
• "

Systems Reference Library

IBM System/360 Model 20

Card Programming Support

Basic Assembler Language

,Ji:rile'~o.S360 (Mo,d. 20) -21
·Ofi~(~:..tIOft GC26 'J602.-:5

This reference publication provides programmers with
the information required to write programs in the Basic
Assembler language of the IBM System/360 Model 20.

The Basic Assembler language provides the user with
a convenient means of making full use of the operation
al capabilities of the Model 20. Programs written in
the Basic Assembler language (source programs) are
translated into machine-language by means of the Basic
Assembler program.

The description of th~ language includes rules for
writing source programs and explanations of the
instructions for controlling the Basic Assembler pro
gram. In addition, this publication includes a number
of tables for convenient reference and conversion.
Time and storage requirements are listed in a separate
section. An extensive sample program is given to
illustrate Basic Assembler language programming.

The description of the card and tape versions of the
Basic Assembler program is confined to the aspects that
affect the planning and writing of source programs.

Readers of this publication should be thoroughly
familiar with the contents of the SRL publication IBM
System/360 Model 20, Functional Characteristics, Order
No. GA26-5847. Titles and abstracts of other Model 20
SRL publications are contained in the publication IBM
System/360 Model 20, Bibliography, Order No.
GA26-3565 .

CPS
',.

Seventh Edition (May, 1969; reprinted January, 1971)

This is a reprint of GC26-3602-5 incorporating changes issued
in Technical Newsletter GN33-8612, dated April 6, 1970.

This edition applies to the following program version and
modification levels of IBM System/360 Model 20, Card Program
ming Support, Basic Assembler, and to all subsequent versions
and modifications until otherwise indicated in new editions
and Technical Newsletters.

Program Number Version/Modification

360T-AS-OOl 3/7

360T-AS-110 2/0

360U-AS-130 2/2

360U-AS-153 2/0

Changes are continually made to the information herein;
before using this pUblication in connection with the opera
tion of IBM systems, consult the latest SRL Newsletter, Order
No. GN20-0361, for the editions that are app~icable and
current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for reader's comments is provided at the back of this
pUblication. If the form has been removed, comments may be
addressed to IBM Laboratory, Publications Department, P.O.
Box 24, Uithoorn, Netherlands.

© Copyright International Business Machines Corporation 1965,1966,1967,1969

o

I

o

o

o

o

o

Prerequisite to using this publication is a
thorough knowledge of IBM System/360 Model
20 machine operations, particularly storage
addressing, data formats, and machine
instruction formats and functions. It is
assumed that the reader has experience with
programming concepts and techniques or has
completed basic courses of instruction in
these areas.

Publications closely related to this one
are:

Functional Characteristics, Form
A26=5847~-----------------

PREFACE

~~~Q~rog££~~ing_~Y£EQrt'~2ic_A2§gm= 
~lef_JTapgLL~Eg£at~~Q£gQurg§, Form 
C24-9011. 

l~Q!LOutEy!_Con!ro~_sys!g~_fQf_!hg_~Qm~ . 
~un1cation§_!daE!g~, Form C26-3606. 

InEQ!LQ~!EQ!_~Qn!~Ql_~~~!em_ior ing 
~ina£Y~~n£h£QnQQ§_fommun!£~!iQn§_AQ£E1= 
g£, Form C33-4001. 

fard_grog££mming_~~£EQ£iL~£~!£_YiiliiY 
grog£g~L_XQn£!1Qn§_~ng_Q~££!ing_~£Q£~ 
gure§, Form C26-3604. 

Titles and abstracts of other Model 20 SRL 
publications are contained in the 1~~ 
~Y~iemL36~~~Qgi_20_liiblio~aphy, Form 
A26-3565. 



CONTENTS 

INTRODUCTION ••••••• 
Definitions • • • • • • • • • • • • • 
Basic Assembler Language Statements 
BASIC ASSEMBLER LANGUAGE FEATURES 
Minimum System Configuration • 

5 
5 
5 
6 
6 
7 
8 

Maximum System Configuration ••••• 
Language Compatihility •••••• 

CHARACTERISTICS OF THE BASIC ASSEMBLER 
LANGUAGE • • . • • • • •• 
Coding Conventions 

Statement Formats and Components. 
The Language Structure • 

The Character Set ••••• 
Self-Defining Terms 
Symbols ••••• • • • • • 
Expressions 
Location Counter. 

9 
9 

11 
• 14 
• 14 
• 14 

15 
16 
17 

Assigned Addresses • • • • • • • • • • 19 

FUNCTIONS OF THE ASSEMBLER LANGUAGE 
Storage Addresses • • • • • • • • 

Effective Addressing • • • • • • 
Symbolic (Implie~) Addressing 
Explicit Addressing •••• 
Absolute (Di rect) Addressing • • 

20 
• • • 20 

• 20 
• 20 
• 21 
• 22 

General and Pseudo-Registers • • • 
Base Registers • • • • • • • • • • • • 

Using -- Use Base Register • • 

• 22 
• 23 
• 23 

BASR -- BRANCH and STORE Register 
DROP -- RELEASE Pase Register 

• • 23 
• • 25 

ABSOLUTE AND RELOCATABLE PROGRAMMING •• 26 

PROGRAM LINKING 
S,:mple Program 

DEFINITION INSTRUCTIONS 
EQU -- Equate Symbol • 
DC Define Constant 
DS -- Define Storage • 

• 27 
• • 28 

29 
• 29 

29 
• 32 

BASIC ASSEMBLER CONTROL INSTRUCTIONS • • 34 
START -- Start Program • • • • • • 34 
END -- End of Program •• • • • • 34 
ORG -- Reset Location Counter • 35 

INPUT/OUTPUT INSTR~CTIONS • 37 
XIO -- Execute Input/Output ••••• 37 
CIO -- Control Input/Output • • • • • 37 
TIOB -- Test Input/Output and Branch • 39 
Sequence of I/O Instructions • • • •• 40 

Input/Output Macro Instructions • 40 
I/O Routines -- Including Interrupts •• 41 

MACHINE-INSTRUCTION STATEMENTS • • 
Machine-Instruction Mnemonic Codes 
Instruction Formats 

RR Format 
HX Format ••• • 

• 43 
• 45 

• • 45 
• • 45 
• • 45 

51 Format •••••• 
SS Format •••••• 

Types of Machine Operations 
Binary Arithm Etic •••• 
Instructions for Binary Arithmetic • 
Decimal Arithmetic ••••••••• 
Instructions for Decimal Arithmetic 
Non-Arithmetic Operations 
Instructions for Non-Arithmetic 
Operations • • • • ••••• 
Bran~hing • • • • • • • • 
Instructions for Branch Operations. 

THE BASIC ASSEMBLER PROGRAM 
Basic Assembler (Card Versions) 
Basic Assembler (Tape Version~ 

DIAGNOSTIC MESSAGES 
Loading Object Programs 

PERFORMANCE DATA • • • • •• 
Main storage Requirements 
Time Requirements -- Card Version 
Time Requirements -- Tape Version 

WRITING A PROGRAM IN BASIC ASSEMBLER 
LANGUAGE •••••••••• 
Stating theP ro blem • • • • 
Writing the Source Program • 

The Flowchart' • • • • • • 
Initializing the Program 
(STMT1-STMT3) ••••• 
Data Constants and Work Areas 
(STMT4-STMT15) ••••••••• 
Program Routine (STMT16-STMT24) 
Ou tp u t (STMT 25-STMT 3 5) • • . 
Program End (STMT 36) • • • • 

Assembling the Source Program 
Control Card. •••• 
Diagnostic Ru IJ • • • 

APPENDIX A. SUM~ARY OF BASIC ASSEMBLER 
INSTRUCTIONS • • • • • • • • • • 

· 47 

· 48 

· 49 

· 49 

· 51 

· 53 

· 55 

· 61 

· 62 

· 69 

· 70 

· 72 

· 72 

· 73 

74 

· 74 

· 75 

· 75 
75 
75 

· 76 

· 76 

· 76 

· 76 

· 76 

· 77 

· 78 

· 79 

· 80 

· 80 

· 80 

· 80 

• 82 

APPENDIX B. SUMMARY OF 
MACHINE-INSTRUCTIONS. • • 83 

APPENDIX C. SUMMARY OF INPUT/OUTPUT 
INSTRUCTIONS • • • • • • • • • • • • • • 84 

APPENDIX D. SUMMARY OF DIAGNOSTIC 
MESS AGES . . . . . . . · 86 

APPENDIX E. CONDITION CODES · 88 

APPENDIX F. CHAR ACTER CODES · 89 

APPENDIX G. HEXADECIMAL-DECIMAL NUMBER 
CONVERSION TABLE . . . · 93 

APPENDIX H. GLOSSARY • 99 

INDEX 104 

0 

I 

OJ 

o 



o 

o 

o 

Computer programs may be expressed either 
in machine languag~, in other words, lan
guage directly interpreted by the computer, 
or in a symbolic language, which is more 
meaningful to the programmer. The symbolic 
language, however, must be translated into 
machine language before the computer can 
execute the program. This function is 
accomplished by an associated processing 
program. 

Of the various symbolic programming lan
guages, Assembler languages are closest to 
machine language in form and content. 

The Basic Assembler language discussed 
in this manual is a symbolic programming 
language for the I~M System/360 Model 20. 
It enables the programmer to use all .Model 
20 machine functions, as if he were coding 
in Model 20 machine language. 

The Basic Assembler program translates 
or processes programs written in Basic 
Assembler language into machine language 
for execution by the computer. The program 
written in the Basic Assembler language 
used as input to the Basic Assembler pro
gram is called the §Q~£~~_E£Qg£E~; the 
machine-language program produced as output 
from the Basic Assembler program is called 
the Q£j~f~_££Q~m. The translation or 
processing procedure performed by the Basic 
Assembler program to produce the object 
program is called as§emblillg or assemblY. 

Four versions of the Basic Assembler 
program are availahle: 

a. Two card versions. These are two-pass 
programs for a Model 20 system that 
includes only card input/output 
devices. One of the versions permits 
the assembly o~ the macro instructions 
associated with the Input/Output Con
trol System for the Binary Synchronous 
Communications Adapter (BSCA IOCS). 

b. Two tape versions. These versions 
differ from the card versions by being 
one-pass programs and by using magnetic 
tape as an intermediate storage medium, 
thus reducing card-handling and assem
bly time. 

~Q!g: The CPS Input/Output Control System 
(IOCS) routines can be assembled by means 
of either version. 

DEFINITIONS 

Terms used in this publication are defined 
in the glossary provided in !E£gndi!_B. 

BASIC ASSEr.BLER LANGUAGE STATEMENTS 

Program statements (source statements) 
written in Basic Assembler language may 
consist of: a name to identify the state
ment; a symbolic operatiop coae JmnemonicJ. 
to identify the function the statement I 

represents; one or more items called 
operands, to designate the data or storage 
locations used in the operation; and 
comments. 

Programs written in Basic Assembler lan
guage may consist of up to five types of 
instructions: definition instructions, 
trogram linkingipi?tructiori~t: Basic· Assem

leI' control instru~t~Q~~1 in£UEtOU~put 
instruct10U& (1ncluding IBM-supp 1e I/O J 1 .., 

macro 1nstructions) , a nd rna chine j p str \lC

tions. There are predeflned mnemonic codes 
tor nl 5.nstructions in the Basic Assembler 
language. 

Definition instructions are used to 
reserve sto(aae, to define constantsJ and 
to equate symbols to the attr1butes of an 
expression. 

Program linking instructions are used to 
link prOqraUL.~g~.tj 9ij§~ f.Q,h.j,,!il~t., ~~.~~~tion ._ 

Basic Assembler control instructions are 
used to begin assembly, end assembly. anAL 
set the location counter. 

Input/output instructions designate the 
units use devices and con 
t.,.?~.~r 02~,qtjQP, The use of IOCS macro 
instructions saves programming time because 
it relieves the user of having to code, 
test, and pr~vide linkages to his own I/O 
routines. 

Machine instructions direct the computer 
to execute certain opera lions. The Basic 
Assembler pr~duces an equivalent internal 
machine instruction in the object program 
from each machine instruction in the source 
prog ram. 

Introduction 5 



BASIC ASSEMBLER LANGUAGE FEATURES 

Decimal, hexadecimal, or character repre
sentation of machine-language binary values 
may be employed by the programmer in writ
ing source statements. The programmer 
~elects the represp.ntation best suited to 
his purpose. 

The Model 20 Basic Assembler language pro
vides for two methods of addressiny: 

1. The address may be specified as a dis
placement plus a base register the con
tents of which are added to the displa
cement. The base register may be one 
of the general registers 8 through 15 
or one of the pseudo base registers 0 
through 3. (If a Submodel 5 is used, 
pseudo registers 0-7 are available. 
However, 0-3 are the only pseudo regis
ters recognized in CPS programs.) 

a. When using a general register, the 
register contents can be controlled 
by the programmer. 

b. When using a pseudo base register, 
the register contents are assumed 
to be fixed (i.e., 0, 4096, 8192, 
and 12288). This corresponds to 
what is termed direct addressing in 
the Model ?O SRt pubIl.catl.on !t!U~.f:= 
tiQnal_~haI~f!~Ii§tif§, Form 
A26-5847. 

2. The address may be specified symbolic
ally without the use of a base regis
ter. In this case, the Basic Assembler 
assumes the clerical burden of comput
ing storage locations in terms of a 
base address and a displacement. 

The object programs produced by the Basic 
Assembler may be in a format enabling relo
cation from the originally assigned storage 
area to any other suitable area. 

The linking facilities of the Basic Assem
bler language and program allow symbols to 
be defined in one assembly and referred to 
Ln another, thus e~fecting a link between 
separately assembled programs. This per
mits reference to ~ata and/or transfer of 
control between programs. A discussion of 
linking is contained under Program Linking. 

A listing of the source-program statements 
and the resulting object-program statements 
is produced by the Basic Assembler for each 
source program it assembles. The program
mer can partly control the form and con
tents of the listing. 

As a source program is assembled, it is 
analyzed for actual or potential errors in 
the use of the Basic Assembler language. 
Detected err:>rs are indicated in the pro
gram listing. 

MINIMUM SYSTEM CONFIGURATION 

The minimum system configuration for 
assembling and executing Basic Assembler 
programs is as follows. The configuration 
applies to all versions of the program 
except where indicated. 

• An IBM 2020 Central Processing Unit, 
Model B2 for the normal version, or C2 
for the BSCA version (4096 or 8192 bytes 
of main storage); 

• one of the f:>llowing card units: 
IBM 2560 Multi-Function Card Machine, 
Model A 1, 
IBM 2520 Card Read-Punch, Model A1, 
IBM 2501 Card Reader, Model A1 or A2 
wi th either an IB l': 2520 Card Pu nch, 
Model A2 or A3, or an IBM 1442 Card 
Punch, Model 5; 

• an IBM 2415 Magnetic Tape Unit, Model 
or 4 (for the tape versions only); 

• one of the following printers: 
IBM 1403 Printer, Model N1, 2, or 1, 
IBM 2203 Printer, Model A1; 

• an IBM 2020 Central Processing Unit, 
Model B3 (4096 bytes of main storage); 

• an IBM 2560 Multi-Function Card Machine, 
Model A2; 

• an IBM 2203 Printer, Model A2. 

• an IBM 2020 Central Processing Unit, 
Model B4 (4096 bytes of main storage) 

• an IBM 2560 Multi-Function Card Machine, 
Model A2; 

6 System/360 Model 20 Basic Assembler Language 

o 

I 

0'< II.' 

o 



o 

o 

'0 

• an IBM 2203 Printer, Model A2. 

• an IBM 2020 Central Processing Unit, 
Model C5 (8192 hytes of main storage) 

• one of the following card units: 
IBM 2560 Multi-~unction Card Machine, 
Model A 1, 
IBM 2520 Card Read Punch, Model A1, 
IBM 2501 Card Reader, Model A1 or A2 
with either an TBM 2520 Card Punch, 
Model A2 or A3, or an IBM 1442 Card 
Punch, Model 5; 

• an IBM 2415 Magnetic Tape Unit, Model 
or 4 (for the tape versions only) 

• one of the following printers: 
IBM 1403 Printer, Model N1, 2, or 7, 
IBM 2203 Printer, Model A1. 

!~~: CPS does not support main storage 
sizes of 24K and 32K, but CPS programs will 
run on Models DC5 and E5 although only 16K 
bytes are used. (The maximum value of the 
location counter i~ X'3FFF'. Therefore, 
the Basic Assembler will not permit 
references to addresses greater than this.) 

]Q1g_~: If 7-track tapes are used, the 
data-conversion feature is required. 

MAXIMUM SYSTEM CONFIGURATION 

Basic Assembler obiect programs may be pro
duced for the following maximum system 
configurations. 

• An IBM 2020 Central Processing Unit, 
Model D2 (16,38 U bytes of main storage); 
with or without IBM Binary Synchronous 
Communications Adapter, Feature No. 
2074; 

• two IBM 2311 Disk Storage Drives, Model 
11 or 12 (both must be the same model); 

• an IBM 2415 Magnetic Tape Unit, Model 1 
through 6; 

• an IBM 2501 Card Reader, Model A1 or A2; 

• an IBM 1442 Card Punch, Model 5; 

• one of the following card units: 
IBM 2520 Card Read-Punch, Model A1, 
IBM 2520 Card Punch, Model A2 or A3, 
IBM 2560 Multi-Function Card Machine, 
Model A 1; 

• one of the following printers: 
IBM 1403 Printer, Model N1, 2, or 7, 
IBM 2203 Printer, Model A1; 

• one of the f~llowing magnetic character 
readers: 
IBM 1419 Magnetic Character Reader, 
Model 1 or 31, 
IBM 1259 Magnetic Character Reader, 
Model 1, 31, or 32; 

• an IBM 2152 Printer-Keyboard. 

• an IBM ~020 Central Processing Unit, 
Model D3 (16,384 bytes of main storage); 

• an IBM 2560 Multi-Function Card Machine, 
Model A2; 

• an IBM 2203 Printer, Model A2. 

• an IBM 2020 Central Processing Unit, 
Model D4 (16,384 bytes of main storage) 
with or with~ut IBM Binary Synchronous 
Communications Adapter, Feature 
No. 2074; 

• two IBM 2311 Disk Storage Drives, Model 
12; 

• an IBM 2560 Multi-Function Card Machine, 
Model A2; 

• an IBM 2203 Pr{nter, Model A2; 

• an IBM 2152 Printer-Keyboard. 

• an IBM 2020 Central Processing Unit, 
Model D5 (16,384 bytes of main storage); 
with or without IBM Binary Synchronous 
Communications Adapter, Feature 
No. 2074; 

• four IBM 2311 Disk Storage Drives, Model 
11 or 12; 

• an IBM 2415 Magnetic Tape Unit, Model 1 
through 6; 

• an IBM 2501 Card Reader, Model A1 or A2; 

• an IBM 1442 Card Punch, Model 5; 

• one of the following card units: 
IBM 2520 Card Read-Punch, Model A1, 
IBM 2520 Card Punch, Model A2 or A3, 
IBM 2560 Multi-Function Card Machine, 
Model A 1; 

• one of the following printers: 
IBM 1403 Printer, Model N1, 2, or 7, 
IBM 2203 Printer, Model A1; 

• one of the following magnetic character 
readers: 

Introduction 7 



IBM 1419 Magnetic Character Reader, 
Model 1 or 31, 
IBM 1259 Magnetic Character Reader, 
Model 1, 31, or 32; 

• an IBM 2152 Printer-Keyboard. 

Rote: CPS does not support main storage 
s~zes of 24K and 32K, but CPS programs will 
run on Models DCS and E5 although only 16K 
bytes are used. 

LANGUAGE COMPATIBILITY 

The IBM System/360 Model 20 Basic Assembler 
language is compatible with the Basic 
Assembler language for the other models of 
the IBM System/360, except where dif
ferences in machine design make it neces
sary to include some instructions in the 
Model 20 Basic Ass~mbler language that are 
not contained in the System/360 Basic 
Assembler language. The mnemonics of these 
Model 20 instructions are: 

BAS 
BASR 
CIa 
HPR 
SPSW 
TIOB 
XIO 

The use of the CIa, SPSW, TIOB, and XIO 
instructions in Model 20 programs can be 
avoided by using laCS macro instructions to 
satisfy input/output requirements. 

Programs that are written in the Model 
20 Basic Assembler language and contain 
statements with blank operands cannot be 
assembled by other System/360 Assembler 
programs. 

In addition, the use and the functions 
of registers 0 through 3 in Model 20 pro
gramming differ from the corresponding 
registers on other models of the IBM 
System/360. 

8 System/360 ~odel 20 Basic Assembler Language 

o 

I 

() 

o 



o 

o 

o 

Statements in Basic Assembler language can 
be written in free format; in other words, 
the statement components need not begin in 
a specified column of the coding sheet. 
(The name of a statement, which must begin 
in column 25, is an exception to this 
rule.) However, the statement components 
must be separated from each other by at 
least one blank column. 

For the purpose of clarity, most pro
grammers do not use the free format but 
prefer to begin each type of statement com
ponent in a specific column of the coding 
sheet. 

The coding form shown in Figure 1 is 
designed to satisfy this preference. This 
form -- the IBM systemj360 Assembler Short 

Coding Form (No. X28-6506-2) -- contains a 
statement field which extends from column 
25 to column 71 and is broken down into 
three sub-fields: the name field (eols. 

25-30), the operation field (cols. 32-36), 
and the operand field (cols. 38-71). 

The column numbers on the coding form 
refer to the column numbers on the cards 
into which the source program is to be 
punched. 

For the purpose of alignment, each entry 
in one of the sub-fields should begin in 
the leftmost column of the sub-field. 
Thus, the operation entry should begin in 
column 32 and the operand entry should 
begin in column 38. (Note that the name 
entry .!!!.Y.§1 begin in column 25.) Figure 2 
shows a coding form with a number of typic
al statements in the Basic Assembler 
language. 

Characteristics of the Basic Assembler Language 9 



IBM IBM System 360 Assembler 
Short Coding Form 

PROGRAM PUNCHING INSTRUCTIONS 

GRAPHIC 

PROGRAMMER I DATE PUNCH 

STATEMENT 

Name Operation Operand Comments 
25 30 32 36 38 45 50 55 60 

! 

--r-f- f-t- -~- -+ 
f--f- - ~-f-+- ~-f- - t-- -1-- ---t 

: 
I I 

r 
-- --- - +-. t-. -

-- - --- +-- -- .-~-- -

.-f--"-f-- --

Figure 1. The IBM ~ystem/360 Assembler £hort Coding Form 

Name Operation 
25 30 32 36 

S TA Rr 
IBGN BASR 

USING 
M vic 
LH 

IR TI M VC 
11) P 

STATEMENT 

Operand 
38 

t 3 .. I~ 
r*. i 3 

45 

o vlT + If ( 3 ) • C t 

WOI< K+ 2 (17 ) f cl4 

50 

WORKI(19) • (21( 2) 

Comments 
55 

Figure 2. Typical Statements on a Short Coding Form 

10 System/360 Model 20 Basic Assembler Language 

60 

CARD FORM H 

65 71 73 

I 

1 

65 71 73 

X28-6506 
PTll1h'J 10 U. S.A. 

PAGE OF 

Identification-
Sequence 

t 

I 

Identification
Sequence 

80 

80 

o 

I 

o 

o 



o 

o 

o 

STATEMENT FORMATS AND COMPONENTS 

A source program that is written in the 
Basic Assembler language is composed of a 
sequence of statements. These statements 
have the following format: 

r------,-----------.-----------~i----------~ 

1 Name 1 Operation 1 Operand (s) 1 Comments 
L ______ ~ _____________ ~ _____________ ~ __ __ 

1 <---------Instruction ---->1 

Each source statement is punched into a 
separate card. The deck of cards that con
tains all the statements of one source pro
gram is referred to as the source program 
deck. 

A statement may consist of (1) an 
instruction only, or (2) an instruction and 
a comments portion. Instruction entries 
and comments entries are described in two 
separate sections below. 

The instruction entry must contain an 
operation entry, and may contain a name and 
an operand entry. These three types of 
entry are described in the subsequent 
sections. 

Ih~~~~~ntry: The name entry consists of 
a symbol that is placed in the name field 
of the coding form to identify the asso
ciated statement. The use of such names is 
optional. 

In the Basic Assembler language, names 
must conform to thp. following rules. 

1. The first character of the name must be 
alphabetic. 

2. The name must not be longer than four 
characters. 

3. The name must not contain special char
acters or embedded blanks. 

4. The name must hegin in column 25 of the 
coding form an~ in column 25 of the 
source card. 

5. The name must he separated from the 
operation entry by at least one blank. 

Examples of valid names: 

RNT1 
C345 
A 
BGN 

Examples of invalid names: 

3NBR (the first character is not 
alphabetic) 

START (the symbol contains more than 4 
ch ar act ers) 

RL+8 (the symbol contains a special 
char act er) 

A programming example that demonstrates 
the use of the name entry is shown in 
Figure 3. 

Note-1: For all jg1n! assemblies (i.e., 
whenever the programmer uses the IOCS and 
wishes to assemble the generated IOCS rou
tines with his source program) user pro
grams must n3t contain a name that begins 
with the letter I followed by three numer
ical characters (0-9). In addition to 
this, the name assigned to a file must not 
appear in the name field of any statement 
in the source pLogram. 

Note_~: UseL pLogLams for joi~i assemblies 
with the BSCA Basic AssembleL must not cgp-
1ain a name that begins with hhe letters ID 
followed by bWO numerical characters. aser 
programs for both jQin.t andgE.~'£I!!~ assem
blies of the BSCA Basic Assembler must not 
include the type codes of the BSCA macro 
instructions in a name field. 

Th~_Operation_~n.t±Y: T~e operation entry 
consists of a mn eman ic opel" ation code t~aJ; 
~presen ts. amacihl: ne::XMf filco:IJJSii, a Bas1c 
Assembler instruction, or an laCS macro 
instruction. ' 

A mnemonic operation code consists of up 
to five alphabetic characters. It must be 
separated fLom the name entry and the 
operand entry by at least one blank column 
each. 

To understand the terms used in this 
publication, a cleaL distinction must be 
made between (1) a machine instruction 
written in Basic Assembler language and (2) 
a Basic Assembler instruction. 

. tten in 
Bas1 a e is an 1ns ruction 
to the computer. GeneLa escr1p 10ns 0 

these Instructions are contained in the 
sect~io.l1 Machi'TIe I nst'ruc tion Sta temen ts. 
Detail~d-descriptions-of-machln;-rnstruc
tions aLe contained in the SRL publication 
I~!1_~Y2i§t!!lLJ2Q_!1.odel_£Q.L_.El!.~£ti2nal_~h~£~£.:: 
i~ri2ii£21 FOLm A26-5847. 

Assembler instruction is an 
inst c sic Assembler PI~gII!ID. 

e functions of Basic Ass m er 1n 
tions are summaLized in Appendix .A. 
D ~J;, a i led de sc rip t ion sal' e con ta i n~.g in t,h e 
p~Ltift~nt sections 6f t~is ~ublicatiori. 

ChaLacteristics of the Basic Assembler Language 11 



The IOCS macro instructions are sum
marized in the section lnE~lLQQ1EQ1_~~~XQ 
In§l£~fiiQn§. Det~iled descriptions of 
these macro instructions are contained in 
the SRL publication 1~~_~Y§!~illLl~~_~Qg~1_1~ 
~~£~~£Qg£~mming_~QEEQ~lL_lnE~lLQ~!EQ!_~Qn= 
i£QI_~Y§igill, Form r26-3603. 

The following are examples of valid 
operation codes: 

LH 
AH 
MVC 
ORG 
TIOB 

load halfword 
add halfword 
move characters 
reset location 'counter 
test I/O and branch 

lhg_QEg£~nQ~l£Y: The operand entry pro
vides the Basic Assembler program or the 
computer with the information required to 
carry out the instruction specified in the 
ope ra tion f iel d. 

An operand may consist of a symbol 
..1p.aIDe), a constant, or a CQlDPopn2 exW-es-:
sion. Two examples of compound expressions 
are shown below. 

X'BF' defines the hexadecimal con
stant ~F, which is equal to 
decimal 191. 

GAMA-150 -- designates the storage address 
of GAM~ minus 150 bytes. 

Each operand entry must be separated 
from the associaten operation entry by at 
least one blank column. In addition, each 
operana entry must be delimited by at least 
one blank column; i.e., any associated com
ments entry must be separatec from the 
operand entry by at least one blank column. 

For example, the AH instruction requests 
the computer to ad~ a halfword to the con
tents of a register. The operand, there
fore, must specify (1) the number of the 
register and (2) the storage address of 
this halfword, as shown in the sample 
statement 

AH 8, VALX 

The above statement specifies that the 
value (halfword) stored at the location 
whose address is VALX be added to the con
tents of register R. 

The operand entry of the AH instruction 
in the above example consists of two 
operands: the register number 8 and the 

symbolic address VALX. These two operands 
must be separated from each other by a 
comma. 

NQ!~: Operand entries that consist of two 
operands must conform to the format 

operand1,operand2 

The attributes and functions of symbols 
and expressions that may appear in the 
operand field of a statement are described 
in a later section. 

The comments entry in a statement provides 
for the insertion of explanatory informa
tion into a program listing. Comments do 
not affect the assembly or the execution of 
a Frogram, but they facilitate the reading 
and understanding of a program listing by 
explaining the purpose or function of a 
particular statement. 

Any valid character, including blanks, 
can be used in a comment. Comments entries 
are punched into a statement card to the 
right of the operand entry and separated 
from it by at least one blank column. Com
ments entries must not extend beyond column 
71. 

If the desired comments entry cannot be 
accommodat~d in the spac~ avail~ble on the 
right of t,he. op.erand-e.ntry, or if comments 
consi~t Qf geperal information that per
tains.to a seq-uence. of statements, the 
"comments card" can be used. 

Comments Cards must contain an asterisk 
in C"O!i:i m n 25 ; co 1 umns 1-~ ~a-26=-~1'-a't"e'~'" ava'1!a~! e'OO! r 0 r ~.~ ~A";y-~ll'ilnimrr'YSo~~~
menEs! ca\'ds,M'may be' inserted anywhere in a 
source~program deck. 

The identification-sequence field (columns 
73-80 Qt the coding form) can be used to 
~pecify identifying tnformation and/or to 
provide the statemeritS of a program with 
seqJ-1ence numbers'. So~e lypical 
identificatIon-sequence entries are shown 
in 1he example below. 

Example 1: SALE0001 
SAL E0002 

SALE0813 

12 System/360 ~odel 20 Basic Assembler Language 

o 

I 

o 

o 



o 

o 

o 

Example 2: 

Ex ample 3: 

MAIN001 
MAINOf'2 

MAINO<l7 
ROUT1/01 

ROUT1/65 
MAINO<l8 

MAIN4f>6 

MILLE" 
MILLE~ 

MILLE~ 

Any identification-sequence entry is 
printed in the program listing as it is 
read. Identification-sequence entries do 
not affect the assp.mbly or the execution of 
the program. 

~~~l~_~gg~~nc~Q1-~tatem~ni~ 

Figure 3 shows a sample sequence of state
ments in the Basic Assembler language.
This example illustrates the writing and
the general function of the statements and
their components as discussed in the pre
ceding sec tions.

The comments entries in Figure 3 refer
to the subsequent notes.

Note 1:

The instruction CALC SR 9,10 caus.es the
contents of register 10 to be subtracted
from the contents of register 9. When this
subtraction has been completed, control is
transferred to the physically next state
ment. (Refer to Note 2.)

Note 2:

The instruction BC 12,RES1 causes a test to
determine if the contents of register 9 -
the register whose contents were changed by
means of the preceding instruction -- are
equal to or less than zero.

If they are, this BC instruction causes
a branch to the symbolic address RES1.
(Refer to Note 3.)

If the contents of register 9 are great
er than zero (p::>sitive), the BC instruction
causes the physically next statement (SH
instruction) to be executed. (Refer to
Note 4.)

Note 3:

The instruction RES1 STH 9,OUTA is executed
only if the content~ of iegister 9 were
found to be less than or equal to zero
(refer to Note 2).

This STH instruction causes the contents
of register 9 to be transferred to an (out
put) area named OUTA. When this transfer
has been completed, the physically next
statement of the program (not shown in this
example) is executed.

Note 4:

The instruction SH 9,CON2 is executed only
if the contents of register 9 were found to
be greater than zero (refer to Note 2) .

This SH instruction causes the value
stored at the symbolic address CON2 to be
subtracted from the current contents of
register 9. When this subtraction has been
completed, the physically next statement is
executed. (Refer to Note 5.)

Note 5:

The instruction BC 2,CALC causes a condi
tional branch to the symbolic address CALC,
which is the address of the SR instruction
referred to in Note 1.

Note that this BC instruction is
executed only if the contents of register 9
were found t::> be greater than zero in the
test caused by the instruction BC 12,RES1.

Note 6:

The program "lo::>ps" through the statement
sequence beginning with the instruction
CALC SR 9,1D and ending with the instruc
tion BC 2,CALC until the contents of regis
ter 9 are found to be less than or equal to
zero. When this is the case, the instruc
tion BC 12,RES1 causes an exit from the
loop to the instruction RES1 STH 9,OUTA
(refer to Note 3).

Characteristics of the Basic Assembler Language 13

PROGRAM

GRAPHIC

PROGRAMMER I DATE PUNCH

STATEMENT

Name Operation Operand
25 30 32 36 38 45 50

5T A R T

I.
CA LC SR.. q .. i QJ NO

BC 1.2- ~ R. f.S1.. NO
SJI q" CO N2. NO
Be 2. .. CA LG NO

'R.E 51 ST H Iq " 0 UT A NO

I"
EN l)

Figure 3. Sample Sequence of Statements

THE CHARACTER SET

The following 44 characters can be used in
statements written in the Basic Assembler
language.

26 alphabetic characters: A through Z
10 numerical characters: 0 through 9

8 special charact~rs: *+- ,) (' bla nk

The punch combinations that represent
these characters are shown in !££~ngi!_X.
However, constants and character self
defining terms may contain any of the 256
punch combinations listed in !E£gndi~_X.

SELF-DEFINING TERMS

A self-defining term is a term whose value
is not assigned by the Basic Assembler pro
gram, but is inherent in the term itself.
Thus, the decimal digit 3, representing the
value 3, is a self-defining term.

.The three types of self-defining terms
are decimal, hexadecimal, and character
terms. They can b~ used to specify immedi
ate data, masks, rpgisters or addresses,
and constants.

PUNCHING INSTRUCTIONS
PAGE OF

CARD FORM #

Identification-
Comments Sequence

55 60 65 71 73 80

T£ i
IE. 2
T~ q.
TE 5
IES .3 AN 1> 6

Self-defining terms must not be confused
with data constants, which are described in
the secti on Defini tion Instruct ions. There
is a clear dIstInction-in-the-use-of each:
the Basic Assembler program assembles the
valQ~ of a self-defining term, but it
assembles the ~ddres2 of a data constant.

A self-defining term is considered abso
lute because its value is not changed on
prog ram relocation.

A decimal self-defining term is an unsigned
decimal number with a maximum of five
digits, e.g., 007, 11900, or 3. Its value
must not exceed 16383. A decimal self
defining term is assembled as its binary
equi val en t.

A hexadecimal self-defining term is a
sequence of up to four hexadecimal digits
enclosed in apostrophes and preceded by the
prefix X (e.g., X'9',X'A4',X'20B3'). The
highest hexadecimal self-defining term is
3FFF. This value corresponds to the maxi
mum decimal self-defining term 16383. Each
hexadecimal digit is assembled as its 4-bit
binary equivalent, as shown in Figure 4.

14 System/360 Model 20 Basic Assembler Language

o

I

()i

o

o

o

o

r----------------------,----------------------,
I
I
J

Hex adecima I
Digit

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Binary
Equivalent

0000
0001
0010
0011.
0100
0101
0110
011.1
1000
1001
1010
1011
1100
1101
1110
1111

Figure 4. Table o~ Hexadecimal Self
Defining Terms

A hexadecimal-to-decimal conversion
table is shown in]EE~ngi!_g.

A character self-defining term consists of
a single character, enclosed in apostrophes
and preceded by the prefix C (e.g., C'A',
C'I', C1 5', c' '). Any of the 256 EBCDIC
punch combinations shown in Appendix F can
be used for character specification.
However, ampersands and apostrophes that
are to be specifien as self-defining char
acters must be doubled within the enclosing
apostrophes. Thus, a single apostrophe
must be written as C"" and a single
ampersand as C'SS'.

Each character self-defining term is
assembled as its 8-bit EBCDIC code equiva
lent (see Appendix F).

SYMBOLS

Symbols are used to refer to locations in
main storage by name rather than by the
ac t ual add ress.

A symbol may be placed in the name field
of one statement and in the operand entry
of another statement. However, if a symbol
is to be placed in the operand entry of a
statement, it must be "defined" elsewhere
in the program.

A symbol is considered "defined" when it
appears

(a) in the name field of some statement
within the samp. program, or

(b) in the operand of an EXTRN statement
within the same program.

A prerequisite for defining a symbol by
method (b) is that the same symbol appear
in the operand entry of an ENTRY statement
~nd in the name field of some statement in.
another progr am section. (R efer to the
section irog£~~_Lin~ing for further infor
mation about the use of EXTRN and ENTRY
statemen ts.)

The Basic Assembler program maintains an
internal table -- the symbol table -- where
it stores all symbols that are used as
names within a program. Each symbol in the
table is ass~ciated with a storage address,
which is the setting of the location coun
ter at the time the symbol is read. A
program-generated length attribute and a
name identification are added. The length
attribute depends on the basic instruction
format. The name identification indicates
whether the symbol is relocatable or abso
lute, and whether it is external (defined
in a separately assembled program section).
Thus, a symbol entered in the name field of
a statement is considered to be defined.

All symbols that are used as expres
sions, i.e., as operands of a statement,
must be defined. Normally, this can be
done at the most convenient position in the
program. The 0 RG and the EQU instructions,
however, require the symbols in their
operands to be previously defined. Other
wise, the Basic Assembler identifies these
statements in the program listing by the
diagnostic message U (undefined).

In general, a symbol is considered to be
relocatable because relocatability is its
inherent purpose. (Refer to the section
!Q~~lu!~~~~~~l~catable pro~mming.)
However, for the convenience of relating
the meaning of the stored information to
its symbolic address, a symbol can be
equated to an absolute address by means of
the Basic Assembler instruction EQU, which
is described in the section ~Q-Eg~~!~
~Y~.Qol.

The Ba~ic Assembler program generates
the relocatable or absolute attribute of a
symbol as part of the name identification.
This attribute is then stored with the sym
bol in the symbol table.

Limited main storage availability may
require a pr~gram to be divided into a
number of sections, each of which can be
assembled separately.

Characteristics of the Basic Assembler Language 15

In one program section, the operand
entry of a statement may contain a symbol
that is defined in a different program sec
tion. This symbol must be introduced by an
EXTRN statement into the section in which
it is not defined. In the program section
where the symbol is defined, it must be
specified in an EN~RY statement. The Basic
Assembler instructions, ENTRY and EXTRN,
are described in the section E£Qg£E~
1in~ing·

Each symbol can represent one specific
storage address only. Therefore, it must
not be defined twice. The number of sym
bols that can be specified in a program
depends on the available storage capacity,
as shown in Figure 5.

r
I Storage Num ber of Sym boIs Allowed
I capacity in the Source Program
~
I 4096 165
I 8192 847 805*
I 12288 1530 1487*
I 16384 2213 2170*
L-_______ ~

* for the BSCA version

,
I
I
~
I
I
I
I

Figure 5. Number of Symbols versus Storage
Capacity

If the number o~ symbols exceeds the ap
plicable maximum, a symbol-table overflow
occurs. The card versions of the Basic
Assembler program require an additional as
sembly run to compensate for the overflow;
the tape versions (after an informative
halt) deal with the situation automatical
ly. Detailed explanations are supplied in
the sectio n !ll.~L~asi£_A sse mbler PrQ.9.ram..

To avoid a symbol-table overflow, the numb
er of symbols can he reduced by means of
relative addressing.

The term relative addressing refers to
the method of specifying storage locations
by means of a defined symbol plus or minus
a displacement, or by means of the setting
of the location counter plus or minus a
displacement. The following examples show
some relative addresses.

FLDA-200
*+12

FLDB+X' F'

(symbol min us displacement)
(location counter plus
displacement)

(symbol plus hexadecimal
displacement)

Note: The asterisk (*) represents the
value of the location counter after the
preceding instruction has been read in,

and, if required, boundary alignment has
taken place.

The use of relative addressing is illus
trated in the example below. In this
example, statement sequence A uses dif
ferent symbols to refer to five different
storage locations: BGN, SYM, AUG, ADD, and
SUM. In statement sequence B, these five
storage locations are referred to by only
two different symbols (BGN and AUG) and by
three relative addresses: AUG+2 (for ADD),
*+6 (for SYM), and AUG+4 (for SUM) •

I

BGN BASR 13,0
USING *, 13
LH 12,AUG
AH 12, A DD
BC 2,SYM
SR 12,12

SYM STH 12,SU£'1
BASR 14,15

AUG DS H
ADD DS H
SUM DS H

~~9J! en .f.!L!! BGN BASR 13,0
USING *, 13
LH 12, A UG
AH 12, AUG+2
BC 2,* +6
SR 12,12

'STH 12,AUG+4
BASR 14,15

AUG DS H
DS H
DS H

The relative address AUG+2 can be used
to replace the symbol ADD because the
storage area referred to by ADD (see state
ment ADD DS H) begins directly behind the
storage area AUG , which is two bytes-long
(see statement KUG DS H). The same applies
to the replacement of the symbol SUM by the
relative address AUG+4.

The branch address SYM is replaced by
the relative address *+6 (current setting
of the location counter plus 6 bytes).
This relative address causes a branch to
the location six bytes beyond the BC
instruction; in other words, to the first
byte of the instruction STH 12,AUG+4.

EXPRESSIONS

An expression is any symbol or self
defining term, relocatable or absolute,
used in the ~perand entry of a statement.

An expression that consists of more than
one symbol or self-defining term and con
nected by plus or minus signs is referred
to as a compound expression.

16 System/360 Model 20 Basic Assembler Language

o

I

0

o

o

o

o

Examples: BETA-10+200
FLD+X'2D'
*-GAMA+200

Rgstf!£tiQll2. The ~asic Assembler program
considers an expression to be terminated by
a blank or a comma, depending on the type
of expression. An expression must noi

• begin with a plus or minus sign,

• comprise more than three symbols and/or
self-defining terms,

• have a negative value at object time (if
it is absolute),

• contain another relocatable symbol if an
external symbol is part of the
expression,

• contain any self-defining term with a
value >4095 if used as operand of a
machine instruction, and

• exceed 16383 (decimal).

The Basic Assembler replaces symbolic ex
pressions with their numerical equivalents
by evaluating compound expressions, execut
ing arithmetic calculations, and inserting
the results into the instruction.

An expression is considered absolute if it
con tains

(1) only self-defining terms and/or abso
lute symbols, or

(2) one positive an~ one negative relocat
able symbol.

Some examples of absolute expressions are
shown below. (The symbols PHS 1 an d PHS2
are considered relocatable.)

2510
PHS2+2510-PHS1

PHS2-PHS1
2510-PHS2+PHS1

The value of a relocatable expression is
changed by the Basic Assembler program on

program relocation, in other words, the
relocation factor is applied to its numer
ical equivalent to compute the new storage
address.

Relocatable expressions must conform to
the following rules:

• A relocatable expression must contain
either one or three relocatable symbols.

• If a relocatable expression contains
three relocatable symbols, one and only
one of these symbols must be preceded by
a minus sign.

• If a relocatable expression contains
only one relocatable symbol, this symbol
must not be negative.

Some examples of valid relocatable ex
pressions are shown below. (R stands for
"reloca table sym bol".)

R+1, R-8, R-R+R, *-X'DO'

The following examples show some invalig
relocatable expressions.

R+R (contains two relocatable symbols)

R+R+R (one of the relocatable symbols
should be negative)

16-R (the relocatable symbol must not be
negative)

R-R-R (two negative relocatable symbols)

LOCATION COUNTER

The Basic Assembler program uses a counter
to record the address assigned to each sta
tement read into main storage. This coun
ter is referred to as ~he location counter.

At assembly time, as soon as an instruc
tion statement has been read into main
storage, and, if required, boundary align
ment has taken place, the location counter
is incremented by the number of bytes occu
pied by that statement. The location coun
'ter then indicates the next available
storage location.

Characteristics of the Basic Assembler Language 17

LOC.: OBJECT CODE SOURCE STATEMENTS
CTR I

I
0154 INOA srARr 340
01~4 0000 BASR 13.0 LOAD BASE REG.
01-56 USING ~. 13 ASSIGN BASE RE.
0156 47FO 0048 Be 15.CALe CIRCLE THE CONS T
OOOA RIO eQU 10
015A PRT OS CLl7
016B 0000 0000 0000 0000 00 WORK DC Xt,9:'O'
0174 0000 0000 0000 00 ACCU-i DC XL7'0'
0178 2400 DC CPH DC X'Z4000C'
017E 025e RATE DC X'025C'
0180 0000 0000 0000 5C ROUN DC X'0000000000005C'
018B 0152 CNT DC H'338'
018A 0001 DEeR DC H'l'
018C 4020 bB20 2020 bA20 2020 bB MASK DC X'40206B202020bR?020206B'
0197 2020 2148 2020 DC X'2020214R2020'
019E 48AO 0032 CALC LH RIO,CNT LOAD COUNT
01"'2 ~2 0022 0025 ",,~y.,C.) ACCU+4(31,CPTL LOAD ACCU
OlA8 06 01)17 DOlE lOOP MVC. WORK+l(71, ACCU LOAD \~ORK:::,.
OlAe FD81 0015 0028 OP WORK,RATE COMPUTE IMTEREST
0184 FAb6 ODIE 0015 AP AeeU,WORK(H INCREMENT CAPITAL
018A FA66 DOlE 002A AP AeCU,ROUN ROUND DEC I flAl
OlCO noc 0024 104 V I ACCU+6,X'OC' RESTORE LAST DIGIT
01C4 48AO 0034 SH Rlo,DEeR DECRFASE: COU~T

0le8 4720 0052 Be 2,lOOP TEST FOR CO~PlETION
Olee 0210 0004 0036 MVC PRT,MASK MASK TO PRINT AREA
0102 DElO 0004 DOlE ED PRT,Aceu EDIT RESULT
0108 0040 0004 0011 FINE XIO PRTlX '40' 1,17 PRINT RESULT
OlOE 4710 OOAO BC 1,PERR TfST PRINTE~ NOT OK
01E2 4740 DOB2 Be 4,FINE TEST PRINTER WORKNG
0lE6 9A40 0090 TIOB ~,X'40' TEST ENU OF 1/0
OlEA 9A4l OOAO TIOB PERR,X'41' TEST PRINTER ERROR
OlEE 9900 0999 HALT HPR X'999',0 DISPLAY 999
OlF2 47fO 0098 Be l5,HAlT lOCK RESTART
01f6 9900 0111 PERR HPR X'lll',O DISPLAY III
OlFA 47fO 0082 Be l5,FINE REPEAT PRINT
0154 END INOA

Figure 6A. Assignment of Storage Addresses

r --,-------------T , Location Counter Setting , ,
i-------T ----. Instruction, Length Statement , In Hex J In Decimal , ,
~ I I I

0154 34n START , none 01
0154 340 BASR I 2 bytes 02
0156 342 USING , none 03
0156 342 BC , 4 bytes 04
01SA 346 EQU I none 05
015A 346 DS I 17 bytes 06
016B 361 DC , 9 bytes 07
0174 37? , , I , , I I I , , I , ,

V V V I V
019E 414 LH I 4 bytes 16
01A2 418 MVC I 6 bytes 17
01A8 42U MVC , 6 bytes 18
01AE 430 DP I 6 bytes 19
01B4 43~ , I

I I
V I

etc. I L-_____ --L
-.J

Figure 6B. Assignment of storage Addresses

18 System/360 Model 20 Basic Assembler Language

:OBJ.
ICRD
I

SIMTOI onl
SIMI02 002
SIMT03 002
SIMT04 OOZ
ST:oH05 002
ST~T06 007.
STMT07 003
STMT08 003
STMT09 003
ST~TlO 003
STI-ITll 003
S T"'TlZ 003
SIMTl3 003
SI"1Tl4 003
STMTl5 003
SIMTl6 003
STMTl7 003
STMTl8 004
ST 'H 19 004
ST'H20 004
STMT21 004
ST,H22 004
STiH23 004
S T:-1T24 004
STAT25 004
STMT26 004
STMT27 004
ST'-1T28 005
S TiH 29 005
STMT30 005
ST~T31 005
STMT32 005
S T;H33 005
STMT34 005
STMT35 005
STMT36 006

/

/

a
(

I

o

0

o

o

o

ASSIGNED ADDRESSES

If a printer is attached to the Model 20
during the assembly of a source program, a
program listing is produced, as shown in
Figure 6A. The listing includes all state
ments translated into machine language. To
the left of the machine-language state
ments, the listing contains the address
assigned to each statement; i.e., the cur
rent setting of the location counter at the
time the statement is read into main
storage.

In the example in Figure 6B, the loca
tion counter is initially set to 340, which
is the address of t.he 'next sequential
storage location. The next program state
ment, the BASR instruction, is stored
beginning at location 340. Since two bytes
are required for the BASR instruction, the
location counter is incremented to 342.
Then follows the U~ING statement, which
does not require any storage space. There
fore, the address 142 is assigned to the BC
instruction that follows the USING state
ment. After storing the BC statement,
which requires 4 bytes, the location coun
ter points to stor~ge address 346. This
procedure is contin~ed until the entire
program is assembled.

The location-counter setting is limited to
the storage capacity specified in the con
trol card. The control card is described
in the SRL publications 1]~_~Y~1~IDLl~Q
~Qg~1_l~£~£~Proqramming_Su£EoriL~~2ic
!E§~IDQ1~£~_QEerating Procedures, Forms C26-
3802 and C24-9011 ~or the card or tape ver
sions, respectively.

If, for example, the specification in
the control card is 4096 bytes and the pro
gram to be assemblp.d exceeds this capacity,
the location counter is reset to 0 at the
point Where the specified storage capacity
is exceeded -- even if the storage capacity
that is actually available is greater than
4K. The respective statement is identified
by an error message (L).

The largest numner the location counter
can accommodate is 2 14 -1 or, in hexadecimal
notation, 3FFF. The leftmost digits of any
value greater than 3FFF are truncated.

At any point in the source program, the
programmer may refer to the current setting

of the location counter by using an
asterisk in the operand entry. The example
in Figure 7 illustrates a print routine,
which includes a method of stopping the
processing flow until the execution of a
previously initiated output operation has
been completed.

The instruction TIOB *,X'40' tests to
determine if the attached 1403 printer is
still busy with the execution of the last
print command. The second operand (X'40')
specifies the unit and the function. The
first operand specifies the address to
which the pr~gram is to branch if the
printer is busy_

During the assembly of this instruction,
the Basic Assembler program replaces the
asterisk by the actual branch address,
which is the current setting of the loca
tion counter, 1078. During execution, the
program repeatedly branches to the same
instruction until the printer is no longer
busy and sequential processing of the sub
sequent instructions can continue.

No1~: The same effect can be obtained by
the insertion of a symbol in the operand
entry that is also inserted in the name
fiel d:

TEST TIOB TEST,X'40'

The symbol TEST, as a branch address;
also repeatedly refers the program to the
same statement until the busy condition no
longer exists.

r I I I

ILocationlNamelOperationlOperand
I Cou nt er
I

1060
1064
1070
1074
1078
1082

I I
I I
IHALTIHPR
IFIN IXIO
I I BC
I I BC
I IT IOB
I ITIOB

'------"---

IX'99',0
IPRT(X'40'),17
11,HALT
\4,FIN
1*, X '40 '
IHALT,X'41'

Fiyure 7. Use of an Asterisk in the
Operand Entry of a statement

The Basic Assembler instruction ORG can be
used to reset the location counter to any
desired value. This is described in the
section QR~_==_R~§g1!ing_lh~-1Q£~liQn
~Q.unl~£·

,
I
I
~
I
I
I
I
I
I

J

Characteristics of the Basic Assembler Language 19

A storage address is the address of the
leftmost byte of the area referred to. The
length of an addressed area is either
explicitly stated in the operand entry, or
is implied in the constant by which the
addressed area has been defined. Registers
are fixed length areas and are, therefore,
exempt from this rule.

The two ways of specifying storage
addresses in a program written in Basic
Assembler language are:

1. effective addressing, allowing for sym
bolic (or implied) addressing and
explicit addressing; and

2. absolute (or direct) addressing.

An address is generated as a storage
field of 16 bits. The four high-order bits
(the B-field) indicate the base register.
The twelve low-order bits (the D-field)
indicate the displacement, which is the
difference (in bytes) between the contents
of the ~ase register (or the address repre
sen ted by a sym bol) an d the referenced
s tor age lo cat ion. D 1 (B 1) and D 2 (B 2) des i g -
nate addresses that are part of the first
and the second operand, respectively.

Addition of the contents of the base
register to the displacement gives the
actual address of a location in main
storage. (Refer to the section ~~se
Reg:i~j;&£§·)

EFFECTIVE ADDRESSING

Effective addresses are identified by a
1-bit in the leftmost position of the B
field, which signals that at least one of
the general registers 8 through 15 must be
used as a base register. At assembly time,
the address of a location in main storage
is split into two narts,

a) a fixed value contained in the base
register, and

b) a displacement, which is the difference
between the actual storage address and
the contents of the base register.

At object time, the contents of the gen
eral register specified by the B-field of
an address are added to the contents of the
D-field to form the actual address in main
storage.

o
SYMBOLIC (IMPLIED) A DDRE551 NG

5y mbolic (or implied) addressing is used I
when a symbol is given in the operand entry
of a statement, rather than the explicit
specification of a base register and a dis
placement. The equivalent value of the
symbol is assigned by the location counter.
The symbol must be defined elsewhere in the
program. (Refer to the section ~~.QoI2.)

When the Basic Assembler program encoun
ters a symbol during assembly, it scans the
symbol table, finds the associated address,
and assembles this address into the
instruction. If the operand consists of a
compound expression, such as ALFA-BETA+
GAMA, the address equivalents of all sym
bols are looked up, the arithmetic opera
tions are executed, and the result is
assembled into the instruction.

The computed address integer is not
stored as it is, but is first split into a
base register and a displacement. This is
explained in the following example.

If the address equivalent of the above- (~)
mentioned compound expression (ALFA-BETA+ "
GAMA) were 6319, the Basic Assembler would
split this address by selecting a base
register containing the closest value to
6319. For example, if the three base
registers 9, 10, and 11 wer e used and con
tained the values 4000, 5000, and 7000,
respectively, the Basic Assembler would
select register 10, because this register
would cause the smallest displa cement,
which is the difference between the actual
storage address and the contents of the
base register selected by the Basic Assem-
bler for address generation. Thus, the
displacement resulting from the splitting
of 6319 is 1319. The address 6319,
assembled into the instruction, therefore,
has the following format: 1319 (10); or
A527 in hexadecimal notation, as it is
printed on the program listing produced
during the assembly. "A" represents the
base register and "527" represents the dis
placement, 1319.

A displacement calculated by the Basic
Assembler cannot be greater than 4095. For
the calculation of addresses higher than
4095, additional base registers must be
used.

The rules followed by the Basic Assem- 0
bIer in the selection of a suit able base '
register are as follows:

20 System/360 Model 20 Basic Assembler Language

o

o

o

1. If more than one register would produce
d valid displar.ement (not exceeding
4095), the Basic Assembler uses the
register that produces the smallest
displacement.

2. If two or more registers produce the
same displacement, the Basic Assembler
uses the highest-numbered register.

3. If none of the specified registers pro
duces a valid oisplacement, the address
field in the instruction that contains
the invalid opprand is set to zero. An
appropriate error message appears in
the program listing.

The advantages of symbolic addressing
are the simplicity of the method itself and
the resulting relocatability of the
program.

EXPLICIT ADDRESSING

Explicit addressing requires the specifica
tion of a base register and a displacement
in the operand entry of a statement.

~~~llig.!. M V I 800 (8) , X I A ' 

The above statement causes the immediate 
data (X'A') to be stored in the location 
identified by D1=8no and B1=8. 

Explicit addressing provides a special 
technique of address modification, called 
ing~~ing. Using the indexing method, the 
programmer can conveniently deal with a 
storage area step hy step. 

Assume that a table of 100 integers, 
each of which is 5 bytes long, is contained 
in main storage. ~hese integers are to be 
transferred one-by-one to the output area 
OUTA. 

BGN 
START 350 
BASR 9,0 
USING *,9 

LH 
AH 
STH 
LH 

LOOP MVC 
XIO 
AH 
CH 
BC 
HPR 

10,TADR 
10,TLEN 
10,TLIM 
8, TADR 
OUTA (5) ,0 (8) 
OUTA(X'40'),5 
8,INCR 
8,TLIM 
12,LOOP 
X'99',0 

TLIM DS Ii 
TLEN DC H'495' 
INCR DC H'5' 
TADR DC Y (T AB) 
TAB DS 100CL5 
OUTA DS 100CL5 

END BGN 

In the above routine, register 9 is used 
as a base register. The maximum table 
address (TAB+495) is computed in register. 
10 and then stored at location TLIM. 
Register 8 is loaded with the address of 
the first table entry (see the section, 
Addres~_~on~ta~ts). The expression 0(8) 
thus designates the first table entry 
(TAB), which is moved to OUTA. 

The data stored in OUTA is printed. 
(For simplicity, the necessary edit and 
test routines are omitted.) The subsequent 
instruction is used to increase by five the 
contents of register 8, causing the address 
0(8) to point to the posi ti on of the second 
table entry (TAB+5). The contents of 
register 8 are then compared with the maxi
mum table address at location TLIM. If the 
value in register 8 is lower than, or equal 
to, the compared value in TLIM, the program 
branches to LOOP to fetch another table 
argument. Otherwise the program halts. 

Normally, if base re.gisters are used for 
address generation, a symbol in the operand 
entry of a statement should not be accom
panied by an explicit base register desig
nation. It is possible, however, to speci
fy a symbolic address accompanied by an 
explicit base rEgister designation, instead 
of using the exp ression 0 (8) in the pre
vious example. If TAB(8) is given as the 
second operand:> f the MVC instruction, the 
address is computed by adding the (normal) 
displacement value of TAB to the contents 
of register 8. The sta temen t is flagged 
with a warning message. 

In the previ:>us example the instructions 

LH 
LOOP MVC 

8,TADR 
OUTA(5) ,0(8) 

may be replaced by 

SR 
AR 

LOOP MVC 

8,8 
8,9 
OUTA (5) ,TAB (8) 

!ot~: In the statements following this MVC 
statement, the program again uses the base 
register that was originally designated. 

This program can be simplified further 
if absolute addressing is used. In the 

Functions of the Assembler Language 21 



following example pseudo register 0 is used 
as a base register. 

BGN 

LOOP 

TLIM 
INCR 
TAB 
OUTA 

START 
USING 

SR 
MVC 
XIa 
AH 
CH 
BC 
HPR 

DC 
DC 
DS 
DS 
END 

350 
*,0 

8,8 
OUTA(5) ,TAB(8) 
OUTA (X'40'),5 
8,INCR 
8,TLIM 
12,LOOP 
X'99',0 

H'495' 
H' 5' 
100CLS 
100CtI, 
BGN 

Register 8 is initially set to zero. 
Thus, TAB (8) refers to the first table 
entry. When the last MVC instruction has 
been executed, register 8 contains the 
value 500 and the program halts. 

ABSOLUTE (DIRECT) ADDRESSING 

Absolute addresses are identified by a zero 
in the leftmost bit position of the 
B-field. In absolute addressing, the 14 
low-order bits of the combined Band 
D-field represent the complete address 
value and refer directly to byte locations 
in main storage. Absolute addresses are 
specified by decimal ~ntegers or absolute 
symbols in the operand entry of a 
sta tement. 

r----.--------~ 

INamelOperationlOpprand 
• I I 
I I S TH I 1 3, 24 4 0 

I 
~ 
I L-___ ~ _______ ~ 

--.-J 

The above statement causes the contents 
of register 13 to be stored in position 
2440 of main storaqe. 

Absolute addresses are also split into 
base register and ~isplacement by the Basic 
Assembler program, as Idescribed in the sec
tion ~ffe£tive-hgg~g§§ing. This addressing 
method, however, requires the specification 
of pseudo-registers to be used as base 
registers. A program that contains abso
lute addresses is not relocatable. 

The Model 20 uses eight auxiliary storage 
units which are referred to as general 
registers. Each of these general registers 
has a length pf one halfword (two bytes). 
The general registers are numbered from 8 
to 15 and are used for temporary atorag~of 
information during execution of indexing, 
fixed-point arithmetic~ address generation, 
and logical Jperations. 

Information that requires the use of 
registers can be transferred 

(1) from register to registe r, 

(~ from register to main storage, or 

(3) from main storage to register. 

The direction of the information flow is 
implied in the machine-instruction format. 
(Refer to the section Ma£hine Instru£iion 
'§i~iemen t§.) 

When general registers are used for 
addressing, they are referred to as Qsse 
registe~§. Base registers are assigned by 
a USING statement, as explained in the sec
tion Ba2~_Regi§t~rs_ 

An advantage of using general registers 
for fixed-point arithmetic is that data 
need not be packed prior to computation. 
All calculat ions ar e ex ecut ed in binary 
form. 

Examples of the use of general 
registers: 

AR 9,10 The contents of register 10 are 
added to the contents of regis
ter 9. The result is contained 
in register 9. 

LH 12,AREA The first 2 bytes of the field 
AREA are loaded into register 
12. (Note that in this case 
the field)AREA must be aligned 
at a halfword boundary.) 

STH 13,aUTA The contents of register 13 are 
stored in the field OUTA. 
(Note that in this case the 
field OUTA must be aligned at a 
halfword boundary.) 

When using the IOCS, the following restric
tions on general registers apply_ 

• Register 15 must not be used by the pro
grammer at any time. 

22 System/360 Model 20 Basic Assembler Language 

o 

I 

(} 

o 



o 

o 

o 

• Register 14 is available only for 
restricted use, since its contents are 
changed each time a macro instruction is 
executed. 

• Registers 11-15 are used by the 1419 
IOCS. 

In addition to the eight general registers 
there are four pseudo-registers numbered 0 
to 3. (If a Submodel 5 is used, pseudo 
registers 0-7 are available. However, 0-3 
are the only pseudo registers recognized in 
CPS programs.) The pseudo-registers are 
assumed to have the following permanent 
con ten ts: 

o 
1 
2 
3 

o 
4096 
8192 

12288 

The pseudo-registers may be used only 
for storage addressing, i.e., as base 
registers. The advantage, in comparison to 
the use of general registers, is that 
pseudo-registers need not be loaded with a 
base address. Thus, program execution is 
faster and the general registers are avail
able for other purposes. However, pseudo
registers can be used only for the specifi
cation of absolute addresses. Additional 
information is given in the section !E§Q= 
IJ!i~L!gg£gssing • 

Base registers are general registers that 
are used for addressing main storage loca
tions. The contents of a base register are 
subtracted from each storage address during 
program assembly; the remainder is referred 
to as the displacement. The base-register 
number, together with the displacement, is 
assembled into the instruction. 

At least one general register must be 
assigned as a base register at the begin
ning of a relocatable program. In addi
tion, this register must be loaned with the 
desired base address, which is normally the 
start address of the program. 

USING -- USE BASE ~EGISTER 

The USING statement is used to assign base 
registers. It also informs the Basi~ 
Assembler program of the anticipated con
tents of the respective base registers. 

iii 1 

I NamelOperationl Operand I 
I~---+I--------+I------------~-------~ 
I I US ING I * , 11 I 
L---L. ___ _ 

-J 

The above statement designates register 
11 as a base register and informs the Basic 
Assembler pngram that it may expect regis
ter 11 to contain the current value of the 
location counter. 

!ote: A name entry is not used. If a sym
bol appears in the name field of the USING 
statement, it is disregarded by the Basic 
Assembler program -- if it conforms to sym
bol specifications. Otherwise, it is iden
tified by a dia gnostic message in the pro
gram listing. 

All registers that are assigned by means 
of USING statements must be loaded. This 
can be achieved by means of BASR 
instructions. 

BASR -- BRANCH AND STORE REGISTER 

For example, the statement BA~R 12,12 
causes register 12 to be loaded with the 
current value of the location counter. 
This is followed by a branch to the address 
ErevioJ!21y contained in register 12. 

Thus, in the above USING-statement 
example, register 11 can be loaded as 
follows: 

r-, i --, 

INamelOperationlOperand I 
~-+-----+----------------------~ 
I I BASR I 11,0 I 
L __ .L-, .1.. 

____________ . ___________ ----J 

Register 11 now contains the address of 
the next storage location; that is, the 
current value of the location counter at 
assembly time. The second operand, which 
normally specifies the register that con
tains the branch address, prevents branch
ing because it refers to register O. 
Accordingly, the first instructions of a 
progrdm may be the following: 

Functions of the Assembler Language 23 



BGN 

START 
BASR 
USING 

356 
11,0 
*, 11 

The largest displacement that can be 
calculated by the Basic Assembler is 4095. 
Therefore, an additional base register 
mustbe assigned for each additional 4096 
bytes of main storage required. 

Additional base registers may be speci
fied also for other programming purposes, 
such as creating d~fined areas (dummy sec
tions) in main storage where c~rtain pro
gram subroutines can be executed or where 
intermediate data is stored. However, if 
several base registers are specified by 
subsequent USING statements, an adequate 
method of loading these base registers must 
be found. 

Figure 8 illustrates one such method. 

r-------T ---,- , 
I Location- I I I I 
ICounter INamelOperationlOperand I 
IReferencel I I I 
~ I -+----+- 1 

1000 START I 1000 
1000 BASR 111,0 
1002 USING I * , 11 
1002 BC 115,PRGM 
1006 USING I * + 4098-' 6 , 1 2 
1006 ALFA DC I Y (*+4098-6) 
1008 USING 1*+6192-8,13 
1008 BETA DC I Y (*+6192-8) 
1010 USING I * + 4 5 0 0- 1 0, 1 4 
1010 GAMA DC I Y (*+4500-10) 

PRGM LH 112,ALFA 
1016 LH I 13, BETA 
1020 LH 114,GAMA 

~---------~ 

Figure 8. Example of Loading Base 
Registers 

~KRlan~tiQn: The ~ollowing base registers 
are assigned by USING statements: 11,12, 
13, and 14. In this example, the base 
registers are loaded with the following 
base addresses. 

Register 11 
Register 12 
Register 13 
Register 14 

1002 
5098 
7192 
5500 

Base register 12 is assigned and loaded 
to deal with addresses higher than the 
maximum address th~ Basic Assembler can 
generate by using ~ase register 11, which 
is 

4095(11) = 409C; + 1002 = 5097. 

The next higher address is generated as 

o ( 12) = 0 t 5098 = 5098 

Base register 11 is loaded w hen the BA SR 
instruction is executed. Note that 1002 is 
the address ~f the first machine instruc
tion after· the BASR sta temen t. 

To load registers 12 to 14, the desired 
addresses are supplied to the Basic Assem
bler by means of address constants, which 
are then loaded into the respective regis
ter by subsequen t LH instructions. Since 
the location counter is being referred to, 
the addresses specified by address con
stants are incremented first by the start 
address of the program (1000), and then by 
the length of each instruction. Therefore, 
the accumulated instruction lengths must be 
subtracted when the address constants are 
set up. The expressions contained within 
the parentheses of the address constants 
can also be used in the first operand of 
the respective USING statement. 

Accordingly, the address constants have tha 
following values: 

ALFA 
BETA 
GAMA 

1006 + 4098 - 6 = 5098 
1008 + 6192 - 8 = 7192 
1010 + 4500 - 10= 5500 

The contents of a base register can be 
altered whenever required; but the Basic 
Assembler program must be informed of the 
change by means of a USING statement. 

r--~---------T-----------------------' 

INamelOperationlOperand I 
r--+- I 1 
I IUSING IALFA,9 I 
I I I I I 
I I I I I 
I I I I I 
I I V I I 
I IUSING IALFA+1000,9 I L--________________ ~ 

To use absol~t~ addressing, a pseudo
register must be specified in the second 
operand of the USING statement. In addi
tion, the first operand must be an 
asterisk; otherwise,' the USING statement 
will be identified by a diagnostic message 
in the progr am listing. 

The pseudo-registers need not be loaded. 
They are assumed to contain at any time the 
values described in the section 
Pseudo::.Registef:~ 

The statements: START 0 
USING 
USING 
USING 
USING 
ORG 

*,0 
*+4096,1 
*+8192,2 
*+12288,3 
* +316 

24 System/360 Model 20 Basic Assembler Language 

o 

I 

o 



o 

o 

o 

inform the Basic Assembler program that 
pseudo-registers 0 through 3, the contents 
of which are 0, 4096, 8192 and 12288 are to 
be used as base reqisters. 

For example, in this case storage 
address 3091 is split into displacement 
C13(hexadecimal equivalent for 3091) and 
base register 0, and assembled as OC13. In 
like manner, storage address 6000 is 
assembled as 1770, address 10000 as 2710, 
and address 16000 as 3E80. 

A program cannot be relocated if pseudo
registers are used as base registers. This 
disadvantage, however, may be outweighed by 
having all the general registers available 
for other purposes. 

DROP -- RELEASE BASE REGISTER 

If a general register has been assigned the 
functions of a base register, it cannot be 
used for other proqramming purposes unless 
the programmer cancels the assignment. 
This can be done by means of a DROP 

statement. 

ri----Ti--------~lr-------------------------__, 

INamelOperationlOperand I 
I +-- --J 
IUSING IADDR,11 I 
I I I· I 
I I I I 
I I I , 
/ / / / 
'V , , 
,DROP /11 , 

~ __ -4' ________ ~I~ ______________________ ----J 

After the DROP statement in the above 
example, register 11 can be used as an 
index register, an accumulator for arith
metic operations, etc. A name entry is not 
used in the DROP statement. If a name is 
specified, it is disregarded by the Basic 
Assembler program -- if it conforms to sym
bol specifications. Otherwise, the state
ment is identified by a diagnostic message 
in the program listing. 

Functions of the Assembler.Language 25 



A program is relocatable if it fulfills the 
following conditions:---

1. It must contain all of the loader 
information produced by the Basic 
Assembler program (i.e., the punching 
of ESD and RLD cards must not be sup
pressed during the assembly of such 
programs). 

2. At least one of the general registers 8 
to 15 must be used for address 
generation. 

3. It must not contain absolute expres
sions to refer to areas that are to be 
relocated. 

A program is ~~§Q!utg if at least one of 
pseudo-registers 0 to 3 is specified and 
used for address generation throughout the 
program. 

Absolute pro g:amming has the advantage 
of saving general registers for programming 
purposes other than address generation. In 
addi tio n, t he Basic Assembler p rog ram is 
not required to split the specified abso
lute addresses if pseudo-register 0 is spe
cified in an appropriate USING statement. 
Absolute programming does not restrict the 
application of symbolic addressing. 

Absolute programming must not be used 
under the following conditions: 

1. If (1) the Ioes is used, and (2) the 
source program and the symbolic Ioes 
routines are to be assembled 
separately. 

2. If subsequent parts of a program are 
loaded and executed together. In this 
case, only the program loaded first may 
be absolu tee 

26 System/360 Model 20 Basic Assembler Language 

o 

I 

o 

o 



o 

o 

o 

Extensive programs that exceed the avail
able main storage capacity must be subdi
vided into sections that are assembled 
separately. 

Since the Basic Assembler program is no 
longer required during object program 
execution, storage availability is 
increased, which may allow the loading and 
simultaneous execution of more than one 
object program. 

Two jointly executed program sections 
may contain the same symbols, provided 
these symbols are ~efined in only one of 
the two programs. In addition, these two 
program sections must be linked together by 
means of EXTRN and ENTRY statements. These 
statements are described below. 

For the joint execution of two programs (A 
and B), EXTRN statements must be used in 
program B to introduce symbols that are 
used in program B hut defined in program A. 

r i i 

INamelOperationlOperand 
~ I I 
1 I EXTRN 1 F 1 
L ____ ..L-

1 
~ 
I 

J 

The EXTRN statement in the above example 
introduces F1 as a symbol that is defined 
in another program section. 

A name entry is not used in the EXTRN 
statement. If a symbol is entered in the 
name field, it is ~isregarded by the Basic 
Assembler program -- provided it conforms 
to symbol specifications. otherwise, it is 
identified by a diagnostic message in the 
program listing. 

Only one operand -- a relocatable symbol 
-- may be specifie~ in an EXTRN statement. 
Each additional external symbol must be 
introduced by an anditional EXTRN 
sta tement. 

If an external symbol is to be used, the 
following action is required: 

1. An address constant must be created for 
the external symbol. 

2. The address constant must be loaded 
into a general register. 

PROGRAM LI NKING 

3. The external symbol must be referred to 
in the program by means of the above 
general register. 

The maximum number of EXTRN statements 
to be used within one program sequence is 
14~ Symbols contained in statements in 
excess of this number are indicated as 
undefined in the program listing. 

An EXT RN stat ement must immediately fol
Iowa START statement, an ENTRY statement, 
or another EXTRN statement. If an EXTRN 
statement is incorrectly placed, it is 
identified by a warning message. If it 
contains an incorrect operand, it is iden
tified by an error message. In either 
case, the statement is not used. 

An EXTRN statement in program B requires an 
ENTRY statement with the same operand in 
program A, where the appropriate symbol is 
defined. 

r---~--------~-------------------------' 

INamelOperationlOperand 1 
~-+---------1--------------------------~ 
IPRGAISTART 12000 I 
1 IENTRY IF1 I 
I I I I I 
I I I I I 
I I I I I 
I I V I I 
I F 1 IDe I X L2' F 0 F 0 ' I 
I lEND IPRGA I L----L-________ ..L-_________________________ J 

The above ENTRY statement permits pro
gram D, which has been loaded and stored 
behind program A, to use the contents of 
the field Fl. 

The Basic Assembler ENTRY statement fol
lows the same syntax rules as the EXTRN 
statement. The START statement of a pro
gram can also be used instead of an ENTRY 
statement; that is, program names need not 
be introduced as linkage symbols by ENTRY 
statements. 

The order in which independently 
assembled programs are loaded determines 
the extent of their linkability by means of 
the relocatable program loader. Programs 
containing the entry points must be loaded 
ahead of the programs containing the corre
sponding external links. 

Program Linking 27 



r------------------------------------------~ ---, 
I !1!I~_R.ftQ~R!!i I ~Q1H!QQTl1!] I 
I I I 
l-------T---------~ . I ---,---------.--T------------------------~ 
I Name I Operation I Operand I Name I Operation I Operand I 
,.---.....:t---------+----.~--------------~--_+_ ~ ~ 

CRDT ST ART r-----+->CVB ST ART 1000 

GET 

F ,

YCVB 

I 
I 
I 
I 
I· 

ENTRY F1 EXTRN F1 
EXTRN C VB . BASR 11,'0 
I3ASR 
USING 
LH 
XIO 

I 
I 
I 
v 

MVC 
'BASR 
SR 

.1 
I 
I 
v 

Be 
DC 
DC 
END 

8, a US I NG *, 11 
*,8 MVC WAN,KOO 
12,YCVB LH 10,YFl 
INPT(X'12'),80 MVN WAN+l(1),O(10) 

Fl,INPT+l0 
9,12 <--------~ 
13,14< 

15,GET 
C'OO' 
Y (C VB) 
CRDT 

I 
I 
I 
V 

AH 
rj -+---~--+-B C R 

J WAN DS 
KOO DC 

YFl DC 
END 

13,WAN 
15,9 
H 
H' 0' 

Y (F 1) 
CVB 

L-_____ ~ ________ ~ ____ ~---------
~----------------------

Figure 9. Sample of Program Linkage 

o 

I 

However, a, program may refer to the names 
of programs loaded subsequently, by means 
of .the Include Segment (ICS) card of the 
Relocatable-Program Loader. This is 
described in the SPL publication 1]~ 
~y~!~mL1QQ_!1QQgl-1~_~~~Q_Erog~amming_~~E= 
EQ£iL_~asi£~~!ili!y_R.~Qg~~m~L E~n£tiQn~_~nQ 
Q.E e r ~.ti.!l.9:_R..£Q£gQQ~g~, F 0 r.m C 26- 360 4. 

program to allow branching to cva, which (-)1 
the EXTRN statement declares to be an 
externally defined symbol. 

SAMPLE PROGRAM 

A sample' program that illustrates program 
linking is shown in Figure 9. 

The main program in Figure 9 is assumed 
to deal with data in binary form. Since 
the data obtained by means of the XIO sta
tement is in u~packed decimal form, the 
subroutine is used to convert the data into. 
binary. To achieve this, the main program 
must be loaded first l using the Relocatable 
Program Loader, including an IeS card to 
allow reference to the subroutine which is 
loaded after the'main program. (The two 
programs in thi~ example are corisidered to 
be separately assembled.) 

'Program linkage is achieved as fo+lows. 
Through the rcs card, the loader reserves a 
storage area for the subsequent program 
while loading the main program. The 
address of the reserved area is loaded into 
register 12 during execution of the main 

An ENTRY statement in the subroutine'is 
not required for eVB because the START sta
tement I in this ca'se, serves the s arne pur
pose. During execution of the main pro
gram, the data that is read from cards (XIO 
instruction) is stored in the field INPT. 
For conversion into binary f6rm, the appli
cable data section is moved into Fl. Then 
the program branches into the subroutine 
(BASR instruction). 

The contents ~f F1 are available to the 
subroutine because Fl is declared to be an 
external symbol by the EXTRN statement, and 
an entry is provided by an appropriate sta
tement. in the main program. In addition, 
the address of Fl is loaded ~nto register 
10 during execution of the subroutine. 
Explicit addressing with base register 10 
and a displacement of a (MVN instruction) 
enables the subroutine to make use of the 
reguired data. 

The contents of Fl are processed until 
the final step (AH instru6tio~ results in 
a binary value contained in register 13. 
Then, a branch back to the main program is 
performed (BCR 15,9) and the binary value 
in register 13 is at the disposal of the 
main program. 

28 System/360 Model 20 Basic Assembler Language 

o 



o 

o 

o 

EQU -- EQUATE SYMBOL 

The Basic Assembler instruction EQU is used 
to equate a symbol to the attributes of an 
expression. 

The EQU statement consists of (1) the 
name entry, (2) the operation code EQU, and 
(3) an expression as a n operand. All sym
bols appearing in the operand of the EQU 
statement must have been E£~viouslL 
defined. 

r i i 1 

IName I Operation IOperand I 
r----+ ----~I------------------------~, 
IREGSIEQU 15 I 
L. __ ~ ___ 

J 

The symbol REG5 is equated to the abso
lute value 5 and thus becomes absolute. To 
the Basic Assembler program, it is of no 
further significance whether REGS or the 
value 5 ~s specified in the operand of a 
statement elsewher~ in the program. 

To reduce programming time, symbols can 
be equated to frequently used compound ex
pressions, as shown in the following 
example: 

r i j , 

INamelOperationlOperand I 
~---+ -+I----------------------~, 
ICALCIEQU IA-R+C I 
L ____ ~ _________ ~___ J 

DC -- DEFINE CONST~NT 

Constants are data supplied to the program 
by the Basic Assembler stateme~t DC (define 
constant) • 

r---------~-~ 

The object program refers to these con
stants by their symbolic addresses,i.~., 
each DC statement is normally identified by 
a symbol that point~ towards the storage 
location of the constant. A DC statement 
may have only one operand which has the 
following components: 

Type Length 
Modifier 

Constan t 

The type is written as a single letter, 
C, X, H, or Y. The length modifier is 
written as a decimal integer, preceded by 
the letter L. It must not be specified for 
Hand Y-type constants. 

The four types of constants are shown in 
Figure 10. 

The length of a constant must not exceed 
16 bytes including the bytes skipped for 
boundary alignment. Constants exceeding 
these lengths must be defined by subsequent 
DC statements. For example, the character 
constant C'THIS PARAMETER COMBINATION IS 
INVALID' should be defined as 

PRT 1 DC 
DC 
DC 

C'THIS PARAMETER C' 
C'OMBINATION IS IN' 
C'VALID' 

The symbol PRT1 in the statement below 
still refers to the complete sentence; 
i.e., it causes the complete sentence to be 
transferred to position FLDA. 

MVC FLDA(37),PRTl 

Character constants may consist of any of 
the 256 EBCDIC characters. Each character 

i 

I Type 0 f I Co del ~ a chi n e Fo r mat 0 f the Con s tan t IAlignment at I 
I 

-1 
I Constant I I I 
~----------+----+--- I 
ICharacter I C 18-bit code for each character by te bounda ry 
I I I 
IHexadecimall X 14-bit code for each hexadecimal byte boundary 
I I Idigit 
I I I 
IHalfword I H 116-bit binary equivalent of the halfword boundary 
I I Ispecified value (signed) 
I I I 
I Address I y 116-bit binary equivalent of halfword boundary 
I I Isymbolic or absolute storage 
I I I~ddress 
L ___________ L ____ L 

Figure 10. Types of Con~;tants 

Definition Instructions 29 



in these constants occupies one byte of 
main storage. 

DC statements that define character con
stants may comprise all of the three 
operand components: type, length modifier, 
and the constant. 

~lf~!!!E1~: 
r---,-- -,--
l.ameIOperationIOp~rand 

l----f-------+ 
ICON11DC ICL4'ABCD' 
L __ ~_ 

, 
I , 
I 

J 

In the above example, the name entry,and 
length modifier are optional and may be 
omitted. 'This statement causes the con
stant ABCD to be generated in main storage. 

The length modifier (L4) coincides with 
the number of characters in the constant. 
Therefore, it has no effect because the 
Ba~ic Assembler program assumes the length 
of the constant to be implied if the length 
modifier is omi tten. However, if the 
length modifier disagrees with the number 
of chatacters in the constant, the constant 
is modified as follows. 

1. rf the length modifier is smaller than 
the number of .characters in the con
stant, rightmost digits of the constant 
are dropped to achieve.agreement with 
the modifier. 

2. If the length modifier is greater than 
the number of characters in the con-
stant, the excess rightmost bytes are 
fille~ with blanks until ·the length of 
the constant agrees with the len~th 
modifier. 

The constant must be enclosed by apos
trophes. The length of the constant must 
not exceed 16 bytes. Apostrop hes and 
ampersands that aie to appear within con
stants must be written twice but are coun
ted only once. 

Ex~llig: 
statement: CON2 DC C" 'TOTAL 1 0' , , 
Generated as: ' TOTAL 1 0' (implied lengt h 

10 bytes) 

Sta tement: CON2 DC CL l' YY' 
Generated as: Y (explici t 

length one 
byte) 

In the last example, the specification 
of the length modifier (L1) causes the last 
character y to be truncated. This state
ment will be identified by a warning mes
iage in the program listing. 

Hexadecimal constants are used to introduce 
data characters each of which occupies half 
a byte of main storage. DC statements that 
define hexadecimal constapts may comprise 
all of the three operand components: type, 
length modifier, and the constant. 

r----r i ..,.----, 

I Namel Operation IOperand . I 
~-+------+------""'--------"'-----~ 
IMASKIDC IXL3'A345BF' I __ ~ _________________________ ----J 

In the ab~ve example, the name entry ~nd 
length modifier are nptional and may be 
6mitted. This stat~ment causes the con
stantA345BF to be generated in main 
storage. Each pair of digits is translated 
into one byte. ThUS, the length modifier, 
L3, coincides with the length of the con
stant and has no effect because the implied 
length is half the number of hexadecimal 
digits specified if the length modifier is 
omitted. However, if the length modifier 
is not equal to half the number of hexade
cimal digits i the constant is modified as 
follows: 

·1. If the length modifier is smaller than 

o 

I. 

the number of pairs of hexadecimal 0 
digits the leftmost digits of the con- I 
stant are dropped to achieve agreement ~ ,.:.. 
with the modifier. 

2. If the length modifier is·greater than 
the number of pairs of hexadecimal· 
di gits, t he ex cess leftmost by tes are 
filled with zeros until the length of 
the constant agrees with the length 
modifier. 

The constant may consist of any number 
of valid hexadecimal charaqters, 0 to 9 and 
A to F, but must not exceed 32 digits. If 
an odd number of digits is specifie~, a 
hexadecimal zer~ is added to the leftmost 
position. 

~gmple§.: 

Statement: TRIX DC X' 3 AF" 
genera ted as: 03AF 

Statement: INCR DC XL4' BAOS' 
generated as: 0000BA05 

statement: TRNC DC XL2' AFE696' 
generated as: E696 

In the last example, th~ specification 
'of the length modifier (L2) causes trunca
tion of the digits AF. The truncation 
causes the statement to be identified by a 
warning message in the program listing. o 

30 System/360 Model 20 Basic Assembler Language 



o 

o. 

o 

A hexadecimal constant can be used to 
set the binary bits of a halfword. The 
constant in the following example sets the 
eight leftmost bits of a halfword to 1's. 
Since a hexadecimal constant is not boun
dary aligned, the preceding DS statement is 
applied to force this condition. (For a 
discussion of DS statements refer to the 
section Q~-==-]efin~_StQ£~g~.) 

r i I , 

INamelOperationlOp~rand I 
~---+- -+I--------------------~~, 
I I DS 10H I 
ITESTIDC IX'FFOO' I 
L--...L-

A half word constant is a signed integer, 
aligned at a halfword boundary. The 
operand must not contain a length code. 

r----~-------~----------------------____. 

INamelOperationlOp~rand I 
~ I -+-- ~ 
IWORKIDC IH'-24' I 
L-___ ~ __ . ______ ~ ----J 

The name entry is optional and can be 
omitted. The abov~ statement causes the 
generation of one halfword in main storage, 
containing the value -24. 

The highest allowable value for a half
word constant is 32767, the lowes~, -~2768. 
If a specified number exceeds either value, 
the constant is set to zero and the state
ment is identified by a warning message in 
the program listing. Unsigned numbers are 
considered to be positive. 

An address constant is a relocatable or 
absolute expression, enclosed in paren
theses with the prpfix Y. It is used for 
indexing {i.e. , generating and incrementing 
address values to scan main storage) and 
for program linkin0. The operand must not 
contain a length modifier. 

r----.--------~--------------------------, 

INamelOpetationlOpprdnd I 
~ I -+----------------------~ 
IADTAtDC IY(TABL) I L-___ ~ ________ ~ __________________________ J 

In the above example, the address of 
TABL is stored at position ADTA. If ADTA 
is now loaded into a register, ari AH 
instruction can be used to update or incre
ment this dddress by any desired value. 

This is demonstrated in Figure 14 and in 
the section IDg~iDg. 

The routine PRGM in Figure 14 calculates 
certain values, which are then stored in 
the 480-byte table defined by TABL. The 
program loads the fir?t value to be stored 
into register 10 (sta tement 034 A) and 
branches to LOOP (statement 0330). 

The statement named LOOP stores the 
value of register 10 in the location desig
nated by register 8, ~hich is the table 
address ADTA loaded into r~gister 8 by the 
statement named RTN. Thus, the first cal
CUlation result is stored in the first 
table position. 

The AH statement then increments the 
contents of register 8 (i.e., the table 
address) by four, the implied length of 
each position. The contents of register 8 
now point to the second table position. 

Successive repetitions of the procedure 
continue until the table is filled or the 
program is terminated by the TM 
instruction. 

The use of the address constant to link 
two or more simultaneously executed program 
parts is discussed in the section PrQgra~ 
LinKing. 

An absolute expression is specified in 
the operand of an address constant if a 
branch to an absolute address is performed 
during the C3urse of a program. But the 
program must be relocatable. Obviously, 
the absolute address should be updated upon 
program relocation to avoid branching to 
the wrong statement. This updating is 
guaranteed by the address constant. One 
method of accomplishing this updating is 
demonstrated by the following example. 

BC 15,0 
ORG *-2 
DC Y(3215) 

In the normal branch instruction BC 15, 
3215, the address 3215 would not be altered 
upon program relocation. Therefore, the 
second operand is set to zero as the branch 
instruction is assembled. 

On its own, this imperativ3 branch 
instruction would be invalid because it 
instructs the computer to branch and, at 
the same time, prevents the brilnch by set
ting the branch address to zero. However, 
the Basic Assembler program does not con
sider this statement incorr~ct since all 
syntax requirements are satisfied. The 
second operand of the BC instruction can be 
omitted, provided the comma is written. 

Definition Instructions 31 



Bytes 2 3 4 5 6 7 8 9 

10. 11 12 13 

Figure 11. Uneconomical Storing of a Sequence of Constants 

The ORG statement reduces the value of 
the location counter by two bytes so that 
it points to the location of the second 
operand of the BC instruction, which is 
updated if the proqram is relocated. 

Halfword and address constants are automat
ically aligned at halfword boundaries by 
advancing the location counter to the prop
er value (multiple of 2) when either type 
of constant is encountered in the source 
program. 

For economical use of main storage, the 
sequence in which constants are defined 1S 
important. The following example shows the 
definition of a sequence of ~onstants. It 
is assumed that the first storage position 
of these constants is not boundary aligned. 
CandX-type constants have an implied 
length of one byte. 

DC C (character type) 
DC X (hexadecimal type) 
DC H (halfword type) 
DC X (hexadecimal type) 

. DC y (address type) 
DC C (character type) 
DC y (address type) 

They are stored as shown in Figure 11. 

As shown in Figure 11 three bytes are' 
not used. A more economical specification 
sequence is 

DC C (character type) 
DC H (halfwordtype) 
DC y (address type) 
DC y (address type) 
D~ X (hexadecim~ltype) 

DC X (hexadecimal type) 
DC C (character type) 

resulting in the storage allocation shown 
in Figure 12. 

DS -- DEFINE STORAGE 

The DS (Define Storage) statement is used" 
to reserv~ storage for work areas, I/O 
areas, tables, etc. These storage areas 
are not set to zeros or blanks. The loca
tion counter is incremented during assembly 
by the number of bytes implied in the 
operand .of the DS statement, leaving the 
respective storage positions unused when 
the object pcogcam is loaded. The program 
later refeLS to this area by the symbolic 
address of the DS statement. The DS state
ment can also be used to effect boundary 
alignment of the subsequent program sec
tions. The DS statement has only one 
operand. It has the following format: 

Duplication' 
Factor 

Type L engt h 
Modifier 

The duplication factor is written as a 
decimal integer; the type is written as a 
single letter, C or H. The length modifier 
is wri t ten as a deci mal int eger, precede:i 
by the letter L. It may only be ~pecified 
for C-typeconstants. The maximum value is 
256. The storage area that can be reserved 
by a DS stat~ment is limited only by the 
~apacity of the location counter. 

The H-type o~erand is employed to reserve a 
storage area the subfields of which have an 
implied length of two bytes. 

Figfire 12. Economical Storing of a Sequence of Constants 

32 System/360 Model 20 Basic Assembler Language 

o 

I 

o 



o 

o 

o 

.------,- i ---------------, 
INamelOperationlOpprand 
t I I 
IINA11DS 120H 

I 
-f 
I 

L---_~ ____ ~I~ ______________ • ____________ ~ 

This statement causes 20 halfwords (40 
bytes) of main storage to be reserved, 
beginning at a hal~word boundary. The 
leftmost byte of this area carries the sym
bolic address INA1. Each storage field 
referred to by this address has the implied 
length of two bytes. The knowledge of the 
implied length is important if INA1 is spe
cified as an operand of a machine instruc
tion that requires the inclusion of a 
length factor. 

For reservation of storage areas with sub
fields of different implied lengths, the 
C-type operand is used. 

r I --r , 
INamelOperationlOperand I 
r----t -+I-------------------------~ 
IINA21DS 110nCL3 I 
L J 

This statement reserves 100 fields of 
main storage with a length of 3 bytes each, 
a total of 300 bytes, addressable through 
the symbol INA2. This reserved area is not 
boundary aligned. 

The length modifier of a DS C-type sta
tement may have any value from 1 through 
256. Additional examples of DS statements 
are shown below. 

AREA DS CL100 defines one field of 
1no bytes. 

FLD1 DS 80C defines 80 fields of 
one byte each. 

While the Basic Assembler is processing 
a DS statement, it discontinues the punch
ing of the current TXT and RLD cards. 
Punching is resumed with a new TXT card for 
the location following the reserved area(or 
areas}. Therefore, all DS statements of a 
program should be qrouped together to 
reduce the number of TXT cards punched. 

Data fields frequently contain values that 
will be loaded into a register in the 
course of a program. These data fields 
must be aligned at a halfword boundary. 

If the data is defined as character or 
hexadecimal constants, i.e., data is not 
automatically boundary aligned, it may be 
difficult to verify this alignment, espe
cially in a complex program. In such a 
case, it is better to force boundary align
ment, as a precaution, thus removing the 
need to verify. 

In the following example, a storage area 
named AREA is defined, with an implied 
length of 128 bytes. The preceding DS sta
tement with a duplication factor of zero 
sets the location counter to a halfword 
boundary. 

I I ,--------------------------, 

INamelOperationlOperand I 
/----_+_ I ~ 
I IDS 10H I 
IAREAIDS ICL128 I 
~--~----------~------------------------~ 

A duplication factor of zero is also 
used to assign a name and a length attri
bute to a st:>rage area without actually 
reserving it. Subseguent DS or DC state
ments then establish subfields within the 
larger area by aSSigning addresses to these 
subfields and generating data. 

In the example in Figure 13, the name 
PAYR is assigned to an area of 50 bytes. 
No space is actually reserved at this 
point, but subseguent DS statements subdi
vide and reserve the storage within the 
area PAYR. The symbols PYNO, REGH, etc., 
which are specified in the name fields of 
the DS statements, allow reference to sub
sections of the area PAYR. The address 
PAYR still implies the length of 50 bytes 
and refers to the area as a whole. 

r----r- ~I-------------------------

INamelOperationlOperand 
J---+-------+ 
IPAYRIDS OCL50 
I IDS 2H 
IPYNOIDS CL6 
ILNAMIDS CL10 
IFNAMIDS CL10 
IREGHIDS H 
IOVTMIDS H 
I STRTI DS CL4 
IOVRTIDS CL4 
ISLRYIDS CL~ 
I IDS H 
L--l... 

Figure 13. Reservation of Main storage 

, 
I 
~ 

Definition Instructions 33 



Basic Assembler control instructions are 
used to begin assembly (START), end assem
bly (END), and set the location counter to 
a value at a halfword boundary (ORG). 

START -- START PROGRAM 

When a program is loaded, a start address 
normally specifies the point where the 
first byte of information is to be stored. 
Bytes 0 to 155 of main storage lie within 
an area that contains information required 
for the execution of a program. This 
information must not be overwritten. 
Therefore, the lowpst usable start address 
is 156 (hexadecimal 009C). nefore a source 
program or the Basic Assembler program can 
be loaded, a program to execute the loading 
functions is required. such a program (the 
Absolute-Program Loader or the Relocatable
Program Loader) is stored from location 156 
upward. The Absolute-Program Loader, for 
example, requires '60 bytes of main 
storage, which increases the possible start 
address for the source program to 316 
(hexadecimal 013C). A start address of 156 
can be used in this case, provided the sub
sequent 160 bytes are reserved for the 
Absolute-Program Loader by means of an 
appro~riate DS or nRG statement. 

The start address is specified in a 
START statement. The operand of the START 
statement specifies the tentative loading 
point in the form of an absolute address. 
The value of the location counter is incre
mented to represent this address as soon as 
the START statement is read by the Basic 
Assembler program. If the START statement 
is omitted, the location counter is auto
matically set to 340. (A START statement 
without an operand should not be used and 
is flagged with a C.) 

START 1000 

This statement causes the location coun
ter to be advanced to 1000. Since the 
START statement does not consume any 
storage space itself, the specified start 
address is assigned to the instruction that 
follows the START statement. If a symbol 
is entered in the name field of a START 
statement, it is considered to be the pro
gram name and is entered in the symbol 
table, together with the start address of 
the program. In addition, the Basic Assem
bler program causes the name to be punched 

into columns 73 to 76 of each object pro
gr am car d. 

]~i~: For the purpose of boundary align
ment, the start address should be an even 
number. If it is an odd number, the Basic 
Assembler program advances the location 
counter to the next higher even value above 
the specified start address. 

END -- END OF PROGRAM 

A program written in Basic Assembler lan
guage must be terminated by an END state
ment, which supplies the branch address 
required for program execution after the 
program is loaded. 

The operand :::>f the END statement con
tains the address of the point to which 
control is t:::> be transferred on completion 
of the loading process. This is normally 
the address ~f the first machine instruc
tion in the problem program. 

r---~---------T--------------------------' 

INamelOperationlOperand 1 
I I I ~ 
IPBL11START 1340 I 
IBGN IBASR 110,0 I 
I I I I 1 
I I I I 1 
I I V I I 
I lEND IBGN I 
~ __ ~ ___________ ~ _________________________ ----J 

In the ab:::>ve example, the start address 
for program execution is BGN. When the END 
card is read, the address contained in the 
operand of the END statement is loaded into 
register 12 by the Absolute-Program Loader, 
followed by a branch to the address in 
register 12, which initiates program 
execution. 

If it is desired to load more than one 
program for simUltaneous execution, the 
Relocatable-Program Loader must be used and 
a load terminate (LDT) card must be sup
plied. In this case, the loader program 
disregards the END card. For further 
details refer to the SRL publication l]~ 
~y§!emLl§~od~l_~CaXQ_Progx~~~ing_~gE= 
EQ~!~~asi~!ility_Pro~ams~_E~n£1iQn§_anQ 
Q£§~atln~R~Q~~Q~~~§, Form C26-3604. 

34 System/360 Model 20 Basic Assembler Language 

o 

I 

o 

o 



o 

o 

o 

ORG -- RESET LOCATION COUNTER 

The ORG statement is used to reset the 
location counter to any desired value. 

The statement ORG *+500 causes the present 
value of the location counter to be incre
mented by 500. The operand of an ORG sta
tement is invalid if it is not a relocat
able expression, if the expression consists 
of or includes a symbol that has not been 
E£gviously_defingg, or if the name field of 
the statement contains an invalid symbol. 
A valid symbol in the name field is disre
garded by the Basic Assembler program. 
Invalid operands are identified by error 
messages in the program listing. The loca
tion counter should not be reset to a value 
lower than the start address of the program 
unless it is to be loaded by the Absolute
Program Loader. The ORG statement can be 
used when source and object programs exceed 
the available main storage capacity and 
must, therefore, be assembled and executed 
in separate phases. 

The program shown in Figure 14 executes 
certain scientific-mathematical calcula
tions and stores the results in a 480-byte 
table, which is printed out later. The 
calculations are assumed to consist of two 
phases, each of which requires 3200 bytes. 
This means that (with an available storage 
capacity of 4096 bytes) each calculation 
rou ti ne must be as~em bled sep ar at ely. The 
resulting object programs are executed one 
after the other. 

For this reason, the table area where 
the results of the calculations are stored, 
was reserved at the first available posi
tions of main storage, followed immediately 
by the constants and program routines 
required for all successive calculation 
phases. This information occupies storage 
locations 013C to "340 (the 'addresses are 
given in hexadecimal notation to facilitate 
reference to Figure 14), and will not be 
overwritten when subsequent program phases 
for execution of the assembly are loaded. 

The statement PPGM MVC X(5) ,Y, which is 
stored at position 0344, is the firststa
tement of the calculation routine. All 
other statements o~ this procedure have 
been omitted, excent those that demonstrate 
the chaining of the various program 
routines. 

When the first result has been calcu
lated, it is loaded into register 10 (sta
tement 034A). The program then branches to 
LOOP (statement 0330). The following pro
gram segment stores the result in the first 
position of the table area (a detailed 
explanation is given in the section ~~_== 
~efilJ~L£onst~nt) , and tests a switch to 
determine if the program must go through 
the calculation routine again to compute 
another result. 

If this is the case, the program 
branches to PRGM. Otherwise, the calcula
tion phase has been completed and the pro
gram branches to the loader area (statement 
033C) to read calculation phase 2 into main 
storage. 

Calculation phase 2, as a separately 
assembled program, also begins with a START 
instruction. H~wever, since the loader 
does not use it, register 14 has the same 
contents as during the previous assembly. 
Therefore, the BASR instruction can be 
omitted and the START address becomes 318. 
However, the USING instruction is required. 

Now the previous program part must be 
linked to the subsequent one. The ORG sta
tement is used to reset the location coun
ter to position 0344. This is the start 
address of the calculation routine phase 1, 
which is no longer required and can be 
overwritten by phase 2. 

Since the operand of the ORG statement 
must be relocatable and hexadecimal 0344 is 
an absolute address, the location counter 
is set to 0 (*-318) and the desired address 
0344, which is e gua I to PH2, is added. The 
operand *-318+PH2 thus obtained is relocat
able. The address 0344 can be determined 
only from the program listing, after the 
assembly of phase 1. It must then be 
inserted int~ a previously prepared state
ment card. 

The location counter setting of 0344 
causes the subsequent program (a) to be 
10dded, starting at this position, and (b) 
to overwrite phase 1. 

By following this procedure, any number 
of programs can be assembled separately and 
then be linked for successive execution. 

Definition Instructions 35 



onc PBli START 316 001 0 onc ODEO BGN BASR 14,(l 002 
013E USING ·,14 002 
OnE 41FO EIEA BC 15,RTN 002 
0142 TABl OS 120Cl4 DEFINE RESULT TABLE 002 
0322 0142 ADTA De Y(TABU 003 
0324 0004 FOUR De H'4' 003 
0326 FO SWIT DC el1'O' 003 

I 0008 R8 EQU 8 003 
0009 R9 EQU 9 003 
OOOA RIO EQU 10 003 
0328 4880 EIE4 RTN LH R8,ADTA LOAD TABLE ADDRESS 003 
032C 47FO E206 BC 15,PRGM 003 
0330 40AO 8000 lOOP 5TH R10,0(O,R81 BRING RES INTO TABL 003 
0334 4A80 EIE6 AH R8,FOUR I NeRM TABLE ADDR 003 
0338 9101 EIE8 TM SW IT, 1 TEST FOR PROGRAM END 003 
aBC 4710 009C Be 1,156 lOAD PHASE 2 003 
0340 47EO E206 BC 14,PRGM REEXEeUTE PHASE 1 003 

• • 
·START CALCULATION PHASE 
• • 

U 0344 0204 0000 O(li)O PRGM Mve X(5I,Y 003 

• • 
.THIS PROGRAM PHASE REOUIRES CA. 3200 BYTES 
• • • • 

U 034A 48AO onoo lH R10,RES LOAD RESULT INTO RIO 003 
034E 47FO ElF2 BC 15,LOOP INITIATE TABLE ENTRY 003 
ODC END BGN 005 

Figure 14 (Part 1). Programmed Routine for Table Look-up and Program Linking o 

·START CALCULATION PHASE 7. 
013E START 318 001 
OBE USING .,14 002 
ODOA RIO EQU 10 002 
0326 SWIT EQU X'0326' SYMBOL LINKING 002 
0330 lOOP EQU SWIT+10 SYMBOL LINK ING 002 
0344 PH2 EQU X'0344' ADD OPERND AFT ASS3LY PHI 002 
0344 ORG .-318+PH2 JUMP TO FIRST AVAI L LOC 002 

• • 0344 92FI 0326 PBl2 MVI SWIT,C'l' BEGINNING OF CALC PH2 002 
• • 
.THIS PROGRAM PHASE REQUIRES CA. 3200 BYTES 
• • • 

U 0348 48AO 0000 lH R10,RES lOAD RESULT INTO RIO 002 
034C 47FO 0330 BC IS,lOOP INITIATE TABLE ENTRY 002 
0344 END PBl2 003 

Figure 14 (Part 2). Programmed Routine for Table Look-up and Program Linking o 
36 System/360 Model 20 Basic Assembler Language 



o 

o 

o 

Input/output ope~~tions can be caused in 
two ways: 

1. by means of thp Input/Output Cont~ol 
System (laCS), or 

2. by w~iting I/O ~outines using the Basic 
Assembler I/O inst~uctions. 

The use of laCS dllow~ the writing of 
mac~o inst~uctions, as explained in a sub
sequent section. ~he second mathod, the 
writing of individual I/O ~outines, is 
explained in the following parag~aphs. 

Three types of T/O inst~uctions a~e 
available in the Basic Assembler language: 

1 • XIO instructions (execute input and 
output) . 

2. CIa instructions (control input and 
output) • 

3. TIOB instructions (test input and out-
rut and b~anch' • 

The XIO statement has an SS format, and 
CIa and TIOB statements have 51 formats, as 
explained in the spction ~achi!!.~.-lns1.£uc= 
liQ.!l_IQI!!l~1~· 

All three instructions include the unit 
and function (UF) specification field. 
Data in this field must be specified in 
hexadecimal notation. 

XIO -- EXECUTE INpnT/OUTPUT 

The operand entry of an XIO instruction is 
w~itten 

Dl (UF,El) ,D2(B2) 

o~ when using symbolic addressing, 

Symbol 1 (UF), Sym bol 2. 

U designates the Qnit used as the I/O 
device and F designates the assigned func
tion, i.e., the oppration to be executed. 

For example, a 2501 reader is attached 
and X'12' is specif"ied in the UF field of 
the XIO instruction. The hexadecimal digit 
1 tells the Basic ~ssembler program that 
the 2501 is used and the hexadecimal digit 
2 indicates that the unit must read a card. 
A complete list of all UF codes is provided 
in Appendix C. 

Depending on the specification in the UF 
field of the XIO instruction, the second 
symbol designates the amount of data to be 
handled du~ing the I/O ope~ation; i.e., the 
number of ca~d columns to be read or 
punched, or the number of characte~s to be 
printed. Samples of XIO instructions are 
shown in Figure 15. 

~Q1g: If the XIO statement refers to a 
card unit, the value in the second operand 
must not exceed 80. If it refers to a 
p~inte~, the maximum value is 144 for a 
2 2 0.1 P r i n t e ~ ; 1 3 2 for a 1 40 3 Mo del 2 0 r N 1 ; 
and 120 for a 1403 Model 7. 

T---------------------, 
INotelName Ope~ationlOperand I 
t--+ I 1 
I ICARD EQU 180 I 
I ILINE EQU I 100 I 
11. lOUT XIO IFLDA(X'40') ,LINE I 
12. lOUT XIO I OUTB (X' 40' ) ,20 I 
13. IPNCH XIO IOUTA(X'36') ,CARD I 
I 4. IINPT XIO I IN 1 (X' 23') ,16 I 
15. IINPT XIO I EXAR (X' 24') ,CARD I 
~ __ _L_---L-________ ~ ____________________ J 

Figu~e 15. Sample of XIO Instructions 

1. Prints 100 characters on the attached 
1403 or 2203 printer. 

2. Prints 20 characte~s on the attached 
1403 or 2203 printer. 

3. Punches 80 columns on the attached 1442 
Card Punch, Model 5. 

4. Reads the first 16 columns of a card 
f~om the se CDnda~y hopper of the 
attached 2560 MFCM. 

5. Punches 80 columns of a card from the 
primary hopper of the attached 2560 
MFCM or 2520. 

CIa -- CONTROL INPUT/OUTPUT 

CIa instructions are used to control the 
operation of attached I/O devices. With 
card I/O devices, the CIa instruction is 
used for stacker or print-head selection; 
with a printe~, the CIa instruction is used 
to cause spacing or Skipping. 

The instruction is written in the fol
lowing format: 

C 10 D 1 (B 1) , UF 
or 

CIa 51, UF (S=sy mbol) 

Input/Output Instructions 37 



For stacker selection of card I/O devices, 
the unit specifications in the UF field is 
always a 2. The function specification can 
be a 0, 1, or 2, depending on the attached 
I/O device and the function desired. The 
stacker is specified by the first operand 
of the CIa statement. A summary of I/O 
instructions, including the associated unit 
and function speci~ication codes, is given 
in Appendix C. 

1 • CIO 4, X' 21 ' 
2. CIa 3,X' 22' 
3. CIa 2, X'20' 

1. It is assumed that a preceding read 
instruction caused the feeding of a 
card from the secondary hopper of the 
attached MFCM. The sample statement 
causes this card to be ejected into 
stacker 4. 

2. The card presently in the punch or pre
print station of the attached MFCM is 
ejected into stacker 3. 

3. If the attache~ unit is a 2520 and a 
preceding read or punch instruction 
caused the feeding of a card, this card 
is ejected into stacker 2. If the 
attached unit is a 2560 MFCM and a pre
ceding read instcuction caused the 
feeding of a card from the primary 
hopper, this card is ejected into 
stacker 2. 

If the I/O uni t is a 2560 MFCr. and 
stacker selection is not specified, stacker 
1 is automatically selected for cards from 

.--
r----, 

Number of print h~ad: I 2 I 3 
L-_J 

Assigned bit numbf>rs: 26 27 28 

r----, 
f!~d~.!.. 0 ! 1 ! 0 

L-----.J 

I 
I 

Decimal equivalent of V 
the binary bi t positions: 2 5 24 2 3 

I 
I 
V 

Decimal e(]ui valent of 
I the mask: 16 + 
I 

the primary hopper and stacker 5 for cards 
from the secondary hopper. Therefore, CIa 
statements that assign these functions are 
not required. 

In addition, if 6, 7, 14, or 15 is spe
cified in the first operand of a CIa 
instruction that refers to a 2560 MFCM, the 
selected cards are ejected into stacker 1. 

In the pr~gramming sequence, the CIa 
statement for a 2560 MFCM should follow a 
read instruction, if possible. In addi
tion, it must precede the next read, punch, 
or punch-and-feed instruction for the same 
hopper. For punch-card stacker selection, 
the relevant CIa instruction must be placed 
before the next read, punch, or punch-feed 
instruction, regardless of the referenced 
hopper. 

The punch-card stacker select function 
(X'22') is specified for stacker assign
ment, if the respective card is in the 
punch unit or in the pre-print station of 
the MFCl'!. 

For a 2520, the CIa statement is 
required only to assign stacker 2. In the 
programming sequence, this statement should 
precede the read, punch, or punch-and-feed 
instruction. 

Print heads are selected by using bits 26 
to 31 of the machine-instruction format as 
a mask. The mask is specified as a decimal 
integer in the first operand of the per
tinent CIa statement and sets the bits 
assigned to the individual print heads to 
one. This is illustrated, in Figure 16 • 

, 
r---, 
I 4 I 5 6 
L-__ J 

29 30 31 

r--, 
! 1 ! 0 0 
L-----.J 

I 
I 
V 
22 21 20 

I 
I 
V 

r---, 
4 I 20 I 

L ___ J 
L ____________ ~ ___________________________________________ ~ 

Figur-e 16. Sample of a Mask for Print-Head Selection 

o 

I 

0
_-'·, 

, ? 

o 



o 

o 

o 

In the above ex~mple, print heads 2 and 
4 are selected bec~use the bits assigned to 
these are set to 1 by the ma~k. The deci
mal equivalent of the mask is specified in 
the first operand of the CIa statement as 
follows: 

CIa 20,X'2.3' 

The operand X'23' refers to ·a card I/O 
device and specifies the print-head-select 
function. 

The highest decimal number that can be 
used as a mask for print head selection is 
63, which activates all available print 
heads. The mask can also be expressed in 
hexadecimal notation or in the format 
D1(B1). 

A CIa statement that refers to a printer 
must contain the unit address (U) hexadeci
mal 4. If a spacing function is requested, 
the first operand ~pecifies the number of 
space to be performed. This can be ex
pressed in decimal or hexadecimal form, or 
as D1 (B1). The maximum number of spaces 
allowed is 3. 

The appropriate function codes are shown 
in the summary of I/O instructions in 
Appendix C. 

CIa 2,X'4C' 

This statement causes the immediate 
spacing of 2 lines on both carriages of an 
attached 2203 Printer. 

If a skipping function is requested, the 
first operand specifies the channel number 
of the carriage control tape that identi
fies the line at which the skipping is 
te rmina ted. 

CIa 6,X'45' 

This statement causes the skipping of a 
page on the attached 1403 Printer, up to 
the line identifie~ by a punch in channel 6 
of the carriage control tape. 

All CIa statements that refer to the serial 
I/O channel must contain the unit address 
hexadecimal 6. For the appropriate func
tion specification refer to Appenaix C. 
The use of the first oper and D 1 (B 1) is 
described in the following SRL publication: 

l~~_~Y~ig~Ll~Q_~~Qgl_~QL_~l~_~~gngiif 
~h~£9.fig£_Rg~Qg£, For· m A 2 4-1499. 

A CIa statement that refers to the Model 20 
Communications Adapter or the Binary Synch
ronous Communications Adapter must contain 
the unit address hexadecimal 5. For the 
appropriate function srecification, refer 
to Append ix C. 

The first operand, D1 (B1), of a CIa sta
tement that refers to one of the communica
tions adapters is ignored. However, it 
must be contained in the statement, and 
must resemble a valid address. 

TIOB -- TEST INPUT/OUTPUT AND BRANCH 

TIOB statements are used to test the opera
tion al co ndit ions of the a ttached I/O 
devices or the proper execution of an I/O 
function; e.g., print error, last card, 
feed error, device busy. 

If a busy condition exists, a branch is 
performed to the address specified in the 
first operand of the pertinent statement. 
Otherwise, the subse1uent program statement 
is processed. 

The operands of a TIOB statement are 
written in the following form: 

D1(B1),UF 

or 

S 1 , U F 

1. 
2. 
3. 

TIOB 
TIOB 
TIOB 

AREA,X'24' 
*,X'40' 
HALT,X'33' 

1. This instruction causes a branch to 
position AREA after the last card has 
been read on the attached I/O device 
wi th the device addr ess 2. 

2. This statement causes the program to 
loop until the attached printer has 
completed the current print cycle. 

3. This instruction causes a branch to the 
procedure named HALT if a punch error 
has occurred on the attached 1442 Card 
Pun ch. 

A summary of the Basic Assembler I/O 
instructions, t~gether with the associated 
function specification codes, is provided 
in Appendix c. 

Input/Output Instructions 39 



SEQUENCE OF I/O IN~TRUCTIONS 

The proper sequence of the input-output instructions for different cases is shown in the 
following examples: 

CARRIAGE CONTROL: 

OR 

PRINTER CONTROL: 

CARD READER CONTROL: 

PUNCH CONTROL: 

TIOB 
TIOB 
CIa 
CIa 

TIOB 
TIOB 
XIO 
BC 
BC 

TIOB 
XIO 
BC 
BC 
TIOB 
TIOB 

TIOB 
C 10 
XIO 
BC 
TIOB 
TIOB 
TIOB 

*,X'46' 
*,X'40' 
1,X'45' 
3,X'44' 

*,X'46' 
*,X'40' 
PR T (X' 41 ' ) , 120 (0) 
4,*-6 
1,HLT 

*,X'20' 
CR D (X' 22') , 80 ( O) 
4, *-6 
1,HLT 
END,X'24' 
HLT,X'25' 

*,X'20' 
2,X'22' 
PC H (X ' 25 ') , 80 ( O) 
5,HLT 
HLT,X'21' 
END,X'24' 
HLT,X'25' 

A major part of most programs written in 
Basic Assembler language consists of the 
routines required to read data into the 
system and to produce the output of the 

TEST CARRIAGE BUSY 
TEST PRINTER BUSY 
SKIP TO CHANNEL ONE IMMEDIATELY 
SPACE THREE TIMES IMMEDIATELY 

TEST CARRIAGE BUSY 
TEST PRINTER BUSY 
PRINT AND SPACE SUPPRESS 
BRANCH IF PRINTER WORKING 
BRANCH IF PRINTER NOT OPERATIVE 

TEST READER BUSY 
READ THE CARD 
BRANCH IF READZR WORKING 
BRANCH IF READER NOT OPERATIVE 
BRANCH IF LAST CARD 
BRANCH IF FEED ERROR 

TEST READER/PUNCH BUSY 
SELECT STACKER TWO 
PUNCH SECONDARY CARD 
BRANCH IF PUNCH NOT OPERAT IVE 
TEST READER/PUNCH ERROR 
TEST LAST CARD 
TEST FEED ERROR 

processing perf3rmed on the input data. 
IBM provides the user of the Model 20 Basic 
Assembler language with a library of tested 
I/O routines, which is part of the IBM 
System/360 Model 20 Card Programming Sup
port, Input/Output Control System (CPS 
IOeS) . 

o 

I 

0 " 

o 



o 

o 

o 

r ~----------------------------, 

IMacro 1 1 
IInstructionlFunction 1 
t--------_+_--------------------~ 
IGET IMakes the next record avail- 1 
1 lable in the area specified bYI 
I Ithe user. I 
r------.---.-._t_ -i 
1 PUT IMakes a record (in an area I 
I IS{Jecified by the user) avail-I 
I lable ~or an I/O operation. I 

• I ~ 10PEN 10pens the file, i.e., ensuresl 
I Ithat all information neces- I 
I Isary to handle a file has I 
1 Ibeen provided. I 

• I ~ ·1 CLOSE I Closes the file, i. e., I 
I lensures proper handling of I 
I Ithe file after all records I 
I I ha ve hee n processed. I 

• _+_ -I ICRDPR I Moves the information to be I 
I Iprinted on a card from the I 
I Iwork area into the specified I 
I Iprint area. Used only in 1 
1 Iconnection with a 2560 MFCM. I 
~-------+- ~ 
ICNTRL ICauses the performance of 1 
I Icertain I/O functions, e.g., I 
1 Iskipping, spacing, stacker I 
1 Iselection. I 
t---------_+_ ~ 
ILOM IStarts processing of files inl 
1 Inon-overlap mode. I 

• 1 ~ IEOM IStarts processing of files inl 
I loverlap mode, in case of a I 
I Iprecening LOM macro I 
Iii nstruction. I 

• I ~ IPRTOV IChecks for printer overflow I 
1 I cond i tions. 1 

• I ~ IWAITC ICauses the problem program tol 
1 Iwait for the completion of 1 
1 lall pending card I/O opera- I 
1 Itions before processing the I 
1 Inext sequential instruction. I 
L-

Figure 17. Summary of IOCS Macro 
Instructions 

In the source program, the IOCS routines 
are called by statements referred to as 
macro instructions. The use of IOCS macro 
instructions saves programming time because 
it relieves the user of coding, testing, 
and providing linkages to his own I/O rou
tines. In addition, the IOCS routines take 
advantage of the time-sharing capability of 
the Model 20, thereby optimizing 
throughput. 

For detailed information on the Model 20 
IOCS, refer to the SRL publication IBM 

Figure 17 contains a summary of the IOCS 
macro instructions and their functions. 

Additional macro instructions, and the 
associated I/O routines, are available to 
users of the Communications Adapter and the 
1419 Magnetic Character Reader. For 
detailed information refer to the following 
SRL publications: 

lrrE~lLOui£~l_f~lll£~l_System_for_ihg 
~in~£Y_~ll£h~~no~~_f~mmuni£~iion§_&Q~E1~ 
~£, Form C33-4001; 

lrrEQt-Oul~~l_font£~1_System for_lhg-1 BM 
j~1_~~~li£_fh~ra£1~£_Rea~~£, Form 
C26-3607. 

A user program which enables the interrupt 
mode with an SPSW statement that changes 
the channel mask bit of the current program 
status word from 1 to 0 must ensure that 
the pending interrupts caused by the loader 
do not interfere with the execution of the 
object program. 

Both the Absolute-Program Loader and the 
Relocatable-Program Loader cause two pend
ing interrupts. Interrupt 1 is caused when 
the program is read on a 2501, 2520, or 
2560; interrupts 1 and 2 are caused when 
the program is read on a 2520 or a 2560. 

llli~£ru~l-1: Associated with the l~st_£eag 
instru£ti~rr of the loader, interrupt 1 is 
pending when the execution of the object 
program begins. This interrupt becomes 
effective after the first SPSW instruction 
in the user program has been processed. 
The program in this case branches to the 
programmed interrupt routine, although the 
condition on which the interrupt routine is 
based has not occurred. 

An example of the programming sequence 
that enables thf interrupt mode through an 
SPSW statement js shown in Figure 18. For 
this purpose, the first two TIOB statements 
in the figure may be disregarded. 

lni~~ruE!-1: This interrupt is issued at 
the end of program loading. After the END 
card of the object program has been read, 
an XIO instruction in the loader program 
causes a dummY_~Qrrfh_fY~l~ that moves the 

Input/Output Instructions 41 



END card from the pre-punch station to the 
punch unit of the punching device, prior to 
execution of the object program. The dummy 
cycle is effected by specifying X'40' 
(blank) to be punched into column 1, which 
results in nothing being punched. 

Interrupt 2 also occurs after the first 
SPSW instruction in the user program after 
the dummy punch instruction has been 
executed. 

The XIO dummy instruction may cause a 
mispunching of the END card during the ini
tial phase of the object program. While 
the XIO instruction is being executed, the 
loader transfers control to the object pro
gram and, thereby, initiates processing. 
If the I/O device used for loading is a 
2560 MFCM or a 252~ card read-punch and the 

loader area is overwritten before execution 
of the dummy punch instruction has been 
completed, a character other than blank may 
be punched into column 1 of the END card, 
which makes the END card invalid. 

Mispunching of the END card can be 
avoided by using a TIOB instruction as the 
first statement in the user's program, as 
shown in Figure 18. 

The mispunching of the END card can also 
be avoided if the loader area is not over
written during the initial processing 
phase. (The initial processing phase is 
terminated after execution of the first XIO 
statement in the user program that refers 
to the 2560 that is used for program 
loading) • 

r----,--- ·~1--------------~--------------------------- , 
IName OperationlOperand 
~ I 
IBEG TIOB 1*,X'22' 
1 TIOB 1*,X'20' 
IMVNP MVC 1148 (4) ,AXPW 
1 SPSW J AX?W 
IAXPW DC IX'0100' 
1 DC 1 Y (SNPS) 
ISNPS MVC 1148 (4) ,SYMB 
1 r-> 1 
1 1 I 
1 ~MAIN PROGRAM 
L ____ ~ __ 

1 
---------------~ 

WAIT, when loading from a 2520 
WAIT, when loading from a 2560 
GET AUXILIARY NEW PSW 
ENABLE INTERRUPT MODE 
THIS PSW BRANCHES TO 
MAIN PROGRAM 
defining the address of 
user's PSW. 

Figure 18. Sample Routine for compensation of Pending Interrupts Caused by the Loader 

42 Sy~tem/360 Modpl .20 Basic Assembler Language 

o 

I 

() 

o 



o 

o 

o 

This section describes the coding of the 
machine instructions written in Basic 
Assembler language and translated into 
machine language. The machine-language 
format and the functions of each machine 
instruction are described and the use of 
each instruction is illustrated by an 
ex ample. 

A machine instruction is a direction 
given to the computer to cause the execu
tion of a certain operation. In Basic 
Assembler language, these instructions are 
written in the form of mnemonic codes, 
which are translated by the Basic Assembler 
program into System/360 internal or machine 
code, respectively. The codes are printed 
in the leftmost part of the program list
ing, next to the location counter 
reference. 

Machine instructions are divided into 
four groups, according to basic operand 
format: 

1. RR instructions (register to register), 
length: 2 bytes. 

2. RX instructions (register to storage or 
storage to register), length: 4 bytes. 

3. 51 instruction~ (storage - immediate), 
length: 4 bytes. 

4. 55 instructions (storage to storage) , 
length: 6 bytes. 

A summary of th~se formats, together 
with their associated operation codes, is 
shown in Figure 19. 

All machine-instruction statements are 
automatically aligned at halfword boun
daries. All bytes skipped are filled with 
hexadecimal zeros. 

Any machine instruction can be identi
fied by a symbOl, which can be used as a 

branch address in operand(s) of other 
sta temen t (s) • 

1. R1 and R2 are absolute expressions 
that specify general registers. The 
general register numbers are 8 through 
15. 

2. D1 and D2 are absolute expressions 
that specify displacements. A value 
of 0 through 4095 may be specified. 

3. B 1 and B2 are absol ute exp ressions 
that specify base registers. Register 
numbers are 0-3 and 8-15. 

4. M1 is an absolute expression repre
senting a condition code. 

5. L, L1, and L2 are absolute expressions 
that specify field lengths. An L 
expr essio n can sp eci fy a v alu e of 1 -
256. L1 and L2 expressions can speci~ 
fy a value of 1 - 16. In all cases, 
the assembled value will be one less 
than the specified value. 

6. 12 is an absolute expression that pro
vides immediate data. The value of 
the expression may be 0 - 255. 

7. 51 and S2 are absolute or relocatable 
expressions that specify an address. 

8. 5I instruction fields that are crossed 
out in the machine formats are not 
examined during instruction execution. 
The fields are not written in the sym
bolic operand, but are assembled as 
binary zer:>s. 

9. UF is an absolute expression repre
senting an input/output unit address 
and a function. 

Machine-Instruction statements 43 



r--T I T---------------------------, o 
I I I Assembler: Ope r: and I App Ii ca ble I 
I I !2~§i£_1:1~s::hi!!.g2Q.!:!!!.~i I Pi eIQ_Por: m~i Ill! st.f~~.!iQll§ I 
• ~~--T---------+-----------------_'_t_ 1 
I I 8 14 14 I I I I 
I IOper:ationl I I IR1,R2 IAR ~ASR,SR I 
I I Code IR11R21 I (See note 1) I I 
IRRl---------t-+--+ I +-------------~------------~ 
I I 8 14 14 I I I I I 
I I Oper:a tion I I I I Ml ,R2 IBCR I 
I I Code I M 11 R21 I I I 
I I I I 1 I (See notes and 4) I I 
r--+---------t--+--+--.--.---+__ t-------~------------~---~ 
I I 8 1414141121 I I I 
I IOper:ationl I I I I IR1,D2(0,B2) ISTH,LP.,CH,AH,SH, BAS I 
I I Code IR11X21B21D21 IR1,S2 I I 
I I I I I I I I (See notes 1,2,3,and 7) I I 
I R X l--------t-+--+--+_+_ I +--~-----------------~ 
I I 8 1414141121 I I I 
I IOper:ationl I I I I IMl ,D2 (0,B2) IBC I 
I I Code IM11X21B21D21 IM1,S2 I I 
I I I I I I I I (See notes 2,3,4,and 7) I I 
l--+--------t~_+_+__t--_+__ t--~--------------------~ 

I 8 18 141121 I I I 
IOper:ationl I I I ID1(Bl),I2 ICLI,MVI,NI,OI,TM,HPR I 
I Code 112 IB11Dli IS1,I2 I I 
I I I I I I (See notes 2,3,6,and 7) I 1 

SIl---------t-----t--+__t I t------------------------~ 
I 8 18 141121 I I I 
IOper:ationl I I I ID1(Bl) ISPSW 1 
I Code 1-- IB11D11 ISl I I 
I I I I I I (See notes 2,3,7,ana 8) I I 
l---------t----+--+__t--_+__ +------~------------------1 o 
I 8 18 141121 I I 1 
IOper:ationl J I 1 1 Dl (Bl) ,UF ITIOB 1 
I Code IUF IB11Dli IS1,UF ICIO (Dl (Bl) detailed I 
I 1 1 I 1 1 (See notes 2,3,and 7-9) 1 specification)' 1 

l--+---------t I I +__+ I I +-----------------------'--~ 

I 8 141414112141121 I I 
IOper:ationl I I I I 1 ID1 (Ll ,Bl) ,D2 (L2,B2) IPACK,UNPK,MVO,AP, I 
I Cod elL 1 I L 2 I B 1 I D 1 I B 2 I D 2 I S 1 (L 1) , S 2 ( L 2) I C P , D P , M P , S P , ZA P 1 
I 1 I I I I I I (See notes 2,3,S,and 7) 1 I 

S S f---------t~+-I I 1 I +------------------------~ 

I 8 18 1411214112 I I 
IOper:ationl I I I I D1 (L,B1) ,D2 (B2) ICLC,MVC,MVN, I 
I Code IL IB11D11B21D2 S1(L) ,S2 IMVZ,TR,ED I 
I I I 1 I I (See notes 2,3,S,and 7) I I 
l--------t I I I I +----------------------~ 

I 8 18 14 I 12 I 4 I 12 I I 
IOper:ationl 1 I 1 1 Dl(UF,B1),D2(B2) IXIO (D2(B2) detailed I 
I Code !UF !Bl!Dl!B2!D2 Sl(UF):,S2 ! specification) 
1 I I 1 1 1 (See notes 2,3,7,and 9) 

L-_..L-______ --J... I I ~ I .L.-_____________________ J 

Fig ure 19. Machi ne Instru ction For:mats 

o 
44 System/360 Mod~l 20 Basic Assembler: Language 



o 

o 

o 

The mnemonic oper-ation codes (shown in 
A p pen d i x Ban d Fig u r- e 1 9) a r- e des i 9 ned to 
be easily-remember-ed codes that indicate 
the functions of the instr-uctions. The 
nor-mal for-mat of the code is shown below; 
the items in br-ackets ar-e not necessar-ily 
pr-esent in all codps: 

Ver-b [Modifier-] [Data Type] [Machine 
For-mat] 

The ver-b, which is usually Dne or- two 
char-acter-s, specifies the function. For
example, A r-epresents Add, and MV r-epr-e
sents Move. The function may be fur-the~ 
defined by a modifier- and the data type. 
For example, the modifier L indicates a 
logical function and the C indicates a 
character- as data type, as in CLC for Com
par-e Logical Character-. 

The letters R and I ar-e added to the 
codes to indicate, respectively, RR and SI 
machine instruction for-mats. Thus, AR 
indica tes Add in the RR form at. Funct ions 
involving character and decimal data types 
imply the SS format. 

A distinction must be made between the 
instruction format in Basic Assembler lan
guage and the instruction for-mat in machine 
language, as translated by the Basic Assem
bIer- program. 

r--- --~i-l--------------------------' 

I Instruction in 11 
IBasic " 
I Assembler I,Instruction in 
ILanguage I,Machine Language 
~-~------------t4--T--T--~--r---~ 
I Op I I 1 Op I I I I I 
I C d lOp e r- and s I 1 C d I~ L 1 , L 2 I B 1 I D 1 , 
I- I ++ I I I I I 
IDPIWORK(9) ,C2(2) I,FDI 81 11 DIODCI 
I I " I I I I I 

I 
I 
I 
I 

-.----~ 
I I 

B 21 D21 
-+--~ 
DIOEFI 

I I 

In the above example, the DP instruction 
causes the dividend that is contained in 
the field WORK, with an explicit length of 
9 bytes, to be divided by the divisor, con
tained in the field C2, with an explicit 
length of 2 bytes. 

Assuming register 13 has been assigned 
as base register by an approFr-iate USING 
statement, the Basic Assembler program 
translates this instruction into the format 
FD81 DODC DOEF, as shown. The mnemonic 
operation code becomes FD; the WORK length 
code (9) is contained in the L 1 field; and 

the C 2 1 eng t h cod e ( 2) is con ta i ne din the 
L2 field in the assembled instr-uction. 
(Each assembled leng~h code is one less 
than the length of the statement in Basic 
Assembler- language because the length code 
1 is assembled as 0, thus per-mitting a 
length of 16 within the 4-bit L1 and L2 
fields.) Theoper-and addr-esses ar-e split 
in a base register- and a displacement, 
which are contained in lhe Band D-fields 
re$pectively (see the section ~iQ~~gg 
! dd!:es.§~.§) • 

RR FORMAT 

This is the shor-test of the four instr-uc
tion formats and r-equires the least pr-oces
sing time. It is used to specifyregister-
to-r-egister operation; i.e., data is trans
ferr-ed fr-om one register- to another-. In 
Basic Assembler language, such a statement 
is wr-itten as 

Op-Code R1, R2 (R=r-egister) 
or 

Op - Co d e M 1 , R 2 ( M = m as k ) 

AR 9,10 The contents of register- 10 are 
added to the contents of register 
9. 

The oper-and for-mat r-:.1,R2 is used togeth
er with the Br-anch-on-Condition-Register 
(BCR) operation code. It is applied if the' 
program reaches a decision point where, 
under a certain condition, a branch must be 
performed. In this case, the branch 
address is contained in the register- sreci
fied (R2) 

BCR 8,15 

The binary e:juivalent of 8 (1000) is used 
as a mask to test the condition code in the 
Program Status Word. The branch is 
executed if the condition code is 00. 
(Refer to the section !hg_~~nditio~~QQg) 

RX FORMAT 

This format is used to cause data flow 
between a register and main storage. The 
direction of the flow is determined by the 
operation code. The Store Halfword (STH) 
instruction transfers data from a register 
to storage; the AH instruction causes 
information in main st6rage to be added to 
the contents of a register. The address 
specified in the second operand of an RX 
instruction can be in explicit or implied 
form. 

Machine-Instruction statements 45 



In Basic Assembler language, the 
ins~ruction is written as: 

Op-Code R1,D2(X2#B2) when using explicit 
addressing, 

or 

Op-Code R1,S2 when using implied 
addressing. 
(S = sym boll 

When specifying an explicit address, the 
X2 sub-field of the operand D2 (X2, B2) must 
be set to O. 

STH 9,AREA+4 (0, 12) 

The contents of register 9 are stored at 
the location (AREA+4) + (contents of register 
12). However, this statement is valid only 
if AREA is defined as an absolute symbol 
with an address value not exceeding 4095. 

Branch instructions in the RX format 
(operation code BC) are written as: 

o p- Cod e M 1 , D 2 (0, B 2) w hen u;;,; i n g ex pI i cit 
addr essin g, 

or 

Op-Code M1,S2 when using implied 
addressing. 

The field M1 is used as a mask to test 
the condition code. The subsequent section 
describes how this mask is .set up. 

The condition code in the Program Status 
Word occupies 2 bits. Therefore, it can be 
used to represent ~our conditions: 00, 01, 
10, or 11. 

The corresponding masks reflecting these 
s~ttings are: 

00 
01 
10 
11 

8 
4 
2 
1 

This meuns, for example, that a branch 
inst~uction to be pe~formed on condition 8 
is executed if the condition code setting' 
is 00. Accordingly,· a· br:anch can be 
requested in a proqr~m if the condition 
code setting is either 01 or 11. The 
corresponding mask, in this case, would be 
4+1:5. . 

Thus, the maximum value of a mask is 
8+4~2+1=15. spe~ifying a branch on condi
tion 15 means that the branch must be per-

formed, whatever the condition code setting 
is. Such a branch is called unconditional. 
Masks can also be specified in-hexadecimal 0 
notation. Figure 20 contains examples of 
branches testing the condition code. 

Exam.12les: 

i i I --, 
I INamelOperation Code lOpe rand I 
I I I I -i 
I 1. ICALCISR \ 9,10 I 
I I IBC 18,OUT I 
\2. ICMPRICLI I FLDA ,X' DO' I 
\ I IBC 12,BGN I 
I 3. ISUM lAP I FLDA (1 0) , FLDB (5) I 
I I IBC I 15 , TAB L (0,8) I 
'---I , J ----.J 

Figure 20. Branches Testing the Condition 
Code 

i!!..£lEJ1~ t ion: 

1. Fixed-point arithmetic instructions, 
like the ab~ve SR instruction, set the 
condition c~de to reflect the status of 
the result whether or not the result is 
equal to, less than, or greater than O. 
The branch to the location OUT is 
executed if the result of the preceding 
mathematical operation is o. Other
wise, the next sequential instruction 
in the program is processed. 

2. The eLI instruction causes the value 
stored at the location FLDA to be com
pared with the hexadecimal self
defining term DO. The branch is per
formed if the contents of FLDA are 
greater than D9.· Otherwise,· the next 
sequential instruction in the program 
is processed. 

3. Variable-length arithmetic instructions 
also set the condition code to reflect 
the status of the result (see paragraph 
1). The subsequent branch instruction 
is unconditional, i.e., the program 
branches under any condition to the 
location repr~sented by TABL+(contents 
of register 8). 

Thus~ the interpretation of the condi
tion code setting depends on the type of 
operation caused by the preceding instruc
tion. A summary of the relation of the 
situation to the condition code setting is 
given in Appendix E. 

The index field X2 of the instruction for
m atOp - Co de R 1 , D 2 (X 2 , B 2) m us tal way s be set 
to O. The base register B2 in an RX 
in~truction, however, can be used as index 
reqister, if (1) explicit addressing is 

I 

o 

o 
46 Systpm/J60 Modpl 20 Basic Assembler Language 



o 

o 

o 

applied and (2) the D2 displacement is 
a Lsolu teo 

In Figur~ 14, the method of indexing 
with address constants has been demon
strated by a table look-up procedure. The 
table address was loaded into a register 
and successively undated, thus pointing to 
the subsequent table positions. The same 
effect is achieved when TABL is used as 
displacement D2 in an RX instruction and 
register R8 is used as B2 to increment 
TABL. 

For example, thp table area of 480 bytes 
is set up in storage with the address TABL, 
as in· Figure 14. l:'ach entry in this area 
is also considered to have an implied 
length of four bytes. It is assumed that 
this table will be filled with successive 
entries of results computed during 
processing. 

To use TABL as a displacement in an RX 
instruction, it must be made absolute to 
retain the relocat~bility of the program. 
TABL must be eguatpd with an ER~olut~ 
expression that re~erences the location 
counter. 

TABL EQU *-NULL 

NULL represents the value of 0 to avoid 
altering the address of TABL, assigned by 
the Basic Assembler program, when TABL is 
being defined. In addition, to make *-NULL 
an absolute expression, NULL must represent 
a I~lo£~!~~lg O. This can be done as 
follows: 

ST ART 340 
NULL EQU *-340 

Here, the expression in the operand of 
the EQU statement becomes relocatable 
because it contains an odd number of relo
catable expressions. 

Adopting the above procedures, the pro
gram routine could be as shown in Figure 
21. 

SI FORMAT 

This format is used to load immediate data 
that are specified in the instruction into 
storage. 

In Basic Assembler language, such 
instructions are written as: 

Op-Code D1(B1),I2 in case of explicit 
addressing, and 

Op-Code S1,I2 in case of implied 
addressing. 

r----T-------, 
INamelOperationlOperand 

._----_., 

j- I I 
PBL1 START 34 n 
NULL EQU *-140 
BGN BASR 14,0 

USING *,'4 
SR 8, R 

PRG M MVC X (Cj) , y 

I 
I 
V 

STH 
AH 
CH 
BC 

lED 
I I 
I I 
I V 

TABLI EQU 
IDS 

PRTAIDS 
X IDS 
Y I DC 
INCRIDC 
LIMTI DC 

lEND 

10 , T A BL ( 0 , 8) 
8,INCR 
8,LIr-!T 
4,PRGM 
PRTA, MASK 

*-~TULL 

120CL 4 
120CL4 
10Q 
H'00000175' 
H' 4' 
H'480' 
PBL1 

IComments I 
I , 
I 
10=RELOCATABLE 
ILOAD BASE REGISTER 
IASSIGN BASE REGISTER 
IINITIALIZE INDEX REGISTER 
ISTART COMPUTATION 
I 
I 

RESULT INTO TABLE 
INCREMENT INDEX REGISTER 
TEST FOR TABLE END 
COMPUTE ANOTHER RESULT 
INITIATE PRINTOUT 

TABL=ABSOLUTE 
DEFINE TABLE AREA 
DEFINE PRINT AREA 
DEFINE AREA X 
DEFINE AREA Y 
DEFINE INCREMENT VALUE 

IDEFINE TABLE LIMIT 
I 

Figure 21. Sample Program Using TABL as Displacement 

Machine-Instruction Statements 47 



The field 12 represents the immediate 
data, which can be any single self-defining 
term with a maximum length of 8 bits. 

CLI JACK, C' 6' 
TM MIND,X'40' 
MVI PARA,X'AF' 

Some of the input/output instructions 
the programmer uses to write his own I/O 
routines are also in the SI format. The 
field 12 in this case is designated UF and 
is used to specify the I/O unit and its 
function. 

Accordingly, these instructions are 
written as follows: 

o p- Cod e D 1 (B 1) , U F 

or 

Op-Code S 1 , UF 

The Set Program Status Word (SPSW) 
instruction causes the current program sta
tus word to be replaced by a new PSW stored 
at the position referenced in the operand 
of the SPSW instruction. Since the current 
PSW contains the address of the next 
sequential instruction to be processed, the 
SPSW instruction is equal to a branch 
instruction. 

In Basic Assembler language, this 
instruction is written as follows: 

o p- Cod e D 1 (B 1 ) 0 r S 1 

r i i , 

INamelOperationlOpprand I 
1----+-------+ ~ 
I ISPSW INP~W I 
INPSWIDC IX'n100' I 
I IDC IY(PEGN) I 
L-.L J 

In this example, the new PSW contained 
in the field NPSW is transferred to the 
internal location of the current PSW. The 
constant X'0100' replaces the leftmost 16 
bits and the address constant replaces the 
rightmost 16 bits of the 4-byte PSW. Then 
the program branchps to the address speci
fied by bit positions 16 to 31 of the new 
PSW storage position BEGN. 

The termination of object program execu
tion is achieved by a Halt-and-Proceeo 
(lIFR) instruction. This instruction also 
belongs to the SI-type formats and is writ
ten as shown in the following example: 

HPR X' 999' ,0 

The operation code APR is translated 
into the machine code 99 which is displayed 
in the UL xegister panels of the cpu. This 
code also appears in the UL.register panels 
in case of a pr~grammed halt during execu
tion of an assembly. 

TO indicate that the program has reached 
the HPR instruction (completion of object 
program execution), the add ress X' 999' spe
cified in the first operand of this 
instruction is displayed in the STR regis
ter panels of the cpu. 

The second operand of the HPR instruc
tion is ignored and, though assembled, has 
no influence on the program. Normally, 
zero is specified as the second operand of 
the HPR instruction. It can be omitted, 
however, if the comma is written to satisfy 
syntax requirements. 

SS FORMAT 

This format is used to cause da ta flow from 
one area of storage to another. It 
requires specification of the field lengths 
for the data to be acted upon. 

with one exception, which is explained 
later, the SS instructions form two major 
groups. The first group includes instruc
tions that require specification of length 
codes for both operands. The second group 
reluires a length specification for the 
first operand only. 

I n Basic Ass emble r la nguage, the fi rs t 
group of instructions is written as 
follows. 

Op-Code D1(L1,B1) ,D2(L2,B2) when explicit 
a ddressi ng is 
used, or 

Op-Code S1(L1),S2(L2) when implied 
addressing is 
used. 

L1 and L2 in the above format designate 
the length fields. The operation codes 
belonging to this group are summarized in 
Figure 19. 

PACK AREA (9) ,INPT+5 (9) 
MVO 400 (10,8) , RES 1 (1:J) 

The length c~de of an expression can be 
omitted if the length of a field is implied 
in its name. 

4A System/360 Moopl 20 Basic Assembler Ldnguage 

o 

I 

o 

o 



o 

o 

o 

r i ~--------------------------, 

INamelOperationlOperand I 
... ----+---------+--------------~ 
I ICP IFLDA,FLDD I 
IFLDAIDC IC'OOOO' I 
IFLDBIDC IXLtl'O' I L_---L _______ -L ________________________ J 

Field A and B each have the implied 
length of four bytps. An explicit length 
specification, therefore, is redundant. If 
a symbol with an implied field length is 
dccompdnied by an pxplicit length code, the 
implied length is ~isregarded. 

In explicit addressing, the length code 
becomes redundant if the length is implied 
in the symbol specified as the 
displacemen t. 

r----T--------~ -, 
INamelOperationlOpprand 
~---+-----+ 
I ICP IFLDA(2),AREA(,8) 
IAREAIDC ICL2'0' 
L 

I 
~ 
I 
I 

J 

The fields enclosed in parentheses are 
referred to as sub-fields. In the above 
example, the first sub-field of the second 
operand was omitteo because the displace
ment AREA implies the length of two bytes. 
Note that the comma separating the sub
fields must be specified in spite of the 
first sub-field having been omitted. 
Otherwise, the expression in parentheses is 
assumed to be a length code and the displa
cement AREA is considered an implied 
address. 

The second groun of SS instructions 
requires the length specification in the 
first operand only. The operation codes 
for this group are summarized in Figure 19. 

In Basic Assembler language, these 
instructions are written as follows: 

Op-Code Dl (L,B1) ,D2 (B2) when using ex
plicit add£essing, 

or 

Op-Code S1(L),S2 when using implied 
addressing. 

The length may be explicit or implied, 
but the comma separating the sub-fields in 
the first operand must be entered, even if 
the length code in an explicit address is 
omitted. 

M V C F LD A (5) , W 0 R K (8 ) 

The eXFression 5 in the first operand is 
evaluated as a length code and the expres
sion 8 in the second operand is considered 
to be a base register, even though the two 
operands appear to specify the same items • 

The Execute Input/Output (XIO) instruc
tion is written as follows. 

Op-Code Dl(UF,Bl),D2(B2) wh9n using ex
p lici t address
ing, or 

Op-Code S 1 (U F) , S 2 w hen using i m
plied addressing. 

The length code in the first operand is 
replaced by the unit and functions 
specification. 

XIO AREA(X'22') ,50 

This instruction causes 50 card columns 
to be read on the assigned card-reading 
device. The data is read into the storage 
location named AREA. For detailed explana
tions, refer to the section In£B!LQ~iEut 
l!l~iru£tion§.. 

There are 3 types of operations: 

1. Binary arithmetic operations. 

2. Decimal arithmetic operations. 

3. Non-arithmetic operations. 

These operations differ not only in 
their internal logic but also in the format 
of data, use of registers, and format of 
instructions. 

Some operations set a condition code in 
bits two and three of the Program status 
Word (PSW). This condition code indicates 
the relationship (less than/greater than, 
zero, negative, positive etc.) between the 

·two operands as a result of the last opera
tion effecting the condition code setting. 
For details ab~~t the PSW see the SRL pub
lica tion 112I.:L~1 st~.!!!L..}§Q_ Model_~.Q_K~n£iiQn al 
~Baracteristi£§, Form A26-5847. 

BINARY ARITHMETIC 

Binary arithmetic is used by binary 
instructions for operands like addresses, 
indexes, counters, and binary data. The 
length of each operand is one halfword 
including the sign. Negative numbers are, 
given in the twos-complement form. The 
first operand must be in one of the general 

Machine-Instruction Statements 49 



registers. The other operand may be either 
in a register or in main storage. For 
detailed information refer to the SRL pub
lication IBM SystemL360 Model 20 Functional 
fh~±actg£istic§# Form A26-5847. 

Binary numbers have a fixed length of one 
halfword=16 bits. The first (leftmost) bit 
contains the sign, the other 15 bits the 
binary value. Binary numbers may be stored 
in one of the general registers or in main 
storage. In main storage, the address of 
the left byte must be even. 

Binary halfword 

r i , 

ISignlBinary Value I 

o 15 

Binary numbers are represented as signed 
integers. Positive numbers are represented 
in true form with a O-bit as sign. Nega
tive numbers are in the twos-complement 
form with a 1-bit as sign. The twos
complement form is found by reversing each 
bit (0 to 1 and 1 to 0) and adding a 1 to 
the rightmost bit. 

A zero is always positive by definition. 
The absolute value of the lowest possible 
negative number is higher by one than the 
highest possible positive nu~ber. 

Highest possible positive number: 

r , 
101111111111111111=2 15 -1=+32767 L-_______________ J 

o 15 

Lowest possible negative number: 

r----------------, 
110000000000000001=- (2 15 ) =-32768 L ________________ J 

o 15 

~~£hi!l~_IQ£.!!!~l~Q.LI!l~.t.I.l!£1.iQ.ll~_fQL~i!l~.u 
Q.Eg!:~!iQ!l§ 

Binary operations ~re in the RR or 
RX- Forma t. 

r--------T----,----, 
lOp-code IRl IR2 
L _____ ---L ____ L-___ J 

o 7 1 1 1 r:; 

Rl indicates a general register contain
ing the first binary number and R2 a gener
al register containing the second binary 
number. R1 and R2 may refer to the same 
register. The result of an instruction in 
the RR-Format replaces the first operand. 

I I I I 

lOp-code IRl 10000182 D2 
~ _____ --i-___ ~ ____ i--__ ~ ___________ J 

o 7 11 15 19 20 31 

R1 indicates a general register contain~ 
ing the first operand. The address of the 
second operand. is indicated by the fields 
82 and D2 in one of two ways. Either they 
give the address directly (05 B2 5 3) or 
an effective address is formed by adding 
the contents of the register named in the 
B2-field (8 ~ B2 5 15) to the relative 
address given in the D2-field. 

The result of an operation in the RX
Format replaces the first operand. Excep
tion: After "Store Halfword" the result 
replaces the second operand. 

r--------- r , 

I I I I I I 
I Condi tion c:> de 100 101 110 \11\ 
I I I I I ~ 
IAdd register Izero I<zerol>zerol- I 

Izero I<zerol>zerol - I 
lequall low I highl- I 
Izero I<zerol>zerol- I 
Izero I<zerol>zerol- I 

Isubtract register 
ICompare halfword* 
IAdd halfword 
Isubtract halfword L---_______________ L-____ L-____ L--___ L __ J 

*first operand compared to second. 

Error conditions that may occur during the 
execution of binary operations are: 

1. Operation c:>de invalid. 

2. Addressing error: 

a. An instruction address or an 
ope ran dad d r es s ref er s tot h E-~ pro
tected first 144 bytes of main 
storage (addresses 0 to 143). 

b. An instruction address or dn 
operand address is outside avail
able storage. 

c. The last (high(~st) main-storage 
position contains any part of an 
instruction that i~:; to be executed. 

<.1. The R1:>r R2 fi(~ld,; of a binary 
instruction contain binary values 0 
through 7. 

50 System/360 Modpl 20 Basic Assembler Language 

o 

I 

o 

o 



0 

o 

o 

3. Specification error: 

a. The low-oraer bit of an instruction 
address is one, i.e., no halfword 
boundary. 

b. The halfword second operand is not 
located on a half word boundary. 

c. Bi ts 12 through 15 of an RX format 
instruction are not all zero. 

4. Binary overflow check. 

5. CPU parity error. 

INSTRUCTIONS FOR BINARY ARITHMETIC 

r , 
I 1 I I I 
IName 10p-codelFormatlMnemonicl 
i-- 1 I I , 
I Add Register ,1A I RR I AR I 
I Subtract Register 1 1 BIRR I SR I 
I Store Halfword 1 40 I RX I STH I 
ILoad Halfword 1 48 I RX I LH I 
I Compare Halfword ,49 I RX I CH I 
I Add H a I f w 0 r d 1 Ig I R X I A H I 
I Subtract Halfwordt 413 I RX I SH I 

Forma t: RR Op-code 1A 

Machine instruction: AR R1,R2 

Function: The contents of the first 
operana-field are added to the contents of 
the second operand field. The result is 
stored in the register specified by the 
first operand. Thp second operand remains 
unchanged. 

The sign is determined by the rules of 
algebra. A zero rpsult is always positive. 
A sum consisting of more than 15 numeric 
bits plus the sign caus~s an overflow. In 
detail, this is what haprens: First all 16 
bits of both operands are added. The 
result is correct if the addition results 
in a carry out of both the sign-bit posi
tion and the high order numeric-bit posi
tion or in no carry at all. However, if 
the addition causes a carry out of only one 
of the two positions a binary overflow will 
take rlace. 

~ot~: An overflow will change the sign of 
the result. 

00 
01 
10 

Result=zero 
Result<zero 
Result>zero 

~~£lg: Assume register 8 con tains hexa-
decimal 0123 and register 9 con tains hexa-
decimal 0532. 

Source statement: 

Op-code R1 R2 

AR 8,9 

From this sourc e sta tement the Basic Assem-
bler creates th E following object code: 

T ~------, 

Op-code I R1 R2 I 
~------------+I-------+----~ 

1 A I 8 9 I 
~ _____ ~ __ J 

After execut ion register 8 contains hex
adecimal 0655. The condition code is 10. 

Format: RR o p-code 1B 

Machine instruction: SR R 1, R 2 

Fun~tion: The contents of the second 
operand field are subtracted from the con
tents of the first operand field. The 
result will be in the register specified by 
R1. Both operands and the result consist 
of 15 numeric bits plus the sign. The 
second operand remains unchanged. 

The subtraction is performed by adding 
the twos-complement of the second operand 
to the first operand. All 16 bits of both 
operands are added. If this results in a 
carry out of both the sign-bit position and 
the high order numeric-bit position or in 
no carry at all, then the result is 
correct. If there is, however, a carry out 
of only one of the two positions a binary 
overflow will occur. 

A register may be cleared to zero by 
subtraction from itself. 

There is no twos-complement for the 
highest negative number. This number 
remains unchanged when a complementation is 
performed. Nonetheless, the subtraction is 
still executed correctly. 

00 
01 
10 

Result==zer:> 
Resul t<zero 
Res u 1 t> zero 

]~~~El~: Assume register 0 contains hexa
decimal 047F and register q contains hexa
decimal 0007. 

r.achine-Instruction statements 51 



Source statement: 

Op-code R 1 R'2 

SR 8, 1.1 

From this source statement the Basic Assem
bler credtes the following object code: 

.---------,--~, 

1 0 p- co del R 1 I R 2 I 
~---. -+--+-~ 
I 1 B 18 I D I 
'--_____ .J.. __ L--J 

After execution register 8 contains hex
adecimal 03A8. The condition code is 10. 

Forma t: RX Op-code 40 

Machine instruction: STH R 1 ,D 2 (0 , B 2) 

Function: The contents of the register 
specified by Rl are stored in the half word 
at the main-storage location addressed by 
B2 and D2. The first operand remains 
unchanged. 

~~~~£1~: Assume register 9 contains hexa
decimal 68AF, register 11 contains hexadec
imal 001E, and the displacement in the
second operand is hexadecimal 29E (decimal
670) •

Source statement:

Op-code R1 D2 X2=0 B2

STH 9,670(0,1')

From this source statement the Basic Assem
bler creates the following object code:

r • ~ • I ,

IOp-codeIRlIX2~0IB2ID2 I
l-------+-_+_ I I -t
I 40 19 lOIS 129EI
L

After execution the field starting at
storage location hexadecimal 2BC (decimal
700) contains 68AF.

Format: RX Op-code 48

Machine instruction: I.H R1,D2(0,B2)

I]n£ii2n: The hal~word at the main storage
location addressed by B2 and D2 is placed
into the 16 bit positions of the register

specified by Rl. The second operand
remains unchanged.

~~amElg: Assume register 9 contains hexa
decimal AAAA, register 12 contains 0032,
the displacement in the second operand is
lF4 (decimal 500) , and the field starting
at storage l:>cation hexadecimal 226 (deci
mal 550) contains 80AF.

Sour ce st atem ent :

Op-code R1 D2 X2=0 B2

L.H 9,500(0,12)

From this source statement the Basic Assem
bler creates the following object code:

I .--.----,--T---'
IOp-cod e IR1IX2=0IB2ID2 I
~---+ I -t--+----i
I 48 19 I 0 IC 11F41
~ ___ --L--L-___ ~_~ __ J

After execution register 9 contains hex
adecimal 80AF.

Format: RX Op -code 49

Machine instruction: CH R1 ,D2 {O, B2}

Iun£tiQ.!l: The 16 bits 0 f the register spe
cified by R1 are compared with the halfword
at the main storage location addressed by
B2 and D2. The comparison is algebraic,
i.e., the signs must be taken into consi
deration. B:>th operands remain unchanged.
A condition code is set.

00
01
10

First operand=second operand
First operand(second operand
First operand>second operand

Exam£1e: Assume register 9 contains hexa
decimal 0001, the displacement in the
second operand is hexadecimal 690 {decimal
1680}, and register 13 contains hexadecimal
0026, and the halfword at storage location
hexadecimal 6B6 is AF99.

Source statement:

Op- code R 1 D2 X2=0 B2

CH 9,1680{0,13)

From this source statement the Basic Assem
bl er cr eat es t he following object code:

52 System/360 Model 20 Basic Assembler Language

o

I

(~)

o

o

o

o

r-----~-~~___r___,

IOp-codeIRlIX2=0182ID2 I
.. I I I +--~
I 49 I~ I 0 ID 1690 1
L-_____ ~ __ i----i--i-__ J

After comparison the resulting condition
code setting will he: 10.

Format: RX Op-code 4A

Machine instruction: AH R1,D2(0,82)

K~nc!iQn: The hal~word in main storage,
addressed by B2 ann D2, is added to the 16
bits of the register specified by Rl. The
sign is determined by the rules of algebra.
A zero result is positive by definition.

If the resultinq sum is larger than 15
bits plus the sign, an overflow occurs.
All 16 bits of both operands are added. If
there is a carry out of both the sign-bit
position and the high-order numeric bit
position or if there is no carry at all,
the result is correct. A binary overflow
will occur if there is a carry out of only
one position. A condition code is set.

00 Resul t=zero
01 Resul t<zero
10 Result>zero

~~~m~l~: Assume register 9 contains hexa
decimal 047F, register 11 contains hexadec
imal 0028, the displacement in the second 
operand is lEA (decimal 490), and the field 
at storage location hexadecimal 212 (530) 
contains hexadecimal 1F29. 

Source statement: 

Op-code Rl D2 X2=O 82 

AH 9,490(0,11} 

From this source statement the Basic Assem
bler creates the following object code: 

r-----~__,__ i 1__' 

IOp-codeIRlIX2=0IB2ID2 I 
.. 1 1 I I 1 
14A 19 10 IB IlEAl 
L-____ -L-~ __ ~~_~ 

After execution register 9 contains hex
adecimal 23A8 and the condition code is 10. 

Format: RX Op-code 4B 

Machine instruction: SH R 1 , D 2 (0 , D 2) 

Function: This instruction is identical to 
the-Ada-Halfword instruction with the fol
lowing exce~tion: The twos-complement of 
the second operand, addressed by B2 and D2, 
is added in place of the true value. 

00 
01 
10 

Resu It =z ero 
Result<zer3 
Resu I t>ze ro 

~~amplg: Assume register 9 contains hexa
decimal 047F, register 11 contains hexadec
imal 0050, the displacement in the second 
operand is hexadecimal 320 (decimal 800), 
and the field starting at storage location 
hexadecimal 370 (decimal 880) contains hex
adecim al 00 D7 • 

Source statement: 

Op-code Rl D2 X2=0 B2 

SH 9,800 (0, 11) 

From this source statement the Basic Assem
bler creates the following object code: 

Iii I i 

IOp-codeIRlIX2=0IB2I TI 2 1 
~----+--+----+--+---~ 
I 4B I 9 I 0 I B I 3201 
L-

After execution register 9 contains hexa
decimal 03A8 and the condition code is 10. 

DECIMAL ARITHMETIC 

Decimal arithmetic can be performed only 
with data in packed format. Packed format 
means that there are two digits in one byte 
except for the low order byte. It contains 
one digit and the sign. 

Data is transferred to and from the 
external I/O devices in zoned format. 
Thus, the data has to be packed and 
unpacked bef3re and after processing re
spectively. In zoned format, each byte 
contains a zone in the left halfbyte and a 
digit in the right halfbyte except the last 
one which contains the sign and a digit. 
The add re ss in an instru ction always s peci
fies the left-most byte of the operand. 
The length field in an assembled instruc
tion indicates how many bytes are part of 
the operand in addition to the addressed 
(left) byte. 

Decimal operations are performed in main 
storage. The operands have a length from 

Machine-Instruction Statements 53 



1-16 bytes. A field may start at any 
address including an odd one. In zoned 
format there may be a maximum of 16 digits, 
in the packed format a maximum of 31 digits 
plus the sign in a field. The two operands 
may be of different length. Multiplicand 
and divisor are restricted to a maximum of 
15 digits plus the sign. 

The values in the operand fields are 
assumed to be right aligned, with leading 
zeros where required. The operands are 
processed as integers from right to left. 
If a result extends beyond the field indi
cated by the address and the length field, 
the extending (high order) part is ignored 
and the condition code is set to 11. 

Fields specifien in a decimal-arithmetic 
instruction may overlap only if the right
most bytes coincide. Exception: with the 
ZAP instruction an overlap to the right is 
permissable. 

R~E£esentation of Numbers 

Decimal numbers consist of binary coded 
digits and a sign. The decimal digits 0-9 
are represented in the four bit code by the 
bit combinations 0000-1001. The combina
tions 1010-1111 are reserved for represen
tations of a sign (+,-). 1011 and 1101 
represent a minus, the other four combina
tions a plus. The representations 1100, 
1101, 1010, and 1011 are created during 
calculations in main storage. Negative 
numbers are represpnted in true form. The 
two decimal formats are: 

Packed decimal numher 

r----------~----------~----------~ 

I Byte I Byte Byte 
I I I I I I 
IDigitlDigitlDigitlDigitlDigitlSign 
L ~ 

Zoned decimal number 

r---------~----------r----------~ 

! Byte ! Byte 1 Rvh:~ 
-.I --

I I I , I I I 
IZone IDigitlZone ,DigitlSign IDigitl 
L ______ ~ ____ ~ ____ -A_ ,.A.-____ ...L.. _____ J 

Machine Formats of Instructions for Decimal 
Arithmetic 

Decimal operations have the SS format: 

• iii -.-~------, 

IOp-codelL1 IL2 IB1 D1 I B 2 I D2 I 

o 7 11 15 19 31 35 47 

The fields B1 and D1 give the main
storage address of the left byt e of the 
first operand field; L1 gives its length. 
In the Basic Assembler created object code, 
the number of bytes in a field is equal to 
the length c~de minus one. 

The instruction fields B2, D2, and L2 
give the respective information for the 
second operand. 

The address ~f the leftmost byte is 
found by adding the contents of the regis
ter specified in the B-field and the con
tents of the D-field. 

The result of a decimal operation 
replaces the first operand. It cannot 
occupy more storage area than indicated in 
the B,D, and L fields. The second operand 
remains unchanged. Exception: overlapping 
fields. 

The general registers are not affected 
by decimal operations. 

The results af the decimal operations 
listed in the table below set a condition 
code. 

r- , 
I I 00 I 01 I 10 I 11 I 
r-----+-------+-------+-------+----------~ 
I ZAP I zero I <zero I >zero I I 
I cp* I equal I low I high I I 
lAP I zero ,<zero, >zero , overflow I 
,SP 'zero I <zero, >zero , overflow, 

~ ______ ~ ______ ~ _________ _J 

All other decimal operations leave the 
condition code unchanged. 

54 system/360 Modpl 20 Dasic Assembler Langudge 

o 

I 

o 



o 

o 

o 

The following error condition& may occur 
during the execution of decimal arithmetic 
operations: 

1. Operation code invalid. 

2. Addressing error: 

a. An instruction address or an 
operand address refers to the pro
tected first 144 bytes of main 
storage. 

b. An instruction address or an 
operand address is outside avail
able storaqe. 

c. An instruction occupies the last 
two (highest) main-storage 
positions. 

3. Specification error: 

a. The low-order bit of an instruction 
address is one, i.e., no halfword 
boundary. 

b. For Zero and Add, Compare Decimal, 
Add Decimal, and Subtract Decimal 
instructions the length code L2 is 
greater than the length code L1. 

c. For Multiply Decimal and Divide 
Decimal instructions, the length 
code L2 is greater than 7 or great
er than or equal to the length code 
L1. 

4. Data error: 

a. A sign or digit code of an operand 
in the Zero and Add, Compare Deci
mal, Add Decim aI, su btr act Decimal, 
Multiply Decimal, or Divide Decimal 
instruction is incorrect, or the 
operand fields in these instruc
tions overlap incorrectly. 

b. The first operand in a Multiply 
Decimal instruction has insuffi
cient high-order zeros. 

5. Decimal divide check: 
The resultant quotient in a Divide Dec
imal instruction exceeds the specified 
data field instruction (including divi
sion by zero) or the dividend has no 
leading zero. 

6. CPU parity error. 

INSTRUCTIONS FOR DECIMAL ARITHMETIC 

r 
IName 

---T-------T----~--------, 

lOp-code FormatlMnemonicl 
I -+ ---+--------~ 
I Move with 
IPack 

Offs Et I F 1 ss I £'II VO I 

I Unpack 
IZero and Add 
I Compare Decim al 
1 Add Decimal 
ISubtract Decimal 
IMultiply Decimal 
IDivide Decimal 

I F 2 S SIP A CK I 
I F3 ss I UNPK I 
I F8 SS I ZAP I 
I F9 SS I CP I 
I FA SS I AP 1 
1 FB SS I SP I 
I FC SS I MP I 
I FD SS I DP I 

~ ________________ ~~ ______ ~ ______ ~ _________ J 

Form at: SS Op -co de F1 

Machine instruction: 
MVO D1 (L1,B1) ,D2(L2,B2) 

fQnctio~: The contents of the second 
operand field are moved to the location 
specified by the first operand. The move 
is executed with an offset of half a byte 
(one digi~ to the left. The right half
byte of the first operand remains 
unchanged. There is no check for validity. 
The fields need not have e~ual lengths. 
Leading zeros are inserted if the first 
operand is longer than the second. If the 
second operand is longer than the first, 
the high-order digits ·of the second operand 
are ignored. 

The move proceeds from right to left one 
byte at a time. The second operand may 
overlap the first excluding the rightmost 
byte of the first operand. 

~~~~~: Assume register 12 contains hexa
decimal 0250, register 15 contains hexadec
imal 040F, the displacement given in both
operands is zero, storage location hexadec
imdl 40F contains hexadecimal 123456, and
storage location hexadecimal 250 contains
hexadecimal 77 88 99 OC.

Source statement:

Op-code D1 L1 B1D2 L2 B2

M VO 0 (4 , 1 2) , a (3 , 15)

From this source statement the Basic Assem
bler produces the following object code:

r- iii T---T--"---'
IOp-codeIL 1IL2I B1 ID1 IB21D2 I
1--------+--+ 1 I I I ,
I F1 13 12 Ie 1000lF 10001

...l.-_...l.-__ ...l.-_.L-__ J

Machine-Instruction Statements 55

After execution the field at location
hexadecimal 250-253 contains hexadecimal 01
23 45 6C.

Format: SS Op-code F2

Machine instruction:
PACK D 1 (L 1, B 1) , D 2 (L 2, B 2)

Function: The unpacked content of the
second-operand field is packed and placed
into the first operand field. The second
operand field must contain an unpacked dec
imal number. It may have a maximum size of
16 bytes. There is no check for validity
of digits and sign.

The lengths of the fields need not be
equal. Leading zeros are inserted if the
first operand fieln is too long for the
result. The high-order digits of the
second operand are ignored if the first
operand field is too short for the result.
The fields are processed from right to left
one byte at a time.

~KamEl~: Assume register 11 contains hexa
decimal 044A, register 9 contains hexadeci
mal 02CO, the displacement in the first
operand is hexadecimal 244, in the second
operand it is hexanecimal 180, and that
storage location hexadecimal 440-444 con
tains hexadecimal ~1 F2 F3 F4 C5.

Source statement:

Op-code 01 Ll Bl D2 L2 B2

PACK 580 (4, 11) ,184 (5,9)

From this source statement the Basic Assem
bler produces the ~ollowing object code:

r-----~_,_-~ i i-'-----'
IOp-codeILlIL2IBllT11 IB2102 I
J----_+_ I I I +-+---{
I F2 1314 IB 12441911801

After execution the field at storage loca
tion hexadecimal 6RE contains 00 12 34 5C.

Format: SS Op-code F3

Machine instruction:
UNPK D1{L1,B1) ,D:'.(L2,B:?)

1~n£1iQn: The packed contents of the
second operand fieJd are changed to zoned
format and stored in the first operand

field. The second operand field must con
tain a packed decimal number. Sign and
digits are n~t checked for validity.

After processing, the zoned decimal
number in the first operand contains the
sign (high-order four bit~ and one digit
in the rightmost byte. Each of the other
bytes contains a zone and a digit.

The fields are processed from right to
left. If the first operand field is'~too
long it is filled with leading zeros. If
the first operand field is too short to
contain all the digits of the second
operand, the leading digits are ignored.
The operands may overlap but you must exer
cise caution.

]~~~~: Assume register 10 contains hexa
decimal OFAO, the displacement in the first
operand is hexadecimal FB4, that in the
second operand is hexadecimal 65, and loca
tion hexadecimal 1004-1007 contains hexa
decimal 01 23 45 6D.

Source statement:

Op-code 01 L1 Bl D2 L2 B2

UNPK 4020(5,10) ,100(4,10)

From this source statement the Basic Assem
bler produces the following object code:

I --'-~-T-_'_---T--T--'

IOp-code1L11L21B1101 IB21021
I I I I I I t----1
I F3 14 13 IA IFB41A 1651
L _____ ~~_~ __ ~ __ ~_~_J

After execution location hexa~ecimal 1FS4-
1F58 contains F2 F3 F4 F5 06.

Format: S5 Op-code F8

Machine instruction:
ZAP D1 (Ll,Bl) ,D2(L2,B2)

functign: The first operand field is
zeroed out and the contents of the second
operand field are placed into the first
operand field. This operation is (~quiva
lent to an addit ion into d zero-field. The
second operand must be in packed format.

A zp.ro result is po~)itiv(~ by (lefinition.
The sp.cond operand may b(~ short(~r th,ln th~~

first operand. If th(~ second oI)(~ri1nd is
long(~r, then il machine stop occurs and th(~

ins t rue t ion i!:; not (~ x e cut e (1.

56 System/360 Modpl 20 Basic Assembler Language

o

I

o

o

o

o

Processing proceeds from right to left.
All digits and the sign of the second
operand are checked for validity. High
order zeros are supplied if needed. The
fields may overlap if the rightmost byte of
the first operand is coincident with, or to
the right of, the rightmost byte of the
second operand.

00 Result=zero
01 Resul t<zero
10 Result>zero

~x~~l~: Assume register 10 contains hexa
decimal 01F4, the displacement in the first
operand is hexadecimal 294, that in the
second operand is hexadecimal 37A, and
storage location h~xadecimal 56E cohtains
01 23 4D.

Source statement:

o p- cod e D 1 L 1 B 1 D 2 L 2 B 2

ZAP 660(4,10),P90(3,10)

From this source statement the Basic Assem
bler produces the ~ollowing object code:

I iii i I I ,

lOp-code I L 1 I L2 I B 1 I D1 I B21 D2 I
r-------t I I I I I •
I F8 1312 IA 12941A 137AI

After execution location 487-48A contains
00 01 23 4D.

Forma t: SS Op-code F9

Machine instruction:
CP D1(L1,B1),D2(L2,B2)

Function: The contents of the first
operand-field are compared to the contents
of the second operand field and the result
is indicated by a new condition code.

The comparison proceeds from right to
left and is algebraic, i.e. the sign and
all digits are compared one byte at a time.
(Negative values are smaller than positive
values) •

A negative zero is egual to a positive
zero. The sign and all digits are checked
for validity. A halt occurs if the second
operand field is longer than the first
operand field and the instruction is not
executed. If the second operand field is
shorter it is extended with leading zeros.

The contents of both operand fields do
not change. An overflow cannot occur. The
two fields may overlap if the rightmost
bytes coincide. Therefore, it is possible
to compare a number to itself.

Note the difference between "Compare
Decimal Packed" and "Compare Logical Char
acters" (CLC).

CP: comparison proceeds from right t6
left, t.he sign, zero, and invalid charac
ters are considered, and fields of unequal
length are extended.

CLC: Comparison proceeds from left to
right, the sign and invalid characters are
not co n sid er e d .

00
01
10

First operand=second operand
First operand<second operand
First operand)second operand

~xa~ple: Assume register 12 contains hexa
decimal 0040, register 11 contains hexadec
imal 02FO, the displacement in the first
operand is hexadecimal 640, that in the
second operand is hexadecimal 3E8, location
hexadecimal 680-682 contains 01000C, and
location 6D8-6D9 contains 99 99C.

Source statemen t:

o p- cod e D 1 L 1 B 1 D2 L 2 B 2

CP 1600(3,12) ,1000(2,11)

From this source statement the Basic Assem
bler produces the following object code:

r i I T--'---~--"--'

IOp-code1Ll1L21B11D1 IB21D2 I
I I I I I I I ,
I F9 12 11 IC 1640lB 13E81

..L_-L-__ -L--L-__ J

After comparisor the condition code is 10.

Format: SS Op-code FA

Machine instruction:
AP Dl (Ll,B1) ,D2 (L2,B2)

Functi~~: The contents of the second
operand field are added to the contents of
the first operand field. The result
replaces the first operand.

The sign is determined by the rules of
alyebra. A zero result is positive by
definition. Exception: It is possible
that a remaining zero result after an over-

Machine-Instruction statements ~7

flow has a negative sign.
is set.

A condition code

If the second operand field is longer
than the first a program error halt occurs
and the instruction is not executed. If
the second operand field is shorter than
the first it is eipanded with leading zeros
and addition will take place normally.
Signs and digits are checked for validity.
Addition proceeds ~rom right to left. The
result is in packen format.

The ~wo fields may overlap if the right
most bytes cointid~. Thus; it is Fossibl~
to double a number.

00 Result=zero
01· Result(zero
1 a Re suI t >zero
1 1 '0 v e r flo w

];.!~l!u?lg: Assume register 8 contai.ns hexa
decimal 00 14 storage location 329 (hex adec
imal) cont~ins 00 '2 2D, storage location
500 (hexadecimal) contains 01 00 OC, the
displacement in the first operand i5·315
(hexadecimal)1 and that in the second
operand is 4EC (hexadecimal).

Source statement:

Op-code D1 L 1 B1 'D2 L2· B2

,AP 789 (3,8) ,1')60 (3,8)

From this source statement the Basic Assem
bler produces the ~ollowing object code:

,--------T--,- I, I I ---r--,
IOp-code1L11L21B11Dl IB21D2 I
~--, --4-- I I I +--+---~ ,
I FA 1 2 I 2 1 8 1 11 5 I 8 1 4 EC I.
L-__ ,-__ J.._-..l.. .L_-.L __ ..J

After executio'n storage location 329 (hexa
decimal), contains no 77 ,8C.

Format: S5 Or-code FB

Machine instruction:
SP D1(L1,B1) ,D2(L2,B2)

funct!.Q..!!: The contents of the second
operand field are subtracted from the con
tents of the first operand field. The
result is placed into the first operand
field. The sign is determined by the rules
of algebra. A zero result is positive by
definition. Exception: A zero result
remaining in case of an over·flow may, pos
sibly have a minus sign.

If the se~ond 'operand, field is longer
than the first a program error halt occurs
and the instruction is not executed~ If 0
the second operand field is shorter it is '
expanded with zeros and subtraction will
take place n~rmally~

All digits and the signs are checked for
validity. The opera~ion proceeds from
right to left by reversing the sign of the
second ~perand and then adding the second
operand to the'first. The result is in
packed format.

The fields ~ay overlap if the rightmost
bytes cointide. Thus it is possible to
clear a field to zero.

Condition'Code:

00
01
10
11

Result=zer~
Result(zerb
Result>zero
Overflow

£;.xam£l~: Assume register 9 contains (hexa
decimal) 00t8,register8 contains (hexa
decimal) 012C, storage location 898 (hexa
decimal) contains 012C, storage loea'tion
CE4 (hexadecimal) contains 008C, the dis-
'~lacement in the first operand is7DO (hex
adecimal) , and tha t in the second operand
is BB8 (hexadecimal).

Source statement:

Op-code D 1 L" B 1 D 2 L2 B2

SP 2000(2,9) ,3000(2,8)

From this soutce statement the Basic Assem
bler produces the following object code:

r I 1--'--'-- 1-'

IOr-codeIL1IL2IB1ID1 IB21D2 I
1 -+-+-~+--+---+-+~--~
1 FB 111119 17DOl8 IRn81
L ___ --.L_L--L--L--.L_L--_..J

After execution storage locatioh 898 (hexa
decimal) contains OOAO. Th(~ condition code
is 10.

Fo rm d t : (~(~ Op-code FC

Machine instruction:
MP Dl(Ll,B1) ,D2(L2,B2)

I!!.!l~i'!'Q.!l: The multiplicand in th(~ first
opl~rilnd field is multiplied by t.he multip
lier in the second operand fi('~ld. The IJro-

o

duct is placed into ,thf~ first ()IH~rancl 0
fif~lrl. The second oper'dnd may havc~ cl mdxi- I

mum of 1c) c1i{jits (L2=7) plu!. t.h(~!.:;i:gn <ind

58 System/J60 Modpl 20 Basic Assembler ~dnguaqe

o

0

o

must be shorter than the first operand. If
L2 > 7 or L2 ~ Ll a program error halt
occurs and the instruction is not executed.

The length of the product is equal to
the sum of the lenaths of multiplier and
mUltiplicand. Therefore the multiplicand
must be expanded with leading zeros by the
number of bytes of the multiplier. Other
wise a hal t occurs. An overflow is not
possible. The product may have a maximum
length of 30 digits plus the sign. It con
tains at least one leading zero.

The factors and the result are consi
dered to be signed integers. The sign is
determined by the rules of algebra. The
operand fields may overlap if their right
most bytes coincide. Thus, it is possible
to square a number.

EQ1~: You can save computing time by using
the larger of the two factors as the second
operand.

1 • Mul tiplicand x multiplier = produ ct
MAND x MOR = PROD

2. Length MAND + length MOR = length PROD

3. The MAND must be right-aligned and have
leading zeros ~efore the multiplication
is executed.

r------T -,
I Name I Operation I Operand I
l- I +- ~

I
I
I

1 ZAP PROD,MAND I
2 r-!P PROD,~OR I

I
I . I

MOR DS CL3 I
MAND DS CL2 I
PROD DS CL5 I

I
I
I

~ __________________ J

Assume the Basic Assembler has allocated
storage location (hexadecimal) lC92 to sta-.
tement MOR. Then, HAND has location lC95
amd PROD has location lC97. Further assume
that the storage locations implicitly
addressed by MOR and HAND contain 37219D
and 425C respectivply and register 12 con-
t a ins (h e x a dec i I". a I) 1 1 9 4 • (T h e Bas i c
Assembler. automatically calculates the dis
placement shown in the object coding by
subtracting the contents of register 12

from the address value of the implicit
address).

Source statement:

Op-code D 1 L 1 81 D2 L2 B2

ZAP PROD, HAND

Basic Assembler produced object code:

I I I T--r I I i

I 0 p- co del L 1 I L 2 I B 1 I D 1 I B 2 I D 2 I
I- I I +--+----+-+--~
I F8 14 11 IC IB031C IBOll
'---

and

Op-code Dl L1 B1 D2 L2 B2

MP PROD,MOR

I I I ~-T---T--'---'

IOp-codelL1lL2lBllDl IB21D2 1
I -+ I 1 I I 1 •

1 FC 14 12 IC IB031C IAFEI
, I .L-_.L-__ .L- I ,

The result of the two instructions is shown
in Figure 22.

I I l I
MOR 13712119DI

MAND

L--.L-_.L-_J

1 I I
14215CI

PROD before multiplication
I I I .1 I I
10010010014215CI
L __ ~~ __ ~~ __ ~

PROD after multiplication
I I I 1 I I
10115811810715DI
L--L-~ __ ~~ __ ~

!Q.!.~"!' Maximum length of
product is 16 bytes; maximum

Ilength of MOR is 8 bytes.
L

Figure 22. Decimal Multiplication

Format: SS Op-code FD

Machine instruction:
DP D1 (L 1, B1) , D2 (L2, B2)

Machine-Instruction Statements 59

. .

Function: The dividend in .the .firs·t
operand-field is divided by the divisor in
the second operand field. The quotient and
the remainder are placed into the first
operand field.

The quotient occupies the left part of
the first operand, .L.e. the address of the
quotient is the same as the address of the
dividend. The remainder occupies the right
part of the first operand and has a l~ngth
equal to that of the divisor!

Th~ quotient an~ the remainder togethei
occupy the entire ~ividend field (first
operand). This means the dividend field
must be large enouqh to accomodate a divi
sor of maxi~um lenoth an~ a quotient of
maximum length. 'In the extreme case the
diyiden~ field has to be expanded wit'h
zeros to the left by the number of bytes of
the di visor.

The length of the quotient field (in
bytes) is Ll-L2. The div.isor, field may
have a maximum of 15 digits plus the sign
and must be smaller than the dividend
field.

If L2 > 7 or L2 ~ Ll a halt occurs and
the operation is not execu~~d. The divi
dend must have at least one leading zero or
a hal~ o6curs and the operation is not

. executed.

Dividend, divisor, quotient, and
remainder are signed integers. The sign is
determined according to the rules of ~lge
bra from the ~igns of dividend and divisor.
The sign of the remainder is always ident
ical to the sign o~ the dividend. This
also holds true if the quotient or the
re~ainder are zero.

If the quotient contains more than 29
digits plus the sign, or if the dividend
has no leading zero, then' a halt occurs and
the operation is not executed~ The divisor
and the dividend r~main unchang~d and there
is no overflow. The two operands may over
lap if their rightmost bytes coincide.

1.

2.

Di vidend
DEND

Divisor = Quotient
DO~ QUOT

Length of procpssing field
QUOT + length nOR

length

maximum length of proce$sing field
(PROFE) = length DEN D +- len gt h DOR
(packed bytes).

3. The dividend must be right-aligried with
at least one leading zero before the
division is performed.

r--- I -.---~---~------------~-~,

IName IOperationlOperand I
r,---t I ~
I
1
1
I
I
I
I.

·1
1 DEND
IDOR

ZAP
DP

DS
DS

- 1 PROFE DS
I
1
I

PROFE,DEND
PRO FE, DaR.

CL4
CL2
CL5

L _____ L--________ .~ ______________________ ~

Assume the Basic Assembler has allocated
storage locations as tollows: DEND hexa
decimal A09, PROFE hexadecimal F40, and DOH
hexadeci~al CAC. Register 9 contaihs hexa
decimal 0400. The Basic Assembler automat
ically calculat~s the displacements for the
two operands by subtracting the contents of
register 9 from the respective storage
address values. The source and object cod
ings for the ZAP and DP are:

Source statement:

Op-code Dl Ll B1 D2 L2 82

ZAP PROFE ,DEND

Basic Assembler produced object code:

r --r--r--T--T' I -,

10 p- cod elL 1 1 L 2 I B 1 I D liB 2 I D 2 I
~~--+~-+--+---+--~-~~
I F8 14 13 19 175819 16091

.,L-L-- I ~.

and

Source statement:

Op-code Dl Ll Bl n2 L2 82

DP PROFE ,DaR

Basic Assembler produced object code:.

r -'--'-~T--T-~-T--'---'

lOp-code 1 L llL 21 B 11 D l I 821 D2 I
1-----+-+ I I 1 +--1
1 FD 14 11 19 175819 ISACI
L -L-_-L-_L-__ -L-_...l....-__ J

The results of the two instructions dre
shown in Figure 23.

60 System/360 Model 20 Basi~ Assembler Language

o

o

o

o

o

o

r--- --------------,
I
I
I DEND

I I I I I
12719513 4 13CI

I
I

L----'-_-'-__ ..L.---1

I I I I I I
PROFE I0012719~13413CI

~~ __ ~_.I_-i-_J

I I I
DOR 12113CI

L_~~

Quotien t:
I I I I I I

PROFE 11311213CI1414CI
~-L __ ~ __ ~-J

Quotient and remaindet each
have their own siqn.
MQ!~~ Maximum length of
quotient is 16 bytes; maxi
mum length of DOR is 8
bytes.

L- -1

Figure 23. Decimal Division

NON-ARITHMETIC OPEPATIONS

There are special instructions for the non
arithmetic processing of data. The
operands are processed one byte at a tim~.
In some cases the left four bits and the
right four bits of a byte are treated
separately.

Processing of data fields in main
storage proceeds from left to right. A
field may start at any address excluding
the reserved areas.

In non-arithmetic operations the operand
fields are c6nsidered t6 contain alphameric
data. An ex~eption is the Edit-instruction
which requires packed decimal numbers in
the second operand field.

The data are either in main storage or in
the instruction itself. 'They may be a
single character or an entire field. If
two operands are used they must be of equal
length. Exception: the Edit-instruction.
The two formats for non-arithmetic data
are:

Fixed Length

r---------,
lsingle I
Icharacter I
L _________ J

a 7

Variable Length

Iii

Icharacterlcharacterl

o 7 8 15

I -,

Icharacter I
__ ..L-_______ J

In storage-to-storage (S5) operations,
the fields may start at any address with
exception of the first 144 bytes, which are
reserved. The maximum lenr;th of a field is
256 byte s. I m m e d i ate d a t a is 1 i mit edt 0 a
length of one byte.

The EDIT operation only handles data of
packed format. The other instructions
ha nd Ie all bi t com bi n a tio ns •

Storage-t~-storage instructions may have
overlapping operands. The result of over
lapping depends on the particular opera
tion. Overlapping does not influence the
operation if the operands remain unchanged
(e.g. in a comparison). If one or both
change, however, execution of the operation
may be influenced by the overlapping and by
the manner in w tich the data are rounded
off and stored.

Non-arithmetic instructions are either in
the SI- or the SS-format.

r------,-----T---T--------,
IOp-codel 12 IB1 I D1
L ___ ----L ___ '_--L---L-__ , ____ -1

a 7 15 19 31

The address of the first operand field
is the sum of the contents of the B1-and
D1-fields. The operand has a length of one
byte. The second operand also has a length
of one byte but it is contained directly in
the instruction. The result is placed into
the first operand field. The general
registe['s are not affected by an
51-instruction.

r-------,-----T---T--------.--~--------,

I a i) - co u elL I B 1 I D 1 I B 2 I D 2 I
L ______ -L---__ -L ___ L- J,

a 7 15 19 31 35 47

The address of the each operand field is
the sum of the contents the respective B
and D-fields. The first and second operand
fields must have the same length.

The ['esult of an operation in the S~
Format is placed into the first operand

Machine-Instruction stdtement~ 61

field. The contents of the general regis
ters remain unchanqed.

Condition Code After Non-Arithmetic
Q£eratIon~------------------------- .

The results of the operations determine the
condition code. Move-operations do not set
a code. In case of the EDIT-instruction
the condition code indicates the' status of
the field to be transferred into the mask.

Table of condition codes:

,--- iii, ·1

I 1.0 () I a 1 I 10 I f1 I
.-------------;I-----rl-------rl--- ~-~~
1 Test under Mask I zero I mixed 1-- lone I
lAnd Izero Inot zerol-- I-~ I
ICompare Logicalleguaillow Ihigh 1-- I
lOr Izero Inot zerol-- 1-- I
IEdit Izeio I<zero I>zero 1-- I
L

______________ ~l ____ ~~ ~J

Error conditions which may occur during the
execution of non-ar~thmetic operations are:

1. Operation code invalid

2. Addressing error
a. An instruction address or an

operand ad~ress refers to the pro
te~ted first 144 bytes of main
storage (addresses a to 143).

b. An instruction address or an
operand adnress is outside avail-
able ~torage. .

c. The last (highest) main-storage
position ~ontains ariy part of an
instruetion that is to be executed.

3. Specific~tion error

4.

The low-order bit of an irtstruction
address is one, i.e., no halfword
boundary.

Data error
An invalid digit code is contained
within the second operand field of an
Edit operation.

5. CPU parity error.

INSTRUCTIONS FOR NON-ARITHMETIC OPERAT IONS

i 1

I 1 I Opera tion I
1 Name· I Format I Code I
I--- I I ~
I Move Immedia te (MVI) SI J 92 1

Move Characters (MVC) SS I D2 I
Move Numerics (MVN) SS I D1 1
Move Zones (MVZ) SS I D3 I
Compare Logical (CL I) SI I 95 I
Co m p ar e Lo 9 i cal (CLC) 5S I D5 ·1
Edi t (ED) SS 1 . DE 1
And (N I) 51 1 94 1
Or (OI) SI 1 96 I
Test under Mask (TM) 51 I 91 I
Hal t & Proceed (HPR) SI I 99 J
Translate (TR) SS 1 DC I

~ ______ L--_______ ~

Format: SI Op-code 92

Machine Instruction:
MVI D1(B1),I2

]xa.!!!.E1,g: Assume reg,ister 10 contains (hex
adecimal) 082E,storage location A22 (hexa
decimal) contains A, the displacement in
th~ first operand is 1F4, and the immediate
data is the $.

Source statement:

Op-code D1 B1 12

MVI 500(10),C'$'

From this source statement the Basic Assem
bler produces the following object code:

r i i T---·'
Inn_~n~~IT~IQ1In1 I
I '-'1:', \..ol ~ I ... L" I j.J , I LJ I I

I I I 1--1
192 .15BIA 11F4J

.L-__ J

After execution storage location A22 con
tains $.

Format :SS Op-code· D2

Machine instruction:
MVC D1(L,B1),D2(B2)

62 System/360 Modei 20 Basic Assembler Lan~uage

0

o

o

o

o

o

Function: The contents of the second
operana-field are placed into the first
operand field. Processing is performed
from left to right one byte at a time.

The two operand fields may overlap. If
the first operand field is to the left of
the second operand field, then transfer
will proceed correctly. If the first
operand field is exactly one byte to the
right of the secon~ operand field, then
this byte will be propagated throughout the
first operand fiel~.

£~ndition Code: No change.

~.!amplg: Assume register 11 contains (hex
adecimal) 0258, register 15 contains (hexa
decimal) 04BO, storage location 3E8 (hexa
decimal) contains optional data, storage
location 7DO (hexa~ecimal) contains C9 C2
D4, the displacement in the first operand
is 190 (hexadecimal), and that in the
second operand is 120 (hexadecimal).

Source statement:

Op-code D1 L B1 D2 B2

MVC 400(3,11) ,POO(15)

From this source statement the Basic Assem
bler Froduces the ~ollowing object code:

I -.- j I i j

IOp-codelL IB11D1 ,B21D2
r---+--+-I '1 I ~
I D2 12 IB 1190,F 13201

After execution storage location 3E8 con
tains C9 C2 D4.

Format: SS Op-code D3

Machine instruction:
MVZ D1(L,Bl) ,D2(~2)

XQnc!iQQ: The high-order four bits (the
zones) of each byte in the second operand
field are placed into the high-order four
bits of the first operand field. The low
order four bits (the numerics) of each byte
remain unchanged. Movement is from left to
right one byte at a time. The digits are
not checked for validity. The operand
fields may overlap.

~.!~mElg: Assume register 10 contains (hex
adecimal) 0890, storage location 8F4-8F7
(hexadecimal) contains F4 F3 F2 C1, the
displacement in thp. first operand is 64

(hexadecimal) , and that in the second
operand is 66 (hexadecimal).

Source statement:

Op-code D1 L B1 D2 B2

MVZ 100(1,10) ,102(10)

From this source statement the Basic Assem
bler "produces the following object code:

Iii iii

IOp-codelL IBllDl IB21D2 1
I I I +--+--+---1
I D3 lOlA 10641A 106 6 1

, j J I

After execution storage location 8F4-8F7
contains F4 F3 F2 F1.

Form at: ss Op-code D1

Machine instruction:
MVN D 1 (L,B1) ,D2 (B2)

Function: The low order four bits (the
numerics) of each byte in the second
operand field are placed, from left to
right, into the corresponding low order
four bits of the first operand field. The
high order four bits (the zones) of each
operand remain unchanged. The digits are
not checked f or v alidi ty • The ope rand
fields may overlap.

£.Qnditi.2j! Code: No change.

Example: Assume reg"ister 15 contains (hex
adecimal) 7DA, storage location 8A4-8A 7
(hexadecimal) contains F4 F3 F2 C1, stor.:-age
loca tion 96 A (h exadecimal) contain s F9 F 8
F7 D6, the displacement in the first
operand is C8 (hexadecimal), and that in
the second operand is 190 (hexadecimal).

Source statement:

Op-code D1 L B1 D2 B2

MVN 200(4,15),400(15)

From this source statement the Basic Assem
bler produces the following object code:

Iii T I i -,

lOp-cadelL IB11D1 IB21D2 I
r-- I I +--+--+--~
I D1 13 IF IOC81F 11901
L ________ L-~ __ ~ __ ~J_-L--~

Aft er ex ecu t ion storage IOCd tion 8 A4 -8 A7
contains F9 F8 F7 C6.

Machine-Instruction Statements 63

Format: S.I Op-code 95

Machine instruction:
CLI D1(Bl),I2

Function: The eight-bit symbol of the
immediate-data operand (the second operand)
is compared to the contents of the first
operand field. The result sets the condi
tion code. The two bytes are treated as
eight-bit unsigned binary values. This
results in the following order of
comparison:

Special characters, lower case letters,
upper case letters, digits (System/360
collating sequence).

All 256 bit combinations are valid.

00: first operand=second operand
01: first operand~second operand
10: first operand>second operand

~~~~Elg: Assume register 15 contains (hex
adecimal) 01F4, sto.rage location 5DC (hexa
decimal) contains ~9, the displacement in 
the first operand is 3E8 (hexadecimal), and 
the immediate data is the letter A. 

Source statement: 

Op-code D1 B1 I2 

C LI 1 00 0 ( 1 5) , C' A ' 

From this source statement the Basic Assem
bler produces the following object code: 

r-----,----.--~ 

I Op- code I I2 I B 1 I D 1 , 
~------+--+--+-~ 
I 95 ICllF 13E81 
L ____ --L_-L--L---J 

After execution the condition code setting 
is 10. 

Format: SS Op-code D5 

Machine instruction: 
CLC D1(L,B1) ,D2(~2) 

Function: The contents of the first 
~~e~i~d-field are compared with those of 
the second operand field. The fields may 
have a maximum length of 256 bytes. The 
comparison is terminated as soon as inequa
lity is encounteren • 

All bits are treated alike as part of an 
unsigned binary quantity. The order of 0 
comparison is the System/360 collating 
sequence: 

Special characters, lower case letters, 
upper case letters, digits. 

Comparison proceeds from left to right. 
All 256 bit combinations are valid. 

00: first operand=second operand 
01: first operand(second operand 
10; first operand)second operand 

~Kam~: Assume register 11 contains (hex
adecimal) 0320 storage location AFO-AF3 
(hexadecimal) contains Dl D6 C8 D5., storage 
location 708-70B (hexadecimal) contains D1 
D6 C5 E8, the displacement in the first 
operand is 7DO (hexadecimal), and that in 
the second operand is 3E8 (hexadecimal). 

Source statement: 

Op-code D1 L B 1 D2 B2 

Ctc 2000(4,11),1000(11) 

From this source statement the Basic Assem
bler produces the following object code: 

r------,---,- I -, 

10 f- cod elL I B 1 I D 1 I B 21 D 2 I 
~------+--+--+---+--+---~ 
I D5 13 IB 17DOIB 13E81 

-L~L __ ~~~ __ ~ 

After having compared the third character 
the condition code setting will be 10. 

For-mat: SS Op-code DE 

Machine instruction: 
ED Dl(L,B1),D2(B2) 

Fu nction: The forma t of the so urce fi eld 
(the-second ~perand) is changed from packed 
to zoned and is edited under con~rol of the 
pattern field (t he first operand). The 
edited result replaces the pattern. The 
two fields must not overlap. Editing 
in cl u des s i g nan d pu n c t u a t ion con t r 0 I and 
the suppressing and protecting of leading 
zeros. It also facilitates programmed 
blanking of all-zero fields. Several num
bers may be edited in one operation, and 
numeric information may be combined with 
alphabetic information. The length field 
d p P lies tot her a t t ern (t h (~ fir s top era n d) • 

o 

It may h d V e a m ax i mu m 0 f 256 by t es • The 0 
pattern has unpacked format and may contain 
any character. The source (the second 

64 System/360 Modpl 20 Basic Assembler Language 



o 

o 

o 

operand} has packed format and must contain 
valid decimal digit-and sign-codes. Its 
left half-byte must always contain one of 
the digits 0-9. The right half-byte may be 
a digit or a sign. 

Both operands are processed left to 
right one character at a time. Overlapping 
pattern- and sourcp.-fields give unpredict
able results. 

A so-called s-trigger controls the Edit
operation. Depending on various conditions 
during the operation the trigger is set 
either to ON or OFF. This setting deter
mines whether a sonrce digit or a fill 
character is inserted into the result 
field. 

As mentioned be~ore, the pattern may 
contain any unpac:kp.d character. However, 
three Bit-combinations have special 
significance: 

0010 0000 (hexadecimal 20) = digit-select 
character 

0010 0010 (hexadecimal 22) = field
separator character 

00100001 (hexadecimal 21) = significance
start character. 

The digit-select character indicates a 
position in the result field into which the 
corresponding digit of the source field or 
a fill character is to be inserted. 

The field-separator character is used if 
several source fields are to be inserted 
into one pattern. By settin,] the S-trigger 
to OFF it causes every source field to be 
treated separately. The field-separator 
character is always replaced by the fill 
character. 

The significancp-start character sets 
the S-trigger to ON. Now every character 
in the pattern is replaced by the respec
tive digit of the source field or the fill 
character. 

The S-trigger is set to OFF (0): 

1. At the beginning of an Edit-operation. 

2. By the field-spparator character in the 
pattern. 

3. By a positive sign (1010, 1100, 1110, 
1111). 

The s- trigger is set to ON (1): 

1. By a valid digit (1-9) of the source 
field. 

2. By the significance-start character in 
the pattern. 

3. By a negative sign (lOll, 1101). 

During the processing of the left half
byte the sign of the right half-byte is 
checked and set accordingly. If a sign 
coincides with a valid digit or with a 
significance-start character in one posi
tion of the result field, tIle the sign 
takes precedence and the S-trigger is set 
to OFF (0). 

The new S-trigger setting always takes 
effect with the subsequent position. 

The fill character, which under certain 
conditions, is placed into the result 
field, is always the first (left) character 
of a pattern; it is retained in the pattern 
(exception: the digit-select character and 
the significance-start character). 

The S-trigger in OFF position causes: 

1. The digit-select character (hexadecimal 
20) and/or the significance-start 
character (hexadecimal 21) to be 
replaced by a valid digit (1-9) from 
the source field. 

2. The fill character to be stored in 
rlace of a zero in the source field. 

3. The fill character to be stored in 
place of any character in the pattern 
(exception: the digit select and the 
significance start characters). 

The S-trigger in ON position causes: 

1. The digit-select and/or the 
significance-start character to be 
replaced by every digit (0- 9) from the 
source field. 

2. A character in the pattern to remain 
unchanged (exception: the digit
select, field-separator, and 
significance-start characters). 

All digits in the result field receive 
the zone 1111. 

Condition Code: 
Th~-condition-code is set to: 

1. QQ if the source field contains only 
zeros. The setting of the S-trigger 
has no e ffeet • 

2. Ql if the source field is not zero and 
the S-trigger is set to ON (1) (Nega-
tive result) • 

3. 10 if the source field is not zero and 
the S-trigger is set to OFF (0). 
( Po sit i v ere suI t) . 

Machine-Instruction statements 6S 



If several fields are edited with one 
pattern, then the condition code refers to 
t he field being processed. If th e p at tern 
has a field-separator in the last place, 
then the oondition code is set to zero. 

The following symbols are used in the 
example: 

~..Y.!!lbOl t!~ani!l51 

b (hexadecimal 40) blank character 
( (hexadecimal 21 ) significance-start 

character 
(he xadeci m al 22) field-separator 

character 
d (hexadecimal 20) digi t-select character 

If the number to be edited is a negative 
number, then the CR (hexadecimal C 3D9) is 
commonly used in the last two bytes of the 
pattern. Since the minus sign does not 
reset the s-trigger, the CR will be left 
unchanged in the pattern. The CR stems 
from business application. It stands for 
credit and indicates payments due. 

~xamEl~: (The numbers are given in decimal 
notation with the hexadecimal equivalent in 
parentheses.) 

Assume that register 12 contains 1000 
(03E8), 

Source statement: 

Op-code D1 L B1 D2 B2 

ED 0(13,12) ,200(12) 

From this source statement the Basic Assem
bler produces the following object code: 

Iii T , ,--, 

I 0 p- co del LIB 1 I D 1 I B 2 I D 2 I 
I t I +---+-+--f 
I DE IC IC 1000lC IOC81 

Processing proceeds left to right one 
character at a time as shown in Figure 24. 

Condition code=10; result greater than 
zero. 

After execution location 100~-'012 (3E8-
3F4) contains bb2,574.26bbb. 

If the contents of location 1200-1203 
are 00 00 02 6D, the following results are 
obtained: 

(before) Loc 1000-1012 (3E8-3F4) 
bdd,dd(.ddbCR 
(after) Loc 1000-1012 (3E8-3F4) 
bbbbbb.26bCR 

o 

D 1 is 0 (00), 
D2 is 200 (C8), 
storage location 1000-1012 (3E8-3F4) con
tains bdd, dd ( • ddbCR (unpacked) I 

Condition code=1; result less than zero. 0
1 

In this case the significance-start 
storage location 1200-1203 (4BO-4B3) con
tained 0257426C (packed). 

character in the pattern causes the decimal 
point to be left unchanged. The minus sign 

r I , , 
I Pa ttern I Digi t S-trigger Rule I Location 1000-10121 
l- I I 
I b 0 leave 1 Ibdd,dd (.ddbCR 
I d 0 0 fill I bbd, dd (. ddbCR 
I d 2 1 digit Ibb2,dd (.ddbCR2 
I , 1 leave Isame 
I d 5 1 digit I bb2, 5d (. ddbCR 
I d 7 1 digit Ibb2,57 (.ddbCR 

4 ~;,..,.;.a.. I l-.l-."'I a::~11 .::a.::a~ .... .., 
u. ... ~ ..... 11J1.JL.,JI"'.U.U..uI...4\ 

I 1 lea ve I same 
I d 2 1 digit Ibb2,574.2dbCR 
I d 6+ 0 digit Ibb2,574.26bCR3 
I b 0 fill Isame 
I C 0 fill Ibb2,574.26bbR 
I R 0 fill Ibb2,574.26bbb 
L -L--

Figure 24. Processing of Edit-Instruction 

!!Ql~2: 
1. This character is saved as the fill character. 
2. First non-zero digit sets S-trigger to one. 
3. The plus sign in this byte sets the S-trigger to zero. 

66 System/360 Model 20 Basic Assembler Language 

o 



o 

o 

o 

does not reset the S-trigger so that the CR 
symbol is also preserved. 

Format: SI Op- code 94 

Machine instruction: 
NI Dl (Bl) ,I2 

Function: The immediate data in the second 
operand-field and the contents of the 
storage location a~dressed in the first 
operand field are connected by the logical 
AND. The result (logical product) is 
placed into the first operand field. 

The connective AND is applied bit by 
bit. If there is a 1-bit Ln both operands, 
then the 1-bit in the first operand remains 
unchanged. Otherwise the 1-bit in the 
first operand will be changed to a O-bit. 

Condition Code: If all eight bits in the 
result fiela-are zero, the condition code 
is set to 00. Otherwise it is set to 01. 

]~.2:.!!l.El~: (The numbers are given in decimal 
notation with the hexadecimal equivalent in 
par ent heses) . 

Assume tha t 
reg is t e r S con t a ins 4 0 9 6 ( 1 00 0) , 
D 1 is 1000 (3ES) , 
I2 is 2720 (AA), in binary nota tion: 
1010 1010, 
lo cat ion 5 0 96 (1 06 0, con t a ins 240 ( F 0), in 
binary notation: 1111 0000. 

Source statement: 

Op-code D1 Bl I2 

NI 1000(S),X'J\A' 

From this source statement the Basic Assem
bler produces the ~ollowing object code: 

r-- I I ~ 

IOp-codelI2lB 1 lDl 1 
~ I I I ~ 
I 94 IAAIS 13ESt 
L-_____ -L __ i--L---~ 

After execution storage location 5096 (1060) 
contains 160(AO) or in binary notation 1010 
0000. 

Condition code setting is 01. 

Format: SI Op-code 96 

Machine instruction: 
OI Dl(B1),I2 

Function: The immediate data in the second 
operand field and the contents of the 
storage location addressed in the first 
operand field are connected by the inclu
sive OR. The result (logical sum) is 
placed into the first operand field. 

The inclusive OR is applied bit by bit. 
A O-bit in b~th operand fields will set the 
bit in the resul t field (first operand) to 
zero. Otherwise the resulting bit will 
always be one. 

Condition Code: If all bits are zero, then 
the condition c~de is 00. Otherwise the 
code is set to 01. 

]~.2:~ple: (The numbers are given in decimal 
notation with the hexadecimal equivalent in 
parentheses) • 

Assume that 
register S contains 4096(1000), 
Dl is 1000(3ES), 
I2 is 2720 (AA), in binary nota tion : 
1010 1010, 
storage location 5096(1060) contains 240( 
FO), in binary notation: 1111 1010. 

Source statement: 

Op-code D1 B1 I2 

OI 1000(S),X'AA' 

From thi s so urce st atem ent the Bas ic A ssem
bIer produces the following object code: 

I I I ,----, 

IOp-code1I21B11D1 I 
I IJ~ 
I 96 IAAI8 13E81 
~ ______ ~ ____ ~ ___ J 

After execution storage location 5096(1060) 
contains 250 (FA) or in binary notation: 
1111 1010. 

Condition code is 01. 

Form at: SI Op-code 91 

Machine instruction: 
TM D1 (Bl) ,I2 

Function: The bit combination in the first 
operana-field is compared with the mask in 
the I2-field. The result of the comparison 
sets the condition code. 

The eight bits of the ma~k correspond 
bit by bit to the eight bits defined by the 

Machine-Instruction Statements 67 



first operand. A comparison with a bit in 
the first operand is performed ohly if the 
corresponding bit in the mask contains a 
"1". If the bit in the mask is "0", the 
corresponding bit in the first operand 
field will not be tested. 

00: all bits tested were zero (also, if 
all bits in the mask were zero, i.e., 
no test) • 

01: some (not all) of the bits tested were 
one. 

11: all bits tested were one. 

Example: (The numbers are given in decimal 
notation with the hexadecimal equivalent in 
pa ren these s) • 

Assume tha t 
register 8 contains 2000 (07DO) , 
Dl is 650 (28A) , 
I2 is 217(D9) or in binary notation: 
1101 1001, 
storage location 2650(A5A) contains 204(CC) 
or in binary notation: 1100 1100. 

Source statement: 

o p - co de D 1 B 1 I 2 

TM 650 (8) ,X'D9' 

From this source statement the Basic Assem
bler produces the +ollowing object code: 

r i j • 

IOp-codelI2l BllDl 1 
l-------+--+-+_~ 
I 91 I D9 I 8 I 28 A, 
L ______ ~~~ __ ~ J 

Condition code is 01. 

Format: SI Op-code 

Machine instruction: 
HPR D1(B1);'0 

99 

Function: This instruction is used to hal t 
th;;-CPU:- All input/output operations are 
continued to complption. 

Execution of the program may be resumed 
with the next sequpntial instruction by 
pressing the start key on the cpu. 

This instruction uses the SI-Format in 
which the I2 field is ignored. The direct 
or effective address derived from the 81-Dl 
fields may be used to identify the Halt and 
Proceed instruction. 

fQnaitiQB_Cod~: No change. 

~!.ample: (The numbers are given in decimal 0 
notation with the hexadecimal equivalent in 
parentheses). 

Assume that 
register 10 cont ains 450 (01 C2) , 
Dl is 140 (080) , 
The halt number 590 (24E) is shown on the 
E-S-T-R registers on the console as 024E. 

Source statement: 

Op-code Dl Bl I2 

HPR 140 (10) ,0 

From this source statement the Basic Assem
bler produces the following object code: 

r .--'--T---' 
lOp - co del I2 I B 1 I D 1 I 
I I I I • 
I 99 100lA I08CI 
L---____ ~_i_ __ J 

For mat: ss Op-code DC 

Machine instruction: 
TR Dl(L,Bl),D2(B2) 

Iy'nctiQ.!l: This operation allows you to 
replace the values of one operand field by 
the corresponding values of a table. Every 
byte in the first operand field is used to 
look up a value in a table. The binary 
value of a byte is added to the starting 
address (given by the B2/D2 field) of the 
table. The 3um is the place of the table
value wanted. This table-value replaces 
the byte in the first operand used to loc
ate the table-value. 

Processing proceeds from left to right 
until the end of the first operand is 
rea c he d • The m ax i m U in 1 eng t h may be 25 6 • 
The table must contain as many bytes as 
indicated by the highest binary value used 
for !iearching. 

~xam£lg: (The numbers are given in decimal 
notation with the hexadecimal equivalent in 
parentheses) • 

Assume that 
register 10 contains 0 (0000) , 
register 12 cont ains 0(0000), 
Dl is 1000 (3ES), 

o 

o 
68 System/360 Model 20 Basic Assembler Language 



o 

o 

o 

D2 is 2000(7DO), 
storage location 1000-1012(3Z8-3F4) con
tains the EBCDIC characters 542156037835 
and location 2000-2009 (7DO-7D9) contains 
the EBCDIC charactprs 6MBOIb3-2 where 
b=blank. 

Source statement: 

Op-code D1 L B1 D2 B2 

TR 1000(12,10},2000(12) 

From this source statement the Basic Assem
bler produces the following object code: 

r iii i -r--, 
IOp-codelL IB1JD1 IB21D2 I 
1----+ I I , l---t 
I DC 10BIA 13E81C 17DOI 

After execution storage location 1000-1012 
(3E8-3F4) contains the EBCDIC characters 
bIBMb360-20b where b=blank. 

BRANCHING 

Normally the CPU processes instructions in 
the order of their location in main 
storage. Branching operations allow a 
departure from this sequence. The machine 
can make logical d~cisions on the basis of 
certain conditions. For example: 

• The program continues in its normal 
sequence. 

• The program branches to a subroutine. 

• Part of the progra m is repe ate d (loop). 

The branch addr~ss may be obtained from 
one of the general registers or it may be 
specified in an instruction. The branch 
address is indepen~ent of the updated 
instruction addres~. 

Branching is determined either by the 
condition code in the Program status Word 
(PSW) or by the cont~nts of the general 
registers used in the operations. 

During a branching operation the right
most half of the P~W, the updated instruc
tion address, may be stored before the 
instruction addres~ is replaced by the 
branch address. The stored information may 
be used to link thp new instruction 
sequence with the preceding sequence. 

The condition code set by certain 
instructions and the branch instruction are 
used to make logical decisions within a 
program. The branch operation itself does 
not change the condition code. 

llach,ine_E orma!§_.Q.b_l.n.§t r uc!i 0]}2_ fo ~_£!!;:~.nc h 
Q.E era t l.Q.!L§ 

Branching instructions can be in the RR or 
the RX format. 

, i i 

I 0 p- co del R 1 I R 2 
i ' I .l.--_J 

o 7 11 15 

The Rl field may specify a general register 
into which the updated instruction address 
is to be stored as link information, or may 
contain a mask which is employed to identi
fy the bit values of the condition code. 
In the latter case it is referred to as the 
M1 field. 

The R2 field specifies the general 
register that contains the branch address. 

iii i 

lOp-code I R1 100001 B2 D2 
L-___ ----L--__ ~ __ ..l.------1..-_________ J 

o 7 11 15 19 20 31 

The R1 field may specify a general register 
into which the updated instruction address 
is to be stored as link information, or may 
contain a mask (then called M1 field) that 
is employed to identify the bit values of 
the condition code. 

The direct or effective address derived 
from the B2-D2 fields is the branch 
addr ess. 

Error conditions which may occur during a 
branch operation are: 

1. Operation code invalid. 

2. Addressing error. 

a. An instruction address or a branch 
address refers to the protected 
first 144 bytes of main storage. 

b. An instruction addr ess or a branch 
address is outside available 
storage. 

c. The R1 field of a Branch and store 
instruction contains binary values 
zero through seven, or the R2 field 
of an RR format branch instruction 
contains binary values one through 
seven. 

d • An instruction, pa rtis located in 
the last (highest) two main storage 
positions. 

Machine-Instruclion statements 69 



3. Specification ~rror. 

a. The low-order bit of an instru ction 
address is one, i. e. , no half word 
boundary. 

b. Bits 12 through 15 of an RX format 
instruction are not all zero. 

4. CPU pari ty error. 

INSTRUCTIONS FOR BPANCH OPERATIONS 

The branch instructions, their operation 
codes, formats, ann mnemonics are shown the 
following table: 

r , 
I 
I Name 
l-

Op- I 
I Format I Code I 
+----+---~ 
I I I I 

IBranch 
IBranch 
IBranch 
IBranch 
L 

on Condition (BCR) I RR I 07 I 
on Condition (BC) I RX I 47 I 
~ Store (BlI,SR) I RR I aD I 
~ Store (BAS) I RX I 4D I 

--'---___ .L-

Format: RR Op-code 07 

Machine instruction: 
BCR M1,R2 

Function: The condition code is tested 
agains~the four bits in the mask M1. If 
the con d i t ion i ? met ,g ,l,u;; a Q hll:l. Q hi k Il .. ~ to-:'" 
the address i-wllll1r~~J~~tQ~Q&1.~ ~"'Ji6iL'j.~~ ~, 
it~. of her wise, the next sequential 
!'nstruction is executed. 

There is a corresponding bit in the mask 
for each of the four possible condition 
code settings as shown below: 

07 1 M1 R2 
L 1 -,-,----r--+------J 

1001011101'11 

The condition for a branch is met if the 
mask bit correspon~ing to the current con
dition code settin~ is a 1-bit. It is 
possible to connect several conditions by 
specifying a 1-bit in the corresponding 
mask-bit positions. An unconditional 
branch occurs if all four bits in the mask 
are 1-bits. The branch instruction is 
ignored if all four bits in the mask are 
a-bits or if R2 is zero. 

~~dm~: Assume r~gister 9 contains deci
mal 555 (hexadecimal 22B), the condition 
code in the PSW is 01, and the mask is 
given as hexadecimal 6. 

Source statement: 
Op-code M 1 R2 

BCR X'6',9 

Basic Assembler produced object code: 

I '" IOp-codel l'11 IR21 
I I I ~ 
107 1011019 I 

J 

A branch to the main storage location 22B 
will take place. 

Format RX Op-code 47 

Machine instruction: 
BC M1,D2(0,B2) 

Function: The condition code is tested 
a g a I n s t-the m as k M 1 ( f 0 u r bits). If the 
condition is met, a branch occurs to the 
address in main storage specified by B2/D2. 
Otherwise the next sequential instruction 
is executed. 

For each ~f the four condition code set
tings there is a corresponding bit of the 
mask as shown below: 

47 M1 I 0000 IB2 D2 
L-- I" --,-- +1 _____ --1. __ "'--_ 

I 00 101 1 101 11 I 

The condition for a branch is met if the 
corresponding condition code exists for at 
least one defined bit in the mask. 

It is possible to connect several cdndi
tions by defining several bits in the mask 
accordingly. An unconditional branch 
occurs if all four bits in t he mask are 
one. The branch instruction is ignored if 
all four bits in the mask are zero. 

]~A~~~: Assume that 
D2 is 875 decimal (36B hexadecimal), 
Register 11 contains 0000, 
Co n d it ion co d e i nth e P S W : a a • 

Source statement: 

Op-code M1 D2 a B2 

BC X'O',875(0,11) 

Basi c Ass embler pr oduced ob ject code: 

70 system/360 Model 20 Dasic Assembler Language 

o 

o 

o 



o 

o 

o 

r----~ i i~--' 

I Op- co de 1M 1 10 1 B 21 D 2 I 
r I -+--+--+---~ 
I 47 18 10 IB 116BI 
L--____ .1._-L- I J 

A branch to main storage location 36B (hex
adecimal nota tion) ta kes place (branch on 
egual) . 

Format: RR Op-code OD 

Machine instructions: 
BASR R1,R2 

Function: A branch is taken to the address 
specified by the contents of the register 
in the R2-field. Next, the rightmost 16 
bits of the PSW (t~e address of the next 
seguential instruction before the branch is 
taken) are loaded into the general register 
specified in the R1 field. This is to link 
the new instruction seguence with the pre
ceding seguence. Tf R2 contains all zeros, 
then only the next seguential instruction 
is loaded into the register specified by 
the R1 field and no branching takes places. 

Ex~l~: 
The contents of the register 10 are 
arbi trary. 
Assume that register 12 contains hexadeci
mal 0362 (decimal ,:)66), 
PSW 16-31 contains hexadecimal 026D {deci
mal 621}. 

Source statement: 

Op- code R 1 R2 

BA SR 10, 12 

Basic Assembler produced object code 

r i I , 

IOp-codelR 11R21 
1-------+-_+_~ 
I OD I A I C I 
L 

After execution register 10 contains 026D 
and a branch is taken to storage location 
362 (hexadecimal). 

Form at: RX Op-code 4D 

Machine instruction: 
BAS R1,D2{0,B2} 

Functign: The rightmost 16 bits of the 
PSW, the updated instruction address, are 
stored as link information in the general 
register specified by R1. Next, the 
address specified by B2/D2 is stored as an 
instruction address in the PSW. This 
amounts to a branch to the address speci
fied by B 2/D2. 

~x a.m.2.1.g: 
The contents of register 10 are arbitrary. 
Assume that register 11 contains hexadeci
mal 044C, 
psw 16-31 contains 036C, 
D2 is hexadecimal 12C (decimal 300). 

Source statement: 

Op-code R 1 D2 0 B2 

BAS 10,300(0,11} 

Basic Assembler produced object code: 

j I~---T--T---' 

IOp-codeIR1IX=0 IB21D2 I 
I I I I I ~ 
I 4 D I A I 0 I B I 12C I 
L ______ ~I_-.l..--__ ~_~ __ J 

After execution register 10 contains 
hexadecimal 036C and a branch to storage 
location hexadecimal 578 is taken. 

Machine-Instruction Statements 71 



The Basic Assembler program is available in 
both card and tape versions. 

The card versions are used if only card 
I/O devices are included in the system con
figuration. The tape versions can be used 
if an IBM 2415 Magnetic Tape Unit Model 1 
or 4 is available. in addition to the card 
I/O units. 

The card versions require two passes. Dur
ing the first pass the Basic Assembler pro
gram (phase 1) produces pass information 
required during pass 2. This information 
is punched into columns 1-24 of the source 
cards or into the corres[onding columns of 
duplicated source cards. In addition, a 
listing of all source statements is sup
plied if a printer is attached to the sys
tem and if an appropriate entry has been 
made in the control card. 

During the second pas3, the source cards 
containing the pass information are pro
cessed by the Basic Assembler program 
(phases 2 and 3). Then the symbol table 
generated in storage is punched into cards, 
if desired. At thp end of the assembly the 
followin] output is obtained: 

• a Clear-storage card and an Absolute
Program Loader card for loading of the 
object program. 

• TXT cards containing the source state
ments, translated into machine language. 

• ESD and RLD cards containing information 
for program lin~ing and relocation. 

• A program listing, as shown in Figure 
34. 

liQ1~: The first three items above are 
referred to as the object deck. 

In order to asspmble a source program 
written in Basic Assembler language, the 
source deck must be supplemented by a con
trol (CTL) card, specifying the system con
figuration used for the assembly and the 
desired output. The CTL card as well as 
the card handling required during an assem
bly is described in the SRL publication 1]~ 
~Y2iemL36Q_tlQQel_lQL_~~!Q_E~Qg!~~~ing_~~£= 
£QrtL_Qasi~_!§2~~~1~!_J~~!g_yg!~iQn~LL 
Q£~!£iing_~!Q~edy!~§, Form C26-3802. 

The control car~ can also be used to 
specify a diagnostic run. In this case, 

the punching of all cards is suppressed. 
The only output produced is a listing of 
all statements in Basic Assembler language. 
Most of the erroneous statements are iden
tified by diagnostic messages. 

For the card versions of the Basic Assem
bler program, a reassembly feature is pro~ 
vided that permits the reassembly of a par
tially or completely assembled program in 
less time than would be required by the 
repetition of the total assembly. For a 
reassembly, at least pass 1, phase 1, and 
pass 2, phase 2 of the Basic Assembler pro
gram (i.e., the punching and/or printing of 
the symbol table) must be completed. 

A reassembly can be executed to correct 
erroneous statements and/or to compensate 
for a symbol-table overflow, which occurs 
if the number of symbols specified in the 
source program exceeds the limit in regard 
to the storage capacity used. Refer also 
to the sections ~Y~QQl~ and ~!es2iQn§. 

When a reassembly is to be performed, 
the same amount of main storage must be 
specified to the Basic Assembler program as 
for the original assembly. 

The symbol-table overflow can be elimi
nated by: 

• making use of relative addressing, 
described in the section referenced 
above, thereby reducing the number of 
symbols in the ~rogram; 

• performing an additional assembly run, 
as described in a subsequent section; or 

• subdividing the program into segments 
and performing a separate assembly for 
each segm en t. 

A program that is to be reassembled can 
be changed in any manner:. New symbols can 
be added, existing symbols can be redefined 
(i f the rei s r a :> min the' s y m bo I tab Ie) , 
existing symbols can be deleted except from 
the symbol table, and new statements can be 
added to the program. A statement that is 
to be changed must be repunched, leaving 
columns 1 through 24 blank. 

.AQQiiiQ.!!.~1_!~§'~!!!'Q1Y_.R~D.. This increasps 
the number of symhols permitted in regard 
to the storage capacity used during an 
assembly. 

72 System/360 Modpl 20 Basic Assembler Language 

o 

o 



o 

o 

o 

During pass 2 o~ the original assembly, 
the portion of the object deck already 
assembled is completed. On completion of 
pass 2, a programmed halt occurs to enable 
the user to remove this rortion of the 
object deck. 

When the system is restarted after an 
overflow, the Basic Assembler generates a 
new control card that contains the USING 
table and the valu~ of the location counter 
at the time the overflow occurred. After 
generation of this control card, the 
remaining portion of the source deck is 
d up lica ted. 

The duplicated source cards contain the 
following: 

~~~~_lnfQ£~~tiQB_J£Q1~mB~_j~1~1: For 
example, a diagnostic message or the punch
12-11-0-7-8, the operation code, and one or
more pointers desi0nating the location of
storage addresses of related symbols.

~Q~£~~_~1~1~ill~nt_~Ql~mn~_I2~1l1: The
identification sequence fielc1 (columns 73
to 80) is not duplicated.

The new control card and the duplicated
source cards are the input for the first
(or only) additioni'll assembly run. If
another symbol-table overflow occurs, this
first additional assembly run is considered
to be the original assembly run and another
additional assembly run can be performed.

This again increases, at the rate per
mitte~"for a new assembly, the number of
symbols that can bp used in the program.

The tape versions of the Basic Assembler
program use tape as an intermediate storage
medium, which reduces card handling time.
The Ba~jc Assembler program and the first
source pro'Jram (both contained in punched
cards) are read into the system during the
initial run. Intermediate information is
not punched in to ca rds (a s wi th the pa ss
informdtion of the card version) but is
written on tape, from which it can be
ret r i eve d b Y the pro g ram w hell r (~(l u ire d •

Once the appropriate tdpe version of the
Basic Assembler is written on a work tape,

it can be used for the assembly of any
number of source programs during the same
run. Each source program is read in after
the object deck for the preceding program
has been punched. The subsequent source
decks must be separated by blank cards.

For the assembly of a source program
with the tape version of the Basic Assem
bler program, a control card similar to the
control card of the card version, must be
crea ted. The con trol ca rd a nd the card
handling requir Ed during an assembly run
are described in the SRL publication l~~
~~1~~Ll~Q~Qdel_1QL_Ca£Q~£Qg££mming~Q£=
~or~~_]asi~_As~~ill~le£_J1~~~_l~£§iQn§lL
.Q£gL~.!:i}}SLProc~Q~£~~, FOL"m C24-9011.

The input decks of the tape versions of
the Basic Assembler consist of (1) the
Basic Assembler pre-phase and (2) the five
Basic Assembler phase decks. The pre-phase
is used to read and evaluate the control
card and to write the Basic Assembler pro
gram onto tape. The first four Basic
Assembler phases are used to read the cards
containing the source program, to check the
statement formats, to translate the program
into machine language, to print the program
listings, and to punch the object program
deck.

The fifth Basic Assembler phase is used
to deal with a possible symbol-table over
flow. at herw is e it is not used.

In case of a symbol-table overflow, the
tape versions of the Basic Assembler pro
gram automatically initiate a routine to
compensate f~r the overflow. The punching
of the object program is discontinued at
t he po int w here the overflow occurs. Phase
5 0 f the pro g ram c au s es the g en era t ion 0 f
ddditional intermediate information, which
is required by the Basic Assembler program
to initiate another assembly run. The as
sembly is then repeated, from the begin
ning, to process the subsequent part of the
source program and punch the remaining
ob ject ca rds.

The printed output produced by the tape
versions of the Bdsic Assembler is the same
d s the p r i n t f~c1 0 u t put r ron u c (~d b Y ttl f~ car d
versions of the Basic Assembler.

Thp Ba~ic A~i!;(~mblp[Program 73

Errors in the syntax of source statements
and other violations of programming conven
tions are marked by diagnostic messages in
the program listina to the left of the sta
tements involved. These diagnostic mes
sages, produced by both versions of the

'Basic Assembler program, are subdivided
into two groups:

1. Warning messages.

2. Error messages.

Warning messages indicate violations of
programming rules that do not affect execu
tion of the assembly. The pertinent mes
sage codes are D, L, R, T, and W.

Error messages identify incorrect state
ments that prevent the Basic Assembler pro
gram from completing an assembly. The per
tinent message codes are C, M, N, 0, S, and
U. A summary of all diagnostic messages is
provided in Appendix D.

Two routines for the loading of object pro
grams are available: (1) the Absolute
Program Loader and (2) the Relocatable
Program Loader.

The Absolute-program Loade~ is punched
into a single card by the Basic Assembler
program when the object deck is punched.
Any loader control cards that may have been
produced by the Basic Assembler (ESD and
RLD) are ignored by the Absolute-Program
Loader.

If the program is to be relocated on
loading, the operator must replace the
Absolute-Program Loader card with the deck
containing the Relocatable-Program Loader.
The loading routines are described in
detail in the SRL publication, IBM_~Y2i~illL
360 Mo~~l-1Q_~~£Q_R£Qg£~~mi~g_~~ortL
~asi£_gtility_g£Qg£~ill2L_Funfti2n~anQ
Q£erati~g Pr~£~~~res, Form C26-3604.

74 System/360 Modpl 20 Basic Assembler Language

o

o

o

o

o

o

This section lists the storage and time
requirements for the assembly of source
programs and the execution of object
programs.

MAIN STORAGE REQUIREMENTS

!ssemblLQ!. Source R!:Q.9..£~1!l'§.: Figure 25
shows the main storage requirements for the
assembly of source programs containing the
maximum number of symbols.

r- ------~----------------------,

I Number of
in Sour ce

Symbols I
I Storage Capacity Program 1

l-
I 4096
I 8192
I 12288
I 16384

165
847

1530
2213

Figure 25. Main Storage Requirements for
Assembly

,

Execution_Qf Object_Rf.Q~l£~ms: The
Absolute-Program Loader re1uires 160 bytes
of main storage (including the load/read
area). The Relocatable-Program Loader
requires approximately 500 bytes. The
remaining portion of main storage is avail
able for object program execution.

liQ!g: If the source program contains
external symbols, additional storage is
required for the External Symbol Identifi
cation table.

TIME REQUIREMENTS -- CARD VERSION

!~~g1)lQ1Y_Qf-1QQf.£g_R£Qgf.~m~: Figure 26
shows the times required to assemble a
source program consisting of 600 cards,
including 165 symbols, on two basic input/
output configurations. The available main
storage is 4096 bytes. The times given
apply to IBM Model 20, Submodel 2.

If an IBM Model 20 Submodel 3 or 4 is
used, the time requirements shown in Figure
26 will increase by approximately 50lf,. For
an IBM Model 20 Submodel 5 the time
requirements will decrease by approximately
10r,.

The time requirements depend on the dis
tribution of symbols and on the type of
cards (i.e., original or duplicated source
card~ into which the fass information is
punched.

The total times shown in Figure 26 do
not include card handling time or the time
required for loading the two Basic Assem
bler decks (approximately 10 to 15
seconds) .

I I 1

11/0 ConfigurationlTime (in Minutes) 1

~ I ~
12560 MFCM IPass 1: 4 to 7 I
I and IPass 2: _i--1Q ___ 2 1

12203 Printer ITOTAL: 8 to 12 I
I I ~
12501 Card Reader IPass 1: 4 to 6 1
12520 Card Punch I Pass 2: 2 to 3 1
11403 Printer ITOTAL: -6-to---g 1 L---______________ ~ ____________________ ~

Figure 26. Summary of Time Requirements
for Assembly, Card Version

Execution of_Q~~~t_~£QE£Em.§: The time
required for the execution of an object
program depends on the length of the pro
gram and on the typ es 0 f op erat ions
employed.

TIME REQUIREMENTS -- TAPE VERSION

The time required for the assembly of
source programs depends on the distribution
of symbols and on the model of the 2415
used during the assembly. The average time
requirement for a source program comprising
600 cards and 165 symbols is from 6.2 to 8
minutes, when using a storage capacity of
4096 bytes.

Performance Data 75

This section illustrates the writing of a
program in Basic Assembler language, from
the first approach to th~ specified pro
blem, through the subsequent steps of writ
ing the statements and executing the assem
bly and the object program, and concludes
with the result rrinted as final output.

The sample problem used is as follows. In
1627, an Indian sold Manhattan Island for
twenty-four dollars. Determine the result
ing capital in 196~ if this money had been
immediately transfp.rred to a bank at an
interest of 4~ per annum. The interest
earned each year should be rounded to the
nea rest cen t.

THE FLOWCHART

To establish a gui~e line that defines the
steps to be taken towards a solution, a
flowchart can be dpveloped, as shown in
Figure 27.

IN I TIA LI ZI NG THE pnOG RAM (ST MT 1-STMT 3)

According to the flowchart, initializing
the program is the first ste~. This means
(1) incrementing the loca tion co un ter to a
tentative loading point and (2) loading and
assigning a base register.

These first instructions can now be
entered on an In~ codiny form, as shown in
Figure 28. The opprand of the START
instruction (STMT1) causes the location
counter setting to be incremQnte~ to 340
(hexadecimal 154). The next statement
causes the address 342 (hexadecimal 156) to
be loaded i n t 0 register 1 3 (S T M T 2) and the
USING statement assigns to register 13 the
attributes of a base register (STMT3).

NO

INITIALIZING
ACTION

CALC

SET UP
COUNT

INITIAL
CAPITAL
ACCU AREA

LOOP

ACCU
WORK

INTEREST =
CAPITAL

: RATE/H)O

ACCU =
WORK + OUT

COUNT =
COUNT - 1

Figure 27. Sample Program Flowchart

76 5ystem/360 Modp.1 20 Basic Assembler Language

o

()

o

o

o

o

IBM IBM System 360 Assembler
Short Coding Form

X28-bSOo
Pnnl,,·c.I an U.I\. A.

INDl~N PROSLE.M PUNCHING INSTRUCTIONS
PAGE OF

PROGRAM

GRAPHIC

PROGRAMMER I DATE PUNCH
G. f"lSH E.R 10/10/65

STATEMENT

Name Operation Operand
25 30 32 36 38 45 50

II NOA ST ART .34-~
-- 61\ S R 1 3 .. I~ LO

- f-f--
I N'G

-- - US ""I" 1 3 AS
f--

-- --- - -

--

-'-"-_c--- - --,--v

Figure 28. Initialization Routine

DATA CONSTANTS AND WORK AREAS
(STMT4-STMT15)

Next, we must introduce the data and set up
the required work areas. knowing that the
program must execute arithmetic calcula
tions, including spveral division opera
tions, it appears to be the most convenient
approach to define our data in packed deci
mal form, as required for decimal arithmet
ic. In addi tion, we know that DP instru c
tions require the nividend to have a cer
tain number of leaning zeros. Therefore,
we define the work areas as a string of
hexadecimal zeros.

The following data constants and work
areas are required:

1. The capital (24.000) allowing for an
additional decimal position, which can
be used for rounding to the nearest
cent (STMT9).

2. The divisor (2") for calculation of the
4% interest (S'rMT10).

3. The parameter (S) for rounding the last
decimal position (STMT11).

4. The count (33~ to control the number
of calculations executed (STMT12) •

S. The parameter (1) to decrement the
co u n t (S TM T 1 3) •

6. The mask required when transforming the
result into unpacked format for print
ing and for insertion of the necessary
commas and the decimal point (STMT14;
STMT1S).

CARD FORM /I

Identification-
Comments Sequence

55

AD
S1

SA
GN

7.

60 65 71 73 80
S T MT ,

S£ RE G • S T Hi 2-
SA SE. RE G. ST MT3

"- - -....... 1..--" ---

A print (PRT; 17 bytes) large enough to
accommodate the mask (STMT6).

8. An area (ACCU; 7 by t es) to accumul ate
the computed interest and the resulting
new capital (STMT8).

9. A work area for execution of the divi
sion and r~unding (STMT7), with a
length of 9 bytes, which is equal to
the length ~f the divisor plus the
length of the dividend.

Figure 29 sh~ws how these constants and
areas are defined.

The BC statement (STMT4), in Figure 26 is
rejuired during execution of the object
program so that it can branch around the
constants.

Register 10 is specified by R10 in the
operand of a pr~gram statement (STMTS)
which facilitates the reading of the state
ments. The constant ROUN is used to round.

The constant MASK provides a basis for
the ED (Edi~ instruction that transforms
data to be printed into unpacked format and
inserts the necessary decimal signs.
Information to be printed is edited into a
field that contains the mask. The mask
causes leading zeros to be suppressed by
its first character (hexadecimal 40). Each
decimal digit printed must be represented
by the select character, 20, 21, or 22 in
the mask -- whichever is applicable. Com
mas and decimal points ar~ specified by the
characters 6B and 4B, respectively, placed
in the position where they should appear in
the printed data.

Writing a Program in Basic Assembler Language 77

STATEMENT
Identification-

Name Operation Operand Comments Sequence
25 30 32 36 38 45 50 55 60 65 71 73 80

18 C- 15 • c ALc' 181'1 PA 5S J)C Sr "'T Is • Sr It\rtf
R jim I:QU 11~ Sr JIlTS

PP.. T DS CL 17 Sr It1r6
"10 I<.K DC XL rq '0 '

sir /11117
AC cu DC. XL 7 I o I $T MTS
CP TL DC. X I 2.11f 0¢ o C I SIT If1Tlq
RA Tf DC X' 10 25 C I ~r MT 1.iiJ
1<0 UN DC IX I ¢~ ¢I¢ I¢¢ I¢ ¢ 15-(1-1 f 1 ST Mr 1.i
elN T DC 1-1 I 33 g I Sr MT 1..1
J)E C,R DIC H I t I

10~
.sIr AfT i3

MA SK 1)C X I II-Ias 210 16 8l 1-0 2. 1-(62 10~6 18z las 2.: I~ 2. 18'1 Sr AfT 1.4
:DC Ix I 21~ tl'~ 21 '/fe 2 I~ 2. 1<6 f". " $r "T i5

'I' -I.-

V~ "'- _o.-t.,...- '" '-- "'- [.....-

Figure 29. Introduction of Data and Work Areas

Before a mask c~n be set up, the maximum
size of the expect~d result must be deter
min e d • In 0 u r pro q ram ex a,m pIe, w e h a v e
analyzed the result and decided to reserve
twelve decimal positions. This means, that
the latgest result expected is of the
format:

X,XXX,XXX,XXX.XX

o C

ACCU ACCU -, 4

Figure 30. Contents of ACCU After Execu
tion of STMT17

o

If the result should be shorter, zeros
are replaced by blanks (hexadecimal 40 in,
t he first posi tion of the mask) . The next step is to br:ing the conte nts 0

of ACCU (accumu ~ated capital) into-the work
The mask may then be determined as follows:

x , X X X , X X X , X X X . X X
I I I I I I I II I I II I I I

40 20 68 20 20 20 68 20 20 20 68 20 20 21 48 20 20

The digit prece~ing the decimal point is
specified as 21. ~his code is the initial
start character an~ causes zero suppression
to be disregarded ~rom here on. This
allows printing of the decimal point, in
case the result is !ess than 1.

PROGRAM ROUTINE (STMT16-STMT24)

Now we can concentrate on the program rou
tine itself. According to the flow-chart,
we first set up thp count. ~s shown in
Figure 32 (STMT16), this is done by loading
reg i s t e r 1 0 wit h the co n s tan t 3 3 B (1 9 6 5 -
1627). This statement must be nam(~d CALC
to link it with thp branch instruction pre
ceding the DC statpments. The initial
capital of 24.000 is moved into the ACCU
area used to accumuldt~ the intermediate
interest amounts and incremented capital
(STMT17). Thus, Arcu now has the conb.~nts
shown in Figure 30.

area for computation of the interest
(STMT18). This is the first of the
instructions to be executed 338 times and,
therefore, becomes the entry point for the
program loop (see flow-chart). The con-
tents of the area WORK are then divided by
25 (STMT19). On execution of the division,
the quotient, including leading zeros, is
placed into the leftmost portion of the
dividend field and the remainder into the
r:ightmost portion of the dividend field.
Thus, the first calculation is executed as
shown in Figure 31.

loaded from ACCU

LO 0 1 0 0 to 0 I 0 0 I 0 0 1 0 0 r 2 4 o 0 1 0 C I

ORK ORK+2

WORK ofter execution of the division:

quotient remainder
,~ ____________ ~A~ ________________ ~,~

1001001000010019610CI0010CI

Figur:e 31. Execution of the Fi~st Calcula
tion St.ep

78 System/360 Modpl 20 Basic; Assembler Ldnguage

o

o

o

o

- r--..-

CA \..C LH R1 10 I., CNT LO
IMVC AC CU -t,+ (3) I'J CP TL LO

LO o P IMVC Wo RI< +2. 'C 7 I) 'J. A C' CU LO
DP .V'JO RK , R ATE CO
IA P AC CU ,W OR KI(17) ,I N
IAlp AC CU • R OU N IR 0
IMVI A.C CU + 6 , X I IfJ C' RE:
Is H R1 I~ I, 1>E CR I)) E
[Bc 2. , LO OP rrE

,-"_v-'--- ,- ---
Figure 32. Calculation Routine

The contents of the leftmost seven bytes
of the area WORK (0.960, after the first
iteration) are added to the co-ntents of
ACCU (ST~T20). Accordingly, ACCU now con
tains 24.960, the capital available after
one year of deposit.

Fractions of cents that are equal to or
greater than one-half are rounded to the
next highest value by adding the constant
0.005 to the contents of ACCU (STMT21).
Since the third decimal position contains a
zero, the result is not changed. (On the
next iteration, however, the computed int
erest and capital equals 25.958, which
results in a rounded total of 25.963.) The
original contents of the last byte of ACCO
(Oe) are then restored in preparation for
the next i tera tion (STMT22).

The counter is then decreased by 1
(STMT23) • This instruction also sets the
condition code, which indicates whether the

-

IMVIc. Ip Ri .. 1M A.IS K M,I\
,

ED Ip RT , A Ie c u E])
~I NE XIO P R T (Ix ' 'I; ,) ,1117 Ip R

Be 11, PE RR TE
IBC It I, FJ. N£. TIE:
T1 OB *1 .. X • ,+1' I ITE
lrI O'B PiE RR • Ix 'It l' T£

H ALl' IHP R x' Is 9 1.9 ' .. IJ ~Ir
Is c. 115 I, H ALT L 0

PE Rf\ HPR X • 11 l' I. CI DI.
~C 115 1'1 F IN£. RE
I~N :1) IN i» A

-
Figure 33. Print Routine

AD C 0 UNT S:r MT 16
AD AC c.u SrI" MT 17
AD WO RK IS TM T 1 8
MIP UTE IN TE RiE ST ST MT 119
CR ElM ENT CA PI TAL l~ TM T 2 JI.
UNO DIE: C[MAt.. 15 TM T21
IS T
clR
ST

IslK
iI T

ORE: L IA ST DI GI.T S TM T 2 2
EIA 51E CO U NT ST MT 23

FOR CO MP LE TI. ON 15 TM T2 4

- --.

result is greater than or equal to zero.
If the result is greater than zero, the
program branches to LOOP and re-executes
the program segment through the condition
code test (STMT24). Otherwise, the print
routine (Figure 33) is initiated.

OUTPUT (STMT25-STMT35)

STMT25 causes the mask to be moved into the
pr in t area. (The Ie ng th of eac h operand
need not be explicitly stated, because it
is implied). The ED instruction (STMT26)
causes the editing of the calculated result
by moving it into the print area, on top of
the mask already contained in this field.
The first 4-bit hexadecimal digit of ACCU
is placed into the leftmost byte containinJ
a digit select character 20. Although the
addressed byte is PRT, the first byte used
to store the result is PRT+1.

~-,... --, -
T 0 PR INT IA RE. IA is TM T 215
RE IS U L T S~ MT 2.6

lINT RE Is IJLT S TM T2 17
Is T PR IrlN TIE R NO T OK S TM IT 12.IS
Is T PR I.N TE. IR WO RK NG ST NT 2.19
ST ENl> OF I/O S ITN TI3 IJ1
Is T PR IN rE. :p. ER RO R 'S ITM IT 13 1.

5 P LAY 19 ~ 9 5 ITM T32.
elK IR Eis IT ".RT S TM T 3 3
Is P LI\'(1 1 1 _5 trM TL3 I
PE. ".T Ip R .rlN IT s T.N TI3 Is

sir 'MT 136

- '-- -

W~iting d Program in Basic Assembler Language 79

Finally, the XIO instruction (STMT27)
causes the printing of the result. The
first operand specifies the area (PRT) in
which the data to be printed is stored.
The code in parentheses refers to a 1403
printer (U=4), and specifies printing as
the function to be performed (F=O). The
second operand gives the number of charac
ters (bytes) to be printed. At this stage,
the program could be terminated. However,
we would risk a disregard of our print
instruction if, for instance, the printer
were out of servicp , or busy with a rre
viously issued I/O instruction. In addi
tion, we should delay processing of the HPR
instruction until the previous I/O opera
tion is completed to ensure that no Frint
errors have been d~tected.

All of these conditions are taken care
of by appropriate test and branch instruc
tions, represented by STMT28 through
STMT31. STMT28 branches to the instruction
that stops the processing of the program if
the printer is not operational. STMT29
tests to see if the printer is working
("Working" means that the Model 20 is in
the process of setting up mechanical delays
and circuitry or still executing a previous
XIO instruction, n01 that it is executing
the present XIO instruction.) and causes
the re-execution o~ the XIO instruction
until the printer has completed the last
I/O operation. ST~T30 tests to see if the
printer is busy ("Pusy" means that the XIO
instruction is actually being executed.)
and causes the pronram to loop around the
same instruction until the last print
operation has been terminated. STMT31
causes a halt, if a print error occurs, and
display of code 111 in the STR register
panels on the CPU (STMT34). In the latter
case, pressing the start key of the CPU
causes the print instruction to be re
executed because o~ the branch address in
STMT35.

PROGRAM END (STMT3f)

If no print error occurs, the program halts
on reaching thl~ HPR instruction (STMT12).
If the start key of the CPU is pressed,
STMT33 causes the nrogram to re-execute the
previous HPR instrnction and to return to
the same halt.

CONTIWL CARD

When the program h~s been punched into
cards, the source program can be assembled
by either version of the Basic A~sembler
program.

In our case, it is assumed that the card
version is used an~ that the available sys
tem configuration includes a 2S60 MFCM dnd
a 2S01 Card Reader. Therefore, the 2S01

will read the Basic Assembler program and
the source program.

In addition, the pass information will
be punched into duplicated source cards on
the attached 2560, and the first run will
scan the program statements for possible
errors. Thus, t he control card will be
supplied with the following entries:

Columns 1-5://CTL
Column 6: a or blank (Indicates a diag

nostic run; all
punch operations are
bypassed; only the
program listing is
prin ted.)

Column 8: a or blank (Indicates that 4096
bytes of main
storage are used for
the a sse m b 1 j •)

All other columns are left blank.

DIAGNOSTIC RUN

The statement listing printed during the
diagnostic run is shown in Figure 34. To
demonstrate the identification of incorrect
statements by diagnostic messages, two
errors have been deliberately included in
the source deck (see STMT 19 and STMT29).

I ",r'A ~TAPT 'i4(~T"'H:l

~:ASR 13,() lui'll) eA')t ,.'\-(,. Ql"f;·2
UQNr; .,11 AS~ It;N BAl'".C" p~G. ~T~r,);

I:\C 15,CALC C I RCLf 'H~ CCJNST. STMT'i4
I'l" !-CU 1 '1 ';Polloe;
PI,l PS CLl7 ~HH06

'.,IIPI< DC Xl9'n' STMT01
AceU nc XL 1'0' STMTG8
(PH nc X'?4000C' ~HIT OQ
IlA 11 DC X'025C' S,"',) 0

'" \l1'~' DC x'oonooooorLOO5C~ <;T"'Il1
(lin DC H'3~8' qMTll
flffl< DC H'l' <HITP
MA S~ DC .'40206B20?020bB20?0706H' ~TMTl4

DC X' 20?02lltll?')20' HIIlTl'::
CAt (LH Rlo,eNT LOAD (OUIIoT STMT Ii·

MVC ACCU+It 131 .CPH LOAD A(ClJ QM'lf
LOPP MVC WORK+2C71,ACCU LOAO ~f'kK Sl "" 11\

M LOPP OP WCRK,RAl'E COMPUTf. INTERl'ST STfoH19
AP AeCU,WORKCH I NCRI.'MFI'41 C.APlTAL qMT"O
AP ACCU,ROUN ROUNO nfCIMAL S'MT?)
"'VI ACCt..+6,X'OC' RESTORE LAST DIGIT STMTn
SH R1O,OFCR DECREASE COUNT STMT 2'~
IIC ;>,LO(lP TEST FeR COMPLET IO~ <:fMT?4
MVC PRT,MASK MASK TO PRINT AREA S'MT7"
10 PflT,ACCU EDIT RfSULT H",T'It.

f I ~If X III PRTC X' 40' 1,17 PRINT RESULT STMT;l1
IIC I,PERR TEST PrllHfR NOT ClK <;''''T71l
IIC 4,fINF TEST PPI/IITf P WLRK INC.5T"'T;(9·
TIOB .,X'ltO' TEST £ONO Of lIlt ,)T"'T'lO
T 1110 PERR,X'ltl' TEST PP INTI II IRICOR ST",nl

'IAI T HPfl X'99Q',O DISPLAY qq') ., T",T '~?
1'(15,HALT LOCK fll~lA~l Q"'T 1i

PHI< tIP/(X'll1',O DI<;PLAY III ',HIT '4
lit l".,f I Nr H!-prAI PI>IINT <, I",T "
~ /IIU INPA ~,T "'I '.f,

F i'JU re 14. Saml'lp. S td tP. mp.n t Li sti ng Pro-
duced OU r in <J t h (~ Did C] no!,. tic Run

o

o

0

o

0

0

STMT19 is marked by an M, indicating that
the symbol in the name field is defined
twice.

STMT29 is marked by a C, indicating that
column 72 of the source card is not blank.

Note: In the case of an erroneous comments card (i.e., punched in column 72), columns
1 to 24 are not printed by the card version
of the Basic Assembler program. The state
ment is marked by a C.

AssemblL1H!.!1

After correcting these two errors, the
source program can be assembled. For this
purpose, the entry in column 6 of the con
trol card must be changed to 3. This
informs the Basic Assembler program that
(1) a 2501 is used for reading, (2) a 2560

MFCM is used for punching, and (3) pass
information is to he punched into a dupli-

ACCU
",EI:R
LOOP
RATE

Fig ure

,) 154
015:.
0156
0156
OOOA
015A
0168
0174
0178
017E
0180
0188
018A
018C
0197
019E
01"'2
OlA8
aLAE
0184
OlBA
OlCO
01C4
01C8
OlCC
0102
0108
alOE
01E2
01E6
OlEA
OlEE
OU:2
01F6
OlFA
0154

10 0174 06
10 018A 01
10 01A8 05
10 017E 01

36. Image

OOL>iJ

47FO 004A

0000 OilOO 0000
0000 0000 0000
2400 OC
025C
0000 0000 0000
0152
0001
4020 6i320 2020
2020 2148 2020
48AO 0032
0202 0022 0025
0206 01)17 DOLE
F081 0015 0028
FA66 DOLE 0015
FA66 DOLE D02A
noc 0024
4BAO 0034
4720 0052
0210 0004 0036
DE10 0004 DOLE
0040 0004 0011
4710 OOAO
4740 0082
9A40 0090
9A41 OOAO
9900 0999
47FO 0098
9900 0111
47FO 0082

of

0000
00

5C

6R20

CALC
FINE
MASK
ROUN

10 019E 03
10 OlDR 05
10 OIBC OA
10 01BO 06

the Symbol Table

INOA

RIO
PRT

00 WORK
ACeu
ePH
RATE
ROUN
eNT
OECR

2020 68 MASK

CALC

lOOP

FINE

HALT

PERR

cated source deck. (For detailed informa
tion refer to the SRL publication 1~~
~ystem/3&~od~1~~~~RrogI~mming_~]~
EQrt~asic Assembler (Card VersionsLL
Q£g£ati~ pr~£g~~re~, Form C26-3802.

During assembly, the symbol-table image
is printed as shown in Figure 36. The pro
gram listing is shown in Figure 37. The
punched card output, produced during the
assembly run, consists of the object deck
with an Absolute-Program Loader card pre
ceding it. When these cards have been
loaded into main storage, the execution of
the object program produces the result
shown in Figure 35.

13,721,788.77

Figure 35. Result Computed by the Problem
Program

CNT
HALT
PFRR
RIO

10 01138 01
10 01F.E 03
10 01F6 03
00 OOOA 00

CPH
INOA
PRT
WORK

1;) 017B 02
lD 0154 00
11> 015A 10
Ii> 016B 08

SIARI 340 STMT01 Q01
8ASR 13,0 LOAD F3ASE REG. STrH02 002
USING ~~ , 13 ASSIGN BASE RE. SHH03 002
BC 15,CAlC CIRCLE THE CONS T STMT04 002
EQU 10 ST~H05 007.
OS CLl7 S PIT06 007.
DC XL9'O' ST~T01 003
DC XL7'0' 5T"1T08 GG3
DC X' 24000C' ST:H09 ()O3
DC X'025C' S T~Tl 0 0')3
DC X'OOOOOOOOOOOO5C' STrH 11 003
De H'33S' STMT12 003
DC H' l' S TMTl3 003
DC X'40206B20207.06R?07.0206B' SPH14 003
DC X'2020214R707.0' STMT15 003
lH RIO, CNT LOAD COUIIIT S TMTl6 003
MVC ACCU+4(31 ,CPH LOAD ACCU STMTl7 003
MVC WORK+2(71,ACCU LOAD WORK STMT18 004
DP WORK,RATE (Ol-'PUTF Ir,TEREST SHT19 004
AP '.CCU,I-/ORK(7 1 INCREMENT (APITAL SHT20 004
AP ACCU,ROUN ROUND DEC I i/AL ST~T21 004
MVI ACCU+6,X'OC' RESTO~E LAST DIGIT ST.-1T22 ()04
SH RIO,OECR DECRFASf: COU~T ST;H 23 004
BC 2,lOOP TEST FO~ CO~PLETION S T:01T 24 004
MVC PRT,MASK MASK TO PRINT AREA STH25 004
ED PRT,ACCU EDIT RESULT ST1'o1T26 004
XIO PRTCX'40'I.l7 PRINT RESULT ST"1T27 004
BC 1,PERR T~ST PRINTE~ NOT OK S T'n 28 005
BC 4,FINE TEST PRINTER WORKNG STiH29 005
TIOB *,X'40' TEST ENU OF 110 STMT30 005
Tl08 PERR,X'41' TEST PRINTER ERROR ST~T31 005
HPR X'999',0 DISPLAY 999 S l1-lT32 005
Be 15,HAlT LOCK RESTART ST:H33 005
HPR X'lll',o DISPLAY 11 1 STMT34 005
Be 15,FINE REPEAT PRINT STMT35 005
END INOA STMT36 006

Fig ure 37. Assem bIer Pro du c(~cl Pro gr am Listing

Writing a Program in Basic A!:isembler Language 81

APPENDIX A. SUMMARY OF BASIC ASSEMBL~R INSTRUCTIONS

o
r ---. I ~----------------------~
I Description and Function I Name I Operation I Operand I
I- I I -+--------------~

I I I I I
I]~§g_]ggi§lg~_±nstr~~ii~~~ I I I I
I I I I I
I Use Base Address Register Inot usejlUSING IReloc. exp.,abs. exp. I
I Drop Base Address Register Inot usedlDROP ISimple abs. exp. 1
l- I I -+-------------~

I I I I 1
IRIQgI~~_1inking_Insi£Q£ii~ll~ I I I I
I I I I I
I Identify Entry Point Inot usedlENTRY IRelocatable symbol I
I Identify External Symbol I not used I EXTRN I Relocatable symbol I
I- -+------+-----+------------------~

I 'I I I I
l.Qgfi!!i.tiQll_Instruclion~ I I I I
I I I I I
I Equate Symbol 10ptionallEQU IExpression I
I Define Constan t I optiona 11 DC I TLCI I
I Define Storage 10ptionaliDS IDYL? I
• -+-----+-----+---.
I I I I I
I !§.~g~.hlef._~Q!!1IQ1_1!!~.tI.!!£liQ!!§ I I I I
I I I I I
I Start Program 10ptionaliSTART ISelf-defining value I
I Reset Location Counter Inot usedlORG IRelocatable expressionl
I End of Program Inot usedlEND I Relocatable expressionl
l-----------------------+-----L ~

IIT--Type (C, X, H or Y) 12 D--Duplication Factor I o
I L--Length Modifipr I F--Field (C or H) I
I C--Constant I L--Length I L _________________________ ~ _____________ J

o
82 System/360 Model 20 Rasic Assembler Language

APPENDIX B. SUMMARY OF MACHINE-INSTRUCTIONS

0
r------~ -.-
I I Basic I
I Mnemonic I Name of Opera tion Machine Operand Field I Page I
I Code I Instruction Code1 Format Format I Number I

• I +- ,
AH Add Halfword 4A RX R1, D2 (X2, B2) 53
AR Add 1A RR R1,R2 51
AP Add Decimal FA SS D1 (L1 ,B1) ,D2 (L2 ,B2) 57
BAS Branch ann Store 4D RX R1,D2(X2,B2) 71
BASR Branch an'! Store OD RR R 1, R2 71
BC Branch on Condition 47 RX M1, D2 (X2, B2) 70
BCR Branch on Condition 07 RR M1,R2 70
CH Compare Halfword 49 RX R1, D2 (X2,B2) 52
CIa Control 1/0 9B SI D 1 (B 1) , UF 37
CLC Compare Logical D5 SS D 1 (L, B 1) , D 2 (B 2) 64
CLI Compare Logical Immediate 95 SI D1 (B1) ,I2 64
CP Compare Decimal F9 SS D1 (L1,B1) ,D2(L2,B2) 57
DP Di vide Decim al FD SS D 1 (L 1 , B 1) , D 2 (L2 , B2) 59
ED Edit DE SS D1 (L, B1), D2 (B2) 64
HPR Halt and Proceed 99 SI D1 (B1) ,12 68
LH Load Halfword 48 RX R1,D2(X2,B2) 52
MP Multiply Decimal FC SS D 1 (L 1 , B 1) , D 2 (L 2, B 2) 58
MVC Move Characters D2 SS D1 (L,B1) ,D2 (B2) 62
MVI Move Immeoiate 92 SI D1(B1),I2 62
MVN Move Numerics D1 SS D1 (L,B1) ,D2 (B2) 63
MVO Move with Offset F1 SS D1 (L1,B1) ,D2(L2,B2) 55
MVZ Move Zones D3 SS D1 (L,B1) ,D2 (B2) 63

0 NI And Logical Immediate 94 SI D1(B1),I2 67
01 Or Logical Immediate 96 SI D1 (B1) ,12 67
PACK Pack F2 SS D 1 (L 1 , B 1) , D 2 (L 2 , B 2) 56
SH subtract Halfword 4B RX R 1 , D 2 (X2 , B 2) 53
SP Subtract necimal FB SS D1 (L1,B1) ,D2 (L2,B2) 58
SPSW set PSW 81 SI D1 (B1) 48
SR Subtract 1B RR R1,R2 51
STH store Halfword 40 RX R1,D2(X2,B2) 52
TIOB Test I/O and Branch 9A SI D 1 (B 1) , UF 39
TM Test under Mask 91 SI D1(B1),I2 67
TR Translate DC SS D1 (L,B1) ,D2 (B2) 68
UNPK Unpack F3 SS D1 (L1,B1) ,D2(L2,B2) 56
XIO Execute 1/0 DO SS n 1 (UF , B 1) , D 2 (B 2) 37
ZAP Zero and Add Decimal F8 SS D 1 (L 1 , B 1) , D 2 (L 2, B 2) 56

L---_____ ..L.-
--'--- ---L- ..L--__ -A

1 He xadecimal Equivalent. of actual Machine Operation Code.

o
Appendix B. Summary of Machine-Instructions 83

r --,-
I I
I Machine I
• I
I I
I 2501 I
I Card Reader I
I Model A1 or A2 I
I I
1------------+

2560
Multi-Function
Card Machine

1-----------+
I I
I I
I I
I I
I 2520 I
I Card Read I
I Punch I
I I
I I
I I
I I

""nemonic
Operation Code

XIO
XIO
TIOB
TIOB
TIOB

XIO
XIO
XIO
XIO
XIO
XIO
XIO
XIO
XIO
TIOB
T IOB
TIOB
TIOB
TIOB
CIO
CIO
CIa
CIO

XIO
XIO
XIO
XIO
TIOB
TIOB
TIOB
TIOB
TIOB
TIOB
CIO I

---.---------------------------------------~i

Operand I I
U F I Fun ct ion I

I ,
1 2 I Read Card I
1 A I *Read Card, Column Binary I
1 0 I Test Reader Busy I
1 1 I Test Reader Error I
1 4 I Test Last Card I

I -f
2 2 I
2 A I
2 3 I
2 B I
2 4 I
2 5 I
2 6
2 7
2 0
2 0
2 1
2 2
2 4
2 5
2 0
2 1
2 2
2 3

2 2
2 A
2 4
2 6
2 0
2 1
2 2
2 3
2 4
2 5
2 0

Read Primary Card
* Read Primary Card, Column Binary
Read Secondary Card
* Read Secondary Card, Column Binary
Punch Primary Card
Punch Secondary Card
Punch and Feed Primary Card
Punch and Feed Secondary Card
* write Card
Test Reader/Punch Busy
Test Reader/Punch Error
Test Card Printer Busy
Test Last Card
Test Feed Error
Primary Card Stacker Select
Secondary Card Stacker Select
Punch Card Stacker Select
* Print Head Select

Read Card
* Read Card, Column Bin ary
Punch Card
Punch and Feed
Test Reader Busy
Test Reader Error
Test Punch Busy
Test Punch Error
Test Last Card
Test Feed Error
Stacker Select

-f
I
I
I
I
I
I
I
I
I
I
I

.----------+----------+--------+ ~
I I XIO I 2 6 I Punch Card I
I 2520 I T lOB I 2 2 I Test Punch Busy I
I Card Punch I TIOB I 2 3 I Test Punch Error I
I Model A2 or A3 I TIOB I 2 5 I Test Feed Error I
I I CIO I 2 0 I Stacker Select t
I---------------+-----------+------+_ -1
I I XIO I 3 6 t Punch Card I
I 1442 I TIOB I 3 2 I Test Punch Busy I
! Card Punch TIOB I 'l 3 I Test n,, __ l... Error i I J I ~' u." \....11

I Model 5 I TIOB I 3 5 I Test Feed Error I
1---------------+----------+------+ ----1

~IO 4 0 Print I
2203 or 1403 XIO 4 1 Prin t and Space Suppress I
Printer: T lOB 4 0 Test Printer Busy I

TIOB 4 1 Test Printer Err:'>r I
TIOB 4 2 Test Channel 9 I
TIOB 4 .3 Test Channel 12 I
TIOB 4 4 * Test Chann(~l 9 (u ppe r) I
TIOD 4 5 * Test Channel 12 (upper) I

~ _______________ ~ ______________ L_ _______ ~ ______________ ~ ______________ ~

*Optional Feature

84 System/360 Model 20 Basic Assembler Ldnguage

o

(-~
,);1

o

o

o

o

~---------------.------- -,-
Operand I
U F I

I I ~nemonic
I Machine I Operation Code Function
j --+----- +

2203 or 1403 TIOS 4 6 Test Carriage Busy
Imm ediat e Sp ace
Immediate Skip
Delayed Space
Delayed Skip

Printer

l--------------+
I Communica- I
I tions I
I Adapter I
I (C. A.) I
I I
I I
I I
I I

CIO
CIO
CIO
CIO
CIO
CIO
CIO
CIO
CIO
CIO
CIO
CIO

XIO
XIO
TIOB
TIOB
TIOB
CIa
CIa
CIO

4 4
4 5
4 6
4 7
4 8
4 9
4 A
4 B
4 C
4 D
4 E
4 F

5
5
5
5
5
5
5
5

2
4
o
1
5
o
2
3

* Immediate Space (upper)
* Immediate Skip (upper)
* Delayed Space (upper)
* Delayed Skip (upp~)
* Immediate Space (both)
* Immediate Skip (both)
* Delayed Space (both)
* Delayed Skip (bot h)

Receive Record
Transmit Record
Test C.A. Busy
Test C.A Error
Test Received EOT
Set Receive Mode
Send EOT
Inhibit Audible Alarm

l----------------+------------ -+
o Sinary

Synchronous
Communications
Adapter (BSCA)

I
I
I

~--------+
Serial
Input/
Output
Channel

XIO
XIO
XIO
XIO
XIO
XIO
TIOS
TIOS
CIa
CIO
CIO
CIO
CIa
CIO
CIa

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

1
2
3
4
8
o
8
o
1
2
3
6
7
8

--+

Transmit and Receive
Receive Initial
Address Prepare
Auto Call
Receive
Transmit
Test Any Indicator
Test Busy
Disable ITB
Enable ITB
Enable BSCA
Disa ble BS CA

Set

Store Current Address
Store Sense Information
store ITB Address

XIO h 2 Read I/O Device (Time sharing)
XIO 6 4 write I/O Device (Time sharing)
XIO 6 10 Read I/O Device (Burst)
XIO 6 12 Write I/O Device (Burst)
TIOB 6 1 Test I/O Transfer 1
TIOS 6 2 Test I/O transfe~ 2
TIOB 6 3 Test I/O Transfer 1
TIOB 6 4 Test I/O Transfer 4
TIOB 6 5 Test I/O Transfer 5
TIOB 6 6 Test I/O Transfer 6
TIOB 6 7 Test I/O Transfer 7
TIOB 6 8 Test I/O Transfer 8
TIOB 6 9 Test Read Transfer Error
CIa 6 0 Unit Control
CIa 6 1 I/O Select

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
~

l----------------t-------------t-- t --i
I 2415 I XIO I 7 0 I Perform Tape Operation I
~----. --+----------+--------+--------------------------------~
I 2 3 1 1 I X I a I 8 0 I Pe r for m D i ~i k Ope rat i () n I L-______________ ~L ______________ L _______ __L_

* Optional Feature

Appendix C. Summary of Input/Output Instructions 85

I -r --,
IMESSAGEI ERROo CONDITION I
~ I ~
I C 11.) Assembly executed using the Basic Assembler (Card): I
I I (a) columns 1-24 and/or column 72 not blank, or I
I I (b) operation code and/or operand missing. I
I 12.) Assembly executed using the Basic Assembler (Tape) I
I I (a) col umn 72 not blank, or I
1 I (b) operation code and/or operand missing. 1
~ 1 ~
I Dl 11.) This EQU statement is unnamed. I
I 12.) This START, ENTRY, or EXTRN statement is misplaced. (The statement is I
I I ignored) • 1
r-------+ ~
1 Ll 1 The value of the location counter has exceeded the storage size for program I
1 lexecution as specified in the Basic Assembler Control card (card column 9). 1
I 1 Notes: An instruction byte may not occupy the last (highest order) available I
I Imain storage address. I
1 I A constant or dat a byt e may be located at this posi ti on. I
~ I ~
1 M IThe name of this statement is defined more than once. I
1------+ ---f
1 N IThe name of this statement does not conform to the rules as follows: I
I Ie It has more than four characters, or I
I Ie its first character is not alphabetic, or I
1 Ie it contains an illegal character. 1
r-------+ ~
I 0 IThis mnemonic operation code is invalid. I
~ I ~
I Rl lIn this statement I
I 11.) a relocatable expression has been used in an absolute field, or I
I 12.) an absolute expression has been used in a relocatable field, or I
I 13.) the X-Register field in an RX-instruction is not zero, or I
1 14.) a relocatable expression could not be split into a valid base address and I
1 I a displacement. (A USING statement is either missing, or wrong, or 1
I I misplaced.) I
1-----+ --i

S One of th~ operands in this statement is invalid. This diagnostic message is
printed when one or more of the follo~ing conditions occur:
1.) An invalid character is used as a delimiter.
2.) The -f'irst character of a symbol in the operand entry is not alphabetic.
3.) A delimiter is incorrectly used.
4.) The operand of a START, ORG, or EQU statement is invalid.
5.) A symbol or self-defining value in the operand entry contains an invalid

character.
6.) A self-defining value or a symbol in the operand entry contains too many

characters.
7.) A symbol or a self-defining value in the operand entry is followed by an

invalid character.
8.) A self-defining value exceeds storage capacity.
9.) An ampersand or an apostrophe used within a character constant is inco-

rrectly specified.
10.) A DS duplication factor is too high.
11.) A DS statement contains an invalid operand.
12.) A DC statement is incorrectly specified.

-L-

lWarning messages that do not suppress the punching of the object deck.

86 System/360 Mod~l 20 Basic Assembler Language

o

o

o

o

o

o

r-------,------------- --,
IMESSAGEI ERRO~ CONDITION I
~----+ ----------------------~
I Tl' IThe symbol table was filled by the name of the last ~eceding statement. The I
I Iname of this statement cannot be accommodated.
~---+
1 U2 11.)
I I 2.)
I I

The operand entry contains an undefined symbJl.
The operand entry of an EQU, ORG, or END statement contains a symbol that
is not previously defined.

I
~
I
I
I

t I
I W1 IThe length of a constant defined by a DC statement exceeds the explicit

~
length. I

'---____ .L

lWarning messages that do not suppress the punching of the object deck.
2U-messages of type (1) do not suppress the punching of the object deck, those of type

(2) do suppress punching.

J

Appendi x D. !:ummilry ()f Di,lgn()~;t ic Mns~iiHJ(~!; 87

o
r T------------,------------,
1 1 1 ,
1 1 1 I
ICode setting: 00 01 I 10 I 11 ,
1 I I I
~ +------------+------------~
I I 1 I
I I I I
,Mask Used to Test the Code: 8 4 I 2 1 1
I , 1 1 1
l- --+- -+--------+------------+----------~
'Ii~~Q_Poig~£ithm~ii£_JRR_[Q£m~1l 1 1 1 1 1
IAdd Register' CAR) IResult=O IResult<O IResult>O .1 -- 1
ISubtract Register (SR) 1 Result=O 1 Result<O IResult>O 1 -- 1
~ --+ I +------------+----------~
IKi~~Q_fQint_!£ilh~~1i£_JR~_IQ£~~1l 1 , , 1 1
,Add Half-word (AR) IResult=O IResult<O IResult>O 1 1
1 Compare Half-word (CH) IOpl=Op2 1 Op1 <Op2 lOp 1>Op2 1 1
1 Subtract Half-worn (SH) IResult;.=O IResult<O IResult>O 1 1
I- +----------+ 1 --+--------~
1~~£im~1_!£i1hmetic 1 1 1 1 ,
IAdd Packed CAP) Iqesult=O I Result<O IResult>O loverflow I
ICompare Packed (CP) IOp1=Op2 IOp1<Op2 IOp1>0l-.2 I -- I
ISubtract Packed (SP) IResult=O IResult<O IResult>O loverflow I
1 Zero Add Packed (ZAP) IResult=O IResult<O IResult>O ,-- 1
I- +----------+------+------t-------~
11Qgi££1_2£~ratiQns I 1 I I 1
I lI. N D Lo g i cal I m m e d i ate (~ I) IRes u 1 t= 0 IRe suI t i 0 I - - I I
ICompare Logical (r'LC,CLI) IOpl=Op2 IOp1<Op2 IOpl>Op2 1 I
1 Edi t and M ark (ED) I source field I source field 1 source fie ld I I 0 ...
lOR Logical Immediate (OI) IResult=O IResultiO 1 I ,
ITest Under Mask ('T'M) I Result:::O I Result mixed I -- IResult all I
, 'I' lones,
I------------------------+-----------_+_ +--------:-+-----------~
'lnEQiLQQ1£~1_Q£~£~1iQn~ , I I I I
,Execute Input/Outrut (XIO) ,Unit avail. ,Unit working I ,Unit not I
I 'I" opera tional 1
IControl Input/Outnut (CIO) ,Device IDevicf~ I IDevice not I
1 (referring to the 1403/2203 lavailable Iworking I loperational ,
, carriage only) I" I I
L-____________________________ ----L _______ ---L __________ i-___________ ~ ____________ J

o
00 Sysb~m/160 Modnl 20 Da!.ic lI.!;!;t~mbl{~r L<1Il<Jllcl!JE'

o
This appendix lists all Systemj360 card codes to which a printer graphic is assigned.

EBCDIC CARD PfTNCH PRINT ER
~QDE_ £QMBlli!IlQ!{ __ ~JIAP[IC_ Q££lfAL li£X~~~~1!:1A1

00000000 12,0,9,8,1 0 00
00000001 12,9,1 1 01
00000010 12,9,2 2 02
00000011 12,9,3 3 03
00000100 12,9,4 4 04
00000101 12,9,5 5 05
00000110 12,9,6 6

.
06

00000111 12,9,7 7 07
00001000 12,9,8 8 08
00001001 12 ,9,8, 1 9 09
00001010 12,9,8,2 10 OA
00001011 12,9,8,3 11 08
0000 1100 12,9,8,4 12 oc
00001101 12,9,8,5 1 3 OD
00001110 12,9,8,6 14 OE
00001111 12,9,8,7 15 OF
00010000 12,11, Q ., 8, 1 Hi 10
00010001 11,9,1 17 1 1
00010010 11,9,2 18 1 2
00010011 11,9,1 19 1 3
00010100 11,9,4 20 14

0
00010101 11,9,S 21 1 5
00010110 11,9,6 22 16
00010111 11,9,7 23 17
00011000 11,9,8 24 1 t3
00011001 11,9,8,1 25 1 g
00011010 11,9,8,2 26 lA
00011011 11,9,8,3 27 1 B
00011100 11,9,8,4 28 lC
00011101 11,9,8,5 29 1 D
00011110 11,9,8,6 30 1 E
00011111 11,9,8,7 31 1 F
00100000 11,0,9,8,1 32 20
00100001 0,9 , 1 U 21
00100010 0,9,2 -34 22 \
00100011 0,9,3 3S 2 3 "-,-
00100100 0,9,4 36 24
00100101 O,9,S n 2r. ,>
00100110 0,9,6 38 26
00100111 0,1),7 19 27
00101000 0,9,8 40 28
00101001 O,Cf,B,l 41 2g
00101010 0,9,n,) 42 2A
00101011 0,9,B,1 43 7.B
00101100 0,9,n,U 44 7.C
00101101 0,9,B,S 4S 2D
00101110 0,9,O,h 46 2E
00101111 0,9,n,1 In 21"
00110000 12,11,n,9,n,1 4fl '10

00110001 g, 1 49 1 1
00110010 '),2 '>0 J)

00110011 () ,3 'i 1 11
00110100 (), 4 '>2 4

0
00110101 () , r) 'd i')

00110110 9, () f)4 16
001 101 11 () , 7 ') r) l7

J\ppl'lItlix F. Chtl[,lct (~I Cocip:; fI'l

00111000 9,8 56 38
00111001 9, 8, 1 57 39
00111010 9;8,2 58 3A
00111011 9,8,3 59 3B

0 00111100 9,8,4 60 3C
00111101 9,8,5 61 3D
00111110 9,8,6 62 3E
00111111 9,8,7 63 3F
01000000 blank 64 40
01000001 12,0,9,1 65 41
01000010 12,0,9,2 66 42
01000011 12,0,9,3 67 43
01000100 12,0,9,4 68 44
01000101 12,0,9,5 69 45
01000110 12,0,9,6 70 46
01000111 12,0,9,7 71 47
01001000 12,0,9,8 72 48
01001001 12,8,1 73 49
01001010 12,8,2 ~ 74 4A
01001011 12,8,3 75 4B
01001100 12,8,4 < 76 4C
01001101 12,8,5 (77 4D
01001110 12,8,6 + 78 4E
01001111 12,8,7 I 79 4F
01010000 12 & 80 50
01010001 12,11,9,1 81 51
01010010 12,11,Q,2 82 52
01010011 12,11,9,3 83 53
01010100 12,11,Q,4 84 54
01010101 12,11,°,5 85 55
01010110 12,11,9,6 86 56
01010111 12,11,0,7 87 57
01011000 12,11,0,8 88 58
01011001 11,8,1 89 59
01011010 11,8,2 90 SA
01011011 11,8,3 $ 91 5B

0 01011100 11,8,4 * 92 5C
01011101 11,8,5 93 5D
01011110 11,8,6 94 52
010 11111 11,8,7 , 95 SF
01100000 11 96 60
01100001 0, 1 / 97 61
01100010 11,0,9,2 98 62
01100011 11,0,9,3 99 63
01100100 11,0,9,4 100 64
01100101 11,0,9,5 101 65
01100110 11,0,9,6 102 66
01100111 11,0,9,7 103 67
01101000 11,0,9,8 104 68
01101001 0, 8, 1 105 69
01101010 12,11 106 6A
01101011 0,8,3 , 107 .6B
01101100 0,8,4 % 108 6C
01101101 0,8,5 109 6D
01101110 0,8,6 > 110 6E
01101111 0,8,7 ? 111 6F
01110000 12,11,0 112 70
01110001 12,11,",9,1 113 71
01110010 12,11,",9,2 114 72
01110011 12,11,0,9,3 115 73
01110100 12,11,n,9,4 116 74
01110101 12,11,0,9,5 117 7~

01110110 12,11,0,9,6 118 76
01110111 12,11,0,9,7 119 77
01111000 1 2 , 11 , ° , 9. , 8 120 78
01111001 8, 1 121 79
01111010 8,2 122 7A
01111011 8, 1 # 121 7B

0 01111100 £3,4 ii) 124 7C
01111101 8,5 125 7D

90 System/360 Model 20 Basic Assembler Language

01111110 8,6 126 7E
01111111 8, 7 " 127 7F
10000000 12,0,8,1 128 80

0
10000001 12,0,1 129 81
10000010 12,0,2 130 82
10000011 12,0,3 131 83
10000100 12,0,4 132 84
10000101 12,0,5 133 85
10000110 12,0,6 134 86
10000111 12,0,7 135 87
10001000 12,0,8 136 88
10001001 12,0,9 137 [9
10001010 12,0,8,2 138 8A
10001011 12,0,8,3 139 8B
10001100 12,0,8,4 140 8C
10001101 12,0,8,5 141 8D
10001110 12,0,8,6 142 8E
10001111 12,0,8,7 143 8F
10010000 12,11,P,1 144 90
10010001 12,11,1 145 91
10010010 12,11,2 146 92
10010011 12,11,1 147 93
10010100 12,11,U 148 94
10010101 12,11,C; 149 95
10010110 12,11,fi 150 96
10010111 12,11,'" 151 97
10011000 12,11,0 152 98
10011001 12,11, 0 151 99
10011010 12,11, p ,2 l 'S4 9A
10011011 12,11, p ,3 155 98
10011100 12,11,°,4 156 9C
10011101 12,11, Q , 5 157 9D
10011110 12,11, 0 ,6 158 9E
10011111 12,11,Q,7 159 9F
10100000 11,0,8,1 160 AO

0
10100001 11,0,1 161 A 1
10100010 11,0,2 162 A2
10100011 11,0,3 163 1\3
10100100 11,0,4 164 1\4
10100101 11,0,5 165 A5
10100110 11,0,6 166 A6
10100111 11,0,7 167 A7
10101000 11,0,8 168 A8
10101001 11,0,9 169 A9
10101010 11,0,8,2 170 AA
10101011 11,0,8,3 171 AB
10101100 11,0,8,4 172 AC
10101101 11,0,8,5 171 AD
10101110 11,0,8,6 174 hE
10101111 11,0,8,7 175 I\F
10110000 12,11,O,8,1 176 130
10110001 12,11,O,1 177 I31
10110010 12,11,O,2 178 R2
10110011 12,11,O,3 179 131
10110100 12,11,O,4 180 B4
10110101 12,11,O,5 "81 BS
10110110 12,11,0,6 lB2 Bo
10110111 12,11,",7 181 137
10111000 12,11,n,8 184 An
10 11100'1 12,11,",9 1BS [39
10111010 12,11,0,8,2 186 Bl\
10111011 12,11,0,8,l 187 1313
10111100 12,11,0,8,4 188 BC
10111101 12,11,0,8,r) lBfJ I3D
10111110 12,11,0,8,6 1 () ° BE
1 0 1 1 1 1 11 12,11,O,S,7 191 I3F
110000'00 12,0 192 co

0
11000001 12, 1 A 1 <) 1 Cl
11000010 12,2 11 l'l4 C2
11000011 1 2 ,-~ C 19 S C ~

A P pp nd i x F. c: h ,1 r, 1 C t. (> I c: () d (~ ! ; () 1

11000100 12,4 D 196 C4
11000101 12,5 E 197 C5
11000110 12,6 F 198 C6
11000111 12,7 G 199 C7 "0 11001000 12,8 H 200 C8
11001001 12,9 I 201 C9
11001010 12,0,9,8,2 202 CA
11001011 12,0,9,8,3 203 CB
11001100 12,0,9,8,4 204 CC
11001101 12,0,9,8,5 205 CD
11001110 12,0,9,8,6 206 CE
11001111 12,0,9,8,7 207 CF
11010000 11 , 0 208 DO
11010001 11 , 1 J 209 D1
11010010 11 , 2 K 210 D2
11010011 11 ,3 L 211 D3
11010100 11 , 4 M 212 D4
11010101 11 ,5 N 213 D5
11010110 11 ,6 0 214 D6
11010111 11 ,7 p 215 D7
11011000 11 , 8 Q 216 D8
11011001 11 ,9 R 217 D9
11011010 12,11,9,8,2 218 DA
11011011 12,11,Q,8,3 219 DB
11011100 12,11,°,8,4 220 DC
11011101 12,11, Q ,8,5 221 DD
11011110 12,11,9,8,6 222 DE
11011111 12,11, Q ,8,7 223 DF
11100000 0,8,2 224 EO
11100001 11,0,9,1 225 E1
11100010 0,2 S 226 E2
11100011 0,3 T 227 E3
11100100 0,4 U 228 E4
11100101 0,5 V 229 E5
11100110 0,6 w 230 E6
11100111 0,7 X 231 E7 () 11101000 0,8 y 232 E8
11101001 0,9 Z 233 E9
11101010 11,0,9,8,2 214 EA
11101011 11,0,9,8,3 235 EB
11101100 11,0,9,8,4 236 EC
11101101 11,0,9,8,5 237 ED
11101110 11,0,9,8,6 238 EE
11101111 11,0,9,8,7 239 EF
11110000 0 0 240 FO
11110001 1 1 241 F1
11110010 2 2 242 F2
11110011 3 3 243 F3
11110100 4 4 244 F4
11110101 5 5 245 F5
11110110 6 6 246 F6
11110111 7 7 247 F7
11111000 8 8 248 F8
11111001 9 9 249 F9
11111010 12,11,n,9,8,2 250 FA
11111011 12,11,n,9,8,3 2 r) 1 FB
11111100 12,11,",9,8,4 2 r)2 FC
11111101 12,11,n,9,8,5 253 FD
11111110 12,11,n,9,8,6 254 FE
11111111 12,11,"',9,8,7 2')5 PI-'

o
92 System/J60 Modpl 20 8dSic Assembler Langudge

o

0

0

The table in this appendix provides for direct conversion ~f decimal and hexadecimal num
bers between 0000 and 4095 (hexadecimal 000 and FFF) •

For numbers outside the range of the table, add the following values to the table
figures:

li~.!~g~£iJ1l.~l Decimal !!.~l£~Q.§.£imal De.£i!!!~l
1000 -4096- 9000 36864
2000 8192 AOOO 40960
3000 12288 BOOO 45056
4000 16384 COOO 49152
5000 20480 DOOO 53248
6000 24576 EOOO 57344
7000 28672 FOOO 61440
8000 327fi8

0 2 3 4 5 6 7 8 9 A B C D E

00 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014
01 0016 0017 on18 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030
02 0032 0033 on34 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046
03 0048 0049 on50 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062

04 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078
05 0080 0081 on82 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094
06 0096 0097 00.98 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110
07 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126

08 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142
09 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158
OA 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174
OB 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190

oc 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206
OD 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222
OE 0224 0225 07.26 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238
OF 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254

10 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270
11 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286
12 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 o JO 1 0302
13 0304 0305 0106 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318

14 0320 0321 0122 0323 0324 0325 0326 0327 0328 0329 0330 0311 0332 0333 0334
15 0336 0337 0138 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350
16 0352 0353 0.154 0355 0356 0357 0358 0359 0360 0361 0362 0363 0164 0365 0366
17 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0178 0379 0380 0381 OJA 2

18 0384 0385 0186 0.187 0.388 0389 0390 0391 O]C} 2 0393 0394 039'1 0396 01')7 019 A
19 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414
11\ 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 04.10
lB 0432 0433 0434 04.15 0436 04.17 0438 0439 0440 0441 04,42 0443 0444 0445 0446

lC 0448 0449 0450 0451 0452 0453 0454 045'1 0456 0457 04 SA 0459 0460 0461 0462
lD 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478
1E 0480 0481 0482 0483 0484 0485 0486 0487 0488 0409 01~90 o l~ ') 1 0492 0491 0494
1F 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0'107 or) 08 050<) or>10

F

0015
0031
00 It 7
0063

0079
0095
0111
0127

0143
0159
0175
0191

0207
0223
0239
0255

0271
02fl7
0303
0319

0135
0351
0367
03B3

0399
0415
04 -31
0447

0461
0479
049 r)
0511

l\PFendix G. Hexddecim,11-DHcimal Numb(~l" ConvPl-slon Tablp 93

20
21
22
23

o 2 3 4 5 6 7 8 9 A B c D F

0512 0513 OS14 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
0528 0529 0~30 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
0544 0545 0~46 0547 0548 0549 0550 0551 05S2 0553 0554 0555 0556 0557 0558 0559
0560 0561 0~62 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

24 0576 0577 OS78 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
25 0592 0593 0~94 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26 0608 0609 0~10 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
27 0624 0625 0~26 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

28 0640 0641 0~42 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29 0656 0657 0~58 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A 0672 0673 0~74 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
28 0688 0689 On90 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2C 0704 0705 0~06 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D 0720 0721 0~22 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
23 0736 0737 0~38 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2f 0752 0753 0~54 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

30 0768 0769 0~70 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
31 0784 0785 0~86 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32 0800 0801 OP02 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 C813 0814 0815
33 0816 0817 0 0 18 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

34
35
36
37

38
39
3A
38

0832 0833 OP34 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
0848 0849 OP50 0851 0852 0853 0854 0855 08S6 0857 0858 0859 0860 0861 0862 0863
0864 0865 OR66 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
0880 0881 OP82 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

0896 0897 OR98 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
0912 0913 0 0 14 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
0928 0929 OQ30 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
0944 0945 OQ46 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3C 0960 0961 0 0 62 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D 0976 0977 OQ78 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E 0992 0993 OQ94 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

40 1024 1025 l n26 1027 1028 1029 1030 1031 1032 10331034 1035 1036 1017 1038 1039
41 1040 1041 ,ri42 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 10~)S
42 1056 1057 1058 1059 1060 1061 1062 1063 1064 106S 1066 1067 1068 1069 1070 1071
43 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

44 1088 1089 1090 10<)1 10921093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1101
45 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1110 1119
46 1120 1121 1122 1121 1124 1125 1126 1127 1128 1129 1130 1131 1132 1111 1134 1135
47 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 11S1

48 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1161 1164 1165 1166 11h7
49 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1181
4A 1184118511861187119811891190119111921193 11CJ4 1195 11<)6 11()7 119B 11<)()
4B .1200 1201 1702 1203 1204 1205 1206 1207 1208 120<) 1210 1211 1212 1211 1214 121S

4C
4D
4E
4F

1216 1217 1218 121<) 1220 1221 1222 1223 1224 1225 1226 1227 17.2B 1229 12]0 1211
1 2 3 2 1 2 3 31 7) 4 1 2 .1 ') 1 2 .1 6 1 2 17 1 2 3 8 1 2 .1 <) 1 /. 4 0 1 2 4 1 1 2 4 2 1 2 4·3 1 2 4 I! 1 7. 4 r) 1 24 (, 1 2 I~ 7
1248 1249 1750 12')1 1252 1253 1254 1255 1256 12 r)7 125fl 12')<) 1260 1261 1262 126 ~
1264 1265 1766 1267 1260 1269 1270 1271 1272 1273 1274 127'> 1276 1277 127B 1279

94 System/360 Modf'l 20 Bd!;ic As!:;pmbl(~[Ldngud<jP

o

()

o

0 2 3 4 5 6 7 8 9 A B C D E F

0 50 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
51 1296 1297 1?98 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
52 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

54 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56 1376 1377 1178 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
57 1392 1393 1 ~94 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

58 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5A 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5C 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E 1504 1505 lr:;06 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5F 1520 1521 lr:;22 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

60 1536 1537 11:)38 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
61 1552 1553 lr:;54 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62 1568 1569 1,70 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63 1584 1585 1"86 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

64 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65 1616 1617 lF18 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
66 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

0
67 1648 1649 1 fi50 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

68 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
69 1680 1681 lfi82 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6A 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6B 1712 1713 1"714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6C 1728 1729 1"730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D 1744 1745 1146 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E 1760 1761 1"762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F 1776 1777 1"778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

70 1792 1793 1"794 17<)5 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
71 1808 1809 l P l0 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
72 1824 1825 1P 26 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
73 1840 1841 1P 42 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

74 1856 1857 1A58 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
75 1872 1873 lA74 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
76 1888 1889 1fl90 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
77 1904 1905 lQ06 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

78 1920 1921 lQ22 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 -1934 1935
79 1936 1937 lQ 38 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A 1952 1953 lq54 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7B 1968 1969 lQ70 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7C 1984 1985 lQ86 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 _ 1997 1990 1999
7D 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E 2016 2017 2('18 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

0 7F 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

Appendix G. Hexadecimal-Decimal Number Conversion Table 95

80
81
82
83

o 2 3 4 5 6 7 8 9 A B e D E F

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
2064 2065 2n66 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
2080 2081 2 0 82 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

84 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

88 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A 2208 2209 2)10 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
88 2224 2225 2/.26 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

8e 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D 2256 2257 2)58 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8E 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F 2288 2289 2/.90 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

90 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
91 2320 2321 2122 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2360 2364 2365 2366 2367

94
95
96
97

98
99
9A
98

2368 2369 2170 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

ge 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9D 2512 2513 2~14 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9E 2528 2529 2~30 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F 2544 2545 2~46 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

AO 2560 2561 2~62 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
A1 2576 2577 2~78 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2 2592 2593 2~94 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3 2608 2609 2~10 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A4 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2615 26]6 2637 26J8 2639
A5 2640 2641 2~42 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2651 2654 2655
A6 2656 2657 2~58 2659 2660 2661 2662 2661 2664 2665 2666 26b7 2668 2669 2670 2671
A7 2672 2673 2~74 2675 2676 2677 2678 2679 2680 2681 2682 2681 2684 2685 2686 2687

A8 2688 2689 2~90 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2701
A9 2704 2705 2~06 2707 2708 2709 2710 2711 2712 271] 2714 2715 2716 2717 2718 271q
AA 2720 2721 2~22 2723 2724 2725 2726 2727 2728 2729 2710 2711 2712 2711 2714 2715
A8 2736 2737 2~]8 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 27S0 2751

Ae
AD
AE
AF

2752 2751 2~54 2755 2756 2757 2758 27SQ 2760 2761 2762 2761 2764 2765 2766 2767
2768 2769 2~70 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
2784 2785 2""'06 2787 2788 2789 2790 2791 2792 27c)·3 2794 279~) 2796 2797 279B 279q
2800 2801 2P 02 2803 2804 2801) 2806 2A07 2808 280g 2810 2011 2812 2fl1l 2814 2.8 F>

96 Syst~m/360 Modpl 20 Busic A!:;s(~mblp.l Ldl1(Jllll<JP

o

()

o

o

o

o

BO
Bl
B2
B3

o 2 3 4 5 6 7 8 9 A B C D E F

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
2832 2833 '2 P 34 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
2848 2849 2 A50 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B4 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B5 2896 2897 2~98 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6 2912 2913 2q14 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B7 2928 2929 20 30 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B8 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9 2960 2961 2q62 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BA 2976 2977 2 Q 78 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BB 2992 2993 2094 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BC 3008 3009 3~10 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BD 3024 3025 3n 26 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BF 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

co 3072 3073 3n74 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
Cl 3088 3089 3n 9D 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C3 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C4
C5
C6
C7

C8
C9
CA
CB

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
3232 3233 3'34 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
3248 3249 3'50 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CC 3264 3265 3'66 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CD 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 32q5
CE 3296 3297 3'98 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CF 3312 3313 3114 3315 3316 3317 3318 3319 3320 3321 3322" 3323 3324 3325 3326 3327

DO 3328 3329 3130 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
Dl 3344 3345 3146 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3157 3358 3359
D2 3360 3361 3162 3]63 3164 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3 3376 3377]178 3179 3380 3381 3382 3383]384 3385 3386 3387 3188 3389 3190 3391

D4 3392 3393 3194 3395 3396 3397 3398 3399 3400 3401 3402 3403]404 340S 3406 3407
D5 3408 3409 1410 3411 3412 1413 3414 3415 3416 3417 3418 341q 3420 3421 3422 3423
D6 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 343S 3436 3437 3438 3439
D7 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 34S2 J453 3454 345S

D8 3456 3457 3458 3459 3460 3461 1462 3463 3464 3465 1466 3467 1468 1469 1470 3471
D9 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 J486 3407
D A 3488 J 48 9 3490 341) 1 3492 3493 3494 3495 349 f) 3497 J 4 9 B 1499 3 r) 00 150 1 350 2 3 r; 0 3
DB 3504 j505 3~06 3507 3508 3509 3510 3511 3512 J513 1514 3515 3~1f) 3S17 1S18 3519

DC
DD
DE
DF

3')20 3521]';22 3S21 3524 F)2') 3526 1')27 1 c,20 "l·)29 V)]O 3531 JC)32 JS31 3514 "Je) Jf)

3 ') 3 6 3 5 J 7] r; 38 3 5 J 9 3 ') 4 0 35 4 1 3 r) 4 2 3 S 4 3 3 e) 4 4 3 r) 4 S 3 S 4 6 3 S 4 7 3 ') 4 8 J S 4 q J S 5 0 J f, f) 1
3552 3553 3~54 35SS F)56 "3557 3(lS8 15 r)9 3560 3')61 1S62 P")63 Jf ,64 j')6 r) 1 r)66V)67
3568 3569 3';70 3571 3572 .3S73 3574 357 r) 1576 1577 V,7H ")·)79 J580 JSB1 "jr)B2 lSH l

AppE-~I1dix G. IIf!xadpcimal-Dpcimdl Numhp[" COI1vPI"!.ion Tdblp <n

0 2 3 4 5 6 7 8 9 A B C D E F

0
EO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E1 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2 3616 3617 3~18 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E4 3648 3649 3n50 3651 3652 3653 3654 3655 3656 .3657 3658 3659 3660 3661 3662 3663
E5 3664 3665 3f166 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6 3680 3681 3f182 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E7 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E8 3712 3713 T'14 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9 3728 3729 3'30 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3756 3759
EB 3760 3761 31 62 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

EC 3776 3777 31 78 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
ED 3792 3793 3'94 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EE 3808 3809 3R10 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF 3824 3825 3R26 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
F1 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F2 3872 3873 3 R74 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F3 3888 3889 3 R90 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F4 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5 3920 3921 3 0 22 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F6 3936 3937 3Q38 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951

0 F7 3952 3953 3°54 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F8 3968 3969 3070 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9 3984 3985 3 0 86 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FA 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FB 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

Fe 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FE 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FF 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

o
98 System/360 Mod~l 20 Basic Assembler Language

o

o

o

Absolute Address
A pattern of characters that identifies
a unique storage location or device
without further modification.

Address
1. An identification, as represented by

a name, or number, for a register,
location in storage, or other data
source or destination.

2. Loosely, any part of an instruction
which speci~ies the location of an
operand for the instruction.

Address Constant
A value, or an expression representing a
value, interpreted as a storage address.

Address Modification
The process of ~hanging the address part
of a machine instruction by means of
coded instructions.

Address Register
A register that stores an address.

Alloca te
To assign storage locations or areas of
storage for specific routines, portions
of routines, constants, data, etc.

Alphameric
A generic term for alphabetic letters,
numerical digits, and special
characters.

Assemble
To prepare an ohject-language program
from a symbolic-language program by sub
stituting machine operation codes for
symbolic operation codes and absolute or
relocatable addresses for symbolic
addresses.

Assembler
A program that assembles.

Attribute
A characteristic; e.g., attributes of
data include record length, record for
mat, data set name, associated device
type and volume identification, use,
creation date, ~tc.

Base Register
A register used for addressing purposes.

Basic Assembler Language
A symbolic language for the writing of
source programs.

Basic Assembler Program
A program used to translate source pro
grams written in Basic Assembler lan
guage into machine language.

Binary
1.

2.

Hinary

A characteristic or property involv
ing a selection, choice, or condi
tion in which there are two
possibilitips.
The number representation system
with a base of two.
Code

A code that makes use of two distinct
characters, usually 0 and 1.

Binary-Coded Character
One element of a notation system for
representing alphameric characters such
as decimal digits, alphabetic letters,
punctuation marks, etc., by a fixed
number of consecutive binary digits.

Binary-Coded Decimal
A decimal notation in which the indivi
dual decimal digits are each represented
by a binary code group; e.g., in the
8-4-2-1 c~ded decimal notation, the
number twenty-three is represented as
0010 0011, in binary notation, twenty
three is represented as 10111.

Binary Digit
A character usp.d to represent one of the
integers smaller than the ra6ix 2.

Binary-to-Decimal Conversion

Bit

Conversion of a binary number to the
eguivalellt decimal number; i.e., a base
two numbeI." t~ a base-ten number.

A binary digit.
Blank Character

Any characteI." or characters used to pro
duce a character space on an output
medium.

Branch
1.

2.

Byte

To depart from the normal sequence
of executing instructions in a
computer.
A machine instruction that can cause
a departure as in (1). Synonymous
with' transfer'.

A sequence of adjacent binary digits
ope rat e d up 0 n as a u nit.

Card Code
The combinations of punched holes which
represent characters (letters, di<)its,
etc.) in a punched card.

Card Column
One of the vertical lines of punching
positions on a punched card.

Card Field
A fixed number of consecutive card
columns assigned to data of a specific
nature.

Card Punch
A device to record information in caI."ds
by punching holes in the cards to repre
sent letters, digits, and special
characters.

Card Reader-
A device which reads and translates into
internal form the holes in punched
cards.

Cal-d stacker
A mechanism which stacks cards in d poc-

Appendix II. Glossary g()

ket after they pass through a machine.
Character

One of a set of elementary symbols which
may include decimal digits 0 through 9,
the letters A through Z, punctuation
marks, and any other symbols acceptable
to a computer for reading, writing or
storing.

Character Set
A list of characters acceptable for cod
ing to a specific computer or input/
output device.

Clear
T~ put a storage device into a pre
scribed state, usually that denoting
zero or blank.

Coded Decimal
A type of notation in which each. decimal
digit is identi~ied by a group of binary
ones and zeros.

Col umn 8i na ry
Pertaining to the binary representation
of data on punched cards in which adja
cent positions in a column correspond to
adjacent bits of data.

Command
An instruction in machine language.

Communication
The process of transferring information
from one point, person, or piece of
equipment to another.

Computer
1. A device capable of solving problems

by acceptino data, performing pre
scribed operations on the data, and
supplying the results of these
operations. Various types of compu
ters are calculators, digital compu
ters, and analog computers.

2. In information processing, usually,
an automatic stored-program
computer.

Computer Instruction
Same as machine instruction.

Constant
A fixed or invariable value or data
item •

Counter
A device such clS a re'jister or
location used tn represent the
occurrences of an event.

storage
number of

Cycle
1.

2.

Data

An interval of space or time in
which one set of events is
completed.
Any set of operations that is
repeated reqularly in the Sdme
sequence. ~he operations may be
subject to variations on each
repetition.

Any repre~>ent<.ltion, such clS chdract{~r
quantities, to which meaning might be
assigned..

Data Conversion
The process of changing datcl from one
form of representation to dnother.

Data Processing
A systematic sequence of operat ions per- 0
formed on data.

Data Processing System
A network of machine components capable
of accepting information, processing it
according to a plan, and producing the
desired results.

Decimal
1. A characteristic or property involv

ing a selection, choice or condition
in which there are ten
possibili ties.

2. The number representation system
with a base of ten.

Decimal-to-Binary Conversion
The conversion of a decimal number to
the equivalent binary number, i.e., a
base-ten number to a base-two~umber.

Decision
A determination of future action.

Decision Block
A flowchart symbol whose interior con
tains the criterion for decision or
branching.

Decision Instruction
An instruction that selects a branch of
a program, e.g., a conditional branch
instruction.

Deck
A collection of punched cards.

Decrement
The quantity by which a variable is
decreased. ()

Diagnostic
The detection and isolation of a mal- --
function or a mistake.

Diagram
A schematic representation of a sequence
of operations or routines.

D it] it
1. Any of the arabic numerals 1 to 9

~nd the symbol O.
2 • 0 n e 0 f the e 1 em en t s t hat co m bin e to

form numbers in d system other than
the decimal system.

Displacement
The difference (in bytes) betwe(~n the
contents of a base register (or the
add res s rep res e n ted by a s y m bo 1) and a
referenced storage location.

Dumm y
The characteristic of having the
appearance of d specified thing but not
hLiving the caracity to function as such.

EBCDIC
(Extended Binary Coded Decimal Inter
chanc]e Code). A sp<'cific set of B-bit
codes standdrd throughout System/360.

Edit
Tom 0 <1 i f Y the f () r m 0 I' form d t () f (1. 1 t a ;
e . 9 ., t () i n s(~ r tor del e t P C h d r' d etc r' s
sllch as pa(J(~ numhpl:S or decim.ll poi nt:;.

Eftective Addu~!.;!;

Thp ab!;olutf~ <lddr(~!;!; of t.hp ClJrrpnt 0
op(-~rcln(L Thi!i mtly (liffor· fn>m thdt of
thp in!;tructic)n in !.tor.l(jP.

100 System/J60 Mo~el 20 I3.1sic A!;semblpr: Lln(Jucl<J(~

o

o

o

Error
A general term +:0 indicate that a data
value is not correct or that a machine
component is malfunctioning.

ESD card
ESD cards contain all information
required for the linking of program seg
ments (such as all symbols defined in
one segment but referred to in another
segmen t) •

Execute
To carry out an instruction or perform a
routine.

Explicit Addressing
Specification of an address by a base
register and a ~isplacement in the form
D (8) •

File
A collection of related records treated
as a unit, e.g., in inventory control,
one line of an invoice forms an item, a
complete invoice forms a record, and the
complete set of such records forms a
file.

Flowchart
A graphical representation for the
definition, analysis, or solution of a
problem in which symbols are used to
represent operations, data, flow, and
equ ipmen t.

Hexadecimal Number System
A number system using the e~uivalent of
the decimal number sixteen as a base.

Hopper
A device that holds cards and makes them
available to a card feed mechanism.
Contrast with card stacker.

Identification
A code number or code name which unique
ly identifies a record, block, file or
other unit of information.

Image
An exact logical du~licate stored in a
different medium.

Immediate Address
The designation of an instruction
address which is used as data by the
instruction of which it is a part.

Implied Address
The address assigned to a symbol by the
Basic Assembler program.

Index Register
A register whosp content is added to or
subtracted from the operand address
prior to or during the execution of an
instruction.

Indexing
A technique of address modification
often implemented by mean~ of index
registers.

Initialize
To set certain counters, ~;witche!"; and
addresses at sppcified times in a com
puter routine.

Input

1. The data to be processed.
2. The state or sequence of states

occurring on a specified input
channel.

3. The device or collective set of
devices used for bringing data into
another device.

4. A channel for imFressing a state on
a device or logic element.

InFut Area
The area ~f internal storage into which
data is transferred from external
storage.

Input/Output
1. Common a tbreviation I/O. A general

term for the equipment used to com
municate with a computer.

2. The data involved in such
communication.

3. The media carrying the data for
input/output.

Instruction
A statement that specifies an operation
and the values or locations of all
operands. In this context, the term
instruction is preferable to the terms
command or order which are sometimes
used as synonyms. Command should be
reserved for electronic signals. Order
should be reserved for sequence, inter
polation and related usage.

Instruction Format
The allocation of bits or characters of
a machine instruction to specific
functions.

Interrupt
1. A break in the normal flow of a sys

tem or routine such that the flow
can be resumed from that point at a
later time.

2. To cause an interrupt.

Language
1. A defined set of characters which

are used to form symbols, words,
etc., and the rules for combining
these into meaningful communication,
e.g., Enylish, French, Algol, FOR
TRAN, COBOL, etc.

2. A combination of a vocabulary and
I' u I es 0 f s y n t a x •

Linkage
The interconnections between a main rou
tine and a closed routine, i.(~., entry
and exit for d closed routine from the
main routine.

LO,ld
To place data into internal storage.

Loca tion
A position in stora(je that is uSlldlly
identified by an ild(lres~;.

Loop
A sequ(->.nce of in!;tructi()n~; th,lt i!.
[' e p edt p dun til d t (~r- min 11 1 con (1i t i () n
occllrs.

M d chi n (~ Add r e ~-' :-;
~)dm(! d~; <lb~;ol ut(l ddd[-(~!;~;.

Apppndix II. (;los:;.Jr-y 101

Machine Code
Same as operation code.

Machine Instruction
An instruction that the particular
machine can recognize and execute.

Machine Language
A language that is used directly by a
given machine.

Macro Instruction
A statement that is used in a source
program and replaced by a specific
sequence of machine instructions in the
associated object program.

Magnetic Ink
Ink containing particles of magnetic
substance which can be detected or read
by automatic devices; e.g., the ink used
for printing on some bank checks for
magnetic character recognition.

Magnetic Tape
A tape with a magnetic surface on which
data can be stored.

Mai n Storage
The fastest general purpose storage of a
computer. Also, for the Model 20,
storage within the CPU that can be
addressed both ~or reading and writing
data.

Mask
An alphameric character string consist
ing of one or more digits, used to test
or alter the contents of storage
posi tions.

Mnemonic Code
A mnemonic code resembles the original
word and is usually easy to remember,
e.g., ED for edit and MVC for move
characters.

Name
An alphameric character string, normally
used to identify a program.

Object Program
A fully assembled program ready to be
loaded in the computer.

Operand
That which is operateu upon. An operand
is usually identified by an address part
of an instruction.

Opera tion
1. The act specified by a single com

puter instruction.
2. A program step undeLtaken or

executed by a computer, e.g., addi
tion, multiplication, extLacticn,
comparison, shift, or transfer. The
operation is usually specified by
the operation part of an
instruction.

Ope ra tion Code
The code that represents the specific
operations of a computer.

Output
1.
2.

Data that has been processed.
The state or sequence of states
occurring on a specified output
channel.

3. The device or collective set of
devices used for taking data out of
a device.

4. A channel for expressing a state on
a device or logic element.

Output Area
The area of internal storage from which
data is tLansferred to external storage.

Overflow
1. That portion of data that exceeds

the capacity of the allocated unit
of st::>rage.

2. The generation of overflow as in
(1) •

Pack
To combine two or more units of informa
tion into a single physical unit to con
serve stora ge •

Padding
A technique used to fill a block of
information with dummy records, words or
characters.

Printer
A device which expresses coded charac
ters as hard copy.

Program
1. The plan for the solution of a pro

blem including data gathering, pro
cessing and reporting.

2. A group of related routines which
solve a given problem.

Programming Language
A language used to prepare computer
programs.

Pseudo-Register
A register with fixed contents used in
conjunction with an IBM System/360 Model
20.

Punched Card
1 • A car d pun c h e d wit h a pa t t ern 0 f

holes to represent data.
2. A card as in 1. before being

punched.

Read
To transfer information from an input
device to internal or auxiliary storage.

Reader
A device which converts information in
one form of storage to information in
another f::>rm of storage.

Register
A device capable of storing a specified
amount of data such as one halfword.

Rela ti ve AddL ess
An address expressed by a previously
defined symh::>l and a displacement.
(e • g ., F LD + 1 0) •

Relocate
In programming, to move d routine fLom
one portion ::>f internal storage to
another and to automatically adjust the
necessary address refer(!nces so that the
routine, in its new location, can be
executed.

Reset
To restore a stoLage device to pre-

102 System/360 Mo~el 20 Basic Assembler Language

o

o

o

o

o

o

scribed initial state, not necessarily
that denoting zeros.

Restart
To return to a previous point in a pro
gram and resume operation from that
point.

RLD card
RLD cards identify portions of the text
that require m00ification owing to relo
cation (such as address constants).

Self-Defining Term
A term with an implied value (e.g., 300,
X' 2A' , C' F ')

Source Lang uage
A language that is an input to a given
translation process.

Source Program
A program written in a source language.

Special Character
In a character set, a character that is
neither a numeral nor a letter, e.g., -*
$ = and blank.

Statement
In computer programming, a meaningful
expression or g~neralized instruction in
a source language.

Step
1. One instruction in a computer

routine.
2. To cause d computer to execute one

instruction.
storage

1. Pertaining to a device into which
data can be entered and from which
it can be retrieved at a later time.

2. Loosely, any device that can store
data.

storage Capacity
The amount of data (in bytes) that can
be contained in a storage device.

Store
1. To enter data into a storage device.
2. To retain data in a storage device.

Subroutine
A routine that can be part of another
routine.

Switch

1. A symbol used to indicate a branch
ing point, or a set of instructions
to condition a branch.

2. A physical device which can alter
flow.

Symbol Table
A mapping for a set of symbols to anoth
er set of symbols or numbers.

Sym boli c A ddr ess
An address expressed in symbols con
venient to the programmer.

Symbolic Language
An artificial language used in logical
expressions, that avoids all ambiguities
and inadequacies of natural languages.

System
1. A collection of consecutive opera

tions and procedures required to
accomplish a specific objective.

2. An assembly of objects united to
form a functional unit.

Table
A collection of data, each item being
uniquely identified either by some label
or by its relative position.

Table Look-Up
A procedure for obtaining the function
value corresponding to an argument from
a table of function values.

Truncate
To cut off at a specified spot (as con
trasted with round or pad).

TXT card
TXT cards contain the user program in
machine language.

Unpack
To recover the original data from packed
data.

Zero Suppression
The elimination of non-significant zeros
in a number.

Zone
The 12, 11, or 0 punches in IBM card
code.

Appendix II. Glossary 101

Absol u te ad dressin g • • • • • • • • • • • • • • • • •• 22
Absolute expressions................. 17
Absolute program loader ••••••••••• 41,74
Absolute programming ••••••••••••••••• 26
Absolute symbols ••••••••••••••••••••• 15
Add decimal (AP) ••••••••••••••••••••• 57
Add halfword (AR) •••••••••••••••••••• 53
Add register (A1) •••••••••••••••••••• 51
Additional assembly run •••••••••••••• 72
Address calculation ••••••••••••••••••• 6
Address constants.................... 31
Addressing,

absolute ••••••••••••••••••••••••••• 22
effective •••••••••••••••••••••••••• 20
explicit ••••••••••••••••••••••••••• 21
implied •••••••••••••••••••••••••••• 20
relative ••••••••••••••••••••• · •••••• 16
symbolic ••••••••••••••••••••••••••• 20

And (NI) ••••••••••••••••••••••••••••• 67
Assembly, error elimination •••••••••• 72
Assignment of storage addr.-esses •••••• 18

Base register.- aodr.-ess calculation ••••• 6
Base register.-s •••••••••••••••••••• 20,23
Base r.-egister.-s, loading of ••••••••••• 23
Basic Assembler Contr.-ol Instr.-uctions,

END •••••••••••••••••••••••••••••••• 34
ORG •••••••••••••••••••••••••••••••• 35
START •••••••••••••••••••••••••••••• 34

Basic Assembler.- Instr.-uctions ••••••• 5,29
DC. •• 29
DROP ••••••••••••••••••••••••••••••• 25
D S •• 32
ENTRy •••••••••••••••••••••••••••••• 27
EXTRN •••••••••••••••••••••••••••••.• 27
EQU •••••••••••••••••••••••••••••••• 2'9
summar.-y of ••••••••••••••••••••••••• 82
USING •••••••••••••••••••••••••••••• 23

Basic Assembler progr.-am,
car.-d ver.-sions ••••••••.••••••••••••• 72
tape versions •••••••••••••••••••••• 74

BASR instr.-uction ••••••••••••••••••••• 23
Binar.-y arithmetic oper.-ations •••••••.• 49
Binary Synchronous Communications

Adapter ••••••••••••••••••••••••• 11,39
Branches, conditional •••.••••.•.•• 46,70
Branch and storp (BAS) ••••••••••••••• 71
Branch and stor.-p register (BASR) ••••• 71
Br.-anch on condition (BC) ••••••••••••• 70
Branch on condition r.-egister (BCR) .•• 70
Branching •••••••••••••••••••••••••••• 69
BSCA ••••••••••••••••••.••••••••••• 11,39

Card Ver.-sions Basic Assembler.- program 72
Character.- codes, summdr.-y ot 89
Character constants •••..•••.••••••••• 29
Chdracter self-Clefininq b~rms •••••••• 15
Char.-acter set •••••••••••••••••••••••• 14
CIa instr.-uction ••••••••••.•••.••••••• 17
CIa instruction,

Communications Addpters .•••.••••••• 19
print-head sel(~Gtion ••••••••••••••• .1H

1 0 4 S Y s t e m / 160M 0 del 2 0 B <l ~. i cAs s e m bIn r L, lI}(J II d (J (>

serial I/O channeL •••••••••••••••• 39
skipping ••••••••••••••••••••••••••• 39
spacing •••••••••••••••••••••••••••• 39
stacker selection •••••••••••••••••• 38

Coding conventions •••••••••••••••••••• 9
Coding form •••••••••••••••••••••••• 9,10
Comments cards ••••••••••••••••••••••• 12
Comments entries ••••••••••••••••••••• 12
Communications adapters •••••••••••••• 39
Com par e d ec i mal (C P) • • • • • • • • • • • • • • • •• 5 7
Compare halfword (CH) •••••••••••••••• 52
Compare logical (CLC) •••••••••••••••• 64
Compare logical (CLI) •••••••••••••••• 64
Compatibility ••••••••••••••••••••••••• 7
Compound expressions ••••••••••••••••• 16
Condition code ••••••••••••••••••••••• 46
Condition codes, summar.-y of •••••••••• 88
Condi tional branches •••• ~ • • • • • • • •• 46, 70
Constants •••••••••••••••••••••••••••• 29
Control input/output ••••••••••••••••• 37
Control instructions ••••••••••••••••• 34
Conversion table,

hexadecimal-decimal •••••••••••••••• 93
C-type oper.-and of DS instr.-uction ••••• 33

DC instr.-uction ••••••••••••••••••••••• 29
DC instructions, gr.-ouping of ••••••••• 32
Decimal arithmetic oper.-ations •• ~ ••••• 53
Decimal self-defining terms •••••••••• 14
Define constant ••••••••.••••••••••••. 29
Define stor.-age ••••••••••••••••••••••• 32
Defining symbols ••••••••••••••••••••• 1')
Definition instructions •••••••••••• 5,2)
Definition of constants, sequence •••• 32
Diagnostic messages •••••••••••••••••• 74
Diagnostic messages, summary of •••••• 86
Directaddr.-essing •••••••••••••••••••• 22
Displacement ••••••••••••••••••••••••• 20
Divide decimal (DP) •••••••••••••••••• ')9

DROP instr.-uction •••••••.••••••••..••• 2S
DS instruction ••••••••••••••••••••••• 32
DS instruction,

C-type operand of DS instruction ••• 33
duplication factor- •••••••••.••••••• 31
II-type :>perand •••••••...•••.••.••••• 32

Dummy punch cycle •••••••••.•••••••••• 41
Duplication fdctor •.••••.•••••••••••• 13

Edit (ED) ••••••••••••••.••••••••••••. 64
Effective addn~ssinq ••••••••••••••••. 20
END instruction •••••••••••••••••••••• 14
ENTRY instruction ••.••••••••••••••••• 27
EQlJ instruction .••••••••.•••••••••••• 29
Error elimination ••••••••••••.••••••• 72
Error messages ••••••••••••••••••••••• 74
EVdluation of expressions •.••.••••••• 17
Execut~~ input/outpul. •••••••••••••••• 17
Explicit dddressing .•••.•••••.••••••• 21
EXI'rf~!.;si()ns ••••••••••••••.••••••••••• 16
Expre!.isions,

ahsolute •••••••••••••••••••••.••••• 17
compound •••••.••••••••.••••••••.••• 1b

o

o

o

o

o

o

evaluation of •••••••••••••••••••••• 17
relocatable •••••••••••••••••••••••• 17

External sy mbols.. • ••• • • • • • • •• • • •• • •• 15
EXTRN instruction •••••••••••••••••••• 27

Formats of instructions •••••••••••••• 44
Functions of the assembler language •• 20

General registers •••••••••••••••••••• 22
General registers, restrictions on ••• 22
GroupinJ DC instructions ••••••••••••• 32

Half-word constants •••••••••••••••••• 31
Hexadecimal constants •••••••••••••••• 30
Hal t and proceen (HPR) •••••••••••• 48,68
Hexadecimal-decimal conversion table. 93
Hexadecimal sel~-defining terms •••••• 14
HPR ••••••••••••••••••••••••••••••• 48,68
H-type operand of DS instruction ••••• 32

Identification-sequence entries •••••• 12
Implied addressing ••••••••••••••••••• 20
Incompatible instructions ••••••••••••• 7
Indexing ••••••••••••••••••••••••••••• 21
Indexing with RY-format instructions. 46
Input/Output instructions •••••••••• 5,37
Input/Output macro instructions •••••• 40
Instruction entries •••••••••••••••••• 11
Instruction formats •••••••••••••••••• 45
Interrupts ••••••••••••••••••••••••••• 41
Introduction •••••••••••••••••••••••••• 5
Invalid names, pxamples.............. 11
laCS macro instructions •••••••••••••• 40
laCS macro instructions, summary of • 41
I/O instructions, sequence of •••••••• 40
I/O instructions, summary of ••••••••• 85
I/O interrupts ••••••••••••••••••••••• 41
I/O routines ••••••••••••••••••••••••• 41

Joint assembly ••••••••••••••••••••••• 11
Joint execution •••••••••••••••••••••• 27

Language compatibility •••••••••••••••• 8
Language structure ••••••••••••••••••• 14
Linking ••••••••••••••••••••••••• 6,27,36
Listing ••••••••••••••••••••••••••••••• 6
Load halfword (LH) ••••••••••••••••••• 52
Loading object programs •••••••••••••• 74
Loading of base registers •••••••••••• 23
Location counter ••••••••••••••••••••• 17
Location counter,

reference to •••••••••••••.•.••••••• 19
resetting of •••••••••••••••••••• 19,35

Location-counter overflow •••••••••••• 19

Ma chi n ere qui rem e n t s. • • • • • • • • • • • • • • • •• 6
Machine-instruction formats ••.••••••• 45
Machine-instruction formats,

summary of ••••••••••••••••••••••••• 44
Machine-instruction statements ••••• 5,43
Machine instructions, summary of ••••• 83
Machine operations, Types of ••••••••• 49

Bin a r y a r it h mf> tic. • • • • • • • • • • • • • • • •• 49
Decimal arithmetic ••••••••••••••••• 53
Non-arithmetic ••••••••••••••••••••• 61

Main storage requirements,
assembly ••••••••••••••••••••••••••• 75
execution •••••••••••••••••••••••••• 75

Maximum system configuration •••••••••• 7
Minimum system configuration •••••••••• 6
Mnemonic •••••••••••••••••••••••••••.•• 5
Mnemonic cod.es •••••••••••••••••••• 45,83
Move characters (MVC) •••••••••••••••• 62
Move immediate (MVI) ••••••••••••••••• 62
Move numerics (MVN) •••••••••••••••••• 63
Move with offset (MVO) ••••••••••••••• 55
Move zones (MVZ) ••••••••••••••••••••• 63
Multiply decimal (MP) •••••••••••••••• 58

Name entry........................... 11
Name specifications •••••••••••••••••• 11
NI-instruction ••••••••••••••••••••••• 67
Non-arithmetic operations •••••••••••• 61

Object program ••••••••••.••.••••.••••• 5
aI-instruction ••••••••••••••••••••••• 67
Operand entry •••••••••••••••••••••••• 12
Ope ran d for ma t s. • .. 1 2
Ope rat ion cod es. •• 8 3
Operation entry •••••••••••••••••••••• 11
Or (01) •••••••••••••••••••••••••••••• 67
ORG instruction •••••••••••••••••••••• 35

Pack (PACK) •••••••••••••••••••••••••• 56
Performance data ••••••••••••••••••••• 75
Print-head selection ••••••••••••••••• 38
Program linking ••••••••••••••••• 6,27,36
Program linking, sample of ••••••••••• 28
Program listing ••••••••••••..••••••••••• 6
Pseudo-registers ••••••••••••••••••••• 23
PSW •••••••••••••••••••••••••••••••••• 48

Reference to the location counter •••• 19
Register usage ••••••••••••••••••••••• 22
R ela ti ve addressi ng. • • • • • • • • • • • • • • • •• 16
Release base register •••••••••••••••• 25
Relocatability •••••••••••••••••••••••• 6
Relocatable expressions •••••••••••••• 17
Relocatable program loader •••••••• 41,74
Relocatable programming •••••••••••••• 26
Relocatable symbols •••••••••••••••••• 15
Resetting the location counter •••• 19,35
Restriction on

general registers .••••••••••••••••• 22
symbols •••••••••••••••••••••••••••• 16

RR format •••••••••••••••••••••••••••• 45
RX format •••••••••••••••••••••••••••• 45

Sample of pr~gram linking •••••••••••• 28
Sample of XIO instructions ••••••••••• 37
Sample prJ gram in Basic Assembler

language •••••••••••••••••••••••••••• 76
Sample seluence of statements •••••••• 13
Self-defining terms •••••••••••••••••• 14
Self-defining terms,

character .•••••••••••••••••••.••••. 15
decimal •••••••••••••••••••••••••••• 14
hexadecimal ••••••• w •••••••••••••••• 14

Sequence Jf definition of constdnts •• 32
Sequence of I/O instructions ••••.•••• 40
S er i a 1 I/O c han n e 1. . . . • J ')
Set program status wor-d .••••••••••••• 4B
Short coding form •••••••••••••••••••• 10
51 format •••••••••••••••••••••••••••• 47
Source program •••••••••.••••••.•••.••• ~

5 pac i n 9 and 5 kip pin g • • • • • • • • • • • • • • • •. .3')

SPSW ••••••••••••••••••••••••••••••••• 48
SS format •••••••• ~ ••• ~ ••••••••••••••• 48
Stacker selection.................... 38
Statement components ••••••••••••••••• 11
Statement formats •••••••••••••••••••• 11
Statements, sample sequence of ••••••• 13
START instruction •••••••••••••••••••• 34
Storage addresses ••••••••••••••••• 18,20
Store halfword {STH) ••••••••••••••••• 52
Subtract decimal (SP) •••••••••••••••• 58
Subtract halfword (SH} ••••••••••••••• 53
Subtract registp.r (SR) ••••••••••••••• 51
Summary of Basic Assembler

instructions ••••••••••••••••••••••• 82
Summary of character codes ••••••••••• 89
Summary of condition codes ••••••••••• 88
Summary of diagnostic messages ••••••• 86
Summary of laCS macro instructions ••• 41
Summary of I/O instructions •••••••••• 84
Summary of machine

instruction forma ts •••••••••••••••• 44
Summary of machine instructions •••••• 83
Summary of UF codes •••••••••••••••••• 84
Symbolic addressing •••••••••••••••••• 20
Symbols •••••••••••••••••••••••••••••• 15
Symbols,

absolute ••••••••••••.•••••••••••••• 15
defining ••••••••••••••••••••••••••• 15
external •••••••••••••••..••••••.••• 15
relocatable •••••••••••••••••••••••• 15
restrictions on •••• ; .•••••••••••••• 16

106 System/360 Mooel 1.0 FLlSic A!;sembler Ldn(JUi1<J(~

System/360 Assembler
short coding form •••••••••••••••••• 10 0

Sy stern config ura tion. • • • • • • • • •• • • ••• 6,7 ...

Table look -up. •• 4 a
Tape Versions Basic Assembler

program •••••••••••••••••••••••••••• 73
Test input/output and branch ••••••••• 39
Test under mask (TM) ••••••••••••••••• 67
Time requirements,

card version ••••••••••••••••••••••• 75
ta pe ver si on. •• 75

TIOB instru ct ion. • • • • • • • • • • • • •• • • •• •• 39
Translate (TR) ••••••••••••••••••••••• 68
Types of constants ••••••••••••••••••• 29

UF code •••••••••••••••••••••••••••••• 37
UF codes, summary of ••••••••••••••••• 84
Unit and function code ••••••••••••••• 37
Unpack (UNPK) •••••••••••••••••••••••• 56
USING instruction •••••••••••••••••••• 23

Valid names, examples •••••••••••••••• 11
Valid oper.-ation codes, examples •••••• 12

Warning messages ••••••••••••••••••••• 74
Writing a program in Basic Assembler
language •••••••..••••••••••••••••••• 76

XIO instruction •••••••••••••••••••••• 37
Zero and add (ZAP) ••••••••••••••••••• 56

o

o

o

o

o

GC26-3602-6

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.IOSOI
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

o

OJ
s:
en
W
O"l
0

s:
0
Co
!!?
I\J
0

0 (")
"0
en
OJ
III
en
(i.

» en en
CD
3
?"
r
III
::l
'P

en
w
O"l
0

~
0
Co
N
3
~
~

~
:j"
.-+
CD
Co

5·

c
en »
G)
(")
I\J
C(>
W
O"l
0
I\J a,

0

o

o

o

IBM System/360 Model 20
Card Programming Support
Basic Assembler Langu;:Ige

Order No. GC26-3602-6

READER'S
COMMENT
FORM

This sheet is for comments and suggestions about this manual. We would appreciate your
views, favorable or unfavorable, in order to aid us in improving this publication. This form
will be sent directly to the author's department. Please include your name and address if
you wish a reply. Contact your IBM branch office for answers to technical questions about
the system or when requesting additional publications. Thank you.

Name

Address

What is your occupation?

Your comments* and suggestions:

* We would especially appreciate your comments on any of the following topics:

Clarity of the text
Organization of the text

Accuracy
Cross-references

Index
Tables

Illustrations
Examples

How did you use this manual?

As a reference source

As a classroom text

As a self-study text

Appearance
Printing

Paper
Binding

GC26-3602 -6

YOUR COMMENTS, PLEASE ...

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

Fold

n
C
-i

»
r
0
Z
C)

-i
I
en
r
Z
n1

Fold

................................... -... :

BUS I NESS REP L Y M A I L

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Department 813 U

POSTAGE WILL BE PAID BY ...

IBM Corporation

112 East Post Road

White Plains, N.Y. 10601

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS. N. Y.

t •••

Fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

0

OJ
s::
C/)

W
0>
0

s::
8.
~
I\.)
0
(")

0 "tI
C/)

OJ
III
I/) c:;.

»
I/)
I/)

CD
3
?"
r
III
::::s cp

en
w
0>
0

~
0 a.
~
0

;G

~
~.

CD a.
5·
c
en
l>

C)
(")
I\.)
0>
W
8
I\.)

en

0

o

o

o

IBM System/360 Model 20
Card Programming Support
Basic Assembler Language

Order No. GC26-3602·6

READER'S
COMMENT
FORM

This sheet is for comments and suggestions about this manual. We would appreciate your
views, favorable or unfavorable, in order to aid us in improving this publication. This form
will be sent directly to the author's department. Please include your name and address if
you wish a reply. Contact your IBM branch office for answers to technical questions about
the system or when requesting additional publications. Thank you.

Name

Address

What is your occupation?

Your comments* and suggestions:

* We would especially appreciate your comments on any of the following topics:

Clarity of the text
Organization of the text

Accuracy
Cross-references

Index
Tables

Illustrations
Examples

How did you use this manual?

As a reference source

As a classroom text

As a self-study text

Appearance
Printing

Pape~8 j BiD) ..

GC26-3602-6

YOUR COMMENTS, PLEASE ...

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your anSwers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

Fold

n
C
-i

»
r
0
Z
C')

-i
I
en
r
Z
m

Fold

.
• •• .. • .. • • • • • • • • • • • • e.- •••••• :

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Department 813 U

POSTAGE WILL BE PAID BY ...

I BMCorporation

112 East Post Road

White Plains, N.Y. 10601

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS. N. Y.

..

Fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
(USA Only)

:, "~ World Trade Corporation .
'\. . !t'i'ited Nations Plaza, New York, New York 10017

· .. /

tIanalJ

Fold

to
s:
C/l
W
(j)
o
s:
o
Co
~

r-..> o

0

qo-" C/l I
to
til
CJ)

('5'

o

•

