
Systems Refl!rence Library

IBM System/360 Operating System

Control Program Services

This publication describes the use of
system macro-instructions that request the
supervisor, data management, and TESTRAN
services of the System/360 control program.
It also presents the linkage conventions
that have beE:!D established for use in the
System/360 Operating System.

File No. 8360-36
Form C28-6S4l-l OS

MAJOR REVISION (April, 1966)
This edition, Form C28-6541-1, obsoletes Form C28-6541-0 and all earlier
editions. In addition to incorporating information released in Techni
cal Newsletters N28-2112 and N28-2113, significant changes have been
made to the section "Exceptional Condition Handling" and to the Queued
and Basic Indexed Sequential Access Methods. This new edition should be
reviewed in its entirety.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

A form for readers· comments appears at the back of this publication.
It may be mailed directly to IBM. Address any additional comments
concerning this publication to the IBM Corporation~ Programming Systems
Publications, Department 058, PO Box 390, Poughkeepsie, N. Y. 12602

C by International Business Machines Corporation, 1965, 1966

PREFACE

This publica.tion explains how system macro-instructions are written
to request the supervisor, data management, and TESTRAN services of the
control program portion of the System/360 Operating System.

The publicat.ion is divided into five principal parts: an introduc
tion, descriptions of supervisor macro-instructions and services, des
criptions of dat.a management macro-instructions, descriptions of TESTRAN
macro-instructions and; services, and several appendixes. The appendixes
include special reference material on operand forms, operand processing,
supplementary macro-instruction forms, dynamic program management,
external storage labels, standard status codes, control character codes,
and SYSOUT record format.

The introduction describes the various types of system macro
instructions, and explains the notation used in the illustrations of the
macro-instruction formats. The introduction also presents the linkage
conventions adopted for use in the Systern/360 operating S~{stem. These
are the conventions used in passing control and information from one
program or subprogram to another; they are used in all interfaces
between the operatin~ system and user programs. It is strongly
recommended that they be employed throughout user programs to simplify
programmer training and program maintenance.

PREREQUISITE PUBLICATI~NS

Knowledge of information contained in the following publications is
required for an understanding of this publication:

IBM System/360 Operating System: Introduction, Form C28-6534

IBM System/360 Operating System: Concepts and Facilities, Form
C28-6535

IBM System/360 Operating System: Assembler Language, Form C28-6514

IBM System/360 Operating System: Data Management, Form C28-6537

IBM Systern/360 Operating System: Linkage Editor, Form C28-6538

IBM Systern/360 Operqiting System: Job Control Language, Form C28-6539

Knowledge of -the full capabilities and techniques of the macro
language, as presented l.n the Assembler Language publiccl tion, is not
required for an underst.anding of this publication. KnowlE!dge of the
basic assembler language, however, is required.

SECTION 1: INTRODUCTION. '.

System Macro-Instructions • • •• • • • • • •
General Information. • • • ••••••••••

Supervisor and Data Management Macro-Instructions
TESTRAN Macro-Instructions. • • • • • • • ••
Parameters. • • • • '. • •

The Macro Language • • • • • •
Macro-Instruction Fields. •
Types of Macro-Instruction Operands •

Basic Notation Used to Describe Macro-Instructions •
Operand Representation. '. • • •
Operands with Value Mnemonics •
Coded Value Operands. • •
Metasymbols • • • • • • •

Types of Macro-Instructions.
R~Type Macro-Instructions •
S-Type Macro-Instructions •

Special Register Notation. •
Packed Parameters

Linkage Conventions • •
Linkage Terminology.
I,inkage Types. 4 • •

Linkage Registers ••
Save Area Use. • • • • • • • • • • • •

Register Saving and Restoring Responsibilities.
Save Area • • • • • • • • • • • • • • •
Save Area Chaining. • • • • • • • • • • • • • • • ••

Calling Sequence and Entry Point Identifiers •
I.inkage Interface Responsibilities • • ,. • • • • • • • •

Called Program Interface in Type I, Type II, and certain, Type
IV Linkages. •

Calling Program Interface in a Type I Linkage Resulting From
a Hand-Coded Call ing Sequence.. • • • • • • • • • • • • • • •

Calling Program Interface in Type I, Type II, and Type III
Linkages Resulting From Supervisor and Data Management
Macro-Instructions • • • •

Passing Control Information to a Job Step.

Macro-Instruction Descriptions,.

SECTION 2: SUPERVISOR SERVICES.
Simple Program Management. • • • • • • • • • •

CALL -- Call a Program (S).
SAVE -- Save Register Contents.
RETURN -- Return to a Program •

Overlay Program Management • • • •
CALL Macro-Instruction in Overlay Management.
Branch Instruction in Overlay Management. • • • • • •
SEGLD -- Load Segment While Processing (R) ••
SEGWT -- Load Segment Before Further Processing (R) •

Dynamic Program Management • • • • • • • • •
LINK Link to a Load Module (S) • • • •
XCTL -- Transfer Control to a Load Module (S) ••••
LOAD -- Load and Retain a Load Module (R)
DELETE -- Delete a Retained Load Module (R) • • • • •
IDENTIFY -- Identify an Embedded Entry Point (R).

lY.!ain storage Management. • • • • • • • • • • • • • •

• 11

• 11
• 11
• 11
• 12
• 12
• 13
• 13
• 14
• 15
• 16
• 16
• 19
• 20
• 21
• 21
• 22
• 22
• 23

• 24
• 24
• 25
• 27
• 29
• 29
• 30
• 32
• 34
• 34

• 34

• 35

• 35
• 36

• 37

• 38
• 41
• 41
• 44
· 46
• 48
• 49
• 49
• 50
• 51
• 52

52
· 56
• 60
• 62
• 63
• 65

GETMAIN _ .. Allocate Main Storage (R). • • • • • •
GETMAIN -_. Allocate Main Storage (S). • • • •• •
FREEMAIN .. - Release Allocated Main Storage (R).
FREEMAIN _.- Release Allocated Main Storage (S). •

Task Creation and Management • • • • • • • • • • •
ATTACH -- Create and Attach a Task (S) ••••••••
DETACH -- Remove a Task (R) '. .• • • '. •
CHAP -- Change Dispatching Priority (R)
EXTRACT -_. Extract Selected TCB Fields (S). •

Task Synchronization • • • • • • • • • • • • • • •
WAIT -- Wed t for Event (R). • • • • •• •••••
WAITR -- lilai t far Event and Ready Lower Priority Task (R)
POST -- Signal Event Completion (R) • • •• • • • • •
ENQ -- Enqueue Request for a Serially Reusable Resource (R) •
DEQ -- Dequeue Request for a Serially Reusable Resource (R) •

Exceptional Condition Handling •••••••
SPIE -- Specify 'Program Interruption Exit (S)
STAE -- Specify Task Abnormal Exit (R) •••
ABEND -- ~~erminajte a Task Abnormally (R) '. •
CHKPT -- Checkpoint a Job Step (R) ••••••

General Services • • • • • • • • • • • • • • •
TIME -- RE~quest Time and Date (R) • • • • •
STIMER -- Set Interval Timer (R).
TTIMER -- Test Interval Timer (R) • • • • •
WTO -- write to Operator (S). .• • • • • • •
WTOR -- Write to Operator with Reply (S) •••••••
WTL -- Write to Log (S) • • • • • • •

SECTION 3: DA'JrA MANAlGEMENT SERVICES • • •
Direct Access Device Considerations •
Volume Switching. • • • • • • .• • • • • • • • '. • ••

General Service Madro-Instructions • • • ••••
DCB -- Define a control Block for Input/Output Operations
DCBD -- Provide Symbolic Names for a Data Control Block (DCB)
OPEN -- Prepare the Data Control Block for Processing (S) • •
CLOSE -- Disconnect Data Set from User's Problem Program (8) •
FEOV -- Force End of Volume (R) • •
GETPOOL -- Get a Buffer Pool (R) •••
FREEPOOL .. - Free a Buffer Pool (R). • • .• • • • • ••
BUILD -- Build a Buffer Pool (R) ,. • • • • • • • • • •
GETBUF -- Get a Buffer From a Pool (R).
FREEBUF - .. Return a Buffer to a Pool (R). •

Queued Sequential Access Method (QSAM) • • • •
DCB - Define Data Control Block for QSAM. •
GET Locate Made (R) •••
GET Mo"e Mode (R).. • •
GET Substitute Mode (R) •••••••••
PUT Locate Made (R) •••
PUT Mo,re Mode (R). • ,. •
PUT substitute Mode (R).
PUTX -- Update Mode (R) .• • • • '.
PUTX -- Output Mode (R) .. • •
RELSE Heleasei an Input Buffer (R).
TRUNC -- ~rruncate an Output Buffer (R).
CNTRL -- control a Printer or Stacker (R) • • • • • •
PRTOV -- Test for Printer Carriage Overflow (R)

Basic Sequent.ial Aocess Method (BSAM). • • • • •
DCB -- Define Dalta Control Block for BSAM •
READ -- RE~ad a Block (S). • • • • •
WRITE vJrite a Block (S). • • • • • • • • • • • • •
WRITE -- Update a Block (S) • • • • • • • • •
CHECK -- vvait for and Test Completion of Read or Write
Operation (R). • • • • .• • • • • • • • • •• •

CLOSE CTYPE=T) -- Temporarily Disconnect a Data Set from
Problem Program (S) ••••••••••••••

• 65
• 67
• 71
• 72
• 75
• 75
• 84
• 85
• 87
• 89
• 89
• 92
• 93
• 94
• 96
• 97
• 97
.101
.102
.105
.107
.107
.108
.111
.111
.112
.113

.114

.114

.116

.117

.117

.119

.122
• 124
.127
.127
.128
.129
.130
.131
.132
.134
.141
.143
.144
.145
.146
.147
.149
.150
.152
.152
.153
.154
.155
.156
.164
.166
.167

.169

.111

NOTE -- Provide Position Feedback (R)
POINT -- Position to a Block (R).
BSP -- Backspace a Block (R). • • • ••••
PRTOV Test for Printer Carriage Overflow (R)
CNTRL -- Control On-Line Input/Output Devices (R)
WRITE -- Create a Direct Organization Data Set - Format-F
Rec~ords (S). • • • • • • • • • • • • • .. • • • • • '. • •

WRITE -- Create a Direct Organization Data Set - Format-U or
-V Records or a Capacity Record (S) •••••••••••••

Basic Partitioned Access Method (BPAM) •
Partitioned Data Organization • • • •
Partitioned Organization Directory Format • • • • • •
DCB -- Define Data Control Block for BPAM • •
FIND Position to Member of Partitioned Data Set (R).
BLDL -- Build List (R). • • • • • • • • .. • • '. •
STOW -- Manipulate Partitioned Data Set Directory (R)

Queued Indexed Sequential Access Method (QISAM). • • '. •
DCB - Define Data Control Block for QISAM - Load Mode
QISAM Load Mode Buffer Requirements • • • • • • • • •
PUT Move Mode (R). • • • • .. '. • • • '. • • • • '. •
PUT -- Locate Mode (R) ••••••••••••••••
DCB -- Define Data Control Block for QISAM - Scan ~ode.
QISAM Scan Mode Buffer Requirements • • • • •
SETL -- Specify Start of Sequential Retrieval (R)
ESETL -- End Sequential Retrieval (R) • • • • •
GET -- Locate Mode (R) ••••••••••••••••
GET -- Move Mode (R). • • • • • • • • • • • • • •
QISAM Scan Mode Work Area Requirements ••
PUTX -- Update Mode (R) • • . •• • • • •
RELSE - Release Current Input Buffer (R) •••••••

Basic Indexed Sequential Access Method (BISAM)
DCB -- Define Data control Block for BISAM. • • • ••
READ -- Retrieve a Logical Record (S)
BISAM Area Requirements • • • • • • •
WRITE -- Write a Logical Record (S) • • • • • • • • •
FREEDBUF -- Free Dynamically Obtained Buffer (R).

Basic Direct Access Method (BDAM) ••••
DCB -- Define Data control Block for BDAM •
READ -- Read a Block (S). • •• • • •• • '. • • • • • '. •
WRITE -- Write a Block (S) ••••••••••••••
RELEX -- Release Exclusive control (R) ••
FREEDBUF -- Free Dynamically Obtained Buffer (R).

Queued Telecommunication Access Method (QTAM).
Message Processing Routines • •
DCB Define QTAM Data Control Block
GET Obtain Next Record (R)
PUT Put Next Record (R).

SECTION 4: TESTRAN SERVICES ••

TESTRAN Operation •

TESTI~AN Macro- Instruction Statement Format.

TESTRAN Macro-Instructions. • • • • • • • • •
Macro-Instruction Descriptions • • • • •

DUMP DATA -- Record Main Storage. • • • • •
DUMP CHANGES -- Record Main Storage and Identify Changes.
DUMP MAP -- Record Storage Map. • •
DUMP TABLE -- Record System Table •
DUMP PANEL -- Record Registers and PSW ••
DUMP COMMENT -- Record Comment. • • •• •••• •
TRACE FLOW -- Record Program Transfers. • ••••
TRACE CALL -- Record Execution of CALL Macro-Instructions
TRACE REFER -- Record Storage References. • • • • • • • •

.172

.174

.175

.176

.177

.179

• 180
.182
.183
.183
.186
.189
.190
.192
.194
.194
.199
.200
.203
.204
.206
.207
.209
.209
.210
.211
.211
.213
.213
.214
.218
.221
.222
.223
.224
.225
.229
.233
.237
.238
.239
.239
.239
.241
.242

.243

.244

.245

.245

.247

.247

.249

.251

.251

.252

.253

.253

.255

.256

TRACE STOP -- Suspend Traces. • • • • • • • • • • • ..
TEST OPEN -- Inttiate Testing • • • • • • • • • • • ..
TEST AT -- Perf0rm Testing at Problem Program Address
TEST DEFINE -- Def ine Flags or Counters • • • • • • ..
TEST WHEN -- Alter Test Sequence When Condition or

Re lationship Occurs. • • • • • • • • • '. • • • • • ..
TEST ON -- Alter Test Sequence on Counter Interval. .,
TEST CLOSE -- Terminate Testing • • • • • • • • •
GO TO -- Encounter TESTRAN Macro-Instruction, •••• "
GO IN -- Enter TESTRAN Subroutine • • • •
GO OUT -- Return from TESTRAN Subroutine.
GO BACK -- Return to Problem Program ••
SET FLAG -- Assign Condition to Flag ••••
SET COUNTER -- Assign Value to Counter.
SET VARIABLE -- Assign Value to Storage or Register ..

Notes on Usage • •• • •• • • • •
Keyword Modifiers • • • • • • •
Address Specification • • • • '. • • • •
TEST OPEN Macro-Instructions ••
TEST CLOSE Macr0-Instructions •
Edi ting Restrictions. .• • • •
Improperly Coded Macro-Instructions •

Edited Output Formats • • • • • • • • • • • • • • • • • • .'
Standard Page Heading • • • • • • • •
Out put Lines for DUMP DATA and DUMP CHANGES • • • • .'
Output Lines for DUMP MAP • • • • • •
output Lines for DUMP TABLE • •
Output Li:nes for DUMP PANEL . •
output Lines for DUMP COMMENT • • • • • • • • • • • •
Initial Trace Oatput Lines.
Out put Lines f or TRACE FLOW • •
out put Lines f or TRACE CALL • • • • • • • • • •
Output Lines for TRACE REFER. • • • • •
Output Line for TRACE STOP. • • • • • • • • •
Output Lines for TEST OPEN. • • • • • • • • •
Out put Line for TEST AT • • • • • • •
Output Line for TEST CLOSE. • • • • • • • • • •
Output Lines for Other Encountered Control Macro-Inst:ructions
Error Message Lines • • • • • • • • • • • • • •

Sample Test Pro9ram and Test Output •

Job Organization. •

APPENDIX A: OPERAND FORMS.

Descriptions of Operand Forms •
Relocatable expresSion •
Implied Address. • • • •
Explic it Add:t'ess • • • •
Absolute Expression. • •
Register Notation. •• •
TESTRAN Register Notation. •
Character Constant • • •
Data Attribuite Notation.

Operand Processing. • • • •

APPENDIX B: L l\ND E FORMS OF S-TYPE MACRO-INSTRUCTIONS

L- and E-Form Macro-Expansions. • • • • •

Use of L- and E-·Form Macro-Instructions
The MF KeywoJrd Ope:Itand .• • • '. • • • •

.257

.258

.260

.261

.262

.263

.265

.265

.266

.266

.267

.268

.269

.269

.270

.270

.273

.273

.274

.274

.275

.275

.277

.277

.279

.279

.280

.281

.282

.283

.286

.287

.290

.291

.292

.292

.293

.294

.294

.300

.303

.303

.304

.304

.305

.306

.306

.307

.308

.308

.309

.312

.312

.312

.313

Operand Forms Used in L- and E-Form Macro-Instructions •
Operand Combinations • • • • • • • '. • •• •••• •
Ordinary and Special Operand Requirements.

APPENDIX C: DYNAMIC PROGRAM MANAGEMENT ••

ContE!nts Control,. •
RE!usabili ty. '. ..
Li.brar ies. • • •
Pack Areas • • •
Contents Directory • • • • •
Load Module Acquisition Procedures •

.313

.314

.315

.317

.317

.317

.317

.318

.318

.319

Use of the LOAD Macro-Instruction •• .320
Reenterable Module From the Link Library. .320
RE!enterable Module From a Job Library or Private Library • • .320
Serially Reusable Module From Any Library. •••• • .321
NonReusable Module From Any Library. • • • • • • • • • • .321

Use Of The Identify Macro-Instruction. .321

Use of the LINK, XCTL, and ATTACH Macro-Instructions. • .322

APPENDIX D: EXIT LIST DESCRIPTION •••••••••••

APPENDIX E: SECONDARY STORAGE STANDARD LABEL FORMATS.

Standard Magnetic Tape Labels • • • • • •
Volume Label Group • • • • • • • • • •

Initial Tape Volume Label Format ••
Additional Volume Labels Format •

Data Set Header Label Group. • • •
Data Set Header 1 Label Format. •
Data Set Header 2 Label Format. • •

User Header Label Group. • •
User Header Label Format.

Data Set Trailer Label Group •
User Trailer Label Group

Direct-Access Volume Labels • • • •
Volume Label Group • • • • • • •
Data Set Control Block Group • ••• •
User Header and Trailer Label Groups • • • • •

APPENDIX F: CONTROL CHARACTERS AND SYSOUT WRITER

Control Characters.

Machi.ne Code. • • •

Extended ASA Code •

SYSOUT Writers. _ •

APPENDIX G: STANDARD STATUS INFORMATION.

INDEX • • •

.323

.327

.327

.327

.327

.328

.328

.328

.330

.331

.331

.331

.332

.332

.332

.332

.332

.333

.333

.333

.333

.334

.335

.337

FIGURES

Figure 1. Linkages in LINK Macro-Instruction Execution · 26
Figure 2. Branching Instructions . ,. · · · · · . . . · 50
Figure 3. Format of the Event Control Block (ECB). · · 91
Figure 4. Format of the Queue Control Block <QCB) • · · 95
Figure 5. Format of the Program Interruption Control Area (PICA) . · 99
Figure 6. Formalt of the Program Interruption Element (PIE) · 99
Figure 7. Sample Test Program. · · · · · .295
Figure 8. Sample Test Output · · · · · . . · .298

Table 1. Use of Value Mnemonics by Groups of System
Macro- Instructions • • • • • • • • • • • • • • •

Table 2. Linkage Registers • • • • • • • • • • • • •
Tabl'E~ 3. Save Area Words and contents in Calling Programs.
Table 4. Services Affected by Including or Excluding Control

Pro.gram Options. • • • • • • .• • • • • • • • • • • •
Table 5. Supervisor Actions Upon Subtask Termination •
Table 6. Data Management Exits •••••••••••
Table 7. Magnetic Tape Positions - QSAM and BSAM ••
Table 8. Factors Determining Magnetic Tape Positioning - QSAM and

BSAM ••• '. • • • • • • • • • • • • • • • • • •
Table 9. Buffering and Modes of GET-PUT. • • • •• • • • •
Table 10. DEN Values • • • • • • • • • • • • • •• • • • •
Table 11. QSAM Buffer Acquisition and Data Control Block Field

Requirements •
Table 12. Error Options for QSAM • • • • • • • • •
Table 13. Register Contents Upon Entry to SYNAD Routine.
Table 14. Acceptable Record Formats and corresponding Buffering

Techniques for QSAM and the PUTX Macro-Instruction • • • • • • • •
Table 15. DEN Values • • • • • • • • • •• •••• • • • • • •
Table 16. BSAM and BPAM Buffer Acquisition and Data Control Block
Field Requirements •

Table 17. Format of the Data Event Control Block •••••
Table 18. Register Contents Upon Entry to SYNAD Routine. •
Table 19. Magnetic Tape Temporary Positions - BSAM • • • •
Table 20. QISAM Buffer Acquisition and Data Control Block Field

Requirements •
Table 21. Contents of Exceptional Condition (DCBEXCD) Fields of

Dat.a Control Block -- QISAM Load and Scan Modes. • • • • • •
Table 22. Register Contents Upon Entry to SYNAD - QISAM Load and

Sca,n Mode. • • • .. • • • • • • • • • • • • • • • • • • •
Table 23. Type Operand for SETL fvlacro-Instruction. • • • • •
Table 24. BISAM Buffer Acquisition and Data Control Block Field

Requirements •
Table 25. Format of Data Event Control Block for BISAM • • • • • •
Table 26. Contents of Exceptional Condition Code Byte, Data Event

Corrtrol Block - BISAM. • • • • • • • • • • • • • • • • • •
Table 27. BDAM Buffer Acquisition and Data Control Block Field

Requirements •
Table 28. Data Event Control Block for BDAM. • • • •
Table 29. READ Macro-Instruction Type Operand Values for BDAM.
Table 30. Exception Condition Bits for BDAM. • • • •
Table 31. WRITE Macro-Instruction Type Operand Values for BDAM
Table 32. Message Type Byte Definition Chart • • • • • • •
Table 33. Forms of the TESTRAN Macro-Instructions •••••
Table 34. Common Keyword Operands and Their Usage.
Table 35. Printing Formats for Data Types •••••••••
Table 36. Job control Statements Required for Assembly, Linkage
Editing, Program Testing, and Output Editing ••••

Table 37. Operand Forms and Related Value Mnemonics ••
Table 38.. Data Attribute Specifications •••••••
Table 39. Program Management in Type II Linkages • •
Table 40. Format and Contents of an Exit List.
Table 41. Control Program Response to an Edit Routine

Return Code. • • • • • • • •
Table 42. Exit List. •
Table 43. Label Exits.
Table 44. DEN Values •

• 18
• 27
• 31

• 40
• 80
.118
.125

.126

.133

.136

.139

.141

.142

.151

.158

.162

.164

.170

.172

.198

.201

.203

.208

.217

.218

.219

.228

.229

.230

.232

.235

.242

.246

.247

.276

.300

.303

.309

.322

.323

.324

.325

.326

.330

SECTION 1: INTRODUCTION

The control program provides a comprehensive set of services. These
services can be requested directly in a program written in ·the assembler
language, or indlirectly in a program written in a higher level language.
This set of services is subdivided in this publication, as :follows:

• Supervisor servicel3. which provide linkage between programs, obtain
and releaSE! allo<::ated main storage, manage tasks, set and test an
interval timer, etc.

• Data management se~vices, which allow conventional .and advanced
forms of processing of data sets existing on various types of
external storage devices. These services co~sist of several access
methods applicable to various data set organizations.

• TESTRAN services, which provide many convenient ways by which the
programmer can test and debug his program.

Some of the a.bove services are provided by routines -that are an
integral part of the resident control program. The remainder are
provided by rout.ines that are loaded into main storage by the control
program only whe!n requJired.

SYSTEM MACRO-INSTRUCTIONS

control program services are requested by means of :system macro
instructions included in the user's problem program.

GENERAL I NFORMAT'ION

System macro-instructions are processed by the assembler program
using macro-definitions supplied by IBM and placed in the lnacro-library
at system generation time.

The processing of a macro-instruction by the assembler is called the
expansion of the mac~o-instruction. This processing results in fields
of data and executable instructions, called the macro-expansion.
Elements of a macro-expansion are referred to in terms of their
assembler language statement equivalents.

Supervisor and Data Management Macro-Instructions

The macro-expansion of a supervisor or data manag.~ment macro
instruction is in-line in the user's problem program. The macro
expansion contains either a supervisor call (SVC) instruction or a
branch instruction, which gives control to the control program routine
that is to perform the requested service. At execution time, the
macro-expansion passes fields of information to the con1:rol program
routine to specify the exact nature of the service to be performed.
These data fieldS are called parameters; they are passed in either
registers or a data area, as follows:

Section 1: Introduction 11

• In certain macro-instructions, parameters are passed in registers
called parameter registers. The macro-expansion can contain load
address (LA) instructions that form parameters in parameter
registers at execution time, and it can contain instructions that
load parameter registers from registers loaded by the user's problem
program. The user's problem program can also load parameter
registers directly. Registers 0 and 1 are used as parameter
registers •

• In macro-instructions that do not pass parameters in registers,
parameters are passed in a data area called a parameter list.
Parameters can be assembled in the list as constants, and they can
be stored in the list by the macro-expansion from registers loaded
by the user's problem program. The macro-expansion loads register 1
or 15 with the address of the list, and the control program routine
uses this register to refer to the list. In this use, register 1 or
1.5 is called the parameter list register.

TEST~AN Macro-Instructions

The macro-expansion of a TESTRAN macro-instruction is out-of-line in
a special control section that consists of a single SVc instruction
followed by a series of constants. When this control section is given
control at execution time, TESTRAN service routines are fetched into
main storage and the macro-expansions contained in the control section
are interpreted. The service routines, collectively called the TESTRAN
inte!"preter, insert SVc instructions in t.he user's problem program as
designated by the macro~expansions. The TESTRAN interpreter saves the
displaced user's instructions for execution in their proper sequence.
The user's problem program is then resumed. When inserted SVc instruc
tions are subsequently executed, the macro-expansions are again inter
preted and the requested services are performed.

Data produced by TESTRAN macro-instructions is passed to the TESTRAN
editor,,., a processing program that edits and prints data in the format
defined by the source program.

Para!fleters

Each parameter resulting from the expansion of a supervisor or data
management macro-instruction is either an address or a value; this is
true whether the parameter is in a register or a list.

ADDR~SS PARAMETER: An address parameter is the standard 24-bit address.
It is always located in the three low-order bytes of either a parameter
register or a full-word in a parameter list. The full-word in the
parameter list is aligned on a full-word boundary.

The high-order byte in either t.he parameter register or the full-word
in the parameter list contains all zeros. Any exceptions to this rule
are stated in individual macro-instruction descriptions.

An address parameter is always an effective address. The control
program is never given a 16- or 20-bit explicit address (of the form
D(B) or D(X,B» and then required to form an effective address. If an
effective address must be formed dynamically, it is formed either by the
macro-expansion or before the macro-instruction is issued.

12

VALUE PARAMETER :~ A value parameter is afield of data other than an
address. It is of variiable length# and is usually in the low-order bits
of either a parameter register or a full-word in a parameter list. The
full-word in the parameter list is aligned on a full-word boundary.
Unless explicitly staued otherwise, a parameter has binary format.

The high-order unused bits in either the parameter register or the
full-word in the parameter list contain all zeros. Any exceptions to
this rule are s1:ated tn individual macro-instruction descriptions.

certain value parameters are placed in a register or a full-word
along with another parameter, which can be either an address or a value
parameter. In this case, a value parameter will be in other than the
low-order bits. Two parameters in the same register or full-word are
called packed parameters.

certain valu€~ parameters are longer than a full-word. For example, a
parameter might: consist of the characters of an eight-chara cter symbol,
or it might consist of eight unpacked decimal digits. This kind of
parameter is passed to the control program only in a parameter list.

OPERANDS: Parameters are specified by operands in the macro
instruction. An address parameter can result from a relocatable
expression or, in certain macro-iristructions, from an implied or
explicit address. A value parameter can result from an absolute
expression or a specific character string. Address and value parameters
can both be specified by operands written as an absolute expression
enclosed in pa:r"entheses; this operand form is called register notation.
The value of the expression designates a register into which the
specified parameter must be loaded by the user's problem program. The
contents of this register are then placed in either a parameter register
or a parameter list by the macro-expansion.

THE MACRO LANGUAGE

certain of the rules for writing system macro-instructions, and the
terminology used, are discussed in the following paraqraphs. This
information is partly a subset of that in the publication IBM Operating
System/360: Assembler ;Language, but contains certain rules 1that apply to
only the system macro-instructions.

Macro-Instruction Fiel~s

System macro-instructions, like assembler instructions~ are written
in the following general format:

r----------T----"-------T---,
I Name I Operation I Operand I
.----------+-----------+---~
I A symbol I Mnemonic I Zero or more operands separated by commas I
I or blank I operation I I
I I code I I L __________ ~ ___________ ~ ___ J

The name field of the macro-instruction can contain a symbol. A
symbol written in this field can be used to refer to the first assembler
language statement (ether than a CNOP) resulting from the macro
instruction.

Section 1: Introduction 13

The operation field contains the mnemonic operation code of the
macro-instruction.

The operand field can contain a list of operands separated from one
another by commas •. The operands, in conjunction with the mnemonic
operation code, specify the particular service requested by the macro
instruction.

If a macro-instruction format permits a blank operand field., any
comm,ent must be preceded by a comma followed by a blank in order to
delimit the operand field.

~§l of Macro-Instruction Operands

The programmer writes operands in a system macro-instruction to
specify the exact nature of the service to be performed. When the
macro-instruction is processed by the assembler program, operands result
in such elements of the macro-expansion as:

• Either a constant parameter or executable instructions that form a
parameter at execution time. This occurs in supervisor or data
management macro-instructions.

• A constant in a special control section.
macro-instructions.

This occurs in TESTRAN

Operands are of two types: pOSitional and keyword.

POSITIONAL OPERANDS: A positional operand is written as a string of
characters. This character string can be an expression, an implied or
explicit address, or some special operand form allowed in a particular
macro-instruction. (Refer to "Operand Representation.")

Positional operands must be written in a specific order. If a
positional operand is omitted and another positional operand is written
to t.he right of it, the comma that would normally have preceded the
omitted operand must be written. This comma should be written only if
followed by a positional operand: it should not be written if it would
be followed by a keyword operand or a blank.

In the following examples, EXl has three positional operands. In
EX2, the second of three positional operands is omitted, but must still
be delimited by commas. In EX3, the first and third operands are
omit.ted; no comma need be written to the right of the second operand.

EX1
EX2
EX3

EXAMP
EXAMP
EXAMP

A,B,e
A"e
,B

KEYVirORD OPERANDS: A keyword operand is written as a keyword immediately
followed by an equal sign and an optional value.

J.l~ keyword consists of one through seven letters and digits, the first
of ~1hich must be a letter. It must be written exactly as shown in a
macro-instruction description.

J!~n optional value is written as a character string in the same way as
a positional operand.

Keyword operands can
writ:ten to the right
inst::ructi on.

14

be
of

written in any order, but they must be
any poSitional operands in the macro-

In the following examples, EX1 shows two keyword operands. EX2 shows
the keyword operands written in a different order and to the right of
positional operands. In EX3, the second and third positional operands
are omitted; they need not be delimited by commas, because t,hey are not
followed by any positional operands.

EX1
EX2
EX3

EXAMP
EXAMP
EXAMP

KW1=X,I<W2=Y
A,B,C,KW2=Y,KW1=X
A, KW1=X, KW2=Y

OPERAND SUBLISTS: A positional operand or the optional value of a
keyword operand can be written as a sublist, if this is specified by a
particular macro-instruction description.

A sublist consists of one or more operands, of 1:he form of a
positional operand, separated by commas and enclosed in parentheses.
The entire sublist, including the parentheses, is considered to be one
positional operand or the optional value of a keyword operand. For
example:

(A,B,C)
(A)

KW1=(A,B,C)

Note that, in the second example above, the sublist consists of only
one opera nd.

When a supervisor or data management macro-instruction description
shows that an operand or optional value is to be written as a sublist,
the enclosing pa:renthesesmust be written, even if there is only one
element in the sublist., The parentheses that designate a sublist are in
addition to parentheses used in register notation.

When a TESTRAN macro- instruction description shows that a,n operand or
optional value is to be written as a sublist, the programmE!r can either
write the enclosing parentheses or omit them when there i.s only one
element in the sublist. This is because the form of regiE:ter notation
used in TESTRAN macro-instructions is different from the form used in
supervisor and data management macro-instructions.

REQUIRED AND OPTIONAL OPERANDS: Certain operands are required in a
macro-instruction, if the macro-instruction is to make a, meaningful
request for a control program service. Other operands are optional, and
can be omitted. Whether an operand is required or optional is indicated
in the macro-ins1:ruction descriptions.

BASIC NOTATION USED TO DESCRIBE MACRO-INSTRUCTIONS

System macro-instrUctions are presented in this publication by means
of macro-instruction descriptions" each of which contains an
illustration of 1:he macro-instruction format. This illustration is
called a forma1: description. An example of a format description is as
follows:

r---~------T------------T---,
I Name I Operation I Operand I
~----------+------------+---i
I [symbol] I EXM1P I name1-value mnemonic,name2-CODED VALUE I
I I I " CODED VALUE I
I I I ,KEYWD1=value mnemonic,KEYWD2=CODED VALUE I L __________ ..L ____________ ,..L __________________________ , ____________________ J

section 1: Introduction 15

Operand representations in format descriptions contain the following
elements:

• An operand name, which is a single mnemonic word used to refer to
1:.he operand. In the case of a keyword operand, the keyword is the
name. In the case of a positional operand, the name is merely a
referent, or it is a coded value (see below). In the above format
description, name:L' name2' CODED VALUE (in the third operand),
KEYWORD1, and KEYWORD2 are operand names.

• ~ value mnemonic, which is a mnemonic used to indicate how the
operand should be written, if it is not written as a coded value.
For example, addr is a value mnemonic that specifies that an operand
or optional value is to be written as either a relocatable
expression or register notation.

• A coded value. which
exactly as it is shown.

is a character string that is to be written
For example, TASK is a coded value.

']~he format description also specifies when single operands and
comhinations of operands should be written. This information is
indicated by notational elements called metasymbols. For example, in
the preceding format description, the brackets around symbol in the name
field indicate that a symbol in this field is optional.

Operand Representation

Positional operands are represented in format descriptions in one of
thrE~e ways:

• By a three-part structure consisting of an operand name, a hyphen,
and a value mnemonic. For example: name:L-addr.

• By a three-part structure consisting of an operand name, a hyphen,
and a coded value. For example: name:L-TASK.

• By a coded value. For example: TASK.

Keyword operands are represented in format descriptions in one of two
ways:

• By a three-part structure consisting of a. keyword, an equal sign,
and a value mnemonic. For example: KEYWD1=addr.

• By a three-part
and a coded value.

structure consisting of a keyword, an equal sign_
For example: KEYWD1=TASK.

rrhe most significant characteristic of an operand representation is
whe'ther a value mnemonic or a coded value is used; these two cases are
discussed below.

Operands with Value Mnemonics

When a keyword operand is represented by:

KEYWORD=value mnemonic

the programmer first writes the keyword and the equal sign, and then a
value of one of the forms specified by the value mnemonic.

16

When a positional operand is represented by:

name-value mnemonic

the programmer writes only a value of one of the forms specified by the
value mnemonic. The operand name is merely a means of referring to the
operand in the format description; the hyphen simply separates the name
from the value mnemon:iJc. Neither is written.

The followin9 genenal rule applies to the interpretation of operand
representations in ai format description: when the operand is written,
anything shown in upper-case letters must be written exactly as shown;
anything shown in lower-case letters is to be replaced with a value
provided by the prograimmer. Thus, in the case of a keyword operand, the
keyword and equal sign are written as shown, and the value mnemonic is
replaced. In the c:a.se of a positional operand, the entire operand
representation is repliaced.

VALUE MNEMONICS: The value mnemonics listed below specify most of the
allowable opera~nd forms that can be written in system macro
instructions. Other value mnemonics, which are rarely used, are defined
in individual matcro-in:struction descriptions.

• symbol - thE! operand can be written as a syrobol.

• relexp - thE! operand can be written as a relocatable expression.

• addr thE! operand can be written as (1) a relocatabl,e expression,
or (2) register notation designating a register that contains an
address in i ts thr~e low-order bytes and all-zeros in i-ts high-order
byte. Register notation is written as an absolute expression that
begins with a left parenthesis and ends with a right parenthesis.
(These parenthese~ are not necessarily paired.) The value of the
absolute expression is the number of the designated re9ister. The
designated register must be one of the registers 2 through 12,
unless special register notation is used. (Refer to "Special
Register Notation.")

• addrx the operand can be written as (1) an indexed or nonindexed
implied or e~xplicit- address, or (2) register notation d,esignating a
register that contains an address in its three low-order bytes and
all-zeros in. its high-order byte. An explicit addrfess must be
written as in the RX form of an assembler language instruction.

• addx the operand can be written as an indexed or nonindexed
implied or explicit address. An implied address cannot be written
as a literal. An explicit address must be written as in the RX form
of an assembler language instruction.

• adval the operand can be written as (1) an indexed or nonindexed
implied or explicit address, or (2) TESTRAN register no'tation for a
register that contains a value. TESTRAN register notation is
written as the letter G (for general register) or the letter F (for
floating-point register) followed by an absolute sym~)lic term, or
an integer, enclosed in single quotation marks. The va.lue of the
symbolic term or integer is the number of the designatE~d general or
floating-point register. There is no restriction on which register
is designated. An explicit address must be written as in the RX
form of an assembler language instruction. (If an implied address
is written as a literal, the address will refer 1:0 a constant
contained in the macro-expansion..)

• integer - the operand can be written as an integer (a decimal
self-defining term).

Section 1: Introduction 17

• ~;tbsexp - the operand can be written as an absolute expression.

• ~~alue - the operand can be written as (1) an absolute expression, or
(2) register notation designating a register that contains a value
in its low-order bits and all-zeros in its unused high-order bits.

• ~text - the operand can be written as a character constant as in a DC
data definition instruction. (The format description shows
explicitly that the character constant is to be enclosed in single
quotation marks.)

• code the operand can be written as one of a large set of coded
:values: these values are defined in the macro-instruction descrip
·tion.

• :tls the operand can be written as data attribute notation. Data
attribute notation is written as the type and modifier subfields of
~a DC or DS data definition statement, and specifies type, length,
and/or scale attributes for data processed by the TESTRAN interpret
,er and edi tor.

The subset of value mnemonics used by each group of system macro
instructions, and the use of the corresponding operands, is shown in
Table 1.

Table 1. Use of Value Mnemonics by Groups of System Macro-Instructions
r---'----------------T--, I I Group of System Macro-Instructions I
I Operand Use ~----------------T----------------T----------------~
I I Supervi sor I Da ta 1-1anagement I TESTRAN I
~----.---------------+----------------+----------------+----------------~
I Specifies an I symbol I symbol I symbol I
I address I relexp I relexp I relexp I
I I addr I addr I I
I I addrx I addrx I I
I I I I addx I
I I I I adval I

~-------------------+----------------+----------------+----------------~
I Specifies a I integer I I integer I
I value I absexp I absexp I I
I I value I value I I
I I I I adval I

.-------------------+----------------+----------------+----------------~
I Specifies other I I I symbol I

I information I text I I text I

I I I I tIs I
I I code I code I I L ___________________ ~ ________________ ~ ________________ ~ _______________ J

Additional information on operand forms and operand processing is
given in Appendix A.

The following example illustrates the use of value mnemonics in a
format description:

r-----------T-----------T---,
I Name I Operation I Operand I
~----------+-----------+---~
I [symbol] I EXAMP I name~-symbol,name2-addrx,KEYWD1=absexp I
I I I, KEYWD2=value I L __________ ~ ___________ L ___ J

18

Each of the four operands shown can be written in anyone of the
forms specified by its value mnemonic.

In the following examples" the macro-instructions are written as
directed by this format; description.

In EX1, the name.1. operand is a symbol, the name2 operand is an
implied address, and the KEYWDl and KEYWD2 optional values are absolute
expressions.

In EX2, the name2 operand is an indexed implied address.

In EX3, the nalme2 operand is an explicit address, and the KEYWD2
optional value is register notation. When the macro-instruction is
issued, register 10 should contain the parameter specified by the KEYWD2
operand.

EXl
EX2
EX3

EXAMP
EXAMP
EXAMP

].lI.LPHA, P:A YROLL+ 8 , KEYWDl = 25, KEYWD 2= 1 00
P.~LPHA, PAYROLL+8 (5) , KEYWD1=WSO, KEYWD2=4*W50
P.~LPHA, 40 (0, S) , KEYWD1=W50 , KEYWD2= (10)

Coded Value Operamds

Some operands are not represented in format descriptions by value
mnemonics. Inst.ead, they are represented by one or more upper-case
character strings: that show exactly how the operand should be written.
These character strings are called coded values, and the operands for
which they are written are called coded value operands.

A coded value operand results in either a specific value parameter or
a specific sequence of executable instructions.

When a positional operand can be written as only one coded value, the
operand is shown simply as the coded value; an additional lower-case
operand name is: not used. For example, a positional operand could be
represented by:

TASK

A keyword ope:r'and could be represented by:

KEYWORD=TASK

If a positional operand can be written as anyone of two or more
coded values, an additional lower-case operand name mayor may not be
used. The choice of which is done is determined by whether or not a
name can be meaningfully used to refer to all values of the operand.
For example, a positional operand could be shown as either of the
following:

{TASKI REAL}
mode-{TASKIREAL}

In both of the above examples, the braces indicate that the coded
values are grouped together in one operand representation, and the
vertical stroke indicates that either one of the coded values can be
written. The braces and vertical strokes are metasymbols.

Section 1: Introduction 19

Metc~syrnbo Is

r1etasymbols are symbols that convey information to the programmer,
but are not written by him. They assist in showing the programmer how
and when an operand should be written. The metasymbols used in this
publication are:

1. I This is a vertical stroke and means "or." For example, AlB
means either the character A or the character B. Alternatives are
also indicated by being aligned vertically (as shown in the next
paragraph) •

2. {} These are braces and denote grouping. They are used most
often to indicate alternative operands. For example:

{TASK I REAL}

{
TASK}
REAL

The two examples above are equivalent; either TASK or REAL must be
written.

3. [] These are brackets and denote options. Anything enclosed in
brackets can be either omitted or written once in the macro
instruction. For example:

[TASK]

[TASK I REALJ

[
TASK]
REAL

The second and third examples above are equivalent; TASK, or REAL,
or neither can be written. The underlining indicates that, if
neither is written, TASK is assumed. Braces used for grouping
inside brackets are redundant.

4. This is an ellipsis. It denotes occurrence of the preceding
syntactical unit one or more times in succession. A syntactical
unit is any combination of operand representations, commas,
parentheses, and metasymbols, enclosed in braces. For example:

{symbol,} •••

The above example indicates that a symbol followed by a comma can
be written any number of times, but it must be written at least
once. The braces denote grouping, and are the extremities of the
syntactical unit to which the ellipsis refers.

The following example shows metasymbol use in a format description:

r----------T-----------T---,
I Name I Operation I Operand I
~----------+-----------+---~
I [symbol] I EXAMP I ({abc-addr,[def-{TASKIREAL}],} •••) I L __________ L ___________ L ___ J

The enclosing parentheses specify a sublist.

20

The outer pair of b~aces followed by the ellipsis indicat.es that the
sublist can consist of one or more occurrences of the synt.actical unit
bounded by the braces.

The comma to 1:he left of the rightmost brace is required to make the
format description conrect (since all operands except the first must be
preceded by a comma). A trailing comma is unnecessary and must not be
written.

The brackets indicate that the def operand within them is optional.
If the def operand is u.sed, it is written as either TASK or REAL.

The comma to 1:he lef\t of the leftmost bracket is not enclosed by the
bracket, because it must be written if any positional operand is written
to the right of it. Fdr example, the operand field might contain:

(DCB 1 " DCB2)1

indicating that 1:wo abc operands, DCBl and DCB2, are written with no def
operands.

TYPES OF MACRO-INSTRUCTIONS

Most superviBor and data management macro-instructions are referred
to as being either R t~pe (register) or S type (storage). An R-type
macro-instruction passies parameters to the control program by means of
parameter registers; an S-type macro-instruction passes them by means of
a parameter list.

A few superviBor and data management macro-instructions do not pass
control to the control program. For example, the SAVE macro-instruction
results in inst:ructions in the user' s problem program that completely
perform the requE:~sted s:ervice. Similarly, the DCB macro-instruction
results in only a data area containing constant parameters. These
macro-instructions are neither R type nor S type; they are referred to
simply as macro-instruc:tions.

R-Type Macro-Inst:ructio~s

An R-type macro-in!struction is used when only one, two, or three1
parameters are to be pa:ssed to the control program. The parameters are
passed in register 0 or 1, or both. This results in good performance
because:

• A typical R-type macro-expansion consists of fewer executable
instructions than would be required if the one to three parameters
were passed in a list •

• The user's problem program can often be written so that parameters
already exist: in registers when the macro-instruction is issued. In
this case, instructions that refer to storage are not required in
the macro-expansioni. If a parameter exists in a register other than
a parameter registeir, a load register (LR) instruction that loads
the correct parameter register is part of the macro-expansion.

1When an R-type macro-instruction has three parameters, two or three of
them can be palcked into one parameter register. (Refer to "Packed
Pa rameter s. ")

Section 1: Introduction 21

(Note that if the register contains the address of data, a load
instruction is part of the macro-expansion.)

J~ddress operands can be written in R-type macro-instructions as
implied or explicit addresses, or by using register notation.

S-Type Macro-Instructions

An S-type macro-instruction is used when three or more parameters are
to he passed to the control program. In this case, the parameters are
passed in a parameter list. This allows the macro-instruction to be
used with no noticeable effect on the contents of most of the registers
used by the user's program. (The contents of registers 2 through 13 are
not disturbed. Register conventions are described in "Linkage Conven
tions.") The system macro-instructions pass three or more parameters by
list. rather than by register because, if large numbers of parameters
werE3 passed by registers, the user's problem program might need
inst.ructions to save register contents before execution of such a
macro-instruction, and then to restore them afterwards.

Use of S-type macro-instructions simplifies the writing of programs.
The programmer need not know the identities of registers used by
macro-instructions, and he need not plan ahead to achieve the optimum
position of parameters in registers.

l\ddress operands in the standard form of S-type macro-instructions
can be written only as relocatable expressions or by using register
notation. However, implied and explicit addresses can be written if
nonstandard forms of the macro-instructions are used; these are called
the Land E forms.

~rhe Land E forms of S-type macro-instructions allow a single
parameter list to be used by two or more macro-instructions that request
the same general control program service. The parameters in the list
can be modified to request a specific service each time a macro
instruction is executed. The Land E forms also allow an S-type
macro-instruction to be used in a reenterable program even when its
parameter list is modified at execution time. Refer to Appendix B for
morE3 information about these macro-instruction forms.

SPECIAL REGISTER NOTATION

If an operand of an R-type macro-instruction is written using
register notation, the resulting macro-expansion loads the parameter
contained in the designated register into either parameter register 0 or
parameter register 1.

For example, if an operand is written as (R4S), and if the
corresponding parameter is to be passed to the control program in
register 0, the macro-expansion could contain the instruction
LR O,(R4S), or L 0,0(0,R4S), or L 0,0(R4S,O). (The parentheses are not
always removed in the macro-expansion. They have no effect on the
action of the assembler program.)

~rhe user's problem program can load parameter registers directly,
before execution of the macro-expansion; this is called preloading. The
proqrammer specifies that preloading will occur by writing an operand as
either (0) or (1); this is called special register notation.

22

This notation is special for two reasons:

• The register notation designation of registers 0 and 1 is generally
not allowed.,

• The designation must be made by the specific three cha:racters (0) or
(1), rather than by the general form of an absolulte expression
enclosed in parentheses. For example, even though the absolute
expression R45 could be equated to 0, (R45) must not be written
instead of (0) when special register notation is intencted. If this
were done, the macro-expansion would at least cont.ain a useless
LR 0, (R45) instruction; in certain cases, the macro-expansion would
conta in an nndes iL"ed L 0,0 (0, R4 5) (or L 0, 0 (R4 5, 0» instruction, and
would result. in an improperly loaded parameter regist.e:r·.

The format description of an R-type macro-instruction shows whether
special register notation can be used, and for which operands. This is
demonstrated by the following format description:

r----------T------------T-----------------------------------'------------,
I Name I Operation I Operand I
~----------+--_._------+-----------------------------------,-----------~
I [symbol] I EX1\MP I {abc-addrx}, { def-addrx } I
I I I (1) (0) I L __________ .!. ___________ -.!.----______________________________ , ____________ J

Both operands can be written in the addrx forms, and t.herefore can be
written using regis1:+er notation. Ordinary register not.at.ion indicates
that the parameter register should be loaded from the designated
register by the macro-expansion. The format description also shows that
the abc operand can be written as (1), and the def operand can be
written as (0). If ei[ther of these special register notations is used,
the user's problem program must have loaded the designa.ted parameter
register before execution of the macro-instruction.

Special register notation can also be
value of a keyword operand. The operand
as shown in the following example:

ABC={ addrx}
(1)

Packed Parameters

used to write the optional
appears in a fo:rma.t description

certain R-type macro-instructions use registers 0 and 1 to pass three
parameters to the control program. Two or three paramete!rs are loaded
into one paramet.er register; these are called packed parameters. The
user's problem prog~am can preload packed parameters" provided that it
preloads both of them .. , The fact that preloading is possible and the
required speciaJL register notation are shown in the following example:

r----------T----------~-T---,

I Name I OpE~ration I Operand I
~----------+-----------:-+---------------------------------,-------------i
I [symbol] I EXAMP I {abc-addrx},{def-vaIUe,ghi-ValU€!} I
I I I (1) (0) I L __________ .!. ___________ -.!.----___________________________ . ______________ J

section 1: Introduction 23

For this example" the operand descriptions could state that the def
parameter can be preloaded into the two high-order bytes of register 0,
and the ghi parameter can be preloaded into the two low-order bytes of
regis·ter O. Then, if (O) is wri tten for the second operand of the
macro-instruction, it specifies both the def and ghi parameters, and
both these parameters must be preloaded into register O. Note that
ordinary register notation (designating one of the registers 2 through
12) can be written for the def operand or the ghi operand, or both, if
thesE~ operands are written separately. Where ordinary register notation
is used, the specified value must be in the rightmost two bytes of the
designated register.

LINKAGE CONVENTIONS ----

Work can be performed by Computing System/360 with the aid of
funct.ions provided by the System/360 Operating System. Some of these
func1:ions are the management of nested levels of control and action, as
follows:

• ~Tobs are executed.

• Within a job, job steps are executed.

• Within a job step, a highest level task is created, and the program
specified on the EXEC job control statement is given control.
(Refer to the publication IBM System/360 Operating System: Job
~~ontrol Language for details about the EXEC statement.)

When the first program of a job step is executed, the control level
can change as a result. of the following processes:

• The creation and termination of new tasks.

• ~rhe exchange of control between subprograms wi thin the user's
problem program.

• ~rhe exchange of control between the user's problem program and the
control program.

Each of the above three processes is a linkage, and involves standard
methods for giving control, passing data, and maintaining machine and
program environments. These standard methods are the linkage
conv4~ntions •

LINK1\GE TERMINOLOGY

Linkages involve the use of subprograms or subtasks, and, therefore,
each linkage results in an upward or downward change in control level
(exc4~pt when the XCTL macro-instruction is used; in this case, the
control level does not change).

Linkage from a higher level program to a lower level program is
call4~d an entry linkage. It results in the giving of control to an
entry point in the lower level program. Linkage from a lower level
program to a higher level program is called an return linkage. It
results in the giving of control to a return address in the higher level
program.

24

An entry linkage is initiated in the higher level program by
execution of a set of instructions referred to as a calling sequence.
The linkage is comp1!eted by execution of entry code at the entry point
of the lower le~lel prdgram. A return linkage occurs through execution
of return cod~~ in the lower level program. This usually completes the
linkage; that is, no linkage-associated instructions normally exist at
the return address in the higher level program. (Calling sequence
identifiers and instructions to interpret return codes are exceptions to
this statement; they are discussed later.)

In addition to the giving and returning of control between two
programs, it is usually necessary to communicate data, as follows:

• Implicit communica!tion. Both programs know the location of the data
because they were 'compiled, assembled, or linkage edited together.

• Explicit co~~unic~tion. At the time of the linkage, either the data
or its location is passed between the programs. Communication by
passing the data iitself is called communication by value; communi
cation by passing the location of the data is called communication
by ~.

Implicit communicatiion can be used when the linkage is either a
branch and link instriuction or a CALL macro-instruction. However, if a
program requiring data: and using implicit communication is redesigned to
run on a computer with a smaller main storage area, the program may have
to be rewritten to use; the LINK macro-instruction and explicit communi
cation. If thE! progr~m had originally used explicit communication, the
changes required would be minor.

Data communicated e~plicitly is called a parameter.
further classified according to their use, as follows:

Parameters are

• Control program parameters, which are passed between the user's
problem program and the control program when system macro
instructions are e~ecuted. These parameters are passed in either
parameter rE!gister:s or parameter lists.

• Problem program parameters, which are passed between subprograms of
the user's problem: program when a linkage occurs. Thes·e parameters
are passed only in' parameter lists.

LINKAGE TYPES

All linkages between subprograms of the user's problem program, and
between the user's problem program and the control program, can be
classified into four types:

• Type I - Direct Linkage: A branch and link instruction or a CALL
macro-instruction is used to link two subprograms or the user's
problem program and a problem state control program routine. (Most
data management macro-instructions use this type of linkage at the
interface between the user's problem program and the control
program.)

• Type II - Supervisor-Assisted Linkage: A LINK, XC'rL, or ATTACH
macro-instruction is used to link two subprograms.

• Type III - Supervj.sor Linkage: A supervisor call (SVC) instruction
is used to link to a control program routine that is .ex.ecuted in the
supervisor state. (The SVC instruction is part of the macro-

Section 1: Introduction 25

,expansion of a system macro-instruction, or it is in a control
program routine entered by a direct linkage.)

• %ype IV - Exit Linkage: A branch and link instruction or a load
program status word (LPSW) instruction is used to enter a user's
.routine (called an exi t routine) during execution of a system
service in response to a macro-instruction; this linkage is called a
!§ynchronous exit. An LPSW is used to enter a user's routine when an
asynchronous event occurs: this linkage is called an asynchronous
.exit.

The four linkage types serve as convenient descriptions of linkage
interfaces that can exist. However, linkages can actually be more
complex than the linkage types might indicate. Figure 1 shows one of
the more complex cases.

In Figure 1, a LINK macro-instr.uction results in a supervisor
assisted (type II) linkage. The load module to be given control is
module B. However, to give control to B, two linkages actually occur:

1. The first linkage is between load module A and the supervisor. The
entry linkage uses an SVC instruction, and the return linkage uses
an LPSW instruction.

2. The second linkage is between the supervisor and load module B.
The entry linkage uses an LPSW instruction. The return linkage
uses a RETURN macro-instruction, which results in a branch from
module B to an SVC instruction in the supervisor. The branch
instruction uses the contents of a return register, which the
supervisor set with the address of the SVC instruction before
giving control to module B.

The action of these linkages gives the effect of a direct linkage
between load modules A and B.

A SAVE macro-instruction is shown at the entry point of module B, and
a RgTURN macro-instruction is shown at the location from which a return
is made to the supervisor. These macro-instructions save and restore
the contents of the registers used by module B.

r---·--,
Load Load

MOdUI"e A Superv isor Module B

r----> r---->
LINK B I I SAVE

I I
---} LINK I I

} macro- I I
---} expansion I LPSW

__________ J

} I
SVC}

_____________ J
SVC <---------,

<------------, I
I I
I I

I I I
I I I
V

L _____
LPSW

L _____
RETURN

------______________________________ ----------------_________________ J

Figure 1. Linkages in LINK Macro-Instruction Execution

26

LINKAGE REGISTERS

The registers having specific roles in linkages are listed, and their
functions described" :in Table 2.

Table 2. Linkage Reg~sters
r--------T-----------.... ----------T----------------------'---------------,
,Register" I
'Number' Register Name' contents I

'" I .--------t-----,------'-----------t-----------------------,-------------~
, 0 ,Parameter register ,Parameters to be passed to the I
" , control program. I

'" I 'I' I .--------t-----,-----------------t-----------------------,-------------~
I 1 ,Parameter register ,Parameters to be passed to the con- ,
" , trol program. I
I I' I
, I or' I
I' I I , I Parameter list I Address of a parameter list to be I
, , register I pass ed to either the con'trol program ,
I I , or a user's subprogram. I
'I I I
.--------t-----------~----------t--------------------------------------i
I 13 I Save area register I Address of the register :save area to I
I I I be used by the called program. I
I I I I
I I I I .--------t-----------~----------t------------------------·-------------i
I 14 I Return register I Address of the location in the call- I
" I ing program to which con'trol should I
I I I be returned after execution of the I
I I I called program. I
I I I I
~--------t-----------~----------+_------------------------.------------~

15 Entry point register Address of the entry point in the

or

Supervisor parameter
list register

or

Return code register

called program.

Address of a parameter list to be
used by the supervl.sor in a
supervisor-assisted linkage. This
list contains information needed by
the supervisor to giv~~ control to
the called program.

A return code that indicates to the
calling program whether or not an
exceptional condition occurred dur
ing processing of the called pro
gram. The return code should be
zero for a normal return or a multi
ple of four for various exceptional
conditions.

________ J. _____ , ______ ~-----------L-----________________________________ J

Section 1: Introduction 27

Some of the linkage register identities and uses are shown in the
follo'N'ing typical type I linkage calling sequence:

RET

CNOP
LA
L
BALR
DC
B
B
B
B

2,4
14,RET
15,=V(SUBR)
1,15
A (PAR1, PAR2)
*+4(15)
NORMAL
CONDl
COND2

load return address
load entry point address
load parameter list address
parameter list
branch, using return code
branch if normal
branch if condition 1
branch if condition 2

In the preceding sequence, a higher level program (the calling
program) gives control to a lower level program (the called program) by
branching to the address in register 15. Register 15 is the entry point
regis'~~er; it can be used to provide initial addressability in the called
program.

Before branching, the calling program loads register 14, the return
regis'~er, with the address to which the called program should return
control.

Two parameters, PARl and PAR2, are passed to the called program, in a
list pointed to by register 1, which is the parameter list register.

Before returning to the calling program, the called program may load
regis·ter 15 with a return code. (In the above example, register 15 must
be loaded with a return code.) In this use, register 15 is the return
code !'egister.

The return code should be 0 for a normal return. If the return code
is a multiple of 4, it can be interpreted by a branch table in the
calling program., as shown above. Another way of interpreting the return
code is shown below:

RET LTR
BNZ

15,15
COND 4(15)

test return code
branch if not zero

Before the preceding calling sequence is executed, register 13, the
save ~rea register, must be loaded with the address of a save area that
is provided by the calling program. The called program stores, in the
save area, the contents of the registers that it will use.

If a supervisor call (type III) linkage results, parameters can be
passed in a list as shown, or they can be passed in registers 0 and 1.
In this use, registers 0 and 1 are parameter registers. Whether
parameters are passed in a list or in registers depends on the type of
the macro-instruction and on the number of parameters to be passed.

In a supervisor-assisted (type II) linkage, the called program need
not he in main storage when the linkage occurs, and the calling program
does not know its entry point address. The supervisor is given a
symbolic program name by means of a supervisor parameter list pointed to
by register 15. In this use, register 15 is the supervisor parameter
list ~egister. The supervisor then acquires the called program and
loads its entry point address into register 15. Control appears to be
given to the called program as in a type I linkage.

28

SAVE AREA USE

Registers that are l not linkage registers must have their contents
saved and rest:ored by each lower level program that is given control by
a higher level progr~m. This conserves main storage, because the
instructions t:o sav~ and restore registers need not be ,in each calling
sequence in thE! higher level program. With the exception of the ATTACH
macro-instructi.on, the save area used is provided by the higher level
program, and ha.s a standard format so that all programs can save
registers in a uniform manner. Save areas are chained together in
ascending order so th~t register contents can be restored as control is
returned to t,he higher level programs. Save areas can also optionally
be chained together in descending orde~.

The SAVE macro-instruction has optional provisions for saving, in the
save area, the entry point address and the return address associated
with each linkage. The RETURN macro-instruction has an optional
provision for marking the save area provided by the higher level program
to indicate that the return has occurred.

These provisions can assist in the interpretation of program dumps
taken by means of the test translator DUMP DATA and DUMP CHANGES
macro-instructions.

Register Saving and Restoring Responsibilities

Every program, before it executes a type I, type II, or type III
linkage, must provide a save area and place the address of this save
area in register 13 • .1. A program can use the same save area for all of
its 'linkages; unless required for other purposes, regis1ter 13 need be
loaded only once, when the program is entered. In tht~ case of a
reenterable program, the save area must be provided from a dynamically
allocated area of storage.

The save area provided by the calling program is used by a called
user's problem progtam l.n type I and type II linkagf~s to save the
contents of registers: the called program will use. Reqister saving
should be accomplished by using a SAVE macro-instruc1:ion. Because
register saving should be the first action taken by the called program,
the SAVE macro-instruction should be used at the entry point of the
called program. The called program should use a HE TURN macro
instruction to return; control to the calling program, and 1:0 restore the
saved registers from the save area.

The save area provided by the calling program is used by the control
program in type III linkages. Before returning to the calling program,
the control program may execute a type IV linkage to a user's
synchronous exit routine. Although the contents of regis1:er 13 will be
the same in both linkages, the exit routine must not attempt to use the
save area provided by the calling program.

As in the case of the highest level program of a task, a routine
entered by a type IV linkage can use any register (excep1: the return
register) without sa~ing and restoring its contents. On execution of a
RETURN macro-instruction, the control program restores register contents

1.When the R forms of the GETMAIN and FREEMAIN macro-ins1:ructions are
issued, a sav,e area, need not be provided, and the control program will
not refer to or modify the contents of a main storage area pointed to by
register 13.

Section 1: Introduction 29

automatically,. To allow the use of standard linkage qonventions,
howev,er, the control program provides a save area for use by highest
level programs and by exit routines that are entered asynchronously on
termination of a task (the ETXR and STAE routines) and on completion of
a timer interval (the STlMER routine). This save area is located in
subpool 0 of the job step and is pointed to by register 13.

Except for the SVC interruption" interruptions are not classified as
linkages.. When the control program processes any interruption. except
for the SVC interruption that occurs in a type III linkage, it saves, in
its own main storage area, the contents of all registers that it will
use, and then restores these register contents before returning to the
user's problem program.

Save Area

A save area occupies 18 full-words and is aligned on a full-word
boundary. The save area words, their displacement in bytes from the
area origin, and their contents are shown in Table 3.

Additional information on the contents of each of the words in a save
area is given below:

30

• ~9rd 1. An indicator byte followed by three bytes that contain the
length of allocated storage. This field is used only by programs
written in PL/I language.

• Word 2. The address of the save area used by the calling program.
The address is passed to the calling program in register 13 by the
next higher level program. The calling program must store the
address in this word before it loads register 13 with the address of
the current save area. This word contains all zeros if the current
save area is provided by the supervisor for use by an asynchronous
exit routine or the highest level program of a task.

• Word 3. The address of the save area provided by the called
program, unless the called program is at the lowest level and does
not have a save area. (The called program need have a save area
only if it is itself a calling program, or if it executes a
supervisor or data management macro-instruction other than SAVE,
IU~TURN, or the R forms of GETMAIN and FREEMAIN.) If save areas are
bE~ing chained together in descending order, the called program
stores the save area address in this word. This word is not used by
called control program routines.

• Word 4. The return address, which is in register 14 when control is
given to the called program. The called program stores the return
address in this word if it intends to modify regist~r 14 or if the T
operand is written in the SAVE macro-instruction. If the T operand
is written in the RETURN macro-instruction, the called program
changes the high-order byte of this word to all-ones just before it
:r'eturns to the calling program. The all-ones byte indicates that
the return occurred. None of these operations is performed by
called control program routines.

• Word 5.
address
program.
word if
This word

The address of the entry point of the called program. This
is in register 15 when control is given to the called

The called program stores the entry point address in this
the T operand is written in the SAVE macro-instruction.
is not used by called control program routines.

• Words 6 and 7. The contents of registers 0 and 1, respectively.
The called program stores the register contents in thes1e words if it
so desires, or if the contents of registers 15 and 2 are saved. In
the latter case, the SAVE macro-expansion contains a single STM
instruction that also saves the contents of registers 0 and 1 .

• Words 8 through 18;. The contents of registers 2 through 12, in that
order. The~ call~d program stores the register conbents in these
words if it intends to modify the registers.

Table 3. Save Area Words and contents in Calling Programs
r------T--------------T---------------'----------------------------------,
I Word I Displacement I contents I
~------+--------------+---i
I 1 I 0 I Indicator byte and storage length. I
~------+--------------t--i
I 2 I 4 I Address <stored by the calling program) of the I
I I I save area used by the calling program. This I
I II save area is provided by the program that I
I I ,I called the calling program. I
~------+--------------+------------------------------------·------------i
I 3 I 8 I Address (stored by the called progra.m) of the I
I II save area provided by the called program. I
~------+--------------t---~
I 4 I 12 I Return address (register 14 contents - stored I
I I I by the called program). I
~------+---------------i~---i
I 5 I 16 I Entry point address (register 15 contents - I
I I I stored by the called program). I
~------+--------------+---i
I 6 I 20 I Register 0 I
~------+--------------+------------------------------------·------------i
I 1 I 24 I Register 1 I
~------+---------------~--i
I 8 I 28 I Register 2 I
~------+--------------+--i
I 9 I 32 I Register 3 I
.------+--------------+--i
I 10 I 36 I Register 4 I
f------+--------·------f---i
I 11 I 40 ~ Register 5 I
~------+--------------+---i
I 12 I 44 ~ Register 6 I
~------+--------------.~---i
I 13 I 48 I Register 1 I
~------+--------·------f--i
I 14 I 52 ~ Register 8 I
.------+--------,------t---i
I 15 I 56 ! Register 9 I
~------+--------,------t---i
I 16 I 60 ~ Register 10 I
.------+--------.------+--i
I 11 I 64 ~ Register 11 I
.------+--------·------f---i
I 18 I 68 I Register 12 I
L ______ .L ________ , ______ ~------------------------------___________________ J

Section 1: Introduction 31

Save_Area Chaining

The following examples illustrate the chaining of save areas when
diffE~rent linkages are used, and relate the chaining sequence to the
concept of control levels. Each example concentrates on (1) the use of
words two and three of a save area, (2) the contents of register 13 at
the point of linkage, and (3) the responsibility of programs to provide
save areas. Pointers to save areas in higher control level programs are
shown as solid lines: pointers to save areas in lower control level
programs are optional and are shown as dotted lines.

EXAMPLE 1: The job stream contains an EXEC statement for module ALPHA.
ALPHA consists of program A and program B, which was included in the
module as a result of a CALL macro-instruction. Program B contains a
LINK macro-instruction to program C.

Area Provided by

Area Used by

Word 2
Word 3

Words 6 to 18

Save Area 1

Control Program

Program A

CALL to B
I
I
I
I
I
I

Save Area 2

Program A

Program B

,LINK to C
I
I
I
I
I
I

Save Area 3 Save Area 4

Program B Program C

Program C Unused

In this example. program A is considered to be at the highest control
level and program C at the lowest. When program A receives control,
word 2 of the save area provided by the control program contains zeros.
At t~he time of each linkage, register 13 must point to the save area of
the higher control level program. Since program C does not either
cont.ain a linkage to a lower control level or issue a system macro
instruction, save area 4 is not required. (Program C need only save
register 13 until the return linkage.) The save area is shown here for
generality, since program C might require the area during another
execution.

EXAMPLE 2: Program A receives control from a higher level program and
lssues a LINK macro-instruction to program B, which in turn issues a
XCTI. macro instruction to program C. Finally, program C calls program
D. The major consideration here is the use of save area 2 by both
prosrram B (before the XCTL macro-instruction) and program C (after the
XCTI. macro-instruction).

32

EXAMPLE 2

LINK to B XCTL to C CALL to 0
I I I

Save Area 1 I Save Area 2 I Save Area 1 Save Area 2 I Save Area 4
I I I Area Provided by: Higher Level Program I Program A I Higher Level Program Program A

I
Program C

Area Used by: Program A I Program B I Program A Program C I Program 0
I I I , I I

Word 2 PO;"'., '0 Pdo, A,.1 i Pointer to Area 1 Pointer to Prior Area Poi nter to Area 1 Pointer to Area 2
Word 3 Pointer to Ar<sa 2 j Pointer to Area 3 P(l)inter to Area 2 Pointer to Area 4 Unused

Words 6 to 18 R.g;,"" so~~ Registers Saved Registers Saved lu
",red J by A by B by C

The XCTL macro-in~truction has the same effect on the usage of save
areas as that of a RETURN macro-instruction from program B :Eollowed by a
LINK macro-instruction: from program A to program C. Regis"ter 13 must
point to save area 2 when the XCTL macro-instruction is executed.
Program C then replace~ program B as the lowest control level rather
than introduce a new :level of control. The linkage from program C to D
introduces a lower control level. Note that program B provides a
separate save area '(area 3, not shown) that is not used in this
execution.

EXAMPLE 3: Program A issues an ATTACH macro-instruction for a task that
uses Program B. Program A then calls programs C and D. Program Blinks
to program E.

EXAMPLE 3
CALL to C

T
Save Area 1 I Save Area 3 Save Area 4 Save Area 5

Area Provided by Higher Level Pragram
I

Program A Program C Program 0 I
Area Used by Program A I Program C Program 0 Unused

PO;"'.' '0 p,;,,, A,.ol \
I

Word 2 Pointer to Area 1 Pointer to Area 3 Poi nter ta Area 4
Word 3 Pointer to Area 3 ~ '" Pointer to Area 4 Pointer to Area 5 Unused

Words 6 to 18 R.g;'lo" SO".~ Registers Saved Registers Saved 1 U"ored I by A by C by 0

Attach B LINK tb E
I I
I Save Area 2 I Save Area 6
I I

Area Provided by I Control Program I Program B

Area Used by Program B I Program E

10: ~O~"~: '0 Areo 6 1 ~ I Word 2 Pointer to Area 2
Word 3 Unused

Words 6 to 18 R."""" S~.~ Registers Saved
by B by E

Section 1: Introduction 33

Program A initiates a second sequence of control levels when it
attaches a task. The first sequence of control levels starts with
program A, the highest control level, and ends with program D, the
lowest. The second sequence consists of program B at the highest level
and program E at the lowest level. Also, the second sequence is at a
lower control level than the first sequence even though the two operate
in parallel. (It is understood that at some time program B will issue a
RETURN macro-instruction and the task will be detached.)

CALLING SEQUENCE AND ENTRY POINT IDENTIFIERS

A calling sequence identifier is a 16-bit binary number in the second
half'-word of a full-word NOP instruction. The identifier can be
specified by either the CALL or LINK macro-instruction. The NOP
instruction is located at the return address if a CALL macro-instruction
(or a. hand-coded direct linkage) is us ed, or follows the SVC instruction
if a LINK macro-instruction is used.

An entry identifier is a character string of up to 70 characters. It
can be specified by the SAVE macro-instruction (described in "Supervisor
Servi.ces").

LINKAGE INTERFACE RESPONSIBILITIES

There are three distinct linkage interfaces of which the programmer
must be aware:

• ']~he interface that a called program sees in type I, type II, and
certain type IV linkages.

• The interface that a calling program sees in a type I linkage
resulting from a hand-coded calling sequence.

• The interface that a calling program sees in a type I, type II, or
t:ype III linkage resulting from a supervisor or data management
macro-instruction.

Conventions concerning exit routines (used in type IV linkages) are
given in the descriptions of the macro-instructions used to invoke the
exit routines.

Call~d Program Interface in Type I, Type II, and Certain Type IV
Link,§lges

The conventions to be followed by a called program are independent of
how the program is given control. That is, the called program need not
be aware of whether it was entered through the use of CALL, LINK, XCTL,
or A,TTACH or through an asynchronous ex;i t taken on termination of a task
or completion of a timer interval. The called program is responsible
for the following:

1. Saving the contents of registers 2 through 12 and 14 in the calling
program's save area, if the called program modifies these
registers, and subsequently restoring these registers before
returning to the calling program.

34

2. Saving the contel1lts of register 13 in the called program's save
area, if the called program modifies this register, and subsequent
ly restoring this register before returning to the calling program.

3. Ensuring -that the program mask (PSW bits 36 throu9h 39) and the
program in-terruption control_ area (PICA) are the same upon exit
from the called wrogram as they were upon entry to it.,

Item 1 can be accomplished by the SAVE and RETURN macro·-instructions;
items 2 and 3 must be accomplished by assembler language instructions.

The contents of t.he floating-point registers and the condition code
(PSW bits 34 and 35) need not be the same upon exit froIn the called
program as they were upon entry to it.

Calling Program Inter:fface in a Type I Li.nkage Resulting From a
Hand-Coded Calling Sequence

The calling program is responsible for the following:

1. Loading reqister 13 with the address of a save area.

2. Loading reqister 14 with the return address.

3. Loading reqister 15 with the entry point address.

4. Loading rE~gister 1, if necessary, with the address of a parameter
list.

After execution of the calling sequence, the calling program can
expect the following to occur as a result of execution of the remainder
of the linkages::

1. The content:s of registers 2 through 14, the program mask, and the
program interruption control area will be unchanged.

2. The contents of registers 0, 1, and 15; the contents of the
floating-point registers; and the condition code may be changed.

Calling Program Interface in Type I, Type II, and Type III Linkages
Resulting From Supervisor and Data Management Macro-Instructions

The calling program is responsible for the following:

1. Ensuring that the entire macro-expansion and the literal pool
currently being used are addressable by a base register other than
registers 0, 1, 1~, and 15.

2. Loading register 13 with the address of a save area.

3. If an XCTL macro-instruction is being executed, restoring the
return register, and also the program mask, and the program
interruption control area as they were upon entry to the calling
program. The user can request that registers in the range 2
through 12 be restored. Register 13 must point to the save area in
the program that called this calling program.

Section 1: Introduction 35

The calling program can expect the following to occur as a result of
execution of the macro-instruction:

1. The contents of registers 2 through 13, the program mask, and the
program interruption control area will be unchanged. Note that use
of the SPIE macro-instruction results in an exception to the
preceding statement: SPIE modifies the program mask and program
interruption control area.

2. The contents of the floating-point registers will not be changed by
a called control program routine, but they may be changed if the
user's problem program is given control during the linkage (as in a
t:ype I or type II linkage, or if a synchronous exi t routine is
given control).

3. The contents of registers 0., 1, 14. and 15, and the condition code
may be changed.

PASSING CONTROL INFORMATION TO A JOB STEP

The EXEC job control language statement can be used to pass control
information to the first program of the specified job step. The control
info:r·mation is specified by characters written as the optional value of
the PARM keyword operand. The following rules must be observed in
writing the optional value:

• 'I'he optional value is delimited by: on the left, the equal sign of
t~he keyword operand; and, on the right, a comma, if another operand
follows, or a blank, if another operand does not follow •

• If the control information is to contain either a comma or a blank,
t:he optional value must begin and end with a single quotation mark;
t:hese do not become part of the control information •

• If the optional value begins and ends with a single quotation mark,
single quotation marks that are to be part of the control informa
t:ion must each be written in the optional value as a pair of single
quotation marks. Note that the optional value cannot begin or end
vdth an even number of single quotation marks.

• 'rhe control information cannot consist of more than 40 characters.

The control information is passed to the job step by means of a data
area, a parameter list, and register 1. The data area consists of a
half--word followed by the control information. The half-word contains a
count of the number of control characters. The parameter list consists
of a. full-word that contains the address of the data area and has its
high--order bit set to 1, giving the word the appearance of the last word
in a variable-length parameter list. (Refer to the description of the
VL operand of the CALL macro-instruction for a discussion of variable
length parameter lists.)

The control program places the data area and parameter list in a main
storage area that it allocates from subpool zero of the job step. The
data area and parameter list are aligned to half-word and full-word
bOUndaries, respectively. The control program loads the address of the
parameter list into register 1 and then gives control to the job step.

If the PARM field is omitted, the half-word count field in the data
area is set to zero.

36

MACRO-INSTRUCTION DESCRIPTIONS

System macro-instructions are presented in this publication by means
of macro-instruction: descriptions, each of which is organized in
accordance with the fbllowing outline:

1. Title - the mnemonic operation code of the
phrase explaining either the meaning of
function of the macro-instruction; and,
parenthesized letter stating the type of the
or S).

macro-instruction; a
the mnemonic or the
where applicable, a
macro-instruction {R

2. Function - a brief summary of the services provided.

3. Format Description - an illustration showing how and when operands
are to be writteh.

4. Operand Descriptions - detailed information about writing each
operand, including any cautions applicable to a particular operand.

5. Execution reference material describing the normal use or
execution of the macro-instruction.

6. CAUTIONS - warnings of .any special restrictions on thl~ use of the
macro-instruction. In some cases, the results of improper use are
described.

7. EXCEPTIONAL RETURNS - material describing return codes and synchro
nous and asynchronous exit routines. (Refer to "Linkage Conven
tions.")

8. ENVIRONMENT - description of the use of the macro-instruction with
a subset of the control program and a description of the services
available.

9. EXAMPLES one or more specific examples showing how the macro-
instruction is written and what it does.

10. PROGRAMMING NOTES - tutorial material describing the use of the
macro-instruction and the services that it requests.

11. L- AND E-FORM USE
requirements, if any,
instruction.

a statement of the abno:rmal operand
of the Land E forms of an S-type macro-

Items 1 through 4 are included in all macro-instruction descriptions.
The remaining outline: items are used only as appropriate. When items 6
through 11 are included, they are identified by the indicated all-caps
headings.

section 1: Introduction 37

SECTI9N 2: SUPERVISOR SERVICES

The supervisor provides a variety of services that help the user
manage programs and tasks, handle exceptional conditions, operate the
interval timer, and write to the operator or log. The supervisor's
program management facility enables operation of simple, overlay, and
dynamic programs. The user requests supervisor services through the
macro-instructions described in this section.

For ease of reference, these macro-instructions are grouped in
subsections according to functions. The order of the subsections, the
macro-instructions covered under each, and the general function of each
group are as follows:

• §jmple Program Management: CALL, SAVE, and RETURN. These macro
instructions provide standard linkage between routines to form them
into simple programs. SAVE and RETURN are also applicable to the
dynamic program management function (described below).

• Overlay Program Management: SEGLD and SEGWT. The first macro
i.nstruction provides overlap between segment loading and processing
yjrhile the second delays processing until the requested segment is in
main storage.

• f~ynamic .l.-rogram Management: LINK, XCTL, LOAD, DELETE, and IDENTIFY.
'1'hese macro-instructions provide supervisor-assisted linkages
between load modules to form a program dynamically during its
E!xecution.

• fYlain Storage Management: GETMAIN and FREEMAIN.
i.nstructions dynamically allocate storage to a
allocated storage to the control program.

These macro
task and return

• 1~sk Creation and Management: ATTACH, DETACH, CHAP, and EXTRACT.
']~hese macro-instructions create tasks and remove them from the
system, and provide the basic means for task management.

• 1~sk Synchronization: WAIT, WAITR, POST, ENQ, and DEQ. These
n1~cro-instructions enable a task to synchronize itself with another
t~ask, or with a control program service.

• ~Kceptional Condition Handling: SPIE, STAE, ABEND, and CHKPT. These
macro-instructions provide for program interruptions, abnormal
terminations, and checkpoints.

• General Services: TIME, STIMER, TTlMER, WTO, WTOR, and WTL. These
n~cro-instructions enable a program to set, check, and cancel a time
interval and to write to the log and to the operator (with or
without a reply.)

Some supervisor macro-instructions request services that are affected
by the control program options that can be excluded by an installation.
The control program options and storage requirements are discussed in
detail in the publication, IBM System/360 Operating System: Storage
Esti~ates, Form C28-6551.

38

The operatinq syst~m from which all control program options have been
excluded is referred tlo as the primary control program. It provides for
stacked job processing with sequential scheduling (jobs are processed as
they are provided as ~nput to the system) and for single task operation.
The function and pEirformance of the primary control program can be
increased by inclusion of the following options:

Option 1: Mul1:iple wait

Option 2: ~ul1:iprog:r:amming wi th a fixed number of tasks

Option 3: Identify

Option 4: Mu11:iprogramming with a variable number of tasks

A. Scheduling singlJe job with work queue directory in main storage

B. Schedulinq single job with work queue directory on direct-access
storage

c. Scheduling mult~ple jobs with work queue directory in main storage

D. Scheduling multiple jobs with work queue directory on direct
accesS storage

Option 5: Additional transient areas and control

Option 6: Timing

A. Time

B.. Interval 1:iming

Option 7: AltE~rnate console

°Etion 8 : Composite console

°Etion 9 : Pro1:ection

Opti.on 10: Priority scheduling

Option 11 : Input readers/interpreters

°Etion 12: Output writers

Option 13: Job step timing

°Etion 14: Rollout/rollin

Each installation'S guide should be consulted to determine which
control program optiQns have been excluded from the system. The manner
in which individual services are affected by the inclusion or exclusion
of particular optioris is discussed in detail in each macro-instruction
description. Table 4 summarizes the services so affected.

Section 2: Supervisor Services 39

TablE~ 4. Services Affected by Including or Excluding Control Program
Options

r------------T--------T--------T--,
I Macro- 1 Option 1 Option 1 I
I Instruction I IncludedlExcludedl Result I
~------------+--------+--------+--~
I ABEND I 1 4 I The entire job step is terminated I
I I I I abnormally I
~------------+--------+--------+--~
I ~~rTACH I I 4 I Refer to the Environment discussion 1
I I I I in the macro-instruction 1
~------------+--------+--------+--~
I CHAP I I 4 1 NOP 1
~------------+--------+--------+--~
I CHKPT I 4 I I NOP I

~------------+--------+--------+--i
I DEQ I I 4 I NOP I
~------------+--------+--------+--~
I D]~TACH I I 4 I NOP 1
~------------+--------+--------+--i
I ENQ I I 4 I NOP I
~------------+--------+--------+--~
I EXTRACT I I 4 I Only TIOT address is provided I
~------------+--------+--------+--i
I FREEMAIN I I 4 I Subpool ignored I
I I I I List request invalid I
t------------+--------+--------+--~
I GETMAIN I 1 4 I Subpool ignored I
I I I I List request invalid I
~---.--------+--------+--------+--~
I IDENTIFY I I 3 & 4 I Refer to the Environment discussion 1
I ~--------+--------~ in the macro-instruction I
I 1 3 I 4 I I
~------------+--------+--------+--i
I SEGLD I I 4 I NOP I
~---.--------+--------+--------+--~
I SPIE I I 4 I The exit routine applies to the job 1
I I I I step I
~---.--------+--------+--------+--~
I s~rAE I I 4 I NOP I
~-----------+--------+--------+--i
I srrlMER I I 6B I NOP I
~---.--------+--------+--------+--~
I TIME I I 6A & 6B I Only the date is provided I
~---.--------+--------+--------+--~
I TrrlMER I I 6B I NOP I
~---.--------+--------+--------+--~
I WAIT 1 11,2, & 41 Meaningful for only one event I
~---.--------+--------+--------+--~
I WAITR I I 2 1 Treated as a WAIT I
~---.--------+--------+--------+--~
I w'rL I I 12 I NOP I L ___ • ________ ~ ________ ~ ________ ~ __ J

40

SIMPLE PROGRAM II,ffiNAGEMENT

CALL -- Call a Program (S)

The CALL macro-instruction passes control from a program, load
module, or segment of :an overlay load module (each called a program for
convenience) to a specified entry'point in another program. The program
issuing the CALL macro-instruction is referred to as the calling
program; the program Jieceiving control is referred to as the called
program. Except wh~n the overlay supervisor can be used, the called
program must be in mailn storage when the CALL macro-instruction is
executed. The called ,program is brought into main storage in one of two
ways:

1. As part of the load module issuing the CALL. In this case, the
CALL macro--instruction must specify an entry point,. When the
linkage editor processes a load module containing SUlch a CALL, it
includes the called program in the load module.

2. As the load module specified by a LOAD macro-instruction. In this
case, the CALL macro-instruction must specify the program to be
called by indicatiing that the address of its entry point will be
loaded into regiSter 15 (the entry point register) before execution
of the C1\LL majcro-instruction. The LOAD macro- instruction must
precede thE~ first: CALL for the program.

The called program returns control to the calling program by issuing
a RETURN macro-instruction.

r----------T-----------T---,
I Name I OpE~ration I Operand I
~----------+-----------+---i
I [symbol] I CALL I {entry-symbol}[, ({param-addr,} •••) [, VL]] I
I I I (15) I
I I I ' I
I I I L, ID=absexp] I L __________ ~ ___________ i------------___________________________________ J

entry
specifies t~he ent!ry point to which control is to be passed. If the
symbolic name oif an entry point is written, a v-type address
constant is generated as part of the macro-expansion; control is
given to the calied program by a branch to the address in register
15 (the entry point register).

If (15) is written, the actual address of the entry point must have
been loaded into register 15 before execution of this macro
instruction.

param
specifies an address to be passed as a parameter to the called
program. 'l'he parp-m operands must be written in a sublist, as shown
in the format description. If one or more param operands are
written, a probtlem program parameter list is generated. It
consists of a full-word for each operand. Each full-word is
aligned on a fpll-word boundary and contains, in its three
low-order bytes, the address to be passed. The addresses appear in
the paramet,er list in the same order as in the macro-instruction.

When the called program is entered, register 1 (the parameter list
register) contains the address of the problem program parameter
list.

section 2: Supervisor Services - Simple Program Management 41

VL

ID

If the param operand is omitted in a standard form of the
macro-instruction, register 1 is not set to zero.

specifies that the sign bit is to be set to 1 in the last full-word
in the problem program parameter list.

The parameter list has a fixed length if it is to contain a
certain, known number of parameters every time the called program
is given control. The list has a variable length if it can contain
a varying number of parameters. Only in the latter case should the
VL operand be written in order to mark the end of the list.

If the list has a variable length and if register notation is used
to write the last param address, the user's problem program can set
the sign bit in the designated register to 1. If this is done, the
VL operand need not be written.

specifies a binary calling sequence identifier. The maximum value
of the identifier is 216-1. When this operand is written, a
full-word NOP instruction appears at the end of the macro
expansion. The NOP instruction contains the operand value in its
two low-order bytes.

Upon entry to and return from the called program, register 14 (the
return register) contains one of the following:

• If the ID operand was written, register 14 contains the address
of the last instruction (the NOP instruction) in the macro
expansion •

• If the ID operand was omitted, register 14 contains the address
of the first byte following the macro-expansion.

CAUTIONS: The called program operates at the same control level as the
calleX:-- If the called program issues an XCTL macro-instruction, the
caller cannot expect to regain control.

If the entry operand is written as a symbolic name, a v-type address
constant is generated by the assembler, and the linkage editor can make
the called program part of the calling program's load module as part of
the automatic library call procedure. The symbolic name must be either
the name of a control section or an assembler language ENTRY statement
operand in the called program.

If the entry operand is written as (15), a v-type address constant is
not generated. If the called program is not part of the calling
program's load module, a LOAD macro-instruction must be executed (to
bring the program to be called into storage) before the CALL macro
instruction is issued.

T'he supervisor has no control over entry to a program by means of the
CALL, macro-instruction. Therefore, when a serially reusable program can
be entered by two or more tasks using only CALL macro-instructions or a
combination of CALL macro-instructions and supervisor-assisted linkages
(LINK, XCTL, and ATTACH), the ENQ and DEQ macro-instructions must be
used, to ensure that only one task at a time uses the called program.
(Refer to "Task Synchronization" for information on the use of ENQ and
DEQ.) .

EXCEPTIONAL RETURNS: The called program can specify a return code in
the RETURN macro-instruction. When the RETURN macro-instruction is
executed, the return code is loaded into register 15 (the return code

42

register). When the calling program resumes execution, it can
interrogate the return code in register 15.

EXAMPLES: In the following examples, EXl gives control 1to an entry
point named ENT and: specifies a calling sequence identifier of 2. No
parameters are passed.

EX2 gives control to an entry point whose address is c:ontained in
register 15. Two paramete.rs., ABC and DEF, are passed. Because the
parameter list has a variable length, the VL operand is sp~~cified. No
calling sequence identifier is specified.

EXl
EX2

CALL
CALL

ENT,ID=2
(15), (A~C,DEF),VL

PROGRAMMING NOT:ES: If register notation is used to wri te any param
operands, instructions to store the contents of the designa1:ed registers
in the parameter list are the first executable instructions of the
macro-expansion. The first of these instructions can be rE~ferred to by
the symbol (if any) in the name field of the macro-instruction.

If the ID operand is written, a NOP instruction follows 1:he parameter
list. The return address is the same with or without the ID operand.

When the CALL macro--instruction is executed, it gives control to the
called program by bran~hing to the address in register 15.

The (15) entry operand and LOAD macro-instruction combination is most
useful when the same program is to be called many times during execution
of the calling progltam, but is not needed in main storage throughout
execution of the calling program. If the LINK macro-instruction is used
instead of LOAD and CAtL, more execution time may be required because
the supervisor may search main and external storage for the program each
time the LINK is issued. If the CALL macro-instruction is used and a
symbolic name written for the entry operand, the called prosrram resides
in storage throughout!. execution of the calling program. This wastes
main storage if "1the called program is not needed during all of the
calling program's execution.

L- AND E-FORM USE: The Land E forms of this macro-instruction are
written as described in Appendix B exc:;:ept for the follo~ring special
operand requirem~~nts:

Operand
entry
VL

ID
param

L FOrI~
not allowed
allowE~d

not allowed
required

E Form
required
allowed only if the param operand that
results in the last address in the paramet
er list is also written in the macro
instruction
allowed
allowed

Only the param sublist operand and the VL operand can be written in
the L form of the macro-instruction. The param operand must be preceded
by a comma, as shown in the macro-instruction format.

All operands Gan be .written in the E form of the macro-instruction.
If any param operands are written, the addresses are stored in the
remote parameter list ~n accordance with their positions in the sublist.
For example, if 1:he sublist is (A" B), addresses A and B are stored in
the first and third wo~ds of the parameter list.

Section 2: Supervisor services - Simple Program Management 43

If the remote parameter list is of variable length, the VL operand in
the E-form macro-instruction should be written only if the param operand
corresponding to the last full-word in the list is also written.

If the entry operand is (15), register 15 is not used as a working
register in the macro-expansion; addresses are formed and placed in the
remote list using only register 14.

SAVE -- Save Register contents

'I'he SAVE macro-instruction is written at the
progrram. Upon entry to the program, SAVE stores
specified registers in a save area provided by the
cont~rol was given. The saved reg ister contents
execution of a RETURN macro-instruction.

entry point of a
the contents of

program from which
are reloaded by

'I~he SAVE macro- instruction can also generate an
entry-point-identifier character string.

r---·-------T-----------T---,
I Name I Operation I Operand I
~---.-------+-----------+---~
I [symboll I SAVE I (reg:l.-integer[,reg2-integerl),[Tl I
I I I I I I I [, id- { ~haracters }] I
L ___ • _______ ~ ___________ L ___ J

reg::!. 'I reg2

T

id

44

specifies the range of registers to be stored in the save area of
the calling program. (This area is pointed to by register 13;
refer to "Linkage Conventions" in Section 1.) The operands are
written as decimal numbers. They should be so written that, when
inserted in a STM instruction, they cause desired registers in the
range of 14 through 12 (14, 15, 0 through 12) to be stored.
Registers 14 and 15, if specified, are saved in words 4 and 5 of
the save area. Registers 0 through 12, if specified, are saved in
words 6 through 18 of the save area. The contents of a given
register are always saved in a particular word in the save area.
For example, register 3 is always saved in word 9 of the save area,
even if register 2 is not saved.

If reg2 is omitted, only the register specified by reg:l. is saved.

specifies that, if not saved by the first operand, registers 14 and
15 are to be saved in words 4 and 5 of the save area. If the T and
reg2 operands are present and the reg:l. operand is 14, 15, 0, 1, or
2, all registers from 14 through the reg2 value are saved.

specifies the identifier of the entry point at which the SAVE
macro-instruction 1S located. The operand is a character string
and can consist of up to 70 characters. Because it can have a
length greater than eight characters, it can be a combination of a
data set name and a program name, or some other complex name.

If this operand is written as an asterisk, the entry point
identifier is the same as the symbol in the name field of the
macro-instruction; if the name field is blank, the entry point
identifier is assumed to be the name of the control section
containing the macro-instruction.

CAUTIONS: A SAVE macro-instruction must not be used at the beginning of
an exit routine jexcept :the ETXR, STAE, and STIt'JER exit routines. No
save area is provided in other asynchronous exits, and t:he save area
pointed to in synchronous exits must not be used.

An exit routine may ,use any register (except register 14) without
saving and res 1toring' its contents. The control program saves the
required registers before giving control to the exit routine, and, on
execution of a RETURN macro-instruction, restores register contents
automatically.

EXAMPLES: In th,~ following examples, EXl saves registers 1Q, through 10.
Registers 14 and 15 (and 0 and 1, incidentally) are saved because the T
operand is written. The entry point identifier is F4R'l'NA7B99. EX2
saves registers 3 and 4. The entry point identifier is EX2.

EX1 SAVE (2,:L0),T,F4RTNA7B99
EX2 SAVE (3~4),,*

PROGRAMMING NOTES: The SAVE macro-instruction is expanded as follows:

• A branch to 1:he ne»t executable instruction.

• A one-byte count fiJeld for the number of characters in the entry
point identifier.

• The entry point id~ntifier ..

• An alignment byte (iif one is necessary).

• The next executable instruction (a STM instruction).

When the T and reg2! operands are present and the reg3,. operand is 14,
15, 0, 1, or 2, a single STM instruction is generated to store registers
14 through the rE~g2 val:ue. When the reg3,. value is 3 to 12, two STM
instructions are gene~ated: one stores the contents of registers 14 and
15: the other stores the contents of the registers from the reg 3,. value
through the reg2 value.

A symbol in the name field of a SAVE macro-instruction is an entry
point name. The entry point name and the entry point identifier are the
same only if the last o~perand of the macro-instruction is an asterisk.
The entry point name i:s used in passing control to the entry point. If
a program in anot~her ob:ject module is to branch to the entry point, the
entry point name should be an operand of an ENTRY assembler language
statement providE~d in the current object module by the programmer. If
no symbol is written ;in the name field of the macro-instruction and an
asterisk is wri tt~en as :the id operand, the entry point identifier is the
name of the cont:r"ol sec~ion in which the macro-instruction appears. A
program in another object module can branch to this entry point name.

Becaus e a register!' s contents are always saved in a particular word
in a save area, t.he programmer can partially interpret the save area's
contents in a main storage dump without knowing which registers were
saved.

section 2.: Supervisor Services - Simple Program Management 45

RETURN -- Return to a Program

The RETURN macro-instruction indicates normal termination and returns
control to a higher level program or task, or to the control program.
This macro-instruction's exact function depends on where it is used:

1. In the highest level program of a subtask, the RETURN macro
instruction indicates that the subtask is complete. It terminates
the subtask and, optionally, notifies the next higher level task of
the subtask's completion.

2. In the highest level program of the highest level task of the job
step, the RETURN macro-instruction indicates that the task and job
step are complete. It terminates the step, and returns control to
the job scheduler.

3. In other than the highest level program of a task, the RETURN
macro-instruction indicates that the program is complete. It
terminates the program and returns control to the next higher level
program. The program receiving control can be one of the
following:

a. The program that issued a CALL or LINK macro-instruction to
give control to the program containing the RETURN.

b. The program that issued a LINK macro-instruction to give
control to a program that, in turn, issued an XCTL macro
instruction to give control to the program containing the
RETURN.

4. In a synchronous exit routine, the RETURN macro-instruction
indicates that the routine is complete. It terminates the routine
and returns control to the control program.

5. In an asynchronous exit routine, the RETURN macro-instruction
indicates that the routine is complete. It terminates the routine
and returns control to the control program which returns to the
program that was interrupted to allow execution of the exit
routine.

'l?he RETURN macro-instruction can reload the registers whose contents
were saved by execution of a SAVE macro-instruction.

r-----------T-----------T-----------------------------.------------------,
I Name I Operation I Operand I
~----------+-----------+---i
I [symbol] I RETURN I [(reg1-integer[,reg2-integer])] [,T] I
I I I I
I I I [, RC={ abSexp}] I
I I I (15) I L __________ ~ ___________ ~ ___ J

reg::!_, reg2

46

specifies the range of registers to be reloaded from the save area
of the program receiving control. The operands are written as
decimal numbers. They should be so written that, when inserted in
a LM instruction, they cause the loading of registers in the range
from 14 through 12 (14, 15, 0 through 12). Registers 14 and 15, if
specified, are restored from words 4 and 5 of the save area.
Registers 0 through 12, if specified, are restored from words 6
through 18 of the save area. If reg2 is orr.itted, only the register
specified by reg1 is restored. If both reg1 and reg2 are omitted,
no registers are restored.

T

RC

The address of the save area must have been loaded into register 13
before execution of this macro-instruction.

specifies that .a byte containing all ones is to be moved to the
high-order byte oit word 4 in the save area. This action occurs
after ,completion of the register reloading specified by the first
operand. 'I'he all,-ones byte indicates that the return occurred.

specifies a return code that is to be placed in the 12 low-order
bits of registe~ 15 (the return code register). The value of the
absolute expression should be a multiple of 4 in the range from 0
through 4092.

If (15) is written, the return code must have been loaded into
register 15 before execution of this macro-instruction.

If this operand is omitted, register 15 is loaded as specified by
the reg1. and reg 2 operand values.

This operand has no effect if the macro-instruction is executed by
an asynchronous exit routine. The control program, upon receiving
control, replaces the return code in register 15 with the original
contents of the register.

CAUTIONS: A BR 14 instruction is always the last instruc"tion in the
RETURN macro-expansion. Register 14 (the return register) must be
restored by means of the first operand of the macro-instruc"tion; or, it
must be correctly loaded before the macro- instruction is ex,~cuted.

The RETURN macro-instruction can. be used to terminate a synchronous
exit routine. In this case, the first and second operands of the
macro-instruction should not be written; the RETURN macro-instruction
results in only a BR 14 instruction and may optionally load a return
code.

A RETURN macro-instruction with
from an asynchronous exit routine;
instruction.

no operands can be used to return
it results in only a BR 14

The control program saves registers 2 through 14 before giving
control to a synchronous exit routine; it saves registers llJ through 2
(14, 15. 0, 1, and 2) before giving control to a SPIE routine, and saves
all registers before giving control to any other asynchronous exit
routine. The control program also reloads these registers \ihen a return
is made from the exit routine.

A RETURN macro-instruction should not be issued by the highest level
prog1ram of a task that has incomplete subtasks; if it is, the task and
all its incomplete subtasks are terminated abnormally. Also, a RETURN
macro-instruction ShOllld not be issued by a program that includes exit
routines whose executiqm may be required at a later time; if issued, the
RETURN macro-ins"tructi(pn may cause deletion of the program and abnormal
termination on a subsequent type IV linkage.

There are certain restrictions
instruction in an ovel:"lay program;
Program Management."

on the use of the HETURN macro
for details, refer to "Overlay

EXAMPLES: In the following examples, EX1 is a RETURN macro-instruction
that restores registers 2 through 10. All ones are placed in the
high-order byte of word 4 in the save area. EX2 restores registers 14
through 5 and places a return code of 12 in register 15. EX3 is for

Section 2: Supervisor Services - Simple Program Management 47

termination of a synchronous exit routine. A return code should have
been loaded into register 15 by the user's problem program.

EXl
EX2
EX3

RETURN
RETURN
RETURN

(2.10),T
(14,S),RC=12
RC=(15)

PROGRAMMING NOTES: When issued by the highest level program of the
highest level task of a job step, the RETURN macro-instruction indicates
that the job step is finished. Control is given to the job scheduler.
The job scheduler compares the return code with the condition code
parameter of the appropria~~ JOB or EXEC control statement, to determine
whether or not a subsequent job step should be executed. (Refer to the
publication IBM System/360 Operating System: Job Control Language for an
explanation of these control statements.)

When a RETURN macro-instruction terminates a task other than the
highest level task of a job step, the return code is placed in the task
control block (TCB) of the task issuing the RETURN. The return code is
stor,ed in the task completion code field of the task control block,
where it can be interrogated by the next higher level task or the STAE
routine of the terminating task. The STAE routine is entered only if
the RETURN causes the task to be terminated abnormally. (The STAE
routine is specified by the STAE macro-instruction, which is described
in "Exceptional Condition Handling.")

If the terminating task was created by means of an ATTACH macro
instruction having an ECB operand, the specified event control block is
posted, and the return code is stored in the task control block and in
bits 2 through 31 of the POST code field of the event control block.

When a RETURN macro-instruction terminates a program other than an
exit routine or highest level program in a task, the return code can be
interrogated in register 15 by the next higher level program.

OVERLAY PROGRAM MANAGEMENT

The programmer can organize his program in an overlay structure by
dividing it into segments according to the functional relationships of
control sections. Two or more segments that can be loaded at different
times can be assigned the same storage addresses by the linkage editor.
The publication IBM System/360 Operating System: Linkage Editor contains
a detailed discussion of the designing and structuring of an overlay
program and of communication between segments of such a program.

The programmer uses linkage editor control statements to specify the
relationship of segments within the overlay structure. The segments of
the program (load module) are placed in a library so that the control
program can load then) separately when the program is executed. However,
the programmer must be aware of how his program can communicate with the
control program during execution. There are four ways in which he can
have his program request the use of the overlay facilities.

1. By a CALL macro-instruction,
defined in another segment.
program, if necessary.

48

which gives control to a symbol
The segment is loaded by the control

2. By a branch instr:uction, which gives control to a symbol defined in
another segment. The segment is loaded by the control program, if
necessary.

3. By a SEGLD macro~instruction, which requests loading of a segment.
Processing continues in the requesting segment while the requested
segment is being loaded.

4. By a SEGWT macrb- instruction, which requests loading of a segmen·t.
and stops processling in the requesting segment until the requested
segment is: in main storage. After a SEGLD macro-instruction, a
SEGWT macro-instruction, specifying a control section or entry name
in the segment reques·ted by the SEGLD, can be issued to stop
processing in the requesting segm~nt until the request4:d segment is
in main storage.

PROGRAMMING NOT'E: If exit routines are used (e.g., a timer exit), they
should be placed in the root segment.

CALL Macro-Instruction in Overlay Management

The CALL macro-instruction refers to an external name that is an
entry point of the segment to which control is to be passed. The
external name is the name ofa control section in the requested segment,
or it is defined by an assembler language ENTRY statement in the
requested segment.. The requested segment and any segments in its path
are loaded if they are not part of a path already in main storage.
After the requested se9ment has been loaded, control is givE~n to it.

Branch Instruction in 0verlay Management

Any of the instrQction sequences shown in Figure 2 can be used in
place of the CALL macr@-instruction to request loading and branching to
a segment. In these instructions, 15 is a register into which is loaded
a four-byte v-type address constant that is the address of an entry name
or control section name defined in the requested segment. R1 can be any
other register but is usually register 14.

As a result of llsing any of the branch instructions listed in
Figure 2. the requested segment and any segments in its path are loaded
if they are not part of a path already in main storage. Control is then
given to the requested segment at the location specified by the address
constant V(NAME).

Examples 5, 6, and 7 in Figure 2 are unconditional branches.
Branches on other conditions are also allowed.

If format D2 (X2 , B2). is used" the base register or index register can
be loaded with the address constant. The remaining two fields must be
zero.

If format S2 (X2) is used" the index register must be loalded with the
address constant, and the base address and displacement must both be
zero.

section 2: Supervisor Services - Overlay Program Management 49

r--------T----------T-----------T---------------------------------------,
I Example I Name I Operation I Operand I
~--------+----------+-----------+---------------------------------------~
I 1 I I L I 15, =V (NAME) I
I I I BALR I R1. , 15 I
~--------+----------+-----------+---------------------------------------~
I 2 I I L I 15,ADCON I
I I I BALR I R1., 15 I
I I I . I I
, I I . I I
I I I . I I
I I ADCON I DC I V (NAME) I
~--------+----------+-----------+---------------------------------------~
, 3 I I L I 15.=V(NAME) I
I I I BAL I R 1. , 0 (O. 15) I
~-~.-----+----------+-----------+---------------------------------------~
I 4 I I L I 15,=V (NAME) I
I I I BAL I R 1. , 0 (15) I
~--.-----+----------+-----------+---------------------------------------~
I 5 I I L I 15.=V(NAME) I
I I I BCR I 15. 15 I
~--.-----+----------+-----------+---------------------------------------~
I 6 I I L I 15.=V(~AME) I
I I I Be I 15. 0 (O. 15) I
~--.-----+----------+-----------+--~
I 7 IlL I 15" =V (NAME) I
I I I BC I 15. 0 (15) I L ___ , ____ ~ __________ ~ ___________ J. ______________________________________ J

Figure 2. Branching Instructions

CAu'rION: The address constant loaded in register 15 must be a four-byte
v-type address constant. The high-order byte is reserved for use by the
cont,rol program, and must not be altered by the user' s problem program.

Inclusive Branches: A branch instruction between inclusive segments is
always valid. A return from the requested segment can be made by means
of t,he address stored in R1. by the BAL or BALR instruction.

Exclusive Branches: A branch instruction between exclusive segments is
vali.d only if a common segment also contains a V-type address constant
that, refers to the external symbol be ing branched to. The external
svmbol must satisfy all of the following conditions; it must be:

• Referred to by a v-type address constant in the requesting segment.

• Defined as an entry name or control section name in the requested
segment.

• Referred to by a V-type address constant in a common segment.

."Pl return from the requested segment
another exclusive branch instruction. It
inclusive branch.

SEGI.D -- Load Segment While Processing~

can be made only by use of
cannot be made as in an

,]~he SEGLD macro-instruction causes a specified segment to be loaded
into main storage while the segment issuing the macro-instruction
continues to be processed.

50

r----------T-----------T------------~----------------------------------,

I Name 1 Operation I Operand I

~----------+----.-------+----------------------------------.------------~
I [symbol] I SEGLD I externalname-symbol I L __________ ~ ___________ ~ ___ J

externalname
specifies the name of a control section or an entry name in the
requested segment. The macro-expansion results in a V-type address
constant, and therefore the external name need not be identified by
an EXTRN st~a tement.

CAUTION: An €!xclusi'V'e reference should not be used in a SEGLD
macro-instruction.

ENVIRONMENT: If option 4 has been excluded from the syst,em, the SEGLD
macro-instruction will be treated as a NOP at execution.

EXAMPLES: In both of the following examples, a SEGLD macro-instruction
causes loading of the requested segment and any segment in its path, if
they are not part of a path already in main storage. Processing resumes
at the next sequential instruction while the segment or segments are
being loaded. Following execution of EX1, control is given to the
requested segment by the CALL macro-instruction; following execution of
EX2, control is given by a branch instruction. Processing is stopped
upon execution of the CALL or branch until loading of the requested
segment is complete.

EXl SEGLD NAME

CALL NAME

EX2 SEGLD NAME

L 15,=V(WAME)
BCR 15,15

SEGWT -- Load Segment Before Further Processing (R)

The SEGWT macro-instruction causes a specified segment to be loaded
into main storage. Processing of the segment issuing the macro
instruction is stopped until the requested segment is loaded.

r----------T----·--------T---,
I Name I Operation I Operand I

~----------+-----------+---i
I [symbol] I SEGWT I externalname-symbol I L __________ L ___________ ~-----__ J

externalname
specifies the name of a control section or an entry name in the
requested segmente The macro-expansion results in a V-·type address
constant, and therefore the external name need not be identified by
an EXTRN statement.

Section 2: Supervisor Services - Overlay Program Management 51

CAU,]~ION: An exclusive reference should not be used in a SEGWT
macl~o-instruction.

EX~MPLES: In the following examples, the SEGWT macro-instruction
enstl:res that no further processing will take place until the requested
segment and all segments in its path are loaded (if they are not already
in main storage). Control is returned to the next sequential
inst:ruction in the requesting segment.

In EXi, the SEGLD macro-instruction causes overlap between processing
and segment loading. The SEGWT macro-instruction prevents further
processing in the requesting segment until the segment containing the
data at DATA is in main storage. If the requested segment is in main
storage, control is immediately returned to the instruction that follows
the SEGWT macro-instruction.

In EX2, no overlap is provided. The SEGWT macro-instruction ini
tiat:es loading. The task issuing the macro-instruction is placed in a
wait. condition until the requested segment is in main storage.

EXi SEGLD

SEGWT
L

ADCON DC

EX2 SEGWT
L

NAME

NAME
R.1.,ADCON

A (DATA)

NAME
R1.., =A (DATA)

PROGRAMMING NOTES: If the contents of a main storage location in the
requested segment are to be processed, the name of the location must be
referred to by an A-type address constant.

DYNAMIC PROGRAM MANAGEMENT

LINK -- Link to a Load Module (S)

'rhe LINK macro-instruction gives control from one load module to an
entry point in another specified load module. If the specified load
module is reenterable and a copy is in main storage, it is used. If the
load module is serially reusable, and if a copy is in main storage and
not being used (in a type II linkage), it is used; if this copy is being
used, the request for its use is queued. If the load module is not
reusable and an unused copy is in main storage, it is used; if this copy
has been used (in a type-II linkage), a new copy is loaded. If no copy
of the load module is in main storage, a copy is loaded.

The linkage relationship between the load modules that give and
receive control is the same as it would be if a CALL macro-instruction
were used instead of the LINK macro-instruction. The module to be given
control will execute at a lower control level than the module issuing
the LINK. The lower level module can return control to the higher level
module by executing a RETURN macro-instruction.

52

r----------T-----------T---,
I Name I Operation I Operand I
.----------+----------++---i
I [symbol] I LINK I {EP=symbol }f,DCB=addr] [,PARAM=C{addr,} •••) I
I I I EPLOC=addr I
I I I DE=addr I
I I I I
I I I [, VL=l] 1 :r. ID=absexpl I L __________ ~ ___________ ~ ___ J

EP

EPLOC

DE

DCB

specifies the symbolic name of an entry point in the load module to
be given control.

The entry point name must either be a name contained in the
directory of a partitioned data set (member name or alias> or have
been identified to the control program through the use of the
IDENTIFY macro-instruction.

specifies the address of a double-word that contains the symbolic
name of an entry point in the load module to be given control. The
name must be left~justified in the double-word, and, if the name is
less than eight cfuaracters, the double-word must be filled out with
trailing blanks. The double-word can be aligned on a byte
boundary.

specifies the adaress of the name field of a list entry describing
the load module td> be given control. The entry contains informa
tion previously extracted from the directory of a partitioned data
set by a BLDL maero instruction. (Refer to "Basic Partitioned
Access Method" in section 3 for a description of the BLDL
macro-instruction ..)

If the DE operand is written, the DCB operand must be identical to
the DCB operand specified in the corresponding BLDL macro
instruction.

specifies ·the address of a data control block opened for a private
library (partitioned data set) that is to be searched for the load
module to which control is to be given. If the EP or EPLOC operand
was written and the load module is not found in the library
specified by the IDCB operand, the link library is searched.

If the DCB operand is omitted, the load module is assumed to be in
either the job library or the li.nk library. The job library, if
one exists, is searched first.

The data control !DIock addressed by this operand must specify use
of the EXCP macro-instruction, and must have been opened for INPUT
before execution (j)f the LINK macro-instruction. Refer to the
publication IBM :System/360 Operating Systenl: System Programmer's
Guide, Form C2a-6550 for a description of the EXCP macro
instruction. This data control block must not be used for any
purpose other than the LINK, XCTL, LOAD, ATTACH, and BLDL macro
instructions. The data control blocks for the job library and link
library are always open.

PARAM
specifies, as a sQblist, address parameters to be passed from the
load module issuing the macro-instruction to the load module to be
given control. If one or more operands are written in the sublist,

Section 2: Supervisor Services - Dynamic Program Management 53

VL

ID

a problem program parameter list is generated. It consists
full-word for each operand. Each full-word is aligned
full-word boundary and contains, in its three low-order bytes.,
address to be passed. The addresses appear in the parameter
in the same order as in the macro-instruction.

of a
on a
the

list

When the load module to be given control is entered, register 1
(the parameter list register) contains the address of the problem
program parameter list.

If the PARAM operand is omitted, register 1 is not set to zero.

specifies that the sign bit is to be set to 1 in the last full-word
in the problem program parameter list.

The parameter list has a fixed length if it is to contain a
certain, known number of parameters every time the lower level load
module is given control. The list has a variable length if it can
contain a varying number of parameters. Only in the latter case
should the VL operand be written in order to mark the end of the
list.

If the list has a variable length and if register notation is used
to write the last PARAM address, the user's problem program can set
the sign bit in the designated register to 1. If this is done, the
VL operand need not be written.

specifies a binary calling sequence identifier. The maximum value
of the identifier is 2~6-1. If this operand is written, a
full-word NOP instruction appears at the end of the macro-expansion
(after the SVC instruction). The NOP instruction contains the
operand value in its two low-order bytes.

CAUT~ON: The supervisor will abnormally terminate the task issuing the
LINK if the specified load module cannot be located.

If the "only loadable" (OL) attribute was specified when the load
module was processed by the linkage editor, an attempt to link to the
module will cause abnormal termination.

EXCEPTIONAL RETURNS: The load module entered by a LINK can specify a
return code in the RETURN macro-instruction. When the RETURN macro
instruction is executed, the return code is loaded into register 15 (the
return code register). When the load module that issued the LINK
resumes execution, it can interrogate the return code in register 15.

ENVIRONMENT: The following apply if option 4 was excluded from the
system:

54

• l\n entry point identified to the control program in an IDENTIFY
macro-instruction cannot be specified in a LINK macro-instruction.

• 1\ LINK macro-instruction specifying a load module that was not
previously brought into main storage by a LOAD macro-instruction
usually will load the specified load module. (See Appendix C for
more details.>

• If the DCB operand is written, the specified private library is
searched for the load module. The link library is not searched.

EXAMPLES: In the foll~wing examples, EXi gives control to a load module
specified by the entry point DIVIDE. Because the DCB operand is not
written, DIVIDE should be located in either the job library or the link
library. The identifier, 41, is to be associated with this calling
sequence.

EX2 gives control to a load module specified by thE:! entry point
COMPUTE. Because the DCB operand is not writt.en, COMPUTE should be
located in either the job library or the link library. When control is
passed to COMPUTE, register 1 contains the address of a problem program
parameter list. This list is part of the LINK macro-expansion, and it
contains the two addresses TEMPi and TEMP2+24. No identifiE!r is to be
associated with this calling sequence.

EX3 causes control to be passed to a load module that rE~sides in the
partitioned data set aSsociated with the data control block located at
PRILIB2. The load module is described by the list entry located at
WORK1. A three-word problem program parameter list is generated in the
macro-expansion: it c0ntains the three addresses ARRAY3, I. and J. The
location of the parameter list will be indicated by the contents of
register 1 when the load module is given control. No identifier is to
be associated with this calling sequence.

EXl
EX2
EX3

LINK
LINK
LINK

EP=DIVIlDE,ID=41
EP=COMP~TE,PARAM=(TEMP1,TEMP2+24)
D:E=WORK1,DCB=PRILIB2,PARAM=(ARRAY3,I,J)

v- AND E-FORM USE: The standard form of the LINK macro-inst:ruction can
result in a macro-expansion containing two parameter lists:

• A supervisor parameter list, which results from all opE!rands of the
macro-instruction except the PARAM and VL operands. This list is
used by the supervisor to locate and acquire the specified load
module •

• A problem program Ij>arameter list, which results
PARAM operand. This list is identical to
resulting from a CALL macro-instruction, and
parameters to the specified. load module.

from
the
is

t:he optional
palrameter list
used to pass

The standard'-form LINK macro-expansion can therefore consist of the
following units of code:

Designation for Unit of
Code and its ,Address

AB
ASPL
APL
AE

Code
Branch to AE
Supervisor parameter list
Problem program param€~ter list
Executable code terminated

by an SVC instruction

When the LINK SVC instruction is executed, ASPL (the add:ress of the
supervisor parameter list) is in register 15, and APL (the address of
the problem program panameter list) is in register 1.

Because both lists must be able to be remote, another spe~cial keyword
operand, called 1the SF operand, is used in combination w'i th the MF
operand to provide nQnstandard macro-instruction forms. 'I'he SF and MF
operands can be 'II1ri tten in the LINK macro- instruction as shown in the
following format::

Section 2: Supervisor Services - Dynamic Program Management 55

SF=L

SF=<E,(SPI-addrx}>
< 15)

MF=<E,{Pl-addrx}) [,SF=<E,{ sPl-addrx})]
<i) (15)

In the above format, spl specifies the address of a remote supervisor
parameter list, and pI specifies the address of a remote problem program
parameter list. If (15) or (1) is written as shown, the address of the
remote list must be loaded into the designated register before execution
of the macro-instruction.

Four SF and MF combinations are shown in the above format. These
result in macro-expansions consisting of the following units of code:

SF and MF
Combination
SF=L
SF=(E,ASPL)
MF=(E,APL)
MF=(E,APL},SF=(E,ASPL)

Units of Code in
Macro-Expansion

ASPL
AB,APL,AE
AB,ASPL,AE
AE

The effect of each SF and MF combination is as follows:

g ~)F=L results in only a supervisor parameter list. Neither the PARAM
nor the VL operand can be written in the macro-instruction.

• SF=(E,ASPL) results in a macro-expansion that does not contain a
supervisor parameter list. Parameters in the remote supervisor
parameter list can be dynamically changed as in a normal E-form
macro-instruction •

• ~1F=(E,APL) specifies a normal E-form macro-instruction. Note that
MF=L cannot be written in the LINK macro-instruction, but a remote
problem program parameter list can be formed by using the L form of
1:he CALL macro-instruction •

• 1~=(E,APL),SF=(E,ASPL) indicates that both parameter lists are
]::-emote.

The LINK macro-instruction has one special operand requirement: the
ID operand can be written in all forms except that specified by SF=L.

XCTL, -- Transfer Control to a Load Module (S)

The XCTL macro-instruction gives control from the load module in
which it appears to the load module it specifies. If the load module
name~d by the entry point is reenteralDle and a copy is in main storage,
it is used. If the load module is serially reusable, and if a copy is
in main storage and not being used (in a type II linkage), it is used;
if t.his copy is being used, the request for its use is queued. If the
load. module is not reusable and an unused copy is in main storage, it is
used: if this copy has been used (in a type-II linkage), a new copy is
load.ed. If no copy of the load module is in main storage, a copy is
loaded.

T'he module given control executes at the same level of control as the
modu.le issuing the XCTL macro-instruction. The main storage area
occupied by the module issuing the XCTL macro-instruction may be freed
for other uses. Therefore, the load module given control cannot return

56

control to the module that issued the XCTL macro-instruction. If the
load module executes a RETURN macro-instruction, control is given to the
next higher lE~vel load module, if the load module issuing the XCTL was
not the highest level program of a task.

Before issuing an XCTL macro-instruction, a load module must restore
the return register, the program mask" the program interruption control
area, and regis1:ers 13 and 14 as they were upon entry to the load
module. Regis1:ers 2 to 12 must be restored before the control program
receives control. Either the user must provide the coding to restore
the registers, or he can request that the expansion of the XCTL
macro-instruction restore registers in the range 2 through 12 from the
save area (originally pointed to by register 13 when the load module was
given control). The save area is associated with the load module that
is one level of contro:l above that of the module issuing the XCTL.

r----------T-----------'-T--,
I Name I Operation I Operand I
~----------+------------+---~
I [symbol] I XCTL I [(reg~-integer[,reg2-integer])] I
I I I I
I I I {EP=SymbOl } I
I I I, EPLOC=addr l.,DCB=addr] I
I I I DE=addr I L __________ ~ ____________ ~ ___ J

reg~,reg2

EP

EPLOC

DE

specifies 1::he range of registers, from 2 through 12, that are to be
restored. Reg~ must be specified less than or equal to reg2.

If this operand is omitted, the user is responsible for restoring
the registE~rs properly.

specifies t:he symbolic name of an entry point in the load module to
be given control.

The entry point name must either be a name contained in the
directory of a pairtitioned data set (member name or alias) or have
been ident:ified to the control program through an IDENTIFY macro
instruction.

specifies t:he address of a double-word that contains 'the symbolic
name of an entry point in the load module to be given control. The
name must be left-justified in the double-word, and, if the name is
less than E!ight characters" the double-word must be filled out with
trailing blanks. The double-word can be aligned on a byte boundary
and can be in the load module issuing the XCTL.

specifies the address of the name field of a list entry describing
the load module to be givel1: control. The entry contains
information previously extracted from the directory of a parti
tioned dat:a set by a BLDL macro-instruction. (Refer to "Basic
Partitioned Access Method" in section 3 for a description of the
BLDL macro-·instruction.)

If the DE operand is written, the DCB operand must be identical to
the DCB operand specified in the corresponding BLDL macro
instruction.

The list entry can be in the load module issuing the XCTL.

section 2: Supervisor services - Dynamic Program Management 57

DCB
specifies the address of a data control block opened for a private
library (partitioned data set) that is to be searched for the load
module to which control is to be given. If the EP or EPLOC operand
was written and the load module 1S not found in the library
specified by the DCB operand, the link library is searched.

If the DCB operand is omitted, the load module is assumed to be in
either the job library or the link library. The job library, if
one exists, is searched first4

The data control block addressed by this operand must specify use
of the EXCP macro-instruction, and must have been opened for INPUT
before execution of the XCTL macro-instruction. (Refer to the
publication IBM System/360 Operating System: System Programmer's
Guide, Form C28-6550 for a description of the EXCP macro
instruction.) This data control block must not be used for any
purpose other than the LINK, XCTL, LOAD, ATTACH, and BLDL macro
instructions. The data control block must not be in the load
module issuing the XCTL, because the module can be overlaid during
execution of the macro-instruction.

The data control blocks for the job and link libraries are always
open.

CAUT~ONS: During execution of the XCTL macro-instruction,
if the specified

the
load superv1sor will abnormally terminate the task

module cannot be located.

I:E the XCTL macro-instruction is issued by a load module that was
given control by a direct (type I) linkage from another load module, the
main storage area occupied by the load module that made the direct
linkage may be freed for other uses; the area occupied by the module
issuing the XCTL will not be freed.. This is because the module that
made the direct linkage still appears to the supervisor to have control.

If the "only loadable" (OL) attribute was specified when the load
module was processed by the linkage editor, an attempt to transfer
cont:rol to the module will cause abnormal termination.

ENVIlgONMENT:
systtem:

The following apply if option 4 was excluded from the

• }\n entry point identified to the control program in an IDENTIFY
macro-instruction cannot be specified in an XCTL macro-instruction.

• ~rhe supervisor will abnormally terminate the task if the XCTL
macro-instruction is issued by an asynchronous exit routine.

• If the DCB operand is written, the specified private library is
searched for the load module. The link library is not searched.

• A XCTL macro-instruction specifying a load module that was not
previously brought into main storage by a LOAD macro-instruction
usually will load the specified load module. (See Appendix C for
more details.)

EXAMPLES: In the following examples, EX1 passes control to a load
mOdu:le identified by the entry point MULT. Because the DCB operand is
not written, MOLT should be located in either the job library or link
library.. Registers 2 through 12 will be restored.

EX2 causes control to be passed to a load module that resides in the
partitioned data set associated with the data control block at INPUT.

58

The load module to be given control is described by the list entry
located at WORK1. Registers 2 through 9 will be restored.

EXl
EX2

XCTL
XCTL

(2,12),EP=MULT
(2,9),DE=WORK1,DCB=INPUT

PROGRAMMING NOT'ES: Refer to Appendix C for additional information on
dynamic program management.

L- AND E- FORM USE: The standard form of the XCTL macro- ins·t-ruction can
result in a macro-expansion containing only a supervisor parameter list.
This list results from all operands of the standard macro-instruction
and is used to locate and acquire the specified load module ..

The standard-form XCTL macro-expansion can therefore consist of the
following units of code:

Designation tor Unit of
Code and Its Address

AB
ASPL
AE

Code
Branch to AE
Supervisor parameter list
Executable code terminated

by an SVC instruction

When the XCTL SVC instruction is executed, ASPL (the address of the
supervisor parameter list) is in register 15.

The nonstandard forms of the XCTL macro-instruction provide the only
way of passing a problem program parameter list (designated APL) to the
load module to be given control, because these forms allow ithe list to
be remote. This list is identical to the parameter list r.~sulting from
a CALL macro-instruction. When the XCTL SVC instruction is execu.ted,
APL (address of the problem program parameter list) is in register 1.

Because both lists must be able to be remote, another spf~cial keyword
operand., called the SF operand, is used in combination with the MF
operand to provide nonstandard macro-instruction forms. Th.~ SF and MF
operands can be written in the XCTL macro-instruction as shown in the
following format:

SF=L

SF=(E'{~i~~addrx})

MF=(E,{ Pl-addrx}) [,SF=(E,{sPl-addrx})]
(1) (15)

In the above format, spl specifies the address of a remot.e supervisor
parameter list, and pI specifies the address of a remote problem program
parameter list. If (15) or (1) is written as shown, the address of the
remote list must be loaded into the designated register before execution
of the macro-instruction.

If the MF operand is omitted, register 1 is not set to zero.

Four SF and IvlF combinations are shown in the above format. These
result in macro-expansions consisting of the following units of code:

SF and MF
Combination
SF=L
SF=(E,ASPL)
MF= (E,APL)
MF=(E,APL),SF=(E,ASPL)

Units of Code in
Macro-Expansiol}

ASPL
AE
AB,ASPL,AE
AE

section 2: Supervisor Services - Dynamic Program Management 59

The effect of each SF and MF combination is as follows:

• ~3F=L results in only a supervisor parameter list. Only the operands
of the standard-form XCTL macro-instruction can be written in this
macro-instruction.

• ~~F=(E,ASPL) results in a macro-expansion that does not contain a
supervisor parameter list. Parameters in the remote supervisor
parameter list can be dynamically changed as in a normal E-form
macro-instruction.

• l~F=(E,APL) specifies a normal E-form macro-instruction. Note that
lMF=L cannot be written in the XCTL macro-instruction, but a remote
problem program parameter list can be formed by using the L form of
t.he CALL macro-instruction.

• l~= (E, APL) , SF= (E, ASPL) indicates that both parameter lists are
:r:'emote.

Thus, to change and add to the remote problem program parameter list,
the lMF=E form of the XCTL macro-instruction should be used. All
oper,ands are allowed in this form, including the PARAM and VL operands
described in the LINK macro-instruction description. The ID operand,
which is described in the LINK macro-instruction description, is not
allo'wed.

LOAD -- Load and Retain a Load Module (R)

The LOAD macro-instruction acquires a specified load module and
caus·es the supervisor to retain the module for use by the task issuing
the LOAD. If a copy of the load module is not currently available in
main storage, one is fetched. The module is associated with the
requesting task and cannot be released until the task either terminates
or uses a DELETE macro-instruction to release the module. However, the
module can be used in a type-II linkage by any task of the job step
whose task issued the LOAD macro-instruction. If the module is
reent~erable and from the link library, it can be used by any task of any
job step. (Refer to Appendix C for a more complete discussion of the
action of the LOAD macro-instruction.) Note that this macro-instruction
does not initiate execution of the load module.

r-----------T-----------T---,
~-~~·~~~-----~-~:==~:~~~-~-rO:=:~~~-------}-------------------------------~ I [symboll I LOAD I EP=symbol [,DCB={addrX }l I
I I I EPLoc={addrX} (1) I
I I 1 (0) I
I I I DE= {addrx} I
I I I (0) I L ____ • ______ ~ ___________ ~_ _____________ _ ______________________________ J

EP

EPLOC

60

specifies the symbolic name of an entry point in the load module.

The entry point name must either be a name contained in the
directory of a partitioned data set (member name or alias) or have
been identified to the control program through the use of the
IDENTIFY macro-instruction.

specifies the address of a double-word that contains the symbolic
name of an entry point in the load module. The name must be

DE

DCB

left-justified in the double-word, and, if the name is less than
eight characters, the double-word must be filled out with trailing
blanks. The double-word can bE;! aligned on a byte boundary.

If (0) is ~lritten, the address must have been loaded into parameter
register 0 before execution of this macro-instruction.

specifies 1::he address of the name field of a list entry describing
the load module to be acquired. The entry contains information
previously extracted from the directory of a partitioned data set
by a BLDI.J macro-instruction. (Refer to "Basic Partitioned Access
Method" in Section 3 for the BLDL macro-instruction.)

If the DE operand is written, the DCB operand must be identical to
the DCB operandi specified in the corresponding BLDL macro
instruction.

If (0) is written, the list address must have been loaded into
parameter register 0 before execution of this macro-instruction.

specifies -the address of a data control block opened for a private
library (partiti,oned data set) that is to be searched for the
required load module. If the EP or EPLOC operand was written and
the load module is not found in the library specified by the DCB
operand, the link library is searched.

If the DCB operand is omitted, the load module is assumed to be in
either th€~ job library or the link library. The job library, if
one exists, is searched first.

The data control block addressed by this operand must specify use
of the EXCP macro-instruction, and must have been opened for INPUT
before execution of the LOAD macro-instruction. (Refer to the
publication IBM System/360 Operating System: System Progranuner's
Guide, FOIE C28~6550, for a description of the EXCP macro
instruction.) Tpis data control block must not be used for any
purpose other than the LINK, XCTL, LOAD, ATTACH, and BLDL macro
instructions.

The data control blocks for the job and link libraries are always
open.

If (1) is Vlrritten. the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

The 24-bit actual address of the entry point is returned by the
supervisor in r€~gister 0 after execution of the macro- instruction.

CAUTIONS: During execution of the LOAD macro-instruction, the
supervisor will abnormally terminate the task issuing the LOAD if the
specified load module cannot be located in the indicated source.

ENVIRONMENT: If option 4 was excluded from the system, an entry point
identified to the control program in an IDENTIFY macro-instruction
cannot be specif:ied in a LOAD macro-instruction. A module loaded by an
attached modulE~ is not automatically deleted when the latter module
returns to a higher control level.

If option 4 was excluded and the DCB operand is '~ritten, the
specified private library is searched for the load module. The link
library is not searched.

section 2: Supervisor Services - Dynamic Program Management 61

EXAMPLES: In the following examples, EXl causes the
specified by entry point ALPHA to be loaded or located in
the 24-bit address corresponding to ALPHA to be returned in
If the load module is not in main storage, it will first be
in t:he job library for the job containing the LOAD and
found, in the link library.

load module
storage, and
register o.
searched for
then, if not

EX2 requests that the specified load module be made available. This
module is described by the partitioned-data-set list entry located at
DIRENT and is obtained from the data set associated with the data
control block at PRILIB.

EXl LOAD
EX2 LOAD

EP=ALPHA
DE=DIRENT,DCB=PRILIB

PROGRAMMING NOTES: Refer to Appendix C for additional information on
the operation of the LOAD macro-instruction.

'Virhen a CALL macro-instruction is to execute a load module brought in
by a LOAD, the entry operand of the CALL should be written as (15).
Before execution of the CALL, the entry point address returned in
register 0 during execution of the LOAD macro-instruction should be
loaded into register 15. If a symbolic entry point name is written
inst.ead of (15), the specified program will be automatically linkage
edit.ed with the load module containing the CALL macro-instruction.

DELE~rE -- Delete a Retained Load Module (R)

'J'he DELETE macro-instruction is used by a task to indicate to the
supE!rvisor that an in-storage copy of a load module is no longer
required. This load module was previously acquired by the task by
issuing a LOAD macro-instruction. The storage areas occupied by the
load module are freed for other uses.

r----------T-----------T---,
I Name I Operation I Operand I

l::::::::::1:::::::::::1][~~;i:~1j::~:::::::::::::::::::::::::::::::J
EP

EPLOC

DE

62

specifies the symbolic name of an entry point in the load module to
be deleted.

specifies the address of a double-word that contains the symbolic
name of an entry point in the load module to be deleted. The name
must be left-justified in the double-word, and, if the name is less
than eight characters, the double-word must be filled out with
trailing blanks. The double-word can be aligned on a byte
boundary.

If (0) is written, the address must have been loaded into parameter
register 0 before execution of this macro-instruction.

specifies the address of the name field of a list entry describing
the load module to be deleted. The entry contains information

previously extracted from a directory of a partitioned data set by
a BLDL macro-instruction. (Refer to "Basic Partitioned Access
Method" in Section 3 for a description of the BLDL macro
instruction.)

If (0) is ~¥ritten, the address must have been loaded into parameter
register 0 before execution of this macro-instruction.

CAUTION: The name provided must be the same as the name given in a
preceding LOAD macro~instruction (by an EP or EPLOC operand, or,
indirectly, by a DE operand).

EXCEPTIONAL RETURNS: After execution of this macro-instruction, bits 24
through 31 of rE=gister 15 (the return code register) indicate the status
of the operation. The hexadecimal code is as follows:

00 successful completion
04 the specified load module waS' not found

EXAMPLES: In the following examples, EXl indicates that the load module
specified by an entry point named ADD is no longer needed by the task
issuing the DELETE. EX2 indicates that the load module described by the
partitioned-data-set list entry located at STRING is no longer needed in
storage.

EXl DELETE
EX2 DELETE

EP=ADD
DE=STRLNG

IDENTIFY -- Identify a!n Embedded Entry Point (R)

The IDENTIFY macro-'instruction is used by a task to inform the
supervisor of an embedded entry point within a load module. This load
module is one of the following:

• The load module that was last entered by the same task by means of a
supervisor-assisted linkage. This includes the first load module of
the job step, if it is still in control •

• A load module that was loaded by a LOAD macro-instruction issued by
the same task.

After an IDENTIFY' macro-instruction has been executed, the embedded
entry point can be referred to by an ATTACH, LINK, XC'rL, or LOAD
macro-instruction. The subprogram having the specified entry point is
assumed to be reenterable. The IDENTIFY macro-instruction is needed to
specify an ent~ry point only if the entry was not specified to the
linkage editor alS a member name or alias.

r----------T-----------T-----------------------------------.------------,
I Name I Operation I Operand I
~----------+----.-------+-----------------------------------.------------~
I [symbol] I IDENTIFY I {EP=symbol },ENTRy=.{addrX} I
I I I EPLoc={addrx} (1) I
I I I (0) I L __________ ~ ___________ ~ ___ J

EP

EPLOC

specifies t.he symbolic name of the entry point being id.entified to
the supervisor.

specifies the address of a double-word that contains the symbolic
name of the~ entry point being identified to the supervisor. The

Section 2: Supervisor Services - Dynamic Program Management 63

name must be left-justified in the double-word, and, if the name is
less than eight characters, the double-word must be filled out with
trailing blanks. The double-word can be aligned on a byte
boundary.

If (0) is written, the address must have been loaded into parameter
register a before execution of this macro-instruction.

ENTRY
specifies the address of the entry point being identified to the
supervisor.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

CAUT'ION: Execution cf this macro- instruction is not successful if it is
issu~~d by an asynchronous exit routine.

EXCEPTIONAL RETURNS: After execution of this macro-instruction, bits 24
through 31 of register 15 (the return code register) indicate the status
of the operation. The hexadecimal code is as follows:

00 successful completion
Oil~ an IDENTIFY that specified the same entry point name and

address was issued previously
08 the entry point name is the same as the name of a load module

currently in main storage
OC the entry point is not in the load modules that were searched
1.0 the IDENTIFY was issued by an asynchronous exit routine.
1. 14. an IDENTIFY that specified the same entry point name but a

different address was issued previously.

COdE!S 08, OC, 10, and 14 are considered error conditions.

ENV~RONMENT: The full services of the IDENTIFY macro-instruction are
avai.lable if option 4 was included in the system. If option 4 was
excluded, option 3 permits the identification of an embedded entry point
subject to the following rules:

• 'rhe entry point can be referred to only by an ATTACH macro
instruction.

• 'The identified subprogram cannot in turn issue another IDENTIFY
macro-instruction.

• 'The entry point can be either in the module issuing the IDENTIFY
macro-instruction or in a module loaded (using a LOAD
macro-instruction) by any module given control in the job step.

If both option 3 and 4 were excluded, the IDENTIFY macro-instruction
will be treated as a NOP at execution.

EXA~~PLE: In the following example, EXl informs the supervisor of an
addftional entry point within a load module that either was last entered
by the task as a result of a supervisor-assisted linkage or was loaded
by 1:he LOAD macro-instruction. The entry point's name is COSINE and its
address is in register 6.

EX1 IDENTIFY EP=COSINE,ENTRY=(6)

PROGRAMMING NOTES: A load module can be retrieved by its member name or
its-aliases defined at linkage edit time. If additional entry points
need to be defined at execution time, the IDENTIFY macro-instruction
should be used.

Refer to Appendix C for additional information on dynamic program
management.

64

MAIN STORAGE MANA.GEMENT

GETMAIN -- Allocate Main storage (R)

The R form of tme GETMAIN macro-instruction requeBts that the
supervisor dynamically allocate a single area of main storasre for task
use. The FREE.MAIN macro-instruction can be used to release the
allocated storage for other uses; otherwise, task termination
automatically releases all of the allocated storage owned by the task.

The R form of the GETMAIN macro-instruction can be used upon entry to
a reenter able program to obtain main storage for a save area or for
other uses. When the macro-instruction is executed, the supervisor will
not modify the contents of the save area pointed to by regiBter 13.

r----------T----·------~T-----------------------------------.-----------,

I Name I Operation I Operand I
~----------+----"------ +------------------------------------.-----------~
I [symbol] I GET1MAIN I R.,{ LV=value[., SP=value] } I
I I I LV=(O) I L __________ ..L ____ • _______ ..L ____________________________________ • ___________ J

R

LV

SP

specifies "that this is the R form of the macro-inst~ruction, and
that a single area of main storage is requested.

specifies the length, in bytes, of the requested area of main
storage. 'rhe value should be a mUltiple of eight; i.f it is not,
the supervisor will act as though the next higher mUlti.ple of eight
had been wr:itten. The length of the area cannot exceed the maximum
established at system generation time.

If (0) is written,: the length must have been loaded int~o the three
low-order bytes of parameter register 0, and the subpool number
into the high-order byte, before execution of this macro
instruction ..

specifies the number of the subpool from which the requested
storage area is to be allocated. If the specified subpool does not
exist, a new subpool is created. If the specified subpool does
exist but does not. have enough unallocated space for the area
specified, it is extended. If this operand is omittE!d and LV=(O)
is not written, subpool zero is assumed. The value of this operand
must be from 0 to 121.

The address
supervisor in
byte is zero.

of the allocated storage area is returned by the
"the thl1ee low-order bytes of register 1. The high-order

When this macro-instruction is executed, the supervisor allocates
storage for the requested area. The area begins on a double-word
boundary and is assigned from a storage block having the task's storage
protection key.

CAUTIONS: The storage area is not cleared to zero when allocated.

During execu1:ion of the GETMAIN macro-instruction, the supervisor
will abnormally 1terminate the task issuing the GETMAIN if one of the
following occurs:

section 2: Supervisor Services - Main storage Management 65

• The subpool number exceeds 127.

• More storage is requested than can be allocated as a single area, or
can be made available by the system.

ENVIRONMENT: If option 4 was excluded from the system, there is one
unnulubered subpool; the SP operand is therefore ignored. Any request
for more main storage than is immediately available causes abnormal
termination of the job step if (1) option 14 was excluded from the
syst.em, or (2) there is no lower priority job step being executed
concurrently.

If option 14 was excluded from the system, but option 4 was included,
a request for more main storage than is immediately available causes the
requ.j=sting task to wait until sufficient storage is released by other
tasks.

If option 4 was excluded, other options specified at system
genE~ration time determine conditions that may cause abnormal termination
of a job step. For descriptions of these conditions, refer to the
publication IBfo1 Systern/360 Operating System: Messages and Completion
CodE~, Form C28-6608.

EXAf'JIPLES: In the following examples, EX1 requests 100 bytes of storage
frorrl subpool zero. Note that actually 104 bytes will be allocated,
because of the multiple-of-eight rule. EX2 requests 110 bytes from
subpool 10; in this case, 112 bytes will be allocated. EX3 indicates
that register zero has been loaded with the subpool number and the
length of the requested area.

EXl
EX2
EX3

GETMAIN
GETMAIN
GETMAIN

R,LV=100
R,LV=100+2*5,SP=10
R,LV=(O)

PROGRAMMING NOTES: The supervisor allocates the area from the specified
subpool. Thus, through the SP operand, a task organizes allocated
storage into subpools. Each task can have as many as 128 subpools, each
identified by an integer from 0 to 127, called a "subpool number." A
new subpool is automatically created when a task makes a request for
storage and specifies a new subpool number from 1 to 127 by means of the
SP operand. Subpool 0 is automatically created by the control program
when the first task of the job step is created.

When a subpool is created, storage is assigned to it in multiples of
2048-byte blocks. The number of blocks assigned is the minimum number
needed to satisfy the storage request. These blocks are contiguous in
storage. Once a subpool has been created in this way, further storage
requests specifying the same subpool number either are satisfied from
the originally assigned storage blocks, or extend the size of the
part;icular subpool by causing additional 2048-byte blocks to be
assi.gned. The additional storage blocks mayor may not be contiguous in
storage with the original blocks.

Fl request for more storage than is immediately available is optional
ly f: illed by allocating storage areas assigned to lower priority job
steps. The contents of these areas are saved in external storage and
rest;ored in last-out/first-in order. If no lower priority job step
exists, however, the requesting task is placed in a wait condition until
sufficient storage is released by other job steps, or by other tasks of
the same job step.

'I'hrough the ATTACH macro-instruction, a task can give subpools to a
subt.ask or can share subpools with one or more of its subtasks.

66

All subpools of t'?o tasks, except subpool 0., are distinct from each
other, even when they l;1ave the same identifying numbers, unless an
ATTACH macro-instruction specifies sharing of the subpools. Subpool 0
is automatically shared by all tasks of the job step.

storage owned or shared by a task can be released for other uses by a
FREEMAIN macro-instruct.ion. A subpool is automatically rE~leased when
its owning task -terminates.

GETMAIN -- Allocate Main storage (S)

The S form of the GETMAIN macro-instruction requests that the
supervisor dynamically allocate one or more areas of main storage for
task use. The FREEMAIN macro-instruction can be used to release the
allocated storag4= for other uses; otherwise, task termination automat
ically releases all of the allocated storage that is owned by the task.

r----------T----·-------;-T-------------.... ----------------------.-----------,
I Name I Operation I Operand I
.----------+-----------+---i
I [symbol] I GETMAIN I {mode-,{EUIEC},Lv=value }.A=addr[,sp=valuel I
I I I mode-{VUIVCILUILC},LA=addr I
L __________ .L ____ . _______ .L------------------------------------. ___________ J

mode

LV

LA

specifies that this is the S form of the macro-inst;ruction and
specifies ithe type of request for storage. The mea~nings of the
characters in thi~ operand are:

E (element) specifies a request for a single area of main storage
of a specific length.

V (variablf~) specifies a request for a single area of main storage
whose length is between two values.

L (list) specif.iles a request for one or more a.reas of main
storage. Each area is of a specific length.

U (unconditional), specifies that the request must be satisfied
before the task can continue.

C (conditional) specifies that the request is not esse,ntial to the
continuation df the task. If the entire request is satisfied,
register 15 (the return code register) contains zero; if the
request cannot be satisfied immediately, it is canceled and
register 15 contains 4.

Note that only the combinations of characters shown in the format
description are allowed.

specifies t.he length, in bytes, of the single area of main storaqe
requested by an EU or EC operand. The value should be a multiple
of eight; if it iJs not, the supervisor will act as though the next
higher multiple of eight had been written.

specifies the add~ess of a user-provided list of lengths, in bytes,
for the main storaige areas requested. Each list entry must be four
bytes long and must begin on a full-word boundary. The list must
consist of:

• For VU or V;C reguests: ,two 4-byte entries. The fi rst entry
specifiE~s the :minimum length needed by the task; the second
entry specifi:es the maximum length that can be used. In each
entry, t:he thvee low-order bytes contain the length, and the
high-order byte is zero.

Section 2: Supervisor Services - Main Storage Management 67

A

SP

• For LU or LC requests: one 4-byte entry for each main storage
area requested. Each entry specifies the length of a desired
area. In each entry. the three low-order bytes contain the
length. The high-order byte is zero. except in the last entry
where the sign bit must be set to one.

All lengths specified should be in multiples of eight; if any
length is not, the supervisor will act as though the next higher
mUltiple of eight had been written.

specifies the address of a user-provided list in which the
supervisor stores specifications of the main storage area or areas
allocated for this request. Each list entry must be four bytes
long and begin on a full-word boundary. The list must consist of:

• For EU'or EC requests: one 4-byte entry in which the supervisor
stores the address of the single main storage area allocated.

• For VU or VC requests: two 4-byte entries. In the first entry,
the supervisor stores the address of the single main storage
area allocated. In the second entry. the supervisor stores the
length of the area.

• For LU or LC requests: one 4-byte entry for each main storage
area requested by the LA operand. The supervisor stores 1n
each entry the address of the main storage area allocated for
the corresponding LA list entry.

The resulting parameter list can serve as valid input to a FREEMAIN
macro-instruction.

specifies the number of the subpool from which the requested
storage area is to be allocated. If the specified subpool does not
exist, a new subpool is created. If the specified subpool does
exist but does not have enough unallocated space for the areas
specified, it is extended. If this operand is omitted. subpool
zero is used. The value of this operand must be from 0 to 127.

Note that all areas that satisfy an LU or LC request are allocated
from the same subpool.

~lhen this macro-instruction is executed. the supervisor allocates
storage for the requested area or areas. Each area begins on a
double-word boundary and is allocated from a block having the task's
stol~age protection key.

CAU~IONS: Storage areas are not cleared to zero when allocated.

Before this macro-instruction is executed, the user must create the
list: for the LA operand, if used, and must provide the space for the A
operand list. The lists for the LA and A operands must not have any
coromon locations.

During execution of the GETMAIN macro-instruction, the supervisor
will abnormally terminate the task issuing the GETMAIN if one of the
following occurs:

68

• 'The subpool number exceeds 127.

• More storage is requested, unconditionally. than can be allocated as
a single area, or can be made available by the system.

• 'The lists for the LA and A operands have common locations.

An error may occur in the amount of storage that is allocated if the
maximum length specified in a VU or VC request exceeds 2~~ 4-8. After
being rounded to a multiple of 8, the requested maximum is truncated to
include only the 24 low order bits. A request for 224-7 bytes, for
example, would be rounded upward to 224 and then truncated t.o a value of
o.

EXCEPTIONAL RETURNS: After execution of the EC, VC, and LC types of
this macro-instruction, bits 24 through 31 of register 15 (the return
code register) indicate the status of the operation. ThE~ hexadecimal
code is as follows:

00 request was satisfied
04 request was not satisfied

ENVIRONMENT: If option 4 was excluded from the system, the GETMAIN
macro-instruction can be used to request only a single area of main
storage. The job step is abnormally terminated if the mode operand is
written as LU or Le.. There is one unnumbered subpooli the SP operand is
therefore ignored. Any unconditional request for more main storage than
is immediately available causes abnormal termination of the job step if
(1) option 14 was excluded from the system, or (2) there is no lower
priority job step being executed concurrently.

If option 14 was e~cluded from the system but option 4 'l1as included,
a request for more storage than is immediately available causes the
requesting task to wait until sufficient storage is relea.sed by other
tasks.

If option 4 was excluded, other options specified at system genera
tion time determine c0nditions that may cause abnormal terrnination of a
job step. For descriptions of these conditions, refer to 1:he publica
tion IBM System/360 Operating System: Messages and Completion Codes,
Form C28-6608.

EXAMPLES: In the foll0wing examples" EXl requests a 100-byte area in
subpool 3. Note that actually 104 bytes will be allocated, because of
the multiple-of-eight rule. The supervisor is to store the address of
the area in the full word at ALPHA. The area must be allocated before
the task can continue processing.

EX2 requests one st0rage area in subpool O. The minimum length
needed is in the full-word at BETA and the maximum length that can be
used is in the full-word at BETA+4. The area must be allocated before
the task can continue processing.. The supervisor is to store the
address of the area in the full-word at GAMMA, and the length of the
area actually allocated in the full-word at GAM~1A+4.

EX3 requests several storage areas in subpool 4. The lE~ngths of the
desired areas are in a list at DELTA. The areas need not be allocated
for processing to continue. If the supervisor allocates aLL the storage
requested, it is to st0re the addresses of the areas in a list beginning
at EPSILON.

EXl
EX2
EX3

GETMAIN
GETMAIN
GETMAIN

EU,LV=100,A=ALPHA,SP=3
VU,LA=BETA,A=GAMMA
LC,LA=DELTA,A=EPSILON,SP=4

Section 2: Supervisor Services - Main Storage Management 69

PROGRAMMING NOTES: The supervisor allocates the one or several areas
from the specified subpool. Thus, through the SP operand, a task
organizes allocated storage into subp~ols. Each task can have as many
as 128 subpools, each identified by an integer from 0 to 127, called a
"subpool number." A new subpool is automatically created when a task
makes a request for storage and specifies a new subpool number from 1 to
127 by means of the SP operand. Subpool 0 is automatically created by
the control program when the first task of the job step is created.

Vlhen a subpool is created, storage is assigned to it in mUltiples of
204B-byte blocks. The number of blocks assigned is the minimum number
needed to satisfy the storage request. These blocks are contiguous in
storage. Once a subpool has been created in this way, further storage
requests specifying the same subpool number either are satisfied from
the originally assigned storage blocks, or extend the size of the
part:icular subpool by causing additional 2048-byte blocks to be
assigned. The additional storage blocks mayor may not be contiguous in
storage with the original blocks.

For an LU or LC request that is creating a new subpool, the first
entry in the list is treated as the original request and subsequent
entries are treated as further requests. Therefore, the storage blocks
assigned to the subpool to satisfy a list request mayor may not be
cont: i guou s •

An unconditional request for more storage than is immediately
available is optionally filled by allocating storage areas assigned to
lowE~r priority job steps. The contents of these areas are saved in
extE~rnal storage and restored in last-out/first-in order. If no lower
priority job step exists, however, the requesting task is placed in a
wait: condition until sufficient storage is released by other job steps,
or by other tasks of the same job step.

After a conditional request, the contents of register 15 (the return
codE~ register) indicate whether or not the storage was allocated.
Register 15 contains zero if the total request was satisfied, or four if
it was not. An EC request is satisfied when the single block requested
is allocated; a VC request, when at least the minimum storage requested
is allocated; and an LC request, when every area requested is allocated.
NotE~ that, for an LC request, only if all areas can be allocated is any
storage allocated.

The contents of register 15 are undefined after unconditional
requ,ests.

The supervisor places the address of each allocated storage area in
the ·three low-order bytes of a full word in the list specified by the A
operand. The high-order byte of each full word is reserved. For a VU
or VC request, the length of each allocated block is placed in the list.

'1~hrough the ATTACH macro-instruction, a task can give subpools to a
subt~ask or can share subpools with one or more of its subtasks.

Jl • .ll subpools of two tasks, except subpool 0, are distinct from each
othE!r, even when they have the same identifying numbers, unless an
ATTACH macro-instruction specifies sharing of the subpools. Subpool 0
is a.utomatically shared by all tasks of the job step.

S·torage owned or shared by a task can be released for other uses by a
FREEMAIN macro-instruction, which can use, without modification, the
list.s specified in the A and LA operands of the GETMAIN macro
inst.ruction. A subpool is automatically released when its owning task
terminates.

70

L- AND E-FORM USE: The Land E forms of this macro-instruction are
written as described in Appendix B. The L form can be used to form a
remote parameter lisrt for use by E forms of both the GETMAIN and
FREEMAIN macro-i.nstructions.

FREEMAIN -- RelE!ase Al~ocated Main Storage (R)

The R form of the FREEMAIN macro-instruction releases one subpool or
one main storage area previously acquired through one or more GETMAIN
macro-instructions. The save area pointed to by register 13 is not
modified.

In the following fbrmat description. the first format is for release
of one main storage area; the second format is for release of one
subpool.

r----------T-----------T---,
I Name I OpE~ration I Operand I
~----------+---_._----_:-+---~
I [symbol] I FREEMAIN I R,{.Lv=valUe[,SP=valUe]},A={addrx} I
I I I LV= (0) (1) . I
.----------+---_._------+---~
I [s ymbol] I FR8EMAIN I R, SP= { val ue } I
I I I (0) I L __________ .L ____ . _______ .L ___________________________________ . ____________ J

R

LV

specifies t:hat this is the R form of the macro-instruction.

specifies the l,ength, in bytes, of the main storage area to be
released. The vailue should be a multiple of eight; if it 1S not,
the supervisor wi~l act as though the next higher multiple of eight
had been written.

If (0) is written, the length must have been loaded into the three
low-order bytes oif parameter register 0 and the subpool number into
the high-order by;te, before execution of this macro-instruction.

SP (for release of a main storage area)

A

specifies t:he number of the subpool from which the main storage
area is t:o be released. If this operand is omitted and if LV=(O)
is not wri t:ten. siUbpool zero is assumed. The value of this operand
must be from 0 to 127.

specifies t:he address of a full-word whose three low-order bytes
contain the addiress of the storage area to be released. The
address of the storage area must be a multiple of eight.

If (1) is lI1rittenj, the address of the storage area itself (not the
address of a fiull-word containing the storage area address) must
have been loaded into the three low-order bytes of parameter
register 1 before: execution of this macro-instruction.

SP (for release of a subpool)
specifies the number of the subpool to be released. Subpool zero
cannot be released.

If (0) is vlritten;, the subpool number must have been loaded into
the high-order byte of parameter register 0 before execution of
this macro-·instruction. The three low-order bytes must be zeros.

Section 2: Supervisor Services - Main Storage Management 71

CAUTIONS: During execution
supervisor will abnormally
one of the following occurs:

of the FREEMAIN macro-instruction, the
terminate the task issuing the FREEMAIN if

• 'rhe subpool number exceeds 127.
• 'rhe storage area to be released is not in the specified subpool.
• The address of an area to be released is not a multiple of eight.
• rrhe storage area to be released was not allocated to the task, or

was released previously.

ENVIRONMENT: If option 4 was excluded from the system, there is one
unnumbered subpool; the SP operand is therefore ignored.

If option 4 was excluded, other options specified at system
genE!ration time determine conditions that may cause abnormal termination
of a job step. For descriptions of these conditions, refer to the
publication IBM System/360 Operating System: Messages and Completion
Codes. ----
EXAMPLES: In the following examples, EX1 requests the release from
subpool zero of a 16-byte area whose address is in register 1. EX2
requ.ests the release from subpool 5 of a 322-byte area, whose address is
in t.he full-word at ADD. Note that actually 328 bytes will be released,
because of the multiple-of-eight rule. EX3 requests release of the
entire subpool 99.

EX1
EX2
EX3

FREE MAIN
FREE MAIN
FREE MAIN

R,LV=16,A=(1)
R,LV=322,SP=5,A=ADD
R,SP=99

FREEMAIN -- Release Allocated Main Storage (S)

The S form of the FREEMAIN macro-instruction releases one or more
areas of main storage previously acquired through one or more GETMAIN
macro-instructions.

r-----------T-----------T---,
I Name I Operation I Operand I
~----------+-----------+---~
I [symbol] I FREEMAIN I {mOde-E,Lv=vaIUe},A=addr[,sp=valuel I
I I I mode-V I
I I I mode-L,LA=addr I L ___________ ~ ___________ ~ ___ J

mode

LV

72

specifies that this is the S form of the macro-instruction and
specifies the type of storage release being requested. The mode
operand is written as one of the following characters:

E (element) specifies release of a single storage area whose length
is given in the LV operand.

V (variable) specifies release of a single storage area whose
length is given by means of the A operand.

L (list) specifies release of one or more storage areas whose
lengths are given by means of the LA operand.

specifies the length, in bytes, of the single area of main storage
to be released. The value should be a mUltiple of eight; if it is
not, the supervisor will act as though the next higher multiple of
eight had been written.

LA

A

SP

specifies 1:he address of a user-provided list of lengths, in bytes,
of the main storage areas to be released. Each list entry is four
bytes long l , and must begin on a full-word boundary. Each full-word
contains a length specification in its three low-order bytes and,
except for the last entry, a zero in its high-order byte. The sign
bit in the last ~ntry must be 1. Each length should be a mUltiple
of eight; if it is not, the supervisor will act as though the next
higher mul1:iple of eight had been written.

specifies the address of a user-provided list that specifies the
one or more main storage areas to be released. Each list entry
must be four bytes long, and must begin on a full-word boundary.
The list must consist of:

• For E relea~es: one 4-byte entry containing the address of the
single main storage area to be released. The address is in the
three low-order bytes of the entry, and the high-order byte is
zero.

• For V rE~leases: two 4-byte entries. The first entry contains
the address of the single main storage area to be released. The
second contains the length of the area. In each entry, the
address or length is in the three low-order bytes, and the
high-order byte is zero.

• For L releases: one 4-byte entry for each main storage area
whose IE~ngth jjs given in the list referred to by the LA operand.
In each entry, the address is in the three low-order bytes, and
the high-order byte is zero. The first address in this list and
the first length in the LA list together specify the first area,
the second address and length specify the second area, etc.

All addresses must be multiples of eight.

specifies the number of the subpool from which the main storage
area or arE~as are to be released.. If this operand is omitted"
subpool ZE~ro is assumed. The operand' s value must be from 0 to
127. All areas in an L release must be in the same subpool.

CAUTIONS: Before this macro-instruction is executed, the user
create the list for the LA operand, if used, and for the A operand.
lists for LA and A operands must not have any common locations.

must
The

During execution of the FREEMAIN macro-instruction, the supervisor
will abnormally terminate the task issuing the FREEMAIN if one of the
following occurs:

• The subpool number exceeds 127.
• The storage area to be released is not in the specified subpool.
• The address of an ·area to be released is not a multiple of eight.
• The storage area to be released was not allocated to the task, or

was released previously.
• The lists for the LA and A operands have common locations.

ENVIRONMENT: If option 4 was excluded from the system, the FREEMAIN
macro-instruction can be used to release only a single area of main
storage. Since there .is one unnumbered subpool, the SP operand is
ignored. The job step is abnormally terminated if the mode operand is
written as L.

Section 2: Supervisor Services - Main Storage Management 73

If option 4 was excluded, other options specified at system genera
tion time determine conditions that may cause abnormal termination of a
job step. For descriptions of these conditions, refer to the publica
tion IBM System/360 Operating System: Messages and Completion Codes.

EXAMPLES: In the following examples,
120-byte storage area from subpool zero.
contained in the full-word at BLOKADD.

EXl requests the release of a
The address of the area is

EX2 requests the release of a storage area from subpool 10. The
address and length of the area are contained in the full-words at
BLOKDESC and BLOCKDESC+4, respectively.

EX3 requests the release of several storage areas from subpool zero.
The consecutive full-words beginning at location LENGTHS specify the
number of bytes in each area. The consecutive full-words beginning at
location LOCS specify the addresses of the areas.

EXl
EX2
EX3

FREE MAIN
FREE MAIN
FREE MAIN

E,LV=120,A=BLOKADD
V,A=BLOKDESC,SP=10
L,LA=LENGTHS,A=LOCS

PROG~NG NOTES: If a single storage area is to be released, some or
all of the area specifications <address, length, and subpool number) can
reside in the area to be released. If several areas are to be released,
the list for the LA operand or the list for the A operand, or both, can
reside in the areas to be released, provided that:

• Neither list begins in the first word of the first area to be
released •

• p~ list within an area lies wholly within the area.

The lists specified in the A and LA operands can also be those
specified in the corresponding operands of the GETMAIN macro-instruction
that caused the storage to be allocated. No modification of these lists
is necessary.

L- AND E-FORM USE: The Land E forms
written as described in Appendix
parameter list formed by the L form
GETM.AIN macro-instruction. No error
mode as conditional or unconditional
instruction.

74

of this macro-instruction are
B. The E form can use the remote
of either the FREEMAIN or the
results from the specification of
in the L-Form GETMAIN macro-

TASK CREATION AND MANAGEMENT

ATTACH -- Creab~ and Attach a Task (S)

The ATTACH macro'-'instruction creates a new task a.nd initiates
execution of th4~ new task by passing control to a specif ieal entry point
in a program. If the load module named by the entry point is
reenterable and a copy is in main storage, it is used. If the load
module is serially reusable, and if a copy is in main st~orage and not
being used (in a type II linkage), it is used; if this copy is being
used~ the request for its use is queued. If the load module is not
reusable and an unused copy is in main storage, it is used; if this copy
has been used (in a type-II linkage) a new copy is loaded. If no copy
of the load module is in main storage, a copy is loaded.

The task created is a subtask of the task whose program executed the
ATTACH macro-instructi.on. It competes with the task issuing the ATTACH
macro-instruction, as well as with other active tasks, for system
resources. The subtaSk can terminate itself by means of either an ABEND
macro-instruction or a RETURN macro-instruction executed in its highest
level program.

The ATTACH macro-'instruction allows the task to givE~ main storage
subpools to or share ~hem with the subtask. It also allows the task to
set the limit and dispatching priorities of the subtask. The macro
instruction specifies the way in which the task is to be notified of the
subtask's termination •.

r----------T-----------T---,
I Name I Operation I Operand I
~----------+---.--------+-----------------------------------.------------~

[symbol] I AT~rACH I {EP=SyrnbOl }[,DCB=addr] [, PARAM= ({addr,} •••)] I
1 1 EPLOC=addr I
I I DE=addr I
I I I
I I [, VL=l]] [,ECB=addr] [, {GSpv=valUe}] I
I I GSPL=adClr I
I I I
I I [, { SHspv=vaIUe}] [, ETXR=addr] I
I I SHSPL=addr I
I I I
I I [,LPMOD=value] [,DPMOD=value] I __________ J. ___ . ________ J. ___________________________________ . ____________ J

EP

EPLOC

specifies ithe symbolic name of the entry point in the load module
in which execution of the subtask is to begin.

The entry point must either be a name contained in thE~ directory of
a partitioned data set (member name or alias) or have been
identified to the control program through the use of the IDENTIFY
macro- instlruction.

specifies the address of a double-word that contains the symbolic
name of the entry point in the load module in which execution of
the subtask is to begin. The name must be left-justified in the
double-word, and~ if the name is less than eight characters, the
double-word must be filled out with trailing blanks. The double
word can b4= aligned on a byte boundary.

Section 2: SupeIrVisor Services - Task Creation and Management 75

DE

DCB

specifies the address of the name field of a list entry describing
the first load module to be executed. The entry contains
information previously extracted from the directory of a parti
tioned data set by a BLDL macro-instruction. (Refer to "Basic
Partitioned Access Method" in section 3 for a description of the
BLDL macro-instruction .•)

If the DE operand is written, the DCB operand must be identical to
the DCB operand specified in the corresponding BLDL macro
instruction.

specifies the address of a data control block opened for a private
library (partitioned data set) that is to be searched for the
specified load module. If the EP or EPLOC operand was written and
the load module is not found in the private library specified by
the DCB operand, the link library is searched.

If the DCB operand is omitted, the load module is assumed to be in
either the job library or the link library. The job library, if
one exists, is searched first.

The data control block addressed by this operand must specify use
of the EXCP macro-instruction, and must have been opened for INPUT
before execution of the ATTACH macro-instruction. (Refer to the
publication IBM System/360 Operating System: System Programmer's
Guide, Form C28-6550 for a description of the EXCP macro
instruction.) This data control block must not be used for any
purpose other than the LINK, XCTL, LOAD, ATTACH, and BLDL macro
instructions.

The data control blocks for the job and link libraries are always
open.

PARAtJl

VL

76

specifies, as a sublist, address parameters to be passed from the
task to the new subtask. If one or more operands are written in
the sublist, a problem program parameter list is generated. It
consists of a full-word for each operand. Each full-word is
aligned on a full-word boundary and contains, in its three
low-order bytes, the address to be passed. The addresses appear in
the parameter list in the same order as in the macro-instruction.

When the specified load
parameter list register)
program parameter list.

module
contains

is entered,
the address

register
of the

1 (the
problem

If the PARAM operand is omitted, register 1 is not set to zero.

specifies that the sign bit is to be set to 1 in the last full-word
in the problem program parameter list.

The parameter list has a fixed length if it is to contain a
certain, known number of parameters every time the subtask is given
control. The list has a variable length if it can contain a
varying number of parameters. Only in the latter case should the
VL operand be written in order to mark the end of the list.

If the list has a variable length and if register notation is used
to write out the last PARAM address, the user's problem program can
set the sign bit in the designated register to 1. If this is done,
the VL operand need not be written.

ECB

GSPV

GSPL

specifies the aQdress of an event control block (ECB) representing
completion of the subtask. When the operand is written, upon
completion of the task, the event control block is automatically
posted by t.he supervisor. If the task completes normally (as
indicated by a RETURN macro-instruction), the return code in
register 1!) is used as the post code. If the task completes
abnormally (as indicated by an ABEND macro-instruction), the
completion code specified in the ABEND macro-instruction is used as
the postcode. (Refer to the WAIT and POST macro-instructions in
nTask Synchronizationn for a discussion of the event control block
and its use.)

specifies a single subpool number. The subpool, if owned by the
task issuing the ATTACH macro-instruction, is given to the new
subtask. If sha~ed by the task, the subpool is shared between the
new subtask and those other tasks with which the task issuing the
ATTACH previously shared the subpQol. The task issuing the ATTACH
no longer shares the subpool and cannot in the future either give
or share thissubpool with another new subtask. (Refer to
nprogramming Notes n below for further explanation of the giving of
subpools.)

specifies 1::he addlress of a list of subpool numbers. Each subpool
in the list must be either owned or shared by the task issuing the
ATTACH macro-instruction. Each subpool to be shared is treated as
the singlE~ subpool specified by the GSPV operand, which is
described above. The first byte of the list contains the number of
the remaining bytes in the list, and the subsequent bytes contain
subpool numbers.

SHSPV
specifies the n~mber of a single subpool to be shared with the new
subtask. 'rhis subpool must be owned or shared by the task issuing
the ATTACH macro-instruction.

SHSPL

ETXR

LPMOD

DPMOD

specifies the address of a list of subpool numbers. The subpools
must be owned or shared by the task issuing the ATTACH macro
instruction. Theiy are shared with the new subtask. The first byte
of the list: conta:ins the number of the remaining bytes in the list,
and the subsequent. bytes contain subpool numbers.

specifies the address of an exit routine in the task issuing the
ATTACH macro-insbruction. The routine is entered asynchronously,
whether the subrtask terminates normally or abnormally. (Refer to
the ABEND macro-i~nstruction in nExceptional Condition Handling n for
additional information on when the ETXR exit routine is entered.)

specifies an absqlute value to be subtracted from the current limit
priority of the task issuing the ATTACH macro-instruction. The
number resulting from the sUbtraction is the limit priority for the
new subtask. If the sUbtraction produces a negative number, the
supervisor assigns a limit priority of zero. If this operand is
omitted, t:he cur:rent limit priority of the attaching task is given
to the new subtask.

specifies a signed value to be algebraically added to the current
dispatchingr prio~i ty of the task issuing the AT'rACH macro
instruction. The resulting number is the dispatching priority for

section 2: Supervisor Services - Task Creation and Management 77

the new subtask. If the addition produces a negative number, the
supervisor assigns a dispatching priority of zero to the subtask .•
If the addition produces a number greater than the subtask's limit
priority, as computed from the LPMOD operand, the supervisor sets
the dispatching priority equal to the limit priority. If this
operand is omitted, the subtask's dispatching priority is set equal
to either the limit priority of the subtask or the current
dispatching priority of the task issuing the ATTACH, whichever is
smaller. If this operand is written as an absolute expression, it
can begin with a minus sign.

If register notation is used, a negative value is represented in
the register in 32-bit two's complement form.

CAUTION: After issuing the ATTACH macro-instruction, the task must not
modify the following information until the times indicated:

1. Data control block specified by the DCB operand: until execution of
the subtask has begun.

2. Parameter list specified by the PARAM ope~and: until an arbitrary
point has been reached in the subtask's execution.

The WAIT and POST macro-instructions and an event control block can
be used as an interlock to signal when the data control block or problem
program parameter list can be modified by the task.

If the task issuing the ATTACH macro-instruction attempts to
terminate normally while any of its subtasks are still being processed,
the -task and all of its subtasks are terminated abnormally.

During execution of the ATTACH macro-instruction, the su:pervisor will
abnormally terminate the new subtask if the load module with which
execution of the subtask is to begin cannot be located.

If the "only loadable" (OL) attribute was specified when the load
module was processed by the linkage editor, an attempt to attach the
module will cause abnormal termination.

ENVI~ONMENT: The following apply if option 4 was excluded from the
syst1em:

78

• 'I'he ATTACH macro- instruction results in the load module being
t=~xecuted serially, as though a LINK macro-instruction had been
issued. No subtask or task control block is created. Upon normal
itermination of the attached load module, the event control block, if
specified, is posted and the ETXR routine, if specified, is given
Gontrol. When the attached load module and the ETXR routine (if
specified) terminate normally, control is returned to the instruc
t.ion that follows the ATTACH macro-instruction. Register 1 will
contain zero upon entry to the ETXR routine and upon return to the
attaching module. Abnormal termination of the attached load module
Gauses termination of the job step •

• 'rhe following operands in the ATTACH macro-instruction are ignored:

GSPV }
GSPL
SHSPV
SHSPL

subpool operands

LPMOD} priority operands
DPMOD

• If the ETXR routin~ is specified more than once, it is a.ssumed to be
reenterable. Becapse attached modules are executed serially, con
current eXE!cutions of an ETXR routine can occur only if an ATTACH
macro-instruction is issued within one or more asynchronous exit
routines.

• A RETURN macro-instruction issued by an attached module will not:

a. Free allocated main storage obtained by the module.

b. Delete a.ny load module retained by a LOAD macro- ins·truction that
was issued by the module.

c. Close any data sets opened by the module.

• If the DCB operand is written in the ATTACH macro-instruction, only
the specifiE!d private library is searched for the load module. The
link library' is not searched.

• An ATTACH macro-instruction specifying a load module that was not
previously brought into main storage by a LOAD macro-instruction
usually will load the specified load module. (See Appendix C for
details.)

EXAMPLES: In the following examples, EXi creates a subtask whose
execution is to begin. with the load module specified by the entry point
ADD. The superv'isor is to search for this load module in the job
library defined for the job containing the task. If not found in the
job library, the module is to be searched for in the installation's link
library. No parameters are to be passed to the subtask. No subpools
are to be given or shared with the subtask, other than :3ubpool zero,
which is always shared. The subtask is to have the same limit and
dispatching priority values as the/task. No event control block or exit
routine is provided.

EX2 creates a subtask whose execution is to beg in INi th the load
module specified. by the entry point MOLT. The module is in the
partitioned data set associated with the data control block located at
DCB35. A proble!m program parameter l.ist is generated as part of the
macro-expansion. This list consists of three full-words, containing the
three addresses Ti, T2, and T3. When the subtask is g1 ven control,
register 1 will contain the address of the parameter list.. An event
control block located at DONE is to be posted when the subtask
completes. No subpools are to be given to or shared with -the subtask,
other than subpool zero. The suhtask is to have the same limit and
dispatching priority values as the task. No exit routine is provided.

EX3 creates a subtask whose execution is to begin wi-th the load
module described in an in-storage list entry located at DSTRING. This
description was previously obtained by executing a BLDL macro
instruction that referred to the data control block located at DCB36.
The task is giving subpool 1 to the subtask; other subpools, specified
in the list beginning at location SPLIST, are to be shared by the task
and subtask. The subt-ask's limit priority is to be the same as that of
the task's. The subtask's dispatching priority is to be three units
less than that of the task. No parameters are to be passed to the
subtask. No event control block or exit routine is provided.

EX4 creates a subtask whose execution is to begin wi 1th the load
module specified by the entry-point name in the double-word located at
NAME. The supervisor is to search for this load module in the job
library defined for the job containing the task. If not found in the
job library, the module is to be sought in the installa.tion's link
library.. An in-storage problem program parameter list is generated as
part of the macro-expansion. This list consists of a single full-word

Section 2: Supervisor Services - Task Creation and Management 19

containing the address ARRAY1. No subpools are to be given or shared
with the subtask, other than subpool zero. The subtask is to have the
same limit and dispatching priority values as the task. An event
control block is not provided. When the subtask terminates, control is
to be passed asynchronously to the location TERMINAL.

EX1
EX2
EX3
EX4

ATTACH
ATTACH
ATTACH
ATTACH

EP=ADD
EP=MULT,DCB=DCB35,PARAM=(T1,T2,T3),ECB=DONE
DE=DSTRING,DCB=DCB36,GSPV=1,SHSPL=SPLIST,DPMOD=-3
EPLOC=NAME,PARAM=(ARRAY1),ETXR=TERMINAL

PROG:~MMING NOTES: When this macro-instruction is executed, the
supervisor creates a subtask by creating a task control block (TCE) from
the information given in the ATTACH macro-instruction. The address of
the subtask's task control block is returned to the task in register 1
after execution of the ATTACH. The task can save the task control block
address for use in operands of other system macro-instructions, such as
DETACH and EXTRACT.

The subtask and the task issuing the ATTACH macro-instruction are
procE~ssed concurrently. Because both the task and its subtask compete
for central processing unit time, control may pass from one to the other
as program requirements and dispatching priorities dictate. Loading of
the load module required by the subtask is done according to the
subtask's priority. Loading is done asynchronously; therefore the
creat.ing task, even when it has a lower priority than the subtask, may
continue to execute afterex~cution of the ATTACH and before the subtask
receives control.

Subtask Termination: When the subtask is terminated, the action taken
depe:nds on the operands in the ATT.ACH macro-instruction that created the
subtask. These actions are described in Table 5.

Tabl'e 5. Supervisor Actions Upon Subtask Termination
r---·-----------------T---,
I Operands in ATTACH I I
I Macro-Instruction I Action by Supervisor at Subtask Termination I
~---.-----------------+---~

Neither ETXR nor The supervisor frees the subtask's resources
ECB and removes all control blocks (including the

task control block) associated with the sub
task. The supervisor does not inform the
higher level task of its subtask's termination.

ECB only

ETXR only

The supervisor posts the event control block to
indicate completion of the subtask, frees the
subtask's resources, and removes all control
blocks (except the task control block) asso
ciated with the subtask.

The supervisor frees the subtask's resources,
removes all control blocks (except the task
control block) associated with the subtask, and
asynchronously enters the exit routine speci
fied by the ETXR operand.

ECB and ETXR The supervisor posts the event control block to
indicate completion of the subtask, frees the
subtask's resources, removes all control blocks
(except the task control block) associated with
the subtask, and asynchronously enters the exit
routine specified by the ETXR operand. ___ . _________________ ~ ___ J

80

Refer to, Appendix C fer additienal infermatien en the eperatien ef
ATTACH.

Upen entry to, the exit reutine spec if ied by an ETXR eperalnd, register
centents are as fellews:

Register
o

Centents
Internal superviser infermatien ..

1 Address ef t.he task centrel bleck fer the subtask that
terminated ..

2-12
13
14
15

Same as when the interruptien eccurred.
Address ef the superviser-previded save area.
Return address (internal superviser lecatien).
Address ef t.he exit reutine. (This register can be used
to, provide addressabili ty,.)

Standard linkage cenventiens" including register saving a.nd restering
respensibilities~ apply.

Nete that the ETXR ~eutine is given centrel threugh an interruptien
ef the task that issued the ATTACH macre-instructien.

The same ETXR exit reutine can be specified each time a task creates
a subtask., and it can be specified by mere than ene task. In these
cases, the reutine must be reusable, as fellews:

• If the samE~ ETXRreutine is specified each time ene task creates a
subtask, the reutine can be serially reusable (it need net be
reenterable) ... When the subtasks terminate, the superviser queues
the terminatiens and gives centrel to, the ETXR reutine in a serial
manner.

• If the same ETXR reutine is specified by nlere than one task, the
reutine must be reenterable. The supervisor dees net queue the
terminatiens of two' subtasks if the subtasks were created by
different tasks.

The lead meduJle centaining the ETXR reutine must be in main storage
when entry to, the routine is required,. Seme ef the ways the programmer
can ensure that 1:he rou:tine will be in sterage are as fellow's:

• If the ETXR reutine is used by ene task, it sheuld be in the highest
level lead module used by the task.

• If the ETXR reutine is used by mere than one task, it sheuld be in
the highest level load medule used by the highest level task of the
jeb step.

subpoel Giving and Sharing: When the first task in a jeb step is
created. enly subpeel 01 exists. The task can create additional subpoels
by means of GE,]~MAIN macre-instructions. Any subpeels the task creates
can be given to" er sihared with, subtasks that the task creates.
subpeels" gi ven to, or :shared with a subtask, can be given to, er shared
with, subtasks that the: subtask creates.. A subpoel that is given er
shared is creat~ed, i'f it dees net already exist, by execution of the
ATTACH macre-inst:ruction. The rules fer giving and sharing subpoels
are:

sectien 2: Superviser Services - Task Creatien and Management 81

1. subpool zero.

a. This subpool is shared by all tasks in a job step.

b. No task or suhtask can give ownership of subpool zero to a
subtask.

c. Specification of subpool zero in a GSPV, GSPL, SHSPV, or SHSPL
operand is ignored.

2. Subpool ownership.

a. Every subpool, except subpool zero, is owned by a task or
subtask.

b. Ownership is originally established by execution of a GETMAIN
or ATTACH macro-instruction that creates a new subpool. A
subpool created by the ATTACH macro-instruction is initially
owned by the attaching task; ownership is retained if the
subpool is shared with the subtask, and is transferred if the
subpool is given to the subtask.

c. Ownership can be given by the owning task to a subtask by a
GSPV or GSPL operand in an ATTACH macro-instruction.

d. After ownership is transferred, GETMAIN macro-instructions
issued by the formerly owning task to request storage in the
subpool create a new subpool with the same number.

3. Sharing subpools by SHSPV or SHSPL operands.

a. If an owning task specifies the subpool in an SHSPV or SHSPL
operand, the task and subtask share the subpool. The task
retains ownership.

b. If a sharing task specifies the subpool in an SHSPV or SHSPL
operand, the task extends sharing of the subpool to its new
subtask.

4. Giving of subpools by GSPV or GSPL operands

a. If an owning task specifies the subpool in a GSPV or GSPL
operand, the task loses own~rship and the subtask is the new
owner.

b. If an owning task has shared a subpool, through SHSPV or SHSPL
operands, with one or more subtasks, the task may not respecify
the subpool in a GSPV or GSPL operand.

c. If a sharing task specifies the subpool in a GSPV or GSPL
operand, the task loses sharing of the subpool and the subtask
receives sharing. Any other tasks sharing the subpool continue
to share the subpool. OWnership of the subpool is unchanged.

5. Task termination.

82

a. If the terminating task owns the subpool, even though it is
sharing the subpool with other tasks, the storage occupied by
the subpool is released for other uses. Therefore, the owning
task should not terminate before all sharing tasks have stopped
usi ng the s ubpool .•

b. If the,terminating task is sharing (but does not own) the
subpool, the subpool is not affected.

6. GETMAIN and FREE~IN macro-instructions.

a. Any task thCit owns or shares a subpool can issuE~ GETMAIN and
FREEMAIN macrm-instructions to extend or reduce the size of the
subpool.

L- AND E-FORM USE: The standard form of this macro-instruction can
result in a macro-expaIllsion containing two parameter lists:

• A supervisor parameter list, which results from all opE~rands of the
macro-instruction $xcept the PARAM and VL operands. This list is
used by the supervisor to execute the macro-instruction.,

• A problem program parameter list, which results from the optional
PARAM operand. This list is identical to the parameter list
resulting from a CALL macro-instruction, and is used to pass
parameters to the load module being given control.

The standard·-form macro-expansion can therefore consist of the
following units of code:

Designation for
Unit of Code
And i ts Addr~=ss

AB
ASPL
APL
AE

Code

Branch to AE
Supervisor parameter list
Problem program parameter list
Executable code terminated

by an SVC instruction

When the ATTACH SVC instruction is executed, ASPL (the address of the
supervisor parameter list) is in register 15, and APL (the address of
the problem proglcam pal1ameter list) is in register 1.

Because both lists must be able to be remote, another special keyword
operand, called 1:he SF operand, is used in combination with the MF
operand to provide nqnstandard macro-instruction forzrs. 'I'he SF and MF
operands can be written in the macro-instruction as shown in the
following format:

SF=L

SF=<E,{sPI-addrx}!)
< 15) •

MF= (E, {Pl-addrx }) [, SF= (E, { sPI-addrx})]
(1) (15)

In the above format, spl specifies the address of a remote supervisor
parameter list, ctnd pI specifies the address of a remote problem program
parameter list. If (15) or (1) is written as shown, the address of the
remote list must be loa~ded into the designated register before execution
of the rna cro- inst:ruction.

Four SF and ME' combinations are shown in the above format. These
result in macro-€~xpansions consisting of the following units of code:

Section 2: Supervisor Services - Task Creation and Management 83

SF and MF
Combination

SF=L
SF=(E,ASPL)
MF=(E,APL)
MF=(E,APL),SF=(E,ASPL)

Units of Code in
Macro-Expansion

ASPL
AB.,APL,AE
AB,ASPL,AE
AE

The effect of each SF and MF combination is as follows:

• SF=L results in only a supervisor parameter list. Neither the PARAM
nor the VL operand can be written in the macro-instruction.

• ~)F=(E,ASPL) results in a macro-expansion that does not contain a
supervisor parameter list. Parameters in the remote supervisor
parameter list can be dynamically changed as in a normal E-form
macro-instruction.

• ~F=(E,APL) specifies a normal E-form macro-instruction. Note that
MF=L cannot be written in the ATTACH macro-instruction, but a remote
problem program parameter list can be formed by using the L form of
t.he CALL macro-instruction.

• ~F=(E,APL),SF=(E,ASPL) indicates that both parameter lists are
remote.

DETACH -- Remove a Task (R)

'I'he DETACH macro-instruction causes a specified subtask to be removed
from the system. The DETACH frees the main storage area occupied by
that~ subtask' s task control block.

r---'-------T-----------T---, I Name I Operation I Operand I
~---,-------+-----------+---~
I [symbol] I DETACH I {tcbloc-addrx} I
I I I (1) I L __________ ~ ___________ ~ ___ J

tcbloc
specifies the address of a full-word whose three low-order bytes
contain the address of the task control block for the subtask to be
removed from the system.

If (1) is written, the address of the full-word (not the address of
the task control block) must have been loaded into parameter
register 1 before execution of this macro-instruction.

CAU~IONS: A task's program can include DETACH macro-instructions for
only those subtasks that were created by the task. A task must not
attempt to detach the subtask of another task. A task must detach all
of its subtasks before terminating.

ENVIRONMENT: If option 4 was excluded from the system, the DETACH
macro-instruction is treated as a NOP.

EXCEPTIONAL RETURNS: If a task attempts to detach an incomplete
su~:ask, the supervisor terminates the subtask and its subtasks abnor
mally. In this case, if asynchronous termination routines had been
established by the subtask or any of its subtasks by means of STAE
macro-instructions, those routines will be given control. The STAE exit

84

routines are eXE!cuted j.n the same order as if an ABEND macro-instruction
had been issued. Howe~er. the ETXR termination routines specified in
ATTACH macro-instructions are not executed. This includes the routine
that may have been specified in the ATTACH macro-instruction that
created the subt~ask being terminated.

EXAMPLE: In th€~ following example, the subtask associated 'with the task
control block whose address is in the full-word at SAVTCBAD is to be
removed f rom th€~ system.

EX1 DETACH SAVTCBAD

PROGRAMMING NOTE:S: Wh~n a task terminates, either normally or abnormal
ly, most or all main storage areas related to the task are released.
storage release is handled in the same way for either a normal or
abnormal termination.

If the task is the first in the job step, all storage areas are
released, inclu.ding ~the task control block areas, for the task and all
of its subtasks.

If the task is a subtask, storage release is handled in one of the
two following ways:

1. If neither an ECB nor an ETXR operand was specified in the ATTACH
macro-instruction that created the subtask, all storagt::! relating to
the subtask and its subtasks is released.

2. If an ECB or an ETXR operand was specified, all storag~::!, except the
task control block area for the subtask being terminated, is
released. It i$ for release of this task control block area that
the DETACH macro-instruction is needed. Note that the task control
block areas for the subtask's subtasks are released.

If a DETACH macro--instruction causes abnormal termination of a
subtask, all areas bel~nging to the subtask are released.

CHAP -- Change Dispatching Priority (R)

The CHAP macro-instruction changes the dispatching priority of either
the task issuing the macro-instruction or any of its subtasks. It may,
in addition, increase t.he limit priority of a subtask by making the
subtask's dispatching priority greater than its former limiit priority.

r----------T-----------T---,
I Name I Operation I Operand I
~----------+----.------+---~
I [symbol] I CHAP I {delta-value} ,{tcbIOC-{ IS' }} I
I I I addrx I
I I I (0) (l) I L __________ .L ____ . _______ ..L __ J

delta
specifies the value to be algebraically added to thE~ dispatching
priority of the task specified by the second operand.. Either a
positive or a negative value can be specified. If this operand is
written as an absolute expression, it can begin with a minus sign.

section 2: Supervisor services - Task Creation and Management 85

If (0) is written, the value must have been loaded into parameter
register 0 before execution of this macro-instruction. If any
register notation is written and the specified value is negative,
the 32-bit two's complement of the absolute magnitude of the value
must have been loaded into the designated register.

tcbloc
specifies the task whose priority is to be changed. If the
dispatching priority of the issuing task is to be changed, 's'
should be written or the operand should be omitted. If the
dispatching priority of one of the issuing task's subtasks is to be
changed, either the addrx form or (1) should be written. Either
form specifies the address of a full-word aligned on a full-word
boundary; the three low-order bytes of the full-word should contain
the address of the task control block (TCB) of the subtask.

If (1) is written, the address of the full-word (not the address of
the task control block) must have been loadea--into parameter
register 1 before execution of this macro-instruction.

If (1) is written and parameter register 1 contains zero instead of
an address, the dispatching priority of the task issuing the
macro-instruction is changed.

CAUTION: If the CHAP macro-instruction is used to reduce the dispatch
ing priority of the task issuing the macro-instruction, the task's
dispatching priority may be made less than the dispatching priority of
another task that is currently waiting for control. In this case, the
second task will be given control immediately after execution of the
CHAP.

ENVIRONMENT: If option 4 was excluded from the system, the CHAP
macro-instruction is treated as a NOP.

EXAMPLES: In the following examples, EX1 increases the dispatching
priority of the task issuing the macro-instruction by three. EX2
reduces by two the dispatching priority of the subtask whose task
control block address is in location LTCBAD. EX3 either increases or
decreases the dispatching priority of the task issuing the macro
instruction. depending on the contents of register 0 when the macro
instruction is executed. EX4 either increases or decreases (depending
on the contents of register 0) the dispatching priority of the task
whose task control block address is contained in the location specified
in register lor, if register 1 contains zero, of the issuing task.

EX1
EX2
EX3
EX4

CHAP
CHAP
CHAP
CHAP

3, 's'
-2,LTCBAD
(0), 'S'
(0), (1)

PROGRAMMING NOTES: A task cannot change its own limit priority. The
dispatching priority of a task must be equal to its own limit priority
or be between its limit priority and zero.

If a task attempts to make its own dispatching priority higher than
its limit priority or below zero, its dispatching priority will be made
equal to its limit priority or to zero, respectively. However, a task
can increase the dispatching priority of its subtask up to the issuing
task's own limit priority, even if this value exceeds the subtask's
limit priority. In this case, the limit priority of the subtask is
simultaneously raised to equal its new dispatching priority.

86

EXTRACT -- Extract Sel~cted TCB Fields (S)

The EXTRACT macroi-instruction provides the user's problem program
with information contained in specified fields of the task control block
(TCB) of either the task issuing the macro-instruction or one of its
subtasks.

r----------T-----------T---,
I Name I Operation I Operand I
~----------+-----------+---i
I [symbol] I EXTRACT I list-addr,[tcblOC-{~ }J,FIELDS=«({ALLI I
I I I addr I
I I I GRSIFRSITAXIAETXIPRIICMCITIOT},} •••) I
L __________ L ___________ ~------------------------------_________________ J

list
specifies the address of a variable-length list of consecutive
full-words of main storage. The list should be aligned on a
full-word boundary. The supervisor will store the requested fields
in this list. The number of full-words required equals the number
of fields specified by the FIELDS operand.

tcbloc
specifies the task control block whose fields are to bl~ extracted.
If the issuing task's task control block is to be specified, 's'
should be written; or the operand should be omitted. If the task
control block of ~ subtask is to be specified, the add:r form should
be written. The addr fonn specifies the address of a full-word,
aligned on a full':-word boundary; the three low-order bytes of the
full word contain the address of the specified task control block.

FIELDS
specifies, by a sublist of from one to seven values, the fields to
be extracted:

Values

ALL
GRS

FRS

TAX

AETX

PRI

CMC

TIOT

Fields to be Extracted

All of the following fields.
Address of the general register save area in which the
supervisor saves the tasks's registers when 1:he task is
not in control. General registers are saved in the order
o to 15 ..
Address of the floating-point register save area in which
the supervisor saves the tasks's registers u'hen the task
is not in control.
Address of the entry point of the asynchronous, abnormal
termination routine. (This routine is specified by means
of the STAE macro-instruction.)
Address of the entry point of the asynchronous
termination routine specified by the task 1:hat attached
the task having this task control block. (~~his routine
is specified by the ETXR operand of the l\.TTACH macro
instruction.)
Limit amd dispatching priority values. (These values are
stored into the third and fourth bytes, respE~cti vely, of
the list word. The two high-order bytes of t.his word are
set to zero.)
Task c<Dmpletion code. (If the task has not completed,
this field is zero. Note that the completion code can be
z,ero even if the task has completed.)
Address of the task input/output table (TIOT).

section 2: Supervisor Services - Task Creation and Management 87

Where the extracted field is an address, the address is stored in
the three low-order bytes of the full-word in the list. The
high-order byte of the word is set to zero.

If the TAX or AETX field is specified and the corresponding routine
or interruption element does not exist, a zero address will be
stored in the list.

The values can be written in the FIELDS operand in any order.
However, the resulting list will contain the full-words in exactly
the same order as shown above, and the list will be only as long as
needed to hold the fields specified. (If a particular FIELD value
is omitted, the corresponding full-word is omitted also.)

ENVIRONMENT: If option 4 was excluded from the system, the EXTRACT
mac:r::~)-instruction provides the address of the task input/output table
only. The tcbloc operand is ignored, and the current task control block
is assumed. The sublist for the FIELDS operand is searched for ALL or
TIO'I'.. If either is present the address of the task input/output table
is inserted into the list. Other values in the sublist result in a
full-word set to zero. Omitted values result in omitted words in the
list ..

EXAMPLES: In the following examples, EXl results in three fields being
extracted from the task control block of the task issuing the macro
inst,ruction. The address of the general register save area is stored in
the full-word at location LIST; the entry point address of the
asynchronous termination routine, specified by the task that attached
the issuing task, is stored in the full-word at LIST+4; the limit and
dispatching priorities of the issuing task are stored in the full-word
at I,IST+8. Note that the order of the fields in the list follows the
ordE!r shown in the description of the FIELDS operand, not the order in
which FIELD values are written. The results of EX2 are exactly the same
as t.hose of EX1. EX3 results in all seven fields being extracted from
the TCB whose address is in the full-word at location TCBADLC. These
fields are stored in the seven full-words starting at location INFO.

EXl
EX2
EX3

EXTRACT
EXTRACT
EXTRACT

LIST, 'S',FIELDS=(GRS,PRI,AETX)
LIST, • S " , FIELDS= (PRI, AETX, GRS)
INFO, TCBADLC, FIELDS= (ALL)

L- AND E-FORM USE: The Land E forms of this macro~instruction are
written as described in Appendix B.

88

TASK SYNCHRONIZjl\TION

WAIT -- Wait for Even~(R)

The WAIT ma.cro-instruction specifies that the task issuing the
macro-instruction shol1ld continue in control only when one or more
specified events have occurred. An event can be the completion of
another task; an operation requested by the current task, such as an
input/output operation; or any other asynchronous opE!ration. The
completion of an event is indicated by execution of a POST macro
instruction.

r----------T---------~-T-----------------------------------.------------,
I Name I Operation I Operand I

~----------+---.-------;.-+--. ---------------I---------------l·------------~ I [symbol] I WAIT I [{count-value }'] ECB={ addrx} I
I I I (0) (1) I
I I I . . I
I I I ECBLIST={addrx} I
I I I (1) I L __________ .L ___ . ________ .L_________________ _ ________________ . ____________ J

count

ECB

specifies the number of events
issuing the WAIT ,can continue in
omitted, one event is assumed.

that must occur before the task
control. If the operand is

If (0) is writ~en, the count must have been loaded into parameter
register 0 before execution of this macro-instruction.

specifies the address of an event control block (ECB) representing
the only event that must occur before processing can continue. A
description of a~ event control block is given in "Programming
Notes" below.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

ECBLIST
specifies the address of a variable-length list.
contains the addresses of up to 255 event control blocks,
which represents an event to be waited for.

This list
each of

Each ECB address is in the three low-order bytes of a full-word.
These full·-wordsmust be consecutive and must be aligned on a
full-word boundary. The sign bits in all but the last word in the
list should be 0; the sign bit in the last word must be 1.

If (1) is 1flritten, the list address must have been loaded into
parameter register 1 before execution of this macro-instruction.

CAUTIONS: The value of the count operand must not exceed the number of
event control blocks ~pecified by the second operand.

Before its use by a WAIT macro-instruction, an ECB'S completion flag
(bit 1) must be set to 0 by an instruction in the user's problem
program. This must be done before the event represented by the ECB can
occur. That is, the :ta,sk that will subsequently issue a HAlT referring
to an ECB must set the ECB's completion flag to 0 before it initiates
the process that will result in posting of the ECB by another task or
the control pro9ram. If the ECB is part of a data event control block

Section 2: Supervisor Services ~ Task Synchronization 89

(DECB), as is the case in input/output operations, the control program
sets the completion flag to 0 when a READ or WRITE macro-instruction is
executed.

The program must not issue a WAIT macro-instruction that refers to an
ECBwhose wait flag is set to 1. Note that execution of a WAIT
macro-instruction always terminates with the wait flags set to 0 in all
event. control blocks referred to by the macro-instruction. The
responsibility of the user's problem program is merely to ensure that it
itself does not inadvertently set a wait flag to 1.

The same ECB must not be used to represent an event that will be
waited for by more than one task or asynchronous exit routine at one
time., This is because an ECB must not be referred to by a WAIT
macro-instruction when the wait flag in the ECB is already set to 1.

WAIT and POST macro-instructions used to synchronize two tasks or the
synchronous and asynchronous processing of one task can result in
permanent interlock. For example, a task could issue a WAIT macro
instruction for completion of a subtask. If the subtask contained a
WAIT macro-instruction for an event that can occur in the task only
aftel: the task's WAIT macro-instruction is satisfied, both the task and
the 8ubtask enter permanent wait conditions.

EXCEPTIONAL RETURNS: Control will be returned to a task before the
waited event when necessary to allow execution of an asynchronous exit
routine.. The routine may be part of the operating system or of the
user"s problem program, and may be any of the following:

• l\n input/output or external interruption routine.

• 1\ subtask termination exit routine, specified by the ETXR operand of
an ATTACH macro-instruction previously executed by the task.

• 1\ task abnormal exit routine, specified by a STAE macro-instruction
previously executed by the task.

Except in the last case (task termination), the task is returned to the
wait condition when execution of the exit routine is complete.

ENVll!ONMENT: If options 1, 2, and 4 have been excluded from the system,
only a single event can be waited for. A non-zero count operand is
ignored and a single event is assumed. The ECBLIST operand must not be
used ..

A load module can wait only for the completion of events that it
initiates or are initiated by a load module that it has attached.

EXAMPLES: In the following examples, EXl results in a wait for a single
even1:-represented by the ECB at location ALPHA. EX2 results in a wait
for a single event represented by any of the event control blocks
poin1:ed to by the list of addresses located at the address contained in
register 1. Because the count operand is omitted, a count of 1 is
assumed,.

EXl WAIT
EX2 WAIT

1,ECB=ALPHA
ECBLIST=(l)

PROGI~ING NOTES: Execution of a WAIT macro-instruction indicates to
the Hupervisor that the issuing task cannot continue in control unless
one or more specified events have occurred. The supervisor determines
whether an event has occurred by examining an event control block
specified by the WAIT macro-instruction.

90

An ECB is a full-word of main storage provided by the user's problem
program to represent an event. It must be aligned on a full-word
boundary, and hats the format shown in Figure 3.

012 31
r-T-T---- -------.-----.-------,
IWICI<------Post Code-~----->I
L_~_~ ___________ . ______ ,._------J
Figure 3. Formalt of the Event Control Block (ECB)

W - Wait Flag: Th~ wait flag is set to 1 by the supervisor when the
ECB is referredl to by a WAIT macro-instruction and the event has
not occurred. The supervisor subsequently sets the wait flag to 0
when either of the following occurs:

• When t~he supervisor sets the completion flag to 1 (because the
ECB has been referred to by a POST macro-instruction) •

• When E!xecution of the WAIT macro-instruction is complete
beCaUSE! a specified subset of events has occurred. In this
case, t~he supervisor sets to 0 the wait flags in the event
control blocks that represent events that have not yet
occurrE!d.

C Completion Flag: The completion flag is set to 1 by the
supervisor upon eixecution of a POST macro-instruction that refers
to the ECB and! indicates completion of the event. This action
occurs :whet~her or not the ECB is ref erred to by a WAIT macro
instruction. The user's problem program must subsequently set the
completion flag to 0, if it intends to reuse the ECB to represent
another event, e!xcept when the ECB is part of a data event control
block (DECB).

Post Code: This fiield contains information specified by the code
operand of a POST macro-instruction, the compcode operand of an
ABEND macro-instrUction, or the code operand of a RETURN macro
instruction. (The ABEND and .RETURN codes are placed in an event
control block onl¥ if the ATTACH macro-instruction that created the
terminating task contained an ECB operand.) The supervisor stores
the code into the ECB when it sets the completion flag to 1. This
action occurs upon execution of the POST, ABEND, or RETURN
macro- instruction.

If a code was not written in the POST, ABEND, or RETURN
macro-instruction, the post code field is set to zero upon
execution of one of these macro-instructions.

As long as ,the wait flag is set to 1, the post code field
contains infomation required by the supervisor. This information
indicates that the task that issued the WAIT macro-instruction is
currently l,<I1aiting! for the represented event to occur. The user's
problem program must not alter the post code field when the wait
flag is 1.

Event control blocks and the actions of the WAIT, POST, ABEND, and
RETURN macro-instructiions are the principal means by which program
execution that depends! on asynchronously occurring events is achieved.
Therefore, the address of an ECB usually appears as an operand of a
system macro-instruction that results in an asynchronous operation.

For example, as!sume that task A executes two A.TTACH macro
instructions, each addressing a different ECB. Also assume that both
subtasks must be complete before task A can proceed beyond a point, x.

Section 21: Supervisor Services - Task Synchronization 91

At point x, task A should have a WAIT macro-instruction with a count
oper.and of two, and an ECBLIST operand specifying the two event control
blocks addressed by the ATTACH macro-instructions.

Assume that one subtask is completed before the WAIT macro
instruction is executed. The supervisor posts the corresponding ECB and
sets its completion flag to 1. If the WAIT macro-instruction is now
executed, the wait flag in the ECB corresponding to the unfinished
subtask is set to 1, and task A is placed in a wait condition. The
address of task A's task control block (or an equivalent control block
internal to the supervisor) is placed in the post code field of the ECB
whose wait flag is set to 1. (Because this field can contain only one
such address at one time, an ECB cannot be referred to simultaneously by
two or more WAIT macro-instructions.) A count is formed in a control
block internal to the supervisor; this "wait count" indicates the number
of events for which task A is waiting.

When the second subtask is completed, the wait flag is set to 0 and
the completion flag is set to 1 in the corresponding ECB. The wait
count: is reduced by one, and, because there are no more events to be
waited for, task A is removed from the wait condition and is able to
compete for control. This process requires use of the address
previously stored in the post code field.

If: a task issues a WAIT macro-instruction when the completion flags
in all of the specified event control blocks are 1, the task remains in
control.

When a WAIT macro-instruction is satisfied, the issuing task can
interrogate the completion flags and post codes in the specified event
control blocks to determine which events occurred. By post codes agreed
to between the tasks issuing the WAIT and POST, ABEND, or RETURN
macro-instructions, the task issuing the WAIT can determine how each
event was completed.

If: a WAIT macro-instruction has a count operand that is less than the
numbE~r of specified event control blocks, the WAIT will be satisfied by
a subset of the events. At this point, the supervisor will reset the
wait flags of all remaining event control blocks to o. Subsequent
completion of the remaining events will result in unpredictable posting
of the corresponding event control blocks. Therefore, care should be
exercised when one ECB is referred to by two or more WAIT macro
instructions.

A count of zero results in a NOP.

WAITR -- Wait for Event and Ready Lower Priority Task (R)

The WAITR macro-instruction is similar in function and format to the
WAIT macro-instruction. WAITR is used to initiate the execution of the
lower priority task in a system in which option was included. This
occurs upon the first execution of WAITR by the higher priority task.

WAITR is written as shown in the WAIT macro-instruction description.

ENVIRONMENT: If option 2 was excluded from the system, WAITR functions
in the same way as WAIT.

Before the first execution of WAITR, job steps are executed, as the
higher priority task, in one of the two partitions. WAITR should be
issued only after termination of the first input stream has occurred.
The last job in the input stream may read data from the input streaw

92

until it issues the WAITR macro-instruction. The instruction readies
the lower priority task and a message from the control program to the
operator will request that a second input stream be started. The job
step that issuE~d theWAITR continues to execute" as the hi9her priority
task, in the first partition. Subsequently initiated job steps are
executed, as thE~ lower: priority task, in the second partition.

Both WAITR and WAIT,
control tO,be given to! the
events have occurred.

issued
lower

by the
priority

higher priority task, cause
task until the specified

PROGRAMMING NOTES: A :WAITR macro-instruction issued by a lower priority
task functions in the same way as the WAIT macro-instruction.

With option 2, if the higher priority task issues a WAITR having a
count operand whose vailue is zero, the request is recognized as a WAIT
macro-instruction and! is treated as a NOP; a wait condition and task
interchange in main storage do not occur ..

POST -- Signal Event C:ompletion (R)

The POST macro-inst:ruction signals that the event represented by a
specified event: control block (ECB) has occurred. Posting of an ECB is
used to satisfy the re!quirements of a WAIT macro- instruction.

r----------T----.-------T--,
I Name I Operation I Operand I
~----------+--~-.------~+---~
I [symbol] I POST I {ecb-addrx} '{ cOde-value} I
I I I (1) (0) I L __________ .l. ____ . _____ :_.l. ___ J

ecb

code

specifies t:he ad:dress of an ECB representing an event whose
completion is sig~naled by execution of this macro-instruction.

If (1) is Vl7ritten!, the address must have been loaded into parameter
register 1 beforei execution of this macro-instruction.

specifies a val~e to be placed in the post code field of the
addressed ECB. This value should be from 0 to 230_1. If the
operand is omi tte:d, a post code of zero is assumed.

If (0) is writtien, the value must have been loaded into parameter
register 0 befor~ execution of this macro-instruction.

CAUTION: The completi:on flag (bit 1) in the specified ECB should be 0
when the POST macro:-instruction is issued. If it is not, the posting
will result in no act~on.

EXAMPLES: In the foll:owing examples, EXl posts the event control block
ECBAA and sets its posit code to zero. EX2 posts the event control block
whose address is in register 5, and sets its post code with the value
contained in register ,6.

EXl POST
EX2 POST

ECBAA
(5), (6)

PROGRAMMING NOTES: Refer to the WAIT macro-instruction's "Programming
Notes."

Section 2i: Supervisor Services - Task Synchronization 93

~-- Enqueue Request for a serially Reusable Resource (R)

The ENQ macro-instruction is used by a task to place itself on a
first-in, first-out queue in order to gain access to a serially reusable
resource, such as a program (one that may be entered by a direct linkage·
by this or another task) or a data area. All tasks that require use of
the resource should request its use by issuing ENQ macro-instructions
that refer to the same queue. The queue is formed by means of a queue
control block whose address is known by all tasks that request the
resource. A task is represented on the queue by a queue element. until
a task's queue element reaches the top of the queue, the task is held in
a wait condition. When the task's queue element reaches the top of the
queue" the task again competes for control and can use the resource.

A DEQ macro-instruction is used to remove a task's queue element from
the top of the queue. It should be issued by a task when the task is
finished using the serially reusable resource.

r-----------T-----------T--~--, I Name I Operation I Operand I
~-----------+-----------+---~
I [symbol] I ENQ I {qCb-addrx}, { qel-addrx } I
I I I (1) (0) I L __________ ~ ___________ ~ ___ J

qcb

qel

specifies the address of a queue control block (QCB) that
corresponds to the serially reusable resource. A description of a
queue control block is given in "Programming Notes" below.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

specifies the address of an eight-byte queue element representing
the task. The queue element is eight bytes long and must be
aligned on a full-word boundary.

If (0) is written, the element address must have been loaded into
parameter register 0 before execution of this macro-instruction.

CAUT:~ONS: The queue pointer of a QCB must be 0 when the corresponding
resource is free and the QCB is referred to by an ENQ macro-instruction.
If it is not, the current task, and all other tasks referring to the
same QCB, will be placed permanently in a wait condition, since no DEQ
macro-instruction can be issued.

B~~cause the time during which asynchronous interruptions occur cannot
be predicted, two or more tasks should not directly manipulate the queue
poin1:er of a QCB. The tasks should use the ENQ and DEQ macro
instructions.

ENVIHONMENT: If option 4 was excluded from the system, the ENQ
macro-instruction is treated as a NOP.

EXAMPLES: In the following examples, EXl queues its task on the queue
cont]~ol block named AREA5. The queue element, whose address is ln
register 0, is presented to the control program for enqueuing on AREAS

94

QCB. If no other queue elements are on the queue, the task issuing the
ENQ macro-instruction resumes control; otherwise, the task will be
placed in a wait cond~tion until its queue element reaches the top of
the queue. EX2 makies a request using the QCB whose address is AREA5
plus the conten1:s of :rregister 5. The queue element is at location MINE.

EX1
EX2

ENQ
ENQ

1~REA5, (!o)
1~REA5 (S) , MINE

PROGRAMMING NOTES: Tasks can control the use of a serially reusable
resource by using tl,he ENQ and DEQ macro-instructions, a QCB
corresponding 1:0 the resource, and queue elements representing the
competing tasks.. The !QCB and the queue elements are in main storage
owned by the tasks involved. The address of the QCB is known by all the
tasks.

A QCB is a full-~ord of main storage provided by the Ulser's problem
program. It correspotids to a specific program, data ar€~a, or other
resource. The QCB is :aligned on a full-word boundary and has the format
shown in Figure 4.

o 7 8 31
r-------T-------------~-----------,

I I <----Queue Pqinter----->I
L _______ .L _____________ ~-----------J

Figure 4. Format of ~he Queue Control Block (QCB)

Bi ts 0 through 7 :; Reserved for us e by the supervisor.

Queue Pointer : The queue pointer is the address of t.he first of a
chain of queue elements.

Each queue element' is provided by a unique task that ha.s issued an
ENQ macro-instruction, and has not subsequently issued a DEQ macro
instruction. The first queue element, the one addressed by the queue
pointer, represents ,the task that is currently in competition for
control and has exclu$ive use of the resource. This task i.s called the
owning task. The nemainder of the queue elements repr€!sent tasks in
wait conditions ..

When the first task issues an ENQ macro-instruction for a resource,
the request is immediately satisfied, and the task continu€~s in control.
The supervisor stores in the queue pointer field of the QCB the address
of the queue elE~tnent provided by the task.

If a second task issues an ENQ macro-instruction for the same
resource beforE~ the t!.he owning task issues a DEQ macro- instruction, the
second task is placed in a wait condition. The supervisor enqueues the
queue element of the second task by storing its addres~; in the queue
element of the first t!.ask.

When the first task releases the resource by issuing a. DEQ macro
instruction, the tasjk's queue element is removed from the queue. The
queue pointer field in the QCB is updated to point to the next element
in the queue, and ttie task represented by that element i~; removed from
wait condition. That task can now compete normally for control.

After a queuE~ element has been removed from the queue by execution of
a DEQ macro-instruction, the eight bytes of the element can be used in
any way by the user's problem program.

When the las-lt queue element is removed from the queue, t.he supervisor
sets the queue pointelt in the QCB to O.

Section 2: Supervisor Services - Task Synchronization 95

ENQ macro-instructions in a task and one of its asynchronous exit
routines must not specify the same QCB. For example, the task's program
could issue an ENQ macro-instruction and, if it is first on the queue,
continue processing. Then, through an interruption, an asynchronous
exit routine could be given control. If the routine issued an ENQ
macro-instruction specifying the same QCB, its queue element would be
plac~~d second on the queue. NOw, both the task's program and the exit
routine are in a permanent wait condition: the task is waiting for
return of control from the exit routine and the exit routine is waiting
for the task to issue a DEQ macro-instruction.

~:- Dequeue Request for a Serially Reusable Resource (R)

The DEQ macro-instruction is used by a task to remove itself from the
top of a first-in, first-out queue that was used by the task to gain
access to a serially reusable resource. The queue was formed by means
of a queue control block whose address is known by all tasks that use
the resource. The task is represented on the queue by a queue element
that was placed on the queue when the task issued an ENQ macro
instruction. The DEQ macro-instruction should be issued only when the
task is finished using the serially reusable resource. This releases
the resource for use by the task whose queue element is next on the
queue.

r-----------T-----------T---,
I Name I Operation I Operand I
.----_._-----+-----------+---~
I [symbol] I DEQ I {qCb-addrx } I
I I I (1) I L _____ . ______ J. ___________ ..L ___ J

qcb
specifies the address of a queue control block (QCB) corresponding
to the serially reusable resource.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

The address of the eight-byte queUe element representing the task
issuing the DEQ macro-instruction is returned in register O.

ENVIRONMENT: If option 4 was excluded from the system, the DEQ
macro-instruction is treated as a NOP.

EXAMI~LES: In the following examples, EX1 removes its task's queue
elemE~nt from the queue under the queue control block at location AREAS.
The address of the queue element that was enqueued on the AREAS QCB is
returned to the user's program in register o. EX2 removes its task's
queuE~ element from the queue under the QCB at the indicated explicit
addrE~ss. Again, the address of the now·-unused queue element is returned
in rE~gister o.

EX1
EX2

DEQ
DEQ

AREAS
0(7,10)

PROG:RAMMING NOTES:
Note~;. "

96

Refer to the ENQ macro-instruction's "Programming

EXCEPTIONAL CONDITION HANDLING

SPIE -- Specify Program Interruption Exit (S)

The SPIE macro-instruction specifies the address of an exit routine
to be entered asynchronously when specified program interruptions occur
in the task issuing the SPIE macro-instruction. The effect of each SPIE
macro-instruction issued by a task supersedes the effect of the SPIE
macro-instruction issU;ed previously by the same task. The program mask
in the program s1:atus word (PSW) is set as specified by this macro
instruction.

r----------T------------'T---,
I Name I Operation I Operand I
~----------+----------~+---i I [symbol] I SPIE I [exit-addr,interrupts-({xl (y,z)}, •••)] I L __________ ..l. ____________ :..l. __ J

exit
specifies the add~ess of the exit routine.

interrupts
specifies the prog!ram interruption types that are to cause the exit
routine to be enitered. Each operand of the sublist is one of the
following:

1. A single decimal number, to indicate one program interruption
type. (See x in the format description.)

2. A pair of decimal numbers, to indicate a continuous group of
program inter;ruption types.. The numbers must be separated by
a comma and! enclosed in parentheses. The second number must
be greater than the first. (See (y,z) in the format
description.)

The interrupts values can be written in any order.

Each number must be from 1 through 15. The numbers indicate the
following program :interruption types:

Number Inte:rru:Qtion Type Able to be Masked
1 Operation No
2 Priviileged operation No
3 Execute No
4 Protection No
5 Addriessing No
6 Speciification No
7 Data No
8 Fixed-point overflow Yes
9 Fixed-point divide No

10 Decimal overflow Yes
11 Decimal divide No
12 Exponent overflow No
13 Exponent underflow Yes
14 Signiificance Yes
15 Floating-point divide No

If a maskable interruption type is specified by this operand, the
corresponding prog~am mask bit in the PSW is set to 1 by the
supervisor. This; enables the interruption. The program mask bits

Section 2: Supervisor Services - Exceptional Condition Handling 97

for all unspecified rnaskable interruption types are set to 0 so
that the interruptions cannot occur.

:a.efore the first SPIE macro-instruction is executed by a task, all
roaskable program interruptions are masked so that they will not cause an
interruption, and all nonmaskable interruptions cause the standard
system exit routine to be given control. These conditions also exist
afber a SPIE macro-instruction in which both operands are omitted is
executed.

After execution of the first SPIE macro-instruction by a task,
register 1 contains zero. After execution of a succeeding SPIE
macro-instruction by the same task, register 1 contains the address of
the program interruption control area (PICA) (see Figure 5) formed for
the preceding SPIE macro-instruction. This address can be used subse
quently to restore the superseded interruption monitoring conditions.
(Refer to "L- and E-Form Use" below.)

CAU'I'IONS: If a called program uses the SPIE macro-instruction or
othlerwise changes the program mask; it must restore the program
interruption control area and the program mask to their original status
before returning to the calling program. (Refer to "Linkage
Conventioris" in Section 1.)

A SPIE macro-instruction that specifies a maskable interruption type,
changes the program mask; thus, it overrides a previous SPM instruction
tha·t was executed directly by the user's problem program.

ENVIRONMENT: If option 4 was excluded from the system, SPIE specifies
the-exit routine and interruption monitoring conditions for the job step
and any module that may be attached. If SPIE is issued by an attached
module, the specified exit routine supersedes the routine previously
established for the job step.

EXAMPLES: In the following examples, EX1 specifies that if an opera
tio:n, fixed-point overflow, or floating-point divide interruption
occurs, control is to be passed to location FIXUP. When this macro
inst.ruction is executed, the supervisor sets the program mask in the PSW
so ·that a fixed-point overflow exception causes an interruption, while
the other maskable interruption types (decimal overflow, exponent
undE!rflow, and significance exceptions) do not cause an interruption.

E:X2 specif ies that program interruption types 1 through 7 and 10
through 15 will cause the routine at ERRTN to be entered.

E:X3 indicates that
treatment to program
interruptions to occur.

the task no longer
interruptions and

EX1
EX2
EX3

SPIE
SPIE
SPIE

FlXUP,(1,8,15)
ERRTN,«1,6),(10,15),7)

desires
does not

to give special
want maskable

PRO@RAMMING NOTES: This macro-instruction causes a program interruption
control area to be created at assembly time. This area is aligned on a
full-word boundary, is six bytes long, and has the format shown in
Figure 5.

98

Bytes o 1 2 3 4 5
r----T-----T---------------------------T-----------'--------,
I I pro-I I I
10000Igrami exit routine address I interrupti.on mask I
I I maskl I I
L ____ .l. _____ -'--___ -------------------------J..------____ . ________ J

Figure 5. Forma't of the Program Interruption Control Area (PICA)

The four high'-order bits of byte 0 are zeros; the four low-order bits
of byte 0 correspond to the program mask (bits 36 through 39 of the
program status word). Bytes 11.., 2, and 3 contain the address of the exit
routine. . Bytes 4 'and 5 contain a mask resulting from the interrupts
operand. In this mask~ the bits are numbered 0 through 15; specifi
cation of an interruption type causes the corresponding bit to be set to
one. Bit zero of the mask is reserv~d for use by the supervisor. If
both operands we:t"e omitted from the macro-instruction, all six bytes
would contain zeros.

On the firs-t exeGution of a SPIE macro-instruction by a task, the
supervisor forms a 32-byte program interruption element (PIE) aligned on
a double-word boundary in subpool zero. (Subpool zero is shared by all
tasks of a job s-tep.) The format of the program interruption element is
shown in Figure 6.

Bytes o 1 2 3
r---------T-----------------------------,

o I I PICA address I
~ ---------~----------------------------__t

4 I O~SW after interruption I
8 I I

~-------.--------------------------------~
12 I Register 14 I

~ ---------------------------------------~
16 I Register 15 I

~--------------------------------------~
20 I Register 0 I

~-------... -----------------------------__t
24 I Register 1 I

~--------------....;.------------------------__t
28 I Register 2 I

L _____________ ~------_-------___________ J

Figure 6. Forma-t of the Program Interruption Element (PIE)

Byte 0 is reserved for use by the supervisor. Byte~; 1, 2, and 3
contain the addr~ess of, the program interruption control arE~a resulting
from the SPIE macro-instruction most recently executed by the task. The
remaining bytes contain information placed in them by the supervisor
upon program interruption.

Note that the program interruption
program interruption element changes
instruction is executed by the task.

control area address in the
each time anothel~ SPIE macro-

The previous program interruption control area address is returned in
register 1 to thle task, issuing the macro- instruction. This allows a
subprogram to specify its own program interruption handlin9 procedures,
and to then use -the re1±.urned address to restore the procedures specified
by the previous subprogram. This process is described in "1,- and E-Form
Use" below.

Section 2: Supervisor Services - Exceptional Condition Handling 99

If a program interruption element does not exist when a program
interruption occurs. the supervisor gives control to the standard system
exit routine. Otherwise, the supervisor stores the contents of the old
program status word (OPSW) in bytes 4 through 11 of the program
inte!rruption element, and the contents of registers 14, 15, 0, 1, and 2
in bytes 12 through 31. The supervisor then examines the interruption
mask in the task's current program interruption control area. If the
bit corresponding to the current interruption is 1, control is given to
the exit routine whose address is in the program interruption control
area... If the bit is 0, control is given to the standard system exit
rout.ine.

If a program interruption occurs when the exit routine specified by
the program interruption control area is in use by .this task, the
standard system exit routine is given control.

Note that if a mask bit in the program interruption control area is 0
and the bit corresponds to a maskable program interruption, the
cor:r:-esponding bit in the program mask in the program status word will
normally be 0 also, and that type of interruption will not occur.
HOWE!Ver, the task could have executed a SPM instruction to set the
program mask bit to 1. This would have been done if the task desired
the exceptional condition to be recognized, and if the resulting
intE!rruption was to give control to the standa~d system exit routine.

Upon entry to the exit routine specified in a SPIE macro-instruction,
register contents are:

o
1

2-1]
14
15

contents

Internal supervisor information.
Address of the program interruption element for the task
that caused the interruption.
Same as when the interruption occurred.
Return address (internal supervisor location).
Address of the exit routine. (This register can be used
to provide addressability.)

Note that the program interruption element contains the contents of
registers 14, 15, 0, 1, and 2 as they were when the interruption
occurred.

1~o determine which interruption type occurred, the exit routine can
intE~rrogate bits 28 through 31 of the OPSW contents in the program
interruption element. The routine can then take corrective action or
can simply ignore the exceptional condition.

Upon completion of the exit routine, the contents of register 14 must
be as they were upon entry to the routine. The exit routine should
terminate with a branch to the address in register 14.

The exit routine can alter the contents that will be in the registers
when control is returned to the interrupted program. For registers 3
through 13, the routine alters the contents of the actual registers.
For registers 14 through 2, the routine alters the contents of the
register save area in the program interruption element, because these
registers are reloaded from this area by the supervisor when it returns
control to the interrupted program. The routine can also alter the last
four bytes of the OPSW in the program interruption element. By changing
the OPSW, the routine can select any return point in the interrupted
pro~Jram.

']~he supervisor returns control to the interrupted program by loading
a PSW constructed from the possibly modified OPSW saved in the program
interruption element.

100

One
step.

SPIE exit ro~tine can be used by more than one task of a job
If the routine is used in this manner, it must be reE~nterable.

L- AND E- FORM USE: The Land E forms of this macro- inst:ruction are
written as described im Appendix B.

When a SPIE macr0-instruction is executed, the
previously specified program interruption control area
register 1.

address of the
is returned in

This area can be reinstated as the current program interruption
control area by being designated as the remote parameter list used in an
E-form macro-instructi¢n. For example, if the address returned in
register 1 were saved in register 9, the following macro-instruction
could be issued:

SPIE MF= (E, (9»

STAE -- Specify 'Task Abnormal Exit (R)

The STAE macro-instruction specifies the address of an E~xit routine
to be entered asynchronously if the task issuing thE~ STAE macro
instruction terminates abnormally.

The effect of each STAE macro-instruction issued by a task supersedes
the effect of the STAE macro-instruction issued previously by the same
task.

r----------T----------·T--,
I Name I Operation I Operand I
.----------+---_._------+ ---~
I [symbol I STAE I {exit-addrX} I
I I t (1) I L __________ ~ ___________ ~ __ J

exit
specifies the ad<!iress of an exit routine to be entered if the task
issuing this macr0-instruction terminates abnormally.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

If register notation is used and the designated registE~r has been
loaded with zereD, no exit routine is specified, and any previous
execution of a STAE macro-instruction in the same task is ignored.
That is, a STAE exit routine will no longer be E~xecuted upon
abnormal termination.

The task issuing the STAE terminates abnormally when one of the
following occurs:

• The task issues an ABEND macro-instruction.
• A higher level task is te.rminated ..
• Any task in the job step issues an ABEND with a STEP opE~rand.
• The control program issues an ABEND for the task.

ENVIRONMENT: If option 4 was excluded from the syst.em, the STAE
macro-instruction is t~eated as a NOP.

EXAMPLES: In the following examples, EX1 specifies that, if the task
terminates abnormally, the routine at PMDUMP is to be enterl~d.

Section 2: Supervisor Services - Exceptional condition Ha.ndling 101

~fuen EX2 is executed. register 1 can contain either the address of an
exit~ routine or zero. In the latter case, any STAE macro-instruction
previously executed by the same task will be ignored.

EX1
EX2

STAE
STAE

PMDUMP
(1)

PROGRAMMING NOTES: The specified exit routine must be in main storage
when its task terminates abnormally. Therefore, the routine usually
should be in the highest level load module of the task issuing the STAE
macro-instruction.

Upon entry to the exit routine, the general registers will contain:

Reg i:..:'3t er
o

contents
Internal supervisor information.
Abnormal completion code. 1

2-,12
13

Not predictable.
Address of the supervisor-provided save area.
Return address (internal supervisor location). lll·

15 Address of the exit routine. (This register can be used
to provide addressability.)

s-tandard linkage conventions, including register saving and restoring
responsibilities, apply.

One
step.

STAE exit routine can be used by more than one task of a job
If the routine is used in this manner, it must be reenterable.

ABEND -- Terminate a Task Abnormally (R)

The ABEND macro-instruction causes abnormal termination of the task
issuing the macro-instruction; it also causes all of the task1s
incomplete subtasks to be terminated abnormally. The ABEND macro
inst.ruction can optionally cause abnormal termination of all incomplete
tasks in the job step, followed by termination of the job.

r---·--------T-----------T--,
I Name I Operation I Operand I
~---.-------+-----------+---~
I [symbol] I ABEND I {compcode-vaIUe},[DUMP][,STEP] I
I I I (1) I L ___ . _______ ~ ___________ L ___ J

compcode

102

specifies a completion code to be stored in the task completion
code field of the task control block (TCB) of the task issuing the
ABEND. If an ECB operand appeared in the ATTACH macro-instruction
that created the current task, the completion code is also stored
in bits 8 through 31 of the post code field of the specified event
control block. Bits 2 through 7 of the post code are set to zero.

If this macro-instruction results in termination of the job step,
the completion code is recorded on the system output.

The value of
less than 4096.

this operand should be a multiple of 4 and must be
(Refer to "Use of ABEND by Control Program.")

If (1) is written, the completion code must have been loaded into
parameter register 1 before execution of this macro-instruction.

DUMP

STEP

specifies 'that (;In abnormal termination dump is to be taken. This
dump is tak,en only if the user has specified a data set: by means of
a DD control statement whose ddname is SYSABEND. It includes the
contents of registers and main storage areas occupied by the
programs, d.ata, aIild system control blocks for all tasks being
abnormally termin~ted.

specifies that all tasks in the job step are to be terminated, and
that subsequent steps of the same job are to be ignored. If this
operand is omitted, only the task issuing the l~BEND macro
instruction and its incomplete subtasks are terminated.,

ENVIRONMENT: If option 4 was excluded from the system, execution of an
ABEND macro-instructi~n results in abnormal termination of the current
job step. The S'TEP operand is ignored. The completion codH is stored
in the task control block of the, job step, not in the Hvent control
block specified by the ATTACH macro-instruction. Abnormal terminations
are not posted.

If the DUMP oper(;l,nd is present, an indicative dump may be taken in
place of a complete abnormal termination dump. An indicative dump is
taken when the SYSABEND DD control statement has been o~rritted or the
corresponding entry in' the task input/output table (TIO~n has been
destroyed. It consi$ts of a limited amount of information about the
contents of registers and system tables, and is printed automatically on
the system output device.

Asynchronous exits (of the type specified in STAE and AT~~ACH) are not
provided upon abnormal termination.

If there is not sufficient main storage to accornmodatE~ the ABEND
procedure, storage allocated to the job step is used. This allocation
may mean that data sets cannot be closed and may alter the dump.

EXAMPLES: In the following examples, EX1 causes abnormal tE~rmination of
the task issuing the ABEND and all of its incomplete subtasks. The
value, 256, is placed in the task completion code field of the task
control block of the current task. If an ECB operand was specified in
the ATTACH macro-instruction that created the current task, the value is
placed in the event control block associated with the current task.

EX2 causes abnorm<;ll termination of the job step. The ',alue, 12, is
recorded on the system output. All of the job step's main storage areas
are recorded on external storage.

EX1
EX2

ABEND
ABEND

256
12,DUMP II STEP

PROGRAMMING NOTES: The ABEND macro-instruction abnormally terminates
the current job step if it is executed under the highest lE:vel task, or
if the STEP operand ha$ been specified. Termination of the job step
causes the completion code for the highest level task to be printed on
the system output device~ it also causes the job to be terminated and
subsequent job steps to be left unexecuted.

Abnormal Termination ,Dump: The data control block fOle an abnormal
termination dump is provided by the control program and. is opened
automatically. Its DDNAME parameter refers to a DD control statement
named SYSABEND, which must be supplied by the progJcammer. The
parameters of the DD control statement determine whether th~~ data set is
printed immediately or stored for later printing by a utilii:y program.

section 2: Supervisor Services - Exceptional Condition Handling 103

li'or immediate printing of a dump, the UNIT parameter of the SYSABEND
DD control statement should specify a printer. For automatic processing
of t:he dump, the SYSABEND DD statement should specify SYSOUT.

li'or storage of the dump, the DISP parameter should specify KEEP or
CATI~G, and the UNIT parameter should specify an external storage device,
such as a magnetic tape unit or direct-access device. The VOLUME
parameter should specify a single volume. The SPACE operand should
specify sufficient space (when a direct-access device is employed) to
cont:ain the dumped information. If (1) option 4 is excluded from the
syst:em and (2) the primary quantity reserved is insufficient and (3)
sufficient main storage is not available to extend the data set, then
the dump will not be completed.

Asynchronous Exit Routines: Upon abnormal termination by an ABEND
macl~o-instruction, control is always given to the STAE macro-instruction
exit routine of any task that is terminated. Control is given to the
ETXR exit routine (specified in an ATTACH macro-instruction) of a task
only if its immediate subtask issued the ABEND macro-instruction, and
the STEP operand was omitted.

~~he STAE exit routine is specified through a STAE macro-instruction
previously executed by a task being terminated. The ETXR exit routine
is specified by an ETXR operand in the ATTACH macro-instruction that
created the task being terminated.

']~asks terminate abnormally either directly or indirectly, as follows:

1. The highest level task of a job step terminates directly when one
of the following occurs:

a. The task issues an ABEND macro-instruction.
b. Any task of the job step issues an ABEND macro-instruction with

the STEP operand.

2. A task other than the highest level task of a job step terminates
directly when it issues an ABEND macro-instruction without the STEP
operand.

3. A task terminates indirectly when an ABEND macro-instruction that
will cause the next higher level task to terminate is issued.

~'hen a task is to be terminated, its subtasks are terminated first,
whet.her the termination is direct or indirect. If a task and all its
subtasks are to be terminated and the subtasks are at different control
levE!ls, the lowest control level subtask is terminated first. The
immE!diate subtasks of one task can be terminated in any order.

~'hen a task (or subtask) terminates (either directly or indirectly),
contxo1 is given to its STAE routine. Upon return of control from the
STAB routine to the control program, the control program posts the event
cont.rol block (specified by an ECB operand in the ATTACH macro
inst~ruction that created the terminating task) associated with
termination of the task.

Finally, if the terminating task terminates directly, control is
giv€!D to the ETXR routine (if one was specified) of the task that
created the terminating task. Control is not given to the ETXR routine
of a task when its subtask terminates indirectly.

Use .9f ABEND by Control Proqram: When the control program detects an
error condition requiring termination of a task, the control program
issues an ABEND macro-instruction for the task. The completion code
operand value will be from 4096 to 224_1 in multiples of 4096.

104

Whenever the ABEND macro-instruction is used, the completion code
consists of 24 bits. All 24 bits are placed in the task completion code
field in the task control block and in the post code field in the event
control block. The 12 high-order bits are reserved for the control
program, which uses them to indicate the reason for the abnormal
termination of the task.

The control program will output an abnormal completion code in each
of the following cases:

• When any task is terminated, and the user provided the SYSABEND DD
statement •

• When the highest. level task of the job step is terminated, whether
or not the user provided the SYSABEND DD statement.

After the control program has abnormally terminated a task, a higher
level task's program can interrogate the bits set by the control
program.

CHKPT -- Checkpoint a Job step (R)

The CHKPT macro-instruction causes the programs, main storage data
areas, and system ¢ontrol blocks for a job step to be recorded on
external storag1e. Afiter the checkpoint has been taken (onto a check
point data se"t), execution of the task that issued thE! CHKPT macro
instruction con"tinues with the next sequential instruction. Execution
of the job step can be reinitiated from the last checkpoint: by executing
a restart procedure through the job stream.

The job sbep isSuing a CHKPT macro-:instruction may use the execute
channel program mode for data sets other than the checkpoint data set;
if this is done, the user's problem program should ensure t:hat the block
counts in the data control blocks for these data sets are valid when the
CHKPT is issuled. Incorrect block counts will result: in incorrect
repositioning of the data sets upon restart.

ENVIRONMENT: If opti<1>n 4 was included in the system, a rE!quest for a
checkpoint is accepited only if the other tasks in the step have been
completed and the step is in a single task state.

When this macro-instruction is executed, all outstanding[input/output
activities in the job step are allowed to complete. If thE~ data control
block for the userws ¢heckpoint data set has not been previously opened,
the supervisor opens it. The supervisor then records the main storage
areas containing the programs. data, and system control blocks for the
job step. After the checkpoint is taken, the supervisor rE!turns control
to the location that immediately follows the CHKPT macro-instruction.

All checkpoints in a job step can refer to the same data control
block and can therefore be written on the same datal set; or, the
checkpoints can refer to different data control blocks and be written on
different data sets.

The maximum number of checkpoints that can be written by a job step
on a nonremovable direct-access device is either 21e_l or the number
that fills the volume,; whichever is less. However, checkpoints can be
written on any number of devices, so that this limitation applies only
to anyone device. Each device requires a different data control block.

The maximum number of checkpoints that can be written on a multi
volume data set on a device with removable volumes is 216-1. When a
volume is filled, the supervisor will order the operator to replace the
volume so that more checkpoints can be written.

section 2: Supervisor Services - Exce.ptional Condition Bandling 105

For each checkpoint data control block, checkpoints are numbered from
1 to 216-1 in the order in which they are taken. However, the restart
procedure can be used to initiate the job step only from the last
checkpoint written on the corresponding data set. If checkpoints were
writt:en on more than one data set, the restart procedure must specify
the correct data control block for the data set.

A task's data sets are not saved on the checkpoint data set and,
therefore, cannot be restored. Restarts are meaningful only if data is
available and unchanged after the checkpoint was taken.

106

GENERAL SERVICES

TIME -- Request Time ~nd Date (R)

The TIME macro-instruction provides the time of day in register 0 and
the current datE~ in register 1.

r----------T----------~-T---,
I Name I OpE~ration I Operand I
~----------+------------+-------------.--------------------------------i
I [symbol] I TI~1E I [unit-{DECIBINITU}] I L __________ .l. ____________ .l. ___________________________________ ___________ J

unit
specifies the units in which the time of day is to be returned in
register 0., The values for this operand and their meanings are:

DEC specifies that the time is to be returned as eight packed
decimal digits in the format HHMMSSth, where HH = hours in a
24-hour clack, MM = minutes, SS = seconds, t = tenths of
seconds, and h = hundredths of seconds.

BIN specifies that the time is to be returned as an unsigned
32-bit binary number in which the least significant bit has a
value of 0.·01 second.

TU specifies that the time is to be returned as an unsigned
32-bit binary number in which the least sianificant bit has a
valuE~ of 1 timer unit. A timer unit is 26-microseconds.

If this operand is omitted, DEC is assumed.

The time returned iis the time of day based on a 24-hour clock that is
set with real local time by the operator.

The date is always returned in register 1 in five packed decimal
digits in the format Y:YDDD, where YY = the last two digits of the year
and DDD = the day of the year. These five digits are preceded in
register 1 by tviO packed decimal zeros and followed by a four-bi t
character. Because of the bit pattern of this character, all digits
will have the same zone when the 32-bit field is unpacked.

ENVIRONMENT: If both option 6A and 6B were excluded from the system,
only the date is provided in register one. The unit operand is ignored.

EXAMPLES: In the following examples, EX1 requests the time of day in
eight packed decimal digits (the DEC format). EX2 requests the time of
day in timer units (the TU format).

EX1
EX2

TIME
TIME ,]~U

PROGRAMMING NOTES: The time of day and the date returned to the program
will be only as accurate as the corresponding information entered by the
operator.

The day of the year is automatically updated at midnight. The
operator must reset the day to 1 at the beginning of a new year.

DEC time and the date are returned in formats suitable for unpacking
and printing. The date can be unpacked directly. DEC time can be
unpacked if the h position (hundredths of seconds) is replaced with a

Section 2: Supervisor Services - General Services 107

zone sign. If the hundredths of seconds are important, the time can be
unpacked by the insertion of zones between the decimal digits.

STIM~:R -- Set Interval Timer (R)

The STlMER macro-instruction sets an interval into a programmed
interval timer, specifies when the interval timer is to be decremented,
and specifies the action to be taken when an interruption signals
completion of the interval. The effect of each STIMER macro-instruction
iSSUE!d by a task supersedes the effect of the STIMER macro-instruction
iSSUE!d previously by the same task. In this case, the exit routine that
may have been specified by the previous STIMER is not entered.

r---"-------T-----------T--,
I Name I Operation I Operand I

t-~~";~~~ii-t-~~~;;;----t-r~~~;(~~~i~:~~~~;i}~{~~~;;~:~~~~~-1-----------1
I I I REAL[,exit-addrx] BINTVL=addrx I
I I I WAIT TUINTVL=addrx I
I I I TOD=addrx I L ___ . _______ .L ___________ ..L ____ ------_____________________________________ J

TASK

REAL

WAIT

exit

specifies that the interval is to be decremented only when the task
issuing the STI~ffiR macro-instruction is in control.

specifies that the interval is to be decremented continuously,
whether or not the task issuing the STIMER is in control.

specifies that the interval is to be decremented continuously, and
that the task issuing the STlMER is to be placed in a wait
condition until an interruption signals the end of the interval.

specifies the address of an exit routine to be given control
asynchronously when the specified interval ends. If this operand
is omitted when a TASK or REAL interval is specified, the task will
be unaware of when the interval has ended. The exit operand should
not be written when a WAIT interval is specified; if it is, the
supervisor ignores it.

DINTVL
specifies the address of a double-word containing a decimal
interval to be set into the timer. The double-word must be aligned
on a double-word boundary and contain eight unpacked decimal digits
in the format HHMMSSth, where HH = hours in a 24-hour clock, MM =
minutes, S8 = seconds, t = tenths of seconds, and h = hundredths of
seconds. The specified interval must be less than 24 hours.

BINTVL
specifies the address of a full-word containing a binary interval
to be set into the timer. The full-word must be aligned on a
full-word boundary and contain an unsigned 32-bit binary number in
which the least significant bit has a value of 0.01 second. The
specified interval must be less than 24 hours.

TUIN'I'VL

108

specifies the address of a full-word containing a binary interval
to be set into the timer. The full-word must be aligned on a

TOD

full-word boundary and contain an unsigned 32-bit binary number in
which the least: significant bit has a value of 1 timer unit. A
timer unit is 26 micro-seconds. The specified interval must be
less than 24 hours.

specifies the ap.dress of a double-word containing the time of day
at which the inte:rval is to end.. The double-word must be aligned
on a doublE~-word boundary and contain eight unpacked decimal digits
in the format HH~SSth (defined in the DINTVL operand).

This operand is: meaningful only when a REAL or WAI'r interval is
specified. If a TASK interval is specified, the time of day
specified will pe interpreted as an interval, as though a DINTVL
operand were written.

EXCEPTIONAL RETURNS: :If WAIT is specified, the waiting t,ask will be
dispatched before th~ end of the interval when necessary to allow
execution of an asynch~onous exit routine. The routine may be part of
the operating system o~ of the user's problem program, and may be any of
the following:

• An input/out:put or! external interruption routine.

• A subtask tE~rmination exit routine, specified by the ETXR operand of
an ATTACH macro- inistruction previously executed by the task.

• A task abnormal e:xit routine, specified by a STAE macro-instruction
previously E~xecuted by the task.

Except in the last cas~ (task termination), the task is returned to the
wait condition when execution of the exit routine is complete.

ENVIRONMENT: If optiion 4 was excluded from the system, the entire job
step (including any mo~ules that were attached) can have only one active
time interval. Each STIMER macro-instruction issued supersedes the
effect of any previouisly issued STIMER macro-instruction. If an STlMER
macro-instruction is i!ssued by a timer exit routine, the request is
treated as a NOP.

If option 6B wasl excluded from the system, the STIMER macro
instruction is treated as a NOP.

EXAMPLES: In the follpwing examples, EX1 is used in testing a new loop
in a program. The loop should be executed for 6 seconds maximum;
therefore, an intervaT of 6 seconds is specified by the contents
(00000600) of the doubile-word at LOC1. The interval is decremented only
when the task is in ~ontrol. If the interruption occurs, a routine at
RTNl is entered. A TT!IMER macro-instruction should be placed after the
loop to cancel the :interval if execution is successfully completed in
less than 6 seconds.

EX2 sets an interva!l to be decremented continuously, whether or not
the task issuing the! macro-instruction is in control. The interval is
given in the full-wordl at LOC2. RTN2 is the entry point of the exit
routine.

EX3 sets an inte:rval for a program that polls terminals every time
the interval expires. The interval is given in the full-word at LOC3.
Assuming that the interval is 25 minutes, the task issuing the
macro-instruction is p~aced in a wait condition for 25 minutes; then an
interruption occurs and the task again competes for control.

sectioin 2: Supervisor Services - General Services 109

EX4 causes the task to be placed in a wait condition until the time
of day specified by the contents of the double-word at LOC4.

EX1
EX2
EX3
EX4

STIMER
STIMER
STIMER
STIMER

TASK,RTN1,DINTVL=LOC1
REAL,RTN2,BINTVL=LOC2
WAIT, TUINTVL=LOC3
WAIT, TOD=LOC4

PROG~AMMING NOTES: When this macro-instruction is executed, a
programmed interval timer is set with the specified interval or with an
inte:rval that will provide an interruption at the specif ied time of day.
If 'rASK is specified, the timer is decremented only when the task
issuing the macro-instruction is in control; if REAL or WAIT is
specified, the timer is decremented continuously. If TASK or REAL is
specified, the task remains in contention for control; if WAIT is
speci.fied, the task is placed in a wait condition until after the
inte:r"ruption, and then returned to contention.

If TASK is specified, control is given to the exit routine, if
specified, after the interruption. If no exit routine is specified,
control returns to the program at the next instruction to be executed,
and -the program is not notified of the interruption.

If REAL is specified and the task issuing the STlMER macro
instruction is in control when the interruption occurs, control is given
to the exit routine or the next instruction to be executed, as for TASK.
Howe'iTer, if the task is not in control when the interrupt occurs, the
exit routine (if specified), or the next instruction to be executed, is
given control when the task regains control normally.

Upon entry to the exit routine specified in an STlMER macro
instruction, register contents are:

Regi:§ter
0-1

contents
Internal supervisor information.

2-12
13
14
15

Same as when the interruption occurred.
Address of the supervisor-provided save area.
Return address (internal supervisor location).
Address of the exit routine. (This register can be used to
provide addressability.)

S"t.andard linkage conventions, including register saving and restoring
responsibilities, apply_

Upon completion of the exit routine, the contents of register 14 must
be as they were upon entry to the routine. The exit routine should
terminate with a branch to the address in register 14.

One
step.

STIMER exit routine can be used by more than one task of a job
If the routine is used in this manner, it must be reenterable.

Each task can have only one time interval active at a time, but any
number of tasks can simultaneously have active time intervals. The time
inte:r"val speci·fied in the EXEC statement (described in the publication
IBM ;~ystern/360 Operating System: Job Control Language) is an interval
set by the system. It cannot be tested or canceled. It does not
prev,ent a task from setting an STlMER interval.

The interval timer cannot accurately measure an interval that is less
than the timer resolution. The resolution of the timer the time
lapse between successive updates -- is the reciprocal of the timer's
operating frequency. At a standard line frequency of 60 cps, the
resolution is 16.7 milliseconds or 640 timer units; at 50 cps, it is 20
milliseconds or 768 timer units.

110

TTIMER -- Test Interval Timer (R)

The TTIMER macro-instruction requests the time remaining' in the TASK
or REAL interval that was previously set by an STIMER macro instruction
issued by the current task. The supervisor places the timE! in register
o. The TTIMER mac~o-instruction can also be used to cancel the
previously specified interval.

r----------T------------T-----------------------------------·-----------,
I Name I Operation I Operand I
~----------+----------.y-+-----------------------------------.------------~
I [symbol] I TTIMER I [CANCEL] I l __________ ~ ___________ L ___ J

CANCEL
specifies -that the interval in effect should be canceled. If this
operand is omitted, processing continues with the une:Kpired portion
of the interval still in effect. If the interval expired before
the TTIMER macro-instruction was issued, the CANCEL operand has no
effect.

The time remaining in the interval is returned in register 0 whether
or not the interval is canceled. It appears as a 32-bit unsigned binary
number in which the least significant bit has a value of 1 timer unit.
A timer unit is 26 microseconds. The interval is returned in this form
even if the interval was originally specified in decimal digits or as a
binary multiple of 0.01 second. If the interval expired before the
TTIMER macro-instruction was issued, zero is returned in register o.

ENVIRONMENT: If option 6B was excluded from the system, the TTIMER
macro-instruction is t.reated as a NOP.

EXAMPLES: In the following examples, EXl requests that t~he supervisor
place in registter 0 the amount of time remaining in the interval, and
cancel the in-terval. EX2 requests the amount of time remaining in the
interval, and does not cancel the interval.

EXl TTIMER
EX2 TTIMER

CANCEL

WTO -- Write to Operat.or (S)

The WTO macro-inst~uction writes a message on the operat:or's console.

r----------T---·--------T----------------------------------.-----------,
I Name I Operation I Operand I
.----------+----------.y-+-----------------------------------.------------~
I [symbol] I WTO I message-' text' I l __________ ~ _________ _~ ___________________________________ . ____________ J

message
specifies the message to be written on the console.

The messag1e length must not exceed the line length on the console
output device having the shortest line length.

The messag1e appearing on the cons ole does not include the enclosing
quotation marks.

section 2: Supervisor Services - General Services 111

EXAMPLES: In the following example, the WTO macro-instruction specifies
that- the message, FINISHED, is to be written on the operator's console.

EXl WTO 'FINISHED'

PROGRAMMING NOTES: The message can include commas, blanks, and
quotcition marks as in a character constant. The message is assembled
into a format-V record, which is the parameter list of the macro
instruction.

L- A~D E-FORM USE: The Land E forms of this macro-instruction are
written as described in Appendix B except for the following special
operand requirements:

Operand
message

L Form
required

E Form
not allowed

WTOR_-- Write to Operator with Reply (8)

The WTOR macro-instruction writes a message on the operator's console
and enables the operator's reply to be transmitted to the program
issuing the macro-instruction.

r-----·------T-----------T---,
I Name I Operation I Operand I
.----_._-----+-----------+--~
I [symbol] I WTOR I message-' text' , reply-addr , length-value I
I I I, ecb-addr I L _____ . ______ -L ___________ -L __ J

message
specifies the message to be written on the console.

The maximum message length must not exceed the line length on the
console output device having the shortest line length.

The message appearing on the console does not include the enclosing
quotation marks.

reply
specifies the address of an area in main storage into which the
message reply text should be placed.

leng"t:h

ecb

specifies the length, in bytes, of the reply text.

specifies the address of an event control block (ECB) representing
the completion of the reply.

The program should issue a WAIT macro-instruction to determine when
the reply has been transmitted. This WAIT macro-instruction should
refer to the event control block whose address is specified by the ecb
operand. When the control program has stored the reply in the specified
area" it will use the POST macro-instruction to signal completion of the
reply.

Refer to the publication IBM System/360 Operating System: Operator's
GuidE~, Form C28-6540, for information about the reply.

112

CAUTION: When an even·t control block is posted, its completion flag
(bit 1) is set to 1.. Before executing a WTOR macro-instruction for a
second time, the program must set the completion flag in the event
control block to o. If this is not done, the message reply will appear
to have been received before it actually has been.

EXAMPLE: In the following example, the message, A, B, OR c, will be
written. The expected: reply is one byte long., and will be Btored by the
control program at the location LOC. ECBl is the ECB that is to
represent completion of the reply. A WAIT macro-instruction referring
to ECB1 should be issUed to determine when the reply has bt=en received.

EX1 WTOR 'A, B, OR C',LOC,1,ECB1

PROGRAMMING NOTES: The message can include commas, blanks, and
quotation marks as in a character constant. The message is assembled
into a format-V record j , which is part of the parameter list ..

L- AND E-FORM USE: The Land E forms of this macro-instruction are
written as described in Appendix B except for the follml7ing special
operand requirements:

Operand
message

L Form
required

E Form
n¢>t allowed

In the E form, a message, cannot be specified, but the comma that
normally follows the message operand must be written if the reply,
length, or ecb operands are written.

WTL -- Write to Log (st

The WTL macro-instruction writes a message on the system log.

r~---------T-----------T--""--------------------------------.-----------,

I Name I Operation I Operand I
.----------+---_._-------+------------------------------------.-----------~
I [symbol] I WTL I message-' text' I L __________ .L ____ . ______L ___________ ________________________ • ___________ J

message
specifies ·the message to be written on the log. The message
written on ·the 109 does not include the enclosing quotation marks.

ENVIRONMENT: If option 12 was excluded from the system, the WTL
macro-instruction is treated as a NOP.

EXAMPLE: In the following example, the message, FINISHBD., will be
written on the system log.

EX1 WTL ':FINISHED'

PROGRAMMING NOTES: The message can include commas, blanks, and quota
tion marks as in a character constant. The message is assembled into a
format-V record, which is the parameter list of the macro-instruction.

L- AND E-FORM USE: The Land E forms of this macro-instruction are
written as described in Appendix B except for the follo\oiTing special
operand requirements:

Operand
message

L Form
requir(ed

E:Form
not allowed

section 2: Supervisor Services - General Se~rvices 113

SEC'I~ION 3: DATA MANAGEMENT SERVI CES

The macro-instructions contained in this section enable the user to
request the data management facilities of the operating system in:

• Creating data sets.
• Gaining access to data.
• Controlling input/output devices.
• lI?roviding buffering.

Since the organization of records for rapid retrieval involves a
major decision in data processing, the macro-instructions are grouped to
reflect the access methods for the five data organizations: sequential,
partitioned, indexed sequential, direct, and telecommunications. An
addi.tional grouping contains those macro-instructions that are of
genE!ral service with all data set organizations. The groupings are as
follows:

Data Organization Independent
General Service Macro-Instructions

Sequential Organization
Queued Sequential Access Method (QSAM)
Basic Sequential Access Method (BSAM)

Partitioned Organization
Basic Partitioned Access Method (BPAM)

Indexed Sequential Organization
Queued Indexed Sequential Access Method (QISAM)
Basic Indexed Sequential Access Method (BISAM)

Direct Organization
Basic Direct Access Method (BDAM)

'relecommunications Organization
Queued Telecommunications Access Method (QTAM)

}l further data capability that can be used with any data organization
is provided by the execute channel program feature, which permits the
user to program at a level quite close to a device yet within the
framework of the operating system. The user must know, and program for,
the attributes of the device and the characteristics of the data set
residing on it. This capability is represented by the EXCP (execute
channel program) macro-instruction, which is discussed in the publica
tion IBM System(360 Operating System: System Programmer's Guide, Form
C28-·6550.

DirE~ct Access Device Considerations

'J?he System/360 Operating System has defined a standard track format
for all direct-access devices. On each track, record zero (Ro) will
cont:ain:

114

Key length
Data length

KL=O
DL=8

The user must take this convention into account when calculating the
capacity of a track. Record zero is also referred to as the "capacity
record" or "track descriptor record."

ACTUAL ADDRESSING: When the actual address of a block on a direct
access device is returned to the user, it is of the form MBBCCHHR, where

M
specifies the pos~tion of an extent entry within the data extent
block. This co~trol block is established by the control program
during the opening process. M is a one-byte bi.nary number
specifying the Irelati ve location of the entry wi t~hin the data
extent block. Each extent entry describes a set of contiguous
tracks that have been allocated to the data set. Each extent entry
contains:

• Start tJrack.

• End track.

• A poin1:.er to a control block that speci fies channe!l and device
address ..

The extent E~ntries are maintained by the control program and will
be established in the sequence that space was originally allocated;
i.e .. , initial allocation followed by each additional allocation in
proper sequence.

These exten1:s are created and maintained by the control program and
normally do not cqncern the user. However, if actual addressing is
used, M is a requiJred part of the address.

Several access methods offer means by which an actual address may
be obtained. In these cases, M is supplied and need only be
preserved for subsequent use.

If the user desires to develop actual addresses, he must construct
the value for M by performing a series of tests to locate the
extent entry in the data extent block that contains the track
address he computed.

BBCCHH

R

specifies cell, cylinder, and head number and collectively form a
"track address." Cylinder and head binary designation are recorded
on the direct-access device as part of the ID field of each block
of data. Refer to the publication IBM 2841 - Control Unit for a
description of cell, cylinder, and head number.

specifies the blocik number of a particular block on the designated
track. This numbelr is also recorded on the direct-access device as
part of the ID field of each block of data.

cautions: Use of actual addresses will force the user to treat the
associated data set as '''unmovable.''

For sequential processing (QSAM and BSAM), in which the data set
resides on more than one volume, only those extent entries for the
volume currently being processed are found in the data extent block.

section 3: Data t-anagement Services 115

RELNrIVE ADDRESSING: There are two
blocks on direct~access devices.
addl~ess, is of the form TTR, where:

types
The

of relative addresses for
first type, or relative track

TT

R

specifies the relative nwnber of -the track on which the block is
located. This number is relative to the first track allocated to
the data set, for which TT has a value of zero. TT is a two-byte
binary number that is unaffected by lack of contiguity for tracks
allocated to the data set.

specifies the relative number of the block on track TT. This
number is relative to the first block on the track, for which R has
a value of zero. R is a one-byte binary number.

The second type of relative address is the relative block address,
whiGh specifies the relative number of the block. The nwnber of the
block is relative to the first block of the data set, for which the
relative block address has a value of zero. The relative block address
is a three-byte binary number that is not affected by lack of contiguity
for tracks allocated to the data set.

Cau1~ion: For sequential processing (BSAM) in which the data set resides
on more than one volume, relative addresses can be used only to refer to
blocks on the volume currently being processed. A relative track
address is relative to the first track allocated to the data set on this
volume.

Voll~me switching

volume switching can occur as a result of an end-of-volume condition
or the FEOV macro-instruction. In general, the DD statement determines
the number of volwnes to be associated with a particular data set.

Inpl~t: An input operation that detects either a tape mark, an end of
data indicator, or an end of last extent causes an end of volume routine
to be executed. The user may also issue an FEOV macro-instruction
before any of these conditions is detected. In either case, the only
fac·tor considered in determining if a volume switch is desired is the
number of volume serial nwnbers made available by the DD statement or
the catalog.

Outeut: Reaching the end of volume on a data set for which output
ope:cations are being executed may cause the end of volume routine to be
executed, or the user may issue the FEOV macro-instruction. When this
occu.rs, new storage is obtained for the data set on the specific volumes
indicated by the DD statement or the catalog. If no volumes are
specified (or if more than those specified are required) the new storage
is obtained on any available volume (or part of a volume) of the same
device type.

End of Data Set Determination: The end-of-data-set exit is taken from
the end-of-volume routine for sequential input processing when no
further record or block is available. For magnetic tape, note that
standard trailer labels have no role in the determination of an end of
data set condition.

116

GENERAL SERVICE iMACRO-INSTRUCTIONS

The macro-ins'tructiQns included in this group provide sE~rvices that
prepare data s·ets f0r processing, and main storage for use as buffers
and buffer pools. These macro-instructions can be used with all of the
access methods presented in this section (except where noted).

Macro-Instruction

DCB

DCBD

OPEN

CLOSE

FEOV

GET POOL

FREEPOOL

BUILD

GETBUF

FREEBUF

Function

Interfaces with control program

Provides symbolic names for data control block

Connects the data set to the user's problem program

Disconnects the data set from the user's
p:roblem program

Forces an end of volume (BSAM and QSAM only)

Gets a buffer pool

Frees a buffer pool

Builds a buffer pool

Gets a buffer from a pool

Returns a buffer to a pool

DCB -- Define a Contro] Block for Input/Output Operations

The rna jor ml~ans qf communications between the user and the control
program when records aIie being processed is a data control block. One
data control block is required for each data set to be processed
concurrently, and contains such information as:

• Characteristics of the data set.
• Types of macJro-inst;.ructions to be executed.
• Buffering choices.
• Device-dependent options.
• Exit addresses.
• Working storage us~d by access method routines.

Information required to process a data set is presented to the
control program in the DCB macro-instruction.. The specific information
needed depends upon th~ data set organization and access method chosen.
For this reason, the macro-instruction group for each a,ccess method
includes a description;of a DCB macro-instruction tailored for use with
that access me1:hod. :At the user's discretion, certain information can
be supplied by the following alternate sources, in conjuncti.on with the
DCB macro-instruction, to complete the data control block:

• The DD statement ..
• The data set label~
• The user's proble~ program -- before opening the data control block

(for operands inclUding the DDNAME and EXLST operands), or during
the data con1:.rol block exit routine (for the rema.ining operands).

Section 3: Data f.i!anagement S€~rvices 117

Each operand description indicates which of these alternate sources
can supply that operand. Until information is supplied by some source,
the data control block contains binary zeros, indicating the absence of
that: parameter.

,]~here are three major considerations common to all variations of the
DCB macro-instruction:

• The specification of exits.
• 'rhe specification of buffering operands.
• 'rhe modification of the data control block by the user to complete

-the needed information, or to alter the information during
execution.

EXI']~S: Table 6 summarizes the exits that can be specified explicitly by
the :EODAD or SYNAD operand or implicitly by the EXLST operand in a DCB
macro-instruction. The manner in which an exit list is created is shown
in Appendix D.

Table 6. Data Management Exits
r-----------------~----------------T-----------------T-----------------,
I Type of Exit I When Available I How Specified I Applicable To I
.--_ .. _------------+----------------+-----------------+-----------------~
I Data Control I When opening a I EXLST operand I All access I
I Block I data control I and exit list I methods I
I I block I I 1
.--_._------------+-----------------+-----------------+-----------------~
1 Us,er Label I When opening or I EXLST operand I BSAM I
I <~1ith standard I closing data I and exit list 1 QSAM I
I labels) I control block orl I 1
1 1 when changing 1 I 1
1 1 volumes 1 I I
.----------------+-----------------+-----------------+-----------------~
I End of I When no more I EODAD operand I QSAM 1
I Da-ta Set I sequential I, I BSAM I
I I records/blocks I I BPAM I
I I are available I I QISAM I
I I I I QTAM I
.--_._------------+-----------------+-----------------+-----------------~
I Error Analysis I After uncorrect-I SYNAD operand I QSAM I
I I able input/ I I BSAM I
I I output error I I BPAM I
I I 1 I QISAM 1
I I I 1 QTAM 1 L ___ .. _____________ .l.-________________ ~ ________________ ~ _________________ J

BUFFERING OPERANDS: Four
associated with buffering.

• Number of buffers.
• Length of buffers.
• Boundary alignment.

operands in the DCB macro-instruction are
These operands specify:

• Address of buffer pool control block.

Some of the buffering operands may not be required when the user
specifies other macro-instructions <i.e., BUILD, GETPOOL, GETBUF) that
provide buffering services. Whether or not one of these macro
inst:ructions can be issued depends upon the access method being used,
since not all access methods support all types of buffering requests.
Each DCB macro-instruction contains a summary of the buffering services
supported. It also relates the buffering services requested through the
general service macro-instructions to the conditions under which the
buffering operands are written.

118

MODIFYING A Dl~TA CONTROL BLOCK: The user can add to or modify the
contents of the data dontrol block during the execution of his problem
program. These chatiges may be introduced during one of the following
times:

• While the data control block is closed (i.e., before an OPEN
macro-instruction is executed or following a CLOSE
macro-instruction) ,.

• While the data control block is being opened (i.e., during the data
control block exit~.

• While the data control block is open.

Note: Only certain fiields may be modified while the data control block
is open. The appropriiate time for changing them is described in each
applicable macro-instiruction. In general, the EODAD and SYNAD operands
must be supplied befor:e the data control block exit routine terminates.
However, they can be altered at any time during execution of the user's
problem program.

DCBD -- Provide Symbol:ic Names for a Data Control Block (DCB>

The DCBD macro-instx-uction generates a DSECT statement that provides
a symbolic namE~ for the fields within a data control block. Each field
is defined so that, with proper initialization of base registers, the
user can refer to any or all fields of one or more data control blocks.

The data control blpck assembled from a DCB macro-instruction will
not have names assoc;iated with the individual fields that comprise the
control block. To ref~r or gain access to the fields in the data
control block, the use~ can write a DeBD macro-instruction.

The following conventions have been adopted:

• The name of the dummy control section is IHADCB.

• The name of each field begins with DCB followed by the keyword
operand that repre~ents the field in the DCB macro-instruction. If
the resulting nam~ is longer than eight characters, it is truncated
to eight characters by right-to-left dropout. (The field
represented by the! operand BLKSIZE would be written DCBBLKSI, for
example.)

• The attributes of each data control block field are defined in the
dummy control section (DSECT). Note that data control block fields
containing addresses are aligned on full-word boundari,es. The word
contains thE~ address in its three low-order bytes, regardless of the
contents of the htigh-order byte. The length attribute of the
symbolic name for each field is four.

r----------T----'-------T----------------------------------.------------,
I Name I Operation I Operand I
.----------t----,------;-t----------------------------------.------------~
I blank I DCBD I [DSORG= ([LR] [,PS I BS IQS] [, IS] [,DA] [, PO] I
I I I [, CX I BX I QX] [, MQ] >] I
I I I [,DEVD=([DA] [,TA] [,PT] [,RDIPC] [,PRJ)] I L __________ .L ___________ .L __________________________________ . ____________ J

DSORG
specifies the t¥pe or types of data control
symbolic na.mes are to be defined. The values have
meanings:

blf::)ck for which
the following

Section s: Data Zvlanagement Siervices 119

DEVD

LR - logical-record-Iength field only (DCBLRECL)
PS - physical sequential organization
BS - physical sequential organization with basic access language
QS - physical sequential organization with queued access language
IS - indexed sequential organization
DA - direct organization
PO - partitioned organization
ex - telecommunications line group
BX - basic telecommunications line group
QX - queued telecommunications line group
MQ - processing program message queue
XE - execute channel program
XA - execute channel program with appendages

The mnemonic PS implies both BS and QS. ex implies both BX and QX.
BS and PO define the same type of data control block.

specifies a value for the device dependencies that have been coded
in the program. The values have the following meanings:

DA - direct-access device
TA - magnetic tape
PT - paper tape
RD - reader/punch or reader
PC - punch.
PR - printer

Any combination of these values, expressed as a sublist, is valid
with any value of DSORG. If PS, BS, or QS is specified in the
DSORG operand and the DEVD operand is omitted, symbolic names will
be provided for all possible device dependencies. If LR is
specified in the DSORG operand, the DEVD operand is ignored, even
if it is specified.

If the operand field of the DCBD macro-instruction is blank, only the
symbolic names for the fields of the foundation block will be provided.
The foundation block is that section of the data control block that
contains the information needed for minimum system support of
input/output operations. Before the data control block is opened, the
foundation block contains the DCBDDNAM, DCBOFLGS, DCBIFLGS, and DCBMACRF
fields. After the data control block is opened, the foundation block
contains the DCBTIOT, DCBMACRF, DCBOFLGS, DCBIFLGS, and DCBDEBAD fields.
For a description of these fields, refer to the publication IBM
Syst~m/360 Operating System: System Programmer's Guide, Form C28-6550.

CAUTIONS: The DeBD macro-instruction can be used only once during an
assembly. A diagnostic message will be issued if this rule is violated.
The macro-instruction may appear at any point in an assembly, or in any
numbE~r of separate assemblies that are to be combined by the linkage
editor. However, if it is written at any location other than at the end
of a CSECT or DSECT, the original control section must be resumed by the
user. The types of data control blocks requested need not appear in the
same assembly as the DCBD macro-instruction.

BE~cause of the many redundant symbols that could result, the operand
should not include values that are not required.

EXAMPLE: The following example illustrates how a program can establish
the ability to gain access to a field in a data control block. The load
address (LA) instruction is used to place the address of the data
control block in register 5.

120

Any use of 1:he syrr)bol definitions provided by IHADCB can be preceded
by a USING statement (isupplied by the programmer), which establishes a
base register for IrHADCB. The store operation (STH) will place the
half-word value conta~ned in register 6 into the specified field (of the
data control block po~nted to by register 5). DCBLRECL is the field
associated with logic~l record length.

MYDCB DCB

USING
LA
STH

DCBD

DDN~E=MYDCB,MACRF=G, (other DCB operands)

IHAOCB,5
5,MYlDCB
6, DCBLRECL

DSORG= (LR)

Note: A DSECT statement is inserted in the assembled program where the
DCBD macro-instruction appears. A displacement is established for the
DCBLRECL field.

When the DCB macro~instruction is used to provide address fields in a
data control block (ie.g., the DCBEXLST, DCBEODAD, or DCBSYNAD fields),
the location must be dontained in the module. However, the problem
program can provide address fields by using external references to
locations in another rrjodule. These external references are resolved
when the program is processed by the linkage editor. At that time, the
modules are combined tio form one load module. An external reference can
also be used to provide the address portion of an exit list entry.

Example: An end-of-daita set routine named ENDDS is a module that can be
used by various progralms. To place the address of the routine in the
data control block 'of another module" that module could contain the
following:

• A DCBD macro-inst~uction.

• Appropriate instructions for establishing and loading a base reg
ister.

• The instructions:

MVe DCBEODAD+ 1 (3 >. VCON

VCON DC VL3 (ENDDS)

PROGRAMMING NO'J?ES: 'Physical sequential data sets with unlike data
attributes can be conc:atenated for processing by the queued or basic
sequential access m~thod. This concatenation must be indicated by
setting bit 4 in the D:CBOFLGS field of the appropriate data control
block. The bit can be set by the instruction 01 DCBOFLGS,X'08',
provided that a DCBD macro-instruction has been written and the base
register specified in :the USING statement has been properly loaded.

Section 3': Data Management Services 121

OPEN -- Prepare the Data Control Block for Processing (8)

The OPEN macro-instruction initializes one or more data control
blocks so that their associated data sets can be processed.

r-----------T-----------T---,
I Name I Operation I Operand I
~---.-,------+-----------+---~
I [symbol] I OPEN I ({ dcb-addr, [(opt:s. -code [, opt2 -code])] , } •••) I L __________ ~ ___________ L ___ J

dcb

opt:s.

122

specifies the address of the data control block to be initialized.

specifies the intended method of input/output processing for the
associated data set. The values have the following meanings:

Code

OUTPUT

INOUT

OUTIN

RDBACK

UPDAT

input data set.
omitted.

output data set.

Meaning

This value is assumed if opt:s. is

input data set first, and, without reopening, output data
set (BSAM only).

output data set first, and, without reopening, input data
set (B8AM only).

positions an input data set to be read backward (BSAM and
Q8AM, magnetic tape only).

allows updating of the data set in place (direct-access
devices only).

The introduction to each access method
between the value selected for opt:s.
macro-instructions.

lists the relationships
and the actions of the

If the DD statement disposition subparameter is MOD, opt:s. must be
OUTPUT or OUTIN for the MOD to be effective.

specifies the volume disposition that is to be provided when volume
switching occurs. The values have the following meanings:

REREAD

Meaning

tests the disposition given in the DD control statement
and provides appropriate positioning. Refer to the
publication IBM Operating 8ystem/360: Job Control lan
guage for a description of the DD statement. This value
is assumed if the opt2 operand is omitted.

repositions the volume to process the data set again
(QSAM and B8AM).

LEAVE performs no additional positioning at end-of-volume proc
essing' (QSAM and BSAM).

The opt,2 operand may be specified only if opt1. is al80 specified.
The opt,2 operand is applicable to the volume positioning of
magnetic tape and direct-access devices. It will bE~ ignored if
other devices ~re used. If the number of volurnE~s exceeds the
number of .availalble units" opt,2 will be ignored.

EXAMPLES: In the following examples, EXl results in the data control
block INVEN being opened for an input data set. EX2 results in the two
data control blocks :INVEN and REPORT being opened with different
options. EX3 resul~s in the two data control blocks IN\ffiN and MASTER
being opened; they are opened for input data sets since INPUT is assumed
when opt1. is omitted.

EXl
EX2
EX3

OPEN
OPEN
OPEN

(INVEN,(INPUT»
(INVEN~(INPUT),REPORT,(OUTPUT,LEAVE»
(INVEN ,: , MASTER)

PROGRAMMING NOT:ES: AI).y number of data control block cLddresses and
associated options may be specified in the OPEN macro-instruction. This
facility allows parallel opening of the data control blocks and their
associated data sets. One of the services performed at this point is
the processing of labels. Appendix E describes standard secondary
storage label formats.;

If a data-control-~lock exit routine or a user-label exit routine is
to be executed, the e~it list (DCBEXLsT) address must be provided in the
appropriate data cont~ol block.

The format of the exit list, use of the exit list during the opening
process, and exit routt.ine requirements are discussed in Appendix D.

The user may allow:the control program to obtain a buffer pool for a
data control block during the opening process. This option is described
in the DCB macro-instruction for each access method.

The parameb~r list resulting from expansion of the OPEN macro
instruction contains ~ full-word entry for each data control block and
its associated options. The three low-order bytes of each word contain
the 24-bi t address of a data control block. The higrh-order byte
contains a code~ as fdllows:

Binary
Bit Conten1ts

a a
1

1
2-3 00

01
11

4-7 0000
1111
0011
0111
0001
0100

Meaning

Another parameter follows
Last entry in list
(Reserved)
Use DO control statement disposition
Position volume for REREAD
Position volume for LEAVE
INPUT
OUTPUT
INOUT
OUTIN
ROBACK
UPDAT

Section 3: Data trlanagement Eervices 123

CAUT]~ONS: The following errors will cause the results indicated:

Result

Opening a data control block that
is already open.

No action

.Attempting to open a data control
block when the dcb operand does
not specify the address of a data
control block.

Unpredictable

Opening a data control block when
a corresponding DD statement has
not been provided.

No action; however, an attempt
to use the data set results in
abnormal termination of the task

The last of these errors can be detected by testing bit 3 of the
OFLGS field in the data control block. Bit 3 is set to 0 in the case of
an error, and can be tested by the sequence:

TM DCBOFLGS,X'10'
HZ ERRORRTN (Branch to user's error routine)

provided that a DCBD macro-instruction has been written and the base
regis-ter specified in the USING statement has been properly loaded.

L- AND E-FORM USE: The Land E forms of this macro-instruction are
writt~en as described in Appendix B.

CLOSI~ -- Disconnect Data Set from User's Problem Program (S)

The CLOSE macro-instruction disconnects one or more data sets from
the user's problem program.

r-----------T-----------T---, I Name I Operation I Operand I
.-----------+-----------+---~ I [symbol] I CLOSE I ({dcb-addr.[opt-code],} •••) I L _____ . ______ .J. ___________ .J. __ J

dcb

opt

124

specifies the address of the data control block opened for the data
set whose processing is to terminate.

specifies the volume disposition that is to occur as a result of
closing. Its values and meanings are as follows:

_Code

PISP

Meaning

tests the disposition given in the 00 control statement
and provides the appropriate positioning. Refer to the
publication IBM System/360 Operating System: Job Control
Language for a description of the DO statement. This
value is assumed if the opt operand is omitted.

REREAD positions the current volume to process the data set
again.

LEAVE positions the current volume to the logical end of the
data set just processed.

The opt operand is applicable to the volume disposition of magnetic
tape or direct-access devices only; it will be ignored if other devices
are used.

CAUTIONS: The followi.ng errors will cause the results indicated:

Closing a data control block
that is already closed.

No action

Result

Closing when the dcb operand
does not specify the address
of a data control block.

Unpredictable

EXAMPLES: In the :fiollowing examples, EX1 results in the data set
associated with the data control block INVEN being closed with no
repositioning. EX2 results in the two data sets associated with the
data control blocks INVEN and REPORT being closed wi.th different
options. EX3 result.s in data sets associated with two data control
blocks being closed. Since opt is omitted in EX3, the volume
dispositions indicated on the DD statements are effective .•

EX1
EX2
EX3

CLOSE
CLOSE
CLOSE

(INVEN , nEAVE)
(INVEN,tEAVE,REPORT,REREAD)
(INVEN, ,; MASTER)

PROGRAMMING NOTES: Any number of data control block a.ddresses and
associated options n:tay be specified in the CLOSE macro-instruction.
This facility makes it possible to close data control blocks and their
associated data sets ~n parallel.

For magnetic tape, positioning will vary, depending on whether or not
the data set USE~S labels. Table 7 def ines a position number for labeled
and unlabeled tapes and Table 8 relates the options chosE!n in the OPEN
and CLOSE macro--instructions to the positioning of tape volumes.

Table 1. Magne1:ic Tape Positions - QSAM and BSAM
r------------T-----------------------------T----------------.------------,
I Position I Labeled Tape I Unlabeled Tape I
.------------+-----------------------------+----------------.------------~
I 1 I Preceding data set header I Preceding first data block I
I I label group I of the data. set I
.------------+-----------------------------+---------------------------~
I 2 I]~ollow:img tape mark that I Following tape mark that I
I I 1:erminates trailer label I terminates last data block I
I I qroup Of data set I of data set I L ____________ J. ________ ____________________ J. ____________________________ J

Section 3: Data Management Services 125

Table 8. Factors Determining Magnetic Tape Positioning - QSAM and BSAM
r----··-----T------------T----------T-----------------T-----------------,
I I I Other I I Positioning I
IApply to IOpti. of OPEN I Factors IDirection of Lastl as Specified by I
~----··T----~ Specified as I Influencing I Input Operation I opt in CLOSE I
I I I I Posi tioning I ~--------T--------~
I QSA~11 BSAM' 'I I LEAVE I REREAD ,
~----.+----+------------+-----------+-----------------+--------+--------~
'X I X , OUTPUT I INot applicable I
, " I' I
~----.+----+------------+-----------+-----------------~
, I X , OUT IN I INot determining I
I " , I factor I
~----.+----+------------+-----------+-----------------~
I 'X I INOUT IAt least ,Not determining IPosition Position
I I I lone WRITE I fa ctor I 2 1
, 'I I operation I I
~-----+----+------------+-----------+-----------------~
I X I X I INPUT I I Forward I
I " I I I
~----.+----+------------+ ----------+----------------~
I I X I INOUT INo WRITE I Forward I
I I I 1 operation I I
I I' , executed , I
~----.+----+------------+-----------+----------------~
I I X , RDBACK I I Forward I
I I I I I I
~----.+----+-----------+-----------+-----------------+--------+--------~
I X 'X I INPUT' I Backward, I I
I I I I I "I
~----.+----+------------+-----------+----------------~ I I
I I X I INOUT INo WRITE I Backward I Position I Position I
I I I I operation I I 1 , 2 I
I I' , executed I I I I
~----··t----+------------+-----------+---.------------~ I I
I X I X I RDBACK I ,Backward I I I
I I' I I "I L ____ ~ ____ ~ ____________ L ___________ ~ _________________ L ________ ~ ________ J

The parameter list resulting from expansion of the CLOSE macro
instruction contains a full-word entry for each data control block with
its associated options. The three low-order bytes of each word contain
the 24-bit address of a data control block. The high-order byte
contains a code, as follows:

Binary
Bit Contents

0 0
1

1
2-3 00

01
11

4-1

Meaning

Another parameter follows
Last entry in list
(Reserved)
Use DD control statement disposition
Position volume for REREAD
Position volume for LEAVE
(Ignored)

L- AND E-FORM USE: The Land E forms of this macro-instruction are
written as described in Appendix B. The E form of the CLOSE macro
instruction can refer to a list generated by the L form of the OPEN
macro-instruction.

126

FEOV -- Force End.of V:olume (R)

The FEOV macro-insitruction directs the control program to advance to
the next volume of a data set before the physical end of the current
volume is reached. This macro-instruction is applicable only to data
sets processed by tne queued and basic sequential access methods
(magnetic tape and direct-access devices only).

r----------T------------T---,
I Name I Operation I Operand I
~----------+-----------,-+---i
I [symbol] I FEOV I {dcb-addrx } I
I I I (1) I L __________ J. ____ . _______ J. ____________________________ - __________________ J

dcb
specifies the address of the data control block that is opened for
the data SE!t.

If (1) is \'irritten, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

CAUTIONS: The following errors will cause the results indicated:

Error

Forcing an end of volume when the dcb operand
specifies the address of a data control block that
is not open

Forcing an end of volume when the dcb operand does
not specify the address of a data control block

Result

No action

Unpredictable

When BSAM is used, all read or write operations must be checked for
completion before the FEOV macro-instruction is executed.

EXAMPLE: In the following example, the control program is directed to
advance to the next vo)lume of the data set associated wi·th the data
control block REPORT.

EXl FEOV REPORT

GETPOOL -- Get a Buffer Pool (R)

The GETPOOL macro-instruction requests allocation of an area of main
storage, and constructs a buffer pool in the allocated area. The buffer
pool is assigned to the specified data control block.

r----------T-----------T-------------~---------------------.------------,
I Name I Operation I Operand I
~----------+-----------+-------------_._------------------_._-----------~
I [symbol] I GETPOOL I {dcb-addrx }'{ number-value, length-value} I
I I I (1) (0) I L __________ J. __________ .J. ___________________________________ . ____________ J

Section 3:: Data Management SE~rvices 121

dcb
specifies the address of the data control block to which the buffer
pool is to be assigned.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

numbe'r
specifies the number of buffers to be in the pool.
value is 255.

The maximum

leng·th
specifies the number of bytes in each buffer. The value will be
increased, if necessary, to a multiple of double-words by the
control program. The maximum value is 32,760.

If (0) is written, the value giving the number of buffers must have
been loaded into the two high-order bytes of parameter register 0,
and the value specifying the length of each buffer into the two
low-order bytes, before execution of this macro-instruction.

CAUT!ONS: The following cautions apply:

1. Only one buffer pool may be assigned to a data control block.

2. A GETPOOL macro-instruction may be issued either before the data
control block is opened or during execution of the data control
block exit routine during the opening process.

3. In response to the GETPOOL macro-instruction, a data management
routine will issue the equivalent of. a GETMAIN macro-instruction.
The user must be familiar with the cautions relevant to the GETMAIN
macro-instruction. (Refer to Section 2.)

EXAMPLES: In the following examples, EX1 constructs two buffers, of 136
bytes each, in an allocated area of main storage. This buffer pool is
assi9ned to the data control block REPORT.. EX2 indicates that the
required parameters were loaded into registers 1 and 0 before execution
of the macro-instruction.

EX1
EX2

GET POOL
GET POOL

REPORT, 2,136
(1),(0)

PROGRAMMING NOTES: A buffer pool consists of one eight-byte buffer pool
conti~ol block followed by the specified number of buffers. Each buffer
is olligned on the boundary type specif ied in the data control block
field DCBBFALN.

The FREEPOOL macro-instruction should be issued to return the
allocated main storage to the system.

FREE POOL -- Free a Buffer Pool (R)

The FREEPOOL macro-instruction releases an area of main storage that
had previously been assigned as a buffer pool for a specified data
control block. The area must have been acquired by the execution of a
GETPOOL macro-instruction or automatically by the cont·rol program when
the data control block was opened.

128

r----------~----·--------T------------... ----------------------------------,
I Name I Operation I Operand I
.----------+-------------+---~
I [symbol] I FREEPOOL I {dcb-addrx} I
I I I (1) I L __________ -L ____ . ______ ;_.L __ J

dcb
specifies 1::he addiress of the data control block to which the buffer
pool was assigned.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

CAUTIONS: The following cautions apply:

1. If the associatedi data control block is being processed by means of
QSAM with simple puffering, FREEPOOL should not be issued until the
data control block is closed. If exchange buffering is used with
QSAM, FREEPOOL sh~uld not be issued until all the data control
blocks that exchanged buffer segments with the specified buffer
pool are also clo~ed.

2. If the associated! data set is processed by means of BS.AM, FREE POOL
may be issned as soon as the buffers are no longer required.

3. If the associated' data set is processed by means of QISAM, FREEPOOL
should not. be issued until all the data control blocks are closed.

4. In all othe!r cases, FREEPOOL should be issued at ·the earliest
pess ible time to permit the storage area to be released .•

EXAMPLES: In the following examples, EXl returns th,e buffer pool
assigned to the data control block OUTPUT to the system· s a'vailable maJ.n
storage. EX2 re!turns 'the buffer pool assigned to the data control block
whose address is in register 1.

EX1
EX2

FREEPOOL
FREEPOOL

OUTPUT
(1)

BUILD -- Build a Buffer Pool (R)

The BUILD macro-instruction constructs a buffer pool in an area of
main storage provided by the user.

r----------T----------~T-------------~---------------------.------------,
I Name I Operation I Operand I
.----------+----------~+-----------------------------------·------------i
I [symbol] I BUILD I {pool-addrx}" {number-value, length-V'aIUe} I
I I I (1) (0) I
L __________ -L __________ ~-L------------------------------__________________ J

pool
specifies the address of an area of main storage to be used as a
buffer pool. This area must be aligned on a full-word boundary.

If (1) is written p the pool address must have been loaded into
parameter register 1 before execution of this macro-inBtruction.

section 3: Data Management SE~rvices 129

number
specifies the number of buffers to be in the pool. The maximum
value is 255.

leng·t.h
specifies the number of bytes in each buffer. The value will be
rounded to the next highest multiple of full-words by the control
program. The maximum value is 32,764.

If (0) is written, the value specifying the number of buffers must
have been loaded in the two high-order bytes of parameter register
0, and the value specifying the length of each buffer into the two
low-order bytes, before execution of this macro-instruction.

CAQT!ONS: The area of main storage provided by the user must be large
E!housrh to contain both an eight-byte buffer pool control block and the
specified number of buffers after the length of each buffer has been
rounded to the next highest multiple of full words. If the buffer pool
is t~o be assigned to a data control block whose data set requires
double-word alignment for each buffer, the area provided by the user
should be aligned on a double-word boundary, and the length of each
buffer should be a double-word multiple.

EXAM~LES: In the following examples, EXl constructs a buffer pool
containing five buffers, of 100 bytes each, in the area beginning at
POOLLOC. EX2 indicates that the required parameters were loaded into
registers 1 and 0 before execution of the macro-instruction.

EX1
EX2

BUILD
BUILD

POOLLOC,5,100
(1),(0)

GETBUF -- Get a Euffer From a Pool (R)

The GETBUF macro-instruction obtains a buffer from a buffer pool.

r-----------~----------T---,
I Name I Operation I Operand I
~-----------+-----------+---~
I [symbol] I GETBUF I {dCb-addrx},register-absexp I
I I I (1) I
L __________ ~-----------~-----------------------------__________________ J

dcb
specifies the address of the data control block opened for the data
set being processed.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

register
specifies a general register (2-12) into which the control program
is to place the address of the buffer.

CAtrI'IONS: A buffer pool must have been previously assigned to the data
cont~block by the use of the BUILD, GETPOOL or OPEN macro
inst.ructions.

Buffers must be returned to the pool by the FREEBUF macro
inst.ruction.

130

EXCEPTIONAL RETURNS: A return is always made to the user's next
instruction. If no buffer is available within the pool, the register
specified by the user will contain zero rather than an addrE~ss.

EXAMPLE: In the following example, the BUILD macro-instruc1:ion is used
to structure the 8008-~yte area IOPOOL into 10 buffers of 800 bytes each
(preceded by an eiglilt-byte buffer pool control block)" The GETBUF
macro-instruction is used to obtain the address of an available buffer
in register 5. That buffer is then used to hold an input block when a
format-F data se-t is being read. (The length operand is no1: required in
the READ macro-instruction.)

INDCB DCB BUFC$=IOPOOL (and other operands)

BUILD IOPOOL,10,800

GETBUF INDCB,5

READ DECB1,SF,INDCB,(5)

IOPOOL
DS
DS

OD
2002F

FREEBUF-- Return a Bufifer to a Pool (R)

The FREEBUF macro-instruction is used to return a buffer to a pool
maintained for the GETBUF macro-instruction.

r----------T-----------T---,
I Name I Operation I Operand I
~----------+-------------+--~
I [symbol] I FREEBUF ,{dcb-addrx},register-absexp I
I I I (1) I L __________ .L ___________ J. ___ J

dcb
specifies the address of the data control block opened for the data
set.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

register
specifies 1:he general register (2-12) that contains the address of
the buffer being returned to the pool.

section 3: Data Management Services 131

CAU~rIONS: A buffer pool must have been assigned to the data control
block, and the specified buffer must have been obtained by a GETBUF
macro-instruction. The action of the macro-instruction is unpredictable
in other cases.

QUEUED SEQUENTIAL ACCESS METHOD (QSAM)

~rhe queued sequential access method (QSAM) is, for the most part,
device-independent, permitting programs to be written to use one of a
number of different input/output devices. Records of a sequential data
set can be stored and retrieved without the writing of
blocking/deblocking and buffering routines by the user. Either simple
or c~xchange buffering can be requested.

QSAM does not process keys on direct-access devices. Any request to
process a data set with keys will result in gaining access to only the
data portion of each block.

'r'he QSAM device-independent macro-instructions (GET, RELSE, PUT,
PUTX, TRUNC, and PRTOV), device-dependent macro-instruction (CNTRL), and
general service macro-instructions (BUILD, DCB, GETPOOL, FREEPOOL, OPEN,
CLOSE, and FEOV) are used with the queued sequential access method.

QSAM responds to control characters when logical records are written
to a printer or card punch. These control characters are listed in
Appendix F, which also contains a discussion of SYSOUT writers.

Mac~o-Instruction

DCB

GET

PUT

PUTX

RELSE

TRUNC

CNTRL

PRTOV

Function

Constructs a data control block for a sequential
data set.

Gets a logical record from a sequential data set.

Includes a logical record in an output data set.

Returns an updated record to a sequential data
set or includes a record of an input data set in
an output data set.

Causes the remaining logical records in a buffer
to be ignored.

Causes the next logical record to be written as
the first record of the next block.

Controls a printer or card reader.

Tests for printer carriage overflow.

The OPEN macro-instruction option specifying the intended method of
input/output processing, opt1 , has the following effect on the QSAM
macro-instructions:

132

OPEN
Macro=mstruction

Operands -
INPUT

OUTPUT

RDBACK
(magnetic tape
devices only)

UPDAT
(direct-access
devices only)

Effect
A PUT or PUTX may not be used.

A PUT or PUTX will destroy the ent:ire data set
that follows the record written.

A PUT or PUTX may not be used.

A PUTX will replace the record last retrieved
by a GET, or a record presented by the user as
a replacement.

Table 9. Buffering and Modes of GET-PUT
~-------------T-------~------T-------------T-------------T--O -----------,

I ' OUTPUT I SIMPLE SIMPLE I EXCHANGE I EXCHANGE I
I '~ DATA SETI BUFFERING BUFFERING I BUFFERING I BUFFERING I
I '~PUT I I I I
I INPUT'~ I locate-mode move-mode I substi tute- I move-mode I
I DATA SET~,- I I mode I I
I GET '-, I I I I
~--------------'+--------------t-------------+-------------+--o-----------~
I SIMPLE 1"User must .PUTX output I -work area I-Control pro-I
I BUFFERING I move data mode can be I required I srram moves I
I I used I I data to out-I
I locate-mode I I I put buffer I
I I -Control pro-I-User must I I
I I gram moves I move data I-PUTX output I
I I data to out-I to work I mode can be I
I I put buffer I area I used I
~--------------+-------~------t-------------+-------------+--.-----------~
I SIMPLE 1"ContrcH pro- -Work area I-Work area l-v1ork area I
I BUFFERING I gram moves required I required I required I
I I data I I I
I move-mode I -control pro-I-control I-Control pro-I
I 1"No other gram moves I program I 9 ram moves I
I I data rnove- data twice I moves data I data twice I
I I ment for I into work I I
I I sequence: I area I I
I I PUT locate- I I I
I I mode, GET I I I
I I move-mode I I I
~--------------+.------ -----+-------------+----------__ -+--o-----------~
I EXCHANGE 1"User must -PUTX output I-Work area I-PUTX output I
I BUFFERING I move da.ta mode can be I required I mode can be I
I I used I I used-No datal
I locate-mode I I -User must I movement I
I I -Control pro-I move data I I
I I gram moves I into work I-control pro-I
I I data to out-I area I 9 ram moves I
I I put buffer I I data for PUT I
I I I I move-mode I
.--------------+---------------+-------------+-----------.... -+--.-----------~
I EXCHANGE I'Work area I -Work area t -Work area I -Hork area l
I BUFFERING I requixed I required I required I required I
I I I I I I
I substitute- 1'·User must I-Control pro-I-No movement I-Control pro-I
I mode I move data I gram moves I of data I srram moves I
I I to output I data to out-I I data to out- I
I I buffelr I put buffer I I put buffer I L ______________ ..L. ______ ______ ..L _____________ ..L _____________ ..L __ • ___________ J

SectioIil 3: Queued Sequential Access Method (QSAM) 133

Table 9 summarizes the valid combinations of buffering methods and
modE~s of operation when GET and PUT macro-instructions are used to copy
a data set (possibly with insertions and deletions>. Two or more data
cont~rol blocks may be involved, as in the case of an operation that
mer<.;res input data sets into a single output data set.

Once the user has selected the input and output buffering methods and
modes of operation, Table 9 also indicates the requirement for data
movement and any special requirements. For example, if the output data
set uses exchange buffering and the substitute mode of operation, all
data movement can be avoided by using exchange buffering with the
sub~;titute mode of operation for the input data set.

DCB - Define Data Control Block for QSAM

The DCB macro-instruction reserves space for a data control block and
informs the control program of the characteristics and intended uses of
a data set.

r----------T-----------T---,
I Name I Operation I Operand I
~---,.-------+----------+---~
I [symbol] I DCB I DSORG={PSIPSU},MACRF=code I
I I I [,DDNAME=symbol] [,DEVD=code] ~
I I I [,OPTCD={WICIWC}] [,RECFM=code] I
I I I [,LRECL=absexp] [,BLKSIZE=absexp] I
I I I [, BFTEK= {S I E}] [, BUFNO=absexp] I
I I I [,BFALN={FID}] [,BUFL=absexp] I
I I I [,BUFCB=relexp] [,EODAD=relexp] [,EXLST=relexp] I
I I I [, SYNAD=relexp] [, EROPT={ACC I SKP I ABE}] I L ___ • _______ ~ ___________ ~ ___ J

The keyword operands DSORG and MACRF can be supplied by only the DCB
macro-instruction. The remaining operands can be supplied after
assembly time by other sources: these sources are indicated in the
operand descriptions.

DSORG

MACRF

134

specifies the organization of the data set as one of the following:

PS - a physical sequential organization

psu - a physical sequential organization in which any dataset
contains location-dependent information with respect to this
data set. The data set is unmovable.

specifies the types of macro-instructions that will be used in
processing the data set, as follows:

{
(G{MILITIMCILCITC}) }

,MACRF= (P{MILITIMCILCITC})
(G{MILITIMCILCITC},P{MILITIMCILCITC})

G - GET macro-ins~ruction (and implies RELSE macro-instruction)
P - PUT or PUTX ~acro-instruction (and implies TRUNC

macro-instruc~ion)
M - move-mode opeira tion
L - locate--mode operation
T - substi t:ute-mdde operation
C - CNTRL macro-instruction

Note: Only the move mode can be used with data sets on paper tape.

DDNAME

DEVD

specifies the name of the DD statement that will be used to
describe the data set to be processed.

This information can also be supplied by the user's problem program
before opening tn:e data control block.

specifies the de~ice or devices on which the data sets may reside.
For certain devices, additional keyword operands can be written to
provide device-dependent information. The format of these operands
is as follows:

{ ~~['.D. EN={01112}] [,TRTCH={CIEITIET}]}
,DEVD= PT[,CODE={IIFIBICIAITIN}]

PR{,PRTSP={011121 3}]
{~~}'[,MODE={CIE}] [,STACK={112}]

For each dE~vice t~pe, a device-dependent area is reserved in the
data control block. The device types, from DA to RD, are listed in
the above forma't in order of descending space requi rements. To
achieve program dievice independence over a limited set of devices
up to thE! time! of execution, the programmer should specify the
device tYPE! requiring the largest area. If this operand is
omitted, the maximum device-dependent area is reserved.

Each of t:he ad!di tional keyword operands is described under the
optional vaLlue ofi the DEVD operand with which it belongs. Note
that the alternatie sources of information for these operands do not
apply to the DEVDi operand.

DA: specifies a direct-access device.

TA: specifies ma~netic tape.

DEN
can be used with magnetic tape, and specifies a value for
t:he taipe recording density in bits per inch as listed in
']~able 1:0.

This information can be supplied by the DD statement or
the u~er's problem program. If not supplied by any
source, the lowest density is assumed.

Section 3: Queued Sequential Access Method (QSAM) 135

136

Table 10. DEN Values
r---------------T---,
I I Tape Recording Density (bits/inch) I
I ~---------------------------------T-------~-~-----~
I DEN Value I Model 2400 I I
I ~----------------T----------------i Model 7340 I
I I 7 Track I 9 Track I I
.---------------+----------------+----------------+---------------~
I 0 I 200 I I 1511 I
I 1 I 556 I I 3022 I
I 2 I 800 I 800 I I L _______________ ~ ________________ L ________________ ~ ____ ~ __________ J

TRTCH
is used with seven-track tape to specify the tape
recording technique, as follows:

C - specifies
used; if
format-F
program.

that the data conversion feature is to be
data conversion is not available, only
and -U records are supported by the control

E - specifies that even parity is to be used; if omitted,
odd parity is assumed.

T - specifies that BCDIC to EBCDIC translation is
required.

This information can be supplied by the DD statement or
the user's problem program.

PT: specifies paper tape.

CODE
can be used with paper tape, and specifies the code in
which the data was punched as follows:

I - IBM BCD perforated tape and transmission code
(8 tracks)

F - Friden (8 tracks)
B - Burroughs (7 tracks)
C - National Cash Register (8 tracks)
A - ASCII (8 tracks)
T - Teletype (5 tracks)
N - no conversion (format-F records only)

This information can be supplied by the DD statement or
the user's problem program. If not supplied by any
source, I is assumed.

The following apply when conversion is requested:

• Characters that are deleted in the conversion process are not
counted in determining the block size •

• A character determined to have a parity error will not be
converted when the record is moved to the user's input area.

PR: specifies printer.

PRTSP
specifies the line spacing on a printer as 0, 1, 2, or 3.
(This operand is valid if control characters are not
specified in the DCBRECFM field of the data control
block.)

OPTCD

'I'his information can be supplied by the DD statement or
the user's problem program. If not supplied by any
source, 1 is assumed.

pc: specifies a card punch.

RD: specifies a card reader or card read punch.

MODE

STACK

can be used with a card reader, a card punch, or a card
read pUnch and specifies the mode of operation as
follows :-

C - the card image (column binary) mode
E - the EBCDIC code

This information can be supplied by the DD statement or
the user's problem program. If not supplied by any
source, E is assumed.

can be used with a card reader, a card punch" or a read
punch and specifies which stacker bin is to receive the
card. Either·1 or 2 is specified.

This information can be supplied by the DD statement or
the problem program. If not supplied by any source, 1 is
assumed ..

specifies an optional service to be provided by the control
program, as follows:

W - perform a write validity check (on direct-access devices
only).

C - process usin~ the chained scheduling method.
WC - perform a validity check and use chained scheduling.

This information can be supplied by the DD statement or the user's
problem program. If not supplied by any source, none of the
services are provided.

RECFM
specifies the characteristics of the records in the data set, as
follows:

{

U[T] {AIM] }
,RECFM= V[BIT] [AIM]

F[BISITIBSIBTIBSTIST][AIM]

where the record format is:

u - undefined rec~rds
V - variable-length records
F - fixed-length records

the physical attributes are:

B - blocked records
S - standard blocks: no truncated blocks or unfilled tracks within

the data set, with the possible exception of the last block or
track

T - track overflow is to be used

section 3: Queued Sequential Access Method (QSAM) 137

LRECI.

and the record contains:

A - ASA control character (Refer to Appendix F.)
M - machine code control character (Refer to Appendix F.)

For paper tape records, format-U records irrply the use of end-of
record (EOR) characters to delimit the block. The only valid
formats on paper tape are U and unblocked F.

Record format information (F, V, and U) can be supplied by any of
the three possible alternate sources. The absence of any of the
physical attribute mnemonics (B. S, and T) implies the opposite of
that attribute. If no record format information is supplied, a
format-U record without a control character is assumed.

specifies the length, in bytes, of a format-F logical record or the
maximum length of a format-V logical record. This operand is
omitted for format-U records but must be supplied for format-F and
-v records. The maximum value is 32,760.

This information can be supplied by any of the alternate sources.

When reading format-U records, the record length is placed in this
field by the control program after each GET macro-instruction. The
record length is also provided in this manner when reading format-F
records with code conversion from paper tape.

BLKSIZE
specifies the maximum length, in bytes, of a block. For format-F
records, the length must be an integral multiple of the LRECL
value. For format-V records, the length must include the four-byte
block-length field that is recorded at the beginning of each block.
The maximum value is 32,760.

This information can be supplied by any of the three alternate
sources.

When reading format-U records from }?aper tape, the number of
characters moved to the user's input area is limited either by the
number specified in the DCBBLKSI field or by the occurrence of an EOR
character, whichever comes first. This could result in a movement of
zero characters, indicating no data for that particular request. When
reading format-F records from paper tape, the physical end of the tape
must coincide with the end of a block, or a wrong length indication is
given. For format-U records, the physical end of the tape is treated as
an EOR character.

NOTE: Refer to Table 11 for a list of the situations in which the
follc)wing five operands (BFTEK, BUFNO, BFALN, BUFL, and BUFCB) are
applicable.

BFTEK

138

specifies the type of buffering to be supplied by the control
program, as follows:

S - simple buffering
E - exchange buffering

This information can be supplied by the DD statement or the user's
problem program. BFTEK and BFALN information must be supplied by
the same source.

Note: Exchange buffering cannot be used with format-V blocked
records.

Table 11. QSAM Buff~r Acquisition and Data Control Block Field
Requirements

r--------------·---T--.------------,
I I Method of Obtaining Buffer Pool I
I Usa ge and ~--~-------------T-----------------T----·------------~
I Characteristics IAutomatically Byl I I
I I OPEN I BUILD I GETPOOL I
~-------------_._--+----------------+-----------------+------------------~
I I I In data control I In data control I
I When I Iblock exit rou- Iblock exit rou- I
I Issued I Itine or hefore Itine or before I
I I IOPEN I OPEN I
~--------------.---+---"-------------+-----------------+-----.------------~
I ISystem acquires IStructures IAcquires storage I
I Result I storage and I storage into I and structures I
I Istructures into Ibuffer pool linto buffer I
I I bufffer pool I I pool I
~--------T-----·---+----------------+-----------------+-----.-----------~

I DCBBUJ~NO I Opt.ional!. I Required; user I Ignored; GETPOOL I
Data I I Isets this field I sets this field I
control I I Ibefore or after I I
Block I I IBUILD is executed I I
Field ~--------+----------------+-----------------+-----------------~
Require-IDCBBUFCBIMust be omitted; I Required; user I Ignored; GETPOOL I
ments I IOPEN sets this Isets this field I sets this field I

I I field Ibefore or after I I
(to be I I IBUILD is executed I I
provided ~-----.---+-- ... -------------+-----------------+-----.------------i
no later I DCBBFALN I Optional2 I Ignored IOptional 2 I
than I I I I I
conclu- ~-----.---+---.-------------+-----------------+-----.-----------~
sion of IDCBBUFL I Optional; if I Ignored I Ignored I
data I I omitted, the I I I
control I Ifi~ld is not I I I
block I I alti.ered and I I I
exit I IDC~BLKSI is usedl I I
routine> ~-----.---+_-.... -------------+-----------------+-----.------------~

I DCBBF~rEK I Required I Required I Requi. red I
I I I I I

.-_______ ..L-________ +----------------+----------------+--___ . ____________ ~
I I Provides stand- I More than one I Execution 'time I
I Features I ard options Ida ta control I requE'st for I
I I Iblock can use I storage I
I I Ipool I I
~-----------------+----------------+-----------------+-----------------~
I IOnly one data lOser responsible IOnly one data I
I Icontrol block Ifor storage Icontrol block I
I Ican use pool: lacquisition and Ican use pool: I
I Cautions Imust use lboundary align- Imust use I
I I FREEPOOL I ment; must close I FREEPOOL I
I I lall data control I I
I I Iblocks before I I
I I Ireissuing BUILD I I
~ _________________ -..L __ _____________ .l. ________________ .L _____ , ____________ ~

I 1If omitted, the field is not altered and three buffers are provided I
I for 2540 Card Read Punch; two for all other devices. I
I 2If omitted, 1:he field is not altered and double-word alignment is I
I assumed. I L _____________________, ___________________________________ , ____________ J

BUFNO
specifies the nWnber of buffers to be assigned to the~ data control
block. ThE~ maximum number that can be specified is 255; however,

Section 3: Queued Sequential Access Method (QSAM) 139

·the number must not exceed the limit on input/output requests
,established during system generation.

This information can be supplied by the DD statement or the user's
problem program.

BFALN

BUFL

BUFCB

EODAD

specifies the boundary alignment" in bytes, of each buffer., as
follows:

F - the buffer starts on a full-word boundary (one that is not also
a double-word boundary)

:0 - the buffer starts on a double-word boundary .•

'rhis information can be supplied by the DD statement or the user's
problem program. BFALN and.BFTEK information must be supplied by
·the same source.

specifies the length in bytes of each buffer to be obtained for a
buffer pool. The maximum value is 32,760.

'This information can be supplied by the DD statement or the user's
problem program. If it is not supplied, the control program
calculates the length by using the value supplied for the BLKSIZE
operand.

specifies the address of a buffer pool control block (i.e., the
eight-byte field preceding the buffers in a buffer pool).

'This information can be supplied by the user's problem program.

specifies the address of the user's end-of-data set exit routine
for input data sets. This routine is entered when the user
requests a. record and there are no more records to be retrieved.
If no routine has been provided, the task is abnormally terminated.

The only alternate source for this information is the user's
problem program.

EXLS1r

SYNAD

140

specifies the address of an exit list created by the programmer.
'The format of the list is shown in Appendix D.

Exit lists are required if:

• User label exit routines or data cont:r:ol block exit routines
are used.

• A checkpoint is to be taken automatically at the beginning of
each volume (except the first).

'The alternate source for this information is the user's problem
program.

specifies the address of the user's synchronous error exit routine.
The routine is entered if input/output errors result from an
attempt to process data records. If no routine is specified and an
error occurs, the option specified by the EROPT parameter is
executed.

'The only alternate source for this information is the user's
problem program.

EROPT
specifies the option to be executed if an error occurs and either
there is no synchronous exceptional error (SYNAD) e~:i t routine or
there is a SYNADroutine and the programmer wishes to return from
it to his procesSing program. One of the following is specified:

ACC - accept errqr block
SKP - skip error 'block
ABE - terminate t.he task

Table 12 indicates the choices that are permitted for each type of
data set processing.

This informa1tion can be supplied by the DD statement or the user' s
problem program.. If not supplied by any source, ABE is assumed.

Table 12. ErrOl!:" Options for QSAM
r-----------------~---------------------------------------.------------,

I I Process Data set for I
I Oper and ~-----------------T-----------------T-----·-----------~
I I INPUT" RDBACK I OUTPUT I UPDATE I
~--------------.--+-----------------+----------------+-----.------------~
I ACC I X I X1 I X I
I SKP I X I I X I
I ABE I X I X I X I
~--------------.... -..L---... -------------..L----------------.L _____ . ___________ ~
I 1 Valid for p:rinter only. I L ______________ • ___ . ____________ J

CAUTION: The DCB macro-instruction must not be coded wit:hin the first
16 bytes of a cont~ol section. It can be preceded by padding,
constants, or instructions.

GET -- Locate Mode (R)i

This GET mac:ro-instruction locates the next sequential logical record
to be process.~d. The user can process the record wi t:hin the input
buffer or move the record to a work area.

r----------T----------->-T----------------------------------.------------,
I Name I Op.~ration I Operand I
~----------+------------+-----------------------------------.------------~
I [symbol] I GE~r I {dcb-addrx} I
I I I (1) I L __________ ..L __________ '""_.L ___________________________________ . ____________ J

dcb
specifies 1the address of the data control block opened for the data
set being processed.

If (1) is ~NritteI), the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

The control program returns the address of the next record in
parameter regis'ter 1, and places the record length in the logical record

section 3: Queued Sequential Access Method (QSAM) 141

leng1:h (DCBLRECL) field of the data control block. When chained
scheduling is used with format-U records, the maximum record length is
placE~d in the DCBLRECL field.

EXCE~TIONAL RETURNS: The end-of-data set routine specified in the EODAD
field of the data control block is given control when the user issues a
GET macro-instruction after all the records in the data set have been
procE~:ssed. The user can only close the data set. (Unpredictable
results will occur if the user issues a GET or PUT macro-instruction).

After a GET macro-instruction is issued, the synchronous error exit
(SYNAD) routine specified in the data control block is given control if
either of the following conditions exists:

• The next record to be processed starts a block that could not be
read satisfactorily because of an error condition.

• 1\ preceding PUT or PUTX macro-instruction could not be executed
~iithout resulting in an error condition. This situation is
discovered by the GET macro-instruction.

When the SYNAD routine is given control, the general registers will
be SE~t as shown in Table 13.

TablE~ 13. Register Contents Upon Entry to SYNAD Routine
r---------~---T--,
IRegisterlBit 1 Contents 1
~-----.----+----+---~
I 0 18-311 Address of a location containing standard status I
I 1 1 information. 1
1 10-7 1 A displacement value that can be added to the above 1
1 1 I address to provide the address of the first full-word 1
1 1 1 of the channel command word (CCW) that points to the 1
1 1 1 current buffer. This full-word contains the address 1
I 1 I of the buffer in bits 8 through 31. If exchange 1
1 I I buffering with data chaining is used, the CCw is the t
1 I 1 first of a list in which each CCW points to a single 1
I 1 I buffer segment. The chained data flag of all but the 1
I I I last CCW in the list will be set. I
~---------+----+--~

l 0 Set to 1 if error was caused by GET.
1 Set to 1 if error was caused by PUT.
2 Not used.
3 Set to 1 if (1) error indicated by bit 0 did not

prevent reading of the block, or (2) error indicated
by bit 1 occurred during update of an existing block.
Set to 0 if error prevented reading of block or
occurred during creation of a new block.

4 Not used.
5 Set to 1 if undefined characters encountered in

translation from paper tape.
6-7 Not used.
8-31 Address of the data control block.

~---------+----+--~
1 2-13 liThe contents that existed before the macro-instruction I
I 1 1 was executed. I
~---------+----+--~
1 14 liThe return address. 1

~---------+----+--~
I 15 liThe address of the SYNAD routine. 1 L _________ ~ ____ ..L __ J

142

Bits 8 through 3l of register 0 contain the address of a block of
standard status information that can be interrogated in the SYNAD exit
routine. This information includes the channel status word that
describes the detected: error. The information of interest to the
programmer begins two; bytes from the address in the registoer. Refer to
Appendix G for the standard status info:r:mation.

The programme,r can return from the SYNAD routine using the RETURN
macro-instruction. The control program will then execute the option
specified in the~ EROPT' field of the data control block. If the user
does not return, the d~ta set can only be closed.

If the user has not' specified a synchronous error exit routine and an
error condition is discovered, the control program will execute the
option specified in th~ EROPT field. Note that if an error block is not
in main storage (bit 3 set to 0 and bit 0 set to 1), the ac·tion of the
Ace option is unpredictable.

EXAMPLE: In the following example, the address of the data control
block INDCB is load~d into parameter register 1 before the GET
macro-instruction is executed. Special register notat:ion, (1), is
written in the operand field of the macro-instruction rather than an
address, to reflect the manner in which information is to be passed to
the control program. After the GET macro-instruction has been executed,
register 1 contains the address of the next record.

LA l,INDCB

GET (1)

GET -- Move Mode (R)

This GET macro-instruction moves the next sequential l~Jical record
to the user's work area.

r----------T-----------T-----------------------------------.------------,
I Name I Operation I Operand I
~----------+----,------..,.+---------------------------------·------------i
I [symbol] I GET I {dCb-addrX}, {area-addrX} I
I I I (1) (0) I
L __________ ~ ___________ ~------------------------------_________________ J

dcb

area

specifies the address of the data control block opened for the data
set being processed.

If (1) is written, the address must have been loaded into register
1 before execution of this macro-instruction.

specifies the addJ;ess of the user's work area to which the control
program will move logical records.

If (0) is written, the address must have been loaded into parameter
register 0 before execution of this macro-instruction.

Section 3: Queued Sequential Access Method (QSAM) 143

T'lle control program returns the address of the work area containing
the logical record in register 1. (This feature provides compatibility
with the substitute-mode GET macro-instruction, and allows move mode to
be used by the control program when substitute mode cannot be
supported.) The control program also returns the record length in the
logi.eal record length (DCBLRECL) field of the data control block. When
chai.ned scheduling is used with format-U records, the maximtun record
length is placed in the DCBLRECL field.

CAU'1'IONS: The move-mode GET macro-instruction can be used with all
reco~d formats, but on~y with simple buffering. (Refer to Table 9.)

When chained scheduling is used with format-U records, the work area
must. be large enough to contain a maximum-length record; the number of
byt€!s specified by DCBBLKSI is moved from the input buffer to the work
area ...

EXCE~TIONAL RETURNS: Refer to the locate-mode GET macro-instruction.

EXA~~LE: in the following example, the next record from the data set
associated with the data control block STAT is moved to the work area
SAMPLES. The address of the work area is returned to the user in
para.meter register 1.

EXl GET STAT, SAMPLES

GET :- Substitute Mode (R)

'1'his GET macro-instruction transfers ownership of the next sequential
record in a data set from the control program to the user. In return,
the ownership of a work area is transferred from the user to the control
program for future use as an input buffer. There is no movement of
data.. The work area should be the same size as the buffer segment
cont.aining the record.

r---·-------T-----------T---,
I Name I Operation I Operand I
.--_._------+-----------+---~
I [symbol] I GET I {dcb-addrx}, {area-addrX} I
I I I (1) (0) I L ___ .. _______ .L ___________ .L ___ J

dcb

areal

specifies the address of the data control block opened for the data
set being processed.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

specifies the address of the work area being presented to the
control program.

If (0) is written, the address must have been loaded into parameter
register 0 before execution of this macro-instruction.

'I~he address of an input buffer segment containing the next logical
record is returned to the user in parameter register 1 after the
macro-instruction is executed. The control program returns the record
lensrth in the logical record length (DCBLRECL) field of the data control
block.

144

CAUTIONS: Substitute~mode operation can be used only \~ith exchange
buffering, and with ali formats except variable-blocked records. When
substitute mode is requested and the combination of channE~ls, CPU, and
input/output devices c~nnot support the request, move-mode operation and
simple buffering are used. (Refer to Table 9.)

When chained scheduling is used with format-U records, the maximum
record length is placed in the DCBLRECL field. (The work area must be
large enough to contain the maximum-length record in this case.)

EXCEPTIONAL RETURNS: Refer to the locate-mode GET macro-instruction.

PROGRAMMING NOTES:
discussion of the
contain.

Refer to the move-mode PUTX macro-instruction for a
u$e of buffer segments longer than the records they

PUT -- Locate Mode (R)

This PUT macro-instruction provides the address of an arE~a wi thin an
output buffer large enGugh to contain an output record. The user should
subsequently construct, at this address, the next sequential logical
record of the output data set.

r----------T----·------~T--,

I Name I Operation I Operand I
~----------+----------~+---i
I [symbol] I PUT I {dcb-addrx} I
I I . I (1) I L __________ .L ____ . ______L __ J

dcb
specifies the addltess of the data control block opened for the data
set.

If (1) is written,; the address must have been loaded into parameter
register 1 before:execution of this macro-instruction.

The address o:E the r),ext buff er segment large enough to contain the
output record is retutned to the user in parameter register 1 after the
macro-instruction is eJtecuted.

CAUTION: Before execu1;ting this macro-instruction with format-U or -v
records, the user m~st place the length of the record in the logical
record length (DCBLRECL) field of the data control block. E'or format-U
records, the DCBRECL; field determines the length of the rE~cord that is
subsequently wri,tten. !For format-V records, the DCBRECL fiE~ld is used
to locate a buffer isegment of sufficient size, but the length of the
record actually c:onstrl;lcted in the segment is verified before the record
is written. The length placed in the DCBRECL field can therefore be
greater than the length of the format-V record that is constructed; no
error will result, but ,the blocking factor may be affected.

This mode of ,the pu'Ii' macro-instruction can be used with all record
formats with simple buffering. The PUTX macro-instructi.on cannot be
used if \:.he data control block was opened for the loca.te-mode PUT
macro-instruction.

Section 3: Queued Sequential Access Method (QSAM) 145

EXCE!>TIONAL RETURNS: The synchronous error exit (SYNAD) routine speci
fied in the data control block is given control if there is no room in
the buffers to construct the next record, and writing a buffer will
cause a permanent error condition.

When the SYNAD routine is given control, the general
be set as shown in Table 13. Status indicators
Appendix G.

reg i"sters will
are listed in

PROGI~MMING NOTES: The control program will write out the last buffer
when-the data set is closed.

PUT .. - Move Mode (R)

This PUT macro-instruction moves a logical record into an output
buffer.

r----------~----------T---,
I Name I Operation I Operand I
~----------+-----------+---~
I [symbol] I PUT I {dcb-addrX} , {area-addrX} I
I I I (1) (0) I L ___ •• ______ ~ ___________ ~ ___ J

dcb

area.

specifies the address of the data control block opened for the data
set being processed.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

specifies the address of the next logical record to be moved into
the output buffer.

If (0) is written, the address must have been loaded into parameter
register 0 before execution of this macro-instruction.

'I'he control program returns the address of the work area containing
the logical record in register 1. (This feature provides compatibility
with the substitute-mode PUT macro-instruction, and allows move mode to
be used by the control program when substitute mode cannot be
supported.)

CAU'I'IONS: With simple buffering, all record formats may be used. With
exch~nge buffering, all record formats except blocked format V may be
used.. (Refer toTable 9.) For format U records,the actual record
length must be known and placed in the DCBLRECL field of the data
cont~:rol block before the PUT macro-instruction is executed.

EXCE:PTIONAL RETURNS: The user's synchronous error exit (SYNAD) routine
specified in the data control block is given control if there is no room
in t~he buffers to move the next record and writing a buffer will cause a
permanent error condition.

~'hen the
be set as
ApPEmdix G.

146

SYNAD routine is given control, the general registers will
shown in Table 13. Status indicators are listed in

EXAMPLE: In the following example, the use of a move-mode PUT
macro-instruction with simple buffering is shown. The address of the
next logical record to be processed is returned in register 1 following
the locate-mode GET macro-instruction. The record is part of an input
data set associated wit.h the data control block INVEN. Afte:r the record
has been updab=d wit.hin the input buffer, the move-mode PUT macro
instruction is used to move the record to an output buffer. Before the
PUT macro-instruction is executed, the address of the record is placed
in parameter register o. The branch instruction is used to reenter the
processing loop.

AAV GET INVEN

LR 0.,1
PUT REPORT,~O)

B Al\V

PUT -- Substitute Mode(R)

This PUT macro-instruction transfers ownership of a work area
containing a logical record to the control program. In return, the
ownership of a buffer segment is transferred to the user, for use as a
work area. There is no movement of data in main storage.

r----------T-----.------T------------------~----------------------------,
I Name I Operation I Operand I
.----------+-----------+---~
I [symbol] I PUT I {dcb-addrx},{area-addrx} I
I I I (1) (0) I L __________ ~ _____ • ______ ~ ___ J

dcb

area

specifies the address of the data control block opened for the data
set being processed.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

specifies the address of the area containing the logical record
that is given to the control program.

If (0) is written, the address must have been loaded into parameter
register 0 before execution of this macro-instruction.

When processing fQrmat-U records, the user must place the length of
the record in thE~ logiqal record length (DCBLRECL) field of the data
control block before ex:ecuting the PUT macro-instruction.

The address of the work area presented in exchange for the record is
returned to the user in parameter register 1.

Section 3: Queued Sequential Access Method (QSAM) 147

CAU,]~ION: Refer to the substitute-mode GET macro-instruction.

EXC~PTIONAL RETURNS: .Refer to the locate-mode PUT macro-instruction.

EXA~1PLES: In the following example, the use of the substitute-mode GET
and - PUT macro-instructions Wh61 a data set is being updated (and the
records are of fixed lengths) is shown. The address of a work area,
equal in size to a logical record, is placed in register o. This work
area is presented to the control program by the first GET macro
inst:ructioni in return, the user receives, in register 1, the address of
the area containing the first logical record to be updated. After the
record has been processed, its address is placed in register 0, and the
PUT macro-instruction returns the area containing the record to the
control program. To complete the cycle, the control program returns the
address of a work area in register 1. The user places the address in
register 0, and executes an unconditional branch to the GET macro
ins-t:ruction.

QQA
LA
GET

0, WORK
INDATA, (0)

LR 0,1
PUT OUTDATA,(O)
LR 0,1
B QQA

If the user is creating a new output data set, a similar loop can be
constructed by using only the substitute mode PUT macro-instruction, as
follows:

EEZ

148

LA
GET

GET

GET

10,WORKAREA
REPTOLD

INVENOLD

SOURCE

locate-mode

locate-mode

locat e-mode

create new record in work area, making all references
using register 10

PUT NEWDCB,(10)
LR 10,1
B EEZ

PUTX -- Update Mode (R)

This PUTX macro-instruction returns an updated logical record to a
data set. The record must have been retrieved by a locate-mode GET
macro-instruction. There is no movement of data in main storage.

r----------T----·--------T---,
I Name I Operation I Operand I
~----------+-----------+---i
I [symbol] I PUTX I {dcb-addrx} I
I I t (1) I L __________ ..L ____ . _______ ..L ___ J

dcb
specifies the address of the data control block opened for the data
set being updated~ This address must be the same as the one
specified in the (SET macro-instruction used to retrievE~ the record.

If (1) is written., the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

CAUTIONS: The following cautions apply:

• The data set must reside on a direct-access device.

• The update optiom must have been specified in thE~ 'OPEN macro
instruction that otpened the data control block.

• This macro-instruct.ion must have been preceded by a locate-mode GET
macro-instruction that referred to the same data set.

• For blocked-format records, if any logical record in a block has
been returned by a PUTX macro-instruction, the control program will
not write the em.tire block back to the data set until all the
logical records haVe been processed.

• The length of the block cannot be altered before the record is
updated by this macro-instruction.

• New records cannot be inserted.

EXCEPTIONAL RETURNS: Any errors in writing back the block are
discovered by 'the next GET macro-instruction that attemp1:s to use the
buffer. Hence, 'there is no unusual return directly from this macro
instruction.

EXAMPLE: In the fol10wing example, the use of a PUTX macro-instruction
when records are being updated is shown. The locate-mode GET macro
instruction provides the address of the next record to be updated~ The
PUTX macro-instruction~ after processing the record, returns it to the
data set. The conditional branch instruction tests the condition code.
If the record is to be updated, the next sequential instruction is
executed; if it is not to be updated, another GET macro- inst.ruction will
be issued to locate the next record. The unconditional branch following
the PUT macro-instruction is used to reenter the processin9 loop. When
all the input records are processed, the EODAD routine is given control.

sectioN 3: Queued Sequential Access Method (QSAM) 149

LLS GET DCBA

BH LLS

PUTX DCEA

B LLS

PUTX ___ O.....;u_t'-'p_u_t_M_o~d=e~-'-(~R~)

~rhe PUTX macro-instruction causes a logical record contained in a
buffer of an input data set to be written as the next sequential record
of an output data set. When exchange buffering is used with both data
sets, there is no movement of data in main storage.

r-----------T-----------T---,
I Name I Operation I Operand I
~-----------+-----------+---~
I [symbol] I PUTX I {dcbout-addrx}, {dcbin-addrx} I
I I I (1) (0) I L ___________ L ___________ L ___ J

dcbout

dcbin

specifies the address of the data control block opened for the
output data set.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

specifies the address of the data control block opened for the
input data set.

If (0) is written, the address must have been loaded into parameter
register 0 before execution of this macro~instruction.

CAU~IONS: The following cautions apply:

• PUTX and locate- or substitute-mode PUT macro-instructions cannot be
used on the same data set. The MACRF operand of the DCB macro
instruction for the output data set must specify move mode (M).

• The output-mode PUTX macro-instruction must be preceded by a
locate-mode GET macro-instruction that refers to the input data set.

• If exchange buffering is used, a record may not be available to the
programmer after it is released by the PUTX macro-instruction.

150

COMPATIBLE RECOHD FORMATS AND BUFFERING TECHNIQUES: Normally, when the
PUTX macro-ins1:ruction is used, data sets with the same record formats
and buffering tE~chniques are processed together. However, the control
program supports ce~tain variations from this procedure. Table 14
indicates which combinations of input and output record formats are
acceptable. For eae'1h acceptable combination, the table indicates the
buffering technique pdssible for the output data set. Either simple or
exchange buffering can be used with the input data set.

Table 14. Acceptable Record Formats and corresponding Buffering
Techuiquesfor QSAM and the PUTX Macro-Instruction

~---------------------T--------T--------T---------T--------T----------,
I -----. dcbout I to U I to F I to FB I to V I to VB I --I ---. (move modS) I I I I I I
I dcbin -.--........ __ I (1) I (2) I (2) I (3) I (3) I
I (locate mode) __ . I I I I I I
~---------------------~~--------+--------+---------+--------+----------~
I from U I SE I I I I I
I from F I SE I SE I SE I I I
I from FB I SE I SE I SE I I I
I f rom V I SE I I I SE I S I
I f rom VB I S I I I SIS I
~----------------------.-.L--------.L--------.L---------.L ________ .1. __________ ~

where:

S indicates i:hat a simple buffered output data set may be used

E indicates i:hat an exchange buffered output data set may be used

U indicates format-u records

F indicates format-iF records

FB indicates formati-F blocked records

v indicates format-v records

VB indicates format~V blocked records _______________ . ______ ' ___ J

Notes for Table 14:

1. The block size for the format-U output data set must be as large as
the largest: logioal record size of the input data sets.

2. The logical record size for format-F and -FB
same for both data sets.

records must be the

3. The maximum logical record size for format-V and -VB
correspond.

records must

EXCEPTIONAL RETURNS: Refer to the locate-mode PUT macro-instruction.

PROGRAMMING NOTES: Th:e PUTX macro-instruction cannot be used with
format-F or -PB re!cords if the logical record sizes of the two data
sets dif fer. Howeveir, when exchange buffering is specified, the
substitute-mode GET and PUT macro-instructions roay be used to pass
format-F or -FB recor~s between data sets of unlike logical record
sizes. This proceduire requires that both the work areas and buffer
lengths be defined as being at least as large as the largest logical
record. The user can then modify records in the work area provided by
the control program. If all buffer segments and work areas are defined

Sectio'n 3: Queued Sequential Access Method (QSAM) 151

as being larger than the largest logical record, the rightmost positions
of these fields can be used to construct chains or other arrays. The
cautions that accompany the substitute-mode GET macro-instruction apply
here.. Note that when a buffer is subdivided by the control program, the
segment lengths are equal.

RELS~ -- Release an Input Buffer (R)

The RELSE macro-instruction causes the remaining contents of the
current input buffer to be ignored. The next GET macro-instruction will
retrieve the first logical record from the next input buffer.

r-----------T-----------T---,
I Name J Operation I Operand I
.-----------+-----------+---~
I [symbol] I RELSE I {dcb-addrx} I
I I I (1) I L __________ L ___________ ~ ___ J

dcb
specifies the address of the data control block opened for the
input data set.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

CAUTION: A RELSE macro-instruction is ignored if used with unblocked
records or if all records in a buffer have been processed, or if it
immediately follows another RELSE macro-instruction.

TRUNC -- Truncate an Output Buffer (R)

The TRUNC macro-instruction causes the current output buffer to be
rega.rded as filled. The next PUT macro-instruction will use the next
buffer to hold a logical record.

r---'-------T-----------T---,
I Na.me I Operation I Operand I
~----------+-----------+---~
I [symbol] I TRUNC I {dcb-addrx} I
I I I (1) I L __________ ~ ___________ ~ ___ J

dcb
specifies the address of the data control block opened for the
output data set.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

A TRUNC macro-instruction will be ignored if used with unblocked
records or when a buffer is full, or if it immediately follows another
TRUNC macro-instruction.

CAUI~ONS: The TRUNC macro-instruction is meaningful only with format-F
and -v blocked records. Its use with format-F blocked records means
that the data set cannot be considered to contain standard blocks. When

152

the data set is read, the RECFM operand of the DCB macro-instruction
must not contain an S.

EXCEPTIONAL RE'fURNS: Any error resulting from the execution of this
macro-instruction wilt be discovered by the next PUT macro-instruction
that requires the use of the buffer. There is no direct exceptional
return from this macro~instruction.

CNTRL -- Control a Printer or stacker (R)

The CNTRL maGro-ins~ruction provides stacker selection of an on-line
card reader, or carriage control of an on-line printer.

r----------T----·------.... T-----------------------------------.------------,
I Name J OpE~ration I Operand I
.----------+-----------+-----------------------------------,------------~
I [symbol] I CNTRL I dcb-addrx,action-{SSISPISKJ,number-value I L __________ .L ___________ J.-_________________________________ . ____________ J

dcb
specifies the address of the data control block (DCB) opened for
the data set being processed.

action
specifies t~hat the controlling action to be performed is one of the
following:

S8 - select. a stacker (the number operand values are 1 or 2).
SP - space lines on the printer (the number operand values are 1,

2, or 3).
SK - skip to a carriage control tape channel (the number operand

values are 1 through 12).

number
specifies a value for the controlling action to be p=rformed, as
described in the preceding operand.

A skip to a given carriage control tape channel will cause no action
if the device is already at that channel.

CAUTIONS: For stacker' selection, the DCBBUFNO field of the data control
block must be one. Each GET macro-instruction, except the last, must be
followed by a st.acker-selection CNTRL macro-instruction dirl=cted to the
same device. When the data set is closed, the last card rl=ad is placed
in the stacker specified by the previous CNTRL macro-instruction. The
CNTRL macro-instruction need not immediately follow the GET macro
instruction.

For the printer, use of control characters precludes use of the CNTRL
macro-instruction.

EXAMPLE: In the following example, the on-line printer associated with
the data control block PRINTOUT will skip to channel 7 of the carriage
control tape.

EXl CNTRL PRINTOUT,SK,7

section 3: Queued Sequential Access Method (QSAM) 153

PRTOV -- Test for Printer Carriage Overflow (R)

The PRTOV macro-instruction is used to control the page format for an
on-line printer. The programmer can test channel 9 or 12 of the
carriage control tape for an overflow condition.

r----------T-----------T---,
I Name I Operation I Operand I
~----------+-----------+---i
I [symbol] I PRTOV , dcb-addrx,number-{9112} [,userrtn-addrx] I L ___ , _______ .1. ___________ J. ___ J

dcb
specifies the address of the data control block opened for the data
set being processed.

'number J
specifie which channel (9 or 12) is to be tested.

userrtn
specifies the address of a routine that is to be given control if
the overflow condition exists. If this operand is omitted, an
automatic skip to channel 1 will be performed when an overflow
condition is found.

EXCEPTIONAL RETURNS: The contents of the general r~gisters upon entry
to the user's overflow routine are as follows:

Regi~ter
o and 1

Contents
Contents destroyed

2 through 13 Those that existed before the
macro-instruction was executed
The return address 14

15 The address of the exit routine

EXAMPLE: In the following example, channel 9 will be tested for an
overflow condition. Since the optional error routine address has been
omit,ted, an overflow condition will cause a skip to channell.

EX1 PRTOV DCBOUT,9

PROGRAMMING NOTES: The test for an overflow condition is performed
synchronously or asynchronously, depending on whether a user's routine
has been provided:

• If a routine has been provided, the test is performed when the PRTOV
macro-instruction is issued. To ensure that all printing operations
'~ill be completed before the test is made, only one output buffer
should be used.

• If no routine has been provided, the test is performed just before
printing the record referred to by the next PUT macro-instruction.
All previous printing operations will be completed before the test
is made.

An overflow condition is detectable after printing of the line that
follows the line corresponding to the channel 9 or channel 12 punch in
the carriage control tape. Note that if the locate mode of PUT is used,
a buffer provided by one PUT macro-instruction is not written until
execution of the next PUT macro-instruction.

,]~his macro-instruction causes no action if used for a device other
than a printer.

154

BASIC SEQUENTIA:L ACCESS METHOD (BSAM)

The macro-instruct.ions included in this group permit the user to
create and gain access to blocks of a sequentially organizE~d data set,
and to create a data set that can be processed by the basic direct
access method (BDAM).. The user can remain device independent by
restricting himself to a subset of macro-instructions. For users to
whom device ind1ependence is not a limiting factor, a more E~xtensi ve set
can be used.

Macro-Instruction

Device Independence:

READ
WRITE
CHECK
CLOSE (TYPE:=T)
PRTOV

Tape/Direct Access
Device Independence:

NOTE
POINT
BSP

Device-Dependence:

CNTRL

WRITE

WRITE

Reads a block.
Writes a block.

Function

Waits and tests for completion.
Processes labels and repositions volumes.
Tests for printer carriage overflow.

Notes where block was written.
Repositions to a specified block.
Backspaces a block.

Controls a card reader, printer, or magnetic
tape drive.

Creates a direct organization data set; used
with format-F records.

Creates a direct organization data set; used
with format-V or -U records.

The user must include a DCB macro-instruction in his program. All
general service macro-:instructions can be used; the OPEN and CLOSE
macro-instructions mu~t be used.

BSAM responds to c;ontrol characters when logical records are written
to a printer or punch., The control characters are listed in Appendix F,
which also contains a discussion of SYSOUT writers.

Sectilon 3: Basic Sequential Access Method (BSAM) 155

The OPEN macro-instruction option specifying the intended method of
inpu·t/output processing, opt.1.' has the following effect on the BSAM
macro-instructions:

OPEN
Macro-InStruction

;Jperands

INPUT

ou'rpUT

INOUT,OUTIN

RDBACK

UPDAT
(direct-access
device only)

Effect

A WRITE macro-instruction may not be used.

A READ macro-instruction may not be used.

All macro-instructions may be used.

A WRITE macro-instruction may not be used.

A WRITE macro-instruction will replace the
block last addressed by a READ macro
instruction.

DCB .-- Define Data Control Elock for BSAM

The DCB macro-instruction reserves space for a data control block and
informs the control program of the characteristics and intended uses of
a dat.a set.

r---·-------T-----------T--,
I Name I Operation I Operand I
~---.-------+-----------+---~ I [symbol] I DCB I DSORG= {PS I PSU}, MACRF=code I
I I I [,DDNAME=syrnbol] [,DEVD=code] I
I I I [,OPTCD={WICIWC}] [,RECFM=code] I
I I I [,LRECL=absexp] [,BLKSIZE=absexp] I
I I I [,NCP=absexpl [,BUFNO=absexp] I
I I I [,BFALN={FID}] [,BUFL=absexp] I
I I I [,BUFCB=relexp] [,EODAD=relexp] I
I I I [,EXLST=relexp] [,SYNAD=relexp] I L ___ . _____ --~ ___________ ~ ___ J

The keyword operands DSORG and MACRF can be supplied by only the DCB
macro-instruction. The remaining operands can be supplied after
assembly time by other sources; these sources are indicated in the
operand descriptions.

DSORG

156

specifies the organization of the data set as one of the following:

PS - a physical sequential organization
PSU - a physical sequential organization in which any data set

contains location-dependent information with respect to this
data set. The data set is unmovable.

Note: The DCB macro-instruction is ordinarily the only source of
the DSORG operand. However, if a direct-organization data set is
to be created, the DCB macro-instruction must specify DSORG=PS and
the DD statement must specify DSORG=DA.

MACRF
specifies 1:he tYBes of macro-instructions that will be used in
processing the data set, as follows:

{

(R[qIP]) }
,MACRF= (W[~IPIL])

({R[;C] ,W[C]})
R liP] , W[P]

R - READ macro-instruction
W - WRITE macro-~nstruction
C - CNTRL macro-~nstruction
P - POINT macro-ilnstruction (which implies the NOTE)
L - WRITE macro-i,nstruction (load mode for a direct data set)

If only f:R) or (W) , or (R, W) is written, device-independent
sequential proceslsing is assumed. Note that the CNTRL macro
instruction canndt be used if the NOTE and POINT macro-instructions
are used.

DDNAME

DEVD

specifies the name of the DD statement that will be used to
describe the data! set to be processed.

This information 'can be supplied by the user's problem program
before opening th:e data control block.

specifies the de~ice or devices on which the data sets may reside.
For certain devic¢s, additional keyword operands can be written to
provide device-dependent information. The format of these operands
is as follows:

{

DA [" KEYLEN=val ue] }
TA['P. EN={OI112}] [,TRTCH={CIEITIET}]

, DEVD=: PT [, CODE= { I I FIB I C I A I TIN}]
PR[,?RTSP={OI11213}]
{~~}![,MODE={CIE}] [,STACK={112}]

For each device: type, a device-dependent area is reserved in the
data control blocJ<:. The device types, from DA to RD, are listed in
descending space requirements. To achieve program device
independence over' a limited set of devices up to the time of
execution, the programmer should specify the device type requiring
the largest. area. If the operand is omitted, the maximum device
dependent area is reserved.

Each of t.he adpi tional keyword operands is described under the
optional value of: the DEVD operand with which if belongs. Note
that the alternate sources of information for these operands do not
apply to the DEVD operand.

DA: specifies a direct-access device.

KEY LEN
specifiies the length, in bytes, of the k.ey associated
w'ith a physical block. When a record is read or written,
the numper of bytes transmitted equals the key length
plus the block length. The maximum length of the key is
255 bytes.

In this access method, channel commands for d.irect-access
devices are establiShed (by the control prO<J:cam) to read
both the key and data, if required.

Section 3: Basic Sequential Access Method (BSAM) 157

158

This arrangement presents no problem unless the data set
has been incorrectly defined; i.e., if the user had
omitted the KEYLEN parameter, but the data set did in
fact contain keys.

This information can be supplied by any of
alternate sources. If the operand is written
in the DCB macro-instruction, the alternate
ignored and no keys are read or written
execution of the program.

the three
as KEYLEN=O
sources are
during the

TA: specifies a magnetic tape drive.

DEN
specifies a value for the tape recording density in bits
per inch as listed in Table 15.

This information can be supplied by the DD statement or
the user's problem' program. If not supplied by any
source, the lowest density is assumed.

Table 15. DEN Values
r---------------T---,
I I Tape Recording Density (bits/inch) I
I ~---------------------------------T---------------i
I DEN Value I Model 2400 I I
I ~----------------T----------------i Model 7340 I
I I 7 Track I 9 Track I I
~---------------+----------------+----------------+---------------i
I 0 I 200 I I 1511 I
I 1 I 556 I I 3022 I
I 2 I 800 I 800 I I L _______________ ~ ________________ ~ ________________ ~ _______________ J

TRTCH
is used with seven-track tape to specify the tape
recording technique, as follows:

C - data conversion feature is to be used. If data
conversion is not available on the allocated device,
only format-F and -u records are supported by the
control program.

E - even parity is to be used (if omitted, odd parity is
assumed) •

T - BCDIC to EBCDIC translation is required.

This information can be supplied by the DD statement or
the user's problem program.

PT: specifies a paper tape device.

CODE
specifies the code in which the data was punched, as
follows:

I - IBM BCD perforated tape and transmission code
(8 tracks)

F - Friden (8 tracks)
B - Burroughs (1 tracks)
C - National Cash Register (8 tracks)

OPTCD

A - ASCII (8 t~acks)
T - Teletype (5 tracks)
N - no ~onversion (format-F records only)

This information can be supplied in the DD statement or
the user's problem program. If not supplied by any
source, I is assumed.

The following apply when conversion is requested:

• Characbers that are deleted in the conversion process are not
counted in determining the block size.

• A character determined to have a parity error will not be
converbed when the record is moved to the user's input area.

PR: specifies a wrinter.

PRTSP
specifies the
('rhis oIPerand
specified in
block.)

line spacing on a printer as 0, 1, 2, or 3.
is valid only if control characters are not
the DCBRECFM field of the data control

This information can be supplied by the DD statement or
the user's problem program. If not supplied by any
source, 1 is assumed.

PC: specifies a card punch.

RD: specifies a card reader or card read punch.

MODE

STACK

can be 'Used with a card reader, a card punch, or a card
read p~nch and specifies the mode of operation as
follows:

C - the card image (column binary) mode
E - EBCDIC code

This information can be supplied by the DD statement or
the us~r's problem program. If not supplied by any
source, . E is assumed.

can be used with a card reader, a card punch, or a card
read punch, and specifies which stacker bin is to receive
the card. Either 1 or 2 is specified.

This information can be supplied by the DD statement or
the user's problem program. If not supplied by any
source, 1 is assumed.

specifies an optional service to be provided by the control
program, as follows:

W - perform a wr.ite validity check (direct-access devices only)
C - process using the chained scheduling method
WC - perform both 'validity checking and chained scheduling

section 3: Basic Sequential Access Method (BSAM) 159

RECFM

160

This information can be supplied by the DD statement or by the
user's problem program. If not supplied from any source, neither
service is performed.

specifies the characteristics of the records in the data set, as
follows:

{

U[T] [AIM] }
,RECFM= V[BIT] [AIM]

F[BISITIBSIBTIBSTIST][AIM]

where the record format is:

U - undefined records
V - variable-length records
F - fixed-length records

the physical attributes are:

B - blocked records
S - standard blocks: no truncated blocks or unfilled tracks within

the data set, with the possible exception of the last block or
track

T - track overflow is to be used

and the record contains:

A - ASA control character (Refer to Appendix F.)
M - machine code control character (Refer to Appendix F.)

Record format information can be supplied by any of the three
possible alternate sources. The absence of a physical attribute
mnemonic (B, S, and T) implies the opposite of that attribute.

If no record format information is supplied, a format-u record
without a control character is assumed.

If A is specified for a data set on an IBM 1442 Card Read Punch,
which is opened for OUTPUT, each WRITE macro-instruction causes a
card to be punched and ejected into the stacker indicated by the
control character. But, if the data set is opened for INOUT, WRITE
macro-instructions do not cause card ejection: READ macro
instructions cause the card at the punch station to be ejected into
the stacker bin indicated by the control character. In this case,
it is recommended that the STACK option specify stacker bin 1,
because selection of stacker bin 2 for use with the READ macro
instruction takes precedence over prior stacker selection for the
card at the punch station when the READ macro-instruction is
executed.

If M is specified for a data set on an IBM 1442 Card Read Punch,
which is opened for OUTPUT, the system uses each control character
as the command code of a channel command word (CCW). In this way,
the problem program can issue write or control commands with
stacker selection and with or without card ejection. In addition,
the card image modifier of the write command may be specified. If
stacker bin 2 is selected in a command code, the next card to be
ejected is stacked in stacker bin 2, irrespective of other command
codes up to and including the one causing the card ejection. If
the data set is opened for INOUT, machine code control characters
are used as described for OUTPUT, with the execution of the WRITE
macro-instruction. Execution of a READ macro-instruction always
causes the card at the punch station to be stacked. In this case,

LRECL

it is recommended that the STACK option specify st.acker bin 1,
because selection :of stacker bin 2 for use with the READ macro
instruction takes precedence over prior stacker selection for the
card at the punch station when the READ macro-instruction is
executed. In the WRITE macro-instruction, if the· card eject
modifier is used, the card at the read station cannot be retrieved
beca use thE:! staqking operation moves that card f rom the read
station to 1:he punch station.

For paper tape records, format-U records imply the use of end-of
record (EOR) characters to delimit the block. The only valid
formats on paper tape are U and unblocked F.

specifies the length, in bytes, of a format-F logical record, or
the maximum length of a format-V logical record. This operand is
omitted for format,-U records. The maximum value is 32,760.

This information fs not normally used by the basic sequential
access method (aSAM) but can be entered in the DCB(or by anyone
of the threE:! al terrnate sources) so that it will be recorded in the
data set label and available to the user's problem program. If a
short block is enqountered when format FB blocks are being read,
the control program uses the LRECL value to test for a true short
block.

When paper 1:ape jJs being read (with conversion), the control
program places the record length in the DCBLRECL field after each
READ macro-instruction.

BLKSIZE
specifies the max:Lmum block length in bytes. For format-F records,
the length must be an integral multiple of the LRECL value. For
format-V records,: the length must include the four-byte block
length field that iis recorded at the beginning of each block. The
maximum value is 3,2,760.

This information can be supplied by any of the three alternate
sources.

When reading format-U records from paper tape, the number of
characters moved to the user's input area is limited either by the
number specified in the DCBBLKSI field or by the occurrence of an EOR
character, whichever icomes first. This could result in a movement of
zero characters, indic~ting no data for that particular request. When
reading format-F records from paper tape, the physical end of the tape
must coincide wi 1:.h the ,end of a block, or a wrong length indication is
given. For format-U r~cords, the physical end of the tape is treated as
an EOR character.

NCP
spec if ies 1:.he maximum number of READ or WRITE macro- instructions
that will bE~ issu~d before a CHECK macro-instruction. The maximum
number tha't can be specified is 99; however, the number must not
exceed the limit on input/output requests established during system
generation.

This information Can be supplied by the DD statement or the user's
problem program. If not supplied from any source, a maximum of one
is assumed.

NOTE: Refer to Table 16 for a list of the situations in which the
following four operands (BUFNO, BFALN, BUFL, and BUFCB) are applicable.

Secti~n 3: Basic Sequential Access Method (BSAM) 161

Table 16. BSAM and BPAM Buffer Acquisition and Data Control Block Field
Requirements

r------------------T---T--------,
I I Method of Obtaining Buffer Pool ,User,
IUsage and ~--------------T---------------T------------~Performs'
I Characteristics I Automatically I I I All Buf-I
I I by OPEN I BUILD 'GETPOOL I fering I
~------------------+--------------+---------------+------------+--------~
I I lIn data control I In data I I
I WhE:~n I I block exit rou-I control I ,
I Issued I Itine or before Iblock exit I I
I I I OPEN I routine or , I
I I , ,before OPEN I ,
~------------------+--------------+---------------+------------+--------~
, 'System ac- I Structures I Acquires I I
I lquires storagelstorage into I storage and, I
I Result land structureslbuffer pool I structures , I
I ,into buffer I ,into buffer I ,
, ,pool, I pool I I
~---·-----T--------+--------------+---------------+------------+--------~
Data I DCBBUFNOIRequired I Required; user I Ignored; IMust be I
Control I' I sets this field, GETPOOL I omi tted2 1
Block, I Ibefore or afterlsets this I I
Field I' IBUILD executionlfield I I
Re~['uire- ~--------+--------------+--------------+------------+--------~
ments IDCBBUFCBIMust be I Required; user I Ignored; I Ignored ,

I I omitted Isets this fieldlGETPOOL I ,
(to be I' ,before or after I sets this I ,
provided I I I BUILD execution' field I I
no later~--------+--------------+---------------+---~--------+--------~
thaLn I DCBBFALN J Optional1. I Ignored ,Optional1. I Ignored I
conclu- ~--------+--------------+---------------+------------+--------~
sio:n of 'DCBBUFL I Optional; if , Ignored , Ignored 'Ignored ,
data I I omitted, field, I , ,
control I I is not alteredl , I I
block I 'and DCBBLKSI I , , I
exi t I I and DCBKEYLE I I I I
routine) I 'are used I I I I
~---------~--------+--------------+---------------+------------+--------~
I I Provides IMore than one I Execution IUser ,
, I standard Idata control Itime request I supplies I
I Features I options I block can use I for storage; I buffers I
I I Ipool; user luser issues Ithrough I
I I lissues GETBUF IGETBUF and Ihis own I
I I I and FREEBUF I FREEBUF I methods I
~----.--------------+--------------+---------------+------------+--------~
I IOnly one data IUser responsi- IOnly 1 data IUser re-I
I Icontrol block Ible for storagelcontrol Isponsi- I
I Ican use pool; lacquisition andlblock can Ible for I
I cautions 'must use I boundary align-I use pool; I boundary I
I , FREEPOOL I ment; must I must use I align- I
, , Iclose all data 'FREEPOOL Iment ,
, I Icontrol blocks' , ,
I , Ibefore reissu- I I I
I , I ing BUILD I I I
~----.--------------~--------------~--------------.J.----________ ~ ________ ~
I 1.If omitted, field is not altered, double-word alignment is assumed.,
, 2If the DD statement is shared, the system may allocate storage fori
, buffers specified in other data control blocks. To prevent suchl
, allocation, DCBBUFNO must be cleared to binary zeros by the datal
I control block exit routine. I L ___ • ______ - __ J

162

BUFNO

BFALN

BUFL

BUFCB

EODAD

EXLST

specifies ~the number of buffers to be assigned to the data control
block. The maximtim number that can be specified is 2~i5; however,
the number must: not exceed the limi t on input/out:put requests
established during system generation.

This informa.tion Gan be supplied by the DD statement or the user's
problem pro9ram.

specifies ithe boundary alignment, in bytes, of each buffer, as
follows:

F - the buffel;' starts on a full-word boundary (one that. is not also
a double-word ,boundary)

D - the buffer st~rts on a double-word boundary

This information can be supplied by the DD statement or the user's
problem proqram.

specifies the len~th, in bytes, of each buffer to be obtained for a
buffer pool~ The maximum value is 32,760.

This information :can be supplied by the DD statement or the user's
problem proqram. If no information is supplied, the control
program caJLculat~s the length by using the value supplied for the
BLKSIZE opel::-and.

specifies the addr;ess of a buffer pool control block (i.e., the
eight-byte field preceding the buffers in a buffer pool).

The only altern~te source
problem program (e.g.,
macro- instruction)'.

for
the

this information
execution of

is the user's
a GETPOOL

specifies the a~dress of the user's end-of-data set exit routine
for input data sets. This routine is entered when the user
requests a block :and there are no more blocks to be retrieved. If
no routine has bee:n provided, the task is abnormally terminated.

The only al·ternate; source for this information is the user's
problem program.

specifies the addriess of an exit list created by the programmer.

The format of this list is shown in Appendix D. Exit lists are
requ ired if:

• Label exits o~ data control block exits are used.
• A checkpoint is to be taken automatically at the beginning of

each volume (e~cept the first).

The only alterna~e source for this information is the user's
program.

Section 3: Basic Sequential Access Method (BSAM) 163

SYNl~D

specifies the address of the user's synchronous error exit routine,.
The routine is entered if input/output errors result from an
attempt to process data records.

The only alternate source for this information is the user's
problem program.

CAU,]~ION: The DCB macro- instruction must not be wri tten within the first
16 bytes of a control section. It can be preceded by padding"
constants, or instructions.

READ -- Read a Block (S)

']~he READ macro- instruction retrieves the next sequential block from
an input data set and places it in a storage area .•

r-----------T-----------T---,
I Name I Operation I Operand I
~-----------+-----------+---~
I [symbol] I READ I decb-symbol,type- {SF I SBJ, dcb-addr I
I I I ,area-addr,length-{'S'lvalue} I l ___________ ~ ___________ ~ ___ J

decb
specifies the name to be assigned to the data event control block
(DECB) constructed as part of the expansion of the macro
instruction. The DECB starts on a full-word boundary and contains:

• An event control block (ECB> that is tested for completion of
the read operation.

• A parameter list.
• A pointer to status indicators that are set following each read

operation.

The format of the DECB is shown in Table 17.

Table 17. Format of the Data Event Control Block
r----·------------------------------T-----------------------------------,
I Offset from DECB Name I Field I
I (bytes) I I
~----------------------------------+-----------------------------------~
I + 0 I Event control block I
I +4 I Type field I
I +6 I Length field I
I +8 I Data control block address I
I +12 I Area address I
I +16 I Pointer to status indicators I l __________________________________ ~ ___________________________________ J

tYPE~

dcb

164

specifies one of the following:

SF - sequential forward reading of a physical sequentially
organized data set.

SB - backward reading from a magnetic tape (format-F and -U records
only)

specifies the address of the data control block opened for the data
set being processed.

area
specifies the addtess of an area in main storage into which the
block is to be read. If SF was written in the tYPE~ field, this
operand specifiesithe address of the first byte of the area; if SB
was written, the address of the last byte is specified. If the
data set resides on a direct-access device and the data portion of
each block is preceded by a key, both the key and data will be read
sequentially int0 the area. All keys in the data SE~t must be of
constant length, and the data portion of the block must be in
format U, F, or Vo

length
specifies, for fo:rmat-U records, a value for the number of bytes to
be transmitted (e*cluding the key. if present). If ·S" is written,
the entire block is read. If the data set resides on a direct
access device and, employs keys" the control program computes an
effective length~ by adding the value specified in the DCBKEYLE
field of the data: control block to the block length.

Note: The length <operand is ignored for format-F and -v records.

CAUTIONS: The READ ma~ro-instruction returns control to the user's
problem program before:the actual transmission of data is completed. To
determine whether the read operation has been completed, it is necessary
to issue the CHECK macro-instruction before using the data transferred
into the specified area. The DECB employed for a read operation should
not be reused until the CHECK macro-instruction has been iSBued.

After a read operation has been checked, the length of a format-u
block (normal scheduling), or a truncated block 1n a fixed-length
blocked data set (normal or chained scheduling) can be de1:ermined from
the count field of the status indicators whose addresses are in the data
event control block. (Refer to Table lH and Appendix G.)

EXCEPTIONAL RETURNS: Any exceptional condition arising in E~xecuting the
READ macro-instruction is detected by the CHECK macro-instruction.

EXAMPLE: In the following example, a DECB will be produced as part of
the in-line expansion. It will indicate that a forward read of the next
block in the data set associated with the data control block INDCB
should be performed us:,lng the area INAREA. The length operand was not
written in this example, but would be required for format-U records.

EXl READ DECB,SF,IWDCB,INAREA

L- AND E-FORM USE: The Land E forms of this macro-inBtruction are
written as described in Appendix B except for the follmlTing special
operand requirements:

Operand

decb
type
MF

require<a
require<fl
require<fl

E Form

required
required
the operand must be
written as MF=E

The operand MF=E does not require a parameter list address because
the first operand, decb, is used as a pointer to a parameter list that
was established by the L form of the macro-instruction.

Secti<on 3: Basic Sequential Access Method (BSAM) 165

WRITE -- Write a Block (S)

The WRITE macro-instruction transfers a block from the user's main
storage area to a physical sequential data set.

r---··-------~----------T--,

I Name I Operation I Operand I
~---.-------+-----------+---~
I [symbol] I WRITE I decb-symbol"type-SF,dcb-addr,area-addr I
I I I ,length-{ 'S'lvalue} I l __ ~ _______ ~ ___________ ~ ___ J

decb

tYPE~

dcb

area

specifies the name to be assigned to the data event control block
(DECB) constructed as a part of the expansion of this macro
instruction. (The READ macro-instruction for BSAM contains a full
description of a DECB.)

specifies SF for sequential forward writing of the block as part of
the data set.

specifies the address of the data control block opened for the data
set being processed.

specifies the starting address of the area in main storage that
contains the block to be written. If the data set is being written
to a direct-access device and the data portion of each block is to
be preceded by a key, both the key and data will be written
sequentially from the area. All the keys in the data set must be
of constant length and the data portion of the block must be in
format U, F, or v.

len~Jth
specifies, for format-U records, a value for the number of bytes to
be transmitted (excluding the key, if present). If'S' is written,
the maximum block length for the data set will be written. If the
data set resides on a direct-access device and uses keys, the
control program computes an effective length by adding the value
specified in the DCBKEYLE field of the data control block to the
block length.

Note: The length operand is ignored for format-F and -v records.

CAUTION: The WRITE macro-instruction returns control before the actual
trarlsmission of data is completed. To determine whether a write
operation has been completed, the CHECK macro-instruction must be
issued. The DECB employed for the write operation and the main storage
the block occupies should not be altered until the CHECK macro
instruction has been issued.

EXCEPTIONAL RETURNS: Any exceptional condition arising in executing the
WRITE macro-instruction is detected by the CHECK macro-instruction.

EXAMPLE: In the following example, the
inst~ruction for format-U records is shown.
is constructed as part of the in-line
operation is to be performed from AREA to
DCBOUT. Eight hundred data bytes are to be

EXl WRITE DECB,SF,DCBOUT,AREA,800

166

proper use of a WRITE macro
A data event control block
macro-expansion. A write
the data set defined by

transmitted.

L- AND E-FORM USE: The Land Eforms of this macro-instruction are
written as described in Appendix B except for the following special
operand requirements:

Operand E Form

decb
type
MF

required
required
required

required
required
the operand must be
written as MF=E

The operand MF=E does not require a parameter list address because
the first operand, decb, is used as a pointer to a parameter list that
was established by the' L ferm ef the macro-instruction.

WRITE -- Update a Block (S)

The WRITE macro-instructien returns a block to' a physical sequential
data set residing on a' direct-access device. The data set must be
opened with the update; option. Only the most recently read block can be
updated and returned.

r----------T----'-------T----------------------------------.-----------,
I Name I OpE~ration I Operand I
~----------+----.------;-+---------------------------------.------------~
I [s ymbol] I WRITE I decb- s ymbo l, t ype- SF, dcb-a ddr , area-,a ddr I
I I I ,length-{ 'S' I value} I l __________ .1. ___ ~, ______ <_J.. __________________________________ , ____________ J

decb

type

dcb

area

specifies the npme to be assigned to the data event control block
(DECB) constructed as part of the expansion of this macro
instruction. (The READ macro-instruction for BSAM contains a full
description ef the DEeB.)

specifies SF for sequential forward writing of the block as part of
the data SE~t.

specifies t:he address of the data control block opened for the data
set being updated!. The address must be the same as that specified
in the dcb operand of the READ macro-instruction.

specifies the s~arting address of an area in main storage from
which the block is to be written. This address should be the same
as that s:pecifi~d in the area operand of the READ macro
instruction. If the user decides to replace a block rather than
update it, the area specified will be that of the replacement
block, net the original block.

length
specifies, for fermat-U records, a value fer the number ef bytes to'
be transmi.tted. If'S' is written, the maximum block length for
the data SE~t will, be written. This value must be the same as that
specified for the! length eperand of the READ macro-instruction.

Section 3: Basic Sequential Access Method (BSAM) 167

CAU~~IONS: The WRITE macro-instruction returns control before the actual
transmission of data has been completed. To determine whether a write
operation has been completed, a CHECK macro-instruction must be issued.
The DECB employed for the write operation and the main storage the block
occupies should not be altered until the CHECK macro-instruction has
been issued.

The update mode is provided only for data sets on direct-access
devices. While it is not necessary to update and return each block, the
sequence of operations for those blocks that are updated must be:

READ block A

CHECK await completion of read

update block

WRITE block A

CHECK await completion of write

Thus, only the block last read, or its replacement, can be returned to
the data set.

EXCEPTIONAL RETURNS: Any exceptional condition arising in executing the
WRITE macro-instruction is detected by the CHECK macro-instruction.

L- AND E-FORM USE: The Land E forms
written as described in Appendix
operand requirements:

L Form E Form

required
required

of this macro-instruction are
B except for the following special

decb
tYPE!
MF

required
required
required the operand must be

written as MF=E

The operand MF=E does not require a parameter list address because
the first operand, decb, is used as a pointer to a parameter list that
was established by the L form of the macro-instruction.

168

CHECK -- Wait for and:'I'est Completion of Read or write Operation (R)

The CHECK macro-instruction waits (if necessary) for the completion
of a read or write operation and detects errors and exceptional
conditions. Volume s~itching for input data sets is automatically
handled. Additional space is automatically obtained for output data
sets when the current 'space is filled and more WRITE macro-instructions
have been issued.

r----------T----------~-T---,
I Name I Operatiori I Operand I
~----------+----------~-+---~
I [symbol] I CHECK I {deCb-addrx } I
I I I (1) I
L __________ i ____ ._----~-i-----------------------------__________________ J

decb
specifies the
created as part
instruction.

n;ame
:of

of a data event control block (DECB) that was
the expansion of a READ or WRITE macro-

If (1) is \llri tten, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

CAUTION: The CHECK macro-instruction should be used to test for the
completion of every re:ad or write operation. For each data set, the
CHECK macro-instructibn must be issued in the same order in which the
read or write operations were requested.

EXCEPTIONAL RETURNS: If the CHECK macro-instruction tests a read
operation that attempted to gain access to a block when none is
available, control wil!l be passed to the end-of-data set exit. The user
should normally issue a CLOSE macro-instruction for the data set.

If the CHECK macro-instruction determines that, because of an
input/output error, the READ or WRITE macro-instruction did not complete
correctly, control is given to the user's synchronous error exit (SYNAD)
routine. The genera!l registers are set to indicate the :source of the
error, and to provide the required control information, .as shown in
Table 18.

The data event control block (DECB) contains a pointer to a series of
status indicators. These are arranged in main storag,e as shown in
Appendix G.

The RETURN macro-inj3truction can be used to return to the control
program from t.he SYNAD routine. The control program will then attempt
to proceed as if the error had not occurred. For input on any device or
for output on a unit record device., processing can be continued. In all
other cases, the~ data ipontrol block should be closed and the routine
should not return to the control program.

Note: If an error;is detected by the CHECK macro-instruction and the
user has not provided a SYNAD routine, the task is terminatt:d.

section 3: Basic Sequential Access Method (BSAM) 169

Table 18. Register Contents Upon Entry to SYNAD Routine
r--------------T--------------T--,
I Regis ter I Bit I Usage I

~--------------+--------------+--~
I 0 I 0 through 7 I Not used. I
I I 8 through 31 I Address of the data event control I

I I I block. I

~--------------+--------------+--~
1 0 Set to 1 if error was caused by READ.

1 set to 1 if error was caused by WRITE.
2 Set to 1 if error was caused by a BSP,

3

4

5

6 and 7
8 through 31

CNTRL, or POINT macro-instruction
Set to 1 if (1) error indicated by bit
o did not prevent reading of the
block, or (2) error indicated by bit 1
occurred during update of an existing
block. Set to 0 if error prevented
reading of block or occurred during
creation of a new block.
Set to 1 if request was illogical
(e.g., a PQINT macro-instruction
referred to a block not contained in
the data set).
Set to 1 if an invalid character was
encountered in paper tape translation.
Not used.
Address of the data control block
associated with the data set being
processed. I

.--------------+---------~----+----------------------------~-----------~
I 2 through 13 I I The contents that existed before the I
I I I macro-instruction was executed. I
~--------------+--------------+--~
I 14 I I The return address. I
.--------------+--------------+--~
I 15 I I The address of the SYNAn routine. I L ______________ i-_____________ ~ __ J

EXAMPLE: In the following example, the CHECK macro-instruction tests
for the completion of the input/output operations in the order in which
they' were requested. The operand field contains the name of the data
even.t control block that was specified in the read or write request.

EX1 READ INDECB,SF " INVEN, WORK

CHECK INDECB

EX2 WRITE OUTDECB, SF, MNTHRPRT" WORK

CHECK OUTDECB

170

PROGRAMMING NO~rES: :If the CHECK macro-instruction detects an end-of
volume condition, the control program advances to the next volume.

A hardware-dE~tected wrong-length block is not interpreted as an error
by the CHECK macro-inStruction if format-U records or trun.cated blocks
of format-F r(~cords are being read. To determine the length of the
block actually read, the programmer can examine the channel status word
(part of the status indicators pointed to by the DECB) after issuing the
CHECK macro-instructiion. The first byte of a format-U record read
backwards from magnetic tape can be located by the same method.

CLOSE (TYPE=T)
Program (S)

Temnorarily Disconnect a Data Set from Problem

When the basic seqUential access method is being used, this form of
the CLOSE macro··instruction can be used to temporarily disconnect one or
more data sets from the problem program. An OPEN macro-instruction must
have been previously executed for each data control block specified in
this form of thE~ CLOSE macro-instruction.

When the data sets are temporarily disconnected, labels are processed
and user label exits are taken, if necessary. Magnetic tape and
direct-access volumes are then repositioned as specified or implied in
this macro-instruction.

r----------T------------T---,
I Name I Operation I Operand I
~----------+------------+--i
I [symbol] I CLOSE I ({dcb-addr. (opt-code] , } •••) , TYPE=T I L __________ J. ____ . _____ ._J. ___ J

dcb

opt

specifies t:he address of the data control block opened for the data
set to be t:emporairily closed.

spec if ies t:he volume repositioning that is to be perf ormed. Its
values and meanings are as follows:.

REREAD

Meaning

positions the current volume to process the data set
again.

LEAVE posi tio'ns the current volume to the logical end of the
data s'et just processed. This value is assumed if the
opt operand is omitted.

CAUTIONS: The following errors will cause the results indicated:

Temporarily closing a data
control block that is not open.

Temporarily closing a data con
trol block that has not been
opened for BSAM.

No action

No action

Result

Section 3: Basic Sequential Access Method (BSAM) 171

Temporarily closing when the dcb
operand does not specify the
address of a data control block.

Unpredictable

PROGImMMING NOTES: Any number of data control block addresses and
asso(:!iated options may be specified in the first operand field of this
macro-instruction,. This facility makes it possible to close data
control blocks and their associated data sets in parallel.

After this macro-instruction has been executed, the user's program
can issue other macro-instructions directed toward processing the data
set because the data control block remains in the OPEN status.

For magnetic tape, positioning will vary, depending on the options
chosen in the OPEN and CLOSE (TYPE=T) macro-instructions. Table 19
defines a position number for labeled and unlabeled tapes and Table 8
relates the options in the macro-instructions to the repositioning of
the tape volumes.

Table 19. Magnetic Tape Temporary Positions - BSAM
r-------------T---,
I Position I Labeled and Unlabeled Tape I
~------------+---~ I 1 I Preceding first data block of the data set I
~------------+---~
I 2 I Preceding tape mark that terminates last data block I
I I of the data set I L ____________ ~ ___ J

The parameter list resulting from expansion of the CLOSE (TYPE=T)
macro-instruction contains a full-word entry for each data control block
with its associated options. The three low-order bytes of each word
contain the 24-bit address of a data control block. The high-order byte
contains a code, as follows:

Bit

0
0
1
2-3

4-1

Binary
Contents

0
1

00
01
11

Meaning

Another parameter follows
Last entry in list
(Reserved)
Use DD control statement disposition
Position volume for REREAD
Position volume for LEAVE
(Ignored)

NOTE -- Provide Position Feedback (R)

T'he NOTE macro-instruction is used to request the relative position
within a volume of the block just read or written.

r-----------T-----------T---,
I Name I Operation I Operand I
~----------+-----------+---~
I [symbol] I NOTE I {dCb-addrX} I
I I I (1) I L __________ ~ ___________ ~ ___ J

172

deb
spec if ies t.he address of the data control block opened for the
current operationi.

If (1) is V4rritten~ the address must have been loaded into parameter
register 1 before i execution of this macro-instruction.

CAUTIONS: All read or write requests must be checked for completion
before the NOTE macro-anstruction is executed. The block identification
provided will always be within the current volume.

For a data set on m~gnetic tape, the NOTE macro-instruction should
not be issued for ;p. data set on an unlabeled volume or a volume
containing nonstandard: labels~ if the volume was opened with either of
the following conditions:

• DD statement. disposition subparameter of MOD •
• OPEN macro-instruction operand of ROBACK.

PROGRAMMING NO'l'ES: Following execution of the NOTE macro--instruction,
the block identi.fication of the last block read or written is placed in
parameter regist.er 1 by the control program.

Following the execution of this macro-instruction, the feedback
information found in register 1 can be used in the POINT macro
instruction tha.t preciedes a read or write 9peration. The lexact form of
this block id€!ntif ic~tion depends on whether magnetic tape or a
direct-access device is used.

Maqnetic Tape: If magnetic tape is used, the block identi:E ication is a
4-byte block count of -the form zzCC.. where

zz binary zero bytes
CC - the block number (binary) within the volume

The block identi.fication can be used in the POINT macro-instruction to
reposition the magnetic tape to the location of the block.. The block
identification can be p,sed unchanged if the operation that follows the
POINT macro-instructipn takes place in the same direction as the
operation that preceded the NOTE macro-instruction. If the directions
of the two operations are not the same, the block number must be
increased by one: if thie original direction was forward, and decreased by
one if the original direction was backward.

Direct-Access De:vice: If a direct-access device is used, the block
identification is a 4-byte value of the form TTRz, where

TT the track nUmber relative to the beginning of the data set on
the CUl:'rent vplume (first track equals zero)

R the block number on that track (first block equals one)
z = the binary zero byte

If the last operation was a write operation, an additional parameter is
provided by NOTE: in register 0 in the form zzLL, where

zz the binary ze;ro bytes
LL the number (in binary) of byt es remaining on that -track

Section 3: Basic Sequential Access Method (BSAM) 173

POIN'~ -- Position to a Block (R)

The POINT macro-instruction is used to alter the sequential
processing of a data set by requiring that the next read or write
opera.tion involve a specified block within the current volume.

r---·-------T-~---------T---,
I Name I Operation I Operand I
~---.-------+-----------+---~
I [symbol] I POINT I {dCb-addrX},~lOC-addrX} I
I I I (1) (0) I L ___ ._. ______ ..L ___________ ...L __ J

dcb

loc

specifies the address of the data control block opened for the data
set being processed.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

specifies the starting address of a four-byte field containing a
block identification. The field must start on a full-word bounda
ry.

If (0) is written, the address of the block identification must
have been loaded into parameter register 0 before execution of this
macro-instruction.

For the first block of a data set, the block identification must be
the hexadecimal number 00000001. For blocks other than the first,
the format of the block identification field depends on the device
type; refer to the NOTE macro-instruction for full details.

CAUT:~ONS: All read or write operations must be checked for completion
before the POINT macro-instruction is executed. The user must make sure
that the block identification previously provided by a NOTE macro
inst:ruction, and now being used in the POINT macro-instruction, refers
to the same volume.

For a data set on magnetic tape, the POINT macro-instruction should
not be issued for a data set on an unlabeled volume or a volume
containing nonstandard labels, if the volume was opened with either of
the following conditions:

• DO statement disposition subparameter of MOD.
• OPEN macro-instruction operand of RDBACK.

EXCEPTIONAL RETURNS: The execution of a POINT macro-instruction results
in al; error if a volume cannot be properly repositioned or if an invalid
block identification is specified. such an error causes the next read
or write operation to be completed unsuccessfully and, on execution of a
CHECK macro-instruction, causes control to be given to the user's
synchronous error exit (SYNAD) routine.

174

On entry to the SY~AD routine, the contents of general registers are
as shown in Table 18, and status indicators are as defined in Appendix
G. On return from· the SYNAD routin~, the control program clears all
error indicators and attempts to resume processing.

EXAMPLE: In the following example, the POINT macro-instruc-tion is used
to present a block identification to the control program so that the
next read operation will retrieve the block. The NOTE macro-instruction
provides the block identification following a WRITE and CHECK macro
instruction.

WRITE

CHECK
FREEBUF

NOTE
ST

GETBUF
POINT
READ

OUTDECB, SF ,.MYDCB, (4)

OUTDECB
MYDC:S.4

MYDCB
1. SAVE

MYDC~,4
MYDCJ3.SAVE
INDE¢B,SF,MYDCB, (4)

PROGRAMMING NOTES: The following considerations apply to data sets on
direct-access devices:

• A WRITE macro-inst~uction following a POINT macro-instruction over
writes the block identified in the POINT macro-instruction. The
NOTE macro-instruction ret.urns the identification field of the block
just written. To ~eposition so that writing will begin at the next
block, that field must be incremented by a binary one. The field
must be so incremented before the next POINT macro-inBtruction is
executed.

• If the POINT ma~ro-inst.ruction is used in the UPDAT mode, a READ
macro-instruction must be issued following the POINT macro
instruction.

• The POINT rnacro-in$truction has the effect of a NOP in8truction if
used in processing an input stream or SYSOUT data set on a magnetic
tape or unit record device.

BSP -- Backspace a Blo¢k (R)

The BSP rnacro·-instrl.!lction backspaces a block on the currE~nt magnetic
tape or direct·-access volume. Backspacing is always to\<lrard the load
point (or the equivalent on direct-access) regardless of the OPEN
macro-instruction's paltameters or the direction of reading.

Section 3: Basic Sequential Access Method (BSAM) 115

r----------T-----------T---,
I Name I Operation I Operand I
~----------+-----------+---~
, [symbol] I BSP I {dcb-addrx} I
I I I (1) I L __________ ~ ___________ ~ ___ J

dcb
specifies the address of the data control block opened for the data
set to be backspaced.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

CAUTIONS: All read or write operations must be checked for completion
before the BSP macro-instruction is executed.

The BSP macro-instruction must not be issued if the data set was
written on a direct-access device using the track overflow feature.

The BSP macro-instruction must not be issued if a CNTRL, NOTE, or
POINT macro-instruction is being used on this data set.

EXCEPTIONAL RETURNS: The BSP macro-instruction will return control to
the -program if a tape mark or the beginning of extent on the current
volume is encountered.

Following execution of the BSP macro-instruction,
contains binary zero if the operation completed normally.
binary four if the operation did not complete normally.

register 15
It contains

PRTOY -- Test for Printer Carriage Overflow (Rt

The PRTOV macro-instruction is used to control the page format for an
on-line printer. The programmer can test channel 9 or 12 of the printer
control tape to determine if an overflow condition exists.

r----------T-----------T---,
I Name I Operation I Operand I
~----------+-----------+---~
I [symbol] I PRTOV I dcb-addrx,nurnber-{9112} [,userrtn-addrx] I L __________ i ___________ ~ ___ J

dcb
specifies the address of the data control block opened for the data
set being processed.

number
specifies either 9 or 12 as the channel to be tested for an
overflow condition.

userrtn

176

specifies the address of a routine that is to be given control if
an overflow condition exists. If this operand is omitted, an
automatic skip to channel 1 will be performed when an overflow
condition is found.

EXCEPTIONAL RETURNS: The contents of the general registers upon entry
to the user' s oVE~rflow !routine are as follows:

Register

o and 1
2 to 13

14
15

PROGRAMMING NOTES:
synchronously or
has been provided:

contents

contents destroyed
Those that existed before the
macro-instruction was executed
The return address
The address of the overflow routine

The! test for an overflow condition is performed
asynchronously, depending on whether a user's routine

• If a routine has be~n provided, the test is performed when the PRTOV
macro-instruction is issued. The CHECK macro-instruction should be
used to ensure that all printing operations are successfully
completed before PR~OV is issued. If printing operations are not
complete, thE~ PRTOV' macro-instruction will wait for their completion
before testing fOir an overflow condition, but will not test for
errors or exceptional conditions.

• If no routine has been provided, the test is performed just before
the record referred to by the next WRITE macro-instruction. All
previous printing operations will be completed before this test is
made.

An overflow condition is detectable after printing of the line that
follows the line corresponding to the channel 9 or channel 12 punch in
the carriage control tape.

This macro-instruction causes no action if used tor a device other
than a printer.

EXAMPLES: In E:Xl, a~ overflow condition on channel 9 of the printer
control tape will resullt in an automatic' skip to channel 1 since the
operand, userrtn, has: been omitted. In EX2, an overflow condition on
channel 12 will result in control being given to the routine OVERFLOW.

EXl PRTOV
EX2 PRTOV

OUTDCB .. 9
PRINTDCB, li2 , OVERFLOW

CNTRL -- Control On- Linie Input/Output Devices (R)

The CNTRL macro-instiruction is used to control magnetic tape drives
and on-line card readeris and printers.

r----------T-----------~---,
I Name I Operation 'I Operand I
~----------+----_._-----:+ ---~
I [symbol] I CNTRL I dcb-addrx,action-code[,number-valuel I
L __________ J.. _____ . ______ ~--------------_________________________________ J

Section 3: Basic Sequential Access Method (BSAM) 177

dcb
specifies the address of the data control block opened for the data
set being processed.

action
specifies the requested operation, as follows:

Code 'Result

S8 causes a stacker selection for a card reader.

SP causes a line space on a printer.

SK causes a skip on the carriage control tape for a printer.

BSR causes a backspace over a specified number of blocks on
magnetic tape.

BSM causes a backspace past a magnetic tape mark and a forward
space over the tape mark.

FSR causes a forward space over a specified number of blocks on
magnetic tape.

FSM causes a forward space past a magnetic tape mark and a
backspace over the tape mark.

Note: For magnetic tape, BSR and BSM mean toward the load point
(that is, the physical beginning of the tape); FSR and FSM mean
toward the end of the tape in a forward direction.

number
specifies a value for the stacker, number of lines, carriage tape
channel, or number of blocks on magnetic tape to qualify the action
operand. The maximum value is 32,767. Depending upon the action
code selected, the number operand is either required, optional, or
not allowed.

action code I number operand
------------------+---

SS I required; specify as 1 or 2
SP I required; specify as 1, 2, or 3

BSR I optional; one block assumed if operand omitted
BSM I not allowed
:FSR I optional; one block assumed if operand omitted
:FSM I not allowed

SK I required; specify as 1 through 12

CAU']~IONS: Read and write operations must be checked for completion
before the CNTRL macro-instruction is issued.

:Por card readers, stacker selection is made by issuing the CNTRL
macro-instruction after each read operation except the last. The CNTRL
macro-instruction must not be issued after the last read operation; the
last: card is automatically stacked with the previous card when the data
set is closed. If minimum device dependence is desired, the DCBSTACK
field of the data control block must specify stacker 1.

178

For printers, a skip to a given channel will result in no action if
the device is already q.t that channel.

The use of contr01 characters precludes the use of the CNTRL
macro-instruction.

EXCEPTIONAL RETURNS: When magnetic tape is used, unsatisfactory comple
tion of this macro-instruction will cause control to be passed to the
user's synchronous el:'ror exit (SYNAD) routine. The genE~ral register
contents are provided in Table 18. Status indicators are shown in
Appendix G. Control will be returned to the user if a tape mark is
encountered whil4e an attempt is being made to forward space or backspace
blocks. (Control is not given to the SYNAD routine.) Register 15
contains zero if the operation completed normally; o1::herwise, it
contains a count of the remaining number of forward spaces or backspaces
that were not completed.

WRITE -- Create a Diredt Organization Data Set - Format-F Records (S)

The WRITE macro-inst.ruction is used to add a
organization da1ta set :being created for the user
can be subsequently prqcessed by the basic direct
The use of this madro-instruction precludes
macro-instructions (except CHECK).

block to a direct
by BSAM. The data set
access method (BDAM).
the use of other BSAM

r----------T----------~T---,
I Name I Operation I Operand I
~----------+-----------~+-----------------------------------.----------~
I [symbol] I WRrrE I decb-symbol,type-{SFISD} ,dcb-addr I
I I I ,area-addr I
L __________ L ___________ L------------------------------_________________ J

decb

type

dcb

area

specifies the namS to be assigned to the data event control block
(DECB) conBtructE1d as part of the expansion of this macro
instruction. (Re~erto the READ macro-instruction for a full
description of the DECB.)

specifies a value for the type of block to be written, as follows:
SF - new data blodk
SD - dummy data block

specifies the addrtess of the data control block opened for the data
set being processed. The DCB macro-instruction must have specified
the load mode of dperation (by an L in the MACRF operand).

specifies the starting address of the area in main storage that
contains the block to be written. If the user has specified that
keys are employed, the key and data are written sequentially from
the area. All keys must be the same length.

In a direct organi;zation data set consisting of format -F records,
all tracks must be filled. The user can request that the control
program wri t:e a dummy block to aid in the following:

• Spacing blocks so that the user's method of retrieval by
relativE~ block' or track nwnber will locate the current block.

Section 3: Basic Sequential Access Method (BSAM) 179

• Reserving track space for future additions at, or near, the
desired block.

When keys are employed, a dummy block is defined to have the first
byte of the key set to FF (hexadecimal) and the first byte of the data
area set to the block sequence number (identification) on the track.
The control program provides both of these values when the block is
written. For this reason, the area operand need only specify an area
equal to the key length plus one byte. When new data blocks are
subsequently added to the existing direct organization data set, the
control program recognizes the dummy block and replaces it with a data
block.

When keys are not employed, the user must define a dummy block to
suit his needs, and be prepared to recognize the dummy block when adding
a ne\oll block to an existing direct organization data set.

CAUTIONS: The WRITE macro-instruction returns control before the actual
transmission of data has been completed. To determine whether a write
operation has been completed, a CHECK macro-instruction must be issued.
The DECB employed for the write operation and the main storage the block
occupies should not be altered until the CHECK macro-instruction has
been issued.

Each track allocated to the data set must be initialized. The user
can choose either to continue writing dummy blocks until all tracks are
initialized or to specify the release (RLSE) option in the DD statement.
The latter will release all unused tracks when the data control block is
closed.

EXCEPTIONAL RETURNS: The following codes will be placed in register 15
following execution of the WRITE macro-instruction:

Code (hexadecimal) Interpretation

00 Block will be written - there is more space on the
current track.

04 Block will be written - the current track will
then be full.

08 Block will be written - the next WRITE must be
followed by CHECK to cause execution of end-of
volume procedures.

12 Block will not be written - CHECK must be issued
for previous WRITE before reissuing this
request.

L- A.ND E-FORM USE: Refer to the READ macro-instruction for details.

PROGRAMMING NOTES: The control program will write record zero on the
curr:-ent track when it is filled, and will advance to the next track.

WRITE -- Create a Direct Organization Data Set - Format-U or -v Records
or a_Capacity Record (S)

The WRITE macro-instruction is used to add a
organization data set being created for the user
can subsequently be processed by the basic direct
The use of this macro-instruction precludes
macro-instructions (except CHECK).

180

block to a direct
by BSAM. The data set
access method (BDAM).
the use of other BSAM

r----------T-----------T----------------------------------.------------,
I Name I Operation; I Operand I
~----------+-----------+-----------------------------------.------------~
I [symbol] I WRITE I decb-symbol,type-{SF1SZ},dcb-addr I
I I I ,area-addr[,length-{'S'lvalue}1 I L __________ ~ ___________ ~ ___ J

decb

type

dcb

area

specifies the name to be assigned to the data event control block
(DECB) constructed as part of the expansion of this macro
instruction. The READ macro-instruction contains a full
description of the DECB.

specifies a value for the type of block to be written, as follows:

SF - new data record
SZ - capacity record (i.e., record zero). The control program

supplies the data, writes a capacity record, and advances to
the next track.

specifies the add~ess of the data control block (DCB) opened for
the data set being processed. The DCB macro-instruction must have
specified the load mode of operation (by an L in the fJ'lACRF
operand) •

for data blocks, 'this operand specifies the starting address of the
area containing the block to be written. If the user has specified
that keys are employed, the key and data are written sequentially
from the area. (All keys must be the same length and the data
portion of the block must conform to the standard format for U or V
records.) For capacity records, this operand is ignored and can be
omitted.

length
for format-U reco~ds, this operand specifies a value for the number
of data byt.es to ,be written. (The control program will add the key
length to this walue.) If the maximum length data block is to be
written, the user can write'S'.

This operand is ignored and can be omitted when format V data
records or capacity records are being written.

CAUTIONS: The ~IRITE macro-instruction returns control before the actual
transmission of data; has been completed. To determine whether a write
operation has been completed, a CHECK macro-instruction must be issued.
The DECB emploYE!d for the write operation and the main storage the block
occupies should not be altered until the CHECK macro-instruction has
been issued.

If the user attempts to write too many blocks on a track, the control
program will ignore the write request and return a code in register 15.
(Refer to "Exceptiona[Returns.") The user must write a capacity record
to advance to the next track.

Each track allocated to the data set must be initialized. The user
can choose either to continue writing capacity records until all the
tracks are initialized, or to specify the release (RLSE) option in the
DD statement. The latter will release all unused tracks when the data
control block is close:d. If too many capacity records are written, the
control program will request additional tracks for the data set,
provided that sE!condar:y allocation has been requested; it will then
continue without noti£ying the user.

section 3: Basic Sequential Access Method (BSAM) 181

Track overflow cannot be used with format-U or -v records. The
control program does not automatically advance tracks.

EXCEPTIONAL RETURNS: A.fter execution of the WRITE macro- instruction,
the following return codes are placed in register 15:

Code (hexadecimal)

00 (Type SZ)

00 (Type SF)

04

08

12

Interpretation

Capacity record will be written - another
track is available.

Block will be written - there is more space
on the current track.

No room on current track to write block; user
must write capacity record before reissuing
this request.

Capacity record will be written - the next
WRITE must be followed by CHECK to cause
execution of end-of-volume precedures.

Block will not be written - CHECK must be
issued for previous WRITE before reissuing
this request.

L- AND E-FORM USE: Refer to the READ macro-instruction.

BASIC PARTITIONED ACCESS METHOD (BPAM)

The DCB, FIND, BLDL, and STOW macro-instructions are used with the
partitioned data organization, in addition to the general service
macro-instructions instructions (BUILD, GETPOOL, FREEPOOL, GETBUF, FREE~

BUF, OPEN, and CLOSE), and the BSAM macro-instructions (READ, WRITE,
CHECK, POINT, and NOTE).

Macro-Instruction

FIND

BLDL

STOW

Function

Positions to first block of a data set
member.
Builds a list for use in locating data set
members.
Manipulates the directory.

The OPEN macro-instruction option specifying the intended method of
input/output processing, opt1' has the following effect on the BPAM
macro-instructions:

OPEN
Macro-inStruction
---operand

182

INPUT
OUTPUT

Effect

A WRITE macro-instruction cannot be used.
It is not possible to overwrite any portion
of an existing member.

Partitioned Data Orgatiization

The partitioned data organization resembles the physical sequential
data organization with two significant differences:

• The data set is divided or partitioned into named, retrievable
members or groups of blocks. Each member is terminated with an
end-of-data mark or indicator •

• The data set: contaiins a directory that points to the first block of
each member. The iFIND macro-instruction uses the directory informa
tion to locate a requested member.

The partitioned data organization is supported only for direct-access
devices. The entire data set must reside on one volume.

Partitioned Orgcmizati:on Directory Format

The partitioned organization directory occupies the beginning of the
extent allocated to the data set on a direct-access device. It is
searched and maintained by use of the FIND and STOW macro-instructions.
The directory consists of variable-length logical records arranged in
ascending order according to the binary value of the member name or
alias.

The directory recor:ds are blocked into 256-byte blocks, each contain
ing as many complete ~ecords as will fit in a maximum of 254 bytes. All
remal.nl.ng bytes in each block are unused and ignored. The format of a
series of direct:ory blocks is as follows:

r-------------------, r-------------------T-----'
I Directory Block 1 I I Directory Block n I EOF I L ___________________ J L ___________________ i _____ J

Each directory block is preceded by a hardware-defined key field and
contains a count: fieldl followed by the logical records. The last usable
block in the directory is followed by an end of data set indicator. The
directory block format is as follows:

r--------, r--T-------------------,
I KEY I I 01 Logical Records I
L ________ J L __ ~-__________________ J

Bytes 8 2' 0-254

KEY

c

specifies t:he name of the logical record with the highest binary
value within the block. The last active block of the directory has
a key of malximum binary value.

specifies t:he nuntber of active record bytes in the block.

Each logical recQrd in a directory block contains a name, TTR, and
count field. It: may alIso contain a user data field. The last logical
record in the last ,active directory block has a name field of maximum
binary value. 'rhe logiical record format is as follows:

Sectiqn 3: Basic Partitioned Access Method (BPAM) 183

Bytes

NAME

TTR

C

r--------T---T-T--------------,
I NAME ITTRICI User Data I L ________ ~ ___ ~_~ ______________ J

8 3 1 0-62

specifies the member name or alias. It contains up to eight
alphameric characters, is left-justified, and is padded with blanks
if necessary.

is a pointer to the first block of the named member; TT is the
relative track from the beginning of the data set, and R is the
block number on that track.

specifies the number of half-words contained in the user data
field. It may also contain additional information about the field.
The C field format is as follows:

Bits 0 1-2 3-7
r-T---T-----'

o

1-2

3-7

I I I I
L_~ ___ ~ _____ J

when set to 1, indicates that the NAME is an alias.

specifies the number of pointers to the locations within the
member that are contained in the user data field. A maximum
of three pointers is allowed. Pointers so used will be
automatically updated if the data set is moved or copied by an
IBM utility program. The data set must be marked "unmovable"
if one of the following applies:

• More than three pointers are used in the user data field.

• The pointers in the user data field or a note list do not
conform to the standard format.

• The pointers are not placed first in the user data field.

• Any direct-access addresses (absolute
embedded in any data blocks or in another
refers to this data set.

The binary code is as follows:

00 none
01 one
10 two
11 three

or relative> are
data set that

contains a binary value indicating the number of half-words of
user data. This count must include the space occupied by any
TTRN entries.

User Data

184

contains variable user data provided as input to the STOW macro
instruction. If pointers to locations within the member are

provided, 1:hey mli/.st be four bytes long and placed first in the user
data field. The :pointers must be arranged in ascending order
according to th~ir binary value. The user data field format is as
follows:

r--- -------------.... ---------------,
I User Data I
~------T------T-~----T----------i
I TTRN I TTRN I 'FTRN I Optional I L_ ____ ..L _______ ..L_-;. ____ ..L __________ J

TT

R

N

is th4~ relative track from the beginning of the data set.

is the block number on that track.

specifies, by a binary value other than zero, the number of
additional :pointers contained in the note list identified by
the T~rR. If this TTR is not a pointer to a note list, N=O.

A note lisit consilsts of additional pointers to blocks wi thin the
same member of a :partitioned data set. If the note list option was
indicated in ttie user data field, the note list will be
automatically updated when the data set is moved or copied by an
IBM utility progtam. Each entry in the note list is four bytes
long. The note list entry format is as follows:

r-----·-,
I TTRx I
L _____ ._J

TT is the relative track from the beginning of the data set.
R is the block number.
x is available for any use.

CAUTIONS: The followlng considerations and restrictions apply to the
use of a note list:

1. The note list must be indicated by a value in N.

2. The user must use the NOTE macro-instruction or provide entries in
the exact format:defined by the NOTE macro-instruction.

3. If the note list ,is to be maintained by an IBM utility program,
each entry in :the note list must be in ascending order and must
point to a location with a block identification lower than the list
itself, bu·t high$r than that of any previous note lis·t.

4. Format-U records must be specified for the data set.

5. The user must use the WRITE macro-instruction to preserve the note
list. The length operand of the WRITE macro-instruction must
contain a value tj:.hat is four times the number of en1:ries in the
list. This value must. be followed by a CHECK and a NOTE
macro-instruction. The NOTE macro-instruction will return the
block identification of the note list; it must be preserved by the
user for the STOW macro-instruction.

Secti~n 3: Basic Partitioned Access Method (BPAM) 185

DCB -- Define Data Control Block for BPAM

The DCB macro-instruction reserves space for a data control block and
informs the control program of the characteristics and intended uses of
a da1:.a set.

r-----------T-----------T---,
I Name I Operation I Operand I
~-----------+-----------+---~
I [symbol] I DCB I DSORG={POIPOU},MACRF=code[,DDNAME=syrnbol} I
I \ I [,OPTCD={WICIWC}] [,RECFM=code] [,LRECL=absexp] I
I I I [,BLKSIZE=absexp] [,NCP=absexp][,KEYLEN=absexpl\
I I I [, BUFNO=absexp] [, BFALN={F \ D}] [, BUFL=absexp] \
I \ I [,BUFCB=relexp] [,EODAD=relexp] [,EXLST=relexp] I
I \ I [, SYNAD=relexp] I L ___________ ~ ___________ ~ ___ J

The keyword operands DSORG and MACRF can be supplied by only the DCB
macro-instruction. The remaining operands can be supplied after assem
bly time by other sources; these sources are listed in the operand
descriptions.

DSORG

MACR]~

specifies the organization of the data set as one of the following:

PO - partitioned organization
POU - partitioned organization in which any data set contains

location-dependent information with respect to the data set.
The data set is unmovable.

specifies the type of macro-instructions that will be used to
process the data set, as follows:

{

(R) }
,MACRF= (W)

(R, W)

R - READ macro-instruction (implies NOTE and POINT)
W - WRITE macro-instruction (implies NOTE)

DDNAlilE

OPTCD

186

specifies the name of the DD statement that will be used to
describe the data set to be processed.

This information can also be supplied by the user's problem program
before opening the data control block.

specifies an optional service to be performed by the control
program, as follows:

W - perform a write validity check
C - using the chained scheduling method process
WC - perform a validity check and use chained scheduling

'This information can be supplied by the DD statement or the user's
problem program. If not supplied by any source, none of the
services are performed.

RECFM

LRECL

specifies the dharacteristics of the records in the data set as
follows:

{
U[T] }

, RECF~1= V [B liT I BTl
F[BrTIBT]

where the record 'format is:

U - undefined redords
V - variable length records
F - fixed length 'records

the physical attrlibutes of the data set are:

B - blocked reco~ds
T - track overfldw is to be used

Record format infiormation (U, V, and F) can be supplied by any of
the three possi~le alternate sources. The absence of any physical
attribute nmernoni:c (B and T) impli~s the opposite of that attri
bute. If the ,record format is not supplied, a format-U record
without a control, character is assumed.

specifies t:he length, in bytes, of a logical record. This operand
applies only to: format-F records. The maximum record length is
32,760 bytE~s.

This information can be supplied by any of the three alternate
sources.

BLKSIZE

NCP

specifies the maiximum block length in bytes. The maximum value is
32" 760.

This information can be supplied from any of the three alternate
sources.

specifies the maximum number of READ or WRITE macro-instructions
that will be issued before a CHECK macro-instruction. The maximum
number thalt can be specified is 99; however, this number must not
exceed the limit on input/output requests established during system
generation.

This information can be supplied by the DO statement or the user's
problem program. If the information is not specified, a maximum of
one is assumed.

KEY LEN
specifies the length, in bytes, of the key associated with a block.
When a block i.s read or written, the number of bytes transmitted
equals the key length plus the block length.

This information can be supplied by any of the three alternate
sources.

NOTE: Refer t.O Tabile 16 for a list of the situations in which the
following four operands (BUFNO, BFALN, BUFL, and BUFCB) are applicable.

section 3: Basic Partitioned Access Method (BPAM) 187

BUFNO

BFALN

BUFL

specifies the number of buffers to be assigned to the data control
block. The maximum number that can be specified is 255; however,
the number must not exceed the limit on input/output requests
established during system generation.

This information can be supplied by the DD statement or the user's
problem program.

specifies the word-boundary alignment, in bytes, of each buffer, as
follows

F - the buffer starts on a full-word boundary (one that is not a
double-word boundary)

D - the buffer starts on a double-word boundary

This information can be supplied by any of the three alternate
sources.

specifies the length, in bytes, of each buffer to be obtained for a
buffer pool. The maximum value is 32,760.

This information can be supplied by the DD statement or the user's
problem program. If it is not supplied, the control program
calculates the length by using the value supplied for the BLKSIZE
and KEYLEN operands.

BUFCB

EODAD

specifies the address of a buffer pool (i~e., the eight-byte field
preceding the buffers in a buffer pool).

The only alternate source for this information is the user's
problem program.

specifies the address of the userws end-of-data set exit routine
for input data sets. This routine is entered when the user
requests a block in the member when there are no further blocks to
be retrieved. The user may:

• continue processing the next sequential member without reposi
tioning.

• Reposition using a FIND or POINT macro-instruction, and contin
ue processing another member.

• Issue a CLOSE macro-instruction.

If no routine has been provided, the task is abnormally terminated.

The only alternate source for this information is the user's
problem program.

EXLST

188

specifies the address of an exit list created by the programmer.
The format of the list is shown in Appendix D.

Exit lists are required if data control block exit routines are
used.

The alternate source for this information is the user's problem
program.

SYNAD
specifies the add~ess of the user's synchronous error ,exit routine.
The routine is ehtered if input/output errors result from an
attempt to proces$ data records.

The only altern~te source for this information is the user's
problem program.

PROGRAMMING NOTE:: The: BPAM DCB macro-instruction can be written at any
point within a control section.

FIND -- Position. to Metnber of Partitioned Data Set (R)

The FIND macro-instruction causes the address of the first block of a
specified partitioned data set member to be placed in the indicated data
control block. A subsequent read request will use that address to
retrieve the blocks of the member.

r----------T----------~T-----------------------------------.------------,
I Name I Operation; I Operand I
.----------+-----------+-----------------------------------.------------~
I [symbol] I FIND I {dcb-addrX}w{area-addrx},type-{DIC} I
I I I (1) (0) I L __________ ~ ___________ ~ ___________________________________ . ____________ J

dcb

area

type

specifies the address of the data control block opened for the data
set being processed.

If (1) is w'ritten, the address must have been loaded into parameter
register 1 before! execution of this macro-instruction.

specifies the address of an area containing either the name of the
member or the addjress of an entry for that member. The entry is in
a main storage list constructed by the programmer with a BLDL
macro-instruction.. The format of the area is dependent upon the
type field.

If (0) is written, the address must have been loaded into parameter
register 0 before execution of this macro-instruction.

specifies the information in the area parameter as one of the
following:

D specifies that,the directory of the partitioned data set is to
be scanned for a match to the name provided in the area. The
area must be e;i.ght bytes long and contain a left-justified
a lphameric nam~,.

C specifies that the area points
containing a r~lative address list.
long and contain TTRK, where:

TT the relative track number
R the block number on track TT

to the first byte of an area
The area must be four bytes

Section 3: Basic Partitioned Access Method (BPAM) 189

K = the concatenation number~ of the data set provided as a
return from the BLDL macro-instruction

CAUTIONS: All previously issued read or write requests must have been
checked before the FIND macro-instruction is issued.

EXCEPTIONAL RETURNS: After execution of the FIND macro-instruction
(type D), bits 24 through 31 of register 15 contain one of the following
(hexa.decimal) codes to indicate the status of the operation:

Code_(Hexadecimal) Interpretation

00
04
08

Successful completion.
The named item was not found.
A permanent input/output error was detected when
an attempt was made to search the directory.

Execution of the FIND macro-instruction (type C) results in the same
exceptional returns as that of the POINT macro-instruction.

BLDL -- Build List (R)

The BLDL macro-instruction causes member addresses and optional
information from a partitioned data set directory to be placed in a
specified list constructed by the programmer in main storage.

r---·-·------T-----------T---,
I Narne I Operation I Operand I
.-----------+-----------+---i
I [symbol] I BLDL I {dcb-addrx}, { list-addrx } I
I I I (1) . (0) I L ___________ ~ ___________ ~ _____________ ------------------________________ J

dcb

list

specifies the address of the data control block opened for the data
set being processed. If a decimal zero is specified for the
address, or if register 1 contains binary zeros, the control
program searches the job library and link library.

If (1) is written, the address or binary zeros must have been
loaded into parameter register 1 before execution of this macro
instruction.

specifies the address of the user's build list.

If (0) is written, the address must have been loaded into parameter
register 0 before execution of this macro-instruction.

PROGHAMMING NOTES: The format of the build list must be similar to that
of the directory, and must include the names of any members for which
the 13LDL macro-instruction is to provide control information. Names

~WheJ:l the user concatenates a partitioned data set and issues a BLDL
macro-instruction, the data sets are searched in the order specified in
the DD statement. K indicates the binary value of the number of the
data set in which the member was found. The publication IBM Operating
Syst~m/360: Job Control Language describes the concatenation of data
sets ..

190

must be placed in the; list by the programmer in the same order in which
they appear in t:he dir:ectory. The build list consists of two parts; the
list description field! and the list entries.

List Description Fieldl: The description field is two half -words long
and conta ins FFLL, wheire;

FF = the number 01£ entries in the list
LL = an even number that indicates the length of each entry in

bytes

List Entries: E!ach entry starts on a half-word boundary and contains LL
bytes (a minimum of 14i). The entries must be arranged by the user in
ascending order, according to the binary value of the name. Each list
entry is in the following format:

r--------"----T-,..-T-----------,
I NAME I TTRK I Zi! C I User Data ! L ________ J ____ ~_~_~ ___________ J

Bytes 8 4 1 1 C half-words

NAME

TT

R

K

Z

C

is a member name. It is left-justified and padded with blanks if
less than eight b¥tes long. NAME must be supplied by the user.

is the relative track number.

is the block number on that track.

specifies t:he concatenation number.. If the data set was the first,
or only, data set~, then K=O.

is normally a zero byte (binary) inserted to maintain half-word
boundaries. If the dcb operand was specified as zero, this byte
will contai.n a 1 d-f the name was found in the link library, and a 2
if the namE~ was found in the job library.

describes the user data field. Bits 3-7 indicate the number of
half-words contained in the user data field.

User Data
contains as much user data from the directory entry as will fit in
the remainder of the field.

The NAME or TTRK portion of a list entry can be used by a FIND
macro-instruction. The area operand of the FIND macro-instruction
should point t.O the: NAME portion if the type operand is D, or to the
TTRK portion if the type op,erand is C.

TTRKzC are rE~trieved from the directory and placed in the user' s
list.

CAUTIONS: All previously issued read or write requests must be checked
before the BLDL macro-instruction is issued. The BLDL macro-instruction
may refer to a data control block that specifies the execute channel
program (EXCP) macro-instruction.

Section 3: Basic Partitioned Access Method CBPAM) 191

EXCEPTIONAL RETURNS: After execution of the BLDL macro-instruction,
bits 24 through 31 of register 15 contain one of the following
(hexadecimal) codes to indicate the status of the operation:

Code _ (hexadecimal) Interpretation

00
04

08

Successful completion.
The list could not be f~lled. The R field of
each unfilled entry will contain hexadecimal 00.
A permanent input/output error was detected when
an attempt was made to search the directory.

STOW_-- Manipulate Partitioned Data Set Directory (R)

The STOW macro-instruction causes a partitioned data set member name
to be changed, added, deleted, or replaced in the data set directory.
It can also be used to store additional information in the directory.

r-----------T-----------T---,
I Name I Operation I Operand I
~-----------+-----------+---~
I [symbol] I STOW I {dCb-addrX},{area-addrX}[,tyPe-{~IRIDIC}] I
I I I (1) (0) I L ___________ .L, ___________ .L ___ J

dcb

area

type

specifies the address of the data control block opened for the data
set being processed.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro-instruction.

specifies the address of an area in main storage constructed by the
programmer. The exact contents of the area will depend on the type
specified.

If (0) is written, the address must have been loaded into parameter
register 0 before execution of this macro-instruction.

specifies the type of information to be used in manipulating the
data set directory, as follows:

A (add) - the name of a member and possibly additional information
is to be added to the directory. An end-of-data mark is written
in the data area unless the alias option is used.

R (replace) - a member is to be replaced in the data set. If the
member to be replaced does not exist, the member specified by
the area operand is added to the data set. An end-of-data mark
is written in the data area unless the alias option is used.

D <delete) - the member name is to be deleted from the directory.
C (change) - the member name is to be changed in the directory.

CAUTIONS: All previously issued read or write requests must be checked
before--the STOW macro-instruction is issued. The data control block
must have been opened for output.

192

EXCEPTION RETURNS: After execution of the STOW macro-instruction, bits
24 through 31 of register 15 contain one of the following (hexadecimal)
codes to indicate the status of the operation:

Code (hexadecimal) Interpretation

00
04

08

OC
10

S3uccessful completion.
Name a1ready exists in the directory (type A), or
new name already exists in the directory (type C).
Name not in the directory (types D and R), or old
name not in the directory (type C).
No space left in the directory (types A and R).
A permanent input/output error was dE=tected when
an attempt was made to search the dirE=ctory.

PROGRAMMING NOTES: The format of the area used by thE= STOW macro
instruction depends on the type of information it contains. The format
for each type of information is described in the following paragraphs.

Types A and R: The area must be at least 12 bytes long and begin on a
half-word boundary. The format is as follows:

r--------T·----T---------------,
I NAME ITTRCI User Data I L ________ ..L. ____ ..L_ _____________ J

Bytes 8 4 0 to 62

NAME

TTR

C

is an eight· ... byte name of the member being stowed.

is the rela·tive tl!"ack and block identification of the first block
of the member. The quantity must be supplied when the alias option
is used. When the alias option is not used, the control program
stores the TTR in this field.

specifies the alias option and information about the user field of
the area; i1ts fornlat is as follows:

Bits 0 1-2 3-7
r-T----r-----';

o

1-2

3-7

I I I I'
L_..L ___ .L _____ J:

is set to 1 by the user if the name being entered is an alias
for a member name already in the directory.

indica1:e the number of TTRN fields in the user dat.a fields.

indica1:.e, by their binary values, the number of half-words
contained in the user data fi.eld.

User Data
contains variable data supplied by the user. The data will be
stored in the dire:ctory and can be retrieved by means of the BLDL
macro-instruction.

Section 3: Basic Partitioned Access Nethod (BPAM) 193


~~~ The area specified must be €ight bytes long. It contains the 
member name to be deleted. 

~~C: The area specified must be 16 bytes long. The high-order eight 
bytes must contain the old member name, and the low-order eight bytes 
must. contain the new member name. 

QUEUED INDEXED SEQUENTIAL ACCESS METHOD (QISAM) 

'I'he queued indexed sequential access method (QISAM) is the sole means 
of creating an indexed sequential data set. The QISAM macro
instructions, which are completely direct-access-device oriented, permit 
the programmer to sequentially store and retrieve the records of an 
indexed sequential data set. They also provide automatic buffering and 
blocking/deblocking procedures as required. The load mode is used to 
crea.te an indexed sequential data set and the scan mode is used to 
retrieve and update records. 

']~he QISAM macro- instructions (DCB, GET, RELSE, SETL, ESETL, and PUTX) 
and the general service macro-instructions (BUILD, GETPOOL, FREEPOOL, 
OPEN, and CLOSE) are used with the queued indexed sequential access 
method. The opt:1. operand of the OPEN macro-instruction is ignored. 

Macl~-Instruction 

DCB 

GET 

RELSE 

SETL 

ESETL 

PUT 

PUTX 

Function 

Constructs a data control block for an indexed 
sequential data set. 

Gets a logical record from an indexed sequential 
data set. 

Causes the remaining records in an input buffer 
to be ignored. 

Specifies the point 
retrieval is to begin. 

at 

Ends sequential retrieval. 

which sequential 

Places a logical record in an output buffer from 
which it is written. 

Returns an updated logical record to an indexed 
sequential data set. 

DCB - Define Data Control Block for QISAM - Load Mode 

~rhe DCB macro-instruction reserves space for a data control block for 
QISAM and informs the control program of the characteristics and 
intE:!nded uses of a data set. The options chosen for the load-mode DCB 
detE:!rmine processing procedures for the scan-mode of QISAM and for 
BIS1~M. 

194 



r----------T----------~T------------~----------------------------------, 
I Name I Operation I Operand I 
~----------+----------~+------------------------------------------------~ 
I [symbol] I DCB I DSORG={ISIISO},MACRF=(P{MIL}) I 
I I I [,DDNAME=symbol] [,OPTCD=code] I 
I I I [,RECFM={VIFIVBIFB}] I 
I I I [, LRECL=absexp] [, BLKSIZE=absexp] I 
I I I [, RKP=absexp] [, NTM=absexp] [, KEYLEN=:absexp] I 
I I I [, CYLOFL=absexp] [ , BUFNO=absexp] I 
I I I [, BFALN= {F I DJ ] [ , BUFL=absexp] I 
I I I [ , BUFCB=relexp] [, EXLST=relexp] [ , SYNAD=relexp] I L __________ ~ ___________ ~ ________________________________________________ J 

The keyword operancl.s DSORG and MACRF can be supplied by only the DCB 
macro-instruction. The remaining operands can be supplied a.fter assem
bly time by other s0urceSi these sources are indicated in the operand 
descriptions. 

DSORG 

MACRF 

specifies the organization of the data set as one of the following: 

IS - index1ed sequential organization 
ISU - index,ed sequential organization in which any 

tains location-dependent information with 
data set. 

da1:a set con
respect to this 

Note: For space allocation purposes, this operand must also be 
specified in the DD control statement. 

specifies the type of macro-instruction that will be used in 
processing 'the data set i (PM) indicates that move-mode PUT macro
instructions are to be used to add records to the data set; 
(PL) indica1tes that locate-mode PUT macro-instructions are to be 
used. (Only th~ PUT macro-instruction can be used to present 
records when an indexed sequential data set is being created.) 

DDNAME 

OPTCD 

specifies the nam~ of the DD statement that will be used to 
describe the data set to be processed. 

This informa.tion can also be supplied by the user's problem program 
before opening the data control block. 

specifies optional services to be provided by the cont~rol program, 
as follows: 

W - performs a write validity check 
M - create master indexes as required 
Y - use cylinder overflow areas 
I - use indE~penderit overflow area 
L - delete option: user marks records for deletion; records so 

marked may be actually deleted when new records are added to 
the data set 

R - provide reorganization criteria feedback 

The prograInIlller can choose any combination of the options. 

This information can be supplied by any of the three alternate 
sources. If this information is not supplied by any source, only 
reorganization cr~teria feedback is provided. This feedback is 
maintained in three fields of the data control block, as follows: 

Section 3: Queued Indexed Sequential Access Method (QISAM) 195 



DCBRORGl 

DCBRORG2 

DCBRORG3 

Feedback 

Binary number of cylinder overflow areas that are full 

Binary number of tracks remaining in the independent 
overflow area 

Binary number of READ and WRITE macro-instructions 
that referred to overflow records other than the first 
overflow record in a chain 

REC~~M 

specifies the characteristics of the records in the data set. One 
of the following is written: 

v - variable-length records 
F - fixed-length records 
VB - variable-length blocked records 
FB - fixed-length blocked records 

This information can be supplied by any of the three alternate 
sources. If this operand is not supplied by another source" F is 
assumed. 

LRECL 
specifies the length, in bytes, of a logical record. For variable
length records, the maximum record length must be specified. For 
unblocked records, if the relative key position is zero, LRECL is 
the length (or maximum length) of the data portion of the physical 
record. In this case only, the key does not appear in the data 
portion of the physical record. The maximum value must not exceed 
the BLKSIZE value. 

This information can be supplied by any of the three alternate 
sources. 

BLKSIZE 

RKP 

196 

specifies the maximum length, in bytes, of a block. For fixed
length records, this length must be an integral multiple of the 
LRECL value. For variable-length records, this length must be the 
maximum length. 

The maximum length (plus 10 bytes) must not be greater than the 
number of bytes available on a track of the allocated direct-access 
device. (The available space varies with different device types; 
formulas published in the publication IBM 2841 Storage Control Unit 
should be consulted). It is also necessary to account for the 
space occupied by record zero, as described in the Introduction to 
this section. 

Note: The 10 bytes are occupied by a link field for overflow 
records. 

This information can be supplied by any of the three alternate 
sources. 

specifies the relative position of the first byte of the record key 
within each logical record. The value specified cannot exceed the 
logical record length minus the record key length. If the poSition 
is specified as zero, the record key does not appear in the data 
portion of unblocked records. 

This information can be supplied by any of the three alternate 
sources. 



NTM 
specifies a numbet of tracks to be contained in a cylinder index 
before a higher level index is created. The maximum number is 99. 
(This operand is required only when a master index is specified in 
the OPTCD operand. Through this master index facili-ty, extensive 
serial searches through a large index can be avoided). 

If the cylinder index exceeds this number, a masb=r index is 
created; if the master index exceeds this number, a higher level 
master index is created (up to a maximum of three levels of master 
index). 

Based on the number of cylinders allocated to the data set, the 
control program calculates and establishes the required number of 
levels of master index. The calculations are based primarily on 
the following: 

• The number of cylind:ers allocated to the data set. 
• The KEYLEN value. 
• The NTM value" 

These calculations are performed when the data control block is 
opened. As the data set is loaded, entries are automa.tically made 
in the first levei master index and, when appropria.te, in the 
higher levels of master index. 

This information can be specified by the DD statement or the user's 
problem program. 

KEY LEN 
specifies the length, in bytes~ of the record key associated with a 
logical record. the maximum length of the record key :Ls 255 bytes. 

This information can be supplied by any of the thJree alternate 
sources. 

CYLOFL 
specifies the number of tracks to be reserved on each cylinder to 
hold records that overflow from other tracks on that cylinder. The 
maximum number of tracks that can be reserved is 99. 

This information can be supplied by the DD statement or the user's 
problem program. 

NOTE: Refer to 'Table ~O for a list of the situations 
following four operands (BUFNO, BFALN, BUFL, and BUFCB) 

in which the 
arf= applicable. 

BUFNO 

BFALN 

specifies the numlber of buffers to be assigned to the data control 
block. The maximum number that can be specified is 255; however, 
the number must not exceed the limit on input/output requests 
established during system generation. 

This information can be supplied by the DD statement or the user's 
problem pro.gram. 

specifies the boul'ldary alignment of each buffer, as follows: 

F - the buffer stqrts on a full-word boundary (one tha1: is not also 
a double-word;boundary). 

D - the buffer starts on a double-word boundary. 

This information ean be supplied by the DD statement or the user's 
problem program. 

Section 3: Que$ed Indexed Sequential Access Method (QISAM) 197 



Tabl,e 20. QISAM Buffer Acquisition and Data Control Block Field 
Requirements 

r------------------T----------------------------------------------------, 
I I Method of Obtaining Buffer Pool I 
IUsage and ~----------------T-----------------T-----------------~ 
,Characteristics I Automatically by, I I 
I I OPEN I BUILD I GETPOOL I 
~-----.-------------+----------------+----------------+-----------------~ 
I I lIn data control lIn data control I 
I When I Iblock exit rou- Iblock exit rou- I 
I Issued I Itine or before Itine or before I 
I I I OPEN I OPEN I 
~---.--------------+----------------+----------------+-----------------~ 
I ISystem acquires IStructures IAcquires storage I 
I Result I storage and I storage into I and structures I 
, Istructures into Ibuffer pool linto buffer I 
I I buffer pool I I pool I 
~--------T--------+----------------+----------------+-----------------~ 
Data I DCBBUFNOI Optional; if I Required; user IIgnored; GETPOOL I 
Control I I omitted, the Isets this field I sets this field I 
Block I Ifield is not Ibefore or after I I 
Require- J laltered and two I BUILD is issued I I 
ments I Ibuffers are I I I 

I 'assumed I I I 
(to be ~--------+----------------+-----------------+-----------------~ 
providedloCBBUFCBIMust be omitted; IRequired; user I Ignored; GETPOOL I 
no later I IOPEN sets this Isets this field Isets this field I 
than I Ifield Ibefore or'after I I 
conclu- I I 'BUILD is issued I I 
sion of ~--------+----------------+-----------------+-----------------~ 
da ta I OCBBFALN I Optional1 I Ignored IOptional1. I 
control I I I I I 
block ~--------+_---------------+-----------------+-----------------~ 
exit I DCBBUFL I Ignored; OPEN I Ignored2 I Ignored2 I 
routine> I I sets this field I I I 
.--------~--------+----------------+-----------------+-----------------~ 
I IProvides stand- IMore than one IExecution time I 
I Features I ard options ,data control I request for I 
I I ,block can use I storage , 
, I Ipool I I 
~------------------+--~-------------+-----------------+-----------------~ 
I IOnly one data IUser responsible IOnly one data I 
I Icontrol block Ifor storage Icontrol block I 
I cautions Ican use pool; lacquisition and Ican use pool; I 
I Imust use Ibuffer alignment; I must use I 
I IFREEPOOL Imust close all IFREEPOOL I 
I I I data control I I 
I I I blocks before I I 
I I Ireissuing BUILD I I 
~-----------------~----------------~-----------------~-----------------~ 
I 1If omitted, field is not altered, double-word alignment is assumed. I 
I 20PEN computes minimum buffer length and verifies that the buffer I 
I length specified in the length field of the buffer control block is I 
I at: least as large as the computed length. The computed length is I 
I placed in the DCBBUFL field. I L _______________________________________________________________________ J 

BUFL 

198 

specifies the length, in bytes, of each buffer to be obtained for a 
buffer pool. The maximum value is 32,760. Buffer requirements are 
given in "QISAM Load Mode Buffer Requirements" following the DCB 
macro-instruction description. 

This information can be supplied by the DO statement or the user's 
problem program. 



BUFCB 

EXLST 

SYNAD 

specifies t.he add:ress of a buffer pool control block (i. e. , the 
eight-byte field preceding the buffers in a buffer pool.) 

The only alternate source for this information is the user's 
problem program. 

specifies t.he addtress of an exit list created by the programmer. 
The format of the list is presented in Appendix D. 

Exit lists are required if data control block exit routines are 
used. 

The only alternate source for this information is the user's 
prob lem prog ram. 

specifies the addtress of the user's synchronous error exit routine. 
The routine is entered if input/output errors result from an 
attempt to process data records. 

The only alternate source for this information is the user's 
problem program. 

CAUTIONS: The DCB macro-instruction must not be coded within the first 
16 bytes of a control section. It can be preceded by padding, 
constants, or instructions. 

PROGRAMMING NOTES: After the data set is created, the following 
attributes are permanently established for the data set. When the 
indexed sequential method is used to gain access to the data set, it is 
controlled by these fixed characteristics. 

Attributes 

RECFM 
LRECL 
BLKSIZE 
KEYLEN 
RKP 
CYLOFL 
OPTCD 
NTM 

QISAM Load Mode Buffer: Requirements 

Fixed-length, unblocked records when the RKP field of the data 
control block equals ~ero: 

r--------T----------T--------------------, 
I COUNT I KEY I DATA I 
I (8) I (KEYI,EN) I (LRECL = BLKSIZE) I L ________ ..L ______ • ____ ..L_ .... __________________ J 

Buffer length is eight plus KEYLEN plus LRECL. 

Fixed-length, unblocked records when the RKP field of the data 
control block is not equal to zero: 

section 3: Queued Indexed Sequential Access Method (QISAM) 199 



r--------T-------------------------------, 
1 COUNT 1 DATA WITH EMBEDDED KEY 1 
1 (a) 1 (LRECL = BLKSIZE) 1 L ________ ~ _______________________________ J 

Buffer length is eight plus LRECL. 

Fixed-length, blocked records: 

r---------T------------------------------, 
1 COUNT 1 DATA WITH EMBEDDED KEYS I 
1 (8) I (BLKSIZE) 1 L ________ ~ _______________________________ J 

Buffer length is eight plus BLKSIZE. 

Variable-length, unblocked records: 

r--------T----T----T------------, 
1 COUNT I BL 1 RL IDATA AND KEY 1 
I (:8) 1 (4)1 (4)1 1 L _________ ~ ____ .L ____ .L ____________ J 

<------LRECL------> 

Buff'er length is 12 plus LRECL. 

Variable-length, blocked records: 

r---------T----T----T------------T----T------------T--T---~------------, 
1 COUNT 1 BL 1 RL IDATA AND KEY I RL IDATA AND KEYI 1 RL IDATA AND KEY 1 
1 (8) 1 (4)1 (4)1 1 (4)1 1 1 (4)1 I L ___ . _____ ~ ____ .L ____ ~ ____________ .L ____ ~ ____________ .L __ ~ ____ .L ____________ J 

<---------------------------BLKSIZE---------------------------> 

Buffer length is eight plus BLKSIZE. 

PUT ._- Move Mode (R) 

The PUT macro-instruction moves a logical record into an output 
buffer from which it is written. 

r----------T-----------T-----------------------------------------------, 
1 Name 1 Operation 1 Operand 1 
~---.-------+-----------+-----------------------------------------------~ 
1 [symbol] I PUT I {dcb-addrx} {area-addrx } I 
1 1 I (1) (0) I L __________ .L ___________ .L _______________________________________________ J 

dcb 

area 

200 

specifies the address of the data control block opened for the data 
set being created. 

If (1) is written, the address must have been loaded into parameter 
register 1 before execution of this macro-instruction. 

specifies the address of the logical record to be moved into the 
buffer. 

If (0) is written, the address must have been loaded into parameter 
register 0 before execution of this macro-instruction. 



EXCEPTIONAL RETURNS: ,In both the load and scan modes, the user's 
synchronous error exit (SYNAD) routi~e is given control if any of the 
conditions listed in ~able 21 arise. The control program notifies the 
user's problem program of each condition by setting the appropriate bit 
in the exceptional condition field of the data control block. The 
exceptional condition field is the two-byte area DCBEXCD1 and DCBEXCD2. 

An all-zero f~xcept~onal field, or one in which only bit 3 of DCBEXCD2 
is set to 1, indicates: a successful completion. In ei the·r case, the 
SYNAD routine is not given control. 

For all conditions, 
information listed in 
listed in Appendix G. 

the general registers will contain the 
Table 22. The standard status information is 

Table 21. contents of Exceptional Condition (DCBEXCD) Fields of Data 
Control Bldck -- QISAM Load and Scan Modes 

r---T-----------.-----~----------------------T--------------------------, 
,Bit I Interpretation iJf Bit Set to 1 , Set by , 
~---..L------------------.----------------------..L-------_______ , ____________ ~ 
, (DCBEXCD1) , 
~---T---------------------------------------T--------------------------~ 
, 0 , Lower key limit :not found I SETL (scan mode) , 
, 1 I Invalid actual a:ddress for lower limit, SETL (scan mode) , 
, 2 , Space not found ;in which to add a , PUT (load mode) I 
, I record , , 
, 3 , Invalid request , SETL (scan mode) , 
I 4 I Uncorrectable iqput error I GET (scan mode) , 
, 5 I Uncorrectable ou;tput error I PUT or CLOSE (load mode) I 
, , I GET or CLOSE (scan mode) I 
I 6 I Block could not be reached (input) , GET (scan mode) I 
I 7 I Block could not be reached (output) 'GET or CLOSE (scan mode) , 
• ___ ..L-_________________ . ______________________ ..L ________ ----------------i 
I (DCBEXCD2) I 
~---T------- ..... ---·------,----------------------T--------------------------i 
I 0 I Sequence check , PUT (load mode) I 
I 1 , Duplicate record , PUT (load mode) , 
, 2 , Data control block closed when I CLOSE , 
I 'error routine entered, I 
I 3 , Overflow record I GET (scan mode) I L ___ ..L _______________________________________ ..L __________________________ J 

Lower Key Limi 1:: Not Bound: This condition is reported if the specified 
key or key class is ndt found in the data set. 

Invalid Actual l~ddressi for Lower Limit: This condition is reported if 
the specified lower limit address is outside the space allocated to the 
data set. 

Space Not Found in WhiiCh to Add a Record: This condition is reported if 
the space allocated to: the data set is already filled. In the locate 
mode, a buffer segment address is not provided. In the move mode, data 
is not moved. 

Invalid Request:. This: condition is reported if (1) the data set is 
already being sequentially referred to by the user's problem program, or 
(2) the buffer cannot contain the key and the data, or (3) the specified 
type is not also sipecified in the DCBOPTCD field of the data control 
block. 

Uncorrectable Input Erjror: This condition is reported if the control 
program' s errOl~ recoyery procedures encounter an uncorrectable error in 
transferring a block firom secondary storage to an input buffer. The 

Section 3: Queued Indexed Sequential Access Method (QISAM) 201 



buffE~r address is placed in register 1, and the SYNAD routine is given 
control when a GET macro-instruction is. issued for the first logical 
record. 

Uncol~rectable Output Error: This condition is reported if the control 
program's error recovery procedures encounter an uncorrectable error in 
transferring a block from an output buffer to secondary storage. If the 
error is encountered during closing of the data control block, bit 2 of 
DCBEXCD2 is set to 1 and the SYNAD routine is given control i~IDediately. 
Otherwise, control program action depends on whether load mode or scan 
mode is being used. 

If load mode is being used, the SYNAD routine is given control when 
the next PUT macro-instruction is issued. In the case of a failure to 
write a data block, register 1 contains the address of the output 
buffer: for other errors, register 1 contains all zeros. After 
appropriate analysis, the SYNAD routine should close the data set or end 
the job step. Subsequent execution of a PUT macro-instruction would 
caUSE~ reentry to the SYNAD routine. since an attempt to continue loading 
the data set would produce unpredictable results. 

If scan mode is being used, the address of the output buffer is 
placE~d in register 1, and the SYNAD routine is given control when a GET 
macro-instruction is issued for the buffer. Buffer scheduling is 
suspended until the next GET macro-instruction is issued. 

Block Could Not Be Reached (Input>: This condition is reported if the 
contJ:ol program's error recovery procedures encounter an uncorrectable 
errOJt:' in searching on index or the track containing the block that is 
sought. The SYNAD routine is given control when a GET macro-instruction 
is issued for the first logical record of the unreachable block. 

Block Could Not Be Reached (Output): This condition is reported if the 
control' program's error recovery procedures encounter an uncorrectable 
error in searching an index or the track containing the block that is to 
be updated. 

If the error is encountered during closing of the data control block, 
bit 2 of DCBEXCD2 is set to 1 and the SYNAD routine is given control 
immediately. Otherwise, the SYNAn routine is given control when a GET 
macro-instruction is issued for the first logical record of the 
unreachable block. 

Sequence Check: This condition is reported if a PUT macro-instruction 
refejrs to a record whose key has a smaller numerical value than the key 
of the record previously referred to by PUT. The SYNAD routine is given 
control immediately: the record is not transferred to secondary storage. 

Duplicate Record: This condition is reported if a PUT macro-instruction 
refers to a record whose key duplicates that of the record previously 
refe:rred to by PUT. The SYNAD routine is given control immediately; the 
record is not transferred to secondary storage. 

Data Control Block Closed When Error Routine Entered: This condition is 
repoJcted if the control program's error recovery procedures encounter an 
unco:t:'rectable output error during closing of the data control block. 
Bit 5 or bit 7 of DCBEXCDl is set to 1, and the SYNAD routine is 
irnmed,iately given control. After appropriate analysis, the SYNAn 
routine must branch to the address in return register 14 so that the 
control program can finish closing the data control block. 

Overflow Record: This condition is reported if the input record is an 
overflow record. 

202 



Table 22. Register Contents Upon Entry to SYNAD - QISAM Load and Scan 
Mode 

r--------------T-------------------------------------------------------, 
I Register I Contents I 
~--------------~~-----.... -----------------------------------.------------f 
I 0 :1 A poilnter to status indicators (for GET or PUT I 
I II macrd-instruction) for uncorrectable i.nput/output I 
I I erro~s. In other cases, original contents destroyed. I 
~--------------~~------I------------------------------------------------f 
I 1 II The address of the buffer containing the record in I 
I II error (for GET or POT macro-instruction) for uncor- I 
II rect~ble input/output errors. In other ca,ses, origi- I 
I II nal Gontents destroyed. I 
~--------------+------I-------------------------------------.-------------f 
I 2 through 131 The ·contents that existed before t.he macro- I 
I :1 inst:uuction was executed. I 
.--------------+--------~---------------------------------.------------~ 
I 14 ~ The .return address. This address is ei.ther (1) an I 
I II addrEjss in the control program's CLOSE routine (when I 
I ~ bit 2 of DCBEXCD2 is,on), or (2) the address of the I 
I II inst:ouction following the expansion of the macro- I 
I II inst:ttuction that caused the SYNAD routine to be given I 
I ~ contnol (when bit 2 of DCBEXCD2 is off). I 
~--------------~~------;------------------------------------.------------f 
I 15 II The address of the SYNAD routine. I L ______________ .JL _________ - _________________________________ . ___________ J 

EXAMPLE: In 1:he fdllowing example, the data control block OUTDCB was 
opened for output. s~ccessive PUT macro-instructions are issued to move 
records from a ,,~ork anea (WORKAREA) to output buffers. 

OPEN I(OUTDCB) 

EXl PUT OUTDCB,iWORKAREA 

PROGRAMMING NOTBS: Afiter execution of the PUT macro-inst.ruction, the 
device address of the iblock containing the logical record just processed 
is available in the eight-byte field DCBLPDA of the data control block. 
For blocked record fo:t1mats, this address will be the same for each 
logical record within a block. 

PUT -- Locate Mode (R) 

The PUT macro-ins1:ruction supplies the address of the n.ext available 
output buffer sE~gment. The logical record can then be constructed in 
the buffer, by 1::he programmer, for output as the next record in the data 
set being created. Ttie address of the buffer is provided by the control 
program in register 1 after the PUT macro-instruction is executed. 

r----------T------------T-----------------------------------------------, 
I Name I Operation I Operand I 
~----------+-----------+-----------------------------------------------i 
I [symbol] I pU'r I {dcb-addrx} I 
I I I (1) I L __________ ~ ___________ ~ _______________________________________________ J 

section 3: Queued Indexed Sequential Access Method (QISAM) 203 



dcb 
specifies the address of the data control block opened for the data 
set being created. 

If (1) is written, the address must have been loaded into parameter 
register 1 before execution of this macro-instruction. 

CAUTIONS: The two modes of the PUT macro-instruction (locate and move) 
cannot be intermixed. The data set must be created by use of one or the 
other of the two modes. 

When constructing blocked variable-length records in the locate mode, 
the user must choose one of the following methods of operations: 

• Before executing each PUT 
logical recora length in 
block • 

macro-instruction, provide the actual 
the DCBLRECL field of the data control 

• Place a maximum logical record length, one that will not be altered, 
in the DCBLRECL field. This choice may result in more, but shorter, 
blocks, since the control program assumes that each logical record 
~~ill require the maximum space when it tests to see if the next 
logical record can be contained in the current buffer. 

EXCEPTIONAL RETURNS: Refer to the move-mode PUT macro-instruction. ----
PROGl~AMMING NOTES: Refer to the move-mode PUT macro-instruction. 

DCB -:- Define Data Control Block for QISAM - Scan Mode 

The DCB macro~instruction reserves space for a 
(DCB)) and informs the control program of the 
intended uses of a data set. 

data control block 
characteristics and 

r----------T-----------T---------------~-------------------------------, 
I Name I Operation I Operand I 
~-----------+-----------+-----------------------------------------------~ 
I [symbol] I DCB 1 DSORG=IS,MACRF=code I 
I I I [,DDNAME=symbol] [,BUFNO=absexp] I 
I I 1 [,BFALN={FID}] (,BUFL=absexp] I 
I I I [,BUFCB=relexp] [,EODAD=relexp] I 
I I I [,EXLST=relexp] [,SYNAD=relexp] I L ___________ ~ ___________ ~ ________________________________________________ J 

The keyword operands DSORG and MACRF can be supplied by only the DCB 
macro-instruction. The remaining operands can be supplied after 
assembly time by other sources; these sources are indicated in the 
operand descriptions. 

DSORG 

MACRF 

204 

specifies the organization of the data set; IS specifies the 
indexed sequential organization. 

specifies the types of macro-instructions that will be used in 
processing the data set, as follows: 



{

(G{MI L}) } 
,MACRF= (G{MIL},S.!(KII]) 

(GL,PU) 
(GI.,S[KI I:] ,PU) 

G - GET macro-instruct,ion (implies RELSE and ESETL 
macro-instruction) 
M - move-mode 
L - locate-mode 
S - SETL macro-ins~ruction 
K - sequential pro:cessing using a record key or generic key 
I - sequential pro!cessing using a device address 

P - PUTX macro-instruction 
U .. indicates sequential updating 

Omission of K or I implies sequential processing from the beginning 
of the data set. 

DDNAME 
specifies the name of the DD statement that will be used to 
describe the data set to be processed. 

This information can ailso be supplied by the user's problem program 
before the data contro!l block is opened. 

NOTE: Refer to Tabl(i~ 20 fo:r a list of situations in which the following 
four operands (BUFNO, BFALN, BUFL, and BUFCB) are applicable. 

BUFNO 

BFALN 

BUFL 

BUFCB 

specifies the number of buffers to be assigned to the data control 
block. The maximum nuimber that can be specified is 255; however, 
the number must not exceed the limit on input/output requests 
established during sys!tem generation. 

This information can be supplied by the DD statement or the~ user's 
problem program •. 

specifies the boundary alignment of each buffer, as follows: 

F - the buffer starts on a full-word boundary (one that is not also 
a double~word boundary) 

D - the buffer starts on a double-word boundary 

This information can be supplied by the DD statement or the user's 
problem program .. 

specifies the length, ;in bytes, of each buffer to be obtained for a 
buffer pool. The maximum value is 32,760. Buffer requirements are 
given in "QISAM Scan Mode Buffer Requirements" following the DCB 
macro-instruction desqription. 

This information can be supplied by the DD statement or the user's 
prob lem prog ram .. 

specifies the address of a buffer pool control block <i.e., the 
eight-byte field preceding the buffers in a buffer pool). 

This information can be supplied by the user's problem program. 

Section 3: Queued Indexed Sequential Access Method (QISAM - Scan Mode) 205 



EXLs~r 

EO DAD 

SYNAD 

specifies the address of an exit list created by the programmer. 
The format of the list is presented in Appendix D. 

Exit lists are required if data control block exit routines are 
used. 

The only alternate source for this information is the user's 
prob lem prog ram. 

specifies the address of the user's end-of-data set exit routine 
for input data sets. This routine is entered when the user 
requests a record and there are no more blocks in the data set to 
be retrieved. If no routine has been provided, the task is 
abnormally terminated. 

The only alternate source for this information is the user's 
problem program. 

specifies the address of the user's. synchronous error exit routine. 
The routine is· entered as a result of errors detected during 
attempts to process records. 

The only alternate source for this information is the user's 
problem program. 

CAUTIONS: The DCB macro-instruction must 
firs1~bytes of a control section. It can 
constants, or instructions. 

not be written within the 
be preceded by padding. 

PROGRAMMING NOTE: Refer to the load-mode DCB macro-instruction for 
thos~= operands that are fixed when the data set is created. 

QISA~ Scan Mode Buffer Reguirements 

Fixed-length, unblocked records when both the key and data are to be 
read:: 

r----------T--T----------T--------------------, 
I KEY I I LINK I DATA I 
I (KEYLEN) I I (10) I (LRECL = BLKSIZE) I L ___________ .L-_ .L __________ .L ____________________ J 

Buffer length is G plus LRECL, where G is the smallest mUltiple of eight 
equal to or greater than KEYLEN plus 10. 

If the execution of the OPEN macro-instruction obtains buffers, the 
preceding buffer layout is used for fixed-length, unblocked records. 

Fixed-length, unblocked records when only data is to be read: 

r------T----------T--------------------, 
I I LINK I DATA I 
I (6) I (10) I (LRECL = BLKSIZE) I L ______ ~ __________ ~ ____________________ J 

Buffer length is 16 plus LRECL. 

206 



Fixed-length, blocked records: 

r------T----------T----------, 
I I LINK I DATA 1 
I (6) 1 (10) 1 (BLKSIZE~ 1 L ______ ~ __________ ~ ________ ~-J 

Buffer length is 16 plus BLlKSIZE. 

Variable-length, unblocked records when both the key and data are to 
be read: 

r----------T--T------'----T----T----T---------, 
1 KEY 1 I LINK I BL 1 RL I DATA I 
I (KEYLEN) 1 I (101) 1(4) 1 (4) 1 1 
L __________ ~ __ ..L ______ , ____ ~ __ --..L----.L-- ________ J 

<-----LRECL-----> 

Buffer length is H plus LRECL, where H is the smallest multiple of eight 
equal to or greater t.han KEY LEN plus 14. 

If the execution of the OPEN macro-instruction obtains buffers, the 
preceding buffer layout is used for variable-length, unblocked records. 

Variable-length, unblocked records when only data is read: 

r---T----------T----·r----T-,---------, 
I I LINK 1 BL 1 RL 1 DATA 1 
1(2)1 (lO) 1 (4)1 (4)1 1 
L ___ ..L __________ ~ ____ ~ ____ .L __ --------J 

<-----LRECL-----> 

Buffer length is 16 plus LRECL. 

Variable-length, blocked; records: 

r---T----------T----T----T----------T----T----------T--T----T----------, 
1 I LINK I BL I RL I DATA 1 RL 1 DATA 1 I RL I DATA 1 
1(2}1 (10) 1(4)1 (4)1 1(4)1 1 1 (4}I I 
L ___ ..L-_________ ~ ___ ~, ____ ~ __ --------~----.L----------.L--.L ____ ..L __________ J 

<-----,-------------------BLKSIZE-----------------------> 

Buffer length is 12 plus BLKSIZE. 

SETL -- Specify Start of seguential Retrieval (R) 

The SETL macro-instruction enables the user to retrieve records, 
starting at the beginning of an indexed sequential data set or at any 
point in the data set. Access other than at the beginning is specified 
by a record key, a generic key, or an actual address. 

r----------T---------'--T-----------------------------------------------, 
1 Name 1 Operation 1 Operand I 
~----------+---------.--+-----------------------------------------------~ 
1 [symbol] I SETL ,{dcb-addrx},type-COde[,{llimit-addrx}] I 
I 1 1 (1) (0) I L __________ ..L _________ , __ .L _______________________________________________ J 

dcb 
specifies the address of the data control block opened for the data 
set being processed. 

section 3: Queued Indexed Sequential Access Method (QISAM - Scan Mode) 207 



type 

If (1) is written, the address must have been loaded into parameter 
register 1 before execution of this macro-instruction. 

specifies the starting point for processing, and any optional 
services requested, as follows: 

Code 
K 
KC 
I 
B 

Code 
-D--

Starting Point 
Record key 
Generic key 
Actual address 
Beginning of data set 

Service 
Only the data portion of an unblocked record is to be 
retrieved. For blocked records this option is not meaning
ful and is ignored if specified. 

The permissible combinations of these codes are listed in Table 23. 

Table 23. Type Operand for SETL Macro-Instruction 
r---'----------T--------------T-----------------T-----------------------, 
I Record Key I Generic Key I Actual Address I Beginning of Data Set I 
~---.----------+--------------+----------------+-----------------------~ 
I K I KC I I I B I 
I KD I KCD I ID I BD I L ___ , __________ ~ ______________ ~ _________________ ~ _______________________ J 

llimit 
specifies the address of a field containing either the lower limit 
key or an actual address for sequential processing .• 

• If the type operand specified a record key or generic key, that 
key must be contained in the field. 

• If the type operand specified an actual address, the field must 
contain an eight-byte actual address. Actual addresses are 
provided when the data set is created. Refer to the load mode 
PUT macro-instruction. 

• If the type operand specified the start of the data set, the 
llimit operand should be omitted. 

If (0) is written, the address must have been loaded into parameter 
register 0 before execution of this macro-instruction. 

EXCE~TIONAL RETURNS: Any errors resulting from the execution of this 
macro-instruction will cause control to be given to the synchronous 
error exit (SYNAD) routine specified in the data control block. The 
general register will be set as listed in Table 22 and the two-byte 
exceptional condition field in the data control block will be set as 
listed in Table 21. 

EXAMPLE: In the following example, the data set associated with the 
INVE~ata control block is to be scanned. The scan would start on a 
generic key supplied at the location RECKEY. Since D was written in the 
type operand, only the data portion of an unblocked record is read. 

SETL INVEN,KCD,RECKEY 

208 



ESETL -- End Sequential Retrieval (R) 

The ESETL macro-instruction ends the scanning of an indexed sequen
tial data set. 

r----------T------------T-----------------------------------------.------, 
I Name I Operation I Ope~and I 
~----------+-----------+----~------------------------------------------i 
I [symbol] I ESETL I {dCb-addrX} I 
I I I (1) I L __________ ~ ___________ ~ _______________________________________________ J 

dcb 
specifies the address of the data control block opened for the data 
set being processed. 

If (1) is written, the address must have been loaded into parameter 
register 1 before execution of this macro-instruction. 

GET -- Locate Mode (R) 

The GET macro-instruction provides the address, in register 1, of the 
next logical record to be processed. If records are unblocked and 
record keys are also being read, register 0 will contain the address of 
t:he key. 

r----------T------------T-----------------------------------------------, 
I Name I Operation I Ope~and I 
,-----------+---------_._+----<-------------------------------------.------~ 
I [symbol] I GET I {dcb-addrx} I 
I I I (1) I l. __________ J. ___________ ~ _________________________________________ . ______ J 

dcb 
specifies the address of the data control block opened for the data 
set being processed. 

If (1) is written, the address must have been loaded into parameter 
register 1 before execution of this macro-instruction. 

CAUTIONS: If a GE'I' macro:-instruction is executed and the data set is 
not already in the scan mode, a scan mode will be initiated as if a SETL 
macro-instruction with a type operand of B (beginning of data set, read 
data plus key) had been exectited. 

The two modes of GE:T cannot be intermixed. 

EXCEPTIONAL RETURNS: When: the end of data set is reached, the EODAD 
routine s pecif ied in t.he data control block is given control. 

Any error resulting- from the execution of this macro-instruction will 
cause control to be passed tp the user's synchronous error exit (SYNAD) 
routine. When this is done, the general registers will be set as listed 
in Table 22, and the two-byte exceptional condition field in the data 
control block will be set as: listed in Table 21. The standard status 
indicators will be as listed in AppendixG. When bit 2 of DCBEXCD2 is 
off, register 14 may be adju!sted to cause different actions upon return 
from the SYNAD routine. To accept the record, the user branches to the 

Section 3: Queued Indexed Sequential Access Method (QISAM - Scan Mode) 209 



address in register 14, which contains the address of the instruction 
aftl::r the GET macro-instruction expansion. To skip the record, the user 
adjusts the contents of register 14 to point to the beginning of the 
macro-expansion of the GET macro-instruction and then branches to the 
adjusted address in register 14. The user can also ignore the register 
14 Jreturn address and either close the data control block or end the 
task. 

PROGRAMMING NOTES: If the record provided was an overflow record, bit 3 
in the DCBEXCD2 field of the data control block (Table 21) is set to 1. 
No 4except ional return is made. 

If the delete option is specified, logical records marked for 
deletion are not presented to the user for processing. 

GET -- Move Mode (R) 

'rhe GET macro-instruction moves the next logical record to the user's 
work area. 

r-----------T-----------T-----------------------------------------------, 
I Name I Operation I Operand I 
~-----------+-----------+-----------------------------------------------~ 
I [symbol] I GET I {dcb-addrx }'{ area-addrx J I 
I I I (1) (0) I 
l __ . ________ ~ ___________ ~ _________________________ ----_____ -------------J 

dcb 

area 

specifies the address of the data control block opened for the data 
set being processed. 

If (1) is written, the address must have been loaded into parameter 
register 1 before execution of this macro-instruction. 

specifies the address of the user's work area into which the 
control program moves the logical record. The work area require
ments are given in "QISAM Scan Mode Work Area Requirements." 

If (0) is written. the address must have been loaded into parameter 
register 0 before execution of this macro-instruction. 

CAU'rIONS: If a GET macro-instruction is executed and the data set is 
not already in the scan mode, a scan mode will be initiated as if a SETL 
mac:ro-instruction with a type operand of B (beginning of data set, read 
data plus key) had been executed. 

A move-mode GET macro-instruction may be used when records are to be 
ret:rieved from, but not returned to, a data set. If records are to be 
returned, then the locate-mode GET macro-instruction must be used. In 
any case, the two GET modes cannot be intermixed. 

EXC:E:PTIONAL RETURNS: Refer to the locate-mode GET macro-instruction. 

PROGRAMMING NOTES: Refer to the locate-mode GET macro-instruction. 

210 



QISAM Sca n Mode Work .!\rea R~gui rernents 

Fixed-length, unblocked records when both the key and data arE~ to be 
read: 

r----------T---------------~----, 
I KEY I D.!\TA I 
I (KEYLEN) I (LRECL = BLKSIZE) I L __________ ~ _______________ ~----J 

Work area length is KEYLEN Wlus LRECL. 

Fixed-length, unblocked records when only data is to be read and 
fixed-length, blocked records: 

r----------, 
I DATA I 
I (LRECL) I 
L __________ J 

Work area length is LRECL. 

Variable-length, unblocked records when both the key and data are to 
be read: 

r----------T----T----------, 
I KEY I RL I D!\TA I 
I (KEYLEN) I (4) I ! L __________ ~ ____ ~ __________ J 

<-----LRECL-----> 

Work area length is KEYLEN Wlus LRECL. 

Variable-length, unblocked records when only data i s rE~ad and 
variable-length, blocked re~ords: 

r----T----------, 
I RL I DATA I 
I (4) I I L ____ ~ __________ J 

<-----LRECL-----> 

Work area length is LRECL. 

PUTX -- Update Mode (R) 

The PUTX macro-instruction is used with the locate-mode GET macro
instruction when records are being updated within a buffer. It returns 
a record to the data set. 

r----------T-----------T-----------------------------------------------, 
I Name I Operation I Operand I 
.----------+--------_._-+---.... ------------------------------------------~ 
I [symbol] I PUT X I {d~b-addrX} I 
I I I (1) I L __________ ~ ___________ ~ _______________________________________________ J 

dcb 
specifies the address of the data control block opened for the data 
set being processed. 

Section 3: Queued Indexed $equential Access Method (QISAM - Scan MOde) 211 



If (1) is written, the address must have been loaded into parameter 
register 1 before execution of this macro-instruction. 

CAUTIONS: The PUTX macro-instruction can only replace a record that was 
retrIeved by a locate-mode GET macro-instruction. 

For blocked records, if a PUTX macro-instruction was addressed to one 
of the logical records in a buffer, the contents of the entire buffer 
are written back to the data set after all the logical records have been 
processed. 

To mark a logical record for deletion, the user must set the 
deletion-code byte to FF (hexadecimal) and then issue a PUTX macro
instruction for that record. In fixed-length-format records, the 
deletion-code is the first byte of the logical record; in 
variable-length-format records, it is the fifth byte of the logical 
record. 

EXCEPTIONAL RETURNS: Any input/output error resulting from the 
execution of this macro-instruction will cause control to be passed to 
the user's synchronous error exit (SYNAD) routine. The general register 
will be set as listed in Table 22, and the exceptional condition field 
in the data control block will be set as listed in Table 21. The 
standard status indicators will be as listed in Appendix G. 

EXAMPLE: In the following example, the OPEN macro-instruction opens a 
data- control block STOCK. The SETL macro-instruction initiates a scan 
mode, using the generic key of the records placed at location PARTNO. 
The GET-PUTX processing loop updates the records, using the address 
provided in register 1 following t.he locate~mode GET macro-instruction. 
The ESETL macro-instruction would end the scan if the entire data set 
was not being processed. 

AAX OPEN (STOCK) 

BAI SETL STOCK,KC,PARTNO 

BGS GET STOCK 

CTM PUTX STOCK 

BH CTQ 

B BGS 

CTQ ESETL STOCK 

212 



RELSE - Release Curren~ Input Buffer (R) 

The RELSE macro-instruction causes the remaining logical records of 
the input buffer to be ignored.. The next GET macro-instruction will 
retrieve the first log!ical record from the next input buffer. 

r----------T----.-------T-----------------------------------------------, 
I Name I OpE~ration I Operand I 
~----------+----.------'-+----------------------------------------------~ 
I [symbol] I RELSE I {dcb-addrx} I 
I I I (1) I L __________ ~ ___________ ~ _______________________________________________ J 

dcb 
specifies t~he add!ress of the data control block opened for the data 
set being processed. 

If (1) is written~ the address must have been loaded into parameter 
register 1 before! execution of this macro-instruction. 

CAUTIONS: The RELSE macro-instruction can be used meaningfully with 
blocked records only~ If used with unblocked records or the first 
logical record of a block, the request is ignored. If two consecutive 
release reque~ts are issued, the second is ignored .. 

BASIC INDEXED SEQUENTIAL ACCESS METHOD (BISAM) 

The basic indexed sequential access method (BISAM) provides direct 
storage and retrieval of the records in an indexed sequential data set. 
The BISAM macro-instructions permit direct: 

• Retrieval of any logical record by its record key .. 
• Update-in-place of any logical record .. 
• Insertion of new logical records .. 

The dynamic buffer option 
buffering facility for use with 
method. 

provides the programmer with a special 
the basic indexed sequential access 

The BISAM macro-instructions (DCB, READ, WRITE, and FREEDBUF) are 
used with the general service macro-instructions (BUILD, GETPOOL, 
FREEPOOL, GETBUF, FREEBUF, OPEN, and CLOSE). The opt!. operand of the 
OPEN macro-instruction is ignored. 

Macro-Instruction 

DCB 

READ 

WRITE 

FREEDBUF 

Function 

Constructs a data control block for an indexed 
sequential data set. 
Retrieves a logical record from an indexed 
sequential data set. 
Replaces an updated logical record, or adds a 
new logical record to an indexed sequential data 
set. 
Releases a buffer obtained by use of the dynarr:ic 
buffe.r options .. 

Section 3: Basic Indexed Sequential Access Method (BISAM) 213 



DCB -- Define Data Control Block for BISAM 

This DCB macro-instruction reserves space for a data control block 
and informs the control program of the characteristics and intended uses 
of a data set. 

r-----------T-----------T-----------------------------------------------, 
I Name I Operation I Operand I 
~----------+-----------+-----------------------------------------------~ 
I [symbol] I DCB I DSORG=IS,MACRF=code I 
I I I ( , DDNANE=syrnbol] ( , NCP=absexp] I 
I I I [,MSHI=relexp,SMSI=absexp] I 
I I I (,I-1SWA=relexp,SMSW=absexp] I 
I I I [,BUFNO=absexp] [,BFALN={FID}] I 
I I I [,BUFL=absexp] [,BUFCB=relexp] I 
I I I [ , EXLST=relexp] I L __________ ~ ___________ ~ _______________________________________________ J 

The keyword operands DSORG and MACRF can be supplied by only the DCB 
macro-instruction. The remaining operands can be supplied after assem
bly time by other sources; these sources are indicated in the operand 
descriptions. 

DSORG 

MACRF 

specifies the data set organization; IS specifies indexed sequen
tial. 

specifies the types of macro-instructions that will be used in 
processing the data set, as follows: 

{

(R[S]) } 
,MACRF= (W{UIAIUA}) 

(R[S\UIUS],W{UIAIUA}) 

R specifies READ macro-instruction (which can imply the FREEDBUF 
macro-instruction); optionally, the following can also be 
written: 

S - provide dynamic buffering 
U - read for update 
US - read for update and provide dynamic buffering 

W specifies WRITE macro-instruction; one of the following must 
be specified: 

U - update records 
A - add new records to the data set 
UA - add new records and update existing records 

DDNA.ME 

NCP 

214 

specifies the name of the DD statement that will be used to 
describe the data set to be processed. 

This information can also be supplied by the user's problem program 
before opening the data control block. 

specifies the number of channel programs (lists of CCW's) to be 
established for this data control block. One channel program is 



MSHI 

SMSI 

MSWA 

SMSW 

used for each out~tanding READ or WRITE request (except. WRITE type 
KN). If the number of outstanding input/output requesi:s is greater 
than the number of channel programs available, the e:.ctra requests 
are queued until a channel program is made available by the 
completion of an input/output operation. 

When the data set being processed resides on more than one 
direct-access device, the user's problem program should take 
advantage of this "overlap" potential and requesi: a nurnber of 
input/output oper~tions. 

The maximum numbe~ of channel programs is 99. (The user can have a 
greater number of outstanding read and write requests.) 

This information can also be supplied by the DD statement or the 
user's problem p~ogram. If not supplied by any sourCE~. a value of 
1 is assumed. 

specifies the add~ess of a main storage area that the user has 
reserved for th~ highest level index. The control program will 
maintain the highest lev,el index in that area until thE~ data set is 
closed, thus permitting more efficient operation. 

The only alternat~ source for this information is the user's 
problem program. If not provided by any source., the control 
program will search the highest level index on the direct-access 
device. 

specifies the number of bytes in the area reserved fOlC the highest 
level index. WheJil the data set was created, the system placed the 
minimum number of bytes required for the highest level index in the 
DCBNCRHI field <Df the data control block. The maximum value is 
32,767. 

The only alternate 
problem program. 
ignored. 

source for this information is the user's 
If the MSHI operand is omitted, this operand is 

specifies the addtess of a main storage work area reserved for the 
control program. This operand is required only when new variable
length records are being added to the data set. 

If specified when· fixed-length records are being added to the data 
set, the control program uses the work area to sp(~ed up record 
insertion. 

The only alternate source for this information is the user's 
problem program. 

specifies the n~ber of bytes reserved for the main storage work 
area. For unblocked records, the work area must be large enough to 
contain the count~ key, and data fields of all the blocks on one 
track. For blocked records, the work area must be large enough to 
contain one logic~l record plus the count and data fields of all 
the blocks on one track. The maximum number is 32,767 .. 

Section 3: Basic Indexed Sequential Access Method (BISAM) 215 



The only alternate source for this information is the user's 
problem program. If the MSWA operand is omitted, this operand is 
ignored. 

NOTE: Refer to Table 24 for a list of the situations in which the 
folfowing four operands (BUFNO, BFALN, BUFL, and BUFCB) are applicable. 

BUFNO 

BFALN 

BUFL 

BUFCB 

EXLST 

specifies the number of buffers to be assigned to the data control 
block. The maximum number that can be specified is 255; however, 
the number must not exceed the limit on input/output requests 
established during system generation. 

This information can also be supplied by the DD statement or the 
user's problem program. 

specifies the boundary alignment, in bytes, of each buffer, as 
follows: 

F - the buffer starts on a full-word boundary (one that is not also 
a double-word boundary) 

D - the buffer starts on a double-word boundary 

This information can also be supplied by the DD statement or the 
user's problem program. 

specifies the length in bytes of each buffer to be obtained for a 
buffer pool. The maximum value is 32,760. 

This information can also be supplied by the DD statement or the 
user's problem program. 

specifies the address of a buffer pool control block (i.e., the 
eight-byte field preceding the buffers in a buffer pool). 

The only alternate source for this information is the user's 
problem program. 

specifies the address of an exit list created by the programmer. 
The format of the list is presented in Appendix D. 

Exit lists are required if the data control block exit is used. 

The only alternate source for this information is the user's 
problem program before the data control block exit. 

CAUTION: The DCB macro-instruction must not be written within the first 
~bytes of a control section. It can be preceded by padding, 
constants, or instructions. 

PROGRAMMING NOTE: Refer to the programming notes of the load-mode DeB 
mac~~-instruction for those operands that are fixed when the data set is 
created. 

216 



Table 24. BISAM Buffer Acquisition and Data Control Block Field Requirements 
r-------------------T--------------------:-----------------------------------------------T---------, 
I Usage and I Method of Obtaining Buffer Pool I User Per-I 
I Characteristics ~--------------------:----T---------------------T---------------------~ forms AlII 
I I Dynamic Bufferin;g I BUILD I GETPOOL I Buffering I 
~-------------------+--------------------:----+---------------------+---------------------+---------~ 
I When I I In data control I In data control I I 
I Issued I I block exit routine I block exit routine I I 
I I lor before OPEN I or before OPEN I I 
~-------------------+--------------------~---+---------------------+---------------------+---------~ 
I Result ISystem acquires stqragelStructures storage IAcquires storage and I I 
I I and structUl~es into I into buffer pool I structures into I I 
I I buffer pool I I buffer pool I I 
~----------T--------+--------------------,----+---------------------+---------------------+---------~ 
IData Con- IDCBBUFNOIoptional1 I Required; user sets I Ignored; GETPOOL, I Ignored I 
Itrol Block I I Ithis field before or I sets this field I I 
I Field Re- I I I after BUILD is issued I I I 
I qui rement s ~--------+--------------------;----+---------------------+---------------------+--------- ~ 
I (to be IDCBBUFCBIMust be omit:ted; OPEN I Required; user sets I Ignored; GETPOOL IMust be I 
I provided I Isets this field Ithis field before or I sets this field I omitted I 
I no later I I I after BUILD .is issued I I I 
I than con- ~--------+------------------------+---------------------+---------------------+--------- ~ 
Iclusion oflDCBBFALNIOptiona1 3 I Ignored IOptiona13 I Ignored I 
I dcb exit ~--------+--------------------:----+---------------------+---------------------+---------~ 
I routine) IDCBBUFL IIgnored;OPEN sets fiieldlIgnored2 IIgnored2 I Ignored I 
~----------J.--------+--------------------:----+-------______________ +---------------------+---------~ 
I IControl pr09ram does IMore than one data IExecution time IUser sup-I 
I I all management I control block can use I request for storage; I plies I 
I Features I Ipool; user issues luser issues GETBUF I buffers I 
I I I GETBUF and FlU:EBUF I and FREEBUF I with own I 
I I I I I methods I 
~-------------------+--------------------:----+--....;------------------+---------------------+---------~ 
I I User responsible I User responsible for IOnly one data I User I 
I Ifor freeing buffers Istorage acquisition & I control block can Iresponsi-I 
I cautions Ithrough use of a Iboundary alignment; luse pool; must use Ible for I 
I I WRITE or FREEDBUF I mus t close all data I FREEPOOL I boundary I 
I I Icontrol blocks before I I alignment I 
I I I reissuing BUILD I I I 
~-------------------.L--------------------~---J.--------_____________ .L _____________________ J. _________ ~ 
I 1If omitted, the field is not altered :and two buffers are assumed. I 
I 20PEN computes ml.nl.mum buffer lengith and verifies that the buffer length specified in the I 
I length field of the buffer control bl:ock is at least as large as the computed length. The I 
I computed length is placed in t:he DCBBUFL field. I 
I 3If the field is omitted, double word :alignment is assumed. I l __________________________________________________________________________________________________ J 

section 3: Basic Indexed Sequential Access Method (BISAM) 217 



READ :- Retrieve a Logical Record (S) 

The READ macro .... instruction causes a logical record to be selected 
from an indexed sequential data set on the basis of a user-supplied 
record key. The block containing the selected logical record is placed 
in an area of main storage specified by the user. The address of the 
logical record is placed in the data event control block (DECB). 

r----·-------T-----------T----------------------------------------------, 
I Nan~ I Operation I Operand I 
~----.------+-----------+-----------------------------------------------~ 
I [symbol] I READ I decb-symbol,type-{KIKU},dcb-addr I 
I I I ,area-{'S'laddrl,length-{'S'lvalue} I 
I I I, key-addr I l _________ -~--_________ ~ _______________________________________________ J 

decb 
specifies the name to be assigned to the data event control block 
constructed as part of the expansion of the macro-instruction. The 
data event control block starts on a full-word boundary and 
contains: 

• A parameter list. 
• An event control block (ECB) that represents the event for 

which the problem program must wait before attempting to 
process the record. 

• A pointer to the desired logical record. 
• An exception code. 

The format of the data event control block is shown in Table 25. 

TablE! 25. Format of Data Event Control Block for BISAIvl 
r----·--~----------------~---------------------------------------------, 
I Offset from DECB Name I Field I 
I (bytes) I I 
~----.-------------------+----------------------------------------------~ 

+0 I Event control block I 
+4 I Type I 
+6 I Length I 
+8 I Data control block address I 
+12 I Area address I 
+16 I Pointer to logical record I 
+20 I Record key address I 
+24 I Exception code (two bytes reserved; I 

I the second byte is used by the I 
I control program and must not be used I 
I by the problem program) I _______________________ ~ ______________________________________________ J 

type 

218 

specifies the type of read operation with one of the following: 

K - normal read 
KU - read for update (the problem program will update the record 

and return it to the data set using a WRITE 
macro-instruction). In this type of operation, the control 
program remembers the device address of the record read for 
update; when the corresponding WRITE macro-instruction is 
executed, the index search that would otherwise be required is 
eliminated. 



dcb 

area 

specifies t.he addiress of the data control block opened for the data 
set being processed. 

specifies the add~ess of the user's area into which the block is to 
be read. If' S' ~is written, the control program will obtain an 
area of main sto~age for the block. The address of this area will 
be available ini the data event control block after a WAIT 
macro-instruction! has been issued for the read operation. 

The area requirem:ents are given in "BISAM Area Requirements. n 

length 

key 

specifies the nMmber of bytes to be read. If this value is 
specified, it ove:rrides the length known to the control program. 
An overriding length must not be specified for blocked records. If 
• S' is wri t~ten, t!he control program reads the entire block. 

specifies the adidress of a field containing the record key for the 
desired logical iecord. 

CAUTIONS: The HEAD ma!cro-instruction may return control before the 
actual transmis::>ion of! data begins or is completed. 

To determinE~ whethier the read operation has been completed, the WAIT 
macro-instruction must! be issued before an attempt is made to use the 
data transferred into ithe area designated by the area operand. The data 
event control block us,ed for a read operation should not be reused until 
the WAIT macro-inst:r1uction has been issued. After the wait has been 
satisfied, the first byte of the exception code of the data event 
control block must ibe examined to ensure that the operation was 
successfully completed. 

EXCEPTIONAL RETURNS: A one-byte exceptional condition code is set in 
the data even1: con-qrol block if the read operation could not be 
completed without some1 error. The possible read errors, and their 
corresponding bit settings, are listed in Table 26. 

Table 26. ContE~nts Of Exceptional Condition Code Byte, Data Event 
Control Blqck - BISAM 

r---T----------------~----------------------------T--------------------, 
I I I Set By I 
I Bit I Interpretatfion if Bit Is Set to 1 ~----T--·------T----~ 
I I I READ I VlfRITE I WRITE I 
I I I I (update) I (add) I 

~---+----------'-------f----------------------------+-----+--.------+----~ 
I 0 I Record not found I X I X I I 

I 1 I Record length cBeck I X I X I X I 

I 2 I Space not foundiin which to add a record I I I X I 

I 3 I Invalid request. I I X I I 

I 4 I Uncorrectable i~put/output error I X I X I X I 
I 5 I Unreachable blo¢k I X I X I X I 
I 6 I Overflow :record; I X I I I 
I 7 I Duplicate recorq presented for inclusion I I I X I 
I I in the data set I I I I 
l ___ ..L-_________ • ______ ... ______ ..... ________ -------------J..---__ .L __ • ______ J.. _____ J 

An all-zero exception code or one in which only bit 6 is set to 1 
indicates successful ¢ompletion. 

Section 3: B9sic Indexed Sequential Access Method (BISAM) 219 



Record Not Found: This condition is reported if the logical record with 
the specified key is not found in the da,ta set. 

RecoFd Length Check: This condition is reported, for READ and update 
WRITE macro-instructions, if an overriding length is specified and 
(1) t:he record format is blocked or (2) the record format is unblocked 
but the overriding length is greater than the length known to the 
control program. This condition is reported, for the add WRITE 
macro-instruction, if an overriding length is specified. 

When blocked records are being updated, the control program ,must find 
the high key in the block in order to write the block. (The high key is 
not necessarily the same as the key supplied by the problem program.) 
The high key is needed for writing because the control unit for 
direct-access devices permits writing only if a search on equal is 
satisfied; this search can be satisfied only with the high key in the 
block. If the user were permitted to specify an overriding length 
shorter than the block length, the high key might not be read; then, a 
subsequent write request could not be satisfied. In addition, failure 
to write a high key during update would make a subsequent update 
impossible. 

Spac~ Not Found in Which to Add a Record: This condition is reported if 
no room exists in either the appropriate cylinder overflow area or the 
independent overflow area when a new record is to be added to the data 
set,. The overf lowing record may be the new record or a record pushed 
out of the prime data track by the new record. 

If the pointer-to-Iogical-record field in the data extent control 
block (DECB) is zero, the location of the overflowing record is in the 
area-address and record-key-address fields of the DECB. If the 
pointer-to-Iogical-record field is not zero, this field itself contains 
the location of the overflowing record; this location contains the key 
followed by a lO-byte link field, followed by data. 

Invalid Request: This condition is reported if byte 25 of the data 
event control block indicates that this request is an update WRITE 
macro-instruction corresponding to a READ for update macro-inst~uction, 
but ,the input/output block (lOB) for the READ is not found in the update 
queue. This condition could be caused by the problem program altering 
the contents of byte 25 of the data extent control block. 

Unco:~'rectable Input/Output Error: This condition is reported if the 
cont:rol program's error recovery procedures encounter an uncorrectable 
erro:r in transferring data between main and secondary storage. 

Unre(~chable Block: This condition is reported if the control program's 
errOlr recovery procedures encounter an uncorrectable error while 
performing a function other than transferring data between main and 
secondary storage. Such an error could occur in searching an index or 
in following an overflow chain. 

Overflow Record: This condition is reported if the record just read is 
an overflow record. 

Dupl:~cate Record Presented for Inclusion in the Data Set: This 
condition is reported if the new record to be added has the same key as 
a record in the data set. However, if the delete option was specified 
and the record in the data set is marked for deletion, this condition is 
not reported. Instead the new record replaces the existing record. 

If the record format is blocked and the relative key position is 
zero, the new record cannot replace an existing record that is of equal 
Key and is marked for deletion. 

220 



NOTE: If a READ macro't-instruction for which the control program obtains 
an area ends in error, the problem program must free the aJrea using a 
FREEDBUF macro-instruction. 

EXAMPLE: In the following example, the block containinq the logical 
record whose record key is found at location RECKEY will be read into a 
main storage area provided by the control program. The address of the 
logical record is placed in the data event control block DECBI. The 
data set is described by the data control block INPUT. 

READ DECBI,K,INPUT,'S',500,RECKEY 

L- AND E-FORM USE: The Land E forms of this macro-instruction are 
written as described in Appendix B, except for the follo~r{ing special 
operand requirements: 

Operand 

decb 
type 
MF 

L Form ----
required 
required 
required 

E Form 

required 
required 
the operand must be 
written as MF=E 

The operand MF=E does not require a parameter list address because 
the first operand, decb, is used as a pointer to a parameter list that 
was established by the L form of the macro-instruction. 

BISAM Area Reguirement$ 

Fixed-length, unblocked records processed by READ and update WRITE 
macro-instructions or fixed-length, blocked or unblocked rlecords proc
essed by add WRITE macro-instructions: 

r------T----------T----------, 
1 1 LINK I DATA 1 
I ( 6 ) I ( 10) I ( LRECL) 1 L ______ ~ __________ ~ __________ J 

Area length is 16 plus LRECL. 

Fixed-length, blocked records processed by READ and update WRITE 
macro-instructions: 

r------T----------T----------, 
I I LINK 1 DATA 1 
I (6) I (10) I (BLl<SIZE) 1 L ______ ~ __________ ~ __________ J 

Area length is 16 plus BLKSIZE. 

Variable-length, unplocked records processed by READ and update WRITE 
macro-instructions or variable-length, blocked or unblocked records 
processed by add WRITE'macro-instructions: 

r---T----------T----T----T----------, 
1 I LINK I BL I RL \ DATA 1 
1(2)1 (10) \ (4)\ (4)1 I L ___ ~ __________ ..L ____ ~ ____ ..L __________ J 

<--------LRECL-------> 

Area length is 16 plus LRECL. 

Section 3: Basic Indexed Sequential Access Method (BISAM) 221 



Variable-length, blocked records processed by READ and update WRITE 
macro-instructions: 

r---T----------T----T----T----------T----T----------T--T----T----------, 
1 I LINK 1 BL 1 RL 1 DATA 1 RL 1 DATA 1 1 RL 1 DATA 1 
1(2)1 (10) 1 (4)1 (4)1 1(4)1 1 1 (4)1 1 L ___ ~ __________ ~ ____ ~ ____ ~ __________ ~ ____ ~ __________ ~ __ ~ ____ ~ __________ J 

<------------------------BLKSIZE------------------------> 

Area length is 12 plus BLKSIZE. 

WRITE -- Write a Logical Record (S) 

The WRITE macro-instruction 
have been updated or to add 
indexed sequential data set. 
records, the block containing 
the data set. 

is used either to replace blocks that 
new logical records to an already existing 
If the data set consists of blocked 

the updated logical record is written into 

r-----------T-----------T-----------------------------------------------, 
1 Name I Operation I Operand 1 
.----------+-----------+-----------------------------------------------~ 
1 [symbol] 1 WRITE 1 decb-symbol,type-{KIKN},dcb-addr 1 
1 1 1 ,area-{'S'laddr},length-{'S'lvalue} 1 
1 1 I, key-addr I L __________ i ___________ ~ _______________________________________________ J 

decb 

type 

dcb 

area 

222 

specifies the name to be assigned to the data event control block 
(DECB) constructed as part of the expansion of the macro
instruction. The format and use of. the data event control block 
are as explained in the READ macro-instruction. 

specifies one of the following as the type of write operation: 

K - write a block containing an updated logical record (one that 
was retrieved by the READ macro-instruction) or replace an 
unblocked record without having read that record. 

KN - write a new logical record in the data set 

specifies the address of the data control block opened for the data 
set being processed. 

specifies the address from which the record is to be written. If 
'Sf was specified in the area operand of the corresponding READ 
macro-instruction, it can be specified here. 'Sf indicates that 
the programmer has no need for the main storage once the block is 
written. In this case, the area field in the data event control 
blocks for the READ and WRITE macro-instructions must contain the 
same addresses. (After the WRITE macro-instruction has been 
executed, the control program will reuse or release the main 
storage formerly occupied by the block.) If new records are being 
written, IS' can not be specified in the area operand. 

The area requirements are given in "BISAM Area Requirements." 



length 

key 

specifies t,he number of bytes to be written.. The value overrides 
the length known to the control program.. When ne'w records are 
being added to a data set or when blocked records are being 
updated, an overriding length may not be specified.. If'S' is 
written, the leng:th known to the control program is used .. 

specifies t.he address of a field containing the record key of a 
logical rE~cord.. When blocked records are being updated, this is 
the record key of the updated logical record which is not 
necessarily the high key in the block .. 

CAUTIONS: When blocke~ records are being updated, the overriding length 
should be used '!JI,ith exitreme caution, both in the WRITE macro-instruction 
and in the corrE~spondi[ng READ macro-instruction. In order to 'write back 
the block, thE! contirol program must find the high key ( which is not 
necessarily the same ais the key supplied by the user) in the block.. The 
control unit for direcft-access devic~s permits writing only if a search 
on n equal" is satisfie!d; this search can be satisfied only with the high 
key in the block. 'If the user specifies an overriding length shorter 
than the block length, the high key might not be read and the subsequent 
write request could not be satisfied.. Also, the failure to write out 
the high key would makie a subsequent update impossible. 

EXCEPTIONAL RE,]~URNS: A one-byte exceptional condition code is set in 
the data event control block if the write operation could not be 
completed without sqme error.. The possible write errors, and their 
corresponding bit settings, are listed in Table 26 .. 

L- AND E-FORM USE: The Land E forms of this macro-instruction are 
written as described in Appendix B except for the following special 
operand requirements: 

Operand 

decb 
type 
MF 

]~ Form 

l::-equirE!d 
required 
required 

E Form 

required 
required 
the operand must be 
written as MF=E 

The operand MF=E ddes not require a parameter list address because 
the first operand, decb, is used as a pointer to a paramE~ter list that 
was established by the L form of the macro-instruction .. 

FREEDBUF -- Free Dyna~ically Obtained Buffer (R) 

The FREEDBUF macro~instruction releases a buffer originally obtained 
by the control program in response to an'S' in the area operand of a 
READ macro-instruction .. 

r----------T-----------T-----------------------------------------------, 
I Name I Operation I Operand I 
~----------+---.-------:.-+-----------------------------------------------~ 
I [symbol] I FREEDBUF I {decb-addrx}, type-K, {dcb-addrx} I 
I I I (0) (1) I l __________ ..L ___ • ______ ..... _l. _______________________________________________ J 

section 3: Basic Indexed Sequential Access Method (BISAM) 223 



decb 
specifies the address of a data event control block (DECB) used in 
a READ macro-instruction that specified an'S' in the area operand. 

If (0) is written, the address must have been loaded into parameter 
register 0 before execution of this macro-instruction. 

type 

dcb 

specified as K to indicate the indexed sequential access method. 

specifies the address of the data control block opened for the data 
set being processed. 

If (1) is written, the address must have been loaded into parameter 
register 1 before execution of this macro-instruction. 

CAUTIONS: The area field in the data event control block must not be 
altered between execution of the READ and FREEDBUF macro-instructions. 

The buffer can also be released by a WRITE macro-instruction. 

BASIC DIRECT ACCESS l-'lETHOD (BDAM) 

The macro-instructions for the basic direct-access method (BDAM) are 
provided specifically for use with direct-access devices. The 
programmer can perform input/output operations directly by specifying 
any of the following: 

• l\.n actual address -- the location of a block on a direct access 
device. 

• A relative block address -- the relative position of a block within 
a data set. 

• A relative track address -- the relative track within a data set at 
~hich the control program is to begin a search 

A special buffering facility (the dynamic buffer option) enables the 
programmer to request control program buffer management. 

The BDAM macro-instructions are DCB, READ, WRITE, FREEDBUF, and 
RELEX. The general service macro-instructions (BUILD, GETPOOL, FREE
POOL, GETBUF, FREEBUF, OPEN, and CLOSE), can also be used with the basic 
direc·t access method. 

Macr(~Instruction 

DeB 
READ 
WRITE 
RELEX 
FREEDBUF 

Function 

Defines a data control block for BDAM 
Retrieves a block 
Writes a block 
Releases exclusive control of a record 
Frees a buffer obtained by the dynamic 
buffer option 

The OPEN macro-instruction option specifying the intended method of 
inputJoutput processing, opt:l.' has the following effect on BDAM macro
instructions: 

224 



OPEN 
Macro-IilStruction 

Operands - Effect 

INPUT 
OUTPUT 
UPDAT 

Any write will be handled as an invalid request. 
~ll read or write requests are processed. 
~ll read or write requests are processed. 

DCB -- Define Dat:a Contirol Block for BDAM 

The DCB macro-·instru:ction reserves space for a data control block and 
informs the contl~ol pro;gram of the characteristics and intended uses of 
a data set. 

r----------T-----.------~-----------------------------------------------, 
I Name I Operation I Operand I 
~----------+-----.------+-----------------------------------------------~ 
I [symbol] I DCB DSORG={DAIDAU},MACRF=code I 
I I [,DDNAME=symbol] [,OPTCD=code] I 
I I [,RECFM={UIVIFIFT}] [,KEYLEN=absexp] I 
I I [, LIMCT=absexp] [, BLKSI·ZE=absexp] I 
I I [,BUFNO=absexp] [,BFALN={FID}] I 
I I [,BUFL=absexp] [,BUFCB=relexp] I 
I I [,EXLST=relexp] I 
L ________ --.L-----.------:.L-----------------------------------___________ J 

The keyword operands DSORG and MACRF can be specified in only the DCB 
macro-instruction. Th~ remaining operands can be supplied after 
assembly by other sources; these sources are indicated in the operand 
descriptions. 

DSORG 

MACRF 

specifies the organization of the data set as one of the following: 

DA - direct organization 
DAU - direct. organ:ization in which any data set contains location

dependent information with respect to this data set. 

spec if ies t.he types of macro- instructions that will be used in 
processing the data set, as follows: 

Code 

R 

W 

{ (R{KI~IKI}[XISIXS]) } 
,MACRF= (W{AIKIIIAKIAKIIKIIAI}) 

(R{KIIIKI}[XISIXS],W{AIKIIIAKIAKIIKIIAI}) 

K 
I 
X 
S 

A 
K 
I 

Function Specified 

READ macro-instruction 
Search argument is a key 
Search argument is a block identification 
Retain exclusive control of a block 
Dynamic buffering 

WRITE macro-instruction 
Blocks are to be added to the data set 
Search argument is a key 
Search argument is a block identification 

section 3: Basic Direct Access Method (BDAM) 225 



DDNAME 

OPTeD 

specifies the name of the DD statement that will be used to 
describe the data set to be processed. 

This information can also be supplied by the user's problem program 
before opening the data control block. 

specifies an optional service to be provided by the control 
program, as follows: 

w - write validity check 
F - feedback will be requested in READ or WRITE macro-instructions 

in the program; it is to be in the form specified by the code R 
or A, below, or a default form if both R and A are omitted 

E - extended search 
R - relative block addresses are to be used 
A - actual addresses are to be used; the extended search option is 

ignored, if specified 

If neither R nor A is specified, relative track addressing is 
assumed. 

This information can be supplied by the DD statement or the user's 
problem program. 

RECl~M 
specifies the record format. One of the following is written: 

u - undefined records 
V - variable-length records 
F - fixed-length records 
FT - fixed-length records; track overflow is used 

This information can be supplied by any of the three alternate 
sources. 

If no record format information i.s supplied, a format-U record is 
assumed. 

KEY:LEN 

LIMCT 

226 

specifies the length, in bytes, of the key for each physical 
record. The maximum length is 255 bytes. 

This information can be supplied by any of the alternate sources. 
If not supplied by any source, a read or write request requiring a 
key is treated as invalid. 

specifies the maximum number of blocks or tracks to be searched 
when the extended search option has been chosen. The number of 
blocks is specified when relative block addresses are used; the 
number of tracks is specified when relative track addresses are 
used. If the value equals or exceeds the number of tracks or 
blocks in the data set, the entire data set will be searched until 
the block is found. 

This information can be supplied by the DD statement or the user's 
problem program. If the value is not supplied by any source, a 
request for an extended search is invalid. 



BLKSIZE 
specifies 1:he ma~imum block length. The maximum numbe~r is 32,760. 

This informa.tion Can be supplied by any of the thre'e alternate 
sources. 

NOTE: Refer to Table 27 for a list of the situations in which the 
following four operands (BUFNO, BUFALN. BUFL, and BUFCB) are~ applicable. 

BUFNO 

BFALN 

BUFL 

BUFCB 

EXLST 

specifies the numper of buffers to be maintained by the control 
program when the dynamic buffering option is specified in the MACRF 
operand. The maxjJrnum number that can be specified is 255; however, 
the number must not exceed the limit on input/output requests 
established during system generation. 

This information can also be supplied by the DD statement or the 
user's problem program. If the number is not supplied by any 
source and 1:he dynamic buffering option is requested in the MACRF 
operand, a value Qf 2 is assumed. 

Note: Dynamic b~ffers are allocated only when'S' is specified in 
the area opE~rand df a READ macro- instruction. 

specifies the boundary alignment of each buffer, as follows: 

F - the buffer st~rts on a full-word boundary (one that is not also 
a doublE~-word ;boundary) 

D - the buffer starts on a double-word boundary 

This information oan also be supplied by the DD statement or the 
user's problem program. 

specifies 1:he l~ngth, in bytes, of each buffer provided by the 
control pro9ram. ~If dynamic buffering is used and the key operand 
of the READ or WRITE macro-instruction is'S', this length must be 
that of the key and data. The maximum number is 32,760. 

This information dan be supplied by any of the alternate sources. 

specifies the add:r1ess of a buffer pool control block (i.e., the 
eight-byte field preceding the buffers in a pool). 

The only alternate source for this information is the user's 
problem pro9ram. 

specifies the add::riess of an exit list created by the programmer. 
The format of the exit list is shown in Appendix D. 

Exit lists are required if data control block exit routines are 
used. 

The only alternate source for this information is the user's 
problem pro9ram. 

CAUTION: The DCB macrd-instruction must not be written within the first 
16 bytes of a cont::riol section. It can be preceded by padding, 
constants, or coding. 

section 3: Basic Direct Access Method (BDAM) 227 



Table 27. BDAM Buffer Acquisition and Data control Block Field 
Requirements 

r------------------T--------------------------------------T-------------, 
I I Method of Obtaining Buffer Pool I I 
IUsage and ~------------T------------T-----------~User Performs I 
I Characteristics I Dynamic I I IAII Buffering I 
I I Buffering I BUILD I GETPOOL I I 
.------------------t------------+------------+------------+-------------~ 
I I lIn data con-lIn data con-I I 
I When I I trol block I trol block I I 
IIssued I I exit routinelexit routine I I 
I I lor before lor before I I 
I I I OPEN I OPEN I I 
.------------------t------------t------------+------------+-------------~ 
I I System I Structures I Acquires I I 
I I acquires Istorage intolstorage and I I 
I Result Istorage and Ibuffer pool Istructures I I 
I I structures I linto buffer I I 
I linto buffer I I pool I I 
I I pool I I I I 
.---------T--------t------------t------------t------------t-------------~ 

I DCBBUFNOIOptional; if I Required; I Ignored; I Ignored I 
Data I I omitted, theluser sets IGETPOOL setsl I 
Control I Ifield is notlthis field Ithis field I I 
Block I laltered and Ibefore or I I I 
Field I Itwo buffers lafter BUILD I I I 
Require-I lare assumed lis issued I I I 
ments ~--------t------------t------------+-----------t-------------~ 

I DCBBUFCBI Ignored; I Required; I Ignored; I Ignored I 
(to be I IOPEN sets luser sets IGETPOOL setsl I 
provided I Ithis field Ithis field Ithis field I I 
no later I I Ibefore or I I I 
than I I lafter BUILD I I I 
conclu- I I I is issued I I I 
sian of ~--------t------------t------------t------------+-------------~ 
data I DCBBFALNIOptional1 I Ignored IOptional 1 I Ignored I 
control I I I I I I 
block ~--------t------------+------------t------------t-------------~ 
exit IDCBBUFL IRequired I Ignored I Ignored I Ignored I 
routine) I I I I I I 
.---------~--------+------------t------------t------------t-------------~ 
I IControl pro-IMore than 1 IExecution IUser supplies I 
I Igram does Idata controlltime requestlbuffers I 
I lall manage- Iblock can Ifor storageilthrough his I 
I Fea.tures Iment luse pooli luser issues lown methods I 
I I luser issues IGETBUF and I I 
I I I GETBUF a nd I FREEBUF I I 
I I IFREEBUF I I I 
~------------------t------------t------------+------------+-------------~ 

User respon- User respon- Only one User respon- I 
sible for sible for data control sible for I 
freeing storage block can boundary I 
buffers acquisition use pOOli alignment I 
through use and boundary must use I 

cautions of a WRITE alignment; FREEPOOL I 
or FREEDBUF must close I 

all data I 
control I 
blocks be- I 
fore reissu- I 
ing BUILD I 

~---_--------------~------------~------------~--------____ L-____________ ~ 
I 11f omitted, field is not altered, double-word alignment is assumed. I L _______________________________________________________________________ J 

228 



READ -- Read a Block (~) 

The READ macro-instlTuction retrieves a block from a dat.a set. To 
request a block, one of the following can be specified: 

• The relative block address. 
• A relative track p]us either a block identification or key. 
• The actual address of the block. 

r-------- --T----·------->T------------------------------------'-----------, 
, Name , Operation , Operand , 
~----------+----------~+-----------------------------------------------i 
, [symbol] , READ :, decb-symbol,type-code, dcb-addr , 
I I "area-{'S'laddr},length-{'S',va.lue} I 
, I I, key- { 's' I addr} , blkref-addr I L __________ L __________ ~L _____________________________________________ --J 

decb 
specifies 1:he name to be assigned to the data event control block 
(DECB) constructed as part of the expansion of the macro
instruction.. Theda.ta event control block starts on a full-word 
boundary and contains the following: 

• parametE~r list 
• event control block (ECB) that is tested for completion of the 

read opE~ration 
• exception code 

The format of the data event control block is shown in Table 28. 

Table 28. Data Event Control Block for BDAM 
r------------------------~----------------------------------'-----------, 

I Offset from DECB name , Field I 
I (bytes) I I 
~---------------------~-+----------------------------------------------i 
I +0 I Event control block I 
I +1 I Two-byte exception code following I 
I I input/output operation I 
1+4 'Type , 
I +6 'Length I 
I +8 ,Data control block address I 
I +12 I Area address I 
I +16 'Block reference address I 
I +20 'Key address 1 
L ______________________ -L-----------------------------_________________ J 

type 
specifies the type of read operation, as follows: 

D - direct-accessrnethod 
I - locate the block using a block identification 
K - locate the block using a key 
F - provide posit~on feedback (as an actual address unless a 

different form is specified in the DCBOPCD field.) 
X - maintain exclusive control of the block and provide position 

feedback 

s~ction 3: Basic Direct Access Method (BDAM) 229 



1~he above values determine the action of the control program as 
follows: 

• If I is written, the data and key (if keys are used) portion of the 
block is read. The search for the block is confined to the track 
where the search begins. If the block is not found, bit 8 in the 
exception code is set to 1. 

• If K is written, only the data is read. Unless the extended search 
option is specified, the search for the block is confined to the 
track where the search begins. If the block is not found, bit 8 in 
the exception code is set to 1. 

• If F is written, position feedback is provided in the field 
specified by the blkref operand. Feedback is provided in the form 
specified in the DCBOPTCD field of the data control block. If no 
form is specified in the data control block, the feedback is in the 
form of an actual address. 

• If X is written, no other program using the same data control block, 
and requesting exclusive control, can read the block until the first 
requestor releases the block. Feedback is provided as if F were 
written. 

1~he combinations in which the type operand can be specified are 
summarized in Table 29. 

Table 29. READ Macro-Instruction Type Operand Values for BDAM 
r---------------------T-------------------------------------------------, 
I Type Operand I Interpretation I 
~--------------------+-------------------------------------------------~ 
I DI I Search uses block identification I 
I DK I Search uses key I 
I DIF I Search uses block identification; I 
I I feedback requested I 
I DIX I Search uses block identification; maintain I 
I I exclusive control; feedback implied I 
I DIFX I Equivalent to DIX I 
I DKF I Search uses key; feedback requested I 
I DKX I Search uses key; maintain exclusive I 
I I control; feedback implied I 
I DKFX I Equivalent to DKX I l _____________________ ~ _________________________________________________ J 

dcb 

area 

230 

specifies the address of the data control block opened for the data 
set being processed. 

specifies the address of the user's main storage area that is to 
contain the data portion of the block. If S was written in the 
MACRF operand of the DeB macro-instruction, ·S· can be coded for 
this operand. In this case, the control program obtains an input 
area and places its address in the area address field of the data 
event control block. The address is available in the data event 
control block after completion of the input/output operation. 

An area provided by the control program must be returned by a WRITE 
or FREEDBUF macro-instruction. 



length 

key 

specifies "the number of data bytes to te read. The maximum number 
is 32,760. If 'S~ is written, the control program determines the 
block length from the DCBBLKSI field in the data control block. 

specifies "the address of an area in ,main storage. The use of this 
area depends on hmw the type operand was specified, as follows: 

• If the search uses a key, this operand specifies the address of 
the field containing the key. 

• If the sear¢h uses a block identification, this operand 
specifies the address of a field into which the control program 
is to read the key of the block when retrieved.. The key is 
available after completion of the input/output operation. If 
the key operand is given a value of zero, the control program 
will not read the key into main storage. 

If the area operand was written as'S', this operand can also be 
written as'S'. The'S' is interpreted as meaning i:.hat when the 
search uses a blo~k identification, the control program is to 
provide the input area, and the key and data are to be read 
sequentially into that area. 

This operand is effective only if the DCBKEYLE field is non-zero. 

blkref 
specifies the address of the field containing the reference to be 
used in retrieving the block. The reference can b3 by relative 
block address, by relative track (with or without block position on 
that track), or by actual address. Relative block references are 
permitted only for format-F records without track overflow. 

The field containing the block reference is also the field in which 
position feedback is provided when F 01: X is written in the type 
operand. If the initial reference and the feedback are both 
relative addresses, the blkref field need be only three bytes in 
length; if either is an actual address, the field must be eight 
bytes in length .. If" the field is eight bytes in lenqth, feedback 
in the form of a relative addres~ will be right-justified in the 
three leftmost bytes of the field, and a reference in -the form of a 
relative address lllust also be right-justified in the three leftmost 
bytes of the field. 

CAUTIONS: The READ macro-instruction may return control before the 
actual transmission of data begins or is completed. 

To determine whether or not the read operation 
the WAIT macro-instrUction .must be issued before 
use the data transferred into main storage. The 
block employed for a read operation should not be 
macro-instruction has been issued. 

has been completed, 
an attempt is made to 

data event control 
reused until the WAIT 

If the user requests dynamic buffering and issues more r·ead requests 
than there are buffers available to hold the input bloc:k:s, the extra 
requests are queued. The program will wait permanently if there are n 
buffers available and the user waits on the n+1 request. 

EXCEPTIONAL RETURNS: A two-byte exceptional condition code is set in 
the data event controil block if the read operation could not be 
completed corre!ctly. The possible errors, and their corresponding bit 
settings, are listed in Table 30. 

Section 3: Basic Direct Access Method (BDAM) 231 



NotE~~ DECB bits 2 through 7 of byte 0 are always zero. Byte 1 is set 
to reflect error conditions. Byte 2 is meaningful only when bit 11 is 
set to one. 

Table 30. Exception Condition Bits for BDAM 
r---·--T-----------------------------------------------------T----------, 
I I Condition Present if set to 1 I Set ByCBI 
I ECB ~-----------------------------------------------------+----T-----~ 
I Bit I Byte 1 IREADIWRITEI 
t---·--+-----------------------------------------------------+----+-----~ 

8 Block not found within search limits. X X 

9 

1.0 

1.1 

1.2 

1..3 

1.4 

Length specified differs from actual length. 

Space to add a block not available within search 
limits. 

Invalid request. (See byte 2.) 

Uncorrectable input/output error.. 

End of data (block of zero data length). 

Unrelated error that could not be corrected. 

X X 

X 

X X 

X X 

X X 

X X 

15 Updated block could not be found on exclusive list X 
(WRITE with type X only) • 

• --_._-+-----------------------------------------------------+----+-----~ 
I I Byte 2 I I I 
t---·--+-----------------------------------------------------+----+-----~ 

16 Not used 

17 

18 

19 

20 

write request for data control block opened as 
input. 

Request specified extended 
DCBLIMCT contained zero. 

search but field 

Specified block reference not within the limit of 
tracks or blocks allotted to this data set. 

Protection violation for capacity record. 

X 

X X 

X X 

X 

21 Specified a key and block reference when the data X X 
control block indicated that no keys were used, or 

1 no key address has been supplied. 
I 

22 I Exercised options not called for by data control X X 
1 block. 
I 

23 I Attempted to add a new block whose key began with X 
I FF (hexadecimal) byte (fixed-length records only). I _____ i _____________________________________________________ ~ ____ ~ _____ J 

EXAMYLE: The following example shows the use of the READ macro
instruction when a relative track address is supplied. A block from the 
data set associated with the REPORT data control block will be read into 
an area provided by the system. The length read will be the maximum 
length as stated in the data control block. The block reference is 
located at the field RECADD. The type operand specifies that the search 
is to be on a block identification, and that exclusive control of the 
block is requested. 

232 



OPEN I( REPOR'Il, UPDAT) 

EXl READ INDECB,IDIX,REPORT,' S',' S' ,KEYADD,RECADD 

WAIT ECB=INOECB 

Automatic feE~dback :will be provided, because X was written. Assuming 
that the data control 'block did not specify feedback, the field referred 
to by the blkref qperand (RECADD) is assumed to be eight bytes. The 
programmer's reference! is initially provided in the three high-order 
bytes. 

Feedback is in the form: 

r----T----T---------------------, r---T---T---T--~---T---T---T---' 
I TT I R I <-------IGNORED------> I I M I BIB I C I C I H I H I R I l ____ ~ ____ .L ______________________ J l ___ .L ___ ~ ___ L ___ L ___ .L ___ .L ___ ~ ___ J 

BEl~ORE AFTER 

Assuming that DCBKEYiLE is not zero, the contr:ol program w'i 11 place the 
key in the field KEYAUD. The user then waits for the completion of the 
read operation, using the name of the data event control block INDECB. 

L- AND E-FORM USE: The Land E forms of this macro-instruction are 
written as described in Appendix B except for the following special 
operand requirements: 

Operand 

decb 
type 
MF 

required 
required 
required 

E Form 

required 
required 
the operand must be 
written as MF=E 

The operand MF=E does not require a parameter list address because 
the first operand, dedb, is used as a pointer to a parameter list that 
was established by thS L form of the macro-instruction. 

WRITE -- Write a Bloc~ (S) 

The WRITE macro-instruction replaces blocks and adds new blocks to an 
existing direct-access data set. 

r----------T----------~-T-----------------------------------------------, 
I Name I Operation I Operand I 
~----------+------------+-----------------------------------------------~ 
I symbol I WRITE I decb-symbol,type-code,dcb-addr I 
I I I ,area-{'S'laddr} I 
I I I ,1ength-{'S'lvalue},key-{'S'laddr} I 
I I I, blkref-addr I l __________ L ___________ ,_.L ______________________________________________ J 

Section 3: Basic Direct Access Method (BDAM) 233 



decb 

type 

dcb 

area 

234 

specifies the name to be assigned to the data event control block 
(DECB) constructed as part o£ the expansion of the macro
instruction. The format of the data event control block and its 
contents are explained in the READ macro-instruction. 

specifies the type of write operation, as follows; 

D - direct-access method 
I - search argument is a block identification 
K - search argument is a key 
A - a new block is to be added to the data set 
F - requests device address feedback 
X - write a block that had been read with the exclusive option 

The type values determine the action of the control program as 
follows: 

• When I is specified, the search for the block is confined to 
the track where the search begins. If the block is not found, 
bit 8 in the exception code is set 1. The key (if keys are 
used) and data portions of the block are written. 

• When K is specified, the search for the block is confined to 
the track where the search begins unless the extended search 
option was chosen. If the block is not found, bit 8 in the 
exception code is set to 1. Only data is written. 

• When A is specified, the search for space is confined to the 
track where the search begins unless the extended search option 
was chosen. If space is not found, bit 10 in the exception 
code is set to 1. The key (if keys are used) and data portions 
of the block are written. 

The combinations in which the type operand can be specified are 
listed in Table 31. 

The form of feedback provided depends on whether the data control 
block specifies the feedback option. 

specifies the address of the data control block opened for the data 
set being processed. 

specifies the address of the user's main storage area containing 
the output block. If the area was originally obtained by the 
control program (through an'S' in the area operand of the READ 
macro-instruction)~ the user can release the area by specifying 'S' 
in this macro-instruction. 

Before the write request is executed, the area address must be 
moved from the input data event control block to the output data 
event control block. 



Table 31. WRITE MacrO-Instruction Type Operand Values for BDAM 
r------T--------------------------------------------------'------------, 
I Code I Interpretation I 
~------+---------------;-------------------------------------,------------~ 

DI Search uses block identification; any attempt. to write a 
capaci 1:y record (record zero) will be treated as an invalid 
request. 

DIF Search uses block identification1 

DIX Search uses block identification; release exclusive control1 

DIFX Equivalent to DIX. 

DK Search uses a key. 

DKF Search uses Mey; feedback requested. 

DKX Search uses key; release exclusive control; no feedback. 

DKFX Equivalent to DKX. 

DA Add a new block wherever there is space. 

DAF Add a new block whenever there is space: feedback requested. 
~------.L----------------------------------------------___ , ____________ ~ 
I 1This indicates that the field specified by the blkref operand I 
I contains feedback :Grom a previous read operation. I L ______________ 4 ____________________________________________ , ____________ J 

length 
specifies a value :for the number of data bytes (excludi.ng key bytes) 
to be written for fiormat F or U blocks. Fo~ format V blocks, the 
system places the block length supplied in the data block into the 
DECB. 

key 

If the number of ;bytes to be written is less than that~ portion of 
the block being ~eplaced, the remainder of the block i.s padded with 
binary zeros. In the number of bytes to be written is greater than 
the portion of the block being replaced, the writing stops when the 
end of the block is reached. 

The maximum number is 32,760. A length specification of zero 
indicates 1that an end-of-data mark or indicator is to be written. 
(Valid only for a type DA or DAF request.) 

If • S· is written, the control program will wri t~e the maximum 
length block staijed in the data control block for fOIEat F or U 
blocks. 

specifies the address of a field containing the key of the block to 
be written. The key is used as a search argument if the type 
operand was specilfied as DK, DKX or DKF. If the type operand was 
written as DI, DIF or DIX, the key is written into the data set 
when the block is written. If a key is not to be writ~ten, the key 
operand must have a value of zero. 

To releas4= a key field obtained by the control progrclm in response 
to a read request, IS' must be written in the key operand. The 
address of the key field must be moved from the input DECB to the 
output DECB before the WRITE macro-instruction is executed. This 
operand is effective only if the DCBKEYLE field in non-zero. 

Section 3: Basic Direct Access Method (BDAM) 235 



blkrjef 
specifies the address of the field containing the address reference 
to be used in writing the block. The reference can be by relative 
block address, by relative track (with or without block position on 
that track), or by actual address. Relative block references are 
permitted only for format-F records without track overflow. 

When writing by block identification with exclusive control (types 
DIX and DIFX), the reference in the blkref field is assumed to be 
an actual address unless the data control block specifies feedback 
to be a relative address. The contents of the blkref field should 
not be changed between execution of READ and WRITE macro
instructions. 

The length of the blkref field depends on the type of reference 
provided and whether the feedback option is specified in the data 
control block or the WRITE macro-instruction, or both. (Refer to 
the READ macro-instruction for details.) 

CAUTIONS: The WRITE macro-instruction may return control before the 
actual transmission of data begins or is completed. 

To determine whether or not the write operation has been completed, a 
WAIT macro-instruction must be issued before the area containing the 
output block is reused. 

The data event control block employed for a write operation should 
not be reused until the WAIT macro-instruction has been issued. 

EXCE]~TIONAL RETURNS: A two-byte exceptional condition code is set in 
the data event control block if the write operation could not be 
completed successfully. The possible errors, and their corresponding 
bit settings, are listed in Table 30. 

EXAMPLES: In the following examples, EXl shows the use of a WRITE 
macro-instruction when keys are supplied as search arguments. Assume 
that the data control block INVEN specifies the feedback option; 800 
data bytes will be written from the field WORK using the search argument 
found at KEYADD. The search starts at the relative track specified by 
the TRACKREF field. 

The true relative track will be returned as feedback in the TRACKREF 
field when the write operation is completed (if feedback option was 
specified in the data control block; otherwise the actual address will 
be rE~turned). 

EXl WRITE OUTDECB,DKF,INVEN,WORK,800,KEYADD,TRACKREF 

In the second example, the READ macro-instruction requests that a 
block from the data set ORDERS be retrieved and placed in an area 
provided by the control program. The search is to use a key located in 
the field NEWKEY and a relative track number found in the field FIND. 
Assume that feedback was requested in the data control block. Since 
feedback is requested by an F in the type operand, the control program 
returns a three-byte relative address in the field FIND when the block 
is rE~ad. 

Af"ter the user waits for the read operation to be completed, the 
addrE~ss of the dynamic buffer area ~s found in the data event control 
block DECB5. The user can either update the block or ignore it and read 
another block. If the block is not updated, the FREEDBUF macro
instruction is used to return the buffer to the pool. If the block is 
processed, the WRITE macro-instruction is used to return it to the data 

236 



set, and the buffer to the pool,. The key is not required, since an 
exact relative a.ddress' has been provided; the key operand has a value of 
zero and the key will not be written. An'S' is specified in the area 
operand to relea.se the' dynamic buffer area. 

ETC READ DECB5!, DKF, ORDERS, , S' , • S ' , NEWKEY r FIND 

WAIT DECBS' 

BH LETGO (test for update) 

WRITE DECB6~DIF,ORDERS,'S'r'S'rO,FIND 

WAIT DECB6 

B ETC 
LETGO FREEDBUF DECB5~D,ORDERS 

B ETC 

FIND DS FL3 

L- AND E-FORM USE: Refer to the READ macro-instruction. 

RELEX -- ReleaSE! Exclu~i ve Control (R) 

The RELEX rnacro-ibstruction releases from exclusive status a block 
that was request~ed in a READ (type DX) macro-instruction. This permits 
other exclusive requests to gain access to the block. 

r-------- --T----·--------T-----------------------------------'------------, 
I Name I OpE!ration I Operand I 
~----------+---_._------+-----------------------------------.------------~ 
I [symbol] I RELEX I type-D, {dCb-addrx} , {blkref-addrx} I 
I I I (1) (0') I l __________ J. ____ . _______ J.--------___________________________ . ____________ J 

type 

dcb 

specifies the access method; D specifies the direct-access method. 

specifies t~he addiress of the data control block opened for the data 
set being process~d. 

Section 3: Basic Direct Access Method (BDAM) 237 



If (1) is written, the address must have been loaded into parameter 
register 1 before execution of this macro-instruction. 

blkn~f 
specifies the address of the block reference field. 

If (0) is written, the address must have been loaded into parameter 
register 0 before execution of this macro-instruction. 

EXCEPTIONAL RETURNS: The return code in register 15 will be 04 if the 
block specified by blkref was not in exclusive status. 

PROGRAMMING NOTES: A block is released from exclusive status by the 
RELEX macro-instruction or by being written back to the data set with 
the WRITE macro-instruction (by X in the type operand). 

FREEQBUF -- Free Dynamically Obtained Buffer (R) 

The FREEDBUF macro-instruction releases a buffer originally obtained 
by the control program in response to an'S' in the area operand of a 
READ macro-instruction. 

r-----------T-----------T-----------------------------------------------, 
I Name I Operation I Operand I 
.-----------+-----------+-----------------------------------------------~ 
I [symbol] I FREEDBUF I {deCb-addrx},type-D, {dcb-addrx} I 
I I I (0) (1) I L ___ . _______ ~ ___________ ~ _______________________________________________ J 

decb 

type 

dcb 

specifies the address of a data event control block (DECB) used in 
a READ macro-instruction that specified an ·S· in the area operand. 

If (0) is written, the address must have been loaded into parameter 
register 0 before execution of this macro~instruction. 

specifies the access method; D specifies the direct-access method. 

specifies the address of the data control block opened for the data 
set being processed. 

If (1) is written, the address must have been loaded into parameter 
register 1 before execution of this macro-instruction. 

CAUTIONS: The area field in the data. event control block must not be 
altered between execution of the READ macro-instruction and the FREEDBUF 
macro-instruction. 

The buffer can also be released by a WRITE macro-instruction. 

238 



QUEUED TELECOIvlMUNICATION ACCESS METHOD (QTAM) 

Message Processing Rou~ines 

The queued tE!lecommunication access method (QTAM) allows the user to 
obtain messages from, and place messages on, a message queue. These 
functions aid the mess~ge processing routines in data corrununications 
systems. The user must provide all the functions required in his 
message processing routine. These functions are described in detail in 
the publication IBM System/360 Operating System: Telecommunications, 
Form C28-6553. The me~sage queue processing routines of the control 
program can be requested by means of the macro-instructions described in 
this section. 

The 
and the 
queue. 
outgoing 
message 
queues. 

main communic:ation between a user's message processing routines 
message contro!l routines of QTAM is the process program message 

Incoming mes~sages are stored in input (process) queues, and 
messages are' stored in output (destination) queues. Both 
control and message processing routines have access to these 

A user of QTAM must: specify the manner in which messages are to be 
obtained from and plac'ed into the queue. In both the input data control 
block and the output data control block, a user must specify the message 
processing rout:ine's unit of data. The three options available are: 
record, segment, or complete message. 

The GET and PUT macro-instructions are provided to gain access to 
message queues. In addition, the OPEN and CLOSE macro-instructions 
described in "Gemeral Service Macro-Instructions" must be used, as well 
as the DCB macro-inst:ruction. The DCB, GET, and PUT macro-instructions 
are described in this section. 

DCB -- Define Q'J?AM Dat,a Control Block 

The DCB macro-instriuction reserves space for a data control block 
required for a processing program message queue. 

r----------T----------~T-----------------------------------------------, 
I Name I Operation I Operand I 
~----------+----.------'-+------------------------------------------------~ 
I [symbol] I DCB I DSORG=MQ, MACRF= (G I P) I 
I I I [,DDNAME=symbol] [,TRMAD=relexp] I 
I I I [, SOWA=absexp] [,RECFM=code] I 
I I I [,BUFRQ=absexp] [,EODAD=relexp] I 
I I I [,EXLST=relexpJ [,SYNAD=relexpJ I L __________ .L __________ :_.L _______________________________________________ J 

The keyword operands DSORG and MACRF. can be supplied by only the DCB 
macro-instruction. The remaining operands can be supplied after 
assembly time by alternate sources; these alternate sources are indicat
ed in the operand descriptions. 

DSORG 
specifies the data set organization; MQ is specified to indicate a 
processing program message queue for telecommunications. 

Section 3: Queued Telecorrununication Access Method (QTAM) 239 



MACRF 
specifies the type of macro-instructions that will be used in 
referring to the data control block, as follows: 

(G) - GET macro-instruction 
(P) - PUT macro-instruction 

DDNAME 

TRllJAD 

SOWA 

RECFM 

BUFRQ 

EODAl) 

240 

specifies the name that appears in the DD statement that will be 
used to describe the data control block. 

This information can also be supplied by the user's problem program 
before opening the data control block. 

specifies the address of a user-provided area in which the terminal 
name is stored. When a GET macro-instruction is issued, QTAM 
places the source terminal name at the specified address. When a 
PUT macro-instruction is issued, the user must provide the destina
tion terminal name at the specified address. 

The only alternate source for this information 
problem program. If this operand is not supplied, 
program will terminate the task abnormally. 

is the user's 
the control 

specifies the size in bytes of the user-provided work area. The 
maximium value is 32,767. 

This information can also be supplied by the DD statement or the 
user's problem program. If the work area size is not provided, the 
control program will terminate the task abnormally. 

specifies the work unit, as follows: 

G - message (defined by the end-of-transmission character) 
S - segment (defined by the buffer size) 
R - record (defined by the carriage return, line field, combined 

carriage return and line feed, or end-of-block character) 

This information can also be supplied by the DD statement or the 
user's problem program. If no value is provided, S is assumed. 

specifies the number of buffers to be read in advance from the 
direct-access device queue (before they are actually requested by a 
GET macro-instruction). This operand applies only to data control 
blocks for input queues on direct-access devices. The maximum 
value is 255. 

This information can also be supplied by the DD statement or the 
user's problem program. If the value is not supplied, BUFRQ=O is 
assumed. 

specifies the address of the user's end-of-data set exit routine 
for input data sets. This routine is entered when the user 
requests a record and there are no further records in the data set 
to be retrieved. If no routine has been provided, the task is 
abnormally terminated. 

The only alternate source for this information is the user's 
problem program. 



EXLST 

SYNAD 

specifies the address of the exit list. The format of the list is 
shown in appendix D. 

Exit lists are required if the data control block exit is used. 

The alternate source for this information is the user's problem 
program. 

specifies the address of a user-provided routine to be entered if a 
work unit is longer than the work area provided. 

The only alternate source for this information is the user's 
problem pro9ram. If it is not supplied, the remainder of the work 
unit will be sUpplied when the next GET macro-instruction is 
issued. 

CAUTIONS: Separate data control blocks must be used for input and 
output. 

The DCB macro--instruction cannot be written within the first 20 bytes 
of a control section. It can be preceded by padding, constants, or 
instructions. 

GET -- Obtain Next Recqrd {R} 

The GET macro-instruction obtains the next sequential segment, 
record, or message f!rom the input queue associated with the specified 
data control block. A reference to an empty queue will result in a wait 
condition unless a user's EODAD exit is provided in the data control 
block. 

In the case of a ,polled terminal, the GET macro-instruction places 
the terminal name of the message source into the field specified by the 
TRMAD operand of the processing routine's input data control block. If 
the source terminal is not a polled type, the terminal name is placed 
into the field specifiled by TRMAD only if QTAM message control routines 
provide it,. {Refer to ,the publication IBM System/360 Operating System: 
Telecommunications.} 

r----------T------------'T----------------------------------------------, 
I Name I Operation I Operand I 
.----------+-----------+-----------------------------------------------i 
I [symbol] I GET I {dcb-addrx}, {area-addrx} I 
I I I (1) (O) I L __________ L ___________ L _______________________________________________ J 

dcb 

area 

specifies the address of the process program's input data control 
block that contains the parameters necessary to obtain work units 
from the desired queue. 

If (1) is written, the address must have been loaded into parameter 
register 1 before :execution of this macro-instruction. 

specifies the address of the area into which the desired segment, 
record, or message is placed. 

If (O) is written, the address must have been loaded into parameter 
register 0 before execution of this macro-instruction. 

Section 3: Queued Telecommunication Access Method (QTAM) 241 



PRO(~RAMMING NOTE: The first four bytes of the work area are the record, 
segment, or message prefix. The first two of these bytes specifies the 
number of characters in the record, segment, or message. The third byte 
specifies the message type. (Refer to Table 32 for message type byte 
definitions.) The last byte of the prefix is a zero. 

Table 32. Message Type Byte Definition Chart 
r------------------T----------T---------------------T-------------------, 
I Message Type I I I I 
I Byte Contents I Message I Segment I Record I 
~------------------+----------+---------------------+-------------------~ 

00000000 I Header segment of Header record of 

00000001 

00000010 

00000011 

1 a multiple-segment multiple-record 
I message message 
I 
I 
I 
I 
I Complete 
I message 
I 
I 
1 

Intermediate 
text segment 

Single segment 
complete message 

Last text segment 
of a multiple-

Intermediate 
text record 

Single record 
complete message 

Last text record 
of a multiple-

I segment message record message L _________________ ~ __________ i ____________ - ________ ~ ___________________ J 

PUT _-- Put Next Record (R) 

The PUT macro-instruction places a message, segment, or record into 
an output queue. The terminal name of the message destination must be 
pro"ided in the field whose address is specified by the DCBTRMAD field 
of the data control block. 

r---'-------T-----------T-----------------------------------------------, 
I Name I Operati on I Operand I 
~------------+~----------+-----------------------------------------------1 
I [symbol] I PUT I {dCb-addrx},{area-addrx} I 
I I I (1) (0) I L ____________ ~-__________ ~ ______________________________________________ J 

dcb 

area 

specifies the address of the output data control block that 
contains the parameters necessary to refer to the desired queue. 

If (1) is written, the address must have been loaded into parameter 
register 1 before execution of this macro-instruction. 

specifies the address of the area from which the segment, record, 
or message is to be obtained by QTAM. 

If (0) is written, the address must have been loaded into parameter 
register 0 before execution of this macro-instruction. 

PROGRAMMING NOTES: The first four bytes in the work area must be the 
record segment or message prefix. The first two of these bytes must 
specify the number of characters in the record, segment, or message. 
The -third byte must specify the message type (Table 32). The last byte 
of the prefix is a zero. 

242 



SECTION 4: TES'l'RAN SERVICES 

The Operating SystenV360 control program includes an adva,nced facili
ty for execution-time testing of problem programs. Known as TESTRAN, 
for test translator, tliis facility performs test services specified by 
the programmer throuqh macro-instructions included in his source pro
gram. 

Services are performed at specified points in the problem program; 
the order of performance depends on the sequence of the TESTRAN 
macro-instructions. Macro-instructions and problem program instructions 
can be intermixed, grouped separately, or even assembled independently. 

Services are performed by control program routines known collectively 
as the TESTRAN interprreter. The user has the option of con.serving main 
storage by speci1:ying :ghat individual routines be called f:rom external 
residence only t.ll7hen specifically required. Alternatively, the user can 
conserve test eXE~cution time by specifying that routines remain resident 
in main storage for the duration of the test. 

Service routines are reenterable and may therefore be us€'d by several 
tasks in multi programmed tests. These routines are protected against 
modification by the 'problem program, and include facilities to detect 
runaway testing and excessive test output. 

The data produced by; the TESTRAN interpreter is retained as a data 
set for processing by the TESTRAN editor. The data can be recorded 
either on tape or on a direct-access device, and can be selected for 
printing either in its entirety or according to output selection codes 
expressed in the related macro-instructions. The test data, including 
all associated symbols, is printed in the forwat defined in the source 
program. 

Test Services: Services provided by the TESTRAN macro-instructions 
include both action and control fUnctions. Test actions include the 
dumping (recording for :display) of system tables, registers, and main 
storage and the tracing of transfers~ subroutine calls, and references 
to data. Control capabilities include the dynamic testing of conditions 
resulting from program execution; performance of test actions can 
accordingly be made dependent on conditions detected during processing. 
When an error condition is detected in this manner, an attempt at 
recovery can be made by alteration of problem program data or control 
flow. Specific t:est ac:tions can be organized as subroutines or executed 
repetitively under loop control. Test action and control capabilities 
are described in "TESTR~N Macro-Instructions." 

Test Procedure: Required job steps assembly, linkage editing, 
testing, and edi t~ing of test data - can be performed either as separate 
jobs or as steps within a single job. The programmer has the ability to 
assemble parts of his program independently and to correct assembly 
errors before proceeding with the test. He is also able to repeat the 
editing of output from a single test, selecting only data of immediate 
interest on each repetition. Use of system facilities and options is 
described further in "Job Organization." 

Section 4: TESTRAN Services 243 



TES~~RAN OPERATION 

TESTRAN macro-instructions and the problem program to be tested are 
first assembled, either together or separately. The assembler, upon 
request, produces a symbol table in addition to its normal output; this 
table contains the symbolic names, the data attributes (type, length, 
and scale), and the attribute of named instructions (type) for the 
problem program. The symbol table is processed by the linkage editor 
together with the assembled problem program, the macro-instructions, and 
the control dictionaries. It is used during post-processing to edit 
tes1: data into a format that includes the symbolic names and data 
attl:-ibutes of the source program. 

CSECT assembler instructions are generated at the beginning and end 
of 1:he macro-expansion of each TESTRAN macro-instruction. As a result, 
the macro-expansions are always loaded out-of-line as one or more 
separate control sections, even if the macro-instructions are scattered 
among the instructions of the problem program. A separate control 
sec1:ion is generated for each TEST OPEN macro-instruction; it contains 
the corresponding macro-expansion plus the macro-expansions of the 
TEs~rRAN macro-instructions that follow the TEST OPEN (and precede any 
subsequent TEST OPEN) in the source program. Each control section 
con1:ains only a single executable instruction, an SVC; the address of 
this instruction and the name of the control section are both specified 
by t.he symbolic name of the corresponding TEST OPEN macro-instruction. 

Hhen control is passed to a TEST OPEN macro-instruction, the TESTRAN 
intE~rpreter initiates testing by inserting SVC instructions at specified 
addresses in the problem program. These addresses are specified in TEST 
AT macro-instructions and represented as constants in the corresponding 
macl::'o-expansions. Each instruction overwritten by insertion of an SVC 
is saved, and control is returned to the problem program. 

1;-lhen the control flow of' the problem program causes execution of an 
inserted SVC instruction, control is passed to the TESTRAN interpreter 
rou1:ing routine. This routine causes TESTRAN macro-instructions to be 
encountered in a logical sequence similar to that of an executable 
proqram. That is, it provides linkage to service routines that 
int'~rpret the nonexecutable macro-expansions and perform services speci
fied in the corresponding macro-instructions of the source program. 
TEs~rRAN macro-instructions are encountered sequentially, beginning with 
the first macro-instruction following the TEST AT macro-instruction that 
caused control to be given to the routing routine. However, the 
sequence can be altered, either conditionally or unconditionally, by 
cer1:ain macro-instructions. When a GO BACK macro-instruction is encoun
ter~:=!d, the instruction overwritten by insertion of the SVC instruction 
is E~xecuted, and control is returned to the problem program. 

The TESTRAN editor processes recorded test data and causes that 
produced by specified macro-instructions to be printed on the system 
output device. The editor program is executed as an independent job 
step and is controlled entirely by job control statements. 

Nob:=!: A program under test is not reusable. A single copy of the 
pro~iram can be reentered only by direct (type I) linkage, because a 
supervisor-assisted (type II) linkage always causes loading of a new 
copy. Direct linkage must not be made from programs operating under 
more than one task. 

244 



TESTRAN MACRO-INSTRUCT!ON STATEMENT FORMAT 

The statement format for TESTRAN macro-instructions is -the same as 
for other system ma¢ro-instructions: it includes a name field, a 
mnemonic operation code, and one or more operands. The namE~ field can 
be blank or can cOljltain a symbol. A symbolic name must always be 
assigned to the 'rEST OFEN macro-instruction to provide a name for the 
control section contatning the corresponding macro-expansion. Symbolic 
names can optionally be assigned to other TESTRAN macro-instructions; 
these names can be referred to by TESTRAN macro-instructions but should 
not be referred -to by the problem program. 

Each TESTRAN macro-instruction includes a mnemonic operation code 
that specifies the general type of test service to be performed. The 
five TEST RAN mac:ro-instructions are designated by the operation codes 
DUMP, TRACE, TEST, GO, and SET. DUMP and TRACE perform actions that 
produce output r,elated; to the action of the problem program; they are 
accordingly referred to as "action" macro-instructions. ,]~EST, GO, and 
SET perform functions *equired for control of test operation; they are 
therefore known as "control" macro-instructions. 

In addition to toe operation code, each TESTRAN macro-instruction 
must include an jnitial coded value operand that specifies the particu
lar type of tes·t service to be performed. Designated by operation code 
and first operand, the twenty-three specific forms of the TESTRAN 
macro-instructions, tOgether with their basic usage, are as listed in 
Table 33. Each of theSe forms is described fully in "TESTRAN Macro
Instructions." 

Additional operands are described in the detailed descriptions of the 
specific forms of the TESTRAN macro-instructions. Keyword operands are 
always optional. The most common types and their general usage are 
shown in Table 34. 

VALUE MNEMONICS: The following value mnemonics are used in the 
descriptions of 'rESTRAN macro-instructions. 

• symbol 
• relexp 
• addx 
• adval 
• integer 
• text 
• tIs 

These value m:nemoni~s are defined in Section 1 of this publication. 
The operand forms indicated by them are discussed in detail in 
Appendix A, and should be reviewed before operands are writ1:en. 

TESTRAN MACRO-INSTRUCTIONS 

This sect.ion contains a detailed description of each TESTRAN 
macro~instruction and a set of notes on the usage of certain macro
instructions and their operands. 

Section 4: TESTRAN SE~rvices 245 



Table 33.. Forms of the TESTRAN Macro-Instructions 
r---·---------------T---------------------------------------------------, 
IMacro-Instruction I I 
I (specific form) I Usage I 
.---.---------------+---------------------------------------------------i I DUMP DATA I Records the contents of a specified area of main I 
I I storage. I 
I DUMP CHANGES I Records the contents of a specified area of main I 
I I storage and identifies successive changes. I 
I DUMP MAP I Records address es of control sections and I 
I I dynamically allocated storage areas. I 
I DUMP TABLE I Records the contents of a specified system table. I 
I DUMP PANEL I Records the contents of the program status word I 
I I and of specified general and floating-point reg- I 
I I isters. I 
I DUMP COMMENT I Records a comment written by the programmer. I 
.--_._--------------+--------------------------------------------------~ 
I 'I'RACE FLOW I Indicates each execution of a program transfer I 
I I to, from, or within a specified area of main I 
I I storage. I 
I 'I'RACE CALL I Indicates each execution of a CALL macro- I 
I I instruction located within a specified area of I 
I I main storage. I 
I 'I'RACE REFER I Indicates the execution and effect of each I 
I I reference to data within a specified area of main I 
I I storage. I 
I 'I,'RACE STOP I stops traces initiated by specified TRACE FLOW, I 
I I TRACE CALL, and TRACE REFER macro-instructions. I 
~---.---------------+---------------------------------------------------~ 

'I'EST OPEN Initiates program testing and provides overall 
test control. 

'I'EST AT Specifies points wi thin the problem program at 
which testing is to occur. 

'I'EST DEFINE Def ines flags and counters used by TEST WHEN, 
TEST ON, SET FLAG, and SET COUNTER macro
instructions. 

'I'EST WHEN Controls the sequence in which other test ser
vices are performed by testing for a specified 
logical condition or arithmetic relationship. 

'I'EST ON Controls the sequence in which other test ser
vices are performed by incrementing a counter and 
testing it for specified values. 

TEST CLOSE Terminates program testing • 
• --_ .. _--------------+--------------------------------------------------~ 
I GO TO I Causes test operation to continue with a I 
I I specified TESTRAN macro-instruction. I 
I GO IN I Saves the address of the next sequential macro- I 
I I instruction and causes test operation to continue I 
I I with a specified TESTRAN macro-instruction. I 
I GO OUT I Causes test operation to continue with the macro- I 
I I instruction that follows an associated GO IN I 
I I macro-instruction.. I 
I GO BACK I Ends a sequence of test services and returns I 
I I control to the problem program. I 
.------------------+---------------------------------------------------~ I SET FLAG I Assigns a condition to a specified logical flag. I 
I SET COUNTER I Assigns a value to a specified program-testing I 
I I counter. I 
I SET VARIABLE I Assigns a value to a specified register or data I 
I I item in the problem program. I L __________________ ~ ___________________________________________________ J 

246 



Table 34. Common Keyword Operands and Their Usage 
r-----------T---'--------------------------------------------·------------, 
I Keyword I Usage I 
~-----------+-------------------------"l--------------------.-----------~ 

SELECT Specifies an output selection code by which associated 
te~st datki can be selected for editing. 

DATAM Specifies data attributes to be used in place of those 
defined in the symbol table. 

NAME SpecifieS a symbol to be printed with test data 
generated by DUMP macro-instructions. This symbol is 
printed in place of symbolic names defined in the symbol 
table. 

COMMENT Specifies a comment to be printed with test data 
generated by a TRACE macro-instruction. 

DSECT Identifies address operands as referring to a dummy 
control section. ___________ ~ __________ -----________ ----------_____________ . _______ -----J 

MACRO-INSTRUCTION DESCRIPTIONS 

All macro-instructions described in this section are id4~ntified by a 
three-digit macro-instruction identification number (macro ID) that is 
automatically assigned by the assembler. This number is printed with 
each macro-instruction in the assembly listing; it is included in the 
printed test data to identify the sequence in which test services have 
been performed and the resulting output. 

A TEST RAN macro-instruction must not be placed among the instructions 
or data of a dummy control section. If this restriction is violated" 
the last statement in the macro-expansion will be a CS]~CT assembler 
instruction that has the same name as the preceding DSECT assembler 
instruction. The CSECT instruction will be treated as invalid, and 
subsequent instructions or data will be placed in an unnamed control 
section. 

DUMP DATA -- Record Main Storage 

This form of the DUMP macro-instruction records the contents of a 
specified area of main storage. All resulting test data, when selected 
for editing, is printed with the attributes and symbolic names defined 
in the source program symbol table. 

r----------T----·------.... T------------------------------------------------, 
I Name I Operation I Operand I 
~----------+----.--------+----------------------------------.-----------~ 
I [symbol] I DUMP I DATA, start-addx[, end-addx] I 
I I I I 
I I I [,SELECT=integer] I 
I I I [, DATAM=tls] I 
I I I [,NAME=symbol] I 
I I I [, DSECT=(dsect-symbol [, repeat-integer])] I L __________ ~ ____ . ______ .... ~ ____________________________________ • ___________ J 

section 4: TESTRAN SE~rvices 247 



DATA 

start 

end 

specifies the DUMP DATA form of the DUMP macro-instruction. 

specifies the starting address of the storage area; if the end 
operand is omitt.ed, the single data item or instruction starting at 
the starting address is recorded. 

specifies the ending address of the storage area; if this operand 
is present, the main storage area from the starting address to, but 
not including. the ending address is recorded. 

SELECT 
specifies an output selection code (an integer from 1 to 8) by 
which the recorded test data can be selected for editing. 

DATAM 

NAME 

specifies the data attributes (type, length, scale) to be used when 
the recorded test data is selected for editing. These attributes 
are used in place of attributes defined in the symbol table. 

specifies a symbolic name to be printed with the recorded test 
data; names defined in the symbol table for the same data are not 
printed. 

DSECT 
indicates that the starting address and, if present, the ending 
address are associated with the dummy control section specified by 
the dsect operand. If present, the repeat operand specifies a 
decimal integer by which the length of the specified storage area 
is multiplied at execution time; if absent, repeat has an assumed 
value of 1. The effective length of the storage area is the 
product of this multiplication. When the repeat factor causes an 
extension of the specified storage area, the section of the symbol 
table associated with the original range of addresses is used 
repetitively to provide symbolic names and data attributes for the 
extended area. 

EXA~~LES: In the following examples, EXl records the contents of the 
main storage area beginning at FIELD7. The length of this field is as 
defined by the symbol table. 

E:X2 records the contents of main storage from AREAl through AREA2"'1. 
The data is printed when test data with an output selection code of 1 is 
selE!cted for editing; printed output is in fixed-point format. 

EX3 records the contents of the first 500' bytes of a dummy control 
sect.ion named BUFFER. Each block of 50 bytes is edited according to the 
data. attributes contained in the symbol table for the addresses BUFFER 
through BUFFER+49. Printing of symbolic names for addresses in this 
range is suppressed; the name INPUT is printed once as a label applied 
to the contents of the full 500 bytes. 

EXl DUMP DATA,FIELD7 
EX2 DUMP DATA,AREA1,AREA2,SELECT=1,DATAM=F 
EX3 DUMP DATA, BUFFER, BUFFER+50,NAME=INPUT,DSECT= (BUFFER, 10) 

PROGRAMMING NOTES: When both starting and ending addresses are speci
fied, the range of a main storage dump is determined by the correspond
ing loaded addresses. In a scatter-loaded problem program, this range 
may vary unpredictably if starting and ending addresses are in separate 
control sections. The following conditions may occur: 

248 



• control sections that were not part of the range in the source 
program may be incQuded in the range of loaded addresses. 

• control sect~ions that were a part of the original range may be 
omitted from the range of loaded addresses. 

• The control sectio~ containing the starting address may be loaded at 
a storage location higher numbered than the control section contain
ing the ending address. If this situation occurs, only the single 
byte at the starting address is recorded, and a diagnostic message 
is inserted in the printed test output each time the macro
instruction is encountered. 

A program that is scat~er loaded should therefore include a separate 
macro-instruction for each control section to be recorded. 

When the ran(Je incliudes more than one control section, only data from 
the first cont~rol se,ction can be edited into the format defined by the 
symbol table. Unless a DATAM or DSECT operand was written, data from 
other control sections; is printed in 4-byte hexadecimal format. 

The maximum range: for a storage dump is 65,535 bytes. A dump is 
truncated if thE! speciified ending address exceeds the starting address 
by more than 65,535. 

The range of a dump must not include storage areas that have been 
assigned to different tasks. If it does, the dump is truncated to 
include only contiguou:s areas associated with the current task. 

Use of the linkage editor CHANGE control statement to change the 
names of external symbbls does not affect symbolic names that appear in 
test output. Use oif this facility to change the names of control 
sections causes dumps of these control sections to be printed in 
hexadecimal format unl:ess overriding data attributes are specified. 

DUMP CHANGES -- Record, Main Storage and Identify Changes 

This form of the' DUMP macro-instruction records the contents of a 
specified area of main: storage. All resulting test data, when selected 
for editing, is prin~ed with the attributes and symbolic names defined 
in the source program symbol table. The initial recording is printed in 
its entirety. When sUibsequent records produced by the same DUMP CHANGES 
macro-instruction are edited, only those fields that have changed since 
the previous recording are printed. If the range between the starting 
and ending addrE!sses i:s altered by indexing, the full contents of any 
addition to the previous range are printed, and only that portion of the 
range included in the previous range is examined for changes. 

r----------T----.-------T----------------------------------'------------, 
I Name I OpE!rati on I Operand I 
~----------+----.-------+-----------------------------------,------------~ 
I [symbol] I DUMP I CHANGES,start-addx[,end-addx] I 
I I I I 
I I I [, SELECT= integer] I 
I I I [, DATAM=tls] I 
I I I [,NAME=symbol] I 
I I I [, DSECT= (dsect-symbol [, repeat-integer]) ] I l __________ .L ____ . _______ .L ____________________________________________ J 

Section 4: TESTRAN Services 249 



CHANGES 

start 

end 

specifies the DUMP CHANGES form of the DUMP macro-instruction. 

specifies the starting address of the storage area; if the end 
operand is omitted, the single data item or instruction starting at 
the starting address is recorded and examined for changes. 

specifies the ending address of the storage area; if this operand 
is present, the main storage area from the starting address to, but 
not including, the ending address is recorded and examined for 
changes. 

SELECT 

DATAl-i 

NAME 

DSEC,]~ 

specifies an output selection code (an integer from 1 to 8) by 
which the recorded test data can be selected for editing. 

specifies the data attributes (type, length, scale) to be used when 
the recorded test data is selected for editing. These attributes 
are used in place of the attributes defined in the symbol table. 

specifies a symbolic name to be printed with the recorded test 
data; names defined in the symbol table for the same data are not 
printed. 

indicates that the starting address and, if present, the ending 
address are associated with the dummy control section specified by 
the dsect operand. If present, the repeat operand specifies a 
decimal integer by which the length of the specified storage area 
is multiplied at execution time; if absent, repeat has an assumed 
value of 1. The effective length of the storage area is the 
product of this multiplication. When the repeat factor causes an 
extension of the specified storage area, the section of the symbol 
table associated with the original range of addresses is used 
repetitively to provide symbolic names and data attributes for the 
extended area. 

EXAMFLE: In the following example, EXl records the contents of the 
storage area from CONSTANT through CONSTANT+79. The initial recording 
of this area is printed as 10 hexadecimal fields of 8 bytes each. 
Subsequent recordings are also edited as 8-byte hexadecimal fields, but 
only those fields that contain changes will be printed. The name 
CONSTANT is printed with the related data, as are other symbolic names 
included in the symbol table for this area. 

EXl DUMP CHANGES,CONSTANT,CONSTANT+80,DATAM=XL8 

PROGRAMMING NOTES: To edit test data produced by DUMP CHANGES macro
instructions, the TESTRAN editor must scan and compare storage records 
contained in an intermediate data set4 This process is time consuming 
and, if many such records exist, conside~ably reduces the speed of 
editing. The number of DUMP CHANGES macro-instructions used and the 
size of storage areas recorded should accordingly be carefully limited. 

The programming notes for DUMP DATA apply also to DUMP CHANGES 
macro-instructions. 

250 



DUMP MAP -- Record Stol:"age Map 

This form of the DUMP macro-instruction records the names, addresses, 
and lengths of: all control sections and dynamically allocated storage 
areas associated with the task being executed. 

r----------~---·-------T-----------------------------------------------, 

I Name I Operat{o~ I Operand I 
~----------f----·------'-+ ----------------------------------.------------~ 
I [symbol] I DUr.1P I MAP [ ,SELECT=integer] I L _________ ;...~ ____ . _______ ~ ______________________________________________ J 

MAP 
specifies t:he DUMP MAP form of the DUMP macro-instruction. 

SELECT 
specifies am outp~t selection code (an integer from 1 to 8) by 
which the recordea test data can be selected for editing. 

EXAMPLE: In t:he fdllowing example, EXl records a map of control 
sections and dynamical[y allocated storage associated with the current 
task.. This map is printed when test data with no associated output 
selection code is sel~cted for editing. 

EX1 DUMP MAP 

DUMP TABLE -- Record $ystem Table 

This form of the DU!MP macro-instruction records the contents of a 
specified system table. When selected for editing, the contents of the 
table are printE!d in a: meaningful format determined by the system .. 

r----------T----------~T-----------------------------------------------, 

I Name I Operation I Operand I 
~----------f----·------~f-----------------------------------------------~ 
I [symbol] I DUMP I TABLE,{bIOCk-{DCBIDEB},dCb-addx} I 
I I I block-TCB I 
I I I I 
I I I [, SELECT=integer] I L __________ ~ ___________ ~ _______________________________________________ J 

TABLE 

block 

dcb 

specifies t:he DUMP TABLE fonn of the DUMP macro-instruction. 

specifies the type of system table to be recorded, as follows: 

DCB - data contrdl block 
DEB - data extent block 
TCB - task contral block 

If TeB is pres~nt, the recorded task control block is that 
associated with the current task. 

specifies the address of a data control block. If DCB is present, 
the dcb operand ~pecifies the data control block that is to be 
recorded. If dEB is present, the dcb operand specifies the data 

section 4: TESTRAN Services 251 



control block associated with the data extent block that is to be 
recorded. 

SELECT 
specifies an output selection code (an integer from 1 to 8) by 
which the recorded test data can be selected for editing. 

EXAM~)LE: In the following example, EX1 causes the contents of the data 
control block named TESTDCB to be printed in a predetermined format when 
test data with an output selection code of 8 is selected for editing. 

EXl DUMP TABLE, DCB,TESTDCB, SELECT=8 

DUMP PANEL -- Record Registers and PSW 

This form of the DUMP macro-instruction records the contents of the 
program status word and of specified general and floating-point 
registers. Registers are printed in 4-byte hexadecimal format. 

r----------T-----------T-----------------------------------------------, 
I Name I Operation I Operand I 
~---.-------+-----------+-----------------------------------------------~ 
I [symbol] I DUMP I PANEL[,({register-ttrn,} ••• )] I 
I I I I 
I I I [, SELECT= integer] I 
I I I [,DATAM=tls] I L ___ . _______ .1. ___________ .1. ________________________________________ , _______ J 

PANEL 
specifies the DUMP PANEL form of the DUMP macro-instruction. 

register 
specifies a register or series of registers to be recorded; if this 
operand is omitted, all registers are recorded. The value mnemonic 
ttrn indicates that this operand is to be written in test 
translator register notation. For a full description of this 
notation, including its use to specify a series of registers, refer 
to Appendix A. 

SELECT 
specifies an output selection code (an integer from 1 to 8) by 
which the recorded test data can be selected for editing. 

DATA.M 
specifies the data attributes (type, length, scale) to be used when 
the recorded test data is selected for editing. These attributes 
are used in place of the implicit attributes (hexadecimal type and 
4-byte length) and apply to all registers in the sublist. 

EXAMPLES: In the following examples, EXl records the contents of the 
program status word and general register 7. The program status word is 
prin-ted l.n a standard format; the contents of the register are printed 
as an 8-digit hexadecimal field. 

EX2 records the contents of the program status word and the 
floa"ting-point registers 0, 2, and PRODUCT. (PRODUCT is a symbol 
equa·ted to the number of a floating-point register.) The program status 
word is printed in a standard format; the contents of the floating-point 
registers are printed in long floating-point notation. 

EXl 
EX2 

252 

DUMP 
DUMP 

PANEL,G'7' 
PANEL, (F'0,2',F'PRODUCT'),DATAM=D 



DUMP COMMENT -- Record:Comment 

This form of the DUMP macro-instruction records a specified comment 
for printing. 

r----------T----------~T-----------------------------------.------------, 

I Name I Operation I Operand I 
~----------+-----------+----~-----------------~--~---------.------------~ 
I [symbol] I DUMP I COMMENT,commentfield--text' [,SELEC~r=integer] I L __________ ~ ___________ ~ _____ --____________________________ •• ___________ J 

COMMENT 
specifies the DUMP COMMENT form of the DUMP macro-instJC'uction. 

commentfield 
specifies the comment to be recorded. 

SELECT 
specifies an output selection code (an integer from 1 to 8) by 
which the recorded comment can be selected for editing .. 

EXAMPLE: In the following example, EXl records the commenit specified. 
It is printed when test data with an output selection code of 4 is 
selected for output. 

EXl DUMP COMMENT, 'EXPERIMENTAL ERROR EXCEEDS ALLOWABLlE: LIMIT 
rr'HEORET+J:CAL VALUE SUBSTITUTED FOR K AND PROCjE:SSING 
R.ESUMED~,SELECT=4 

TRACE FLOW -- Record Program Transfers 

This form of the TAACE macro-instruction indicates each ,execution of 
a program transfer (branch or SVC) to, from, or within a specified area 
of main storage. The instruction that executes the transfer is 
recorded" as a.re the! addresses from and to which the transfer is made, 
and the condition code; at the time of the transfer. Wh'en a branch 
instruction is execuited, the contents of all registers used by the 
instruction are recorded. When an SVC instruction is executed, the 
contents of genE~ral registers 0 and 1 are recorded. The ex,ecution of an 
EX instruction i.s recorded if it causes execution of a program transfer. 

r----------T----'-----i-T----------------------------------'------------, 
I Name I OpE~ratioD! I Operand I 
.----------+-----------+----------------------------------,-----------~ 
I [symbol] I TRACE I FLOW,start-addx[,end-addx] I 
I I I I 
I I I [, SELECT= integer] I 
I I I [, COMMENT=' text' ] I L __________ ~ ___________ ~ ____ --------______ - ____________________________ J 

FLOW 

start 

specifies t~he TRACE FLOW form of the TRACE macro-instruction. 

specifies the sitarting address of the storage area; if the end 
operand is omitted, only program transfers to or from the starting 
address are recor~ed. 

Section 4: TESTRAN Services 253 



end 
specifies the ending address of the storage area; this area 
includes all locations from the starting address to, but not 
including, the ending address. All program transfers to. from, or 
within this area are recorded. 

SELECT 
specifies an output selection code (an integer from 1 to 8) by 
which the recorded test data can be selected for editing. 

COMMENT 
specifies a programmer-written comment to be printed with the 
recorded test data. 

EXAMPLE: In the following example, EXl records all program transfers 
to, from, or within the area from DECISION through NOBRANCH-l. The 
specified comment is printed with each indication of an executed 
transfer. 

EXl TRACE FLOW,DECISION,NOBRANCH,COMMENT='PROBLEM PROGRAM BRANCHES 
FROM DECISION AREA' 

PROGEAMMING NOTES: Tracing activity requires the examination of each 
problem program instruction executed while the trace is active. This 
process is time consuming, but the time required can be minimized by 
limi·ting the duration of the trace and the output the trace produces. 
The programmer can limit the duration of the trace by means of TRACE 
STOP macro-instructions; when encountered at execution time, these 
macro-instructions suspend tracing activities specified as being of no 
curr'ent interest to the programmer. The programmer can limit the output 
of the trace, within a general area of main storage, to only those areas 
of :special interest by specifying each such area in a separate 
macro-instruction. 

NO more than ten traces (corresponding to ten TRACE 
macro-instructions) can be active simultaneously. An attempt to start 
an ,eleventh trace will cause the tenth trace -- the trace most recently 
start.ed -- to be suspended. 

The programmer must consider the following facts when interpreting 
the output of trace routines: 

• 'rracing 
problem 
'rracing 
:ceceive 
quishes 

is performed only in storage areas associated with the 
program or with problem state control program routines. 
is suspended when supervisor-state control program routines 

control, and is resumed when the control program relin
control. 

• A trace is suspended on overlay of 
corresponding TRACE macro-instruction. 
Jresumed when the segment is reentered • 

the segment containing the 
It is not automatically 

• ]l\ subroutine or program segment must contain its own TRACE macro
instructions if it receives control from the control program through 
an asynchronous interruption (other than a program check) or through 
an ATTACH, LINK, or XCTL macro-instruction. All traces active for a 
1:ask are suspended upon linkage by an ATTACH, LINK, or XCTL 
macro-instruction, and upon execution of a RETURN macro-instruction 
1:erminating a task or program that receives control through one of 
t.hese macro-instructions. 

254 



The range of addresses in which tracing is recorded is determined by 
the loaded addresses corresponding to the address operands. In a 
problem program that is scatter loaded, this range may vary 
unpredictably if the starting and ending addresses are in separate 
control sections. The following conditions may occur: 

• Control sections that were not part of the range in the source 
program may be included in the range of loaded addresses. 

• Control sections that were a part of the original range may be 
omitted from the range of loaded addresses. 

• The control section containing the starting address may be loaded at 
a storage location higher numbered than the control sec1tion contain
ing the ending address. If this situation occurs, the macro
instruction is ignored and a diagnostic message inserted in the test 
output each time the macro-instruction is encountered. 

A program that is scatter loaded should therefore include a separate 
macro-instruction for each control section in which traces are to be 
recorded. 

The range of addrespes for a given macro-instruction can be varied by 
indexing. A new trace is started each time the macro-instruction is 
encountered, and any trace already active for that macro-instruction is 
automatically suspended. 

TRACE CALL -- Record Execution of CALL Macro-Instructions 

This form of the TRACE macro-instruction indicates each execution of 
a CALL macro-instruction that is located in a specified area of main 
storage. The symbolic name and the assembled and loaded addresses of 
each CALL and called routine are recorded together with the contents of 
all registers used by the CALL. 

r----------T-----------T------------------------------------------------, 
I Name I Operation I Operand I 
~----------+----------~+-----------------------------------.------------~ 
I [symbol] I TRACE I CALL,start-addx,end-addx I 
I I I I 
I I I [ , SELECT= integer] I 
I I I [, COMMENT = , text' ] I L __________ ~ ___________ ~ ________________________________________________ J 

CALL 

start 

end 

specifies the TRACE CALL form of the TRACE macro-instruction. 

specifies the starting address of the storage area within which the 
execution of CALL macro-instructions is to be recorded .. 

specifies the ending address of the storage area.; 
includes all locations from the starting address to, 
including, the ending address. 

this area 
but not 

SELECT 
specifies an output selection code (an integer from 1 to 8) by 
which the recorded test data can be selected for editing. 

Section 4: TESTRAN S~~rvices 255 



COMMENT 
specifies a programmer-written comment to be printed with the 
recorded test data. 

EXAM~LE: In the following example, EXl records the execution of all 
CALL macro-instructions located in the area from SUBRTNEl through 
SUBRTNE5-1. The symbolic name and the assembled and loaded addresses of 
each CALL and called routine (as well as the contents of registers used 
by the CALL) are printed when test data with an output selection code of 
3 is selected for editing. 

EXl TRACE CALL,SUBRTNE1,SUBRTNE5,SELECT=3 

PROGRAMMING NOTES: Refer to the programming notes for TRACE FLOW. 

TRACE REFER -- Record storage References 

This form of the TRACE macro-instruction indicates each reference by 
problem program instructions that could change data within a specified 
area of main storage. The instruction making the reference is recorded, 
as are the values of the data before and after the reference, the 
addresses of the instruction and the data, and the contents of any 
related registers. The execution of an EX instruction is recorded if it 
causes a reference to be made. 

r----------T-----------T-----------------------------------------------, 
I Name I Operation I Operand I 
~---.-------+-----------+-----------------------------------------------~ 
I [symbol] I TRACE I REFER,start-addx[,end-addx] I 
I I I I 
I I I [, SELECT=integerl I 
I I I [,DATAM=tls] I 
I I I [, COM{\1ENT=' text' ] I 
I I I [,DSECT=(dsect-symbol[,repeat-integer]}] I L ___ . _______ ~ ___________ ~ _______________________________________________ J 

REFE.R 

start 

end 

specifies the TRACE REFER form of the TRACE macro-instruction. 

specifies the starting address of the storage area; if the end 
operand is omitted, only references to the field beginning at the 
starting address are recorded. 

specifies the ending address 
includes all locations from 
including, the ending address. 
recorded. 

of the storage area; this area 
the starting address to, but not 
All references to this area are 

SELECT 
specifies an output selection code (an integer from 1 to 8) by 
which the recorded test data can be selected for editing. 

DATAM 

256 

specifies the data attributes (type, length, scale) to be used when 
the recorded test data is selected for editing. These attributes 
are used in place of the attributes defined in the symbol table. 



COMMENT 

DSECT 

specifies a programmer-written comment to be printed with the 
recorded test data. 

indicates that the starting address and, if present, the ending 
address are associated with the dummy control section specified by 
the dsect operand. If present, the repeat operand specifies a 
decimal integer by which the length of the specified storage area 
is multiplied at execution time; if absent, repeat has an assumed 
value of 1. The effective length of the storage area is the 
product of this multiplication. When the repeat factor causes an 
extension of the specified storage area, the section of the symbol 
table for the original range of addresses is used repetitively to 
provide symbolic names and data attributes for the extended area. 

EXAMPLE: In the following example, EX1 records all modifications of the 
data item DIVIDEND. The values of DIVIDEND before and after the 
reference are each printed as fields containing 1 decimal digits and a 
sign. The specified comment is printed with each reference indicated by 
EX1. 

EX1 TRACE HEFER,DlIVIDEND,COMMENT='QUOTIENT AND REMAINDER RESULTING 
FROM DECIMAL DIVISION OF DIVIDEND',DATAM=PL4 

PROGRAMMING NO'I~ES: The range of addresses specified in .a TRACE REFER 
macro-instruction must not include addresses 0 to 48. Results are 
unpredictable if this restriction is violated. 

When the range includes more than one control section, only data from 
the first cont:rol se:ction can be edited into the format defined in the 
symbol table. Unless a DATAM or DSECT operand was written, data from 
other control sE~ctions is printed in 4-byte hexadecimal format. 

The programming notes for TRACE FLOW apply also to TRACE REFER 
macro-instructions. 

TRACE STOP -- Suspend ~races 

This form of the T~ACE macro-instruction suspends tracing activities 
previously ini t:iated by specified TRACE FLOW, TRACE CALL, and TRACE 
REFER macro-inst:ructiQns. The macro-instruction identification number 
of each specified macro-instruction and the symbolic name of the control 
section in which each is located are both recorded. Suspended 
activities are restarted if the initiating macro-instructions are 
subsequently reencountered. 

r----------T------------T-----------------------------------------------, 
I Name I Operation I Operand 1 
~----------+------------+-----------------------------------------------~ 
I [symbol] I TR1\CE I STOP [, ( {macro-symbol, } ••• ) 1 [, SELECT=integerl I L __________ J.. ____________ .L ______________________________________________ J 

STOP 
specifies t.he TRACE STOP form of the TRACE macro- instruction. 

Section 4: TESTRAN Services 257 



macro 
specifies the symbolic name of a TRACE macro-instruction that 
initiated a tracing activity to be suspended; any nwnber of 
symbolic names can be specified. If the sublist is omitted, all 
current tracing activity is suspended. 

SELECT 
specifLes an output selection code (an integer from 1 to 8) by 
which the related test data can be selected for editing. 

EXAMPLE: In this example, EX1 suspends tracing activities initiated by 
the TRACE macro-instructions named TR2 and TR5. 

EX1 TRACE STOP, (TR2,TR5) 

TEST OPEN -- Initiate Testing 

This form of the TEST macro-instruction initiates the performance of 
test services when it receives control either from the control program 
(e.g., as a program entry point) or from the problem program. Although 
it is the only executable TESTRAN macro-instruction, it is ignored if 
encountered following a reference by a TEST WHEN, TEST ON, GO TO, or GO 
IN macro-instruction. Note that a TEST OPEN macro-instruction must 
always be given a symbolic name, and must be the first TESTRAN 
macro-instruction encountered during assembly. For a detailed descrip
tion of the use of this macro-instruction, refer to "Notes on Usage." 

r----------T-----------T-----------------------------------------------, 
I Name I Operation I Operand I 
~---.-------+-----------+-----------------------------------------------~ 
I symbol I TEST I OPEN [, entry-relexp, [ident-symbol] I 
I I I I 
I I I [,linkage-{LINKILOAD}]] I 
I I I I 
I I I [,MAXP=integer] I 
I I I [, .MAXE=integer] I 
I I t [,OPTEST=({macro-symbol,} ••• )] I 
I I I [, SELECT= integer] I L ___ . _______ i ___________ L _______________________________________________ J 

OPEN 

entry 

ident 

258 

specifies the TEST OPEN form of the TEST macro-instruction. 

specifies an address in the problem program; control is returned to 
this address after execution of the TEST OPEN routine, and the 
address is placed in register 15. This operand is required when a 
TEST OPEN macro-instruction either is the problem program entry 
point or receives control through a branch executed by the problem 
program. Omission under these conditions results in an abnormal 
end of task. This operand is not required if the TEST OPEN 
macro-instruction is not executed but, instead, is referred to by 
the OPTEST operand of another TEST OPEN macro-instruction. 

specifies a symbol that is to be included in a standard page 
heading to identify printed test output. 



linkage 

MAXP 

MAXE 

specifies -the system macro-instruction that is to provide linkage 
to test tra:nslator service routines as they are required during 
execution. LINK ml.nl.ml.zes stora.ge requirements but may cause 
slower operation; LOAD maximizes operating speed but requl.res a 
larger area of main storage. If neither option is specified, the 
LINK option is assumed. 

specifies the maximum number of pages of test data to be produced. 
This limit is ~pproximate and must not be greater than the limit 
established at the installation during system genE!ration. If 
either the prograquner's or the installation's limit is exceeded, an 
appropriate message is inserted in the test output and an abnormal 
end of task results. 

specifies the maximum number of TESTRAN macro-instruc1:ions to be 
encountered, coumting each macro-instruction once :t:or each time 
that it is encountered. This number must not exceed the limit 
established at the installation during system generation. If 
either the programmer's or the installation's limit is exceeded, an 
appropriate message is inserted in the test data and an abnormal 
end of task results. 

OPTEST 
specifies the symholic names of other TEST OPEN macro-jLnstructions. 
These macro .... instt'uctions initiate additional testj~ng without 
recel.vl.ng control directly from either the control pl:,ogram or the 
problem pro'9ram. Any optional operands included in thHse TEST OPEN 
macro-instructions are ignored. 

SELECT 
specifies an outp~t selection code (an integer from :lL to 8) by 
which test data with no other associated output selec1:ion code can 
be selected for editing. This code applies to ac::tion macro
instructions that follow this TEST OPEN (and precede any subsequent 
TEST OPEN) in the source program. This code overridE:!s the output 
selection codes $pecified in the TEST OPEN macro·· instructions 
specified in the OPTEST operand; it is overridden by any other 
output selection code associated with action or TES~r AT macro
instructions. 

EXAMPLE: In the following example, testing specified by macro
instructions followin9 TESTl and TEST2 in the source program is 
initiated when control is passed to TEST!; control is subsequently 
returned to the address START in the problem program. TE:!st output is 
limited either to 75 p~ge~ or to the output of 20 encounb:!red TESTRAN 
macro-instructions, whichever is the lesser quantity. All printed pages 
are headed with the label TWOTESTS; all test data ,~ith no other 
associated output selection code has an implicit output selection code 
of 8 .• 

TEST! TEST OPEN.START,TWOTESTS,MAXP=75,MAXE=20,OPTEST=T]~ST2.SELECT=8 

TEST2 TEST OPEN 

Section 4: TESTRAN S«:!rvices 259 



TES1 AT -- Perform Testing at Problem Program Address 

'J?his form of the TEST macro-instruction specifies points wi thin the 
problem program at which testing is to occur. The test services 
performed are those specified by the series of TESTRAN macro
inst:ructions that begins with the next sequential TESTRAN macro
inst:ruction. If a TEST AT macro-instruction is encountered in this 
series, it functions as a GO BACK macro-instruction with no return 
operand. 

r----------T-----------T-----------------------------------------------, 
I Name I Operation I Operand I 
~---.-------+-----------+-----------------------------------------------~ I [symbol] I TEST I AT, ({address-{relexp },} ••• ) [,SELECT=integerl I 
I I I * I L ___ . _______ i ___________ i __________________________________ - ____________ J 

AT 
specifies the TEST AT form of the TEST macro-instruction. 

address 
specifies a problem program address at which a sequence of test 
services is to be performed; any number of addresses can be 
specified. If written as an asterisk, the operand specifies the 
current value of the location counter for the problem program 
control section that contains the last encountered assembler 
language instruction. 

SELECT 
specifies an output selection code (an integer from 1 to 8) by 
which test data with no other associated output selection code can 
be selected for editing. This code applies to action macro
instructions that follow the TEST AT (and precede any subsequent 
TEST AT or TEST OPEN) in the source program. This code overrides 
any code specified in a related TEST OPEN macro-instruction; it is 
overridden by output selection codes specified in the action 
macro-instructions themselves. 

EXA~PLE: In the following example, when the TEST OPEN macro-instruction 
named INIT returns control to BEGIN in the problem program, the TEST AT 
macro-instruction causes test services specified by a series of macro
inst.ructions (not shown) to be performed. An output selection code of 4 
is assigned to test data produced by following macro-instructions in 
which no output selection code is specified. 

INIT' TEST OPEN, BEGIN, SELECT=8 
TEST AT,BEGIN,SELECT=4 

PROG~MMING NOTES: When testing is initiated by a TEST OPEN macro
instruction, the TESTRAN interpreter inserts an SVC instruction at each 
problem program address specified by a TEST AT macro-instruction. Test 
services are performed whenever the inserted SVC's are executed as part 
of the problem program. Each address specified must therefore be the 
address of an executable instruction, and each of these instructions 
must adhere to the following restrictions: 

1. The instruction must not be a privileged instruction. If this 
restriction is violated, execution of the privileged instruction 
results in an abnormal end of task when the TESTRAN interpreter 
returns control to the problem program. 

260 



2. The instruc1tion mq.st not be modif ied by any instruct.ion 
problem program. Results are unpredictable if this 
violated. 

in the 
rule is 

3,. The instruc1tion must not be an SVC instruction; if it is an SVC 
instruction

" 
the 1ESTRAN SVC is not inserted. 

4,. The instruc1tion m\lst not be an EX instruction that causes execution 
of an instrlLlction,that violates rule 1. 2# or 3. 

5. The instruc~tion m~st not be exec'Qted by an EX instruction. If this 
rule is violated, test services are not performed; an E!rrOr message 
is inserted in the test output and the EX instruction is ignored. 

TEST DEFINE -- Define rlags or Counters 

This form of ·the TEST macro-instruction specifies that either logical 
flags or program-test.ing counters are to be assembled for use by TEST 
WHEN, TEST ON, S:~T FLA$, and SET COUNTER macro-instructions. Flags and 
counters are assembled as data items in the control section that 
contains the TESlr DEFI$E. This macro- instruction has no function at 
execution time a:nd, if encountered, is ignored. 

r----------T----·-------;-T---------------------------------.. -----------, 
I Name I Operation I Operand I 
.----------+---_._------;-+--------------------------------.. -----------~ 
I [symbol] I TES'T I DEFINE, {FLAG, ({flag-symbol, } ••.• ) } I 
I I I COUNTER, ({ctr-symbol,} .... ) I L __________ .L ____ . ______ -;-.L ___________________ ----------_____ • __________ J 

DEFINE 

FLAG 

flag 

specifies the TEST DEFINE form of the TEST macro-instruction. 

specifies that oile or more logical flags are to be assembled, each 
with an initial condition of o. 

specifies a symbolic name for a logical flag tha1: is to be 
assembled. Any number of symbolic names can be spf~cified; each 
causes assembly of a separate logical flag and mus1t be unique 
within the object module. 

COUNTER 

ctr 

specifies that olle or more counters are to be assemblf~d, each with 
an initial value of o. 

specifies a symbo~ic name for a counter that is to b~ assembled. 
Any number of sytnPolic names can be specified; each calLlses assembly 
of a separate counter and must be unique within the object module. 

EXAMPLES: In the follpwing examples. EX1 defines logical flags 
initial conditions of 0 and symbolic names RED, BLUE, and GREEN. 
defines a counte~r with! an initial value of 0 and the symbolic 
LOOPCNT. 

with 
EX2 

name 

EXl 
EX2 

TEST 
TEST 

DEFINE, FLAG, (RED, BLUE,GREEN) 
DEFINE, COUNTER, LOOPCNT 

section 4: TESTRAN S'ervices 261 



TES~~ WHEN -- Alter Test Sequence When Condition or Relationship Occurs 

'l?his form of the TEST macro-instruction controls the sequence in 
which other test services are performed by testing for a logical 
condition or arithmetic relationship each time the macro-instruction is 
encountered at execution time. An affirmative test result causes the 
TES'l~RAN interpreter to perform the services specified by a series of 
TES,]~RAN macro-instructions. the first of which is specified by its 
symbolic name. A nonaffirmative test esult causes the TESTRAN 
intE~rpreter to perform the test services specified by the series of 
macro-instructions that begins with the next sequential macro
inst.ructi on. 

r---·-------T-----------T-----------------------------------------------, I Name I Operation I Operand I 
~---.-------+-----------+-----------------------------------------------i I flag~-symbol 

I 
I 
I 
I 

[8 ymbol] I TEST WHEN, 

value,. -adval, relo- {~} ,val ue2-adval 
I 
I 
i 
I 
I 
I 
I ,macro-symbol 
I 
I [,DATAM=tls] ___ . _______ .L _________ -.L---_________ --______________________________ J 

WHEN 

flag!\. 

logo 

flag2 

specifies the TEST WHEN form of the TEST macro-instruction. 

specifies the name of a logical flag defined by a TEST DEFINE 
macro-instruction. If no other logical flag is specified, a test 
is affirmative when the specified flag has a condition of 1. 

specifies the logical operator AND or OR. 

specifies the symbolic name of a second logical flag defined by a 
TEST DEFINE macro-instruction. If the logical operator AND is 
specified, a test result is affirmative only when the conditions of 
both logical flags are 1. If the logical operator OR is specified, 
a test result is affirmative when the condition of either logical 
flag (or of both) is 1. 

value~ 

relo 

262 

specifies the value of a data item. This operand can be written as 
the symbolic name of a program-testing counter. 

specifies one of the following relational operators: 



LT - less t:han 
LE - les s t:han or' equal 
EQ - equal 
NE - not equal 
GT - greatE~r than 
GE - greatE~r than or equal 

value2 
specifiee a second value. This operand can be written as the 
symbolic name of :a program-testing counter. It can be written as a 
literal only if value 1 is not written as a literal. 

A test result is: affirmative when 
between value.1. 'and value2 is as 
operator specified. 

the arithmetic relationship 
expressed by the relational 

macro 
specifies 1:he symbolic name of the next TESTRAN macro-instruction 
to be enc::ounte:rred when a teat result is affirmative. This name 
must not bE~ AND Qr OR if the flag.1. operand is present and the logo 
and flag2 operands are omitted. 

DATAM 
specifies the data attributes (type, length) to be used in 
comparing 1:he data items specified by value.1. and valu€'2. If this 
operand is omitted, the type and length attributes defined in the 
symbol table for value.1. or value2 (in that sequence) a.re used. If 
both valu(:!.1. andvalue2 are specified by external symbols, a length 
of one byt(:! is assumed. This operand is ignored when f lag operands 
are used Olt:' when names of program-testing counters are used as 
value operands. 

Note: Scale attIfibutes defined in the symbol table OI' specified by 
this operand are ignored. 

EXAMPLE: In the following example, when ANDing the logical flags named 
RED and BLUE :results in the condition 1, the TESTRAN macro-instruction 
named QUIT is the next to be encountered. If the resultin9 condition is 
0, the macro-instruction named NEXT is encountered. If thE! data item at 
the address specified' by TABLE plus contents of index rE!gister 4 is 
greater than the data. item at MAXIMUM, the macro-instruction named QUIT 
is again the next to be encountered. 

TEST lNHEN, RED, AND, BLUE, QUIT 
NEXT TEST l;.JHEN, TABLE (4) "GT, MAXIMUM, QUIT 

TEST ON -- Alter Test Sequence on Counter Interval 

This form of the T~ST macro-instruction controls the sequence in 
which other test s~rvices are performed by incrementing a counter and 
then testing it for specified values each time the macro-instruction is 
encountered at exec~tion time. An affirmative test result causes the 
TESTRAN interpreter to perform the services specified by a series of 
TESTRAN macro-instructions, the first of which is specified by its 
symbolic name. A nonaffirmative test result causes the TESTRAN 
interpreter to perform the test services specified by the series of 
macro-instructions that begins with the next sequential macro
instruction. 

Section 4: TESTRAN Services 263 



r----------T-----------T-----------------------------------------------, 
I Name I Operation I Operand I 
~----------+-----------+-----------------------------------------------1 
I [symboll I TEST ION,[lOw-{integer}l,[hi9h-{integer}l I 
I I I adva11 adva1 1 I 
I I I I 
I I I , [interval-{integer}l,maCrO-SymbOl I 
I I I adva11 I 
I I I I 
I I I [,COUNTER=symboll I 
.---.-------~-----------~-----------------------------------------------~ I 1This operand cannot be written as a literal. I l ______________________________________________________________________ J 

ON 

low 

high 

specifies the TES'I' ON form of the TEST macro-instruction. 

specifies the lowest value in the range of values for which the 
counter is tested; if this operand is omitted, the lowest value in 
the range is assumed to be 1. 

specifies the highest value in the range of values for which the 
counter is tested; if this operand is omitted, the highest value in 
the range is assumed to be the maximum value of the counter 
(2 31-1). 

interval 

macro 

specifies the counter intervals at which affirmative tests occur; 
if this operand is omitted, the value of the interval is assumed to 
be 1. 

,1\n affirmative test result occurs when the value of the counter is 
an integral multiple of the interval and falls within the range 
defined by the low and high operands. Values specified for the 
low, high, and interval operands must be integers in the range of 1 
to 2 31-1. 

specifies the symbolic name of the next TESTRAN macro-instruction 
to be encountered when a test result is affirmative. 

COUN'l'ER 
specifies a program-testing counter defined by a TEST DEFINE 
macro-instruction. This counter can be preset to any value from 0 
to 2 31-1 by a SET COUNTER macro-instruction; it is incremented and 
tested by all TEST ON macro-instructions in which it is specified. 
If this operand is omitted, an unnamed counter with an initial 
value of 0 is defined by the TESTRAN interpreter; this counter 
cannot be used by other TEST ON macro-instructions. Whether named 
or unnamed, the counter is incremented by one each time the 
macro-instruction is encountered. 

EXAMPLE: In the following example, EXl increments the value of LOOPCNT 
by one: it causes the series of macro-instructions beginning at TROUBLE 
'to be encountered whenever the value of LOOPCNT is 8, 12, or 16. 

EX1 TEST ON,1,16,4,TROUBLE,COUNTER=LOOPCNT 

264 



TEST CLOSE -- T€!rminate Testing 

This form of the TEST macro-instru,ction terminates pro9ram testing 
initiated by a.n associated TEST OPEN macro-instruction. The TESTRAN 
interpreter then executes the instruction displaced by the last executed 
TESTRAN SVC and return~ control to the problem program. For a detailed 
description of the use of this macro-instruction, refer to "Notes on 
Usage. " 

r----------T----·-------T----------------------------------.------------, 
I Name I OpE!ration I Operand I 
~----------+----.-------+-----------------------------------.------------~ 
I [symbol] I TEST I CLOSE I L __________ .L ____ . _______ ~ __________________________________ . ____________ J 

CLOSE 
specifies t:he TES[, CLOSE form of the TEST macro-instruction. 

EXAMPLE: In thE! following example, the TEST CLOSE 
terminates pro9ram t;esting initiated by OP1 and 
returned to the problem program instruction named ABC. 

OPl TEST OPEN,ENTRY,OPTEST=OP2 

OP2 TEST OPEN 
TEST I\T,ABC 

TEST CLOSE 

GO TO -- Encoun1:er TESTRAN Macro-Instruction 

macro-instruction 
OP2. Control is 

This form of the GO macro-instruction causes the TESTRAN interpreter 
to perform thE~ sequ,ence of test services specif ied by a series of 
TESTRAN macro-instructions, the first of which is specified by its 
symbolic name. 

r----------T------------T-----------------------------------.------------, 
I Name I Operatiort I Operand I 
~----------+------------+-----------------------------------.-----------~ 
I [symbol] I GO I TO,macro-symbol I L __ ... ___ - ___ .L ___ .~ _______ ~ ___________________________________ . ____________ J 

TO 
specifies the GO TO form of the GO macro-instruction. 

macro 
specifies the symbolic name of the next TESTRAN macro-instruction 
to be encountered. 

EXAMPLE: 
continue 
CHECK. 

EXl 

In th.e foll.owing 
with the TESTRAN 

GO ~rO,CHECK 

example, EXl causes program testing to 
macro-instruction, whose symbolic name is 

section 4: TESTRAN E;ervices 265 



PROGRAMMING NOTES: TEST AT, TEST OPEN, and TEST DEFINE macro
inst.ructions should not be specified by the macro operand in this form 
of t.he GO macro-instruction. If they are specified in this way, TEST AT 
is interpreted as a GO BACK with no return operand, and TEST OPEN and 
TEST DEFINE are ignored. 

Overlay segments are not automatically loaded when the specified 
macro-instruction is in a segment not currently in storage. Instead, an 
error message is generated and the macr.o-instruction is ignored. 

GO I~ -- Enter TESTRAN Subroutine 

This form of the GO macro-instruction causes the TESTRAN interpreter 
to perform the sequence of test services specified by a series of 
TESTRAN macro-instructions, the first of which is specified by its 
symbolic name. The address of the TESTRAN macro-instruction following 
the GO IN is saved by the TESTRAN interpreter, enabling the GO IN and GO 
OUT macro-instructions to be used in combination to provide a subroutine 
capability. 

r----------T-----------T-----------------------------------------------, 
I Name I Operation 1 Operand I 
~---,-------+-----------+-----------------------------------------------~ I [symbol] I GO I IN, macro-symbol I l ___ , _______ L-__________ ~ _______________________________________________ J 

IN 

macro 

specifies the GO IN form of the GO macro-instruction. 

specifies the symbolic name of the next TESTRAN macro-instruction 
to be encountered. 

EXAMPLE: In the following example, EXl causes program testing to 
continue with the macro-instruction named DISPLAY. The address of the 
macro-instruction that follows EXl is saved. 

EXl GO IN, DISPLAY 

PROG]~AMMING NOTES: Refer to the programming notes for GO TO. 

GO OUT -- Return from TESTRAN Subroutine 

This form of the GO macro-instruction causes the TEST RAN interpreter 
to 1:erminate the sequence of test services performed as a result of a 
previously encountered GO IN macro-instruction. The address of the next 
TESTI~N macro-instruction to be encountered is that saved by the 
associated GO IN macro-instruction. The TESTRAN interpreter can 
main'tain a maximum of three return addresses, making possible a maximum 
of three levels of subroutines. If more than three levels of subrou
tines are created, only the three most recent return addresses will be 
saved. If no GO IN macro-instruction has been encountered, the GO OUT 
is interpreted as a GO BACK. 

266 



r----------T------------T-----------------------------------------------, 
I Name I OpE~ratiort I Operand I 
~----------+------------+-----------------------------------------------~ 
I [symbol] I GO lOUT I L __________ ..L ___________ -.L----_--____________________________ . ____________ J 

OUT 
specifies 1the GO OUT form of the GO macro-instruction. 

EXAMPLE: The t4:st maGro-instructions shown in the following example are 
encountered at execution time in the order expressed by the digits 
included in the symbolic names. 

The GO IN macro-instruction named XXXXl saves 
macro-instruction named XXXX7 and causes the 
instructions be9inning at YY2 to be encountered. 

the address of the 
series of macro-

The series of mac~o-instructions beginning at YY2 includes the GO IN 
macro-instruction nam¢d YY3. YY3 saves the address of the macro
instruction named YY6 and causes the series of macro-instructions 
beginning at Z4 to be encountered. 

The series of macro-instructions beginning at Z4 includE~s the GO OUT 
macro-instruction nallled ZS. ZS terminates the series and causes the 
macro-instruction named YY6 to be encountered. 

The GO OUT macro-instruction 
macro-instructions that began 
named XXXX7 to be encountered. 

XXXXl 
XXXX7 

* YY2 

YY3 
YY6 

* Z4 

ZS 

GO 
TEST 

IN,YY2 
CLOSE 

DUMP PANEL 

GO 
GO 

IN,Z4 
OUT 

DUMP MAP 

GO OUT 

named yY6 terminates the series of 
at YY2 and causes the macro-instruction 

*** 
* * SUBROUTINE YY2 

* 
* *** 

*** 
* * SUBROUTINE Z4 

* *** 

GO BACK -- Return to ~roblem Program 

This form of the GO macro-instruction causes the TESTRAN interpreter 
to return control to the problem program. 

r----------T------------T----------------------------------.-------------, 
I Name I Operation I Operand I 
~----------+--------~--+-----------------------------------------------~ I [symbol] I GO I BACK[,return-addx] I L __________ ..L ____________ ..L __________________________________ . ____________ J 

Section 4: TESTRAN Services 267 



BACK 
specifies the GO BACK form of the GO macro-instruction. 

return 
specifies an address in the problem program to which control is to 
be returned by. the TESTRAN interpreter. If this operand is 
omitted, the TESTRAN interpreter executes the instruction displaced 
by the last executed TESTRAN SVC and returns control to the next 
sequential instruction in the problem program. (The displaced 
instruction is not executed if the return operand is present.) 

EXAMPLE: The GO BACK roacro-instruction in the following example returns 
control to a specific problem program address (GETNEXT) rather than to 
the instruction specified by the related TEST AT macro-instruction. 
This alteration of the normal problem program control flow and the 
reason for it are recorded by the DUMP COMMENT macro-instruction. 

DUMP COMMENT, 'ERROR, NETPAY IS NEGATIVE. CONTROL RETURNED 
TO GETNEXT',SELECT=l 

GO BACK,GETNEXT 

PROGRAMMING NOTES: The optional return operand of the GO BACK macro
instz:-uction enables the programmer to al te.r the 'normal control flow of 
his problem program. This alteration will affect the processing 
performed by the program and may cause sections of the program that 
conta.in errors to be left unexecuted. The operand is useful when an 
erroz' condition (such as an endless loop) has been detected, and the 
programmer wishes to bypass the error and to continue testing at some 
other' point in the program. If a GO BACK macro-instruction that 
inclu.des this operand is encountered, the problem program must not be 
expect.ed to function in the same manner when run independently as when 
run under TESTRAN supervision. The programmer should therefore design 
his TESTRAN macro-instructions to cause an indication of any such GO 
BACK encountered, e.g., by use of a preceding DUMP COMMENT macro
instruction. 

SET FJ..,;...A_G _____ A_s'-S....;l.;;;..· q~n~C....;o;...;;n""'d=l.=· t..;;..;;;;i-"0..;;,n ___ t_o~..;;..F.;;;;1..;;,a;...&.9 

This form of the SET macro-instruction assigns a condition to a 
logical flag defined by a TEST DEFINE macro-instruction. 

r----·------T-----------T-----------------------------------------------, 
I Name I Operation I Operand I 
~----,------+-----------+------------------------------------------------~ 
I [symbol] I SET I FLAG,flag1-Symbol,{fla92-SymbOl} I 
I I I condition-{=OI=l} I L ____ . ______ ..L ______ -----..L ______________________________________________ J 

FLAG 

flag1 

flag 2 

268 

specifies the SET FLAG form of the SET macro-instruction. 

specifies the symb0lic name of the flag to which the condition is 
1:'0 be assigned. 

specifies the symbolic name of a flag that has the condition to be 
assigned to flag1_ 



condition 
specifies 1:he cOIidition (either 0 or 1) to be assigned. to flag1.. 

EXAMPLE: In thE~ follqwing example, EX1 assigns a condition. of 1 to the 
logical flag whose syn)bolic name is BLUE. 

EX1 SET FLAG, BnUE,=l 

SET COUNTER -- AssigniValue to Counter 

This form of the SET macro-instruction assigns a value to a 
program-testing counter defined by a TEST DEFINE macro-inst:ruction. 

r----------T---·-------.-T-----------------------------------.------------, 
I Name I Operation I Operand I 
.----------+---------~-+-----------------------------------------------~ 
I [symbol] I SE'r I COUNTER,ctr-symbol, set-adval I L __________ .L ___ . _______ -.L ________ .;,... ____ - _____________________ . ___________ J 

COUNTER 

ctr 

set 

specifies ·the SE'll' COUNTER form of the SET macro-instruction. 

specifies ·the symbolic name of the counter to which t:he value is 
assigned. 

specifies the value assigned to the counter; the value may be any 
integer in the rqnge from -231. to +231.-1. 

EXAMPLE: In the foll0wing example, EX1 assigns the value contained in 
general register 9 to the counter named LOOPCNT. 

EX1 SET COUNTER, LOOPCNT,G'9, 

SET VARIABLE -- Assig~ Value to Storage or Register 

This form of the SET macro-instruGtion assigns a value 1:0 a specified 
register or data item in the problem program. 

r----------T---·----~--;..-T------------------------------------------------, 

I Name I Operation I Operand I 
.----------+--_._-----.... -+------------------------------------------------~ 
I [symbol] I SET I VARIABLE,vari-adval1.,set-adval[,Dl\TAM=tls] I 
~----------.L---.------+-..L------------_----------------___________________ ~ 
I 1. This operand cann¢)t be written as a literal. I L ____________________ .... _________________________________________________ J 

VARIABLE 
specifies the SET VARIABLE form of the SET macro-instruction. 

section 4: TESTRAN Services 269 



vari 

set 

specifies a variable that is the contents of either a register or a 
location in main storage. If specified by an address, the variable 
must have the storage protection key of the current task. 

specifies the value assigned. This operand can be written as the 
symbolic name of a program-testing counter that has the value to be 
assigned to the variable. 

DATAlv'! 
specifies the data attributes (type, length) to be used by the 
TESTRAN interpreter in assigning the value to the variable. If 
this operand is omitted, the symbol table attributes for the 
variable or the value (in that sequence) are used. If both 
variable and value are specified by external symbols, a length of 
one byte is assumed • 

. Note: The type attribute can be used to imply a length attribute as 
described in the discussion of data attribute notation in Appendix 
A. The type attribute has no other function for this macro
instruction. scale attributes defined in the symbol table or 
specified by this operand are ignored. 

EXAM~~ In the following example, EXl assigns the value of the 64 
bytes beginning at ASSUMED to the 64 bytes beginning at UNKNOWN. 

EXl SET VARIABLE, UNKNOWN, ASSUMED, DATAM=L64 

PROGRAMMING NOTES: The SET VARIABLE macro-instruction enables the 
programmer to alter the values of data within his problem program. This 
alteration may affect other data or control flow or both. This form of 
the macro-instruction is useful when an error condition (such as an 
unreasonable result of a computation) has been detected, and the 
progl:ammer wishes to assume some standard value and continue testing. 
If a SET VARIABLE macro-instruction is encountered, the problem program 
must not be expected to function in the same manner when run 
independently as when run under TESTRAN supervision. The programmer 
should therefore design his TESTRAN macro-instructions~ to cause an 
indication of any SET VARIABLE encountered. e.g., by use of a preceding 
DUMP COMMENT macro-instruction. 

NOTES ON USAGE 

This section contains notes on the usage of TESTRAN macro
instructions and their operands. These notes present detailed 
information essential to proper usage of the TESTRAN facility but not 
necessary for basic understanding of the services provided. 

~~d Modifiers 

Keyword modifiers are optional keyword operands that have standard 
formats and can be used in more than one macro-instruction. Each type 
of ke~yword modif ier is described in the following pa ragraphs. 

210 



Output Selection Modifier (SELECT Operand): The output selection 
modifier causes a spec~fied output selection code to be associated with 
test data produced hymacro-instructions to which the modifier applies. 

• If specified in a TEST OPEN macro~instruction, the modifier applies 
to all action macro-instructions that follow the T]~ST OPEN (and 
precede any subseqUent TEST OPEN) in the source program. The 
modifier overrides any output selection codes specified in TEST OPEN 
macro-instructions specified in the OPTEST operand. 

• If specified in a TEST AT macro-instruction, the modifier applies to 
all action macro,-instructions that follow the TEST AT (and precede 
any s ubsequ€'nt TES'l' AT or TEST OPEN) in the source program. For 
those macro-instructions to which it applies, the modifier overrides 
any output selec:tion code specified in a related TEs'r OPEN macro
instruction. 

• If specified in an: action macro-instruction, the modifier applies to 
the macro-instruction in whi~h it appears. For this macro
instruction, the' modifier overrides any output selection code 
specified in a related TEST OPEN or TEST AT macro-instruction. 

To select data flor editing and printing, the associated output 
selection codes are sp~cified in a job control statement fo.r the TESTRAN 
editor. A blank is us~d in the job control statement to select test 
data produced by action macro-instructions to which no output selection 
modifiers apply. 

Data resulting froml execution of an asynchronous exit routine may be 
masked by surrounding data if produced during an interruption of the 
TESTRAN interpr€!ter. The asynchronous data can be selected by its 
output selection code, but only if this code differs from that of the 
surrounding data, and only if the surrounding data is not selected 
during the same job step. Macro-instructions encountered as a result of 
an asynchronous interr!Uption should, therefore, specify output selection 
codes different~ froml those specified by other macro-instructions 
encountered under the ,same task. 

Careful use of o~tput selection modifiers enables the programmer to 
identify test data relevant to particular program areas and to limit 
printed output accordingly. 

Data Modifier (DATAM O:perand): The data modifier causes a specified set 
of data attributes 'to be associated with data that is recorded, 
compared, or modified iby the macro-instruction in which the modifier 
appears. For a ful!l description of the way in which at tributes are 
specified, refer to the discussion of data attribute notation in 
Appendix A. 

Data attributes a:re used both during assembly and during output 
editing. Durin9 assembly, data attributes determine the type and length 
of data to bE~ recdrded, compared, or modified by the following 
macro-instructions: 

DUMP Dl\TA } 
DUMP CHANGES :-
TRACE REFER 
TEST WHEN 

SET VARIABLE 

when the end operand is omitted 

when an arithmetic relationship between data 
in main storage is specified 

The scale attribute (~f any) is ignored. If no modifier is present, the 
attributes used are those corresponding to the first address that is 
specified as an operand. These attributes are those defined in the 

Section 4: TESTRAN Services 211 



symbol table for the first symbol included in the address. If the 
symbol is an external symbol, the attributes for the second address 
operand (if any) are used. If no attributes can be determined in this 
manner, the type is assumed to be hexadecimal and the length is assumed 
to be 1 byte. 

During output editing, data attributes determine the type, length, 
and scale of data that is to be printed. If a data modifier is present, 
the length attribute determines the length of each field that 1S 
printed, and the type and scale attributes determine the format of each 
field. If no modifier is present, the symbol table determines the 
division of data into fields and the printing format of complete fields. 
Partial fields, and fields not presented in the symbol table, are 
printed in 4-byte hexadecimal format. 1 

Use of data modifiers enables the programmer to override data 
attributes defined in the symbol table, and to specify attributes when 
no symbol table exists. A data modifier should always be used when 
address arithmetic, external references, or absence of a symbol table 
would otherwise cause an incorrect assumption of data attributes. 

Name Modifier (NAME Operand): The name modifier causes a specified 
symbolic name to be associated with test data produced by the macro
instruction in which the modifier appears. 

The symbolic name specified is printed with the edited test data; 
printing of other symbolic names associated with the same data is 
suppressed. If the name modifier is omitted, test data is printed with 
the symbolic names defined in the source program symbol table. 

Use of name modifiers enables the programmer to label printed output 
of test data when no symbol table is available or when the test data is 
not identified by a symbolic name in the source program. 

comment Modifier (COMMENT Operand): The comment modifier causes a 
specified comment to be associated with the macro-instruction in which 
the modifier appears. The specified comment is printed with the 
associated test data. The maximum length is 120 characters. 

Use of comment modifiers enables the programmer to annotate traces of 
transfers, subroutine calls, and references to data. 

Dummy Section Modifier (DSECT Operand): The dummy section modifier 
indicates that addresses used in previous operands of the same macro
instruction are associated with a dummy control section. 

Use of dummy section modifiers enables the programmer to refer to 
data in dynamically allocated storage and to print it in the format 
defined for an associated dummy control section. 

1The assumption of a 4-byte hexadecimal format may fail in the case of 
data whose location was previously occupied by a load module executed 
under the current task. If the load module contained a symbol table, 
the attributes defined in the symbol table are used, even though the 
load module is no longer in storage. Therefore, to ensure use of 
appropriate attributes, the programmer should use a data modifier (or a 
dummy section modifier) when referring to data in an allocated storage 
area or in a load module that does not include a symbol table. 

272 



Address Specification 

When a TESTHAN macro-instruction is encountered, the locations 
specified by its opera~ds must be (1) included in the same load module 
as the encounbered Itta cro ... instruction, and (2), in the case of planned 
overlay, included in :the same overlay segment as the encountered 
macro-instruction. Addresses that refer to locations in other object 
modules must be listed!in EXTRN and ENTRY statements according to the 
rules for external references and entry points. These include addresses 
specified by: 

• Address operands r~ferring to the problem program. 
• Operands tha1t designate system tables. 
• Names of othl~r TES'l'RAN macro-instructions. 
• Names of proqram-testing counters and logical flags. 

Two exceptions to these rules occur in the case of t~he TEST OPEN 
macro-instruction: 

1. Because the symbo~ic name of each TEST OPEN macro-in~:truction is 
also the name qf a control section, ENTRY statements are not 
required to ident~fy TEST OPEN macro-instructions as object module 
entry points. 

2. In the caSE~ of planned overlay, the OPTEST operand can. specify the 
symbolic names of TEST OPEN macro-instructions that are located in 
segments not. currently in main storage. 

TEST OPEN Macro-Instrudtions 

A TEST OPEN macro~instruction must be the first TESTRAN macro
instruction encountered! during assembly. TESTRAN macro-instructions 
that precede the firist TEST OPEN are ignored, and are identified by 
diagnostic messages in the assembly listing. 

An unlimited number pf TEST OPEN macro-instructions can be processed 
during a singlE~ asseifC\bly. The symbolic name of each is assigned to a 
control section t~hat contains the macro-expansions corresponding to a 
series of TESTRAN maGro-instructions. This series includes the TEST 
OPEN and all TES~'RAN macro-instructions that follow the TEST OPEN (and 
precede any subsE~quent TEST OPEN) in the source module. 

The first TEST OPEN macro-instruction executed during each task 
determines the limits on test execution and out-put for the duration of 
the task. These ite~s are ignored if specified in other TEST OPEN 
macro-instruction.s execUted as part of the same task. 

Execution-tim€~ testing is initiated only when control is passed to a 
TEST OPEN macro-instru~tion. Execution of this macro-instruction opens 
the control section of which it is a part and also any other control 
sections designated by the OPTEST operand; all control sections opened 
by the same TEST OPEN must be included in the same load module. 

Opening of each control section causes TESTRAN SVC's to be inserted 
at problem program add;cesses specified by TEST AT macro-instructions in 
the opened control section. Opening also causes acquisition of the main 
storage required for TESTRAN internal tables. A maximum of 255 such 
openings can occur d\lringexecution of a task. Attempts to reopen a 
control section that is currently open are ignored. 

Section 4: TESTRAN Services 273 



Except when a load module is an overlay structure, each control 
sect:ion can be opened independently by execution of the appropriate TEST 
OPEN macro-instruction. In the case of planned overlay, only a single 
TEST OPEN macro-instruction can be executed successfully. This macro
ins1:ruction must be located in the root segment; when executed, it opens 
the control section of which it is a part and causes opening of any 
con1:rol sections designated by the OPTEST operand. Designated control 
sec1:ions not currently in main storage are opened automatically upon 
loading of the segments in which they are located. When a segment is 
overlaid, control sections contained within it are temporarily closed; 
these control sections are automatically reopened, when the segment is 
reloaded. 

TEST CLOSE Macro-Instructions 

'resting is suspended when a TEST CLOSE macro-instruction is 
encountered in the sequence of TESTRAN macro-instructions. This macro
ins·t.ruction closes the control section of which it is a part and also 
any other control sections that were opened by the same TEST OPEN 
mac:co-instruction. Closing of each control section causes suspension of 
active traces and re-insertion of problem program instructions at the 
add:cesses specified by TEST AT macro-instructions in the closed control 
sec"tion. It also causes the release of main storage that was 
dynamically acquired for TESTRAN internal tables. 

control sections located in programs that receive control through 
LINK or XCTL macro-instructions should always be closed before control 
is passed or returned to some other program. Closing of these control 
sections prevents unnecessary duplication of internal tables when such 
programs are repeatedly loaded and executed. The closed control 
sections can later be reopened by execution of the appropriate TEST OPEN 
macro-instructions. 

Edi~ing Restrictions 

Input to the TESTRAN editor includes all test data recorded during 
execution of a task, plus certain control data produced by the TESTRAN 
interpreter. The control data is entered into internal tables and is 
used to control the editing process. The internal tables are limited in 
Size, and this limitation places restrictions on source program design 
and on output editing. These restrictions are discussed in the 
following paragraphs. 

Program Sectioning: All programs executed under a single task should 
consist collectively of no more than 50 control sections, dummy 
sections, and blank common sections. This limit includes control 
sections containing TESTRAN macro-instructions, and each section defined 
in a program is counted once for each area of storage into which the 
program is loaded. If this limit is exceeded, an error message will be 
printed, and data from the excess control sections will be printed in 
4-byte hexadecimal format. 

TESJRAN Openings: No more than 50 control sections containing TESTRAN 
macro-instructions should be opened during execution of a single task. 
Each control section is counted once for each time it is opened. If 
this limit is exceeded, data produced by macro-instructions in the 
excess control sections will be ignored. 

214 



Inserted SVC Ins'tructi0ns: No more than 100 TESTRAN SVC instructions 
should be inserted in a problem program during execution of a single 
task. This limit incl$des each problem program address specified in a 
TEST AT macro-instruction, counting each address once for each opening 
of the control section.. If this limit is exceeded, an error message 
will be printed, and instructions displaced by the excess SVC instruc
tions will not appear in dumps of the problem program. 

Change Dumps: No more than 40 change dumps (the output of 40 DUMP 
CHANGES macro-instructions) should be selected for editinq during a 
single job step. Each DUMP CHANGES macro-instruction is counted once 
for each opening of its control section that results in the macro
instruction beinq- encountered. If this limit is exceeded, an error 
message will he printed, and all additional change durops will be 
ignored. 

Note : Editing r,estrictions are more severe if less than the 
amount of main storage (17K bytes) is available to the TESTRAN 
The limit on proc~ram sectioning is reduced to 25 sections of all 
TESTRAN openings are limited to 10, inserted SVC instructions to 
change dumps to :10. 

Improperly Coded Macro~Instructions 

normal 
editor. 
types. 

20, and 

Assembly is never terminated because of an improperly coded TESTRAN 
macro-instruction; ins~ead, the assembler takes appropriate corrective 
action and inserts a diagnostic messag~ in the assembly listing. There 
are three levels of error severity: 

• Severity 4. The macro-instruction is expanded, but the invalid 
operand is ignored= or, the macro-instruction is expanded, the error 
is ignored, and a Standard case is assumed. 

• Severity 8. The macro-instruction is not expanded. 

• severity 12~ The macro-instruction 
TESTRAN macro-inst~uctions, preceding 
macro-instruction, are ignored. 

is not expanded. 
the next valid 

Subsequent 
TEST OPEN 

Unless corrected by the programmer, coding errors may cause errors 
during execution of TESTRAN service routines. Diagnostic error messages 
are inserted in 1:he test output when such errors occur during execution. 

EDITED OUTPUT FOHMATS 

Edited test data is :printed on the system output device in a column 
120 characters wide. Each page of the output includes a standard page 
heading and an average of 55 lines of test data produced by one or more 
TESTRAN macro-instructions. The types of lines that can appear are as 
follows: 

• Standard page head~ng. 
• Dump output lines. 

DUMP DATA, DUMP CHANGES 
DUMP MAP 
DUMP TABLE 
DUMP PANEL 
D U~1P COMr1ENT 

section 4: TESTRAN Services 215 



• Trace output lines. 
Initial trace output lines 
TRACE FLOW 
TRACE CALL 
TRACE REFER 
TRACE STOP 

• Output lines for control macro-instructions. 
TEST OPEN 
TEST AT 
TEST CLOSE 
Other encountered control macro-instructions 

• Error message lines. 

The printing formats for specific data types are listed in Table 35. 

Table 35. Printing Formats for Data Types 
r----------------------------T----------------T-------------------------, 
I Data. Type I Assumed Length I Printing Format I 
I I in Bytes I I 
I I (1) I (2) I 
~----------------------------+----------------+-------------------------~ 
I Character I 1 I C I 
I (3) I I I 
~---~------------------------+----------------+-------------------------~ 
I Hexadecimal I 1 I xx I 
~----------------------------+----------------+-------------------------~ 
I Binary I 1 I BBBBBBBB I 
~----------------------------+----------------+-------------------------~ 
I Fixed-point I 2 I SDDDDD I 
I (half-word) I I (4) I 
~----------------------------+----------------+-------------------------~ 
I Fixed-point I 4 I SDDDDDDDDDD I 
I (full-word) I I (4) I 

t----------------------------+----------------+-------------------------~ 
I Short floating-point I 4 I SO.DDDDDDDD ESDD I 
~----------------------------+----------------+-------------------------~ 
I Long floating-point I 8 I SO.DDDDDDDDDDDDDDDD ESDDI 
t----------------------------+----------------+-------------------------~ 
I Packed decimal I 1 I SD I 
~----------------------------+----------------+-------------------------~ 
I Zoned decimal I 1 I SD I 
t----------------------------+----------------+-------------------------~ 
I Address I I I 
I (5) I I I 
~----------------------------+----------------+-------------------------~ 
I Instruction: I I I 

I RR format I 2 I CODE XX I 

IRS, RX, and SI formats I 4 I CODE XX X XXX I 

I SS format I 6 I CODE XX X XXX X XXX I L ____________________________ ~ ________________ ~ ____ --___________________ J 

NotE~S to Table 35: 

1. The lengths assumed in definitions of printing formats are the 
assembler implied lengths for the corresponding data types. (Refer 
to Appendix A, Table 38.) 

2. The letters shown in definitions of printing formats have the 
following meanings: 

276 

C is one EBCDIC character. 
X is one hexadecimal digit. 
B is one binary digit. 



S is an algebraic sign (+ or -). 
D is one decimal digit. 
o is a high ~rder zero. 
E means 'exp~nent'; the succeeding signed pair of digits is 

the exp~nent of the floating-point number. 
CODE is a machine mnemonic operation code. 

3. Unprintable characters (other than blanks) are printed as two 
hexadecimal digit$, the second of which appears on a separate line 
immediately below the first. For example, the hexadecimal data 

C1D3D7C8Cl03~4C1E3Cl 

when edited into ¢haracter format, is printed as 

ALPHAODATA 
3 

4. This format includes a decimal point that is positioned according 
to the scale fact0r associated with the data. 

5. All address<es are printed in their source language formats. 

Standard Page Heading 

The standard page heading for printed test output is as follows: 

r----------------------------------------------------------------------, 
I I 
I IIIIIIlI T8STRAN OUTPUT DATE 00/000 TIME TT/TT PAGE NNNN I 
I I L ______________________________________________________________________ J 

11111111 
is the output identification (the ident operand, if any, of the 
first-executed TEST OPEN macro-instruction). 

DD/DDD 
is the current date (year/ day) • 

TT/TT 
is the time (hour~minute) at which editing was begun. 

NNNN 
is the output pag~ number. 

Output Lines for DUMP PATA and DUMP CHANGES 

The output lines for DUMP DATA and DUMP CHANGES includE~ subheadings 
that identify each con~rol section for which data is printed. Recorded 
test data is repres~nted by one or more paired lines of print, each 
containing a variable number of data entries. 

Section 4: TESTRAN Services 277 



The format of the output lines is as follows: 

r---·-·-----------------------------------------------.,..------------------, 
I I 
I PI A=:~RO 10 S~~~Sl~~MP cccc~~;2g~~TING IN s;;~g~~ CSCSCSCS I 
I LLLLLL 01010101010101 02020202020202 03030303030303 I 
I I L ___ . ________________________________________ ---________________________ J 

p 

NNN 

is the output selection code (if any) associated with the test data 
produced by the macro-instruction. 

is the macro-instruction identification number assigned by the 
assembler. 

CCCCCCC 
is the operand DATA or CHANGE8. 

C8C8C8C8 

AAAA 

is the symbolic name (if any) of the control section that contains 
the displayed data. 

is the assembled address of the first data entry. 

LLLLJ.lL 
is the loaded address of the first data entry. 

8181Sl8l 
is the symbolic name (if any) of the first data entry. 

D1D1D1D1D1D1Dl 
is the first data entry. 

8282S282 
is the symbolic name (if any) of the second data entry. 

D2D2D2D2D2D2D2 
is the second data entry. 

8383S383 
is the symbolic name (if any) of the third data entry. 

D3D3D3D3D3D3D3 
is the third data entry. 

NOTE~~ The number of named data entries per line varies from 1 to 11 due 
to differences in length; starting positions are a minimum of 9 printing 
positions apart. Data entries too long for the current line are started 
on a new line. 

If the displayed data includes an inserted TE8TRAN SVC, the displaced 
data (i.e., instruction) is printed in the data entry. The inserted SVC 
is printed immediately below the original instruction. 

278 



Output Lines for DUMP MAP 

The output lines fo)!:" DUMP MAP include one line for (~ach control 
section associated with the task current when the DUJ~P MAP macro
instruction was encountered. Preceding these lines is a line of column 
headings that identifies the information printed for each control 
section. 

The format of the output lines is as follows: 

r----------------------------------------------------------.------------, I P) IMCRO 10 NNN, .DUMP MAP I 
I NAME TYPE CSECT NAME ASSEMBLED AT LOADED AT LENGTH I 
I N1N1N1NU TTTT CSCSll11 MAAAA LLLLLL LNLN I 
L _____________________ ~-----_______________________________ • ____________ J 

P 

NNN 

is the output sel~ction code (if any) associated with ·the test data 
produced by the m~cro-instruction. 

is the macro-insttuction identification number assigned by the 
assembler. 

N1N1N1N1 

TTTT 

is the symbolic n~me of a program associated with the current task: 
this name is printed only when different from that which applies to 
the previous line. 

is the words L<bADED PROGRAlvl or OBTAINED STORAGE. LOADED PROGRAM 
indicates a control section for which storage was reserved at 
assembly time; OBTAINED STORAGE indicates a dynamically allocated 
storage area. 

CSCS1111 
is the symbolic n~me (if any) of a control section associated with 
the task. 

AAAAAA 
is the assembled address of the control section or data area. 

LLLLLL 
is the loaded addtess of the control section or data area. 

LNLN 
is the length (in base 10) of the control section or data area. 

NOTE: Some of the areas included in this output will be ar(~as allocated 
for use by the operating system. 

Output Lines for DUMP rABLE 

The output lines for DUMP TABLE include lines that identify each 
section of the table, and lines that display the contents of fields 
within each section. Preceding these lines is a line of column headings 
that identifies the information printed for each section and field. 

Section 4: TESTRAN Services 279 



The format of the output lines is as follows: 

r-----------------------------------------------------------------------, 
I I I Pl MACRO 10 NNN, DUMP TABLE NMNMNHNM LOADEO AT SSSSSSSS(CSCSCSCSl AAAAAA llllll I 

I 
SECTION FIELD NAME CONTENTS I 
HDHOHDHD 

I FNFNFNFN CCCCCCCC I 
I I L _______________________________________________________________________ J 

P 

NNN 

is the output selection code (if any) associated with the test data 
produced by the macro-instruction. 

is the macro-instruction identification number assigned by the 
assembler. 

NMNMNMNM 
is the operand DCB, DEB, or TCB, indicating the type of table. 

SSSSSSSS 
is the symbolic name (if any) of the table. 

CSCSCSCS 
is the symbolic name (if any) of the control section that contains 
the table. 

AAAAAA 
is the assembled address (if any) of the table. 

LLLLLL 
is the loaded address of the table. 

HDHDHDHD 
is a heading that identifies a section of the table. 

FNFNFNFN 
is the name 
table. 

(if any) of a field in the identified section of the 

CCCCCCCC 
is the contents of a field. 

NOTE: The name of each field begins with DCB, DEB, or TCB, according to 
the type of table. If a field has no name, its contents are printed in 
hexadecimal format. 

Output Lines for DUMP PANEL 

The format of the output lines is as follows: 

r-----------------------------------------------------------------------, 
I I 
I ~~O~~C~~H~~H~~NG,~~~P H~~~~~HH G'02' HHHHHHHH G'03' HHHHHHHH G'04' HHHHHHHH G'05' flHHHHHHH G'Ob' HHHHHHHH G'07' HHHHHHHH I I G'OB' HHHHHHHH G'09' HHHHrlrlHH G'IO' HHHHHHHH G'll' HHHflHHHH G'12' HHHHHHHH G'l3' HHHHHHHH G'14' HHHHHHHH G'15' HHHHHHHH I 
I ps= '0 ~H H~H~H~~~\~H~H~~~H~7 2' C~~~HH~~~ ~~~~~H~~E~;;~W H~~~HH~~C H~~~~~~~\ ;~; H~~~H~~~E~~~~~H~~F S IGNIF ICANCE FFF I 
I I L ______________________________________________________________________ J 

280 



p 

NNN 

G 

is the output selection code (if any) associated with the test data 
produced by the macro-instruction. 

is the macro-i~struction identification number assigned by the 
assembler. 

means 'general register'; the succeeding pair of digits is the 
number of a genetal register. 

HHHHHHHH 
is the con"tents Gf a general register in hexadecimal format. 

HH H H HHHH H H HHHHER 

CC 

D 

FFF 

F 

is the complete ~SW in hexadecimal format. 

means 'condition code.' 

is the decimal value of the condition code. 

is the word ON on OFF. 

means 'floating--goint register'; the succeeding digit is the number 
of a floating-po~nt register. 

HHHHHHHH HHHHHHHH 
is the con1:ents Of a floating-point register in hexadE!cimal format. 

output Lines for DUMP iCOMMENT 

The format of the output lines is as follows: 

r---------------------~--------------~----------------------------------, 
I I I ~~C~~CRO 10 NNN, DUMP COMMENT I 
I I L _______________________________________________________________________ J 

p 

NNN 

CCCCC 

is the output selection code (if any) associated with the comment. 

is the macro-ins~ruction identification number assigned by the 
assembler. 

is the recorded d,ommenti the maximum length is 120 characters. 

Section 4: TESTRAN Services 281 



Initial Trace Output Lines 

The initial trace output lines indicate the start of a new trace when 
a THACE FLOW, TRACE CALL, or TRACE REFER macro-instruction has been 
encountered. 

The format of the output lines is as follows: 

r-----------------------------------------------------------------------, 
I
I PI MACRO 10 NNN, TRACE TTTT ,TTTTTTTT, FROM SSSSlllllCSCSlllll AAAlll LLLlll TO SSSS22221CSCS22221 AAA222 LLL222, II 

STARTED 

I caa I 
L _______________________________________________________________________ J 

p 

NNN 

TTTT 

is the output selection code (if any) associated with the test data 
produced by the macro-instruction. 

is the macro-instruction identification number assigned by the 
assembler. 

is the operand FLOW, CALL, or REFER. 

TTTT~rTTT 

is the symbolic name of the TESTRAN control section that contains 
the TRACE macro-instruction. 

SSSS1111 
is the symbolic name (if any) of the starting location of the 
traced storage area. 

CSCS1111 
is the symbolic name (if any) of the control section that contains 
the starting location. 

AAA111 
is the assembled starting address. 

LLL111 
is the loaded starting address. 

S5SS.2222 
is the symbolic name (if any) of the ending location of the traced 
storage area. 

CSCS.2222 
is the symbolic name (if any) of the control section that contains 
the traced storage area. 

AAA2:22 
is the assembled ending address. 

LLL222 
is the loaded ending address. 

CCCCC 
is the recorded comment; the maximum length is 120 characters. 

282 



Output Lines for TRACE! FLOW 

The output lines fqr TRACE FLOW indicate the occurrence of a program 
transfer. OthE~r out:put lines, indicating the start of a trace, are 
described in "Initial Trace Output Lines." The two sets of output lines 
may appear toget:her or' may be separated by other test data. 

There are two printiing formats for TRACE FLOW output lines: the 
normal format and the special format. The special format is used when 
the program transfer resulted from execution of an EX instruction. Both 
are shown below. 

The normal format iis as follows: 

r---------------·-------------------------------------------------------, 
" Pl MACRO 10 NNN. TRACE FLOW • TTTTTTTT. FROII SSSSllll(CSCSlllll AAAUl LLLlll TO SSSS2222(CSCS22221 AAA222 LLL222. CC=O I, 

Illllllllllllllllli G'Nl' XXXXllll G'NZ' XXXX2222 I CCCCC I 
L _______________ . _______________________________________________________ J 

p 

NNN 

is the output sel:ection code (if any) associated with the test data 
prod uced b}r the macro- instruction. 

is the macro-instiruction identification number assigned by the 
assembler. 

TTTTTTTT 
is the symbolic: name of the TE8TRAN control section that contains 
the TRACE :E~LOW ma~cro-instruction. 

88881111 
is the symbolic name (if any) of the location from which the 
program transfer was made. 

C8C81111 
is the symbolic name (if any) of the control section from which the 
program transfer was made. 

AAA111 
is the assembled address of the program transfer (branch or 8VC) 
instruction. 

LLL111 
is the loaded address of the program transfer instruction. 

88882222 
is the symboli'c name (if any) of the location to which the program 
transfer was made. 

C8C82222 
is the symbolic; name (if any) of the control section to which the 
program tramsfer was made. 

AAA222 
is the assE!mbled ,address of the location to which the program 
transfer walS made!. 

LLL222 
is the loaded address of the location to which the program transfer 
was made. 

section 4: TE8TRAN 8ervices 283 



CC 
means 'condition code.' 

D 
is the decimal value of the condition code. 

IIIIIIIIIIIIIIIIIII 

G 

N1 

is the program transfer instruction; its format is that defined for 
instructions in Table 35. 

means 'general register.' 

is the number of the first general register used to form the 
effective address of the instruction. 

XXXX1111 

N2 

is the contents of general register N1 in hexadecimal format. 

is the number of the second general register used to form the 
effective address of the instruction. 

XXXX2222 

CCCCC 

is the contents of general register N2 in hexadecimal format. 

is the recorded comment (if any); the maximum length is 120 
characters. 

The special format is as follows: 

r----·---------------------------------·--------------------------------, 
I I 
I ~~ I~~i~~I ~~l~~~~ [gA~~E~~~~D ~s Tgggr~I~~~~2gg: l~~ (i;i;gg:3~~~1~~D~Lt~~~TIgN s~~~~~~g7~~gg~~) A::~~!A Ltt~~~~ CC=D I I ~~~~~ XXXXXXXX G'NN' xxxxxxxx' G'NN' XXXXXXXX G'NN' XXXXXXXX G'NN' XXXXXXXX G'NN' XXXXXXXX I 
I I L ____ •. __________________________________ . ________________________________ J 

p 

NNN 

is the output selection code (if any) associated with the test data 
produced by the macro-instruction. 

is the macro-instruction identification number assigned by the 
assembler. 

TTTTTTTT 
is the symbolic name of the TE8TRAN control section that contains 
the TRACE FLOW macro-instruction. 

88881111 
is the symbolic name (if any) of the program transfer <branch or 
SVC instruction). 

C8CS1111 
is the symbolic name (if any) of the control section that contains 
the program transfer instruction. 

AAA111 
is the assembled address of the program transfer instruction. 

284 



LLL111 
is the loaded adqress of the program transfer instruction. 

SSSS2222 
is the symbolic name (if any) of the location to which the program 
transfer was madS. 

CSCS2222 
is the symbolic name (if any) of the control section to which the 
program transfer Iwas made. 

AAA222 
is the assembled ~ddress of the location to which the program 
transfer was made. 

LLL222 

CC 

is the loaded address of the location to which the program transfer 
was made. 

means 'condition code.' 

D 
is the decimal vallue of the condition code. 

1111111111111111111 
is the pro9ram transfer instruction as it appeared in storage. 

1212121212121212121 
is the pr0<2rram transfer instruction as it was executed. 

1313131313131 
is the EX :i.nstrucition. 

SSSSSSSS 
is the symbolic name (if any) of the EX instruction. 

CSCSCSCS 
is the symbolic name (if any) of the control section that contains 
the EX inst:ruction. 

AAAAAA 
is the assE~mbled address of the EX instruction. 

LLLLLL 
is the loaded address of the EX instruction.. 

G 
means 'general register.' 

NN 
is the number of the general register. 

XXXXXXXX 
is the cont~ents of the general register in hexadecimal format. 

CCCCC 
is the recorded comment (if any); the maximum length is 120 
characters. 

NOTE: The 
displayed. 
Table 35. 

contents of all registers used by the two instructions are 
The instruGtions are displayed in the format defined in 

Section 4: TESTRAN Services 285 



Outp'gt Lines for TRACE CALL. 

The output lines for TRACE CALL indicate the execution of a CALL 
macro-instruction. Other output lines, indicating the start of the 
tracie, are described in nInitial Trace Output Lines. II The two sets of 
output lines may appear together or may be separated by other test data. 

The format of the output lines for TRACE CALL is as follows: 

r---·-------------------------------------------------------------------, 
I· PI MACRO 10 NNN, TRACE CALL ,TTTTTTTT, TO SSSSSSSS(cscscsesl AAAAAA LLLLLL AT SSSSllLl(CSeSlllll AAAlll LLLlll I 
1 ~:g~: ~~~~~~~~ ~:g~: ~~~~~~~~ ~:~~: ~~~~~~~~ ~:~~: ~~~~~~~~ ~:~;: ~~~~~~~~ ~:~;: ~~~~~~~~ ~:~~: ~~~~~~~~ ~:~~: ~~~~~~~~ 1 I cecce I L ___ . ___________________________________________________________________ J 

p 

NNN 

is the output selection code (if any) associated with the test data 
produced by the macro-instruction. 

is the macro-instruction identification number assigned by the 
assembler. 

TTTT"l'TTT 
is the symbolic name of the TE8TRAN control section that contains 
the TRACE CALL macro-instruction. 

SSS8S88S 
is the symbolic name (if any) of the subroutine. 

CSC8C8C8 
is the symbolic name (if any) of the control section that contains 
the subroutine. 

AAAA'A.A 
is the assembled address of the subroutine. 

LLLLLL 
is the loaded address of the subroutine. 

88S81111 
is the symbolic name (if any) of the CALL macro-instruction. 

C8CS1111 
is the symbolic name (if any) of the control section that contains 
the CALL macro-instruction. 

MAll1 
is the assembled address of the CALL macro-instruction. 

LLL111 
is the loaded address of the CALL macro-instruction. 

G 
means 'general register.' 

HHHHHHH 

286 

is the contents of the general register in hexadecimal format. All 
registers used in the CALL macro-expansion are displayed. 



CCCCC 
is the recorded comment (if any); the maximum lEmgth is 120 
characters. 

output Lines for TRACE REFER 

The output lines fqr TRACE REFER indicate a reference to data in main 
storage. Other outrput 'lines, indicating the start of ·the trace, are 
described in "Initial:Trace Output Lines." The two sets of output lines 
may appear toget.her or may be separated by other test data. 

There are two printling formats for TRACE REFER output lines: the 
normal format and tije special format. The special format: is used when 
the recorded referenc~ resulted from execution of an EX instruction. 
Both are shown below. 

The normal format .is as follows: 

r--------------------~-------------------------------------------------, 
I I 
I ~:I~~i~~I~~I~~~ili~AC~,~i~~~xxxiiiiT~~~21 T~x~~~~g11(CSCSlllll AAAlll LLLlll FROM SSSS2222(CSCS2222) MAW LLL222 I 
I c~~~gRE CCCCllll AFTER CCCC2222 I 
I I L _____________________ .... _________________________________________________ J 

p 

NNN 

is the output selection code (if any) associated with the test data 
produced by the r(lacro-instruction. 

is the macro-instruction identification number assigned by the 
assembler. 

TTTTTTTT 
is the symbolic name of the TESTRAN control section t:hat contains 
the TRACE H.EFER macro-instruction. 

SSSS1111 
is the symbolic name (if any) 
reference '>las maqe. 

CSCSll11 

of the location to which the 

is the symbolic name (if any) of the control section t:hat contains 
the location to which the reference was made. 

MAl1l 
is the assE~mbled ,address of the location to which the reference was 
made. 

LLL11l 
is the loaded address of the location to which the reference was 
made. 

Section 4: TESTRAN Services 287 



8S882222 
is the symbolic name (if any) of the instruction that made the 
reference. 

C8CS2222 
is the symbolic name (if any) of the control section that contains 
the instruction that made the reference. 

AAA222 
is the assembled address of the instruction that made the 
reference. 

LLL222 
is the loaded address of the instruction that made the reference. 

1111111111111111111 

G 

Nl 

is the instruction that made the reference; 
defined for instructions in Table 35. 

means 'general register.' 

its format is that 

is the number of the first general register used to form the 
effective address of the instruction. 

XXXX1.111 

N2 

is the contents of general register N1 in hexadecimal format. 

is the number of the second general register used to form the 
effective address of the instruction. 

XXXX2222 

CCCCC 

is the contents of general register N2 in hexadecimal format. 

is the recorded comment 
characters. 

(if any); the maximum length is 120 

CCCC1111 
is the contents of the storage area before the reference to the 
storage area was made. 

CCCC2222 
is the contents of the storage area after the reference was made. 

The special format is as follows: 

r-----------------------------------------------------------------------, 
I I 
I ~tI~~mlt~lmiII~A~~E~m~ AsTmmrh~~2~mgp~~Smm\3~m~lF~~~lt6cm~Ns~mm~nmmLA!!mALttmL I I ~~~~~ XXXXXXXX G'NN' XXXXXXXX G'NN' XXXXXXXX G'NN' XXXXXXXX G'NN' XXXXXXXX G'NN' xxxxxxxx I 
I BEFORE CCCC1Ul AFTER CCCC2222 I 
L ______________________________________________________________________ J 

288 



p 

NNN 

is the output selection code (if any) associated with 1:.he test data 
produced by the m~cro-instruction. 

is the macro-in$truction identification number assigned by the 
assembler. 

TTTTTTTT 
is the symb.;)lic nqme of the TE8TRAN control section that contains 
the TRACE REFER macro-instruction. 

88881111 
is the symbolic name (if any) of the location to which the 
reference was mad~. 

C8C81111 
is the symbolic n~me (if any) of the control section that contains 
the location to wQ.ich the reference was made. 

AAAlll 
is the assembled address of the location to which the reference was 
made. 

LLLlll 
is the loa.ded address of the location to which the reference was 
made. 

88882222 
is the symbolic name (if any) of the instruction tha.t made the 
reference. 

CSC82222 
is the symbolic I1ame (if any) of the control section t:hat contains 
the instruction that made the reference. 

AAA222 
is the assembled address of the instruction that made the ref
erence. 

LLL222 
is the loadE~d addrtess of the instruction that made the reference. 

1111111111111111!11 
is the instruction that made the reference as it appeared in 
storage. 

1212121212121212121 
is the instruction! that made the reference as it was executed. 

1313131313131 
is the EX instruc~ion. 

8ection 4: TE8TRAN 8ervices 289 



SSSSSSSS 
is the symbolic name (if any) of the EX instruction. 

CSCSCSCS 
is the symbolic name (if any) of the control section that contains 
the EX instruction. 

AAAAAA 
is the assembled address of the EX instruction. 

LLLL]~L 

is the loaded address of the EX instruction. 

G 
means 'general register.' 

NN 
is the number of the general register. 

XXXXXXXX 

CCCCC 

is the contents of the general register in hexadecimal format. 

is the recorded comment Cif any); the maximum length is 120 
characters. 

cccel111 
is the contents before the reference of the storage area to which 
the reference was made. 

ccce2222 
is the contents after the reference of the storage area to which 
the reference was made. 

NOTE:: The contents of all registers used by the two instructions are 
disr~layed. The instructions are displayed in the format defined in 
Table 35. 

out nut Line for TRACE STOP 

1~he output line for TRACE STOP indicates suspension of one or more 
traces, which are identified by the macro-instruction identification 
numbers of the corresponding TRACE macro-instructions. Each number, or 
group of numbers, is preceded by the name of the control section in the 
macro-instruction, or group of macro-instructions, is located. If the 
TRACE STOP macro-instruction suspends all active traces, the word ALL is 
printed in place of the macro-instruction idenfification numbers. 

~~he format of this output line is as follows: 

r-----------------------------------------------------------------------, 
I I 
I P I MACRO 10 NNN, TRACE STOP ,CSCSCSCS NNI, NN2, NN3 I 
I I L _______________________________________________________________________ J 

P 

290 

is the output selection code (if any) associated with the test data 
produced by the macro-instruction. 



NNN 
is the macro-in~truction identification number assigned by the 
assembler. 

CSCSCSCS 

NNl 

NN2 

NN3 

is the symbolic name of the TESTRAN control section that contains 
the TRACE macro-instructions whose functions are stopp.~d. 

is the macro-instruction identification number of the first macro
instruction whose: trace is stopped. 

is the macro-instruction identification number of the second 
macro-instruction whose trace is stopped. 

is the macro-instruction identification number of the third macro
instruction whose trace is stopped. 

output Lines for TEST ~PEN 

The output lines for TEST OPEN precede all output genera1:ed by other 
TESTRAN macro-instructions in the same control section (or in other 
control sections opened at the same time). These lines are printed for 
each executed TEST 0PEN macro-instruction, regardless of the output 
selection codes used in selecting data for editing. 

The format of the output lines is as follows: 

r---------------------~------------------------------------------------, I Pl MACRO ID NNN .. TEST OPEN , TESTRAN CONTROL SECTION = TTTTTTTT, IDENTIFICATION 11111111 I 
I MI,XIMUM NUMBER OF PAGES MMM, MAXIMUM NUMBER OF STATEMENTS NNNN I 
L _____________________ ~--------------__________________________________ J 

P 

NNN 

is the output selection code (if any) specified by the SELECT 
operand of the TE$T OPEN macro-instruction. 

is the macro-instruction identification number assigned by the 
assembler. 

TTTTTTTT 
is the symbolic name of the TESTRAN control section (symbolic name 
of the TEST OP~N macro-instruction). 

IIIIIIII 

MMM 

NNNN 

is the output iden.tification <ident operand, if any}. 

is the maximum number of pages of test data produced. 

is the maximum number of TEST RAN macro-instructions encountered 
during execution. 

Section 4: TESTRAN SE~rvices 291 



Outp~t Line for TEST AT 

The output line for TEST AT indicates the execution of a TESTRAN SVC 
inserted in the problem program. This line is printed regardless of any 
output selection code specified in the TEST AT macro-instruction, but is 
omitted if not followed by recorded test data or an error message. 

The format of this output line is as follows: 

r----------------------------------------------------------------------, 
I I 
I AT LOCATION SSSSSSSS(CSCSCSCS) AAAAAA LLLLLL ENTER TTTTTTTT I 
I I L _______________________________________________________________________ J 

SSSSSSSS 
is the symbolic name (if any) of the problem program location from 
which the TESTRAN interpreter was entered. 

CSCSCSCS 
is the symbolic name (if any) of the control section from which the 
TESTRAN interpreter was entered. 

AAAA.AA 
is the assembled address of the problem program location from which 
the TESTRAN interpreter was entered. 

LLLLLL 
is the loaded address of the problem program location from which 
the TESTRAN interpreter was entered. 

TTTTrrTTT 
is the symbolic name of the TESTRAN control section (symbolic name 
of the TEST OPEN macro-instruction). 

Outp~t Line for TEST CLOSE 

'I'he output line for TEST CLOSE indicates the closing of one or more 
cont.rol sections consisting of TESTRAN macro-instructions. This line is 
printed regardless of any output selection code specified in a related 
TEST OPEN macro-instruction. 

'I'he format of this output line is as follows: 

r---·-------------------------------------------------------------------, 
I I 
I ~~N~~~~~( i~Tmh ;E!!AmSrLLLLL I 
I I L ______________________________________________________________________ J 

P 

292 

is the output selection code (if any) specified by the SELECT 
operand of a related TEST OPEN macro-instruction. 



NNN 
is the macro-in~truction identification number assigned by the 
assembler. 

NNNNNNNN 
is a symbol gener~ted during expansion of the TEST OPEN macro
instruction. 

TTTTTTTT 
is the symbolic ~ame of the TESTRAN control section (symbolic name 
of the related TEST OPEN macro-instruction). If more than one 
TESTRAN control' section is closed by this macro-ins-truction, the 
symbolic name of cpach is displayed. 

AAAAAA 
is the assembled ~ddress of the TESTRAN control section (assembled 
address of the TEST OPEN macroinstruction). 

LLLLLL 
is the loaded ~ddress of the TESTRAN control section (loaded 
address of the TEST OPEN macro-instruction). 

Output Lines for Other! Encountered control Macro-Instructions 

In these output linJps, macro-instruction identification numbers are 
listed in the order' in which corresponding macro-instructions were 
encountered during test execution. If a macro-instruction is not in the 
same control section a~ the one previously encountered, the name of the 
new control section : appears between the two identification numbers in 
the list. The list inc;::ludesonly the identification numbers of control 
macro-instructions otl;1er than TEST OPEN, TEST AT, and TEST CLOSE; it is 
printed only when foll(pwed by output of an action macro-instruction or 
by an error message. ' 

The format of the fjirst output line is as follows: 

r---------------------+-------------------------------------------------, 
I I 
I EXECUTED STATEMENTS, CSCSCSCS NN1, NN2, NN3 I 
I I L ______________________ -----------------------_________________________ J 

CSCSCSCS 

NNl 

NN2 

NN3 

is the symbolic name of the TESTRAN control section -that contains 
the encountered TESTRAN macro-instructions. 

is the macro-instruction identification number of the :Eirst control 
macro-instruction! encountered. 

is the macro-instruction identification number of the second 
control macro-instruction encountered. 

is the macro-inst;c-uction identification number of the 1third control 
macro-instruction! encountered. 

Section 4: TESTRAN S.~rvices 293 



NOTE~ The number of macro-instruction identification numbers that are 
printed is limited to 28. The list includes the macro IO's of the first 
21 control macro-instructions encountered and of the last control 
macro-instruction encountered. Macro IO's are not printed for any 
macro-instructions encountered after the twenty-seventh macro
instruction and before the last macro-instruction in the list. 

ErroF Message Lines 

Error message lines diagnose errors detected during program testing 
and output editing. In the case of execution errors, the first line 
identifies the macro-instruction that caused the error, or that detected 
an e~rror in the problem program. This line includes the associated 
output selection code, if any" but the error message is printed 
regardless of the output selection codes used in selecting data for 
editing. 

T'he printing format for error messages is as follows: 

r----------------------------------------------------------------------, 
I I 
I ~~c~~~~o E ~~E~~~~ ERROR I 
I I L ___ . ____________________________________________ ------_________________ J 

P) 

NNN 

is the output selection code (if any) associated with the macro
instruction. 

is the macro-instruction identification number assigned by the 
assembler to the macro-instruction that caused or detected the 
error. 

ccccccc 
is a standard operating system error message code. 

EEEEMMMM 
is the error message. 

SAMP~ TEST PROGRAM AND TEST OUTPUT 

T'his section describes the use of a series of TESTRAN macro
inst.ructions to test the operation of a problem program. The purpose of 
this program is to read a series of punched cards, to alter symbols 
contained in certain card images, and to punch the modif ied images.. The 
processing portion of this program, a control section named SYMALTER, is 
shown in Figure 7 together with a related series of TESTRAN macro
inst.ructi ons • 

294 



r---------------·------i-----------------------------------------------, 
BEGIN 

A 

B 

SEEOUT 

* 
* 
SYMALTER 
START 

* 
PUNCH 

RETURNl 
* 
READ 

CMPTAB 

* REENTER 

* 

TEST 
TEST 
TEST 
TEST 
GO 
DUMP 
DUMP 
SET 
GO 
TEST 
TEST 
GO 
DUMP 
SET 
DUMP 
GO 

CSECT 
BALR 
USING 
LA 
LA 
B 

LA 
LA 
BALR 
MVC 

LA 
LA 
BALR 
BC 
SR 
CLI 
BC 
LA 
CLC 
BC 
LA 
CLR 
BC 
STH 
MVC 
NI 
LA 
ST 
BC 

STH 
MVC 
NI 
BC 

OPEN,S~ART,JOB1,SELECT=1 
DEFINE:, FLAG, CARD4 
AT,REAP+14 CHECK ON INPUT 
ON, 0 , 41, 4, A IS THIS THE 4TH CARD 
BACK 
DATA,INAREA,SELECT=2 
PANEL, i(G' 4' , G' 8' ) , SELECT=4 
FLAG,CARD4,=1 

NO, GO BACK TO. PROBLEM 
YES, DUMP INPUT CARD IMAGE 

AND PANEL 
SET CARD 4 INDICATOR TO 1 
PICK UP FLAGS TO,SEEPUT 

AT,RETURNl 
WHEN, CARD4, B 
BACK 
DATA,O.UTAREA,SELECT=3 
FLAG,CARD4,=0 
DATA,ERRFLAG,OUTAREA 
BACK 

10,0 
*,10 
8"O.UTA[REA 
6, TABLE 
READ 

8,OUTAjREA 
9., =V (PCHCRD) 
15,9 . 
OUTAREA(88),STARTO 

4,INARtEA 
9,=V(R~DCRD) 
15,,9 
15,EODI 
7,7 
o (4) , Xi' FO' 
4"CHKEOCl 
3, TAB LiE 
9 (8 " 4) ;' 10 (3) 
8"REENTER 
3,18 (3i) 
3,6 
4,CMPTM 
7,0 (6) 
1 (17 ,61) ,. 0 (4) 
1(6) ,Xi'OF' 
6,18 (6i) 
6,ENDTAB 
15, REAP 

7,0 (3) 

1 (17" 3i) I' 0 (4) 
1 (3) , Xi'OF' 
15, READ 

*** 

CHECK ON O.UTPUT 
IS THIS THE 4TH CARD 
NO, GO BACK TO PROBLEM 
YES., DUMP OUTPUT CARD IMAGE 
SET CARD 4 INDICATO.R TO 0 
DUMP FLAGS 
CONTINUE 

* INITIALIZE 
* RO.UTINE 

* *** 

*** 
* * PUNCH CARD 

*** 

*** 
* * GET NEW CARD 
* FROM INPUT 

* * 
* * BUILD SYMBOL 
* SUBSTITUTION 
* TABLE IF A 
* CO.NTROL CARD 
* IS DETECTED 
* 
* 
* 
* 
* 
* *** 

*** 
* ALTER SYMBOL 
* IN SUB TABLE 

*** 

CHKEOCl BCTR 4,0 *** 
BCTR 8,0 * BUILD OUTPUT 

ICHKEOC LA 5,0(8,7) * CARD ONE 
I LA 3 , 0 (4 , 17 ) * CHARACTER 
I CL 5,ENDOUT * AT A TIME 
I BC 8,PUNCH * L---------------.------i-------------------------------_____ . ___________ J 

Figure 7. Sample Test Program 
( continued) 

Section 4: TESTRAN Services 295 



r------------------------------------------------------------------------, 

* 

COMP 

* 

RESET 
ZEROCNT 

* 
* 
BUMPCNT 

* 
* 
BUMPOUT 

* 
NEWSYM 

* 
* 
* EOD 

* 
* 
* ENDOUT 
ERRFLAG 
* 
* STARTIN 
STARTO 
OUT.l\REA 
INAREA 
TABLE 
END'TAB 
END 

* 

MVC 0(1,5),0(3) * CHECK FOR 
CLI 1(3),X'CO' * END OF CARD 
Be 2, BUMPCNT * 
CLI 0(3),X'CO' * 
BC 4,BUMPOUT *** 

LA 3, TABLE 
CLC 10(8,3),1(8) 
BC 8"NEWSYM 
LA 3,,18 (3) 
CL 3,ENDTAB 
BC 4"COMP 

LA 8,,1(8,7) 
LA 4,1(4,7) 
SR 7,7 
BC 15"CHKEOC 

LA 1,,1(7) 
BC 15" CHKEOC 

LA 8,,1 (8) 
LA 4,1 (4) 
BC 15,CHKEOC 

MVC 1 (8,,8) 1,2 (3) 
AH 8,0(3) 
LA 8,1(8) 
B ZEROCNT 

B OUT 

DC A(OUTAREA+80) 
DC C' *" 

DC C' • 
DC C' • 
DC CL8S' , 
DC CL88' , 
DC 180H'O' 
DC A(*) 
EQU * 

END START 

*** 
* CHECK LAST 
* COMPLETE 
* SYMBOL 
* AGAINST TABLE 

*** 

*** 
* SYMBOL OK, 
* NO CHANGE 

*** 

*** 
* GET SYMBOL 
* LENGTH 

*** 

*** 
* GO TO SYMBOL 

*** 

*** 
* SUBSTITUTE 
* NEW SYMBOL 

*** 

*** 
* FINAL EXIT 

*** 

* ** LINKAGE EDITOR INPUT 
* ENTRY BEGIN * INCLUDES THIS STATEMENT 

1* ** WHEN PROGRAM IS TESTED l ___ . ________________________________ ---________________________________ J 

Figure 7. Sample Test Program 

The macro-instructions shown in Figure 7 cause the TESTRAN 
interpreter to perform the following actions when the fourth card image 
is processed: 

296 



1. When the input subroutine REOCRD returns control to REAO+14 in 
SYMALTER, the TESTRAN interpreter records the contents of: 

• The input bu£fer INAREA. 
• The gelleral registers 4 and 8. 
• The da1:a fiel)ds at ERR FLAG, S TART IN , and STARTO. 

2. When the output subroutine PCHCRD returns control to RETURNl in 
SYMALTER, 1:he TESTRAN interpreter records the contentE: of: 

• The ou1:put bQffer OUTAREA. 
• The da1:a fieldS at ERRFIAG, STARTIN, and STARTO. 

Printed test output related to these actions is shown 
The individual macro-instructions are discussed in 
paragraphs. 

in 
the 

Figure 8. 
succeeding 

Macro IO 000 is assigned to the following macro-instruct~ion: 

BEGIN TEST OPEN,S'I1ART,JOB1,SELECT=1 

Problem program execu~ion begins when the control program rasses control 
to BEGIN" as spE~cified in a linkage editor ENTRY control statement. 
This macro-ins1:ructidn causes the symbol JOBl to be printE!d in the test 
output page heading; ft also generates the output line that appears 
beneath the hHading of the first page shown in FigurE! 8. The LINK 
option is assumHd, and values specified by the installation at system 
generation timE~ are a)ssumed for the omitted MAXP and MAXE operands. An 
output selection code :of 1 is implied for all test data for which no 
output selection code is specified by other macro-instructions. BEGIN 
inserts TESTRAN SVC's 'at READ+14 and RETURN1, as specified by the two 
TEST AT macro-instruQtions, and passes control to the loca.tion START in 
SYMALTER. 

Macro IO 001 is assigned to the following macro-instruct,ion: 

TEST DEFINE ,iFLAG, CARD 4 

This macro-instruction causes a logical 
assembled with an initial condition of 
output. 

flag named CAR04 to be 
O. It produces no printed 

Macro IO's 002., 0031

" and 004 are assigned to the following macro .... 
instructions: 

TEST 
TEST 
GO 

l~T" READ+ 14 
ON., 0,4,,4, A 
BACK 

When the input Bubrout:ine REDCRO returns control to READ+14 in SYMALTER, 
execution of 1:he inserted TESTRAN SVC causes an unnamed counter to be 
incremented and tested by the TEST ON macro-instruction. On the fourth 
return from R80CRO, an affirmative test result causes A to be the next 
macro-instruction encountered. On all other returns from REDCRD, a 
nonaffirmative test :result causes the GO BACK macro-instruction to 
execute the displaced problem program instruction (SR7,7) and to pass 
control to thE~ ins1:ruction at REAO+16; no printed output results, 
because no action macro-instruction is encountered. 

Macro IO's 005 and 006 are assigned to the following macro
instructions: 

A DUMP 
OUMP 

DATA,INAREA,SELECT=2 
PANEL, (~G' 4' ,G' 8') ,SELECT=4 

Section 4: TESTRAN Services 297 



When encountered following the fourth return from REDCRD, these macro
instructions record the contents of the input buffer INAREA and the 
contE~nts of general registers 4 and 8. Editing of this data causes 
printing of output lines for TEST AT (macro ID 002) and TEST ON (macro 
ID (03), as shown in Figure 8. Following these lines is the recorded 
buff~~r and register data, identified by macro ID's 005 and 006. 

r-----------------------------------------------------------------------, 

JOBl TE STRAN OUTPUT DATE 10/164 

11 MACRO 10 000, TEST OPEN ,TESTRAN CONTROL SECTION = BEGIN ,IOENTIFICATION JOBl 

AT LOCATION (SYMALTER 1 OOOOEC 0100EC ENTER BEGIN 

EXECUTEO STATEMENTS, BEGIN 003 

21 MACRO 10 005, DUMP DATA STARTING IN SECTION SYMALTER 
0154 INAREA 

010154 COMEBACK MVC WRITAREAISSI,ENTER 

41 MACRO 10 006, OUMP PANEL 
G'04' 00010154 G' OS' OOOlOOFC 

CLEAR BUFFER FOR NEXT CARD 

TIME 10/04 PAGE 

0003 

PSW 00 0 1 0002 0 0 0100SC CC-O FIX POINT OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF 

EXECUTED STATEMENTS, BEGIN 007, DOS 

11 MACRO 10 014, DUMP DATA STARTING IN SECTION SYMALTER 
OOFS ERRFLAG STARTIN STARTO 

OlOOFS 

AT LOCATION RETURNl ISYMALTERI OOOODA OlOODA ENTER BEGIN 

EXECUTED STATEMENTS, BEGIN 010 

31 MACRO ID 012, DUMP DATA STARTING IN SECTION SYMALTER 
OOFC OUTAREA 

o 100FC COMEBACK MVC WRI TAREAISSI ,ENTER CLEAR BUFFER FOR NEXT CARD 0003 

EXECUTED STATEMENTS, BEGIN 013 

11 MACkU 10 014, DUMP DATA STARTING IN SECTION SYMALTER 
OOFS ERRFLAG STARTIN STARTO 

OlOOFS 1 

n. IEGE07 END OF TESTRAN EDIT--0000005 STATEMENTS PROCESSED 

Figu.re 8. Sample Test Output 

298 



Macro ID's 007 ~nd 008 are assigned to the following macro
instructions: 

SET Ii'LAG,CAAD4,=1 
GO Iro;, SEEQUT 

The flag CARD~~ is ~et to the logical condition 1, indicating that the 
fourth card has been rjead. The next macro-instruction en.countered is 
SEEOUT, which recor~s the contents of the data field.s at ERRFLAG, 
START IN, and STJffiTO bejfore control is returned to the problem program. 
Editing of the data r~corded by SEEOUT causes printing of an output line 
for SET FLAG (macro! 10 007) and GO TO (macro 10 008) as shown in. 
Figure 8. 

Macro 10' s 009" 010;, and Oil are assigned to the following macro
instructions: 

TEST 
TEST 
GO 

AT,RETqRNl 
t-lHEN, CAAO 4, B 
BACK 

When the output su~routine PCHCRD returns control tOo RETURN 1 in 
SYMALTER, execu't:ion ofi the inserted TESTRAN SVC causes the logical flag 
CARD 4 to be 'tested !by the TEST WHEN macro-instruction. On the fourth 
return from PCHCRO, an affirmative test result causes B to be the next 
macro-instruction encquntered, and CAR04 is reset to logical condition 0 
before control is retuirned to the problem program. On all other returns 
from PCHCRD, Cl nonaiffirmative test result causes the GO BACK macro
instruction to execute the displaced problem program instruction (MVe 
OUTAREA(88),STAFtTO) and to pass control to READ; no printed output 
results, becausE~ no adtion macro-instruction is encountered.. 

Macro 10 012 is assiigned to the following macro-instruction: 

B DUMP DATA,OUTAREA,SELECT=3 

When encountered foll~wing the fourth return from PCHCRD, this macro
instruction records tihe contents of the output buffer OUTAREA. Editing 
of this data causes prjinting of output lines for TEST AT (macro ID 009) 
and TEST WHEN (macx1o 10 010) as shown in Figure 8. Following these 
lines is the recorded :buffer data, identified by macro ID 012. 

Macro 10 013 is assligned to the following macro-instruction: 

SET PLAG, CARD4,=0 

The flag CARD4 is reset to the logical condition 0, indicating that the 
modified 1mage of the fourth card has been punched. The next macro
instruction encountered is SEEOUT; editing of the data recorded by this 
action macro-instruction causes printing of an output line for SET FLAG 
(macro 10 013) as shoWn in Figure 8. 

Macro IO's 014 and 015 are assigned to the following macro
instructions: 

SEEOUT DUMP 
GO 

DATA,ERRFLAG,OUTAREA 
BACK 

SEEOUT records the contents of the main storage area from ERRFLAG 
through OUTAREA-·l; th~s area includes the data fields ERRFLAG, STARTIN, 
and STARTO. ThE~ recorded data is shown in Figure 8, identified by macro 
ID 014. The GO B~CK macro-instruction executes the instruction 
displaced by 1::he IClist executed TESTRAN SVC and returns control to the 
next sequential problem program instruction. 

Section 4: TESTRAN Services 299 



JOB QRGANIZATION 

Full use of TESTRAN requires the execution of four job steps: 
assernbly, linkage editing., program testing, and output editing. Each 
job step can be performed as a separate job or can be combined with 
other job steps in a single job; in either case, the job steps must be 
performed in logical order. For each job, specific job control 
statE!ments are required. The programmer can write either a separate 
EXEC control statement (and associated DD control statements) for each 
job step to be performed or, alternatively, a single EXEC control 
statE!ment for a previously cataloged procedure that includes all 
necessary control statements for one or more job steps. The basic 
control statements required for each job step are shown in Table 36. 
For detailed descriptions of job control statements, refer to the 
publication IBM System/360 Operating System: Job Control Language; for a 
description of cataloged procedures, refer to the publication IBM 
Syst~m/360 Operating System: System Programmer's Guide, Form C28-6550. 

Table 36. Job Control Statements Required for Assembly, Linkage Edit-
ing, Program Testing, and Output Editing 

r---------T---------T--------T----------------------------------------, I Name I Operation I Operandi Comments I 
~---------+---------+--------+-----------------------------------------~ 
stepname11EXEC operand assembler job step 
ddname DD operand input data set (source module) 
SYSLIN DD operand output data set (object module) 

etc. 
stepname 2 EXEC operand linkage editor job step 
SYSLIN DD operand primary input data set (object module) 
SYSLIB DD operand call library 
SYSUTl DD operand buffer data set 
SYSI .. MOD DD operand output data set (load module) 
SYSPRINT DD operand log output 
ddname DD operand additional library 
ddname DD operand additional library 

etc. 
stepname 3 EXEC operand problem program job step 
SYSTEST DD operand output data set (unedited test data) 
ddname DD operand problem program data set 
ddname DD operand problem program data set 

etc. 
stepname EXEC operand TESTRAN editor job step 
SYSTEST DD operand input data set (unedited test data> 
SYSUTl DD operand intermediate data set 
SYSPRINT DD operand output data set (edited test data) L-________ ~ _________ ~ ________ ~ _________________________________________ J 

Execution of the assembler processing program produces an object 
module, which will include a source program symbol table if the 
appropriate option is specified. The linkage editor produces a load 
module from one or more object modules; if specified in the EXEC control 
statement, the symbol table is included in the load module and passed to 
the TESTRAN editor. Dynamic testing occurs as a result of execution of 
the problem program, providing that control is passed to a TEST OPEN 
macro-instruction. Execution of the TESTRAN editor causes data to be 
printed according to options specified in the EXEC control statement and 
the formats defined in the symbol table. 

ASSEMBLER OPTION: Unless data modifiers are 
TESTRAN macro-instructions, the assembler 

300 

always included in the 
symbol table option should 



always be specified in: the PARM field of the EXEC control statement for 
the assembler. This o~tion is specified as 

PARM='TEST' 

To ensure proper ed~ting of test data, the symbol table option should 
be specified fol:' each pbject module that is included in a load module to 
be tested, or that is included in any other load module to be executed 
under the same t.ask. 

LINKAGE EDITOR OPTION:; The test option must be specified in the PARM 
field of the EXEC cont~ol statement for the linkage editor, to cause the 
symbol table (i.f presient) and the original external symbol dictionaries 
produced by the assemb!Ler to be included in the load module. This 
option is specified as 

PARM='TEST' 

To . ensure proper editing of test data, the test option should be 
specified for each load module to be tested, and for all other load 
modules that are~ to be: executed under the same task. 

TESTRAN EDITOR OPTIONS: 
of the EXEC statement for 
general form 

PARM='TaPb' 

Two options can be specified in t:t1e PARM field 
the TESTRAN editor. This field has the 

where a is either an unsigned decimal integer from 1 to 8, a blank, or 
the letter A, and when,:! b is an unsigned three-digit decimal integer. 
Their use is as follows: 

• The value a specifies the output selection code or cod~es associated 
with test data to be edited; the field Ta can be repea·ted as many 
times as required to select desired test data during a single 
execution of the TtSTRAN editor. The value a, if an integer, 
specifies a single output selection code; if a blank, it specifies 
that data with no ~ssociated output selection code is to be edited. 
All test data is edited if a is the letter A or if the field Ta is 
omitted • 

• The integer b specifies the maximum number of pages to be printed. 
This number must not be greater than the maximmn page count 
established at the installation at system generation time. Any 
maximum count specified in the TEST OPEN macro-instruction is 
overridden. If no. maximum count is specified in eith~~r the EXEC 
control statement or the TEST OPEN macro-instruction, it.he installa
tion maximum count is assumed. 

DATA DEFINITION: The TESTRAN interpreter requires a data set for 
storage of intermediat~ output; this data set later becomes input to the 
TESTRAN editor. The' necessary data control blocks are qenerated and 
opened automatically, but they must be completed by DD control state
ments placed after the EXEC control statements for both the problem 
program and the TESTR~N editor. These DD control sta1:.ernents must 
specify that the data set is to be retained until all desired test data 
has been edited. 

The TESTRAN editor requires two additional data sets; OnE~ for working 
storage and one for edited output. The data control blocks that the 
TESTRAN editor creates for these data sets must be completed by DD 
control statements with the names SYSUTl and SYSPRINT, J:espectively. 
These DD control statements must follow the EXEC control statement for 
the TESTRAN editor. Neither data set should be retained after comple
tion of the job step. 

Section 4: TESTRAN Services 301 





APPENDIX A: OPERAND FORMS 

Positional operand~ and the optional values of keyword operands can 
be written in a variety of forms, as specified by value mnemonics. Some 
of these forms are conventional assembler language expressions and 
addresses; how€~veri' certain restrictions, stated in this appendix, must 
be followed when these! forms are used in system macro-instructions. 
Other forms ar€~ new. Their use in system macro-instructions is defined 
in detail. 

This appendil!: also describes the assembler language instructions that 
become part of t~he mac(Co-expansion when the appropriate operand form is 
used in a supervisor Oir data management macro-instruction. 

DESCRIPTIONS OF OPERAND FORMS 

The allowable operand forms, and the value mnemonics that specify 
them, are shown in Tab~e 37. The forms other than symbol, integer, and 
coded value are described below. 

Table 37. Opera.nd Forms and Related Value Mnemonics 
r---------------------~------------T-----------------------------------, 
I I Value Mnemonic that I 
I Operand Fo(CI1\ I Specifies the Operand Form I 
~---------------.-------------------+----------------------------------i 
I Symbol I symbol I 
~---------------.------------------+----------------------------------i 
I Relocatable expression I relexp I 
I I addr I 
~---------------.-------------------+----------------------------------i 
I Implied a.ddress I addrx I 
I I addx I 
I I adval I 
~---------------.-------------------+-----------------------------------i 
I Explicit address I addrx I 
I I addx I 
I I adval I 
~---------------.-------------------+-----------------------------------i 
I Integer (self-defining I integer I 
I decimal value) I I 
~----------------------------------+-----------------------------------i 
I Absolute expression I absexp I 
I I value I 
.-----.... --------_._------------------+----------------------------------~ 
I Register notation I addr I 
I I addrx I 
I I value I 
.---------------.-------------------+----------------------------------i 
I TESTRAN registetr: notation I adval I 
~---------------.------~------------+-----------------------------------i 
I Character constant I text I 
.---------------.-------------------+-----------------------------------i 
I Coded value I code I 
.---------------.-------------------+-----------------------------------i 
I Data attribute notation I tIs I 
L _______________ . ___________________ .1. ___________________________________ J 

Appendix A: Operand Forms 303 



RELOCATABLE EXPRESSION 

A relocatable expression can be a single relocatable term (symbol), 
or it can be an arithmetic combination of relocatable and absolute 
terms, such as symbols and self-defining values. The expression must 
reduce to a single relocatable value, which can be a complex relocatable 
value. 

The expression is evaluated as an A-type address constant, and 
therefore cannot contain a literal. 

Examples of relocatable expressions are as follows: 

S 
OUT-3*PT 

S is relocatable. 
OUT is relocatablei PT is absolute. 

NOTE~~~ The following notes apply: 

• Individual symbolic terms and the evaluated address need not be 
addressable by means of a base register at execution time. There 
are no special restrictions on the use of terms that also appear as 
operands of an EXTRN statement. 

• Helocatable expressions written as operands of supervisor and data 
management macro-instructions must not begin with a left parenthesis 
and end with a right parenthesis. This restriction results from the 
form of register notation used in these macro..,..instructions, and 
1:herefore does not apply to TESTRAN macro-instructions. 

• :[n supervisor and data management macro-instructions, a reference to 
1the location counter refers to the location of the assembled 
parameter (A-type address constant). A reference to the location 
counter must not be made in a relocatable expression written as an 
operand of a TESTRAN macro-instruction. 

IMPLIED ADDRESS 

An implied address can be any indexed or non-indexed implied address 
allowed by the assembler language. 

Examples of implied addresses are as follows: 

S (X) 

BUF- 3 (Xl) 

1000 
=F'S' 

S is absolute or relocatable; 
X is absolute. 
BUF is absolute or relocatable; 
Xl is absolute. 

NOTE:2~ The following notes apply to implied addresses written in 
supeJrvisor and data management macro-instructions: 

• The address must be addressable by means of a base register 
specified in a USING statement and loaded by the problem program. 
'rhis restriction applies except when the address is absolute and has 
a value less than 4096. 

• The address must be either absolute or simply relocatable. That is, 
no more than one relocatable term can be unpaired. Paired relocata
ble terms have opposite signs and are symbols defined in a single 

304 



control sect.ion; tpe expression formed by paired relocatable terms 
is therefore absolbte. 

• A symbol t.hat also appears as an operand in an EXTRN statement can 
be written, providing that it is the only relocatable -term in the 
expression. The external symbol RTN, for example, must be the 
operand of a USING; statement provided by the programmt~r, and the 
address of RTN must be in the register specified by the USING 
statement. 

• The operand must not begin with a left parenthesis and 
right parenthesis. This restriction results from 
register notation used in these macro-instructions. 

end 
the 

with a 
form of 

• The effective address is formed by a LA instruci:ion in the 
macro-expansion. A reference to the location counter Jrefers to the 
location of this LA instruction. 

The following notes apply to implied addresses written in TESTRAN 
macro-instructions: 

• The address expression of the operand is assembled as an A-type 
address constant. Therefore, the address need not be addressable. 

• A reference to the location counter must not be made. 

• An operand written as a literal results in a data constant that is 
part of the macro-expansion. 

EXPLICIT ADDRESS 

An explicit addre$s can be indexed or non-indexed,. but must be 
written as in an RX-fo+mat assembler language instruction. That is, two 
absolute expressions of the form ~X,B) must be writt:en, thereby 
designating both an index register and a base register. If the address 
is non-indexed, X must not be omitted but must be written as either a 
zero or an equivalent ~bsolute expression. 

Examples of explicit addresses are as follows: 

D (X, B) 
12(0,3) 
TAB-YY (R+2, N2) 

O,X, and B are absolute. 

TAB and YY are both either absolute or relocatable 
~nd defined in the same control secti.on; Rand N2 
are absolute. 

NOTES: The following notes apply: 

• Explicit addresses written as operands of supervisor and data 
management macro-instructions must not begin with a left~ parenthesis 
and end with a right parenthesis. A displacement must always be 
written, even if i1ts value is zero. This restriction results from 
the form of register notation used in supervisor and dat~a management 
macro-instructions Ii and therefore does not apply to TE:STRAN macro
instructions .. 

• In supervisor and data management macro-instructions I t.he explicit 
address is used as the operand of a L or LA instruction in the 
macro-expansion. FA. reference to the location counter rE~fers to the 
location of this instruction. A reference to the loca.tion counter 
must not be made iIi an explicit address written as an operand of a 
TESTRAN macro-inst~uction. 

Appendix A: Operand Forms 305 



ABSOLUTE EXPRESSION 

1\,n absolute expression can be a single absolute term, or it can be an 
arithmetic combination of relocatable and absolute terms, such as 
symbols and self-defining values. The expression must reduce to a 
single absolute value. 

'I'he expression is evaluated as an A-type address constant, and 
therefore cannot contain a literal. 

E:xamples of absolute expressions are as follows: 

5 
LOB-S LOB and S are both either absolute or relocatable 

and defined in one control section. 
X'FF'+2 

NOTE~: The following notes apply: 

• Absolute expressions written as operands of supervisor and data 
management macro-instructions must not begin with a left parenthesis 
and end with a right parenthesis. This restriction results from the 
form of register notation used in these macro-instructions, and 
therefore does not apply to TESTRAN macro-instructions • 

• In supervisor and data management macro-instructions, a reference to 
-the location counter ref ers to the address of the assembled 
parameter (A-type address constant). References to the location 
counter cannot be made in absolute expressions written as operands 
of TESTRAN macro-instructions. 

REGISTER NOTATION 

Register notation is a way 
at execution time, the address 
operand. This register must be 
proqram.. The macro-expansion 
register in the parameter list, 
register. 

of designating a register that contains, 
or value parameter specified by the 
loaded with the parameter by the problem 
stores the contents of the designated 

or loads the contents into a parameter 

1\n operand that begins with a left parenthesis and ends with a right 
parenthesis, and that according to the format description must not be a 
sublist, is assumed to be an absolute expression designating a register 
that contains the parameter. The parentheses need not be paired. 

lE!xamples of register notation are as follows: 

(R) R is absolute. 
( 5) 

(LOB-S) LOB and S are both either absolute or relocatable 
and defined in one control section. 

'rhe parameter must be contained in the rightmost bits of the 
register, and the leftmost unused bits of the register must all be 
zeros, except when an individual macro-instruction description states 
otherwise. 

In an addrx operand, the effect of using register notation can be 
achieved by writing an implied address of the form O(B), or an explicit 
address of the form O(O,B), where register B contains an existing 

306 



effective address. This should not be done, because the macro-expansion 
will contain: 

• A L or LA il1lstruct~on instead of a LR instruction, in the case of an 
R-type macro-instruction. 

• An unneccess:ary LA; instruction, in the case of the E form of an 
S-type macro-instr~ction. 

In either of the! above two cases, the macro-expansion will require 
more space and e~xecution time. 

NOTE: If the expression (A+B)*(A-B), or any like it, is no·t intended to 
be assumed to be! register notation, it should be prefixed by 0+. 

TESTRAN REGISTER. NOTAT[ON 

TESTRAN register notation is a way of designating either a register 
that contains a value at execution time, or a register or series of 
registers whose contents are to be recorded. 

A single register is specified by the letter G (for general register) 
or the letter F (for f;I.oating-point register) followed by a symbol or 
decimal integer enclosed in single quotation marks. A symbol, if used, 
must be a symbolic name equated to a register number. An integer must 
be unsigned and a valid number for a register of the type specified; it 
can include a single high-order zero if the number of the register is 
less than 10. 

A series of registers is specified in the same way, except that the 
numbers or symbolic names of two registers, separated by a comma, are 
specified within a single pair of single quotation marks. The two 
explicitly specified registers are the first and last regis1ters in the 
specified series. 

TESTRAN register notation is used in certain operands 1:.hat can also 
be written in the form of an indexed implied address. The special form 
of the notation indicates that the register contains a valuE~ rather than 
an address. 

Examples of TESTRAN register notation are as follows: 

G'2' 
G'SUM' 

F'2' 
F'PRODUCT' 

G'0,4' 

G'14,2' 

F'O,VAL' 

F'6,2' 

SUM is a symbolic name equated to thE:! number of a 
gen~ral register. 

PROI!:>UCT is a symbolic name equated to thE:! number of a 
floating-point register. 
The series includes general registers 0, 1, 2, 3, and 
4. 
The series includes general registers 14" 15, 0, 1, 
and 2. 
VAL is a symbolic name equated to thE~ number of a 
floC;lting-point register. This series includes 
floating-point registers 0, VAL, and any floating
point registers lower numbered than VAL. 
The series includes floating-point re(Jisters 6, 0, 
and 2. 

Appendix A: Operand Forms 307 



CHARACTER CONSTANT 

A. character constant specifies a message or comment to be written on 
a camsole or printer. 

A. character constant must be written with enclosing single quotation 
marks; this is shown explicitly when the text value mnemonic appears in 
a format description. The entire operand is identical to the constant 
subfield of an assembler language DC data definition instruction. The 
specified message or comment does not include the enclosing quotation 
marks. 

'I'wo single quotation marks or ampersands, unseparated by other 
characters, must be included in the character constant for each single 
quot~ation mark or ampersand to be included in the message or comment. 

Examples of character-constant operands are as follows: 

'MOUNT XT04 && YA77' 

"'NETPAY" IS NEGATIVE' 

The message is printed as: 
MOUNT XT04 & YA77 
The comment is printed as: 
'NETPAY' IS NEGATIVE 

NOTE: The maximum length of a message specified by a supervisor 
macl~o-instruction cannot exceed the line length of the console output 
device having the shortest line length. The maximum length of a comment 
specified by a TESTRAN macro-instruction is always 120 characters. 

DATJ~ ATTRIBUTE NOTATION 

Data attribute notation is a way of designating type, length, and 
scale attributes to be used in comparing, modifying, or editing data. 
These attributes override any attributes defined in the symbol table for 
the same data. 

Data attribute notation is similar in format to the type and modifier 
subfields of operands of DC and DS data definition instructions. The 
notation is written as: 

tLxSy 

where t is a type code, Lx is a length modifier, and Sy is a scale 
modifier. The type code and modifiers are each optional, but if present 
mus1: be written in the order shown. Modifiers are written as the 
mnemonic character L or S followed by an appropriate value for x or y; x 
is written as an unsigned decimal integer, y as a signed or unSigned 
decimal integer. Allowable type codes and corresponding substitutable 
values for x and yare listed in Table 38. 

~rhe length and scale attributes, unless explicitly specified, are 
implied by the type code as shown in Table 38. If the type code is 
omitted, the type is assumed to be hexadecimal, and the length, unless 
explicitly specified, is assumed to be 1 byte (when the data is to be 
recorded, compared, or modified) or 4 bytes (when the data is to be 
edit.ed) • 

308 



Examples of data attribute notation are as follows: 

XL128 
FS-2 
EL8S14 

I 

The scale factor is -2. 
The maximum scale factor for the data type and length 
is shown. 
The implied length varies with the format of the 
instruction. 

Table 38. Data Attribute Specifications 
r----------------------T--------------------------T--------.------------, 
I I Length in Bytes1 I I 
I Type Code ~-------------T------------i Scale Factor2 I 
I (t) I Explicit I Implied I (y) I 
I I (x) I I I 
~---------------------.... +-------------+------------+--------.------------~ 
I C (character) I 1-255 I 1 I (not applicable) I 
I X (hexadecimal) I 1-255 I 1 I (not applicable) I 
I B (binary) I 1-255 I 1 I (not applicable) I 
I H (fixed point) I 1-8 I 2 I -187 to +346 I 
I F (fixed point) I 1-8 I 4 I -187 to +346 I 
I E (floating point) I 1-8 I 4 I (not applicable) I 
I D (floating point) I 1-8 I 8 I (not applicable) I 
I P (packed decimal) I 1-16 I 1 I (not applicable) I 
I Z (zoned decimal) I 1-16 I 1 I (not applicable) I 
I I (instruction) I (not I (variable) I (not applicable) I 
I I applicable) I I I 
~----------------------~-------------~------------~---------------------i I 1 The implied length is used if the type code (t) is present but the I 
I length modifier (Lx) is omitted. I 
I 2 The implied scale attribute is zero if the scale modifier (Sy) is I 
I omitted. I L ______________________ -------------___________________________________ J 

OPERAND PROCESSING 

The processing of operand forms in supervisor and data management 
instructions is discussed below to show the significance of value 
mnemonics, and to aid in the understanding of macro-expansions. 

In this discussion, a reference to an S-type macro-instruction refers 
to only the standard f0rm of the macro-instruction. References to Land 
E forms of the macro-instruction are made explicitly (as L-form or 
E-form). 

Note that an addr operand of an S-type macro-instruction can be 
written in only the relexp form in an L-form macro-instruction, and it 
can be written in the addrx forms in an E-form macro-instruction. Also, 
a. value operand can be written in only the absexp form in an L-form 
macro-instruction. 

SYMBOL: The symbol is assembled as an eight-byte character constant. 

• In an S-type or L-form macro-instruction, the character constant is 
part of the resulting parameter list • 

• In an E-forrn macr~-instruction, the character constant results from 
literal notation used in a MVC instruction. This instruction moves 
the character constant to the remote parameter list. 

Appendix A: Operand Forms 309 



RELEXP: In an L-form macro-instruction, the relocatable expression is 
assembled as an A-type address constant that is part of the resulting 
parameter list. 

ADDR RELOCATABLE EXPRESSION: In an S-type or L-form macro
instruction, the relocatable expression is assembled as an A-type 
address constant that is part of the resulting parameter list. 

ADDR - REGISTER NOTATION: In an S-type macro-instruction, register 
notation results in a ST instruction that stores the existing effective 
address into the resulting parameter list. 

ADDRX - IMPLIED OR EXPLICIT ADDRESS: An implied or explicit address 
results in a L or LA instruction that loads a register with an effective 
address. 

• In an R-type macro-instruction, the L or LA instruction loads a 
parameter register. 

• In an E-form macro-instruction, the L or LA instruction loads a 
working register (14, 15, or 0), and a ST instruction (which is also 
part of the macro-expansion) stores the address into the remote 
parameter list. 

ADDRX - REGISTER NOTATION: Register notation results in the following: 

• In an R-type macro-instruction, a L or LR instruction that loads a 
parameter register (unless special register notation is used). 

• In an E-form macro-instruction, a ST instruction that stores the 
existing effective address into the remote parameter list. 

ABSEXP: In an L-form macro-instruction, the absolute expression is 
assembled as an A-type address constant that is part of the resulting 
parameter list. 

VALUE - ABSOLUTE EXPRESSION: In an S-type or L-form macro-instruction, 
the absolute expression is assembled as an A-type address constant that 
is part of the resulting parameter list. 

In an R-type or E-form macro-instruction, if the absolute expression 
can have a value whose absolute magnitude is equal to or greater than 
4096, the expression is assembled as an A-type address constant. This 
constant results from literal notation used in a L instruction. 

• In an R-type macro-instruction, the L instruction loads a parameter 
register. 

• In an E-form macro-instruction, the L instruction loads a working 
register (14, 15, or 0), and a ST instruction (which is also part of 
1:he macro-expansion) stores the value into the remote parameter 
list. 

If the absolute magnitude must be less than 4096, a LA instruction 
results, instead of a L instruction. The instruction operand is of the 
form D(O,O), where D is the absolute expression. Processing then occurs 
as for a L instruction. 

310 



VALUE - REGISTER NOTATION: Register notation results in the following: 

• In an R-typ€~ macro-instruction, a LR instruction results that loads 
the value into a parameter register <unless special register 
notation is used). 

• In an s-tyP€~ macro-instruction, a ST instruction results that stores 
the value into the resulting parameter list. 

• In an E-fonm macro-instruction, a ST instruction results that stores 
the value irito the remote parameter list. 

Appendix A: Operand Forms 311 



APPENDIX B: LAND E FORMS OF S-TYPE MACRO-INSTRUCTIONS 

L- AND E-FORM MACRO-EXPANSIONS 

The L form of an S-type macro-instruction results in a macro
expansion consisting of only a parameter list. 

The E form of an S-type macro-instruction results in a macro-
expansion consisting of only executable instructions. These 
instructions perform the following functions: 

• Load the parameter list register with the address of a remote 
parameter list; alternatively, the user's problem program may have 
loaded the address of a remote parameter list into the parameter 
list register before execution of the macro-instruction. 

• store parameters in the remote parameter list, if any parameters 
need be modified at execution time. These parameters can be loaded 
into registers by the user's problem program before execution of the 
macro-instruction, or they can be dynamically formed by the macro
expansion (by a load address (LA) instruction, for example). 

• Give control to the required control program routine. This is done 
by execution of an SVC or branch instruction, just as in the 
standard form of the macro-instruction. The control program routine 
refers to the remote parameter list pointed to by the parameter list 
register. 

USE OF L- AND E-FORM MACRO-INSTRUCTIONS 

The Land E forms of an s-type macro-instruction can be used together 
to request a control program service that would otherwise be requested 
by the standard form of the macro-instruction. This facility is 
advantageous for the following reasons: 

• Use of an E-form macro-instruction allows use of the addrx operand 
forms instead of the addr operand forms. 

• If a particular macro-instruction is to ce written more than 
a program, use of two or more E-forrn macro-instructions 
I,-form macro-instruction conserves main storage. All of the 
macro-instructions should refer to the parameter list that 
from the L-forrn macro-instruction. If they do, two 
physically distinct parameter lists are not required, 
.storage is conserved. Any of the parameters in the list 
modified when each E-form macro-instruction is executed. 

once in 
and one 

E-form 
results 

or more 
and main 

can be 

• If the parameter list of a macro-instruct,ion rrust be modified at 
execution time, use of an E-form macro-instruction allows the 
macro-instruction to be written in a reenterable program. The 
E-forrn macro-instruction must refer to a remote parameter list that 
is in either a higher level program or dynamically allocated 
storage. 

312 



Proper use of these macro-instruction forms requires understanding of 
the following: 

• How the Land E forms of an S-type macro-instruction are specified. 

• The different operand forms allowed in these macro-instruction 
forms • 

• The action of a combination of one L-form and one E-form macro
instruction., 

• Special requirements of operands written in L- and E-form macro
instructions. 

THE MF KEYWORD OPERAND 

The Land E forms ~f an S-type macro-instruction are specified by an 
extra keyword operand in the macro-instruction. The keyword of this 
operand is MF (for maoro-form). 

The L form is spec~fied by: 

MF=L 

The optional value is L. A symbol written in the name field of the 
macro-instruction can: be used to refer to the resulting parameter list. 

The E form is ;specified by an operand having the following 
representation: 

MF=(E,{PI-addrx}) 
(1) 

The optional value is a sublist consisting of E and the address of a 
remote parameter list. This address is loaded, by the macro-expansion, 
into register 1 (the parameter list register). By writing the special 
register notation (1), the programmer specifies that the address of the 
parameter list 'vdll have been loaded into register 1 before execution of 
the macro-instruction. 

OPERAND FORMS USED IN L- AND E-FORM MACRO-INSTRUCTIONS 

Address and value operands can be written in a standard S-type 
macro-instruction in the forms specified by the value mnemonics, addr 
and value. Different operand forms are allowed in the Land E forms of 
the macro-instruction,; as follows: 

• In an L-forrn macro-instruction, an address operand can be written in 
only the ielexp form. A value operand can be written in only the 
absexp form .. 

• In an E-form macrO-instruction, an address operand can be written in 
the addrx f~rm. A value operand can still be written in the value 
form. 

Note that in an R-type macro-instruction, address operands can be 
written in the addrx forms. Not allowing addrx forms in the standard 
form of an S--type :macro-instruction reduces the time required by the 
assembler to process bhe macro-instruction. 

Appendix B: Land E Forms of S-Type Macro-Instructions 313 



Rtefer to Appendix A for more information about why different operand 
forms are allowed. 

OPERAND COMBINATIONS 

Th.e format description of an S-type macro-instruction shows how 
operands in the standard form of the macro-instruction are to be 
written. Its interpretation is different when the L or E form of the 
macro-instruction is being written. In these cases, the format descrip
tion shows the combination of operands that is to be written; a 
particular operand can ordinarily be written in either the L-form 
macro-instruction or the E-form macro-instruction. 

Examples of L- and E-form macro-instruction use are presented below. 
Thest2 examples use the WTOR (write to operator with reply) macro
inst:ruction, which has the following format description: 

r-----------T-----------T-----------------------------------------------, 
I Name I Operati on I Operand I 
f-----------+-----------+-----------------------------------------------~ 
I [symbol] I WTOR I message-' text' , reply-addr, length-value I 
I I I, ecb-addr I L ___ • _______ ~ ___________ ~ _______________________________________________ J 

The message operand specifies the message to be written on the 
operator's console. 

The reply operand specifies the address of an area in the program in 
which the reply message will be placed.. The length operand specifies 
the length of this area. 

The ecb operand specifies the address of an event control block 
(ECB). The program should issue a WAIT macro-instruction referring to 
this event control block to determine when the message reply has been 
received. 

In the following examples, EXl is the standard form of the S-type 
macro-instruction. It results in the message FINISHED being written on 
the operator's console. The reply is to be placed at location LOC1, and 
is to have a length of 15 bytes. The program should refer to event 
control block ECBl to determine when the message reply has been 
received. 

EX2A is an L-form macro-instruction in which the reply operand is 
omit-ted. EX2B is an E-form macro-instruction referring to the parameter 
list resulting from the EX2A macro-instruction. The reply operand is 
present in EX2B, and, when that macro-instruction is executed, the 
effect of the macro-instruction is exactly the same as that of EX1. 
(The reply operand in EX2A and the message operand in EX2B are delimited 
by commas, because a positional operand is written to the right of 
each. ) 

EX3 also refers to the EX2A parameter list. The example shows that 
the reply operand in EX3 can be written as an indexed implied address 
(allowed by the addrx form), and that the length parameter in the EX2A 
parameter list can be changed at execution time. 

EX4A is an L-form macro-instruction in which all necessary operands 
are written. EX4B is an E-form macro-instruction in which only the MF 
operand is written. When EX4B is executed, the address of a parameter 

314 



list (for example, EX4A) must have neen loaded into regi.ster 8 by the 
user's problem progra~. 

EX1 
EX2A 
EX2B 
EX3 
EX4A 
EX4B 

WTOR 
WTOR 
WTOR 
WTOR 
WTOR 
WTOR 

'FINlSHED',LOC1,15,ECBl 
'FINISHED'"lS,ECB1,MF=L 
,LOC1,MF=(E,EX2A) 
,LOC](S),25,MF=(E,EX2A) 
'LAST ONE',LOC4,SO,ECB4,MF=L 
MF=(E, (8» 

NOTES: The E forms of most S-type macro-instructions (but not of the 
WTOR macro- ins~truction) can contain a 11 operands. Wri tingr all operands 
in an E-form macro-instruction eliminates the need for an L-form 
macro-instruction: the remote parameter list can be an unused assembled 
area of the user's prC)blem program, or it can be an area of allocated 
main storage. The operands written in the E-form macro-instruction 
result in paramteters -Chat are stored in the remote parameter list. 
However, operands should be written in E-form macro-inst~ructions only 
when the corresponding parameters must be formed or changed at execution 
time: otherwise, unnecessary instructions will be generated and 
executed. 

If a parametter list must be formed by a reenterable progrram, and if 
some but not all of the parameters in the list are to be modified before 
each of two or more executions of an E-form macro-instruction that 
refers to the list, the following technique can be used. The program 
can contain an :L-form macro-instruction that results in a parameter list 
containing the constt.ant parameters. When it is executed, the program 
can move this paramet~r list to allocated main storage. The E-form 
macro-instruction can then refer to the remote list without~ execution of 
instructions that unnecessarily modify the constant paramet~ers. 

ORDINARY AND SPECIAL OPERAND REQUIREMENTS 

The ordinary operand 
instructions, stated in 
briefly: 

requirements of L- and 
the preceding topics, are 

E-·forrn macro
rE~viewed below 

• The MF keyword operand must be written to specify the 1. or E form of 
a macro-ins"truction • 

• The value mnemonics shown in the format description specify the 
operand forms that are allowed in the standard form of the 
macro-instruction. Different operand forms are allowed in the Land 
E forms. 

• The format description shows the combination of operands that is 
required to request the control program service. If a particular 
operand is required (i.e., it is not optional), it need be written 
in only one of the macro-instructions that comprise an L- and E-form 
pair. Furthermore, a particular operand can be written in either or 
both of the macro-instructions of the pair. 

When there is deviation from these requirements, the special 
requirements for writing the operands are described in the "L- and 
E-Form Use" paragraph of the macro-instruction. 

Appendix B: Land E Forms of S-Type Macro-Instructions 315 



Typical special operand requirements are: 

• A particular operand is not allowed in either the L or E form of the 
macro-instruction. 

• 1~ particular operand is required in either the L or E form of the 
macro-instruction, or both. 

• In addition to the MF operand, there are operands that are not 
allowed in the standard form of the macro-instruction, but that are 
allowed or required in the L or E form. 

For example, in the WTOR macro-instruction, the message operand is 
not allowed in the E form of the macro-instruction. The message operand 
cannot be written because the macro-definition does not allow the 
message text, which is assembled in the parameter list, to be overwrit
ten. 

Another example of special operand requirements is provided by the 
READ macro-instruction. The second operand of this macro-instruction 
actually serves as an adjunct to the mnemonic operation code: it informs 
the macro-definition of the type of READ operation specified by the 
macro .... instruction. This operand must be written in both the Land E 
forms of the macro-instruction. (The first operand is the address of a 
decb, which is the parameter list resulting from the standard and L 
forms of the macro-instruction. The remote parameter list referred to 
by -the E form of the macro-instruction is also referred to by the first 
operand, and, therefore, the E form is specified by writing only MF=E. 
Refer to Section 3 for more details.) 

A final example is provided by the PARAM operand of the XCTL 
macro-instruction. This operand :esults in a parameter list that is 
referred to by the program g1ven control by the macro-instruction. 
Because the program containing the XCTL can be destroyed after execution 
of the macro-instruction, the PARAM operand is allowed in the Land E 
forms of the macro-instruction but not in the standard form. 

316 



APPENDIX C: DYNAMIC PROGRAM MANAGEMENT 

CONTENTS CONTRO]~ 

To achieve optimum performance when dynamic program management is 
used, the programmer $hould be familiar with the following terminology 
and rules for controlling the contents of main storage. 

REUSABILITY 

Each load module has a reusability attribute that is specified at 
linkage editor 1:ime. 'This attribute applies to the entire load module, 
even though the module may be given control through references to either 
a member name or one of several aliases. Reusability attributes are as 
follows: 

• Not reusabIE~. A module of this type modifies itself du.ring its use" 
so that a nE;w copy of the module is required each time the module is 
used. 

• Serially reusable. A module of this type modifies itself during its 
use. HowevE~r, bedause the module initializes itself E!ach time at 
the beginning of its use, the same copy of the module can be used 
more than once. 'Ilhe module must be used in a serial manner; that 
is, one use of the module must be complete bef orE! the next one 
begins. 

• Reenterable.. A module of this type does not modify i.tself during 
its use. There~ore, the same copy of the module can be used more 
than once. The mOdule can be used in a parallel mannE~r; that is" 
one use of the module need not be complete beforE~ the next one 
begins. (The modUle can be used by one task in an iteI"ative manner, 
and it can be used concurrently by two or more tasks.) 

LIBRARIES 

The modules lLlsed by a job step can be dynamically acquired from three 
sources (partitioned data sets). These sources are: 

• Link librar'~. This library is automatically available to all job 
steps. Th.e nece~sary data control block is a permanent part of the 
control proqram and is always open. 

• Job library. This library is available to a job step only if the 
JOBLIB DD statement was included in the job input; stream. The 
necessary data control block is provided by and opened by the 
control program. 

• Private library. One or more private libraries are available to a 
job step only if appropriate DD statements were included with the 
job step in the job input stream. The necessary data control blocks 
must be prov'ided by and opened by the programs of the :job step. 

Appendix C: Dynamic Program Management 311 



PACK AREAS 

Problem program load modules are loaded into main storage in one of 
two areas, which are called pack areas (because modules are packed 
together within the areas). 

The link pack area contains reenter able modules obtained from the 
link library. The link pack area is used by all tasks in the system, 
and has the control program's storage protection key. 

The job pack area contains all other modules obtained for use by one 
job step. Each job step has its own job pack area, and this area has 
the job step's storage protection key. This area is freed for other 
uses when the job step terminates. 

NOTE;.. If option 4 was excluded from the system, there is one pack area 
for each step; that is, the link pack area and the job pack area are 
combined for each step. 

CONTENTS DIRECTORY 

In. the context of a particular partitioned data set, load modules are 
referred to by member names and aliases. These names are assigned at 
linkage edit time. 

The member name of the load module is the name associated with the 
standard entry point of the module. Up to five additional names can be 
assigned as aliases to the module name. If the alias is the same as an 
entry point name within the module, execution of the module can begin at 
that point. If the alias is not the same as an entry point name, 
execution can begin at the standard entry point. The member name and 
the aliases are called entry point names and can be up to eight 
characters long. 

When a load module is loaded into main storage, an entry point name 
is placed in a control program table, which l.S called the contents 
dire4~tory. The load module is acquired by searching for the entry point 
name in the directory of a specified partitioned data set. 

When module loading results from a reference to a member name, the 
member name is placed in the contents directory. Aliases of the member 
name f if any, are not placed in the contents directory at this time. 
When module loading results from a reference to an alias, the single 
alias and the member name are placed in the contents directory. If a 
load4:!d module is referred to by an alias that is not in the contents 
directory, the directory of the partitioned data set must be searched 
for the alias; the member name associated with the new alias is 
determined, and it can then be determined that the module is already in 
main storage. The new alias is then placed in the contents directory. 

Entry point names can also be placed in the contents directory by 
means of the IDENTIFY macro-instruction. 

If option 4 was excluded from the system, an alias name is treated as 
a member name. 

318 



LOAD MODULE ACQUISITION PROCEDURES 

When a load module is reqpested by means of the LOAD, LINK, XCTL, or 
ATTACH macro-instruction havihg the EP or EPLOC operand, the contents 
directory and the libraries; are searched for the requested load module 
in the following order: 

1. The contents directory entries for load modules contained in the 
job pack area are searched for an entry containing the specified 
entry point name. 

2. If the DCB operand was written in the macro-instruction, the 
specified library is searched. 

3. If the DCB operand was omitted in the macro-instruction, the job 
library, if it exists, is searched. 

4. The content~s directory entries for load modules contained in the 
link pack area are searched for an entry containing the specified 
entry point~ name. 

5. The link library is searched. 

The entry point name specj;.fied in the macro-instruction can be a 
member name or an alias, or it can be an entry name defined by using the 
IDENTIFY macro-instruction. 

If the DE opE;rand, instead of the EP or EPLOC operand, was written in 
the macro-instruction, the contents directory and the libraries are 
searched for thE; requested load module in the following order: 

1. The conteni:s directory entries for load modules contained in the 
job pack area are searched for an entry containing the entry-point 
name that is part of the specified list entry. 

2. If the specified list entry is for a load module contained in the 
link library, the contents directory entries for load modules 
contained in the link pack area are searched. 

3. If the DCB operand was written in the macro-instruction, the 
specified list entry is used to load the requested load module from 
the library designated by the specified data control block. 

4. If the DCB operand was omitted in the macro-instruction, the 
specified list entry is used to load the requested load module from 
the job library or the link library, depending on which library. is 
desi9nated by the list ~ntry. 

The entry point name specified in the macro-instruction can be a 
member name or an alias. 

If option 4 was excluded from the system, the contents directory 
entries for modules contained in the link pack area are searched at the 
same time as the entries for modules contained in the job pack area. If 
EP or EPLOC is written, neither the link library nor the job library is 
searched if the DCB operand is present. An entry point name defined by 
an IDENTIFY macro-instruction can be specified only in an ATTACH 
macro-instruction. 

Appendix C: Dynamic Program Management 319 



USE OF THE LOAD MACRO-INSTRUCTION 

The LOAD macro-instruction is issued by a task to ensure that a 
specified load module will be in main storage until the task either 
issues a DELETE macro-instruction or terminates. During the time that 
the task requires the presence in storage of the load module, the task 
is said to be ftresponsible ft for the module. 

A module copy that satisfies the requirements of a LOAD issued by one 
task can, in certain cases, simultaneously satisfy the requirements of 
LOAD macro-instructions issued by other tasks. In this case, all of the 
tasks that issued the LOAD macro-instructions are responsible for the 
copy. The copy cannot be released from storage until each of the tasks 
relinquishes its responsibility. 

The concept presented above is reflected in a responsibility count in 
the con1:ents directory entry for a module. This count is incremented by 
one when an appropriate LOAD is executed, and it is decremented by one 
when an appropriate DELETE is executed. 

In addition, a responsibility count is maintained for the module in 
internal control blocks associated with each task responsible for the 
module. (Note that one task can issue two or more LOAD macro
instruct:ions for the same module without issuing intervening DELETE 
macro-instructions.) When a task terminates, its responsibility count 
for a module is subtracted from the responsibility count for the module 
in the contents directory entry. This ensures that the module will be 
released from storage when it is no longer required, even when the 
number of DELETE macro-instructions that were issued for the module is 
less tha.n the number of LOAD macro-instructions that were issued. 

The exact action of a LOAD macro-instruction varies according to the 
type of module that it specifies. The four possible module types are: 

• Reenterable module from the link library. 
• Reen.terable module from a job library or private library. 
• Serially reusable module from any library. 
• Nonreusable module from any library. 

REENTERABLE MODULE FROM THE LINK LIBRARY 

The module is loaded into the link pack area. A single copy of the 
module can satisfy the requirements of all tasks in the system. 

If option 4 was excluded from the system, separate copies are 
required for each job step. 

REENTERABLE MODULE FROM A JOB LIBRARY OR PRIVATE LIBRARY 

The module is loaded into the job pack area. A single copy of the 
module can satisfy the requirements of all tasks of the job step. 

320 



SERIALLY REUSABLE: MODULE FROM ANY LIBRARY 

The module is loaded into the job pack area. A single copy of the 
module can satisfy the requirements of all tasks of the job step. A 
LOAD will be satisfied by a module copy that is already in main storage, 
even though the Inodule is currently being used in a type II linkage. 
The supervisor queues tasks that concurrently request use of the module 
in type II linkaqes. The ENQ and DEQ macro-instructions must be used if 
any task uses the module in a type I linkage. In this case, tasks that 
use the module in type II linkages must also use the ENQ and DEQ 
macro-instructions. 

If option 4 was excluded from the system, a module that is already in 
main storage can satisfy a LOAD macro-instruction only if it was loaded 
by a previous L01\D macro-instruction within the same job step. 

NONREUSABLE MODU1:'E FROM ANY LIBRARY 

The module is loaded into the job pack area. If option 4 has been 
excluded from thE~ system, a single copy is used to satisy all the 
requirements of the job step; otherwise, a copy of the module is loaded 
each time a LOAD macro-instruction is executed. Each copy can be used 
by any task of the job step. Each copy can be released from storage 
only by execution of a DELETE macro-instruction by the task that caused 
the copy to be loaded, or by termination of this task. If the task that 
loaded the copy does not u$e it, but another task does, the task that 
loaded the copy still must release it. Release of the copy is delayed 
until the copy is no longer being used for a type II linkage. 

Copies retained· for use by a task (i.e., copies satisfying LOAD 
requests from the task) are released in first-in, first-out order. 
completion of a t:ype II linkage to a reserved module copy does not cause 
the copy to be released; a DELETE for the copy must still be issued. 
However, every type II linkage must be satisfied by an unused copy. If 
a retained unusE~d copy is available when a type II linkage occurs, that 
copy will be used: if an unused copy is not available, a new copy will 
be loaded. In this latter case, upon completion of the type II linkage, 
the copy will be released; a DELETE is not required. If type I linkages 
are used, the programmer must provide protection against multiple uses 
of the same copy. 

USE OF THE IDENTIFY MACRO-INSTRUCTION 

The IDENTIFY macro-instruction is issued by a task to define an 
additional entry point either in the load module containing the IDENTIFY 
macro-instruction or in a load module that was loaded by a LOAD 
macro-instruction issued by the same task. The "identified" entry point 
name will be retained in the contents directory as long as the load 
module containing[ the entry point is in main storage. 

If the "identified" entry point is referred to by a LINK, XCTL, or 
ATTACH macro-inst~ruction, the program associated with the entry point is 
assumed to be re€~nterable. This occurs even when the load module that 
contains the entry point is known to be not reenterable. 

The identified entry point can be referred to by the task issuing the 
IDENTIFY macro-instruction, and by any other task in the same job step. 
If the load module containing the entry point is in the link pack area, 
the entry point can be referred to by any task in the system. 

Appendix C: Dynamic Program Management 321 



If option 4 was excluded from the system, the identified entry point 
can be referred to only by the ATTACH macro-instruction. 

USE OF 'rHE LINK, XCTL, AND ATTACH MACRO-INSTRUCTIONS 

Table 39 describes the program management provided by the supervisor 
in type II linkages. 

Table 39. Program Management in Type II Linkages 
r-------------------T--------------------------------------------------, 
I I Action When LINK, XCTL, or I 
I Program Type I ATTACH Is Executed I 
.-------------------+--------------------------------------------------i 
I Reenterable from I A single copy is loaded into the link pack area I 
I link library I for use by all tasks of all job steps. I 
~-------------------+------------------------~-------------------------i 
I Reenterable from I A single copy is loaded into the job pack area I 
I job library or I for use by all tasks of the job step. I 
I private library I I 
.-------------------+--------------------------------------------------i 
I Serially reusable I A single copy is loaded into the job pack area I 
I from any library I for use by all tasks of the job step. The I 
I I supervisor queues tasks that require the I 
I I program. If LOAD and type I linkages are also I 
I I used, the ENQ and DEQ macro-instructions must be I 
I I used. I 
.-------------------+--------------------------------------------------~ 
I Nonreusable from I Every linkage requires an unused copy. If LOAD I 
I any library i and type I linkages are also used, the program- I 
I I mer must provide protection against multiple I 
I I uses of the same copy. I L ___________________ ~ __________________________________________________ J 

If option 4 has been excluded from the system, a type II linkage 
normally causes a new copy of the requested module to be loaded into the 
appropriate pack area. A previously loaded copy is reused only if one 
of the following conditions is met: 

• The linkage macro-instruction is ATTACH, and it specifies an entry 
poi.nt previously identified by an IDENTIFY macro-instruction. 

• ThE~ requested module was loaded by a LOAD macro-instruction and is 
not currently being used in a type II linkage. 

• ThE! linkage macro-instruction is ATTACH or LINK; the requested 
module is the module most recently used in a type II linkage, is 
serially reusable or reenterable, and has not been destroyed since 
its last use,. 

322 



APPENDIX D: EXIT LIST DESCRIPTION 

As an option t.he user can specify the address of an exit list in his 
data control block. The entries in this list provide user control or 
provide control program action at specified times (or when certain 
situations aris~=). If the exit list option is chosen, the list must be 
constructed by the user, and the address of the list must be specified 
in the EXLST operand of the DCB macro-instruction or by the user's 
problem program before the pertinent macro-instruction is issued. 

The exit list is constructed of four-byte entries that must be 
aligned on full-word boundaries. The contents of the entries are as 
shown in Table 4(),. The type of entry is specified by a code in the 
high-order byte; an address is specified in the three low-order bytes. 

Table 40.. Forma1: and Contents of an Exit List 
r----------------------T-----------T-~----------------------------------, 
I I Hexadecimal I I 
I Type of ICode (high-I Contents of Exit List Entry I 
I Exit List En·try lorder byte) I (three low-order bytes) I 
~----------------.-----+-----------+------------------------------------~ 

Inactive entry 00 Ignored; the entry is not active. 

Input header label 

Output header label 

Input trailer label 

Output trailer label 

Data control block 
exit 

Checkpoint follow
ing end of volume 
(at the beginning 
of the next volume) 

01 

02 

03 

04 

05 

06 

Address of user routine to process 
a user input header label. 

Address of user routine to create 
a user output header label. 

Address of user routine to process 
a user input trailer label. 

Address of user routine to create 
a user output trailer label. 

Address of the user's data control 
block exit routine. 

Address of a user-supplied data 
control block to be used as the 
operand of a checkpoint (CHKPT) 
macro-instruction. The control 
program will issue the CHKPT 
macro-instruction at the specified 
time, supplying the address of the 
data control block stated here. 

Last 80 Last entry in list. This code may 
accompany any of the above but 
must always accompany the last 
entry in the list. 

----------------.-----~-----------~------------------------------------

The user may activate (or deactivate) any entry 
required code i.n the high-order byte. The list 
downward; the first active entry encountered that has 
will be selected. 

by placing the 
will be scanned 

the proper code 

Appendix D: Exit List Description 323 



The user may shorten the list during execution by setting the 
high-order bit of the high-order byte of an entry to the value 1. This 
establishes that entry as the last in the list. Conversely, he can 
extend the list by setting the bit to zero. The user is cautioned not 
to accidently destroy the code for the last entry in the list when 
activating or deactivating entries. 

The contents of the general registers when control is passed to 
either user label exit routines or data control block exit routines are 
as follows: 

Register Contents 

o For user label exits only, points to label buffer area. 

1 Points to data control block currently being processed. 

2 to 12 The contents that existed before the macro-instruction was 
executed. 

13 Contents unchanged. 

14 The return address (must not be altered or destroyed by 
user-written routine). 

15 The address of the entry point to a user-written routine. 

LABEL EXIT ROUTINES: Table 43 lists the label exits provided for BSAM 
and QSAM, and indicates the times at which the label exit routines are 
executed. Each exit routine must terminate with a RETURN macro
instruction and must provide a return code that indicates the action to 
be take!n by the control program. This action also depends upon whether 
the exit routine is creating or returning labels, as shown in Table 41. 

Table 41. Control Program Response to an Edit Routine Return Code 
r-------------T--------------------------------------------------------, 
I Return Code I control Program Action I 
~-------------+--------------------------------------------------------i 
I I Labels are being retrieved - Input Processing Routine I 
I ~--------------------------------------------------------i 
I 0 I Specifies that normal processing should be resumed; I 
I I any additional user labels will be ignored. I 
I I I 
I 4 I Specifies that another user label is to be read, and I 
I I that control should again be given to the user label I 
I I exit routine. If another user label does not exist, I 
I I normal processing will be resumed. I 
~-------------+--------------------------------------------------------i 
I I Labels are being created - Output Processing Routine I 
I ~--------------------------------------------------------i 
I 0 I Specifies that the label created by the user is the I 
I I last such label to be written. Control should not I 
I I again be given to the user label exit routine after I 
I I the current label is written. I 
I I I 
I 4 I Specifies that control should again be given to the I 
I I user label exit routine after the current label is I 
I I written, provided that the maximum number of labels I 
I I (eight) has not been exceeded. I L ______ • _______ .L _______________________________________________________ J 

324 



CAUTION: Register 14 contain~ a return address and must not be altered 
by the user written exit routtne. If any control program operations are 
requested by the user while in the exit routine, the user must preserve 
the contents of register 14 and restore the contents before issuing the 
RETURN rna cro- i nst:ruction. 

DATA CONTROL BLOCK EXIT ROUTINE: The data control block exit routine is 
executed during t:he opening process after the job file control block has 
been used to supply information to the data control block. Each data 
control block exit routine must terminate with a RETURN macro
instruction. In this case, no return code is required. 

CAUTION: Refer t:o caution for label exits. 

Exit List Example: Table 42 illustrates a sample exit list. The 
symbolic addressE~s are those of the exit routines. 

Table 42. Exit List 
r--------T-----------T--------------T----------------------------------, 
I Name I Operat:ion I Operand I Comments I 
~--------+-------.----+--------------+----------------------------------~ 

Symbol DC X'03' Input user trailer label I 
I 

DC AL3(ITLBL) Routine address I 

r 
I 
I 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

X'Ol' 

AL3 (IHLBL) 

X' OS' 

AL3 (MYDCBXT) 

X'OO' 

AL3 (OHLBL2) 

X'02' 

AL3 (OHLBL1) 

x'04' 

AL3(OTLBL) 

X' 86' 

AL3(CKPT) 

Input user header label 

Routine address 

Data control block exit 

Routine address 

Inactive 

Routine address 

Output user header 

Routine address 

output user trailer label 

Routine address 

Checkpoint ( 06) at end of volume 
and last entry (80) 

Address 
block to 

of the data control 
be used to record the 

I checkpoint ________ ~ _______ . ____ ~ ______________ L _________________________________ _ 

I 

The following two exit routine examples show the relationship of the 
exit list to the RETURN macro~instruction. OHLBLl and MYDCBXT are entry 
points to the user's routines. The RETURN macro-instructions are used 
to return to the control program. 

Appendix D: Exit List Description 325 



OHLBLl 

BH 

RETURN 
EEQ RETURN 
MYDCBXT 

RETURN 

EEQ 

RC=O 
RC=4 

Entry point, output user header label routine 

Return to control program 
Return to control program 
Entry point, data control block exit routine 

Return to control program 

LABEL EXITS: Table 43 lists the label exits provided for BSAM and QSAM, 
and the times at which they are taken. The situations describing end of 
volumes include end of data sets for input data sets. 

Table 43. Label Exits 

r-------T------------------T-------------------------------------------, 
I I I Exits Associated With I 
I I ~---------------------T---------------------~ 
IOpt1 I I Old Volume I New Volume I 
I of I Exit I (user trailer labels) I (user header labels) I 
I OPEN I Situations ~----------T----------+----------T----------~ 
I I I Input I Output I Input I Output I 
I I I Exit 3 I Exit 4 I Exit 1 I Exit 2 I 
f--------+------------------+----------+----------+----------+----------~ 
IINPUT IUser issues OPEN I I I X I I 
I or I I I I I I 
IUPDAT IUser issues FEOV I I I X1 I I 
I or I I I I I I 
IINOUT IAt end of volume I X I I X I I 
I (no I I I I I I 
Iwrites)IAt end of data setl X2 I I I I 
~------·-+------------------+----------t----------t----------+----------~ 
IOUTPUT IUser issues OPEN I I I I X I 
I or I I I I I I 
IOUTIN IUser issues CLOSE I I X I I I 
I or I I I I I I 
IINOUT IUser issues FEOV I i X I I X I 
I (one or I I I I I I 
Imore IAt end of volume I I X I I X I 
I writes') I I I I I I 
~----_-_-+------------------+----------L----------+---_______ L __________ ~ 
I I I (user header latels) I (user trailer labels) I 
f--------+------------------t----------T----------t----------T----------~ 
IRDBACK IUser issues OPEN I I I X I I 
I I I I I I I 
I I User issues FEOV I I I X1 I I 
I I I I I I I 
I IAt end of volume I X I I X I I 
I I I I I I I 
I IAt end of data setl X2 I I I I 
~------.-L __________________ L __________ L _ _________ .L __________ L __________ ~ 
I 1 Exi·t taken if not at end of data set I 
I 2 Exi't taken before user's end-of-da ta set routine is entered. I L ______ • ________________________________________________________________ J 

326 



APPENDIX E: SECONDARY STORAGE STANDARD LABEL FORMATS 

The System/360 Operating System uses several groups of standard 
labels to identify tape and direct-access volumes and the data sets they 
contain on secondary stora:ge. The labels are used to locate the data 
sets and are identified and verified by the label processing routines. 

STANDARD MAGNETIC TAPE LABELS 

All standard tape labels are 80 character records. They are written 
in extended binary coded decimal interchange code (EBCDIC) on nine track 
tape units and in binary coded decimal (BCD) on seven track tape units. 
In binary coded decimal, even parity is used. The tape label is 
recorded in the same density as the data on the tape. 

The following label groups are included: 

• Volume label group. 
• Data set header label group. 
• User header label group (,optional). 
• Data set trailer label group. 
• User trailer label group (optional). 

VOLUME LABEL GROUP 

A volume label group is composed of an initial volume label and up to 
seven additional volume labels. The initial volume label identifies a 
volume and its owner, and is used to verify that the correct volume is 
mounted. It can also be used to prevent use of the volume by 
unauthorized programs. 

Additional volume labels are processed by an installation supplied 
routine .. 

Initial Tape Volume Label Format 

Field 1 2 3 4 5 6 7 8 9 

r---T-T----T-T-------T-------T-------T-------T----------------, 
I I I 11111 212 313 414 515 81 

Position 11 31415 01112 112 112 112 112 01 L ___ ~_~ ____ ~_~ _______ ~ _______ ~ _______ ~ _______ L_ _______________ J 

Length 3 1 6 1 10 10 10 10 29 

Field #1 - Label Identifier. The contents of this field, the characters 
VOL, indicate that this is a volume label. 

Field #2 - Label Number. This field identifies the relative position of 
the volume label in a volume label group. It is written as 1. 

Appendix E: Secondary Storage Standard Label Formats 327 



Field #3 - Volume Serial Number. This field contains a unique 
identification code. The identification code is assigned when the 
volume enters the system. It can be placed on the external surface 
of the volume for visual identification. The field is normally 
numeric (000001-999999), but may be any six alphameric characters. 

Field #4 - Volume Security. This field is reserved for future use by 
installations that wishes to provide security at the volume level. 

Field #5 - Data Set Directory. This field is currently not used for 
tape volume labels,. It will be blank. 

Field #6 - Reserved for Manufacturers. This field is reserved for 
future standardization purposes. It will be blank. 

Field #7 - Reserved. This field is reserved for future developmental 
purposes. It will be blank. 

Field #8 - Owner Name and Address Code. This field contains a unique 
identification of the owner of the volume. 

Field #9 - Reserved. This field is reserved for future developmental 
purposes. It will be blank. 

Additional Volume Labels Format 

1 2 3 
r---T-T-------------------------------------------------------'1 
I I I 81 

Position. 11 31415 01 L ___ ~_L _______________________________________________________ J 

Length 3 1 76 

Field #1 - Label Identifier. The contents of this field, the characters 
VOL, indicate that this is a volume label. 

Field #2 - Label Number. This field identifies the relative position 
(2 to 8) of the volume label in the volume label group. 

Field #3 - User Specified. 

DATA SE'I' HEADER LABEL GROUP 

The data set header label group consists of two labels (HDRl and 
HDR2) written in the format shown below. 

Data set Header 1 Label Format -------

Field 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
r---T-T------T----T---T---T---T--T----T----T-T----T------T----' 
I I I 212 212 313 313 31441 4 414 51515 61 6 717 81 

Location 11 31415 112 718 112 516 910112 718 31415 011 314 01 
L ___ L_L ______ L ____ L ___ L ___ ~ ___ L __ L ____ ~ ___ L_L ____ L ______ L ____ J 

Length 3 1 17 6 4 4 4 2 6 6 1 6 13 7 

328 



Field #1 - Label Identifer. The contents of this field, the characters 
HDR, indicate that this is a data set header label. 

Field #2 - Label Number. This field identifies the relative position of 
the data set label in the data set label group. It is written 
as 1. 

Field #3 - Data Set Identifier. This field identifies the data set. 

Field #4 - Data Set Serial Number. This field contains the same 
identification code that appears in field #3 of the initial volume 
label of the only, or first, volume of the data set or mUlti-data 
set aggregate. 

Field #5 - Volume Sequence Number. This field indicates the volume on 
which the data set is recorded in relation to the volume on which 
the data set begins. 

Field #6 - Data Set Sequence Number. This field indicates the position 
of the data set in relation to the first data set in the aggregate. 

Field #7 - Generation Number. This field indicates the generation 
number (0000-9999) of the data set .• 

Field #8 - Version Number of Generation. This field indicates the 
version of a generation of the data set. 

Field #9 - creation Date. The contents of this field indicate the year 
and the day of the year the data set was created. It is recorded 
as bYYDDD, 110lhere YY is 00-99 and DDD is 001-366. 

Field #10 - Expiration Date. The contents of this field indicate the 
first day the tape may be overwritten. It is recorded as bYYDDD. 

Field #11 - Data Set Security Indicator. This field indicates whether 
additional qualifications must be supplied in order to process the 
data set. J~ 0 indicates that no additional qualifications are 
required. A 1 indicates that additional qualifications are 
required. 

Field #12 - Unus1ed. This field contains zeros. 

Field #13 - Syst1em Code. This field contains a unique identification of 
the programning system. 

Field #14 - Reserved. This field is reserved for 
ardization. --rt is blank. 

future stand-

Appendix E: Secondary storage standard Label Formats 329 



Data Set: Header 2 Label Format 

Field 123 4 5 6 1 8 9 

r---T-~~---~---T-T-T------------T--------------------------, 
I I I I 111 1111111 313 81 

Position 11 3141516 011 5161718 415 01 L ___ ~_i_i ____ i ____ ~_i_i ____________ ~ _________________________ J 

Length 3 1 1 5 5 1 1 17 46 

Field #1 - Label Identifier. The contents of this field, the characters 
HDR, indicate that this is a data set header label. 

Field #2 - Data Set Label Number. This field identifies the relative 
position of the data set label in the data set label group. It is 
written as 2. 

Field #3 - Record Format. 
records as follows: 

This field indicates the format of the 

F .. fixed length 
V - variable length 
U - undefined length 

Field #4 - Fecord Length. This field 
records: interpretation of this 
spE~cified in field #3, as follows: 

indicates the 
field depends 

length of the 
on the format 

Form F - block length 
Form V - maximum block length 
Form U - five high-order digits of a ten-digit field Cfields 4 and 

5 denote maximum block length) 

Field #5 - plocking Factor/Block Size. 
inq factor or block size, depending 
field #3, as follows: 

This field indicates the block
on the format specified in 

Form F - blocking factor 
Form V - maximum logical record length 
Form U - five low-order digits denoting the maximum block length 

Field #6 - Density. This field indicates the tape density as shown in 
Table 44. 

Table 44. DEN Values 
r---------------T-------------------------------------------------, I I Tape Recording Density Cbits/inch) I 
I ~---------------------------------T---------------~ 
I DEN Value I Model 2400 I I 

I ~----------------T----------------~ Model 7340 I 
I I 1 Track I 9 Track I I 

~-.--------------+----------------+----------------+---------------~ 
I 0 I 200 I I 1511 I 
I 1 I 556 I I 3022 I 
I 2 I 800 I 800 I I L_. ______________ ~ ________________ J. _______________ _J. _______________ J 

Field #7 - Data Set Position. This field indicates whether a volume 
switch" has previously occurred for the data set. If a volume 
switch has occurred" 1 is written. If no volume switch has 
occurred, 0 is written. When the tape is read backwards, this 
in:Eormation indicates when a volume switch is required. 

330 



Field #8 - Job/,Job Step ID. :This field indicates the job and job step 
identificat.ion that w~s assigned by the task scheduler. It 
provides specific time-dependent identification of the data set 
created by the operating system. 

Field #9 - Rese~ved. 
It is b1ank-.• -

This field is reserved for future requirements. 

USER HEADER LABEL GROUP 

Up to eight user header l~bels can follow the data set header label 
group. The 1albe1s are wrj;tten by the operating system as directed by 
the problem program that records the data set. 

When the data set is retrieved, the user header label group is made 
available to thE! problem program by the operating system. 

User Header LabE!l Format 

Field 1 2 3 
r---T-'·-------------------------------------------------------, 
I I I 81 

position 11 31415 01 L ___ ~_J _______________________________________________________ J 

Length 3 1 76 

Field #1 - Label Identifier. The contents of this field, the characters 
UHL, indicate that this is a user header label. 

Field #2 - Label Number. This field identifies the relative position 
(1 to 8) of the label within the user label group. 

Field #3 - User Specified. 

DATA SET TRAILEH LABEL GROUP 

The data set trailer label group consists of two labels written in a 
format identical to the data set header labels except for the following 
fields: 

Field #1 - LabeJL Identifier. The contents of this field indicate that 
this is a data. set trailer label and marks an end of volume (EOV) 
or an end of data set (tOF). 

Field #2 - Label Number. This field indicates that the label is the 
first (1) or second (2) data set trailer label. 

Field #12 - Block Count. This field of the data set trailer 1 label 
indicates 1:.he number of blocks on the data set or on the current 
volume of a multivolume data set. 

Appendix E: Secondary Storage standard Label Formats 331 



USER TRAILER LABEL GROUP 

Up to eight user trailer labels can follow the data set trailer label 
group. Processing of user trailer latels is as described for user 
header labels. They are written in a format identical to the user 
header labels except for field #1, which is written as UTL. 

DIRECT-ACCESS VOLUME LABELS 

All direct-access volume labels are written in extended binary-coded
decimal interchange code (EBCDIC). The following label groups are 
written: 

• Volume label group. 
• Data set control block group. 
• User header label group (optional) '. 
• User trailer label group (optional). 

VOLUME LABEL GROUP 

A volume label group 
seven additional volume 
volume and its owner, 
mounted. It can also 
unauthorized programs. 

is composed of an initial volume label and up to 
labels. The initial volume label identifies a 
and is used to verify that the correct volume is 

be used to prevent use of the volume by 

Additional volume labels are processed by an installation-supplied 
routine. 

The format of the direct-access volume label group is the same as the 
format of the tape volume label group, except for field #5 of the 
initial volume label. This field contains the address of the volume 
table of contents (VTOC) of the direct-access volume. 

DATA SET CONTROL BLOCK GROUP 

The data set label of a data set on a direct-access volume consists 
of the data set control block (DSCB). The DSCB appears in the volume 
table of contents (VTOC) and contains the equivalent of the tape data 
set header and trailer information, in addition to space allocation and 
other control information. 

USER HEADER AND TRAILER LABEL GROUPS 

Up to eight user header labels and eight user trailer labels may 
appear on a single track, which is allocated for this purpose when the 
data set is created. The processing and format of these labels is the 
same as described fur tape user labels. 

332 



APPEN~IX F: CONTROL CHARACTERS AND SYSOUT WRITER 

CONTROL C HARACT]~RS 

As an optional feature f all record formats may include a control 
character in each logical record. This control character will be 
recognized and processed by QSAM and BSAM if a data set is being written 
to a printer or punch. 

For format-Ii' and -U records this character is the first byte of the 
logical record. 

For format-V records it must be the fifth byte of the logical record, 
immediately following the logical record length field. 

Two options are available. If either option is specified in the data 
control block, -the character must appear in every record and other line 
spacing or stacker selection options also specified in the data control 
block are ignored. 

MACHINE CODE 

The user can specify in the data control block that the machine code 
control characber has been placed in each logical record. If the record 
is to be wri t"ten, a byte supplied by the user must contain the command 
code bit confi~~uration specifying both the write and the desired 
carriage or s"tacker select operation. If the record is not to be 
written, the by"te supplied by the user can specify any command other 
than write. 

Command cod'es for speci.fic devices are contained in IBM System 
Reference Library publications describing the control units or devices. 

EXTENDED ASA CODE 

The 
code. 

user may choose to specify this code rather than the machine 
For punch operations, the record is always written. 

The code is as follows: 

SP 
o 

+ 
1 
2 
3 
4 
5 
6 
7 

Interpretation 

Space one line before printing (blank code) 
Space two lines before printing 
Space three lipes before printing 
Suppress space before printing 
Skip to channel 1 
Skip to channel 2 
Skip to channel 3 
Skip to channel 4 
Skip to channel 5 
Skip to channe'l 6 
Skip to channel 7 

Appendix F: Control Characters and SYSOUT writer 333 



8 Skip to channel 8 
9 Skip to channel 9 
A Skip to channel 10 
B Skip to channel 11 
C Skip to channel 12 
V Select punch pocket 1 
W Select punch pocket 2 

These codes include those defined by ASA FORTRAN. If any other code is 
specified, it is interpreted as SP or V, depending on the device being 
used; no error indication is returned to the user. 

SYSOUT ~ffiITERS 

Data definition statements defining output data sets can specify 
SYSOUT processing. The functions provided by SYSOUT are discussed in 
the publication IBM System/360 Operating System: Operator's Guide, Form 
C28-6540. 

SYSOUT data sets are usually intended for unit-record devices and 
must have sequential organization. The programmer uses the OPEN and 
CLOSE macro-instructions in the usual fashion, specifying e~ther the 
basic sequential access method (BSAM) or the queued sequential access 
method (QSAM). In systems without output writers, problem programs 
usually write SYSOUT data sets directly to unit-record devices. The 
type of device involved for any particular execution of a problem 
program is determined by the DD statement that defines the data set for 
that execution. To ensure that a data set will always be eligible for 
SYSOUT disposition, the user should open it in a device-independent 
manner, so that a DD statement will have the freedom to specify the 
appropriate device type. This requires that the DEVD operand in the DCB 
macro-instruction reserve the largest device-dependent area. 

The logical records can be written in any format defined for the 
particular combination of access method and device type involved. These 
definitions are discussed under nAccess Methods for Sequential Data 
Sets n in the publication IBM System/360 Operating System: Data 
Management. In all systems, the logical record length must never exceed 
the maximum allowable for the uni t.-record device on which the data set 
will ultimately be written. Output writers punch only the EBCDIC mode. 

The problem program is responsible for any formats, pagination, or 
header control. control character usage is specified in the usual 
manner by the user (DCB macro~instruction or alternate source). If no 
control characters are used, in systems having output writers, a 
standard control is supplied; with printers, for example, the output 
writers will single-space and skip to channel 1 when channel 12 is 
sensed, 'while for punches stacker 1 is selected. 

334 



APPENDIX G: STANDARD STATUS INFORMATION 

The standard status indicators provided on entry to the SYNAD routine 
are arranged in main storage as follows: 

Location + 2 bytes 
+ 3 bytes 
+ 8 bytes 

sense byte 1 
s~nse byte 2 

+ 9 bytes (CSW) 
+ 12 bytes (CSW) 
+ 13 bytes (CSW) 
+ 14 bytes (CSW) 

fi;rst byte of channel 
status word (CSW) 
command address 
status bytes 1 (unit) 
status bytes 2 (channel) 
count field 

The address, location, is provided either in the data event control 
block or a register. 

The first six bits of the first sense byte and the two status bytes 
are device independent and azje shown .below. (The additional bits of 
sense byte one! and all of sense byte two are device dependent" and the 
individual device manuals shduld be referred to.) 

Note: Sense byt.e 1 and 2 are meaningful only when bit 6 (unit check) of 
status byte 1 is: set. 

Sense (byte 1) 

Bit 
o Command reject 

1 Intervention 
required 

2 Bus out check 
3 Equipment chE!ck 
4 Data check 
5 Over run 

Status (byte 1) 

Bit 
o Attention 

1 Status modifier 

2 control unit end 
3 BUsy 
4 chqnnel end 
5 Device end 
6 unit check 
7 unit exception 

Status (byte 2) 

Bit 
o Program-controlled 

interruption 
1 Incorrect length 

2 Program check 
3 Protection check 
4 Channel data check 
5 Channel control check 
6 Interface control check 
7 Chaining check 

Appendix G: Standard Status Information 335 





ABEND macro-instruction 
action with ECB operand 91 
and abnormal termination dump 103 
and post codes 91 
description 102 
<also see subtask termination; STAE 

macro-instruction) 
Absexp (see absolute expression) 
Absolute expression 

defined 304 
examples of 304 
represented by absexp 18 
with implied and explicit addresses 

304-306 
with register notation 306 
(also see L- and E- forms of 

macro-instructions) 
Action 

function of TESTRAN macro-instructions 
243 

operand of CNTRL macro-inst:ruction 178 
Action macro-instructions (TESTRAN) 

247-257 
Actual addresses 

as feedback from BDAM 229-,231 
defined as MBBCCHHR 115 
result in unmovable data sets 115,184 
with QISAM 

Addr 

provided in load-mode 203 
used in scan-mode 208 

notation defined 17 
operand forms 303 
operand processing 309,310 
used with system macro-inst:ruction 18 
(also see expression; register 

notation; L- and E- forms of 
macro-instructions) 

Address constants 
A-type 

in overlay management 52 
resulting from operand processing 310 

V-type 
in overlay management 50,,51 

Addresses 
as output from TESTRAN TRACE FLOW 

285,288,289,290,292 
as parameters 12 
assigned to overlay segment:s 48 
at which SVC instructions are inserted 

by TESTRAN 244,260 
explicit 304,305 
implied 304 
of search arguments in BDAN 231 
of search arguments in QISAM 208 
passed in standard registers 27 
placed in parameter lists 12 
relative block 116,193,229,231,236 
relative track 116,173,193,231,232,236 
track 115 
when scatter loading with ,]~ESTRAN 

249,25.5 

(also see mnemonic; L- and E- forms of 
macro-instructions; and V-type address 
constants) 

Addrx 
notation defined 17 
operand forms 303 
operand processing 309,310 
used to same effect as register 

notation 306,313 
used with system macro-instructions 18 

Addx 
notation defined 17 
operand forms 303 
used with TESTRAN macro-instructions 

245 
Adval 

notation defined 17 
used with TESTRAN macro-instruction 245 

Alias 
as an entry point name 60,318,319 
ina partitioned organization directory 

184 
multiple aliases 318 
when processing a partitioned data set 

192,193 
Allocating 

buffer pools 
GETBUF macro-instruction 130 
GETPOOL macro-instruction 127 

storage 
GETMAIN macro-instruction 65,67 

subpools 
ATTACH macro-instruction 77 

tracks for BDAM data set 181 
Area 

cylinder overflow 195 
independent overflow 195 
pack 318-322 
save 

chaining 32-34 
contents 30-31 
use of 28,29,35,45,46 

(also see buffering) 
ASA code, extended 

(see codes) 
Assembler language 

as used by called program 35 
as used by overlay program 49,50 
CSECT statement in TESTRAN 244,247 
ENTRY statement 45,49 
expressions, review of 303-306 
SVC instruction 244 
table used by TESTRAN editor 

244,276,300 
Asynchronous exits 

and ABEND macro-instruction 104 
and PRTOV macro-instruction 154,177 
and RETURN macro-instruction 46 
and STIMER macro-instruction 108 
defined 26 
specified in SPIE macro-instruction 97 
to a called program 34 

Index 337 



Asynchronous operation 
and T'ESTRAN 254 
and W'AIT macro- instruction 89 
influence of CHAP macro instruction 85 
initiated by 

ATT'ACH macro-instruction 75,80 
SEGLD macro instruction 50 

restrictions requiring the use of ENQ 
and. DEQ macro-instructions 94 

with event control block 77,91 
ATTACH macro-instruction 

and address of subtask's TCB 80 
and load module attributes 322 
and use of private libraries 76 
contention for CPU 80 
description 75 
effect of EP or EPLOC operands 319 
effect of specifying ECB operand 

48,80,91 
restriction with TESTRAN 254 
(also see asynchronous operations) 

Attributes 
for TESTRAN data editing 

18,244~250,252,263,308 
of data 

implicit 252 
in assembler symbol table 244 
notation 308,309 
overriding 249 
scale 18,244,250,252,263,308,309 
type 244,252,263,308 

of data control block name fields 119 
of data sets 184 
of load modules 54,78,317 

Backward reading 
(see READ macro-instruction) 

BDAM (basic direct access method) 224-238 
BISAM (basic indexed sequential access 
method) 213-224 

Blank 
as a delimiter 36 
as AS,A code 333 
with 'TESTRAN editor 301 

BLDL macro-instruction 
description 190 
use with ATTACH macro-instruction 76 
use with STOW macro-instruction 193 

Blocks, control 
(see buffer pool control block; data 

event control block; data extent 
block; DCB macro-instruction; event 
control block; queue control block; 
and task control block) 

Blocks, data 
address in secondary storage 115,116 
count 331 
identification 173 
input of 

using BDAM 229-23~ 

using BSAM 164-165 
length defined in label 330,331 
output of 

using BDAM 233-237 

338 

using BSAM 166-167,179-182 
updating of 

using BSAM 167-168 

Braces 
defined 20 

Brackets 
defined 20 

Branch instruction 
as linkage 25,26,28 
using return codes 28 
with overlay structure 49,50 
(also see L- and E- forms of 

macro-instructions) 
BPAM (basic partitioned access method) 

182-194 
BSAM (basic sequential access method) 
155-182,334 

BSP macro-instruction 176 
Buffer (buffering) 

Control program provides address 
BDAM 230 
BISAM 219 
QISAM 209 
QSAM 141,144,147 

dynamic options 
in BDAM 234 
in BISAM 222 

lengths 
required in BISAM 221,222 
required in QISAM 199,206,207 
with chained scheduling 144 

obtained by 
BUILD macro-instruction 
dynamic options in BDAM 
dynamic options in BISAM 
GETBUF macro-instruction 
GETPOOL macro-instruction 

released by 

129 
225,230,234 
214,219,222 
130 

127 

FREEBUF macro-instruction 131 
FREEDBUF macro-instruction 223,238 
FREEPOOL macro-instruction 128 

required DCB macro-instruction operands 
BDAM 228 
BISAM 217 
BPAM 162 
BSAM 162 
QISAM 198 
QSAM 139 

reuse of BUILD macro-instruction 129 
Buffer acquisition 

(see buffer (buffering» 
Buffer pool control block 118,128 
BUILD macro-instruction 129 

(also see buffer (buffering» 

CALL macro-instruction 
and entry point identifier 34,49 
and LOAD macro-instruction 62 
and XCTL macro-instruction 60 
description 41 
in overlay management 48,49 
in passing control information 36 

Called program 
as a lower control level program 28 
conventions to be followed 34,35 
register contents when receives control 

28,29 
save area chaining examples 32,33 
save area requirements 30,31 
(also see SAVE and RETURN 

macro-instructions) 



Calling program 
as a higher control level program 28 
conventions to be followed 35 
passing control information 36 
register contents before relinquishing 

control 28,29 
save area requirements 30,31 
(also see CALL macro-instruction) 

Capacity 
of direct-access device track 114,115 
record, defined 115 

Card (read punch feed) 
and DEVD operand 

BSAM 159 
QSAM 137 

and RECFM operand 
BSAM 160 
QSAM 138 

CNTRL macro-instruction 15~5, 178 
control characters listed 333 
SYSOUT writers 334 

Catalog 116 
Cataloged procedure (see procedure) 
Chaining 

of input/output operations 142,144,336 
of save areas 32 

CHANGE control statement 
and TESTRAN output 249 

Channel 
address in MBBCCHHR 
skip in response to 

macro-instruction 
skip in response to 

334 

115 
CNTRL 

153,177 
control characters 

status word 143,171,335 
test for printer overflow 154,176 

CHAP macro-instruction 85 
Character 

const.ants 18,308,309 
control, unit record equipment 333 
EOR delimiter 161 

Check 
chaining 336 
channel control 335 
data 335 
interface control 335 
program 254,335 
unit 335 

CHECK macro-instruction 169,171,174,177 
Checkpoints 105-106 
CHKPT macro-instruction 105 
CLOSE macro-instruction 

description 124 
special use with BSAM 171 
tape positioning after execution 

125,172 
Closing, parallel 172 
CNOP instruction 13 
CNTRL macro-instruction 155,177 

(also see card) 
Code 

condition 
compared to control statement 48 
returned in BDAM 232 
returned in BISAM 219 
returned in QISAM 201 

extended ASA 333 
in CLOSE macro-expansion 124,126,172 

in exit list 323 
in OPEN macro-expansion 123 
machine 333 
operand of 

CNTRL macro-instruction 
DCB macro-instruction 
POST macro-instruction 
SETL macro-instruction 

155,177 
136,158 

93 

post 48,91,93 
return 28,35,48,54,91,324 
task completion 48 
to specify TESTRAN editing 

250#252,255,260,301,308 
to specify TESTRAN service 

Coded values 16,18,19,303 
in TESTRAN 245 

Comma 
delimiter 14~36,307 

Communications 
between tasks 

208 

245,316 

(see ATTACH macro-instruction POST 
macro-instruction; and RETURN 
macro-instruction) 

by return codes 
(see code) 

using registers 
(see registers) 

Completion flag 91 
(also see code) 

Concatenation number 190,191 
COND parameter 

(see EXEC and JOB statements) 
Condition 

assigned to TESTRAN flag 268 
error 

(see data event control block; exit) 
overflow 

(see PRTOV macro-instruction) 
wait 94.,95 

Console 39,308,314 
Constants 

characters 308,309 
(also see address constants) 

Content directory 318-320 
Control, contents 317 
Control area, program interruption (PICA) 

35,98-101 
(also see asynchronous exits) 

Control blocks 
(see data event control block; DCB 

macro-instruction; event control 
block; and task control block) 

Control program 
functions of 38 
options for 39-40 

Control section 
with overlay 49 
with TESTRAN 244,247 

Conventions 
for coding operands 20 
for dummy control section 119 
for linkages 34,35 

Count 
field in status indicators 335 
in TESTRAN editing 301 
of control information passed 36 
responsibility, for a module 320 
(also see block) 

Index 339 



Count operand 
as a NOP 92 
of Wl~.IT macro-instruction 89 
of WAITR macro-instruction 93 

Counter 
location 260,304,305,306 
program-testing 269 

Creatinq 
a direct organization data set 
a sequential organization data 
an indexed sequential data set 
labels, exits when 324 
master indexes 195 

Creating and attaching a task 75 
CSECT instruction 

(see control section) 

Data, b~st 243 
editing 243,244,249,250 
identifying numbers for 247 
recorded 250,252,254 

Data chaining 
(see chaining) 

Data control block <DCB) 
(see DCB macro-instruction) 

Data definition statement 
(see DD statement) 

Data event control block (DECB) 
format in BDAM 229 
format in BISAM 218,219 
format in BSAM 164 

155 
set 

194 
148 

moving address of BDAM key field 235 
with L- and E-forms of 

macro-instructions 316 
Data e~:ent block 243 
Data sets 

concatenation of 190 
partitioned 

creation and accessing of 182-194 
directory for 60,76,190 
us~~ of 317,318 

(also see libraries; member) 
Date 

from TIME macro-instruction 107 
in label fields 329 

DCB macro-instruction 
general description 117,118 
in BDAM 225 
in BISAM 214 
in BPAM 186 
in BSAM 156 
in QISAM 194,204 
in QSAM 134 
in Q~[,AM 239 
modification of control block 119 

DCB operand 
in A~[,TACH 76 
in LINK 53,55 
in LOAD 61 
in XCTL 58 

DCBD macro-instruction 119,120 
DD statE~ment 117, 12~ 
Decimal integers 250,285,301,307,308,327 
DELETE macro-instruction 

description 62 
used with LOAD macro-instruction 

60 1,320,321 
Deletion code 195,210,212 

340 

Density, tape 158 
DEQ macro-instruction 

description 96 
used with ENQ macro-instruction 

94,95,321 
Description record, track 115 
DETACH macro-instruction 

description 84 
used with ATTACH macro-instruction 80 
used with LOAD macro-instruction 

320,321 
Diagnostic message 

(see messages) 
Direct-access 

devices 
actual address 115 
control unit 223 
relative address 116 
work queue 39 

restrictions with BSP macro-instruction 
176 

volumes 
labels 327.,332 
positioning 123,171 

Directory 
contents 318-321 
for work queue 39 
of a partitioned data set 60~76,190 
(also see alias; BLDL macro-instruction; 

and IDENTIFY macro-instruction) 
DUMP macro-instruction 

DUMP CHANGES 
description 249 
edited 250 
limit 275 
output format 277 
truncation 249 

DUMP COMMENT 
description 253 
output format 281 

DUMP DATA 
description 
output format 

DUMP MAP 
description 
output format 

DUMP PANEL 
description 
output format 

DUMP TABLE 

247 
277 

251 
279 

252 
280 

description 251 
output format 279 

Dynamic 
testing 243,300 
(also see buffer; and dynamic program 

management) 
Dynamic program management 38,317 

Edit 
errors found during 294 
required statements 300,301 
restrictions 275 
test data 243,244,250,298 
(also see editor) 

Editor 
linkage 48,300,301,317 
TESTRAN 243,244,249,300,301 



Elements 
program interruption (PIE) 99-101 
queue (QE) 94-96 

Ellipsis 20 
Embedded entry point 63 
END operand 250,254,255 
End of task 210,260 
End-of-data-set exit 

(see exit) 
End-of-volume 

condition 116,171 
indication 331 
routine 116,117,123 
(also see exit) 

ENQ macro-instruction 94,95 
use with library module 321 

Entry 
equivalence of name and identifier 45 
linkage 26 
operand 62 
poirit 26,28,49,54#60,62,318,321 
point identifier 34,45 
point name 49,60,62,318 
point register 28 
statement 45,49 
(also see alias) 

Equal sign 36 
Error analysis 

aftel:- CLOSE macro-instruction 125 
after OPEN macro-instruction 124 
BDAM 232 
BIS.M~ 219 
BPAM 170,190,193 
BSAM 170,171,174 
QISAM 201 
QSAM 141,142,146 
standard status indicators 335 
TESTRAN 243,268,269,275 

Error messages 275,292#294 
Error recovery 

using a GO BACK macro-instr'uction 268 
using a SET VAR.IABLE macro-instruction 

269 
ESETL macro-instruction 209 
ETXR operand 77 

(also see exit) 
Even parity 158,327 
Event control block (ECB) 

effect upon subtask termina.tion 80 
format 91 
operand in ATTACH macro-instruction 

48,77 
use in BDAM 229 
use in BISAM 218 
(also see ABEND macro-instruction; ETXR 

operand; and POST macro-i.nstruction) 
Exceptional condition handlin<;;r 38,100 

(also see error analysis; error 
recovery) 

EXEC statement 36,48~300,301 
Execution 

of a BAL or LPSW instruction 26 
of a calling sequence 35 
of L- and E-form macro-inst:ructions 312 
of TESTRAN 307 

and the assembler program 300 
of an inserted SVC instruction 244 
time conserved 243 

resumption of 
after LINK macro-instruction 54 
after RETURN macro-instruction 46 
after WAIT macro-instruction 91 
after XCTL macro-instruction 36,316 

(also see communications) 
Exit 

and ABEND macro-instruction 
and overlay segments 49 
conventions 45 
DCB 117,119,123#325 
end of data set (EODAD) 118,119,169 
end of volume 116 
EXTR 45 
label 123,171,324,326 
linkage 26 
list 

construction 323 
sample 325 

specify in SPIE macro-instruction 100 
specify in STAE macro-instruction 45 
specify in STIMER macro-instruction 45 
system routine 100 
(also see asynchronous; synchronous) 

Expanding macro-instructions 11,12 
Explicit address 305,306 
Expressions 

absolute 306 
relocatable 304 

Extended binary coded decimal interchange 
code (EBCDIC) 327,332 

Extended search option 230,234 
External 

name 49 
storage 243 
symbol 50,249,263,305 
symbol dictionary (ESD) 301 

EXTR operand 77,80 
(also see ABEND macro-instruction; 

asynchronous exit) 
EXTRAC~ macro-instruction 87-88 
EXTRN statement 304,305 

Feedback 
from NOTE macro-instruction 173 
with BDAM 230,231,234,236 
with QISAM 195,208 

FEOV macro-instruction 127 
FIND macro-instruction 189 
FLAG 

completion 93 
logical, in TESTRAN 263,268,269 
wait 91 
(also see SET macro-instruction) 

Floating-point registers 35,252,307 
Format 

-F records 152,158,161,164,171,187,231, 
235,236,,333 

-U records 
142,146,158,161#171,187,235,333 

-v records 161,235,333 
of build list 190 
of data event control block 

BDAM 229 
BISAM 218 
BSAM 164 

of event control block 91 
of exit list 325 

Index 341 



of labels 331,332 
of macro-instructions 13-21 
of program interruption control area 99 
of program interruption element 99 
of queue control block 95 
of test data 243-245,249 
of tracks 114 

FREEBUF macro-instruction 131 
FREEDBUF macro-instruction 

described for BDAM 238 
usage 230,236 

described for BISAM 223 
usage 213,221 

FREEMAIN macro-instruction 71,72,83 
FREEPOOI. macro-instruction 128 

GET macro-instruction 
for QISAM 

locate mode 209 
move mode 210 

for QSAM 
locate mode 141 
move mode 143 
substitute mode 144 

for QTAM 241 
GETBUF macro-instruction 130 
GETMAIN macrq-instruction 

described R-form 65 
described S-form 67 
used with ATTACH macro-instruction 81 

GETPOOL macro-instruction 127 
GO macro-instruction 

GO BACK 244,267 
to alter program flow 268 

GO IN 266 
GO OUT 267 
GO TO 265 

Heading, standard page 275,277 
High-order bits 

as end of variable list 36,223,224 
in CLOSE parameter list 126,172 
in FREEMAIN macro-instruction 71 
in GETMAIN macro-instruction 67 
in OPEN parameter list 123 
in program interruption control area 99 
STOW macro-instruction 194 
use in register notation 18 

Hyphen 17 

Id 
block field 115 
label field 331 
macro 247,294,298 
operand 44,54 
(also see CALL macro-instruction; 

entry; ) 
Identification 

of data blocks 
BDAN 229,231 
BPAM 193 
BSAM 173,174 

of job and job step 331 
of macro-instruction 290,294 
of programming system 329 
of volume owner 328 

Identifier 
data set 328 

342 

label 327,330~331 
(also see CALL macro-instruction; entry: 

and id) 
Identify macro-instruction 

description 63 
usage 54,60,318~321 

Implied 
address 304,306 
attributes 276,,308,309 
volume positions 171 
(also see addrx) 

Inclusive 
branch 50 
segments 50 

Indexed 
implied address 307,314 
sequential access method 

(see BISAM; QISAM) 
Indexes for data sets 

levels of 197 
Indicators 

end-of-data 116,235 
standard status 164,169,171,335 
(also see exit; synchronous) 

Information, standard status 143,335 
Integer 17 

TESTRAN register notation 307 
TESTRAN value mnemonics 245 

Interface 
input/output status indicator 335 
linkage responsibilities 34,35 

Interpreter 
see TESTRAN 243,244,260,263,265,267 

Interruption 
control area 35,99,100 
element 99,100 
masks 100 
requested through 

SPIE macro-instruction 97 
STIMER macro-instruction 108 

SVC 25,26,244 
TESTRAN 244,260 

Interval 

Job 

counter 263 
timer 108,111 

control statements 
EXEC 36,48,300 
JOB 48 

file control block 325 
identification 331 
library 55,62,76,190,317,319,320 
pack area 318,319,320 
scheduler 46,48 
scheduling 39 
step 36,39,46,48,60,93,99,243,244,277, 

300,317 
stream 32,39 

Keyword operand 36,303 
(also see L- and E-forms of 

macro-instruction) 

L instruction 
(see load instructions) 

L- and E-forms of macro-instructions 
described 312-316 



MF operands 313 
restrictions on value mnemonics 315,316 
SF operands 

in ATTACH macro-instruction 83-84 
in LINK macro-instruction 55-56 
in XCTL macro-instruction 59-60 

LA instruction <see load instructions) 
Labels, non-standard 173,174 
Labels, standard 

data set control block group 332 
data set header 328-331 
data set trailer 331 
direct-access volume 332 
formats 327-332 
in end-of-data-set determination 116 
user header 331,332 
user trailer 332 
volume 327-329,332 

Languages 
assembler 303-311 

expressions in macro-ins1:ructions 303 
in linkages 35 
<also see instructions by name) 

job control 
to pass parameters to a program 36 
use in jobs containing TESTRAN 

testing 300 
<also see statements by name) 

Length 
block 171,330 
of BISAM area 221 
of buffers 118,199,205,216,227 
of comment specified by TESTRAN 

macro-instruction 308 
of key 187,197 
of message specified by supervisor 

macro-instruction 308 
of parameter lists 54,76 
of record zero in standard track 115 
of records 330,334 

(also see control blocks'I' data) 
overriding 219,223 
wrong length indication 161 
(also see attributes) 

Level, control of programs 28,32-34 
affect on RETURN macro-ins1:ruction 

46,48 
Level, index 

(see indexes for data sets) 
Libraries 48~76,317-321 

job 317,319,320 
link 317,318,319,320 
private 317,319,320 
use in dynamic program management 317 

Line 
output, in TESTRAN traces 290,292 
printer 177,178,308,333 

Link library 
(see libraries) 

LINK macro-instruction 52-56 
in connection with traces 254 
to specify calling sequencE~ identifier 

34 
use of 26,32,33 
use of in dynamic program management 

322 
Linkage editor 

affect of CALL macro-instruction on 

linkage editing 62 
job control statements for 300 
only loadable modules 54 
overlay programs 48-52 
specification of reusability attributes 

317 
TEST option in EXEC statement for 301 
use in TESTRAN testing 243,244,249 

Linkage registers 
(see registers) 

Linkages 
affect on TESTRAN traces 254 
conventions 24 
direct 244 
interfaces for 34-36 
macro-instructions for 38 
registers for 27-28 
return 26~32~50,141 
supervisor-assisted 26#28,38,244 
terminology 24 
type I, II, III and IV 

25-26,28,34-36,244,321,322 
uses of 60,244,321-322 

List, build 190 
List, exit 118,123~323-326 
List, parameter 

fixed length 54,76 
formed from sublists 76 
in data event control block 164,218,229 
location of 36,55 
registers for 27~28,35,306 
remote 60,309-316 
types 

problem program 
28,55,60,76~306,310,311 

supervisor 28.55,60 
variable length 36,54,76 

List entry 53,57.61,62,76,319 
Literal 263~304,306 

notation 309,310 
pool 35 

Load instruction (load rL)~ load address 
(LA), and load register (LR» 

in L- and E-form macro-expansions 312 
in macro-expansions 28,307,310,311 
to set-up special register notation 

143,148 
used with explicit addresses 305 
used with implied addresses 305 

LOAD macro-instruction 60-62 
in connection with CALL 

macro-instruction 62 
in connection with DELETE 

macro-instruction 62-63 
in connection with LINK 

macro-instruction 54,322 
use of in dynamic program management 

320-321 
Load module 

(see module) 
Load program status word (LPSW) 
instruction 

in synchronous exit 26 
Loading of modules 

as affected by priority 80 
asynchronous 75-84 
scatter 249,255 
synchronous 52-62 

Index 343 



Lower-case letters 17 
LR instruction 

(see load instructions) 

Machine language 
(see codes) 

MACRF operand 
Macro-definition 316 
Macro-expansion 

contents of, for LINK macro-instruction 
54,55 

of L- and E-form macro-instructions 
312,,313 

of supervisor and data management 
macro-instructions 11 

of TESTRAN macro-instructions 
12,244,245 

Macro-instructions 
description of 37 
format of 13-21 
types of 

R-type 71,307,310,311,313 
S-type 22,307,309-315 

(also see by name) 
Magnetic tape 

(see tape) 
Main storage 

allocation 65,67 
cons e:rvation with 

overlay 48 
reenterable coding 318 
TEs'rRAN 259 

management 65-74 
pack areas 318 
release 71,72 
references to 249,273 
TESTRAN 

map of 271 
ranqe of dump 247 
range of trace 253,255,256 

Mark, tape 116,176,178 
MBBCCHHR 

(see actual addresses) 
Member 

acquisition of 182-194,317-319 
alias for 193 
name 60 

adding, changing, deleting., or 
replacing of 192-194 

use of 317-319 
obtaining address of 190-192,193 

Messages 
error 249,255,275,276,292,294 
telecommunication 242 

prefix of 242 
type of 242 

to computing system operator 
111·-113,314,316 

to log 113 
Metasymbols 20-21 
Method, access ~14,117,118 

(also see BDAM, BISAM, BPAM, BSAM, 
QISAM, QSAM and QTAM) 

MF operands 
(see L- and E-forms) 

Mnemonics 
in conjunction with operation codes 316 

344 

in TESTRAN macro-instructions 245,252 
value 16-18,303,308,309,313,315 

Mode 
load, in QISAM 194-204 

buffer requirements 199 
in connection with SYNAD routine 203 
use of 194 

locate-, in load-mode QISAM 195 
locate-, in scan-mode QISAM 205,210,212 
move-, in load-mode QISAM 195 
move-, in QSAM 144 
move-, in scan-mode QISAM 205,210 
scan, in QISAM 204-213 

Modules 
load 

in dynamically loaded programs 
26,32,54,60-62,76-80 
acquisition of 318-320,322 
containing identified entry points 

321 
deletion of 62-63 
linkage of 38 
packing of 318 
references to 318 

in overlay programs 48 
in programs being tested using 

TESTRAN 300.,301 
reusability attributes of 317 

non-reusable 321 
re-enterable 315,317,320-322 
serially reusable 244,317,320-322 

object 
external names in 45 
in programs being tested using 

TESTRAN 301 

Nonreusable 
(see modules> 

NOTE macro-instruction 172-173 
in relation to BSAM BSP 

macro-instruction 176 
used with BSAM POINT macro-instruction 

174 

Object module (see module) 
Only loadable (OL) 54 
OPEN macro-instruction 122-124 

operands permitted with BDAM 225 
operands permitted with BPAM 182 
operands permitted with BSAM 

156,173,174 
operands permitted with QSAM 133 
purpose of 117 
use of 155,171-172,194,203,212 
use with SYSOUT writers 334 

Opening 
of job and link libraries 76 
parallel 123 

Operands 18,303-311 
forms of 303 
in L- and E-forms of macro-instructions 

312-316 
processing of 309-311 
representation of 16 
requirements for, ordinary and special 

315-316 
sublist 15,306,313 
types of 14-15 



keyword 14 
positional 14,303,314 

(also see format of macro-instruction) 
Operation 

asynchronous 91 
input/output 

(see GET, PUT, READ, and WRITE 
macro-instructions) 

of programs 38 
of tasks 39 
of TESTRAN 244 
parallel 34,317 

Operator, computing system 
conununication with 93,105.,111-113,314 

Operator, relational 263 
OPSW 

(see program status word) 
Option 

alias 193 
assembler 300 

symbol table 300,301 
buffer 123,227 
control program 39-40,318-322 

effect on macro-instructions 54,93,94 
delete 195,210 
error 141,143 
exclusive 234 
exit list 323 
extended search 230,234 
feedback 236 
line spacing 333 
linkage editor 301 
stacker selection 161,333 
TESTRAN editor 301 
trailer label 327,332 

Optional value 14 
rules for 36 

Output, system 
(see writer) 

Out pu t, t es t 243, 249" 2 5 5 
example of 294-299 
formats of 275-294 

Overflow 
cylinder 195,197 
independent area 195 
printer carriage 155,176-177 
record 210 
track 137,160,176,187,226,231,236 

Overlay 
branch instructions 49,50 
SEGLD macro-instruction 50 
SEGWT macro-instruction 51 
through CALL macro-instruct:ion 48,,49 
when using TESTRAN 254,273,274 
(also see path; segment) 

Overlay programs 48-52 
Overriding 

data attributes 249 
length 219,223 

Pack 
(see area) 

Paper tape 
(see tape) 

PARAM operand 54,55,60,76,316 
Parameter list 

(see list) 

Parameters 12-13 
assembled 304,306 
in data control block 118 
loading responsibilities 306 
packed 23-24 
passing from control statements to 

program 36 
passing from one program to another 

28,35 
problem program 55 
supervisor 55 

passing from problem program to 
supervisor 28 

<also see list) 
Parentheses 20 
Partition 93 
Partitioned data sets (see data sets) 
Passing 

control information 36 
parameters 55 

Path 49 
Performance 

optimization of 317 
(also see execution) 

Point, entry 26,28 
identified 322 
identified by IDENTIFY 

macro-instruction 54,63-64 
identifier 34,45 
name 45,318,319,321 
referred to in ATTACH macro-instruction 

75-84 
referred to in CALL macro-instruction 

41-44,49 
referred to in DELETE macro-instruction 

62-63 
referred to in LINK macro-instruction 

52-56 
referred to in LOAD macro-instruction 

60-62 
referred to in XCTL macro-instruction 

56-60 
standard 318,321 

Point, load 
defined 178 

POINT macro-instruction 174-175 
in relation to BSAM BSP 

macro-instruction 176 
used with BSAM NOTE macro-instruction 

173 
Pointers 

in save areas 32,33,35 
queue pointer field in queue control 

block (QCB) 95 
positional operands (see operands) 
POST macro-instruction 91,93 
Prefix 242 
Printer 

controlling 155~177-179,333 
testing for carriage overflow 

155,176-177 
used for messages and comments 308 
used for TESTRAN output 243,298 

formats of printed output 276,294 
Priorities 

affect on WAITR macro-instruction 93 
changing of 85 
dispatching 80 

Index 345 



limit 80 
scheduling 39 

Private library (see libraries) 
Procedure, cataloged 300 
Processing 

of data set 114,117,141,194 
end--of-volume 123 
labels 123,327,332 
sequentially 115,116,124,174,204 
updating 212 

of operands 18,309-310 
of segments 38,49 
of TESTRAN editor 243,268,294 
stacked job 39 

Processing unit, central 
(see unit) 

Program, source 243,244,247,249,255,260 
Program interruption control area (PICA) 

99 
Program interruption element (PIE) 

(see elements) 
Program management 

dynamic 52-64,317-322 
overlay 48-52 
simple 41-48 

Program status word (PSW) (see word) 
PRTOV macro-instruction 155,176-177 
PUT macro-instruction 

in load mode QISAM 194,195 
locate mode 203-204 
move mode 200-203 

in QSAM 132,133,141,142,152 
locate mode 145-146 
move mode 146-147 
substitute mode 147-148 

in QTAM 239,242 
PUTX macro-instruction 

in QSAM 132,133,142 
output mode 150-152 
update mode 149-150 

in scan mode QISAM 194,205 
update mode 211-212,213 

QISAM (queued indexed sequential access 
method) 194-213 

load mode 194-204 
scan mode 204-213 

QSAM (queued sequential access method) 
132-154,334 

QTAM (queued telecommunication access 
method) 239-242 

Queue, output 242 
Queue control block (QCB) 

described 95 
used with ENQ and DEQ macro-instruction 

94,96 
Queue element (QE) 

(see elements) 
Quotation mark, single 18,36,307,308 

R-type 
(see macro-instructions) 

READ macro-instruction 

346 

in BDAM 224,229-233 
in connection with DCB 

macro-instruction 227 
in connection with WRITE 

macro-instruction 234-236 

in BISAM 213,218-221,222 
in connection with WRITE 

macro-instruction 223 
in BPAM 182,187 
in BSAM 155,164-165 

in connection with BSP 
macro-instruction 176 

in connection with CHECK 
macro-instruction 169-171 

in connection with CNTRL 
macro-instruction 178 

in connection with DCB 
macro-instruction 156,157,158,,161 

in connection with NOTE 
macro-instruction 172-173 

in connection with POINT 
macro-instruction 174-175 

L- and E-forms 316 
Reading, backwards 164,171 
Record, capacity 115 
Record, logical 

control characters in 155,333 
deletion of 

using QISAM 210,212 
input of 

using BISAM 218-221 
using QISAM 209-210 
using QSAM 141-145 

length of 142,144~161,187,197,330 
on direct-access devices 114-116 
output of 

using BISAM 
using QISAM 
using QSAM 

processing of 
updating of 

222-223 
200-204 

145-148 
117 

using QISAM 211-212 
using QSAM 149-152 

Record, telecommunication 242 
input of 241-242 
output of 242 
prefix of 242 

Record, track descriptor 115 
Record zero 114 
Reenterable (see modules) 
Registers 

linkage 27 
types of 

parameter list register 
27,28,351,76,312 

parameter register 27,310 
return code register 27,35#54 
return register 26,27,28 
save area register 27 
supervisor parameter list register 

27 
location of parameters within 306 
notation of 306-307 

special 22,307,311,313 
TESTRAN 252,307 

responsibility for loading 306 
Relative addresses 

defined for direct-access devices 
block identification 173 
relative block 116 
relative track 116 

defined for magnetic tape 
block identification 173 



used with 
BDAM 229,230#231,236 
BPAM 189,191,193 
BSAM 173,174 

Release 
of buffers 152-153,213,222,234 
of key field 235 
of main storage 71-74 
of modules 60,62-63#321 

Relexp 17 
RELSE macro-instruction 
152,153,194,205,213 

Resource, serially reusable 94-95 
Restoring 

program interruption handling 
procedures 99 

registers 26 
Restrictions 247#260,304#305,306 
Result, test 263 
Return codes 

(see error analysis) 
RETURN macro-instruction 

26,33,34#35,38#45,46-48,54,91,143,169#254, 
324-325 

RETURN operand 260,267-268 
Reusable 

(see modules and resources) 
Routine 

standard system exit 100 
synchronous exit 26,46,48 
synchronous exceptional error exit 

(SYNAD) 141,142,164,169,174,199,201, 
208,209,212 

S-type 
(see macro-instructions) 

Save area 
(see area) 

SAVE macro-instruction 26,31,38,44,45 
in connection with RETURN 

macro-instruction 46 
Scale 

(see attributes) 
Scan-mode 

(see QISAM 
Scatter 

(see loading of modules) 
Scheduling 

chained 142,144 
of jobs 39 

SEGLD macro-instruction 38, L~9, 50-51 
Segment 

buffer 144,152,,201,,203 
overlay 38,48-50,254 
telecommunication 242 

prefix of 242 
SEGWT macro-instruction 38" LI.9, 51-52 
Sense bytes 335 
Sequence 

calling 28,32,34#35,55 
data set sequence number 329 
test 243,244,260,263,265 
volume sequence number 329 

SET macro-instructions 245#246 
SET COUNTER 269 
SET FLAG 268-269 
SET VARIABLE 269-270 

SETL macro-instruction 194,,207,208 
use of 209,210,212 

SF operands 
(see L- and E-forms of 

macro-instructions) 
Special register notation 

(see registers) 
SPIE macro-instruction 36,97-101 
STAE macro-instruction 38,48#101,102 
Standard 

page heading for TESTRAN edited output 
(see heading) 

status indicators 
(see error analysis) 

status information 
(see information) 

system exit routine 
(see routine) 

track format 
(see format) 

Status indicators 
(see error analysis) 

Status information 
(see information) 

Step, job 
assignment of job step identification 

331 
conditional execution of 48 
in connection with WAITR 

macro-instruction 93 
in dynamic program management 

317,318,320,321 
in testing programs 244,300,301 
normal termination of 46,48 
passing control information to 36 
subpools within 99 
timing of 39 
use of modules within 60 

STIMER macro-instruction 38,45,108-110 
storage, main 

management 65-74 
Store (ST) instruction 310,311 
STOW,macro-instruction 192-194 
String, character 34 
Sublist operands 

(see operands) 
Sub pools 

giving 81,82,83 
releasing 

FREEMAIN macro-instruction R-form 71 
FREEMAIN macro-instruction S-form 72 

requesting 
GETMAIN macro-instruction R-form 65 
GETMAIN macro-instruction S-form 67 

sharing 81,82,83 
subpool zero use 36,99 
with ATTACH macro-instruction 75 

Subprogram 99 
Subset 

of data management macro-instructions 
155 

of events being waited for 91 
of value mnemonics 18 

Subtask 
creation 75-84 
giving and sharing subpools with 80 
liwit and dispatching priorities of 80 
passing parameters to 76 

Index 347 



processing of 80 
termination of 46,80,104 

Supervisor 
assistance in linkages 

(see linkages) 
services of 38 

Supervisor call (SVC) instruction 
in entry linkages 26 
in macro-expansions 55,312 
in return linkages 26 
in TESTRAN programs 

244,260,265,268,275,292 
when identifiers are specified 

Symbol 17 
Symbol table 244,250,263,308 
Synchronous 

exit 
defined 26 
PRTOV 154,117 
SYNAD 

(see routine) 
to a called program 34 

operation 
using CALL macro-instruction 
using CHECK macro-instruction 

169,171,174,,177 
using LINK macro-instruction 
using RETURN macro-instruction 
using SEGWT macro-instruction 
using WAIT macro-instruction 
using XCTL macro-instruction 

SYSPRINT 301 
System output (SYSOUT) 

(see writer) 
SYSUTl 301 

Table 
branch 28 
of contents, volume 332 

34,54 

41 

52 
46 

51 
89 
56 

symbol 244,247,249,250,263,300,301,308 
(also see task input/output table) 

Tape, carriage control 154,176,171 1 178 
Tape, magnetic 

applicable operands for 123,133 
block identification for 173 
end of data set determination for 116 
indepe!ndence from 155 
labels for (see labels) 
mark 116,176,178 
program control of 155,171,172,178 
specification of 158 
tracks on 158,327 
use of in program testing 243 
use of macro-instructions with 

173,174,177 
Tape, paper 158,161 
Task 

allocation of storage to 38 
creation of 33,34,38,75 
execution of 80,93 1 317 
managE~ment of 75-88,,320,321 
passing parameters to 76 
priorities of 80,93 

348 

queuing of 94-95 
synchronization of 38,89-96 
termination of 34,80,91,101-105 

abnormally 54,102-105,124 1 141,169,210 
normally 46-48,254 

TESTRAN dumps of 249 
use of modules within 54,60,62 

Task cont'rol block (TCB) 
completion code field 102 
created 80 
interrogated by EXTRACT 

macro-instruction 87 
Task input/output table (TIOT) address 87 
Termination 

(see task; step; and subtask) 
Terminology 317 
TEST macro-instructions 245,246,304,306 

TEST AT 244,260-261 
output lines for 292 

TEST CLOSE 265-266,274 
output lines for 292-293 

TEST DEFINE 261 
TEST ON 263-264 
TEST OPEN 258-259 1 273-274 

as affected by TEST AT 
macro-instruction 260 

as affected by TEST CLOSE 
macro-instruction 292 

effect of errors on 275 
format of 245 
maximum page count specification 301 
output lines for 276,,291 
use of 244,260,265,300 

TEST WHEN 262-263 
TEST option 

(see EXEC statement) 
Testing 243 

actions 243 
procedure 243 
(also see output; data; and registers) 

Testing, input/output 
for completion of input/output 

operation 169 
for printer carriage overflow 116,177 

TESTRAN (test translator) 243-301 
editor 18 
interpreter 18 

TEXT 18,245,308 
TIME macro-instruction 38,101-108 
Timer, interval 34,38,49 

management 107-111 
TLS 18,245 
TRACE macro-instructions 202,,245,246 

TRACE CALL 255-256 
output lines for 276,286-287 

TRACE FLOW 253-255 
output lines for 276,283-285 

TRACE REFER 256-257 
output lines for 276,287-290 

TRACE STOP 257-258 
output lines for 216,290-291 

Tracing programs 243,254 
(also see TRACE macro-instructions) 

Track 
capacity of 115 
capacity record 115 
descriptor record 115 
labels on 332 
(also see address; format; labels; 

overflow; and tape) 
TRUNC macro-instruction 152-153 
TTIMER macro-instruction 38,111 
TTRN 252 



Type 
(see attributes; and message) 

Type I, II, III, and IV 
(see linkages) 

TYPE=T 
(see CLOSE macro-instructi.on) 

Underlined operands 20 
Unit 

central processing 80 
check 335 
control 115,223 
exception 335 
record device 169 

(also see printer) 
Unlabeled 174 
Unmovable 115,156 
Upper-case letters 17 
USING statement 124,304,305 

Value 18,313 
Value, coded 14-15,303 
Value, optional 14-15,313 

rules for 36 
Value mnemonics 

(see mnemonics) 
Vertical stroke 20 
VL operand 36,54,55,60,76 
Volume 

disposition 124 
end of 116,117,171~331 
in QSAM and BSAM processing 115,116 
in relation to relative track address 

116 
positioning 123,155#171,172,174 
sequence number 329 
serial numbers 116 
switching 116,169,330 
table of contents 332 

when filled 105 
(also see labels) 

Wait 
condition 93~94,95,169,177,218 
flag 91 
multiple 39 

WAIT macro-instruction 
for BDAM 231 
for BISAM 219 
for task synchronization 89-92,93 

WAITR macro-instruction 92-93 
Word 

channel status 143,171,335 
old program status (OPSW) 100 
program status (PSW) 99,100,252 

WRITE macro-instruction 
in BDAM 224,233-237 
in BISAM 213,222-223 
in BSAM 155,157,161,166-167 

checking 169-170,176,178 
for updating 167-168 
to create a direct organization data 

set 179-182 
write to operator or log 

(see WTL, WTO, and WTOR 
macro-instructions) 

Writer, system output (SYSOUT) 333-334 
WTL macro-instruction 113 
WTO macro-instruction 111-112 
WTOR macro-instruction 112-113,314-316 

XCTL macro-instruction 56-60,316,319 
in programs being tested 254 
use of in dynamic program management 

32-35,46~76,321-322 

Zero, record 114 

Index 349 



I 
r 
I 
I 

READER'S jCOMMENTS 

Ti tIe: IBM System/360 Operating System 
Control Program Services 

Is the material: 
Easy to Read? 
Well organized? 
Complete? 
Well illustrated? 
Accurate? 
Suitable for its intended audience? 

How did you use this publication? 
_ As an introduction tC) the subject 

Yes 

i-

Other ---------------i----

No 

Form: C28-6541-1 

__ For additional knowledge 
fold 

~lease check the items that describe your pos~tion: 
__ Customer personnel _Operato~ 
_ IBM personnel _ ProgranQner 
__ Manager _Custome~ Engineer 

_ Sales Representative 
_ Systems Engineer 
_Trainee 

_ Systems Analyst _ Instrucjtor Other ___________ __ 

Pilease check specific criticism(s), give page: number(s) ,and explain below: 
__ Clarification on pagc~ (s) 
_ Addi tion on page (s) 
__ Deletion on page (s) 
_ Error on page (s) 

E~planation: 

Name _______________________ _ 

Address ___________________ __ 

FOLD ON TWO LINES,STAPLE AND MAIL 
No Postage Necessary! if Mailed in U.S.A. 

f~ 



C28-6S41-1 

staple 

fold 

r------------------------------------------------, 
I BUSINESS REPLY MAIL I 
I NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I 
L~ ______________________________ --~--------------J 

POSTAGE WILL BE PAID BY 

IBM CORPORATION 
P.O. BOX 390 
POUGHKEEPSIE, N. Y. 12602 

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS 
DEPT. 058 

staple 

r--------------------, 
I FIRST CLASS I 
I PERMIT NO. 81 I 
I I 
I POUGHKEEPSIE, N.Y. I L ____________________ J 

1IIII1 

II1II1 

111111 

111111 

111111 

111111 

111111 

fold 

-----------------------------------------------------------------------------------------
told 

TIrn~ 
I!l 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, Naw York 10601 

fold 

I'd 
Ii 
1-'-
::s 
rt 
CD 
0.. 

1-'
::s 
c:::: . 
Ul . 
~ 

() 
tv 
00 
I 

0'\ 
U1 

. += 
f-' 
I 

f-' 

staple 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	replyA
	replyB

