
Systems Reference Library

IBM System/3S0 Model 44

Programming System

File No. S360-25
Form C28-68l3-2

Guide to System Use for FORTRAN Programmers

This publication oescribes how to use the Model 44
Programminq System to compile and execute proarams
written in the IBM System/360 FORTRAN IV lanquaqe. A
discussion of proqram optimization and of the
restrictions of the Model 44 FORTRAN IV compiler is
also included.

This ~ublication is directed primarily at
proqrammers who are familiar with the FORTRAN IV
languaqe. Previous knowledge of the Model 44
Proqramminq System is not required.

44PS

The purpose of this publication is to
provide proqrammers with the information
required to process FORTRAN proqrams under
control of the Model 44 programming System.
The three steps involved in processinq a
FORTRAN program are compilation, editing,
and execution.

This publication is not intended to be
an exhaustive discussion of the
capabilities of the Model 44 Programming
System; only those features that will be
commonly used by FORTRAN programmers are
presented. A more complete description of
system capabilities can be found in the
publication IBM~ystemL36~Model_44
PrQgramm~Y§teN~_guide_ig_~§tem_Us~,
Form C28-6812.

Third Edition (December,1968)

It is assumed that the reader is
familiar with the FORTRAN lanquaqe as
described in the publication IBM SystemL1&Q
FORTRAN IV LangQ£g~, Form C28-6515. No
previous knowledqe of the Model 44
Proqramminq System is required.

The organization of this publication is
such that the new reader is familiarized
witr programming system concepts and learns
of the facilities available to him before
encountering procedural Cletails. The
detailed information also serves as a body
of reference material for the proqrammer
who is alreaCly familiar with system
concepts.

This is a major revision of, and obsoletes, C28-6813-0,
Technical Newsletters N28-0559 and N28-0571,and C28-6813-1.
Changes to the text, and small changes to illustrations,
are indicated by a vertical line to the left of the change.

This edition applies to release 5 of IBM System/360 Model
44 Programming System and to all subsequent releases until
otherwise indicated in new editions or Technical News
letters.Changes are periodically made to the specifications
herein; any such changes will be reported in subsequent
revisions or Technical Newsletters.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 1403 printer using a special print
chain.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the back of this publication for
readers' comments. If the form has been removed, comments
may be addressed to IBM Laboratory, Publications Dept.,
P.O. Box 24, Uithoorn, Netherlands.

© Copyright International Business Machines Corporation 1967,1968

2

Introduction ••.••••
Supervisor ••••••
Job Control Processor
Linkaoe Editor ••••
utility Programs •••
FORTRAN IV Compiler • • • • .
Assembler Program
Programming System Operation •

Job Definition •••

5
6
6
6
6
6
6
6

8
Job steps • • • • 8

Compilation Job Steps 8
Multiple Phase Execution • 8

Types of Jobs • • • • • • • 9
Job Definiticn statements • • • • 9
Job Definition Examples • 10
Other Job Control Statements • 12

Da ta Sets 13
Usinq System Data Sets • • 13
Using Pr iva te Data sets • • • • 14

Unit Record Data sets • . • • 14
Tape Data Sets • '4

Tape Labels • • • • • • • • 15
Creating Tape Data Sets 15
Usinq Existinq Tape Data Sets 16

Direct Access Data Sets ••• •• 16
Disk Labels • • • • • • • • • • 17
Organization of Direct Access Data
Sets •••••••••••••••• 17
Creating Direct Access Data Sets •• 17
Creating a Member of a Directoried
Data Set • • • • • ••• 18
Using Existing Direct Access Data
Sets • • • • • • • • • 19
Using Existing Members of a
Directoried Data Set • 19

Placing ALLOC and ACCESS Statements
in the Job Deck • • • • • • • • • • • 19
Symbolic Unit Maintenance Statements. 19
Data Set Maintenance Statements 20

Job Processing • • • •
Compilation • • • • •

Batch Compilation
Editing • • ••

Linkage Editor Contrel Statements
Phase Execution • • • •

Multiphase Programs • • • •
Allocation of COMMON by the
Linkage Editor. • • • •••
Loadinq of Phases • • • • •

Complete Phase Overlay • • • •
Callinq 'Statement for Complete
Phase Overlay • • • • • • • • •
Linkage Editor Contrcl Statements

Root Phase Overlay • • • • • • • • •
Callinq statement for Root Phase
Overlay • • • • • • • • • • • •
Linkage Editor Control Statements

Linkage Editor Operation •
Define FILE Statements • • • • • •

22
22
22
23

• 23
24
25

• 25
25
25

26
• 26
• 26

27
• 27

28
• 28

Named COMMON and BLOCK DATA Areas . 29

Control Statements • . • • •••• 30
Job Control Statements • • • • • . •• 30

Comments in Job Control Statements • 30
Character Set ••••..••.•• 31
Statement Formats ••••••• 31
ACCESS Statement (Unit Record Data
Sets) ••••• • •••••• 33
ACCESS Statement (Tape Data Sets) • 35
ACCESS stat!=>l!!ent (Direr.t Ar.c!=>ss
Data Sets) • • • • . • • • • • • • • 38
ALLOC Statement (Tape Data Sets) •• 40
ALLOC Statement (Direct Access
Data Sets) • • • • • •
CATLG Statement
CONDENSE Statement • •
DELETE Statement •••
EXEC Statement (FORTRAN)

43
• • 46

· 47
• • 48

49
51 EXEC Statement (LNKEDT)

EXEC Statement (Phase)
JOB Statement • • • .

. • • • 52

LABEL Statement
LISTIO Statement
RENAME Statement
RESET Statement
UNCATLG Statement

Linkage Editor Control statements
Character Set
Statement Formats
INCLUDE Statement
MODULE Statement
PHASE Statement

System Output • • • .
Compiler Output • • • •

53
54

• 56
57

• • 58
• • 58

59
• • 59

59
• • 60
• • 60
• • 61

• 62
62

Source Listinq • • • •
Compiler Error/Warninq
Storage Map • • • • •
Madule Deck • • • • •

62
Messaqes •• 62

• • • • 63

Linkage Editor Output •.••
Phase Map • • • • • •

Phase Output • • • • •
Error Code Diaqnostic Messaqes
Messaqes for Proqram Interrupts
Sample Storaqe Printouts
Messages to the Operator •

64
65

• • 65
• • 66

66
• • 66

67
• 67

Programminq Considerations 68
Proqram optimiza tion • • • • 68

Initialization • • • • •• 68
Arithmetic Statements 68
IF Statement • • • • • • • • 68
DO Loop Considerations • 69
READ/WRITE Statements • • ••• 69
Boundary Alignment of Variables in
COMMON Blocks &nd EQUIVALENCE
Groups ••••••••••••••• 69
FUNCTION Subprograms • • • • • • • • 70
References to FUNCTION Subproqrams • 70
Use of DUMP and PDUMP •• 71
Block Lenqth ••••••.••••• 71

compiler Restrictions 72

Appendix A: Examples of Job Decks • 73

Appendix B: EBCDIC And BCtIC Card
Codes • • • 81

Appendix C: Assembler Lanquaqe
Subproqrams • • • • • •

Subroutine References
Arqument List
Save Area • • ..
Callinq Sequence • •

Codinq the Assembler Lanquaqe
Subproqram • • • • • • • •••

• • 82
• • 82

82
• • 82

83

• • 83
Codinq a Lowest Level Assembler
Languaqe Subproqram • • • • • • . • 83
Sharinq Data in COMMeN .•••••• 83
Hiqher Level Assembly Lanquaqe
Subproqram • • • • • 84
In-Line Arqument List ••••. • • 86

FIGURES

Fiqure'. Proqramming System
Structure • • • • • • . • • •
Fiqure 2. Root Phase Overlay
structure • • • • • • • •
Figure 3. Order of Phases ••
Figure 4. Source Listing
Figure 5. Source Listinq with Errors
Fiqure 6. Compiler Storage Map
Fiqure 7. Object Module Deck
Structure • • • • • • • • • • •
Fiqurs 8. Phase Map •••••
Figure 9. Sample Storage Printouts
Fiqure 10. Sample of Compile Only
(One Com pilati on) •••••••••

TABlES

5

27
• • 28

62
• 63

64

• • 65
• • 66
.. • 67

• • 73

Table 1. Job Control Statements • • 11
Table 2. Data set Reference Numbers
and Symbolic Unit Names • • • • 13
Table 3. Compiler Restrictions •••• 72
Table 4. Linkage Registers • • 83
Table 5. Dimension and Sutscript
Format • 86

Gettinq Arquments from the Arqument
List • • • • • • • • • • • • 86

Appendix D: System Diaqnostic Messaqes • 88
88

• • 89
Supervisor Messaqes
,T 0 b Con t r 0 I Me s s a q e s • • •
Compiler Messaqes • • • •
Linkaqe Edi tor Messaqes • • • •

Warninq Messaqes, Severity Level
Severe Error Messaqes, Severity

93
• • 96
4 • 97

Level 12 ..••••.••••..• 97
Termination Messaqes, Severity
Level 12 or 16 •••.••••..• 99
Job Step Termination Messaqes,
Severity Level 12 •••••••.• 100
Job Termination Messaqes, Severity
Level 16 •••••.•••••••. 100
Text Messaqes .•••••..•.• 101

Phase Execution Diaqnostic Messaqes •• 101
Execution Error Messaqes ••.••• 101
Proqram Interrupt Messaqes • . .106
Operator Messaqes • . • •• . .107

Fiqure 11. Sample of Compile Only
(Three Com pilations) • • •. • 74
Figure '2. Sample of Batch Compilation 75
Fiqure 13. Sample of Edi tOnI y • • • . 76
Figure 14. Sample of Compile and Edit 77
Fiqure 15. Sample of Execute Only •• 78
Fiqure 16. Sample of Edit and Execute 79
Fiqure 17. Sample of Compile, Edit,
and Execute
Fiqure 18. Save Area •.••
Fiqure 19. Lowest Level Assembler
Subproqram
Figure 20. Hiqher Level Assembler

80
• • 82

84

Subproqram • • • • •• 85
Fiqure 21. In-Line A~qument List 86
Fiqure 22. Proqram Interrupt Messaqe .106

The IBM System/360 Model 44 Programminq
System provides a means for compiling and
executinq programs written in the FORTRAN
IV language. Under control of the
programminq system, a set of FORTRAN IV
source statements is translated to form a
module. In order to be executed, the
module in turn must be processed to form a
Ehase. The reasons for this will become
clear later. For now it is sufficient to
note that the course of the FORTRAN program
through the programming system is frcm
source statements to module to phase.

Job Control
Processor

Not directly involved in
FORTRAN IV processing

Model 44
Programming

System

System
Support
Programs

linkage
Editor

Figure 1. Programming System Structure

INTRODUCTION

The Model 44 Programminq System itself
is essentially a collection of proqrams,
some interrelated, others independent. The
related programs include a supervisor, a
set of system support programs, and two
language processors. There are several
independent or ~Q-aloli§ proqrams. Not
all of these component programs are
involved in compiling and executing a
FORTRAN program. Figure 1 shows the
structure of the programming system and
indicates those components that are of
immediate interest to the FORTRAN
programmer.

Supervisor

FORTRAN IV
Compiler

Language
Processors

Introduction 5

SUPERVISOR

The supervisor is the system control
proqram. To say that a program operates
under control of the programminq system is
to say that it operates under control of
the supervisor. Accordinqly, the
stand-alene programs, althouqh part of the
programming system, do not operate under
sy stem con trol.

The main function of the supervisor is
to provide the orderly and efficient flow
of jobs through the proqramming system. (A
job is some specified unit of work, such as
the processing of a FORTRAN proqram.) The
supervisor loads into the computer the
phases that are to be executed. Durinq
execution of the program, control usually
alternates between the supervisor and the
processinq proqram, as the supervisor, for
example, handles all requests for
input/output operations.

Detailed information about the
supervisor's operation need not concern the
FORTRAN programmer. Anyone interested in
this material, however, can find it in the
publication IBM~ystem/360 Model 44
prQg£amminq SY§te~_QQide_1Q_~~~tem~se,
Form C28-6812.

JOB CONTROl PROCESSOR

Among the system support programs is the
job control processor. Its primary
function is the processing of job control
statements, which describe the jobs to be
performed and specify the programmer's
requirements for each job. Job control
statements are written by the proqrammer,
using the job control language. The use of
job control statements and the rules for
specifying them in job control lanquage are
discussed later.

LINI<"AGE EDITOR

The linkage editor, another system support
program, processes modules and incorporates
them into phases. A single module can be
edited te form a single phase or several
modules can be edited or linked together to
form one executable phase~-~oreover, a
module to be processed by the linkaqe
editor may be one that was just created
(during the same job) or one that was
created in a previous job and saved.

The use of the linkage editor ,to perform
these functions is controlled by the
proqrammer through job control s~atements.
In addition, there are several linkage
editor control statements. Information on
their use is given later.

UT~IITY PROGRAMS

The remaininq system support programs are
the utility programs. They are used
primarily for initializing and maintair.inq
external storaqe devices and for
transmittinq data between external stora~e
devices. More information about external
storaqe is qiven later. Since the utility
proqrams are not directly involved in
compilinq and executinq a FORTRAN proqram,
they are not described in this publication.
Details on their function and use can be
found in IBM ~temL360_ModeL~~
Programming_~ystem: Guide to System UseL
Form C28-6812.

FORTRAN IV COMPIlER

The FORTRAN IV compiler is the system
component that translates FORTRAN source
statements and produces a module. As the
statements are compiled, they are checked
for errors by the compiler, which issues a
diagnostic messaqe for each error
discovered. All of this is discussed more
completely later.

ASSEMBLER PROGRAM

The other lanquaqe processor is the
assembler program, which, like the FORTRAN
IV compiler, translate,S source statements
to produce a module. Source statements
processed by the assembler proqram,
however, are written in assembler languaqe.
The assembler proqram, therefore, is
parallel in function to the FORTRAN IV
compiler and does not directly conceTn the
FORTRAN proqrammer.

As will be shown later, it is possible,
under control of the proqramming system, to
combine modules produced by the FORTRAN IV
compiler with modules produced by the
assembler program to form one executable
phase. In this case, certain conventions
must be followed when the assembler
language source programs are written.
These conventions are explained in Appendix
C. For those who are interested, the
assembler languaqe is described in the
publication IBM SY§1§NL160 Model 44
R£Qll£.!!!.!!!.ing_~ystem: Assembler Ianguage,
Form C28-6811, whereas the use of the
assembler program is explained in the
publication IB~~Y~1§.!!!.L12Q_~ode~~
prQg£am.!!!.i~Y§i§.!!!.l __ gQide_1Q2ystem Use,
Form C28-6812.

PROGRAMMING SYSTEM OPERATION

The Model 44 Programminq System is
distributed to an installation as a deck of
cards. Before it can be used, the system

6 System/360 Model 44PS Guide to System Use FORTRAN

must be constructed. System construction
is a process whereby the programming
systemis written onto an IBM 2315 Disk
Cartridge, which is mounted on a single
disk storaqe drive within the Model 44
processing unit. The disk cartridge
containing the system is called the §ystem
residence volume or §yst~resid~disk.
Once the system has been constructed, it
can be tailored to meet the needs of the
installation via a process known as Eystem
assembly.

The programming system is put into
operation as a result of an
operator-initiated procedure known as ~~L
(initial program load). At this time, the
supervisor is loaded from the system
residence disk into the main storage of the
computer, where it remains for as long as
the programming system is in operation.

The supervisor then loads the job
control rrocessor, which reads and
interprets job control statements. One

type of job control statement (the EXEC
statement) is used to request the execution
of a specific program. When an EXEC
statement is encountered, the job control
processor relays the name of the program to
be executed to the supervisor and returns
control to it. The supervisor then loads
the requested proqram, overlayinq the iob
control processor.

When the program finishes execution,
control is returned to the supervisor,
which again loads the job control
processor, this time overlaying the proqram
just executed. The job control processor
continues reading and interpreting job
control statements until another EXEC
statement is encountered (in this case the
above procedure is repeated) or until a
STOP statement is encountered. The STOP
statement terminates the operation of the
programming system. Before the system can
be used again, the operator must put it
back into operation via either the IPt
procedure or a restart procedure.

Introduction 7

JOB DEFINITION

A job is a specified unit of work to be
performed under control of the proqramminq
system. As was pointed out earlier, a
typical job miqht be the processinq cf a
FORTRAN proqram -- compilinq source
statements, editinq the module thus
produced to form a p~ase, and then
executing the phase. Or a job miqht be the
processinq of a combined FORTRAN-assembler
lanquage source proqram -- compilinq
FORTRAN source statements, assemblinq the
assembler lanquaqe statements, editinq the
modules to produce a phase, and then
executinq the phase. Job definition -- the
process of specifying the work to be done
durinq a sinqle job -- allows the
programmer much flexibility. A job can
include as many or as few j~stepE as the
proqrammer desires.

JOB STEPS

A job step is exactly what the name imrlies
-- one step in the processing of a job.
Thus, in the first job mentioned above, one
step is the compilation of source
statements; another is the editinq of a
module; a third is the execution of a
phase. The second job mentioned involves
an addi tiona 1 jo.b step: assem blinq source
language statements. Each job step is
associated with the execution of a proqram.
A compilaticn requires the executicn of the
FORTRAN IV compiler. Similarly, an
assembly implies the execution of the
assembler proqram; an editinq, the
execution of the linkage editor. Finally,
the execution of a phase is the execution
of the problem program itself.

In contrast to job definition, the
definition of a job step is fixed. Each
job step involves the execution of a
program, whether it be a program that is
part of the Model 44 Programminq System or
a program that is written by the user.

Compilation Job st~~

The compilation of a FORTRAN program may
necessitate more than one job step (more
than one execution of the FORTRAN IV
compiler). In many cases, a FORTRAN
program actually ccnsists of a main program
and one or more subproqrams, such as
FUNCTIDN subprograms and SUBROUTINE
subprograms written by the FORTRAN
programmer. In compiling such a proqram,
the user may wish to employ several job
steps, if, for example, he should select
different compiler parameters for the .

various subproqrams, or a different system
input device. In this case, the FORTRAN IV
compiler will be executed several times in
succession for the various compilations.

If, on the other hand, the user wishes
to compile a main proqram and one or more
subproqrams, or, in fact, a series of
unrelated proqrams, in an unvaryinq system
environment, he may do so by £atchinq the
various proqrams and subroutines and
compiling them as separate modules throuqh
a sinqle execution of the compiler -- that
is, throuqh a sinqle job step. "Batch
Processinq" is described in the chapter
"Job Processinq."

In either case, the compilation of each
main or subproqram will result in the
production of a module. The separate
modules can then be combined into one phase
by a subsequent job step -- the execution
of the linkage editor. Execution of the
resulting phase requires an additional iob
step. Compilation and execution thus
reguire a minimum of three job steps, but
may necessitate additional job steps to
meet the specific reguirements of the user.

Multi~Phase Execution

The execution of a FORTRAN proqram has thus
far been spoken of as the execution of a
phase. It is possible, however, to
organize a FORTRAN proqram so that it is
executed as two or more phases. such a
program is called a multiphase program.

By definition, a phase is that portion
of a program that is loaded into the
computer by a sinqle operation of the
supervisor. (As was mentioned earlier , it
is the programming system supervisor that
load s phases for execution.) A FORTRAN
proqram can be executed as a single phase
as lonq as there is an area of main storaqe
available to accommodate it. On the other
hand, a proqram that is too larqe to be
executed as a single phase must be
structured as a multiphase proqram.

The number of phases in a FORTRAN
program has no effect, however, on the
number of job steps reguired to process
that proqram. As will be seen, the linkaqe
editor can produce one or more phases in a
sinqle job step. Similarly, both
sinqle-phase and multiphase proqrams
reguire only one execution job step. Phase
execution is the execution of all the
phases that make up one FORTRAN proqram.

8 System/360 Model 44PS Guide to System Use FORTRAN

Detailed information on structuring
multiphase programs, as well as information
on using the facilities of the proqramming
system to create multiple phases and
execute them, can be found in a subsequent
chapter, ",Job Processinq." For now, one
need only be aware that the facility for
creatinq and executinq multiphase proqrams
exists.

TY PE S OF ,JOBS

The typical job falls into cne of several
cateqories. A brief description of these
follows; a more complete discussion aprears
later, in the chapter"--",'Tob Processing."

Compil~OnlY~ This type of job involves
only the execution of the FORTRAN IV
compiler. It is useful when checking for
errors in FORTRAN source statements. A
compile-only job is also used to produce a
module that is to be further processed in a
subsequent job.

A compile-only job can consist of one
job step or several successive compilation
job steps.

Edit Onl~: This type of job involves only
the execution of the linkaqe editor. It is
used primarily to combine modules produced
in previous compile-only jobs and to check
that all cross-references between modules
have been resolved. The proqrammer can
specify that all modules be combined to
form one phase; or he can specify that some
modules form one phase and that others form
one or more other phases. The phase output
produced as the result of an edit-only job
can be retained for execution in a
subsequent job.

Compil~and Edit: This type of job
combines the functions of the compile-only
and the edit-only jobs. It calls for the
execution of both the FORTRAN IV compiler
and the- linkage editor. The job can
include one or more compilations, resulting
in one or more modules. The proqrammer can
specify that the linkaqe editor process any
or all of the modules just produced; in
addition, he can specify that one or more
previously produced modules be included in
the linkage editor processing.

Execut~Only: This type of job involves
the execution of a phase (er multiple
phases) produced in a previous job. Once a
FORTRAN proqram has been compiled and
edited successfully, it can be retained as
one or more phases and executed whenever
needed. This eliminates the need for
re-compiling and re-editing every time a
FORTRAN program is to be executed.

EdiLand_Execute: This type of job
combines the functions of the edit-only and
the execute-only jobs. It calls for the
execution of both the linkage editor and
+- h I-~ ... -- r-.. .-_ :; ii 1 ..!- ~ ...-, FT t... -'0 .--,..... f ..--- '\
l,.;11C: .Lt=..::>U.J...L...LI1Y l:-'llU..::>C: \,;:)/.

£.Q'!!!J2ilgL-].gitL_anL].~ec.!!te: This type of
job combines the functions of the
compile-and-edit and the execute-only iobs.
It calls for the execution of the FORTRAN
IV compiler, the linkage editor, and the
problem proqram; that is, the FORTRAN
proqram is to be completely processed.

When considering the definition of his
job, the programmer should be aware of the
following: i~_i9R_stgB_i§~anceled
du~~gxecutiQRL-1h~_~nti~~_i.Qb i§
te~minat~ny-£em~ining_iQR_§igB§_ar~
skiJ2~g. Thus, in a
compile-edit-and-execute job, a failure in
compilation precludes the editinq of the
module{s) and phase execution. Similarly,
a failure in editing precludes phase
execution.

For this reason, a job usually should
(but neEd not) consist of related job steps
only. For example, if twc independent
sinqle-phase executions are included in one
job, the failure of the first phase
execution precludes the execution of the
second phase. Defininq each phase
execution as a separate job would prevent
this from happening. If successful
execution of both phases can be quaranteed
before the job is run, however, the
proqrammer may prefer to include both
executions in a sinqle job.

JOB DEFINITION STATEMENTS

Once the programmer has decided what work
is to be done within his job and how many
job steps are required to perform the job,
he can then define his job by writinq job
control statements. Since these statements
are usually punched in cards, the set of
job control statements is referred to as a
job deck. In addition to job control
statements, the job deck can include input
data for a program that is executed during
a job step. For example, input data for
the FORTRAN IV compiler -- the FORTRAN
source statements to be compiled -- can be
placed in the job deck.

The inclusion of input data in the job
deck depends upon the way the installation
has assiqned input/output devices. Job
control statements are read from the unit
named SYSRDR (system reader), which can be
either a card reader or a magnetic tape
unit. Input to the processing proqrams is
read from the unit named SYSIPT (system
input), which also can be either a card
reader or a magnetic tape unit. The

Job Definition 9

installation has the option of assigninq
either two separate devices for these units
(one device for SYSRDR, a second device for
SYSIPT) or one dev ice to serve as both
SYSRDR and SYSIPT. If two devices have
been aEsiqned, the job deck must consist of
only job control statementE; input data
must be kept separate. If only one device
has been assignEd, input data must be
included within the job deck.

There are four job control statements
that can be used for job definition: the
JOB statement, the EXEC statement, the
end-of-job (/&) statemeht, and the
end-of-data (/*) statement. The discussion
of these job control statements in this
chapter is limited to the function and use
of each statement. The rules for writing
each statement are given in a subsequent
chapter, "Control Statemen ts. "

The JOB statement defines the start of a
job. One JOB statement is required for
every job; it must be the first statement
in the job deck. If the programmer wishes
to name his job, he may specify this name
in the JOB statement. Also, any job
accountinq information required by the
programmer's installation can be placed in
this statement.

The EXEC statement requests the
execution of a program. Therefore, one
EXEC statement is required for each job
step within a job. The EXEC statement
indicates the program that is to be
executed (for example, the FORTRAN IV
compiler, the linkage editor). As in the
JOB statement, the proqrammer may specify a
name, in this case, for the job step, and
also any accounting information required by
the installation. As soon as the EXEC
statement has been processed, the prcgram
indicated by the statement begins
execution.

The end-of-job statement, also referred
to as the 1& -- slash ampersand -
statement, defines the end of a job. A 1&
statement must appear as the last statement
in the job deck.

The end-of-data statement, also referred
to as the 1* -- slash asterisk -
statement, defines the end of a program's
input data. When the data is included
within the job deck (that is, SYSIPT and
SYSRDR are the same device), it is placed
immediately followinq the EXEC statement
for the proqram that requires it. The 1*
statement immediately follows the input
data. For example, FORTRAN source
sta temen ts would be placed, immed ia tely

after the EXEC statement for the ~ORTRAN IV
compiler; a 1* statement would follow the
last FORTRAN source statement.

When input data is kept separate (that
is, SYSIPT and SYSRDR are separate
devices), the /* statement immediately
follows each set of input data on SYSIPT.
For example, if a job consists of two
compilation job steps, an editinq job step,
and an execution job step, SYSIPT would
contain the source statements for tre first
compilation followed by a 1* statement, the
source statements for the second
compilation followed by a 1* statement, any
input data for the linkage editor followed
by a 1* statement, and perhaps some input
data for the problem program followed by a
1* statement.

A /* statement must always be used in an
editing job step whether or not there is
any input data for the linkaqe editor.
When there is input data, the /* statement
immediately follows the input data, whether
it is in the job deck or on a separate
SYSIPT. When there is no input data, the
1* statement either immediately follows the
EXEC statement for the linkaqe editor or
appears in the appropriate place on a
separate SYSIPT.

JOB DEFINITION EXAMPLES

The followinq are examples of "iob decks"
for the various types of jobs. Their
purpose is to show the order of job
definition statements with~n a iob. No
attempt is made to show the contents of
each statement. In addition, the examples
are limited to only the job definition
statements and input data; no other job
control statements are shown. (Examples of
complete job decks, indicatinq the contents
of all statements, are in Appendix A.)

Two compile-only jobs are shown below:
a sinqle compilation and a multiple
compilation. For all other jobs, the
reader can assume that only one set of
source statements, one module, and/or one
phase is involved. Input data is shown
only for the sake of example; it is not
always required in the job deck.

,lOB sta tem en t
EXEC statement (FORTRAN IV compiler)
Source lanquaqe statements
1* statement
1& statement

'0 System/360 Model 44PS Guide to System Use FORTRAN

ComEil~~on1Y-l1hre~£2~EilE1i2n§1:
JOB statement
EXEC statement (FORTBAN IV compiler)
Source language statements

EXEC statement (FOR1RAN IV compiler)
Source language statements
1* statement
EXEC statement (FORTBAN IV compiler)
Source languaqe statements
1* statement
/& statement

JOB statement
EXEC statement (linkaqe editor)
Module to be Edited
1* statement
1& statement

Co.!!!pil~.!l.Ledi.! :
JOB statem~nt

EXEC statement (FORTRAN IV compiler)
Source lanquaqe statements
1* statement
EXEC statement (linkaqe editor)
1* statement
1& statement

Exgcu.i!Lon.lY:
JOB statement
EXEC statement (phase)
Data used by problem program
1* statement
1& statement

Edit and execute:
,JOB statement
L1VT."Ir" _ 0"'\+_ __ + ,'~ 1, ___ ..=...: + __ \
J:.AJ:.\... ;:)l..Ul..tlU<;;::Ul.. \.1..1.11I\.Uy<;;:: <;;::U.1.l..UL/

Module to be Edited
1* statement
EXEC statement l
Data used by problem program
1* statement
1& statement

Co~ile,~di~and egcute:
JOB statement
EXEC statement (FORTRAN IV compiler)
Source language statements
1* statement
EXEC statement (linkage editor)
1* statement
EXEC statement l
Data used by prcblem program
1* statement
1& statement

lIn this case, the program to be executed
need not be indicated; the system will
assume that the phase just produced ty the
linkage editor is to be executed.

Table 1. ,1ob Control Statemen ts
r
I
I STATEMENT
1. •
I

FUNCTION

._--,
I
I

..!
I

I JOB DEFINITION I
r--------.---------------~

I
III JOB
III EXEC
i ,
1
1/&
I / ...
1/

Defines the start of a job.
Defines the start of a job

step execution and
indicates the proqram to
be executed.

Indicates the end of a job.
Indicates the end of input

I data for a processinq
I proqram.
r--- ----------1
I I
I SYMBOLIC UNIT ASSIGNMENT I
J--------r-------------~

I
III ALLOC
I
III LABEL
I
III ACCESS
I
til RESET
I
I
III LISTIO
I
l-
I

Allocates space for a new
data set.

Defines the characteristics
of a data set.

Permits access to an
existinq data set.

Restores unit assiqnments to
their status at the start
of the job.

Lists data set and device
assiqnments.

, DATA SET MAINTENANCE
J-

II DEI,ETE Deletes a data set from a
volume or a member from a
directoried data set. , , r'r, "T T\ 1:' "T C'1:' (""l",,,,,,~,,Y\ro_r-o a a irect oried data // '- v 11 u .u L'f rJ.u '- v JJ,u,,,;:;:: ,1.1 v';:::.;;:)

set.
IF RENAME Renames a data set or a

member of a directoried
data set.

II CATLG Enters a data set name into
the cataloq.

II UNCATLG Removes a data set name from
the cataloq.

~ ___ ---L-___ _
~
I , I

I
J--

MISCELLANEOUS

,
III PAUSE
I '* (com men ts) ,
III REWIND ,
1
I
III UNLOAD

----I ,
Allows pause for operator I

action. I
Allows logqinq of comments I

on system loq. ,
Rewinds a tape; repositions I

a data set on a direct ,
access volume to its ,
beg inninq. ,

Rewinds and unloads a tape. ,
J

Job Definition 11

OTHER JOB CONTROL STATEMENTS

The four job definition statements form
the framework of the job deck. There are
a number of other job control statements
in the job control lanquaqe. Not all of
them must appear in the job deck; in fact,
some FORTRAN proqrams can te processed
without usinq any of these additional
statements. The job control statements
are qrouped by cateqory and summarized
briefly in Table 1.

The double slash preceding each
statement name identifies the statement as

a job control statement. Most of the
statements are used for data
man£9~meni -- creatinq, manipulatinq, and
keepinq track of dal~ sets (externally
storeo collections of data, from which data
is read and into which oata is written).

Information about usinq the remaininq
control statements is qiven in the chapters
"Data Sets" and ":rob Processinq." Rules
for writinq these statements are in the
chapter "Control Statements."

12 System/360 Model 44PS Guide to System Use FORTRAN

Almost all FORTRAN programs include
input/output statements calling for data to
be read frcm or written into data sets on
external storage devices. Each data set is
identified by a data set reference number
within the FORTRAN source statement. When
processing data under control of the Model
44 Programming System, the FORTRAN
programmer can share ~Y§iem~ta
sets -- data sets USeG by the proqramminq
system itself -- or he can use his own data
sets, referred to hereinafter as pri~ate
data_sei~·

The data set reference numbers
acceptable to the Model 44 FORTRAN IV
compiler ranee from 1 through 8. within
the Model 44 FORTRAN IV ccmpiler, each data
set reference number corresfonds to a
symbolic unit name, which in turn is
associated with a particular data set. The
correspondence between data set reference
numbers and symbolic unit n~mes is shown in
Table 2.

Table 2. Data set Reference Numbers and
Symbolic Unit Names

r-
I 3 - SYS003 6 - SYSOP~

I
I - SYSOO, 4 - SYS004 7 - SYSPCH
I
I 2 - SYS002 5 - SYSIPT 8 - SYSOOO

The data set reference numbers " and 5
through 8 refer to system units, symbolic
units that are required for programming
system operation. Each system unit has a
predefined relationship with a system data
set (that is, each system unit name will
have been already associated with a system
data set by the time the FORTRAN
programmer's job is to be run).

,
I
I
I
I
I

The data set reference numbers 2, 3, and
4 refer to units for which a predefined
relationship (also called a standard unit
assignment) is not required. It is up to
the programmer to determine whether or not
a standard unit assignment for any of these
units exists at his installation.

It is also the programmer's
responsibility to determine whether the
installation has modified the FORTRAN IV
compiler and changed the relationships
between data set reference numbers and
symbolic unit names. The relationships
shown in Table 2 reflect the FORTRAN IV

DATA SETS

compiler distributed as part of the Model
44 Programming System.

To use a system data set, a programmer need
only specify the appropriate data set
reference number in his program. The
FORTRAN IV compiler associates the number
with the corresponding system unit. The
relationship between the system units and
the system data sets is predefined by
standard unit assignments.

The system work ~ata set (data set
reference number 1) is located on the unit
named SYS001. The data set contains
intermediate data from any of the
programming system components.
(Intermediate data is data that is stored
temporarily on an external medium by one
part of a program to be read and processed
by another part of that program.)
Intermediate data for a FORTRAN program can
be written into and read from the system
work data set.

The system input data set (data set
reference number 5) is located on the unit
named SYSIPT. The data set contains input
to the processing programs, such as FORTRAN
source statements and linkage editor
control statements. Input data for a
FORTRAN program can be placed on SYSIPT
along with any other input data. If SYSIPT
is assigned to the same device as SYSRDR,
the input data should be placed in the job
deck immediately after the EXEC statement
that requests phase execution.

The system output data set (data set
reference number 6) is located on the unit
named SYSOPT. The data set contains system
print output, such as a listing of FORTRAN
source statements. Print output from a
FORTRAN program can be written into the
system output data set.

The system punch data set (data set
reference number 7) is located on the unit
named SYSPCH. The data set contains all of
the system punch output. Punch output from
a FORTRAN program can be written into the
system punch data set.

The linkage editor input data set (data
set reference number 8) is located on the
unit named SYSOOO. The data set contains
output from the compiler (or the assembler)
that is to be used as input to the linkage
editor. For example, a module that is

Data Sets 13

produced by the compiler and intended for
editing in a subsequent jet step is written
on SYSOCO. Later in the job, the linkage
editor reads the module frcm SYSOOO. The
FORTRAN programmer may use the linkage
editor input data set provided that it is
no longer needed during the job by the
linkage editor (that is, there is no
editing job step subsequent to the job step
in which the FORTRAN programmer uses
SYSOOO) •

When using any system data set, the
programmer should be aware of the
installation device assiqnment for the unit
on which the data set is located. For
example, SYSIPT can be either a card reader
or a magnetic tape unit. SYSPCH can be
either a card punch or a magnetic tape
unit. SYSOPT can be either a printer or a
magnetic tape unit. SYS001 can be either a
magnetic tape unit or an area of disk
storage. Also, if SYS 00' is an area of
disk storage, the programmer should know
how large an area the installatien has
reserved (or ~11Qcated) for SYS001 and,
thus, determine whether it can accommodate
the work data for his FORTRAN program.

If a programmer can satisfy his data
requirements by using only system data
sets, he need not concern himself with the
details of using private data sets. It is
also unlikely that he will have to use any
of the job control statements intended for
data management. Since the remainder of
this chapter discusses the use and
maintenance of private data sets, the
programmer using only system data sets can
skip to the next chapter.

To use one of his own data sets, a
programmer specifies anyone of the data
set reference numbers 2, 3, or 4 in his
program. As with the system data sets, the
FORTRAN IV compiler associates the number
with a particular symbolic unit. Unless a
standard unit assignment exists for this
unit, the FORTRAN programmer must establish
a relatienship between the symbolic unit
and his data set by using job control
statements. Even when a standard unit
assignment is in effect, the programmer can
use job control statements to temporarily
overrid~ the assignment and establish a new
re la tion shi p.

In addition, the programmer must provide
the system with whatever information it
needs to be able to process the data set.
The nature of the required information
varies according to the type of data set.

One way of classifying a data set is
according to the type of storage medium it

occupies. This places a data set into one
of three categories: unit record data
sets, tape data sets, and direct access
data sets.

UNIT RECORD DATA SETS

Unit record data sets include data sets on
cards and data sets on the printed page.
Card data sets can be further divided into
input data sets, which contain data to be
read, and output data sets, into which data
is to be punched. Card data sets are
processed either by a card reader (for
input) or a card punch (for output).
Printed data sets are processed by a
printer.

It is unusual for private unit record
data sets to be used since the type of data
they contain can be accommodated by the
system data sets. Furthermore, few
installations will have card readers, card
punches, or printers other than those used
for system data sets. However, if the
appropriate devices are available, the
programmer is free to forego using system
data sets.

For each private unit record data set
that he uses, the programmer places an
ACCESS statement in his job deck. In this
statement he specifies the name of the data
set and the symbolic unit name with which
the data set is to be associated. He also
indicates, in either of twp ways, the
device containinq the data set. He can
indicate a particular device by specifying
the physical address of the device. Or he
can indicate that a certain type of device
is to be used by specifying a device type
code. In this case, the system determines
the particular device to be used and prints
a message indicating its choice.

Details on writing the ACCESS statement
for unit record data sets, including a list
of the permissible device type codes and
their meanings, can be found in the chapter
"Control Statements."

TAPE DATA SETS

A tape data set is a data set on a reel of
magnetic tape. A tape data set cannot
extend beyond one reel of tape, nor can a
reel of tape contain more than one data
set.

Tape data sets fall into two categories:
existing tape data sets and new tape data
sets. An existing t~da1~ set already
contains data and has already been assigned
to a particular tap~olQmg (reel of tape).
The programmer uses an existing tape data

14 System/360 Model 44PS Guide to System Use FORTRAN

set either to read data from it or to add
data to it.

A new t~e data set is one that contains
no data;-nor~aS-it been assigned to a tape
volume. A new tape data set must be
created by the proqrammer before data can
be written into it. The programmer uses a
new tape data set whenever he is writing an
entirely new collection of data. This
includ€s intermediate data, which is
written by one part of a program and read
by another part of that program.

When a data set is created, the
programmer can request that the data set be
placed into the §ystem catalog. This means
that the system will keep track of the data
set and its location (the tape volume to
which it is assigned). A data set in the
system catalog is referred to as a
ca taloge~Qa ta set.

Tape Labels

Each installation has the option of usinq
tape labels to facilitate the use of tape
data sets. Tape labels include a volume
label, which identifies a particular reel
of tape, and two data set labels, which
provide information about the data set on
the tape.

A volume label is written on the tape
when the tape volume is initialized.
(Volumes are initialized by a system
utility program and the process usually is
the responsibility of the installation.
The system utility proqrams are discussed
in the publication lBM_~~§1~~L]2Q_~QQ~~~
Pr2QramNin~~§1~N~_Quide_to ~~tem_Q~,
Form C28-6812.) The volume label contains
a volume serial number, consistinq of from
one through six characters, which serves to
identify the tape volume.

The two data set labels are a header
label and a trailer label. Both labels
contain the name of the data set, its
creation date, and its expiration date (the
date the data set may be deleted). The
header label may be written when the volume
is initialized. otherwise, it is written
just before any data is written into the
data set on the volume. The trailer label
is written at the end of the data set.

A tape volume is considered labeled if
the installation uses tape labels and if
the tape has been initialized (that is, a
volume label has been written on it). If
the tape volume contains data that is to be
read, it must also contain data set labels
in order to be considered labeled.

The proqrammer must create any new tape
data set that he wants to use. That is, he
must allocate a tape volume to contain the
data set -- either a particular tape volume
or, as is more commonly the case, any fresB
tapg_~olum~. A fresh tape volume is one
that either contains no data set or
contains an expired data set.

To create a tape oaLa set, the
programmer places an ALLOC statement in his
job deck. In this statement, he specifies
the name of the data set, the symbolic unit
name with which the data set is to be
associated, and a volume desiqnation.

The volume desiqnation identifies the
device to be used, either through a device
address or throuqh a device type code. It
may also include volume options, which vary
according to the type of tape beinq used
(that is, 7-track tape, 9-track tape).
Finally, the volume desiqnation indicates
whether a fresh tape volume or a particular
tape volume is to be used.

A fresh volume is requested by
specifying the word FRESH in the volume
desiqnation. A particular tape volume is
requested by specifyinq a volume
identification (also referred to as the
volid). If the tape is labeled, the volid
is the volume serial number in the tape's
volume label. If the tape is not labeled,
the volid reflects whatever external
identification is used by the installation.

The proqrammer can request that the data
set be cataloqed by specifyinq the CATLG
parameter in the ALLOC statement. This
causes the name of the data
indication of its location, to be entered
into the system cataloq.

Details on writinq the ALLOC statement
for tape data sets, including lists of the
permissible device type codes and volume
options and their meanings, can be found in
the chapter "Control Statements."

The system determines the device that is
to be used, either the particular tape
drive whose device address was specified or
an available tape drive of the type
specified. A messaqe is printed
instructinq the operator to mount a tape
volume on that unit, either a fresh tape
volume or a tape volume with the specified
volid. As soon as the tape volume is
mounted, the operator qives a siqnal for
the system to proceed.

If the tape volume is unlabeled, no
further checking is done. If the tape
volume is labeled, however, the system
checks to see that it meets the

Data Sets 15.

specifications -- that is, whether the
specified volid matches the volume serial
number in the volume label or whether the
volume is a fresh one (contains no heaaer
label or an unexpired label). If the tape
volume does not meet the specifications, a
messaqe is printed, informinq the operator
of the discrepancy. The operator can then
choose between continuing with the same
tape volume or mountinq another tape
volume. If he mounts another volume, the
checking procedure is repeated until an
appropriate tape is found.

If the tape volume is labeled, the
programmer must also include a LABEL
statement immediately after the ALLOC
statement in his job deck. In this
statement, he must specify the expiration
aate of the data set unless the current
date is to be used as the expiration date.
The LABEL statement causes data set labels
to be written (or their contents to be
changed) when tl>e first WRITE instruction
is issued for that data set.

Details on writing the LABEL statement
can be found in the chapter "Control
statements."

Usi~isting Tape Data sets

To use an existinq tape data set, the
programmer places an ACCESS statement in
his job deck. In this statement he
specifies the name of the data set, the
symbolic unit name with which the data set
is to be associatea, and a volume
designation. (The vol ume designation is
not required for a cataloqed data set
because the system alreaay has a record of
this information.)

The volume desiqnation identifies the
aevice to be used, either throuqh a device
address or through a device type code. It
may also include-volume options, which vary
accordinq to the type of tape being used
(that is, 7-track tape, 9-track tape).
Finally, the volume designation specifies
the volume identification (volid) of the
tape containing the data set. The volid is
required only if the tape is labeled; it
mayor may not be used for unlabeled tapes.

For a labeled tape, the volid is the
volume serial number in the tape's volume
label. For an unlabeled tape, the volid is
whatever external identification is used by
the installation.

If the programmer is adding data to an
existing data set (rather than reading from
it), he must also specify an EXT parameter
in the ACCESS statement. This causes the
tape volume to be positioned at the end of
the existing data set.

Details on writinq the ACCESS statement
for tape data sets, includinq lists of the
permissible device type codes and volume
options and their meaninqs, can be found in
the chapter "Control Statements."

The system aetermines the device that is
to be used, either the particular tape
drive whose device address was specified or
an available tape drive of the type
specifiea. A messaqe is printed
instructinq the operator to mount the tape
with the specified volid on that unit. If
no volid was specified in the ACCESS
statement (permitted for unlabeled tapes
only), the messaqe simply tells the
operator to mount a tape volume. It is up
to the proqrammer to make sure that the
operator knows which volume is to be
mounted.

As soon as the tape volume is mountea,
the operator qives a siqnal for the system
to proceed. If the tape volume is
unlabeled, no further checkinq is done. If
the tape volume is labeled, however, the
system checks to see whether the specified
volid matches the volume serial number in
the volume label. If it does not match, a
messaqe is printed informinq the operator
of the discrepancy. The operator can then
choose between continuinq with the same
tape volume or mountinq another tape
volume. If he mounts another volume, the
checkinq proceaure is repeated until an
appropriate tape volume is found.

If the tape volume is labeled, the data
set labels are checked when the first READ
statement is issued for that data set.
Checking a data set label includes
comparing the data set name in the label
with that specified in the ACCESS statement
for the data set.

DIRECT ACCESS DATA SETS

A direct access data set resides on a disk
volume, that is, a disk cartridqe or a disk
pack. A direct access data set may not
extend beyond one disk volume; however,
several direct access data sets may reside
on a single volume. Each data set must
reside on contiguous tracks and cylinders.
The space on a volume occupied by a
particular data set is called the extent of
that data set.

Direct access data sets fall into two
categories: existinq direct access data
sets and new direct access data sets. An
existing direct access data set has already
been assigned to a particular area of disk
storage (its extent has already been
defined). It mayor may not cont~in any
data.

16 System/360 Model 44PS Guide to System Use FORTRAN

A new direct access data set is one that
contains no data, nor has its extent been
defined. A new direct access data set must
be created by the programmer before data
can be written into it.

All direct access volumes must be labeled.
Disk labels include a volume label, which
identifies a particular disk volume, and a
volume table of contents (VTOC), which
keeps track of the data sets on that
volume. The VTOC is essentially a
collection of labels, the first of which
defines the VTOC. The VTOC also includes
one label for each data set on the volume;
each label contains such information as the
data set name and the locaticn of the data
set on the volume. Finally, the VTOC
contains one or more labels that manage
space on the volume by keeping track of the
extents of available space.

Disk labels are written on a direct
access volume when the volume is
initialized. Volumes are initialized by a
system utility program and the process is
usually the responsibility of the
installation. (The system utility programs
are discussed in the publication IBM
~§tem/360 Model 44 Programming_~yst~
Guide to System Use, Form C28-6812.)

Organization of Direct Access Data Sets

The programmer can organize a direct access
data set in either of twc ways. The first
of these, called sequential, is the
familiar structure in which records are
placed in sequence. In the second
organization, called directoried, each data
set is orqanizen into twc ~arts, a
di£~~ and members.

A member of a directoried data set has
the characteristics of a sequential data
set; for example, it has a name, it is
processed sequentially, and it can be
associated with a symbolic unit name.
However, a member is not a data set, but
only part of one. Also, a member can have
more than one name.

The directory k€eps track of each
member, its location in the data set, and
its length. The directory contains at
least one entry for each member. There are
multiple entries for members with more than
one name (one entry for each name). The
system uses the directory to locate
individual members when they are required.

Creating Direct Access Dat~_Sets

The programmer must create any new direct
access data sets that he wants to use.
That is, he must all~ all or part of a

disk volume for the data set. The
programmer can request that space for the
data set be allocated on a fresh disk
volume (one that contains no data sets).
Or he can request that space be allocated
on a particular disk volume, either the
volume having a specific volume serial
number or the volume that already contains
a specific data set whose location is known
to the system. (The location of a data set
is known to the system if it is one of the
system data sets; if it is a cataloqed data
set, or if it is a data set for which an
ALLOC or ACCESS statement was previously
processed in the job.)

To create a direct access data set, the
programmer places an ALLOC statement in his
job deck. In this statement, he specifies
the name of the data set and either of two
types of volume designation.

The first type of volume designation is
used when a programmer wants space
allocated either on a fresh volume or on a
particular volume identified by its volume
serial number. It identifies the device to
be used, either through a device address or
through a device type code. In addition,
it indicates the type of volume to be used.
A particular volume is requested by
specifying a volume identification (volid).
The volid is the volume serial number in
the disk's volume label. A fresh volume is
requested by specifyinq the word FRESH in
the volume designation.

The second type of Volume designation is
used when the programmer wants space
allocated on a particular volume that
already holds a specific data set. The
proqrammer specifies the word SAME in the
volume designation. He then identifies the
data set either by specifying its name or
by specifying the symbolic unit name with
which it is currently associated.

Both types of volume designation allow
the programmer to indicate whether or not
write validity checking is to be performed
for the data set. When write validity
checking is performed, the system checks
each block of data as it is written to see
that it has been written correctly.
Standard error recovery procedures are
followed if an error is detected. The
write checking procedure requires an
additional disk revolution for each data
block that is written.

The programmer must also indicate in the
ALLOC statement the length of the data set.
That is, he must specify the number of
blocks that are to be allocated for the
data set. The number of blocks is equal to
the number of FORTRAN records in the data
set.

Data Sets 17

The programmer can request that the data
set be cataloged by specifying the CATIG
parameter in the ALLOC statement. This
causes the name of the data set, along with
an indication of its location, to be placed
into the system catalog.

Within a FORTRAN program, either
sequential or direct access input/output
statements can be used to transfer data to
or from a direct access data set. If
direct access statements (for example, the
DEFINE FILE statement) have been used for
the data set being created, the programmer
must specify the FMT parameter in the ALLOC
statement. This causes the system to
prepare the disk area for direct access
input/output operations.

If a directoried data set is being
created, the length of the directory must
also be specifiEd in the ALLOC statement.
The length of the directory is equal to the
number of entries that are to be made in
it, allowing one entry for each member
name.

If a symbolic unit name is to be
associated with the data set, the
programmer can specify this name in the
ALLOC statement. A symbolic unit name must
be associated with a sequential data set
before it can be used. For a directoried
data set, a symbolic unit name is usually
associated with each member of the data
set, rather than with the entire data set.

The programmer must also include a TABEL
statement in his job deck, immediately
after the ALLOC statement. In the LABEL
statement, he must specify the block length
of the data set. The block length is the
number of bytes in each FORTRAN record.
This number cannot exceed 360 unless direct
access input/output operations are to be
performed on the data set. In this case,
the block length specified for the data set
in the LABEL statement should agree with
the record length specified for the data
set in the DEFINE FILE statement within the
FORTRAN program.

The programmer can also specify the
expiration date of the data set in the
LABEL statement. The absence of this
specification causes the system to assume
that the current date is to be ~sed, that
is, that the data set is not to be retained
after the date it is created.

Finally, the programmer can indicate
whether cr not write validity checking is
to be performed for this data set. The
specification given here can be overridden,
however, by the write validity checking
option in the ALLOC statement. In other
words, the system acts in accordance with
the specification in the ALLOC statement.

If nothing is specified in the ALIOC
statement, the system acts in accordance
with the specification in the LABE~
statement. If nothing is specified in
either statement, no write validity
checking is performed.

If the information to be given in the
LABEL statement duplicates that qiven in
the LABEL statement for another data set,
the programmer need not repeat the
information. This is true, however, only
if the other data set is one for which an
ALLOC or ACCESS statement was processed
previously in the job. The programmer need
only specify the word SAME in the LABEt
statement and then identify the other data
set. He can identify it either by
specifying its name or by specifying the
symbolic unit name with which it is
currently associated.

Cr~atin~a Member of a Directoried Data .Sel

In addition to creating a directoried data
set in the manner just described, the
programmer must also create each member of
the data set. Only one member can be
created in a single job step. Whatever is
written into the member during that job
step determines the size of the member.
Once the member is created, its size cannot
be changed.

A member is given one or more unique
names when it is created; the names are
unique in that they may not duplicate any
other member names in the data set. The
number of names given to a member cannot be
increased after the member has been
created, although existing member names can
be replaced by new names (this is explained
in a later section, "Data Set Maintenance
statements") .

A member of a directoried data set will
be created only if there is space for it in
the data set and if there is room in the
directory for the entries required for that
member.

To create a member, the programmer
places an ACCESS statement in his job deck.
In this statement, he specified the names
to be qiven to the member, the name of the
data set to which the member is to belonq,
and the symbolic unit name with which the
member is to be associated.

The programmer must also indicate the
location of the directoried data set to
which the member is being added, unless its
location is already known to the system.
The location of the data set is indicated
by a volume designation. The volume
designation can be any of those used in the
ALLOC statement to create a data set, with
one exception. The ACCESS statement cannot

18 System/360 Model 44PS Guide to System Use FORTRAN

indicate that the directoried data set
resides on a fresh volume.

Finally, the programmer must specify the
NEW parameter in the ACCESS statement to
indicate that a new member is being
crea ted.

Using Existi~Direct Access Data sets

To use an existing direct access data set,
the programmer places an ACCESS statement
in his job deck. In this statement, he
specifies the name of the data set, the
symbolic unit name with which the data set
is to be associated, and either of two
types of volume designation. (The volume
designation is not required for a cataloged
data set because the system already has a
record of this information.)

The first type of volume designation is
used to request a volume through its vclume
serial number. It identifies the device to
be used, either through a device address or
through a device type code. It also
specifies the volume identification {volid)
of the disk containing the data set.

The second type of volume designaticn is
used to request the same volume that
contains another specific data set. The
location of this other data set must be
known to the system. The programmer
specifies the word SAME in the volume
designation. He then identifies the other
data set, either by specifying its name or
by specifying the symbolic unit name with
which it is currently associated.

Both types of volume designation allow
the programmer to indicate whether or not
write validity checking is to be performed
for the data set.

If the programmer is adding data to a
sequential data set (rather than reading
from it), he must also specify the EXT
parameter in the ACCESS statement. This
causes the disk volume to be positioned
after the last item of data in the existing
data set, rather than at the beginning of
the data set. Adding data to a direct
access data set does not affect the size of
the data set. Additional data is limited
to whatever amount can be ccntained in the
extent that was defined for the data set at
the time it was created.

The use of the UNDEF parameter indicates
that the Model 44 Programming System must
use its undefined-read method when reading
the direct access data set. This parameter
must be specified for any direct access
data set that was not created by the Model
44 programming System, with the exception
of direct access data sets created by the
IBM System/360 Operating System and having

fixed-length standard blocks (i.e., a data
set that contains no truncated blocks or
unfilled tracks, with the possible
exception of the last block or track).

~ing Exist~Mem.Q§rs 0f_a Directoried
DatE._~et

A member of a directoried data set, once it
has been created, cannot be enlarqed;
however, data within it can be manipulated
freely or replaced. To use an existinq
member of a directoried data set, the
pro~rammer places an ACCESS statement in
his job deck. In this statement, he
specifies one name of the member, the name
of the directoried data set to which the
member belongs, and the symbolic unit name
with which the member is to be associated.

The proqrammer must also indicate the
location of the directoried data set to
which the member belongs, unless its
location is already known to the system.
The location of the directoried data set is
given by a volume designation. This can be
either of the volume desiqnations valid in
the ACCESS statement for using an existinq
direct address data set (discussed in the
previous section).

PLACING ALLOC AND ACCESS STATEMENTS IN THE
JOB DECK

The ALLOC and ACCESS statements for data
sets that are to be created or used durinq
a job should be placed before the EXEC
statement for the job step usinq the data
sets. In most cases, th is will be a phase
execution job step. The proqrammer can
place all of the ALLOC and ACCESS
statements for a job in front of the first
EXEC statement in the job deck. This means
that the assignments made by the statements
remain in effect throughout the entire iob
or until changed by a RESET statement
(discussed in the next section, "Symbolic
Unit Maintenance Statements").

SYMBOLIC UNIT MAINTENANCE STATEMENTS

Two job control statements, RESET and
I,ISTIO, are used in conjunction with AILOC
and ACCESS statements that alter the
assignments of system units.

The RESET statement is used to restore
one or more symbolic units to their
standard assignments. The statement is
used when an assignment has been altered by
an ALLOC or ACCESS statement in a previous
job step. The RESET statement applies only
to those units that were given standard
assignments either when the system was
constructed or when the operator performed
an IPL procedure.

Data Sets 19

One RESET statement can be used to
restore either all units with standard
assignments or just one unit. If more than
one unit is to be restored, but not all, a
separate RESET statement is reguired fer
each. Rules for writing the RESET
statement can be found in the chapter
"Control statements."

Regardless of whether RESET statements
are used, all units are restored to their
standard assignments at the end of the job.

The LTSTIO statement is used to obtain a
listing of current symbolic unit
assignments. The listing, which is
produced on SYSLST and on SYSLOG, includes
the name of the symbolic unit, its current
device address, the volume designation
(valid) of the volume to which it is
assigned, and the name of the data set
currently associated with the symbolic
unit.

Three types of listing can ce obtained.
The programmer can request a listing for a
single unit by specifying its symbolic unit
name in the LISTIO sta tement. He can
request a listing of all assignments made
or altered by ALLOC or ACCESS statements
during the current job by specifying the
word PROG in the LISTIO statement. (This
listing does not include units already
restored to their standard assignments as a
result of RESET statements.) Finally, the
programmer can request a listing for all
units that have assignments by omittinq any
specification from the LISTIO statement.

Rules for writing the LISTIO statement
can be found in the chapter "Control
Statements."

DATA SET MAINTENANCE STATEMENTS

There are five job control statements used
for the maintenance of data sets: CATLG,
UNCATLG, DELETE, CCNDENSE, and RENAME.
These statements are intended primarily for
use with direct access data sets, although
the CATLG and UNCATLG statements can be
used for other data sets.

Each of the data set maintenance
statements is discussed here with respect
to its function and use. Rules for writing
these statements can be found in the
chapter "Control Statements."

The CATLG statement is used to make an
entry for a data set in the system catalog.
A cataloged data set can be referred to by
name only, without any need for stating its
location. Catalog entries are retained
until specifically deleted by an UNCATLG
statement or until the data set is deleted.

The name of the data set to be cataloqed
may not duplicate the name of a data set
already in the catalog. Catalog entries
can also be made through use of the CATTG
specification in the ALLOC statement that
creates a data set.

The UNCATLG statement is used to delete
a data set entry from the system catalog.
Removal of the catalog entry does not
change the data set itself or the volume
containing it. The data set entry in the
volume table of contents is also
unaffectf'd.

The DELETE statement is used to
eliminate a data set or a member of a
directoried data set. When a member has
more than one entry in the directory (more
than one member name), the DELETE statement
can be used to remove one or more of the
entries. The member continues to exist as
long as it is represented by at least one
entry in the directory.

When an entire data set is deleted, the
system removes its entry from the volume
tahle of contents (VTOC), updates one of
the volume's space management labels to
reflect the removal, and, if applicable,
removes the entry for the data set from the
system catalog.

The data set is not physically altered
at this point. It cannot be referred to,
however, and the system treats the space it
occupies as vacant. The same applies to a
member of a directoried data set when all
its entries have been removed from the
directory.

The space occupied by a deleted data set
can be assigned to a new data set; the
space occupied by a deleted member within a
directoried data set, however, cannot be
reassigned. The CONDENSE job control
statement (described later) can be used to
shift existing members toward the beginning
of a directoried data set so that new
members can be added at the end.

A separate DELETE statement is required
for each data set that is to be deleted.
Any number of the members of one director
ied data set can be deleted with a single
DELETE statement.

Any data set cited in a DELETE statement
must have been referred to in an ALLOC or
ACCESS statement processed previously in
the job.

The CONDENSE statement is used to shift
the contents of a directoried data set in
order to fill space occupied by deleted
members and directory entries. This space
is treated as though it were empty.
Existing members and directory entries are

20 System/360 Mod€l 44PS Guide to System Use FORTRAN

shifted toward the beginning of the data
set to fill the space. The total size of
the data set is not changed. Also, there
is no change in the order in which the
remaining members and Bntries appear.

After the data set has been condensed,
all available space is at the end of the
data set and at the end of the directory.
New members may be added and new entries
may be made in the directory.

Any data set cited in a CONDENSE
statement must have been referred to in an
ALLOC or ACCESS statement processed
previously in

The RENAME statement is Used to change
the name of a data set or the name of a

member of a directoried data set. When a
data set is renamed, the name is changed in
the VTOC and, if applicatle, in the system
catalog. The name of a member is changed
in the directory of the data set to which
it belongs. Other names of that member, if
any, are not affected.

The new name may not duplicate an
existing name in the system catalog, volume
table of contents, or data set directory.
System data sets should not te renamed.

Any data set cited in a RENAME statement
must have been referred to in an ALLOC or
ACCESS statement processed previously in
the job.

Data Sets 21

Form C28-6813-2, page modified June 10, 1969, by TNL N33-8602

This chapter describes in greater detail
the three types of job steps involved in
processing a FORTRAN program. It describes
the options available to the programmer for
each process and refers to s~ecifications
in job control statements and linkage
editor control statements. Once the reader
has become familiar with the information
fresented here, he should be able to write
control statements merely by referring to
the next chapter, "Control Statements."

COMPILATION

Compilation is the execution of the FORTRAN
IV compiler. The programmer requests
compilation by placing in the job deck an
EXEC statement that contains the program
name FORTRAN (the name of the FORTRAN IV
compiler). This is the EXEC FORTRAN
sta tement.

Input to the compiler is a set of
FORTRAN source statements, constituting
either a main program or a subprogram.
Source statements punched in either card
code, Extended Binary-Coded-Decimal
Interchange Code (EBCDIC) or
Binary-Coded-Decimal Interchange Code
(BCDIC), are acceptable. (Appendix B
shows the EBCDIC and BCDIC card codes for

each of the 49 characters that are valid in
FORTRAN source statements.)

If any characters of the source
statements are punched in the BCDIC card
code, the programmer must specify BCD as a
compiler option in the EXEC FORTRAN
statement. Otherwise, the FORTRAN IV
compiler assumes that all source statements
for the compilation are punched in EBCDIC
and, therefore, treats any BCD characters
as invalid. (If BCD is specified, the
c h a r act e r $ m u s t not be use d as an
alphabetic character in the source program,
and statement numbers passed as arguments
must be coded as $B rather than SB.)

The FORTRAN source statements are read
from SYSIPT. The job deck is read from
SYSRDR. If SYSIPT and SYSRDR are assigned
to the same unit, the FORTRAN source
statements should be placed after the EXEC
FORTRAN statement in the job deck.

Output from the FORTRAN IV compiler
includes a source listing, a list of the
source statements exactly as they appeared
in the input deck. The source listing is
produced on SYSOPT. Any errors in the
source statements are indicated in the

source listing and appropriate errOr
messages are written. (The format of the
source listing is discussed and illustrated
in the chapter" System Output. If) In
addition, the module produced by the
compiler is written on 5YSOOO, the linkage
editor input unit.

The programmer can override the
production of any of this output by
specifying compiler options in the EXEC
FORTRAN statement. The NOSOURCE option
suppresses the production of a source
listing, except for the indication of
errors. The NOLINK option suppresses the
writing of the module on SYSOOO. The
programmer should specify NOLINK in a
compile-only job or whenever the module is
to be excluded from linkage editor
processing during the same job.

If a module is produced on SYSOOO, the
programmer should name this module by
specifying a name for the job step in the
EXEC FORTRAN statement. The job step name
becomes the module name.

The programmer can request output in two
additional forms, again via options in the
EXEC FORTRAN statement. The compiler will
produce a module de~! (the module, written
on SYSPCH) if the programmer specifies DECK
in the EXEC statement. The module deck can
be used in a subsequent job as input to the
linkage editor.

A compiler storage map is written on
SYSOFT if the programmer specifies MAP in
the EXEC statement. This storage map
includes a list of all the variables (both
local and COMMON variable~ that were
defined in the source statements just
compiled. (The contents of the compiler
storage map are discussed and illustrated
in the chapter "System Output.")

Compilations may be tatched; that is, one
EXEc FORTRAN statement may serve for more
than one compilation. When batching, the
source input for one compilation,
terminated by an END statement, is followed
immediately by the source input for the
next compilation. The 1* statement
signifies the end of the batch of
compilations. The compiler options
specified on the EXEC FORTRAN statement
apply throughout the batch.

The names for the modules produced on
SYSOOO are generated by the compiler from

22 System/360 Model 44PS Guide to System Use FORTRA~

Form C28-6813-2, page modified June 10, 1969, 1:y TNL N33-8602

the job step name in the EXEC FORTRAN
statement. If the step name is ABCDEF, the
name of the first module is ABCDEF, the
name of the second module is ABCDEF01, etc.
If the step name is ABCDEFGH, Lne Ilrst
module is named ABCDEFGH, the second is
named ABCDEF01, etc. If the step name is
ABCDEF01, the first module is named
ABCDEF01, the second module is named
ABCDEF02, etc.

No more than 100 compilations may be
processed iri one batch.

EDITXNG

Zditing is the execution of the linkage
editor. The programmer requests editing by
placing in the job deck an EXEC statement
that contains the program name LNKEDT (the
name of the linkage editor). This is the
EXEC LNKEDT statement.

Input to the linkage editor is a set of
linkage editor control statements and one
or more modules to be edited. These
modules include either or both of the
following:

1. Modules that were compiled previously
in the job and placed at that time on
the linkage editor input unit, SYSOOO.

2 • Mod u Ie s t hat we r e co m p i 1 e din a
previous job and saved as module
decks. The module decks must be
placed on SYSIPT along with the
linkage editor control statements.

In addition, the linkage editor will
process modules that are in the ~Qg~l~
libr~~ The module library is a
collection of frequently used subprograms,
such as the FORTRAN-supplied library
subprograms, in the form of modules. The
module library is on the unit named SYSREL.
(Information about the functions and use of
FORTRAN IV library subprograms can be found
in the publication 1~~_~~igIDL1§Q~--IQ]lRA]
11_Lib£££Y_2ub£rogram~, Form C28-6S96.)

Many FORTRAN programs contain references
to FORTRAN-supplied library subprograms.
Some references are explicit: for example,
the statement B = SQRT(A) contains an
explicit reference to the square root
librarj subprogram, which computes, in this
case, the square root of A. Other
references are implicit: for example, the
statement C = D**S contains an implicit
reference to the exponential library
subprogram, which computes, in this case,
the value of D raised to the fifth power

When the "linkage editor processes a
module that makes use of a library
subprogram, it automatically searches the

module library for the requested sUbprogram
module and processes it along with the
module that reg-uested it. It is possible
to suppress this automatic linking facility
by specifying NOlGTO as an opt10n 1" the
E:XEC LNKEr::T statement. In doing so, the
programmer accepts responsibility for
ensuring that all library sutrrograms
required by a FORTRAN program are included
in linkage editor processing.

Output from the linkage editor is one or
more phases. A phase may be an en tire
program Or it may be part of a multiphase
program.

A phase produced by the linkaqe editor
can be executed immediately after it is
produced (tha t is, in the job step
immediately following the linkage editor
job step). Or it can be executed later,
either in a subsequent job step of the same
job or in a subsequent job. In either of
the latter cases, the programmer must
specify KEEP as an option in the EXEC
LNKEDT statement in order to retain the
phase output. Otherwise, the phase output
is retained only for the duration of one
job step after the linkage editor job step.

In addition to the phase, the linkage
edi tor pro duces a ph as e map on SYSLST. The
contents of the phase map are discussed and
illustrated in the chapter "System Output."
The programmer can suppress the production
of a phase map by specifying the NOMAP
option in the EXEC LNKEDT statement.

Linkage editor control statements direct
the execution of the linkage editor.
Together with any module decks to be
processed, they form the lin~~~~ito£
in£Q~~~~, which is read by the linkage
editor from SYSIPT. If SYSIPT and SYSRDR
are assigned to the same unit, the linkage
editor input deck shOUld be placed after
the EXEC LNKEDT statement in the job deck.

There are three linkage editor control
statements that may be used ty the FORTRAN
programmer: the MODULE statement, the
PHASE statement, and the INCLUDE statement.
The discussion of these statements in this
chapter is limited to the function and use
of each statement. The rules for writing
each statement are given in a sutsequent
chapter, "Control Statements."

The MODULE statement is required
whenever a module deck is included on
SYSIPT in the linkage editor input deck.
One ~ODULE statement must precede each
module deck; each MODULE statement must
specify a name for the module deck it
precedes. The MODVLE statements and their
associated module decks must appear first

Job Processing 23

Form C28-6811-2, page modified June 10, 1969, by TNL N33-8602

in the linkage editor input deck; no other
linkage editor control statements may
precede them.

As soon as a MODULE statement has been
processed, the module deck following it is
copied onto the linkage editor input unit,
SYSOOO. Thereafter, it is treated exactly
as any modules already on that unit (that
is, the modules placed there earlier by the
FOR TRA N I V com pi ler) •

The PHASE statement is used to specify a
name for the phase that is to be produced
by the linkage editor and to indicate the
origin of the phase, that is, the first
main storage location that is to be
occupied by the phase when it is loaded.
For a single-phase program, the origin is
specified as the letter S, which indicates
the first main storage location available
to a problem program.

The INCLUDE statement identifies a
particular module for inclusion in a phase.
There must be one INCLUDE statement for
each module that is to be included (except
for those subprogram modules in the module
library that will be linked automatically);
all of the INCLUDE statements for a
particular phase must immediately follow
the PHASE statement that names the phase.
The order of the INCLUDE statements
indicates the order in which modules are to
be included in the phase.

Each INCLUDE statement must identify the
module by name. For a module on SYSOOO
that was produced by the ?ORTRAN compiler
earlier in the job, the module name is the
same as the name in the EXEC statement for
the compilation job step. ~odule names
that are created during batch compilations
are treated differently. The first batch
module has the same name as the jot step.
For the second batch module, this name is
padded on the right with numeric zeros and
a 1 to provide an 8-character name with 01
as the last two characters. If the jot
step name was more than six characters, the
01 digits replace the seventh and eighth
characters. However, if the job step name
is eight characters, the last two of which
are numerical (NN), the seventh and eighth
characters are replaced by two digits which
are equal to NN + 1. These digits are
incremented by 1 for each subsequent module
in the batch.

The INC LCD Est ate men t m us t a Iso i n d i cat e
the location of the module. If the modult
is on SYSOOO, the programmer must specify
the letter L; if the module is in the
module library, he must specify the letter
g. An INCLUDE statement is required for
modules in the module library if the
modules have not been referred to in the

source program or if the automatic linking
facility has been suppressed.

The PHASE and INCLUDE statements can be
omitted from the linkage editor input deck
if all of the following conditions exist:

1. Only one phase is to be produced by
the linkage editor.

2. All of the modules on SYSOOO,
including any that are to te copied
from module decks on SYSIPT, are to be
included in the phase.

3 • The mod u I es are tot e inc Iud e din the
phase in the order in which they
appear on SYSOOO.

If the programmer omits the PHASE and
INCLUDE statements, the linkage editor will
generate these statements. The name of the
phase will be the name of the first module
included in the phase. The origin of the
phase will be the first main storage
location available to a problem program
(eCjuivalent to a specification of S).

Note that the programmer must omit .£Q.th
the PEASE and the INCLGDE statements if he
wishes to use this feature. In other
words, a PHASE statement in the linkage
editor input deck must always bE
a c com pan i e d by a se t 0 fIN C L U DEs tat em en t s
and vice versa.

PHASE EXECUTION

Phase execution is the execution of the
problem program, for example, thE program
written by the FORTRAN programmer. If the
program is a multiphase program, phase
execution actually entails the execution of
all the phases in the program.

The phase(s) to be executEd must be in
the Bhase_librarl. The phase library is a
collection of executable phases from which
programs are loaded by the supervisor. A
phase is written in the phase library ty
the linkage editor at the time the phase is
produced. It is retained in the phase
library if the programmer has so requested
via the KEEP option in the EXEC LNKEDT
statement.

The programmer requests the execution of
a phase by placing in the job deck an EXEC
statement that specifies the name of the
phase. ~f the phase to be executed was
produced in the immediatEly precEding job
step, however, its name need not be
specified in the EXEC statement.

The programmer can also rEquest, via the
EXEC statement, that the setting of the
variable precision switch be checked. This

24 System/360 ~odel 44PS Guide to System Use FCRTRAN

Form C28-6813-2, page added June 10, 1969, by TNL N33-8602

switch, which is set manually by the
operator, indicates the level of precision
at which floating-point operations are
performed. Precision may be 8, 10, 12, or
I~ Dits. In general, the highest precision
provides greatest accuracy and the lowest
precision provides greatest speed.

Job Processing 24.1

A FORTRAN proqram can be executed as a
sinqle phase as lonq as there is an area of
main storaqe available to accommoaate it.
This area, known as the Eroblem program
area, must be large enough to contain the
main proqram, all called subprograms (both
library subprograms and those written by
the user), and an area of common storaqe
when applicable (whenever COMMON statements
are used anywhere in the source proqram;.
When a proqram is too large to be executed
as a sinale phase, it must be structured as
a multiphase proqram.

A multiphase proqram may have either of
two structures. The tirst of these is a
com£let~_Eh£se Qy~rl~l structure, permitted
for a program of two or more phases. Only
one phase of the proqram is in the problem
program area at any given time, each phase
completely replacinq, or Q~l£Ying, the
previous prase.

Tre other structure available for
multiphase proqrams is known as root_phas~
overill and is uSEd primarily for programs
of- three or more phases. One phase of the
program is designated the root phase and,
as such, remains in the problem program
area throuqhout the execution of the entire
proqram. The other phases in the
program -- subordin£te_phases are loaded
into the problem program area as they are
needed. A subordinate phase may overlay
any previously loaded subordinate phase,
but, under ordinary circumstances, no
subordinate phase should overlay the root
phase. One or more subordinate phases can
reside simultaneously in main storage with
the root prase.

In order to choose the overlay structure
best suitEd for his proqram, the proqrammer
should examine the program for subprogram
structures. A subprogram structure is a
s~ries of two or more subprograms, the
first of which is called by the main
program; the second subprogram is called by
the first subprogram, the third is called
by the second, and so on. For example,
every FORTRAN main proqram contains a call
to the library subprogram IBCOM; the IBCOM
subproqram contains a call to the library
subproqram FIOCS; in turn, FIOCS calls the
library subproqram UNITAB. Thus, it can be
said that every FORTRAN main program uses
the subproqram structure consisting of
IBCOM, FIOCS, and UNITAB. As a second
example, consider the group of subprograms
A, B, C, and D. Subprogram A contains a
call to subprogram B, which, in -turn,
contains calls to subprograms C and D. In
this example, two subproqram structures
exist -- the first consisting of the
subprograms A, B, and C, the other
consisting of the subproqrams A, B, and D.

The root phase overlay structure may be
USEd whenever the problem proqram area is
larqe enouqh to include the entire main
program, the common area (when applicable) ,
and the larqest subproqram or subproqram
structure used by the main proqram.
Otherwise, the complete overlay structure
must be used.

For a multiphase proqram, the linkaqe
editor allocates a common area equal in
size to the largest common area required by
any phase. The common area is present in
main storage throughout the execution of
the entire program. Parameters may be
passed throuqh the common area from one
phase to another, makinq possible
communication between phases.

When a multiphase proqram is to be
executEd, the first phase is loaded by the
supervisor as a result of job control
processing. The loading of subsequent
phas~s, however, is controlled by the
programmer. In doinq so, the proqrammer
makes
use of a special library subproqram,
BOAOVLY, provided expressly for multiphase
proqrams. Por each phase that is to be
loaded, the programmer places in his source
program a call to the BOAOVLY subproqram,
which causes the appropriate phase to be
loaded.

Since the calling statements differ,
dependinq on the ~ype of overlay structure
being used, they are discussed in detail in
the appropriate section, that is, "Complete
Phase Overlay" or "Root Phase Overlay."

COMPLETE PHASE OVERLAY

The complete phase overlay structure
requires that a FORTRAN main proqram be
divided into two or more main proqrams, one
for each phase of the multiphase proqram.
Once the oriqinal main proqram has been
divided by the programmer, each newly
formed main program, toqether with the
subprograms and subprogram structures it
uses, is processep to form one phase of the
new program.

For example, consider a FORTRAN main
program that consists of 300 source
statements and makes use of eight
subprograms, named A throuqh H. Assume
that this main program can be divided into
three parts of 100 statements each, so that
all three parts make use of subproqrams A,
B, and C, only part 1 makes use of
subprograms D and E, only part 2 makes use
of subprograms F and G, and only part 3

Job Processinq 25

makes use of subproqram H. The result is a
three-phase program: the first phase
includes part 1, as the main proqram, and
subproqrams A, B, C, D, and E; the second
phase includes part 2, as the main proqram,
and subpro9rams A,B,C,F, and G; the third
phase includes part 3, as the main proqram,
and subproqrams A;B,C, and H.

Calling statement for Complete~ase
Q,ygla'y

To request that a new phase be loaded, the
proqra~mer must place the followinq CALL
st a temen t in his s ouree' proqram:

CALL LIN~ ('phasename')

This statement causes the phase whose name
is specified to be loaded into the problem
program area. In addition, control is
qiven to the newly loaded phase, which then
beqins execution.

The phase name specified in the CALL
statement must be the name of the phase as
specified in a linkaqe editor PHASE
statement.

Since the CALt LINK statement causes
control to be transferred to a new phase,
it should appear as the last executable
statement in each phase except the last.

The followinq ill ustra tes t he CALI, I I NK
statement:

CALL LINK ('PHASEC')

This statement results in the loadinq of
PHASEC by the supervisor and the transfer
of control to PHASEC.

Linkaqe editor control statements for a
multiphase program usinq complete phase
overlay are specified exactly as they would
be for a sinqle-phase proqram. The linkage
editor input deck differs in that there
must be one PHASE statement for each phase
in the proqram. Each PHASE statement must
specify a unique phase name; as in the case
of a sinqle-phase proqram, the oriqin of
each phase should be specified by the
letter S. A set of INCLUDE statements must
follow each PHASE statement to indicate
which modules are to be included in the
phase.

The first PHASE statement in the linkage
editor input deck identifies the phase that
is to be loaded and executed first, unless
the programmer explicitly specifies the

name of another phase in the EXEC statement
for phase execution. For example, with the
followinq set of control statements, PHASEA
would be executed first:

II EXEC LNKEDT
PHASE PHASEA,S
INCLUDE MOD1,L
INCLUDE MOD2,L
PHASE PHASEB,S
INCLUDE MOD3,L

1*
II EXEC

However, the last statement could have been
written:

II EXEC PHASEB

In this case, PHASEB would be loaded and
executed first.

ROOT PHASE OVERLAY

The root phase overlay structure requires
that the entire FORTRAN main proqram be
included in a root phase, toqether with
some of the subproqrams it uses. The
remaining subproqrams are incorporated into
two or more subordinate phases, so that the
root phase and the larqest subordihate
phase can reside in the problem proqram
area simultaneously.

The proqrammer can construct subordinate
phases of several levels. A first-level
subordinate phase is one that is loaded as
the result of a call from the root phase;
the oriqin of such a phase usially is the
first available location followinq the root
phase. A second-level subordinate phase is
one that is loaded as the result of a call
from a first-level phase; its oriqin
usually is the first available location
followinq the first-level phase. A
third-level subordinate phase is one that
is loaded as the result of a call from a
second-level phase, and so on. When phases
of several levels are used, the root phase
and the larqest §YRQrdin~g_pha§g
structure -- a series of two or more levels
of-subordinate phases -- may not exceed the
size of the problem proqram area.

Fiqure 2 gives an example of a root
phase overlay structure in the problem
proqram area. In this illustration, ROOT
is the root phase; A, B, and Care
first-level subordinate phases; AA and CC
are second-level phases. Two subordinate
phase structures exist. One consists of
phases A and AA; the other is made up of
phases C and CC.

26 System/360 Model 44PS Guide to System Use FORTRAN

r---------------.------------
I , , ROOT

I I
~------.- -.,.--.----~
I ,
, A , B C
, I
, I
t--------j
I I
I I
I AA

CC

Figure 2. Root Phase Overlay Structure

The proqrammer is free to structure his
subordinate phases in t~e way that best
suits the needs of his proqram.

Cal~statement for Root Phase Overlay

To request that a new phase be loaded,
the programmer must place the following
CALL statement in his source program:

CALL LOAD ('phasename')

This statement causes the phase vhose name
is specified to be loaded into the problem
program area. However, control returns to
the next statement in the calling phase; it
is not transferred to the newly loaded
phase.

The phase name specified in the CALL
statement must be the name of the phase as
specifiEd in a linkage editor PHASE
statement.

After the requested phase has been
load€d, the programmer can use any
subproqram witpin it by means of a CALL
statement addressinq that subprogram. For
example, consider a first-level subordinate
phase ALPHA incorporating the subproqrams
BETA and GAMMA. The following sequence of
statements in the root phase will cause
phase ALPHA to be loaded and subprogram
GAMMA to be executed:

CALL LOAD ('ALPHA')

CALL GAMMA (X,Y,Z)

Note that it is permissible to pass
arguments (represented here by X, Y, and Z)
from one phase to a subproqram in another
phase. Once the called subproqram has been
executed in the normal fashion~ return is
made to the calling phase (in the above
example, from phase ALPHA to the root
phase) .

Linkage Editor Control statements

There must be one PHASE statement in the
linkaqe editor input deck for each phase of
a multi phase program using root phase
overlay. Each PHASE statement must specify
a unique phase name. The origin of each
phase is specified as follows:

1. The word ROOT is specified for the
origin of the root phase. This causes
the phase to be loaded at the first
available location in the problem
program area. The specification ROOT
differs from the specification S in
that it identifies the root phase to
the linkage editor.

2. The character * (asterisk) can be
specified to set the origin of a
subordinate phase at the first
location following the most recently
processed phase. For example, assume
that the first PHASE statement in the
deck refers to the root phase;
accordingly, its origin is specified
by ROOT. Assume that the next PHASE
statement refers to a first-level
subordinate phase named ALPHA. The
origin of ALPHA should be specified by
* to cause it to be loaded into the
area immediately following that
occupied by the root phase. If the
next PHASE statement refers to a
second-level subordinate phase named
BETA that is called by phase ALPHA,
the origin of BETA should also be
specified by * to cause it to follow
phase ALPHA in storage.

3. The name of a phase currently in the
phase library (this includes all
phases previously created in this job
step) can be specified to set the
oriqin of the current phase equal to
the origin of the phase whose name is
specified. For example, consider
again the linkage editor input deck
discussed in point 2, above. Assume
that the next PHASE statement (after
the PHASE statement for BETA) refers
to another first-level subordinate
phase named GAMMA. Phase GAMMA should
have the same origin as phase ALPHA,
namely, the first available location
following the root phase. This can be
accomplished by specifying the phase
name ALPHA as the oriqin in the PHASE
statement for GAMMA.

Job Processing 27

If phase ~AMMA calls a second-level
subordinate phase, named DELTA, the PHASE
statement for DELTA should be the next
PHASE statement in the linkage editor input
deck. Its origin should be specified by *,
which loads DELTA at the first location
followinq GAMMA. Note that the
specification BETA, the name of the
second-Ieve~ phase called by ALPHA, should
not be used. The origin of BETA follows
ALPHA; the origin of DELTA should follow
GAMMA. If GAMMA is longer than ALPHA, the
specification BETA would cause DELTA to
overlay part of GAMMA.

If phase GAMMA calls another
second-level phase named ETA, its PHASE
statement should be the next PHASE
statement in the linkage editor input deck.
The origin of ETA can be specified by
DEtTA, since ETA and DELTA are both
second-level phases called by GAMMA and
~hould have the same origin.

From the examples given thus far, it can
be seen that phases should be processed in
a given order. The root phase should be
processed first, followed by a first-level
subordinate phase, followed by a
second-level phase, if any, and so on. If
a progra~ is to be structurEd as shown in
Fi~ure 3, the order in which these phases
should be processed and the origin that
should be specified for each is:

Phas~ Origin
ROOTPH ROOT
A * AA * AAA * AAB AAA
AB AA
B A
BB * BC BB
C A or B
CC * D A or B or C

LIN¥AGE EDITOR OPERATION

To the linkaqe editor each module it
processes is a control section (CSECT).
Each CSECT has a name -- the name of every
CSECT that is a FORTRAN main program is
MAIN44; the name of every subprogram CSECT
is the subprogram name followed by an equal
sign. For example, the CSECT name for the
subprogram SUBPRO is SUBPRO=.

The linkage Editor processes control
sections according to the following rules:

1. If a CSECT name matches the name of
another CSECT in the same phase or in

r---
I
I

I
I

I ROOT PH I
I I

I I
l-
I

~-----~
I I

I A I B C I D
I
I
I
I
I
l
I
I

I I
I I I
I I-----~
I I I
I I I

-,..----1, I CC I
I I I
I I I

I AA AB ~ I I
I I I I
I I I I
I I BB BCI I
I
I I
I---,---t
I I I
I I I
I I
IAAAtAAB

I
I
I
I
I

I I
I I
I I

Figure 3. Order of Phases

the root phase, the new CSECT is not
included in the current phase. For
example, an attempt to include two
main programs (both ~ave the CSECT
name MAIN44) in one phase causes the
second main proqram to be ignored.

2. If a CSECT name matches the name of a
CSECT in another phase (except the
root phase), the new CSECT is included
in the current phase but a warning
message is issued. The message is
numbered KA02I. (This does not hold
true when the new CSECT is one
automatically linked from the module
library.) An example of this occurs
when a complete overlay multiphase
program is processed. Each phase
contains a main program with CSECT
name MAIN44. The linkage editor
prints the KA02I message for each main
program it processes other than the
first. However, in these instances
the warning message can be ignored.

Define FILE Statements

If a direct access data set is referred to
in two or more subordinate phases, it
should be defined in the main program with
a single DEFINE FILE statement.

28 System/360 Model 44PS Guide to System Use FORTRAN

It has already been mentioned that the
linkaqe editor allocates a common area
equal in size to the largest common area in
any phase. All references to COMMON are
resolved to this area except for references
to a named CO~MON of the same name as a
BLOC~ DATA area. All references to such a
named COMMON are resolved to the BLOCK DATA
area, which is within a phase.

This causes no problem when the complete
phase overlay structure is used. However,
for the root phase overlay structure, the
danqer exists that a refer~nce to named
COMMON will be resolved to a BLOCK DATA
area, even thouqh the phase containinq the
BLOCK DATA is not in main storaqe. For
this reason, a BLOC~ DATA area of the same
name as a named COMMON should appear only
in the root phase.

Job Processinq 29

The Model 44 Programming System provides
two types of control statements that can be
used by the FORTRAN programmer: job
control statements and linkage editor
control statements. This chapter gives the
rules for writing these control statements
and describes each statement with respect
to format and content.

JOB CONTROL STATEMENTS

~ob control statements are designed for an
BO-column punched card format. Although
certain restrictions must be observed, the
statements are essentially free form.
Information must start in column 1 and
cannot extend beyond column 71. If th e
lenqth of a statement exceeds 71
characters, it may be continued on
additional cards, as discussed later in
this section.

A statement may consist df from one
through four fields. The crder of the
fields in the statement are: the
identifier field, the name field, the
operation field, and the operand field.

The identifier field occupies card
co I u JlI n s 1 and 2. It con t a ins a
two-character combination that identifies
the statement as a job control statement.
The identifier combination for most job
control statements is II. The exceptions
are 1& for the end-of-job statement, 1* for
the end-of-data statement, and *b (asterisk
followed by a blank) for the comments
sta temen t.

The name field beqins in column 3 and
ma y not extend beyond col umn '0. The name
field is permitted in only the JOB, EXEC,
ALLOC, and ACCESS statements. If the name
field of a statement is not used, column 3
must contain a blank.

The operation field, which identifies
the statement by name (JOB, EXEC, etc.),
may start .in any column after column 3. If
the statement has a name field, the
operation field must be separated from the
name field by at least one blank.

The operand field follows the operation
field, separated from it by at least one
blank. The operand field usually consists
of a series of specifications, separated
from each other by commas or parentheses.
Except where otherwise indicated,
specification~ should be punched in the
order shown in the statement formats. In

general, no blanks are permitted within the
operand field. The exception to this rule
occurs when a blank character is permitted
wilhin_~~Eecificalion. Otherwise, the
first blank in an operand field causes any
characters following the blank and
preceding column 72 to be treated as
comments.

Column 72 in each card is the
continuation column. A nonblank character
in this column indicates that the statement
is continued on the next card. The first
card of a statement must contain the
identifier field, the name field (if used),
the operation field, and at least one
specification of the operand field. The
statement can be interrupted only after a
comma used to separate two specifications.

It is not necessary to fill up a card
before continuinq the statement on a new
card. The final comma may appear in any
column before column 71; in this case, at
least one blank must follow the comma and
then comments may appear through column 71.
The continuation character is punched in
column 72.

As many continuation cards as necessary
may be used for a single statement. There
must be a nonblank character in column 72
of each card except the last. Each card
~ust contain the characters II in columns
and 2. The operand field of the statement
must always resume in column 16. If column
16 of any continuation card is blank, the
text on it and on any subsequent
continuation cards for the statement is
treated as comments.

Columns 73 through 80 of all cards are
iqnored by the system and may be used for
any purpose.

There are several ways in which comments
can appear in job control statements. All
such comments are printed on SYSLST.

As was already shown, comments can
appear in job control statements that have
an operand field. They are written after
the operand field (or a portion of an
operand field that is continued on another
card) and separated from it by at least one
blank. Comments can also be written as a
series of continuation cards, the first of
which has a blank in column 16.

30 System/360 Model 44PS Guide to System Use FORTRAN

For statements in which an operand field
is permitted but is not being used, t~e
absence of the field must be indicated by a
comma and at least one blank before the
start of any comments.

comments are also permitted in
statements that do not have an operand
field, such as the end-of-job (/&)
statement, as long as the comments are
preceded by at least one blank.
rl"\n+;nl'!:fI+';"n "'!:liT"'~C' m~1.7 T"II" hi""'1 11~I'""\~
__ ~ ... ,£. _""'" "-, '-''''''' .. U. to..J .LU\..4J. .&..1,'-'...... J.J...... \.I.t.J~U,

however, to extend these ccmments.

comments statements may be placed
anywhere in the job deck. Column 1 must
contain an asterisk; column 2 must contain
a blank; the remainder of the card, up to
column 72, may contain any characters,
includinq blanks. comments statements are
designed for communication with the
operator; accordingly, they are written on
the console printer-keyboard, SYSLOG, as
well as being written on SYSLST.

statements may contain any of 39 alphameric
characters recognized by the programming
system. The term "alphameric characters"
refers to both alphabetic and numeric
characters.

Alphabetic characters are defined for
the system as the 26 letters, of the
alphabet, A throuqh Z, plus 3 special
characters: $ # ~.

The numeric characters are the digits 0
through 9.

In addition to the 39 alphameric
characters, the followinq characters may
appear in job control statements, but only
where specifically indicated in the
statement formats:

asterisk
comma
equal sign
parentheses
sinqle quote
slash

*

() ,
/

All job control statements must be
punched in the Extended
Binary-Coded-Decimal Interchanqe Code
(EBCDIC) •

The job control statements are presented in
this chapter in alphabetic order. For each
statement, the statement format appears
first, showing the contents of the
ide~tifier, name, operation, and operand
fields. Immediately following each
statement format is a specifications table,

which indicates for each specification in
the statement format the reason for
specifyinq it and how to specify it.

An attempt has been made to keep each
statement format as simple as possible.
For some statements, more complex
specifications in the operand field are
dealt with in additional tables, one for
each of these more complex specifications.
In all cases, the reader is directed to
appropriate table in the specifications
table following the statement format.

-'- L _
LIl\::!

The followinq notation is used in the
slalement fOLrnats:

1. All upper-case letters represent
specifications that are to appear in
the actual statement exactly as shown
in the statement format. For example,
~OB in the operation field of the JOB
statement should be punched exactly as
shown -- JOB

2. All lower-case letters represent
qeneric terms that are to be replaced
in the actual statement. For example,
jobname is a qeneric term that should
be replaced by the name that the
programmer is givinq his job.

3. Hyphens are used to join two or more
words in order to form a sinqle
qeneric term. For example,
data-Ienqth is one qeneric term.

4.

5.

Brackets are used to indicate that a
specification is optional and is not
always required in the statement. For
example, [CATLGl means that the word
CATLG mayor may not appear in the
statement, dependinq on the
proqrammer's requirements.

Braces enclosinq stacked items
indicate that a choice of one item
mus! be made by the programmer. For
example:

~ 2400 l
11600f

means that either 2400 or 1600, but
not both, mus! appear in the actual
statement.

6. Brackets enclosinq stacked items
indicate that a choice of one item
may, but need not, be made by the
programmer. For example:

Control statements 31

[
DECK]
NODEC¥

means that either DECK or NODECK, but
not both, may appear in the actual
statement, or the specification can be
omitted entirely.

7. An underlined item represents the
default option -- the choice that will
be made by the proqramminq system if
the proqrammer omits a specification.
For example:

[~OSOURCEJ SOU]£]

means that either NOSOURCE or SOURCE,
but not both, may appear in the actual
statement, or the specification can be
omitted entirely (in which case SOURCE
is assumed by the proqramminq system).

In other words, specifyinq SOURCE
produces the same result as omittinq
the specification entirely.

Not~ The default options shown in
this pUblication are those that exist
in the distributed version of the
Model 44 Proqramminq System. However,
these defaults can be altered by an
installation durinq the system
construction process or the system
assembly process.

8. All punctuation marks shown in the
statement formats other than hyphens,
brackets, braces, and underlines are
punched exactly as shown. For
example, [,NOAUTO] means that the
specification, if present in the
statement, should consist of the seven
characters ,NOAUTO so that the initial
comma is included.

32 System/360 Model 44PS Guide to System Use FORTRAN

Id Name operation Operand
r--T--------~ T---,
I11I SYS:xXX IACCESS Idsname, {' type= .}'
I I I I devadr= L--L-_________ ~ _________ ~ ___ - ___________ J

r--- T-------------------------------~ ,
I Specification I Reason for Specifyinq I How to Specify I
~ ~-------------------------------+- ~
II I I ReguirEd I As shown I
...-------------t--------------------------t-----------------------------~
ISYSxxx !ReguirEd; associates the data IAny valid symbolic unit name I
I Iset ~ith a symbolic unit name I I
l-------------~----------------------------+-------------------------.!J
IACCESS IReguired lAs shown I
...----------+---------------------------f----------------------------~
Idsname IReguirEd; indicatEs the name oflFrom one throuqh eiqht alphameric I
I Ithe data set Icharacters, the first of which must I
I I I be a letter I
~---------------+--------------------------+- ~
Itype= ITo identify. throuqh its device!One of the unit record device type I

Itype code, the device to be Icodes (see next chart), followed by I
I lused Ian egual siqn I
1-------------------+----------------------------+------------------------~
Idevadr= ITo identify, throuah its devicelA three-character device address I
I I address, the device to be used I (supplied by the installation), fol- I
I I Ilowed by an equal siqn , L--___________ ~ _____________________________ ~ ____________________________ J

Control Statements 33

Code Meaninq
r------------------,-------------------------------------,
11442 IIBM 1442-N1 Card Read-Punch 1
t------------+---------------------------------~
11442P IIBM 1442-N2 Card Punch I
I--- --+-------------------------1
12520 IIBM 2520 Card Read-Punch 1
1-------------+----------------------------------1
12520P IIBM 2520-B2, B3 Card Punch I
~-------------+----------------------------------~
12501 IIBM 2501 Card Reader I
~----------+----------------------------------~
12540 IIBM 2540 Card Read-Punch 1
, 1 (Reader side) 1
~----------+---------------------------------~
12540P IIBM 2540 Card Read-Punch 1
1 1 (Punch side) 1
t------------+---------------------------------~
11403 IIBM 1403 Printer, Model 2, 3, or N1 1
I 1(132 characters) 1
~ -+------------------------------~
1'403M7 ,IBM 1403 Printer, Model 7 1
1 I (120 characters) 1
t--------------+-------------------------------------~
11443 I IBM 1443 Printer, Model N1 1
, 1 (120 characters) 1
t- 1 -t
11443S I IBM 1443 Printer, Model N1 I
I 1 (144 characters) Special Feature 1 L ______________ ~ _____________________________ J

//SYSOC4 ACCESS CARDDATA,1442=

This statement causes an IBM 1442-N1
Card Read Punch to be used for the data set
named CARDDATA. The data set is asscciated
with symbolic unit SYS004 (correspcndinq to
data set reference number 4).

34 System/360 Model 44PS Guide to System Use FORTRAN

Not~: Each code is speci
fied as shown.

Id Name operation Operand
r--T----------T---------~---,

1III SYSxxx ACCESS jdsname,volume[,EXT]
L-~ ~ ___ J

r- ~-----------------------------------,

I Specification I Reason for Specifyinq I How to Specify i
l----------+-------------------------+------------------------------I
III IRequired lAs shown I
l-------------+-------------~------------+------------------------I
ISYSxxx jRequired; associates the data IAny valid symbolic unit name
I Iset with a symbolic unit name I I
l-----------+---------------------------+-------------------1
I ACCESS I Required I As shown I
~---------------+------------------------------+----------------------------------~
Idsname IRequired; indicateE the name of IF rom one throuqh eiqht alphamEric I
I Ithe data set Icharacters, the first of which must I
I I Ibe a letter; for labeled tapes, the I
I I Idata set name as contained in the I
I I l(lata set label I
~-------------~-----------------------------+- ~
Ivolume IRequirEd; identifies the devicelThe tape volume desiqnation (see I
I I and volume to be used Inext chart) I
l-------------+-----------------------------+--------------------------1
IEXT IIndicates that data is to be lAs shown I
I I added to the data set I I L-______________ ~ _______________________________ L__ J

Control Statements 35

j type }
l aevadr

[(options)] {:'VOlid'}

r------------------.-------------------------------~-----------------------------------,

I Specification I Reason for Specifyinq 1 How to Specify I
1----------------+--------------------------+---------------------------------4
Itype ITo identify, throuoh its devicelOne of the tape device type codes I
I I type code, the device to be I (see below) I
I I used I I
~-------------+-------------------------+- ~
Idevaar ITo identify, throuqh its devicelA three-character device address I
I laddress, the device to be used I (supplied by the installation) I
I---------------+-----------------------------+_ ~
I (optionE) ITo specify tape options for IFrom one throuqh four tape options I
I I tape units with device type I (see below), separated by commas; I
I I codes (see below) 2400T7, I the list must be enclosed in paren- I
I 12400T7C, or 24C'OD Itheses I
r-------------4-------------------------------+ ~
I='volid' ITo identify, throuqh its volid, IFrom one throuqh six characters (fori
I Ithe tape volume to be used Ilabeled tapes, the volume serial I
I I Inumber from the volume label), en- I
I I I closed in si nqle quotes; an equal I
I I Isiqn must precede the first quote I
l-------------f-----------------------------+ ~
1= ITo indicate that the tape has IAn equal sign I
I Ino volid; permitted for unla- I I
I I beled tapes only I I L-_____________ ----L _______________________________ ~ J

Code Meaning
r------------------,-------------------------------------,
12400 IIBM 2400 Maqnetic ~ape Unit with ,
I 19-track read/write head; 800 bpi onlYI
l---------------+------------------------------~
12400H IIBM 2400 Magnetic Tape Unit with I
I 19-track read/write head; '600 bpi I
I lonly I
I--- -+ -1
12400D IIBM 2400 Maqnetic rape Unit with I
I 19-track read/write head; dual densitYI
l-----------+ ~
12400T7 IIBM 2400 Magnetic Tape Unit with I
I 17-track read/write head I
~---------+----------------------------~
f24COT7C IIBM 2400 Kaqnetic Tape Unit with I
I 17-track read/write head and the I
I IConvert Feature I L-______________ -L---______ _

36 System/360 Model 44PS Guide to System Use FORTRAN

Not~~ Each code is speci
fied as shown.

1200 l 556 . .
For taFe units of device type code 2400T7:

L~OO J
For tape units of device type code 2400T7C: I ;~~ l

L ~oo J
r 800 l
L 1600 J For tape units of device type code 2400D:

option Meaninq
r-
! 200

,
!To indicate ~ +~n~ A~n~;+v nr ?nn

-,
hni I -r-I - --r-- -- ---., _ ---

t-- -+--------------------------1
1556 ITo indicate a tape density of 556 bpil
.------------+----------------------------------1
1800 IDefault option; indicates a tape den-I
1 Isity of 800 bpi I
...--------------+----------------------------~
11600 ITo indicate a tape density of 1600 I
I I bpi 1
i----~------------+--------------------------~
lE ITo indicate even parity; should not I
I Ibe specifieo unless NC is specifi~o I
...-----------t -l
10 IDefault option; indicates odd parity I
.-----------+------------------------------1
IT ITO indicate that the translate fea- I
I Iture is to be used; s~ould not be I
I lspecified unless NC is specified I
I ~ --1
INT IDefault option; inoicates that the I
I Itranslate feature is not to be used I
.-----------t ~
INC ITo indicate that the convert feature I
I lis net to be used; required if eitherl
I IE or T is specified I
.- --+ ,
IC IDefault option; indicates that the I
I Iconvert feature is to be used I
L-- I ~

ExamEle:

//SYS004 ACCESS TAPEDATA,2400D(1600)='T7063'

r~l
L-.J

r~l
L~ J

r ~1 1 L---.J

r ~m l r~Cl
L £!2: J L~ J

No1~: options may appear in
t~e option list in any or
der; each option is speci
fied as shown •

This statement causes an IBM 2400
Magnetic Tape Unit with 9-track read/write
head and dual density to be used for the
data set named TAPEDATA. The tape density
is 1600 bytes per inch. The data set is

located on the volume whose valid is T7063;
the data set is associated with symbolic
unit SYS004 (correspondinq to oata set
reference number 4).

Control Statements 37

10 Name Operation Operand
r--.----------,---------T---,
111I [SYSxxxl I ACCESS Idsname[(member names)][,volume][,EXT][,NEW]r,UNDEF] I L-_L-________ i-______ ~ ___ J

r----------------T------------------------------,---------------------------------,
I Specification I Reason for Specifyinq I Bow to Specify I
l---------------+-----------------------------+_--------------------------~
III IRequired lAs shown I
~----------.-+----------------------------+------------------------------...
ISYSxxx IAssociates the data set, or a IAny valid symbolic unit name I
t Imember of a directoried data I I
t Iset, with a symbolic unit name I I
I I (a mem ter is associated if mem-I I
! Iter names are specified in the I I
I loperana field); may be omitted , I
I lif no data transmission is in- I I
I Itended for the data set (for I ,
I lexample, the aata set is to be I I
I I deleted, condensed, or renamed , I
, I subsequently in the job) I I
l----------------+--------------------------+_-----------------------~
,ACCESS I Required I As shown I
l---------------+------------------------+_--------------------------...
Idsname IRequired; inaicates the name of IT he name of the data set, as con- I
, Ithe data set Itained in the VTOC of the volume on I
I I ,which it is located I
~-----------+------------------------+------------------------~
I {member names) ,For oirectoriea data sets only;,One or more member names, separated,
I Irequired when an existinq mem- ,by commas; the list must be enclosed,
I ,ber is to be used or when a newlin parentheses; each member name I
I Imember is to be createa; indi- Iconsists of from one throuqh eiqht I
I Icates one name of an existinq lalphameric characters, the first of I
I ,member or one or more names of Iwhich must be a letter I
I I a new member I I
l-------------+-------------------------+_--------------------...
Ivolume ITo indicate the location of thelone of the disk volume desiqnations I
I laata set; may be omitted for I (see next chart) I
I I system data sets, cataloqed I I
I laata sets, or data sets speci- I I
I I fied in a r;revious ACCESS or I I
I IALLOC statement within the job I I
~--------------+--------------------------+---------------------------~
IEXT IIndicates that aata is to be lAs shown I
I ladded to the data set; not per-I I
I Imitteo if member names are spe-I I
I Icifiea I I
l-----------------+----------------------------+_----------------------------~
INEW IFor directoried data sets onlY;IAs shown I
I ,required when a data set memberl I
I I is to be created I I
l---------------+-------------------------+-----------------------...
IUNDEF IInaicates that the data set is lAs shown I
I I to be processeo usinq the , I
I I undefined-read method I ,
L-________________ ~ __________________________ ~ ____________ --------______ J

38 System/360 Mod~l 44PS Guide to System Use FORTRAN

To identify a volume through its volid: {type }
\ devadr ; r (WRCH¥") 1

L{NOWRCFK)....i
='volid'

To identify a volume throuqh another data set it contains:

SAME [(WRCHK)]
(NOWRCHK) {

=dsname l
=SYSxxx f

r------------------T ~-----------------------------------,
I Specification I Reason fer Specifying I How to Specify I
r------------+-----------------------f__ --t
Itype ITo identify, throuqh its devicelOne of the direct access device typel
I I type code, the device to be Icodes (see below) I
I I used I I
.------------------+---------------------+_ -f
Idevadr ITo identify, throuqh its devicelA three-character device address I
J laddress, the device to be used I (supplied by the installation) I
I--------------t_ +-- -f
I (WRCHK) ITo indicate that write validitylAS shown, enclosed in parentheses I
i Ichecking is to be performed fori I
I Ithe data set I I
I----------------+-----------------+_-----------------------f
I(NOWRCHK) ITo indicate that write validitylAs shown, enclosed in parentheses I
I Icheckinq is not to be performed I I
I Ifor the data set I I
1-----------------+ +_ -f
I='volid' ITo identify the disk volume IThe volume serial number from the I
I Ithat contains the data set; re-Ivolume label, enclosed in sinqle I
I Iguired if type or devadr is Iquotes; an egual siqn must precede I
I Ispecified Ithe first quote I
1---------------+-------------------------+ -f
ISAME IReguired wren the volume is be-lAs shown I
I ling identified throuqh another I ,
I Idata set it contains I I
I--------------+-----------------------t_ -f
I=dsname !TO identify the other data set IAn equal sign followed by the n~mD
I I by name lof the other data set I
1--------------+--------------------------+ -t
I=SYSxxx ITO identify thE ether data set IAn equal siqn followed by the sym- I
I Ithrouqh the symbolic unit name Ibolic unit name associated with the I
I Icurrently associated with it Idata set I L-____________ ---L ____________________________ i-_______________________________ J

Code Meaninq
r-----------------~----------------------------------_,

ISDSD I Single Disk Storage Drive I
I I (2315 Disk Cartridqe) I
i------------t_ -t
11316 IIBM 1~16 Disk Pack mounted on I
I Ian IBM 231' Disk Storaqe Drive ,

Not§~ Each code is speci
fied as shown.

Control Statements 39

1d Name Operation Operand
r--.----------T---------,---,
IIII SYSxxx I ALLOC Idsname,volume[,CATLG]' I
L-~ ________ ~ ______ ~ ___ J

r------------------T------------------------------~-----------------------------------,
I Specification I Reason for Specifyinq I How to Specify I
i------------+-----------------------------+------------------------------~
III IRequired lAs shown I
t--------------+~-----------------------~------------------------------------1
ISYSxxx IRequired; associates the data IAny valid symbolic unit name I
I I set with a symbolic unit name I I
1-----------------+----------------------------+----------. ------------..
IAILCC ,Required lAs shown I
r-------------+---------------------------f_---------------------------..,
Idsname IRequired; indicates the name of , Prom one throuqh eiqht alphameric I
I Ithe data set Icharacters, the first of which must I
I I Jbe a letter I
~ -+-------------------------+__ .!f
\volume IRequirEd; identifies the devicelThe tape volume desiqnation (see I
I \ and vclume to be used I next chart) I
r -+--------------------------f_ -1
ICATLG ITo enter the data set into the lAs shown I
I I system cataloq I I L-________________ ~ ______________________________ ~ __________ _

J

40 System/360 Model 44PS Guide to System Use FORTRAN

{
'type }
aevadr

[(options) 1
{

='VClid'}
=FRESH

r-----------------~-------------------------------~ ,
I Specification I Reason for Specifyinq I How to Specify I
~---------------+------------------------+- ~
Itype ITo iaentify, throuqh its devicelune of the tape device type codes
I Itype code, the device to be I (see below) I
I I used I I
~---------------+---------------------------+- -/
Idevadr iTo identify, throuqh its devicelA three-character device address !
I I address, the device to be uSf'd I (supplied by the installation) I
~------------+---------------------------+- 1
,(options) ITo specify tape options for IFrom one throuqh four tape options 1
, 'tape units with device type I (see below), separated by commas; 1
I ,codes (see below) 2400T7, I the list must be enclosed in paren- I
I 12400T7C, or 2400D Itheses 1
l-------------+---------------------+-------------------------1
I='volid' ITo identify, throuqh its volia,IFrom one throuqh six characters (fori
, Ithe tape volume to be used Ilabeled tapes, the volume serial 1

I Inumber from the volume label), en- I
1 Iclosed in sinqle quotes; an egual I

'I Isign must preceae the first quote 1
l-------------+--------------------------+_ -1
I=FRESH ITo indicate that a fresh tape lAs shown, preceded by an equal siqn 1
I Ivolume is to be used I I L-_______________ ~ _____________________________ ~ _______________________________ J

Code Meaning
r- ~--------------------------------~~
12400 IIBM 2400 Maqnetic Tape Unit with I
, 19-track read/write heaa; 800 bpi onlYI
l-- -+-------------------------~
12400H IIBM 2400 Magnetic ~ape Unit with I
I 19-track read/write head; 1600 bpi I
, ,only ,
~------------+ ~
124COD IIBM 2400 Magnetic ~ape Unit with I
, 19-track read/write head; dual densitYI
l-------------+-----------------------1
12400T7 IIBM 2400 Maqnetic Tape Unit with I
, 17-track read/write head I
~---------+ .,
12400T7C IIBM 2400 Magnetic Tape Unit with ,
I 17-track read/write head and t~e I
I ,Can vert Fe at ure I L--____________ ~ ________________________________ ~

Note: Each code is speci
fied as shown.

Control Statements 41

For tare units of device type code 2UOOT7:

[
200] 556
.§.Q.Q

DJ Dl J
For tare units of device type code 2400T7C:

[

200] 556
.§Q.Q

U J Ul J [~C J
For tape units of device type code 2400D:

[
800]
1600

Op'ti on Meaning
r------------~-----------------------,

1200 ITo indicate a tape density of 200 bpil
J------------+--------------------------------~
1556 ITo indicate a tape density of 556 bpil
J------------+-----------------------------~
1800 IDefault option; indicates a tape den-I
I Isity of 800 bpi I
J------------+----------------------------~
11600 ITo indicate a tape density of 1600 I
I I bpi I
J-----------t-----------------------~
IE ITo indicate even parity; should not I
I Ibe specified unless NC is specified I
J------------+----------------------~
10 IDefault option; indicates odd parity I
J-------------+---------------------------~
IT ITo indicate that the translate fea- I
I Iture is to be used; should not be I
I Ispecified unless NC is specified I
J-----------+-------------------~
INT IDefault option; indicates that the I
I Itranslate feature is not to be used I
J---------------+-----------------------~
INC ITo indicate that the convert feature I
I lis net to be used; required if eitherl
I IE or T is specified I
IJ-------------t-------------------------f
IC IDefault opticn; indicates that the I
I Iconvert feature is to be used I L ____________ i--__________________________ ~

//SYS003 ALIOC NEWDATA,2400T7C(556) =FRESH

MQ1~: options may appear in
t}e option list in any or
der; each option is speci
fifOd as shown.

The statement causes an IBM 2400
Maqnetic Tape Unit with a 7-track
read/write head and the ccnvert feature to
be used for the data set named NEWDATA.
The tape density is 556 bytes per inch;
default cptions indicate odd parity, the

nonuse of the translate feature, and t~e
use of the convert feature. The data set
is assiqned to a fresh tape volume and
associated with symbolic unit SYSQ03
(corresponding to data set reference number
3) •

42 System/360 Model 44PS Guide to System Use FORTRAN

ro Name Operation Operand
r-~--------~-------T ,
IIII [SYSXXX] t ALLOC Idsname[,volume],data lenqth[,directory lenqth][,PMT]r ,CATLGl I
L_~ __________ ~ ________ ~ __ ~

r---------------~-----------------------------T--------------------------------,

I Specification I Reason for Specifying I qow to Specify I
~-------------t------------------------+_-----------------------------~
III IRequired lAs shown I
~-----------+ t---------------------------------;
ISYSxxx ITo associate the data set with IAny valid symbolic unit name I
I I a symbolic unit name I I
.------------+----------------------------+- ~
IALLOC IRequired lAs shown I
l------------+--------------------------+_-----------------------~
Idsname IRequired; indicates the name oflFrom one through eiqht alphameric I
I Ithe oata set Icharacters, the first of which must,
I I I be a letter I
t--------------+--------------------------f----------------------~
!volume !Identifies the device and/or lOne of the disk volume oisiqnations I
I ,volume on which space for the ,(see next chart) I
I Idata set is to be allocated; , I
I Irequired unless the data set isl I
, I to be allocated on the sytem , I
I Iresidence volume I I
~ , +------------------------~
Idata lenqth IRequired; indicates the number IA decimal number from 1 throuqh I
I lof blocks to be allocated for 165535 I
I Ithe data set I I
t-----------+-----------------------t--------------------------~
Idirectory length IRequired for a directoried datalA decimal number from 1 throuqh I
I ,set only; indicates the number 16553~ I
I lof entries in the directory, I I
I lone for each member name I I
.--------------+--------------------+_--------------------------t
IFMT I Required if FORTRAN direct ac- I As shown I
I I cess input/outFut cpera tions I i
I I are to be performed on the data I I
I I set , I
t- -+----------------------+_-------------------------~
ICATLG ITo enter the data set into the lAs shown I
, I system catalog I I L _____________ ~ _______________________________ L_ J

control statements 43

To request a fresh volume or a volume havinq a particular volid:

{
type }
devadr [

(WRCHV)]
(NOWRCHV)

To request a volume that contains ancther particular oata set:

SAME[(WRCHK)]
(NOWRCHK)

{
=~RESH }
='volid'

{
=dsname}
=SYSxxx

~-----------------.-------------------------------~-----------------------------------,

I Specification I Reason for Specifying, How to Specify ,
l-----------------+----------------------------+--------------------------------~
Itype ITo identify, throuqh its device,One of the direct access device typel
, 'type code, the device to be ,codes (see next chart) ,
I I used I I
~-----------------t_----------------------------+__ ~
Idevadr ITo identify, throuqh its devicelA three-character device address I
t I address, the device to be used I (supplied by the installation) I
l---------------+---------------------+__ ~
I (WRCHK) ITo indicate that write validitylAS shown, enclosed in parentheses I
I Icheckinq is to be rerformed fori ,
I I the da ta set I I
l---------------t_ -+- -t
I (NOWRCHK) ITo indicate that write validitylAs shown, enclosed in parentheses I
I Icheckinq is not to be performed I I
I I for the data set I I
I~------------+ +__ -t
I=FRESH ITo indicate that a fresh disk lAs shown, preceded by an equal siqn I
I I volume is to be used I I
l-------------+----------------------+__ ~
I='volid' ITo identify, through its volid,IThe volume serial number from the I
I Ithe disk vclume to be used Ivolume label, enclosed in single I
I I I quotes; an equal siqn must precede I
I I Ithe first quote I
I -+ ---t_ ~
ISAME IRequired w},en a volume contain-lAs shown I
I ling ancther particular data set I I
I lis to be used I I
l-----------+_ I -t
I=dsname ITo identify the other data set IAn equal siqn followed by the name I
I I by name lof the other data set I
l-----------+__ +__ -t
I=SYSxxx ITo identify the cther data set IAn equal sign followed by the sym- I
I Ithrough the symbolic unit name Ibolic unit name associated with the I
I I currently associated wi th it Idata set I L---_______________ ~ ________ .1

44 Systemj360 Model 44PS Guide to System Use FORTRAN

Code Meaninq
r-----------------~-------------------------------------,

ISDSD ISinqle Disk Stcraqe Drive I
I I (2315 risk Cartridqe) I
l-----------------+---------------------------------~
1'316 IIBM 13'6 Disk Pack mounted on I
I Ian IBM 2311 Disk storage Drive I L ________________ ~ ____________________________________ ~

//SYS002 ALLOC DISKDA'IA,1316(NOWRCHIq ='D0036',50

No1~~ Each code is speci
fied as shown.

This statement causes 50 blocks of space
to be allocated on an IBM 1316 Disk Pack
for the data set nam~d DISKDATA. The disk
pack has the volume identificaticn D0036.
No write checking is performed for the data
set, which is associated with symbolic unit

SYS002 (correspondinq to data set reference
number 2).

(li21~~ This statement must be immediately
followed by a LABEL statement.)

Control statements 45

Id Name Operation Operand
r-~----------'---------T---,

IIII I CATLG Idsname(,volume] I
L-_~ ____ ~ _______ ~ ___ J

r-- ~---------------------------------__,

I Specification Reason for Specifyinq I How to Specify I
~ +-----------------------~
III I Required I As shown I
~----------+--------------------~+__------------------------_t
ICATfG I Required lAs shown I
~ I +------------------------~
Idsname IRequired; indicates the name of IF rom one throuqh eiqht alphameric I
I Ithe data set to be entered intolcharacters, the first of which must I
I Ithe system catalog Ibe a letter; may not duplicate any I
I I Idata set name already in the cataloql
I- I +_---------------------------:t
Ivolume IIndicates the location of the IThe cataloqinq volume desiqnation I
I Ida ta set to the system; may be I (see below) I
I lomitted for a system data set I I
I lor a data set specified in a I I
I Iprevious ALLOC or ACCESS state-I I
I Iment within the job I I L-_____________ --i ____________________________ L-

J

type[(op tion s) J=' vol id '

r-----------------.------------------------------~-----------------------------,

I Specification I Reason for Specifyinq I How to Specify I
~----------------+_----------------------------+_--------------------------_t
Ityp€ ITo identify the device contain-IAny of the unit record, tape, or I
I linq the data set by its device Idirect access device type codes I
I Itype code Ilisted for the ACCESS statement I
1----------------+----------------------------+----------------------------t
I (options) ITo specify tape options or the IFrom one throuqh four options, sepa-I
I ,write checkinq options for Irated by commas; the list must be I
, Idirect access devices lenclosed in parentheses (see the I
I I IACCESS statement for permissible I
'I loptions) I
1---------------+-------------------------+-------------------------_t
I='volid' ITo identify, throuqh its volid, IThe volume serial number, enclosed ,
, Ithe volume containinq the data lin sinqle quotes; an equal siqn mustl
'I set Iprecede the first quote I L-____________ ~ ________________________ ~ ________________________________ J

II CATLG DISKDATA,1376(NOWRCHK) ='t0036'

This statement causes an entry for the
data set named DISKDATA to be placed in the
system cataloq. The data set is located on

an IBM 1316 Disk Pack with volume
identification D0036. No write checkinq is
to be performed for the data set.

46 System/360 Model 44PS Guide to System Use FORTRAN

Id Name Operation Operand
r-~----------.-----~---,

IIII ICONDENSE !dsname L_L--____ ~ ______ ~ ___ ~

r------------------T---------------------------~-----------------------------,

i Specification i Reason for Specifyinq i How to Specify i
l------------------f_-----------------------+--------------------------~
II I I RequirEd I As shown I
\---------------4---------------------------+---------------------------------1
ICONDENSE lAs shown
i--------------t-------------------------f_
Idsname
I
I

IHequired; lndlcates the name ofl~he name of the data set as con- i
Ithe directcried data set to be Itained in the VTOC of the volume on I
Icondensed Iwhich it is located I L-______________ ~ ____ ~ ____________________ ~ __________________________ J

Example:

II CONDENSE DRCTRYB

This statement causes the directoriEd
data set named DRCTRYB to be condensed.
After condensinq, all space in the data set
follows the data set; all space in the
directory follows the last entry in the
director y.

Control Statements 47

DELETE statement

Id Name operation Operand
r-~--------~---------T---

,
I1II I DELETE Idsnamer (member names) 1 i-__ J

r---------------~-------------------------------~-----------------------------------,

I specification I Reason for Specifyinq I How to specify I
..-----------------+ f-------------------------------t
III IRequired lAs shown I
l-- I +----------------------------------...
t DELETE I Required I As shown I
l-------------+-------------------------f--------------------------___.
Idsname IRequired; indicates the name oflThe name of the data set as con- I
I Ithe data set that is to be de- Itained in the VTOC of the volume on I
I Ileted or from which one or morelwhich it is located I
I Imember names are to be deleted I I
I-----------~-------------------------+----------------------------.
I (member names) IFor directoried data sets only;IOne or more member names, separated I
I Ito delete one or more member tby commas; the list must be enclosed I
t Inames from a data set (deletinqlin parentheses; each member name I
I lall the names cf a particular Imust appear exactly as specified in I
I Imember deletes the member) Ithe ACCESS or RENAME statement that I
I I lassiqned the name to the member I L ____________ ~ _______________________________ ~ _______________________________ J

II DELETE DISKDATA

This statement causes the data set named
DISKDATA to te deleted frcm the volume on
which it is located. Its name is removed
from the volume table of contents (VTOC)
and from the system catalog, if applicable.
(Note: This statement must be preceded in
the job deck by an ALLOC or ACCESS
statement that refers to DISKDATA.)

48 System/360 Model 44PS Guide to System Use FORTRAN

Id Name Operation Operand
r-~---------.---------.- ~

1IIIrstepnameli EXEC IFORTRAN[(parameter list)][, (VPSnn)][,accountinq informationl
L_~ __________ ~ _______ ~ __ ~

r------------------:------------------------------~-----------------------------=~~

I Specification I Reason for Specifyinq I How to Specify I
l---------------~------------------------+_---------------------I
III IRequirEd lAs shown I
l------------------+------------------------------+_-----------------------t
Istepname ITO name the job step; required IFrom one throuqh eiqht alphameric I
I Ito name the module produced by Icharacters, the first of which must I
I Ithe compiler, unless NOLINK is Ibe a letter I
I Ispecified in the parameter listl I
l--------------i-----------~------------+_ -f
IEXEC IPequired lAs shown I
l----------------+------------------------_+___ ,
IFORTRAN I RequirEd I As shown I
.--------------i---------------------+_---.-------------------f
I (parameter list) ITo specify compiler options IFrom one throuqh five parameters I
I I i (see next chart), separa ted by i
I I I commas; the list must be enclosed I
I I I in paren theses I
l--------------t---------------------+_ -f
I (VPSnn) ITo ensure that the variable lOne of the followinq, enclosed in I
I Iprecision switch is set to the Iparentheses: I
I I value nn I I
I I I VPS1~ VPS10 I
I I I VPS12 VPS08 I
I------------+---------------------+_------------------f
laccountinq ITo satisfy any installation re-IFrom , throuqh 16 alphameric charac-I
I information Iquirement Iters, the first of which must be I
I I lother than a left parenthesis or a I
I I Iblank I L ___________ ~ ___________________________ ~ ~

Control Statements 49

[
DECl<] [NOSOURCEJ [NCT INT{] [BCD] [MAP]
llQDEC!{ SOU]~K 11l!1S EBCDIC NOMAR

Parameter Reason for Specifyinq
r-----------------~-------------------------------------,

IDECK ITo produce a module deck on SYSPCP I
r---------------+----------------------------~
INODECK IDefault option -- no deck produced I
i--------------+----------------------------t
INCSCURCE ITo sUFFress production of a source I
I Ilistinq on SYSOPT I
i- I ~
ISOURCE IDefault option -- source listinq pro-I
I I duced on SYSOPT I
i-------------+------------------------------J
INOLINK ITo sUFFress the writinq of the modulel
I Ion SYSCCO, the linkaqe editor input I
I I unit t
i--------------f-------------------------------1
ILINK IDefault option -- module written on I
I ISYSOCO I
i-------------+-------------------------------'f
IBCD IRequired if any source statements are!
I IpunchEd in BCDIC I
i-------------+------------------------------~
IEBCDIC IDefault option -- source statements I
I lare punched in EBcrIC I
I- I ~
IMAP ITo produce a compiler storaqe map on I
I ISYSLST I
l-------------+-----------------------------i
INOMAP IDefault opticn -- no compiler storaqel
I I map produced I L-_______________ ~ ______ ~ _____________________________ J

50 System/360 Model 44PS Guide to System Use FORTRAN

]Q1§: Parameters may appear
in the parameter list in
any order; each parameter
is specified as shown.

EXEC statement l1BKEDTl

Id Name Operation Operand
r-~----------'---------T

I I I I[ste pnam e 11 EXEC I L NKED T[(param eter list)][,accou n tin q in formati on 1
L_~ ____ --i-______ ~ ___ J

r-----------------~.-------------------------------._--------------===-===~=~-~---------,

I Specification I Reason for Specifyinq I How to Specify I

l-- I + ""'
11/ I Required I As shown I
..- ---1--------------------------+_ -----.
Istepname ITo name the job step IFrom one throuqh eiqht alphameric I
I lcharacters, the first of whicl! must i
I I Ibe a letter I
..- f-----------------------___+_ -i
I EXEC I Required I As shown I
~ I +- --t
I LNKEDT I Required I As shown I
i-----------t-------------------f -t
I (parameter list) ITO specify linkaqe editor op- IFrom one throuqh three parameters I
I I tions ~ (see below), separated by commas; I

jthe list must be enclosed in paren- I
I I I theses I
I--------------+---------------------------+_ -1
laccountinq ITo satisty any installation re-IFrom 1 throuqh 16 alphameric charac- I
I information Iquirement Iters, the first of which must be I
I I lother than a left parenthesis or a I
I I I blank I L I ~ __________________________________ J

Parameters:

[KEEP 1 r NOMAPl
NOKEEP _ _ MAP _

[NOAUTO]

Parameter Reasen for Specifyinq
r-----------------~------------------------------------_,

IKEEP ITo retain the phase output produced I
I Iby the linkage editor; required if I
I Iphase execution is desired subsequentl
I Ito the job step immediately followinql
I Ithe linkaqe editor job step I
I- -------------~ ---1
INOKEEP IDefault option -- phase output is I
I Idiscarded at the end of the iob step ~
I limmediately followinq the linkaqe ed-I
I litor jet step I
I- ----------~I--- 1
INOMAP ITo suppress the preduction of a phase~
I ,map on SYSLST I
J I 1
IMAP IDefault optien -- phase map produced I
, Ion SYSLST I
..----- , I
INOAUTO ITo suppress the automatic linkinq ,
, Ifacility of the linkage editor durinq,
I ,this jot step ,

-I

]Qi~: Parameters may appear
in the parameter list in
any order; each parameter
is specified as shown.

Control statements 51

EXEC statement JRhas~l

Id Name Operaticn Operand
I 1 ---Tj---- ,---,
1III[stepnameli EXEC t[phasenamel[, (VPSnn)][,accountinq information 1
L I J

r------------------T-------------------------------,------------------------------------,
I specification I Reason fer Specifyinq I How to Specify I
~-----------------+-------------------------------+----------------------------------~
11/ I RequirEd I As shown I
~ ----+-------------------------------+---------------------------------~
Istepname ITo name the job step IFrom one throuqh eiqht alphameric I
I I Icharacters, the first of which must I
I I I he a let ter I
~--------------+------------------------+-----------------------------~
I EXEC I Required I As shown I
l- I +_--------------------------~
Iphasename ITo identify the phase that is IThe name of the phase, exactly as I
I Ito be executed; may be omitted Ispecified on the PHASE card used at
I lif phase was produced by the Ithe time the phase was created
I Ilinkaq€ editor in the immedi- I
I I atel y preced inq jot step I I
~ +------------------+----------------------~
I (VPSnn) ITo ensure that the variable lane of the followinq, enclosed in I
I Iprecision switch is set to the Iparentheses: I
I I value nn I I
I I I VPS14 VPS10 I
I I I VPS12 VPS08 I
~ +-------------------------+-- ~
laccountinq ITo satisfy any installation re-IFrom 1 throuqh 16 alphameric charac-I
I information Iquirement Iters, the first of which must be I
I I lather than a left parenthesis or a I
I I I blank I L--- i-_____________________________ i-________________________________ J

52 System/360 Model 44PS Guide to System Use FORTRA~

Id Name Operation Operand
I i T-------T ,

;//l[jobname J JOB [~~~~MR] [iaccount.inq information 1 i
L-_~ ____ --i-_____ ~ _______________________________ . ____________ ~

I------------~-----------------------~----------------------------~--,

I Specification I REason for SpEcifyinq I How to Specify I
..---------------+-------------------+-------------------------~
III I RequirEd ,As shown ,
l-------.---~~~~_4_----------------+__-------------------------i
Ijobname ITO namE thE job IFrom one throuqh eiqht alphamEric I
I I Ichara~teL~, the firsl of which must I
I I Ibe a letter ,
..-------------+---------------------+-------------------~
POB I RequirEd I As shown I
l-------------+-------------------+---------------------------1
IDUMP ITo produce a dump if the pro- lAs shown I
I Iqram terminates abnormally; thel I
I Icontents of main storaqe and ofl I
I Ithe qEneral reqistErs are writ-I I
I Iten on SYSLST I I
6-----------+--------------------+-- ~
INCDUMP IDefault opticn -- no dump pro- lAs shown I
I I duced I I
1-----------+ --+-------------------~
laccountinq ITo satisfy any installation re-IFrom 1 throuqh 16 alphameric charac-I
I information Iguirement Iters, the first of which must be I
I I lother than a left parenthesis or a I
I I I blank I L-__________ ~ _______________________ ~ ~

Control Statements 53

LABEL statement

Id Name operation Operand
I , ~---------.- ,

IIII I LABEL I [label-informatiOn]
I I I I { =dsname}
I I I I SAME ,=SYSxxx L--L __________ L-________ i-___ ~ __ J

r- ..- ,
I Specification I REason for Specifyinq I How to Specify I
I- -+----------------------f--------------------""
III IRequirEd lAs shown I
I- -+ +- -t
I LABEL I RequirEd I As shown I
I- I -t- ---i
Ilabel-information ITo provide label information ILabel specifications (see next ~
I I for a data set; required for Ichart) I
I Idirect access data sets unless I I
I I SAME is specified I I
I I f_----------------------""
ISAME ITo indicatE that the label in- lAs shown I
I Iformation for a data set dupli-I I
I Icates the information already I I
I I qi ven for anether data set I I
I -+ -t--------------------------""
I=dsname ITo identify the ether data set IAn equal siqn followed by the name I
I I by name lof the other data set I
I-----------+---------------------f_ ..,
I=SYSxxx ITo identify the other data set IAn equal siqn followed by the sym- I
I Ithrouqh the symbolic unit name Ibolic unit name associated with the I
I I curren tl y associatEd wi th it lother data set I --L ~ ______________________________ J

54 System/360 Model 44PS Guide to System Use FORTRAN

Label Specifications:

[block-lenqth][,expiration-date] f,WRCHK 1 [,NL]
,NOWRCHK

L j

r-- ~ ,
I Specification I REason for Specifyinq I How to Specify I

" ~ ~ Iblock-lenqth IReguired for direct access data,Either a decimal number from 1
I Isets; indicates the number of Ithrouqh 360 or a number equal to thel
I Ibytes in a FORTRAN record Inumber specified for record lenqth I
" lin a DEFINE FILE statement within I
'I Ithe FORTRAN proqram I
i-- --+-------------------+_ -t
,expiration-date ITo specify the date on which IThe date in the form yyddd, where Yyl
I ,the data set may be deleted; I (two diqits from 00 throuqh 99) rep-,
I ,otherwise, the current date is ,resents the year and ddd (three t
, lused as the expiration date Idiqits from 001 throuqh 366) repre- I
'I Isents the day of the year I
l----------+----------------+_ -1
IWRCHK ITo indicate that write checkinqlAs shown I
I I is to te performed on a direct I I

laccess data set; can be over-
I Iridden by a specification of I
I INOWRCHK in an ALLOC or ACCESS I
, Istatement for the data set ,
~ ----------~I +--
INOWBCHK ITo indicate that write checkinqlAs shown
I lis not to be performed on a di-I
I Irect access data set; can be
, loverridden by a spEcification
I lof WRCHK in an ALLOC or ACCESS

I
I
I
I
~ ,
I
I
I
I

, ,statement for the data set I I
i-- , +--------------------~
,NL ITo indicate that a tape is not lAs shown J
, Ilabeled t I L-___________ -L _______________________ ~ J

Control Statements 55

LISTIO statement

Id Name Operaticn Operand
r--T ,
I11I LISTIO [PROG] I
I I SYSxxx I
~ ..L_ J

r- -,
I Specification Reason for Specifyinq I How to Specify I
l-- t------------------------t
III IRequired lAs shown I
l----------+-------------------+-----------------------~
I LISTIO I Required I As shown I
.- ~ I -t
IPROG ITo limit the list cf current lAs shown I
I lunit assiqnments to only those I I
I I assiqnments made or al tered I I
I Iduring the current job 1 I
r-- --f---------------------------+--------------------------~
ISYSxxx ITo request that the current as-IThe name of the symbolic unit whose I
I Isiqnment of a sinqle symbolic Icurrent assiqnment is to be listed I
I lunit be listed I I L--____________ ~ ________________________ ..L_ ________________________ J

56 System/360 Model 44PS Guide to System Use FORTRAN

RENAME statement

Id Name operation Operand
r--T----------~---___.---,

I11I I RENAME {Cld-dSname, new-dsname '}
I I J dsname (cld-member-name, new-member-name)
L-~ __________ ~ ________ ~

.J

r-----------------~ -,
I Specification I Reason for S~ecifyinq I How to Specify I
t--------------f-------------------------f_-------------------------~
III IRequirEd lAs shown I
t- +----------------------+-------------------------------1
I RENAME I RequirEd I As shown !
t--------------+------------------------+------------------------------~
lold-dsname ITo indicatE thE data set whose JThe name of the data set as it J
I Iname is to be chanqed Jappears in the volume table of I
I I Icontents I
~----------------_+---------------------------f_ ~
Inew-dsname ITo specify the new name for a IFrom one throuqh eiqht alphameric I
I Idata set whose name is to be Icharacters, the first of which must I
I IchanqEd Ibe a letter I
t-------------+--------~~~----------f_ ""
Idsname ITo indicate the name of a IThe name of the data set as it I
I IdirEctcried data set containinqlappears in the volume table of I
I la member whose name is to be Icontents I
I I changed I I
t----------f-------------------f-------------------------.!f
lold-member-name ITo indicate the member name IThe name of the member as it appearsj
I Ithat is to be chanqed lin the directory I
~-------------+---------------------------+ ~
Inew-memter-name ITo indicate the new name of thelFrom one throuqh eiqht alphameric I
I Imember whose name is to be Icharacters, the first of which must I
I IchangEd Ibe a letter I L--___________ ----i ______________________________ i- .J

control statements 57

RESET Statement

Name Operation Operand Id
,--.- T---,
IIII RESET I[SYSxxx]
L--'--_____ ...1..- ______ i-__ J

r-------------~-----------------------------~ --,
I Specification I Reason for Specifyinq I How to Specify I
r--------------+--------------------f------------------------.
III I Required I As shown I
r- I +-------------------------~
I RESET I RequirEd I As shown I
I----------+---------------_+_ "
ISYSxxx ITo indicate the unit whose IThe symbolic unit name of any unit ~
I lassiqnment is to be restored; thavinq a standard assiqnment I
t Ithe absence of this specifica- I I
t I tion causes all units with I I
I I standard assiqnments to be t I
J Irestored I

UNCATLG Statement

rd Name
,-y'
II1I

Operaticn Operand
~

UNCATLG Idsname

.J

,
t

L--..I..-
...1..-___ .1

,---------------.----------------------------,------------------------------,
I Specification I Reason for Specifyinq I How to specify I
1----------+----------------------+---------------------------1
III tRequirEd lAs shown I
r- -+ +----------------------------------.
I UNCATLG I RequirEd I As shown I
...----------+------------------+-------------------------1
Idsname IRequired; indicates the name of IT he name of the data set as it was I
I Ithe data set to be removed fromlentered into the system cataloq I
I I the system cataloq t I L _______________ ~ _______________________________ i_

.J

58 System/360 Model 44PS Guide to System Use FORTRAN

LINKAGE EDITOR CONTROL STATEMENTS

Linkaqe editor control statements consist
of only two fields -- an operation field
and an operand field. Both fields are
required.

The operation field, which identifie~
the statement by name, may start in any
column after column 1. The operand field
follows the operation field, separated from
it by at least one blank. The oFerand
field consists of from one through three
specifications, separated from each other
by commas. Specifications must be punched
in the order shown in the statement
formats. No blanks are permitted within
the operand field.

Linkaqe editor control statements may
not be continued; all information must be
punched in one card. comments may be
written in the statements; they must be
separated from the last character of the
operand field by at least one blank and
must not extend beyond column 71.

Charas::ter Set

In aadition to the 39 alrhameric characters
permitted in job control statements,

linkaqe editor control statements allow the
use of the characters comma and asterisk,
but only where specifically indicated in
the statement formats.

All linkage editor control statements
must be punched in the Extended
Binary-Coded-Decimal Interchanqe Code
(EBCDIC) •

Statement Formats

The linkaqe editor control statements are
presented here in alphabetic order. For
each statement, the statement format
appears first, showinq the contents of the
operation and operand fields. Immediately
followinq each statement format is a
specifications table, which indicates for
each statement format specification the
reason for specifyinq it and how to specify
it.

The notation used in these statement
formats is the same as that used for the
job control statements.

Control statements 59

INCLUDE statement

Operaticn Operand
r-- -T"t---

I INCLUDE Imodule,
I I
L--

___ J

. ~

I Specification I Reason for Specifyinq I How to Specify I
1- I +----------------------i
I I NCLUDE I Requ ired I As shown I
1- --; ~ ~
Imodule IRequirEd to idEntify the modulelThe name of the module as it appearsl
I Ithat is to be included in the lin a MODULE statement or as derived I
I Iphase ,from the name field of an EXEC I
I I ,FORTRAN statement (see "Compila- I
I I I tion ") I
l--------~ +- I
IL ITo indicate that the module to lAs shown i
I I be processed can be found on I I
I I SYSOOO I I
I- +-- ~ ~
IR I To indicate that the module to I As shown I
I I be processed can be found in I I
I Ithe module library, I L-__________ ~ ________________________ ~

J

MODULE Statement

Operation Operand
r----------r----.-------
I MODULE name
L-____ ~

r-
I Specification
1--
IMODULE ,
Iname
I
I

I Reason for Specifyinq
-+

IRequired
I
fRequired; indicates the name
Ithe module
I

----.---------,
I _____ J

~ ,
I How to Specify I
I ,
I As shown I
I ,

of IF rom one throuqh eiqht alphameric I
,characters, the first of which must I
Ibe a letter I

I ~
______ . __________ . _______ ~ J

60 System/360 Model 44PS Guide to System Use FORTRAN

Opera tion Operand
r ---.--- --------------,

i S
PHASE Iphasename, * [,NO AUTO]

I ROOT
phase, i

L
__ J

--,
I Specification
t

Reason for Specifying I
i I

:fow to Specify I
-------------------~

IPHASE
I
Iphasename
I
I
I-
IS
I
I
I
I-
1*
I
I
I
I
I
I
I
I
I
I ROOT
I
I
I
I
;.
Iphase
I
I
I ..
INOAUTO
I
I

IRequired lAs shown
----~I- I ~

IRequired to name the phase IFrom one throuqh eight alphameric I
I I char act ers, the first of which must I
I I be alpha be tic I

-------+1---- -r-- ~
ITo specify that the phase have lAs shown I
lits origin at the first avail- I I
lable location in the problem I I
Iprogram area
I -f---------------------.------

To specify that the phase have I As shown
its origin ~t the first avail- I
able location after the most I
recently processed phase in I
the job step; equivalent to thel
S specification if this is I
the first PHASE statement in I
the linkage editor input I
deck I

I
For multiphase programs only; lAs shown

lidentifies the phase as a root I
Iphase {its origin is the first I
lavailable location in the prob-I
Ilem program area I

-+- I
ITo indicate that this phase is IThe name of the other phase
Ito have the same origin as lified in the linkage editor
lanother phase currently in Istatement that named it
Ithe phase library I
I I
ITo suppress the automatic link-I As shown
ling facility for this phase I
lonly I

I
~

I
I
I
I
I
I
I
I
I
~
I
I
I
I
I ----.

as sr-ec-I
PHAS E I

I
I
~

I
I
I

L-______________ --L-- --J

Control Statements 61

For m C 28 - 6 8 1 3 - 2, P age mod i fie d J u n e 1 0 , 1 9 69 , by TN L N 3 3- 860 2

The components of the Model 44 Programming
System produce aids that may be used to
document and debug programs. This chapter
describes the listings, maps, card decks,
and error messages produced by these
components.

COMPILER OUTPUT

Output from the compiler includes a source
listing, a compiler storage map, and/or a
module deck, dePending on options specified
by the programmer in the EXEC statement for
the FORTRAN compiler.

FORTRAN IV MODEL It It PS VERS I ON X, LEVEL Y DATE &91&1

0001 SUBROUTINE SUBA
0002 DIMENSION JNPUT(lO),JNOUT(lO)
0003 30 FORMAT (lOB)
OOOit 10 FORMAT ('1',1015)
0005 INDEX = 100
000& READ (l,30)(JNPUT(J),J=1,10)
0007 DO ItO 1=1,10
0008 JNPUT(I) = JNPUT(I) - INDEX
0009 ItO JNOUT(I) = JNPUT(I)
0010 WRITE O,10)(JNOUT(J),J=1,10)
0011 RETURN
0012 END

• rigure 4. Source Listing

Unless the NOSOURCE option is specified, a
source listing is written on the system
output unit SYSOPT. An example of a source
listing is shown in Figure 4.

~QillEiler Error/Warning~~~sages

The error/warning messages produced by the
compiler are noted on the source listing.
Figure 5 illustrates a source listing with
error messages.

PAGE 0001

62 System/360 Model 44PS Guide to System Use FORTRAN

Form C28-6813-2, page modified June 10, 1969, by TNL N33-8602

FORTRAN IV MODEL 4'+ PS VERSION X, LEVEL Y DATE 69161 PAGE 0001

0001
0002
0003
0004

0005
0006
0007
0008

0009

0010

• Figure 5.

01)

01)

01)

DIMENSION A(lO,IO),B(lO,IO)
READ (1, 5) E, F, G
GO TO 2

$ DO las 1=1,10

NA021 LABEL 02) NAI31 SYNTAX
DO 20 ..1=2,10

10 A(I,J) = B(I,J)XCC! ,..I)
20 CONTINUE

WRITE 0,6) A,

NA131 SYNTAX
6 FORMAT (5FIO.2

NAI31 SYNTAX
END

Source Listing with Errors

Error information for a source statement
containing errors appears on the listing
lines immediately following that statement.
For each error encountered, a dollar sign
is printed beneath the active character
preceding the one that was being inspected
when the error was detected. The listing
line that follows the printed statement
contains only the dollar sign markers.

The next line of the listing describes
the marked errors. The errors are numbered
within the statement (counting from one for
the first error marked); the number is
followed by a right parenthesis, the error
number, and the type of error. Four errors
are described on each line, for as many
lines as are required to list all the
marked errors in the source statement.

For a description of error/warning
messages, see Appendix D.

If the r.AF option is specified, a compiler
storage map is written on SYSOPT. The map
is divided into several tables, classified
as follows:

• COMMON variables

• EQUIVALENCE variables

• Scalar varia tIes

• Array variables

• Subprograms called

• NAMELIST variables

• Statement latels

In the case of COMMON variables, a
separate table is provided for each blank
or named COMMON defined in the set of

System Output 63

Form C28-6813-2, page modified June 10, 1969, by TNL N33-8602

FORTRAN IV MODEL PS VERSION X, LfVEL Y DATE 69161 PAGE 0002

COMMON 8LOCK I I MAP SIZE 000010
SYM80L LOCATION SY~80L LOCATION SYMBOL LOCAT ION
CMl 000000 CM2 00000" CM3 000008

COMMON BLOCK I NCM1 I MAP
SYM80L LOCATION SYMBOL LOCATION SYP'BOL LOCAT ION
AA 000000 8B 00000"

COMMON 8LOCK I NCM2 I MAP
SYM80L LOCATION SYM80L LOCAT ION SYMBOL LOCATION
CC 000000 DO 00000 ..

SCALAR MAP
SYM80L LOCAT ION SYMBOL LOCAT ION SYI-IBOL LOCATION
B OOOOE .. C OOOOE8 A OOOOEC
I 0000F8 OOOOFC 000100

ARRAY MAP
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
ARRAY 00010C LIST 000300

SUBPROGRAI-IS CALLED
SYMBOL LOCATION SYMBOL LOCAT ION SYMBOL LOCAT ION
FRXPR= 000328 IBCOM= 00032C SIN 000330

NAME LI S T MAP
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION xx 0003 .. 0 yy 0003A ..

L~BEL MAP
LABEL LOCATION LA8EL LOCATION LABEL LOCATION

1 000"5" 10 000"5A 7 000 .. 66

TOTAL MEMORY REQUIREMENTS 00051 .. BYTES

COMPILER HIGHEST SEVERITY CODE WAS 0

• Figure 6. Compiler storage Map

source statements. In all other cases, a
separate table is produced for each
classification, with the appropriate
heading preceding the data. The variable
names, statement labels or subprogram names
are arranged across the page, five to a
line. The relative location of each
appears next to the name. If a particula~
classification of names is not used
anywhere in the source program, the
corresponding table does not appear in the
storage map.

Figure 6 shows a sample compiler storage
map. The number of bytes required for the
program is supplied so that the programmer
can ensure that adequate main storage is
available for execution. The severity code
is given to show the programmer whether the
mistakes which were made are serious enough
to prohibit execution.

If the DECK option is specified, a module
deck is produced on the system punch unit,

SYMBOL LOCATION SYM80L LOCATION
CM .. OOOOOC

SIZE 000008
SYM80L LOCATION SYMBOL LOCATION

SIZE 000008
SYMBOL LOCAT ION SYMBOL LOCATION

SYMBOL LOCATION SYMBOL LOCATION
D OOOOFO E OOOOF ..
F 00010 .. K 000108

SYMBOL LOCATION SYMBOL LOCATION

SYMBOL LOCAT I ON SYMBOL LOCATION

SYMBOL LOCATION SYMBOL LOCATION

LABEL LOCATION LABEL LOCATION
5 OOO"CO

SYSPCH. This deck is made up of four types
of cards -- TXT, RLD, Est, and END. A
functional description of these cards is
given in the following paragraphs.

MODULE DECLCARD~: Every card in the
module deck contains a 12-2-9 punch in
column 1 and an identifier in columns 2
through 4. The identifier consists of the
characters ESD, RLD, TXT, or END. The
first four characters of the name of the
program are placed in columns 73 through 76
with the sequence number of the card in
columns 77-80.

~SD ~£rd: Four types of ESD cards are
generated as follows:

ESD, type 0
contains the program name of the
module and indicates the beginning of
the deck. The program name is the
module name followed by an ampersand.

64 System/360 Model 44PS Guide to System Use FORTRAN

ESD, type 1
contains the entry Foints (where
control is qiven to beqin execution of
the module). An entry point is the
namE in a SUBROUTINE, FUNCTION or
ENTRY statement, or the name MAIN44.

ESD, type 2
contains the names cf subproqrams
referrEd to in the source module ty
CALI statements, EXTERNAL statements,
explicit function references, and
implicit function references.

ESD, type 5
contains information about each COMMON
area.

The number 0, 1, 2, or 5 is placed in
card column 25.

RLD Card: An RLD card is generated fer
external references indicated in the ESD,
type 2 cards. To complete external
references, the linkage editor matches the
addresses in the RLD card with external
symbols in the ESD card. When external
references are resolved, the storaqe at the
address indicated in the RLD card contains
the address assiqned to the subproqram
indicated in the ESD, type 2 card. RLD
cards are also qenerated for a branch list
produced for statement numbers.

~XT. Card: The TXT card contains the
constants and variables used by the
programmer in his source statements, any
constants and variables qenerated by the
compiler, coded informaticn for FORMAT
statements, and the machine instructions
generated by the ccmpiler from the set of
source statements.

END Card: One END card is generated for
each set of compiled source statements.
This card indicates the end of the module
to the linkage editor, the relative
locaticn of the main entry Feint, and the
length (in bytes) of the module.

MODU LE DICK STRUCTURE: F i qure 7 show s the
FORTRAN module deck stIucture. The cards
are listed in the order in which they
appear in the module deck.

LINKAGE EDITOR OUTPUT

The linkaqe editor produces a phase map
unless the NOMAP option is specified. The
liukaqe editor also produces diaqnostic
messaqes, which are listed in Appendix D.

Phase Map

The phase map is written on SYSLST. To the
linkaqe editor, each proqram (main or
subproqram) is a control section (CSECT).

Each control section name is written
alonq with the oriqin and the lenqth of the
control section. The oriqin and lenqth of
a, control section are written in
hexadecimal numbers.

For each control section, any entry
points and their locations are also
written; any functions called from the
module library are listed.

Fiqure 8 shows a sample phase map.

r-- ,
IESD, Type 0 Program Name of the Module I
~----------------------~
IESD, Type 1 Entry Points I
~ __t
IESD, Type 5 COMMON Area I
~-. -------------------~
IESD, Type 2 External References I
~ -t
ITXT Cards for NAMELIST Tables I
~ ~
ITXT Cards for Literal Constants I
~ -f
ITXT Cards for FORMAi statements i
I-----------------__t
ITXT Cards for Temporary Storaqe and I
I Constants I
~ -f
ITXT Cards for Module Code I
I--- -t
ITXT Cards for the BASE Table I
~--------------------__t
ITXT Cards for the BRANCH Table I
~ ,
ITXT Cards for Subproqram Arqument Lists I
~ ----1
ITXT Cards for Subproqram Addresses I
1------------------------..,
ITXT Cards for Address Constants I
I --1
IRLD Cards for the Module I
~ -f
lEND Card I
L-- .J

Figure 7. Object Module Deck Structure

System Output 65

67/000 PHASE TRANS FER ADDR. LOCORE HICORE BLOCK NO.

COMMON

COMMON

ROOT R TPHAS 0043A8 0043A8 007947 293

PI 007948 007948 0086C7 313

P2 007948 007948 0086F7 318

LINKAGE EDITOR HIGHEST SEVERITY WAS 0

Fiqure 8. Phase Map

PHASE OUTPUT

At execution time, FORTRAN phase execution
diaqnostic messaqes are qenerated in three
forms -- error code diaqnostic messaqe~,
proqram interrupt messaqes, and operator
messaqes. An error code indicates an
input/output error or a misuse of a FORTRAN
library function. A proqram interrupt
messaqe indicates a condition that is
beyond the capacity of the proqramminq
system to correct. An operator me~saqe is
qenerated when a STOP or PAUSE statement is
executed.

Error Code Diagnostic Mess2.ges

When an error condition arises durinq
execution of a FORTRAN proqram, a messaqe
is written on SYSOPT, as fellows:

ESD TYPE LABEL LOADED REL-FACTOR

COMMON 004200 000 lAO

COMMON CTRL 0043AO 000004

CSECT MA I N44& 0043A8 0043A8
:: ENTRY MAIN44 0043A8

CSECT BOAIBCOM 004B98 004B98
ENTRY I BCOM= 004B98 .. ENTRY ADCON= 00 4C 54
ENTRY FIRSTIM 005004

CSECT BOAFEX I T 007170 007170
ENTRY EXIT 007176

CSECT BOAOVLY 007190 007190
ENTRY LOAD 00llA8 .. ENTRY LINK 001198

CSECT BOAFIOCS 007288 007288
ENTRY RCBORG= 007890
ENTRY BUFORG= 00 7 8 8C
ENTRY FIOCS= 007288
ENTRY VDIOCS= 007894
ENTRY FIOCD= 0072C2

CSECT BOAUOPT 0078 B8 0078 B8
ENTRY USEROPT 0078B8

CSECT BOAUNITB 0078CO 0078CO
ENTRY UNITAB= 0078CO

CSECT SUB= 007948 007948
ENTRY SUB 007948

CSEC, BOAFRXP I 008610 008610
ENTRY FRXPI= 008618

CSECT CFUNC= 007948 007948
ENTRY CFUNC 007948

CSECT BOAFRXP I 008640 008640
ENTRY FRXPI= 008648

OAxxxI

The error code is the number specified by
the diqits xxx. These error codes are
described in Appendix D. If any error is
detected, its severity is evaluated. Maior
errors cause cancellation of the iob step
or job.

A proqram interrupt messaqe containinq the
old Proqra m S ta tus Word (P S W) is prod uced
on SYSLST to provide information reqardinq
proqram interrupts. For a description of
these messaqes, see "Proqram Interrupt
Messaqes" in Appendix D.

66 System/360 Model 44PS Guide to System Use FORTRAN

Figure 9 shows a sample printout for each
dump format that can be spEcified in a call
to DUMP or PDUMP. The printouts are qiven
in the following order: hexadecimal,
LOGICAL*1, IOGICAL*4, INTEGER*2, INTEGER*4,
REAL*4, REAI*8, COMPLEX*8, COMPLEX*16, and
Ii teral.

CALL PDUMP WITH HEXADECIMAL FORMAT SPECIFIED

00A3EO 485F5E10 00000000 485F5E10 10000000 42100000

A messaqe is transmitted to the operator
when a STOP or PAUSE statement is executed.
Operator messaqes are written on SYSLOG,
the console printer. For a description of
these messaqes, see "Operator Messaqes" in
Appendix D.

006DC8 42800000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
006DF8 COOOOOOO 00000000 41200000 41566666 OOOOOOOC 41100000

I CALL PDUMP WITH LOGICAL.1 FORMAT SPECIFIED

006E1E T F

CALL PDUMP WITH LOGICAL.4 FORMAT SPECIFIED

006E10 F T

CALL PDUMP WI TH INTEGER·2 FORMAT SPECIFIED

006E18 10

006E1A -100

006E.1C 10

CALL PDUMP WITH INTEGER·4 FORMAT SPECIFIED

006E20 1 2 3 4 5 6 7 8 9 10
006E48 11 12

CALL PDUMP WITH REAL·4 FORMAT SPECIFIED

006EOO 0.20000000E 01 0.53999996E 01

CALL PDUMP WITH REAL.8 FORMAT SPECIFIED

o 06DC8 0.1759999999999999D 03

CALL PDUMP WITH COMPLEX.S FORMAT SPECIFIED

006DDO C3. 0000000, 4.0000000) (4.0000000, s. 0000000)

CALL PDUMP WITH COMPLEX.16 FORMAT SPECIFIED

006DEO (0.9999999999999990,0.9999999999999990) (-0.9999999999999990, -0.9999999999999990)

CALL PDUMP WITH LITERAL FORMAT SPEC I F I ED

006E5C THIS ARRAY CONTAINS ALPHAMERIC DATA

Figure 9. Sample Storaqe Printouts

System output 67

PROGRAMMING CONSIDERATIONS

This section discusses program optimization
and limitatiens of the ccmriler.

PROGRAM OPTIMIZATICN

Facilities are available in the FORTRAN
languaqe that enable a proqrammer to
optimize compilation and execution speed
and to rEduce the size of the phase.

Initialization

The programmer should initially set to zero
all variacles that are net initialized by
arithmetic statements in his proqram. The
value of a variable cannot be quaranteed
until the proqrammer has qiven that
variable a value by a replacement
statement. For example, in the following
subprogram:

SUBROUTINE ALPHA(X,Y,Z)
AcB+2.0

the result A may contain any value, because
B was not initialized. If the proqrammer
expects B to be zero, he should initialize
B as shown in the following statements:

SUBROUTINE ALPHA(X,Y,Z)
B=O.O
A=B+2.0

Whenever possible, for qreater
efficiency the DATA initialization
statement should be used to define initial
values.

Arithmetic Statements

When the programmer wants to calculate the
square root, the square root library
subprogram should be used instead of the
exponential function. Fer example, the
statement:

is more accurate than the statement:

because the SQRT function is more accurate
than the exponential function.

The mixed mode arithmetic expression is
provided as a convenience to the
proqrammer. The number of instructions
qenerated to perform conversions can be
reducEd, however, if the order of
evaluation of expressions is kept in mind.

For example, in the expression:

A = A + I + J

where A is real and I and J are intEqer,
the evaluation is from left to riqht.
Instructions are, therefore, produced to
convert I to real before it is added to A,
and additional instructions are included to
convert J to real before it is added to the
previous result. If the expression is
written in either of the followinq ways:

A A + (I + J)
A I + J + A

one of the conversions is eliminated
because I and J are added toqether first,
and the result is converted to real before
beinq added to A.

IF Statement

An arithmetic IF statement lists three
statement numbers. One of the listed
numbers should immediately follow the IF
statement to eliminate unnecessary
branchinq in the phase. For example, the
codinq represented by the following
statements:

IF (A-B) 20,30,30
30 A=O.O

20 B=O.O

is more efficient than the codinq
represented by the statements:

IF (A-B) 20,30,30
10 X=2.+Y

30 A=O.O

20 B=O.O

68 System/360 Model 44PS Guide to System Use FORTRAN

Values for expressions that remain constant
within a DO leop should be calculated
before entry into the loop, instead of
calculatinq the expressicn each time
throuqh the loop. For example, in the
followinq statements:

DO 101=l,HO
X (1) =2.4* (G+ALPHA) +Y (1)

10 CONTINUE

the expression 2.4*(G+ALPHA) must be
calculated each time the DC loop is
executed. For qreater efficiency, the
followinq statements should be substituted:

BETA=2.4*(G+ALPHA)
DO 10 1=1,100
X (1) =BETA+Y (1)

10 CONTINUE

Because the expression 2.4*(G+ALPHA) is
calculated only once, the executicn time is
decreased.

Any subscripts that remain constant
within the range of a DO should not be used
in the DO loop. For example, in the
followinq statements:

DO 10 1=1,50

X (I) =Y (I) +Z (J)

10 CONTINUE

a subscript calculation for Z(J) is
performed each time the DO loop is
executed, even thouqh Z(J) remains cQnstant
for each execution of the loop. By
substituting the fcllowinq statements:

B=Z (J)
DO 10 1=1,50

X(I)=Y(I)+B

10 CONTINUE

only one subscript calculation is made for
Z(J) and execution time is decreased.

READL]BITE statements

To read or write an array, an implied DO In
a READ/WRITE statement should be used
instead of a DO loop. For example, 5
records, each containinq two values, are
written by the followinq statements:

10 FORMAT (F20.5,110)
DO 15 1=1,5

15 WRITE(5,10)A(I),J(I)

In the statements:

10 FORMAT (5(F20.5,T10»
W R I T E (5, , 0) (A (I) , ,J (I) , I = 1 , 5)

only one record containinq 10 values is
written. The use of an implied DO saves
phase execution time and space on the
volume.

Extra subscript calculation within the
ranqe of an implied DO ~hould be avoided.
This is the same consideration shown in
regard to the DO lpop. For example, if the
statements:

2 FORMAT(IO',10F12.6)

READ(1,2) (A(I) ,1=4,31,3)

are substituted for the statements:

2 FORMAT (10 1 , 10F12. 6)
READ(1,2) (A(3*I+1) ,1=1,10)

the intricacy of the subscript ~alcu~ati~n
is reduced and the phase execut10n t1me 15
reduced.

Boundary Alignment of Varia~les in COMMON
Blocks and EQUIVALENCE Groups

The Model 44 Programming System will adjust
improper boundary alignments resulting from
the ordering of variables in a COMMON block
or in an EQUIVALENCE group. However,
considerable efficiency is lost during
program execution if the order of the
variables is such that they are not located
on proper boundaries. A complex variable
of length 16 or a real or complex variable
of length 8 should be located on a
double-word boundary; a real, inteqer, or
logical variable of length 4 should be
located on a fullword boundary; an inteqer
variable of length 2 should be located on a
halfword boundary. (Information on
avoiding improper aliqnment of variables
and the resultinq loss in efficiency can be
found in the discussions of COMMON blocks
and EQUIVALENCE qroups in the publication

Proqramminq Considerations 69

IB~~em/360 FORTRAN IV tangua~, Form
C2 8- 6515.)

If a variable is located cn an imrroper
boundary, each machine-instruction
reference to the variable requires that:

1. The specification exception resulting
from this reference be processed.

2. The boundary adjustment routine be
invoked to simulate the execution of
the instruction containinq the
reference in order to circumvent the
boundary violation.

The use of the boundary adjustment
routine is an installation option; that is,
at the time the system is assembled, an
installation can indicate whether or net
the routine is to be invoked.

An installation can alse modify "the
system to request that a boundary
adjustment message bE printed. The messaqe
indicates that a boundary adjustment is to
take place. It is printed once for each
boundary aliqnment error, up to a maximum
of n errors. The value ef n is determined
by the installation. Boundary adjustment
takes place, however, whether or not the
boundary adjustment message is printed.

The format of the messaqe is:

OA210I PROGRAM INTERRUPT CA) OLD PSW
IS xxxxxxxxxxxxxxxx

The A in parentheses identifies boundary
adjustment as the cause ef the messaqe.

The boundary adjustment routine is
invoked whenever a boundary viclaticn
occurs in either a FORTRAN main proqram or
subproqram. The routine is also available
to assemcler lanquaqe subproqrams that
operate in a FORTRAN environment (see
Append ix C).

When, for some reason, the boundary
adjustment routine cannot be loaded from
the phase licrary, the diagnostic messaqe
OA2'9I is printed. The loadinq of the
boundary adjustment routine is dependent
upon the amount of space available in the
problem program area. The first location
available to the boundary adjustment
routine is the one immediately followinq
the highest location thus far occupied by
any phase of the user's proqram. This is
not necessarily the hiqhest location
occupied by the phase in which the boundary
alignment error occurs.

FUNCTION Subprograms

The function variables for the principal
entry and for each alternate entry to a
FUNCTION subproqram are made equivalent.
As a result, the value returned for a
function is the value of the last function
variable set before the RETURN statement
causinq the return, reqardless of the entry
point used. For example:

FUNCTION SIN (X)
ENTRY COS (X)
SIN = X-X**3/6+X**5/120
COS = SQRTC'.0-SIN**2)
RETURN
END

always returns the cosine value, since the
variables SIN and COS occupy the same space
in storage. In order to produce the
desired result, the FUNCTION subprogram
should be coded:

FUNCTION SINCOS(X)
ENTRY SIN (X)
Y = X-PI/2.0
GO TO 5
ENT RY COS (X)
Y = X

5 STNCOS = 1-Y**2/2.0+X**4/24.0
RETURN
END

In this case, the val~e in SINCOS is the
sine of the anqle X when the SIN entry to
the function is used, and the cosine of X
when the COS entry to the function is used.

References to FUNCTION Sub~rograms

The convention for linkaqe to FUNCTION
subproqrams requires that all reqisters
containing active partial results from an
expression be saved before branchinq to the
FUNCTION subproqram. As a result, more
efficient ~odes can be produced by placinq
FUNCTION references so that they are
evaluated before the rest of the expression
in which they appear is evaluated.

For example, in the statement~

A = B * C + D * E * FN(G)

the partial results B * C and D * E must
both be stored in temporary locations
before a call is made to the fUNCTION
subproqram FN. If the statement is
rewritten as follows:

A = FN (G) * D * E + B * C

the unnecessary STORE instructions are
eliminated because no partial results exist
when FN is called.

70 System/360 Model 44PS Guide to System Use FORTRAN

Form C28-6813-2, page modified June 10, 1969, ty TNL N33-8602

The storage locations assigned to variables
in a FORTRAN program are listed in the
compiler storage map. Whenever possible,
the programmer should refer to the storage
map before using the DUMP or PDUr.P
subroutines. The statement format is:

CALL jDUMP t (allbllf 1 , ... an,bn,fn)
, PDUMP (

where:

a and b are variables that indicate the
limits of storage to be dumped. f
indicates the dump format; it must be one
of the integers shown below.

° specifies hexadecimal format
1 specifies LOGICAL* 1
2 specifies LOG ICAL * 4
3 specifies INTEGER*2
4 specifies TNT EGER* 4
5 specifies REAL*4
6 specifies REAL*8
7 specifies COMPLEX* 8
8 specifies COMPLEX*16
9 specifies literal

The following conventions should be
observed when using the DUMP or PDUMP
subroutines to insure that the appropriate
areas of storage are dumped.

In the following examples, A is a
variable in COMMON, B is a real number, and
the array TABLE is dimensioned as:

DlrlEN SION TABLE (:2 0)

If an array and a variable are to be
dumped at the same time, a separate set of
arguments should be used for the array and
for the variable. The specification of
limits for the array should be from the
first element in the array to the last
element. For example, the following
statement could be used to dump TABLE and B
in hexadecimal format, and to terminate
execution after the dump is taken:

CALL DUMP (TABLE(1),TABLE(20) ,O,B,B,O)

If an area in COMMON is to be dumped at
the same time as an area of storage not in
COMMON, the arguments for the area in
COMMON should be given separately. For
example, the following statement could be
used to dump the variables A and B in real
format without terminating execution:

CALL PDUMP (A,A,5,B,B,5)

If variables not in COMMON are to be
dumped, the programs shoulG :ist each
variable separately in the argument list.
For example, if R, P, Q are defined
implicitly in the program, the statement:

CALL PDUMP(R,R,5,P,P,5,Q,Q,5)

should be used to dump the three variables
in storage. If, however, the statement:

CALL PDUMP(R,Q,5}

is used, all main storage between Rand Q
is dumped.

If an array and a variable are passed as
arguments to a subroutine, the arguments in
the call to DUMP or PDGMF in the subroutine
should specify the parameters used in the
definition of the su troutine. For example,
if the subroutine SUBI is defined as:

SUB R 0 UTI N E SUB I (X, Y)
DIMENSION X (10)

and the call to SUBI within the source
program is:

DIMENSION A(10)

CAL L SUB I (A , B)

then the following statement in the
subroutine should be used to dump the
variables in hexadecimal format without
terminating execution:

CALL PDUMP (X(1},X(10),0,Y,Y,O)

If the statement

CALL PDUMP (X(1) ,Y,O}

is used, all storage between A(1) and Y is
dumped, as the result of the method of
transmitting arguments.

1210ck Length

A block of data written by the FORTRAN IV
compiler is never less than 360 bytes long.
Even though the LABEL jot control statement
permits a block length specification
smaller than 360, the size of the buffer
from which records are written is always at
least 360 bytes. While writing his source
program, the FORTRAN programmer should try
to format his records so that optimum use

programming Considerations 71

For m C 2 8 - 6 S 1 1- 2, P age mod i fie d J u n e 1 0, 1 9 6 9, by T N L N 3 3- 8 6 0 2

is made of the 360-byte buffer, thereby
conserving srace on external stora]e media.

:OMPILER RESTRICTION:

Table 3 is a list of the limitations
imposed on the source rrogram by the
fORTRAN compiler.

I~~..QX;_E.uff~f.: The FORTRAN Library
Input/Output Support routine (IBCOr.) uses a
buffer which is equal in size to the
maximum record length field in the DEFIN~
FILE statement or 360 bytes, whichever is
greater. If no DEFINE FILE statement
appears in the program, then a 360-byte
buffer is assigned. In addition, 40 bytes
are re]uired for the RCB and 8 bytes are
reg-uired for alignment. ':rile buffer and the
RCB are used for execution-time
implementation of FORTRAN Input/Output
so urce sta temen ts. To allow for this ar ea,
the progra~mer must reduce the space
available for the execution of his projram
by the size of the buffer rlus 48 bytes.

Table 3. Compiler Restrictions
r

I
,

Ir.AXIMUr.1
I NU ~BER I I

t- ---------~I---~
IUnilue variable names I 80001
~ I ~
I Unique array names I 30COI
~-----------------------------+I---~
IVariables and arrays in COM~ON I 20001
I-- I ~
INames in EQUIVALENCE statements I 50001
I rlus number of EQUIVALENCE I I
I lists I I
I I ~
IStatement numbers, including one I 160COI
I additional statement numbEr I I
I for each DO, LogicallY, and I I
I im[lied ro in an input/output I I
I list I I
r-- ------------------+___~
INa~es in Explicit Spe~ification I 80001
I statements I I
~ I --t
IUnique real constants I 160001
I-- +----~
I Unique inte ger constants I 160COI
t -t-----t
IUnique double-precision real I 80001
I constants I I
I~----------------------------~I--- --t
IUnique complex constants I 80001
r----- I ~
IUnique double-precision complex I 40COI
I constants I I
I-- I ~
IReferences to unique subprogram
I entry point names (explicit
I and implicit)
t------------------------
Istatement function definitions
r---
INested statement function

I 80 CO I
I I
I I
I --t
I 80001

-+---~
I 15 I
I I I definitions

I-- ---+1-- ~
IDummy arguments for a sUbprogram I 80001
r-- ------------------~I---~
ITotal arguments to all I 160001
I subprograms and sta temen t I I
I functions I I
r I ~
INested DO statements I 30001
r-- I ~
I Nested FUNCT ION su bprogram I 20 I
I references I I
I I ~
IFor FORMAT codes: Group count I 2551
I and field length I I
L __________________________________ ----L-___ J

72 System/360 Model 44PS Guide to System Use FORTRAN

This appendix illustrates a number of
job decks, representina several types of
jobs, that could be used with the Model 44
Programming System. For each €xample, it
is assumed that SYSIPT and SYSRDR are
assiqnEd to t~e same device; however, the
portions of the job deck read by SYSIPT
(that is, all input data) are indicated so
that they can easily be removed in the
event SYSIPT ann SYSRDR are assianed to
separate devices.

Co~£il~9nlY_Jgn~_~9~£ilQii9nl:
Fiaure 10 shows a job that consists of one
job step -- a FORTRAN compilation. A job

r-
I

name and accounting information are
provided in the JOB statement. The comma
in the operand field is required by the
absence of the DUMP or NODUMP
specifications (indicating that NODUMP is
+-" hr. "'C"C"l1mo('l\
l.,.\J JJ"- "-'I.-...J-.Jt.AJ.U'-'-4/.

The EXEC statement indicates that the
job step is to be unnamed, that a module
deck and a co~piler map are to be produced,
and that a module is not to be written on
SYSOOO. By defaul t, a source listing is
produced and it is assumed that source
statements are to be punched in EBCDIC.

,
I
I
I
I
I
I
I
I
I
I
I
I
I
I

IIJOBONE
II

JOB
EXEC

,PGN03410
FORTRAN(DECK,NOLINK,MAP)_

L-

FORTRAN source statements

(end of data)
(end of job)

SYSIPT

Figure 10. Sample of Compile Only (One Compilation)

Appendix A: Examples of Job Decks 73

ComEile only (three com£il£tiQn~l:

Figure 11 shows a job that consists of
three job steps -- trree FORTRAN
compilations involvinq one main proqram and
two subproqrams. The job steps are named
MATNPRO, SUBA, and SUBB. In each job step,
a module deck, a compiler map, and a source

listinq are produced and no module is
written on SYSOOO. The EXEC statement for
job step SUBA indicates that the source
statements followinq it are in BCD; for the
other two job steps, EBCDIC is assumed.

I

I
I
I
I
I
I

L-

I/JOBTWO JOB
IIMATNPRO EXEC

FORTRAN source

1*
IISUBA EXEC

FORTRAN source

1*
IISUBB EXEC

FORTRAN source

The EXEC statements for MAINPRO and SUBB
illustrate that compiler options may pe
specified in any order.

,PGN03411
T"ORTRAN(DECK,NOIINK,MAP) __

statements (main proqram) SYSTPT

(end ~ ~

.-/ or aata)
FORTRAN(DECK,NOLIN~,MAP,BCD)

statements (subproqram) SYSTPT

(end of data)
FORTRAN(DECK,MAP,NOLINK}---

statements (su bproqr am) SYSIPT

1* (end of data) _____________ _
1& (end of job)

Fiqure 11. Sample of Compile Only (Three Compilations)

74 System/360 Model 44PS Guide to System Use FORTRAN

,

Form C28-6813-2, page modified June 10, 1969, ty TNL N33-8602

Figure 12 shows how the main program and
I :~~, :w~ _ s~~~:??r~ms sho~n. i~ Figure 11
~uu~u D~ ~ump~~~G as a DaLcn provided that
the options given in the one EXEC FCRTRAN

r

//JOBTWO JOB , PG N03411
//MAINPR EXEC FORTRAN(DECK,NOLINK,MAP)

statement applied to all three
compilations. For eaclt compilation, a
module deck, a compiler map, and a source
listing are produced; no module is written
on SYSOOO.

----,
I

\

FORTRAN source statements (main program)

(
SYSIPT

/*
/&

END

FORTRAN source statements (su bpro gr am)

END

FORTRAN source statements (subprogram)

END __________________________________ _
(end of data)
(end of job)

Figure 12. Sample of Batch Compilation

t SYSIPT

)

SYSIPT

Appendix A: Examples of Job Decks 75

Figure 13 shows a job that consists of one
job step -- the editing of three mOdule
decks. The ~X~C statement indicates that
the job step is unnamed and that the phase
outFut produced by the linkage editor is to
be retained in the phase library for use in
subsequent jobs. By default, a phase map
is produced on SYSLST.

The modules to be edited are named r.AIN,
SUBONE, and SUBTWO and will be copied in
that order onto SYSOOO by the linkage
editor. A single phase, named ALPHA, is to
be produced; its origin is to be the first
available location in the problem program
area. The INCLUDE statements indicate that
phase ALPHA is to be composed of modules
MAIN, SUBONE, and SUBTWO, in that order,

r

/IJOBTHREE JOB , PG NC3412
II EX~C LNKEtT(KEEP)~ ________ __

1*
If-

~ODULE MAIN

r.odule deck (main program)

l"10D ULE SUBC NE

r.odule deck (subprogram)

MOD ULE SUE 'HiO

Module deck (subprogram)

PHASE
INCLUDE
INCLUDE
I NCLU DE

ALPHA,S
MAIN,L
SUBONE,L
SUBTWO,L
(enB of data) ________ __
(end of job)

Figure 13. Sample of Edit Only

and that each module will ce found on
SYSOOO. (Note that the PHASE ana INCLUDE
statements could be omitted from the job
deck; the only difference in the results
obtained is that phase ALPHA would instead
be named ~AIN, the name of the first module
to be included in the phase.)

The three module decks to be edited here
could well be the three decks produced in
the previous example of three compilations.
Although the job steps in that Example are
named MAINPRO, SUBA, and SUBE, these names
are not carried over with the module decks
into another job. In order to be edited,
the modules must be named again in r.ODULE
statements. Of course, the names used for
the compilation job sters could te repeated
in the MODULE statements or, as is the case
here, entirely new names could be used.

SY SIPT

76 System/360 Model 44PS Guide to System USe FCRTRAN

Fiqure 14 shows a iob that consists of two
job steps -- a FORTRAN compilation and the
editinq of the resultinq module and a
module deck produced in a previous iob.
The compilation iob step is named MAINPRO;
output from the compiler is to include a
source listinq, a compiler map, and a
module on SYSOOO. Tre name of the module
on SYSOOO will be the iob step name,
MAINPRU. No module deck is produced and
source statements are assumed to be in
EBCDIC.

,.--
I
I
I //,10BFOUR JOB ,PGN03413
I //MAINPRO EXEC FOR'IRAN (MAP)
I

FORTRAN source statements

1* (end of data)
II EXEC T~NKEDT (KEEP)

MODUTJE SUBPROG

Module deck

PHASE BETA,S
INCLUDE MAINPRO,L
INCLUDE SUBPROG,L

1*
,~_ ..:I ~.& ~..:..L ,
\tllU U.L uo l.OJ

1& (end of job)

L-

Fiqure 14. Sample of Compile and Edit

The editinq job step is unnamed; phase
output from the job step is to be retained
in the phase library; a phase map is to be
produced. The module deck, which will be
copied onto SYSOOO by the linkaqe editor,
is named SUBPROG. One phase, BETA, is to
be produced and is to include the modules
MAINPRO and SUBPROG in that order; both
modules will be found on SYSOOO. The PHASE
and INCLUDE statements could be left out of
this iob deck without affectinq the results
in any way other than phase BETA beinq
named MAINPRO instead.

,

l SYSIPT

J

SYSIPT

Appendix A: Examples of Job Decks 77

Figure 15 shows a job that consists of one
job step -- the execution of the phase,
BETA, produced in the previously
illustrated compile-and-edit job. The JOB
statement now indicates that a dumf is to
be produced if the job terminates
abnormally.

Before the phase is executed, two data
sets required by it are associated with
symbolic unit names. The ACCESS statement
associates the data set named INPUT with
symbolic unit SYS004 (which corresponds to
data set reference number 4). The device
to be used for this data set is an IBM 2400
Magnetic Tape Unit with a 9-track

r-
I
I

readlwrite head and a recordinq density of
800 bytes per inch; the data set itself is
located on the tape whose volid is T645.

The ALLOC statement associates the data
set named MASTER with symbolic unit SYS002
(which corresponds to data set reference
n u m be r 2). I n add i t ion, 2 0 bloc k s 0 f spa c e
are allocated for the data set on a fresh
disk volume, which must be an IBM 1316 Disk
Pack mounted on an IBM 2311 Disk Storaqe
Drive. Finally, the data set MASTER is to
be entered into the system cataloq. The
LABEL statement, which is required after
the ALLOC statement shown, indicates a
FORTRAN record lenqth of 360 bytes and an
expiration date of January 1, 1968.

,

I IIJOBFIVE
I IISYS004
I IISYS002
I II

JOB
ACCESS
ALLOC
LABEL
EXEC

DUMP,PGN03414
INPUT,2400=IT645'
MASTER,1316=FRESH,20,CATLG
360,68001

I
I
I
I
I
I
I
I
I
I

I II BETA
I 1& (end of job)
I
l
L- J

Fiqure 15. Sample of Execute Only

78 System/360 Model 44PS Guide to System Use FORTRAN

Fiqure 16 shows a job that consists of two
job steps -- the editinq of two module
~o.-1rc ~"" +hQ OVQr-l1+; An t"\-F +hO ":""'ocll1 +; T'lt'T _-" """.I."' - '- ... __,& -1. ... - _--&.&.'1

phase. The €ditinq job step is unnamed and
no phase map is to be produced. Also, the
phase output can be discarded at the end of
the next job step (in this case,
immediately after the phase is e~ecuted) •

The moau~es to be edited are named
PAYMAIN and PAYSUB and will be copied in
that order onto SYSOOO by the linkage
editor. The absence of pHASE and INCLUDE
statements causes the linkaqe editor to
generate the followinq statements:

.-
I
I
I IIJOBSIX JOB DUMP,PGN03415
I II EXEC LNI<"ED 1: (NOMAP)
I MODULE PAYMAIN
I
I
I
1 Module deck
I
I
I
I MODULE PAYSUB
I
I

Module deck

(end of data) __________ __
T.lVI.lf'"'I

PHASE PAYMAIN,*
INCLUDE PAYMAIN,L
INCLUDE PAYSUB,L

The result is that a sinqle phase named
PAYMAIN is produced and the two modules on
SYSOOO (namely, PAYMAIN and PAYSUB) are
included in the phase in that order. The
origin of the phase is the first available
location in the problem proqram area.

The presence of input data after the
phase execution EXEC statement indicates
that the data set reference number 5
(correspondinq to SYSIPT) is cited in the
source p1=oqram •

SYSIPT

,

1*
II LAL~ ____________________________ __

Input data to FORTRAN proqram SYSIPT

1* (end of data) __________ _
1& (end cf job)

L-

Figure 16. Sample of Edit and Execute

Appendix A: Examples of Job Decks 79

Fiqure 17 shows a job that consists of four
job steps -- two FORTRAN compilations
involvina a subprogram and a main program,
the Editinq of the two resulting modules,
and the executicn 0+ the resulting phase.
The compilation job steps are named SUBPROG
and MAIN. In each job step, a source
listing, a compiler map, and a module on
SYSOOO are to be produced, a module deck is
not to be produced, and the source
statements are punched in EBCDIC. (Note
that in the EXEC statement for job step
SUBPROG, all compiler options are
specified, while in the EXEC statement for
job step MAIN, the default options are
Qmi t ted.)

The editing job step is unnamed; phase
output is to be retained; a phase map is to
be produced. A sinqle phase, named GAMMA,
is to be produced; its origin is to be the

r-

first available location in the problem
program area. The phase is to include two
modules, MAIN and SUBPROG, in that order;
the source of each module is SYSOOO. (Note
that the omission of the PHASE and INcr,UDE
statements from this job deck would cause a
change not only in the phase name, but also
in the order in which the modules are
included in the phase.)

Before the phase is executed, one data
set required by it is associated with a
symbolic unit name. This is the data set
MASTER (cataloged in the execute-only
exam pIe), which is again associa ted with
symbolic unit SYS002. No further
information is required in the ACCESS
statement because MASTER is a cataloqed
data set. The presence of input data after
the phase execution EXEC statement
indicates that data set reference number 5
(corresponding to SYSIPT) is cited in the
source program.

---,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
J
I
I
J
I
I
I
I
I
I

IIJOBSEVEN JOB
liS UB PROG EXEC

DUMP,PGN03416
FORTRAN(NODECK,SOURCE,LINK,MAP,EBCDIC)

L-

FORTRAN source statements (subproqram)

1*
IIMAIN EXEC

(end of data) ____________ _
FORTRAN(MAP) --------------

FORTRAN source statements (main program)

1*
II

1*
IISYS002
II

EXEC
PHASE
INCLUDE
INCLUDE

ACCESS
EXEC

i~~~D~~K~~~~_)~~~~~~_-_-_-_-_-_-_
GAMMA,S }
MAIN,L
SUBPROG,L
(end of data)
MASTER -------------

Input data to FORTRAN program

(end of data)
(end of job) -------------

Figure 17. Sample of Compile, Edit, and Execute

SYSIPT

SYSIPT

SYSIPT

SYSIPT

80 System/360 Model 44PS Guide to System Use FORTRAN

J ,
I
I
I
I
I
I
t
I
I

.1
I
I
I
I
I ________________J

Form C28-6813-2, page modified June 10, 1969, by TNL N33-8602

This appendix provides a list of the 49
characters valid in a FCRT~AN source
program (except in literal data where any
valid card code is acceptable). The EBCDIC
punch comtination for each character is
shown. A BCDIC punch combination is shown
only when it differs from the EBCDIC punch
combination. Only five characters

+

have different punch combinations; in all
other cases, the EBCDIC and ECDIC
combinations are the same.

If the source program is punched entirely
in EBCDIC (that is, the EBCDIC option is in
effect), statement numl::ers passed as
arguments must be coded as &rr (where rr
represents the statement numter).

If BCD characters appear in the source
prog ram (that is, t he BCD option is in
effect), the character $ must not be used
as an alphabetic character in the source
program, and statement numbers passed as
arguments must be coded as $n rather than
&n·

Appendix E: EBCDIC and BCDIC Card Codes 81

APPENDIX C: ASSEr.BLER LANGUAGE ~UBPROGRAMS

A FORTRAN programmer can use assembler
language subprograms with his FORTRAN
program. This section describes the
linkage conventions that must be used by
the assembler language subprogram to
communicate with the FORTRAN program.

SUBROUTINE REFZRENCES

The FORTRAN programmer can refer to a
sub prog ram in two ways: by a CALL
statement or by a function reference within
an ari thmetic expression. For each
subprogram reference, the compiler
generates:

i. An argument list; the addresses of the
arguments are placed in this list to
make the arguments accessible to the
subprogram.

2. A save area in which the subprogram
can save information related to the
calling program.

A calling sequence to pass control to
the subprogram.

The argument list contains addresses of
variables, arrays, and subprogram names

used as arguments. Each entry in the
argument list is four tytes and is aligned
on a fullword boundary. The last three
bytes of each entry contain the 24-bit
address of an argument. The first byte of
each entry contains zeros, unless it is the
last entry in the argument list. For the
last entry, the first (leftmost) bit in the
entry is set to 1.

The address of the argument list is
placed in general register 1 by the calling
program.

The calling program contains a save area in
which the subprogram places information,
such as the entry point for the called
SUbprogram, an address to which the
subprogram returns, general register
contents, and addresses of save areas used
by programs other than the sutprogram. The
amount of storage reserved by the calling
program is 18 words. Figure 16 shows the
layout of the save area and the contents of
each word. The address of the save area is
placed in general register 13.

FORTRAN proJrams save floating-point
registers before calling a SUbprogram. The
subprogram does not have to save and re
store them.

AREA------>r ---.
(word 1) IThis word is part of the standard linkage convention used ty the programmingl

Isystem. An assembler language subprogram can use the word for any purpose. I
AR EA +4----> I-- ---i
(word 2) IIf the program that calls the assembler language SUbprogram is itself a I

Isubprogram, this word contains the address of the save area of the calling I
I program. Otherwise, this word is not used. I

AREA+ 8--> ~ ~
(word 3) IThe addresS" of the save area of the called subprogram. I
AREA+12->t ---i
(word 4) IThe contents of register 14; that is, the return address. When a subprograml

Ireturns control, the first byte of this word is set to ones. I
AREA+16->1-- ~
(word 5) IThe contents of register 15; that is, the entry address. I
AREA+20-> I ~
(word 6) IThe contents of register O. I
AREA+24--->1 ---i
(word 7) I The contents of register 1. I

~ ~
I I
I I
I I

AREA+68-> I-- ~
(word 18) I The contents of register 12. I L _________________ --J

Figure 18. Save Area

82 System/360 ~odel 44PS Guide to System Use FORTRAN

Calling Sequence

A calling sequence is generated to transfer
control to the subprogram. The addreSE of
the save area in the calling program is
placed in general register '3. The address
of the argument list is ~laced in general
register " and the entry address is placed
in general register 15. A branch is made
to the address in general register 15 and
the return address is saved in general
register 14. Table 4 illustrates the use
of the linkage registers.

CODING THE ASSEMBLER LANGUAGE SUBPROGRAM

TwO types of assembler language subprograms
are possible: the first ty~e (lowest
level) assembler subprogram does not call
another subprogram; the second type (higher
level) subprog~am does call ancther
subprogram.

Coding a 10west Tpvpl AssPIDhlpr L~aoe
Subprogram

For the lowest level assembler language
subprogram, the linkage inEtructions must
include:

1. An assembler instructicn that names an
entry Fcint for the subprcgram.

2. Instructions to save any qeneral
registers used by the subprogram in
the save area reserved by the calling
program. (The contents of linkage
reg isters 0 and 1 need not be sa ved) •

Table 4. Linkage Registers

3. Instructions to restore the "saved"
registers before returning control to
the calling program.

4. An instruction that sets to
first byte in the fourth word of the
save area, indicating that control is
returned to the callinq proqram.

5. An instruction that returns control to
the calling program.

Figure 19 shows the linkage conventions
for an assembler language subprogram that
does not call another subprogram. In
addition to these conventions, the
assembler program must provide a method for
transferring arguments from the callinq
program and returning the arguments to the
calling program.

Sharing Data in COMMON

Both named and blank COMMON in a FORTRAN IV
program can be referred to by an assembly
language subprogram. To refer to named
COMMON, the A-type address constant

name DC A(name of COMMON)

is used. The parameter (name of COMMON)
must be defined in an EXTRN statement. To
refer to blank COMMON, it must be defined
in the assembly language subprogram (by the
COM instruction), and referenced by an
A-type address constant

name DC A(name of first DC or DS
in COM control section).

r- ~-------.- ,
,Register , , I
I Number I Register Name, Function ,
~ I ~ ~
I 0 ,Result ,Used fer function subprograms only. The result is returned in I
I , Register Igeneral or floating-point register O. (For subroutine subpro- ,
I I Igrams, the result is returned by the subprogram in a variable I
I I Ipassed to the subprogram by the programmer's CALL statement.) I
~ I t ~
I tArgument ListlAddress of the argument list passed to the called subprogram. ,
I I Register I I
~ --+------------f---------- ~
I 13 , Save Area ,Address of the area reserved by the calliag program in which ,
, , Register Ithe contents of certain registers are stored by the called ,
, I ,program. ,
I + f----- -1
J'4 I Return IAddress of the location in the callinq program to which controll
I I Register lis returned after execution of the called program. I
l-- I f ,
I 15 I Entry Point IAddreEs of the entry point in the subprogram. t
I , Register , I
'--_------L---_______ .L _______ .J

Appendix C: Assembler Languaqe Subprograms 83

Higher Level Assembly-Language SU~Qgram

A hiqher level assembler subprcqram mu~t
include the same linkaqe instructions as
the lowest level subproqram, but because
the hiqher level subproqram calls another
subproqram, it must simulate a FORTRAN
subproqram reference statement and include:

3. An assembler instruction that
indicates an external reference to the
subproqram called by the hiqher level
subproqram.

1. A save area and additional
instructions to insert entries into
its save area.

2. A callinq sequence and a parameter
list for the subproqram that the
higher level subprogram calls.

4. Additional instructions in the return
routine to retrieve entries in the
save area.

Fiqure 20 shows the linkaqe conventions
for an aEsembler subproqram that calls
another assembler subproqram.

r-------~----~----------------- -----,
IName I Opere IOperand comments ,
I----+__ -+-1 -- --.!I
Ideckname S1ART 10
I ENTRY Iname
1 USING 1*,15
Iname Be 115,*+12
I DC IX'm+1'
I DC CLm'name'

* ST
ST
ST

14,12(13)
15,16 (13)
2,28(13)

R,D(13)

NAME THE ENTRY POINT FOR THIS SUBPROGRAM

m MUST BE EVEN TO INSURE THAT THE PROGRAM
STARTS ON A HALF-WORP BOUNDARY. THE NAME MAY BE
PADDED WITH BLANKS.
THE CONTENTS OF REGISTERS 14, 15, AND 2 THROUGH RARE
STORED IN THE SAVE AREA OF THE CALLING PROGRAM. R IS ANY
NUMBER FROM 2 THROUGH 12 AND D IS THE APPROPRIATE
DISPLACEMENT

ST
user written source statements

L

L
MVI
BCR

L---___ --L--

R,D(13)
12 (13) ,X'FF'

115,14

THE CONTENTS OF REGISTERS 2 THROUGH R ARE RESTORED.

INDICATE CONTROL RETURNED TO CALLING PROGRAM
RETURN TO CALLING PROGRAM

Fiqure ~9. Lowest Level Assembler Subprogram

84 System/360 Model 44PS Guide to System Use FORTRAN

.J

r-
Ideckname
1
I
I
name1

*
*
*

AREA

START
ENTRY
EXTRN
USING
BC
DC
DC
ST
ST
ST

ST
LR

LA

ST

ST

Be
DS

0
name1
name2
*, 15
15,*+12
X'm+1'
CLrn' narne 1'
14,12(13)
15,16(13)
0~20 (13)

R,D(13)
r2,13

13,AREA

15,prOCi
18F

ENTRY NAME FOR THIS SUBPROGRAM
ENTRY NAME THE CALLED SUBPROGRAM

SAVE ROUTINE

LOADS REGISTER 13, WHICH POINTS TO THE SAVE AREA OF THE
CALLING PROGRAM, INTO ANY GENERAL REGISTER, ~2' EXCEPT
0, 13 AND 15 (BASE REGISTER)
LOADS THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO
REGISTER 13.
STORES THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO THE
CALLING PROGRAM'S SAVE AREA
STORES THE ADDRESS OF THE PREVIOUS SAVE AREA (THE SAVE
AREA OF THE CALLING PROGRAM) INTO WORD 2 OF THIS PRO
GRAM'S SAVE AREA

RESERVES 18 WORDS FOR THE SAVE AREA
* user-written proqram statements
prob1

* CALLING SEQUENCE
LR 12,15 SAVE BASE REGISTER FOR THIS PROGRAM
LA 1,ARGLIST LOAD ADDRESS OF ARGUMENT LIST
L 15,ADCCN
BALR 14,15
LR 15,'2 RESTORE BASE REGISTER FOR THIS PROGRAM

* more user-written proqram statements

* RETURN ROUTINE
L 13,AREA+4

1*
1 L
1
I
I
I L
I L
I MVI
1 BCR
1* END OF RETURN
1 ADCON DC
1* ARGUMENT LIST
1 ARGLIST DC
1
I
1
I DC
1 DC
'--

2,28(13)

R,D(13)
14,'2(13)
12(13) ,X'FF'
15, 14
ROUTINE
A (name 2)

AL4(arg1)

X'80'
AL3 (arqn)

LOADS THE ADDRESS OF THE PREVIOUS SAVE AREA BACK INTO
REGISTER 13

LOADS 1HE RETURN ADDRESS INTO REGISTER 14.

RETURN TO CALLING PROGRAM

ADDRESS OF FIRST ARGUMENT

INDICATE LAST ARGUMENT IN ARGUMENT LIST
ADDRESS OF LAST ARGUMENT

Figure 20. Higher Level Assembler subprogram

,

Appendix C: Assembler Lanquaqe subproqrams 85

In-Line Argument List

The assembler programmer can establish an
in-line argument list instead of an
out-of-line list. In this case, he may
substitute the calling-sequence and
argument list shown in Figure 21 for that
shown in Figure 20.

r- -y------~------------------___,

I Name I Opere IOperand I
~-----+-- I ~

ADCON DC A(name 2) J

1
IRETURN

LR
LA
L
CNOP
BALR
DC

DC
DC
LR

'2,'5
14,RETUBN
15,ADCCN
2,4
1, 15
AL4 (arg~)

X'80'
AL3(argn)
15, 12 L--_____ L-_____ -L--____________________ ~

Fiqure 21. In-Line Argument List

GE~ING ARGUMENTS FRCM THE ARGUMENT LIST

The argument list contains addresses fer
the arguments passed to a subprogram. The
erder of these aodresses is the pame as the
order specified ,for the arguments in the
calling statement in the main rregram. The
address for the argument list is placed in
register 1. Fer example, when the
statement

CALL MYSUB(A,B,C)

is compiled, the following argument list is
genera te d.

r-------~----------------------------_,
1000000(01 address for A I
I----+------------------------t
1000000001 address fer B I
~---+---------------------------I
1100000001 address fer C I
L, ___ _

For purposes of discussion, assume A is a
double-precision (real*8) variable, B is a
subprogram name, and C is an array.

J

The address of a variable in the calling
program is placed in the argument list.
The following instructions in an assembler
language subprogram can be used to move the
double-preci$ion variable A to location VAR
in the subprogram.

L q,O (1)
L r,O(g)
ST r,VAR
L r,4 (q)
ST r,VAR+4

where g and r are any qeneral reqisters.

For a subprogram reference, an address
of a storage location is placed in the
arqument list. This storage location is
the entry point to the subprogram. The
following instructions can be used to enter
subprogram B from the subprogram to which B
is passed as an arqument.

I
BALR

15,4(1)
14, 15

For an array, the address of the first
variable in the array is placed in the
~rgument list. An array rfor example, a
three-dimensional array C (3,2,2)] ap pear s
in this format in main storage.

C (1 , 1 , 1) C (2, 1, 1) C (3, 1 , 1) C (1 , 2, 1) -,
r- J

LC (2,2, 1) C (3, 2, 1) C (1 , 1 , 2) C (2, 1 , 2) -,
r-------------------.--------------J
LC (3, 1 ,2) C (, , 2,2) C (2,2,2) C (3,2,2)

Table 5 shows the qeneral subscript format
for arrays of 1, 2, and 3 dimensions.

Table 5. Dimension and Subscript Format
r-----------.------------------------,
IArray A I Subscript Format I
~-------+---------.----- -t
I A (D 1) I A (C 1 * V 1 +J 1) I
IA(Dl,D2) IA(Cl*Vl+.J1,C2*V2+J2) I
IA (D1,D2,D3) IA (C1*V H,J1,C2*V2+J2,C3*V3+J3) I
~---------l-.--_--_. -t
ID1, D2, and D3 are integer constants usedl
lin the DIMENSION statement. Cl, C2, C3, I
IJ1, J2, and J3 are integer constants. I
IV1, V2, and V3 are inteqer variables. I L--______________________________ J

The address of the first variable in the
array is placed in the argument list. To
retrieve any other variables in the array,
the displacement of the variable, that is,
the distance between the variable and the
first variable in the array, must be
calculated. The formulas for computinq the
displacement (DISPLC) of a variable for
one, two, and three dimensional arrays are:

DISPLC=(Cl*Vl+Jl-1)*L
DISPLC=(Cl*V1+J1-1)*L+{C2*V2+J2-1)*D1*L
DISPLC=(Cl*Vl+Jl-1)*L+(C2*V2+J2-1)*D1*L

+(C3*V3+J3-1)*D2*Dl*L

where L is the length of each variable in
the array.

86 System/360 Model 44PS Guide to System Use FORTRAN

For example, the variable C(2,1,2) in
the main proqram is to be moved to a
location ARVAR in the subprogram. Usinq
the formula for displacement of variables
in a three-dimensional array, the
displac~ment (DISPLC) is calculated to be
28. The following instructions can be used
to move the variable:

I g,8(1)
L r,DISPLC
t s,O (q,r)
ST s,ARVAR

where q, r, and s are qeneral reqisters.

Appendix C: Assembler Lanquaqe Subproqrams 87

APPENDIX D: SYSTEM DIAGNOSTIC MESSAGES

This appendix contains a detailed
description of the diagnostic messages
produced during operation of the Model 44
Programming System. Messages are discussed
in the following order:

• Supervisor messages

• Job control messages

• Compiler messages

• Linkage editor messages

• Phase execution messages

Supervisor messages may appear at any time
during execution. They are written by the
supervisor.

FAOCI ERR LDING MESS WRTR

~X£lanation: An input/output error
occurred while the system was loading
its message writer routine. The job
is canceled.

FAODI cuu NOT OPERATICNAI

Explanation: cuu is the physical
address of an input/output device. An
input/output operation was requested
for a data set on a device that is not
operational. T}e job is canceled.

FAOEI cuu SNSE UN CHK

]Xplanation: cuu is the physical
address of an input/output device. A
unit check interrupticn occurred in
response to a sense operation on a
device. The job is canceled.

FAOFI CUll I/O PROG CHK

Explanation: CUll is the physical
address of an input/output device. A
program check cccurred during
execution of an input/output
operation. This may be the result of
a zero count in a data transmission
request or an invalid data address.
The job is canceled.

FA10I xxxx CAN'T BE LOADED

Explanation: xxxx is the name of a
system routine. The routine is needed
by a system program, but it cannot be
found or it cannot be loaded because
of an input/output error on SYSAB1.
The job is cancel€d.

FBOBI OPRTR CNcr,ED

Explanation: A iob has been canceled
by the operator.

FB111 CNCL IN CNCL RTN

Explanation: A CANCEL was reguested
by the operator while the system was
executing the CANCEL routine.

GA06I PD LST FULL
LAST SVC PSW xxxxxxxxxxxxxxxx

Explanation: The XiS are replaced by
the new program status word for the
last supervisor interruption. Too
many supervisor calls have been issued
in too short a time. The job is
canceled.

GA07I ILLEG CODE - SVC x

Explanation: x is an invalid code
that was used in a supervisor call.
The job is canceled.

GA081 xxxxxxxx CAN'T BE FTCHD

Explanation: xxxxxxxx was used as the
name of a phase. The system cannot
find any phase with this name in the
phase library. The job is canceled.

PROG CHK INT CODE x
HA021 IN USER PROG CHK RTN

Explanation: A program check
developed during execution of a user's
program check interruption routine.
x is the interruption code. The job
is canceled.

88 System/360 Model 44PS Guide to System Use FORTRAN

PROG CHK INT CODE x
HA031 USER RTN NOT APPLICABLE

~~lanatiQn~ x is the proqram check
interruption code. On interrupt codes
1 throuqh 5, no user program check
routine is entered. The jot is
canceled.

PROG CHK INT CODE x
HA04l NO USER RTN SPECIFIED

]~B1E~ti2111 x is the prcqram check
interruption code. There is no UEer
program ChECk routine srecified tc
handle this type of program check.
The job is canceled.

PROG CHK INT CODE x
HA051 PSW - xxxxxxxxxxxxxxxx IN SPVSR STATE

]XBlanation~ x is the proqram check
code and tre other XiS are replaced by
a proqram status word. A program
check occurred in the supervisor
state. The PSW is the last problem
proqram PSW. The job is canceled.

JAOAI JOB CANCELLED

~lanation: A job has been canceled.
Another messaqe usually appears qiving
the reason for the cancellatien.

JOB CONTROL MESSAGES

Messages written by the jot control
processor are distinguished by the initial
characters lA.

These messages are written en SYSLST.
In the followinq listing, they are grouped
by type. Each group shares a commen text
message, but the identification code
differs to indicate the source of the error
condition.

The messaqes are as follows:

IAxxx S~MNT FMT ERR

Messaqes IAO'I through IA09l tndicate an
error in the text of a job control
statement. The xxx portien identifies the
problem area more specifically, as follows:

lA01I - Identification field. The first
two columns do net centain the
proper characters for a job
control statement. The job is
canceled.

IA021 - Name field. An invalid name has
been specified. It may not be
appropriate for the statement, as
when somethinq other than a
symbolic unit name is specified
in the name field of an ALLOC or
ACCESS statement. The iob is
canceled.

TA03I - Oppration field. The system does
not recoqnize the operation
specified. The job is canceled.

IA041 - Operand field. A required
parameter is missinq. The iob is
canceled.

IA051 - Operand delimiter. An improper
character hap been used as a
delimiter. The job is canceled.

IA061 - Field size or count. A parameter
in the operand field is too lonq,
or specifies an unacceptable
size, or there are too many
characters within a pair of
parentheses. The job is
canceled.

IA07I - Operand field. The operand field
contains a parameter that cannot
be recoqnized or that should not
be used in this statement. The
iob is canceled.

IA081 - Continuation error. The first
two columns of a continuation
state~ent do not contain the II
characters, information starts
before column '6, or a
continuation statement is
required but column 72 is not
punched. The job is canceled.

IA091 - VPS field. The VPS field of an
~XEC statement contains an
invalid entry, or a VPS settinq
has been specified for a system
that is not equipped with this
facility. The job continues, but
the parameter is iqnored.

IAxxx STMNT SEQ ERR

Messaqes IA111 throuqh IA17I indicate
improper use of a job control statement.
The xxx portion identifies the specific
problem, as follows:

IA111 - A LABEL statement was misused.
For a unit record data set or a
tape data set, the LABEL
statement did not follow an
ACCESS or ALLOC statement. For a
direct access data set, it did
not follow an ALLOC statement.
Otherwise, it appeared in an

Appendix D: System Diaqnostics 89

invalid place in the job deck.
The job is canceled.

IA121 - An ALLOC statement for a direct
access data set was not follcwed
by a LABEL statement. The job is
canceled.

IA'31 - The system reaa a II statement
that was not a JOB statement and
was not preceded by a JOB
statement. The job is canceled.

IA14I - The phase name field of an EXEC
statement is blank and the job
step does not immediately follow
a successful linkaqe editor job
step, or the linkaqe editor
reported an error severity level
of 12. The jot is canceled.

IA1S1 - A DELETE, CONDENSE, or RENAME
statement refers to a data set
that was not cited in an ACCESS
or ALLOC statement previously in
the job. The statement is
iqnored.

IA161 - A data set or symbolic unit
referred to in the SAME=parameter
field of a LABEL statement was
not defined previously in the job
nor is it a system data set. The
job is canceled.

IA171 - An invalid statement appears
amonq the job control statements
or an EXEC statement is missinq.
Job control skips to the next
recoqnizable jeb centrol
statement.

IAxxx veL REQ ERR

Messaqes IA211 throuqh IA281 apply to
volumes requested in ALLOC or ACCESS
statements.

IA21I - The system has no record of the
volume or aevice referred to.
The job is canceled.

IA22I - A request for a particular type
of device cannot be satisfied.
Not enouqh devices of this type
are available. The job is
canceled.

IA231 - The volume field of an ACCESS or
ALLOC statement ccntains an entry
that cannot be resolved. The job
is canceled.

IA2SI - An attempt has been made to
remove the system residence
volume. The job is canceled.

IA261 - A statement has requested
assiqnment of a device that is
not operational. The job is
canceled.

IA271 - The volume field of an ACCESS or
ALLOC statement specifies the
address of a device that was
assiqned to another data set
previously in the same job step.
The job is canceled.

IA28I - A job control maintenance
statement has been detected for a
data set on a volume that is not
mounted. The statement is
iqnored.

IAxxx DSNAME ERR xxxxxxxx

Messaqes IA31I throuqh IA381 apply to the
names of data sets and members. The name
causinq the condition is 2rinted with the
messaqe.

IA31I - The required data set cannot be
found in the volume specified.
Tbe job is canceled.

IA321 - The required member cannot be
found in the data set specified.
The job is canceled, unless the
condition is encountered while
processinq a DELETE request for a
member, in which case the request
is iqnored.

IA331 - The data set named cannot be
found in the system cataloq. The
action requested for the data set
is not performed.

IA341 - The name specified for a data set
duplicates the name of a data set
that is already on the same
volume. The job is canceled.

IA3SI - The name of a member in a
directoried data set duplicates
another name already in the
directory. The job is canceled.

IA361 - A data set name duplicates
another name in the system
cataloq. The job is canceled.

IA37I - The block lenqth requested for
the data set is too larqe for the
device. The job is canceled.

IA381 - An attempt has been made to close
a new member of a directoried
data set, but the member was never
written.

90 System/360 Model 44PS Guide to System Use FORTRAN

IA41I INSUFF SP xxxxxx

Explanation: xxxxxx is a volume
identification number. This message
indicates there is not enough rocm on
a disk volume to permit a requested
operation. The job is canceled.

IA42I INSpFF SP xxxxxx

Explanation: xxxxxx is the volume
identification numher of a disk velume
whose volume table of contents is
full. No new data sets can be added
to tre volume until seme of those
~)ready on it are deleted or, if there
is vacant space on the disk, the
volume table of contents is enlarqed
throuqh reinitialization. The jot is
canceled.

IA43I INSUFF SP xxxxxxxx

Explanation: xxxxxxxx is the name of
a directoried data set whose direct9ry
is full. No new members can be added
until some directory entries are
deleted. The job is canceled.

IA44+ INSUFF SP xxxxxxxx

Explanation: xxxxxxxx is the name of
a directoried data set in which there
is not enough room to add another
memter, or it is the name of a data
set of any type in which there is not
enouqh room to write another bleck of
data~ The job is canceled.

IA45I INSUFF SP CATLG

Explanation: There is not enouqh
space in the system cataleq to add
another entry. The job is canceled.

IA46I INSUFF SP JOBTABLE

Explanation: The job centrol
processor's working space is full.
The job is canceled. Either the size
of the job must be reduced or the size
of the system's SDSPAS data set must
be increased before the next run.

IA47I INSUFF SP FCB

~X£lanation: The system does not have
en0ugh space in main storaqe to
construct a file control block for the
symbolic unit cit~d in an ALLOC or
ACCESS statement. The symbolic unit
number may exceed the number that can

IASOI

be handled at the installation. The
iob is canceled.

ABN EOJ

Explanation: The job did not include
a /& (end-of-job) statement. The lob
is canceled.

IA55I hhmmss

]~xplag~j:j_QrL=- This messaqe, appearinq
after a JOB statement, qives the time
that the execution of the job started,
expressed in hours, minutes and
seconds.

IA58I CUU RW RR RN PW PR PN

IA59I xxx xx xx xx xx xx xx

Explanation: These messaqes report
the number of input/output errors
detected durinq the job. The count is
listed in columns by device. The CUU
column is the device address; RW is
the number of recovered writinq
errors; RR, recovered readinq errors;
RN, the number of recovered nondata
transmit errors; PW, permanent writinq
errors; PR, permanent readinq errors;
and PN the number of permanent nondata
transmit errors.

IA61I NEW NAME NOT CAT

IA62I

IA70I

Explanation: A renamed data set
cannot be cataloqed. The name has
been chanqed, as specified in a RENAME
statement, but the new name cannot be
entered in the system cataloq.

SYSERR

Explanation: An unrecoverable system
error has occurred. The operator must
reinitiate the initial proqram 19adinq
procedure.

DA FMT ERR xxxxxx

Explanation: xxxxxx is the volume
identification number of a volume
whose volume label is unreadable or in
an improper format. The volume cannot
be used by the system until it is
initialized via a system utility
program. The job is canceled.

Appendix D: System Diaqnostics 91

IA711 DA FMT ERR xxxxxx

]X£lanatign: xxxxxx is the vclume
identification number of a volume
whose volume latel has eeen chanqed
durinq the job. The joe is canceled.

IA721 DA ~M1 ERR xxxxxx

~lanEtion: xxxxxx is the volume
identification number of a volume
whose volume table of contents is not
in the proper format. The volume
~annot be used until it is initialized
via a system utility program. The job
is canceled.

IA731 DA FMT ERR xxxxxxxx

Explanation: xxxxxxxx is the name of
a sequential data set for which a
directoried data set request has been
made. The job is canceled, unless the
condition is encountered while
processinq a CONDENSE request, in
which case the request is iqncred.

IA741 DA FMT EfR xxxxxxxx.

~lanation: xxxxxxxx is the name of
a data set being accessed; the format
1 label for that data set dces not
contain a block siz·e. The job is
canceled.

IA751 DISK I/O ERR

Explanation: The system's standard
error recovery procedure has failed.
The system is unable to write on a
disk vclume durinq an ACCESS or ALLOC
operation, either in handlinq the
volume table of contents or a data
set. The job is canceled.

IA761 DISK I/O ERR

Explanation: The system's standard
error recovery procedure failed while
attemptinq to recover an input/output
error during a DELETE operation. The
job is canceled.

IA771 DISK I/O ERR.

Explana.i!.Q!L.!. The standard error
recovery procedure has failed to read
or write disk during a CONDENSE
operation. Processinq continues.

IA791 NO CATLG

IA821

Explanation: A cataloqinq request has
been made but cannot be executed
because the system does not have a
cataloq.

JC INIT DONE

Explanation: The system has ;ust
completed an initial proqram loadinq
procedure.

IA861 CAUTION JOB TBL FULL

Explanation: The ;ob control
processor's workinq space is full.
This is only a warninq messaqe. Any
additional job control statement will
overlay a previous entry. If this
happens, some references to data sets
or symbolic units mentioned in
previous statements may not be
acceptable, and some symbolic unit
assiqnments may not be made. The size
of the job should be reduced, or the
size of system data set SDSUAS should
be increased.

IA881 SYSxxx cuu dsname volid

Explanation: SYSxxx is a symbolic
unit name, cuu is the unit's physical
address, dsname is the data set
associated with the unit, and volid
identifies the volume containinq the
data set. This format is used by the
system in respondinq to a LISTIO
request.

IA891 M cuu volid

Explanation: M is the abbreviation
for Mount, cuu is a devlce address,
and volid is a volume identification
number. A new volume has just been
assiqned to a disk device. The
operator can mount the volume to
prepare for the IA90A messaqe.

IA90A MALL REQ DISKS

Explanation: This messaqe instructs
the operator to mount all disk volumes
requested in precedinq IA891 messaqes.
When this is done, he siqnals the
system to continue processinq.

IA9'D VOL xxxxxx UNREADABLE

Explanation: xxxxxx represents a vol
ume identification number. This

92 System/360 Model 44PS Guide to System Use FORTRAN

message appears after an IA90A
message. It indicates that the system
is unableto read the volume label of a
disk that has been mounted. The
operator can mount another volume,
instruct the system to ignore the
volume but continue processing, or
cancel the job.

IA921 JCT OFLOW

~~21£rratiQQ~ A LABEL statement use3
the SAME parameter, but the reference
cannot be resolved because the job
control processor~s working space was
filled earlier in the program. This
message follows an IA861 message. The
job is canceled.

IA931 OPEN ERR SYSxxx

~xplaB~tiQn: SYSxxx identifies a
system unit. An error was detected
while the job control processor was
opening a data set on the specified
system unit. The data set is not
opened, but processing continues.

IA941 CLOSE ERR SYSxxx

Ex£1£B£tion1 SYSxxx identifies a
system unit. An error was detected
while the job control processor was
closing a data set on the specified
system unit. The data set is not
closed, but processing continues.

This section contains a list of the
error/warning messages produced by the
FORTRAN IV compiler. An explanation of
each message, including its condition code
setting, is given.

The condition code indicates the
severi ty of the error. A code of 16
requires immediate termination of the job.
A code of 12 causes termination of the job
step. An 8 code signifies a serious
condition, but processing continues. A
code of 4 is a warning message calling the
programmer's attention to a condition that
may be an error.

NA011 ILLEGAL TYPE

Expl£rr~iion: The variable in an
Assigned GO TO statement is not an
integer variable; or, in an assignment
statement, the variable on the left
side of the equal sign is of logical
type and the expression on the right
side is not. (Condition code -- 12)

NA021 LABEL

~xpl£nation~ A statement that should
be la.celed is not. For example, a
FORMAT statement or a statement
following a SO TO statement is not
labeled. (Condition code -- 4)

NA031 NAr.E LENGTH

~X£lEB~tiQn~ The name of a varia.cle,
COMMON block, NAMELIST, or subprogram
exceeds six characters in length; or
two variable names appear in an
expression without a separating
operation symhol. (Condition
code -- 8)

NA041 COMMA

Expl~nation~ A comma required in a
statement does not appear. (Condition
code -- 4)

NA051 ILLEGAL LABEL

EXB1~nation~ Invalid use of a
statement label has occurred; for
example, an attempt has been made to
branch to the label of a FORMAT
statement. (Condition code -- 12)

NA061 DUPLICATE LABEL

]~anation~ The la.cel appearing in
the label field of a statement is
already defined (has appeared in the
label field of a previous statement).
(Condition code -- 12)

NA071 ID CONFLICT

~lanation~ The name of a variable
or subprogram has been used in
conflict with the type that was
defined for it in a previous
statement. For example, the name
listed in a CALL statement is the name
of a variable, not a sutprogram; or a
single name appears more than once in
the dummy list of a statement
function; or a name listed in an
EXTERNAL statement has already been
defined in another context.
(Condition code 12)

NA08r ALLOCATION

Ex£lanation~ The storage assignment
specified by a source statement cannot
be performed because the use of a
variable name is either improper or in
conflict with some prior use of that
name. For example, a name listed in a
COMMON block has been listed in
another COMMON tlock; or a variable
listed in an EQUIVALENCE statement is

Appendix D: System Diagnostics 93

Form C28-6813-2, page morjified June 10, 1369, '[;y TNL N33-8602

followed '[;y more than seven
sUbscripts. (Condition code -- 12)

NA091 ORDER

~~~~ation~ Source statements are 
used in an improper sejuence. For 
example, an IMPLICIT statement appears 
as other than the first statement in a 
main program or the second statement 
in a subprogram; or an ENTRY statement 
appears within a DO leop. (Condition 
code -- 12) 

NA10I SIZE 

~x£l~n~tiQn~ A number used in a 
source statement does not conform to 
the values allowed for its use. For 
example, a label used in a statement 
exceeds the maximum value for a 
statement label; or the size 
specification in an Explicit 
Specification statement is not one of 
the acceptable values; or an integer 
constant is too large. (Condition 
code -- 12) 

NA 101 SIZE WRN. 

~~~B~tion~ A non-subscripted array 
initialized with a DA1A initialization
statement is only partially
initialized. The uninitialized
elements of the array will contain
zeros. (Condition code -- 4)

NA11I UNDIMENSIONED

kx~rration~ The use Jf a variable
name indicates an array (that is,
subscripts follow the name) , but the
variable has not been dimensioned.
(Condition code -- 12)

NA12I SUBSCRIPT

Explan~tion: The number of subscripts
used in an array reference is either
too large or too small for the array.
(Condition code -- 12)

NA13I SYNTAX

~xplan~tiQn: A statement or part of a
statement does not conform to the
FORTRAN IV syntax. For example, a
statement cannot be identified; or a
nondigit appears in the label field;
or fewer than three labels follow the

expression in an Arithmetic IF
statement; or a constant that begins
with a decimal point does not have a
digit as its seco~d character.
(Condit jon coje -- 12)

NA14I CO~V'SRT

Ex~l~nation~ In a DATA statement or
in an Explicit Specification statement
containing data values, the mode of a
constant is different from the mode ef
the variable with which the constant
is associated. The constant is
converted to the correct mode by the
compiler; this message is simply a
notification to the programmer that
the conversion is performed.
(Condition code -- 4)

NA15I NO END CARD

~~anation~ The set of source
statements does not contain an END
statement. (Condition code -- 4)

NA16I ILLEGAL STA.

]xQ12nation: The context in which a
statement has been used is invalid.
For example, the statement "s" in a
Logical IF statement (the result of
the true condition) is a Specification
statement, a DO statement, etc.; or an
ENTRY statement appears in a main
program. (Condition code -- 12)

NA17I ILLEGAL STA. WRN.

Ex£lanation: A RETURN statement
appears in a main program; or a RETURN
i statement appears in a FUNCTION
subprogram. (Condition code -- 4)

NA18I NUMBER ARG

~~lan£tion~ A reference to a library
subprogram specifies an incorrect
number of arguments. (Condition
code -- 8)

NA19I FUNCTION ENTRIES UNDEFINED

~x£lan£tion~ The program being
compiled is a FUNCTION subprogram, but
there is no scalar with the same name
as the FUNCTION nor is there a
definition for each ENTRY. A list of
the undefined names follows the
message. (Condition code -- 4)

94 System/360 Model 44PS Guide to System Use FORTRAN

Form C28-6813-2, page modified June 10, 1969, by TNL N33-8602

NA20I COMMON BLOCK/ /ERRORS

~K£larr~tion: This message pertains to
errors that exist in the definitions
of EQUIVALENCE sets that refer to the
COMMON area. The message is produced
when there is a contradiction in the
allocation specified, when there is an
attempt to extend the beginning of the
COMMON area, or if the assignment of
COMMON storage results in an attempt
to allocate a variable at a location
that does not fallon the appropriate
boundary. The name of the COMMON
block in error appears between the two
slashes. A list of the variai::les that
could not be allocated because of the
errors follows the message.
(Condi tion code -- 8)

NA21I UNCLOSED DO LOOPS

~~Elarr~tionl This message is produced
if one or more DO loops are initiated,
but their terminal statements do not
exist, or if the terminal statement
for an outer DO precedes the terminal
statement for an inner DO (improper
nesting). A list of the undefined
labels that appeared in the DO
statements follows the message. When
the message results from improper
nesting, this list will include the
labels of incorrectly placed terminal
statements. (Condi tion code -- 12)

NA22I UNDEFINED LABELS

~~El~rr~tionl Labels used in the set
of source statements are not defined.
A list of the undefined labels follows
the message. (Condition code -- 12)

~A23I EQUIVALENCE ALLOCATION ERRORS

~XEl~n~tiQn~ This message is produced
when there is a conflict between two
EQUIVALENCE groups, or if there is an
incompatible boundary alignment in an
EQUIVALENCE group. A list of the
variables that could not be allocated
according to source statement
specifications follows the message.
(Condition code -- 8)

NA24I EQUIVALENCE DEFINITICN ERRORS

~~£1~~atign~ This message denotes an
error in an EQUIVALENCE group when an
array element is outside the array. A
list of the errors follows the
message. (Condition code -- 8)

NA25I DUMMY DIMENSION ERRORS

~l~nationl If variables specified
as dummy array dimensions are not in
COMMON and are not dummy arguments,
this message is produced. A list of
the dummy variables that are in error
follows the message. (Condition
code -- 12)

NA26I BLOCK DATA PROGRAM ERRORS

~~E1anation~ This message is producej
if variables in the source statements
have been specified within a BLOCK
DATA subprogram but have not ~lso been
defined as CO~MON. A list of these
variables follows the message.
(Condition code -- 4)

NA27I PUNCH ERROR, DECK OUTPUT DELETED

~~£lan~tion~ The DECK option was
specified in the EXEC FCRTRAN
statement, but an unrecoverable error
has occurred on SYSPCH. The punching
of the requested deck is terminated.
(C ond i tion code -- 4)

NA28I SYSOOO OUTPUT ERROR, LINK OUTPUT
DELETED

EXB1~nation~ The LINK option was
specified or assumed in the EXEC
FOFTFAN sta tement, but an
unrecoverable output error has
occurred on SYSOOO. ThE writing of
t he mod ule on S YSOOO is te rmi na te d.
Compilation continuEs. (Condition
code -- 12)

NA29I COMPILER INTERRUPT, COMPILATION BATCH
TER MINA TED

]~Elanatign: An interruption occurred
in a phase other than Parse or is of a
type other than eXfonent underflow or
expo nent overflow. Comp ila tion is
terminated. (Condition code -- 12)

NA30I I/O ERROR SYSPSD ON INPUT, LINK
MODULE DELETED

Expl~~~tion~ An unrecoverable input
error has occurred on SYSPSD. The job
is terminated. (Condition coce -- 16)

NA30I I/O ERROR SYSPSD ON OUTPUT, COMPILA
TION TERMINATED

lKElanatiQn~ An unrecoveratle output
error has occurred on SYSPSD:

Appendix D: system Dia gnostics 95

Compilation terminates.
code -- 16)

(Condi tion

NA31I SYSOOC OR SYS001 OPEN ERROR, COMFILA
TION BATCH TERC':INAT::r:

~~El~Bation: An error code is
returned after opening SYS001 or
SYSOOO. The job is terminated.
(Condition code -- 16)

NA32I roORE THAN 100 COMPILATIONS/BATCH
NO SYSPSD UPDATE

Ex~~ation: This message occurs at
the end of the 101st compilation of a
batch. One hundred is the maximum
number of unique directory entries
that can be generated for a single
compilation batch. Compilation is
terminated. (Condition code -- 12)

NA33I SYS001 READ END OF FILE, COMPILATION
TERr-n NAT ED

~~El~n~iiQn: An end-of-file mark was
erroneously read on SYS001 by the
compiler as it was reading Polish
notation. Compilation is terminated.
(Condition code -- 12)

NA34I SYS001{READ}ERROR, COMPILATION TERMI
NATED WRIT

~xplanation: An unrecoverable input
or output error has occurred on SYS001
while the compiler was reading Polish
notation. Compilation is terminated.
(Condition code -- 12)

NA35I EXIT RO~L FULL, COMPILATION TERMI
NATED

~~E1~B~tion~ This message is produced
when the EXIT roll (an internal table
used by the compiler) has exceeded the
amount of main storage assigned for
it. Compilation is terminated.
(Condition code -- 12)

NA36I WORK ROLL FULL, COMPILATION TERMI
NATED

~~~B~tioB~ This message is produced 
when the WORK roll (an internal table 
used by the comp iler) has ex ceeded the 
amount of main storage assigned for 
it. Compilation is terminated. 
(Condition code -- 12) 

NA37I NO MORE CORE AVAILABLE, COMPILATION 
TERMINATED 

EX~B~tion~ This message is produced 
when the program being compiled 

exhausts the supply of main storage 
available to the compiler. (Condition 
code -- 12) 

NA38I SYSIPT I/O ERROR, COMPILATION TER
MINATED 

ExElanation~ An input/output error 
occurred while the compiler was 
reading a card from SYSIPT. The job 
is t e r min ate d . ( Con d i t ion co de - - 1 6) 

NA39I SYSOOO Or SYS001 CLOSE ERROR 

EXElan~tion~ An error code was 
returned when the system a ttempted to 
close SYSOOO or SYS001. (Condition 
code -- 4) 

NA40I ERROR PRINTING LAST LINE 

::x.El.£natioB~ An error occurred on 
SYSOPT when the system attempted to 
write the line preceding this message. 
The system tries to print this warning 
message and to continue. If it cannot 
continue, the job is terminated. 
(Condition code -- 4 or 16) 

Linkage editor error messages are written 
on SYSLST during the linkage editing jeb 
step. These messages apply to the ESD, 
TXT, REP, RLD, and END statements Froduced 
by the language processors and to the 
linkage editor control statements. 

In most cases, an error message is 
accompanied by a listing of the statement 
containing or causing the error. 

Some of the statements reproduced in an 
error listing do not correspond exactly to 
the actual input statement. This is 
because the linkage editor does some 
processing of the statements in the 
statement input area, and some fields have 
been altered by the time an errer is 
detected. This applies mainly to the byte 
count, length, and type fields of the ESD 
statement. In no case, however, should 
there be any problem identifying the 
statement. 

For TXT and RLD cards, only the first 36 
columns of the variable field are printed. 
For a REP carG eLror, other than a sequence 
error, the error code is p~inted 
immediately after the REP card listing. 
The notation FOR REP eARn is printed next 
to the error code. 

96 System/360 r.odel 44PS Guide to System Use FORTRAN 



Form C28-6813-2, page added June la, 1969, by TNL N33-8602 

Error messages fall into four 
categories: 

1. Warning Messages. These are produced 
to call ~ programmer's attention to a 
condition that mayor may not 
represent an error. They do not 
affect continuation of the job step. 

2. Severe Errors. These messages are 
written when the linkage editor 
detects errors that would prohibit 
successful execution of the program. 
Linka~e editing continues, but its 

Appendix D: System Diagnostics 96.1 



3. 

4. 

output is flaqqed so that it will not 
be accepted for execution. 

Job 5tep Termination Messaqes. These 
messaqes are written when conditions 
develop that require immediate 
termination of the linkage editcr job 
ster. All system data sets are left 
in Froper status for subsequent job 
steps in the iob. 

Job Termination Messaqes. These 
messaqes are written when conditiens 
develop that require immediate 
termination of the job. Most of th~s~ 
are not the fault of the Froqram, but 
represent an inability of the system 
to continue functioninq properly. 

Most of these messages are written in 
the format ¥AxxI, where KA identifies a 
linkage editor error messaqe, xx represents 
a numeric code identifying a particular 
messaqe, and I means the message is for 
in formation. A fe w messag~s include 
written text, as discussed in the fcllowinq 
list of numeric codes and their 
corresponding messages. 

The last line of any linkaqe editor 
listing contains the message LINKAGE EDITOR 
HIGHEST SEVERITY WAS xx, where xx indicates 
the severity level, as follows: 

o indicates no significant errors and 
execution of the job may continue. 

4 indicates that one or more warninq 
messages have been printed, but 
execution may continue. 

12 indicates that the program ccntains 
errors that prevent its execution. 
~he phase or phases qeinq edited 
are not entered in the phase 
library. In some cases, the jeb 
step is terminated, but the system 
attempts to execute subsequent 
steps in the job. 

16 indicates that a termination 
condition exists, and editinq has 
not been completed. No phases have 
teen entered in the phase library. 
The job is canceled. 

The following messages are designed solely 
to call a programmer's attention to an 
unusual condition. 

Error 
Code 
¥A01I 

£QDditiQ1} 
A COMMON control section has the 

same name as a reqular control 
section, but their lenqths 
differ. Space has been 
reserved for the lonqer. 

¥A02I Two or more control sections in 
different phases have the same 
name. 

¥A03I The previous control section had 
a lenqth of O. If this 
condition is not intentional, 
it could have been caused 
error of the lanquaqe 
processor. 

KA04I An END card that should indicate 
the length of a control section 
does not. The lenqth of the 
last or only control section in 
the external symbol dictionary 
is O. This does not represent 
an actual error if the control 
section contains only 
instructions to the lanquage 
processor that do not require 
any main storaqe space. 

KA05I A control section name in a CSECT 
list in an INCLUDE statement is 
duplicated. 

KA06I A job control statement other 
than 1* was read. It has been 
saved for processinq at the end 
of the job step. 

Severe Error Mess~s, Severity Level 12 

The followinq messaqes document errors that 
prohibit execution of the proqram. Linkaqe 
editing continues. 

Error 
Code 
¥A11I 

Condition 
The type field of an ESD 

statement contains an invalid 
entry. This usually represents 
a lanquage processor error. 

KA12I A COMMON control section has the 
same name as an entry point. 

KA13I A Label Definition type entry in 
an ESD statement does not point 
to a Section Definiticn or 
Private Code type entry. This 
usually represents a lanquaqe 
processor error. 

Appendix D: system Diaqnostics 97 



Error
~.9de 
vA141 

Condition 
An oriqln for a ccntrol section 

that should te aliqned on a 
double word boundary is not so 
aliqned. This usually 
represents a languaqe Frocessor 
error. 

KA151 An ESD statement indicates that a 
private code section is named. 
A private code section cannot 
be named. This usually 
represents a lanquaqe Frccessor 
error. 

KA16I An SD, LD, or FR type entry with 
a blank name field is invalid. 
This usually represents a 
lanquaqe processer error. 

KA181 An entry point name improperly 
duplicates another entry point 
or control section name. 

KA19I Two or more ESD statements in the 
same ipput mcdule have the same 
identification number. This 
usually repr~sents a language 
processor error. 

KA351 System unit SYSOOO or SYSREL 
contains a statement that is 
either invalid or eut of 
sequence. Module cards must be 
in the order ESD, TXT, RLD, 
REP, and END. 

KA361 A MODULE statement was not 
followed by a statement with 
the 12-2-9 leader 
identificatien punch in its 
first column. 

KA371 The linkaqe editor has read 
teyond the last block of an 
input module. The input deck 
is out of sequence, or an END 
card is missinq. 

KA381 A st~tement on SYSIPT is invalid 
or out of sequence. 

KA39I A job control statement other 
than the 1* (end-of-data) 
st atement has been read. The 
1* statement is the enly job 
control statement that should 
te read by the linkaqe editor. 

KA40I A hexadecimal field in a PHASE or 
PEP card contains an invalid 
character. 

Error 
Code 
KA41I 

Condition 
A module contains an ESD ideLti

fication number of 0 or qreater 
than 255. Except for REP 
cards, this usually represents 
a lanquaqe processor error. 

KA421 A TXT, REP, RLD, or END statement 
contains an ESD identification 
number that is not in the mod
ule's external symbol diction
ary. Except for a REP card, it 
may represent a lanquaqe 
processor error. For a TXT or 
PEP card, it also may mean that 
the ESD number does not point 
to a control section. This 
messaqe is written only for the 
first TXT or REP card contain
ing the error even thouqh the 
followinq cards may contain the 
same erroneous number. 

KA43I The operand field of a control 
statement extends beyond column 
71; the variable field of a REP 
card extends beyond column 71; 
oi the last field in a REP card 
contains a number of characters 
that is not divisible by four. 

KA44I An entry point in the external 
symbol dictionary has an ESD 
number ·that should point to a 
control section, but the con
trol section that it points to 
is not in the external symbol 
dictionary. This may represent 
the loss of cards or a lanquaqe 
processor error. This error is 
detected when an END card is 
processed, so the messaqe is 
listed with the END card. 

KA451 The CSECT name list of an INCLUDE 
statement contains one or more 
control section names that are 
not in the module. This error 
code is printed with the END 
card since the error cannot be 
detected earlier. In some 
cases, this messaqe is qiven 
because the control section in 
the external symbol dictionary 
was notpr-ocessed as the result 
of another error condition, 
usually made by a lanquaqe 
processor. In this case, the 
ESD card for the control 
section has been printed with 
another error code. If a phase 
map has been produced, the 
control sections specified in 
the INCLUDE statement that were 
actually included in the phase 
ar-e listed. 

98 System/360 Model 44PS Guide to System Use FORTRAN 



Error 
£ode 
KA46l 

KA47l 

KA48l 

Condition 
An RiD statement contains a 

position pointer to an ESD 
number in the E5D dictionary 
that is not of the SD or PC 
type. This usually represents 
a language processor error. 

An entry in the operand field of 
a linkaqe editer centrol 
statemept contains teo many 
characters. 

A required entry is missinq from 
Lne operana Ileia of a linkaqe 
editor control statement. 

KA49I A linkaqe editor centrol 
statement contains an invalid 
delimiter, or a required 
delimiter is missinq. 

KA50l A decimal field in a PHASE 
statement contains a 
non-decimal character. 

KA51I The third specification in the 
operand field of a PHASE 
statement is invalid. Only 
NOAUTO can be specified in this 
field. 

KA52I A name in a PHASE or MODULE 
statement contaips an invalid 
character. 

KA53I Two or more phases in the freqram 
hav~ the same name. 

KA54I A PHASE statement with an * or S 
oriqin also has a fhase 
qualifier. This is permitted 
only when a control section or 
entry point is specified as the 
ori- qin. 

KASSI A symbol specified in a PHASE 
statement for the oriqin of the 
phase was not defined 
previou~ly. 

KA56l A PHASE statement specifies a 
neqative oriqin. 

KA57I The END statement for the 
previous phase contains an 
invalid entry in its transfer 
address field. 

KAS8I The previous phase contained no 
text. This may occur when the 
linkage editor is unable to 
find the modules named in an 
INCLUDE statement. 

Error 
Code 
KA59I 

!<"A60I 

KA6'l 

Condition 
The entry point specified in an 

ENTRY statement is not the name 
of a properly defined entry 
point or control section. 

A TXT or REP statement contains a 
load address outside the limits 
of the current phase. This 
usually represents a lanquaqe 
processor error, when it is in 
a TXT statement. 

The proqram calls for a p~ase 

size qreater than 368,640 
bytes. 

KA62l The control section name field of 
an INCLUDE statement contains 
the names of more than five 
control sectiops. 

KA63I A specification other than R or L 
appears as the second operand 
of an INCLUDE statement. 

KA64I A module named in an INCLUDE 
statement cannot be found in 
the place indicated by the R or 
L specification. 

KA65l The linkaqe editor has read a iob 
control statement for the next 
job step and is unable to save 
it in the user communication 
reqion. When the linkaqe 
editor reads a job control 
statement at the end of the iob 
step, it attempts to save it 
for the job control processor. 
This messaqe is written when 
the attempt to store it in the 
user communication reqion 
results in an error return. 

KA£6I A PHASE statement identifies a 
phase as ROOT but also 
specifies a phase qualifier or 
relocation factor. 

Termination Messages~verity Level 12 or 
-12 

The followinq messaqes cover input/output 
error conditions so severe that the linkaqe 
editor cannot continue. The severity 
depepds upon which unit experienced the 
error. The linkaqe editor job step 
terminates when severity 12 conditions 
occur. The entire job is canceled for 
severity 16 conditions. In either case, 
the system prints a messaqe code, the 
messaqe LINKAGE EDITOR CANNOT CONTINUE, 
and, on the next line, a notation of t~e 
highest severity level encountered in the 
job step. 

Appendix D: System Diaqnostics 99 



Along with the error message code, the 
system prints a code numcer that identifies 
the unit experiencing the error. These 
numbers are 2 for SYSAB2, 3 for SYSREL, 6 
for SYSIFT, 7 for SYSLST, 10 for SYSPSD, 16 
for SYSOOO, and 17 for SYS001. These are 
the units used by the linkaqe editor. 
Errors on SYSIPT and those cn SYSPSD and 
SYSOOO when a MODULE card and its 
associated MODULE are being processed have 
a severity level of 16. For others, the 
severity level is 12. 

Error 
£.Q.g~ 
KA80I 

RA81I 

KA82I 

KA83I 

£ondi.:tion 
End of extent was detected during 

a write operation. The output 
data set is not large enouqh~ 

A permanent transmissicn error 
was detected durinq an 
input/output operation. 

An input/output operation 
terminat~d without transmitting 
any data. 

An input/output operation 
terminatEd because of an 
invalid command. 

KA84I An input/output operation 
terminated with an incorrect 
length condition. 

Job Step Termination Messages, Severit~ 
Level 12 

These messages document conditions that 
require termination of the linkage editor 
job step. The system prints the error code 
and the message LINKAGE EDITOR CANNOT 
CONTINUE. 

Error 
Code 
KA87I 

KA881 

Condition 
An invalid end-of-extent 

condition was detected while 
reading SYSAB2 or the 
directories on SYSPSD or 
SYSREL. 

No phase can be created because 
there are no entries in the 
SYSPSD directory. This message 
also appears when. the entry 
name field contains blanks. 
The EXEC statement name field 
was blank when the module was 
assembled or ccmpiled. 

Error 
£ode Condition 

RA90l The linkage editor's control 
dictionary and linkaqe table 
are full. The proqram probably 
contains too many control 
sections and entry points. A 
maximum of 2047 control 
dictionary entries is 
permitted. If there is no ROOT 
phase, the maximum is 2048. 

RA91I 

KA92I 

KA93I 

The program specifies a phase 
name that duplicates the name 
of a phase already resident in 
the phase library. 

There is not enough room in the 
phase library directory for all 
the phases in this program. 

The system is unable to open the 
SDSOOO or SDS001 data sets. 
The volumes containinq these 
data sets may not be mounted, 
symbolic unit SYSOOO or SYS001 
may have been reassigned, or an 
error condition may have 
developed durinq opening. 

KA9SI SYS001 is assigned to a 7-track 
tape without the convert 
feature on; or SYSOOO and 
SYS001 are assigned to the same 
data set. 

Job Termination Messages, Severity Level 16 

A job is cancelled when one of the 
following conditions occurs. 

Error 
Code 
KA96I 

RA97I 

Condition 
Ther~not enough room in the 

SYSPSD directory to list a 
module specified in a MODULE 
statement; or an illegal end of 
extent was encountered while 
reading the last block of the 
directory. The requested 
module cannot be included in 
the program. 

The system is unable to close 
SYSOOO or SYSOO,. This indi 
cates that a system error 
condition developed durinq the 
job step. 

100 System/360 Model 44PS Guide to System Use FORTRAN 



The followinq messaqes are written by the 
linkaqe editor. In some cases, as 
indicated, the phase output is flaqqed so 
that it cannot be executed, but lin~aqe 
editinq is not interrupted. 

YA70I XXXX I~LEGAL OPTION FOR LINKAGE EDI
TOB 

~lEnation~ This messaqe apptar~ 
when the EXEC LNKEDT statement 
contains an invali~ parameter. The 
xxxx field is replaced with the 
incorrEct parameters. 

YA71I xxxx UNRESOrVE[ ADDRESS CONSTANTS 

~lanatiQn~ rhis messaqe appears 
when a control section contains an 
address constant for an external 
symbol in another module, and the 
linkaqe editor is unable to supply an 
address. The xxxx field is replaced 
with the number of such unresolved 
external references. If MAP is 
specified, a list of unresolved 
symbols is written. The phase output 
is flaqqed so it cannot be executed. 

KA72I xxxx ADDRESS CONSTANTS OUTSIDE LIMITS 
OF PHASE 

~lanation: This message is written 
when the proqram contains address 
constants with load addresses 
referrinq to points outside the limits 
of the phase that contains the address 
constant. The xxx field is replaced 
with the number of such address 
constants. This condition usually 
represents a languaqe processor error. 
The phase output is flaqqed so it 
cannot be executed. 

The followinq messaqes are written only 
if the MAP option has been specified in the 
EXEC LNKEDT statement. They are warning 
messaqes and do not prevent linkaqe editing 
or execution. 

ROOT PHASE OVERLAID EY ANCTEER PHASE 

~lanation: The program specifies a 
phase origin that would overlay all or 
part of a phase that has been 
designated a root phase. The phase 
that causes the overlay ccndition is 
marked by the word OVEROOT in the 
listinq. 

POSSIBLE INVALID ENTRY POINT DUPLICATICN IN 
INPUT 

Explanation~ The input contains 
possible duplication of entry point 

names. This may occur when control 
sections from a sinqle module are 
being split amonq different phases, in 
which case the messaqe can be iqnored. 
When this messaqe appears, one or more 
entry points in the input have been 
iqnored. The phase map shows whether 
an entry point for a certain control 
section is missinq. If it is, any 
reference to the entry point has 
probably been resolved to the wronq 
, -_-" +-..; r"\r. 
..L..v\,.,u .... .J..vu. 

PHASE ~X~CUTION DIAGNOSTIC MESSAGES 

Durinq phase execution, three types of 
diaqnostic messaqes are produced~ 

• Execution error messaqes. 

• Proqram interrupt messaqes. 

• Operator messaqes. 

Execution Error Messages 

In the following text, the error codes are 
qiven with an explanation describinq the 
type pf error. Precedinq the explanation, 
an abbreviated name is qiven indicatinq the 
oriqin of the error. Unless specified 
otherwise, a condition code of 12 is 
qenerated and the job'step is terminated. 

The abbreviated name for the oriqin of 
the error is.: 

IBC - BOAFCOMH routine (performs 
interruption, conversion, and error 
procedures) . 

FIOCS - BOAFIOCS routine (performs 
input/output operations for FORTRAN 
phase execution) • 

NAMEL - BOANAMEL routine (performs the 
processinq of NAMELIST specifi
ca tions) • 

DIOCS - BOADIoes routine (performs 
direct-access input/output operations 
for FORTRAN phase execution) • 

LIB - FORTRAN-supplied library. In the 
explanation of the messaqes, the 
module name is given followed by the 
entry point name(s) enclosed in 
parentheses. 

OA200I 

Explanation: FlOeS -- An attempt was 
made to- read from a data set for which 
input operations are not allowed. 

Appendix D: System Diaqnostics 101 



OA 201 I 

Explanation: Floes -- An attempt was 
made to write into a data set for 
which output operaticns are not 
allcwed. 

OA 20 21 

~lanatio~ FIoes -- A READ or WRITE 
operation was attempted on a data set 
whose most recent operation resulted 
from an ENDFILE statement. 

OA 203I 

Explanation: FIOCS -- An attempt was 
made to rewind, backspace, or write an 
end-of-file mark on cne of the system 
units SYSOPT, SYSPCH, or SYSIPT. 

OA204I 

~xplanation: FIOCS -- An attempt was 
made to rewind, backspace, cr write an 
end-of-file mark on a data set 
described by a DEFINE FILE statement. 

OA205I 

~lanation: FlOeS -- A data set 
reference number outside the unit 
table range (i. e., less than 1 or 
greater than 15) has been used in an 
input/output statement. The unit 
table contains the data set reference 
numbers and symbolic unit names shown 
in Table 2 in the chapter "Data Sets." 

OA 206 I 

~laDation: FIOCS -- An attempt was 
made to open a data set, but the data 
set could not be found. This message 
appears when a data set reference 
number not valid for the installation 
has been used in an input/output 
statement. 

OA207I 

~lanation~ FIOCS -- A label error 
was de~ected when a data set was 
opened. The condition code is 4. 

OA 20 81 

]zElanation: FIOeS -- An input/output 
request has been made that is invalid 
for a data set. 

OA209I 

Explanation: lEe -- rhere is 
insufficient main storage to allocate 
one request control block and one 
360-byte buffer. 

OA210I 

Explanation: IEC -- Proqram 
Interrupt. See "Proqram Interrupt 
C1essaqes", later in this chapter. 

OA211I 

Explanation: lEe -- An invalid 
character has been detected in a 
FORMAT statement. 

OA2121 

Explanation: IEC -- An attempt has 
been made 
a. to read or write, under FORMAT 

control, a record that exceeds the 
I/O bllffer lenqth (360 bytes). 

b. to write, under FORMAT control, a 
record that exceeds the maximum 
record size allowed on the I/O 
medium (80 characters for a 
punched card, line lenqth for a 
printed line). 

Explanation: IEC -- The input list in 
an input/output statement without a 
FORMAT specification is larger than 
the loqical record. 

OA 2151 

Explanation: IEC -- An invalid 
character exists for the decimal input 
corresponding to an I, E, F, or D 
format code. 

OA216I 

Explanation: IEe -- An invalid sense
light number was detected in the 
argument list in a call to the SLITE 
or SLITET subprogram. 

OA217I 

Explanation: lEe -- An end-of-data 
condition was sensed during a READ 
operation or an end-of-extent 
condition was detected durinq a WRITE 
operation. 

Explanation: IEC -- A permanent 
input/output error has been 
encountered. 

OA219I 

Explanation: IEC -- A boundary error 
has occurred but the boundary 
alignment routine could not be found 
in the phase library. 

102 System/360 Model 44PS Guide to System Use FORTRAN 



Form C28-6813-2, page modified June 10, 1969, by TNL N33-8602 

CA2201 

~~ana!ion~ lEC -- A boundary error 
has occurred but there is not enough 
space in main storage for the boundary 
alignment routine to be loaded. 

OA2211 

]X£l~nation: NAMEL -- An input 
variable name exceeds eight 
characters. 

OA222I 

]xDlanation: HAMEL -- An input 
variable name is not in the NAME LIST 
uictionary, or an array is specified 
with an insufficient amount of data. 

OA2231 

Explanation: NAMEL -- An input 
variable name or a subscript has no 
delimiter. 

OA 2241 

]xplanation: NAMEL -- A subscript is 
encountered after an undimensioned 
input name. 

OA2251 

~xplarr~tion: IBC -- An invalid 
character is encountered on input for 
the Z format code. 

OA2261 

]xplanation~ LIB -- In the subroutine 
BOAOVLY (OVLYJ), the phase name used 
in the CALL LOAD or CALL LINK 
statement can not be found in the 
phase library. The phase name must be 
enclosed in single quotes. 

OA2271 

~~~n~tion: LIB -- In the subroutine 
BOAOVLY (OVLY#), a CALL LOAD or CALL
LINK statement has loaded a phase
which overlays input/output storage
(RCB and buffer).

OA2281

ExplanatiQn1 NAMEL -- The number of
subscript quantities in a subscripted
NAMELIST array name differs from the
number of dimensions for that array.

OA2291

~xpl~tiQn1 NAMEL -- NAMELIST input
rata contains a subscripted array name
with a subscript quantity having a
negative or zero value or a value that

exceeds the corresponding dimension
bound.

OA2301

Explanation: DIOCS -- An I/O error
was detected while attempting to close
a direct access data set. The
condition code is 8.

OA2311

~xplanation~ DIOCS -- tirect-access
input/output statements are used for a
sequential data set.

OA2321

Explanation~ DIOCS -- The relative
position of a record is not a positive
integer, or the relative position
exceeds the number of records in the
data set.

OA2331

Expl~nation~ DIOCS -- The record
length specified in the DEFINE FILE
statement exceeds the physical
limitation of available main storage.

OA2341

ExE1anation~ DIOeS -- Direct access
input/output statements have been used
for one of the system units SYSIPT,
SYSPCH, or SYSOPT.

CA235I

Explanation: DIoes -- A data set
referred to in a direct access
input/output statement was not
previously described in a DEFINE FILE
sta temen t.

OA236I

Expl~tion~ DIOeS -- A data set
reference number used in a DEFINE FILE
statement has no corresponding
symbolic unit.

OA237I

]~E1anation~ DIOeS -- Error on a
POINT operation which can be caused by
trying to POINT within a non-formatted
direct-access data set.

OA241 I

Explanation: LIB -- For an
exponentiation operation (i**j) in the
subprogram BOAFIXPI (FIXPIt) where i
and j represent integer variables or
integer constants, the value of i is

Appendix D: System Diagnostics 103

zero and the value of j is less than
or equal to zero.

OA 2421

~xplan£tiQn~ LIB -- For an
exponentiation operation (r**j) in the
subprogram BOAFRXPI (FRXPI#), where r
represents a real*4 variable or
integer constant, the value of r is
zero and the value of j is less than
or equal to zero.

OA243I

~~lan£iion: LIB -- For an
eXFonentiation oFeration (d**j) in the
subprogram BOAFDXPI (FDXPIt), where d
represents a real*8 variable or real*8
constant and j represents an integer
variable or integer constant, the
value of d is zero and the value of j
is less than or equal to zero.

OA244I

K~£n£tiQn1 LIB -- For an
exponentiation operation (r**s) in the
subprogram BOAFRXPR (FRXPR#), where r
and s represent real*4 variables or
real*4 constants, the value of r is
zero and the value of s is less than
or equal to zero.

OA245I

~xplan~tiQn: LIB -- For an
exponentiation operation (d**p) in the
subprogram BOAFDXPD (FDXPD#), where d
and p represent real*8 variables or
real*8 constants, the value of d is
zero and the value of p is less than
or equal to zero.

OA246I

K~~n~1iQn~ LIB -- For an
exponentiation operation (z**j) in the
subprogram BOAFCXPI (FXCPI#), where z
represents a complex*8 variable or
integer constant, the value of z is
zero and the value of j is less than
or equal to zero.

OA247I

Expl~n~tionl LIB -- For an
exponentiation operation (z**j) in the
subprogram BOAFCDXI (FCDXI.), where z
represents a complex*16 variable or
complex*16 constant and j represents
an integer variable or integer
constant, the value of z is zero and
the value of j is less than or equal
to zero.

OA251I

]!£1anation~ LIB -- In the subprogram
BOASSQRT (SQRT), the value of the
argument is less than ZEro.

OA2521

l!plan~tion1 LIB -- In the subprogram
EOASEXP (EXP), the value of the
argument is greater than 174.673.

OA253I

]!£lanation~ LIB -- In the subprogram
ECASLOG (ALOG and ALOG10), the value
of the argument is less than or equal
to zero. B eca use this sub Frog ram is
called by an exponential sutprogram,
this message also indicates that an
attempt has been made to raise a
negative base to a real power.

OA254I

~~anation~ LIB -- In the subprogram
BOASSCN (SIN and COS), the absolute
value of an argument is greater than
or equal to 218 •

(2 18 = .82354966406249996D+06)

OA255I

Explanation~ LIB -- In the subprogram
BOASATN2, when entry name ATAN2 is
used, the value of toth arguments is
zero.

CA256I

Explanation: LIB -- In the subprogram
BOASSCNH (SINH or CCSH) , the value of
the argument is greater than or equal
to 174.673.

OA257I

EX£1anation: LIB -- In the subprogram
BOASASCN (ARCSIN or ARCOS) , the
absolute value of the argument is
greater than one.

CA258I

~lanation~ LIB -- In the subprogram
BOA STNCT (TA N or COTAN) , the abso lute
value of the argument is greater than
or equal to 218 •

(2 18 = .82354966406249996D+06)

OA259I

Exp12nationl LIB -- In the subprogram
BOASTNCT (TAN or COTAN), the value of
the argument is too close to one of
the sin gularities (/2, 3 /2, ••• for
the tangent; , 2 ,... for the
cotangent) •

104 System/360 Model 44PS Guide to System Use FORTRAN

Form C28-6813-2, page added June 10, 1969, by TNL N33-8602

OA261I

~~ElEnation~ LIB -- In the subprogram
BOALSQRT (DSQRT), the value of the
argument is less than zero.

OA262I

~~El~~ati~~~ LIB -- In the subprogram
BOASEXP (DEXP), the value of the
argument is greater than 174.673.

OA263I

EXE1Enation~ LIB -- In the subprogram
BOALLOG (DLOG and tLOG10), the value
of the argument is less than or equal
to zero. Because the sutprogram is
called by an exponential subprogram,
this message also indicates that an
a t t e m p t h as be en m a a e tor a is e a
negative base to a real power.

Appendix D: system Diagnostics 104.1

OA264I

~l£nation: LIB -- In the subproqram
BOALSCN (DSIN ana Deos;, "Lne absolute
value of the argument is qreater than
or equal to 250 •

(2 50 = .353711887378C2239D+16)

OA265I

]~Bl£n£tiQQ~ LIB -- In the subproqram
BCAIATN2, when entry name DATAN2 is
used, the value of both arquments is
zero.

OA2E 61

]ZBlanation: LIB -- In the subfrcqram
BOAISCNH (DSINH or tCCSH), the
absclute value of the arqument is
qreater than or equal to 174.673.

OA267I

~lanation~ LIB -- In the subproqram
BOAIASCN (DARSIN or DARCOS), the
absclute value of the arqument is
qreater than one.

OA268I

Explanation: LIB -- In the subprogram
BOALTNCT (DTAN or DCO'IAN), the
absclute value of the argument is
qreater than or equal to 250 •

(2 50 = .353711887378C2239D+16)

OA269I

Explanation: LIB -- In the subproqram
IHCLTNCT (DTAN or DCOTAN), the value
of the arqument is too close to one of
the singularities (/2, 3 /2, .•• for
the tanqent; , 2 , ••• for the
cotanqent) •

OA271I

~lanation: LIB -- In the subprogram
BOACSEXP (CEXP), the value cf the real
part of the arqument is qreater than
174.673.

OA272I

]zBlanation: LIB -- In the subprcgram
BOACSEXP (CEXP), tre absolute value of
the imaginary part of the argument is
greater than or equal to 2 18 •

(2 18 = .82354966406249996D+06)

OA273I

]zBlanation: LIB -- ~n the subprogram
BOACSLOG (CLOG), the value cf both the
real and imaginary parts of the
argument is zero.

OA274I

Explanation: LIB -- In the subproqram
BOACSSCN (CSIN or CCOS), the absolute
value of the real part of the arqument
is qreater than or equal to 218 •

(2 18 = .82354966406249996D+06)

OA275I

Explanation: LIB -- In the subproqram
BOACSSCN (CSIN or CCOS), the absolute
value of the imaqinary part of the
arqument is qreater than 174.673.

OA28'I

Explanation~ LIB -- In the subproqram
BOACLEXP (CDEXP), tre value of the
real part of the arqument is qreater
than 174.673.

OA282I

Explanation: LIB -- In the subproqram
EOACLEXP (CDEXP), the absolute value
of the imaqinary part of the arqument
is qreater than or equal to 250 •

(2 50 = .35371'88737802239D+16)

OA283I

Explanation: LIB -- In the subproqram
BOACLLOG (CDLOG)." the value of both
the real and imaqinary parts of the
arqument is zero.

OA284I

Explanation: LIB -- In the subproqram
BOACLSCN (CDSIN or CDCOS), the
absolute value of the ~eal pa~t of the
argument is qreater than or equal to
250 •

(2 50 = .35371188737802239D+16)

OA285I

Explanation~ LIB -- In the subproqram
BOACLSCN (CDSIN or CDCOS), the
absolute value of the imaqinary part
of the argument is qreater than
174.673.

OA290I

Explanation: LIB -- In the subproqram
BOASGAMA (GAMMA), the value of the
arqument is outside the valid ranqe.
(Val i d ran q e : 2- 2 5 2 < X < 5 7 • 5 74 4)

OA291I

Explanation: LIB -- In the subproqram
BOASGAKA (ALGAMA), the value of the
arqument is outside the valid ranqe.
(Valid ranqe: 0<x<4.2937x10 73)

Appendix D: System Diaqnostics 105

r---------------------------
I
I

,

I OA210I PROGRAM INTEPRUPT () - OLD PSW IS xxxxxxx xxxxxxxx REGISTER
I
I
I CONTAINED xxxxxxxxxxxxxxxx

J

Figure 22. Program Interrupt Messaqe

OA300I EQUIVALENCE (B,D)
D = 3.0D02

Explanation: LIB -- In the subprcgram
BOAtGAMA (DGAMMA), the value cf the
argument is outside the valid range.
(Val i a ran g e : 2- 2 5 2 < X < 57 . 5 7 4 4)

OA301I

Explanation: LIB -- In the subprogram
BOALGAMA (DLGAMA), the value of the
argument is outside the valid range.
(Valid range: O<x<4.2937x10 73)

Program Interrupt Messages

A program interrupt message containing the
old Prog ram stat us Word (PSW) is prod uced
on SYSLST when one of the follo~ing
exceptions occurs:

• Specification Excepticn (6)

• Fixed-Point Divide Exception (9)

• Exponent-Overflow Exception (C)

• Exponent-Underflow Exception (D)

• Floating-Point Divide Exception (F)

Operator intervention is not required
for any of these interrupticns, and
execution is not terminated. Figure 22
shows the interruption message format.

The five characters in the PSW (i.e., 6,
9, c, D, or F) represent the code number
(in hexadecimal) associated with the type
of interruption. The last portion of the
message shows the contents of the results
register when an exponent overflow or
underflow exception occurs. This is
discussed further later in this chapter.

Specification Exception: 'Ihe specification
exception, assigned code number 6, is
recognized whenever a data address does not
specify an integral boundary fer that unit
of information. A specificaticn error
would occur, for example, during the
execution of the following program segment:

DOUBLE-PRECISION D,E
COMMON A,B,C

Fixed-Point-Divide Excepti2B: The fixed
point-divide exception, assigned code
number 9, is recoqnized whenever division
of a fixed-point number by zero is
attempted. A fixed-point-divide exception
would occur during execution of the
following statements:

J
I
K

o
7
I/J

Exponent-Overflow Exception: The
exponent-overflow exc~ption, assiqned code
number C,. is recognized whenever the result
of a floating-point addition, subtraction,
multiplication, or divisicn is qreater than
or equal to 16 63 (approximately 7.2 x
10 75). For example, an exponent-overflow
exception would occur durinq execution of
the statement:

A = 1.0E+75 + 7.2E+75

When the interruption cccurs, the result
register co~tains a floating-point number
whose fraction and sign are correct. The
charac~eristic no longer reflects the true
exponent, however, and the number is not
usable. The floating-point number is
printed at the end of the program interrupt
message in hexadecimal notation.

With exponent overflow, the
characteristic represents an exponent that
is 128 smaller than the correct one.
Treating the characteristic, bits 1 to 7 of
the number, as a binar~ integer, the true
exponent (TE) may be computed as follows:

TE = (Bi t s 1 to 7) + 1 28 - 64

Before program execution continues, the
FORTRAN library sets the result reqister to
the largest possible floating point number
that can be represented in short precision
(16 63 *(1-16- 6 }) or in lonq precision
(16 63 * (1-16- 14)). The sign of the result
is not changed, and the condition code is
not altered"

'06 System/360 Model 44PS Guide to System Use FORTRAN

Exponent-Underflow Exception: The
eXPQnent-underflow exception, assigned code
number D, is recognized whenever the result
of a floating-point addition, subtraction,
multiplication, or divisicn is less than
'6-65 (approximately 5.4x10- 79). An
exponent-underflow exception would occur
during execution of the statement:

A 3.2E-40*5.4E-50

When the interruption occurs, the result
register contains a floating-point numter
whose fraction and sign are correct. The
characteristic no longer reflects the true
exponent, and the number is not usable.
This floating-point number is printed at
the end cf the program interrupt messaqe in
hexadecimal notation.

With exponent underflow, the
characteristic represents an exponent that
is '28 larqer than the correct one.
Treating the characteristic, bits 1 to 7 of
the number, as a binary integer, the true
exponent (TE) may be computed as follows:

TE = (Bits 1 to 7) - , 28 - 64

Before program execution continues, the
FORTRAN library sets the resu~t register to
a true zero of correct precision. If a
floating-point addition or subtraction
caused the interrupt, the condition code is
set to zero.

Floatinq-Point-Divide Exception: The
floating-point-divide exception, assiqned
code number F, is recognized when division
of a floating-point number by zero is
attempted. A floating-point-divide
exception would occur during ~xecution of
the follcwing statements:

B 0.0
A LO
C AlB

operator messages for STOP and PAUSE are
qenerated during phase execution.

The messaqe for a PAUSE can be one of
the forms:

PAUSE 11
PAUSE ~message~

PAUSE 0

where:

11 is the ,- through 5-digit
unsiqned inteqer constant
specified in a PAUSE
source statement

~essage is the literal constant
specified in a PAUSE
source statement

o is printed when a PAUSE
statement that does not
specify an inteqer or
literal constant is
ex<€cuted

Explanation: The proqrammer should qive
instructions that indicate the action to be
taken by the operator when the PAUSE is
encountered.

User Response: To resume execu~ion, the
operator presses the EOB key on the console
keyboard.

The message for a STOP statement can be
one of the forms:

STOP 11
STOP 0

where:

II is ~ne 1- ~nruuyn 5-diqit
unsigned inteqer constant
specified in a STOP source
statement

o is printed when a STOP
statement that does not
specify an inteqer
constant is executed

User Response: None

Appendix D: System Diaqnostics 107

INDEX

/& Statement ••••••.••.•..•..••••••.•••..... 10
/* Statement ••••••••••••••••••••.••••.••••• 10

ACCESS statement
for direct access dat a sets ••.•.•.•.••. 17
for direct access data sets,format ••••• 38
for tape data sets •••••••••••••.••••.•• 16
for tape data sets, example of ••..•••.. 37
for tape data sets, format ••••••••••••• 35
for unit record data sets ••••.••••••.•• 14
for unit record data sets, example ••.•• 34
for unit record data sets, format ••••• 33
position in job deck ••••••••••••••••••• 19

adding a member to a directoried data set •• 18
adding data to a

direct access data set •••.•••...••••••• 19
seguential data set •••••...•.••••••.••• 19
tape data set •••••••••••••••••••.••••.• 16

ALL OC sta temen t
for direct access data sets •••.•.••••.• 17
for direct access data sets, format •.•• 43
for direct access data sets,example ..•• 45
for tape data sets ••....•.......••.•.•. '5
for tape data sets, example of ••••••.•. 42
for tape data sets, forma t •••.••••.•.•• 40
position in job deck ••.•••...••••••..•. 19

allocation of a direct access data set ••••• 17
allocation of a tape da ta set ••••.•.•••.••• 15
argument list .•••••••••.•.••.••..•••••.••• 82

qettinq arquments for .••..•••.•••.••.•• 86
arquments, total number allowed in source

proqram •••••.••••••.••...•.••.•••.•••••• 72
array names •••••••.••.••.••••.••••..•..•••• 72
array variables in storaqe map ••••••••••••. 63
assembler languaae subproqrams •...••••••••• 82
assembler proqram ••••••..••.•.•••.••••.••••• 6
automatic library search ••.••.•.•..•••••.•• 23

batch compilation ••.•••••..•••.••...•..•... 75
BCD compiler option ••••••.•••.•••..•••.•... 22
BCDIC card codes ••.••..•..•.•.•...•••...•.. 81
BeDIC input to the compiler ••••••.•••••.••• 22
BLOCK DATA area •••.•••••••••..•••••..•..••• 29
block length ..•••.••••••••.••••.•.•..••. 18,71
boundary ad justment messaqe •.••.•.•••••.••• 70
boundary adjustment routine •••.••.••••••••• 69
boundaryalignment •.••••••••.••..•••••.•••• 69

CALI LINK statement .••••••..•••••.•••.••••. 26
CALI LOAD statement •••••••.••••.•.••••••••• 27
calling seguence •••••••••••.•••••••••••..•• 83
calling statements for multiphasinq •.•••••• 26
catalog

placing a data set in •••.••.••.•• 15,18,20
removing a data set from ••••.•••.•.••.• 20

cataloged data set, definition of ••.•.••..• 15
cataloging a data set ••••••.•••••.•.• 15,18,20
cataloging volume designation ••.•••••••..•• 46
CATLG parameter in ATTOC statement •.••.. 15,18
CATLG statement ••••••.••••••••••••..••.••• 20

example of .••.•.•••••••••.••..•.••..••. 46
format ••••.•..••••••••.••.•.•.•..••.•.• 46

changing the name of a data set. ..•.•.•..•. 21
changing the name of a member ••..•..•..•... 21
character set for job control statements ••• 3'
character set for linkage editor control

sta temen ts ••••••••...••••....•..•••.•.• 59
coding assembler language subprograms•• 83

108 S/360 Mod 44 Guide to System Use FORTRAN

comments in job control statements •••••• 30,31
COMMON blocks, improper boundary aliqnment.69
COMMON variables in storaqe map ••••••••..•. 63
COMMON, allocation by linkage editor .••..•• 25
compilation .••••••••••••••••.•••••••..••.• 22

multiple job steps ••••••••••••••.••••••• 8
compile-and-edit job ••••••••••••••••••••••• 9

example of •••••••••••••••••••••••.••••• 77
job definition statements for ••••••••• 11

compile-edi t-and-execute job ••••••••••••••• 9
example of •••••••••••••.•••••••••.••••• 80
job def stmnts for ••.•••••••••••••.•••• 11

compile-only job ••••••••••••••••••••••••••• 9
examples of •••••.••••.••••.••••••.•• 73,74
job definition statements for •••••••••• 10

compiler error/warning messaqes ••••••••••• 62
example of .••••••••••••.••••••••••••••• 63
list of •••••.•••.•••••••••••••••••••••• 93

compiler input ••••••••••.•••••••••••••••••• 22
compiler messaqes •••••.••••••••..••••••.••• 93
compiler options in EXEC statement •••••••• 22

list of .•••.••••.•••••.•••••••.•••••.•• 50
compiler output •••••.••••••••••••••••••• 22,62
compiler restrictions .••••••••••••••••••••• 72
compiler storage map •••.••.•.•••••••.•• 22,63

example of •••.••••••••••••••••••••••••• 64
complete phase overlay •••••••••••••••••••• 25

linkage editor cntrl stmnts ••••.•.•••• 26
structure •••••••••••••••••••••••••••••• 25

complex constants •••...••.•••••••.••••••••• 72
CONDENSE statement ••••••••••••••••••.••••• 20

example of ••.•••..••.•.•••••••••••••.•• 47
format ••••••.••••••.••••••••••••••••••• 47

condensing a da ta set •••.•••••••.•••••••••• 20
continuation cards in job deck ••••••••••••• 30
control section, definition of ••••••••••••• 65
control statements ••••••.••••••.•••••..••.• 30
creating a member of a directoried data

set •••...•.••••••••••.•••••••••••.•.•••• 1 8
creating direct access data sets ••••••••••• 17
creatinq tape data sets ••••••••.••••••.•••• 15

data management, definition of. ••••••.••••• 12
data set member

creating •••••••••••••••.••••••••••••••• 18
definition of •••••••••••••••••••••••••• '7
deleting .•.••••••••••••••••••••••.••... 20
existing ••••••••••••.••••••••.••••••••• 19
new .•••••••.•.•.••.•••..••••••.•...•••• 18
renaming •.••.••••••.••••••••••.•••.•••. 21

da ta set ••••.••••••••.•.•••.•••.•••••.•••• 13
condensinq ••••••••.•.•••••••.•••.•.•••• 20
definition of ••••••••.•••••••.•••••••.• 12
deletinq ••••.•••..•...•.•••••.••••.••.• 20
extent •.•••••••••....•.•••••••••.•....• 16
labels for Tapes ••.•.•••••••••••••••••• 15
length ••••••••••..•.••.•.•••.•••••...•. 17
maintenance statements ••••••••••.••...• 20
reference numbers •••..•.•.•••••••••..•• 13
renaming •..•.•.•...••.••••••.•.•..•.... 21

DECK option ••.••..•••••...•..••••••..•.•••• 22
DEFINE FILE statement ••••••••••.•.••••.••.• 18'
DELETE sta temen t •.••••..•••.••••..•..•••.• 20

example of •....•..••..•.•.•.•.•..•....• 48
format •••••.••••.•..•.••.••••••.....••. 48

deleting a data set .••••••.•..•....•••••.•• 20
deleting a member of a directoried data

se t ••.••••.••.•••••••••.••.•.••••..•••.. 20

device type codes
direct access data sets •..••••..•..• 39,45
tape data sets ••••••••. ===.= •••••••• 3n:U1
unit record data sets •.•••..••..•....•• 34

diaqnostic messages •••.••••.•••.•••.•.•••.. 88
direct access data sets .••.•.••••...••..•• 16

creatinq •..•.••..•...••.•.••.•.•.•••..• 17
restrictions for .•.•••.•.••••..•••••••• 16
usinq •...•..•.•.••...••••.••..••.••.••• 19

direct access oevice type conps ••••••••• 39!45
directoried data set

condensinq ••••.••...•••••.••••.••...••• 20
definition of •.•••.•••••••.•••.••.••..• 17

directory lenqth •....••••.•.•.••.•.•••.•... 18
directory, definition 0~ ••••••••••••••••••• i7
disk labels ••••.••.••••••••.•.•••.•.•.••••. 17
disk volume desiqnations

ACCESS statement ••••••••••••.•.••••••.• 39
ALLOC statement •.•.•••••••••••••••••••• 44

disk volume, definition of. ••.••.•••••..•.• 16
DO loop considerations .••••.••••••.•.•••••• 69
dollar sign character

BCDIC restriction on .•••••••••••••••.•• 81
markers in source listinq ••••.•••••..•• 63

double-precision complex constants ••••••••• 72
double-precision real constants ••..•••••••. 72
dummy arquments ••.••.•••••••••.•••.•••••.•• 72
dump formats •.•••.••••.•.••••••••.•.•..• 67,67
DUMP subroutine ••••••••.•••••••.•••••••••• 67

use of ••••..•.••.•••.•••..•.•••••.••••• 71
dumping arrays and variables •••••.•.•.••••• 7 1

EBCDIC card codes ••••••••••••••••••.••.•••. 81
EBCDIC in job control statements •••••.••.•• 31
E BC D I C in put tot he com p i Ie r. • • • • • • • • • • • • • . 2 2
edit-and-execute job ••••••••••••••••••••••• 9

example of •••.••••.•..••••.•••••••••••• 79
job definition statements for ••••.•••• 11

Edit-only job ••••.•••••.••••••••.••••••.••• 9
example of ••••.•..••.•..•.•••••.••••••• 76
job defintion statements for •.••••••••• 11

e di ti ng •••.•••••••••••••.••••••••..•••••••• 23
EtiD card ••.•••••••••••... ,. ... ,. 'Ii; .. 64 i 65
end-of-data statement •••••••••••••••••••••• 10
end-of-job statement •••••••••••••••.••••••• 10
EQUIVALENCE groups, improper boundary

alignmen t •••.••••••••••••••••••••••••••• 69
EQUIVALENCE lists ••••.••.•••••••••••.•••••• 72
EQUIVALENCE variables in storaqe map ••••••• 63
error code diagnostic messaqes ••••••••••••• 66
error indications during compilation ••••••• 22
error messages

compiler •••••••••••••••••••••.••••••••• 93
job control processor •••••••••••••••••• 89
linkage editor ••••••••••••••••••••••••• 96
phase execution ••••••••••••••••••••••• 101
s u pe r v i so r ••••••••••••••••••••.•••••••• 88

ESD cards ••••••••••••.•••••••••••••••••••• 64
type 0 ••••••••••.•••••••••••••••••••••• 64
type 1 ••••••••••••••••••••••••••••••••• 65
type 2 •••••.••••••••••••••••••.•••••••• 65
type 5 ••••••••••••••••.••••••••••.••••• 65

examples of job decks •••••••••••••••••••••• 73
EXEC FORTRAN statement .••••••.•••••••••••• 22

format ••••••••••••••••.•••••••••••••••• 49
EXEC LNKFDT statement ••••••••••••••••••••• 23

format ••••••••••••••••••••••••••••••••• 51
EXEC statement ••••••••••••••••••••••••••••• 10

EX"SC state!'lent for phase execution •...•.•. 24
format •••••••••••••••.••.•••••..•.•.••• 52

execute-only job ==== ••••••••••••••••••••••• 9
example of •.••••••.••....•••••••.•.•..• 78
ioc definition statements for •••••.••.• 11

exist~ng direct access data sets
definition of ••••••••••.•••••••••••.••• 16
us e 0 f ••••••••••••••••••••••••••••••••• 19

existinq members, use of •••••••••••••••...• 19
existinq tape data sets

defini tion of •••..•••••.•••••••••••••.• 14
use of ••••••••.•.•.•••••••••••••••••••• 16

exponent-overflow exception •.••.•••••.•••• 106
ex ponen t- underflow exce ption •.•••••••••••• 106
exponential function ••••••••••..•.••••••.•• 68
EXT parameter ••••••.•.••..•••.•••••••••• 16,19
extent of a data Set •••••••••••..•••••••••• lb

fixed-point-divide exception ••••.••••••••. 106
floating-point-divide exception •••••.••••• 106
FMT parameter ••••••••••••••.•••.••••••••••• 18
FORTRAN IV compiler •••••••.•••••••••••••• 6,22
fresh disk volume, defintion of ••••••••.••• 17
FRESH option •••••••••••••••••••••••••••• 15,17
fresh tape volume, defintion of •••••••••••. 15
FUNCTICN subproqrams

references to •••.••••••••••.•••••••.••• 70
use of •••••••••.••••••••••••••••••••••• 70

header label ••••••••••••••••••••••••.•••••• 15
higher level assembler subprqm .••.•••••••• 84

example of linkaqe ••.•.•••••••.•••••••• 85

identifier field ••••• ~ ••••••••••••••••••••• 30
IF statement •••••••..•••.•••••••••••••••••. 68
implied DO, use of ••.••••••••••••••••••••.. 69
in-linE arqument list •••••••••••••••.•••••• 86
INCLUDE and PHASE statements, omission of •• 24
INCLUDF statement ••••••.•••••••••••••••••• 23

format ••••••••••.•••.••.••••••••••••••• 60
order of statements ••.•.••••••••••••••• 23

initial program load procedure •••••••••••••• 7
initialization of variables ••••••.••••••••• 68
initialization of volumes ••••••••••••••• 15,17
input devices •••••••••••.•.••••••••••••••••• 9
input

to the compiler •••••••••••••••••••••••• 22
tp the linkage editor •••••••••••••••••. 23

integer constants •••••••••••••••••••••••••• 72
intermediate data •••••••••••••••••••••••••• 13
interruption codes •.••••••••••••••••••••••• 66
interruption messages •••••••••••••••••••••• 66
IPL procedure ••••••••••••••••••••••••••••••• 7

job control messages ••••.•••.••••••••••••.• 89
job control processor ••••••••••••••••••••• 6, 7
job control statements ••••••••••••••••••••• 9

rules for writinq •••••••••••••••••••••• 30
table of ••••••••••••••••••••••••••••••• 11

job deck
definition of ••••••••••••••••••••••••••• 9
examples ••••••••••••••••••••••••••••••• 73

job definition ••••••••••••.•••••••••••••••• 8
examples ••••••••••••••••••••••••••••••• 10
statements ••••••••••••••••••.••••••••••• 9

JOB statement ••••••••.••••••••••••••••.••• 10
format •••••••••••.••••••••••••••••••••• 53

job step name in EXEC FORTRAN statement •••• 22

INDEX 109

job step, definition o~ ..•...•••••••...••.•. 8
job termination ..•...•••..•••..•••••.•.•..•. 9
job, defintion of ...••••....••••••••.••..••• 8

KEEP option •.•.••..•••••..•.••••••.•..•..•. 23

LABEL statement
for direct access data sets ••••••••.••• 18
for tape data sets •.•••••••••••••••.••• 16
forma t ••••••••••••••••••••••••••..••••. 54
label specifications for ••••••••••.•••• 55

labeled tape volume, conditions for •.••..•• 15
library subprograms ••••••.••••••••••••••••• 23
linkaqe conventions ••••••••••••••••••••..•• 83
linkaqe editinq .•••••••••.••••••••••••••.•• 23
linkaqe editor control statements ••••••••• 23

rules for writinq .•••.••••••••••••.•••. 59
linkaqe edi tor .•••••••••.••••••.•••••••...• 6

input •.•...•••••••••••••••••••••••.•.•• 23
input data set (see SYSOOO)
input deck .•••••••.•.••••••••.••••••••• 23
messa qes ••••••••.••••.•••••••••.•..•••• 96
operation of •••.•••••••••••••••••••.••• 28
options •••••••.•.•••••••••••••••••••••• 51
output ••••••••••••••.••••••••••••.•• 23,65

listing of symbolic unit assiqnments ••••••• 20
LISTIO statement .•.••.•..••••••••••••••.•• 20

format ••••••••••••.••..••••••••.••••••• 56
loading multiple phases •••••••••••••••••••• 25
location of a module •••.••••.•••••••.•..••. 24
lowest level assembler subprgm ••••••.••••• 83

example of linkage ••...•••••••.•.••.... 84

MAP 0 P t ion •••••••••.•.••.••••••••.•.••..••• 23
members

creatinq ••..•.••..••••••••••••••••.•..• 18
definition of .••...•••••••••••••••••••• 17
deletinq ••••.••...••••••••••••.••••.••. 20
renaminq ••.••.....••••.•••••••••••.•..• 21

mixed-mode aritrmetic expressions •••••••.•• 68
Model 44 Proqramming System •••••••••.••••••• 5
module deck ..•.•.•...••••.••••••.•••••• 22,64

cards in •..•••..•••••••••••••••••.•.... 64
location in the input stream ••••••••••• 23
structure ••••••..•.•••••••••••••••..••• 65

module library •••••••.•••••••••••••••....•• 23
module name •.••..••••••.•••••••••••••.. 22,23

in INCLUDE statement ..••••••••••..••••• 24
in MODULE statement •.••.•••••••••••.••. 23

MODULE statement •.•.•••...••••••••••••••.• 23
format .••..•.••...•..•••••••••••..••..• 60

modules
compiled in a previous job ••••••••..... 23
compiled in the same job ••••••••••.••.. 22
copied from SYSIPT to SYSOOO ••••••••••. 24

multiphase programs •••.••..••••••••••••.. 8,25
mul tiphasing

linkage editor operation •••••••••.•..•• 28
named COMMON and BLOCK DATA areas ••..•. 29

multiple compilation job steps •••••••..•••.• 8
multiple directory entries ••••••••••.••.•.. 17
multiple member names ..•.•.•.••••.••..•..•. 17
multiple phase execution ..•.••.••••.••••.... 8

n am e f i el d ••••••••••••••••••••••••••••••••• 30
named cor-: MON •..••.•..•.•..••••••••.•••.•... 29
NAMELIST variables in storage map ••••••...• 63
names in EQUIVALENCE statements ••••.•••.••• 72

110 5/360 Mod 44 Guide tc System Use FORTRAN

names in Explicit Specification statements.72
nested DO statements ••••.••.•••••••.••••••• 72
nested FUNCTION subprogram references •••••• 72
nested statement function definitions .••••• 72
new direct access data sets

creatinq ••••••••..••••.•••••••••••••••• 17
definition of •••••••••••••••••••••••••• 17

NEW parameter •••.•••••••••••.•••••••••••••• 19
new tape data sets

creatinq ••••••••••••••••••••••••••••••• 15
definition •••••••.••••••••••••••••••••• 15

NOAUTO option •.••.••••••.•.•••••••••.•••••• 23
NOLINK option •••••••••••••••••••••••••••••• 22
NOMAP option •••..••.••••••••.••••••••..•••• 23
NOSOURCE option •••.•••••••••••••••••••••••• 22
notation used in statement formats ••••••••• 31

obtaininq a listinq of symbolic unit
assiqnmen ts ••••••••••••••••••••••••••••• 20

omitting PHASE and INCLUDE statements •••••• 24
operand field .••••••••••••••••••••••••.•••• 30
operation field .••••••••••••••••••••••••••• 30
operator messages ••••••.••••••••••••••• 67,107
organization of direct access data sets •••• 17
origin of a phase •••••••••••••••••••. 24,26,27
output from the compiler •••••••••••••••• 22,62
output from the linkaqe editor •••••••••• 23,65
overlay structures

complete phase overlay ••••••••••••••••• 25
root phase overlay ••.••.•••••••••••• 25,26

PAUSE statement in FORTRAN proqram ••••••.•• 66
PDUMP subroutine •••••••••••••••••••••••••• 67

u'se of ••••••••••••••••••••••••••••.•.•• 71
PHASE and INCLUDE statements, omission of •• 24
phase execution ••••••••• ~ ••••••••••••••.••• 24
phase execution diagnostic messages ••••••• 101
phase library •••.•••••••••••••••••••••••••• 24
phase map ••••••.••••••••••••••••••••••• 23,65

example of .•.•••••.••••••.•••••••••.••• 66
ph3.se name •••••••.•.•••.••••.•••••••••.•.• 24

specifying in EXEC statement ••••••••••• 24
phase origin •••.••.•.•••••••.••••••••.•. 24,26
phase output ••.••••••••••••••••••••••••.••• 66
PHASE statement ••••••••••••••••••••••••••• 24

format •.•••.••••••••.••••••.••••••••.•• 61
phase, definition of •••••••••••••••••••••••• 8
placinq ACCESS and ALLOC statements in the

jobdeck ••••••••.•••••••••••••••••••••• 19
placinq module decks in the input stream ••• 23
private data sets

definition of •••.•.••••••••••••••••.••• 13
use of ••.••••••••••••••••••••••••••.••• , 4

problem program area, definition of ••.••.•• 25
program interrupt messages ••••••.••••• 66,106

forma t •..••..••..•.•.••••••••••..•••••• 66
program status word •.••••••••••••••••••.••• 66
programming system ••••••••••.••..••.••••.•• 5

opera tion .•..•••.. 0 o. o ••••••••••••• 0 •• 0. 6
structure •••.•••••••.•••••••••••.••.•••• 5

PSWo .•••.••..•...•••.••••••••••• '0' •••••••• 66

READ statement ..•••••••.•••••••..••..••.••• 69
readinq an array ..••••...•••••••.••••.•••.• 69
real constants ••.•••••••••••••••.••••••..•• 72
references to FUNCTION subproqrams ..•••••. 70

nested ••••••••••.••.••.••.••••••••••••• 72
relationship data set ref nbrs - symbolic

units .•••••••••••••••••••••.••.•••••.•.• 13

removing a data set from the syst~m
catalog •.••.•.••..•..••••.•.••.•.••..••• 20

RENAME statement•....••..••.••••..•• 21
format ...•..•.....•.......••..•.••.••.• 57

renaming a data set ..•.•..•••.••..•.•.•.•.. 21
renaming a data set member ••...••...•..•••• 21
RESET statement ••••••••••••••••.•••••••••• 19

format ••••••••.••..•....•••....••••.••• 58
restoring symbolic units to standard

a$signemen ts •..••...•..•.•...•.•••••..•• 19
RLD cards •••••..••...•....•.•••.••••..•. 64,65
root phase overlay •••.•....•••..•.••..• 25,26

example of .••••..........•.••...••••... 27
linkaGe editor control statement ...••.• 27

r oat phase, ~_~~_~L~~ _ _ ~ ~L

UeL..Lll.LL..LUU U' L...J

SAME option
in ACCESS statement •...•.•....••..•.••• 19
in ALLOC statement ••.•.••...•..•.••..•• 17
in LABEL statement ••.•.•••..•••.•...•.• 18

save area ...••..•......•..•.••.....•..•• 82, 83
scalar variables in storage map .•..•••••••• 63
segue n tial da ta set, de fini tion of ••••.•.•. 17
source listing .•.••..•••••••...•.•.•••. 22,62

example of •.••••••.•.•....•••.••••...•. 62
specification exception •. ••••••••.••••. 70,'06
SQRT function .•••..•.••••.•.•...•.•.••..•.. 68
sguare root library subprogram ...•.•..•..•• 68
stand-alone programs .••.•••.•••••.••••••••.. 5
standard unit assignments ..•••..•••••••..•. 13
statement formats .•.••.•...•.•..........••• 31
statement function defintions •............. 72
statement labels in storage Map 63
statement numbers •••••••••.•••.•..••.••.••. 72
step name in EXEC FORTRAN statement •••.•••• 22
STOP control statement •••.•••.••••••..••..•. 7
S TO Pst ate men tin FOR T RAN pro g ram. . . • • • • . • • 6 6
storaoe map

compiler ..•••..••...•....••...•..•.• 22,63
linkage editor (see phase map)

subordina te phase structure ••.•••.....••••• 26
subordinate phases ••.•.••.••••.••...••••..• 25
subprogri'lm entry poi nt names 72
subprogram structures ..•.•••••.••.•••••..•• 25
subscripts in a DO loop•......•..•...•• 69
supervisor •..••••.•.•••...••••••.••••• 6,7,24

messages .•••••.•.•..•.•.•..•••.••.••••• 88
symbolic unit maintenance statements ...•.•• 19
symbolic unit names .••••.••.•••.•••.••••••• 13
SYSIPT.~ ••.••••.•••••.•.•.•.••.• 9,13,22,23,73
SYSLOG •..•...•.••.•.•.••.•........ 13,20,31,67
S YS L ST •••...••••••••••••.••.••• 20,23,30,3 1 ,65
SYSOPT •••••..••.•.••••....•.••.••. 13,22,63,66
SYSPCH ••.•.•.••.•..•••••..•••••.•.•.. 13,22,64
SYSRDR ••.•••••••••.••••.•..••••••.. 9,22,23,73
system assembly•...•••••••.•..•.•••• 7
system catalog .•.•••••.••••.•.••..•••••••• 15

placing a data set in 15,18,20
removing a data set from 20

system construction ••••.•••.•••••.••.•••.••• 7
system control ••••••••••••••••••••••••.••••• 6
system data sets .••••.••••••••••.••••••.•• 13

use of•..•..•...•.....•..••...... 13
system diagnostic messages •.•.•.••••...•••• 88
system input data set (see SYSIPT)
system log (see SYSLOG)
system output •••••••.•••..•••.•••.••••••••• 62
system output data set (see SYSOPT)
system punch data set (see SYSPCH)
system residence volume ••.•.•••.•••••••••••• 7
system support programs ••....•••.••••••••••• 6
system uni ts .•••.•.••••.••.•••••••.•..••••• '3
system work data set (see SYS001)
SYSOOO •...••••••.•••••••..•••••...••• 13, '4,22
SYS001 ••.•.•.••.••••.•••.•••.....••••.•.••• 13

tape data sets .. '4
creating .•••.•••.••.••.••..•••..•••••.• 15
using ••••••.•••..••••••.•.•...••••••.•• 16

tape device type codes 36,41
tape labels ...••••••••••••..•••••••.•..•••• 15
tape options •••••.••.••..••••••••••••.•• 37,42
tape volume designations

ACCESS statement ••••••••.•••••••••••••. 36
ALIOC statement •••••.•.•••••••••.•••••• 41

tape volume , definition of. ••••••••••.••••• 15
termination of a job ••••.••.••••••••.••••••. 9
trailer label ••••••••••••••.•.••••••••.•••• 15
TXT cards ..•••••••••••.•.•••.•••••..••.• 64,65
types of jobs •••.••.•••.•••.•.••...•.•.....• 9

UNCATLG statement .••.....•..••••..•.•.•.•. 20
format .••.••.•.•••.•..•••..•••.•••••.•• 58

unit record data sets •.•.•••..•...••••••.•• 14
unit record device type codes •... ,. 34
using existing data sets

di rect access ..•••••.•••••.•••••••••.•. 19
tape •••.••••••••••.•••••.•••••••.•••.•• 16

using existing members of a data set •••..•• 19
utility programs •••.••.•.•.••••.••.••••••••• 6

variable names in source program ••.•••••••• 72
variable precision swi tch ••.••••...••••.••• 24
variables and arrays in COMMON •.••..••••••• 72
volid ••....••.••.•.•••••.•••••••••••.••• 15~ 16
volume designations for disk •••••.•.••• 18,19

ACCESS statement ••...•........•...••••• 39
ALIOC statement •••••••••••••.•••••••••• 44

volume designations for tapes •.••.••••• 15,16
ACCESS statements .•••••.•••••.••••••.•• 36
ALIOC statement •••••.•••••••••••••••••• 41

volume identification ••.••••••••.••••••.••• 15
volume initialization •••..•.•.•.••.••••• 15,17
volume labels

disk •••••.••••••••••••••.••..•••••••••• '7
tape •.•••••.••••.••••••.•.••••••••••••• 15

volume serial number .•••••••••••••••••••••• 15
volume table of contents .••••••. , .•.••••..• 17
VTOC ••••.••••••••••••••••••.••••••••••••••• 17

WRITE statement ••••••••••.•••••.•••••.••••• 69
write validity checking •.••••••••.••• 17,18,19
writinq an array ••••••••••.•.•••••••••••••• 69

:'.NDEX '11

Technical Newsletter File No.

Re: Form No.

S360-25

C28-6813-2

This Newsletter No. N33-8602

Date: June 10, 1969

Previous Newsletter Nos. None

This Technical Newsletter, a part of release 6 of IBM System/360
Model 44 Programming System, provides replacement pages for
IBM System/360 Model 44 PS, Guide to System Use for FORTRAN
Programmers, Form C28-6813-2. These replacement pages remain
in effect for subsequent releases unless specifically altered.
Pages to be inserted and/or removed are listed below.

21-24, 24.1
61-64
71,72
75,76
81,82
93-96, 96.1

103,104, 104.1

A change to the text or a small change to an illustration is
indicated by a vertical line to the left of the change; a
changed or added illustration is denoted by the symbol • to
the left of the caption.

Summary of Amendments

1. Addition of three execution error messages.
2. Addition of a new compiler message.
3. Addition of format of CALL DUMP and CALL PDUMP statements.
4. Minor corrections to the text.

File this cover letter at the back of the manual to provide a
record of changes.

IBM Laboratory} Publications Dept.} Uithoorn Netherlands

PRINTED IN U.S.A.

READER'S COMMENT FORM

IBM System/360 Model 44
Programming System
Guide to System Use for
FORTRAN Programmers

• How did you use this publication?

As a reference source .
As a classroom text
As a self-study text

u
o
o

• Based on your own experience, rate this publication

As a reference source:

As a text:

• What is your occupation?

Very
Good

Very
Good

Good

Good

Fair

Fair

Poor

Poor

Very
Poor

Very
Poor

Form C28-6813-2

• We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address.

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C28-6813-2

YOUR COMMENTS PLEASE •••

This SRL bulletin is one of a series which serves as reference sources for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions- become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

Fold Fold

•••••• a_ .. :

Attention: Department 813

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation

112 East Post Road

White Plains, N. Y. 10601

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N. Y.

.. :

Fold

International Business Machines Corporation
Data Processing Division
112 East Post Road! White Plains! N.Y. 1060t
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza! New York! New York 10017
[International]

Fold

C28-6813-2

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I060l
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

()
N
Q)
I

0-
Q)

W
I

N

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024.0
	024.1
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096.0
	096.1
	097
	098
	099
	100
	101
	102
	103
	104.0
	104.1
	105
	106
	107
	108
	109
	110
	111
	112
	replyA
	replyB
	xBack

