
•

IBM System/360 Operating System

Control Program With MFT

Program Numbers 360S-CI-505
360S-CI-535

File No. S360-36
Form Y27-7128-3

Program Logic

This publication describes the internal logic of the
IBM System/360 Operating System control program to the
extent that it is modified for MFT. Included are
discussions of MFT system initialization, supervisor
services, and job management services. The job manage
ment discussion includes explanations of the communica
tions task, master scheduler task, queue manager,
reader/interpreter, initiator/terminator, system output
writers, and system task control.

This publication may be used to locate those areas
of the system to be analyzed or modified. The informa
tion is presented to enable the reader to relate MFT
functions to the program listings (coding) for those
functions. Comments in the listings provide informa
tion for thorough analysis and understanding of the
coding.

Program Logic Manuals are intended for use by IBM
customer engineers involved in program maintenance, and
by system programmers involved in altering the program
design. Program logic information is not necessary for
program operation and use; therefore, distribution of
this manual is limited to persons with program main
tenance or modification responsibilities.

Restricted Distribution

!

RESTRICTED DISTRIBUTION: This publication is intended
primarily for use by IBM personnel involved in program
design and maintenance. It may not be made available
to others without the approval of local IBM management.

Fourth Edition (May 1968)

This publication corresponds to Release 16. It is a
major revision of, and renders obsolete, IBM System/
360 Operating System: control Program With MFT,
Program Logic Manual, Form Y27 7128 2.

The text and illustrations have been changed to
reflect the following:

• The Dispatcher and Master Scheduler descriptions
have been modified to include time-slicing infor
mation relevant to MFT.

• The Small Partition Scheduling description has
been revised to include more information.

• A description of the MFT modifications to the
AEEND modules has been included in the Supervisor
section.

• In Appendix A, three tables and/or work areas were
revised to reflect changes in their format.

e In Appendix B, some module descriptions have been
revised, and others added, to reflect incremental
itr{:rovements.

e In Appendix C, two new flowcharts were added,
including One for the ABEND control flow, and one
for the Dispatcher 'with time-slicing included in
the system. Several others were modified to
reflect changes in the logic flow.

New or modified material is indicated by a vertical
bar to the left of the affected text. The symbol (e)
to the left of an illustration caption indicates a
revision to that illustration.

Significant changes or additions to the specifications
contained in this publication are continually being
made. When using this publication in connection with
the operation of IBM equipment. check the latest SRL
Newsletter for revisions or contact the local IBM
branch office.

This publication was prepared for production using an IBM
update the text and to control the page and line format.
sions for photo-offset printing were obtained from an IBM
using a special print train.

computer to
Page impres-

11103 Printer

Copies of this and other IBM publications can be obtained through IBM
branch offices.

A form for reader's comments appears at the back of this publication.
Address any additional comments concerning the contents of this publica
tion to IBM Corporation, Programming Publications, Department 637,
Neighbcrhood Road, Kingston, New York 121101

© Copyright International Business l1achines corporation 1967, 1968

..

This publication describes the dif
ferences in internal logic of the control
program that result from the inclusion of
mUltiprogramming with a fixed number of
tasks (MFT). It is assumed that the reader
of this publication is thoroughly familiar
with the basic operation of the control
program. Only areas of difference are
discussed in this pUblication.

The manual is divided into four major
sections. The Introduction describes con
trol prcgram fUnctions, control program and
main storage organization, and control pro
gram processing flow. The Nucleus Initial
izaticn Program section describes dif
ferences introduced by MFT into system
initialization. The Supervisor section
describes supervisor functions including an
explanation of task dispatching in ~~T.

The Job Management section contains the
changes to the job management components
made by MFT. Job management is divided
into three major components: reader/
interpreter, initiator/terminator, and out
put writer. Also described are the Queue
Manager which is used by all three major
job management components, the Communica
tions Task which handles operator-system
communication, and the Master Scheduler
Task which processes operator commands.

Appendix A contains descriptions of
major tables and work areas used by MFT.
Appendix B contains descriptions of modules
used by MFT. Appendix C contains MFT
flowcharts.

PREREQUISITE PUBLICATIONS

Knowledge of the information
following publications is required
full understanding of this manual.

PREFACE

in the
for a

IBM System/360: Principles of Opera
tion, Form A22-6821

IBM-sy5tem/360 Operating System: Intro
duction to Control Program Logic,
Program Logic Manual, Form Y28-6605

IBM System/360 Operating System: Fixed
Task supervisor, Program Logic Manu
al, Form Y28-6612

IBNSystem/360 Operating System: MVT
Job Management, Program Logic Manual,
Form Y28-6660

IBM System/360 Operating System: Ini
tial Program Loader and Nucleus Ini
tialization Program, Form Y28-6661

IBM System/360 Operating System: Plan
ning for Multiprogramming With a
Fixed Number of Tasks (MFT), Form
C27-6939

The following publications may be useful
for reference although they are not prere
quisites for this publication.

IBM System/360 Operating System: Con
cepts and Facilities, Form C28-6535

IBM System/360 Operating System: Link
age Editor, Form C28-6538

IBM System/360 Operating System: System
Programmer's Guide, Form C28-6550

IBM System/360 Operating System: System
Generation, Form C28-6554

IBM System/360 Operating System: MVT
control Program Logic Summary, Form
C28-6658

IBM System/360 Operating System: Input/
Output Supervisor, Program Logic
Manual, Form Y28-6616

3

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

INTRODUCTION ••• • • • • •• • • •
Functions of the Control Program with MFT •

Job Management
Task Management • • • • •• • • •
Data Management • •• • •• '.. • • • • •

Control Program Organization
Resident Portion of the Control Program •
Nonresident Portion of the Control Program

Main Storage Organization • • • • •
Fixed Area • • • •
Dynamic Area • • • • • • •

Theory of Operation • • • • •

NUCLEUS INITIALIZATION PROGRAM
General System Initialization •

Defining Control Program Areas
Determining User Options
Redefining the System Queue Area
Locating the BLDL List and Resident

Main Storage Preparation • • • •

SUPERVI SOR •• • • • • ,.
Interruption Supervision • • • •

The Dispatcher (Macro IEAAPS)
ABEND Service Routine • • • •

Modules •

System Quiesce Routine (IEAGTWST) • • •• •
STAE Service Routine

Task Supervision • • _ • • • _ • • •
The Attach Routine (Macro IEAAAT) • • • •

CONTENTS

9
• 10

• . . ,. • • . 10
• 10
• 10
• 11
• 11
• 13

• . • • . 13
• • . • . 13

· ,. . 13
• 14

• • 18
· • • • • • . 18

• • • • • 18
' •• 18

• 18
• 19
• 19

• • 22
• 22

• '. • • • 22
• ,. • • 29

30
• 31

• • • 31
• • • 31

The Wait Routine (Macro IEAAWT) • • • • • •• • • • • 31
The Post Routi ne (Macro IEAAPT) • '. • • • • • • 32
The ENQ/DEQ Routine (IEAGENQ1) •••• • • • • • 32

Contents Supervision •••• • • • •
LINK Service Routine (Macro IEAATC) •
ATTACH Service Routine (Macro IEAAAT)
LOAD Service Routine (Macro IEAATC)
XCTL Service Routine (Macro IEAATC) •
IDENTIFY Service Routine (IEAAIDOO) , ••
DELETE Service Routine (IEAADLOO, IEABDLOO) •
SYNCH Service Routine (IEAASYOO)

Main Storage supervision
Timer supervision. • • • • • '. • • •

Timing Procedure •• ,.. • •••

• • 33
• 33

• • • • • .. • 33
• _ _ • • • • • • 33

• • • • • • 33
• 34

• • , • 34
• • • • • • • • 34

• 34
• • • 34

• 34
Timer Pseudo Clock Routine (IEATPC) ,. • .••• • ,. • • • • • 34
Comparison of PCP, MFT, and MVT Timer supervision. • 34

OVerlay supervision • • • • • • • • •• •
Mft Recording/Recovery Routines ,. • • • •

Machine-Check Routines • • •• • • '. •
Channel-Check Routine • _ • • • • • • • •
Systems Without Recording/Recovery Routines •
Entry to Recoding/Recovery Routines

JOB MANAGEMENT •• ,. • .• • • • • • • • •
Job Scheduler Functions • • • • • • • • •
communications Task Functions
Master Scheduler Task Functions •
Job Management Control Flow •

COMMAND PROCESSING •••• •• .• • • • .• •
Communications Task • • • .• • • •

WTO/WTOR Macro Instruction Processing

• • • .. • 34
• 34

• • 34
• • .• • • 34

34
• 34

I. • • ,. .• • • • • • • 35
,. • • .• • • 35

• '. 35
• 35
• 35

• • 38
• 38

• • .. • • • • • • 38
External Interruption Processing • • • • • • • • • • • 38

• • .• • • 38 communications Task Modules • .•• • •• • •

Console Attention Interruption Routine (IEECVCRA)
Communications Task Wait Routine (IEECVCTW) • ••
Communications Task Router (IEECVCTR) • '" • • • •• •

• • • • • • • 40
• 40
• 40

Console Device Processor Routines (IEECVPMX, IEECVPMC. IEECVPMP) • 40
Write-to-operator Routines (IEECVWTO and IEEVWTOR)
External Interruption Routine (IEECVCRX) •.•• .•

Master Scheduler Task ,. • • • .• .• .• '" '" .•
SVC 34 Functions ,. • • • • • • • • •
System Initialization • • • • • .•••
Partition Definition by the Master Scheduler ••.••

JOB PROCESSING • • • '"

• 41
• • I ••• I • • 41

• 42
'. • • • 42

• 43
• 45

• • • • 48
• .• • ,. • 48 Queue Manager • • • .• • • •

Work Queues • • • • '.. '.
Queue Management ••••
Job Queue Initialization

_ _ '" • • • • • • 48

Queue Manager Modules

• • • • • • • 48
• • 49

• 50
Reader/Interpreter • • '" • _ • • _ • 55

Resident Readers • •• • .• • • • • 55
Transient Readers • .• • .• • • • • • 55
Reader Control Flow • • ,.. .• • • '" • • • • • 55

• 56 Initiator/Terminator (Scheduler) ••••
Job Selection (IEFSD510). • .• • • • _ • _ • • • • • _ • • • 57
Small Partition Scheduling .• • • .•
Initiator/Terminator Control Flow ••

System Output writers 0 • •• •• •• • •• •

Resident writers ••.• '. '. .•• • ,. • '" '"
Non-Resident writers •.•.• '" .•• ,. '"
System Output writer Modules • • • '" • • • • •

System Task Control • • ,. '" ,. • • •
Initiating System Tasks • • • • '"

System Restart • • .• '" '" '" • •

APPENDIX A: TABLES AND WORK AREAS
command scheduling Control Block (CSCB) '.
Data Set Enqueue Table (DSENQ) ••.• ,.
Interpreter Work Area (IWA) .•
Job Control Table (JCT).. • •• .• '" ,. • .• • .• .•

• • • ,. • 58
.• • 62

• 65
• • • • 65

• .• • 65
• • '" • • 65
.• • • • .• .• • 66

• '. .• • • 67
• 68

• 69
• 69

• • 71
• • '" • • .• • 72

• 75
Job File Control Block (JFCB) and Extension (JFCBX) .•••• • 77

• • • 17 Life-of-Task (LOT) Block • • '" • .• • • • •
Linkage Control Table (LCT) • • • ,. .• ,. '" ••
Master Scheduler Resident Data Area. • ,. '" •
Partition Information Block •• .••
Small Partition Information List (SPIL) •
step Control Table (SCT)
Step Input/OUtput Table (SlOT)
Task Input/Output Table (TIOT). .• • '" •

APPENDIX B: MFT MODULES
New MFT Modules .• .• ••
Major Component Modules • •
Module Descriptions .••

APPENDIX C: FLOWCHARTS

INDEX •.••

• • • • • 77
• 11

80
.• • • ,. • 82

• 82
• • • • • 83

• 85

• • 88
• 88
• 88

'. • • • • 92

• .• • .125

.155

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

ILLUSTRATIONS

FIGURES

Figure 1. Main Storage Organization in MFT . • • • • 9
Figure 2. Division of Main Storage • • _ • • 12
Figure 3. MFT Theory of Operation (Part 1 of 4) ••••••. •• 14
Figure 4. Main storage During Execution of NIP. • • • . ••• 20
Figure 5.. Main Storage at Termination of Master Scheduler
Initialization • • . • • • • 21
Figure 6. MFT Supervisor ••••• .••• . • • • •• • • . 23
Figure 7 • TCB Queue • • • • • • • • • • • • .• • • • • • 24
Figure 8. Dispatching Communications and Master Scheduler Tasks • 26
Figure 9. Task switching ••••••••.• • . • .• . • 27
Figure 10. System Control Block Relationship .•••••• • • 32
Figure 10A. Recording/Recovery Routines •• 34
Figure 11. Job Management Data Flow • • • • • • 36
Figure 12. Command Processing Flow • • • . • • • • ••. 38
Figure 15. START Command Processing Flow • • • • • • • 43
Figure 16. DEFINE Command processing Flow • • • • . . •. 46
Figure 18. Job Queue Control Record (QCR) • • • • . • • • 49
Figure 19. Logical Track Header (LTH) Record Format • • •• • • 50
Figure 20. Sample Job Queue (SYS1.SYSJOBQE) Format After
Initialization ••••• _ •• • • • • • • • • 51
Figure 21. Input and output Queue Entries .•• •• • 52
Figure 22. Table Breakup Parameter List •• 54
Figure 24. Scheduling a Problem Program in a Small Partition • 59
Figure 25. Scheduling a Writer in a Small Partition •••• • 60
Figure 26. Allocate/Terminate Parameter List •••• • 63
Figure 27. User • s Parameter List •••.••••.• • • 63
Figure 28. Scheduling a Writer in a Large Partition •• • • • 66
Figure 29. START Descriptor Table (SDT) ••••.•••••••••• 67
Figure 30. Command Scheduling Control Block (CSCB) •.•••• 70
Figure 31. Data Set Enqueue Table (DSENQ) •••••• 71
Figure 32. Interpreter Work Area (IWA) (Part 1 of 2) • • • • • 73
Figure 33. Job Control Table (JCT) • • . . • • 76
Figure 34.. Job File Control Block (JFCB) and Extension (JFCBX) •• 76
Figure 35. Life-of-Task (LOT) Block • • • • • • 78
Figure 36.. Linkage Control Table (LC'I) • .• • .• • • • • • 79
Figure 37. Master Scheduler Resident Data Area. .• • • .• • • 80
Figure 38. Partition Information Block (PIB) • • 81
Figure 39. Small Partition Information List (SPIL) ••••• 82
Figure 40. step Control Table (SCT). • • • • 84
Figure 41. Step Input/Output Table (SlOT) • • .• • • 86
Figure 42.. Task Input/Output Table ('IIOT) • .•• • • • 87

TABLES

Table 1- Initial Responders to Commands · · · · · · • 37
Table 2. New MFT r-lodules · · · · · · · · · · • • 88
Table 3. ABEND Modules · · · · · · · · • • • 8 q
Table 4. communication Task Modules · · · · • • • • 89
Table 5. Initiator Modules · · · · · · · · · • 89
Table 6. I/O Device Allocation Modules · · · · • • • • • 89
Table 7. Interpreter Modules • 90
Table 8. Master Scheduler Modules · • • • • • 90
Table 9. Queue Management Modules · · · · · · • 90
Table 10. SVC 34 Modules . · · · · · · · · • 90
Table 11- System Output Writer Modules · · · · • 91
Table 12. system Restart Modules · · · · · · · · • • • • • 91
'fable 13. System Task Control Modules • • • • 91
Table 14. Termination Modules · · · · · · · · · · • • 91

CHARTS

Chart 01 .• Nucleus Initialization Program · · · · · · · .125
Chart 02. Task Dispatcher (without Time Slicing) · · · · · · .126
Chart 03. Task Dispatcher (with Time Slicing) · · · · · · · .127
Chart 04. ABEND Control Flow · · · · '. · · · .128

J Chart 05. Communications Task · · · · · · · · · · · · · .129
Chart 06. SVC 34 Coromand Processing · · .130
Chart 07. Master Scheduler Task · · · · · · · · .131
Chart 08. Master Scheduler Resident Command Processor · · · · .132
Chart 09. Queue Search . . · · · · · · · · · · · · · · · .133
Chart 10. Queue Manager Table Breakup Routine · · · · · .134
Chart 11- Reader/Interpreter (Sheet 1 of 3) · · · · · .135
Chart 12. Reader/Interpreter (Sheet 2 of 3) · .136
Chart 13. Reader/Interpreter (Sheet 3 of 3) · · · · .137
Chart 14. JCL Statement Processors · · · · · · · · .138
Chart 15. Job and Step Enqueue Routine · · · '. · · .139
Chart 16. Transient Reader Suspend Routine · .. · · .140
Chart 17. Transient Reader Restore Routine · · · · · · · · .141
Chart 18. Initiator Control Flow · · .. · · .142
Chart 19. Job Selection Routine (Sheet 1 of 5) · · · · · · · .143
Chart 20. Job Selection Routine (Sheet 2 of 5) · · · · · .144
Chart 21- Job Selection Routine (Sheet 3 of 5) · · · · '. .145
Chart 22. Job Selection Routine (Sheet 4 of 5) · · · · · · · · · · .146
Chart 23. Job Selection Routine (Sheet 5 of 5) · · .147
Chart 24. Small Partition Routine (Sheet 1 of 4) .148
Chart 25. Small Partition Routine (Sheet 2 of 4) .149
Chart 26. Small Partition Routine (Sheet 3 of 4) · .150
Chart 27. small Partition Routine ($heet 4 of 4) · .151
Chart 28. System Output Writer Control Flow · · · · .152
Chart 29. System Output Writer · · · · · · · · · · .153
Chart 30. System Task Control · · · · '. · · · · · · · .154
Chart 31. System Quiesce Routine · .. · .154

In a single task environment, main
storage is divided into two areas: the
fixed area, and the dynamic area. In
multiprogramming with a fixed number of
tasks (MFT), the dynamic area is divided
further into as many as fifty-two discrete
areas called partitions. Figure 1 shows
the division of main storage.

The system area, located in the lower
portion of main storage, contains the resi
dent portion of the control program, and
contrcl blocks and tables used by the
system. The size of the system area
depends on the number of partitions estab
lished by the user, and the control program
options selected at system generation.

Partitions are defined within the dynam
ic area, located in the upper portion of
main storage, at system generation. The
number of partitions may be varied within
the number specified at system generation,
and the sizes and job classes of partitions
may be redefined at system initialization
or during operation. (See IBM System/360
Operating System: Planning for Multipro
gramming with a Fixed Number of Tasks
(MFT), Form C27-6939.) Each partition may
be occupied by a processing program, or by
contrel program routines that prepare job
steps for execution (job management rou-

Low Address

INTRODUCTION

tines), or handle data for a processing
program (access method routines).

NFT provides for the concurrent execu
tion of as many as 15 problem programs, 3
input readers, and 36 output writers, each
in its own fixed partition of main storage,
as long as the total number of 12rtitions
does. not exceed 52. The MFT system pro
vides for task switching among the tasks
operating in the partitions, and between
those tasks and the communications task and
master scheduler task in the system area.

Task dispatching in MFT differs from the
primary control program (PCP) primarily in
that task switching is required, and that
certain system functions such as abnormal
termination must be carried out so that
other, unrelated, tasks are not affected.
The dispatching priority of a task is
determined by the relative position of the
partition used to process the task. The
highest-priority partition (PO) is at the
highest address in storage. successively
lower partitions (Pi - PSi) have correspon
dingly lower priorities. Control of the
CPU is given to the program in the highest
priority partition that is ready.

The integrity of programs operating
under MFT is preserved if the storage
protection feature is inclUded. MFT uses

Partition (n-1) Partition 0

High Address
______________________________ ~y---------------------------------A~----------------,y-----____________ 1

System Area Dynamic Area

Legend: c:=J Required Portion of the Fixed Area

Optional Features

n Number of Partitions Generated

Figure 1. Main Storage Organization in MFT

Introduction 9

the 16 protection keys to prevent a user
job from modifying the control program or
another job; it uses the two operating
states of the CPU to restrict the use of
control and I/O instructions.

Because many components of MFT are Sl.ml.
lar to those of PCP and multiprogramming
with a variable number of tasks (MVT), many
of the modules for a given MFT component
are the same for the comparable component
in either PCP or MVT. Therefore, this
publication describes differences between
MFT and the other configurations. The
corresponding PCP and MVT routines are
described in the following IBM System/360
Operating System program logic manuals and
are referenced where applicable:

Fixed Task Supervisor, Form Y28-6612

MVT Supervisor, Form Y28-6659

MVT Job Management, Form Y28-6660

Information on modified or new routines for
MFT is contained in the three sections that
follow this introduction.

The Nucleus Initialization ProQram (NIP)
section describes the changes that have
been made to NIP for MFT. The major area
of change is the deletion of some of the
NIP functions, which are now performed by
other system tasks (e.g., system initiali
zation is performed by the master scheduler
task in MFT).

The Supervisor section describes the
task management modifications made to the
supervisor for MFT. The major area of
change has been in the initialization of
main storage.

The Job Management section describes
modifications and additions to the routines
for processing communications with the pro
grammer and the operator. The major
changes are in the master scheduler task,
and the MFT initiator. other modifications
have been made to the queue manager, the
reader/interpreter, system output writer,
and system task control routines.

FUNCTIONS OF THE CONTROL PROGRAM WITH MFT

As in PCP and MVT, the control program
routines of MFT have three major functions:
job management, task management, and data
management.

JOB MANAGEMENT

Job management is the
communications from the

10

processing
programmer

of
and

operator to the control program. There are
two types of communications: operator com
mands, which start, stop, and modify the
processing of jobs in the system, and job
control statements, which define work being
entered into the system. Processing of
these commands and statements is referred
to as command processing and job process
ing, respectively.

TASK MANAGEMENT

Task management routines monitor and
control the entire operating system, and
are used throughout the operation of both
the control and processing programs. Task
management has six major functions:

• Interruption supervision

• Task supervision

• Main storage supervision

• contents supervision

• Overlay supervision

• Timer supervision

The task management routines are collec
tively referred to as the "supervisor."

DATA MANAGEMENT

Data management routines control all
operations associated with input/output
devices: allocating space on volumes,
channel scheduling, storing, naming, and
cataloging data sets, moving data between
main and auxiliary storage, and handling
errors that occur during input/output
operations. Data management routines are
used by processing programs and control
program routines that require data move
ment. Processing programs use data manage
ment routines primarily to read and write
required data, and also to locate input
data sets and to reserve auxiliary storage
space for output data sets of the process
ing program.

Data management routines are of five
categories:

• Input/Output (I/O) supervisor,
supervises input/output requests
interruptions.

which
and

• Access methods, which communicate with
the I/O supervisor.

• Catalog management, which maintains the
catalog and locates data sets on auxil
iary storage.

• Direct-access device space
(DADSM), which allocates
storage space.

management
auxiliary

• Open/Close/End-of-Volume, which per
forms required initialization for I/O
oFerations and handles end-of-volume
conditions.

The operation of these routines is identi
cal with MVT and is described in the
following IBM Systern/360 Operating system
program logic manuals:

Input/output Supervisor, Form Y28-6616

sequential Access Methods, Form Y28-6604

Indexed Sequential Access Methods, Form
Y28-6618

Basic Direct Access Method, Form
Y28-6617

Graphics Access Method, Form Y27-7113

catalog Management, Form Y28-6606

Direct Access Device Space Management,
Form Y28-6607

Input/Output Support (OPEN/CLOSE/EOV>,
Form Y28-6609

CONTROL PROGRAM ORGANIZATION

The control program resides on auxiliary
storage in three partitioned data sets
created when the system is generated.
These data sets are:

• The NUCLEUS partitioned data set (SYS1.
NUCLEUS>, which contains the Nucleus
Initialization Program (NIP) and the
resident portion of the control
program.

• The SVCLIB partitioned
SVCLIB>, which contains
routines, nonresident
routines, and the
routines.

data set (SYS1.
nonresident SVC
error-handling

access methods

• The LINKLIB partitioned data set (SYS1.
LINKLIB>, Which contains other nonresi
dent control program routines and IBM
supplied processing programs.

RESIDENT PORTION OF THE CONTROL PROGRAM

~e

control
It is
blocks,

resident portion (nucleus> of the
program resides in SYS1.NUCLEUS.
made up of those routines, control
and tables that are brought into

main storage at initial program loading
(IPL) and are never overlaid by another
part of the operating system. The nucleus
is loaded into the fixed area of main
storage.

The resident task management routines
include all of the routines that perform:

• Interruption supervision

• Main storage supervision

• Timer supervision

They also include portions of the routines
that perform:

• Task supervision

• Contents supervision

• Overlay supervision

These routines are described in this p~bli
cation, and in the program logic manual IBM
Systern/360 Operating System: Fixed Task
Supervisor, Form Y28-6612.

The resident job management routines are
those routines of the communications task
that receive commands from the operator.
The MFT communications task is described in
this publication.

The resident data management routines
are the input/output supervisor and,
optionally, the BLDL routines of the parti
tioned access method. These routines are
described in the following IBM Systern/360
Operating system program logic manuals:

Input/Output Supervisor, Form Y28-6616

Seguential Access Method, Form Y28-6604

The user may also select access method
routines to be made resident. These rou
tines are referred to as resident access
methods (RAM), and are loaded during system
initialization rather than during Open pro
cessing. RAM modules reside adjacent to
the higher end of the system queue area
unless the BLDL table is resident (see
Figure 1).

Normally-transient SVC routines (i.e.,
types 3 and 4 SVC routines> can be made
resident through the RSVC option, specified
by the user. At IPL, NIP loads these
routines adjacent to the higher end of the
RAM modules. If there is no resident BLDL
table or RAM modules, the routines are
loaded adjacent to the higher end of the
system queue area. (See Figure 1.>

Introduction 11

SVC
Transient
Area

Low Address

[OS
Transient

Area

Processing
Program

or
Job
Management
Routine

(Lowest
Priority
Partition)

P(n-I)

Non-Resident
Control Progrom
Routines or

Processing Program

Routines
Brought
In Via
LINK,
ATTACH,

and
XCTL
Macro

Partition
(Typical for Each)

PI

Access
Method
Routines

TIOT User User
Parameter Save
Area Area

/

/
/

/
High Address

(Highest
Priority
Partition)

PO

~--------~yr-----------')\~--~yr--~
System Area Dynami c Area

n = number of partitions generated

Figure 2. Division of Main storage

12

NONRESIDENT PORTION OF THE CONTROL PROGRAM

The nonresident portion of the control
program comprises routines that are loaded
into main storage as they are needed, and
which can be overlaid after their comple
tion. The nonresident routines operate
from the partitions and from two sections
of the nucleus called transient areas
(described below).

MAIN STORAGE ORGANIZATION

Main storage in MFT is
larly to main storage in
MFT does not use a link
Figure 1).

FIXED AREA

organized S1rn~
MVT, except that
pack area (see

In MFT (as in PCP and MVT) the fixed
area is that part of main storage into
which the nucleus is loaded at IPL. The
storage protection key of the fixed area is
zero so that its contents can be modified
by the control program only. The fixed
area also contains two transient areas into
which certain nonresident routines are
loaded when needed: the SVC transient area
(102Q bytes) and the I/O supervisor tran
sient area (102Q bytes). These areas are
used by nonresident SVC routines and non
resident I/O error-handling routines,
respectively, which are read from
SYSl. SVCLIB.

Each transient area contains only one
routine at a time. When a nonresident SVC
or error-handling routine is required, it
is read into the appropriate transient
area. The transient area routines operate
with a protection key of zero., as do other
routines in the fixed area.

System Queue Area

The system queue area (SQA) is estab
lished by NIP adjacent to the fixed area

and provides the main storage space
required for tables and queues built by the
control program. The SQA must be at least
1600 bytes for a m~n~murn two-partition
system. Its storage protection key is zero
so that it can be modified by control
program routines only. Data in the system
queue area indicates the status of all
tasks.

DYNAMIC AREA

Figure 2 shows how the contents of each
partition in the dynamic area are organized
and how they are related to the rest of
main storage. Routines are brought into
the high or low portion of an MFT partition
similarly to the way routines are brought
into the entire dynamic area of PCP. Job
management routines, proceSSing programs,
and routines brought into storage via a
LINK, ATTACH, or XCTL macro instruction,
are loaded at the lowest available address.
The highest portion of the partition is
occupied by the user parameter area and
user save area. The next portion of the
partition is occupied by the task input/
output table (TIOT) which is built by a job
management routine (I/O Device Allocation
routine). This table is used by data
management routines and contains informa
tion about DD statements.

Each partition may be used for a problem
program as well as for system tasks
(readers, initiators, and writers). When
the control program requLres main storage
to build control blocks or work areas, it
obtains this space from the partition of
the processing program that requested the
space. Access method routines and routines
brought into storage via a LOAD macro
instruction are placed in the highest
available locations below the task input/
output table.

Working storage and data areas are
assigned from the highest available storage
in a partition.

Introduction 13

THEORY OF OPERATION

Figure 3 describes the overall processing flow through each job cycle. These'~
paragraphs describe the processing performed by various components of the control program ~
as it loads the nucleus, reads control statements, initiates the job step, causes
processing to begin or end in other partitions, and terminates the job step.

r---,

IPL

Load Nucleus

NIP

Initialize Nucleus

MASTER SCHEDULER

Initialize System

COMMUN ICA TlONS
TASK

Initialize
Work

Queues

Interpret
Commands

Yes

Definition Routine

Make
Reguested
Changes

START Reader
START Writer
START IN IT
SET

To load the nucleus, the operator sets
the LOAD UNIT switches to the device on
which the system residence volume is
mounted, and presses the LOAD button on the
operator control panel. This causes an IPL
record to be read and to be given control.
This record causes the second IPL record to
be read, which in turn, enables the rest of
the IPL program to be read into main
storage.

The IPL program searches the volume
label of the system residence volume to
locate the volume table of contents (VTOC).
The VTOC is then searched for the address
of the nucleus data set (SYS1.NUCLEUS).
The nucleus is brought into the system
area, and NIP is brought into the dynamic
area. NIP receives control from the IPL
program. It performs both required and
optional initialization for control program
operation including initializing the Com
munication vector Table (CVT), and general
system initialization, such as determining
user options. After completing its pro
cessing, NIP passes control to the master
scheduler task (MST) which initializes main
storage.

Partitions are established by the master
scheduler at system initialization accord
ing to the sizes and job class (es) estab
lished at system generation by the PARTITNS
macro instruction. The MST also places a
copy of the Initiator/Terminator into each
scheduler-size partition: a copy of the
small partition module is placed in each
small partition. The communications task
receives control from the MST and communi
cates with the operator to request any
partition changes. After the requested
changes, if any, have been made by the
definition routines, the work queues are
initialized. The automatic commands are
displayed, and the READY message is issued.

Figure 3. MFT Theory of Operation (Part 1 of 4)

14

r---,

?
SUPERVISOR

Bring Writer
Into Its

Assigned
Partition

(See Part 4 of 4)

Bring Reader
Into Its
Assigned
Partition

1
READER

Read and
Interpret

Control Statements

Build Tables and
Enter Job on

Appropriate Input
Wark Queue

Write Data in
Input Stream

onto Direct-Access
Storage Devi ce

1
SUPERVISOR

Bring
Initiator/

Terminator
Into

Partition

~

(Data

£DD

(EXEC

/JOB

I f-

~
Input
Work
Queues

~

Input
Data
Sets

-
;--

When the required SET and START commands
are entered, control is given to the master
command routine. After the communicaticns
task completes processing of tlle comma.nds,
a copy of the Reader/Interpreter (reader)
is brought into its appropriate partition.
If a START writer command is entered, a
copy of a writer is also brought into the
specified partition(s).

When the reader gets control, it reads
control statements and data frcm the input
job stream. Information from the JOB,
EXEC, and DD statements controls the execu
tion of each job step. This information is
placed in the following tables:

• Job control table (JCT) for the job
being read

• Step control table (SCT) for the step
being read

• Data set enqueue table (DSENQ) for the
job being read

• Job file control block (JFCB) and step
input/output table (SlOT) for each data
set being used or created by the job
step

• Volume
volume
job.

table (VOLT) containing each
serial number to be used by the

Information from these tables and control
blocks is updated with information in the
data control block (DCB) and data set
control block (DSCB) or volume label when a
data set is opened during step execution.

The reader then places these updated
control blocks into the input work queue
corresponding to the CLASS parameter on the
JOB statement. Data sets in the input
stream are written onto a direct-access
storage device for later use by the problem
program.

After the reader has completed process
ing all input for a job and has entered the
job on an input work queue, all initiators
that are waiting for that job class are
posted. If the job is for a srr.all parti
tion, the small partition module is also
posted.

___ J

Figure 3. MFT Theory of Operation (Part 2 of 4)

Introduction 15

r---,
I
I

cp
INITIA TOR/TERMINATOR

Determine Step to
Be Initiated

Locate Input
Data Sets

Assign
Input/Output

Devi ces to Data
Sets

Allocate
Auxiliary
Storage Space

Write Tables
and

Control Blocks

1
SUPERVISOR

Bring Problem
Program Into

Partition

dJ

.....
......

Input
Work
Queues

After receiving control, the initiator/
terminator prtpares to initiate the highest
priority job in its primary input work
queue. Using information which the reader
extracted from the DD statement, the
initiator/terminator processes the user
accounting routine, in addition to the
following:

Locates Input Data Sets: The Allocation
routine, running as a subroutine of the
initiator/terminator, determines the volume
containing a given input data set by
examining the JFCB, or by searching the
catalog. This search is performed by a
catalog management routine entered from
allocation. (A description of the routines
that maintain and search the catalog is
given in IBM System/360 Operating System:
Catalog Management, Program Logic Manual,
Form Y28-6606.)

Allocates I/O Devices: A job step cannot
be initiated unless there are enough I/O
devices to fill its needs. Allocation
determines whether the required devices are
available, and makes specific assignments.
If necessary, messages are issued to the
operator to request the mounting of
volumes.

Allocates Auxiliary Storage Space: Direct., '~.
access volume space required for output ~
data sets of a job step is acquired by the
allocation routine, which uses the Direct
Access Device Space Management (DADSM) rou-
tines. (A description of the operation of
the DADSM routines is given in the publica-
tion IBM System/360 Operating System:
Direct Access Device Space Management, Pro
gram Logic Manual, Form Y28-6607.)

The JFCB, which contains
concerning the data sets to be
step execution, is written
storage. This information is
data step is opened, and when
the job step is terminated.

information
used during
on auxiliary

used when a
it is closed,

The initiator causes itself to be
replaced by the problem program it is
initiating (if for a large partition), or
initiates the job in a small partition.

The problem program can be an IBM
supplied processor (e.g., COBOL, linkage
editor), or a user-written program. The
problem program uses control program ser
vices for operations such as loading other
programs and performing I/O operations.

Figure 3. MFT Theory of Operation (Part 3 of 4)

16

cp
Allow Highest
Priority Ready

Task to
Execute

~
SUPERVISOR

OPEN/CLOSE/
EOV

Set Up for Du~,
if Required

Load
Initiator/

Terminator

!
INITIATOR/TERMINATOR

User
Accaunting

Routine

Dispose or
Data Sets,

Write Message.

Enqueue Work
for Output
Writer an
Output War!<
Queue

\b
SYSTEM OUTPUT WRITER

Dequeue Entry From
Appropriate Sysout

Queue

Write Data and
Messages onto

User-Specified
Device

Delete Entry
From the Queue

Dequeue the Next
Entry From the
Q

Input
Data
Sets

Output
Data
Sets

Output
Work
Queues

Output
Data
Sets

T

Punch ,/' I
~ l Tape

L:;:J

The problem program processes until it
terminates either normally or abnormally,
though it may not retain exclusive control
of the CPU. Control always is received by
the highest priority task that is ready to
execute.

When the problem program terminates, the
supervisor receives control. The supervi
sor uses the OPEN/CLOSE/EOV routines to
close any open data control blocks. (These
routines are described in IBM System/360
Operating System: Input/Output Support
(OPEN/CLOSE/EOV), Program Logic Manual,
Form Y28-6609.)

Under abnormal termination conditions,
the supervisor may also provide special
termination procedures, such as a storage
dump. The supervisor passes control to the
initiator/terminator, which is either
brought into the partition in which ter
mination is to occur, or is brought into
the large partition to terminate a small
partition.

The initiator/terminator releases the
I/O devices, and disposes of data sets used
and/or created during the job step by
reading tables prepared during initiation
(JCT, SCT, TIOT, etc.). These tables
include information such as disposition of
data sets. It then executes an installa
tion accounting routine if one is provided.

At job termination" an entry is made on
the user specified output work queue; later
the problem program output data can be
written by a system output writer from a
system direct-access storage device to a
user-specified device. The initiator/
terminator then initiates the next job
step.

An output writer operates concurrently
with readers, problem programs, and other
writers. When the START command is issued
for a writer, the writer dequeues the first
entry in the specified output (SYSOUT)
queue. If no requests have been enqueued
in that output queue from the problem
programs, the writer is placed in a wait
condition until a job is terminated that
has system messages or output data sets.
After the entry is dequeued from the output
queue., the writer transmits the data sets
to the specified card punch, magnetic tape
unit, or printer. When the last record has
been processed, the writer deletes the
queue entry before dequeuing the next
entry.

Figure 3. MFT Theory of Operation (Part 4 of 4)

Introduction 17

Form Y27-7128-3,. Page Revised by TNL Y28-2349. 11/15/68

NUCLEUS INITIALIZATION PROGRAM

The Nucleus Initialization Program (NIP)
in MFT is essentially the same as that used
for MVT. However. some routines have been
removed,. either because their functions are
not required by MFT or because they are
performed by other system tasks (e. g.. • the
initialization of main storage is handled
by the master scheduler task to support
partition redefinition). This section
describes those areas where MFT NIP differs
from MVT NIP. A complete description of
NIP for MVT can be found in IBM System/360
Operating System: Initial Program Loader
and Nucleus Initialization Program, Program
Logic Manual~ Form Y28-6661.

NIP is a control section included by the
linkage editor in the nucleus during system
generation. The IPL program loads the
nucleus and NIP and then passes control to
NIP. NIP performs required and optional
initialization functions for control pro
gram operation. Initialization includes
nucleus table initialization and general
system initialization .•

NIP first operates in its own environ
ment,. using its stand-alone I/O routine.
As it initializes the nucleus, NIP begins
to use system routines, including the I/O
Supervisor., to complete nucleus initializa
tion.

GENERAL SYSTEM INITIALIZATION

The primary area of difference between
MFT NIP and MVT NIP is in general system
initialization. Differences are:

• Defining Control Program Areas

• Determining User Options

• Redefining the System Queue Area

• Locating the BLDL List and Resident
Modules

• Preparing Main Storage

These differences are described in the
following paragraphs.

DEFINING CONTROL PROGRAM AREAS

In MFT,. NIP alters the contents of the
master scheduler task boundary box to
define an area including all of main
storage from the end of the fixed area to
the highest addressable byte of main

18

storage. (The original boundary box con
tents are saved to be passed to master
scheduler initialization routine IEFSD569
in a parameter list .•) The area assigned to
the master scheduler task is not used
during NIP execution. NIP establishes the
system queue area (SQA) adjacent to the
nucleus. The SQA boundaries are determined
by the upper boundary of the nucleus and
the SQA size specified during system
generation.

Main storage may be expanded by includ
ing IBM 2361 Core Storage (core storage)
units in the system. Main Storage Hierar
chy Support for IBM 2361 Models 1 and 2
permits access to either processor storage
(hierarchy 0) or core storage (hierarchy
1). Each partition established during sys
tem generation is described by a boundary
box. The first half of the boundary box
describes the processor storage partition
segment and the second half describes the
core storage partition segment. Any parti
tion segment not assigned main storage in
the system has the applicable boundary box
pointers set to zero.. If a partition is
established entirely within hierarchy 1 .•
the processor storage pointers in the first
half of the partition's boundary box are
set to zero. If a partition segment is not
generated in core storage, the core storage
pointers in the second half of the parti
tion's boundary box are set to zero. If
core storage has been included in the
system, but is off-line, the second half of
the boundary box will contain zeros. If
core storage is excluded from the system.
the second half of the boundary box is not
generated.

DETERMINING USER OPTIONS

After NIP issues the message SPECIFY
SYSTEM PARAMETERS, the operator may enter
the following MFT user options (using the
keywords indicated):

• A larger or smaller system queue area
(SQS=)

• Additional modules for the resident
access method routines (RAM=)

• A resident module list resulting from
BLDL information (BLDL=)

• Additional
(RSVC=)

resident SVC routines

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

REDEFINING THE SYSTEM QUEUE AREA

The system queue area operates under a
protection key of zero.. It contains system
control blocks which might be destroyed by
problem programs if placed in problem pro
gram partitions. These control blocks
include command scheduling control blocks
(CSCBs) and all control blocks associated
with ENQ/DEQ. If the communications task
encounters a threshold condition" write-to
operator (WTO) buffers are also constructed
in the system queue area.

To respecify the system queue area, the
operator enters the size as the number of
total bytes required. NIP readjusts the
area's free queue element (FQE) and resets
the area's upper boundary accordingly. It
then rounds the size to a double word
boundary. If BLDL, RAM, and RSVC options
were not specified during system generation
or are not selected during IPL, NIP rounds
the size to a 2K boundary in systems with
storage protection.

Nucleus Initialization Program 18.1

Note: MFT and MVT
queue area in the
storage, but the SQA
tion in each system.

construct the system
same place in main

has a different func-

LOCATING THE BLDL LIST AND RESIDENT MODULES

After the system queue area is estab
lished, the optional BLDL list is con
structed, and optional RAM and RSVC modules
are loaded into the area adjacent to the
system queue area. If the BLDL option was
chosen at system generation, a list of the
SYS1.LINKLIB modules specified by the user
is constructed. If the RAM and RSVC
options were chosen at system generation,
the optional linkage library and SVC
library modules specified by the user are
loaded.

The communications vector table (CVT)
field CVTNUCB, containing the lowest
storage address in the dynamic area, is
adjusted so that the BLDL list and RAM and
RSVC modules are included in the fixed
area.

Note: In MVT, the BLDL list and RAM and
RSVC modules are in the link pack area;
there is no link pack area in MFT.

MAIN STORAGE PREPARATION

When NIP completes its functions it
constructs a request block (RB) and an XCTL
macro instruction (specifying master sched
uler initialization routine IEFSD569) at
the low address of the temporary master
scheduler area defined previously (see
Defining Control Program Areas). NIP
places the address of this RB in master
scheduler task TCB field TCBRBP. (The
original contents of TCBRBP are saved and
passed to IEFSD569 in a parameter list
along with the original master scheduler
task boundary box contents.) NIP sets
master scheduler task TCB field TCBFLGS to
make the master scheduler task dispatch
able, and then branches to the dispatcher.

The dispatcher gives control to the
master scheduler task causing execution of
the XCTL instruction which NIP placed in
the temporary master scheduler area. The
master scheduler initialization routine is
brought into the temporary master scheduler
area and begins executing. Figure 4,

excluding the medium shaded area,
trates main storage at completion
before branching to the dispatcher.
4, excluding the light shaded area,
trates main storage when the master
uler initialization routine receives
trol from the dispatcher.

illus
of NIP
Figure
illus
sched-

con-

For a description of the master sched
uler ivitialization routine see ftMaster
Scheduler Taskft in the Job Management sec
tion. Figure 5 illustrates main storage
(four partition example) at completion of
master scheduler initialization. When the
initialization routine completes process
ing, it branches to the dispatcher.

Initializing the Partitions

During master scheduler initialization
the operator must accept automatic START
commands or enter START commands manually.
When a START command is processed, the
partition number specified in the command
is determined, and a CSCB is built. The
CSCB (see Appendix A) is used for communi
cation between the command scheduling rou
tines (SVC 34) and the command execution
routines. The address of the CSCB is
placed in the partition information block
(PIB) of the specified partition, and the
partition is posted. The PIB for each
partition contains information used by com
mand processing and scheduler routines.
(See Appendix A for a description of the
PIB, and -Initiator/Terminator- in Job
Management for a discussion of its use.)

After the initialization routine com
pletes processing, the dispatcher gives
control to the master scheduler router
routine. When this routine completes pro
cessing, it returns to the dispatcher which
begins searching the TCB queue. The high
est priority task posted through START
command processing receives control. The
XCTL macro instruction addressed by the
partition's RB is executed and the Job
Select module (IEFSD510) or Small Partition
module (IEFSD599) is brought into the par
tition. When an interruption occurs and
the partition can no longer retain control,
the dispatcher gives control to the next
posted partition. This process continues,
enabling all posted partitions to receive
control and to execute the XCTL instruction
placed in them by the initialization
routine.

Nucleus Initialization Program 19

Temporary
Master
Scheduler
Area

BLDL
RAM
RSVC

System
Queue Area

Nucleus

0000 FQE

High Address
---;.,...

Communications Task Master Scheduler

MSTCB
TCBRBP

TCBMSS

SQA BBOX

RB

MS BBOX
HI ---
LO

Contents of the Dynamic Area During IPL and NIP.

Contents of the Dynamic Area After The Master Scheduler Task
Receives Control on Completion of NIP.

_ Optional Features

Figure 4. Main Storage During Execution of NIP

20

Dynamic
Area

Fixed
Area

Partition
0

Partition
1

Partition
2

Partition
3

BLDL
RAM
RSVC

System
Queue
Area

Nucleus

RB

RB

RB

MSTCB ---
TCBRBP

TCBMSS

SQA BBOX

Low Address

XCTLIEFSD510

XCTLIEFSD510

(Small Partition)

XCTLIEFSD599

RB

MS BBOX

HI ---
LO

High Address

0000 FQE

0000 FQE

0000 FQE

Master Scheduler

Dynamic
Area

Fixed
Area

Figure 5. Main Storage at Termination of Master Scheduler Initialization

Nucleus Initialization Program 21

SUPERVISOR

The MFT Supervisor manages the operation
of the control program and processing pro
grams. Job management selects jobs for
execution, allocates devices and storage to
the step to be executed, and gives control
to the program that represents the step.
After receiving control, a program is known
as a task and becomes the responsibility of
the Supervisor. As many as 15 job-step
tasks may operate in the system concurrent
ly with system tasks. Each task must be
isolated so it does not interfere with any
other task. To do this, each job-step task
operates in its own partition in main
storage. If the system has the optional
storage protection feature, each partition
is assigned a unique protection key (1-15).
The resident portion of the control pro
gram, including some supervisor routines,
occupies a fixed area of main storage and
operates under a protection key of zero.

To maintain control of the computing
system, the supervisor must perform many
serV1ces. Routines within the supervisor
are grouped into general categories depend
ing upon the services which they perform.
These categories are:

Interruption Supervision: All supervisor
activity begins with an interruption. The
five types of interruptions are: supervi
sor call, timer/external, input/output,
program, and machine. When an interruption
occurs, the interruption handling routine
for the type of interruption that occurred
gains control. The interruption handling
routine then passes control to those parts
of the control program that perform the
services required as a result of the inter
ruption. Many of the services which must
be performed are included in other general
categories of the supervisor.

Task supervision: The supervisor maintains
control information including the current
status of program and interruption request
blocks, task control blocks, and event
control blocks.

Contents Supervision: The supervisor keeps
records of the status and characteristics
of all programs in each partition of main
storage, initiates program fetch for the
dynamic loading of programs, and maintains
the active request block queue.

Main Storage supervision: within each par
tition. the supervisor allocates and
releases main storage space for a task on
request;, and maintains a record of all free
storage space within each partition.

22

Timer Supervision: The supervisor sets and
maintains a clock, and honors requests for
time intervals and exact time.

Overlay Supervision: The supervisor mon
itors the flow of control between segments
of a program operating in an overlay struc
ture established by the user through the
linkage editor.

INTERRUPTION SUPERVISION

With the exception of the dispatcher
which is described below, the interruption
supervisor of MFT functions as described in
IBM System/360 Operating system: Fixed
Task Supervisor, Program Logic Manual, Form
Y28-6612.

When an interruption occurs and is ser
viced, the task which had been executing
may relinquish control of the CPU. Control
must always be given to the highest priori
ty ready task. The transfer of control
from one task to another is called task
switching and is accomplished by the task
dispatcher. When an interruption handling
routine completes processing an interrup
tion, it branches to the task dispatcher
rather than returning control to the inter
rupted program. Type 1 EXIT is the only
interruption handling routine which may
return control directly to the interrupted
program. Figure 6 illustrates how the task
dispatcher receives control after an inter
ruption has been serviced.

THE DISPATCHER (MACRO IFAAPS)

The dispatcher gives control to the
highest priority task ready to execute. It
uses information located by communication
vector table (CVT) fields CVTHEAD and
CVTTCBP, and if the time-slicing feature is
in the system, field CVTTSCE.

Field CVTHEAD addresses a queue of task
control blocks (TCBs). This TCB queue is
arranged in dispatching priority order
beginning with the highest priority task.
The highest priority TCB, the communication
task TCB, is followed by the master sched
uler task TCB, and one TCB for each of the
partitions generated in the system (in
ascending order by partition number).
Figure 7 illustrates the TCB queue.

Any number of partitions (up to 52) may
be specified during system generation.
Partitions must be numbered consecutively
beginning with zero. Note that in Figure 7

INTERRUPTIONS

Recovery
Management
(Optional)

I

Transient Area
Hand I er far Non
Resident SVCs

SVC
Service

Na

Yes

Mark
Task for
ABEND

User's
Routine

Time
Supervision

Input/
Output
Supervisar

I EXIT

I
I
L ________________ ~-------'

Figure 6. MFT supervisor

there is a TCB for partition 1, but parti
tion 1 is assigned no storage space. This
illustrates a partition which was specified
at system generation but which has been
made inactive. If a partition is not
specified during system generation, no TCB
is constructed. If, for example, only 3
partitions (0 through 2) are specified at
system generation, then only three TCBs are
constructed and partitions 3 through 51 do
not exist.

All of the TCBs in the system are
chained together through TCB field TCBTCB.

Task Dispatcher

In each TCB,
address of the
TCBTCB field of
contains zero.

this field contains the
next TCB on the queue. The
the last TCB on the queue

CVT field CVTTCBP addresses two full
words called NEW and OLD. The first word
(NEW) contains either zero or the TCB
address for the task to be given control.
The second word (OLD) contains the TCB
address for the task currently in control.
NEW can be set by any of the supervisory
routines associated with task switching
(WAIT, POST, ENQ/DEQ, Manual Purge). When

Dispatcher 23

Form Y21-1128-3, Page Revised by TNL Y28-2349, 11/15/68

a supervisory routine determines that the
task currently in control can no longer
retain control, it sets NEW to zero. When
a supervisory routine determines the new
task to be given control, it inserts the
TCB address for that task in NEW.

CVT field CVTTSCE contains the address
of the time-slice control element (TSCE).
This field is used by the dispatcher in
determining the next time-slice task to
receive control, providing time-slicing was
specified as a system generation option.
The format of a TSCE is explained later in
this section.

When the interval timer is in use and a
user accounting routine is supplied, the
dispatcher accumulates the total amount of
time used to execute a job step. Each time
a new job step is dispatched, the dispatch
er stores the time from the hardware timer
in the PTIMER field of IEATPC (pseudo clock
area). When control is returned to the
dispatcher, it calculates the elapsed time
by subtracting the stored value from the
current value of the hardware timer. The
dispatcher adds the result to the TCBTCT
field in the task's TCB. Time is not
calculated for the job step if it is
dispatched in a wait state.

Dispatching a Task

When the dispatcher receives control, it
first schedules any requests for system
asynchronous exit routines. Then it deter
mines if NEW equals OLD (see Chart 02). If
so, no task switch is indicated. If neces
sary, the dispatcher enqueues timer ele
ments for the task. It then returns to the
task currently in control.

If NEW does not equal OLD, a task switch
is indicated. If job/step CPU timing is
included in the system, the dispatcher
calculates the job step tIme for OLD, and
increments the job time accumulator in the
TCB. If necessary, the dispatcher dequeues
timer elements associated with the task
currently in control. Then it determines
if NEW equals zero.

If NEW does not equal zero, it contains

than OLD to receive control, the address of
its TCB must be inserted in NEW by a
supervisory routine.}

When examining a TCB to determine if its
associated task should be given control,
the dispatcher first determines if the
request block (RB) of the program executing
under the TCB is waiting. This is done by
examining field XRBWT in the RB addressed
by TCB field TCBRBP. If the RB is not
waiting, the dispatcher examines TCB field
TCBFLGS to determine if the task is dis
patchable. If so, the dispatcher sets NEW
and OLD to the address of the TCB and
enqueues timer elements (if necessary).
Additionally, if job/step CPU timing is
included in the system, the dispatcher
stores the interval timer value in the
pseudo timer field of IEATPC. Control then
passes to the new task.

Partition
Area

High Address

Partition 0

Partition 2

~
Partition n

Master
Scheduler

t PO TCB

t Request Black
TCBRBP

XRBWT TCBFLGS

TCBTCB

t PI TCB

(Inactive)

1 P2 TCB

-l
n = highest 0 numbered

partition

MS TCB r ~
CT TCB

the TCB address for the task to be given
control. The dispatcher sets OLD equal to System
NEW, and enqueues timer elements if neces- Area

sary. Additionally, if job/step CPU timing

Communications
Task

f--~~-
r W

I 1 is included in the system, the dispatcher
stores the interval timer value in the
pseudo timer field of IEATPC. Control then
passes to the new task.

If NEW equals zero, the dispatcher must
examine the TCB queue to determine which
task should be given control. This
examination begins with the TCB addressed
by OLD. (For a task of higher priority

24

CVTTCBP --l NEW OLD
-.----

CVTHEAD

Law Address

Figure 7. TCB Queue

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

In one case, the dispatcher does not
pass control directly to the new task. If
TCB field TCBRBP for the task to be given
control addresses an SVRB for a transient
SVC routine, a check is made to determine
the contents of the double word XCNTCC (in
IEAATAOO) which contains the name of the
routine presently in the sVc transient
area. If the routine names in XCNTCC and
the SVRB are identical, the dispatcher
passes control to the new task. If they
are not identical, the Transient SVC
Refresh routine (IEAARFOO) brings the

required routine into the SVC transient
area and then returns to the dispatcher.
Since NEW and OLD have already been set
equal, the dispatcher need only enqueue
timer elements if necessary and pass con
trol to the new task.

If the RB for a task is waiting or the
task is nondispatchable. the task is not
ready to receive control. The dispatcher
examines TCB field TCBTCB to obtain the
address of the next TCE on the queue. The

Dispatcher 24.1

dispatcher then examines this TCB to iden
tify whether it is ready to receive con
trol. This process continues until a ready
task is found or until the end of the queue
is reached (indicated by a zero in TCBTCB).

If no task is able to receive control,
the dispatcher sets the resume PSW wait bit
of the TCB addressed by OLD. This PSW is
then loaded, placing the CPU in a wait
condition. The resume PSW is located in
field XRBPSW of the RB addressed by TCB
field TCBRBP.

Figures 8 and 9 illustrate how control
is switched assuming a three partition
system in which Pi is inactive (see Figure
7). All tasks are dispatchable except task
Pl. Initially, only the communications
task and master scheduler task are waiting.
Because task PO is the highest priority
task which is dispatchable and not waiting,
it is given control. Task PO has already
enqueued and received exclusive control of
a rescurce which task P2 will later enqueue
(see Figure 9).

Dispatchinq the Corr®unications Task and
Master Scheduler Task

Figure 8 illustrates how control passes
to the communications task and master
scheduler task through the dispatcher. In
the example illustrated, the communications
task receives control in order to read a
DEFINE command from the operator console.

Initially, the task in PO has received
control from the dispatcher and is execut
ing. The operator presses the REQUEST key
to indicate that he wishes to enter a
command from the console. An I/O interrup
tion is generated and control passes to the
I/O supervisor which identifies the inter
ruption as an attention signal. The I/O
supervisor then passes control to the con
sole interruption routine which issues a
POST macro instruction. The POST routine
posts the attention ECB and sets the com
munications task RB to a non-wait condi
tion. Because the communications task is
of higher priority than the task in parti
tion 0, the POST routine places the address
of the communications task TeB in location
NEW. Control then passes to the
dispatcher.

The dispatcher gives control to the
communications task which issues SVC 72 to
read the console and then issues SVC 34 to
process the command. SVC 34 processes some
corr®ands completely but must pass control
to the master scheduler resident command
processor routine to complete processing
the DEFINE command. (See ·Command Process
ing- in the Job Management section for a
complete description of SVC 34 and the
master scheduler task.) SVC 34 issues a

POST macro instruction to post the master
scheduler task. The POST routine sets the
master scheduler RB to a non-wait condition
and gives control to the dispatcher.
Because the master scheduler task is of
lower priority than the communications
task, locations NEW and OLD remain
unchanged and the dispatcher returns con
trol to the communications task.

The communications task issues a wAIT
macro instruction and waits on an ECB. The
WAIT routine sets the communications task
RB in a wait state and sets location NEW to
zero. The dispatcher then receives control
and searches the TCB queue. Since the
master scheduler task is the next ready
task on the TCB queue, the address of the
master scheduler TCB is placed in locations
NEW and OLD, and the dispatcher passes
control to the master scheduler.

The master scheduler completes process
ing the DEFINE command and then issues
WAIT. The WAIT routine sets location NEW
to zero and passes control to the dispatch
er which searches the TCB queue until it
finds a task ready to receive control. In
Figure 8, control returns to the task which
was executing before the operator entered
the DEFINE command.

Dispatching Tasks by Partition Priority

Figure 9 illustrates task switching
among tasks executing in partitions.

A. The task in partition PO (task PO) is
the highest-priority ready task and is
given control by the dispatcher. When
task PO issues a WAIT on an ECB, an
interruption occurs and control passes
to the WAIT routine.

B. The WAIT routine places the RB for
partition 0 in a wait condition and
sets location NEW to zero. It then
passes control to the dispatcher which
searches the TCB queue beginning with
the TCB for partition o. Since task
PO is waiting and task Pi is non
dispatchable, the dispatcher passes
control to task P2, the highest
priority task ready to execute. When
task P2 attempts to enqueue a resource
through use of the ENQ macro instruc
tion, an interruption occurs and con
trol passes to the ENQ routine.

C. The resource is unavailable because
task PO has already enqueued it.
Therefore, task P2 cannot continue
executing. The enqueue routine places
zero in location NEW and then passes
control to the dispatcher which
searches the TCB queue. Since task P2
is the last task on the queue, the
dispatcher sets the wait bit in the

Dispatcher 25

I t
NEW OLD

PO TeB I t PO TCB

I I
L-_~ ____ _

,----- -- -- --

I

I

I

I

I I
L_L __ _

,- ----------

; I t eT
I
TCB I

~_-L __ _

,---- -- ,----- --

* * II MS TeB I t MS TeB I
,-------

; II M~TeBI
L- _ L-- _____ _

,----- -,-- - -- ---
t t

I t PO TeB I i PO TCB I

Dispatcher

Partition 0 Task

Int

Communications Task

Int sve 34

Communications Task

Int WAIT

Search
reB Queue Master Scheduler Task

Int

Search
reB Queue Partition 0 Task

Figure 8. Dispatching Communications and I,laster Scheduler Tasks

26

NEW OLD

t PO reB t PO TeB

I I
L_~ ____ _ .-

1-------- -

; I t PO TeB I

--
--1--1------

t t
t P2 TeB I t P2 TeB

1--------

; I t "I TC• I
L __ I _____ ._

1--------

1-----

I
I

I I

-~

-

.-+

--

L __ L ____ _ -

Figure 9. Task Switching

Dispatcher A

Partition 0 Task

Int f- WAIT

Wait Routine

B

Dispatcher

Search TeB Queue
Partition 2 Task

Int)-- ENQ

Enqueue Routine

Resource Unavailable

e
Dispatcher

Search TeB Queue

No Task eon Execute

Machine Wait

Int f-

Post Routi ne

Post PO

D

Dispatcher

Partition 0 Task

Int f- DEQ

Dequeue Routine

1 E
Dispatcher

Partition 0 Task

Dispatcher 27

resume PSW of task P2. The dispatcher
~asses control to task P2, placing the
CPU in a machine wait condition.

D. While the CPU is waiting, an interrup
tion occurs signifying the cowpletion
of the event for which task PO was
waiting. The POST routine receives
control and posts the ECB for task PO
which is now able to resume control.
The POST routine places the TeB
address for task PO in location NEW
and gives control to the dispatcher.
The dispatcher sets OLD equal to NHl
and gives control to task PO. Task PO
executes and when finished using the
resource it has enqueued, it issues a
DEQ macro instruction.

E. An interruption occurs and the DEQ
routine receives control. The queue
element for task PO is rerr,oved frow
the resource queue. The next element
on the resource queue is for task P2.
The resource is assigned to task P2
and its RB is placed in a non-wait
condition. The DEQ routine then com
pares the priority of the task which
has teen in control with the priority
of the task which is now ready.
Because task PO has a higher priority
than task P2, location NEW remains
unchanged. The DEQ routine passes
control to the dispatcher which
returns control to task PO.

Dispatching a Task (with Time Slicing)

If time slicing was selected as a system
generation option, the user can select a
number of contiguous partitions to be a
time-slice group. The tasks executing in
time-sliced partitions have equal priority.
Each ready task in the time-slice group
executes for a selected amount of time, the
time-slice length, and then loses control
to the next ready task in the time-slice
group. The time-slice group is supervised
through use of a time-slice control element
(TSCE) shown below.

4
FIRST - Address of the fist time-slice TeB on the TeB queue

4

LAST - Address of the last time-slice TeB on the TeB queue

4

NEXT - Address of the next time-slice TeB to be dispatched

4

LENGTH - Time-slice length (in milliseconds)

28

When time-slicing is selected, the dis
~atcher performs fUnctions in addition to
those explained in the preceding para
graphS. The following text describes the
additional dispatcher functions, and paral
lels the flow of data shown in Chart 03.

NEW EQUALS OLD: The dispatcher first
dE:termines if NEW equals OLD. If it does,
the dispatcher further determines if the
task represented by OLD is a time-slice
task.

OLD a Time-Slice Task: If OLD is a time
slice task, the dispatcher determines if
the time-slice interval has expired; i.e.,
if the time-slice queue element (TQE) has
been removed from the timer queue.

If the interval has expired, the next
ready time-slice task must be dispatched.
The dispatcher searches the time-slice
group beginning with the TCB addressed by
TSCE NEXT (see preceding explanation of
TSCE fields). When the TCB addressed by
TSCE LAST is reached, the dispatcher checks
the TCB addressed by TSCE FIRST, until a
ready task is found or until all time-slice
TCBs have been checked.

When a ready task is found, TSCE NEXT is
updated, the time-slice TQE is enqueued,
and the ready task is dispatched. If no
time-slice tasks are ready, the dispatcher
searches the TCB queue for the highest
priority ready task.

:r th~ interval has not expired, i.e.,
the time-slice TQE has not been dequeued,
control is returned to the interrupted
task.

OLD Not a Time-Slice Task: If OLD is not a
time-slice task, control is returned to the
interrupted task.

NEW NOT EQUJl...L TO OLD: If NEW does not
equal OLD, the dispatcher determines if OLD
is a time-slice task.

OLD Tirr,e-Slice Task--NEW Equal Zero: If
OLD is a time-slice task and NEW equals
zero, the time-slice TQE is dequeued for
the current task. The dispatcher then
searches (using the TSCE) for the next
ready TCB in the time-slice group. If no
time-slice TCBs are ready, the dispatcher
searches the TCB queue for the highest
priority ready task.

OLD Time-Slice Task--NEW Not Equal to Zero:
If OLD is a time-slice task and NEW does
not equal zero, the dispatcher determines
if NEW is a time-slice task.

If NEW is a time-slice task, the task
represented by OLD, if ready, is redis
patched. (The time-slice TQB remains on

Form Y27-7128-3. Page Revised by TNL Y28-23q9. 11/15/68

the queue.) If the task represented by OLD
is not ready. the time-slice TQE is
dequeued. and the dispatcher searches
(using the TSCE) for the next ready time
slice task. If no time-slice tasks are
ready. the dispatcher searches the TCB
queue for the highest-priority ready task .•

If NEW is not a time-slice task. the
time-slice TQE is dequeued and the NEW task
is dispatched.

OLD Not a Time-Slice Task: If OLD is not a
time-slice task, the dispatcher finds the
next highest-priority ready task. It does
this by either obtaining the TCB address
from NEW or. if NEW is zero. by scanning
the TCB queue. If the highest-priority
ready task is not a time-slice task, it is
dispatched. If the highest-priority ready
task is a time-slice task, the dispatcher
finds (using the TSCE) the next ready task
in the time-slice group. The time-slice
TQE is enqueued, and the task is
dispatched.

ABEND SERVICE ROUTINE

ABEND is a type 4 SVC routine that is
used for both normal and abnormal task
termination. ABEND terminates the task
under which it is running, resets the
partition, and passes control to the job
management routines for continued
processing.

ABEND can be entered directly from the
problem program or system task via an ABEND
macro instruction. or indirectly through
the ABTERM service routine. (ABTERM sched
ules the execution of ABEND for system
routines that detect an error but cannot
issue an ABEND macro instruction.) The SVC
SLIH (second level interruption handler)
fetches the first load module of ABEND and
passes control to it. Control is passes
from one ABEND load module to the next via
an XCTL instruction (SVC 7). The flow of
control between modules for normal and
abnormal termination is shown in Chart Oq.

The ABEND functions provided for MFT are
similar to those provided for PCP. Modules
IEAGTMOA. IEAGTMOO" IEAGTM06. and IEAGTM05.
exist only in MFT and are described below.
The remaining modules are also used in PCP
and are explained in IBM System/360 Operat
ing System: Fixed Task Supervisor, Form
Y28-6612. (For a brief description of all
ABEND modules used in MFT. see "MODULE
DESCRIPTIONS,· IN Appendix B of this
publication ..)

ABEND STAE Test Routine (IEAGTMOA)

IEAGTMOA first sets a bit to prohibit
asynchronous exits for this task and tests
for normal end. If this is a normal end,
the normal completion code is stored in the
TCB. and control passes to ABEND module
IEAGTMOO. If the task is abnormally ter
minating. IEAGTMOA determines if STAE (spe
cify task asynchronous exit) processing is
indicated for this task (via a user-issued
STAE macro instruction).

If a STAE was issued, i.e., TCB field
TCBNSTAE does not equal zero, IEAGTMOA
checks for a valid STAE and performs as
follows:

• If the ABEND was issued by the Purge
routine during STAE processing, i.e ••
the purge bit in TCB field TCBNSTAE
equals one. the resume PSW of the Purge
RB routine is set to the address of an
EXIT instruction (SVC 3). IEAGTMOA
then issues an EXIT instruction.

Note: If ABEND was not entered from
the Purge routine. i.e •• the purge bit
in TCB field TCBNSTAE equalS zero.
IEAGTMOA stores the abnormal completion
code in the TCB.

• If the Task is being abnormally ter
minated because of a timer expiration
or an operator cancel, STAE processing
is bypassed and IEAGTMOA exits to ABEND
module IEAGTMOO. (Since task timing
and cancellations from the console are
directly controlled by the user, the
ABEND was intentional and should not be
handled by the STAE routines.)

• If STAE processing is already in pro
gress, regular ABEND processing con
tinues" since the STAE routine can
process only once per STAE issued.
IEAGTMOA thus exits to ABEND module
IEAGTMOO.

• If this is a valid reguest for STAE
processing, i .. e., none of the above
conditions are true. IEAGTMOA tests TCB
field TCBPIE for zero. If it is not
zero, IEAGTMOA frees the PIE and zeros
TCBPIE. Thus. subsequent program
checks will not be handled by a user
routine which may not be designed for
such a program check. IEAGTMOA then
exits to STAE module IEAATMOB.

If a STAE has not been issued, or if all
STAEs have been processed, i.e •• TCB field
TCBNSTAE equals zero. IEAGTMOA determines
if this is a graphics or an ABEND recursion
and if this is a graphics job with a
Graphics Abend Exit routine.

Dispatcher 29

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

• If this is a recursion, or if the task
abnormally terminating is not a gra
phics job, IEAGTMOA exits to ABEND
module IEAGTMOO.

• If this is a graphics job, IEAGTMOA
passes control to the Graphics Abend
routine. At the completion of this
routine, control is returned either to
the caller via an SVC 3 (if the task is
resumable" Le., the ABEND was issued
by a user program or caused by a
program check in a user routine, and if
he wishes to resume processing) or to
IEAGTMOA, which exits to ABEND module
EAGTMOO.

ABEND Initialization Routine (IEAGTMOO)

This module first determines if it was
entered from STAE. If so, it branches to
the section of code that accomplishes the
WTOR purge function. IEAGTMOO cancels the
task timer element so that a timer inter
ruption will not occur during ABEND pro
cessing. It then dequeues all interruption
queue elements (IQEs) belonging to the
task, since these cannot be scheduled dur
ing ABEND processing.

If a system or problem program 'must
complete' bit is set in TCB field TCBFLGS,
or if the task is a system task., IEAGTMOO
branches to the System Quiesce routine,
IEAGTWST (see "System Quiesce Routine"),
which places the partition in a wait state
and prints a message to the operator.

Note: Processing in the other partitions
can be restarted and continue until all
jobs already enqueued have been completed.
The system will then be in a wait state and
corrective action must be taken.} If the
above conditions do not exist, IEAGTMOO
purges the WQEs (WTO Queue Elements) and
the RPQES (Reply Queue Elements) for this
task.

IEAGTMOO tests to see if it was entered
from STAE and if this is a normal end to
determine the next load module.

ABEND Input/OUtput Purge Routine (IEAGTM06)

IEAGTM06 purges I/O requests and I/O
operations via a macro instruction version
of the SVC purge Routine, which is
assembled within this module. (See "SVC
PURGE ROUTINE" in Input/Output Supervisor,
Form Y28-6616.) This prevents errors that
can cause recursion to the ABEND routine.
(Since ABEND frees main storage, an I/O
operation that is not halted can cause
information to be read into, or an ECB to
be posted in main storage that may have

30

been relocated, thus destroying data or
programs.) RQEs (request queue elements)
removed from the request queue are returned
to a list of available RQEs for reuse by
the I/O supervisor .•

IEAGTM06 also dequeues, from the SIRB,
IQEs (interruption queue elements) repre
senting requests for the use of I/O error
handling routines. IEAGTM06 passes control
to ABEND module IEAATM01.

ABEND Termination Routine (IEAGTM05)

ABEND termination routine IEAGTM05 is
the final ABEND module for both normal and
abnormal termination. For normal termina
tion it is entered from IEAGTM06. On
abnormal termination it may have been
entered from any of the previous modules of
ABEND except initialization routine
IEAGTMOO .•

If a dump message is required, i.e., if
ABDUMP has been initiated but has failed to
complete" IEAGTM05 causes message IEA002I,
"ABEND/ABDUMP ERROR" NO ABEND OUTPUT" to be
printed. IEAGTM05 issues a CLOSE macro
instruction for any open data sets. The
timer queue and the main storage supervisor
queue are purged, and fields in the TCB are
reset so that a new task may be initiated.
If an indicative dump is provided by
IEAATM03, it is moved to the upper boundary
of the partition .•

IEAGTM05 does not directly transfer con
trol to a job management routine. In the
first 72 bytes of the problem program
partition, IEAGTM05 establishes a dummy
PRB, an XCTL parameter list, and a set of
instructions including an XCTL to a step
deletion routine. The XRBLNK field of the
dummy PRB contains a pointer to the TCB.
The dummy PRB therefore becomes the only RB
queued for this task.

The dummy PRE is then placed at the
beginning of the RB queue. This ensures
that the XCTL instruction will be the next
operation executed for this task after
IEAGTM05 has completed.. For scheduler-size
partitions, step deletion routine IEFSD515
gains control, at entry point GO. For
small partitions, control is passed to
entry pOint SMALLGO in small partition
routine IEFSD599.

SYSTEM QUIESCE ROUTINE (IEAGTWST)

The system quiesce routine, which is
part of the nucleus, is branched to during
abnormal termination processing when the
task scheduled for abnormal termination
processing is in "must complete" status or

Forro Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

is a system task, or when entry to abnormal
termination processing was caused by an
error that occurred during ABEND process
ing. The system quiesce routine, whose
address is located in the CVTXWTO field of
the CVT, performs the same functions as in
MVT: the failing task is placed in wait
state, and a message indicating that a CPU
wait state has been averted and is issued
to the operator instructing him to allow
the system to quiesce (to schedule no
further jobs). Control is then returned to
the supervisor enabling the system for
interruptions and permitting the other par
titions of the system to continue process
ing. See Termination Procedures in MVT
supervisor for a more detailed description
of the system quiesce routine.

STAE SERVICE ROUTINE

The STAE service routine is a type 3 SVC
routine which prepares the task to inter
cept scheduled abnormal termination (ABEND)
processing. When the STAE macro instruc
tion (resulting in an SVC 60) is issued,
the STAE service routine is invoked. The
STAE service routine creates a 16-byte STAE
control block (SCB), which contains the
addresses of a user-written STAE exit rou
tine and parameter list. When the task
becomes scheduled for abnormal termination,
the ABEND/STAE interface routine (ASIR) is
given control by the ABEND routine. ASIR
returns control to the user at the STAE
exit routine address. After the STAE exit
routine has been executed, control is
returned to ASIR. ABEND processing con
tinues for the task as previously scheduled
unless the STAE exit routine has requested
that a STAE retry routine be scheduled. If
a STAE retry routine is provided by the
user, ASIR reestablishes the task scheduled
for ABEND processing and exits, giving
control to the dispatcher so that the STAE
retry routine is executed next. See IBM
System/360 Operating System: System Pro
grammer's Guide, Form C28-6550, for further
explanation of the STAE macro instruction .•

The five modules which perform the func
tions of the STAE macro instruction are the
STAE service routine (IGC00060) and the
four ABEND/STAE interface modules
(IGCOB01C, IGCOC01C, IGCOD01C, and IGC
OE01C). These modules perform the same
functions as in MVT, (see IBM system/360
Operating system: MVT Supervisor, Form
Y28-6659) with the exception both IGCOC01C
and IGCOE01C pass control via the XCTL
macro instruction to the ABEND module lEAG
TMOA to purge the WTOR queue before giving
control the next ASIR module (IGCOD01C).

TASK SUPERVISION

The task supervisor maintains the status
of tasks within the system. Task supervi
sion service routines:

• Maintain task control blocks.

• Enter tasks into the wait state.

• Post completed events in the event
control block.

• Maintain control levels indicated by
request blocks.

The routines which accomplish these
functions are WAIT, POST, ENQ, and DEQ.

Each task within the operating system
has an associated task control block (TCB).
The TCB contains task-related information
and pointers to additional control blocks
containing task-related information. The
control blocks used by MFT are the same as
those used by PCP except for the addition
of the partition information block (PIB)
which is described in Appendix A. The last
three bytes of the word at displacement 124
(decimal) of each partition TCB contain the
address of the associated PIB. Figure 10
shows the major control blocks maintained
by the supervisor and their relationship to
the TCB.

Task supervision is described in IBM
System/360 Operating System: Fixed-Task
supervisor, Program Logic Manual, Form Y28-
6612. Additional information applicable to
MFT is presented in the following
paragraphs.

THE ATTACH ROUTINE (MACRO IEAAAT)

In MFT, the ATTACH and LINK macro
instructions are handled identically. An
RB is created for the requested program,
the program is brought into the requesting
task's partition, and its RB is chained to
the RB queue for that partition. See IBM
System/360 Operating System: supervisor
and Data Management Services, Form C28-6646
for further explanation of the ATTACH macro
instruction with MFT.

THE WAIT ROUTINE (MACRO IEAAWT)

The WAIT routine is not changed from
that described in Fixed-Task Supervisor.
Program Logic Manual. However, the user
should remember the effect the optional
validity checking feature has on WAIT. If
validity check is included in the system
and the program issuing the WAIT macro

Contents Supervision 31

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

instruction is not in supervisor mode, the
WAIT routine checks that:

1. The boundary alignment of the ECBs is
correct.

2. The storage protection key of the ECBs
is that of the issuing program.

3. The addresses specified do not exceed
main storage boundaries of the
machine.

Because of point 2, it is not possible for
one partition to WAIT on an ECB within
another partition.

THE POST ROUTINE (MACRO IEAAPT)

The POST routine, like the WAIT routine,
is unchanged from that described in Fixed
Task Supervisor, Program Logic Manual.
Validity checking applies to POST in the
same way it applies to WAIT.

Save Area

lIOT

JOBLIB DCB

Task
Control
Block

Partition
Information
Block

I
r--..L_-,
I SPIL I
L-___ -.I

Figure 10. System Control Block Relationship

32

THE ENQ/DEQ ROOTINE (IEAGENQ1)

The ENQ/DEQ routine provides a means of
controlling serially reusable resources.
This is done by assigning unique names
consisting of a Qname and an Rname to each
serially reusable resource.. The ENQ/DEQ
routine controls access to resources by
building resource queues consisting of a
queue control block (QCB) for each Qname
and Rname specified in an ENQ macro
instruction and a queue element (QEL) to
represent each actual request. ENQ/DEQ is
fully described in IBM System/360 Operating
System: MVT supervisor, Program Logic
Manual., Form Y28-6659. ENQ/DEQ for MFT is
identical to MVT except as described below.

In MFT, resource queues are located in
the system queue area (subpool 255)_ Loca
tion lEAOQCBO in the ENQ/DEQ routine con
tains the address of the first queue con
trol block in the queue. There is only one
TeB for each job step in MFT. Therefore,
the Rmust completeR function of ENQ/DEQ
applies only to the system, not to job
steps.. If Rsystem must completeR is speci
fied by a task" all other tasks in the

Active RB Queue
RB

RB

RB

Loaded Program List

RB

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

system are set non-dispatchable until the
task which specified "system must complete"
completes its processing.

CONTENTS SUPERVISION

Contents supervision routines determine
the location of requested programs and
fetch them into main storage if necessary.
They also maintain records of all programs
in main storage. Programs requested via
LINK or XCTL macro instructions are sched
uled for use by placing a request block
(RB) for each program on the requesting
task's active request block queue.

Programs requested via LOAD macro
instructions are represented by RBs on the
loaded program list.

There are six types of request blocks in
MFT:

• Program Request Block (PRB) -- repre
sents a nonsupervisory routine that
must be executed in the performance of
a task. PRBs are created by the con
tents supervision routines that perform
the LINK or XCTL functions.

• supervisor Request Block (SVRB)
represents a supervisory routine.
SVRBs are created by the SVC interrup
tion handling routines .•

• Interruption Request Block (IRB)
controls a routine that must be
executed in the event of an asynchro
nous interruption. IRBs are created in
advance of an interruption by the CIRB
routine at the user's request, but not
placed on an RB queue until an inter
ruption actually occurs.

• System Interruption Request Block
(SIRB) -- used only for the system I/O
error task.. There is only one SIRB in
the system.

• Loaded Program Request Block (LPRB) -
controls programs brought in by a LOAD
macro instruction. LPRBs also control
sections of programs that are specified
by the IDENTIFY macro instruction.
LPRBs are created by the contents
supervision routines that perform the
LOAD function.

• Loaded Request Block (LRB) -- a short
ened form of LPRB and controls load
modules that have the Wload only"
attribute. It is invalid to issue
ATTACH, LINK" or XCTL macro instruc
tions to these load modules. LRBs are
created by the routines that perform
the LOAD function.

Contents supervision alters the active
RB queue and the loaded program list, and
fetches programs into main storage in
response to LINK, ATTACH, LOAD, and XCTL
macro instructions. The routines which
service these macro instructions are de
scribed below.

LINK SERVICE ROUTINE (MACRO IEAATC)

The LINK service routine determines if
the RB of the requested routine is on the
loaded program list. If it is and is
inactive, LINK places the RB on the active
RB queue. If the requested RB is not on
the loaded program list (or if it is on the
list, but is active), the LINK routine
constructs an RB for the requested routine,
places the RB on the active RB queue, and
fetches the requested routine into main
storage.

ATTACH SERVICE ROUTINE (MACRO IEAAAT)

The ATTACH macro instruction is handled
as a LINK macro instruction. For a com
plete explanation, see "The ATTACH Macro
Instruction" under the topic Task supervi
sion.

LOAD SERVICE ROUTINE (MACRO IEAATC)

The LOAD service routine first deter
mines if the requested routine is a RAM
module (if the resident access method (RAM)
option was specified at system generation).
If so, the entry point of the routine is
passed to the requesting routine in regis
ter zero. If the routine is not a RAM
module, LOAD searches the loaded program
list for the RB of the requested routine.
If it is found, the LOAD routine increments
the RB use count by one and returns the
entry point of the requested routine in
register zero.

If the requested routine is not found on
the loaded program list, the LOAD routine
branches to the FINCH routine to load the
requested routine into storage. On return
from the FINCH routine, the LOAD routine
initializes the requested routine'S RB and
places it on the loaded program list, sets
the RBs use count to one and branches to
the LINK routine to issue the SVC EXIT
instruction.

XCTL SERVICE ROUTINE (MACRO IEAATC)

The XCTL service routine first deter
mines if XCTL was issued by a type 3 or 4
SVC routine (if the resident SVC (RSVC)
option was chosen at system generation.)
The XCTL routine determines if the SVC

Contents Supervision 33

Form Y21-1128-3, Page Revised by TNL Y28-2349, 11/15/68

routine is an RSVC routine. If it is, the
routine need not be brought into main
storage. If the requested routine is not
an RSVC, the XCTL routine branches to the
FINCH routine to locate the routine on the
SVC library and to bring it into the SVC
transient area. The XCTL routine initial
izes the routine's RB and executes an SVC
EXIT instruction.

If the XCTL macro instruction was not
issued by a transient SVC routine., the XCTL
routine dequeues the primary RB and each
minor RB of the issuer from the active RB
queue. The routine which issued the XCTL
macro instruction and its RB are removed
from storage unless the routine was brought
in via a LOAD macro instruction. If the
requested routine is on the loaded program
list and is inactive, the XCTL routine
branches to the LINK routine to place the
RB on the active queue and to issue an SVC
EXIT instruction..

If the XCTL routine determines that the
scheduler has issued an XCTL macro instruc
tion to branch to the problem program, the
XCTL routine zeroes out the TCBTCT field of
the TCB so that the optional Job/step CPU
Timing entry can be made.

If the RB of the requested routine was
not found inactive on the loaded program
list, the XCTL routine branches to the
FINCH routine to bring in the routine. On
return from the FINCH routine, the XCTL
routine branches to the LINK routine to
place the RB on the active queue and issue
an SVC EXIT instruction.

Additional contents supervision services
are provided by the IDENTIFY, DELETE, and
SYNCH service routines. IDENTIFY and DE
LETE alter the loaded program list. SYNCH
alters the active request block queue.

IDENTIFY SERVICE ROUTINE (IEAAIDOO)

The IDENTIFY service routine builds and
initializes a minor request block to
describe a routine specified in the parame
ters of the IDENTIFY macro instruction.
The IDENTIFY routine chains this minor RB
to the loaded program list and to the RB of
the routine which contains the identified
routine. The IDENTIFY routine returns to
the issuer by issuing an SVC EXIT
instruction.

DELETE SERVICE ROUTINE (IEAADLOO, IEABDLOO)

The DELETE service routine determines if
the routine specified in the DELETE macro
instruction is a RAM module. If it is, the
DELETE routine exits immediately. If the
routine is not a RAM module, the DELETE

34

routine finds the routine's RB on the
loaded program list and decrements the use
count in the RB by one. If the use count
reaches zero, the DELETE routine dequeues
the routine from the loaded program list
and issues a FREEMAIN macro instruction to
release the storage occupied by the speci
fied routine and its RB. On return from
the FREEMAIN routine, the DELETE routine
repeats the deleting process for each minor
RB belonging to the specified routine. The
DELETE routine returns by branching to the
type 1 SVC exit.

SYNCH SERVICE ROUTINE (IEAASYOO)

The SYNCH service routine uses GETMAIN
to obtain 32 bytes of main storage from the
lower end of the partition for the creation
of a program request block (PRB). The PSW
in the PRB is initialized by the SYNCH
routine to address the location specified
in register 15 by the issuer of the macro
instruction. The SYNCH routine sets the
PSW completely enabled in problem program
mode, with the protection key recorded in
the task control block. After the PRB is
created and initialized, the SYNCH routine
queues it on the active request block queue
below the SVRB for SYNCH, and returns by
issuing an SVC EXIT instruction.

Additional information describing PCP
and MFT Contents supervision can be found
in Fixed-Task supervisor, Program Logic
Manual.

MAIN STORAGE SUPERVISION

In MFT, the main storage supervisor:

1. Allocates space via the GETMAIN SVC

2. Deallocates space via the FREEMAIN SVC

3.. Allocates space in the system queue
area

4. Checks validity of requests that are
to be serviced

5.. Maintains the pointers and control
blocks necessary to supervise main
storage

Each job is assigned to a partition in
which it must operate. Each partition has
an associated TCB which contains a pointer
(TCBMSS field) to the main storage boundary
box for that partition. The main storage
supervisor, in response to GETMAIN or FREE
MAIN macro instructions, obtains storage
from either the problem program partition
or the system queue area. Obtaining
storage space from the system queue area is
the basic difference in main storage super-

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

vision between MFT and PCP. In MFT, a
system task can issue a GETMAIN macro
instruction specifying subpool 255 and the
required storage will be allocated from the
system queue area. The system queue area
is used to obtain space for system control
blocks which might be destroyed by problem
programs if they were placed in problem
program partitions. The system tasks which
request storage space from subpool 255 are:

• The CSCB creation module of SVC 34, for
CSCBs

• The ENQ/DEQ processing routines of task
supervision, for all control blocks
associated with ENQ/DEQ

• The communications task, for write-to
operator (WTO) buffers if all WTO buff
er storage space specified during sys
tem generation is unavailable

Note: Although subpools are not created in
MFT (as in PCP and MVT), problem programs
and system tasks may specify subpools in
the GETMAIN macro instruction. However,
all main storage requests from problem
programs are allocated from the highest
available main storage in the partition
which issued the GETMAIN.

The boundary box for the system queue
area is located in roaster scheduler reS1-
dent data area IEESD568 (see Appendix A).
The master scheduler resident data area is
addressed by the CVTMSER field in the
Communications Vector Table.

When problem programs issue GETMAIN
macro instructions specifying a subpool
from 0 through 127, storage is allocated
from the high-address portion of the parti
tion in which the GETMAIN macro instruction
was issued. When problem programs attempt
to issue a GETMAIN macro instruction speci
fying a subpool from 128 through 255, the
program is abnormally terminated.. when
system tasks issue a GETMAIN macro instruc
tion specifying a subpool from 0 through
127, storage is allocated from the low
address portion of the partition; when
specifying a subpool from 128 through 254,
storage is allocated from the high-address
portion of the partition. Subpool 255 is
handled as a special case as described in
preceding paragraphs.

For a complete description of main
storage superv1sor functions, see Fixed
Task Supervisor, Program Logic Manual,.

TIMER SUPERVISION

Timer supervision routines are an
optional feature of MFT. If selected, the
user may request timer services through the

TIME, STIMER, and TTIMER macro instruc
tions. The TIME service routine (IEAORTOO)
determines the date and time of day. The
STIMER service routine (IEAOSTOO) sets a
user specified interval, and the TTIMER
service routine (IEAOSTOO) determines the
amount of time remaining in a previously
specified interval. Whenever a timer in
terval is requested in an STIMER macro
instruction, a timer queue element (TQE) is
constructed. These elements are chained
together in a timer queue. The queue is
ordered so that the TQE representing the
next interval to expire is always at the
top of the queue. When a requested inter
val expires, a timer interruption occurs
and the supervisor Timer Interruption
Handling Routine (IEAOTIOO) takes appropri
ate action, depending on the type of inter
val which has expired. If job/step CPU
timing is included in the system, IEAOTIOO
adjusts the pseudo timer field in IEATPC in
the same manner it adjusts the hardware
timer.

TIMING PROCEDURE

The System/360 interval timer is a 32
bit word in lower main storage which con
tinually decrements as long as the system
is running and the interval timer switch is
on. The timer supervision routines use
this hardware timer to accomplish their
functions. The timer supervision routines
can set the hardware timer to any interval
between zero and six hours. An interrup
tion occurs when the hardware timer decre
ments to zero. Since the hardware timer
never exceeds six hours, four values are
needed to maintain elapsed time for a full
day. These values are:

• Hardware timer
• Six Hour Pseudo Clock (SHPC)
• Twenty-four Hour Pseudo Clock (T4PC)
• Local Time Pseudo Clock (LTPC)

The SHPC is used to time intervals up to
six hours; the T4PC is used to time inter
vals up to twenty-four hours. The LTPC
contains the local time of day entered by
the operator during system initialization.

When an STIMER macro instruction is
issued, the STIMER supervisory routine
adjusts the time interval requested rela
tive to the intervals in the hardware
timers and pseudo clocks. This enables the
supervisory routines to place the newly
requested timer element in the correct
place on the timer queue.

TIMER PSEUDO CLOCK ROUTINE (IEATPC)

The timer pseudo clock routine (IEATPC)
contains all variable information that

Main storage Supervision 34.1

Form Y27-7128-3., Page Revised by TNL Y28-2349, 11/15/68

would normally be included in the resident
timer routines. This information includes:

• Pseudo clocks

• Work space used for incrementing CVT
date

• Accumulator for the job/step CPU timing
feature

COMPARISON OF PCP, MFT, AND MVT TIMER
SUPERVISION

Requests for timer services in PCP, MFT,
and MVT are made using the same macro
instructions. Timer requests are enqueued
on the timer queue in the same way in all
three systems. There is one difference
between PCP and MFT timer superv1s1on.
Because there is only one partition in PCP,
the timer completion exit routine receives
control as soon as a requested task time
interval expires.. When a timer interval
expires in MFT, the timer completion exit
routine does not receive control until the
task which requested the timer interval is
the highest priority ready task in the
system. In MVT, the maximum amount of time
permitted to complete a job step or cata
loged procedure may be specified on the
EXEC card. This facility is not provided
in MFT.

For a complete description of timer
supervisor, see Fixed-Task Supervisor, Pro
gram Logic Manual, and MVT Supervisor Pro
gram Logic Manual.

OVERLAY SUPERVISION

The routines which supervise loading of
overlay program segments and assist flow of
control between segments of the overlay
program are identical in operation for PCP
and MFT. A complete description of PCP and
MFT overlay supervision can be found in
Fixed-Task Supervisor, Program Logic
Manual .•

MFT RECORDING/RECOVERY ROUTINES

Operating System Recording/Recovery rou
tines are optional control program routines
which may be selected during system genera
tion. They handle two types of equipment
malfunctions:

• Malfunctions of the central processing
unit (CPU), which cause machine-check
interruptions.

• Malfunctions in a channel, which cause
input/output interruptions .•

34.2

Operating system Recording/Recovery rou
tines are divided into two groups: System
Environment Recording and Recovery
Management.

System Evironment Recording includes:

• System Environment Recording 0 (SERO,
described in IBM System/360 Operating
System: Fixed-Task supervisor, Program
Logic Manual., Form Y28-6612.

• System Environment Recording 1 (SER1),
also described in the Fixed-Task Super
visor PLM.

Recovery Management includes:

• Machine-Check Handler (MCH), described
in IBM System/360 Operating system:
Machine-Check Handler for IBM system/
360 Model 65, Program Logic Manual,
Form Y27-7155.

• Channel-Check Handler (CCH), described
in IBM System/360 Operatong System:
Input/output Supervisor, Program Logic
Manual, Form Y28-6616.

MACHINE-CHECK ROUTINES

There are three machine-check routines.

The recording routines:

SERO, which records information about
the error and then places the
system in a wait state.

SERI, which records information about
the error and attempts to associ
ate the error with a task. If it
can do this, it abnormally ter
minates the task and allows the
system to continue operation.

The recovery routine:

MCH, which records information about
the error and attempts complete
recovery from it, including retry
of the instruction that caused the
error.

For the Model 65, anyone of these three
routines may be selected during system
generation. For the Model 40, 50, 75, and
~1, either SERO or SER1 may be selected.
If no routine is selected, either SERO or
SERI is used by default. The version used
by default depends on the model (or models)
specified, and on the size of the system
(see IBM System/360 Operating system: Sys
tem Generation, Form C28-6554).

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

CHANNEL-CHECK ROUTINE

There is only one channel-check routine:

CCH, which aids recovery from channel
errors by:

• providing channel error information to
IBM-supplied device dependent error
recovery procedures (ERP).

• Building a record entry which is later
written on SYS1.LOGREC by the statist
ical data recorder of the I/O
supervisor.

This routine may be selected during system
generation for the Model 65, 75, and 91
only.

SYSTEMS WITHOUT RECORDING/RECOVERY ROUTINES

When an equipment malfunction (caused by
a machine/check error or a channel error)
occurs on an IBM System/360 model that does
not have Recording/Recovery routines, the
computer is placed in a wait state (See
Figure lOA). If the system is a Model 30,
the opera~or may then load the system
Environment Recording, Editing" and Print
ing (SEREP) program. SEREP is a model-

1. Wait State

2. SERO Routine

3. SER 1 Routine

4. Mlchine-Check
Handler

A CPU Malfunction causes a
Machine Check Interruption

Load Machine
Check New PSW

System
Generation
Option
(1,2,3, or 4)

• Figure 10A. Recording/Recovery Routines

dependent stand-alone diagnostic program.
It is described in IBM System/360: General
Programming Considerations, Form Y20-0005.

ENTRY TO RECODING/RECOVERY ROUTINES

When a machine-check interruption
occurs, the machine-check new PSW is
loaded. This causes control to pass
directly to the Recording/Recovery routine
which was selected during system generation
(see Figure lOA).

When an I/O interruption occurs because
of a channel errorl the I/O new PSW is
loaded. This causes control to pass to the
I/O FLIH and then to the I/O Supervisor.

If the Channel-Check Handler option was
not selected during system generation, the
I/O Supervisor enters the SER Interface
subroutine (SERR04) within the I/O Supervi
sor.. This routine loads the machine-check
new PSW (See Figure IDA).

If the Channel-Check Handler was
selected during system generation, the I/O
supervisor enters the Channel-Check Handler
Interface (SERR04) within the I/O Supervi
sor (see Figure lOA).

A Channel Malfunction causes an
Input/Output Interruption

VO

1. SE!V'MCH
Interface

2. Channel-Check
Handler

Main Storage Supervision 34.3

The primary job management function is
to prepare job steps for execution and,
when they have been ex~cuted, to direct the
disposition of data sets created during
execution. Prior to step execution, jot
management:

• Reads control statements from the input
job stream

• Places information contained in the
statements into a series of tables

• Analyzes input/output requirements

• Assigns input/output devices

• Passes control to the job step

Following step execution, job rranagerr.ent:

• Releases main storage space occupied by
thE tatles

• Frees input/output devices assigned tc
the step

• Disposes of data sets referred to or
created during execution

Job management also performs all pro
cessing required for communication between
the operator and the control program.
Major components of job management are the
job scheduler, which introduces each job
step to the system (job processing), and
the corr~unications and master scheduler
tasks, which handle all operator-system
communication (co~mand processing).

JOB SCHEDULER FUNCTIONS

The job scheduler includes three pro
grams: the reader/interpreter, the initia
tor/terminator, and the system output writ
er. The functions of the reader/
inter~reter are similar to the MVT reader:
additional information can be found in IBM
Systerr~360 OFerating System: MVT Job Mafi=
agement, Program Logic Manual, Form Y28-
6660.

After all control statements for a job
have been processed, all initiators that
are waiting for that job class are posted
and the initiator residing in the hig~est
priority partition is given control. The
MFT initiator is described in this publica
tion: for information on allocation and
termination, refer to IBM System/360 Oper-

JOB MANAGEMENT

ating System: Mvr Job Management, Program
Logic Manual, Form Y28-6660.

When the job step has been executed,
control is returned to the initiator/
terminator which performs data set disposi
tions and releases input/output (I/O) re
sources. If the entire job is to be
terminated, the terminator enqueues all
data sets on the appropriate system output
(SYSOUT) queues.

When the system output writer receives
control, it dequeues a job from an output
queue, and transcribes the data sets to the
user-specified output device. (See IBM
Systern/360 Operating System: MVT Job Man
agement, Program Logic Manual, Form Y2S-
6660, for fUrther information on the system
output writer.)

COMMUNICATIONS TASK FUNCTIONS

The routines of the communications task
process the following types of communica
tion between the operator and the system:

• Operator commands, entered through the
console or through the input stream

• Write-to-operator (\~O) and write-to
operator with reply (WTOR) macro in
structions

• Interruptions caused when the INTERrtUPT
key is pressed, to switch functions
from the primary console to an alter
nate console

MASTER SCHEDULER TASK FUNCTIONS

The master scheduler task handles job
queue manipulation commands and partition
definitions. SVC 34 and the master sched
uler resident command processor routines
comprise the master scheduler task.

JOB MANAGEMENT CONTROL FLOW

Figure 11 shows the rr.ajor components of
job management and the general flow of
control.

Control is passed
whenever the supervisor

to job
finds

management
that there

Job Management Introduction 35

are no prograrr. request blocks in the re
quest block queue. This can occur for two
reasons: either the initial program load
ing (IPL) procedure has just been com
pleted, or a job step has just been
executed.

Ent.ry to Job Management Following Initial
Program Loading

Following IPL, certain actions rrust be
taken by the operator before job processing
can begin. Therefore, control passes to
the communications task which issues a
message to the operator instructing him to
enter commands, or to redefine the system.
If he chooses to redefine the system,
control passes to the master scheduler task
to handle the rEdefinitions. If the system
is not to be redefined, the initialization
commands (a SET command, a START reader
command, a START writer command, and a
START INIT corrmand) are issued <either

OPERATOR'S
CONSOLE

Commands COMMAND
SCH ED U LI N G I-------.j
ROUTINES

Commands

COMMAND
EXECUTION
ROUTINES

automatically by the master scheduler task
or by the operator), and job processing
begins.

Entry to Job Management Following Step
Execution

Following step execution, control is
passed to the step termination routine of
the initiator/terminator. If no further
job steps are to be processed, control is
also passed to the job termination routine
of the initiator/terminator. Both routines
are described in the topic "Initiator/
Terminator."

~WT job management is similar in many
respects to MVT job management. However,
certain major differences in logic exist.
These differences are described in two
major topics. "Corrroand Processing"
includes the communications task and master
scheduler task. "Job Processing" includes:

See
Table 1. COMMAND PROCESSING

Input Job
Description

WORK
QUEUES System Output Job Description

§-
I

TAPE

r CARD

JCL, Commands,
and Data READING

TASKS

I i
I t

PROCEDURE
LIBRARY

-

-

System Input
Data Sets

Figure 11. Job Management Data Flow

36

r
I

:
I
t

INITIATING
TASKS

Initiate

PROCESSING
PROGRAM

i i
I 1 t

DATA
QUEUES

Terminate

System Output Data Sets

WRITING
TASKS

JOB PROCESSING

-B
I

TAPE

PUNCH I

• Queue Management

• Reader/Interpreter

• Initiator/Terminator

• System output writer

• System task control

• System restart

• Table 1. Initial Responders to Corrmands

References to IB.M system/360 Operating
System: MVT Job Management, Program Logic
Manual, Form Y28-6660 are made in the
topics where the logic is the same as in
MVT.

Tables and work areas used by MFT, MFT
module descriptions, and MFT flowcharts are
included in the appendixes.

r---T---,
I Command I Ini tia 1 Responder I
~---+---~
I CANCEL (active jobs) I Initiator I
~---+---~
I CANCEL (job in queue) I Master Scheduler I
~---+---~
I DEFINE I Master Scheduler I
~---+---~
I DISPLAY STATUS I Initiator I
~---+---~
I DISPLAY JOBNAMES I Initiator I

~---+---~
I DISPLAY A,Q,R,N,jobname I Master Scheduler I

~---+---~
I DISPLAY T I Timer Maintenance Routine * I
~---+---~
I HALT I Statistics Update Routine * I
~---+---~
I HOLD I Master Scheduler I
~---+---~
I MODIFY I Writer I
~---+---~
I MOUNT I Master Scheduler I

~---+---~
I RELEASE I Master Scheduler I
~---+---~
I REPLY I Master Scheduler I

~---+---~
I RESET I Master Scheduler I

~---+---~
I SET CLOCK, DATE I Timer Maintenance Routine * I
~---+---~
I SET PROC, Q, AUTO I Master Scheduler I
~---+---~
I START/STOP Reader I Reader/Interpreter I
~---+---~
I START/STOP Writer I Writer I

~---+---~
I UNLOAD I Initiator I
~---+---~
I VARY I Initiator I

~---~---~
I * See the publication IBM system/360 Operating System: MVT Supervisor, Program I
I Logic Manual, Form Y28-6659. I l ___ J

Job Management Introduction 37

COMMAND PROCESSING

Operator commands control system opera
tion and modify system tasks. Corr-mand
proc~ssing in MFT is handled by the commu
nications task and the master scheduler
ta~k. With the exception of DEFINE, com
mands can be entered into the systerr.
through the console or the input job
stream. The DEFINE con~and can be entered
only through the console. Commands entered
through the console are read by the commu
nications task and routed to the master
scheduler (see Figure 12). The communica
tions task also communicates between the
systerr and the operator; it handles WTO/
WTOR macro instructions', assigns message
identifiers (including partition numbers),
and maintains reply queue elements.

When a command is encountered in the
input stream, t.he reader/interpreter passes
control to SVC 34 to process the command.
SVC 34 processes most commands completely
and returns control to the interrupted
routine. For the SET and DEFINE commands,
which are not processed completely by SVC
34, control is passed to the master sched
uler resident command processor routine.

Master Scheduler Task

Command is
Processed

Start No

r-----lr-:::-_
I
Communication Task

Reads Request
from the Console

Reader or Writer>-+----.-.
Appropriate Action is
Taken. Messages are issued
if the Command is Reiected. Command

System
Task
Control

Yes

Initiates the
Reader or Writer

Figure 12.

38

If DISPLAY JOBNAMES
Command has been Entered,
Returns a Message to the
Operator Stating that I--
the Reader or Writer
has been Storted.

Command processing Flow

The commands accepted and processed by
MFT are the following:

CANCEL
DEFINE
DISPLAY
HALT
HOLD
~jODIFY

MOUNT
RELEASE
REPLY
RESET
SET
START
STOP
UNLOAD
VARY

The format and syntax of these commands
can be found in IBM System/360 Operating
System: Operator's Guide, Form C28-6540.

COMMUNICATIONS TASK

The routines that handle operator-system
communication are contained in the communi
cations task. Communication may take
either of two forms: commands, which allow
the operator to change the status of the
system or of a job or job step, and W'IO or
WTOR macro instr'uctions, which allow prob
lem programs or system cOTI,ponents to issue
messages to the operator. The communica
tions task routines also switch functions
from the primary console device to an
alternate console device when the INTERRUPT
key is pressed.

WTO/WTOR ~~CRO INSTRUCTION PROCESSING

Whenever a WTO or vlTOR macro instruction
is issued, a supervisor call (SVC) inter
ruption occurs. The supervisor identifies
the type of interruption and passes control
to the communications task to issue mes
sages and/or to read replies. (See Figure
13.)

EXTERNAL INTERRUPTION PROCESSING

When the operator presses the INTERRUPT
key, an external interruption occurs. The
communications task then switches from the
prirrary console device to the alternate
console I/O device. (See Figure 14.)

COMMUNICATIONS TASK MODULES

The communications task (Chart 05)
receives control through interruptions
which occur when commands are entered or

messages are written. The following para
graphs describe the seven major routines of
the ccmmunications task.

Console interruption routine (IEECVCRA):
notifies the communications task wait rou
tine that a console read has been
requested.

Communications task wait routine (IEE
CVCTW): waits for all WTO/WTOR requests
and console interrupts and calls the commu
nications task router routine.

communications task router routine (IEE
CVCTR): determines the type of request or
interruption that occurred and passes con
trol to the appropriate procEssing routine.

Console device processor routines (IEE
CVPM) : performs console read and write
operations and error checking.

Write-to-operator routine (IEECVWTO): man
ages WTO buffers.

wri te-to-operator with reply routine (IEE
VWTOR): manages WTOR buffers.

External interruption routine (IEECVCRX):
switches to the alternate console device
when an external interruption occurs.

Program Issues Supervisor
WTO/WTOR Macro Instruction

Communication Task
Identifies Type
of Interruption

Writes Message
(Generates Reply
Queue Element
if WTOR)

Returns Control
to Point of
Interruption

A. Message Processing

Operator presses Supervisor

REQUEST KEY

Communication Task
Identifies Type
of Interruption

Reads Reply

Places Reply in Buffer;
POSTS ECB Specified Returns Control

in the WTOR to Point of
Interruption

B. Reply Processing

Figure 13. WTO/wTOR Macro Instruction Pro
cessing Flow

o
Supervisor

perotor resses
INTERRUPT Key

Identifies Type of

Communication Task
Interruption, Posts
Communication Task
ECB

Switches Between
Primary and Alternate
Console

Returns Control to
Point of Interruption

Figur~ 14. External Interruption Process
ing Flow

Co~mands are issued through the console
device or the input reader. Before enter
ing commands through the console device,
the operator must cause an I/O interruption
by pressing the REQUEST key. When he does,
control is given to the supervisor, which
recognizes the interruption and passes con
trol to the I/O supervisor. The I/O super
visor determines that the interruption is
an attention signal and passes control to
the communications task console interrup
tion routine in the nucleus. The console
interruption routine posts the attention
event control block (ECB) in the unit
control module (UCM) and sets the attention
flag in the UCM list entry corresponding to
the device from which the interruption
came. Posting of the attention ECB causes
the communications task wait routine to be
dispatched.

The communications task wait routine
waits on all communication ECBs associated
with WTO/WTOR. The wait routine issues a
multiple WAIT macro instruction on a list
of ECBs contained in the UCM. When one of
the ECBs is posted, as by attention or
external interruptions, the wait is satis
fied and the communications task thus
becomes ready. When it beco~es the active
task, it issues SVC 72. This SVC includes
the console communication service routines
and the router.

The communications task serves a number
of purposes. The first segment of SVC 72,
called the router, distinguishes among
these purposes and establishes the order of
response. When a posted ECB is found by
the router, the router passes control to
the specified processor routine via an XCTL
macro instruction.

The console-device processor routines
read and write using the EXCP macro
instruction. The processor routines con
sist of a routine to service external
interruptions and three device-oriented
routines: 1052 Printer-Keyboard routine,
card reader routine, and printer routine.

Communications Task 39

Each of the three console input/output
Frocessor routines is associated with an
OPEN/CLOSE sUFport routine, which provides
data management and input/output supervisor
contrel blocks. The specified processor
routine reads the input message into a
buffer area and calls the master scheduler
task via an SVC 34.

The write-to-operator routine moves the
text from the requesting program's area to
a buffer area within the nucleus and posts
the communication ECB for write-to
operator.

The write-to-operator with reply routine
generates a message ID, including a parti
tion identifier, and creates a reply queue
element (RPQE) to handle the operator's
reply.

The external interruption routine,
residing in the nucleus, switches to an
alternate console device when the operator
presses the INTERRUPT key on the console.

CONSOLE ATTENTION INTERRUPTION ROUTINE
(IEECVCRA)

The console attention interruption rou
tine (IEECVCRA), operating in privileged
mode, posts the communications task atten
tion ECB to request reading of the console.
InFut/output interruptions are disabled
without destroying register contents, and
without macro access to supervisor ser
vices. Using the address of the UCB (found
in register 7), the UCB address is matched
to a UCM entry. The attention flag for the
entry is turned on. Control then passes to
the POST routine, indicating the attention
ECB in the UCM. The address in register 14
is used for return to the input/output
supervisor (lOS).

COMMUNICATIONS TASK WAIT ROUTINE (IEECVCTW)

Upon entry from the dispatcher, the
communications task wait routine (IEECVCTW)
issues a WAIT (with a count of one) speci
fying the list of ECBs whose address is
contained in the EVent Indication List
(ElL). Thus the communications task can
respond to a variety of events since the
posting of anyone ECB satisfies the wait.
The PCST macro instruction issued in the
console attention interruption routine
satisfies the wait, causing the TCB to be
placed on the ready queue. When next
dispatched, the wait routine issues an SVC
72 which results in creation of a supervi
sor request tlock (SVRB), and fetching of
the first segment of the console processor
routines into the system transient area.

40

COMMUNICATIONS TASK ROUTER (IEECVCTR)

The communications task router
(IEECVCTR) is the first segment of SVC 72
brought into the transient area. Because
the communications task serves a number of
purposes, and many service requests may be
pending, the router establishes the order
of response. The order is: external
interruption, input/output list completion,
attention (console interruption), and WTO/
WTOR. Multiple attentions are treated in
order of appearance in the UCM. Multiple
input/output completions are treated in
order of first use of the device. The
router responds to an attention by building
a parameter list in the SVRB extended save
area. The parameter list consists of a
remote XCTL parameter list, the address of
the appropriate UCM entry, and the address
of (contents of CVTCUCB) the UCM. The
router then passes control to a processor
routine by issuing an XCTL macro instruc
tion to the remote parameter list, using
the name obtained from the unit control
block (UCB) entry. The flag signifying the
request to be serviced by the processor
routine is turned off by the routine.
Consequently, processor routines return
control to the router by issuing an XCTL
rr.acro instruction to allow the router to
schedule service for other requests. If no
requests are pending, the router exits to
the wait routine using the address in
register 14.

In addition to distinguishing the output
request from other requests, the router
selects the device to which the message is
to be sent. The router establishes tbe
output device by checking UCB entry attri
bute indicators. The appropriate entry is
the first active UCB entry that supports
WTO. As before, the router builds a remote
interface for, and passes control to, a
processor routine via an XCTL n.acro
instruction.

CONSOLE DEVICE PROCESSOR ROUTINES
(IEECVPMX, IEECVPMC, IEECVPMP)

Control flow in a processor routine is
determined by the setting of flags in the
router-selected UCM entry. The close flag
is tested first. If this flag is on, any
pending input/output activity is suspended
by issuing a WAIT macro instruction. Con
trol is then passed to an associated OPEN/
CLOSE support routine via an XCTL macro
instruction for release of various control
blocks. If the close flag is off, the busy
flag is tested to determine input/output
status. If there is outstanding input/
output activity, error checking and buffer
disposition occur if the activity has been
posted complete. Otherwise, any attention
request is temporarily abandoned (as are

output requests), and control returns to
the router via an XCTL macro instruction.
If the busy flag is off, the attention flag
is tested; if it is on, the status of the
device is examined. If the device has not
been opened, control passes to an asso
ciated OPEN/CLOSE support routine via an
XCTL macro instruction to obtain storage
for a DCB and access-method dependent con
trol blocks, and for execution of the OPEN
macro instruction.

When return is made from the OPEN/CLOSE
support routine, a response to the atten
tion flag is prepared. A fixed buffer in
the UCB is reserved and an access-method
dependent interface is constructed. Input/
output activity is initiated by issuing an
EXCP macro instruction for a 1052, and by
issuing a READ macro instruction for a unit
record device. In no case does the
processor routine await completion of this
activity. Control immediately returns to
the router via an XCTL macro instruction.

Control flow within the processor rou
tine is as described previously up to the
point at which the output request flag is
tested. If the flag is on, the processor
routine obtains the address of an output
buffer from the DCM. The element is not
removed from the queue at this time; this
occurs only on successful completion of
input/output activity. This preserves a
means of retrying the message if an exter
nal interruption intervenes before the mes
sage is successfully presented to the cur
rent device. Since output buffers are
always selected from the top of the queue,
the initiation of output to an alternate
device is unaffected by previous attempts
to present the message to the primary
device.

Having selected a buffer, the processor
routine establiShes data management and
input/output supervisor (lOS) control block
linkages. The routine then issues an EXCP
macro instruction for a 1052, or a WRITE
macro instruction for a printer. Without
awaiting completion of the input/output,
the processor routine returns to the router
via an XCTL macro instruction.

WRITE-TO-OPERATOR ROUTINES (IEECVWTO AND
IEEVWTOR)

The write-to-operator routine (SVC 35)
writes operator messages on the console
when a WTO or WTOR macro instruction is
issued by system component programs or
problem programs. Messages and replies are
buffered; the period of time between issu
ing the message and receiving the reply is
available for processing. Issuance of
either macro instruction causes an SVC
interruption. When the SVC interruption is

handled, the supervisor causes the write
to-operator routine to be loaded into the
transient area of the nucleus and passes
control to it.

There are two console queues: the buff
er queue and the reply queue. The extent
of both queues is defined by specifying the
number of buffers at system generation. An
attempt to exceed this value results in the
requesting task being placed on a queue to
wait for service; i.e., the task is placed
in a wait condition. Each WTO and WTOR
macro instruction results in the addition
of a WTO Queue Element (WQE) to the buffer
queue; each WTOR results in the addition of
a Reply Queue Element (RPQE) to the reply
queue. SVC 35 (IEECVWTO) sets up the
problem program message. If it is a WTOR,
the write-to-operator-with-reply routine
(IEEVWTOR) inserts the message identifica
tion (ID) in addition to a partition iden
tifier. The same message ID (which the
operator must use for his reply) is placed
in the RPQE with other information to
insure passing the reply, when received, to
the proper area. WTO messages are always
written: a WTOR message may be purged
(removed from the queue) if the issuing
task terminates while the message is on the
buffer queue. Therefore, an RPQE differs
from a WQE in that it contains the address
of the issuing task's TCB. The buffer
queue is accessed through the entry UCMWTOQ
in the UCM.

The reply queue contains RPQEs for
operator replies to WTOR. Like WTOR ele
ments in the buffer queue, RPQES contain a
TCB address to permit their being purged
from the queue if the issuing task is
abnormally terminated.

For a REPLY (to WTOR), the processor
issues SVC 34 (see "Master Scheduler
Task"). The SVC routine determines that
the incoming command is a REPLY, processes
the reply, posts the user's ECB and
branches back to the processor.

EXTERNAL INTERRUPTION ROUTINE (IEECVCRX)

The external interruption routine
aSSigns fUnctions performed by the primary
console device to an alternate console
device. When the operator presses the
INTERRUPT key on the console, an external
interruption occurs and control passes to
the supervisor. The supervisor identifies
the interruption and passes control to the
external interruption routine which
switches consoles and returns control to
the supervisor. Console functions may
later be reassigned to the primary console
device, if the operator causes another
external interruption.

Communications Task ~1

MASTER SCHEDULER TASK

The MFT master scheduler task (MST)
processes all commands, and initializes
main storage at system initialization. It
is composed of the SVC 34 routines and the
waster scheduler resident cOIMlIand processor
routines. SVC 34 processes all commands
directly except HOLD, RELEASE, RESET, CAN
CEL (inactive jobs), DISPLAY (A,Q,N,
jobname) and CEFINE. SVC 34 calls the
resident command processor to complete the
processing of these commands.

The master scheduler resides in the
nucleus and operates under control of its
own ~CB. The master scheduler TCB is
always dispatchable and is of higher
priority on the TCB queue than the TCBs for
the partitioned area (the problem program
area) of storage. Therefore, when a com
mand is issued. the master scheduler always
gains control of the CPU after the communi
cations task for processing the command.

When processing commands, interruptions
are disabled so that command processing may
be cowpleted before any other interruptions
are serviced. Although commands are pro
cessed when issued, the command may not
take effect immediately. An example of
this is the STOP writer command. The
waster scheduler marks a cowmand scheduling
contrcl bleck (CSCB) which is checked by
the writer between jobs. The command does
not take effect until the writer completes
the job it was processing when the command
was issued.

SVC 34 FUNCTIONS

SVC 34 (Chart 06) is called to process
all cOfilmands. As previously noted. it
processes some of these commands completely
and calls the resident command processor to
process the remaining commands. The com
mands processed cowpletely by SVC 34 are:

START
STOP
MODIFY
CANCEL (active jobs only)
HALT
MOUNT
VARY
UNLOAD
REPLY
DISPLAY (JOBNAMES, T, or STATUS)

For CANCEL (inactive jobs), HOLD.
RELEASE. RESET, DISPLAY (A. Q. N, R, job
name), and DEFINE cowmands. SVC 34 does
preliminary processing before passing con
trol to the resident command processor.

42

The following paragraphs
modified MVT routines and
routines within SVC 34.

describe two
two new MFT

Validi ty Check Command Routine (IEEO 40 3D)

The validity check corrmand routine
(IEE0403D) scans and checks the validity of
commands for proper syntax and content.
The buffer is scanned for the first
character of the verb. If the verb is
eight characters or less and properly de
limited, it is placed in the verb substi
tute of the extended save area. Then a
check is made for a parameter list. If a
parameter list is found, its address is put
in the parameter position of the extended
save area. If there is no parameter list,
zero is placed in the parameter list pOSi
tion of the extended save area. Next, the
verb is compared against a table of valid
verbs. If a match is not found, the
COM~~ND INVALID error message is written.
If a match is found, the validity check
routine passes control to the appropriate
processing module via an XCTL macro
instruction.

Reply Processor Routine (IEE1203D)

The reply processor routine attempts to
check the validity of the operator's reply
command by matching the command with an
outstanding reply request (RPQE). If
valid, the reply command is then moved to
the buffer of the user that issued the
respective WTOR. The RPQE is freed, and
chain relinkage is performed. The user's
ECB and RPQE count ECB in the UCM are
posted. The routine then returns to the
calling routine.

DEFINE, MOUNT, and CANCEL Routine
<IEESD571)

This routine processes the DEFINE com
mand by setting the necessary indicators in
the master scheduler resident data area.
It then posts the ECB for the resident
command processor. This routine also pro
cesses the CANCEL command (for active
jobs), and the MOUNT command.

MOUNT processing parallels that of PCP
by building a parameter list for, and
~ssuing an XCTL macro instruction to the
PCP master command EXCP routine (IGC0103D).

Cancelling of an active job is handled
by scanning the CSCBs for a jobname com
pare. If the compare is equal and the CSCB
is marked cancellable, IEESD571 issues a
BALR to ABTERM with the job's TCB address
and proper completion code dump indication.
If the CSCB is not marked cancellable, the
CSCB is marked canceled and is posted. If
the job is not found, IEESD571 passes
control to the CSCB creation routine

(IEE0803D) via an XCTL macro instruction,
to CANCEL the jobname on the job queue.
(See IBM System/360 Operating System: MVT
Job Management, Program Logic Manual, Form
Y28-6660, for a description of IEE0803D.)

START and STOP INIT Command Routine
(IEESC561>

This routine processes the START command
and the STOP INIT command. For a START
commar.d, the routine first extracts the
partition numter from the command and
determines if the partition can accept the
command; i.e., the routine determines if
the partition is established as a reader,
writer, or problem program, and if it is
large enough to contain the requested task.
The routine builds and chains a CSCB,
passes the address of the CSCB to the
partition's PIB, and posts the partition.
(See Figure 15.)

This routine also
INIT command. After
partition number is
marks the partition's
INIT.

processes the STOP
verifying that the
correct, the routine

PIB to indicate STOP

\START Command/
\ at Console /

Communication (SVC 34)
Task

SVC 34

Check
Command Route
Processing

Build and
Chain CSCB

Put CSCB
in PIB, Post
"No Work" ECB

(Retum to 105

'

TARoT comman;
In Input
Stream

(SVC 34) Reader/
Interpreter

Figure 15. START Command Processing Flow

SYSTEM INITIALIZATION

The master scheduler task (Chart 07)
performs the function of initializing main
storage. In MVT this is done by NIP. In
MFT it is done by the master scheduler to
facilitate redefinition of main storage.
The following paragraphs describe the
action of the master scheduler in defining
main storage at system initialization.

The master scheduler task is loaded with
the nucleus. Its task control block (TCB)
points to the master scheduler request
block (RB) in the nucleus. NIP saves the
RB address and the contents of the boundary
box describing the normal master scheduler
task partition, for later use by the master
scheduler initialization routine IEFSD569.
(Note: IEFSD569 is brought into main
storage by the macro instruction SGIEEOVV
generated during system generation.)

The boundary box (BBX) is then changed
by NIP to describe a partition including
all of storage except the nucleus. The
address of an RB at the low address of this
partition is placed in the master scheduler
TCB. NIP then creates the RB. The RB
points to an XCTL to IEFSD569. NIP then
sets the master scheduler task dispatchable
and branches to the dispatcher.

The master scheduler initialization rou
tine is given control to perform scheduler
initialization. First it passes control to
the communications task initialization rou
tine (IEECVCTI) via a LINK macro instruc
tion. It then uses the communications task
to request any partition changes. On
return from the communications task, the
master scheduler initialization routine
passes control to the definition routine,
IEEDFIN1, via a LINK macro instruction.
IEEDFIN1 communicates with the operator, or
prepares the partition as it was described
at system generation. IEFSD569 then issues
the READY message, types the automatic
commands, and issues a WAIT macro instruc
tion.

When the operator presses the REQUEST
key, control is given to the supervisor
which recognizes the interruption and
passes control to the input/output supervi
sor. The input/output supervisor deter
mines that the interruption is an attention
signal and passes control to communications
task console attention interrupt routine
(described above). The interrupt routine
posts the communications task attention ECB
to request reading of the console. The
operator enters a SET command. SVC 34
posts the WAIT and places the parameters of
the SET command in the master scheduler
resident data area. The master scheduler
initialization routine then regains control
to continue processing. Control blocks for

Master Scheduler Task 43

the job queue and procedure library are
created. To format the job queue, the
routine passes control to queue initializa
tion routine IEFSD055 via a LINK macro
instruction which places a queue control
record (QCR) in the nucleus after the DCE
and DEB. Control then passes to queue
manager formatting routine IEFOR~AT which
formats the job queue and returns control
to the queue initialization routine. (For
a discussion of these two modules, see the
topic "Queue Manager".) After return from
the queue manager initialization routine,
the master scheduler initialization module
displays and processes any automatic com
mands •

The master scheduler initialization rou
tine then establishes partitions based on
inforrration in the TCBs. It constructs an
RB in each partition, with an XCTL macro
instruction addressing job selection module
IEFSD510 (for large partitions), or small
partition module IEFSD599 (for small parti
tions). The master scheduler initializa
tion routine then readjusts the pointers to
the master scheduler area, and returns to
the dispatcher. The dispatcher returns
control to the master scheduler task, but
the TCB now points to master scheduler
router routine IEECIR50, in the nucleus.

Master Scheduler Router Routine (IEECIR50)

Resident a,aster scheduler router routine
IEECIR50 waits on an ECB which is rosted by
SVC 34 when a command has been scheduled
for processing. This router (Chart 08)
scans the CSCE chain for any outstanding
commands to be processed. If a command is
found, the CSCB is removed from the chain.
The router routine then passes control to
syntax check routine IEESD562 via a LINK
macro instruction, passing the address of
the CSCB.

After all commands are processed, or if
none are found, the router routine deter
mines if a DEFINE command has been entered.
If so, the router routine passes control to
IEEDFIN1, the first module of the defini
tion routines, via a LINK macro instruc
tion. If no DEFINE command has been
issued, the router routine returns to wait
on its ECB. No test is made for DEFINE
command scheduling until all other commands
have teen processed.

Syntax Check Routine (IEESD562)

Syntax check routine IEESD562 checks the
syntax of the command parameter in the CSCB
(Chart 09). If a search of the input work
queues (SYS1.SYSJOBQE) is required for pro
cessing the command, the syntax check rou
tine sets internal codes for the queue
search, issues a GETMAIN to obtain storage,
and constructs an event control block (ECB)

44

and an input/output block (lOB). Control
is then passed to queue search setup rou
tine IEESD563. If the command was a DIS
PLAY A command, control is passed to DIS
PLAY A routine IEESD566. If it was a
DISPLAY R command, control is passed to
DISPLAY R routine IEESD567.

Queue Search Setup Routine (IEESDS63)

Queue search setup routine IEESD563
determines which of the queues is to be
searched and reads the queue control record
(QCR) for that queue. If the queue must be
searched, the queue search setup routine
establishes parameters for the search. The
queue search setup routine then passes
control to queue search routine IEESD564
via an XCTL macro instruction. When the
queue search setup routine regains control,
the QCR is scanned and if any information
in the record has been changed, the updated
information is rewritten on SYS1.SYSJOBQE.
The queue search setup routine then estab
lishes a parameter list and passes control
to service routine IEFSD565 via an XCTL
macro instruction.

Queue Search Routine (IEESD564)

Queue search routine IEESD564 reads the
entries of a queue based on the parameter
inforrration passed by setup routine
IEESD563. If the command processing
requires changes in the chaining informa
tion in a queue entry or control record,
the updated information is written on the
queue. Action indicators are passed as
parameters when control returns to the
setup routine.

Service Routine (IEESD565)

Based on the information passed by the
calling routine, service routine IEESD565
performs the fOllowing:

1. Passes control to queue manager
enqueue routine IEFQt';NQQ via a LINK
macro instruction to enqueue an entry
or QCR.

2. Issues a FREEMAIN macro instruction to
free the ECE/IOB which was used to
read SYS1.SYSJOBQE.

3. Passes control to the Faster scheduler
message module (IEE0503D) via a LINK
rracro instruction to write a message.

After the requested processing has been
performed, the service routine transfers
control to router rout.ine IEECIR50.

DISPLAY A Routine (IEESD566)

DISPLAY A routine IEESD566 receives con
trol from syntax check routine IEESD562

'--

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

when the DISPLAY A (active) command is
entered. This routine constructs WTO mes-
sages containing the active job and step-
names. The DISPLAY A routine returns con-
trol to the router routine.

DISPLAY R Routine (IEEDSS67)

DISPLAY R routine IEESD567 receives con
trol from syntax check routine IEESD562
when the DISPLAY R command is entered.
This routine constructs WTO messages con
taining the ID of each unreplied-to WTOR
message, the unit number of each device for
which a mount has been requested but not
complied with, and an indication if an AVR
mount message is pending. If none of these
conditions exists, the operator is advised
that there are no outstanding requests.
DISPLAY R routine returns control to router
routine IEECIR50.

PARTITION DEFINITION BY THE MASTER
SCHEDULER

The master scheduler uses the DEFINE
command processing routines (shown in
Figure 16) to initialize and change parti
tion definitions in MFT.

DEFINE Command Initialization Routine
(IEEDFINl)

The master scheduler passes control to
DEFINE command initialization routine IEED
FINl whenever a DEFINE command is entered
by the operator.. The routine also receives
control from the master sheduler during
system initialization, after the nucleus
initialization program (NIP) completes its
preparation of the system. In either case
the routine builds the DEFINE data area
containing the size and description (job
classes A-O, or R or W) of each partition
If Main Storage Hierarchy Support is
included in the system, the data area
contains the size of the partitions in
terms of hierarchies. Hierarchy 0 repre
sents processor storage and hierarchy 1
represents 2361 Core Storage.

If the time-slicing feature is included
in the system, the data area also contains
a doubleword of time-slicing information,
including the first and last partition
numbers in the time-slicing group and the
time interval (in milliseconds) assigned to
the group of partitions. This data is used
at completion of DEFINE processing to
define the partitioning of main storage.

If the DEFINE command initialization
routine was entered as the result of a
DEFINE command, it then determines whether

LIST was specified, and, if so, passes
control to listing routine IEEDFIN4 via an
XCTL rr,acro instruction. If not, the rou-
tine passes control to message routine
IEEDFIN5 via an XCTL macro instruction.

If the routine was entered during system
initialization, it determines whether par
tition redefinitions of LIST was specified
by the operator, and, if not, passes con
trol to validity check routine IEEDFIN3 via
an XCTL macro instruction. If either LIST
or partition redefinitions were specified,
the routine continues processing as if a
DEFINE command had been entered by the
operator.

Listing Routine (IEEDFIN4)

Listing routine IEEDFIN4 lists partition
definitions. If the time-slicing feature
is in the system, it also lists the time
slicing attributes. After performing the
listing function, the routine determines
whether an END keyword has been read from
the console, and, if so, passes control to
validity check routine IEEDFINI3 via an
XCTL macro instruction. If not, it passes
control to message routine IEEDFIN5 via an
XCTL macro instruction.

Message Routine (IEEDFINS)

The messages issued by message routine
IEEDFIN5 when entered by other DEFINE pro
cessing routines are:

• IEEDFIN1: The routine issues an ENTER
DEFINITION message.

• IEEDFIN2: The routine issues the
appropriate error message.

• IEEDFIN3: The routine issues the
appropriate error message.

• IEEDFIN4: The routine issues a CON
TINUE DEFINITION message.

• IEEDFIN6: The routine issues the
appropriate error message.

• IEEDFIN7: The routine issues either
the appropriate error message or a
CONTINUE DEFINITION message.

• IEEDFIN9: The routine issues a DEFINI
TION COMPLETED message.

After issuing the message, the routine
determines whether processing is complete,
and if so, returns to the dispatcher.. If
not" the routine passes control to syntax
check routine IEEDFIN2 via an XCTL macro
instruction .•

Master Scheduler Task 45

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

From NIP or DEFINE Command

• Figure 16. DEFINE Command Processing Flow

46

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

Syntax Check Routine (IEEDFIN2)

Syntax check routine IEEDFIN2 scans the
statement entered by the operator. Each
entry in the statement a partition
definition, a time-slicing change, or a
keyword -- is processed separately.

If the entry is a partition definition,
the routine checks the entry for syntax
errors. If a syntax error is found, the
routine passes control to message routine
IEEDFIN5 via an XCTL macro instruction,
thus ignoring the erroneous entry and all
following entries. If the partition
definition is valid, the routine updates
the DEFINE data area with the partition
information, then gets the next entry for
processing.

If the entry is a time-slicing change,
the routine passes control to time-slice
check routine IEEDFIN6 via an XCTL macro
instruction.

If the entry
definition nor
routine assumes
passes control
IEEDFIN7 via an

is neither a partition
a time-slicing change, the

that it is a keyword and
to keyword scan routine

XCTL macro instruction.

Time-Slice Syntax Check Routine (IEEDFIN6)

Time-slice syntax check routine IEEDFIN6
checks the time-slicing entry for syntax
errors. If a syntax error is found, the
routine passes control to message routine
IEEDFINS via an XCTL macro instruction,
thus ignoring the erroneous entry and all
following entries. If the time-slicing
change is valid, the routine updates the
DEFINE data area with the time-slicing
information, gets the next entry in the
statement being processed, and passes con
trol to syntax check routine IEEDFIN2 via
an XCTL macro instruction.

Keyword Scan Routine (IEEDFIN7)

Keyword scan routine IEEDFIN7 determines
whether the entry being processed is a
valid keyword. If it is not a valid
keyword, the routine passes control to
message routine IEEDFINS via an XCTL macro
instruction, thus ignoring the erroneous
entry and all following entries. If a
valid keyword is found, the routine sets
the appropriate keyword indicator in the
DEFINE data area.

If there are more entries to be pro
cessed, the routine gets the next entry and
passes control to syntax check routine
IEEDFIN2 via an XCTL macro instruction.

If there are no more entries to be
processed (end of input), the routine
determines whether a LIST keyword had been
entered., and., if so, passes control to

listing routine IEEDFIN4 via an XCTL macro
instruction. If LIST was not specified, a
check for the END keyword is made. If an
END entry is found, the routine passes
control to validity check routine IEEDFIN3
via an XCTL macro instruction; otherwise,
control is passed via an XCTL macro
instruction to message routine IEEDFIN5.

Validity Check Routine (IEEDFIN3)

Validity check routine IEEDFIN3 makes
final checks to determine that the informa
tion entered by the operator is correct
(e.g., that no more than 15 problem program
partitions have been defined). The routine
then determines the partitions affected and
constructs a list of ECBs (one for each
affected partition). The address of the
ECB, which must be posted by the affected
partition, is placed in the PIB of the
partition. If time-slicing information was
changed, the new information is placed in
the DFTMSL word of the data area, and the
time-slice control element (TSCE) is
updated accordingly. (See "Dispatching a
Task (with Time Slicing)" in the Supervisor
section for a description of the TSCE).
The routine then issues a WAIT macro
instruction on the ECB list. When the ECB
list has been posted, the routine passes
control to system reinitialization routine
IEEDFIN8 via an XCTL macro instruction.

If Main Storage Hierarchy Support is
included in the system, IEEDFIN3 also
determines whether a partition was defined
in two segments. If it was, before setting
the task inactive, IEEDFIN3 determines if
the operator has reduced both segments of
the partition to zero. If both segments
have been reduced to zero, the partition is
made inactive after the current task ter
minates. The data area is then altered and
message routine IEEDFIN5 receives control
to issue the DEFINITION COMPLETED message.

System Reinitialization Routine (IEEDFIN8)

System reinitialization routine IEEDFIN8
sets the protection key to zero if the
system is protected. Using the information
in the DEFINE data area, the routine builds
request blocks and boundry boxes for the
defined partitions and updates the parti
tion information blocks. The routine then
passes control to command final processor
routine IEEDFIN9 via an XCTL macro
instruction.

Command Final Processor (IEEDFIN9)

Comrrand final processor routine IEEDFIN9
updates the task control blocks affected by
time-slicing if time-slicing is specified.
The routine then passes control to message
routine IEEDFINS via an XCTL macro
instruction.

Master scheduler Task 47

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

JOB PROCESSING

Job processing is accomplished by three
types of tasks:

• Reading tasks, which control the read
ing of input job streams and the inter
preting of control statements in these
input streams.

• Initiating tasks, which control the
initiating of job steps whose control
statements have been read and inter
preted. (Terminating procedures are
also part of initiating tasks.)

• Writing tasks, which control the
transferring of system messages and
user data sets from direct-access
volumes on which they were written
initially to some other external
storage medium.

These tasks are created in response to
START commands entered for readers, initia
tors, and writers. Whenever a START reader
or writer command is entered, the resulting
command processing brings a reader or writ
er into the associated partition. Initia
tors are brought into all scheduler-size
partitions at system initialization, and
after a START INIT command has been issued
following partition redefinition. An
initiator is also brought into a partition
that is specified in a STOP INIT command to
terminate the initiator.

There may be more than one of each of
the job processing tasks. Input job
streams may be read simultaneously fram
three input devices by issuing a START
reader command for each input stream. Sys
tem messages or data sets may be written to
as many as 36 output devices by issuing a
START command for each device. Up to 15
initiating tasks can exist concurrently.
Each initiating task is created in response
to a START INIT command issued for a
specific partition, or a START INIT.ALL
command. (See IBM System/360 Operating
system: Operator's Guide., Form C28-6540.)

Note: The total number of tasks may not
exceed 52.

This section is divided into six topics,
including the three major tasks discussed
above, and three other areas associated
with the major tasks: Queue Manager, Sys
tem Task Control, and system Restart.

QUEUE MANAGER

MFT uses the MVT Queue Manager. How
ever, to reduce possible interlocks due to
unavailability of requested tracks, the
assign routine (IEFQASGQ) has been modi-

48

fied, and a new module (IEFSD572) has been
added. A table breakup routine CIEFSD514)
has also been added to subdivide variable
size tables located in main storage into
176-byte data records on disk. Descrip
tions of some MVT modules have also been
included to provide a more complete
explanation of the relationship of these
modules to the entire system.

WORK QUEUES

An MFT system contains 54 work queues
which form the job queue data set (SYS1.
SYSJOBQE). These 54 work queues are:

• Free-track queue

• HOLD queue

• Remote job entry (RJE) queue

• 36 output class queues

• 15 input job class queues

The job entries are enqueued in priority
order within each job class on the appro
priate job class queue. Jobs are selected
for processing according to the job class
designation of the partition requesting
work.

QUEUE MANAGEMENT

Queue Manager is a general term describ
ing a group of routines used by various
system components, such as the reader/
interpreter, initiator/terminator, and out
put writer. The queue manager performs
some common functions for all system com
ponents. It performs all input/output for
accessing the job queue data set and keeps
track of all space on this queue. The
queue manager assigns space on the job
queue in logical track increments for con
trol blocks, tables, and system messages
built by the scheduler. When the control
blocks and tables have been created, the
reader/interpreter enqueues (ENQs) the job
using the queue manager.. After the job is
enqueued, the initiator dequeues (DEQs) the
job for execution when a partition that is
assigned to service that job class becomes
available for work. The terminator places
control information needed by the system
output writer on the job queue. At job
termination, the terminator enqueues the
output work description. The writer then
dequeues the output work according to out
put class and priority within the class,
and transcribes it to the appropriate
device, specified by the user.

At
job

system generation, the space for the
queue data set is allocated. The

Forre Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

device upon which the job queue resides is
considered a non-demountable system resi
dence volume.

JOB QUEUE INITIALIZATION

At system initialization, queue initia
lization routine IEFSD055 receives control
from the SET command processor to construct
a data control block (DCB) in the nucleus,
and to issue an OPEN macro instruction
which causes a data event block (DEB) to be
built for accessing SYS1.SYSJOBQE. It also
places a queue manager master queue control
record (master QCR) in the nucleus after
the DCB and DEB. (See Figure 17 for the
format of the master QCR.) control then
passes to queue formatting routine
IEFORMAT.

The queue formatting routine divides the
job queue data set into a control record
area and a logical track area. The control
record area contains a copy of the master
QCR, a control record for the free track
queue, a control record for the HOLD queue,
a control record for the Remote Job Entry
(RJE) queue, a control record for each of
the 36 SYSOUT writer classes, and a control
record for each of the 15 input work
queues. (See Figure 18 for the format of
an input queue control record.>

0(0) 2

Address of last LTH of highest priority entry on queue.

4 (4) 2

13

8 (8) 2

11

12 (C) 2

9

16 (10) 2

7

20 (14) 2

5

24 (18) 2

3

28 (lC) 2

1

32 (20)
I 1

0(0) 8

8 byte disk address of the Master QCR

MBBCCHHR

8 (8) 1 2 1

Reserved
Displacement of first track

Reserved of the free queue

12 (C) 2 2
Number of logical tracks in Number of logical tracks in
the job queue data set the free-track queue

2 2
Number of tracks reserved Number of tracks reserved for
for cancelling of job steps Problem Program partitions
when queue full

16 (10)

2
Displacement of first track

2
Displacement of last
available logical track containing only job queue

20 (14)

records

24 (18) 2 2
Number of Q CRs per Number of job queue records
physical track per physical track

2
Number of logical tracks

2
Number of records per
logi cal track for each Prob I em Program

partition

28 (1C)

2 Address of first record an
2

Number of QCRs on the
mixed track

first track containing only
job queue records

32 (20)

36 (24)

Figure 17. Master Queue Control Record
(Master QCR) Format

14

12

10

8

6

4

2

0

2

2

2

2

2

2

2

2

3

Addresses of last
LTH of latest
entry havi ng
indicated priori ty.

Hold I
Highest

Address of ECB for first task requesting work
Queue PriOrity :

Figure 18. Job Queue Control Record (QCR)

Queue Manager 49

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

Note: The first position of the job queue
control record (job QCR) contains zeros if
no work exists. The job QCR contains a
m~n~mum of two entries if work exists for
at least one priority.

The job class specified by the user (on
the JOB statement or in a START command) is
converted by the system to match the
system-assigned job class identifiers. The
user-assigned job class and corresponding
system job class identifiers are:

user-assigned
job class

A
B
C
o
E
F
G
H
I
J
K
L
M
N
o

System-assigned
identifier

(hexidecimal>

28
29
2A
2B
2C
20
2E
2F
30
31
32
33
34
35
36

The logical track area length is vari
able. Logical tracks are used instead of
physical tracks so that the job queue can
reside on different device types. Each
logical track contains a 20-byte header
record (as shown in Figure 19) which
includes a pointer to the next track. The
header record is used to chain all tracks
of a job together. When the job is
enqueued, the header record is used to
chain jobs first-in/first-out (FIFO)
according to priority. All jobs of the
same job class are chained together. Fol
lowing the header record are a variable
number of 176-byte data records. The num
ber of records per logical track is deter
mined at system generation. All tables,
control blocks, and system messages are in
176-byte increments.

At system initialization, all tracks are
members of the free track queue. The free
track queue is a list of logical tracks
available for assignment to work queues.
As tracks are needed, they are taken from
the free track queue. When the system is
finished with tracks, they are returned to
the free track queue. After systeJrI ini
tialization, SYS1.SYSJOBQE appears as shown
in Figure 20. Figure 21 illustrates typic
al input and output work queues,. Each
input and output QCR contains the address
of the last entry in each priority queue.

50

0(0)

Reserved

4 (4)

Reserved

8 (8) I 2

Reserved First logical track of the job Reserved

12 (C) 2 I

Next logical track of the job
Number of Type*
tracks assigned

16 (10) I I
Reserved Jobclass of Last log i co I track of the

the job

20 (14)

Type: 0 ~ Free track queue
I ~ HOLD queue
2 ~ RJE queue

3-38 ~ Output class queues
39 = Reserved

40-54 = I nput work queues

next job

eFigure 19. Logical Track Header (LTH)
Record Format

QUEUE MANAGER MODULES

4

4

I

I

2

As jobs are read into the system, they
are placed into each job class queue
according to priority (established by the
PRTY parameter on the JOB statement). When
the reader/interpreter reads a job or es
tablishes a new queue for an output class,
it establishes a queue entry. This is done
by Assign/Start Routine IEFQASGT.

Assign/start Routine (IEFQAGST)

The Assign/Start routine takes the first
track from the available track pool and
establishes it as the first track for a
job. The queue manager parameter area
(QMPA) is updated accordingly. (See IBM
System/360 Operating system: MVT Job Man
agement, Program Logic Manual, Form Y28-
6660, for a description of QMPA.) An lOB
and an ECB are created for subsequent
input/output operations. The actual
reserving of tracks is done by the assign
routine, IEFQASGQ.

Note: MFT does not support the track
stacking facility of MVT.

Assign Routine (IEFQASGQ)

The assign routine assigns record space
on the job queue, and determines whether
the requested blocks can be assigned to the
current track. If so, the record addresses
are placed in the external parameter list

~

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

Flm { LOGICAL
TRACK

AODITIONAl{
LOGICAL
TRACKS

~ST { LOGICAL
TRACK

CONTROl
RECORD
AREA

LOGICAL
TRACK
AREA

• Figure 20. Sample Job Queue (SYSl.SYSJOBQE) Format After Initialization

of the QMPA, and the records-available
field of the QMPA is decremented to reflect
this assignment. If additional logical
tracks must be assigned, this routine
issues an ENQ macro instruction on the
master QCR to prevent concurrent access by
other tasks. The master QCR is read into
main storage.

The primary user of this assign routine
is the reader/interpreter, although the
initiator/terminator also uses it. To pre
vent the possibility of the reader/
interpreter taking all the space and making
it impossible for jobs to be initiated or
terminated, two limit values have been
added: the number of tracks reserved for
initiating a job, and the number of tracks
reserved for terminating a job.

If logical tracks are available, the
requested tracks are acquired. The address

of the first available logical track is
updated and the newly assigned tracks are
chained to the tracks assigned to the job.
The master QCR is written to the control
record area of the job queue data set. A
DEQ macro instruction is issued to make the
master QCR available to the next user.

If there are no available logical
tracks, this routine passes control to the
queue manager/interpreter interlock routine
(IEFSD572) which issues a message to the
operator requesting him to reply 'WAIT' or
'CANCEL'. If the reply is WAIT, control
returns to this assign routine to wait for
tracks to become available. When the sys
tem component is assigned the requested
record TTRs, it can read and write records
on the job queue. The master QCR is
written, and a DEQ macro instruction is
issued to make the master QCR available to

Queue Manager 51

Highest Priority

I Last Pri ori ty 6

[Last Priority 2

Out ut Work QCR p /
/

\ /
/

}-- 7 1

~ /1 ~

~

/

/
/

/

JOB QUEUE

}o-I _=1
... /

Input Work QCR

\

\
\
\

Highest Priority I------+--....J

1 Last Priority 10 t----.....I

I Last Priority 6

1 Last Priority 2

(I LTH 1

1
1 LTH 1

1
LTH I
I

~I LTH 1

J
LTH I
1

~I LTH I
j

1 LTH

~j
I

='I LTH 1
I i

Logical
Track
Header

.1 1

~r LTH 1
j

LTH 1

I

(I LTH 1

1

~
LTH T
T
LTH T
I

~I LTH 1

1
LTH 1

1
LTH I
1

LTH I
1

.."I LTH I

Figure 21. Input and Output Queue Entries

52

1

First Logical Track

Second Logical Track

Last Logical Track 1

176-byte data records
(p g Number of data records er 10 ical
track is specified at SYSGEN)

First Logical Track

Last Logical Track 1

1

1

I

1

1

1

I

I

1

I
I

1

I

I

1

1

1

1

I

1

1

I

Only Priority 6
Entry Enqueued

}
First Priority 2
Entry Enqueued

Last Priority 2
Entry Enqueued

} """,;O,;~ 10
Entry Enqueued

Last Priority 10
Entry Enqueued

} F;.' p,;~;~ ,
Entry Enqueued

Last Priority 6
Entry Enqueued

Only Priority 2
Entry Enqueued

the next user. The record addresses in
storage and TTR pointers are contained in
the external parameter list of the QMPA.
When available space on the job queue
becomes critical, a warning is sent to the
requesting task. Logical tracks are
removed from the pool of available tracks
and assigned to the job.

If the reply is CANCEL, the interlock
routine deletes all queue space assigned to
the job, cancels the job, and returns
control to the assign routine. Normal
initiator operation recovers the partition
for further use.

Interpreter/Queue Manaqer Interlock Routine
(IEFSD572)

When the reader/interpreter requests
tracks for the job it is processing, and nc
space is available, IEFQASGQ passes control
to interlock routine IEFSD572 to identify
whether an interlock can occur. If the
reader is transient, the possibility exists
that space needed by the reader/interpreter
can be provided only by the termination
routines, which must operate in the parti
tion that the reader occupies. Because the
requested space is not available, the rou
tine issues a message to the operator
requesting a reply of 'WAIT' or 'CANCEL'.
If the reply is WAIT, this routine returns
to the assign routine to wait for available
space. (If the reader requesting space is
a resident reader, no message is issued,
and a reply of WAIT is assumed.)

If the reply is CANCEL, control passes
to the delete routine (IEFQDELQ) to delete
all queue space assigned to the job being
processed (if any space had already been
assigned). When control returns, the
interlock routine abnormally terminates the
job with a job-canceled code of 222. Nor
mal initiator operation recovers the parti
tion for further use.

Queue Manager Enqueue Routine (IEFQMNQQ)

After all control blocks for a job have
been written, the job is eligible for
selection by an Initiator. Declaring a job
ready for selection (enqueuing) is done by
Queue Manager Enqueue routine IEFQMNQQ.

When an interpreter has completed the
processing of a job, (all records generated
by the interpreter have been written on the
queue), it uses this routine to enqueue the
job, in priority order, on the appropriate
job class input work queue. When a job
completes processing, the terminator uses
this routine to enqueue output data sets,
in priority order, on the appropriate out
put work queues.

TO prevent concurrent updates, this rou
tine issues an ENQ macro instruction for
the queue control record (QCR) of the
proper queue. When the QCR becon;es avail
able, it 1S read into main storage. The
enqueue routine then places the new queue
entry after the last entry with the same
priority as shown in Figure 21. The
address of the new entry is then placed in
the track header of the prior entry (main
taining a chain), and in the QCR pOSition
for that priority. The job control table
(JCT) is written. The updated QCR is
written on the job queue. A DEQ macro
instruction is issued making the QCR avail
able. Control is then returned to the
calling routine.

Dequeue Routine (IEFQMDQQ)

In addition to dequeuing a job from the
input queue for an initiator, the dequeue
routine (IEFQMDQQ) removes the output data
from an output queue for processing by a
system output writer.

The routine issues an ENQ macro instruc
tion on the QCR of the selected queue.
When the QCR becomes available, the dequeue
routine reads it into main storage. The
QCR is examined for a job belonging to the
same job class as the partition. Upon
finding a job, this routine adjusts the
chain. If none is found, the requesting
task tries the next job class. If no work
is found on any of the selected queues (up
to three), the requester places itself in a
wait state. In the case of an output
writer, a pointer to the "no work" ECB is
placed in the QCR. It a pointer already
exists, the ECB is chained to the last ECB
waiting for that output class. Then the
updated QCR is written and a DEQ macro
instruction is issued making the QCR
available.

Once a job has completed processing, or
the output writer has written all records
for a job, the tracks are returned to the
system. This is known as deleting a job
and is handled by the queue rranager delete
routine IEFQDELQ.

Delete Routine (IEFQDELQ)

The Delete routine first issues an ENQ
macro instruction on the master QCR of the
free chain of tracks. After control is
returned, the record is updated to reflect
the new available tracks. The prior last
track of free storage is updated to point
to the new set of free tracks. After the
master QCR is updated, it is written and a
DEQ macro instruction is issued against it.
The ECB indicating wait-for-space is
posted.

Reader/Interpreter 53

Table Breakup Routine (IEFSD514)

When a reader must be suspended, the job
scheduler must prevent the destruction of
variable size tables in main storage. To
do this, it calls the queue manager table
breakup routine, IEFDS514, (Chart 10) which
subdivides tables in main storage and
writes them on disk as 176-byte data rec
ords. The data records are written in a
queue entry related to the caller. The jot
scheduler calls IEFSD514 to retrieve the
176-byte data records and to reconstruct
the tables in main storage. Whether read
ing or writing tables, the caller must
build a parameter list (see Figure 22) and
place the address of the list in general
register 1 before calling the TBR.

When the tables are written initially,
the TBR parameter list must contain the
address of a QMPA specifying the queue
entry into which the tables are to be
written. The fUnction code field (QMPOP)
of QI.IJPA must specify a write operation.
The TBR parameter list must also contain
the address, subpool, and size of each
table to be written. The last word of the
TBR parameter list must be zero. The TBR
returns a Head TTR address which locates
the beginning of the tables on disk. This
TTR must be saved for subsequent retrieval
of the tables.

o (O) 4

Address of Q MPA

4 (4) 4

Address of First Record (Head TTR)

8 (8)
4

Address of Table 1

12 (C) 1 3
Table 1

Size of Tobie 1
Subpool

16 (10) 4

Address of Table 2

20 (14) 1 3
Table 2
Subpool Size of Table 2

~I.. .. 24 (18)

't'" ,

4

Address of Table n

1 3

Table n Size of Tobie n
Subpool

4

Zeros

Figure 22. Table Breakup Parameter List

54

The initial write establishes disk data
records for the tables for the duration of
the associated queue entry (i.e., until the
entry is deleted). Therefore, further
write requests must specify the Head TTR in
the TBR parameter list. Before issuing a
write request, the caller must retrieve any
previously written tables to prevent their
being overlaid by the new write request.

If the request is for output of tables,
(transferring from main storage to direct
access device), the Head TTR (passed in the
parameter list) is used to read the first
table queue control record (TQCR). If the
Head TTR is zero, the assign routine,
IEFQASGQ, is called to aSSign space for a
new TQCR. The TQCR is a 176-byte record
containing a 4-byte forward-chain pointer
and space for 43 TTRs. These spaces are
filled in as the tables are written, using
the assign routine to assign the TTRs, and
the Read/Write routine, IEFQ~;RAW, to write
the tables in 176-byte segments. If more
than 43 records are required to hold the
tables, a new TQCR is chained to the first,
and processing continues. The low-order
byte of the last TTR used in writing the
tables is set to 'FF' (hexadecimal) to
indicate end-of-tables. After these TTRs
are assigned, tney are used each time the
table breakup routine is called to write
tables, as long as the Head TTR is pre
served by the caller.

Once a queue entry has been deleted, a
caller must issue another initial write
request (Head TTR is zero in the table
breakup routine parameter list) to estab
lish a new string of table data records.
IEFSD514 does not free table storage areas.

In retrieving tables, the TBR parameter
list must contain tne address of an asso
ciated QMPA. The function code (QMPOP)
field must specify a read operation. The
TBR parameter list must also contain the
Head TTR address. Sufficient space must be
allowed for the TBR to return the new main
storage address of each table, and the
subpool and size of each table as specified
when they were written by the TBR.

If the request is for input (reading
into storage) of tables, the first TQCR is
read into storage using the Head TTR passed
in the parameter list. The first record of
the ~irst table is read, using the first
record in the TQCR. This record contains
the size of the table and the number of the
desired subpool. IEFSD514 issues a GETMAIN
specifying the subpool and the amount of
storage required for the table. The
remainder of the table is then read into
the storage obtained, using read/write rou
tine IEFQMRAW. Each table specified in the
parameter list is processed in this manner
until 'FF' (hexadecimal), indicating end-

of-tables, is found. As each table is read
into rrain storage, the parameter list is
updated with the main storage address of
that table. When all tables have been
read, control is returned to the caller.
The address of the u~dated parameter list
is returned in register 1. Tables are
always written in the same sequence that
they appear in the TBR parameter list,
beginning with the Head TTR. They are
retrieved, totally, in the same sequence;
they cannot be read selectively.

READER/INTERPRETER

MF~ uses the MVT reader/interpreter
(reader). However, because of job class,
possible MFT interlocks, and the capability
of using transient readers, some modifica
tions have been made to the MVT modules,
and six new modules have been added. These
modifications and additions are described
below.

MFT allows as many as three input
readers to execute concurrently with prob
lem programs and writers. Resident readers
operate in previously defined reader parti
tions, and transient readers operate in
problem program partitions large enough to
accomrrodate them. Input stream data for
the step being read is transcribed onto
direct-access storage where it is held
until execution of the associated job
begins. Problem programs retrieve this
data directly from the storage device.

In MFT there are three types of system
input readers:

• Resident reader

• User-assigned transient reader

• System-assigned transient reader

Resident and transient readers may operate
in the same system, provided no more than
one system-assigned reader is specified,
and the total number of readers does not
exceed three. The primary difference
between the user-assigned and system
assigned transient readers is the manner in
which the transient reader resumes opera
tion after it is suspended.

RESIDENT READERS

A resident reader operates in a parti
tion designated as such at system genera
tion (by replacing the job class identifier
with R), or during system initialization or
partition definition (by specifying RDR for
the job class identifier). A resident

reader reads its input stream, enqueuing
jobo until the input stream reaches end-of
file or until it is terminated by a STOP
command entered for that partition.

Note: The STOP command does
effect until the current jOb is
read.

TRANSIENT READERS

not take
completely

A transient reader operates in a problem
program partition large enough to accommo
date it. A transient reader can be ter
minated by issuing a STOP command or by
reaching end-of-file, as can the resident
reader. In addition, a transient reader is
suspended when a job is enqueued either for
the partition occupied by the reader, or
for a small partition. (Note that this is
possible only when a reader completes read
ing an entire job.)

If a transient reader is started in a
specific partition by including the parti
tion assignment in the START command, it
always resumes operation in that same par
tition, and only when that partition be
comes free. This type of transient reader
is referred to as user-assigned. If'S' is
substituted for the partition number in the
START command, the system assigns the read
er to any available large problem program
partition. This type of transient reader
is called system-assigned.

READER CONTROL FLOW

After a START corr,mand is entered to
activate a reader, master scheduler routine
IEECIR50 determines if the size of the
requested partition is large enough, and
posts the partition. Job selection routine
IEFSD510 determines that a START command
has been entered, and passes control to
system task control (STC) syntax check
routine IEEVSTAR. The syntax check routine
validates the syntax of the START command,
builds job control language tables, and
retrieves the reader cataloged procedure
specified in the START command. Control is
then passed to interface routine IEFSD533
which sets up an interpreter entrance list
(NEL) for a reader. It also allocates job
queue space for a transient reader by
issuing a dummy WRITE macro instruction.
Control is then passed to linkage module
IEFSD537 which issues a LINK macro instruc
tion to reader initialization routine
IEFVH1 to begin reading the input job
stream (Charts 11-15).

Each reader is
device specified

aSSigned to
in the START

an input
command.

Reader/Interpreter 55

When the reader initialization routine
receives control, it reads its input stream
using QSAM, and translates job processing
inforwation into convenient form for subse
quent processing by an initiator and systerr,
output writer. Each job read in by the
readers is converted into tables that are
placed in the appropriate job class input
work queue specified by the CLASS parameter
on the JOB statement. One input work queue
exists for each of the fifteen problew
prograw job classes (A through 0).

After the reader has completed reading a
job, control passes to the queue manager
enqueue routine, IEFQMNQQ, which enqueues
the jcb on the appropriate input work queue
according to the PRTY parameter on the JOB
statement (see "Queue Management" in this
section) .

Note: If the reader is being used as a
subroutine by a problem program, it does
not enqueue the job on the input work
queue, but returns control to the problem
program passing the addresses of the JCT
constructed for that job, and the ~MPA
associated with that input queue entry.

If data is encountered in the input
stream, control is passed to the interpret
er CPO routine (IEFVHG) to transcribe the
data onto direct-access storage for later
retrieval by the problem program. If there
is no space for the data, control passes to
the interpreter operator message routine
(IEFSD536) to issue a DISPLAY active com
mand and a WTOR message. The operator
replies with either 'WAIT' or 'CANCEL'. If
'WAIT' is specified, the reader waits for
space to become available. If 'CANCEL' is
specified, the reader is canceled and a
READER CLOSED message is issued. IEFSD536
then sets indicators which cause cleanup of
the current job, and control to be passed
to interpreter termination routine IEFVHN
to terminate the reader.

After a reader enqueues each job, con
trol passes to the transient-reader suspend
tests routine (IEFSD532). This routine
decides whether to 1) terminate the reader,
2) suspend the reader, or 3) have the
reader continue reading the job stream.
(The decision to suspend the reader would
never be made if the reader is resident.)
If the reader is to be terminated, control
passes to the termination routine (IEFVHN).
If the reader is to be suspended, control
passes to the transient reader suspend
routine (IEFSD530). Otherwise, control
returns to the job and step enqueue routine
(IEFVHH) to continue reading the job
stream.

56

Transient Reader Suspend Routine (IEFSD530)

When a transient reader is suspended,
transient reader suspend routine IEESD530
(Chart 16) writes the tables and work areas
used by the reader onto the work queue data
set (SYS1.SYSJOBQE).

The routine closes the reader and proce
dure library. Data needed to restore the
reader is temporarily saved in the inter
preter work area (IWA). The IWA is then
written to the work queue data set. When a
user-assigned transient reader is sus
pend~d, the address of the reader space on
the work queue is placed in the partition
information block (PIB). When a system
assigned transient reader is suspended, the
address of the IWA is placed in the master
scheduler resident data area (IEFSD568).
(See Appendix A for the format of
IEFSD568.) The work queue data set is
later used by transient reader restore
routine IEESD531 to restore the reader when
the assigned partition becomes available
after job termination. "NO work- ECBs for
problem program partitions are posted (see
"Job Selection"), and suspend routine
IEESD530 returns control to system task
control.

Transient Reader Restore Routine (IEFSD531)

Once a partition is again free for the
reader, transient reader restore routine
IEFSD531 (Chart 17) receives control and
issues a GETMAIN for the IWA, Local Work
Area (LWA), reader DCB, and procedure
library DCB. The direct-access device
address of the IWA is retrieved from the
PIB if a user-assigned reader is to be
restored, or from the master scheduler
resident data area, if a system-assigned
reader is to be restored. The IWA is then
read in from the job queue. The TIOT is
read into storage and the TCB pointer is
updated; other tables and work areas neces
sary to restore the reader are reset from
the information saved in the IWA. The
reader and procedure library DCBs are
opened and the reader resumes operation to
start reading at the pOint in the job
stream where it was suspended. Control is
then passed to interpreter module IEFVHCB
to continue reading the job stream.

INITIATOR/TERMINATOR (SCHEDULER)

To provide independent scheduling,
schedulers operate in any problem program
partition of sufficient size. A partition
large enough to accommodate the scheduler
is referred to as a "large partition." A
partition not large enough to accommodate
the scheduler is referred to as a "small
partition-. Within a given large parti-

Form Y27-7128-3, Page Revised by TNL Y28-23Q9, 11/15/68

tion, a scheduler operates independently of
schedulers in other large partitions.
Because small partitions cannot accommodate
the scheduler, they rely on large parti
tions to perform their initiation, alloca
tion, and termination operations. Sched
uling for small partitions is described in
"Small Partition scheduling" in this
section.

An MFT initiator (Chart 18) dequeues a
job (entry) for its partition based on a
job class designated for the partition.
Once dequeued, the job is scheduled accord
ing to the information contained in the
entry.

During allocation and termination of
each job step, the allocation and termina
tion routines place messages and output
data set pointer blocks in a specified
output queue. The queue entry is created
by the reader/interpreter. (The output
queue entry becomes input to an output
writer when the job is completed.)

An initiator functions as a control
program for the scheduling process, using
the allocation and termination functions as
closed subroutines. The MFT initiator is
composed of the following routines:

• Job Selection
• Small Partition
• Job Initiation
• Data Set Integrity
• Step Initiation
• Problem Program Interface
• Step Deletion
• ENQ/DEQ Purge Routine
• Alternate Step Deletion
• Job Deletion

JOB SELECTION (IEFSD510)

The job selection routine (Charts 19-23)
acts as the control routine for the MFT
initiator. The routine is brought into all
large problem program partitions by the
master scheduler at system initialization,
by the job deletion routine when a job has
terminated, or by system task control when
a writer has been scheduled for a small
partition or a reader has been suspended.

Job selection first waits on a "no work"
ECB in the PIB. This ECB is posted com
plete by the command processing routines,
the job deletion routine, system task con
trol, or the small partition module when a
small partition needs scheduler services.

When the -no work" ECB has been posted
complete, the job selection routine checks
the PIB to determine if a life-of-task
(LOT) block exists (see Appendix A for a

description of the LOT block). If not, it
creates one for the task.

Job selection then checks the PIB for a
small partition information list (SPIL)
pointer (see Appendix A for a description
of SPILl. If one exists, scheduling is
performed for the small partition by pass
ing control to IEFSD599. If no SPIL point
er exists, the PIB is checked to determine
if the partition is involved in partition
redefinition; if so, appropriate action is
taken to inhibit scheduling in the parti
tion. (See -Master Scheduler Task-.)

If the partition in which the initiator
is operating 1S not part of a partition
redefinition, a test is made to determine
if a reader or writer (system tasks) is to
be started in the partition. If a reader
or writer is to be started, control passes
to system task control which initiates
readers and writers.

If no small partition is requesting
service, no reader or writer is to be
started, and the partition is not part of a
redefinition operation, a final check is
made to determine if a START INIT command
has been issued; if so, job selection
attempts to dequeue work from the input
work queue (see Figure 23). If a STOP INIT
command has been issued, the attempt to
dequeue a job is bypassed.

A threshold check is then made to deter
mine if enough logical tracks are available
on SYS1.SYSJOBQE to start the initiator.
If not, a START INIT REJECTED message is
sent to the operator and job selection
again waits on the "no work" ECB.

The job selection routine obtains
storage for the job control table (JCT) and
then uses the queue manager dequeue routine
(IEFQMDQQ) to obtain work from one of the
input job queues according to the job class
assignment of the partition. If work is
found, IEFQMDQQ constructs a CSCB for the
job and an lOB to be used when reading or
writing the input queue. The CSCB is
constructed in the system queue area and
the address of the CSCB is placed in the
LCT. The address of the lOB is placed in
QMGRl When a user accounting routine is
supplied, the job selection routine sets
the LCT fields LCTTMWRK and LCTTMWRK+4 to
zero. These fields are used in calculating
the execution time of a job step.. Job
selection then branches to job initiation
routine IEFSD511.

If the search for work for the partition
is unsuccessful (i.e .• , no work has been
enqueued for any of the job classes
assigned to the partition) tests are made
to determine if a transient reader is to be
restored in the partition or if a START

Initiator/Terminator 57

command has been entered for a system
assigned transient reader. If so, system
task control is called. If a reader is to
be restored in the partition, job selection
passes control to special entry point
IEES34SD in system task control.

START
INIT

'" ~ JOB ... ~ ALLOCATION
SELECTION

ALLOCATION/ ... PROBLEM
PROGRAM
INTERFACE

----l
~"E"o, i

CANCEL 1 I
I

® PROBLEM LOT
PROGRAM

I
I

1
~ STEP/ ...

ABEND JOB TERMINATION
DELETE ...

Step Deletion

Job Deletion

Figure 23. Scheduling a Problem Program in
a Large Partition

command Processing Services

In response to system commands entered
in the input stream or from the console,
the command processing routines request a
service by storing information in the PIB
of the affected partition or in the master
scheduler resident data area for START and
STOP commands issued for system-assigned
transient readers and writers. The job
selection routine recognizes these requests
and takes one of the following actions:

58

• Inhibits further job scheduling for the
partition in preparation for the pre
cessing of a DEFINE command. (The
DEFINE command can be entered only from
the consol e.)

• Prevents execution of problem programs
in large partitions in response to a
STOP INIT command.

• Passes control to system task control
in response to a START reader or START
writer command.

• Schedules problem program execution in
response to a START INIT command.

SMALL PARTITION SCHEDULING

A partition is defined as "small" when
its size is at least 8K bytes but less than
the job scheduler (30K or 44K) generated
for the system. Small partition scheduling
is performed by an initiator in a
scheduler-size partition at the request of
small partition module IEFSD599 (IEFSD599
is described later in the topic "Small
Partition Module"). The small partition is
therefore temporarily dependent on a large
partition while scheduler services are
being performed. Scheduling for a small
partition is independent of scheduling for
other small partitions in the system.

The small partition module interfaces
with job selection module IEFSD510 to
schedule a problem program, or with system
task control to schedule a writer in a
small partition. Communication between the
small partition module and job selection or .~
system task control is maintained through a ~
small partition information list (SPIL).
(The format of a SPIL is shown in Appendix
A.)

Small partition module IEFSD599 requests
the scheduling function by placing the
address of a SPIL in the partition informa
tion block (PIB) of each scheduler-size
partition in the system. Each time job
selection is entered between jobs, the PIB
is checked for a non-zero SPIL address. If
the PIB contains a valid address, the SPIL
is analyzed, the job class queues for small
partitions are searched for work, and con
trol is passed to one of the following:

• Job Initiation (IEFSD511), if work has
been found for a small partition .•

• Step Deletion (IEFSD515), if a small
partition is waiting for termination.

• system Task Control (IEEVSTAR), if a
writer is to be started in the small
partition.

These routines perform the requested
service in the large partition and use the
SPIL to indicate their action to IEFSD599.
When the requested service has been per
formed, these routines return to IEFSD510.-

Initiating a Problem Program

As shown in Figure 24, initiation of a
problem prograrr in a small partition is
performed by a large partition. If a small
partition is waiting for work, job selec
tion module IEFSD510 dequeues a job from an
input work queue that the small partition
is assigned to service. The large parti
tion posts a completion code in field ECBA
of the SPIL when initiation services have
been performed.

A completion code of one indicates that
no work was found for the small partition.
The small partition then waits on the ECB
list in the SPIL. The posting of any of
the listed ECBs causes the small partition
to request initiation services.

A completion code of zero indicates that
initiation services have been performed and
the problem program job step is ready to be
executed. The small partition, using the
allocate parameter list (APL), moves the
task input/output table (TIOT) and life-of
task (LOT) block from the large partition,
opens required DCBs, and establishes prob-

~ I cO"N'S'OLE' ~

START INIT
A lIocation Error

I
SMALL PARTITION

MODULE

I

lem program mode. (If the system has the
storage protection feature, the protection
key is set.) If the job has not been
canceled, control passes to the problem
program, thus freeing the large partition
to continue processing.

Initiating a Writer

As shown in Figure 25, if a writer is to
be started in the small partition, small
partition module IEFSD599 requests initia
tion of the writer by system task control.
A large partition responds to the request
by bringing system task control routine
IEEVSTAR into the large partition. IEE
VSTAR initiates the small partition to the
point of calling in the writer. IEEVSTAR
then posts ECBA in the SPIL with a comple
tion code of zero to indicate to IEFSD599
that initiation services have been per
formed, and the writer is ready to be
executed. Small partition module IEFSD599,
using the link parameter list (LPL), moves
the TIOT from the large partition to the
small partition. ECBC in the SPIL is
posted, thus freeing the large partition to
continue normal processing. Problem pro-

I

SMALL
PARTITION

CANCEL

PROBLEM
PROGRAM

~
ABEND

-~------~-------------~---------

INITIATION/
ALLOCATION

JOB)ELECT
MODULE

I

r-_-8 --_+

~
TERMINATION

LARGE
PARTITION

Figure 24. Scheduling a Problem Program in a Small Partition

Initiator/Terminator 59

gram mode is established, the SPIL is
freed, and control passes to the writer via
an XCTL macro instruction.

Terminating the Small Partition

When the job step is completed. or a
writer is stopped, small partition module
IEFSD599 is brought back into the partition
and entered at special entry point SMALLGO.
A check is made to determine whether a
scheduler ABEND occurred. If it did. a
message is issued to the operator with a
completion code, and all CSCBs associated
with that job are removed from the CSCB
chain. control then passes to the normal
entry point of IEFSD599. If no scheduler
ABEND occurred, the SPIL is created. and a
status bit is set indicating that termina
tion services are requested. The small
partition module then begins a search for a
large partition to perform the job termina
tion services or writer end-of-job
processing.

After an initiator in a large partition
has performed the termination services.
ECBA in the SPIL is posted with a comple-

~ I ~;c~;~~;,

START Writer

Allocation Error

I
I

SMALL PARTITION
MODULE

I
l

tion code of two to indicate that job
termination has taken place. A check is
made to determine if the small partition is
involved in a redefinition operation. If
it is, the small partition is made quies
cent. If the small partition is not asso
ciated with a redefinition operation, it
requests additional services from an
initiator in a large partition.

Note: If the initiator in a large parti
tion performs step termination instead of
job termination, the next step of the job
in the small partition is scheduled before
the initiator schedules a job into its
partition. or before it performs scheduling
services for another small partition.

Small Partition Module (IEFSD599)

Small partition module IEFSD599 (Charts
24-27) is entered at special entry point
SMALLGO from either the master scheduler or
redefinition routines (at system initiali
zation), or the ABEND routines (when a step
has completed execution). IEFSD599 first
waits on a wno work" ECB located in the
partition's PIB. When this ECB is posted

I

SMALL
PARTITION

OUTPUT
WRITER

1
ABEND

-r-- -------------r-----,-- ----------

SYSTEM
TASK
CONTROL

I
JOB SELECT

MODULE

I

r---8 ---
~ TERMINATION

Figure 25. Scheduling a Writer in a Small Partition

60

LARGE
PARTITION

complete, the PIB is checked to determine
if a SPIL has been created. If not, one is
created and an indicator is set in the PIB.
The PIB is checked to determine if the
partition is involved in a redefinition
operation. If so, assigned tracks are
deleted, the SPIL is freed, and pending
CSCBs are freed. The 'DEFINE' ECB in the
PIB is posted to indicate that the parti
tion has been made quiescent, and a return
is made to wait on the "no work" ECB.

If no redefinition operation is pending,
the PIB is checked to determine if a writer
is to be started in the partition. If so,
an indicator is set in the SPIL, assigned
tracks are deleted, and a request for
scheduling is made to a large partition
(described below). If a writer is not to
be started, the STOP INIT bit in the PIB is
checked. If this bit is on, assigned
tracks are deleted, the SPIL is freed, and
a return is made to wait on the 'no work'
ECB. If the STOP INIT bit is not on, the
PIB is checked for track assignment. If
needed, tracks are assigned and indicated
in the PIB. The SPIL is updated to indi
cate a request for initiation of a problerr,
program.

A request is made for a large partition
to service the small partition based on the
contents of the SPIL. First, an exclusive
ENQ macro instruction is issued to prevent
concurrent service requests by small parti
tions. Interruptions are disabled to pre
vent interference with the address of the
SPIL in the large partition's PIB.
IEFSD599 then searches for a scheduler-size
partition. The TCBs are tested for problem
program status; when a scheduler-size par
tition is found, a determination is made of
whether the small partition is involved in
a DEFINE operation.

If the small partition is involved in a
DEFINE operation, the test for the large
partition involved in a DEFINE operation is
bypassed. If the small partition is not
involved in a DEFINE operation, the large
partition is tested to determine if it is
involved in a DEFINE operation. If so, the
large partition is bypassed and the TCB
search is continued.

The address of the SPIL is stored in the
PIB of the large partition, thus constitut
ing a request. An indication is made when
storing occurs. If a large partition is
waiting on its 'no work' ECB (in its PIB),
SPIL addresses are cleared in all other
large partition PIBs, and the large parti
tion is posted. When a large partition is
posted, or all applicable TCBs are checked,
interruptions are enabled.

If no SPIL pointers were stored during
tbe search, a DEQ macro instruction is

issued (to allow other small partitions to
make requests), and a WAIT macro instruc
tion is issued on a 'dormant' ECB in the
small partition's PIB. (When later posted
by the command processing routines, the
small partition module will repeat its
search). If at least one SPIL pointer was
stored, a WAIT macro instruction is issued
on ECBB in the SPIL. This allows a large
partition, immediately upon recognition of
the request, to post the ECB complete. The
small partition module may then issue a DEQ
macro instruction to release the SPIL
pointer field so other small partitions may
make requests.

Next, a WAIT macro instruction is issued
on ECBA (in the SPILl to delay the small
partition until the requested service has
been performed. When ECBA is posted com
plete by the large partition, the comple
tion code is tested to determine the action
which occurred. If the completion code is
two, job termination occurred and return is
made to the point of determining the DEFINE
status of the small partition. If the
completion code is one, 'no work' was found
for the small partition and a return is
made to WAIT on the ECB list in the SPIL.
If the completion code is zero, the large
partition is at the point of calling either
the problem program or a writer. The large
partition is waiting on ECBC (in the SPILl
to allow transfer of information into the
small partition by the small partition
module.

If a problem program is to be initiated,
IEFSD599 uses the allocate parameter list
(APL) to move the TIOT and user parameter
area into the small partition. It then
posts ECBC (freeing the large partition),
and opens Fetch and/or JOBLIB DCBs if
required. The partition is established in
problem program protection mode. The SPIL
is freed.

A check is made to determine if the job
has been canceled. If so, an ABEND macro
instruction is issued. If the job has not
been canceled, an XCTL macro instruction is
issued to call the problem program into the
small partition (the problem program passes
control to ABEND at completion of its
execution).

ABEND recalls small partition module and
enters at special entry point SMALLGO. The
small partition protection key is changed
to zero and a SPIL is created. A termina
tion request is indicated in the SPIL, and
IEFSD599 begins the search for a large
partition to service the request.

If a writer is to be initiated, the
control flow is the same as described above
in "Initiating a Writer".

Initiator/Terminator 61

INITIATOR/TERMINATOR CONTROL FLOW

In addition to IEFSD510 and IEFSD599,
several other initiator routines are unique
to MFT. These are described in the follow
ing paragraphs. Included also are the MVT
modules that have been modified by MFT.
Descriptions of the MVT allocation and step
initiation routine then passes control to
termination modules that have not been
modified by MFT can be found in IBM System/
360 Operating System: MVT Job Management,
Program LOgic Manual, Form Y28-6660.

Job Initiation Routine (IEFSD511)

Job initiation routine IEFSD511 issues a
GETMAIN specifying subpool 0 to obtain
space for the system output class directory
(SCD). The SCD is then read into the area
and the contents of the SCD are used to
initialize QMGR2 in the LOT block. (QMGR2
~3 the queue manager parameter area which
is used for referencing the output data
set.) After QMGR2 has been initialized,
the storage obtained for the SCD is freed.
A GET~AIN is then issued to obtain storage
for IOB2, the lOB used in conjunction with
QMGR2. A GETMAIN is issued (specifying
subpool 253) to obtain space for the step
control table (SCT). The SCT is read into
the area thus obtained. Job initiation
then branches to data set integrity routine
IEFSD541.

Data Set Integrity Routine (IEFSD541)

The data set integrity routine is
entered only once per job, from job initia
tion routine IEFSD511. It first determines
whether data set integrity processing is
required.

If the JCT indicates a 'failed' job or
if there are no explicit data sets (DSNAME
parameter in a DO statement) for the job,
processing is eypassed and exit is made to
step initiation routine IEFSD512. If data
set integrity processing is required, the
DSENQ table records are read from the job's
entry in the input job queue (SYS1.
SYSJOBQE). Duplicate DSNAMEs are elimi
nated from the table and each unique DSNAME
is placed in a minor name list. The most
restrictive attribute (exclusive or share)
is chosen for each OS NAME placed in the
minor name list. After this processing is
complete, an ENQ supervisor list is con
structed which contains an entry for each
DSNAME in the minor name list. Each entry
is initialized with the following:

62

• RET=TEST option of ENQ

• SYSTEM option of ENQ

• Attribute (E/S) of the corresponding
DSNAME

• Address of the common
'SYSDSN'

major name

• Address of the
(considered the
minor name list

corresponding DSNAME
minor name) in the

The DSNAME (minor name) length is contained
in the first byte of each DSNAME field in
the minor name list.

When the ENQ supervisor list is con
structed, the system is disabled and an ENQ
supervisor call is issued against the list
to test the availability of the DSNAMEs.
If the DSNAMEs are available, the ENQ
supervisor list is updated so that each
entry reflects the RET=NONE option of ENQ.
A second ENQ supervisor call is issued
against the list to reserve DSNAMEs for the
job. The system is enabled and exit is
made to step initiation routine IEFSD512.

If the DSNAMEs are unavailable for the
job (already reserved with conflicting
attributes by other task(s) in the system),
the operator is notified of the condition.
In notifying the operator, the return code
field of each entry in the ENQ supervisor
list is tested for a non-zero setting. If
the setting is non-zero, the associated
DSNAME (minor name) is identified to the
given the following reply options:

• RETRY, in case the resources have been
freed by the other task(s) (processing
is delayed until the operator replies)

• CANCEL the job.

If RETRY is entered by the operator, pro
cessing continues at the initial ENQ super
visor call to again test the availability
of the DSNAMEs. The operator is again
notified, and he can reply either RETRY or
CANCEL. If the job is canceled by the
operator, the 'job fail' bit in the JCT is
set and exit is made to step initiation
routine IEFSD512.

Step Initiation Routine (IEFSD512)

Step initiation routine IEFSD512 first
issues a GETMAIN specifying subpool 253 to
obtain storage for an allocate register
save area (ARSA) and an allocate parameter
list (APL). The APL (Figure 26) is ini
tialized containing addresses of the LOT,
JCT, and SCT, and two words of zeros. The
step initiation routine then passes control
to allocation via a LINK macro instruction.
Allocation returns the addresses of a task
input/output table (TIOT) list (which
points to the TIOT) in the first word of
zeros in the APL. On return from alloca
tion, the return code is tested to deter
mine if allocation was successful. If not,
step initiation branches to alternate step

(...

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

0(0)

Address of the LC T

4 (4)

Address of the JCT

8 (8)

Address of the SCT

12 (C)

Address of the nOT List

16 (10)

Zeros

20 (14)

Figure 26. Allocate/Terminate Parameter
List

4

4

4

4

4

deletion routine IEFSD516 via an XCTL macro
instruction. If allocation was successful,
the ARSA is freed, and the ·step started"
bit in the SCT is turned on. The address
of the job's CSCB is stored in the APL (in
the last word of the list).

Step initiation then uses queue manager
read/write routine IEFQMRAW to write the
JCT and SCT back on the input queue. The
disk addresses of the JCT and SCT are saved
in the LCT. A GETMAIN specifying subpool
253 is issued for the table breakup routine
(TBR) parameter list and register save
area. The TBR parameter list is initial
ized with the address, size, and subpool
specifications for theTIOT and LOT block.
The TIOT and LOT are then written into the
job's entry in the job queue, and the Head
TTR is saved in the JCT. The storage
obtained for the TBR parameter list and
register save area, IOB1, and IOB2 is
freed.. The JCT is then written out. Step
initiation then passes control to problem
program interface routine IEFSD513 via an
XCTL macro instruction.

Problem Program Interface Routine
(IEFSD513)

The problem program interface routine
prepares the partition for execution of the
job step_ A test is made to determine if
scheduling was performed for a small parti
tion.. If so, the address of the APL is
placed in the SPIL, ECBA in the SPIL is
posted to indicate that scheduling is com
plete, and a WAIT is issued on ECBC. This
WAIT allows the small partition module to
copy tables and work areas into the small
partition. When the tables have been
copied, ECBC is posted complete, and the
interface routine frees all storage
obtained for tables and work areas except
for the LOT block, which is retained. The

address of the LOT block is placed in
register 1 and this routine passes control
to job selection" IEFSD510, via an XCTL
macro instruction.

If scheduling was not performed for a
small partition, a test is made to deter
mine if the job has been canceled. If so,
exit is made by issuing an ABEND macro
instruction.

If the job has not been canceled, the
LOT block is freed, the TIOT is moved to
the lowest possible location (subpool 0) in
the partition, and a GETMAIN macro instruc
tion specifying subpool 253 is issued for
the user's parameter list (UPL). The UPL
(Figure 27) is initialized from the SCT.
Another GETMAIN macro instruction (subpool
253) is issued to create a register save
area for the user's problem program. If
STEPLIB, JOBLIB, and/or FETCH have been
specified. their DCBs are created (but not
opened) in subpool 253. The JCT, SCT, and
APL are now freed, the STEPLIB or JOBLIB
and FETCH DCEs are opened, and the TIOT is
then moved to subpool 253. A single DCB is
used for STEPLIE or JOELIE, with STEPLIB
overriding JOELIB if both are present.

Note: The use of subpools, and the order
in whiCh control blocks and tables are
created. moved., or deleted, follows a par
ticular sequence even though this handling
occurs within different modules. This is
done to prevent fragmenting main storage
within the partition.

After the TIOT has been moved to the
highest available position within the par
tition, the task control block (TeB) is
updated and the problem program's protec
tion key is set (if the system has storage
protection). The problem program interface
routine then passes control to the problem
program via an XCTL macro instruction.

o
11 Reserved I Address of length field

3

4
Length of PARM values

8

PARM values
:: (from EXEC statement)

(Maximum length = 40 bytes)

I
Figure 27. User's Parameter List

Initiator/Terminator 63

Step Deletion Routine (IEFSD5l5)

Step deletion routine IEFSD515 is
entered at the end of step execution to
prepare the partition for continued execu
tion of the job, to interface with the
termination subroutine, to prepare for the
initiation of the next step, or to branch
to job deletion if there are no more steps
in the current job. When step deletion is
entered, a check is made to determine
whether the routine was entered due to an
ABEND with the scheduler in control. If
so, a message is issued to the operator and
all CSCBs are removed from the CSCB chain.
Control passes to IEFSD5l0.

If an ABEND did not occur, the step
deletion routine branches to ENQ/DEQ purge
routine IEFSD598 via a BALR instruction to
remove any control blocks which were
enqueued, but not dequeued, by the problem
program step.

Step deletion then issues a series of
GETMAIN requests to obtain storage for
queue manager lOBs (IOBl and IOB2), a
temporary QMPA, and a register save area
and parameter list for the table breakup
routine. These blocks and tables are ini
tialized and step deletion branches to
queue manager table breakup routine
IEFSD514, to read in the TIOT and LOT
blocks for the job step. The addresses in
these blocks are restored and the storage
obtained for the temporary work areas is
freed.

A GETMAIN (subpool 253) is issued to
obtain storage for the SCT and JCT. The
SCT is read into storage from the job
queue, the JCT from its temporary area.
Storage is obtained for a terminate regis
ter save area and a terminate parameter
list. The terminate parameter list is
initialized with addresses of control
blocks (LOT, JCT, SCT, and TIOT list) and
the step deletion routine branches to the
termination subroutine via a BALR instruc
tion. When termination returns control,
step deletion frees the terminate register
save area and terminate parameter list and
then checks the return code.

If the return code indicates that job
termination was entered, step deletion
branches to job deletion routine IEFSD517.
If job termination was not entered, the SCT
for the next step of the job is read from
the job queue, and step deletion passes
control to IEFSD512 via an XCTL macro
instruction.

Note: If a small partition
termination, entry to the
routine is made at special
SMALTERM. Entry at this
pointers to the SPIL and the

64

is requesting
step deletion

entry point
point causes
small part i-

tion's TCB to be established before the
step deletion routine invokes ENQ/DEQ Purge
routine IEFSD598.

ENQ/DEQ Purge Routine (IEFSD598)

At job termination, this routine purges
all ENQ/DEQ control blocks associated with
the TCB address passed in Register 4 by the
caller. If step termination was completed
instead, this routine purges all ENQ/DEQ
control blocks except the data set integri
ty blocks associated with the major name
SYSDSN.

When a given resource is dequeued for
the subject TCB, a task switch may occur
for a higher priority requestor whose wait
count becomes zero, due to availability of
the resource. (This purge routine operates
in a disabled state to prevent concurrent
updating of the ENQ/DEQ control blocks.)

Alternate Step Deletion Routine (IEFSD5l6)

Alternate step deletion routine IEFSD5l6
is entered from step initiation routine
IEFSD5l2 when allocation for a step has not
been successful. Using the APL and ARSA
<created by the step initiation routine} as
the terminate parameter list and terminate
register save area, this routine branches
to terrrination subroutine IEFSD22Q via a
BALR macro instruction. When control is
returned from termination, the storage used
for the parameter list and register save
area is freed and a test is made to
determine if job termination was entered.
If so, this routine branches to job dele
tion routine IEFSD5l7. If job termination
was not entered, the SCT for the next job
step is read from the job queue and this
routine branches to step initiation routine
IEFSD5l2.

Job Deletion Routine (IEFSD5l7)

The job deletion routine is called at
job termination to delete the job from the
input queue and to prepare the partition
for initiation of the next job. The rou
tine sets the high-order byte of the
LCTTCBAD field of the LCT to '80' (hexadec
imal) to indicate to the ENQ/DEQ purge
routine that it is job termination instead
of step termination. The routine then
branches to ENQ/DEQ purge routine IEFSD598
to purge the control blocks. On return
from the purge routine, the high-order byte
is reset to '00'.

The job deletion routine then deletes
the job from the input queue, using queue
manager delete routine IEFQDELQ. All areas
of storage in the partition which were used
for the job (except the LOT block) are
freed, and the job's CSCB is freed by
issuing an SVC 34. The PIB fields used for

the disk address of the TIOT and the LOT
block are set to zero. If termination was
for a small partition, ECBA in the SPIL is
posted with a code of two (indicating job
termination for the small partition). If
termination was for a large partition (or
after ECBA has been posted) the "no work"
ECB in the PIB is posted and the job
deletion routine branches to job selection
routine IEFSD510.

SYSTEM OUTPUT WRITERS

MFT uses the MVT system output writer
(Charts 28-29) with minor changes to five
of the modules. As in MVT, the user may
have up to 36 system output writers operat
ing concurrently in the system. Each out
put writer can handle eight output classes;
output classes may be shared by writers.
However, in MFT, system output writers are
classified as either resident or non
resident. A resident writer operates in
its own partition. A non-resident writer
operates in any problem program partition
large enough to accommodate it.

RESIDENT WRITERS

Resident output writer partitions are
designated in the partition information
block (PIB) pointer to the TCB by setting
bits one and two of the first byte to '10'.
This designation is made at system genera
tion by assigning W to the partition in
place of the job class or by redefining a
partition and assigning WTR to it.

A resident writer is activated by issu
ing a START corrmand specifying a partition
designated previously as a writer parti
tion. A resident writer can be terminated
only by issuing a STOP command specifying
the device assigned to that writer.

NON-RESIDENT WRITERS

A non-resident system output writer may
be started in a problem program partition
large enough to hold the writer by issuing
a START command specifying either that
partition or by replacing the partition
number with an'S' to specify a system
assigned non-resident writer. This causes
a "command pending" flag to be set in the
partition's PIB.

When the writer has started, it executes
in the same way as a resident writer and
must be terminated by a STOP command to
allow processing of problem programs to be
resumed in the partition.

SYSTEM OUTPUT WRITER MODULES

The following five MVT system
writer modules are modified for MFT.

• IEFSD070 - Data
Routine

Set Writer

• IEFSD079 - Linkage to Queue
Delete Routine

• IEFSD084 - Wait Routine

• IEFSD085 - DSB dandIer Routine

output

Linkage

fvlanager

• IEFSD087 - Standard Writer Routine

Descriptions of all other system output
writer modules can De fcuna in IBrv; Systeml
~Operating System: MVT Job Management,
Program Logic Manual, Form Y28-6660.

Data Set Writer Linkage Routine (IEFSD070)

This routine passes control to the
appropriate writer routine via a LINK macro
instruction. The normal linkage is to the
standard writer, IEFSD087. If a special
user-written output writer routine is
requested, this routine passes control to
that writer. Upon return frOIl, either writ
er, the routine passes control to d.ata set
delete routine IEFSD171 via an XCTL macro
instruction which deletes the output data
sets from the output queue.

Linkage to Queue Manager Delete Routine
(IEFSD079)

Upon completion of a job, linkage module
IEFSD079 passes control to queue manager
delete routine IEFQDELQ via an XCTL macro
instruction to delete all control blocks
and 5MBs associated with the output job
from the job queue. Following deletion,
the routine then posts all reader ECBs that
are waiting for space to indicate that
space is now available. (The reader ECB
chain address is obtained from the master
scheduler resident data area.) When all
ECBs have been posted, control is returned
to main logic routine IEFSD082.

Wait Routine (IEFSD084)

This routine serves as a multiple WAIT
when there is no work in any of the output
classes associated with the writer. It
issues a WAIT macro instruction on the EeB
list created by class name setup routine
IEFSD081. When the system output writer
enters a wait state, the wait routine
issues a message informing the operator
that the writer is waiting for work. Any
posting (such as a command, or work for the
writer) causes control to be given to
IEFSD082.

System output Writer 65

DSB Handler Routine (IEFSD085)

DSB handler routine IEFSD085 is the
setup module for printing data sets. It
issues a GETMAIN macro instruction for the
input DCB if it was not oetained before,
and constructs a new TIOT containing an
entry for the input data set. It also sets
up any user-written output writer program.
A check is then made to determine if a
pause is required between data sets or only
at forms change. If a special form is to
be used, the routine writes a message to
the operator telling him what form to put
in the output device. The form change only
occurs if the output device is unit record.
This routine then passes control to linkage
routine IEFSD070 via an XCTL macro instruc
tion.

Standard Writer Routine (IEFSD087)

This routine first issues an OPEN macro
instruction to open the output data set.
If the data set was not opened by the
problem prograrr" no attempt is made to
process the data set. After OPEN, a test
is made to check for machine control char
acters. A switch is set that is interro
gated by PUT routine IEFSD089. The writer
then passes control to transition routine
IEFSD088 which creates header and trailer
records. Upon return from IEFSD088, the
writer routine checks the CANCEL EeB in the
CSCB to determine if a CANCEL corr,roand has
been issued for this writer. If the CANCEL
ECB has been posted complete, control
passes to transition routine IEFSD088 to
create a trailer record. When control is
returned from IEFSD088, the writer is
closed. Control is then returned to link
age routine IEFSD078 via a RETURN macro
instruction.

If the writer is not to ,be canceled, the
writer routine issues a GET macro instruc
tion to read a record and checks for a
control character. If no control character
exists, the writer puts one in which causes
the printer to skip one line or the punch
to feed into the normal pocket. If the
printer has overflowed, a skip is made to
the n ext page.

The writer then adjusts the pointer to
the record so that it points to the first
data character (instead of control charac
ter) and passes control to transition rou
tine IEFSD088 for trailer records. It then
issues a CLOSE macro instruction to close
the input data set, a FREEPOOL macro
instruction to free the buffers, and
returns control to linkage roodule IEFSD078
via a RETURN macro instruction.

66

SYSTEM TASK CONTROL

System task control (STC) (Chart 30)
initiates all tasks except the initiator
(START INIT). When the master scheduler
determines that a START command with an
identifier operand has been issued, it
checks the validity of the partition speci
fied in the command, builds and chains a
CSCB, places a pointer to the CSCB in the
partition's PIB, and posts the partition.

Note: If the procedure being started is
for a system-assigned reader or writer, the
CSCB pointer is placed in the master sched
uler resident data area. (See Appendix A
for the format of the master scheduler
resident data area).

As shown in Figure 28, job selection
module IEESD510 responds when the partition
is posted, and calls STC when a START
command for a reader or writer is recog
nized. If a reader or system output writer
is to be started, STC must process a job
description similar to a user's job
description.

The job description information for a
reader or writer COmes from three sources:
the procedure library, JCL statements, and
the operator. The procedure library con
tains standard descriptions of a reader and

..

START
Reader;\Vriter

.J.
JOB
SELECTION

~

SYSTEM
TASK
CONTROL

INPUT
READER
OR
OUTPUT
WRITER

Allocation Error ~
ci~

~-----, I wf

$
iti

1 t

TERMINATION

Figure 28. Scheduling a Writer in a Large
Partition

writer. JCL statements (corresponding to
input stream JCL) are stored internally;
these statements invoke and modify the
reader or writer procedure. The operator
furnishes additional information in the
operand of the START command; this informa
tion is edited into the internally stored
JCL statements before they are used to
invoke and modify the procedure.

INITIATING SYSTEM TASKS

When initiator job selection module
IEESD510 determines that a START command
for a reader or writer has been entered, it
passes control to START syntax check module
IEEVSTAR via an XCTL macro instruction.

START Syntax Check Routine (IEEVSTAR)

The START syntax check module gets main
storage for, and builds, the start descrip
tor table (SOT). This table (see Figure
29) contains JCL statements constructed
from information in the START command.
These statements will be placed in the
internally-stored job control language set
(JCLS) •

The START syntax check module passes
control to JCL Buil1 module IEEVJCL which
builds the Job Control Language Set. Each
statement is built in an aa-character buff-

0(0)
211dent Flags II SDT SIZE Reserved

4 (4)

~ JCl S tatement I'"

76 (4C)
Ident Flags 11 11

72
Reserved

~r:-
JC l Statement

-::~
I Ident Flags 11

1
Reserved

72 152 (98)

~:: JC l Statement ~

)
Ident Flags 11 11

72
Reserved

.. ~
224 (EO

JC l Statement

~r:-

I Ident Flags 11
1

Reserved

300 (12C 72

.. ~ JCl Statement ~::

)
11 11

72
Ident Flags Reserved r d: JC l Statement

372 (174

f
Figure 29. START Descriptor Table (SOT)

er (obtained with a GETMAIN macro instruc
tion) from information in the SOT. A
pointer to the first buffer is placed in
the CSCB associated with the command; each
buffer contains a pointer to the next, and,
in the last ao bytes, a card image of the
JCL statement.

Reader Control Routine (IEEVRCTL)

Reader control routine IEEVRCTL then
receives control and builds the interpreter
entrance list (NEL), option list, and exit
list. The interpreter entrance list con
tains the address of the JCLS in its third
word. The reader control routine passes
control to the reader via a LINK macro
instruction.

The reader, used as a closed subroutine,
is the same routine that performs the
reading task. The non-zero value of the
third word of the entrance list indicates
that the input stream is an internal data
set. Since the input stream is internal,
the reader issues a pseudo OPEN macro
instruction to bring a special access
method (a IT.odified QSAM) into storage and
places a pointer to the access method in
the input OCB. This special access method
reads the JCLS; it is entered from the
expansion of the standard GET macro
instruction.

The internally-stored job control lan
guage statements, and the statements fron,
the procedure library are analyzed and
combined. The standard job description
tables are built, and an input queue entry
is constructed; however, because bit 7 of
the option switches field of the option
list is off, the entry is not enqueued, and
the reader or writer "job" cannot be
selected by an initiator. If errors are
detected during reader processing, appro
priate messages are placed in system mes
sage blocks, which are enqueued in the
message class queue. When processing is
complete, the reader places the main
storage address of the job control table
(JCT) in the NEL a.nd returns control to the
reader control routine with a code that
indicates whether processing was success
ful. The reader control routine then
passes control to allocation interface con
trol routine IEEVACTL.

Allocation Interface Control Routine
(IEEVACTL)

The reader control routine passes con
trol to allocation interface control rou
tine IEEVACTL, with an indication of wheth
er the reader had encountered errors. The
allocation interface control routine uses
the WTO macro instruction to inform the
operator of any errors that have been
found. The routine then constructs the

Systell' Task Control 67

required allocate parameter list. and
passes control to the I/O device allocation
routine via a LINK macro instruction.

I/O device allocation routine IEFSD21Q
uses the JCT to find the appropriate tables
in the input queue. allocates the necessary
devices to the reader or writer, and issues
any necessary mounting messages. The allo
cation recovery routines issue WTO macro
instructions to inform the operator of any
errors found during allocation. When allo
cation is complete. or if allocation cannot
be performed. control is returned to the
allocation control interface routine.

Allocation control interface routine
IEEVACTL determines if the module to be
given control is an authorized module and
then transfers control to Write TIOT rou
tine IEESD590.

Note: A list of "authorized" modules is
contain~d in a table in link-table module
IEEVLKNT.

Write TIOT on Disk Routine (IEESD590)

Write TIOT on disk routine IEESD590
checks that a reader has not been started
in a small partition, writes the TIOT which
is used for job selection, and checkS for a
small partition writer. If a writer is to
be started in a small partition, this
module issues a POST macro instruction and
a WAIT macro instruction for the SPIL and
then Fasses control to job selection rou
tine IEFSD510 via an EXIT macro instruc
tion. If it is not for a small partition
writer, control is transferred to linker
routine IEESD591.

Linkor Routine (IEESD591)

The linkor routine passes control to the
requested routine via a LINK macro instruc-

68

tion. When the reader or writer stops, it
returns control to the linkor routine,
which checks for a small partition writer.
If a small partition writer returned con
trol to the linkor routine, control then
passes to IEFSD510. If a resident reader
or large partition writer returned control,
termination interface routine IEEVTCTL is
given control via an XCTL rr.acro instruc
tion. If a transient reader was suspended,
IEFSD591 returns to job selection routine
IEFSD510.

POST Routine (IEESD592)

POST routine IEESD592 checks the CSCB to
determine if it has been freed; if not, it
is freed. It also checks for a small
partition. The valid condition is posted
in the SPIL or the PIB. The post routine
then passes control to IEFSD510 via an EXIT
macro instruction.

SYSTEM RESTART

The system restart functions may be
requested at any time that a system restart
becomes necessary; e.g., end-of-day, end
of-shift. system malfunction, power fail
ure. This feature provides a means whereby
a maximum amount of information concerning
input work queues. output work queues, and
jobs in interpretation, initiation, execu
tion, or termination can be preserved.
System restart permits reinitialization,
rather than a complete reformatting, of the
job queue data set (SYS1.SYSJOBQE).

MFT uses the MVT system restart modules.
For a complete description of these
modules, and how they function, see IBM
System/360 Operating System: MVT Job M~
agement, Program Logic Manual, Form Y28-
6660.

APPENDIX A: TABLES AND ~mRK AREAS

This appendix contains descriptions and format diagrams of the major
tables and work areas that are used by MFT job management. The tables
and work areas are in alphabetical order, as shown below:

• Command Scheduling Control Block (CSCB)

• Data Set Enqueue (DSENQ) Table

• Interpreter Work Area (IWA)

• Job Control Table (JCT)

• Job File Control Block (JFCB)

• Job File Control Block Extension (JFCBX)

• Life-of-Task Block (LOT)

• Linkage Control Table (LCT)

• Master Scheduler Resident Data Area

• Partition Information Block (PIB)

• Small Partition Information List (SPIL)

• Step Control Table (SCT)

• Step Input/Output Table (SlOT)

• Task Input/Output Table (TIOT)

Tables and work areas are shown four or eight bytes wide for
convenience, but are not necessarily drawn to scale. Tables that are
stored in work queue entries are limited, by convention, to a length of
176 bytes.

The names of most fields are sufficient to describe the fields; those
that require further explanation are described in the text accompanying
the table. Where a macro instruction may be used to include a DSECT of a
table in routines using the table, the name of the mapping macro
instruction is also given. The displacement of each field is shown to
the left of each table; the values in parentheses show the hexadecimal
displacement.

COMMAND SCHEDULING CONTROL BLOCK (CSCB)

Description: A command scheduling control block (CSCB) (Figure 30) is an
area for communications between the command scheduling routine (SVC 34)
and the command execution routines. CSCBs are created (in the input
format shown above) by several system routines. When a CSCB is created,
it is placed in a chain of CSCBs by the command scheduling routine. It
remains in the chain until it is deleted from the chain by the command
scheduling routine, which may also free the main storage occupied by the
CSCB. A CSCB is created under the following circumstances:

• A CSCB is created by the command scheduling routine each time a
task-creating command is encountered. If the task is a reading or
writing task, the CSCB is deleted from the chain, and its main
storage released, when the task terminates.

Appendix A: Tables and Work Areas 69

70

0(0) . 4 1 1 1 1
Verb Size of Status Type

Address of the Next CSCB in the Chain Code CSCB Flags Flags 1
4 1 3

Communi cations ECB Comm. Address of TCB
Flags

)
124 ~ I.. Command Operand

I""

Header

J
8 (8)

16 (10

::~ 2 2

Initiator Storage Key Interpreter Counter

144 (90) Input CSCB

0(0) 4 1 1
Verb Size of Status

Address of the Next CSCB in the Chain Code CSCB
11 Flags

8 (8)

16 (10)

24 (18)

32 (20)

40 (28)

48 (30)
Error

Flags

~

88 (58)

.L..

128 (SO)

136 (88)

4 1

Communications ECB
(omm.

Address of TCB Flags

Task Name or Unit Name

CANCEL ECB (First 4 Bytes)
or

Procedure Na-;;;e (8 Bytes)

4

Address of JCL or JCT Reserved

4 2 1

SDT Address or nOT Length Reserved Error
Code

1 3

Address of Allocation Parameter List
Queue Manager Parameter Area

(Input Queue)

Queue Manager Parameter Area
(Output Queue)

Address of Procedure EXEC
Statement PARM Field

Address of Command Input Buffer

4

4

Address of START Parameter List

Address of Communications ECB

Reserved

144 (90)
Control CSCB

Figure 30. Command scheduling Control Block (CSCB)

1
Type
Flags

3 l
Header

8 J
8

4

1

Reserved

36

-:~

36~~
~

4

4

4

• A CSCB is created by the queue management dequeue routine each time
the initiator dequeues a job. This CSCB is deleted from the chain,
and its main storage released, when the last step of the job has
terminated.

• A CSCB is created by a system outr:ut writer each time it encounters a
DSB that was not preceded by another DSB in the current queue ~ntry.
The CSCB serves as a corrmunicaticn area, allowing the cancellation
(by o[:erator command) of the subtasks established by the writer. The
CSCB is deleted from the chain, and its main storage released, when

the writer encounters an SMn (or the last block in the current queue
entry).

A CSCB is updated (and changed to the control format shown above if
necessary) by the command scheduling routine when a CANCEL jobname (job
selected), CANCEL writer device, MODIFY. or STOP co~mand is encountered.

Although most of the fields are self-explanatory, the following
require further description:

• Status Flags: This b},te indicates the status (pending/not pending)
of the CSCE, and the action to be taken by the corrman~ scheduling
routine. In addition to corrrr.and processing, the command scheduling
routine may be entered to add the CSCB to the chain, delete it, free
its main storage, or to branch to the abnormal termination routine.

• Type Flags: This byte indicates the type of activity with which the
CSCB is associated.

• Communication Flags: This byte indicates the function to be per
formed by the command processing routine.

Mapping Macro Instruction: IEECHAIN

DATA SET ENQUEUE TABLE (DSENQ)

Description: The data set enqueue table (DSENC) (Figure 31) is built by
the DD statement processor routine of the interpreter, and is used by the
initiator to construct an ENQ rracro instruction parameter list to prevent

0(0) 3

Queue Address of This DSENQ Table

4 (4) 3

Queue Address of last DSENQ Table

8 (8)

Name of Characters in all DSNAME Entries to Dote

12 (C) 2
Number of DSNAME Entries
to Date

16 (10)
Fi rst DS NAME Entry *

- - --... - -

*

last DSNAME Entry *

Exclusive/ length of
Data Set

Shared DSNAME

(

> >

-
Zeros - **
End of DSENQ

** If the last entry uses the last available space in the tables but no overflow occurs,
the zero bytes are omitted.

Figure 31. Data Set Enqueue Table (DSENQ)

1

Table lD

1

Zeros

4

Appendix A: Tables and Work Areas 71

72

routines performing different tasks from using the same exclusive data
sets concurrently. The table contains an entry for each data set (except
temporary data sets) required for a job.

INTERPRETER WORK AREA (IWA)

Description: The 2044-byte interpreter work area (IWA) (Figure 32) is
obtained from subpool zero by a GETMAIN macro instruction in the
interpreter initialization module (IEFVH1). The IWA contains information
used by the interpreter routines; it is the area in which job description
tacles are built before they are placed in the work queues.

Although most of the fields in the interpreter work area are
self-explanatory, the following require further descI-iption:

• Default Parameters: The PARM field of the FXEC statement in the
reader procedure contains parameters to be used when no explicit
specification is made. These parameters specify whether the instal
lation requires a programmer's name or account nUIT.ber on each JOB
statement, the priority to be assigned to a job if no priority has
teen specified, whether cormands in the input strearr. shoulj be
processed {or ignored}, and the device, primary quantity, and
secondary quantity to be allocated to system output data sets.

• Switches A-F: These fields contain internal switches used for
communicating status information among the interpreter routines.

• System Input Allocation Table: This area contains a list of painters
to the UCBs corresponding to units available for allocation to system
input data SetS.

• Queue Address Table: This area contains the addresses (in TTR form)
of the next two records assigned to the job's input queue entry, and
the addresses (in TTR form) of the first joblib SlOT, the first scan
dictionary record, and the DD override table.

• Input Stream Parameter List: This area describes the statement last
encountered in the in~ut stream, and contains a pointer to the field
currently being processed.

• Procedure Library Parameter List: This area describes the statement
last read from the procedure library, and contains a pointer to the
field currently being processed.

• Procedure Library Merge Control Data: This area contains information
used in merging statements from the input stream with staterrents from
the procedure library. The information includes the statement names,
the step names, and the narres of the previous and next procedure
steps.

Mapoing Macro Instruction: IEFVMIWA

0(0) 4 4

IWA Length IWA Identifier

8 (8) 4

IWA Save Length NEL Address

16 (10) 4 4

Input Stream DCB Address Procedure Library DCB Address

24 (18) 28
Defau I t Parameters

r"'
56 (38)

-. t- Unique Data Set Name Qualifier

80 (50) 4 1 I 1 I Task

Queue Manager Entry Point Switch A Switch B Switch C Switch D I nfarmation

88 (58) 1 I 26

Switch E Switch F
::;

Offsets to Tabl e Areas

~ 68

~;:;

120 (78)
~L. System Input Allocation Table

184 (B8) 8

Unit Type For CPO Step I/O Table

192 (CO)
Reserved

28 L.

~

"'(COII ''-

:;;j:- Queue Manager Parameter Area (QMPA)

256 (100)
Queue Address Table 28 .~

';t-
Input Stream Parameter List

288 (120) 8

Input Stream Parameter List (continued) Pracedure Library Statement Parameter List Job
Infarm ction

296 (128) 8 48
Procedure Library Statement Parameter List
(continued) :;;~

304 (130)
Procedure Library Merge Control Data

~t- 4

Address of QMPA

352 (160) 4 4

Reserved Address of PROC Referback Di ctionary

360 (168)
1-

(continued)

Figure 32. Interpreter Work Area (IWA) (Part 1 of 2)

Appendix A: Tables and Work Areas 73

74

(continued)

360 (168) r-------------------------------~4~------------------------------~4 ----

Address of PGM Referbock Dictionary Address of DSENQ Table

368 (170) ~ 17~
-_ Referback Dictionary (Input) -_

5M(220)Jt~--------------------------------~--------------------------~17~6J[
Referback Dictionary (Search)

720 (2DO) Jt 17l ~~f:rmation
J b C tiT bl (JCT) 0 on ro a e ~ .

896 (380) 1 1 2 40

No. of SCTs No. of Job Reserved
Lib SlOTs ~

904 (388)
Reserved

-..:: DD
1 1 78 1

-

Internal Switch XI
Number ~~

9M (3BO)
DD Name Reference Table

~:;. 4

Reserved for Double Word Alignment

.. 176 I. Step 1024 (400)
L Step Control Table (SCT) T Information

1200 (4BO) LI--:-::17:-:-1~
System Message Block (SMB)

1376 (560) T 17l
.1 Data Set Name Table (DSNAME) T

1552 (610)1 176.1
Volume Serial Table (VOLT)

1728 (6CO)1r 40Jr
.1 Reserved ~

1768 (6E8)

1776 (6FO)

Scan
Switches

Control and 1
Scan Joint
Switches

Reserved

Duplicate Table

1792 (700) Jt~--;-:17;71l
Inter ediate Text Buffer m . ~ ..

1968 (7BO) 4 4

Text Begin Address Text Key Address
,

1976 (7B8) 4 4

Text N umber Add ress Text Length Address

1984 (7CO) 4 2 2

Text End Address Current Level Last Level

1992 (7C8) 4 4

Current Register Save Area Control Routine Work Area

2000 (7DO) 4 40

Add ress of DCB .. ~

T

Figure 32. Interpreter Work Area (IWA) (Part 2 of 2)

Statement
Information

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

JOB CONTROL TABLE (JCT)

Description: The job control table (JCT) (Figure 33) is created in the
interpreter work area by the job statement processor routine of the
interpreter. It contains information from the JOB statement, job status
information, and pointers to other tables in the job's input queue entry.
When the interpreter has processed all steps of a job, the JCT is written
into the appropriate input queue according to priority; it is read back
into main storage by the initiator job selection and job delete routines.

Although most of the fields in the job control table are self
explanatory, the following require further description:

• Job Status Indicators: The sixth byte of the JCT indicates the
status of the job as shown below:

Bit 0 is set to 1 of a JOBLIB DD statement is included with the job.
Bit 5 is the job-failed bit.. It is set to 1 if an error condition is

encountered that causes the job to be terminated.
Bit 6 is set to 1 if the job includes a cataloged procedure •

• SYSOUT Classes: The first 36 bits of the five-byte field are used to
indicate the system output classes that contain data. The four
remaining bits are reserved.

Mapping Macro Instruction: IEFAJCTB

Appendix A: Tables and Work Areas 75

3 1 Internal I Jab 1 I I

Address in Queue of JCT Table ID = 00 Jab Serial Status
Message Message

Number Indicators
Class Level

0(0)

8 (8) 8

Jab Name

16 (10) 8

Teleprocessing Terminal Name

24 (18) 3 I 3 1

Address in Queue of PDQ Reserved
Address in Queue of GOG
Bias Count Table Reserved

32 (20) 3 1 3 I

Address in Queue of First SCT Reserved Address in Queue of First 5MB Reserved

40 (28) 3 1 3 1

Address in Queue of Job ACT Reserved Address in Queue of First DSB Reserved

48 (30) 3 I 2 2

Address in Queue of Last DSB Reserved Key of SM B Track First Job Condition Code

56 (38)
First job I 1 28

Condition Reserved
Operator ~L.o.

Reserved for Seven Additional Job Condition Cades and Operators

::: 2

Reserved

88 (58) 4

TTR of DSENQ Table

~

1~·11. _________ S_Y_S_O_U_T_C_la_ss_es _______ 5.1.1 ___________IJ

• Figure 33. Job control Table (JCT)

76

c.,

0(0) 1
-, ;;.

48 (30)

56 (38)

72 (48)

80 (50)

88 (58)

96 (60)

104 (68)

112 (70)

~

152 (98)

160 (AO)

168 (AS)

176 (BO)

0(0)

Data Set Name

i

Element Name or Relative Generation Number

8 1 13

Element Name or Relative J/M +D/M
Generation Number (continued) Interface

Reserved

1 1 2 2

Label Type Reserved File Sequence Number Volume Sequence Number

8

Data Management Mask

3 3 1 1

Data Set Creation Date Data Set Expiration Date Indicator Indicator
Byte' Byte 2

Number 1 , 2 1
Device

, 1 ,
of

Buffering
Buffer Length

Error
Character-

Tape Reserved
Buffers

Technique Options
istics Density

2 2 1 , 2

Reserved Data Set Organization Record Option
Maximum Block Size

Format Codes

2 , , 2 2
Number of Number of Relative Location

Logi cal Record Length Channel Master of Key in Logical RCD Reserved

Programs Index Tracks

4
Number of' Number of'

30

Reserved Overflow Volume
Tracks Serials ... -:

First Five Volume Serials

3
Length of
JFCBX

Queue Address of First JFCBX

3 3
Space

Secondary Quantity Indicator Primary Quantity Type
Byte 3

Requested

3 3 Relative Address 2

Directory Quantity
Main Storage Address of

of First Track
Split Cylinder JFCB to be Allocated

3 3 Number of' Main Storage Address Volume
of SUBALLOC JFCB

Average Data Record Length Count Tracks per
Cylinder

Job File Control Block

3

Queue Address of Next J FCBX Reserved

82

15 Additional Volume Serials

I
%(6~ 1 T t Reserved _ 176 (BO) '--_______________________________ --1

Job File Control Block Extension

Figure 34. Job File Control Block (JFCB) and Extension (JFCBX)

Appendix A: Tables and Work Areas 76.1

JOB FILE CONTROL BLOCK (JFCB) AND EXTENSION (JFCBX)

Description: A job file control block (JFCB) (Figure 34) is constructed
in subpool zero (from information in a DD statement) by the inteqcreter
DD statement processor routine. The JFCB is written into the job's input
queue entry, and retrieved when a DCB with the corresponding name is
opened. The information in the JFCB, which describes the characteristics
of a data set, may be modified by the open routine.

A JFCB contains enough space to record five volume serials. If more
than five volume serials are specified, enough job file control block
extensions (JFCBXs) to contain the additional volume serials are con
structed; each JFCBX can contain up to fifteen additional volume serials.

Additional information on the contents of the JFCB and JFCBX may be
found in the publication, IBM System/360 Operating system: System
control Blocks, Form C28-6628.

Mapping Macro Instruction: IEFJFCBN

LIFE-OF-TASK (LOT) BLOCK

Cescription: The 348-byte life-of-task (LOT) block (Figure
in a main storage area obtained freIT subpool 253. It stores
for scheduling functions, and is used by system task
initiators. It is created by the Job Select module for
problem programs, and by system task control for initiating
writers.

35) is built
information
control and
initiating

readers and

The LOT block contains the linkage control table (LCT), a two-level
register save area (REGSAVE), an input queue manager parameter area
(QMGR1), an output queue manager parameter area (QMGR2), the address of
the ECB list, the address of the PIB, and the address of the SPIL.

LINKAGE CONTROL TABLE (LCT)

Description: The linkage control table (LCT) (Figure 36) is built in a
main storage area obtained from sutpeol 253 by the initiator initializa
tion routine. It is a communications area used by the routines of the
initiator.

Most of the fields in the LCT are self-explanatory; it shoula be
noted, however, that the job termination status bit is the low-order bit
of the ene-byte device features field.

Mapping Macro Instruction: IEFALLCT

MASTER SCHEDULER RESIDENT DATA AREA

Description: The master scheduler resident data area (Figure 37),
is in the nucleus area of main storage, contains information used
queue initialization, command scheduling, initiator, and I/O
allocation routines. Its location is stored in the CVTMSER field
communication vector table.

which
by the
device
of the

Most of the fields in the master scheduler
self-explanatory; those fields that require
described below:

resident
further

data area are
explanation are

• Queue Formatting Switch: If the high-order bit of this field is on,
it indicates that the queue data set must be formatted •

• Status Flags: The high-order bit is set on during system initializa
tion; the second bit is set on by the DISPLAY JOBNAMES command, and
set off by the STOP JOBNAMES command; the third bit is set on by the

Appendix A: Tables and Work Areas 77

0(0) ..L 1041
Linkage Control Table .:.t..

104 (68) }1------------------------------------::7:::l1
Register Save Area 1 T

176 (BO) }1------------------------------------::7c:-1a
_,... Register ave Area 2 _

248 (F8) 36

I nput Queue Manager Parameter Area

36

284 (1lC)

Output Queue Manager Parameter Area

320 (140) 8

Reserved

328 (148) 4 4

Address of ECB List Address of PIB

336 (150) 4

Address of SPIL

• Figure 35. Life-of-Task (LOT) BlocK

78

0(0) 1 3 4

Reserved Address of Job Step CSCB Address of I/O Supervisor UCB Lookup Table

8 (8) 4 1 3

TCB Address
Device Linkor's Register Save Area Address
Features

16 (10) 4 4

JCT Address SCT Address

24 (18) 4 4

Queue Address of SCT AI I ocate/IEFVPOST Communication Block Address

32 (20) 4 16

Error Code

Communciations Area

4

Register Save Area Address

56 (38) 1 1 1 1 4
JFCB Current Step

Reserved Housekeeping Number
Action Code Address of Current 5MB

Indicators

64 (40) 4 4
Counter for Assigning Unique Volume Address of Message Class QMPA
Serials to Passed Data Set Volumes

72 (48) 4 16

Return Address to System Task Control Routine

Timer Work Area

4

JOBUB DCB Address

96 (60) 4

Allocate/Terminate Parameter List Address

Figure 36. Linkage Control Table (LCT)

VARY corrmand to indicate that type I/O device allocation routine is to
search the ueBs for a change in unit status .

• MFT switches: If the high-order nit of this field is on, it
indicates that there is an active transient reader; the second bit is
set on when there is a transient reader in main storage; the third
bit is set on when there is a pending START reader command for a
transient reader; the fourth bit is set on to indicate that it is an
MFT environment; the fifth bit indicates that a system-assigned
transient reader is running •

• Transient Reader TTR: This field is used by the transient reader
suspend routine to store the address of the work queue data set where
the reader information was placed when the reader was sus~ended.

• DEFINE Control Information: If the high-order bit of this field is
on, it is a DEFINE operation; if off, it is IPL time. The second bit
indicates that a list of the partitions' sizes and job class(es) has
teen requested; the third bit indicates that there is an adjacent
partition check; the fifth bit is set on when the operator has
requested partition changes at IPL; the sixth bit indicates that a

Appendix A: Tables and Work Areas 79

80

small partition cannot terminate because of the DEFINE operation; the
seventh bit indicates that a DEFINE command has been issued during
operation; the eighth bit indicates that the system has storage
protection •

• Mapping Macro Instruction: IEEEASEB.

0(0) 4 4

Address of CSCB Chain Reserved

8 (8) 4 4

Master Scheduler ECB Communications Task IPL ECB

16 (10) 4 4

Address of Job Queue ECB Address of PROCLIB UCB

24 (18) I 3 4
Queue Address of SET AUTO
Formatting Command Parameter List

Address of System Log Control Table

Switch

32 (20) 1 Number 1 2 2 2
Status of Tracks Interpreter Counter

Initiator Minimum Initiator
Flags in Initiator Protecti on Key Mask Partition Size

Stack
40 (28) 2 1 1 56

Minimum Problem STOP INIT
Reserved

Program Partition Size Switch
~~

48 (30)
Reserved

.. ~ 12·-

104 (68)

System Queue Area Boundary Box

112 (70) 4 1 3

Transient Reader, Pending CSCB Pointer MFT Transient Reader CSCB Pointer MF
Switches Are a

T

120 (78) 4 4

Transient Reader TTR DEFINE Control Information

128 (80) 4 4

Size of Scheduler Address of ECB Chain for Readers

136 (88) 60 -
Area Common to All Systems ~T

, T 1 196 (e41

Figure 37. Master Scheduler Resident Data Area

PARTITION INFORMATION BLOCK

The 32-byte ~artition information block (PIB) (Figure
information used by the command processing and scheduler
location is stored in the TCBPIB field at displacement 124
the task control block (TCB).

38) contains
routines. Its

(decimal) of

Although most of the fields in the partition information block are
self-explanatory, the following require further description:

0(0)

CSCB Address of Pending Command

4 (4)

ECB Address

8 (8)

"No Work ll ECB for the Initiator

12 (C) 1

Status Bi ts - A Address of Current Job Step CSCB

16 (10) 1

Status Bits - B SPIL Address

20 (14)

CSCB Address of Current Task in Partition

24 (18) 1

Protection Key Job C lass Codes

28 (lC)

CSCB Address of Suspended Reader

32 (20)

-Figure 38. Partition Information Block (PIB)

- ECB Address: Contains the address of ECB to be
selection when the partition is made quiescent
redefinition.

4

4

4

3

3

4

3

4

posted by job
for partition

• "No Work" ECB for the Initiator: This ECB is posted by small
partitions requesting service, the queue manager when a job has been
enqueued, and by the DEFINE and START command routines.

• Status A Information:

Bit Setting t11eaning
-0- 0 Stop initiator

1 START INIT issued
1 1 Partition active
2 1 pending command
3 1 Transient reader operating
4 1 Reserved
5 1 partition is involved in redefinition
6 1 System-assigned transient reader operating

partition
7 1 Problem program is running

- Status B Information:

Bit
o
1
2

Setting
1
1
1

Meaning
Logical tracks added for initiator
LOT block exits
SPIL has been created

in this

• SPIL Address: The small partition information list <SPILl is
applicable to large partitions only.

• Job Class Codes: Contains one to three codes for the partition,
arranged in descending numerical order, i.e., GRP3 is in the second
byte of the field, followed by GRP2 and GRP1. The first byte
contains the protection key for the partition, if the system has the
storage protection feature.

Appendix A: Tables and Work Areas 81

82

SMALL PARTITION INFORl"A'I'ION LIST (SPIL)

Description: The 32-byte small partition information list (SPIL) (Figure
39) is a storage area for information pertaining to small partition
scheduling. It is built in rr.ain storage obtained from subpool O. The
address of the ECBs provides for information to be passed between the
small partition and the large partition that is performing initiation,
allocation, or termination functions for the small partition.

Most of the fields in the small partition information block are self
explanatory; however, the status bits field is described below.

Bits 0 and 1 contain ones if a START writer command has been entered.

Bit 2 contains a one if a SPIL pointer has been stored in the PIB.

Bit 5 contains a one if a problem program has requested termination.

Bits 0-7 contain zeros if a START INIT command was entered.

0(0) 4
(ECBA)

Event Control Block

4 (4) 4
(ECBB)

Event Control Block

8 (8) 4
(ECBC)

Event Control Block

12 (C) 4

Address of Small Partitian TCB

16 (10) I 3

Status Bits Reserved

20 (14) 4
Address of Allocate Parameter List (In Large Partition) if a Problem Program;

TIOT, if a Reader or Writer

24 (18) 4

Address of CSC B for Wri ter

28 (IC) 4

Address of ECB List for Dequeue

• Figure 39. Small Partition Information List (SPIL)

STEP CONTROL TABLE (SCT)

Description: The step control table (SCT) (Figure 40), is USEd to pass
control information to the DD routine of the interpreter and to the
initiator routines, which also contribute inforrnation to the table. This
tatle is created and initialized by the execute statement processor
routine of the interpreter when an EXEC statement is read. One seT is
created for each step of a job.

If the step is part of a previously cataloged procedure, the name of
the step that called the procedure, if any, is entered. The following
variable-content and indicator fields are included in the table:

1. Internal Step Status Indicators:

Bit 7 contains a one if an error condition caused the step to be
terminated.

2. PARM count or Step Status Code:

a. Interpreter: The number of characters specified in the PARM
parameter of the EXEC statement is placed in this entry.

b. Initiator: This table entry contains the condition code
returned by the processing program.

3. Step Type Indicators:

Bit 0 contains a one if the following parameter definition appears
in the EXEC statement:

PGM=*.~ stepname. ddname

Bit 1 indicates SYSIN is specified (DD *).

Bit 2 indicates SYSOUT is specified.

Bit 3 contains a 1 if JFCB housekeeping is complete.

Bits 4, 5, and 6 are unused.

Mapping Macro Instruction: IEFASCTB

STEP INPUT/OUTPUT TABLE (SlOT)

Description: The Step Input/Output Table (SlOT) (Figure 41), makes DD
statement available to the initiator for use as a source of information
for the TIOT and for providing DD information to allocation and
disposition routines. When a DD statement is read, the interpreter
creates a new SlOT and places the DD information into it. The individual
bits of the disposition byte and of indicator bytes 57 through 60 in the
SlOT are set to one to indicate the following conditions:

BYTE 56: Scheduler Disposition

Bit 0 Reserved
Bit 1 Retain volume
Bit 2 Private volume
Bit 3 Pass data set
Bit 4 Keep data set
Bit 5 Delete data set
Bit 6 Catalog data set
Bit 7 Uncatalog data set

BYTE 57: Indicator Byte Number 1

Bit 0 Dummy data set
Bit 1 SYSIN data set
Bit 2 Split (primary)
Bit 3 Split (secondary)
Bit 4 Suballocate
Bit 5 Parallel mount
Bit 6 Unit affinity
Bit 7 Unit sepa.ration

Appendix A: Tables and Work Areas 83

84

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

0(0)

8 (8)

16 (10)

24 (18)

32 (20)

40 (28)

48 (30

56 (38

64 (40
Hex

104 (68

)

)

)

)

112 (70)

120 (78)

160 (AO)

3 1 Internal 1 3

Queue Address of SCT Table lD Step Status Maximum Step Running Time
(02) Indicators

2 2 3 1
PARM Count or Step Status Length of Allocate Work Queue Address of First SlOT Entry Reserved
Code at Term i nation Area, or Number of SlOT s

3 1 3 1

Queue Address of Allocate Work Area Reserved Queue Address of Next SCT Reserved

3 1 3 1
Queue Address of First 5MB Queue Address of Last 5MB
for Next Step Reserved for This Step Reserved

3 1 3 1
Queue Address of Fi rst ACT Entry

Reserved Queue Address of VOLT Reserved for This Step

3 1
Queue Address of Dsname Table
for Th i s Step Reserved Name of Step That Co lied Procedure

8

Name of Step That Called Procedure (Continued) Step Name

8 2 2

Step Name (Continued)
Relative Pointer to

Length of VOLT Step Entry in ACT

Number of 1 Number of 1 Number of 1 1 40

SlOTs in Setup JFCBs to Step Type

This Step Messages Allocate I ndic"tors
~~

:: PARM Field Values

Step
Reserved Reserved Reserved Program Name

Status

8 2

Program Name (Continued) Length (i n Bytes) of
Dsname Table for This Step

First Step 1 3

Condition Queue Address of First Condition SCT
Operator

.. Second Through Seventh Step Cond I tlon Entries

2 Eighth Stepl

Eighth Step Condition Cod Condition
Operator

3
Queue Address of Eighth Condition SCT

2

Fi rst Step Condi tion Code

36

,~

2
Reserved

168(A8)r------------------L------~3f7N~u-m7b-e-r-of~Ir-------~---------L-----------------3~

Queue Address of the First
DSB in Message Class

Step
Status

Queue Address of
Last Legitimate 5MB

Message
Class DSBs
for this Step

176(BO)~----------------------~----~~------~----------------------~

-Figure 40. Step Control Table (SCT)

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

BYTE 58: Indicator Byte Number 2

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

Channel affinity
Channel separation
Volume affinity
JOBLIB DD statement
Unlabeled (no labels)
Pool DD statement
Defer mounting
Received data set

BYTE 59: Indicator Byte Number 3

Volume reference Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

SYSIN expected (procedures only>
Reserved

BYTE 60:

Volume reference in step
SYSOUT was specified
NEW data set
MOD data set
OLD or SHR data set

Indicator Byte Nu~ber 4

Bit 0
Bit 4
Bit 5
Bit 6
Bit 7

Set by reader to indicate GDG single
step processed

BYTE 93:

Intra-step volume affinity
Data set is in PDQ
1 = old or modified data set
o = new data set

Conditional Disposition

Bits 0-3 Reserved
Bit 4 Keep data set
Bit 5 Delete data set
Bit 6 Catalog data set
Bit 7 Uncatalog data set

BYTE 104:

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

Step status

Reserved
Reserved
SCTMCVOL
Reserved
SCTSTPLB
Reserved
Reserved
Reserved

Mapping Macro Instruction: IEFASIOT

TASK INPUT/OUTPUT TABLE (TIOT)

Description: The Task Input/output Table (TIOT) (Figure 42) provides
data management routines with the addresses of the JFCBs and devices
allocated to the data sets in a job step or system task. It is
constructed by the I/O device allocation routine in main storage obtained
from subpool zero. The allocation routine also places a copy of the TIOT
on the appropriate job class queue with the other tables for the job
step. After the step completes processing, the TIOT is brought in from
the job queue and placed in the upper portion of the partition. The step
is then terminated, and the TIOT is deleted.

For further information on the TIOT, see IBM System/360 Operating
System: System Control Blocks, Form C28-6628.

Appendix A: Tables and Work Areas 85

0(0) 3 I

Queue Address of SlOT Table 10

4 (4) 8

DO Nome

12 (C) 8

Channel Separation and Affinity

20 (14) 8

Unit Separation and Affinity

28 (lC) 3 1 3 1

Queue Address of Next SlOT Reserved Queue Address of JFCB Reserved

36 (24) 3 1 3 1
Queue Address of SlOT

Reserved
Queue Address of SlOT System

Reserved for VOLREF or SUBALLOC Output/Dependency Block

) 3 2 Number of 1 2
Relative Pointer to

Queue Address of DO Nome Table Reserved Volumes in Volume Table Entry
VOLT

44 (2C

) 1
Number of

1 1 1 4
Internal Volume
DO Number Units for Count

Disposition Indicator Bytes

52 (34

Th i s Data Set

60 (3C) 8

Unit Type

68 (44) 8

System Output Program Name

4
System

1 1 2
DO Statement

System Output Form Number Output Duplicate Reserved

Class Number

76 (4C

84 (54) 4 4

Queue Address of DSB for this Data Set Queue Address of Next DSB

92(5C) 1 37
Conditional ~

Disposition
Reserved

) 44 132(84 .

DC B Reference Name

Figure 41. step Input/Output Table (SlOT)

86

(."
0(0)

8 (8)

16 (10)

24 (18)

32 (20)

40 (28)

Job Name

Step Nome

Name of Step Calling Procedure, or Zeros

1 1 2
Entry Stotus Allocotion

DO Name
Length Bits Data

4 3

DO Name (continued)
Address in Queue of
JFCB or SlOT

1 3 1
Status Address of UCB Status Address of UC B
Bits or Link Value Bits or Link Value

- --- - -

B

8

8

4

1
Status
Bits

3 ---.
Device
Entries

First
DO
Entry

l~-----~------~---'~----------~-------~----'~·----~* ...L Last

T OO TI---------:-r--
41
__ -----'---------rE,try l Zeros - End of TIOT •

Figure 42. Task Input/Output Table (TIOT)

Appendix A: Tables and Work Areas 87

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

APPENDIX B: MFT MODULES

This appendix contains a table of new MFT modules, a group of tables showing the
modules of each major component, and a brief description of each of the modules used by
MFT. If you are looking for a specific module and know only the major component and
routine name, use Tables 3-14 which give a cross-reference to the source module. The
source modules are in turn listed alphanumerically for easy access. If you know the
source module name;, go directly to the module descriptions.

NEW MFT MODULES

Table 2 lists all new modules implemented by MFT.
alphabetically by major component.

Table 2. New MFT Modules

This table is organized

r---,
ABEND:

IEAGTM05
IEAGTM06

communications Task:

IEEVWTOR

Initiator:

IEFSD510
IEFSD511
IEFSD512
IEFSD513
IEFSD515
IEFSD516
IEFSD517
IEFSD540
IEFSD541
IEFSD553
IEFSD554
IEFSD555
IEFSD556
IEFSD558
IEFSD559
IEFSD589
IEFSD598
IEFSD599

I/O Device Allocation:

IEFSD551
IEFSD552
IEFSD557

Master Scheduler Task:

IEECIR50
IEEDFIN1
IEEDFIN2
IEEDFIN3
IEEDFIN4
IEEDFIN5
IEEDFIN6
IEEDFIN7
IEEDFIN8
IEEDFIN9
IEESD561
lEESD562
IEESD563
IEFSD564
lEESD565
IEESD566
IEESD571
IEFSD569

Nucleus:
IEESD568
IEFSD567

Queue Management:

IEFSD514
IEFSD572

Reader/Interpreter:

IEFSD530
IEFSD531
IEFSD532
IEFSD533
IEFSD536
IEFSD537

System Task Control:

IEESD590
IEESD591
IEESD590
IEESD591
IEESD592
IEFSD534
IEFSD535

IEFSD587
IEFSD588

L--___ __

MAJOR COMPONENT MODULES

Tables 3 through 14 list all MFT modules according to major component. The tables
appear in alphabetical order by component name. Within each component, routine names are
listed alphabetically with a cross-reference to the module name.

88

Form Y27-7128-3. Page Revised by TNL Y28-2349. 11/15/68

Table 3. ABEND Modules
r------------------------------T----------,
I I Source I
I Routine I Module I

~--------------------------f---------~
I ABDUMP I IEAATM04 I
I Indicative Dump I IEAATM03 I
I Initialization I IEAGTMOO I
I Input/Output Purge I IEAGTM06 I
I Linkage I IEAATM01 I
I Main Storage Allocation I IEAATM02 I
I Termination I IEAGTM05 I l ______________________________ ~ __________ J

Table 4. communication Task Modules
r-----------------------------~----------,

I I Source I
I Routine I Module I

~--------------------------f----------~
I Console Device Processor I IEECVPM I
I Console Interrupt I IEECVCRA I
I External Interrupt I IEECVCRX I
I Initialization Routine I IEECVCTI I
I Purge RQE I IEECVED2 I
I Router I IEECVCTR I
I Wait I IEECVCTW I
I Write-to-Operator I IEECVWTO I
I Write-to-Operator-With-Reply I IEEVWTCR I l ______________________________ ~ __________ J

Table 5. Initiator Modules
r---------------------------T----------,
I I Source I
I Routine I Module I

~------------------------------f----------~
Alternate Step Deletion IEFSD516
Data Set Integrity IEFSD541
ENQ/DEQ Purge IEFSD598
Job Deletion IEFSD517
Job Initiation IEFSD511
Job Selection IEFSD510
Linkage to IEFSD510 IEFSD555
Linkage to IEFSD511 IEFSD558
Linkage to IEFSD512 IEFSD553
Linkage to IEFSD515 IEFSD559
Linkage to IEFSD516 IEFSD554
Linkage to IEFSD534 IEFSD589
Linkage to IEFSD541 IEFSD540
Problem Program Interface IEFSD513
Set Problem Program State IEFSD556
Small Partition Module IEFSD599
Step Deletion IEFSD515
Step Initiation IEFSD512
----------------------------~----------

Table 6. I/O Device Allocation Modules
r------------------------------y----------,
I I Source I
I Routine I Module I

~--------------------------f----------~
Allocation Control IEFXCSSS
Allocation Entry IEFSD210
Allocation Exit IEFSD41Q
Allocation Recovery Messages IEFSJMSG
Allocation Recovery IEFXJIMP
Automatic Volume Recognition IEFXV001
Automatic Volume Recognition

Messages
Automatic Volume Recognition

Non-standard Label Routine
DADSM Error Recovery
Decision Allocation
Demand Allocation
Device Strikeout
EXEC Statement Condition

Code Processor
EXEC Statement Condition

Code Processor Messages
External Action Messages
External Action
Interface
JFCB Housekeeping Control

and Allocate Processing
JFCB Housekeeping Error Mes

sage processing
JFCB Housekeeping Error

Messages
JFCB Housekeeping Fetch DCB

Processing
JFCB Housekeeping GDG All

Processing
JFCB Housekeeping GDG Single

Processing
JFCB Housekeeping Patterning

DSCB
JFCB Housekeeping Unique

Volume ID
Mount Control-Volume Routine
Linkage Module
Linkage Module
Linkage Module
Linkage Module
Linkage to JFCB Housekeeping
Linkage to JFCB Housekeeping
Linkage to IEFXJIMP
Linkage to IEFXJIMP
Linkage to IEFXV001
Linkage to Mount Control

Volume
Message Module
Message Module
Non-Recovery Error
Non-Recovery Error Messages
separation Strikeout
Space Request
TIOT Compression
TIOT Construction
Unsolicited Device Interrupt

Handler
Wait for Space Decision
Wait for Unallocation

IEFVMSG

IEFXVNSL
IEFXT003
IEFS5000
IEFWAOOO
IEFX300A

IEFVKIMP

IEFVKMSG
IEFWD001
IEFWDOOO
IEFSD557

IWDCMLA1

IEFVMLS6

IEFVMLS7

IEFVM2LS

IEFVM4LS

IEFVM3LS

IEFVM5LS

IEFVM76
IEFMCVOL
IEFWCFAK
IEFWDFA
IEFWSWIN
IEFXJFAK
IEEV'MMS1
IEFVMFAK
IEFSD551
IEFSD552
IEFAVFAK

IEFCVFAK
IEFWSTRT
IEFXAMSG
IEFXKIMP
IEFXKMSG
IEFXHOOO
IEFXTOOD
IEFXT002
IEFWCIMP

IEFVPOST
IEFSD097
IEFSD195 L--____________________________ ~ ________ J

Appendix B: MFT Modules 89

Table 7. Interpreter Modules
r------------------------------T----------,
I I Source I
I Routine I Module I
I------------------------+----------~

Command statement IEFVHM
CPO Allocation Subroutine IEFVSD12
CPO IEFVHG
Continuation Statement IEFVBC
DD. statement Generator IEFVHB
DD Statement Processor IEEFVDA
Data Set Name Table

Construction
Dictionary Entry
Dictionary Search
End-of-File
EXEC Statement Processor
Get Parameter
Get
Housekeeping
Initialization
Initialization
Interface
Job and step Enqueue
Job Statement Processor
Job validity Check
Linkage Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Processing
Null Statement
Operator Message
Post-Scan
Pre-Scan Preparation
Queue Management Interface
Router
Scan
SCD Construction
Symbolic Parameter

processing
Termination
Test and Store
Transient Reader Restore
Transient Reader suspend
Transient Reader suspend

IEFVDBSD
IEFVGI
IEFVGS
IEFVHAA
IEFVEA
IEFVGK
IEFVHA
IEFVHHB
IEFVH1
IEFVB2
IEFSDS33
IEFVBB
IEFVHA
IEFVHEC
IEFSDS37
IEFVGM1
IEFVGM2
IEFVGM3
IEFVGM4
IEFVGM5
IEFVGM6
IEFVGM7
IEFVGM8
IEFVGM9
IEFVGM10
IEFVGMll
IEFVGM12
IEFVGM13
IEFVGM14
IEFVGM15
IEFVGM16
IEFVGM17
IEFVGM18
IEFVGM70
IEFVGM78
IEFVGM
IEFVHL
IEFSD536
IEFVHF
IEFVHEB
IEFVHQ
IEFVHE
IEFVFA
IEFVSD13

IEFVFB
IEFVBN
IEFVGT
IEFSD531
IEFSD530

Tests IEFSD532
Vary Identification IEFVHCB L--____________________________ i-________ _

90

Table 8. Master Scheduler Modules
r-----------------------------T----------,
I I Source I
I Routine I Module I
~----------------------------+----------~

DEFINE Final Processor IEEDFIN3
DEFINE Initialization IEEDFIN1
DEFINE Listing IEEDFIN4
DEFINE Message IEEDFIN5
DEFINE Syntax Check and

Router
DISPLAY A
DISPLAY R
Queue Search
Queue Search Setup
Service
Syntax Check
Time-Slice Syntax
Wait/Router

Check

IEEDFIN2
IEESD566
IEESD567
IEESD564
IEESD563
IEESD565
IEESD562
IEEDFIN6
IEECIR50 L-____________________________ i-_________ J

Table 9. Queue Management Modules
r-----------------------------~----------,
I I Source I
I Routine I Module I
~-----------------------------+----------~

Assign IEFQASGQ
Assign/Start IEFQAGST
Branch IEFQMLK1
Control IEFQBVMS
Delete IEFQDELQ
Dequeue IEFQMDQQ
Dummy IEFQMDUM
Enqueue IEFQMNQQ
Interpreter/Queue Manager

Interlock
Message Module
Queue Formatting
Queue Initialization
Read/Write
Resident Main Storage

IEFSD572
IEFSD311
IEFORMAT
IEFSD055
IEFQMRAW

Reservation IEFPRESD
Unchain IEFQMUNQ L-_____________________________ ~ _________ _

Table 10. SVC 34 Modules
r-----------------------------T----------,
I I Source I
I Routine I Module I
~---------------------------+----------~

CSCB Creation IEE0803D
CSCB Marking IEE0703D
DEFINE, MOUNT, CANCEL IEFSD571
HALT IEE1403D
Message Assembly IEE0503D
Message Assembly IEE2103D
Reply Processor IEE1203D
Router IEE0403D
SET Command Handler IEE0903D
SET Command IEE0603D
START and STOP INIT IEFSD561
Translator/Chain Manipulator IEE0303D
VARY and UNLOAD IEE1103D L-____________________________ ~ ________ _

Table 11. system output Writer Modules
r---- " -----,
I
I Routine

I Source I
I Module I

J-----
Class Name Setup
Command processing
Data Set Delete
Data Set writer Interface
DSB Handler
Initialization
Job separator
Linkage Module
Linkage Module
Linkage Module
Linkage Module
Linker
Linkage to Queue Manager

--f------~
IEFSD081
IEFSD083
IEFSD111
IEFSD070
IEFSD085
IEFSD080
IEFSD094
IEF078SD
IEF079SD
IEF082SD
IEF083SD
IEFSD078

Delete IEFSD079
Main Logic IEFSD082
Message Module IEFSD096
Print Line IEFSD095
Put IEFSD089
5MB Handler IEFSD086
Standard Writer IEFSD087
Transition IEFSD088
Wait IEFS084 L--_______________________ ~ _______ _

Table 12. System Restart Modules
r------------------------------y----------,
I I Source I
I Routine I Module I
J------------------+--------~
I Delete I IEFSD303 I
I Initialization I IEFSD300 I
I Jobnames Table I IEFSD302 I
I Linkage Module I IEF300SD I
I Linkage Module I IEF304SD I
I Message Module I IEFSD312 I
I Purge Queue Construction I IEFSD301 I
I Scratch Data Sets I IEFSD304 I
I Scratch Data Sets I IEFSD308 I
I TTR and NN to MBBCCBBR I I
I Conversion I IEFSD310 I L--_____ _ _________ 4-________ J

Table 13. System Task Control Modules
r-- --------~---------,
I I Source I
I Routine I Module I
t----------------t----------~

Allocation Interface IEEVACTL
Internal JCL Reader IEEVICLR
Interpreter Control IEEVRCTL
JCL Edit IEEVJCL
Linkage to IEFSD535 IEFSD587
Linkage to IEE534SD IEFSD588
Linker IEESD591
Link-Table IEEVLNKT
LPSW IEFSD534
Message Writer IEEVMSGl
Message writer IEEVSMSG
Message Writing IEEVOMSG
POST IEESD592
Problem Program Mode IEFSD535
QMPA Builder IEEVSMRA
START Syntax Check IEEVSTAR
Termination Interface IEEVTCTL
Write TIOT on Disk IEESD590 L--__________________________ ~ _________ _

Table 14. Termination Modules
r---------------------------~----------,
I I Source I
I Routine I Module I
t--------------------------t----------~

Disposition and Unallocation
Messages

Disposition and Unallocation
Messages

Disposition and Unallocation
Disposition and Unallocation
DSB Processing
Job statement Condition Code

Processor
Job Statement Condition Code

Processor Messages
Job Termination Control
Job Termination Exit
Message Blocking
Message Module
Message
Step Termination Control
Step Termination Control

Routine Messages
Step Termination Data Set

Driver
Step Terminate Exit
Step Termination Messages
System Output Interface
Termination Entry
User Accounting Routine

IEFZGMSG

IEFZHMSG
IEFZGJB1
IEFZGSTl
IEFYTVMS

IEFVJIMP

IEFVJMSG
IEFZAJB3
IEFSD31Q
IEFYSVMS
IEFWTERM
IEFIDMPM
IEFYNIMP

IEFYNMSG

IEFYPJB3
IEFSD22Q
IEFYPMSG
IEFSD017
IEFSD42Q

Linkage IEFACTLK
User Dummy Accounting IEFACTFK L-__________________________ --i _________ _

Appendix B: MFT Modules 91

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

IEAGTMOA -- IEAATMOA

MODULE DESCRIPTIONS

This section contains a brief descrip
tion of each of the modules used by MFT.
Modules are listed alphanumerically by
module name; associated with each module is
a descriptive name, which indicates the
major component of the system to which the
module belongs.. Each module contains a
brief statement of the purpose of the
module. Where applicable, the description
includes the names of the modules entry
points, the names of the modules to which
it passes control, the major tables and
work areas to which it refers, its attri
butes, the names of the control sections it
contains, and a page reference to the
detailed writeup in the Job Manaqement
section. The names of the first and last
modules on each page appear at the top of
that page.

IEAGTMOA: supervisor -- ABEND STAE Test
Rout.ine

This routine prevents asynchronous exits
and stores the completion code (if not
previously stored). It determines if con
trol should be returned to STAE after a
purge error, if the Graphics Abend Exit
routine should be entered, and if a valid
STAE is in effect.

• Entry: IGCOOOIC

• Exit: XCTL to IEAGTMOO to continue
ABEND processing

to IEAATMOB if a valid STAE
is in effect

EXIT to IEAATMOB if an ABEND was
issued by the Purge rou
tine during STAE
processing

EXIT to caller if graphics

• Attributes:
privileged

program

Reentrant,

• Control section: IGC0001C

disabled,

IEAGTMOO: supervisor ABEND
Initialization Routine

This routine provides purging for IQEs
and WTOR requests, and cancels the task
timer element. On detecting certain
abnormal conditions, IEAGTMOO passes con
trol to the System Quiesce routine .•

92

• Entry: IGC0701C

• Exit: XCTL to IEAATMOD if IEAGTMOO was
entered from STAE

to IEAGTM05 if this is a
normal end

to IEAGTM06 if this is an
abnormal end

branch to IEAGTWST if a system
task is attempting
ABEND, or if the task or
system has been speci
fied 'must complete'

• Attributes: Reentrant, disabled for
SVC interruptions, privileged

• Control section: IGC0701C

IEAGTM06: Supervisor -- ABEND Input/OUtput
Purge Routine

This routine purges I/O operations in
process and outstanding I/O requests.

• Entry: IGC0601C

• Exit: XCTL to IEAATM01

• Attributes:
I/O and
privileged

Reentrant, disabled for
external interruptions,

• Control Section: IGC0601C

IEAATM01: supervisor -- ABEND Validity
Check Routine

This routine performs validity checking
of the MSS (main storage supervisor) queue,
the load list, the active RB list, and the
DEB queue.. It dequeues invalid control
blocks, or terminates the queue at the
point of error, and sets bits in the ABEND
appendage to the boundary box to indicate
invalid control blocks found on one or more
lists.

• Entry: IGC0101C

• Exit: XCTL to IEAATMOA

• Attributes: Reentrant,
external and I/O
privileged

disabled for
interruptions,

• Control Section: IGCOIOIC

IEAATMOA: Supervisor -- ABEND Linkage
Routine

This routine checks for valid and inva
lid recursions. For an invalid recursion,
control is passed to the System Quiesce
Routine. For a valid recursion, a bit is
set in the TCBFLGS field of the TCB to
prevent an ABDUMP from being attempted.
IEAATMOA determines the amount of main
storage required by ABEND, and transfers
control to the appropriate ABEND load
module.

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

IEAATM02 -- IEAATM04

• Entry: IGC0111C

• Exits: XCTL to IEAATM02 if main
storage must be
'stolen'

to IEAATM03 if main
storage is available
and an indicative dump
is requested

to IEAATM04 if main
storage is available
and ABDUMP is requested

to IEAATM05 if main
storage is available
and no dump is
requested

branch to IEAGTWST (System
Quiesce routine) if an
invalid ABEND recursion
has been detected

• Attributes: Reentrant, disabled for
interruptions, external and I/O

privileged

• Control section: IGC0111C

,IEAATMO 2: supervisor -- ABEND Steal LRB
Main Storage Routine

This routine 'steals' main storage
needed for ABEND functions that cannot be
obtained via a GETMAIN macro instruction.
The main storage is stolen from programs
represented by LRBs on the loaded program
list.

• Entry: IGC0201C

• Exits: XCTL to IEAATM2A if there is no
loaded program list or
if enough main storage
is not available from
the LRBs

to IEAATM2B if IEAATM02
has acquired the neces
sary main storage

• Attributes: Reentrant, disabled for
interruptions, external and I/O

privileged

• Control Section: IGC0201C

;IEAATM2A: Supervisor -- ABEND Steal
;Problem Program Main Storage Routine

This routine 'steals' main storage
needed for ABEND functions from the lower
end of the partition when it cannot be
acquired either by a GET MAIN macro instruc
tion or by the steal routine provided by
I EAATM 0 2.

• Entry: IGC0211C

• Exits: XCTL to IEAATM03 if indicative
dump is requested

to IEAATM04 if ABDUMP is
requested

to IEAGTM05 if
requested or

no dump is
if a dump
previously was

attempted and failed

• Attributes: Reentrant,
external and I/O

disabled for
interruptions,

privileged

• Control Section: IGC0211C

IEAATM2B: supervisor -- ABEND LRB Stack
Routine

This routine moves the LRBs whose main
storage was stolen by IEAATM02 to conti
guous locations in the low end of the freed
area and resets the chain pointers in the
LRBs.

• Entry: IGC0221C

• Exits: XCTL to IEAATM03 if indicative
dump is requested

to IEAATM04 if ABDUMP is
requested

to IEAGTM05 if
requested or

no dump is
if a dump
previously was

attempted and failed

• Attributes:
external
privileged

Reentrant, disabled for
and I/O interruptions,

• Control Section: IGC0221C

IEAATM03: Supervisor -- ABEND Indicative
Dump Routine

This routine accumulates the information
for an indicative dump and stores it in
main storage.

• Entry: IGC0301C

• Exit: XCTL to IEAGTM05

• Attributes: Reentrant,
external and I/O

disabled for
interruptions,

privileged

• Control Section: IGC0301C

IEAATM04: Supervisor -- ABEND/ABDUMP
Routine

This routine determines if
wants a full or partial ABDUMP,
the ABDUMP output, and calls
(ABDUMP) •

the user
initiates
an SVC 51

Appendix B: MFT Modules 93

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

IEAGTM05 -- IEECIR50

• Entry: IGC0401C

• Exits: XCTL to IEAATM03 for an indica
tive dump if the DCB
has failed to open

• Attributes:
external
privileged

to IEAGTMOS for initiali
zation of the next task

Reentrant,
and I/O

disabled for
interruptions,

• Control section: IGC0401C

IEAGTMOS: Supervisor -- ABEND Termination
Routine

This
purges
fields,
control

routine closes all data sets,
the timer queue, resets the TCB
frees main storage, and transfers
to the job scheduler.

• Entry: IGCOS01C

• Exits: XCTL to IEFSDS1K for scheduler
size partitions

• Attributes:
external
privileged

to IEFSDS99 for small
partitions

Reentrant,
and I/O

disabled for
interruptions,

• Control Section: IGC0501C

IEAGENQ1: Supervisor Enqueue Service
Routine

This routine
control blocks
resources in a
ment .•

constructs and processes
to serialize the use of
multiprogramming environ-

• Entry: IEAGENQl

• Exit: EXIT routine or to the
dispatcher

• Tables/Work Areas: Minor QCB, Major
QCB, Queue element

• Attributes: Reenterable

• Control Sections: IGC048 and IEG056

IEAGENQ2: supervisor -- Shared DASD
Enqueue Service Routine

This routine is the enqueue service
routine for systems that include the Shared
DASD option. It is identical to IEAGENQl
except that additional processing is per
formed when a shared direct-access device
is requested through the RESERVE macro
instruction.

94

• Entry: IEAGENQ2

• Exits: EXIT
dispatcher

routine or to the

• Tables/Work Areas: Minor QCB, Major
QCB, Queue element

• Attributes: Reenterable

• Control Sections: IGC048 and IEGOS6

IEAGTWST: supervisor System Quiesce
Routine

This routine places the failing task in
wait state, and permits the system to
quiesce .•

• Entry: I ECIWTST

• Exit: To the supervisor

• Tables/Work Areas: TCB

• Attributes: Resident in nucleus., dis
abled, reusable

• control Section: IEAF03BP

IEAOTI01: Supervisor -- Timer Second Level
Interruption Handler

This routine maintains the timer queue
when the timer option is not specified
during system generation. It handles only
the normal six hour interruptions.

• Entry: IEAOTIOl

• Exit: To Timer/External FLIH

• Tables/Work Areas: SHPC, T4PC, LTPC

• Attributes: Reenterable, disabled for
system interruptions, resident, super
visor mode

• Control Section: IEAOTIOl

IEECIRSO: Master Scheduler -- Wait/Router
Routine

This
issued,
control
module.

routine waits until a
analyzes the command
to the appropriate

• Entry: IEECIRSO

• Exits: IEESD562, IEEDFINl

command is
and passes
processing

• Attributes: Read-only, reenterable,
resident in nucleus.

• Control Section: IEECIR50

• Paqe Reference: 44

IEECVCRA: Communications Task -- Console
Interruption Routine

This routine notifies the wait routine
that a console read has been requested.

• Entry: IEEBAl

• Exit: Return to lOS

• Tables/Work Areas: ECB., UCM" UCB

• Attributes: Reenterable

• Control Section: IEEBAl

• Page Reference: 40

IEECVCRX: Communications Task -- External
Interruption Routine

This routine
primary console
console device
tion occurs.

switches control from the
device to an alternate

when an external interrup-

• Entry: IEEBC1PE

• Exit: Return to lOS

• Tables/Work Areas: UCM

• Attributes: Reenterable

• Control Section: IEEBC1PE

• Page Reference: 41

IEECVCTI: Communications Task -
Initialization Routine

This routine sets up control blocks and
attributes in the unit control module
(UCM) •

• Entry: IEECVCTI

• Exit: IEECVCTW

• Tables/Work Areas: UCM

• Attributes: Read-only, reenterable

• Control Section: IEECVCTI

• External References: IEEVRFRX

IEECVCTR: communications Task -- Router
Routine

This routine determines the type of
request or interruption that occurred, and
passes control to the appropriate process
ing routine.

IEECVCRA -- IEECVPM

• Entry: IEECVCTR

• Exits: XCTL to IEECVPMX (IGC0107B),
IEECVPMC
(IGC2107B)

(IGC1107B), or IEECVPMP

• Tables/Work Areas: UCM, SVRB, UCB

• Attributes: Reenterable

• Control Section: IEECVCTR

• Page Reference: 40

IEECVCTW: Communications Task -- Wait
Routine

This routine waits on all communications
task ECBs associated with WTO/WTOR macro
instructions.

• Entry: IEECIR45

• Exit: None

• Tables/Work Areas: TCB, ECB, UCM

• Attributes: Reenterable

• Control Section: IEECIR45

• Page Reference: 40

IEECVED2: Communications Task -- Purge RQE
Routine

This routine scans and purges all out
standing request queue elements (RQES) per
taining to the terminating task.

• Entry: IEECVPRG

• Exits: End-of-task, and ABEND

• Tables/Work Areas: RQE, WQE, JCM, CVT

• Attributes: Reenterable

• Control section: IEECVPRG

IEECVPM: Communications Task -- Console
Device Processor Routine

This routine performs console read and
write operations and checks for errors .•

• Entry: IEECVPM

• Exit: XCTL to IEECVC'I'R UGC0007B)

• Tables/Work Areas: DCB, UCB, UCM

• Attributes: Reenterable

• Control Section: IEECVPM

• Page Reference: 40

Appendix B: MFT Modules 95

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

IEECVWTO -- IEEDFIN6

IEECVWTO: Communications Task -
write-to-Operator Routine

This routine processes all WTO
instructions.

• Entry: IGC0003E

• Exit: Return to calling program

macro I

• Tables/Work Areas: WQE, UCM, CVT, RQE

• Attributes: Reenterable

• Control Section: IGC0003E

• Page Reference: 41

IEEDFIN1: Master Scheduler -- DEFINE
Command Initialization Routine

This routine sets up data areas for
partition definition and passes control to
the appropriate processing module.

• Entry: IEEDFIN1

• Exits: IEEDFIN3, IEEDFIN4, IEEDFIN5

• Attributes: Read-only, reenterable

• Control section: IEEDFIN2

• Page Reference: 45

IEEDFIN2: Master Scheduler -- DEFINE
Command Syntax Check and Router Routine

This routine checks the syntax of DEFINE
command statements. If a syntax error is
discovered, the statement is ignored and an
error message is issued. If the syntax is
correct, the information is stored and
control is passed to the appropriate
routine.

• Entry: IEEDFIN2

• Exits: IEEDFIN5, IEEDFIN6, IEEDFIN7

• Attributes: Read-only, reenterable

• Control Section: IEEDFIN2

• Page Reference: 45

IEEDFIN3: Master Scheduler -- DEFINE
Command Final Processor

This routine determines that all infor
mation for the partition redefinition is
correct, constructs a list of ECBs (one for
each of the affected partitions) to be
posted when the jobs in the partitions have
terminated, and issues a message that
DEFINE processing is complete.

96

• Entry: IEEDFIN3

• Exits: IEEDFIN5, IEEDFIN8

• Attributes: Read-only, reenterable

• Control section: IEEDFIN3

• Page Reference: 47

IEEDFIN4: Master Scheduler -- DEFINE
Command Listing Routine

This routine lists partition defini
tions.

• Entry: IEEDFIN4

.~: IEEDFIN3, IEEDFIN5

• Attributes: Read-only, reenterable

• Control section: IEEDFIN4

• Page Reference: 45

IEEDFIN5: Master Scheduler -- DEFINE
Command Message Module

This routine contains texts for operator
messages required for DEFINE command pro
cessing. The message is constructed
according to a code passed by the calling
routine. IEEDFIN5 issues the requested
message and passes control to IEEDFIN2 or
the dispatcher,.

• Entry: IEEDFIN5

• Exits:
program

IEEDFIN2 or return to calling

• Attributes: Read-only, reenterable

• Control section: IEEDFIN5

• Page Reference: 45

IEEDFIN6: Master Scheduler
Task -- Time-Slice Syntax Check Routine

.t This routine checks the TMSL subpar arne
ters for proper syntax.

• Entry: IEEDFIN6

• Exits: IEEDFIN2, IEEDFIN5

• Attributes: Read-only, reenterable

• Control Section: IEEDFIN6

• Page Reference: 47

Form Y27-7128-3, Page Revised by TNL Y28-2348, 11/15/68

IEEDFIN7: Master Scheduler -- Keyword Scan
Routine

This routine checks keyword parameters
for syntax errors. If a syntax error is
discovered, the statement is ignored and an
error message is generated. If the syntax
is correct, the information is stored.

• Entry: IEEDFIN7

• Exits: IEEDFIN2,
IEEDFINS

IEEDFIN3, IEEDFIN4,

• Attributes: Read-only, reenterable

• Control section: IEEDFIN7

• Page Reference: 47

IEEDFIN8: Master Scheduler system
Reinitialization Routine

This routine updates system
blocks and boundary boxes with the
partition definition information.

control
entered

• Entry: IEEDFIN8

• Exits: IEEDFIN9

• Attributes: Read-only, reenterable

• Control section: IEEDFIN8

• Page reference: 47

IEEDFIN9: Master Scheduler -- Command
Final Processor Routine

This routine updates the task control
blocks affected by time-slicing if time
slicing is specified.

• Entry: IEEDFIN9

• Exits: IEEDFIN5

• Attributes: Read-only, reenterable

• Control Section: IEEDFIN9

• Page Reference: 47

IEESDS61: SVC 34 -- START and STOP INIT
Routine

This routine processes the START and
STOP INIT commands.

• Entry: IEESD561

• Exit: Return to caller

• Tables/Work Areas: CSCB, PIB,
resident data area, CVT

M/S

IEEDFIN7

• Attributes:
read- only

Reenterable,

• Control section: IEESD561

• Page Reference: 43

IEESD564

Transient

IEESD562: Master Scheduler -- Syntax Check
Routine

This routine checks syntax of
mand and sets internal codes
search, if required.

• Entry: IEESD562

the com
for queue

• Exits: XCTL to IEESDS63 for queue
search, or XCTL to IEESD566 for DISPLAY
active

• Attributes: Read-only, reenterable

• External References: None

• Control Section: IEESDS62

• Page Reference: 44

IEESDS63: Master Scheduler Queue Search
Setup Routine

This routine determines which queue is
to be searched, reads and scans the queue
control record, establishes parameters for
the search, and transfers control to the
queue search module. IEESD563 will write
out updated queue control records.

• Entry: IEESD563

• Exits: XCTL to IEESD564 to search
queue; XCTL to IEESD565 at completion

• Tables/Work Areas: QCR, QMPA, CVT,
CSCB

• Attributes: Read-only, reenterable

• Control Section: IEESD563

• Page Reference: 44

IEESD564: Master Scheduler Queue Search
Module

This routine searches the work queues
for the execution of the queue manipulation
commands.

• Entry: IEESD564

• Exit: XCTL to IEESD563

• Tables/Work Areas: QCR, CSCB, CVT,
QMPA, XSA

• Attributes: Read-only, reenterable

Appendix B: MFT Modules 96.1

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

IEESD565 -- IEESD566

• control Section: IEESD564

• Page Reference: 44

IEESD565: Master Scheduler -- Service
Routine

This routine frees storage obtained by
IEESD563, links to the queue manager to
enqueue an entry or queue control record on
SYS1.SYSJOBQE, or links to write a message.

• Entry: IEESD565

• Exit: Return to caller

• Tables/Work Areas: QMPA, CSCB, QCR,
C~

• Attributes: Read-only, reenterable

• External
IEE0503D

References: IEFQMNQ2,

• Control Section: IEESD565

• Page Reference: 44

IEESD566: Master Scheduler -- DISPLAY A
Routine

This routine builds a table and con
structs operator messages according to the
processing required by a DISPLAY A command.

• Entry: IEESD566

• Exit: Return to caller (IEECIRSO)

• Tables/Work Areas: QMPA, CSCB, XSA,
QCR, ~

• Attributes: Read-only, reenterable

• Control Section: IEESD566

• Page Reference: 44

IEESD561: Master Scheduler -- DISPLAY R
Routine

This routine constructs operator mes
sages according to the processing required
by a DISPLAY R command.

• Entry: IEESD567

• Exit: Return to caller (IEECIR50)

• Attributes: Read-only, reenterable

• Centrol Section: IEESD567

• Page Reference: 45

IEESD568: Nucleus -- Master Scheduler
Resident Data Area

This routine contains the master sched
uler resident data area.

• Entry: IEEMSER

• Exit: None

• Attributes: Not reusable

• control Section: IEESMER

• Page Reference: 77

IEESD511: SVC 34 -- DEFINE, MOUNT, CANCEL
Routine

This routine schedules the execution of
the DEFINE, MOUNT, and CANCEL (for active
jobs only) commands.

• Entry: IEESD511

• Exits:
MOUNT - XCTL to IG0103D
DEFINE - Return to ca~ler
CANCEL - Active and cancellable

Enter ABTERM to force
cancel

Active and not cancellable
POST and mark CSCB

inactive; XCTL to IEE0803D

• Tables/Work Areas: CSCB, PIB,
resident data area, CVT

• Attributes: Reenterable

• Centrol Section: IEESD571

• Page Reference: 42

IEESD590: System Task Control -- Write
rIOT on Disk

M/S

This routine writes the TIOT which is
ased by Job Selection (IEESD510) and checks
Eor a small partition writer.

IEESD561 -- IEEVACTL

• Entry: IEESD590

• Exits: XCTL to IEFSD510 (small parti
tion writer) or XCTL to lEE'SD591

• Tables/Work Areas: TIOT, SPIL

• Attributes: Reenterable

• Control Section: IEESD590

• Page Reference: 68

IEESD591: System Task Control -- Linker
Routine

This routine transfers control between
system task control and an interpreter or
system output writer.

• Entry: IEESD591

• Exit: XCTL to IEEVTCTL

• Tables/Work Areas:

• Attributes: Reenterable

• Control Section: IEESD591

• Page Reference: 68

IEESD592: System Task Control -- POST
Routine

This routine checks for an error indica
tion in the CSCB. It posts the error
condition or a vali1 condition.

• Entry: IEESD592

• Exit: XCTL to IEFSD510

• Tables/Work Areas: None

• Attributes: Reenterable

• Control Section: IEESD592

• Page Reference: 68

IEEVACTL: System Task Control
Allocation Interface Routine

This routine sets up the
between system task control
device allocation routine.

• Entry: IEEVACTL

interface
and the I/O

• Exits: To IEFW21SD or IEEVRWTC

• Attributes: Reenterable

• Control Section: IEEVACTL

• Page Reference: 67

Appendix B: MFT Modules 97

IEEVIClR -- IEEVSTAR

IEEVICLR: System Task Control -- Internal
JCL Reader

This routine reads the internal job
control language used in starting a reader
or writer.

• Entry: IEEVICLR

• Exit: Return to caller

• Tables/Work Areas: DCBD

• Attributes: Read-only, reenterable

• Ccntrol Section: IEEVICLR

IEEVJCL: System Task Control -- JCL Edit
Routine

This routine constructs the internal job
control language used in the START reader
and START writer command execution
routines.

• Entry: IEEVJCL, from IEEVSTRT

• Exit: XCTL to IEERCTL

• Tables/Work Areas: SDT, CSCD

• Attributes: Reenterable

• Control Section: IEEVJCL

IEEVLNKT: System Task Control
Link-Table Module

This routine contains the table of rou
tines that is scanned by IEEVACTL as a
validity check for program linking.

• Entry: IEEVLNKT

• Attributes: Non-executable

• Ccntrol Section: IEEVLNKT

IEEVMSG1: System Task Control Message
Writer Routine

This routine writes
operator as required
control.

messages to the
by system task

• Entry: from IEEVRCTL, IEEVACTL, or
IEEVTCTL

• Exit: Return to caller

• Control Section: IEEVMSGl

IEEVOMSG: System Task Control Message
Writing Routine

This routine assembles and writes mes
sages to the operator.

98

• Entry: IEEVOMSG

• Exit: Return to caller

• Control Section: IEEVOMSG

IEEVRCTL: System Task Control
Interpreter Control Routine

This routine
between system
interpreter.

provides an
task control

• Entry: IEEVRCTL

• Exits: To IEFVHl and IEEVACTL

• Tables/Work Areas: CVT, CSCB

• Control Section: IEEVRCTL

• Page Reference: 67

IEEVSMBA: System Task Control
Builder

This routine constructs a sueue
parameter drea (QMPA) referring
message class queue for the use of
Device Allocation routine.

• Entry: IEEVSMBA

• Exit: To IEEVACTL

interface
and an

manager
to the

the I/O

• Tables/work Areas: QMPA, LCT, 5MB, lOB

• Control Section: IEEVS¥iliA

IEEVSMSG: System Task Control Messaqe
Writer Routine

This routine writes messages to the
operator as requil:ed by the master 3checul
ing task and system task control.

• Entry: IEEVSMSG, from IEEVSOPT, IEE
VATT1, IEEVlViSG1, or 1EEVRTTC

• Exit: Return to caller

• Control Section: IEEVSMSG

IEEVSTAR: System Task Control -- start
Command Syntax Check Routine

This routine checks the syntax of a
START command, and builds a start descrip
tor table (SDT) containing the parameters
of the command.

• Entry: IEEVSTRT

• Exits: To 1EEVJCL, or 1EE0503D

• Tables/Work Areas: SDT, lVl/S Resident
Data Area, CVT, M/S TIOT, UCB XSA, and
CSCB.

• Attributes: Reenterable

• Control section: IEEVSTRT

• Page Reference: 67

IEEVTCTL: system Task Control
Termination Interface Routine

This routine initializes the necessary
tables for terminating a task that was
established via a START or MOUNT command.

• Entry: IEEVTCTL, from IEEVWILK or
IEFW31SD

• Exit: To IEFW42SD, then return to
supervisor

• Tables/Work Areas: TCB, JCT1 SCT, LCT,
and CSCB

• Attributes: Reenterable. Character
Dependence Type C

• Control Section: IEEVTCTL

IEEVWTOR: Communications Task
Write-to-Operator With Reply Routine

This routine processes all WTOR macro
instructions.

• Entry: IGC0103E

• Exit: Return to calling program

• Tables/Work Areas: WQE, RQE, UCM, CVT

• Attributes: Reenterable

• Control section: IGC0103E

• Page Reference: 41

IEE0303D: SVC 34 -- Translator/Chain
Manipulator

This routine translates lowercase let
ters into uppercase, and manipulates the
CSCB chain as requested by the caller of
SVC 311.

• Entry: IEE0303D

• Exit: To IEE0403D, or return to caller

• TableS/Work Areas: CVT, M/S resident
data area, CSCB, XSA

• Control section: IEE0303D

IEE0403D: SVC 34 -- Router Routines

This routine identifies the command verb
and passes control the appropriate routine,
or manipulates the chain of CSCBs.

IEEVTCTL -- IEE0803D

• Entry: IEE0403D

• Exit: Depending on command verb, via
XCTL to another SVC 34 module

• Tables/Work Areas:
area, XSA, CSCB

M/S resident data

• Control Section: IEE0403D

• page Reference: 42

IEE0503D: SVC34 -- Message Assembly
Routine

This routine assembles and edits mes
sages for the command scheduling routine,
and writes the messages to the operator.

• Entry: IEE0503D

• Exit: Branch on register 14

• Control Section: IEE0503D

IEE0603D: SVC 34 -- SET Command Routine

This routine processes the SET command.

• Entry: IEE0603D

• Exits: To IEE0903D or IEE0503D

• Tables/Work Areas: XSA, CVT, M/S resi
dent data area

• Attributes: Reenterable

• Control Section: IEE0603D

IEE0703D: SVC 34 -- CSCB Marking Routine

This routine schedules the execution of
the STOP and MODIFY commands by finding and
updating the appropriate CSCB and by issu
ing a POST macro instruction to the master
scheduling task.

• Entry: IEE0703D

• Exits: Branch on register 14, or XCTL
to IEE0803D or IEE0503D.

• Tables/Work Areas: M/S Resident Data
Area, XSA, CVT, CSCB

• Attributes: Reenterable

• Control section: IEE0703D

IEE0803D: SVC311 -- CSCB Creation Routine

This routine schedules the execution of
RESET, HOLD, RELEASE, and DISPLAY commands
by adding a CSCB to the CSCB chain and
issuing a POST macro instruction to the
master scheduling task. The CANCEL command
is also processed if the job is active.

Appendix B: MFT Modules 99

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

IEE0903D -- IEFACTLK

• Entry: IEE0803D

• Exit: Branch on register 14

• Tables/Work Areas: XSA, M/S resident
data area. CVT and CSCB

• Attributes: Reenterable

• Control section: IEE0803D

IEE0903D: SET Command Handler

This routine processes the date and time
operands of the SET command .•

• Entry: IEAQOTOO

• Exit: SVC 3

• Tables/Work Areas: CVT

• Attributes: Reenterable.,
state, disabled for system
transient

supervisor
interrupts,

• Control section: IEAQOTOO

IEEll03D: SVC 34 -- VARY and UNLOAD
Routines

This routine schedules the execution of
the VARY and UNLOAD commands.

• Entry: IEEll03D

• Exits: Branch on register 14, or
to IEE0503D

XCTL

• Tables/Work Areas:
area, XSA, CVT, UCB

M/S resident data

• Attributes: Reenterable,
self-relocating

• Control Section: IEEll03D

read-only,

IEE1203D: SVC 34 -- Reply Processor

This routine checks the validity of the
operator's reply command, and moves the
operator's reply (if valid> to the buffer
of the user that issued the respective
WTOR.

• Entry: IEE1203D

• Exit: Return to caller

• Tables/Work Areas: CVT, UCM. WQE, RQE,
CXSA

• Attributes: Reenterable

• Control Section: IEE1203D

• Page Reference: 42

100

IEE1403D: SVC 34 -- HALT Routine

This routine schedules the execution of
the HALT command by adding a CSCB to the
CSCB chain and by issuing a POST macro
instruction to the master scheduling task.

• Entry: IEE1403D

• Exit: IFBSTAT

• Tables/Work Areas: XSA, M/S resident
data area, CVT, and CSCB

• Attributes: Reenterable

• Control Section: IEE1403D

IEE2103D: SVC 34 -- Message Assembly
Routine

This routine assembles and edits mes
sages for the command scheduling routine,
and writes the messages to the operator.

• Entry: IEE2103D

• Exit: Branch on register 14

• Control Section: IEE2103D

IEFACTFK: Termination -- User Dummy
Accounting Routine

This routine takes the place
user's accounting routine when
accounting routine was specified at
generation, but none was supplied.

• Entry: IEFACTLK

• Exit: Return to caller

• Control Section: IEFACTLK

of the
a user

system

IEFACTLK: Termination -- User Accounting
Routine Linkage Routine

This routine provides linkage between
the termination routine and the user's
accounting routine. It also sets up the
required parameter list including the
execution time of the job step -- and reads
the first record of the account control
table.

• Entry: IEFACTLK

• Exits: To user's accounting routine,
return to caller.

• Tables/Work Areas: LCT, JCT, SCT,
JACT., SACT, QMPA

• Control Section: IEFACTLK

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

IEFACTRT: Termination -- Dummy Accounting
Routine

This routine takes the place of the
user-supplied accounting routine.

• Entry: IEFACTRT

• Exit: Return to caller

• Control section: IEFACTRT

IEFAVFAK: I/O Device Allocation -- Linkage
to IEE'XVOOl

This routine passes control to the AVR
routine (IEFXV001) via and XCTL macro
instruction.

• Entry: IEFXVOOl

• Exit: XCTL to IEFXVOOl

• Control section: IEFXVOOl

IEFCVFAK: I/O Device Allocation -- Linkage
to IEFMCVOL

This routine passes control to Mount
Control-Volume Routine IEFMCVOL via an XCTL
macro instruction to one of three entry
points, IEFCVOL1, IEFCVOL2, or IEFCVOL3.

• Entries: IEFCVOL1, IEFCVOL2, IEFCVOL3

• Exits: XCTL to IEFCVOL1, IEFCVOL2,
IEFCVOL3

• Control section: IEFCVOLl

IEFIDMPM: Termination -- Message Module

This routine contains the messages used
by the Indicative Dump routine.

• Entry: IEFIDMPM

• Attributes: Non-executable

• Control Section: IEFIDMPM

IEFMCVOL: I/O Device Allocation -- Mount
Control-Volume Routine

This routine will have a control volume
mounted when a data set called for in a job
step cannot be located on any currently
mounted control volume.

• Entries: IEFCVOL1, IEFCVOL2, IEFCVOL3

• Exits: IEFVM1, IEFVMCVL, IEFVM6, IEFYN
(IEFW41SD)

• Tables/Work Areas: LCT, JCT, SCT,
SlOT, JFCB, VOLT, QMPA, UCB

IEFACTRT IEFQASGQ

• Attributes: Reusable

• control sections: IEFCVOL1, IEFCVOL2,
IEFCVOL3

IEFORMAT: Queue Management Queue
Formatting Routine

This routine places the work queue data
set in the format required by the MFT queue
management routines.

• Entry: IEFORMAT, from IEFSD055

• Exit: Return to IEFSD055

• Tables/Work Areas: DCB, DEB

• Attributes: Reusable

• Control Section: IE FORMAT

• Page Reference: 49

IEFQAGST: Queue Management Assign/start
Routine

This routine sets up an ECB/IOB and
prepares the queue manager parameter area
for the assign routine.

• Entry: IEFQAGST

• Exit: Return to caller

• Tables/Work Areas: Q/M resident data
area, QMPA, CVT

• Attributes: Reenterable

• control Section: IEFQAGST

• Page Reference: 50

IEFQASGQ: Queue Management Assign
Routine

This routine assigns records to a queue
entry and assigns logical tracks as
required.

• Entry: I EFQASGN

• Exit: Return to caller

• Tables/Work Areas:
area, QMPA, CVT

Q/M resident data

• Attributes: Reenterable

• Control sections: IEFQASGN, IEFQASNM

• Page Reference: 51

Appendix B: MFT Modules 101

IEFQBVMS -- IEFQMUNQ

IEFQBVMS: Queue Management -- Control
Routine

This routine inspects the function code
in the queue manager parameter area and, on
the basis of this code, branches to the
appropriate queue management routines.

• Entry: IEFQMSSS

• Exits: To IEFQAGST, IEFQMRAW,
IEFQMNQQ, or IEFQASGQ, return to caller

• Tables/Work Areas: QMPA

• Attributes: Reenterable

• Control Section: IEFQMSSS

IEFQDELQ: Queue Management -- Delete
Routine

This routine makes those logical tracks
assigned to a queue entry available for
assignment to other queue entries.

• Entry: IEFQDELE

• Exit: Return to caller

• Tables/Work Areas: LTH, QMPA, QCR, Q/M
resident data area, CVT

• Attributes: Reenterable

• Control Section: IEFQDELE

• Page Reference: 53

IEFQMDQQ: Queue Management Degueue
Routine

This routine removes the highest priori
ty entry from an input queue or a system
output queue.

• Entry: IEFQMDQ2

• Exit: Return to caller

• Tables/Work Areas: CVT, Q/M resident
data area, QCR, LTH

• Attributes: Reenterable

• Control Section: IEFQMDQ2

• Page Reference: 53

IEFQMDUM: Queue Management -- Dummy Module

This routine prevents the occurrence of
an unresolved external reference to module
IEFQMSSS during system generation.

• Entry: IEFQMDUM

102

• Attributes: Non-Executable

• Control Section: IEFQMSSS

IEFQMLK1: Queue Management Branch
Routine

This routine branches to the appropriate
queue management routine on the basis of an
assign or read/write function code issued
by an initiator.

• Entry: IEFQMSSS

• Exits: To IEFQASGQ or IEFQMRAW

• Tables/Work Areas: QMPA

• Attributes: Reenterable

• Control Section: IEFQMSSS

IEFQMNQQ: Queue Management Engueue
Routine

This routine places an entry in an input
queue or an output queue at the requested
priority.

• Entry: IEFQMNQ2

• Exit: Return to caller

• Tables/Work Areas: CVT, Q/M resident
data area, QMPA, QCR, LTH

• Attributes: Reenterable

• Control section: IEFQMNQ2

IEFQMRAW: Queue Management Read/Write
Routine

This routine performs the conversion of
a TTR into a MBBCCHHR and reads or writes
up to 15 records of the work queue data
set.

• Entry: IEFQMRAW

• Exit: Return to caller

• Tables/Work Areas: Q/M resident data
area, QMPA, CVT, IOB/ECB

• Attributes: Reenterable

• Control Section: IEFQMRAW

IEFQMUNQ: Queue Management Unchain
Routine

This routine removes a task from the
queue management no-work chain.

• Entry: IEFQMUNC

• Exit: Return to caller

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

IEFQRESD -- IEFSD055

• Tables/Work Areas:
data area, QCR

CVT, Q/M resident

• Attributes: Reenterable

• Control section: IEFQMUNC

IEFQRESD: Queue Management -- Resident
Main storage Reservation Module

This routine reserves 140 bytes of resi
dent main storage for the queue-management
opened DCB/DEB and the master queue control
record at nucleus initialization time.

• Attributes: Non-executable

• Control section: IEFJOB

IEFSD011: Termination System Output
Interface Routine

This routine provides an interface
between the termination entry routine and
system output processing.

• Entry: IEFSD011

• Exit: To IEFSD42Q

• Control Section: IEFSD017

IEFSD055: Queue Management Queue
Initialization Routine

This routine constructs a resident DEB/
DCB, passes control to the queue formatting
routine or the first phase of system
restart, initializes the queue manager

Appendix B: MFT Modules 102.1

resident data area, and (if required)
passes control to the second phase of the
system restart routine.

• Entry: IEFSD055, from IEFQINTZ

• Exits: To IEFORMAT,
IEF304SD

• Attributes: Reusable

IEF300SD,

• Centrol Sectien: IEFSD055

• Page Reference: 49

or

IEFSD070: System output Writer -- Data Set
Writer Interface Routine

This routine passes control to the stan
dard data set writer or to the user
supplied data set writer routine.

• Entry: IEFSD070

.~: To IEFSD087 or user-supplied
routine via LINK, or to IEFSD171 via
XCTL

• Attributes: Reenterable

• Centrol Section: IEFSD070

• Page Reference: 65

IEFSD078: System Output Writer -- Linker
Routine

This routine
record obtained
is a DSB or
accordingly, to

determines whether the
from the output queue entry
5MB, and passes control,
the DSB or S~ill processor.

• Entry: IEFSD078

.~: To IEFSD085, IEFSD086,
IEFSD079

• Attributes: Reenterable

• Centrol Section: IEFSD078

or

IEFSD079: System Output Writer -- Link to
Queue 'Manager Delete Routine

This routine passes control to the
delete routine to delete the current output
queue entry.

• Entry: IEFSD079

• Exits: To IEFQDELQ and IEFSD082

• Tables/Work Areas: QMPA

• Attributes: Reenterable

• Control Section: IEFSD079

IEFSD070 -- IEFSD083

• Page Reference: 65

IEFSD080: System Output Writer -
Initialization Routine

This routine initializes the system out
put writer by obtaining main storage for a
parameter list and the output DCB, and
opening the output DCB.

• Entry: IEFSD080

• Exit: To IEFSD081

• Tables/Work Areas: DCB, CSCB, TIOT,
JFCB

• Attributes: Reenterable

• Control Section: IEFSD080

IEFSD081: System Output Writer -- Class
Narr.e Setup Routine

This routine obtains main storage for,
and initializes, a list of ECB pointers,
ECBS, and queue management communication
elements, depending on the system output
classes specified for the writer.

• Entry: IEFSD081

• Exit: To IEFSD082

• Tables/Work Areas: CSCB, ECB

• Attributes: Reenterable

• Control Section: IEFSD081

IEFSD082: System Output Writer -- Main
Logic Routine

This routine obtains main storage for
QMPAs and internal work areas, dequeues
output queue entries, checks for operator
commands, and passes control to the appro
priate routine.

• Entry: IEFSD082

• Exits: IEFSD083, IEFSD084, IEFSD078

• Tables/Work Areas: CSCB, ECB

• Attributes: Reenterable

• Control Section: IEFSD082

IEFSD083: system Output Writer -- Command
processing Routine

This routine processes MODIFY and STOP
commands that apply to the writer.

• Entry: IEFSD083

Appendix B: MFT Modules 103

IEFSD084 -- IEFSD095

• Exits: To IEFSD081 or IEEVTCTL

• Tables/Work Areas: CSCB, DCB, QMPA,
ECB

• Attributes: Reenterable

• Control Sections: IEFSD083, IEFSD83M

IEFSD084: System Output Writer -- Wait
Routine

This routine waits for an entry to be
enqueued in an output queue corresponding
to a class available to the writer.

• Entry: IEFSD084

• ~: To IEFSD082

• Attributes: Reenterable

• Control Section: IEFSD084

• Page Reference: 65

IEFSD085: System output Writer -- DSB
Handler Routine

This routine initializes for data set
processing, and informs the operator of the
pause option in effect.

• Entry: IEFSD085, IEF085SD, or IEF850SD

• ~: To IEFSD171

• Attributes: Reenterable

• Control Sections: IEFSD085, IEFSD85M

• Page Reference: 66

IEFSD086: System output Writer -- 5MB
Handler

This routine initializes for message
processing, and extracts each message from
the current 5MB.

.~: IEFSD086, IEF086SD

• Exits: To IEFSD088, IEFSD089,
IEFQMNQQ, IEFQMRAW, IEFSD085, IEFSD078

• Tables/Work Areas: 5MB, UCB, QMPA,
TIOT, CSCB, TCB

• Attributes: Reenterable

• Control sections: IEFSD086, IEFSD86M

IEFSD087: System Output Writer -- Standard
Writer Routine

This routine gets records from a data
set.

104

• Entry: IEFSD087

• Exits: To IEFSD088, IEFSD089, IEFSD078

• Tables/Work Areas: DCB

• Attributes: Reenterable

• Control sections: IEFSD087, IEFSD87M

• Page Reference: 66

IEFSD088: System Output Writer -
Transition Routine

This routine handles the transition
between messages and data sets, and between
data sets •

• Entry: IEFSD088

• Exit: To IEFSD089

• Tables/Work Areas: DCB

• Attributes: Reenterable

• Control Section: IEFSD088

IEFSD089: System Output Writer -- Put
Routine

This routine formats records as required
and issues PUT macro instructions to write
them on the output unit •

• Entry: IEFSD089

• Exit: To IEFSD088

• Tables/Work Areas: DCB

• Attributes: Reenterable

• Control Sections: IEFSD089, IEFSD89M

IEFSD094: System Output Writer -- Job
Separator Routine

This routine prints or punches a job
name and system output class designation On
the writer's output device.

• Entry: IEFSD094

• Exits: To IEFSD088, IEFSD089,
IEFSD095, IEFSD078

• Attributes: Reenterable

• Control Section: IEFSD094

IEFSD095: system Output Writer -- Print
Line Routine

This routine constructs the block let
ters used to separate jobs processed by a

system output writer when the output data
set is to be printed.

• Entry: IEFSD095

.~: Return to caller

• Attributes: Reenterable

• Centrol Section: IEFSD095

IEFSD096: System output Writer
Module

lVJessage

This routine contains message headers
and texts for messages to the operator.

• Entry: IEFSD096

• Attributes: Non-executable

• Centrol Section: IEFSD096

IEFSD097: I/O Device Allocation -- Wait
for space Decision Routine

This routine makes the decision whether
to wait for direct access space. and pro
vides an interface with the I/O device
allocation space request routine so that
retry and additional recovery passes may be
made.

• Entry: IEFSD097

.~: Branch on register 14

• Tables/Work Areas: LCT. TIOT. UCB

• Attributes: Read-only. reenterable

• Control Section: IEFSD097

IEFSD171: System output Writer -- Data Set
Delete Routine

This routine obtains
output queue entry, and
output data sets.

• Entry: IEFSD071

records
deletes

from an
system

• ~: To IEFQMNQ2. IEF850SD.
IEF086SD. IEFSD078. or IEFQMRAW

• Tables/Work Areas: DCB, 5MB, UCB, CVT,
Q~PA, TIOT, CSCB. TCB

• Attributes: Reenterable

• Control Sections: IEFSD071. IEFSD71M

IEFSD195: I/O Device Allocation -- wait
for Deallocation Routine

This routine prOvides the I/O device
allocation routine with the ability to wait
for deallocation to occur during the execu-

IEFSD096 -- IEFSD300

tion of another task. when allocation can
not be completed because of current
allocations.

• Entry: IEFVAWAT

• Exit: Return to caller

• Tables/Work Areas: JCT, SCT, SlOT,
LCT, ECG. CSCB

• Attributes: Read-only, reenterable

• Control Section: IEFSD095

IEFSD21Q: I/O Device Allocation
Allocation Entry Routine

This routine provides an interface for
entry to the I/O device allocation routine
operating in a multiprogramming environ
ment.

• Entry: IEFW21SD

• Exits: To IEFVK, IEFVM or IEFWDOOO

• Tables/Work Areas: JCT, LeT, SCT, 5MB.
QMPA, CVT

• Attributes: Read-only. reenterable

• Control Section: IEFWLISD

IEFSD22Q: Termination Routine Step
Terminate Exit Routine

This routine provides an interface
between the termination routine and the
step delete or alternate step delete rou
tine when a step has been terminated.

• Entry: IEFW22SD

• Exit: Return to caller of termination
routine

• Tables~Nork Areas: JCT, SCT, 5MB, LeT,
QMPA, ECB

• Attributes: Read-only, reenterable

• Control Section: IEFW22SD

• Page Reference: 64

IEFSD300: System Restart -- Initialization
Routine

This routine reads all QCRs and logical
track header records into main storage,
builds tables A. B, and C, and removes from
Table A all the LTH entries corresponding
to logical tracks in the free-track queue
or in one of the other queues.

• Entry: IEFSD300

Appendix B: MFT Modules 105

IEFSD301 -- IEFSD31Q

.~: To IEFSD301

• Tables~~ork Areas: System restart work
area, Table A, Table B, Table C

• Attributes: Reenterable

• Control Section: IEFSD300

IEFSD301: System Restart Purge Queue
Construction Routine

This routine searches Table A for the
last ITH corresponding to each queue entry,
determines the type of entry, and con
structs the purge queue.

• Entry: IEFSD301

• Exit: To lEFSD302

• Tables/Work Areas: System restart work
area, Table A, Table C purge queue,
interpreter jobnames table

• Attributes: Reenterable

• Control Section: IEFSD301

IEFSD302: System Restart -- Jobnames Table
Routine

This routine removes from Table A all
logical tracks assigned to de queued input
or RJE queue entries, and builds a table of
jobna~es for incomplete input and RJE queue
entries and dequeued input queue entries.

• Entry: IEFSD302

• Exit: To lEFSD303

• Tables/Work Areas: System restart work
area, Table A, Table C, and the
interpreter/initiator jobnames table

• Attributes: Reenterable

• Control Section: IEFSD302

IEFSD303: System Restart Delete Routine

This routine creates a queue entry of
the remaining logical tracks and deletes
that entry, thus assigning those tracks to
the free-track queue.

• Entry: IEFSD303

.~: Return to caller

• Tables/Work Areas: System restart work
area, QMPA, Table A

• Attributes: Reenterable

• Control Section: IEFSD303

106

IEFSD304: System Restart -- Scratch Data
Sets Routine

This routine informs the operator of the
names of jobs being processed by an inter
preter, and scratches temporary data sets
generated for incomplete input queue
entries.

• Entry: lEFSD304

• Exits: To IEFSD055, IEFSD308

• Tables/Work Areas:
look-up table

CVT, UCB address

• Attributes: Reenterable

• Control Section: IEFSD304

IEFSD305: System Restart -- Reenqueue
Routine

This routine dequeues the entries in
purge queue and reenqueues them in
appropriate input or output queue
informs the operator of the names of
in the process of initiation.

• Entry: IEFSD305

• Exit: lEFSD304

the
the
and

jobs

• Tables/Work Areas: System restart work
area, purge queue, JCT, SCT, JFCB, DSB,
SCD, SlOT.

• Attributes: Reenterable

• Control Section: IEFSD305

IEFSD308: system Restart -- Scratch Data
Sets Routine

This routine scratches the temporary
data sets generated for incomplete input
queue entries.

• Entry: IEFSD308

• Exit: Return to caller

• Tables/Work Areas: DSCB, DCB,
CVT, VTOC, DEB

• Attributes: Reenterable

• Control Section: IEFSD308

IEFSD31Q: Termination Routine -- Job
Termination Exit Routine

UCB,

This routine provides an interface
between the termination routine and the
step delete or alternate step delete rou
tine when the last step of a job has been
terminated.

• Entry: IEFW31SD

• Exit: Return to caller of termination
routine

• Tables/Work Areas: JCT, SCT, 5MB,
Q~PA, ECB, CVT, M/S resident data area

• Attributes: Read-only, reenterable

• Control Section: IEFW31SD

IEFSD310: System Restart -- TTR and NN to
MBBCCHHR Conversion Routine

This routine
address CNN) or
address (TTR)
(MBBCCHHR) •

converts a relative record
a relative track and record
to an actual disk address

• Entry: IEFSD310

• Exit: Return to caller

• Tables/Work Areas: CVT

• Attributes: Reenterable

• Control section: IEFSD310

IEFSD311: Queue Management Message
Module

This routine contains the messages
required by the queue initialization rou
tine (IEFSD055).

• Entry: IEFSD311, SD55MSG1, SD55MSG2,
SD55MSG3

• Attributes: Non-executable

• Control section: IEFSD311

IEFSD312: System Restart -- Message Module

This routine contains the messages
required by the system restart routines.

• Entry: IEFSD312, SD304t-:Gl, SD304MG2,
SD305MGl

• Attributes: Non-executable

• Control Section: IEFSD312

IEFSD41Q: I/O Device Allocation
Allocation Exit Routine

This routine provides an interface for
exit from the I/O device allocation routine
operating in a multiprogramming environ
ment.

• Entry: IEFW41SD, IEFW1FAK, IEFW2FAK

.~: To IEFVM, or return to caller

IEFSD310 -- IEFSD511

• Tables/Work Areas: JCT, LCT, SCT, 5MB,
QMPA

• Attributes: Read-only, reenterable

• Control Section: IEFW41SD

IEFSD42Q: Termination Routine
Termination Entry Routine

This routine provides an interface for
entry to the termination routine operating
in a multi~roqramming environment.

• Entry: IEFW42SD

• Exit: To IEFYN

• Tables/Work Areas: JCT, SCT, 5MB, LCT,
TroT

• Attributes: Read-only, reenterable

• Control Section: IEFW42SD

IEFSD510: Initiator -- Job Selection
Routine

This routine selects a system or problem
program job. This module executes only in
a large (scheduler-size) partition.

• Entry: IEFSD510

• Exits: Branch to IEFSD511 or IEFSD515,
XCTL to IEE596SD or IEFSD531

• Tables/Work Areas: LOT block, CSCB,
SPIL, CVT, TCB, PIB

• Attributes: Read-only, reenterable

• Control Section: IEFSD510

• External
IEFQMUNC

References:

• Page Reference: 57

IEFQMDQQ,

IEFSD511: Initiator Job Initiation
Routine

This routine initializes
pertaining to a job.

• Entry: IEFSD511

• Exit: Branch to IEFSD541

information

• Tables/Work Areas: Life-of-Task Block,
CSCB, JCT, SCT, SCD, PIB, IOB2

• Attributes: Read-only, Reenterable

• Control Section: IEFSD511

• External References: IEFQMRAW

Appendix B: MFT Modules 107

IEFSD512 -- IEFSD516

• Page Reference: 62

IEFSD512: Initiator -- Step Initiation
Routine

This routine passes control to alloca
tion as a closed subroutine via a LINK
macro instruction. If an allocation error
occurs, it passes control to the Alternate
Step Deletion routine. Otherwise, it con
tinues normally and schedules a job step.

• ~~: IEFSD512

• Exits: Branch to IEFSD513 or IEFSD516

• Tables/Work Areas: LOT Block, JCT,
SCT, APL, TIOT, CSCB, IOB1, IOB2

• Attributes: Read-only, reenterable

• Control Section: IEFSD512

• External References: IEFQMRAW,
IEFSD556, IEFSD514

• Page Reference: 62

IEFSD513: Initiator Problem Program
Interface

This routine prepares the partition for
problem program execution by moving the
TIOT to the highest available storage area.

The routine also opens JOBLIB and FETCH
DCBs, if required. A final check is wade
to deterwine if a CANCEL command has been
received for the job before the problem
program is brought into the partition and
given control. If scheduling was performed
for a small ~artition, IEFSD513 communi
cates with the small partition.

• Entry: IEFSD513

• Exi ts: XCTL to problem prograIrI, ABEND,
or Branch to IEFSD510

• Tables/Work Areas: LOT Block, Transfer
Parameter List, TIOT, User's Parameter
List, TCB, CVT, PIB, CSCB, SPIL, APL,
JCT, SCT, DCB

• Attributes: Read-only, reenterable

• Centrol Section: IEFSD513

• Page Reference: 63

IEFSD514: Queue Management -- Table
Break up Routine

This routine reads and writes tables
which may be required by the job scheduler.
The routine breaks the tables into 176-byte
records, writes the records on disk, and

108

retrieves the records frow disk to recon
struct the tables in main storage.

• Entry: IEFSD514

• Exit: Return to caller

• Tables/Work Areas: QMPA, TBR Parameter
List

• Attributes: Read-only, reenterable

• Control Section: IEFSD514

• External
IEFQMRAW

References:

• Page Reference: 54

IEFQASGN,

IEFSD515: Initiator -- Step Deletion
Routine

This routine retrieves the TIOT and
Life-of-Task Block from disk, reads in the
JCT and SCT, and branches to termination,
which is used as a closed subroutine. It
also reads in the SCT for the next step to
be scheduled, if required.

• Entry: IEFSD515, SMALTERM, or GO

• Exits: XCTL to IEFSD512 or Branch to
IEFSD517 or IEFSD510

• Tables/Work Areas: Life-ot-Task Block,
Terminate Parameter List, CVT, TCB,
PIB, lOB, CSCB, DCB, JCT, SCT, SPIL

• Attributes: Read-only, reenterable

• control Section: IEFSD515

• External References: IEFQMRAW,
IEFSD514, IEFSD42Q, IEFSD598

• Page Reference: 64

IEFSD516: Initiator Alternate step
Deletion Routine

This routine provides an interface with
termination when an allocation error occurs
during step initiation. Termination is
used as a closed subroutine. If required,
this routine reads the SCT of the next step
to support job flushing.

• Entry: IEFSD516

• Exits: Branch to IEFSD512 or IEFSD517

• Tables/Work Areas: Life-of-Task block,
CSCB, Terminate Parameter List, SCT

• Attributes: Read-only, reenterable

• Control Section: IEFSD516

• External
IEFSD42Q

References:

• Page Reference: 64

IEFQMRAW,

IEFSD517: Initiator -- Job Deletion
Routine

This routine deletes the disk queue
entry for a terminated job and unchains and
deletes the CSCB for the job.

• Entry: IEFSD517

.~: Branch to IEFSD510

• Tables/Work Areas: CSCB, Life-of-Task
block, SPIL

• Attributes: Read-only, reenterable

• Control Section: IEFSD517

• External
IEFSD598

References:

• Page Reference: 64

IEFQDELE,

IEFSD530: Interpreter -- Transient Reader
Suspend Routine

This routine closes the reader input
data set and procedure library, and saves
data required to restore the reader.

• Entry: IEFSD530

• Exit: Return to caller

• Tables/Work Areas: IWA, TIOT, LWA,
QMPA, CVT, UCB, MSRC, PIB, CSCB

• Attributes: Read-only, ·reenterable

• Centrol Section: IEFSD530

• External References: IEFSD514, IEF
QMRAW, IEFQASNM, IEFQASGN

• Page Reference: 56

IEFSD531: Interpreter Transient Reader
Restore Routine

This routine restores the information
required to "restart" a transient reader
after it has been suspended. It reopens
the reader input data set and procedure
library.

• Entry: IEFSD531

• Exit: XCTL to IEFVHCB

• Tables/Work Areas: IWA, TIOT, QMPA,
CVT, UCB, MSRC, PIB, CSCB

IEFSD517 -- IEFSD535

• Attributes: Read-only, reenterable

• Control Sections: IEFSD531, IEFPH2

• External References: IEFSD514, IEF
QMRAW, IEFQASNM, IEFQASGN

• Page Reference: 56

IEFSD532: Interpreter -- Transient Reader
Suspend Tests

This routine determines
transient reader. IEFSD532
trol from IEFVHH after a
enqueued.

the status of a
receives con

job has been

• Entry: IEFSD532

• Exits: Branches to IEFVHN or IEFSD530,
or IEFVHHB

• Tables/Work Areas: IWA, LWA, QMPA,
PIB, CVT

• Attributes: Read-only, reenterable

• Control Section: IEFSD532

IEFSD533: Interpreter -- Interface Routine

This routine provides
between the reader/interpreter
task control.

• Entry: IEFIRC

an interface
and system

• Exits: LINK to IEFVH1 and RETURN to
IEESD591

• Tables/Work Areas: CSCB, CVT, QMPA

• Attributes: Reenterable

• Control Section: IEFSD534

IEFSD534: System Task Control -- LPSW
Routine

This routine places system task control
in problem program mode by loading a PSW.

• Entry: IEFSD534

• Exit: IEFVSTRT

• Tables/Work Areas: None

• Attributes: Reenterable

• Control Section: IEFSD534

IEFSD535: System Task Control -- Problem
Program Mode Routine

This routine puts system task control in
problem program mode for ABEND.

Appendix B: NFT Modules 109

IEFSD536 -- IEFSD553

• Entry: IEFSD535

• Exit: IEEVTCTL

• Tables/Work Areas: None

• Attributes: Reenterable

• Ccntrol Section: IEFSD535

IEFSD536: Interpreter Operator Message
Routine

This routine writes a message to the
operator when an I/O error or CPO full
condition has occurred. The routine also
sets proper indicators to cause a cleanup
of the current job.

• Entry: IEFVHR

• Exits: Return to caller, XCTL to
IEFVHN, or LINK to IEFSD30B

• Tables/Work Areas: IWA, JCT, LWA, UCB,
CVT, PIB, CSCB, Master Scheduler resi
dent data area

• Attributes: Read-only, reenterable

• Control Section: IEFVHR

• Page Reference: 56

IEFSD537: Interpreter -- Linkage Module

This routine provides an interf?-ce
between system task control and a reader.
It also frees the interpreter entrance list
(NEL) and associated areas if a reader is
being terminated or suspended.

• Entry: IEFSD537

.~: LINK to IEFVH1, or IEFSD531, Or
Return to system task control

• Tables/Work Areas: NEL

• Attributes: Read-only, reenterable

• Control Section: IEFSD537

IEFSD540: Initiator -- Linkage to IEFSD541

This routine provides an interface link
age to IEFSD541 via an XCTL macro
instruction.

• Entry: IEFSD540

• Exit: XCTL to IEFSD541

• Tables/Work Areas: Same as caller

• Attributes: Read-only, reenterable

110

• Control Section: IEFSD540

IEFSD541: Initiator -- Data Set Integrity

This routine enqueues on explicit data
sets and thus prevents concurrent, and
impairing, access between tasks.

• Entry: IEFSD541

• Exit: Branch to IEFSD512

• TableS/Work Areas: LOT Block, IOB1,
IOB2, JCT, SCT, CSCB, SPIL, DSENQ
Table, Minor Name List, ENQ supervisor
list.

• Attributes: Read-only

• Control Section: IEFSD541

• External References: IEFQMRAW

• Page Reference: 62

IEFSD551: I/O Device Allocation Linkage
to IEFXJIMP

This routine provides an interface link
age to IEFXJIMP via an XCTL macro instruc
tion in the 30K design package.

• Entry: IEFV15XL

• Exit: XCTL to IEFXJIMP

• Tab;tes/c~ork Areas: Same as caller

• Attributes: Read-only, reenterable

• Control Section: IEFV15XL

IEFSD552: I/O Device Allocation Linkage
to IEFXJIMP

This routine provides an interface link
age to IEFXJIMP via an XCTL macro instruc
tion in the 30K design package.

• Entry: IEFXJX5A

• Exit: XCTL to IEFXJIMP

• Tables/Work Areas: Same as caller

• Attributes: Read-only, reenterable

• Control Section: I EFXJX5 A

IEFSD553: Initiator -- Linkage to IEFSD512

This routine provides a linkage to
IEFSD512 via an XCTL macro instruction.

• Entry: IEFSD512

• Exit: XCTL to IEFSD512

• Tables/Work Areas: Same as caller

• Attributes: Read-only, reenterable

• Centrol Section: IEFSD512

IEFSD554: Initiator -- Linkage to IEFSD516

This routine provides a linkage to
IEFSD516 via an XCTL macro instruction.

• Entry: IEFSD554

• Exit: XCTL to IEFSD516

• Tables/Work Areas: Same as caller

• Attributes: Read-only, reenterable

• Centrol Section: IEFSD554

IEFSD555: Initiator -- Linkage to IEFSD510

This routine provides linkage to
IEFSD510 via an XCTL macro instruction.

• Entry: IEFSD555

.~: XCTL to IEFSD510

• Tables/Work Areas: Same as caller.

• Attributes: Read-only, reenterable

• Centrol Section: IEFSD555

IEFSD556: Initiator -- Set Problem Program
State Return

This routine establishes the allocation
routine in a problem program state, upon
entry •

• Entry: IEFSD556

.~: LPSW to IEFW21SD

• Tables/Work Areas: Same as caller.

• Attributes: Read-only, reenterable

• Control Section: IEFSD556

IEFSD557: I/O Device Allocation
Interface Routine

This routine provides an interface
between system task control and allocation.

• Entry: IEFW21SD

• ~: IEFWSD21

• Tables/Work Areas: ECB, lOB

• Attributes: Reenterable

IEFSD554 -- IEFSD569

• Control Section: IEFSD557

IEFSD558: Initiator -- Linkage to IEFSD511

This routine provides a linkage to
IEFSD511 via an XCTL macro instruction.

• Entry: IEFSD558

• Exit: IEFSD511

• Attributes: Read-only, reenterable

• Control Section: IEFSD558

IEFSD559: Initiator -- Linkage to IEFSD515

This routine provides a linkage to
IEFSD515 via an XCTL macro instruction.

• Entry: S MALT ERM

• Exit: IEFSD515

• Attributes: Read-only, reenterable

• Control Section: IEFSD559

IEFSD567: Nucleus Device-End Interrupt
Hcindler Routine

This routine handles unsolicited device
end interrupts from a disk storage unit.

• Entry: IEFSD567

• Exit: Return to caller

• Tables/Work Areas: None

• Attributes: Reenterable

• Control Section: IEFSD567

• External
Task TCB

Reference:

IEFSD569: Master Scheduler
Initialization Routine

Communications

This routine issues the READY message
and formats the job queue, as well as
typing out the automatic commands and
invoking processing of the automatic com
mands. This routine establishes partition
ing of main storage at system initializa
tion and readies the partitions for the
START command. This routine is called out
at system generation by the macro,
SGIEEOW •

• Entry: IEFSD569

• Exit: Branch to dispatcher

• Attributes: Read-only, reenterable

Appendix B: MFT Modules 111

IEFSD572 -- IEFSD599

• Control Section: IEFSD569

• Page Reference: 43

IEFSD572: Queue Management -- Interpreter/
Queue Manager Interlock Routine

This routine determines if a possible
interlock condition exists between the
queue manager and the reader. The routine
issues a message requesting the operator to
reply with either WAIT, to wait for space
to be freed, or CANCEL, to cancel the job.

• Entry: IEFSD572

• Exits: ABEND, or return to' caller

• Attributes: Read-only, reenterable

• Control Section: IEFSD572, IEFSD573

• External Reference: IEFQDELQ

• Page Reference: 53

IEFSD587: System Task Control'-- Linkage
to IEFSD535

This routine provides a linkage
IEFSD535 via a LINK macro instruction.

• Entry: IEFSD581

• Exit: IEFSD535

• Attributes: Read-only, reenterable

• Control Section: IEFSD581

IEFSD588: System Task Control Linkage
to IEE534SD

to

This routine links to IEE534SD to bring
the suspended reader into the assigned
partition so that upon return, the initia
tor will be in supervisor state.

• Entry: IEFSD588

• Exit: LINK to IEE534SD

• Tables/Work Areas: Same as caller

• Attributes: Read-only, reenterable

• Control Section: IEFSD588

IEFSD589: Initiator -- Linkage to IEESD534

This routine links to system task con
trol so that upon return, the initiator
will be in supervisor state.

• Entry: IEFSD589

.~: LINK to IEFSD534

112

• Tables/Work Areas: Same as caller

• Attributes: Read-only, reenterable

• Control Section: IEFSD589

•
IEFSD591: Initiator -- Shared DASD ENQ/DEQ
Purge Routine

This routine is the purge routine for
systems that include the shared DASD fea
ture. In addition to purging all resources
enqueued by a job step, but not dequeued,
IEFSD591 also releases reserved devices.

• Entry: IEFSD591

• Exit: Return to caller

• Tables/Work Areas: Major QCB, Minor
QCB, QEL, TCB, SVRB, CVT, ABTERM

• Attributes:
disabled

Read-only,

• Control Section: IEFSD597

reenterable,

IEFSD598: Initiator ENQ/DEQ Purge
Routine

This routine purges all resources
enqueued by a job step, but not dequeued.

• Entry: IEFSD598

• Exit: Return to caller

• Tables/Work Areas: Major QCB, Minor
QCB, QEL, TCB, SVRB, CVT, ABTERM

• Attributes:
disabled

Read-only, Reenterable,

• Control Section: IEFSD598

• Page Reference: 64

IEFSD599: Initiator Small Partition
Module

This routine provides an interface with
the scheduler in a large partition to
initiate and terminate small partitions.

• Entry: IEFSD599,SMALLGO

• Exits: ABEND, or XCTL to problem pro
gram or writer

• Tables/Work Areas:
parameter list (APL)

SPIL, allocate

• Attributes: Read-only, reenterable

• Control Section: IEFSD599

• External Reference: IEFQMUNC

• Page Reference: 60

IEFVDA: Interpreter -- DD Statement
Processor

This routine constructs and adds entries
to a JFCB and SlOT from the complete
logical DD statement in the internal text
buffer.

• Entry: IEFVDA

• Exit: To IEFVHF

• Tables/Work Areas: IWA, LWA, SlOT,
JFCB, JCB, SCT

• Attributes: Read-only, reenterable

• Control Section: IEFVDA

IEFVDBSD: Interpreter -- Data Set Name
Table Construction Routine

This routine creates a data set name
table.

• Entry: IEFVDBSD

.~: To IEFVDA

• Attributes: Reenterable

• Control S~ction: IEFVDBSD

IEFVEA: Interpreter -- EXEC Statement
Processor

This routine constructs or updates an
SCT, and, if necessary, a joblib JFCB and
SlOT from the complete logical EXEC state
ment in the internal text buffer.

• Entry: IEFVEA, from IEFYFA

• ~: To lEFVHF

• Tables/Work Areas: IWA, EXEC work
area, interpreter key table, JCT, SCT,
SlOT, QMPA, procedure override table.

• Attributes: Head-only, reenterable

• Control Spction: lEFVEA

IEFVFA: Interpreter Scan Routine

This routine scans the card iwage of a
JOB, EXEC, or 00 statement, perforws error
checking of JCL syntax, builds internal
text, and, when a complete logical state
ment (including continuations and over
rides) has been scanned, passes control to
the appropriate statement processor.

.~: IEFVFA

IEEVOA -- IEFVGK

• Exits: To IEFVGM, IEFVHQ, IEFVHF, IEF
VJA, IEFVDA, IEFVEA

• Tables/Work Areas: IWA, scan routine
work area, interpreter key table, QMPA,
internal text buffer, scan dictionary.

• Attributes: Read-only, reenterable

• Control Section: IEFVFA

IEFVFB: Interpreter Symbolic Parameter
Processing Routine

This routine processes symbolic parame
ters by creating symbolic parameter table
buffer entries to assign values to symbolic
parameters, and extracts those values and
places them in the intermediate text buffer
when a symbolic parameter is used.

• Entry: IEFVFB

• Exit: Return to caller

• Tables/Work Areas: IWA, LWA SYMBUF,
Intermediate Text Buffer, QMPA

• Attributes: Read-only, reenterable

• Control Section: IEFVFB

IEFVGI: Interpreter Dictionary Entry
Routine

This routine constructs entries for the
refer-back dictionary.

• Entry: IEFVGI

• Exit: Return to caller

• Tables/Work Areas: Refer-back dic
tionary, auxiliary work area, IWA, QMPA

• Control Section: IEFVGI

IEFVGK: Interpreter -- Get Parameter
Routine

This routine searches thp internal text
buffer for the next paraweter, perforrr~
basic error checking, and passes control to
the appropriate keywor8 routine.

• Ent ry: IEFVGK

• Exit: Return to caller

• Tables/:-lork Areas: Local work area,
IWA, internal text buffer, RBT, PDT.

• Control Section: I£FVGK

Appendix B: t-JFT IJJodules 113

IEFVGM -- IEFVGM13

IEFVGM: Interpreter Message Processing
Routine

This routine constructs 5MBs containing
interpreter error messages and JCL state
ment images, assigns space for these 5MBs
in the message class output queue entry,
and writes the 5MBs into the entry.

• Entry: IEFVGM

• Exit: Return to caller

• Tables/Work Areas: QMPA, 5MB, SCD,
IWA, JCT

• Attributes: Reenterable, character
dependence type C

• Control section: IEFVGM

IEFVGM1: Interpreter -- Message Module

This routine contains interpreter mes
sages 01-07.

• Attributes: Non-executable

• Control Section: IEFVGMl

IEFVGM2: Interpreter -- Message Module

This routine contains interpreter mes
sages 08-0F.

• Attributes: Non-executable

• Ccntrol Section: IEFVGM2

IEFVGM3: Interpreter -- Message Module

This routine contains interpreter mes
sages 10-17.

• Attributes: Non-executable

• Control Section: IEFVGM3

IEFVGM4: Interpreter -- Message Module

This routine contains interpreter mes
sages 18-1F.

• Attributes: Non-executable

• Ccntrol Section: IEFVGM4

IEFVG~5: Interpreter Message Module

This routine contains interpreter mes
sages 20-27.

• Attributes: Non-executable

• Control Section: IEFVGM5

114

IEFVGM6: Interpreter -- Message Module

This routine contains interpreter mes
sages 28-2F.

• Attributes: Non-executable

• Control Section: IEFVGM6

IEFVGM7: Interpreter l'!essage Module

This routine contains inter~reter mes
sages 30-37.

• Attributes: Non-executable

• Control Section: IBFVGM7

IEFVGM8: Interpreter -- Ivlessage l'Jodule

This routine contains interpreter mes
sages 50-57.

• Attributes: Non-executable

• Control Section: IEFVGM8

IEFVGM9: Interpreter Message 1'1odule

This routine contains interpreter mes
sages 58-5F.

• Attributes: Non-executable

• Control Section: IEFVGM9

IEFVGM10: Interpreter -- Message Module

This routine contains interpreter mes
sages 60-67.

• Attributes: Non-executable

• Control Section: IEFVGM10

IEFVGM11: Interpreter -- Message Module

This routine contains interpreter mes
sages 68-6F.

• Attributes: Non-executable

• Control Section: IEFVGMll

IEFVGrv:12: Interpreter -- [v,essuge l'lo,'!uh

This routine contains interpreter p"ps

sages 70-77.

• Attributes: Non-executable

• Control Section: IEFVGM12

IEFVGM13: Interpreter -- l-lessage Module

This routine contains interpreter mes
sages 78-7F.

• Attributes: Non-executable

• Control Section: IEFVGM13

IEFVGM14: Interpreter -- Message Module

This routine contains interpreter mes
sages 88-8F.

• Attributes: Non-executable

• Control Section: IEFVGM14

IEFVGM15: Interpreter Message -- fV.odule

This routine contains interpreter mes
sages 90-97.

• Attributes: Non-executatle

• Control Section: IEFVGM15

IEFVGM16: Interpreter -- Message ~odule

This routine contains interpreter mes
sages AO-A7.

• Attributes: Non-executable

• Control Section: IEFVGM16

IEFVGM17: Interpreter -- Message Module

This routine contains interpreter mes
sages 56-50.

• Attributes: Non-executable

• Ccntrol Section: IEFVGM17

IEFVGM18: Interpreter -- Message Module

This routine contains interpreter mes
sages 80-87.

• Attributes: Non-executable

• Control Section: IEFVGM18

IEFVGM19: Interpreter -- Message Module

This routine contains interpreter mes
sages 3E-45.

• Attributes: Non-executable

• Control Section: IEFVGM19

IEFVGM70: Interpreter -- Message Module

This routine contains interpreter mes
sages 38-3F •

• Attributes: Non-executable

• Control section: IEFVGM70

IEFVGM14 -- IEFVHAA

IEFVGM78: Interpreter -- Message Module

This routine contains interpreter mes
sages 08-00.

• Attributes: Non-executable

• Control Section: IEFVGM78

IEFVGS: Interpreter Dictionary 3earch
Routine

This routine Searches the refer-back
dictionary for the address of a previously
defined SCT, SlOT, or JFCB.

• Entry: IEFVGS

• Exit: Return to caller

• Tables/Work Areas: Auxiliary work
area, IWA, QMPA, refer-back dictionary

• Control section: IEFVGS

IEFVGT: Interpreter -- Test and Store
Routine

This routine performs operations on a
parameter as indicated in the appropriate
parameter descriptor table entry.

• Entry: IEFVGT

• Exit: Return to keyword routine

• Tables/Work Areas: Internal text buff
er, PDT, local work area, IWA

• Control Section: IEFVGT

IEFVHA: Interpreter Get Routine

This routine reads statements from the
input stream and the procedure library.

• Entry: IEFVHA

• Exits: IEFVHC, IEFVHB, IEFVHAA,
IEFS0536, IEFVGM

• Tables/Work Areas: IWA, JCT, OCB

• Attributes: Read-only, reenterable

• Control Section: IEFVHA

IEFVHAA: Interpreter -- End-of-File
Routine

This routine determines the conditions
under which an end-of-file condition has
occurred, and sets switches and passes
control accordingly.

• Entry: IEFVHAA

Appendix B: MFT Modules 115

IEFVHB -- IEFVHG

• Exit~;: IEFVHC or IEFVHN

• Tatles/Work Areas: IWA, JCT

• Attributes: Read-only, reenterable

• Control Section: IEFVHAA

IEFVHE: Interpreter -- DD * Statement
Generator Routine

This routine generates a "SYSIN DD *n
statement for data in the input stream,
when no such statement was included.

• Entry: IEFVHB

• Exits: To IEFVHC, IEFVHA, IEFVGM

• Tables/Work Areas: IWA, JCT

• Attributes: Read-only, reenterable

• Centrol Section: IEFVHB

IEFVHC: Interpreter -- continuation
Statement Routine

This routine determines whether the cur
rent statement should be a continuation,
and, if so, determines whether it is a
valid continuation statement.

• Entry: IEFVHC

• Exits: To IEFVHEB, IEFVHCB, IEFVGM

• Tables/Work Areas: IWA, JCT

• Attributes: Read-only, reenterable

• Control Section: IEFVHC

IEFVHCB: Interpreter Vert
Identification Routine

This routine identifies the verb in a
control statement.

• Entry: IEFVHCB

• ~: To IEFVHE, IEFVHM, IEFVHA,
IEFVGM, IEFVHL

• Tables/Work Areas: IWA, JCT

• Attributes: Read-only, reenterable

• Control Section: IEFVHCB

IEFVHE: Interpreter -- Router

This routine determines the conditions
under which it was entered, and passes
control to the appropriate routine.

• Entry: IEFVHE

116

• Exits: To IEFVHEB, IEFVHH, IEFVHEC

• Tables/Work Areas: IWA

• Attributes: Read-only, reenterable

• Control Section: IEFVHE

IEFVHEB: Interpreter -- Pre-Scan
Preparation Routine

This routine determines whether a mes
sage is required or additional work queue
space is required before a statement is
scanned. If so, it causes the message to
be written or the work queue space to be
assigned.

• Entry: IEFVHEB

• Exits: To IEFVHQ, IEFVGM, IEFVHG,
IEFVFA

• Tables/Work Areas: IWA, JCT, SCT, QMPA

• Attributes: Read-only, reenterable

• Control Section: IEFVHEB

IEFVHEC: Interpreter -- Job Validity Check
Routine

This routine determines whether an SCT
has been built for the current job: if not,
the routine constructs an SCT.

• Entry: IEFVHEC

• Exits: To IEFVGM, IEFVHH

• Tables/Work Areas: IWA, JCT, SCT

• Attributes: Read-only, reenterable

• Control Section: IEFVHEC

IEFVHF: Interpreter -- Post-Scan Routine

This routine determines the conditions
under which it was entered, and passes
control accordingly.

• Entry: IEFVHF

• Exits: To IEFVHG, IEFVHEB, IEFVHCB,
IEFVHA

• Tables/Work Areas: IWA, CWA

• Attributes: Read-only, reenterable

• Control Section: IEFVHF

IEFVHG: Interpreter CPO Routine

This routine writes system input data
sets on a direct-access device. If IEFVHG
is unable to obtain enough space to com-

plete writing a data set, control passes to
IEFVHR. If the input reaches end-of-file,
control passes to IEFVHAA. If a /* is
found following DD DATA, control passes to
IEFVHA to read the next record. If a / / is
found, control passes to IEFVHC to identify
the verb..

• Entry: IEFVHG

• Exits: To IEFSD536, IEFVGM, IEFVHQ,
IEFVHAA, IEFVHA, IEFVHC, or IEFVHB

• Tables/Work Areas: IWA, JCT, SIOT,
VOLT, TIOT, LWA, SCT, JFCB, UCB, QMPA,
CWA

• Attributes: Read-only, reenterable

• Control Section: IEFVHG

• Page Reference: 53

IEFVHH: Interpreter -- Job and Step
Engueue Routine

This routine places the SCT, DSNT, VOLT,
and JCT in the job's queue entry, and
determines whether the interpreter is to
enqueue jobs.

• Entry: IEFVHH

• Exits: To IEFRG, IEFVHQ, IEFSD532,
IEFVHHB, IEFVHN

• Tables/Work
QMPA, NEL

Areas: IWA, JCT, SCT,

• Attributes: Read-only, reenterable

• Control section: IEFVHH

IEFVHHB: Interpreter Housekeeping
Routine

This routine initializes for merging a
cataloged procedure.

• Entry: IEFVHHB

• Exits: IEFVBA, IEFVHEB

• Tables/Work Areas: IWA

• Attributes: Read-only, reenterable

• Control section: IEFVHHB

IEFVHL: Interpreter -- Null Statement
Routine

This routine determines the conditions
under which the null statement was encoun
tered, and passes control to the proper
routine.

IEFVHH -- IEFVHQ

• Entry: IEFVHL

• Exits: To IEFVHCB, IEFHEC, IEFVHE,
IEFVHA

• Tables/Work Areas: IWA, JCT

• Attributes: Read-only, reenterable

• Control Section: IEFVHL

IEFVHM: Interpreter -- Command statement
Routine

This routine tests
verbs, and, if the verb
SVC 34 to schedule
command.

• Entry: IEFVHM

for valid command
is valid, issues
execution of the

• Exits: To IEFVBA, IEFVGM

• Tables/Work Areas: IWA, JCT

• Attributes: Read-only, reenterable

• Control Section: IEFVHM

IEFVHN: Interpreter -- Termination Routine

This routine closes the input stream and
procedure library data sets, frees main
storage used by the interpreter, and builds
the interpreter exit list.

• Entry: IEFVBN

• Exit: Return to caller

• Tables/Work Areas: IWA, JCT, CSCB,
QMPA

• Attributes: Read-only, reenterable

• Control Section: IEFVBN

• Page Reference: 56

IEFVBQ: Interpreter Queue Management
Interface Routine

This routine is a common interface
between the queue management routines and
the interpreter. If an I/O error occurs,
IEFVBR receives control. Queue management
may be unable to allocate space for a job's
input data. If, in this case, the operator
replies CANCEL to the message which is
issued, IEFVHG receives control.

• Entry: IEFVHQ

• Exits: Return to caller, IEFSD536, or
IEFVHG

• Tables/Work Areas: IWA, JCT, QMPA,
CSCB

Appendix B: MFT Modules 117

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

IEFVH1 -- IEFVMFAK

• Attributes: Read-only, reenterable

• Control Section: IEFVHQ

IEFVH1: Interpreter -- Initialization
Routine

This routine initializes the interpret
er; it obtains main storage for and ini
tializes the IWA, local work areas, and
DCBs.

• Entry: IEFVHl

• Exit: To IEFVH2

• Tables/Work Areas: UCB, CSCB, !WA,
DCB, local work area

• AttLibutes: Not reusable

• Control Section: IEFVHl

IEFVH2: Interpreter -- Initialization
Routine

This routine opens the input stream data
set and the procedure library data set, and
obtains main storage for a buffer for
procedure library records.

• Entry: IEFVH2

• Exit: To IEFVHA

• Tables/Work Areas: IWA, UCB, TIOT

• Control section: IEFVH2

• Attributes: Not reusable

IEFVJA: Interpreter -- Job Statement
Processor

This routine initializes a JCT and job
ACT from the complete logical job statement
in the internal text buffer.

• Entry: IEFVJA

• Exit: To IEFVHF

• Tables/Work Areas: IWA, job work area,
interpreter key table, JCT, ACT, QMPA

• Attributes: Read-only, reenterable

• Control Section: IEFVJA

IEFVJIMP: Termination -- JOB Statement
Condition Code Processor

This routine tests the condition codes
specified in the JOB statement to determine
whether the remaining steps in the job are
to be run.

118

• Entry: IEFVJ

• Exits: To IEFVK or IEFZA

• Tables/Work Areas: LCT, JCT, SCT

• Control section: IEFVJ

IEFVJMSG: Termination -- JOB Statement
Condition Code Processor Messages

This routine contains the messages
issued to the programmer by the JOB state
ment condition code processor.

• Entry: IEFVJMSG

• Attributes: Non-executable

• Control Section: IEFVJMSG

IEFVKIMP: I/O Device Allocation -- EXEC
Statement Condition Code Processor

This routine tests the condition codes
specified in the EXEC statement to deter
mine whether the next step of the job is to
be run.

• Entry: IEFVK

• Exits: IEFVS, IEFLB

• Tables/Work Areas: JCT, LCT, SCT

• Control Section: IEFVK

IEFVKMSG: I/O Device Allocation -- EXEC
Statement Condition Code Processor Messages

This routine contains the messages
issued to the programmer by the EXEC .
statement condition -- code processor.

• Entry: IEFVKMJl

• Attributes: Non-executable

• Control Section: IEFVKMSG

IEFVMFAK: I/O Device Allocation -- Linkage
to IEFVMLSl

This routine passes
point IEFVMCVL of the
module IEFVMLSl via
instruction.

• Entry: I EFVMCVL

• Exit: To IEFVMCVL

control to entry
JFCB housekeeping

the XCTL macro

• Control Section: IEFVMCVL

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

IEFVMLS1

IEFVMLS1: I/O Device Allocation -- JFCB
Housekeeping Control Routine and Allocate
Processing Routines

The control routine
SlOTs, determines the
for each, and passes
priate routine. The

obtains the required
processing required

control to the appro
allocate processing

routine performs the processing required in
certain refer-back situations, when the
data set is cataloged or passed, and when
unit name is specified.

• Entry: IEFVM, VM7000, VM7060, VM7090,
VM7055, VM7070, VM7065

Appendix B: MFT Modules 118.1

.~: To IEFVM2LS, IEFVM3LS,
IEFVM4LS,
IEFXCSSS

IEFVM5LS, IEFVM6LS, and

• Tables/Work Areas: LCT, JCT, PDQ,
SlOT, JFCB, QMPA

• Control Section: IEFVM1

IEFVMLS6: I/O Device Allocation -- JFCB
Housekeeping Error Message Processing
Routine

This routine prepares error messages for
the JFCB housekeeping routines.

• Entry: IEFVMSGR

• Exit: Return to caller

• Tables/Work Areas: JCT, LCT

• Ccntrol Section: IEFVM6

IEFVMLS7: I/O Device Allocation -- JFCB
Housekeeping Error Messages

This routine contains the messages
issued by the JFCB housekeeping routines.

• Ent ry : IEFVM7

• Attributes: Non-executable

• Control section: IEFVM7

IEFVMMS1: I/O Device Allocation
to JFCB Housekeeping

This routine provides a linkage
JFCB housekeeping routines for
flush function.

• Entry: IEFVM1

.~: To IEFVM1

Linkage

to the
the step

• Attributes: Read-only, reenterable

• C~ntrol Section: IEFVM1

IEFVPOST: I/O Device Allocation
Unsolicited Device Interrupt Handler

This routine handles the posting of
unsolicited device interruptions for I/O
device allocation operating in a multipro
gramming environment.

• Entry: IEFDPOST

• Exits: To IEAOPT01 or Return to caller

• Tables/Work Areas: CSCB, ECB, TCB

• Attributes: Read-only, reenterable,
disabled, resident

IEFV~L~6 -- IEFVM5LS

• Control Section: IEFDPOST

IEFVM2LS: I/O Device Allocation -- JFCB
Housekeeping Fetch DCB Processing Poutine

This routine updates the SlOT, SCT, JFCB
and VOLT with information required for the
allocation of devices for the fetch DCB.

• Entry: VM7100

• Exit: To IEFVMLSl

• Tables/Work Areas: LCT, SCT, SlOT,
JFCB, VOLT

• Control section: IEFVM2

IEFVM3LS: I/O Device Allocation -- JFCB
Housekeeping GDG Single Processing Routine

This routine obtains the fully qualified
name of a member of a GDG, and completes
the required information in the JFCB, VOLT,
and SlOT for that member.

• Entry: VI-17150

• Exit: To IEFVMLS1

• Tables/Work Areas: LCT, SlOT, GDG Bias
Count table, JFCB

• Control Section: IEFVM3

IEFVM4LS: I/O Device Allocation -- JFCB
Housekeeping GDG All Processing Routine

This routine builds an SlOT, JFCB, and
VOLT, and PDQ entries for each member of
the GDG.

• Entry: VM7200

• Exit: To IEFVMLS1

• Tables/Work Areas: LCT, SCT, VOLT,
PDQ, SlOT, JFCB

• Control Section: IEFVM4

IEFVM5LS: I/O Device Allocation -- JFCB
Housekeeping Patterning DSCB Routine

This routine establishes OCB control
information within a JFCB.

• Entry: VM7300

• Exit: To lEFVMLSl

• Tables/Work Areas: LCT, SCT, SlOT,
OSCB, JFCB

• Control Section: IEFVM5

Appendix B: MFT Modules 119

IEFVM76 -- IEFWD001

IEFVM76: I/O Device Allocation -- JFCB
Housekeeping Unique Volume In Routine

This routine creates unique volume
serials for unlabeled tape data sets, when
the disposition is "PASS".

• Entry: VM7600

• Exit: Return to caller

• Tables/Work Areas: SlOT, JFCB, JFCBX

• Control Section: IEFVM76

IEFVSD12: Interpreter -- CPO Allocation
Subroutine

This routine sets up a JFCB and allo
cates space on a direct-access device for a
syste~ input data set.

• Entry: IEFSD012

.~: Return to caller

• Attributes: Reenterable

• Tables/Work Areas: IWA, QMPA, LWA,
SlOT, TIOT, UCB, JFCB, JCT, CSCB

• Control Section: IEFSD012

• External References: IEFVHQ

IEFVSD13: Interpreter SCD Construction
Routine

This routine constructs an SCD entry for
each system output class defined for a job,
and assigns space for all DSBs that will be
required.

• Entry: IEFSD090

• Exit: Return to caller

• Tables/Work Areas: IWA, QMPA, nn work
area, SCD, SCT, SlOT, JCT, JFCB

• Control Section: IEFSD090

IEFWAOOO: I/O Device Allocation -- Demand
Allocation Routine

This routine establishes data set device
requirements, and allocates in response to
specific unit requests.

• Entry: IEFWAOOO, IEFUCBL

• Exits: To IEFWDOOO, IEFX3000, IEFXSOOO

• Tables/Work Areas: UCB Address List,
DMT, UCB, LCT, SCT, SlOT, VOLT, AWT

• Control Sections: IEFWA7, IEFWA002

120

IEFWCFAK: I/O Device Allocation -- Linkage
Module

This routine passes control to the TIOT
construction routine.

• Entry: IEFWCOOO

• Exit: To IEFWCIMP

• Control Section: IEFWCOOO

IEFWCIMP: I/O Device Allocation -- TIOT
Construction Routine

This routine calculates the main storage
required for the TIOT, builds the TIOT, and
processes requests for direct-access space.

• Entry: IEFWCOOO

• Exits: To IEFXJIMP, IEFWDIMP

• Tables/Work Areas: JCT, SCT,
SlOT, VOLT, AWT, TIOT

• Control Section: IEFWCOOO

IEFWDFAK: I/O Device Allocation
Module

LCT,

Linkage

This routine passes control to the
external action routine.

• Entry: IEFWDOOO

• Exit: To IEFWDOOO

• Control Section: IEFWDOOO

IEFWDOOO: I/O Device Allocation
External Action Routine

This routine causes the correct volumes
for the step to be mounted on the appropri
ate units.

• Entry: IEFWDOOO

¥ Exits: To IEFXTOOO, IEFW41SD, IEFXKOOO

• Tables/Work Areas: SCT, LCT, TIOT, UCB

• Control Section: IEFWDOOO

IEFWD001: I/O Device Allocation
External Action Messages

This routine contains
the messages used in the
routine.

• Entry: IEFWD001

a directory and
external action

• Attributes: Non-executable

• Control Section: IEFWD001

IEFWSTRT: I/O Device Allocation -- Message
Module

This routine contains the message issued
to the operator when a job is started and
the messages issued to the operator when a
job is terminated due to ABEND, condition
codes, or JCL errors.

• Entry: IEFWSTRT

• Attributes: Non-executable

• Control Section: IEFWSTRT

IEFWSWIN: I/O Device Allocation -- Linkage
Module

This routine passes control to the deci
sion allocation routine.

• Entry: IEFWSWIT

• Exit: To IEFX5000

• Control Section: IEFWSWIT

IEFWTERM: Termination -- Message Module

This routine contains the message issued
to the operator when a job is terminated
normally, or when it is terminated because
of a JCL error found in the interpreter or
initiator.

• Entry: IEFWTERM

• Attributes: Non-executable

• Control Section: IEFWTERM

IEFXAMSG: I/O Device Allocation Message
Module

This routine contains· the messages
issued by the allocation control routine.

• Entry: IEFXAMSG

• Attributes: Non-executable

• Control Section: IEFXAMSG

IEFXCSSS: I/O Device Allocation
Allocation Control Routine

This routine
requirements and
for the tables
allocation.

• Entry: IEFXA

calculates table space
obtains the main storage

used or built during

• Exits: To IEFXJ, IEFWA, IEFWC

• Tables/Work Areas: JCT, SCT, LCT, UCB,
SlOT, VOLT, AWT

IEFWSTRT -- IEFXKUv'P

• Control Section: IEFXA

IEFXHOOO: I/O Device Allocation
Separation Strikeout Routine

This routine strikes from AWT entries,
the bits corresponding to devices that
would violate separation or affinity
requests.

• Entry: IEFXHOOO

• Exit: Return to caller

• Tables/Work Areas: LeT, AWT, AVT, UCB

• Control Section: IEFXHOOO

IEFXJFAK: I/O Device Allocation Linkage
Module

This routine passes control to the allo
cation recovery routine.

• Entry: IEFXJOOO

• Exit: To IEFXJIMP

• Control Section: IEFXJOOO

IEFXJIMP: I/O Device Allocation
Allocation Recovery Routine

This routine informs the operator of the
allocation recovery options available, and
passes control to the proper routine to
comply with his request.

• Entry: IEFXJOOO, IEFV15XL, IEFXJX5A

• Exits: To IEFXCSSS, IEFSD095, IEFW41SD

o Tables/WorkAreas: LCT, AWT, JCT, CVT,
UCB, SCT, SlOT

• Control Section: IEFXJOOO

IEFXJMSG: I/O Device Allocation
Allocation Recovery Messages

This routine contains the messages used
by the allocation recovery routine.

• Entry: MSRCV, MSSYS, MSOFF

• Attributes: Non-executable

• Control Section: IEFXJMSG

IEFXKIMP: I/O Device Allocation
Non-Recovery Error Routine

This routine cancels the step when a
lack of available devices has been discov
ered after the TIOT is constructed.

• Entry: IEFXKOOO

Appendix B: MFT Modules 121

IEFXKMSG -- IEFX5000

.~: To IEFW41SD

• Tables/Work Areas: LCT, SCT, UCB, TIOT

• Centrol Section: IEFXKOOO

IEFXKMSG: I/O Device Allocation -
Non-Recovery Error Routine Messages

This routine contains the messages used
by the non-recovery error routine.

• Entry: IEFXKMSG

• Attributes: Non-executable

• Control Section: IEFXKMSG

IEFXTOOD: I/O Device Allocation -- Space
Reguest Routine

This routine obtains space on direct
access devices for requesting data sets.

• Entry: IEFXTOOO

• Exits: To IEFW41SD, IEFXKOOO, IEFWDOOO

• Tables/Work Areas: LCT, TIOT, UCB,
JCT, SlOT, JFCB, PDQ

• Control Section: XTTPOO, IEFXTOOO

IEFXT002: I/O Device Allocation -- TIOT
Compression Routine

This routine reduces the TIOT to its
final size.

• Entry: IEFXT002, XTTRDJ, XTTEB3,
XTTEA1, XTTEAO

• Exits: to IEF\-J4lSD, IEFXKIHP, IEFXTOO 3

• Tables/Work Areas: LCT, TIOT, UCB,
JCT, SlOT, JFCB

• Control Section: IEFXT002

IEFXT003: I/O Device Allocation -- DADSM
Error Recovery Routine

This routine determines what action
should be taken when the request for space
on a particular volume fails.

• Entry: IEFXT003, XUUH06, XUUBOO

• ~: To IEFXTOOD, IEFXT002

• Tables/Work Areas: LCT,
JCT, SlOT, JFCB

• Control Section: IEFXT003

122

TIOT, UCB,

IEFXVMSG: I/O Device Allocation -
Automatic Volume Recognition Messages

This routine contains the messages used
by the automatic volume recognition (AVR)
routine.

• Entry: IEFXVMSG

• Attributes: Non-executable

• Control Section: IEFXVMSG

IEFXVNSL: I/O Device Allocation
Automatic Volume Recognition
Non-Standard Label Routine

This routine processes
labels for the AVR routine.

non-standard

• Entry: IEFXVNSL

• Exit: Return to caller

• Control section: IEFXVNSL

IEFXV001: I/O Device Allocation -
Automatic Volume Recognition Routine

This routine finds and allocates volumes
pre-mounted by the operator.

• Entry: IEFXVOOl

• Exits: IEFWCOOO, IEFX5000, IEFXJOOO

• Tables/Work Areas: JCT, SCT, AWT, AVT,
VOLT, SlOT, LCT, UCB

• Control Section: IEFXVOOl

IEFX300A: I/O Device Allocation -- Device
Strikeout Routine

This routine modifies the primary and
secondary bit patterns in AWT entries to
complete the allocation to a data set.

• Entry: IEFX3000, X33B42

• Exit: Return to caller

• Tables/Work Areas: AWT, AVT, UCB, LCT

• Control Section: IEFX3000

IEFXSOOO: I/O Device Allocation
Decision Allocation Routine

This routine selects devices for data
sets with multiple unit possibilities •

• Entry: IEFX5000, XIIB32, X55C86,
XSSD3G

• Exits: To IEFWCOOO, IEFXJOOO

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

lEFYNIMP -- lEFZGJB1

• Tables/Work Areas: LCT, AWT, AVT, UCB

• Control Section: lEFX5000

lEFYNlMP: Termination step Termination
Control Routine

This routine passes control among the
modules of the step termination routine
and, when required, passes control to the
job termination routine.

• Entry: lEFYN

• Exits: To lEFW22SD, lEFYPJB3, lEF
VJlMP, lEFZAJB3

• Tables/Work Areas: JCT, SCT, LCT

• Control Section: lEFYN

lEFYNMSG: Termination -- Step Termination
Control Routine Messages

This routine contains the messages
required for the step termination control
routine.

• Entry: lEFYNMSG, STRMSGOl

• Attributes: Non-executable

• Control Section: lEFYNMSG

lEFYPJB3: Termination -- Step Termination
Data Set Driver Routine

This routine obtains SlOTs and to pass
control to the disposition and unallocation
routine.

• Entry: lEFYP

• Exits: To IEFZG, lEFYN

• Tables/Work Areas: LCT, TlOT, UCB,
QMPA, SlOT, TCB

• Control Section: lEFYP

lEFYPMSG: Termination -- step Termination
Messages

This routine contains the messages
required by the step termination routine.

• Entry: lEFYPMSG, YPPMSG1, YPPMSG2

• Attributes: Non-executable

• Control Section: lEFYPMSG

lEFYSVMS: Termination -- Message Blocking
Routine

This routine blocks system messages into
5MBs, and places 5MBs into the message
class queue entry.

• Entry: IEFYS

• Exit: Return to caller

• Tables/Work Areas: LCT, SCT, 5MB

• Attributes: Reenterable

• control Section: lEFYS

lEFYTVMS: Termination -- DSB Processing
Routine

This routine places data set blocks in
the space reserved for them in the output
queue entries.

• Entry: lEFYT

• Exit: Return to caller

• Tables/Work Areas: JCT, SCT, TlOT,
SlOT, QMPA, DSCB, LCT, CVT, JFCB

• Attributes: Reenterable

• control section: IEFYT

lEFZAJB3: Termination -- Job Termination
Control Routine

This routine provides entry to the job
termination routine, obtains PDQ blocks,
and passes control to the disposition and
unallocation routine.

• Entry: lEFZA

• Exits: To lEFZG, lEFW31SD

• Tables/Work Areas: LCT, JCT, PDQ, UCB,
QMPA

• Control Section: IEFZA

lEFZGJB1: Termination Disposition and
Deallocation Routine

This routine directs the disposition and
deallocation of those data sets that remain
to be processed at job termination: passed
data sets that were not received, and
retained data sets that were not referred
to.

• Entry: lEFZG, ZPOQM

• Exit: Return to caller

• Tables/Work Areas: JCT, PDQ, JFCB,
LCT, QMPA, UCB

• Control Section: lEFZGJ

Appendix B: MFT Modules 123

IEFZGMSG -- IEF41FAK

IEFZGMSG: Termination Disposition and
Deallocation Messages

This routine contains the messages
required for the disposition and dealloca
tion routine lIEFZGJB1).

• Entry: IEFZGMSG

• Attributes: Non-executable

• Control section: IEFZGMSG

IEFZGST1: Termination Disposition and
Deallocation Routine

This routine directs the disposition of
data sets as specified in the DISP field of
the DD statement, and makes the associated
units available for allocation to other
data sets.

• Entry: IEFZG, ZPOQMGR1

• Exit: Return to caller

• Tables/Work Areas: LCT, PDQ" SlOT,
TIOT, UCB, JFCB, QMPA

• Control section: IEFZG

IEFZHMSG: Termination -- Disposition and
Deallocation Message Routine

This routine prepares messages to the
programmer and to the operator for the
disposition and allocation routines.

• Entry: IEFZH, ZGOE60, ZKOD1, ZKOE1,
XPS631

• Exit: Return to caller

• Tables/Work Areas: LCT, QMPA, 5MB

• Control section: IEFZH

IEF078SD: system Output Writer -- Linkage
Module

This routine transfers control to module
IEFSD078.

• Entry: IEFSD078

• Exit: To IEFSD078

• Attributes: Reenterable

IEF079SD: system Output Writer -- Linkage
Module

This routine
IEFSD079.

124

transfers control to

• Entry: IEFSD079

• Exit: To IEFSD079

• Attributes: Reenterable

IEF082SD: system Output Writer Linkage
Module

This routine passes control to the sys
tem output writer main processing routine.

• Entry: IEFSD082

• Exit: To IEFSD082

• Control Section: IEFSD082

IEF083SD: System output Writer Linkage
Module

This routine passes control to the sys
tem output writer command processing
routine.

• Entry: IEFSD083

• Exit: IEFSD083

• Control Section: IEFSD083

IEF300SD: system Restart -- Linkage Module

This routine provides a linkage to the
system restart initialization routine.

• Entry: IEFSD300

• Exits: To IEFSD300, IEFSD055

• Attributes: Reenterable

IEF304SD: System Restart -- Linkage Module

This routine provides a linkage to the
system restart scratch data sets routine.

• Entry: IEFSD304

• Exits: To IEFSD304, IEFSD055

• Attributes: Reenterable

• Control Section: IEFSD304

IEF41FAK: I/O Device Allocation Linkage
Module

This routine provides a linkage to the
allocation exit routine during step flush.

• Entry: IEFW41SD, IEFW1FAK, IEFW2FAK

• Exit: To IEFW41SD

• Attributes: Read-only, reenterable

• Control Section: IEFW41SD

This appendix
charts that are
the flowcharts on

includes the MFT flow
different from ~VT. For

allocation, terIl'ination,

Chart 01. Nucleus Initialization Program
** ••• A2**** ••••• * •••• Al......... ,. RECORD ..

.. .. *ENVI RONMENT IN"

.. FROM IPL * •••••••• x. COMMUNICATION ,.

.. ..,. VE"C TOR TABLE,. ,.
X

••••• 82 •••••••••• · . ,. ADJUST ,.
.. TRACE TABU=-
.. POI NTERS • • * ••••

X
••••• C2 •••••••••• · . • AOJUST REQUEST ,.
.. ELEMENT TABLE ..
.. ADDRESSES ,. ·

X
••••• 02 •••••••••• · . .. ADJUST ..
.. uee TABLE ..
• ADDRE SSE 5 .. ·

IEUCBO X
••••• E2 · . • INITIALIZE UCBS*
.. FOR READY ..
.. DIRECT-ACCESS ..
• DEVICES •

IEACONSI X
* •••• F2·.··· •• ·•· ,. FIND ..
.. OPERATOR"S ..
.. CONSOLE •
.. ADORE SSE 5 • ·

lEA IOTST X
••••• G2 ••• • ••••••
*SET SYSRES LlCB •
• STATUS. •
• INITIALIZE •
.SVCLIB. LOGREC •
• oeBS • •••••••• * ••••••••

X
••••• H2 ••••••••••
• IEATIMER • . -.-.-.-.-.-.-.-.
• CHECK •
• AND SET TI MER • ·

X
••••• J2 ••••••••••

• • SET ASIDE
SYSTEM WORK

AREAS

•••• *** ••••••• * ••

x · .
• 84 • ·

APPENDIX C: FLOWCHARTS

and system restart, see IBM System/360
Operating System: MVT Job Management, Pro
gram Logic Manual, Form Y28-6660.

..$. · . • 84 • ·
X

• •••• B4 ••••••••••
• SYX]NIT • .-.-.-.-.-.-.-.-.
• BUILD •
• NONRESIDENT svc.
• TABLE •

IEASCANl X
••••• C4 •••••••••• · . • INITIALIZE •
• SYSI. LINKLIB •
• DEB • ·

X
••••• 04 •••••••••• · . • INITIALIZE •
• RESIDENT SER •
• ROUTINE • ·

X
•••••• E4 •••••••••••

• COMMUNICATE •
WITH OPERATOR

x
••••• F4 ••• t: •••••• · . .CONSTRUCT SYSl ••
• LINKLI8 •
• DIRECTORY IN •
• STORAGE •

IEARMLDR X
••••• G4 •••••••••• · . • LOAD ACCESS •
.METHOD MODULES •
• INTO NUCLEUS '" · . • •••••••• *** •••••

X
••••• H4 •••••• "' ••• · . • LOAD RESIDE"IT •
• SVC MODULES •
• INTO NUCLEUS • • •

X
• ••• J4* ••••••••

• xCTL TO MASTER '"
• SCHEDULER •
• (]EESD569) '"

Appendix c: Flowcharts 125

Chart 02.

ENTRY

126

Task Dispatcher (without Time Slicing)

•••• A2 •••••••••

• •
'" ENTRY '" · . •• ** •• ** •••••••

x .'.

NOTE- 'OLD' IS THE TCB ADDRESS
OF THE TASK CURRENTLY
IN CONTROL. 'NEW' IS THE
TeB ADDRESS OF THE
TASK TO BE GIVEN CONTROL.

82 •• • •••• 83 •••••••••• '"
•• SYSTEM •• YES • SCHEDULE '"

•• ASYNCHRONOUS •••••••••• X. ASYNCHRONOUS '"
•• EXITS •• '" EXIT ROUTINES '" '"

• NO

· . • x •••••••••••••••••••••••••
x I.. I ..

C2 •• C3 •• • •••• C4 ••••••••••
•••• • .MUST A •• '" '"

•• •• NO •• TIMER •• YES '" DEQUEUE '"
•• 'NEW· = 'OLO· •••••••••• x •• ELEMENT BE •••••••••• X. TIMER ELEMENT '"

•• •• *.DEaUEUED •• • '" '" '"
'" YES '" NO

· . ••••••••••••••••••••••••• x.
x x 02•. 03.......... 04 •.

•• MUST A •• * • ••••
NO.. TIMER.. • * NO •• • •

•••••• ELEMENT BE .*X ••••••••• "OLD' = 'NEW' .X •••••••••• 'NEW' = a .*
•• ENQUEUED •• X. • *. ••
...* • • *..*

••• * ** •••• ***** •••• ** * •• *
* YE S X * YES

X
*.**.EZ*******··* • •
• ENQUEUE •

• * ••• E3*· ••••••••
• •
• 'NEW' = TCB •

X
••••• E4 ••••••••••

• •
* TI MER ELEMENT. t. TO BE • · . • EXAMINE 'OLD' • · . · . ••••••••••••••• **

. .
••••••••••• X.

X
••• *F2* ••• ***.*

* LOAD •
• 'OLD' PSW Tu * RETURN • •••••••• *.* ••••

• DISPATCHED • • •
x

• YES

• Tce • • • ••••••••••••••• * •

.*. . ••
F3 •• F4 ••

.*15 TCB *. .* IS ••
•• •• NO.. ReQUEST ••

..DISPATCHABLE •• x •••••••••• BLOCK FOR TCB •• X •••
•• •• •• WAITING •• * •••

• NO
• YES

· . ••••••••••••••••••••••••• x •

•• ***G4 •••••••••• · . • FINO •
• NEXT TCB ON •
• QUEUE • • •• * ••••••• **** •••

x .•.
• ***.H3 •••• ****.. H4 •• ,. • .* ••

• • PLACE • YES.* END •• NO •
••••••• 'OLD' TASK IN .x •••••••••• OF TCB QUEUE .* ..•.

• WAIT STATE. •• ••
• * *.. • •• * ••• *.*.***.... • ••• .

Chart 03. Task Dispatcher (with Time Slicing>

... .*. .*.
A2 *. • ••• *A3 •• ****.... A4 *. AS •• Al......... .* *. • • .* *. .* *.

• • .* SYSTEM *. YES * SCHEDULE. .* *. YES .* IS OLD A *. NO
• ENTRY * •••••••• X •• ASYNCHRONQUS •••••••••• X. ASYNCHRONOUS ••••••••• X •• NEW = OLD •••••••••• X •• TIME SLICING ••••••
• * . *. EXITS .* * EXIT ROUTINES. X *. .* *. TASK .* ••••••••••••••• *..* * * *..* *..*

*. •• ***** ••• *.****... * •• * * •••
• NO • NO • YES

.*. .*. .*. DSPAI X
Bl *. 82 *. 83 •• • •••• 84 ••••••••••

.* *. .* *. •• *. • •
YES .* IS NEW A *. NO .* *. YES .* IS OLD A *. • •

•••• · ..
• 85 •• X. • • •••• TMSLI

x .•.
85 ••

•• IS.. •

•••••• TIME SLICING •• X.......... NEW = 0 •• X •••••••••• TIME SLICING •• X ••••••••• SAVE REGISTERS *x •••
•• OLD TI ME •• YES.

•• SLICE TQE •••• X •
..ENQUEUED •• *. TASK .* •• •• •• TASK.* • 2-9 •

.. *..* *..* • • * •• * * •• * * •• * •••••••••••••••••
• NO • YES • NO

· . ••••••••••••••••••••••••• X.
x

••• TMSL3 X OSPA •••
C1 •• • •••• C2.......... C3 •• • •••• C4 ••••••••••

•• IS •• • • •• SAVE •• • •
• •• REQUEST •• YES • DEQUEUE TIME • •• FLOATING •• YES • SAVE •
••• X •• BLOCK FOR NEW •••••••••• X. SLICE TIMER ••••••••• X.. POINT •••••••••• X.FLOATING POINT.

•• TCB IN.. X. QUEUE ELEMENT. ..REGISTERS.. • REGISTERS •
•• WAIT •• • • •••• • • •....•••..•..... . ~ .~

x .•.
01 ••

•• IS NEW ••

· . • X •••••••••••••••••••••••••
X

OSPZ ••• OSPE
••••• 02.......... 03 •• • •••• 04 ••••••••••
• • •• TASK •• • • • DEQUEUE TASK. YES.. TIMER •• • SET •

..
• NO

X
• •••• CS ••••••••••
• • • • •••• ••• NEW = 0 •

• • • • • ••••••••••••••••

.
x . ..

05 ••
..RESTORE ••

NO •• FLOATING •• •• TASK TCB •• NO •
•• 0ISPATCHABLE •••••••• • TIMER QueUE .X •••••••••• ELEMENT TO BE •• ••••• X. OLD EQUAL TO ••••• •••••• POINT ••

• YES •••• .. . · .X. BS • • • ••••

• ELEMENT. ..OEOUEUEO •• ·
• NO

· . • X •••••••••••••••••••••••••
x

X. NEW •
• • · ·

•• 04 • .. . ·
..REGISTERS ••

• YES

DSPH ••• • •• ~~ X
••••• EI.......... E2 •• E3 •• ·
• SET • YES •• •• NO •• IS NEW A •• NO •
• NEW EQUAL TO .X.......... NEW = 0 •••••••••• X •• TIME SLICING ••••••
• OLD. •• •• •• TASK •• ·

• • YES

x
DSPE ••• TMSL4 X TMSLS

Fl.. • •••• F2.......... • •••• F3 ••••••••••
•••• • GET TCB FROM •• •

•• IS NEW A •• YES .'NEXT' FIELD OF. • NEW = NEXT •

• •••• E4.......... • •••• ES •••••••••• ·
• RESTORE • X. RESTORE •
• REGISTERS 0-9 .X ••••••••• FLOATING POINT.
• •• REGISTERS • • •• • ••••••••••••••••• • ••••••••••••••••

x .•.
FS ••

•••• X •• TIME SLICING •••••••••• X. TIME SLICE ••••••••• X.TIME SLICE TCB .X •••••••••••••••••

•• IS ••
..CURRENT RB •• NO •

•• FOR SVC •••• X.
..TRANSIENT ••

..AREA ••
•• TASK.. .CONTROL ELEMENT. • TO BE CHECKED •
•••• • (TSCE).. •

• NO

x .•.
Gl ••

•• IS ••

TMSL9
• •••• G2 ••••••••••
• UPDATE •
• 'NEXT' FIELD OF.

x .•.
G3 ••

•• IS ••
• YES.. REQUEST ••

••••• BLOCK FOR NEW ••
•• TCB IN ••

•• WAIT ••

• TIME SLICE .X •••
• CONTROL ELEMENT •

•• REQUEST •• YES
..BLOCK FOR NEW ••••••••

•• TCB IN ••
• NO

x

• (TSCE) • •••••••••••••••••

••• X
HI.. • •••• H2 ••••••••••

•• IS NEW.. • •
•• TASK TCB •• YES • ENQUEUE TIME •

•• 0ISPATCHABLE •••••• X..... SLICE TIMER •
•• •• • QUEUE ELEMENT.

•• •• X •••••••••••••••••
• NO ••••

• •••••••••• X. • 04 • • •

..WAIT ••
• NO

X • NO
••• .TMSL8 •••

H3 •• H4 ••
..IS NEW.. • •• ••

• YES •• TASK TCB •• NO X •• ALL TIME ••
• ••••••• 0ISPATCHABLE •••••••••• X •• SLICE TCBS ••

•• •• •• CHECKED ••
• YES

• YES

x . ..
GS ••

•• IS ••
•• CORRECT •• YES.

•• ROUTINE IN •••• X.
..TRANSIENT ••

..AREA ••
• NO

X
• •••• HS ••••••••••
• USE TRANS I ENT •
• AREA REFRESH •
.R.OUTINE TO LOAD.
• CORRECT SVC •
• ROUTINE • • ••••••••••••••••

· . • X ••••••••••• ·
.X ••• X

OSPO X
••••• J I ••••••••••

• •
• NEW = •
• NEXT TCB ON •
• QUEUE • • • •••••••••••••••••

DSPG ••• J4.......... JS ..
• • •• TASK ••
• ENQUEUE TASK. YES.. TIMER ••
• TIMER QUEUE .X •••••••••• ELEMENT TO BE ••
• ELEMENT. ..ENQUEUED •• ·•.•..•.•.

• NO

. .

.X •••••••••••••••••••••••••

• ~. DSPW X
K 1 •• • •••• K2.......... • •••• K3.......... • •••• K4 ••••••••••

•••• • •• •• • • ••• KS •••••••••
• NO.. END •• YES • SET • • RESTORE. • RESTORE.. •
••••••• OF TCB QUEUE •••••••••• X. 'WAIT' BIT IN ••••••••• X. REGISTERS 2-9 ••••••••• X.REGISTERS 10-1 ••••••••• X. LOAD OLD PSW •

•• •• • OLD PSW.. •• •• • •..••.•..........
•

Appendix c: Flowcharts 127

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

• Chart 04. ABEND Control Flow

128

····A3·········
: ENTRY :~:g~L~~s~~bRAM,
• tOR ABTERM

L",,, B2.......... B3
•••• B1......... *GRAPHICS ABEND. GRAPHICS. IEAGTMOA. • ••• B4......... TO IEAATMOB

• • *-*-*-*-*-*-*-*-* ABENDING*-+-+-+-*-+-+-+-+. • VIA XCTL IF A VALID
• EXIT *<--------* EXIT *<--------*TEST FOR VALID *-------->* EXIT • STAE IS IN EFFECT
• •• ATTEMPT ERROR • • STAE AND FOR •• • VIA SVC 3 IF ABEND ISSUED BY
••••••••••••••• • RECOVERY *-------->*GRAPHICS ABEND. ••••••••••••••• PURGE DUPING STAE PROCESSING

VIA SVC'S TO ••••••••••••••••• • ••••••••••••••••
CALLER IF TASK j IS RESUMABLE
AND CALLER WISHES
TO RESUME

FROM IEAATMOC IGC0701C
OR lEAATMOE ••••• C3 ••••••••••

•••• c2...... ••• • IEAGTMOO. • ••• C4 •• ••••••• • • *-*-*-*-*-*-.-.-.. • VIA XCTL (SVC 1) TO IEAATMOO
: ENTRY :---->: P~gEtoi~:'S :------->: EXIT : IF IEAGTMOO ENrEREO FROM STAE
•• •••••• ••••••• • REOUESTS .SYSTEM TASK ••••••••••••••

--NORMAL-END-----::::::::j *·i~g~~i~g~~~~~~--I
END SET

IGC0601C
·····03·········· • IEAG'IM06. • ••• 04 •••••••••
• -.-.-.-.-.-.-.-.. • VIA BRANCH TO
• PURGE I/O. • EXIT • SYSTEM QUIESCE
.OPERATIONS AND •• • ROUTINE (IEAGTWST)
:.i~Z.~~~~~~i~ •• : ••••••• ~ •••••••

L,""" ·····E3
• IEAATMOl • . -'.-*-.-.-.-.-.-• • VALIDITY CHECK •
• SYSTEM QUEUES • • • •••••••••••••••••

L,uoc
••••• F3 ••••••••••

MAIN STORAGE AVAILABLE - NO DUMP REQUESTED • IEAATMOA .INVALID RECURSION
<--_.-.-.-.-.-.-.-.-.-----------------• DETERMINE •

MAIN STORAGE AVAILABLE - • MAIN STORAGE • MAIN STORAGE AVAILABLE -
--------------------------------------. REQUIREMENTS .---

INDICATIVE DUMP REQUESTED •••••••• j.iiii;;;: ABDUMP REQUESTED

IGC0211C IGC0201C IGC0221C
••••• G2.......... • •••• G3.......... G4 ••••••••••
• IEAATM2A • NOT • IEAATM02. • IEAATM2B •

INDICATIVE .-.-.-.-.-.-.-.-. ENOUGH .-.-.-.-.-.-.-.-. ENOUGH .-.-.-.-.-.-.-.-. ABDUMP
<----------------.STEAL FROM LOW .<----. STEAL MAIN .-------->. MOVE LRB'S TO .---------------->

DUMP • END OF • STOLEN. STORAGE • STOLEN • LOW END OF •

.... · .
• 81 .-• • •••• IGC0301C ·····81·········· • lEAATM03 • • -.-.-.-.-.-*-.-.
• FORMAT •
• INDICATIVE •
• DUMP • •••••••••••••••••

• PARTITION. • FROM LRB' S. • PARTITION •
ABDUMP! !INDlCATIVE

~~ ~~~1ous ~~ ~lltl~1ous DUMP ••••••
DUMP FAILED DUMP FAILED • H5 .--•••• ••••• • • • • • • •••

• H5 • • H1 .<--------1 IGC0401C ·····HS •••••••••. •••• ••••• lFAATM04 •
DEB .-.-.-.-.-.-.-.-•
---. CALL • FAILED. ABDUMP •

TO OPEN • • •••••••••••••••••

j IGC0501C
·····J3·········· :-.-;~~~I~2~.-.-:

--->* ABEND .<--------------------------------------
• TERMINATION • • •

SCHEDULER-SIZE···j·········j···SMALL PARTITION

I-----pARTiTi~----- ---------------------1
•••• K2......... • ••• K4 •••••••••

• EXIT • • EXIT •
VIA XCTL TO VIA XCTL TO
STEP DELETION STEP DELETION
ROUTINE IEFSD515 ROUTINE IEFSD599

• Chart 03. Task Dispatcher (with Till,e Slicing)

.. *. .*.. .*.
A2 *. • •• **A3*.****.*** A4 *. AS * •

•••• At •••••• ••• .* *. • • .*... .* *. • • .* SYSTEM +. YES • SCHEDULE. .* *. YES .* IS OLO A ,*oO NO
* ENTRY ••••••••• X •• ASYNCHRONOUS •••••••••• x. ASYNCHRONOUS ••••••••• x •• NEW = OLD •••••••••• X •• T[ME SLICING ••••••
• • *. EXITS .* • EXIT ROUTINES. X *. .* *. TASK .* ••••••••••••••• *..+ • • *..* *..-

*oO •• • •• ********...... • •• * ••• *
• NO • NO • YES

.*. ..oO .*. DSPAI i
81 ... 82 *. 83 *. • •••• 6 •••••••••••

• * *. •• *. ... *. • •
YES .*]S NEW A *. NO •• *. YES .* IS OLD A *. • •

•••••• T[~E SLICING .*X.......... NEW = 0 •• X •••••••••• TIME SLICING •• x ••••••••• SAVE REGISTERS *x ••• *. TASK .+ *. .* *. TASK.* • 2-9 •
.. *..* *..* • •

* •• * * •• * * •• * •• ** •••••••••••••
• NO • YE S • NO

· . ••••••••••••••••••••••••• X.
x

••• TMSL3 X DSPA •••
C 1 •• • •••• C2 ••••••••• * C3 •• • •••• C4.* ••••••••

••]S •• • • •• SAVE •• • •
• •• REQUEST *. YES • DEQUEUE T]ME • •• FLOATING •• YES • SAVE •

.. _.
- -. • BS •• X. - -.*** x

TMSLI .-. 65 _.
•• IS _ •

• _ OLD TI ME *. YES.
_. SLICE Toe •••• x •

·.ENQUEUED ••
•• .* _ NO

X * •••. C5 •••••••••• - .
• * ••• X •• BLOCK FOR NEW •••••••••• X. SLICE TIMER ••••••••• X.. POINT •••••••••• X.FLOATING POINT. • ••••• * NE W = 0 •

•• TCB IN.. X. QUEUE ELEMENT. ..REGISTERS.. * REGISTERS •
•• WA.]T •• • • •••• • • .. .• • **.......... .. .••••••••••••.

• NO • NO

x .-.
01 ••

••]5 NEW ••
•• TASK TCB •• NO •

•• O]SPATCHABLE ••••••••
• YES •••• · - -•• x. B5 •

- *

. .

.X •••••••••••••••••••••••••
X

OSPZ .*.
••••• 02.......... 03 ••
• • •• TASK ••
• DEQUEUE TA.SK. YES.. TIMER ••
• TIMlR QUEUE .x •••••••••• ELEMENT TO BE ••
• ELEMENT. ..DEQUEUED •• ·* _ NO

· .
• X •••••••••••••••••••••••••
x

DSPE
••••• 04 ••••••••••

* -• SET • • •••• X* OLD EQUAL TO •••••
X * NEW • - -.................- -•• 04 •

.- *

- . * *
x . ..

05 ••
..RESTORE ••

NO .* FLOATING ••
•••••• POINT ••

•• REGISTERS ••
• YES

DSPH • *. • *. aspc x
••••• El ••••••••• * E2 *. E3 *.
* * •• *. .* *.
* SET YES •• *. NO •• IS NEW A •• NO •
• NEW EQUAL TO .X.......... NfW = 0 •••••••••• X •• TIME SLICING ••••••
• OLD. •• •• *. TASK .* • • *... ••.•
••••• *****.*..... *. •• • •••

• • YES

x
DSPE ••• TMSL4 X TMSL5

Fl.. • •••• F2 ••• ****... .***.F3 ••• *.***.*
• * *. * GET TCB FRO.... *. •

•• IS NEW A *. YES .'NEXT' FIELD OF* • NEW:= NEXT •

*****E4*.*....... * •••• ES ••••••• ***
* •• • *
* RESTORE • X. RESTORE *
• REGISTERS 0-9 .X •••••••• *FLOATING POINT.
• *. REGISTERS • · .. . * ••••••• * ••• * .**. • •• *.***.* •• * ••••

x .*. FS ••

•••• X •• TIME SLICING .* •••••••• X. TIME SLICE ••••••••• X.TIME SLICE TCB .X •••••••••••••••••

• * IS ••
.*CURRENT RB •• NO •

•• FOR SVC •••• X.
*.TRANSIENT •• *. TASK.* .CONTROL F-LEMtNT. • TO BE CHECKED.

•••• • (TSCF) *. * •• AREA ••
* NO

x .*. Gl ••
•• IS ••

YES.. REQUEST *.
••••• BLOCK FOR NEW.*

•• TCB IN .*
.WAIT

* NO

x

TMSL9
* •• *.G2* •••••••• *
* UPDATE *
.'NEXT' FIELD OF.
* TIME SLICE .X •••
*CONTROL FLE ME NT •
* (TSCE) • •••••••••••• * ••••

••• X
HI *. • •••• H2 ••••••••••

• *15 NEW.. • •

x
. *.

G3 *. . * IS *.
•• REQUEST •• YES

.BLOCK FOR NEW. ••••••
•• T C8 IN ••

..WAIT ••
* NO

x ~
••• .TMSLB •••

H3 •• H4 *.
•• 15 NEW.. • •• * •

• YES

• * •
G5 ••

•• IS ••
•• CORRECT •• YES.

•• ROUTINE IN .* •• X.
•• TRANSIENT ••

..AREA ••
* NO

X
• •••• HS.* ••• *** ••
• USE TRANSIENT.

•• TASK TCB •• YES • ENQUEUE TIME • • YES •• TASK TeB •• NO X •• ALL TIME •• • AREA REFRESH •
.~OUTJN~ TO LOAD.
• CORRECT 5VC •
• ROUTJ NE •
•• ** •••••••• **.**

.OISPATCHABLE . •••• X •••• * SLICE T]MER • *. •• • QUEUE ELEMENT *
•• •• x •••••••• *** ••••••

• NO •• *. . .
•••••••••• x. • D 4 •

* *

•••••• *.DISPATCHABLE •••••••••• x •• SLICE TeBS ••
•• •• •• CHECKED .* •• • * ••••

*. •• • •• *
• YES · .

• X ••••••••••• ·
.X .. . X

• DSPD X
••• **J 1 ** ••••••••
* •
• NEW ::: •
• N~XT TCB ON •
* QUEUE *
• •

x

DSPG •••
••••• J4 •• * •••• *** J5 * •
• • • •. TASK ••
• ENQUEUE TASK. YES.. TIMER ••
• TIMER QUEUE .X •••••••••• ELEMENT TO BE ••
• ELEMENT. ..ENQUEUED .*
• * *... ••••••••••••••••• • •• *

* NO

. .
• X •••••••••••••••••••••••••

••• OSPW X
Kl •• • ••• *K2.*.* ••••• * ••• *.K3.****..... • •••• K4 ••••••• **.

•••• • *. • * • • ••• KS ••• *.* •• *
• NO.* ENO *. YES • SET. • RESTORE. * RESTORE. •
••••••• OF TCB QUEUE •••••••••• X. 'WAIT' BIT IN ••••••••• X. REGISTERS 2-9 ••••••••• X.REGISTERS 10-1 ••••••••• X. LOAD OL~ PSW

*. •• • OLD PSW *. •• •• • *... . •. *. * •••••••••••••••
•• •• ••••••••••••••••• ..* ••••••••••• **. • •••••••• **.****.

*

Appendix c: Flowcharts 127

• Chart 04.

128

ABEND Control Flow

FROM SYSTEM
PROBLEM PRDGRA,'~

..A3********* OR ABTERM • ENTRY •

• •
**** ••• ***.****

X
.e3** •••••• · •• SYSTEM TASK
*IEAGTMOO *ABENDING ****S4 ••• *** •••
--*-*-*-*-*-*-* * PLACE • * ABEND * •••••••• X*SYSTEM IN WAIT *
.INITIALIZATION * • STATE *
* .'MUST' ********* ••• ***
*****************COMPLETE

B[T seT

X
••••• C3 •••••••• **

NORMAL *IEAGTM06 *
END *-*-*-*-*-*-*-*-* • ••••••••••••••••••••••••••••••• * PURGE I/O •

• FOR ABNORMAL *
* END * •••• *.********** •

• ABNORMAL
.END

X
*****03*.*.*.* •••

MAIN STORAGE *IEAATMOI .MAIN STORAGE
• NO DUMP AVAILABLE *-*-*-*-*-*-*-*-* AVAILABLE
.x ••••••••••••••••••••••••••••••• OETERMINE MAIN •••••••••••••••••••

• STORAGE *ABDUMP
.IN)JCATIVE * REQUIREMENTS *
.DUMP *****************

.MAIN

.STORAGE

.REQUIRED

X
*****E3***** *****
*IEAATM02 *

• *-*-*-*-.-*-*-*-*
.x •••••••••••••••• * ACQUIRE * •••••••••••••••• X.

•••• · . * F2 * ••• • •

X
*****F2**·*****·*
• IEAATM03 •
• -.-.-.-.-.-*-*-*
• FORMAT •
.INL>ICATIVE DUMP* • • ••• * ••••• * •• *** ••

* MAIN STORAGE * · . *******.*****.***
.NO DUMP
• OR
.PREVIOUS
.DUMP
.FAILED

x DeB FAILED
*****F4*********. TO OPEN
.IEAATM04 * ••••
-.--.-.-*-*-*-. • •
* * •••• X. F2 *
.. CALL AeDUMP * * *
* * ****
* •••••• *** •• *****

· ." . . •••••••••••••• x •••••••••••••••••••••••• X.X •••••••••••••••••••••••••

SCHEDULER-51 ZE X SMALL
PARTIT I ON *.***G3* ••• **.***PART I T ION

•••• 62 •••• **... .1 EAGTM05 * ****G4***.*** ••
• STEP DELETION. .-.-*-*-*-*-*-.-. • STEP DELETION *
* ROUTINE .X •••••••• * ABENO * •••••••• X. ROUTINE •
• IEFSD515. • TERMINATION * * IEFSD599 •

*** •••• * •• *.*** • • *.******** •• * ••
•••••• ********* ••

Chart 05. Communications Task

****83********.
.. ENT~V *
.FROM DISPATCHER. · . ***************

lEE"CVCTW
*****C3* ********* · . • • .. WAIT MODULE

• · . *****************

SVC72 X IEECYCTX
*****03 ** ****.*.. • •••• 04 ••••••••••
*] EECVCT R
--*-*-*-*-*-*-* .. EXTERNAL * •••••••• X. INTERUPT ..
• ROUTER" .. HANDLER
•••• **********... • ••••••••••••••••

x

5VC34 IEECYPM X E2.......... E3
*JGC0003D ... •
--*-*-*-*-*-*-*. .. • DETAIL .X ••••••• X. PROCESSOR .X •••••••••••••••••
• ON SEPARATE •• •
• CHART.. •

x

IEECVOC X
••••• F3 ••••••••••

• • • •
• OPEN/CLOSE • • • • • •••••••••••••••••

IEECVPM AND lEECVOC ARE CSECTS OF DEVICE
DEPENDENT MODULES. THE CONSOLE DEVICE(S)
WILL DETERMINE WHICH MODULES ARE USED.

Appendix C: Flowcharts 129

Chart 06. SVC 34 Command Processing

IGC00030
IEE03030

••• **Al ••••••••••
.. .. •••• "2 •••••••••
*TRANSLAT ION TO .CHA) N
.. UPPER CASE OR ••••••••• X. RETURN ..
.. CSCB CHAIN"" ..
.. MANIPULATION • • ••••••••••••••

• COMMAND

lEE0403D x IGC0603D IGC09030

130

••••• e I •••••••••• 83.......... 84 •••• 62.··.··.·. .. PROCESS SET
,. SCAN FOR" .. XCTL TO * .. COMMAND a. .CLOCK .. TIMER ..
.. VALID COMMAND * •••••••• X. APPROPRIATE AUTO. DATE + •••••••• X. MAINTENANCE ..
.. AND ROUTE" ., MODULE ,. .. PARAMETERS"" •••............ • •...... ***...... • •..•.•.•••..••••

NO. CLOCK

IGC1B03D IGC01030 C3.......... c" ••••••••••
• PROCESS." •

CANCEL .DEFINE. CANCEL .MOUNT • PROCESS • •

NOTE- IGCOB03D AUILDS

ACTIVE •••• * ACTIVE TASK. * •••••••• X* MOUNT COMMAND * •••• X.
* SET MOUNT * * *
• PARAMETERS *. •
.*****.**.* .* ••• * •• **.** ••• *
CANCEL.
NOT •
ACTIVE. • DEFINE

. .
. .
... x.

CSCB AND POSTS
MASTER SCHEDULER FOR

HOLD

.IGCOB03D X
* ••• *03 •••••• ***.
.PROCESS DISPLAY.

RELEASE
RESET
DISPLAY

• JOBNAMES, • • * STATUS - FOR ••••••••••••••••••••••••••••••• X.

A.a.N, OR JOB NAME
CANCEL

• OTHER COMMAND •
• SEE NOTE •
••••• * ••••• *** •••

JOB ON QUEUE

.IGC0703D
••• **E3.* ••• ***.*
* PROCESS *
• MODIFY. STOP • •
.(NOT INIT) MARK ••••••••••••••••••••••••••••••• X •
• AND POST PROPER.
• csce • ••• * •••••••••••••

IGCIl030 .IGC0503D ...•• F2.......... • .•.. F3 •••••••••• · .. .
• PRlJCFSS • X.. •
• VARY AND UNLOAO ••••••••• X.MESSAGE WRITING ••••••••••••••••••••••••••••••• x.
• •• MODULF • · .. .
••••••••• *.*..... • ••• **.** ••••••••

I('C12030 •• * •• G3 •••••••••• · . * PROCfSS • •
• REPLY COMMAND ••••••••••••••••••••••••••••••• X. · . · . •...............•

IGC14030
•••• *H3.** •••••• * · . • PROCESS •
• HALT COMMAND ••••••••••••••••••••••••••••••• X. · . ·•..

1(,(l9030
••••• J3* •••• * ••••
• PROCESS • • •••• J~ ••••• *.*.
• START. STOP • X • •
.I~lT. AND POST ••••••••••••••••••••••••••••••••••• X. RETURN *
• APPROPRIATE • * *
• PARTITION • •••• ** •••••••••••

Chart 07. Master Scheduler Task

*** 3 •••••• * ••
• • • ENTRY FROM NIP •
• • •••• *** ••••••••

lEFSD569 X
•• **.83 •••••••• •• · . *' SCHEOULER •
• INITIALIZATION *'
• • • • •••••• ** •••••••••

X
••••• C3 ••••••••••
*IEEDFINI *'
--*-*-*-*-*-*-* *' ESTABLISH *' *' PARTITION *' *' FORMAT *'•••....

X
••••• 03** ••••••••
*' DISPLAY *' *' AUTOMATIC *'
.COMMANDS ISSUE *'
*' 'READY' *' ·•..........

X
•••••• E3 •••••••••••

WA IT
FOR SET
COMMAND

••••••••••••• • POST

••••• F3 ••••••••••
*YEF$QINT *'
--*-*-*-*-*-*-* *' JOB QUeUE *' *' FORMAT OR *'
.SYSTEM RESTART • ••..............•

X
••••• G3 ••••••••••
*' ENTER *' *' AuTOMATIC *' *' COMMANDS TO *'
.SYSTEM, IF ANY *' · . •••••••• *** ••••••

x
••••• H3 •••••••••• · . *' ESTABLISH *

PARTITIONS * • · . ** •••••••••••••••

X
****J3.*** •••••

• EXIT •
• TO DISPATCHER. · . •• ** •••••••• ***

Appendix c: Flowcharts 131

Chart 08.

132

Master Scheduler Resident Command Processor

IEECIRSQ
******82***********
* WAI T

••• X FOR COMMAND

************* .PoST

NQTE- THE RESIDENT
COMMAND PROCESSOR
NEVER TFRMINATES

• X •••••••••••••••••••••••••
x

. *.
C2 *. *****C3**********

.*ANY JOB.. *IEESD562 *
.* QUEUE *. YES *-*-*-*-*-*-*-*-* *. COMMANDS TO .* •••••••• X* JOB *
. PROCESS . * QUEUE SEARCH
.. * ROUTINES *

* •• * ***************** * NO

.*.
02 *. *****03********** .* *. *IEEDFINI *

.* DEFINE *. YES *-*-*-*-*-*-*-*-* *. COMMAND .* •••••••• X* *
. . *DEFINE ~OUTINES*
.. * * * •• * ***************** * ~ .. .

••••••••••••• x •••••••••••••••••••••••••

Chart 09. Queue Search

QUEUE SF ARCH MOOULES

IEESD562 IEESD566
*****83********** .*.**84*********.

****82 •• *** ••• * * * * ,.
• LINK." *XCTL * DISPLAY"
• FROM IEECIR50 ••••••••• X. SYNTAX CHECK _ •••••••• X.ACTIVE ROUTINE ••••••• • ,.,. *,. ,.
.** •••••• **.... ,. * * • ••••• ************ **** ••• ** ••••••••

• XCTL

IEESD563 X IEESD564 C3.......... .* ••• C4 **
• SETS UP aUEUE .,. ,.
,. READS QUEUE • XCTL • QUEUE •
• CONTROL RECORD .X ••••••• X.SEARCH ROUTINE ,.
,. - ON RETURN .,. ,.
,. TESTS RESULTS." • •............•..

• XCTL

lEE50565 X ····.03 .•••••••••
• JOB ,. •••• 05 •••••••••
,. ENQ LINK ,. ,.,.
• MESSAGE LINK * •••••••••••••••••••••••••••••••••• X* RETURN *
• AND CLEANUP • * * •• ,. ••••••••• ***

WILL OETERMINE WHICH MODULES ARE USED.

Appendix c: Flowcharts 133

Chart 10 • Queue Manager Table Breakup Routine

•••• Al •••••••••
o 0
• lEFS0514 •
o 0

•••••••••••••••

x .0. BI 62.......... 63
• t +. *JEFQMRAW. *IEFQMRAW •

• t WRITE •• NO .-*-.-*-*-*-*-*-* *-*-*-*-*-*-*-*-* •• OUT TABLES •••••••••• X. READ ••••••••• X. READ IN • *. .t • IN FIRST TaCR • • FIRST PART OF •
*..t • •• TABLE •

•• • * ••••••••••••••••• • ••••••••••••••••
• YES

x .0.
Ct •• • •••• C2 ••••••••••

.* *. *IEFQASGN.
• * HTTR *. YES *-*-*-*-*-*-.-*-* *. eQUAL ZERO •••••••••• X. • *. .* • ASSIGN HTTR •

.. • ••.............
o NO

X
••••• 01 ••••••••••
*IEFQMRAW •
--*-*-*-*-*-*-*
• BRING •
• IN EXISTING •
• TQCR • •••••••••••••••••

· . ••••••••••• x.x •••••••••••••••••••••••••
x

• 0.
El *. • •••• E2 •••••••••• • * *. *IEFQMRAW.

•• ANY ... NO .-.-.-.-.-.-.-.-.
•• MORE TABLES X. WRITE •

•• •• • OUT UPDATED •
•••• • TOCR ••...••••.

• YES
00. * Fl ... X.
* 0 •••• x .0.

Fl ••
.YES •• ••
•••• *.END OF TABLE ••

o NO

X
•••• F2.· ••• •••• o 0

• RETURN •
o 0
••••••• * •••••••

X
• •••• C3 ••••••••••
o 0
• GET STORAGE •
• FOR TABLE ANO •
.MOVE BUFFER IN.
o 0

•••••••••••••••••
•••• o o.

• 03 •• X. o 0
•• ** x .•. . ..

03 •• 04 * •
•••• •••• • ••• 05** •••••••

•• •• YES •• ANY •• NO. •
•• ENO OF TABLE x •• MORE TABLES •••••••••• X. RETURN ••.•.....•.

• NO • YES

· . .X •••••••••••••••••••••••••
x

• o •
E3 •• ..* .. E4 ••••••••••

•••• *IEFQMRAW.
•• •• YES .-.-.-.-.-.-.-.-•

•• END OF TaCR •••••••••• X* •
•• .* • GET NEXT ToeR ••.•..........

o NO

· . .x
X

••••• F3 ••• *· •••••
.IEFOMRAW • .-.-.-.-.-.-*-.-.
• READ IN •
• NEXT PART OF •
• TABLE • • ••••••• * ••••••••

••• *
.00
•• x. 03 •

* 0 x •••• .•. . ..
G 1 •• G2 •• * •••• G3 ••••••••••

•••• •••• .IEFQASGN.
•• •• YES •• NE XT *. NO .-*-*-.-.-*-.-.-•

•• END OF ToeR .* •••••••• X •• TOCR EXISTS •••••••••• X. •
•• •• •• .* .ASSIGN NEW TQeR. •• •• • •• * •••••••••••••••••

• NO • YES

X
••••• H2 ••••••••••
• IEFQMRAW • . -.-.-.-.-.-.-.-.
• WRI TE OUT •
• OLD TOCR READ •
• IN NEW TOeR • ••••••••••• * •••••

X
• •••• H3 ••••••••••
lEFQMRAW • .-.-.-.-.-.-.-.- o 0
• WRITE OUT OLD •
• TOeR • • ••••••••••••••••

• x • • X •••
x .0.

Jl *. • •••• J2 ••••••••••
•• *. .IEFQASGN.

•• TTR IN •• NO .-*-*-.-.-.-.-.-*
•• NEXT POSiTION ••••••••• .oX. •

*. •• .ASSIGN NEW TTR •
• .o.. • •

•• .o. • ••••• * ••••••••••
• YES

· . .oXo.oo • .o.o ...

X
** ••• Kl ••••••••• *
.IEFQMRAW • . -.-.-.-.-.-*-*-.
• WRITE •
• OUT PART OF •
• TABLE • •••••••••••••••••

134

x
•••• o 0

• Fl •
o 0

••••

Chart 11. Reader/Interpreter (Sheet 1 of 3)

****AI ••••••••• * FROM SYSTEM •
• T ASK CONTROL ,.,
• (]EE591S0) • ••••• * •••••••••

.LINK

IEFS0537 x
••••• 8 •••••••••••
• LINKAGE •
_MODULE TO FREE •
• NEL AND NEL •
• LISTS UPON •
• RETURN • •••••••••••••••••

X
••••• Cl ••••••••• •
*IEFSD531 17A2.
--*-*-*-*-*-*-* ,., TRANSIENT ,.,
• READER RESTORE •
• ROUTINE • •••••••••••••••••

IEFPH2 X
•••• ·01 ••• • ••••• • * • • READER RESTORE._
,., OPEN READER. *
,., OPEN PRoeLIB •

• * ••••••••••••••••• • XCTL

x
••••• *12 ,.,
,., A3. . .

FI RST PASS

···."3 ••••.••••
• FROM SYSTEM •
,., TASK CONT ROL •
• CIEEVRCTL) ,., •••••••••••••••

.LINK

• ••• "s •••••••••
,., FROM SYSTEM •
,., TASK CONTROL ,.,
,., (IEE50591) •
• ••••••••••••••

.LI NK

IEFVHl x IEFSD537 IEFSD533 X ...•• 83.......... . •••• 84.......... • •••• 85•
• •• LINKAGE. .SET UP NEL AND.
• INTERPRETER. LINK.MODULE TO FREE. XCTL. NEL LISTS. •
.INITIALIZATION .X......... NEL AND NEL .X ••••••••• ASSIGN QUEUE •
.BUILD IWA INPUT. • LISTS UPON. • SPACE FOR •
• DeBS • • RETURN. • TRANSIENT ROR • • •••• *11 ,., ••••••••••••••••• ••••••••••••••••• • ••••••••••••••••

• 03 •

• •
* FROM

1282
1205
12E4-
12G2
13Gl
15C4

IEFVH2 X
••••• C3 ••••••••••
* OPEN * * READER FOR * * QSAM. OPEN *
• PROCLIS FOR •
• SPAM • • ••••••• * ••••••••

.XCTL

· . •• x.
IEFVGM IEFVHA X

••••• 02 ••••••• *.. 03 •••••••••• * • LI NK. INTERPRETER •
• 5MB .X ••••••••• CONTROL READ •
• ME SSAGE. • I NPUT FROM •
• BLOCKING .RETURN • PORCLIB OR •
• ••••••••• X. INPUT STREAM • .*.****.......... * ••..••••••••••••

X
IEFYHB •••

• •••• E2.......... E3 •• ·
• • YES.. DATA ••
• CREATE I/SYSIN .x.......... IN INPUT ••
• 00 •• *. STREAM •• ·

• NO

.11 • FROM
• F4. 13Fl

x .•.
F2 ••

• YES.. ••
••••••••• JOB FAILED ••

• NO

• • •
. !. IEFYHAA i

F3 •• • •••• F4 ••••••••••
•• END OF •• YES • SET EOF FLAG •

•• FILE ON •••••••••• X.AND BUILD NULL •
•• READER •• • STATEMENT • *. .• • •

• NO

IEFVHC X •••
••••• G3.......... G4 •• ·

• • • YES.. JOB ••
••••••••••••••••• x. CONTINUATION .X •••••••••• TO PRQCESS ••

FROM
13F4
13Gl

X. CHECK. •• •• ·•.•....
* XCTL • NO

• • .11 •
• G3.
••••• x

. *.
H3 ••

•• •• NO
•• CONTINUATION ••••••••••

•• EXPECTED •• X
•• •• .12 •

• YES • A3 •

x .•.
J3 ••

•• VALID ••

. .
•

YES •• • •
•••••••••• CONTINUATION ••
X *. ••

• 12 • • •••
• H3. • NO
• • •

IEFVGM X
••••• K3 •••••••••• · . • 5MB •
• MESSAGE •
• BLOCKING •
* • •••••••••••••••••

x •••••
*12 *
• A3 •
• * •

x
• •••• • 15 •
• H2 • • • •

Appendix c: Flowcharts 135

Chart 12. Reader/Interpreter (Sheet 2 of 3)

FROM .****
1101 *12 ,.
llH3 ,. "'3.
llK3 ,. ,.
13F4
17K5

lEFVHCB X *** •• A3 •••••••••• · . ,. VERB ,.
••• X.IDENTIFICATION ,.

.. AND PRQC LIB ,.
,. MERGE ,. ••• * •• ** •••••••••

. ..
*** •• 82 •• *.**.*** 83 *. ,. ,. .* ••
,. SET ,. YES.* PRoeLIB *.
,. SWITCH IN IWA *x •••••••••• RECORO NEEDED •• *' ,. *. •• ,. • *..* ** •• ****......... * •••

x
*11 ,.
,. 03.

• NO

x .*. IEFVHM
• • •

C3 *. ..**.C4 •••••••••• .,. *. ,. ,.
.* *. NO ,. SCAN COMMAND ,. *. RECOGNIZED •••••••••• X.TABLE FOR VALID.
. VERB. ,. COMMAND ,. *..* ,. ,. * •• * ••••••••••••••• **

,. YES

X x
lEF VHL • *. ••• IEFVGM

••••• 02 ••••• ****. D3 *. 04 *. • •••• 05 ••• ***** ••
,. ,. .* *.
,. NULL ,. YES.. NULL *.
,. STATEMENT .X.......... STATEMENT .*

PROCE SSOR ,. *. .,.
• NO X

.+. • *.
E 1 ,.. E2 *. •••• •• *. •• *. YES •• ••

o. ..
* •••

o NO

IEEVHE X
*.***E3.*** ••• *.* • •
• JOB •

•••• * • .• *. NO • 5MB
.VALIO COMMANO •••••••••• x MESSAGE

•• .* • BLOCKING *... * •
• •• * .:):.* ••• **** ••• * ••

* YES

X
•••• *E •• **.*** ••• • • * CHECK *

x
***.*
·11 * * 03 • ..

•• PRIOR ROR EOF.*X •••••••••• PROC LIB EOF •• ••• X*CONTROL ROUTER * • AUTHORIZATION •••••

136

•. .• *. .• •..• *...
* •• * * •••

* YES • NO

x

• 0

* F4- * • • ** ••

x .•.
F2 •• •• *.

YES.* PRIOR ••
••• *.PROC LIB EOF .*

x
**** . .

• F4 *
o •
***.

*. •• •• • *
o NO

x .0.
G2 *.

* MODULE * • • .*****.*****.**.*

• AND ISSUE SVC •
• 34 * * ••••••• *.***.***

* •• *
o 0

• F4 ••••
• 0 x •••• •

.*. IEFVHEC X
F3 •• *****F4* •• *.***** .*.. * JOB •

.* •• YES * ENQUEUE *
.JOB STATEMENT. •••••••• X*VALIOITY CHECK •

. . * MODULE •
.. * *

•• •• .*.***.*****.*** •
• NO

.*. IEFVHH X
G3 •• • •••• G4 •• *.******

.* *. • •
•• PROCLIB •• YES • .* STEP *. YES * JOB AND •

TO
GET
CARD

•• RECORD •••••••• *. TO ENQUEUE •••••••••• X. STEP ENQUEUE •
•• AVAILABLE ••

*. • *
• NO

x
••• **
*11 •
• 03* • • ·

FROM
11 J3
13E5
15C4

•• •• • ROUTINE *
•••• * •

* •• * ***.**.******* •••
• NO

IEFYHEB X

x
.***.
.15 *
• 82*

.***.H3 •• * •• *****
* IF NEW * * JOB * •• x. ASSIGN/START *

• ••
*12 * * H3*
*.**.

• AND GET 5 *
• RECORDS •
•• ***************

x .•.
J3 ••

.. .
TO ENQUEUE

YES.* DATA * • . • ••• • •• *. I N INPUT ••
x

•••••
• 13 *
• AI* • • •

•• STREAM .*
* •• *

• NO

x
***.*
*13 •
* A3* • • •

* ••••
.)1 *
• 03.

• 0

A 9LOCK FOR IEFVHH
IS SHOWN HERE FOR
MODULE FLOW CLARI TV.
CHART 13 DEPICTS
IEFVHH IN MORE DETAIL

Chart 13. Reader/Interpreter (Sheet 3 of 3)

••••• FROM
*13 '" 12J3
• At. ..

•
IEFVHG X

••• **A 1** •••••••• · '" • *. '" .INTERPRETER CPO.X ••••• Al • * ROUTINE • • '" • • • ••• •••••••••••••••••

X
••••• B1 ••••••••••

• •
• PERFORM •
• CARD TO DISK •
• FUNCTION • • • •••••••••••••••••

.•.
Ct *. ** ••• C2 •• ** ••••••

.* *. '" '" YES.* ENOUGH *. .WAIT FOR WRITER'"
•••••• SPACE FOR •• x ••••••••• OR TERMINATION '" *. INPUT .* • TO FREE SPACE '"

•• DATA .It: • •
• NO X

x
IEFSD536.·.

01 ••
•• WTOR ••

***** FROM
*13 ., 12J3
'" A3* . .

•

IEFVFA .*. A3.......... A4 *. • •••• AS ****
* SCAN ROUTINE '" .* *. *IEFVJA 1~A3.
'" SCAN CARD AND'" • It: *. YES *-*-*-*-*-*-*-$-*
'" ROUTE * •••••••• X.. Joe CARD •••••••••• X. JOB •••••
• PROCESS ING. *. .* .CARD PROCESSOR '"
'" ACCORDINGLY '" *..* '" • ••••••••••••••••• * •• * •••••••••••••••••

• NO

.•.
B4 •• • •••• 95 •• *** •• * •• •• *. *IEFVEA 14A3..

.* *. YES .~.-.-*-.-.-.-.-. X
•• EXEC CARD .* •••••••• X. EXEC •••••

•• •• .CARD PROC::-:SSOR •
•• •• • ••••• *** •••• ** ••

• NO

IEFSD012 X IEFVDBSD
* •••• C3**** ••• *.. **.**C4 ••• *...... *** •• CS ••••••••• * * • .IEFVDA 14A3.. •
* .X ••••••••• -.-*-*-.-.-.-.-. • BUI LO •
• ALLOCATE CPO • * 00 .X ••••••• X* JS NAME TABLE *
• SPACE • • •• X*CARD PROCESSOR. * • • •• •• • ••••••••••••••••• ••••••••••••••••• • •• * •••••••••••••

x .*.
03 *.

· . • x •••••••••••••••••••••••••••••••••••••

IEFVHF X
*****04**.***.*** • • •• CPO FULL •• WA IT.

*.REPLY WAIT OR ••••••••••••••
•• CANCEL ••

•• SPACE •• YES •
• •••••••••••••••• X.. AVAILABLE •••••• X. • * *POST PROCESSOR *

• •
• CANCEL

X
••••• E I ••••••••••

* * • INDICATE *
• JOB FAIL AND •
• CLOSE READER • • • ••••••••••••••• *.

. .
•• .o •••••••• x.

x .•.
Fl ••

YES •• ••
••••• EOF IP ••

x
•• * ••
*11 * • F4.
•• .

.. * •••
* NO

x .•.
Gl *. •• *.

YES •• ••
•• ••• /* FOUND ••

x ••••• *11 •
• 03.

* * •

.. ..
.

• NO

x
** •••
.11 •
• G3.
* •
*

. .
• .o ••

• NO

x
• *.

****.E2*......... E3 ••
• • .* WTaR ••
• WAI T FOR WRITER. WAIT •• CPO FULL *.
.OR TERMINATION .X •••••••••• REPLy WAIT OR.*
* TO FREE SPACE • •• CANCEL •• • • *.. *
* •• ** ••• ***** •• ** * •••

.CANCEL

x
• * ••• F3 •••••••••• · . • INDICATE *
• FAIL JOB AND •
• CLOS E READER * •••••• • • ••••••••• **** ••• *

· . .****.* ••••• ** •• *
..**

• • * Al * * • * •••
x

• NO ••. . *.
E4 •• ES *.

•••• .* ••
•• 00. OR •• YES •• OVERRIDING ••

.00 DATA CARD •••••••••• X. STATEMENT .*
•• FOUND •• *. PROCESSED.* *...

* •• * * •• *
• NO * YES

x .. .
F4 * •

•• *.
•• •• NO

..CONTINUATION ••••••••••
..RECEIVED .* X ...* ••... ••• * .12 •

• YES * A3.

x
.** ••
*11 •
* G3. • • •

•• •

x
***.*
+12 •
• H3 •
• • •

Appendix c: Flowcharts 137

Chart 14.

138

JCL Statement Processors

JCL PROCE SSt NG MODULES
IEFPJA. IEFVEA AND lEFVDA
FUNCTION BY DRIVING
SUBROUTINES. THEIR
GENERAL FLOW IS DESCRIBED
ON THIS CHART

****A3* ••• *****
* • ,. ENTRY ,.

* * ••••.......•...

x
..*e3 •••••• ***.
* • * • _INITIALIZATION ,.
* * * • •••••••••••••••••

IEFYGK X
••••• C3 ••••••••••

* * * * ,. GET PARAMETER •

• * • * •••••••••••••••••

x
••••• 03 ••••••••••
* •
,. KEYWORD ,.
• PROCESSOR ,.
* * •

x
• +. IEFYGI

E3 *. • •••• E4 ••••••••••
• * +. ,. MAINTAIN •

• * BACKWARD *. YES ,. BACKWARD •
*. REFERENCE •••••••••• X. REFERENCE ,.

•• POSSIBLE •• ,. DICTIONARY ,.
.. • ,.

* •• * •••••••••••••••••
• NO

· . • x •••••••••••••••••••••••••
x .*. IEFYGS

F3 •• • •••• F4 ••••••••••
• + *. • ,.

•• BACkWARD •• YES • BACKWARD •
*. REFERENCE •••••••••• X.REF. OICTIO~ARY •

•• SPECIFIEO.. • SEARCH • •••........•.•••
• NO

· . • x •••••••••••••••••••••••••

IEFYGT X
..*G3 ••••••• *.*
* • * STORE INFO IN •
• PAR. DESCRIPTER.
• TABLE • • • ••• **.*.**.* •••••

IEFVHQ ••• •.•.. H2.......... H3 ..
• • .* ••
• QUEUE • YES • * WRITE ••
• MANAGER .x •••••••••• ON JOB QUEUE ••
• INTERFACE. •• •• ·

* NO

. .
••••••••••••••••••••••••• x.

X IEFYGM IEFSJ091 J3*.*** * * J........... ..*.*JS •••••• * ••• ·
• • LINK * CREATE • LINK • S.p.IIB JOB QUEU::: •
• CLEANUP .X ••••••• X.SIo4BS FOR SYSOUT.X ••••••• x* SPACE * • * RETURN • • RETURN • ASSIGNMENT • • .x......... *x..... ...• •

x
•••• K3 •••••• •••

• * • RETURN •

• *•.........

Chart 15. Job and Step Enqueue Routine

****. FROM
*15 * 12G4
* 82 • • • •

IEFVHH X IEFYHQ
*** •• 82 •• ** •••• ** ****.83.**** •••••
* •• READER *
• ,JOB AN) * • INTERPRETER •
• STEP ENQUEUE *X ••••••• X* QUEUE MANAGER •
• MODULE * • INTERFACE • • •• • ••••••••••••• **.. • ••••••••••• ** •••

..................................... .
x .•. lEFVHHB .•.

C2 •• C4 ••
• t •• • t MUST •• • * ONLY •• YES • YES.t ANOTHER ••

•• STEP TO ••••••••• *. ENQUEUE ••
• •••• STATEMENT BE ._X •••

t. READ •• t. ._

* •••
• NO

x
lEFVHK .t. IEFQOELE

02 *. • •••• 03 •••••••••• .*.. . *

x •••••
*l! •
• 03_

•• •

*. .-t. ._

• NO

x
**** •
*12 *
• H3*

•• • .t I/O •• YES • DELETE •
_.ERROR ON ,Joe •••••••••• x. JOB Q TRACKS • *. Queue .t • • *..* • •

••• t •••••••••••• ** •••
• NO

· . • x •••••••••••••••••••••••••
X

lEFS0532 ••• .t.
E2 •• E3 •• . *.. .t t • • * *. NO .t STOP •• NO

•• END OF FILE •••••••••• X •• READER FLAG ••••••••••••••••••••
•• •• •• ON ••

• YES • YES
XCTL • XCTL •

• X •••••••••••••••••••••••••
x

•••• • •
• H2 • • • ••••

x .•. . ..
F3 •• F4 ••

•• IS A •• ••••
YES •• REDEFINE •• NO.. IS THIS ••

•••••••••••••••••••• COMMAND •• x •••••••••• A RESIDENT ••
•• PENDING •• •• READER ••

•• •• * •••
• NO • YES

x x x .•. .•. . ..
G2 •• G3 •• G4 ••

•• IS THIS.. •• IS •• •• IS A ••
•• A USER •• NO YES •• THE CURRENT.. •• REDEFINE •• NO •

•• ASSIGNED •••••• X •••••• JOB FOR THE .* •• COMMAND •••• x •
•• TRANSIENT.. XCTL .XCTL •• READER •• •• PENDING .*

•• RDR •• ..PARTN.. ••••
• YES • NO • YES

•••• • XCTL • XCTL · .. • H2 •• X. X
FROM ••••• • * ••••
11G4 .15. ••••• x • •

• H2. IEFVHN X ••• • H2 •
• • • •••• H2.......... H3 •• • •
•• • •• IS •• • •••

• CLEAN UP. ..THE CURRENT •• NO •
•••••• • X. AND CLOSE. •• JOB FOR A ••••••••••••••••••••••••••••••••

• READER. •• SMALL ••
• • ..PARTN •• ...•..•....•...••

• YES
• • XCTL
••••••••••• x.

JEFS0537 X X
••••• J2.......... • •••• J3 •••••••••• · ..1 EFS0530 16A2.
• FREE • .-.-.-.-.-.-.-.-. • NEL AND NEL .X......... TRANSIENT •
• LISTS * .READER SUSPEND.
• •• ROUTINE •

X
•••• K2 •••••••••

• RETURN •
• TO STC •
• (IEESO";91) • •••••••••••••••

CHART SI

Appendix c: Flowcharts 139

Chart 16.

140

Transient Reader Suspend Routine

•••• ,6,2 •••••••••
,. ENTRY ,.
* FROM tEFKG ,. · . •••••••••••• **.

• XCTL

X
••••• S2 •••••••• *.
.. SAVE ..
,. FIXED LENGTH ..
:tOATA NECESSARY"
• FOR RESTORE IN.
.. tWA

X
••••• C2 ••• ** ••••• · . ,. FREE •
• OPTION LI 5T ,. · . ·

X
••••• 02 •••••••••• · . • SET BJ T TO •
• PREVENT REWIND.
• IF TAPE SYSIH • ·

x
••••• E2 •••••••••• · . .CLOSE AND FREE •
• -RDR DeB ,.
• -PROCLlB DeB •

* *
X

••••• F2 ••••••••••

• * ,. DELETE ,.
• Q-MANAGER ,.
,. IEFQMSSS •
* •

X
••••• G2 •••••••••• · . ,. seTUP.
• 514 PARM LIST.
• IN LWA •

• *
~ .'.

H2 *. • •••• H3 ••••••••••
• * •• • • * IS THERE *. YES ,.

.A P.I.E. AODR •••••••••• X. FREE. IT • •• . • • *. .,. * • * •• * ••••••••••••••••• · · . • x •••••••••••••••••••••••••

X ** ••• J2 ••••••••••
• SAVE CSCB •
• POINTER IN •
• SD33RTTR IN PIB.
• ZERO SD33HTTR • ·

X

••••• K2 •••••• •••• · . · . • FREE NEL • · . ·
x · . • A4- • ·

.. · .
• A4- • ·

X
••••• A4-••••••••••
.IEFSD514- • . -.-.-.-.-.-.-.-.
• WRITE TIOT •

AND tWA ON •
• JOBQUEUE •

X
••••• 84-•••• ••• ••• · . • FREE IWA. •
• EXITLIST. AND.
• ECB/IDB • • •

. ..
C. •• • •••• CS ••••••••••

..IS THIS.. • TURN OFF •
•• A USER •• NO .FLOATING READER.

•• ASGND •••••••••• x. OPERATI NG
•• TRANSIENT.. SWI TCH

•• RDR •• (SD33STAT) •. .• .* •••••••••••••••
• YES

X
••••• 05 •••••••••• · . • .TURN TRANSI ENT • .X......• ROR SW OFF •

x .*.

• (BASFL2) • ·
E4- •• • •••• ES ••••••••••

•• IS •• • •
• THERE A CARD •• YES. •

•• BUF. FRO'" •••••••••• X. FREE IT •
•• PREVIOUS •• • •

.RESTORE. • •
• NO

· .
• X •••••••••••••••••••••••••

X
••••• F ••••••••••• · . •
• FREE LWA • ·

X
••••• G4- •••••••••• · . • POST •
• NON-SYSTEM NO •
• WORI< ECB·S • ·

x
• •••• H4 ••••••• · . • SET •
.RETURN CODE TO •
• 1 IN R 15 • ·

X
••••• J4- •••••••••• · . • RESTORE •
• REGISTERS • · . ·

lEFSOS37 X
••••• 1<4 ••••••••••
• • • ••• 1<5 •••••••••
• FREE • • RETURN •
• NEL AND NEL ••••••••• X. TO STC •
• LISTS. • ([EES0591) • ·

Chart 17. Transient Reader Restore Routine

****A2 •• ******.
'" ENTRY '"
'" FROM IEFSD537 '" • • ••• ** •••• ******

LINK

X
***.*82** ••••••••
,.. SAVE ,..

'" REGISTERS. '"
,.. CHAt N SAVE '"
'" AREAS '"

• * * ••• *********.***

x .*. IEFSQ537
C2 •• • •••• C3 ••••• ***** ••• **C4 ••••••• ** •

•• IS *. '" '" '" '" .* REDEFINE *. YES RESTORE '" '" FREE *. COMMAND .* •••••••• X* REGISTERS ••••••••• X* NEL AND NEL
. PENDING . '" *.. LISTS
.. '" • '" '" * •• * ********* •••• *.*. .**** ••••• ******.

'" NO TO STC

X
****.02******* *** · . '" GETMAIN '"
.FOR LOCAL WORK ,..
'" AREA • • • •••••• ** •••••••••

X
*****E2******··**
'" SET UP '"
'" QMPA AND 514 '"
'" PARM LIST FOR '"
.RESTORE IN LWA '" • • ***.***** •••••• **

X
* •••• F2********** · . • • • SET UP ECB/[OB '"
• • • • *** •••••• ********

ic:
*****G2********** *IEFOS514 *
--*-*-*-*-*-*-* *RETURN IWA AND *
TIOT AND NEL EX
*LIST FROM JOBQ *

X
*****H2**********
• * * GET STORAGE * * FOR NEL AND *
* RELATED AREAS * · . *****************

X
*****J2*.******** · . * RESTORE * * POINTERS TIaT *
* AOOR TO Tce * • • ********* ********

X
* ••• 04******.*.

'" RETURN '"
TO STC '"

'" (IEE591S0) '" * •••• *** ••• ** ••

X PH 2
.K2** •••• ***. ..*.*K3********** *.***K4********** *****KS*.********
• • * *. * * OPEN * * PRE-SUSPEND * * SET UP READER * * LOAD QUEUE * * READER. OPEN *
INPUT CARD FROM •••••••• X* AND PROCLIB * •••••••• X* MANAGER * •••••••• x* PRoeLIB. *
* IWA TO GOTTEN. * DCB·S * * JEEQMSSS * *COMPLETE READER*
* BUFFER. * * * * * ~ESTORE *
*******.********* ***************** ***************** ******** •••• ***** .. XCTL

TO START X
PROCESSI NG *****

*12 * * A3* ..
•

Appendix c: Flowcharts 141

• Chart 18. Initiator Control Flow

•••• A3 ••••••••• · . • ENTRY * • •
•••• · '. • 83 *. X. ·

X
••••• e3 ••••••••••
*IEFSOStO 1982_

• •••• AS ••••••••••
*IEFSD589 *'
--*-*-*-*-*-*-* ••• X. SYSTEM *' *' TASK CONTROL *' · . •••••••••••••••••

x
• ••• • • *' 83 • • •

SP TERM*-*-t-*-*-*-*-$-*XCTL • •••• INITIAL ••••••••••••.••••••••••.•••••••••••••••.•••••••••.....• * JO~ ••••••••••••••••••••••••••••••••• START
RDR/WTR *' SELECTION •

• ROUTINE • •••••••••••••••••
• BR

X el..........• C2.......... e3•
*lEFSD541 • *IEFSD540 • *lEFSOSll •
-- *- *-*-*-*-*-* xc TL*-*-*-*-*-*-*-*-* BR*-*-*-*-*-*-*-*-* *' DATA SET .X......... LINKAGE .x......... JOB *'
• INTEGRITY. *' TO IEFSOS4t • ,.. INITIATION *'
• ROUTINE.. •• ROUTINE • ...•••...........••..••......•....

.BR

x
•••• · .

• C4 • • • ••••
X

• •••• 03 ••••••••••
.IEFS0512 •

• ••• • •
• C4 • • • ••••

x
• •••• C4 ••••••••••
.IEFS0553 • .-.-.-.-.-.-.-.-.
• LINKAGE •
• TO IEFS0512 • • • • •••••••••••••••• • XCTL

• -.-.-.-.-.-.-.-.ALLOCAT ION ERROR
••••••••••••••••••• STEP ••••••••••••••••••• · . • B3 • • •

x

X• El.......... EZ ..•••.....
• IEFSD555 .SP .IEFSD513 .JOB
• -.-.-.-.-.-.-.-. IN I T IATEO.-.-.-.-.-.-.-.-.CANCE L
• LINKAGE .x ••••••••• PROBLEM PROGRAM •••••
• TO IEFS0510. SR. INTFRFACE •
• •• ROUTINE •

XCTL

X

SR. INITIATION .BR
• ROUTINE •

X LINK

XRETURN
••••• E3 ••••••••••
• IEFSDS56 ••••• .-.-.-.-.-.-.-.-. • •
• ALLOCATION •
.. ROUTINE •

X
• •••• E4 ••••••••••
.IEFSD554 • .-*-.-.-.-.-.-.-.
• LINKAGE
• TO IEFSOS16 · . ..*

.XCTL

X

• •••• CS ••••••••••
.IEFS0588 • . .-.-*-.-.-.-.-.-. • •• x*- SYST~M *-
• TASK CONTROL • • • • ••••••••••••••••

x
• ••• · .

• G2 • • •
RESTORE

TRANSIENT
ROR

•• F2 ••••••• • •••• F4.......... • •••• FS ••••••••••
• • • • • PROBLEM PROGRAM.

• • · . ••••••••••• RETURN
•••• • •

• G2 *. X. • • •••• X
•• G2 •••••••

• • • • • ABEND .X ••• • • · . ••••••••••• XCTL
'GO'

••••• G3 ••••••••••
.IEFS0598 .. .-.-.-.-.-.-.-.-.
• ENQ/DEQ •

••• X. PURGE ROUTINE.
• •••.•.•..

MORE .IEFSDS16 • .IEFSD42Q •
STEPS.-.-.-.-.-.-.-.-. BALR .-.-.-.-.-.-*-.-.

•••• ALTERNATE" .X ••••••• x. •
• STEP DELETIGN • • TERMI NATI ON •

BR.. ROUT INE. • ROUTI NE • x.................
•••• .BR · . • C4 • ·

. .
•••••••••••••••••••••••••••••••••••• X.

142

x X
••••• HZ •••••••••• BALR. • •••• H4 •• * •••••••

MORE .IEFSD5I5 • • .IEFSD517 •
STe P 5.-.-.-.-.-.-.-. -. X. • • • • .-*-.-. -.-*-.-*-. •••• STEP ••••••••••••••••••••••••••••••••••• X. JOB •

• DELETION .HR • OELETION •
BR.. ROUTINE ••••••••••••••••••• • ROUTINE • X.................

•••• X SALR SR. NEXT
• • • JOB
• C4 •
• • x

X
••••• J2 •••• * •••••
• IEFSD42Q • . -.-.-.-.-.-.-.-. · . • TERMINATION • * ROUT I NE • •••••••••••••••••

X · .. ··J3·· .. ·.·.·· • IEFSD5B7 • .-.-.-.-.-.-.-.-.
• LINKAGE •
• TO IEEYTCTL • · . • ••••••••••••••••

x · .
• 63 • • •

· . • 63 • · . • •••

Chart 19. Job Selection Routine (Sheet 1 of 5)

NOlE-
AT ENTRY,
PARTITION HAS
ZERO PROTECT ION
IN TCB, PSW. AND
HARDWARE. ALSO
PSW IS
SUPERVISOR
STATE.

.....
*19 •

*···"2*******.· · . *' ENTRY *' • • •••••••• ** •••••

' B2 x *' • • •••• 82 ••••••••••

•• • • *' WAIT ON •
••••••• X. 'NO WORK' ECB *' *' IN PIS *' • •

••••
*19 *' • *' C2 •• X. • • •••• x ...

02 ••
YES.. LOT _.

•••••• BLOCK CREATED._ e.
• NO

X
••••• E2 ••••••••• • · . • • *' CREATE LOT *'
• BLOCK *'
• * •••••••••••••••••

X
••••• F2 ••••••••••

• • *' INDICATE (IN *' *' PIS) THAT LOT. *' BLK. CREATED *' ·
. .
••••••••••• X.

.....
*'9 *' *' H2* X

• • • •••• H2 ••••••••••

*. * • *' DISABLE [/0 •
••••••• X. AND EXTERNAL • *' INTERRUPTS *' • • •••••••••••••••••

x
• • *' 84 *' . .
••••

• ••• • • *' 84 • • • ••••
x .•.

84 •• • •••• 85 ••••••••••
•••• *' *'

•• SMALL •• NO • ENABLE I/O •
. PARTITION . •••••••• X* AND EXTERNAL *

•• REQUEST •• • INTERRUPTS •
• YES

X
••••• C4 ••••••••••

• •
• RETAIN •
• POINTER TO SPIL.
• • • • •••••••••••••••••

X
• •••• 04 ••••••••••

• •
• ZERO SPIL •
.POINTER IN ALL.
• LARGE PARTS. • • • • ••••••••••••••••

X
••••• E4 ••••••••••

• •
• ENABLE I/O •
• AND EXTERNAL •
• INTERRUPTS • · . •••••••••••••••••

X
••••• F4 •••••••••• · . • POST •
.'ECBB' IN SPIL •
• • • ••.

x .' .

x •••••
.21 •
• B1. . . .

ALLOWS SMALL
PARTITION TO
DEQ OFF SPI L
POINTER AS AN
EXCLUSI VE
RESOURCE

..... G3.......... G4 .. ·
• POINT TO • YES.. SPIL ••
• SMALL .X •••••••••• INDIC. START ••
.PARTITIONS PIS. •• WRITER •• ·

x
.23 •
• CI. . .

•

• NO

x .'. H4 ••
•• SP IL ••

•• INOIC. •• YES

REQUEST FOR
SYSTEM TASK
CONTROL ROUT I NE
TO START A
WRI TER IN
SMALL PARTITION

•• TERMINATION •••••••• REQUEST FOR
TERMINATION

• NO

x
.20 •
• 82. . .

•
REQUEST
FOR
INITIATION
FOR FIRST
STEP OF A
JOB IN
SMALL
PARTITION

FOR CURRENT
STEP AND. IF
ANY, INITIATION
FOR NEXT STEP
IN SMALL
PARTl TI ON

••••• Js ••••••••••

• • •• IF •
••• X. CREATED, FREE.

• LOT BLOCK • · . ..•.....•........

x
• 20 •
• B4 • . .

•

Appendix C: Flowcharts 143

Chart 20. Job Selection Routine (Sheet 2 of 5)

••••• *20 ,.
,. 82_

• • •
X

*****82*.* •• *** •• · . ,. REalEST WORk ..
••••••••• •••• •••• x. FOR JOBCLASS. ,.

.. VIA Q-MGR ,.

• • ••••• ********* •••

• YES X .*. . •.
el *. C2 *.

•• ANY *. .* * • • * MORE *. NO.* ANY •• *. JaBCLASSES •• X.......... WORK FOR .*
*. •• *.JOBCLASS .*

. . * •••
• NO

X
•••• *01.* ••••••••
,. POST ,.
,. 'ECBA' (IN ,.

. .
* * YES

X
••• **02******.* ••
*IEFSD511 ,.

***** *20 * * 84* •• •
X

*****84**********
*IEFSD515 *
--*-*-*-*-*-*-*ANOTHER STEP
* * ••••
* STEP DELETION *
• • ***************** X

.END ****

.OF * *

.JOB * E2 *

X
*****04**********
*IEFSD517 *
--*-*-*-*-*-*-*

• • ****

• SPILl WITH 'NO ,.
,. WORK' CODE OF ,.
,. ONE *

--*-*-*-*-*-*-* · . _JOB INITIATION *
••• x* *

.*.**********

x

***** *19 ..
* H2. . .

• •• *. . .

· . *********.*******

X

*****E2*******.*. *lEFSD512 ..
--*-*-*-*-*-*-* ALLOCATION ERROR

.. E2 ••••• x. :t ••••••••••••••••••

144

.. • _STEP INITIATION*,

**** * * ******.* ••••• ****

X
*****F2· *****
*IEFS0513 ..
--*-*-*-*-*-*-* * PROBLEM *
* PROGRAM *
* INTERFACE *

.CODED
XIN IEFS0513

*****G2******.*** * POST *
* 'ECBA' (IN *
* SPILl WITH *
* 'XCTL/CANCEL' *
* CODE OF ZERO *

.CODED
XI N IEFSD513

*****H2********** * WAI T * * IECSC' (IN *
*SPIL) FOR MOVE * * OF TABLES BY *
* SMALL PART. *

x

*19 *
* H2* •• •

*****F3**********
*IEFSD516 *
--*-*-*-*-*-*-* •
* * ••••••
*ALTERNATE' STEP * * DELETION * END
***************** OF

x
**** • • * E2 * • • **** ANOTHER STEP

JOB

* JOB DELETION *
• • *****************

X

*****E4********** * POST •
* 'ECE'lA" (IN *
SPIL) WITH 'JOB * TERM' CODE OF *
* TWO *

x

*19 *
* H2* .. .

CODED
IN
IEFSD511

Chart 21 •

•••••
*21 *
• B ••
• • •

Job Selection Routine (Sheet 3 of 5)

• *. ••• . *. .*.
81 *. 82 *. 83 *. e4 * • • * +. .* *. •• *. .•• • • * +. NO .* START RDR *. NO .+ *. NO .* TRACKS *. YES *. DEFINE •••••••••• X.. OR WTR •••••••••• X.. STOP INIT •••••••••• x •• ASSIGNED TO •••••• *. .* *. •• •• .+ •• THIS tNIT •• *..+ *... *...
•• • * * •• * *. .• * •••

• YES • YE 5 • YES * NO

X
••••• el ••••••••••

• IF • * ASGN I D. FREE •
• TRACKS FOR THIS.
* INITIATOR • • • •••••••••••••••••

X
••••• 01 ••••••••••

• •
• IF •

x •••••
*23 • . c.-• • •

x
••••• C3 ••••••••••
• IF •
• ASGN'O. FREE •
.TRACKS FOR THIS •
• INITIATOR • • • • ••••••••••••••••

X ••••• 03.** •••••••
• •
• IF •

X
• •••• 04 ••••••••••

• • • ASSIGN TRACKS.

x
•••••
*22 • . 8._
• • •

NOT ENOUGH FREE
TRA.CKS AVAI LABLE
FOR ASSIGNMENT

• CREAl ED, FREE • * CREATED. FREE * • FOR THIS •••••••••••••••••••
• LOT BLOCK * · . •••••••••••••••••

X
••••• EI ••••••••••
• •
• IF ANY. •
• FREE PENDING •
• CSCB • • •

X
••••• FI ••••••••••
• •
• POST •
• 'DEFINE" Eca IN.
• PIB • • • •••••••••••••••••

x
••••• • 19 •
• 82.
• •

• LOT BLOCK • ·

x ••••• • A5 •
• 85.

• • •

• INITIATOR • · . • ••••••••••••••••

X
••••• E •••••••••••
• • • INDICATE (IN •
• Pla) TRACKS ARE.
• ASSIGNED • ·•

x ••••• • 22 •
• BI. . .

•

X
• •••• ES •••••••••• · . WTD •

'START INIT •
• REJECTED' • · . • ••••••••••••••••

x
••••• F5 ••••••••••
• •
• IF •
• CREATED. FREE •
• LOT BLOCK • • • • ••••••••••••••••

x • •••• • 19 •
• B2.
• • •

Appendix c: Flowcharts 145

Chart 22 • Job Selection Routine (Sheet 4 of 5)

•• ***
*22 '"
'" 61'" •• •

X
••••• 81"'********* · . '" REQUEST WORK '"
'" FOR JOBCLASS,. *X •••••••••••••••••
'" VIA Q-MGR '" · . *****************

X YES .*. .*. Cl *. CZ * •
• * *. .* ANY * •

• * ANY *. NO .* MORE *. *. WORK FOR •••••••••• X •• JOBCLASSES .*
'" .JOBCLASS .* "'. . '" ...* *..*

* •• * * •• '"
'" YES '" NO

X
*** •• 01 ••••••••••
*IEFSD511 '"
--*-*-*-*-*-*-* · . *JOB INITIATION '" · . ****.** ••• *** ••• *

X

x ••• *.
*23 '"
'" 85. •• .

....• El.......... *****E3•.
*IEFS0512 '" *IEFSD516 '"
--*-*-*-*-*-*-* ALLOCAT ION ERROR *-*-*-*-*-*-*-*-* ANOTHER

•• X,"" * •••••••••••••••••••••••••••••••••• X* ••••• STEP
.STEP INITIATION'" "'ALTERNATE STEP '"
'" '" '" DELETION '" • ••••••••••••••••• • •••• ******.*****

**** • END *.*.
'" '" .OF '" '"
'" El '" .JOB • EI *
* * • *

**** ••••

146

X
*****F 1******* •••
*IEFS0513 .JOB
--*-*-*-*-*-*-*CANCEL
* PROBLEM ••••• ~Cc

PROGRAM *
* INTERFACE •
**************.* •

• XCTL

Gl***** · . · . *PROBLEM PROGRAM* · . · . ***********
.RETURN

X
.*Hl******* · . · '. * ABEND *X ••• · . • • ••••••••••• • XCTL

x X
****.J 1*.*.*****. ** ••• J3 •• **** ••••
*IEFS0515 * *IEFS0517 •
--.-.-*-*-.-*-.END OF JOB *-*-.-*-*-.-*-*-* * * •••••••••••••••••••••••••••••••••• x. *
* STEP DELETION * • JOB DELETION *

• •
***************** *****************

.ANOTHER
• STEP

x •. *. • •
• EI * • • .*.*

x
*.***
*19 * * H2. . .

•

• Chart 23. Job Selection Routine (Sheet 5 of 5)

x .*. ****.62.......... 83 *. • •••• 84
* • .* *. * • * DISABLE I/O • .* *. NO .. ENABLE I/O •
• AND EXTERNAL ••••••••• X •• START SYSTEM •••••••••• x. AND EXTERNAL •
* INTERRUPTS • *. RDR INTERRUPTS •

*23 •
* Ct.

* • *... . • ••••••••••••••••• + •• + ••••••••••••••••• . .
•
X

••• **Cl ••••••••••
• •
• LOAD GRI •
• WITH CSCB •
• ADDRESS IN PIB •
• • •••••••••••••••••

X
••••• 01 ••••••••••

• •
• ZERO •
*CSCB ADORESS IN.
• PIS • • • •••••••••••••••••

• YES

X
••••• C3 ••••••••••
• LOAD •
• GRI WITH CSCB •
• ADOR. IN M.S ••
• RES. DATA AREA •
• • •••••••••••••••••

X
••••• 03 ••••••••••

• • _ZERO CSCB ADOR ••
tiN MAST. 5CHEO.*
• RES. DATA AREA.
• • ••••••••• ** ••••••

x x ••••• El.......... • •••• E3 ••••••••••
•• •• • IF • • ENABLE I/O •
• CREATED, FREE .X ••••••••••••••••••••••••••••••••••• AND EXTERNAL
• LOT BLOCK • • INTERRUPTS •• •• ..••••.......•... . ••..............

X
••••• Fl ••••••••••
• • • INDICATE (IN •
• PIB) SYSTEM •
• TASK CONTROL •
• RTN. • •••••••••••••••••

X
••••• C4 ••••••••••

• • · . • WAIT ON EC8LIST • • • • •
x

• 19 •
• C2.
•• •

• •••• • 23 •
• 85 •
• • •

x . ..
85 ••

NO.. R.=.STORE. ••
• ••••••• TRANS. /SYS •••

•• RDR ••
• YES

X
• •••• CS ••••••••••
• •
• IF •
• CREATED. FREE •
• LOT BLOCK • • • • ••••••••••••••••

X
• •••• 05 ••••••••••

• • • INDICATE (IN • * PIB) RESTORE •
• READER * ·

• XCTL

X
•••• ES ••••••••• · . • IEFS0588 ·

• XCTL TO RE STORE ONe:

X
•••• Gl •••••••••

• •
• IEFS0589 ·

ALLOWS SYSTEM TASK
CONTROL ROUTINE TO INITIALLY
START ONE OF THE FOLLOWING

I.RESIDENT READER
2.TRANSIENT READER, USER-ASSIGNED PARTITION
3.TRANSIENT READER, SYSTEM-ASSIGNED PARTITION
•• WRITER, THIS PART IT ION
5.WRITER, SMALL PARTITION

OF THE FOLLOWI NG
I.TRANSIENT READER.

USER-ASSIGNED PARTITION
2.TRANSIENT READER.

SYSTEM-ASSIGNED PARTITION

Appendix c: Flowcharts 147

Chart 24.

NOTE-

small Partition Routine (Sheet 1 of 4)
• ••• A2** •••••••

• • .. ENTRY • · · . .. 82 *. x.

• ••••
*24 •
.. 64_

* * •
AT ENTRY, • • ••••••••••• x.

148

SMALL PARIT ION
HAS ZERO
PROTECTION
IN TCB. PSW.
AND HARDWARE.
ALSO. PSW IS
SUPERVISOR
STATE.

....
X

•• **.82 •••••••••• · . *' WAI T ON •
.'OX" 'NO WORK' ECa •

.
* •

*24 ..
.. 82_

•••••

.. IN PIS • · . ** •••••••••••••••

x
. *.

02 * •
• + *. • * •• YES •

*.SPIL CREATED
*. ... *.

• NO

X
••••• E2 •••••••••• · . • CREATE •
SMALL PARTITION
• INFO LIST • · . •• ** •••••••••••••

X
••••• F2 ••••••••••

• •
• INDICATE •
• (IN PIB) THAT.
• SPIL CREATED • ·•.............

x
•••• • • • 84 •

::r •
••••

x .'. 84
.* ...

.* *. NO *. DEFINE ••••••••••
. . x *..* •••••

. . *25 ..
• YES .. Bit

X
••••• C4 ••••••••••

• IF • .. ASGN I 0 .. FREE •
• TRACKS FOR •
• SMALL PART. •
• MOD. • ••••• * •••••••••••

X
•••• *04 ••••••••••
• •
• IF • ,.. CREATED. FREE •
• SPIL • * • •••••••••••••••••

X
• •• *.E •••••••••••
* •
• IF ANY. •
• FREE PENDING •
• CSC8 • • • • ••••••••••••••••

X
••••• F4 ••••••••••
* •
• POST •
.'DEFINE' ECB IN.
• PIB • * •

x
•••• • •

• 82 • • • • •••

• * •

• Chart 25.

***** *25 ,.
,. 61*

* * *

x

Small Partition Routine (Sheet 2 of 4)

..*. . .
,. 84 ,.

• • ** ••

.*. .*. .*. X
81 *. 82 •• 63 *. • •••• 84 ••••••••••

• * *. .* *. .* *. • ,. .* •• NO .* *. hO .* TRACKS *. YES • INDICATE (IN *. START ~TR •••••••••• X.. STOP INIT •••••••••• X*. ASSIGNED TO •••••••••• X. SPIL) PROBe
•• .* *. .* •• THIS SPM .* ,. PROG. ..
.. *..* *..* ,. INITIATION ,. * •• * * •• '" * .• ,. •••• lIt ••••••••••••

.. YES .. YE S ,. NO

X
••••• el •••••••• •• · . • INDICATE (IN ,.
,. SPIL) SYSTEM ,.
,. TASK CONT. ..

• • •••••••••••••••••
x

••••• *26 •
,. 61*

• • •

X
• •••• C2 •• • •• ••••• ,. IF ,.
,. ASGN'O. FREE ,.
,. TRACKS FOR ,.
.SMALL PART MOO ,.
• • • ••••••••••••••••

X
* •••• 02*.*.* ••• ·* · . ,. IF ,.
,. CREATFD. FREE ,.
,. SPIL ,.
• • •••••••••••••••••

x
*24 •
,. 62*
• • .

X
••••• 03 •• ** ••••••
• • ,. ASSIGN TRACKS ,.

x
*26 ,.
,. 61* . .

•

NOT ENOUGH
TRACKS AVAILABLE
FOR ASSIGNMENT

.FOR THIS SMALL * •••••••••••••••••• * PART. MOD. * • • *****************

X

*****E3********** • • * INOICATE (IN *
PIB) TRACKS ARE
* ASSIGNEO. * · . *****************

x
**** • • * B4 * * •

*****E4********** • • * WTO *
'START [NIT *
REJECTED' * · . *****************

X

*****F4********** • • * IF * * CREATED, FREE *
* SPIL * · . *****************

x

*24 * * 82* * • .

Appendix c: Flowcharts 149

Chart 26. Small Partition Routine (Sheet 3 of 4)

***** *26 *
* B 1'-

o 0
o

X

*****Bl*********.
* ENQ *
.. (EXCL ..) ON

• • X. MAJOR
.. 'SYSIEFSD'
.. MINOR 'SP' *

• *****************
**** o 0

.. 81 *
o 0

X

••.••.•........
x

• o.
B3 *. .. ,. ..

YES.* SMALL ••
•••••• PART. IN .*

. DEFINE .
. . * •••

o NO

• *.
C3 *.

• * *. ***.*Cl ••••• *.*·* o 0
.. DISABLE I/O •
.. AND EXTERNAL •

.* SCHEO. *. YES *. PART. IN ••••••
.. INTERRUPTS •
o 0
•• *** •••••• ** ••••

X
*****01 ••••••••••
o 0
o 0
.POINT TO FIRST *
.. TeB *
o 0

.*.*** ***********

x .0.
El *.

.* *. .* SCHEDULER *. YES
•• x •• PARTITION ••••••••••••••••••••••••••••••••

***. o 0

.. El *
o 0

. . *. .*
o NG

.x
x .0.

Fl ••
• * *.

. OEF] NE .
. . * •• * * NO

X

*****03********** • * • * STORE SPIL *
~ •• X*ADDR IN SCHED. * * PART. PIe *

* 0

X

*****E3********** * 0 * INDICATE * * SPIL ADDRESS * * STORED * * 0

.*.
F3 * • .* * • • * ANY *. NO • NO.* SCHED. * •

•• x •• MORE TCB'S •••••• •••••••••••••••••••••••••••••••• PART. W~]T'G •• *

**** o 0
.. Fl *
o 0

. . *. •• * •••
.. YES

x
*****Gl********** o 0
o 0
.. POINT TO NEXT *
.. TCB *
o 0

.*.**********

150

x

**** o 0

.. E 1 *
o 0

x

* * • 65 *
* *

*.FOR WORK • *
. . ••• *

* YES

X
.*G3..****.
* 0
*POST 'NO WORK' •
* ECB IN SCHED ••
* PART. BIT *
* 0
..*********

x
**** • *

* B"> * o 0

x
••••

* *
• Fl •

* * * •••

*.**
o 0
• B5 *
o •

X

*****85********** * 0
* ENABLE I/O * AND EXTERNAL
* INTERRUPTS
* 0

x
.* .

CS ••
YES •• ANY ••

• ••••• SPIL PTRS. ••
•• STORED •• •• .*

* •• * • NO

X •• * •• OS •••••••• **
• OEQ OFF •
• MAJOR * ·SYSIE,=SD'9
* MINOR 'SP'
* 0
*******.*********

X

*****E5**********
o *
* 'fIAI T *
tON DORMANT ECB *
* I N PI B * * 0

•• **
• * *
•• X. 81 •

* * ****

X

*****H5**********
o * * WAI T * ON 'ECBB9 IN
* SP]L
* 0 ••••• ** ••• * ••••••

X
•••• *...15*.* •• * ••••
* OcQ OFF •
* MA.JOR •
• 'SYS]EFSO' •
• MINOR 'SP' ..
o 0

*****.***********

x
. ••
• 27 •
• Bl •
• *
*

..

Chart 27. Sroall Partition Routine <Sheet 4 of 4)

** •••
*27 *
• 81. • • •

X
•••• *81 •••• ** ••••

•••• • •
• 83 * • •

x . '.
83 *.

**** • • * B4 * • • ****

X
64***** • • **** .* *. • • * WA.IT • * • NO.* *. * PROBLE"" *

* PROGRAM OR *
* IEESD595 *

* ON IEeBA' IN • * FI .x •••••• JOB CANCELED .*
• SPIL • * * *. .* • • •••••••• ** ••••••• **** *... • •

.'.
C 1 *.

.* *.
.* *. YES

_.POST CODE = 2.* ••••
•. .*

* •••
• NO

.•.
01 *.

• * ••

x

*24 *
* 84. • • •

NO .* *. YES
••••• POST COOE = 1.* ••••

. •• •. .
x

**** . . * ••• · * 83 * • • POST CODE

**** = O. MEANS
STEP HAS BEEN
SCHEDULED
BY SCHEDULER
PARTITION

**** · . * FI * · . ****

X

*****F 1 ********** • • * MOVE TABLES *
* INTO SMALL *
* PARTITION *
• •

X

x
***** *24 *
* 62.
•• •

JOB
TERM'O
IN SCHED.
PART! TI ON

'NO WORK'
FOUND BY
SCHEDULER
PARTI TI ON

*****G 1********** *****G2********.*
* * * * * POST * * IF ANY. *
.'EeBe· IN SPIL ••••••••• x_OPEN JOBLIB DeB.
* * * *
* * * * ***************** *****************

X
*****H2********** • • * IF * *ANY. OPEN FETCH*
* DCB * · . *****************

x
***** J2********** * SET * * PR06, PROG. *
P.K. IN TCB AND
* HARD WARt * • • *****************

X
*****K2********** • • .

FREE SPI L *
• · . ***************** • XCTL

x
**** . .

* B4 * . .

• •• *
* YES

*********** .RETURN

x X
*****C3********** **C4*******
* * * * * POST * * *
*'ECBC' IN SPIL * •••••••• X* ABEND *
* * * *
* * * *
***************** *********** ALLOWS .XCTL

LARGE • SMALLGO
PART IT I ON
TO
CONTINUE

*****04********** · . * SET ZERO *
P.K. IN TCB AND
* HARDWARE *
• • *****************

X

*****E4********** · .
CREATE SPIL · · . *****************

X
*****F4********** • • * INDICATE *
* (IN PIB) THAT *
* SPIL CREATED * · . *****************

X

*****G4********** · . * INDICATE (IN
* SPIL)
* TERMINATION *
• • *****************

x

*26 *
* Bl* . .

•

Appendix c: Flowcharts 151

• Chart 28.

152

System Output Writer Control Flew

.*.*C3*.****.*. FROM SYSTEN TASK
* ENTRY * CONTROL ROUT tHE * FROM IEESD591 * (CHART 30)
* * •••••••••••••••

LINK

X
*****03**********
*IEFSD080 *
--*-*-*-*-*-*-* • WRITER *
*INITIALIZATIQN •

* * *._ .. _ .. _._

• x •••••••••••••••••••••••••
X

*** •• E3 ••• *** ••••
*IEFSD081 *
--*-*-*-*-*-*-*
* * *CLASSNAME SETUP.
* * *.*.***** ••• * ••••

••••••••••••••••••••••••••••••••••••• x.
x :MODIFY COMO

•••• *F2*.* •••• *** *****F3 •••• **.... F4******* •••
*IEFSD084 * *tEFSOOB2 • *IEFSDOB3 * STOP •••• FS •••••••••
--*-*-*-*-*-*-* NO *-*-*-*-*-*-*-*-* COMMAND *-*-*-*-*-*-*-*-* COMO * •

••••• *X •••••••• * MAIN * •••••••• X. • •••••••• X* RETURN *
X * WAIT ROUTINE • WORK * LOGIC CONTROL * ECB *COMMAND ROUTINE* OR I/O * *

* * * ROUTINE * POSTED * * ERROR *********** •• **
***************** ****** •••• ***.*** ********.* •••••••

• ENTRY
.DEOUEUED

X
••••• G2.......... • •• *.G3**** ••• **.
*IEFSD079 * *IEFS0078 29.*.

• *-.-.-*-.-.-.-.-* ENTRY .-*-*-.-*-.-*-.-. LINK
•••• * JOB *X......... *X •••••••••••••••••

*OELETE ROUTINE * FINISHED* LINKOR * RETURN • •• • .* ••• *.* •••• **... **.*.*.**.*.*****
RXL
E. I
T.N
U.K
R.
N.

X X
H2....... ***H3**.*****.* ** •• *H4*.***.***.

• • *IEFSD085 29A4. .IEFSOOB6 2982*
* * LINK *-*-*-.-*-.-*-*-* LINK *-*-*-.-*-*-*-.-•

• OPTIONAL USER .X ••••••• X* DATA *X ••••••• X* •
* ROUTINE * RETURN * SET PROCESSOR * RETURN * 5MB P~OCESSOR *
* * * *. * .* ••• *.*.** *********** •• *.** *****************

..

• Chart 29. system output Writer

.*. lEF5D085
A2 *. *****A4* •• *******

****A 1 ••• *****. .* *. *' *
• ENTRY •
• FRO~ lEFS0062 * • •

.* *. YES • SET UP FOR *'
• •• X.. DATA SET .* •••••••••••••••••••••••••••••••••• X*OATA SET CHANGE. *'. • *' x • FORMS *

• ***********.** *. .*
* •• *

• NO

lEFSD078 • IEFSD086
*.***e 1 ** •• * ••• *. · . · '. ••• X*LINKAGE MODULE * •••••• · .
• * **.*** •••••••••••

*****92** •• *****_ • • *' 5MB GET *' * ROUTI NE USE *X •••
lEFQMRAW TO *

*' READ *' **** ••••••••••• **

:IEFSD088 .:. •.. **Ct.......... C2 *.
.. .. .* *.
.. CREATE HEADER .. YES.* FIRST * •
.. OR TRAILER .X.......... OR LAST ••

RECORDS. •• RECORD .*
• *..*

•• ** •••••••• *.*** * •••
• NO

IEFSD089 X ••••• 02 ••••••••••
* * • • CONTROL •

••••••••••••••••• X. CHARACTER •
• TRANSLATION ANO*
• PUT • •• * ••••••••••••••

DECISION [5
IN lEFSDOB6

x .'. E2 *.
.* *. • * *. NO *. EOF INPUT .* .•..

. .
*. • * * •• *

• YE S

x
• *.

F2 *.
• * *. . * *. NO •

.LAST ITEM FOR. ••••••••••••••••••••••••••••••
. JOB .

. .
* •• *

* YES

lEFSD079 X
*.**.G2**.** •••••
* * * OELETE * SPACE ON JOB •
• QUEUE •

* * .*********.******

x
• *.

H2 * •
• * *.

**** •••••••••••••

IEFS0070 .* •
84 *. ****.85*** •• ****.

.* *'. *' * .* USER *. YES *' *' *. SYSQUT •••••••••• X. USER PROGRAM •••••
. PROGRAM . *' *'
'.. *' *' *'. •• ***** ••••••• *** ••

• NO

IEFSD087 X
••••• C4* •••••••• *
• * * SYSOUT •

• •• X* DATA SET GET •
• MODULE • · . •••••••• * ••••••••

x

THE USER PROGRAM
MUST INCORPORATE
THE LOGIC FOUND
IN MODULES IEFDS087.
IEFSD088. AND IEFSD089.

••• IEFSOOBB
04 •• *****05.**** •• ***

.* *. * *
•• FIRST *. YES • CREATE HEADER •

. OR LAST •••••••••• X OR TRAILER *
. RECORD . • RECORDS •
.. * •

* •• * ***************** • NO

. .

.IEFSD089 X
*****E4**********
• * • CONTROL • * CHARACTER *X ••••• ~ •••••••••••
• TRANSLATE AND * * PUT *
.**********.*

x .•.
F4 ••

.* * •
• NO • * * •
•••••• EOF INPUT .*

. . *. .* ••• *
* YES

IEFSD071 X
••••• G4*** ••• ***.
* * * SCRATCH DATA

DEC[SION IS
IN If..FS:>OB7

* SET IF PURGE *X •••••••••••••••••••••••••••••
* DATE ALLOWS *
• * ****************.

• NO .* *. .
•••••••••••••••••••••••••••••• *.LAST ITEM FOR.*X •••

. JOB
* •• *

• YES

x
**** J2.****** ** • • * RETURN *

• * ******* •• ***.**

Appendix c: Flowcharts 153

Chart 30. System Task Control
•••• "2 •••••••••

• •
• FROM lEFSD515 • • •

• ••• "3.** •••••• • •
• FROM IEFSD510 • • •

• ••• A4 •• ** ••••• · . * FROM IEFSD510 • · .
• ••• AS •••••••••

* * • FROM IE=SDS99 •
• *

.. XCTL ••••••••••••••• • XCTL • •••••••••••••• .XCTL • ••••••••••••••
INITIATION:

•••• · . ••••
RETURN: 83 :.X:

• •
••• * OF WRI TER · .. RE TURN • 82 ... x. RETURN. 84 •• X.

• • •••• x
••••• B2.· ••••••••
*IEFSD587 •
--*-*-*-*-*-*-*LI NK
•] NTERFACE TO *
• MAINTAIN I/T IN.
• SUPY STATE •

.. XCTL
x

••••
• * • J2 • • • ••••

• ••• X
••••• 63 ••••••••••
IEFS0588 .
--*-*-*-:t:-*-*-*L I NK
'" I NTERFACE TO *
.MAINTAIN l/T IN •
• SUPV STATE • ••••••••••••••••• .XCTL

X
•••• C3 •••••••••

• EX IT •

x • ••• • • • H3 •

* * • •• *

• • *.*. X
• •••• 64 ••••••••••
*IEF$D589 '"
--*-*-*-*-:t:-*-*LINK
'" INTERFACE TO •••••
.MAINTAIN I/T IN.
• SUPV STATE •

.XCTL
x •••• * •

• 01 •

• *
••••••••• •••••••• X. TO IEFSDS10 .X •••••••••••••••••

• • •••••••••••••••

SUPERVISOR STATE

NOTE

x
.** •

* • • H3 •
* •
ENTER AT POI NT
A2 TO USE
LARGE PARTITION
TO T!:RMINATE
WRITER

••••••••••••••••••••••••.••••••••.••••••••••• PROBLEM· PROG~;M· ST ~;E·····"·"····""···""·"""···"··· ..•.•••••.••••••••••.••••.•••••••.

••••• 01.......... • •••• 02.......... • •••• 03 ••••••••••
• IEFS053. • .IEEVSTAR • .IEEVJCL •
• -.-.-*-.-.-*-.-.XCTL .- .-.-.-.-.-.-.-.BRANCH .-.-.-.-.-.-.-.-•

•• X. • •••••••• X. START ••••••••• X. •
• LPSW GETMAIN • • SYNTAX CHECK • • JCL BUILD
• •• ••

•••• XCTL .XCTL
• • ERROR
• 01 • · . ••••

x
• ••• · . • J" • · . ••••

X
••••• E3 •••••••••• LINK ••••• E •••••••••••
.IEEVRCTL ••••••••• X. •
.-.-.-.-.-.-.-.-. • REAOER/ •
• READER. • INTERPRETER •
• CONTROL .RETURN • •
• INTERFACE .X......... •••.•......•.

• XCTL

X
••••• F3 •••••••••• LINK ••••• F •••••••••••

•••• .IEEVACTL ••••••••• X. •
• • XCTL.-.-.-.-.-.-.-.-. • I/O •
• J3 .X..... ALLOCATE. • DEVICE ..
• .ERROR. CONTROL .RETURN • ALLOCATION •
•••• • INTERFACE .X......... •

•••• G2 •••••••••
• E XI T •
• TO IEFSD515 •

• * ..•........••.•
x

• LARGE.
.PARTI1I ON
• ERROR

x ••••••••••••••••• • ••••••••••••••••
• XCTL

x
••••• G3 ••••••••••
• 1 EESOS90 • • •••
.-.-.-.-.-.-.-.-.EX IT •

••••••••• • •••• X. B ••
ERROR. WRITE TIOT. • •

• • • ••• • ••••••••••••••••
•••• · '. • H3 •• X. • •

IF SMALL
PARTITION
WR ITER

SMALL ••••• H2.......... LI NK .* ••• H3.......... . ••.• H4 ••••••••••
•••• HI ••••••••• PARTITION. .X ••••••••• IEESD591.. • • ••• HS •••••••••

EXIT .WRITER. READER. .-.-.-.-.-.-.-.-.. •• EXIT •
TO IEFS0599 .X......... OR WRITER.. ••••••••• X. ABEND ••••••••• X. TO IEFSD599 •

• .ERROR • • RETURN.LINKOR ROUTINE .IF SMALL. •• •

154

••••••••••••••• • X. .PART IT ION. • •••••••••••••••
••••••••••••••••• • •••••••••••••••• WRITER ••••••••••••••••• · '. • J3 •• X. * •

x
••••• J2.......... • •••• J3.......... • •••• J" ••••••••••

•••• .IEFS0535 • .tEEVTCTL • .IEES0592 •
• • .-.-.-.-.-.-. -.-. .-.-.-.-.-.- .-*-.XCTL .-.-.-.-.-.-.-.-.
• J2 ••••• X. • •••••••• X. • •••••••• X. POST •••••
• • • LPSW. • TERMINATE. X .SMALL PARTITION.
••••• •• CONTRoL.. ••.........•.••...........•........

* J4 •
* •

x
• * ••

• * .SEE •
.NOTE •

TURN TO
LLING
UTINE

B2.
• OR 84 •

• Chart 31.

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

System Quiesce Routine

····A2········· • •
• lEAGT~ST • • • •••••••••••••••

1 ~:l'!,!l@! !1l~,
• ••• · .

• Bil • · . ••••
! ·····B2·········· • SAVE PROG •

CHECK NEW •
PSW IN •

SAVE AREA • • •
j

·····C2··········
: ~68~¥NiUt~g~E :
• eK ADDRESS •
• IN NEW • • • •••••••••••••••••

j
··.··02.···.·· .. · • OBTAIN WAIT •
• CODE PASSED •
• FROM CALLER •
• IN RO • • • •••••••••••••••••

j
..... E2······.··· • •
• TRANSLATE IT •
• INTO THE •
• MESSAGE • • • ·· .. · .. ·c .. ····

...
F2 * • . * *. • * ABTERM *. YES *. BIT .*-*. SET .* *. ...
* ... -r

• •• ··G2 •• • ••••••• • •
• STOP •
• TRACE TABLE • • • • ••..........

j<-----

.•.

·····B4·········· : ~h :
• THE·
• PA ON ID •
• IN M SAGE • . ..•............

j
·····Cll ..•...•... * POST • . -*-.-.-.-.-.-.-. .POST WTL ECB IN.
• UCM W/SPECIAL •
• WA:tT CODE • • ••••••••••••••••

j
·····D4·········· • •
• LOAD UP •
• WAIT COUNT IN •
• REG 0 W/l • • • • ••••••••••••••••

j
·· ••• EII· •••.••••.
• RESTORE THE •
: CLE~N'g~~y, :
: E~, rgTRr~B :
•••••••••••••••••

1 ····FII····· •• · . • sve 1 •
• (WAIT) • · . • ••••••••••••••

..... B2.......... 83 *.
• GET THE. .* *.
• ORIGINAL. •• CONCODE •• YES
• COMPLETION *---->*. = .. *---
• CODE FM TeB • *. 0 .*
• • *..* ••••••••••••••••• * .. * r

••••• J3 ••••••••••
• •
• TRANSLATB AND •
• STORE THE •
• ORIGINAL CODE • • •
........ j::::::::_-

...
K3 *. • •••• X4 •••••••••• . * *. • MOVE WAIT •

• * TIOT *. YES • CODE INTO •
... ADDRESS ... -------->. STEPNAME •

•• IN... • FIELD •
•• TCB •• • • * •. * •••••••••••••••••

l<~~----------------------j
• •
• Bil • • • ••••

Appendix c: Flowcharts 154.1

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

Where more than one reference is given,
the first page number indicates the major
reference.

ABEND service routine 29-30
Access methods 10,11
Accounting routine 57
Alternate console 38,39
ATTACH macro instruction 31,33,13
Automatic commands 19,43

BLDL list 19,18,11,13
Boundary box 18,19,34.1,43

CANCEL command 42
Catalog management 16,10
Channel-check routine 34.3
Command processing 38,10,35,42,43,44,45,58
Command scheduling control block

(CSCB) 42-44,18,19,67
chain 44,61
creation routine 42,34.1

Communication task 38-41,11,35,43
control flow 38
dispatching 22,25
SVC 72 39,40,25

Communication vector table (CVT) 14
CVTMSER field 34
CVo:..'HEAD field 22
CVTTCBP field 22,23
CVTTSCE field 24

Contents supervision 33,34,22
active request block queue 33
DELETE macro instruction 34
IDENTIFY macro instruction 34
loaded program list 33
SYNCH macro instruction 34
(Also see ATTACH, LINK, LOAD, and XCTL
macro instructions)

Control program
organization 9,11,18
nonresident portion 13
resident portion 11

Control program functions 10
(Also see data management, job manage
ment, and task management)

Core storage (See Main storage hierarchy
support)

CSCB (See Command scheduling control block)
CVT (see communication vector table)

DADSM (See direct access device space
management)

Data control block (DCB) 15,40,43,49,57
Data management 10,11

(Also see access methods, catalog man
agement, DADSM, I/O supervisor, and
open/close/end-of-volume)

Data set control block (DSCB) 15
Data set enqueue table (DSENQ) 71,15,62
Data set integrity 62

Data set
input stream (See input stream)
partitioned 11

DCB (See Data control block)
DEFINE command 38,25,63

processing 45-47,42,43
Defining control program areas 18
Definition routines 44-47,36
DEQ macro instruction 28,31,53
Dequeue

supervisory routine 31,33
queue manager dequeue routine 53,48

Device allocation 16
Direct access device space management

(DADSM) 16,11
Dispatcher 24-29,19

with time-slicing 28-29
without time-slicing 24-28
(Also see Communication vector table,
Task control block, and Task
dispatching)

DISPLAY command 44-45,42
DSCB (See Data set control block)
DSENQ (See Data set enqueue table)
DSNAME parameter 62
Dynamic area 13

partition organization 9
TIOT (See Task input/output table)

ECB (See Event control block)
End-of-volume (See
Open/close/end-of-volume)

ENQ macro instruction 32,25,49
ENQ/DEQ purge routine 60
Enqueue

supervisory routine 31,33
queue manager enqueue

routine 53,48,44,56
Entering commands 36,37,38
Entry to job management

after IPL 36
following step execution 36

Event control block
(ECB) 25,39,40,42,44,47,53,61

(Also see "No work" ECB)
Event indication list (ElL) 40

Fixed area 9,13
(Also see Input/output error handling,
SVC transient area, SVCLIB partitioned
data set, and System queue area)

Free queue element (FQE) 18.1
Free track queue 48,49
FREEMAIN macro instruction 33

General system initialization 18
defining control program areas 18
user options 18,19

GETMAIN macro instruction 33,34

HOLD command 42

Index 155

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

Initial program loading (IPL) 13,14
Initiating system tasks (See System task
control)

Initiator/terminator 56-64,48,14,16,35,36
alternate step deletion 64
problem program interface 63
(Also see Data set integrity, ENQ/DEQ
purge routine, Job deletion, Job initia
tion, Job selection, Small partition
scheduling, Step deletion, and Step
initiation)

Input/output
error handling 13
device allocation 16
supervisor 10,11,39-41

Input stream
job 56,57
data sets 15

Input work queue 48,51-53,56,15,16
Interlocks, system 48,53,55
Interpreter work area (IWA) 72-74,56,57
Interpreter entrance list (NEL) 55,67
Interruption supervision 22

(Also see Task dispatching and Task
switching)

IPL (See Initial program loading)

Job class 48,50,55,56
Job control language set (JCLS) 67,68
Job control table (JCT) 75,15,53,56,67
Job deletion 64,65
Job file control block (JFCB) 76,77,15,16
Job initiation 62

(Also see Step control table)
Job management 35

control flow 35-37
job scheduler functions 35
(Also see Command processing, Communica
tion task, and Master scheduler)

Job processing 48,10
(Also see Initiator/terminator, Input
stream, Reader/interpreter, START, and
System output writers)

Job queue 49-53,44,57
initialization 49-51
(Also see Queue control record)

Job scheduler 35
Job selection 56-58,19,44

(Also see Command processing, Life of
task block, and Partition information
block)

Job step timer
Job stream (See
Job Termination

24
Input stream)
(See Job deletion)

Large partition 56-61
LeS (See Main storage hierarchy support)
Life of task block (LOT) 77,78,57
Linkage control table (LCT) 77,79,80,64
LINK macro instruction 33,13,30
LINKLIB partitioned data set 11,19
LOAD macro instruction 33,13
Logical track 48,49-53,58
LOT block (See Life of task block)

Machine check handler (MCH) 34 .• 2
Main storage hierarchy storage support 18

156

Main storage initialization 19-21,13,9
(Also see Job queue initialization,
Master scheduler initialization, Nucleus
initialization program, and READY
message)

Main storage supervision 22,34,35
(Also see Boundary box and System queue
area)

Master scheduler 42-47,35,37,38
dispatching 25,22
initialization 14,19,43
resident data area 77,80,33,42,43,56,58
(Also see SVC 34 and Task control block)

MOUNT command 42
"Must complete" 31

NEL (See Interpreter entrance list)
NIP (See Nucleus initialization program)
Nondispatchable tasks 24,31,43
Nonresident

SVC routines (See SVC transient area)
readers (See Transient reader)
writers (See System output writers)

"No work" ECB 53,56,57,83
Nucleus 11,13,14
Nucleus initialization program

(NIP) 18-21,10,11,13,14
(Also see General system initialization)

Open/close/end-of-volume 11,17,40,41
Output writer (See System output writer)
Output work queue 48,51-53,17,35,57
Overlay supervision 34.2,22

Partition 9,34,35,43,56-58
definition 19,43-47
organization 13,48
task control block 23

Partition information block
(PIB) 80,81,19,30,43,56-58,66,68

PARTITNS macro instruction 14
POST macro instruction 25,32,40,68
priority

dispatching 9,22,35
job 48,50,53,56

Protection keys, storage 9,10,13,18

QMPA (See Queue manager parameter area)
Queue control block (QCB) 31,43
Queue control record (QCR) 44,49-55
Queue element (QEL) 31
Queues

(See Free track queue, Input work queue,
job queue, Output work queue, and Task
control block)

Queue manager 48-55
functions 48
job queue initialization 43,49,50
parameter area (QMPA) 50,53,54
(Also see Input work queue and Output
work queue)

RAM (See resident access method)
Reader/interpreter 55,56,15,35#38,48,52,54

resident reader 55,56
(Also see Input Stream, Input work
queue, System task control, and Tran
sient reader)

. ,

Form Y27-7128-3, Page Revised by TNL Y28-2349, 11/15/68

READY message 14,43
Recording/recovery routines 34.2
RELEASE command 42
Remote job entry (RJE) 48,49
Reply queue element (RPQE) 40,41,42
Request Block (RB) 31,32
RESET command 42
Resident access methods

(RAM) 19,1811,13,32
Resident SVC (RSVC) 19,13,32

SCD (See System output class directory)
Scheduler (See Initiator/terminator)
SCT (See Step control table)
SDT (See Start descriptor table)
SER (See System environment recording)
SET command 15,36,38,43,49
SlOT (See Step input output table>
Small partition

information list (SPIL) 82,58-61
module 14,19,44,60,61
scheduling 58-61

SQA (See System queue area)
STAE service routine 31
START 14,19,36,43,48,50,55,66,67
Step initiation 62,63
step control table (SCT) 82,83,84,13,62-64
step deletion 64,36
Step input/output table (SlOT) 83,85,86,13
Step Termination (See Step deletion)
STIMER macro instruction 34
STOP command 43,48,58
Storage protection (See Protection keys)
Subpools 33,34,63
SVCLIB partitioned data set 11,13,32
SVC transient area (See Transient area)
SVC 34 25,33,38,40,42-44
SVC 35 41
SVC 72 25,39,40
Syntax check

DEFINE command 45
master scheduler 44

System area (See Fixed area>
System environment recording 34.2
System initialization 11,43-45,49,50

(Also see Nucleus initialization
program)

System input readers (See Reader/inter
preter)

System output class directory (SCD) 62
System output writers 65,66,15,17,35,43,48

resident 65
nonresident 65

System queue area (SQA) 18.1,19,11,13,31
System quiesce routine 30
system restart 68
System task control (STe) 66-68,55,56

Task control block (TCB) 30,33
TCBFLGS field 19
TCBRBP field 19,24
TCBTCB field 23
TCB queue 19,22-26

Task dispatching 9,22,24-29
Task input/output table

(TIOT) 85,87,13,57,68
Task management 11,22

(Also see Contents supervision, Inter
ruption supervision, Main storage super
vision, overlay supervision, Task super
vision, and Timer supervision)

Task creation 45,47
Task supervision 31,32,22
Task switching 24,25
TeE (See Task control block)
TIOT (See task input/output table)
Timer supervision 34.1,22

timer queue element 34.1,24
timer pseudo clock 34.1

Time-slicing 45
CVTTSCE field of CVT 24
dispatcher 28-29

Track stacking 50
Trans:_ent area

input/output 13
SVC 13,40,41

Transient reader 55
system assigned 56,57
user assigned 56,57

Unit control block (UCB) 40,41
Unit control module (UCM) 39-42
UNLOAD command 42
User options 18

(Also see BLDL list, Resident access
method, Resident SVC, and System queue
area)

validity check 42,47
Volume table (VOLT) 15
Volume table of contents (VTOC) 14

WAIT macro instruction 30,25,40
Write-to-operator

macro instruction (WTO) 35,37-41
queue element (WQE) 41

Writer (See System output writers)
WTO/WTOR (See Write to operator; Reply

queue element)

XCTL macro instruction 33

Index 157

I

~

..

READER'S COMMENT FORM

IBM System/360 Operating System; Control Program With MFT
Program Numbers 360S-CI-505, 360S-CI-535

Y27-7128-3

Please check or fill in the items below, adding explanations and other comments
in the space provided.

Which of the following terms best describes your job?

J:(Programmer J:(Systems Analyst J:(Customer Engineer
J:(Manager J:(Engineer J:(Systems Engineer
J:(Operator J:(Mathematician J:(Sales Representative
J:(Instructor J:(Student/Trainee J:(Other (explain)

Does your installation subscribe to the SRL Revision Service? J:(Yes II No

How did you use this publication?

J:(As an introduction
J:(As a reference manual
J:(As a text (student)
J:(As a text (instructor)
J:(For another purpose (explain)

Did you find the material easy to read and understand? J:(Yes J:(No (explain below)

Did you find the material organized for convenient use? J:(Yes J:(No (explain below)

Specific criticisms (explain below)

Clarif ications on pages _____________________________ _

Additions on pages ________________________________ __

Deletions on pages ________________________________ _

Errors on pages __________________________________ _

Explanations and other comments:

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

Y27-7128-3

YOUR COMMENTS PLEASE . . .

This manual is one of a series which serves as reference sources
for systems analysts, programmers and operators of IBM sys
tems. Your answers to the questions on the back of this form,
together with your comments, will help us produce better publi
cations for your use. Each reply will be carefully reviewed by
the persons responsible for writing and publishing this material.
All comments and suggestions becQme the property of IBM.

Please note: Requests for copies of publications and for assis
tance in utilizing your IBM system should be directed to your IBM
representative or to the IBM sales office serving your locality.

1

I
I
I

FOLD FOLD I
---1

FOLD

BUSINESS REPLY MAl L
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY

IBM CORPORATION

NEIGHBORHOOD ROAD

KINGSTON. N. Y. 12401

ATTN: PROGRAMMING PUBLICATIONS

DEPARTMENT 637

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.106ot
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, Nli!wYork, New York 10017
[International J

FIRST CLASS
PERMIT NO. 116

KINGSTON, N. Y.

FOLD

I
I
I
1

1

I
I

><
'" -..]

I
-..]

I-'

'" (Xl

I

•

w •

Y27-7128-3

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

c

-<
t;l
I

"
~
I

W

READER'S COMMENT FORM

mM System/360 Operating System
Control Program with MFT
Program Logic Manual

• Is the material:
Easy to read? .
Well organized?
Complete?
Well illustrated?
Accurate?
Suitable for its intended audience?

• How did you use this publication?
o As an introduction to the subject
o For additional knowledge

Other

• Please check the items that descrihe your position:
o Customer personnel 0 Operator
o IBM personnel 0 Programmer
o Manager 0 Customer Engineer
o Systems Analyst 0 Instructor

Form Y27-7128-3

Yes No
o 0
o 0
o 0
o 0
o 0
o 0

o Sales Representative
o Systems Engineer
o Trainee
Other

• Please check specific criticism (s), give page num her (s), and explain below:
o Clarification on page (s) 0 Deletion on page (s)
o Addition on page (s) 0 Error on page (s)

Explanation:

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

Y27-7128-3

YOUR COMMENTS PLEASE . . .

This publication is one of a series which serves as reference for systems analysts, program
mers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use.
Each reply will be carefully reviewed by the persons responsible for writing and publish
ing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

Fold Fold
.. e :

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

Attention: Progromming Systems Publications

Department D58

Fold

POSTAGE WILL BE PAID BY

IBM Corporation

P.O. Box 390

Poughkeepsie, N.Y. 12602

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

FIRST CLASS
PERMIT NO. 81

POUGHKEEPSIE, N.Y.

•

Fold

-<
t;.l
I

"
t;.l
I

W

• Technical Newsletter File Number S360-36

Re: Form No. Y27-7128-3

This Newsletter No. Y28-2349

Date November 15, 1968

IBM SYSTEM/360 OPERATING SYSTEM
CONTROL PROGRAM WITH MFT
PROGRAM LOGIC MANUAL

Previous Newsletter Nos.

This Technical Newsletter, a part of release 17 of IBM System/360
Operating System, provides replacement pages for the Control Pro
gram with MFT, Program Logic Manual, Form Y27-7128-3. These re
placement pages remain in effect unless specifically altered.
Pages to be inserted and/or removed are listed below.

Contents
Illustrations
17,18,18.1
23,24,24.1
29-34,34.1-.3
45-52
57,58
63,64
75,76,76.1
83-96,96.1-.2
99-102,102.1
117,118,118.1
123,124
127,128
154. 1
155-157
Business Reply

A change to the text or a small change to an illustration is indi
cated by a vertical line to the left of the change; a changed or
added illustration is denoted by the symbol • to the left of the
caption.

Summary of Amendments

Changes have been made in the discussions of the DEFINE command
processing and the ABEND service routine. New items discussed
include: recording/recovery routines, main storage hierarchy
support, job/step CPU timing, the system quiesce routine, and the
STAE macro instruction. A revised Business Reply form is provided.

File this cover letter at the back of the manual to provide a
record of changes.

IBM Corporation, Programming Systems Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602

PRINTED IN U. S. A.

None

~.

~.
, . .1-.....

