File Number 5360 (Mod.20)-29
Form C33-6007-1 DPS

Systems Reference Library

IBM System/360 Model 20
Disk Programming System
PL/I

This publication provides the information required for
writing and running Model 20 PL/I programs that are to
be compiled and link-edited using the Model 20 PL/I
compiler under control of the IBM System/360 Model 20
Disk Programming System.

Part I, "Model 20 PL/I Language Features", and Part
II, "Model 20 PL/I Syntax Rules", are composed of dis~
cussions and examples that explain the different fea-
tures of the language and their interrelationships,
their syntax notation and rules. Part III, *"Model 20
PL/1 as Part of the Disk Programming System®, introdu-
ces the main components of the Disk Programming System,
explains job control, and discusses compilation, link-
editing, and execution of a Model 20 PL/I program.

More detailed information about the Disk Programming
System can be found in the publications IBM System/360
Model 20, Disk Programming Systém, Control and Sexvice
Programs, Form C24-9006, and IBM System/360 Model 20,
Guide to the Disk Programming System, Forxrm C33-6000.

l

First Edition (December, 1968)

Changes are made from time to time to the specifications herein; betore
using this publication in connection with the operation of IBM
equipment, refer to the latest IBM System/360 Model 20 SRL Newsletter,
Form N20-0361 for the editions that are applicable and current.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
printer using a special print chain.

Requests for copies of 1IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Laboratories, Programming Publications, 703 Boeblingen/Germany,
P.0O. Box 210.

© International Business Machines Corporation 1968

Introduction
Reasons for Conceiving PL/I .
Basic Characteristics of PL/I
How to Use this Publication .

s e &
s o & 4

Syntax Notation

Part I. Model 20 PL/I Language Features

Basic Characteristics of Model 20 PL/I

Program Elements

Character Sets + « « « & « ¢« « o &«

Basic Program Structure . . . « .
Simple and Compound Statements .
Groups and Procedures .« « « =«

Data Elements . . . « e e
Data Types « .« .
Problem Data .« . « e .
Arithmetic Data « e e e e
Character-string Data . .
Program—-Control Data . . .
Label Data « « «
Pointer Data . . .
Data Organization
ATCAYS o « o o + @
Structures . .« .+ . . .
Respecification of Data
Initialization of Data « « « .«

¢« & 8 * s &
& * a2 & 4

s s & &
a2 e o
s & o
s & v 8 s
4 & & s s
* & s 3 s
.
e 2 & 4 ¢

Expressions « .« « « « .
Expression Operations . « « « « .
Arithmetic Operations . . « + «
Conversion of Operands
Operations « « o« o ¢ o « o o o @
Formats of Results of Arithmetic
Operations . « o« o o o o o o . .
Comparison Operations .« « « + « «
Concatenation Operations
Priority of Operators . . « « « .
Expressions Containing Function
References «w « « o o o o o o o o o

Statement Classification
Descriptive Statements « « « « « &
Input/Output Statements
Data-Movement and Com;utatlonal
Statements « . .+ ¢ ¢ ¢ ¢ ¢ ¢ ¢ .
Program—Flow Control Statements
Exception-Control Statements . .
Program-Structure Statements . .

s & & =

Flow of Control and Storage Allocation
The Procedure . « . « « .
Activation of a Procedure
Termination of a Procedure
Program Termination . . .
Storage Allocation
Dynamic Allocation

s s a2 & s
s ° & o+ e

o & & a4 »

LT T Y R Y

. s * o

¢ s & a2 & 4 % 4 s 5 0

* &

.

in Arithmetic

5 8 5 e

.

-

. .

« 2 8 4 @

« o & o

& & * 2 * . 0

s e 0

s * a2 o

« " s v 4

WNN

{Xe]

Contents

Static Allocation . ¢ « « 4 ¢ & & . .
Initial Data « + « + . e e e e e e .
Prologues and Epllogues > e e e s e e
ProloguesS « « o« « o o o o o s o s o =
Epilogues .« &+ o o o o o o o a o « o

e« o & *

Recognition of Names . . .
Explicit Declaration . . .
Contextual Declaration .
Implicit Declaration . . .
Internal and External Names
Multiple Declarations and Amblguous
References « « o o« o o o o o o o o o o =

s 8 e s

Data Transmission e e e e e e e e e e
Types of Data Transmission
File Declarations . . « « &4 & « « « « &
File Attributes . « . . « e e e e
Alternative and Additive Attributes .
Opening and Closing Files . « « « « « &
Environmental Considerations for Data
FileS o o « o o o o o o o o @ o .« e
Device Independence of Input and Output
Statements « o ¢ ¢ o o o 4 e o . o o e
Stream and Record-Oriented Transmission
Stream-Oriented Transmission . . « « «
Data ListS o ¢« ¢ ¢ & @ o o o o o o o &

e ® e e & e o

Format ListsS « ¢« «w o « « & o e e .
Page Layout for Priat Flles o o e
Summary of STREAM I/O Statements . . .
Record-Oriented Transmission . . . « . .
Record I/O0 Statements e
Options of RECORD I/O Statements o« o .
Summary of RECORD I/D Statements and
Associated Options . . . « . . « « .« .
Notes on File Organization and Access
Methods Used With Record-Oriented
Transmission . « «¢ & ¢ ¢ o o o o« o o

Editing and Character-String Handling .
Editing by Assignment
The Assignment Statement . .
Other Forms of Assignment . . .
The Picture Specification

Values of Numeric-Character Variables
Editing Numeric-Character Data
Built-In Functions for Character-String
Handling . « o o o ¢ o o o o o o o o o

.
. » .
.

s &

.
-
. .
.

Arguments and Parameters
Passing Arguments to Procedures
Passing Arguments to Functions
Attributes of Value Returned by

Function « « « «v ¢ 4 ¢ v o 4 4 e e e e
Built-In Functions . « « ¢« « & « « o« o+ .
Relationship of Arguments and

Parameters . . « « ¢ « o o o o o s o o o
pummy Arguments .« ¢ . ¢« e 0 o 0 0 e
Argument and Parameter Types . « « « « .

Exceptional Condition Handling e e .
Enabled Conditions and Established

ACLIiON o o o o o o o o o o« @ « o o« « « « 81
Condition Prefixes . . .
The ON Statement « « « « « o« o o « « « » 82

Based Variables and Pointer Variables 8u
Pointer Variables . « « « =« « « « « o « 84
Based Variables . . « « &« « « « « « « o B4
Values of Pointer Variables 84
Restrictions ON Pointer Variable 86
Use of Based Storage and Pointers . . . 86
Pointer Manipulation . « « « ¢« « + « . o 87
Part II. Model 20 PL/I Syntax Rules

Picture Specification Characters 90
Digit and Decimal-Point Specifiers . . . 91
Zero-sSuppression Characters « 92
Insertion Characters « « « o « o« « o « « 93
Numeric Signs and Currency Symbol . . . 95

Credit, Debit, and Overpunched-Sign
Characters « o« « o o« o o o s o » o o o « 96
The Exponent Specifier E « « « . 97

Edit-Directed Format Items . B T
Data Format ItemS .« « o o « o« « » » « « 98
Control Format Items « « « o « « o« « o « 98
Remote Format Item . « o o = o« o « 2 « « 99
Alphabetic List of Format Items 99
Built-In Functions and the
Pseudo-Variable SUBSTR103
Computational Built-In Functions103
String Handling Built-In Functions . . .103
Arithmetic Built-In Functions105
Mathematical Built-In Functions107
Ssummary of Mathematical Functions . .108
Other Built-In Functions . « « « « « - .109
SUBSTR Pseudo-Variable « « + v « &« 4+ « -109
ON-Conditions110
Groups of On-Conditions . . . « « . « 110
Computational Conditions « e e e e e <111
Input/Output Conditions . « « « « « « 112
System Action Condition . « « « « « . 113
Attributes 114
Specification of Attributes11%4
Factoring of Attributes . . . «114
Data Attributes . « & o 4 « ¢ ¢« ¢ « « 1174
Problem-Data Attributes « . « 114
Program-Control Data Attributes115
Entry-Name Attributes « .« . .115
File Description Attributes . . « . . .115
Scope Attributes « . ¢« ¢« ¢ ¢« 4 o ¢« + . <115
Storage-Class Attributes . . « « « « .+ 116
Alphabetic List of Attributes116
Statements. s . ¢ ¢ . . 124

Part [II. Model 20 PL/I as Part of the Disk
Programming System

PL/I in the Model 20 Disk Programming System . 139

Introduction . « « ¢« 4« ¢« ¢ « « « ¢ « o <139
System Configurations « « . . .139
Minimum System Configuration139
Maximum System Configuration139
The Model 20 Disk Programmlng System . L 181
Monitor Program S L2
Job Control Program .« « « « « « « « o o142
Model 20 PL/I Compiler + « « o o« = o o« o142
JobCentrol ¢ ¢ ¢ & < . . .43
I/0 Device Assignment . « « « o « o« o o143
Job-Control Statements 143
Oorder of Input . . e)
Format of Job- Control Statements . . 144
The Compiler153
Input to the Compiler . . «. &« ¢« « « « .153
PL/I Source Module Input . . . « « « 153
Precompiled Object Module Input « < « 4155
PL/I Ssource Module and Precompiled
Object Module Input . . « « 2« « « « « .156
Output from Compiler . . .« . « . « « . .156
Compiled Object Modules . . . « . « . .156
Executable Object Programs157

Compiler-Control Statements and Options 157
Printed Listings and Diagnostic Aids . .159
Diagnostic Capabilities During
Compilation . . . ¢ & & & « s « « « - .159
Diagnostic Capabilities During
Execution . .« ¢ ¢ o « ¢ 4 o « « o o « <159

Executing a Simple PL/I Program160
Practical Considerations Regarding . .
Program Execution163
Overlay Facility « « « ¢ o o« o ¢« « « « 163
Creating a Segmented Program163
Loading Segments . . . « .« + +« + + « . .163
Use of Files and Static Storage in
Segments « « ¢ ¢ ¢ ¢ o s 9 e e o e + « <1064
Rules for Using Overlay .« « « o« . 165
Input/Qutput166
File Organization . . . «166
Consecutive File Organization169
Disk Organization « & & « . .172
INDEXED File Organization « . .175
The ENVIRONMENT Attribute and its
OPtiOoNS w o v 4 ¢ o o o o o & s o o « 2180
File Labels . . . ¢ &« & o & o « « « « 2185
Punched Card and Print Files186
Tape FileS ¢ ¢ « ¢ o « o s o o o « « o .186
Disk FileS 4w v & « ¢ « « o o« o « « « « 186
Label-Control Statements186
Multi-File Volumes . « « ¢ « =« « « « « .191
Tape FileS o v & o &« ¢ ¢ o o o « « « « 2191
Disk FileS v v v« v o« ¢ o o« o o o « « « 4192
Malti-vVolume Files « & ¢ ¢ o o o o o « 192
Tape FileS . «v ¢ v ¢ ¢ ¢« v o o & & « « 2192
Disk Files + + « « e e e e . « .« -193
Permanent and Temporary Disk Labels . .193
Cataloging Label Information193

Deleting Cataloged Label Information .193
Displaying Permanent Labels19t
Inguiry Programs « « « « « « « « « « « «194
Program - Label Communication194

Cataloging 196
Cataloging a PL/I Program Into the
Core-Image Library « « . . « 196
Executing a Cataloged PL/I Program e . 197
Deleting a PL/I Program from the

Core-Image LibTary « « « « o o « « « « 4197

Special Programming Information199
Inguiries on the IBM 2152

Printer-Keyboard « . « . « « ¢« ¢« « « « .199
InJuiry ProgramsS « o« « » « « o o = < 199
Use of the IBM 2152 Printer- Keyboard . 199
Linking PL/I Programs with Assembler
Procedures . . o « o o« « ¢ o « o« « « « 2200
Sterling Currency Processing Routines ,203
The Dyndump Routine .« o o ¢ w o o o « o204
Data Storage Mapping . « . . « . « . < 20U
Storage Mapping Of AITAyS « « « « « « 204
Storage Mapping of Structures

Two Programming Examples206
Example for Scientific Application . . .206
Example for Commercial Application . . .208

Appendix A. Definition of Terms214
Appendix B. Upward Compatibility225

Appendix C. Character Sets with EBCDIC

and Card-Punch Codes226
Appendix D. Model 20 PL/I Keywords228
Appendix E. File Attributes and Options . .230
Appendix F. Valid I/0 Statements . .231

Reasons for Conceiving PL/I

Throughout the relatively brief history of
electronic data processing, computers have
been used mainly in two fields of activity
- the commercial and the scientific.

Consequently, programmers generally have
specialized in one field or the other,
High-level languages like COBOL for commer-
cial programming and FORTRAN for scientific
programming have emphasized this
divergence.

Until recently, this difference pre-
sented few problems. Each language was
adequate for its use; the commercial pro-
grammer dealt with relatively few computa-
tions performed upon great amounts of data;
the scientific programmer performed complex
calculations using small amounts of data.

Now, however, the situation is changing.
Business and industry have discovered new
uses for the computer, The commercial pro-
grammer finds himself concerned with more
complex computations in statistical fore-
casting and in programming for operations
research., In science and engineering, the
progranmer needs a language to simplify the
preparation of reports, to sort and edit
technical data.

Today's computing systems have been
designed to cope with all of these comput-
ing problems. They handle commercial and
scientific/engineering programs with egqual
ease, with new power and new speed.

None -of the traditional high-level lan-
guages, however, can be used with efficien-
cy across the entire range of ability of
these new computers.,

This is why PL/I was conceived. PL/I is
a programming language designed to cover as
wide a range of programming applications as
possible. It can be used to solve both
commercial and scientific/engineering pro-
blems. PL/I has been designed so that any
programmer, no matter how brief or exten-
sive his knowledge, can use it easily at
his own level. It is simple for the begin-
ning programmer, it is powerful for the
experienced one.

A programmer need not know everything
about PL/I to be able to use it. An
experienced programmer can use PL/I to spe-
cify almost every detail of every step of a
highly complicated program. A beginner can
take advantage of the many automatic fea-

Introduction

tures of the language to do much of his
work for hinm.

PL/I has also been designed to reduce
the cost of programming, including the cost
of training programmers who need to be
trained in one programming language only.
Another factor that contributes to program-
ming cost is the machine dependency of the
traditional programming languages, which
means that fregquently a program must be
rewritten, sometimes because the systenm
under which it is used has changed, some-
times because it is to be run on a new
machine. Often, rewriting a program costs
as much as writing it in the first place.

Basic Characteristics of PL/I

ments like for example C = A + B. The sta-
tements, whose sequence follows the logical
flow of the program, are grouped together

_________ A procedure
defines a section of the program or a com-
plete program. The task of a procedure is
the execution of a particular job or part
of a job. The same procedure can be used
in a number of different programs. Conse-
quently, a change made in one procedure
effectively makes a change in all programs
that use it.

PL/I provides many options in state-
ments, in descriptions of data or files,
giving a lot of flexibility in writing pro-
grams. Wherever there are alternatives,
the compiler makes an assumption if no
choice is stated by the programmer. In
each case, the assumption, called default,
is the alternative that would be required
in the majority of situations. The default
concept is an important part of the simpli-
city of PL/I. 1In many cases, the beginning
programmer need not even know that alterna-
tives exist. PL/I is much less machine
dependent than most commonly used program-
ming languages, for example the Assembler
Language.

The variety of features provided by
PL/I, as well as the simplicity of the con-
cepts underlying them, demonstrate the ver-
satility of the language, its universality,
and the ease with which different subsets
can be defined to meet the needs of dif-
ferent users.

Model 20 PL/I is a subset of the full

language. It is upward compatible with
System/360 DOS/T0S PL/I provided the same

Introduction 7

input/output devices are available. The
user can write both scientific/engineering
and commercial programs in Model 20 PL/I.

How to Use the Publication

This publication is designed as a reference
book for the Model 20 PL/I progranmmer. Its
three-part format allows a presentation of

the material in such a way that references

can be found quickly.

Part I, which may be read seguentially,
describes the different features of the
language and their interrelationship.
II, which is organized purely from the
reference point of view, brings rules and
syntactic descriptions. Part IIT discusses
the basic features of the Model 20 PL/I
compiler, describes program compilation and
execution, and brings all information
needed to execute a Model 20 PL/I progranm.

Part

This publication reflects features of
the Model 20 PL/I compiler. Consequently,

8 1IBM System/360 Model 20 DPS PL/I

a number of features of the full PL/I lan-
guage are not described in this publica-
tion, because they are not part of Model 20
PL/I.

Language features that are limited
against the full PL/I language are
described in the light of the limitationms.
Wherever a description here differs from
the full language, it is not to be regarded
as a respecification of the language, but
merely a description of Model 20 PL/I. The
publication is designed to provide all the
implementation information needed to write
programs in Model 20 PL/I and to run thenm
under the Model 20 PL/I compiler.

Implementation features identified by
the phrase "for IBM System/360 implementa-
tions ..." apply to all implementations
for IBM System/360 computers. Features
identified by the phrase "for the Model 20
PL/I Compiler ..." apply specifically to
the IBM Model 20 PL/I Compiler under the
System/360 Model 20 Disk Programming
System.

Throughout this publication, wherever a
PL/I statement -- or some other combination
of elements -- appears in the text, this
statement or phrase is written using a
uniform system of notation.

This notation is not part of Model 20
PL/I; it is a standardized notation that
may be used to describe the syntax =- or
construction -- of any programming lan-
guage. It provides a brief but precise
explanation of the general patterns that
the language permits. It does not describe

—————

the order in which elements may (or must)
appear, the punctuation that is required,
and the options that are allowed.

The following rules explain the use of
this notation for any programming language;
only the examples apply specifically to
Model 20 PL/I.

1. A notation variable is the name of a
general class of elements in the pro-
gramming language. A notation variable
must consist of:

a) Lower-case letters, decimal digits,
and hyphens and must begin with a
letter.

b) A combination of lower-case and
upper-case letters. There must be
one portion all in lower-case let-
ters and one portion all in upper-
case letters, and the two portions
must be separated by a hyphen.

411 such variables used are defined in
the manual either syntactically, that
is, this notation, or by giving a verb-
al definition.

a) digit: This denotes the occurrence
of a digit, which may be 0 through 9
inclusive.

b) filename: This denotes the occur-
rence of the notation variable named
filenane.

c) DO-statement: This denotes the
occurrence of a DO-statement. The
upper~-case letters are used to in-
dicate a language keyword.

2.

5.

Syntax Notation

A notation_constant denotes the literal
occurrence of the characters repre-
sented. A notation constant consists
either of all capital letters or of a
special character.

DECLARE identifier FIXED;

This denotes the literal occurrence of
the word DECLARE followed by the nota-
tion variable identifier, followed by
the literal occurrence of the the word
FIXED and the literal occurrence of the

semicolon (;).

The term syntactic_unit, which is used
in subsequent rules, is defined as one
of the following:

a) a single notation variable or nota-
tion constant, or

b) any collection of notation
variables, notation constants,
syntax-language symbols, and key-
words surrounded by braces or
brackets.

Braces { } are used toc denote grouping
of more than one element into a syn-
tactic unit.

FIXEDl
identifier
FLOATS

The vertical stacking of syntactic
units indicates that a choice is to be
made. The above example indicates that
the variable identifier must be fol-
lowed by the literal occurrence of
either the word FIXED or the word
FLOAT.

The vertical stroke | indicates that a
choice is to be made.

identifier {FIXED|FLOAT}

This has exactly the same meaning as
the above example. Both methods are
used in this publication to display

alternatives.

Syntax Notation 9

10

Square brackets [] denote options.
Anything enclosed in brackets may
appear or may not appear at all in the
syntactic unit. Brackets can serve the
additional purpose of delimiting a syn-
tactic unit.

FILE(filename)[KEY (expression)]

This denotes the literal occurrence of
the word FILE followed by the notation
variable filename enclosed in paren-
theses and optionally followed by the
literal occurrence of the word KEY with

closed in parentheses. If, in rule 4,

IBM System/360 Model 20 DPS PL/I

brackets.

the two alternatives also were option-
al, the vertical stacking would be
within square brackets instead of
braces.

Three dots ... denote the occurrence
of the immediately preceding syntactic
unit one or more times in succession.

Example:
[digit]...
The variable digit may or may not occur

since it is surrounded by

If it does occur, it may be

repeated one or more times.

Part I

Model 20 PL/I Language Features

The modularity of PL/I, that is, the ease
with which combinations of language fea-
tures can be used to meet different needs,
is one of the most important characteris-
tics of PL/I; in fact, it is the base on
which PL/I has been built.

This chapter briefly discusses most of
the basic features to give you an overall
description of the language. Each feature
is treated in more detail in subseguent
sections.

Program Structure

A Model 20 PL/I program is constructed of
statements that are logically grouped
together into one or more blocks called
procedures. A program always comprises a
main procedure and, usually, a number of
other procedures that perform specific
functions.

The rules defining the use of proce-
dures, communication between procedures,
the meaning of names, and the allocation of
storage are fundamental for the understand-
ing of PL/I.

Data Types and Iata Description

The characteristic of PL/I that most con-
tributes to the range of applications for
which it can be used is the variety of data
types that can be represented and manipu-
lated. 1In our context, data is generally
defined as a representation of information
in the form of digits and characters that
have certain characteristics called attri-
butes., PL/I deals with arithmetic data,
character-string data, and program-control
data, such as labels and pointers
(addresses). It provides you with features
to perform arithmetic operations, logical
operations (e.g., comparison), and opera-
tions and functions for manipulating char-
acter strings. In order to be able to per-
form these operations, data items are usu-
ally given names.

The compiler must be able to determine,
for every name used in a program, the com-
plete set of attributes associated with
that name. You may specify these attri-
butes explicitly by means of a DECLARE sta-
tement, or the compiler may determine all
or some of the attributes by context or by
default if you do not specify then.

Basic Characteristics of Model 20 PL/I

Default Assumptions

An important feature of PL/I is its default
concept. If you do not specify all the
attributes associated with a name, or all
the options permitted in a statement,
attributes or options may be assigned by
the compiler. This default action offers
two advantages. First, it reduces the
amount of declaration and other program
writing required; second, it makes it pos-
sible to teach and use levels of the lan-
guage for which the programmer need not
know all possible alternatives, or even
that alternatives exist.

Storage Allocation

PL/I provides you with more flexibility in
the allocation of main storage than most
other programming languages. The storage
areas for data in a PL/I program may be
assigned statically, that is, when the pro-
gram is loaded, or dynamically, that is,
when the individual procedures are
executed.

There are three different storage
classes in Model 20 PL/I: STATIC,
AUTOMATIC, and BASED. In general, the
default storage class in Model 20 PL/TI is
AUTOMATIC. Storage for data with the
storagye class attribute STATIC is statical-
ly allocated, while for data with the
attribute AUTOMATIC or BASED it is dynamic-
ally allocated.

Expressions

Calculations in PL/I are specified by ex-
pressions. The meaning of an expression in
PL/I is similar to that of an expression in
elementary algebra. For example the
expression.

A+ B % C

specifies multiplication of the value of B
by the value of C and addition of the value
of A to the result. The data used in an
expression must be of the same type; that
is, there can be no mixing of data types in
an exrression. For example, a character-
string cannot be added to an arithmetic
value.

The results of the evaluation of expres-
sions may be assigned to variables.
Variables are names representing data. An
example of an assignment statement is:

Basic Characteristics of Model 20 PL/I 13

X =1A7A + B % Cj

This means: Evaluate the expression on the
right and assign it to X. The type of the
result of the expression must be consistent
with the type of X.

Data Collections

Data variables can be grouped into either
arrays or structures. An array is composed
of elements of the same characteristics. &
structure is a collection of variables, not
necessarily alike in characteristics.
Individual items c¢f an array are referred
to by the subscripted name of the array;
individual items of a structure are
referred to by names given to thenm.

Expressions cannot be specified for
arrays or structures, but for elementary
components of arrays or structures. Con-
sider the following the assignment
statement:

A = B + C;

The names used in this assignment statement
could be elements of structures or arrays,
but not arrays or structures themselves.

Input/Output

Input/output (I/0) is the transmission of
data from an external storage medium to
internal (main) storage and vice-versa.
There are two classes of I/0 in PL/I:
stream-oriented and record-oriented I/O.

Stream-oriented I/0 is almost completely
machine-independent. On input, data itenms
are selected one by one from what is
assumed to be a continuous stream of chara-
cters and are converted automatically to
conform, in main storage, to the attributes
of the variables to which they are
assigned. Similarly, on output, data items
are converted one by one to external char-
acter form and are added to a conceptually
countinuous stream of characters.

14 IBM System/360 Model 20 DPS PL/I

For printing, the output stream may be
considered to be divided into lines and
pages. An output stream file may be
declared to be a print file with a certain
line size and page size. PL/I provides you
with the facilities to detect the end of a
page and to specify the beginning of a line
or a rfpage.

Record I/0 is machine dependent. It
deals with collections of data, called
records, and transmits these a record at a
time without any data conversion. The
external representation is an exact copy of
the internal representation. Because the
record is treated as a whole, and because
no conversion is performed, this form of
I/0 is potentially more efficient than
stream-oriented I/0, although the actual
efficiency of each class will, of course,
depend on the type of problem to be solved.

Stream-oriented input and output usually
sacrifices efficiency for ease of handling.
Each data item is transmitted separately
and is examined to determine if data con-
version is required. Record-oriented input
and output, on the other hand, provides
faster transmission by transmitting data as
entire records, without conversion.

Interrupt Activities

Modern computing systems provide facilities
for interrupting the execution of a program
whenever an exceptional condition arises.
Further, they allow the program to deal
with the exceptional condition and to
return to the point at which the interrupt
occurred.

PL/I has facilities for detecting a
variety of exceptional conditions. It
allows you to specify the conditions for
which, should they arise, you want an
interrupt to occur, and also the action to
be taken when such interrupt does occur.

In most programming languages, the length
of an individual instruction or statement
is limited by the size of a single punch
card. If a statement exceeds the size of
one card, a notation must be made, usually
with a punch in some particular card
column, to indicate that the statement is
continued on the following card.

PL/I has no such artificial limitation.
There is no fixed-length format for input
although the Model 20 PL/I compiler
reserves some card columns: the first
column of every card in a program must be
blank, and columns 73 through 80 of these
cards are ignored and can contain any
information, for example, card seguence
numbers.

Within the available card area, you can
write your program without considering spe-
cial coding forms and without having to
ensure that each statement begins in a spe-
cific column. As long as each statement is
terminated by a semicolon, the format is
completely free. Each statement may begin
in the next column or position after the
end of the previous statement, or any num-
ber of blanks may intervene.

Character Sets

You may write your programs in one of two
character sets; either a 60-character set
or a 48-character set. The choice between
the two sets is optional. 1In practice,
this choice will depend upon the available
equipment.

60-Character Set

The 60-character set is composed of digits,
alphabetic characters, and special charac-
ters. There are ten digits: the decimal
digits 0 through 9. There are 29 alphabet-
ic characters, beginning with the currency
symbol (%), the number sign (#), and the
commercial "at" sign (@), which precede the
26 letters of the English alphabet in the
IBM System/360 collating sequence in
Extended Binary-Coded-Decimal Interchange
Code (EBCDIC). For use with languages
other than English, the three alphabetic
characters $, #, and @ can be used to cause
the printing of letters that are not
included in the standard English alphabet.

There are 21 special characters.
are as follows:

They

Program Elements

Name Character

Blank

Equal or assignment =
symbol

Plus sign +

Minus sign -

Asterisk or multifply *
symbol

Slash or divide symbol /

Left parenthesis (

Right parenthesis)

Comma ’

Point or period .

|

Single quotation mark
or apostrophe

Percent symbolsx %
Semicolon H
Colon :
"Not" symbol 2
"And" symbolsx &

|

(used only in
Model 20 PL/I in
combination with
a second "or"
symbol (]]) as
concatenation
operator)
"Greater than" symbol >

"Less than" symbol <

Break Character?
Question marksx

"or" symbol

ol

¥not used in Model 20 PL/I

Special characters are combined to cre-
ate other symbols. For example,<= means
"less than or equal to ", ;= means "not
equal to". The combination %% denotes
exponentiation (X*%2 means X2). Blanks are
not permitted in such composite symbols.

The rules for PL/I sometimes specify
that an "alphameric" character must be used
in certain coding. The term alphameric
refers to any of the 29 alphabetic charac-
ters and the 10 digits, but not to the 21
srecial characters.

Note: The question mark, at present, has
no specific use in the PL/I language, even
though it is included in the 60-character
set. The percent symbol and the "And" sym-
bol have no meaning in Model 20 PL/I,
although they do have a meaning in the full
PL/I language used with higher System/360
models.

1The break character is the same as the
typewriter underline character. It can be
used with a name, such as GROSS_PAY, to
improve readability.

Program Elements 15

The restrictions for this character set
are described in Appendix_C.__Character
Sets With EBCDIC_and Card-Punch_Codes.

48-Character Set

The U8-character set is composed of 48
characters of the 60-character set. 1In all
but five cases, the characters of the
reduced set can be combined to represent
the missing characters of the larger set.
For example, the semicolon (;) is not
included in the U8-character set, but a
comma followed by a point (,.), without
intervening blanks, can be used to repre-
sent it. The five characters that cannot
be represented are the commercial "at"
sign, the number sign, the break character,
the question mark, and the percent symbol.

The restrictions and changes for this

—— i e

Using the Character Sets

All elements that make up a PL/I program
are constructed exclusively from the PL/I
character sets, with two exceptions:
character-string constants and comments may
contain any character in the EBCDIC charac-
ter set.

Certain characters perform specific
functions in a PL/I program. For example,
many characters are used as operators.

There are three types of operators:

arithmetic, comparison, and string
operators.

+ denoting addition or prefix plus

- denoting subtraction or prefix minus

* denoting multiplication
/ denoting division

% denoting exponentiation

> denoting "greater than"

1> denoting "not greater than"

>= denoting "“greater than or equal to"
= denoting "equal to"

7= denoting "not egqual to"

<= denoting "less than or equal to"
< denoting "less than"

1< denoting "not less than"

|| denoting concatenation

Figure 1 shows some of the functions of
other special characters.

Identifiers

In a PL/I program, you give names or labels
to data, statements, files, and procedures.
In creating a name or label, you must
observe the syntactic rules for creating
the identifier.

An identifier is a single alphabetic
character or a string of up to 31 alphamer-
ic and break characters, not contained in a
comment or constant, and preceded and fol-
lowed by a blank or some other delimiter
{(vhich may be an operator or a special
character (except a decimal point)); the

r 1
|Name Character Use |
jcomma v separates elements of a list 1
| period - indicates decimal point

|semicolon H terminates statements |
|assignment = indicates assignment of values?

| symbol |
|colon connects prefixes to statements |
|blank separates elements of a statement]
|apostrophe ! encloses string constants |
|parentheses 0 enclose lists; specify information associated with various key-|

words; in conjunction with operators and operands, delimit por-|
tions of an operational expression

e

1The character = can be used as an equal sign and as an assignment symbol.

I

Figure 1.

16 IBM System/360 Model 20 DPS PL/I

Some Functions of Special Characters

initial character of the string must be
alphabetic.

Language keywords are also identifiers.
A keyword is an identifier that, when used
in proper context, has a specific meaning
to the compiler. A keyword can specify
such things as the action to be taken, the
nature of data, the purpose of a name. For
example, READ, DECIMAL, and ENDFILE are
keywords. A complete list of keywords and
their use is contained in Appendix_D.
Model 20 PL/I Keywords.

Note: Only when using the 48-character
set, some PL/I keywords are reserved words.
Keywords are recognized as keywords by the
compiler only when they appear in their
proper context. In other contexts they may
be used as programmer~defined identifiers.
(Those keywords that are reserved are given
in the section Recognition_of_ Names.

An identifier must not exceed 31 charac-
ters in length. For the Model 20 PL/I com-
piler, some identifiers, as discussed in
later sections, must not exceed six charac-
ters in length; this limitation applies to
certain names, called external names, that
may be referred to by other procedures.

The following are examples of identi-
fiers you could use for names or labels:

A
FILE2
LOOP_3
RATE_OF_PAY
#32

The third and the fourth example illustrate
the use of the break character to improve
readability of an identifier, since blanks
are not permitted in identifiers.

Examples of illegal identifiers are:

/%ABC
23AC

A %B
BEG IN

An identifier must not contain special
characters; it must not start with a digit;
and it must not contain embedded blanks.

The_Use_of Blanks

You may use blanks freely throughout a PL/I
program. You may or may not use then
before and after operators and most other
delimiters. In general, any number of
blanks may appear wherever one blank is
allowed, such as between words in a
statement.

One or more blanks must be used to
separate identifiers and constants that are
not serarated by some other delimiter or by
a comment. However, identifiers, constants
(except character-string constants) and
composite operators (for example, =) must
not contain blanks.

Other cases that require or permit
blanks are noted in the text where the fea-
ture of the language is discussed. See
Figure 2 for exanmples.

Comments

Frequently you may want to insert comments
into your programs to clarify the action
that is taken at a given point. These conm-
ments enable someone unfamiliar with the
program to follow your line of thought, and
they are helpful to you when looking back
over program sections that were written
earlier.

Comments are permitted wherever blanks
are allowed in a program. You may insert
them between statements or in the middle of
a statement without affecting the compila-
tion of your progranm.

The character pair, /%, indicates the
beginning of a comment. The same charac-
ters reversed, %/, indicate its end. No
blanks or other characters must separate
these two characters; the slash and the
asterisk must be immediately adjacent. The
comment itself may contain any characters
except the %/ combination, which would be
interpreted as terminating the comment.

/% THIS WHOLE SENTENCE COULD BE INSERTED
AS A COMMENT!s%/

/%S0 COULD +#$c%&~THIS!%/

1
|AB+BC is equivalent to

1
AB 4 BC |
|TABLE (10) is eguivalent to TABLE (10)]
| FIRST,SECOND is equivalent to FIRST, SECOND
J]ATOB is not equivalent to A TO B |
L J
Figure 2. Examples of the Use of Blanks

Program Elements 17

In comments you may use any characters
recognized by the system hardware. This
includes characters that are not in the
PL/I character set, such as the cent sign
in the second example above.

Note: The length of a single comment must
not exceed 5 cards. However, any number of
comments may occur consecutively.

Basic Program Structure

A PL/I program is made up of basic program
elements called statements. There are two
types of statements: simple and compound.
These statements make up larger progran
elements called DO-groups and procedures.

SIMPLE_AND_COMPOUND STIATEMENTS

There are three types of simple statements
in PL/I: keyword, assignment, and null
statements, each of which is terminated by
a semicolon.

A keyword statement has a keyword to
indicate the function of the statement.
For example:

GOTO LOOP; (GOTO is a keyword; a blank

between GO and TO is optional.

Rl PR T

assignment symbol (=) and does not have a
keyword. For example:

A =3B + C; (This is an assignment state-
ment; it does not contain a
keyword) .

The null statement consists of a semico-
lon only and indicates that no operation is
to be performed. The null statement may be

used in connection with interrupts.

H (Null statement)

Pt NAs T L EENE CEATE B=FiN

contains more than one simple statement.
It is terminated by the semicolon of the
last simple statement.

There are two compound statements: the
IF statement and the ON statement.
Examples of compound statements are:

1. IF A<B THEN A = B + C;

This compound statement is terminated

by the semicolon of the simple state-

ment A = B + C;. The IF statement may
be nested which means that it may con-
tain other compound statements.

18 1IBM System/360 Model 20 DPS PL/I

2. ON UNDERFLOW GOTO UNFIX;
The ON compound statement is always

composed of only two simple statements
terminated by a semicolon.

Statement Prefixes

Both simple and compound statements may
have one or more prefixes. We have two
types of prefixes in PL/I: the label pre-
fix and the condition prefix.

statement so that it can be referred to at
some other point in a program. A label
prefix is an identifier that precedes the
statement and is connected to the statement
by a colon., Most statements may have one
or more labels. If you specify more than
one label, you may use them interchangeably
to refer to the statement. For example:

LABEL1:LABEL2:A=B;

PROCEDURE statements, however, must have
one and only one label. The label prefix
of a PROCEDURE statement is known as an
_________ The label prefix of any other
statement is known as a statement label.
DECLARE statements must not be preceded by
any prefix.

A condition prefix is used to specify
whether or not program interrupts are to
result from the occurrence of the named
conditions. Condition names are language
keywords, each of which represents an
exceptional condition that might arise dur-
ing the execution of a program. In Model
20 PL/I only PROCEDURE statements may have
condition prefixes. An example is OVER-
FLOW. The OVERFLOW condition arises when
the exponent of a floating-point value
exceeds the maximum allowed (representing a
maximum value of about 10%49).

A condition name in a condition prefix
may be preceded by the word NO to indicate
that, effectively, no interrupt is to occur
if the condition arises. There must not be
any blanks between the NO and the condition
name.

A condition prefix consists of a list of
one or more condition names, separated by
commas and enclosed in parentheses. 0Only
one condition prefix must be attached to
the PROCEDURE statement, and the parenthe-
sized list must be followed by a colon. A
condition prefix precedes the entire

PROCEDURE statement, including the entry
name for the PROCEDURE statement.

Example:
PROGM1:

(CONVERSION, NOOVERFLOW) :
PROCEDURE;

The condition prefix indicates that an
interrupt is to occur if the CONVERSION
condition arises, but that no interrupt is
to occur if the OVERFLOW condition arises.
Note that the condition prefix precedes the
entryname PROGMI1.

Since intervening blanks between a pre-
fix and its associated statement are
ignored, it is often convenient to punch
the condition prefix into a separate card
that precedes the card into which the sta-
tement is punched. Thus, after debugging,
you can easily remove the prefix.

Exanple:

(CONVERSION, NOOVERFLOW) :
PROGM1: PROCEDURE;

If no condition prefix precedes a proce-
dure statement, or if not all possible con-
ditions are explicitly stated, the compiler
assumes default values.

Condition prefixes are discussed in the
section entitled Exceptional Condition

A group, also called a DO-group, is a
sequence of statements headed by a DO sta-
tement and terminated by a corresponding
END statement, as follows:

[label:]DO;

-

END;

DO-groups are used for control purposes
and, in general, they can appear wherever
single statements can appear. One DO-group
may contain another DO-group; that is, a
DO-group may be nested. DO-groups normally
are used to specify an iterative process
and/or in the IF compound statement.

A procedure is a sequence of statements
headed by a PROCEDURE statement and ter-
minated by an END statement, as follows:

label: PROCEDURE;

-

END;

With Model 20 PL/I, a procedure may con-
tain any statement except another PROCEDURE
statement. Thus, unlike DO-groups, proce-
dures cannot be nested.

The label preceding a procedure state-

el eama=

reference, that is, a special reference to
The point at which the

the procedure nanme.
procedure reference appears in a programn
(for example: CALL PROGM1;), is called the
point _of invocation; the procedure contain-
ing the procedure reference is called the
invoking_procedure.

Program Elements 19

Data Elements

Data is generally defined as a representa-
tion of information.

In PL/I, you refer to a data itenm,
arithmetic or character-string, by using
either a variable or a constant (the terms
are not exactly the same as in general
mathematical usage).

———==leo

value that may change during execution of a
program. The characteristics of a variable
are not immediately apparent from the nanme.
Since these characteristics, called attri-
butes, must be known, certain keywords and
expressions may be used to specify the
attributes of a variable in a DECLARE sta-
tement. The attributes you may use to
describe data are discussed briefly in this
section. A complete discussion of each
attribute appears in Part II of this manu-
al, under Attributes.

A constant (which is not given a symbol-

s S e——

ic name) has a value that cannot change.

A constant does more than state a value;
it demonstrates various characteristics of
the data item. For example, 3.1416 shows
that the data type is arithmetic and that
the data item is a decimal number of five
digits and that four of these digits are to
the right of the decimal point.

The following statement has both
variables and constants:

AREA = RADIUS#%2%3.1416;

AREA and RADIUS are variables; the num-
bers 2 and 3.1416 are constants. The value
of RADIUS is a data item, and the result of
the computation will be a data item that
will be assigned as the value of AREA. The
number 3.1416 in the statement is itself a
data iten.

If the number 3.1416 is to be used in
more than one place in the program, it may
be convenient to represent it as a variable
to which the value 3.1416 has been
assigned. Thus, the above statement could
be written as:

PI
AREA

3.14163
RADIUS##*2%PI;

In the second statement, only the digit
2 is a constant.

In preparing a PL/I program, you must be
familiar with the types of data that are

20 1IBM System/360 Model 20 DPS PL/I

permitted, the ways in which data can be
organized, and the methods by which data
can be referred to. The following para-
graphs discuss these features.

Data Types

The data you may use in a PL/I program fall
into two categories: problem data and
program-control data. Problem data is used
to represent values to be processed by a
program. It consists of the arithmetic and
character-string data types. Program-
control data is used to control the execu-
tion of the program., Statement labels and
pointers are types of program-control data.

PROBLEM_DATA

The types of problem data available in
Model 20 PL/I are arithmetic and
character-string.

ARITHMETIC DATA

An arithmetic data item is one with a num-
eric value, that is, a number. It may be a
decimal constant, like for example 215.8,
or it may be the value of a_variable, for
example, 2.158 assigned to a variable. 1In
Model 20 PL/I, all arithmetic data items
must be written as decimal, either fixed-
decimal or float-decimal data items.

Arithmetic data items have the charac-
teristics of base, scale, and precision.
For data items represented by an arithmetic
variable, the characteristics have to be
specified by attributes declared for the
variable name, or they are assumed by
default.

Base. The base of an arithmetic data itenm
in Model 20 PL/I is decimal, that is ten.
_____ The scale of an arithmetic data
item is either fixed-point or floating-
point. A decimal fixed-point data item is
a decimal number in which the position of
the decimal point is fixed. It is speci-
fied either by its appearance in a constant
or by a scale factor declared for a vari-
able. A floating-point data item is a dec-
imal number followed by an integer exponent
that may or may not be signed. The
exponent specifies the assumed position of
the decimal point, relative to the position
in which it actually appears.

Precision. The precision of an arithmetic
data item is the total number of digits the
data item can have in the case of fixed-
point, or the minimum number of digits
(excluding the exponent) in the case of
floating-point. For decimal fixed-point
data items, precision can also specify the
assumed position of the decimal point rela-
tive to the rightmost digit of the number.

Base and scale of arithmetic variables
are specified by keywords; DECIMAL for base
and FIXED and FLOAT for scale. Precision
is specified by decimal integer constants
enclosed in parentheses.

Whenever you assign a data item to a
fixed-point variable, the precision you
have declared for that variable is main-
tained. The assigned item is aligned on
the assumed decimal point of the variable.
Leading zeros are inserted if the assigned
decimal item contains fewer integer digits
than declared; trailing zeros are inserted
if an assigned decimal item contains fewer
fractional digits than declared. Trunca-
tion on the left or right may occur if the
so aligned value has too many digits to the
left or right of the assumed decimal point.

Decimal Fixed-Point Data

A decimal fixed-point data item consists of
one or more decimal digits. A decimal
point may be included. If no decimal point
appears, the point is assumed to be immedi-
ately to the right of the rightmost digit.
In most cases a sign may optionally precede
a decimal fixed-point constant.

Examples of fixed-point decimal con-
stants as you may write them in a progran
are:

3. 141593
-5280
455.3
.00003
234,

234

The keywords for decimal fixed-point
variables are DECIMAL and FIXED. Precision
is stated by two unsigned decimal integer
constants, separated by a comma and en-
closed in parentheses. The first specifies
the total number of digits; the second, the
scale factor, specifies the number of
digits to the right of the decimal point.
If the variable is to represent integers,
the scale factor and its preceding comma
can be omitted. The attributes may appear
in any order, but the precision specifica-
tion must follow either DECIMAL or FIXED.

To define PI (which should assume the
value 3.141593) in this way, we could use
the following statement:

DCL PI FIXED DECIMAL (7,6);

This defines the identifier or variable
PI as a fixed-point decimal item of not
more than seven digits, six of which are to
the right of the decimal point. 1In this
declaration, of course, no value has yet
been assigned to PI. This could be done
later in the program with the following
assignment statement:

PI = 3.141593;

The value could also be assigned in the
DCL statement, specifying the INITIAL
attribute, as follows:

DECLARE PI FIXED DECIMAL
INITIAL (3.141593);

(7,6)

This not only defines the identifier PI
but gives it an ipitial_value of 3.141593,
The value may be retained throughout the
program, as is probable in this case, or it
may be changed during execution by an
assignment statement.

The maximum number of decimal digits
allowed in Model 20 PL/I is 15. Default
precision, assumed when no specification is
made, is 5,0. The internal form of decimal
fixed-point data is packed decimal. Packed
decimal is stored in two digits to the
byte, with a sign indication in the right-
most four bits of the rightmost byte. Con-
sequently, a decimal fixed-point data item
is always stored as an odd number of
digits, even though the declaration of the
variable may specify the number of digits
as an even number. Any such extra digit is
in the high-order position (that is, to the
left of the leftmost decimal digit), and it
participates in any operations performed
upon the data item, such as in a comparison
operation. Note, however, that this extra
digit is disregarded when evaluating the
precision of arithmetic expressions.

The fixed-decimal values that can be
represented in Model 20 PL/I are in the
range of 10-5° to 10“°, even though the
declared scale factor must lie in the range
of 0 to 15. ©Note, however, that not only
the individual values, but also the values
resulting from the evaluation of expres-
sions must be within that range.

Decimal_Floating-Point Data

A decimal floating-point constant is writ-
ten as one or more digits, with an optional
sign and decimal point, referred to as the
mantissa, followed by the letter E, fol-
lowed by a decimal integer exponent that
specifies a power of ten. The mantissa has
the same format as a decimal fixed-point
constant. Both, mantissa and exponent, may
be preceded by a plus or minus sign.

Data Elements 21

Consider the following example in which
the decimal number 312.5 10-17 would be
written as:

+312.5E-17

The digits preceding the letter E are
the mantissa preceded by an optional plus
sign. The digits following the letter E
are the exponent preceded by a minus sign.

Other examples of decimal floating-point
constants as you may write them in a pro-
gram are:

15E-23
15E23

4E-3
48333E44
438E0
5.E-12
314159E-6
.00314159E2

The last two examples represent the same
value, namely 0.314159.

The keyword attributes that describe
decimal floating-point variables are
DECIMAL and FLOAT. Precision is stated by
a decimal integer constant enclosed in
rarentheses. It specifies the number of
digits to be maintained preceding the E.
If an item assigned to a variable has a
sion of the variable, truncation may occur
on the right. The least significant digit
is the first that is lost. Attributes may
appear in any order, but the precision spe-
cification must follow DECIMAL or FLOAT.

Consider the following declaration of a
decimal floating-point variable:

DECLARE LIGHT_YEARS DECIMAL FLOAT(5);

This statement specifies that
LIGHT_YEARS is to represent decimal
floating-point data items with an accuracy
of five significant digits.

The maximum precision allowed for deci-
mal floatingrpoint data items in Model 20
PL/I is 15; the exponent must not exceed
two digits. The value V that can be ex-
pressed is in the range of 10-51<V<1049,
and Vv=0. The default precision is 6. The
internal representation of decimal
floating~point data may be in either short
or long floating-point form. If the
declared precision is less than or equal to
6, short floating-point form, otherwise
long floating-point form is used.

The internal representation of decimal
floating-point data is based on the repre-
sentation of decimal numbers by mantissa
and exponent. The first byte contains the

22 IBM System/360 Model 20 DPS PL/I

exponent incremented by 50 as a two-digit
decimal number without sign (but assumed to
be positive). The following four, respec-
tively 8 bytes (depending on whether short
or long floating-point form is used) con-
tain the mantissa without any leading zeros
as a seven-digit or 15-digit decimal num-
ber, respectively, with the decimal point
assumed to the left of the leftmost digit.
Floating-point numbers in internal repre-
sentation are normalized, i.e., the left-
most digit of the mantissa is not zero.

The (normalized) value zero is represented
in a special notation having zeros in all
digit positions of characteristic and
mantissa.

Note that all variables that have not
been explicitely declared and whose names
do not start with any of the letters I to N
are assumed to be arithmetic decimal
floating-point variables of six digits.

(An identifier starting with any of the
letters I to N must be explicitly
declared).

Numeric-Character_ Data

A numeric-character data item (also known
as a numeric-field data item) is the value
of a_variable that has been declared with
the PICTURE attrtlyibute and a numeric pic-

ture specification. The format is:

DECLARE identifier PICTURE
'picture-specification’

The picture specification is a string of
picture_characters (e.g., 2 and V) used to
represent a decimal fixed-point or
floating-point value. The basic form of a
numeric-picture specification is the pic-
ture character 9 specified one or more
times and the optional picture character V,
which is used to indicate the assumed loca-
tion of a decimal point. The picture spe-
cification must be enclosed in apostrophes.
An example of declaring a picture variable
is:

DECLARE PRICE PICTURE '999Vv99!

This example specifies that any value
assigned to PRICE is to be maintained as a
string of five decimal digits in character
form, with a decimal point assumed to pre-
cede the rightmost two digits.

In some cases it might be convenient to
use repetition factors in numeric-picture
specifications. A repetition factor is a
decimal integer constant, enclosed in
parentheses, that indicates how often the
immediately following picture character is
to be repeated. For example, the following
pricture specification would result in the
same field as the example shown above:

DECLARE PRICE PICTURE ' (3)9V(2)9'

In Model 20 PL/I, numeric-character data
is stored in zoned decimal format. If it
is to be used in arithmetic computations it
is automatically converted to coded
arithmetic.

Although numeric-character data is in
character form like a character string, and
although it is aligned on the decimal point
like packed decimal data, it is processed
differently from the way either packed dec-
imal items or character strings are pro-
cessed. [Editing_characters
and the dollar sign) can be specified for
insertion into a numeric-character data
item, and such characters are actually
stored within the data item. Consequently,
when the data item is assigned to a charac-
ter string, the editing characters are
included in the assignment. If, however, a
numeric-character item is assigned to
another numeric-character or arithmetic
variable, the editing characters will not
be included in the assignment; only the
actual digits and the location of the
assumed decimal point are assigned.
that character-string data cannot be
assigned to numeric-character variables).
Consider the following example:

(Note

DECLARE PRICE PICTURE '$99V.99',
COST CHARACTER(6),
VALUE FIXED DECIMAL (6,2);
PRICE = 12.28;
COST = v$12.28';

In the picture specification for PRICE,
the currency symbol ($) and the decimal
point (.) are editing characters. They
are stored as characters in the data itenm.
They are not, however, a part of its arith-
metic value. After execution of the second
assignment statement, the actual internal
character representation of PRICE and COST
can be considered identical. TIf they were
assigned to character strings, which vere
then printed, they would look exactly the
same. They do not, however, always func-
tion in the same may. For example, look at
the following assignment statements:

VALUE = PRICE;
COST = PRICE;
VALUE = COST;
PRICE = COST;
After the first two assignment state-
ments have been executed, the value of
VALUE would be 001228 (with an assumed dec-
imal point before the last two digits) and
the value of COST would be '%$12.28'. 1In
the assignment of PRICE to VALUE, the cur-
rency symbol and the decimal point are con-
sidered to be editing characters, and they
are not part of the assignment; after the
assignments, the arithmetic value of PRICE

is contained in VALUE in packed decimal
form. In the assignment of PRICE to COST,
however, the assiynment is to a character
string, and the editing characters of a
numeric-picture specification always parti-
cipate in such an assignment. The third
and fourth assignment statements are inva-
lid. The value of COST cannot be assigned
to VALUE because a character string cannot
be converted to packed decimal form. The
value of COST cannot be assigned to PRICE
because, in Model 20 PL/I, a character
string cannot be converted to numeric-
character format.

Other editing characters (including zero
suppression characters) and insertion
characters (like, for example, an
asterisk), can be used in numeric-character
specifications.

Note that the number of possible digit
positions in the fixed part of a picture
declaration must range between 1 and 15,
inclusively. The total length of a pic-
ture, including editing characters, must
not exceed 30 characters. The V character,
however, does not count since it represents
only an assumed, not an actual point. A
picture or editing character preceded by an
repetition factor (n) counts n times.

For complete discussions of picture
characters, see Part II, the section Pic-
ture_Specification_Characters and the dis-
cussion of the PICTURE attribute in the
section Attributes.

CHARACTER-STRING DATA

You may think of a character string as a
connected sequence of characters that is
treated as a single data item. The length
of the string is the number of characters
it contains.

A character string can include any
digit, letter, or special character that is
contained in the EBCDIC-character set. Any
blank included in a character string is
considered an integral character of the
data item and is included in the count of
the length. Comments cannot be inserted in
a character string. The comment, as well
as the comment delimiters (/x and %/), will
be considered to be part of the character-
string data.

When writing a program, you have to
enclose character-string constants in apos-
trophes. 1If an apostrophe is a character
in a string, it has to be written as two
apostrophes with no intervening blank. The
length of a character string is the number
of characters between the enclosing apos-
trophes. If two apostrophes are used
within the string to represent apostrophes,
they are counted as a single character.

Data Elements 23

Consider the following examples of
character-string constants:

'"LOGARITHM TABLE!
TDPAGE 5

'SHAKESPEARE''S ''VY'HAMLET"' ' 1!
YACH38-19?

(2) 'WALLA °

The third example actually indicates
SHAKESPEARE'S ''HAMLET'' with a length of
24, In the last example, the parenthesized
cates repetition of the characters that
follow. This example specifies the actual
constant 'WALLA WALLA ' (the blank is
included as one of the characters to be
repeated). The repetition factor must be
an unsigned decimal integer constant, en-
closed in parentheses. The repetition fac-
tor may range between 1 and 255.

The keyword attribute for 3declaring a
character-string variable is CHARACTER
which may be abbreviated as CHAR. The
length of the character-string variable is
declared by a decimal integer constant, en-
closed in parentheses. The length specifi-
cation must follow the keyword CHARACTER or
CHAR. For examfle:

DECLARE NAME CHARACTER(15) ;

This DECLARE statement specifies that
the identifier NAME is to represent a
character-string data item that is 15
characters long. The values of this vari-
able, that is, different character strings,
are to be assigned during the execution of
the program. Most data items, however, can
also be given an initial value by declaring
the name with the INITIAL attribute and
listing the initial value. For example:

DECLARE NAME CHARACTER (15)
INITIAL ('JOHN DOE') ;

Although the declared length is 15, the
length of the string assigned by the INI-
TIAL attribute contains only 8 characters.
Blanks are added automatically to the right
to fill out the length. The first charac-
ter assigned is always left-adjusted, and,
if necessary, blanks are added on the
right. In this case, the string would be
stored as the characters JOHN DOE, followed
by 7 blanks.

A character string is assigned from left
to right. If the actual string is longer
than the declared length, the string is
truncated on the right, that is, the right-
most characters are lost.

Note: If truncation occurs, there will be
no interrupt. There is no ON-condition in
Model 20 PL/I to deal with character-string
truncation.

24 IBM System/360 Model 20 DPS PL/I

Character-string data in System/360
implementations is maintained internally in
character format, that is, each character
occupies one byte of main storage. The
maximum length allowed by the Model 20 PL/I
Compiler for variables declared with the
CHARACTER attribute is 255. The maximum
length allowed for a character-string con-
stant after application of repetition fac-
tors is also 255. The minimum length in
either case is one.

PROGRAM-CONTROL_DATA

The tyres of program-control data in Model
20 PL/I are label and pointer data.

LABEL DATA

A statement label is an identifier written
as a prefix to a statement so that, during
execution, program control can be trans-
ferred to that statement through a
reference to its label. A colon separates
the label from the statement, as follows:

ABCDE: DISTANCE = RATExTIME;

In this example, ABCDE is the statement
label. The statement can be executed eith-
er by normal sequential execution of
instructions or by transferring control to
this statement from some other point in the
program by means of a GO TO statement, as
shown in the following example:

ABCDE: DISTANCE = RATExTIMNE;

GOTO ABCDE;

ABCDE, as it is used above, can be clas-
sified as a statement-label constant. 2
statement-label variable is a variable to
which statement-label constants can be
assigned in the program. Consider the fol-

lowing example:

LBL_A: statement;
LBL_B: statement;
LBL_X = LBL_A;

GO TO LBL_X;

LBL_A and LBL_B are statement-label con-
stants because they are prefixed to state-
ments. LBL_X is a statement-label vari-
able. By assigning LBL_A to LBL_X, the
statement GO TO LBL_X causes a transfer to
the LBL_A statement. Elsewhere, the rro-
gram may contain a statement assigning
LBL_B to LBL_X. Then, any reference to
LBL_X would be the same as a reference to
LBL_B. This value of LBL_X is retained
until another value is assigned to it.

A statement-label variable must be
declared with the LABEL attribute, as
follows:

DECLARE LBL_X LABEL;

POINTER DATA

A pointer variable is the name of a pointer
which is used to point to a location in
storage. A pointer is, in effect, the
address of data in storage.

The keyword attribute for declaring
pointer variables is POINTER. For informa-
tion on the use of pointer variables, refer
to the sections Data_Transmission, and

ESS - Y -t 4

Data Organization

In PL/I, we have single data elements or
collections of data elements, called arrays
or structures, depending on their composi-
tion. A variable that represents a single
element is called an element_variaple. A
variable that represents a collection of

Py g X4 =]

or structure_variable.

ARRAYS

An array is a named table of data elements
all of which have identical attributes.
Only the array itself is given a name. An
individual element of an array is referred
to by its relative position within the
array. The relative position is specified
by a subscript (enclosed in parentheses)
following the array name, with or without
intervening blanks.

Assume TABLE has been declared to be an
array of 12 elements. TABLE (1) refers to
the first data element in the array,
TABLE(2) to the second, TABLE (3) to the
third, etc. Each of the numbers, (1), (2),
or (3), is a subscript that gives the rela-

tive position, within TABLE, of a particu-

lar data element. TABLE (1), TABLE(2), and
TABLE (3) all refer to single elements and
are element variables. The entire array is
referred to by the unsubscripted name
TABLE. TABLE is an array variable.

An array variable is declared in a
DECLARE statement by giving its name, the
number of elements in the array, and the
attributes of the items. Consider the fol-
lowing example:

DECLARE TABLE (12) DECIMAL FIXED (2);

This specifies that TABLE refers to an
array of 12 data elements, each of which
will have a value that can be represented
by two decimal digits. TABLE, as declared
above, might look as follows:

Element Value Reference
31 TABLE (1)
43 (2)
42 (3)
57 ()
6l (5)
73 (6)
79 (7)
79 (8)
69 (9)
58 (10)
49 n
40 (12)

Thus, TABLE (1) would refer to the data
item 31, TABLE(6) to 73, TABLE(12) to U40.
The expression TABLE (7) + TABLE (1) would
yield a value of 110.

Assume that the values assigned to TABLE
represent the average temperature of the
months of a particular year. TABLE(1) is
the January average, etc. As TABLE was
declared in the previous DECLARE statement,
the data items could be referred to singly
or as a whole.For various reasons, you may
want to consider the year as divided into
quarters; it might be convenient to be able
to use one reference to the average tem-
peratures of a guarter of a year and an-
other to specify months in a quarter. For
this purpose, TABLE may be declared as
follows:

DECLARE TABLE (4,3) DECIMAL FIXED (2);

In this statement, TABLE is declared to
be a two-dimensional array of 12 data
items; that is, TABLE is considered to con-
sist of four lists of three items each. It
has two dimensions, one with a bound of
four, one with a bound of three. The data
might be recorded in storage in exactly the
same way as with the first declaration, but
conceptually it is ordered differently.

Data Elements 25

end of it, 4 and 3 in this case; the lower
bound or the beginning of a dimension is

always assumed to be 1. The extent of the
dimension is the number of integers between
and including the specified end. Thus, the
terms bound and extent, while conceptually
different, have the same value in Model 20

PL/I.

Note the difference between a subscript
and the dimension-attribute specification.
The latter, which appears in the decla-
ration of an array, specifies the dimen-
sioning and the number of elements in an
array. Subscripts are used in other
references to identify specific elements
within the array.

Following are two different ways in
which the arrangement might be conceptually
illustrated. The first shows TABLE as con-
sisting of four consecutive lists of three
items each; the second shows it as a matrix
of four rows and three columns.

Element Value Reference

31 TABLE(1,1)

u3$ (1,2)

42 {1,3)

57 2,1

6u§ (2,2)

73 (2,3)

79 3,1

79‘ (3,2)

69 (3,3)

58 4, 1

u9$ u,2)

40 (4, 3)
TABLE {n,d) {n,2) {n,3)
(1, m) 31 43 42
(2,m) 57 6U 73
(3,m) 79 79 69
(4,m) 58 u9 40

You may refer to an element of the above
described TABLE by a subscripted name with
two parenthesized subscripts, separated by
a comma. For example, TABLE(2,1) would
specify the first element in the second
list or row, in this case, the data itenm
57.

The Model 20 PL/I Compiler allows a
maximum of three dimensions to be declared
for an array. The above described TABLE
could, in fact, also be declared as a
three-dimensional array with the following
DECLARE statement:

DECLARE TABLE (2,3,2) DECIMAL FIXED (2);

Note that the number of specifications,
separated by commas, is the same as the
number of dimensions, and that the product
of the numbers is equal to the number of
items in the array: (12), (4,3), (2,3,2).

26 IBM System/360 Model 20 DPS PL/I

Using the same data, TABLE (2,3,2) might
be illustrated as follows:

Element_Value Reference
31% TABLE (1,1,1)
43 (1,1,2)
42% 1,2,1)
57 (1,2,2)
6”% (1,3,M
73 (1,3,2)
79 2,1, 1
79 (2,1,2)
69 % 2,2,1)
58 (2,2,2)
49 (2,3,1)
40 (2,3,2)
TABLE (1,.n,m) (1,n,1) {1,0,2)
(1,1,n) 31 43
(1,2,n) 42 57
(1,3,m 6u 73
IABLE (2,n,m) (2,0,1) (2,n,2)
(2,1,m) 79 79
(2,2,m) 69 58
(2,3,m) 49 4o

The dimension attribute (2,3,2) speci-
fies that TABLE represents a list of 12
data items and that the list will be
referred to as if it consists of two sub-
lists, each of which is further divided
into three sub-lists of two items each.

The examples of arrays shown in this
section are arrays of arithmetic data.
Character strings and statement labels may
also be collected into arrays. Note, how-
ever, that pointers may not be collected
into arrays.

Expressions _as_Subscripts

The subscripts of a subscripted name need
not be constants as shown in the above
examples. Subscripts are frequently ex-
pressed as variables or expressions. We
could, for example, use TABLE(I,J%K) to
refer to the different elements of TABLE by
varying the values of I, J, and K.

Note that, although a subscript can be
an expression, each bound of a dimension-
attribute declaration must be an unsigned
decimal integer constant and that the value
of a subscript must lie within the extent
of the corresponding dimension. If the
result of a subscript expression (such as
JxK above) is not a fixed-decimal integer,
it is converted to FIXED DECIMAL (5,0) in
Model 20 PL/I. Note also that the number
of subscripts in a reference must agree
with the number of dimensions in the
declaration.

STRUCTURES

A structure is a collection of data ele-
ments that need not have identical charac-
teristics, but that have a logical rela-
tionship to one another.

Like an array, the entire structure is
given a name that can be used to refer to
the entire collection of data. Unlike in
an array, however, each element and groups
of elements of a structure also have names.
A structure is a hierarchical collection of
names referring to elements. These ele-
ments, each of which may be a single data
item or an array are at the bottom of the
hierarchy. At the top of the hierarchy is
the structure name, which represents the
entire collection of elements.

Consider a program to calculate a weekly
payroll. One employee, John J. Doe, whose
man-number is 68584, works 40 hours of
regular time and five hours of overtime.

He is paid $4.00 per hour for regular time
and $6.00 for overtinme.

His weekly pay record, with all the
above information, is read and assigned to
a structure named PAYROLL. The information
could be ordered:

DOE JOHN J 68584 40 05 400 600

If this data were referred to merely by
the name PAYROLL, it might be treated as a
character string; but, if the data were
declared as a character string, it would be
difficult to get to individual items within
the string, and arithmetic operations would
involve conversion. However, a name can
also be given to each element. The names
for John Doe's pay record and the data each
name represents might, conceptually, look
like this:

LASTNAME DOE
FIRSTNAME JOHN
MIDDLENAME J

PAYROLL) MAN_NO 68584
REGLHOURS 40
OVTMHRS 05
STRATE 400
OVRTMRATE 600

Thus, we could refer to the entire
collection of data items by the name
PAYROLL, or we can refer to an individual
item by an individual name.

It is often convenient to subdivide the
entire collection into smaller logical
collections, to be able to refer collec-
tively to more than one, but not all, of
the variables in a structure. In a struc-
ture, such subdivisions are also given
names. The above example might be subdi-
vided as follows:

gLAST DOE

NAME FIRST JOHN
MIDDLE J
MAN_NO 68584
PAYROLL
HRS {REGLR 40
OvVTH . 05

RATE STRATE 400
OVRTM 600

The major structure, PAYROLL, contains
the substructures, NAME, HRS, and RATE.
MAN_NO is not a substructure but an elemen-
tary name because it represents only a
single data iten.

Note that the hierarchy of names can be
considered to have different levels. At
the first level is the major-structure
name; at a deeper level are the substruc-

ture names, called minor-structure_name;

_________ An elementary name can repre-
sent an array, in which case it is not an
element variable, but an array variable.

When a structure is declared, the level
ber. The major-structure name, at the
first level, is always dgiven the level num-
ber 1. Each name at a deeper level is
given a greater number to indicate the
level depth. The above structure could,
for example, be declared as follows:

DECLARE 1 PAYROLL,
2 NAME,
3 LAST,
3 FIRST,
3 MIDDLE,
2 MAN_NO,
2 HRS,
3 REGLR,
3 ovTH,
2 RATE,
3 STRATE,
3 OVRTH;

Note that the pattern of indention is
used only for readability. The statement
could be written in a continuous string as
DECLARE 1 PAYROLL, 2 NAME, 3 LAST, etc.

The order of appearance of names in a
DECLARE statement, along with their level
numbers, determines the structuring.
Except for the major-structure name, which
nust be declared with the level number 1,
any number up to 255 may be used in Model
20 PL/I. ©Note, however, that only a maxi-
mum of 8 physical structure levels may be
sjecified in structure declarationmns.

A structure is specified by declaring
the major structure name and following it
with the names of all contained elements.
Each name is preceded by a level number,
which is a non-zero decimal integer con-

Data Elements 27

stant. A major structure is always at
level 1 and all elements contained in a
structure (at level n) have a level number
that is numerically greater than n, but
they need not necessarily be at level n +
1, noxr need they all have the same level
nunmber.

A minor structure at level n contains
all fcllowing items declared with level
numbers greater than n upr to but not
including the next item with a level number
less than or equal to n. A major structure
description is terminated by the decla-
ration of another item at level one, by the
declaration of an item having no level num-
ber, or by the end of a declaration list.

The level numbers of the above example
might have been declared as follows:

DECLARE 1 PAYROLL,
8 NAME,
20 LAST,
20 FIRST,
9 MIDDLE,
6 MAN_XO,
2 HRS,
3 REGLR,
3 ovTH,
2 RATE,
255 STRATE,
255 OVRTM;

Exactly the same structuring would
result.

When a structure is declared, attributes

names. For example:
DECLARE 1 PAYROLL,
2 NAME,
3 LAST CHARACTER (12),
3 FIRST CHARACTER (8),
3 MIDDLE CHARACTER (1),
2 MAN_NO CHARACTER (5),
2 HRS,
3 REGLR FIXED DECIMAL (2)
3 OVTM FIXED DECINMAL (2),
2 RATE,
3 STRATE FIXED DECIMAL (3,2),
3 OVRTM FIXED DECIMAL (3,2);

Note: Level numbers are specified with
structure names only in the DECLARE state-
ment. In references to the structure or
its elements, no level numbers are used.
Only structures can be declared with level
numbers; a level number cannot be declared
with any other identifier.

A1l names within a single procedure must be
unique. But within structures, it is often

28 TBM System/360 Model 20 DPS PL/T

ccenvenient tc te able to use the same iden-
tifier for related names. In the above
structure, for example, it would be con-
venient to refer to the items in HRS and
RATE as "regular hours" and "regular rate"
and "overtime hours" and "overtime rate".
In fact, the elements can be given the same
names. The last portion of the structure
night be declared:

2 HRS,
3 REGLR,
3 OVRTIM,
2 RATE,
3 REGLR,
3 OVRTIM;

to the individual item avoids ambiguity. 2
qualified name is a substructure or element
name that is made unique by qualifying it
with one or more names of a higher level.
The individual names within a qualified
name are separated by a period. 1A quali-
fied name must not contain embedded blanks
or comments. The above items could be
referred to by the following qualified
names:

HRS.REGLR

KATE. REGLR
HRS.OVRTIN
RATE. OVRTIM

None of the names in PAYROLL, except
PAYROLL itself, need be unique within the
procedure in which it is declared. Each of
them could be qualified. For example:

PAYROLL.NAME
PAYROLL.NAME.LAST

or NAME.LAST

or PAYROLL.LAST

Qualification need go only so far as
necessary to make the name unique. Tnter-
mediate qualifying names can be omitted.
The name PAYROLL.LAST is a valid reference
to the name PAYROLL.NAME.LAST.

Note: The length of gqualified names must
not exceed 2 cards.

RESPECIFICATION OF DATA

The DEFINED attribute specifies that the
name of a data element, a structure, or an
array is to refer to the same storage area
as the name given to other data. For
example, in the declaration

DECLARE LIST (20,20),
LIST_A (20,20) DEFINED LIST;

LIST is a 20 by 20 two-dimensional
array. LIST_A is an identical array refer-
ring to the same storage area as LIST. The
reference to the same storage area is
achieved by using the DEFINED attribute.
The effect is that a reference to an ele-
ment in LIST_A is the same as a reference
to the corresponding element in LIST, and
vice versa. Thus, a change to an element
in LIST_A will at the same time, be an
identical change to the corresponding ele-
ment of LIST. This use of the DEFINED

e e o T e e e

This type of defining specifies that the
defined_item (the item having the DEFINED

attribute; e.g., LIST_A above) is to refer
to all or part of the storage area occupied

lowing the keyword DEFINED; e.g., LIST
above). For example:

DECLARE 1 P, 2 Q CHARACTER (25),
2 R CHARACTER (50),
PSTRING1 CHAR (60) DEFINED P;

In this example, PSTRING1 is a character
string of length 60 defined on the struc-
ture P. The first character of Q through
the last character in R can be considered
as one string of 75 characters in length.
PSTRING1 refers to the first 60 characters
of that string, that is, the 25 characters
of Q effectively concatenated with (that
is, connected to) the first 35 characters
of R.

Initialization of Data

The INITIAL attribute, which may be abbre-
viated as INIT is used to specify an ini-
tial value for a variable. The initial
value is assigned to the variable at the
time storage is allocated to it. For
example:

DCL NAME CHARACTER (10) INITIAL
(*JOHN DOE');

DCL PI FIXED DECIMAL (5,4) INIT
(3.1416) ;

When storage is allocated to NAME, the
character string 'JOHN DOE!' (padded with
blanks on the right up to ten characters)
will be assigned to it. When storage is
allocated to PI, it will be initialized to
the value of 3.1416. The initial value of
a variable may be retained throughout the
program, or it may be changed during
execution.

For a STATIC variable, that is, a vari-
able for which storage remains allocated
throughout the entire execution of a pro-

gram, any value specified in an INITIAL
attribute is assigned only once. For AUTO-
MATIC variables, that is, variables for
wvhich storage is allocated whenever the
declaring procedure is activated, any INI-
TIAL values will be assigned at each acti-
vation. INITIAL values cannot be declared
for BASED variables, DEFINED variables,
STATIC label variables, and POINTER
variables. 1In a structure declaration, the
INITIAL attribute can only be used in the
declaration of elementary names.

The INITIAL attribute may be specified
for element variables and arrays. Note,
however, that is cannot be specified for
arrays of the storage class AUTOMATIC.

An array can be partly initialized or
fully initialized. For example:

DECLARE A (15) CHARACTER (13) INITIAL
(*JOHN DOE', 'RICHARD ROW',
"MARY SMITH') STATIC,

B(10,10) DECIMAL FIXED(5) STATIC
INITIAL ((25)0, (25)1, (50)0);

‘In the first example, only the first
three elements of A are initialized; the
remainder of the array is not. The array B
is fully initialized, with the first 25
elements initialized to 0, the next 25 to
1, and thée last 50 to 0. The parenthesized
numbers (25, 25, and 50) are iteration_fac-
tors that specify the number of elements to
be initialized with the same value.

Note that the depth of nested iteration
factors in an INITIAL attribute is
restricted to 3.

The iteration factor should not be con-

DECLARE TABLE (50) CHARACTER (10)
INITIAL ((10)*A‘, (25) (10)'B*,
(24) (1) 'CYy

This INITIAL attribute contains both
iteration factors and repetition factors.
It specifies that the first element of
TABLE is to be initialized with a string
consisting of 10 A's, each of the next 25
elements is to be initialized with a string
consisting of 10 B's, and each of the last
24 elements is to be initialized with the
single character C. 1In the INITIAL attri-
bute specification for a character-string
array, a single parenthesized factor pre-
ceding a character-string constant is
assumed to be a string-repetition factor
(as in (10)'A'). If more than one appears,
the one immediately preceding the character
string is the string-repetition factor,
while all factors preceding this repetition
factor are iteration factors.

Data Elements 29

Expressions

An exjression is a representation of a
value. An expression may be a single_con-
stapt or an element_ variable, a function
reference, or a combination of then,
including operators and other delimiters.
An expression that contains operators is an
operational expression. The constants and
element variables of an operational expres-

In the examples below, assume that the
variables have been declared as follows:

DECLARE A(10,10) DECIMAL FIXED
B(10,10) DECIMAL FIXED (15),
1 RATE, 2 PRIMARY DECIMAL FIXED (4,2),
2 SECONDARY DECIMAL FIXED (4,2),
1 COST, 2 PRIMARY DECIMAL FIXED (4,2),
2 SECONDARY DECIMAL FIXED (4,2),
C DECIMAL FIXED (8),
D DECIMAL FIXED (8);

(15),

Examples of expressions are:

C % D

A(3,2) + B(4,8)

RATE. PRIMARY - COST.PRIMARY
A(4,4) % C

RATE.SECONDARY / 4

A(4,6) % COST.SECONDARY

C

A(10,10)

All except the last two examples are
operational expressions. The last two are
element variables. Note that the expres-
sion A(10,10) is not the same as A (10, 10)
in the DECLARE statement. In the DECLARE
statement, (10,10) is a dimension attribute
specifying a two-dimensional array of 100
element variables. In the expression
A(10,10), (10,10) is a subscript referring
to the last element of the array A.

A single operational expression may con-
tain a number of arithmetic operations, as
shown in the following example:

A(4,4)+B(3,3)~-Cx(D/(B(2,2)-A(1,1)))%%C

Parentheses within an expression indic-
ate that the parenthesized portion is con-
sidered as a single value in relation to
its surrounding operators. The parenthe-
sized portion of an operational expression
is evaluated first, with the innermost
parenthesized portion taking precedence.
In the above example, the expression
(B(2,2)-2(1,1)) is evaluated first, before
the value of D is divided by the result of
the subtraction.

30 IBM System/360 Model 20 DPS PL/I

Although an operational expression may
contain more than one data item, it repre-
sents a single value that may appear in a
number of different PL/I statements. The
most common occurrence of operational ex-
pressions is in the form of assignment sta-
tements. Such as:

C = A + B

In this example, all of the three
operands are element variables. The
assignment symbol (=) indicates that the
value of the expression on the right (3 +
B) is to be assigned to the variable C on
the left.

Expression Operations

An operational expression can specify one
or more single operations. The class of
operation depends on the class of operator
specified for the operation. There are
three classes of operations:

An arithmetic operation is represented by
one or two operands in combination with one
of the following operators:

+ - % / &%

The plus and the minus sign can appear
either as prefix operators (for example #A
or -A) or as ipfix operators (that is,
between operators, such as A + B or A - B).
The other arithmetic operators can appear
only as infix operators. All operands of
an arithmetic operation must be arithmetic
(for example, a character-string variable
in combination with an arithmetic operator
will lead to an error).

An expression may contain a number of
arithmetic operations. Note that prefix
operators can precede and be associated
with any of the operands of an infix opera-
tion. For example, in the expression
Ax-B, the minus sign preceding the variable
B indicates that the value of A is to be
multiplied by the negative value of B.

A single variable may have more than one
prefix operator. More than one positive
prefix operator will have no cumulative
effect, but two consecutive negative prefix

operators will have the same effect as a
single positive prefix operator. For
example:

-2 The single minus sign has the effect
of reversing the sign of the value
that A represents.

--A One minus sign reverses the sign of
the value that A represents. The
second minus sign again reverses the
sign of the value, thus restoring it
to the original arithmetic value of
A.

---A Three minus signs reverse the sign of
the value three times, thus giving
the same result as one minus sign.

CONVERSION OF OPERANDS IN ARITHMETIC
OPERATIONS

The two operands of an arithmetic operation
may differ in type, precision, and scale.
The necessary conversions are performed
automatically according to the rules listed
below.

Iype

Numeric-character operands (digits recorded
in character form as in the PICTURE speci-
fication) are converted to coded arithmetic
form. The result of an arithmetic opera-
tion is always in coded arithmetic form.
Note that type conversion is the only con-
version that can take place in an arith-
metic prefix operation.

Precision
If only precisions differ, no conversion
takes place.

If the scales of the two operands differ,
the fixed-point operand is converted to
floating-point scale. The exception to
this rule is in the case of exponentiation
if the first operand is of floating-point
scale and the second operand (the exponent
of the operation) is fixed-point with a
scale factor of zero, that is, a fixed-
point integer constant or a variable with
the precision (p,0). In such a case, no
conversion is necessary, but the result
will be floating-point.

Consider the following example:

DECLARE A FLOAT,
B FIXED DECIMAL
C FLOAT;

(5,0},

The result of A %% B will be in
floating—-point form and will be assigned to
the variable C. The exponentiation is,
however, executed with the FIXED value of
B.

If both operands of an exponentiation
operation are fixed-polnt, conversions may
occur, as follows:

1. Both operands are converted to
floating-point if the exponent has a
precision other than (p,0). For
example:

DECLARE A FIXED DECIMAL,
B FIXED DECIMAL (5,2),
C FLOAT;

The precision of the value of B has a
scale factor of two. Since it is not
an integer, both operands are converted
to floating-point fornm.

2. The first operand is converted to
floating-point unless the exponent is
an unsigned fixed-point integer.

3. The first operand i§ also converted to
floating-point if precisions indicate
that the result of the fixed-point
exponentiation would exceed the maximun
nunber of digits allowed (i.e., 15 dec-
imal digits).

FORMATS OF RESULTS OF ARITHMETIC OPERATIONS

The "result" of an arithmetic operation, as
used in the following text, can refer to a
final result or to an intermediate result
if the operation is only one of several
operations specified in a single operation-
al exrression. An intermediate result may
require further conversion if it is used as
an operand of a subsequent operation or if
it is assigned to a variable with different
attributes.

After the required conversions have
taken place, the arithmetic operation is
performed. If the maximum precision has
been exceeded, the result is truncated,
that is, digits are lost regardless of the
scale of the operands. In some cases
involving fixed-point data, high-order

Expressions 31

digits may be lost when scale factors are
such that decimal-point alignment does not
allow for the declared number of digits.

In floating-point operations low-order
digits may be lost even when the maximum
precision has not been reached. The scale
and precision of the result depend upon the
operands and the operator involved.

For prefix operations, the result has
the same scale and precision as the con-
verted operand (for example. (#5.0 has the
same scale and precision as (-5.0)).

For infix operations, the result depends
on the scale of the operands, as described
in the following sections.

If the converted operands of an infix
operation are of floating-point scale, the
result is of floating-point scale. The
precision of the result is the greater of
the precisions of the two operands. For
example:

DECLARE A FLOAT (5),
B FLOAT (7);

The precision of the value of (A+B) will
be 7. Note that even though the maximum
precision of 15 has not been reached, low-
order digits may be lost due to different
exponents in A, B, and A+B.

Fixed-Point Operands

If the converted operands of an infix
operation are of fixed-point scale, the
result is of fixed-point scale. The freci-
sion of a fixed-point result varies accord-
ing to the type of operation performed.

The symbols used in the formulas for
computing the precision of the fixed-point
results are as follows:

p Trepresents the total number of digits
of the result

g represents the scale factor of the
result

pl1 represents the total number of digits
of the first operand

q1 represents the scale factor of the
first operand

p2 represents the total number of digits
of the second operand

g2 represents the scale factor of the
second operand

32 IBM System/360 Model 20 DPS PL/I

Addition_and_Subtraction. The total number
of digits in the result is equal to one
rlus the number of integer digits of the
operand with the greater number of integer
digits, plus the number of fractional
digits of the operand with the greater num-
ber of fractional digits. The total number
of positions cannot exceed the maximum num-
ber of digits allowed (15 decimal digits).
The scale factor of the result is egual to
the larger scale factor of the two
operands.

Formulas:

p =1+ maximum (p1 - g1, p2 - g2) + maxi-
mum (g1, 92)

maximum (g1, g2)

[I=]
[}

Consider the following example in which,
for explanation purposes, the variables
have been broken into parts:

p1 I2
o N P N
<g1> <g2>
12354,.2385 + 222.11111
A B o D

result would be egual to 1 plus the number
of digits in A (pl1-g1) plus the number of
digits in D (maximum (g1,92)). The scale
factor of the result would be equal to the
number of digits in D. The precision of
the result would be (11,5).

Multijplication. The total number of digits
in the result is equal to one plus the num-
ber of digits in the first operand, plus
the number of digits in the second operand.
The total number of digits cannot exceed
the maximum number of digits allowed for
the implementation (that is, 15). The
scale factor of the result is the sum of
the scale factors of the two operands.

Formulas:
p=1+pl + p2
qg =gl + g2
Consider the following example:

345,432 % 22.45
A B cC D

The total number of digits in the result
would be equal to 1 plus the sum of the
number of digits in parts A, B, C, and D.
The scale factor of the result would be the
sum of the number of digits in B and D.

The precision of the result would be
(11,9) .

Division. The total number of digits in
the quotient is always 15 (maximum
allowed). The scale factor of the quotient
depends on the number of integer digits of
the dividend (2 in the example below), and
the number of fractional digits of the
divisor (D in the example below). The
scale factor is equal to the total number
of digits of the result (always 15) minus
the sum of A and D.

Formulas:
p =15
g =15- ((p1 - g *+ g2)

Consider the following example:

432.432 s 2
A B cC D

The total number of digits in the quo-
tient would be 15 (the maximum allowed).
The scale factor would be 15 minus the sum
of 3 (A, the number of integer digits in
the dividend) and zero (D, the number of
fractional digits in the divisor). The
precision of the quotient would be (15,12).

Note that any change in the number of
integer digits in the dividend or any
change in the number of fractional digits
in the divisor will change the precision of
the quotient, even_if all additiopnal digits
are_zeros. Also note from the above formu-
las that the result of a fixed-point divi-
sion can have a scale factor greater than
zero even though the operands might have a
scale factor of zero, and that the result
of fixed-point division can have a negative
scale factor even though negative scale
factors cannot be explicitly declared in
Model 20 PL/I.

Examples:

oou32.432 / 2
432.432 s 2.0000

The precision of the guotient of the
first example would be (15,10); the scale
factor is egual to 15 - (5+0). The preci-
sion of the guotient of the second example
would be (15,8); the scale factor is egual
to 15-(3+4).

Caution: 1In the use of fixed-point divi-
sion operations, take care that declared
precision of variables and apparent preci-
sion of constants will not give a result
with a scale factor that can force the
result of this or a subseguent operation to
to be left-truncated by exceeding the maxi-

mum number (15) of digits allowed.

Exponentiation. If the second operand
exponent) is a positive decimal integer
constant, the total number of digits in the
result is one less than the number of
digits in the first operand plus 1 multip-

(the

(the exponent). The scale factor of the
result is equal to the scale factor of the
first operand multiplied by the value of
the second operand (the exponent).

Note: In the exponentiation operation
X%%xy, some special cases are defined as
follows:

1. If x 0 and y>0, the result is 0.

2, If x = 0 and y<0, the ERROR comndition
is raised.

3. If x # 0 and y = 0, the result is 1.

4., TIf x < 0 and y is not fixed-point with
precision (p,0), the ERROR condition is

raised.

Formulas:
p = (p1 + 1) % (value-of-exponent) - 1
g = g1 % (value-of-exponent)

Consider the following example:

32 %% 5

The total number of digits in the result
would be 14. We arrive at this number by
multiplying one plus the number of digits
in the first operand (1 + 2) by the value
of the exponent (5) and subtracting one.
The scale factor of the result would be
zero (0 % 5, scale factor of the first
operand multiplied by the value of the
exponent).

Figures 3 through 6 show the results of
arithmetic operations.

COMPARISON OPERATIONS

In PL/I, we specify a comparison operation
by combining operands with one of the fol-
lowing operators:

(less than)

(not les than)

(less than or eqgual to)
(equal to)

(not equal to)

(greater than or equal to)
(greater than)

(not greater than)

FERVAVIS] A=
HoH AN

\2

Expressions 33

There are three types of comparisons:

1. Algebraic comparison, that is, the com-
parison of signed arithmetic values in
coded arithmetic form. If operands
differ in scale and precision, they are
converted according to the rules for
arithmetic operations. Numeric-
character data is converted to coded
arithmetic format before comparison.

2. Character comparison, which is a left-
to-right, character-by-character com-
parison of character data according to
the System/360 collating sequence.

3. Pointer_comparison, for which only the
operators = and 4= are allowed. Both
operands must be valid pointer expres-
sions, since there is no conversion of
program-control data.

The operands of a comparison operation
must be of the same type; that is, both
must be arithmetic or both must be charac-
ter strings. If operands of a character-
string comparison are of different lengths,
the shorter operand is extended on the
right with blanks.

The result of the comparison operation
always is a "truth" value in Model 20 PL/I;
the value is 'true' if the relationship is
true, and 'false' if the relationship is
not true.

The only occurrence of comparison opera-
tions is in the IF statement, as shown in
the following example:

IF A+ C =B
THEN action-if-true
ELSE action-if-false

The evaluation of the expression A + C =
B yields either 'true' or 'false'. Depend-
ing on the result, either the THEN portion
or the ELSE portion of the IF statement is
executed. Note that the comparison opera-
tions in IF statements can involve only
element values; arrays or structures are
not permitted.

Only comparison operations of "equal"
and "not equal" are valid for comparisons
of pointer-variable operands. Labels nmust
not be compared.

First Operand

o ——

1
|
|
|
T i
DECIMAL FIXED (p1,g1) | DECIMAL FLOAT (p1)

L]
L] L] T 1
1S|DECIMAL | DECIMNAL FIXED (p,9q) IDECIMAL FLOAT (f)]

|e| FIXED |p=1+MAX (p1-q1,p2-92) |p=MAX (p1,p2)
lcl(p2,92) I +MAX (g1,92); |]
lol |q=MAX (41,92) [[
In] l | |
14 | | |
I F +———- - t+ 1
|O] DECIMAL | DECIMAL FLOAT (p)]DECIMAL FLOAT (p) |
IPyFLOAT 1p=MAX (p1,p2) |p=MAX (p1,p2) |
le]l (p2) l |]
Ir| | | |
la]] ! |
In| | | |
1d] | | |
L4 1]

(R

Figure 3.

34 1IBM System/360 Model 20 DPS PL/I

Attributes of Results of Addition and Subtraction Operations

r A
| First Operand |
1 J
r Ll 1
| DECIMAL FIXED (pl1,91) |DECIMAL FLOAT(p1) 1
) i 1]
T T T 1
|S|DECIMAL |DECIMAL FIXED(p,q) | DECIMAL FLOAT (p) |
|e] FIXED lp=p1+p2+1 | p=MAX (p1,p2) 1
lcl (p2,92) [q=g1+g2 | |
o] | | |
1n| | | |
141] |]
(N } + : i
|0|DECIMAL |DECIMAL FLOAT (p) |DECIMAL FLOAT (p) |
Ip|FLOAT | p=MAX (p1,p2) I p=MAX (}p1,F2) 1
lel (p2) | | |
1] } | |
lal | | |
In| | | |
1d| | | |
[l 1 L t)
Figure 4. Attributes of Result of Multiplication Operations
r 1
1 First Operand |
] 3
[3 L] 1
|DECIMAL FIXED(p1,91) |DECIMAL FLOAT (p1) |
k] 1)
| I] T 1
| SIDECIMAL |IDECIMAL FIXED(p,q) {DECIMAL FLOAT (p) |
|e| FIXED =15 | p=MAX (p1,p2) 1
icl {p2,92) 19=15- ({p1=-g1) +42) | [
lo}] | |
Ini | | |
1d1 |] |
I F + + 1
|O{DECIMAL |DECIMAL FLOAT(p) |DECIMNAL FLOAT (p) |
1PIFLOAT (p2) 1p=MAX (p1,E2) 1p=MAX (p1,12) 1
lel | | |
It} | | |
lal | | |
In|] l !
14| | | |
1 L] L L. 1
Figure 5. Attributes of Results of Division Operations
r T T 1
|First Operand |Second Operand (Exponent) iTarget Attributes of Result |
1 1 'l 1
r T T 1
|FIXED DECIMAL |{Unsigned integer |FIXED DECIMAL (p,9q) 1
1 {(pl1,q1) |constant with |[provided p 2 15]
| J]value n Ip = (g1+1) % n - 1 |
| | 19 = gl*n |
1 } I]
L T L 1
|FIXED DECIMAL |FIXED DECIMAL | FLOAT DECIMAL (p) |
1 (pl.,g91) | (p2,92) | (unless the case above is |
| or 1 lapplicable) 1
|FLOAT DECIMAL |FLOAT DECIMAL (p2) g = MAX (pl1,p2) [
1 (&1 1 Ip = MAX (p1,p2)]
L L L 3

Figure 6. Attributes of Results of Exponentiation Operations

Expressions 35

CONCATENATION OPERATIONS

A concatenation operation is specified by
combining operands with the concatenation
symbol |}.

The symbol signifies that the operands,
which must be character strings or numeric-
character data, are to be joined in such a
way that the last character of the operand
to the left will immediately precede the
first character of the operand to the
right, with no intervening characters.
Numeric-character data items are converted
to character strings before concatenation
takes place. The result of a concatenation
operation is a character string whose
length is egual to the sum of the lengths
of the two character-string operands.

For example, if A represents the charac-
ter string '010234', B the character string
'101', C the character string
'*XY,2', and D the character string '"AA/BB',

then
AllB yields '010234101"
A)|A}|B yields '010234010234101"
C||D yields 'XY,ZAA/BB!
D{|D yields 'AA/BBXY,Z'
B|]D yields '101ARA/BB?!

PRIORITY OF OPERATORS

In the evaluation of expressions, priority
of the operators is as follows:

*% prefix+ prefix- (highest)
* / |
infix+ infix- *

11

< 1< &= = 4= >= > 4> (lowest)

If two or more operators of the highest
priority appear in the same expression, the
order of priority of those operators is
from right to left; that is, the rightmost
exponentiation or prefix operator has the
highest priority. Each succeeding exponen-
tiation or prefix operator to the left has
the next lower priority.

For all other operators, if two or more
operators of the same priority appear in
the same expression, the order of priority
is from left to right.

Note that in Model 20 PL/I only one con-
parison operation can appear in one expres-
sion. In case there is a comparison opera-
tion, it can appear only in the expression
immediately following the IF in the IF
statement.

36 IBM System/360 Model 20 DPS PL/I

The order of evaluation of the expres-
sion in the IF statement:

IF A *x B+ D ,= C THEN . . .

is according to the priority of the opera-
tors. It is as if various elements of the
expression were enclosed in parentheses as
follows:

(A) = (B)
(A % B) + (D)
(A x B + D) 4= (C)

The order of evaluation (and, conse-
quently, the result) can be changed through
the use of parentheses. The above expres-
sion, for example, might be written as
follows:

IF A x (B + D) 5= C THEN . . .

In such an expression, the expression
enclosed in parentheses is evaluated first
and reduced to a single value, before it is
considered in relation to the surrounding
operators. In case two parenthesized ex-
pressions are surrounding an operator there
is, however, no rule within the language
that specifies which of the parenthesized
expression would be evaluated first.

In other words, the priority of the
operators is defined only within a string
consisting of operands and operators only.
It does not necessarily hold true for an
entire expression. Consider the following
example:

(A - B) % (C + D %% E)

The priority of the operators specifies,
in this case, only that the exponentiation
will occur before the addition. It does
not specify the order of operation in rela-
tion to the evaluation of the other operand
(2 - B).

Any operational expression (except a
prefix expression) must eventually be
reduced to a final single infix operation.
The operands and operator of that operation
determine the attributes of the result of
the entire exjression.

In general, unless parentheses are used
within the expression, the operator of low-
est priority determines the operands of the
final operation. For example:

A+ B %xC>D %x E - F

In this case, the operators indicate
that the final operation will be:

(A + B*xC) > (D xx E - F)

Sub-expressions can be analyzed in the
same way. The two operands of the expres-
sion can be defined as follows:

(A + (B % C)) > ((D *x E) - F)

It is undefined in the language which of
the two outer rarentheses is evaluated
first.

Expressions Containing Function References

In Model 20 PL/I, an operand of an expres-
sion is usually a constant or an element
variable. An operand can, however also be
an expression representing a value which is
the result of a computation.

Consider the following example:
A = B % SQRT(C);

In this example, the expression SQRT (C)
represents a value which is equal to the
square root of C. Such an expression is
called a function reference.

A function reference consists of a name
and, usually, a parenthesized list of one
or more variables, constants, or other ex-
pressions. The name is the name of a pro-
cedure written to perform specific computa-
tions on the data contained in the 1list and
to substitute the computed value for the
function reference.

Assume, in the above example, that C has
the value 16. The function reference SQRT (
C) causes the execution of the procedure
SQRT, which would compute the sjuare root
of 16 and replace the function reference
with the value 4. In effect, the assign-
ment statement would become:

A =B x U

The procedure represented by the name in
the function reference is called a func-
tion. The function SQRT is one of the PL/I
built-in_functions. Built-in functions,
which provide a number of differemnt opera-
tions, are a part of the PL/I language. (A
complete discussion of all built-in func-
tions of Model 20 PL/I appears in Part II,

__________________ You may also
write your own functions for specific pur-
poses (as described under Arguments_and

functions in function references.

Note: Besides returning a value, a func-
tion may change the value of any wvariable
in the expression containing the function

reference. In this case, the result of the
expression is undefined and compatibility
with other System/360 compilers is not
guaranteed.

The use of function references is not
limited to operands of operational expres-
sions. A function reference is, in itself,
an exjression and can be used wherever an
expression is allowed. It must, however,
not be used in place of a variable repre-
senting a receiving field, such as to the
left of the assignment statement.

There is, however, one built-in function
that can be used as a pseudo-variable,
i.e., in a receiving field: the SUBSTR
function. The SUBSTR pseudo-variable is
the SUBSTR built-in function name used in a
receiving field.

Consider the following example:

DECLARE A CHARACTER (10),
B CHARACTER (30);
SUBSTR (A,6,5) = SUBSTR (B,20,5);

In this assignment statement, the built-
in function name SUBSTR is used both in a
normal function reference and as a
pseudo-variable.

The SUBSTR built-in function (on the
right side of the assignment symbol)
extracts a substring of specified length
from the named string. The pseudo-variable
SUBSTR (to the left of the assignment sym-
bol) indicates the location, within a named
string, that is the receiving field, i.e.,
it replaces a substring of specified length
in the named string.

In the above example, a substring five
characters in length, beginning with the
20th character of the string B, is to bhe
assigned to the last five characters of the
string A. That is, the last five charac-
ters of A are to be replaced by the 20th
through the 24th characters of B. The
first five characters of A remain
unchanged, as do all characters of the
string B.

Note: None of the functions you may write
for specific purposes can be used as a
pseudo-variable.

The built-in function SUBSTR is dis-
cussed in Part II, under Built-In
Functions.

Expressions 37

Statement Classification

This section describes the statements
available in Model 20 PL/I, their functions
and purpose. Examples of their use are
also shown.

A more detailed description of each sta-
tement may be found in Part II, under Sta-
tement, and in the section Data_Transmis-

A==t e e e e T -

sion which shows examples.

The statements used in Model 20 PL/I can
be grouped into the following six classes:

e descriptive statements,
e input/output statements,

e data-movement and computational
statements,

e program—flow control statements,
e exception-control statements, and
e program-structure statements.

The names of the classes are merely
descriptive, they have no fundamental sig-
nificance in the language. Some statements
are included in more than one class, since
they can have more than one function.

Descriptive Statements

When a PL/I program is executed, it may
manipulate many different types of data.
Each data item, except a constant, is
referred to in the program by a name.

Model 20 PL/I reguires that the names and
characteristics or attributes of data items
referred to must be known at the time the
program is compiled, that is, translated
into machine language.

The DECLARE Statement

With the DECLARE statement you specify the
attributes of the data assigned to each
variable. But although it is the charac-
teristics of the data you describe with the
attributes, it is the data pame with which
the declared attributes are associated.
Consequently, when a value is assigned to a
name (or variable) whose attributes
describe characteristics that are different
from the attributes of the data, the value
will be converted where possible so that it
will have the characteristics of the vari-
able to which it is assigned. For example,
when fixed-point data is assigned to a

38 1IBM System/360 Kodel 20 DPS PL/I

variable that has the FLOAT attribute the
data item is converted to floating-point
representation. If conversion is not pos-
sible, a diagnostic message is given by the
compiler.

A variable for which a complete set of
attributes has not been specified, is given
default attributes by the compiler.

You always need DECLARE statements for
fixed-point decimal variables, character-
string variables, filenames, entry names
pointer variables, label variables, arrays
and structures, data with the EXTERNAL
STATIC, BASED, DEFINED or INITIAL attri-
bute, all data with the PICTURE attribute
and the built-in function DATE. A RETURNS
attribute declaration must be made for the
name of any function that returns a value
with attributes different from the default
attribute FLOAT DECIMAL (6) which is applic-
able if the name of the function starts
with a letter other than I through N. You
find a complete discussion of the RETURNS
attribute in the section Argquments_and
Parameters.

DECLARE statements may be an important
part of the documentation of a program;
consequently, make liberal use of declara-
tions, even when default attributes apply
or when a contextual declaration is possi-
ble. Because there are no restrictions on
the number of DECLARE statements, separate
DECLARE statements can be used for dif-
ferent groups of names. This can make
modification easier and the interpretation
of diagnostics clearer. Note, however,
that a structure must be completely
declared in one DECLARE statement.

The FORMAT_Statement

The FORMAT statement may be thought of as
describing the layout of data on an extern-
al medium, for example on a page or on an
input card. You will find a complete dis-
cussion of the FORMAT statement in Part II,
and in the section Data

Input/Output Statements

Input/output statements cause a transfer of
data between main storage and an external
storage medium, such as disk, tape, or
card.

In the following list, the statements
that cause a transfer of data are grouped
into two classes, Record I/O and Stream
I/0:

Record I/0 Transfer Statements:

READ
WRITE
REWRITE
LOCATE

Stream I/0 Transfer Statements:

GET
PUT

There are two important differences
between RECORD transmission and STREAM
transmission. In STREAM transmission, the
file on the external medium is considered a
continuous stream of data items, in charac-
ter form. On input, the data items are
assigned from the stream to variables; on
output they are transferred from variables
into the stream. In RECORD transmission,
the file is considered to be a collection
of physically separate records that are
transmitted as an entity to or fron
variables, STREAM transmission implies
conversion. All of the items in the streanm
are in character form. On input, they are
converted automatically to conform to the
attributes of the variables to which they
are assigned; on output, data items are
converted, if necessary, to characters. 1In
RECORD transmission, there is no conver-
sion; data is transmitted, exactly as it is
recorded either internally or on the
external medium.

Record transmission is mainly used for
processing large files that are written in
an internal representation, such as packed-
decimal. Stream transmission may be used
for processing keypunched data and for pro-
ducing readable output, such as lists or
tables, where editing is required. Record
transmission is faster because no conver-
sion is involved.

RECORD _I/0 Transfer Statements

The READ statement causes a transfer of
data (records) from the external medium to
main storage. The WRITE statement causes a
transfer of records from main storage to
the external medium. The LOCATE statement
causes the creation of new records by mak-
ing space available in a buffer in which
the record may be built. The REWRITE sta-
tement replaces a record in an UPDATE file
that has been read from disk.

STREAM I/0 Transfer Statements

STREAM transmission is always sequential
and can be performed only by means of GET

and PUT statements. The GET statement
causes a transfer of data from the external
medium to main storage, and the PUT state-
ment from main storage to the external
medium. In STREAM transmission, data is
considered to be a stream of individual
data items. Record boundaries are general-
ly ignored, but synchronization with record
boundaries is possible.

Note: GET and PUT statements can also be
used for internal data movement in connec~
tion with the STRING option. The GET and
PUT statements with the STRING option are
discussed under Data Movement and Computa-
tional Statements in this section.

Input/Output Control Statements

Other I/0 statements that affect the
transfer of data are input/output control
statements. They are:

OPEN
CLOSE

The OPEN statement associates a filenanme
(as declared in your program) with a file
(the actual data recorded on an external
medium) and prepares the file for
processing.

An OPEN statement need not always be
written for STREAM transmission. Execution
of a GET or PUT statement with the name of
an unopened file specified will result in
the automatic (implicit) opening of the
file before data transmission takes place.
However, the OPEN statement can be used to
force opening of a file at a specific time
during program execution, e.g., after issu-
ing a message to mount a specific tape.

For RECORD transmission, the OPEN statement
nust always be present.

The CLOSE statement dissociates a file
from the file declaration used in the pro-
gram and terminates processing of the file.
All files are automatically closed at the
termination of a program, so that a CLOSE
statement is not always required. It may
be used, for example, when the same device
on which a file resides is to be used for
another file in the course of the progranm.

The DISPLAY Statement

The DISPLAY statement is used to display a
one-byte message on the CPU console, usual-
ly to the operator. It is used, with the
REPLY option, to allow the operator to com-
municate with the program by returning a
one-byte message., Execution of the program
is suspended until the operator acknow-
ledges the message. An example of the use
of the DISPLAY statement is shown in Part
III, under Linking_ PL/I_ Programs_Kith
Assembler Procedures.

Statement Classification 39

Data Movement and Computational Statements

Internal data movement involves the assign-
ment of the value of an expression to a
specified variable. The expression may be
a constant or a variable, or it may be an
operational expression.

The most commonly used statement for
internal data movement as well as for spe-
cifying computations is the assignment sta-
tement. The GET and PUT statements with
the STRING option can also be used for
internal data movement. The PUT statement
can, in addition, specify computations to
be performed.

The_ Assignment_Statement

The assignment statement, which has no key-
word, is identified by the assignment sym-

bol (=). It generally has one of two
forms:

A = B;

A =B + C;

The first form is used purely for
internal data movement. The value of the
variable (or constant) to the right of the
assignment symbol is assigned to the vari-
able on the left. The second form includes
an operational expression (B + C), whose
value is to be assigned to the variable to
the left of the assignment symbol (A). The
second statement specifies both computa-
tions and data movement.

Since the attributes of the variable on
the left may differ from the attributes of
the result of the expression (or of the
variable or constant), the assignment sta-
tement can also be used for conversion and
editing, because the result of the computa-
tion to the right of the assignment symbol
is converted to conform to the attributes
of the variable to the left of the assign-
ment symbol.

In the assignment statement 2 = B + C,
the variable on the left must be an element
variable or an array; it must not be a
structure. The exgression on the right
must only contain single constants and/or
element variables as operands. Thus, this
form of the assignment statement can be
used only to assign single items to element
variables or arrays. In the assignment
statement, A = B, the variables to the left
and right may either be both array names or
both structure names or an array name on
the left side and an element variable or
constant on the right side.

If they are array names, both arrays
must have identical dimensions and bounds.
If they are structure names, both struc-
tures must have identical structuring and

40 IBM System/360 Model 20 DPS PL/I

the attributes (including arithmetic attri-
butes) of all corresponding variables in
the two structures must be identical.

DECLARE

A1(10,10) FLOAT, A2(10,10) FIXED,
A3(100) FIXED,

A4 (5,5) FLOAT, V1 FIXED,

1 s1, 2((E1,E2) CHAR(10), F FIXED(7,2)),
1 s2, 2(E CHAR(20), F FIXED(7,2)),

153, 2((E1,E2) CHAR(10), F FIXED(7,2));

Valid assignment statements are:

A1 = A1(5,1);
Al = ;
A1 = V1,
S1 = s$3;

Invalid assignment statements are:

A1 = A3; Dimensions not identical.

A1 = AL, Bounds not identical.

A1 = A1 + A2; Right side is an opera-
tional expression, not a
name.

S1 = S2; Structuring not identical.

The GET_STRING and PUT STRING _Statements

If the STRING option appears in a GET or
PUT statement in place of a FILE option,
execution of the statement will result only
in internal data movement; neither input
nor output is involved.

Assume that NAME is a string of 30
characters and that FIRST, MIDDLE, and LAST
are character-string variables., Consider
the following example:

GET STRING (NAME) EDIT
(FIRST, MIDDLE, LAST)
(A(12) ,A(1) ,A(17));

This statement specifies that the first
12 characters of NAME are to be assigned to
the variable FIRST, the next character to
the variable MIDDLE, and the remaining 17
characters to the variable LAST.

The PUT statement with the STRING option
specifies the reverse operation, that is,
the values of the specified variables are
to be concatenated into a character string
and assigned to the string named in the
STRING option. For example:

PUT STRING (NAME) EDIT
(FIRST,MIDDLE, LAST)
(2(12),2(D,A2(17));

This statement specifies that the first
12 characters of FIRST, the first character
of MIDDLE, and the first seven characters

of LAST are to be concatenated in that
order, and assigned to the string variable
NAME. If FIRST or LAST are shorter than 12
or 17 characters, respectively, then blanks
are added at the end of FIRST or LAST until
the specified length of 12 or 17, respec-
tively, has béen reached.

Computations to be performed can be spe-
cified in a PUT statement by including
operational expressions in the data list.
Assume, for the following example, that the
variables A, B, and C represent arithmetic
data and BUFFER represents a character
string:

PUT STRING (BUFFER) EDIT
(A x 3, B+ C)
(F(15) ,F(15)) ;

This statement specifies that the char-
acter string assigned to BUFFER is to con-
sist of the character representations of
the value of A multiplied by 3 and the
value of the sum of B and C. Note that
while arithmetic to character-string and
character-string to arithmetic conversions
are not allowed in Model 20 PL/I, they can
be effectively achieved by the GET STRING
and PUT STRING operations, respectively;
however, note also that this can be ineffi-
cient because of the amount of executilon
time and main storage that is required.

Operational expressions in the data list
of a PUT statement are not limited to PUT
statements with the STRING option. They
can also appear in PUT statements that spe-
cify output of a file.

Program-Flow Control Statements ‘

Statements in a PL/I program, in general,
are executed seguentially unless the flow
of control is modified by an interrupt or
the execution of one of the following
statements:

GO TO

IF

DO

CALL

RETURN

END
The GO _TO_Statement
The GO TO statement is most frequently used
as an unconditional branch. If you specify
destination of the GO TO statement by a
label variable, you .may then use it as a
switch by assigning label constants to the
label variable.

If you use subscripted label variables,
that is, labels grouped into an array, you
can control the switch by varying the sub-

script. Usually, however, simple program-
flow control statements are the most
efficient.

Note: The keyword GO TO may be written
either as two separate words or as a single
word, GOTO.

The IF Statement

The IF statement provides the most common
conditional branch and is used with a
simple comparison expression following the
word IF. For example:

IF A = B
THEN action-if-true
ELSE action~-if-false

If the comparison is true, the THEN
clause (the "action-if-true") is executed.
After execution of the THEN clause, control
branches around the ELSE clause (the
"action-if~false"), and execution continues
with the next statement. Note that the
THEN clause can contain a GO TO statement
or some other program-flow control state-
ment that would result in a different
transfer of control.

If the comparison is not true, control
branches around the THEN clause, and the
ELSE clause is executed. Control then con-
tinues normally.

The IF statement might be as follows:
IF A = B

THEN C
ELSE C

D
E

If A is equal to B, the value of D is
assigned to C, and control branches around
the ELSE clause. If A is not equal to B,
control branches around the THEN clause,
and the value of E is assigned to C.

Either the THEN clause or the ELSE
clause can contain some other program-flow
control statement that causes a branch,
either conditional or unconditional. If
the THEN clause contains only a GO TO sta-
tement, for example, there is normally no
need to specify an ELSE clause. Consider
the following example:

IF A = B
THEN GO TO LABEL_1;
next statement;

If A is equal to B, the GO TO statement
of the THEN clause causes an unconditional
branch to LABEL_1. If A is not egqgual to B,
control branches around the THEN clause to
the next statement, whether or not it is an
ELSE clause associated with the IF
statement.

Statement Classification 41

Note: TIf the THEN clause does not cause a
transfer of control and if it is not fol-
lowed by an ELSE clause, the next statement
will be executed whether or not the THEN
clause is executed.

The expression following the keyword IF
cannot contain more than one comparison
operation. However, nested IF statements

can be used to test for more than one con-

dition. Consider the following example:
IF A =8B
THEN IF A = C
THEN D = E;
ELSE F = G;

ELSE F = A;
GO TO LABEL_1;

In the example, E is assigned to D only
if 2 is equal to both B and C. If A is
equal to B, but not to C, then G is
assigned to F. If A is not equal to B,
then A is assigned to F. If either the
innermost THEN clause (D = E) or the inner-
most ELSE clause (F = G) is executed, con-
trol skips to the GO TO statement following
the final ELSE clause.

In a series of nested IF statements,
each ELSE clause is paired with an IF,
starting at the innermost level. IF-
condition tests in nested IF statements are
made in the order from autermost to inner-
most IF. As soon as a test is reached that
is not true, the checking stops, and the
matching ELSE clause is executed. Control
is then transferred to the statement fol-
lowing the entire series of IF statements,
unless it is directed otherwise by a GOTO
statement in the ELSE clause.

In the nesting of IF statements, an
associated ELSE clause may or may not
appear for the outermost IF. But every
nested IF must have an associated ELSE
clause when any IF statement at a higher
level requires an associated ELSE clause,

Assume that a programmer writing the
above nested IF statements does not want to
provide a second alternative for the inner-
most IF statement. If A is equal to B but
not equal to C, he wants to go to the sta-
tement labelled LABEL_1. To achieve this,
he would have to insert a null statement,
as follows:

IF A = B
THEN IF A = C
THEN D = E;
ELSE;

ELSE F = A;
GOTO LABEL_1;

An ELSE with a null statement as its
clause is called a null ELSE.

42 IBM System/360 Model 20 DPS PL/I

In this example, if A is equal to B but
is not egqual to C, the second alternative
of the innermost IF is chosen. Since it is
a null ELSE, control is transferred out of
the entire nest to the next statement,
which is GOTO LABEL_1.

The examples have illustrated the nest-
ing of IF statements only to the second
level. Deeper nesting is, however,
allowed. In Model 20 PL/I, the number of
IF and DO statements in one nest must not
exceed 20. Any IF statement, at any level,
may have a DO group as either or both of
its alternative actions.

The DO_Statement

The most common use of the DO statement is
to specify that a group of statements is to
be executed and re-executed one or more
times while a control variable is incre-
mented each time control passes through the
loop. Such a group might have the form:

DO COUNTER = 1 TO 10;

END;

A DO group is delimited by the DO and
END statements. In this example, the DO
statement specifies that the statements
between the DO and END statements are to be
executed, as a group, ten times before con-
trol passes to the next statement. The
variable COUNTER is used to control the
nunber of times the group is executed.

When the DO group is executed for the first
time, COUNTER is assigned the value 1.

Then the group of statements is executed.
When the END statement is reached, COUNTER
is incremented by one, and control is
transferred back to the beginning of the
group where COUNTER is tested to see wheth-
er it does not exceed ten. This looping
continues until the value of COUNTER
exceeds 10, then control passes to the sta-
tement following the loop. The above
example is exactly equivalent to the
following:

COUNTER = 1;

LOOP: IF COUNTER > 10
THEN GO TO NEXT;
COUNTER = COUNTER + 1;
GO TO LOOP;.
NEXT: next statement

Note that since the test is made after
COUNTER is incremented, its value at the
end of the loop will be one incrementation
larger than the number of times the loop is

executed. In this case, the value of

COUNTER will be 11 when execution of the
loop is terminated.

The variable COUNTER, either as used in
the DO statement or as used above, would
have to be declared to represent values as
great as 11; e.g., DECIMAL FIXED (2).

In the preceding example, the value of
COUNTER is increased by 1 each time the DO
statement is executed. An incrementation
of one is assumed unless some other speci-
fication is made. Consider the following
exanple:

DO COUNTER = 2 TO 10 BY 2;

This DO statement causes the initial
value of COUNTER to be set to two. Each
time the DO statement is executed thereaft-
er, the value is increased by two., Thus,
the statements of the DO group would be
executed five times, and the final value of
COUNTER would be 12,

The control variable of a DO statement
can be used as a subscript in statements
within the DO-group, so that each repeti-
tion deals with successive elements of a
table or array. For example:

DO COUNTER = 1 TO 10;
ARRAY (COUNTER) = COUNTER;
END;

In this example, each element of ARRAY
is set to 1, 2, 3,+..10, respectively.

Note: The control variable of a DO groug,
in our example COUNTER, must not be changed
during execution of the DO group by its
appearance on the left side of an assign-
ment statement or in a data list of a GET
statement or indirectly through a procedure
that has been called in the DO group.

DO groups, like IF statements, may be
‘nested. Consider the following example:

DO I =1TO 10;
statement 1
statement 2
statement 3
DO J = 1 TO 10;
statement 1a
statement 2a
statement 3a
END;
statement 4
statement 5
statement 6
END;

The statements of the outer DO group -
the outer DO-END and statements 1 through 6
- would be executed ten times. The state-
ments of the inner DO group -~ the inner
DO-END and statements 1a to 3a - would be

executed 100 times, ten times for each
execution of the outer DO group. When the
first DO statement is executed the first
time, the counter variable I is assigned
the value 1. Then statements 1 through 3
are executed. When control reaches the
second DO statement, the variable J is
assigned the value 1, and the inner loop is
executed ten times. Control then passes on
to statements 4, 5, and 6. When the final
END statement is reached, control returns
to the first DO statement. The counter I
is incremented to 2, and execution proceeds
through statements 1 through 3. When the
second DO statement is reached for the
second time, the counter J is reset to 1,
and the inner DO group again is executed
ten times before control passes to state-
ment 4 for its second execution. The pro-
cess is repeated until the outer DO group
has been executed ten times. The inner DO
group goes through its entire looping pro-
cess immediately following each execution
of statement 3.

The example shows nesting only to the
second level. In Model 20 PL/I, the maxi-
mumn number of DO statements allowed in one
nest is 12.

The_Non-Iterative DO _Statement. The DO
statement need not specify repeated execu-
tion of a DO groug. You can use a simple
DO statement in conjunction with a DO
group, as follows:

DO;

END;

The use of the simple DO statement in
this manner merely indicates that the DO
group is to be treated logically as a
single statement. It can be used to speci-
fy a number of statements to be executed in
the THEN or ELSE clause of an IF statement.
For example:

IF A = B
THEN DO;

END;
ELSE DO;

END;

The CALL, RETURN,_ and_END Statements

A procedure (except the main procedure of a
program) or a function is invoked (or acti-
vated) by a CALL statement that names the
entry point of the procedure. Control is

Statement Classification 43

returned to the invoking (or activating)
procedure when a RETURN statement is
executed in the called procedure or when
the execution of the END statement ter-
minates the called procedure.

The RETURN statement with a parenthe-
sized expression is used to return a value
to a function reference. This form can be
used only to return from a procedure that
has been invoked by a function reference.
The RETURN statement without a parenthe-
sized expression cannot be used in this
case.

A program normally is terminated by the
execution of the END or RETURN statement of
the main procedure, either of which returns
control to the Monitor progranm.

Consider the following example:

FIRST: PROCEDURE OPTIONS (MAIN) ;
CALL SECOND;
END;
SECOND: PROCEDURE;
IF A ;=B
THEN RETURN;
C = A %x 3 + PRODCT(X,Y,Z);
END;
PRODCT: PROCEDURE (A,B,C);

-

IF A>B + C
THEN RETURN (0);
ELSE RETURN (A-Bx%C) ;
END;

In the above example, FIRST is the name
of the main procedure in the program which
consists of the three procedures FIRST,
SECOND, and PRODCT. During program execu-
tion, the procedure SECOND is invoked by
the CALL statement CALL SECOND in the main
procedure FIRST. When SECOND is executed,
the IF statement is encountered. Derending
on the result of the comparison operation,
control is either returned to the statement
immediately following the CALL statement in
the invoking procedure FIRST, or the state-
ment containing the function reference
PRODCT (X,Y,2) is executed invoking PRODCT.
When PRODCT is executed, another IF state-

44 IBM System/360 Model 20 DPS PL/I

ment is encountered and a test is made.
Depending upon the result of the comparison
operation, one of the two RETURN statements
is executed returning control together with
the evaluated result of an expression to
SECOND. At the termination of SECOND, con-
trol is passed back to the main procedure.

Exception-Control Statements

The statements discussed in the preceding
section alter the flow of control whenever
they are executed. Another way in which
the sequence of execution can be altered is
by the occurrence of a program interrupt
caused by an exceptional condition.

In general, an exceptional condition is
the occurrence of an unexpected action,
such as an overflow, or of an expected
action, such as an end of file, that occurs
at an unpredictable time. A detailed dis-
cussion of the handling of these conditions
appears in this part of the manual, under
Exceptional cCondition_Handling.

The ON_Statement

The ON statement is used to specify the
action to be taken when a program interrupt
occurs due to a specific condition. ON
statements can be used with a number of
different conditions. For each of these
conditions, a standard system action is
specified as part of the Model 20 PL/I, and
if no ON statement for a condition has been
executed and is in force at the time an
interrupt occurs, the standard systen
action will be taken. For most conditions,
the standard system action is to print a
message and terminate execution.

The ON statement is a compound statement
that contains a GOTO or null statement.
For example:

ON UNDERFLOW GO TO ERROR;

In the above statement, GO TO ERROR is
the contained statement, or the QON-unit.
ERROR is the label of a statement or of the
first of several statements that specify
what action is to be taken, whether to try
to recover from the error or to note the
error and continue with other computations.
If the standard system action is to be
taken. if an interrupt occurs, the keyword
SYSTEM is used in place of the ON-unit, as
follows:

ON UNDERFLOW SYSTEMN;

The ON-unit can also be the null statement.
The example

ON UNDERFLOW;

specifies that when an interrupt occurs as
the result of an underflow condition, the
interrupt is to be ignored and execution is
to continue from the point at which the
interrupt occurred. If an ON statement for
UNDERFLOW was not in force at the time of
an interrupt, the standard system action
would be taken.

Note: If the condition of the ON statement
is CONVERSION, ENDFILE, or KEY, the action
must not be the null statement.

The effect of the ON statement, either
standard system action or any other action
specified by the programmer, can be changed
within a procedure by the execution of
another ON statement naming the same condi-
tion with either another ON-unit or with
the word SYSTEM, which re-establishes stan-
dard system action. The action in effect
at the time another procedure is activated
is passed to the activated procedure and
remains in effect in that procedure and in
other procedures activated by it, unless
another ON statement for the same condition
is executed. When control returns to an
activating procedure, actions are re-
established as they existed in that
procedure.

FIRST: PROCEDURE OPTIONS {(MAIN);
ON1: 0; FIXEDOVERFLOW GOTO L1;
C;LL SECOND;
E;D;
SECOND: PROCEDURE;
ON2: Oé FIXEDOVERFLOW GO TO L2;
ON3: O; FIXEDOVERFLOW SYSTEN;

.

END;

Until statement ON1 is executed the
standard system action is taken in the case
of a FIXEDOVERFLOW condition. After execu-
tion of the statement ON1, control goes to
a statement with the Label L1 when a FIXE-
DOVERFLOW condition occurs. After calling
the procedure SECOND, the program still
branches to the same statement L1 when the

FIXEDOVERFLOW condition is raised, even
though the Label L1 may not be known in the
procedure SECOND, until the statement ON2
is executed. Then control branches to sta-
tement L2 declared in SECOND instead of L1
declared in FIRST in the case of FIXEDOVER-
FLOW. After executing the statement ON3,
the standard system action is taken in the
case of FIXEDOVERFLOW. After returning
from procedure SECOND, the action of state-
ment ON1 is reestablished, i.e., branching
to L1.

Note: 1In this example it is assumed that
the statement of each of the two procedures
are executed seguentially. If this is not
the case due to a GO TO statement or DO-
group with iteration, the same ON-statement
may be executed more than once during the
time of activity of a procedure.

Program-Structure Statements

Program-structure statements are those
statements used to divide a progranm into
procedures and DO-groups. These statements
are the PROCEDURE statement, the END state-
ment, and the DO statement.

The PROCEDURE_Statement

A program may consist of a single procedure
or of several separate procedures. Each
procedure in a program is headed by a PRO-
CEDURE statement and ended by an END state-
ment, as follows:

FIRST: PROCEDURE;

END;

Each procedure must have a name, that
is, each PROCEDURE statement must be
labelled. In the example above, FIRST is
the label of the PROCEDURE statement. The
procedure name specifies the entry point
through which control can be passed to the
procedure.

Control does not pass automatically from
one procedure to another. Each procedure
to be executed, except the first, must be
invoked, or called, from some other proce-
dure. This may be done with either the
CALL statement or by the appearance of a
rrocedure name in an expression. If it
appears in an expression, the procedure is
called a function. A function reference
causes a single value to be computed and
returned to the function reference for use
in the evaluation of the expression.

Communication between two procedures is
achieved by

Statement Classification 45

Le

passing arguments (that is, expres-
sions) from an invoking procedure to

the invoked procedure,

returning values from the invoked pro-
cedure, and

referring to names that are known
within both procedures (that is, names
declared as EXTERNAL in both
procedures).

IBM System/360 Model 20 DPS PL/I

The DQO_sStatement

Another kind of program structure is pro-
vided by the DO-group, which is delimited
by a DO statement and the associated END

statement. See the DO statement as dis-

This section discusses how control passes
within a program from one procedure to the
next, how procedures are activated and ter-
minated, and how storage may be allocated
for data within procedures.

The Procedure

As we have already stated, a procedure is
headed by a PROCEDURE statement and ended
by an END statement, as follows:

label: PROCEDURE;

END;

Each procedure must have a name, that is
a label. The label denotes the entry point
through which control can be passed to the
procedure.

The division of a program into several
procedures is a feature of PL/I that pro-
vides a special convenience to programmers.
The procedures can be written separately,
compiled separately or together, and
executed as a single program. A long pro-
gram can be divided into logical blocks (or
procedures) ; special procedures can be
written for special purposes. The division
of a program into procedures also provides
great economy in the use of main storage
space.

ACTIVATION OF A PROCEDURE

Control does not pass automatically from
one procedure to the next. Each procedure,
except the first, must be invoked, or
called, from some other procedure, where
the entry name of the procedure to be
invoked must appear

e after the keyword CALL in the CALL sta-

e as a function reference (see the section
Arquments_and_Parameters for details).

When a CALL statement or a function
reference is executed, the procedure with
the specified entry name is activated or
invoked. Control is transferred to the
specified entry point. The point at which
the procedure reference occurs, is called
the point_of invocation. The procedure in
which the reference is made is called the

invoking procedure. The invoking procedure

Flow of Control and Storage Allocation

remains active even though control is
transferred from it to the procedure it
invokes. Whenever a procedure is invoked,
execution begins with the first executable
statement in the invoked procedure.

The first procedure in a program, called
the injitial or main procedure, can only be
activated by the Monitor program of the
DPS. The main procedure must always have
the OPTIONS (MAIN) attribute specified in
its PROCEDURE statement, as follows:

FIRST: PROCEDURE OPTIONS (MAIN);

CALL A;
CALL B;

END;

In this example, FIRST is the initial
procedure that invokes other procedures in
the progran.

Following is a summary of rules that
apply to the activation of procedures.

e A program becomes active when the ini-

tial procedure is activated by the Mon-
itor program.

e Except for the initial procedure, all
procedures contained in a program are
activated by a reference to them, either
in a CALL statement or in a function
reference.

e A procedure cannot be invoked while it
is active.

e The initial procedure remains active for
the duration of the progranm.

e 1All activated procedures remain active
until they are terminated (see below).

TERMINATION_OF_A_PROCEDURE

In general, a procedure is terminated when
one of the following conditions occurs:

1. Control reaches a RETURN statement
within a procedure. The execution of a
RETURN statement causes control to be
returned to the point of invocation in
the invoking procedure. If the point
of invocation is a CALL statement,

Flow of Control and Storage Allocation 47

execution in the invoking procedure is
resumed at the statement immediately
following the CALL statement. If the
point of invocation is a function
reference, execution of the statement
containing the reference will be
resumed.

2. Control reaches the END statement of
the procedure. Effectively, this is
equivalent to the execution of a RETURN
sStatement.

3. A GO TO statement causes the termina-
tion of one or more procedures by
branching back to one of the series of
invoking procedures. In this case, the
destination of the GO TO must be speci-
fied by a label variable. If one of
the terminated procedures has been
invoked as a function reference in an
expression, the evaluation of the ex-
pression is discontinued.

PROGRAM TERMINATICN

A program is terminated when one of the
following conditions occurs:

1. Control reaches a RETURN statement or
the final END statement in the main
procedure. This is the normal termina-
tion of a progranm.

2. An error condition arises from which
the system cannot recover., In this
case, the standard system action
results in a return of control to the
Monitor progranm.

Storage Allocation

Any name (or variable) that represents a
data item, actually represents the location
in main storage where that data item is
recorded. The compiler analyzes the attri-
butes of a variable to determine the length
of the storage area that is needed and when
it will have to be available.

When a location in main storage has been
associated with a variable, the storage is
said to be allocated to the variable.

—==mEnsas

is, before execution of a progranm.

DYNAMIC_ALLOCATION

The fact that certain variables are used in
one procedure of a program and not in
others, makes it possible to allocate
storage dynamically, that is, to allocate

48 1IBM System/360 Model 20 DPS PL/I

‘with the AUTOMATIC attribute.

the same storage space, at different times,
to different variables.

We have, in Model 20 PL/I, two types of
dynamic storage, automatic and based.

Automatic_Storage

If during execution of a single procedure,
but nowhere else in the program, a 100-
character field is required for the vari-
able TABLE, the space need not actually be
allocated until execution of that procedure
begins. If the value of TABLE is not
needed when the procedure is invoked again,
there is no need to keep the space reserved
after execution of the procedure is com-
pleted. The storage area can be used for
other purposes.

such dynamic use of main storage is
called automatic allocation. Variables of
the automatic storage class are declared
They are
allocated storage space when the procedure
is invoked and this storage space is freed
when the procedure is completed. Once a
storage area is freed, the value of the
corresponding variable is lost.

A1l variables that have not been expli-
citly declared with a storage class attri-
bute are assumed to have the AUTOMATIC
attribute, with one exception: any vari-
able that has the EXTERNAL attribute is
assumed to have the STATIC attribute.

Based Storaye

A variable of the based storage class is
declared with the BASED attribute; you
associate a based variable with storage by
means of a READ or LOCATE statement with
the SET option or by means of the ADDR
built-in function. This causes the attri-
butes of the bpased variable to be applied
to the main storage area "pointed to" by a
pointer variable associated with the based
variable.

The pointer variable can be manipulated
so that the attributes of the based vari-
able apply to different storage areas.

That is, the value of the pointer variable
(which represents an address) can be
changed so that the storage area pointed to
by the o0ld pointer value is no longer asso-
ciated with the based variable. The attri-
butes of the based variable now apply to
the storage area pointed to by the new
value of the pointer variable,

You will find a complete discussion of
this topic in the section Based_Variables
and Pointer_Variables.

STATIC_ ALLOCATION

Whenever the value of a variable must be
saved between different invocations of the
same procedures, storage for that variable
has to be allocated statically, that is,
storage is allocated before execution of
the program and remains allocated through-
out the entire duration of the program.
For a detailed description of the EXTERNAL
attribute, refer to the following section
Recognition_ of_ Names).

Static _Storage

All variables of the static storage class
have the STATIC attribute. Variables with
the EXTERNAL attribute must always be of
the static storage class. For such
variables, STATIC is the default storage-
class attribute and need not be explicitly
declared.

Consider the following example:

CNTRL: PROCEDURE OPTIONS (MAIN),;

DECLARE X FIXED (5,0) INIT (1)
STATIC,
Y FIXED (5,0) INIT (1)

STATIC EXTERNAL,
7z FIXED (5,0) INIT (1)
STATIC;

END;
PROCEDURE;
DECLARE X FIXED (5,0) INIT (1)
STATIC EXTERNAL,
Y FIXED (5,0) INIT(1) STATIC
EXTERNAL;

OUTP:

X = X+1;
END;

Before execution of the program begins,
all static variables are allocated main
storage space. Thus, in the above example,
X, ¥, and Z are allocated storage and
initialized to 1 when the program is loaded
into main storage. Note that X in CNTRL
and X in OUTP are different variables,
because they have not been declared
EXTERNAL in both, while Y in CNTRL and Y in
OUTP refer to the same variable. Before
execution of OUTP is terminated, X is
increased by 1. If OUTP is invoked a
second time, X has the value 2. Note that
even though OUTP could be activated and
terminated several times, X, being STATIC,
retains its value between each termination
and re-activation of OUTP. The storage

space associated with X remains allocated
to X throughout the duration of the
program.

INITIAL_DATA

Variables, whether main storage space is
allocated to them dynamically or statical-
ly, may be given initial values at the time
of storage allocation.

once, that is, before execution of a pro-
gram begins. Automatic variables are re-
initialized at each activation of the
declaring procedure.

Note: The INITIAL attribute may be speci-
fied only for element variables, elementary
names in structures, and arrays. If speci-
fied for arrays, however, these must not
belong to the AUTOMATIC storage class. It
cannot be specified for STATIC label
variables.

Prologues and Epilogues

Each time a procedure is activated, certain
activities must be performed before control
reaches the first executable statement in
the procedure. These activities are called

______ Similarly, when a procedure is
terminated, certain activities must be per-
formed before control can be transferred
out of the procedure. These activities are
referred to as an epilogue.

Prologues and epilogues are set up by
the compiler and not by the programmer.
They are discussed here because knowledge
of them may assist you in improving the
performance of your programs.

PROLOGUES

A prologue is a routine set up by the com-
piler and logically attached to the begin-
ning of a procedure. It is executed as the
first step after activation of the proce-
dure. The main activities ferformed by a
prologue are:

e Allocation of main storage for automatic
variables.

e Establishment of the inherited ON-units.

¢ Allocation of storage for dummy argu-
ments (which are discussed in the sec-
tion Arquments_and_ Parameters) that may
be passed at the time another procedure
is invoked.

Flow of Control and Storage Allocation 49

EPILOGUES

An epilogue is a routine set up by the com-
piler and logically appended to the end of
a procedure. It is executed as the final
step before termination of the procedure.
The main activities performed by an epilo-
gue are:

50 IBM System/360 Model 20 DPS PL/I

Re-establishment of the ON-units as they
existed before the procedure was
activated.

Release of all main storage that has
been allocated to automatic variables in
the procedure.

A PL/I program consists of a collection of
identifiers, constants, and special charac-
ters used as operators or delimiters.
Identifiers may be either keywords or names
with a meaning specified by the programmer.
The PL/I language is constructed in such a
way that the compiler can usually determine
from context whether or not an identifier
is a keyword, so that there are very few
reserved words i.e., words that you may not
use as identifiers in your programs {see
note below). Any identifier that is not a
reserved word may be used as a name; the
only restriction is that at any point in a
procedure a name can have one and only one
meaning. For example, the same name cannot
be used in the same procedure for both a
file and a floating-point variable.

Note: With the 60-character set there are
no reserved words. When using the U48-
character set, you may not use the follow-
ing operators as identifiers in your pro-
gram: GT, GE, NE, LE, LT, NG, NL, CAT,
NOT, OR, AND, and PT (even though the last
four identifiers are not used as keywords
in Model 20 PL/I). These are fully
reserved. No other keywords are reserved.

It is not necessary for a name to retain
the same meaning throughout a program. 2
name declared within a procedure has a
meaning only within that procedure., Out-
side the procedure it is unknown unless it
has been declared with the EXTERNAL attri-
bute and has also been declared in another
procedure with the same attributes includ-
ing the EXTERNAL attribute.

That part of a program in which the
meaning of a declared name is known, is
called the scope _of a_name. A name in a
Model 20 PL/I program can be declared by

e explicit declaration
e contextual declaration, or
e implicit declaration.

Explicit Declaration

A name is explicitly declared 1f you speci-
fy it:

e in a DECLARE statement,

e in a parameter list (that is, the paren-
thesized list that follows the keyword
PROCEDURE in a PROCEDURE statement,

e as a statement label, or

Recognition of Names

e as the label of a PROCEDURE statement
(that is, an entry name).

The appearance of a name in a parameter
list has the same effect as a DECLARE sta-
tement for that name following the PROCE-
DURE statement in which the parameter list
occurs (though the same name may also
appear in a DECLARE statement in the same
procedure) . The default assumptions for
parameters are the same as for other
variables.

The appearance of a statement label con-
stitutes an explicit declaration equivalent
to the declaration of a variable in a
DECLARE statement.

The scope of an explicitly declared name
is the procedure in which the name has been
declared.

Contextual Declaration

When an identifier that has not been expli-
citly declared appears

¢ to the left of the assignment symbol in
an assignment statement, or

e to the left of the assignment symbol in
a DO statement (or in a repetitive spe-
cification in a data list), or

e in the data list of a GET statement,
e as a built-in function nanme,

the identifier is said to be contextually
declared. However, a name can only be con-
textually declared if its name does not
start with one of the letters I to N. In
Model 20 PL/I, a contextually declared
identifier is always a scalar arithmetic
variable with the default attributes FLOAT
DECIMAL (6) AUTOMATIC INTERNAL. This rule
is illustrated by the example below:

P: PROCEDURE (PAR) ;
DECLARE N FIXED DECIMAL (5,2);

-
-

A =N+ 1;
LBL: GET FILE (FL1) EDIT (N,B) (F(7,2),
E(12,4));
END;

Recognition of Names 51

The names PAR, N, LBL, and P are
declared explicitly by their appearance in
a parameter list, a DECLARE statement, and
as a statement or procedure label, respec-
tively. A and B are declared contextually
by their appearance on the left side of the
assignment symbol and in the data list of a
GET statement, respectively. FL1 must be
declared in another DECLARE statement (not
shown in this example) in the same proce-
dure, since file names cannot be declared
contextually in Model 20 PL/I.

Built-In_Functions

The name of a built-in function, that is, a
procedure that is part of the compiler and
that is invoked by means of a function
reference, is contextually declared by its
appearance in the function reference. It
must not be explicitly declared by means of
a DECLARE statement.

_________ The DATE built-in function must
be explicitly declared in the invoking pro-
cedure by means of a DECLARE statement and
with the attribute BUILTIN.

Note 1: The name of a built-in function
may be used in a procedure to describe an
item other than that function. 1In this
case, it must not appear in a function
reference in that procedure. Consider the
following statements:

DCL SIN (10);

X=SI§(5);

In this example, SIN is explicitly declared
to be an array of 10 data elements. When
the statement X=SIN(5); is evaluated the
array element and not the built-in function
SIN is taken. The explicit declaration
takes recedence over the contextual
declaration.

Implicit Declaration

If a name appears in a program and is not
explicitly or contextually declared, it is
said to be implicitly declared. The scope
of an implicit declaration is INTERNAL, and
it is by default an arithmetic variable
with the attributes FLOAT DECIMAL(6) AUTO-
MATIC. ©Note, however, that the name of an
implicitly declared variable must not start
with any of the letters I to N.

An implicitly declared variable can only
obtain a value if it appears as an argument
in a procedure invocation. There is no
other way for an implicitly declared vari-
able to obtain a value. Consider the fol-
lowing example:

52 1IBM System/360 Model 20 DPS PL/I

ALPHA: PROCEDURE;

E;
L BETA (C) ;
C + 1;

A

HEer s « o

> 00

END;

PROCEDURE (X) ;

DCL X FLOAT DECIMAL(6) ;
X = 52;

BETA:

END;

In the above example, E in procedure
ALPHA is an implicitly declared variable
that cannot assume any value. The variable
C which appears as an argument in the CALL
invoking BETA, is also an implicitly
declared variable. 1In BETA, however, the
argument C, represented by the parameter X,
is exjlicitly declared and given a value.
Thus, when BETA returns control to ALPHA
and the instruction A = C + 1 is executed,
C has been given a value, since both C and
X refer to the same data item in main
storage.

Note: The attributes associated with a
name comprise those explicitly, contextual-
1y, or implicitly declared, as well as
those assumed by default. The default for
each attribute is given in Part II under
Attributes.

INTERNAL and EXTERNAL Names

The scope of a name declared with the
which it is declared. A declaration of
that name in another procedure refers to a
different item with a different scope.

be declared more than once in the same jgro-
gram, in different procedures. All
declarations of the name that specify the
EXTERNAL attribute refer to the same iten.
The scope of the name is the sum of the
scopes of its individual declaratiomns
within the program.

Since these declarations all refer to
the same thing, they must have the same set
of attributes. It may be impossible for
the compiler to check this, since the
declarations appear in different proce-
dures; therefore, take care to ensure that
different declarations of the same name
with the EXTERNAL attribute have matching
attributes (including the INITIAL attri-
bute, if jresent).

In Model 20 PL/I, the length of a nanme
with the EXTERNAL attribute is restricted
to six characters. This restriction also
applies to names that are EXTERNAL by
default, such as file names and entry nanmes
of procedures.

Multiple Declarations and Ambiguous References

Two or more declarations of the same iden-
tifier within the same procedure constitute
a multiple_declaration, unless all but one
of the identifiers is declared within stru-
ctures in such a way that name qualifica-
tion can be used to make the names unique.

Two or more declarations anywhere in a
program of the same identifier with dif-
ferent attributes and with the EXTERNAL
attribute constitute a multiple decla-
ration, that is, a name declared with the
EXTERNAL attribute in different procedures
must have identical attributes in all pro-
cedures in which it is declared EXTERNAL.

Multiple declarations are errors,

A name need have only enough qualifica-
tion to make the name unique. An ambiguous
reference is a name with insufficient qua-
lification to make the name unigue.

The following examples illustrate both
multiple declarations and ambiguous
references:

DECLARE 1 A, 2 C, 2 D,
DECLARE 1 B, 2 &, 3 C,
A.C = D.E;

3 E
3 E

In this example, A.C refers to C in the
first declaration because C in the second
declaration has another complete name gqua-
lification B.A.C; A.C is a unigue gqualified
reference; D.E refers to E in the first
declaration.

DECLARE 1 A, 2 B, 2 B, 2 C, 3D, 2 D;

In this example, B has been multiply
declared. A.D refers to the second D,
since A.D is a complete qualification of
only the second D; the first D would have
to be referred to as A.C.D.

DECLARE 1 4, 2 B, 3¢, 2D, 3C;

In this example, A.C is ambiguous because
neither C is completely qualified by this
reference.

DECLARE 1 A, 2 A, 3 A;

In this example, A refers to the first 3,
A.A refers to the second A, and A.A.A
refers to the third A.

DECLARE X;
DECLARE 1 ¥, 2 X, 3 2, 3 14,
2%Y, 32, 3 1;

In this example, X refers to the variable
declared in the first DECLARE statement. A
reference to Y.Z is ambiguous; Y.Y.Z refers
to the second Z; and Y.X.Z refers to the
first 2.

Recognition of Names 53

Data Transmission

PL/I provides input and output statements,
which cause data to be transmitted between
main storage and an external storage
medium. Transmission of data from an
external storage medium to main storage is
called input, and transmission of data from
main storage to am external storage medium
is called outjut.

In order to understand the basic con-
cepts of input and output, it is necessary
to define the following terms: £file,
volume, block, regord, and filenanme.

A file is a collection of data on an
external storage mediunm.

Files can be stored on a variety of
external storage media, such as punched
cards, reels of magnetic tape, and packs of
magnetic disks. Despite their variety,
external storage media have many common
characteristics that permit standard
methods of collecting, storing, and trans-
mitting data. For convenience, thus, we
unit of external storage, such as a reel of
magnetic tape or a disk pack, without
regard to its specific physical
composition.

The data items within a file are
arranged in distinct physical groupings
called blocks. These blocks allow the file
to be transmitted and processed in portions
rather than as a unit. For processing pur-
poses, each block consists of one or more

each of which

record, because it is the unit of data that
is physically transmitted to and from a
volume. To avoid confusion between a phys-

ical record and its logical parts, the log-

When a physical record contains two or
more logical records, the records are said
to be blocked. Blocking of records often
permits more compact and efficient use of
external storage. Consider how data is
stored on magnetic tape: the data between
two successive interrecord gaps is one
block, or physical record. If several log-
ical records are contained within one
block, the number of interrecord gaps is
reduced, and much more data can be stored
on a full length of tape. For example, on
a tape with a density of 800 characters/
inch and interrecord gars of 0.6 inches, a

54 IBM System/360 Model 20 DPS PL/I

card image of 80 characters would take up
0.1 inches. 1If the records were unblocked,
each record would require 0.1 inches, plus
0.6 inches for the interrecord gap, making
a total of 0.7 inches. 100 records would
therefore take up 70 inches of tape. If
the records were blocked, however, at, say,
10 records to a block, each block of 10
records would take up 1 inch, plus 0.6
inches for the gap, which would be a total
of 1.6 inches. Thus, 100 records would now
occupy 16 inches of tape only; this is less
than 25 percent of the amount needed for
unblocked records.

Most data processing applications are
concerned with logical records rather than
rhysical records. Therefore, the input and
output statements of PL/I generally refer
to logical records; this allows the pro-
grammer to concentrate on the data to be
processed, without being directly concerned
with its physical organization in external
storage.

To be able, now, to deal with the data
items of a file, that is, to read them into
main storage or to write them onto the
external storage media, a filename has to
be associated with a file. You do this in
your program.

within a program, to a file stored on an
external medium.

You associate a filename with a file by
declaring the filename for the file in your
program and by specifying attributes that
describe the file and the manner in which
it will be handled. For example, the INPUT
attribute specifies that a file is to be
read; OUTPUT specifies that a file is to be
written. Unlike a file, however, a
filename has significance only in a pro-
gram; it does not exist external to the
Frogram. For example, if you use the same
file again, you may siecify a different
filename and partly different attributes
for it.

Types of Data Transmission

There are two types of data transmission
you can use in a PL/I program, stream-
oriented transmission and record-oriented
transmission.

In stream-oriented _transmission, the

data in the file is considered to be a con-
tinuous stream of data items in character

form. Consequently, characters in the
input stream are interpreted and converted
where necessary to the specified internal
format. Whether conversion is to take
place is determined by the attributes of
the variable to which a data item is
assigned. On output, data items in intern-
al format are converted where necessary to
character form and added to the output
stream. The statements GET and PUT are the
data-transmission statements used in
stream-oriented transmission. Variables,
to which input data items are assigned, and
expressions from which output data itenms
are transmitted, are generally specified in
a data_list contained in each GET and PUT

SR EESs

statement.

Although data in the file is in record
format, in stream transmission such organi-
zation is ignored within the program and
the data is treated as though it actually
were a continuous stream of individual data
items.

In record-oriented_transmission, data in
the file is considered to be a collection
of discrete logical records, recorded in
any format acceptable to the computer. No
data conversion is performed during record
transmission; on input, it is transmitted
exactly as it is recorded in the file; on
output, it is transmitted exactly as it is
recorded internally.

The input and output statements used for
record-oriented transmission are READ,
WRITE, REWRITE and LOCATE. The READ,
WRITE, and REWRITE statements cause a
single logical record to be transmitted to
or from a data variable or, in the case of
READ with the SET option, to an intermedi-
ate work area in main storage, called a
buffer, which can be accessed by the pro-
gram. The LOCATE statement allocates an
area in a buffer to which data for an out-
put record can be assigned.

Note that although records may be
blocked, in which case actually the
rhysical record is transmitted to or from
the file as an entity, each data transmis-
sion statement in record I/0 is concerned
with a logical record. Blocked records are
deblocked automatically.

The following discussion of filenames
and file attributes will be of particular
interest to a programmer using record-
oriented transmission. File handling is
simpler when using stream-oriented trans-
mission, and fewer attributes are applic-
able to files read or written by stream-
oriented transmission.

File Declarations

To allow a source program to deal primarily
with the logical aspects of data rather
than with its physical organization in a
file, PL/I employs a symbolic representa-
tion of a file, the filenanme.

PL/TI requires a filename to be declared
and allows the characteristics associated
with that filename to be described by key-
words called file_attributes. The DECLARE
statement specifying the filename and the
associated attributes is referred to as
file _declaration.

FILE_ATTRIBUTES

The following lists show file attributes
that are applicable to each type of data
transmission:

Record Transmission Stream_Transmission

FILE FILE

RECORD STREAM
INPUT INPUT
OUTPUT OUTPUT
UPDATE PRINT
SEQUENTIAL ENVIRONMENT
DIRECT

KEYED

BACKWARDS

ENVIRONMENT

A detailed description of each of these
attributes appears in Part II, Attributes.
Following is a brief description of each
attribute and its use in a file

declaration.

The_ FILE_Attribute

The FILE attribute states that the identi-
fier (or name) associated with FILE is a
filename. For example, MASTER is declared
to be a filename in the following
statement:

DECLARE MASTER FILE

The FILE attribute must be explicitly
declared for every filename, and it must
always be the first attribute declared in a
file declaration.

ALTERNATIVE AND ADDITIVE ATTRIBUTES

The attributes associated with the FILE
attribute fall into two categories: alter-
native attributes and additive attributes.
An alterpative_attribute is one that is
chosen from a group of attributes. If no
explicit or implicit declaration is given
for one of the alternative attributes of a
group and if one of the alternatives is
required, a default attribute is assumed in
most cases.

Data Transmission 55

1 : | T 1

|Group | Alternatives | Default

1 { L i

1 L) T ;.

ITransmission | STREAM | RECORD] STREAM 1

}Function | INPUT | OUTPUT | UPDATE | no default |

| Access | SEQUENTIAL | DIRECT | SEQUENTIAL |

L L i i)

Figure 7. Groups and Default Attributes for Alternative File Attributes

PL/I provides three groups of alterna-
tive file attributes. Each group is dis-
cussed individually. The groups and the
default for each alternative file attribute
is shown in Figure 7.

Note: ©No default is applied for the func-
tion attributes; one of them must be speci-
fied in each file declaration. The scope
of a filename must always be EXTERNAL. The
EXTERNAL attribute can be explicitly
declared in a file declaration. If it is
not declared, it is assumed by default.

An additive_attribute is one that must
be stated explicitly or is implied by
another explicitly stated attribute. The
ENVIRONMENT attribute must be declared
explicitly with every filename. An addi-
tive attribute can never be applied by
default. The additive attribute KEYED is
implied by the DIRECT attribute.

The additive attributes are:

PRINT
BACKWARDS
KEYED
ENVIRONMENT

The STRERAM and RECORD Attributes

The STREAM and RECORD attributes describe
the type of data transmission (stream-
oriented or record-oriented) to be used in
input and output operations for the file.

The STREAM attribute causes the file
associated with the filename to be treated
as a continuous stream of data items
recorded in character format.

The RECORD attribute causes the file
associated with the filename to be treated
as a sequence of logical records, each
record consisting of one or more data items
recorded in any format.

DECLARE MASTER FILE RECORD
DECLARE DETAIL FILE STREAN

The INPUT, OUTPUT, and UPDATE Attributes

The function attributes determine the
direction of data transmission. The INPUT

56 IBM System/360 Model 20 DPS PL/I

attribute applies to files that are to be
read only. The OUTPUT attribute applies to
files that are to be created or extended,
and hence are to be written only. The
UPDATE attribute describes a file that can
be used for both input and output; it
allows records to be inserted into an
existing file and other records already in
that file to be altered.

DECLARE
DETAIL FILE RECORD INPUT
REPORT FILE STREAM OUTPUT
MASTER FILE RECORD UPDATE

The SEQUENTIAL and DIRECT Attributes

The access attributes are used only in con-
junction with the RECORD attribute and
describe how the records in the file are to
be accessed, sequentially or directly.
STREAM transmission is always sequential.

The SEQUENTIAL attribute specifies that
fhysically or logically successive records
in the file are to be accessed
sequentially.

DCL PAYROLL FILE RECORD INPUT SEQUENTIAL

record in a file is to be accessed on the
basis of its location in the file and not
on the basis of its physical or logical
position relative to the record previously
read or written. The location of the
record is determined by a key; therefore,
the DIRECT attribute implies the KEYED
attribute. The associated file must be
read from or written on a direct-access
device, for example, a disk drive.

DCL MASTER FILE RECORD UPDATE DIRECT
[KEYED]

The PRINT_ Attribute

The PRINT attribute applies only to files
with the STREAM and OUTPUT attributes. It
indicates that the file is eventually to be
printed, that is, the data is to appear on
printed pages, although it may first be
written on some other medium. The PRINT
attribute specifies that the print lines
are to be created with the first character

position reserved for a printer-control
character, which is inserted automatically.

DCL OUT_F FILE STREAM OUTPUT PRINT

The BACKWARDS Attribute

The BACKWARDS attribute indicates that a
file is to be accessed in reverse order,
beginning with the last logical record and
ending with the first logical record. The
BACKWARDS attribute can be used only in
connection with the RECORD SEQUENTIAL, and
INPUT attributes and only with files on
magnetic tape.

DCL IN_FLE FILE RECORD INPUT SEQUENTIAL
BACKWARDS

The KEYED Attribute

The KEYED attribute is used only in connec-
tion with INDEXED files. It indicates that
each record in the file has a key and can
be accessed using one of the key options
(KEY or KEYFROM) of data transmission
statements.

DCL REPORT FILE INPUT DIRECT KEYED

The use of keys is discussed in detail
in Part III, under Input/Output.

The ENVIRONMENT Attribute

The ENVIRONMENT attribute specifies infor-
mation about the physical organization of
the file associated with a filename. These
characteristics are indicated in a paren-
attribute specification. They are not part
of the PL/TI language, but are defined to be
recognized by a specific compiler. The
option list for the Model 20 PL/I Compiler
is discussed in Part III, under
Input/Output.

DCL OUTPUT FILE STREAM OUTPUT PRINT
ENVIRONMENT (option-list);

Note: As stated earlier in this section,
each file must be explicitly declared; the
FILE attribute and the ENVIRONMENT attri-
.bute must appear in every file declaration.

Opening and Closing Files

Before the data of a file can be trans-
mitted by input or output statements, cer-
tain preparative actions must be taken,
such as checking for the availability of
the external storage medium, and position-
ing the medium. Such activity is known as
opening a file. Also, when processing is
completed, the file must be closed. Clos-
ing a file involves releasing the facili-

ties that were used during the opening of
the file.

Model 20 PL/I provides two statements,
OPEN and CLOSE, to perform these functions.
All files for which RECORD transmission has
been specified must be explicitly opened
before any data can be transmitted. How-
ever, files for which STREAM transmission
has been specified, need not be opened
explicitly. If you do not specify an OPEN
statement for such a file, the file is
opened automatically when the first GET or
PUT is executed; this form of opening is
referred to as implicit opening. Automatic
preparation is exactly the same as if an
explicit OPEN had been executed before the
GET or PUT. With both STREAM and RECORD
transmission, all files that have not been
closed before completion of a program will
be closed automatically upon completion of
the program. With the exception of INDEXED
files, all files that have been explicitly
closed may be reopened.

The following discussions show the
effect of OPEN and CLOSE statements.

The_ OPEN_Statement

Execution of an OPEN statement causes one
or more files to be opened explicitly. The
OPEN statement has the following basic
format:

OPEN FILE (filename) [option-list]
[, FILE(filename) [option-list]]...;

The OPEN statement is executed by rou-
tines that are loaded dynamically by the
system at the time the OPEN statement is
executed.

For a file that has to be opened expli-
citly, the OPEN statement must be executed
before any I/0 statements are executed for
the same file.

The CLOSE_Statement

The basic format of the CLOSE statement is:

CLOSE FILE (filename)
[,FILE (filename) J...;

Executing a CLOSE statement dissociates
the sjpecified filename from the file with
which it became associated when the file
was opened for, say, input. When using the
same file again for, say output, another
file declaration has to be made for it
before it can be accessed.

Note: Closing an already closed file or

opening an already opened file has no
effect.

Data Transmission 57

Environmental Considerations for Data Files

The PL/I object program produced by the
Model 20 PL/I compiler is designed to be
executed under control on the Model 20 Disk
Programming System (DPS). The DPS provides
data management facilities that control the
organization, location, storage, and
retrieval of files. The PL/I progranm calls
upon these facilities when it is being
executed. The following discussions
describe the relationship between the input
and output statements of a PL/I program and
the various files organizations supported
by the data-management facilities of the
DPS.

DEVICE_INDEPENDENCE OF INPUT_AND OUTPUT
STATEMENTS

The input and output statements of a Model
20 PL/I program are concerned with the log-
ical organization of a file and not with
its physical characteristics.

Some of the detailed information ultim-
ately regquired by the PL/I program to pro-
cess a file -- information such as I/0 unit
numbers and recording density -- does not
appear in the PL/I program at all. It is
supplied by means of DPS job-control state-
ments at the time the PL/I object program
is executed. (Job—-control statements are
described in Part III of this publication

___________ This means that the
PL/I program need not be recompiled when
changes to this information are made.

Other information, such as the I/0
device type to be used and the organization
of a file to be read or written, is noted
in the PL/I program in the ENVIRONMENT
attribute of the file declaration. Hence,
changes to this type of information only
affect this attribute. They reqjuire no
changes to the actual I/O statements in the
PL/I program. However, if changes to the
ENVIRONMENT attribute have been made, the
PL/I program nust be recompiled before it
can be executed in accordance with the new
information.

I/0 statements are device-independent to
a large extent. This characteristic of
PL/I allows you to write a program without
any specific knowledge of the I/0 devices
that will be used for its execution.

The ENVIRONMENT attribute provides informa-
tion about the physical organization of the
associated file. This information allows
the compiler to determine the method of
accessing the file.

58 1IBM System/360 Model 20 DPS PL/I

For the Model 20 PL/I Compiler, the
ENVIRONMENT attribute has the following
general form:

_CONSECUTIVE]
ENVIRONMENT (INDEXED
gF (blocksize [,recordsize])l

V (maxblocksize)
}\U (maxblocksize) 5

[BUFFERS ({112})]

MEDIUM (symbolic-device-address,
device-type)

[CTLASA]

[LEAVE]

[NOTAPENK]

[NOLABEL]

[VERIFY]

[KEYLENGTH (decimal-integer-constant)]
[EXTENTNUMBER (decimal-integer-constant)]
[OFLTRACKS (decimal-integer-constant)]
[KEYLOC (decimal-integer-constant)]
[ALTTAPE]

[NOWRITE]) ;

The individual options of the ENVIRON-
MENT attribute must be separated by at
least one blank. They are discussed in
detail in Part III of this publication, in
the section Input/Output. Examples of com-
plete file declarations can be found in
Part III, under Iwo_Comfplete Programming

Stream-0Oriented and Record-Oriented
Data Transmission

As we have discussed earlier in this sec-
tion, PL/I provides two types of data tran-
smission, stream-oriented and
record-oriented.

With gstream-oriented_transmission, a
file is considered to be a continuous
stream of data items in character format.
Data items are transferred from the strean
to program variables or from progranm
variables (or expressions) into the strean,
with appropriate conversion from or to
character format. Stream-oriented trans-
mission statements ignore the boundaries
between records.

With record-oriented transmission, a
file is treated as a collection of logical
records, each of which consists of one or
more data items. The data items can have
any representation, internal or external,
that is acceptable to the computer, and
there is no data conversion. Each logical
record is transmitted as a unit to or from
either a program variable or a buffer.

STREAM transmission uses only two input
and output statements, GET and PUT, which
get the next series of data items from the
stream, or put a specified set of data
items into the stream. In RECORD transmis-
sion, the corresponding statements are READ

and WRITE, which read a logical record from
the file or write a specified logical reco-
rd into the file. Other record-oriented
transmission statements are REWRITE and
LOCATE.

The same file can be processed at one
time by STREAM transmission and at another
time by RECORD transmission; however, the
file would have to be in character format
to be acceptable for stream transmission.

You specify the method of transmission
for a file by declaring the associated
filename with either the STREAM or the
RECORD attribute.

The Model 20 PL/I language provides only
one mode of stream transmission: the edit-

Edit-directed transmission uses the

GET and

PUT
statements for input and output. These
statements require the following
information:

1, The filename associated with the file
from which data is to be obtained or in
which data is to be written.

2. A list of program variables which are
to receive data items during input or
from which data items are to be
obtained during output. This list is
called a data_list. On output, the

data list can include constants and
expressions.

3. A list containing the format of each
data item in the stream. This list is
called a format_ list.

Note: For PRINT OUTPUT files, you may sSpe-

cify the option PAGE or SKIP instead of or

in addition to the data list and format
list.

For edit-directed transmission, the gen-
eral format of the GET and PUT statements
is as follows:

GET FILE (filename) EDIT
(format-1list) ;

(data-1list)

PUT FILE (filename)
EDIT (data-list) (format-1list)
option

.
9

option EDIT (data-list) (format-1list)

The data_specification consists of two
parts: the data_list and the format_ list.

Each must be enclosed in parentheses.

On input, the data list contains one or
more variables. Values whose format is
described in the format list are assigned
to these variables. On output, the data
list may, in addition to variables, also
contain constants and other expressions.
For each item in the data list, the extern-
al format that it is to assume is described
in the format list of the PUT statement.

The format list contains one or more
format_items. There are three types of

format items:

e data_format items, which describe wheth-
er data items in the stream are charac-
ters or arithmetic values in character
form:

e control format_items, which describe
page-control, line-control, and spacing
operations;

e remote format items, which specify the
label of a separate statement that con-
tains the format list to be used.

(Format lists and format items are dis-

below).

For input, data in the stream is consi-
dered to be a continuous string of charac-
ters not separated into individual data
items. The number of characters to be
assigned to a variable is specified by the
corresponding format item in the format
list. The format item also specifies how
the associated data item is to be stored
internally in character format or as an
arithmetic value.

For output, the value of each item in
the data list is converted to a format spe-
cified by the associated format item and
placed in the strean.

For either input or output, the first
data-format item in the format list is
associated with the first item in the data
list, the second data-format item with the
second item in the data list, and so forth.
If the format list contains fewer format
items than there are items in the asso-
ciated data list, the format list is re-
used; if there are excessive format itenms,
they are ignored. Suppose a format list
contains five data format items and its
associated data list specifies ten items to
be transmitted, then the sixth item in the
data list will be associated with the first
data format item, and so forth. Suppose a
format list contains ten data format items
and its associated data list specifies only

Data Transmission 59

five items, then the sixth through the
tenth format items will be ignored.

An array variable in a data list is
equivalent to n data items in the data
list, where n is the number of data items
in the array. Each of the data items in
the array will be associated with a separ-
ate use of the data format item (consider
the third example bhelow).

Names of major and minor structures must
not appear im a data list in Model 20 PL/I.

If a data list is associated with a for-
mat list that contains control format

items, the control format action is
executed before the next data item is
paired with the next data_format item. For

example, on output, lines or pages are
skipped before the next item is printed.

The specified data transmission is conm-
plete when the last item in the data list
has been processed with its corresponding
format item. Subsequent format items,
including control format items, are
ignored.

On output, each data item occupies pre-
cisely the field length specified by its
corresponding format item in the format
list.

Note: Data in STREAM files is actually
transferred in blocks. Thus, when a STREAM
file is closed, the last block is trans-
ferred regardless of whether or not it is
corpletely filled with data. This may lead
to unpredictable results since, in this
case, the end of the data may not coincide
with the end of the file., You must there-
fore ensure that the end of the data is
clearly identified.

Consider the following examples:

1. GET FILE (MASTER) EDIT
(NAME, DATA, SALARY)
(A(20), X(2), A(6), F(6,2));

2. PUT FILE (OUTPUT) EDIT
(*INVENTORY="'||INUM, INVCODE)
(A(20), F(3));

3. GET FILE (MASTER) EDIT
(ARRAY, DATA, SALARY)
(20(2(8)),A(6), F(6,2));

The first example specifies that the first
20 characters in the stream are to be
treated as a character string (the format
item A identifies characters) and assigned
to the variable NAME. The next two charac-
ters are to be skipped (this is specified
by the skipring format item X). The next
six characters are to be assigned to DATA
in character format; and the next six

60 IBM System/360 Model 20 DPS PL/I

characters are to be considered as an
optionally signed decimal fixed-point con-
stant and assigned to SALARY. F is the
data format item for fixed-point arithmetic
variables.

The second example specifies that the
character string 'INVENTORY=' is to be con-
catenated with the value of character
string INUM and placed in the stream in a
field whose width is the length of the
resultant string. Then the value of
INVCODE is to be treated as an optionally
signed decimal fixed-point integer constant
and placed in the stream right-adjusted in
a field with a width of five characters
(leading characters are blank). Note that
operational expressions can appear in out-
put data lists only.

Assume that, for the third example,
ARRAY has been declared as follows:

DECLARE ARRAY (U4,5) CHARACTER (8);

The example specifies that the first 160
characters in the data stream are to be
assigned to the variable ARRAY in character
format.

DATA LISTS

Edit-directed GET and PUT statements
require a data list to specify the data
items to be transmitted. The general for-
mat of the data list is as follows:

(element [,element]...)

The nature of the elements depends upon
whether the data list is used for input or
for output. The following rules apply:

1. On input, a data-list element can be
one of the following: an element vari-
able or an array_variable, or the
SUBSTR_pseudo-variable.

one of the following:
an array_variable.

3. The elements of a data list must be of
arithmetic or character-string data

type.

4. As shown in the general format, a data
list must always be enclosed in
parentheses.

Reretitive Specifications in a Data List

Data lists may contain repetitive specifi-
cations. Repetitive specifications in a

data list are used for the transmission of
arrays. The general format of a data list

containing repetitive specifications is as
follows:

(element [,element]...DO
control-variable = specification)
where specification has the following

format:

expression_1 [TO expression_2] [BY
expression_3]

Note_1: If both options, TO and BY, are
present in a data list, TO must occur
first. ©Note also that the control variable
nust be an arithmetic element variable.
Note_2: Repetitive specifications in data
lists may be nested.

The expressions in the specification,
which are the same as in a DO statement,
are described as follows:

a) Each expression in the specification is
an expression.

b) In the specification, expression_1
represents the starting value of the
control variable. Expression_3 repre-
sents the increment to be added to the
control variable after each repetition
of the DO-group. Expression_2 repre-
sents the terminating value of the con-
trol variable,

Consider the following example:
DO I =1TO0 10 BY 2

In this expression, I is the control vari-
able, 1 is the starting value of the con-
trol variable (expression_1), 10 is is the
terminating value of the control variable
(expression_2), and 2 is the increment to
be added to the control variable after each
repetition (expression_3).

Repetitive specifications in data lists
may be nested. Each DO portion must be
delimited on the right with a right paren-
thesis (with its matching left parenthesis
added to the beginning of the list element
to be repeated).

When repetitive specifications are
nested, the rightmost DO is at the outer

level of nesting (DO I = 1 TOo 2 in the
examnple below).

Consider the following example:
DCL A (2,5,10);

GET FILE (INPUT) EDIT
((({ar(z,J3,K) DO K =
DO J = 1 T0 5) DO I
(format-1list);

1 T0 10 BY 5)
=1 T0 2))

In this example, every fifth element of
a three-dimensional array of 100 elements
in main storage is filled with a data iten
from the input stream. Note the four sets
of parentheses: The outermost set is
required by the data list; the second set
is reguired by the outer repetition, the
third by the second repetition etc. The
seguence of elements transmitted is equiva-
lent to the sequence of elements that would
be transmitted if following nested DO group
were executed:

DO I =1TO 2;
DO J = 1 TO 5;
DO K =1 TO 10 BY 5;
GET FILE (INPUT) EDIT
(A(I,3,K)) (format-list):
END;
END;
END;

This nested DO-group gives values to the
elements of the array A in the following
order:

A(i,1,1), 2(1,1,6), A(1,2,1), A(1,2,6), «--

Note: Although the DO keyword is used in
the data list, a corresponding END state-
ment is not allowed. Note also that a nest
of repetitions in a GET or PUT statement
must not contain more than three
repetitions.

If a data list element is an array name
(that is, a name without subscripts), the
elements of that array are transmitted
beginning with the first element in the
array and proceeding until the last element
has been transmitted.

Consider the following example:

GET FILE (INPUT) EDIT (A) (format-list);

If we consider A to be declared as
above, data items from the stream are tran-
smitted to the elements of A in the follow-
ing order:

A(1,1,1) ,A(1,1,2),2(1,1,3) ;...
A(1,1,10),4(1,2,1) ...A(1,5,10),
A(2,1,1,2(2,1,2),...2(2,5,10)

If, in a data list used in an input sta-
tement for edit-directed transmission, a
variable is assigned a value, this new
value is used if the variable appears in a
later reference in the data list. For
example:

GET FILE (INPUT) EDIT
(N,X,J,SUBSTR (NAME,J,5)) (format-1list) ;

When this statement is executed, data is

transmitted and assigned in the following
order (assuming X is a two-by-two array):

Data Transmission 61

1. A new value is assigned to N.

2. Elements are assigned to the array X in
the order X (1,1), X(1,2), %(2,1), and
X(2,2).

3. A new value is assigned to J.

4, A substring of length 5 is assigned to
the string variable NAME beginning at
the Jth character.

FORMAT LISTS

Each edit-directed data list reguires its
own format list. The format list immedi-
ately follows its associated data list in
the GET or PUT statement and has the fol-
lowing general format:

GET FILE (filename) EDIT

itenm Jitem
n item ,0 iten
1n(format-list) ;0 (format-list)

In the general format, item represents a
format item of any of the types described
below. The letter n represents an itera-
tion factor, which must be an unsigned dec-
imal integer constant. 1A blank or left
parenthesis must separate the constant and
the following item or format list, respec-
tively. The iteration factor specifies
that the associated, that is, the immedi-
ately following format item or format list
is to be used n successive times.

There are three types of format items:
data format items, control format itenms,
and the remote format item.

Data_format_items specify whether data
in the stream are characters or arithmetic
values in character format.

Control format jitems specify page-
skippring, line-skipping, and spacing opera-
tions. The page-skipping format itenm
(PAGE) can only be used for files having
the PRINT attribute. The line-skipring and
spacing format items (SKIP and X, respec-
tively) can be used for both PRINT and non-
PRINT files, including input files.

Note: For files having the attribute
PRINT, the PAGE and SKIP format items can
also be used outside the format list as an
option of the PUT statement. (See the
description of the PUT statement in Part
II, Statements).

62 IBM System/360 Model 20 DPS PL/I

The remote_format_item allows reference
to format items specified in a separate
FORMAT statement elsewhere in the
procedure.

Detailed discussions of the various
types of format items appear in Part II of
Directed Format_Items. The following dis-
cussions show how you may use format items
in edit-directed data specifications.

Data_ Format_Items

On input, each data-format item specifies
the number_of_characters to be associated
with the data item and whether to interpret

character-string data. The data item is
assigned to the associated variable named
in the data list, with necessary conversion
to conform to the attributes of the vari-
able (arithmetic data in the stream is in
character representation and is converted
to fixed-point or floating-point represen-
tation where applicable). On output, the
value of the associated element in the data
list is converted, where necessary, to the
character_representation specified by the
format item and is inserted into the data
stream.

There are three data-format_ items:

e the F-item for fixed-point data,

e the E-item for floating-point data, and

e The A-item for character-string data.
The specifications used with the format

items are discussed in detail in Part II,
in the section Edit-Directed Format_ Items.

The following examples discuss the use
of format items:
1. GET FILE (INPUT) EDIT (ITEM) (A (20));
This statement causes the next 20
characters in the file called INPUT to
be assigned to ITEM, which must be a
character-string variable. If it is
not a character-string variable, an
error results.

2. PUT FILE (MASKFL) EDIT
(F(6,2));

Assume TOTAL has the attributes FIXED
(4,2) ; then the above statement speci-
fies that the value of TOTAL is to be
converted to the character representa-
tion of a fixed-point number and writ-
ten into the output file MASKFL. 1A
decimal point is to be inserted before
the last two numeric characters. The
number will be right-adjusted in a

(TOTAL)

field of six characters. Leading zeros
more than one digit to the left of the
decimal point will be changed to
blanks, and, if necessary, a minus sign
will be placed to the left of the first
numeric character. If a minus sign
appears, it will replace one leading
blank. Consequently, the F(6,2) speci-
fication will always allow all digits,
the point, and a possible sign to
appear.
3. GET FILE (&) EDIT (ESTIMATE) (E(10,6));
This statement obtains the next ten
characters from the file called A and
interprets them as a floating-point
decimal number. A decimal point is
assumed before the rightmost six digits
of the mantissa. An actual point
within the data will override this
assumption. The value of the number is
converted to the attributes of ESTIMATE
and assigned to this variable.

4, GET FILE(A) EDIT (NAME, TOTAL)
F(4,0));

(A(3) .

When this statement is executed, the
first five characters read are assigned
to the variable NAME. The next four
characters containing possible leading
and/or trailing blanks, are then
assigned to the variable TOTAL.

Control Format_Items

Control-format items comprise the following
types:

e the spacing format item X,
e the PAGE format item, and
e the SKIP format itenm.

The spacing format item X specifies
relative spacing in the data stream. It
can be used with PRINT and non—-PRINT files,
in GET as well as PUT statements.

The printing format item PAGE can be
used only for PRINT files and, consequent-
ly, appear only in PUT statements. It spe-
cifies that printing is to continue on a
new page.

The format item SKIP can be used with
PRINT and non~PRINT files, in GET as well
as PUT statements. For output
fies that printing is to continue on a new
line (or, with non-PRINT files, output has
to start with a new logical record). For
input, it specifies that the remainder of a
logical record (the size of which is speci-
fied in the file declaration) is to be
skipped and reading is to continue at the
beginning of the next one.

The format items X and SKIP generally
include decimal integer constants, which
specify the width of the field to be spaced
over, or the number of lines or records to
be skipped.

The following examples illustrate the
use of the control format itenms:

1. GET FILE(IN) EDIT (NUMBER, REBATE)
(A(5), X(5), 2 (5));

This statement treats the next 15
characters from the input file IN as
follows: the first five characters are
assigned to NUMBER, the next five
characters are spaced over and ignored,
and the following five characters are
assigned to REBATE.

2. DPUT FILE(OUT) EDIT (PART, COUNT)
(A(%)y, X(2), F(5));

This statement places in the file named
OUT four characters that represent the
value of PART, then two blank charac-
ters, and finally five characters that
represent the integer value of COUNT.

3. The following example shows the combi-
ned use of control format items in an
output file.

PUT FILE (OUT)EDIT
(" QUARTERLY STATEMENT')
(PAGE, SKIP(2), A(19));
PUT FILE (OUT)EDIT
(ACCT#, BOUGHT, SOLD, PAYMENT,
BALANCE)
(SKIP (3) ,A (6),X(7),F{7.2),X(8),
F(7,2) ,X(7),
F(7,2) ,X(7),F(7,2));

The first PUT statement specifies that
the heading QUARTERLY STATEMENT is to
be written starting with the first
character position on line three of a
new page in the file OUT. The second
statement specifies that two lines are
to be skipped (that is, "skip to the
third following line") and the value of
ACCT# is to be written, beginning at
the first character position of the
sixth line; the value of BOUGHT is to
be written in the same line after skip-
ping 7 character positions; the value
of SOLD after skipping 8 character
positions, beginning at character posi-
tion 29, etc.

Note: The number of lines specified in
the SKIP format item must not exceed 3.

4, The following statements show the use

of the SKIP and X format items in a GET
statement.

Data Transmission 63

GET FILE(IN) EDIT (PART, SEQUENCE)
(SKIP,X(1),A(71),R(8));

GET FILE (IN) EDIT (DETAIL)
(X(19) ,F(15,2))

The SKIP format item in the first GET
statement specifies that reading is to con-
tinue with the next record. The X (1) for-
mat item specifies that the first character
of this record is to be skipped and that
characters 2 to 72 are to be assigned to
the variable PART, and characters 73 to 80
to the variable SEQUENCE.

The second GET statement specifies that
the first 19 characters of an input record
are to be skipped, and that the next 15
characters are to be assigned to the vari-
able DETAIL.

Note: Control format items are executed at
the time they are encountered in the format
list. Any control-format item that appears
in the format list but has not yet been
processed when the data list is exhausted,
will have no effect.

Remote_ Format_Itenm

The remote format item (R) specifies the
label of a FORMAT statement (or a label
variable whose value is the label of a
FORMAT statement) located elsewhere; the
FORMAT statement and the GET or PUT state-
ment specifying the remote format item must
appear in the same procedure. The FORMAT
statement contains the remotely situated
format items. This facility permits the
choice of different format specifications
at execution time, as illustrated by the
following example:

DECLARE SWITCH LABEL;
GET FILE(IN) EDIT (CODE)
IF CODE = 1

THEN SWITCH

ELSE SWITCH
GET FILE(IN) EDIT (

(R(SWITCH)) ;
L1: TFORMAT (4 F(8,3));
L2: FORMAT (U4 E(12,6));

(F (1))

= L1;
= L2;
w,X,Y,Z)

SWITCH has been declared to be a label
variable. The first GET statement reads a
code. This code is tested and, depending
on the result, the label variable SWITCH is
assigned the value L1 or L2. Thus, the
second GET statement can use either of the
two FORMAT statements, depending on the
current value of SWITCH and, hence, depend-
ing on the code that has been read by the
first GET.

Another advantage of the remote format

item is that it allows many GET/PUT state-
ments to share the same format list.

64 IBM System/360 Model 20 DPS PL/I

Note: 1If the format list contains a remote
format item that is contained in a replica-
tion nest, the remote format item must not
be at a depth greater than 2.

PAGE LAYOUT FOR PRINT FILES

The overall layout of a page in a file that
has the PRINT attribute is controlled by
means of the PAGESIZE option of the OPEN
statement.

For example:

DECLARE REPORT FILE OUTPUT PRINT
ENVIRONMENT (option-list);

OPEN FILE (REPORT) PAGESIZE(55);

The specification PAGESIZE(55) indicates
that each page should contain a maximum of
55 lines. An attempt to write on a page
after 55 lines have already been written
(or skipped) will raise the ENDPAGE condi-
tion. The standard system action for the
ENDPAGE condition is to skip to a new page,
but the programmer can establish his own
action through use of the ON statement.

The ENDPAGE condition is raised only
once per page., Consequently, printing can
be continued beyond the specified PAGESIZE
after the ENDPAGE condition has been
raised. This can be useful, for example,
if a footing is to be written at the bottom
of a rage. Consider the following example:

ON ENDPAGE (REPORT)

GO TO FOOT;

FOOT: PUT FILE(REPORT) SKIP EDIT
(FOOTING) (&);
PUT FILE (REPORT) PAGE;

N =N + 1;
PUT FILE (REPORT) EDIT ('PAGE ',N)
(A,F(3));

PUT FILE (REPORT)
GO TO NEXT;

SKIP (3);

Assume that REPORT has been opened with
PAGESIZE (55), as shown in the previous
example. When an attempt is made to write
on line 56 (or to skip beyond line 55), the
ENDPAGE condition will arise, and the GO TO
FOOT statement will be executed. The first
PUT statement sgecifies that a line is to
be skipped, and the value of FOOTING, a
character string, is to be printed on line
57 (when ENDPAGE arises, the current line
is always PAGESIZE + 1). The second PUT
statement causes a skip to the next page
and the ENDPAGE counter is automatically
reset for the new page. The page number
(N) is incremented, and the character
string 'PAGE ' and the new page number N
are printed. ©Note that a blank is included

as part of the character string to separate
the word from the page number. The F(3) is
a format item and allows the page number to
go as high as 999. (Format items are dis-
cussed in Part II, under Edit-Directed For-
_________ The final PUT statement causes
two lines to be skipped, so that the next
printing will be on line 4. The GO TO
NEXT; statement transfers control to the
statement labeled NEXT.

The maximum number of characters to be
printed on each line (i.e., the line size)
is equal to the fixed-length record size
specified in the ENVIRONMENT attribute for
the file minus one. If you try to write
more than the maximum number of characters
specified in one line, i.e., without skip-
ping to a new line or page, the excess
characters will automatically be placed on
the next line.

The PAGESIZE option can be specified
only for a file with the PRINT attribute,
and it can be specified only in the OPEN
statement. The default value for PAGESIZE
is 60 lines.

SUMMARY OF STREAM I/0O STATEMENTS

The following is a summary of the I/0 sta-
tements used with STREAM transmission,
along with their options, according to file
attributes (the statements are discussed
individually in detail in Part II, under

ES P = A=

GET FILE(filename) EDIT
(data-list) (format-1list) ;

N L X R ¥

PUT FILE(filename) EDIT
(data-list) (format-1list) ;

STREAM_QUTPUT PRINT:

PUT FILE (filename)
EDIT (data-list) (format-list)

SPAGE
SKIP (n)

ZPAGE EDIT (data-1list) (format-list)
SKIP(n) EDIT (data-list) (format-list))

Format lists may contain the following
format items:

A, E, F which may be used for any STREAM
file
PAGE which may be used only with STREAN

OUTPUT PRINT files

SKIP,X which may be used with any STREAM
file

R which may be used with any STREAM
file

RECORD-ORIENTED TRANSMISSION

Files that contain discrete records or
which are to be created as a collection of
discrete records, may be manipulated with
record-oriented input/output statements.
These statements are READ, WRITE, REWRITE,
and LOCATE.

A general description of these state-
ments is contained in this section. They
are described completely in Part II, in the
section Statements.

Each record obtained from a file or
transferred to a file is defined in terms
of data attributes of a variable (usually a
structure). For input, the record is
obtained from the input file and assigned,
without conversion, to the variable. For
out the data is transmitted without
conversion to the output file.

The variable whose value is transmitted
from or to a file can be

(1) an element variable that is

e not part of an array or structure,

e not a label or pointer variable;
(2) a structure of level 1, i.e.,
structure.

a major

RECORD I/O STATEMENTS

There are four RECORD I/0 statements you
can use for data transmission. They are:

READ
WRITE
REWRITE
LOCATE

These I/0 statements can be used only in
combination with options. The options are:
for the READ statement FILE, INTO, SET, and
KEY; for the WRITE statement FILE, FROM and
KEYFROM; for the REWRITE statement FILE,
FROM and KEY; for the LOCATE statement FILE
and SET. ©Each option, its use and its pur-
pose in the pertinent I/0 statement, is
individually discussed below.

The type of I/0 statement and option (s)
that you select to transmit a record
depends on

Data Transmission 65

(1) the form in which the file is organized
on the external medium (CONSECUTIVE or
INDEXED) ;

(2) the method you want to use to access
the file (SEQUENTIAL or DIRECT);

(3) the type of activity for which you want
to use the file (INPUT, OUTPUT, or
UPDATE) ;

(4) the area in main storage which is to be
allocated to the variable containing
the record (an I/O0 buffer set aside by
the compiler as a result of the BUFFERS
option in the ENVIRONMENT attribute, or
a separate area elsewhere in main
storage).

The READ statement with the INTO option
causes a record to be transmitted from the
file to a variable allocated in STATIC or
AUTOMATIC storage. You canh use it with any
INPUT or UPDATE file. 1In case of blocked
records, the READ statement provides for
automatic deblocking, so that in your pro-
gram, you are always concerned with logical
records only.

The READ statement with the SET option
is used to read a record from a CONSECUTIVE
INPUT or UPDATE file if it is desired to
operate upon input data in a buffer. This
saves main-storage srace. The record is
made accessible within the buffer by use of
a pointer which is set automatically by the
SET option to point to the desired logical
record in the buffer. For further details,

The WRITE statement causes a record to
be transmitted from main storage to the
file. It can be used with any OUTPUT file,
and with DIRECT UPDATE, but not with
SEQUENTIAL UPDATE. For blocked records,
the WRITE statement causes a logical record
to be placed into a buffer. Only when the
blocking of the record is complete, is
there actual physical output.

The REWRITE statement causes a record to
be replaced in an UPDATE file on a direct-
access storage device. TFor SEQUENTIAL
UPDATE files, the REWRITE statement speci-
fies that the last record read from the
file is to be rewritten in place. For
DIRECT UPDATE files, the REWRITE statement
must specify a key; consequently, any
record can be rewritten whether or not it
has first been read.

The LOCATE statement, which must always
have the SET option specified, is used to
create an output record in a buffer. The
logical record to be created in the output
buffer is accessed by means of a pointer
that is automatically set by the SET
option. For further details refer to the

66 IBM System/360 Model 20 DPS PL/I

_________ The LOCATE
statement with the SET option can be used
only with CONSECUTIVE OUTPUT files.

OPTIONS OF RECORD I/O STATEMENTS

The options you may use in RECORD I/O sta-
tements differ according to the attributes
of the associated file and the purpose of
the statement. A list of all the allowed
combinations for each type of file is given
later in this section.

The FILE option (also called the FILE spe-
cification) specifies the name of the file
upon which the operation is to take place.
It must appear as the first option in every
RECORD I/0 statement, and consists of the
keyword FILE, followed by the filename en-
closed in parentheses. An example of the
FILE option is shown in each of the state-
ments in this section.

The INTO option specifies a variable to
which the logical record is to be assigned.
It can be used in the READ statement for
any type of INPUT or UPDATE file. The
variable can be a based variable, if the
associated pointer variable has a value.
Consider the following statement:

READ FILE (DETAIL) INTO (RECORD_1);

This specifies that the next sequential
record is to be assigned to the variable
RECORD_1.

The SET Option

The SET option sets a pointer variable so
that it points to a logical record in a
buffer. It can be used with the READ sta-
tement for CONSECUTIVE INPUT or UPDATE
files. It is also used with the LOCATE
statement for CONSECUTIVE OUTPUT files.
Note that it cannot be used with KEYED
files. Consider the following examples:

DECLARE REC_ID POINTER;
DECLARE 1 MASTER_RECORD BASED (REC_ID),
2 IDENTIFICATION CHARACTER (10),
2 NAME CHARACTER (30),
2 ADDRESS,
STREET CHARACTER (15),
CITY CHARACTER (15),
STATE CHARACTER (15),
7ZIP CHARACTER (5):

wwww

READ FILE (MASTER) SET (REC_ID);

This example specifies that the next
record from the file MASTER is to be read
and that the pointer variable REC_ID is to
be set (automatically) to point to that
record in the I/0 buffer. If the logical
record is part of a record block and is not
the first record in the block, the actual
result of the statement will be merely to
set the value of the pointer to point to
the next logical record in the block. The
value of REC_ID must be associated with a
BASED variable, so that the fields of the
record can be accessed.

The name MASTER_RECORD is the based
variable that is used to describe a record
located in a buffer. Fields of the record
must conform to the attributes declared for
MASTER_RECORD. REC_ID is the pointer vari-
able that identifies the position of MASTER
RECORD within the buffer. The pointer
variable is declared explicitly.

After reading a record from the file
MASTER, the structure declaration
MASTER_RECORD is "overlaid" on the buffer
so that you can access the data in it and
process them by using the names declared in
the based structure. The statements

LOCATE MASTER_RECORD FILE
(PAYROLL) SET (REC_ID) ;
MASTER_RECORD=PAYRECORD;

specify that the based variable
MASTER_RECORD is to be allocated storage in
a buffer and that its location is to be
assigned to the pointer variable REC_ID,
which must have been declared as the point-
er to the based variable as shown above.

If the record MASTER_RECORD is part of a
record block, the next LOCATE statement may
only allocate storage in the buffer to the
next logical record in the same block. The
record is actually written when the block
is completed by a LOCATE or WRITE. state-
ment, or by a following CLOSE statement
regardless of whether or not the block is
complete.

After setting the jointer in the LOCATE
statement, you have to assign to the asso-
ciated based variable the data items in the
record which is to be stored in the output
buffer, as shown in the second statement
above.

The pointer REC_ID is set to point to
the location of the based variable
MASTER_RECORD in the output buffer. Then
the data items that are to be transmitted
are assigned to the based variable in the
assignment statement.

Both MASTER_RECORD and PAYRECORD nust
have identical structuring and attributes.

Based variables may be element
variables, structure variables, or array
variables.

The FROM option must be used in the WRITE
statement for any OUTPUT file and in the
WRITE or REWRITE statement for a DIRECT
UPDATE file. 7You may also use it in the
REWRITE statement for a SEQUENTIAL UPDATE
file. The FROM option specifies the vari-
able from which the record is to be writ-
ten. Consider the following statements,

WRITE FILE (MASTER) FROM (MAS_REC);
REWRITE FILE (MASTER) FROM (MAS_REC);

Both statements specify that the value
of the variable MAS_REC is to be written
into the file MASTER. In the case of the
WRITE statement, it specifies a new record
in a SEQUENTIAL OUTPUT file.

The REWRITE statement specifies that
MAS_REC is to replace the last record read
from a SEQUENTIAL UPDATE file.

The KEY Option

The KEY option applies only to files of
INDEXED organization. The "key" is the
control field in the record i.e., the field
according to which the file is organized.
The KEY option must be used in the READ and
REWRITE (or WRITE) statements for DIRECT
files with the INPUT or UPDATE attribute.
You may use the KEY option in the READ sta-
tement of SEQUENTIAL files with the INPUT
or UPDATE attribute and INDEXED organiza-
tion. Any file for which the KEY option is
used must have the KEYED attribute.

If a REWRITE is executed for an INDEXED
file you must ensure that the key portion
of the record is not changed.

If an INDEXED file is being read sequen-
tially, the KEY option can be used to posi-
tion the file at a specific record. Subse-
quent READ statements without the KEY
ortion will cause sequential reading to
continue from that point in the file.

Keys for INDEXED SEQUENTIAL OUTPUT files
must be in ascending seguence.

The KEY option consists of the keyword
KEY followed by a parenthesized expression,
rarticular record. The expression must be
a character_string whose length is adjusted
to the length specified in the KEYLENGTH
option of the ENVIRONMENT attribute. The

key in the file., The recorded key is
embedded in the data part of each logical
record. The key location within the record

Data Transmission 67

must be specified in the KEYLOC(n) option
of the ENVIRONMENT attribute.

The expression in the KEY option must
result in a valid key. Consider the fol-
lowing statements:

READ FILE(MASTER)INTO (PAY_REC)KEY (NAME) ;
REWRITE FILE (MASTER) FROM (PAY_REC) KEY (NAME) ;

The first statement specifies that the
record of the file MASTER with a key ident-
ical to the value of the variable NAME is
to be read into the variable PAY_REC.

The second statement specifies that the
record of the file MASTER with a key ident-
ical to the value of the variable NAME is
to be updated.

The KEYFROM Ortion

The KEYFROM option is used only for files
of INDEXED organization. You may use it in
a WRITE statement to create or extend an
INDEXED OUTPUT file or to add new records
to an INDEXED UPDATE file. Consegquently,
it can appear in a WRITE statement for an
INDEXED SEQUENTIAL OUTPUT file or for an
INDEXED DIRECT UPDATE file. It cannot be
used for files with the CONSECUTIVE attri-
bute. Any file for which the KEYFROM
option is specified must have the KEYED
attribute.

If a WRITE is executed for a file with
INDEXED organization, the key value speci-
fied in the KEYFROM option is moved auto-
matically to the position in the record
specified by KEYLOC (in the ENVIRONMENT
attribute) .

The KEYFROM option specifies the logical
location, within the file, where the record
is to be written. It specifies the
recorded key, whose value 1is used to deter-
mine the location. It is written with the
keyword KEYFROM followed by a parenthesized
expression. The expression always has to
result in a character string. The length
of the recorded key has to be specified in
the KEYLENGTH option of the ENVIRONMENT
attribute. Consider the following example:

WRITE FILE (PAYROLL)FROM (PAY_REC)
KEYFROM (NAME] | ADDRESS) ;

This statement specifies that the value
of PAY REC is to be written into the loca-
tion specified by the value of the
character-string variable NAME concatenated
with the character-string variable ADDRESS.

68 IBM System/360 Model 20 DPS PL/I

SUMMARY OF RECORD I/O STATEMENTS AND
ASSOCIATED OPTIONS

This section provides a summary of the
allowed RECORD I/O statements, along with
their options, according to file
attributes.

CONSECUTIVE INPUT:

READ FILE (filename)INTO (variable);
READ FILE (filename)SET (pointer-variable);

CONSECUTIVE OUTPUT:

WRITE FILE (filename)FROM (variable)
LOCATE variable FILE (filename)
SET (pointer-variable);

CONSECUTIVE UPDATE:

READ FILE(filename) INTO(variable) ;

READ FILE (filename)SET (pointer-variable);
REWRITE FILE(filenanme) ;

REWRITE FILE (filename) FROM (variable);

INDEXED SEQUENTIAL_INPUT:

READ FILE(filename) INTO(variable)
[KEY (expression) J;

INDEXED_SEQUENTIAL OUTPUT:

WRITE FILE(file—-name) FROM (variable)
KEYFROM (expression) ;

INDEXED SEQUENTIAL UPDATE:

READ FILE (filename)INTO (variable)
[KEY (expression)];

REWRITE FILE (filename) FROM (variable) ;

INDEXED DIRECT_ INPUT:

READ FILE(filename)
INTO (variable) KEY (expression) ;

INDEXED _DIRECT_UPDATE:

READ FILE(filenanme)
INTO {(variable)KEY (expression);

REWRITE FILE (filenanme)
FROM (variable) KEY (expression) ;

WRITE FILE (filename)
FROM (variable) KEYFROM (expression) ;

NOTES ON FILE ORGANIZATION AND ACCESS
METHODS USED WITH RECORD-ORIENTED
TRANSMISSION

The following points cover the salient
environmental factors in the use of RECORD
transmission:

sing, creation, or modification of the
records in a file is performed in a
particular order, that is, from the
first record of the file to the last
(or from the last to the first if the
BACKWARDS attribute has been
specified).

modification of the records in a file
is performed in random order. The par-
ticular record to be operated upon is
identified by a specified key.

A file of INDEXED organization that is
accessed, created, or modified by the
SEQUENTIAL access method has recorded
keys. The keys may be ignored while
accessing sequentially. The way to
create a file containing recorded keys
is as an INDEXED SEQUENTIAL OUTPUT
file. It is then written in INDEXED
organization and can later be accessed
by either the SEQUENTIAL or the DIRECT
method.

INDEXED SEQUENTIAL INPUT and INDEXED
SEQUENTIAL UPDATE files may be posi-
tioned to a particular record within
the file by a READ operation that spe-
cifies the key of the desired record.
Thereafter, successive READ statements
without the KEY option will cause
sequential reading to continue from
that point in the file. This kind of
accessing may be used only if the KEYED
attribute is specified in the file
declaration.

Existing records of a SEQUENTIAL UPDATE
file can be rewritten, modified, or
ignored, but the number of records can-
not be increased or decreased. An
existing record in an UPDATE file is
replaced through the use of a REWRITE
statement.

The FROM option in a REWRITE statement
for a SEQUENTIAL UPDATE file must name
the variable from which the data is to
be rewritten.

If the READ INTO option is used with a
CONSECUTIVE UPDATE file and the next
REWRITE statement does not make use of
the FROM option, the record in the file
is not updated.

A WRITE statement adds a new record to
a file, while a REWRITE statement
replaces an existing record. Thus, a
WRITE statement may be used with OUTPUT
files and INDEXED DIRECT UPDATE files,
but a REWRITE statement may be used
with UPDATE files only. Moreover, for
INDEXED DIRECT UPDATE files, a REWRITE
statement uses the KEY option to iden-
tify the existing record to be
rerlaced; a WRITE statement uses the
KEYFROM option, which not only speci-
fies where the record is to be written
in the file, but also specifies an
identifying key to be recorded in the
file.

Data Transmission 69

Editing and Character-String Handling

The data manipulations that can be per-
formed by arithmetic, comparison and the
concatenation operations are extended in
PL/I by a variety of character-string
handling and editing features. These fea-
tures are specified by data attributes,
statement options, built-in functions, and
the pseudo-variable SUBSTR.

Following is a general description of
each feature, along with illustrative
examples.

Editing by Assignment

The most fundamental form of editing per-
formed by assignment is the conversion of
the value assigned to a field to a form
that agrees with the attributes of the
receiving field. By making the assigned
value conform to the attributes of the
receiving field, the type, precision, or
length of the assigned value may be
changed. Such alteration can involve the
addition of digits or characters to, and
the deletion of digits or characters from
the converted iten.

THE_ASSIGNMENT _STATEMENT

A simple assignment statement can be used
for the type of "editing" described above.

Consider the following example:

DCL A DECIMAL FIXED (5,2),
PROD DECIMAL FLOAT (8);

A = PROD;

Assume that PROD has obtained a value in
a statement preceding the assignment state-
ment. This value would then be stored in
PROD according to the attributes declared
for PROD. The assignment statement causes
the value of PROD to be converted to a
fixed-decimal value and to be stored in A.

Data

When a character-string value is assigned
to a character-string variable, it is, if
necessary, truncated or extended on the
right to conform to the declared length of
the receiving variable. For example,

70 IBM System/360 Model 20 DPS PL/I

assume SUBJECT has the attribute
CHARACTER(10), indicating a character
string of ten characters. Consider the
following statement:

SUBJECT = 'TRANSFORMATIONS?;

The length of the string on the right is
fifteen characters; therefore, the string
will be truncated on the right so that the
last five characters are lost when it is
assigned to SUBJECT. This is equivalent to
executing:

SUBJECT = 'TRANSFORMA';

If the assigned string is shorter than
the length declared for the receiving
character-string variable, the assigned
string is extended on the right with blank
characters. Assume that SUBJECT still has
the attribute CHARACTER (10). Then the fol-
lowing two statements assign equivalent
values to SUBJECT:

SUBJECT
SUBJECT

'PHYSICS?';
"PHYSICSbbb';

The letter b indicates a blank character.

OTHER_FORMS_OF_ ASSIGNMENT

In addition to the assignment statement,
PL/I provides two other ways of assignment
that involve editing. Both of them use GET
and PUT statements. 1In one of them actual
input and output operations are performed,
while in the other data movement is entire-
ly internal.

STREAM I/O operations can be treated as a
form of assignment, although transmission
occurs between the internal and external
storage facilities of the computer.

Stream-oriented I/0 operations provide a
variety of editing functions that are app-
lied when data items are read or written.
These editing functions are similar to
those of the assiynment statement, excejpt
that any data conversion always involves
character type: conversion from character
type on input, and conversion to character
type on output.

Note: Record-oriented I/0 operations do
not cause any data conversion of items in a
logical record when it is transmitted.
Required editing of the record must be per-

formed within internal storage either
before the record is written or after it is
read.

Assignment by Using the STRING Option_in
the GET and PUT Statements

With the STRING option in the GET and PUT
statements you can cause transmission of
data between main storage locations rather
than between the main storage and external
storage facilities. In GET and PUT state-
ments, the FILE option, specified by FILE
(filename), is replaced by the STRING
option, as shown in the following general
format:

GET STRING (character-string-variable)
EDIT (data-list) (format-list);

PUT STRING (character-string-variable)
EDIT (data-list) (format-list);

SRS as

items to be assigned to variables in the
data list are to be obtained from the spe-
cified character-string variable. The PUT
data list are to be assigned to the speci-
fied character-string variable.

The STRING option is used with edit-
directed transmission, which considers the
character-string variable to be a con-
tinuous string of characters. This option
permits data gathering or scattering opera-
tions to be performed with a single state-
ment, and it allows stream-oriented proces-
sing of character strings that are trans-
mitted by record-oriented statements.

Consider the following statement:

PUT STRING (RECORD) EDIT
(NAME, PAY#, HOURS*RATE)
(A (12) ,2(7) ,F(8));

This statement specifies that the
character-string value of NAME is to be
assigned to the first (leftmost) 12 charac-
ter positions of the string named RECORD,
and that the character-string value of PAY#
is to be assigned to the next seven charac-
ter positions of RECORD. The value of
HOURS is then multiplied by the value of
RATE, and the product is to be handled like
F-format output and assigned to the next
eight character positions of RECORD.

Freguently, it is necessary to read
records of different formats, each of which
carries with it an indication of its format
in the form of a code. The STRING option
provides an easy way to handle such
records; for example:

READ FILE
GET STRING

(INPTR) INTO (TEMP);

(TEMP) EDIT (CODE) (F (1))

IF CODE ,=1 THEN GO TO OTHER_TYPE;
GET STRING (TEMP) EDIT(X,Y,Z) (X(1),
3 F(10,4));

The READ statement reads a record from
the input file INPTR. The first GET state-
ment uses the STRING option to extract the
code from the first byte of the record and
to assign it to CODE using an F-format
item. The code is tested to determine the
format of the record. If the code is 1,
the second GET statement then uses the
STRING option to assign the items in the
record to ¥, Y, and Z. Note that the
second GET statement specifies that the
first character in the string TEMP is to be
ignored (the X (1) format item in the format
list). Each GET statement with the STRING
option always specifies that the scanning
is to begin at the first character of the
string. Thus, the character that is
ignored in the second GET statement is the
same character that is assigned to CODE by
the first GET statement.

In a similar way, the POT statement with
a STRING option can be used to create a
record within main storage. In the follow-
ing example, assume that the file OUTPRT is
eventually to be printed.

PUT STRING (RECORD) EDIT
(NAME, PAY#, HOURS*RATE)
(X(1),a(12) ,X(10) ,A(7),X(10),F (8));
WRITE FILE (OUTPRT) FROM (RECORD);

The X (1) in the format list of the PUT
statement specifies that the first charac-
ter assigned to the character-string vari-
able RECORD is to be a blank, which means
"skip two lines", when the file eventually
is printed. Following that, the values of
the variables NAME and PAY# and of the ex-
pression HOURS % RATE are assigned. The
format list specifies that ten blank chara-
cters are to be inserted between NAME and
PAY# and between PAY# and the expression
value, The WRITE statement is used to
write the record into the file OUTPRT.

The PICTURE Specification

The editing capabilities associated with
data assignment, namely, conversion to a
specified data tyye with accompanying trun-
cation and/or padding, can be extended by
use of the picture specification. A pic-
ture specification consists of a sequence
of character codes (picture characters)
that specify editing operations to be per-
formed on numeric character values. (a
detailed discussion of each picture charac-
ter, together with examples of its use,
appears in Part II of this publication, in
the section Picture-Specification_Charac-
ters. The following discussions are con-

Editing and Character-string Handling 71

cerned with general principles that govern
the use of the picture specification).

A picture specification is used to
describe numeric-character data, which is
data that represents a numeric value. It
is therefore also referred to as a numeric-
character variable.

A picture specification is always en-
closed in apostrophes and is used with a
PICTURE attribute in a DECLARE statement:

DECLARE PAYMT PICTURE '%$999V.997;

In addition to the picture character 9
(vhich is used to represent a digit), pic-
ture specifications can contain other pic-
ture characters that are used to edit
numeric-character data. The general func-
tions performed by these additional picture

Numeric-Character Data below.

As opposed to character-string
variables, for which assignment is always
from left to right and padding and trunca-
tion are on the right, assignment to a
numeric-character variable depends upon the
location of the assumed decimal point (spe-
cified by the picture character V). Values
assigned to numeric-character variables are

The value of a numeric-character variable
can be interpreted in two ways, either as
an arithmetic value or as a character-
string value.

For a numeric-character variable
described with a picture specification that
contains only the picture character 9 (one
or more times), the arithmetic value is the
value expressed by the character string,
that is, a decimal integer.

If, however, editing characters are
included in the picture specification, the
arithmetic value and the character-string
value are usually different. Editing
characters are actually stored internally
in the specified positions of the variable.
The editing characters then are considered
to be part of the character-string value of
the variable; they are not, however, a part
of its arithmetic value, which involves
only decimal digits, the assumed location
of a decimal point, and the sign (if
present) .

If the value of a numeric-character
variable is assigned to another numeric-
character variable or to a coded arithmetic
variable, only the arithmetic value is
assigned. In the assignment to a coded

72 IBM System/360 Model 20 DPS PL/I

arithmetic variable (or in the appearance
of a numeric-character variable in an
arithmetic-expression operation), conver-
sion to coded arithmetic is performed.

If the value of a numeric-character
variable is assigned to a character-string
variable, no actual conversion is neces-
sary, and any specified editing characters
are included in the assignment.

An ordinary character-string variable
(specified with the CHARACTER attribute)
can be defined on a numeric-character vari-
able, using the DEFINED attribute specifi-
cation. Any reference to the character-
string variable then is a reference to the
character~-string value of the numeric-
character variable. For example:

DECLARE A PICTURE '$999V.99°',
B CHARACTER (7) DEFINED A,
C DECIMAL FIXED (5,2);
128.76;
A;

(@]
W

After the constant is assigned to A, its
arithmetic value is 128.76. This is the
value that is assigned to C (after conver-
sion to internal coded arithmetic). The

character-string_value of A, however, is

character-string variable with a length of
7 or greater, this is the value that would
be assigned. The same value, $128.76, is
the value of B, since a character string
defined on a numeric-character variable
represents the character-string value of
the numeric-character variable.

No arithmetic variable (except another
identical numeric-character variable) can
be defined on a numeric-character variable
without causing an error.

EDITING_NUMERIC-CHARACTER_DATA

The basic picture character of a numeric-
character field is 9. Consider the follow-
ing example:

DECLARE COUNT PICTURE '99999¢;

Although COUNT is a string of five
characters, it can only contain numeric
digits; it is a numeric-character variable
whose value can be interpreted as a five-
digit unsigned fixed-point decimal integer.
Unless specified otherwise (with the pic-
ture character V), a decimal point is
always assumed to be at the right end of a
numeric-character variable. Assume, for
example, that COUNT as declared above
aprears in the following assignment
statement:

COUNT = 123.45;

When the assignment is performed, the
decimal point of the constant is aligned on
the assumed point declared for the numeric-
character variable, and the two rightmost
digits are lost. Two zero digits are then
inserted on the left side. The effect of
the above assignment therefore, is egquiva-
lent to that of the following statement:

COUNT = 00123;

With the picture character V, you can
specify an assumed decimal point to be any-
where in a numeric-character variable:

DECLARE TOTAL PICTURE '999V99';

Here the value of TOTAL is interpreted
as a string of five characters representing
a five-digit unsigned fixed-point decimal
number with two fractional digits. The
decimal point of a value assigned to TOTAL
will be aligned between the third and
fourth digit positions as specified by the
picture character V. Consequently, the
following two assignment statements are
equivalent:

TOTAL
TOTAL

123;
123.00;

Note, however, that TOTAL contains only
five characters. The picture character V
does not specify an actual character posi-
tion in the numeric-character field; it is
used only to align decimal points. And if
TOTAL were converted to a character string
and then printed, no decimal point would
appear in the printed field; its character-
string value does not include a decimal
point.

A picture specification can contain a
decimal-point insertion character (.). It
merely indicates that a point is to be
included in the character representation of
the value. Therefore, the decimal point is
part of the character-string value. It
does, however, not cause decimal-point ali-
gnment during assignment, since it is not
part of the arithmetic value. 0Only the
picture character V causes alignment of the
decimal point. For example:

DECLARE SUM PICTURE '999Vv.99°';

SUM is a numeric-character variable
representing numbers of five digits with a
decimal point assumed between the third and
fourth digits. The actual point specified
by the decimal~point insertion character is
not part of the arithmetic value; it is,
however, part of the character-string
value. The decimal-point insertion charac-
ter can appear on either side of the char-
acter V. (See Part II, Picture-

Specification Characters).

The following two statements assign the
same value to SUM:

suM
SO

123;
123.00;

In the first statement, two zero digits
are added to the right of the digits 123.

Note the effect of the following
declaration:

DECLARE RATE PICTURE '9V99.99';
Let RATE be used as follows:
RATE = 7.62;

When this statement is executed,
decimal-point alignment occurs on the char-
acter V and not on the decimal-point inser-
tion character that appears in the picture
srecification for RATE. If RATE were
interpreted as a character string and then
printed, it would appear as 762.00, but its
arithmetic value would be 7.6200.

Unlike the character V, which can appear
only once in a picture specification, the
decimal-point insertion character can
appear more than once; this allows digit
groups within the numeric-character data
item to be separated by points, as is com-
mon in Dewey decimal notation and in the
numeric notations of some European
countries.

In addition to the decimal-point inser-
tion character, PL/I provides two other
insertion characters: comma (,) and blank
(B) , which are used in the same way as the
decimal-point insertion character. Consid-
er the following statements:

DECLARE RESULT PICTURE '9.999.999,Vv99';
RESULT = 1234567;

The character-string value of result
would be '1.234,567,00°".

Note that decimal-peint alignment occurs
before the two rightmost digit positions as
specified by the character V. If RESULT
were assigned to a coded arithmetic field,
the value of the data converted to arith-
metic would be 1234567.00.

Besides supplying insertion characters,
PL/I also provides rejplacement characters
that allow zeros in specified positions to
be replaced by blanks or asterisks. One
such character is the character %, which is
used to replace leading (leftmost) zeros
with blanks:

DECLARE TALLY PICTURE '22Z9';
TALLY = 0012;

Editing and Character-string Handling 73

The character-string value of TALLY is
equivalent to the character-string constant
'bb12' (where the letter b indicates a
blank character).

Other picture characters control the
appearance of signs and the currency symbol
(3) in specified positions of the numeric-
character data item., For example, a dollar
sign can be inserted to the left of a
numeric-character item, as indicated in the
following statements:

DECLARE PRICE PICTURE '%99V.99';
PRICE = 12.45;

The character-string value of PRICE is
equivalent to the character-string constant
*$12.45%, Its arithmetic value, however,
would be 1245 with a precision of (4,2), or
12,45,

The picture specification can also spe-
cify floating-point formats. These formats
are discussed in Part II, Picture-
Specification_Characters.

The principal purpose of a picture specifi-
cation 1s to edit data that is to be
printed. For example, in a payroll appli-
cation, the digits representing an emp-
loyee's salary might be 0017250. These
digits would be much more meaningful on a
paycheck in an edited form, such as $xx172.
50; the asterisks might be used to disco-
urage an attempt to alter the amount. This
could be done, for example, with the speci-
fication '"$xx%%x9.997',

If specified in an arithmetic expres-
sion, the value of a numeric-character data
item is converted to coded arithmetic.
Note, however, that this conversion will
require the compiler to insert extra cod-
ing. ©Note also that any editing characters
in the picture specification will be disre-
garded in the conversion. Consider the
following example:

DECLARE RESULT FIXED DECIMAL (3,2),
COST PICTURE '$9V.99';
1.10;

= 2 % COST;

COST =
RESULT

74 IBM System/360 Model 20 DPS PL/I

The character-string value of COST is
$1.10. The editing characters (% and .)
are present in the item. However, when the
expression 2 % COST is evaluated, the
arithmetic value of COST is converted to
coded arithmetic. When the value of the
expression is assigned to RESULT, the value
of RESULT will be 2.20 (i.e., 220 with pre-
cision (3,2)). If RESULT is printed,
neither the $ symbol nor the decimal point
will be printed.

Built-In Functions for Character-String Handling

PL/I provides a number of built-in func-
tions for character-string handling that
add power to the string-handling facilities
of the language. One of these functions,
SUBSTR, can also be used as a pseudo-
variable. Following are brief descriptions
of the functions (more detailed descrip-
tions appear_in_Part II, Built-In_ Functions

The CHAR_built-in function converts a
specified data item to a character string.
The built-in function allows you to specify
the length of the converted string and thus
override the length that would result from
the standard rules of data conversion.

The SUBSTR_built-in_function, which can
also serve as a pseudo-variable represent-
ing a receiving field, allows a specific
substring to be extracted from (or assigned
to, in the case of a pseudo-variable) a

specified string value.

The HIGH built-in_ function provides a
string of a specified length that consists
of repeated occurrences of the highest
character in the collating sequence. For
the IBM System/360, the character is hexa-
decimal FF.

The LOW_built-in_function provides a
string of a specified length that consists
of repeated occurrences of the lowest char-
acter in the collating seguence. For the
IBM System/360, the character is hexa-
decimal 00.

Data can be referred to in a procedure only
if the names identifying that data are
known within that procedure, that is, if
the procedure lies within the scope of the
names. The scope of a name is usually the
procedure in which it is declared. The
scope can, however, be extended in one of
two ways:

e Dby specifying the EXTERNAL attribute for
the name, or

procedure that is to be activated (or
invoked).

The type of argument you can pass to an

File names, labels, and entry names cannot
be passed as arguments.

Arguments are passed in a parenthesized
list, called an argument list, contained in
the invoking statement, which may be a CALL
statement or a function reference. Dif-
ferent names or expressions in an argument
list are separated by commas.

Arguments passed to an invoked procedure
nust be accepted by that procedure. This
is done by the explicit declaration of one
in the PROCEDURE statement of the invoked
procedure, A parameter is a name used
within the invoked procedure to represent
another name or expression that is passed
to the procedure as an argument. Each

statement. This correspondence is from
left to right; the first argument corres-
ponds to the first parameter, the second
argument corresponds to the second paramet-—
er, and so forth, 1In general, any
reference to a parameter within the invoked
procedure is treated as a reference to the
¢orresponding argument. The number of
arguments and parameters must be the same.
Note that, although an argument and the
corresponding parameter refer to the same
storage area, they may have different
names.

The example below illustrates how para-
meters and arguments may be used:

Arguments and Parameters

ALPHA: PROCEDURE;
DCL BETA ENTRY;
DCL NAME CHAR (20),
ITEM CHAR (5);

CALL BETA (NAME, ITEN);

END;

BETA: PROCEDURE (FIELD, OBJECT);
DCL FIELD CHAR (20),
OBJECT CHAR (5);

PUT FILE (OUT) EDIT (FIELD, OBJECT)
(A(20), X(10), R(5));
END;

In the procedure ALPHA, NAME is declared
as a string of 20 characters, ITEM as a
string of five characters. The CALL state-
ment in ALPHA invokes the procedure BETA,
and the parenthesized list included in this
procedure reference contains the two argu-
ments being passed to BETA. The PROCEDURE
statement defining BETA declares two para-
meters, FIELD and OBJECT. When BETA is
invoked, NAME is associated with FIELD and
ITEM with OBJECT. Each reference to FIELD
in BETA is treated as a reference to NANE,
and each reference to OBJECT is treated as
a reference to IT&lM. Therefore, the POUT
statement causes the values of NAME and
ITEM to be written in the file named OOUT.
Note: The entry name of the invoked proce-
dure (in the example, BETA) must appear in
a DECLARE statement with the ENTRY attri-
bute in the invoking procedure. Excepted
from this rule are built-in functions,
which are discussed later in this section.

The rassing of arguments usually
involves the passing of names and not mere-
ly of the values represented by these
names. Storage allocated for a variable
before it is passed as an argument is not
duplicated in the invoked procedure. Any
change of value specified for a parameter
in the invoked procedure actually is a
change in the value of the argument in the
invoking procedure. Such changes remain in
effect when control is returned to the
invoking procedure.

A parameter can be thought of as

Arguments and Parameters 75

since both the argument and the parameter
represent the same value, the attributes of
a parameter and its corresponding argument
must be the same. For example, the progranm
is in error, if a parameter has the attri-
bute FIXED and the corresponding argument
has the attribute FLOAT.

A name 1s explicitly declared to be a
parameter by its appearance in the paramet-
er list of a PROCEDURE statement. However,
its attributes, unless the default attri-
butes apply, must be explicitly stated
within that procedure in a DECLARE
statement.

Through the specification of arguments
and parameters, procedures and functions
can be used throughout a program to perform
the same operations ujpon many different
data items whose names may be known only

within the invoking procedure.

The difference between a normal proce-
dure and a procedure referred to as a func-
tion is that a function usually returns a
value to the invoking procedure, whereas a
normal procedure does not return any value
to the invoking procedure. Functions and
procedures are inveoked by function and pro-
cedure references, respectively, that may
or may not contain arguments.

Note: An exception is the main procedure
of a program which initially is invoked by
the system and cannot be called by any
other procedure in a progranm.

Passing Arguments to Procedures

Arquments are passed to a procedure in the
invoking CALL_statement, which is known as

procedure_reference. The general format of
the procedure reference is as follows:

CALL entry-name{argument
[rargument...]);

Whenever a procedure is invoked, the
arguments 1n the invoking statement are
associated with the parameters of the entry
point, and control is then passed to the
invoked procedure. The invoked procedure
is thus activated, and execution begins.

Upon termination of an invoked proce-
dure, control normally is returned to the
invoking procedure. An invoked procedure
can be terminated in any of the following
ways:

1. Control reaches a GOTO statement that
transfers control to an external label.

2. Control reaches the final END statement

of the procedure. Execution of this
statement causes control to be returned

76 IBM System/360 Model 20 DPS PL/I

to the first executable statement fol-
lowing the statement that invoked the
procedure. This is considered to be
the normal return.

3. Control reaches a RETURN_statement in
the invoked procedure. This causes the
same normal return as is caused by the

END statement.

4. An error condition encountered in an
invoked procedure abnormally terminates
execution of that procedure and of the
entire program if the error cannot be
recovered.

The following example illustrates how an
invoked procedure interacts with the froce-
dure that invokes it:

A: PROCEDURE;
DCL READCM ENTRY;
DCL RATE FIXED (10,3),
TIME FIXED (5,2),
DISTANCE FIXED (15,5);

CALL READCM (RATE, TIME, DISTANCE);

END;

READCM: PROCEDURE (W,X,Y);
DCL W FIXED (10,3),
X FIXED (5,2),
Y FIXED (15,5);
GET FILE (INPUT) EDIT (W,X,Y)
(F(10,3),F(5,2) ,F(15,5));
Y = W % X;
IF Y > 0 THEN RETURN;
ELSE PUT FILE(OUTPUT)EDIT
(*ERROR READCHM') (A(12));
END;

The arguments RATE, TIME, and DISTANCE
are passed to the parameters W, X, and Y.
Consequently, in the invoked procedure, a
reference to W is the same as a reference
to RATE, X the same as TIME, and Y the same
as DISTANCE. This means that any change to
the values of W, X, or Y in procedure
READCM is a change to the values of RATE,
TIME, or DISTANCE, respectively, in proce-
dure A.

Passing Arguments to Functions

A function is a procedure that usually
requires arguments to be passed to it when
it is invoked. Unlike a procedure, which
is invoked by a CALL statement, a function
is invoked by the appearance of the func-

tion name (and associated arguments) in an
expression. Such an appearance is called a
function_reference. Like a procedure, a
function can operate upon the arguments
passed to it and upon other known data.

But unlike a procedure, a function is writ-

returned, together with control, to the
point of invocation, the function
reference. This single value can be an
arithmetic, character-string, picture, or
pointer_value. An example of a function
reference is contained in the following
procedure:

MAINP: PROCEDURE OPTIONS (MAIN);
DECLARE SPROD ENTRY;

Y %% 3 + SPROD (A,B,C);

END;

In this procedure, the assignment
statement

X =Y %% 3 + SPROD (A,B,C);

contains a reference to a function called
SPROD. The parenthesized list following
the function name contains the arguments
that are beiny passed to SPROD. Assume
that SPROD has been defined as follows:

SPROD: PROCEDURE (U,V,¥);

IF OOV + W
THEN RETURN (O0) ;
ELSE RETURN (UxVx%W) ;
END;

When SPROD is invoked by MAINP, the
arguments A, B, and C are associated with
the parameters U, V, and W, respectively.
Since attributes have not been explicitly
declared for the arguments and parameters,
and neither their names nor the name of the
invoked function (SPROD) start with any of
the letters I through N, the default attri-
butes of FLOAT DECIMAL (6) are applied to
each argument and parameter. Hence, the
attributes are consistent, and the associa-
tion of the arguments with the parameters
produces no error.

During the execution of SPROD, the IF
statement is encountered and a test is
made. If U is greater than V + W, the sta-
tement associated with the THEN clause is
executed; otherwise, the statement asso-
ciated with the ELSE clause is executed.

In either case, the executed statement is a
RETURN statement.

The RETURN_statement usually terminates
a function and returns control to the
invoking procedure. Its use in a function
differs somewhat from its use in a proce-
dure; in_a_function, not only does it

to the point of invocation. The general
format of the RETURN statement, when it is
used in a function, is as follows:

RETURN (expression);

The expression must be present and must

It is this value that is returned to the
invoking procedure at the point of invoca-
tion. Thus, for the above example, SPROD
returns either 0 or the value represented
by U % V x W, along with control to the
invoking expression in MAINP. The returned
value then effectively replaces the func-
tion reference, and evaluation of the
invoking expression continues.

ATTRIBUTES _OF VALUE_RETURNED_BY_ FUNCTION

You may declare the attributes of the value
to be returned by a function in two ways:

1. You can declare them by_default.

2. You can declare them explicitly follow-
ing the parameter list in the function
PROCEDURE statement.

Note that the value of the expression in
the RETURN statement is converted within
the function, wherever necessary, to con-
form to the attributes specified by one of
the two methods above.

In the previous examples of MAINP and
SPROD, the PROCEDURE statement of SPROD
contains no attributes declared for the
value it returns. The default attributes
FLOAT DECIMAL (6) are therefore applied,
since the name of the name of the invoked
procedure (SPROD) does not start with any
of the letters I through N. Since FLOAT
DECIMAL (6) are the attributes that the
returned value is expected to have, no con-
flict exists.

The following example gives you an illu-
stration of how you can declare attributes
for the returned value in the PROCEDURE
statement. Assume that the PROCEDURE sta-
tement for SPROD has been specified as
follows:

SPROD: PROCEDURE (U,V,W) RETURNS
DECIMAL);

(FIXED

With this declaration, the value
returned by SPROD will have the attributes
FIXED and DECIMAL. These attributes differ

Arguments and Parameters 77

from the ones that would be assigned by
default. To avoid possible error condi-
tions, you would have to specify this dif-
ference in the invoking as well as the
invoked procedure. You can do this with
the RETURNS_attribute.

The RETURNS _Attribute

The RETURNS attribute has to be specified
when a function returns a value that has
attributes other than the default attri-
butes FLOAT DECIMAL (6). It appears in the
invoking as well as the invoked procedure.

For the invoking procedure, you specify
it in a DECLARE statement which must con-
tain the entry name of the function to be
invoked and an attributes_list. The attri-
butes list specifies the attributes of the
value returned by that function. In the
invoking procedure the RETURNS attribute
appears in the following general form:

DECLARE entry-name RETURNS
(attributes-1list);

The RETURNS attribute specifies that
within the invoking procedure the value
returned from the named function is to be
treated as though it had the attributes
given in the attributes list. The word
treated is used because no conversion is
‘performed in an invoking procedure upon any
value returned to it. Therefore, if the
attributes of the returned value do not
agree with those in the attributes list of
the RETURNS attribute, an error will pro-
bably result.

Thus, in order to specify to the
compiler that in MAINP the value returned
by SPROD is to be handled as a FIXED DECI-
MAL value, the following declaration must
be given within MAINP:

DECLARE SPROD [ENTRY] RETURNS (FIXED
DECIMAL) ;

The ENTRY attribute may or may not be
specified together with the RETURNS
attribute.

For the invoked_procedure, you have to
specify the RETURNS attribute in the PROCE-
DURE statement, following the parameter
list. 1In the invoked procedure, the
RETURNS attribute appears in the following
general form:

entry-name: PROCEDURE (parameter-list)

RETURNS (attributes-1list);

The RETURNS attribute in the PROCEDURE
statement of the invoked procedure speci-
fies that the value returned has to have
the attributes specified in the attributes
list. Thus, the PROCEDURE statement of

78 IBM System/360 Model 20 DPS PL/I

SPROD would have to look as already shown
above:

SPROD: PROCEDURE (U,V,W) RETURNS
DECIMAL);

(FIXED

specified. It has to be specified

a) in the invoking procedure in the DECLARE
statement together with the entry name
of the invoked procedure and the attri-
butes list for the value to be returned;

b) in the invoked_ procedure (which can only
be a function) in the PROCEDURE
statement.

It is important to note some of the
things that are implied in the above dis-
cussion. Principally, you should remember
that during compilation of the invoking
procedure, there is no way for the compiler
to check a function procedure to determine
the attributes of the value it returns. 1In
the absence of explicit information, the
compiler can only assume that the values
returned will have the default attributes
DECIMAL FLOAT (6) unless the initial letter
of the entry name is I through N, in which
case the RETURNS attribute has to be speci-
fied. No conversion is performed for
values returned by a function. Therefore,
the attributes of the value to be returned
must be the same in the invoking as well as
in the invoked procedure. The RETURNS
attribute must be declared for a function
that returns any value with attributes not
consistent with default attributes.

BUILT-IN FUNCTIONS

similar to function procedures which you
can write yourself, is a comprehensive set

The set of built-in functions is an
intrinsic part of PL/I. It includes not
only the commonly used arithmetic- functions
but also other necessary or useful func-
tions related to language facilities, such
as functions for manipulating character
strings. Buillt-in functions are invoked
the same way programmer-defined functions
are invoked. Like programmer-defined func-

in Model 20 PL/I.
Note: Some built-in functions actually are
____________ (that is, as

though the code of the built-in function
actually appeared within the source pro-
gram) rather than as jrocedure invocations.
Built-in functions can only be referred to
in a source program by function references.

Neither the ENTRY attribute nor the
RETURNS attribute can be specified for any
built-in function name. The name appearing
in a function reference is recognized
without the need for any further identifi-
cation; attributes of values returned by
built-in functions are known by the
compiler.

Built-in function names are PL/I key-
words. They are not reserved. You can use
any built-in-function name in your progran
as a name to refer to any data you have
defined,

The ENTRY Attribute

The ENTRY attribute specifies that the

The general format of the ENTRY attri-
bute is as follows:

DECLARE entry—-name ENTRY;

each entry name appearing in

a) a CALL statement,

function which returns a value with the
default attributes FLOAT DECIMAL (6),
that is, a function for which the
RETURNS attribute has not been
specified.

Consider the following example, which
illustrates the use of the ENTRY and
RETURNS attributes:

A: PROCEDURE;
DCL B ENTRY,
FUNCTN ENTRY,
C RETURNS (FIXED DECIMAL);
DCL V DECIMAL FIXED (4),
W DECIMAL FIXED (3);

CALL B;
X = FUNCTN (Y,2Z);

END;
B: PROCEDURE;

END;
FUNCTN: PROCEDURE (&,B);

RETURN (A %% B);
END;
C: PROCEDURE (E,D) RETURNS (FIXED DECIMAL);
DCL E FIXED DECIMAL (4),
D FIXED DECIMAL (3);

RETURN (E % D),
END;

In this example, the procedure A invokes
three other procedures (B, FUNCTN, and C)
and the built-in function SQRT. B is a
normal procedure which returns control to A
when its END statement is executed. No
arguments are passed to it, and no values
are returned. Only the ENTRY attribute has
to be specified for it. FUNCTN is a func-
tion which is referred to in a function
reference (X = FUNCTN(Y,Z)). Since no
attributes are declared for the arguments
and their corresponding parameters, and
their names do not start with any of the
letters I to N, they are assumed to have
the default attributes. Only the ENTRY
attribute has to be specified. The func-
tion C (invoked in the function reference U
= C(V,W)) returns values not having the
default attributes. This means, that the
RETURNS attribute has to be specified in
both the invoking procedure (A) and in the
invoked function (C). The ENTRY attribute
may or may not be specified in the invokiny
procedure. The built-in function SQRT must
not be declared with any attributes; it is
recognized by the compiler as a built-in
function; the attributes of the value
returned by SQRT are known to the compiler.

Relationship of Arguments and Parameters

When a function or procedure is invoked, a
relationship is established between the

arguments of the invoking statement or ex-
pression and the parameters of the invoked
procedure. This relationship is dependent

created.

DUMMY ARGUMENTS

In the introductory discussion of arguments
and parameters it was pointed out that the
name of an argument and not its value is
passed to a procedure or function. How-
ever, there are times when an argument has
no name. A constant, for example, has no
name; nor does an operational expression.
But the mechanism that associates arguments
with parameters cannot handle such values

Arguments and Parameters 79

directly. Therefore, the compiler must
allocate storage for such values and assign
an internal name for each. These internal

_____________ You can-
not access these dummy arguments in the
compiler, but you should be aware of their
existence because any change to a parameter
will be reflected only in the value of the
dummy argument and not in the value of the
original argument from which it was
constructed.

A dummy argument is always created for
the following cases:

1. If an argument is a constant. For
exanmple:

CALL X(7.5);

2. If an argument is an expression involv-
ing operators. For example:

CALL X (A+B) ;
CALL X (+A);

3. If an argument is itself a function
reference containing arguments. For
example:

CALL X (SIN{Y)):

4. If an argument is an expression in
parentheses. For example:

CALL X ((R));

You may enclose an argument in paren-
theses, as shown in this example, if
you want to pass an arqument to a pro-
cedure, but do not want to change the
value of the argument in the invoked
procedure.

In all other cases, the argument name is
passed directly. The parameter becomes
identical with the passed argument; thus
changes to the value of a parameter will be
reflected in the value of the original
argument only if a dummy argument is not
created.

80 1IBM System/360 Model 20 DPS PL/I

ARGUMENT_AND_PARAMETER_TYPES

In general, an argument and its correspond-
ing parameter may be of any tyre, with the

_________ file names, entry
names and labels. An argument may be a
pointer provided that the corresponding
parameter is also a pointer; it may be a
character string provided that the corres-
ponding parameter is also a character
string, etc. However, not all argument/
parameter relationships are so clear-cut.
Some need further definition. Such cases
are given below.

If a parameter is an array_name, the
_________ The data
attributes of the argument must agree with
those of the parameter. The bounds of the
array argument must agree with the bounds
of the array parameter.

argument must be a structure name. The
relative structuring of the argument and
the parameter must be the same; the level
numbers need not be identical. The data
attributes of the elements of the structure
argument must match those of the corres-

ponding elements of the parameter.

If a parameter is an element_variable,
i.e., a variable that is neither a struc-
ture name nor an array name, the argument

_________ If the argument is
a subscripted variable, the subscripts are
evaluated before the subroutine or function
is invoked and the name of the specified
element is passed.

A parameter has no storage class and
therefore cannot be declared with any
storage-class attribute. All arguments
must be either STATIC or AUTOMATIC; they
cannot be BASED.

Note that the scale and precision of an
arithmetic constant passed as an argument
must be the same as that of its correspond-
ing parameter. Similarly, the length of a
character-string constant passed as an
argument must be the same as that of its
corresponding parameter.

When a PL/I program is executed, a large
number of exceptional conditions are
monitored by the system. These conditions
are automatically detected whenever they
arise. Exceptional conditions may be
errors, such as underflow or an input/
output transmission error, or they may be
conditions that are_ expected but infre-
gquent, such as the end of file or the end
of a page when output is being printed.

Each of the conditions for which a test
may be made has been given a name in PL/I.
You can use these names to control the
handling of exceptional conditions. The
condition names are keywords of the PL/I
language. For keywords and descriptions of
all exceptional conditions, see Part II
ON_Conditions.

Enabled Conditions and Established Action

A condition that can occur and cause an
interrupt and that is being monitored by
the system, is said to be enabled. Any
action specified to take place when such an
enabled condition arises and causes an

interrupt, is said to be established.

The conditions are checked automatical-
ly, and when they occur, the system will
take control and perform some standard
action specified for the condition. All
conditions are enabled by default, and the
standard system action is established for
then.

The most common condition is the ERROR
condition. A large number of different
errors may cause this condition to arise.
Standard system action for the ERROR condi-
tion is to terminate the progran.

You may specify in your programs whether
or not you want some conditions to be
enabled, that is, whether or not you want
them to cause an interrupt when they arise.

the condition will not cause an interrugt.

A1l input/output conditions and the
ERROR conditions are always enabled and
cannot be disabled. A1l of the computa-
tional conditions may be enabled or dis-
abled. 7You have to explicitly disable thenm
if you do not want them to cause an inter-
rupt when they occur.

Exceptional Condition Handling

Condition Prefixes

Enabling and disabling can be specified for
certain conditions by a condition prefix.

A condition prefix is a list of one or more
condition names, enclosed in parentheses
and separated by commas, and prefixed to a
procedure-statement label by a colon. The
condition prefix always precedes the
procedure-statement label. A condition
name in a prefix list indicates that the
corresponding condition is enabled within
the scope of the rrocedure to whose label
it is prefixed. The condition names can be
preceded by the word NO, without a separat-
ing blank or other delimiter, to indicate
that the corresponding condition is
disabled.

Condition prefixes are effective during
the execution of all statements within one
procedure including the END statement.
However, they are not in effect during the
execution of any other procedures which may
be invoked by that procedure.

Consider the following example:

(NOCONVERSION,NOFIXEDOVERFLOW) :
A: PROCEDURE;

»

CALL B;

END;
(NOCONVERSION) :
B: PROCEDURE;

END;

In this exampgle, the condition prefix
NOCONVERSION disables that condition for
procedure A; it 1s repeated for rrocedure
B, Although B is invoked by A, the condi-
tion prefixes have to be repeated if they
are to apply to B as well. The condition
rrefix NOFIXEDOVERFLOW specifies that the
condition FIXEDOVERFLOW is to be disabled
in A, that is, no interrupt is to occur
when that condition arises; however, during
execution of B, FIXEDOVERFLOW (as well as
all other conditions except CONVERSION) is
enabled by default, since NOFIXEDOVERFLOW
is not specified in the condition-prefix
list to B.

Exceptional-Condition Handling 81

The ON-Statement

A system action exists for every condition,
and if a condition arises, the systenm
action will be performed unless an ON sta-
tement has been executed specifying an
alternative action for that statement.

With the ON statement you can establish the
action to be taken when an interrupt
results from an exceptional condition that
has been enabled, either by default or by a
condition prefix.

Note: The action specified in an ON state-
ment will not be executed if the condition

The form of the ON statement is:
ON condition-name {SYSTEM; |ON-unit}

(For a full description, see Part II,

The keyword SYSTEM specifies standard
system action whenever an interrupt occurs:

ON FIXEDOVERFLOW SYSTEMN;

It reestablishes standard system action
for a condition for which some other action
has previously been established. 1In the
statement

ON FIXEDOVERFLOW GO TO ERROR;

GOTO ERROR is the ON-unit. You can use the
ON-unit to specify an alternative action to
be taken whenever an interrupt occurs. 1In
the above example, ERROR is the label of a
statement or the first of several state-
ments that specify the action to be taken,
for example to try to recover from the
error or to register the error and continue
processing.

An ON-unit must either be the pnull sta-
tement or a GO TO statement. A null state-
ment effectively causes the interrupt to be
ignored and, in general, causes control to
be returned to the point logically follow-
ing the point at which the interrupt
occurred. Thus, the effect of a null ON-
unit is to say: "When an interrupt occurs
as a result of this condition, do nothing
except continue". The above example with a
null statement would look as follows:

ON FIXEDOVERFLOW;

The semicolon (;) is the null statement.
The use of the null statement is not the
same as disabling a condition, for two
reasons: a) a null statement can be speci-
fied for any condition (except ENDFILE,
KEY, and CONVERSION), but not all condi-
tions can be disabled; b) disabling a con-

82 1IBM System/360C Model 20 DPS PL/I

dition, if possible, may save time by
avoiding any checking for this condition.
If a null ON-unit is specified, the systen
must still check for the condition,
transfer control to the ON-unit whenever an
interrupt occurs, although, in the ON-unit,
no action other than returning control is
taken.

Note: The specific point to which control
returns from a null ON-unit varies for dif-
ferent conditions. 1In most cases, control
returns to the point that immediately fol-
lows the operation in which the condition
arose. The section ON-Conditions in Part
ITI gives the point of return for all condi-
tions for which a null ON-unit can be spe-
cified. Return from a null CN-unit is a
normal return.

If an ON-unit is a GO TO statement, con-
trol is, when an interrupt occurs for the
sfecified ON-condition, transferred to the
label specified in the GO TO statement, as
described above. Linkage to the point at
which the interrupt occurred is thus lost
and a normal return cannot occur.

Scope_of_the ON-Statement

The ON-statement specifies that a specific
action is to be taken for a named condi-
tion, that is, the ON-statement associates
a condition with a specific action. Once
this association is established, it remains
in effect until it is overridden by another
ON-statement specifying the same condition,
or until the procedure in which it appears
is terminated.

An established_interrupt_action (estab-
lished by an ON-statement, not a comndition
rrefix) passes from a procedure to any pro-
cedure it invokes, and the action remains
in force for all subsequently activated
procedures unless it is overridden by the
execution of another ON-statement for the
same condition., If it is overridden, the
new action, extablished in an invoked pro-
cedure, remains in force only until that
procedure is terminated. When control
returns to the activating procedure, all
interrupt actions that were established at
the point of invocation, are reestablished.
This makes it impossible for an invoked
procedure to alter the interrupt action
established for the invoking procedure.

If more than one ON-statement for the
same condition appears in the same proce-
dure, each subsejuently executed ON-
statement overrides the previously estab-
lished action. Re-establishment is only
possible through the execution of another
ON-statement (for example, by transferring
control to an overridden ON-statement).

Consider the following example:

PROCEDURE;
ON FIXEDOVERFLOW GOTO A_ERR;

END;
PROCEDURE
ON FIXEDOVERFLOW GOTO B_ERR;

END;
PROCEDURE;

ON FIXEDOVERFLOW GOTO C_ERR;

.

ON FIXEDOVERFLOW GOTO D_ERR;

The ON-statement in procedure A estab-
lishes the action to be taken for the
FIXEDOVERFLOW error occurring within A.
(Note that FIXEZDOVERFLOW is enabled by
default and therefore does not require a
condition prefix to enable it).

The action specification made in A is
carried over into procedure B, because B is
invoked by A. Within B, however, the
action established in A 1is overridden by
another action specification. When proce-
dure C is called, the action established in
B for FIXEDOVERFLOW remains active until it
is overridden by the first action specifi-
cation which, in turn, is overridden by the
second action specification in procedure B.

When C returns control to B, the action
specified for the FIXEDOVERFLOW error in B
is re-established (ON FIXEDOVERFLOW GOTO
B_ERR;). When B returns control to A, the
action specified in A is re-established
(ON FIXEDOVERFLOW GOTO A_ERR;). Standard
system action is taken for all other condi-
tions enabled by default.

Exceptional-condition Handling 83

Based Variables and Pointer Variables

For each identifier you use in your PL/I
programs, the compiler must be able to
determine the associated attributes in
order to generate correct code.

In addition to determining the type of
operation, the compiler must be able to
determine the_address of each operand. 1In
some cases, the compiler must generate code
that will determine the address when the
program is executed. The storage class of
a variable determines the way in which the
address is obtained. There are three dis-
tinct classes:

1. Static Storage: The address of an
identifier is determined when the pro-
gram is loaded.

2. Automatic_Storage: The address is
determined upon entry to the procedure.

3. Based Storage: The address is con-
tained in a pointer variable. The con-
tents of this pointer variable may
change during program execution, so
that the same identifier can have dif-
ferent addresses at different times.

It is the third class, based storage,
with which this section is concerned.

Pointer Variables

A special type of variable, the pointer
variable, is used to locate data in
storage; that is, the data in storage is
"pointed to" by the pointer variable. Con-
sequently, a pointer variable may be

Based Variables

A based variable is a description_of_data
that can be applied to different locations
in storage, depending upon the value of the
associated pointer variable.

Based variables and pointer variables
are used with record-oriented_input/output.
They allow you to operate upon records in a
buffer without allocating storage in addi-
tion to the buffers.

With the rointer_variable, you can

1. explicitly specify the address of a
record to be operated upon in the buff-
er, and

84 IBM System/360 Model 20 DPS PL/I

2. locate, in the buffer, the record that
is to be transmitted by record-oriented
input/output.

With the based_variable, you describe
the record pointed to by the pointer vari-
able; that is, the record in the buffer
pointed to by the pointer variable is
treated as if it had the attributes of the

associated based variable.

When a based variable is declared, it
must be associated with a pointer that has
been explicitly declared. The form of the
declaration is:

DECLARE identifier BASED
(pointer-variable);
DECLARE pointer-variable POINTER;

For example:

DECLARE P POINTER;
DECLARE A BASED (P);

Whenever a reference is made to A, the
address of A will be the value of the asso-
ciated pointer variable, P in this case.
For example:

A=A+ 1;

In this statement, the pointer used to
determine the address of A will, in both
cases, be P.

So long as an associated pointer vari-
able has a valid value, any reference to
the based variable will always refer to the
location in storage identified by the
pointer variable.

A restriction imposed by the Model 20
PL/I compiler is that the pointer name used
in the declaration of a based variable must
be an unsubscripted, ungualified element
variable., Pointer variables must not be
elements of structures nor of arrays.

Values of Pointer Variables

Before a reference can be made to a based
variable, a value must be given to the
pointer associated with i1t. This can be
done in any of four different ways:

1. with the SET option of a READ
statement,

2. with the SET option of a LOCATE
statement,

3. by assignment of the value of another
pointer,

4., by assignment of the value returned by
the ADDR built-in function.

READ and_ SET

READ FILE (file-name) SET (pointer);

The READ statement with a SET option which
can be used only for CONSECUTIVE files,
causes a record to be read into a buffer
and the specified pointer variable to be
set to point to the record in the buffer.
A based variable, declared with the same
pointer, can then be used to refer to dif-
ferent fields of the record.

A based_variable is not a variable for
which main storage is reserved, but a pat-
tern which will be overlaid on data in main
storage pointed to by the associated point-
er variable; that is, if the based variable
is a structure variable, the data pointed
to by the associated rointer i1s treated as
if it had the same structuring as the based
variable. A reference to an element of the
based variable has the same effect as if
the record had been read directly into the
structure described by the based variable.

When records are blocked, the first
execution of a READ statement with the SET
option causes the transmission of a block
of physical records to a buffer and the
pointer to be set to point to the beginning
of the first logical record. The second
execution of the READ statement causes the
pointer variable to be set to point to the
location of the second logical record in
the block already in the buffer.

When records are unblocked, each execu-
tion of a READ statement with the SET
option causes actual data transmission from
the file to the buffer. In this case, the

rointer always has the same value.

LOCATE and_SET

L2100 PR3).y

LOCATE variable FILE(filename) SET (pointer) ;

The LOCATE statement, which must always
have the SET option and can only be used
for CONSECUTIVE files, allocates storage
for a based variable in an output buffer.
The action is similar to that of a READ and
SET, in that the based variable is, in
effect, overlaid on the buffer. The LOCATE
statement sets the pointer variable to
point to the location that a logical record
will have in an output buffer after it has
been assigned to the associated based
variable.

transmission from an output buffer to an

output file occurs only after the entire
block is in the buffer. Therefore, for
blocked records, a LOCATE statement is
executed repeatedly before actual data
transnission occurs; and for each execution
of a LOCATE statement, a pointer variable
is set to point to the location of the next
logical record to be constructed in the
buffer.

Assignment of Pointer Value

pointer-variable = pointer-variable;

The value of a pointer variable can be
assigned to another pointer variable by a
simple assignment statement. Assume that Q
and P are pointer variables and that P has
a valid pointer value.

Q = Pj;.
In this statement, Q would point to an
input buffer if P had been set by a READ

statement, or to an output buffer if P had
been set by a LOCATE statement.

The general form in which an ADDR built-in
function appears in a statements is:

pointer-variable = ADDR (variable);

The value returned to an ADDR function
reference is a valid pointer value that
specifies the location of a data variable
named as the argument of the function
reference. For example:

P = ADDR (R);

Execution of this assignment statement
will give the pointer variable P a value so
that it points to the location of the data
variable A. The value of an ADDR function
reference can be assigned to a pointer
variable only.

The argument of the ADDR function
reference can be a variable that represents
an element, an array, an element of an
array, a major structure, a minor struc-
ture, or an element of a structure.

Since the ADDR function can be used to
set a pointer to point to a nonbased vari-
able, this facility allows the use of a
based variable to refer to the yvalue of a
nonbased variable.

The data thus pointed to may then be
referred to by means of the pointer value
and based variable, provided the attributes
of the based variable are compatible with
that of the variable identified by the
pointer. The rules for the relation
between an argument and a parameter also

Based Variables and Pointer Variables 85

apply to the relation between a variable
identified by a pointer and the based vari-
able used to refer to it.

Example:

DECLARE ARRAY (10,10) STATIC EXTERNAL
FIXED, (P,Q,R) POINTER,
VALUE BASED (P) FIXED,
1 GROUP AUTOMATIC,
2 GRoOUPT,
3 A FIXED,
3 B CHARACTER (2),
2 GROUP2,
3 C CHAE (1),
3 D FLOAT,
1 DESCRIPTION BASED (Q),
2 A FIXED,
2 B CHARACTER (2),
SWITCH CHAR (1) BASED (R);
P = ADDR (ARRAY (I,J));
This statement assigns a value to the
pointer P so that it will point to the
location of the (I,J)th element of
ARRAY. When using the based variable,
VALUE it will be overlaid on the
(I,J)th element of ARRAY.
P = ADDR (GROUP.A);
Provides for the use of the based
variable VALUE in referring to
GROUP.A.

Q = ADDR (GROUP.GROUP1);

Provides for the use of the based
variable DESCRIPTION in referring to
the minor structure GROUP.GROUP1.
R = ADDR (GROUP.C);
Provides for the use of the based

variable SWITCH in referring to
GROUP.C.

Restrictions on Pointer Variables

Because a pointer is very closely related
to an address, its value is strongly depen-
dent upon the implementation in which it is
used. In order to reduce implementation
derendence, some restrictions are made on
the use of pointer variables. s

1. Pointer variables must not be elements
of structures or arrays.

2. Pointer variables must not be operands
of any operations except the comparison
operations specified by the operators =
and ,=.

86 IBM System/360 Model 20 DPS PL/I

3. The value of a pointer variable can be
assigned only to another pointer
variable.

4. Pointer variables cannot be used for
STREAM input and output. When used in
RECORD input and output, a pointer
value written as output cannot be
assumed to point to the same data if it
is read back in.

Use of Based Storage and Pointers

The based storage and pointer handling
facilities provided by the Model 20 PL/I
compiler are primarily intended to permit
processing of records in input and output
buffers. This can result in a significant
saving of storage, particularly when many
different record types exist in the sanme
file.

Many different declarations of based
variables can be associated with the same
pointer. The effect of this is that once
the pointer has been given a value, say by
a READ statement with a SET option, then
any of the record descriptions associated
with the pointer may be used to refer to
the record in the buffer. For example:

DECLARE P POINTER;

DECLARE 1 ISSUE BASED(P),
CODE CHAR (1),
PART_NO PIC '(7)9',
OTY PIC '9999',
DEPT PIC '99',
JOB_NO PIC ' (4)9°',

ECEIPT BASED (P),
CODE CHAR(1),
PART_NO PIC ' (7)9',
QTY PIC *9999¢+,
SUPPLIER PIC '({5)9°';

Py
NN

READ FILE (TRANS) SET (P);
IF ISSUE.CODE = 'R' THEN GOTO RL1;
IF SUPPLIER>1000 THEN GOTO INHS1;

In this example, the two record descrip-
tions ISSUE and RECEIPT are associated with
the same pointer. Once a record has been
read and P has been set, the record code
(CODE) is tested to determine whether a
record with the structure of ISSUE or that
of RECEIPT has been read. Depending on the
result, either record type is processed.
The records do not require working storage,
since the fpointer refers to a position
within the buffer.

The records can also contain variables
other than character strings and numeric
character fields. Any number of records
can be associated with the same pointer.
When the pointer is given a value, all of
the records will refer to the same storage
area and will effectively be overlaid.

Such overlaying of record descriptions can
be machine de;endent and should be used
with care.

Pointer Manipulation

Important for the manipulation of pointer
variables is the ADDR built-in function,
which has already been briefly discussed.
It regquires one argument, the name of a
variable, and it returns a value that
points to the variable. It can be used to
find the address of an element variable, an
array variable, an element of an array, a
major structure, a minor structure, or an
element of a structure.

The arygument in the ADDR function
reference may be the name of a nonbased or
based variable.

When using the ADDR function with arrays
and structures, it is important to note
that the ADDR of the first element of an

array or structure is the same as the ADDR
of the array or structure itself.

For example, given the following
declarations:

DECLARE P POINTER;
DECLARE B (10, 10) BASED (P),
A(10,10);

ADDR(A(1,1)) 1s the same as ADDR(A), and
with the followiny assignment:

P = ADDR (A);

B(1,1) will refer to the first element of

When writing your programs, it is
entirely your responsibility to ensure that
such references do access meaningful
storage locations, which must have been
allocated in some other way and whose
attributes are correct.

Based Variables and Pointer Variables 87

Part Il

Model 20 PL/I Syntax Rules

Picture Specification Characters

Picture specification characters appear in
a PICTURE attribute. 7You can use them to
specify the editing operations to be per-
formed on the associated data item. A dis-
cussion of the concepts of ricture specifi-
cations appears in Part I, in the section
Editing _and Character-String Handling.

In Model 20 PL/I, a ficture specifica-

DCL NUMBER PICTURE '999V.99';

NUMBER is the numeric-character variable
described by the picture specification
'999v.99', which means that NUMBER may con-
sist of 5 decimal digits and a decimal
point to the left of the rightmost two
digits. Arithmetic data associated with a
picture specification can consist only of
decimal digits, an (assumed) decimal point
and, optionally, a plus or minus sign.
Other characters generally associated with
arithmetic data, such as currency symbols,

can also be specified. However, these
characters are not part of the arithmetic
value of the numeric character variable,
although the characters are stored with the
digits and are considered to be part of the
character string value of the variable.

of the picture specification characters
listed in Figure 8.

You can use the picture characters in
these groups in various combinations.
These combinations depend upon the type of
data being described by the specification.
A detailed discussion of these types and
how they can be described follows below.

A numeric-character_variable can be con-

sidered to have two different types of
value, depending upon its use. They are

1) its arithmetic value and

2) its character-string value.

r T s 1
| | |
] Categor | Specification | Representing]
| o | ¢ |
|
[———= + + 1
| Digit and decimal-point specifiers I 9 | any decimal digit 1
i [v | assumed decimal point |
1 | | and subfield delimiter 1
L L L 1
r T T 1
| Zero suppression characters | Z | digit or blank |
1 | * | digit or x 1
[4 1 []
r T T !
| Numeric signs and currency symbol | $ | digit, %, or blank |
| (these are also drifting | S | digit, + sign, or blank]
| zero suppression characters) | - | digit, -, or blank }
t -- + : 1
] Insertion characters | R | comma]
| | . | decimal point |
| I | blank i
1 s 1 '}
r T T 1
Credit, Debit, and Overpunched signs	CR	CR if £field<o0
] DB	DB if field>O0	
	T	digit overpunched
l	I by sign	
	R	digit overiunched
i I	by - if field<o I	
F 1 + !		
Exponent Specifier	E	E (start of exponent)
1 ———— L L J

Figure 8. Picture-Specification Character

90 IBM System/360 Model 20 DPS PL/I

The arithmetic value is the value ex-
pressed by the decimal digits of the data
item, the assumed location of a decimal
point, and possibly a sign. The arithmetic
value of a numeric~character variable is
used whenever the variable appears in an
arithmetic operation or in an assignment to
a variable with either the FIXED or FLOAT
attribute. 1In such cases, the arithmetic
value of the numeric-character variable is
converted to internal coded-arithmetic
representation. The arithmetic value is
also used in an assignment to another
numeric-character variable.

The character-string value is the value
expressed by the decimal digits of the data
item, as well as all of the editing and
insertion characters appearing in the pic-
ture specification. The character-string
value does not, however, include the
assumed location of a decimal point as spe-
cified by the picture character V. The
character~-string value of a numeric-
character variable is used whenever the
variable appears in a character-string
operation or in an assignment to a
character-string variable, or wherever a
reference is made to a character-string
variable that is defined on the numeric-
character variable.

A picture specification can be made for
fixed-point or floating-point data. The

TR R

field can consist of two subfields: an
integer subfield describing the digits to
the left of the decimal point in the fixed-
point value, and a fractional subfield
describing the digits to the right of the
decimal point.

DCL NUMBER PICTURE '999V.99';

A major reguirement of the picture sgpe-
cification for numeric-character data is
that field must contain at least one pic-
ture character that specifies a digit posi-
tion. This picture character, however,
need not be the digit character 9. Other
picture characters, such as the zero
suppression characters (Z and %), also spe-
cify digit positions.

The picture specification for a
floating-point_value consists of two
fields: a mantissa field and an exponent
field. The mantissa field describes a

fixed-point value, which when multiplied by
ten raised to the power of the value
described by the exponent field gives the
actual value represented by the floating-
point notation; the mantissa field is spe-
cified in the same way that a fixed-point
field is specified. The exponent field
describes a signed or integer power of ten.

DCL NUMBER PIC '9V,9999ES99';

For further details about picture speci-
fications for floating-point values refer

section.

Digit and Decimal-Point Specifiers

The picture characters 9 and V are the
simplest form of numeric-character specifi-
cations you can use to represent fixed-
point decimal values.

9 specifies that the associated field
position is to contain a decimal digit.

V specifies that a decimal point is
assumed at this position in the asso-
ciated data item. However, it does not
specify that an actual decimal point is
to be inserted. The integer and frac-
tional parts of the assigned value are
aligned on the V character; therefore,
an assigned value may be truncated or
extended with zero digits at either end.
Note that if significant digits are lost
on the left, the result will be unde-
fined. If no V character appears in the
picture specification of a fixed-point
decimal value or in the mantissa field
of a picture specification of a
floating-point decimal value, a V is
assumed at the right end of the field
specification. This causes the assigned
value to be truncated, if necessary, to
an integer. The V character cannot
appear more than once in a picture spe-
cification. The V is considered to be a
fication; that is, the portion preceding
the V and the portion following it (if
any) are each a subfield of the
specification.

Figure 9 gives examples of numeric-
character specifications using the picture
characters 9 and V.

Picture-Specification Characters 91

r 1 T T L
| Source | Source Data 1 Picture 1 Character-String]
1 Attributes | (in constant form) | Specification | Valuetl |
F === t t 1
] FIXED (5)] 123u5 1 99999 | 12345 |
FILED (5)	12345 I 99999V 1 12345		
] FIXED (5) 1 12345	999V 99	345002)	
1 FIXED (5) 1 12345	V99999	000002]	
FIXED (7) i 1234567	99999 i 345672		
FIXED(3) 1 123 1 99999	00123 1		
] FIXED(5,2)	123.45 1 999v99	12345]	
FIXED(7,2) 1 12345.67	9v9 i 562]		
FIXED(5,2)] 123.45 i 99999 1 00123 i			
L 1 1 i]			
1 3 1			
*The arithmetic value is the value expressed by the digits and the actual or assumed			
location of the V in the specification.			
2In this case, PL/I does not define the result since significant digits have been lost			
on the left; the result shown, however, is that given for System/360 implementations.]			
L

— e 3

Figure 9.

Zero-Suppression Characters

The zero-suppression picture characters
charactefzgifiﬁa-ggiﬁa.—-§06_55§-G§e then
to cause leading zeros to be replaced by
asterisks or blanks.
those that

1) occur in the leftmost digit positions of
fixed-point numbers,

2) are to the left of the assumed position
of a decimal point, and

3) are not preceded by any of the digits 1
through 9.

The leftmost non-zero digit in a number
and all digits, zeros or not, to the right
of it represent significant digits.

Z specifies a conditional digit position
and causes a leading zero in the asso-
ciated data position to be replaced by a
blank character. When the associated
data position does not contain a leading
zero, the digit in the position is not
replaced by a blank character. The jpic-
ture character Z cannot appear in the
same subfield as the picture character
%, nor can it appear to the right of a
drifting picture character or any of the
gicture characters 9, T or R in a field.

specifies a conditional digit position
and is used the way the picture charac-

92 1IBM System/360 Model 20 DPS PL/I

Pictured Numeric-Character Examples

ter 2 is used, except that leading zeros
are replaced by asterisks. The picture
character * cannot appear with the pic-
ture character Z in the same subfield,
nor can it appear to the right of a
drifting picture character or any of the
picture characters 9, T, or R in a
field.
Note 1: 1If one of the picture characters %
or % appears to the right of the picture
character Vv, then all fractional digit
positions in the specification, as well as
all integer digit positions, must employ
the Z or % picture character, respectively.
When all digit positions to the right of
the picture character V contain zero-
suppression picture characters, fractional
zeros of the value will be suppressed only
if all positions in the fractional part
contain zeros and all integer positions
have been suppressed. The entire
character-string value of the data item
will then consist of blanks or asterisks.
No digits in the fractional part will be
replaced by blanks or asterisks if the
fractional part contains any significant
digit.
Note 2: Zero-suppression claracters must
not appear in pictures for floating-point
data,

Figure 10 gyives examples of the use of
zero-suppression characters. In the
figure, the letter b indicates a blank
character.

location of the V in the specification.

iThe arithmetic value 1s the value exyressed by the digits and the actual or assumed

El T T 1
\ Source | Source Data i Picture | Character-String |
1 Attributes | (in constant form) | Srecification | Value?
1 1 L 1 ¥ |

T T T)
] FIXED (5)] 12345 | 72299 | 12345 |
] l !]]
| FIXED (5) | 00100 | 72799 | bb100 |
! |) l l
I FIXED (5) | 00000 [22299 | bbb00 |
| | | | |
| FIXED (5) | 00100 I %2%22% I bb100 I
| | | | |
| FIXED (5) | 00000 | 272222 | bbbbb |
]] | | }
FIXED (5,2)	123.45	27799	bb123
FIXED (5,2)	001.23	ZZ7ZV99	bb123
]]]]		
FIXED (5)	12345	Z22ZV99	345002 i
i]	I		
FIXED (5)	00000	Z2ZVZZ	bbbbb
		l]	
FIXED (5)	00100	sk %ok Kk	*% 100
]			l
FIXED (5)	00000	sk fe e ek	oKk ok
	l		
FIXED (5,2)	000.01	ook Vo	*x%x0
=, i 1 1 _=			
1 l			
1

2In this case, PL/I does not define the result since significant digits have been lost]
on the left; the result shown, however, is that given for System/360 implementations. |

i}

Figure 10. Examples of Zero Suppression

Insertion Characters

(-), and blank (B) are insertion charac-
ters; they cause the specified character to
be inserted in the associated position of
the numeric-character data. They do not
indicate digit positions, but are inserted
between digits. Each does, however, actu-
ally represent a character position in the
character is suppressed. The comma and
point are conditional insertion_characters;
within a string of zero suppression charac-
ters, they, too, may be suppressed. The

Erp - F A 2 N Y 4

Note: Insertion characters are applicable
oniy to the character-string value. They
have no influence on the arithmetic value
of the data iten.

, causes a comma to be inserted in the
associated position of the numeric-
character data when no zero suppression
occurs. If zero suppression does occur,
the comma is inserted only when an
unsuppressed digit appears to the left

of the comma position, or when a V

appears immediately to the left of it
and the fractional part contains any
significant digits. 1In all other cases
where zero suppression occurs, one of
three possible characters is inserted in
tlace of the comma. The choice of char-
acter to rerlace the comma depends ujon
the first picture character that both
precedes the comma position and speci-
fies a digit position:

e If this character is an asterisk, the
comma position is assigned an
asterisk.

e If this character is a drifting sign
of a drifting currency symbol (dis-
cussed later), the drifting string is
assuned to include the comma posi-
tion, and the action taken is the
same as that for drifting characters.

e If this character is not an asterisk
or a drifting character, the comma
rosition is assigned a blank
character.

. 1s used the same way the comma picture
character is used, except that a point
(.) 1is assiygned to the associated posi-
tion. This character never causes point

Picture-Specification Characters 93

alignment in the picture specifications
of a fixed-point decimal number and is
not a part of the arithmetic value of
the data item. That function is served
solely by the picture character V.
Unless the V actually appears, it is
assumed to be to the right of the right-
most digit position in the field, and
point alignment is handled accordingly,
even if the point insertion character
appears elsewhere.

be inserted in the associated position
of the character-strinyg value of the
numeric-character field.

You can use the joint (or the comma) in
conjunction with the V to cause insertion
of the point (or comma) in the position
that delimits the end of the integer por-
tion and the beginning of the fractional
portion of a fixed-point (or floating-

point) number, as you may desire it in
printing, since the V does pnot cause print-
ing of a point. In this case, the point
nust immediately precede or immediately
follow the V. If the point precedes the V,
it will be inserted only if a significant
digit appears to the left of the V, even if
all fractional digits are significant. If
the point immediately follows the V, it
will be suppressed if all digits to the
right of the V are suppressed, but it will
appear if there are any fractional digits
(along with any intervening zeros).

The insertion characters B, comma, and
roint must be preceded by a digit position
in the same field.

Figure 11 yives examples of the use of
insertion characters. In the figure, the
letter b indicates a blank character.

T Source ; Source Data i Picture T Charaéter-string _}
| Attributes | (in constant form) | Specification | Value? |
i FIXED (4) T 1234 i 9,999 i 1,234 ;
: FIXED(6,2) : 1234,.56 : 9,999v.99 : 1,234.56 ;
: FIXED (4,2) : 12.34 ; ZZ2.VZ%Z : 12.34 :
: FIXED (4,2) : 00.03 : 2Z.VZZ 1 bbb03 :
: FIXED (4,2) : 00.03 : ZZV.ZZ : bb.03 :
; FIXED (4,2) : 12.34 : ZZV.Z2 : 12,34 :
: FIXED (4,2) : 00.00 : Z2aV.Z2Z : bbbbb :
; FIXED(4,2) : 67.89 : 9,999,999.v99 : 0,000,067.89 :
: FIXED(7,2) : 12385,67 : *%,999V.99 : 12,345.67]
: FIXED(7,2) : 00123.45 : *%,9997.99 : *%%x123.45 :
: FIXED(9,2) : 1234567.89 : 9.999.999v, 99 } 1.234.567,89 :
: FIXED(6) : 123456 : 99.999.9 : 12.345.6 :
: FIXED(6) : 001234 : 272,722,722 : bbb12,34]
: FIXED(6)]l 000000 ; 272,272,722 Il bbbbbbbb]I
: FIXED(6) : 000000 : dok , Kok, Kk : 8¢ 3 3 ok kKoK :
: FIXED (6) } 123456 : 99B99B99 } 12b34b56 :
i FIXED(3)]I 123 : 9BB9BB9 I| 1bb2bb3]I
{ 1The arithmetic vélue is the value exp;essed by th;—aigits and :he actual or assumed 1
[location of the V in the specification. i
Figure 11. Exam;les of Insertion Characters

94 IBM System/360 Model 20 DPS PL/I

Numeric Signs and Currency Symbol

The picture characters § and - specify
signs in numeric-character data. The pic-
bol in the character-string value of
numeric-character data.

You may use these ,icture characters ina
either a static or a drifting manner. A
drifting character is similar to a zero-
suppression character in that it can cause
zero suppression. However, a single drift-
ing character is always inserted (unless
the entire field is suppressed) in the
position specified by the end of the drift-
ing string or in the position immediately
to the left of the first significant digit.

cifies that a sign, a currency symbol, or a
blank (in the case of a minus sign charac-
ter if the data value 1is less than or equal
position. The drifting use specifies that
leading zeros are to be suppressed. In
this case, the rightmost suppressed posi-
tion associated with the picture character
will contain a blank, a sign, or the $ cur-
rency symbol.

A drifting character is specified by
field.——Thus, if the field contains one
currency symbol, it is interpreted as stat-
icy; i1f the field contains more than one
currency symbol, it is interpreted as
drifting. The drifting character must be
specified in each digit position through
which it may drift.

Drifting characters must appear in
strings. A string is a sequence of the
same drifting character, optionally con-
taining a V and one of the insertion
characters comma, point, or B. Any of the
insertion characters comma, point, or B
following the last drifting symbol of the
string is considered part of the drifting
string. However, a following V terminates
the drifting string and is not part of it.
A field of a picture specification can con-
tain only one drifting string. A drifting
string cannot be preceded by a digit posi-
tion, insertion characters, or a V. If a
drifting string exists in a field, zero
suppression characters (Z or %) must not
appear in the same field.

The position in the data associated with
the characters comma, point, and B appear-
ing in a string of drifting characters will
contain one of the following:

e comma, point, or blank if a significant
digit has appeared to the left;

e the drifting symbol, if the next posi-
tion to the right contains the leftmost
significant digit of the field;

e Dblank, if the leftmost significant digit
of the field is more than one position
to the right.

If a drifting string contains the drift-
ing character n times, then the string is
associated with n - 1 conditional digit
positions. The josition associated with
the leftmost drifting character can contain
only the drifting character or blank, never
a digit. If a drifting string is specified
for a field, the other potentially drifting
characters can appear only once in the
field, i.e., the other character represents
a static sign or currency symbol.

Only one type of sign character can
appear in each field. An S or a minus (-)
used as a static character can appear to
the left of all digits in the mantissa and
exponent fields of a floating-point speci-
fication and either to the right or left of
all digit positions of a fixed-point
specification.

If a drifting string contains a V within
it, the V delimits the preceding portion as
a subfield, and all digit positions of the
subfield followiny the V must also be part
of the drifting string.

In the case in which all digit positions
after the V contain drifting characters,
suppression in the subfield will occur only
if all of the integer and fractional digits
are zero. The resulting edited data iten
will then be all blanks. If there are any
significant fractional digits, the entire
fractional portion will appear
unsuppressed.

$ specifies the currency symbol. If this
character appears more than once, it is
a drifting character; otherwise it is a
static character. The static character
specifies that the character is to be
placed in the associated position. The
static character must appear either to
the left of all digit positions in a
field of a specification or to the right
of all digit positions in a specifica-
tion. See details above for the drift-
ing use of the character.

S specifies the plus sign character (+) if
the data value is egual to or gyreater
than zero, otherwise it specifies the
minus-sign character (-). The character
may be drifting or static. The rules
are identical to those for the currency
syubol.

- specifies the minus-sign character (-)
if the data value is less than zero,

Picture-sSpecification Characters 95

location of the V in the specification.

1The arithmetic value is the value expressed by the digits and the actual or assumed

1 Source } Source Data T Picture T Character-String }
1 Attributes ! (in constant form) ! Specification ! Valuel J
Timms. 123.45 | $9997.99 1 §123.45 h
} FIXED (5, 2) 1 001.23 : $222V.99 : $bb1.23 :
: FIXED (5, 2) = 000.00 : $222V. 22 : bbbbbbb :
: FIXED (5, 2) t 123.45 : $$3$9V.99 = $123.45 :
: FIXED (5,2) i 001.23 : $$59v.99 : bb$1.23 :
{ FIXED(5,2) = 012.00 : 993 : 12% :
: FIXED(2) 1 12 : $$35,999 ; bbb3012 :
: FIXED (4) t 1234 : $%$5,999 : b$1,234 :
: FIXED (5, 2) = 123.45 : S999V.99 : +123.45 :
: FIXED(5,2) : -123.45 : $999V.99 : -123.45 :
: FIXED(5,2) : -123.45 : -999v.99 ; -123.45 :
: FIXED (5,2) : 123.45 : -999v.99 : b123.45 :
: FIXED (5,2) : 123.45 : 999v.99s : 123.45+ :
: FIXED (5, 2) : 001.23 : ---9V.99 i bbb1.23 }
; FIXED(5,2) !l -001.23 :L SSS9V.99 :L bb-1.23]I
| "The arithmetic value is the value oxpressed by the i
|]
L !

Figure 12.

otherwise it specifies a blank. The
character may be drifting or static.

The rules are identical to those for the
currency symbol.

Note: 35, S, and - cannot be drifting
characters in floating-point picture
specifications.

Figure 12 gives examples of the use of
numeric signs and the currency symbol as
picture characters. In the figure, the
letter b indicates a blank character.

Credit, Debit, and Overpunched-Sign Characters

The character pairs CR (credit) and DB
(debit) specify the signs of fixed-point
numeric character data items and usually
appear in business re;ort forms.

Any of the picture characters T or R
specifies an overpunched sign in the asso-
ciated digit position of a fixed-point
numeric-character data item. An over-

96 IBM System/360 Model 20 DPS PL/I

Examples of Numeric Signs and the Currency Symbol in Picture Specifications

punched sign is a 12-punch (for plus) or an
11-punch (for minus) punched into the sanme
column as a digit. It indicates the sign
of the arithmetic data item. Only one
overpunched sign can appear in a specifica-
tion for a fixed-point number. The over-
punch character can appear only in the last

CR specifies that the associated positions
will contain the letters CR if the
value of the data is less than zero.
Otherwise, the positions will contain
two blanks. The characters CR can
appear only to the right of all digit
positions of a field.

DB is used the same way that CR is used
except that the letters DB appear in
the associated positions.

T sjecifies that the associated position,
on input, will contain a digit over-
punched with the sign of the data. It
also specifies that an overpunch is to
be indicated in the character-string
value.

r T T - T L]
| Source | Source Data [Picture | Character-String |
| Attributes] (in constant form) | Specification] Valuel 1
1) 1 1 1
r) 1 1 1
| FIXED (3) | -123 | $Z.99CR | $1.23CR |
| l | |]
| FIXED (4,2) | 12.34 | $22ZV.99CR | $12.34bb |
| |] |]
| FIXED (4,2) | -12.34 | $2%V.99DB I $12.34DB I
| | l | |
| FIXED (4,2) I 12. 34 [t27V.99DB | $12.34bb |
l | | | |
| FIXED (4) | -1021 | Z99R | 1023 |
| | | I 1
| FIXED (4) | 1021 | 999T | 1024 |
: L i 1 {
| 1The arithmetic value is the value expressed by the digits and the actual or assumed |
| location of the V in the specification. |
L. 1

Figure 13.

R specifies that the associated position,
on ingut, will contain a digit over~-
punched with - if the value is smaller
than zero; otherwise, it will contain
the digit with no overpunching. It
also specifies that an overpunch is to
be indicated in the character-string
value if the data value is smaller than
Zero.

Note: You cannot use the picture charac-
ters CR, DB, T, and R with any other sign
characters in the same field.

Figure 13 gives examples of the CR, DB,
and overpunch characters. In the figure,
the letter b indicates a blank character.

The Exponent Specifier E

The picture character E delimits the
exponent field of a numeric-character spe-
cification that describes floating-point

Exanples of CR, DB, T, and R Picture Characters

decimal_numbers. The exponent field is
always the last field of a numeric-
character floating-point picture

syecification.

E specifies that the associated position
contains the letter E, which indicates
the beginning of the exionent field.

The value of the exponent is adjusted
(that is, it is varied) in the character-
striny value so that the first significant
digit of the first field (the mantissa)
appears in the position associated with the
first digit specifier of the specification
(see the first two examples of Figure 14).

Note: Drifting and zero-suppression chara-
cters are not allowed in floating-point
pictures. Exponent-field pictures are
restricted to the only format ES99.

Figure 14 gives examples of the use of
exponent delimiters.

r T T T L)
1 Source 1 Source Data | Picture | Character-String |
| Attributes | (in constant form) | Specification | Valuel]
t + + - + 1
| FLOAT (5) | . 12345E06 | 9V.99999ES99 | 1.23450E+05 |
| | | 1 1
| FLOAT (5) | . 12345E-06 | 9V.99999ES99 | 1.23450E-07 |
l | | 1 l
| FLOAT (5) | -123.45E12 | S999V.99ES99 | -123.45E+12 |
]] |] l
| FLOAT (5) | 001.23E04L | S99V.99ES99 | +12.30E+03 |
I_ ________________ L - ———— L A {
] 1The arithmetic value 1s the value expressed by the dijits and the actual or assumed |
| location of the V in the specification. |
e e — - ———— [—_—
Figure 14. Examples of Floating-Point Picture Specifications

Picture-Specification Characters 97

Edit-Directed Format Items

This section contains a description of each
of the edit-directed format items that can
appear in the format list of a GET, PUT or
FORMAT statement.

There are three categories of format
items:

e data format items,
e control format items, and
e remote format item.

The three categories are discussed
separately and the format items are listed
under each category. The remainder of the
section contains detailed discussions of
each of the format items.

Data Format Items

A data-format item describes the external
format of a single data item.

considered to be a continuous string of
characters. FEach data-format item in a GET
statement specifies the number of charac-
ters to be obtained from the stream and
describes the way those characters are to
be interpreted, whether as characters or as
arithmetic values.

the form specified by the format list.

Each data-format item in a PUT statement
specifies the width of the field into which
the associated data item in character form
is to be placed and describes the format
that the value is to take.

Leading blanks are not inserted automat-
ically to separate data items in the output

stream. Character-string data is left-
adjusted in the field whose width is speci-
fied. Arithmetic data is right-adjusted.
Leading blanks will not appear in the
stream unless the specified field width
allows for them. Truncation due to inade-
quate field-width specification is on the
left for arithmetic items, on the right for
character-string itenms.

Figure 15 shows all data format items
and their formats.

Category Data Format Iten

Fixed-point F(w,[d,[p]D
E(w,d[,s])

AL (w)] |

—J

Floating-point

L e — S —

Character-string

[—— -y ——
e e e — s o — o

Figure 15. Data Format Items

Control Format Items

The control-format items apply to input and
output files. They specify formatting of
the data items coming from or going to the
external medium.

Figure 16 shows all control format items
and their formats.

A control format item has no effect
unless it is encountered before the data
list is exhausted.

The PAGE and SKIP format items have the
same effect as the corresponding options of
the PUT statement, except that the format
items are executed only when they are

r 1 1
| | Control Format Itenm |
| Category k - T 1
| | for PRINT files | for non-PRINT files |
1 1 1 p
] T 1 1
| Paging | PAGE | |
3 == + 1
| Line skipping | SKIP [(w)] | |
L 1 1 4
r T L]]
| Record skipping | | SKIP [(w)]

F +-==—- + 1
| Spacing | X (w)] X (w) |
L [] 1 J
Figure 16. Control Format Items

98 1IBM System/360 Model 20 DPS PL/T

encountered in the format list, while the
options of the PUT statement are executed
before any data is transmitted.

Remote Format Item

of a FORMAT statement: This statement con-
tains a format list which replaces the
remote format item in the GET or PUT
statement.

The remote format item is:

R(statement-label—-designator)

The statement-label designator is a

label constant or an unsubscripted element
label variable,

Alphabetic List of Format Items

The A _Format Item

The A format item is:

For input:
For output:

A (w)
A [(w)]

where w is the nupber of characters to be
transmitted.

describes the external representation of a
string of characters. You must use it only
for character strings. Character strings
cannot be transmitted by any other format
item, No conversion is performed.

General Rules:

1. The letter w must be a decimal integer
constant, unsigned and greater than
zero, but less than 256. It specifies
the number of characters to be
transmitted.

2. On ingut, the siecified number of
characters is obtained from the data
stream and assigned to the associated
variable in the data list. For input,
you must always sjpecify w. If afpos-
trophes appear in the stream, they are
treated as characters in the string.

3. On output, w need not be specified; in
this case, the length of the associated
string is used, and the data item com-
pletely fills the field. Enclosing

apostrophes are not inserted.

The E Format Iten

The E format item is:

For input:
For output:

E (w,d)
E (w,d[,s])

fractional digits, and s the number_of sig-
nificant digits.

describes the external representation of
decimal arithmetic data in floating-point
format.

General Rules:

1. The letters w, 4, and s must be

ber of characters in the field. It
must be less than 33. The integer 4
specifies the number of fractional
digits, that is, the number of digits
following the decimal point in the man-
tissa: g specifies the number of
digits that must appear in the
mantissa.

2. On input, the data item in the strean
is the character representation of an
optionally signed decimal floating-
point or fixed-point constant located
If the data item is a fixed-point num-
ber, an exjonent of zero is assumed.

The external form of the number is:

[EJ{+}

[+] mantissa {
E[£]

} exponent

The mantissa mu-t be a fixed-point
decimal constant.

The number can appear anywhere in the
specified field; blanks may appear
before and after the number in the
field. If the entire field is blank,
the CONVERSION condition is raised.
When no decimal point appears, the num-
ber of fractional digits (d) specifies
the number of character positions to
of the mantissa. If a decimal point
actually does appear in the data, it
overrides d.

The value expressed by w includes
trailing blanks, the exponent
position(s), the position for the
optional plus or minus sign, the posi-
tion for the optional letter E, and the
position for the optional decimal point
in the mantissa.

Edit-Directed Format Items 99

constant that does not exceed two sig-
nificant digits. Leading zeros are
allowed. Whenever the exponent and a
preceding sign or the letter E are
omitted, a zero exponent is assumed.

3. On output, the internal data is con-
verted, if necessary, to floating-point
numeric-character representation, and
the external data item in the specified

field has the following general form:

[-1{s-d digits}.{d digits}E{+]-}exponent

integer constant, which may be two
zeros. The exponent is automatically
adjusted so that the leading digit of
the mantissa is non-zero (provided that
the mantissa is not zesro, of course).

If the above form of the number does
not f£ill the specified field on output,
the number is right-adjusted and
extended on the left with blanks. If
the number of significant digits is not
sipecified, it is taken to be 1 plus the
number of fractional digits. For the
Model 20 PL/I Compiler, the field width
for negative or non-negative values of
the data item must be greater than or
ejual to 6 plus the number of signifi-
cant digits (although the sign of a
positive digit is not written, it must
be accounted for). However, if the
number of fractional digits is zero,
the decimal point is not written, and
the above figure for the field width is
reduced by 1.

When the internal data is converted to
the output format, it is rounded as
follows: if truncation causes a digit
to be lost on the right and this digit
is greater than or equal to 5, then 1
is added to the digit to the left of
the lost digit,

Example:

DCL (A,B,C) FLOAT(15);

A = -1234567

-1.2345678E-10
1.2345678E+1

B
C

oy n

PUT FILE (OUT) EDIT (A,B,C)
(E15,6) ,E (15,6,8) ,E (15,8)

When A,B and C are pointed, they will look
as follows:

bb-1.234567E+06b~12.345678E- 11
b1.23456780E+01

100 IBM System/360 Model 20 DPS PL/I

The F_Format Item

The F format item is:

F (w[,d[,p1D

the external representation of a decimal
arithmetic data item in fixed-point format.

General Rules:

1. The letters w, d, and p must be decimal
integer constants. 0Only p can be
signed; the others must be unsigned; w
mast be less than 33 and must, for out-
put, account for the sign, even if it
is blank.

2. 0On ipput, the data item in the strean
is the character representation of an
optionally siyned decimal fixed-point
constant located anywhere within the
syecified field. Blanks may appear
before and after the number in the
field. If the entire field is blank,
it is interpreted as zero.

If 4 is not specified, the number of
fractional digits is assumed to be
zero.

If p is not specified and no decimal
point appears in the field, d specifies
the number of fractional digits, that
is, the number of digits to the right

If a
decimal point actually does appear in
the data, it overrides the specifica-
tion 4.

If p is sjecified, it effectively mul-
tiplies the value of the data item in
the stream by 10 raised to the power of
the value of ;. Thus, if p is posi-
tive, the number is treated as though
the decimal point appeared p positions
to the right of its given position. If
P is negative, the number is treated as
though the decimal point appeared
positions to the left of its given
position. The given position of the
decimal point is that indicated either
by an actual point, if it appears, or
by the specification for the number of
fractional digits, in the absence of an
actual point.

3. On outjput, the internal data is con-
verted, if necessary, to fixed-point,
and the external data is the character
representation of a decimal fixed-point
number, right-adjusted in the specified

field.

If only w is specified in the format
item, only the integer portion of the
number is written; no decimal point
appears.

If both w and 4 are specified, both the
integer and fractional portions of the
number are written, and if d is greater
than zero a decimal point is inserted
before the leftmost 4 digits. Trailing
zeros are supplied when the actual num-
ber of fractional digits is less than ¢
(the value d must be less than the
field width (w)). Suppression of lead-
ing zeros is applied to all digit posi-
tions (except the first) to the left of
the decimal point.

When the internal data is converted to
the output format, it is rounded as
follows: if truncation causes a digit
to be lost on the right and this digit
is greater than or equal to 5, then 1
is added to the digit to the left of
the lost digit.

When p is specified, the value of the
associated element in the data list is
effectively multiplied by 10 raised to
the power of p before it is converted
to its external character representa-
tion. When the number of fractional
digits is zero, only the integer por-
tion of the number is used.

If the value of the fixed-point number
is less than zero, the external charac-
ter representation is preceded by a
minus sign. If it is greater than or
equal to zero, a blank appears. There-
fore, for all values of the fixed-point
nunber, w must account for both the
sign and a possible decimal point (the
decimal point will not appear if there
are no fractional digits).

The PAGE_Format_Itenm

The PAGE format item is:

PAGE

The paging format item PAGE sjpecifies that
printing is to continue on a new page.

General Rules:

The PAGE format item implies that printing
is to continue on line 1 of the new page.

The R _Format Itenm

The R format item is:
R (statement-label-designator)

The remote format item allows the use of
format items specified in a FORMAT
statement.

General Rules:

1. The statement-label designator is a
label constant or a label variable
whose value is the statement label of a
FORMAT statement. The FORMAT statement
includes a format list that is taken to
rejlace the format item. The
statement-label designator cannot be
subscrij ted.

2. The R format item and the specified
FORMAT statement must be contained
within the same procedure.

3. A FORMAT statement must not contain an
R format item.

The SKIP_Format_ Item

The SKIP format item is:
SKIP [(w)]

where w specifies that writing or reading
is to continue at the beginning of the wth
line or record (for non-PRINT files) fol-
lowing the one just being written or read.

The skippiny format item SKIP can be
used with both PRINT and non-PRINT files,
in GET as well as PUT statements. When
used in a PUT statement for a PRINT file,
it specifies that printing is to continue
on a new line. When used in a GET state-
ment, it specifies that a new record is to
be read.

General Rules:

1. The letter w must be an unsigned deci-
mal integsr constant between 0 and 3
for PRINT files and 1 and 3 for non-
PRINT files (SKIP(0) is not allowed for
non-PRINT files). If w is not speci-
fied, 1 is assumed.

2. If w is greater than or egual to 1, w-1
blank lines or records will be inserted
for output, or w-1 complete records
will be skipred for input.

3. If SKIP (0) is specified for PRINT
files, the effect is that of carriage
return without line skipping. Charac-
ters previously written will be over-
printed by the new characters. For

Edit-Directed Format Items 101

example, underscoring can be done in
this form.

If the SKIP format item is not speci-
fied at the end of a line or record,
SKIP (1) 1is assumed, that is, printing
continues at the beginning of the fol-
lowing line (single spacing), or read-
ing continues at the beginning of the
following record.

I1f, for PRINT files, the specified line
lies beyond the limit set by default
(which is 60) or by the PAGESIZE option
of the OPEN statement, the ENDPAGE con-
dition is raised.

The_ X_Format_Itenm

The X format item is:

102

X (w)

IBM System/360 Model 20 DPS PL/I

The spacing format item controls the

relative spacing in the data stream. It
can be used in GET as well as PUT
statements.

General Rules:

The letter w must be an unsigned deci-
mal integer constant less than 256.

On input, w specifies the number of
characters to be spaced over in the
data stream, i.e., not to be trans-
mitted to the program.

On outrut, the specified number of
blank characters is inserted in the
data stream.

Built-In Functions and the Pseudo-Variable SUBSTR

This section contains a description of the
built-in functions and the pseudo-variable
SUBSTR available in Model 20 PL/I. These
features are discussed in the following
order:

1. Computational Built-In Functions
a) String-handling built-in functions
b) Arithmetic built-in functions
c) Mathematical built-in functions
2, Other Built-In Functions
3. The Pseudo-Variable SUBSTR
The computational built-in_functions, as
shown above, provide string handling,
arithmetic operations (absolute value,
truncation, etc.), mathematical operations

(trigonometric functions, sjuare root,
etc.) .

The computational built-in functions
are:

Stripng Handling:
CHAR
HIGH
LOW
SUBSTR

CEIL
FLOOR
MA X
MIN
ROUND
TRUNC

SQORT
TAN
TANH

Other_built-in functions are:
ADDR
DATE

pseudo-variable. You find a more complete
description in the discussion of the corre-
sponding built-in function.

Built-In

The built-in functions and the pseudo-
variable are presented in alphabetical
order under their proper headings.

Computational Built-In Functions

STRING_HANDLING BUILT-IN FUNCTIONS

You may use the functions described in this
section for manipulating character strings.
The arguments you may use must be

__________ CHAR 1s used to control the
size of a character-string expression. 1In
Model 20 PL/I, it is mainly used to convert
a picture variable to a character striny.

Reference:

CHAR (expression [,sizel)

a. a character-string expression, or
b. a numeric-character expression

The argument gize, when specified, must
be a decimal_integer constant giving the
length of the result. If size is not spe-
cified, the length resulting from the
character-string expression or numeric-
character expression is taken.

Result: The value returned by this func-
tion is expression converted to a character
string. The length of this character
string is determined by size, as described

above.

DCL X PIC'%%9V.99';

PUT FILE(OUT) EDIT
(CHAR (X)) (B) ;

HIGH Built-In_Function

Definition: HIGH forms a character string
of a specified length. Each character in
the constructed string is the highest char-
acter in the collating sejuence. For
Systen/360 implementations, this character

is stored as hexadecimal_ FF.

Reference:

HIGH (i)

Functions and the Pseudo-Variable SUBSTR 103

_______ The argument i must be an
unsigned decimal integer constant specify-
ing the length.of the string that is to be
formed.
Result: The value returned by this func-
tion is a character string of length i each
character in the string is stored as hexa-
decimal FF.

Figure 17 illustrates the use of the
built-in function HIGH.

Two sequential files with ascending keys
shall be merged. When the first file is
exhausted its key is set 'high'. Thus,
only the records of the non-exhausted file
will be copied.

MERGE: PROCEDURE OFTIONS (MAIN) ;
DCL 1 S1 BASED (P1),
2 KEY CHAR(5) jeesn
1 S2 BASED (P2),
2 KEY CHAR(5) ;o e
1 S3 BASED (P),
2 KEYeouoooss
(P,P1,P2) POINTER,
LBL LABEL INIT(START),
F1 FILE SEQUENTIAL INPUT
F2 FILE SEQUENTIAL INPUT
FO FILE SEQUENTIAL OUTPUT
/*%FILE ACTIVATION%/
OPEN FILE(F1),FILE(F2),FILE (FO);
ON ENDFILE(F1) GO TO EOF1;
ON ENDFILE (F2) GO TO EOF2;
READ1: READ FILE(F1) SET(P1); GO TO LBL;
START: LBL = COMP;
READ2: READ FILE(F2) SET(P2);
COMP : IF S1.KEY>=S2.KEY THEN P=ADDR (S2) ;
ELSE P=ADDR(S1) ;
WRITE FILE(FO) FRON (S3);
IF P=ADDR({S2) THEN GO TO READ2;
GO TO READ1;
EOF1 : IF S2.KEY=HIGH(5) THEN GO TO FINIS;
S1.KEY=HIGH(5) ; GO TO COMP;
EOF2 : IF S1.KEY=HIGH(5) THEN GO TO FINIS;
S2.KEY=HIGH(5); GO TO COMP;
FINIS: END;
Figure 17. Example for the Usage of a
Built-in Function (HIGH)

Low Built-In_Function

Definition: LOW forms a character string
of specified length from the lowest charac-
ter in the collatinyg sequence which, for
System/360 im.lementations, is hexadecimal
00. Each character in the constructed
string will be stored as hexadecimal 00.

Reference: LOW (i)

_______ The argument i must be an
unsigned decimal integer constant specify-
ing the length of the string to be formed.

104 IBM System/360 Model 20 DPS PL/I

Result: The value returned by this func-

tion is a character string of length i each
character in the string is the lowest char-
acter in the collating seguence which, for
System/360 implementations, is hexadecimal

00.

LOW (3) has the value X'000000?

SUBSTR_Built-In Function

Definition: SUBSTR extracts a substring of
defined length from a given string and
returns the substring to the point of invo-
cation. (SUBSTR can also be used as a
pseudo-variable).

Reference: SUBSTR (string,i,j)

the string from which a substring will be
extracted. This argument can be:

¢ a character string expression, or

* a numeric-character expression

The argument i represents the starting
point of the substrinyg relative to the
beginning of the specified string, and the
argument j represents the length of the
substring. Argument i must be an expres-
sion that allows conversion to an integer;
j must be a decimal integer constant.

Assuming that the length of string is k,

the arguments i and j must satisfy the fol-
lowing conditions:

1. J must be less than or equal to k and
greater than or egual to 1.

2. 1 must be less than or equal to k and
greater than or equal to 1.
3. The value of i + j - 1 must be less

than or egual to k.

Thas, the substring as specified by i
_____ Note that
condition 1 is checked by the compiler;

conditions 2 and 3 are not.

Result:

The value returned by this func-

______ If AAA is a character string of
length 8, the statements:

DCL AAA CHAR(8) INIT('ABCDEFGH')

-

ITEM = SUBSTR(AAA, 3,5);

will cause a 5-character substring to be
extracted from AAA. The extracted string
is then returned to the point of invoca-
tion, after which it is assigned to ITEN
(assuming ITEM is a character-string vari-
able). It will have the following form:

CDEFG

ARITHMETIC BUILT-IN_ FUNCTIONS

All values returned by the arithmetic
built-in functions are in coded arithmetic
form. The arguments of these functions
should also be in that form. If an argu-
ment is not coded arithmetic, then it is
converted to coded arithmetic before the
function is invoked. Note, therefore, that
in the function descriptions below, a
reference to an argument always means the
converted argument, if conversion was
necessary.

The argument of an arithmetic built-in
function may only be an expression. Unless
specifically stated otherwise, the scale
and precision of the returned value are
determined according to the conversion
rules for expression operands as given in
Part I, under Expressions.

In many of these built-in functions, the
symbol N is used. This symbol represents
the maximum precision that a value may
have. It is defined, for System/360 im;le-
mentations, as follows:

N = 15 for FIXED and FLOAT DECIMAL
values.

ABS_Built-In_Function

Definition: The absolute value of a number
is the number with the sign removed. Thus,
the absolute values of 1.5 and -1.5 are the

same, namely, 1.5.

ABs finds the absolute value of a given
quantity and returns it to the point of
invocation.

Reference:

ABS (x)

_______ X represents the value whose
absolute value is to be found.

Result: The value returned by this func-

tion is the absolute value of x. The scale
and precision are the same as those of x.

______ To get the absolute value of a
variable A, write

ABS (R)

Built-In

Since the built-in function SQRT allows
only positive arguments, it is advisable to
write:

SQRT (ABS (A))

if you are not sure that A is positive.

CEIL _Built-In_Function

Definition: CEIL determines and returns
the next integer above x unless x is an
integer, in which case 1t returns the value

of x itself to the point of invocation.

_________ CEIL (x)

_______ X represents the value whose
ceiling value is to be found.

Result: The value returned by this func-
tion is the smallest integer that is great-
er than or equal to x. The scale and rre-
cision are the same as those of x with one
exception: 1if x is a fixed-point value of
precision (p,q), the precision of the
result is defined as:

(MIN (N,MAX (p-g+1,1)),0)

CEIL (12.345) = 13
CEIL (385.99) = 346

CEIL (43.001) = 44

CEIL (-2.4) = -2

CEIL (0056.34E02) = 0056.34E02
CEIL (0012.37E-03) = 1000.00E-03
CEIL (000.01E-02) = 100.00E-02
CEIL (-00.1E00) = 00.0E00
CEIL (000.01E-04) = 100.00E-2

FLOOR Built-In_Function

Definition: FLOOR determines and returns
the next integer below x unless x is an
integer, in which case it returns the value

of x itself.
Reference: FLOOR (x)

_______ X represents the value whose
floor value is to be found.

Result: The value returned by this func-
tion is the largest integer that does not
exceed x. The scale and precision of this
value are the same as those of x, with one
exception: if x is a fixed-point value of
precision (p,4), the precision of the
result is:

(MIN(N,MAX (p-g+1,1)),0)

Functions and the Pseudo-Variable SUBSTR 105

FLOOR (12.345) = 12
FLOOR (345.99) = 345

FLOOR (43.001) = 43

FLOOR (-2.4) = -3

FLOOR (0056.34E20) = 0056.34ED2

FLOOR (0012.37E-03
FLOOR (000.01E-02)
FLOOR (-000.1E0)

0000.00E0Q0
000.00E00
-001.0E00

Definition: MAX finds the expression with
the highest value from a Jgiven set of two
or more expressions and returns its value

to the point of invocation.

Reference: MAX (x1, x2, ..., Xd)
Arguments: Two or more arguments must be
given. They must have identical scale and

precision.
Result: The value returned by MAX is the
value of the maximum-valued argument. The
scale and precision is the same as of the
arguments.

______ Assume the following parameter
list specified for MAX:

MAX (003.200, 042.356, NUMBER)

with NUMBER having the value 102.000.
MAX returns the value 102.000.

Then

MIN Built-In_Function

Definition: MIN finds the lowest-valued
expression from a given set of two or more
expressions and returns the value of this

expression to the point of invocation.

Reference: MIN (x1, x2, ..., xn)
________ Two or more arguments must be
They must have identical scale and
precision.

Result: The value returned by MIN is the
value of the lowest-valued argument. The
scale and precision of the result is the
same as that of the argument.

ROUND Built-In_ Function

Definition: ROUND rounds a given value at
a specified digit position to the right of
the decimal point and returns ths rounded

value to the point of invocation.

Reference:

ROUND (ex,rsssion,n)

106 IBM System/360 Model 20 DPS PL/I

Arguments: expression must be of fixed-
decimal type. It is an expression re;re-
senting the value to be rounded: n must be
an unsigned decimal integer constant. It
specifies the fractional digit position (to
the right of the decimal point) at which

;osition n to the right of the decimal

point. Sgare digit positions are padded
with zeros. The precision of the result
is:

(1IN (p+1,M),q)

Note that if expression is negative, its
absolute value is rounded. Its sign

remains unchanged.

______ If R is a fixed-point decimal
variable of precision (7,5) containing the
value 36.24976, and X, Y and Z are fixed-
point decimal variables of precision (6,4),
then after execution of the following
statements:

R;
ROUND (R,3);
ROUND (R,U) ;

A
Y
Z
the value of X is 36.2497 (normal trunca-

tion due to precision deviation), the value

of ¥ is 36.2500, and the value of 7 is
36.2498.

TRUNC_Built-In_Function

Definition: TRUNC truncates a given value
to an integer as follows: First, it deter-
mines whether a given value is positive,
negative, or =2qual to zero. If the value
is negative, TRUNC returns the smallest
integer that is greater than that value
(ceiling): if the value is positive or
ejual to zero, TRUNC returns the largest
integer that does not exceed that value
(Eloor).

Reference: TRUNC (x)

Argument: x represents the value to be
truncated.

Result: If x is less than zero, the value

returned by TRUNC is CEIL(x). If x is
greater than or egqgual to zero, the value
returned by TRUNC is FLOJOR(x). In either
case, the scale of the result is the sanme
as that of x. If x is floating-point, the
precision remains the same. If x is a
fixed-point value of precision (p,g), the
prrecision of the value is:

(MIN(N,MAK (p-3+1)),0)

P e 2T A PR LR R

All arguments passed to the mathematical
built-in functions should be in coded
arithmetic form and in floating-point
scale. Any argument that does not conform
to this rule is converted to coded arith-
metic and fleating-point before the func-
tion is invoked. Note, therefore, that in
the function descriptions below, a
reference to an argument always means the
converted argument, if conversion was
necessary.

An argument to a mathematical built-in
function must be an expression. All of the
mathematical built~in functions return
coded arithmetic floating-point values.

The precision of these values is always the
same as those of the arguments.

Figure cc jprovides a survey of the
mathematical built-in functions available
in Model 20 PL/I.

EE R L S S L LAY P

Definition: ATAN finds the arctangent of a
given value and returns the result, ex-
pressed in radians, to the point of

invocation.

Reference:

ATAN (x[,¥y])

________ The argument x must always be
specified; the argument y is optional. If
y is omitted, x represents the value whose
arctangent is to be found.

If y is specified, then the value whose
arctangent is to be found is taken to be
the expression x/y. In this case, x and y
must not be ejual to 0 both at the same
time.

_____ When x alone is specified, the
value returned by ATAN is the arctangent of
X expressed in radians, where:

-pi/2<ATAN (x)<pi/2
If both x and y are siecified, the possible
values returned by this function are
defined as follows:

1. For y > 0 and any x, the value is ATAN
(x/y) -

2. If x > 0 and y = 0, the value is
(pir2).

3. If x 2 0 and y < 0, the value is
(pi+ ATAN (x/Y)).

4, If x < 0 and y = 0, the value is
(-pir2).

5. If x < 0 and y < 0, the value is
(-pi+ATAN (x/Y)) .

6. If x = 0 and y = 0, the ERROR condition
is raised.

COS_Built-In_Function

Definition: <COs finds the cosine of a
given value, which is expressed in radians,
and returns the result to the point of

invocation.
Reference: C35 (x)

Argument: The value whose cosine is to be
found is given by x; this value must be ex-
pressed in radians.

Result:

The value returned by this func-

Definition: EXP raises e (the base of the
natural logarithm system) to a given power
and returns the result to the point of

invocation.

Reference:

EXP (x)

The aryument x specifies the
It must

power to which e is to be raised.
not be greater than 112.8.

Result: The value returned by this func-

tion is ¢ raised to the power of x.

LOG _Built-In Function

Definition: LOG finds the natural
logarithm (i.e., base e) of a given value

and returns it to the point of invocation.

Reference:

LOG (x)

_______ The arjument x is the value
whose natural logarithm is to be found; it
must not be less than or equal to O.
Result: The value returned by this func-
tion is the natural logarithm of x.

SIN Built-In_Function

Definition: SIN finds the sine of a given
value, which is expressed in radians, and

returns it to the point of invocation.

Reference: SIN (x)

_______ The argument x is the value
whose sine is to be found; it must be ex-
pressed in radians.

Result: The value returned by this func-
tion is the sine of Xx.

Built-In Functions and the Pseudo-Variable SUBSTR 107

SQRT Built-In Function

Definition: SORT finds the square root of
a given value and returns it to the point

of invocation.

Reference:

SQRT (x)

The argument x is the value

whose square root is to be found; it must
not be less than 0.

Result: The value returned by this func-

tion is the positive square root of x.

TAN Built-In Function

Definition: TAN finds the tangent of a
given value, which is expressed in radians,

and returns it to the point of invocation.

Reference:

TAN (x)

_______ The argument, X, Trepresents the
value whose tangent 1s to be found; x must
be expressed in radians.

Result: The value returned by this func-
tion is the tangent of x.

TANH Built-In Function

Definition: TANH finds the hyperbolic tan-
gent of a given value and returns the

result to the point of invocation.

Reference:

TANH (x)

_______ The argjument, X, represents the
value whose hyperbolic tangent is to be
found.

Result: The value returned by this func-

tion is the hyperbolic tangent of x.

SUMMARY OF MATHEMATICAL FUNCTIONS

Figure 18 summarizes the mathematical
built-in functions. In using it, you
should be aware of the following:

1. All arguments must be coded arithmetic
and floating-point scale, or such that
they can be converted to coded arith-
metic floating-point.

2. The value returned by each function is
always floating-point.

3. The error conditions are those defined
by the PL/I language. Additional error
conditions detected by the lModel 20
PL/I compiler can be found in Part III,
under Practical Considerations_ Regard-

| itk T=—===== T

| Function Reference] Value Returned | Error Conditions
F e e
+ t ——f—-

| ATAN (x) | arctan(x) in radians | -

| | —(pi/2)<ATAN (x)<(pi/2) |

t + }

| ATAN(x,y) | see function | e2rror if

| | description | x=0 and y=0

k —— e e +—— +

| COS (x)] cosine (x) 1 -

| x in radians | |

t b ——

| EXP (x) | e | error if x>112.8
F ————— e +-- - +

] LOG (x) | loge(x)] error if x<0

R Y e e +__

r T

| SIN (x) | sine(x) | -

| x in radians] |
b - } -

| SQRT (x) 17X | error if x<0

t P +--

| TAN (x) | tangent (x) | -

| x in radians | |

F - e t-———— +

| TANH (x)] tanh (x) 1 -

L e e e e e e e et et e e e e e e e e e e P P

Figure 18. Mathematical Built-In Functions

108 IBM System/360 Model 20 DPS PL/I

e e kg e e L e e e L e e i e v e e e e o e el e

Other Built-In Functions

ADDR_Built-In_Function

__________ ADDR finds the location in
main storage which has been allocated to a
given variable and returns a pointer value
to the point of invocation. This pointer
value identifies the location allocated to
the variable.

Reference: ADDR (x)

_______ The argument, x is the variable
whose location is to be found. It can be
an element variable, an array variable, a
structure variable, an element of an array,
or an element of a structure. It can be of
any data type and storage class.

Result: ADDR returns a pointer value iden-
tifying the main storage location allocated
to x. If x is a parameter, the returned
value identifies the corresponding argument
(dummy or otherwise). If x is a based
variable, the returned value is determined
from the pointer variable declared with X;
if this pointer variable contains no value,
the value returned by ADDR is undefined.
For an example of the ADDR function refer
to the example illustrating the HIGH built-
in function in this section.

DATE_Built-In_Function

Definition: DATE returns the current data

—_——amrmoiie

None

Result: The value returned by this func-
tion is a character string of length six,

in the form yymmdd, where:

yy is the current year
mm is the current month
dd is the current day

If the current date is February
execution of the statement

29, 1970,
X = DATE;
will cause the character string '700229' to

be returned to the point of invocation.

Note: If the DATE built-in function is
used, DATE has to be declared with the
BUILTIN attribute in a DECLARE statement.

The Pseudo-Variable SUBSTR

Reference:

SUBSTR (string,i, j)

SUBSTR represents a substring
The value being assigned to

DCL NAME CHAR (10)
INIT 'JOHN SMITH?';
SUBSTR (NAY¥E,2,6) = 'ACK KE';

After execution of the assignment state-
ment, NAME will contain the character
striny '"JACK KEITH'.

Built-In Functions and the Pseudo-Variable SUBSTR 109

ON-Conditions

of the condition will result in an inter-
ruption of the program and in the execution
of the current action specification for
that condition. If an ON-statement for
that condition is not in effect, the cur-

___________ If an
ON-statement for that condition is in
effect, the current action specification as
given in that statement is either SYSTEHN,
in which case the standard system action
for that condition is taken, or an ON-unit,
in which case you have supplied your own
action to be taken for that condition
(i.e., either a null statement or a GO IO
statement).

If a condition is not enabled (i.e., if
it has been disabled), and the condition
occurs, an interrupt will not take place,
and errors may result.

ON-conditions are always enabled unless
they have been explicitly 3isabled by con-
dition prefixes.

Some of the ON-conditions can be dis-
abled by a condition prefix specifying the
condition name preceded by NO without
intervening blanks. Thus, one of the fol-
lowing names in a condition prefix will
disable the respective condition:

NOCONVERSION
NOFIXEDOVERFLOW
NOOVERFLOW
NOUNDERFLOW
NOZERODIVIDE

Such a condition prefix renders the
corresponding condition disabled throughout
the scope of the prefix; the condition
remains enabled outside this scope (see
Part I, Exceptional Condition Handling for
a discussion of the scope of condition
prefixes).

The following conditions are always
enabled and remain so for the duration of
the program:

ENDFILE
ENDPAGE
ERROR
KEY
RECORD
TRANSMIT

110 IBM System/360 Model 20 DPS PL/I

Groups of ON-Conditions

This section presents each condition in its
logical grouping, and in alphabetical order
within that grouping. 1In general, the fol-
lowing information is given for each
condition:

1. General format -- given only when it
consists of more than the condition
name.

2. Description -- a discussion of the con-

dition, including the circumstances
under which the condition can arise.

that caused the condition to occur.
This applies when the condition is dis-
abled as well as when it is enabled.

In some cases, the result is not
defined; that is, it cannot be pre-

dicted. This is stated wherever
aprlicable.
4. Standard system _action -- the action

taken by the system when an interrupt
occurs and an ON-unit to handle that
interrupt has not been specified.

control is returned as a result of a
null ON-unit. A GO TO statement ON-
unit is an abnormal ON-unit termina-
tion. Note that the conditions
ENDFILE, KEY, and CONVERSION cannot
have the null statement associated with
them and, therefore, a normal return
can never be made for these conditions.

The conditions are grouped as follows:

ditions associated with data handling,
expression evaluation, and computation.
They are:

CONVERSION
FIYEDOVERFLOW
OVERFLOW
UNDERFLOW
ZERODIVIDE

2. Inrut/Qutput_conditions -- those condi-

tions associated with data transmis-
sion. They are:

ENDFILE
ENDPAGE
KEY
RECORD
TRANSMIT

3. System-action_condition -- the condi-
tion (i.e., ERROR) that provides faci-
lities to extend the standard system
action that is taken after the occur-
rence of a condition.

Computational Conditions

The CONVERSION Condition

__________ The CONVERSION coandition
occurs whenever an illegal conversion is
attempted. This attempt may be made
internally or during an input/output
operation.

All conversions of character-string data
are carried out character-by-character in a
left-to-right sequence and the condition
occurs for the first illegal character.
When such a character is encountered, an
interrupt occurs (provided, of course, that
CONVERSION has not been disabled by means
of the condition prefix NOCONVERSION) and
the current action specification for the
condition is executed.

______ When CONVERSION occurs, the con-
tents of the entire result field are
undefined.

_____________________ In the absence of
an ON-unit, the system prints a message and
raises the ERROR condition.

_____________ A null ON-unit cannot be
syecified for this condition.

Example:

On input, an attempt is made to convert
data that has been mispunched as

10R~01

to the floating-point format specified in
the following GET statement:

GET FILE (CARD) EDIT (Y) (E(8,2));
The CONVERSION condition is raised, since
10R-01 does not have a valid floating-point
format.

The FIXEDOVERFLOW_Condition

__________ The FIXEDOVERFLOW condition
occurs when the length of the result of a
fixed-point arithmetic operation exceeds X.
For System/360 implementations, N is 15 for
decimal fixed-point values.

FIXEDOVERFLOW can be disabled by the
condition prefix NOFIXEDOVERFLOW.
Result: The result of the invalid fixed-
point operation is undefined.

_____________________ In the absence of
an ON-unit, the system prints a message and
raises the ERROR condition.

Normal Return: If a null ON-unit is speci~
fied for this condition, control returns to
the point immediately following the point
of interrupt.

__________ The JDVERFLOW condition occurs
when the magnitude of a floating-point num-
ber exceeds the permitted maximum. For
Model 20 PL/I, a floating-point number or
intermediate result must be less than 1049.
OVERFLOW can be disabled by the condition
prefix NOOVERFLOW.

Result: When OVERFLOW has occurred, the
value in the affected floating-point field
is undefined.

_____________________ In the absence of
an ON-unit, the system prints a message and
raises the ERROR condition.

Normal_ Return: If a null ON-unit is speci-
fied for this condition, control returns to
the point immediately following the point
of interrupt.

The UNDERFLOW Condition

__________ The UNDERFLOW condition
occurs when the absolute value of a
floating-point number is smaller than the
permitted minimum. For Model 20 PL/I, the
absolute value of a floating-point value
must not bé less than 10-51, except that it
may be zero.

UNDERFLOW does not occur when equal num-
bers are subtracted {often called signifi-
cance error).

UNDERFLOW can be disabled by the condi-
tion prefix NOUNDERFLOW.
Result: The invalid floating-point value
is set to 0.

_____________________ In the absence of
an ON-unit, the system prints a message and
continues execution from the point at which
the interrupt occurred.

Normal Return: If a null ON-unit is speci-
fied for this condition, control returns to
the point immediately following the point
of interrupt.

The ZERODIVIDE_Condition

__________ The ZERODIVIDE condition
occurs when an attempt is made to divide by
zero. This condition is raised for fixed-
roint and floating-point division.

ON-Conditions 111

ZERODIVIDE can be disabled by the condi-
tion prefix specifying NOZERODIVIDE. How-
ever, in this case, division by zero
results in a Model 20 hardware stop.

Result:

The result of a division by zero

_______________________ In the absence of
an ON-unit, the system prints a message and
raises the ERROR condition.

Normal_ Return: If a null ON-unit is speci-
fied for this condition, control returns to
the point immediately followinyg the point
of interrupt.

Input/Output Conditions

The input/output conditions are always
enabled and cannot appear in condition fre-
fixes; they can be specified only in ON-
statements.

The ENDFILE Cpndition

General Format:

ENDFILE (filename)

__________ The ENDFILE condition can be
raised during a GET or READ operation; it
is caused by an attempt to read past the
end-of-file record of the file named in the
GET or READ statement.

After ENDFILE has been raised, the file
should be closed.

_____________________ In the absence of
an ON-unit, the system prints a message and
raises the ERROR condition.

Normal Return: A null ON-unit cannot be
specified for this conldition.

The ENDPAGE Condition

General Format:

ENDPAGE (filename)

having the PRINT attribute.

__________ The ENDPAGE condition is
raised when a PUT statement results in an
attempt to start a new line beyond the
maximom default page length (60 lines) or
the page length specified in the PAGESIZE
ortion of the OPEN statement for the file.
The attempt to exceed the limit may be made
during data transmission (including any
format items specified in the PUT state-
ment) , or by the SKIP option. ENDPAGE is
raised only once per page.

When ENDPAGE is raised, the current line
nunber is one greater than that specified

112 IBM System/360 Model 20 DPS PL/I

by the PAGESIZE option (or the default) so
that it is possible to continue writing on
the same page.

After ENDPAGE has been raised, a new
pagye can be started by executing a PAGE
option or a PAGE format item. If a new
page is not started, the current line num-
ber may increase indefinitely.

Standard_Systzm_Action: In the absence of
an ON-unit, the system starts a new page.

Normal_ Return: If ENDPAGE is raised during
data transmission, then, on return from a
null ON-unit, the data 1is written on the
current line. If ENDPAGE results from a
SKIP option, then, on return from a null
ON-unit, the action specified by SKIP is
ijnored.

The KEY Condition

General Format: KEY

(filename)

__________ The KEY condition can be
raised only during operations on keyed
records. It is raised in any of the fol-
lowing cases:

1. The keyed record cannot be found for a
READ or REWRITE statement. In this
case, the contents of the variable into
which data is to be read is
anpredictable.

2. An attempt is made to add a duplicate
key by a WRITE statement.

3. The keys of a KEYED SEQUENTIAL OUTPUT
file are not in ascending order.

4. No space is available to add the keyed
record.

Standard Systsm Action: In the absence of
an ON-unit, the system prints a message and
raises the ERROR condition.

Normal Return: A null ON-unit cannot be

syecified for this condition.

The RECORD_Condition

______________ RECORD (filename)
__________ The RECORD condition can be
raised only duriny a READ, WRITE, REWRITE,
or LOCATE operation. It is raised in eith-
er of the following cases:

1. The size of the record is greater than
the size of the variable.

2. The size of the record is less than the
size of the variable.

If the size of the record is greater
than the size of the variable, the excess
data in the record is lost on input and is
unpredictable on output. If the size of
the record is less than the size of the
variable, the excess data in the variable
is not transmitted on output and is unal-
tered on input. ©Note that an ON-unit can

Standard System_Action: In the absence of
an ON-unit, the system prints a message and
raises the ERROR condition.

______ RECORD is always enabled; it can-
not be disabled.

Status:

Normal Return: Upon execution of a null
ON-unit, execution continues with the sta-
tement immediately following the READ sta-
tement for which RECORD occurred. An ON-
unit can only be specified for tape input
files; in all other cases, the standard
system action is executed.

The TRANSMIT Condition

______________ TRANSMIT (filename)
__________ The TRANSMIT condition can be
raised during any input/output operation.
It is raised by a permanent transmission
error and, as a result, any data trans-
mitted is potentially incorrect. Durinyg
input, the condition is raised after
assignment of the potentially incorrect
data item or record. During output, the
condition is raised after the transmission

of the potentially incorrect data item or
record has been attempted.

Standard System_Action: In the absence of
an ON-unit, the system prints a message and
raises the ERROR condition.

Normal Return: Upon execution of a null
ON-unit, processing continues with the next
data item for STREAM I/0, or with the next

statement for RECORD I/0.

System Action Condition

The ERROR_Condition

__________ The ERROR condition is raised
under the following circumstances:

1. As a result of the standard systen
action for an ON-condition for which
that action is to "rrint an error mes-
sage and raise the ERROR condition".

2. As a result of an error (for which
there is no ON-condition) occurring
during program execution (for example,
taking the SQRT of a negative value).

_____________________ In the absence of
an ON-unit, a message is printed and con-
trol is returned to the DPS Monitor
progran.

Normal Return: Upon execution of a null
ON-unit, control is returned to the DPS
Monitor program.

ON-Conditions 113

Attributes

A name appearing in a PL/I program may have
one of many different meanings. It may,
for example, be a variable referring to
arithmetic data items; it may be a file
name; it may be a variable referring to a
character string, or it may be a statement
label or a variable referring to a state-
ment label.

Properties, or characteristics, of the
values a name represents (for exanmple,
arithmetic characteristics of data itenms
represented by an arithmetic variable) and
other properties of the name itself (such
as scope, storage class, etc.) ‘together

associated with a name.

The attributes enable the compiler to
assign a unique meaning to the identifier
specified in a DECLARE statement. For
example, if the variable is an arithmetic
data variable, the scale and precision
attributes must be associated with the
name. Associated attributes are those
which you specifiy in a DECLARE statement
or which are assumed by default.

This section discusses the different
attributes. The attributes are grouped by
function. Detailed discussions follow, in
alphabetic order, showing the rules,
default, and format for each attribute.

Attributes specified in a DECLARE statement
nust be separated by blanks. However, in
case of dimension, length, and precision
attributes, blanks are not necessary.
Except for the dimension, length, FILE, and
precision attributes, they may appear in
any order. The dimension attribute must
immediately follow the array name; the
length attribute must follow the CHARACTER
attribute, and the precision attribute nust
follow the base or scale attribute; the
FILE attribute must be the first attribute
in every file declaration. A comma must
follow the last attribute sgecification for
a particular name (or the name itself, if
no attributes are specified with it),
unless it is the last name in the DECLARE
statement, in which case the semicolon is
used., For example:

DCL MASTER FILE RECORD INPUT
SEQUENTIAL other-attributes,
A(10,10) FIXED DECIMAL,
B DECIMAL FIXED (4,2),
C CHAR(5) INIT('JOHN '),

114 IBM System/360 Model 20 DPS PL/I

FACTORING_OF_ATTRIBUTES

Factoring is achieved by enclosing the
names in parentheses, and following this by
the set of attributes which apply. Names
within the parenthesized list are separated
by commas. All factored attributes must
apply to all of the names. WNo factored
attribute can be overridden for any of the
names by a separate specification, but any
name within the list may be given other
attributes so long as there is no conflict
with the factored attributes.

Except for the dimension, INITIAL, and
file-description_attributes, you can factor
any attributes common to several names in a
declaration to eliminate repeated specifi-
cation of the same attribute for many iden-
tifiers. Note, however, that in Model 20
PL/I, a pair of factorization parentheses
cannot contain more than 60 declarations
and that factoring can be nested to a level
of eight. (See the fourth example below
for an illustration of nesting.)

Note: If elements of structures are fac-
tored, their level numbers must also be
factored by preceding the parenthesized
list. (See the third example below.)

DECLARE (A,B,C) DECIMAL FIXED (4,2);

DECLARE (¥ DECIMAL (6),F CHARACTER (10))
STATIC;

DECLARE 1 A, 2(B,C,D) FIXED DECIMAL (4,2);

DECLARE((A,B) FIXED(10), C FLOAT (5))
EXTERNAL;

Data Attributes

Attributes for problem data are used to
describe arithmetic and character-string
variables. An arithmetic variable has
attributes that sjecify the base, scale and
precision of the data item. A character-
string variable has attributes that identi-
fy it as a character-string variable and
specify its length.

The arithmetic-data_attributes are:

DECINMAL

FIXED)FLOAT
(precision)

PICTURE

The string-data_attributes are:

CHARACTER
(length)

You can also declare other attributes
for data variables. With the DEFINED
attribute you can specify that the data
variable is to occupy the same main-storage
area as some other data variable. The
storage class and scope attributes also
apply to data. With the INITIAL attribute
you specify initial values for data
variables.

An attribute that applies only to array
variables, is the dimension attribute. It
specifies the number of dimensions and the
bounds of an array.

PROGRAM-CONTROL_DATA ATTRIBUTES

Program-control data are labels and poin-
ters. You can use them to control the
execution of your program. The associated
attributes are LABEL and POINTER.

ENTRY-NAME ATTRIBUTES

An entry name is a special type of label,
namely, the label identifying a PROCEDURE
statement. With the entry-name attributes
you specify that the associated name is an
entry name and describe features of that
entry point.

The entry name attributes are:

ENTRY
RETURNS
BUILTIN

A1l entry names of procedures that are
invoked within a procedure must be declared
in the invoking procedure with the ENTRY or
RETURNS attribute. The RETURNS attribute
has to be specified for a function return-
ing a value that does not have the default
attributes. It has to appear in both the
invoking and the invoked procedure (func-
tion). In the function, the attributes of
the value to be returned must be specified
in the RETURNS attribute in the PROCEDURE
statement. The PROCEDURE statement of a
function is the only ilace where an attri-
bute may appear outside a DECLARE state-
ment. The BUILTIN attribute must be speci-
fied for the DATE built-in function.

File Description Attributes

The file-descrijption attributes establish
an identifier as a file-name and describe
characteristics for that file, for example,
how the data of the file is to be trans-

mitted, what the characteristics of the
file are, etc. If the same filename is
declared in more than one procedure, the
file attributes must not conflict. A&
filename must always have the EXTERNAL
attribute, either explicitly or by default.
For file-description attributes see also
Appendix E. File Attributes_and_Options.

The file-description attributes are:

FILE
STREAM |RECORD
INPUT|OUTPUT|UPDATE

PRINT

SEQUENTIAL| DIRECT
BACKWARDS

ENVIRONMENT (option-list)
KEYED

Scope Attributes

With the scope attributes you specify
whether or not a name declared in a proce-
dure is to be known only within or also
beyond the scope of that procedure.

The scope_attributes are:

EXTERNAL
INTERNAL

For a discussion of the scope of names,
see Part I, Recognition_of_ Names.

All external declarations of the same
identifier in a program are considered as
declarations of the same variable. The
scope of the variable name is the union of
the scopes of all the external declarations
of this name.

In all of the external declarations of
the same identifier, the attributes
declared must be consistent, since the
declarations all involve a single variable.
For example, it would be an error if the
identifier ID were declared as an EXTERNAL
filename in one procedure and as an
EXTERNAL entry name in another procedure in
the same program.

The INTERNAL attribute specifies that
the declared name is not known in any pro-
cedure other than the one in which it is
declared. INTERNAL cannot be specified for
a file or entry nanme.

You can declare the same identifier with
the INTERNAL attribute in more than one
procedure without regard to whether the
attributes given in one procedure are con-
sistent with the attributes given in anoth-
er procedure, since such declarations refer
to different variables.

Attributes 115

Storage Class Attributes

The storage-class attributes are used to
specify the class of storage to be allo-
cated to a data variable.

The storaye-class _attributes are:

STATIC
AUTOMATIC
BASED (pointer-variable)

Alphabethic List of Attributes

Following is a list of attributes along
wiht a detailed description of each attri-
bute. Alternative attributes are discussed
together, with the discussion listed in the
alphabetic location of the attribute whose
name is the lowest in alphabetic order. A
cross-reference to the combined discussion
appears wherever an alternative appears in
the alphabetic listing.

AUTOMATIC, STATIC, and BASED_ (Storage-Class

You use the storage-class attributes to
specify the type of main-storage allocation
for data variables.

allocated upon each entry to the procedure
in which the declaration has been made
(either explicitly or by default). The
storage area 1is freed (released) upon exit
from the procedure.

allocated when the program is loaded and is
not to be released until program execution
has been conpleted.

The BASED (pointer-variable) attribute spe-
cifies a variable that is a description of
data that can be applied to different loca-
tions in a storage.

General Format:
STATIC|AUTOMATIC|BASED (pointar-variable)
General Rules:

1. AUTOMATIC and BASED variables can have
INTERNAL scope only. STATIC variables
may have either INTERNAL or EXTERNAL
scope.

2. You must not specify storage-class
attributes for entry names, file nanmes,
menbers of structures, DEFINED data
items, or parameters.

3. For a structure_variable, you can sie-

cify a storage-class attribute only for
the major-structure_name. The attri-

116 IBM System/360 Model 20 DPS PL/I

bute then applies to all elements of
the structure.

4, The following rules govern the use of
based_variables:

a) The pointer_variable must be expli-
citly declared with the POINTER
attribute. The pointer variable
must be an element variable; it can-
not be an element of a structure,
and it cannot have the BASED
attribute.

b) When reference is made to a based
variable, the data attributes
assumed are those of the based vari-
able, while the associated pointer
variable identifies the location of

data.

c) You can use a based variable to
identify and describe existing data
or to obtain storage.in a buffer by
use of the LOCATE statement.

d) You cannot specify the EXTERNAL
attribute with a based variable, but
you can use a based variable with an
EXTERNAL pointer variable.

Assumptions:

1. If no storage-class attribute is speci-
fied and the scope is INTERNAL, AUTO-
MATIC is assumed.

2. If no storage-class attribute is speci-
fied and the scope is EXTERNAL, STATIC
is assumed.

3. If neither the storage class nor the
scope is specified, AUTOMATIC is
assumed.

With the BACKWARDS attribute you specify
that the records of a SEQUENTIAL INPUT file
on magnetic tape are to be accessed in
reverse order, i.e., from the last record
to the first record.

General Format:
BACKWARDS

General Rules:

1. The BACKWARDS attribute applies to
RECORD files only; you may not specify
it for STREAN files.

2. The BACKWARDS attribute applies to tape
files only.

3. The BACKWARDS attribute cannot be spe-
cified for variable-length records.

In Model 20 PL/I, the BUILTIN attribute
must be specified with the DATE built-in
function. For the other built-in functions
it may be specified, but is not necessary.

General Format:

BUILTIN
General Rule:
The BUILTIN attribute has to be specified
with the DATE built-ian function. It must
be the only attribute specified for the
built-in function.

For example:

DCL DATE BUILTIN;

CHAR or CHARACTER (Character-sString Data

The CHARACTER attribute (abbreviated CHAR)
is used to specify character-string
variables. Together with the CHARACTER
attribute you have to specify the length
attribute.

General Format:

{CHARACTER (length)
CHAR

General Rules:

1. With the length attribute you specify
the length of the declared string. It
must be a decimal integer constant,
unsigned and greater than zero. The
maximum length specification is 255.

2. The length attribute must immediately
follow the CHARACTER attribute at the
same factoring level, with or without
intervening blanks.

DECIMAL (Arithmetic-Data_ Attribute)

With the DECIMAL attribute you specify that
the base of the data item represented by an
arithmetic variable is decimal. In Model
20 PL/I, arithmetic variables can only have
the DECIMAL base.

General Format:

DECIMAL

General Rule:

The DECIMAL attribute cannot be specified
with the PICTURE attribute.

Assumptions:

Identifiers that are not ex;licitly
declared (or identifiers declared only with
dimension, storage class, and scope attri-
butes) are invalid if they begin with any
of the letters I to N. If they begin with
any other alphabetic character, they are
assumed to be arithmetic variables with the
default attributes FLOAT DECIMAL (6).

The DEFINED attribute (abbreviated DEF)
specifies that the variable being declared
is to represent part or all of the same
storage area as that assigned to another
variable. The DEFINED attribute can be
declared for element, array, or major-—
structure variables.

General Format:

{DEFINED base-identifier
DEF

The base_identifier is an unsubscripted
variable whose location in main storage (or
part of it) is also to be represented by
the variable being declared.

Rales for Defining:

1. You cannot specify INITIAL, storage-
class, and scope attributes for the
defined_variable. Note that although

EXTERNAL attribute, the defined_vari-
able always has the INTERNAL attribute
and cannot be declared with any scope
attribute. If the base identifier is
external, it will be known in all fro-
cedures in which it has been declared
external, but the name of the defined
variable will not. However, the value
of the defined variable will be changed
if the value of the base identifier is
changed in any procedure. The defined
variable cannot be a minor structure or
an element of a structure.

2. The base_identifier must always be
known within the block in which the
defined variable is declared. The base
identifier cannot have the DEFINED
attribute; it cannot be a based vari-
able, a pointer variable or a
parameter.

3. The base identifier cannot be a minor
structure or an element of a structure.
However, it can be a major structure,
and it can also be an array.

Attributes 117

Simple defining is given if both the
defined variable and the base identifier
have identical formats. String-overlay
defining is given when the formats are not
identical.

Simple defining means that a reference to
an element of the defined variable is
interpreted as a reference to the corres-
ponding element of the base identifier.

Corresponding structures must have the
same structuring. Corresponding arrays
must have the same number of dimensions and
bounds. The elements of the base identifi-
er and the elements of the defined itenm
must have the same description.

String-Overlay Defining

String-overlay defining means that the
defined variable is to occupy part or all
of the storage area allocated to the base
identifier. 1In this way, changes to the
value of either variable may be reflected
in the value of the other. String-overlay
defining is permitted between

a) character-string variables,
b) numeric-character variables, and
c) aggregates consisting of items a and b.

The extent of the defined variable must
not be larger than the extent of the base
identifier. The extent is calculated by
summing the lengths of the elements of a
variable, e.g., all individual elements of
an arraye.

Dimension_ (Array_Attribute)

With the dimension attribute you specify
the number of dimensions of an array and
the bound of each dimension.

General Format:
(bound[,bound[,bound]])
General Rules:

1. The number of bounds specifies the num-
ber of dimensions in an array. As
shown by the general format, the maxi-
mum number of dimensions allowed in

2. Each bound must be an unsigned decimal
integer constant greater than zero.
This number specifies the upper bound
of the corres;onding dimension. The

118 IBM System/360 Model 20 DPS PL/I

lower bound is always assumed to be 1.
Therefore, this number also specifies
the extent of the corresponding dimen-
sion. TFor examjple, if a bound is 8,
the extent of that dimension is 1, 2,
eeey 8.

3. The dimension attribute must immediate-
ly follow the array name, Intervening
blanks are optional. The dimension
attribute cannot be factored.

Example:
DECLARE ARRAY (2,5,10);

The numbers 2, 5, and 10 are the bounds
of a three-dimensional array of 100 ele-
ments. You obtain the number of elements
in an array by multiplying the bounds with
each other.

With the DIRECT and SEQUENTIAL attributes
you specify the manner in which the records
of a RECORD file are to be accessed.
SEQUENTIAL specifies that the records are
to be accessed according to their logical
seguence in the file., DIRECT specifies
that the records are to be accessed by use
of a key. Each record of a direct file
must, therefore, have a key associated with
it.

General Format:

SEQUENTTIAL JDIRECT

General Rules:

1. DIRECT files must also have the KEYED
attribute which, if not explicitly spe-
cified, is implied by DIRECT.
SEQUENTIAL files may have the KEYED
attribute only if the SEQUENTIAL attri-
bute is associated with a file of
INDEXED organization.

2. The DIRECT and SEQUENTIAL attributes
cannot be specified with the STREAM
attribute.

Assumption:

Default is SEQUENTIAL for RECORD files.

ENTRY Attribute

With the ENTRY attribute you specify that
the associated identifier is an entry nanme.

General Format:

ENTRY

General Rules:

1. The ENTRY attribute must be specified
for every entry name that is referred
to in a procedure, unless RETURNS is
specified, which implies the ENTRY
attribute.

2. The ENTRY attribute must not be speci-
fied for built-in functions.

Assumptions:

The appearance of a name as a label of a
PROCEDURE statement is an explicit decla-
ration of that name as an entry name., How-
ever, if you want to refer to that entry
name from within another procedure, you
have to explicitly declare that identifier
with the ENTRY attribute in the invoking
procedure.

The ENVIRONMENT attribute (abbreviated ENV)
is an attribute that specifies various file
characteristics that are not part of the
PL/I language.

General Format:

ENVIRONMENT) (options-list)
ENV

The option list is defined individually
for each implementation of PL/I. For Model
20 PL/I, it is as follows:

[CONSECUTIVE
INDEXED
F (blocksize [,recordsize])
V (maxblocksize)
U (maxblocksize)
[BUFFERS (112)]
MEDIUM (symbolic-device-address,
device-tyre)
[CTLASA]
[LEAVE]
[NOTAPEMK]
[NOLABEL]
[VERIFY]
[NOWRITE]
[KEYLENGTH (decimal-integer-constant)]
[EXTENTNUMBER (decimal-integer-constant)]
[OFLTRACKS (decimal-integer-constant)]
[KEYLOC (decimal-integer-constant)]
[ALTTAPE]

General Rules:

1. Each file declaration must include the
ENVIRONMENT attribute.

2. The options must be separated by one or
more blanks.

EXT_or EXTERNAL and INTERNAL_(Scope

Emamcsie==2

The EXTERNAL (abbreviated EXT) and INTERNAL
attributes specify the scope of a nanme.
INTERNAL specifies that the name is to be
known only in the declaring procedure.
EXTERNAL specifies that the name may be
known in other procedures containing a dec-
laration of the same name with the EXTERNAL
attribute.

General format:
EXTERNAL|EXT|INTERNAL

General Rules:

1. All file and entry names must be
external. They cannot be declared as
internal.

2. All external names are restricted, in
Model 20 PL/I, to a length of six
characters.

Assumptions:

INTERNAL is assumed for variables with any

storage class. EXTERNAL (abbreviated EXT)
is assumed for filenames and entry names.

FILE_Attribute

With the FILE attribute you specify that
the identifier being declared is a
filename.

General Format:
FILE
General Rule:
The FILE attribute must be explicitly
declared for each filename. It must be the

first attribute in a file declaration.
File declarations cannot be factored.

With the FIXED and FLOAT attributes you
specify the scale of the arithmetic vari-
able being declared. FIXED specifies that
the variable is to represent fixed-point
data items. FLOAT specifies that the vari-
able is to represent floating-point data
items.

General Format:

FIXED| FLOAT

Attributes 119

General Rule:

You cannot specify the FIXED and FLOAT
attributes with the PICTURE attribute.

Assumptions:

Identifiers that are not explicitly
declared (or identifiers declared only with
the dimension, storage class, and scope
attributes) are invalid if they begin with
any of the letters I to N. If they begin
with any other alphabetic character, they
are assumed to be arithmetic variables with
the default attributes FLOAT DECIMAL (6).

FLOAT (Arithmetic-Data Attribute)

See FIXED.

With the INITIAL attribute (abbreviated as
INIT) you can specify an initial value for
a variable. The initial value is assiyned
to the variable at the time storage is
allocated for it.

General Format:

INITIALY(item[,item]...)
INIT

General Rules:

1. You may specify the INITIAL attribute
for element variables and arrays. How-
ever, you cannot specify it for arrays
of the storage class AUTOMATIC.

2. The variables you can initialize may
either be arithmetic, character-string
or label variables.

3. INITAL values cannot be declared for
BASED variables, DEFINED variables,
structures, parameters, STATIC LABEL
variables and arrays, POINTER
variables, file names and entry names.
In a structure declaration, the INITIAL
attribute can only be used in the dec-
laration of elementary names.

4. Fach item in the list following the
INITIAL attribute may either be an

the following general forms:

{iteration-factor) constant
(iteration-factor (item [,itemJ...)

Iteration factors must be unsigned dec-
imal integer constants.

120 IBM System/360 Model 20 DPS PL/I

7.

8.

the constant, or item list, is to be
rejeated in the initialization of ele-
ments of an array. If a constant fol-
lows the iteration factor, then the
specified number of elements are to be
initialized with that value. TFor
example:

DCL B (5,5) DECIMAL FIXED STATIC INIT
((25)0) 3

In this DECLARE statement, the 25 ele-
ments of the array B are initialized to
0. If a list of items follows the
iteration factor, then the list is to
be repeated the specified number of
times, with each item initializing an
element of the array; for example:

DCL C (10,10)
((10)0,1));

STATIC FLOAT INIT (1, (9)

In this iteration specification, the
first element is to be initialized to
1, then the item 1list ((10)0,1) is to
be repeated nine times. In this case,
all diagonal elements of the matrix C
are initialized to 1, while all other
elements are initialized to 0. The
iteration specification must not con-
tain more elements than the array.

For initialization of character-string
data, if only one parenthesized integer
constant precedes the string initial
value, the expression is interpreted to
be a string_ repetition_factor for the
string; that is, it is interpreted as a
part of the specification of the value
_____ Consequently, in
order to cause initialization of more
than one element in a character string,
both the string repetition factor and
the iteration factor must be exjlicitly
stated, even_ if the_string repetition
For example, consider

the following

((2) 'A') is equivalent to ('AA')
a single element)

(for

((2) (1) 'A') is equivalent to
('A','A") (for two elements)

The depth of nested iteration factors
in an INITIAL attribute is restricted
to three in Model 20 PL/I. 1In the
example

DCL C (10,10) STATIC FLOAT INIT
(1(9) (10 0, 1)) 3

the INITIAL attribute of the two-
dimensional array C has a nested depth
of two.

The INITIAL attribute cannot be
factored.

The INPUT, OUTPUT, and UPDATE attributes
indicate the function of the file. With
INPUT you specify that data is to be trans-
mitted from the file to the program. With
OUTPUT you specify that data is to be tran-
smitted from the program to the file. A
new file is created, or, with INDEXED
organization, an existing file may be
extended at its end. With UPDATE you sie-
cify that data can be transmitted in either
direction; that is, records of the file are
read, updated, and rewritten. In case of
INDEXED DIRECT files, file extension is
possible.

General Format:
INPUTJOUTPUT| UPDATE
General Rules:

1. For a file with the INPUT attribute you
cannot specify the PRINT attribute.

2. A file with the OUTPUT attribute cannot
have the BACKWARDS attribute.

3. For a file with the UPDATE attribute,
you cannot specify the STREAM, BACK-~
WARDS, or PRINT attributes. 1 decla-
ration of UPDATE for a SEQUENTIAL file
indicates the ujpdate-in-place mode. To
access such a file, the sequence of
statements must be READ, and then
optionally, REWRITE.

4. For each file you have to specify one
of the above attributes, unless you
have declared the file with the PRINT
attribute, in which case, OUTPUT is
implied.

5. You cannot specify OUTPUT for INDEXED
DIRECT files.

Assumption:

The PRINT attribute implies OUTPUT.

INTERNAL (Score Attribute)

See EXTERNAL.

With the KEYED attribute you specify that
each record in the file has a key asso-
ciated with it.

General Format:

KEYED

General Rules:

1. A KEYED file can be read segquentially
only if it has the INDEXED option and
SEQUENTIAL attribute.

2. You can specify the KEYED attribute
only for a file residing on a direct-
access storage device.

Assumption:

The DIRECT attribute implies KEYED.

LABEL_ (Program-Control Data_Attribute)
With the LABEL attribute you specify that
the identifier being declared is a label
variable and is to have statement labels as
values.
General Format:
LABEL
General Rules:
1. The variable can have as values any of
the statement labels known within the
scope of the variable.

2. Label variables and arrays must not be
contained in structures.

3. A label variable cannot be assigned an
entry name as value.

Length (Character-String_Attribute)

See CHARACTER.

See INPUT.

PIC_or PICTURE_(Data_Attribute)

You use the PICTURE (abbreviated PIC)
attribute to specify the internal and
external formats of numeric-character data
and to define the editing of data.
Numeric-character data is data having an
arithmetic value but stored internally in
character form. Before arithmetic opera-
tions can be performed, numeric-character
data is converted to coded arithmetic.

General Format:

{PICTURE}'numeric-picture-specification'
PIC

The numeric-picture_specification is
composed of a string of picture-
specification characters enclosed in apos-
trophes (as shown in the format).

Attributes 121

You find a detailed description as well
as a table of picture-specification charac-
ters in the section Picture-Specification
Characters.

With the POINTER attribute you specify that
the identifier being declared is a pointer
variable and can be used to identify data
declared with the BASED storage-class
attribute.

General Format:
POINTER
General Rules:

1. You can specify the POINTER attribute
for an identifier only in a DECLARE
statement. Thus, you have to explicit-
ly declare a pointer variable with the
POINTER attribute.

2. There are two ways of assigning a value
to a pointer variable:

a. by pointer assignmeant, and

b. by the SET option in a READ or
LOCATE statement.

3. Pointer data cannot appear as an
operand in an arithmetic expression,
nor can conversion be performed between
pointer data and other data types.

4. The only operators that can be used
directly with pointer data are the com-
parison operators = and ,=.

5. Pointer variables cannot be used with
STREAM I/0.

6. A pointer variable cannot have the
BASED attribute.

7. b pointer variable cannot be an eleament
of a structure or of an array.

8. POINTER variables must not be defined.

You use the precision attribute to specify
the minimum number of significant digits to
be maintained for the values of variables,
and to specify, for fixed-point decimal
variables, the scale factor (i.e., the
assumed position of the decimal point).

General Format:

(number-of-digits [,scale-factor])

are unsigned decimal integer constants.

122 IBM System/360 Model 20 DPS PL/I

The number of digits cannot be zero. The
precision-attribute specification is often
represented, for brevity, as (p,q), where p
represents the number of digits and g
represents the scale factor.

General Rules:

1. The precision attribute must immediate-
ly follow, with or without intervening
blanks, the scale (FIXED or FLOAT), or
base (DECIMAL) attribute at the same
factoring level.

2. The number of digits specified is the
number of digits to be maintained for
data items assigned to the variable.
The scale factor specifies the number
of fractional digits. ©No point is
actually present; its location is
assumed.

3. The scale factor is a decimal integer
constant that states the number of
digits to the right of the decimal
point. It can be used only with fixed-
point variables.

4. When the scale factor is not specified
for fixed-point data, it is assumed to
be zero; that 1s, the variable is to
represent integers,

5. The maximum precision allowed in Model
20 PL/TI is 15. The scale factor nay
range from 0 to 15.

Assumptions:

The defaults in Model 20 PL/I are as
follows:

(5,0) for DECIMAL FIXED
(6) for DECIMAL FLOAT

With the PRINT attribute you specify that
the data of the file is ultimately to be
printed. The PAGE and SKIP options of the
PUT statement and the PAGESIZE option of
the OPEN statement can be used only with
files having the PRINT attribute. These
options are described in the section
Statements.

General Format:
PRINT
General Rules:

1. The PRINT attribute implies the OUTPUT
and STREAYM attributes.

2. The PRINT attribute causes the first
data byte within each record to be
reserved for an ASA printer-control

character. To account for this control
character any length specification of
the record must be 1 plus the length of
the print line. The control characters
are set by the PAGE and SKIP format
items or options in the PUT statement.

e LRt S L PR BT e 2+ 2 P 2

With the RECORD and STREAM attributes you
specify the kind of data transmission to be
used for the file. STREAM indicates that
the data of the file is considered to be a
continuous stream of data items, in charac-
ter form, to be assigned from the stream to
variables, or from expressions into the
stream. RECORD indicates that the file
consists of a collection of physically
separate blocks, each of which consists of
one or more records in any form. Each
record is transmitted as an entity directly
to or from a variable or directly to or
from a buffer.

General Format:
RECORD | STREAM
General Rules:

1. A file with the STREAM attribute can be
referenced only in the OPEN, CLOSE,
GET, and PUT statements.

2. A file with the RECORD attribute can be
referenced only in the OPEN, CLOSE,
READ, WRITE, REWRITE, and LOCATE
statements.

3. A file with the STREAM attribute cannot
have any of the following attributes:
UPDATE, DIRECT, SEQUENTIAL, BACKWARDS,
and KEYED.

4, A file with the RECORD attribute cannot
have the PRINT attribute.

Assumptions:

Default is STRELAM.

You must specify the RETURNS attribute when
a function invoked by a function reference
returns a value that has attributes other
than the default attributes FLOAT DECIMAL
(6). It must appear in the invoking as
well as in the invoked procedure.

General Format:

RETURNS (attributes-list)

General Rules:

1. The RETURNS attribute must be specified
as follows:

In the invoking procedure:

DECLARE entry-name [ENTRY] RETURNS
(attributes~1list) ;

In the invoked_procedure:

entry-name: PROCEDURE [(parameter-
list) J] RETURNS (attributes-list);

2. The RETURNS attribute in the DECLARE
statement implies the ENTRY attribute;
hence, you can omit ENTRY in the
DECLARE statement of the invoking
procedure,

3. The attributes in the parenthesized
list following the keyword RETURNS have
to be separated by blanks. The attri-
butes specified in the attributes list
following the keyword RETURNS in the
invoking as well as in the invoked pro-
cedure must be identical.

4, You can specify only arithmetic,
character-string, PICTURE, or POINTER
attributes with the RETURNS attribute.

5. The RETURNS attribute must not be sie-
cified for built-in functions.

Assumptions:

If the RETURNS attribute is not specified
and the entry name referred to in the func-
tion reference does not start with any of
the letters I to N, the value returned by
the invoked function is assumed to have the
default attributes FLOAT DECIMAL (6). If
the entry name starts with any of the let-
ters I to N, the RETURNS attribute has to
be specified.

See DIRECT.

STATIC_(Storage-Class_Attribute)

See AUTOMATIC,

STREAM_(File-Descrirption_Attribute)

See RECORD.

See INPUT.

Attributes 123

Statements

This section presents thé PL/I statements
in alphabetical order. Most statements are
accompanied by the following information:

1.
1. Function -- a short description of the

2. General_format -- the syntax of the
statement.

3. Syntax_rules -- rules of syntax that 2.
are not reflected in the general
format.

4. General_rules —- rules governing the

use of the statement and its meaning in
a Model 20 PL/I program.

The Agssignment Statement

Function:

The assignment statement evaluates expres-
sions and assigns values to elements,

Syntax Rules:

In Type_1, the variable in the receiv-
ing field (i.e., to the left of the
ejual sign) must represent a single
element whose data type is arithmetic
or character-string.

In Type_ 2, the variable in the receiv-
ing field must represent an array of
arithmetic or character-string
elements.

If an expression appears to the right
of the equal sign, the value of the ex-
pression is assigned to each element of
the array in the receiving field.

If an array name appears to the Tight
of the equal sign, the array in the
receiving field must have the same num-
ber of dimensions and identical bounds.

label-constant
b. label-array =

label-array

Type 5:_ _Pointer_ Assignment

pointer-variable =

element-label-variable

!

pointer-expression;

arrays, or structures.

3. In Type 3, the variable in the receiv-
General formats: ing field must represent a structure

and each element of the structure must

The assignment statement has five general be an arithmetic or character-string
format types. They are shown in Figure 19. element.
r 1
| Type_1: _Element Assignment I
| , |
| element—variable} = expression; l
i pseudo-variable |
l l
| Type 2:_ _Array Assignment I
| |
1 arcay-nanmne =farray-name i
| expressionf; |
] |
| Type_3: _Siructure Assignment |
{ |
1 structure-name = structure-nanme;]
| |
| Type U: _Statemet-Label Assignment (2 forms)]
1 |
| a. element-label-variable =flabel-constant } |
i element-label-variablef;]
| |
|]
| |
| 1
| |
| |
l 1
| |
L 4

—— e

Figure 19, Assignment Statement Types

124 IBM System/360 Model 20 DPS PL/I

The structure name to the right of the
egual sign must have the same relative
structuring as the structure name to
the left and corresponding elementary
items of both structures must have the
same attributes.

This means that you can assign minor
structures to major structures and vice
versa, if the relative structuring is
the same and the corresponding elemen-
tary items in both the minor and the
major structure have the same attri-
butes. For example:

DCL 1 INDEX_REC, ‘
2 KEY CHAR (12),
2 OTHER CHAR (63),
1 OUTREC,
2 CTL_CHAR CHAR (1) INIT ('W'),
2 RECORD, -
3 KEY CHAR(12),
3 OTHER CHAR(63);

RECORD = INDEX_REC;

In this example, the major structure
INDEX_REC is assigned to the minor
structure RECORD. Except for the level
numbers (which need not be identical),
both structures have the same structur-
ing and the same attributes.

In Type_ 4, item b, if a label constant
or an element label variable appears on
the right, then the constant or the ‘
value of the variable is assigned to
every element in the label array in the
receiving field.

If a label array appears on the right,
then the number of dimensions and the
bound of each dimension of that array
must be identical to those of the label
array in the receiving field.

In Type 5, an element_pointer_ expres-
sion is either an element pointer vari-
able or a function reference that
returns an element pointer value.

General Rules:

1.

The assignment statement is evaluated
as follows:

a. For Types 1, 4, and 5, any expres-
sions that appear in the receiving
field, either in subscripts or in
pseudo-variables, are evaluated
from left to right. The expression
on the right of the equal sign is
evaluated and its value is assigned
to the variable in the receiving
field.

b. For Types 2 and 3, the assignment
statement is treated as a sequence
of element assignment statements
involving corresponding elements of
the arrays or structures concerned.
For arrays, the elements are
assigned in row-major order; for
structures, the elements are
assigned in the order in which they
were declared.

c. Except for Type 3, the value of the
exrression on the right is, when
necessary converted to the charac-
teristics of the variable in the
receiving field according to the

When a variable in the receiving field
is a character string, the expression
on the right is evaluated as described
in general rule 1, and the assignment
is performed from left to right, start-
ing with the leftmost character posi-
tion. The following may also apply:

a. If the value of the expression is
longer than the character string,
the value is truncated on the right
to match the length of the string.

b. If the value
shorter than
the value is
with blanks.

of the expression is
the character string,
extended on the right

Label-array assignment as shown in Tyge
4 follows the rules given for array
assignment in general rule 1.

The following ekample illustrates array

assignment:

Given the array A 2 4
3 6
1 7
4 8

and the array B 1 5
7 8
3 4
6 3

Consider the assiynment statement

A = B

After execution, A has the value:

YWy =
wEoUm

Statements 125

Consider the assignment statement:
A = 2-2(1,1);

After execution, A has the value:

[LON SE SR w]
NN

Note that the new value for A(1,1), which
is 0, is used in evaluating all other
elements.

The following example illustrates
character-string assignment:

Given:
A is a string whose value is 'XZ/BQ'.
B is a string whose value is 'MAFY'.
C is a string cof length 3.
D is a string of length 5.
Then in the statement:
C = A, the value of C is 'Xz/'.
C = vX', the value of C is 'Xbb'.
D = B, the value of D is 'MAFYb'.
D = SUBSTR (A,2,3)}]SUBSTR (A,2,3), the
value of D is 'Z/BzZ/'.
SUBSTR (A,2,4) = B, the value of A is
'XMAFY"'.
SUBSTR (B,2,2) = 'R', the value of B is
*MRbY'.
Example_3:

The following example (where A, B, and C
are element variables) illustrates element
assignment:

A=A + SIN(B) + C %% 2;

The following example illustrates structure
assignment:

DECLARE 1 X, 2 Y, 22, 2R, 38, 3P,
14, 28B,2C¢C, 20D, 3 E, 3 0Q;

The followiny example illustrates
statement-label assignment:

126 IBN System/360 Model 20 DPS PL/T

DECLARE P LABEL;

P = 1;
GO TO Pp;
A: X = Y %% 2;

This set of statements causes control to
transfer to A when the GO TO P statement is
executed.

The following example illustrates conver-
sion of data defined by a picture descrip-
tion assigned to floating-point data, and
vice versa:

DCL A FLOAT, B PIC '999Vv99r;

A = B; (B is converted from fixed-point
numeric character to
floating-point)

(A is converted from floating-
point to fixed-point numeric
character)

The CALL_Statement

Faunction:

The CALL statement invokes a procedure and
causes control to be transferred to the
entry point of that procedure.

General Format:
CALL entry-name (argument [,argument]...);
Syntax Rules:

1. The entry name (i.e., the label of the
PROCEDURE statement) represents the
entry point of the procedure beiny
invoked. The entry point of a proce-
dure is always the first executable
statement in the invoked procedure.

2. An argument can be any expression
except a based variable, a built-in
function name, a file name, an entry
name, or a label.

Examples of walid arguments include
minor structure names, pointer ex,res-
sions, character-string constants, and
array names.

Note, however, that if the attributes
of an argument are not consistent with
those of its corresponding parameter,
no conversion is performed and an error
will result.

General Rule:

See the section Arguments and Parameters,

for detailed descriptions of the interac-

tion of arguments with the parameters that
represent these arguments in the invoked
procedure.

The CLOSE_Statement
Function:

The CLOSE statement de-activates the named
file which was activated by a previous
opening. It also dissociates from the sgpe-
cified file PAGESIZE, if specified in the
OPEN statement for that file. However, all
attributes explicitly specified for that
file in a DECLARE statement remain in
effect.

General Format:

CLOSE FILE (filename) [,FILE (filename) Jo..;

General Rules:

1. The filename in the FILE(filename) spe-
cification indicates the file to be
closed. Since more than one such spe-
cification can be given in a CLOSE sta-
tement, more than one file can be

closed by one CLOSE statement.

2. A closed file (except an INDEXED file)
may be reopened after it has been
closed.

3. Closing an unopened file, or a pre-
viously closed file, has no effect.

4, If a file is not closed by a CLOSE sta-
tement, it is automatically closed at
the completion of the program in which
it was opened.

The DCL or DECLARE Statement

Function:

The DECLARE (abbreviated DCL) statement is
the principal method for explicitly declar-
ing attributes of names.

General Format:

{DECLARE [level] identifier [attribute]...
DCL [r[level] identifier
[attribute]ee. Jeo.;

Syntax Rules:

integer constant which must not exceed
255. It can appear only in structure
declarations; the major structure must
have the level 1. A blank space must
separate a level number from the iden-
tifier followiny it.

2. In general, attributes must immediately
follow the identifier to which they

apply (as shown in the general format).
However, attributes common to several
name declarations can be factored to
eliminate repeated specification of the
same attribute for many identifiers.
Factoring is achieved by enclosing the
involved declarations (non-common
attributes included) in parentheses and
following this by the set of common
attributes. In the case of factored
elements of structures, the level num-
ber must precede the parenthesized list
(a blank is not required between the
factored level number and the left
parenthesis). For example:

DCL 1 A, 2(B,C,D) CHAR(20);

Dimension INITIAL, and file-description
attributes cannot be factored. Factor-
ing can be nested up to a level of
eight. For more examples of factoring
see Factoring of Attributes in the sec-

General Rules:

1. A major-structure identifier or an
identifier not contained within a stru-
cture can be specified in only one
DECLARE statement within a particular
procedure. All attributes given expli-
citly for that identifier must be
declared together in one DECLARE
statement.

2. Attributes of external names, in separ-
ate procedures and compilations, must
be consistent.

3. Labels may be prefixed to DECLARE sta-
tement, however, such labels are
treated as comments and, hence, have no
meaning.

4. File names must be explicitly declared,
and the first attribute in a file dec-
laration must be FILE.

5. All entry names (except built-in func-
tion names) referred to in a procedure
through a CALL statement or a function
reference must be explicitly declared.

6. The built-in function DATE must be
exjlicitly declared.

The DISPLAY Statement

Function:

The DISPLAY statement is used to display a
one-byte message on the CPU console, usual-
ly to the operator. It is used, together
with the REPLY specification, to allow the
operator to communicate with the program.
REPLY permits the operator to return a one-
byte message. Execution of the program is

Statements 127

r
|
|
|
|
|
|
1 DO variable =
v

expressionl [TO expression2][BY expresion3];

A o o — ——— —]

Figure 20. General Format of DO Statement

suspended until the operator has entered
his reply.

General Format:

DISPLAY (expression) REPLY (character-

string variable)
General Rules:

1. The DISPLAY statement displays one
character in the T-R register., The E-S
register contains standard information.
The REPLY specification returns one
character from the DPS operator com-
munication byte.

2. REPLY must be specified.

3. The expression must result in a charac-
ter string.

The DO_Statement

Function:

The DO statement heads a DO-group and can
also be used to specify repetitive execu-
tion of the statements within the group.

General Formats:

There are two format types for the DO sta-
tement as shown in Figure 20.

Syntax Rules:

1. In both types, the DO statement is used
in conjunction with the END statement
to delimit the DO-group. Type 2 pro-
vides for iterative execution of the
statements within the group, Tyre 1
does not.

metic and must represent a single ele-
ment; it cannot be subscripted. For
example:

DO COUNTER = 1 TO 10 BY 2;

In this example, COUNTER is the control
variable, 1 is expressionl, 10 is
expression2, and 2 is expression3.
COUNTER must either be explicitly

128 1IBM System/360 Model 20 DPS PL/I

declared to be an arithmetic variable
or it is given the default attributes
FLOAT DECIMAL(6) .

Each exjression in a DO statement must
be an element expression.

assumed to be 1.

If TO expression2 is omitted, iterative
execution continues until it is ter-
minated by some statement within the
group.

If both T) expression2 and BY expre-
ssion3 are omitted from a specifica-
tion, it implies a single execution of
the group, with the control variable
having the value of expressionl.

General Rules:

1.

In Type 1, the DO statement only deli-
mits the start of a DO-group; it does
not provide for iterative execution.

In Type 2, the D) statement delimits
the start of a DO-group and provides
for controlled iterative execution as
defined by the following:
LABEL: DO variable = expressionl

TO expression2 BY expression3;
statement-1

statement-n
LABEL1: "END;
NEXT: statement

The above is exactly equivalent to the
following expansion:

LABEL: el = expressionil;
e2 = expression2;
e3 = expression3;
v = el;

LABEL2: IF e3 >= 0

THEN IF v > e2
THEN GO TO NEXT;
ELSE;

ELSE IF v < e2

THEN GO TO NEXT;
statement-1

statement-m
LABEL1: v = v + e3;

GO TO LABEL2;
NEXT: statement
In the above expansion, el, e2, and e3
are compiler-created work aréas having
the attributes of expressioni, expre-
ssion2, and expression3, respectively;
v is synonymous with variable.

Ep =3t~ 4)

added to the control variable after
each execution of the statements in the
minating value of the control variable.
Execution of the statements in a DO-
group terminates as soon as the value
of the control variable is outside the
range defined by expressionl and expre-
ssion2. When execution of the DO-group
is terminated, control passes to the
statement following the DO-group.

4, If both options, TO and BY, are present
in an iterative specification, TO must
occur first.

5. The control variable must not be
changed during the execution of an
iterative specification other than by
the iterative specification itself.

6. Control may be transferred from outside
the DO-group into the DO-group (i.e.,
to a statement in the group other than
the DO statement) only if the DO-group
is delimited by a DO statement of Tyje
1; that is, only if iterative execution
is not specified. See also The_DO_Sta-

Statement Classification.

The END Statement

Function:

The END statement terminates DO-groups and
procedures.

General Format:
END;
General Rules:
1. The END statement always terminates
that DO-group or procedure headed by
the nearest preceding DO or PROCEDURE

statement for which there is no corres-
ponding END statement.

2. If control reaches an END statement for
’ a procedure, it is treated as a RETURN
statement.

The FORMAT Statement

Function:

With the FORMAT statement you specify a
format list that is to be used in edit-
directed transmission statements to control
the format of the data being transmitted.

General Format:
label: [label:]...FORMAT (format-list);
Syntax Rules:

1. The format_list must be specified
according to the rules governing
format-list specifications with edit-
directed transmission as described in

the section DataTransmission.

a FORMAT statement. In general, one of
the labels (or a label variable having

the value of one of the labels) is the

statement-label designator specified in
the remote format item.

General Rules:

1. A GET or PUT statement may include a
remote format item, R, in the format
list of an edit-directed data specifi-
cation. That portion of the format
list represented by R must be supplied
by a FORMAT statement preceded by the
statement label specified with R. An R
format item cannot appear in the format
list of a FORMAT statement.

2. You have to specify the remote format
item and the FORMAT statement in the
same procedure.

3. The format list in a FORMAT statement
may contain nested iteration factors.
However, the depth of the nest is
limited to 2.

4., TIf the format list of a GET or PUT sta-
tement contains a remote format iten
(R(statement-label-designator)) con-
tained in an iteration nest, it must
not be at a depth greater than 2.

T'he GET Statement

Function:
The GET statement is a STREAM transmission

statement which you can use in either of
the following ways:

Statements 129

e It can cause the assignment of data from
an external source (that is, from a
file) to one or more internal receiving
fields (that is, to one or more
variables) .

e It can cause the assignment of data from
an internal source (that is, from a
character-string variable) to one or
more internal receiving fields (that is,
to one or more variables).

General Format:
GET (FILE (filename)
STRING (character—-string-variable)
data-specification;

Syntax Rules:

1. The data specification is as described
in Part I, under Data Transmission.

2. The data specification must follow the
FILE or STRING option one of which must
be specified.

the character string that is to provide
the values to be assigned to the
variables in the data specification.

4, The filename is the name of a file that
will provide the values to be assigned
to the variables in the data specifica-
tion. It must have the STREAM and

INPUT attributes.
General Rules:

1. If the FILE option refers to an
unopened file, the file is opened
implicitly.

2. If the STRING option has been speci-
fied, the internal GET operation always
starts at the beginning of the speci-
fied string. If the number of charac-
ters in this string is less than the
total number of characters required by
the variables in the data specifica-
tion, the ERROR condition is raised.
Note that the variables in the data
specification do not have to be charac-
ter strings; the internal assignment is
the same as the transmission from the
stream to internal storage, the only
difference being that the character-
string variable is considered to be the
input streanm.

The GO _TO _Statement

Function:
The GO TO statement causes control to be

transferred to the statement identified by
the specified label.

130 IBM System/360 Model 20 DPS PL/I

General Format:

{Go TO) flabel-constant;
GOTDO element-label-variable;

General Rules:

1. If an element label variable is speci-
fied, the value of the label variable
determines the statement to which con-
trol is transferred. Since the label
variable may have different values at
each execution of the GO TO statement,
control may not always pass to the same
statement.

2. A GO TO statement cannot pass control
to an incactive procedure.

3. A GO TO statement cannot transfer con-
trol from outside a DO-yroup to a sta-
tement inside the DO-group if the DO-
group specifies iterative execution,
anless the GO TJ terminates a procedure
invoked from within the DO-group or
unless the GO TO is an ON-unit given
control from within the DO-group.

4. If a GO TJ statement transfers control
from within a procedure to a point not
contained within that procedure, the
procedure is terminated. Also, if the
transfer point is contained in a proce-
dure that did not directly activate the
procedure being terminated, all inter-
vening procedures in the activation
sequence are also terminated (See Part
I, Flow of Control and _Storage Alloca-
tion, for examples and details). When
one or more procedures are terminated
by a GOTO statement, conditions are
reinstated and automatic variables are
freed just as if the procedures had
been terminated in the usual fashion.

5. When a GOTD statement transfers control
out of a procedure that has been
invoked as a function, the evaluation
of the expression that contained the
corresponding function reference is
discontinued.

6. If the GO TO statement is an ON-unit,
the specified label must be
unsubscrij ted.

Ihe IF_Statement

Function:

The IF statement tests the value of a spe-
cified expression and controls the flow of
execution according to the result of that
test.

General Format:

If element-expression THEN unit-1
[ELSE unit-2]}

Syntax Rules:

1. Each unit is either a single statement
or a DO-group. It must, however, not
be a PROCEDURE, a DECLARE, or FORMAT
statement.

2. The IF statement itself is not ter-
minated by a semicolon; however, each
unit specified must be terminated by a
semicolon.

3. Each unit may be labeled.
General Rules:

1. The expression following the keyword IF

must contain one and only one compari-
son operation.

2. If the comparison is true, the THEN
clause is executed. After execution of
the THEN clause, control branches
around the ELSE clause and execution
continues with the next statement. If
the comparison is not true, control
branches around the THEN clause, and
the ELSE clause is executed. Control
then continues normally.

THEN
e

ELSE
Note that the THEN clause or the ELSE
clause can contain a GOTO statement or

some other control statement that can
cause a different transfer of control.

THEN ———

—C

3. If the THEN clause does not cause a
transfer of control and if it is not
followed by an ELSE clause, the next
statement will be executed whether or
not the THEN clause is executed.

This may be illustrated by the follow-
ing diagram:

[THEN
IF next-statement ———~

In the kind of IF statement illustrated
above, the alternatives are "execute
the THEN clause" or "do not execute the

THEN clause". 1In either case, the next
segquential statement is executed. If
the expression tested is not true, con-
trol continues through the logical flow
of execution. If the expression is
true, the THEN clause is executed, and
control returns to exactly the same
point where it would have been if the
expression had not been true. 1In this
kind of IF statement the word ELSE must
not appear since the ELSE clause would
be skipped whenever the THEN clause it
executed.

4, IF statements may be nested; that is,
either unit, or both, may itself be an
IF statement. In Model 20 PL/I, the
number of IF and DO statements in one
nest must not exceed 20. However, the
number of DO statements alone must not
exceed 12 per nest. Any IF statement,
at any level, may have a DO-group as
either or both of its alternative
units. An ELSE clause is always asso-
ciated with the innermost unmatched IF
in the same DO-group; an ELSE with a
null statement may be required to spe-
cify a desired sequence of control.

IF A > B
THEN IF C = 0 THEN X
ELSE X

SQRT (A-B) ;
15

o

In this example, the statement X = 1;
is executed if A is greater than B and
C is not =qual to O.

If the statement X = 1; is to be
executed if A is not greater than B,
regardless of the value of C, you may
write the example in the following way:

IF A > B
THEN IF C = 0 THEN X = SQRT (A-B);
ELSE;
ELSE X = 1;

The LOCATE_Statement

Fanction:

The LOCATE statement is a RECORD transmis-
sion statement which you can use only for
CONSECUTIVE output files. It allocates
storage for a based variable in an output
buffer to allow the creation of a record
for that based variable. The record is
created by assigning values to the based
variable within the buffer. The record is
not transmitted to the external medium
until immediately before the next WRITE,
LOCATE, or CLOSE statement (or implicit
close operation) is executed for the speci-
fied file.

Statements 131

General Format:

LOCATE based-variable FILE (filename)
SET (pointer-variable);

Syntax Rules:

1. The FILE and SET specifications must
appear in the order shown in the gener-
al format.

2. The based_variable must be an unsub-
scripted based variable that is not a
minor structure or an element of a
structure. It may, however, be an
array name or a major-structure nanme.

pointer variable.

4. The filename is the name of the file
that has been activated (by opening)
and that will eventually receive the
record. The file must have the
SEQUENTIAL and OUTPUT attributes. It

must, however, not be an INDEXED file,
General Rules:

1. The based variable is used to determine
the length of the buffer area to be
reserved. When the LOCATE statement is
executed, the pointer variable in the
SET specification is set to identify
the location in the buffer at which the
based variable is to be allocated.

2. The record identified by the based
variable is written from the buffer
into the output file, immediately
before the next WRITE, LOCATE, or CLOSE
operation (implicit or explicit) for
that file. For blocked records, the
record is not written until the whole
block is completed.

3. The FILE sjpecification must refer to a
previously opened file.

The Null Statement

Function:
The null statement causes no action and
does not modify sejuential statement execu-
tion. The null statement is represented by
the semicolon (;).
General Format:

H
General Rule:
The null statement must not be specified

for an ON statement whose condition is
CONVERSION, ENDFILE, or KEY.

132 1IBM System/360 lModel 20 DPS PL/I

The ON Statement

Fanction:

With the ON statement you specify what
action is to be taken when an interrupt
results from the occurrence of the speci-
fied exceptional condition.

General Format:

ON condition { SYSTEM;]ON-unit}

For a description of the ON statement and
the ON-conditions that may be specified

The OPEN_Statement

Fanction:

The OPEN statement opens (activates) a file
by associating a file with a file
declaration.

General format:

OPEN FILE (filename) [option]
[,FILE (filename) [option]]...;

PAGESIZE (element-expression).

Syntax Rules:

1. The FILE specification must appear
first.

2. The filename is the name of the file
that is to be activated. Several files

can be opened by one OPEN statement.
General rules:

1. The opening of an already open file
does not affect the file. In such
cases, any expressions in the optien,
if specified, are evaluated, but they
are not used.

2. The PAGESIZE option can be specified
only for a file having the STREAM and
PRINT attributes. The expression is
evaluated and converted to an integer,
which represents the maximum number of
lines to a page. This integer must be
greater than zero and less than 256.
Duriny subsequent transmission to the
PRINT file, a new page may also be
started by use of the PAGE format iten
or by an option in the PUT statement.
For the Model 20 PL/I Compiler, the
default for PAGESIZE is 60.

3. When a PRINT file is opened, a new pade
is started.

4. The OPEN statement is mandatory for
RECORD files and optional for STREANM
files.

The PROCEDURE Statement

Function:

The PROCEDURE statement has the following
functions:

a. It heads a procedure and defines its
entry point.

b. It specifies the parameters, if any,
for the entry point.

c. It may specify certain special charac-
teristics that a procedure can have.

d. It specifies the attributes of the
value that is returned by the procedure
when it is invoked as a function.

General Format:

[(condition-prefix):]

entry—-name: PROCEDURE
OPTIONS (option-list)
[(parameter[,parameter)]...]}
[RETURNS (data-attributes)]

where, for the Model 20 PL/I Compiler, the

MAIN[,ONSYSLOG]
Syntax Rules:

1. The data_attributes represent the
attributes of the value returned by the
procedure when it is invoked as a func-
tion. Only arithmetic, string,
PICTURE, and POINTER attributes are
allowed.

2. OPTIONS is a special procedure specifi-
cation. Two options can be specified
in the OPTIONS attribute which must be
specified for only one external proce-
dure in the program:

a. MAIN must be specified if and only
if the procedure is the initial
procedure of the program.

b, ONSYSLOG specifies that diagnostic
output is on SYSLOG instead of
SYSLST. ONSYSLOG can only be spe-
cified together with MAIN.

3. One and only one entry name must appear
in a PROCEDURE statement. The entry
name must not exceed 6 characters.

4., The maximum number of parameters that
can be specified for one procedure is
12.

General Rules:

1. When a procedure is invoked, a rela-
tionship is established between the
arguments passed to the procedure and
the parameters that represent those
arguments in the invoked procedure.
This topic is discussed in Part I,

2. The MAIN option specifies that the Lro-
cedure for which it is specified is the
initial procedure and will be invoked
by the programming system as the first
stegp in the execution of the progranm.
The ONSYSLOG option specifies that all
output resulting from actions derived
from ON conditions will be printed on
the device assigned to SYSLOG. ©No
other options are permitted. The pro-
cedure declared with the OPTIONS attri-
bute remains active for the duration of
the program and hence cannot be called
by other procedures. For the Model 20
PL/I Compiler, only one procedure must
have the OPTIONS(MAIN) designation.

3. The data attributes specify the attri-
butes of the value returned by the fro-
cedure when it is invoked as a func-
tion. For details see the section
Arguments_and Parameters in Part I.

4. The entry name of a procedure is an
external name and as such is restricted
in Model 20 PL/I to a length of six
characters.

5. The name of a procedure must not be
redeclared within that procedure.

The_ PUT Statement

Function:

The PUT statement 1s a STREAM transmission
statement which can be used in either of
the following ways:

1. It can cause the values in one or more
main-storage locations to be trans-
mitted to a file on an external medium.
Related to this, it can control the
format of a PRINT file.

2. It can cause the values in one or more
main-storage locations to be assigned
to an internal receiving field (repre-
sented by a character-string variable).

General Format:

with the STRING option:

PUT STRING (character-string-variable)

data-specification;

Statements 133

with the FILE option:

PUT FILE (filename)
EDIT data-specification
SPAGE ?
<SKIP (expression)] >
(PAGE EDIT data-specifications;
.SKIP [(expression)]
data-specification

Syntax Rules:

1. Either the FILE or the STRING option
nust be specified in the PUT statement.

2. The FILE option specifies transmission
to a file on an external medium. The
file name in this option is the name of
the file that has been activated (by
implicit or explicit opening) and that
is to receive the values. This file
must have the OUTPUT and STREAM
attributes.

3. The STRING option specifies transmis-
sion from main-storage locations
(fepresented by variables or expres-
sions in the data_specification) to a
character string (represented by the
character-string_variable). The
"character-string variable" cannot be a
pseudo~variable.

4, The data specification is as described
in Part I, Data_ Transmission.

5. The FILE or STRING option must always
be the first option. If the data spe-
cification appears, it must be the last
option. At least one of the options
PAGE, SKIP, or data specification must
appear. Note that the options PAGE and
SKIP must not appear both in one PUT
statement.

General Rules:

1. If the FILE option is specified, and

file, the file is opened implicitly.

2. If the STRING option is specified, the
PUT operation begins assigning values
to the beyinning of the string (that
is, at the leftmost character posi-
tion), after appropriate conversions
have been performed. Blanks and deli-
miters are inserted as usual., If the
string is not long enough to accommod-
ate the data, the ERROR condition is
raised. Note that the variables in the
data specification do not have to be
character strings; the internal assign-
ment is the same as the traamsmission
from main storage to the output strean,
the only difference being that the
character-string variable is considered
to be the output strean.

134 1IBM System/360 Model 20 DPS PL/I

3. The option PAGE or SKIP can be given
only for PRINT files. If specified,
they take effect before the transmis-
sion of the values defined by the data
specification takes place.

4. The PAGE option causes grinting to con-
tinue on a new page. If a data speci-
fication is present, the transmission
of values occurs after the definition
of a new current page. A new current
page implies line 1.

5. The SKIP option causes a new current
line to be defined for the file. The
to be skipped and may range from zero
to three inclusive. If w is greater
than zero, w - 1 blank lines will be
inserted in the data stream. If u is
ejqual to zero, the effect is that of a
carriage return, the characters pre-
viously printed will be overprinted.
(SKIP({0) may be used to
underline parts of the printed line by
use of the break character.) If w is
not specified, 1 is assumed. If less
than w lines remain on the current page
(where the number of lines is deter-
mined by the PAGESIZE option of the
OPEN statement or by default), the
ENDPAGE condition is raised.

The READ _Statement

Function:

The READ statement is a RECORD transmission
statement that you can use to transmit a
record from an INPUT or UPDATE file to a
variable or buffer in main storage.

General format:

READ FILE (filename)
{INTO {variable) }

SET (pointer-variable) g/ ;

INTO (variable)
KEY (exprLession)

Syntax rules:

1. The FILE specification must appear
first. ©Either INTO or SET must be
specified.

from which the record is to be read.
The file must have the RECORD attribute
and must also have either the INPUT or
UPDATE attributes.

variable into which the record is to be
read. It must be an unsubscripted
variable not contained in a structure.
It cannot be a label or pointer vari-

able or a parameter and it cannot have
the DEFINED attribute,

4, KEY can be specified only if INIO is
specified.

General Rules:

1. The file appearing in the FILE specifi-
cation must have been opened
previously.

2. The KEY option must appear if the file
has the DIRECT attribute. The exrres-
sion is the key that determines which
record will be read. (See Part III,
Inputsoutiut, for a discussion of keys.

The KEY option may also appear for
files of INDEXED organization having
the SEQUENTIAL and KEYED attributes.

In such cases, the file is positioned
to the record having the specified key.
Thereafter, records may be read sequen-
tially from that point on by using READ
statements without the KEY option.

If the key specified in the KEY option
of a READ statement for an INDEXED
SEQUENTIAL file is not found in the
file the KEY condition is raised.

3. The SET option can only be specified
for CONSECUTIVE files; it cannot be
specified for any file having the KEYED
attribute. The SET option specifies
that the record is to be read into a
be set to point to the location of that
record within the buffer. The descrip-
tion of the record is determined by a
based variable. Thz2 value of the
pointer variable is valid until the
next READ statement is executed or
until the file is closed.

ER L 1. P P A AP

Function:

The RETURN statement terminates execution
of a procedure and returns control to the
invoking procedure. It may also return a
value to the invoking procedure.

General Format:
RETURN [(expression) J;
General Rules:

1. If the expression is not specified, the
RETURN statement can only terminate a
procedure that has not been invoked as
a function. When such a statement is

executed, control is returned to the

invoking procedure at the point logic-
ally following the point of invocation.
If a RETURN statement is executed in
the initial procedure, program execu-
tion is terminated.

2. If you have specified an expression,
the procedure from which control is to
be returned, must be a function proce-
dure. When such a statement is
executed, control is returned to the
invoking procedure at the point of
invocation; the value returned to this
point is the value of the expression.
If this value does not conform to the
explicit or default attributes speci-
fied for the procedure being ter-
minated, the value is converted to
these attributes before it is actually
returned.

The REWRITE_Statement

Function:

You can use the REWRITE statement only for
UPDATE files to replace an existing record
in a file.

General Format:

REWRITE FILE (filename) { FROM(variable)
[KEY (expression)]];

Syntax Rules:

1. The FILE specification must appear
first. KEY cannot be specified without
FROM.

2. The filename is the name of the file
containing the record to be rewritten.
The file must have the UPDATE

attribute.

sents the record that will replace the
existing record in the specified file.
It must be an unsubscripted variable;
it cannot be contained in a structure;
it cannot be a parameter; it cannot be
a label or pointer variable; and it
cannot have the DEFINED attribute.

General Rules:

1. The file whose name appears in the FILE
specification must have been opened
previously.

2. If the file has the DIRECT attribute,
you have to sjpecify the KEY option.
The expression must be a character
string. This character string is the
source key that determines which record
is to be rewritten.

Statements 135

The_ WRITE

The FROM option must be specified for
UPDATE files of INDEXED organization
having either the DIRECT attribute or
the SEQUENTIAL attribute.

The FROM option can be omitted only for
SEQUENTIAL UPDATE files of CONSECUTIVE
organization. When this is the case,
the record rewritten is the record in
the buffer. Hence, this record must be
the last record that was read and it
should have been read by a READ state-
ment with the SET option. (The record
will be updated by whatever assignments
were made to it in the buffer). If the
record had been read by a READ with the
INTO option, it would be rewritten
unchanged.

Statement

Function:

The WRITE
sion statement that

is a RECORD transmis-
transfers a record from

statement

a variable in main storage to an OUIPUT or
UPDATE file.

General Format:

WRITE FILE (filename) FROM (variable)

[KEYFROM (expression) J;

Syntax Rules:

1.

136

The FILE specification must appear
first.

IBM System/360 Model 20 DPS PL/I

which the record is to be written.
This f£ile must be a RECORD file that
has either the JUTPUT attribute or the
DIRECT and UPDATE attributes.

contains the record to be written. It
must be an unsubscripted variable; it
cannot be a parameter; it cannot be
contained in a structure, it cannot be
a label or pointer variable; and it
cannot have the DEFINED attribute.

The KEYFROM option must be specified
for DIRECT files, it must also be spe-
cified for INDEXED SEQUENTIAL files,
but not for any other files.

General Rules:

1.

2.

The file must have been opened
previously.

If the KEYFROM option is specified, the
exjression is the source key that s;e-
cifies the logical location in the file
where the record is written. (See Part
III, Input/Output, for a discussion of
source keys). In Model 20 PL/I the
source key automatically replaces the
recorded key whose length is determined
by the KEYLENGTH option and whose loca-
tion in the record is specified in the
KEYLOC option in the ENVIRONMENT
attribute.

Part III

Model 20 PL/I as Part of the Disk Programming System

PL/I in the Model 20 Disk Programming System

INTRODOCTIION

Model 20 PL/I is part of the System/360
Model 20 Disk Programming System. It
regjuires a minimum of 16,384 bytes of main
storage. Model 20 PL/I consists of a com-
piler and a set of subroutines, all operat-
ing under the control of the DPS System
Control programs.

The Model 20 PL/I language is a subset
of the full PL/I language and, except for
support of input/output devices that can
only be attached to a Model 20, is upward
compatible with the System/360 DOS PL/I
subset language.

MINIMUM SYSTEM CONFIGURATION

The minimum system configurations for both
compilation and execution of PL/I prograums
under the System/360 lodel 20 Disk Program-
ming System are as follows:

Submodel 2

An IBM 2020 Central Processing Unit Mogdel
D2 (16,384 bytes of main storage);

an IBM 2311 Disk Storage Drive Model 11 or
123

one of the followiny card reading devices:
IBM 2501 Card Reader Model A1 or A2,
IBM 2520 Card Read-Punch lModel A1,
IBM 2560 Multi-Function Card Machine
(MFCM) Model A1;

one of the following printers:

IBM 1403 Printer Model N1, 2, or 7,
IBM 2203 Printer Model A1.

AT 2 r e]

An IBNM 2020 Central Processing Unit Model
D4 (16,384 bytes of main storage);

an IBM 2311 Disk Storage Drive Model 12;
an IBM 2560 MFCM Model A2;

an IBM 2203 Printer Model A2.

Submodel 5

An IBM 2020 Central Processing Unit Model
D5 (16,384 bytes of main storage);

an IBM 2311 Disk Storage Drive Model 11 or
123

one of the following card reading devices;
IBM 2501 Card Reader Model A1 or A2,
IBM 2520 Card Read-Punch Model a1,
IBM 2560 Multi-Function Card Machine
(MFCH) Model A1;

one of the following rrinters:

IBM 1403 Printer Model N1, 2, or 7,
IBM 2203 Printer Model AT1.

MAXIMUM SYSTEM CONFIGURATION

Submodel 2

An IBM 2020 Central Processing Unit Model
D2 (16,384 bytes of main storage);

two IBM 2311 Disk Storage Drives Model 11
or 12 (both must be the same model) ;

an IBM 2415 Magnetic Tape and Control Unit
Model 1 throujh 6;

an IBM 2501 Card Reader Model A1 or A2;

an IBM 1442 Card Punch Model 5;

one of the following card units:
IBM 2520 Card Read-Punch Model A1,
IBM 2520 Card Punch Model A2 or A3,
IBM 2560 MFCM MNModel A1;

one of the following printers:

IBM 1403 Printer Model N1, 2, or 7,
IBM 2203 Printer Model A1;

an IBM 2152 Printer-Keyboard.

Submodel 4

An IBM 2020 Central Processing Unit Model
D4 (16,384 bytes of main storage);

two IBM 2311 Disk Storage Drives Model 12;
an IBM 2560 MFCHM Model A2;
an IBM 2203 Printer Model A2.

an IBM 2152 Printer-gKeyboard.

PL/I in the Model 20 Disk Programming System 139

Submodel 5

An IBM Central Processing Unit Model E5
(32,768 bytes of main storage);

four IBM 2311 Disk Storage Drives Model 11
or 12;

an IBM 2415 Magnetic Tape Unit and Control
Model 1 through 6;

an IBM 2501 Card Reader Model A1 or A2;

an IBN 1442 Card Punch Model 5;

140 1IBM System/360 Model 20 DPS PL/I

one of

IBY
IBM
IBM

one of

IBM

IBM

an IBM

the following card units:

2520 Card Read-Punch Model A1,
2520 Card Punch Model A2 or A3,
2560 MFCM lodel A1;

the following printers:
1403 Printer Model N1, 2, or 7,

2203 Printer Model 21;

2152 pPrinter-Keyboard.

To show how programs written in Model 20
PL/I are compiled and executed under the
Disk Programming System (DPS), the main
components of the DPS must first be
described.

The programs that form the Disk Program-
ming System can be grouped into five cate-
gories as listed below:

1. Control prograns

2. Service prograns

3. Language translators

4. Several Utility progranms

5. User-written programs

Disk Programming System

Language Translators and

Control Programs Macro Definitions

Initial Progrem Loader

Assembler
Report Program
Generator (RPG)
PL/! Compiler

Input/Output Control
System and Monitor
Macro Definitions

Monitor Program
Service Programs

General Utility
Programs

Sort/Merge

DPS Disk and Tape
Utilities

Job Control Program

User-Written Programs

Schematic Representation of the
Disk Programming Systen

Figure 21.

fers control to it, causing it to load the
_________________ After execution of
the Job Control program, control is
returned to the Monitor program. The Job
Control program is used before each job (1)
to assign actual input/output addresses to
the symbolic addresses used in the pro-

The Model 20 Disk Programming System

grams, (2) to specify other environmental
data (e.g., the date or the storage capaci-
ty), and (3) to communicate the name of the
next program to be executed to the Monitor
program.

Service Programs

The Service programs are a group of pro-
grams that create and maintain the systen
libraries. They are executed under control
of the Monitor.

The system libraries are:

e the core_image_ library, which contains,
for example, the Job Control Progranm,
the PL/I Compiler, and executable
user-progranms.

e +the macro_library, which contains macro

definitions.

o the relocatable area, which is used to
temporarily hold compiler output that is
to be executed or cataloged immediately.

One of the DPS language translator programs
is the PL/I_compiler which compiles PL/I
source programs, and links together separ-
ately compiled PL/I procedures and library
routines into an executable object program.

For the execution of PL/I programs, the
most important parts of the programming
system are the Monitor program, the Job
Control_ program, and the PL/I_ compiler, all

of which are discussed below.

Figure 21 gives a schematic representa-
tion of the Disk Programming System.

Monitor Program

The Monitor program, which is loaded by the
Initial Program Loader, is the main control
program of the DPS. It provides functions
and contains information needed by all pro-
grams. Therefore, it must be in main
storaye throughout a system run. The lon-
itor program controls the loading and
execution of object programs, that is, pro-
grams that have already been compiled
(i.e., translated into machine language) by
the PL/I compiler.

The Model 20 Disk Programming System 141

Jab Control Program

The Job Control program, which is the first
program to be loaded by the Monitor pro-
gram, provides for automatic job-to-job
transition in a system run. It prepares
the system for the execution of the next
job by reading and processing a set of job-
control statements punched into cards by
the user. The job-control statements must
contain all the information required to run
a job. They have to indicate the start and
name of a job, specify the jobs that are to
be executed, and to define input/output
requirements of the programs. In response
to the job-control statements, the Job Con-
trol program allocates the input/output
units rejuired, and then requests the Mon-
tior program to initiate the execution of
the specified job (or batch). After execu-
tion of a job, the Job Control program
prints the error statistics if specified
and obtains information about the next job
from a new set of control statements.

Maodel 20 PL/I Compiler

The Model 20 PL/I compiler is a progran
that

142 IBM System/360 Model 20 DPS PL/I

source program into a set of System/360
Model 20 machine instructions, and

2. link-edits the set of machine instruc-

tions into a form suitable for
execution.

The set of machine instructions produced

object_module.

The set ‘of machine instructions produced

object_progran.

A compiled object module is not execut-
able. It must first be link-edited by the
PL/I compiler, that is, linked with other
aser and IBM-supplied modules or =- if the
compiled object module is a complete pro-
gram —-- only with IBM-supplied modules to
form an executable object progranm.

The Job Control program is executed before
each job to prepare the system for the job
to be executed, and it is called subse-
quently each time the end of the job is
reached. Control statements supyly the
information required by the Job Control
program.

This section gives a detailed descrip-
tion of the most important job-control sta-
tements you need to compile and execute
your programs.

Figure 22 is an illustration of the I/O
device assignments used for compilation and
execution.

Note: SYSRDR and SYSIPT may be assigned the same card-reading device,
in which case the cards read on SYSIPT follow those read on SY'SRDR
in the hopper. If the additional work areas WORK2 or WORK3

are used, the two (three) extents WORK1, WORK2, (ond WORK3)
must reside on different disks. Note also that the symbolic

device addresses specified in this figure must be used for

the work files. The work file WORKL is used in
connection with the option LSORT.

Job-Control
Statements

SYSRDR

ystem Pacl
PL/I Compile
(relocatable
area)

SYSRES

WORK1

on SYSRES Model 20

(Main Storage)

SYS000

Object Program Printed
on Cards jec Output
SYSOPT \oregrem
* SYSLST
Figure 22. I/0 Device Assignments Used for

Compilation and Execution

170 Device Assignment

The I/0 devices used by the system for pro-
gram compilation and execution are referred

/ A SN
System /360 WORK2 {
N ! Work File 2 | ¢ Svso03

Job Control

to by symbolic, not actual device
addresses. This means that, when writing
your programs, you can disregard the actual
device assignments of the system configura-
tion you use. The symbolic device
addresses you can use are listed in Figure
23. VNo other addresses may be used.

T
|SYS000- |User-program I/0 devices (disk
] S¥YS019 Jand magnetic tape devices only).
L— L

r T -1
| Symbolic| 1
JDevice |Refers to |
|Address | 1
———————— - 1
|]SYSRDR |Card reading device for control |
| |]statements. Not used by PL/I 1
| |compiler or object progranms. |
b : 1
J]SYSIPT |Input device (card reader or 1
| |tape drive) from which the input|
1 jfor the compiler is read. |
= +-—- 1
|SYSOPT |Card punching device or |
| Jmagnetic-tape drive on which the]
| |object program of the compiler |
] Jis written. I
P +- 1
|SYSLST |Printer for printing listings |
1 Jand diagnostic messages. 1
F B B 1
|SYSLOG |Printer used to print operator |
| |messages. The device may be the]
| | same as the one referred to by |
| |SYSLST. |
- t 1
|

1

3

Figure 23. Symbolic Device Addresses

Syubolic device addresses can be
assigned to actual devices

1. when building the system, or

2. by means of the ASSGN statements.

Job Control Statements

Job-control statements identify a job and
define its reguirements and options. They
serve as input to the Job Control program
and enable it to provide automatic job-to-
job transition. Figure 24 lists the DPS
job-control statements and their functions.

Job Control 143

T

Operation |
Specification|Function

.

|Changes or deletes I/O

ASSGN

r
|

I

t

|

|

t

| CONFG

1 lcapacity (either 16K, 2uK,
1 lJor 32K bytes)
.L 1
i

l

|

I

]

|

I

|

|

1
|Specifies date, i.e., the
] day of the year and the

DATE

|mation for individual file
l. ______________ +._ —
]Causes listing of all per-
|manent labels
i
T
|Indicates end of control

| statements
1

EXEC

T

|Positions magnetic tare
lreel by skipping specified
| number of tape marks

o
H
.
[=a]
w

|
|
|
|
I
|
i
|
|
|
|
|
|
-+
i
|
1
i
|
|
|
|
{

o
(&)
us]

ISpecifies name of job and
|the ty,e of operation to be
| performed

__.l._._
|Causes listing of control
|statements on SYSLOG
4
El
|Causes listing of control
|statements to be
]discontinued

ct
(@]
@

NOLOG

b e e e ki e o ke o e i — e b — e ok ks e e b - e ol — e o

+ -

| Indicates that the printout]
|of tape error statistics is|
|reguired by the job and/or |
|indicates that the execu-
| tion of thes job is not to
|be interrupted by an
linguiry program

- Jr- —

Causes immediate halt

(@]
tg
=]
=

PAUSE

|
1
|Supplies tape label infor-
Imation for individual file
1

¥

|Specifies name of file to
| be processed and the sym-
|bolic address of the drive
l]on which it is mounted

1
L§

|Defines the extents used by
la file on a disk pack and
|specifies the symbolic
Jaddress of the drive on
|lwhich the pack is mounted
I
Summary of Job Control State-
ments and their Functions

TPLAB

=3
o
=

XTENT

i e o " — ke —— — e ol —— ke — ol — — —— —

P [e e o e B e o e e o B e o o o — ——— — — s = e oy —

igure 24.

144 IBM System/350 Model 20 DPS PL/I

ORDER_OF INPUT

Job-control statements are read by the Job
Control program on a device whose symbolic
address is SYSRDR. Normally, the first
job-control statement for a particular job
is a JOB statement. Only PAUSE, LOG, and
NOLOG statements may precede a JOB state-
ment. The last job-control statement must
be an EXEC statement.

Except where noted, the remaining job-
control statements may be arranged in any
order between the JOB and the EXEC
statements.

FORMAT OF JOB-CONTROL_STATEMENTS

The general format of the job-control sta-
tements is as follows:

r T T -1
|NamejOperation]Operand (s) Comments |
b } +

1// loperationj[operand] [,operand]... |
{ - i - i 1

// identifies a statement as a job-control
statement. The slashes must appear in
the first two columns of the job-control
statement and must be followed by at
least one blank.

job-control statement. For example, the
word ASSGN indicates that the control
statement specifies an I/0 device
assignment. The operation field can be
up to five characters long and must be
followed by at least one blank.

about the job-control statement. For
example, the operands of the ASSGN sta-
tement specify the symbolic device
address and the characteristics of the
actual device. The operand field may be
blank or may contain one or more
operands, separated by commas, with no
intervening blanks. A blank to indicate
the end of the field must follow the
last operand in the field. The field
nust not extend beyond column 71 of the
panched card. With a DLAB statement
where not all operands can be accommo-
dated on one card, a continuation card
must be used.

programmer's comments may be inserted in
all control statements used in conjunc-
tion with the Model 20 DPS Control and
Service programs. They must, however,
follow the rightmost operand of the
statement.

When preparing a control statement that
contains comments, observe the followiny
rules:

1. If the control statement has one or
more operands, the comments must be
separated from the last operand by at
least one blank colunn.

2. If the statement does not permit the
use of an operand, the comments must be
separated from the operation entry by
at least one blank colunn.

3. 1If an operand has been omitted from the
statement, the absence of the operand
must be indicated by a comma and the
comments must be preceded by at least
one blank column.

Comments are printed but have no effect
on the program. They mus