • * •••••• * •••••••••

.
x .*. .*.

F2 •• F3 •• *****F4********** •• *. • •• *. • *
• * *. YES X .* IS *. NO * SET * *. NAME FOUND .* •••••••• X*. CDE A MINOR .* •••••••• X*UP RETURN CODE * •• .* *. CDE .* * lSI *

.. *..* • *
* •• * *. •• .**.***.** •• ****.

*NO • YES •••• .. .
•• X* H4 *

X •••• * *
USUAL X .•.

*** •• 62*.*** ••••• • • * SEARCH EXTENT *
*LIST OF CURRENT. * MODULE • • • •• **.*~.** ••• ***.

x .•.
H2 ••

.* *. YES •• IS ENTRY *.
••••• POINT IN ••

•• CURR MOD .* *. ••
x * ••• •• *. • • * C4 •

• NO

• • ••••
X

•••• *J2 ••• * ••••••
*VIA TASKIS LOAD •
• LIST AND ASSOC.*
.CDE'S, EXAMINE •
• EXTENT LISTS OF •
• LOAOED MODULE S * ••••••••• * •••• ***

x
***. • •

• B4 • • • ••• *

G3 *. *** •• 64 ••••••• ***
.* *. * * ... ARE •• YES * SET *

*.ENTRY POINTS •••••••••• X*UP RETURN CODE.
•• EQUAL •• *'.' * *... * ..

*. •• **.** •• * ••• *.*.* •
• NO

X

.***
• *. • H4 •• X. • •

.***

** ••• H3* •••• *.... X .. * •• **H4 •••••••••
• SET UP.. *
• RETURN CODE ••••••••• X. eXIT •
• '14 1 * * * • * •• ***** •• **** ••
•••• * ••• * ••• ****. TO EX IT ROUTINE

(IGC003) --CHART
v IA SUPERVISOR
LINKAGE (SVC 3)

GB--

X
*****05******.***
.INI TIALIZE IItI N,. * REN. SER. AND *
* NLC FIELDS or *
.CONTENTS DIRCTY*
* ENTRY (CDE) *
** ••••••••••••• *.

COMEADD X
*** •• ES***** •••• *

• * * QUEUE •
MINOR CDE BELOW
* MAJOR coe * • • ***.**.*** •••• **.

X
• •• **FS.* ••••••••
* SET UP •
* RETURN CODE •
10'. SUCCESSFUL
• COMPLETION * • •
• ****************

X
••• *65*****.*** • •

• EXIT * • • ..****.*****.**
TO EXI T ROUTI HE
(IGC003) --CHART
VI A SUPERVISOR
LINKAGE (SVC3)

G8--

Section 13: Charts 361

Chart CEo

362

Delete Routine

IGC009

****A2*.** ••• *. * •
... ENTRY '"
* •

FROM SVC SL1H
• CHART AC

X
*****e2*.*.**** •• • • ... use LOAD LIST ...
*TO FIND COE FOR'"
... MODULE NAMF. ...

• •

x .*.
C2 * • • * *. .* CDE *. NO • *. FOR NAME •••••••• *. FOUND .* *. .*

• YES

LLFOUND X
.*.*.02** •• *.* •••
... DECREMENT ...
"'RESPONSE COUNT ...
• IN LOAD LIST ...
... ELEMENT (LLE) ...

• • •• ***.* ***

x .*. E2 •• • * IS •• NO
*.RESPONSE CT = ••••••

. 0
•• • *

.. YES

CQLREMOV X
. *.***F2****** ••••

... REMOVE LLE ...

... FROM LIST AND ...

... FREE SPACE ...

... IT OCCUPIED ... • • •••••• *********** · . • x •••••••••••

X ** ••• G2** •••••• **
.OECREMENT USE/ ...
• RESP COUNT IN ...
*MA.JOR CONTENTS *
... DIReTY ENTRY ...
... COE ...
. ••• *** •• ** ••• *

x .•.
H2 *.

X
.*.*.83 ** •••• * ••• • • ... seT ...
.UP RETURN CODe ...
* '4' ... • • .* •••••••••• *.**.

it
****C3***** •• ** · . *. EXIT .. • • • *.*.******** •• TO EXIT ROUT tNE

(IGC003) -CHART GB
VIA SUPERVISOR
LI NKAGE (SVC 3)

•••• • •• *H3 •••• *.* •• • * IS •• NO. •
.USE/RESP CT O. •••••••• X. EXIT* * ••••••••• *. •• TO EXIT ROUTINE

• YES (lGC003) -CHART G8-
VI A SUPERVISOR
LINKAGE (SVC 3)

it
....... 2 ••••••••••
• CDHKEEP GFF2. .---.---.-.-.-.-.
• DETERMINE IF •
.MOD IS REUSABL.E •
• + STILL NEEDED • •••••••••••••••••

X
•••• 1('2 ••••••••• • •

• EXit • · .' •••••••••••••••

IF NO OTHER
REO'S FOR MODULE,
EI THER PURGE

~~~E~g= ~~~ONAL 
Mc:X>ULE· RELEASE 
BY GETMAIN RTN. 

TO EXIT ROUTINE 
(IGCOO3) --CHART Ge-.... 
VIA SLPERVlSOR 
LINKAGE CsVC 3) 

o 



( 

(-

(~ 

• Chart CF. Program Fetch Routine (Part 1 of 2) 

IEWFBOSY 

NOTE -- X ••••• X MEANS REPEATED 
BRAt«:HES TO SUBROUTINF.: DURING 
LOOP PRQCESSING 

*****,,2**** •••• *. • •••• "3.......... ..* .. "4 •••••••••• IEWMSEPT 

•••• Al......... "'RECEIVE PARAMS '" "'INITIALIZE 1.10 '" "'RECEIVE PARAMS '" ••• *,,5 ••••••• *. 
'" '" *INCL NOTE LIST'" ,,"CONTROL BLOCKS. '" * iNCL SUBPOQL '" '" '" 
'" ENTRY * •••••••• X. AND NUMBER * •••••••• X*CHAN PROGRAMS •• x......... [0 FOR PP .X......... ENTRY '" '" *' '" OF SEGMENT TO '" '" AND FErCH * • SPACE AND PDS '" '" '" *.*.*.* ••• ***** '" BE LOADED '" '" BUFFER TABLE '" '" ENTRY ADOR '" ••••••••••••••• 
FROM OVERLAY ••• * •••••••• *.*.* •• ** •• ***** ••• *** •••••••••••••• **. FROM LINK. LOAD 
SlJPERV ISOR . XCTL'I AND SYNCH 
(CHART CIHS) PROCESSING ROUTINE 
OR Cl.13 (CHART CA.t2) 

FT006 .0. 
BI •• 

•• IS *. 
YES •• A BLOCK OF •• 
••.••• SPACE AVAIL- .*X ••• 

x •••• 
* * * E2 • 
* • •••• 

•• ABLE •• .. .. 
* ••• * NO 

X 

X 
FTOO"" ••• 

.* •• *B2.* •• * •• *.. B3 •• 
• GET SPACE FOR. .* WAS *. 
* BLK EXT LST + * NO •• ENTRY FROM *. 
.INTLZ EXT LIST ••••• X...... OVERLAY .* 
• FROM PDS" .SUPERVISOR.* *' DIRCTY ENTRY * *... 
****.***.***** •• * X •••• 

x .*. C2 •• 
.* CAN •• 

**... *' YES 
• CH * 
• 82* . . 

* SEE NOTE 1 
x 

••••• c •••••• ** ••• 
• FREE SPACE • 
• FOR BLK EXTNT * 
• LIST. CALC SIze* 
• OF SCAT/TRANS * 

• TeL * **.***.** ••• * •• ** 

• YES •• MODULE BE *. 
** ••• C3 •• *.* •••• * 
* OBTAIN ADDR * 
* FOR MODULE * 
* AND GET TTR • • •••• ••• SCATTER- •• *. LOADED .* .. .. 

••• * 
• NO 

• OF SEGMENT • 
• FROM NOTE LIST • 
.** ••••• * •• * •• * •• 
**.. • · .. * D3 •• X. · . 

IEWFTRAN 

.***B5**** •• *** 

• * * ENTRY * • • 
..* •• ****** •• ** 

FROM TRANS AREA FETCH 
RTN (CHART AEF2) OR 
STAGE 3 EXIT EFFECTOR • 
(CHART BUD4) 

X 
• ••• *C5 •••• * ••••• 
* CONVERT • 
• RELATIVE DISK. 
* ADDRESS TO • 
* ABSOLUTE DISK. 
• ADDRESS • 
* •• *.* ••••• ** ••• * 

X IGC004(S) X IGC004(s) 
••••• 02 •••••••••• 
.GETMAIN OAAI • .-*-.-.-.-*-.-*-. 

. *.. . FTOIO X IECXCP(S) IGCOOJ( S) X IECXCP( 5) 
*.*.*01* •• * •• ** •• 
• GETMAIN DAA1. 
*-*-*-*-.-*-$-.-* 
• GET SPACE FOR * 
• SCAT EXTENT LST. 

• • •• ** •• * ••• *.*.**. 

X •• * •• El * ••••••••• 
• GET TTR OF * 
.SCAT /TRANS TEL * 
*FROM p~s D IRCTY. 
• AND READ EXCP. 
• SCAT /TRANS TBL • 
.** •• *.*** •• ***.* 

X 
* •••• F 1.*** •• ***. 
• CALCULATE * 
• LENGTH OF EXT •• 
'ilL 1ST AND PLACE. 
* IT IN EXTENT • 
* LIST • ••••••••••• ** •••• 

X 
•• *.*G 1 * •• * •••••• 
• CALC CTL SECT • 
.LENGTHS. US ING-. 
• LIST OF • 
.ORDERED ORIGINS. 
* IN SCAT LIST • •••• * •• *** •• * •••• 

X 
••••• H •• * •••••••• 
• PLACe CNT * 
• SECT LENGTHS • 
• IN EXTENT • 
• LIST • 

* * • * •• ** •• ****.***. 

*.* •• 03.* •••••• ** 
*EXCP SUPVSR *' 
*-*-.-*-*-*-*-.-* 

••••• 04**.* •• **.. ..* •• 05.******** • 
.WAIT RTN BKA1* *EXCP SPVSR. 
.-*-.-.-*-*-.-*-* *-*-*-.-*-.-*-*-* 

* OBTAIN BLOCK • • •• X. INITIATE *' *' IIIIAIT FOR *X •••••••• * INITIATE 1/0 •• * OF SPA.CE • * FOR MODULE • • **.* ••••• * •• * •• * 
* ••• 
*CF. • 

FROM * E2 .... x. 
eH F3. * .... it 

•• ***E2 •• * •• *** •• 
• GET TTR OF • 
.FIRST TEXT Reo. • 
• FROM PDS * •••••• 
• DIRECTORY • 
* ENTRY • 
• ***.*.*.** ••• *.* 

* LOADING * *1/0 COMPLET ION *. • 
* • . .. . 
..** ••• **.***.*** ••• *.** •• **...... *.**** •••• * •••• * • 

**** • · .. 
• E3 III.X. 

• * .*** X IGCOO l( So) 
.****e3.****** ••• 
.WAIT RTN BKAI* 

• •• *.ES* ••• ***.** • • • -*-.-.-*-*-*-.-* • • SET • 
*IIIAI T UNT IL I/O * • •••••••••••••••• X*COMPLETJON CODE* 
• ECB OR FETCH • 
• ECB IS POSTED * 
••• **.*.*.* ••• ** • 

x 
.*. FT017 

F3 *. * ••• *F4*.* •• * •• ** 
.*.. .RB..OCATION CGA2* 

•• ANY *. YES .-*-*-.-*-*-*-*-• 
*. RLD BUFFERS .*X ••••••• X. PERFORM * 

•• BUSY.* * RELOCATION • *... * * 
* •• * **.* •••• ****** •• * 

• NO 

x 
• *. 

* * o 0 
•• * ••• *.***.*.*.* 

X 
.**.FS ••• *.* •• * 

* * • EXIT • • • •••• * •••• *** ••• 
RETURN TO 
CALLI NG ROUTt NE 

G3 •• • •••• G4*.** •• *.*. *** •• G5 ••••••••• * 
•• ALL *. • *. RESET BUFFER * 

•• RLD *. YES .LOCATE ADDR OF * • TABLE POI NTER * 
*. BUFFERS EMPTy •••••••••• X. EMPTY RLD BFR * •••••••• X* • 

•• •• • AND CHAN PROG • .RESET CHAN PROG* 
*... * • * FOR RESTART • 

•• •• • ••••••• * •• ** ••• * •• *.* •••••••• ** •• 
* NO 

x 
x .•. 

**.*.H2* •• **.***. H3 •• 

••• * • • * 03 • * • 
• CHECK IF ALL • • * *. 
• I/O HAS BEEN. YES.. ENTIRE •• NO 
• COMPLETED - *X •••••••••• SEG OR MOO •••••• 
• IF NOT, WAIT • •• LOADED •• • * *... •• * •• ** •••• *.**.. • ••• • x * ••• 

* * • E3 * 
* * •••• 

•• ** 

RETURN 
TO OVERLAY SUPYSR 
(CHART CI.J3 OR CIH5) 
OR CONTENTS SUPVSN 
(CHART CAA.5) 

X IGC004(St 
it 

••• FT027 
•• ***.1 1 ********** 
• GETMAIN DAA1. *-$-$-.-.-.-*-.-* 
• GET NEEDED • 
• STORAGE AREAS * 
• FOR MODULE • 
*.* •• **** •••• * ••• 

•••• • CF. • 
FROM. Kl •• X. 
eH FS. * •••• X 

.t2 •• ..***.13 ••• ***.** • 
•• IS •• * COMPUTE • 

• * NODULE *. YES * RELOCATION • 
•• BEING SCATTER •••••••••• X* FACTOR FOR * 

•• LOADED •• • ENTRY POI NT * .... . . .. .. ..* ..... * •••••••• 
* NO 
• **.* 
• * • •• x* K4 • 

* * •• * • 

• ••• 
* * • K4 * • • •• * • 

• ••• .15 •••• ** ••• 

• * • EXIT • 
* * • •••••• * •••••• * 

x 

..•.. K I.......... • .... K2 •••••••••• 

.FROM ALLOC ADDR*. • 
• GET MAIN AND. • PLACE RELOC '0 * 

* •••• K3.~ ••• *!~~~05(S) •••• *K •• !.*...... . .... K5 •••••••• *. 
.FREEMAIN DBAI.. *. FOR ANY TYPE '" 
*-*-*-.-.-.-*-*-. • SET SEGTAB * *1400. SET CDMPL * 

*SCAT 'TRANS TBL. * .......... X*CONT SECT ADDRS ••••• 
*CALC EACH CONT * *IN SCATTER LIST. 
• seCT ADDRESS •• • ••••••••••••••••• * ••• * ••••••••••• * x •• *. 

* * • E2 • 
* • •••• 

* FREE ••••••••• X. IF OVERLAY ••••••••• X.CODE. CALCULA.TE. 
• SCATTER/TRANS • • MODULE '" '" RELOC ENTRY • 
* TABLE SPACE *. •• POINT ADDR • 
••• ** ••• *........ • •••••••• ** ••• *.. • ••• ** •••• * •••••• 

NOTE I - THIS eXIT APPLIES 
ONL Y TO SYSTEMS 'l1li TH 
STORAGE HIERARCHIES 

Section 13: Charts 363 



Chart CG. Program Fetch Routine (Part 2 of 2) 

RELOCATION SUBROUTINE SEE CFF4 

FT017 
••••• A 1 •••••••••• 
.. GET LOCAT ION .. • ...... 2** ••• **** 
.. IN BUFFER OF .... .. * PTR TO FIRST .x......... ENTRY .. 
.RLO ITEM TO BE .... .. 
.. RELOCATED lie •••• * •••••••••• 
******* ••• *.***** 

x 
• 0. 

FROM PROGRAM FETCH RTN 
CHART CFF3 

Bt *. .****82**.******* 
•• IS *. *ao SCATTER· LI ST_ 

•• MODULE •• YES .. TBL LOOKUP TO .. 
•• X*BEING SCATTER-.* •••••••• X*OBTAIN R-RELOC .. *. LOADED .11' • FACTOR AND P- .. 

:tI..'II .. RELOC FACTOR .. 

***. o • 
* •• * ** •••• *.*.**.* •• * o NO 

.. 8t .. 
o • 
**** x X 

*****Cl.***.* •• *. *****C2********** 
,.. STORE BLOCK .. .OBTAIN POINTER .. 
• RELOCAT ION *- *TO AODR CON TO .. 
.. FACTOR AS R+P * •••••••• X*BE ADJUSTED AND. 
.. RELOCAT ION" .. AOD p- .. 
.. FACTORS" .RELOCATION FAC .. 
** •••• *********** •• *.***.**.****.* 

X 
* •• **02****.** •• * 
*USING RELOCATED* 
* ·POINTERS TO • 
• AODR CONSTANT •• 
*OBTAIN VALUE OF. 
* AD DR CONSTANT * 
.******.**.****** 

x 
••••• E2* •• **** ••• * ADO R-RELOC .. 
.FACTOR TO AOOR • 
*CONSTANT VALUE * 
• ANO STORE .USING* 
*RELOCA TED PNTR .. 
***************** 

x .•. 
*****F 1 ***.****.* F2 •• 
* * .* *. * INDEX POINTER * NO.* END OF *. 

••• * TO NEXT RLD *X •••••••• *. THIS RLD .* 
* ITEM IN. •• BUFFER •• 

• * aU~FER. *..* 
X ***************** * •• * 

**** * YES 
o 0 
• a1 * o 0 .... 

364 

X 
****G2********* o • 

* EXIT * 
o 0 

*************** 

TO PROGRAM FETCH 
ROUTINE CHART CFF3 

PC I APPENDAGE ROUT tNE 

FTPCI01 
*****A4***.*.*.** 

****A3*****.*** .. GET • 
• • * BUFFER TABLE * 
* ENTRY * •••••••• X. POINTER AND • 
.. *. LOAD TABLE * 

*.**.*.******** * ENTRY • 
* •• ** •••• ******** 

FROM I/O SUPERVISOR 
(IEeINT) 

ENTERED 
WHEN PROGRAM
CONTROLLED INTER
RUPTION OCCURS. 

x 
.0 • 

B4 *. *****85********** 
.* *. • * .* IS *. YES * SET BUSV FLAG * 

*. NEXT BUFFER .* •••••••• X*IN ALL BUFFERS * *. BUSY _* • * 
*..* • * 

* •• * •••• * •••••••• ***. 
o NO 

..** 
• 0 • 
•• x* E4. • 

• 0 
X **** .*. .*. 

C3 •• C4 *. .***.cs****** ••• * • * *. .* DOES •• * * 
NO.. ENTIRE *. NO .* RLD BUFF *. YES *INITIALIZE NEXT* 

• ••• *. SEG OR MOD .*X •••••••• *.HAVE CONTROL .* •••••••• x* CHAN PROG TO * 
*. LOADED .* *. INFO.* * READ TEXT .. 

*. • * ...* * RECORD * 
•• •• * •• * ******.****** •• ** 

* YES * 

X 
*****03*****.**** 
* 0 
• SET • * APPROPRIATE * •••••••••••••••••• 

X 
*****05********** 
*AL TER THI S CHAN* 
*PRaG TO TI C TO * 
*NE XT CHAN PROG * 
* Ta READ TEXT * 
.. RECORD • 
***~ ... *********** 

* END FLAG * 
o 0 
****** •• ********* 

****.E3* ••• ****** 
• INITIALIZE * • * NEXT CHAN * 

• _. X* PROG TO READ • 
* RLD RECORD * 
* • 
***************.* 

x 
****.F3.*****.*.* 
.. ALTER THIS * 
* CHAN PROG TO * * TIC TO NEXT * * CHAN PROG TO * * READ RLD REC • 
******.*****.*.** 

FTCEOI 

**** •• * •• x. E4 * 
o • 
* •• * 

**** o o. * E4 *.x_ 
• o. **** • 

FTPCI03 X IGC002+6 X 
***.*E4********** *****ES*.* •• **.** 
*POST RTN BMFI* * IF * 
.-*-*-*-.-.-.-*-* • NEXT TEXT * 

•• x. POST .X ••••••••• REeORO IS LAST.* 
* FETCH ECB. * RE SET CC FLAG .. 
.. COMPLETE * * * 

• •• * •••• **.****.** *.**.****.***.*** 
•• ** o 0 

* E4 * o 0 

**** 

X 
.** •• F4*.*****.** 
• SET CHAN PROG * 
.. REST ART CCW • 
o • 
.. MOVE NEW * 
* CCHHR TO lOB * 
***.********.**** 

X 
****G4********* o 0 * EXIT * RETURN TO I/O • * SlPERVI SOR 
••• ********.*** 

CHANNEL END APPENDAGE ROUTINE 

.0. 
H4 *. 

****H3**** •• *** .* ENTRY *. ..**HS******.** * * .* DUE TO *. NO * .. 
• ENTRY * •••••••• X.. FETCH I/O .* •••••••• X. EXIT * 
* * *.OPERAT ION.* * ..... * 

**** ••• * •• *.**. ...* *****.********* 

FROM I/O 
SUPERVISOR 
(IEeINT) 

* ••• 
* YES 

" .0. 
J4 * • 

RETURN TO I/O 
SUPERVISOR 

• *.. ***.JS********* .* ALL •• YES * * 
*.BUFFERS FULL .* •••••••• X. EXIT * 

•• .* • * 
*..* .***********.*. * •• * * NO RETURN TO I/O 

SUPERVISOR 

x .0. K. *. 
*.**K3****.**** .*.. ****KS*******.* 

* RETURN TO * NO.* ENTIRE *. YES * * 
*IOS TO REST ART !loX •••••••• *. SEG OR MOD •••••••••• X*- EXt T • 
* CHAN PROG. *. LOADED .* * * 

*********** •• ** *..* **** •••• *.****. * •• * * RETURN TO I/O 
SUPERVISOR 

(0 
'"L/ 



• Chart CH. 

( 

( 

(" 

program Fetch Routine (Main storage Hierarchies) 

***** *Cl-t * * 83* 

* * * 
x .*. IGC004(S) 

83 *. *****84********** .* *. *GETMAIN * *.*'* 
.*CAN MODULE *. NO *-*-*-*-*-*-*-*-* * * *. BE •••••••••• X* OBTAIN SPACE ••••• X. F3 * 
SCATTER-LOADED *FROM SPECIFIED. * • 

...111 * HIERARCHY * **** * •• * ••• ************** * YES 

.*. C3 •• *****e4** •• *****_ .* DID *. .GET TTR OF SCAT. 
•• CALLER *. NO .TRANS TBL FROM * 

*. SPECIFY A •••••••••• X* PDS DIRECTORY * 
•• HIERARCHY._ .ANO REAO (EXCP)_ 
*..* _SCAT/TRANS TSLC. 

* •• * ••• ****.*.******* • YES 

x _*_ IGC004(S) 
04 *. *****05.**.*.**** .* *. *GETMAIN * 

• YES _.ALL CSECTS *. NO *-*-*-*-*-.-*-*-* .x •••••••••••••••••• FLAGGED FOR .* •••••••• X* GET SPACE * 
SAVE HIERARCHY X * FOR SCATTER * 

*..* * EXTENT LIST * * •• * ***************** 
* 

x 
.*. 

E3 *. 
• * IS A *. .* BLOCK OF *. NO • 

x 
*****ES********* • 
*CALCULATE CSECT* 
* LENGTHS USING * 
*LIST OF ORDERED* * ORIGINS IN * * SCATTER LIST * 
***************** 

*. SPACE .* ••••.•••••••.•••••••••••••••••••• 
*.AVAILABLE.* 

*. .* *. •• 
* YES 

**** * *. * F3 *.X. 
* * **** X IGCOO4.(S) 
*****F3********** 
*GETMAtN * 
*-*-*-*-*-*-*-*-* 

x IGC004(S) 

* GET SPACE * * FOR BLOCK * 
* EXTENT LIST * 
***************** 

x 
***** *CF * * E2* 

* * * 

*****F5********** *GETMAIN * 
*-*-*-*-*-*-*-*-* * GET SPACE IN * * EACH REQUIRED * 
* HIERARCHY * 
***************** 

x 
***** 
*CF * * Kl* 
* * * 

Section 13: Charts 365 



Chart CI. Overlay supervisor 

NOTE -- x •••••• X MEANS REPEATED 
BRANCHES TO SUB ROUT tNE 
DURING LOOP PROCESSING 

]GC045 
••• **11.3*** ••••••• 

****A2***.* ••• * .. .. 
.. .... SET .. 
.. ENTRy ••••••••• x* BRANCH/CALL .. 
.. .... ] NDICATOR • ••••••••••••••• * .. 

FROM SVC SLIH 
.... CHART AC- WHEN 
BRANCH INSTRUCTION 
OR CAL.L MACRO 
tNSTRUC liON [5 ISSUED 

***.****** ••• **** 

***. • • 
• A4 *' · . **.* 

x .•. 
"4 * • .* *'. ****AS**.**** •• .* 15 *. yes *' * 

•• ERROR CODE .* •••••••• X* EXIT * 
*. SET.* • *' 
•••• ** ••••• *******. 

* •• * TO ASEND ROUTI NE 
• NO (lGCOOOlC) VIA 

SUPERVISOR 
LINKAGE CHART HI 

]GCQ37 IEWSLIO X x 
*****B2*** ••• **** *****83.* ••••• *.* ••••• S4 •••••••••• 

• ***SI.*.*.**** .. SET lNOQ FOR .. .. EXTRACT "DDR .. • * •••• BS •••• * •••• 
.. .... SEGLO ISEGWT. .. .. OF CURR SVRB. .. * RESTORE. '" • 
• ENTRY ••••••••• X. CHK IF ADeON ••••••••• X_ADDR Of SEGTAB,* *' REG[STERS * •••••••• X* EXIT * .. *' .ENTRY IN ENTAB _ENTRY III AND NUMBER OF .. * • '" • ••• ******.*.**. .. IS COMPLETE .COMPLETE" REQ' 0 SEGMENT .. • * .***.* ••••• * ••• 

FROM SVC SL 1H 
-CHART AC- WHEN 
SEGLD OR SEGWT 
MACRO INSTRUCT ION 
IS ISSUED 

••••••••••••••••• • ••••• 111 •••••••• _. 
.ENTRY NOT 
.COMPLETE 

:TO EXIT RTN (IGC003) 
XCHART GB .L 

****C2*** •• *.** .1 

• * .N *' eXIT * .K • • 

****.*** •••• ***** TO EXIT ROUT[NE 
([GC003) --CHART GS--

• ***.**** •• *... IGC037 RESIDENT OVERLAY SUPERVISOR MODULE 
••••••••••••••••••••••••••••••••••••••••••••••••••• ie:WSZOYR· ••• NoN!.RES iDE-NT· OVERLAY· .sUPERVi SOR· MODULE······· ••••••••••••• 

••• * · . • D5 * ••• 
X *' ••• * * • • *. OYRL58 X 

****.02*****.**** 03 •• *.*.*05* •• *** •••• 
R .RETURN IF THIS * •• IS •• *' IF PROGRAM • 
E * SEG I S BEl NG * NO • *' REQUESTED *. YES *UNOER TEST SET * 
T •••• LOADED AND THIS*X •••••••• *. SEGMENT IN .* •••••••••••••••• X •••••••••••••••••• *UP AND LINK TO • 
U. • REQUEST IS A • •• MAIN .* * TESTRAN • 
R.. SEGLD * •• STG .* *' INTERPRETER • 
NX •• * ••• * ••• *...... *. •• • •• **.* •••••••••• 
*.*. * RXL 

• • E.I * Allo • T.N 
• • ~K 

**** R. 

;. X ~ 
OVRL60 .*. X 

•••• *E2***.****** • • * IF A SEGLD * 
*15 IN PROGRESs...* 

E4 *. *.E5** ••• ** .* WHAT *. SEGLDI' * * 
.* WAS CAUSE *. SEGWT * TESTRAN .. 

*. OF ENTRy...... .. INTERPRETER * 
.. WAIT * *. .* *' I EGHTDVL .. • • 
• **** ••••• **** •• * *. * •• *.. x * *******.*** .. 

CALLI' BRANCH * **** 

X 
OVERLAY *****F2*******.** 
•• ** *' CHECK SEGWT • * * * REQ TO SEE IF * 

X 
* •• **FlIo •• *.*** ••• 
* UPDATE ENTAB • 
* HIERARCH INFO * 

• • * A4 * • • • *** 

* J 1 .x ••••• REQt,ESTED SEG • 
.. * • WILL OVERLAY * 

.IF REGIONS THE * •••• 
• SAME OR ENTAB • 

•• ** *REQUESTI NG SEG * 
••• * ••••• ***.* •• * 

• NOT OVERLAY 

• IN ROOT SEG • 
* •••••• * ••••••• ** 

••••••••••••••••••••••••• x.x ••••••••••••••••••••••••••••••••••••••••••••••••••• 
X 

**.**GI *****.**** OVRL30 G2 .*. *. G3··· *. *****GlIo*****.***. 
* RESET SEGTAB * •• ANY *. .* OTHER •• *MARK SEGTAB ENT. 
*5TAT INDRS FOR * YES.* TABLE *. NO •• SEGS TO *. YES *SUBSTITUTE NO ... 
*OVRLD SEGS AND .x •••••••• *.ENTRIES TO BE •••••••••• X*.BE MARKED FOR.* •••••••• x* OF PREY SEG * 
* ENTAB ENTRIES. *. RESET .* •• L.OADING •• • FOR VALUE OF • 
• IN CALLER CHN * *..* *... . L.AST SEG • 
.** ••• *** •••• **.. • •• * *. •• *****.* ••• ** •• **. 

x • * NO 

x 
* •• * • • * A4 * · . • ** • 

oVLALD02 
SEGLD PRoCE SSOR RTN 

** •• G5 •••• *.*** 
* • 
• ENTRY • * • 
.*** •••• * •••• ** 

FROM 
• OISPATCHER 
• CHART GG ... 

aVRL80 X IEAOVLOO 
X 

OVLALDOI ••• I EWFBOSV X 

366 

* ••• *HI •••• * ••• ** 
• VAL 10. CHIC. RTN • 
--*-.-*-*-$-*-.-* 
.. COMPUTE AND * 
* VALIDATE ADDR • 
• OF' SEGT A8 ENT • 
••• **.* •• * ••• **.* 

*.** · .. * JI *.x. • • ••• * X 
••• * • ., I •• *.***.*. 
• • • SET ERROR CODE * 
• IF NECESSARY • • • • • • * •••••••••••• * •• 

i * ••• • • * A4 * • • * ••• 

• **.*H2.......... H3 •• 
• GET SPACE FOR. .* •• 
.PROG FETCH RTN,. YES •• •• 
*IDENTIFY ENTRY .X •••••••••• SEGLD REQUEST.* 
*POINT OF SEGLO • •• •• 
• PROCE SSOR • •••• 
•• *.*.*.* ••• *.*** *. • * 

• NO 

X IG042(5) X 
•••• *J2 ••••• ** ••• 
.ATTACH RTM BAAI* 
• -*-*-*-*-.-*-*-* 
• ATTACH • 
.SEGLD PROCESSOR* * OYLALD 02 • * •••••••• * ••• *.** 

ic • * •• 
* • 
• A4 * • • 

**** 

* •••• J3* •• *** •••• 
* SCAN • 
* SEGT AB AND • 

••• *REQUEST LOADING. 
• CF MARKED * 

• • SEGMENTS • 
X .* •••••• ** •••• * •• •• *. x * • * D5 * • • •••• 

X lEWFBOSV 
** •• *K3*.** ••• * •• 
*PROG FETCH CFA1* *-.-.-*-.-$-.-.-. 
• LOAD REQUESTED * 
• SEGMENTS • 
* • *** ••• * •••• * •• *** 

* ••• *H".*.**.* •• * •••• *HS* ••••• * •• * 
.PROG FETCH CFAI* • SCAN * 
.-.-*-.-*-.-*-*-* * $EGTAB AND • 
.LoAD REQUESTED *x ........ X*REQUEST LOADING" 
* SEGMENTS * * OF MARKED • 
* * * SEGMENTS * 
**:1<* ••• *******.** .*.****** •• ** •• ** 

LOADING • 
COMPLETE. 

IGC002( S) X IGCOOS(S) 
• •• **J"*.* ••• ***. ** ..... 5 ••• ******. 
.POST RTN BMA2* *FREEMAIN DBAI* 
*-.-.-*-*-*-.-*-* .-.-.-.-.-*-*-.-* 
• POST LOADING .X •••••••• *FREE FETCH WORK* 
., COMPLETE * • SPACE • 

* * * * • ••• *.* ••••••••• * •••• * ••••• * •••••• 

••• *KS* •• *.* ••• • • ••••••••••••••••• X. EXIT ., • • • •••• *** •• * ••• * 
TO EXI T ROUT! fIE 
(JGC003) --CHART 68-
VIA SUPERVISOR 
LINKAGE (SVC 3) 

{) 

c 



( "" 

~,y: 

(-

• Chart DA. GETMAIN/FREEMAIN Routine 

IGeoo", 

***.A 1********. · . .. ENTRY .. 

* • 
*************** 

.. FROM SVC FL IH 

.. (CHART AA) 

GMBRANCH 

****A2********. * • 
.. ENTRY .. . . 
*************** 

ERANCH 
E.NTRY 

IGC010 

****A3********* · . .. ENTRY .. · . *************** 
: FROM SVC FL IH 
.. (CHART A.A) 

RMBRANCH 

****A4********* · . • ENTRY ,.. · . *************** 
BRANCH 
ENTRY 

IG(005 

****A5********* · . '" ENTRY ,.. · . _.** .... "' ..... . 
.FROM SVC FLIH 
.. (CHART AA) 

. . 
• x ......................... .. 

. . 
.x ••••••••••••••••••••••••• 

X 
*****81********** · . .. ANALYZE .. 

X 
*****83*********_ 
*REGMAIN * 

GETMAIN *-*-*-*-*-*-*-*-* 
.PARAMETER LIST .. • ••••••••••••••••••••••••••••••• * ANALYZE * 
* • · . ***************** . . 

.x ••••••••••• 

.INPUT REGISTERS. 

• * ***************** .. FREEMAIN 

FMBRANCH X 
*****85********** 

****84********* * * 
* * * ANALYZE * 
* ENTRY * •••••••• X*PARAMETER LIST * 
* * * OR INPUT * 

*************** * REGISTERS * 
*****.*********1c* 

BRANCH ENTRY 

. . 
•• ....... ••••••••• ...................................... x. 

x 
*****c I ******"''''** 
*CSPCHK * 
*-*-*-*-*-*-*-*-* 
*LOCATE SUBPOOL * 
'" QUEUE ELEMENT * * (SPQE) * 
***************** 

x .•. 
01 *. 

• * *. ****02********* 
.* *. YES * * 

*. REQUEST FOR .* •••••••• X* EXIT * 
*. REGION .* * * 
*..* *************** 

* •• * * NO TO GETPART/FREEPART 
(IEAQPR) 
-CHART DB-

x 

****03********* 
* PLACE * 
* CPU INTO WAIT * 
* STATE * 

*************** 
x 

.*. .*. 
E 1 *. *****E2 ********** E3 *. 

.* *. *GFRECORE *SPACE NOT .*CAN sa *. 
.* REQUEST *. YES *-*-*-*-*-*-*-*-*AVAILABLE.* AREA BE *. 

*.FOR SPACE IN .* ......... X* SEARCH sa ••••••••• x*. eXPANDED IF .* 
*. sa AREA .. * * AREA FOR FREE * *.NECESSARY.* 
*..* * SPACE * *..* 

* •• * ***************** * •• * 
* NO • SPACE * YES 

**** • • AVAILABLE · .. * FI *.X. 

• * 
.X ••••••••••• 

**** 
X 

*****F3***.****** 
* • 

X 
*****FI********** 
*GFRECORE * 
*-*-*-*-*-*-*-*-* 
• SEARCH • 
• SUBPOOL FOR * 
• FREE AREA * 
•• **.************ 

X 
*****F2********** 
*GBLDAOE * 
*-*-*-*-*-*-*-*-* 
* BUILD AQE FOR * 
*ALLOCA TED ARE' A * 
* IF NECESSARY * 
***************** 

• * EXPAND SQ * 
•••••• *AREA TO SAT ISFv* 

, .*. 

**** • * • 
•• x* HI * * • 

**** 

'" REOUEST * · . ***************** 

GI *. *****G2********** *****G3********** 
.* *. *G2KSRCH * *GOQEBLD * 

.* FREE * .. NO *-*-*-*-*-*-*-*-*SPACE *-*-*-*-*-*-*-*-* 
•• AREA FOUND ............ X* LOCATF 2K * ........... X* BUILD * 

*. .* * BLOCKS TO *AVAIL *DOE FOR BLOCKS * 
*..* * SATISFY REO * * * 

* •• * ***************** ***********.***** 

**** 
* YES NO SPACE 

AVAIL · .. * HI *.X. · .. 
**** X 

***.*HI ******.*** 
*GFOEOPDT * 
*-*-*-*-*-*-$-*-* 
* BU ILD ELEMENT • 
* FOR REMAINING * 
* FREE AREA * 
************* ••• * 

it 
• *. 

H2 *. ... *. 
• *FIRST ENTRY*. NO 

*. TO CDPURGE • * •••• 
*. RTN FOR .* 

*. REQ .* 
* •• * * YES 

x x 
:****.1 l*********:PROGRAM (S I:C;p~~~~··*·"'***: 
* PREPARE "PURGED *-*-*-*-*-*-*-.-* 
* OUTPUT '" .... *PURGE PROGRAMS '" 
• INFORMATION * • .NO LONGER NEED-* 

:***************: x :;~*!r*~2~*¥n~e*: • 
**** • NO PROGRAMS 

* * • TO PURGE • * FI * .X ••••••••••• 
• * 

GSeSK x 
*****H3********** 
* • * SET STORAGE * 
* KE"YS OF '" 
* ASSIGNED 2K '" 
* BLOCKS • 
***************** 

X 
*****.13********** 
• GET * * STORAGE TO BE * 
*ALLOCATED FROM * 
* ASSIGNED 2K * 
* BLOCKS * 
****.************ 

.. **** .. . 
•• X* HI • 

.*** X * ****. 

it 
***.*C5********** 
*CSPCHK * 
*-*-*-*-*-*-*-*-* 
*LOCATE SUBPOOL * 
* QUEUE ELEMENT * 
* (SPOE) * 
***************** 

it 
." 

05 *. 
****04********* • * * • 

* * YES.* REQUEST *. 
* eXIT *X •••••••• *. TO FREE .* 
* * *. REGION .* 

*************** *..* 
* •• * TO GETPARTI'FREEPART * NO 

(IEAOPR) 
-CHART DB-

FADUDQE X 
*****E5********** * FINO * 
* DESCRIPTOR * 
* QUEUE ELEMENT * 
* (DQE) FOR AREA * 
* TO BE FREED * 
*.*************** 

X 
FCOMMON4 .*. 

*****F4********** F5 *. 
* REMOVE * .* IS *. 
*ALLOCATED QUEUE. YE'S.* AREA *. 
• ELEMENT (AQE) .x •••••••• *.OESCRIBEO BY .* 
* FOR AREA FROM. *. AN AQE .* 
* AOE ~UEUE * *.. * 
***.********** •• * *. • * 

• NO 

. . 
• •••••••••••••••• : •••••••• X. 

FRECOMBN X 
*****G5 ********** 
*AOD FREE QUEUE * 
* ELEMENT (FOE) * 
*FOR AREA TO F,)E* 
*QUEUE I COMBI NE * 
* FOE'S IF POSS * 
**************.** 

x .* . 
H5 *. 

* •• *H4.******** •• ANY 2K *. 
* * NO.* BLOCKS * • 
* EXIT *X •••••••• *.CONTAINEO IN .* 
* * X *.FREE AREA •• 

*************** *.. * 
* ... * TO TYPE 1 EXIT * YES 

ROUTINE (IEAOXEOOJ 
-CHART GA-
OR TO CALLER 

****.14********* · . * EXIT * · . ***********.*** x 
TO TYPE I 

X 
*****",,5********** 
* REMOVE 2K * 
* BLOCKS FROM * 
* SUB POOL • SET * 
• STOR KEYS OF * 
*FRE BLKS TO SUP. 
***************** 

EXIT RTN • • 
-CHART GA- ••••• : .......... . 

X K2· *. *. K3 .*. *. *****K4**.*.***** 
****KI********* · . * EXIT * • • 
*************** 

.* *. ..*15 TASK*. *SCHEDRO * 
.* IS RO/RI *. YES •• ELIGIBLE TO*. YES *-*-*-*-*-*-*-*-* 

*. DATA seT .* •••••••• X*.CAUSE ROLLOUT.* •••••••• X* 
*. OPENED .. * *. .* * SCHEDULE 

*. • * *..* * ROLLOUT * 
* •• * *. .* * •• ************** 

• NO * NO 

****K5********* · . ••• :X* EXIT * • • ********-*** ••• 

TO TYPE I EXIT 
ROUTINE (IEAOXEOO) 
-CHART GA-

.. . TO ABTERN 
ROUTI NE 
(JEAOABOI ) 
-CHART HE-

••••••••••••••••••••••••• X .......................................... . 
OR TO CALLER 

Section 13: Charts 367 



Form Y28-6659-3 Page Revised by TNL Y27-7190 4/28/69 

• Chart DB. GETPART/FREEPART Routine (Part 1 of 2) 

NOTE - SHADED AREA APPLIE:S ONLY 
TO MULTIPROCESSING SYSTEMS 

I EAQPR 

****Al********* 
• > ENTRY * 

* 
.. FROM 
.. GETttlAIN/FREE"'AIN 
.. -CHART DA-

X 
PART ••• 

81 *. .. . . 
•• REQ FOR S. *. YES *. P. 24b- .* ........ .. 

*.FREE/GET .* X 
*.EXCH .* ***** * •• * *DBa • 

.. NO * A2* 
> > 
* 

X 
CKSVCBYT .*. .*. 

Cl *. C2 * . • * *. .* *. 
•• LIST *.NO (RE"GISTER* *. YES *. FORM (SVC4) •••••••••• x.. FREEPART •••••••••• 

5VC4 

*. .* FROM) *. REQUEST .* x 
*..* *..* ***** *oo .* * •• * *osa • 

.. YES * NO .. A2* 

.0. 
01 *. 

**** 
*DB * • * 02 *.X. 

:**. * x 
* * . 

NOSETI .*. INITWAIT 
02 *. *****03********** 

.* *. .* *. * seT '" ****04********* .*. *. NO .* ENOUGH "'. N'J '" INITIATOR * * '" *. WAIT SWITCH .* ..... *. 50S TO INIT .o* •••••••• X* WAITING FOR "' •••••••• X* EXIT * 
*. ON .. " *.JOB STEP .* X * SYSTEM QUeUE '" '" * 

*. *..* * «sa) SPACE * *************** * •• * * •• * • *****"'*********** 
.. YES * YES **** **** 

* * * '" * 03 * .o ••• E3 * 
RETURN TO 
HIGHEST PRI'1RITy 
READY TASK 

CKTCB 
x 

." El *. .* •. 
NO •• 15 *. 

••••• INITIATOR .* 

x 
**** · . * 03 .. · . **** 

TCBOK 

*. WAITING .* 
*. .* * •• * * YES . . 

.x ........... .. 

j( 
• >. 

Ft *. • * •• 
NO.* ELEMENT *. 

••••• REQUEST .* 
*oo .* *. .* * •• * x 

**"'''' .. YES · . 
'" K2 '" · . ***'" 

X 
*****GI******* 
'" SC:T ONE * 
* DONE SWTCH * 
*-INDICATE THAT * 
'" STORAGE IS '" 
'" ASS IGNEO '" 
"''''''''''*****'''**'''* 

***'" .' > .<ox'" 02 '" 
• > 

C.OMRTNO .*. 
HI "'. .* "'. 

NO • '" EXCH REG. *. 
••• *.RO/RI REG. QR.*X ••• 

*.WAIT NOT .* 

x 
**** · . * KI * · . **** 

*. ON .* * •• * * YES 

DISPINIT X 
*"'***J I ***"'***"'*'" * SET '" 

* * * * 
x j( ***'" 

CKPQEFND .*. RETURN08 .*.o RTN08 
E2 *. E3 * .. 

.* *. .* ANY *. ****E4****"'**** 
.* REQ FOR *. YES .*STOR. ASS. *. NO * * 

*. MORE:. SPACE .* •••••••• X*. -ONE DONE .* •••••••• x* EXIT * 
*. THAN.* X *. SWTCH ON .'" '" * 

*.AVAIL.* *..* *************** 
* •• * *.o .* 

* NO * YES R"'"TUI-lN TO 
CALLER. RETUR1'~ 
CODE =O~ 

X 
*****F2****"'***** 
*FBQSRCH '" 
*-"'-*-*-*-*-*-*-* 
* "'"IND ADOR * 
*OF FIRST AVAIL * 
* BLOCK * 
*******"'********* 

**** 
> *. * G2 *.X. · . **** • 

COREOK X 
*****G2********** · . .. dUILD PQE. .. 
*ADJ UST PQE AND .. 
.. FBQE POINTERS '" · . ***************** 

GET252 X RMBRANCH 
*****H2********** 
*GETMAIN DAA 1* 
*-*-*-*-*-*-*-*-* 
* GET 8 BYTES '" 
* IN SP 252 IF * 
'" NECESSARY * 
***************** 

j( .*. 
J2 *. .* *. 

j( .•. 
F3 *. 

.* * • .* *. NO 
.. ROLLOUT/ROLLIN .......... . 

*. REQUEST .* X 
....* ***** 

* •• * *DBa* 
.. YES '" A2* 

**** • '" '" * *. * * G3 *.X. 
> '. 

• **** X 
.RTN04 .*. 

G3 *. .* *. "'*** 
.* *. NO * '" 

*. CONDIT IONAL ."' •••• X* 03 '" 
*. REaUEST .* * * 
*..* **** 

* •• * 
* YES 

FBUELOOP • *. 
X 

****H3********* . . 
* EXI T * . . 

*********** .. *** 

RETURN TO 
USER - RET 
CODE =04 

:GETSPEC .*. 
J3 *. 

• .* *. 

H4 *. 
.* *. .* IS SPE'C. NO 

• •• x*. STOR ADOR .* •..•.. *. AVAIL .* 
*. .* * •• * * Yf:S 

x 
SRTN04 .>. 

J5 *. 
.* *. 

* INITIATORS '" • YES.* *. • NO • '" *. YES • 

X 
*****J4*********'" . . * ASSIGN AREA .. 
"'TO TASK .. ADJUST'" 

NO • * ANY STaR *. 
* \tIAITING FOR ,.. 
* REGION '" 
* DISPATCHABLE '" 
*"''''************** 

**** 
*DS * • * Kl *. x. · . *"'** 

RTNOO 
X 

****Kl ********* · . * EXIT * · . 

368 

*************** 

RETURN TO 
CALLER - RET 
CODE = 00 
REG SATISFIED 

•••••• *. END OF LIST .* •••• *.VALIO REQUEST.* •••••• 
*. .* *. ADOR .* *. ..* *. .'" * .... * •. * > NO > 

"''''** x 
*OB * • 
* K2 *.X. 
> • 
**** • • YES 

GPART X .*. 
**"'**K2********** K3 *. 
* SET ONE DONE * .* *. * Sill. GET NEXT '" .* SPECIFIC *. 
."DOR REQ. ENTRY* ......... X*. AOD!;1:ESS .o* 
* IN LIST.. * *. REQUEST .* * DETEPM. HIER. * *..* 
***************** *.o .* 

• NO 

x 
**** . . 

* 02 .. . . 
**** 

'" FBaES '" • > 
*"'*************** 

x 
**** 

* > * G2 * 
> * 

**** 

• •• *. ASSIGNED -ONE.* 
DONE SWTCH ON , 

**** 
> • 
* G3 * . . 

*. .* * •• * .. YES 

x .>. 
K!'i *. 

.* *. 
YES .* *. 
•••• ROLLOUT /ROLL IN •• 

x 
**** 

> • 
* G3 * . . 

... REQ ... 

*. .* * •• * * NO 

x 
***** 
*DBa* 
* 102* 
> • . c 



(-

(~ 

Form Y28-6659-3 Page Added by TNL Y27-7190 4/28/69 

• Chart DBa. GETPART/FREEPART Routine (Part 2 of 2) 

NOTE - SHADED AREA APPLIES ONLY TO ***** 
MULTIPROCESSING SYSTEMS *OBa* 

* A2* 
* • 
* 

FREE PART X 
*****A2********** 
*CDPURGE * 
*-*-*-*-*-*-*-*-* 
* • • • • • 
***************** 

.'. B2 *. *****83********** • * *. *STAGE 2 EXIT EF* 
• * ANY *. YES *-*-*-*-*-*-*-*-* 

*ROLLOUT/ROLLIN.* •••••••• X* SCHEDULE * 
*. REQ..* *IRB FOR ROLLOUT. *..* ,.. ,.. 

* •• * ***************** 
• ~O 

· . • X ••••••• e._ •••••••••••••••• 
X 

SETINIT .*. 
C2 *. *****C3********** .* *. *TASK SWITCH * .* *. YES *-*-*-*-*-*-*-*-* *. WAIT SWITCH .* •.•.•..• X* SET WAI T OFF ,.. 

*. ON.* *tN Tee. SEE IF * *..* ,.. TASK SW ~EQ * 
* •• * "'* *"'.'" *"'*.'" "'**"'** 

• NO 

· . • x ............................ . 
OISPINIT X 

*****02********** 
* SET * 
'" INITIATORS * * WAITING FOR A * * PEG ION * 
'" OJ SPATCHA8LE * 
**"'***"''''*'''******* 

SUBPOLCI< X 
*****E2********** * • * GET SPQE * 
*FOR SUBPODL 252* 

• * • • 
***"'*****"'**"'**"'* 

X .*. 
F2 * .. 

GERRQR2 

.* *. ****F3********* 
.* ALL *. NO * * *. OF 2K BLOCK .* ......... X* EXIT * 
*. FREE • * x * * 
*..* *************** 

* •• * * YES 

RMBRANCH 
*****G2********** 
*GETMAIN DAA1* 
*-*-*-*-*-*-*-*-* * FREE 8 * * BYTES IN * * SUBPQOL 252 * 
***************** 

SPQECHK2 .*. 
H2 "' • .. * * • • * ANY *. YES • * .. STaR BLK NOT .* ..... .. *. FREeD .* 

*. .* * •• * 
• NO 

x 

TO ABTER..., 
RTN (IEAOABO I) 
-CHART HE-

*.** * • 
... 84 * 
* • 

• x ••••••••••• 
X 

*****~4********** 
*MRELEASE ... 
*-*-*-*-*-*-*-*-* • • * FREE REGION * • • 
***************** 

R,"IBRAI\1CH X 
*****C4********** *GJ::TMAIN OAA1* 
*-*-*-*-*-*-*-*-* • • * FREE PO!': * 
* * **"''''************''' 

.'. 
04 *. 

.* *. .* *. '\10 • *. LAST POE .* •••• 
*. .* *. .* 

* •• * * YES 

***** 
*D9 * * Kl* * • 

* 

.*. .*. 
J2 *. *****J3********** J4 * • 

• * *. *MRELEASE. .* * • • * *. YES *-*-*-*-*-*-*-*-* .* LIST *. YES *. EXCHANGE .* .•.•••.. X* * •••••••• X* .. FORM REO (SVC.* •••••••• 
*. REQUEST .* * FREE REGION * *. 4).* x 
*..* * * *...* ***** .... * ****"'************ * •• * *08 * * NO * NO * K2* 

x 
**** 

• * * 84 * • * 
**** 

x 
***** *DS * * 02* 
• * • 

• • • 

Section 13: Charts 368.1 



4 " 
~ .. / 

c 



( .. 

( 

( 

• Chart DA. GETMAIN/FREEMAIN Routine 

IGC004 

•••• Al ••••••••• 

* * III ENTRY .. 

* * ••••••••••••••• 
• FROM SVC FL IH 
.. (CHART A.A) ." 

GMBAANCH 

•••• "2* •••••••• 
* * .. ENTRY .. 
* • ............... 

BRANCH 
• ENTRY 

IGCOI0 

•••• A3 •••••• ** • 
* * .. ENTRY .. 
* • ••••••••••••••• 

: FROM SVC FLIH 
.. (CHART Alt.) 

RMBRANCH 

• ••• A4 •••• ***** • • * ENTRY • · . * ••••••• ** ••••• 

BRANCH 
ENTRY 

IGCOOS 

.**.AS* •• *.* ••• 
• • * ENTRY • • • • •••• **.** ••••• 

:FROM SVC FL 1H 
.:(CHART AA) 

." . • x ••••••••••••••••••••••••• · . .x ••••••••••••••••••••••••• 
x 

••••• SI •••••••••• 

• * .. ANAL YZE .. 

X 
••••• 63 •••••••••• 
*REGMAIN .. 

GETMAIN *-*-*-*-*-*-__ *-* 
• PARAMETER L 1 ST .. ••••••••••••••••••••••• •••••••••• ANALYZE • 

• * • • ••••••••••••••••• · . • x ••••••••••• 

*INPUT REGISTERS. • • ••••••••••••••••• .. FREEMAIN 

FMBRANCH X * •• *.S5** •• *.* ••• 
•••• B4.**.*.... • * 

• *. ANAl,.YZE • 
• ENTRy ••••••••• X.PARAMETER LIST 'II 
• •• OR INPUT * 
••••••••• **.... * REGI'STERS • 

.*.* •••••• * •••••• 
BRANCH ENTRY 

: ••••••••••••••••••••••••••••.••••••••.•••••••••••• x: 
x 

••••• Ct •••••••••• 
*CSPCHK .. *-.-.-.-*-*---.-* 
• LOCATE SuaPQOL .. 
.. QUEUE ELEMENT .. 
.. (SPQe) .. ................. 

x .•. 
01 •• 

•••• • ••• 02 ••••••••• . * *. YES. • 
•• REQUEST FOR ••••••••.•• X. EXIT * *. REGION .* * • 

•••• • ••••••••• *.* •• 
••• * 

* NO TO GET PART /FREEPART 
(IEAQPR) 
-CHART DB-

.* •• 03 •• * •••••• 
• PLACE • 
• CPU INTO WAIT. 
• STATE • • •••••••• *****. x 

X • NO .•. . .. 
El •• *.*.*E2.***.*.... E3 *. 

•• *. *GFRECORE *SPACE NOT .*CAN SQ *. 
•• REQUEST *. YES "'.-$-.-*-*-.-$-.AVAILABLE.. AREA 8E •• 

•• FOR SPACE IN .* •••••••• X* SEARCH sa * •••••••• X*. EXPANDED IF •• 
•• so AREA •• * AREA FOR FREE • ..NECESSARY •• 
•••• • SPACE * *..* 

•• • * .* ••••••••• * ••• ** * ••• 
•••• *' NO • SPACE • YES 

• AVAILABLE · .. * Fl *.X •. • • * •• * X 
• x ••••••••••• 
x * •••• F2 ••• " ••••• *' 

• GBLDAQE • 

x 
••••• F3 •••••••• •• • • ••••• FI ••• * ••• * •• 

*GFRECORE • • -*-*-.-.-.-$-.-* * SEARCH • 
• SUBPOOL FOR • 
• FREE AREA * ••••••••••••••••• 

.... -.-.-.-.-.-.-. 
• BUILD AOE FOR. 
• ALLOCATED AREA. 
• IF NECESSARY • 

• • EXPAND SO • 
••••••• AREA TO SATISFY • 

." 

. : 
x .'. 

••••••••••••••••• 
•••• .' . 

•• X. HI • • • •••• 

• REQUEST • • • ••••••••••••••••• 

GI •• • •••• G2.......... * •• **G3 ••• *** •• *. 
• * *. *G2KSRCH. .GDQEBLD • 

• * FREE •• NO $-.-*-*-.-.-.-.-.SPACE *-.-*-*-*-$-.-*-. 
*. ·AREA FOUND .* •••••••• X. LOCATE 2K * •••••••• X* BUILD • 

•• •• • SLOCKS TO .AVAIL .DQE FOR BLOCKS • 
•••• • SATI SFY REO •• * .. .. . •...•..••..•. *.. . ....•.....•..... ._ .. • YES • NO SPACE 

• AVAIL • *. * HI •• X. *' * •. •••• X 
••••• HI •••••• * ••• 
• GFQEOPDT • • -$-*-'--*-.-",.-. 
• BU ILD ELEMENT • 
• FOR REMAINING • 
• FREE AREA • ••••••••••••••••• 

x .•. 
H2 •• .. .. 

•• FI RST ENTRY •• NO 
•• TO CDPURGE •••••• *. RTN FOR •• 

•• REO •• •• • * 
• YE~ 

x x 
: •••• J I·········!PROGRAM( S r.Cb;~~2: •••••••• : 
• PREPARE tPURGED __ *-*-¥-.-*-*-*-* 
• OUTPUT * •••• PURGE PROGRAMS • 
• INFORMATION. • .NO LONGER NEED-. 

: ••••••••••••••• : x :u*n.~PJ.~li£*: . 
•• _. • NO PROGRAMS 
•• • TO PURGE • 
• FI • .X ••••••••••• 

GSBSK X 
• .... H3 •••••••••• 

* * • SET STORAGE • 
• KEYS OF • 
• ASS IGNEO 2K • 
• BLOCKS .. * •• * ••••••••••••• 

X 
••••• J3 •••••••••• 
• GET • * STORAGE TO BE • 
• ALLOCATED FROM • 
• ASS IGNED 2K • 
• BLOCKS • ••••••••••••••••• · .... 

• * • •• x. HI • ." • • _ ... 
x· •••• • 

ii 
• •••• cs ••••••••• * 
*CSPCHk • 
.-*-*-*-$-*-.-*-• 
.LOCATE SUB POOL * 
• QUEUE ELEMENT • 
• (SPQE) • • ••••• * •••••••••• 

x .•. 
os *. . ... D4......... .... 

• • YES.. REQUEST •• 
• EXI T .X..... ...... TO FREE •• • • *. ReG!ON .* . .... *......... .... • •• * 
TO GETPART/FREEPART • NO 
( !EAOPR) 
-CHART DB-

FADUDOE X * •••• E5* ••• ** •••• 
• FIND • 
• DESCRI,PTOR • 
• QUEUE ELEMENT • 
.eDOE) FOR AREA * 
* TO BE FREED • • ••• * •••••••••••• 

x 
FCOMMON4- ••• 

••••• F4-••••••• *.. FS •• 
• REMOVE. .* IS •• 
*ALLOCA TED QUEue. V&S •• AREA *. 
• ELEMENT (AQE) .X •••••••.• *.DESCRIBED BY •• 
* FOR AREA FROM • •• AN AOE •• 
• AgE OueUE • •••• .* ••••• * •••••••• * •••• 

• NO 

. . 
•••••.•••••••••••• t. ••••••• X •. 

FRECDMBN X 
• •••• G5 •••••••••• 
• ADD FREE QUEUE • 
• ELEMENT (FOE) • 
.FOR AREA TO F~E. 
.QUEUE. COMB! HE • 
• Foe'S IF POSS • 
• •• * •••• * •••• **.* 

x .•. 
HS •• 

• ••• H4 •• *...... .*ANY 2K •• 
• • NO •• BLOCKS •• 
• EXIT .X ••••••• :.*.CONTAUED IN .•• 
• • X •• FREE AREA •• *.............. ... . 
TO TYPE I EXI T 
ROUTINE (IEAOXEOO) 
-CHART GA-
OR TO CALLER 

• ••• J4 •••••• " •• 

• * • EXIT • • • • •••••••••••••• x 
TO TYPE I • 

. .. . 
• YES 
.: 

;j 
••••• J5 •••••••••• 
• REMOVE 2K • 
• BLOCKS FROM • 
• SUBPOOL. seT • 
• STaR KEYS OF • 
*FRE BLKS TO SUP. • •••••••••••••••• 

• e:XIT RTN • •. 
-CHART GA- ••••• 1 •••••••••• 

X K2 ••• •• K3 ••••• 1 ••••• K4 •••••••••• 
•••• KI ••••••••• • • 

• EXIT • * • ••••••••••••••• 
TO TYPE I EXIT 
ROUTINE (IEAOXEOO) 
-CHART GA-
OR TO CALLER 

•••• ..IS TASK.. .SCHEDRO • • ••• KS ••••••••• 
•• IS RD/RI •• YES •• ELIGIBLE TO •• YES *-.-$-.-.-.-__ .... • • •• DATA SET •••••••••• X •• CAUSE ROLLOUT •••••••••• X. • ••• :x. EXIT • 
•• OPENeD ... •• •• • SCHEDULE • .. .. *... . ROLLOUT • .. .. .. .. . ............... . 

• NO .NO .. . 
.......................... X ••••••••••••••••••••• :. ••••• : •••••••••••••• 

* • • •••••••••••••• 
TO ASTERM 
ROUTINE 
CIEAOAB01) 
-CHART HE-

Section 13: Charts 367 



i 

I 

~ 

• Chart DB. GETPART/FREEPART Routine 

•• **Al .......... . 

* • ... eNTRY ... • • 
****.*.******** 

.. FROM 

OISPINIT 
*****A4********** *****,,5******.*** 
.TASK SWt TCH... ... seT ... 
*-*-*-*-*-*-*-*-* .. INITIATORS ... 
... seT WAIT OFF * •••••••• X* WAITING FOR A .. 
.IN TeB,. SEE IF ... X... REGION ... 
... TSK SW REQ" .. DISPATCHABLE: 111 

***************** .* ... *.*.*.* ••• * • 
.. GETMAIN/FREEMAIN 
• -CHART OA-

x ; YES 
:SUBPOLCK x PART .*. FREEPART .*. SETINIT .*. 

B I .... ****.02*********. 83 *. 64 * .. ..*.*ss**.** •• ** • 
* • • * *. *CDPURGE" .* *. .* *. • * REQ FOR *. YES *-*-*-*-*-*-*-*-* .* ANY *. NO .* *. NO • • GET SPQE * *. S.P. 246- .* •••••••• x* * •••• · •••• X*ROLLOUT/ROLLIN.* •••••••• x*. WAIT SWITCH •••••••• *FOR SUBPDOL 252* 

*.FREE/GET .* x * ... *. REQ..* X *. ON .* • • 
*.;~c~*.1t: : : ••••••••••••••• : *. *. .*.* ..... * •• *.* • * .**.*********.*** 

... NO **** X .. YES ... • • .. 82 ... • • 
**** x .. ~s 

:GERROR2 
x 

CKSVCBYT .*. .*. X 
..*.*C3**.**.*.** 
.ST AGE 2 EX IT EF • 

. .. 
Cl *. C2 *. C5 •• 

. • * *. .* *. .**.C4**.*.**.* • * * • • * LIST *.NO(REGISTER * •• • -*-*-*-*-*-*-*-* • • • NO •• ALL •• 
*. FORM (SVC4-) .* •••••••• X.. FREEPART ._ 

!IRB S~~~O~~LOUT:·· •••.• * EXIT .X •••••••••• OF 2K BLOCK .* 
•• ._ FORM) •• REQUEST .* • * X *. FREE • * *... *.. * • • *.** ••• ** •••• **.* 

.**.* •••••••• ** *.. * •• •• * ••• * •• * * YES .. NO TO ASTERM .. YES 

SVC4 

.: 

x .•. 
ot *. • * •• .* •• NO 

•• WAIT SWITCH •••••• 

CKTCB 

•• ON .* •• . .* •• • * 
• YES 

x .•. 
El •• 

.* *. NO •• IS •• ••• *. INITIATOR •• 
*. WAITING .* 

x 
•• ** • • 

• 03 • • • ••• * 
TCBOK 

•• .* * •• * 
• YES .: . 
.x ••••••••••• 
.: 
i .•. 

Fl *. .. .. 
NO.. ELEMENT •• 

• •••• REQUEST .* •• .* *. . •. ••• * x 
•• ** • • * K2 • 

• YES 

• • * ••• 
.: 
X 

• *.*.Gl.*** •• * 
.. SET ONE * 
• DONE SWTCH * 
*-INDICATE THAT * 
.. STORAGE IS * 
• ASSIGNED * • *.* ••• * ••• * •• 

•••• .'. . • :.X* 02 .. • • ••• * 
COMRTNO ••• 

HI •• .. .. 
NO .* EXCH REO, *. 

••••• RC/RI REQ, OR.*X ••• 
•• WAIT NOT .* 

x * ••• 
• * • Kl • * • 

**** 

•• ON .* * •• * * YES 

.: .' 
DISPINIT x: * ...... 1.* •••••••• 

• SET * 

••• * • · .. * 02 •• x. • • •••• NOSETI 
x 

••• INITWAIT 
02 *. *****03*.* •••• *.* 

RTN (IEAOAS01) 
-CHART HE-

• * *. * SET.. • •• *D4 ••••• * ••• 
X RMBRANCH 

.** •• 05***** ••• ** 
*GETMAI NOAA •• 
*-*-.-*-..-.-.... .-* • * ENOUGH *. NO • INITIATOR.... .. 

*. SQS TO INIT .* •••••••. X* lIAITING FOR ••••••••• x. EXIT * • FREE S • 
*. JOB STEP •• x • SYSTEM QUEUE ... * • BYTES IN • 
...* • (SO) SPACE" .****** .. *.* .... * * SUBPOOL 252 * 

*.*****.**.** •••• * •• * • .**.* •• ****.* •• * • 
.. YES ***. 

it 

· . 
• 03 * • • 
**** 

CKPOEFND ••• RETURN08 ••• 
E2 *. E3 •• 

RTN08 

RETURN TO 
HIGHEST PRI 
READY TASK 

it 
• SPQECHK2 • *. 

E5 *. 
• * *. .* ANY *. .***E ••••••••• * • .* *. 

•• REO FOR *. YES .*STOR. ASS. *. NO. * .YES .* ANY •• 
*. MORE SPACE .* •••••••• X.. -ONE DONE .* •••••••• X* EXIT * ••• : ••• STOR BLI< NOT .* 

•• THAN.* X •• SWTCH ON •• * • •• FREED .* 
*.AVAIL.. *... .***.* ••• **** ... *. .• ••• * * ••• . ... 

.NO * YES RETURN TO 
USER. RET 
CODE =08 

• NO 

X * ••• "F2*********. 
• FBQSRCH .. 
.-*-*-*-*-.... -*-* 
• FIND "DDR * 
*OF FIRST AVAIL .. 
• BLOCK • 
••••• *** •• **** •• * 

• * •• 
* *. • G2 •• X. • • ..... . 

COREOK X 
* •••• G2**** •• ** •• • • * BUILD POE, • 
*AD "UST POE. AND • 
• FBQE POI NTERS • • • ••• *.* ••• **.**.*. 

GET252 X RMBRANCH 
*****H2*.**.****. 
*GETMAI N DAA4* 
.... -*-.-*-*-.-*-* * GEt 8 BYTeS * 
* IN SP 2!52 IF * 
• NECESSARY • 
• ****** ••• * .. * .... * 

x .•. 
J2 *. • * *. 

x .•. 
F3 *. .* •• • * *. NO 

*ROLLOUT /ROLL IN .* •••• 
•• REQUEST .* 

*. .* * ••• * YES 
**** • · '. .. G3 • .:x. • • 

• ***. x 
.RTN04 .*. G3 •• 

• * *. 

x ••• * • • * B2 * * • •••• 

•• *. NO *. CONDITIONAL •••••• 
*. REQUEST .* *. •• . ... 

* YES 

X 
****H3.******** • • * EXIT * • • *****.** .... * ••• * 

RETURN TO 
USER - RET 
COOE =04 

x 
***. • • * D3 * • • .* •• 

x .•. 
***.*f'4 •• ***.* •• * F5 *. 
*MRELEASE., • * •• 
.-*-*-*-*-*-*-$-* NO •• * • 
• . *X ••••••• le*.EXCHANGE REO •• 
• FREE REGION * x.. .* 
* * *..* ••• *.* •••• *...... *. •• 

.' 
X RMBRANCH * ••• *G4 •••••••••• 

.GETMA IN OAA4-. 
*-*-.-*-*-.-*-.... 

• * • FREE PQe * • • 
.****** •• ** •••• ** 

.: 

• YES 

.' .: 

it 
• •••• G5 •••• *.* ••• 
*MRELEASE • 
*-.-.-.-.... -*-*-* 

• 0 * FREe REGION • • • •••• **.* •• *.* •••• .' 
x i .•. .*. H" •• H5 •• .• *. .*.. . .... .* *. NO. NO.* LIST •• ves" .. 

*. LAST PQE •••••• ••.••• FORM REO .*.x. k2 .. 
*.*. .*.. * •• !SVC4-) ••• * ••••• * 

*. •• X * ••• 
.. YES ••• * .. 
.: ***. *. ..*. 
•• .. • 02 * ... .:.x. Kl * $:" .... X. G3 .. 

• • ***.. .. .. 

:GETSPEC .*. F8QELOOP ••• **** SRTN04 ••• NO -**. 
.13 *. "4 *. JS _. · .*.. .*.. .* •• 

• INITIATORS .. • YES.. * • • NO .* *. yES •• IS SPEC. •• NO •• ANY STOR _. 
.. WAITING FOR .. 
• REGION • 
• DtSPATCHABLE .. * •••••• * ......... . 
.* •• · .. 

• Kl •• x.: · ..: .... .: 
RTNOO X· 

368 

*.*.K 1 •. * ••••••• • • 
• EXt.T .. • • ••••••••••••••• 

RETURN TO 
USER - RET 
CODE· 00 
REQ SATISFIED 

•••.••••• END OF LIST •• .... .. • ••• *.VALIO REQUEST.* •••••••• x.. STOR ADDR •••••••••• X*.ASSIGNED -ONE •• 
*. ADOR .* •• AVA IL .* DONE SWTCH ON *. •• *... *... ...* .. .. *. .• •• •• • ••• 

• NO * • YES • YES 
*.** • X .' · .. * K2 *.X. · .. *... • • YES 

GPART X ••• * •••• k2.*........ 1<3 .. 
• SET ONE DONE * .* *. • SW, GET NEXT _ .* SPECIFIC •• 
*"DDR ReQ. ENTRY •••• ~ •••• x*. ADDRESS .* 
• IN LIST. * •• REauEST .* 
• DETERM. HIER. • ...* 
•••••••••• *.* ••• * ••• * 

• NO 

x .* •• 
o * * 02 • • • • * •• 

.: 

i 
•••• *K4 •• * ••••••• 

• • 
• ASSIGN AREA * 
*TO TASK.,. AD,JUS1"* 
• FBQES * • • ••••••••••••• * ••• . : . 

X ..*• • 
• G2 * • • •••• 

.: 

.: 

it . .. 
KS •• .* •• 

'YES •• •• 
••• _ROLLOUT/ROLLI N •• 

it •••• • • * G3 • • • •••• 

*. REG •• 
=t.:. .* ... -o NO 

it 
** •• 

• 0 
• Bl! • • • • ••• 

c 



( 
Chart DC. Rollout Criterion Routine 

• .. ** o • 
• A4 .. 
o • 
• *** 
x 

JE"QRCP! .0. 
****Al ** ... *.*** o 0 

'" ENTRY '" 

* * ................ 
• .*. CEQUEUE 

81 *. ..'4 .. 62 .......... . 
•• .. .. '3 *. '" '" 

A4 * • 
• * *. .* IS REGION *. NO 

••• x*. NOW ROLLED .* •••. *. OUT .* .. .. ••. * * YES * •• * · ' . .. 94 *.x. 
o • 
•••• X 

* •• * 
o * * 85 • • • **** 

X 
RETRY .*. B5 _. 

.* DOES .... 
ROLL-U ••• ROLL CUT • •• Cf;Q *RESCI-£:DlJLE EACH. 

..*.*84*** •• *.*** 
*BUILOPQE * 
*-*-*-*-111-*-*-*-* 
III BUILD AND * •• STEP HAVE *. YES 

•• ANY BORROWED .* •••• *. REGIONS .* •• ,.ROLLIN, Cq: CEQ ••••• t •••• X. ICE ON 'THE '" 

x 
*** •• 
*00 '" • at_ 
* * • 

•• SPECIFIED.. '" F:OLLOUT QUEl.E '" .,.* '" '" ., .* •••••••••••••••• * 
'" peLLOUT 

• .0. 
Cl *. 

•• ARE •• 
•• .. NY STEPS *. NO 

• • ••• o • 
'" H2 '" • * * ••• 

•• CURRE:I\TLY ••• t •••••••••••••••• 
*ROLLEO-Clt.;T •• .. .. .. ,. 

'" YES 

X 

* INITIALIZE A • * NEW POE * 
**************.** 

X 
·*****C4.***.**.*. 
• SET • 
.STORAGE PROTECT * 
*KEY OF BORROWED* 
• REGION TO ZERO .. 
o * **********.**.**. 

x 
*.*. o 0 

•• .* ••• * o NO 

ERR3 X 
_****C5 •••• ** •• *. 
*RSTRIO DGA1* 
*-*-.-.---*-... *-* 
*RESTORE I/O RE-* 
*QUESTS FOR EACH • 
.. TASK IN STEP * ••• ** •• * .......... * 

RADOI ••• * G2 .. o 0 
X 

DI •• 
.*15 THIS •• 

•• ROLLCUT *. YES • 
•• INVDtc:EC FC~ •••••••••••••••••• x. 

•• SAME STEP •• •. .* .... 
o >< 

X fOROC3; 
••••• El**.*.*.*.* *****E2 ••• * •••••• 
*IEAQAPGl '" *GETFART '" 
*-*-*-*-*-ItI-*-*-. *-*-*-*-*-:t-*-*-* 
'" CCINCICENT * •••••••• X.TRY TO FILL FOE-* 
• ROLLCUT .ROLLOUT *CUEST FROM '-'N- '" 
'" APPENCAEE *ALL.OWEC .ASSIGNED STRGE * 
****.**.* •••• **** * ... * .. * •••••••••• * .... 
• O • .. FI _.X. 
• • • *** • 

RR002 X 

R[LLCiUT 
HT 
,tLLCWEC 

x .'. RROI 

**** 

*****e4********** 
*SET STEP TO BE • 
.ROLLeo OUT NON-. • 
• DISPATCHABLE *x ••• * (TCBFRO) .. 
o * **-**.*.******.** 

X 

..**.05.**.****** 
*RSTROE D.JA2* 
*-*-*-.-*-.-.... -* 
.RESETI'MOVE WTOR* * REPLIES FOR ... * STEP'S TASKS * .* ••••• *** ••• *.** 

X 
*****E5*.******* • 
III RESET * 
• STEP .. * DISPATCHABLE * 
.. (TCBFRO) .. 
o • 
•• *** •••••• * ••••• 

X 
*****Fl •••• I4***** * oeQUeue rOE • 

F2 *. *** •• F3.*** ••••• * * •• **FIIo********.* **.**F5**** •• **** 
*GETSTEP DHA2. 

• FROM IRE ,tfliC • _ ENQUEUE IT IN • 
" ROLLOUT Queue. .INCREMtl.T CCUNT • •••• * ••••••• _** •• 

.WAS n"efOE. *GETSTEP DHA2. 
•• ENOUGH *. NO *- ............... - .... -* .UNASSIGNED MAIN* •••••••• x. FINO STEP AND • 
•• STORAGE ._ .REGION EL] GIBLE* •••• * FOR ROLLOUT * 

*. .* *.******.*** •• * •• * 'IE! .**. 
• O. 
• G2 •• x. * 0 ** •• X 
••••• G2* ...... ** •• 
• INITIALIZE • * AND ENQl.iEUE • * PQe. SET * * ROLLO ... T * 
• INDICATORS • * •• * ••••• *.*.**.* ..... · '. * H2 *.X. 

• 0 

**.* o o. '* G3 *.x. o o. 
**.. )C .0. 

G3 *. .* •• 
•• WAS SUCH •• YES • *. A REGION •••••••• *. FOUND .* 

:fl. .* * •• * • NO 

'* OU lesce 11'0 • * AND PURGE • * MESSAGE REPL IE5* * FOR EACH TASK * * IN STEP * 
.* ••• *.** •• *****. 

X 
*****G4* •• ** •• *** 
*STARTIO DEA3* 
*-.-*-*-.-.-*-*-* 
.ROLLOUT SPEC 1- * * FlED REGION • 
• (PQE ADDRESS) • 
* •• * ••• *.**-**.*. 

***. • RETEXIT x 
X 

RRoe X ••• 
:::;.~~;;.::};~!: *** •• H3****.***.* H4 *. *IEAQAPG3 *ABEND NOT.. _. 

*-....... .-... *-*-*-*REQUESTED.* DID A •• YES * ABLE IOE FROM • 
• ROLLOUT IlOe. * 
*MAKE SPECIFIED. 
• JQE NEXT IQE * .*.** ••• * •••••• *. 

* REQUEST *. ••• _.PERMANENT 11'0 •••••• 
• FOR ABEND * *. ERROR .* * APPEN)AGE • ..O.cCUR •• 
*.********* ••• *.* * •• * x 

.ABENO •• *. * NO 

.REQUESTED. '* • * •• * 
*FI* ••• 

*-*-*-*-*-*-.-*-. 
• •• X* FIND STEP AND * 

.REGION ELIGIBLE* * FOR ROl.LOUT * 
**.* •• *.*.*****.* 

* •• * • * * ..X* G3 ... 

* * **** 
.****G5** •• * ••• ** *TESTSTEP DI A3* 
*-*-*-.-,*-,*-*-*-* • * TEST REGIONS *X ••• 
*OF STEP AGAINST* 
• RO CRITERIA * .** •••••• ** •••• ** 

x .*. H5 •• 

.* *. 
• NO.* DOES It! *. 
•••••• REGION MEET .* 

*.CRITERIA •• *. •• • •• * * YES 

· .. 
••••••••••••••••••••••••• X. x 

• '* •• x* B4 * ..*. . * 

.*** o * 
• 85 * o • 
**"'* 

x 
**** • • 

• A4 * * .* 

EX]T FAC .. 
ROLLOUT I'RtLL IN 
RESULTS I'" THE 
ROLLOUT TASk 
BEING PLACEt 
IN THE WAIT 
STATE 

EXI'T X 
••• **.12.* •• * ••• ** * SET • 
• UP ADDRE.s.5 OF • 
• TCB TO ENSURE * 
• TASk S.lTCH * o 0 
.* •• * •••• * •• *** •• 

X 
*.**K2** ••••••• 

o 0 

'* EXIT * 
• 0 * •••••••••••••• 

TO EX IT ROUTI NE 
(IGC003' 
-CHART GB-

• *.* .0. 
J3 •• * •••• ..14.***** •• ** • * ABEND *. * '* *.** * ••• .* TASK *. NO • TERMINATE THE * • '* *. REQUESTING .* •••••••• X.TASK SPECIFIED * •••• x* Fl * *. ROLLOUT •• • BY IEAQAPG3 * * * 
*..- * '* ***. *. •• ******** •• ** •••• * '* YES 

X ** •• *K3**.*** •••• • • * ••• 
_ TERMI NATE THE • • • 
.TASK REQUESTING* .... X. H2 • * ROLLOUT * * • * * •••• *.* ............. . 

Section 13: Charts 369 



-: 

Chart DD. Rollin Criterion Routine 

NCTE-PQE 
ADDRESS IS F.aSSEO 
IN CCr4'LE"Ep.,T 
FORM AS II\PUT 
PAR"~EiER 

***** *CD * * fl* • • 
* 
x 

F~CM teBI 

**** • • * 62 * • • 
**** 

.*. RINC2 X 
81 *. *****82*********. 

• * *. * * • * REGIe... *. NO * GET * *. ALLOCATED .* •••••••• X*PCE FROM O~NING* 
*.FRGM FREE.. * TCB * 

*.~PACE.* * * 
*. .* ***************** * YES 

**** · '. * (1 *.x. 
* • 
**** • RIl\oa x 

x .0. 
C2 *. 

• * *. 

RIN023 .*. 
83 * • .* ANY •• 

• *PREVIOUSLY *. YES 
•• • X*.BORROWED PQE .* •••• 

•• STILL IN .* *. USE .* * •• * x * NO **** *.*. *-* 
-* -*. * Cl -* * C3 •• x. * .. 
-* * ** •• 

.*** 
* * .. 84 * 
* * ***. 

x 
.***** B4********** 
* * * RESET .. 
*ROLLOUT BIT IN .. * OWNERS PQE * 
o • 
****** •• * •• *****. 

:RINO:*** x RIN045 X 
*.***C3*-**.****** .****C4********** .. * * SE.T • 

*****Cl********** * • * DeCREMENT * 
*RCLLOUT II\VCKEC* * COUNTER * * CIEAR-Clel) * 
***************** 

.* IS It. YES • .. GET A * .. FREE 2K AREAS * 

RIl\09 • 0. 
01 *. •• *. 

NO .* Ah'Y CTtiER *. 
••••• REGICI'S .* 

x 

*BORRCWEC BY. 
*.STEP .* 

* •• * 
**** • • * Fl * • • 

* YES 

**** 
X 

*****El********** * SET * *RCLLOUT Ip.,VOKEO* * FLAG (TCeFR I) * * IN eCRRC-.ED * * ~STCE * 
***************** 

**** * *. * Fl *.X. 

• * **** • DEQUEUE X 
*****Fl*t******** 
* * *RESCHEOULE E ACH* * IOE eN T .... E * * ROLLOUT OUE~E .. 
* 0 ****.***** •• ***** 

RETEXIT X 
.****Gl********** 
*GET NEXT AVAIL.* 
*ZOE FROM RCLL- * 
.. OUT I~e. ~AKE • 
.. SPECIFIEC IQE .. 
• THE NEXT IOE * 
***.******.****** 

EXIT X 

370 

•• *.*H1 ••••• *.* •• * SET • .. UP AOtRESS OF .. * Tce TC I~SURE * 
• TASK SWITCH * 
o * * ••• ** •••• *.*.*** 

X 
*.* • .11******.** 

o 0 
• EXIT .. 
• 0 •• ********* ... *. 
TO EX IT ROUT I NE 
( IGC003) 
-CHART CiE-

*. IT THE LAST •••••••• 
•• POE .* *PQE FRQM OWNING*X ••••••••• OF REGION TO .. 

.. T,CB * .. PROTECT KEY * *. •• *. .* 
* NO 

x 
.* • 

D?. *. • * •• NO.. IS IT _. 
• ••• *.SAME AS FRrED •• *. poe .* 

*. .* * •• * * YES 

X' 
*****E2******.*** 
• * * RESET 'IN * 
.. USE' BIT IN .. 
.. OWNI;R'S POE * 
* * ************.* •• * 

· . • •••••••••• x. 

x .*. 
F2 *. .* •• 

NO.* 15 •• 
•••• *.POE 'IN ,"SE' .* 

*. •• 
*. .* * ••• * YES 

X 
*****G2***** •••• * * SET .. * poe 'l..SE • * STAiLS' • * RE:GISTER * • * •••• *.** ••• ****** 

· . • •••••••••• x. 
x 

-*.* 
o * * B2 * * • ** •• 

EX IT FROM ROLLO\, 1 ~ 
ROLLIN RESULTS IN 
T".E RCLLOCT TASK 
BE INCi PLACED IN 
Tt:.E WAIT STATE 

* . .. .. ZERO .. 
*.*.*.*********** ***************** 

x .*. .*. RIN05 
03 *. 04 *., *****05********** .* *. .* *. *RSTRIO DGAI • 

.* IS *. YES.* *. NO *-*-*-*-*-*-IfI-*-* *. IT THE LAST .* •••••••• X*. I/O ERROR •••••••••• X*RESTORE I/O RE-. *. PQE .* *. •• *QUESTS FOR EACH* 
*..* *..* * TASK IN sTEP * ••• * *. .* *.******** •• ***** * NO .. YES 

x .*. ERRIN X 
E3 *. 

.* *. NO.* IS THE *. 
••••• PQE·S REGION .* *. ROLLED .* *. OUT .* .... x 

***.*E4********** * INVOKE ASTERM * * TO SCHEDuLe * 
*TERMINATION OF * 
*ROLLEO-IN STEP • 
* • **.*** •• ***** •• ** 

X 
****.E5*********. 
*RSTRQE DJA2* 
.-*-*-*-*---*-*-* * RESET OR MOVE .. 
* .TOR REPL I ES * * FOR EACH TASK .. 
***********.***** 

• YES **** 
o * * C3 * * • •• ** 

. . 
•••••••••• • #1 •• ••••••••••• x. 

X 
*****F3********** * SET 2K * 
.. BLOCKS OF * * REGION TO * .PROTECT KEY OF .. 
* STEP * 
************.***. 

X 
*****G3********** 
*S T ART 1.:3 DEA3* 
*-*-*-*-... -*-*-* * ROLLIN * 
• SPECIFIED * * REGION * 
*.** •• * ••••• ***** 

x .*. IGC003E 
H3 *. *****H4*.* ••• *** • .* *. *WTO ~OUT tHE • 

.* *. NO *-*-*-*-*-*-*-.-* *. I/O ERROR .* ••.••••• X* ISSUE .. *. . •• .ROLLI N MESSAGE • 
*..* • * * •• * ••• *._.***.*.*.** * YES 

EORIWTR X 
.**.*~3*********. 
o * 
o * * DISABLE .x ••••••••••••••••• 
• • * • ** ••• *.** ...... *.* 

x 
**** o • 

• 84 .. 
o • * ••• 

X 
*.***F5********** 
• * • SET ROLLED-IN * * STEP * 
• DISPATCHABLE * * 0 
..****.* •• ******* 

x 
*.** * • .. ct • 

* • .*.* 

---- -----------_.-



Chart DE. 

( " 

." 

Rollout/Rollin I/O Routine 

STARTlO 

** .*A3.*.****.* · . .. ENTRY .. 
• • 
***.*.********* 

• ENTE:.REO FROM 
ROLLOUT OR RCLLIN 
CRITERIA ~OUTINES 
WITH SPECIFIfC IQE 
AODRESS IN REGIST~R 

X 
*****83********** • • * ENABLE .. 
.. ALL CHANNELS .. 
• • 
• * *************.*** 

X 
*****ea*********. *cp INIT .. 
*-.-.-*-..... -*-*-* * INITIALIZE .X ••••••••••••••••• 
.. CHANNEL * 
.. PROGRAMS .. 

*.*.************* 

X 
*****03******.*** 
*EXCP .. 
*-*-*-*-*-*-*-*-* * • .. ISSUE EXCP .. 

* * ***************** 

X 
*****E3********** 
*-WAIT ROUTINE * 
*-*-..... -*-*-*-*-* 
• * .. ISSUE WAIT .. 
• • *** :t.************ 

COMMON • 
*****E4*******.** * • *-RESET INTERFACE*-
.. FOR CPINIT * 
.. ROUTINE .. 
• * ******.*.******** x 

X YES .*. . •. 
F3 *. F4 * • ••• *F2***.**... .* *. .* WAS *. .. * NO.* ANY *. YES .* lOB *. * EXIT *X •••••••• *. I/O ERRORS .* •••••••• X*. INTERCEPTED .* 

* * *. .* *. .* 
********~~.* •• * *..* *..* * •• * * .... 
RETU~N TO CALLER * NOTE-ECB IS POSTED * NO 

ey I/O SUPERVISOR AT 
CHANNEL END IF AN 
ERROR HAS OCCURRED 

x .*. 
G4 *. *****G5********** 

.* *. * * .* •• ROLLOUT * CONSTRUCT • *. ROLLOUT OR .* •••••••• X*OUTPUT MESSAGE .. *. ROLL IN .* .. AND ISSUE WTO * 
*..* * * *. .* ***************** * ROLLIN 

X 
*** •• H4********** 
* * * CONSTRUCT * 
*OUTPUT MESSAGE * * AND ISSUE WTO * 
* * ***************** 

X 
****.J4********. 

* * * EXIT * 
* * *************** 
RETURN TO ROLLIN 
PROCESSING ROUTINE 
AT LOCATION eORIWTR 
(CHART 00.J3) 

X 
****H5********* 

* * • EXIT .. 

* * *************** 
RETURN TO ROLLOUT 
PROCESSING ROUTINE 
AT LOCATION RETRY 
(CHART DeBS) 

section 13: Charts 371 



chart DF. SVC Purge Interface 

PRGIC 

***"Al********* 
* * * EI\TRY * 
* * *************** 

**** * •• * El *.x. * • 
**** • PRGJe! x 

*****81********** 
* * * BUlLe * * AND EI\QUEUE A * * NEt! RICE * • • 
***************** 

••••••••••• x. 
:P~GI 02 x 

*****Cl********** 
* * *Il\ITtALIZE RIOE* 
* ANe T~E FURGE * 
*PARA~ETER LIST * 
* • 
***************** 

x 
*****Dl********** *svc PU~C:E * 
*-*-*-*-*-*-*-*-* * PURGE * * 1/0 QEQUESTS * * FOR TASt< * 
***************** 

.SEE NOTE 1 
X 

*****El********** 

NOTE 1 

FIRST Plf;GE 
WAS fOR T~E 
JOE SlEP TA,sk. 
NOW Fl.RGE FOR 
SUETASKS IN 
n'E STEP 

*TASkSEL * 
*-*-*-*-*-*-*-*-*NC $UBTASk 
.SELECT A sueTSK* •••••••••••••••••• 
*WHCSE 1/( 15 TO* 
• BE PURGED * 
***************** 

X 

SU8TASK 
F (UI'\:C 

• PRGIC3 .*. 
Fl *. • .* *. 

• NO.* WAS I/C ._ •••• *. PURGEC FeR .* 

372 

"'*.PREVICUS .* 
*.T.eStc .* 

* •• * • YES 

x 
**** • * * el * 

* * **** 
IF NO I/C WAS 
PURGED FOR THE 
l.AST TASK. ThE 
RIOE TH,tT 
WAS eUI L T FeR 
THAT TASIe CAN 
BE USED FeR 
THIS NEXT T~SK 
oeTAINED VI~ 
THE 'TASKSEL' 
ROUTINE 

x 
.* • 

F2 *. 
.* *. 

•• WAS 1/0 *. YES *. PURGED FOFO .* •••• 
*.PREvtClS .* • IF NO, THIS 

*.TASK .* LAST AlOE * •• * • "AS NOT * NO USED AND 
IS DELETED 

. 
X 

.*.**G2***.* •• **. 
* * * DEQUEUE AND * 
*FREE STO~AGE OF* 
.LAST ~ICE aUILT* 

* * .* .••. * •••••••••• . . 
.)C ••••••••••• 

X ••• *H2*_ •• _ •••• 
* * • EXIT • 

* * * •••••••••••••• 

<")" • ....,. 

c 



(~ 

( 

Chart DG. SVC Restore Interface 

RSTRtc RSTP.I04 

..... Al .... • •• • •• 
* • 
.. E .. TRY .. · . •••• * •• * •••• **. 

**** · . .. 81 *. x. 
* • 
**** • ~STR1Cl X 

.*.**81*********. .. ATTE~PT .. 

.. TO ~ET FtFlST .. 

.. RIOE E:. .. aUEUEC .. * FRIJ~ lOC .. 

.. IEARCICC .. 

***************** 

••••••••••• x. 
:RSTRIC2 .~. 

CI *. .* *. .* Wt:R:E *. NU 

ADDRESS OF 
FIRST lOB 
TO BE RESTORED 
IS IN REG 1 

*. THERE "t.y •••••••••••••••••••••••••••••••••••••••••••••• *. R tOE!: .* 
*. .* * •• * .. YES 

x .•. 
01 •• 

.*15 THIS_. 
•• RIQ~ ftR: •• YES *. STEP EEt"G •••••••••••••••••••• 

*.R(iLLEC It,._ 
*. .* * •• * 

* " 

X 
••••• El*********. 
• * • * TRY TC '" •••• * GET NEXT R JOE .. 
.. eN QUEUE .. 

* * ***************** 

RSTR 103 X 
.****E2********* • * • 
• DEQUEUE ROLLCll* 
• u.e Ff'OM .. 
.. CI..f<RENT TeE :0: 

* * ***.It.**********. 

ii .** •• F2** ......... * 
.. ENQIJElE .. 
• ROLLCUT UB ON • * TCS WHOSE 1.10 • * IS TO BE • 
• IOESTOF<ED • • ***** ..... *** •• * •• 

X 
••••• G2 •••••••••• 
... SET TCSFX .. 
• FLAG IN THIS • 
*Tca TO PRE\lEf\;T • 
... ASVNCHRONOl.l! • 
... .EXIT • 
****.* •• * •••••••• 

X 
••••• .,2 •••••••••• 

• * • SET • 
.PARAMETERS FOR • 
... IOEENTF<V • 

* * ••• ** •••••••••• *. 

X 
••••• 42 •••••••••• 
• TASK SWITCHING *eVA2 
*-*-*-.-.-*-*-.-* 
.SET THE FiESTORE* 
.Tca AS NE)fT 10 • 
• BE 0 ISPATCHED • •• * •••••••••••••• 

• •••• K2 ••••••••• 

• * • EXIT * • • ••••••••••••••• 
BRANCh TO CISPATCHER 
( lEA ODS) ChAIn GG 

X 
RSTRH15 .* • 

03 *. 
.* IS •• .***04***.***** 

.*THE CURRENT*. YES * • *. Tca THE .* •••••••• X* EXIT ... 
"'. ROLLOUT .* * • *. Tce .* ** •• ** •• *.* •• *:f: 

* •• * * NO RETURN TO CALLER 

X 
*****E3 •••• *"'**.* * DEQUEUE • 
• ROLLOUT IRS • 
• FROM Tca TO • 
'" WHICH IT IS • * ENQUEUED • * ••••••• *.***.* •• 

X 
*.*.*F3.* •• ** ••• * 
* • 
• ENQUEVE • 
.ROLLOUT I RB ON • * ROLLOUT Tca • 

• * ****.** ••• ** ••••• 

X 
••••• G3 •• *** •• *** 
.TASK SWITCHING • *-*-.-....... -.... -* 
.SET THE RESTORE* 
'nCB AS IEXT TO • 
• BE DISPATCHED. • •• **.**** •••• * •• 

X •••• H3.".*.*** 
• * • EXIT * • • ...... * •••• ** ••• 
BRANCH TO DISPATCHER 
(IEAODS) CHART GG 

****A5********* 
* • * ENTRY * · . *************** 

FROM 
• 0 I SPATCHER 
• -CHART GG-

• *****85*.*******. 
*SVC RE STOPE * 
*-*-*-*-*-*-*-*-* · . * • * • 
***************** 

X 
.****C5********** * DEQUEUE * 
• RIOE AND FREE • 
• THE STOP AGE * 
• THAT IT • 
• OCCUPIED • 
•• *.***.****.**** 

it 
• •••• 05** ••• *.*** 

• * * RESTORE TCBF X * 
*FLAG. DISPATCH. * FLAG AND • 
• REGISTERS • 
****.***.****.*** 

x 
**** • * * a1 .. 

* * **.* 

Section 13: Charts 37.3 



Chart DB. 

374 

Rollout/Rollin GETSTEP Routine 

C:ETSTE:P 

****A2********. • • * eNT~' * * • 
*********"'***** 

• 

**** • • * 83 * * 0 

**** 

.*. G03 X 
B2 *. *****A3********** •• *. ... INITIALIZE ... • * t-AS STEP *. NO * LIMIT ... 

.0. 
B4 *. .* IS * • .* HIGH *. YES 

*ALREADY INVOKED ••••••••• X*PR IORITIE"S FOR ... *. ROLLOll .* X'" ReADY QUEUE ... 
• •• X*.PRIOkITY PASS •••••• *. Sift ITCH .* *..* * SEARCH ... *. SET .* 

*. .* ***************** * •• * 
'" YES 

• ****.C2********** 
*TEST5T~P DIA3* 
*-*-*-*-*-*-*-*-* 
.lEST IF A ~OLL-* * OUT STEP CA~ ... * FILL ~EGUEST ... 
**************~** 

• • *. 
02 *. • * *. • * ~AS *. Ne • *. A PEGION .* •••••• 

._ FOUND .* 
*. .* * •• * * YES 

x 
* lI,. *E2 *.:It ****** • • * E)(IT * 

* • 
*********~"**:t" 

REluFcN TO CALLc.R + 4-

NOF<MAL F(l TU:CN 
ADDRESS Of- PGE 
it-AT F ILL~ f'.E-
GUEST IN REGI~-
TE~ a 

x .0. 
C3 *. 

•• IS *. .* HIGH *. NO 
*.PRIORITY PASS .* ••••• *. SWITCH .* *. SET .* 

* •• * 
... YES 

X 
*****03 ••• ******* * RESC:T * * l.IMIT * 
.PRIORITIES FOR * * HIGH PRIORITY * 
* PASS '* 
***************** 

:x •••••••••• : • 

X 
*****E3********** 
• 0 * SEAkCH * 
*TCA READY QUEUE* 
o • 
• • 
***************** 

x .0. 
F3 *. 

.* * • • * *. NO • *. ~STCB FOUND .* •••••• 
*. .* *. .* * •• * * YES 

X 
*****G3********** 
*TESTSTEP DIA3* 
*-*-*-*-*-*-*-*-* * TEST ST~P * 
• AGAINST ROl.LOUT* 
* CRITERIA * 
***************** 

o NO 

X 
*****C4********** 
*IEAQAPG2 * 
*-.-*-*-*-*-*-*-* * HIGH * * PPIORITY PASS * * APPcNCAGE * 
***************** 

x 
.0 • 

04 *. .* LOOK _ • 

.*FOR STEP OF*. NO • 
*. HIGHFR .* •• X. 

*.PRIORITY .* 
*. .* *. .* * YES 

X 
*****E:4********** * 0 * SET HIGH • * PRIORITY PASS * * SWITCH * 
* • 
***************** 

x 
**** 

• 0 

* 83 * • • 
**** 

****G4********. 
• 0 
* EXIT *X ••• . . 

*************** 
RETURN TO CALLER 

ERROR RETURN 
REGION THAT 
SATISFIES 
FcEQUEST CANNOT 

x EE FOUND .0. 
H3 * • 

• * *. **** .* DOES *. NO * * *. A STEP .>fI •••• X* 83 * 
*. QUALIFY .* * * 
*..* **** * •• * * YES 

X 
****J3********* • • * EXIT * * • ** •• *********** RETURN TO CALLER + 4 

NOR~AL RETURN 
"'ITH ADDRESS 
OF PQE TO BE 
ROL LEO OUT IN 
ReGISTER 0 

c 



Chart DI. 

(-

( 

Rollout/Rollin TESTSTEP Routine 

TESTSTE'P 

.*"'*A3********* · . ... ENTRY ... · . ** **.********** 

x .'. B;:! •• 
• * HAS * • • * STEP *. YES *. INVOKED •••••••• *. ROLLOUT .* 
*. .* * •• * 

• NO 

x .*. C3 •• 

• * * • • * IS *. NO .. 
*NON-POLLOUTABLE* •••• X. 

"'.COUNT = 0.* 
*. .* ••• * 

... YES 
•• ** · .. * 03 •• X. · . **** .. RRATI X 

*****03.*.******* · . · . .. GET A POE .. · . · . ***************** 

x .'. 
E3 * • • * *. • ****E4********* .* *. NO )( .. .. *. ANY PQE'S .* ••..•••• X* EXIT .. 

*. .* '" .. *..* ****.********** * •• * RETURN TO CALLER 
'" YES 

x .*. 
F3 * • 

ERROR RETURN 
PQE NOT FOUND 
STEP CANNOT BE 
ROLLED OUT 

• * IS *. **** •• REGION sIze •• NO ... ... *. SUFFICIENT .* ••.. >c* 03 ... 
*. .* x * ... 
*..* **** * •• * ... YES 

x .'. 
G3 * • • * IS *. .. .* poe I IN *. YES. *. use' By •••••• 

... • BORROWER .* 
*. .* ..... * 

• NO 

RRT4 )( 
*****H3********** 
*IEAQAPG4 * 
*-*-$-*-*-*-*-*-* * USER ROLLOUT * 
• CRITERIA • 
.. APPENDAGE • 

•••• * •• *****.***. 

x .•. 
J3 * • 

• * *. .*.* 
•• DOES *. NO * • 

•• PQe QUALIFY .* •••• x* D3 • 

*. .* • * .... . ... .. .. 
• yes 

X 
•••• K3 •••• * •••• • • 

• EXIT • • • *** ••• ** ••••••• 
RETURN TO CAL.LER 

NORMAL RETURN 
ADDRESS OF POE 
(5 IN REGISTER Q 

Section 13: Charts 375 



Chart DJ. Rollout/Rollin Reply Restore Routine 

316 

NeT E.-RQEX.cI 
FIf;LD IN RQE 
IS (CMPAREC 
\lilT .. ~(olE:RC 
"'~Sl< 

RSTRQE 

.***A2***_ ••• It* 

• * .. ~NT~~ .. 
* • *********.*.,.,.* 
.* •• · '. * 82 •• x. * 0 * ••• • .-. 

82 * • • * ANY ... ****B3.**.***** 
• *ELE:MEN1S 01"'1*. NO * * *. REFLY Cl.El.E •••••••••• X. EXIT .. 

*.(UCMfOFY,h* .. .. *..* •••••••••••••• * 
* •• * .. YES 

• .* • 
C2 •• 

•• DOES •• 
NO •• RCE BELQ~G •• 

•••••• TO ~OLLEO-QlT.* *. STEF .* *. .* * ••• 
.. YES 

• ***.*02*.lt*******. 
• * .. ACCE~S .. 

RETURI\ TO CALLER 

****.03***.*.**** • * .. RESET .. 

NOTE-INDICATE THAT 
REPLY MAV BE MOVED 
TO USERS eUFFER 

*TCB FOINTER IN .. • •• X*ROLLOUT FLAG IN. 
.. THIS F-'E .. • • ************ ••••• 

• •• ***E2_.*.*.**** - . .. ACCESS * 
.. JSTCe FCINTER .. 
.. IN THIS TCE .. • • •••• * •••••••••••• 

• . '. 
F2 •• 

.* IS *. 
•• THIS STEP *. yes • *. BEING •••••••• 
•• ROLLED-IN •• 

*. .* *. .* * NO . . ••••••••••• x. 

.. THIS ROE:: .. 

* * • ••••• **** •• ** ••• 

X 
*****E3********* • * ACCESS * 
• TEMP. BUFFER * 
.paINTER IN THIS* 
.ROE (OFFSET 1.2)* 
o * • •••••• *.* •••• *.* 

• .*. IGC1203D 
F3 *. * •• **F4.*** •• ** •• .* WAS A *. *REPLY PRoe. RTN* 

REPLY RECEIVED. YES *-*-*-.-*-*-*-*-* *. DURING .* •••••.•• X* MOVE .". 
*ROLLEo-OUT.* .REPLY TO USER'S* 

*PERIOD.. • BUFFER • 
*. •• *.*.* •••••• **** •• * NO 

· . .x ••••••••••••••••••••••••• • ..** 
X * •••• G2 ••• *****.* 

* * • ACCESS NE)l * 
• REPLV Q~E~E * * ELEMENT (RGE) * 
* • •• *.* ••••••••• * •• 

x 
.*.* 

o * 
• B2 • • • •••• 

• * * B2 • 

* * * ... * 

NOTE-SVC 3. IS ISSUED 
CONTROL IS PASSED VIA 
COMMAND PROCESSING RTN. 
AND MGCR RTN • 

:..",.--~ 

\, ,/ 



Chart EA. 

( 

( 

( 

Time Routine 

IGeO!1 

****A2********* o 0 

* ENTRY '" • • 
*************** 

.FROM 5VC FLIH 
• CHART AA 

X 
*****82********** 
'" DEVELOP TI ME '" 
'" OF DAY IN 26 .. 
'" MICROSECOND '" 
'" UNITS * 
• 0 ."'**"'*******"'*"'** 

x 
**** *C2********** 
• 0 '" GET DATE FROM * 
*CQMMUN leA TI ON~ * * VEe TOR TABLE * 
o • 

***************** 

~ .0. 
02 * • • * *. ****03********* .* WAS 'TU' *. YES * '" *. OPTION .* •••••••• X* EXIT * 

"'.SPECIFIED.* * * 
*. . '" *************** * •• * TO TYPE 1 EXIT * NO ROUTINE (IEAOXEOO) 

--CHART GA--

TDCNV X 
*****E2********** o • 
* CONVERT * 
.TIMER UNITS TO '" 
* BINARY UNI TS '" • • ***************** 

x .0. 
F2 * • • * *. ****F3********* .* WAS BIN *. YES * * *. OPTION .* •••••••• X* EXIT * 

*.SPECIFIED.. '" * 
*..* *************** * •• * TO TYPE 1 EXIT * NO ROUT! NE (I EAOXEOO) 

--CHART GA--

TDYD X 
*****G2********** 
• * *CONVERT BINARY * 
* UNITS TO * * DEC IMAL UNI TS * 
* * ***************** 

X 
****H2********* 

* * * EXIT * • • *************** TO TYPE I EXIT 
ROUTINE (IEAOXEOO) 
--CHART GA--

section 13: Charts 377 



Chart EB. STlMER Routine 

IGC04-7 

****Al *****.*** 
• * ,., ENTRY ... 

• • 
***.*********** 

FROM SVC SL IH 
• CHART AC 

X 
*****61********** 
.. CONVERT '" 
.. iNPUT TIME * 
.VALUE TO TIMER * 
'" UNITS IF .. 
'" NECESSARY .. 

*.*************** 

X 
TLoeTST .*. 

Cl *. *****C2********** .* *. .. ... • * TIME *. YES .. CONVERT LOCAL .. *. OF DAY ••••••.•••• X. TIME TO AN .. 
*.REQUE'STED.* .. ABSOLUTE * *..* .. INTERVAL * 

* •• * ************.**** 
• NO 

· . • x ••••••••••••••••••••••••• 
X 

TCHKMAX ••• 
01 *. **.*.02***.*.*.* • • * DOES *. .. .. • * INTERVAL *. YES .. REPLACE .. *. EXCEED 24 .* •••••••• X*EXCESSIVE VALUE. *. HR:S.* .. WITH 24 HOURS .. *..* .. .. * •• * •• ** •••••••• * •••• 

• NO 

· . • x ••••••••••••••••••••••••• 
x .*. .*. TIRSTST .*. 

Et *. E2 *. E3 * • • * *. .* IS *. •• DID A *. **** .* DOES *. YES .* A CURRENT *. NO •• TIMER EXIT *. NO • * 
*. TQE EXIST .* •••••••• x*. INTERVAL IN .* •••••••• X"'.RTN ISSUE THE.* •••• X* HI • 

*. .* •. EFFECT .* *. REQ.* * * 
*..* *..* *..* **** 

* •• * * •• * * •• * 
"'NO * YES * YES 

**"'''' · .. 
• Fl *.X. 
• * **** • 

TGETCORE X IGC004( S1 X IEAQTDOO X 
*****F3********** * FLAG IRB '" 
*' RBFOYN' TO 6E * 
* FREEO AT * 
* COMPLETION OF * 
*T1 MER EXIT RTN * 
********.******** 

378 

*****F I ********** 
*GETMAIN OAA1* 
*-*-*-*-*-*-*-*-* 
... GET SPACE FOR * 
... A TOE AND REG ... 
* SAVE AREA * 
***************** 

X 
*****Gl*********'" 
... STORE AOOR OF '" 
• TQE IN TCBTME • * FIELD OF * 
* CURRENT * 
* TCB * 
***************** 

**** * • 

*****F2********** 
*TIMER SLIH EEDI* 
*-*-*-*-*-*-*-*-* * CANCEL * 
* CURRENT ... * INTERVAL * 
***************** 

* HI *.X. • * * .X ••••••••••••••••••••••••• 
**** 

X 
*****Hl ********** • • * INITIALIZE * 
* TIMER QUEUE * 
* ELEMENT (TQE) * 
• • ********* ••• ***.* 

x 

x 
**** • • * Fl * • • 
**** 

.*. TMNQ IEAQTEOO .*. 
J 1 *. **"'** J2****.**.** .J3 *. *****J 4********** 

.* WAS *. *TIMER SLIH EEA4* .* *. * • 
• * AN EXIT *. NO *-*-*-*-*-*-*-.-* .* *. YES • INITIALIZe * 

•• ADDR SPE- .* •••••• · •• x* OUEue TOE ••••••••• X •• WAIT REQUEST .* •••••••• x* EVENT CONTROL. 
*. CIFIED.* X * START * *. .* '* BLOCK (EeB) * *..* * TIMING. *..* * • 

* •• * ***************** * •• * **********.****** 
... YES * NO 

X 
•• ***K 1 *** •• **.*. 
* SAVE FIRST * 
*WORD OF USER'S * 
• PSW IN Toe. '" 
.. FLAG TOE AS • 
* HAVING EXIT * 
•• ***.*** •• ****** 

............... : 

X IGC001CS) 
X *****1<4********** 

.**.K3*.***.*.. .WAIT RTN SKA1* 
.. • .-*-*-*-*-$-*-$-. 
• EXIT *x ••••••••• PLACE REQUESTOR* 
• ... INTO WAIT * 
***.*.*.****... * CONDITION • 

TO EXI T ROUT I NE ****.************ 
ClGCOQ3) --CHART GB-
VIA SUPERVISOR 
LINKAGE (SVC 3) 

( "" .... .' 
. ;P 



• Chart EC. 

( 

TTl MER Routine 

IGC046 

***.A2********. 
* * ,. ENTRY * 
* * •• * ••••••••• -•• 

• FROM SVC FL[H 
• (CHART AA) 

x .>. 
52 •• 

• * *. ****83******** • • * IS •• NO ,. RETURN 0 * *. THERE AN •••••••••• X. TIME * 
•• INTERVAL .* x.. .. *..* •• _ ••••••• - •••• *- _. 

,. YES TO TYPE 1 EXIT 
ROUTINE (IEAOXEOO) 
--CH ART G A--

X 
TESTEXP ••• 

C2 :ill. _. *-
•• HAS *. YES • *. INTERVAL •••••••• 
•• EXPIRED .* 

*. .* *. •• 
• NO 

X 
*****02*********. 
* • * DETERMINE ,. 
.TIME REMAINING ,. 
,. IN INTERVAL ,. 
> > •••• * •••••••••••• 

x .>. 
E2 * • 

• * * • • * WAS *. NO *_ CANCEL •••••• 
•• SPECIFIEO •• 

*. .* * ••• 
,. YES 

X 
*****F2********** 
> * * CLEAR POINTER ,. 
*TO TQE (TCBTME) • 
• IN CURRENT Tee ,. 

> * .......... _-_ .. _. 

X 
*****G2********* • 
• TIMER SLIH EE01* 
*-*-*-*-*-*-*-*-* * REMOVE ,. * TIMER ,. * ELEMENT ,. ........... __ .... 

:x •••••••.•• : 

TEXITX X 
*****H2.*.** •• * •• 
• PLACE REMAINING. 
* INTERVAL INTO * * REG o AND * 
*EXIT INFO INTO. 
* REG 1 * 
***************** 

X 
****J2********* 

* * * EXIT * 
* * *************** 
TO TYPE 1 EXt T 
ROUTINE (IEAOXEOO) 
--CHART GA-

section 13: Charts 379 



• Chart ED. Timer Second-Level Interruption Handler (Part 1 of 2) 
\...,/ 

380 

IEAOTIOO 

.***A2***.****. · . * ENTRY *' · . •• **** ••••••••• 
:FROM EXTERNAL FLJH .*** • (CHART AlF2) · '. *' B2 •• x. · . **** x .'. 62 . * • 

.. * *. ..**B3 •• *** ...... 
•• POSITIVE *. YES'" * *. VALUE IN .* .•••..•. X* EXIT ... *. TIMER .* ... '" *..* ••••• "' .......... . * ••• 

• NO 

X 
*****C2*********. 
... REMOVE ... *' eXPIRED TIMER ... 
... QUEUE ELEMENT ... 
... ( Tae) FROM ... 
... QUEUE ... 

***************** 

x 

RETURN TO 
EXTERNAL FLIH 
(CHART AIG2) 

IGC002( S) .*. T5tH ••• TDARKNES 
****.01 .......... ** 02 *. 04 lie. *****05********* • 
• POST RTN BMA2* .* *. .* *. .INCREMENT DATE ... *-*-*-*-*-*-*-*-* WAIT.* TEST *. SUPVR .* 6-HOUR OR *. MIDNIGHT'" IN CYT AND ... 
... POST Eca IN *x •••••••• *.INTERVAL TYPE.* •••••••••••••••••••••••••••••••••• x*. MIDNIGHT •••••••••• X. PLACE 24-HQUR * * TOE" *. .• *.INTERVAL .* ... VALUE INTO • * • *..* ...* * MIDNIGHT Toe • 
*.********.****** * •• * * •• * ************** •• * 

x 
**** • • * J2 * . . 
**** 

.REAL/TASK *6-HOUR 

X 
TNWT .*. 

E2 *. 
•• WAS *. **** • * EXIT *. NO * * *. SPECIFIED .*.: ••• x* J2 * 

*. .* • * 
*..* **** * •• * * YES 

X 
*****F2*******.** • • * PERFORM • 
.Joe STEP TlMING* * CHART EF * · , . **************.** 

**.* 
FROM .ED * • 
CHART. G2 *.x. 
EF * * . .*** 

X 
*****G2********** * REFORMAT * 
*exp IRED TOE TO * 
*IRB FOR A5YNCH * 
... EX] TROUT! NE ... · . *****.****.****** 

X IEAOEFOO 
*****H2********** *STG2 eXT EFFCTR*(BS 
_*-*-*-*-*-*-*- A2) * SCHEDULE * * ASYNCH EX] T ... 
... ROUTINE * 
*********.******* 

**** · .. * J2 •• x. • • **** • TSETOFF X 
*****J2********** • • 
• SET * • COMPLETE FLAG * 
• ]N TQE * • • **********.*.*.** 

**** FROM .ED * • 

X 
*****E4******** •• • • * SUBTRACT 6 • 
*HOU RS FROM ALL • 
: TOES .ON OUEUE : 

*********.******* 

X 
*****F4*.******** • • 
• UPDATE * *24 HOUR PSEUDO * * CLOCK • • • ***.************* 

X 
*****G4********** • • * PLACE 6-HOUR * * VALUE INTO .. * 6-HOUR TOE • • • ****.*.*.***.**** 

. . 
.x ••••••••••••••••••••••••• 

TSNQUEUE X IEAOTEGO 
*****H4********** 
*ENQUEUE EEA4* 
*-.-*-*-*-.-*-*-* * ~UEUE * * TQE ON OUEUE *' • • **********.****** 

Ee-FZ • K2 •• x. • 
EF.J5 * * • x ••••••••••••••••••••••••••••••••••••••••••••••••••• *... . TSENTIME X 

** •• *K2* •• ***.*** • • .. UPDATE TIMER • 
• FROM NEXT TOE * * ON Queue • • • • *** •••• * •••••••• 

x 
*.** • * * 82 *' • • ** •• 



( 

I 

; 
Chart EE. Timer Second-Level Interruption Handler (part 

Subroutines 
2 of 2) - Dequeue J and 

IEAQTDOO 

****01********* o 0 

DEQUEUE SUBROUTI NI:. 

IEAQTDOI 

.*.*A2********* • • .. ENTRY .. • • ••••••••••••••• 
:FROM OISPATCHER 
.CHART GGJl 

x 
• *. 

82 •• __ *. *.*.83********. 
.* IS *. NO * * •• TOE ON QUEUE .* •••••••• X* EXIT .. 
*. .* .. * *..* _ ••••••• _ •••••• 

* •• -.. YES 

X 
*****C2*********_ 
.. DEVELOP .. 
.. ABSOLUTE TIME .. 
.. REMAINING IN .. 
.. INTERVAL AND .. * STORE IN TOE .. ..•.....• _ ...... . 

•••••• ••••• x. 
X 

*****02*********. • • .. REMOVE .. 

RETURN TO 
CALLINC:. ROUTINE 

* ENTRy ••••••• .. TIMER QUEUE .. 
o • ..... _-_ .... _ .. 

BRANCH ENTRY 

.. ELEMENT TOE .. 

• • . *._ .......... _ .. 

X 
*****E2********** o • 
• SET OFF .. 
*Ql.EUE FLAG IN .. 
.. TOE .. 

• • ••••••••••• _* •••• 

it .*. F2 _ • 

• * *. .*.*F3********* .* WAS *. NO * .. *. TOPMOST TOE .* •••••••• X* EXIT * *. REMOVED .* * * 
*..* *************** * •• * * YES RETURN TO 

x 
**.** 
*ED * * K2* • • o 

CALL I NG ROUT I NE 

ENQUEUE SUBROUTINE 

IEAQTEOO 

****A4********* * • * ENTRY * • • 
*************** 

• BRANCH ENTRY 

x .•. 
B4 *. 

.* *. ****65********* 
.* IS *. NO * * 

*.TQE OFF QUEUE.* •••••••• x* EXIT * 
*. .* * * 
*_.* *************** 

* •• * * YES RETURN TO 

X 
*****C4********** * DEVELOP * * Tax TIME * 
*VALUE RELATIVE * * TO 6 HR CYCLE * 
* • 
***************** 

x .0. 
04 *. .* IS *. 

.*VALUE LESS *. NO 
*.THAN CURRENT .* •••• 

*.SMALLEST .* 
*.VALUE.* 

* •• * * YES 

TNQTOX X 
*****E4********** 
o * * UPDATE TIMER * * WITH NEw * * VALUE * 
o 0 

***************** . . 
• x ••••••••••• 

X 
*****F4********** 
• 0 o * * QUEUE TOE • 
o 0 

• 0 ***************** 

X 
****G4********* * • * EXIT * * • 
*************** 

RETURN TO 
CALL IHG ROUT IHE 

CALLI NG ROUTI NE 

Enqueue 

Section 13: Charts 381 



Chart EF. 

382 

1 

Timer Second-Level Interruption Handler (Job Step Timing> ---- -
IEAQTIOO 

** .... 3 ••••••••• 

* * * ENTRY * 
* * **********.*** • 

• FROM TIMER SLIH 
• ROUT INE 
.EDF2 

x ... 
83 * • • * * • • * *. NO *. IS TQe REAL •••••••••• 

*. .* x *..* ••••• *. •• _ED ,. 
,. YES ,. G2* 

x .*. 
C3 * • • * *. •• IS *. YES 

• * • 

•• Tes'S PROTecT •••••••••• *. KEY = 0 .* x •••• *** •• * •• * _ED ,. 
,. NO ,. G2. 

X 
••••• 03 •••••••••• 

• * ,. GET * 
,. PARENT Tea * 
,. (TCBOTC) ,. 

* .* •••• * ••••••• ***** 

x .*. E3 •• 
• * * • • * IS •• NO 

* * * 

_.Tee's PROTECT •••••••••• *. KEY =0 .* x 
*..* **** • •• • * .ED ,. * YES ,. G2* 

X 
•••• *F3 •••••••• *. 
• * ,. GET • 
* DAUGHTER OF ,. 
,. TQE'S Tee ,. 
* • ••••••••••••••••• 

X IEAOASOO 
••••• G3 ** ••••• *** 
.ABTERM HEA ,. 
*-*-$-*-*-$-*-*-. • • • SCHEDULE ABEND * • • ••• * •• ** ••••••••• 

it 
••••• H3 •••••••••• 

• • 
• Move SAVED ,. 
,. TIMER TO Tae ,. 
,. VAL SLOT ,. 

• • ••••••••••••••••• 

·x 

•• 
* 

..... .13.......... • ...... 4 ••••...•.• 
• •• • • ..... 5 ••••••••• 
• MARK • • MARK •• • 
• TOE AS TASK ••••••••• X. TQE AS OFF ••••••••• x. EXIT • 
• TYPE • • QUEUE.. • • •• • • •••••••••••••• ••••••••••••••••• • •••••••••••••••• TO TlMEA SLIH 

EOK2 

c' 



( 

• Chart FA. Checkpoint Housekeeping 1 Routine 

IGCOQ06C 

****Al********* * • * ENTRY * • • 
************.*. 

x .•. 

FROM SVC SL IH 
-CHART AC-

BI *. 
•• REQUEST.. ****82 •••• ****. • * CHKPT *. YES * * 

•• SUPPRESSED •••••••••• X* EXIT * 
*. .* * * *..* *************** * ••• * NO TO USER VIA SVC 3 

-CHART GB-

x .*_ [GC004(S) .*. 
Cl *. *.***C2********** C3 *. • * *. .GErMAIN DAAl* .* *. 

.* *. YES *-*-*-*-*-*-*-*-* .* GErMAIN *. YES 

**** • • * 84 * 
* * **** 

.x ••••••••••••••••••••••••••••••••••••• 
x . .. 

B4 * • .* * • .* GETMAIN *. NO *. SUCCESSFUL .* •••• 
*. .* *. .* 

* •• * * YES 

x .*. 
C4 *. .* WORK * • 

x 
**** 

* * * 02 * o • 
**** 

*.REQUEST CHKPT.* •••••••• x* CHKPT CANCEL * •••••••• X*. SUCCESSFUL •••••••• 
AREA TOO LOW IN YES 

*.P/P STOR FOR •••••• 
WRIT/READ STOR *. CANCEL .* * WORK AREA * •• .* *..* * SP=250 * *..* * •• * ***************** * •• * * NO * NO • *.* 

* * •• x. 02 * 
X * **** * .0. 

01 *. *****02*********. .* *. * * ****03********. .* VALID *. NO * seT MESSAGE * * * 
*.ADDRESSES IN .* •••••••• X*CODE AND RETURN ••••••••• x* EXIT * 

_.PARAMETER.* X * CODE * * * 
*.LIST .* * * *************** 

*. .* • ****************. * YES **** 

x .*. El *. 
.* *. YES.* CHKPT *. 

•••• *.DATA seT OPEN.* 
*. .* *. .* 

* •• * • NO 

X 

• * * 02 * 
* * **** 

TO CHKPT EXIT 
RTN (J GCOQ06C) 
-CHART FH-

*. .* *. .* 
• NO 

x 
**** * • * 02 * • * 
**** 

.*. IGC005(S) 
04 *. *****05********** 

.* WORK *. *FREEMAIN DBAI* 
.AREA TOO HIGH. YES *-*-*-*-*-*-*-*-* 

*IN P/P STOR FOR* •••••••• X* VALID PORTION * 
WR IT/READ STOR * OF CHKPT WORK * 

*..* * AREA (SP=250) * 
*. .* ***************** * NO . . 

••••••• : •••• x. 

X 
*****E4********** * INITIALIZE * 
*WORK AREA WITH * 
*INFO TO BE USED* * BY SUBSEQUENT * * LOADS * 
*************.**. 

x .*. 
F4 *. 

XIGC004(S) 
*****E5********** 
*GETMAIN OAAl* 
*-*-*-*-*-*-*-*-* * CHKPT * * WORK AREA * * SP=250 * 
***************** 

*****F 1 ********'1'* 
*OPEN * 
*-*-*-*-*-*-*-*-* 

****F3********* .* *. 

XIGC005(S) 
*****F5********** 
*FREEMAIN DBAI* 
*-*-*-*-*-*-*-*-* 
*INVALID PORTION* * OF CHKPT WORK * * AREA (SP=250) * 
***************** 

* * *CHIC.PT DATA SET * 

* * ***************** 

.•. 
Gl *. 

.* *. • * OPEN *. NO *. SUCCESSFUL •••••• 
*. .* *. .* * •• * * YES . . 

••••••••••• x. 

X 
*****Hl********** 
*CAL.C. WK. AREA * 
*SIZE FOR RESTRT* 
*PROG. CALC NO. * 
* OF DEBS AND * * TIOT SIZE * 
***************** 

XJGC004( SJ 
*.***Jl********** 
*GETMAIN DAAl* 
*-$-*~*-"-*-*-*-* * CHKPT * 
* WORK AREA * * SP=250 * 
*****.*********** 

x 
**** 

* * * 84 * 
* * **.* 

x 
**** 

* * * 02 * • * 
**** 

* * YES .* *. * EXIT *X •••••••• *.REQUEST CHKPT.* 
* * *. CANCEL .* 

*************** *..* * •• * 
TO CHKPT HOUSEKEEPING 3 * NO 
RTN (IGC0206C) 
-CHART FC-

X 
****G4********* 

* * * EXIT * 
* * *************** 

TO CHKPT HOUSEKEEPING 2 
RTN ()GCOI06C) 
-CHART FB-

x 
.* • 

G5 *. .* *. • 
.* GETMAIN *. YES • *. SUCCESSFUL .* •••• 
*. .* *. .* * •• * * NO 

x 
**** * * * 02 * 

* * **** 

Section 13: Charts 383 



• Chart FB. Checkpoint Housekeeping 2 Routine 

IGC0106C 

384 

•••• Al** ••••••• 
• 0 
.. ENTRY .. 
o • 
** •• * •••••• ** •• 

• FROM CHKPT HOUSEKee:PING 1 
-CHA.RT FA-

x .•. . .. 
Bl *. 82 •• • ••• *83 •••••••••• 

•• GET Dee.. •••• .. .. 
• FOR THIS OEliS ... YES.* •• NO .. SET MESSAGE .. 

• SET A SWITCH IF* •••••••• X*.KEV LENGTH = •••••••••• X.CODE AND RETURN. 
THIS IS OUTPUT *. 0.. X" CODe l1li .... ...* .. .. * •• * ••• * • • •••••••••••••••• 

.. NO .. YES *.*. 

x 
• 0. 

Ct •• •• *. .* CHKPT •• NO 
•• DATA SET ON •••••• *. TAPE •• 

*. .* * ••• 
.. YES •••• o O. 

.. 01 •• X. 
o 0 •••• x 

• 0. 
Dl •• 

• 111 •• 

x 
* ••• 

o • 
.. 83 * 
o 0 

•••• 

.*CHKPT o.s ••• NO *. RECFM = •••••• 
_.UNDEFINeD •• .. .. .. .. 

.. YES 

x . -. El •• 

x ••• * - . .. B3 .. 
o 0 .*.* 

•• CHKPT •• .* •• 
•• 0.5. •• VES" .. 

*.8LKSIZE ABove •••••• x. HI • 
•• MINIMUM .* *. •••• * ••• •• • * _ NO 

x 

·X 

•••• o • 
.. 01 .. 

* * * ••• 

o 0 
* 63 .. 
o * •• *. 

X 
• ••• C3 ••••••••• 

* -.. EXIT .. 
- 0 *.* ••••••••• *** 
TO CHKPT EXIT 
RTN (IGCOQ06C) 
-CHART FH-

..-. 
• 0 
• 84 • 
o 0 

•••• 
x .0. 

84 •• 
•• III • •• _. VES 

•• ACTIVE Toe •••••• 
•• 1 •• 

*. •• *. • • 
* NO 

· x 
.0 • 

C4 •• 
•• IS •• 

x •••• * 0 
• B3 • · -* ••• 

•• THERE AN III. YES *. IRB OR STRe •••••• *. ONRB •• 
*.C~IN.* * ••• 

o NO 

x 
.0 • 

04 * • 

x ••• * o • 
III S3 • 
o 0 
••• * 

• * *. .** • 
IS THERE A TYPE NO • * 

.3 OR 4 SVRB ON.* •••• x* F4 • 
*.RB CHAIN .* III III *... . ... 

III ••• 
• VES 

ii 
.* • 

E4 •• •• * • ._ IS _. NO 

•• IT eov MODULE •••••• .. .. III. .111 .... * YES •••• * •• 
• F4 •• x. 
•••••• X 

x •••• o 0 

*' 63 * 
o * • ••• .0. .•. . .. 

F1 •• 
• 111 •• 

•• CHKPT *. NO 
•• o.s. BLKSIZE •••••• •• = 0 .* 

III. •• 
III •• * * VES 

X 
••••• GI ••••• ***** 
lIIoeVTVPE • 

111-.-*---*-*-.-*-. lllGET MAX BLKSIze* 
• AL.1.0WO ON DEV. III 
*FDR CHKPT o.s. • ••••••••••••••••• 
•••• * -. • HI *.x... 

o * ••• * x . -. HI •• .. .. 

x 
•••• * '0 

• B3 • o _ 

* ••• 

•• CHKPT •• NO 
•• 0.5. OPENED •••••• 

_.FOR WRITE._ .. .
III. •• 

• VES 

x 
• 0 • .II _. .. .. 

x •••• 
* * • 83. 
o ·0 •••• 

•• CHKPT 0.5 ••• NO 
III.DSORG = eSAN •••••• 

•• OR SPAM •• .. .. 
III ••• _ YES 

x •• 111. 
* • • B4 • 
* • •••• 

x· 
•••• * 0 * B3 • 

* * • ••• 

F3 III. F4 •• .111.. .111_. 
VES.. Joe *. YES.III RUNNING *. 
••••• INVOKING .*X •••••••• *.ON MVT SYSTEM •• 

x ._ .. 
* * 
• 63 * o 0 

•••• 

•• ROL.LOUT .111 III. •• ...* ...-•• •• •• .* 
• NO • NO 

• •••••• : •••• x. 
x .0. .-. 

G3 •• G4 •• 
• _15 ,JOB •• .. -. ves.. STEP A •• •• VAL. 10 •• NO 

••••• MOTHER OR •• 

x •••• • • 
• 83 • 
* * •••• 

•• DAUGHTER •• 
•• TASK •• .. . -.NO 

x .•. ..... H2.......... H3 .. 
• INDICATE. •••• 
.POSSIBLE ERROR. YES •• ANY •• 
.IN RETURN cooe .x •••••••••• OUTSTANDING .* 
• AND MESSAGE • ..ENQUeuES •• 
• CODe· •••• .................. .. .. 

• NO 

. . 
• •••••••••••••••••••••••• x. 

x 
.* • 

-13 •• .. .. 
ves •• ANY •• NO • 
••••• OUT5T ANDING •••••••• *. WORK .* 
x • ••• 

* * 
• 83 • 

* -• ••• 

*. •• .. .. 
* 

..USER-SUPPL.IED •••••• 
•• CHECKIO •• -. .. 

. .... 
• YES 

ii • ••• H" ••••••••• 
* • 
• EXIT • 

• * ** ••••••••••••• 
TO HOUSEKEEPING 3 
RTN C IGC0206C I 
-CHART FC-

x •••• o * 
• 83 • 

• * •••• 



(-

( 

• Chart rc. Checkpoint Housekeeping 3 Routine 

IGC0206C 

****A ••••••• * •• • • 
• ENTRY .. • • ••••••••••••••• 

• FROM CHKPT HDUSEKEEPING 1 
• -CHART FA-
• OR CHKPT HOUSEKEEPING 2 
• -CHART FB-

x .••.• 81.·.·· .•••• 
• CONSTRUCT ECB. .. 
.. lOB. CHANNEL • 
.. PROGRAM TO BE • 
.. USED TO WR ITE .. 
.. RCDS + STaR .. 

••••••••••••••••• 

X 
••••• Cl •••••••••• 
• • • • *GET TTR OF JeT .. 

• 0 o • •••••••• ** ••••••• 

X 
••••• 01 •••••••••• 
*CVTPCNVT * 
• -*-*-*-*-*-$-*-* 
• 0 • CO~VERT TTR OF .. 
.. JeT .. 
••••••••••••••••• 

X 
••••• Et •••••••••• 
*XDAP .. 
• -.-*-*-*-*-$-*-* 
.. READ JeT INTO • 
• SUFFER OF CHART. 
.. WORK AREA .. ••••••••••• * ••••• 

X 
••••• Fl •••••••••• 
*WAIT • 
• -.-.-.-*-*-*-*-. 
• * o 0 
o • 
••••••••••••••••• 

x .0. 
Gl •• • •••• G2 •••••••••• • * *. .. .. • ••• 63 ••••••••• 

• _SUCCESSFUL •• NO .. SET MESSAGE .. * .. 
•• COMPLETION DF.* •••••••• X.CODE AND ReTURN ••••••••• x. EXIT • 

•• I/O.. • CODE.. • •••• • • • •••••••••••••• •• •• • •••••••••••••••• 
• YES TO CHKPT EX IT 

RTN (I GCOQO~CI 
-CHART FH-

x .-. 
HI *. 

•••• • ••• HZ ••••••••• 
•• •• YES. • 

•• REQUEST CHkPT ••••••• ~.X. EXIT • 
•• CANCEL •• • • *..* ••••••••••••••• .. .. 

• NO TO CHKPT EXIT 
RTN II GC OQ06C I 
-CHART FH-

X 
........ 1 •••••••••• 
• INCREMENT • 
.... CTNRCKP FIELD • 
• (ND. OF CHKPT'S. 
• TAKEN) IN JCT • 
• BY ONE • ••••••••••••••••• 

x ••• * 
o 0 
• 84 • 
• 0 •••• 

.* •• - . • 84 • 
* 0 
.*** 
x .-. 

84 •• • •••• 85 •••••••••• 
..REQUEST*'. • • 

•• SYSTEM- •• YES. • 
•• GENERATED ••••••••••. X. GENERATE • *. CHECKID •• • CHECKIO • .... . . 

•• •• • •••••••••••••••• 
• NO 

· . • X ••••••••••••••••••••••••• 

X 
••••• C4 •••••••••• 
• CONSTRUCT • 
• CHR (CHKPT • 
.HEADER RC I) IN • 
.BUFFER OF CHKPT* 
• WORK AREA • • •••••••••••• * ••• 

x .•. 
04 •• • •••• 05 •••••••••• 

• .REQ RET.. • MOVE SYSTe M- • 
•• OF SYS- •• YES • GENERATED • 

•• GENERATED •••••••••• X. CHECKID TO • I 

•• CHK.ID TO •• • USER-PROVIOEO • 
..USER •• • FIELD • • •• * ••••••••••••••••• 

• NO •. 

· . • X ••••••••••••••••••••••••• 

X 
••••• E4 •••••••••• 
• PAD • 
• REMAINING • 
• BUFFER WITH • 
• ONES • · -•••••••••••••••• * 

X 
• ••• F4 ••••••••• 

• 0 • EXIT • o 0 

••••••••••••••• 
1'0 CHECK 1.10 
RTN (IGCOS06C) 
-CHART FO-

Section 13: Charts 385 



• Chart FD. Check I/O Routine 

IGC0506C 
*****A2********** 

****A 1 ********* ... ... * ... * OBTAIN * * ENTRY * •••••••• X* CHAIN OF Dess * 
* * * FROM Tee .. * ••••••• *...... * .. 
FROM CHKPT HOUSEKEEPING 3 
-CHART FC-

****************. 

l< 
CHKDCOIO .*. 

*****8.*****.*.** 82 *. 
... GET DCB'" .... *. ****63.******** 
... FOR THIS DEB" ... NO •• ALL •• YES'" * 
.SET A SWITCH IF*X •••••••• *. DES'S .* •••••••• x* EXIT ... 
*THIS IS OUTPUT'" •• PROCESSED.. ... * 
... ... *..* **************. 
***************.* * ••• 

••••••••••• x. 
x 

... TO PRESERve 1 
RTN (IGCOA06C) 
-CHART FE-

_.. CHKDC060 ••• • •• 
Cl *. C2 *. **C3******* C4 •• •••• •• *. * * •••• 

•• QUEUeD •• YES.. •• YES ... PURGE + seT... •• •• NO 
•• ACCESS METHDD.* •••••••• x*. QISAM .* •••••••• X.SWITCH IF 0.5. * •••••••• X*.PERM. ERRORS •••••• 

*. .* *. .* * TAKEN OFF • *. •• ...* *... . QUEUE * *..* 
••• * * •• * *********** ••• * 

• NO • NO • YES 

x 
**01******* • * 

* PURGE + seT * 
*S_ITCH IF 0.5 •• * TAKEN OFF * 

* QUEUE * 
*.**.*.**.* 

***. * *. * Fl *.X. 
* * 

x .•. .*. 
02 *. 03 *. .* *. .* *. •• *. YES .* ERROR •• YES 

*.PERM. ERRORS .* •••••••• X*.OPTION ACCEPT.* •••• 
*. .* *. .* 
*..* *..* *. .* *. .* x 

*NO *NO ***. 
* * * Fl ,.. 

X 
**E2******. 

* * ,.. PURGE + SET ,.. 
*SWITCH IF 0.5. * * TA.KEN OFF • 

• QUEUE • 
*********** 

* * **** 

CHKOC090 .~. X 
E3 *. *****E4********** .* *. * SET • 

.* *. YES * SWITCH FOR * ... X.. OUTPUT .* •••••••• X*RESUME I/O-SET * 
*. •• x * ERROR CODe 16 * 
*..* ,.. ,.. 

*. .* ***.****.***.***. * NO 

**** x 
x .*. 

*****FI**** •• **** F2 *. 
* * .* *. 

X 
*****F3********** 
* * • * ,.. NO ... *. YES • * FJND * 

•••• * GET NEXT DEB *X •••••••• *. PERM ERRORS .* •••••• * lOB IN ERROR * * • *. .* * * * * *..* * * ********.******** * •• * ***************** 
x * 

x .*. 
G3 *. .* *. • VES.* UNIT *. NO • 

•••••••••••••••••••••••••••••••••••••••••••••• eXCEPTION •••••••• 
*. .* 

*. .* * •• * 
* 

386 

X 
****G.********* 

* * * EXIT * • • 
******.****** **. 

TO RESUME I/O 
RTN 'IGCON06C J 
-CHART FH-

x 
**** 

* * * Fl * 
* * **** 

c 

c 



( 

• Chart FE. Preserve 1 and 2 Routines 

PRESERVE 1 
IGCOA06C 

PRESERVE 2 
IGCOD06C 

• ••• • • .. A5 • • • .*.-
x .' . ..... "3.......... A5 * • 

* ••• A1.*.**.*.* • • .... ..,2......... .." .* •• • • * GET • YES .1Ie _. 
*' ENTRY • • ENTRY ••••••••• X.NEXT TIOT ENTRY.X ••••••••••• : ••••••••••••••••••••••••• ANOTHER T10T ._ · . • • *. •. .1Ie ............... ............... .. .. . . 

FROM CHECK I/O 
.. -CHART FD-

X 
•••••• a l •••••••• ~ •• 

WRITE CHR ............. 
x .•. 

FROM PRESERVE 1 
-CHART FE-

Ct *. • •••• C2 •••••••••• . *.. • • • * ... YES • CKRETCOO = • 
•• I/O ERROR •••••••••• X. X'OOOC' • *. •• .. CKMSGCOD = • 

1Ie..1Ie • X'0016' .. 
III. •• • •••••••••••••••• 

• NO 

x .•. 
01 •• 

• 1Ie IIC. 
•• •• YES 

X 
•••• 02 ••••••••• 

• * *.010 EOU OCCUR •••••••• • EXI T • *. •• 
*. .-lie ••• 

• NO 

x . '. Et •• 
• 1Ie CHKPT IIC. 

.. 
· . ••• ** •••••••••• 
TO RESUME I/O 
RTN UGCON06C} 
-CHART FH-

....... .. •• .. • .. X 
.' . E2 •• .. .. 

••••••••••••••••• lie ••• 

X 
•••••• 83 ••••••••••• 

READ JFCB 
(TTR IN TIOT 

• ENTRY) 

• •••••••••••• 

x .'. 
C3 •• • ••••• C" ••••••••••• ... . . 

... SUB- •• YES .. 
... ALLOCATE ............ X 

•• REQUEST •• .. .. . ... 
• NO 

READ .JFCB 
(TTR FROM 

SlOT) 

••••••••••••• 

· . • X ••••••••••••••••••••••••• 
x .•. 

03 •• .. . . 
NO •• IS THERE •• 

•••••• A DEB FOR •• 
..THIS JFce •• .. .. 

• •• * 
• YES 

x .'. E3 •• 
•• IS •• 

• NO 

x .•. 
B5 •• .. .. 

NO •• IS THeRE •• 
•••••• GOG BIAS •• *. COUNT •• 

•• TABLE •• . ... 
• YES 

.x ••••••••••• 
X 

• ••••• C5 ••••••••••• 

• READ IN GOG • 
BIAS COUNT 

TABLE 

* •••••••••••• 

X PREOBH 
• •••• 05 •••••••••• 
• BUFFER HANDLER • .-.-.-.-*-.-.-.-. .. WRITE BUF IF • 
• FULL-MOVE REC * * TO BUFFER .. • •••••••••••••••• 

.. 
x . .. 

E5 •• .. .. . 
•• DATA SET *. NO 

•• PARTITIONED •••••• 
•• CHKPT •• YES • NO •• OCB OPEN •• .... • *. FOR QSAM OR .* •• ANOTHER •• YES • 

•• DATA SET ON •••••• •• GOG BIAS •••••• *. .• .. .. .. .. 
• YES 

•• TAPE •• .. .. .... 
• NO 

• •• ..... ...... X. 

X 
••• *.F I •••••••••• • • • NOTE TTR OF THE. 
• CHR AND SAVE tN. 
• CHICPT SAVE AREA. • • • * ••••••••••••• *. 

.XCTL 

.. ... 

· . • X ••••••••••• 

X 
•••• G I ••••••••• · . • EXIT • · ..." ••••••••••••••• 

TO PRESERVE 2: 
•••• (IGCOD06C) 

• • -CHART FE-
• HI •••• • • •••• x .•. 

HI •• 
•• HAS •• 

•• EOU •• YES • 
•• OCCURRED •••••••• 

•• BEFORE •• .. .. .. .. 
• NO 

X 
••••• .11 •••••••••• 

• • 
• SET • 
• FI..AG EOU .. 
.. OCCURRED • 

• • ••••••••••••••••• 

X 
•••• "1 ••••••••• • • 

• EXIT • • • ••••••••••••••• 
TO CHKPT HOUSEKEEPING 3 
RTN (IGC02Q6C) 
-CHART FC-

X 
••••• F2 •••••••••• · . • CKRE TcOO = • 
• X' OOOS' • 
• CKMSGCOD = • 
• X' 0018' • ................. 

X 
•••• G2 ••••• * ••• • • 

• EXI T • • • ............... 
TO RE SUIIE I/O 
RTN UGCQN06C) 
-CHART FH-

x .... . .. * HI •• . . .... 
•• eSAM •• 

..PROC ••• . ... 
• YES 

x .•. 
F3 •• .. .. •• *. YES 

... TAPE DEVICE .* .•••.•.•.••• : •.••.• •• .* •• .* • •• * 
• NO 

x x .•. .•. 
G3 •• G4 *. • * •• .* •. 

•• COUNT •• 
..TABLE •• . ... 

* NO . . 
• •••••••••• X. 

X PREoeH 
• •••• FS •• ·.·.*.· . .BUFFER HANDLER • .-.-*-.-.-.-$-.-. 
• * • WRI TE BUFFER • · . ••••••••••••••••• • .xCTL 

.. 
x 

• ••• 6S ••••••••• 
• NO.. DIRECT •• NO •• 15 DATA SET •• • • •••••• ACCESS DEV I CE. * •••••••• IN READ .* • EXIT • .. .. .. .. ••• * 

.. YES · . .X ••••••••••• 

x 
••• *.H3.* •••••••• 
• CALL VOL SEQ • 
.NO (JFCeVLSQ-I • 
• + OEeVLSQ), • 
.. PLACE INTO • 
• JFCBVLSQ • ••••••••••••••••• 

•• BACKWARD •• 
•• MODE •• 

* •• * 
• YES 

X 
• •••• H4 •••••••••• 

• • 
• PLACE VOL. • 
.. SEO. NO. FROM • 
• DEB INTO JFCB • • • • •• ** •• * ••••••••• 

• • • •••••••••••••• 
TO CHECKMAI N 
RTN (JGCOF06C) 
-CHART FF-

•••• • • · . .x ••••••••••••••••••• : •••••• • A5 *X •• · .. 
" X PREOSH 

....... 3 •••••••••• 
• BUFFER HANDLER • *-.-.-.-.-$-.-.-. 
*WRITE BUFFER IF. 
*F1J.LL. MOVE REC •• 
• AND UCBTYP INFO. 
.TQ BUFF. • 
••••••••••••••••• 

............. 
x .•. 

•••• • NO .•. 
.IS * • .. .. 

YE'S •• •• 
• ••••••••••••••••••• ANOTHER JFCBX •• 

X 

... .. .. . . . ... 
• x .. 

K3 •• • ••••• K4 ••••••••••• 
.' PREDBH 

••••• KS •••••••••• 
.SUFFER HANDLER • . .-.-.-.-.-.-.... -. .. .. 

•• IS.. • 
..THERE A .JFCex •••••••••• x •• .* .. . . .., .. 

• NO 

x •••• · . • A5 • • • .. *. 

READ IN JFCBX •••••••• X.WRI TE BUFFER IF. 
• • • FULL, MOVE • 

.RECORD TO BlIFR." ••••••••••••• • •••••••••••••••• 

Section 13: Charts 387 



• Chart FF. Checkmain 1 and 2 Routines 

388 

CHECKMAINI 
IGCOF06C 

****Al********* 
* * '" ENTRY '" - . *************** 

FROM PRESERVE 
• -CHART FE-

X (MINT" 
*.*"'*Sl*** •• *** •• 
*WRITE RTN * 
*-*-*-*-*-*-*-*-* 
'" CIP OF PRCS. '" 
*PROG STOR ,Gscve* * CHkPT WK ,GR EA '" 

***************** 

Cl-ECKMAIN2 
IGCOG06C 

"'."'.A2******.4. · . * ENTI=iY * 
* * ********"'*.**** 

FROM CHECKMAINI 
-CHART FF-

X 
"'****82"'********* 
.. IN IT, SI..R * 
* LNGTH=200 * 
*eYTE!, GET P/P * 
'" TCEI ADD~, GET * 
.CUMMY FlOE ADOR.* 
*******.********* 

***. 
* * * A3 * > • 

**** 

****' 
* * * AS * 
- * **** 

x .-. 
AS *. X 

*****A3********** · . * GET PROBe * ****A4********* .* *. * * NO .* *. * PROG TCB * '" EXIT *X •••••••• *. ANY LLES .* 
*CHECKMAIN ADOR * '" '" *. .* * > 
******"'**"'******* 

****.********** *..* 

x .>. 

TO CHECKMA IN3 
( IGCOH06C) 
-CHART FG-

83 *. *****64******"'*** 
.* HAS *. * * 

.*INITIATORS *. NO * GET * *. CHAIN BEEN .* •••••••• X""INITIATOR.S TC8* 
*'. HANDLEO .* * AODR * 
*..* * * * •• *' ***************** * YES 

**** 
••••••••••• X. * * 

* •• * • YES 
**** 

• > * 65 *.X. * * .x ••••••••••• 
**** X 

*****85********** 
* * *' GET *' * FIRST CDE IN * 
* JPA * 
• > ***************** 

**** · .. * C5 ::fe.X • 
• •••••••••• X. 

•• X* H2 * 
* • 

**** * - x 
X CMINTW 

*****Cl .... ******** 
.'IIR ITE RTf\ '" 
*-*-*-*-*-*-*-*-* 
'" WRITE CIR OF '" 
"'PRoe PROG STOR '" 
'" BEL CW CHKPT IIfK '" 

***************** 

X (MINT'll 

*****01*****" *** * .WRITE RT" ,. 
*-*-*-*-*-*-*-*-* ,.. WRITE CIR OF * 
'" HIERAR.CHY Cr-.iE '" * IF PRESEI\T '" 

***************** 

x .'. 
El *. .* *. .* HAS LAST *. YES *. WRITE EEEN •••••• *. CHECKEC .* *. .* * •• * _ .c 

X CrotCHKl 

X 
*****C2"'.**.***** 

• * - * * GET POE ADOR .. 
* • • • ***************** 

x . -. 

x • *. 
C3 *. • * *. • * HAS PI'P *. NO • *'. CHA.IN BEEN .* •••.•• *. HANDLED .* 

*. .* * •• * * YES 

............. 
02 *'. *****03********** .* *. *WRITE SUR * 

.* *. NO *-*-*-*,-*-*-*-*-* *. ANY FeGES .* ..•••••• X* WRITE SUR OF *' *. .* * PGE & FBOE IN * 
*..* * CHKPT ENTRY * 

* •• * ***************** *' YES 

X 
*****E2********** 
*MFlllE St,.;f( *' 
*-*-*-*-*-*-*-*-* *' IIIRllE *' * Sl,.FER\I'ISOR * * FtECOFOD OF PGE * 
***************** . . 

• )1 ••••••••••• 

x 
. *. 

X 
*****E3****"'*.*** * GET * * CKPT SYRB * * AODR-GET NEXT • 
• RS AOOR. * 
• * ***************** 

**** 
* * • * F3 *.X. 

* **** * x .> • 

**** .•. 
*****C4********** C5 *. 
* * .* * • * * NO.* CDE= * • 
* GET NEXT CDE *X •••••••• *.COE OF BLOCK .* 
* * *. .* * "" *..* 
***********'****** * •. * 

x 
.* • 

04 *. 
.* * • 

*' YES 

X 

• * *. YES 
*****05********** *WRITE SUR * 
*-*-*-*-*-*-*-*-* * WRITE SUR * 
*OF COE IN CHKPT* * ENTRY • 
***.*.**-******.* 

*. MORE coes .* •••• 
*. .* *. .* * •• * * NO 

x 
***** 
*FG '" * AI*' 
* --

x 
***'* 

- > * C5 * 
- * ***. 

**** : FROM 
*FF * • FG02 *' E5 *.X. * > *.** x .-. 

E5 *. 
**** .* *. 

*' * YES.* *. • J3 .X •••• *. IS IT A PRB .'" 
*' * *. .* **** *..* * •• * * NO 

F2 *. F3 *. *****F4********,** 
X 

*,****FS********,.* *****Fl ********** .CHECK '" • .* *. •• *. * GET TACT *' * -*-*-*-*-*-*-*-*-* .VEs .* *. .* *. yes * ENTRY. OFFSET * * > 
:c~~ ~~~R ~R ~~~ : • ••• *. MORE POES .* *. TRANSIENT .*' •••••••• x* OF NSI IN * •••• *' GET NEXT LLE * 

* RESUfCe 11'0 * 
***************** 

X ''''EOY 
*****Gl********** .eev RTN * 
*-*-*",,"*-*-*-*-*-* 
.TST FOR ECY. IF* 
*eov. TO RESUME .. 
• 1/0 W/ERR ,,",sG * 
***************** . . 

• x ••••••••••• 

X 
.***Hl."'**.**** 

* * * EXIT .. 
* * .************** 

TO CHECKMAIN2 
RTN( IGCOC:06C) 
-CHART FF-

*. .* *. .* * •• * * NO 

X 
.****G2* •• _****** * GEl * 
*lNITIA'TOFl'S TCe* *' ADOR, GET * 
*L-St-AFED PROG 'S* * TCB ADDR iii 
***************** 

**"'* * * • * H2 *.X. 
* • 

**** 
X 

*.*.::fH2********** 
- * - * '" GET SPCE ADDR * 
• * * -***********.***** 

*. SYRB.* * TRANS. AREA. * 
...* * SVRB LENGTH * 

* •• * *'*********'******* * NO 

x • *. 
G3 *. *****G4****,****** 

.* *. * * • * *. YES * GET * *.RESIOENT SVRB.* •••••••• X*LENGTH OF SVRB *' 
*. •• • * ...* * • 

••• * ****** •• **.****** > NO 

x 

. . 

.X ••••••••••• 

.*. X 
H3 .". ***'**H4*, •••• ***** 

.* *. *WRITE SUR * 
YES •• IS THERE *. NO .-*-*-*-*,-*-*-*-* 
••• *. A CoE FOR •••••••••• x* WRITe SUR • 

it 
**** • * 

*' 65 * 
* * *.** 

*. THIS.* • OF SYRe IN • 
*.BLOCK.* * CHKPT ENTRY * 

* •• * ***************** 
* 

* * * • 
*****.*******.*' •• 

x .* . 
G5 *. .*' *. . .* *. VES • 

*. MORE LLES .* •••• •• .* *. .* * •• * • NO 

X 
***,*HS********* 

* * * EXIT *' · -.::fI**_.*******.* 
TO CHECKM"IN3 

**** (IGCOH06C) * *' -CHART FG* AS *X •• 
* * **** 

**:t**J2.a*****:t** *****J3*!********, J4 .*. *. * •• "'*JS •••••• ** •• 
*WRITE SUFI *. *' .* *. • * 
*-*-*-*-*-*-*-*-*. * .* *. NO * *' 
* WRITE SUR' * *' GET NEXT RB * •••••••• X*. MORE RBS •••••••••• x. GET FIRST LLE· * * OF SPQE IN' • * * *. .* * * ****' * Ct-.KPT ENTRV • * * *..* • * *' *' *****.******'**.** ***************.* •• .* **.***'*****.*.*** * H2 *' X * VES *' * • ..*. *.** **** 

**** • *' * • * * •• x ••• * J3 * •• x* F3 *' • K 1 *x •• 
: YES x -****' • * ***.. *' ****. • NO .*. .*. .*. KI *. K2 •• .****K3**** •• "_* .*.*.K4********** K5 *. 

•• *. .* *. *' *' *WRITE SUR * .* •• • * *. NO .* *. YES *' * .-*-*-* ... -*-*-*-* .* *. *. MORE SPQES •• X..... ••••• ANY DGES .* •••••••• x. GET OOE ADOR •••••••••• X* WRITE SUR ••••••••• X*. MORE DQeS •• *. .* X •• .* x * * .OF DQE IN CHKPT* *. •• 
*... ...* * *' *' ENTRY * ...*' •. _ ·:c *.** *. *.* ***************.. **'*.*'***'*****.*** .... ·:ES 

x 
**** 

* * * AJ • 

* * **** 

* • * KI * 
* * **-* 

c 

c 



• Chart FG. Checkmain 3 Routine 

***** *FG ,. 
,. .ou .. · 

• F~CM FFt4 
X 

*****Al********** 
* * ,. «ET ,. 
,. FIRST CCE I'" ,. 
,. LP" * • • 
******* ********** 

.x ••••••••••••••••••••••••••••••••••••• 
x .•. 

Bl *. **.*.82***""'."'''** .* *. :t .. • * CDt:.= *. NO" ,. 
*.COE OF ELect< .:t •••••••• x* C:;ET NEXT COE * •••• 

*. .* .. * *..* ,. .. 
* •• * ***************** ,. YES 

x 
.> • 

Cl *. **"":+C2**"""***** .* *. *WF:ITE SUR .. .* IS *. 1\0 *-*-*-*-*-"'-*-*-* *.BLOCI< All. LLE •••••••••• X* ItRITE Sl.R .. *. .* .OF coe I,.. CHKPT* *..* ,. EN'TR't ,. 

* •• * *********"'.****** ,. YES 

X 
*****OI.:to •• ****** 
*WRITE SUR '" 
*-*-*-*-*-*-*-*-* * WRITE SUR .. 
*OF CDE: I PI- CHKPT* 
'" EI'oTRY ,. 

***************** 
**** · . '* El * ••• 

.. ** •• * x . '. 

X **,.,., 
*FF '" 
.. E5* 

• > 
* 

El *. *****E2*:t".* .... *** 
• * *. '" * • * IS *. YES" .. 

*.THERE, ,eN IRB .* .•..••.• X*c:ET ADOR OF IRB* 
*. .* '" * *..* * * * •• * ***************** 

• ,c 

x X 
*****Fl ... ***>t.**** .... ***FZ ........ :t*.*** * .. *tIIFITE SUR .. 
* * *-*-*-*-*-*-*-*-* 
.. GET NEXT tEB .X •••••••• * iIIRITE SlJR * 
• * *OF IRB IN CHkPT* * * * ENTRY • 
.**************** ***************** 

x .*. Gl *. .• *. 
• * *. YES" '" *. MffiE CEES .* ..•. X'" H5 ,. 
*. .* * * 
*..* **** * •• * · " 

X 
*****Hl***.****** · . * GET * '" FLT. PT. REGS * • • • • 
*"'.************** 

X 
*****Jl********** 
.WRITE SUR * 
*-*-*-$-*-*-.-*-* 
• WRITE SUR OF • 
• F.P. REGS IN * •. CHKPT Ef\TRY * 
************."'*** 

X 

X 
*****h2******"'.** * ... ITE Sl.JR .. 
"'-:t-*-*-*-*-*-*-* .. WRITE ~UR • 
*OF DCB IN CHKPT* * ENTRY • 
** •• ********* ••• * 

X 
*.***..12***** •• *** • • * • * GET TIO" ADOR .. · . 
• * ***"'************* 

X 
*****K2********** 

CHECkMAIN:;) 
IGCOHObC 

****A3*"'**"'**** · . '" ENTRY * · . "''''*** ... '''******** 

X 

FROM 
CHECKMAIN2 
-CHART FF-

*****B3********** · . * GET * * FIRST COE IfI. * * JPA • · . **.************** 

**** · . * C3 •• X. · . • *"* x .*. C3 *. .* *. .* COE *. YES • *. FROM A LOAD .* •••. X. 
*. .* 

*. .* * •• * 
• NO 

X 
*****03********** · . '" GET * * FIRST RB OFF * * Tea * · . ****.****.******. 

............ X. 
x .* • 

E3 *. 
.* * • • * RS *. YES • *. = RB OF eOE .* •••• X. 

*. .* *. .* 
* •• * 

• NO 

x .•. 
F3 *. 

.* *. .* *. YES • *. LAST RB .* •••.•• 
*. .* *. .* * •• * 

• NO 

X 
*****63********** 
* * • • * GET NEXT RS * · . * • 
***"'************* 

*****Kl * •• ** .. * ••• • • .WRITE SUR '" ****K3****.***. * GET * • *CHKPT CCE AD DR * •••••• • • • • ******.********** 

*-*-*-*-"'-*-*-*-* '" '" 
'" WRITE SLR * •••••••• X* EXIT * 
.. OF TIOT IN * * * 
* CHKPT ENTRY * **.**"'********* 
***.************* 

TO RESUME I/O 
(IGCON06C) 
-CHART FH-

X 
*****A4*** •• ***** 
*W~ITt:' SUR '" 
*-*-*-*-*-*-*-*-* · . • • · . *****.*********** 

x .>. 
64 *. *****B5********** 

.* *. '" • .* *. NO * GET * *. MINOR COE .* •....... X* EXTENT LIST * *. .* ... (XL) ADOR * 
*..* * * * •• * ********"'***"'***'" * YES 

x X 
*****C4********** .****C5********** * * *WRITE SUR '" 
* * *-*-*-*-*-*-*-*-* 
'" GE:.T NEXT coe .X •••••••• * WRITF XL 
'" * * INTO SUP OF * * * CHKPT ENTPY * 
***************** ***."'************ 

x .'. 04 *. 
.* *. **"'* .* *. NO * * *. LAST COE .* •.•• X .. C3 .. 

*. .* "' .. *..* **** * •• * * YES 

X 
*****E4********** · . · . * GET PIe ADOR * · . * • 
***************** 

X 
*****F4********** "'WRITE SUR * 
*-*-*-"'-*-*-*-*-* 
.. WRITE PIE * 
• INTO SUR IN * * CHKPT ENTRY * 
*******"'********* 

X 
*****G4********** • • * GET AOOR * * OF P/P FIRST * * SAVE AREA * · . ***.*.*.*****.*** 

X 
*****H4********** *WRITE SUR * 
*-*-*-*-*-*-*-*-* * WRITE SAVE * 
*AREA INTO CHKPT* 
• ENTRY * 
***************** 

X 
*****J4********** 
• GET AODR * * OF P/P SAVE • 
*AREA IN TQE OFF* 
*INITIATOR·S TCB* · . *********.*"'***** 

X 
*****K4"'********* .WRITE SUR ... 
*-*-*-*-*-*-*-*-* 
*WRITE SAVE AREA. 
• INTO SUR IN • 
• CHKPT ENTRY * 
.*** •• ******** ••• 

X 
*****ES********** · . * GET * * G.P.R.·S IN * 
• CHKPT SVRB ... • • ***.********.**** 

X 
*****F5********** 
*WRITE SUR * 
*-*-*-*-*-*- ... *-* * WRITE .. 
*G.P. REGS INTO * 
* SUR * 
*********.******* 

X 
*****G5********** · . .. GET * 
'" FIRST OEB OFF • 
* TeB * • • ***************** 

**** • *. * H5 *.X. · . **** 
X 

*****H5********** 
• > * SAVE OFFSET * 
'" TO DEB BASIC * * SECTION * • • ***************** 

X 
*****J5********** *WRITE SUR * 
*-*-*-*-*-*-*-*-* * WRITE SUR * 
"'OF OEB IN CHKPT* * ENTRY * 
***************** 

x 
*"'** . . 

* El * * • 
**** 

Section 13: Charts 389 



• Chart FH. Resume I/O and Checkpoint Exit Routines 

RESUME I/O 
IGCON06C 

CHKPT EXIT 
IGCOQ06C 

" •• *Al********* 
* * .. ENTRY .. • • • *.**.*.*****.* 

: FROM CHECKMAIN 
• -CHART FF-
• FROM CHECK I/O 
• -CHART FD-
• FROM PRESER VE 
• -CHART FE
X *** •• e 1.lf:**** •••• 

• * III OBTAIN .. 
.. CHAIN OF DEBS .. 
.. FROM Tce .. 

• * ••••••••••••••••• 

•••• A.3 ••••••••• 

• • .. ENTRY .. 

• • ••••••••••••••• 
• FROM RESUME 1.10 
• -CHART FH-
• FROM CHECKMAIN 
• -CHART FF-
• FROM HOUSEKEEPING 
X -CHART FA-.•. 

B3 *. • * *. ***.B4**.**.* •• •• IS THERE 41. NO. • 
•• CHKPT WORK •••••••••• X. eXIT • 

III. AREA •• * • *..* ••• * •••••••••• * 
* •• * .. YES TO CHKPT MESSAGE 

RTN (IGCOS06C) 
-CHART FI-

•••••••.•••• x. 

390 

x x .•. .*. . •. 
Ct •• C3 •• C4 *. 

• 111 *. .*.*C2*.*.*** •• .*.. ... . 
• 111 AL.L •• YEs" .. •• CANCEL •• YES.. •• NO 

*01 DEBS •••••••••• X. EXIT .. •• REQUESTED •••••••••• X4I. CHKPT TAKEN •••••• 
•• PROCESSED.. .. .. •• •• •• .* .... . ............. . ...* *... •• • * * •• * * •• * .. NO TO EXIT • NO • YES 

x .•. 
DI •• 

•• *. 
•• WAS •• NO 

III. THIS DEB •••••• *. PURGED •• 
:f. .* .... 

.. YES 

X 
•• EI ••••••• • • • • .. RESTORE I/O .. • • • • ••••••••••• · . • x ••••••••••• 

X 
*.*.*F 1.**** ••••• * • • • .. GET NEXT DEB .. • • • • ••••••••••••••••• 

RTN (IGCOOO6C) 
-CHART FH-

x .•. 
*.***D2* ••• **.4I** 03 41. * • •••• 
• RESTORE. NO •• *. 
• DCBSYNAO ADDR •• X •••••••••• CHR WRITTEN .* 
*FREE CHKPT WORK* *. •• 
.. AREA. •••• ••••••••••••••••• * •• * 

• xeTL • YES 

it 
••• IIIE2 ••••••••• 

• • 
• EXI T • · . . •• ** ••••••••••• 
TO CHKPT MESSAGE 
RTN (lGC0506C) 
-CHAAT FI-

x .•. 
E3 •• .. .. 

•• •• YES 
•• ANY ERRORS •••••• .. .. .. .. .. .. 

• NO 

x .* .• 
F3 •• 

•• CHKPT •• • 
•• DATA SET •• NO X 

•• PARTITIONED •••••• .. .. .. .. .. .. 
• YES 

X 
••••• G3 •••••••••• 

• * • STOW • 
• CHECKID AS • 
• MEMSER NAME • * • ••••••••••••••••• 

X 
.h .h 

••••• Hl •••••••• *. H2 •• H3 •• 
• CKRETCDD= • •••• •••• 
• X'OOOS'. NO •• •• NO.* STOW •• 
• CICMSG COD- .X ••••• :..... I/O ERAOR •• X •••••••••• SUCCESSFUL •• 
• x'oall'. •• •• •• •• · . .... ... . ................. .. .. . .. . 

• YES • YES 

it ••••• .,,2 •••••••••• 
• • 
• CK RETCDD= • 

· . • X ••••••••••• 

••••••••••• X. 

X 
••••• .13 •••••••••• 

• • * • • x·cooo· ••••••• • MOVE CHECKIQ TO. 
• CKMSGCCID=. X • JCT • 
• X'03IM' • ••••••••••••••••• • • ••••••••••••••••• 

x .•. 
~3 •• .. .. 

NO •• •• 
•• ••• ANY ERRORS •• 

x * ••• • • 
• All • • • •••• 

.. .. .. .. .... 
• YES 

x • ••• • • 
• 05 • • • •••• 

X 
••••• 04 •••••••••• 
• SET JCT DENT • 
.ANO JCTCKTTR TO. 
.ZERO-BLANK OUT • 
• CHECK]O FtELO • 
• ]N JeT • ••••••• * ••••••••• 

X 
• •••• E4.** ••••• *. • • 
• TURN OFF • 
.CHICPT TAKEN B]T. 
• IN JCT • • • • •••••••••••••••• 

X 
•••••• F •••••••••••• 

WR I TE UPOA TED 
• JCT • 

••••••• * ••••• 

x .*. G4 •• .. .. 
•• •• NO • 

•• 1.1'0 ERROR •••• X. 
•• .111 X .. .. . ... 

• YEs 

X 
• •••• H4 •••••••••• 

• * • • ., CKREl'COD = • 
• X'OOlC' • .. . 
• •••••••••• * ••••• . . 

.X ••••••••••• 

X 
••••• J4 ••••••• * •• • • 
• FREE CHkPT • 
.WORK AREA-LOAD • 
.. RETURN CODE • 

• • • •••••••••••••••• 

X 
• ••• K44I •••••••• 

• • 
• EXIT • • • • •••••••••••••• 
RETURN TO 
USER 

• ••• · . • A5 • • • ••• * 
x .•. 

A5 •• •• * • 
•• I MMEDI ATE •• YES 

•• RESTARTS •••••• 
*SUPPRESSED. * .. . . * ••• 

• NO 

.. 
X ** ••• 85* ••••••••• • • 

• SET * .CIiKPT TAKEN 61 T. • • • • ** •••••• * •••••••• 

x 
• •••• es ••••••• *.* 
• MOVE • 
• DE VI CE TYPE • 
• INFO AND VOL.. * 
• SERIAL NO. TO • 
• JCT • ••••••••••••• * ••• ....." . • * .x ••••••••••• 
., DS •• X. · .." .... . 

x 
• ••••• 05 ••••••••••• 

WAI TE UPDATED 
., JCT • 

• •••••••••••• .-
x .•. 

£5 *. .. .. 

• 

.* *. NO 
•• 1/0 ERROR .* •••• .. .. .. . . . ... 

., YES .. 
X 

• •••• FS •••••••••• 

• CK. • 
• RET COO= • 
.X·C03D' CK MSG • 
• COD= X'0206' • • • • ••• * •••••••••••• . . .-x ••••••••••• 

it 
• •••• G5* ••••••••• 
• • 
• RESET OCB • 
• 5VNAD-FREE • 
.CHKPT WORK AREA. 
• • • •••••••••••••••• .. 

. : 
i 

• ••• HS •• * ••••• * • • 
• EXIT • 

• * ••••••••••••••• 
TO CH KPT MESSAGE 
RTN C IGCOS06C) 
-CHART FI-

c 



{ 

( 

• Chart Fl. Checkpoint Message Module 

lGCOS06C 

****A3****** ••• • • ... ENTRY ... 

• • ***** ... *******. 
FROM CHKPT EX IT 
-CHART FH-

X 

****.83*******.*. o 0 
... GET MAIN * 
*S T DRAGE FOR MS G* 
... AREA ... 
o • 
********.***** ••• 

x .•. 
••• **C 1 *......... . .. **C2............ C3 *. • •••• C4** ••• *.... *** •• C5 ••••••••• _ 
... MOVE JOBNAME. ...... ... _* *. ... ...... * 
*OD!iAME. VOLUME" '" MOVE .TYPE 2.* *. TYPE 1 ... Move 'NOT'" ... MOVE ... 
... SERIAL NO., .X •••••••• *SUCCESSFUL MSG .x.......... MSG TYPE .* .••..•.• X*TAKEN· MESSAGE ••••••••• X.JOBNAME TO MSG.* 
... UNIT NAME + ... ... TO MSG AREA ... •• .* ... TO MSG. ARE-A ...... ... 
*CHECKID TO MSG.* * ... ...* ... ...... ... *******.*.**..... ***** ••• ***.**.*. * •• * •••••••••••••••• '" *** •••••••• *** •• * 

x .0. 
01 *. • * •• .* ..... YES 

o 

x .0. 
05 * • 

.* *. •• *. YES 
•• RETURN COOE=O.* •••••• : •••••••••••••••••••••••••••••••••••••• *.ERROR CODE = .* ••.• *. 01 .* *. .* *. .* .... 

• NO 

x .*. 
EI *. *****E2*********. .* *. .. MOVE • 

*. .* * ••• 
• NO 

X 
.****E5********** 
* 0 .* *. YES • 'ERROR' TO * • * MOVE * 

•• I4SGCOO = 02 •••••••••• X. MESSAGE, ..................... x. * ODNAME TO * •• •• * MESSAGE 10 = * *..* * 'IH30021' * 
* •• * ••• **** •• *.***.** 

o NO 

x 

• MESSAGE .. 
* 0 
.* •••• *********.* . . 

.1( ••••••••••• 

.*. X 
FI *. *****F2***.**.*** *****F5********** .• *. • MOVE * • • .* •• YES • 'ENQS' TO *. • CONVERT AND • *. NSGCOD = 01 .* •.••••.• X. MESSAGE. * •••••••••••••••• x.x •••••••••••••••••••••••••••••••••••••••••.• *MDVE ERROR CODE* *. .* * MESSAGE 10 * * TO MESSAGE * 
*..* * IHSOOSI • * • 

•• •• ********** •• ***** **.** ••• *.****.** 
o NO 

••••••••••••• x. 
X 

**.*"Gl** •• * ••• ** * MOVE • * • INVLO' TO • 
• MESSAGE. • * MESSAGE 10 = • 
• IHSOOll • 
*****.*.*** •••• *. 

X 
*****H 1*.*****.** 
o 0 
• CONvERT AND * • 
.MOVE ERROR CODE* •••••••••••••••••••••••••••••• * TO MESSAGE * 
o * 
*************.*** 

X 
.***"G3*.***.**.* 
o 0 

* INTO * * MESSAGE AREA • • • o 0 
• ••••• **.*.****** 

x .*. H3 •• 
.* *. 

NO •• DID *. 
•••••• CHKPT OPEN .* 

*.OAT A SET .* 
*. .* * •• * * YES 

X 
* •• ** .. 3***.**.*** 

* * * CLOSE * 
*CHKPT OAT A SET * 
• 0 • • * •••••••••• *.*.** 

: •••••••••• X: 

X 
•• * •• K3* ••••• **** •• **.K4* •• * •••••• 
• *.. .. * ••• KS**.*** ••• 
• FREE * • LQAD * * • * MESSAGE AREA ••••••••• X. RETURN CODE * •••••••• X. EXIT * * STORAGE" * *. .. 
.. * * • ..***.* •••••••• 
**** •• *.***.*.*** .* ••••••••••••••• 

RETURN TO 
USER VIA 
SVC 3 

Section 13: Charts 391 



• Chart FJ. Restart Hous~keeping 1 and 2 Routines 

HOUSEKEEP JNG 1 
IGCOOOs8 

HOUSt:.KEEPING 2 
IGCOIOSS 

392 

***.Al********* * • :II ENTRY ,. 

• • .............. -
XIGC005( S) 

••••• Bl •••••••••• 
*FREEMA1N DBA I. ...... -*-*-*-.-.-*-* • • :II SUBPDOL. = 252 .. • • ••••••••••••••••• 

XIGCOO.( 5) 
••••• Ct •••••••••• 
*GETMAIN DAA1* 
*-.-.-*-*-*-*-*-* ,. GETMAIN • 
.. FOR ALL P/P .. * STOFU,GE • ••••••••••••••••• 

X 
•••• *0' •••••••••• 
.. INIT. '* 
,. REST ART WORK • 
• AREA WITH INFO .. 
.. IN OSDR PARM " 
.. LIST .. ••••••••••••••••• 

X 
••••• E1 •••••••••• 
.. CALC REST. WK .. 
.. AREA OFFSETS • 
• FDR REPMAIN AND. 
• REPDCS'S WK lit 
.. AREA .. ••••••••••••••••• 

X 
••••• FI •••••••••• 
.. CDNSTR. REST. • 
.. DCB IN REST. .. 
*WORK AREA TO BE. 
• USED TO ReAO IN. 
• P/P STCR. .. ••••••••••••••••• 

x .'. Gl •• 
• :11 4K. •• 

• BYTES AVAIL ••• YES 
_.BELOW RESTART •••••• 

•• WRK. AREA •• 
It. •• 

•• • It 
• NO 

X 
••••• Hl •••••••••• 
• COMPUTE • 
• ADOR OF FIRST • 
.. BVTE ABOVE • 
• REST ART WORK • 
• AREA .. ••••••••••••••••• . . 

.X ••••••••••• 

XIGC005( S) 
....... 1 •••••••••• 

:~:~~~:~=-.-~~~: 
• 41< BYTES • 
• IN SPL. 250 FOR • 
• OPEN • ••••••••••••••••• 

X 
••••• 1<1 •••••••••• 
• OPEN • • ••• K2 ••••••••• ... *-.-.-.......... -.. • 
• ••••••• :..X* eXIT • 
• RESTART DATA •• • 
• SET. • •••••••••••••• ••••••••••••••••• TO RESTART HOUSEKEEPI NG 2 

RTN ClCiC010S8) 
-CHART FoI-

•••• A3 ••••• * ••• • • 
• ENTRY • • • ••••••••••••••• 

FROM RESTART HOUSEKEEPING 1 
-CHART FJ-

x .-. 
83 •• • •••• 84 •••••••••• 

•••• .MOVE O.A. lOB, • 
•• CHKPT •• NO .Ices, CHN PROG • 

•• DATA SET ON •••••••••• X. TO REST. WIC • 
•• TAPE •• • AREA FOR • 
•••• .READING STORAGE. 

•• •• • •••••••••••••••• .. YES 

X 
••••• C3 •••••••••• 
.MOVE TAPE IDS, • 
• ICS'S + CHN • 
• PRGM TO REST •• 
• VAK AREA FOR • 
• READING STOR *' ••••••••••••••••• 

X 
••••• 03 •••••••••• 
• UPDATE lOB • 
• IN DCB" ECB • 
.AOCR, NEXT J OS • 
.ADOR + CHN PRG • 
• AOOR • • •••••••••••••••• 

X ••••• c .......... . 
• UPDATE lOB • 
• IN DC::B-UPDA TE • .Tc::e ADOR" ME-XT • 
• IDS ADDR, CHN • 
• PRG AODR • • •••••••••••••••• 

. . 
• x ••••••••••••••••••••••••• 
X 

• •••• £3 •••••••••• 
.COMPUTE LENGTH • 
• AND OFFSET TO • 
• REPOCB'S WRK • 
.AREA I N REST ART. 
• WRK AREA • • •••••••••••••••• 

. !. ; ........... . 
F3 •• • •••• F ••••••••••• 

•••• .RSTREAO • 
•• CHKPT •• YES .-.-.-.-.-.-.-.-• 

•• OAT A SET ON •••••••••• )(. POSIT CHkPT • 
•• TAPE.. • DATA SET TO • 
•••• .CORR C"C; ENTRY • 

•• •• • •••••••••••••••• • NO 

X 
• •••• 63 •••• * ••••• 
.POINT • .---.-.-.-......... -. 
• POSITION • 
*CHKPT ENTRY TO • 
., FIRST CIR • 

••••••••••••••••• 

x . .. 
64 •• .. . . 

•• •• NO • 
..CORRECT ENTRy •••••• .. . . .. . . .. .. 

• YES 

• X ••••••••••• .X ••••••••••• 

X 
• ••• H3 ........ . 

• • 
• EXIT • • • . ............. . 
TO REPMAIN I 
RTN (lGCOSOSS) 
-CHART FK-

X 
••••• H4 •••••••••• 
.RSTREAO • .-----.-.-.-.-.-. 
• POSIT CHKPT • 
• DATA SET TO • 
• FIRST CIR • • •••••••••••••••• 

x .•. 
J4 •• .. .. 

• YES.. READ •• NO • 
•••••••• L.AST OSDR •••••• 

•• RCD. • • .. . . . .. -• 



•. Chart FR. Repmain 1 and 2 Routines 

REPMAINl 
IGC050Se 

•• **Al=lt"'''':t ..... ** · . ... E.N1R't ... 
* • • * ••••••••••••• 

Ff:Of4 RE5TARl' 
.. H(U5EKcEPtNG2 
• -Ct-: ART FJ-

• . '. 

.**. o • 
• A3 .. 
o 0 •• *. 

X •• * •• A3.*** •••• ** 
o 0 

o * *GET INPUT BLOCK*X ••• · . 
• * *.*.* •• ** •• ** •• *. 

ic 

REPMAIN2 
IGC060S8 

.***A4 ••• *_ •• ** 
o 0 

• ENTRY .. · . .111.** •••• ** •••• 

FROM REPMAINI 
-CHART FK-

81 *. ** ••• 82*.*.*.*.*. 
.•. 

63 *. • *.**.134*.******.* . *.. .. SAVE '" .11< •• 
• 0 .* CHKPT *. YEO;; .. DEB VOL. SEC. '" NO .* •• * GET 

•• OATA SET ON .* ••••.•.• X."'O. CHt<.Pl OA1A " ••. *. L>OI.:: .* • NEXT INPUT 
•• TAFE.* ... SET FOR EO\l .. *. .* * B\...OCK *..* ... TEST ... *. .- • 0 * •• * ••••••••••••••••• • * •• * *** •• **.**.* •• ** • * .c 

X 
•• *.*Cl*** ••• *.*. 
... SAVE ... 
... CHI ACtR IN ... 
... CHKPT WI( .. REA ... 
... FeR Eev TEST *. 
• 0 •• * •• ** ......... ** 

· . • x .......... .. 

X RMINHI 
•• ***01.* •••••• *. 
• READ RTf\, ... 

*-*-*-*-*-*-*-*-* ... REAC IN ... 
.. STORAU neVE. 
... CHKPT WK ,tiRE ..... 

*********.*.* •••• 

; RMINTW 
••••• El ••• ** •• **. 
*PE:AO Rl... ... 
*-*-.-.-*-*-*-*-* 
... ~E AC.", '" 
... STORA<::E eeu::w ... 
... CHKPT WIC .... REA ... ••• * ••••••••••••• 

X RMINTW 
*****Ft******.*.* 
",REAC RT", '" 
*-$-*-*-*-*-*-*-* * Rf::AO IN * 
*tlIERARCHY 1 IF * 
• PREset-T ,. 
*****" •• * •• * •• *. 

; .0. 
Gl *. 

• * *. " 
• HAS LAST PEAO. YeS *. USING eecel .* •••• 

BEE'" Ct-eCKEO* *. •• * ••• * oc 

)c RMCHKl 

*****Hl.********* "ChECI< RT"'" • 
*-*-*-*-*-.-.-*-* * CHECK lAST * 
*READ I F ERROR, " * TO E.XIT RT... * 
******* **,. ... * .*." 

X RMECV 
**.**Jl** •• *** •• * 
• EOV RTN. * *-* .... ,.-*-*-.-.-.-* 
• TEST FC~ Eey • * IF EOV, TO * 
*RESTRT EXIT RTN* 
••• *.***.**._ •• *. 

· . • X ••••••••••• • *.:t. 
o * * (2 • 
* • *.** 

•• *. 
o • 
,. J2 • . . • Yt:::s 

•• *. • •••••••••• x. 

•• * •• '2 •• 4 ••• ** •• 
* 0 o • 
• GET INP\JT BLoCK.JC ••• 
o • · . *.*.****.*.*.*."'* 

x .•. 
02 •• .* •• 

.* •• 
o • 
• C2 • 
o 0 

•• 010 OLD •• NO 

• • •••• C3******.*** 
• MOVE • 
"'DOE TO sas. PUT* •• * OOE ON DQE * •••• 
.CHAIN OFF SPQE * · . .>11 ...... *.* ••• * ••• 

•• ~QE HAVE .* •••.•••••••••••••••••••••••.••• 
lit. FBQES •• 

*. .'" lit .... 
* 'rES 

; 
• •• **E2**"' ••••• *. 

x············ .*. 
E3 *. 

* • • •• lit. 
* PUT C,LC *' .YES .* lit. 
IItFBOE PT~S INTO * •••• *. IS IT A RS .* * NEW FeE ,. 
o 0 .** ••• * ...... * •••• 

· . 
• )1, ••••••••••• 

X 
*,*4**F2*.* •• **.** 

• 0 *' PUT NE .. peE • 
*ACDR INTO FSQE '" 
*~TRS OF NE_ PQE* 
* • • **.* ••••• "' •••••• 

; 
• 0. 

G2 lit • .. "'. 
.1It •• YES *. MORE PQES .* •••• 

lit. •• 
*. •• .... 

o NQ 
x .... 

* 0 * C2" * 
* * • **** .x ••••••••••• 

• ••••• H2 •••••••••• · . o • 
• GET INPut BlOCk* 

• 0 o 0 .* ••••••••••••••• 
•••• 

o *. 
• .J2 •• )C. 

*. .* *. •• * •• * * NQ 

• ••••••• x. 
x .*. 

F3 *. •• *. • .* IS IT AN lit. YES .*. LLE WI TH •••••• *. CDE-LPA .* 
lit. •• 

• •• * * NO 

x 
.* • 63 _. .. .. 

• **.* · . * H3 * · . *.*. 

• .* IS IT AN •• NO 
••• LLE WITH .* .••. 

•• COE-JPA .* 
lit. .* • •• * 

'" YES · .*.'" .* *. .* H3 •• x. 
.0 • : •••• x 
.*."' •• H3****.***.* .* MOVE LLE • 
.*TO SOS, PUT LLE* .* ON LLE CHAIN *' .* OFF WK AREA, • 
•• GET INPUT BlK * 
• .... ** ••• **.*.**** 

· . x •••••••• x 

• ••• * 
o * 
• F4 ,.. 

• * * ••• 

o 0 x ••••••••••••• X .... 
• ••••• J2*.* ••••••• , 

* • 
• MOVE SPCE TO • 
• SOS PUT SPOE ON. 
• CI-AIN IN WK • 
• AREA • ••••••••••••••••• 

* •• *.J3.***.****. 
* 0 
"'INCREMENT AOoR * 
.0F CHAIN IN WK • 
* AREA TO START * * NXT CHN. * 
*** ••• * •• **.* •• *. • 

• .*. 
C4 •• *****C5*******.** 

•• *. * * 
•• •• NO. * *. IS IT A P~B ."' •••••••• x* MOVE 5VRe TO • 
*. •• '" 5QS '" *..* * * * •• * ***.* •• ** •• ** •••• * YES 

• .****04**.******* · . • .' . 
05 *. .* *. 

• 0 
YES •• *. 

*MOVE PRB TO SOS* •••••••• RESIDENT SYRB.* 
o • 
* * ******* •• **.***** 

· . • X ••••••••••• 

x 
.****e4.*.****** • 
• MOVE PRTCT KEY • 
* FROM TeB TO * 
.RB-PUT PC ON RB* 
*CH OFF WK AREA * * GET INPUT eLK • 
*.** •• *** ••••• *** 

X 
• ••• *F4-*****.**** · ... o * 

• 

*NoVE CDE TO SQS*X ••• 
o • 

• 0 * •• ***.**** •• *.* • *... . 
o *. 
• 64 *.x. 
• 0 •• ** • *****G4***.**.*.* 
,. PUT CDE • 
* ON CDE CHAIN .. 
*OFF WK AREA-GET. 
.NEXT INPUT BLK * 
o 0 
* •• ** •• ** •••• **** 

x 

** •• 
• 0 
* F4 • o • 

**** 

*. .* *. •• • •• * 
• NO 

X 
*****E5** •• *.**** 
*GET NEW AOOR OF • 
,. NSI IN New • 
* TRANS * 
*ARE;A-STORE INTO* * SYRB PSW • 
.*.**-*.*.* •• * •• * 

.. *. .*. 
H4 *. HS *. .*.. .*.,... .* *. NO .* *. YES. 

•• IS IT AN XL .* .••••••• X*. IS IT A CDe .* ••.• 
-. .* *. • • *..* ...* * •• * * •• * 

• YES • NO 

X 
*****J4********** • • * MOVE XL TO .. 
• 50S, STORE XL ••••• * AODR IN COE • 
* 0 
*.*.*.* •• * •• *** •• x 

*.** o • 
• G4 • 
o • 

X 
*** ... 5 ••• ****** 

* • 
,. EXit * 
o 0 

• ••••• ***.****. 

TO REPMAIN3 
(lGC0705B) 
-CHAAT FL-

x :xyES·····················: YES 
*.** 

.*. .*. .*. K2 •• K3 •• K4- * • 
• *.. •••• .*.. .*.*1(5** ••• **** .* •• yes .* HAS ONe *. NO .* HAve TWO •• NO. ... *. LAST SPQE .* •••••••• X •• CHAIN BEEN .* •••••••• )C*. CHAINS BeEN .* •••••••• X. EXIT • 

•• .111 •• DONE .* *. CONE .* • :41 ...* *... *... . .... ** •••• * ••• * •• * *. •• * ••• * NO ... ... 

x 
**.* • • * A3 • 

• 0 
••• * 

TD REPMAIN2 
(I GC060EtB) 
-CHAR"" FK-

Section 13: Cha.rts 393 



• Chart FL. Repmain 3 and 4 Routines 

REPJIIIAIN:! 
I GC070SE 

****41."'******* • • 
'" EI\T~Y '" 

• * *************** 

X 

FROM 
REPf(AIN2 
-CJ- ART FK-

*****81 ,.."'******** · . 

*"'.:to • * 
.. 042 * o • 

**** 

X 
*****A2**,.lflt,..**. * SAVE • 
... OFFSET 10 DE£' ... 
*EAS1C SEClIO""_ ... 
... NC'VE DEB lC :$ 

• S.P. 254 * 
**********,.****,.. 

x .*. B2 •• 
• * *. 

"" MeVE * 
'" ACCq PIE IIIoTO ... 
'" TeE '" 

• * lNOEX *. NO *. SEQ. ACC. • ••••• 
*.METI-I DEB •• • • 

"""""'''''*'''*''''''**'''''''''''''''. 

X 
*****Cl ,.,.,.,.,."' •• ** 
'" C:ET .. 
'" INPUT ELeCK '" 
"" MOVE A["tR CF .. 
'" p,p S~VE ,IlREA '" 
'" I/IrITC TeE '" 

***************** 

*. .* "* •• * 
• 'tES 

X 
*****C2****.***** · . .. IO;ESlQRE '" 
*PTRS TO E"l.E.NTS* · . 
• * *********:t***lf*** 

· . . " .......... . 
X 

*****01$"'=+******* 
'" GF.T I""Pl.T '" 
*BLOCK-fl,CVE ACDR* 
... P/P SAVE "REA '" 
"'INTO IfIolT'S TQE. 

• • 
***************** 

x 
*****El ********** 
'" GET II\PUT '" 
'" BLCCfC.-flCVE .. 
*CHKPT teE AODR '" 
'" TO WORK ,,1<: E " '" 

• * "'*"''''''''''''' "''''''''''*''''''''''''. 

X 
*****Fl.:t******** 
'" GET '" 

x . 
•• ,.**02** •• *,. .... ,.. 
* .UPDATE DEB * * P~QT. KEY & • 
*APPENDAGE lABLe* 
*Plf; _ PUl DEB ON* 
* \1iK AREA Cf-:AIN * 
****.****** .... *** 

X 
*:IIo ... :IIo*E2*.*.****** 
: FUT Tee ADD A : 
'" INTO DEB_ GEl .. 
.. INP\,;T BLOCK • 

• * •• *** •• ***.* •• *** 

x . '. 
F2 *. •• *. 

'" INPUT ELG(K- * 
"'RESTOR E US ER' 5 .. 

.* *. NO *. IRB .* •.•• 
.. SYNAC ,e.CCR .. 

* * *"''''**'''*''''''''''''*'''*.*''' 

X 
*****Gl********** 
'" GET '" 
'" INPUT ELOCK- '" 
",MOVE GFR'S INTO. 
'" RESTARTS SVRB '" 

* * "'*"'."'""' •• "'."'''' ••• 
"''''.* * '. '" HI *.X. 

* * 

*. .* *. .* * •• * * 'tES 

X 
*****G2*.******** 
• MOVE * 
'" IRB TO S.P. * * 253-PUT I AS * * AODR IN"TO DEB * • • 
**"'************** 

*"'.'" 'x x .*. 
*****HI ******.*** H2 *. 
• .. .* *. ,.. .. NO .* *. 
*GET INPUT BLOCK*X •••••••• *. ANY IQES •• 
* • *. .* ... * *..* 
***************** * •• * 

*-** * • * .II •• X. 

... **** * x .*. JI *. .* *. .* *. YES *. DEB .* •••• *. .* *. .* * •• * • NO 

X * •••• KI ••• *.***** 

x 
**** 

* * .. A2 • 
* * **** 

_ YES 

x 
.****J2**** ••• *** 
* * * RESTORE * 
*PTR TO NEXT I QE* 
* * * * *********.******* 

• *.** 
• * * •• x* HI * 

* • •••• 
* RESTtlRE * •••• K2*** •••••• * FP REGS-GET ... * 
.. INPUT BLOCK * •••••••• x. EXIT * 
• MOVE TIOT TO *. • 
.. WORK AREA * ********** ••• *. 
*******.********* 

x 
.*.* 

* * * Jl * 
* * **** 

TO REPMAIN4 
(lGCOe05B) 
-CHART FL-

394 

REPMAIN4 
IGCOa058 

.***A3********* 
• * .. ENTRY * 
• * * .... * •• *** ••• _. 

FROM 
• REPMA!N3 

**** * 0 
.. 044 .. 
* 0 

**** 

X 
.****A4********** o • 
.. GFT * .. 1ST COE IN JPA .. 
* OR LPA * 
• 0 _ ••• * ••• **.** •••• 

• -CHART FL-
**** 

• 0 

X 
*****S3********** 
... SWAB Tce .. 
.CHAIN PTRS WITH • * WK AREA PTRS- * 
"'GET 1ST COE tiFF. 
'" Tee JPQ ... **.* ••••••• * •• **. 
.*.'" · '. ". C3 *.x. 

• 0 ***. X 
*****C3***** •• *** 
• 0 .. GET ... 
.POS IT I ONAL PTR * 
.. TO PRS .. 
• • * •••••••• * •••••• * 

x 
• 0. 

03 *. 
• * "'. 

* 84 *.x. 
• * **** x .0. 

B4 *. *****85*********. .* *. .. .. .* POS IT *. YES .. PUT * *. POINTER TO .* •••••••• X* COE AODR INTO * 
*.THIS COE .* * RB * 
*..* * * 

*., .* ************"'**** o NO 

X 
*****C4********** * 0 

• * • GE"T NEXT COE * 
• * * • 
***************** 

x .*. 
D4 *. •• * • 

••••••••••••• X. 

X 
*****C5********** o • 
* • * GEl NE'XT RB ... · . o 0 

***************** 

x . .. 
os *. .* •• • * *. YE,S .* *. NO • YES .* * • 

•• POSIT. PTR = .* •••• 
*. 0 .* *. MORE coes .* •.•• . .. *. MORE ASS .* 

*. .• 
* •• * * NO 

X 
*****E3****** ••• * 

• * .. GET * 
*1ST RB OFF Tee .. · . * • *.*"' •• * •• * •••• * •• 

x 
"'*** 

• 0 

* G4 * * • 
**** 

*. .* *. .* * •• * * YES 
**** • * 0 

•• X* B4 * * • 
**** 

****E4********* o • 
• .X* EXIT • · . ************-** 

x 
**** • * * J3 • • * 
**** 

*. .* *. .* * •• * 
• NO 

x .•. 
E5 *. 

.* *. 
NO.* ANY *. 

• •• *.LLE-S OFF TCB.* 
*. .* *. .* x * ..• .... 

* •• .. F3 •• x. 

**** • * * E4 * * • 

TO REPMAINS 
( IGC090SB) 
-CHART FM-

*.** o • 
* G4 • 

* * 

* YES 

o 0 

.**. x **** .•. 
F3 *. *****F4*.******** .* *. * ... .* POSIT *. YES * PUT * 

*.PNTR TO THIS .* •••••••• X* ADOR. OF RB * *. RB.* * INTO CDe * 
*..* • * 

* •• * ***************** 
• NO 

X 
*****G3.* •• ****** 
• * * * * GET NEXT RS .. 

* * * * *** .... ************ 
**** 

• * • ..x. F3 * 
* • 

**** 

**** 
• o. ... G4 •• x. 

• * **** X 
*****G4********** 
* * * • * GET NEXT caE * 
• 0 * • 
******.***.****.* 

x 
• *. 

*****H3**.******* H4 *. 
* * .* *. * .GET * NO .* *. 
• SECOND RB OFF *X •••••••• *. MORE CDes •• 
• Tce * *. .* * * *..* ***.********.**** * •• * 
***. 

• *. * J3 •• X. 
* *. **** X 
••••• J3****.*.**. 
* 0 * GET .. 

_ YES 

**** * • ..x* C3 * 
* * **** 

.****J4*******.*_ 
* * • PNT * 

**** .X ••••••••••• 

X 
*****F5*.******** 
* * ... GET ... 
.POSITIONAL PNTR. 
... TOCDE * 
* 0 
***************** 

X 
****.GS********** 
* * * GET • 
*IST COE IN JPQ * * OR LPQ * 
o * 
***.************* 

**** • 
• *. • H5 *.X. 
• * **** • .* • 

H5 *. .* *. 
YES •• POSIT. *. 
• •• *.PNTR TO THIS .* *. COE .* 
x 

.**. 
* * * J* • * , 

**** 

*. •• * •• * * NO 

X 
.****.15********** 
• * * * *POSIT. PNTER TO* * caE ADDR INTO *X ••• * GET NEXT coe * * COE .. 

* * •• *.** ••••••••••• 

x 
*.** • * * A4 * * • **.* 

• LLE * 
* * ******** •• ***.**. 

**** • * * J4 * 
* * *.*. 

* • 
• 0 **-************** 

**** .. . 
•• X. H5 • 

• • *** • 
X .*. 

*****K4********** k5 *. 
- * .* *. • • * .* *. YES. * GET NeXT LL.E ••••••••• X*. MORE LLES .* •••• 
* * ~. .* * • ...* ***.******* ••• *** * ••• 

• NO * ••• 
• * * •• x* e4 * 

• * .*** 

c 

/~ "'1 
~j 

c 



(-

( 

• Chart FM. Repmain 5 Routine (Part 1 of 2) 

IGC09QSe 

..*. • • .. A2 .. 

• • .... 
; .'. A2 ... ..***A3****.*.**. 

****A 1********* • • .*.. .. .. 
•• It. NO" .. * EN1RV * .... St..BP[;OL = 0 .................... X* GET NEXT SPOE: • · . •• .* X" .. 

*************** ...* ,. .. * •• * ** ••• ** •••••••••• 

x .'. 

Fr.;OM REMAIN4 
-C"ART FL-

Bl _. 

.. YES 

~ 
••••• 82 •••••••••• 

• * *. · . YES.* ERROR *. ••• *. IN P~EVICUS .* *. LC;"C .* *. .* x * •• * •• *. • • ... C~ ... 
• he 

• • .... 
X 

•• **.Cl •••••••••• 
.. .. *.*. 
• GET FlqST !PQE'" .. .. 
• AhC PReTECT KEY.X. _ .. Cl .. 
.. OF Tee .... .. 

... .. .*** 
***************** 
.*.* * • 

.. RESTC,RE * .. 

.. P/F SPgE AODR ....... · . · . ••• ** •••••••••••• 

,( .*. 83 •• .. ... 
YES .* *. NCI ...... *. MORE SPQES ....... .. 

•• .* 
••••.•• * x .. ..... *... *FN .' *FN .. .. 83. 

.. C3 •••• FROM FNKI ... 

* 0 * *.*. X 
••••• C3 •••••••••• 

• * .. GET AODR OF .. 
.. FIRST 5PQE .. 
.. CHAIN TO AE .. 
.. FREED .. _ ••••• *.* •• ** •••• 

• 01 *.x. • * • .x ••••••••••••••••••••••••••••••••••••••• 
•••• x .0. x 

01 •• • •••• 03 •• *. ** •••• .. .. •••• II< • 
•• SPQE *. YE'3 • • II< • 

•• OF sUeptcL 0 •••••••••••••••••••• • 03 ••••• x. FREE SPQE • *. .• .. .... . 
*. .• • .. *.. .. * ••• 

• he 

x • *. • El •• *.* •• E2.1t** •••••• .. .. • • 
YES •• *. o • ••• . *. suepCCL .252 •• .'ET OIllNING ~PQE. *. •• * * *. .* • • •• • * ••• * ••••••••••••• 

• he 

x 
••• X 

Fl.. • •••• F2 •••••••••• 
• * *. .. • • * *. NO. • 

•• SHARED SPQE .* •••••••• X* GET FlfOSl DCE • *. •• • .. *..* • • .. .. . ............... . 
• YES . . 

••••••••••• x. 

it 
x .*. •••• *G1*.*....... G2 •• 

• • .• *. * • NO •• •• ••• * GET NEXT ~PQE .x •••••••••• ANY DQEIS •• • • • •• .* . . • *... 
x .*_.*._ .. _ .... *.. .. .* 

•••• • YES • • _ Cl '* 

• • _ ... ..... ... ····x·········· ... x 
X 

•• '*.'*Hl.'* •• * •••• * • • 
• RESET .. 
• kEY FeR 2K • 
• SLeCk .. o • 
•• * •••• *.**.*.*.* 

• .0. 
Jl •• .. .. . .* .. NY •• YES. 

•• MORE 2K •••••• *. BLOCKS •• .. .. 
•• • * 

• NO 

x ••• YES 

•••• '*Kl* •••••• *.. K2 •• 

* •••••••••••••••• 

.x ••••••••••••••••••••••••••••••••••••• 
x .' . E3 •• • •••• e ••••••••••• •• *. • • 

•• •• YES • FREE •• 
lIC. ANY DQES •••••••••• X. OQE-GET NEXT * •••• •• .* • DOE • *... • * *. •• * •••• * ••••••••••• 

• NO 

X 
• •••• F3** ••• *.* •• · . o * 
• GET NEXT SPQE • 

• * • • • •••••• * ••••••••• 

x .' . G3 •• .. .. 
YES •• • • 
• •••• MORE SPQES •• 

x •••• 
* * • 03 • 
* • .'* •• 

*. .'* •• .'* ••• * o NO 

x .*. H3 •• .* ••• H", •••••• * ••• 
.'*.. • • ..*. .* HAS 2ND •• NO • GET ADDR OF. III * 

• •. CHAIN BEEN •••••••••• X.2NO SPOE CHAIN ••••• X. Cl * 
•• FREED .* • TO BE FREED. * * ...* '* • • ••• * •• * .* •••••• * •••••••• * YES 

x 
.* • 

.13 *. .*.**.14.** ••• * •• * •••• * '* •••• 
•• HAS 3RD *. NO • GET ADOR OF * • • 

•• CHAIN BEEN .* •••••••• X*3RD SPQE CHAIN * •••• X. Cl • *. FREED •• • TO BE FREED '* • • *... . • ..** • •• '* •••••• ** ••• * ••••• '* YES 

x .*. .111. 
K3 *. K4 •• · . .... •• *. •••• • ••• KS,*.* ..... ** 

• • •• •• NO 
• GET NEXT CQE ••••••••• X.. MORE DOES •••••• 
• • •• .* • * ...* *................ .. .. • x • ••• 

o * 
• A2 * • * •••• 

•• •• YES •• SECOND •• YES. • *. ERROR •••••••••• X •• TIME THROUGH •••••••••• X. EXIT • 

'*... •••• • ••• RTN •••• • •••••••••••••••• 

• •• * * ••• 
• NO * NO 

x _.* .. 
*FN. 
• AI. 

• • • 

x 
*.* •• 
.FN. 
• At • 

o • 
o 

TO .JFCB PROC 1 
UGCOG05B) 
-CHART Fe-

section 13: Charts 395 



• Chart FN. Repmain 5 Routine (Part 2 of 2) 

***** *FI\ '" 
'" '-1* .. 

'" FRGM FMK.j m:; FMK4 

X 
*****Al********** • • 
'" GET ,tecH OF '" 
'" FIRST LLE IN '" 
'" WORK .aj;EA '" · . ***********:t***** 

x .•. 
Bl * • • * *. .* *. NO *. ANY LLES •••••• 

*. .* *. .* * •• * * '1ES 

• •••••••••• x. 

• * •• **el ********** · . '" FREE '" 
*LLE-GET ACC~ OF. * NEXT LLE. ,. · . ***************** 

• .'. 
01 *. • .* •• 

• VES .* "'. 
•••••• MORE LLE'S .* 

*. .* *. .* * •• * 
• NO · . • x ••••••••••• 

X 
*****El ********** • • 
'" GET ACCR OF '" 
'" FIRST cae IN '" 
'" WORK AREA '" • • 
"'''''''*''''''''' "'*."''''''' "''''* '" 

x .•. 
Ft *. • * •• 

Nt .* ':t. ••• *. ANY CDE5 • '" 
*. .* *. .* x * •• * 

**** • • 
'" 83 '" 

'" YES · . **** 
X 

*****Gl"'**."'***** • • 
'" FREE COE-FREE '" 
.XL-GET ACOR OF '" * NEXT COE '" • • 
*********.******* 

x .•. 
Hl *. *****H2********** 

.* *. '" '" 
YES .* *. NO '" '" ••• *. MORE CCES .* •••••••• X*FREE RESTART'S '" *. .* * RB • *..* * • 

*. •• • ••••••• * •••• "'*** x •••• • • 
• 83 * * • 

• 

•• "'* x .•. 
•• ***"1*****.*.** .12 •• 
• BU1'_D * .. * *. * DUMNY FBQE ~T * YES.. ERROR *. 
*START OF REGI0N*X •••••••• *. IN PREVIOUS •• 
• DESCRIBING REG.* *. L.OAC .* 
• * *.... •• ** ... ** ••••• *** * •• * 

X 
• ****KI ****.***** 
• TRANSFER * 
• Tee MSS CHAINS * 
*TO WK AREA-ZERO* 
*Tce MSS PTRS IN* 

: ... **;*!~!~*****: 

• NO 

X 
** •• K2*.****** • • • 

• EXIT * • • ••••• * •• * ••••• '" 

.** •• 
*Ft'II * 
• 83* 

•• * FROM FMB3 

X 
*****83********** .SET UP TO COMP * 
.CURRENT REGION * • * 
• BOUNDRS WITH .X ••••• 83 * 
• E!OUNORS AT * '" * 
* CHECI<PT TIME * ***. 

***"'.************ 
**** • • 

• C3 *.x. · . • •• '" x .'. 
C3 *. 

.* *. 
YES.* ARE •• •••• *. HIGH ENDRS .* *. E.QUAL .* *. .* * •• * • NO 

X 
*"'*".03*****.**** · . 
'" GET * * LENGTH OF NEW • 
• AREA * • • 
"'.*"' •• **"'*"'***"''''* 

x .'. 
E3 *. ****.E4********** 

.OLD FIRST. "" BUILD NEW * 
•• FREE AREA *. NO * FIRS"" '" 

•• EXT TO START •••••••••• X*F8QE-CHAIN NEW * 
*OF OLD STOR* * FaQE TO OLD * *..* • F8QE CHAIN * 

* •• * **********.** •••• * YES 

X 
*****F3****** •••• 

• * * ADO LENGTH OF '" 
*NEW AREA TO OLD* * FIRST FBaE * 
* • 
.**,.***********.* . . 

••••••••••• x. . . 
.x ••••••••••••••••••••••••• 
x .'. G3 •• 

• * *. .* ARE *. NO *. LOW 8NDRS .* ••••••••••••••••••••.•.••••••••• *. EQUAL .* .. .. 
* •• * * YES 

X 
•••• *H3****.***.* • • 
'" GET LENGTH OF * 
.NEW AREA-BUILD * * NEW LAST FBQE * .. . 
**"'************** 

x .*. .*. "3 *. ***** ... *.**.* ••• * .. 5 * • 
.* *. * ...* *. .LAST OLD FREE. NO .. CHAIN NEW * X •• MAIN STOR *. NO 

..AREA EXT. TO .* •••••••• X* FBQE TO OLD * •••••••• X*.HIER SUPP IN .* •••• 
START OF OLD* * FBQE CHAIN * X *. SYSTEM .* 

".STOR •• * * * *... * •• * •• *.***.*.**. __ .* * •.• * x 
* .... * • 
.FM * 
.. C3* 

* YES • YES 

X 
*****K3.* •• ***** • * ADD LENGTH • 
• OF OLD LAST • • 
• AREA TO NEW * •••••••••••••••••••••••••••••••• 
*FBQE-CHAI N NEW * 
• F8QE • 
*.***.* •• *** ••••• 

X 
*****1C5********** * SET UP TO .. 
*COMPARE HIER.l * 
*CURRENT BNQR lE5* 
• WITH HIER.l * * CHKPT BNORS. * 
***.***.**.***.** 

•• 
* 

x 
TO JFeB PROCI, 
UG(OG05B) 
-CHART Fo- x 

396 

***** 
.FM * *. (3. • • • 

***. o • * C3 .. • • • ••• 

c 

c 



• Chart FO. JFCB Processor 1 and 2 Routines 

JFCP PROCESSOR 1 
IGCOG05B 

•••• AI ••••••••• · . .. ENTRY * • • •• * •••••••• * ••• 

JFeB PROCESSOR 2 
IGCOIOSB 

****A.3****.**** • • * ENTRY * · . • ************** 

. ........ : ..... . 
*****A4********** • • * GET • * NEXT TABLE' * * ENTRY • . . 
***************** 

FROM REPMA IN 
-CHART FM-

FROM .IFCB PROC 1 
-CHART FO- . . 

.X ••••••••••• 

x 
***-11' 

X 
****.81*********. · . .. COMPUTE NO. .. 
*DATA SETS. PUT *' 
.DEBS INTO TABLE. • • 
***************** 

REPDCB02 X 
.****Cl********** • • .. SEARCH NEW .. 
* TIOT FOR .. 
.CORRECT OONAME * • • 
**************.*. 

x .'. 01 •• ERROR CODE=20 
.* *. ****02********. •• *. NO" * *. NAME FOUND •••••••••• X. EXI T .. *. •• • .. 
•••• *************** .... 

.. YES TO RESTART 

REPDCB05 X 
*****E 1 ********** * INIT WRK AREA .. 
.. FOR EACH DATA * 
.SET-SU [LD DCB ... 
* DEE. lOB AND * * CHAN. PROG. .. 

*******.********* 

••••••••••• x •. 
:REPDCB09 x 

*****F 1 ********** • • .. GET .. 
.. NEXT TABLE .. 
.. ENTRY .. 

• • 
***************** 

x 

Ext T (IGCOV05B) 
-CHART FU-

.... REPDCB20 
Gl *. *.***G2********** .* *. *WAIT/PROCESS * 

.* *. YES *-*-*-*-*-*-*-*-* 
*.SEGMENT BUSY .* •••••••• X*IF ERR. TO EXIT. *. .* * RTN-COMPLETE * 

*..* * TABLE ENTRY * 
* •• * .* ••••• ***.*****. 

• NO · . • x ••••••••••••••••••••••••• 
•••••• ••••• •• X ••••••••••• 

X 
***.*HI****.** ••• • • 
• CONVERT * 
• TTR TO MBBCCHHR* • • 
• * •• ** •••• * •• **** •• 

X 
******J 1 *.*.*.*.* •• 

ISSUE * 
EXCP SVC TO * READ JFCa • 

***.* •• **.*** 

x .•. 
KI *. .* * • • * *. YES • 

•• L.AST ENTRy •••••••• •• .* *. .* * •• * 
• NO 

'XREPDCB20 
**.**H2****.***.* 
*WAIT/PROCESS * 
*-*-*-*-*-*-*-*-* 
*IF ERR, TO EXIT* * RTN-CQMPLETE * * TABLE ENTRY * 
****.**.**.**.*.* 

x .•. 
.,2 *. .* *. • .* *. NO • *. LAST ENT~Y .* •••• 

*. .* *. .* * •• * * YES 

X 
****K2********* • • * EXIT * • • 
****.*.** •• **** 

TO .,FCB PRoe. 2 

~~~~:~o~g~ 

. .. .
* B4 *)(. . .

x • NO .•. -*.
B3 *. 84 ••

.* *. .* *. ** •• ss*.******.
.t: NUMBER *. NO .* *. YES t: *

.VOLUME:S GT 5 . •••••••• X •• LAST ENTRY •••••••••• iX. EXIT •
. . X.. .* * *

*. • * *..* **.*.********** * •• * * •• *
,. YES *

X

C3" *. *. *****C4**********
.* *. * * .* DSQRG = *. YES * SET READ *

.1 NO. SEQ. OR . ••...•.. X*.IFCB EXTENSION *
*.DIR. Ace •• * * BIT * *... * *

* •• * **.********** •• **
• NO

X
*****03*******.** • • *COMPUTE NO XTNS*
* TO READ, GET * * JFCB EXT. TTR * • •

.x
X

*****E3********** • • * CONVERT ,.
TTR TO MBBCCHHR
• • * •
*.**.*********** •

X
******F3**.* •• *****

* EXCP/WAIT
READ .IFeB * EXTENSION *

*.**********.

x .*.
G3 *. ERROR CODE=24

.* *. ****G4********* .* *. YES * * *. ERROR .* •••••••• X* EXIT *
. . * * *. . * ****.** •• * ••• ** • •• * * NO TO RESTART

x .•.
EXIT (IGCOVOSB)
-CHART FU

H3 *. *****H4********** .* *. • * .* *. NO * GET *. *. CORRECT XTN X*NEXT EXTENSION ,.
. . * TTR * *..* * *

. . ***************** * YES

X
*****.13**********
* * **.* * MOVE CORRECT * • *
.VOLIO TO TABLE * •••• X* 84 * * ENTRY *
• • *.*.
*********.*******

TO MOUNT .lVERIFY
D.A. OR NON O.A.
-CHART FP-

section 13: Charts 397

• Chart FP. Mount/Verify 1 (Non Direct-Access) Routine

IGCOK05B .*. ERROR CODE

•••• At •••••••••

* *
A2 *. •••• .***A3* ••••••••

.* *. YES '" '"
'" ENTRY '" ••••• X •• ERROR IN NSL •••••••••• x. eXIT '"
* • ******* ••••••••

:FRDM .JFCB
.PROCESSOR2
.-CHART FO-

x .•.
81 *. • * *. . .* FROM NON •• YES •

*. RrN •• x • '"
*. • '" *******.* •••• ** * •••

• NO

x
***. • •

'" A3 '"
TO REST ART ex IT
(tGCOV058)
-CHART FU-

.•. . ..
82 •• B3 ••

•••• •••• • •• *B4** •••••••
NO.. CORR. •• ves.. •• YES. •

.STANDARD LABEL ••••••
*.(NSL) RTN ••

•••• *.VOL. MOUNTED •••••••••• X •• LAST ENTRY .* ••••.••• X. ExtT '"

.
• NO .*** · .. '" Cl •• X. e.

'" '" .x ••••••••••••• •••• x
•• ***C 1 ••••••• * •• • •
'" FtICI(UP DCB.. '"
,.. UCB. DEB '"
'" ADDRESSES • · .. •••• * •••• ** ••••••

x .'.
Ct *. • * DIR. *. YES *. ACCESS OR •••••••• *. NULL- .lIe

•• FILE .*
• NO

.;

x ..
• 0.

El •• . .

•• •• x •• •• * •
•• • * •••• • ••••••••••••••

• '" NO

: NO
••• X

C2 *. • •••• C3 ••••••••••
•• NSL ENTRY •• X ••••••••• GET NEXT ENTRY •

•• •• x. • ...lII • •
• YES •••• '"

• C2. '" •
• •• A3 *x •• •••• • •

X
.... • YES . ..

TO D.A. MOUNT/VERIFY
(JGCOMOse)
-CHART FQ-

* ••••• 02 •• * •• ***.** 03 •• *.04* ••••••

EXCP/WAI T
READ JFCB •

• YES

.*.. • .
••••• NO • NON.

• ••••••• x.. ERROR .* •.•••••• X.STANDARD LABEL. •• .* x • RTN • '"
•

.•. . ..
E2 •• E3 •• • *E4 •••••••• *.

• *SYSIN •••
YES.. SYSOUT.. "'.

.... '" .
• •• FROM *. NO •• •• NO. •

• •••• UN IT REC •• ••• X •• NON ST SEL •••••••••• x*. LAST ENTRY •••••••••• X.GET NEXT ENTRY.
•• GRAPHIC •• •• RTN • '" •• •• • '" ...* *... * • x •••• • • * H2 '" • •

.. ..
• NO

•• •• •• •• • ••• * ••••••••••••
• • YES
X .*** ••••
•••• E2* •• X*C2. x

... '" • •
• FS

398

. x.................. • '" • •
X •••• • •••

F 1 .*... ;****F2**** •• ;;**···· F3 •••••
•••• • • "'SYS IN, "'.

•• CORR. lII. NO • GET NEXT. •• SYSOUT, •• YES *. VOL MOUNTED •••••••••• x. uce FROM LIST * ••• X •• UNIT RECORD •••••• •• .* *' IN NEW TJOT * •• GRAPHJC .* *... • • ••••
*' YES • NO

**.* · .. ,.. Gl •• X.

* • .* ••
X *** •• Gl* •••• * ••••

o •
• •
'" REWIND '" • • • • ••••••• ** •••••• **

x .•.
G2 ••

•• LAST •• NO •• *. JOB ENTRY .* ••••
X .*.*.G3 •• *.** •••• • •

• CONSTRUCT ..
.CHANNEL PROGRAM.

• • • • •••••••••••••••••

.....
• • * C1 • • • * •• *

· .. •••• it
• ••• *F5 •••• * ••••• · .. • •
• FORMAT MOUNT •
• MSG • • • ••••• * •••••••••••

..
x .•. G4.......... GS .. ·

• WTO TO • YE·S •• OPEN ••
• INDICATE FILE .X ••••••• :... FOR JNPUT ••
• PROTECTION. •• .* •. • III... . ..•.......••. *.. • ...

• NO • YES •••• .. . • •••
x .•.

•• x. A3 * • • ••••
Hi •• • •••• H2. •• * ••••• *. • * •• YES .UPDATE uce DEB,. •

_.BYPASS LABEL •••••••••• X* MAKE CURRENT •••••••
•• PR!lC... x • lICe FIRST ON .. *..* • * L.IST • •• •• • •••••••• ** ••• * ••• * NO •••• X

X
••••• .1 1 ••••••• * ••
• •

• •
• H2 • • • •• *. • x •••••••••••

• YES .•.
J2 ••

•• CDRR. •• • • .READ AND REW IND. • • • '. X.. VOL MOUNTED •• • • * • •••••••••••••••••

x .•.
Kl •• •• *. • • * •• YES.

•• ST ANOARD •••••• *. LABEL ••
* •••

• NO

..
• NO
•• x. FS •
x. • ·

.*.YES
K2 *.

•• VOL *. NO •
••• X •• FIELD PRESENT ••••••
•.•• .111

•• .* * •• * ·

• •••• X. E2 • ..
• • • x

x ••••
it .•.

H3 ••
. 111 III. NO •

•• OUTPUT FILE •••• x.
III. .*

III. ••
III •••

• YES

x .'. .13 ••
•• FILE •• NO •

.... PROTECTE!;) ••••• X
III. ••

• YES •••• .. .
..x. FS • . .

..111.

. •• HS •••• * ••••• • • • •
• WTOR • • • • • * ••••••••••••••••

; .i J4-**........ JS ..
• * .* •• • REWIND • VEtS.. REPLY ••
• AND UNLOAD .X ••• ""...... = FILE ••
• • •• PROTECT •• · *............. *. • •

X
• •••• K •••••••••••

• •
• SET •
• NOT READY BIT*'

• ON * * • • ••••••••••••••••
x •••• • •

• Gl *' • • ••••

• NO

it .•.
KS ••

•• REPLY = *. NO •
•• NOT FJLE ••••••

•• PROTECT ••
III •••

• YES ..
it •••• • •

• £2 • • • • •••

C·
! -

("' .
. .,p

(

• Chart FQ. Mount/Verify 2 (Direct-Access) Routine
• * •• • •

.. A2 '" . .

x

*** • · . * AS • • • * •• *
X

IGCOM05B .•. RO.JFCB .* •
A2 •• **"'.*A4********** AS * •

••• "'At ••••••••• .* "'. • *** .READ JFCB * .* •• · . • * LAST *. NO • * *-*-*-*-.-*-*-*-* YE S • * ANOTHER * • *' ENTRY .. ••• X •• ENTRY DONE •••••• • El .X..... READ *X •••••••••• JFCe EXTEN TO •• • • *. .* • * • IN JFCB * •• BE READ ••

• *.************ *. .* .*** • EXTENSION * *.. •
.FROM JFCB * ••• x ******.********** * •• *
.PROCESSOR2 "'*"'* .-CHART Fa-

'" '" .OR NON-D.A. .:
.. 81 *.X.MDUNT/VER[FY •
'" '" .-CHART FP-

**** X

* YES "'*** • •
• Bl * · . ****

• NO

STRPRDS ••• X .SWOFF X CKCONCAK • *.
81 •• *****B4********** B5 * •

• * "'. ***"'82******** • · . * • .* *. • * DEVICE *. NO • * * NO .* IS *. *. IS DIRECT •••••••• '" EXIT '" '" GET NEXT OES "'X •••••••• *.DONAME BLANK .* *. ACCESS .* • • '" '" X "'. •• *. .* *************** * '" "'..* * ••• *****"'**********'" * •• *
'" YES

X NXUCB44

*** •• Cl***.***.*. • GET NEXT uee ..

TO SYSI N/SVSOUT
DATA SET PROCESSOR J
(lGCON058)
-CHART FR-

x .•.
C4 *. • * * •

'" YES

x ...
C5 *.

.* * • *-*-*-*-*-*-*-*-*
.. MAP '" .uee TO uee WORK.
.. AREA ..

X
*****C3********** * SWAP *
*uce ADDR POS IT •
"'IN TIOT IF ONLY*
.ONE uce AOOR IN*
* T lOT *

• NO .* *. • NO.* OSORG = * •
•••• *. LAST EXTENT .*

. .
• ••••• *.PART. ORG. OR.*

•• IND. SEQ •• *
****.*.**********

••••• ••• ••• x.
• X .OKVOL.SER •••

01 *. .****02*********. _* *. .READ/WAIT"
IS MOUNT SWITCH YES *-*-*-*-*-*-*-*-*

•• ON AND CORR ••••••••• · •• X* READ *
VOL. MNTED. X *IN VOLUME LABEL* *... * * *. •• • **.**.*.*********

* NO ****
**** · . "'lEI •• X. · . • **** •

.CKVOLI X NXVCB

. .
'" 02 * • • .* •• x .•.

E2 ••
.* *.

x

*. .'" * •• * * YES
**"'* .. .

• .X* A2 • · . ****
• *. MNTDA050

03 *. *****04**********
.* *. * UPDATE *

.* *. NO * VOL SERIAL. *
.DEVICE A OATA. •••••••• X*OATA MANAGEMENT*

. CELL . * AND USER I 5 •
.. * COUNT •

* •• * * •• ****** •• * •• *.* * YES

x
*****E3.******.*. · .

**** .. .
• .X* F3 _

.•. · . ****

E4 *.
.* *.

*****E I *****.* •••
*GET NEXT VCB *
--*-*-*-*-*-*-* •• CORRECT *. YES • · . *UPDATE SUB-UCB *

.* UCB *. NO · . · . • •

x .•.
Fl *.

.* *.
• NO •• *.
••• ••• LAST UCB .*

. . *. .* * •• * • YES

X
*****Gl**********
* VOL. *
*NOT MOUNTED SO *
.FIND AVAIL. UCB*
*ANO MOUNT VOL. * · . • * •• ****.** •• ****

x . '.
HI *.

• * *. • * *. NO
.USER COUNT = . .••• *. I •• *. .* * •• * * YES

x .•.
JI *. • * DEV. *. • • * PERMANENT •• YES.

. RESIDENT OR . ••••
*. SYS. ••

. . * •• * • NO

. VOLUME . ••••••
. MOUNTED .

. . •• • *
• NO **"'* · .. * F2 •• X. • • **.*
X

*****F2******.*.* · . *MOVE MOUNT AND '"
II' VOL]O INFO •
• 1 NTO MSG AREA '" · . •••••• **.** •• ****

x .•.

· . • • ***********-*** ••

**** * * .X ••••••••••• * F3 *.X. • •

X
*****F3****.***** • • * GET OLD UCB * •
* AND SPIN * ••••
* THROUGH DEB '" · . *.***************

G2 •• *****G3**********

.* *. * -.* DEVICE *. NO * CHANGE •
.IS DATA CELL . ..•..... X* MSG FOR DATA *

. . * CELL * *..* * * * •• - * ••• ** •• ****.*** • * yES

· . • x •••••••••••••••••••••••••
MNTDA030 X

*****H2*.*******.

. ADORESSES . ••.•
. EQUAL .

. . * •• * * YES

x . ..
F4 *. .* *. .

.* EXTENT *. YESX *. BEEN .* ••••
*.PROCESSED ••

. . * •• *
• NO

X
*****G4*****.**** • • * MOVE *
PROCESSING INFO
* TOOEB * . .
.**.***.***.** •• *

· . • x •••••••••••

x .•.
H4 *.

* NOT READY * **** .* * • * SWI TCH TO *
.UCB-UNI T NAME +*
* VOLIO TO MSG *
,. AREA *
****.****.**.*.**

X
J2**** •

* * * WRITE *
• MOUNT MSG TO * •••• * OPERATOR •

• *
*******.**. x

•• **
• * .***
,. 02 * * * * • * F2 *X ••

• • NO.* * •
• F3 *X •••• *. LAST EXTENT .*
* * *. .* .*** *..*

* •• * * YES

x .•.
J4 *.

.* * • .* ANOTHER *. YES
. VOL. SERIAL . ••••

*. IN TABLE ••
. . * •••

• NO
•• X* EI *

x
**** . .

* AS • • *
X *.** * •• ** * • NO · . .** • ****

• *. NXUCB .*.
KIll'. ***.*K2**_******* K3 •• ERROR CODE=44

.* *. • *GET NEXT vee * .* *. ****K4*********
.* DATA *. NO X *-*-*-.-*-*-*-*-* .* *. YES * *

. J4ANAGEMENT •••••••••• X * •••••••• X*. LAST UCB .* •••••••• X* EXIT *
.COUNT = 0. * ,. *. .* * ,.

•• •• * * *... .**** •• ** ••• * ••
* •• * *.* ••• ***.**.*.** * •• *

* YES *

x
.. • • * F2 * • • ** ••

TO RESTART EXIT
(IGCOV05B)
-CHART FU-

*. • * * •. * * YES

X
*****05*********. · . * RESET *
END OF DO ENTRY
• •
• * ***************** ..

X RD.JFCB
*****ES.********'"
*REAO JFCB *
--*-*-*-*-*-*-*
* READ '"
'" IN JFCB *
* EXTENSION *

x . ..
F5 *. .* *. .* •• NQ

*.OSQRG = PART •• * •••• *. ORG. .*
*. • * * •• *

• yes

x
*****G5**********
• seT PART. *
* ORG. *
* CONCATENATION.
* SWITCH * · . **.**************

· . .x •••••••••••
x

"'***

• * * El * • • ***.

Section 13: Charts 399

• Chart FR. SysinlSysout Data Set Processor 1 and 2 Routines

SYStN/SYSDUT
DATA seT PROCESSOR 1

IGCQN05B

** •• Al*****.*** · . ,. ENTRY ..

• * •••••••• * ••••••
• FROM D.A. MOUNT/VERIFY

•••• • -CHART FQ-· .. ,. 81 :fI.X.
o • .:fI •• x .•.

Bl :fl.
.,... ****52********.

•• :fl. NO" ,. *. DEFERRED .:fI •••••••• X. EXIT .. *. RESTART .* .. * :fI..* * ••••••••••••••
:fl •• *

.. YES

x
• 0.

Ct :fl_ .• *.
•• SYSIN ... NO

:fl. DR SYSOUT •••••• •• .* *. .*
:fl •• *

.. YES

TO DATA SET PRoe 1
(IGCQP05B)
-CHART FS-

• ****C2*******.*. .. * ••••
.. INCREMENT. ,. ..
.. TO NEXT ENTRY :fl •••• X* 81
••••••••••••••••• x

i . ~ .*. .*.
01 *. 02 •• • * •• • •• *. • ••• 03 ••• **** ••

•• OAT A •• NO X • * •• YES" •
lII. SET ON DIR ••••••••••• X •• LAST ENTRY •••••••••• X. EXIT ..

•• Ace. DEY.. X.. .• • • ...* lII
••• ·~ES .*.. *..... ~?s:Y~~~~:~s~~~COQ05B)

• • -CHART FR-

SYSIN/SVSQUT
DAl'A seT PROCi:SSQR 2

tGCOQ05B "
o •
.. ENTRY ..
o •
•••••••••••••••

:: FRON 5VSIN/SYSOUT
• D.S. PROCESSOR 1
• -CHARY FR-

.x ·
x ".' . ..

84 :fl. **.*.85**** ••••• * •• *. o 0
•• SYSIN :fl. NO • I NCREfI1ENT •

:fl. DR SVSOUT •••••••• • TO NEXT ENTRY" •• .* •• .* * YES

o •
* • ••••••••••••••••• x

x : NO .•. .* •
C4 •• C5 •• .* *. • .• •.

•• OATA •• NO)(.. *.
•• se"f ON DIR •••••••••• x •• LAST I::HTRY •• *. ALL DEV ,,* X *. •• •• •• * •••

• YES *.*. • YeS

X
••••• 04 •••••••••• • • .. CALCULA TE· •
NUM. OF TRKS tN
• EACK eXT ENT • o • •••• *

o 0
• C5 ..
o •
**** it .'. 05 ••

YE.$ •• ANY ••
• ••••••• ·NON D.A. DATA ••

•• SETS •• •• .*
III •••

:. NO

• 02 • • ••••••••••••••••••• .: ••••••

X
•••• *El ••••••••••

• 0
• > • PREPARE TO READ.
• IN JFCB • o 0 ••••••• * •••••••••

X •• * •• F 1 •••• * •• * •• · . * CONVERT •
• OCBFDAO' TO TTR*

• 0 * • •• * •••••••••••• *.

x .>.
GI *.

NO .* *.
•••••• SYSIN •• *. •• •• .*

• YES

X
••••• HI ••••• * ••••
o 0
• CONVERT CURRENT.
• AND NEXT lOB •
• SEEK ID'S TO •
• TTR • ••••••••• * •• * •••• . .

••••••••••• X.

X
•••••• J 1**** •••••••

o
READ IN JFCB • •
••••••••• *.*.

X ** •••• K 1 ••••••••• *.
* UPDATE *

JFCB AND * wRITE BACK *
••••••• * •••••

400

* • * •••
• •••• E2* •• * ••••••
• 0 * 0

x .'. E3 •• •• *. NO
• •• X.PREPARE TO READ. •• SYSIN •••••••• * IN OSCB .. • • .** ••••••• * •• * •• *

X
•••••• F2* •••••• * •••
• .- READ IN DSCS

o >

** •• * ••••••• *

x
• • •••• *62 •• ** •••• * ••

• UPDATE DSCBAN)
• WRTIE BACK •

•••••••••• * ••

it
• >.

.. ..
*. ••

lII •••
• YES

X
••• **F3.*.* ••••••
* * • CONVeRT CURRENT.
• ANO NEXT SEeK •
• 10 BACK TO •
• M8BCCHHR • • * ••••••••••• * •••

x * •••• 63 * •• * ••••••
• * • CONVERT •
• ' DCBFDAD' BACK *
• TO MaeCCHHR •
o * *

x ••• * * •
• C5 •
> 0 ••••

H2 •• .*.* 3 ••••••••••
•• NUM. •• YES • BUILD EXTENTS •

•• EXT OLD •••••••••• X. IN DEB USING •
..OEB=DSCB •• X .EXT. INFO FROM.
•••• • osee •

•• •• .*** •••••••••••• *
o NO

X IGC.004(S) •
••••• J2* ••••• *.* •
GEnIAI N DolAI. . --.-.-.-.-.-.-.

x •••• * 0 • 02 •
o 0

• •••
• GET .. • ••••••••••••••
• SPACE FOR NEW •
• DEe • •••••••••••••••••

;. ••••• K2.......... . •••• K3 •••••.••••
• •• • • MOVE I N= D. .REMOVE OLD DEB ..
"FROM OLD DEB TD ••••••••• X.FRC)M DEB CHAIN,.
• N£w DEB. • ADD NEW DEB .. • •• • • * ••••••••••• *.*. * •••• * •••••• * ••••

.:.
X

•• *.E4 •••• * ••• *
o 0
.. Ei:KIT ..
o > •••••••••••••• *

TO DATA SET
PROC.I (IGCOPO!S8)
-CHART FT"

X
• •••• F .. ** •••••••
• - PLAce •
.LOWER L 1M IT OF •
.IST XT IN FULL •
• DISK AD FIELD •
• OF oct) • • ••••••••••••••••

X
• •• *.Ci4* •••••••••
o *
• PL.ACE TRACK *
• CAPACITY FOR ..
• DEV IN DCe • o 0 ..* •..•.•..•.•.•.

·
..XlII C5 *

• * ••••

.:

x-
•••• E5* •••••• **

o >
• EXli • * 0 • ••••••••••• *.*

TO DATA SET
PAOC.2 (IGCOR058le
",CHART FT-

(-

(

("

• Chart FS. Data set Processor 1 (Non Direct-Access) Routine

IGCOP05B . "

•••• At* ••••••••
o •
• ENTRY • .' o 0

•••••••••••••••
:FROM SYSIN
.5YSOUT DATA •
• SET PROCESSOR •
• -CHART FR-

••••••••••• x.
x .•.

SI III.
•• *. •• *. YES •

•• 'fAPE •••••••• :
III. .*

. . * •••
o NO •••• o o.

• Cl •• X. o 0 •• *. X
••••• el ••••••••••
o 0

• GET •
• IIIEXT TABLE •
• ENTRY •
o 0 •••••••••••••••••

x .0.
01 ••

• YES .* *.
•••••• MORE EMTR IES •• •• . .*

$. ••

* ••• o NO

X
•••• El •••••••••

o 0
• EXIT • o 0

•••••••••••••••
TO ACCESS
METHOD-OJ spasl T ION
C IGCOT05B1
-CHART FU-

it
• ••• *A5 ••••••••••
• • • DECREMENT •

••••• "2 ••••••••••
• INIT. *
• CONT. BLKS. •
.CHAN. PROG, GET.
*F t LE SE Q NUMBER_
o •

• •••••••• · •••••••••••••••••••••••• FILE sea NUMBER.

•••••••••••••••••

x .0.
82 •• • ••••• 83* ••••••••••

.* -. .111 •• ves * EXCPI'WAIT •
•• STANDARD .* .•.••..• X SKIP HEADER

•• LABEL. .* *
. . *. •• .* •••••••••••

• NO

x
• 0.

C2 •• •• *.

· . .X •••••••••••

••••••••••• X.
x

• o •
C3 ••

• * lII.
** ••• *c •• **** •• *** •

o •
o • • •••• ** ••••••••••

x

.x •••••••••••

.*****ss*** •• *.***.
eXCP.lWAIT •

SKJP TABLE
• AND HOR •

• •• *.**** •• ** x .'
• YES

.* • cs ••
.* *. .* NON *. NO • •• AT *. NO * • •• *. NO • *. STANDARD ••••••••

•• LABEL ••
.

o YES

*.CORRECT DATA •••••••••• X
•• SET ••

. . *. .* * VES

x
.0.

03 *. .* ••

•
eXCPI'WAIT
SKIP DATA

••••••• *****.
o
. 'X.. STANDARD • * •••• *. LABEL ._

*. • * * •• * •

• NO.* •• VES • x •••••••••••••••• *. ERROR .* •••.•••••••.••.••...•.••••••••••
•• .*

. . *. •• •

x ············x ··:·····x .•. .•.
E2 •• • * ••

•• DCB *. VES • *. BLKCT •••••••• •• AVAJLABLE.* *. •• * •••
• NO

x .0.
F2 •• .* •. • * *. NO *. ROBACK ••••••••

. . •• .* *. ••
• YES

X * •••• *62 •••••••••• *

* EXCPI'W"I T •
SKIP TO END * OF DATA seT *

••••••••••• **

• 0 •
E3 *. .* * • • * BLKCT *. YES • *. NEGAT JYE .* ••••••

. . *. .* *. .*
• NO

.X •••••••••••

X
* •• ***F3* •• * ••• ****
* EXCPI'WAJT *

SKIP TO * CORRECT • RECORD • * •••• ** •••••

E4 *. .* •• • .* *. NO X *. NO LABEL .* •••• X.
. . *. •• * •••

• YES

x . .. :eRROR CODE
F4- ••

-.* •• • ****F5********* .* *. NO X * * *. ROBACK .* .•••.••. X* EXI.T •
•• •• X. *
.. *************** * •••

".. YES

X
**** •• G4**.**.*****

• EXCPI'WA IT *
SKIP TO END * OF DATA ,SET *

.*..*.*

TO RESTART
EXt T (IGCOV05B)
-CHART FU-

• x •
•••••••••••••• ••• •••••••• X.

x x .•. . ..
H3 *. H4 •• •• *. •• *. • * *. YES • •• RECORD *. NO •

•• ERROR .* •••••• *. POSJTJONJNG .* •••• X.
.COMPLETEO. •• .*

. . ••• *
o NO

•• .*
* •• * * YES

.X •••••••••••
x ••••

* * • Cl * • * ••••
x .•.

J4 * • •• *.
• YES.* ERROR *. NO •
•••••••• OCCUR AT .* •..•••

•• Ctf(PT .* •• .* •

section 13: Charts 401

• Chart FT. Data Set Processor 2 (Direct-Access) Routine

• •••••••••••• x •••••••••••••••••••.••••••
IGCOROSB :REPDCB02 .~. REPDC801 •

402

****Al***$***** * •
... ENTRY ...

* •
• ************** FROM SYSIN/SYSOUT

DATA seT PROC.2
**** • -CHART FR

• * • ... 81 •• X.
* •
**** x .•.

st *. *****82**********

A3 "'****A4**********
.lI< *.* IS DATA *. YES ... GET ... *. SET D.A. OR •••••••• ... NEXT TABLE ... *. [NO. SEQ •• * ... ENTRY ...
.. * ...

. . ***************** ... NO X

x • • NO .*. .REPDCB04 .* •
83 *. 84 *. .* *.* PART. *. .. .* *. ****e5********* • * RETURN *. NO ... GET ... • .* ORG. *. yes x.* *. YES * • *. FROM A PARM .* •.••.••• X* FIRST TABLE ••••••• *'. CONCATEN- •••••••••• x*'. LAST ENTRY .* •••••••• :X* EXIT *'

•• RLSE.* ... ENTRY ... *. AT I ON • *' X X •• .* * * *..* *... *..* ** •••• *.*******
* •• * ***************** * •• * * •• * ... YES

x
** ••• c 1 ****** ••••
• TURN PARM. RLSE*
... SWITCH ...
.. OFF-RESTORE •
... FULL DISC ...
... ADDRESS ...

x .0.

• NO • **** *
.' 0
•• B4 *
•• 0

x .0.
C3 *. .* * • .* IS DATA *. NO • *. SET ON A DA .* •.•• *. DEVICE .* *. .* * •• * * YES

TO ACCESS
METHOD-DISPOSITION
(IGCOT05B)
-CHART FU-

01 *. **02*******
X

*****03********** *' CLEAR *
STOR AND CONSTR
* 464 BYTE WK. *
"" AR. AND CONT. :+
* BLOCK *
"".************** •

.* *. * * .* *. YES * * *. 110 ERROR .* •••••.•• x* DEQUEUE *
. . * * *..* * * *. • * **.******** • NO

X BLDCCWS

*****E 1 ********** *BUILD CCW *
--*-*-*-*-*-*-* * 0 * COto&STRUCT CCW •
* LIST *

XREPOCB20

*****F 1 *******.** *EXCP/WAn *
--*-*-*-*-*-*-* • •
• WRITE DSCB * * •
************.* •• *

X

Gl***** • • • • * DEQUEUE * • • o •
*.***** •• **

x
** •• • * * 84 * • •

ERROR CODE
X

****E2********* • • * EXIT * • •

TO RESTART
EXIT (IGCOVOSBJ
-CHART FU-

X BLDCCWS

*****E3 ********** *BUILO CCW •

--*-*-*-*-*-*-*
• * * CONSTRUCT CCW * * LIST *
******.***** ••• **

XREPOCB20
*****F3********** *EXCP/WAIT ""
--*-*-*-*-*-*-*
• * * READ osce * • •

REPDCB24 X

*****G3********** • • * CORRECT FILE * *TYPE FROM 00 I F* * NECESSARV * · . **.**************

x • *. REPOCB20

H3 *. *****H4********** .* *. *EXCP/WAIT" .* DSCB *. YES *-*-.-.-*-*-*-*-* *. EXTENT TO BE .* ••.•..•• x* * *. READ .* * READ osce •
.. * * * •• * ********* ••• ***.*

• NO

X
REPOC60 REPDCB76 REPDCB25. *. REPoeB76

*****J2********** .13 *. *****.14********** *****.,5* •• ******* *DEB UPDATE. •• *. *DEB UPDATE * * * *-*-*-.-*-*-*-*-. = • * osee *. L T *-*-*-.-*-*-.-*-* * COMPRESS AND * ••• * OVERLAY * •••••••• X •• EXTENTS: DEB •••••••••• x* OVERLAY * •••••••• ·x* REFORMAT DEB. * • * DEB CCHH WITH * *. EXTENTS .* * DEB eCHH WITH * • UPDATE LENGTH * • * DSCB ceHH • *... * OSCB CCHH" • OF DEB •
X ******.**.*.* ••• * ••• * * •• * •• ****.* ••• ** *.**.*.**** •• * •••

**** * GT • •
• B4 *
• * *;fI** x

ERROR CODE .*.
K3 *. **K4 ••• **.*

****K2*.******* .* *. • * * .. YES ... OAT A •• NO * • * EXIT *x •••••••••• SET OPEN FOR •••••••••• X.PARTIAl.. RB..EASE •••••
* * *. INPUT .* * • •• * •••••• **.**. *... .. •
TO RESTART
EXI T ([GCOVO$B)
-CHART FU-

*. •• * ••• *.* •• *. • ic
** ••

• * • Bl • • • .* ..

** •• .. .
•• x* 84 *

• *
***.

---- -------

\ -..7

c

• Chart FU. Access Method-Disposition and Restart Exit Routines

ACCESS METHOD-DISPOSITION

IGCOT05B
....... 2 •••• * •• ** • A'........." "

... "" INITIALI ZE ...
• ENTRY * •••••••• X.TABLE POI HTERS ...

... ". "
FROM DATA SET
PROCESSOR 1 OR 2
-CHART FS DR FT-

•••••••••••••••••

••••••••••••••••••••••••• x.
• REPOCII02 •••

82 •• • * tI. .. .* •• YES.
•• PARTITIONED

•• DATA SET ._
tI. ••

* •••
• NO · ..

x .•.
S3 ••

VES •• OPENED ••
•••••• FOR INPUT ••

•• ONLY ••
• NO ••••

RESTART EXIT

IGCOV05B

•••• AS •••••••••

• •
• ENTRY • • • • ••••••••••••••

x S4.......... 85. ••
.RERWTO * • * ANY *. .-.-:11-.-.-.-.-.-. YES.. ERRORS ••
• WRITe RESTART .x.......... DURING ••
• UNSUCCESSFUL • •• RESTART .ate
.MSG. TO CONSOLE. ••••

• NO

" C2 _.x. .. · .. • C3 •• x.x ••••••••••••• • • •••• X .•. Cl.......... C2 tI.
...
" "YES •• ARE _.
"INCREMENT TABLE.X •••••••••• THERE MORE ••
... POINTER" *. ENTRIES •• ... " tI... -

• NO

ic
••••• 02 ••••••••••
• •
• GET •
" DEe FROM TeB " • • • • •••••••••••••••••

• x ••••••••••• • REPDCB26 .111. .. E'....... E2 ..
" " •• tI. ... * YES .111 wAS ••

" RESTORE I/O .X t /0 PURGEO ••
• NO

. .
•••••••••••••••.•••••••••• X.

REPDC828 X
••••• F2 ••••••••••

• •
• INCREMENT •
• POINTER TO NEXT.
• DES • • • •••••••••••••••••

;. . '. G2 ••

.... X
••••• ca ••••••••••
• •
• .READ ONE •
• DIRECTORY AND •
• WAIT • • • •••••••••••••••••

x

X
..... C4 ••••••••• • •

• EXIT • • • • ••••••••••••••
TO ABEND RTN
-CHART HI-

.•. . ..
03 •• 04 ••

•• •• YES •• AT END •• YES
•• ANY ERRORS •••••••••• X •• OF DIRECTORy ••••••ate •.••

•• •• :II •••

• NO • NO •••• · .. • E3 •• X. · . •••• x .•.
E3 ••

YES.. TTR IN :II.
••• ••• DCB GT TTR IN ••

•• BLOCK ••
:II •••

• NO

X
•• Fa •••••••

• ISSUE •
• STOW TO •

• DELET E MEMBER •
• FROM •

• DIRECTORY.

• ••••••••••

x . ..
G3 ••

• •••••• ' •••• x.
:ERROR COOE :'

x
•••• E4 •••••••••

• • ,. EXIT •

• • • ••••••••••••••
TO RESTART EXIT
(IGCOY05B)
-CHART FU-

;.
•••• • •

• C2 • ·

•... Gl......... .:11...
• • NO •• ARII; •• VES.
• EXIT .X THERE MDRE ••••••
• • •• DES'S ••
TO RESTART EXIT
RTN (IGCOV05B)
-CHART FU-

.. ..
•

•• •• YES •
..ERROR DURING ••••••••

•• STOW ••
• NO . .

••••••••••• X.

• .•.
H3 :II.

•• MORE •• ves
•• TTR ENTRIES ••••••

'NO

x •••• • •
• C3 • • • ••••

x •••• · .
• E3 • • • ••••

;
••••• cs ••••••••••
.RERWTO • .-.-.-.-.-.-.-.-.
• WRI TE RESTART •
.SUCCESSFUL MSG •
• TO C ONSOl..E • ••• * •••••••••••••

XIGC005 (5)
• •••• 05 ••••••••••
• FREEMAI N DBAI. .-*-.-.-4t-.-*-.-•
• FREE RESTART •
III WORK AREA •
• SUB POOL = 250 * ••••••••••••••••• .-

• . ..
ES ••

..SLKSlze ••
•• FOR CHKPT •• NO

•• DCB SUPPL I ED ••••••
..BY CHKPT .* •. .*

• YES

ic
••••• FS ••••••••••

• • • RESET BLKSIZE •
.IN CHKPT DCS TO.
• ZERO *' • • • •••••••••••••••• · . • x ••••••••••• . -

;. .•.
GS ••

•• DID CHKPT •• NO
•• OPEN CHKPT ••••••

..DATA SET ••
• YES

;.
• •••• HS ••••••••••
.CLOSE •
.-.-.-.-*-*~*-:II-• • • • CHKPT DATA SET • • • • •••••••••••••••• · . .)t •••••••••••

;. • 5·.· .• ••••• • • • • • seT RETURN CODE.

• • • • •••••••••••••••••

• •••• KS ••••••••• • •
• EXIT • • • •••••••••••••••
TO SVC3 EXI T RTM
-CHART GB-

Section 13: Charts 403

• Chart GA. Type-l Exit Routine

NOTE - SHADED AREA APPLIES ONLY
TO MuLT [PROCESSING SYSTEMS

IEAOXEOO

****Al********* * • * ENTRY *
• * *************** .FROM TYPE 1

.svc ROUTINES

X

*****B 1 ******. * • * RESET TYPE-l *
* SWITCH * * (IEATYPEl) *
* • **************

x
.*.

Ct *.
.* *. .* TASK *. NO

:fe. SWITCH ••••••
.INDICATeD.

. . * •• * * YES

.x
TSWITCH X

~o~

*****01********** * • * SAVE SVC OLD *
*PSW IN CURRENT * * REQUEST BLOCK * • • *****************

X
*****El**********
* * *SAVE REGISTERS * * IN CURRENT * * CONTROL BLOCK *
* * ***************** .:

x
****Ft*********

* * * EX IT *
* * ***************
TO DISPATCHER
(IEAODS) -CHART GG-

x
*****C4********** * * ****CS********* * RESTORE * * *

.X*REGISTERS FROM ••••••••• X* EXIT *
* 5YC SAVE AREA * * *
* * *************** ***************** TO INTERRUPTED

PROGRAM

C·
..

c

(-

(

• Chart GB. Exit Routine (Part 1 of 2)

IGC003 .0.
*****A2******* A3 *.

****At********* * '" .* *. '" * * RESET TYPE-l '" • * ABEND *. NO * ENTRY ••••••••• X* SVC SWITCH ••••••••• x •• IN PROGRESS ••••••
• * * (lEATYPEl) * *. ••
*************** '" '" *.. '"

FROM SVC FL 1 H
-CHART AA-

IS ST AGE-3 SW
(I EAOOSO I) SET

************** *. • '" * YES

...........................
x ...

82 *. *****63********** .* *. * CANCEL '"
.*DID EXITING •• YES * STAE CONTROL * *. PGM ISSUE •••••••••• X. BLKS WITHOUT *
. STAE. * XCTL OPTION *
.. * * * •• * ***************** o NO

**** * ••
,.. C2 •• x. •
'" * .x •••••••••••••••••••••••••
**** x .*. EDUX

C2 *. *****C3********** .* *. * RESET FIRST * .* IS EXIT *. YES * TIME LOGIC * *. FROM USER •••••••••• X_SWITCH IN PIE, *
•• ERROR RTN.* .MOVE REGS FROM ,.
.. * PIE TO rCB *

. . ***************** o NO

x
IEAQTROI .*.

• NOTE-RH
X LH

*****03**********
*RESTORE RB OLD *
* PSW RH FROM *
* PIE. LH FROM * * SVC OLD PSW *
• *

*****01********** 02 *. IRB
*T A EX IT RTN *GDA2 .* *. OR
--*-*-*-*-*-*-* SVRB .* DETERMINE *. SIRB * REMOVE SVRB *X •••••••• *. R8 TYPE .* •••• * FROM USER * *. .*
* QUEUE * *..*
***************** * •• *

• PR8

X
*****E2********** • • * MOVE *

x

*GC * * 82*

o *
*

* REGISTER * ••••
CONTENTS TO TCB
* •
***************** x

X
****E3********.

* * * EXIT *
• *

TO OISPATCHER

x
* •• *

* * * C2 *
* * ****

.***
• 0
.. B4 ..
• *

x . ..
84 *. *****B5**********

.* *. * * .* IS A *. NO * SET • *. TASK SWITCH .* •••••••• X*UP TASK SWITCH *
. SET UP . * * *..* .. * * •• * ****.************ * YES

* *. * C4 *.x. • * • .x •••••••••••••••••••••••••

**** •
EDACT X

*****C4********** • • *seT RS INACT IVE*
* AND REMOVE ..
• FROM RB QUEUE * • •

RIGHT HALF
LEFT HALF

x . ..
04 *.

.* IS *. ****05*********
.* THE RB *. NO * *

. FLAGGED . •••••••• X* EXIT *
. DYNAMIC . * *
.. **************. * •• *

• YES

x .0.
E4 *.

.*15 EXIT*.
NO.* FROM AN *.

•••• *. ASYNCH EXIT .*
. RTN .

. . *. _.

TO TRANSIENT AREA
REFRESH ROUTI NE
(IEAQTROl)
-CHART GE-

* * * H3 * • *

(1 EAODS) --CHART GG-- • YES

..

*GB *

FROM * F2 *
CHART GC * *

**** x **** x .*. EaT .•.
F2 *. *****F3********** F4 *. .* *. *EOT RTN HAA2* .* *. ****F5*********

.* IS EXIT *. YES *-*-*-*-*-*-*-*-* .* IS *. NO * *
. FROM LAST . •••••••• X* RELEASE * *. T.HE IRB USE .* •••••••• X. EXIT *

. RTN OF . * TASK'S * *. CT = 0 .* * *
.TASK . * RESOURCES * *..* *************** * •• * ***************** *. .* o NO

X
*****62**********
CDEXIT GFA2
--*-*-*-*-*-*-*
PREPARE REENTRY
* TO RTN IF ANY *
*OTHER REQUESTS *

. .
•••• •••••••••••••••••• ••• x.

X
EDTNX .*.

*****Hl********** H2 *. * .. •• *. * REMOVE * yes.* IS RS *.
* Tce FROM Tee *x •••••••• *. LAST RS .* * QUEUE * *.ON QUEue. .*
* * *..*
***************** * •••

x
*****J 1*********. * SET *

o NO

.: •••••••••• X •
• : X .•.

J2 *. .* IS *.

IF NO OTHER
REQ'S, EITHER
PURGE MODULE,
OR FLAG JPACO
FOR OPTIONAL
MOD ULE RELEASE

x
.*** • • * H4 *

* * **.*

* YES

x

TO TRANSIENT AREA
REFRESH ROUTI NE
(IEAOTROI)

-CHART GE-

.*. RMBRANCH
G4 *. *****G5**********

.* IS •• *FREEMAIN DAA4*
.* THERE A *. YES *-*-*-*-*-*-*-*-*

. PP REGISTER . •••••••• X* FREE PP ..
BY GETMAI N RTN. •• SAVE AREA.* .. REGISTER SAVE ..

**.*
* •
• H3 • • •

.. • AREA SPACE • * •• * ***************** * NO . .
••••••••••• X. · . .x •••••••••••••••••••••••••

.~. EDFRS X RMBRANCH
H3 *. .*.**H4*********.

• * HAS *. *FREEMAIN DAA"'. • •••
YES • * STEP.. *-.-.-*-*-*-*-*-* * • ••• *. INVOkED.. * FREE SPACE *X •••• * H4 ..

x
**** • * * F2 * • *

*. ROLLOUT • * .. OCCUPIED BY" * .. *... * RS * •• **
*. • * **** •• ****.******

* NO NOTE - TCBFRI
FLAG = 'I' IF
TASK B6...0NGS
TO STEP THAT
HAS J NVOkED ROLLOUT

X
X

* ••• J"'** •••• *.* * NORMAL * _
* TERMINATION * ••••••
FLAG 'TCBFE' IN

• *NEXT RB ON *. NO
.QUElE IN WAI T. ••••

•• CONO .*

.*J3 *.*****
* FREE EXISTING * * PROGRAM IF •
* USE/RESPONSJ- *
*BJLITY COUNT IS. * ZERO • .*.* •• *****.*****

* * .. EXIT *
* • • TCB •

.****************
. . ••• *

• YES

x
**** * •

.. B4 * • •

x
••• *

* * • C4 *
* * * ••• x

* •• *
* *
• F2 * * * ** ••

•• **** •• *******

TO TRANSIENT AREA
REFRESH ROUTINE
(IEAOTR01) -CHART GE-

section 13: Charts 405

Chart GC. Exit Routine (Part 2 of 2)

406

***** FROM *GC .. GB02
* 82.

* * •
X

EDIRB _ ••
82 * • • * IS *_

.*~XIT FROM A*. YES
.SYSTEM ERROR •••••••••• *. 'ROUTINE .* X *.* •••• * * •• * 110GB * * NO * F2*

x
* * •

.*. EDRQE
C2 *. * •••• C3******** •• • * *. .. * .* IS EXIT *. YES * REMOVE ROE .. *. FROM •••••••••• X* FROM IRB·S .. *. AN ROE .* .QUEUE OF ROE'S .. *..* ••• * *****************

• NO

x .'. *****01 ••• ***.*** 02 *.
.. .. •• IS *.
.. .. NO .* EXIT FROM *.
.. DeCREMENT USE .X •••••••• *.AN I/O ASYNCH.*
.. COUNT BY ONE .. *.EXIT RTN .* *..*
.*****.*.*. ... • .. *' YES

.. .
••••••••••••••••••••••••• x.

X INT025 .** •• D~ •• * •••• **.
*1/0 5UPVSR * *-*-*-.-.-*-.-.-.
• RETURN ROE 1'0 *
*NXT AVAIL L.IST •
• (FREe LIST) • •••••••••••••••• * • ••• o 0

• £4 •
o * ••••

X x
••• EDREN X

••••• E2 •••••••• **
* * .. REMOVE tOE •
.. FROM IRB'S ..
• QueUE OF JOE'S ..
• • *******.****.*.*.

x .0.
F2 *.

YES •• PLACE loE *.
••••••••••••••• : ••••• ON NEXT AVAiL ••

•• QUEUE .*
.

o NO

.' x· FORES .: • Gl.......... G2 ..
• Queue. •• ~ *.
• JQE TO • YES •• DOES JRB ••
• NEXT AVAIL. .X ••••• :..... CONTAIN A ••
• QUEUE IN. •• WORK AREA ••
• WORK AREA • *. " •• • •• *

.: • NO

. .
•••••••••••••••.•••••••••• X.

x .0.
H2 *.

• • YES •• IS THERE ••
• E4 *X.: ••• *.AN AOQJTIOHAL ••
• * •• REQUEST .* * ND

E3 *. • •••• E •••• * • .* IS THERE *. YES * REINITI~llE •
.AN ADDITIONAL. •••••••• X*IRB FOR REENTRY. *. REQUEST .* * TO ASVNCH RTM • •••• * • •• .* •••••••••••••••• *

* ND

,(
• ••• F4 •••••••••

o * • EXIT •
o * ••••••••••••••• TO DISPATCHER
(I EAOOS) --CHAR T GG--

· . • x •••••••••••••••••••••••••

EDINO X
*****.12 ••••••••••
o 0
.MOVE REGS FROM *
• IRS TO TCS'S *
• REG SA YE AREA • o 0 •••••••••• * ••••••

x •• * ••
*GB •
F2
* * o

c

c

(

Chart GO. Transient Area Exit Routine

IEAQTROI

TAxex IT

•••• CI.* •••••••
* •
.. ENTRY •

• • *************** • FROM
.LINK, LOAD •
• XCTL. AND SYNCH
,PROCESS [NG

•••• A2********* • •
.. I:NTRV * • • * ••••••••••••••

• FROM EXIT
ROUTINE
-CHART GBD2-

X
*****1:32**********
.. SAVE ..
.. CONTENTS OF .. * eXITING RTN'S .. * REGISTERS IN * * CURRENT TeB ..
1Ie •• * ••• **.* ••• * ••

.•.
C2 ••

IEAQTROl]5 USED BY THE EXIT ROUTINE
WHEN eXIT IS FROM A TYPE 2 •
3, OR 4 SVC ROUTINE.

TAxeXIT IS USED BY THE
XCTL PROCESS ING ROUT INE
WHEN AN SVRe IS TO BE REMOVED
FROM A TRANSIENT AREA QUEue.

•••• ****C3*********
•• EXIT •• YES * ..

•• MADE FROM •••••••••• X* EXIT ..
*. TVPf.-Z •• * *

•• RTN •• ***************
• NO

TO EXIT ROUTlNE (IGC003)
CHART GBH2

.-CHART CC- •
•••• • , ••••••••••••••••••• x.

X
*****02*********_
.FIND TRANS AREA*
*CTL TBL (TACT) * * ENTRY FOR TAB * * THAT CONTAINS *
* THE ROUTINE *

X
*****E2********** • • * REMOVE *
ASSOCIATEO SVRe
FROM USER QUEUE
* •

X
*****F2********** * • * DECREMENT *
*TRANSIENT AREA ..
* USER COUNT * • • *****************

it
TAHEXIT4 .*.

G2 * • • * A.NY ••
• *OTHER USER *. YES *. SVRB' S FOR .* •••• *. EXITING .*

. RTN .
* •. * * NO

X
*****H2********** * • * INDICATE THAT *
*TRANSIENT AREA *
*BLOCK (TA6) IS * * FREE *

· .
• X •••••••••••

X
****J2*********

* *
• EXIT * * • **.************

RETlRN TO
CALL ING ROUTI HE

Section 13: Charts 407

Chart GE. Transient Area Refresh Routine

CDEXIT CDDESTRV

.A2* •• * •• ****A3*.* •••• *. > 0
• > '" ENTRY, ENTRY ••••••• • • •••• **** •• ****. FROM EXIT

• ROUTt HE (CHART
• GBF2) OR EDT
• ROUTINE
• (CHART HAH2)

x .>.
82 ••

..... SI •••••• *** .111 DOE S ••
.. .. NO.* EXITING ••
III EXIT .X.......... ROUTINE .*
• .. III. HAVE A .* ••••••••••••••• *. coe •• ill •• _

RETURN TO .. YE 5
CALLING ,ROUTINE

X
••••• C2 ••••••••••

• > .. DECREMENT ..
*USE/RESP COUNT ..
III IN MAJOR COE ..

• 0 ... ***** •• ****.***

X
*.***02 •• ***.** ••
• 0 *UPDA TE RB ADDR ..
,. IN coe FROM ...
.. RBPGMQ FIELD" ..

• • •••• **.*.***.*.*.

X

· . • ••• ** •••••••••
(BRANCH ENTRY)

CDADO ••• CDHKEEP
• *.*.el".*.*.**** E2 ••
.. SET WAITING
.. RS READY AND" YES.* ANY ••
.. seT PSW TO .X •••••••••• ADDITIONAL ••
• ENTER CDEPILaG .. *.REQl.,ESTS .*
.. (CBel)" *..*
• *** •• ***.*.***** *. •• o NO

• ••• E3 •••••••••

• •
• ENTRY * •••• > > •• * ••••••••••••

(BRANCH ENTRY)

· . • X •••••••••••••••••••••••••••••••••••••

,tlEAOOS02
•••• *FI* •••••••••
*TASK SW. RTN .BPA2
.-*-*-*-*-*-*-*-.
• INDICATE *
• TASK SWITCH •
• IF NECESSARY • •••• *.** ••••••• *.

x
• •••• F2 ••••••••••

• 0 • SET 'NFN' • * (PROG USED) •
• FLAG • o •
• ••••••••••••••••

it
X G2 ••••• •••• GI......... .••. *' • NO.. IS ••

• EXIT .x •••••••••• USE/RESP CT= ••
• * X *. 0 ••*

RETURN TO • YE S
CALL ING ROUT IHE

••••• HI ••••••••••

• 0 • SET •
• RELEASE 'Ra' .x •••
• FLAG IN CDE • • • ••••••••••••• * •••

it .•.
H2 ••

•. •• IS ••
.YES.. MOD IN ••
•••••• LINK PACK ••

•• AREA ••
III •••

• NO

CDSPG X x .•.

408

••••• J I ••••••••••
'" .
• seT • .PURGE FLAG ,FOR •
... OB PACK QUEUe •
'" . •••••••••••••••••

X
•••• KI •••••••••

'" .
• EXIT • o • •••••••••••••••

RETURN TO
CALL ING ROUTINE

..12 ••
•• IS * .. . : NO.* MOD * •

••••• REUSABLE ••

.: X
• ••••
• '" 0 •• e4 •
• 0 0 ·

•• (REN/SER)._ • •• *
• YES

x .0.
K2 ••

• _ HAS •• • •••
• NO •• C\.IIR..IOB III. YES. ..
•••••••• STEP INVOKED •••••• x* 84 ..

III. ROLLOUT .111 ••
• NOTE - TCBFRI

FLAG TESTED

• ••• • •
• 84 *'
o • •••• . .

••••••••••• x.
X

• •••• B4* ••••••••• • • .PREPARE TO FREE.
.PRoG SPACE PER • *' EXTENT LIST •

• 0 •••••••••••••••••

CDFRPGM X FM BR ANCH
••••• C4 ••• * •• * •••
*FREEMAIN DBA2.
.-.-.-.-*-*-*-*-*
• FREE SPACE •
• OCCUPIED BY •
• PROGRAM • •••••••••••••••••

DESTX X
* •• **04 •••••• * •••
• OKDERCDQ • .-.-.-.-.-.-.-.-* '" REMOVE CDe'S •
'" (MAJoR-M INORl •
• FROM QUEUE • • ••••••••••••••••
o o.
• £4 •• X. o •
•••• XRMBRANCH * •••• E4 ••••••••••

.FREEMA IN DAA". .-.-.-*-.-*-.-.-.
• FREE SPACE •
• OCCUPIED BY •
'" EXTENT LIST '" * ••••••••••••••••

XRMBRANCH
• •••• F" ••••••••••
.FREEMA IN DAA4. *-*-*-.-*-*-.-.-.
• FREE SPACE •
.OCCUP I EO BY MAJ.
• AND MIN CDE'S • ..*

X
• ••• 64 •• ** •• **. • •

• eXIT •
• 0 •• ** •••••••••••

RETURN TO
CALL ING ROUT INE

- ~-- ~- - - - --------~-~---~

Ci . ,

(

chart GF. CDEXIT Routine

IEAQTR02

•••• AI •••••••••

• • ... ENTRY .. · . * •••• * ••• *****.

x .0.

FROM EXIT ROUTINE
-CHART GBJ4-

Bl *.
... ANY *. • ••• 82 •••••••••

... USERS OF *. NO" ..
•• TRANSIENT •••••••••• X. EXIT •

III. AREAS •• •
.. YES TO DISPATCHER (lEAOOS)

CHART GG

X
••••• Cl ••••••••••
... PREPARE FOR ..
.. SEARCH OF ..
.. TACT AND ..
.. TA QUEUES ..
o 0

• x
x

TAHOISPIOl"'··.. TAHDISP203••••• • •••• 04.: ••••••••

"'. •• ANY *. .. GET ADDRESS ..
•• IS. RTN *. YES .. " MORE TABS •• YES .. OF NEXT ..

.BEING LOADED •••••••••••••••••••••••••••••••••••• x. TO CHECK •••••••••• X*TRANSIENT AREA ..
*.INTO TAB •• X *. •• • CONTROL TABLE ... •. .• *..*. (TACT) ENTRY • •• •• *. •• • ••••••••••••••••

O~ .~

X
•• *.*£1 ••• ** •••••
• TAlJSERctc: ..
-.--.-*-*-.-.-.
• FIND HIGHEST ..
• PRI READY USER •
• OF TAB •

x .0.
Fl.. * F2 •••••• * ••• •••• * INDICATE THAT _

• _ _.NO" SYR60N ••
•• USER FOUND X. REQUEST QUEUE ••••• X.

•• •• • CAN BE •
•••• • OeOl.EUEO •

• YES

x .0.
GI ••

•• 15 _. YES •
•• USER 5 RTN IN •••••••••••••••••••••••••••••••• X.

•• TAB • If!
• NO

X
••••• HI ••••••••••
• PREPARE TO •
• QVERL.AY THE •
• ROUTINE ..
• CURRENTL. Y IN ..
• THE TAB • •••••••••••••••••

X
••••• J I ••••••••••
• SET UP TASK S_ •
.. TO TA FETCH •
• TASK TO LOAP ..
*RTN OF HIGHEST ..
• PRI USER • •••••••••••••••••

X
•••• *1(1 ••••••••••
• TURN ON •
• LOAOING • •
• INDICATOR IN •••••••••••••••••••••••••••••••••
• TACT E~TRY • • • _ _

x .0.
EJ * .

• .CAN ANV.. • ••• E4 •••••••••
•• 5YRB'S ON *. NO. •

*.REQ QUEUE BE •••••••••• X. EXIT •
h~OO~~.o X. •

.. YES TO DISPATCHER (IEAODS)
CHART GG

x .0.
F3 ••

• • ..,NY SVRe'S •• NO • *. ON REQUEST ••••••••
•• QUEUE •• •• .*

• YES

X
• •••• G3 ••••• * ••••
* REMOVE *
• SVRB' 5 FROM •
• REQUEST QUEUE *
.ANO RESET WAIT •
• COUNTS • • ••••••••••••••••

X IEAOOSQ2
•••• *H3 ••••••••••
.TASK SW.RTN8VA2. .-.-.-.-.-.-.-.-.
*IND. TSK SWITCH.
.TO ROY TASK IF •
• PRI GT CURR • • ••••••••••••••••

X
• ••• J3 •••••••••

• •
• EXIT • • • • ••••••••••••••
TO 01 SPATCHER (IEAODS)
CHART GG

Section 13: Charts 409

Chart GG. Dispatcher (Uniprocessing System)

IEAODS

."'**At .********
• ~ * '" ENTRY * · . ***************

.. FROM SUPERVISOR ROUTINES
WHEN CONTROL IS TO BE
ROUTED FOLLOWING SE~V]CING

.. OF AN INTERRUPT ION

X
*****81********** · . '" OBTAIN 'NEW' '"
'" AND 'OLD' Tee *
'" POINTERS '" · . *****************

X
IEAoaso 1 .*. lEA OEF03

C1 *. *****C2********** _* *. *STG 3 EXIT EFTR*BTA2
.*IS STAGE-3 *. YES *-*-*-*-*-*-*-*-*

.$LrI (IEAQOSOl) x* SCHEOULE *. SET.* * USER EXIT *..* '" ROUTINE '"
* •• * .**************** * NO

. .

.x
x .*. OSWTASK

Dl *.. *****02********** .* *. '" SAVE '" .* TASK *. YES '" CONTENTS OF '" *. SWITCH .* .•.••••. X*FLOATING POINT *
"'.REQUIRED .* '" REGS IN 'OLD' *

*. .. '" '" Tee *
* •• * ***************** • NO

**** · .. '" El • .ox.

• * **** • DSENTER X
*****E 1 ********** · . * OBTAIN * * FIRST RB OF * * 'NEW' TCB * • •

DSENTERW X

410

*****Fl ********** · . * MOllE RB 'OLD' *
PSw TO LOCAT ION * lEAPS'" * • •

X TROISP
*****Gl ********** * TRACE· RTN *
--*-*-*-*-*-*-*
PLACE PERT INENT
INFO INTO TRACE * TABLE *
***************** (OPTIONAL)

X
*****Hl ******"'*** · . *LOAD REGISTERS *
'" 0-15 FROM * * CURRENT TeB *
* •

X
****.1 1 ********* * LOAD RB OLD * * PSW FROM LaC *

'" IEAPSW *

x
OSTE.ST .•.

F2 *.
.* * • • * 'NEW' *. NO *. res PNTR=O .* .•••

. . *. .* * •• *
• YES **** * • * G2 *.X.

* •
**** • DSRCHIP X

*****G2**********
* * * FINO RB OF *
.. HIGHEST PRI * * READY TASK * . .

x
**** • *

'" J4 * • •
*"'**

.*. .*.
H2 *. H3 *. *****H4********** .* *. .* IS *. * '" .* IS RB *_ NO .* TASK *. YES * SET 'NEW' ..

.IN WAIT COND . ..••.... X*.DISPATCHABLE •••••••••• x* AND 'OLDt TCB *
. . *. .o* * REGISTERS *
..o *..* * ..

* •• * * •• * ***************** * YES * NO

· . .x •••••••••••••••••••••••••
DSNEXT X

***** J2********** * SAVE ADOR OF * * THIS TCB, *
OBTAIN NEXT TCB
.. FROM TCB *
* Ql£lE *

x .•.
K2 *. *****K3**********

.o* *. * SET I NEW' • • * *. YES * AND 'OLD' TCB *
.END OF Ql.ElE . •••••••• X* PNTRS TO *. .* * ADDRESS OF *. _* * PSEUDO TCB •

••• * ** •• * ••• *** •• ***.
• NO

x
**** * • * G2 *

* * ****

x
**** • * * E1 * * •

•• ** • •14 *.x.
* * .*** •

OSREADV X
*****J4********.* • • ... MAKE THE TWO ... * WORDS OF TCB *
• POINTER eQUAL * • • .****.*.* ••••• ***

X
*****1<4********** * RESTORE • * GEN'L AND •
*FLOATING POINT.
*REGISTERS FROM • * NEW Tee *
****.********* •••

x * ••• * • * E1 .. • • * •••
(' ;

(

Chart GH. Dispatcher (Uniprocessing system With Job step and Task Timing; Part 1 of 2)

lEAODS

•••• AI._ •• _ ••••

• •
.. ENTRY '* • • •••••••••• ** •••

FROM SUPERVISOR ROUTINES
• WHEN CONTROL IS TO BE
• ROUTEO FOLLOW ING SERVIC ING
• OF AN INTERRuPTION

X
IEAOOSO 1 .*. IEAOEF03

81 *. • •••• 82 •• ****** •• • * *. *5TG 3 EXIT EF. '*
•• IS STAGE •• YES *-*-*-*-*-*-*-*-*

.3 SWITCH SET . •••••••• X* SCHDULE .. •• .* '* USER F.:XIT '* *..* '* ROUTINE '* * •• * •••••• * ••••••••••
o NO

· . • x •••••••••••••••••••••••••
OSWTEST X

*****Cl ••••••• ***
* * .. OBTAIN 'NEW' '*
• AND 'OLD' TCB •
• POINTERS * o 0
••• * •••••••• *****

x .*. DSWTASK
01 *. **.**02 •• ******.*

•• IS *. * SAVE •
•• THERE A •• YES • CONTENTS OF •

*. TASK SWITCH •••••••• ~.X.FLOATING POINT.
*.REQUIRED •• * REGS IN 'OLO' •
•••• • TCB • *. •• • ••••••••••• ****.

• NO • (OPTIONAL) •••• * O.
• El *.X.
* *

OSENTER X
••••• El** ••••••••

* * • OBTAIN •
• FIRST RB OF •
• 'NEW' TCB *
* * *** ••••••••• ***.*

••• *
FROM .GH. •
GIF4 • Fl •• x.

• *
DSENTERW X

••••• 1= 1 ••• *.*.* •• • •
• MOVE RB OLD •
*PSW TO LOCATION. * IEAPSW •
* 0 •••• ***** •••• ***.

TRDISP X
••••• Gl**** ••••• *
*TRACE RTN •
-.--*-*-.---.-*
• PLACE PERTINENT.
INFO INTO TRACE * TABLE • ••••••••••• * •••••

OPTIONAL

X
••• *.H1 ••••••••••
o *
.LOAD REG ISTERS *
• 0-15 FROM *
• CURRENT TCe *
* * •••••••••••• * •• *.

x
•• **Jl •••• *.**. * LOAD RS • * OLD PSN FROM *

• lEAPSW • ••••• * •••• * ••• *

x

\

.0.
E2 * • • * •• • •••

•• I S THERE •• NO * •
.TOE QlEUEO TO. •••• x* H2 *

•.• 'OLD' TCB.. * *
* •• * * YES

x I .* •
F2 ••

.* •• .*.*
•• IS TOE •• NO • •

..TASK TYPE ANO.* •••• x. H2 *
•• ON QUEUE •• *.
.. ** ••

* •• * o YES

j .. ***G2.:* •••• *.*
.TIMER SLIH EEA2*
-.-.--*-*-*-*-*
• REMove •
*TQE FROM TI MER •
• . QlEUE •
• *** •••••••• ** •• *

.**.
• *. * H2 *.x.
o *
.*** •

DSJSTOQ X
• •• *.H2*** ••••• *.
• SET INPUT TO • * O.JSEARCH •
.OPERATION = DO *
.Tee = 'OLD' TCB.

• * ..****.***.* •••••

I *** •• J2.:.* .• *.**.
*OJSe"RCH G..I"2.
--*-.-.-*-.-*-.
• USE SUBRTN •
• TO PERFORM J/S •
• TIMING *
••••••• **** ••• ***

x
** ••

* * • 84.
• * ••••

OSTEST

..
o * '* 64 '* * •

x .0.

84 *. .* •• .* IS *. YES
.'NEW· TCB PTR =* •••••••• *. 0.* x *... .**** * •• * *GI '*

.. NO '* 82. .. _.
FROM *GH '* •
G[F2 .. C4 "".x.

• * .*.* •
DSREAOY X * •••• C4*** •••• ***

• 0 '* MAKE THE TWO '*
.. WORDS OF TCB '* '* POINTER eQUAL '*
o • _ -.

x .*.
04 *.

NO .* IS THERE * •
•••• *.TOE QUEUED TO ••

..'NEW· TCB •• *. •• *. .* * YES

.* ••• E4*~*****.** I .T IMER SL IH EEA4 •

.-.-*-.-*-*-*-*-. * PLACE • * Toe ON TIMER • * QUEuE • * •••••• * ••••••••• . .
••••••••••• x.

0502 X
** ••• F4*****.***. * SET INPUT TO • * OJ SEARCH *
*OPERAT ION = DQ •
*Tce = • NEW' TCB •

* * *.****.** •••••• *.

X
.***.G4 •• ** ••••••
OJSEARCH GJA2
--*-.-.-.-.-.-*
*PERF. JOB/STEP *
• TUUNG IF JST * * OPT INCL. * ..** •••••• **** •••

X
** •• *H4 ••• ** •• *** * RESTORE •
• GENERAL AND *
*F1..0ATING POINT.
.REG ISTERS FROM *
• 'NEW' TCB •
.**.* •• ****

x ••••
* * • El •

* * ****

o •
*

Section 13: Charts 411

Chart GI.

412

i
Dispatcher (Uniprocessing System With Job step and Task Timing: Part 2 of 2)

***** *GI * * 82*

* * * FROM
6HB4

DSEARCH X
*****82**********
* * * START * * SEARCH WI TH * * 'OLO' TCB *
* * *** •••• **.*****.*

.. * *. * C2 *.x.
* * **** • OSRCHLP X
*****C2**********
* * * FIND * * HIGHEST RB OF *
* TASK * * • *********.*.* ••• *

x

~~--------~------

.*. DSNEXT .*.
02 *. *****03********** 04 *_

•• *. * * .* *. * •• * .* [5 RS *. yES *GET NEXT LOWER * _* END *. NO * * *. IN WAIT .* •••••••• X* PRIORITY TCB * •••••••• X*. OF READY .* •••• X* C2 * *. STATUS.* X *FROM TeB QUEUE * *. QUEUE.* * *
_. * * *..* ** •• *- .* ** •• *.***.**.**** *. .*

*ND *VES

x
.*.

E2 *.
_. IS RS *.

.* NON *. YES •
*.DISPATCHABLE ••••••••

. . *. .* * •• * * NO

X
*****F2********** • • * SET 'NEW' *
REGISTER SEARCH
* Tce *
* * *****.***.*******

x

*GH * * C4* • * •

X
*****E4**********
* * * seT RS * * PSEUDO RB OF * * DUMMY TeB * * • **.*********.****

X
*****F4.********** • * * SET 'NEW' * * AND 'OLD' = * * PSEUOO Tce *
• * *****************

x
.
*GH * * FI* • *

*

Chart GJ.

(

DJSEARCH Subroutine (Uniprocessing System)

D.JSEARCH

•• **A2 ••••• * ••• • • * ENTRY '" • • **** ••• *** •• *** FROM 01 SPATCHER RTN.
WHEN JOB STEP TIMING

.. OPT{ ON IS INCLuDED

x . '. 82 ••
.* *. ****83** •• **** • • * IS INPUT *. YES" .. *. TCB = DUMMy •••••••••• x* EXIT * *. TASK.* * '"

*.. .. * ••••••• * •• *** ••
III •• *

'" NO RETURN

X
.****C2**.*.*.**. .. MOD IFY 1 NPUT '"
'" TeB so ..
.INITIATOR WILL '"
'" BE TIMED .. · . ••••• * ••••••• ***.

x
DJS02 .•.

02 *.

TO
CALLER

.* *. ****03* •••• * ••• .* [S INPUT •• YES. * *. TeB = MASTER •••••••••• x* eXIT .. *. TCB.. .. *
.. * •••• *.******.* * •••

• NO

x .'.
E2 "'.

.* IS *. ****

RETURN
TO

CALLER

.* INPUT TeB =*. YES. lit *. PROBLEM ._ •••• XiI< G2 ..
•• PROGRAM •• *.

. TeB . "'''''''* * •••
• NO

x .•.
F2 * • • * *. * ••• F3.**** ••••

•• IS INPUT *. NO * ..
•• TeB AN ._ •••••••• x* EXIT *

•• INITIATOR..
101. TCB • * * ••••• **** •• * ••

* ••• • •
* •• * * YES

• 62 *.x. • • *.** x • *. G2 ••

RETURN
TO

CALLER

.* *. *.*.G3*********
.* IS THERE *. NO * * *. A JOB STEP .* ••••.•.• x* eXIT '"
. TOE. * •
.. **."'.**.*.*****

* •• * * YES

• .'.
H2 * •

• * *. .* ••

RETURN
TO

CALLER

• * IS TQE *. NO * * *. A TASK TYPE .* •••• X* 84 * *. TQe.* * * *..* .*.* * •• *
• YES .*** · ..

• J2 *.x. • • • *.* • DJS03 X
*.***Jz**********
*ENQUE/DEQUE *
"'-*-*-*-*-*-*-*-. * PERFORM *
.INPUT OPERATlON* • • *** •• *.* •• * ••• ***

it
****K2******"'**

• * '" EXIT * • •
*****.**.*"' •• **
RETURN

TO
CALLER

** •• • • * B4 • · . **.*

• .'.
S4 * •

• * *. .***85***"'***** .* IS •• NO. * *. INPUT TeB = .* •••.•.•. XIOI EXIT *
. NEw. * *
.. *************** * •• * * YES RETURN

x .*.
C4 *"

TO
CAl.LER

.* *. ****cs********* _* IS J/S *. NO * *
. TOE A WAIT . •••••••• x* EXIT *

•• L 1M IT TQE.* * *
.. *.****.**.*****

- - * YES RETURN

it
*****04********** *OEQUE EEA2*
--*-*-*-*-*-*-* * REMOVE THE *
*TQE FROM TIMER * * QUEUE *
.** ••• *****.* •• **

X
*"'***E4**.****"''''* * CONVERT '"
.. TOE TO TASK '"
.. TYPE WITH •
'" ACTUAL TIME .. * REMAINING •
..* •• **********

X
*****F4********** • • '" SET •
'" INPUT OPERAT ION*
.. =NO * • • *******.***** •• *.

x ••• * • • 101 J2 ..

• • ."'.*

TO
CALLER

Section 13: Charts 413

Chart GK. Dispatcher (Uniprocessing System With Time-slicingi Part 1 of 3)

JEAOOS

•••• At ••••••••• • • .. ENTRY ..

• •
*********.***** FROM SUPERVISOR ROUTINES

• WHEN CONTROL I S TO BE
• RourED FOLL.OWING SERVICE
• OF AN INTERRUPTION

X
IEAODSOI ••• IEAOEF03 IEAOEF03

81 •• *.*.*82.*.*.*.**_
•••• *STG.3 EXIT EF ..

• *15 STAGE 3 •• YES *-*-4<-*-*-$-*-*-. *. SMITCH seT •••••••••• X. SCHEDULE ..
*(lEAODSOU.. .. USER EXIT .. *... .. ROUTINE • •• • * •••••••••••••••• -

• NO

· . • x •••••••••••••••••••••••••
DSWTST X

••••• Ct ••••••••••

• • .. OBTAIN ..
• '01-0' AND 'NEW'.
.. POINTERS ..

• • •••••••••••••••••

x .•.
01 *.

•• lII.
•• IS TASK •• YES

•• SWITCH •••••••• : ••
•• REQUIRED •• X

* •• * *GL. ..
.. NO .. 83.

x .•.
£1 iii.

• • •

• _ lII. ****
•• IS 'OLOI •• NO

.A TIME-5LICED. •••• X. Gl .. *. TASK.* *...
.. YES

x
••• TSNOTONQ

FI *. • •• **F2 ••••••••• * •• *. .. * • * IS •• NO .. SET * *. TIME-SLICE .* ••••••.• X.·NEW· EQUAL TO * *. TQE ON •• X * ZERO •
·.QUEue.. • • * * •• * • • ••••• **.** •• ** •• * YES .* •• •••• • GK. •

• GI •• x. • • •••• X
••••• Gl*·······.* o •
• OBTAIN ..

• •
• F2 • • • * •••

X
••••• G2 •••• * ••• **
o •
• SET T1 ME-SLI CE •

• FIRST RB OF *X ••• • TOe NOT • * 'NEW' Tce • • • • * ••••• * •••••••••
•••• • GK. •
• HI •• X. o • *... . DSENTERW X
••••• HI •••••••••• • •
• MOVE RS OLD •
.PSW TO LOCATION.
• IEAPSW • • • •••••••••••••••• *

X *** •• J I ••••••••••
• TRACE RTN.* *-.-.-$-*-.-$-.-.
• PLACE PERT. •
• INFO. INTO *
• TRACe TABLE .. •••••••••••••••••

X *.* •• K 1 •••• ** ••••

• **. • •
• GI • • • * •••

• COMPI-ETE • • • •••••••••••••••••
x * ••••

*GI- ..
• F3.
• • •

• • * •• *K2 •••••••••
• LOAD REGS. • LOAD RB •
• 0-15 FROM ••••••••• X. OLD PSW FROM •
• CURRENT TeB • • leAPSW • · •••••••••••••••••

414

.....

.GK •

.. B3*
> •

>

X
OSENTER •••

83 ••
• 4' ••

• •• * • •
• B4 .. • • ••• *

X
N)(TOMTO •••

B4 * • • _ ANY * •
.* IS *. NO •• TASKS TO BE •• NO

•• TIME-SLICE •••••• •• DISPATCHED .* •••••••• •• TQE ON ._
•• QUEUE ••

* YES

X * C3 •••• *** •••
> • * SET •
• ' NEW' EQUAL TO •
• 'OLO' • · . •••••••••••••••••

x •••• > •
• GI • . .
• •••

.....
.GK •
* F3* •• •

OSPTSTC9 X
••••• F3****.** ••• • • • • .GET FIRST TSCE * • • • • ••••••• * •• *._.* ••

• •••••••••• x •
• OMTO

x .•.
G3 *.

x * ••• • •
• F2 * • • • * ••

•• •• x
.. ** ••• *. •• .GM •

• YES • B3. * ••• .GK. .
.. C4 •• X. • • ..*. x

· . •
CHKTSRB .>.

C4 *. •• *.
•• IS RS •• YES

•• IN WAIT ••••••••••
•• STATUS .* X ...* * ••••

•• •• .GL • * NO • SI.

x . ..
04 ••

.*IS TASK ••
•• NOW ••• YES

• • •

..0ISPATCHASLE •••••••••• *. .• x ...* .• **. • •• * *GL • *' NO • 8.1 •

X
CHKTSTOE .*.

E4 •• •• * •
•• IS *. NO

•• TIME-SLICE •••••• *. TOE ON ••
..QUEUE •• • •• *'

• YES

X
••••• F4 •••• * •••••
.TI.MER SLIH *'
.-*-*-*-*-*-*-*-.
• REMOVE •
• T/S TQE FROM • * OUEUE • • •• * ••••• *.* •••••

· . .X •••••••••••

TQMDVE X
• •••• G •••••••••••

• •

• • •

•• OISP. •• YES • PLACE •
..PRTY • OLD' = ••••••

•• 'NE'" .*
• NO

x .. *. • •
• 94 • • • • •••

• TIME-51-ICE • * LENGTH IN TOE • • • •••••••••••••••••

X X FSTIMEIN ••• lPoTTSCE .* •.. H3 •••••••••• • • • •
• GET NEXT TSCE • • • • • •• * ••••••• ** •••••

H4 •• .* ••• HS.* •••••••• .* *. • •
..oOES ·NEXT'*. YES. •

• •• : .~~~. I~ ••••••••••• lX: UPOA~~~NEXT'.:
• NO

X •• * •• J •••••••••••

• •
• PLACE TSCE •
• 'NEXT' IN ..
• 'FtRST' •
• 0 •• * ••••••• * ••••••

· . • x
x ••••• • GL •

.84*
o •
•

c

(

c

Chart GL. Dispatcher (Uniprocessing System With Time-Slicing; Part 2 of 3)

.....
*GL ,..
• 61.

o 0
o

X
CHK NEXT .*. GETFtRST

61 *. *****82 •••• *****.
.o* *. * • .o. IS "L.AST' •• YES. ,..

•• TASK IN Tsee •••••••• : •• X.GET FIRST TseE •
•• IN WAIT .o. ,.. . *... . ,.. •. .o.

• NO

X
••••• Cl ••••••••••
• GET ,..
• NEXT *
• TIME-SL ICED ,..
• TASK ,..

• 0
· . • x
x

• 0.
Ot ••

• * *. .* ARE ALL *. NO
•• . T/S TASKS ••••••••.•• *. WAITING .olIt X ...olIt ••••• * • .o* *GK ,..

• YES ,.. C4.

X
••••• El •• * •••••••
o • * GET NEXT TeB ,..
• IN TeB QUEUE ,..
• AFTER T/5 GROUP.

• •
x •••••

*GM * * 83.

o 0 .

••••• *GL •
• 83 •

o •
•
X

CK4OLOTS •••
83 ••

.o* ••
NO .lIt 15 'OLO' ••

••••• A TIME-SLICE ••

x
•••• • • • F3 ,..

* •
. TASK .o •• .* * •••

• YES

x .•.
C3 ••

.lIt ••
Yes.. DOES *. lit.' NEW' = ZERO ._

. . *. ••
o NO

x . ..
03 * • .* *.

• ••• *
.c;(* • B4 •
* • o

DSREADY X
*** •• B4 ••• ***** ••
• * * seT ..

..X*'OLD' EQUAL TO ..
.. 'NEW' *
o •

• **********.*** •• *
.**.

• 0

* B4- * * •
*** • x .•.

C4- *. *****C5******.**. .* IS *. .TIMER SLIH *
.*'NEW' NOw A*. YES .-*-*-*-*-*-*-*-.

•• T IME-SL ICE .* .••••••• x* REMOVE *
•• TASK.. .. TI'S TOE FROM • •••• * QUEUE •

* •• * ***.**.*.*.**.***
• NO

· . • x •••••••••••••••••••••••••.
X

DSREAOYe .* •
04 ••

•• OPRTY •• YES • * IS •• NO *. OF ·NEW' = •••••• *. ·OLO' .*
* NO . .

••••••••••• x.

TSWAIT X
.* ••• E3 ••••• *.***
*TIMER SLIH *
--*-*-*-*-*-.-.
• REMOVE • * TI'S TQE FROM *
• QUEUE *
**************** •
••• *
*GL * • * F3 •• x.
* •
**.* • DSWTASK X
*****F3***.******

x
****.
OGK •
• 83* • • .

. THERE A TQE . ••••
. . •. .* * ••• * YES

X
*****E4*****.**.*
.TIMER SL IH *
--.-.-.-*-.-.-*
* PLACE * * TOE ON QUEUE •
* •
**********.****.*

· . .X •••••••••••

0502 X ••
* ****. *

* •••• F4** ••• **.**
o *
*RESTORE FLOAT. *
.. POINT REGS. *
*FROM 'NEW' TeB • . .
********** •• * ••••

• * * PLACE FLOAT. • * F3 ••••• X* POINT REGS IN * • * * OLD TCB * ***.. •
*.***************

x .*.
G3 *. .* * • • * DOES *. NO *.' OLD' HAVE A .* .••. *. TOE .* •• -*
* •• *

• YES

x .•.
H3 * • • * IS.. _

•• TOE ON *. NO X *. QUEUE AND .* ••.•
•• TASK TYPE.*

. . *1 •• * * YES

X
.J3**********
.TIMER SLIH *
--*-*---*-.-*-.

• * *REMOVE TQE FROM.
• QUEUE •
****************.

· . • x •••••••••••

X
DSTEST .*.

K3 *. •• *. * •••
•• NEW *. YES * * *. READY TASK •••••• x. B4 *
•• FOUND.. * * ...* ... * * •• * o NO

x
** •• *
*GM * * 81* • *

*

x

*GK *
• Gl*
* •
*

Section 13: Charts 415

Chart GM. Dispatcher (Unprocessing System With Time-SlicingJ Part 3 of 3)

••••• .GM ..
• 81. • • •

DSEARCH X
*.***$1*.*.* ••• *. • • * GET *
.. 'OLD' TCB FOR * * INPUT • • • -... -· ... *' Cl ••)t. • • ••••

OS RCH.. P
x

• *.

416

Cl *.
•• IS IT *. YES

*.A TIME-SL.ICED •••••••••• *. TASK.* X *..* ••••• *. _* .G~ •
• NO * G3*

x .*. 01 ._

•• •

•• *. • •••
• _ IS RS III. YES * • *. IN WAIT •••••• X. 83 • *. STATUS.* ••

*..111 ••••
III. _*

.. NO

x .•. El _.

.- *. • •••
•• IS TASK III. yes * •

•• NON-DISPATCH •••••• Xlll 83 • *. ABLE.* *. •••• • ••• •• • * * NO

X
••••• F 1* •• *.***.* • •
• SET 'NE.' •
*e:QU~ TO INPUT •

• Tee * • • •••••••••••••••••
x .* •••

• GL ..
• 840 ...

•

•••••
*GM *
• 83 • • • •

DSNEXT X
.*.**B3.*.*.*.**. * * •••• * GeT NEXT • • *' * Tca FROM Tea !IIX ••••• 83 *' * QUEUE • * *' * • • ••• • ••• * ••• ~ ••• ** •••

x .•.
C3 III •

• _ III. • •••
•• IS IT THE III. NO • *

~. ENO OF TCB •••••• X. Cl *
*_ QUEUE.III *'.

*..111 •••• * ••• *' yes

X .* ••• 03 ••••••••••
* .. • SET I NEW' AND •
.' OLD' EQUAL TO * * PSEUDO Tee • • • •••••••••••••••••

x ••••• *GK •
• HI_
• * ..

c

Ie" -""

('

• Chart GN. Dispatcher (Multiprocessing System: Part 1 of 2)

IEAOOS

•••• Al •••••••••
* • .. ENTRY ..

* •
• FROM SUPERVISOR ROUTINES
• WHEN CONTROL IS TO BE
• ROUTED FOLLOWING SERVICI NG
• OF AN INTERRUPTION

...
BI * •

• *UIIIPROC III. • ••• 82 •••••• * ••
• *eXT INTRPTN*. YES" • *. IN FL.[H •••••••••• X. EXIT ..

III. ROUTINE .111 • • ...*
III. •• TO EXTERNAL FLIH

• NO (lEAOeXOO)
-CHART AG-
VI A LOAD PSW

X
IEA00501 ••• IEAOEF03

FROM

Cl *. • •••• C2 •••••••• * • • * *. *STG 3 EXt T EFTR •
• *15 STAGE-3 •• YES *-*-*-*-*-*-*-*-* 8TA2

*.5W (IEA00501) •••••••••• x. SCHEDULE ..
•• SET.III .. USER EXIT .. *..* .. ROUTt NE '"

III. •• • ••••••••••••••••

• NO

· . • x •••••••••••••••••••••••••
X

••••• 01 ••••••••••

• •
• OBTAIN 'N"EW' •
.. AND 'DLD' TeB ..
.. POINTERS • · . •••••••••••••••••

x
••• OSWTASK

E. •• • •••• E2 •••••••• *.
•••• • SAVE •

•• TASK SWITCH •• YES • CONTENTS OF •
•• REQ ON •••••••••• X.FLOATING POINT.

•• ExeCUTING.. • REGS IN 'OLD' ...
•• CPU •• • TCB • •• •• • •••••••• * •••••••

* NO
GOGI .* ••

• GN. •
• FI •• X. * •

• •••• E3 ••••••••••

• * • START SEARCH •
• WITH' NEW Tce •••••••••
• OF THIS CPU. X • • • •••• ••••••••••••••••• .GO •

X ... CI.

• • • x • YES
DSENT~R X OSTEST .•. .*. DSREADY

••••• F ••••••••••• F2 *. F3 *. • •••• F4.......... • •••• FS ••••••••••
* • •• 'NEW' •• •••• • MAKE TWO'" ... RESTORE •
• OBTAIN • ..TCB PNTR OF •• NO •• IS 'NEW •• NO ... WORDS OF Tce • • GEN'L. AND •
• FIRST RB OF .X ••• ..EXECUTING CPU •••••••••• X •• Tce PNTR OF •••••••••• X. POINTERS OF ••••••••• X.FLOATING POINT.
• 'NEW' TCB • •• = 0 •• ..SEC CPU=O.. X • EXECUTING CPU. *REGS FROM 'NEW'*

• • ••••••••••••••••• *..* •••• • eQUAL. * TCS •

•••• * • • FI ...

• •• ·~ES *. *.. ; ••••••••••••••••• • ••••••••••••••••
. .'

DSENTERllf X
•••• X

o SEARCH ••• DSEARCHI RELPRIOR
••••• G I •••••••••• G2 •• • ••• *63 •••• * •••••

•• FROM GOE"
*GN. OR GODS
• 1"'4* OR GOG3 • ••••

• •
• MOVE RB OLD ...
• PSW TO LOCATION.

•• 'NEW' •• .ReLATIVE PRIOR .'NEW' Tce
•• Tce PNTR OF.. NO *-.-*-*-.-*-*-*-* ON SECOND

..SECOND CPU = •••••••••• X. COMPARE •••••••••••••••••••
• lEAPS. • •. 0.. • DISPATCHING • CPU IS HIGH

• • •••••••••••••••••

DSTRACE i (OPTIONAL.J
••••• HI ••••••••••
• TRACE RTN • • -.-*-.-*-.-.-.-* • PL.ACE PERT IHENT.
• INFO INTO TRACE.
• TABL.~ • •••••• * ••••••••••

•••• • PRIORITIES *
• YES • 'OLD' TCB

••••• H2 .. : •••••••• • • * START •
*SEARCH WITH TOP •
• Tce • • • •••••••••••••••••

• ON EXECUTING
• cPU IS HIGH

X
•••• *H3 •• * •••••••
• START •
'" SEARCH WITH •
• CURRENT Tce ON •
• EXECUT I NG CPU •

• * •••••••••••••••••

DSEARCH2 X •• * •• H * ••• **.* • •
• START SEARCH •
*WITH NEW Tca ON •
• SECOND CPU * • • • ••••••••••••••••

•••• • .GO. · . .X •••••••••••••••••••••••••

DSSHTAP
x

••• OSSHTAP9

•• X. Al •

• • ••••
J 1 •• • •••• J2 ••••••••••

•• TSK •• .SHOLDTAP.
.SWTCH REG. ON. Yes .-.-.-.-.-.-*-.-.

• SEC. CPU C 'NEW· ••••••• : •• X.I NTRPT SEC. cpu*
NOT EQ. 'OLD') .DIRECT DtSP. TO.
..... • GAIN CONTROL • •• •• • ••••••••••••••••

• NO

· . • x ••••••••••••• · ••••••••••••
X

DSUNLOeX ••• OSTCBGRS

x •• * ••
*GO *
• AI.

• • •

K t •• ..* .. 0* •••• *.... .**.*1(3 •••••••• *.
•• IS •• • • * • • •• _

• S'tST. MASK OF. YES • CLEAR SUPRVSR • .LOAD REGISTERS. • LOAD RS OLD •
•• IEAPSW .* •••••••• X. LOCK AND CPU ••••••••• X* 0-15 FROM ••••••••• X. PSW FROM LOC •

• COMPLETELY.. .IDENTITY BYTeS. X • CURRENT TeB *' • IEAPSW •
• ENABLED* • *'. *

• NO

x • ••• * • • Fl •
• • • •• *

section 13: Charts 417

• Chart GO. Dispatcher (Mu1tiprocessing System; Part 2 of 2)

***** _GO * * AI.
* • * FROM

• GNH2 OR GNH3

DSRCHLP X
*****Al**********
* * * FINO RS OF *
.HIGHEST PRIORTY* * REAOY TASK •

* * *****************

x
••• ••• ••• DSNOTNW2 •••

Bt •• 82 *. 83 *. 94 * •
• * *. .*IS TASK.. .* IS *. .* IS *. .*** .* IS *. NO _* *. yes .* TASK THE *. NO .* TASK *. NO * • *. RB IN WAIT .* •••••••• X*.DlSPATCHABLE .* •••••••• X*.·NEW· TCB ON •••••••••• X •• CURRENT Tea •••••• x. ~ •

•• CONO .* *. •• *. SECOND .* *.ON SECOND.. *. *..* *..* *. CPU .* *. CPU .* ** •• * •• * * •• * * •• * * ••• * YES * NO * YES • YES
.*** .GO * •

FROM * Cl •• X. •
GNE3 * *' .x •••••••••••••••••••••••••

**** • x x
OSNEoc.T X • *. .* •

418

C3 *. *****Cl*******.*.
* * **** .* *. * OBTAIN • • * YES.* DOES •• * NEX T Tea FROM * * Tee QUEUE * • Cl .x •••• *. 'NEW'='OLO' .*

* * *.ON SECOND ••

* * .*.****.**** ••• ** **** *. CPU .*

x
• *.

01 ••
• * *. ** •• • * •• NO • •

•• END OF QUEUE •••••• X. Al •
. . • * *... * •• * * YES

x .*. DSCPU2WT El *. ** •• *E2* •• ** •• * ••
•• 'NEW' •• • SET 'NEW' *

.*TCB PNTR OF*. NO .. + 'OLD' TCB *
•• EXECUTING CPu.* •••••••• X*PNTRS OF SECOND.

•• = 0.* x * CPU TO PSEUDO* .. Tce • *. •• .* ••• ***** ••••• **
• YES .'

X
• ****Fl*******.** * SET 'NEW' •
.. + 'OLD' TCB ..
.. PNTRS OF •
• EXECUTING CPU _
• TO PSEUDO TCB .. .** ••• *** ••••••••

x
• *.

Gl •• • * 'NEW' ••

. : . :

.-

.,

.

.:

.:

.:

x
.
.GN ..
• F4.
••
*

.. ..
* NO

it
*.***03**********
• * * SET 'NEW' Tce *
*PNTR OF SECOND *
.. CPU TO ZERO * • • • ******* ••• **.***
.. · .. * E3 •• x. • • x ***.

OSFWNO .•.
E3 ••

.* 'NEW' * •
• • TCB PNTR OF •• YES

•• EXECUT ING CPU .* •••••• *. = 0 ••
• NO

x .*.
F3 * • .* 'NEW' *.

.*TCB PNrR OF_. NO
.SECONO CPU = . ••••

. 0 . •• .*
-•• *

• yes

X

C4 *. *****C5**** •• ***.
•••• • PLACE *

.* 'NEW' TCB *. YES * TASK ADOR IN • *. PNTR OF .* •••••••• 1)(* 'NEW': TCB *
•• SECOND •• * POI "TER OF •

•• CPU=O.. * SECOND CPU •
•• •• ********* ••• * •• ** * NO

DSXCHANG X x' .* •
05 *. .* 'NE'W' * • • ••• *D4 •••• ***.**

• seT 'NEW' Tce * * PNTR OF EXEC ...
.CPU = TO 'NEW' ..
• Tce PNTR OF • * SECOND CPU • •• ** •• * •• *** •••••

YE S • *Tca PNTR OF* •
••• *.EXECUTI NG CPU._

X * •••• E4 •••• * •••••
• seT 'NEW' Tce •

x •••• * •
• Cl * • * • •••

• POINTER OF • *SECOND CPU = TO •••••••••
• 'OLD' OF SEC. • X _ CPU • • •• **
*****.*.** •• ***.. *GN •

X
*.***F4.** ••••• **
.. PLACE *
.. TASK AODR IN *
.. 'NEW' Tca •
• POINTER OF • * EXECUTING CPU •
. •• _ •• ******.**

it .•.
G4 ••

•• 'NEW' * •

* F.4* •• •

•• = 0 •• *. •• * ••• * NO • x ..* .. *GN *
• F4*
* •
*

•• TCB PNTR OF*. YES •
•• SECOND CPU = ••••••••

. 0 .

• •••• G3 ••••••••••
• PLACE •
• TASK ADDR IN •
.. 'NEW' Tca * • NO •• Tce PNTR OF* •

.
* NO

x

*GN *
* Fl* • •

*

X ••••• *.SECOND CPU = .*
• POINTER OF •
• SECOND CPU • .* •••• *** •• *.****

· . x ••••••••••••
.** ••
*GN *
• F4*

* * •

*. 0 ._

*. ••
* •• * • YES

" * •••
* • * Cl • * • ••••

c

.""'\ , I

'<l ... '/

c

(

(

• Chart GP. DJSEARCH Subroutine (Multiprocessing System)

DJSOO OJSEARCH

•••• AI •••••••••

• •
• ENTRY .. • • ••••••••••••••• ENTERED BEFORE

EACH CALL ON
• D.JSEARCH TO
• GET -ISTQE ADDR

•••• A2

• • .. ENTRY ..

• • ••••••••••••••• • FROM DISPATCHER RTM.
• WHEN JOB STEP TIMING
• OPT I ON I S I NeLUDED

FOR SECOND CPU •

X
••••• 81 ••••••••••
• • .. SET ..
*NQ,OQ REGISTER ..
.. TO ZERO .. · . •••••••••••••••••

X ••••• c •••••••••••
• •
• SET GIVEN TeB ..
• TO CURRENT TeB ..
.. ON SECOND CPU .. · . •••••••••••••••••

X
••••• 01 ••••••••••

• •
• SET • • TOE REGISTER TO.
• ZERO • • • •••••••••••••••• *

•••••••• ••• x.

.'

.:

.:

.'

. :

.'

.'

x .•.
82 ••

•••• • ••• e3 ••••••••• .* I S INPUT III. YES" ..
•• TeB = DUMMY •••••••••• X. EXIT •

III. TASK .111 *..* •••••••••••••••
III •• 111 RETURN

• NO TO

it
• •••• C2 ••• ••••••• .. MODIFY INPUT ..
.. TCB SO ..
*INI HATOR WILL ..
.. BE TIMED .. · . • ••••••••••••••••

it
D-IS02 .tI.

02 ••

CALLER

.* *. • ••• D3 •••••••••
•• IS INPUT •• YES. •

•• TCS = MASTER •••••••••• x. EX IT •
•• TCB •• • • ...*•.....

•• •• RETURN

• NO TO

it .*. E~ ••
•• IS.. • •••

•• 1 NPUT TCS = •• YES. III
•• PROBLEM •••••• X. G2 III

•• PROGRAM •• ••
•• TCB •• • •••

• NO

x ...
F2 ••

CALLER

•••• • ••• F3 •• * ••••• *
•• IS INPUT •• NO * • *. TeB AN •••••••••• X. EXIT •
•• INITIATOR.. *. Tce •• • ••••••••••••••

•• •• RETURN
• YES TO

•••• • CALLER · ..
• G2 •• x. · '. ••• * x .*. . •.

G2 •• G3 ••

• ••• • •
• S4 • • • ••••

x .' . s... ••
•••• • ••• es •••••••••

.111 IS •• NO. •
•• INPUT Tce = •••••••••• x. EXIT •

•• 'NE"" , •• * .. •••• • ••••••••••• * •• ••• * RETURN * YES TO
CALLER

x ...
C4 •• •• •• * ••• CS •• * ••••••

•• IS J/S •• NO. •
•• TOE A WAIT •••••••••• X* EXIT •

..LIMIT TOEI.. • • *. •• RETURN
III YES TO

X IEAQTDOl
• •••• D4 ••••••••••
.DEOUE EEA2* .-.-*-*-111-.-*-.-.
• REIIlIOVE THE' •
.TQE FROM TIMER •
• QUEUE • •••••••••••••••••

X
• •••• E4 ••••••••••
III CONVERT •
• TQE TO TASIC •
• TYPE WITH •
• ACTUAL TIME III
III REMAINING III • ••••••••••••••••

X
.." •• F ••••••••••• • •
• SET III .INPUT OPERATION •

• NO • * • •••••••••••••••••
••••x. J2 •

* • ••••

CAL.LER

.... Gl.........• IS •• • ••• G •.....•...
• • NO •• IS 1l4ERE •• YES •• NWDQ ••. YES. •
• EXIT .X •••••••••• A JOB STEP .* .••••••• X •• REGISTER = 0 •••••••••• X. EXIT •
• • •• TaE •• •• •• • •

RETURN •• •• •• •• RETURN
TO • • NO TO

CALLER CALLER

x'··
••• ••• IEAQTDOI

H2 *. H3 III. • •••• H4 ••••••••••*.. .••. .DECue EEA2*
• • NO.* IS TQE •• yes •• DO BOTH III. YES .-.-*-*-111-.-.-.-.
• 84 • x.. •••• A TASK TYPE • * •••••••• x.. CPUS HAVE •••••••••• x. REMove •
... •• TaE •• ..SAME TQE •• .TQE FROM TIMER • *... ...• . OUEUE •

* ••• • •
• • NO

• J2 •••• • • •• x •••••••••••••••••••••••••
DJS03 X
·.*··Je··· •• ••••• .ENQUE/DEQUE •

$-.. -*-*-.-.-.---. .. PERFORM •
• 1 NPUT OPERATION.
• • •••••••••••••••••

it
•••• 1(,2 ••••••••• • •

• EXIT • • • ••••••••••••••• RETURN
TO

CALLER

x .•.
J4 •• • •••• JS •••••••••• •• *. • •

•• NQ •• NQ • HALVE •
..OR DQ CALL.ED •••••••••• JX. ABSOLUTE TIlE •

•• FOR.. • REMAIHING •
• DO

••••••••••• X.

DJSOa X -........... .
* •
• DOUBLE • •
• ABSOLUTE T I ME •••••••
• REMAIN ING *
• * •••••••••••••••••

DJS09 X
••••• KS ••••••••••
.STORE ADJUSTeD •
.TI ME REMAINING ••
• SET NQ/OQ •
.REGISTER FOR NG*
• OPERATION ..

• ••••••••••••••••
it •••• • •

• J2 • • • ••••

Section 13: Charts 419

Chart HA.

420

EOT Routine

** •• A2** · . *****A3********** · . ,. seT UP ...
.. ENTRV ... • •• x.. ERROR CODE * · . •• ***** .. ,. ••••••

• FROM E:>:IT
.. ~Q\,. '111\e
.-CHAln GB-

x .<.
82 *. .* Db *. .* AN" It. YES .. *. SUBTASKS *. EXIST .*

•• .:IiI

* •• *
• NO

• C2**** ••• *** · . '* STOFOe ..
*COMPLE1ICN CODE.
... IN Tea ..

• < **.***** ... *** ••••

x

... A03 ..

• • .* ••••••••••••• * •

X
****83********* · EXIT ... · . •• Ift ••••••••••• *

TO ABENDl
ROUTINE (IGCOOOIC)
VIA SUPERVISOR
LINKAGE -CHART Hl-

.*. IGCQOS(S)
02 *. *****03********** .* PROG *. *FREE:MAIN ORAl. .* INTf.t:PTN *. YES >t-*-.--*-*-*-*-*-*

.ELF.MENT (PIE). •••••••• x. FREE ... *. PRESENT .:t "'SPlit!:; OCCUPIED ..
* •• * ... BY PIE * *. .• "'*"'."'."'''' ••• ''' •••••

• NO

· . • x
ElSCl X lEACPGTM

*****E2*.'******** *****E3***.****** • PUREE TI~.E" Filh. HBA2
• * *-*-*-*-*-:t-*-*-* * SET UP *

:41 Pl.RGE AhY ... • •• x* ERROR CODE ...
*REMAININC:; TIMER.
*QUEUE ELEMENTS •
**********:t*****.

x .•. F2 _.

•• *.
•• IS *. NO • *. ENQ CNT IN .* •••••. *. TCB = 0 .*

. . * •• *
• YE::

X IEECVPRG
*****G2*** •• * •• **
•• TOR PUPC:E RTN •

--*-*-*-*-*-*-* .PURGE OPERATOR *
* COMMUNICATION *
.. QUEUES *
********* *

X
"****H2 ••• *" •••••
"CLOSE OAl'A SETS.
--*-*->It-*-*- .. -*
... CLOSE *
• ANY OPEN OA1A ..
• SEl'S • ... * * .. *

• * ••• • • .. B4 •

• • ••••

.. 003 ...

• * *****************

X

****F3********* · . * EXIT * • • ***.**.***** •• *
1'0 ABEND 1 ROUTINE
(IGC0001C)
VIA SUPERVISOR
LINKAGE CHART HI

**** • •
... B4 *
< •
***.

x
****~e4**********
"'CDEXfT RTN GFA2'"
--*-*-*-*-*-*-* .PREPARE REENT Y*
• TO RT ... IF ANY * *OTHER REQUESTS *
************.****

IF NO OTHER
REO' 5 FOR MODULE,
EITHER PURGE
MOCULE OR FLAG
.JPACQ FOR OPTIONAl,.
MODULE RELEASE BY
GETMA IN RTN.

X IEA.CAAL
*****C4********** *RLSE LOAtED PGM* HOA2
--*-*-*-*-*-*-*
.. FlELFASI: .. * ANY LOADED * * PROGRAMS *
****.****.*.* ••• *

X IEAQSPET
*****04********** * RLSE MAIN STG * HCA2
--*-*-*-*-*-*-* * PEL EASE * * TASK-P.ELATED * * SPACE *

• *****E4********** *****ES***.***_** '" SCHEDULE ANY * _ REM£lVE ..
* END-OF-TASK * * ENDING TASK'S ..
.EXIT RTN ETXR * •••••••• X* ROLLOUT ..
* THAT IS TO BE * * REQUESTS FROM *
.. ENTEPEO" * ROLLOUT QUEUE *
* ••• ******.****** *******.*********

IEADQTCB
*****F4***.*****.
OEQUEUE Tea RTN
--*-*-*-*-*-*-* •
.. REMOVE TCB .*X •••••••••••••••••
.. FROM TCB
* QUEUE *

X
*****G4.**********
• * * SET TASK .. * COMPLET ION * * INDICATORS * · . **********.******

X IGC002(S)
.*H4*******
POST RTN BMA2
--*-*-*-*-*-*-*
• POST *
• EDT EeB IF * * PRESE;NT *
.**.******.*.****

x .*. lEAQERA
..14- *. **."'*..15*******_** .* IS *. "'ERASE PHASE RTN* .* THERE AN *. NO *-*-*-*-*-*-*-*-*

.ETXR. OR EDT . •••••••. X*REMOVE Tce FROM* *. EeB OR •• • SUBTASK QUEUE * *. BOTH .* *~ND FREE SPACE * ••• * * •• * ••••• *.*_ •• **
... YES

. .

.x •••••••••••••••••••••••••
ETB02 X

.*K4*** ••••
•• **K3 ••••••• ** * •

• ENSURE THAT •
• EXIT .X •••••••• * A TASK SWJTCH • ... * * IS INDICATED •
•••• ** •••••• *** * '" * ••• * ••• *** ••••••
TO EXIT ROUT INE
IGC003 CHART GBH4

c

(

Chart HB. Purge Timer Routine

IF.AQPGTM

****A2********. • • .. E:NTR,Y .. · . *****,..****"',.,. •
• FRO"" EaT F::OUTINE
.. OR A8END! ROUTINE

x .>.
82 *.

****~ 1******'*** .*
.. .. NO.* DOES
'" EXIT .. x •••••••••• TASK HA\lE A .* *. "TOE .* **** •• * ••• ,. •• ** >Ic..*

* •• *
RETURN '" YES

TO
CALLER

x
.. *. .*. .*.

C2 *. C3 *. C4 *. *****cs*.*.****** .* *. .* IS *. .* *. .. FLAG IRB .. • * IS *. YES .* TQE *. YES .* IS *. YES *CRBFOVN) TO BE .. *. INTERVAL .* •••••••• X*.FORMATTEO AS .* •••••••• X*.TQE. AN ACTIVE.* •••••••• x* FREED AT ..
•• COMPLETE .* *. AN IRB .* *. IRB.* .. COMPLETION OF .. *..* *..* *..* .TIMER EXIT RTN ..

* •• * * ... '" * •• * ***************** *~ *~ .~

X
'0.2**********

• * '" St::l .. '* COMPLETE FLAG.
.. IN TOE ..
* > ********* ... * ... ***

x .>.
E2 * • • * ...

YES.* IS TOE II •
•••••• REMOVED FR(j~ .* *. TIMER .*

.QUELE.
* •• * * NO

X IEAQTDOO
** •• "F2*** •• * ••• *
*T IMEFi SL IH EEDI.
-.--*-*-*-*-*-.
CANCL 1MFi IN1VL
.AND REMO'IE TQE .. * FRGN OUELE •

********* ... *It*lt.* . .
••••••••••• x.

• x • .)(... .
X FM9RANCH

*****G2***".**"** *FREEMAIN CBA2*
- -* -*-.-*-*-*-* * FREE * .P.P. SAve AREA • • • **** •• *.**

X FMBRANCH
*****H2 •• *.**** __ *
FREEMAIN CBA2
--*-*-*-.-*-*-. • •
• FREE TQE * • • • ********** •• ****

X
*****.J2********** * • * ZERO *
• FTr:;: TO lQE IN ..
• Tee .. * • • ***.**.* ••• * ••••

X
.**.K2 ••• "***** * •

.. EXIT III
* •
*****.****** •• *

RETURN
TO

CALLER

X
****05*********

• > • EXIT *
• * .**************

RETURN
TO

CALLER

Section 13: Charts 421

Chart HC. Release Main Storage Routine

422

lEAClt:PET

... **.A2."' •••• *** ... • • * ENTfP, .. • •
10< **** *.:t ..

x
'"

FROII EOT A.TN
OR ABEND4

82: ••
• *15 Joe * •

•• STEP lee ... NO *. TERMINATING ••••••
•• NORMALLY •• *. • • •• • *

.. 'ES

••••••••••••••••••••••••• x.
x

• CDDESTRY .* •
....... Cl* •••••• *** C2 ••
COEXIT RTto. GFA3 •• AN\, III.
--*-*-*-*-*-*-* YES." MODULES ,..
:r~i~ ~~~~G~~T~~:X •••••••• ~ •• !" ~~~APAC~* ••

.. Jce STEP T'-SK .. *.. • •••••• *******.... * •••
• NO · . •)t •••••••••••

x .*.
02 *.

****OJ****.**** ••• ..
.. .. NO.* ANY ••
.. E)(IT .X •••••••••• SPQe's FOR .* *. TASK ...
• ******** •• ***. •••• RETuRN ••• It:

TO .. YES
CAl.LER

••••••••••• x.

. '

x
". E2 ••

• * •• • * IS *. YES *. SU8POOL .*10 •••
*. *~t!AReD .r. ••

* •• *
• NO

; FMERANCH ..
****.F2 ••••• *.***
FREEMAIN CBA2
--*-*-*-*-*-*-* • •
• FREE SUSPDDL • • • ••••••••••••••••• · . •)C ••••••••••• ·

X
••••• G2* ••• *.* ••• • • • •
• UFDATE !PQE •
• QUELE • • • * ••••••••••• , ••••

. :
x

." H2 •• . .. -. • VES.. ANY _ •
•••••• MORE SPQE'S ••

*. .-It. • • .. . -o NO

X P"EJRANCH
••••• .12 ••••••••••
• FREEMAIN DBA2. *-.-.-.-It-*-*-.-*
• FREE III
• 5\iBPOOL 253 •
• FOR TASK III .* •••••••••••••••

X
•••• K2

• * • eXIT •

• * ••••••••••••••• I\ETlJRN
TO

• CALLeR

c

Chart HD.

(

Release Loaded Programs Routine

IEAOABL

.***A2***
* * .. ENTRY ..
* •

••••••••••• x.
x

FROM EDT RTN
OR ABEN04-

.*. 82 It.
•• *. • •• *B3*********

.111 ANY ,.. YES" .. *. LLE'S FOR •••••••••• x. EX)T .. *. TASK.1t *..* •••••••••••••• -*. •• RETURN
.. NO TO

it
••••• C2** ••••• ***
.. f;EDt..CE ..
.. USEI RE~PONE ...
.. CT IN ASSOC. ..
*COE BY RE~PONS ..
.. Cl IN LLE .. ** ••••••• * •••••••

X CCHKEEP
*****02*.*.* •••••
.COEXlT RTN GFF3*
--*-*-*-*-*-*-* .. C~ECK ~~ETHER ..
.. MODULE CAN Be ..
.. F:eLEA~ED •

•••••••••••••••••

x
•• ***E2* •••••••••
• • * • .. LPDATE TCBLLS ..
• PTR .. • •

X FMBRANCH
.****F2 •••••• * •• *
FREEMAIN OBA2

• *-*-*-*-*-*-*-*-*
•• ••• FREE ..

.. LLE'S SPACE ..
• • •••••••••••••••••

CALLER

IF NO OTHER
REa's FOR MODULE,
EITHER PURGE
MODULE OR FLAG
JPACQ FOR OPT tONAL
MODULE RELEASE BY
GETMAIN RTN.

Section 13: Charts 423

Chart HE. ABTERM Routine (Part 1 of 2)

IEAOABOI

• * •• Al*********
< < * ENTRY** •••••••• * •• *

FRQIr4 TVPE-l
5VC POUllNES

IE.AOABOO

****A2***** •••• · . .. ENTR"t ..

• • * ••••••••••••••
.. FRO" ASTERN PROLOG
.. RTN -CHART HG-,
.. lOS, SE!;!! RTN
.. -CHART At+- OR

.**. • • * El3 • • •
.. SVC FLIH -CHART

............ X. AA- cA OTHER

X
.****61*******'.** • oeTAIN ACDFCESS ..
,. OF Tee FOR • * SPECIFI ED ,. * TASK FRCM .. * REGISTER -4 * ••••• * ••••••• _***

X
*****Cl***"'*****.
• CONVERT ERROR * * CODe SUPPLIED * .. * BY CAL.L.ER TO *
,. SYSTEIiII ERROR .. * ceDE FORMAT * .-•• *** •••• __ ••••

.. SYSTEM ROUTINE
X

*****62**** •••••• '* fAVE COhiENTS •
.OF GENERAL REGS.
.. 2-14. DeTAIN '*
• Tee ADDFO FROM ..
III REGH!Te" 0 .. ••••• * •••••••••••

x

X
•• ***83***** •• **.
• RESET ALL • *01 SPATCHABILITY*
.FLAGS IN SPEC'O*
... TASK'S Tce • · . ••• *.** ••••••••••
* '.
• C3 •• x. · . *... • .<. STORECMP X

C2 ••
.* IS *. • * SPECIFIED •• yes

•• TASK .* ••••
•• COMPLETE •• *. •• * •• 111

• NO

x

x * ••• • •
• 05 • • • ***.

* •• *.C3*.******.*
• STORE *
• ABEND ..
• PARAME.TERS IN •
• SPEC' 0 TASK'S •
• Tce * • •••••••••• * •• *.*

• ••• · ..
• D3 •• X.

• *•.
02 *. PRESCHEO .* •

03 ••
• * IS *.

•• IS TVPE-l •• YES • *!FEC 10 ,.ASK*. VES
*ALREADV SCHEOI..- •••••

LED FOR ABEND
•• SVC SWITCH ••••••••••••••••••••

*. .111
* •• *

• NO

• • <.
E2 *. . * *.

NO .* IS SPEC'D It.
••••• •••••••••• ••• *.TASK THE JOB .*

•• STEP TASK ••

•••• o ••
.. Fl *.x.
* • ••• *

ABWAIT
it .'. Fl ••

•• IS ••

. . * •• *
• ves

it
INI TeALL .*.

F2 *.
•• IS ••

x
.**. • • * B5 • • • • **.

•• SPECIO TASK •• yes
•• IN ABENe .AIT.* ••••

•• CONOIT leN ••

.* INITIATOR *. NO
..THE CALLER OF ••••••

*. .111
* •• *

• NO

x
•• ** • •

• 85 .. • •
•• ABTERM •• *. ••

• YES

,(.* •• • • * Fl * · . • •• * • .*. X
JSTABEND .*.

Gl ••
•• IS ••

•• SPECle TASK*. NO *. TERMINATING .*
* •• *

• YES

x

it ••• *
o 0

• C3 III • •

G2 *.
•• 15 ••

•• SPEC I 0 TASK*. NO
•• TERMINATING ••••••

. •• ••
* YES

X

x •••• • •
• 83 •
• 0 ****

•• ON .*
. . * •• * * NO

x . ' . E3 ••
•• IS *.

.*SPEC'D TASK •• YES *. TERMINATING •••••• •• .* •• .* * ••• * NO

X
* •• **F3**.** •••••
• PLACE • * RH RB CLD PSW '*
• I NTa RBABOPSW •
• FIELD OF TASK'S.
• TOP RS * ***.** ••• *.**.* ••

X
..***G3****.* •• *.
• PLACE RS WT CNT*
• INTO RSWSCA •
.FIELD OF TASK'S. * TOP RB, CLEAR •
• RBWCF FLO * ••• * •••• _ ••••• **
* •• *. •

• • .x •••••••••••
• H3 *.x. • •

X
SCHDTVPl •••

E4 •• .* IS ••
.*SPEC'D TASK •• YES

•• TERMINATING ••••••
• NO

• • •••• F4 •••••• * ••• * PLACe RH *
• SYC OLD PSW *
• INTO RBABOPSW •
.FIELO OF TASK'S •
• TOP AS • • ••••••• * •••• **.*

· . .X •••••••••••

X
• •••• G4 •• ***.* •••
*PLACE CVT ADDR •
.OF SYC 13 INSTR.
• ABEND INTO RH *
*SYC OLD PSW IN •
• TASKIS TOP RB .. • •••••••• ** ••••••

••••
o * * 03 • * 0

OUMPREQ ••• TASkSW X x
••••

424

H2 ••
•• DUMP *. • * REQUEST *. YES *. BY CALLER ••••••

. .-. .* * •• *
• NO

X *.* •• J2.*.* ••• * ••
• RESET ALL ABEND.
• FLAGS AND DUMP ..
• FLAG OF *
• SPECIFIED *
• Tce • • * ••••••••• * •••• *

x
** •• o • * 05 • • • ••••

••• **H3.* •• **.***
*PL ACE CVT ADDR •
.OF SYC 13 INSTR •
• ABEND INTO RH •
.. RS OLD PSW IN *
.. TASK'S TOP RS * ••• **

X
•• **.J3 •• ** •• ****
• * • seT RB •
• WAIT COUNT TO •
• ZERO •

:.*.* •• ***.*** •• :

.***.~*.* *.*
• RESTORE •
• CaNT eNTS OF *
• REGISTERS 0-1 •
• FROM SVC SAVE *
• AREA • .* ••• *

• ••••••••••)C.

:SETA8TRM x
••••• J4 ••••••••••
• •
• seT ABTEAM •
.FLAG IN SPEC D •
• TASk'S Tce • * • •••••••••••••••••

X TASKSW X IEAOOS02 • X ••• *.K2***.* •••••
• AESET ALL ..
*0 ISPATCHABIL I TV.
• FLAGS IN SPEC 10.
• TASK'S TCB • • • _

x . _ ..
o •
• H3 ..
o • •• *.

* ••• *1<3***....... . .. TASK SW. RTN .8YA2.
-$--*-.-.-.... -. .
• INDICATE TASK •••••••
• SWITCH * • • • ••••••••••••••••

• •••• K4 ••••••••••
• SET • .PREVENT ASYNCH •
.. EX IT$ FLAG IN •
.. SPECID TASK'S ..
• Tce • • ••••••••••••••••

x •••• • • .. 815 ..
• •

• ••• * • * B5 • . .
* •••

•• TESTOTIU •••
B5 •• .* ••

NO •• OOES SPEC'O ••
••••• TASK HAVE ••

xSUBTASKS •• ••• *
• YES

• •
• 05 *
• *

X
••• *.CS •••• *.* •• *
SETSueS HFA2
.-.-.-*-*-:o-~.-.
• SET SUBTASKS *
• NON- DISPATCHABLE •
•• ***.**** ••••• **
**.* · '. • 05 •• x. * • *... . RETCALL X

• •••• DS ••• * •••••• * RESTORE •
.. CONTENTS OF •
.. GENERAL •
.REGISTERS 2-14 • · . •••• * •••• *.* •• * ••

X
• ••• ES •• * ••••• * • • .. EXIT •

• • ••••••• * •• * ••• *
TO DISPATCHER
-CHART GG-,
TYPE 1 EXt T RTN
-CHART GA-,
I/O FLIH
-CHART AKG1-, OR
CALLING ROUTINE

C',',' \..1 ,

c

Chart HF.

(-

ABTERM Routine (Part 2 of 2) -- SETSUBS Subroutine

NOTE- CO-TASK MEA"S ANOTHER sueT ASK OF
THE GIVEN TASK'S PARENT

SE:TSLBS

** •• ..,2 ' •••

• * ... ENT .. " ...

* *
• F i:ot(AE TERM
.Ft[aTINE
.-eHA!:l HEB5-

x
••••• 62 ••••••••••

• * .. INITlALI2E *
• SELf-eTIDN UTH ..
.. GIVEN lA~K'S ..
.. Tca

.......... •• x.
:1E5101f;2 ~

••••• C2 ••••••••••
SCAN1RrE ttFA"
$-*-*-*-*-*-*-.-. .. SELECT ..
'" A St.-BTASK ..
* •

x .*.
02 *.

•• III. • ••• 03 •••••••••
•• SltB1ASK It. NO" ..

•• SELECTED .*)1;* EXIT III... •
•• •• RE TURN TO ABTER'"

• YES ROUTINE -CHART HE05-

x .'. E2 •• .. .* IS
.. YES SELECTED
.. ••••• tHJSTASK ••
x *.CGMPLETE .It *. ••

• NO

• .,.
F2 It* IS

.. YES .lIt !ELECTEO

.... •••• SLelASK ••
x .TEfOMINA1ING* *. • •

• NO

; .•.
G2 ••

•• IS ••
• _GIVEN TASK It. YES

•• DISFATCI-:ABLE •••••• -
• NO

x .•.
H2 III.

• .* IS III •
• YES •• SELECTED ••
•••• *.5U81A5K 015- .*
X •• FATCHABLE •• *. • •

o NO · . •)1 •••••••••••

· . • SETNON X
••••• J2 ••••••••••
• SET ABEND NOfrrt- •
• 01~PATct;ABLE •
• FLAG! (TCBAS'F).
• IN Tce OF SE- •
*LEC1EO SLB1A!K It •••••••••••••••••

X
••••• K2 ••••••••••
• seT PROHIBll •

• It A5YNCH EllJTS •
••••• FLAG (TCBFX) IN_

.Tee OF SELEC1ED. * S\J8TA!K • •••••••••••••••••

~CANTREE

• ••• A4
o •
.. ENTRY • ·

• FROM SETSueS
.SUBROUTINE
.-THIS CHART. BLOCK 62-

• .•.
84 ••

•••• • ••• 85 •••••••••
•• DOES •• YES • EXI T wITH •

•• TASK I'!AVE •••••••••• x. SUBTASK'S TCB •
•• SUBT ASK •• • ADDRE~S •

•• •• RETURN TO
• NO SETSUBS

••••••••••• x •
:TRYSYS .:.

C4 ••

SUBROUTINE
-THIS CHART,
BLOCK D2-

•••• • ••• CS •••••••• *
•• DOES •• YES • EXI T WITH ..

•• TASK HAVE •••••••••• x. CO-TASK'S TeB •
•• CO-TASK •• .. ADDRESS •

•• •• SEE NoTe •••••••••••••• *
•• •• RETURN TO * NO SETSUBS

x .0.
04 ••

SUBROUTINE
-TH! S CHART.
BLOCK 02-

•• IS •• • ••• 05 •••••••••
•• TASK'S •• YES • eXIT - NO •

•• PARENT THE .* •••••••• X. Tce ADDRESS •
•• GIVEN •• • •

..TASK •• • ••••••••••••••
•• •• RETURN TO

.. NO SETSUBS

X
• •• *.E4** ••• * •• **
• USE • • • TASK'S PARENT.

••••• AS SUBJECT OF •
.NEXT ITERATION. • •

SUBROUTINE
-THIS CHART,
BLOCK 02-

Section 13: Charts 425

Chart HG.

426

ABTERM Prologue Routine

[EAOPLOO

****A3*********

• * '* ENTRY '"

• * ** *************

x

FRO'"' PROGRAM
CHECK FLIH
-CHART AF-

*** **83*** '" **** ** '* Gt..1 '*
.. CURRENT Tee '"
'" AOOR FROM Tee *
PTP «tEATCBP&4) • •
*** **************

x .*.
C3 * •

• * * • • * IS I/O *. YES *. SWITCH .*
.([ORGSW) .

. SET . * •••
• NO

x .*.
03 * • • * IS ••

• *TVPE-l SVC *. YES *. SW ITCH .*
(J EATYPEl) SET

. . * •••
• NO

x
*** **E3**********
'" MOVE PI QPSW '" '* TO RB OLD PSW '" '* I N TOP RB OF '*
.CURR TASKIS RS '"
'" QUEUE '"

X
*****F3********** · . • MOVE REGS 0-15 '"
'" FROM Pl SAVE '* * AREA TO CURR '"
'" Tee '"

X
*****G3**********
'" USE 'oct *
'" AND '"
'" I NTERRUPT I ON '" * TYPE AS COMP '"
'" CODE '"

X
*** •• H3********** • • * SET RETURN • * ADDRESS TO * * DISPATCHER * • • *******.**.******

PCTYPEI X
*****G.********** · .
• USE * * 'OF2' AS COMP .. * CODE * • •
**************.**

X
*****H4********** • • .. SET RETURN •
ADDRESS TO TYPE * 1 EX IT ROUTINE '" • •

pelo X
*****F5**********
• * .. GET Tefl ..
.. ADDRESS FROM * * IDS RQE ..

• * *.*.**.* •• *.*****

X
*****G5****.****. * •
.. USE *
• 'OF1' AS COMP * * CODE * · . '*****.****** •••• *

X
****.H5********** * . •
*SET RETlIRN AOOR. * TO DISMISS *
.ENTRY POI NT IN *
• I/O FLIH * ****** •••••• * ••• *

• x • • x •••
GOABTERM X

*****J3***.***.*.
• CONVERT ERROR *
• CODE SUPPLIED * * '"By CALLER TO * * SYSTEM ERROR * * COOE FORMAT •

****.************

X
••• *K3****.* ••• • •

'" EXIT * • •
*************** TO ASTERN ROUTINE

UEAOABOO) --CHART HE--

c

(

• Chart HH. ABDUMP Routine

NOH: - SI-ACf;C AREA APPLIES CNLY
TC .. t,,;LTIFf.iQCl:SSlf\G S,"Sl"EMS

AE'-DUMf'l - I(;(OOO!":iA
****Al********* • • ... EI\T~Y ... · . • ************** .. FROM SVC SLIH IAC.,,3) IF AECUMPJ RTN

.. IS IN A ,.Ii,AI\SlENT A~EA

.. fLeCK. IF AECI..MPl ~T'" MUST
• EE FETCI-et. ENTRY IS FJ;OM ThE.
• tlSPATCI-ER (<:GJl).

x .•.
Bl ••

• *Ie; teE •• "'*.*62***"'.*.*. .* f"Oi~ cu~p *. NO" ...
•• OAT .. SET •••••••••• x. EXtT ...

•• OPcl\EC •• *... ********** •• *** •• ••)(TO E)clT

.... - . * A.3 • . --* ••

X
••••• A.3.* •• * •• * •• · . • PRINT DUM .. Y •
.PQE, poe CHAIN ••
• AND FBQIE"'S • · . .*.* •••••• * •• * •••

.x

.c
.T
.L
X

ABDU14P5 •••
B3 *.

IGC0405A(S)

.* ••
•• IS *. NO

•• aCB TRACE •••••• *. ~ANTED ••

• * ••
• *
'" A4 • • * ••••

. ... · .
• A5 ... • •
.***

x X
.**.*A4*.*....... * •• *"'Af: ••• *."' •• ** * PRINT. *PR REG CONTENTS*
• NUCLEUS- IN '" .AT ENTRY TO A9-*
*MULTIPROC SYS •••••••••• X*END OR PEG CQN-*
*PRINT NUC ABOVE. .TENTS WHE.N SNAP. * PSA '" * WAS ISSUED •
••• *.** ••• *.*.*.* *** •• *.**** ••• * ••

x············-.
84 ••

•• IS •• .* STORAGE *. NO
•• OPERAND ••••••

*.SPECIFIED, •
* •••

• YES .F<O",TINE (IGC003J
.Ct,ARl GB • YES .x • YES

x : NO .•. . ..
Cl •• C2 •• •• *. .••.

•• WA'S •• YES •• VALID ••
•• TeB AOtRESS •••••••••• x •• Te8 AOCF<ESS .*

•• ·GIVE" •• *. •• *. .• • •••
.. "C .. YES

X
.**.*01 •••• ******
... PRINT 10. Jce ...
... STt!PN .. MES. *
• DATE" 11/11E. ANC*X
... CeMPLET ltN ...
... eCCE ...

..**** •• *.**.** .x
.c
.T
.L

AeOUlt.P2 XIGCQI0SACS):
*****El**.*.*** ••
• PRINT PSlIl. TCB,.
.. TCB' 5 REGS. •
.. RB'S. SYRe's ••
.. AND LOotl: LIST.
.. ELEMENTS • -•• *_ •••• * •• *.* •• .x

.c

.T

.L

A6CUMP3 X IGC0205A(5)
*.**.Fl**.* •••• *.
• PRI NT C<,,"TENTS • * DIRECTCRY ..
*EhTRIES. EXTENT.
• LISTS. ceoe s ...
• A"D -rICT

.x
• c
• T
• L

x
ABCUMP4 .•. IGCC3CEA (5)

Gl •• .• *.
•• IS •• YES

*.TCBMSS = ZE11I0 ••••••
• .c

X
••••• Hl •••••••• **
• SELECT .. . -.-.-.-.-.-.-.-.

x - . • A.3 • - . • ***

• SELECT TASKS •••••••
.. SET THE If 0110:- •
• OISPATCt-AELE •

X
••••• ..11 •••••••••• · -• PRlhT •
*SPQE'S •. CQE'S, •
• AND FQE'S .. • •

x · .
• A.3 • · . .***

X

•• lI**02********** .SELECT •
--*-*-.-*-*-*-.
• SELECT TASKS ••
• SET THt;:M NC","- *
• DISFATct-AeLE • •••••• * ••••••••••

.c

.T

.L

X
• •••• C3 ••• *.*** ••
*SELTASK •
*- *-*-.-*-*-*-.-.
• SET TASKS •
.. NON- •
• OISPATCHABLE *
.* •• **** ••• ** ••• *

X
• •••• C4 •••••••• *. · -* PRINT •
.REQUESTED AREAS.
• OF STORAGE • - . •• ** •••• **.* •• ** •

x.
c.
T. •
L. X
.x •••••••••••••••••••••••••
x

ABDu,",pe .*. IGC0705AlS)

X
• •• **E3***.****.* - . * PRINT '"
QCP'S AND QEL'S · . · . ••• :to.* ••••• **.***

04 ••* IS •• NO *. MODULE IN .* •..•
•• STORAGE .*

••• * * YES

x ••• YES

.****E4 •• *.* •• *.. E5 ••
'" PRINT •• •• ••
'" STORAGE • X.. *.
'" OCCUPIED BY ••••••••• X*.fIo10RE MODULES .*
• NODULE. •• .* •* • •••• ***** ••• **.. * •••

• NO

XCTL : x···· ,
X * ••• *F.3* •• ***.*.*

*SELTASK •
--*-*-*-*-*-*-.
• MAKE TASKS *
• DISPATCHABLE *

ABDUMP9 .*. IGC0805A(S)
F4 *.

· . ** •••• *** ••••••••

· . • x •••••••••••

x .'. G3 ••
•• *.

NO.*]5 SAVE ••
• ••••• AREA TRACE .*

•• WANTED •• * YES

X
* •••• H3.*.**.".** - . - . • PR [NT IRS SAYE *
• AREA • - . •••• ** **

.x

.c

.T

.L

;]GC0505A(S)
• ••••• J3' ••• *** ••• * • • • • ..* PROVIDED AND •
• USER'S SAYE •
'" AREA ..
• •••• * ••• **** ••••

.
:ABDUMP7 .:. IGC0605A(S)

K.3 *. •• *.
•• IS *. NO *. NUCLEUS •••••• *. WANTED .* *. ••

* •• *
• YES

x ••• *
* * * A4 * . .
••••

x .• *. . -* A5 •

* * •• _*

.. . .
.* IS *.

•• TCSMSS = ZERO ••••••
*. •• *. .*

• NO

X
** •• *G4 ••••• ***.*
*SELTASK ,..
-$-.--*-*-.-*-.

x •••• • •
• K4 • · . **.*

• SET TASKS ••••• ,
• NQN- •
• DISPATCHABLE ,.. ** •• ** •••••••••• *

·
x .-.

M4 *.
•• IS •• .* SUBPOOL •• YES

•• NUMBER GT .* •• , • *. 127 .*
* NO

X
** ••• ..14****** •••• * PRINT • * STORAGE *
*ASSOCIATED WITH.
• EACH SUBPOOL * • • •••••••••••••• * •• ..*.. . • • .x •••••••••••
• K4 *.x. • • • ••• X

TO EXIT POUTINE
(IGC003) --CHART GB-
TO EXIT ROUTINE
LINKAGE (SVC 3)
•• **..1'5.*.**.*.* · -• EXIT •

• * ** ••• * •• **.* •••
x

.k4** •• *..... * •••• KS** •• *** •• *
*SELTASK • • PRINT TRACE ,..
.-*-.-*-.-*-*-.-* * TABLE. IF *
• MAkE TASKS * •••••••• X. PRESENT AND • * DISPATCHABLE • • REQUESTED IN •
• •• UNIPROC SYS •
* •• ******........ 11 ••••••••••••••• *

Section 13: Charts 421

• Chart HI.

428

ABEND1

1<2C001C

****A2*****"'JIo •• · . ,. ENTFi.'f '" • • • *.*****Ifo**** ••

• .*.

FROM .eve
SLIH

82 * • • '" ... "'* .*B3*********
... ... NO '" .. *. SlAE ISSI..EI:: .* •••••••• X* EXIT .. *. •• x.. ,.
.. * ** •••• * •• *. * •• :t

.. YES

x .*.

**** • •
'" 83 .. • •
"'*"''''

TO ASEN02
(CHART HJ)
VIA XCTL

C2 *. *.***ca********** ".. *. *.**C4********* _. *. YES '" SeT ReOP5W OF *. STAE/P~UGF .* ••.•.•.. x. PURGE SVRB TO * •••••••• x* EXIT .. *. BIT Cllt •• .. SVC 3 INSTR * *..* .. ADOR" ***.* ••••••• "' ••
* •• * *.***************

• NO

x .'. 02 ...
• "'ABTERM "' •

• If: BtT IN *. YES *. Tee FLI;S .* •••• *. ON .:t
. .

'III •• *
• NO

X
"'._**e2**:t •• ***** • • .. STORE ...
*COMPLE:TlCiN eCCE •
• IN Tee (1CBCMP J* · . ***************** · . •)1 •••••••••••

• .*.
F2 ••

• lI< *. ."' ••
• eNTRY OLE TC*. YES. *

.THIER EXPIR OR.* •••• x. B3 •
• OFER CANCEL. • ..

.. **** ••• *
'. NO

x .>.
G2 * • • * EN1R~ •• *** • • * iJUE TO *. 'YES. * *. DETACH OF .* ••.• x* 83 * *. INCOMPL ••

.TASK . •• **
> NO

• .>.
H2 ••

• * *. *** • • * STAE *. YES. •
.RECURSION flIT . •••• x* 83 ..

•• ON.* ...

.. ****
>NO

; .>.
J2 *. ****.J3**** •• **'** .• *. • • • * •• NO.. •

•• TeePlE = 0 •••••••••• X* PURGE PIE *'* . *
* •• * ******.*****.**** * 'YES

· . • x •••••••••••••••••••••••••

• •••• K2 *.
> >
• EXIT * > >
.*.*.****

TO ASIRI UGCOBOIC)
(CHART ex)
VIA XCTL

RETURN TO
ASIRl -CHART BX
VIA SVC 3

,f~

"-4...~,

('

(

(

• Chart HJ. ABEND2

I GC040 Ie

"''''*.AI *********
* * * EI'roTRY ..
* •

• .0.

FRtM ABENtt
-(H.6RT 0-

Bl ... *****63**********
• * *. '" * .* *. YES '" SET TASKS '"

.GRAPHICS Joe . •••••••••••••••••.•••••••••••••••• x* NON .. *. .* '" DISPATCHABLE '"

. . '" '" * •• * ***************** * .C

X

*****el **********
'" STQRE '" * tAEEI\C' '"
'" [DENT IF IEP IN .. * EXTENDEC SAVE '"
'" AGE.. '"
******** *******

X
*****C3**********
"'GRAPHICS ABEND '"
--*-*-*-*-*-*-*
'" ATTEMPT '"
"'ERROR RECOVERY '"

* * *****************

x .•.
03 *. X

*****01*"******** * • *1t<.'DICATE FIRST-.
****02********* .* *. * * NO.* CAN *.

'" TIME EI\TRY TO '" * EXIT *X •••••••• *. TASK BE .*
'" SELECT '" • * •• RESUMED .*
.. SUBRCUT HE '" *********.***** *.. * ***************** * •• * TC ABEND3 * YES

(I(;COAOIC)
-Ct-.Af<T hK-

X
*****El."'*"'*"'''''''''''''
"'SELECT '"
--*-*-*-"'-*-*-*
'" SELECT A "l ASK '"
'" STARTIt.;G \11TH '"
'" Joe STEP Tee '"
********.**lIjc*****

x
• 0.

FI *. *****F2***_.***** • * *. . * RESEl • .* *. YES * ABDUfl:F *
.TASK SELECTED. •••••••• X* NON-DISFATC~ .. *. .* .. FLAC: * *..* • ..

* •• * **.*******.****** * NC

; x .*.
GI *. G2 If.. .* *. .* IS •• • * IS CURR *. YES .* RMS *. NO

.TASK A SYSTEM. •••••••• X*. OPERATIOI\AL .* .•••

ASDOI

. T,IISK . *. .* *..* *..* •• •• * •• * * I\C * YES

.x ••••••••••••• • .<.
HI *. .* *.

x
*****H2********** * • • * IS *. YES ... SET * *. STATliS fr,It..ST .* ••••

.CGMPLETE . •• •• * PRE~ENT CLMP ..
• FLAG • *. .* * •• *

• .C

x
AeC02 .If..

JI *. • * ••
NO .* IS E~TRY ••

•••••• DUE TO .*
4!.RECURSICN.*

'*. .* * •• * .. YES

x

• • .*********.******

. .
.X •••••••••••••••••••••••••

.*. ABOOO
Kl * • • * *. • ****K2********* .* VALle *. NO x. * *. RECURSICN •••••••••• X* ExIT •

. . • * *..* ** ••••• *.*** •• * * •• +
• YES . .

••••••••••• x.
x

.*** * •
• A4 * * 0

TO SYSTEM QUIESCE
RTN (lEe I IWTST)
-.cHART H"t-

X
*****E3********.*
* SET * * SUBTASKS * * OISPATCHA8LE- * * UPDATE PSW AS * * SPECIFIED *

X
****F3* •• "****. • • .. EXIT •

• *
*.** ... **.* ••• *.

RETURN TO
CALLER 8Y
SVC 3

**** o •
• A4 • . .

X

ROLLPRG .*.
A4 * • • * *. .* IS *. NO

*ROLLOUT /ROLL IN ••••••••
..ON SYSTEM.*

. . * •• * .. YES

x .'. B4 *. .* * • .* IS *. YES •
.RECURSION DUE. •••• X. *. TO OPEN .* •. .*

* •• * * NO

•••••••••••• X.

FlOLLPRGB X
*****C4******.***
*SELECT *
--*-*-*-*-*-*-* . .
* SELECT A TASK ..
* •

ROLLPRGC X
*****04********** * PURGE *
"A8ENOING TASKls*
.. IQES FROM *
.. ROLLOUT AND * * ASYNCH EX IT Q *

x .*. E4 *.
.* ... • ****E5********* .* ANY IQEIS *. NO X .. * *. ON ROLLOUT .* •••••••• x* EXIT ..

•• IRB.*
.. ********* .. *****

* •• * * yes TO ABEN03

x
.0 •

(IGCOAOIC)
-CHART HK-

F4 *. *****F5********** .* *. * .. .* IS THIS *. YES • seT IABENDI *
.IOE FIRST ON . •••••••• X* FLAG IN IQE *

..IOE QUEUE.* .PARAMETER LIST *
.. * * * •• * *********.*******

• NO

X
*****G4******.*** * RETURN .. * IQE TO ..
.AVAILABLE LIST.
• ON IEARQIRB *
* •
********.********

.. .
x •••••••••••• x ••••••••••••••••••••••••• X

section 13: Charts 429

• Chart HK. ABEND3 (Part 1 of 3)

430

IGCOAOIC

** •• A2

• • * E:.NTf;.Y .. • • ***.***** •• *"'.*
: FROfil ABEN02
• -CHART HJ-

x .*. AB025 .*.
B2 •• B3 •• *****64********* • . *.. .* *. • * IS ENTRY *. NO .* ABEND *. NO .. STORE ..

•• DUE TO •••••••••• X*.SCHEOULED By •••••••••• X*CQMPLETION CODE.
"'.RECURSION.... *. ASTERN .* .IN CURRENT Tee* *..* *. •• * •• * ••• *** •••• ** •••••

'" YES .. YES

it
••••• C2*********. • • .. ZERO ABTERN ..
.. AND RECt..RSJO~ ..
.. BITS ..
• • ****** •• **.*.* •••

X IGC016(S)

*** •• 02*.* ••• ****
*SVC PURGE RTN ..

--*-*-*-*-*-*-* .. I/O REQl.ESTS ...
.. STOP I/O OPS ...
.. IN PROCESS ..

********** ••• JII***

it *._ .. E2**********
*FURGE RECIJESl S ..
.. FOR ..
.. ASYNCHRONCI,iS *
.. EXIT ROLTINES ..

• • _ _
••••
*HK" •

FROM" F2 •• X.
I"tLOl" ,.

***.
X

.**.*F2.* ••••••••

.AEDlE HMAI.
--*-*-*-.-.-*-.
,. OB1AIN SPACE •
,. FOR AEENC • * FUNC11CNS * **** •••• *.*.*****

ABD19 X
••••• G2**
* RESEl * ,. PREVENT • * ASYNCHRONO\JS * * E:II.IT BIT • • • .****.*.*********

x
'" H2 *.

. .

.x •••••••••••••••••••••••••
X

ABD26 .*.
C3 :fl. .****C4********** .* *. • PLACE • .* STEP *. NO *PTR TO CURRENT * *. OPTION .* •••••••• X* TCB INTO *

.SPECIFIED. * ALTERNATE TCB •
.. * • * •• * ************* •• ** * YES

. .

.x •••••••••••••••••••••••••
ABD26A X

*****D3*********. • • .MOVE eOMPLET ION*
.. CODE TO •
• ALTERNATE TCB * • • * •• *.***********.

X
*****E3********** * INDICATE * * FIRST-TIME *
*ENTRY TO SELECT • * SUBROUT I NE • • • .**********.*****

ABD27 X
*****F3**********
*SELECT *
--*-*-..... *-*-*-•

••• x* SELECT A TASK *X ••••••••••••••••••••••••••••• * STARTING WITH. * ALTERNATE TeB *
*.******.********

x .*. AB031
G3 *. *****G4********** .* *. * ZERO ABWF BIT. .* *. NO .IN CURRENT TCB *

.TASK SELECTED. •••••••• x. AND INDICATE *

:AB029

. . *TASK IS HIGHEST. *..* * IN TReE •
* •• * ***************** * YES

x .*. AB030A

• *HL * •• x. Al *

* •

H3 *. *.***H4*********.
****Hl********* .* 15 *. .* *. * '* • ,. NO .* RECURSION *.

,. EXIT *X •••••••• *.CUE TO CLOSE .* * * *.OR ABDI.MP.*
.*.*** •••• **.** ...* * •••

TC ABEND4 ROUTINE ,. yes
IGC010IC -C".AIOiT I-:N-
VIA SUPERVISOR Ll""-KAEE
xeTL

X
* •• *.12***** ••• *

• * ,., EXIT * • •
********.**.***

TO "BEND5 IOiOl,.:lINE
IG:COi;OlC -Cti"IOiT
tiO- VIA SI.PERVJ!OR
L IMeA'E)CCTL

.* OPEN *. YES • INDICATE 4! • *. IN PROCESS .* •••••••• X.CURRENT TASK 15* •••• *. .* *NOT HIGHEST IN *
.. * TReE *

*. • * *.*.******.** •• '** * NO

:A8030 x
.****..13** •• **.**. • • * RESET * * ASEND •
• INDJCATORS • • • ** ***

X
••• **K3 •• ** ••••• *
* SET * • • ABEND, PREV, • •••• * ASYNCH. EXIT, * * ANO ABWF BITS * • •
*******.******.**

I""'--~ , I

''''-'''

c'

• Chart HL. ABEND3 (Part 2 of 3)

**** •
• "L '"
..... 1* •• · • FRCM

.. }-1<.<:4
x .'. Al *. ." "2*** •••• * •• .* IS *.* THIS fJ *. NO ... SET (,.iF '" *. STEP TER~]N .*•. X*CURRENT lee FOR. *. .* '" S.E::LECT lA~K ... *..*

* •• * *.*"'*.**.***"'* ... *.
'" YES

· . • x •••••••••••••••••••••••••
X

*****Fll**"******* * •
'" [NCJC.ATE '"
.. FIRST-THE ..
"'ENTRY Te SELECT.
'" SUAROUT III- E '"

****** .. ******.***
**** · . ,.. Cl "lOX. · . **** • AACZ:3 X

*****Cl **"'*******
*SfLECT '"
--*-*-*-*-*-*-*
'" SELECT A ...
'" TASK '" · . *******.***"'*****

;; . '.
01 *.

• * *. .* *. NO
•• TASK SELECTED ••••••

. . *. .*
:te •• *

'" YES

x .' .
El *.

• * * •

x
***** *HK '"
'" F2* •• .

• * SELECTEe *. YES
.TASK C(MPLETE. ••••

. . *. .* * •• *
• NO

x
**** • *

... Cl '" * •

X IEACPGTM
*****Flt-*********
.PURGE: TIMER RTN*HEA2
--*-*-*-*-*-*-*
'" REMove TASKS •
_TIMER QUEUE EL-.
*EMENTS (TQE'S) ,.
********** •• *****

X IGCOI6(S)
*****Gl *:to*.******
.sve PURGE F<TN *
--*-*-*-*-.-*-.
.. PURGE I/O- RE- *
GUESTS, STOFl 1/0
.. OptS IN PRoe ..
....... **** •• ***.***

X IEECVPRG
*****Hl ********.*
*WTOR PURGE RTN *
.-*-*-*-*-*-*-*-*
.. PURGE WTQR * * MESSAGES .AND ..
• RE:PLIES •
***********11<***.*

;;
*****Jl.*****.***
• PURGe •
.. REQueSTS FDR •
• ASYNCHRONOUS .. * EXIT ROUTINES. • • ******* •• ********

• .****Kl*****.****
• NSSLOOFl *
--*-$-*-*-*-*-*
*SEARCH FOR DCE * * C DESCRIPTOR •
*QUEUE ELEMENT) *

• **** * • * A3 * • • **.*

***.

• * • A3 * * •
** ••

x .*. A8050 .*.
A3 *. A4 *. *****AS********** .* IS *. •• *. * RELFASE * .* MSSLOOP *. YES .* IS *. YES * PROGRAM * *. COMPLETE .*•... X*. THI::::RE A PIE .* •••••••• ><. INTERRUPTION * *. .* *. •• • ELEMENT (PIE) ..
.. *..* • * *. .• *. .* *************.*** * NO .. NO .* .. · . .. 63 *.X. · . * ••• • ABD46 .*.

**** . .
..><* Cl * * •

**"'*

B::5 *. **.**8.********** .* IS *. * MSSLGOP * .* THERE A *. NO *-*-*-*-*-.. -*-.. -* *. FREE QUEUE .* ••.••.•.)(*SEARCH FGR DOE * *. ELEMENT .* * C DESCRIPTOR ..
*.(FQE).. *aUEUE E.LEMENT) *

* •• '" ***.**.***** •• *** * YES

X
*****C3*****.****

• * * * .. VALIDATE *
.. FQE ADDRESS * · . ****.***********.

;; .•.

x
.. . .

* A3 * * • .* ••

03 "'. *****04**********
.* *. * .. .* *. NO * *

.VALIO AODRESS. •••••••• X* ZERO ADDRESS *'
. . • *
.. * ..

*. ... *******.********.
* YES

· . • x •••••••••••••••••••••••••
x

*** **E3**** * ... *** · . * • .. VALIDATE * * FQE LENGTH .. • • *.***.***********

x .*.
F3 *.

.* * • • * *. NO
.VALIO LENGTH . •.•...

. . •• .* ••• *
• YES

.~. :ABD48

x
**** · . * Cl * * •

G3 *. *****G4********** ****"'G5********** IS *. • * * * MSSLOOP *
.* NEXT FQE *. YES X * ZERO FOE * *-*-*-*-*-*-*-*-* *. OUT OF .* •••••••• ><*LENG"{H/AODRESS * •••••••• ><*SEARCH FOR DOE *'

.SEQUENCE . .. * * (DESCRIPTOR *
.. *' * *QUeUE ELEftilENT) *

*. •• lIt**.****.***.**"'* ******.**********
• NO

X
• ****H3********** · . • OBTAJN *
ADCRE55 OF NEX T * FOE • • • ** •• ** •• "'*"'**"'**.

• ***.
* • *' 83 *
• * ****

x

• * * A3 • · . **.*

Section 13: Charts 431

• Chart HM. ABEND3 (Part 3 of 3) -- Steal Core Subroutine

AE!C15

****Al ****** *** * • '* EJl.TRY .. • • ****:t**:t.******
FRC,," AEEI\C3

**** RCU1INE '* *. (CH,4RT I-I<F2) '* el •• x. · . .*** • TESTCLCS X

*****el •• ******** • • *MCVE PAR,otlETER ..
.. LI'ST TC *
.. EXTENCEC S""VE '*
* ARE'" '*

X GMER.et<r.CH
*****Cl**********
GET~AI N C,4A2
--*-*-*-*-*-*-* '" (;ET 512 EYTES ..
.. OF SPACE * '* ceNCIT tC,. ... LLY '"

x • *. toJio1BRANCH
01 *. • •••• 02 ,. ••• *** • * IS •• *FREEMAIN OAA4* ****03"'******** .* SP,oCE *. YES :t-*-*-*-lI'-:t-*-*-* '" .. *. AYAILAELE .* •••••••• X* FREE * •••••••• x* EXIT '" *. .* .. 5.12 BYTES OF '" '" ..
.. .. . SPACE" *************** * •• * ***************** RETURN TO ABI:ND3 .. NO -CHART HKG2-

X
ABSTEP •••

El *. ..:II<***E2** ••••• *** .* *. ***.E3********* • * IS *. NO * MAKE 'JOB STEP *.. * *. THIS It STEP .* •••••••• X. Tee THE * •••••••• X* EXIT * *. AEENC .* .. AL TERNA1E Tea * * * *..* • • *****.***.***** *. .• ***************** RETURN TO ABEND3
,. "I ES -CHART HKG2-

X
STEAL .It.

Fl *.
• * .AS *. ****

• PREV ATTEMPT* • ..,es. *
MADE FOR SFACE X A4 • *. IN SP.. ,. ..

. 2!:2 . ****
* •• *

• NO

X
*****G 1 .***** ***. * • ,. SET PREVENT •
*OUMP INCICATOR •
• (TCBFX) *
• * *****************

x .•.
HI * • • * IS *. .*** .* THERE.AN *. NO * ..

•• SPQE FOR .lOB •••••• X. A'" ..
.STEP Tca •• ••~. * •• *

• YES ** •• · .. ,. Jl ... x.

** ••• * X
NXTSPQEl .*. FREE SUB RMBRANCH

432

Jl *. *.***J2*.**.*.*** .* Does *. *FREEMAIN CAA4 •
• * SPQE *. YES *-*-*-*-*-*-*-*-. *. REPRESENT •••••••••• X* -FREE •••••
•• SP 252 .* ,. SPACE IN * *..* • SUBPOOL 252 •

* •• * *.******* •••• ****
• NO

x .•.
Kl *. *** •• k2* ••••••• * • • * IS •• • • • * THI S THE *. NO ,. ADDIO.ESS NExt • *. LAST SPQE •••••••••• X* SUBFODL QUEI.iE * *. .* *ELEMENT (SPQE) *
.. * *

* •• * ************* •• ** * YES

x •••• • • * A4 * • • **,.

x .* •• • •
• .11 .. • • • •••

x
* •• * • • * Bl *

* * .. * ...

...* .. • • .. A4 ..

• • *.* • . .
STEAL2 X

.****A4***"******
*sELe:CT ..
--*-*-*-*-*-*-. * SELECT A TASK *
.. STARTING WITH.
.. Joe STEP Tea *
************** •• *

x .•.
94 :fl.

•• *. ****85*.******* •• *. NO * ..
.TASK SELECTED. ••••••• uX* EXIT •

. . * '" *..* .*.****** •••• * • •• • * TO SYSTEM
.. "'ES QUIESCE RTN

(IECIWTST)
-CHA~T HT-

X
*****C4.*****.***
.. MSSLCOP *
--*-*-.-.... * -*
*SEARCH FaR DOE * * (DESCRIPTOR •
.QUEUE ELEMENT) *

x .' .
04 *. .* * • .• *. NO

•• Doe "'OUND .* •••• *. ••
. . * •• * .. YES

X
*****E4****.***** * ZERO * * FREE QUeUE •
• ELEMENT (FQE) ..
*POINTER IN CQE •
• •
******.*.********

x
***. • •

• A'- * • •

PROCOQE X RMBRANCH
* •••• F4*.*.* ••• * •
*FREEMAIN DAA4 •
--*-*-*-*-*-*-* * FREE * * 2K BLOCK OF *
• SPACe ..
••••• *.*****.* •• *

X
****(;4.********* • • * EXIT • • •
*****.*.* •• **.*
RETURN TD ABEND3
-CHART HKG2-

,"".~

c

(

• Chart HN. ABEND4

IGCOI01C .*. AB029 A8D31
A2 *. • •••• A3 ••••••• *** ** ••• A4*.*******. * ••• Al*******.* .* *. * *. FIND ABEND'S *

• • .* ENTFO'V •• YES II' SET PkEVENT • .PREVIOUS SVRB ••
• E.~TRY ••••••••• X.. CUE TO •••••••••• x. ~UMP INOR IN ••••••••• X, UPDATE AND •
* • *.RECURSIO".* • JOB STEP TCB • • RESTORE LOAD •
•••• **.* •••••• * *..* • ,.. LIST ELEMENT *
FROM AEE"'C :3 ••• * ••••••• *......... **.*.**.* •• * •• ***
-CHAF!T HJ(,",l- * NO NOTE:.-THIS PkEVEfliTS
VIA SUPERVISCP. .*.. OUMPS FOR ANY TASK
LINKAGE ()cCTL). • *. IN .JOB STEP
ENTRY IS .aLW,IYS .. 82 lfI.X.
DIRECTLY Fr:oCM • ""
THE DIS'F"lCt!ER •••• x

ABDCl .-.
82 •• .* IS ••

*.** * >.
• B4 *.x. > • *... . AB0340 X
.*B4* •• ****

* *

ABD35
•••• *A5*.******** * PERFORM •
• INITIAL!ZATION •

• •• X*FOR TASK SELECT*
* SUBROUTINE •
> •
*.*** ••• * •••• ****

.X •••••••••••

:ABD::I7 x
YES •• PRE VENT ••

•••••••• •••• •••••• *OUMF INOICATOR.*
• ZERO 'OPEN' * •

.****B5** •• ***.**

.SELECT ...
$-.-*-$-*-*-*-.-•

•• SET •• •• .* * •••
> NO

x . -.
C2 *. *.* •• C3*.*.*** •• * •••• * ALTER RB OLD •

• ANO .RECURSION ••••••••
.. INDICATORS •
* •
.* •• * •• **.* •• * •• *

x····
A8D41 .>.

C4 *.
•• IS ••

* SELECT A, *
• TASK •
* * • •• ****.*.***** ••

x
.> •

C5 ••
.* *. •• IS ,.. YES * PSW TO CAUSE .. YES.* CURRENT •• • NO.* •• *. OPEN IN •••••••••• X* REENTRY AT * • •• *.TASk HIGHEST .*

•• IN TREE ••
•••••• *.TASK SELECTED •• *. PROCESS •• .ABOOI-BLOCK e2 .. *... .. * •• .*. *. •• * ••••••• * •••••••• * •••

xeTL
x

•• **01.*.* •••••

• * ••• X. EXIT •
> >

.***** •••••••••
TO A8ENDS ROUT INE
(IGC02QIC) -CHART "0-
VIA SUPERVISOR
LINK"GE (XCTL)

• NO

X
••••• 02 ••••••••••
• PARRLSE • .-.-. -*-*-.-.-.-*
• RELEASE •
• PARTI ALL Y ..
• LOADED PGMS * ••••••••••• * •••••

X
ABD03 .*.

••••• EllII ••••••• *. E2 ••
• INO leATE. .* *.

• *DUMP NOT TO BE • NO.'* DUMP ••
• X •• * PERFORMED FilR .X.. ••• ••••• REQUESTED .*

'* THIS TERMIN • •• •• · . *... •••••• * ••••••••• - ••• -
• YES

:"8023 ABD04 .:.
••••• Fl.* •• _..... F2 ••
• • .* DATA ••

• • FINO SYSASENO .. YES.. SET. ...
• x ••• DEB. EXTRACT .X •••••••••• PREVIOt,;SLY ••

* DCB AOCRESS • *. OPENED .* * • •••• •• *._•. *....
> NO

x
·: ... BC07 •••

•• *.*Gl ••••• * ••• * G2 *. ·
•• SET.. NO .* DATA SET ••
••••• PREVENT DUMP .x •••••••• *. ALLOCATED .*

• INO ICATOR * *. •• · •• * •• **.* •••• *...
.. YES

A8D09 X
.*.**Hl.......... * •••• H2 •••••••••• • •• • • SET CPEN. • SET OPEN IN •
III RECURSION *X ••••••••• PROCESS BIT IN •
* INDICATORS. • .JOB STEP Tce •
• •• • ••••••••••••••••• • ••••• * ••••••••• *

X IGC004(S) * •••• Jl ••••••••••
GETMAI N CAAI *-.-.-*-.-.-.-.-* .. GET •
• SPACE FOR DCB •
* • ** ••••

X
• •••• 03* •• * ••••••
.SET OPEN "NO.
.NONDISPATCHABLE* * BITS IN *
• CURRENT TeB •
> * • ••••• * •••• ** ••••

Ae002 X
* ••• *E3" •••••••• *
* • * SET •
• • NEW' Tce PTR ..
* ZERO *
* • ••••••• _*.*.*** ••

> NO

x . '. 04 ••
.* IS * •

• * JOB STEP *. NO
•• TASK HIGHEST ••••••

. IN TREE .
. . * •• * • YES

x .>.
E4 *. • .* IS ••

XNO •• ABENO SVRe ••
••••• QUEUED TO ••

x •••• > •
• B2.
> * *.**

* • .JOBSTEP .*
•• TCB ••

* •• * * YES . .
.X •••••••••••

x X •••• *F4 •••• ***.* •
.*F3....... • SET •

• •• CURRENT TASK •
* EXIT .x •••••••• * NON- • • *. OISPATCHABLE *

**** •••••• *.... * •
TO DISPATCHER * ••••• *.*.*.** •• *
C I EAODS) -CHART GG-

.** •• G3 ••• *...... ..* •• G4*.** ••••••

: ~~~~O~EE~~~ : .: UNIQUELY :
* FROM eXTENDED ••••••••• x. IDENT IFY DEB •
• SAVE AREA OF • • FOR DUMP DATA.
• SVRB ,. • SET •
.** ••••••••••• *.. * ••••••• * •• ** ••••

x

••••• H3* •• ***.***

• * • QUEUE •
• LLE TO .JOB •
• STEP TCB •

• * ••••• ** ••• ** •••••
x

ABDlI •
• •••• .J3 *
* SET DS OPEN •
• I NDICATOR IN •
• JOBSTEP 'teB, • '* ZERO OPEN IN • '* PROCESS BIT •
** ••••••••• * •••• *

x

X ** ••• H4* •• * ••• * ••
* QUEUE DEB •
.FOR SYSABEND OR.
* SYSUDUMP TO •
* .JOS STEP Tee • • • •• ** •••••• *.* ••• *

x •••• • >
• B4 •
* > ••••

i IGCOI9(S) ••• YES

III. .*
. . * •••

• YES

X
ABD39 •••

05 *.
•• OPEN * •

•• AND NON- *. NO •
*.DISPATCHABLE •••••• ~

*.FLAGS SET.. X
. . • •• *

• YES

X
****.ES*.******.*

• * * RESET • OPEN' ..
* AND NON- •
.. DISPATCHABLE ..
* FLAGS •
.********* •• * ••• *

i IEAODS02
*.***F5**.***** ••
.TASK SW.RTN .BV
--$-*-*-....... -.A2 •
• INDICATE TASK •••••
• SWITCH •
> *
..***.***.** •• ***

••• *.K, ••• * •• *... . •... K2 ••• * •• *... K3 •• .***.K4*......... • •• **KS ••••••••••
• • .OPEN RTN. •••• • • _ _
.SAVE TCELLS IN • *-$-*-.-.-____ *-. •• DATA *. NO * SET PREVENT • .. RESTORE SAVED •
• EXT SAVE AREA •••••••••• x. OPEN SY!ABEND * •••••••• X*. SET .* •••••••• X.OUMP INDICATOR ••••••••• x. LOAD LIST •
• ZERO TCELLS • • OR SY SUDUMP • •• OPENED ._ .1 N Joe STEP TCS. • ELEMENT (LLE) •
• •• DATA SET. ...* •••• * .. *......... ...*............. -.. * .. *.............. • ...•..........••

*
x •••• • •

• B4 '* • • ••••

Section 13: Charts 433

• Chart HO. ABEND5 (Part 1 of 2)

IGC020lC

****A 1*********
* -'* r:':NHW ..

- -** ***~ '* '* "" '* *** **
FR8M AEEi\lD3 ROUlINE
((HART t-KJ2) OR ABEND4
(CHAPT t-NCll. VIA
SUPEPVISOR LINKAC:E (>celL).
ENTRY IS ALWAYS
C]~ECTLY FROM .*. THE:: OISPAl"CHER

'31 *oo
.* *. .* CLOSE' *. YES '*.. R~CU::iS ION .. "too

oo . *oo .0:<

. -.
('1 *. .* >1< .. .* A!:JClUMP *. NO

oo R':-CUI'<SIG"l -. .--. .-

x
*****;) 1 '* *0\' * '* **** * '* P[-Sl-:T AHiJLM~ '* '* EIT. SF.:1 '* '* PREVENT CLMP *"
BIT IN Joe <:;Tf:P
'* TeB *
** *' **** **** ** *** * . .

• x

X

CLO$E'REC X
*****C2* *******"'*
LOCATE PREVICLS
'" ABEND *
• SUPERVISGR *
'" REQ UEST BLOCK *
'" (SIIRB) *

x
*"" ***02********** - -* EXTRACT * * DEB ADDRESS * - -· -** *** ***~~"'* ** * ** *

SKIPCSET .::t<O' X
*****E2*"''******** El *oo

oo*' IS *. .* PREY DUf>'P *. YES
INDP ON I'" JaB. ••••

'* .. STEP TCB .*
. .

x .-.
F! :too

.* *.

x
**** - . * <:3 * - -****

.* *. YES
.15 CCE!REG = 0. ••••

. .
:too .*

* •• * '* !'Ie

X

*****Gl ********** '* SET * * • ABDUMP' ANC '* '* 'RECURSICN" '*
eITS IN CURRENT
* reB '*

x
**** - -* <:3 * - . ****

ABD12 X IGCCCS(5)

434

*****Hl ********** * CONT. 5UPV5N *CCA4
--*-*-*-.-*-*-*
* LOAD ABDliMP * * RESIDENT *
* MOCULE *

X IGC056(S)
*****..11 "''''********
*ENQUEUE RTf'\; *EQAl
--*-*-*-*-*-*-* * ENQUEUE * * SYSAEEI\C * * DATA SET *
******* ***"'******

x .-.
Kl *. .* IS *. • * PREVEI\T *. YES

.DUMP EIT SET. ••••
.IN JS Te8.

. . * •• * •• c

x

* -* .. 3 '* * •

x
**** - . * 03 * • •

* RE~OVI:;: AND *
• FREE ALL * * TRANSIENT * * SIIPSIS EXCEPT * * ABEND'S SVRB *
*****"'***"'*******

x
***** *HP * * F2* --•

- -* A3 *
- -****

X IGC0005A(S I
*****A3**********
ABDUMP RTN HHAI
-'"'*-*-*-*-*-*-*
* DISPLAY *
*CURRENT TASKIS * * RESOURCES *

X IGC0005A(S)
*****83**********
ABDUMP RT N HHA 1
--*- *-"'-*-*-*-*
DISPLAY DESCEN- * DENT TASKS * * PF.50URCES '"
"'*"'********"'*

X IGC0005A(S)

*** **C3**********
ABDUMP RTN HHAl
--*-"'-*-*-*-*-*
DISPLAY ANCEST-
* OR TASKS '"
'" RESOURCC:S *

**** - *. '" 03 *.x. . -**** •
ABD21 X IGC048(S)

*****03**********
*OEaUEUE RTN *BPAI

* -* A5 * - -
FINDLOW X

*****A5**********
* GET * * ADDRESS OF *
*LOWEST SU8TASK *
*IN A8END FAMILY'" - -*****************

• •••••••••••••••••••••••• x.
X

*****85**********
*SELECT22 *
--*-*-*-*-*-*-*
* SELECT *

A TASK * .

x
• IEAQERA • * •

*****C4********** C5 *.
ERASE PHASE RTN .* IS *.
--*-*-*-*-*-*-* YES .* SELECTE:D *.
* REMOIIE TCB *X •••••• •• *. TASK .* * FROM FAMILY '" *.COMoLETE .* * TREE. FREE TCB * *..*
***************** * •• * _ NO

x .-.
D5 *.

.* *.
--*-*-*-*-*-*-* * DEQUEUE * .* CURRENT *. YES

.TCfl SELECTED . ••..
'" DUMP '" * DATA St::T *
************"'****

X IGCOC9(S)

*****E3**********
DELETE RT N CEA2
--*-*-*-*-*-*-* * DELETE *
AADUMP RESIDENT
* MODULE *
*******"'**"'*"''''***

X
"'****F3********** * RESET * * 'A8DU~P' AND * * ~ RECURS ION' *
FlITS IN CURRENT
* TCB *

**** - -* G3 *.X.

- -**.*
INITSEL

x .-.
G3 *.

.* DOES *. **** .* TCB *. YES * * *. REPRESENT .* •••• x* A5 '"
.TOP TASK . * '"
.. ****

* •• * * NO

X
*****H3****"'*"'*** . .
'" LOAD *
ORIGIN FIELD OF
* TCB '"

* -.**"'****"'********

x
**** - -* G3 * . .

NOTE - RE-ENTRY TO AEENDS
FOR THE SELECTED TASK
WILL OCCUR AT ENTRY2
-CHART HP.-BLOCK 82.

. . *. .* * •• * _ NO

FROM *HP * •
HPF4 * E5 *. x.

x

*HP * * 82*

- -**** •
SETWRND X

*****E5**********
SET CURRENT TCB * NON- * * DISPATCHA8LE, *
'" SELEC TED TCB '" * D[SPATCHABLE *

X
*****F5********** * STORE ADDRESS * * OF ENTRY2 '"
'" (HPB2) IN * * ABEND ISS VRB * * OLD PSW FLO *

X
*****G5********** · -*' MOVE ABEND- S *
* SVRB TO *
*SELECTED TCSI S *
* RB QUEUE *
*****"'***********

X
"'*1-15******* · -'" STORE * * REGI STERS IN *
'" SELECTED TCB * · -***"'*******"'***"'*

X IEAOOS02
*****J5*********'"
*TASK SW. RTN *BIIA2
--*-*-*-*-*-*-*
* INDICATE TASK *
* SWITCH IF * * NECESSARY *
"'**********

DISP
X

****K5********* • • * EXIT * · -**"'***"'***"'****

TO DISPATCHER
(I EAOeS)

CHART GG

• Chart HP.

(

c

ABEND5 (Part 2 of 2)

.::t*
*HF lit
• B.2*
* • •

• FIOOM
.. hODS
X

E~lRY2.::t. TRANTEST
82 *. **.*.83*****.* •••

• JII *. ,. ,.
.::t ANY ... NO .. LOAD RS .. *. DEB!5 OI..ElJEO •••••••••• x. LINK FIELD OF *
•• TO Tee .::t ,.. ABEND SVRe * *...

*. ... *** ***.********** .. YES

ic

** •• • •
... C:3 *.X.

• * .***
TRANTSOl .*.

C3 *.
.* *. .* LAST *. YES

*** •• C2** •••••••• • • .. SA~E DEB IN ..
,.. EXTENDED SA~E ..
.. AREA OF ABEND ..
.. SVRB ..
***** •• ::t •••••••••

. ~B ON QUEUE . ••••••••••••••••••

X
*****02********** • • .. SET CLOSE ..
.. AND FlECLRSlON *
.. BI1S IN Tee ..
• • ***** ••• *********

x
:tE2**********
*CLOSE RTN ,.
--*-*-*-*-*-*-*
.. CLOSE DATA ..
• SETS BELONGING ,..
.. TO TASK •

****.***** ••• ****
.* ••

FROM *HP" •
HOE2 ,.. F2 •• x.

* * **** • OEBFREED X
*** •• F2********** * •
.. RE SET CLOSE ..
.. AND RECIJRSION ..
.. BITS IN TeE ,..

• * *.**.****.****.*.

x .*.
G2 ••

•• HAS •• YES
•• OES BEEN ••••••

•• FREED .*
. .

• NO

X
*****H2***.**.***
* * • REMO'IE ..
.. AND FREE DEB •

* * * * ••• *.*.** ••••••••

x
•• **

* * * 82 ..

* * ** ••

j(
** ••

0' *
.. B2 ..

* * .*.*

. . *. .* * •• * o NO

x
• *.

03 *. .* IS *. ._ IT A *. NG
. TRANSIENT . ••••

•• SYRB .*
. . * •• * .. YES

X
*****E3********** o •
* REMOVE *
... RB FROM RB *
* QUEUE *
o * ****.** •• * •••• *.*

x
. **F3**********
*TAHABENO *
--*-*-*-*-*-*-. *PURGE TRANS I ENT* * AREA QUEUES ..

• * ..* *.** ••• **

:x •••••••••• :

X
.G3**********
* *
• GET * * NEXT R8 ON * * QUEUE *
* * ••••••••••• *.* •• *

• * * •• X* C3 *

* * * •• *

TCPTEST
ic

.0 •
04 *.

.* DOES *. ****05******.**
.* Tce *. YES * *

..REPRESENT TOP.* •••••••• X* EXIT *
. TASK. .. *
.. *.*.*.****** •• *

•• *.
. .

* NO

* *.
.. E4 *.X.
* * •••• X
*****E4********** *TASKSEL3 *
--*-*-*-*-*-*-* * SELECT • * NEXT HIGHEST ..
• TASK ..
* •• * ••••• *.*.** ••

.*.
F4 *. .* IS *. .* SELECTED *. NO

.TASK COMPLETE. ••••
. . *. .* * •• * * YES

x
***** *HO *
* E5*
* * *

X IEAQERA

*****G4********** *ERASE PHASE RTN*
--*-*-*-*-*-*-* *REMOVE Tce FROM*
*SUBTASK QUEUES, *
*FREE Tce SPACE *
********.********

x

* * • E4 *
* • * •••

TO ABEN06 ROUTI NE
(IGC0301C> , CHART HQ •
VIA SUPERYI SOR
LINKAGE (XCTL)

section 13: .Charts 435

• Chart HQ. ABEND6

IGC0301C

****AI.**"**.**
* * * E~lRY '* * • *************** FPCM AEENC5

-(!-ART t-PC5-

** •• * •
.. A2 *
* • ••••

x .*. RETURN
A2 *. ****.A3******.*** .* ... * * .* aFERAlING *. 'YES *MOVE: COMP CODE.

•• ON CURREhT .* •••• * ••• x* FROM TCe TO •
•• Tee.. *RETURN REGISTER.
.. • * * •• * *** •••• ** ••••• * ...

• NO

**** * *. * 81 *.x.
* * **** ..

VIA SUPERVl50R
LINKAGE CXCTL).
ENTRY IS ~L"'AYS
CIRECTLY F~CM THE
CISFATCI-Er::i.

X LO(P X
*****81.*********
TASKSEL '
--*-*-*-*-*-*-* * SELECT '*
* • *
'" TASK '*

x ...
Ct *. .* IS *.

•• CURRENT *. YES
.Te8 EQUAL TO . ••••

•• SELECTEe .* *. TCE .*
* •• * . '(

X
*****01********** * • '* ~ET '*
• FIRST Re (~ RE *
'* QUEUE *
* * *****************

:x :

CLEARHO X
*****El****~*****
RBREMOVE HRAl
--*-*-*-*-*-*-* * PURGE '* * RB'C:;. (ee's. * '* ANC IOE'S '*

ENOQPURGE X IEAQftCl
*****Fl**********
*E~G/OEG PURGE *
--*-*-*-*-*-*-* '* PURGE Gce '* '* C .. .4I" *
* * *****************

LO~OREL X IEACABL
*****Gl********** *RLSE LO~cec PGM* ~rA2
--*-*-*-*-*-*-* *RELEASE. LLE'S. * * FREE J(CCULES. * * IF PCSSIELE ,.

PURGEMSS X lEAQSPET

436

*****Hl.*.*******
RLSE M~I~ 5TCRG ~('2
--*-*-*-*-*-*-*
.. FREE *
.. SPACE ~"D *
.. SPQE'S *
•• *.****.** ••• -.*

X *.,..
* * * A.2 *
* * .**.

*****B2***.*****. • • .. SEl *
ecMPLETICN FLAG
* IN Tea * • •
******** •• ****** *

OCTCF~ X IEADQTCB
*****C2**"".*****
_DEQUEUE leB RTN*

--*-*-*-*-*-*-* .. RI:MOVE Tce *
*F fOOM Tce Qt,.E LE * • •
**********.******

X IEAQERA

*****02***.*****. *EfOASE Pt!A~E ~TN*
--*-JlC-*-*-*-*-• * REMOVE le8 * * F,.GM FAMILY *
*TF<EE. FfOEE Tce *
.******** ... **.***

x
***. • • * 81 * * •
**.*

X

.*83******* • * • EXIT ..

* * ** •• **** ••• ****
TO EXIT ROUTINE. C IGC003)
CHART ~B VIA SUPERVISOR
LINKAGE (SVC 3)

c

(

• Chart HR. ABEND6-RBREMOVE Subroutine (part 1 of 2)

ReMEMOVE

•••• AI ****:fI***. * • ,.. ENTRY ,..

* *
• FFiO~ AaEND6 **** • FiCUT INE

,.. "'. -C ART I-OC1-
• 81 •• x.
o *
**** x .0.

BI *. .* ••
•• J5 R8 A *. YES

*.SUPVR ReG BLK •••••• *. (SYRJ3» .*
. . * •• *

• NO

x .0.
Ct *.

• * *.

x

**** • • ,.. El ,..
o •

• :t:t*

.* IS Re A *. VES
*.PRQG REO eLI(••••••

. PRS . *. .* * •• *
• .c

X
*****01*.*.*****. .. REMOVE ALL ..
*IOE I 5 QUEUED TO.
*If.!8. DECRE~ENT ..
.. USE CCUP"T IN ..
,.. IRB ..

***********.*.*** FRC!lM
CHART ••••
HS *HR.. •

.. El •• x.
o • i

TESTOCT .0.
Et *. • * *.

x
****. 5 ..
.. Al* • • .

• * SELECTEt *. NO *. Tee CU~RENT •••••• *. Tee .* *. .* * •• * .. YES

;c
TESTLAST .*.

x ."'.* • • .. '-3 ..

• 0 ••••
Fl *. *.*.*F2***.*.* ••• • * *. .. ,.. • * *. NO .. R£MO\tE ., *. SELECTEe RB .* •••••••• X*RB F'-OM TASk'S ,.. *. LAST RE .* .. RB QUE\.iE ... *... . . * •• * •• *.*.** ****** * YES

ReLAST X
****.Gl***.** •• *. * 0 * ALTER •
RB. CH#lI\GE TO A
.. PRe *
* • *****.**** •• *****

x
*****Hl* •• * ••• *.* · . *ZERO CCE FJaD *.
• ANO WAIT CCUNT ..
• FIEL[CF REI * o •
••• ***** ••• *.*.**

;c
• ****.11.".***.**.
• PLACE #lCDRESS *
*OF SYC3 (EX IT) •
.. I NSTRUCT leI\.: ..
• INTO RECPSW •
• FIELt CF Re • •• ** •• * ••••••••••

X .*.*Kl.* ••••••• • • ., eXIT •

• 0 ••• * •••• *** •• **
RETURN TC 'SEND6
ROUT lNE CH"RT HQP 1

X
.*.**G2***.··*·.* • • .oaTA IN ADtRE!S •
• OF NEXT RB ON •
."TASK'S RB QUEUE.
* • •••• * •• * ••• ** •• *.

x
.. • •

• B3 •
• 0 * •••

....
o •
• A3 •
• 0 * •• *

X
•• **.A3* ••• *.*.**
.OAT AI N ADDRESS •
.. OF NEXT Rf3 ..
• ON QUEUE, STORE*
*IN TCBRBP FIELD.
• OF TCB ..
•••••• ** •• * •• ** ••

* •••
o •
• 63 *.X. · . .*.. . EDACT X
• •••• B3.*
• PLACE *
• PREVIOUS Ae ..
• INTO ..
INACTIVE STATUS
o •
.* •••••• ***** •• **

x .0.
C3 *. .* * • .* CAN .If! NO *. RS BE FREED .* ••••

.
* •• * '* YES

x .•.
03 *. • * IS ••

NO.* RS AN *. •••• *. INTRPTN REQ .* *. BLOCk ••
*.(IRB) ••

* •• * * YES

x
• 0.

E3 * •
• * * •

x •••• • •
• 05 ... o 0

• * IS *. NO
•• lRB·S USE .* •.•• * .COUNT = o. * *. .* * ••• * YES

x .*. F3 ••
.* * • • NO .* REGISTER *.

X ••• *. SAVE AREA •• *. PRESENT .* *. .* * •• * * YES

x
**** .. .

* 05 *
• 0 .***

X FMBRANCH
*****G3.***.* ••• *
FREEMAIN OBA2
--*-*-*-*-*-*-*
• FREE SAVE •
*AREA (72 BYTES. * SP = 250) *
* •••• ******.***** . .

•••• ••••••• x.

ADFRB X
*****ti3*** •• ***** * OBTAIN RS *
*ADDR, DETERMINE.
• SIze OF RS • * AREA TO BE *
• FREED * •• *** •••• *.**** ••

x
*** **J3**.*** ••••
'" SET '" * SUPSPOOL *
.PARAMETER = 255.
• FOR PRS AND *
• SVRB * ••••• * •••• * •••• **

x •••• • • * A5 * • • ••• *

• 0
• "5 *
o 0

***'*

x .•.
A5 ••

.* * • • * (!=i. •• NO
•• IRB TO BE .* ••••

. FREEO .
. . ••• * * YES

x
*****65********** o •
* CHANGE *'
• SUBPOOL *' * PARAMETER TO *
* 253 *
******.***'*******

:x ••••...••• :

BYPASS X FMBRANCH
*** •• C5**********
FREENA IN DBA2
--*-*-*-*-*-*-.
• FREE * *SPACE OCCUPIED *
• BY RS * ***.*** •• *.******
. •

o •
* 05 *.X. · . *.** •

LASTRB X
.*05 •• ***** • • *OBTAIN ADDRESS *
* OF NEXT RFI ON * *TASK I S RS QUEue.
• • **********.**.***

x . ..
E5 *.

.* * • NO.* DOES * •
• •• *.RB AOOR = Tes.*

. AODR . *. .* x * •• *
**** o • * Y~S

* 81 • • •

X
****FS**** •• ** • • •

• EXIT * • • ***.**********.
RETURN TO ABEND6
ROUTINE
-CHART HQFl-

Section 13: Charts 437

eChart HS. ABEND6-RBREMOVE Subroutine (Part 2 of 2)

***::t*
"'~ Al

* * * • F~OM
• ~J;:Cl
X

PRePRct . '.
Al *. • * •• • * IS *. YeS *. PRe's qACDE ••••••

*.FIF.LO = 0 ••
. . * •• * * NC

x

X
IF* •• *
*t-'f' '" ,. E1.
• •
*

COTER,.. .0.
BI *.

• 15 "'ODULE.. • * IN MAIN *. NU *. ~TORAE~ .* ••••
. . *. .* * •• * .. YES

x .* •
.:1 *. .* I~ *.

x
"' •• * • •

'" A3 ..

• * ****

.* D"r.<=~A"" *. NO
•• SERIALLY ~E- .* ••••

. USEABLE .
*. ••

* •• * * YES
x

**** • • .. Gl ..

• •

SERUSE
x . '. 01 *. *****02**.******* .* DOES *. *DQReS ..

.* CDP~e FLO *. NO *-*-*-*-*-*-*-*-*
.OF CDc PT TO . •••••••• X*REMOV~ SELECTED.

•• SB-EeTEt .* .FRS FROM COE'S .. *. PRS .* .. RS CHAIN ..
* •• * *****************

.. YES

X
*****El*.*.******
.QORBS ..
--*-*-*-*-*-*-*
• REMOVE .C:;EL.E: CTED.
"'PRB, REINSTATE ..
*CUEUED REQUEST ..

X
*****Fl********** • RESET SERI~LLY •
• REUSEAeLE FLAG ..
* AND SET N(N- *
.. OISP FL~G OF *
* CCE *

**** * * • .. Gl *.x.
* * **** •

CECPUSEI X
*****E2**********
* * • CECREMt~T * * USE CO~Nl IN • * caE BY ONE *
* •

x

*HR * * El*
* * •

CECUSE X

438

*****Gl********** * • * OECREiI4Ef'lOT * * USE COUNT IN * * COE BY C E •

* * ***.*************

X
*****Hl**********
COHKEEP GFF3
--*-*-*-*-*-*-*
*TEST IF ~(CULE *
15 STILL eECEC
....... 0 15 REUSEL ...

x
***** * R * * El*
* * *

IF NO OTI-ER REQS FOR NCOULE,
E ITI-ER FURGE MOOl,.LE OR FLAG
.JFAce FO .. OFTIONAL MceLLE
RELE/s~ EY ~ETNAI"" R1

* * .. A3 *
* * ****"

MOONIC X
*****A3**********
*RBQUE:;UED •
.-*-*-*-*-*-*-*-* * FR~E f~TCH •
.. WORK AREA OF * * SELE...CTEQ PRB *
.**********

x . ..
B3 *. .* 00[;5 *. .* SELECTED *. NO *. PRB PT TO .* ••••

. MINOR . *. CDE .*
* •• * * Yt:::s

X
*****C3.*********
* * *OBTAIN ADDRESS * * OF MA.JOR COE. *
*FP.OM MINOR COE *
• * ***************** . .

.x •••••••••••

X
CHKCOE .* •

03 *. *****04*********.
.* *. * OQRES *

.*RE ADOR IN •• NO *-*-*-*-*-*-*-*-*
.CDE S~L~CTED . •••••••• X*REMOVE SELECTED*

.PRS ADDR . *PRP FROM CDE'S * *..* • RS CHAIN *
* •• * ***************** * YES

X
FETCHLUP .*.

E3 *. .* *. • * AOOR *. NO *. IN RSPGMQ .* ••••
.FIELD OF . *. PRS .*

* •• * * YES

X
*****F3********** *ReQUEUED •
--*-*-*-*-*-*-.

x
**** * • * A5 *

* * ****

• FREE FETCH *X ••• * WORK AREA OF * * PRB *

X
*****G3********** ,.. OBTAIN ,..
ADDRESS OF NEXT
*PRE! I N PROGRAM *
*aUEUE (RBPGMQ) *
• * *****************

x .*.
H3 *. .* LAST *. .* PRS IN *. NO • *. PROGRAM .* ••.• *. QUEUE .*

. . * •• * * YES

QDRBSLNK X

x

*HR * * el*
* * *

.$J3*******
• QDRBS * *-*-*-$-*-*-*-.-* * ... REMOVE PRB'S, *
*REINITIATE MOD ..
* REQUEST *
.****************

SET RB OLD
PSW FOR ENTRY
TO CDCQNTRL,.
-CHART CAB2-

x
**** • • * A5 * • • ****

* * * AS *
* * ****

X
CHKEXT .* •

AS *.
.* *. .* DOES *. NO *. EXTENT LIST .* •••• *. EXIST .*
. .

. . * YES

x .*. 85 _.

.* * •
~o.* DOES * • •••• *. PROG AREA .* *. EXIST .*

. .
* •• * * YES

X F~BRANCH
*****C5**********
FREEMAIN O8A2
--*-*-*-*-$-*-* * FREE SPAce ,.. * OCCUPIED BY * * PROGRAM AREA *
"'***.*********.** . .

••••••••••• x •

FREE XL X RMBRANCH
*****05**********
FREEMAIN OAA4
--$-*---.... *-*-* * FP.EE SPACE * * QCCUPI EO ev *
• EXTENT LIST *
***************** . .

.x •••••••••••

REMCOE X
*****ES**********
* * *LOCATE. SUB.JECT .. * CaE ON .JOB * * PACK QUEUE *
* * .****************

X
*****F5**********
* * *REMOVE AND FREE*
MA.JOR AND ASSOC * MINOR COP S ..

* * *****************

x

*HR * * El* * •

*

• Chart HT. System Quiesce Routine

IE::CIWTsr

• "''''.Al ********* · . '" ~NT~Y '" · . ***************

* · . .. A2 .. · . , *
x .'. A2 •• .* ...

•• TIOT •• NO
..AOOJ; IN TCB

*. 0 •• *. •• ••• *

* ••• . .
.. A3 ..
> •
..

X IEAQEQOl
..***A3.* ••••••••
.ENG/DEQ PURGE ..
.-*-*-*-$-.-*-*-. • • .ABENDING TCB IN*
• REG 4- *
•••• ********* ••• *

FPO SUPERVISQR
RCUTINES :1~~s. TASK):

x
***** ~l *~*"' •• **** · . *' SAVE p~CG '" * CHECK NE'I'I PSW '"
'" IN '5AVE A~EA '" · . ******110 **********

X
*****Cl "'.>to •••• ", •• · . '" STORE. QUIESCE '"
'" PROG CHK RTN '"
.AODR] NNE. PSW* · . *******.*********

x .>.
01 *.

.* "'. YES.* TRACE "'.
•••• "'. TAELE EXIST .*

. . *. .* •• • *
• NO

• *****El*** .****** · . '" STOP TRACE *
'" TABLE FeR '"
'" PRESEI\T JOB '"
'" STRE".'" '"

***************** . .
......... · ••• x.

• *****F 1*********. · . .. TRANSLATE '"
'" WAIT eOCE "NO '"
.PLACE U. EUFFEP*
> •

• ****************

~
E
T
A
S
K

A

X
* •• **82**.******* · . * PLACE .. .1 'SYSTEM TASk". * J" ME.<;SAGE * · . *** **.*****.** . .

.x •••••••••••

X
*****C2*** •• ****.

* * • oelAIN JOB •
• STEF PH; FRCM *
.. Cl.'H<ENT lee * · . * ••• * ••• ***.****.

X .* ..• D2.··.· •• • •• * •
• GET It-:E *
• MA~'ER ~CHEO • * Tee AOOR *
o > * *.* ••••

x .*. E2 ...
•• *.

NO .* MASTEF< ...
•••••• TC8 .. CI,.PREhl •• *. Tee .110 ••• *

* -'ES

" .'.
F2 *.

X
*** •• 63*******.*.
*POST *
$-*-.-*-*-.-*-*-*
* POST *
• WRITE TO LOG •
.. EeB *
••• *.** •• **** •• **

X
•••• *C3.***.***** • • ... RESTORE PROG .-
• CHK NEW PSW *
.FROM SAVE AREA *
• > * ••••••• **.*.*.*.

" .***.03 •• * •• *****
• CLEAR *
• DUMMY EeB. *
.PL ACE EeB AOOR *
• IN REGl. WAIT .. * eOUNT = 1 ..
..*.** ... ***.****.

" ** •• E3 ••• **** ••

• > * EXIT •
> *
.**.*.*.*** ••• *

TO WAIT ROUTINE
(IGC001)
-CHART 81<-

•• *. .* ••
•• PARENT ." YES" .. *. TCB PTF< IN •••••• x. A3 *
•• eRNT Tee .* MASTER. ..

•• = 0 •• seHEO * •••
o NO

• ~ X
• >. N •••

Gl * • C G2". • * ••
NO .* "'.

•••••• TIOT = 0 .*
s. *. .*
v. *. .*
s. * •• *
T. '" YES
E.
M.

T.
A.
s. X
K. *****Hl***.*.****

'" MOVE JCE & '"
"'STEP NA".ES INTO.
'" MSG. OVER-LAY '"
"'STEP N"~E .. JTH '"
'" WAIT cCI:e '"
********.******** . .

••••••••••• x.

x
• 0.

Jl *.
• * TCE *.

• *CtJaFI.ETICN *. YES
•• CODE F lELC = ••••••

•• 0 ••
> H

X • * •• *Kl****.*****
.. PLACE ..
.. TRANSL. ceDE *
.IHOle C ... USE CF ..
• ORIG AeEf\o.C IN •
.. eUFFER

· . • X •••••••••••
x •••• • • · ,.~ .

• > ****

•• *. ****
•• IS PAFENT ... 'YES * • *. TCB lHE •••••• X. A3 • *. ~ASTE... •• SYSTEN. •

*.SCHEO.. TASK ***. * ••• * NO . .
• •••••••••• X.

.x ••••••••••••
x

***.*t:2 =t ••••••
.. GET ..
• ADD'" OF NEXT *
*LOWER TCB UNDER.
• MASTER SCt-.ED •
> • **.* .••••••••••••

. .. .
x x

x • NO : YES ••• ••. .* •
J2 •• J3 •• J4 *. **.**J5** ••• ***** .•..*.. * MARK THIS •

•• LOWER .. .; YES •• .JOB •• YES •• THIS *. NO • TCB NDN- * •
•• TCS EXIST •••••••••• x •• STEP ASEND •••••••••• x*. THE CURRENT •••••••••• X. DISPATCHABLE ••••• *. .* *. •• ... Tce.. • '* ...* ...* *... * • *. •• * •• '* *. .• *.* ••••••••••••••

.. NO • •
• (LA!T Tce ON

it •••• • • .. A~ ..

• * .** •

QUeUE IS NAST SCHED)

Section 13: Charts 439

Chart lA. 2250 Processor Routine (Part 1 of 4)

IEECVOPI

440

••• *Al********.
* * .. ENTRY *
* * *** •••••• * ••• **

X
•• ***Bl ••• **.***.
* * • • • INITIALIZATION ..
* •
* * **.*****.**.**.*.

x .•. .*. Cl •• C2 _ •
• * *. .* ••

•• HAS UCM *. YES •• IS *. YES *. SEARCH SEEN .* X •• THI S A 2250 .. *
_.EXECUTEO .* *. ENTRY .*

. - *..* * •• * * ••• .. NO .. NO

X
.*.*.01*********. * • .. STORE 2250 ..
.. ENTRY POINTER ..
.. INTO OCM ..
• • ** ••••• * ••••••• **

X
••• **El ••••••••••

• * .. SEARCH ..
.. FOR HARD COPY .. * ENTRY ..

• * ** ••••••• ** •• ****

X
*.***F 1****** •••• • • .. STORE HARD ..
.. COPY ENTRY ..
• POINTER IN OCM ..
• • ********* ••• **.*.

X * •• *.61 ••• *** •••• • • .. CHANGE ENTRY *'
.. IN~D. + SAve * * CHANGED INFO. •

• * ************** •••

X
.****02*********.
* * .. PICK UP ..
"POINTER TO 2250.
.. ENTRY ..
* • *****.**.******** . .

............ x. x
x

".**** .Ie ..
.. al •
• * •

(

Chart IB •

• * •••
*IS ..
.. 8U
•• •

x

2250 Processor Routine (Part 2 of 4)

.*. . •.
S 1 *'. 82 lII. .* ••• S3 ••••••• * ••

• lII *. •• lII. .. SET UCM TO" •••• 84 ••••• * •••
• lIe IS THE *. YES •• ALTERNATE lII. YES ,. INDICATE"" ..

*.2250 OFFLINe •••••••••• X.. CONSOLE •••••••••• x. CHANGED ••••••••• x. EXIT •
lII. .* *.AVAIL.ABLE.* .. CONoiTIONS"" .. *..* lII..lII * ••••••••••••••

lII •• lII lII •• III ••••••••••••••••• TO HARD COPY PROCESSOR RTN
.. NO • NO

x .'. 01 lII •

X
•••• C2.*** •••••

* • .. EXIT ..

• • ••••••••••••••• TO ROUTER RTN

• lII lII. • ••• 02* ••••••••
• lII IS •• YES" •

•• RE-OPEN FLAG .* ••.••••• x. EXt T ..
lII. ON.. *..* •••••••••••••••

>fl •• lII TO ASYNCH. ERROR ROUTINE
• NO (JEECVAE)

CHART IK

x .*. E 1 lII. * •••• E2** ••• * ••••
• lII *. • •••

•• IS THERE * .. YES .. SET * *. A PERMANENT •••••••••• X. 2250 OFFLI HE ill •••• x. 8t •
•• ERROR •• • •• * *. •• • ••••• ** •• * ••••••

* NO

x .*. .•. .*.
Ft •• F2 •• F3 •• •••• .* *. .*.. • ••• F"**.* •••• _

•• IS THERE *. YES .* IS *. YES •• IS •• YES * *
•• AN ATTeNTION •••••••••• X •• THERE A DATA •••••••••• X •• THE 2250 OPEN.* •••••••• x. EXIT •

•• •• •• CHECK •• •• •• • •* ... *.* ••• * ••••• *. •• •. •• *. •• TO ASYNCH. ERROR RTN
• NO • NO • NO (IEECYAE)

CHART IK

· . • x •••••••••••••••••••••••••
x .•. . ..

Gl *. G2 •• .*.. .• IS ••
•• IS *. YES •• 1 T A REPLY *. YES

X .*.*G3.* •••• **.
• * *. THE INPUT •••••••• : •• X.. TO A WTOR •••••••• • EXIT •

•• FLAG ON •• •• REQueST •• *... *... •• ' .* ••••
• NO • NO

x ••••• • Ie •
.. AI.
• •
*

* •• * .. o. * H2 •• X • ·
WTOPUT X

••••• H2 •••••••••• *svc 35 • • -.-.-.-.-*-.-*-. o •
• wto INPUT ... • • ***.** ••••••• * •••

.
x

*.***.,J~ •• *.** ••••
• SVC 34 •

• -*-*-*-.-*-*-*-*
• COMMAND • * PROCESSOR •
o .. •••••••• * •••• * •• *

x * •• * •
• IC •
• Al*

.. .. • •••••••••••• * •
TO OPEN/CLOSE RrN
(IEECVOCG)
CHART IJ

.* . H3 *. • •••• H4-* ••• ** •••• .* *. *SVC 35 • • • * DOES •• YES *-.-*-.-*-*-*-.-. • •• x •• REPLY MATCH •••••••••• X. •
•• WTOR •• • WTO INPUT •
•••• * • • •• * ** •••• *.*.** ••• *.

• NO

x .*.* • * * H2 ... * • ••••
X • •••• J4***** ••• * •

*SVC 34 ...
.-*-.-*-.-*-*-*-. * COMMAND •
... PROCESSOR ...
o * ..***.* •••••••• **

x
.0 •

K4 •• .. *
* •• •• ** •• KS*** •••• *.

NO.. IS •• YES'" *
•••••••••• REPLY .* •••••••• X* EXIT *
X •• ACCEPTED •• • *

... "... * •• ~.**.** •• ***
.Ie • *. •• TO DISPLAY RTN
... Al* • (lEECVDRl) • * CHART IE

o

Section 13: Charts 441

Chart IC. 2250 Processor Routine (Part 3 of 4)

442

.. _.* .Ie ..

.. AI.

* * •
x .*. .*. PMBFCK At *. *****A2*********. *****A3**** •••• *. A4 *. ..*.*AS******* •••

... RESET UCM * SET .. • * IS THIS *. YES .. SET * .FLAG AND POINT '* .* *. YES .INTERNAL CLOSE .. *. A CLOSE .* ••.•..•• X*OCM CLOSED FLAG* •••••••• x* HARD COPY UCM * •••••••• X*.IS DeB QPENED.* •••••••• X* FLAG IN CXSA .. *. REQUEST .* TO HARO COPY .. *. _* .. AND POINT TO .. *..* PROCESSOR* .. CLose ..
* •• * •• ** ••• *......... ***************** * •• * •• ***********.*.* * NO .. NO

x .*. .*. .*.

X
.*.**B4*** ••• **** X * seT" ****85********_
CXSA INDICATOR"" '
.. TO EXTERNAL ••••••••• ·X* EXIT ..
.. INTERRUPT"" ..
.. ROUTINE.. • ••• * ••••••••••
******.*******.*. TO 1/0-·1 RTN (IEECVDR2)

CHART IF

C 1 ... C2 *. C3 •• **.**C4*.*****.** .* *. .* *. .* *. • INDICATE * .* *. YES .* IS *. YES .* IS •• YES * LIGHT PEN *
.15 UNIT OPEN . •••••••• X*.ATTN FLAG ON .* •••••••• x*. SENSE INFO •• * •••••••• x* ATTENTION AND *

. . *. .* *. IN ueM .* * ZERO SENSE * *... *..* *..* • INFO. * * •• * * •• * * •• * * •••• * •••••• *.*** * NO * NO * NO

x .*. 01 ••
.* *. .* IS *. YES

x
* •• **
*10 *
* A2* • •

*
*. CLOSED FLAG ••••••••

. ON . *. .*
* •• * * NO .: .-

.- * •• **E2***.**.***
• * •• SET * ••• x* RE-OPEN Ft..AG •
* * * * ******* •••••••• **

. .
••••••••••••••••••••••••• x.

X
.****F2.*** ••••• *
* * • SET INTERNAL •
• CODE TO •
• INDICATE OPEN * • • * •• * ••• **.**** •••

X
****G2*.*******

• * * eXIT • • • •••• ** •• **.*.*.
TO 1/0-1 RTN
(IEECYOCG)
CHART IF

X
****.03***.*****.
* * • INDICATE • * KEYBOARD •
• ATYENT ION • • • * •• * •••••••••••••

x * ••• E3*****.***
* * * EXIT *
* * ••••• * •• * ••• * ••
TO 1/0-1 RTN
« IEECVDR2)
CHART IF

X
.*04.*.*.*. • •

• EXIT *
* * .* •••••••••••••
TO DISPLAY RTN
(IEECVDRI)
CHART IE

c

• Chart ID. 2250 Processor Routine (Part q of q)

..*** *10 •
• A2.

* * *

X
••••• A2 ••••• ** •••
* * • 01 SABLE CPU *
• FOR • • INTERRUPTIONS.
* * ** •••••••••• * •• **

x .*. B2 •• • •••• 83**** •••••• • * IS *. • * .*.*B4*** ••••••
•• BUFFER •• YES * ENABLE CPU * * *

•• POINTER ZERO •••••••••• X. FOR ••••••••• x. EXIT * •• .* * INTERRUPTION *. • *. •• * * •••• **.*** ••••• •• • * * •••••••••••••• ** TO ROUTER RTN
* NO ••••

* * • C3 ••••

* * x .*** x .*. .*.
C2 *. C3 *. •• *. .* CAN *. • •••

•• IS •• YES •• ANY MESSAGe •• YES. •
•• PURGE BIT OFF •••••••••• X •• BE DISPLAYED •••••• x. F4 *

*. •• *. ON 2250 .* *. *_.. ...* **** *. •• * •••
*NO *NO

PRGLOOP X x
.* •

••••• 02 •• ** •••••• 03 •• *****04***.*.***.
• MATCH WQE * •• CAN *. * * ****05********* * TO REQUEST * _Queue: EL. (RQE).
.ANO TeB TO WTOR*

* * **** •••••• ****.*.

x .*.
E2 •• •• *.

•• LINK *. YES

.* HARD COPY *. YES • ENABLE CPU * * •
..ACCEPT PREY •• * •••••••• X* FOR * •••••••• X. EXIT ..

•• DISPLAYED.*' * INTERRUPTIONS * * *
*.MSG •• * * * ***********'**** *. .* **'*.********.**.* TO HARD COPY PROCESSOR * NO

X

•• :?I NTER ZE,R~ •• * ••••••
*****E3.******.*. • FREE *
*' WRITE QUEUE *
*ELEMENTS (WQE) •
*' IF AVAILABLE _

* NO

x

* * • C3 •
* •

* * -**************.*

x

.**.
* * * F4 •

* * ****

.*. X
F3 *. • ••• *F4******.*** .* *. * • • .* WTOR *. YES * ENABLE CPU * ... x.. TO DELETE .* •••••••• X* FOR * *. •• * INTERRUPTIONS.
.. • * * •• * ******.*.***.**.* * NO

x
*****G3*.*******.
* * * ENABLE CPU * * FOR * * INTERRUPTIONS *
* * *****************

X
****H3*.***.* •• * •

.. eXIT *
* * *.*.*****.****.
TO ROUTER RTN

X
****G4********* * • * EXIT ..

* * *.************* TO DISPLAY RTN
(IEECVDR1)
CHART IE

section 13: Charts

Chart IE. Display Routine

II?ECVDRI

444

*.**Al********* • • * ENTRV * • • *************** • FROM 2250 PROCESSOR
• RTN (CHART IS.le.IO)

FROM 1/0-1 ROUTINE
(CHART IF)

• * * 82 *
• * ****

x

**** • • * 84 * • •

x
*****el*********. .*. X 62 *. *****63********** *****64*********. * • .* *. * MOVE * * MOVE * **** * • .* *. YES * WTOR INTO * _MESSAGE TO WTO * * *
.INITIALIZATION * •• SPACE IN WTOR.* •••••••• X*DISPLAY CONTROL* •••••••• X*AREA IN DISPLAV* •••• x* Jl *
* • *. AREA .* *' MODULE (OCM) * _CONTROL MODULE * * *'
* * *..* *' * * (OCM) * **** ***************** *. .* ***************** *****************

x .*.
Ct *.

.* *. **** .* LIGHT *. YES * *
•• PEN ATTENTION.* •••• x* C3 *

. . * * *..* **** * •• * o NO

x .*.

• NO

x

• 0 * HI *
* * ****

01 *. *****02********** .* ANY *. * *
WTORS TO DELETE YES • BLANK *

• IN DISP. CONT ••••••••• · •• X* INDICATED *
MODULE (OCM). • WTOR'S *' *... * * *. .* *****************

• NO

· . • x •••••••••••••••••••••••••
x .*.

El ••
• * *. **** .* *. YES * *

.NO NEW WTOR'S. •••• x* ~1 *
. . * * *..* **** * •• * * NO

x .0.
Fl *.

•• *. *** • • * MSGE *. YES. * *. HOLD SWITCH .* •••• X* HI *
. ON. * *
.. **** * •• * * NO

.*. .*.
Gl *. G2 * • • * *. .* * • • * ENOUGH *. YES .* IS *. YES

.SPAce IN WTO . •••••••• X*. MSGE A WTOR .* •••• *. AREA .* *. ••
.. *..*

* •• * * •• * * NO * NO
**** · .. * HI •• X.

* * *.** X
****.HI*********.
• * * seT WTO •
• WARNING • * INDICATOR *
• * *****************
.*** · .. * ~1 •• x.

• * ****
X

****Jl*******.*
• * * EXIT *
• * **.*.********** TO 1/0-1 RTN
(IEECVOR2)
CHART IF

x

* * * 64- *'
* * ****

x
**** * * * 82 * • • ****

**** • * * C3 ••••
• *
**** x . ..

C3 *.
.* *. **** •• WAS OETECT *. NO * * *. ON ANY OF .* •••• X* J 1 •

*.FOLL.OW ING.. * *
.. .*** * •••

YES

•••• ·cONDiTioN······ •••••••••.•••••••••••••••• Aci-ioN'······················ ..
:DETECT ON WTO MSGE AREA
.DETECT ON WTOR MSGE AREA

:PREPARE DATA FOR I/O RTN
.XCTL TO 1/0-2 RTN,. CHART IH

:OETECT· oN· OPT iON· i········· : XCTL.· To·tpi-i oNs· RTN:· cHART· i i: ...
• DETECT ON OPTION 2 .XCTL TO OPTIONS RTM, CHART II.
• DETECT ON MSGE HOLD .ADJUST MSGE HOLD SWI TCH.

.XCYL TO 1/0-1 RTN,. CHART IF ··· .. ····:;:.0··················:········· .. ·············· :. :. .

x
.*** * •

•• Jl *
* * ..**

c'

(

Chart IF. 1/0-1 Routine (Part 1 of 2)

IEEC'lOR2

****Al********* • • .. ENTRY ..
* •
*************** FROM DISPLAY ROUTINE

• -CHART IE-
FROM 2250 PROCESSOR

• -CHART lC-
FROM OPTION RTN
-CHART 11-

X
*****81.********* • • • • * INITIALIZE .. • • o •

x .0.
Ct *.

• * *. **** .* *. YES" ..
•• RE-WRITE WTOR.* •••• X. A3 ..

. . * ..
.. **** * •• * o NO

.•.
01 *.

• * *. .* KEY *. YES *. BOARD .* ••••••••
•• ATTENTION.. X

.. ***** * •• * *16 ..
.. NO .. 81*

x .•.
•• o

El *. *****E2********** .* STOP *. .. * .* *. YES * STOP ..
•• REGENERATION .* X* REGENERATION ..

.
.. • * * •• * *****************

**** • •
o NO

.. Fl •• X.
* •
**** X

*****Fl**********
* * * ENSURE *
.CORRECT STATUS *
.. OF ~ARNINGS * • • *****************

X
*.***Gl.*********
• * * WAIT * * FOR I/O * * COMPLET ION ..
* • *.*********.*****

x .0.
HI * •

X
****F2********* • * * EXIT ..

* * * ••• * ••••••••••
TO EXTERNAL. INTERRUPT

• '" *. **.*H2******** • • * MORE *. YES" * *. WTOR'S TO .* •••••• : •• X* EXIT '" *. PROCESS •• * *
.. **.**.********* * •• * TO DISPLAY RTN

.. NO (lEECVDR1)

X
****Jt********* • •

'" EXIT .. • • *.*******.*.**.
TO 2250 PROCESSOR RTM
(IEECVOPI)
CHART fA

CHART IE

RTN

**** • • * A3 *
o *

*"'**
x .0.

A3 *. *****A4**********
.* *. '" * .* WTOR *. YES '" •

.AREA REWRITE . •••••••• X*CONSTRUCT CCWS * *. .* • WTOR 1-. *
.. * '"

"'. • '" ******"'********** • NO

. .

.x •••••••••••••••••••••••••
x .•.

83 *. .* * • • * WTO *. YES *. AREA REWRITE .* •••••••••••••••••• •• .*
. . *. .*

o NO

x

• * * Fl '"
x .0.

o • C4 *. *****C5*****.**** *** • .* *. '" * .* OPTION *. YES * * *. ONE IN .* •••••••• X.CONSTRUCT CCWS *
. CONTROL . '" WTO 1-5 '"
.. * * ••• * ************.**.* o NO

...........................
x

• 0 •

03 *. *****04********** .* *. * •
•• OPTION *. YES. •

•• TWO IN .* •••.•.•• X*CONSTRUCT CCWS * *. CONTROL .* * WTO *
.. '" * * •• * ***************** o NO

x .•.
05 *.

.* * • YES.* OPTION *. .••..• *. TWO IN •• *. CONTROL .*
. . * •• '" o NO . .

.x •••••••••••

X

*****E3*********'" * 0 • *
*CONSTRUCT CC"S '" * WTO 1-37 •

* * *********"'*******

x
.*** • •

• FI * • • ****

X
*****E4*.**"'*****
o * • *
*CONSTRUCT CCW5 * * WTO 33-37 *
• *

x

* * • FI *
o * *.*.

.'
X

*.***ES********** * •
* * *CONSTRUCT CCW5 *
* WTO * * 0 *****************

.' x

* * * Fl *
* * ****

Section 13: Charts 445

• Chart IG • 1/0-1 Routin'e (Part 2 of 2)

446

••••• *IG ..
.. 81 •
• *
*
X

****.61*****··**· • * .. READ .. * MANUAL INPUTS ..
• * * •

x .*. Cl *. *.***C2 ••••• ***** .* *. • * *. YES * • *. END KEY .* •••••• · •• X*REAO ENTRY AREA.
. . .. * *..* .. * •• -* ••••••• ***** •••••

• NO

x .*.
02 * • • * ••

_. WAS *. YES
•• LENGTH eQUAL •••••• *. TO ZERO ••

. . •• .*
* NO

x
*****E2 ••• **** •••
* * .. seT ..
• INPUT INDICATOR.

* * * * •••• * ••• *.******* . .
• .x •••••••••••
•••••• ••••••• ••••••••• ••• x.

it
*.***F2**.***** ••
* * .. BLANK ENTRY ..
.. AREA AND ..
.. REPOSITION ..
.. CURSOR .. ** •••••••••• * ••••

it
***** .IF *
.. Fl·

* * *

(

Chart IH. 1/0-2 Routine

IEECVOR3

•••• Al******* ••
* * *' ENTRY •
* 0 ••••••••••••••• • FROM DISPLAY RTN

• (CHART IE)

X
.****Bl*** •• * ••••
* * o *
.INITIALIZATION *
* * * * _ .•.•..•... -

it .0.
Cl *_ ** ••• C2**........ • •••• C3.*** •••••• •• *. * * *WTO WRITE YES-III

•• DELETE *. YES *' * .NO-ALL OPTIONS * *_ SELECTED _* •••••• : •• X.WRI TE UNDERLI NE ••••••••• X* WTOR WRITE • *. •• *' • .YES-NO OPT I ONS *
.. *' *'. . * •• * ••••••••••••••••• • ••••••••••••••••

* NO

•••• * *. *' El _.X.
* • ••••

X
****El •• **** ••• * • • EXIT •

• • •••• ** •••• ** •••
TO 1/0-1 RTN
(IEECYDR2)
CHART IF

VDRWAJT X
••••• D3 ••••••••••
• WAtT •
--*-.-.-.-.*-.-. * WAIT •
• FOR VALID *
• CONFIRM * •••••••••••••••••

X
••••• E3 ••••• *** ••
• 0 • DELETE • * UNDERL tHE *
* * o 0

•••••••••••••••••

x .0.
F3 *_ ••••• F ••••••••••• • * III. • •

ALL •• •• yes • BLANK •
•••••••• SELECTEO .* •••••••• X.OETECTED ENTRY.

••••• G2** ••••••••
o 0
o * •
• BLANK ALL WTQS .X •••
• 0
* 0 •••••••••••••••••

x •••• • • • El •
o 0 * •••

. OPTIONS . • • *..* ••• *
* NO

x ••••
o * • El •
o 0 ••• *

x . ..
G4 •• • •••• G5 ••••••••••

•• •• YES. •
III. WTO .* •.••••.• iX.MOVE WTDS DOWN •

III. •• • ••••••••••••••••
• NO .~ . .
.X •••••••••••••••••••••••••
x .* ••

• * • El •
• 0 • •••

Section 13: Charts 447

• chart II.

UNIT OPTION
I!=.ECVDR4

option Routine

•••• AI*.* ••••••

• •
• ENTRY • • •

FROM DISPLAY RTN
CHART IE
FROM COMMAND
OPTION-CHART I I

• ••• · .
• F5 •

• * •••• x
: NO

X ••• ••• ••• • ••
••••• sl.......... B2 •• 83 •• 84 •• 65 *.
• " •••• ••••* *.
" " ." DI SPLAY •• NO ." DISPLAY •• NO •• PAGING •• NO •• OPTION ••
• INITIALIZE " •••••••• X •• OPTION ONE •••••••••• X". OPTION TWO .. "." X". REQUEST •••••••••• lX •• Twa DISPLAYED •• • • •• •• *. •• •• •• •• •• · *... •••••••••••••• ".. •• •• •• .* •• •• • •••

" YES • YES " YES • YES •••• .. .
•• X" CS ..

* •
••• X

C2 *.. • •• **C4 •••••••••• .. ".. ."
•• IS •• YES • FILL IN •

". STORAGE •••••••••••••••••••••••••••••• ,. ••••• X. UNIT STATUS •
*.AVAILABLE.. .. FROM UCBS •" " "

• NO

ic x .'.

.... . . · ...
• CS •• X.· ·

ic
• ••• cs •••• * ••••

• * .. EXIT •

• • •••••••••••••••
TO COMMAND OPTION RTN
(JEECVDRS) CHART II

••••• 02 •••••••••• 04 •• • •• *.05* ••••• * •••

COMMAND OPT ION
IEECVORS

•••• £1 ••••••••• · . • ENTRY • • • •• * ••••••••••••

X

FORM UNIT
OPTION-CHART IJ-

••••• F , •••• *.* ••• • • • •
• INITIALIZE • • • • • •••••••••••• * ••••

x

• •
• ISSue •
• WTO MESSAGE • • • * • •••••••••••••••••

x •••• • • * F5 • • • ••••

••• .iIII.

.... . .
•• REWRITE •• YES. *

•• REQUEST •••••••••• x. I NCREMEHT CCW •
•• •• • POINTER • • •• * " ••••••••••••••••

• NO

• •••• E4 •••••• *.* • •
• eXIT • • • •••••• * •••• * •••
TO I/O':" RTN
C IEeCVDR2) CHART IF

ic
• •••• E5 •••••• * •••
• * • •
$I WRI TE 01 SPLAY • • • • • ..*•..... *.

**.. • · ..
• ·FS *.X. • • ••••

x
•• **FS ••••••••• • •

• EXIT • • • •••••••••••••••
TO 2250 PROCESSOR
ClEECVDP1) CHART IA

G1 •• G3 •• • •••• G4 ••••••••••
•• OPTION •• YES ... IS •• YES • LOAD ORDER •

•• TWO REQUEST ••••••••••••••••••• ~ •••••••• " ••••••• X.. STORAGE X.PROG AND BUILD. *. •• ..AVAILABLe.. • ccws * ••, •• * ••••••••••• * ••••
• NO .ND •

x .•. x
HI •• H2 •• • •••• H3 •••••••••• • • •• FORMAT •• YES.. •• NO • ISSUE ..

". DISPLAYED •••••••••• X •• DELETE OPTION •••••••• • WTO MESSAGE • •• •• *. TWO ••
• NO • YES

x .0.
J I ••

•• l.IST •• NO
•• DISPLAYED ••••••

-. .*
• YES

X
••••• 1(, ••••••••••

• •

448

• LOAD •
• SEl.ECTED FORMAT.
• ORDER PROG • • • •••••••••••••••••

x •••• • •
• H4 • • • ••••

x •••• · . • JS .. • • ••• *

X
••••• J2 ••••••••••
• • • •
• DELETE • • • • • •••••••••••••••••

X
•••• K2 ••••••••• • •

• EXIT • • • •••••••••••••••
TO 1.10-1 RTN
ClEECVDR2) Ct1ART IF

• • o •
••••••••••••••••• . .

••••••••••• x.

X
•••• J3 •••••••• * • • _ EXIT •

• • •••••••••••••••
TO 2250 PROCESS OR
« I EECVDPI) CHART IA

•••• o ••
• H4- •• X. * • •••• X .•.

H4 •• • •••• HS •••••••••• ...Il . .
•• OPTION •• NO. •

..ONE DISPl.AYEp •••••••••• .:x. WRITE DISPLAY. •• .* • • •• •• .* •••••••••••••• * * YES

X
• •••• J4 •••••• *" •• • •
• SET •
• REWRITE •
• INDICATOR • • • •••••••••••••••••

X
• ••• K4 •• * ••••••

• 0 • eXIT • • • • •• * ••••• * •••••
TO UNIT OPTION RTN
(IEECVDR4) CHART I I

•••• · ..
• .IS •• x. · .. * •••

ic
• ••• Js •••••••••

• •
• eXIT .. • • • •••••••• * •••••
TO 2260 PROCESSOR
lIEECVDPt) CHART I A

c

(

c

Chart IJ. Open/Close Routine

IEECVOCG

•••• Al •••••••••
• • .. ENTRY ..
• • ••• * •••••••••••

• FROM 2250 PROCESSOR
• -CHART IB.IC-

X
..*e 1.***** •• *. • • • • • INITIALIZATION ..

• * • • •••••••••••••••••

x .•. Cl :tI. • •••• C2*......... . .•.• C3 •.••.•.••• . *..
•• •• CL.OSE' .. GET STORAGE * .. RESET *

•• OPEN DR CLOSE •••••• :. ••• x. FOR JFCB AND * •••••••• X*SLDCK POINTERS .. *. .* *' TIOT •••• • .. * •
•• • :11 ••••••••••••••••• • ••••••••••••••••

.. OPEN

X * •••• 01* •• *.* ••••
• * .. GET STORAGE ..
.. FOR CONTROL.. ..
.. BLOCKS ..

• • •••••••••••••••••

X
••••• El ••••••• *** • • .. seTUP ..
.. PREFORMATTEO ..
.A.REAS OF BL.DCK S. • • •••••••••••••••••

X ._._.Ft _
• * • • .. OPEN DeB ..

• * • * •••••••••••••••••

X
••••• Gl ••••••••••

• * .COMPLETE BLOCK ..
.. WITH POINTERS ..
.. ANO INFO. ..

* * •••••••••••••••••

X
••• **Hl ••••• *** ••
* * • FREE DYNAM IC *
• STORAGE FOR • * TIOT AND .JFCB *
* • •••••••••••••••••

X
•••• .J 1 ••••••• *.

• * • EXIT * • • ••••••••••••••• TO 2250 PROCESSOR RTN
(IEECYDPI)
CHART IA

X
• •• **03** •• ******
* •
• * • CLOSE DCB • * •
* * **.*** •••• * ••• ***

X
.E3* ••••• ****
* *
• * • FREEMAIN T lOT * * AND .JFce *
* * **.*.* •• * ••• * ••••

X
.*F3. •••• ** • •

• EXIT *
• * •••••••••• * ••••
TO eXTERNAL INTERRUPT RTN

section 13: Charts 449

Chart IK. Asynchronous Error Routine

IEECVAE

450

•••• AI •••••••••

• • ... ENTRY ...

• • ••••• ** ••••••••

x

FROM 2250 PROCE SSOR
-CHART 18-

**** • • ... 83 ...
> •
••••

.*. X 81 *. • •••• e2.......... • •• **83 ••• ****.*. .• *. '"
•• IS *. yes ... REINITJAUZE

•• REOPEN BIT ON •••••••••• X.OISPI,.AY CONTRDL ••••••••• x. REINITII.,IZE ...
:II. •• ... MODUL.E (OCM) 2250 BUFFER • ...* * ... •• • * ••••••••••••••••• • •••••••••• * •••••

• NO •••• · Cl •• x •
.. •• **'" x .•.

ct *. • •••• C2 •••••••••• • * IS :tI.
•• THE BUFFER •• YES *LOG ERROR. SET ...

•• ADDR IN ERROR •••••••••• x. DCM PERMANENT ...
•• THE SAME •• *. /0 ERROR FLAG * *... .. . •• • * •••••••••••••••••

• NO

x ••••• 0' •••••••••• · . • • .. LoDG ERROR • • • • • •••••••••••••••••
••••

• *. .. El •• X. • •
X

••••• El ••••••••••
• • ... WRITE ..
.. ERROR MESSAGE ..

• • • • ••••• ** ••••••••••

X
••••• F , •• * •• * ••••

it
•••• 02 •••••••••

• •
• EXIT • • • ••••••••••••••• TO 2250 PROCESSOR RTN
(IEECVOPI)
CHART I"

x .' .
C3 *. ** ••• C4 •••••••••• •••• * • \II •••

•• IS •• YES"
•• REOPEN BIT ON.* •••••••• X*TURN REOPEN 81T ••••• X • .J3 • •• .* • OFF • • • •• • * * •••••••• * •••••••

• .. 0

X * •••• 03 ••••• * ••••
• RESET OPTION •
.INOICATORS AND •
.DELETE MODUL,ES •
• IF NECeSSARY • • • •••••••••••••••••

X

• ••• • • .. G3 • • • • ••• x

E3···.. E4 ••••• • •••• ES.;; ••••••••
•• •• YES •• IS THE •• YES • PUT •

•• ASYN ERROR •••••••••• X •• ..,TO BUFFER •••••••••• X.UP WTO WARNING •
•• •• •• FULL.. .. MSG • • •• * •• •• • ••••••••••••••••

• NO • NO ••••
• * • F3 .X ••

X· •••• • : NO .•. . .. X
••••• F3 •••••••••• F4 •• F5 ••

• • •••• • BE • •• *. •••• * WAIT .. • • • SURE FULL • .* IS •• YES •• IS ••
• FOR I/O • • F3 BUFFER SWITCH • •• THE MSG A .* •••••••• :X*. WTOR AReA ••
.. COMPl.ET ION .. • • • IS OFF • •• WTOR .* •• FULL •• • • ***.* ••••• *** •••• ••••• • *...

• NO • YE;S

x .•.
GI •• • •••• G2 •••••••••• • * •• YES • SET •

•• 11'0 ERROR •••••••••• X. PERMANENT Xl'O _ *. •• • ERROR FLAG
•• •• • ••••••••••••••••

• NO

x . '. HI •• •• _. YES

•• l.IGHT PEN .* ••••
•• ATTN ••

• NO

x .•.
"1 ••

• •••• • •
• 83 • • • ••••

X
• ••• H2 •••••••••

• •
• EXIT • • • • •••••••••••••• TO 2250 PROCESSOR
(lEECVOPI)
CHART IA

RTN

•••• .. .
•••• F3 •

• * •••• x . ..
G3 •• • ••• *G4.* •••••••• .*.. .. .

•• WAS NO •• YES. •
•• X •• PRINT OPTION •••••••••• X. UNDERLtNE NO •

•••• • •
• G3 .. • • ••••

•• seT.. • PRINT •
• NO

· . • X
x

• > •
H3 •• • •••• H

•• WAS THE •• YES. •
•• SCREEN IN •••••••••• X.UNCERL tNE HOLD •

•• HELD •• .. yes •
..STATe.. • •

•• •• • ••••••••••••••••
• NO

· . .X •••••••••••••••••••••••••

• * 3 ••••• • •• •• YES. •
•• ASYN ERROR •••••• X. CI •

• NO

• •••• • •
• EI • • • *.

• •• • • .,3 ••••• X.ReSTAAT DISPLAY. • •• • ••••• • • ••••••••••••••••

X
• ••• K3 •••••••••

* • .. EXIT •
• • ••••••••••••••• TO 2250 PROCESSOR RTN
(IEIECVDPI)
CHART tA

X
• •••• G6 •••••••••• • •
• PUT UP •
• wTOR WAANI NG •
• MSGE .. • • • •••••••••••••••• .:

i:
• ••• • • III G3 • • • • •••

c

(

• Chart IL. Simulator Control Routine (Model 91)

DECENT

•••• Al •••••••••
< 0

• ENTRY • o 0
FROM f,ilOOEL 91
PFLIH RTM

.. -CHART AM-

X
••••• Bl ••••••••••
o 0
'" LOCATE •
• SIZE OF MAIN •
.. STORAGE ..

• 0
X

••••• Ct ••••••••••
• CALCUL.ATE L.EFT ..
*AND RIGHT-HAND ..
.. ADDRESSES DF •
.. OFtERAND 1 AND ..
.. DPERAND2 •

x .0.
01 •• . *.. . .•• 02 ••••••••• • * TEST FOR ... YES. ..

OPI/OP2 OUTSIDE •••••••• x. EXIT III
OF MAIN STORAGE111 •••••••••••••••

III •••
• NO TO ANALYZER/END

ATN (DECADDR)
-CHART IR-

X
••••• e 1**.* ••••• *
o 0
o 0
• CLEAR WORK AREA.

- <
- 0 •••••••••••••••••

x .0.
Fl *.

YES .111 ••
•••••• TEST FOR ZAP ••

III. •• *. .• * ••• _ NO

x .-.
Gl III. .. .* ARE *.

XYES •• RIGHT-HAND III.
..... • 111. ADDRESSES •• *. EQUAL •• *. ••

III ••• _ NO

x
• <.

HI *. • * III. • ••• H2 ••••••••• .* DO *. YES. ..
•• OPERANDS •••••••••• X. EXIT •

•• OVERLAP •• • •

•••• • ••••••••••••••
o NO . .

••••••••••• X.

x . -. Jl ••

TO ANALYZER/END
RTN (Of::CDC)
-CHART IR-

• * IS.. • •• *
•• PROTECTION •• NO • • *. CHECKING •••••• X. E3 •
•• REQUIRED •• •• * •••

• YES

x •••• . -• A3 ..

- 0 ••••

• •••
- < '* A3 • - -••• *

x .-.
A3 * • • * IS ••

•• FETCH •• YES
•• PROTECT BIT .* ••••

•• SET FOR ••
•• 001 •• _ NO

x
.0 •

83 ••
•• IS ••

YES.. INSTR. ••
•••••• COMPARE ••

•• DECIMAL •• _ NO

· . • x •••••••••••

x .-.
C3 ••

• •••
- 0 • 85 .. - . •••• ..

X ** ••• 85 ••••••••••
• SET •
• UP PREFEARED •
• SIGNS FOR • * OPERANDS IN ..
• SAVE AREA • •••••••••••••••••

..
)i .•.

C5 •• •••• C4......... •• TEST ••
•• IS •• YES • • YES •• FOR ••

•• OPERAND I •••••••• • EXIT .X •••••••••• MULTIPLY OR ••
•• PROTECTED •• • • •• DIVIDE ••••••••••••••• ".Dec. •• _ NO . .

••••••••••• X.

x .0.
03 ••

TO MULTIPLY
DECIMAL RTN.
(OECMP)
-CHART IP-

•• IS.. • •••• 0 ••••••••••
... OPERAN02 •• YES X .. •

•• FETCH •••••••••• X. EXIT •
•• PROTECTED.. .. • *... ••••..•.••. ._ -'NO

- -. • E3 •• X.
o _

x ._ .. .•.
E3 ••

TO ANAL YZER/E .. D
RTN (OECPTl
-CHART IR-

. ... _ NO

..

.:

X
• •••• 05

- -• SET •
.CoNDITloN CODE •
• TO ZERO • - -••••• * •• * ••••••••

.:

..
x .-. E5 ••

•• '*. _ .•. E4.........
• * IS •• YES

•• INSTRUCTION •••••••• : . EXIT :x ~I:*:* ~~~p~~: .: •
•• ZAP •• • • •• DECI·MAL ••

_ NO

X
••••• F3 •••••••••• · -_ MOVE •

.. OPERANDI TO •
• WORK AREA • - . • ••••••••••••••••

TO COMPARE
DECIMAL. RTN (DECCP)
-CHART IM-

X
• •••• F •••••••••••

- * * SET OPERAND I •
• WORK AREA TO •
• PLUS ZERO • - -.

· . • X : ••••••

X
• •••• G3 •••••••••• - -• MOVE •
• oPERAND2 TO.
• WORK AREA • - -•••••••••••••••••

x .-.
H3 *.
•••• ~ ••• H4 •••••••••

•• IS •• NO. •
•• OPERANDI SIGN •••••••••• X. EXIT •

•• YALID.. X. •
• YES TO ANALYZER/END

RTN (DECOC)
-CHART IR-

x .-. ..13 ••
•• IS •• NO •

*.OPERAN02 SIGN •••••• X.
•• VALID ••

• YES

x .-.
K3 ••

•• ARE * •
•• OPERANDI •• NO •

•• AND oPERAND2 ••••••••
•• VALID ••

• YES

x
* ••• - . _ es _

* -••••

....
o NO ..

it
• ••• FS •••••••••

* -• EXIT • - -•••••••••••••••
TO ADD/SUBTRACT /
ZERO-AND-ADD
DEC 1 MAL RTN (OECASP)
-CHART IN-

Section 13: Charts 451

• Chart IM. Compare Decimal Routine (Model 91)

DEC(:P

** •• A2·.··*.··· * *
• E:NTRV *
* * ***.***.*******

FROM 51 MULATOR
.. (:ONTRaL RTN
• -CHART IA-

x .•. .*. . •.
62 *. 83 *. B4 * •

• * *. .* *. •• *. ****85** •• **** • • * IS •• NO .* IS •• VES .* IS •• YES 41 *
•• OPERANDI ZERO •••••••••• X*.OPERAN02 ZERQ.* •••••••• x*. OPERANDI .* •••.••.• X* EXIT *

. . *. .* *. MINUS .* * * *. .41 *... * *..* **************. * •• * * •• * * •• * * YES 41 NO * NO TO AOO/SUBTRACT/
ZERD-AND-ADD
DECIMAL RTN
-CHART IN-

x
• *.

C2 .or
****Cl.*.****** .* ••

x • * •
C3 *.

•• IS *.

x
* •••

* * • E2 •

* * •• **
41 * YES .* 15 *. * EXIT *x. ••••••••• OPERAND 2 .*
* 41 *. ZERO .. *

YES .* OPERANDI *.
•••••••• OAT LESS THAN.*

.OP2 DATA . *.............. *..*
TO ANALYZER/END
RTN (REG3)
-CHART IR-

* •• * * NO . .
.. x

• *.
02 *.

****0 I ********* .. * *.
I! * NO .* IS *. * EXIT *X. ••••••••• OPERAN02 ••
* * *. MINUS •• *
.*************. *... *

TO ADD/SUBTRACT.I
ZERO-ANa-ADD
DECIMAL RTN.
-CHART IN-

* •• * * YES •• ** * *.
• E2 •• X. • •• x ••••••••••• ••••

•• .*
* NO

x .*. . •.
D3 •• D4 ••

.* *. .* *. **.*oe******.*· .* IS OP~ *. YES •• IS OPI *. YES * •
*.DATA EQUAL TO •••••••••• X •• SIGN EQUAL TO •••••••••• sx. EXIT •

.oPt DATA . *.OP2 S:JGN .* * *' *..* *..* *** •• * ••••••• ** *. •• * •• *
.NO *NO

. .

.x ••••••••••••••••••• : ••••••
x

TO ANALYZER/END
RTN (REE3l
-CHART IR-

SFJ3 X .*.

452

••••• E2 ••••••••• *
* •• *EI •• **.**.. • •

• *. SET * • ENTRY ••••••••• X.CONOITION CODE.
• • III TO 2 * ••• ** ••••• *.... • •

FROM ADDI'SUSTRACT I'
ZERO-ANo-ADD
DECIMAL RTN"'
-CHART IN- •

•• * •••••••••••• *.

X
•• **F2****.***. * •

• EXIT *
* * •••• ***.** •••••
TO ANAL. YZER/END
RTN (OE;CNEHD)
-CHART tR-

E3 * • •• *.
• NO.III IS *.
•••••••• OPt SIGN .111

•• MINUS •• *. .111 * •••
• YES

X
•• **F3****.* •••

* * • EXIT •

* * * ••••••••••••••
TO ADD/SUBTRACT
ZERO-AND-ADO
-CHART IN-

c

c

• Chart IN. Add/Subtract/Zero-and-Add Decimal Routine (Model 91; Part 1 of 2)

DECASP

***.Al ••••••••• • • .. ENTRY .. ·
FROM SIMULATOR
CONTROL RTN

• -CHART IL-

• ••••• 81 ••••••••••
.. SET·"
• SIGNS OF ..
.. O?ER AND5 IN ..
.. MORK AREA TO ..
.. PLUS

x .•.
Cl ••

SBJ2
*****A4**** •••• *. · . .. DETERM tNE ..

• X. LENGTH OF ..
"LONGEST OPERAND.

• •
x

••• SEA3 •••
84 *. 85 •• _*.. .* IS ••

•• ARE *. YES .* LENGTH OF •• YES
•• THE SIGNS •••••••••• X*.OP 1 OR OP 2 •••••• *. EQUAL .* *. OVER 5 .*

•••• ..BYTES •• * •• 111 ••••
.. NO • NO

x .'. X
C4 •• * •••• CS ••••••••••

• *15 QP 1*. * •

x
.****
*10 *
• A2* •• .

•• IS *. NO • YES.. DATA •• • CONVERT • *. OPERAND 1 *. ZERO .*
•• .111

* •••
.. YES

x ...
01 *.

• * *. ****02********* • * IS *. YES * * *. OPERAND 2 .* .••.•••• X. EXI T '" *. ZERO.. • •
•••• * ••• * ••• **.* ••• * •••

• NO
TO ANALYZER/END
RTN (MOVEENO)
-CHART I R-

• ••••••••••••••••••• GREATER THAN .*
•• O? 2 DATA.*

SCC3 X
*.***03**** •• *.*. * MAKE ..
.. QP 1 MINUEND ... * MAKE OP 2 * * SUBTRAHEND * • • *****.* •••• * •• *.*

•• .111

* •• *
• NO

• .•.
04 *.

•• 15 * •
YES .* OP 1 DATA *.

•••••••• LESS THAN QP .* *. 2 DATA .*
* •• *

• NO

X • SCSII
.****E3*.***.****

X
.*.E4* •••• * ••

* MAKE * · .

* OPERAND S TO * * BINARY • • •
.*.*.*.****.* ..

x
* •••• 05 ••••• *.*** · . • ADD OPERANDS • * AND CONVERT * * ANsweR TO *
.. DECIMAL * • ••••••• ** ••• * •••

..
x .•.

ES ••
•• 'II.

•• * •• E 1********** • • * MOVE OPERAND *
*2 INTO OPERAND * * 1 wORK AREA *

* OP 1 .. • MAK E OPERND 1 • .* IS *. NO · . .*** ••• * ••••• *.*.

X
*.***F 1 •• ******** * PUT ..
.SIGN OF OPERANO. * 2 IN RESUL.T •
• S IGN SAVE AREA * • •
• *******.*******.

x .•.
Gl •• OIl. •. • * IS OP *. NO

*.2 L.ONGER THAN ••••••••••
•• OP 1.* x •••• • ••• *

* •• * *10 *
• YES * G4*

• ."'**.
*10 *
• FII-* . . •

•• •

* SUBTRAHEND, *X ••• • WORK AREA PL.US .. *. THERE A CARRy ••••••
• MAKE OP 2 • * ZERO • * MINUEND '" * •
• *.**** ••• * •• **.* :ie.* ••••••••• **** •

:SCF3 .•.

•. .* •. .* * •• * * YES

x •••• *
10
• ES.

F3 *. x .. .* IS *. • ••• FII-**.***.** •
• •• LENGTH OF * .. YES '" *
• •• X*.OP 1 OR OP 2 .* •••••••• X* EXIT ..

•• OVER 5 .* • ...
*.BYTES.. *.* •• ********** *

• NO

X
• ****G3*********. • • * CONVERT .. * OPERANDS TO * * BINARY * • •
.****"'******"'*."'*

• • **.*H3*.******* • • • * SUBTRACT *
• THE CONVERTED *
• OPERANbs * • • *.*.** ••• ** •• ** ••

X
.*.13.* •• **. • •
• CONVERT •
• ANSWER TO *
• DECIMAL *
• * • * ••••• "'.** ••••• *

x

*10 *
• E4* •• •

SCG3

TO ANALYZER/END
RTN (MOVEENO)

-CHART IG-

** •• *G4* ••• * ••••• • • .CONVERT II- BVTES.
OF EACH OPERAND * TO BINARY * • • .*.* •• * ••••• * •• **

x .•.
HII- 'II. .* •• *HS.**.*.** ••

•• *. * *
•• IS •• YES * ADD BORROW *

*.BORROW NEEDED •••••••••• ~X.ANO SET BORROW * *. •• • SWITCH *
.. • * ... • * ••••••••••• *.****

• NO

$OA2 X
*.***.14.******* •• • •

..

• SUBTRACT • •
.SUBTRAHEND FRQM.X ••••••••••••••••• :
• MINUEND * • • * ••••• *.**** •••••

X
* ••• *KII-.** •• ***** · . • CONVERT • * ANSWER TO *
• DECIMAL * • • **** •• * •••• ** ••• *

x
**.*.
*10 *
• At* •• •

x
****. *10 •
• E4* ..

•

Section 13: Charts 453

• Chart IO • Add/Subtract/Zero-and-Add Decimal Routine (Model 91; Part 2 of 2)
*10 ,.
,. Al*

o 0
o

5083 X
••• *.Al ••••••••••
o 0
,. MovE PART IA1. ,.
• ANSWER TO ,.
,. OPERAND 1 *
o 0 • * •••••••••••• * ••

X ** ••• 81* •••••• * ••
o •
• CONVERT NEXT 4 •
• BYTES OF EACH.
:II OPERAND TO ,.
,. BINARY ,. •• ** •••••••••••••

x
• 0.

Ct *.
NO .* IS ••

••• ••• BORRDW SWITCH ••

•••••
*10 *
• A2. • 0 ·

SEB3 X
••••• A2 •• * •••••• * · . .CONVERT 4 BYTES.
.OF EACH OPERAND.
• TO BINARY • · . •••• * ••••••••••••

x
****.82*** ••• **.* o •
• ADD AND •
• CONVERT ANSWER •
• TO DeCI MAL •

• 0 •••••••••• * •••• * •

it .•.
C2 •• .* ••

•• IS THERE •• NO
•• A CARRY TO ••••••

.** •
o •
• A4 ..
• 0 .* ••

i .
• ••• *A_******** ••
• 0 * SET •
• CARRY SWITCH • • • • • • ••••• * ••••••••••
• *.* o •• * B4 •• X.

• 0 x •••• .•.
64 *.

NO.. IS * • ••• *. ADDITION ••

x •••• o 0

• E2 •
• 0 ••••

..COMPLETE ••
. . * •• *

• YES

X
•• * •• C4.**.**** ••
• 0 *MOVE REMAINDER •
• OF ANSWER TO •

•• ON •• SEE NOTE •• NEXT •• • OPERAND 1 • •• .* * •• * ,. YES

X * •••• 01 ••••••••••

• 0 o 0
• SUBTRACT 1 FROM.
,. MINUEND ,.

• 0 ••••••••••••••••• . .
••••••••••• x.

X
SOF3 .*.

El *. •• *.
•• IS •• NO *. BORROW ••••••
•• NECESSARY ••

.
• YES

X
••••• Fl ••••••••••
o 0
,. ADD BORROW •
*AND seT BORROW ,.
,. SWITCH ,.

• • •••••••••••••••••

SDG3 X

454

••••• 61 ••••••••••

• • ,. SUBTRACT • •
• SUBTRAHEND FROM_X •••
,. MlNUEND ,. • • ••••••••••••• ** ••

X
••••• Hl ••••••••••

• • ,. cONveRT •
.. ANSWER TO ,.
• DECIMAL ,.
o 0 ••••••••••••••• **

x .•.
JI ••

•• IS *.
•• SUBTRACT ••

•• COMPL.ETE •• •• .*
.. YES

X
••••• IC.I ••••••••••

• 0 • MOVE REMAINDER ..
• OF ANSWER TO • *' OPERAND 1 •
o 0

•••••••••••••••••
x •••• • •

• G40 • • • ••••

•• GROUP ••
o YES

X
*.***02*.*.* ••• ** • • * SET • * CARRY SWI TCH • • • • • •• **.* ••••••••••• · ' . • E2 •• X. • • •• ** •
SEG3 X
• •••• E2 ••• * ••• **.
• • • MOVE PARTI AL. •
• ANSWER TO .X •••
• OPERAND 1 •

• 0 ••••• *** •••• * ••••

X
••••• F2 ••••• * ••••
• • • CONVERT IEXT 4 ..
• BYTES OF EACH •
• OPERAND TO •
• BINARY • _

x .•.
G2 •• SEe NOTE

•• IS •• NO
..CARRY SWITCH ••••••

•• ON •• •. .*
• YES

X • ••• *H2 ••••••••••
• •
• ADD * .ONE TO OPERANDI. • • • • ••• * •••••••••••••

SFA3 X
• •••• J2 ••••••••••
* • * ADD OPERANDS * •
• ANO CONVERT .X •••
• ANSWER TO •
• DECIMAL ... • •••••••••• * •••••

it ...
K2 ••

o 0

•••••••••••••••••

x .* •. 04 •• •••• .• *.
• • NO.. IS ••
• 64 .X •••••• CARRY SWITCH ••
* * •• SET ••* •• * .10 •

SFG3

•• •• SEe NOTEl
• YES • E5.

•• o
.:

.:. x
E_ •• • •••• E5.* ••••••••

•• IS •• • • .* OPERAND 1 •• YES • MOVE •
•• X •• LENGTH EQUAL •••••••••• :x. SIGN INTO •

;.
* • .10 •

• E4 •
•• TO 16.. x. OPERAND 1 •

..CHAR •• • •
* •• * ** •••••••• * •••• **

• NO .-
x .•. X

F4 *. • •••• F5 ••••••••••
.* •• • • .* IS SUM •• YES • • SET • • .x •• LONGI:R THANCONDITION CODE.

•• OP I •• •• .*
• o NO
•• * •• *

.10._ ••
* F4 •• G4 *.x. •••••• •

X
• •••• G4.* ••••••••

• •
• MOVE • ..X. SIGN TO .X ..•

;.
•• • 10 •

... G4* •••••

• OPERANDI •
o • * ••••• * •• * •••••• *

x .*. H4 ••

••••
• 0 • G4 •
• 0 ••••

• TO 3 • • • • •••••••••••••••• .:

,,:
• ••• G5 ••••••••• • •

• EXIT • o • ._.** •• _ •••••••
TO A.NALYZERJ'END
RTN (OeCDO)
-CttA-RT IR-

• * •• • ••• HS ••••••• _.
.lI! •• NO. •

•• 15 SIGN MINUS •••••••••• X. EXIT • •• •• ** .••••.•••••••• -....
• YES TO COMPARE

DECIMAL RTN UQJ3)
-CHART 1M-

•••••••••••••••••••• .: •••• X.

•••• J3 ••••••••• • • * ENTRY • • • * ••••••••••••••
FROM COMPARE
DeCIMAL ROUTINE
-CHART IM-

X
• ••• *J4 •••••••••• • •
• SET • • COND IT I ON CODe •
• TO 1 • • • .* ••••• * •••••••••

X NOTE ••• *K4 ••••• ** ••
•• IS THERE •• NO _ •

_. A CARRY TO •••••• X. e4 •
•• NEXT.. ••

•• GROUP.. * •••
• YES

x • ••• • •
• A4 • • • * •••

• •
• eXIT •

• * •••••••••••••• *
TO ANAL YZERJ'EItO
R TN (DECHEND J
-CHART IR-·

BORROW AND CARRY
Swl TCHES ARE
REseT AT TIME
OF TESTUG •

c

• Chart IP. Multiply Decimal Routine (Model 91)

OECMP

.*.*Al****.**** • • .. ENTRY .. • •
x .'.

FROM SIMULATOR
CONTROL RTN
-CHART IL-

Bl *. ROUTINE
• •••• e3 ••••••••••

•• IS LENGTH •• YES
•• OF OP 2 DATA

..CONVERT .-OIGIT •
• 83 * •••• X* GROUPS OF •

•• 6T 8 •• '" OPERAND2 TO *
*.BYTES ••

lit •• to
•••• • BINARY "

• NO

x .•.
ct ••

• *15 DP .*. .. •••• C2 •••••••••
• *OATA LENGTH". NO X .. •

*.GT OP 2 DATA •••••••••• X. EXIT •
!II. LENGTH .1It • " lit... • ••••••••••••••

lit •• * TO ANALYZER/END
• YES RTN (aECSP)

-CHART IR-

x .•. 01 _ •

• _ lit. • ••• D2 •••••••••
• * TEST FOR *. YES. • *. DIVIDE •••••••••• X. EXIT •
•• DECIMAL .1It " • ...1It •••••••••••••••

lit •• 1It TO 01 VIDE DeC) MAL
• NO RrN (OECDP)

-CHART IQ-

x .•.
fl ••

•• OOES ap*. • ••• e2 •••••••••
• 1It 1 CONTAIN •• NO. •

_.L.EADING ZEROS •••••••••• x. EXIT •
•• EQUAL. TO •• • *

•• OP 2 •• • ••••• * ••• * ••••
•• •• TO ANLAYZER/END

.. YES RTN (DECDC)
-CHART IR-

x .*. Fl *. • * IS *. YES
•• OP 1 DATA ••••••••••••••••••••••••••••••••••

•• ZERO ••
• NO

X
• •••• C3*.**** ••••
* • .CONVERT 4-0IGIT.
• GROUPS OF •
• OPERANDI TO"
.. BINARY •
.** •••••• *** •••• *

X
• •••• 03 •••••••••• · . .. MUL.TIPLY EACH ..
• GROUP OF OPt •
• WITH EACH GROUP •
• OFOP2 • • •••••••••••• * •••

X
• •••• E3 ••• * ••••••
• SUM •
• ANSWER FOR EACH •
• GROUP AS IN •
• L.ONG-HAND MUL.T •

• • •••• * ••••••••••••

X
* •• **F3 •••••••••• • •
• CONV ERT SUMS •
• INTO DECIMAL •
• ANSWER • · . • •••••••••••••••• . .

••••••••••• x •

• :. UOC2 uce. X Gl .. .* ••• G2.......... • •••• G3 •••••••••• •• *. • •• •
•• IS •• YES. •• Pl.ACE ..

•• OP 2 DATA •••••••••• X. Cl.EAR OPt TO ••••••••• X.PRQPER SIGN IN •
•• ZERO.. • ZERO • X. ANSWER • ...*

* Nu

x
." HI •• •• •• * •• *

•• IS L.ENGTH •• YES" •
•• OF OP 1 DATA •••••• X. 93 •

•• GT 5..
•• BYTES.. • •••

• NO

x
••••• .11 ••••••••••

• * .. CONVERT •
• OPERANDS TO •
• BINARY • • • •••••••••••••••••

X
••••• 1<.1 •••••••••• • • • MUL.TIPLY AND • •
.CONVERT ANSWER * •••••• ::. •••••••••••••••••••••••••
'" TO DECIMAL • • • •••••••••••••••••

X
•••• H3 •••••• * ••

• •
• EXIT • • • • •••••••••••••• TO ANALYZER/END
RTN (MOVEENO)
-CHART IR-

Section 13: Charts 455

• Chart IQ. Divide Decimal Routine (Model 91)

OECDP

****A.*.******. • • * ENTRY *'
* • *** •• ** ••••••••

FROM MULTIPLY
• DECIMAL ROUTINE
• -CHART IP-

x .•.
BI ••

•• III. .* IS O!='2 •• yes
•• OAt'" EQUAL TO ••••••••

•• ZERO ••
. . * •• * * NO . " . : x ." .•.
Ct.. ." • * *. .. •••• C2 •• * ••••••

• *IS OIVISOR *. YES X*'*' *. TOO HIGH IN .111 X. EXt T *'
III. VAL.ue .* • *
.. ******.** ••• ***

.*** • • * A3 *
* * ••••

X
*.***"3******** •• * • *' SUBTRACT *'
*2X DIY tSOR FROM. *' DIVIDEND *' • • .* •••••••••••••••

x
****.83 ••• ******.
• * *' ADD VALUE *'
III OF 2 TO *' * QUOT lENT *'
* * •••••••••••••••••
**** * * • *' C3 •• x.

* • x .*** TESTl .* •
C3 *.

•• IS * •
•• DIVIDENO •• YES

•• LESS THAN IX ••••••
•• DIVISOR •• *'.. .." TO ANALYZER/END •• • * *' NO RTN (DECOO)

-CHART IR-

x .*. SIMOty
01 *. • ••• *02*********. .* 15 *. *' •

•• LENGTH OF *. NO *' CALCULATE •
•• oPt DATA LESS •••••••••• X.MULTIPLES OF 1 ••

III. THAN 6 .* *' 2. 4. 8 TI MES *'
•• BVTES.. • 01 VI SOR • •. .• .*._ ••.•• * ••.••••

• YES

it
*****E I ••••••••••

* * • CONVERT •

X
• •••• E2 ••••••••••
* • • ALIGN MULTIPLES.

• NO

it * •••• 03 ••••• *.*.*
* * • SU8TRACT *
• DIVISOR FROM * * DIVIDEND *
* • * ••••• * •••• *.* •••

X
••• *.E3*** •••••••
* •
• ADD VALue •

• •••
* * • E5 •

* * ••••
i:

ZET •••
E5 ••

NO •• IS ••
• OPERANDS TO • • FQ~ FIRST • • OF I TO • •••••••• DIVIDE ••

456

* BINARY • • • •••••••••••••••••

X
••••• FI ••••• * ••••
* " • DtvlDe AND •
• CQ1<fVeRT ANSWER * * TO DeCIMAL ..

* * • * •••••••••••••• *

it
•••• *GI*.*** ••• **
* * • SET UP QUOTIENT.
• AND REMA INDER •
• IN OPERANDI ..
* • •••••••••••••••••

it
•••• HI* ••••• * ••

* * • EXIT •

• * ••••••••••••••• TQ ANALYZER/END
RTM (MOVEEND)
-CHART IR-

• SUBTRACT! ON •

• * * ••
• F2 •• X.

• *. •••• X
TEST4" .*.

• QUOTIENT • • • • •••••••••••••••• · . .x •••••••••••

x .*. F2 •• F3 •• • •••• F4* •••••••••
•• IS •• .*.. . .

YES •• DIVIDeND •• •• ARE THERE •• YES .STORE QUOT lENT •
•••••• LESS TH"N 4X •• *. DIVISOR ••

•• TWO QUOTIENT •••••••••• X* DIGIT IN *
•• DIGITS •• • QUOTIENT •

. •• •• • •••• * •• ** •••••••
* NO

x

• NO •••• .. .
•• X. E5 *

* *
••• SUBS

G2 •• .* •• *G3 •• * •• *.**.
•• 15 *. • •

•• DIVIDEND *. NO * SUBtRACT •
*.LESS THAN ax •••••••••• x*ex DIYISOR FROM.

•• DIVISOR •• * DIVIDEND * •••• • * •• •• • ••••••••• * •••• * •
• YES

X
** •• *H2.**.* •••••
* * • SUBTRACT •
• 4X DIVISOR FRDM*
• DIVIDEND *
* * •••••••••••••••••

X • : 2* ••••••• *.
* * • ADD VALUE •
• OF4TO •
.. QUOTIENT • • • ••••••••••••••••• . .

............ x.

ic
TEST2 .*.

K2 ••

X
• ••• *H3 ••••••••••

* * • ADD VALUE •
• OF8TO •
• QUOTIENT • * • • ••••••••••••••••

x ••• *
* * • C3 •

* * ••••

•• IS.. .* ••
•• DIVIDEIID •• YES. •

•• LESS THAN 2X •••••• X. C3 •
•• DIVISOR •• ••

'NO

x .. _.
* • • A3 •
* • ••••

. .
.X •••.••••••••

x:
• •••• G •• * •••••••• • •
• DIVIDE •
• EACH MULTIPLE •
• BY 10 • • • •••••••••• *.* ••••

x ••••
* * • F2 ..
• • ••••

*.COMPLETE •• * •••
• YES ."

it ..* •• FS* •••••••••

* * .STORE QUOTIENT .. * DIGIT IN •
.. QUOTIENT •
* • • ••••••••• * ••••••

."
X

••••• GS* ••• ***.*.
* * .. PLACE PROPER ..
• SIGN ON ..
• QuotIENT •

• * • ••• *.** •••••••••
.; ." .;

.;

.;
x •• * •• HS ••••••••••

• PLACE •
• SIGN OF •
.. DIVIDEK> IN •
.REMAINDER FIELD.

* * ••••••••••••••••• ."

X
••••• JS.* •• *.** ••
* • • •
• SET UP ANSWER • • •
* * • ••••••••••••••••

X
• ••• KS •••••••••

• •
• EXIT • • • .._ ... _•..

TO ANALYZER/END
RTN (MQYEEND)
-CHART tR-

(-

• Chart IR. Analyzer/End Routine <Model 91)

oeCPT oecsp
•••• AI •••••••••

* * • ENTRY •

* * •••••••••••••••
• FROM SIMULATOR
• CONTROL ROUTINE
• -CHART IL-

X
••••• 81 •••••••• *.
* * • PLACE •
.. ~ROTECT ION .*
.. INTERRUPT IN •
• PSW • ****** ••• *.* •••• *

*.**A2 •••• *** ••
* * .. ENTRY •

* * •••••••••••••••
• FROM MULTIPLY
• DEC I MAL RTN.
• -CHART JP-

X
• ••• *S2* ••••••• *.
* * • PLACE •
.. SPEClFICATION *
.. INTERRUPT 1 N •
• psw • •••••••••• **** •••

DECOD

•• **A3***** ••••
o * .. ENTRY ..
o • •••••••••••• * ••

FROM DIVIDE
DECIMAL RTN.

• -CHART IQ~

x ,
••••• a3 ••••••••••
• 10 .. PLACE DIVIDe l •

• CHECK JNTER~PT •
.. IN PSW / *
* -.
..**.**********

OECAOOR DECDC

.*~*A.*.** •• *.*
*1 0
11/ ENTRY ..

1* * • •••••••••••• * •
: FROM SIMULATOR
•• CONTROL RTN.
• -CHART IL-

X
••••• 64 ••••••• * ••
o *
• PLACE *
.. ADDRESSING .. * INTERRUPT IN ..
.. PSW *

.A5.* ••••
* 0 .. ENTRY • .. .

.*.************
.FROM
.SIMULATOR
.CONTROL RTN •
.'-CHART IL
.FROM MULTIPLY
.OECIMAL RTN •
• :-CHART IP-
X

*****65********* • * 0 * PLACE DATA •
.CHECK INTERRUPT*
• IN PSW *
* 0

.: · . .:
• x x x • • x: ••••••••••••••••••••••••••••••••.

DECDO DeCNENO

*.**C2.** •••••• ANALYZER **.*C4 •• ******* END
.. .SECTION • .SECTION
.. ENTRY * .. ENTRY •
.. * * 0

.****.***** ••••••• * •••••••
• FROM ADD/SUBTRACT/ • FROM COMPARE
• ZERD-AND-ADO RTN. • OEC IMAL RTN
• -CHART 10- • -CHART 1M-

••••••••••• x.
x ...

02 *.
•• IS ••

•• DECIMAL *. YES •
It. OVERFLOW • * ••••••••••••••••••••••••••••••••

•• MASKEO.. X
•• OFF .* * ••• * NO

• (PSW BIT •
• 37=1)

x
.* •

04 •• .* IS ••
... INSYR. •• YES *. COMPARE .* ••••
•• DECIMAL ••

. . * •• * o NO

••••••• : •••• x.
X

*****E2 •• *****.**
• PLACE • * DECIMAL * * OVERFLOW *
• lNTERRUPT IN •
• P5W •
.**** •• ***.*.****

· . ••••••••••••••••••••••••• x.
x .*.

F2 *. •• *.
YES.* IS DATA *.

•••••• TO BE .*

.: . '

•• RETURNED .*
.

• NO

X
****_G2** ••• *** ••
• SET UP • * REGISTERS SO * * DATA WILL NOT.
*BE RETURNED TO ..
.. PROG. PROG •

• ' ••• * •••••••• * •• **
.: . .
••••••••••• x.

X
*****H2 ••••• *****
* * .. SET .. * ERROR SWI TCH *'
• * * ..
*** ••• **** •••• **.

MOVEEND

*.**E3.**** •• **

• * • ENTRY * ••••••
• * • ••• ***********
FROM ADO/SUBTRACT
ZERo-AND-ADD DECIMAL
-CHART IN-
MULTIPLY DECIMAL
-CHART IP-
DIVIDE DECIMAL
-CHART 10-

X
• *.**E4*.** ••••••
• MOVE * _ DATA TO •

* OPERANDI IN *
PROBLEM PROGRAM
* 0 *,* ••• **.**** •• ***

· . .x ••••••••••••

x .*.
F4 *. ..* •• .* IS •• YES •

•• ERROR SWITCH .* ••••••
•• SET ••

. . *. •• * NO

X
*****E5********* •
* * * RESET • * ERROR SWI TCH •
* •
* * ** •• ******.******

X
****FS**.**** ••

o * • EXI,T •
* • * ••• ****

RETURN TO
MODEL 91 PFL1H
RTN.: (ENTRY2)
-CHART AH-

•••••••.•••• x •
REE3

..G3******.**
* •
• ENTRY •••••••
* 0

-.********.****
FROM COMPARE
DECIMAL RTN
-CHART 1M-

x .*.
G4 * •

• * *. .***GS**** •• *** .* IS *. YES * * *. TESTRAN IN .* •••••••• x. EXIT •
*. USE.. * *'
...* ** •• ********* •• * ••• * NO

X
••• *H.** •••• ***

• * • EXIT *
* * ************* ••

LOAD REGS
AND RETURN

RETURN TO
TESTRAN

TO PROBLE M PROG.

Section 13: Charts 457

1
'il"

- --_/-

(

c

This section is designed help the
supervisor routines and to aid the reader
listings. It includes a module directory,
IDs, a table of routines invoked by
routines.

MODULE DIRECTORY

SECTION 1~: PROGRAM ORGANIZATION

reader to understand the relationships among
in locating the routines ,in the program

a directory of entry point names and flowchart
SVC instructions, and synopses of supervisor

The module directory contains structural information about each routine. The
directory is arranged 1n alphameric order by entry point names. The directory should be
used to locate modules and control sections for supervisor and related routines.

r---,
I kEGEND:
I
I
I
I
I

LIBRARY CODES

LINK
NUC
SVC

= SYS1.LINKLIB Data Set
= SYS1.NUCLEUS Data Set
= SYS1.SVCLIB Data Set

SECTION CODES

CCSL =
CR =
CS
EP =
IH =
~S =
SF
TMS =
TP =
TS =
Note 1:

Console Communications and System Log
Checkpoint/Restart
Contents supervision
Exiting Procedures
Interruption Handling
Main Storage supervision
Special Features
Timer supervision
Termination Procedures
Task supervision

e.p. = entry pOint

Note 2: Blank items in chart are not applicable.

Section 1~: Program Organization ~59

eTable 14-1. Module Directory (Part 1 of 11) (See legend on previous page)

r--------T-------------------------------T--------T-------~-------------T----T-------------~--------,

I I I I I PLM I I I
'Entry I I IControl ,References, I If SVC Routine I
I Point ,Name of Routine, Control Block,1 Module Isection ~------~-----~Lib.r_---y_----------T------1
I Name I Table, Transient Area I Name I Name I I Chart I I I Macro I SVC I
I , I I I section I ID I I Type I Instruction I Instr.I
~--------+-------------------------------+--------+--------+-------+-----+----+----+--~-------+------~
I CATNIP ,Channel-Check Handler (CCH) I lEAQFXOO I IEAQFXOO IH I INUC I I
I I I' I I I I
I CDADVANS I Contents Supvsn. common subrou-I lEAQLKOO I lEAQLKOO CS I CA I NUC I I
I ,tines (search phase) I I I I I I
I I I I I I I I
ICDCONTRLlcontents Supvsn. common subrou-llEAQLKOOllEAQLKOO CS ICA INUC I I
I also I tines (search phase) I I I I I I
I called I I I I I I I
I I EAQCS 0 2 I I I I I I I
I I I I I I I
CDDESTRYICDEXIT routine lEAQED02 IGC003 EP,TP IGF INUC I

I I I I
CDEPlLOGIContents Supvsn. common subrou- lEAQLKOO IEAQLKOO CS ICB INUC I

tines (scheduling phase) I I I
I I I

CDEXIT CDEXIT routine lEAQED02 IGC003 EP IGF INUC I
I I I

CDHKEEP CDEXIT routine lEAQED02 IGC003 EP,TP IGF INUC I
I I I

EOT End-of-Task (EOT) routine lEAQED02 IGC003 I TP IHA INUC I
I I I

ERFETCH stage 3 Exit Effector lEAQNU02 IEAQNU021 TS IBU INUC
I I I

I FLASH First CPU Signal Routine lEAQFXOO IEAQFXOOI TS I INUC
I I I I
IFMBRANCHIFREEMAIN routine (branch e. p.) lEAQGMOOI lEAQGMOO I MSS IDB INUC 1
I I I I I I
IFREEPARTIFREEMAIN routine (branch e. p. lEAQPRTOI IEAQPRTO I MSS IDB INUC 1
I I for request to free a region) I I I I
I I I I I I
IFTCEOl IProgram Fetch Channel-End IEWFETCHIIEWFETCHI CS ICG INUC
I I Appendage routine I' I I
I I I I I I
IFTPCIOl IProgram Fetch PCI Appendage IEWFETCHIIEWFETCHI cs ICG INUC
I I routine I I I I
I I I I I I
IGETIQE IGETMAIN routine (branch e.p. lEAQPRTOllEAQPRTOI CS I INUC
I I to the GETIQE subroutine) I I I I
I I I I I I
IGETPART IGETMAIN routine (branch e. p. lEAQPRTOIIEAQPRTOI MSS IDA INUC 1
I I for request to allocate a I I I
I , region) I I I
I I I I I I
IGMBRANCHIGETMAIN routine (branch e. p.) IIEAQGMOOllEAQGMOO MSS IDA INUC 1
I I I I I I
I IBMORG I SVC table (start of IBM- I lEAQBKOO, IEAQBKOO I I NUC
I I assigned SVC numbers) I I 'I
I I I I I I
IIEABEND Isecondary communications vectorilEAQED02 IGC003 I INUC
I I table (used by the ABEND I I I

I routine) I I I
I I I I

lEACVT I communications vector table I lEAQBKOO lEAQBKOO I I NUC
I I I I

IEADQTCBIDequeue TCB routine IIEAQED02 IGC003 TP IHA INUC
I I I I

lEAERRTAII/O block (lOB) for the I/O IIEAQBKOO lEAQBKOOI I INUC
I Supervisor transient area I I I I
I I I I I

IEAERTCBITCB for the system error task IIEAQBKOO lEAQBKOOI TS I INUC
I (associated with the I/O Super-I I I I
I visor transient area) I I I I
I I I I I

lEAERWA I I/O supervisor transient area IIEAQBKOO IEAQBKOOI I INUC
I I I I I

IEAMCHOOISERO routine (resident module) IIFBSROOO IFBSROOOI IH lAM INUC L ________ .L _______________________________ .L ________ .L _______ -L-______ .L ____ --'-____ .L-___ _ _________ --'-_____ J

460

• Table 1q-1. Module Directory (Part 2 of 11) (See legend before Part 1)

r--------T-------------------------------T--------T--------T-------------T----T-----------------------,

(I I I I I PLM I I I
I Entry I I I Control I References I I If SVC Routine I
I Point IName of Routine, control Block, I Module ISection r-------T-----~Lib.r---~-----------T------~
I Name I Table, Transient Area I Name I Name I I Chart I I I Macro I SVC I
I I I I I Section I ID I I Type I Instruction I Instr.I
r--------+-------------------------------+--------+--------+-------+-----+----+----+-----------+------~
I I EAMCH 0 0 I SERl routine for System/360, IFBSR340 IFBSR3401 IH IAN I LINK I I I
I model 40 I I I I I I
I I I I I I
I SERl routine for System/360, IFBSR350 IFBSR3501 IH IAN I LINK I I
I model 50 I I I I I
I I I I I
I SERl routine for System/360, IFBSR365 IFBSR365I IH IAN I LINK I
I model 65 I I I I
I I I I I
I SERl routine for System/360, IFBSR375 IFBSR375I IH IAN I LINK I
I model 75 I I I I
I I I I I
I SERl routine for System/360, IFBSR395 I IFBSR395 I IH lAO I LINK I

I IEAMSTCB I TCB for the Master Scheduler I I I I I I 1'\
u---ree1?L__- .--1----+- -\--+-1--1

I I task I IEAQBKOO I IEAQBKOO I I I NUC I I 1
-+-_._-_ _-_ ... _ .. _--. .,.." .. -.. -. -.,,---. ...-----1"' .. , ···'·· .. ·· ... · .. 4-"·--~'+· .. ·~-,-· .. --+ -" .. ·_+-· ... ,-4., •• ,,-·+..1

IIEANIP4 INucleus Initialization Program IIEANUCOnlIEAANIPO INUC
I I I I I
I IEAOPTOl I Post routine (branch e. p. fromlIEAQSY50lIGCOOl TS BM INUC 1
I I the I/O supervisor) I I I
I I I I I
IIEAOPT021Post routine (branch e. p. fromlIEAQSY50lIGCOOl TS BM INUC 1
I I the I/O supervisor and from I I I
I I supervisor routines) I I I
I I I I I
IIEAQABL IRelease Loaded Programs routinelIEAQED02 IGC003 TP HD INUC
I I I
IIEAQCSOllContents Supervsn. common sub- IEAQLKOO IEAQLKOO CS CA INUC
I Iroutines (e.p. for the ATTACH I
I lmacro instruction) I
I I I
I IEAQCS021 Contents Supervsn. connnon sub- IEAQLKOO IEAQLKOO CS CA I NUC

(
I (also Iroutines (search phase) I
I called I I
ICDCONTRL) I
I I I
IIEAQCS031Contents Supervsn. common sub- IEAQLKOO IEAQLKOO CS CB INUC
lalso Iroutines (scheduling phase) I
called I I
CDEPILOGI I

I I I
IEAQEQOlIENQ/DEQ Purge routine IEAQENQ21IGC048 I TP INUC

I I I I
IEAQERA IErase Phase routine IEAQED021IGC003 I TP INUC

I I I I I
IEAQEXOOIExternal First-Level Interrup- IEAQNUOO I IEAQNUOO IH IAI-AJINUC

I tion Handler I I I
I I I I

IEAQIOOOII/O First-Level Intrp. Handler IEAQNUOOIIEAQNUOO IH I AK-ALI NUC
I I I I

I IEAQLPAQ I Link pack area queue I IEAQBKOO I IEAQBKOO I I NUC
I I I I I
IIEAQPGTMIPurge Timer routine IEAQED021IGC003 TP IHB INUC
I I I I I I
I IEAQPKOO I Program Check First-Level IEAQNUOOIIEAQNUOO IH IAF-AHINUC I
I I Interruption Handler I I I I
I I I I, II
I lEAQQCBO IOrigin of QCB queues lEAQENQ21IGC048 I I NUC I
I I I I i I
IIEAQRORIIRollout/Rollin module IEAQRORIIIEAQRORII MSS I DC-DJI NUC I
I I I I I I I
IIEAQSCOOISVC First-Level Interruption IEAQNUOOIIEAQNUOOI IH IAA-ABINUC I
I I Handler I I I I I
I I I I I I I
I IEAQSPET I Release Main Storage routine IEAQED021IHC003 I TP I HC I NUC I I I L-_______ ~ _______________________________ ~ ________ ~ ________ ~ ______ ~ _____ ~ ___ ~ __ ~ __________ ~ ______ J

section 1q: Program Organization q61

• Table 14-1. Module Directory (Part 3 of 11> (See legend before'-Pfrt 1)

r------r--~-----------------T-----T----~----------T---T---------------~--,
I I I I I PLM' I I I I
I Entry I I I Control I References I I If SVC Routine I
I Point I Name of Routine, Control Block, I Module I Section ~-----.. ---~ Lib. r--~-------"':~----~
I Name I Table, Transient Area I Name I Name I I Chart I I I Macro I SVC I
I I I I I Section I ID I I Type I Instruction I Instr.I
~------+-------------------------~-+-------+--7----+------+----+----+----+--------+------i
IIEAQTAQ I transient area control table I lEAQBKOO I EAQBK 0 0 I I I NUC I
I IEAQTAQ11 (TACT) I I I I I
I I I I I I I
I I EAgTDO 0 I Timer Second-Level InterruptionllEAQTIOO I EAQT I 0 0 I TMS lED INUC I
I IHandler (branch e.p.) I I I I I
I I I I I I I
IIEAQTDOIITimer Second-Level InterruptionllEAQTIOO lEAQTIOOI TMS lEE INUC I
I I Handler (e. p. for Dispatcher) I I I I I
I I I I I I I
IIEAQTEOOITimer SecQnd-Level Interruption lEAQTIOO lEAQTIOOI TMS lEE INUC
I I Handler (branch e.p.) I I I
I I , I ,
IIEAQTROOISVC Second-Level Interruption lEAQTR33 lEAQTROOI IH lAC 'NUC
, I Handler I , I
I I . I I ,
IIEAQTR01,Transient Area Exit routine lEAQTR33 lEAQTROO, EP IGD INUC
I I I I I
lEAQTR021 Transient Area Refresh routine IEAQTR33 IEAQTROO, EP I GE ,NUC

I I I I
IEAQTR031Transient Area XCTL routine lEAQTR33 lEAQTROOI CS CC INUC

I I I
lEATCB1 Itransient area fetch TCBs lEAQBKOO lEAQBKOOI INUC
lEATCB2 , lEAQBKOO lEAQBKOO I I NUC
lEATCBn I IEAQBKOO IEAQBKOOI ,NUC
lEATCBn+1 lEAQBKOO IEAQBKOOI INUC

, I I
lEATYPElIType-1 SVC Switch lEAQNUOO lEAQNUOO ,NUC

, I
I EAXDS 0 0 I Decimal Simulator routine, IEAXDSOO lEAXDSOO SF IL-IRI

I (Model 91) I
I I

IEAOABOO I ABTERM routine lEAQABO 0 I lEAQABO 0 TP I HE-HF I NUC
IEAOAB011 I I I

I I I I
lEAODS IDispatcher lEAQNUOOllEAQNUOO EP IGG-GPINUC

I I I I
lEAODS021Task Switching routine lEAQNUOOllEAQNUOO TS I BV-BWI NUC

I I I I
lEAOEFOOIStage 2 Exit Effector IEAQNUOOllEAQNUOOI TS IBS INUC

I I I I I
IEAOEF031Stage 3 Exit Effector IEAQNUOOIIEAQNUOOI TS IBT INUC

I I I I
IEAOPLOOIABTERM Prologue routine IEAQABOO IEAQABOOI TP IHG INUC

I I I I
IEAOTIOOITimer Second-Level InterruptionlIEAQTIOO IEAQTIOOI TMS lED INUC

I Handler (e. p. for External I I I I
I First-Level Interruption Han- I I I I
Idler) I I I I

IEAOVLOO,Validity Check routine IIEAQNUOO lEAQNUOOI TS , INUC
I I I"

IEA~XEOOIType-1 Exit routine IIEAQNUOO IEAQNUOOI EP IGA INUC
I I I I I

IECINT I I/O Interruption Supvsr. in th~ I IEAQFXO 0 IEAQFXO 0 I CS , I NUC
I I/O Supervisor I (lEAQFX I I I
I I and I I ,
I I IECIOS 'I I
I I macros) I I I
I 'I I I

IECIWTST I System Quiesce routine I IEA,GTWST I IEAF03BP, TP I HT , NUC
, ,. I I I I

I IECPBLDLI BLDL routine , IECPFIND I IGC018 I I I NUC 2 I BLDL I SVC 18
I I I or I I I I I I
I I , IECPFND11 I I I I ,
I I I (depends I I I I I I
I I I on I , I I I ,
I I I SYSGEN I I I I I I
I I I option) I I I I I , L ___ --L~_. _____ _ _________ .L _____ -.L ______ -L-____ .L _____ .L __ ..L ___ .L--. ____ -L-____ J

462

eTable 14-1. Module Directory (Part 4 of 11) <See legend before Part ~)

r--------T-------------------------------T--------T--------T----;--------T----T-----------------------,
(I I I I I 'PLM I I I

I Entry I I IControl I References I I If SVC Routine I
I Point I Name of Routine, Control Block, I Module I Section i-------T-----~ Lib. ~----y----------.,.------~
I Name I Table, Transient Area I Name I Name I I Chart I I I Macro I SVC I
I I I I I Section I ID I I Type I Instruction I Instr.I

~--------+-------------------------------+--------+--------+-------+-----+----+----+---~-------+------~
I ECXCP IEXCP supervSr. in the I/O I IEAQFXOO I IEAQFXOO I CS ICF NUC 1 IEXCP SVC 0

I Supervisor I (IEAQFX I I I I
I I and I I I I
I I IECIOS I I I I
I macros) I I I I
I I I I I

IECXTLERIStage 3 Exit Effector IEAQNUOOIIEAQNUOOI TS IBU NUC I
I I I I

IEEBA1 IAttention routine IEECVCRAIIEEBA1 I CCSL (Fig. NUC I
I I I 7-1) I
I I I I

IEEBC1PEIcommunications Task External IEECVCRXIIEEBCIPEI CCSL (Fig. NUC I
I Interruption Handler routine I I 7-1) I
I I I I

IEECVAE IAsynchronous Error routine IGC3707BIIGC3707BI SF SVC 4 IXCTL SVC 72
I I I I

IEECVCTIlcommunications Task Initializa- IEECVINTIIEECVCTII CCSL (~ig. NUC I
I tion routine I I 7-1) I
I I I I

IEECVCTWICommunications Task Wait IEECVCTBIIEECVCTWI CCSL (Fig. NUC I
I routine I I 7-1, I
I I I 7-2)

IIEECVAOPlcommand Format Order Prog. IEECVAOPIIEECVAOPI SF LINK I
I I RELEASE (A) (not executable) I I I
I I I I I
IIEECVBOPlcommand Format Order Prog. IEECVBOPIIEECVBOPI SF ILINKI
I I BRDCST (RJE) (not executable) I I I I
I I I I I I
IIEECVCOPICommand Format Order Prog. IEECVCOPIIEECVCOPI SF I LINK I
I I CANCEL (C) (not executable) I I I I

I I I I I

(IEECVDCMIDisplay Control module IEANUC01 I IEANUC011 SF NUC I
I (not executable) I I I
I I I I

IEECVDOP I Command Format Order Prog. IEECVDOP I IEECVDOP I SF LINK I
I DISPLAY (0) (not executable) I I I
I I I I

IEECVDPl12250 Processor routine IGC3107BIIGC3107BI SF IA SVC I 4 IXCTL SVC 72
I I I I

IEECVDP212250 Processor routine IGC3207BIIGC3207BI SF IC SVC 4 IXCTL ISVC 72
I I I I I

IEECVDR11Display routine IGC3407BIIEECVDR11 SF IE SVC 4 IXCTL ISVC 72
I I I I I

IEECVDR21I/O (Part 1) routine IGC3507BIIEECVDR21 SF IF SVC 4 IXCTL ISVC 72
I I I I I

IEECVDR3II/O (Part 2) routine I IGC3607BI IEECVDR31 SF IH SVC 4 IXCTL ISVC 72
I I I I I I

IEECVDR41options routine I IGC3807B I IEECVDR41 SF II SVC 4 I XCTL I SVC 72
I I I I I I

IEECVDR510ptions routine I IGC3907B I IEECVDR51 SF II SVC 4 XCTL I SVC 72
I I I I I

IEECVEOP I Command Format Order Prog. I IEECVEOP I IEECVEOP I SF LINK I I
I RESET (E) (not executable) I I I I I
I I I I I I

IEECVFOP I Command Format Order Prog. I IEECVFOP I IEECVFOP I SF LINK I I
I MODIFY (F) (not executable) I I I I I
I I I I I I

IEECVHOP I Command Format Order Prog. I IEECVHOP I IEECVHOP I SF LINK I I
I HOLD (H) (not executable) I I I I I
I I I I I I

I IEECVIOP I Command Format Order Prog. I IEECVIOP I IEECVIOP I SF LINK I I
I I MSG (RJE) (not executable) I I I I I
I I I I I I I
IIEECVJOPICommand Format Order Prog. IIEECVJOPIIEECVJOPI SF I LINK I I
I I CENOUT (RJE) (not executable) I I I I I I I L ________ ~ _______________________________ ~ ________ ~ ________ ~ _______ ~ _____ ~ ____ ~ ____ ~ ________ _L ______ J

Section 14: Program Organization 463

• Table 14-1. Directory (Part 5 of 11> (See legend before Part 1)

r--------T-------------------------------T--------T-------~-----------~--T-----------------------,
I I I I I PLM I I ,
I Entry I I Icontrol I References I I If SVC Routine I
I Point IName of Routine, Control Block, I Module ISection .-----~-----~Lib.~---~----------~------~
I Name I Table, Transient Area I Name I Name I I Chart I I I Macro I sve I
I I I I I section I to I I Type I Instruction I Instr.I
~--------+----.-------------------------+--------+--------+-------+-----+----+~--+-------~-+-----~
IEECVKOPICommand Format Order Prog. IEECVKOPIIEECVKOPI SF ,LINKI

I SHOW (RJE) (not executable) I I I I
I I I I I

IEECVLOP I Command Format Order Prog. IEECVLOP I IEECVLOP I SF I LINK I
I LOG (L> (not executable> I I I I
I I I I I

IEECVMOPICommand Format Order Prog. IEECVMOPIIEECVMOPI SF I LINK I
I MOUNT (M> (not executable> I I I I
I I I I I

IEECVNOPICommand Format Order Prog. IEECVNOPIIEECVNOPI SF LINK I
I START (RJE> (not executable> I I I
I I I I

IEECVOCGIOpen/Close routine IGC3I07BIIEECVOCGI SF IJ SVC I 4
I I I I I

IEECVOOPICommand Format Order Prog. IIEECVOOPIIEECVOOPI SF LINK I
I USERIO (RJE) (not executable> I I I I
I I I I I

IEECVOP11Unit Status Order Prog. IIEECVOP11UNITOISPI SF LINK I
IOption 1 (not executable> I 'I I
I I I I I

IEECVOP21Command Format Order Prog. I IEECUOP21 FORMAT I SF LINK I
IOption 2 (not executable> I I I I
I I I I I

IEECVPOP I Command Format Order Prog. I IEECVPOP I IEECVPOP I SF I LINK I
I STOP (p) (not executable> I I I I I
I I I I I I

IEECVPRBICommunications Task request I IEAQBKOO I IEAQBKOOI INUC I
Iblock (RB> I I I I I
I I I I I I

IEECVPRGIWTOR Purge routine (also called IEECVED21IEECVPRGI TP INnC I
I the Reply Purge routine) I I I I
I I I I I

IEECVQOPICommand Format Order Prog. IEECVQOPIIEECVQOPI SF I LINK I
I STOP (RJE> (not executable> I I I I
I . I I 'I

IEECVROPICommand Format Order Prog. IEECVROPIIEECVROPI SF ILINKI
I REPLY (R) (not executable> I I I I
I 'I I I rl IEECVSOP I Command Format Order Prog. IEECVSOP, IEECVSOP, SF I LINK I

, I START (S> (not executable> I I I'
'\.j , "I I
~IEECVTCBlcommunications Task TCB IEAQBKOOIIEAQBKOOI CCSL INUC I

I I 'I I I
IIEECVTOPICommand Format Order Prog. IEECVTOP I IEECVTOPI SF I LINK I
I I SET (T) (not executable> I' I I
I I I I I I
IIEECVUCMICommunications Task unit IEECVUCMIIEECVUCMI CCSL I(Fig.INUC I
I I control tables I I 7-1, I I
I I I , 7-2) I I
IIEECVUOPICommand Format Order Prog. IEECVUOPIIEECVUOPI SF ILINKI
I I UNLOAD (0) (not executable) I I I I
I I I I I I
IIEECVVOPleommand Format Order Prog. IEECVVOPIIEECVVOPI SF I LINK I
I I VARY (V) (not executable) I I I I
I I I I I I
IIEECVWOPleommand Format Order Prog. IEECVWOPIIEECVWOPI SF I LINK I
I IWRITELOG (W) (not executable) I I I I
I I I I I I
IIEECVZOPICommand Format Order Prog. IEECVZOPIIEECVZOP' SF I LINK I
I I HALT (Z) (not executable> I I I I
I I I I I I
IIEEMSER IMaster Scheduler resident table I IEEBASECI IEEMSER I INUe I
I I I I I I I
IIEEPLDSPIWRITELOG Get Region routine IIEEPLDSPIIEEPLDSPI eCSL I LINK I
I I I I I I I I
IIEEVIPL IMaster scheduler InitializationlIEECVIPLIIEEVIPL I eeSL I (Fig. I LINK I

IxeTL
I
I
I

XCTL

I I routine I I I I 7-3> I I I I L ________ L ___ ~ __________________________ L ________ L ________ L-______ L _____ L ____ L ____ L-________ ~ ______ J

464

~
I'

'-'<!L-

(

(

• Table 14-1. Module Directory (Part 6 of 11) (See legend before Part 1)

r------T---------------------T------T-------,.------------T---T--------------------,
I I I I I PLM I I I
I Entry I I IControl I References I I If SVC Routine I
I Point IName of Routine, control Block, I Module ISection .-------T----~Lib .• ---_y-----------T-----~
I Name I Table, Transient Area I Name I Name I I Chart I I I Macro I SVC I
I I I I I Section I ID I I Type I Instruction I Instr.I
.--------+---------------------------+--------+--------+-------+-----+----+----+----------+------~
IIEEYLDSPIWRITELOG Dispatch routine IEEVLDSPIIEEVLDSPI CCSL (Fig. I LINK I

I I I 1-3) I I
I I I I I

IEEVLIN IWRITELOG Log Initialization IEEVLIN IIEEVLINll CCSL (Fig. I LINK I
I routine I I 1-3) I I
I I I I I

IEEVLOGJIJob File Control Blocks (JFCBs) IEEVLOGJIIEEVLOGJI CCSL (Fig. I LINK I
I for log data sets I I 7-3) I I
I I I I I

IEEVLOPNIWRITELOG Open Device routine IEEVLOPNIIEEVLOPNI CCSL (Fig.ILINKI
I I I 7-3) I I
I I I I I

IEEVLOUTIWRITELOG Available Log Data IEEVLOUT I IEEVLOUTI CCSL (Fig. LINK I
Iset routine I I 7-3) I
I I I I

IEEVLWTRIWRITELOG Log Write routine IEEVLWTRIIEEVLWTRI CCSL (Fig. LINK I
I I I 1-3) I
I I I I

IEEVL03FIW~ite-to-Log routine IGC0003FIIEEVL03FI CCSL (Fig. SVC I 3
I I I 7-3) I
I I I I

IEEVRFRXlcommunications Task Misc. Look- IEEVRFRXIIEEVRFRXI CCSL LINK I
lup Services routine I I I
I I I I

IIEEVWAITIWRITELOG Master wait routine IEEVWAITIIEEVWAITI CCSL (Fig. I LINK
I I I I 1-3.) I
I I I I I
IIEEl103DlLog and WRITELOG Post routine IGCll03DIIEEll03DI CCSL (Fig.ISVC 4
I I I I 1-3) I
I I I I I
IIEE1203Dlcommunications Task Reply IEE1203DIIEE1203DI CCSL ISVC
I I Processor routine I I I
I I I I I
IEG~OVLITESTRAN Interpreter IEGTTRNOIIEGHTOVLI CS I LINK
, I I I I

IEWFBOSVIProgram Fetch routine (e.p. IEWFETCHIIEWFETCHI CS CF-CGINUC
Ifrom the OVerlay Supervisor) I I I
I I I I

IEWFTRANIProgram Fetch routine (e.p. IEWFETCBIIEWFETCHI CS CF-CGI NUC
Ifrom the TA Fetch routine) I I I
I I I I

IEWMSEPTIProgram Fetch routine (e.p. IEWFETCHIIEWFETCHI CS ICF-CGINUC
I from the common subroutines of I I I I
I Contents Supervision) I I I I
I I I I I

IEWSZOVRIOVerlay supervisor (non- IEWSWOVRIIEWSWOVRI CS ICB LINK
I resident module) I I I

IFBSEROO\SERO routine (System/360, IFBSR040 I IFBSR040\ IH lAM LINK I
lmodel 40) I I I I
I I I I I

IFBSEROOISERO routine (System/360, IFBSR050lIFBSR0501 IH lAM LINK I
Imodel 50) I I I I
I I I I I

IFBSEROOISERO routine (System/360, IFBSR065 I IFBSR065 I IH lAM LINK I
lmodel 65) I I I I
I I I I I

IFBSEROOISERO routine (System/360, IFBSR075 I IFBSR015 I IH lAM LINK I
lmodel 15) I I I I
I I I I I

IGCXL01BICommunications Task External IEECVCTXIIEECVCTXI CCSL I(Fig. SVC I
I Processor routine I I I 1-1> I
I I I I I

IIGCOA05AIABDUMP routine (Bresident- IEAQADOAIIGCOA05AI TP IRH SVC I 4
I I module) I I I I

IWTL
I
I
I
I
I
I
I
I
IMGCR
I
I
I
I
I
I
I
I
I
I
I
I
I

ISVC
I
I
I
I
I
I
I
I

361

SVC 34

L _____ ..J. __________________________ ~ ______ ..L _____ ..J. _____ ~ __ ~~ __ ..I._ __ ..J.___________ _ _____ J

Section 14: Program Organization 465

• Table 14-1. Module Directory (Part 7 of 11) (See legend before Part 1)

r--------T-------------------------------T--------T--------T-------------T----~----------------------,
I I I I I PLM I I I rf
I Entry I I I Control I References I I If SVC Routine I "--
I Point I Name of Routine, Control Block, I Module I S~ction l-------y---~ Lib. ~---~---------.,----~ ~
I Name I Table, Transient Area I Name I Name I I Chart I I I Macro I SVC I
I I I I I Section I ID I I Type I Instruction I Instr.I
~--------+-------------------------------+--------+--------+-------+-----+~--+----+-----------+------~
IIGCOI01BICommunications Task 1052 IEECVOCXIIEECVOC I CCSL I(Fig. SVC I I I I
I I Console Open/Close routine I I I 1-1, I I I I

I I I I 1-2) I I I I
I I I I I I I I

IGC0001CIABEND routine (ABEND1) lEAQTMOOIIGC0001CI TP IHI SVC I 4 IABEND ISVC 13
I I I I I I

IGC0003EIWrite-to-Operator routine IEECVWTOIIGC0003EI CCSL I (Fig. SVC 3 IWTO ISVC 35
I I I I 1-2) IWTOR I
I I I I I I

IGC0005AIABDUMP routine (ABDUMP1> lEAQADOO I IGC0005AI TP IBB SVC 4 ISNAP ISVC 51
+ I I I I I I

IGC00060lsTAE Service routine lEAASTOOIIGC000601 TS EX-BO SVC 3 ISTAE ISVC 60
I I I I I

IGC0001Blcommunications Task Router IEECVCTRIIEECVCTRI CCSL (Fig. SVC 4 ICHATR ISVC 12
I routine I 1-1, I I
I I 1-2> I I
I I I I

IGC001 Wait routine lEAQSY50 IGC001 I TS BK-BLINUC 1 I WAIT ISVC 1
I I I I I

IGC002 Post routine IIEAQSY50 IGC001 I TS BM-BNINUC 1 I POST ISVC 2
I I· I I I

IGC002+6 Post routine (branch e.p. from I I I I I
supervisor routines> I I I I I

I I I I I
IGC003 Exit routine IIEAQED02 IGC003 I EP GB-GCI NUC 1 I ISVC 3

I I I I I
IGC004 GETMAIN routine (e.p. for IIEAQGMOO lEAQGMOOI MSS DA INUC 1 IGETMAIN(S> ISVC 4

S-form macro instruction> I I I I I
I I I I I

IGC005 FREEMAIN routine (e.p. for IIEAQGMOO lEAQGMOOI MSS IDB INUC 1 IFREEMAIN(S>ISVC 5
I I S-form macro instruction> I I I I I I
I I I I I I I I
IIGC006 Icontents Supervision, common IIEAQLKOO lEAQLKOOI CS ICA INUC 2 ILINK ISVC 6
I I subroutines (e. p. for the LINK I I I I I I
I I macro instruction) I I I I I I
I I I I I I I I
IIGC001 IContents supervision, common IIEAQLKOO lEAQLKOO CS ICC INUC 2 IXCTL ISVC 1
I Isubroutines (e.p. for the XCTL I I I I
I I macro instruction) I I I I
I I I I I I
IIGC008 Icontents Supervision, common lEAQLKOO lEAQLKOO CS ICC INUC 2 ILOAD ISVC 8
I Isubroutines (e.p. for the LOAD I I I I
I I macro instruction) I I I I
I I I I I I
IIGC009 IDelete routine lEAQLKOO lEAQLKOO cs ICE INUC 2 I DELETE ISVC 9
I I I I I I
IIGC010 IGETMAIN/FREEMAIN routines lEAQGMOO lEAQGMOO MSS IDA INUC 1 IGETMAIN(R) ISVC 10
I I (e.p. for R-form macro I I I FREEMAIN(R)I
I I instructions) I I I I
I I I I I I
IIGCOll Time routine lEAQRTOO IGCOll TMS I EA I NUC 1 I TIME I SVC 11
I I I I I
IIGC012 Contents Supervision, common lEAQLKOO IEAQLKOO CS ICE INUC 2 ISYNCB ISVC 12
I subroutines (e. p. for the I I I I
I SYNCH macro instruction) I I I I
I I I I I
IIGC014 SPIE routine lEAQTBOO IGC014 TS IBJ INUC 2 ISPIE ISVC 14
I I I I I
IIGC016 SVC Purge routine IECIPR16 IGC016 MSS I I NUC 2 I PURGE I SVC 16
I macros I I I I
I I I I I
IIGC031 Overlay supervisor, resident IEWSUOVRIIGC031 CS ICI INUC 2 ISEGLD ISVC 31
I I module (e. p. for a SEGLD or I I I I SEGWT I
I I SEGWT macro instruction> I I I I I
I I I I I I I
IIGC040 IExtract routine lEAQTBOOIIGC014 TS IBH INUC 1 I EXTRACT ISVC 40
I IGC040+81 Extract routine (branch e.p.) I I I I I L ________ ~ _______________________________ ~ ________ ~ _______ ~ ______ ~ ___ L ____ ~ __ ~ __________ _L_ _____ J

(
466

('"

.'

("

eTable 14-1. Module Directory (Part 8 of 11) (See legend before Part 1)

r------T----------------------------T-------T----~-_._----------T---T--------------------,
I I I I I PLM I I I
I Entry I I IControl I References I I If SVC Routine I
I Point IName of Routine, Control Block, I Module ISection ~------_y----~Lib.~-_y--------_y------~
I Name I Table, Transient Area I Name I Name I I Chart I I I Macro I SVC I
I I I I I section I ID I I Type I Instruction I Instr. I
~--------+---------------------------+-------+--------+------+----+----+---+----------+------~
IGC041 IIdentify routine IIEAQIDOOIIGC041 I CS ICD INUC I 2 I IDENTIFY ISVC 411

I I I I I I I I I I
IGC042 IAttach routine IIEAQATOOIIGC042 I TS IBA-BCINUC I 2 I ATTACH ISVC 421

I I I I I I I I I I
IGC043 IStage 1 Exit Effector IIEAQEFOOIIGC043 I TS IBR INUC I 2 ICIRB ISVC 431

I I I I I I I
IGC044
IGC044
+12

ICHAP routine IEAQTBOOI IGC044 TS I BE-BGI NUC 1 ICHAP ISVC 441
I CHAP routine (branch e.p.) I I I I I I
I I I I I I I
I I I I I I I

IGC045 IOVerlay Supervisor, resident IEWSUOVRIIGC037 CS ICI INUC 2 ICALL ISVC 45
Imodule (e.p. for branch I I I I I
I instruction or CALL macro I I I I I
I instruction) I I I I I
I I I I I I

IGC046 ITTIMER routine lEAQSTOOIIGC046 TMS IEC INUC 1 ITTlMER ISVC 46
I I I I I I

IGC047 STIMER routine lEAQSTOO I IGC046 TMS IEB INUC 2 ISTlMER ISVC 47
I I I I I

IGC048 Dequeue routine IEAQENQ21IGC048 TS I BP-BQINUC 2 IDEQ ISVC 48
I I I I I

IGC056 Enqueue routine lEAQENQ21IGC048 TS I BO I NUC 2 I ENQ I SVC 56
I I I I I I

IGC061 TESTRAN interpreter IGC0006A IEGHRSAVI CS ICA ISVC 3 ITTSAV ISVC 61
I I I I I

IGC062 Detach routine lEAQED02 IGC003 I TS IBI INUC 2 IDETACH ISVC 62
I I I I I

IGC079 Set Status routine lEAQSETS lEAQSETSI MSS I NUC 1 I STATUS ISVC 79
I I I

IGC0005BIRestart Housekeeping 1 IHJARSOO IGC0005BI CR IFJ SVC 4 ICHKPT
I I I I

IGC0006CICheckpoint Housekeeping 1 IHFACPOO IGC0006CI CR IFA SVC 4 ICHKPT 63
I I I I

IGC0101CIABEND routine (ABEND4) lEAQTM01 IGC0101CI TP IBN SVC 4 I
I I I I

IGC0105AIABDUMP routine (ABDUMP2) lEAQAD01 I IGC0105AI TP IHH SVC 4 I
I I I I I

IIGC0105BIRestart Housekeeping 2 I IHJARS01 I IGC0105BI CR IFJ SVC 4 ICHKPT 52
I . I I I I

IGC0106CICheckpoint Housekeeping 2 IHJACP01 I IGC0106CI CR IFB SVC 4 ICHKPT 63
I I I I I

IGC0107BICommunications Task 1052 IEECVPMXIIEECVPM I CCSL I(Fig. SVC I
I Console Processor routine I I I 7-1, I
I I I I 7-2) I

IGC0201CIABEND routine (ABEND5) lEAQTM021IGC0201CI TP I HO-HPI SVC 4 I
I I I I I I

IGC0205AIABDUMP routine (ABDUMP3) lEAQAD021IGC0205AI TP IHH ISVC 4 I
I I I I I I

IGC0206CICheckpoint Housekeeping 3 IHJACP021IGC0206CI CR IFC ISVC 4 CHKPT 63
I I I I I

IGC0301CIABEND routine (ABEND6) IEAQTM031IGC0301CI TP IHQ ISVC 4
I I II I

I~C0305AIABDUMP routine (ABDUMP4) lEAQAD031IGC0305AI TP IRR ISVC 4
I I I I I

IGC0401CIABEND routine (ABEND2) lEAQTM041IGC0401CI TP IHJ ISVC 4
I I I I I

IGC0405AIABDUMP routine (ABDUMP5) IEAQAD041IGC0405AI TP IHH ISVC 4
I . I I I I

IGC0505AIABDUMP routine (ABDUMP6) lEAQAD051IGC0505AI TP IHH ISVC 4
I I I I I

IGC0505BIRepmain 1 IHJQRS20lIGC0505BI CR IFK ISVC 4 ICHKPT
I I I I I I

IGC0506CICheck I/O routine IHJACP10lIGC0506CI CR IFD ISVC 4 ICHKPT 163
. I I I I I I I

IGC0605AIABDUMP routine (ABDUMP7) IEAQAD06 I IGC0605AI TP IHH ISVC 4 I I
I I I I I I I '

52

IIGC0605BIRepmain 2 IHJQRS211IGC0605BI CR IFK ISVC 4 ICBKPT 152 L ______ .L ___________________ .L _____ .L _______ .L-____ .L-__ -L-_.L-_-L--_____ -'" ___ _

section 14: Program Organization 467

• Table 14-1. Module Directory (Part 9 of 11) (see legend before Part 1)

r------T-------------------------T--------T--------r-------T~-T-----------~------, 1/"""
1 I I I I PLM I I I '.i1]
I Entry I I I control I References I I If SVC Routine I '-.-
I Point IName of Routine. Control Block. I Module ISection r------~----~Lih.~--_r---------~------~
I Name I Table. Transient Area I Name I Name I I Chart I I I Macro I SVC I
I I I I ISectiOftI ID I l~ypeIInstructionIInstr.1

~--------+----------------------+-------+-------+------+-----+----+---+----------+------~
IIGC0705AIABDUMP routine (ABDUMPS) IIEAQAD071IGC0705AI TP IHH ISVC I II I I
I I I I I I I I I I
IIGC0705BIRepmain 3 I IHJQRS22 I IGC0705BI CR IFL ISVC I II ICHKPT 152
I I I I I I I I I I
IIGC0805AIABDUMP routine (ABDUMP9) IIEAQADOSIIGCOS05AI TP IHH ISVC I II I I
I I I I I I I I I I
IIGC0805BIRepmain II IIHJQRS231IGC0805BI CR IFL ISVC I II ICHKPT 52
I I I I I I I I I
IIGC0905BIRepmain 5 I IHJQRS211 I IGC0905BI CR IFM.FNISVC I II ICHKPT 52

I I I I I I I I
IGCOA01CIABEND routine (ABEND3) IIEAQTMOAIIGCOA01CI TP IHK-HMISVC I II I

I I I I I I I .
IGCOA06CIPreserve 1 routine IIHJACP20lIGCOA06CI CR IFE SVC I II ICHKPT 63

I I I I I I I
IGCOB01CIABEND/STAE Interface 1 IIEAQTMOBIIGCOB01CI TS BY SVC I II I

I routine I I I I I
I I I I I I

IGCOB05AIABDUMP routine (ABDUMP 11) I IEAQADOBI IGCOB05AI TP HH SVC I II I
I I I I I I

IGCOC01CIABEND/STAE Interface 2 IIEAQTMOCIIGCOC01CI TS BZ SVC I II I
I routine I I I I I
I I I I I

IGCOD01CIABEND/STAE Interface 3 I IEAQTMODI IGCOD01CI TS BO SVC II I I
I routine I I I I I
I I I I I I

IGCOD06CIPreserve 2 routine IIHJACP251IGCOD06CI CR FE SVC 4 ICaKFT 163
I I I I I I

IGCOE01CIABEND/STAE Interface II IIEAQTMOEIIGCOE01CI TS lEO SVC II I I
I routine I I I I I I
I I I I I I I

IGCOF06C I Checkmain 1 I IHJQCP30 I IGCOF06C I CR I FF I SVC II I CHKPT 163 .0"

I I I I I I I I
IGCOG05BIREP I/O-JFCB Processor 1 I IHJARSIIOI IGCOG05BI CR IFO ISVC II ICHKPT 152

I I I I I I I I
IGCOG06CICheckmain 2 I IHJQCP31 I IGCOG06CI CR IFF ISVC II ICHKPT 163

I I I II I I I
IGCOH06CICheckroain 3 I IHJQCP32 I IGCOH06CI CR IFG ISVC II ICHKPT 163

I I I I I I I
IGCOI05BlREP I/O-JFCB Processor 2 IHJARSII1IIGCOI05BI CR IFO ISVC II ICHKPT 52

I I I I I I
IGCOK05BlREP I/O-Mount/Verify IHJARSII31IGCOK05BI CR IFP ISVC II ICHKPT 52

I routine 1 I I I I I
I I I I I I

IGCOM05BIREP I/O-Mount/Verify IHJARSII51IGCOM05BI CR IFQ ISVC II ICHKPT 52
I routine 2 I I I I I
I I I I I I

IGCON05BIREP I/O-SYSIN/SYSOUT Data Set IHJARSIIDIIGCON05BI CR IFR ISVC 4 ICHKPT 52
IProcessor 1 I I I I I
I I I I I I

IGCON06CIResuroe I/O routine IHJACPIIOIIGCON06CI CR IFH ISVC II ICHKPT 63
I I I I I I

IGCOP05BlREP I/O-Data Set Processor 1 IHJARS471IGCOP05BI CR IFS ISVC II ICHKPT 152
I I I I I I I I
IGCOQ05BlREP I/O-SYSIN/SYSOUT Data Set IHJARSIIEIIGCOQ05BI CR IFR ISVC II ICHKPT 152

I Processor 2 I I I I I I
I I I I I I I

IGCOQ06CICheckpoint Exit routine IHJACP50 I IGCOQ06CI CR IFI ISVC II ICHKPT 163
I I I I I I I

IGCOR05BlREP I/O-Data Set Processor 2 IHJARS II 9 I IGCOR05BI CR 1FT ISVC II ICHKP~ 152
I "I I I I I I

IGCOS06CICheckpoint Message Module IHJACP70 I IGCOS06CI CR IFI ISVC II ICHKPT 163
I I I I I I I

IGCOT05B I REP I/O-Access Method- IHJARSIIB I IGCOT05B CR I FU I SVC II I CHKFT 152
I Disposi tion routine I I I I I I
I I I I I I I

IGCOV05BIRestart Exit routine I IHJARS60 I IGCOV05BI CR IFU ISVC II ICHKPT 152 I L ________ ~ _______________________________ ~ ________ 4 ________ ~ ______ 4 _____ ~ ___ ~ __ _L _________ _L _____ J

468

-Table 1_-1. Module Directory (Part 10 of 11) (See legend before Part 1)

r--------T-------------------------------T--------T-------~-------------T----T-------~---------------l

I I I I I PLM I I I
I Entry I I IControl I References I I If SVC Routine I
I Point IName of Routine. Control Block, I Module ISection ~-------T-----~Lib.~---~-----------T------~
I Name I Table, Transient Area I Name I Name I IChartl I I Macro I SVC I
I I I I I Section I ID I I Type I Instruction I Instr. I
~--------+-------------------------------+--------+--------+-------+-----+----+----+-----------+------~
IIGC1I07BICommunications Task 2540 IIEECVOCCIIEECVOC I CCSL I (Fig.ISVC I
I I Console Open/Close routine I I I I 7-2) I I

I I I I I I I
IGClI07B I Communications Task 2540 I IEECVPI~C IEECVPM I CCSL I (Fig. I SVC I

I Console Processor routine I I I 7-1, I I
I I I 7-2) I I
I I I I I

IGC2I07BICommunications Task 1443 IIEECVOCP IEECVOC I CCSL (Fig·ISVC I
I Printer Open/Close routine I I 7-1. I . I
I I I CCSL 7-2 I I
I I I I I

IGC2107BICommunications Task 1443 IIEECVPMP IEECVPM I CCSL (Fig.ISVC I
I Printer Processor routine I I 7-1, I
I I I 7-2) I
I I I I

IGFASROBICPU Analysis mod~le IIGFASROB IGFASROBI SVC I
I I I I

IGFASROCIInstruction Retry Analysis IIGFASROC IGFASROCI SVC I
I module, phase 1 I I I
I I I I

IGFASRODIStorage Protection Feature I IGFASRODI IGFASRODI SVC I
I Test module I I I I
I I I I I

IGFASROllMCH Error Recorder module I IGFASROll IGFASROll SVC I
I I I I I

IGFASROO I System Analysis module I IGFASROO I IGFASROO I SVC I
I I I I I

IGFASR1AIRefresh Clear Channel module IIGFASR1AIIGFASR1AI SVC I
I I I I I

IGFASR1C I Instruction Retry Analysis IGFASR1C.1 IGFASR1C I SVC I

(I module. phase 2 I I I
I I I I

IGFASR1DIError Check CircQitry Verifi- IGFASR1DIIGFASR1DI SVC
I cation module I I
I I I

IGFASR10lRefresh Loader module IGFASR10lIGFASR101 ISVC
I I I

IGFASR2ClInstruction Retry Execution IGFASR2CIIGFASR2CI SVC
I lmodule. phase 1 I I
I I I 1
IIGFASR2DlMain Storage Scan module IGFASR2DIIGFASR2DI SVC
I I I I I
I IGFASR20 I PDAR Termination Analysis I IGFASR20 I IGFASR20 1 SVC
1 I module I I I

1 I I I
IGFASR3ClInstruction Retry Execution I IGFASR3CI IGFASR3CI SVC

I module. phase 2 I I I
I I I I

IGFNOOOOIMCH Resident Nucleus module I IGFNUCOOI IGFNUCOOI NUC
I I I I

IGFNOOOlIConsole/SYSRES Clear Channel IIGFASROAIIGFASROAI NUC
I routine .. I I I svc
I I I I

IGFN00021MCH Terminati~ routine IIGFASROA IGFASROAI NUC
I I I svc
I I I

INT025A Iroutine in tbe I/O Supervisor IIEAQFXOO IEAQFXOOI EP GC NUC
Ithat returns a request elem@n~ I (IEAQFX I
I to the free Hst I and I
I IIECIOS I
I I macros) I

I I I I
IINTEXTRNISecond CPU Interruption IIEAQFXOO IEAQFXOOI IH NUC
I I Analysis routine I I
I I I I
IINTMLFALISecond CPU Recovery Management IIEAQFXOO IEAQFXOOI IH INUC
I I System Interface routine I I I, I I L ________ ~_~ _____________________________ ~ ________ ~ ________ ~ _______ ~ _____ ~ ____ ~ ____ L_ _________ _L _____ -

Section 14: Program Organization 469

-Table 14-1. Module Directory (Part 11 of 11) (See legend before Part 1)

r--------T-------------------------------T--------T--------~------------T----T-----------------------,
I I I I I PLM I I I
I Entry I I I control I References I I If SVC Routine I
I Point I Name of Routine, Control Block, I Module I Section ~------T-----i Lib. ~---_r_---------_r_-----~
I Name I Table, Transient Area I Name I Name I I Chart I I I Macro I SVC I
I I I I I Section I ID I I Type I Instruction I Instr. I
~------_t-------------------------------+-------_t--------+_------+-----+----+----+---------~-+_-----~
IIORGSW I I/O switch (in I/O First-Level I lEAQNUO 21 lEAQNUO 21 I NUC I I I
I I Interruption Handler) I I I I I I I
I I I I I I I I I
ILINKDCB ldata control block (DCB) for IIEAQBKOOllEAQPKOOI INUC I I I
I I the SYS1. LINKLIB data set I I I I I I I
I I I I I I I I I
ILINKDEB Idata extent block (DEB) for the lEAQBKOOllEAQBKOOI INUC I I I
I ISYS1.LINKLIB dataset I I I I I I
I I I I I I II
IOVLALD021SEGLD Processor routine IEWSWOVRIIEWSWOVRI CS CI ILINKI I
I I I I I I I
IRMBRANCH GETMAIN/FREEMAIN routines lEAQGMOO I lEAQGMOO I MSS DA INUC I 1 I
I (branch e. p.) I I I I I
I I I I I I
ISECMCI SERO routine I I I I I
I System/360, model 40 IFBSR040 I IFBSR040 I IH I AM I LINK I I
I System/360, model 50 IFBSR050 I IFBSR050 I IH I AM I LINK I I
I System/360, model 65 IFBSR065 I IFBSR065 I IH lAM I LINK I I
I System/360, model 75 IFBSR075 I IFBSR075 I IH lAM I LINK I I
I I I I I I
I START Initial Program Loading routinelIEAIPLOOllEAIPL I I I I
I I I I I I I
ISVCDCB data control block (DCB) for I lEAQBKOO I I EAQBK 0 0 I I INUC I
I I the SYS1. SVCLIB data set I I I I I I
1 I I I I I I I
ISVC~B Idata extent block (DEB) for the I lEAQBKOOI lEAQBKOO I I INUC I
I ISYS1.SVCLIB data set I I I I I I
I I . I I I I I I
I TABLDL I Transient Area Fetch routine I lEAQTR33I lEAQTROO I IH I AE I NUC I
I TAHFETCH I I I I I I
I I I I I I
ITAIOBl ITransient area I/O blocks lIEAQBKOO lEAQBKOOI I lNUC
I TAIOB2 1 (IOBs) and associated transient I 1 I
I TAIOBn I areas I I I
I TAIOBn+l1 I I I
I 1 I I I
ITASEARCHITransient Area XCTL routine lEAQTR33 lEAQTROOI CS ICC INUC
I I I I I
ITATABCK ITransient Area Availability lEAQTR33 lEAQTROOI IH lAD INUC
I I Check routine I I I
I I I I I
ITAXEXIT ITransient Area Exit routine lEAQTR33 lEAQTROOI EP IGD INUC
I I I I I
ITAXRETRYITransient Area XCTL routine lEAQTR33 IEAQTROOI CS ICC INUC
I I I I I
ITESTDSP ITask Removal routine lEAQFXOO lEAQFXOOI IH I INUC
I I I I I
ITRDISP ITrace routine (e.p. for the lEAQTRCEllEAQTRCEI IGG INUC
I I Dispatcher) I I I I
I I I I I I
ITREX ITrace routine (e.p. ·for Ext. lEAQTRCEllEAQTRCEI IAI INUC
I I FLIH) I I I I
I I I I I I
I TRIO ITrace routine (e.p. for I/O lEAQTRCEIIEAQTRCEI IAR INUC
I I FLIH) I I I I
I I I I I I
ITRPI ITrace routine (e.p. for PC I lEAQTRCEI lEAQTRCEI IAF INUC
I I FLIH) I I I I I
I I I I I I I
ITRSVC ITrace routine (e.p. for SVC IIEAQTRCEllEAQTRCEI IAA INUC
I I FLIH I I I I I
I I I I I I I
IUSERORG ISVC table (start of user- I lEAQBKOO I lEAQBKOOI IH I INUC
I I assigned SVC numbers) I I I I I I I I L-_______ ~ _______________________________ ~ ________ ~ ________ ~ _____ ~ _____ ~ ____ ~ ___ ~ ___________ ~ ____ J

470

.Table 14-2. Directory of Entry Point Names and Flowchart Identifications (Part 1 of 10)
r---T------------T----------,
I I Entry Point I I
I Name of Routine, Control Block, Table, Transient Area I Name(s) I Chart ID I
~---+------------+----------~
IABDUMP routine
I "resident" module IGCOA05A 5H
I
I ABDUMP1 IGC0005A BB
I

ABDUMP2 IGC0105A HH

ABDUMP3 IGC0205A HH

ABDUMP4 IGC0305A HH

ABDUMP5 IGC040SA HH

ABDUMP6 IGC0505A HH

ABDUMP7 IGC0605A HH

ABDUMP8 IGC070SA HH

ABDUMP9 IGC0805A HH

ABDU~lPll IGCOB05A 5H
I

ABEND routine
ABENDl IGCOOO1C HI

ABEND2 IGC0401C HJ

IGCOA01C HK-HM

IGC0101C HN
(

ABEND3

ABEND4

ABEND5 IGC0201C Ho-HP

ABEND6 IGC0301C HQ-HR

ABTERM rout ine lEAOABOO IHE-HF
lEAOAB01 HE-HF

ABTERM Prologue routine lEAOPLOO HG

Attach routine IGC042 BA-BC

Attention routine IEEBAl (Fig. 7-1)

BLDL routine IECPBLDL None

CDEXIT routine CDDESTRY GF
CDEXIT GF
CDHKEEP GF

Channel-Check Handler routine CATNIP None

CHAP r.outine IGC044 BE-BF

IGC044+12

ICheckpoint routine IGC0006C
I
I Checkpoint Housekeeping 1 routine IGC0006C FA
I
I Checkpoint Housekeeping 2 routine IGC0106C FB L ___ ~ ____________ ~ _________ _

section 14: Program Organization 471

eTable 14-2. Directory of Entry Point Names and Flowchart Identifications (Part 2 of 10)

r--~------------T----------, , ,Entry Point I ,,#-
, Name of Routine, Control Block, Table" Transient Area 'Name(s) ,Chart ID' ~
~--~--+------------+----------~
, Checkpoint Housekeeping 3 routine IGC0206C FC ,
, Check I/O routine IGC0506C FD ,
, Preserve 1 routine IGCOA06C FE ,
, Preserve 2 routine IGCOD06C FE ,
, Checkmain 1 routine IGCOF06C FF
t

Ch~ckmain 2 routine

Checkmain 3 routine

Resume I/O routine

Checkpoint Exit routine

Checkpoint Message Module

Communications Task External Interruption Handler routine

communications Task External Processor routine

I Communications Task Initialization routine
I
I communications Task Misc. Lookup Services routine
I
I Communications Task Reply Processor routine ,
'Communications Task request block (RB) ,
Communications Task Router routine

communications Task TCB

Communications Task Unit Control Tables

Communications Task Wait routine

Communications Task 1052 Console Open/Close routine

Communications Task 1052 Console Processor routine

Communications Task 1443 Printer Open/Close routine

tcommunications Task 1443 Printer Processor routine ,
,communications Task 2540 Console Open/Close routine ,
,Communications Task 2540 Console Processor routine ,
,communications v~ctor table (CVT)

I
IConsole Device Support routines
I

IGCOG06C

IGCOH06C

IGCON06C

IGCOQ06C

IGCOS06C

IEEBCIPE

IGCXL07B ,
IIEECVCTI
I
IIEEVRFRX ,
,IGC1203D ,
IEECVPRB

IGC0007B

IEECVTCB

IEECVUCM

IEECVCTW

IGCOI07B

IGC0107B

IGC2I07B

IGC2107B

IGClI07B

IGCll07B

IEACVT

FF

FG

FH

FI

FI

(Fig.

(Fig.

(Fig.

None

None

I.None
I
I (Fig.
I 7-2)
INane ,
None

(Fig.
7-2)

(Fig.
7-2)

(Fig.
7-2)

(Fig.
7-2)

(Fig.
7-2)

(Fig.
7-2)

(Fig.
7-2)

None

I Asynchronous Error routine IEECVAE IK

7-1)

7-1)

7-1)

7-1,

7-1,

7-1,

7-1,

7-1,

7-1,

7-1,

7-1,

L __________________ ~--------------------------------------_____ ~ __________ ~ __________ J

472

"<L.-

eTable 14-2. Directory of Entry Point Names and Flowchart Identifications (Part 3 of 10)
r---T------------T----------,

(I I Entry Point I I
I Name of Routine, Control Block, Table, Transient Area I Name(s) I Chart ID I
~---+------------+----------i

Command Format Order Programs (not executable)

Command List Order Program Option 2 (not executable) I EECVOP 2 INane
I

Display Control Module (not executable) IEECVDCM INane
I

Display routine IEECVDRl lIE
I

I/O (Part 1) rout'ine IIEECVDR2 IIF-IG
I I

I/O (Part 2) routine IIEECVDR3 IIH
I I

Open/Close routine IIEECVOCG IIJ
I I

Options routine I IEECVDR4 I II ___ ~ ____________ ~ _________ J

Section 14: Program Organization 473

-Table 14-2. Directory of Entry Point Names and Flowchart Identifications (Part 4 of 10)

r--~-----------~----------, I I Entry Point I I (1'"
I Name of Routine, Control Block, Table, Transient Area I Name(s) I Chart ID I ~

~--------------------------------~------------------------------+------------+----------~ I Options routine IEECVDRS II

I

Unit Status Order Program Option 1 (not executable)

2250 Processor routine

2250 Processor routine

Console/SYSRES Clear Channel routine

Contents Supervision Common Subroutines

entry points for search phase

entry point for scheduling phase

entry point for the ATTACH macro instruction

entry point for the LINK macro instruction

entry point for the XCTL macro instruction

entry point for the LOAD macro instruction

entry point for the SYNCH macro instruction

CPU Analysis module

Data control block (DCB) for the SYS1.LINKLIB data set

Data control block (DCB) for the SYS1.SVCL1B data set

Decimal Simulator routines for Model 91

Add/Subtract/Zero-and-Add Decimal routine

Analyzer/End routine

Compare Decimal routine

Divide Decimal routine

Multiply Decimal routine

Simulator control routine

Delete routine

Dequeue routine

1EECVOPl None

1EECVDPl IA-ID

IEECVDP2

IGFNOOOl None

CDADVANS CA

CDCONTRL CA
also called

1EAQCS02
CDEPILOG CB
also called

I IEAQCS03

I

IEAQCSOl

IGC006

1GC007

1GC008

1GC012

IGFASROB

L1NKDCB

SVCDCB

I
IDECASP
I
IDECDO
IDECNEND
I
IDECCP
I
DECDP

DECMP

DECENT

1GC009

IGC048

CA

CA

CC

CC

CB

None

None

None

IN,IO

IR

1M

IQ

IP

1L

CE

BP-BQ

Dequeue TCB routine 1EAQDQTCB HA,HO

IDetach routine 1GC062 B1
I

~

I

"'--'

I Dispatcher 1EAODS GG L __ ~ ____________ ~__________ ~.

474

eTable 14-2. Directory of Entry Point Names and Flowchart Identifications (Part 5 of 10)

r---T------------T----------,
I I Entry Point I I
I Name of Routine, Control Block, Table, Transient Area I Name(s) I Chart ID I
~---+------------+----------~
End-of-Task (EOT) routine EOT HA

Enqueue routine

ENQ/DEQ Purge routine

Erase Phase routine

Error Check Circuitry Verfication module

EXCP supervisor

Exit r.outine

External First-Level Interruption Handler

Extract routine

branch entry point

First CPU Signal routine

FREEMAIN routine

branch entry point

branch entry point to free a region

entry point for q-form FREEMAIN macro instruction

41:' GETMAIN routine

branch entry point to allocate a region

branch entry point

entry point for S-form GETMAIN macro instruction

GETMAIN/FREEMAIN routines

entry point for R-form GETMAIN or FREEMAIN macro instruction

branch entry point

Identify routine

Initial Program Loading (IPL) routine

Instruction Retry Analysis module, phase 1

Instruction Retry Analysis module, phase 2

Instruction Ret~y Execution module, phase 1

Instruction Retry Execution module. phase 2

IGC056 BO

IEAQEQOl None

IEAQERA HA

IGFASRID None

I ECXCP None

IGCOO3 GB-GC

IEAQEXOO AI-AJ

IGCOQO BH

IGCOQO+8 BH

FLASH None

FMBRANCH DA

FREEPART DB

IGC005 DA

GETPART DB

GMBRANCH DA

IGC004 DA

IGC010 DA

RMBRANCH DA

IGC041 CD

START None

IGFASROC None

IGFASR1C None

IGFASR2C None

IGFASR3C None

I/O block (lOB) for the I/O Supervisor transient area IEAERRTA I None
I

I/O First-Level Interruption Handler IEAQIOOO IAK-AL
I

11/0 Interruption Supervisor IECINT I None L ___ 4 ____________ ~ ________ _J

section 14: Program Organization Q75

Table 14-2. Directory of Entry Point Names and Flowchart Identifications (part 6 of 10)
r--~------------T----------,
I I Entry Point I I
I Name of Routine, Control Block, Table, Transient Area I Name(s) I Chart ID I
~---+------------+----------~
I/O Supervisor transient area

I/O switch (in I/O FLIH)

Job File Control Blocks (JFCBs) for the log data sets

link pack area queue

Log and WRITE LOG Post routine

Main Storage Scan module

Master. Scheduler Initialization routine
I
IMaster. Scheduler resident table
I
IMaster Scheduler TCB
I
IMCH Error Recorder module
I
\MCH Resident Nucleus module

MCH Termination routine

Nucleus Initialization Program (NIP)

Overlay Supervisor

nonresident module

resident module

entry point for SEGLD or SEGWT macro instruction

Post routine

branch entry point for I/O Supervisor routines

branch entry point for I/O Supervisor routines and
for supervisor routines

IEWSZOVR CI

IGC037 CI

IGC045 CI

IGFASR20 None

IEAOPT01 BM

I EAOPT 0 2 BM

entry point for the POST macro instruction IGC002 BM
I

branch entry point for supervisor routines IGC002+6 BM
I

Program Check First-Level Interruption Handler I EAQPK 0 0 IAF-FH
I

Program Fetch routine I
\

entry point for the Overlay Supervisor (IEWSZOVR) I EWFBOSV ICF
\

entry point for the Transient Area Fetch routine I EWFTRAN ICF
I

entry point for Contents Supervison common subroutines IEWMSEPT ICF
. I

\Program Fetch Channel-End Appendage routine FTCE01 ICG L ___ ~ ____________ ~ __________ J ,~

\,
476

-Table 14-2. Directory of Entry Point Names and Flowchart Identifications (Part 7 of 10)
r---T------------T----------,
I I Entry Point I I
I Name of Routine, Control Block, Table, Transient Area I Name(s} I Chart ID I
~---+------------+----------~
Program Fetch PCI Appendage routine FTPCI01 ICG I

I I
Purge Timer routine lEAQPGTM I HB I

I
QCB queues. origin of IEAQQCBO I None

I
Refresh Clear Channel module IGFASR1A I None

I
Refresh Loader module IGFASR10 I None

I
Reply Purge routine (also called the WTOR Purge routine) IEECVPRG I None

I
Release Loaded Programs routine IEAQABL I HD

I
Release Main Storage routine lEAQSPET IHC

I
Restart Routines IGC0005B I

I
Restart Housekeeping 1 IGC0005B IFJ

I
Restart Housekeeping 2 IGC0105B FJ

Repmain 1 routine IGC050SB FK

Repmain 2 routine IGC0605B FK

Repmain 3 routine IGC0705B FL

Repmain 4 routine IGC0805B FL

Repmain 5 routine IGC0905B FM.FN

REP I/O-JFCB Processor 1 IGCOG05B FO

REP I/o-JFCB Processor 2 IGCOI05B FO

REP I/O-Mount/Verify 1 (Non Direct-Access) routine IGCOK05B FP

REP I/O-Mount/Verify 2 (Direct Access) routine IGCOM05B FQ

REP I/O-SYSIN/SYSOUT Data Set Processor 1 IGCON05B FR

REP I/O-SYSIN/SYSOUT Data Set Processor 2 IGCOQ05B FR

REP I/O-Data Set Processor 1 IGCOPOSB FS

REP I/O-Data Set Processor 2 IGCOROSB FT

REP I/O-Access Method-Disposition routine IGCOTOSB FU

Restart Exit routine IGCOV05B FU

Rollout/Rollin module IEAQRORI DC-DJ

Second CPU Interruption Analysis routine INTEXTRN None

Second CPU Recovery Management System Interface INTMLFAL None
routine

I
Isecondary communications vector table lEABEND None
I
ISEGLD Processor routine OVLALD02 CI l ___ i ____________ i _________ _

Section 14: Program organization 477

-Table 14-2. Directory of Entry Point Names and Flowchart Identifications (Part 8 of 10)
r--~------------T----------,
, 'Entry Point , I ,f."
, Name of Routine, Control Block, Table, Transient Area I Name (s) I Chart ID I :,,-,;
~---+------------+----------~
IStRO routine I
I' I
I resident module lEAMCHOO lAM
I I
I nonresident modules (fo~ System/360 Mod~ls 40, 50, 65, 75) IFBSEROO lAM
I SECMCI AM
I
ISER1 routine (for system/360 Models 40, 50, 65, 75, 91) lEAMCHOO AN,AO,AP
I
ISet status routine IGC079 ,
ISPIE routine IGC014 BJ

STAE Service routine

ABEND/STAE Interface 1 routine

ABEND/STAE Interface 2 routine

ABEND/STAE Interface 3 routine

ABEND/STAE Interface 4 routine

Stage 1 Exit Effector

Stage 2 Exit Effector

Stage 3 Exit Effector

entry points for the Dispatcher

entry point for an I/O error-handling routine

STIMER routine

Storage Protect Feature Test Module

+ IGC0060 BX

IGCOB01C BY

IGCOC01C IBZ
I

IGCOD01C IBO
I

IGCOE01C BO

IGC043 BR

IEAOEFOO
I

ERFETCH
IEAOEF03

I ECXTLER

IGC047

IGFASROD

BS

BU
BT

BU

EB

None

I
I ,
I
I
I
I , ,
I
I
I

ISVC First-Level Interruption Handler IEAQSCOO AA-AB ,
I ,
ISVC Purge routine IGC016 None ,
I ,
ISVC Second-Level Interruption Handler I EAQTRO 0 lAC I
I , I
,SVC table I ,
, I I
I start of IBM-assigned SVC numbers IBMORG INane I
I , I
I start of user-assigned SVC numbers USERORG , None I
, I I
,system Analysis module IGFASROO INane I
I , ,
,System error TCB (associated with I/O Supervisor transient area IEAERTCB I None I
I I ,
'System Quiesce routine IECIWTST IHT I
I I ,
ITask Removal routine ITESTDSP I None I
, , I ,
ITask Switching routine IIEAODS02 I BV-BW , L ___ ~ ____________ ~ __________ J

478

(

Table 14-2. Directory of Entry Point Names and Flowchart Indentifications (Part 9 of 10)
r---T------------T----------,
I I Entry Point I I
I Name of Routine, Control Block, Table, Transient Area I Name(s) I Chart ID I
~---+------------+---------~

I
I
I
I

TEST RAN Interpreter

entry point for SVC 61 instruction

entry point for the Overlay supervisor (IEWSZOVR)

Time routine

Timer Second-Level Interruption Handler

branch entry point

entry point for the Dispatcher

branch entry point

entry point for the External First-Levp.I
Interruption Handler

Trace routine

entry point for the Dispatcher

entry point for the External First-Level
Interruption Handler

entry point for the I/O First-Level Interruption Handler

entry point for the Program Check First-Level
Interruption Handler

entry point for the SVC First-Level Interruption Handler

Transient Area Availability Check routine

Transient area control table

Transient Area Exit routine

entry point for the Exit routine

entry point for the common subroutines of Contents Supvsn.

Transient Area Fetch routine

entry point to perform BLDL and fetch

entry point to perform fetch only

Transient area fetch TCBs

IGC061

IEGHTOVL

IGCOll

IEAQTDOO

IEAQTD01

IEAQTEOO

IEAOTIOO

TRDISP

TREX

TRIO

TRPI

TRSVC

TATABCK

IEAQTAQ
I EAQTAQ 1

IEAQTR01

TAXEXIT

TABLDL

TAHFETCH

IEATCB1
IIEATCB2
IIEATCBn
I I EATCBn+ 1
I

ITransient area I/O Blocks (lOBs) and associated transient areas lTAIOB1
I
I
I
I

ITAIOB2
ITAIOBn
ITAIOBn+1
I

None

None

EA

EE

EE

EE

ED

None

None

None

None

None

lAD
I
I None
I None
I
I
I
IGD
I
IGD
I
I
I
IAE
I
AE

None
None
None
None

None
None
None
None

ITransient Area Refresh routine IIEAQTR02 GE L ___ ~ ____________ ~ ________ _

Section 14: Program Organization 479

Table 14-2. Directory of Entry Point Names and Flowchart Identifications (Part 10 of 10)
r--~------------T----------,
1 1 Entry Point I I 4~
1 Name of Routine, Control Block, Table, Transient Area 1 Name(s) I Chart 10 1 ~
~---+------------+---------~

1

Transient Area XCTL routine IEAQTR03 CC

TTIMER routine

Type-1 Exit routine

Type-1 SVC switch (in SVC First-Level Interr~tion Handler)

Validity Check routine

Wait routine

Write-to-Log routine

Write-to-Operator routine

WRITELOG Available Log Data Set routine

WRITELOG Dispatch routine

WRITELOG Get Region routine

WRITELOG Log Initialization routine

WRITELOG Log Writer routine

TASEARCH CC
TAXRETRY CC

IGC046

IEAOXEOO

lEATYPE1

lEAOVLOO

IGC001

IEEVL03F

IGC0003E

IEEVLOUT

IEEVLDSP

IEEPLDSP

IEEVLIN

IEEVLWTR

EC

GA

None

None

BK

(Fig. 7-3)

(Fig. 7-2)

(Fig .• 7-3)

(Fig. 7-3)

None

(Fig. 7-3)

(Fig. 7-3)

WRITELOG Master wait routine IEEVWAIT (Fig. 7-3)1
1

WRITELOG Open Device routine IEEVLOPN (Fig. 7-3)1
I

IWTOR Purge routine (also called the Reply Purge routine) IEECVPRG None 1 L ___ ~ ____________ ~ __________ J

480

.~.

(

("

.-'

(

eTable 14-3. Table of Routines Invoked by SVC Instructions (Part 1 of 2)
r--------------~---,
ISVC Instruction' Name of Routine ,
~---------------+---i

SVC 0 EXCP Supervisor (in the I/O Supervisor)

SVC 1

SVC 2

SVC 3

SVC 4

SVC 5

SVC 6

SVC 7

SVC 8

SVC 9

SVC 10

SVC 11

SVC 12

SVC 13

Wait routine

Post routine

Exit Routine

GETMAIN routine

FREEMAIN routine

Contents Supervision common subroutines (entry point for the LINK
macro instruction)

contents Supervision common subroutines (entry point for the XCTL
macro instruction)

Contents supervision common subroutines (entry point for the LINK
macro instruction)

Delete routine

GETMAIN/FREEMAIN routines

Time routine

contents Supervision common subroutines (entry point for the SYNCH
macro instruction)

ABEND routine (ABEND1) .,
SVC 14 SPIE routine I ------ ,
SVC 16 SVC Purge routine I ------ ,
SVC 18 BLDL routine I

I
SVC 19 Open routine I

I
SVC 20 Close routine ,

I
SVC 34 Log and WRITELOG Post routine ,

I
SV~ 35 Write-to-Operator routine I

I
SVC 36 Write-to-Log routine I ,
SVC 37 Overlay Supervisor resident module (entry point for SEGLD or SEGWT I

macro instructions> I
-~--- I ------ ,
SVC 40 Extract routine I ,
SVC 41 Identify routine ,

I
SVC 42 Attach routine I ,
SVC 43 stage 1 Exit Effector I

I
SVC 44 CHAP routine I ______________ -L ___ J

section 14: Program Organization 481

-Table 14-3. Table of Routines Invoked by SVC Instructions (Part 2 of 2)
r---------------T---,
~~~~-:~~~=~:~~~~+----------------------------~~~:-~= RO~~~~: ___________________________ ~ !:== 

SVC 45 Overlay SupervisOr resident module (entry point for branch instruc
tion or CALL macro instruction) 

SVC 46 

SVC 47 

SVC 48 
------
------
SVC 51 
SVC 52 
------
SVC 56 
------
SVC 60 
SVC P 
SVC 62 
SVC 63 
------
SVC 72 

I 

TTIIvI.ER routine 

STIMER routine 

DEQ routine 

ABDUMP routine (ABDUMP1) 
Restart routine 

ENQ routine 

STAE service routine 
TESTRAN Interpreter (entry point for TTSAV macro instruction) 

Detach routine 
Checkpoint routine 

Conununications Task Router routine 

SVC 79 I Set Status routine 
~---------------~----------------------------------------------------------------------~ 
INote: Only those routines that are used by the supervisor are included in this list. I L _______________________________________________________________________________________ J 

482 

( 



( 
ROUTINg SYNOPSES 

Each major routine used by the supervi
sor is briefly described. 

ABDUMP routine: (Chart HH) Displays con
trol blocks, programs, and dynamically 
acquired main storage belonging to a spe
cific task, as specified by input parame
ters. Is invoked through a SNAP macro 
instruction either by the ABEND routine 
(ABEND3) during an abnormal termination, or 
by a user routine at any time. 

ABEND routine: (Charts HI-HS) Invokes the 
ABEND/STAE interface routine if STAE pro
cessing is indicated. Frees the control 
blocks, main storage, and other resources 
used by a terminating task and its incom
plete subtasks. Depending on the type of 
ABEND request, terminates either a specific 
task and its incomplete subtasks, or all 
tasks of a job step. At the caller's 
option (if possible), invokes the ABDUMP 
routine to display resources belonging to 
the terminating task, its direct ancestors, 
and its descendants. Branches to the Sys
tem Quiesce routine if any of three condi
tions occurs: the task specified for ter
mination is in "must completen status, the 
task specified for termination is a system 
task, or the ABEND routine is reentered as 
an invalid recursion. 

ABTERMroutine: (Charts HE-HF) Schedules 
execution of the ABEND routine. Is used by 
system routines that wish to terminate a 
task other than their own. Also used by 
type-1 SVC routines, which are not per
mitted to issue an SVC instruction, and 
which therefore cannot directly invoke the 
ABEND routine. 

ABTERM Prologue routine: (Chart HG) Per
forms housekeeping functions in preparation 
for entry to the ABTERM routine after a 
program interruption. Housekeeping 
includes obtaining the address of the TCB 
for the task to be terminated, and setting 
a completion code to indicate the cause of 
the program check. 

Attach routine: (Charts BA-BC) Obtains 
storage space for a new TCB for the subtask 
to be attached. Places in the new TCB 
information needed to control the subtask. 
Allocates to the subtask subpools of main 
storage belonging to its parent or attach
ing task. Places the address of the new 
TCB on two lists: the subtask queue of its 
parent task, and the TCB queue used by the 
Dispatcher. Schedules supervisor linkage 
to the common subroutines of Contents 
supervision. The subroutines will locate, 
fetch (if necessary), and schedule execu
tion of the first program of the new 
subtask. 

Attention routine: (Figure 7-1) Receives 
control from the I/O First-Level Interrup
tion Handler after an operator-caused 
interruption (when the REQUEST key of a 
1052 printer-Keyboard or the START key of a 
card reader is pressed). Posts the appro
priate ECB of the Communications Task. 

BLDL routine: Causes member addresses and 
optional information from a partitioned 
data set directory to be placed in a 
specified list previously constructed in 
main storage. 

CDEXIT routine: (Chart GF) Determines if 
there is an outstanding request for use of 
a recently completed module. If so, sche
dules reentry to the module for a waiting 
requestor. If there is no outstanding 
request for the module, the routine tests 
the module'S attributes. If the module is 
in the link pack area, control is returned 
immediately to the caller. If the module 
is in the job step's region, and is either 
reenterable or reusable, the routine sets 
the "releasen flag in the module's CDE and 
the • purge), flag for the job pack queue. 
(These flags are tested by the GETMAIN 
routine to determine which module's space 
may be freed, if needed space is otherwise 
unavailable.) If the module is neither 
serially reusable nor reenterable, CDEXIT 
(via its CDDESTRY subroutine) removes the 
module's CDE from the job pack queue, and 
frees the space occupied by the module, its 
extent list, and its CDEs (major and 
minor) • 

Channel-Check Handler (CCH): Available on 
configurations using the 2860/2870 channels 
(Model 65 and higher). Receives control 
from the I/O Supervisor via a branch. 
Performs two main functions. It places 
information in the error routine interface 
bytes so that the appropriate device error 
routine may retry the channel operation 
that was being performed when the channel 
check occurred. The CCH also records 
environment data regarding the channel fai
lure. This data is later written to the 
SYS1.LOGREC data set by the I/O Supervisor. 
(For a full description of the Channel
Check Handler, refer to the publication IBM 
System/360 Operating System: Input/Output 
Supervisor, Program Logic Manual, Form 
Y28-6616. . 

CHAP routine: (Charts BE-FG) Changes the 
dispatching priority of a TCB by adding the 
specified value to the TCB's existing dis
patching priority. Validates the new dis
patching priority and corrects it if 
necessary. 

Checkpoint routines: (Chart FA-FI) Inter
cepts a task's I/O requests, copies the 
task's main storage region into a user
supplied data set, and records the status 

Routine Synopses 483 



of data sets, main storage and contents 
superv1s1on control blocks, and otQer 
supervisor information necessary to restart 
the task"s execution at a later time. 

co~nications Task External Interruption 
Handle~ routine: (Figure 7-1) Receives 
control from the External First-Level 
Interruption Handler after. an operator
caused interruption (when the INTERRUPT key 
on the system control panel is pressed). 
Posts the appropriate ECB of the Communica
tions Task. 

Communications Task External Processor rou
tine: (Figure 7-1) switches control from 
the principal console device to the alter
nate console device, and vice versa. 

communications Task.Initialization routine: 
(Figure 7-1) Initializes tables used for 
the Communications Task. Is executed when 
nucleus initialization is performed. 

Communications Task Miscellaneous Look-Up 
Services routine: Provides Communications 
Task routines with the addresses of tables, 
or pointers to information in the tables. 
The tables· include the communications vec
tor table (CVT), TCBs, RBs, task I/O tables 
(TIOTs), and unit control blocks (UCBs). 

Communications Task Reply Processor rou
tine: Processes replies given by an opera
tor in response to program messages written 
via the WTOR macro instruction. Moves each 
reply to a buffer and posts the appropriate 
ECB. 

Communications Task Router routine: 
(Figure 7-1, 7-2) Selects the service to be 
performed after the posting of an ECB for 
the Communications Task. Routes control to 
the appropriate communications Task proces
sor routine. 

Communications Task unit control tables: 
Describe characteristics of the I/O devices 
that perform the Communications Task. Also 
contain ECBs for the Communications Task. 

Communi~ations Task Wait routine: (Figure 
7-1, 7-2) Waits for an ECB to be posted, 
then issues an SVC-72 instruction to cause 
entry to the Communications Task Router 
routine. 

Communications Task Open/Close routines: 
(Figure 7-1, 7-2) Device-dependent routines 
that cause data sets for specific devices 
to be opened and closed. The devices are 
the 1052 Console, the 2540 Console, and the 
1443 Printer. 

Communications Task Processor routines: 
(Figure 7-1, 7-2) Device-dependent routines 
that direct activity on specific devices by 
initiating I/O activity, managing data 

484 

buffers, and responding to I/O completion 
and error conditions. The devices are the 
1052 Console, the 2540 Console, and the 
1443 Printer. 

Console Device Support routines (Figure 
11-1, Charts IA-IK): Added to SVC 72 when 
the 2250 Model 1 Display Unit is used as a 
system operators console. These routines 
perform read and write operations to dis
play system and problem program messages to 
the operator, cause a hard copy of the 
messages to be produced, receive commands 
issued by the operator, process light pen 
attentions, and display unit status and 
command formats. 

contents Supervision common subroutines: 
(Charts CA-CC) Locate, fetch, and schedule 
execution of a specified module. If the 
module is in main storage and is available 
for use, schedule its execution. If the 
module is not in main storage, or is 
non-reusable, locate the module. They 
search the specified private library, the 
link library, or the job library; then 
inVOke the Program Fetch routine to load 
the module. Finally, they schedule execu
tion of the module. If the module is being 
loaded or is serially reusable and is in 
use, they place the current SVRB in a wait 
condition, and queue it to a list of SVRBs 
waiting for the module. 

Decimal Simulator routines: (Charts IL-IR) 
Perform decimal arithmetic instructions on 
the Model 91. After receiving control from 
the Program First-Level Interruption Handl
er, interpret the instruction, check it for 
validity, and perform operations that 
simUlate the execution of the instruction. 

Delete routine: (Chart CE) Locates the CDE 
for the specified module via a search of 
the task's load list. If there are no 
outstanding LOAD requests for the module, 
removes the module's load list element from 
the load list and frees the storage space 
it occupies. Tests the use/responsibility 
count in the module's CDE. If there are no 
outstanding requests for the module'S use, 
branches to CDHKEEP in the CDEXIT routine 
to test the module'S attributes. According 
to the attributes, CDHKEEP returns control 
immediately to the caller, or frees the 
module's storage areas, or sets wrelease" 
and ·purge" flags for use by the GETMAIN 
routine (see CDEXIT routine). 

Dequeue routine: (Chart BP) Updates the 
resource queues by removing and freeing the 
queue element that represents the request 
for the resource whose use is now complete. 
For the next requester represented on the 
QEL queue, reduces the wait count in its 
SVRB and tests if the requestor is ready. 
Determines if a readied requestor can 
replace the caller as the next-to-be dis-

4", 
~ 



patched routine. Makes this determination 
via a branch to the Task Switching routine. 
If no readied requestor's task is of higher 
priority than the caller's, returns control 
to the caller. Otherwise, returns control 
to the readied requestor, whose resource(s) 
are now available. 

If the caller is a system routine and 
specifies the "reset must complete" 
operand, the current task, previously 
placed in "must complete" status, is 
released from that status. 

Dequeue 
invoked 
during 
Removes 

TCB routine: (Charts HA, HO) Is 
by either the EOT routine or ABEND4 
a normal or abnormal termination. 
a specified TCB from the TCB queue. 

Detach routine: (Chart BI) Removes the 
specified TCB from the TCB queue, and frees 
the TCB's storage space and the space of 
any associated problem-program register 
save area. If the caller supplies an 
invalid TCB address, the routine branches 
to the ABTERM routine to schedule abnormal 
termination of the caller'S task. If the 
specified task is incomplete, the routine 
branches to the ABTERM routine to schedule 
abnormal termination of the specified task. 

DispatCher: (Charts GG-GP) Determines the 
routine to be executed next, restores the 
contents of saved registers, and loads an 
old PSW to give control to the routine. As 
an optional feature, if a task switch is to 
occur,. suspends timing of the previously 
current task and starts or resumes timing 
of the task to be given control. 

I , 
If the caller is a syktLm routine and 

specifies the "set must complete" operand, 
the Enqueue routine places the current task 
in "must complete" status. 

ENQ/DEQ Purqe routine: Is invoked by 
ABEND4 to remove from the resource queues 
requests (QELs and possibly one or more 
QCBs) belonging to a terminating task. The 
purge is performed so that routines belong
ing to other tasks could gain access to the 
enqueued resource(s), if the task ter
minated before the DEQ routine could be 
executed. 

Erase Phase routine (also called the Erase 
routine): (Chart HA) Is invoked by the EOT 
routine or ABEND 4 during a normal or 
abnormal termination. Removes the speci
fied TCB from its parent's subtask queue, 
and frees the space occupied by the TCB and 
any related problem-program register save 
area. (A similar function is performed by 
the Detach routine under different 
circumstances.) 

EXCP Supervisor: Is a part of the I/O 
Supervisor. Given control by the SVC 
First-Level Interruption Handler, it starts 
execution of a channel program. It issues 
a Start I/O instruction, then a Stand-Alone 
Seek command. The Stand-Alone Seek command 
moves the access arm of the direct-access 
device to the seek address contained in the 
caller's lOB. 

Exit routine: (Charts GB-GC) processing 
depends on the type of RB associated with 
the exiting routine, as follows: 

End-of-Task (EOT) routine: (Chart HA) 1. If the task's current RB is a PRB (see 
Chart FB), the general register con
tents are moved from lower main 
storage (location IEASCSAV) to the 
TCB. If the PRB is not the last RB on 
the RB queue, the routine branches to 
the CDEXIT routine to perform exit 
proceSSing for the completed module. 
When CDEXIT returns control, function 
#5 is perfornled (see below). If the 
PRB is the last RB on the RB queue 
(queued directly from the TCB), the 
EOT routine is entered to normally 
terminate the task. r: When the EOT 
routine returns control, the Exit rou
tine frees the RB's space and exits to 
the Transient Area Refresh routine. 

Frees the resources used in performing a 
successfully completed task. The resources 
(control blocks, main storage, data sets, 
modules) are released only if they are not 
needed by another task. 

Enqueue routine: (Chart BO) Creates, if 
necessary, one or more queue control blocks 
(QCBs) to represent the requested 
resource(s), and places them on the 
resource queues. Depending on the RET 
parameter that the caller has specified, 
creates a queue element (QEL) to represent / 
the request, and places it on a ~EL queue. 
If the requested resource is not enqueued 
for another requestor, returns control to 
the current requestor, with or without a 
return code (depending on the RET paramet- 2. 
er). If the requested resource is already 
enqueued for another requestor, either of 
two functions are p'erformed, depending on 
the RET parameter: the current requestor 
is placed in a wait condition, pending the 
availability of the resource; or control is 
returned to the current requestor, with a 
return code that indicates that the 
resource is not available. 

If the task's current RB is an SVRB 
(see chart FB), the Exit routine 
branches to the Transient Area Exit 
routine to remove (if necessary) the 
SVRB from a transient area user queue. 
~hen control is returned, the register 
contents originally saved in the SVRB 
(registers 2-14) and register contents 
returned by the sVC routine (regs 0, 
1, 15) are in the TCB's save area. 

Routine Synopses 485 



Functiont#5. is 
below). 

then performed (see I control to the routine indicated 
STMASK byte of the second cpu. 

in the 

3. If the task's current RB is an IRB 
(see Charts FB-FC), the "top" IQE or 
RQE on the IRB's list of elements is 
returned to a next-available list. If 
there is another IQE or RQE queued to 
the IRB, the routine reinitializes the 
IRB for reentry to the asynchronous 
exit routine, and branches to the 
Dispatcher. But if there is no other 
IQE or RQE queued to the IRB, the 
routine moves register contents from 
the IRB's register save area to the 
TCB's register save area. Function #5 
is then performed (see below). 

4. If the task's current RB is an SIRB, 
it is removed from the system error 
TCB, the SIRB's "active" bit is reset, 
and the Transient Area Refresh routine 
is entered. 

5. If the next RB on the task's RB queue 
is waiting, the routine indicates to 
the Dispatcher the need for a task 
switch by placing zero in the "new" 
TCB pointer. The routine clears the 
RB's "active" flag and removes the RB 
from the task's RB queue. If the RB 
is not a permanent system RB nor an 
IRB that is still needed, 1 the RB's 
storage space is freed. Also freed is 
space used for a related problem
program register save area. The Exit 
routine then enters the Transient Area 
Refresh routine. 

External First-Level Interruption Handler: 
(Charts AI-AJ) Saves the caller's register 
contents in the TCB and the external old 
PSW in the current RB. Branches to the 
Trace routine to store information in trace 
table. ~termines whether the interruptiop 
was cause By the operator or the timer, by 
examining the interruption code in the 
external old PSW. Depending on the cause 
of the interruption, gives control to eith
er the Timer Second-Level Interruption 
Handler or the Console Switch routine. 

If the multiprocessing feature was 
selected, after saving the old PSW, deter
mines if a FLIH routine, other than Extern
al FLIH, was interrupted. If it was, saves 
the interruption code and returns control. 
otherwise, processes the interruption after 
setting the supervisor lock byte. Also, 
determines if the interruption was caused 
by the second CPU, and, if it was, passes 

1An IRB may be retained for use with the 
same end-ot-task exit routine (ETXR) for 
another task. In this case, its RBUSE 
count is not zero. 

486 

Extract routine: (Chart BH) Moves the 
contents of selected TCB fields to a speci
fied area of main storage. 

gREEMAIN routine: (Chart DB) Frees speci
~ied allocated main storage. It request is 
to free a region, the job pack queue is 
purged. In this case tasks that are wait
ing for allocati9n of a region are made 
ready and task switch is indicated. 

If the multiprocessing feature was 
selected, branches to the Vary Storage 
Offline (IFSVRYO~) subroutine to process 
VQEs which apply to the freed area of main 
storage. 

GETMAIN routine: (Chart DA) Allocates main 
storage space and builds main storage con
trol blocks, it needed. If the request is 
tor system queue area and there is no 
available space in this area, expands the 
supervisor queue area, it possible. If 
request is not for system queue area, and 
free space is not available, makes space 
available by purging those modules in the 
region's job pack area whose CDEs have 
ftreleas e " flag set. These modules have no 
outstanding requests tor their use and have 
been so flagged by the CDEXIT routine. If 
sufficient module space cannot be made 
available, branches to the ABTERM routine 
to schedule the abnormal termination of the 
caller's task. 

Identify routine: (Chart CD) Creates a 
minor CDE to represent the specified 
embedded entry point to a load module. 
Queues the minor CDE to the module's major 
CDE on the appropriate CDE queue. 

Initial Proqram Loading (IPL) routine: 
Clears main storage and machine registers 
to correct parity. Sets the storage pro
tection key of main storage to the supervi
sor protection key. Locates the nucleus 
data set on the system residence device. 
Loads into main storage the nucleus and the 
Nucleus Initialization Program '(NIP). 
Gives control to the NIP. 

I/O First-Level Interruption Handler: 
(Charts AK-AL) Sets the I/O switch (IORGSW) 
to indicate that an I/O interruption has 
occurred. Saves current register contents 
in the current TCB. Saves I/O old PSW in 
the current RB. Branches to the Trace 
routine to s~ore pertinent information in 
the trace table. Branches to the I/O 
Interruption supervisor to process the 
interruption. When control is returned, 
clears the I/O switch (IORGSW) and enters 
the dispatcher. 



I/O Interruption Supervisor: Is a part of 
the I/O Supervisor. Given control by the 
I/O First-Level Interruption Handler (I/O 
FLIH), it services the I/O interruption. 
It then returns control to the I/O FLIH. 

I/O Supervisor transient area: The area of 
main storage in which the system error task 
loads a system I/O error-handling routine. 

Job fil·e control blocks (JFCBs) for log 
data sets: contain descriptive information 
about the primary and alternate system log 
data sets. They are constructed and writ
ten on auxiliary storage by job management 
routines. Each JFCB is loaded in main 
storage when the DCB with the same ddname 
is opened. 

Link pp,ck area queue (also called the link 
pack area control gueue or LPACQ): Con 
tains CDEs for modules stored in the link 
pack area of main storage. The link pack 
queue and the job pack queue together are 
called the contents directory. 

Log and WRITELOG 
7-3) Posts the ECB 
priate command. 
issues a WTL macro 

Post routine: (Figure 
representing the appro
For log commands also 
instruction. 

Machine-Check Handler for Model 65 (MCH/ 
65): Is available only with System/360 
Model 65. Receives control via hardware 
loading of the machine check new PSW. This 
program consists of a resident routine, and 
transient modules which reside on the SYS1. 
SVCLIB data set. It attempts to recover 
from a machine check interruption. 

It first determines if the instruction 
that was being executed when the machine 
check occurred can be retried. If instruc
tion retry is possible, the Machine-Check 
Handler (MCH) attempts reexecution of the 
interrupted instruction. If, however, 
instruction retry 'is not possible, the MCH 
tries to repair program damage. The pro
gram damage may be associated with either a 
defective storage protection feature (SPF) 
key or a defective main storage location. 
The MCH may correct a defective SPF key by 
issuing a Set Storage Key (SSK) instruc
tion. A main storage location can some
times be corrected by reloading (refresh
ing) the module that was being executed 
when the machine check occurred. 

If program damage is repaired, the MCH 
attempts to,~etry the interrupted instruc
tion •. If the retry is successful, the MCH 
has recovered completely from the machine 
check interruption. 

If program damage cannot be repaired or 
instruction retry is unsuccessful, the MCH 
can either continue partial system opera
tion or place the CPU in the wait state. 

The choice depends on the type of task that 
was current at the time of the machine 
interruption, the number of tasks that are 
affected, and the extent of the program 
damage. If limited system operation is 
possible, the MCH either abnormally ter
minates the current job step or sets the 
current task nondispatchable. If even 
limited system operation is not possible, 
because a critical system task is per
manently damaged, the MCH issues an error 
message and places the CPU in the wait 
state. 1 

For a full description of the Machine
Check Handler for Model 65 (MCH/65), refer 
to the publication IBM System/360 Operating 
System: Machine-Check Handler, Program 
Logic Manual, Form Y27-7155. 

Master Scheduler Initialization routine: 
(Figure 7-3) Is performed during nucleus 
initialization. Places appropriate unit 
control block name in the unit control 
table. Constructs an initial list of ECBs 
for the communications task. Determines 
which consoles are active. Gives control 
to the communications task Wait routine. 

Master Scheduler resident table: Contains 
switches and pointers that are used by the 
Master Scheduler during nucleus 
initialization. 

Nucleus Initialization Program (NIP): 
Initializes the resident part of the con
trol program and prepares main storage for 
control program operation. Receives con
trol from the IPL routine via a Load PSW 
instruction. Initializes nucleus tables, 
performs general system initialization, and 
sets up divisions of main storage. 

Open routine: A data management routine 
that completes the specified data control 
block and prepares the associated data set 
for processing. Analyses input labels and 
creates output labels. 

Overlay Supervisor (nonresident module): 
(Chart CI) Directs loading of the specified 
overlay segment and any segments in its 
path that are not in main storage. When 
loading is complete and, the caller has 
issued a CALL macro instruction or a branch 
instruction, alters the entry tables of the 
loaded segments. The alteration permits 
future branches to the same points in the 
loaded segments without help from the Over
lay Supervisor. 

1The operator may then load the SEREP 
program in order to format and print 
diagnostic information'from the CPU logout 
area. 

Routine Synopses 487 



Overlay supervisor (resident module): 
(Chart CI) Obtains the address of the 
segment table for the overlay module. 
Ensures that the appropriate entry table 
contains the specified entry pOint name. 
Causes supervisor linkage to the nonresi
dent module of the Overlay supervisor. 
(The nonresident module was loaded by the 
common subroutines of contents Supervision 
when the root segment of the overlay module 
was requested.) 

Post rnutine: (Charts BM-BN) Places the 
caller's post code into the specified ECB; 
sets the completion bit and clears the wait 
bit in the ECB. Also decreases by one the 
RB wait count for the waiting routine. If 
the new RB wait count is greater than zero, 
prepares for return of control to the 
caller. If the new RB wait count is zero, 
branches to the Task Switching, then pre
pares for return of control to the caller 
or the newly readied I:outine. 

Program Check First-Level Interruption 
Handler: (Charts AF-AH) Saves register 
contents in program cheCk register save 
area in lower main storage. If the trace 
option exists in the system, branches to 
the Trace routine to store information in 
the trace table. If the interrupted rou
tine was operating in supervisor state, 
gives control to the ABTERM Prologue rou
tine. If the interrupted routine was 
operating in problem-program state, jeter
mines if the address of a program interrup
tion element (PIE) is in the current TCB. 
If a PIE address is not in the TCB, 
branches to the ABTERM Prologue routine. 
Otherwise, stores the program old PSW and 
registers 2-14 in the PIE. If a program 
interruption control area (PICA) is not in 
effect or is being used for a previous 
program interruption, the routine branches 
to the ABTERM Prologue routine. Otherwise, 
places the entry point address of the 
interrupted routine in the program old PSW 
and branches to a user-written error
handling routine. 

If the multiprocessing feature was 
selected, determines if the interruption 
was caused by an SSM instruction. If it 
was, sets the supervisor lock byte if 
complete enablement is not indicated, and 
returns control to the interrupted routine. 
Before processing other types of program 
interruptions, sets the supervisor lock 
byte. 

program Fetch routine: (Chart CF-CH) 
Obtains needed storage space, initializes 
tables and an extent list, initiates I/O 
operations, and loads the specified module 
or overlay segment into main storage. Per
forms any needed relocation of add~ess 
constants. Computes the module's relocated 
entry point address and returns it to the 

488 

caller. Also returns the address of the 
module's extent list. 

Proqram Fetch Channel-End appendage rou
tine: (Chart CG) Determines if all buffers 
are full and whether the entire module or 
overlay segment has been loaded. Receives 
control from and returns control to the I/O 
Interruption Supervisor. 

Program Fetch PCI Appendage routine: 
(Chart CG) After each PCI interruption, it 
tests a record in the current RLD buffer. 
When necessary, it causes a channel-program 
switch between two-record mode and single
record mode. Such switch is necessary if 
an RLD or control record does not follow a 
text record on auxiliary storage. When the 
last record is being read, posts a fetch 
ECB. Receives control from and retqrns 
control to the I/O Supervisor. 

Purge Timer routine: (chart HB) Is invoked 
by the EOT routine or ABEND4 during a 
normal or abnormal termination. Tests a 
timer queue element (TQE), if one belongs 
to the terminating task. If the TQE is not 
on the timer queue, issues a ~EEMAIN macro 
instruction to free the space the TCQ 
occupies. If, however, the TQE is on the 
timer queue, the routine brfnches to the 
Timer Second-Level Interrupt10n Handler 
(IEAQTDOO) to cancel the int~rval request 
and remove the TQE from the ti~er queue. 

Reply Purge routine: Refer to the WTOR 
Purge routine. 

Release Loaded Programs Routine: 
(Chart HD) Is invoked by the EOT routine or 
ABEND4 during a normal or abnormal termina
tion. Frees load list elements for the 
terminating task and reduces the use/ 
responsibility count in each related CDE. 
Branches to CDHKEEP in the CDEXIT routine 
to test the reduced use/responsibility 
count and perform, if necessary, further 
module cleanup. 

Release Main Storage routine: (Chart HC) 
Is invoked by the EOT routine or ABEND4 
during a normal or abnormal termination. 
Releases main storage exclusively allocated 
to the terminating task. The task's sub
pool queue elements (SPQES) are used to 
free unshared subpools. The SPQEs are 
removed from the task's main storage queues 
and their space is freed. In addition, ,if 
the job step task is being terminated, the 
routine branches to CDDESTRY in the CDEXIT 
routine. CDDESTRY frees main storage occu
pied by each module in the job pack area, 
its extent list, and its CDEs (major and 
minor). 

Restart routine: (Charts FJ-FU) Reads and 
interprets records from a checkpoint entry 
to restore a previously executed task to 



C·, 

~. 
~. 

its main storage region, open and reposi
tion its data sets, and restore task con
trol blocks and queues so that it may be 
restarted within a job step. 

Rollout/Rollin module: (Charts DC-OJ) 
Schedules rollout when an unconditional 
Gh~MAIN cannot be satisfied with space from 
the job step's region; schedules rollin 
when all space in a borrowed region is 
freed. 

SEGLD Processor routine: (Chart CI) Is a 
part of the Overlay Supervisor nonresident 
module. Is attached to operate as a sub
task. Scans the segment table. Invokes 
the Program Fetch routine to load each 
indicated segment of an overlay module. 
Posts an ECB for the Overlay Supervisor 
when all indicated segments have been 
loaded. 

SERO routine (resident module): (Chart AM) 
Model-independent part of the SERO routine. 
Is entered after a machine check interrup
tion. Saves register contents and other 
indicative information, halts I/O activity, 
and causes entry to the appropriate model
dependent part of the routine. 

SERO routine (nonresident module): (Chart 
AM) Model-dependent modules, one of which 
is used with the corresponding model of IBM 
System/360. Collects information about the 
status of the system at the time of the 
interruption, writes the information onto 
the SYS1.LOGREC data set. and places the 
CPU into a wait state. 

SERl routine: (Charts AN-AP) Model
dependent modules, one of which is used 
with the corresponding model of IBM System/ 
360. Collects information about the status 
of the machine at the time of the interrup
tion and writes the information onto the 
SYS1.LOGREC data set. Then, either causes 
an abnormal termination of the job step, or 
places the CPU into the wait state. depend
ing on the severity of the error condition. 

Set Status routine: Sets all tasks of the 
specified job step nondispatchable by set
ting the TCBPRO flags in their TCBs. 

SHOLDTAP routine: Issues a write direct 
instruction which initiates an external 
interruption on the second CPU in a multi
processing system. The STMASK byte indi
cates the routine that gains control on the 
second CPU as a result of the interruption. 

SPIE r.outine: (Chart BJ) Places into the 
caller's TCB an indirect pOinter to the 
specified user error-handling routine. 
Either locates an eXisting program inter
ruption element (PIE) or creates a new one. 
and places its address in the caller's TCB. 
Then places in the PIE the address of the 

, 
associated program interruption control 
area (PICA). The PICA contains the address 
of the user error-handling routine. 

STAE Service routine: (Charts BW-BO) 
Creates a STAE control block which contains 
the address of a user-written STAE exit 
routine and parameter list. When an ABEND 
is scheduled for a 'task that has issued 
STAE, the ABEND routine invokes the ABEND/ 
STAE interface routine, which purges the 
task's I/O, schedules the STAE exit rou
tine, and returns control to the user at 
the STAE exi t routine address.. Upon com
pletion of the STAE exit routine. the 
ABEND/STAE interface routine either returns 
control to ABEND to terminate the task or 
schedules the user-written STAE retry 
routine. 

Stage 1 Exit Effector: (Chart BR) Creates 
and initializes an interruption request 
block (IRB) to schedule and control execu
tion of a user exit routine. 

Stage 2 Exit Effector: (Chart BS) Starts 
the scheduling of entry to a user exit 
routine by placing the specified queue 
element (IQE or RQE) on the appropriate 
asynchronous exit queue. 

Stage 3 Exit Effector: (Charts BT-BU) 
Completes the scheduling of a user exit 
routine. It does this by transferring an 
IQE or RQE from an asynchronous exit queue 
to the queue belonging to the appropriate 
IRB or SIRB. Queues the IRB to the appro
priate TCB. Queues the SIRB to the system 
error TCB. contains an error fetch 
sequence (similar to the TA Fetch routine) 
that causes a needed but unavailable system 
I/O error-handling routine to be loaded. 
The error-handling routine is loaded in the 
I/O Supervisor transient area. 

STIMER routine: (Chart EB) Builds and 
places on the timer queue the elements that 
represent specified time intervals. 

SVC First-Level Interruption Handler: 
(Charts AA-AB) Saves the caller'S register 
contents. Determines from the SVC table 
the type of SVC routine to be given con
trol. If a type-l routine, gives control 
to the routine. If a type-2, 3, or 4 
routine, gives control to the SVC Second
Level Interruption Handler. 

SVC Purge routine: Is part of the I/O 
Supervisor. Is invoked by ABENDl during an 
abnormal termination. Removes from system 
queues the request elements (RQEs) that 
represent I/O requests issued for the ter
minating task. Issues a Halt I/O instruc
tion to stop the task's I/O operations. 

Routine Synopses 489 



SVC Second-Level Interruption Handler: 
(Chart AC) is entered from the SVC First
Level Interruption Handler. Constructs a 
supervisor request block (SVRB) from pre
viously allocated space and initializes. the 
S~B. Moves the caller's register contents 
from lower main storage to the SVRB. 
Queues the SVRB to the TCB for the caller's 
task. If a resident (type-2) SVC routine 
is needed, branches directly to the 
routine. 

If a nonresident (type 3 or 4) SVC 
routine is needed, determines if the rou
tine is already in a transient area block 
(TAB) • ~ If the routine is in a TAB, places 
the SVRB on a user queue and branches to 
the TAB. If the routine is not in a TAB, 
examines the transient area control table 
and the user queues to find an available 
TAB. If it finds an available TAB, places 
those SVRBs "using" the TAB into a wait 
condition, places the new SVRB on the user 
queue for the TAB, makes the new SVRB wait, 
readies a transient area fetch task to load 
the SVC routine into the TAB, invokes the 
Task switching routine, and branches to the 
Dispatcher. If, however, an available TAB 
cannot be found, places the new SVRB into a 
wait condition, indicates the need for a 
task switch, and branches to the 
Dispatcher. 

system Quiesce routine: (Chart HT) Is 
entered from the ABEND routine when severe 
error conditions are detected. Abnormally 
terminates the failing task and sets all 
related tasks nondispatchable. Issues a 
message to the operator indicating that a 
CPU wait state has been averted and 
instructing him to allow the system to 
quiesce. Returns control to the supervisor 
thus enabling other tasks that have been 
scheduled p~eviously to continue 
processing. 

system Error TCB: The system TCB under 
whose control system I/O error-handling 
routines are loaded into the I/O supervisor 
transient area and then executed. 

Task Removal routine: Determines if the 
current task on the second CPU in a multi
processing system has been set nondispatch
able. If it has, causes the dispatcher to 
gain control on the second CPU and dispatch 
a new task. 

Task Switching routine: (Charts BV,BW) 
Determines if a newly readied task, which 
may be of higher dispatching priority than 
the current task, should be dispatched in 
place of the current task. Compares the 
dispatching priority of the specified ready 
task with that of the next-to-be-dispatched 
task. (The address of the TCB for the 
next-to-be-dispatched task is stored in the 
"new" TCB pointer, IEATCBP.) If the speci-

490 

fied task's priority is higher, places its 
TCB address into the "new" TCB pointer. If 
the specified task's priority is lower, 
makes no change. If the task priorities 
are equal, places in the "new· TCB pointer 
the address of the TCB positioned higher on 
the TCB queue. 

In a multiprocessing system, determines 
if the newly readied task should be dis
patched in place of the current task on 
either cpu. Determines which of the two 
next-to-be dispatched tasks has the lower 
dispatching priority, and compares the 
lower task w1th the newly readied task. If 
the newly readied task has a higher priori
ty, places its TCB address into the "new" 
TCB pointer. 

TESTRAN Interpreter: Is the part of the 
control program that interprets requests 
for test services. Is invoked by either 
the common subroutines of contents supervi
sion or the Overlay supervisor if the 
loaded module or segment is being tested. 

Time routine: (Chart EA) Determines the 
current date and time of day 'and returns 
both values to the caller. Places ,the time 
of day into register 0 and the date into 
register 1. 

Timer Second-Level Interruption Handler: 
(Charts ED-EE) Is entered from the External 
First-Level Interruption Handler after a 
timer-caused interruption. Determines what 
action to take by removing and exam~n~ng 
the topmost timer queue element (TQE) on 
the timer queue. May prepare entry to a 
user-written routine or posts a specified 
ECB. Resets the interval timer, using the 
value contained in the new top TQE.' 

Trace routine: Builds the trace table, a 
system option. The trace table describes 
conditions at each SVC interruption, 
external interruption, program interrup
tion, and at each issuance of a Start I/O 
instruction, and each execution of the 
Dispatcher. The Trace routine is invoked 
by the SVC First-Level Interruption Handler 
(SVC FLIH), the I/O FLIH, the External 
FLIH, the Program Check FLIH, and the 
Dispatcher. 

Transient Area Availability Check routine: 
(Chart AD) Is invoked by the SVC Second
Level Interruption Handler. Examines the 
transient area control table and the user 
queues to locate a transient area block 
that may be overlaid by a SVC routine. 

Transient Area Exit routine: (Chart GD) Is 
~nvoked by the Exit routine or by the 
common subroutines of Contents Supervision. 
Prepares for return of control to the 
caller of a type-2, 3, or 4 SVC routine. 
Moves saved register contents from the 



c 

exiting 
caller's 
routine 
from its 

routine's SVRB to the TCB for the 
task. For an exiting nonresident 
(type 3 or 4), removes the SVRB 
transient area user .. queue. 

Transient Area Fetch routine: (Chart AE) 
Is entered when the SVC Second-Level Inter
ruption Handler, or the Transient Area XCTL 
routine, or the Transient Area Refresh 
routine determines that a nonresident SVC 
routine must be loaded. Locates the needed 
routine, and uses the Program Fetch routine 
to load the needed routine into the avail
able transient area block. Is controlled 
by a high-priority system TCB, called a 
transient area fetch TCB. 

Transient Area Refresh routine: (Chart GE) 
Determines if an SVC routine that occupied 
a transient area block but was overlaid 
should be reinstated. It so, schedules 
reloading of and entry to the routine. 

Transient Area XCTL routine: (Chart CC) 
Prepares for entry to another module of a 
multi-module (type-4) SVC routine. Rein 
itializes the appropriate SVRB. If the 
needed module is in a transient area block, 
schedules entry to it. Otherwise, locates 
(if possible) an available transient area 
block and schedules loading of and entry to 
the module. If a transient area block is 
not available, places the SVC routine's 
S~B in the wait condition, queues the SVRB 
to a queue of waiting SVRBs, and indicates 
the need for a task switch. 

TTI~iliR routine: (Chart EC) Determines and 
places into register 0 the time renaining 
in.a previously requested time interval. 
Optionally cancels a previously requested 
interval. 

Type-l ~xit routine: (Chart GA) Routes 
control to the interrupted routine or to 
the Dispatcher. Restores saved register 
contents and returns control to the inter
rupted routine, if the need for a task 
switch is not indicated. (A task switch is 
not indicated if the addresses in the two 
TCB pointers. IEATCBP and IEATCBP+4, are 
equal.) If the need for a task switch is 
indicated, moves saved register contents to 
the current TCB, and gives control to the 
Dispatcher to perform the task switch. 

Validity Check routine: Validates user
supplied addresses. Checks addresses for 
full-word boundary alignment, determines 
if the addresses lie within the limits of 
main storage, and tests if the addresses 
specify storage areas whose storage protec
tion keys match the protection key in the 
caller's TCB. 

Vary Storage Offline Subroutine (IFSVRYOF): 
Processes requests to remove an area from 
available main storage in a multiprocessing 

system. Alters the FBQE(s) and marks the 
area unavailable in the FSSEMAP. 

Wait routine: (Charts BK-BL) Determines if 
any of the specified events have occurred. 
If all have occurred, prepares for return 
of control to the caller. If all the 
specified events have not occurred, makes 
the caller wait by placing the appropriate 
wait count into the caller's RB. Then 
indicates the need for a task switch. 

Write-to-Log routine: (Figure 7-3) Sche
dules servicing of a request to write a 
message onto the system log. Places the 
message into a log element and adds the 
element to a chain of log elements. Posts 
the system log ECB to signify receipt of 
the message. 

Write-to-Operator routine: 
Prepares buffers and posts 
tions task ECB. 

(Figure 7-2) 
the communica-

WRITELOG Available Log Data Set routine: 
(Figure 7-3) Sets a bit in the log control 
area to indicate availability of either the 
primary or alternate system log data set. 

WRITELOG Dispatch routine: (Figure 7-3) 
Initializes a job file control block (JFCB) 
and a data set block COSB) for the speci
fied primary or alternate log data set. 
Places both the JFCB and DSB on the job 
queue. 

NRITELOG Get Region routine: 
region to be used for the log 
task. 

Obtains the 
dispatcher 

WRITELOG Log Initialization routine: 
(Figure 7-3) Searches the catalog to locate 
the two log data sets. Creates a data 
control block (DCB) for and opens the 
primary log data set. Initializes the log 
control area. 

WRITELOG Loq Writer routine: (Figure 7-3) 
Writes messages onto the system log data 
set. In response to a WRITELOG command, 
causes the appropriate log data set to be 
transferred to an output device by a system 
output writer. 

WRITELOG Master Wait routine: (Figure 7-3) 
Passes control to the Log Writer routine 
when the system log ECB is posted. 

WRITELOG Open Device routine: 
Opens the specified system 
data set. 

(Figure 7-3) 
outptlt-writer 

WTOR Purge routine (also called Reply Purge 
routine): Is invoked by the EOT routine or 
ABEND1 during a normal or abnormal termina
tion. Disposes of outstanding messages and 
replies to messages by removing elements 
from the buffer queue and the reply queue. 

Routine Synopses 491 





INDEX 

£: 
ABDUMP nondispatchability flag entry point name of 471 

clearing the 203 flowchart(s) of 429 
ABDUMP parameter list module name for 467 

format of 295 ABEND 3 
ABDUMP -resident" module description of 205 

description of 194 entry point name of 471 
entry point name of 471 flowchart(s) of 430-432 
module name for 465 module name for 468 

ABDUMP routine ABEND 4 
description of 193 description of 209 
flowchart of 427 entry point name of 471 
synopsis of 485 flowchart(s) of 433 

ABDUMP1 module name for 467 
description of 194 ABEND5 
entry point name of 471 description of 214 
module name for 466 entry point name of 471 

ABDUMPll flowchart(s) of 434-435 
description of 199 module name for 467 
entry point name of 471 ABEND6 
module name for 468 description of 220 

ABDUMP2 entry point name of 471 
description of 196 flowchart(s) of 436-438 
entry point name of 471 module name for 467 
module name for 467 ABEND/STAE Interface routines 

ABDUMP3 description of 76-80 
description of 196 entry point names of 478 
entry point name of 471 flowcharts of 355-357 
module name for 467 module name(s) for 468 

ABDUMP4 Abnormal dump 
description of 196 (see dumping selected areas of main 
entr.y point name of 471 storage) 
module name for 467 Abnormal termination 185 

ABDUMP5 ABTERM flag 
description of 197 meaning of 205 
entr:y point name of 471 ABTERM Prologue routine 
module name for 467 description of 192 

ABDUMP6 entry point name(s) of 471 
description of 198 flowchart(s) of 426 
entr:y point name of 471 module name for 462 

.. module name for 467 synopsis of 483 
ABDUMP7 ABTERM routine 

description of 199 description of 186 
entr.y point name of 471 entry point name(s) of 471 
module name for 467 flowchart(s) of 424-425 

ABDUMP8 module name for 462 
description of 200 synopsis of 483 
entry point name of 471 Access - Method Disposition routines 
module name for 468 description of 168 

ABDUMP9 entry point name o~ 477 
description of 200 flowchart of 403 
entry point name of 471 module name for 468 
module name for 468 AEQA 

ABEND routine (see RQE queue) 
description of 201 AEQJ 
synopsis of 483 (see IQE list) 

ABENDl Alias processing 
description of 203 description of 90 
entry point name of 471 Allocated queue element (AQE) 
flowchart(s) of 428 construction of 139 
module name for 466 format of 286 

C 
ABEND 2 normal release of 145 

description of 203 AQE 

Index 493 



(see allocated queue element) 
ASlR 

(see ABEND/STAE Intierface routines) 
Asyncbr.onOus exit queues 

description of 70 
Asynchr.onous exit routine 

(see user ~xit routine or task 
asynchronous exit routes) 

Attach routine 
description of 39 
entry point name(s) of 471 
flowchart of 331-334 
module name for 467 
synopsis of 483 

Attention routine 
entr.y point name of 471 
flowchart of 156 
module name for 463 
synopsis of 483 

AUTOPRG 
(see Autopurge routine) 

Awaiting 
an available transient area block 

(see deferring'a request for a 
transient SVC routine) 

an event 
(see causing a program to wait for 
one or more events) 

availability of an enqueued resource 
(see requesting one or more resources 
via an ENQ macro instruction) 

availability of a serially reusable 
modUle 

(see deferring the request for an 
unavailable module) 

BLDL routine 
entry point name of 471 
fUnction of when, used by the common 
subroutines of Cohtents Supervision 87 

module name for 4'62 
preparation for use of during transient 
area XCTL processing 96 

synopsis of 483 
Block extent list and note list 

format of 276 

Causing a program to wait for one or more 
events 

description of 53 
CDABDEL routine 

(see Release Loaded Programs routine) 
CDADVANS 9~ 
CDALLOC subroutine 

function of 88 
CDATTR field 

use of 88,91,271 
CDATTR2 field 

use of 91,271 
CDCONTRL 

use of 91 
CDDESTRY routine 

fUnction of 173 
CDE 

(see contents directory entry) 
CDEEPADR field 

meaning of 38 
CDENIC 

494 

meaning of 89,271 
CDENTPT field 

meaning of 271 
CDEPILOG subroutine 

fUnction of 91 
CDEPRGNM field 

meaning of 38,271 
CDEXIT routine 

description of 171 
entry point name(s) of 471 
flowchart of 409 
module name for 460 
synopsis of 483 

CDHKEEP 
use of 173 

CDLLSRCH 87 
CDMOPUP subroutine 

function of 91 
CDPURGE routine 

function of 
CDQUECTL subroutine 

function of 90 
CDRBP field 

meaning of 271 
CDSEARCH subroutine 

function of 87 
CDSETUP subroutine 

function of 88 
CDXLMJP field 

meaning of 271 
Channel-Check Handler 

entry point name(s) of 471 
module name(s) for 460 
synopsis of 483 

Channel error 
recovery options for 34 

CHAP routine 
description of 45 
entry point name(s) of 471 
flowchart of 335-337 
module name for 467 
synopsis of 483 

CHATR macro instruction 
use of 155 

Check I/O routine 
description of 162 
entry point name of 472 
flowchart of 386 
module name for 467 

Checkmain routines 
description of 163 
entry point name(s) of 472 
flowcharts of 388-389 
module name for 468 

Checkpoint entry 
description of 159 

Checkpoint Exit routine 
description of 163 
entry point name of 1172 
flowchart of 390 
module name for 468 

Checkpoint Header Record (CHR) 
construction of 161 
format of 162 

Checkpoint Housekeeping routines 
description of 160-161 
entry point names of 471 
flowcharts of 383-385 



C·' 
\ 

module names for 467 
Checkpoint message module 

description of 164 
entry point name of 472 
flowchart of 391 
module name for 468 

CIRB 
macro instruction 

function of 72 
routine (see Stage 1 Exit Effector) 

Cleanup procedure (ABDUMP) 
fUnction of 201 

Closing data sets 
for abnormally terminating tasks 217 
for normally terminating tasks 182 

Communications task 
External Interruption Handler routine 

entry point name(s) of 472 
flowchart of 156 
module name for 463 
synopsis of 484 

External Processor routine 
entry point name(s) of 472 
flowchart of 156 
module name for 465 
synopsis of 484 

Initialization routine 
entry point name(s) of 472 
flowchart of 156 
module name for 463 
synopsis of 484 

Miscellaneous Lookup Services routine 
entry point name(s) of 472 
module name for 465 
sy~opsis of 484 

Open/Close routines 
entry point names of 472 
flowcharts of 156 
module name(s) for 464 
synopsis.of 484 

Processor routines 
entry point names of 472 
flowcharts of 156 
module name(s) for 469 
synopsis of 484 

Reply Processor routine 
entry point name(s) of 472 
module name for 465 
synopsis of 484 

Request block 
entry point name of 472 
module name for 465 

Router routine 
entry point name (s) of 472 
flowcharts of 156 
module name for 466 
synopsis of 484 

task control block 
entry point name of 472 
module name for 465 

,unit control tables (UCBs) 
entry point names of 472 
module name for 465 
synopsis of 484 

Wait routine 
charts of 156 
entry point name(s) of 472 
module name for 463 

t 
j 

synopsis of 484 
Communications vector table (CVT) 

definition of 29,246 
entry point name of 472 
format of 246 
module name for 460 

Console Alarm routine 
(see Ring Bell routine) 

contents directory 
definition of 16 

Contents directory entry (CDE) 
abnormal release of 223-224 
construction of 88 
definition of 85 
format of ,271 
normal release of 183 

Contents SuperVision, common subroutines of 
description of 87 
entry point'names of 472 
flowchart(s) of 358-360 
module name for 466 
synopsis of 484 

Control record 
format of 280 

Control and relocation dictionary record 
format of 282 

CSPCHK subroutine 
function of 119,140 

CVT 
(see communications vector table) 

Data set descriptor records 
format of 168 

Data set directory entry 
as used by common subroutines of 
Contents Supervision 87 

as used by the Program Fetch routine 
110 

as used by the Stage 3 Exit Effector 74 
format of 272 

Data Set Processor routines 
description of 167 
entry point names of 477 
flowcharts of 401-402 
module name for 468 

DCB parameter for LINK, LOAD., or XCTL 
processing 

use of 88 
DCM 

(see display control module) 
DD statement for dump data set 

testing for issuance of 211 
DE parameter 

use of 96 
DEB queue 

use of to close data sets 
during abnormal termination 218 
during normal termination 182 

Decimal Simulator routines for Model 91 
Add, Subtract, Zero - and - Add 

description of 236 
entry point name of 474 
flowchart of 453 

Analyzer and End 
description of 241 
entry point name of 474 
flowchart of 457 

Compare Decimal 

Index 495 



description of 241' 
entry point name of 474 
flowchart of 452 

Divi.de Decimal 2 
description of 239 
entry point name of 474 
flowchart of 456 

Multiply Decimal 
description of 237 
entry point name of 474 
flowchart of 455 

Simulator Control 
description of 233 
entry paint name of 474 
flowchart of 451 

Deferri.ng a request for a transient SVC 
routine 28 

Deferring the request for an unavailable 
module 86 

Delete routine 
description of 99 
entry point name{s) of 474 
flowchart of 362 
module name for 466 
synopsis of 484 

Dequeue routine 
description of 66 
entry pOint name{s) of 474 
flcwchart of 346-347 
module name for 468 
synopsis of 484 

Dequeue TCB routine 
function of 

synopsi.s of 485 
Descriptor queue element (DQE) 

construction of 122 
definition of 122 
format of 285 
normal release of 140 

Detach routine 
description of 49 
entry point name(s) of 474 
flowchart of 339 
module name for 467 
synopsis of 485 

Dispatcher 
description of 175 
entry point name(s) of 474 
flowcharts of 410-419 
module name for 462 
synopsis of 485 

Dispatching priority 
changing of 45 
definition of 45 
use of by the Dispatcher 176 

Display Control Module (DCM) 
description of 229 
format of 297 

DJSEARCH Subroutine 
description of 179-180 
flowchart of 413,419 

DPQE 
(see dummy partition queue element) 

DQE 
(see descriptor queue element) 

DQLOAD subroutine 
fUnction of 91 

DQRBS subroutine 

496 

function of 222 
DQTCB 

(see Dequeue TCB routine" function of) 
Dummy partition queue element (DPQE) 

construction of 120 
definition of 120 
format of 289 

Dummy request block for the system error 
task 73 

Dump, sample 302 
DUmp data set 

determining whether to open 211 
ensuring that the dump data set remains 

open for the duration of the job step 
step 212 

indicating whether the dump data set has 
been opened 213 

preparing to open 212 
Dumping 

contents directory entries 196 
data extent blocks (DEBs) 196 
dynamically acquired storage 201 
extent lists 196 
load modules represented by CDEs 200 
main storage queue elements 196 
nucleus of main storage 199 
old PSW 196 
proble~program register $ave areas 199 
QCBs, QELs, and save areas belonging to 

IRBs 197 . 
register contents 200 
request blocks 196 
storage acquired for the task 201 
task I/O table (TIOT) 196 
task's load list 196 
TCB 196 
trace table 199,200 

Dumps 
(see dumping, and sample dump) 

ECB 
(see event cont~ol block) 

End-of-Task (EO~) routine 
description of 181 
entry point na~(s) of 475 
flowchart of 420 
module name for 460 
synopsis of 485 

End-of-Task Exit routine (ETXR) 
scheduling of 183-184 

ENQ routine 
(see Enqueue routine) 

ENQ/DEQ Purge routi.ne 
description of 224 
entry paint name of 475 
synopsis of 485 

Enqueue routine 
description of 61 
entry point name(s) of 475 
flowchart of 345 
module name for 467 
synopsis of 485 

ENTAB 
(see entry table) 

Entry points 
directory of 471 
embedded, informing the supervisor of 
of 97 



" ,: 

Entry table (ENTAB) 
definition of 100 
format of 284 

ENTRY 2 
use of 220 

EOM indicator 
meaning of 113 

EOS indicator 
meaning of 113 

Erase Phase routine 
entry point name of 475 
function of 184 
module name for 461 
synopsis of 485 

ERFETCH 
(see error fetch sequence) 

Error fetch sequence 
function of 74 

ETXR opera:Q,d 
effect when ATTACH routine is executed 
executed 40 

ETXR scheduling 
(see End-of-Task Exit routine (EXTR), 
scheduling of) 

Event control block 
format of 265 
(also see posting an event control 
block) 

EXCP supervisor 
entry point 
function of 
module name 
synopsis of 

Exit Effector 

name 
111 

for 
485 

of 475 

463 

(see stage 1 Exit Effector, Stage 2 Exit 
Effector, and stage 3 Exit Effector) 

Exit routine 
description of 169 
entr.y point name(s) of 475 
flowchart of 405-406 
module name for 466 
synopsis of 485 

Extent list 
abnormal release of 224,225 
construction of 109-110 
definition of 108 
normal release of 173 
(also see scatter extent list, format 
of: and block extent list and note 
list, format of) 

External F1rst-Level Interruption Handler 
description of 31-33 
entry point name(s) of 475 
flowcharts of 323,324 
module name for 461 
synopsis of 486 

External FLIH 
(see External First-Level Interruption 
Handler) 

External interruptions 
description of 31-33 

Extract routine 
description of 47 
entr.y point name(s} of 475 
flowchart of 338 
module name for 466 
synopsis of 486 

Fail soft storage element map (FSSEMAP) 
format of 301 

FBQE 
(see free block queue element) 

First CPU Signal routine 
description of 84 
entry point name of 475 
module name for 460 

First-time logic switch 
(see program interruption element) 

FMBRANCH . 
meaning of 460 

FQE 
(see free queue element) 

Free block queue element (FBQE) 
construction of 120,140 
definition of 120 
format of 289 

Free queue element (FQE) 
construction of 122 
format of 286 
function of 122 

FREEMAIN macro instruction 
types of SVC instructions for 118 

FREEMAIN routine 
description of 139 
entry point name(s) of 475 
flowchart of 368 
module name for 466 
synopsis of 486 

FSSEMAP 
(See fail soft storage element map) 

GETMAIN macro instruction 
list structure of 122 
types of SVC instructions for 118 

GETMAIN routine 
description of 119 
entry point name(s) of 415 
flQwchart of 367 
module name for 466 
synopsis of 486 

GOVRFLB 
format of 287 
meaning of 139 

I/O block 
for the I/O supervisor transient area 

entry point name_of 475 
module name for 460 

for the SVC transient areas 
entry point names of 415 
module name for 470 

I/O First-Level Interruption Handler 
description of 33 
entry point name(s) of 415 
flowchart of 325,326 
module name for 461 
synopsis of 486 

I/O FLIH 
(see I/O First-Level Interruption 
Handler) 

I/O Interruption Supervisor 
entry point name of 475 
module name for 462 
synopsis of 481 

I/O interruptions 33 

Index 491 



I/O requests and I/O operations in process 
purging of 207 

I/O supervisor transient area 
entry point name of 475 
I/O. block 

entry point name of 475 
module name for 460 
synopsis of 487 

I/O switch (IORGSW) 
function of 33 

Identify routine 
description of 97 
entry point name(s) of 475 
flowchart of 361 
module name for 467 
synopsis of 487 

I EADQ TCB 
(see Dequeue TCB routine, function of) 

IEAHEAD 
meaning of 46 

IEAQABL 
(see Release Loaded Programs routine) 

lEAQERA 
(see Erase Phase routine) 

lEAQSPET 
(see Release Main storage routine) 

lEAQTAQ 
(see transient area control table> 

I EASCSAV 
meaning of 22 

IEATCBP 
meaning of 176 

IEATYPE1 
use of during ABTERM processing 193 

IEEVLIN routine 
function of 157 
(see also WRITELOG Log Initialization 
routine) 

IEEVLOPN routine 
function of 157 
(see also WRITELOG Open Device routine) 

IEEVWAIT routine 
function of 157 
(see also WRITELOG Master Wait routine) 

Informing the supervisor of an embedded 
module entry point 97 

Initial Program Loading (IPL) routine 
entry point name of 475 
module name for 470 
synopsis of 487 

Interruption handling 21 
(see also SVC interruption handling, 
program interruptions, external 
interruptions, I/O interruptions, and 
machine interruptions) 

Interruption queue element 
construction of 41 
definition of 70 
format of 269 
normal release of 75 
queuing of 72 

Interruption request block 
abnormal release of 222 
construction of 72 
definition of 16 
format of 256 
normal release of 174 

lOB 

498 

(see I/O' block) 
IOBSEEK field 

use of 113 
IORGSW 

(see I/O switch) 
IQE 

(see interruption queue element) 
IQE list (AEQJ) 72 

IRB 

(see also interruption queue element, 
construction of) 

(see interruption request block) 

JFCB Processor routines 
description of 166 
entry point names of 477 
flowchart of 397 
module name for 468 

Job file control blocks for log data sets 
(see log data sets, job file control 
blocks (JFCBs) for) 

Job pack area control queue 
definition of 16 
meaning of 87 
use of 87 

Job pack area queue 
(see job pack area control queue) 

Job step Timing 
in Dispatcher routine 

description of 179,180 
flowchart of 411-413 

in Post routine 
description of 55 
flowchart of 344 

in Wait routine 
description of 55 
flowchart of 342 

in Timet:' Second-Level Interruption 
Handler 

JPACQ 

description of 150 
flowchart of 382 

(see job pack area control queue) 
LeS (2361 Core Storage) 

See Main Storage Hierarchy Support 

Limit priority 
use of 45 

Link pack area 
definition of 16 

Link pack area control queue 
definition of 16 
meaning of 88 
search of 88 

Link pack area queue 
(see link pack area control queue) 

LLCDPTR field 
meaning of 272 

LLCOUNT field 
meaning of 272 

Load list 
definition of 16,87 
purging of 225 

Load list element 
abnormal release of 225 
construction of 82 
definition of 82 
format of 272 

./ 



normal release of 99 
Log and WRITELOG Post routine 

entry point name of 476 
module name for 465 
synopsis of 487 

Log conunand 
use of 157 

Log data sets 
job file control blocks (JFCBS) for 

entry point name of 476 
module name for 465 

LPACQ 
(see link pack area control queue) 

Machine-Check Handler 
entr.y point name(s) of 476 
module name(s) for 469 
synopsis of 487 

Machine interruptions 
recovery options for 33 

Main storage 
dumping of allocated 201 
purging of 225 

Main Storage Hierarchy support feature 
contents supervision service routines 
with 86 

description of 17,19 
GETMAIN routine with 110,120 
loading of overlay module with 100 

Major CDE 
(see contents directory entry) 

Major QCB 
(see queue control block) 

Master scheduler Initialization routine 
entry pOint name of 476 
module name for 464 
synopsis of 487 

Master scheduler resident table 
entry point name of 476 
.module name for 464 
synopsis of 487 

Master scheduler task control block (TCB) 
entr.y point name of 476 
module name for 333 

Minor CDE 
(see contents directory entry> 

Minor QCB 
(see queue control block) 

Model 91 
Decimal simulator routines (See Decimal 
Simulator routines> 

Program check First-Level Interruption 
Handler routine for 

description of 31 
flowchart of 322 

SER1 routine for 
description of 36-37 
fl.owchart of 329-330 
module name for 462 

Modules 
purging of during abnormal 

termination 222 
Mount/Verify routines 

description of 166 
entry point names of 477 
flowcharts of 398,399 
module name for 468 

MPCVT 

(See multiprocessing communications 
vector table) 

MSSLOOP 
fUnction of 207 

Multiprocessing communications vector table 
(MPCVT) 

format of 300 
Multiprocessing feature 

ABDUMP routine with 194 
description of 18 
Dispatcher with 175,176,177 
External FLIH routine with 

description of 32 
flowchart of 324 

FREEMAIN routine with 140,141 
I/O FLIH routine with 

description of 33 
flowchart of 326 

Job Step Timing with 
description of 179,180 
flowchart of 419 

Machine - check recovery with 34 
Program Interruption FLIH routine with 

description of 30-31 
flowchart of 321 

Set Status routine with 82 
Stage 3 Exit Effector with 74 
SVC FLIH routine with 

description of 22-23 
flowchart of 316 

Task Switching routine with 81 
Type 1 Exit routine with 169 

Must-complete status 
clearing of 68 
meaning of TCB flags for 65 
setting of 64 

NFN flag 
meaning of 271 
setting of 90 

NIC flag 
meaning of 271 

NIP 
(see nucleus initialization program) 

NLR flag 
meaning of 271 

Nondispatchability flags, TCB 
meaning of 189 

Nondispatchable 
(see nondispatchability flags) 

Nonreusable module 
purging of module after its use is 

complete 173 
Normal termination 

description of 181 
Nucleus initialization program (NIP) 

entry point name of 476 
module name for 461 
synopSis of 487 

Opening the dump data set 212 
Operator communications queues 

purging of 207 
OPSW 

(see RB old PSW, SVC old PSW, external 
interruptions) 

ORDERCDQ routine 
function of 173 

Index 499 



Overlay supervisor 
description of 101 
entry point names of 476 
flowchart of 366 
loading of nonresident module 89 
module names for 465,,466 
synopsis of 487 
types of processing 104 

Parameter list element (ENQ/DEQ routines) 
format of 266 

PARRLSE routine 
function of 211 

Partially loaded modules 
release of 211 

Partition queue element 
construction of 119 
definition of 17 
format of 286 

Partitioned data set directory entry 
(see data set directory entry) 

PC FLIH 
(see Program-Check First-Level 
Interruption Handler 

PDS dir.ectory entry 
(see data set directory entry) 

PICA 
(see program interruption control area) 

PIE 
(see program interruption element) 

Post routine 
description of 55 
entry point name(s) of 476 
flowchart of 343 
module name for 466 
synopsis of 488 

Posting an event control block 

PQE 

general 
(see 

posting 
block 

posting 
block 

posting 
block 

Post routine) 
the I/O supervisor event control 
108 
the parent task's event control 
184 
the program fetch event control 
108 

(see partition queue element) 
PRB 

(see program request block) 
PRBPROC subroutine 

function of 222 
Preserve routines 

description of 162 
entry point names of 472 
flowchart of 387 
module name for 468 

Program Check First-Level Interruption 
Handler 

description of 29-31 
,Program Fetch buffer table 

description of 108 
format of 279 

Program Fetch Channel-End Appendage routine 
description of 113 
entry point name of 476 
flowchart of 364 
module name for 364 
synopsis of 488 

500 

Program Fetch PCI Appendage routine 
description of 113 
entry point name of 477 
flowchart of 364 
module name for 460 
synopsis of 488 

Program Fetch routine 
description of 105 
entry point names of 476 
flowchart of 363-364 
module name for 465 
synopsis of 488 

Prpgram Fetch work area 
, description of 106,,107 
format of 278 
initialization of 107,108 

Program interruption control area (PICA) 
construction of '51 
format of 263 

Program interruption element (PIE) 
construction of 52' 
format of 263 
normal release of 182 
purging of 207 

Program interruptions 29 
Program request block (PRB) 

abnormal release of 224 
construction of 91 
definition of 16 
format of 258 
normal release of 174 

Purge Timer routine 
entry point of 477 
flowchart of 421 
function of 207 
module name for 461 
synopsis of 488 

QCB 
(see queue control block) 

QCB queues 
abnormal removal of elements from 224 
construction of 60 
illustration of 60 

QEL 

normal removal of element from 67 
origin of 461 

(see queue element (QEL) for serializing 
the use of a resource) 

QEL queues 
abnormal removal of elements from 224 
construction of 61 
description of 58 
illustration of 60 
normal removal of element from 67 

Qname 
meaning of 58 

Queue control block (QCB) 
abnormal release of 224 
construction of 61 
definition of 58 
formats of 267 
normal release of 67 

Queue element (QEL) for serializing the use 
of a resource 

abnormal release of 224 
construction of 61 
definition of 60 



format of 268 
normal release of 67 

RB 
(see request block) 

RB fields 
meaning of 

(see interruption request block, 
format of; program request block, 
format of; supervisor request block, 
format of; system interruption . 
request block, format of) 

RB flags 
meaning of 258 

RB old PSW 
meaning of 21 
saving of 21 

RBQUEUED subroutine 
fUnction of 223 

RBREMOVE subroutine 
fUnction of 222 

Recovery options for machine Checks and 
channel errors 33-34 

Recursion, ABEND 
invalid 204 
meaning of 204 
valid 205 

Refreshing a transient area block 
(see Transient Area Refresh routine) 

Region of main storage 
allocation of 119 

Relative Priority routine 
description of 83 

Release Loaded Programs routine 
description of 183 
entry pOint name of 477 
flowchart of 423 
module name for 461 
synopsis of 488 

Release Main Storage routine 
description of 183 
entry point name of 477 
flowchart of~ 422 
module name for 461 
synopsis of 488 

Releasing main storage 
at end of task 183 
during abnormal termination 225 
in response to a FREEMAIN macro 
instruction 139 

Relocation list dictionary record 
format of 281 
use of 114 

RELPRIOR routine 
(See Relative Priority routine) 

REN flag 
meaning of 271 

Reply Purge routine 
(see WTOR Purge routine) 

Reply queue element 
abnormal release of 207 
definition of 135 
format of 290 

Repmain routines 
description of 165 
entry point names of 477 
flowcharts of 393-394 
module name for 467 

Request blOCk 
definition of types 16 
dummy 

(see dummy request block for the 
system error task) 

fields 
meaning of 

(see interruption request block, 
format of; program request block, 
format of; supervisor request 
block, format of; system 
interruption request block, format 
of) 

flags 
description of 258 

formats of (see interruption request 
block, format of; program request 
block, format of; supervisor request 
block, format of; system interruption 
request block, format of) 

normal release of 174 
purging of 221-224 

Request queue element (RQE) 
abnormal return to free list 207 
definition of 70 . 
format of 290 
normal return to free list 74 
queuing of 72 

Requesting one or more resources via an ENQ 
macro instruction 61 

Requests for user exit routines 
purging of 207 

Reserve macro instruction 
as used in ABEND6 routine 224 
as used in Dequeue routine 70 
as used in Enqueue routine 66 

-Reset must complete- function 
description of 68 

Resource queues for ENQ/DEQ requests 58 
Responsibility count (LLCOUNT) 

format of 272 
use of 92.,99,225 
(see also load list element) 

Restart Exit routine 
description of 168 
entry point name of 477 
flowchart of 403 
module name for 468 

Restart Housekeeping routines 
description of 165 
entry point names of 477 
flowcharts for 392 
module name of 467 

Resume I/O routine 
description of 163 
entry point name of 472 
flowchart for 390 
module name of 468 

RET parameter 
effect of during DEQ processing 69 
effect of during ENQ processing 61-62 

RIQE 
(see Rollout I/O queue element) 

RLD buffer 
description of 108 

RLD record 
format of 281 

Rname 

Index 501 



meaning of 58 
ROLL parameter 42 
Rollout I/O Queue Element (RIQE) 

construction of 133 
definition of 133 
format of 290 
normal release of 143 

Rollout/Rollin feature 
description of 18 

Rol10ut/Ro1lin module 
description of 127 
entr.y point name of 477 
flowcharts of 369-376 
module name for 461 
scheduling of 124 
synopsis of 489 

RQE 
(see request queue element) 

RQE queue (AEQA) 
placing element on 72 
removing element from 74 
(also see request queue element, 
abnormal return to free list) 

Sample dump 
format of 302 

SCANTREE subroutine 
function of 188 

Scatter extent list 
format of 275 

Scatter/translation record 
format of 277 

SCB 
(see STAE control block) 

Secondary communications vector table 
format of 142 

Second CPU Recovery Management System 
Interface routine 

description of 32 
entry pOint name of 477 
module name for 469 

SEGLD macro instruction 
linkage to the overlay Supervisor 
for 101 

SEGLD Processor routine 
description of 103 
entry point name of 477 
flowchart of 366 
module name for 470 
synopsis of 489 

Segment table 
definition of 100 
format of 283 

SEGTAB 
(see segment table) 

SEGWT macro instruction 
linkage to the Overlay supervisor 
for 101 

SER flag 
meaning of 271 

SER routines 
(see SERO routine and SERl routine) 

Serializing the use of a resource 58 
SETSUBS subroutine 

.function of 188 
SERO routine 

description of 35 
entry point names of 478 

502 

flowchart of 327 
module names for 460,465 
synopsis of 489 

SER1 routine 
description of 36 
entry point name of 478 
flowcharts of 328-330 
module name for 461 
synopsis of 489 

·Set must complete" function 
description of 64 

Set Status routine 
description of 82 
entry point name of 478 
module name for 467 
synopsis of 489 

Severe error condition 
recogn1z1ng a 204 

Shared Direct Access Device feature 
Dequeue routine with 

description of 70 
flowchart of 347 

Enqueue routine with 
description of 66 
flowchart@f 345 

description of 18 
SHOLDTAP routine 

description of 84 
synopsis of 489 

SHPC 
(see six-hour pseudo clock, use of) 

SIRB 
(see system interruption request block) 

Six-hour pseudo clock 
use of 148 

SPEOT routine 
(see Release Main Storage routine) 

SPIE routine 
description of 51 
entry point name(s) of 478 
flowchart of 340 
module name for 466 
synopsis of 489 

SPLS parameter (ABDUMP) 
use of 201 

SPQE 
(see subpoo1 queue element) 

STAE 
macro instruction 51,76 
Service routine 

description of 76 
entry point name of 478 
flowchart of 354 
module name for 466 
synopsis of 489 

STAE control block (SCB) 
format of 264 

stage 1 Exit Effector 
description of 72 
entry point name(s) of 478 
flowchart of 348 
module name for 467 
synopsis of 489 

Stage 2 Exit Effector 
description of 72 
entry point name(s) of 478 
flowchart of 349 
module name for 462 



synopsis of 489 
stage 3 Exit Effector 

description of 72 
entry point name(s} of 478 
flowchart of 350-351 
ffiodule name for 462 
synopsis of 489 

STATUS macro instruction 
analysis of parameters 82 

Steal Core subroutine 
function of 208-209 

STIMER routine 
description of 148 
entry point name(s} of 478 
flowchart of 378 
module name for 467 
synopsis of 489 

Subpool 
indicating shared ownership of 43 
relationship with types of GETMAIN 
requests 120 

Subpool End-of-Task routine 
(see Release Main Storage routine) 

subpool queue element (SPQE) 
abnormal release of 225 
construction of 122 
definition of 122 
format of 285 
normal release of at end of task 183 

Subtask 
attaching of 39 
detaching of 49 
queue 

meaning of 43 
selection of during abnormal 
termination 173,188,221 

Supervisor request block 
abnormal release of 220,221 
construction of 23 
definition of 16 
format of 254-255 
normal release of 171 

SVC First-Level Interruption Handler 
description of 21-23 

SVC FLIH 
(see SVC First-Level Interruption 
Handler) 

SVC interruption handling 
for nonresident (transient) SVC routine 

routine 25 
for type-1 SVC routine 21-23 
for resident SVC routine requiring an 

SVRB 23 
SVC old PSW 

loading of 
saving of 21-22 

SVC purge parameter list 
definition of 134 
format of 291 

SVC Purge routine 
entry point name of 478 
fUnction of 207 
module name for 466 
synopsis of 489 

SVC Second-Level Interruption Handler 
description of 23 
entr.y point name(s} of 478 
flowchart of 317 

module name for 462 
sypopsis of 490' 

SVC StIH 
(see SVC Second-Level Interruption 
Handler) 

SVC table 
format of 245 
function of 23 

SVRB (see supervisor reque"st block) 
SYNCH processing 

description of 
(see Contents Supervision, common 
subroutines of, description of) 

entry point name for 478 
flowchart of 358-360 
module name for 466 

SYSABEND data set 
(see dump data set) 

System error task 
meaning of 73 

System error TCB 
entry point name of 478 
module name for 461 
use of 73 

System error transient area 
(see I/O supervisor transient area) 

System interruption request block 
definition of 16,73 
format of 257 
initialization of 73 

System log 
definition of 157 

System Quiesce routine 
description of 226 
entry point name of 478 
flowchart of 439 
module name for 462 
synopsis of 490 

SYSUDUMP data set 
(see dump data set) 

SYS1.LINKLIB data set 
data control block (DCB) 

entry point name for 478 
module name for 476 

data extent block (DEB) 
entry point name for 478 
module name for 476 

SYS1.LOGREC data set 
use of 34 

SYS1.SVCLIB data set 

TAB 

data control block (DCB) 
entry point name of 478 
module name for 470 

data extent block (DEB) 
entry pOint name of 478 
module name for 470 

(see transient area block) 
TABLDL 

(see Transient Area Fetch routine) 
TACT 

(see transient area control table) 
TACTNEXT 

use of 27 
"TAHABEND subroutine 

function of 220 
TAHEXIT subroutine 

Index 503 



(see Transient Area Exit routine> 
TAHFETCH 

(see Transient Area Fetch routine) 
TARESTRT 

(see SVC Second-Level Interruption 
Handler) 

Task asynchronous exit routine 
scheduling of 51 

Task control block 
abnormal release of 226 
construction of 39 
definition of 14 
flags 

description of 251 
format of 250 
normal release of 184 
queuing of 43 

Task Removal routine 
description of 84 
entry point name of 478 
module name for 470 
synopsis of 490 

Task SWitching routine 
description of 80 
ent~ point name of 478 
flowcharts of 452,453 
module name for 462 
synopsis of 490 

Task timing 
description of 178 
flowchart of 411-412 

TASKSEL subroutine 
function of 217 

TAXEXIT 
(see Transient Area Exit routine) 

TAXRETRY 
(see Transient Area XCTL routine) 

TCB 
(see task control block) 

TCB fields 
formats of 250 
meaning of 250-252 

TCB flags 
meaqing of 251-252 

TESTDSP routine 
(see Task Removal routine) 

TESTOCT 
use of 224 

TESTRAN interpreter 
entry point name(s) of 419 
module names for 465,467 
use by the common subroutines of 
Contents Supe~ision 89 

use by the Model 91 Program 
In~erruption Handler 31 

use by the Overlay supervisor 366 
Time of expiration 

determining 149 
Time routine 

description of 148 
entry point name(s) of 479 
flowchart of 377 
module name for 466 
synopsis of 490 

Time- sl-ice control element 
pointers of 46 
creation of 15 
format of 296 

504 

Time-slicing feature 
Attach routine with 

description of 42 
flowchart of 334 

Chap routine with 
description of 45 
flowchart of 336-337 

description of 18 
Dispatcher routine with 

description of 178 
flowchart of 414-416 

EOT routine with 
description of 184 

Timer interruption handling 
description of 150 

Timer queue 
positioning of elements on 149 
purging elements from 207 

Timer queue element 
abnormal release of 207 
construction of 150 
definition of 149 
format of 292 
normal removal from timer queue 150 

Timer Second-Level Interruption Handler 
description of 150 
entry point names of 479 
flowchart of 380-382 
module name for 462 
synopsis of 490 

Timer SLIH 
(see the Timer Second-Level Interruption 
Handler) 

Timing 

TOX 

job step 178 
task 178 

(see time of expiration, determining) 
TQE 

(see timer queue element) 
Trace routine 

entry point 
function of 
module name 
synopsis of 

Trace table 

names of 
195 

for 470 
490 

format of 260,261 
function of 195 

479 

Transient Area Availability Check routine 
description of 25 
entry point name(s) of 479 
flowchart of 318 
module name for 470 
synopsis of 490 

Transient area block 
function of 25 

Transient area control table (TACT) 
definition of 25 
format of 262 

Transient Area Exit routine 
description of 171 
entry point name(s) of 479 
flowchart of 407 
module name for 470 
synopsis of 490 

Transient Area Fetch routine 
description of 28 
entry point name(s) of 479 



flowchart of 319 
module name for 470 
synopsis of 491 

Transient area fetch task 
purpose of 28 

Transient area fetch TCBs 
entry point name(s) of 479 
function of 28 
module name for 462 

Transient area handler 
flowchart of 317 
functions of 25-29 

Transient area I/O blocks 
associated transient area 

entry point name(s} of 
module name for 470 

(lOBs) and 
blocks 
479 

Transient Area Refresh routine 
description of 174 
entry point name(s} of 479 
flowchart of 408 
module name for 462 
synopsis of 491 

Transient area user count 
address of 294 
definition of 96 

Transient Area XCTL routine 
description of 92-97 
entry point name(s} of 480 
flowchart of 358 
module name for 462 
synopsis of 491 

Tree of terminating tasks 
illustration of 188 

TSCE 
(see time-slice control element) 

TTlMER routine 
description of 152 
entry point name(s) of 480 
flowchart of 379 
module name for 467 
synopsis of 491 

Twenty-four hour pseudo clock (T4PC) 
use of 148 

2250 System Operator's Console 
description of 18 

2250 system Operator's Console Support 
routines 

control flow of 230 
description of 229 
entry points of 472-473 
flowcharts of 440-450 
module names for 463,465 

Type-1 Exit routine 
description of 1.69 
entry point name(s) of 480 
flowchart of 404 
module name for 462 
synopsis of 491 

Type-1 SVC switch (IEATYPE1) 
entry point name of 480 
function of during ABTERM 
processing 190 

module name for 462 
T4PC 

(s~e twenty-four hour pseudo clock, use 
of) 

Use/responsibility count 
meaning of 99 
(see also CDUSE) 

User Exit routine 
scheduling of 70 

Validity Check routine 
description of 81 
entry point name(s} of 480 
module name for 462 
synopsis of 491 

Vary Storage Offline routine 
description of 140 
synopsis of 491 

Vary queue element (VQE) 
format of 300 

VQE 
(see vary queue element) 

Wait routine 
description of 53 
entry point name of 480 
flowchart of 341-342 
module name for 466 
synopsis of 491 

Write-to-Log routine 
entry point name of 480 
module name for 465 
synopsis of 491 

Write-to-Operator routine 
entry point name of 480 
module name for 466 
synopsis of 491 

WRITELOG Available Log Data Set routine 
entry point name of 480 
module name for 465 
synopsis of 491 

WRITELOG command 
use of 157 

WRITELOG Dispatch routine 
entry point name of 480 
module name for 465 
synopsis of 491 

WRITELOG Get Region 
entry point name 
module name for 
synopsis of 491 

routine 
of 480 
464 

WRITELOG Log Initialization routine 
entry point name of 480 
module name for 465 
synopsis of 491 

WRITE LOG Log Writer 
entry point name 
module name for 
synopsis of 491 

routine 
of 480 
465 

WRITELOG Master Wait routine 
entry point name of 480 
module name for 465 
synopsis of 491 

WRITELOG Open Device routine 
entry point name of 480 
module name for 465 
synopsis of 491 

WTL routine 
function of 157 
(see also Write-to-Log routine) 

WTO routine 
(see Write-to-operator routine) 

Index 505 



WTOR macro instruction 
use of 156 

WTOR Purge routine 
entry point name 
function as used 
function as used 
module name for 
synopsis of 491 

of 480 
by ABEND routine 201 
by EOT routine 182 
464 

XCTL pr<:>cessing 
description of 92 
entry point name of 480 
flowchart of 358'-360 
module name for 466 

506 





Y28-6659-3 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.10S01 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

>< 
'" 00 
I 

'" '" U1 

'" I 
w 



READER'S COMMENT FORM 

IBM System/360 Operating System 
MVT Supervisor 

Y28-6659-3 

Please check or fill in the items below, adding explanations and other comments 
in the space provided. 

Which of the following terms best describes your job? 

!:l Programmer !:l Systems Analyst !:l Customer Engineer 
!:l Manager !:l Engineer !:l Systems Engineer 
!:l Operator !:l Mathematician !:l Sales Representative 
!:l Instructor !:l Student/Trainee !:l Other (explain) 

Does your installation subscribe to the SRL Revision Service? !:l Yes !:l No 

How did you use this publication? 

n As an introduction 
!:l As a reference manual 
!:l As a text (student) 
n As a text (instructor) 
n For another purpose (explain) 

Did you find the material easy to read and understand? !:l Yes !:l No (explain below) 

Did you find the material organized for convenient use? !:l Yes !:l No (explain below) 

Specific criticisms (explain below) 

Clarifications on pages ________________________________________________________ __ 

Additions on pages 

Deletions on pages ______________________________________________________________ _ 

Errors on pages ________________________________________________________________ __ 

Explanations and other comments: 

Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



Y2B-6659-3 

YOUR COMMENTS PLEASE . . . 

This manual is one of a series which serves as reference sources 
for systems analysts, programmers and operators of IBM sys
tems. Your answers to the questions on ,the back of this form, 
together with your comments, will help us produce better publi
cations for your use. Each reply will be carefully reviewed by 
the persons responsible for writing and publishing this material. 
All comments and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assis
tance in utilizing your IBM system should be directed to your IBM 
representative or to the IBM sales office serving your locality. 

1 
1 

1 

I 
1 
1 

FOL.D FOL.D 1 

-----------------------------------------------1 

FOL.D 

BUSINESS REPLY MAl L 
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 

POSTAGE WILL BE PAID BY 

IBM CORPORATION 

NEIGHBORHOOD ROAD 

KINGSTON. N. Y. 12401 

ATTN: PROGRAMMING PUBLICATIONS 

DEPARTMENT 637 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.I06m 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

FIRST CLASS 
PERMIT NO. 116 

KINGSTON, N. Y. 

FOL.D 

I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
1 
I 
I 
I 
I 
I 

to< 
N 
co 
I 

0\ 
0\ 
U1 
'l) 

I 
W 

'"" 



Technical Newsletter File Number 

Re: Form No. 

This Newsletter No. 

S360-36 

Y28-6659-3 

Y27-7190 

Date April 28, 1969 

Previous Newsletter Nos. 

MVT SUPERVISOR PU,1 

This Technical Newsletter, a part of a special distribution 
supporting Advanced Checkpoint/Restart under r·lodel 65 r·'lultipro
cessing, provides replacement pages for the publication IBM 
System/360 Operating System: MVT Supervisor Program Logic Manual; 
Form Y28-6659-3. 

Pages to be replaced or added are: 

121-122 
1 22 . 1 - 1 22 . 2 (added) 
367-368 
368.1-368.2 (added) 

Text changes are indicated by a vertical line to the left of the 
affected text; changes to illustrations are indicated by a bullet 
(e) to the left of the caption. 

Summary of Amendments 

This Technical Newsletter includes information for Advanced 
Checkpoint/Restart under Model 65 Multiprocessing. 

Please file this cover letter at the back of the manual to pro
vide a record of changes. 

Restricted Distribution 

IBM Corporation, Programming Publications, Dept. 637, Neighborhood Road, Kingston, N. Y. 12401 

PRINTED IN U. S.A. 

None 




