
Systems Reference Library

IBM System/360 Miodel 20
Disk Programming 'System
PLII

File Number S360(Mod.20)-29
Form C33-6007-l

This publication provides the information required for
writing and running Model 20 PL/I programs that are to
bc~ compiled and link-edited using the Model 20 PL/I
compiler uridercontrol of the IBM System/360 Model 20
Disk Programmil)g System.

Part I, "Model 20 PL/I Language Features", and Part
II, "Model 2"0 PL/I Syn,tax Rules", are composed of dis
cussions and examples that explain the different fea
tures of the language and their interrelationships,
their syntax notation and rUles. Part III, "Model 20
PL/I as Part of the Disk Programming System", introdu
c'es the main component,s of the Disk Programming System,
explains job control, and discusses compilation, link
editing, and execution of a Model 20 PL/I program.

More detailed information about the Disk Programming
System can be found in the publications IBM System/360
M<odel 20, Disk Program!ming· System, Control and Service
Programs, Form C24-900:6, and IBM System/360 Model 20,
Guide to the Disk prog!ramming System, Form. C33-6000.

DPS

First Edition (December, 1968)

Ch~nges are made from time to time to the specifications herein; beiore
us~ng this publication in connection with the operation of IBM
equipment, refer to the latest IBM Sjstem/360 Model 20 SRL Newsletter,
Form N20-0361 for the editions that are applicable and current.

This publication was prepared for production using an IBM
update the text and to control the page and line
impressions foz photo-offset printing were obtained from
printer Ilsing a special print chain.

computer to
format. Page
an IBM 1403

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Laboratories, Programming publications, 703 Boeblingen/Germany,
P.O. Box 210.

o International Business Machines Corporation 1968

Introduction
ReasOns for Conceiving PL/I • • • •
Basic Characteristics of PL/I
How to Use this Publication

Syntax Notation

Part I. Model 20 PL/I Language Peatures

Basic Characteri.stics of Model 20 PL/I

Program Elements
Character sets • • • • •
Basic Program structure

Simple and Compound statements • •
Groups and Procedures

Data Elements .
Data Types ..
Problem Data .
Arithmetic Data
Character-string Data
Program-control Data • • • • • • • •
Label Data • • •••
Pointer Data • • .. • • • • • • • • •
Data organization
Arrays • • • • • • •
Structures • • ••

Respecification of Data
Initialization of Data • • • • • • •

Expressions
Expression operations
Arithmetic Operations

7
7
7
8

9

13

• • 15
15
18
18

• • 19

20
• 20

• • 20
• 20

• • 23
24

• • 24
• • 25

25
25
27

• • 28
• • 29

• • 30
• • 30

30
Conversion of Operands in Arithmetic
Operations ••••••••••••
Formats of Results of Arithmetic
Operations ••••••••

31

31
Com~ar~son Orerations
Conca tena tion Opera tions • • • • • •
Priority of Of era tors
Expressions Containing Function
References • • • • • • • • •

Statement Classi:fication . .
Descriptive statements •
Input/Ou tput sta tements ••••
Data-Movement and Com~utational
statements •••••••••••
Program-Flow Control statements
Exception-Control Statements • •
Program-structure statements • • • •

• 33
36
36

37

• 38
• • 38
• • 38

40
• • 41
• • 44

45

Plow of Control and Storage Allocation . . 47
The Procedure •• • • • • • • • • • 47
Activation of a Procedure 47
Termination of a Procedure •• 47
Program Termination • • •• 48
Storage Allocation. 48
Dynamic Allocation • • • •. 48

Contents

static Allocation
Initial Data •••
prologues and Epilogues
prolog ue s • • • .•
Epilogues • • • •

Recognition of Names
Explicit Declaration •
Contextual Declaration
Imflicit Declaration.
Internal and External Names
Multiple Declarations and Ambiguous
References • • • • • • • •

Data Transmission

• .• 49
• • 49
• • 49
• • 49

• 50

• 51
• 51
• 51
• 52
• 52

• • 53

• 54
• 54 Types of Data Transmission

File Declara tions • • ••
File Attributes • • • • •

• • • • • 55

Alternative and Additive Attributes
Opening and Closing Files
Environmental Considerations for Data
Files ••••••••

.• • 55
• 55
• 57

• 58
Device Independence of Input and output
Statements. • • • • • • •• • ••• 58
stream and Record-Jriented Transmission 58
stream-Oriented Transmission • • 59

Data Lists • • • • • • • • • • 60
Format Lists • • • • • • • • • 62
Page Layout for Print Files • 64
Summary of STREAM I/O statements • • • 65

Record-Oriented Transmission • • • • • • 65
Record 1/0 statements • • ••• • 65
Options of RECORD 1/0 statements • • • 66
Summary of RECJRD I/J Statements and
Associated Options • • • • • • •
Notes on File Jrganization and Access
Methods Usel With Record-Oriented
Transmission • • • • . • • • •

Editing and Character-String Handling
Editing by Assignment
The Assignment Statement •••••
Other Forms of Assignment
The Picture Specification ••••
Values of Numeric-Character Variables
Editing Numeric-Character Data • • • •
Built-In Functions for Character-String

• 68

· 68

• 70
• 70
• 70
• 70
• 71
· 72
• 72

Handling • • • • • • • • • • • • • • 74

Arguments and Parameters
Passing Arguments to Procedures
passing Arguments to Functions • •
Attributes of Value Returned by
Function • • • • • • • • • • • • •
Built-In Functions • • • • • • . • • •
Relationship of Arguments and
Parameters • . • • • •
Dummy Arguments • • • • • • •
Argument and Parameter Types • • • • •

Ex,ceptional Condition Handling
Enabled Conditions and Established

· 75
• 76
• 76

· 77
• 78

• 79
79

· 80

· 81

Action • • • • • •
Condition Prefixes •
The ON Statement •••

Based Variables and Pointer Variables . .
Pointer Variables • •
Based Variables • • • • • • • •
Values of Pointer Variables
Restrictions ON Pointer Variable • •
Use of Based storage and Pointers
Pointer Manipulation ••••••••

Part II. Model 20 PLII Syntax Rules

• 81
• 81
• 82

84
84

• 84
• • 84

86
• 86

87

Picture SpecHication Characters . . 90
Digit and Decimal-Point Specifiers ••• 91
Zero-suppression Characters • • • 92
Insertion Characters • • .. .• .• • .. • • • 93
Numeric signs and Currency Symbol ••• 95
credit, Debit, and Overpunched-Sign
Characters • • • • • • • 96
The Exponent Specifier E • 97

Edit-Directed Format Items •
Da ta Format Items '. • '. • ~
Control Format Items
Remote Format Item • • ..
Alphabetic List of Format Items

Built-In Functions and the
Pseudo-Variable SUBSTR • • • •. .. •
Computational Built-In Functions • •
string Handling Built-In Functions
Arithmetic Built-In Functions
Mathematical Built-In Functions

Summary of Mathematical Functions
Other Built-In Functions
SUBSTR Pseudo-Variable ..

ON-Conditions . • • • • •
Groups of On-Conditions
Computational Conditions
Input/Output Conditions
System Action Condition

Attributes ~ • • • • • • •

• • 98
98
98
99
99

• .103
• • 103

.103
• • 105

.107
• • 108
• .109
• • 109

• • 110
• • 110
• ,.111
• • 112
• • 113

• • 114
• .'14 specification of Attributes

Factoring of Attributes • .• .. • • • 114
Data Attributes ' •••.•••
Problem-Data Attributes
Program-Control Data Attributes

• • • 114

Entry-Name Attributes
File Description Attributes
Scope Attributes .. • • • • • • • • •
Storage-Class Attributes .. • ..
Alphabetic List of Attributes

Statements. • • • • ,. • • .• • .

Part III. Model 20 PLII as Part of the Disk
Programming System

• • 114
• • 115
• • 115
• • 115
• • 115
• • 116
• • 116

• . 124

PLII in the Model 20 Disk Programming System. 1 39

Introduction . • • • • • • • •
System Configurations ... • • •

Minimum system Configuration
Maximum System Configuration •

The Model 20 Disk Programming System
Moni tor Progr am • • • ..
Job Control Program
Model 20 PL/I Compiler • • • .. •

.139
• • 139
• .139
• • 139

• 141
• .141
• • 142
• .142

Job Control • • • .• • •• • .• • '. • .143
I/O Device Assignment •• 143
Job-Control Statements ••••• 143
Order of Input. • • • • •• 144
Format of Job-Control Statements. .144

The Compiler • • • • • • •
Input to the Compiler
PL/I Source Module Input ••
Precompiled Object ~odule Input
PL/I Source Module and precompiled

.153
• 153
.153
.155

Object Module Input • • •• .156
output from Compiler. • • • • • • .156
Compiled Object ~odules • • • • • .156
Executable Object Programs. • •• .157
Compiler-Control Statements and Options 157
Printed Listings and Diagnostic Aids •• 159
Diagnostic Capabilities During
Compilation • • • •
Diagnostic Capabilities During
Execution •• • • .. • • .. • •

.159

• .159

Executing a Simple PLII Program . 1 60

Practical Considerations Regarding
Program Execution • • • • '. • . . 1 63
Overlay Facility.. • • • • • .. .163
Creating a Segmented Program. .163
Loading Segments. • • • • • .. • • .163
Use of Files and static Storage in
Segments. • • • • • • • • .164
Rules for Using Jverlay .165

Input/Output. . • • • . • •
File 0 rga ni za tion .• • • •
Consecutive File Organization

Disk Organization
INDEXED File Organization
rhe ENVIRONMENT Attribute and its

• 166
.166
.169
.172
.. 175

Options • • • .. .180
File Labels 185
Punched Card and Print Files .186
rape Files. • .186
Disk Files. .186
Label-Control Statements. • 186
Multi-File Volumes • .. • • .191
Tape Files. • • • • .191
Disk Files. • • • • • • •• .192
Multi-Volume Files. .192
rape Files. • • . • .192
Disk Files. . • •• • • .193
Permanent and Temporary Disk Labels •• 193

Cataloging Label Information ••••. 193
Deleting Cataloged Label Information. 193
Dis~layin~ Permanent Labels .194

Inguiry Programs. • • • • • •• • .194
Program - Label Communication .194

Cataloging. • • • . • . • . . • • • . . . 1 96
cataloging a PL/I Program Into the
Core-Image Library ••••••••••• 196
Executing a Cataloged PL/I Program. , •• 197
Deleting a PL/I Program from the
Core-Image Library,. • • • •• .197

Special Programming Information .
Inquiries on the IB~ 2152
Printer-Keyboard • • • • • • •
Inluiry Programs • • • • • •
Use of the IBM 2152 printer-Keyboard •
Linking PL/I Programs with Assembler

• 199

.199
• 199
• 199

Procedures ••••••••••••••• 200
sterling Currency processing Routines .203
The Dyndump Routine •• 204
Data storage Mapping. • • • • .204
storage Mapping of Arrays •• 204
storage Mapping of structures •• 204

Two Programming Examples . . . • • . . • 206
Example for Scientific Application ••• 206
Example for Commer~ial Application ••• 208

Appendix A. Definition of Terms .

Appendix B. Upward Compatibility .

Appendix C. Character Sets with EBCDIC
and Card-Punch Codes • .

• .214

.225

.226

Appendix D. Model 20 PL/I Keywords.228

Appendix E. Pile Attributes and Options

Appendix P. Valid 1/0 Statem,ents

· .230

· .231

Reasons for Conceiving PL/I

Throughout the relatively brief history of
electronic data processing, computers have
been used mainly in two fields of activity
- the commercial and the scientific.

Consequently, programmers generally have
specialized in one field or the other.
High-level languages like COBOL for commer
cial programming and FORTRAN for scientific
programming have emphasized this
divergence.

Until recently, this difference pre
sented few problems. Each language was
adequate for its use; the commercial pro
grammer dealt with relatively few computa
tions performed upon great amounts of data;
the scientific programmer performed complex
calculations osing small amounts of data.

NOw, however, the situation is changing.
Business and industry have discovered new
uses for the computer. The commercial pro
grammer finds himself concerned with more
complex computations in statistical fore
casting and in programming for operations
research. In science and engineering, the
programmer needs a language to simplify the
preparation of reports, to sort and edit
technical data,.

Today's computing systems have been
designed to cope with all of these comput
ing problems. They handle commercial and
scientific/engineering programs with equal
ease, with new power and new speed.

None of the traditional high-level lan
guages, however, can be used with efficien
cy across the entire range of ability of
these new computers.

This is why PL/I was conceived. PL/I is
a programming language designed to cover as
wide a range of programming applications as
possible. It can be use~ to solve both
commercial and scientific/engineering pro
blems. PL/I has been designed so that any
programmer, no matter how brief or exten
sive his knowledge, can use it easily at
his own level. It is simple for the begin
ning programmer, it is powerful for the
experienced one.

A programmer need not know everything
about PL/I to be able to use it. An
experienced programmer can use PL/I to spe
cify almost every detail of every step of a
highly complicated program. A beginner can
take advantage of the many automatic fea-

Introduction

tures of the language to do much of his
work for him.

PL/I has also been designed to reduce
the cost of programming, including the cost
of training programmers who need to be
trained in one programming language only.
Another factor that contributes to program
ming cost is the machine dependency of the
traditional programming languages, which
means that frequently a program must be
rewritten, sometimes because the system
under which it is used has changed, some
times because it is to be run on a new
machine. Often, rewriting a program costs
as much as writing it in the first place.

Basic Characteristics of PL/I

A PL/I E~Qg~~ill is written in form of §i~ig=
mgni§ like for example C = A + B. The sta
tements, whose sequence follows the logical
flow of the program, are grouped together
into blocks called E~Q£~gy~g§. A procedure
defines a section of the program or a com
plete program. The task of a procedure is
the execution of a particular jQQ or part
of a job. The same procedure can be used
in a number of different programs. Conse
quently, a change made in one procedure
effectively makes a change in all programs
that use it.

PL/I provides many options in state
ments, in descriptions of data or files,
giving a lot of flexibility in writing pro
grams. Wherever there are alternatives,
the compiler makes an assumption if no
choice is sta ted by the programmer. In
each case, the assumption, called default,
is the alternative that would be required
in the majority of situations. The default
concept is an important part of the simpli
city of PL/I. In many cases, the beginning
programmer need not even know that alterna
tives exist. PL/I is much less machine
dependent than most commonly used program
ming languages, for example the Assembler
Language.

The variety of features provided by
PL/I, as well as the simplicity of the con
cepts underlying them, demonstrate the ver
satility of the language, its universality,
and the ease with which different subsets
can be defined to meet the needs of dif~
ferent users.

Model 20 PL/I is a subset of the full
language. It is upward compatible with
System/360 DOS/TuS PL/I provided the same

Introduction 7

inputloutput devices are available. The
user can write both scientificlengineering
and commercial programs in Model 20 PL/I.

How to Use the Publication

This publication is designed as a reference
book for the Model 20 PLII programmer. Its
three-part format allows a presentation of
the material in such a way that references
can be found quickly.

Part I, which may be read seguentially,
describes the different features of the
language and their interrelationship. Part
11# which is organized purely from the
reference point of view, brings rules and
syntactic descriptions. Part III discusses
the basic features of the Model 20 PLII
compiler, describes program compilation and
execution, and brings all information
needed to execute a Model 20 PL/I program.

This publication reflects features of
the Model 20 PL/I compiler. Consequently,

8 IBM System/360 Model 20 DPS PL/I

a number of features of the full PL/I lan
guage are not described in this publica
tion, because they are not part of Model 20
PL/I.

Language features that are limited
against the full PL/I language are
described in the light of the limitations.
Wherever a description here differs from
the full language, it is not to be regarded
as a respecification of the language, but
merely a description of Model 20 PL/I. The
publication is designed to provide all the
implementation information needed to write
programs in Model 20 PL/I and to run them
under the Model 20 PL/I compiler.

Implementation features identified by
the phrase "for IBM system/360 implementa
tions ••• n apply to all implementations
for IBM System/360 computers. Features
identified by the phrase "for the Model 20
PL/I Compiler • , •• " apply specifically to
the IBM Model 20 PL/I Compiler under the
System/360 Model 20 Disk Programming
System.

Throughout this publication, wherever a
PL/I statement -- or some other combination
of elements -- appears in the text, this
statement or phrase is written using a
uniform system of notation.

This notation is QQ1 part of Model 20
PL/I; it is a standardized notation that
may be used to describe the syntax -- or
construction -- of any progra.ming lan
guage. It provides a brief but precise
explanation of the general patterns that
the language permits. It does not describe
the mg~QiQg of the language elements, mere
ly their §1£~£i~£~; that is, it indicates
the order in which elements may (or must)
appear# the punctuation that is required,
and the options that are allowed.

The following rules explain the use of
this notation for any programming language;
only the examples apply specifically to
Model 20 PL/I,,,

1. A notation variable is the name of a
general-class-of-elements in the pro
gramming language. A notation variable
must consist of:

a) Lower-case letters, decimal digits,
and hyphens and must begin with a
letter.

b) A combination of lower-case and
upper-case letters. There must be
one portion all in lower-case let
ters and one portion all in upper
case letters, and the two portions
must be separated by a hyphen.

All such variables used are defined in
the manual either syntactically, that
is, this notation, or by giving a verb
al definition.

a) digit: This denotes the occurrence
of a digit, which may be 0 through 9
inclusive.

b) filename: This denotes the occur
rence of the notation variable named
;hil~H!21!!~~·

c) DO-statement: This denotes the
occurrence of a DO-statement. The
upper-case letters are used to in
dicate a language keyword.

Syntax Notation

2. A notation constant denotes the literal
occurrence-of-the-characters repre
sented. A notation constant consists
either of all capital letters or of a
special character.

DECLARE identifier FIXED;

This denotes the literal occurrence of
the word DECLARE followed by the nota
tion variable i~~Q1i!ig~, followed by
the literal occurrence of the the word
FIXED and the literal occurrence of the
semicolon (;).

3. The term §yn1A£1i£_yn1i# which is used
in subsequent rules, is defined as one
of the following:

a) a single notation variable or nota
tion constant, or

b) any collection of notation
variables, notation constants,
syntax-language symbols# and key
words surrounded by braces or
brackets.

4. Braces { } are used to denote grouping
of more than one element into a syn
tactic unit.

{

FIXED t
identifier (

FLOAT)

The vertical stacking of syntactic
units indicates that a choice is to be
made. The above example indicates that
the variable identifier must be fol
lowed by the IIteraI-o~currence of
either the word FIXED or the word
FLOAT.

5. The vertical stroke I indicates that a
choice is to be made.

identifier {FIXEDIFLOAT}

This has exactly the same meaning as
the above example. Both methods are
used in this publication to display
alternatives.

syntax Notation 9

6. Square brackets [] denote options.
Anything enclosed in brackets may
appear or may not appear at all in the
syntactic unit. Brackets can serve the
additional purpose of delimiting a syn
tactic unit.

FILE (filename) [KEY (expression)]

This denotes the literal occurrence of
the word FILE followed by the notation
variable £11~ll~~~ enclosed in paren
theses and optionally followed by the
literal occurrence of the word KEY with
its notation variable ~~E£~§§iQn en
closed in parentheses. If, in rule 4,

10 IBM system/360 Model 20 DPS PL/I

the two alternatives also were option
al, the vertical stacking would be
within square brackets instead of
braces.

7. Three dots ••• denote the occurrence
of the immediately preceding syntactic
unit one or more times in succession.

[digit]. •••

The variable ~igi! mayor may not occur
since it is surrounded by

brackets. If it does occur, it may be
repeated one or more times.

Part I

Model 20 PL/I Language Features

The modularity of PL/I# that is, the ease
with which combinations of language fea
tures can be used to meet different needs,
is one of the most important characteris
tics of PL/I; in fact, it is the base on
which PL/I has been built.

This chapter briefly discusses most of
the basic features to give you an overall
description of the language. Each feature
is treated in more detail in subsequent
sections.

Program Structure

A Model 20 PL/I program is constructed of
statements that are logically grouped
together into one or more blocks called
procedures. A program always comprises a
main procedure and, usually, a number of
other procedures that perform specific
functions.

The rules defining the use of proce
dures, communication between procedures,
the meaning of names, and the allocation of
storage are fundamental for the understand
ing of PL/I.

Data Types and Ilata Description

The characteristic of PL/I that most con
tributes to the range of applications for
which it can be used is the variety of data
types that can be represented and manipu
lated. In our context, data is generally
defined as a representation of information
in the form of digits and characters that
have certain characteristics called attri
butes. PL/I deals with arithmetic data,
character-string data, and program-control
data, such as labels and pointers
(addresses). It provides you with features
to perform arithmetic operations, logical
operations (e.g., comparison), and opera
tions and functions for manipulating char
acter strings. In order to be able to per
form these operations, data items are usu
ally given names.

The compiler must be able to determine,
for every name used in a program, the com
plete set of attributes associated with
that name. You may specify these attri
butes explicitly by means of a DECLARE sta
tement, or the compiler may determine all
or some of the attributes by context or by
default if you do not specify them.

Basic Characteristics of Model 20 PL/I

Default Assumptions

An important feature of PL/I is its default
concept. If you do not specify all the
attributes associated with a name, or all
the options permitted in a statement,
attributes or options may be assigned by
the compiler. This default action offers
two advantages. First, it reduces the
amount of declaration and other program
writing required; second, it makes it pos
sible to teach and use levels of the lan
guage for which the programmer need not
know all possible alternatives, or even
that alternatives exist.

Storage Allocation

PL/I provides you with more flexibility in
the allocation of main storage than most
other programming languages. The storage
areas for data in a PL/I program may be
assigned statically, that is, when the pro
gram is loaded, or dynamically, that is,
when the individual procedures are
executed.

There are three different storage
classes in Model 20 PL/I: STATIC,
AUTOMATIC, and BASED. In general, the
default storage class in Model 20 PL/I is
AUTOMATIC. storage for data with the
storage class attribute STATIC is statical
ly allocated, while for data with the
attribute AUTOMATIC or BASED it is dynamic
ally allocated.

Expressions

Calculations in PL/I are specified by ex
pressions. The meaning of an expression in
PL/I is similar to that of an expression in
elementary algebra. For example the
expression.

specifies multiplication of the value of B
by the value of C and addition of the value
of A to the result. The data used in an
expression must be of the same type; that
is, there can be no mixing of data types in
an expression. For example, a character
string cannot be added to an arithmetic
value.

The results of the evaluation of expres
sions may be assigned to variables.
Variables are names representing data. An
example of an assignment statement is:

Basic Characteristics of Model 20 PL/I 13

x = A -I- B * C;

This means: Evaluate the expression on the
right and assign it to X~ The type of the
result of the expression must be consistent
with the type of I~

Data Collections

Data variables can be grouped into either
arrays or structures. An array is composed
of elements of the same characteristics. A
structure is a collection of variables, not
necessarily alike in characteristics.
Individual items of an array are referred
to by the subscripted name of the array;
individual items of a structure are
referred to by names given to th~m.

Expressions cannot be specified for
arrays or structures, but for elementary
components of arrays or structures. Con
sider the following the assignment
statement:

A = B + c;

The names used in this assignment statement
could be elements of structures or arrays,
but not arrays or structures themselves.

Input/Output

Input/outfut (I/O) is the transmission of
data from an external storage medium to
internal (main) storage and vice-versa.
There are two classes of I/O in PL/I:
stream-oriented and record-oriented I/O.

stream-oriented I/O is almost completely
machine-independent. On input, data items
are selected one by one from what is
assumed to be a continuous stream of chara
cters and are converted automatically to
conform, in main storage, to the attributes
of the variables to which they are
assigned. Similarly, on output, data items
are converted one by one to external char
acter form and are added to a conceptually
countinuous stream of characters.

14 IBM System/360 Model 20 DPS PL/I

For printing, the output stream may be
considered to be divided into lines and
pages. An output stream file may be
declared to be a frint file with a certain
line size and page size. PL/I provides you
with the facilities to detect the end of a
page and to specify the beginning of a line
or a page.

Record I/O is machine dependent. It
deals with collections of data, called
records, and transmits these a record at a
time without any data conversion. The
external representation is an exact copy of
the internal representation. Because the
record is treated as a whole, and because
no conversion is performed, this form of
110 is potentially more efficient than
stream-oriented I/O, although the actual
efficiency of each class willI of course,
depend on the type of problem to be solved.

Stream-oriented input and output usually
sacrifices efficiency for ease of handling.
Each data item is transmitted separately
and is examined to determine if data con
version is required. Record-oriented input
and output, on the other hand, provides
faster transmission by transmitting data as
entire records, without conversion.

Interrupt Activities

Modern computing systems provide facilities
for interrupting the execution of a program
whenever an exceptional condition arises.
Further, they allow the program to deal
with the exceptional condition and to
return to the point at which the interrupt
occurred.

PL/I has facilities for detecting a
variety of exceptional conditions. It
allows you to specify the conditions for
which, should they arise, you want an
interrupt to occur, and also the action to
be taken when such interrupt does occur.

In most programming languages, the length
of an individual instruction or sta~ement
is limited by the size of a single punch
card. If a statement exceeds the size of
one card, a notation must be made, usually
with a punch in some particular card
column, to indicate that the statement is
continued on the following card.

PL/I has no such artificial limitation.
There is no fixed-length format for input
although the Model 20 PL/I compiler
reserves some card columns: the first
column of every card in a program ~ust be
blank, and columns 73 through 80 of these
cards are ignored and can contain any
information, for examfle, card sequence
numbers,.

within the available card area, you can
write your program without considering spe
cial coding forms and without having to
ensure that each statement begins in a spe
cific colu~n. As long as each statement is
terminated by a semicolon, the format is
completely free. Each statement may begin
in the next column or position after the
end of the previous statement, or any num
ber of blanks may intervene.

Character Sets

You may write your programs in one of two
character sets; either a 60-character set
or a 48-character set. The choice between
the two sets is optional. In practice,
this choice will depend upon the available
equipmen t .•

The 60-character set is composed of digits,
alphabetic characters, and special charac
ters. There are ten digits: the decimal
digits 0 through 9. There are 29 alphabet
ic characters, beginning with the currency
symbol ($), the number sign (I), and the
commercial "at" sign (w), which precede the
26 letters of the English alphabet in the
IBM System/360 collating sequence in
Extended Binary-Coded-Decimal Interchange
Code (EBCDIC). For use with languages
other than English, the three alphabetic
characters $, ., and w can be used to cause
the printing of letters that are not
included in the standard English alphabet.

There are 21 special characters. They
are as follows:

Program Elements

H~IDg £h~r~£lgr
Blank
Equal or assignment

symbol
Plus sign +
Minus sign
Asterisk or multifly *

symbol
Slash or divide symbol I
Left parenthesis (
Right parenthesis)
Comma
Point or period
Single quotation mark

or apostrophe
Percent symbol* %
Semicolon
Colon
"Not" symbol
"And" symbol*
"or" symbol

"Greater than" symbol
"Less than" symbol
Break Character 1

Question mark*

1

&
I (used only in

Model 20 PL/I in
combination with
a second "or"
symbol (I I) as
concatenation
operator)

>
<

?

*not used in Model 20 PL/I

Special characters are combined to cre
ate other symbols. For example,<= means
"less than or equal to ", 11= means "not
equal to". The combination ** denotes
exponentiation (X**2 means X2). Blanks are
not permitted in such composite symbols.

The rules for PL/I sometimes specify
that an "alphameric" charac:ter must be used
in certain coding. The term alphameric
refers to any of the 29 alphabetic charac
ters and the 10 digits, but not to the 21
srecial characters.

H2ig: The question mark, at present, has
no specific use in the PL/I language, even
though it is included in the 60-character
set. The percent symbol and the "And" sym
bol have no meaning in Model 20 PL/I ,
although they do have a meaning in the full
PL/I language used with higher System/360
models.

lThe break character is the same as the
typewriter underline character. It can be
used with a name, such as GROSS_PAY, to
improve readability.

Program Elements 15

The restrictions for this character set
are described in ~EE~nQi!_~~ __ ~h~~~£1~£
~~1§._li!1h_~~~QJ~_~nQ_~~fQ=EYn£h_~QQ~§·

* denoting mUltiflication

I denoting division

** denoting exponentiation

The £Q!!!.E~£i§Q!! operators are:

> denoting "greater than"

The 48-character set is composed of 48
characters of the 60-character set. In all
but five cases l the characters of the
reduced set can be combined to represent
the missing characters of the larger set.
For example, the semicolon (;) is not
included in the 48-characten set, but a
comma followed by a point (,.), without
intervening blanks, can be used to repre
sent it. The five characters that cannot
be represented are the commercial "at"
sign, the number sign, the break character,
the question mark l and the percent symbol.

,> denoting "not greater than"

The restrictions and changes for this
character set are described in AEEgn~i!_£.
Character Sets with EBCDIC and Card-Punch
~~~i~:-----------------------------------

Using the Character :Sets 

All elements that make up a PL/I program 
are constructed exclusively from the PL/I 
character sets, with two exceptions: 
character-string constants and comments may 
contain any character in the EBCDIC charac
ter set .• 

Certain characters perform specific 
functions in a PL/I program. For example, 
many characters are used as operators. 

There are three types of operators: 
arithmetic, comparison, and string 
operators. 

The ~~i1hmgiif operators are: 

+ denoting addition or prefix plus 

- denoting subtraction or prefix minus 

>= denoting "greater than or equal to" 

denoting "equal to" 

,= denoting "not equal to" 

<= denoting "less than or equal to" 

< denoting "less than" 

,< denoting "not less than" 

The §i£ing operator is: 

II denoting concatenation 

Figure 1 shows some of the functions of 
other special characters. 

In a PL/I program, you give names or labels 
to data, statements, files, and procedures. 
In creating a name or label, you must 
observe the syntactic rules for creating 
the identifier. 

An identifier is a single alphabetic 
character or a string of up to 31 alphamer
ic and break characters, not contained in a 
comment or constant, and preceded and fol
lowed by a blank or some other delimiter 
(which may be an operator or a special 
character (except a decimal point»: the 

r----------------------------------------~-----------------------------------------------, 
Name Character Use 
comma --------- separates elements of a list 
period indicates decimal point 
semicolon terminates statements 
assignment indicates assignment of values 1 

symbol 
colon 
blank 
apostrophe 
parentheses o 

connects prefixes to statements 
separates elements of a statement 
encloses string constants 
enclose lists; specify information associated with various key
words: in conjunction with operators and operands, delimit por-
tions of an operational expression 

r---------------------------------------------------------------------------------------~ 
liThe character = can be used as an equal sign and as an assignment symbol~ I L ________________________________________________________________________________________ J 

Figure 1. Some Functions of Special Characters 

16 IBM System/360 Model 20 DPS PL/I 



initial character of the string must be 
alphabetic. 

Language keywords are also identifiers. 
A keyword is an identifier that, when used 
in proper context l has a specific meaning 
to the compiler. A keyword can specify 
such things as the action to be taken, the 
~ature of data~ the purpose of a name. For 
example, READ~ DECIMAL, and ENDFILE are 
keywords~ A complete list of keywords and 
their use is contained in !££~n~i~_Q~ 
tlQ!l~!'_£Q_~~LI_!i~y!!~g:Q§' • 

liQi§: Only whE~n using the 48-character 
set l some PL/I keywords are reserved words. 
Keywords are recognized as keywords by the 
compiler only when they appear in their 
proper context~ In other contexts they may 
be used as programmer-defined identifiers. 
(Those keywords that are reserved are given 
in the section B§£Qgni!iQn_Qi_li!§§. 

An identifier must not exceed 31 charac
ters in length. For the Model 20 PL/I com
piler, some identifiers, as discussed in 
later sections, must not exceed six charac
ters in length; this limitation applies to 
certain names l called external names, that 
may be referred to by other procedures. 

The following are examples of identi
fiers you could use for names or labels: 

A 
FILE2 
LOOP_3 
RATE OF PAY 
#32 -

The third and the fourth example illustrate 
the use of the break character to improve 
readability of an identifier, since blanks 
are not permitted in identifiers. 

Examples of illegal identifiers are: 

I*ABC 
23AC 
A*B 
BEG IN 

An identifier must not contain special 
characters; it must not start with a digit; 
and it must not contain embedded blanks. 

You may use blanks freely throughout a PL/I 
program. You mayor may not use them 
before and after operators and most other 
delimiters. In general, any number of 
blanks may appear wherever one blank is 
allowed, such as between words in a 
statement. 

One or more blanks must be used to 
separate identifiers and constants that are 
not serarated by some other delimiter or by 
a comment. However, identifiers, constants 
(except character-string constants) and 
composite operators (for example, ,=) must 
not contain blanks. 

Other cases that require or permit 
blanks are noted in the text where the fea
ture of the language is discussed. See 
Figure 2 for examples. 

Frequently you may want to insert comments 
into your programs to clarify the action 
that is taken at a given point. These com
ments enable someone unfamiliar with the 
program to follow your line of thought, and 
they are helpful to you when looking back 
over program sections that were written 
earlier. 

comments are permitted wherever blanks 
are allowed in a program. You may insert 
them between statements or in the middle of 
a statement without affecting the compila
tion of your program. 

The character pair, 1*, indicates the 
beginning of a comment. The same charac
ters reversed, *1, indicate its end. No 
blanks or other characters must separate 
these two characters; the slash and the 
asterisk must be immediately adjacent. The 
comment itself may contain any characters 
except the *1 combination, which would be 
interpreted as terminating the comment. 

1* THIS WHOLE SENTENCE COULD BE INSERTED 
AS A COMMENT!*I 

I*SO COULD +#$c%&-THIS!*I 

r--------------·----------------------------------------, 
IAB+BC is equivalent to AB + BC I 
ITABLE(10) is eguivalent to TABLE ( 10 ) I 
IFIRST,SECOND is equivalent to FIRST, SECOND I 
IATOB is n2i equivalent to A TO B I L-______________ • _____________________________________ .J 

Figure 2. Examples of the Use of Blanks 

Program Elements 17 



In comments you may use any characters 
recognized by the system hardware. This 
includes characters that are not in the 
PL/I character set, such as the cent sign 
in the second example above~ 

RQ1~: The length of a single comment must 
not exceed 5 cards. However, any number of 
comments may occur consecutively. 

Basic Program Structure 

A PL/I program is made up of basic program 
elements called statements~ There are two 
types of statements: simple and compound. 
These statements make up larger program 
elements called DO-groups and procedures. 

There are three types of simple statements 
in PL/I: keyword~ assignment, and null 
statements, each of which is terminated by 
a semicolon,. 

A ~~Y~Q~g_§!~!~illglll has a keyword to 
indicate the function of the statement~ 
For example: 

GOTO LOOP; (GOTO is a keyword; a blank 
between GO and TO is optional. 

The !§§!gllill~ll!_§!!!!!!n1 contains the 
assignment symbol (=) and does not have a 
keyword. For example: 

A = B + C; (This is an assignment state
ment; it does not contain a 
keyword) • 

The null statement consists of a semico
lon only-and-IndIcates that no operation is 
to be performed. The null statement may be 
used in connection with interrupts. 

(Null statement) 

A £Q!EQYnQ_§!~!~!~nl is a statement that 
contains more than one simple statement. 
It is terminated by the semicolon of the 
last simple statement. 

There are two compound statements: the 
IF statement and the ON statement~ 
Examples of compound statements are: 

1. IF A<B THEN A = B + C; 

This compound statement is terminated 
by the semicolon of the simple state
ment A = B + C;. The IF statement may 
be nested which means that it may con
tain other compound statements. 

18 IBM System/360 Model 20 DPS PL/I 

2. ON UNDERFLOW GOTO UNFIX; 

The ON compound statement is always 
composed of only two simple statements 
terminated by a semicolon. 

Both simple and compound statements may 
have one or more prefixes. We have two 
types of prefixes in PL/I: the label pre
fix and the condition prefix. 

A l!~gl_E~g!!! is used to identify a 
statement so that it can be referred to at 
some other point in a program. A label 
prefix is an identifier that precedes the 
statement and is connected to the statement 
by a colon. Most statements may have one 
or more labels. If you specify more than 
one label, you may use them interchangeably 
to refer to the statement. For example: 

LABEL1:LABEL2:A=B; 

PROCEDURE statements, however, must have 
one and only one label. The label prefix 
of a PROCEDURE statement is known as an 
gni~Y_ll~illg. The label prefix of any other 
statement is known as a statement label. 
DECLARE statements must not be preceded by 
any prefix. 

A £Qllg!!!Qn_E~~!i! is used to specify 
whether or not program interrupts are to 
result from the occurrence of the named 
conditions. Condition names are language 
keywords, each of which represents an 
exceptional condition that might arise dur
ing the execution of a program. In Model 
20 PL/I only PROCEDURE statements may have 
condition prefixes. An example is OVER
FLOW. The OVERFLOW condition arises when 
the exponent of a floating-point value 
exceeds the maximum allowed (representing a 
maximum value of about 10 49 ). 

A condition name in a condition prefix 
may be preceded by the word NO to indicate 
that, effectively, no interrupt is to occur 
if the condition arises. There must not be 
any blanks between the NO and the condition 
name. 

A condition prefix consists of a list of 
one or more condition names, separated by 
commas and enclosed in parentheses. Only 
one condition prefix must be attached to 
the PROCEDURE statement, and the parenthe
sized list must be followed by a colon. A 
condition prefix precedes the entire 



PROCEDURE statement, including the entry 
name for the PROCEDURE statement. 

Example: 

(CONVERSION, NOOVERFLOW) 
PROCEDURE ;: 

PROGM 1: 

The condition prefix indicates that an 
interrupt is to occur if the CONVERSION 
condition arises, but that no interrupt is 
to occur if the OVERFLOW condition arises. 
Note that the condition prefix precedes the 
entryname PROGM1. 

Since intervening blanks between a pre
fix and its associated statement are 
ignored, it is often convenient to punch 
the condition prefix into a separate card 
that precedes the card into which the sta
tement is punched. Thus, after debugging, 
you can easily remove the prefix. 

Example: 

(CONVERSION, NOOVERFLOW): 
PROGM1: PROCEDURE; 

If no cbndition prefix precedes a proce
dure statement, or if not all possible con
ditions are explicitly stated, the compiler 
assumes default values. 

Condition prefixes are discussed in the 
section entitled ~~£gE1iQll~1_£QUgi1iQU 
!!2:!!.9Jj:!!SI .• 

A group, also called a DO-group, is a 
seguence of statements headed by a DO sta
tement and terminated by a corresponding 
END statement, as follows: 

[ label: ]DO; 

END; 

DO-groups are used for control purposes 
and, in general, they can appear wherever 
single statements can appear. One DO-grOU} 
may contain another DO-group; that is, a 
DO-group may be nested. DO-groups normally 
are used to specify an iterative process 
and/or in the IF compound statement. 

A procedure is a sequence of statements 
headed by a PROCEDURE statement and ter
minated by an END statement, as follows: 

label: PROCEDURE; 

END; 

With Model 20 PL/I, a procedure may con
tain any statement except another PROCEDURE 
statement. Thus, unlike DO-groups, proce
dures cannot be nested. 

The label preceding a procedure state
ment is called the §!!1£Y_!!2:ill§ of the proce
dure, or the 2£Q£§Q~£g_!!~mg. A procedure 
is iUIQk~Q (activated) by a ££Q£~Qy£g 
rgtgrggfg, that is, a special reference to 
the procedure name. The point at which the 
procedure reference appears in a program 
(for example: CALL PROGM1;), is called the 
£Qigt_Q£_iUIQ£2:1iQU; the procedure contain
ing the procedure reference is called the 
igIQ~i!!SI_2rQ£gQYrg· 

Program Elements 19 



Data Elements 

Data is generally defined as a representa
tion of information. 

In PL/I, you refer to a data item, 
arithmetic or character-string, by using 
either a variable or a constant (the terms 
are not exactly the same as in general 
mathematical usage). 

A !~£i~~~§ is a symbolic name having a 
value that may change during execution of a 
program. The characteristics of a variable 
are not immediately apparen~ from the name. 
Since these characteristics, called attri
butes, must be known, certain keywords and 
expressions may be used to specify the 
attributes of a variable in a DECLARE sta
tement~ The attributes you may use to 
describe data are discussed briefly in this 
section~ A complete discussion of each 
attribute appears in Part II of this manu
al, under !It£i~Yl§§~ 

A fQll§i!lli (which is not given a symbol
ic name) has a value that cannot change. 

A constant does more than state a value; 
it demonstrates various characteristics of 
the data item. For example, 3.1416 shows 
that the data type is arithmetic and that 
the data item is a decimal number of five 
digits and that four of these digits are to 
the right of the decimal point. 

The following statement has both 
variables and constants: 

A.REA 

AREA and RADIUS are variables; the num
bers 2 and 3.1416 are constants. The value 
of RADIUS is a data item, and the result of 
the computation will be a data item that 
will be assigned as the value of AREA. The 
number 3~1416 in the statement is itself a 
data item. 

If the number 3.1416 is to be used in 
more than one place in the program, it may 
be convenient to represent it as a variable 
to which the value 3.1416 has been 
assigned. Thus, the above statement could 
be written as: 

PI 3. 1416; 
AREA = RADIUS**2*PI; 

In the second statement, only the digit 
2 is a constant. 

In preparing a PL/I program, you must be 
familiar with the types of data that are 

20 IBM System/360 Model 20 DPS PL/I 

permitted, the ways in which data can be 
organized, and the methods by which data 
can be referred to. The following para
graphs discuss these features. 

Data Types 

The data you may use in a PL/I program fall 
into two categories: problem data and 
program-control data. Problem data is used 
to represent values to be processed by a 
program. It consists of the arithmetic and 
character-string data types. Program
control data is used to control the execu
tion of the program. Statement labels and 
pointers are types of program-control data. 

The types of problem data available in 
Model 20 PL/I are arithmetic and 
character-string. 

ARITHMETIC DATA 

An arithmetic data item is one with a num
eric value, that is, a number. It may be a 
~§fim~l_£Qn§!~n!, like for example 215.8, 
or it may be the !~1~§_Q1_~_!~£i~~1§, for 
example, 2.158 assigned to a variable. In 
Model 20 PL/I, all arithmetic data items 
must be written as decimal, either fixed
decimal or float-decimal data items. 

Arithmetic data items have the charac
teristics of base, scale, and precision. 
For data items represented by an arithmetic 
variable, the characteristics have to be 
specified by attributes declared for the 
variable name, or they are assumed by 
default. 

Base. The base of an arithmetic data item 
I~-iodel 20 PL/I is A§£im~l, that is ten. 

Scale. The scale of an arithmetic data 
Item-is either fixed-point or floating
point. A decimal fixed-point data item is 
a decimal number in which the position of 
the decimal point is fixed. It is speci
fied either by its appearance in a constant 
or by a scale factor declared for a vari
able. A floating-point data item is a dec
imal number followed by an integer exponent 
that mayor may not be signed. The 
exponent specifies the assumed pOSition of 
the decimal point, relative to the position 
in which it actually appears. 



ffgf!§!Qn. The precision of an arithmetic 
data item is the total number of digits the 
data item can have in the case of fixed
point, or the minimum number of digits 
(excluding the exponent) in the case of 
floating-point. For decimal fixed-point 
data items, precision can also specify the 
assumed position of the decimal point rela
tive to the right~ost digit of the number. 

Base and scale of arithmetic variables 
are specified by keywords; DECIM~L for base 
and FIXED and FLOAT for scale. Precision 
is specified by decimal integer constants 
enclosed in parentheses. 

Whenever you assign a data item to a 
fixed-point variable, the precision you 
have declared for that variable is main
tained. The assigned item is aligned on 
the assumed decimal point of the variable. 
Leading zeros are inserted if the assigned 
decimal item contains fewer integer digits 
than declared; trailing zeros are inserted 
if an assigned decimal item contains fewer 
fractional digits than declared. trunca
tion on the left or right may occur if the 
so aligned value has too many digits to the 
left or right of the assumed decimal point. 

~g£i!!!g,1_[i~gQ:~RQlni_~~1~ 

A decimal fixed-point data item consists of 
one or more decimal digits. A decimal 
point may be included. If no decimal point 
appears, the point is assumed to be immedi
ately to the right of the rightmost digit. 
In most cases a sign may optionally precede 
a decimal fixed-point constant. 

Examples of fixed-point decimal con
stants as you may write them in a program 
are: 

3. 141.593 
-5280 
455 .• 3 
.00003 
234. 
234 

The keywords for decimal fixed-point 
variables ~re DECIMAL and FIXED. Precision 
is stated by two unsigned decimal integer 
constants, se~arated by a comma and en
closed in parentheses. The first specifies 
the total number of digits; the second, the 
scale factor, specifies the number of 
digits to the right of the decimal point. 
If the variable is to represent integers, 
the scale factor and its preceding comma 
can be omitted. The attributes may appear 
in any order, but the precision specifica
tion must follow either DECIMAL or FIXED. 

To define PI (which should assume the 
value 3.141593) in this way, we COUtld use 
the following statement: 

DCL PI FIXED DECIMAL (7,6); 

This defines the identifier or variable 
PI as a fixed-point decimal item of not 
more than seven digits, six of which are to 
the right of the decimal point. In this 
declaration, of course, no value has yet 
been assigned to PI. This could be done 
later in the program with the following 
assignment statement: 

PI = 3. 1 4 1 5 9 3; 

The value could also be assigned in the 
DeL sta tem·ent, specifying the INITIAL 
attribute, as follows: 

DECLARE PI FIXED DECIMAL (7,6) 
INITIAL (3.141593); 

This not only defines the identifier PI 
but gives it an lnlilg,1_YA1~§ of 3.141593~ 
The value may be retained throughout the 
program, as is probable in this case, or it 
may be changed during execution by an 
assignment statement. 

The maximum number of decimal digits 
allowed in Model 20 PL/I is 15. Default 
precision, assumed when no specification is 
made, is 5,0. The internal form of decimal 
fixed-point data is packed decimal. Packed 
decimal is stored in two digits to the 
byte, with a sign indication in the right
most four bits of the rightmost byte. Con
sequently, a decimal fixed-point data item 
is always stored as an odd number of 
digits, even though the declaration of the 
variable may specify the number of digits 
as an even number. Any such extra digit is 
in the high-order position (that is, to the 
left of the leftmost decimal digit), and it 
participates in any operations performed 
upon the data item, such as in a comparison 
operation. Note, however, that this extra 
digit is disregarded when evaluating the 
precision of arithmetic expressions. 

The fixed-decimal values that can be 
represented in Model 20 PL/I are in the 
range of 10-50 to 10 49

, even though the 
declared scale factor must lie in the range 
of 0 to 15. Note, however, that not only 
the individual values, but also the values 
reSUlting from the evaluation of expres
sions must be within that range. 

A decimal floating-paint constant is writ
ten as one or more digits, with an optional 
sign and decimal point, referred to as the 
mantissa, followed by the letter E, fol
lowed by a decimal integer exponent that 
specifies a power of ten. The mantissa has 
the same format as a decimal fixed-point 
constant. Both, mantissa and exponent, may 
be preceded by a plus or minus sign. 

Data Elements 21 



consider the following example in which 
the decimal number 312.5 10-17 would be 
written as: 

+312.5E-17 

The digits preceding the letter E are 
the mantissa preceded by an optional plus 
sign. The digits following the letter E 
are the exponent preceded by a minus sign. 

other exam~les of decimal floating-point 
constants as you may write them in a pro
gram are: 

15E-23 
15E23 
4E-3 
48333E44 
438EO 
5.E-12 
314159E-6 
• 00314159E2 

The last two examples represent the same 
value, namely 0.314159. 

The keyword attributes that describe 
decimal floating-point variables are 
DECIMAL and FLOAT. precision is stated by 
a decimal integer constant enclosed in 
parentheses. It specifies the number of 
digits to be maintained preceding the E. 
If an item assigned to a variable has a 
Kiglg_~iQih larger than the declared preci
sion of the variable, truncation may occur 
on the right. The least significant digit 
is the first that is lost. Attributes may 
appear in any order, but the precision spe
cification must follow DECIMAL or FLOAT. 

Consider the following declaration of a 
decimal floating-point variable: 

DECLARE LIGHT_YEARS DECIMAL FLOAT (5) ; 

This statement specifies that 
LIGHT_YEARS is to represent decimal 
floating-point data items with an accuracy 
of five significant digits. 

The maximum precision allowed for deci
mal floatingrpoint data items in Model 20 
PL/I is 15; the exponent must not exceed 
two digits. The value V that can be ex
pressed is in the range of 10-51~V<1049, 
and V=O. The default precision is 6. The 
internal representation of decimal 
floating-point data may be in either short 
or long floating-point form. If the 
declared ~recision is less than or equal to 
6, short floating-point form, otherwise 
long floating-point form is used. 

The internal representation of decimal 
floating-point data is based on the repre
sentation of decimal numbers by mantissa 
and exponent. The first byte contains the 

22 IBM System/360 Model 20 DPS PL/I 

exponent incremented by 50 as a two-digit 
decimal number without sign (but assumed to 
be positi~e). The following four, respec
tively 8 bytes (depending on whether short 
or long floating-point form is used) Con
tain the mantissa without any leading zeros 
as a seven-digit or 15-digit decimal num
ber, respectively, with the decimal point 
assumed to the left of the leftmost digit. 
Floating-point numbers in internal repre
sentation are normalized, i.e., the left
most digit of the mantissa is not zero. 
The (normalized) value zero is represented 
in a special notation having zeros in all 
digit positions of characteristic and 
mantissa. 

Note that all variables that have not 
been explicitely declared and whose names 
do not start with any of the letters I to N 
are assumed to be arithmetic decimal 
floating-point variables of six digits • 
(An identifier starting with any of the 
letters I to N must be explicitly 
declared) • 

A numeric-character data item (also known 
as a numeric-field data item) is the Y£l~g 
of a variable that has been declared with 
the-PICTURE-attrtlyibute and a numeric pic
ture specification. The format is: 

DECLARE identifier PICTURE 
'pictUre-specification' 

The picture specification is a string of 
£i£i~£g_£h~£~£ig£§ (e.g., 9 and V) used to 
represent a decimal fixed-point or 
floating-point value. The basic form of a 
numeric-picture specification is the pic
ture character 9 specified one or more 
times and the optional picture character V, 
which is used to indicate the assumed loca
tion of a decimal point. The picture spe
cification must be enclosed in apostrophes. 
An example of declaring a picture variable 
is: 

DECLARE PRICE PICTURE '999V99' 

This example specifies that any value 
assigned to PRICE is to be maintained as a 
string of five decimal digits in character 
form, with a decimal point assumed to pre
cede the rightmost two digits. 

In some cases it might be convenient to 
use re~etition factors in numeric-picture 
specifications. A repetition factor is a 
decimal integer constant, enclosed in 
parentheses, that indicates how often the 
immediately following picture character is 
to be repeated. For example, the following 
picture specification would result in the 
same field as the example shown above: 



DECLARE PRICE PICTURE 1 (3) 9V (2) 9 1 

In Model 20 PLII, numeric-character data 
is stored in zoned decimal format. If it 
is to be used in arithmetic computations it 
is automatically converted to coded 
ari thmetic,. 

Although numeric-character data is in 
character form like a character string, and 
although it is aligned on the decimal point 
like packed decimal data, it is processed 
differently from the way either packed dec
imal items or character strings are pro
cessed. ~~iiill9_£h!£!£ig£§ (likS the point 
and the dollar sign) can be specified for 
insertion into a numeric-character data 
item, and such characters are actually 
stored within the data item. Consequently, 
when the data item is assigned to a charac
ter string, the editing characters are 
included in the assignment. If, however, a 
numeric-character item is assigned to 
another numeric-character or arithmetic 
variable, the editing characters will not 
be included in the assignment; only the 
actual digits and the location of the 
assumed decimal point are assigned. (Note 
that character-string data cannot be 
assigned to numeric-character variables). 
Consider the following example: 

D~CLARE PRICE PICTURE 1$99V.99 1, 
COST CHARACTER (6) , 
VALUE FIXED DECIMAL(6,2); 

PRICE = 12.:28; 
COST = '$12.28 1 ; 

In the picture specification for PRICE, 
the currency symbol ($) and the decimal 
point (.) are editing characters. They 
are stored as characters in the data item. 
They are not, however, a part of its arith
metic value. After execution of the second 
assignment statement, the actual internal 
character representation of PRICE and COST 
can be considered identical. If they were 
assigned to character strings, which were 
then printed, they would look exactly the 
same. They do not, however, always func
tion in the same may. For example# look at 
the following assignment statements: 

VALUE = PRICE; 
COST = PRICJ~; 

VALUE = COS~~; 

PRICE = COS~~; 

After the first two assignment state
ments have been executed, the value of 
VALUE would be 001228 (with an assumed dec
imal point before the last two digits) and 
the value of COST would be 1$12.28 1• In 
the assignment of PRICE to VALUE, the cur
rency symbol and the decimal point are con
sidered to be E:!di ting characters, and they 
are not part of the assignment; after the 
assignments, the arithmetic value of PRICE 

is contained in VALUE in packed decimal 
form. In the assignment of PRICE to COST, 
however, the assignment is to a character 
string, and the editing characters of a 
numeric-picture specification always parti
cipate in such an assignment. The third 
and fourth assignment statements are inva
lid. The value of caST cannot be assigned 
to VALUE because a character string cannot 
be converted to packed decimal form. The 
value of COST cannot be assigned to PRICE 
because, in Model 20 PL/I, a character 
string cannot be converted to numeric
character format. 

Other editing characters (including zero 
suppression characters) and insertion 
charactars (like, for example, an 
asterisk), can be used in numeric-character 
specifications. 

li2ig that the number of possible digit 
positions in the fixed part of a picture 
declaration must range between 1 and 15, 
inclusively. The total length of a pic
ture, including editing characters, must 
not exceed 30 characters. The V character, 
however, does not count since it represents 
only an assumed, not an actual point. A 
picture or editing character preceded by an 
repetition factor (n) counts n times. 

For complete discussions of picture 
characters, see Part II, the section R.i£::. 
iy£g_2Eg£ifi£~ii2n_~h~£~£Sg£2 and the dis
cussion of the PICTURE attribute in the 
section !ii£!Qyig§. 

CHARACTER-STRING DATA 

You may think of a character string as a 
connected sequence of characters that is 
treated as a single data item. The length 
of the string is the number of characters 
it contains. 

A character string can include any 
digit, letter, or special character that is 
contained in the EBCDIc-character set. Any 
blank included in a character string is 
considered an integral character of the 
data item and is included in the count of 
the length. Comments cannot be inserted in 
a character string. The comment, as well 
as the comment delimiters (/* and */)# will 
be considered to be part of the character
string data. 

When writing a program, you have to 
enclose character-string constants in apos
trophes. If an apostrophe is a character 
in a string, it has to be written as two 
apostrophes with no intervening blank. The 
length of a character string is the number 
of characters between the enclosing apos
trophes. If two apostrophes are used 
within the string to represent apostrophes, 
they are counted as a single character. 

Data Elements 23 



Consider the following examples of 
character-string constants: 

'LOGARITHM TABLE' 
'PAGE 5' 
'SHAKESPEARE"S ""HAMLET"'" 
'AC438-19' 
(2) 'WALLA ' 

The third example actually indicates 
SHAKESPEARE'S "HAMLET" with a length of 
24. In the last example, the parenthesized 
number is a £g£g~!t!Qn_!2£1Q£ which indi
cates repetition of the characters that 
follow. This example specifies the actual 
constan t 'W ALLA WALLA ' (the blank is 
included as one of the characters to be 
repeated). The repetition factor must be 
an unsigned decimal integer constant, en
closed in parentheses. The repetition fac
tor may range between 1 and 255. 

The keyword attribute for declaring a 
character-string variable is CHARACTER 
which may be abbreviated as CHAR. The 
length of the character-string variable is 
declared by a decimal integer constant, en
closed in parentheses. The length specifi
cation must follow the keyword CHARACTER or 
CHAR. For example: 

DECLARE NAME CHARACTER(15) 

This DECLARE statement specifies that 
the identifier NAME is to represent a 
character-string data item that is 15 
characters long. The values of this vari
able, that is, different character strings, 
are to be assigned during the execution of 
the program. Most data items, however, can 
also be given an initial value by declaring 
the name with the INITIAL attribute and 
listing the initial value. For example: 

DECLARE NAME CHARACTER(15} 
INITIAL ('JOHN DOE') 

Although the declared length is 15, the 
length of the string assigned by the INI
TIAL attribute contains only 8 characters. 
Blanks are added automatically to the right 
to fill out the length. The first charac
ter assigned is always left-adjusted, and, 
if necessary, blanks are added on the 
right. In this case, the string would be 
stored as the characters JOHN DOE, followed 
by 7 blanks. 

A character string is assigned from left 
to right. If the actual string is longer 
than the declared length, the string is 
truncated on the right, that is, the right
most characters are lost. 

Note: If truncation occurs, there will be 
no-Interrupt. There is no ON-condition in 
Model 20 PL/I to deal with character-string 
truncation. 

24 IBM System/360 Model 20 DPS PL/I 

Character-string data in System/360 
implementations is maintained internally in 
character format, that is, each character 
occupies one byte of main storage. The 
maximum length allowed by the Model 20 PL/I 
Compiler for variables declared with the 
CHARACTER attribute is 255. The maximum 
length allowed for a character-string con
stant after apllication of repetition fac
tors is also 255. The minimum length in 
either case is one. 

The tYles of program-control data in Model 
20 PL/I are label and pointer data. 

LABEL DATA 

A statement label is an identifier written 
as a prefix to a statement so that, during 
execution, program control can be trans
ferred to that statement through a 
reference to its label. A colon separates 
the label from the statement, as follows: 

ABCDE: DISTANCE = RATE*TIME; 

In this example, ABCDE is the statement 
label. The statement can be executed eith
er by normal sequential execution of 
instructions or by transferring control to 
this statement from some other point in the 
program by means of a GO TO statement, as 
shown in the following example: 

ABCDE: DISTANCE = RATE*TIME; 

GOTO ABCDE; 

ABCDE, as it is used above, can be clas
sified as a statement-label constant. A 
statement-label-varIable-Is-a-varIable to 
which-statement=label-constants can be 
assigned in the program. Consider the fol
lowing example: 

LBL_A: statement; 

LBL_B: statement; 

LBL X 



LBL A and LBL B are statement-label con
stants-because they are prefixed to state
ments. LBL X is a statement-label vari
able. By assigning LBL_A to LBL_X, the 
statement GO TO LBL X causes a transfer to 
the LBL_A statement~ Elsewhere, the rro
gram may contain a statement assigning 
LBL_B to LBL_X. Then, any reference to 
LBL X would be the same as a reference to 
LBL-B. This value of LBL X is retained 
untIl another value is assigned to it. 

A statement-label variable must be 
declared with the LABEL attribute, as 
follows: 

DECLARE LBL_X LABEL; 

POINTER DATA 

A pointer variable is the name of a pointer 
which is used to point to a location in 
storage. A pointer is, in effect, the 
address of data in storage. 

The keyword attribute for declaring 
pointer variables is POINTER. For informa
tion on the use of fointer variables, refer 
to the sections ~!1!_I~!n§m!§§!Qll, and 
~~§~~_!!~!!~lg§_!n~_fQ!n~gI_!!~!!~lg§· 

Data OrganizatiDln 

In PLII, we have single data elements or 
collections of data elements, called arrays 
or structures~ depending on their composi
tion. A variable that represents a single 
element is called an glgmgn1_Y!~i5!:.Q!g. A 
variable that represents a collection of 
data elements is either an !££!Y_YA£!!~!g 
or §~£y£~y~g_!!~!!~lg. 

An array is a named table of data elements 
all of which have identical attributes. 
Only the array itself is given a name. An 
individual element of an array is referred 
to by its relative position within the 
array. The relative position is specified 
by a subscript (enclosed in parentheses) 
following the array name, with or without 
intervening blanks. 

Assume TABLE has been declared to be an 
array of 12 elements. TABLE(1) refers to 
the first data element in the array, 
TABLE (2) to the second, TABLE (3) to the 
third, etc. Each of the numbers, (1), (2), 
or (3), is a §YQ§£~!E1 that gives the rela
tive position, within TABLE, of a particu-

lar data element. TABLE(1), TABLE (2) , and 
TABLE (3) all refer to single elements and 
are element variables. The entire array is 
referred to by the unsubscripted name 
TABLE. TABLE is an array variable. 

An array variable is declared in a 
DECLARE statement by giving its name, the 
number of elements in the array, and the 
attributes of the items. Consider the fol
lowing example: 

DECLARE TABLE (12) DECIMAL FIXED (2); 

This specifies that TABLE refers to an 
array of 12 data elements l each of which 
will have a value that can be represented 
by two decimal digits. TABLE, as declared 
above, might look as follows: 

Element Value -----'31------
43 
42 
57 
64 
73 
79 
79 
69 
58 
49 
40 

Reference 
TABLE(1}

( 2) 
(3 ) 
(4 ) 
(5 ) 
(6 ) 
(7) 
( 8) 
(9) 
(10) 
(11 ) 
( 12) 

Thus, TABLE (1) would refer to the data 
item 31, TABLE (6) to 73, TABLE (12) to 40. 
The expression TABLE (7) + TABLE(1) would 
yield a value of 110. 

Assume that the values assigned to TABLE 
represent the average temperature of the 
months ·of a particular year. TABLE(1} is 
the January average, etc. As TABLE was 
declared in the previous DECLARE statement, 
the data items could be referred to singly 
or as a whole. For various reasons, you may 
want to consider the year as divided into 
quarters; it might be convenient to be able 
to use one reference to the average tem
peratures of a quarter of a year and an
other to specify months in a quarter. For 
this purpose, TABLE may be declared as 
follows: 

DECLARE TABLE (4,3) DECIMAL FIXED (2); 

In this statement, TABLE is declared to 
be a two-dimensional array of 12 data 
items; that is, TABLE is considered to con
sist of four lists of three items each~ It 
has two dimensions, one with a bound of 
four, one with a bound of three. The data 
might be recorded in storage in exactly the 
same way as with the first declaration, but 
conceptually it is ordered differently. 

Data Elements 25 



The upper bound of the dimension is the 
end of it, 4 and-3 in this case; the lower 
bound or the beginning of a dimension is 
always assumed to be 1. The g!igni of the 
dimension is the number of integers between 
and including the specified end. Thus, the 
terms bound and extent, while conceptually 
different, have the same value in Model 20 
PL(I. 

Note the difference between a subscriFt 
and the dimension-attribute specification. 
The latter, which appears in the decla
ration of an array, specifies the dimen
sioning and the number of elements in an 
array. subscripts are used in other 
references to identify specific elements 
within the array. 

Following are two different ways in 
which the arrangement might be conceptually 
illustrated. The first shows TABLE as con
sisting of four consecutive lists of three 
items each; the second shows it as a matrix 
of four rows and three columns. 

Element Value -----3"1-1-----
I·n 
42 

TABLE 
(1-; iii)" 
(2, m) 
(3, m) 
(4, m) 

57

1 64 
73 
79

1 
79 
69 
58

1 49 
40 

JnLll 
31 
57 
79 
58 

Reference 
TABLE(1-;1 ) 

( 1 , 2) 
(1 ,3) 
(2, 1) 
(2,2) 
(2, 3) 
(3 ,1) 
(3,2) 
(3,3) 
(4, 1) 
(4,2) 
(4, 3) 

J!.!L~l. 
43 
64 
79 
49 

You may refer to an element of the above 
described TABLE by a subscripted name with 
two parenthesized subscripts, separated by 
a comma. For example, TABLE (2,1) would 
specify the first element in the second 
list or row, in this case, the data item 
57,. 

The Model 20 PL/I Compiler allows a 
maximum of three dimensions to be declared 
for an array. The above described TABLE 
could, in fact, also be declared as a 
three-dimensional array with the following 
DECLARE statement: 

DE:CLARE TABLE (2,3,2) DECIMAL FIXED (2); 

Note that the number of specifications, 
separated by commas, is the same as the 
number of dimensions, and that the product 
of the numbers is equal to the number of 
items in the array: (12), (4,3), (2,3,2). 

26 IBM System/360 Model 20 DPS PL/I 

Using the same data, TABLE (2,3,2) might 
be illustrated as follows: 

Element Value 

-----!!11---

~~ ~ I 69 t 
58 5 
49 t 
40 5 

r~g1!! l1LnL!!l1. 
( 1 , 1 , m) 
(1,2,m) 
{1,3,m 

:n~g1~ l~~nL!!ll. 
(2,1,m) 
(2,2, m) 
(2,3,m) 

Reference 
TABLE(1-;1 , 1 ) 

(1,1,2) 
(1,2,1) 
(1,2,2) 
(1,3,1) 
(1,3,2) 
(2, 1 , 1 ) 
(2,1,2) 
(2,2 , 1 ) 
(2,2,2) 
(2,3,1) 
(2,3,2) 

l1LllL1L 
31 

11LQL£L 
43 

42 
64 

1~LQL1L 
79 
69 
49 

57 
73 

l~LQL£L 
79 
58 
40 

The dimension attribute (2,3,2) speci
fies that TABLE represents a list of 12 
data items and that the list will be 
referred to as if it consists of two sub
lists, each of which is further divided 
into three sub-lists of two items each. 

The examples of arrays shown in this 
section are arrays of arithmetic data. 
Character strings and statement labels may 
also be collected into arrays. Note, how
ever, that pointers may not be collected 
into arrays. 

The subscripts of a subscriited name need 
not be constants as shown in the above 
examples. SubscriFts are frequently ex
pressed as variables or expressions. We 
could, for example, use TABLE(I,J*K) to 
refer to the different elements of TABLE by 

. varying the values of I, J, and K. 

Note that, although a subscript can be 
an expression, each bound of a dimension
attribute declaration must be an unsigned 
decimal integer constant and that the value 
of a subscript must lie within the extent 
of the corresponding dimension. If the 
result of a subscript expression (such as 
J*K above) is not a fixed-decimal integer, 
it is converted to FIXED DECIMAL {5,0) in 
Model 20 PL/I. Note also that the number 
of subscripts in a reference must agree 
with the number of dimensions in the 
declaration. 



A structure is a collection of data ele
ments that need not have identical charac
teristics, but that have a logical rela
tionship to one another. 

Like an array, the entire structure is 
given a name that can be used to refer to 
the entire collection of data. Unlike in 
an array, however, each element and groups 
of elements of a structure also have names. 
A structure is a hierarchical collection of 
names referring to elements. These ele
ments, each of which may be a single data 
item or an array are at the bottom of the 
hierarchy. At the top of the hierarchy is 
the structure name, which represents the 
entire collection of elements. 

Consider a program to calculate a weekly 
payroll. One employee, John J. Doe, whose 
man-number is 68584, works 40 hours of 
regular time and five hours of overtime. 
He is paid $4.00 per hour for regular time 
and $6.00 for overtime. 

His weekly pay record, with all the 
above information, is read and assigned to 
a structure named PAYROLL. The information 
could be ordered: 

DOE JOHN J 68584 40 05 400 600 

If this data were referred to merely by 
the name PAYROLL, it might be treated as a 
character string; but l if the data were 
declared as a character string, it would be 
difficult to get to individual items within 
the string, and arithmetic operations would 
involve conversion. However, a name can 
also be given to each element. The names 
for John Doe's pay record and the data each 
name represents might, conceptually, look 
like this: 

,PAYROLL 

LASTNAME 
FIRSTNAME 
MIDDLENAME 
MAN_NO 
REGLHOURS 
OVTMHRS 
STRATE 
OVRTMRATE 

DOE 
JOHN 
J 
68584 
40 
05 
400 
600 

Thus, we could refer to the entire 
collection of data items by the name 
PAYROLL, or we can refer to an individual 
item by an individual name. 

It is often convenient to subdivide the 
entire collection into smaller logical 
collections, to be able to refer collec
tively to more than one, but not all, of 
the variables in a structure. In a struc
ture, such subdivisions are also given 
names. The above example might be subdi
vided as follows: 

~LAST DDE 

PAYROLL I NAME FIRST JOHN 
lMIDDLE J 

MAN_NO 68584 

HRS {REGLR 40 
OVTM . 05 

RATE {STRATE 400 
OVRTM 600 

The major structure, PAYROLL, contains 
the substructures, NAME, HRS, and RATE. 
MAN NO is not a substructure but an elemen
tary name because it represents only a 
single data item. 

Note that the hierarchy of names can be 
considered to have different levels. At 
the first level is the ill~jQ£=§i£Q£ig£g 
n~illg; at a deeper level are the substruc
ture names, called illinQ£=§1£g£1y£g_n~ill§; 
and at the deepest level are only g1gmgn= 
t~£y_g~~§§. An elementary name can repre
sent an array, in which case it is not an 
element variable, but an array variable. 

When a structure is declared, the level 
of each name is indicated by a 19y91_QYill= 
Qg£. The major-structure name, at the 
first level, is always given the level num
ber 1. Each name at a deeper leve 1 is 
given a greater number to indicate the 
level depth. The above structure could, 
for example, be declared as follows: 

DECLARE 1 PAYROLL, 
2 NAME, 

3 LAST, 
3 FIRST, 
3 MIDDLE, 

2 MAN_NO, 
2 HRS, 

3 REGLR, 
3 OVTM, 

2 RATE, 
3 STRATE, 
3 OVRTM; 

Note that the ~attern of indention is 
used only for readability. The statement 
could be written in a continuous string as 
DECLARE 1 PAYROLL, 2 NAME, 3 LAST, etc. 

The order of appearance of names in a 
DECLARE statement, along with their level 
numbers, determines the structuring. 
Except for the major-structure name, which 
must be declared with the level number 1, 
any number up to 255 may be used in Model 
20 PL/I. Note, however, that only a maxi
mum of 8 physical structure levels may be 
slecified in structure declarations. 

A structure is specified by declaring 
the major structure name and following it 
with the names of all contained elements. 
Each name is preceded by a level number, 
which is a non-zero decimal integer con-

Data Elements 27 



stant. A major structure is always at 
level 1 and all elements contained in a 
structure (at level n) have a level number 
that is numerically greater than n, but 
they need not necessarily be at level n + 
1, nor need they all have the same level 
number. 

A minor structure at level n contains 
all following items declared wIth level 
numbers greater than n up to but not 
including the next item with a level number 
less than or equal to n. A major structure 
description is terminated by the decla
ration of another item at level one, by the 
declaration of an item having no level num
ber, or by the end of a declaration list. 

~he level numbers of the above example 
might have been declared as follows: 

DECLARE 1 PAYROLL, 
8 NAME, 

20 LAST, 
20 "FIRST, 

9 MIDDLE, 
6 MAN_NO, 
2 HRS, 

3 REGLR, 
3 OVTM, 

2 RATE, 
255 STRATE, 
255 OVRTM; 

Exactly the same structuring would 
result. 

When a structure is declared, attributes 
may be specified for each of the §l~ID~nt££Y 
nam§~. For example: 

DECLARE 1 PAYROLL, 
2 NAME, 

3 LA ST CHARACTER (12), 
3 FIRST CHARACTER (8), 
3 MIDDLE CHARACTER (1), 

2 MAN_NO CHARACTER (5), 
2 RRS, 

3 REGLR FIXED DECIMAL (2) 
3 OVTM FIXED DECIMAL (2), 

2 RATE, 
3 STRATE FIX ED DEC]:MA L (3,2), 
3 OVRTM FIXED DECIMAL (3,2); 

NO!~: Level numbers are specified with 
structure names only in the DECLARE state
ment. In references to the structure or 
its elements, no level numbers are used. 
Only structures can be declared with level 
numbers; a level number cannot be declared 
with any other identifier. 

Qy£li!ieLN£ID.§§ 

All names within a single procedure must be 
unique. But within structures, it is often 

28 TBM System/360 Model 20 DPS PllT 

convenient to te able to use the same iden
tifier for related names. In the above 
structure, for example, it would be con
venient to refer to the items in RRS and 
RATE as "regular hours" and "regular rate" 
and "overtime hours" and "overtime rate". 
In fact, the elements can be given the same 
names. The last portion of the structure 
might be declared: 

2 RES, 
3 REGLR, 
3 OVRTIM, 

2 RATE, 
3 REGtR, 
3 OVRTIM; 

The use of a gyali!i~Q_n£ID~ in referring 
to the individual item avoids ambiguity. A 
qualified name is a substructure or element 
name that is made unique by qualifying it 
with one or more names of a higher level. 
The individual names within a qualified 
name are separated by a period. A quali
fied name must not contain embedded blanks 
or comments. The above items could be 
referred to by the following qualified 
names: 

HRS.REGLR 
RATE.REGLR 
HRS.OVRTTM 
RATE.OVRTIM 

None of the names in PAYROLL, except 
PAYROLL itself, need be unique within the 
procedure in which it is declared. Each of 
them could be qualified. For example: 

PAYROLL. NAME 
PAYROLL. NAME. LAST 

or NAME. LAST 
or PAYROLL.LAST 

Qualification need go only so far as 
necessary to make the name unique. Tnter
mediate qualifying names can be omitted. 
The name PAYROLL. LAST is a valid reference 
to the name PAYROLL.NAME.LAST. 

Note: The length of qualified names must 
not-exceed 2 cards. 

RESPECIFTCATION OF DATA 

The DEFINED attribute specifies that the 
name of a data element, a structure, or an 
array is to refer to the same storage area 
as the name given to other data. "For 
example, in the declaration 

DECLARE LIST (20,20), 
LIST_A (20,20) DEFINED LIST; 



LIST is a 20 by 20 two-dimensional 
array. LIST_A is an identical array refer
ring to the same storage area as LIST. The 
reference to the same storage area is 
achieved by using the DEFINED attribute. 
The effect is that a reference to an ele
ment in LIST A is the same as a reference 
to the corre~ponding element in LIST, and 
vice versa. Thus, a change to an element 
in LIST_A will at the same time, be an 
identical change to the corresponding ele
ment of LIST. This use of the DEFINED 
attribute is called §!m£!g_g~t!lllll9. 

The DEFINED attribute can also be used 
for so-called it~!llg=2!gI!~I_~gt~ll!!~. 
This type of defining specifies that the 
~g1ing~_iigm (the item having the DEFINED 
attribute; e.g., LIST_A above) is to refer 
to all or part of the storage area occupied 
by the ~~§g_i~glli!1!g£ (the identifier fol
lowing the keyword DEFINED; e.g., LIST 
above). For example: 

DECLARE P, 2 Q CHARACTER (25), 
2 R CHARACTER (50), 

PSTRING1 CHAR (60) DEFINED P; 

In this example, PSTRING1 is a character 
string of length 60 defined on the struc
ture P. The first character of Q through 
the last character in R can be considered 
as one string of 75 characters in length. 
PSTRING1 refers to the first 60 characters 
of that string g that is, the 25 characters 
of Q effectively concatenated with (that 
is, connected to) the first 35 characters 
of R.. 

Initialization of Data 

The INITIAL attribute, which may be abbre
viated as IN IT is used to specify a'n ini
tial value for a variable. The initial 
value is assigned to the variable at the 
time storage is allocated to it. For 
example: 

DCL NAME CHARACTER (10) INITIAL 
('JOHN DOE'); 

DCL PI FIXED DECIMAL (5,4) INIT 
(3.1 Ili16) ; 

When storage is allocated to NAME, the 
character string 'JOHN DOE' (padded with 
blanks on the right up to ten characters) 
will be assigned to it. When storage is 
allocated to PI, it will be initialized to 
the value of 3.1416. The initial value of 
a variable may be retained throughout the 
program, or it may be changed during 
execution. 

For a STATIC variable, that is, a vari
able for which storage remains allocated 
throughout the entire execution of a fro-

gram, any value specified in an INITIAL 
attribute is assigned only once. For AUTO
MATIC variables, that is, variables for 
which storage is allocated whenever the 
declaring procedure is activated, any INI
TIAL values will be assigned at each acti
vation. INITIAL values cannot be declared 
for BASED variables, DEFINED variables, 
STATIC label variables, and POINTER 
variables. In a structure declaration, the 
INITIAL attribute can only be used in the 
declaration of elementary names. 

The INITIAL attribute may be specified 
for element variables and arrays. Note, 
however, that is cannot be specified for 
arrays of the storage class AUTOMATIC. 

An array can be Iartly initialized or 
fully initialized. For example: 

DECLARE A (.15) CHAR ACTER (13) IN ITIA L 
(' JOHN DOE', 'RICHARD ROW', 
'MARY SMITH') STATIC, 

B(10,10) DECIMAL FIXED(5) STATIC 
INITIAL «25) 0, (25) 1, (50) 0) ; 

In the first example, only the first 
three elements of A are initialized; the 
remainder of the array is not. The array B 
is fully initialized, with the first 25 
elements initialized to 0, the next 25 to 
1, and the last 50 to O. The parenthesized 
numbers (25, 25, and 50) are !ig~~1!2ll_t~£= 
12£2 that specify the number of elements to 
be initialized with the same value. 

Note that the depth of nested iteration 
factors in an INITIAL attribute is 
restricted to 3. 

The iteration factor should not be con
fused with the character-string £g~g1i1!2ll 
t~£12£. Consider the following example: 

DECLARE TABLE (50) CHARACTER (10) 
INITIAL «10) 'A', (25) (10) 'B', 
(24) (1) 'C') ; 

~his INITIAL attribute contains both 
iteration factors and repetition factors. 
It specifies that the first element of 
TABLE is to be initialized with a string 
consisting of 10 A's, each of the next 25 
elements is to be initialized with a string 
consisting of 10 B's, and each of the last 
24 elements is to be initialized with the 
single character C. In the INITIAL attri
bute specification for a character-string 
array, a single parenthesized factor pre
ceding a character-string constant is 
assumed to be a string-repetition factor 
(as in (10)' A'). If more than one appears, 
the one immediately preceding the character 
string is the string-refetition factor, 
while all factors preceding this repetition 
factor are iteration factors. 

Data Elements 29 



Expressions 

An eXtression is a re~resentation of a 
value. An expression may be a §!gg!§_£Qg= 
stant or an element variable, a function 
reference, or-a-combInatIon-of them, 
including operators and other delimiters. 
An expression that contains operators is an 
Q£§£~iiQll£1_g~££g221Qll. The constants and 
element variables of an operational expres
sion are called QE§f£gg§. 

In the examples below, assume that the 
variables have been declared as follows: 

DECLARE A (10, 10) DECIMAL FIXED (15), 
B (10,10) DECIMAL FIXED (1S), 
1 RATE, 2 PRIMARY DECIMAL FIXED (4,2), 

2 SECONDARY DECIMAL FIXED (4,2), 
COS T, 2 PRIMARY DEC IMAL FIXED (4,2), 

2 SECONDARY DECIMAL FIXED (4,2), 
C DECIMAL FIXED (8), 
D DECIMAL FIXED (8); 

Examples of expressions are: 

C * D 
A (3,2) + B (4,8) 
RATE. PRIMARY - COST. PRIMARY 
A(4,4) * C 
RATE. SECONDARY / 4 
A(4,6) * COST. SECONDARY 
C 
A (10, 10) 

All except the last two examples are 
operational expressions. The last two are 
element variables. Note that the expres
sion A (10, 10) is not the same as A (10,10) 
in the DECLARE statement. In the DECLARE 
sta temen t, (10, 10) is a dimension at tr ibu te 
specifying a two-dimensional array of 100 
element variables. In the expression 
A (10" 10), (10,10) is a subscript referring 
to the last element of the array A. 

A single operational expression may con
tain a number of arithmetic operations, as 
shown in the following example: 

A ( 4, 4) + B (3 ,3) - C* (D/ (B (2 ,2) - A (1 , 1 ) ) } * * C 

Parentheses within an expression indic
ate that the parenthesized portion is con
sidered as a single value in relation to 
its surrounding operators. The parenthe
sized portion of an operational expression 
is evaluated first, with the innermost 
parenthesized portion taking precedence. 
In the above example, the expression 
(B(2,2)-A(1,1» is evaluated first, before 
the value of D is divided by the result of 
the subtraction. 

3D IBM System/360 Model 20 DPS PL/I 

Although an operational expression may 
contain more than one data item, it repre
sents a single value that may appear in a 
number of different PL/I statements. The 
most common occurrence of operational ex
pressions is in the form of assignment sta
tements. Such as: 

C = A ... B; 

In this example, all of the three 
operands are element variables. The 
assignment symbol (=) indicates that the 
value of the expression on the right (A + 
B) is to be assigned to the variable C on 
the left. 

Expression Operations 

An operational expression can specify one 
or more single operations. The class of 
operation depends on the class of operator 
slecified for the operation. There are 
three classes of operations: ££1ihmgii£, 
f2mE££!§Qn, and fQg££1gn£i1Qg. 

An arithmetic operation is represented by 
one or two operands in combination with one 
of the following operators: 

+ - * / ** 

The plus and the minus sign can appear 
either as ££~fi~_Q£~££1Q£§ (for example +A 
or -A) or as ig!i~_Q£g£~1Q£§ (that is, 
between operators, such as A + B or A - B). 
The other arithmetic operators can appear 
only as infix operators. All operands of 
an arithmetic operation must be arithmetic 
(for example, a character-string variable 
in combination with an arithmetic operator 
will lead to an error). 

An expression may contain a number of 
arithmetic operations. Note that prefix 
operators can precede and be associated 
with any of the operands of an infix opera
tion. For example, in the expression 
A*-B, the minus sign preceding the variable 
B indicates that the value of A is to be 
multiilied by the negative value of B. 

A single variable may have more than one 
prefix operator. More than one positive 
prefix operator will have no cumUlative 
effect, but two consecutive negative prefix 



operators will have the same effect as a 
single positive prefix operator. For 
example: 

-A The single minus sign has the effect 
of reversing the slgn of the value 
that A represents. 

--A One minus sign reverses the sign of 
the value that A represents. The 
second minus sign again reverses the 
sign of the value, thus restoring it 
to the original arithmetic value of 
A. 

---A Three minus signs reverse the sign of 
the value three times, thus giving 
the same result as one minus sign. 

CONVERSION OF OPERANDS IN ARITHMETIC 
OPERATIONS 

The two operands of an arithmetic operation 
may differ in type, precision, and scale. 
The necessary conversions are performed 
automatically according to the rules listed 
below. 

Numeric-character operands (digits recorded 
in character form as in the PICTURE speci
fication) are converted to coded arithmetic 
form. The result of an arithmetic opera
tion is always in coded arithmetic form. 
Note that type conversion is the only con~ 
version that can take place in an arith
metic prefix operation~ 

If only precisions differ, no conversion 
takes place. 

If the scales of the two operands differ, 
the fixed-point operand is converted to 
floating-Foint scale. The exception to 
this rule is in the case of exponentiation 
if the first operand is of floating-point 
scale and the second operand (the exponent 
of the operation) is fixed-point with a 
scale factor of zero, that is, a fixed
point integer constant or a variable with 
the precision (p,O). In such a case, no 
conversion is necessary, but the result 
will be floating-point. 

Consider the following example: 

DECLARE A FLOAT, 
B FIXED DECIMAL (5,0), 
C FLOAT; 

C = A ** B; 

The result of A ** B will be in 
floating-point form and will be assigned to 
the variable C. The exponentiation is, 
however, executed with the FIXED value of 
B. 

If both operands of an exponentiation 
operation are fixed-point, conversions may 
occur, as follows: 

1. Both operands are converted to 
floating-point if the exponent has a 
precision other than (p,O). For 
example: 

DECLARE A FIXED DECIMAL, 
B FIXED DECIMAL (5,2), 
C FLOAT; 

C = A ** B; 

The precision of the value of B has a 
scale factor of two. since it is not 
an integer, both operands are converted 
to floating-point form. 

2. The first operand is converted to 
floating-point unless the exponent is 
an unsigned fixed-point integer. 

3. The first operand is also converted to 
floating-point if precisions indicate 
that the result of the fixed-point 
exponentiation would exceed the maximum 
number of digits allowed (i.e., 15 dec
imal digits). 

FORMATS OF RESULTS OF ARITHMETIC OPERATIONS 

The "result" of an arithmetic operation, as 
used in the following text, can refer to a 
final result or to an intermediate result 
if the operation is only one of several 
operations specified in a single operation
al ~xFression. An intermediate result may 
require further conversion if it is used as 
an operand of a subsequent operation or if 
it is assigned to a variable with different 
attributes. 

After the required conversions have 
taken place, the arithmetic operation is 
performed. If the maximum precision has 
been exceeded, the result is truncated, 
that is, digits are lost regardless of the 
scale of the operands. In some cases 
involving fixed-point data, high-order 

Expressions 31 



digits may be lost when scale factors are 
such that decimal-point alignment does not 
allow for the declared number of digits. 
In floating-point operations low-order 
digits may be lost even when the maximum 
precision has not been reached. The scale 
and precision of the result depend upon the 
operands and the operator involved. 

For prefix operations, the result has 
the same scale and precision as the con
verted operand (for example. (+5.0 has the 
same scale and precision as (-5.0». 

For infix operations, the result depends 
on the scale of the operands, as described 
in the following sections. 

If the converted operands of an infix 
operation are of floating-point scale, the 
result is of floating-point scale. The 
precision of the result is the greater of 
the precisions of the two operands. For 
example: 

DECLARE A FLOAT (5), 
B FLOAT (7); 

The precision of the value of (A+B) will 
be 7. Note that even though the maximum 
precision of 15 has not been reached, low
order digits may be lost due to different 
exponents in A, B, and A+B. 

If the converted operands of an infix 
operation are of fixed-point scale, the 
result is of fixed-point scale. The freci
sion of a fixed-point result varies accord
ing to the tYFe of operation performed. 

The symbols used in the formulas for 
computing the precision of the fixed-point 
results are as follows: 

p represents the total number of digits 
of the result 

g represents the scale factor of the 
result 

pl represents the total number of digits 
of the first operand 

q1 represents the scale factor of the 
first operand 

p2 represents the total number of digits 
of the second operand 

q2 represents the scale factor of the 
second operand 

32 IBM System/360 Model 20 DPS PL/I 

Addition and subtraction. The total number 
Of-dIgIts-In-th~-r~sult-is equal to one 
plus the number of integer digits of the 
operand with the greater number of integer 
digits, plus the number of fractional 
digits of the operand with the greater num
ber of fractional digits. The total number 
of positions cannot exceed the maximum num
ber of digits allowed (15 decimal digits). 
The scale factor of the result is equal to 
the larger scale factor of the two 
operands. 

Formulas: 

p = 1 + maximum (p1 - q1, p2 - q2) + maxi
mum (q1, q2) 

g = maximum (q1, g2) 

Consider the following example in which, 
for exrlanation purposes, the variables 
have been broken into parts: 

p1 

<g1> <q2> 
12354.2385 + 222.11111 
ABC D 

The !Q!~!_nQmQ~f of digits (p) in the 
result would be equal to 1 plus the number 
of digits in A (p1-q1) plus the number of 
digits in D (maximum (q1, q2)} • The scale 
factor of the result would be equal to the 
number of digits in D. The precision of 
the resul t would be (11,5). 

tlY1!1l11£~!1Qll. The total number of digits 
in the result is equal to one plus the num
ber of digits in the first operand, plus 
the number of digits in the second operand. 
The total number of digits cannot exceed 
the maximum number of digits allowed for 
the implementation (that is, 15). The 
scale factor of the result is the sum of 
the scale factors of the two operands. 

Formulas: 

p 1 + p1 + p2 

g q1 + g2 

Consider the following example: 

345.432 * 22.45 
ABC D 

The total number of digits in the result 
would be equal to 1 plus the sum of the 
number of digits in parts A, B, C, and D. 
The scale factor of the result would be the 
sum of the number of digits in Band D. 
The precision of the result would be 
(11,5) • 



DivLsion. The total number of digits in 
i~~-~~;iient is always 15 (maximum 
allowed). The scale factor of the quotient 
depends on the number of integer digits of 
the dividend (A in the example below), and 
the number of fractional digits of the 
divisor (D in the example below). The 
scale factor is equal to the total number 
of digits of the result (always 15) minus 
the sum of A and D. 

Formulas: 

p = 15 
q = 15 - «p 1 - q 1) + q 2) 

consider the following example: 

432.432 I 2 
A B c D 

The total number of digits in the quo
tient would be 15 (the maximum allowed). 
The scale factor would be 15 'minus the sum 
of 3 (A, the number of integer digits in 
the dividend) and zero (D, the number of 
fractional digits in the divisor). The 
precision of the quotient would be (15,12). 

Note that any change in the number of 
integer digits in the dividend or any 
change in the number of fractional digits 
in the divisor will change the precision of 
the quotient, gxgn_iI_~ll_~~~iiiQll~l_~i~ii~ 
are zeros. Also note from the above formu
las-t~at-the result of a fixed-point divi
sion can have a scale factor greater than 
zero even though the operands might have a 
scale factor of zero, and that the result 
of fixed-point division can have a negative 
scale factor even though negative scale 
factors cannot be explicitly declared in 
Model 20 PL/I. 

Examples: 

00432.432 I 2 
432.432 I 2.0000 

The precision of the quotient of the 
first eXamplE! would be (15, 10); the scale 
factor is equal to 15 - (5+0). The preci
sion of the quotient of the second example 
w 0 u 1 d be (1 5 , 8); the sc ale fa c tor is e qua 1 
to 15-(3+4). 

f~giiQg: In the use of fixed-point divi
sion operations, take care that declared 
precision of variables and apparent preci
sion of constants will not give a result 
with a scale factor that can force the 
result of this or a subsequent operation to 
to be left-truncated by exceeding the maxi
mum number CIS) of digits allowed. 

~!E~n§nii~ii~g. If the second operand (the 
exponent) is a positive decimal integer 
constant, the total number of digits in the 
result is one less than the number of 
digits in the first oFerand plus 1 multip
lied by the Y~lg§ of the second operand 
(the exponent). The scale factor of the 
result is equa~ to the scale factor of the 
first operand multiplied by the value of 
the second operand (the exponent). 

NQig: In the exponentiation operation 
x**y, some special cases are defined as 
follows: 

1. If x o and y>O, the result is O. 

2. If x 0 and y~O, the ERROR condition 
is raised. 

3. If x ~ 0 and y = 0, the result is 1. 

4. If x < 0 and y is not fixed- poin t wi th 
precision (p, 0), the E RROR condition is 
raised. 

Formulas: 

p = (p 1 + 1) * (val ue-of-exponen t) - 1 
q = q1 * (value-of-exponent) 

Consider the following example: 

32 ** 5 

The total number of digits in the result 
would be 14. We arrive at this number by 
multiplying one plus the number of digits 
in the first operand (1 + 2) by the value 
of the exponent (5) and subtracting one. 
The scale factor of the result would be 
zero (0 * 5, scale factor of the first 
operand multiflied by the value of the 
exponent) • 

Fig~res 3 through 6 show the results of 
arithmetic operations. 

In PLII, we specify a comparison operation 
by combining operands with one of the fol
lowing operators: 

< (less than) 
, < (not les than) 
<= (less than or equal to) 

(equal to) 
,= (not equal to) 
>= (greater than or equal to) 
> (greater than) 
, > (not grea ter than) 

Expressions 33 



There are three types of comparisons: 

1. !19§~~A1£ comparison, that is, the com
parison of signed arithmetic values in 
coded arithmetic form. If operands 
differ in scale and precision, they are 
converted according to the rules for 
arithmetic operations. Numeric
character data is converted to coded 
arithmetic format before comparison. 

2. ~hA£A£i§£_£Q~E~£i2QQ, which is a left
to-right, character-by-character com
parison of character data according to 
the system/360 collating seguence. 

3. RQini§~_£Q!!l122~i§Q!!, for which only the 
operators = and ,= are allowed. Both 
operands must be valid pointer expres
sions, since there is no conversion of 
program-control data. 

The operands of a comparison operation 
must be of the same type; that is, both 
must be arithmetic or both must be charac
ter strings. If operands of a character
string comparison are of different lengths, 
the shorter operand is extended on the 
right with blanks. 

The result of the comparison operation 
always is a "truth" value in Model 20 PL/I; 
the value is 'true' if the relationship is 
true, and 'false' if the relationship is 
not true. 

The only occurrence of comparison opera
tions is in the IF statement, as shown in 
the following example: 

IF A + C = B 
THEN action-if-true 
ELSE action-if-false 

The evaluation of the exrression A + C = 
B yields either 'true' or 'false'. Depend
ing on the result, either the THEN portion 
or the ELSE portion of the IF statement is 
executed. Note that the comparison opera
tions in IF statements can involve only 
element values; arrays or structures are 
not permitted. 

only comparison operations of "egual" 
and "not egual" are valid for comparisons 
of pointer-variable operands. Labels must 
not be compared. 

r--·------------------------------------------------------, 
I I 
I First Operand I 
I I 
r----------------------------T----------------------------~ 
I DECIMAL FIXED (p1,g1) I DECIMAL FLOAT (p1) I 

r-r--------------+----------------------------+----------------------------~ 
lSI DECIMAL JDECIMAL FIXED (p,g) JDECIMAL FLOAT(r) J 
JelFIXED Ip=1+MAX(p1-g1,p2-g2) Ip=MAX(p1,p2) I 
IcJ(p2,g2) J +MAX(g1,g2); I J 
101 Ig=MAX(q1,g2) I I 
Inl I I I 
I dl I I I 
I ~-------------+----------------------------+----------------------------~ 
101 DECIMAL I DECIMAL FLOAT (p) I DECIMAL FLOAT (p) I 
IplFLOAT Ip=MAX(p1,p2) Ip=MAX(p1,p2) I 
I e I (p2) I I I 
I rl I I I 
lal I J I 
I nl I I I 
I d I I J I L_L ______________ ~ ____________________________ ~ _____________ - ______________ J 

Figure 3. Attributes of Results of Addition and Subtraction Operations 

34 IBM System/360 Model 20 DPS PL/I 



r--------------------------------------------------------, 
I First Operand I 
~----------------------------T----------------------------~ 
I DECIMAL FIXED (p1, g1) I DECIMAL FLOAT (p 1) I 

r-T----------------J·-----------------·----------+----------------------------~ 
SIDECIMAL IDECIMAL FIXED{p,g) IDECIMAL FLOAT(p) I 
elFIXED Ip=p1+~2+1 Ip=MAX{p1,p2) I 
c t (p 2 , q 2 ) I q= g 1 + q 2 I t 
01 I I 1 
nl I I I 
dl I I I 
I---------------~----------------------------+----..,..-----------------------~ 

o I DECIMAL I DECIMAL FLOAT (p) I DECIMAL FLOAT (p) I 
plFLOAT Ip=MAX(p1,p2) Ip=MAX(~1,~2) I 
e I (p2) I I I 
r 1 1 I 
at I . I 
nil 1 
dl I I L_.L ______________ .l. ____________________________ .L ____________________________ J 

Figure 4. Attributes of Result of Multiplication Operations 

r---------------------------------------------------------, 
I First Operand I 
r----------------·----------r----------------------------~ 
IDECIMAL FIXED{p1,g1) IDECIMAL FLOAT(r 1) I 

r-T-------------+---------------------------+----------------------------~ 
SI DECIMAL IDECIMAL FIXED (p,g) I DECIMAL FLOAT (p) I 
elFIXED If=15 Ip=MAX{p1,p2) I 
cl (p2,g2) Ig=15-({p1-q1)+g2) I I 
o I I I I 
nl I I I 
d I I I I 
1----------------1---------------"""'-------------+----------------------------~ 

OIDECIMAL IDECIMAL FLOAT(p) IDECIMAL FLOAT (p) I 
p I FLOAT (p2) 1 p=MAX(p1 ,f2) I p=MAX (p1, I'2) I 
el I I I 
r I 1 I I 
al I I I 
nil I I 
dl I I I L_..L ___________ . __ .L _________________ • ___________ .L ____________________________ J 

Figure 5. Attributes of Results of Division Operations 

r-----------------T----------------------------r---------------------------, 
IFirst Operand ISecond Operand (E~ponent) ITarget Attributes bf Result I 
1-----------------+---------------------------+----------------------------~ 
IFIXED DECIMAL IUnsigned integer IFIXED DECIMAL (p,g) I 
I (p1,q1) Iconstant with I[provided p ~ 15] I 
I Ivalue n Ip = (:[-1+1)* n - 1 I 
I I I q = q 1 *n I 
1----------------+----------------------------+----------------------------~ 
IFIXED DECIMAL IFIXED DECIMAL IFLOAT DECIMAL (p) I 
I (p1, q1) I (p2, g2) I (unless the case above is I 
I or I I applicable) I 
IFLOAT DECIMAL IFLOAT DECIMAL (p2) Ip = MAX (p1,p2) I 
I (pl) I Ip = MAX (p1,p2) I L ____________ ._._.L _____________________________ .L ____________________________ J 

Figure 6. Attributes of Results of Exponentiation Operations 

Expressions 35 



A concatenation operation is specified by 
combining operands with the concatenation 
symbol J J. 

The symbol signifies that the operands, 
which must be character strings or numeric
character data, are to be joined in such a 
way that the last character of the operand 
to the left will immediately precede the 
first character of the operand to the 
right, with no intervening characters. 
Numeric-character data items are converted 
to character strings before concatenation 
takes place. The result of a concatenation 
operation is a character string whose 
length is equal to the sum of the lengths 
of the two character-string operands. 

For example, if A represents the charac
ter string '010234', B the character string 
'101', C the character string 
'XY,Z', and D the character string 'AA/BB', 
then 

A I J B 
A II A II B 
c ~ J D 
D II D 
B I J D 

yields '010234101' 
yields '010234010234101' 
yields 'XY,ZAA/BB' 
yields 'AA/BBXY,Z' 
yields '101AA/BB' 

In the evaluation of expressions, priority 
of the operators is as follows: 

** prefix+ prefix
* / 
infix+ infix-
J J 
< , < <= = , = >= > , > 

(highest) 
I 

t 
(lowest) 

If two or more operators of the highest 
priority appear in the same expression, the 
order of priority of those operators is 
from right to left; that is, the rightmost 
exponentiation or prefix operator has the 
highest priority. Each succeeding exponen
tiation or prefix operator to the left has 
the next lower priority. 

For all other operators, if two or more 
operators of the same priority appear in 
the same expression, the order of priority 
is from left to right. 

Note that in Model 20 PL/I only one com
parison operation can appear in one expres
sion. In case there is a comparison opera
tion, it can appear only in the expression 
immediately following the IF in the IF 
statement. 

36 IBM System/360 Model 20 DPS PL/I 

The order of evaluation of the expres
sion in the IF statement: 

IF A * B + D ,= C THEN. 

is according to the priority of the opera
tors. It is as if various elements of the 
expression were enclosed in parentheses as 
follows: 

(A) * (B) 
(A * B) + (D) 
(A * B + D) ,= (C) 

The order of evaluation (and, conse
quently, the result) can be changed through 
the use of parentheses. The above expres
sion, for example, might be written as 
follows: 

IF A * (B + D) , = C THEN • 

In such an expression, the expression 
enclosed in parentheses is evaluated first 
and reduced to a single value, before it is 
considered in relation to the surrounding 
operators. In case two parenthesized ex
pressions are surrounding an operator there 
is, however, no rule within the language 
that specifies which of the parenthesized 
expression would be evaluated first. 

In other words, the priority of the 
operators is defined only within a string 
consisting of operands and operators only. 
It does not necessarily hold true for an 
entire expression. Consider the following 
example: 

(A - B) * (C + D ** E) 

The priority of the operators specifies, 
in this case, only that the exponentiation 
will occur before the addition. It does 
not specify the order of operation in rela
tion to the evaluation of the other operand 
(A - B). 

Any operational expression (except a 
prefix expression) must eventually be 
reduced to a final single infix operation. 
The operands and operator of that operation 
determine the attributes of the result of 
the entire ex~ression. 

In general, unless parentheses are used 
within the expression, the operator of low
est priority determines the operands of the 
final operation. For example: 

A + B * C > D ** E - F 

In this case, the operators indicate 
that the final operation will be: 

(A + B * C) > CD ** E - F) 



Sub-expressions can be analyzed in the 
same way. The two operands of the expres
sion can be defined as follows: 

(A + (B * C» > «D ** E) - F) 

It is undefined in the language which of 
the two outer rarentheses is evaluated 
first. 

Expressions Containing Function References 

In Model 20 PL/I, an operand of an expres
sion is usually a constant or an element 
variable. An operand can, however also be 
an expression representing a value which is 
the result of a comFutation. 

Consider the following example: 

A = B * SQH T (C) ; 

In this example, the expression SQRT(C) 
represents a value which is equal to the 
square root of C. Such an expression is 
called a i~n£iiQn_£~!~£~n£g. 

A function reference consists of a name 
and, usually, a parenthesized list of one 
or more variables l constants, or other ex
pressions. The name is the name of a pro
cedure written to perform specific computa
tions on the data contained in the list and 
to substitute the computed value for the 
function reference. 

Assume, in the above example, that C has 
the value 16. The function reference SQRT( 
C) causes the execution of the procedure 
SQRT, which would compute the sluare root 
of 16 and replace the function reference 
with the value 4. In effect, the assign
ment statement would become: 

A B * 4; 

The procedure represented by the name in 
the function reference is called a func
tion. The function SQRT is one of ~~~-~L/I 
~iIIt-in functions. Built-in functions, 
w~Ich-provIae-a-number of different opera~ 
tions, are a fart of the PL/I language. (A 
complete discussion of all built-in func
tions of Model 20 PL/I appears in Part II, 
under §~i!i=in_l~ll£i1Qn§.) You may also 
write your own functions for specific pur
poses (as described under !£g~m§nt§_An~ 
RA£!ll§i§£§) and use the names of those 
functions in function references. 

!Qig: Besides returning a value, a func
tion may change the value of any variable 
in the expression containing the function 

reference. In this case, the result of the 
expression is undefined and compatibility 
with other System/360 compilers is not 
guaranteed. 

The use of function references is not 
limited to operands of operational eXfres
sions. A function reference is, in itself, 
an ex~ression and can be used wherever an 
expression is allowed. It must, however, 
not be used in place of a variable repre
senting a receiving field, such as to the 
left of the assignment statement. 

There is, however, one built-in function 
that can be used as a £§~g~Q=YA£iA£l~, 
i.e., in a receiving field: the SUBSTR 
function. The SUBSTR pseudo-variable is 
the SUBSTR built-in function name used in a 
receiving field. 

Consider the following example: 

DECLARE A CHARACTER (10), 
B CHARACTER (30); 

SUBSTR (A,6,5) = SUBSTR (8,20,5) 

In this assignment statement, the built
in function name SUBSTR is used both in a 
normal function reference and as a 
pseudo-variable. 

The SOSSTR built-in function (on the 
right side of the assignment symbol) 
extracts a substring of specified length 
from the named string. The pseudo-variable 
SUBSTR (to the left of the assignment sym
bol) indicates the location, within a named 
string, that is the receiving field, i.e., 
it replaces a substring of specified length 
in the named string. 

In the above example, a substring five 
characters in length, beginning with the 
20th character of the string S, is to be 
assigned to the last five characters of the 
string A. That is, the last five charac
ters of A are to be replaced by the 20th 
through the 24th characters of B. The 
first five characters of A remain 
unChanged, as do all characters of the 
string B. 

Note: None of the functions you may write 
for-speCific purposes can be used as a 
pseudo-variable. 

The built-in function SUBSTR is dis
cussed in Part II, under ~~ili=In 
I'J!ll£iiQll§ • 

Expressions 37 



Statement Classification 

This section describes the statements 
available in Model 20 PL/I, their functions 
and purpose. Examples of their use are 
also shown,. 

A more detailed description of each sta
tement may be found in Part II, under [i~= 
tement, and in the section Data Transmis
~r~~-;hich shows examples. --------------

The statements used in Model 20 PL/I can 
be grouped into the following six classes: 

• descriptive statements, 

• input/output statements, 

• data-movement and computational 
statements, 

• program-flow control statements, 

• exception-control statements, and 

• program-structure statements. 

The names of the classes are merely 
descriptive, they have no fundamental sig
nificance in the language. Some statements 
are included in more than one class, since 
they can have more than one function. 

Descriptive Statements 

When a PL/I program is executed, it may 
manipulate many different types of data. 
Each data item, except a constant, is 
referred to in the program by a name. 
Model 20 PL/I reguires that the names and 
characteristics or attributes of data items 
referred to must be known at the time the 
program is compiled, that is, translated 
into machine language. 

Ih§_Q~£L!R~_~!A!§ID§n! 

With the DECLARE statement you specify the 
attributes of the data assigned to each 
variable. But although it is the charac
teristics of the ~~1~ you describe with the 
attributes, it is the data name with which 
the declared attributes are-;~~ociated. 
Conseguently, when a value is assigned to a 
name (or variable) whose attributes 
describe characteristics that are different 
from the attributes of the data, the value 
will be converted where possible so that it 
will have the characteristics of the vari
able to which it is assigned. For example, 
when fixed-point data is assigned to a 

38 IBM System/360 Model 20 DPS PL/I 

variable that has the FLOAT attribute the 
data item is converted to floating-point 
representation. If conversion is not pos
sible, a diagnostic message is given by the 
compiler. 

A variable for which a complete set of 
attributes has not been specified, is given 
default attributes by the compiler. 

You always need DECLARE statements for 
fixed-point decimal variables, character
string variables, filenames, entry names 
pointer variables, label variables, arrays 
and structures, data with the EXTERNAL 
STATIC, BASED, DEFINED or INITIAL attri
bute, all data with the PICTURE attribute 
and the built-in function DATE. A RETURNS 
attribute declaration must be made for the 
name of any function that returns a value 
with attributes different from the default 
attribute FLOAT DECIMAL (6) which is applic
able if the name of the function starts 
with a letter other than I through N. You 
find a complete discussion of the RETURNS 
attribute in the section ~£ggmgn1§_~n~ 
£~!:~mg1gf§· 

DECLARE statements may be an important 
part of the do~umentation of a program; 
conseguently, make liberal use of declara
tions, even when default attributes apply 
or when a contextual declaration is possi
ble. Because there are no restrictions on 
the number of DECLARE statements, separate 
DECLARE statements can be used for dif
ferent groups of names. This can make 
modification easier and the interpretation 
of diagnostics clearer. Note, however, 
that a structure must be completely 
declared in Qn§ DECLARE statement. 

I~§_EQRtlA!_~l~l§ID§nt 

The FORMAT statement may be thought of as 
describing the layout of data on an extern
al medium, for example on a page or on an 
input card. You will find a complete dis
cussion of the FORMAT statement in Part II, 
under ~l~t§ID§nl§, and in the section ~~1~ 
1:£~!!§IDJ:§§!Q!!· 

Input/Output Statements 

Input/output statements cause a transfer of 
data between main storage and an external 
storage medium, such as disk, tape, or 
card. 



In the following list, the statements 
that cause a transfer of data are grouped 
into two classes, Record I/O and stream 
I/O: 

Record I/O Transfer statements: 

READ 
WRITE 
REWRITE 
LOCATE 

Stream I/O Transfer Statements: 

GET 
PUT 

There are two important differences 
between RECORD transmission and STREAM 
transmission. In STREAM transmission, the 
file on the external medium is considered a 
continuous stream of data items, in charac
ter form. On input, the data items are 
assigned from the stream to variables; on 
output they are transferred from variables 
into the stream. In RECORD transmission, 
the file is considered to be a collection 
of physically separate records that are 
transmitted as an entity to or from 
variables. STREAM transmission implies 
conversion. All of the items in the stream 
are in character form. On input, they are 
converted automatically to conform to the 
attributes of the variables to which they 
are assigned; on output, data items are 
converted# if necessary, to characters. In 
RECORD transmission, there is no conver
sion; data is transmitted, exactly as it is 
recorded either internally or on the 
external medium. 

Record transmission is mainly used for 
processing large files that are written in 
an internal representation, such as packed
decimal. Stream transmission may be used 
for processing keypunched data and for pro
ducing readable output, such as lists or 
tables, where editing is required. Record 
transmission is faster because no conver
sion is involved. 

The READ statement causes a transfer of 
data (records) from the external medium to 
main storage. The WRITE statement causes a 
transfer of records from main storage to 
the external medium. The LOCATE statement 
causes the creation of new records by mak
ing space available in a buffer in which 
the record may be built. The REWRITE sta
tement replaces a record in an UPDATE file 
that has been read from disk. 

STREAM transmission is always sequential 
and can be performed only by means of GET 

and PUT statements. The GET statement 
causes a transfer of data from the external 
medium to main storage, and the PUT state
ment from main storage to the external 
medium. In STREAM transmission, data is 
considered to be a stream of individual 
data items. Record boundaries are general
ly ignored, but synchronization with record 
boundaries is possible. 

Note: GET and PUT statements can also be 
~;;~ for internal data ~ovement in connec
tion with the STRING option. The GET and 
PUT statements with the STRING option are 
discussed under Q~!~_~QY§m§n!_~nQ_£QmEYi~~ 
!iQn~l_~!~!~ID~n!§ in this section. 

Other I/O statements that affect the 
transfer of data are input/output control 
statements. They are: 

OPEN 
CLOSE 

The OPEN statement associates a filename 
(as declared in your program) with a file 
(the actual data recorded on an external 
medium) and prepares the file for 
processing. 

An OPEN statement need not always be 
written for STREAM transmission. Execution 
of a GET or PUT statement with the name of 
an unopened file specified will result in 
the automatic (implicit) opening of the 
file before data transmission takes place. 
However, the OPEN statement can be used to 
force opening of a file at a specific time 
during program execution, e.g., after issu
ing a message to mount a specific tape. 
For RECORD transmission, the OPEN statement 
must always be present. 

The CLOSE statement dissociates a file 
from the file declaration used in the pro
gram and terminates processing of the file. 
All files are automatically closed at the 
termination of a program, so that a CLOSE 
statement is not always required. It may 
be used, for example, when the same device 
on which a file resides is to be used for 
another file in the course of the program. 

The DISPLAY statement is used to display a 
one-byte message on the CPU console, usual
ly to the operator. It is used, with the 
REPLY option, to allow the operator to com
municate with the program by returning a 
one-byte message. Execution of the program 
is suspended until the operator acknow
ledges the message. An example of the use 
of the DISPLAY statement is shown in Part 
III, under bin~in~_~bL!_~fQ~£~ID§_Ri!h 
A§§gIDQlg£_~£Q£§Q~£g§· 

statement Classification 39 



Data Movement and Computational Statements 

Internal data movement involves the assign
ment of the value of an expression to a 
specified variable. The expression may be 
a constant or a variable, or it may be an 
operational expression. 

The most commonly used statement for 
internal data movement as well as for s~e
cifying computations is the assignment sta
tement. The GET and PUT statements with 
the STRING option can also be used for 
internal data movement. The PUT statement 
can, in addition, s~ecify computations to 
be performed. 

The assignment statement, which has no key
word, is identified by the assignment sym
bol (=). It generally has one of two 
forms: 

A B; 
A B + C; 

The first form is used purely for 
internal data movement. The value of the 
variable (or constant) to the right of the 
assignment symbol is assigned to the vari
able on the left. The second form includes 
an operational expression (B + C), whose 
value is to be assigned to the variable to 
the left of the assignment symbol (A). The 
second statement specifies both computa
tions and data movement. 

Since the attributes of the variable on 
the left may differ from the attributes of 
the result of the expression (or of the 
variable or constant) # the assignment sta
tement can also be used for conversion and 
editing, because the result of the computa
tion to the right of the assignment symbol 
is converted to conform to the attributes 
of the variable to the left of the assign
ment symbol. 

In the assignment statement A = B + C, 
the variable on the left must be an element 
variable or an array; it must not be a 
structure. The expression on the right 
must only contain single constants and/or 
element variables as operands. Thus, this 
form of the assignment statement can be 
used only to assign single items to element 
variables or arrays. In the assignment 
statement, A = B, the variables to the left 
and right may either ~e both array names or 
both structure names or an array name on 
the left side and an element variable or 
constant on the right side. 

If they are array names, both arrays 
must have identical dimensions and bounds. 
If they are structure names, both struc
tures must have identical structuring and 

40 IBM System/360 Model 20 DPS PL/I 

the attributes (including arithmetic attri
butes) of all corresponding variables in 
the two structures must be identical. 

DECLARE 

A1 (10,10) FLOAT, A2 (10,10) FIXED, 
A3 (100) FIXED, 
A4 (5,5) FLOAT, V1 FIXED, 
1 S1, 2«E1,E2) CHAR(10), F FIXED(7,2», 
1 S2, 2(E CHAR(20), F FIXED(7,2», 
1 S3, 2«E1,E2) CHAR(10}, F FIXED(7,2»; 

Valid assignment statements are: 

A1 A1 (5, 1) 
A1 A2; 
A 1 V1 ; 
S 1 S3; 

Invalid assignment statements are: 

A1 
A1 
A1 

A3; 
A4; 
A 1 + A2; 

S1 = S2; 

Dimensions not identical. 
Bounds not identical. 
Right side is an opera
tional expression, not a 
name. 
structuring not identical. 

If the STRING option appears in a GET or 
PUT statement in place of a FILE option, 
execution of the statement will result only 
in internal data movement; neither input 
nor output is involved. 

Assume that NAME is a string of 30 
characters and that FIRST, MIDDLE, and LAST 
are character-string variables. Consider 
the following example: 

GET STRING (NAME) EDIT 
(FIRST, MIDDLE, LAST) 
(A(12) ,A(1) ,A(17»; 

This statement specifies that the first 
12 characters of NAME are to be assigned to 
the variable FIRST, the next character to 
the variable MIDDLE, and the remaining 17 
characters to the variable LAST. 

The PUT statement with the STRING option 
specifies the reverse operation, that is, 
the values of the specified variables are 
to be concatenated into a character string 
and assigned to the string named in the 
STRING option. For example: 

POT STRING (NAME) EDIT 
(FIRST,MIDDLE,LAST) 
(A (12),A (1},A (17)); 

This statement specifies that the first 
12 characters of FIRST, the first character 
of MIDDLE, and the first seven characters 



of LAST are to be concatenated in that 
order, and assigned to the string variable 
NAME. If FIRST or LAST are shorter than 12 
or 17 characters, res~ectively, then blanks 
are added at the end of FIRST or LAST until 
the specified length of 12 or 17, respec
tively, has bQen reached. 

computations to be performed can be spe
cified in a PUT statement by including 
operational expressions in the data list. 
Assume, for the following example, that the 
variables A, B, and C represent arithmetic 
data and BUFFER represents a character 
string: 

PUT STRING (BUFFER) EDIT 
(A >!e 3, B + C) 
(F ("15) ,F(lS»; 

This statement specifies that the char
acter string assigned to BUFFER is to con
sist of the character representations of 
the value of A multiplied by 3 and the 
value of the sum of Band C. Note that 
while arithmetic to character-string and 
character-string to arithmetic conversions 
are not allowed in Model 20 PLII, they can 
be effectively achieved by the GET STRING 
and PUT STRING operations, respectively; 
however, note also that this can be ineffi
cient because of the amount of execution 
time and main storage that is required. 

operational expressions in the data list 
of a PUT statement are not limited to PUT 
statements with the STRING tiption. They 
can also appear in PUT statements that spe
cify output of a file. 

Program-Plow Cllntrol Statements 

Statements in a PLII program, in general, 
are executed se1uentially unless the flow 
of control is modified by an interrupt or 
the execution of one of the following 
statements: 

GO TO 
IF 
DO 
CALL 
RETURN 
END 

Ihg_QQ_IQ_2!2!~IDgD! 

The GO TO statement is most frequently used 
as an unconditional branch. If you sFecify 
destination of the GO TO statement by a 
label variable, you may then use it as a 
switch by assigning label constants to the 
label variable. 

If you us~ subscripted label variables, 
that is, labels grouped into an array, you 
can control the switch by varying the sub-

script. Usually, however, simple program
flow control statements are the most 
efficient. 

li2ig: The keyword GO TO may be written 
either as two separate words or as a single 
word, GOTO. 

The IF statement provides the most common 
conditional branch and is used with a 
simple comparison expression following the 
word IF. For example: 

IF A = B 
THEN action-if-true 
ELSE action-if-false 

If the comparison is true, the THEN 
clause (the "action-if-true") is executed. 
After execution of the THEN clause, control 
branches around the ELSE clause (the 
"action-if-false"), and execution continues 
with the next statement. Note that the 
THEN clause can contain a GO TO statement 
or some other program-flow control state
ment that would result in a different 
transfer of control. 

If the comparison is not true, control 
branches around the THEN clause, and the 
ELSE clause is executed. Control then con
tinues normally. 

The IF statement might be as follows: 

IF A = B 
THEN C 
ELSE C 

D" , 
E· t 

If A is equal to B, the value of D is 
assigned to C, and coatrol branches around 
the ELSE clause. If A is not equal to B, 
control branches around the THEN clause, 
and the value of E is assigned to C. 

Either the THEN clause or the ELSE 
clause can contain some other program-flow 
control statement that causes a branch, 
either conditional or unconditional. If 
the THEN clause contains only a GO TO sta
tement, for example, there is normally no 
need to specify an ELSE clause. Consider 
the following example: 

IF A = B 
THEN GO TO LABEL_l; 

next statement; 

If A is equal to B, the GO TO statement 
of the THEN clause causes an unconditional 
branch to LABEL_l. If A is not equal to B, 
control branches around the THEN clause to 
the next statement, whether or not it is an 
ELSE clause associated with the IF 
statement. 

statement Classification 41 



Note: If the THEN clause does not cause a 
transfer of control and if it is not fol
lowed by an ELSE clause, the next statement 
will be executed whether or not the THEN 
clause is executed. 

The expression following the keyword IF 
cannot contain more than one comparison 
operation. However, n~§i~Q IF statements 
can be used to test for more than one con
dition. Consider the following example: 

IF A = B 
THEN IF A = C 

THEN D = E; 
ELS E F = G; 

ELSE F = Ai 
GO TO LABEL_ 1 ; 

In the example, E is assigned to D only 
if A is equal to both Band C. If A is 
equal to B, but not. to C, then G is 
assigned to F. If A is not equal to B, 
then A is assigned to F. If either the 
innermost THEN clause (D = E) or the inner
most ELSE clause (F = G) is executed, con
trol skips to the GO TO statement following 
the final ELSE clause. 

In a series of nested IF statements, 
each ELSE clause is paired with an IF, 
starting at the innermost level. IF
condition tests in nested IF statements are 
made in the order from autermost to inner
most IF. As soon as a test is reached that 
is not true, the checking stops, and the 
matching ELSE clause is executed. Control 
is then transferred to the statement fol
lowing the entire series of IF statements, 
unless it is directed otherwise by a GOTO 
statement in the ELSE clause. 

In the nesting o£ IF statements, an 
associated ELSE ~lause mayor may not 
appear for the outermost IF. But every 
nested IF must have an associated ELSE 
clause when any IF statement at a higher 
level requires an associated ELSE clause. 

Assume that a programmer writing the 
above nested IF statements does not want to 
provide a second alternative for the inner
most IF statement. If A is equal to B but 
not equal to C, he wants to go to the sta
tement labelled LABEL 1. To achieve this, 
he would have to insert a null statement, 
as follows: 

IF A = B 
THEN IF A = C 

THEN D = E; 
ELSE; 

ELSE F = A; 
GOTO LABEL_ 1 ; 

An ELSE with a null statement as its 
clause is called a nY11_~~2~' 

42 IBM System/360 Model 20 DPS PL/I 

In this example, if A is equal to B but 
is not equal to C, the second alternative 
of the innermost IF is chosen. Since it is 
a null ELSE, control is transferred out of 
the entire nest to the next statement, 
which is GOTO LABEL 1. 

The examples have illustrated the nest
ing of IF statements only to the second 
level. Deeper nesting is, however, 
allowed. In Model 20 PL/I, the number of 
IF and DO statements in one nest must not 
exceed 20. Any IF statement, at any level, 
may have a DO group as either or both of 
its alternative actions. 

The most common use of the DO statement is 
to specify that a group of statements is to 
be executed and re-executed one or more 
times while a control variable is incre
mented each time control passes through the 
loop. Such a group might have the form: 

DO COUNTER = 1 TO 10; 

END; 

A DO group is delimited by the DO and 
END statements. In this example, the DO 
statement specifies that the statements 
between the DO and END statements are to be 
executed, as a ~roup, ten times before con
trol passes to the next statement. The 
variable COUNTER is used to control the 
number of times the group is executed. 
When the DO group is executed for the first 
time, COUNTER is assigned the value 1. 
Then the group of statements is executed. 
When the END statement is reached, COUNTER 
is incremented by one, and control is 
transferred back to the beginning of the 
group where COUNTER is tested to see wheth
er it does not exceed ten. This looping 
continues until the value of COUNTER 
exceeds 10, then control passes to the sta
tement following the loop. The above 
example is exactly equivalent to the 
following: 

COUNTER = 1; 
LOOP: IF COUNTER> 10 

THEN GO TO NEXT; 

COUNTER = COUNTER + 1; 
GO TO LOOP;, 

NEXT: next statement 

Note that since the test is made ~ii~~ 
COUNTER is incremented, its value at the 
end of the loop will be one incrementation 
larger than the number of times the loop is 
executed. In this case, the value of 



COUNTER will be 11 when execution of the 
loop is terminated. 

The variable COUNTER, either as used in 
the DO statement or as used above, would 
have to be declared to represent values as 
great as 11; e.g.~ DECIMAL FIXED (2). 

In the preceding example, the value of 
COUNTER is increased by 1 each time the DO 
statement is executed. An incrementation 
of one is assumed unless some other speci
fication is made. Consider the following 
example: 

DO COUNTER = 2 TO 10 BY 2; 

This DO statement causes the initial 
value of COUNTER to be set to two. Each 
time the DO statement is executed thereaft
er, the value is increased by two. Thus, 
the statements of the DO group would be 
executed five times, and the final value of 
COUNTER would be 12. 

The control variable of a DO statement 
can be used as a subscript in statements 
within the DO-group, so that each repeti
tion deals with successive elements of a 
table or array. For example: 

DO COUNTER = 1 TO 10; 
ARRAY (COUNTER) COUNTER; 
END; 

In this example, each element of ARRAY 
is set to 1, 2, 3,A •• 10, respectively. 

N21g: The control variable of a DO group, 
in our example COUNTER, must not be changed 
during execution of the DO group by its 
appearance on the left side of an assign
ment statement or in a data list of a GET 
statement or indirectly through a procedure 
that has been called in the DO group. 

DO groups, like IF statements, may be 
nested. Consider the following example: 

DO I = 1 TO 10; 
statement 'J 
statement ;2 
statement 3 

DO J = 1 TO 10; 
sta tE~men t 1 a 
statE~ment 2a 
sta tE~ment 3a 
END; 

sta tement ~~ 
statement 5 
statement 6 
END; 

The statements of the outer DO group -
the outer DO-END and statements 1 through 6 
- would be executed ten times. The state
ments of the inner DO group - the inner 
DO-END and statements la to 3a - would be 

executed 100 times, ten times for each 
execution of the outer DO group. When the 
first DO statement is executed the first 
time, the counter variable I is assigned 
the value 1. Then statements 1 through 3 
are executed. When control reaches the 
second DO statement, the variable J is 
assigned the value 1, and the inner loop is 
executed ten times. Control then passes on 
to statements 4, 5, and 6. When the final 
END statement is reached, control returns 
to the first DO statement. The counter I 
is incremented to 2, and execution proceeds 
through statements 1 through 3. When the 
second DO statement is reached for the 
second time, the counter J is reset to 1, 
and the inner DO group again is executed 
ten times before control passes to state
ment 4 for its second execution. The pro
cess is repeated until the outer DO group 
has been executed ten times. The inner DO 
group goes through its entire looping pro
cess immediately following each execution 
of statement 3. 

The example shows nesting only to the 
second level. In Model 20 PL/I, the maxi
mum number of DO statements allowed in one 
nest is 12. 

Ihg_HQn=I1gf~1iyg_QQ_~1~1gmgn1. The DO 
statement need not specify repeated execu
tion of a DO grouf. You can use a simple 
DO statement in conjunction with a DO 
group, as follows: 

DO; 

END; 

The use of the simple DO statement in 
this manner merely indicates that the DO 
group is to be treated logically as a 
single statement. It can be used to speci
fy a number of statements to be executed in 
the THEN or ELSE clause of an IF statement. 
For example: 

IF A = B 
THEN DO; 

END; 
ELSE DO; 

END; 

A procedure (except the main procedure of a 
program) or a function is invoked (or acti
vated) by a CALL statement that names the 
entry point of the procedure. Control is 

Statement Classification 43 



returned to the invoking (or activating) 
procedure when a RETURN statement is 
executed in the called procedure or when 
the execution of the END statement ter
minates the called procedure. 

The RETURN statement with a parenthe
sized expression is used to return a value 
to a function reference. This form can be 
used only to return from a procedure that 
has been invoked by a function reference. 
The RETURN statement without a parenthe
sized expression cannot be used in this 
case. 

A program normally is terminated by the 
execution of the END or RETURN statement of 
the main procedure, either of which returns 
control to the Monitor program. 

Consider the following example: 

FIRST: PROCEDURE OPTIONS (MAIN) 

CALL SECOND; 

END; 

SECOND: PROCEDURE; 

IF A 1 =B 
THEN RETURN; 

C = A ** 3 + PRODCT (X,Y ,Z) ; 

END; 

PRODCT: PROCEDURE (A,B,C); 

IF A>B + C 
THEN RETURN (0); 
ELSE RETURN (A-B*C) 

END; 

In the above examfle, FIRST is the name 
of the main procedure in the program which 
consists of the three procedures FIRST, 
SECOND, and PRODCT. During program execu
tion, the procedure SECOND is invoked by 
the CALL statement CALL SECOND in the main 
procedure FIRST. When SECOND is executed, 
the IF statement is encountered. DeFending 
on the result of the comparison operation, 
control is either returned to the statement 
immediately following the CALL statement in 
the invoking procedure FIRST, or the state
ment containing the function reference 
PRODCT(X,y,Z) is executed invoking PRODCT. 
When ~RODCT is executed, another IF state-

44 IBM System/360 Model 20 DPS PL/I 

ment is encountered and a test is made. 
Depending upon the result of the comparison 
operation, one of the two RETURN statements 
is executed returning control together with 
the evaluated result of an expression to 
SECOND. At the termination of SECOND, con
trol is passed back to the main procedure. 

Exception-Control Statements 

The statements discussed in the preceding 
section alter the flow of control whenever 
they are executed. Another way in which 
the sequence of execution can be altered is 
by the occurrence of a program interrupt 
caused by an exceptional condition. 

In general, an exceptional condition is 
the occurrence of an unexpected action, 
such as an overflow, or of an expected 
action, such as an end of file, that occurs 
at an unpredictable time. A detailed dis
cussion of the handling of these conditions 
appears in this part of the manual, under 
gK£g£!iQn~!_~Qn1itiQn_li~n1!ing· 

The ON statement is used to specify the 
action to be taken when a program interrupt 
occurs due to a specific condition. ON 
statements can be used with a number of 
different conditions. For each of these 
conditions, a standard system action is 
specified as part of the Model 20 PL/I, and 
if no ON statement for a condition has been 
executed and is in force at the time an 
interrupt occurs, the standard system 
action will be taken. For most conditions, 
the standard system action is to print a 
message and terminate execution. 

The ON statement is a compound statement 
that contains a GOTO or null statement. 
For example: 

ON UNDERFLOW GO TO ERROR; 

In the above statement, GO TO ERROR is 
the contained statement, or the Qli~gnit. 
ERROR is the label of a statement or of the 
first of several statements that specify 
what action is to be taken, whether to try 
to recover from the error or to note the 
error and continue with other computations. 
If the standard system action is to be 
taken_ if an interrupt occurs, the keyword 
SYSTEM is used in place of the ON-unit, as 
follows: 

ON UNDERFLOW SYSTEM; 

The ON-unit can also be the null statement. 
The example 

ON UNDE-qFLOW; 



specifies that when an interrupt occurs as 
the result of an underflow condition, the 
interrupt is to be ignored and execution is 
to continue from the point at which the 
interrupt occurred. If an ON statement for 
UNDERFLOW was not in force at the time of 
an interrupt, the standard system action 
would be taken. 

Note: If the condition of the ON statement 
Is-CONVERSION, ENDFILE, or KEY, the action 
must not be the null statement. 

The effect of the ON statement, either 
standard system action or any other action 
specified by the programmer, can be changed 
within a procedure by the execution of 
another ON statement naming the same condi
tion with either another ON-unit or with 
the word SYSTEM, which re-establishes stan
dard system action. The action in effect 
at the time another procedure is activated 
is passed to the activated procedure and 
remains in effect in that procedure and in 
other procedures activated by it, unless 
another ON statement for the same condition 
is executed. When control returns to an 
activating procedure, actions are re
established as they existed in that 
procedure. 

FIRST: PROCEDURE OPTIONS {MAIN); 

ON1: ON FIXEDOVERFLOW GOTO L1; 

CALL SECOND; 

END; 
SECOND: PROCEDURE; 

ON2: ON FIXEDOVERFLOW GO TO L2; 

ON3: ON FIXEDOVERFLOW SYSTEM; 

END; 

Until statement ON1 is executed the 
standard system action is taken in the case 
of a FIXEboVERFLOW condition. After execu
tion of the statement ON1, control goes to 
a statement with the Label L1 when a FIXE
DOVERFLOW condition occurs. After calling 
the procedure SECOND, the program still 
branches to the same statement L1 when the 

FIXEDOVERFLOW condition is raised, even 
though the Label L1 may not be known in the 
procedure SECOND, until the statement ON2 
is executed. Then control branches to sta
tement L2 declared in SECOND instead of Ll 
declared in FIRST in the case of FIXEDOVER
FLOW. After executing the statement ON3, 
the standard system action is taken in the 
case of FIXEDOVERFLOW. After returning 
from procedure SECOND, the action of state
ment ON1 is reestablished, i.e., branching 
to L 1. 

Note: In this example it is assumed that 
the statement of each of the two procedures 
are executed sequentially. If this is not 
the case due to a GO TO statement or DO
group with iteration, the same ON-statement 
may be executed more than once during the 
time of activity of a procedure. 

Program-Structure Statements 

Program-structure statements are those 
statements used to divide a program into 
procedures and DO-groups. These statements 
are the PROCEDURE statement, the END state
ment, and the DO statement. 

A program may consist of a single procedure 
or of several separa te procedures. Each 
procedure in a program is headed by a PRO
CEDURE statement and ended by an END state
ment, as follows: 

FIRST: PROCEDURE; 

END; 

Each procedure must have a name, that 
is, each PROCEDURE statement must be 
labelled. In the example above, FIRST is 
the label of the PROCEDURE statement. The 
procedure name specifies the entry foint 
through which control can be passed to the 
procedure. 

Control does not pass automatically from 
one procedure to another. Each procedure 
to be executed, except the first, must be 
invoked, or called, from some other proce
dure. This may be done with either the 
CALL statement or by the appearance of a 
rrocedure name in an expression. If it 
appears in an expression, the procedure is 
called a function. A function reference 
causes a single value to be computed and 
returned to the function reference for use 
in the evaluation of the expression. 

Communication between two procedures is 
achieved by 

statement Classification 45 



1. passing s£gYm~n1§ (that is, expres
sions) from an invoking procedure to 
the invoked procedure, 

2. returning values from the invoked pro
cedure, and 

3. referring to names that are known 
within both procedures (that is, names 
declared as EXTERNAL in both 
procedures). 

46 IBM System/360 Model 20 DPS PL/I 

Another kind of program structure is pro
vided by the DO-group, which is delimited 
by a DO statement and the associated END 
statement. See the DO statement as dis
cussed above under the heading g£Qg£~m=11Q~ 
~Qrrt£Ql_~t~1gillgni2· 



This section discusses how control passes 
within a program from one procedure to the 
next, how procedures are activated and ter
minated, and how storage may be allocated 
for data within procedures. 

The Procedute 

As we have already stated, a procedure is 
headed by a PROCEDURE statement and ended 
by an END statement, as follows: 

label: PROCEDURE; 

END; 

Each procedure must have a name, that is 
a label. The label denotes the entry point 
through which control can be passed to the 
procedure. 

The division of a program into several 
procedures is a feature of PL/I that pro
vides a special convenience to programmers. 
The procedures can be written separately, 
compiled separately or together, and 
executed as a single program. A long pro
gram can be divided into logical blocks (or 
procedures); special procedures can be 
written for special purposes. The division 
of a program into procedures also provides 
great economy in the use of main storage 
space. 

Control does not pass automatically from 
one procedure to the next. Each procedure, 
except the first, must be invoked l or 
called, from some other procedure, where 
the entry name of the procedure to be 
invoked must appear 

• after the keyword CALL in the ~A~~_~l~= 
19m9nl or 

• as a i~n£liQn_~gig~~ll£g (see the section 
!£g~mgll12_2ng_R2£2mglg£2 for details). 

When a CALL statement or a function 
reference is executed, the procedure with 
the specified entry name is activated or 
invoked. Control is transferred to the 
specIfIed entry point. The point at which 
the procedure reference occurs, is called 
the E2illi_Qf_illYQ£~liQn. The procedure in 
which the reference is made is called the 
inYQ~illg_££Q£ggy£~. The invoking procedure 

Flow of Control and Storage Allocation 

remains active even though control is 
transferred from it to the procedure it 
invokes. Whenever a procedure is invoked, 
execution begins with the first executable 
statement in the invoked procedure~ 

The first procedure in a program, called 
the ~lliii~l or m~ill procedure, can only be 
activated by the Monitor program of the 
DPS. The main procedure must always have 
the OPTIONS (MAIN) attribute specified in 
its PROCEDURE statement, as follows: 

FIRST: PROCEDURE OPTIONS (MAIN); 

CALL A; 
CALL B; 

END; 

In this example, FIRST is the initial 
procedure that invokes other procedures in 
the program. 

Following is a summary of rules that 
apply to the activation of procedures. 

• A EEQgE~ill becomes active when the ini
tial procedure is activated by the Mon
itor program. 

• Except for the initial procedure, all 
procedures contained in a program are 
activated by a reference to them, either 
in a CALL statement or in a function 
reference. 

• A procedure cannot be invoked while it 
is active. 

• The initial procedure remains active for 
the duration of the program. 

• All a~tivated procedures remain active 
un til they are terminated (see below). 

In general, a procedure is terminated when 
one of the following conditions occurs: 

1. Control reaches a RETURN statement 
within a procedure. The execution of a 
RETURN statement causes control to be 
returned to the point of invocation in 
the invoking procedure. If the point 
of invocation is a CALL statement, 

Flow of Control and Storage Allocation 47 



execution in the invoking procedure is 
resumed at the statement immediately 
following the CALL statement. If the 
point of invocation is a function 
reference, execution of the statement 
containing the reference will be 
resumed. 

2. Control reaches the END statement of 
the procedure. Effectively, this is 
equivalent to the execution of a RETURN 
statement. 

3. A GO TO statement causes the termina
tion of one or more procedures by 
branching back to one of the series of 
invoking procedures. In this case, the 
destination of the GO TO must be speci
fied by a label variable. If one of 
the terminated procedures has been 
invoked as a function reference in an 
expression, the evaluation of the ex
pression is discontinued. 

A program is terminated when one of the 
following conditions occurs: 

1. Control reaches a RETURN statement or 
the final END statement in the main 
procedure. This is the normal termina
tion of a program. 

2. An error condition arises from which 
the system cannot recover. In this 
case, the standard system action 
results in a return of control to the 
Monitor program. 

Storage Allocation 

Any name (or variable) that represents a 
data item, actually represents the location 
in main storage where that data item is 
recorded~ The compiler analyzes the attri
butes of a variable to determine the length 
of the storage area that is needed and ~h§g 
it will have to be available. 

When a location in main storage has been 
associated with a variable, the storage is 
said to be allocated to the variable. 
!llQ£~iiQg for-a-given variable may take 
place ~yg!illi£~lly, that is, during execu
tion of a procedure, or §i!ii£~l!YI that 
is, before execution of a program. 

The fact that certain variables are used in 
one procedure of a program and not in 
others, makes it possible to allocate 
storage dynamically, that is, to allocate 

48 IBM System/360 Model 20 DPS PL/I 

the same storage space, at different times, 
to different variables. 

We have, in Model 20 PL/I, two types of 
dynamic storage, ~~iQill!ii£ and Q~§§~. 

If during execution of a single procedura, 
but nowhere else in the program, a 100-
character field is reguired for the vari
able TABLE, the space need not actually be 
allocated until execution of that procedure 
begins. If the value of TABLE is not 
needed when the procedure is invoked again, 
there is no need to keep the space reserved 
after execution of the procedure is com
pleted. The storage area can be used for 
other purposes. 

such dynamic use of main storage is 
called automatic allocation. Variables of 
the automatic storage class are declared 
with the AUTOMATIC attribute. They are 
allocated storage space when the procedure 
is invoked and this storage space is freed 
when the procedure is completed. Once a 
storage area is freed, the value of the 
corresponding variable is lost. 

All variables that have not been expli
citly declared with a storage class attri
bute are assumed to have the AUTOMATIC 
attribute, with one exception: any vari
able that has the EXTERNAL attribute is 
assumed to have the STATIC attribute. 

A variable of the based storage class is 
declared with the BASED attribute; you 
associate a based variable with storage by 
means of a READ or LOCATE statement with 
the SET option or by means of the ADDR 
built-in function. This causes the attri
butes of the £~§§g_Y!£!~Q!§ to be applied 
to the main storage area "pointed to" by a 
EQini§£_Y~£i!~l§ associated with the based 
variable. 

The pointer variable can be manipulated 
so that the attributes of the based vari
able apply to different storage areas. 
That is, the value of the pointer variable 
(which represents an address) can be 
changed so that the storage area pointed to 
by the old pointer value is no longer asso
ciated with the based variable. The attri
butes of the based variable now apply to 
the storage area }ointed to by the new 
value of the pointer variable. 

You will find a complete discussion of 
this topic in the section g~§gQ_Y~£!~Qlg§ 
~n~_~Qin~§f_Y~£i~Qlg§· 



Whenever the value of a variable must be 
saved between different invocations of the 
same procedures, storage for that variable 
has to be allocated statically, that is, 
storage is allocated before execution of 
the program and remains allocated through
out the entire duration of the programe 
For a detailed description of the EXTERNAL 
attribute, refer to the following section 
R§£2gniii2n_2f_li~~§§) . 

§i~ii£_§i2!:~g~ 

All variables of the static storage class 
have the STATIC attribute. Variables with 
the EXTERNAL attribute must always be of 
the static storage class. For such 
variables, STATIC is the default storage
class attribute and need not be explicitly 
declared,. 

Consider the following example: 

CNTRL: PROCEDURE OPTIONS (MAIN); 
DECLARE X FIXED (5,0) INIT (1) 

STATIC, 
Y FIXED (5,0) INIT (1) 

STATIC EXTERNAL, 
Z FIXED (5,0) INIT (1) 

STATIC; 

CALL OUTP; 

END; 
OUTP: PROCEDURE; 

DECLARE X FIXED (5,0) INIT (1) 
STATIC EXTERNAL, 

X = X+1; 
END; 

Y FIXED (5,0) INIT(l) STATIC 
EXTERNAL; 

Before execution of the program begins, 
all static variables are allocated main 
storage space. Thus, in the above example, 
X, Y# and Z are allocated storage and 
initialized to 1 when the program is loaded 
into main storage. Note that X in CNTRL 
and X in OUTP are different variables, 
because they have not been declared 
EXTERNAL in both, while Y in CNTRL and y in 
OUTP refer to the same variable. Before 
execution of OUTP is terminated, X is 
increased by 1. If OUTP is invoked a 
second time, X has the value 2. Note that 
even though OUTP could be activated and 
terminated several times, X, being STATIC, 
retains its value between each termination 
and re-activation of OUTP. The storage 

space associated with X remains allocated 
to X throughout the duration of the 
program. 

Variables, whether main storage space is 
allocated to them dynamically or statical
ly, may be given iniii~!_Y~lY§§ at the time 
of storage allocation. 

Static variables are iniii~li~§g only 
once, that is, before execution of a pro
gram begins. Automatic variables are re
initialized at each activation of the 
declaring procedure. 

li2i§: The INITIAL attribute may be s~eci
fied only for element variables, elementary 
names in structures, and arrays. If speci
fied for arrays, however, these must not 
belong to the AUTOMATIC storage class. It 
cannot be s}ecified for ST~TIC label 
variables. 

Prologues and Epilogues 

Each time a procedure is activated, certain 
activities must be performed before control 
reaches the first executable statement in 
the procedure. These activities are called 
a E!:212gy§. Similarly, when a procedure is 
terminated, certain activities must be per
formed before control can be transferred 
out of the procedure. These activities are 
referred to as an gEilQgyg. 

Prologues and epilogues are set up by 
the compiler and not by the programmer. 
They are discussed here because knowledge 
of them may assist you in improving the 
performance of your programs. 

A prologue is a routine set up by the com
piler and logically attached to the begin
ning of a procedure. It is executed as the 
first step after activation of the proce
dure. The main activities ferformed by a 
prologue are: 

• Allocation of main storage for automatic 
variables. 

• Establishment of the inherited ON-units. 

• Allocation of storage for dummy argu
ments (which are discussed in the sec
tion !!:~y~gni§_~ng_£££~mgig£§) that may 
be passed at the time another procedure 
is invoked. 

Flow of Control and Storage Allocation 49 



An epilogue is a routine set up by the com
piler and logically appended to the end of 
a procedure. It is executed as the final 
step before termination of the procedure. 
The main activities performed by an epilo
gue are: 

50 IBM System/360 Model 20 DPS PL/I 

• Re-establishment of the ON-units as they 
existed before the procedure was 
activated. 

• Release of all main storage that has 
been allocated to automatic variables in 
the procedure. 



A PL/I program consists of a collection of 
identifiers, constants, and special charac
ters used as operators or delimiters. 
Identifiers may be either keywords or names 
with a meaning specified by the programmer. 
The PL/I language is constructed in such a 
way that the compiler can usually determine 
from context whether or not an identifier 
is a keyword, so that there are very few 
reserved words i.e., words that you may not 
use as identifiers in your programs (see 
note below). Any identifier that is not a 
reserved word may be used as a name; the 
only restriction is that at any point in a 
procedure a name can have one and only one 
meaning. For example, the same name cannot 
be used in the same procedure for both a 
file and a floating-point variable. 

Note: With the 60-character set there are 
~~-ieserved words. When using the 48-
character set, you may not use the follow
ing operators as identifiers in your pro
gram: GT, GE, NE# LE, LT, NG, NL, CAT, 
NOT, OR, AND, and PT (even though the last 
four identifiers are not used as keywords 
in Model 20 PL/I). These are fully 
reserved. No other keywords are reserved. 

It is not necessary for a name to retain 
the same meaning throughout a program. A 
name declared within a procedure has a 
meaning only within that procedure. Out
side the procedure it is unknown unless it 
has been declared with the EXTERNAL attri
bute and has also been declared in another 
procedure with the same attributes includ
ing the EXTERNAL attribute. 

That part of a program in which the 
meaning of a declared name is known, is 
called the §£QE§_Qf_~_g~~~. A name in a 
Model 20 PL/I program can be declared by 

• ex~licit declaration 
• contextual declaration, or 
• implicit declaration. 

Explicit Declaration 

A name is ex~licitly declared if you speci
fy it: 

• in a DECLARE statement, 

• in a parameter list (that is, the paren
thesized list that follows the keyword 
PROCEDURE in a PROCEDURE statement, 

• as a statement label, or 

RecognUion of Names 

• as the label of a PROCEDURE statement 
(that is, an entry name). 

The appearance of a name in a parameter 
list has the same effect as a DECLARE sta
tement for that name following the PROCE
DURE statement in which the parameter list 
occurs (though the same name may also 
appear in a DECLARE statement in the same 
procedure). The default assumptions for 
parameters are the same as for other 
variables. 

The appearance of a statement label con
stitutes an explicit declaration equivalent 
to the declaration of a variable in a 
DECLARE statement. 

The scope of an explicitly declared name 
is the procedure in which the name has been 
declared. 

Contextual Declaration 

When an identifier that has not been ex~li
citly declared appears 

• to the left of the assignment symbol in 
an assignment statement, or 

• to the left of the assignment symbol in 
a DO statement (or in a repeti ti ve spe
cification in a data list), or 

• in the data list of a GET statement, 

• as a built-in function name, 

the identifier is said to be contextually 
declared. However, a name can only be con
textually declared if its name does not 
start with one of the letters I to N. In 
Model 20 PL/I, a contextually declared 
identifier is aiways a scalar arithmetic 
variable with the default attributes FLOAT 
DECIMAL(6) AUTOMATIC INTERNAL. This rule 
is illustrated by the example below: 

P: PROCEDURE (PAR); 
DECLARE N FIXED DECIMAL (5,2); 

A N + 1; 
LEL: GET FILE (FL1) EDIT (N,B) (F(7,2), 

E(12,4»; 

END; 

Recognition of Names 51 



The names PAR, N, LBL, and Pare 
declared explicitly by their appearance in 
a par.ameter list, a DECLARE statement, and 
as a statement or frocedure label, res}ec
tively. A and B are declared contextually 
by their apfearance on the left side of the 
assignment symbol and in the data list of a 
GET statement, respectively. FL1 must be 
declared in another DECLARE statement (not 
shown in this example) in the same proce
dure, since file names cannot be declared 
contextually in Model 20 PL/I. 

The name of a built-in function, that is, a 
procedure that is part of the compiler and 
that is invoked by means of a function 
reference, is contextually declared by its 
appearance in the function reference. It 
must not be explicitly declared by means of 
a DECLARE statement. 

~Kfgp.iiQn: The DATE built-in function must 
be ex}licitly declared in the invoking pro
cedure by means of a DECLARE statement and 
with the attribute BUILTIN. 

RQig_l: The name of a built-in function 
may be used in a procedure to describe an 
item other than that function. In this 
case, it must not appear in a function 
reference in that procedure. Consider the 
following statements: 

DCL SIN (10) ; 

X=SIN (5) ; 

In this example, SIN is explicitly declared 
to be an array of 10 data elements. When 
the sta tement X=SIN (5); is eval ua ted the 
array element and not the built-in function 
SIN is taken. The explicit declaration 
takes recedence over the contextual 
declara tion. 

Implicit Declaration 

If a name ap~ears in a program and is not 
explicitly or contextually declared, it is 
said to be implicitly declared. The scope 
of an implicit declaration is INTERNAL, and 
it is by default an arithmetic variable 
with the attributes FLOAT DECIMAL(6) AUTO
MATIC. Note, however, that the name of an 
implicitly declared variable must not start 
with any of the letters I to N. 

An implicitly declared variable can only 
obtain a value if it appears as an argument 
in a procedure invocation. There is no 
other way for an implicitly declared vari
able to obtain a value. Consider the fol
lowing example: 

52 IBM System/360 Model 20 DPS PLII 

ALPHA: PROCEDURE; 

DE; 
CALL BETA (C) 
A C + 1; 

END; 
BETA: PROCEDURE (X) ; 

DCL X FLOAT DECIMAL (6) ; 
X 52; 

END; 

In the above example, E in procedure 
ALPHA is an implicitly declared variable 
that cannot assume any value. The variable 
C which appears as an argument in the CALL 
invoking BETA, is also an implicitly 
declared variable. In BETA, however, the 
argument C, represented by the parameter X, 
is ex~licitly declared and given a value. 
Thus, when BETA returns control to ALPHA 
and the instruction A = C + 1 is executed, 
C has been given a value, since both C and 
X refer to the same data item in main 
storage. 

Note: The attributes associated with a name comprise those explicitly, contextual
ly, or implicitly declared, as well as 
those assumed by default. The default for 
each attribute is given in Part II under 
lLt.i£lfH!ig§ . 

INTERNAL and EXTERNAL Names 

The scope of a name declared with the 
JRr~ER~~ attribute is the procedure in 
which it is declared. A declaration of 
that name in another procedure refers to a 
different item with a different scope. 

A name with the ~KI~RR~~ attribute may 
be declared more than once in the same fro
gram, in different procedures. All 
declarations of the name that specify the 
EXTERNAL attribute refer to the same item. 
The scope of the name is the sum of the 
scopes of its individual declarations 
within the program. 

Since these declarations all refer to 
the same thing, they must have the same set 
of attributes. It may be impossible for 
the compiler to check this, since the 
declarations appear in different proce
dures; therefore, take care to ensure that 
different declarations of the same name 
with the EXTERNAL attribute have matching 
attributes (including the INITIAL attri
bute, if iresent). 



In Model 20 PL/I, the length of a name 
with the EXTERNAL attribute is restricted 
to six characters. This restriction also 
applies to names that are EXTERNAL by 
default, such as file names and entry names 
of procedures. 

Multiple Declarations and Ambiguous References 

Two or more declarations of the same iden
tifier within the same procedure constitute 
a IDY11iQl~_g~£lg~g1iQn, unless all but one 
of the identifiers is declared within stru
ctures in such a way that name qualifica
tion can be used to make the names unigue. 

Two or more declarations anywhere in a 
program of the same identifier with dif
ferent attributes and with the EXTERNAL 
attribute constitute a multiple decla
ration, that is, a name declared with the 
EXTERNAL attribute in different procedures 
must have identical attributes in all pro
cedures in which it is declared EXTERNAL. 

Multiple declarations are errors. 

A name need have only enough qualifica
tion to make the name unigue. kn ~m~igYQY§ 
£gig~ll£g is a name with insufficient qua
lification to make the name uni~ue. 

The following examples illustrate both 
multiple declarations and ambiguous 
references: 

DECLARE 1 A, 2 C, 2 D, 3 E; 
DECLARE 1 B, 2 A, 3 C, 3 E; 

A.C = D.E; 

In this example, A.C refers to C in the 
first declaration because C in the second 
declaration has another complete name qua
lification B.A.C; A.C is a uni~ue qualified 
reference; D.E refers to E in the first 
declaration. 

DECLARE 1 A, 2 B, 2 B, 2 C, 3 D, 2 D; 

In this example, B has been multiply 
declared. A.D refers to the second D, 
since A.D is a complete gualification of 
only the second 0; the first D would have 
to be referred to as A.C.D. 

DECLARE 1 A, 2 B, 3 C, 2 0, 3 C; 

In this example, A.C is ambiguous because 
neither C is completely gualified by this 
reference. 

DECLARE 1 A, 2 A, 3 A; 

In this example, A refers to the first A, 
A.A refers to the second A, and A.A.A 
refers to the th~rd A. 

DECLARE X; 
DECLARE 1 Y, 2 X, 3 Z, 3 A, 

2 Y, 3 Z, 3 A; 

In this example, X refers to the variable 
declared in the first DECLARE statement. A 
reference to Y.Z is ambiguous; Y.Y.Z refers 
to the second Z; and Y.X.Z refers to the 
first Z. 

Recognition of Names 53 



Data Transmission 

PL/I provides input and output statements, 
which cause data to be transmitted between 
main storage and an external storage 
medium. Transmission of data from an 
external storage medium to main storage is 
called !llEgl, and transmission of data from 
main storage to an external storage medium 
is called Qgi~gi. 

In order to understand the basic con
cepts of input and output, it is necessary 
to define the following terms: !11§, 
YQ1g~§, Q1Q~~, ~§£2~g, and fl1gn~m§. 

A file is a collection of data on an 
external-storage medium. 

Files can be stored on a variety of 
external storage media, such as punched 
cards, reels of magnetic tape, and packs of 
magnetic disks. Despite their variety, 
external storage media have many common 
characteristics that permit standard 
methods of collecting, storing, and trans
mitting data. For convenience, thus, we 
use the general term YQlg~§ to refer to a 
unit of external storage, such as a reel of 
magnetic tape or a disk pack, without 
regard to its specific physical 
composition. 

The data items within a file are 
arranged in distinct ~hysical groupings 
called blocks. These blocks allow the file 
to be transmItted and processed in portions 
rather than as a unit. For processing pur
poses, each block consists of one or more 
logical parts called £§fQ£g§, each of which 
can contain one or more data items. 

A block is also called a EhY§l~~!_ 
record, because it is the unit of data that 
Is-physically transmitted to and from a 
volume. To avoid confusion between a phys
ical record and its logical parts, the log
ical subdivisions are called lQ~l£~! 
£§£Q£g§. 

When a physical record contains two or 
more logical records, the records are said 
to be Q1Q£~§Q. Blocking of records often 
permits more compact and efficient use of 
external storage. Consider how data is 
stored on magnetic tape: the data between 
two successive interrecord gaps is one 
block, or physical record. If several log
ical records are contained within one 
block, the number of interrecord gaps is 
reduced, and much more data can be stored 
on a full length of tape. For example, on 
a tape with a density of 800 charactersl 
inch and interrecord gaps of 0.6 inches, a 

54 IBM system/360 Model 20 DPS PL/I 

card image of 80 characters would take up 
0.1 inches. If the records were unblocked, 
each record would require 0.1 inches, plus 
0.6 inches for the interrecord gap, making 
a tot al 0 f O. 7 inches. 100 records would 
therefore take up 70 inch.es of tape. If 
the records were blocked, however, at, say, 
10 records to a block, eich block of 1n 
records would take up 1 inch, plus 0.6 
inches for the gap, which would be a total 
of 1.6 inches. Thus, 100 records would now 
occupy 16 inches of tape only; this is less 
than 25 percent of the amount needed for 
unblocked records. 

Most data processing applications are 
concerned with logical records rather than 
rhysical records. There~ore, the input and 
output statements of PL/I generally refer 
to logical records; this allows the pro
grammer to concentrate on the data to be 
processed, without being directly concerned 
with its physical organiZation in external 
stora~e. 

To be able, now, to deal with the data 
items of a file, that is, to read them into 
main storage or to write them onto the 
external storage media, a !ilgll~ID§ has to 
be associated with a iil§. You do this in 
your }rogram. 

A fil§n~ID§ is the symbolic reference, 
within a program, to a file stored on an 
external medium. 

You associate a filename with a file by 
declaring the filename for the file in your 
program and by specifying attributes that 
describe the file and the manner in which 
it will be handled. For example, the INPUT 
attribute specifies that a file is to be 
read; OUTPUT specifies that a file is to be 
written. Unlike a file, however, a 
filename has significance only in a pro
gram; it does not exist external to the 
program. For example, if you use the same 
file again, you may slecify a different 
filename and partly different attributes 
for it. 

Types of Data Transmission 

There are two types of data transmission 
you can use in a PL/I program, stream
oriented transmission and record-oriented 
transmission. 

In §l£g~m=Q£ignl§Q_i£~n§mi§§iQn, the 
data in the file is considered to be a con
tinuous stream of data items in character 



form. Consequently, characters in the 
input stream are interpreted and converted 
where necessary to the specified internal 
format. Whether conversion is to take 
place is determined by the attributes of 
the variable to which a data item is 
assigned. On output, data items in intern
al format are converted where necessary to 
character form and added to the output 
stream. The statements GET and PUT are the 
data-transmission statements used in 
stream-oriented transmission. Variables, 
to which input data items are assigned, and 
expressions from which output data items 
are transmitted, are generally specified in 
a g~1~_li§! contained in each GET and PUT 
statement. 

Although data in the file is in record 
format, in stream transmission such organi
zation is ignored within the program and 
the data is treated as though it actually 
were a continuous stream of individual data 
items. 

In r§£Qfg=Qfi~ni§g_if~n§m!§§!Qn, data in 
the file is considered to be a collection 
of discrete logical records, recorded in 
any format acceptable to the computer. No 
data conversion is ferformed during record 
transmission; on input, it is transmitted 
exactly as it is recorded in the file; on 
output, it is transmitted exactly as it is 
recorded internally. 

The input and outlut statements used for 
record-oriented transmission are READ, 
WRITE~ REWRITE and LOCATE. The READ, 
WRITE, and REWRITE statements cause a 
single logical record to be transmitted to 
or from a data variable or, in the case of 
READ with the SET option, to an intermedi
ate work area in main storage, called a 
buffer, which can be accessed by the pro
gram. The LOCATE statement allocates an 
area in a buffer to which data for an out
put record can be assigned. 

Note that although records may be 
blocked, in which case actually the 
[hysical record is transmitted to or from 
the file as an entity, each data transmis
sion statement in record 1/0 is concerned 
with a logical record. Blocked records are 
deblocked automatically. 

The following discussion of filenames 
and file attributes will be of particular 
interest to a programmer using record
oriented transmission. File handling is 
simpler when using stream-oriented trans
mission, and fewer attributes are applic
able to files read or written by stream
oriented transmission. 

File Declarations 

To allow a source prdgram to deal primarily 
with the logical aspects of data rather 
than with its physical organization in a 
file, PL/I emlloys a symbolic representa
tion of a file, the filename. 

PLII requires a filename to be declared 
and allows the characteristics associated 
with that filename to be described by key
words called file attributes. The DECLARE 
statement specIiyIng-the-iIlename and the 
associated attributes is referred to as 
Kil§_g§£1~f~1iQn· 

The following lists show file attributes 
that are applicable to each type of data 
transmission: 

R§£Q;£g_I;£§:n§!!!!§§iQ£ 
FILE 
RECORD 
INPUT 
OUTPUT 
UPDATE 
SEQUENTIAL 
DIRECT 
KEYED 
BACKWARDS 
ENVIRONMENr 

~1f§am_!f~n§mi§§iQn 
FILE 
STREAM 
INPUT 
OUTPUT 
PRINT 
ENVIRONMENT 

A detailed description of each of these 
attributes appears in Part II, !11;£iQ~1~§. 
Following is a brief description of each 
attribute and its use in a file 
declaration. 

The FILE attribute states that the identi
fier (or name) associated with FILE is a 
filename. For example, MASTER is declared 
to be a filename in the following 
statement: 

DECLARE MASTER FILE 

The FILE attribute must be explicitly 
declared for every filename, and it must 
always be the first attribute declared in a 
file declaration. 

ALTERNATIVE AND ADDITIVE ATTRIBUTES 

The attributes associated with the FILE 
attribute fall into two categories: alter
native attributes and additive attributes. 
An alternative attribute is one that is 
chosen-from-a-group-of-attributes. If no 
explicit or implicit declaration is given 
for one of the alternative attributes of a 
group and if one of the alternatives is 
required, a default attribute is assumed in 
most cases. 

Data Transmission 55 



r--------------r-------------------------T------------, 
IGroup I Alternatives I Default I 
~---------------+-------------------------+------------~ 
ITransmission I STREAM I RECORD I STREAM I 
IFunction I INPUT I OUTPUT I UPDATE I no default I 
IAccess I SEQUENTIAL I DIRECT I SEQUENTIAL I L ______________ ~ _________________________ L ____________ J 

Figure 7. Grou~s and Default Attributes for Alternative File Attributes 

PL/I provides three groups of alterna
tive file attributes. Each group is dis
cussed individually. The groups and the 
default for each alternative file attribute 
is shown in Figure 7. 

Note: No default is applied for the fUnc
tion attributes; one of them must be speci
fied in each file declaration. The scope 
of a filename must always be EXTERNAL. The 
EXTERNAL attribute can be explicitly 
declared in a file declaration. If it is 
not declared, it is assumed by default. 

An additive attribute is one that must 
be stated-explicitly-or-is implied by 
another explicitly stated attribute. The 
ENVIRONMENT attribute must be declared 
explicitly with every filename. An addi
tive attribute can never be applied by 
default. The additive attribute KEYED is 
implied by the DIRECT attribute. 

The additive attributes are: 

PRINT 
BACKWARDS 
KEYED 
ENVIRONMENT 

!hg_~!R~~tl_~nQ_R~~QR~_~1~~ihy1g§ 

The STREAM and RECORD attributes describe 
the type of data transmission (stream
oriented or record-oriented) to be used in 
input and output operations for the file. 

The STREAM attribute causes the file 
associated with the filename to be treated 
as a continuous stream of data items 
recorded in character format. 

The RECORD attribute causes the file 
associated with the filename to be treated 
as a sequence of logical records, each 
record consisting of one or more data items 
recorded in any format. 

DECLARE MASTER FILE RECORD 
DECLARE DETAIL FILE STREAM 

The function attributes determine the 
direction of data transmission. The INPUr 

56 IBM System/360 Model 20 DPS PL/I 

attribute applies to files that are to be 
read only. The OUTPUT attribute applies to 
files that are to be created or extended, 
and hence are to be written only. The 
UPDATE attribute describes a file that can 
be used for both input and output; it 
allows records to be inserted into an 
existing file and other records already in 
that file to be altered. 

DECLARE 
DETAIL FILE RECORD INPUT 
REPORT FILE STREAM OUTPUT 
MASTER FILE RECORD UPDATE 

The access attributes are used only in con
junction with the RECORD attribute and 
describe how the records in the file are to 
be accessed, sequentially or directly. 
STREAM transmission is always sequential. 

The ~~Q~~Nrl!~_~~~~iQY1g specifies that 
rhysically or logically successive records 
in the file are to be accessed 
sequentially. 

DCL PAYROLL FILE RECORD INPUT SEQUENTIAL 

The ~lE~~r_~~~£iQ~~~ specifies that a 
record in a file is to be accessed on the 
basis of its location in the file and not 
on the basis of its physical or logical 
position relative to the record previously 
read or written. The location of the 
record is determined by a key; therefore, 
the DIRECT attribute implies the KEYED 
attribute. The associated file must be 
read from or written on a direct-access 
device, for example, a disk drive. 

DCL MASTER FILE RECORD UPDATE DIRECT 
[KEYEDj 

The PRINT attribute applies only to files 
with the STREAM and OUTPUT attributes. It 
indicates that the file is eventually to be 
printed, that is, the data is to apfear on 
printed pages, although it may first be 
written on some other medium. The PRINT 
attribute specifies that the print lines 
are to be created with the first character 



position reserved for a printer-control 
character, which is inserted automatically. 

DCL OUT_F FILE STREAM OUTPUT PRINT 

!hg_~!fKR!BQ~_!11£i£~1g 

The BACKWARDS attribute indicates that a 
file is to be accessed in reverse order, 
beginning with the last logical record and 
ending with the first logical record. The 
BACKWARDS attribute can be used only in 
connection with the RECORD SEQUENTIAL, and 
INPUT attributes and only with files on 
magnetic tape. 

DCL IN_FLE FILE RECORD INPUT SEQUENTIAL 
BACKWARDS 

The KEYED attribute is used only in connec
tion with INDEXED files. It indicates that 
each record in the file has a key and can 
be accessed using one of the key options 
(KEY or KEYFROM) of data transmission 
statements. 

DCL REPORT FILE INPUT DIRECT KEYED 

The use of keys is discussed in detail 
in Part III, under In£~1LQY1EYi. 

!hg_]NYIBQN~]N!_!11£i£~1g 

The ENVIRONMENT attribute specifies infor
mation about the physical organization of 
the file associated with a filename. These 
characteristics are indicated in a paren
thesized QEiiQD_11§! in the ENVIRONMENT 
attribute specification. They are not part 
of the PL/I language, but are defined to be 
recognized by a specific compiler. The 
option list for the Model 20 PL/I Compiler 
is discussed in Part III, under 
IDE!!!LQ!!!E!!!· 

DCL OUTPUT FILE STREAM OUTPUT PRINT 
ENVIRONMENT (option-list); 

Note: As stated earlier in this section, 
~i~~ file must be ex[licitly declared; the 
FILE attribute and the ENVIRONMENT attri
bute must appear in every file declaration. 

Opening and CIDsing Files 

Before the data of a file can be trans
mitted by input or output statements, cer
tain preparative actions must be taken, 
such as checking for the availability of 
the external storage medium, and position
ing the medium. Such activity is known as 
opening a file. Also, when processing is 
completed, the file must be closed. Clos
ing a file involves releasing the facili-

ties that were used during the opening of 
the file. 

Model 20 PL/I provides two statements, 
OPEN and CLOSE, to perform these functions. 
All files for which RECORD transmission has 
been specified must be ex~licitly opened 
before any data can be transmitted. How
ever, files for which STREAM transmission 
has been specified, need not be opened 
explicitly. If you do not specify an OPEN 
statement for such a file, the file is 
opened automatically when the first GET or 
PUT is executed; this form of opening is 
referred to as implicit opening. Automatic 
preparation is exactly the same as if an 
explicit OPEN had been executed before the 
GET or PUT. With both STREAM and RECORD 
transmission, all files that have not been 
closed before completion of a program will 
be closed automatically upon completion of 
the program. With the ex6eption of INDEXED 
files, all files that have been explicitly 
closed may be reo~ened. 

The following discussions show the 
effect of OPEN and CLOSE statements. 

Execution of an OPEN statement causes one 
or more files to be opened explicitly. The 
OPEN statement has the following basic 
forma t: 

OPEN FILE (filename) :option-listJ 
L' FILE (filename) [option-list J J ••• ; 

The OPEN statement is executed by rou
tines that are loaded dynamically by the 
system at the time the OPEN statement is 
executed. 

For a file that has to be opened expli
citly, the OPEN statement must be executed 
before any IIO statements are executed for 
the same file. 

The basic format of the CLOSE statement is: 

CLOSE FILE (filename) 
~ ,FILE (filename) J. ••• ; 

Executing a CLOSE statement dissociates 
the s~ecified filename from the file with 
which it became associated when the file 
was opened for, say, input. When using the 
same file again for, say output, another 
file declaration has to be made for it 
before it can be accessed. 

NQ!g: Closing an already closed file or 
opening an already opened file has no 
effect. 

Data Transmission 57 



Environmental Considerations for Data Files 

The PL/I object program produced by the 
Model 20 PL/I compiler is designed to be 
executed under control on the Model 20 Disk 
Programming System (DPS). The DPS provides 
data management facilities that control the 
organization, location, storage~ and 
retrieval of files. The PL/I program calls 
upon these facilities when it is being 
executed. The following discussions 
describe the relationship between the input 
and output statements of a PL/I program and 
the various files organizations supported 
by the data-management facilities of the 
DPS. 

The input and output statements of a Model 
20 PL/I program are concerned with the log
ical organization of a file and not with 
its physical characteristics. 

Some of the detailed information ultim
ately required by the PL/I program to pro
cess a file -- information such as I/O unit 
numbers and recording density -- does not 
appear in the PL/I program at all. It is 
supplied by means of DPS job-control state
ments at the time the PL/I object program 
is executed. (Job-control statements are 
described in Part III of this publication 
under Job Control). This means that the 
PL/I p~~~iii-~;;~ not be recompiled when 
changes to this information are made. 

Other information, such as the 110 
device tYie to be used and the organization 
of a file to be read or written, is noted 
in the PL/I program in the ENVIRONMENT 
attribute of the file declaration. Hence, 
changes to this type of information only 
affect this attribute. They reluire no 
changes to the actual I/O statements in the 
PL/I program. However, if changes to the 
ENVIRONMENT attribute have been made, the 
PL/I program must be recompiled before it 
can be executed in accordance with the new 
infol:ma tion. 

I/O statements are g~!i£~=ing~E~ng~n! to 
a large extent. This characteristic of 
PL/I allows you to write a program without 
any specific knowledge of the I/O devices 
that will be used for its execution. 

Ih~_~M!IBQN~~MI_!!!~i~y!g 

The ENVIRONMENT attribute provides informa
tion about the physical organization of the 
associated file. This information allows 
the compiler to determine the method of 
accessing the file. 

58 IBM System/360 Model 20 DPS PL/I 

For the Model 20 PL/I Compiler, the 
ENVIRONMENT attribute has the following 
general form: 

[
CONSECUTIVE] 

ENVIRONMENT ( INDEXED 
~ F (blocksi ze [, recordsi ze]) t 
I V (maxblocksize) ( 
~ U (maxblocksize) ) 

[BUFFERS ({ 1)2})] 
MEDIUM (symbolic-device-address, 

device-type) 
[CTLASAJ 
[LEAVE] 
[NOTAPEMK] 
[ NOLABEL] 
[VERIFY] 
[ KEYLENGT H (decimal- integer- consta n t) ] 
[EXTENTNUMBER (decimal-integer-constant)] 
[OFLTRACKS (decimal-integer-constant)] 
[KEYLOC (decimal-integer-constant)] 
[ ALTTAPE] 
[ NOWRITE]) ; 

Tha individual options of the ENVIRON
MENT attribute must be separated by at 
least one blank. They are discussed in 
detail in Part III of this publication, in 
the section InEglLQg!£g!. Examples of com
plete file declarations can be found in 
Part III, under I~Q_fQmLlg1g_~~Qg~~mming 
~!~mElg§· 

Stream-Oriented and Record-Oriented 
Data Transmission 

As we have discussed earlier in this sec
tion, PL/I provides two types of data tran
smission, stream-oriented and 
record-oriented. 

With §!~g~m=Q~ignlgQ_l~~ll§mi§§iQll, a 
file is considered to be a continuous 
stream of data items in character format. 
Data items are transferred from the stream 
to program variables or from program 
variables (or expressions) into the stream, 
with appropriate conversion from or to 
character format. Stream-oriented trans
mission statements ignore the boundaries 
between records. 

With rggQrg=Qrigntgg_tr~ll§mi§§iQn, a 
file is treated as a collection of logical 
records, each of which consists of one or 
more data items. The data items can have 
any reFresentation, internal or external, 
that is acceptable to the computer, and 
there is no data conversion. Each logical 
record is transmitted as a unit to or from 
either a program variable or a buffer. 

STREAM transmission uses only two input 
and output statements, GET and PUT, which 
get the next series of data items from the 
stream, or put a specified set of data 
items into the stream. In RECORD transmis
sion, the corresponding statements are READ 



and WRITE, which read a logical record from 
the file or write a specified logical reco
rd into the file. Other record-oriented 
transmission statements are REWR!TE and 
LOCATE. 

The same file can be processed at one 
time by STREAM transmission and at another 
time by RECORD transmission; however, the 
file would have to be in character format 
to be acceptable for stream transmission. 

You specify the method of transmission 
for a file by declaring the associated 
filename with either the STREAM or the 
RECORD attribute. 

The Model 20 PL/I language ~rovides only 
one mode of stream transmission: the ggil= 
Qi~g£lgQ_!!!QQ.g· 

Edit-directed transmission uses the 

GET and 
PUT 

statements for input and output. These 
statements require the following 
information: 

1. The filename associated with the file 
from which data is to be obtained or in 
which data is to be written. 

2. A list of program variables which are 
to receive data items during input or 
from which data items are to be 
obtained during output. This list is 
called a Q~1~_1i§1. On out~ut, the 
data list can include constants and 
expressions. 

3. A list containing the format of each 
data item in the stream. This list is 
called a fQ~ill~l_!i§l. 

Note: For PRINT OUTPUT files, you may spe
~II~ the option PAGE or SKIP instead of or 
in addition to the data list and format 
list. 

For edit-directed transmission, the gen
eral format of the GET and PUT statements 
is as follows: 

GET FILE (filename) EDIT (data-list) 
(forma t-list) ; 

PUT FILE (filename) 

{

EDIT (data-list) (format-list) } 
option 
option EDIT (data-list) (format-list) 

whereby QQliQg may either be PAGE or SKIP. 

The g~~~_§Eg£i!i£~liQn consists of two 
parts: the Q~1~_li2~ and the iQ~!!!~i_li§i. 
Each must be encJosed in parentheses. 

On input, the data list contains one or 
more variables. Values whose format is 
described in the format list are assigned 
to these variables. On QYiL~l, the data 
list may, in addition to variables, also 
contain constants and other expressions. 
For each item in the data list, the extern
al format that it is to assume is described 
in the format list of the PUT statement. 

The format list contains one or more 
format items. There are three types of 
format-items: 

• g~la_fQ~illal_iigill§, which describe wheth
er data items in the stream are charac
ters or arithmetic values in character 
form: 

• control format items, which describe 
page=control;-line=~ontrol, and spacing 
opera tions; 

• £g~Q~g_iQ£ill~i_i~g!!!2' which specify the 
label of a separate statement that con
tains the format list to be used. 

(Format lists and format items are dis
cussed in more detail in KQ~ill~l_~i§i§, 
below) . 

For input, data in the stream is consi
dered to be a continuous string of charac
ters not separated into individual data 
items. The number of characters to be 
assigned to a variable is specified by the 
corresponding format item in the format 
list. The format item also specifies how 
the associated data item is to be stored 
internally in character format or as an 
arithmetic value. 

For output, the value of each item in 
the data list is converted to a format spe
cified by the associated format item and 
placed in the stream. 

For either input or output, the first 
data-format item in the format list is 
associated with the first item in the data 
list, the second data-format item with the 
second item in the data list, and so forth. 
If the format list contains fewer format 
items than there are items in the asso
ciated data list, the format list is re
used; if there are excessive format items, 
they are ignored. Suppose a format list 
contains five data format items and its 
associated data list specifies ten items to 
be transmitted, then the sixth item in the 
data list will be associated with the first 
data format item, and so forth. Suppose a 
format list contains ten dffta format items 
and its associated data list specifies only 

Data Transmission 59 



five items, then the sixth through the 
tenth format items will be ignored. 

An array variable in a data list is 
equivalent to n data items in the data 
list, where II is the number of data items 
in the array. Each of the data items in 
the array will be associated with a separ
ate use of the data format item (consider 
the third example below). 

Names of major and minor structures must 
not appear im a data list in Model 20 PL/I. 

If a data list is associated with a for
mat list that contains control format 
items, the control form;~-;~~I~i-I~-
executed before the next data item is 
paired with the next ~~1~_1QIm~1_i1gm. For 
example, on output, lines or pages are 
skipped before the next item is printed. 

The specified data transmission is com
plete when the last item in the data list 
has been processed with its corresponding 
format item. Subsequent format items, 
including control format items, are 
ignored. 

On outtut, each data item occupies pre
cisely the field length specified by its 
corresponding format item in the format 
list .. 

!Qlg: Data in STREAM files is actually 
transferred in blocks. Thus, when a STREAM 
file is closed" the last block is trans
ferred regardless of whether or not it is 
completely filled with data. This may lead 
to unpredictable results since, in this 
case, the end of the data may not coincide 
with the end of the file. You must there
fore ensure that the end of the data is 
clearly identified. 

Consider the following examples: 

1. GET FILE (MASTER) EDIT 
(NAME, DATA, SALARY) 
(A (2 0), X (2), A (6), F (6, 2) ) ; 

2.. PUT FILE (OUTPUT) EDIT 
(' INV ENTORY=' I I INUM, INVCODE) 
(A(20), F(5»; 

3. GET FILE (MASTER) EDIT 
(ARRAY, DATA, SALARY) 
(20(A(8» ,A(6}, F(6,2»; 

The first example slecifies that the first 
20 characters in the stream are to be 
treated as a character string (the format 
item A identifies characters) and assigned 
to the variable NAME. The next two charac
ters are to be skipped (this is specified 
by the skipfing format item X). The next 
six characters are to be assigned to DATA 
in character format; and the next six 

60 IBM System/360 Model 20 DPS PL/I 

characters are to be considered as an 
optionally signed decimal fixed-point con
stant and assigned to SALARY. F is the 
data format item for fixed-point arithmetic 
variables. 

The second example specifies that the 
character string 'INVENTORY=' is to be con
catenated with the value of character 
string INUM and placed in the stream in a 
field whose width is the length of the 
resultant string. Then the value of 
INVCODE is to be treated as an optionally 
signed decimal fixed-point integer constant 
and placed in the stream right-adjusted in 
a field with a width of five characters 
(leading characters are blank). Note that 
operational expressions can appear in out
put data lists only. 

Assume thact, for the third example, 
ARRAY has been declared as follows: 

DECLARE ARRAY (4,5) CHARACTER (8); 

The example specifies that the first 160 
characters in the data stream are to be 
assigned to the variable ARRAY in character 
format. 

DATA LISTS 

Edit-directed GET and PUT statements 
require a data list to specify the data 
items to be transmitted. The general for
mat of the data list is as follows: 

(element [,element] .... ) 

The nature of the elements depends upon 
whether the data list is used for input or 
for outfut. The following rules apply: 

1. On input, a data-list element can be 
one of the following: an ~1~mgn1_Y~~i= 
~Qlg or an ~££~y_Y~£i~Q!g, or the 
~~~~IR_£§g~gQ=!~£i~Qlg .. 

2. On Q~1EY1, a data list element can be
one of the following: an ~~E£~§§iQn,
an ~££~y_y~£b~Q!~.

3. The elements of a data list must be of
arithmetic or character-string data
type.

4. As shown in the general format, a data
list must always be enclosed in
parentheses.

Data lists may contain repetitive specifi
cations. Repetitive specifications in a
data list are used for the transmission of
arrays. The general format of a data list

containing re~etitive specifications is as
follows:

(elemen t [, elemen t] ••• DO
control-variable = §Eg£!!!£~1!2D)

where specification has the following
format:

expression_1 [TO expression_2] [BY
expression_3]

MQig_l: If both options, TO and BY, are
present in a data list, TO must occur
first~ Note also that the control variable
must be an arithmetic element variable.

liQlg_£: Repetitive specifications in data
lists may be nested.

The expressions in the specification,
which are the same as in a DO statement,
are described as follows:

a) Each expression in the specification is
an expression.

b) In the specification, expression_1
represents the starting value of the
control variable. Expression_3 repre
sents the increment to be added to the
control variable after each repetition
of the DO-group. Expression_2 repre
sents the terminating value of the con
trol variable.

Consider the following example:

DO I = 1 TO 10 BY 2

In this expression, I is the control vari
able, 1 is the starting value of the con
trol variable (expression_1), 10 is is the
terminating value of the control variable
(expression_2), and 2 is the increment to
be added to the control variable after each
repetition (expression_3).

Repetitive specifications in data lists
may be nested. Each DO portion must be
delimited on the right with a right paren
thesis (with its matching left parenthesis
added to the beginning of the list element
to be repeated).

When repetitive specifications are
nested, the ~!gh~mQ§~_~Q is at the QY1~£
19y91_Qf_llg§1!ng (DO I = 1 TO 2 in the
example below).

Consider the following example:

DCL A (2,5,10);

GET FILE{INPUT) EDIT
((((A(I,J,K) DO K

DO J = 1 TO 5) DO I
(format-list) ;

TO 10 BY 5)
1 TO 2»

In this example, every fifth element of
a three-dimensional array of 100 elements
in main storage is filled with a data item
from the input stream. Note the four sets
of larentheses: The outermost set is
required by the data list; the second set
is re~uired by the outer repetition, the
third by the second repetition etc. The
sequence of elements transmitted is equiva
lent to the sequence of elements that would
be transmitted if following nested DO group
were executed:

DO I = 1 TO 2;
DO J = 1 TO 5;

DO K = 1 TO 10 BY 5;
GET FILE (INPUT) EDIT

(A (I,J ,K» (format-list);
END;

END;
END;

This nested DO-group gives values to the
elements of the array A in the following
order:

A(1,1,1), A(1,1,6), A(1,2,1), A(1,2,6), .•••

liQlg: Although the DO keyword is used in
the data list, a corresponding END state
ment is not allowed. Note also that a nest
of repetitions in a GET or PUT statement
must not contain more than three
repetitions.

If a data list element is an array name
(that is, a name without subscripts), the
elements of that array are transmitted
beginning with the first element in the
array and proceeding until the last element
has been transmitted.

Consider the following example:

GET FILE (INPUT) EDIT (A) (format-list);

If we consider A to be declared as
above, data items from the stream are tran
smitted to the elements of A in the follow
ing order:

A (1 , 1, 1) , A (1, 1,2) , A (1 , 1,3) , .•••
A(1,1,10) ,A(1,2,1) ." .• A(1,5,10),
A (2, 1, 1),A (2,1,2), ••• A (2,5,10)

If, in a data list used in an input sta
tement for edit-directed transmission, a
variable is assigned a value, this new
value is used if the variable appears in a
later reference in the data list. For
example:

GET FILE(INPUT) EDIT
(N , X, J , SUB S T R (N AM E , J , 5)) (format-list) ;

When this statement is executed, data is
transmitted and assigned in the following
order (assuming X is a two-by-two array):

Data Transmission 61

1. A new value is assigned to N.

2. Elements are assigned to the array X in
the order X (1, 1), X (1,2), X (2, 1), and
X(2,2).

3. A new value is assigned to J.

4. A substring of length 5 is assigned to
the string variable NAME beginning at
the Jth character.

FORMAT LISTS

Each edit-directed data list requires its
own format list. The format list immedi
ately follows its associated data list in
the GET or PUT statement and has the fol
lowing general format:

GET FILE (filename)EDIT
(data - 1 is t) (i2!:!!!~1=li21) ;

j item }
n item t n (for-rna t-list) [

,item]
,n item
,n (format-list)

In the general format, i~gill represents a
format item of any of the types described
below. The letter n represents an itera
tion factor, which must be an unsigned dec
imal integer constant. A blank or left
&arenthesis must separate the constant and
the following item or format list, respec
tively. The iteration factor specifies
that the associated, th~t is, the immedi
ately following format item or format list
is to be used n successive times.

There are three types of format items:
data format items, control format items,
and the remote format item.

~~~g_iQ£ill~~_1~~ill§ specify whether data 
in the stream are characters or arithmetic 
values in character format. 

~Qrr~£Q!_iQ£ill~~_i~~!!!§ specify page
skip~ing, line-skipping, and spacing opera
tions~ The page-skipping format item 
(PAGE) can only be used for files having 
the ~RINT attribute. The line-skipping and 
spacing format items (SKIP and X, respec
tively) can be used for both PRINT and non
PRINT files, including input files. 

N2~~: For files having the attribute 
PRINT, the PAGE and SKIP format items can 
also be used outside the format list as an 
option of the PUT statement. (See the 
description of the PUT statement in Part 
II, ~!;;9:!;;~ill~rr~§). 

62 IBM System/360 Model 20 DPS PL/I 

The remote format item allows reference 
to format-items-specified in a separate 
FORMAT statement elsewhere in the 
procedure. 

Detailed discussions of the various 
types of format items appear in Part II of 
this publication, in the section ~g1~= 
Qi£~£t~g_fQ£!!!9:~_It~!!!§. The following dis
cussions show how you may use format items 
in edit-directed data specifications. 

On input, each data-format item specifies 
the number of characters to be associated 
with-the-data-Item-and-whether to inter~ret 
the extern~l data as arithmetic or 
£h9:£9:£1~£=21£ing data:--~~e-data iten is 
assigned to the associated variable named 
in the data list, with necessary conversion 
to conform to the attributes of the vari
able (arithmetic data in the stream is in 
character representation and is converted 
to fixed-point or floating-point represen
tation where applicable). On output, the 
value of the associated element in the data 
list is converted, where necessary, to the 
£hgfg£1~£_£~££~2~n1~~19n specified by the 
format item and is inserted into the data 
stream. 

There are three gg1g=i2~!!!~1_11~!!!2: 

• the F-item for fixed-point data, 

• the E-item for floating-point data, and 

• The A-item for character-string data. 

The specifications used with the format 
items are discussed in detail in Part II, 
in the section ~gi~=Qi£§£~§g_~2~!!!9:1_11§ID§. 

The following examples discuss the use 
of format items: 

1. GET FILE (INPUT) EDIT (ITEM) (A (20»; 

This statement causes the next 20 
characters in the file called INPUT to 
be assigned to ITEM, which must be a 
character-string variable. If it is 
not a character-string variable, an 
error results. 

2. PUT FILE (MASKFL) EDIT (TOTAL) 
(F(6,2» ; 

Assume TorAL has the attributes FIXED 
(4,2); then the above statement s~eci
fies that the value of TOTAL is to be 
converted to the character representa
tion of a fixed-point number and writ
ten into the output file MASKFL. A 
decimal point is to be inserted before 
the last two numeric characters. The 
number will be right-adjusted in a 



field of six characters. Leading zeros 
more than one digit to the left of the 
decimal point will be changed to 
blanks, and, if necessary, a minus sign 
will be placed to the left of the first 
numeric character. If a minus sign 
appears, it will replace one leading 
blank. Consequently, the F(6,2) speci
fication will always allow all digits, 
the point, and a possible sign to 
appear. 

3. GET FILE (A) EDIT (ESTIMATE) (E (10,6) ) ; 

This statement obtains the next ten 
characters from the file called A and 
intertrets them as a floating-point 
decimal number. A decimal point is 
assumed before the rightmost six digits 
of the mantissa. An actaal point 
within the data will override this 
assumption. The value of the number is 
converted to the attributes of ESTIMATE 
and assigned to this variable. 

4. GET FILE (A) EDIT (NAME, TOTAL) (A (5) , 
F (4,0» ; 

When this statement is executed, the 
first five characters read are assigned 
to the variable NAME. The next four 
characters containing possible leading 
and/or trailing blanks, are then 
assigned to the variable TOTALu 

~Qni~Ql_E~~m~!_I!~m§ 

Control-format items comprise the following 
types: 

• the spacing format item X, 

• the f!§~ format item, and 

• the ~liI~ format item. 

The spacing format item X specifies 
relative spacing in the data stream. It 
can be used with PRINT and non-PRINT files, 
in GET as well as PUT statements. 

The printing format item PAGE can be 
used only for PRINT files and, consequent
ly, appear only in PUT statements. It spe
cifies that printing is to continue on a 
new page. 

The format item SKIP can be used with 
PRINT and non-PRINT files, in GET as well 
as PUT statements. For QYiEY1, it speci
fies that printing is to continue on a new 
line (or, ~ith non-PRINT files, output has 
to start wi th a new logical record). For 
!nEYi~ it specifies that the remainder of a 
logical record (the size of which is speci
fied in the file declaration) is to be 
skipped and reading is to continue at the 
beginning of the next one. 

The format items X and SKIP generally 
include decimal integer constants, which 
specify the width of the field to be spaced 
over, or the number of lines or records to 
be skipped. 

The following examples illustrate the 
use of the control format items: 

1. GET FILE (IN) EDIT (NUMBER, REBATE) 
(A (5), X (5), A (5» i 

This statement treats the next 15 
characters from the input file IN as 
follows: the first five characters are 
assigned to NUMBER, the next five 
characters are spaced over and ignored, 
and the following five characters are 
assigned to REBATE. 

2. PUT FILE (OUT) EDIT (PART, COUNT) 
(A(4), X(2), F(S»; 

This statement places in the file named 
OUT four characters that represent the 
value of PART, then two blank charac
ters, and finally five characters that 
represent the integer value of COUNT. 

3. The following example shows the combi
ned use of control format items in an 
output file. 

PUT FILE (OUT)EDIT 
('QUARTERLY STATEMENT') 
(PAGE, SKIP(2), A(19»; 

PUT FILE (OUT)EDIT 
(ACCT#, BOUGHT, SOLD, PAYMENT, 
BALANCE) 
(SKIP (3) ,A (6) ,X (7) ,F (7,2) ,X (8) , 
F(7,2) ,X(7), 
F(7,2) ,X(7)"F(7,2»; 

The first PUT statement specifies that 
the heading QUARTERLY STATEMENT is to 
be written starting with the first 
character position on line three of a 
new page in the file OUT~ The second 
statement specifies that two lines are 
to be skipped (that is, "skip to the 
third following line ll ) and the value of 
ACCT' is to be written, beginning at 
the first character position of the 
sixth line; the value of BOUGHT is to 
be written in the same line after skip
ping 7 character positions; the value 
of SOLD after skipping 8 character 
positions, beginning at character posi
tion 29, etc. 

Note: The number of lines specified in 
the-SKIP format item must not exceed 3. 

4. The following statements show the use 
of the SKIP and X format items in a GET 
statement. 

Data Transmission 63 



GET FILE (IN) EDIT (PART, SEQUENCE) 
(SKIP,X(1)"A(71) ,A(8»; 

GET FILE (IN) EDIT (DETAIL) 
(X (19),F (15,2»; 

The SKIP format item in the first GET 
statement specifies that reading is to con
tinue with the next record. The X(1) for
mat item specifies that the first character 
of this record is to be skipped and that 
characters 2 to 72 are to be assigned to 
the variable PART, and characters 73 to 80 
to the variable SEQUENCE. 

The second GET statement specifies that 
the first 19 characters of an input record 
are to be skipped, and that the next 15 
characters are to be assigned to the vari
able DETAIL. 

Note: Control format items are executed at 
the-time they are encountered in the format 
list. Any control-format item that appears 
in the format list but has not yet been 
processed when the data list is exhausted, 
will have no effect. 

The remote format item (R) specifies the 
label of a FORMAT statement (or a label 
variable whose value is the label of a 
FORMAT statement) located elsewhere; the 
FORMAT statement and the GET or PUT state
ment specifying the remote format item must 
appear in the same procedure. The FORMAT 
statement contains the remotely situated 
format items. This facility permits the 
choice of different format specifications 
at execution time, as illustrated by the 
following example: 

DECLARE SWITCH LABEL; 
GET FILE (IN) EDIT (CODE) (F (1 ) ) 
IF CODE = 1 

THEN SWITCH = L1; 
ELSE SWITCH = L2; 

GET FILE(IN) EDIT (W,X,Y,Z) 
(R (SWITCH» ; 

L1: FORMAT (4 F (8,3»; 
L2: FORMAT (4 :e(12,6»; 

SWITCH has been declared to be a label 
variable. The first GET statement reads a 
code. This code is tested and, depending 
on the result, the label variable SWITCH is 
assigned the value L1 or L2. Thus, the 
second GET statement can use either of the 
two FORMAT statements, depending on the 
current value of SWITCH and, hence, depend
ing on the code that has been read by the 
first GET. 

Another advantage of the remote format 
item is that it allows many GET/PUT state
ments to share the same format list. 

64 IBM System/360 Model 20 DPS PL/I 

liQl~: If the format list contains a remote 
format it~m that is contained in a replica
tion nest, the remote format item must not 
be at a depth greater than 2. 

PAGE LAYOUT FOR PRINT FILES 

The overall layout of a page in a file that 
has the PRINT attribute is controlled by 
means of the PAGESIZE option of the OPEN ' 
statement. 

For example: 

DECLARE REPORT FILE OUTPUT PRINT 
ENVIRONMENT (option-list); 

OPEN FILE (REPORT) PAGESIZE (55) ; 

The specification PAGESIZE(55) indicates 
that each page should contain a maximum of 
55 lines. An attempt to write on a page 
after 55 lines have already been written 
(or skipped) will raise the ENDPAGE condi-
tion. The standard system action for the 
ENDPAGE condition is to skip to a new page, 
but the programmer can establish his own 
action through use of the ON statement. 

The ENDPAGE condition is raised only 
once }er page. Consequently, printing can 
be continued beyond the specified PAGESIZE 
after the ENDPAGE condition has been 
raised. This can be useful, for exam~le, 
if a footing is to be written at the bottom 
of a ~age. Consider the following example: 

ON ENDPAGE (REPORT) GO TO FOOT; 

FOOT: PUT FILE (REPORT) SKIP EDIT 
(FOOTING) (A) ; 

PUT FILE (REPORT) PAGE; 
N = N + 1· . 
PUT FILE (REPORT) EDIT (' PAGE ' , N) 

(A,F(3»; 
PUT FILE (REPORT) SKIP (3) ; 
GO TO NEXT; 

Assume that REPORT has been opened with 
PAGESIZE(55), as shown in the previous 
example. When an attempt is made to write 
on line 56 (or to skip beyond line 55), the 
ENDPAGE condition will arise, and the GO TO 
FOOT statement will be executed. The first 
PUT statement specifies that a line is to 
be skipped, and the value of FOOTING, a 
character string, is to be rrinted on line 
57 (when ENDPAGE arises, the current line 
is always PAGESIZE + 1). Th~ second PUT 
statement causes a skip to the next page 
and the ENDPAGE counter is automatically 
reset for the new page. The page number 
(N) is incremented, and the character 
string 'PAGE' and the new page number N 
are printed. Note that a blank is included 



as part of the character strin~ to separate 
the word from the page number. The F(3) is 
a format item and allows the page number to 
go as high as 999. (Format items are dis
cussed in Part II, under Edit-Directed For
ill~i_!1~ill§). The final PUT-staternent-causes 
two lines to be skipped, so that the next 
printing will be on line 4. The GO TO 
NEXT; statement transfers control to the 
statement labeled NEXT. 

The maximum number of characters to be 
printed on each line (i.e., the line size) 
is equal to the fixed-length record size 
specified in the ENVIRONMENT attribute for 
the file minus one. If you try to write 
more than the maximum number of characters 
speci£ied in one line, i.e., without skip
ping to a new line or page, the excess 
characters will automatically be placed on 
the next line. 

The PAGESIZE option can be specified 
only for a file with the PRINT attribute, 
and it can be specified only in the OPEN 
statement. The default value for PAGESIZE 
is 60 lines .. 

SUMMARY OF STREAM I/O STATEMENTS 

The following is a summary of the IIO sta
tements used with STREAM transmission, 
along with their options, according to file 
attributes (the statements are discussed 
individually in detail in Part II, under 
~1!!1~!!!sH!1§) ,. 

GET FILE (filename) EDIT 
(data-list) (format-list') ; 

~1:R~!fLQ1!I£!!I : 

PUT FILE (filename) EDIT 
(data-list) (format-list) 

~1:R~!.tl_QQIE!!I_R!LniI : 

PUT FILE (filename) 
( EDIT (da ta-list) (forma t-list) '~ 
)PAGE 

{

SKIP(n) 
PAGE EDIT (data-list) (forma t-list) 
SKIP (n) EDIT (data-list) (format-list); 

Format lists may contain the following 
format items: 

A, E, F which may be used for any STREAM 
file 

PAGE which may be used only with STREAM 
OUTPUT PRINT files 

SKIP,X which may be used with any STREAM 
file 

R which may be used with any STREAM 
file 

Files that contain discrete records or 
which are to be created as a collection of 
discrete records, may be manipulated with 
record-oriented input/output statements. 
These statements are READ, WRITE, REWRITE, 
and LOCATE. 

A general description of these state
ments is contained in this section. They 
are described completely in Part II, in the 
section 21~ig!!!gni§. 

Each record obtained from a file or 
transferred to a file is defined in terms 
of data attributes of a variable (usually a 
structure). For input, the record is 
obtained from the input file and assigned, 
without conversion, to the variable. For 
QYiLYi, the data is transmitted without 
conversion to the output file. 

The variable whose value is transmitted 
from or to a file can be 

(1) an element variable that is 

• not part of an array or structure, 
• not a label or pointer variable; 

(2) a structure of level 1, i.e., a major 
structure. 

RECORD 1/0 STATEMENTS 

There are four RECORD I/O statements you 
can use for data transmission. They are: 

READ 
WRITE 
REWRITE 
LOCATE 

These 1/0 statements can be used only in 
combination with options. The options are: 
for the READ statement FILE, INTO, SET, and 
KEY; for the WRITE statement FILE, FROM and 
KEYFROM; for the REWRITE statement FILE, 
FROM and KEY; for the LOCATE statement FILE 
an d SET. Each opt ion, its use and its pur
pose in the pertinent I/O statement, is 
individually discussed below. 

The type of 1/0 statement and option(s) 
that you select to transmit a record 
depends on 

Data Transmission 65 



(1) the form in which the file is organized 
on the external medium (CONSECUTIVE or 
INDEXED) ; 

(2) the method you want to use to access 
the file (SEQUENTIAL or DIRECT) ; 

(3) the type of activity for which you want 
to use the file (INPUT, OUTPUT, or 
UPDATE) ; 

(4) the area in main storage which is to be 
allocated to the variable containing 
the record (an I/O buffer set aside by 
the compiler as a result of the BUFFERS 
option in the ENVIRONMENT attribute, or 
a separate area elsewhere in main 
storage). 

The READ statement with the INTO option 
causes a record to be transmitted from the 
file to a variable allocated in STATIC or 
AUTOMATIC storage. You can use it with any 
INPUT or UPDATE file. In case of blocked 
records, the READ statement provides for 
automatic deblocking, so that in your pro
gram, you are always concerned with logical 
records only. 

The READ statement with the SET option 
is used to read a record from a CONSECUTIVE 
INPUT or UPDATE file if it is desired to 
operate upon input data in a buffer. This 
saves main-storage srace. The record is 
made accessible within the buffer by use of 
a pointer which is set automatically by the 
SET option to point to the desired logical 
record in the buffer. For further details, 
refer to the 2~I_Q£ii2n below. 

The WRITE statement causes a record to 
be transmitted from main storage to the 
file. It can be used with any OUTPUT file, 
and with DIRECT UPDATE, but not with 
SEQUENTIAL UPDATE. For blocked records, 
the WRITE statement causes a logical record 
to be placed into a buffer. Only when the 
blocking of the record is complete, is 
there actual physical output. 

The REWRITE statement causes a record to 
be replaced in an UPDATE file on a direct
access storage device. For SEQUENTIAL 
UPDATE files, the REWRITE statement speci
fies that the last record read from the 
file is to be rewritten in place. For 
DIRECT UPDATE files, the REWRITE statement 
must specify a key; conse1uently, any 
record can be rewritten whether or not it 
has first been read. 

The LOCATE statement, which must always 
have the SET option specified, is used to 
create an output record in a buffer. The 
logical record to be created in the output 
buffer is accessed by means of a pointer 
that is automatically set by the SET 
option. For further details refer to the 

66 IBM System/360 Model 20 DPS PLII 

~~~_QE1i2n in this section. The LOCATE 
statement with the SET option can be used
only with CONSECUTIVE OUTPUT files.

OPTIONS OF RECORD I/O STATEMENTS

The options you may use in RECORD 110 sta
tements differ according to the attributes
of the associated file and the purpose of
the statement. A list of all the allowed
combinations for each type of file is given
later in this sectio~.

Each option consists of a kgY~Q~~ fol
lowed by a parenthesized specification.

The FILE option (also called the FILE spe
ci£ication) specifies the name of the file
upon which the operation is to take place.
It must appear as the first option in every
RECORD 1/0 statement, and consists of the
keyword FILE, followed by the filename en
closed in parentheses. An example of the
FILE option is shown in each of the state
ments in this section.

rhe INTO option specifies a variable to
which the logical record is to be assigned.
It can be used in the READ statement for
any type of INPUT or UPDATE file. The
variable can be a based variable, if the
associated pointer variable has a value.
Consider the following statement:

READ FILE (DErAIL) INTO (RECORD_1);

This specifies that the next sequential
record is to be assigned to the variable
RECORD_1.

The SET option sets a pointer variable so
that it points to a logical record in a
buffer. It can be used with the READ sta
tement for CONSECUTIVE INPUT or UPDATE
files. It is also used with the LOCATE
statement for CONSECUTIVE OUTPUT files.
Note that it cannot be used with KEYED
files. Consider the following examples:

DECLARE REC_ID POINTER;
DECLARE 1 MASTER_RECORD BASED (REC_ID),

2 IDENTIFICATION CHARACTER (10),
2 N AM E CHARACTER (30),
2 ADDRESS,

3 STREET CHARACTER (15),
3 CITY CHARACTER (15),
3 STATE CHARACTER (15),
3 ZIP CHARACTER (5);

READ FILE (r1ASTER) SET (REC_ID);

This example specifies that the next
record from the file MASTER is to be read
and that the pointer variable REC_ID is to
be set (automatically) to point to that
record in the I/O buffer. If the logical
record is part of a record block and is not
the first record in the block, the actual
result of the statement will be merely to
set the value of the pointer to point to
the next logical record in the block. The
value of REC ID must be associated with a
BASED variable, so that the fields of the
record can be accessed.

The name MASTER RECORD is the based
variable that is used to describe a record
located in a buffer. Fields of the record
must conform to the attributes declared for
MASTER_RECORD. REC_ID is the pointer vari
able that identifies the position of MASTER
RECORD within the buffer. The fointer
variable is declared explicitly.

After reading a record from the file
MASTER, the structure declaration
MASTER RECORD is "overlaid" on the buffer
so that you can access the data in it and
process them by using the names declared in
the based structure. The statements

LOCATE MASTER RECORD FILE
(PAYROLL) SET (REC_ID) ;

MASTER_RECORD=PAYRECORD;

specify that the based variable
MASTER_RECORD is to be allocated storage in
a buffer and that its location is to be
assigned to the pointer variable REC_ID,
which must have been declared as the point
er to the based variable as shown above.
If the record MASTER_RECORD is part of a
record block, the next LOCATE state~ent may
only allocate storage in the buffer to the
next logical record in the same block. The
record is actually written when the block
is completed by a LOCATE or WRITE_ state
ment, or by a following CLOSE statement
regardless of whether or not the block is
complete .•

After setting the tointer in the LOCATE
statement, you have to assign to the asso
ciated based variable the data items in the
record which is to be stored in the output
buffer, as shown in the second statement
above.

The pointer REC_ID is set to point to
the location of the based variable
MASTER_RECORD in the output buffer. Then
the data items that are to be transmitted
are assigned to the based variable in the
assignment statement.

Both MASTER RECORD and PAYRECORD must
have identical-structuring and attributes.

Based variables may be element
variables, structure variables, or array
variables.

I!H~_rgQ!:LQ12!iQ!!

The FROM option must be used in the WRITE
statement for any OUTPUT file and in the
WRITE or REWRITE statement for a DIRECT
UPDATE file. You may also use it in the
REWRITE statement for a SEQUENTIAL UPDATE
file. The FROM option specifies the vari
able from which the record is to be writ
ten. consider the following statements.

WRITE FILE (MASTER) FROM (MAS_REC);
REWRITE FILE (MASTER) FROM (MAS_REC);

Both statements specify that the value
of the variable MAS REC is to be written
into the file MASTER. In the case of the
WRITE statement, it specifies a new record
in a SEQUENTIAL OUTPUT file.

The REW~ITE statement specifies that
MAS_REC is to replace the last record read
from a SEQUENTIAL UPDATE file.

The KEY option ap~lies only to files of
INDEXED organization. The "key" is the
control field in the record i.e., the field
according to which the file is organized.
The KEY option must be used in the READ and
REWRITE (or WRITE) statements for DIRECT
files with the INPUT or UPDATE attribute.
You may use the KEY option in the READ sta
tement of SEQUENTIAL files with the INPUT
or UPDATE attribute and INDEXED organiza
tion. Any file for which the KEY option is
used must have the KEYED attribute.

If a REWRITE is executed for an INDEXED
file you must ensure that the key portion
of the record is not changed.

If an INDEXED file is being read seguen
tially, the KEY option can be used to posi
tion the file at a specific record. Subse
quent READ statements without the KEY
ortion will cause seguential reading to
continue from that point in the file.

Keys for INDEXED SEQUENTI~L OUTPUT files
must be in ascending seguence.

The KEY option consists of the keyword
K~X followed by a parenthesized expression,
which is a §Qgr£g_~gy that identifies a
particular record. The expression must be
a £h~£~£igr_§i£ing whose length is adjusted
to the length specified in the KEYLENGTH
option of the ENVIRONMENT attribute. The
source key must exactly match the r§£2rggg
~§y in the file. The recorded key is
embed~ed in the data part of each logical
record. The key location within the record

Data Transmission 67

must be specified in the KEYLOC(n) option
of the ENVIRONMENT attribute.

The ex~ression in the KEY option must
result in a valid key. Consider the fol
lowing statements:

READ FILE(MASTER) INTO (PAY_REC) KEY (NAME) ;
REWRITE FILE (MASTER) FROM (PAY_REC) KEY (NAME) ;

The first statement specifies that the
record of the file MASTER with a key ident
ical to the value of the variable NAME is
to be read into the variable PAY_REC.

The second statement specifies that the
record of the file MASTER with a key ident
ical to the value of the variable NAME is
to be updated.

The KEYFROM option is used only for files
of INDEXED organization. You may use it in
a WRITE statement to create or extend an
INDEXED OUTPUT file or to add new records
to an INDEXED UPDATE file. Consequently,
it can appear in a WRITE statement for an
INDEXED SEQUENTIAL OUTPUT file or for an
INDEXED DIRECT UPDATE file. It cannot be
used for files with the CONSECUTIVE attri
bute. Any file for which the KEYFROM
option is specified must have the KEYED
attribute.

If a WRITE is executed for a file with
INDEXED organization, the key value speci
fied in the KEYFROM option is moved auto
matically to the position in the record
specified by KEYLOC (in the ENVIRONMENT
at tribu tel •

The KEYFROM option specifies the logical
location, within the file, where the record
is to be written. It specifies the
recorded key, whose value is used to deter
mine the location. It is written with the
keyword KEYFROM followed by a parenthesized
expression. The expression always has to
result in a character string. The length
of the recorded key has to be specified in
the KEYLENGTH option of the ENVIRONMENT
attribute. consider the following example:

WRITE FILE (PAYROLL) FROM (PAY_REC)
KEY FROM (NAME I I ADDRESS) ;

This statement specifies that the value
of PAY REC is to be written into the loca
tion specified by the value of the
character-string variable NAME concatenated
with the character-string variable ADDRESS.
The §QY~£§_~§Y is to be a concatenation of
the value of NAME and the value of ADDRESS,
and is to be written as the ~g£Q~g§g_~gy.

68 IBM System/360 Model 20 DPS PL/I

SUMMARY OF RECORD I/O STATEMENTS AND
ASSOCIATED OPTIONS

This section provides a summary of the
allowed RECORD I/O statements, along with
their optLons, according to file
attributes.

~Qli~~~grlY~_lRRgr:

READ FILE (filename) INTO (variable) ;
READ FILE (filename) SET (pointer-variable) ;

WRITE FILE (filename) FROM (variable) ;
LOCATE variable FILE (filename)

SET (pointer-variable) ;

READ FILE (filename) INTO (variable) ;
READ FILE (filename) SET (pointer-variable) ;
REWRITE FILE (filename) ;
REWRITE FILE (filename) FROM (variable) ;

INQ~X~Q_2gQQ~N!I!1_INgQ!:

READ FILE(filename)INTO(variable)
[KEY (expression)];

WRITE FILE (file-name) FROM (variable)
KEYFROM(expression) ;

READ FILE (filename) INTO (variable)
[KEY (expression)];

REWRITE FILE (filename) FROM (variable);

READ FILE(filename)
INTO (variable) KEY (expression) ;

INQ~X~Q_QIR~~!_QRQ!!~:

READ FILE(filename)
INTO (variable)KEY (expression);

REWRITE FILE (filename)
FROM (variable) KEY (expression) ;

WRITE FILE(filename)
FROM (variable)KEYFROM (expression);

NOTES ON FILE ORGANIZATION AND ACCESS
METHODS USED WITH RECORD-ORIENTED
TRANSMISSION

The following points cover the salient
environmental factors in the use of RECORD
transmission:

1. §§QY~RII!1 specifies that the acces
slng, creation, or modification of the
records in a file is performed in a
particular order, that is, from the
first record of the file to the last
(or from the last to the first if the

BACKWARDS attribute has been
s~ecified).

2. QIR§~I specifies that the accessing or
modification of the records in a file
is performed in random order. The par
ticular record to be operated upon is
identified by a specified key.

3. A file of INDEXED organization that is
accessed, created, or modified by the
SEQUENTIAL access method has recorded
keys. The keys may be ignored while
accessing sequentially. The way to
create a file containing recorded keys
is as an INDEXED SEQUENTIAL OUTPUT
file. It is then written in INDEXED
organization and can later be accessed
by either the SEQUENTIAL or the DIRECT
method.

4. INDEXED SEQUENTIAL INPUT and INDEXED
SEQUENTIAL UPDATE files may be posi
tioned to a particular record within
the file by a READ operation that spe
cifies the key of the desired record.
Thereafter, successive READ statements
without the KEY option will cause
sequential reading to continue from
that point in the file. This kind of
accessing may be used only if the KEYED
attribute is specified in the file
declaration.

5. Existing records of a SEQUENTIAL UPDATE
file can be rewritten, modified, or
ignored, but the number of records can
not be increased or decreased. An
existing record in an UPDATE file is
replaced through the use of a REWRITE
statement.

6. The FROM option in a REWRITE statement
for a SEQUENTIAL UPDATE file must name
the variable from which the data is to
be rewritten.

7. If the READ INTO option is used with a
CONSECUTIVE UPDATE file and the next
REWRITE statement does not make use of
the FROM option, the record in the file
is not updated.

8. A WRITE statement adds a new record to
a file, while a REWRITE statement
replaces an existing record. Thus, a
WRITE statement may be used with OUTPUT
files and INDEXED DIRECT UPDATE files,
but a REWRITE statement may be used
with UPDATE files only. Moreover, for
INDEXED DIRECT UPDATE files, a REWRITE
statement uses the KEY option to iden
tify the existing record to be
rerlaced; a WRITE statement uses the
KEYFROM option, which not only speci
fies where the record is to be written
in the file, but also specifies an
identifying key to be recorded in the
file.

Data Transmission 69

Editing and Character-String Handling

The data manipulations that can be per
formed by arithmetic, comparison and the
concatenation ope~ations are extended in
PL/I by a variety of character-string
handling and editing features. These fea
tures are sfecified by data attributes,
statement options, built-in functions, and
the pseudo-variable SUBSTR.

Following is a general description of
each feature, along with illustrative
examples.

Editing by Assignment

The most fundamental form of editing per
formed by assignment is the conversion of
the value assigned to a field to a form
that agrees with the attributes of the
receiving field. By making the assigned
value conform to the attributes of the
receiving field, the type, precision, or
length of the assigned value may be
changed. Such alteration can involve the
addition of digits or characters to, and
the deletion of digits or characters from
the converted item.

A simple assignment statement can be used
for the type of "editing" described above.

Consider the following example:

DCL A DECIMAL FIXED (5,2),
PROD DECIMAL FLOAT (8);

A = PROD;

Assume that PROD has obtained a value in
a statement preceding the assignment state
ment. This value would then be stored in
PROD according to the attributes declared
for PROD. The assignment statement causes
the value of PROD to be converted to a
fixed-decimal value and to be stored in A.

When a character-string value is assigned
to a character-string variable, it is, if
necessary, truncated or extended on the
right to conform to the declared length of
the receiving variable. For example,

70 IBM System/360 Model 20 DPS PL/I

assume SUBJECT has the attribute
CHARACTER (10) , indicating a character
string of ten characters. Consider the
following statement:

SUBJECT = 'TRANSFORMATIONS';

The length of the string on the right is
fifteen characters; therefore, the string
will be truncated on the right so that the
last five characters are lost when it is
assigned to SUBJECT. This is eguivalent to
executing:

SUBJECT = 'TRANSFORMA';

If the assigned string is shorter than
the length declared for the receiving
character-string variable, the assigned
string is extended on the right with blank
characters. Assume that SUBJECT still has
the attribute CHARACTER (10). Then the fol
lowing two statements assign eguivalent
values to SUBJECT:

SO BJ ECT
SUBJECT

'PHYSICS' ;
, PHYSICSbbb' ;

The letter Q indicates a blank character.

In addition to the assignment statement,
PL/I provides two other ways of assignment
that involve editing. Both of them use GET
and PUT statements. In one of them actual
input and output operations are performed#
while in the other data movement is entire
ly internal.

STREAM I/O operations can be treated as a
form of assignment, although transmission
occurs between the internal and external
storage facilities of the computer.

stream-oriented I/O operations provide a
variety of editing functions that are app
lied when data items are read or written.
These editing functions are similar to
those of the assignment statement, exce~t
that any data conversion always involves
character type: conversion from character
type on input, and conversion to character
type on output.

!Qi~: Record-oriented I/O operations do
not cause any data conversion of items in a
logical record when it is transmitted.
Required editing of the record must be per-

formed within internal storage either
before the record is written or after it is
read.

With the STRING option in the GET and PUT
statements you can cause transmission of
data between main storage locations rather
than between the main storage and external
storage facilities. In GET and PUT state
ments, the FILE option, specified by FILE
(filename), is replaced by the STRING
option, as shown in the following general
format:

GET STRING (character-string-variable)
EDIT (da ta-list) (forma t-list) ;

PUT STRING (character-string-variable)
EDIT (data-list) (format-list);

The §~I_§!~!§mgn! specifies that data
items to be assigned to variables in the
data list are to be obtained from the spe
cified character-string variable. The R~I
§1~1gillglli specifies that data items of the
data list are to be assigned to the speci
fied character-string variable.

The STRING option is used with edit
directed transmission, which considers the
character-string variable to be a con
tinuous string of characters. This option
permits data gathering or scattering opera
tions to be performed with a single state
ment, and it allows stream-oriented proces
sing of character strings that are trans
mitted by record-oriented statements.

consider the following statement:

PUT STRING (RECORD) EDIT
(NAME,PAY#,HOURS*RATE)
(A (12) ,A (7) ,F (8» ;

This statement s}ecifies that the
character-string value of NAME is to be
assigned to the first (leftmost) 12 charac
ter positions of the string named RECORD,
and that the character-string value of PAY I
is to be assigned to the next seven charac
ter positions of RECORD. The value of
HOURS is then multi~lied by the value of
RATE, and the product is to be handled like
F-format outfut and assigned to the next
eight character positions of RECORD.

Freguently, it is necessary to read
records of different formats, each of which
carries with it an indication of its format
in the form of a code. The STRING option
provides an easy way to handle such
records; for example:

REA D FILE (INPT R) INTO (TEMP);
GET STRING (TEMP) EDIT (CODE) (F (1»

IF CODE ,=1 THEN GD TD OTHER_TYPE;
GET STRING (TEMP) EDIT(X,Y,Z) (X(1),

3F(10,4»;

The READ statement reads a record from
the infut file INPTR. The first GET state
ment uses the STRING option to extract the
code from the first byte of the record and
to assign it to CODE using an F-format
item. The code is tested to determine the
format of the record. If the code is 1,
the second GET statement then uses the
STRING option to assign the items in the
record to X, Y, and Z. Note that the
second GET statement specifies that the
first character in the string TEMP is to be
ignored (the X (1) format item in the format
list). Each GET statement with the STRING
option always specifies that the scanning
is to begin at the first character of the
string. Thus, the character that is
ignored in the second GET statement is the
same character that is assigned to CODE by
the first GET statement.

In a similar way, the PUT statement with
a STRING option can be used to create a
record within main storage. In the follow
ing example, assume that the file OUTPRT is
eventually to be printed.

PUT STRING (RECORD) EDIT
(NAME,PAYI,HOURS*RATE)
(X (1), A (1 2) , X (1 0) , A (7) , X (1 0) , F (8)) ;

WRITE FILE (OUTPRT) FROM (RECORD);

The X(1) in the format list of the PUT
state~ent specifies that the first charac
ter assigned to the character-string vari
able RECORD is to be a blank, which means
I1skip two lines", when the file eventually
is printed. Following that, the values of
the variables NAME and PAYI and of the ex
pression HOURS * RATE are assigned. The
format list specifies that ten blank chara
cters are to be inserted between NAME and
PAY# and between PAYI and the expression
value. The WRITE statement is used to
write the record into the file OUTPRT.

The PICTURE Specification

The editing capabilities associated with
data assignment, namely, conversion to a
Sfecified data tYIe with accompanying trun
cation and/or padding, can be extended by
use of the picture specification. A pic
ture specification consists of a sequence
of character codes (picture characters)
that specify editing operations to be per
formed on numeric character values. (A
detailed discussion of each picture charac
ter, together with examples of its use,
appears in Part II of this publication, in
the section Ri£1y£g=2£g£ifi£~1iQll_fh~£~£=
19£§. The following discussions are con-

Editing and Character-string Handling 71

cerned with general principles that govern
the use of the picture specification).

A picture specification is used to
describe numeric-character data, which is
data that-represents-a-numeric-value. It
is therefore also referred to as a numeric
character variable.

A picture specification is always en
closed in apostrophes and is used with a
PICTURE attribute in a DECLARE statement:

DECLARE PAYMT PICTURE '$999V.99';

In addition to the picture character 9
(which is used to represent a digit), pic
ture specifications can contain other pic
ture characters that are used to edit
numeric~character data. The general func
tions performed by these additional picture
characters are described in ~~i1igg
Ny~g£~£=£h££££1~£_Q£1£ below.

As opposed to character-string
variables, for which assignment is always
from left to right and padding and trunca
tion are on the right~ assignment to a
numeric-character variable depends upon the
location of the assumed decimal point (spe
cified by the picture character V). Values
assigned to numeric-character variables are
always £Qig1=~lign~~.

The value of a numeric-character variable
can be interpreted in two ways, either as
an arithmetic value or as a character
string value.

For a numeric-character variable
described with a picture specification that
contains only the picture character 9 (one
or more times), the arithmetic value is the
value expressed by the character string,
that is, a decimal integer.

If~ however, editing characters are
included in the picture specification, the
arithmetic value and the character-string
value are usually different. Editing
characters are actually stored internally
in the specified positions of the variable.
The editing characters then are considered
to be part of the character-string value of
the variable; they are not, however, a ~art
of its arithmetic value, which involves
only decImal-dIgIts~-the assumed location
of a decimal point, and the sign (if
presen t) •

If the value of a numeric-character
variable is assigned to another numeric
character variable or to a coded arithmetic
variable, only the arithmetic value is
assigned. In the assignment to a coded

72 IBM System/360 Model 20 DPS PL/I

arithmetic variable (or in the appearance
of a numeric-character variable in an
arithmetic-expression operation), conver
sion to coded arithmetic is performed.

If the value of a numeric-character
variable is assigned to a character-string
variable, no actual conversion is neces
sary, and any srecified editing characters
are included in the assignment.

An ordinary character-string variable
(specified with the CHARACTER attribute)
can be defined on a numeric-character vari
able, using the DEFINED attribute specifi
cation. Any reference to the character
string variable then is a reference to the
character-string value of the numeric
character variable. For example:

DECLARE A PICTURE '$999V.99',

A
C

B CHARACTER (7) DEFINED A,
C DECIMAL FIXED (5,2);

128.76;
A' ,

After the constant is assigned to A, its
arithmetic value is 128.76. This is the
value-that-Is-assigned-to-c (after conver
sion to internal coded arithmetic). The
£h£f££!~f=§!fin~_Y£lY§ of A, however, is
!l~~~IQi if it were assigned to a
character-string variable with a length of
7 or greater, this is the value that would
be assigned. The same value, $128.76, is
the value of B, since a character string
defined on a numeric-character variable
re~resents the character-string value of
the numeric-character variable.

No arithmetic variable (except another
identical numeric-character variable) can
be defined on a numeric-character variable
without causing an error.

The basic picture character of a numeric
character field is 9. Consider the follow
ing example:

DECLARE COUNT PICTURE '99999';

Although COUNT is a string of five
characters, it can only contain numeric
digits; it is a numeric-character variable
whose value can be interpreted as a five
digit unsigned fixed-point decimal integer.
Unless specified otherwise (with the ~ic
ture character V), a decimal point is
always assumed to be at the right end of a
numeric-character variable. Assume, for
example, that COUNT as declared above
appears in the following assignment
statement:

COUNT = 123.45;

When the assignment is performed, the
decimal point of the constant is aligned on
the assumed point declared for the numeric
character variable, and the two rightmost
digits are lost. Two zero digits are then
inserted on the left side. The effect of
the above assignment therefore, is equiva
lent to that of the following statement:

COUNT = 00123;

With the picture character V, you can
specify an assumed decimal point to be any
where in a numeric-character variable:

DECLARE TOTAL PICTURE '999V99';

Here the value of TOTAL is interpreted
as a string of five characters representing
a five-digit unsigned fixed-point decimal
number with two fractional digits. The
decimal point of a value assigned to TOTAL
will be aligned between the third and
fourth digit positions as specified by the
picture character V. consequently, the
following two assignment statements are
equivalent:

TOTAL
TOTAL

123;
123.00;

Note, however, that TOTAL contains only
five characters. The picture character V
does not specify an actual character posi
tion in the numeric-character field; it is
used only to align decimal points. And if
TOTAL were converted to a character string
and then printed, no decimal point would
appear in the printed field; its character
string value does not include a decimal
point .•

A picture specification can contain a
decimal-point insertion character (.). It
merely indicates that a point is to be
included in the character representation of
the value. Therefore, the decimal point is
part of the character-string value. It
does, however, not cause decimal-point ali
gnment during assignment, since it is not
part of the arithmetic value. Only the
picture character V causes alignment of the
decimal point. For example:

DECLARE SUM PICTURE '999V.99';

SUM is a nUmeric-character variable
representing numbers of five digits with a
decimal point assumed between the third and
fourth digits. The actual point specified
by the decimal-point insertion character is
not part of the arithmetic value; it is,
however, fart of the character-string
value. The decimal-point insertion charac
ter can appear on either side of the char
acter V.. (See Part II" Ri£ly!:g=
~Eg£ifi£~tiQg_~h~!:~£lg!:2).

The following two statements assign the
same value to SUM:

SUM 123;
SUM 123.00;

In the first statement, two zero digits
are added to the right of the digits 123.

Note the effect of the following
declaration:

DECLARE RATE PICTURE '9V99.99';

Let RATE be used as follows:

RATE = 7.62;

When this statement is executed,
decimal-point alignment occurs on the char
acter V and not on the decimal-point inser
tion,character that appears in the picture
srecification for RATE. If RATE were
interpreted as a character string and then
printed, it would appear as 762.00, but its
arithmetic value would be 7.6200.

Unlike the character V, which can appear
only once in a picture specification, the
decimal-point insertion character can
appear more than once; this allows digit
groups within the numeric-character data
item to be se~arated by points, as is com
mon in Dewey decimal notation and in the
numeric notations of some European
countries.

In addition to the decimal-point inser
tion character, PL/I provides two other
insertion characters: comma (,) and blank
(8), which are used in the same way as the
decimal-point insertion character. Consid
er the following statements:

DECLARE RESULT PICTURE '9.999.999,V99';
RESULT = 1234567;

The character-string value of result
would be '1.234.567,00'.

Note that decimal-point alignment occurs
before the two rightmost digit positions as
sfecified by the character V. If RESULT
were assigned to a coded arithmetic field,
the value of the data converted to arith
metic would be 1234567.00.

Besides supplying insertion characters,
PL/I also provides rel1acement characters
that allow zeros in specified positions to
be replaced by blanks or asterisks. One
such character is the character Z, which is
used to replace leading (leftmost) zeros
with blanks:

DECLARE TALLY PICTURE 'ZZZ9';
TALLY = 0012;

Editing and Character-string Handling 73

The character-string value of TALLY is
equivalent to the character-string constant
'bb12' {where the letter b indicates a
blank character}. -

other picture characters control the
appearance of signs and the currency symbol
($) in specified positions of the numeric
character data item. For example, a dollar
sign can be inserted to the left of a
numeric-character item, as indicated in the
following statements:

DECLARE PRICE PICTURE '~99V.99';
PRICE = 12.45;

The character-string value of PRICE is
equivalent to the character-string constant
'$12.45'. Its arithmetic value, however,
would be 1245 with a l-recision of (4,2), or
12.45.

The picture specification can also spe
cify floating-point formats. These formats
are discussed in Part II, Picture
~£g£iii£~iiQn_~h~£~£1g£§· --------

The principal purpose of a picture specifi
cation is to edit data that is to be
printed. For example, in a payroll appli
cation, the digits representing an emp
loyee's salary might be 0017250. These
digits would be much more meaningful on a
paycheck in an edited form, such as $**172.
50; the asterisks might be used to disco
urage an attempt to alter the amount. This
could be done, for example, with the speci
fication '$****9.99'.

If sfecified in an arithmetic expres
sion, the value of a numeric-character data
item is converted to coded arithmetic.
Note, however, that this conversion will
require the compiler to insert extra cod
ing. Note also that any editing characters
in the picture specification will be disre
garded in the conversion. Consider the
following examl-le:

DECLARE RESULT FIXED DECIMAL (3,2),
COST PICTURE '$9V.99';

COST = 1.10;
RESULT = 2 * COST;

74 IBM System/360 Model 20 DPS PL/I

The character-string value of COST is
$1.10. The editing characters ($ and .)
are present in the item. However, when the
expression 2 * COST is evaluated, the
arithmetic value of COST is converted to
coded arithmetic. When the value of the
expression is assigned to RESULT, the value
of RESULT will be 2.20 (i.e., 220 with pre
cision (3, 2)). If RESULT is printed,
neither the $ symbol nor the decimal point
will be printed.

Built-In Functions for Character-String Handling

PL/I provides a number of built-in func
tions for character-string handling that
add power to the string-handling facilities
of the language. One of these functions,
SUBSTR, can also be used as a pseudo
variable. Following are brief descriptions
of the functions (more detailed descrip
tions ~££g~£_in_~~£1_JIL_ggb11~ln_rgn£iiQn§
~ng_1hg_~§gygQ=Yg£ig~1~_2Qg~!R) .

The CHAR built-in function converts a
specifiea-aata-item-to-a-character string.
The built-in function allows you to sl-ecify
the length of the converted string and thus
override the length that would result from
the standard rules of data conversion.

The ~~g~IR_Qgili~in_tgn£liQn, which can
also serve as a £§ggg2~y~£i~Qlg represent
ing a receiving field, allows a specific
substring to be extracted from (or assigned
to, in the case of a pseudo-variable) a
sl-ecified string value.

The tlJ~tl_Qgil1=in_tgn£1ign provides a
string of a specified length that consists
of releated occurrences of the highest
character in the collating sequence. For
the IBM System/360, the character is hexa
decimal FF.

The bQR_QYil1=in_tYn£1iQn provides a
string of a specified length that consists
of repeated occurrences of the lowest char
acter in the collating sequence. For the
IBM System/360, the character is hexa
decimal 00.

Data can be referred to in a procedure only
if the names identifying that data are
known within that procedure, that is, if
the procedure lies within the scope of the
names. The scope of a name is usually the
procedure in which it is declared. The
scope can, however, be extended in one of
two ways:

• by specifying the ~KXgRN!1_~11li~Y1~ for
the name, or

• by E~§§ing the name as an ~£~Q~~rr1 to a
procedure that is to be activated (or
invoked) •

The ty[e of argument you can pass to an
invoked procedure may either be a Y~£i~~l~
n~ID~ or an ~~E~~§§iQn in Model 20 PL/I.
File names, labels, and entry names cannot
be passed as arguments.

Arguments are passed in a parenthesized
list, called an ~~gQill~n1_!i21, contained in
the invoking statement, which may be a CALL
statement or a function reference. Dif
ferent names or expressions in an argument
list are separated by commas.

Arguments ~assed to an invoked procedure
must be accepted by that procedure. This
is done by the explicit declaration of one
or more E~£~ill~1~£§ in a parenthesized list
in the PROCEDURE statement of the invoked
procedure. A parameter is a name used
within the invoked procedure to re'present
another name or expression that is passed
to the procedure as an argument. Each
parameter in the E~£~mg1g£_!i§! of the
invoked procedure has a £Q££~§EQng!rrg argu
ment in the ~£gQill~ni_!i§! of the invoking
statement. This correspondence is from
left to right; the first argument corres
ponds to the first parameter, the second
argument corresponds to the second paramet
er, and so forth. In general, any
reference to a parameter within the invoked
procedure is treated as a reference to the
corresponding argument. The number of
arguments and parameters must be the same.
Note that, although an argument and the
corresponding parameter refer to the same
storage area, they may have different
names.

The example below illustrates how para
meters and arguments may be used:

Arguments and Parameters

ALPHA: PROCEDURE;
DCL BETA ENTRY;
DCL NAME CHAR (20),

ITEM CHAR (5);

CALL BETA (NAMTI, ITEM)

END;

BETA: PROCEDURE (FIELD, OBJECT);
DCL FIELD CHAR (20),

OBJECT CHAR (5);

PUT FILE (OUT) EDIT (FIELD, OBJECT)
(A (20), X (10), A (5» ;
END;

In the procedure ALPHA, NAME is declared
as a string of 20 characters, ITEM as a
string of five characters. The CALL state
ment in ALPHA invokes the procedure BETA,
and the parenthesized list included in this
procedure reference contains the two argu
ments being passed to BETA. The PROCEDURE
statement defining BETA declares two ~ara
meters, FIELD and OBJECT. When BETA is
invoked, NAME is associated with FIELD and
ITEM with OBJECT. Each reference to FIELD
in BETA is treated as a reference to NAME,
and each reference to OBJECT is treated as
a reference to ITEM. Therefore, the PUT
statement causes the values of NAME and
ITEM to be written in the file named OUT.

NQ!~: The entry name of the invoked proce
dure (in the example, BETA) must appear in
a DECLARE statement with the ENTRY attri
bute in the invoking procedure. Exce~ted
from this rule are built-in functions,
which are discussed later in this section.

The passing of arguments usually
involves the passing of names and not mere
ly of the values represented by these
names. storage allocated for a Y~£is~!g
before it is passed as an argument is not
dUflicated in the invoked procedure. Any
change of value specified for a parameter
in the invoked procedure actually is a
change in the value of the argument in the
invoking procedure. Such changes remain in
effect when control is returned to the
invoking procedure.

A parameter can be thought of as
irrgi£g£1!Y representing the value that is
gi£g£!!y represented by an argument. Thus,

Arguments and Parameters 75

since both the argument and the parameter
represent the same value, the attributes of
a parameter and its corresponding argument
must be the same. For example, the program
is in error, if a parameter has the attri
bute FIXED and the corresponding argument
has the attribute FLOAT.

A name is ex~licitly declared to be a
parameter by its apFearance in the paramet
er list of a PROCEDURE statement. However,
its attributes, unless the default attri
butes apply, must be explicitly stated
within that procedure in a DECLARE
statement.

Through the specification of arguments
and parameters, Ef2f§gYf§§ and tYnfiiQll§
can be used throughout a program to perform
the same operations ulon many different
data items whose names may be known only
within the invoking procedure.

The difference between a normal proce
dure and a procedure referred to as a func
tion is that a function usually returns a
value to the invoking procedure, whereas a
normal procedure does not return any value
to the invoking procedure. Functions and
procedures are invoked by function and pro
cedure references, respectively, that may
or may not contain arguments.

NQi§: An exception is the main procedure
of a program which initially is invoked by
the system and cannot be called by any
other procedure in a program.

Passing Arguments to Procedures

Arguments are passed to a procedure in the
invoking £~11_§i~i~m~ni, which is known as
EfQ£~gYf§_f§!§f2nf~' The general format of
the procedure reference is as follows:

CALL entry-name(argument
[, aryument. ' ••]) ;

Whenever a procedure is invoked, the
arguments in the invoking statement are
associated with the parameters of the entry
point, and control is then passed to the
invoked procedure. The invoked procedure
is thus activated, and execution begins.

Upon termination of an invoked proce
dure, control normally is returned to the
invoking procedureo An invoked procedure
can be terminated in any of the following
ways:

1. Control reaches a GOTO statement that
transfers control to an external label.

2. Control reaches the final END statement
of the procedure. Execution-of-thIs---
statement causes control to be returned

76 IBM System/360 Model 20 DPS PL/I

to the first executable statement fol
lowing the statement that invoked the
procedure. This is considered to be
the normal return.

3. Control reaches a RETURN statement in
the invoked procedure~--ThIs-causes the
same normal return as is caused by the
END statement.

4. An error condition encountered in an
invoked procedure abnormally terminates
execution of that procedure and of the
entire program if the error cannot be
recovered.

The following example illustrates how an
invoked procedure interacts with the proce
dure that invokes it:

A: PROCEDURE;
DCL READCM ENT1Y;
DCL RATE FIXED (10,3),

TIME FIXED (5,2),
DISTANCE FIXED (15,5);

CALL READCM (RATE, TI ME, DIS T ANCE) ;

END;

READCM: PROCEDURE (.W, X, Y) ;
DCL W FIXED (10,3),

X FIXED (5,2),
Y FIXED (15,5);

GET FI LE (I NPUT) EDIT (W, X, Y)
(F (10, 3) , F (5, 2) , F (15,5))

Y = W * X;
IF Y > 0 THEN RETURN;
ELSE PUT FILE (OUTPUT) EDIT

(' ERROR READCM') (A (12» ;
END;

The arguments RATE, TIME, and DISTANCE
are passed to the parameters W, X, and Y.
Consequently, in the invoked procedure, a
reference to W is the same as a reference
to RATE, X the same as TIME, and Y the same
as DISTANCE. This means that any change to
the values of W, X, or Y in procedure
READCM is a change to the values of RATE,
TIME, or DISTANCE, respectively, in proce
dure A.

Passing Arguments to Functions

A function is a procedure that usually
requires arguments to be passed to it when
it is invoked. Unlike a procedure, which
is invoked by a CALL statement, a function
is invoked by the appearance of the func-

tion name (and associated arguments) in an
expression. Such an appearance is called a
!ygg~iQg_£~!~£~g£~. Like a procedure, a
function can operate upon the arguments
passed to it and upon other known data.
But unlike a procedure, a function is wri t.
ten to compute a §illg!~_!!!y~ which is
returned, together with control, to the
point of invocation, the function
reference. This single value can be an
!£i~hm~~ig, gh!£~g~~#~§~£igg, £i£~y£g, or
£Qig~g£_!!lY~. An example of a function
reference is contained in the following
procedure:

MAINP: PROCEDURE OPTIONS (MAIN)
DECLARE SPROD ENTRY;

x Y ** 3 + SPROD (A, B, C) ;

END;

In this Frocedure, the assignment
statement

x = Y ** 3 + SPROD (A,B,C);

contains a reference to a function called
SPROD. The parenthesized list following
the function name contains the arguments
that are being passed to SPROD. Assume
that SPRODhas been defined as follows:

S PROD: PROCEDURE (U, V, W) ;

IF U>V + W

END;

T HEN RETURN (0);
ELSE RETURN (U*V*W);

When SPROD is invoked by MAINP, the
arguments A, B, and C are associated with
the parameters U, V, and W, res~ectively.
Since attributes have not been explicitly
declared for the arguments and parameters,
and neither their names nor the name of the
invoked function (SPBOD) start with any of
the letters I through N, the default attri
butes of FLOAT DECIMAL (6) are applied to
each argument and parameter. Hence, the
attributes are consistent, and the associa
tion of the atguments with the parameters
produces no error.

During the execution of SPROD, the IF
statement is encountered and a test is
made. If U is greater than V + W, the sta
tement associated with the THEN clause is
executed; otherwise, the statement asso
ciated with the ELSE clause is executed.
In either case, the executed statement is a
~ETURN statement.

The R~!QRli_§~~igmggl usually terminates
a function and returns control to the
invoking procedure. Its use in a function
differs somewhat from its use in a proce
dure; ig_2_fYll£liQg, not only does it
return control, but it also returns a value
to the point-of invocation. The general--
format of the RETURN statement, when it is
used in a function, is as follows:

RETURN (expression);

The expression must be present and must
represent a §igglg_!~lY~.

It is this value that is returned to the
invoking procedure at the point of invoca
tion. Thus, for the above example, SPROD
returns either 0 or the value represented
by U * V * W, along with control to the
invoking expression in M~INP. The returned
value then effectively replaces the func
tion reference, and evaluation of the
invoking expression continues.

You may declare the attributes of the value
to be returned by a function in two ways:

2. You can declare them g~E!igiilY follow
ing the parameter list in the function
PROCEDURE statement.

Note that the value of the expression in
the RETURN statement is converted within
the function, wherever necessary, to con
form to the attributes specified by one of
the two methods above.

In the previous examples of MAINP and
SPROD, the PROCEDURE statement of SPROD
contains no attributes declared for the
value it returns. The default attributes
FLOAT DECIMAL(6) are therefore applied,
since the name of the name of the invoked
procedure (SPROD) does not start with any
of the letters I through N. Since FLOAT
DECIMAL (6) are the attributes that the
returned value is expected to have, no con
flict exists.

The following example gives you an illu
stration of how you can declare attributes
for the returned value in the PROCEDURE
statement. Assume that the PROCEDURE sta
tement for SPROD has been specified as
follows:

SPROD: PROCEDU RE (U, V ,W) RETU RNS (FIX ED
DECHIAL) ;

With this declaration, the value
returned by SPROD will have the attributes
FIXED and DECIMAL. These attributes differ

Arguments and Parameters 77

from the ones that would be assigned by
default. To avoid possible error condi
tions, you would have to specify this dif
ference in the invoking as well as the
invoked procedure. You can do this with
the E~!~BN2_~ii£iQYi~.

The RETURNS attribute has to be specified
when a function returns a value that has
attributes other than the default attri
butes FLOAT DECIMAL (6). It appears in the
invoking as well as the invoked procedure.

For the inYQ~ing_££Qfg~y£g, you specify
it in a DECLARE statement which must con
tain the gni~Y_n~!~ of the function to be
invoked and an attributes list. The attri
butes list speciiIes-the-attributes of the
value returned by that function. In the
invoking procedure the RETURNS attribute
appears in the following general form:

DECLARE entry-name RETURNS
(attributes-list) ;

The RETURNS attribute specifies that
within the invoking procedure the value
returned from the named function is to be
treated as though it had the attributes
given in the attributes list. The word
treated is used because no conversion is
performed in an invoking procedure upon any
value returned to it. Therefore, if the
attributes of the returned value do not
agree with those in the attributes list of
the RETURNS attribute, an error will pro
bably result.

Thus, in order to specify to the
compiler that in MAINP the value returned
by SPROD is to be handled as a FIXED DECI
MAL value, the following declaration must
be given within MAINP:

DECLARE SPROD [ENTRY] RETURNS (FIXED
DECIMAL) ;

The ENTRY attribute mayor may not be
specified together with the RETURNS
attri.bute.

For the in!Q~g~_E'Q£g~y£g, you have to
specify the RETURNS attribute in the PROCE
DURE statement, following the parameter
list. In the invoked procedure, the
RETURNS attribute appears in the following
general form:

entry-name: PROCEDURE (parameter-list)
RETURNS (attributes-list);

The RETURNS attribute in the PROCEDURE
statement of the invoked procedure speci
fies that the value returned has to have
the attributes specified in the attributes
list. Thus, the PROCEDURE statement of

78 IBM System/360 Model 20 DPS PLII

SPROD would have to look as already shown
above:

SPROD: PROCEDURE (U, V, W) RETURNS (FIXED
DECIMAL) ;

~Q~£lY2iyglY, let us state again lihgn
and where the RETURNS attribute has to be
specified. It has to be specified

a) in the inYQ~ing_E~Q£gQy£g in the DECLARE
statement together with the entry name
of the invoked procedure and the attri
butes list for the value to be returned;

b) in the inYQ~g~_E£Q£ggy£~ (which can only
be a function) in the PROCEDURE
statement.

It is important to note some of the
things that are implied in the above dis
cussion. Principally, you should remember
that during compilation of the invoking
procedure, there is no way for the compiler
to check a function procedure to determine
the attributes of the value it returns. In
the absence of eXflicit information, the
compiler can only assume that the values
returned will have the default attributes
DECIMAL FLOAT (6) unless the initial letter
of the entry name is I through N, in which
case the RETURNS attribute has to be speci
fied. No conversion is performed for
values returned by a function. Therefore,
the attributes of the value to be returned
must be the same in the invoking as well as
in the invoked procedure. The RETURNS
attribute must be declared for a function
that returns any value with attributes not
consistent with default attributes.

Similar to function procedures which you
can write yourself, 1S a comprehensive set
of ire-defined functions called Qyill=in
i!!nfi:h2n2·

The set of built-in functions is an
intrinsic part of PL/I. It includes not
only the commonly used arithmetic functions
but also other necessary or useful func
tions related to language facilities, such
as functions for manipulating character
strings. Built-in functions are invoked
the same way programmer-defined functions
are invoked. Like programmer-defined func
tions they can only return glgillgnl_Y~lyg§
in Model 20 PL/I.

liQig: Some built-in functions actually are
comfiled as in=ling_£Q~g (that is, as
though the code of the built-in function
actually appeared within the source pro
gram) rather than as lrocedure invocations.
Built-in functions can only be referred to
in a source program by function references.

Neither the ENTRY attribute nor the
RETURNS attribute can be specified for any
built-in function name. The name appearing
in a function reference is recognized
without the need for any further identifi
cation; attributes of values returned by
built-in functions are known by the
compiler.

Built-in function names are PL/I key
words. They are not reserved. You can use
any built-in-function name in your program
as a name to refer to any data you have
defined.

The ENTRY attribute specifies that the
associated identifier is an gnl£Y_ll~mg.

The general format of the ENTRY attri
bute is as follows:

DECLARE entry-name ENTRY;

You mg§1_§£~£1!Y the ENTRY attribute for
each entry name appearing in

b) a !yngli2n_fg!gfgngg referring to a
function which returns a value with the
default attributes FLOAT DECIMAL(6),
that is, a function for which the
RETURNS attribute has not been
specified.

You mg§1_n21_§Eggi!y the ENTRY attribute
for any hgil1=in_fyngli2n.

Consider the following example, which
illustrates the use of the ENTRY and
RETURNS attributes:

A: PROCEDURE;
DCL B ENTRY,

FUNCTN ENTRY,
C RETURNS (FIXED DECIMAL);

DCL V DECIMAL FIXED (4),
W DECIMAL FIXED (3);

CALL B;
X = FUNCTN (Y, Z)

U = C (V, W) ;
D = SQRT (U) ;

END;
B: PROCEDURE;

END;
FUNCTN: PROCEDURE (A,B) ;

RETURN (A ** B);
END;

C: PROCEDURE (E, D) RETURNS (FIXED DECIMAL);
DCL E FIXED DECIMAL (4),

D FIXED DECIMAL (3);

RETURN(E * D);
END;

In this example, the procedure A invokes
three other procedures (B, FUNCTN, and C)
and the built-in function SQRT. B is a
normal procedure which returns control to A
when its END statement is executed. No
arguments are passed to it, and no values
are returned. Only the ENTRY attribute has
to be specified for it. FUNCTN is a func
tion which is referred to in a function
reference (X = FUNCTN (Y, Z)). Since no
attributes are declared for the arguments
and their corresponding parameters, and
their names do not start with any of the
letters I to N, they are assumed to have
the default attributes. Only the ENTRY
attribute has to be specified. The func
tion C (invoked in the function reference U
= C (V, W» returns val ues not having the
default attributes. This means, that the
RETURNS attribute has to be specified in
both the invoking procedure (A) and in the
invoked function (C). The ENTRY attribute
mayor may not be specified in the invokin~
procedure. The built-in function SQRT must
not be declared with any attributes; it is
recognized by the compiler as a built-in
function; the attributes of the value
returned by SQRT are known to the compiler.

Relationship of Arguments and Parameters

When a function or procedure is invoked, a
relationship is established between the
arguments of the invoking statement or ex
pression and the farameters of the invoked
procedure. This relationship is dependent
upon whether or not ~Ymmy_~£~gmgnl§ are
created.

In the introductory discussion of arguments
and parameters it was pointed out that the
name of an argument and not its value is
passed to a procedure or function. How
ever, there are times when an argument has
no name. A constant, for example, has no
name; nor does an operational expression.
But the mechanism that associates arguments
with parameters cannot handle such values

Arguments and Parameters 79

directly. Therefore, the compiler must
allocate storage for such values and assign
an internal name for each. These internal
names are called ggm~y_~£gg~§nt§. You can
not access these dummy arguments in the
compiler, but you should be aware of their
existence because any change to a parameter
will be reflected only in the value of the
dummy argument and not in the value of the
original argument from which it was
constructed.

A dummy argument is always created for
the following cases:

1. If an argument is a constant. For
E!xample:

CALL X{7.5}

2. If an argument is an expression involv
ing operators. For example:

CALL X (A+B) ;
CALL X(+A);

3. If an argument is itself a function
reference containing arguments. For
example:

CALL X (S IN(Y)) ;

4. If an argument is an eXfression in
parentheses. For example:

CALL X ((A)) ;

You may enclose an argument in paren
theses, as shown in this example, if
you want to pass an argument to a pro
cedure, but do not want to change the
value of the argument in the invoked
procedure.

In all other cases, the argument name is
passed directly. The parameter becomes
identical with the lassed argument; thus
changes to the value of a parameter will be
reflected in the value of the original
argument only if a dummy argument is not
created.

80 IBM System/360 Model 20 DPS PL/I

In general, an argument and its correspond
ing parameter may be of any type, with the
following g~fgEiiQn§: file names, entry
names and labels. An argument may be a
pointer provided that the corresponding
parameter is also a pointer; it may be a
character string provided that the corres
ponding parameter is also a character
string, etc. However, not all argument/
parameter relationships are so clear-cut.
Some need further definition. Such cases
are given below.

If a parameter is an ~££~Y_n~~g, the
argument must be an §~£~Y_n~!g. The data
attributes of the argument must agree with
those of the parameter. The bounds of the
array argument must agree with the bounds
of the array parameter.

If a parameter is a §t£gfig£g_n~ill§, the
argument must be a §t£Yfty£g_n~!§. The
relative structuring of the argument and
the parameter must be the same; the level
numbers need not be identical. The data
attributes of the elements of the structure
argument must match those of the corres
ponding elements of the parameter.

If a parameter is an §1§illgnt_Y~£i~Q1g,
i.e., a variable that is neither a struc
ture name nor an array name, the argument
must be an gXL~g§§iQn. If the argument is
a §~Q§f£iEt§Q_~~~iE~l§, the subscripts are
evaluated before the subroutine or function
is invoked and the name of the specified
element is passed.

A parameter has no storage class and
therefore cannot be declared with any
storage-class attribute. All arguments
must be either STATIC or AUTOMATIC; they
cannot be BASED.

Note that the scale and precision of an
arithmetic constant passed as an argument
must be the same as that of its correspond
ing parameter. Similarly, the length of a
character-string constant passed as an
argument must be the same as that of its
corresponding parameter.

When a PL/I program is executed, a large
number of exceptional conditions are
monitored by the system. These conditions
are automatically detected whenever they
arise. Exceptional conditions may be
g~£Q~§, such as underflow or an input/
output transmission error, or they may be
£QUQi1iQU§_1hg1_g£~_g!Eg£1gQ but infre
quent, such as the end of file or the end
of a page when output is being printed.

Each of the conditions for which a test
may be made has been given a name in PL/I.
You can use these names to control the
handling of exceptional conditions. The
condition names are keywords of the PL/I
language~ For keywords and descriptions of
all exceptional conditions, see Part II
QIL£QUQi1iQU§ •

Enabled Conditions and Established Action

A condition that can occur and cause an
interrupt and that is being monitored by
the system, is said to be gn~QlgQ. Any
action specified to take place when such an
enabled condition arises and causes an
interrupt, is said to be ~§1g£li§h~Q.

The conditions are checked automatical
ly, and when they occur, the system will
take control and perform some standard
action specified for the condition. All
conditions are enabled by default, and the
standard system action is established for
them.

The most common condition is the ERROR
condition. A large number of different
errors may cause this condition to arise.
standard system action for the ERROR condi
tion is to terminate the program.

You may slecify in your programs whether
or not you want some conditions to be
enabled, that is, whether or not you want
then to cause an interrupt when they arise.
If a condition is gi§~Qlgg, occurrence of
the condition will not cause an interrupt.

All infut/output conditions and the
ERROR conditions are always enabled and
cannot be disabled. All of the computa
tional conditions may be enabled or dis
abled. You have to explicitly disable them
if you do not want them to cause an inter
rupt when they occur.

Exceptional Condition Handling

Condition Prefixes

Enabling and disabling can be specified for
certain conditions by a condition prefix.
A condition prefix is a list of one or more
condition names, enclosed in parentheses
and separated by commas, and prefixed to a
E£Q£gQy£g=§1~1g~gll1_1aQgl by a colon. The
condition prefix always precedes the
procedure-statement label. A condition
name in a prefix list indicates that the
corresponding condition is enabled within
the scope of the frocedure to whose label
it is prefixed. The condition names can be
preceded by the word NQ, without a separat
ing blank or other delimiter, to indicate
that the corresponding condition is
Qi§~QlgQ·

Condition prefixes are effective during
the execution of all statements within one
procedure including the END statement.
However, they are not in effect during the
execution of any other procedures which may
be invoked by that procedure.

Consider the following example:

(NOCONVERSION,NOFIXEDOVERFLOW):
A: PROCEDURE;

CALL B;

END;
(NOCONV ERS ION) :
B: PROCEDURE;

END;

In this exam~le, the condition prefix
NOCONVERSION disables that condition for
procedure A; it is repeated for procedure
B. Although B is invoked by A, the condi
tion prefixes have to be repeated if they
are to apply to B as well. The condition
prefix NOFIXEDOVERFLOW specifies that the
condition FIXEDOVERFLOW is to be disabled
in A, that is, no interrupt is to occur
when that condition arises; however, durin9
execution of B, FIXEDOVERFLDW (as well as
all other conditions except CONVERSION) is
enabled by default, since NDFIXEDOVERFLOW
is not specified in the condition-prefix
list to B.

Exceptional-Condition Handling 81

The ON-Statement

A system action exists for every condition,
and if a condition arises, the system
action will be performed unless an ON sta
tement has been executed specifying an
alternative action for that statement.
with the ON statement you can establish the
action to be taken when an interrupt
results from an exceptional condition that
has been enabled, either by default or by a
condition prefix.

!2!~: The action specified in an ON state
ment will not be executed if the condition
has been disabled in a condition £Egti!.

The form of the ON statement is:

ON condition-name {SYSTEM;ION-unit}

(For a full description, see Part II,
2!!!!~!!!§ml~) .•

The keyword SYSTEM specifies standard
system action whenever an interrupt occurs:

ON FIXEDOVERFLOW SYSTEM;

It reestablishes standard system action
for a condition for which some other action
has previously been established. In the
statement

ON FIXEDOVERFLOW GO TO ERROR;

GOTO ERROR is the ON-unit. You can use the
ON-unit to specify-~~-~IIernative action to
be taken whenever an interrupt occurs. In
the above example, ERROR is the label of a
statement or the first of several state
ments that specify the action to be taken,
for example to try to recover from the
error or to register the error and continue
processing.

An ON-unit must either be the ngll_21!!=
tement or a GO TO statement. A null state
me~t-effectively causes the interrupt to be
ignored and, in general, causes control to
be returned to the point logically follow
ing the point at which the interrupt
occurred. Thus, the effect of a null ON
unit is to say: "When an interrupt occurs
as a result of this condition, do nothing
except continue". The above example with a
null statement would look as follows:

ON FIXEDOVERFLOW;

T he semicolon (;) is the null sta temen t.

The use of the null statement is not the
same as disabling a condition, for two
reasons: a) a null statement can be speci
fied for any condition (except ENDFILE,
KEY, and CONVERSION), but not all condi
tions can be disabled; b) disabling a con-

82 IBM System/360 Model 20 DPS PL/I

dition, if possible, may save time by
avoiding any checking for this condition.
If a null ON-unit is specified, the system
must still check for the condition,
transfer control to the ON-unit whenever an
interrupt occurs, although, in the ON-unit,
no action other than returning control is
taken.

li21~: The specific point to which control
returns from a null ON-unit varies for dif
ferent conditions. In most cases, control
returns to the point that immediately fol
lows the operation in which the condition
arose. The section ON-Conditions in Part
II gives the point of-return-for-all condi
tions for which a null ON-unit can be spe
cified. Return from a null ON-unit is a
normal return.

If an ON-unit is a GO TO statement. con
trol is, when an interrupt occurs for the
sIecified ON-condition, transferred to the
label specified in the GO TD statement, as
described above. Linkage to the point at
which the interrupt occurred is thus lost
and a normal return cannot occur.

The ON-statement specifies that a specific
action is to be taken for a named condi
tion, that is, the ON-statement associates
a condition with a specific action. Once
this association is established, it remains
in effect until it is overridden by another
ON-statement specifying the same condition,
or until the procedure in which it appears
is terminated.

An §§1!!£li§hg1_inlgEEg£1_!!£liQll (estab
lished by an ON-statement, not a condition
prefix) passes from a procedure to any pro
cedure it invokes, and the action remains
in force for all subsequently activated
procedures unless it is overridden by the
execution of another ON-statement for the
same condition. If it is overridden, the
new action, extablished in an invoked pro
cedure, remains in force only until that
procedure is terminated. When control
returns to the activating procedure, all
interrupt actions that were established at
the point of invocation, are reestablished.
This makes it impossible for an invoked
procedure to alter the interrupt action
established for the invoking procedure.

If more than one ON-statement for the
same condition appears in the same proce
dure, each subse1uently executed ON
statement overrides the previously estab
lished action. Re-establishment is only
possible through the execution of another
ON-statement (for example, by transferring
control to an overridden ON-statement).

Consioer the following example:

A: PROCEDURE;
ON FIXEDOVERFLOW GOTO A_ERR;

CALL B;

END;
B: PROCEDURE;

ON FIXEDOVERFLOW GOTO B_ERR;

CALL C;

END;
C: PROCEDURE;

ON FIXEDOVERFLOW GOTO C_ERR;

ON FIXEDOVERFLOW GOTO D_ERR;

END;

The ON-statement in proceoure A estab
lishes the action to be taken for the
FIXEDOVERFLOW error occurring within A.
(Note that FIX3DOVERFLOW is enableo by
oefault ana therefore ooes not require a
conoition prefix to enable it).

The action specification maoe in A is
carrieo over into proceoure B, because B is
invoked by A. Within B, however, the
action established in A is overridden by
another action specification. When proce
oure c is calleo, the action established in
B for FIXEDOVERFLOW remains active until it
is overridden by the first action specifi
cation which, in turn, is overridoen by the
second action specification in procedure B.

When C returns control to B, the action
SfBcifieo for the FIXEDOVERFLOW error in B
is re-establisheo (ON FIXEDOVERFLOW GOTO
B_ERR;). When B returns control to A, the
action specified in A is re-established
(ON FIX EDOV ERFLOW GOTO A ERR;). Standaro
system action is taken for all other conoi
tions enableo by default.

Exceptional-conoition Handling 83

Based Variables and Pointer Variables

For each identifier you use in your PL/I
programs, the compiler must be able to
determine the associated attributes in
order to generate correct code.

In addition to determining the type of
operation, the compiler must be able to
~g1gf!!ng_!hg_~~~Ig§§ of each operand. In
some cases, the compiler must generate code
that will determine the address when the
program is executed. The storage class of
a variable determines the way in which the
address is obtained. There are three dis
tinct classes:

1. §1!1i£_§1Q£!gg: The address of an
identifier is determined when the pro-
9ram is loaded.

2. AY!Qm~!if_~!QI~gg: The address is
determined upon entry to the procedure.

3. ~!§g~_~1QE!gg: The address is con
tained in a pointer variable. The con
tents of this pointer variable may
change during program execution, so
that the same identifier can have dif
ferent addresses at different times.

It is the third class, based storage,
with which this section is concerned.

Pointer Variables

A s~ecial type of variable, the pointer
variable, is used to locate data in
storage; that is, the data in storage is
"pointed to" by the pointer variable. Con
sequently, a pointer variable may be
thought of as an ~gg~g§§.

Based Variables

A based variable is a ~g§££iE1iQll_Qi_~~1~
that can be applied to different locations
in storage, depending upon the value of the
associated ~ointer variable.

Based variables and pointer variables
are used with ~g£g~~=gfignlg~_hnEg1L9Y1£Y1.
They allow you to operate upon records in a
buffer without allocating storage in addi
tion to the buffers.

1. explicitly specify the address of a
record to be operated upon in the buff
er, and

84 IBM System/360 Model 20 DPS PL/I

2. locate, in the buffer, the record that
is to be transmitted by record-oriented
input/outfut.

with the Q~2g~_Y~£!!Q!g, you describe
the record pointed to by the pointer vari
able; that is, the record in the buffer
pointed to by the pointer variable is
treated as if it had the attributes of the
associated based variable:---------

When a based variable is declared, it
must be associated with a pointer that has
been explicitly declared. The form of the
declaration is:

DECLARE identifier BASED
(pointer-variable) ;

DECLARE pointer-variable POINTER;

For example:

DECLARE P POINTER;
DECLARE A BASED (P)

Whenever a reference is made to A, the
address of A will be the value of the asso
ciated pointer variable, P in this case.
For example:

A = A + 1;

In this statement, the pointer used to
determine the address of A will, in both
cases, be P.

So long as an associated pointer vari
able has a valid value, any reference to
the based variable will always refer to the
location in storage identified by the
pointer variable.

A restriction imposed by the Model 20
PL/I compiler is that the fointer name used
in the declaration of a based variable must
be an unsubscripted, unqualified element
variable. Pointer variables must not be
elements of structures nor of arrays.

Values of Pointer Variables

Before a reference can be made to a based
variable, a value must be given to the
pointer associated with it. This can be
done in any of four different ways:

1. with the SET option of a READ
statement,

2. with the SET option of a LOCATE
sta temen t,

3. by assignment of the value of another
pointer,

4. by assignment of the value returned by
the ADDR built-in function.

:gJ1l!Q_2:!!Q_§J1!

READ FILE (file-name) SET (pointer);

The READ statement with a SET option which
can be used only for CONSECUTIVE files,
causes a record to be read into a buffer
and the specified pointer variable to be
set to point to the record in the buffer.
A based variable, declared with the same
pointer, can then be used to refer to dif
ferent fields of the record.

A based variable is not a variable for
which-maIn-storage-is reserved, but a pat
tern which will be overlaid on data in main
storage pointed to by the associated point
er variable; that is, if the based variable
is a structure variable, the data pointed
to by the associated }ointer is treated as
if it had the same structuring as the based
variable. A reference to an element of the
based variable has the same effect as if
the record had been read directly into the
structure described by the based variable.

When records are blocked, the first
execution of a READ statement with the SET
option causes the transmission of a block
of physical records to a buffer and the
pointer to be set to faint to the beginning
of the first logical record. The second
execution of the READ statement causes the
pointer variable to be set to point to the
location of the second logical record in
the block already in the buffer.

When records are unblocked, each execu
tion of a READ stateme~t-iIt~ the SET
option causes actual data transmission from
the file to the buffer. In this case, the
[ointer always has the same value.

bQ~l!IJ1_2:!!g_§£!I

LOCATE variable FILE (filename) SET (pointer) ;

The LOCATE statement, which must always
have the SET option and can only be used
for CONSECUTIVE files~ allocates storage
for a based variable in an output buffer~
The action is similar to that of a READ and
SET, in that the based variable is, in
effect, overlaid on the buffer. The LOCATE
statement sets the pointer variable to
point to the location that a logical record
will have in an output buffer after it has
been assigned to the associated based
variable.

When records are h!Q£~~~, physical
transmission from an output buffer to an

output file occurs only after the entire
block is in the buffer. Therefore, for
blocked records, a LOCATE statement is
executed repeatedly before actual data
transmission occurs; and for each execution
of a LOCATE statement, a pointer variable
is set to point to the location of the next
logical record to be constructed in the
buffer.

pointer-variable = pointer-variable;

The value of a pointer variable can be
assigned to another pointer variable by a
simple assignment statement. Assume that Q
and P are pointer variables and that P has
a valid pointer value.

Q = P;

In this statement, Q would point to an
input buffer if P had been set by a READ
statement, or to an output buffer if P had
been set by a LOCATE statement.

!221g!!mg!!~_Qf_~hg_!QQ~_rY!!£liQ!!_y~!yg

The general form in which an ADDR built-in
function appears in a statements is:

pointer-variable ADDR(variable} ;

The value returned to an ADDR function
reference is a valid pointer value that
specifies the location of a data variable
named as the argument of the function
reference. For example:

P = ADDR (A) ;

Execution of this assignment statement
will give the pointer variable P a value so
that it points to the location of the data
variable A. The value of an ADDR function
reference can be assigned to a pointer
variable only.

The argument of the ADDR function
reference can be a variable that represents
an element, an array, an element of an
array, a major structure, a minor struc
ture, or an element of a structure.

Since the ADDR function can be used to
set a pointer to point to a nonbased vari
able, this facility allows the use of a
based variable to refer to the value of a
nonbased variable. -----

The data thus ~ointed to may then be
referred to by means of the pointer value
and based variable, provided the attributes
of the based variable are compatible with
that of the variable identified by the
pointer. The rules for the relation
between an argument and a parameter also

Based Variables and Pointer Variables 85

apply to the relation between a variable
identified by a pointer and the based vari
able used to refer to it.

Example:

DECLARE ARRAY (10,10) STATIC EXTERNAL
FIXED, (P,Q,R) POINTER,
VALUE BASED (P) FIXED,
1 GROUP AUTOMATIC,

2 GROUP1,
3 A FIXBD,
3 B CHARACTER (2),

2 GROUP2,
3 C CHAH (1),
3 D FLOAT,

DESCRIPTION BASED (Q),
2 A FIXED,
2 B CHARACTER (2),

SWITCH CHAR (1) BASED (R);

P ADDR (ARRAY (I,J));

This statement assigns a value to the
pointer P so that it will point to the
location of the (I,J)th element of
ARRAY. When using the based variable,
VALUE it will be overlaid on the
(I,J)th element of ARRAY.

P ADDR (GROUP. A) ;

Q

R

Provides for the use of the based
variable VALUE in referring to
GROUP .• A.

ADDR (GROUP.GROUP1);

Provides for the use of the based
variable DESCRIPTION in referring to
the minor structure GROUP.GROUP1.

ADDR (GROUP. C) ;

Provides for the use of the based
variable SWITCH in referring to
GROUP.C.

Restrictions on Pointer Variables

Because a pointer is very closely related
to an address, its value is strongly depen
dent upon the implementation in which it is
used. In order to reduce implementation
dependence, some restrictions are made on
th8 U39 of pointer vari~bles.

1. Poin ter var iables must not be elements
of structures or arrays.

2. Pointer variables must not be operands
of any operations except the comparison
operations specified by the operators =
and 1 =.

86 IBM System/360 Model 20 DPS PL/I

3. The value of a pointer variable can be
assigned only to another pointer
variable.

4. Pointer variables cannot be used for
STREAM input and output. When used in
RECORD input and output, a pointer
value written as output cannot be
assumed to point to the same data if it
is read back in.

Use of Based Storage and Pointers

The based storage and pointer handling
facilities provided by the Model 20 PL/I
compiler are primarily intended to permit
processing of records in input and output
buffers. This can result in a significant
saving of storage, particularly when many
different record types exist in the same
file.

Many different declarations of based
variables can be associated with the same
pointer. The effect of this is that once
the pointer has been given a value, say by
a READ statement with a SET option, then
any of the record descriptions associated
with the pointer may be used to refer to
the record in the buffer. For example:

DECLARE P POINTER;
DECLARE 1 ISSUE BASED(P),

2 CODE CHAR (1),
2 PART_NO PIC '(7) 9' ,
2 OTY PIC '9999',
2 DEPT PIC '99',
2 JOB_NO PIC ' (4) 9' ,
RECEIPT BASED (P),
2 CODE CHAR(1),
2 PART_NO PIC' (7) 9',
2 Qry PIC '9999',
2 SUPPLIER PIC '(5) 9' ;

READ FILE (TRANS) SET (P);
IF ISSUE.CODE = 'R' THEN GOTO RL1;
IF SUPPLIER>1000 THEN GOTO INHS1;

In this example, the two record descrip
tions ISSUE and RECEIPT are associated with
the same pointer. Once a record has been
read and P has been set, the record code
(CODE) is tested to determine whether a
record with the structure of ISSUE or that
of RECEIPT has been read. Depending on the
result, either record type is processed.
rhe records do not require working storage,
since the pointer refers to a position
wjthin the buffer.

The records can also contain variables
other than character strings and numeric
character fields. Any number of records
can be associated with the same pointer.
When the pointer is qiven a value, all of
the records will refer to the same storage
area and will effectively be overlaid.

Such overlaying of record descriptions can
be machine delendent and should be used
with care.

Pointer Manipulation

Important for the manipulation of pointer
variables is the ADDR built-in function,
which has already been briefly discussed.
It requires one argument, the name of a
variable, and it returns a value that
points to the variable. It can be used to
find the address of an element variable, an
array variable, an element of an array, a
major structure, a minor structure, or an
element of a structure.

The aryument in the ADDR function
reference may be the name of a non based or
based variable.

When using the ADDR function with arrays
and structures, it is important to note
that the ADDR of the first element of an

array or structure is the same as the ADDR
of the array or structure itself.

For example, given the following
declarations:

DECLARE P POINTER;
DECLARE B (10,10) BASED (P),

A(10,10) ;

ADDR (A (1,1» is the same as ADDR (A), and
with the following assignment:

P ADDR (A) ;

Be1,1) will refer to the first element of
A.

When writin~ your frograms, it is
entirely your responsibility to ensure that
such references do access meaningful
storage locations, which must have been
allocated in some other way and whose
attributes are correct.

Based Variables and Pointer Variables 87

Part II

Model 20 PL/I Syntax Rules

Picture Specification Characters

Picture specification characters appear in
a PICTURE attribute. You can use them to
srecify-the-eaiting operations to be }er
formed on the associated data item. A dis
cussion of the concefts of ficture srecifi
cations appears in Part I, in the section
~g111~g_~ng_~h~~~£1g~=~1£ill~_li~llglillg·

In Model 20 PL/I, a ficture specifica
tion always describes a nYillgfif=fh~f~f1gf
Y~£1~Qlg. In the statement

DCL NUMBER PICTURE '999V.99';

NUMBER is the numeric-character variable
described by the picture specification
'999V.99', which means that NUMBER may con
sist of 5 decimal digits and a decimal
point to the left of the rightmost two
digits. Arithmetic data associated with a
picture specification can consist only of
decimal digits, an (assumed) decimal point
and, optionally, a plus or minus sign.
other characters generally associated with
arithmetic data, such as currency symbols,

can also be specified. However, these
characters are not part of the arithmetic
value of the numeric character variable,
although the characters are stored with the
digits and are considered to be part of the
character string value of the variable.
rhe Ei£iYf§_§E§£1!1£~i1Qn can contain any
of the picture specification characters
listed in Figure 8.

You can use the ~icture characters in
these groups in various combinations.
These combinations depend upon the type of
data being described by the specification.
A detailed discussion of these types and
how they can be described follows below.

A numeric-character variable can be con-
sidered-to-have-two-aifferent-types of
value, depending upon its use. They are

1) its arithmetic value and

2) its character-string value.

r--T---------------T--------------------------------l
I I I I
I Category I Specification I Re}resenting I

I I I I
~---------------------------------------t---------------t--------------------------------1
I Digit and decimal-point sfecifiers I 9 I any decimal digit J

I I V I assumed decimal point I
I I J and subfield delimiter J
1---+---------------+--------------------------------~
I Zero suppression characters I Z I digit or blank I

I J * I dig i t or * I
I---t---------------+-------------------------------~
I Numeric signs and currency symbol I $ I digit, $, or blank I

I (these are also drifting I S J digit, ± sign, or blank I
I zero suppression characters) I I digit, -, or blank j

~--------------------------------------t---------------t--------------------------------1
I Insertion characters I I comma I
I I I decimal point I

I J B I blank I
1---------------------------------------+---------------+--------------------------------~
I Credit, Debit, and Overpunched signs I CR I CR if field<O I
I I DB J DB if field>O I
I I T I digit overpunched I
I I I by sign I
I I R I di~it overrunched I

I I I by - if field<O I
1---+---------------+----------------.----------------~
I Exponent Specifier I E I E (start of exponent) I L _______________________________________ L _______________ L _______________________________ J

Figure 8. picture-Specification Character

90 IBM System/360 Model 20 DPS PL/I

The arithmetic value is the value ex
pressed-by-the-decImaI-digits of the data
item, the assumed location of a decimal
point, and possibly a sign. The arithmetic
value of a numeric-character variable is
used whenever the variable appears in an
arithmetic operation or in an assignment to
a variable with either the FIXED or FLOAT
attribute. In such cases, the arithmetic
value of the numeric-character variable is
converted to internal coded-arithmetic
representation. The arithmetic value is
also used in an assignment to another
numeric-character variable.

The £~~£~£i~£~§i£i~~_Y~lg~ is the value
expressed by the decimal digits of the data
item, as well as all of the editing and
insertion characters appearing in the pic
ture specification. The character-string
value does not, however, include the
assumed location of a decimal point as spe
cified by the picture character V. The
character-string value of a numeric
character variable is used whenever the
variable appears in a character-string
operation or in an assignment to a
character-string variable, or wherever a
reference is made to a character-string
variable that is defined on the numeric
character variable.

A picture specification can be made for
fixed-Foint or floating-point data. The
picture sfecification for a Ki!§g=~Qin~
!~1y§ contains only one field l and this
field can consist of two subfields: an
integer subfield describing the digits to
the left of the decimal point in the fixed
point value, and a fractional subfield
describing the digits to the right of the
decimal point.

DCL NUMBER PICTURE '999V.99';

A major requirement of the picture s}e
cification for numeric-character data is
that field must contain at least one pic
ture character that specifies a digit posi
tion. This [icture character, however,
need not be the digit character 9. Other
ficture characters, such as the zero
suppression characters (Z and *), also spe
cify digit positions.

The ~icture specification for a
K1Q~iing~£2ini_Y~lgg consists of two
fields: a mantissa field and an exponent
field. The mantissa field describes a

fixed-point value, which when multiplied by
ten raised to the power of the value
described by the exponent field gives the
actual value represented by the floating
point notation; the mantissa field is spe
cified in the same way that a fixed-point
field is specified. The exponent field
describes a si~ned or integer power of ten.

DCL NUMBER PIC '9V.9999ES99';

For further details about picture speci
fications for floating-point values refer
to Ihg_~!2Qn§ni_~£§fiKi§£_g in this
section.

Digit and Decimal-Point Specifiers

The picture characters 9 and V are the
simplest form of numeric-character specifi
cations you can use to represent fixed
point decimal values.

9 specifies that the associated field
position is to contain a decimal digit.

V specifies that a decimal point is
assumed at this position in the asso
ciated data item. However, it does not
specify that an actual decimal point is
to be inserted. The integer and frac
tional parts of the assigned value are
aligned on the V character; therefore,
an assigned value may be truncated or
extended with zero digits at either end.
Note that if significant digits are lost
on the left, the result will be unde
fined. If no V character appears in the
picture specification of a fixed-point
decimal value or in the mantissa field
of a picture specification of a
floating-point decimal value, a V is
assumed at the right end of the field
specification. This causes the assigned
value to be truncated, if necessary, to
an integer. The V character cannot
appear more than once in a picture spe
cification. The V is considered to be a
2~~~!§~g_gg~imii§~ in the picture speci
fication; that is, the [ortion preceding
the V and the portion following it (if
any) are each a subfield of the
specification.

Figure 9 gives examples of numeric
character specifications using the picture
characters 9 and V.

picture-specification Characters 91

r-------------------r--------------------r------------------------T----------------------,
I Source I Source Data I Picture I Character-string I
J A ttributes I (in constant form) I Specification I Value 1 I
~-------------------t--------------------+------------------------+----------------------1

FIXED(5) I 12345 99999 12345 I
I I

FIXED(5) I 12345 99999V 12345 I
I I

FIXED(5) 1 12345 999V99 34500 2 I
I I

FIXED(5) I 12345 V99999 00000 2 I
I I

FIXED(7) I 1234567 99999 34567 2 I
I I

FIXED(3) I 123 99999 00123 I
I I

FIXED(5,2) I 123.45 999V99 12345 J

I I
FIXED(7,2) I 12345.67 9V9 56 2 I

J I
FIXED(5,2) I 123.45 99999 00123 I t-------------------L--------------------L------------____________ L ______________________ ~

I lThe arithmetic value is the value expressed by the digits and the actual or assumed I
, locati~n of the V in the specification. I
I 2In this case, PL/I does not define the result since significant digits have been lostl
, on the left; the result shown, however, is that given for System/360 implementations., L __ ~ ___ J

Figure 9. Pictured Numeric-Character Examples

Zero-Suppression Cha:racters

The zero-suppression picture characters
specify £Q~gi1iQ~~1_gig!1_EQ§i£iQU§ in the
character-string value. You may use them
to cause leading zeros to be rellaced by
asterisks or blanks. ~gg~!ng_~§£Q§ are
those that

1) occur in the leftmost digit positions of
fixed-foint numbers,

2) are to the left of the assumed position
of a decimal point, and

3) are not preceded by any of the digits 1
through 9.

The leftmost non-zero digit in a number
and all digits, zeros or not, to the right
of it represent significant digits.

Z specifies a conditional digit position
and causes a leading zero in the asso
ciated data position to be replaced by a
blank character. When the associated
data position does not contain a leading
zero, the digit in the position is UQ£
re~laced by a blank character. The ~ic
ture character Z cannot appear in the
same subfield as the picture character
*, nor can it ap~ear to the right of a
drifting picture character or any of the
ficture characters 9, T or R in a field.

* specifies a conditional digit position
and is used the way the picture charac-

92 IB~ System/360 ~odel 20 DPS PL/I

ter Z is used, except that leading zeros
are replaced by asterisks. The picture
character * cannot appear with the pic
ture character Z in the same subfield,
nor can it appear to the right of a
drifting picture character or any of the
picture characters 9, T, or R in a
field.

N2£§_1: If one of the picture characters Z
or * appears to the right of the picture
character V, then all fractional digit
positions in the specification, as well as
all integer digit positions, must employ
the Z or * ficture character, respectively.
When all digit positions to the right of
the picture character V contain zero
suppression picture characters, fractional
zeros of the value will be suppressed only
if all positions in the fractional part
contain zeros and all integer fositions
have been suppressed. The entire
character-string value of the data item
will then consist of blanks or asterisks.
No di~its in the fractional part will be
replaced by blanks or asterisks if the
fractional lart contains any significant
digit.

NQ~g_~: Zero-suppression characters must
not appear in pictures for floating-point
da tao

Fi~ure 10 ~ives exam~les of the use of
zero-suppression characters. In the
figure, the letter Q indicates a blank
character.

r------------------T---------------------T------------------------T----------------------l
I Source I Source Data I Picture I Character-String I
I Attributes I (in constant form) I Slecification I Value l I
~------------------t--------------------t------------------------+----------------------~

FIXED(S) I 1234S I ZZZ99 I 1234S I
I 1 I I

FIXED(S) I 00100 I ZZZ99 I bbl00 I
I I I I

FIXED(S) I 00000 I ZZZ99 I bbbOO I
I I I I

FIXED(S) I 00100 I ZZZZZ I bbl00 I
I I I I

FIXED(S) I 00000 I ZZZZZ bbbbb I
I I I

FIXED (S,2) I 123.4S I ZZZ99 bb123 I
I I I

FIXED (S,2) I 001.23 I ZZZV99 bb123 I
I I I

FIXED(S) I 1234S I ZZZV99 34S00 2 I
I I I

FIXED(S) I 00000 I ZZZVZZ bbbbb I
I I I

FIXED(S) I 00100 I ***** **100 I
I I I

FIXED(S) I 00000 I ***** ***** I
I I I

FIXED (S,2) I 000.01 I ***V** ***01 I
~------------------~--------------------L------------------------~----------------------1
I lThe arithmetic value is the value eXfressed by the digits and the actual or assumed I
I location of the V in the specification. I
I 2In this case, PL/I does not define the result since significant digits have been 10stJ
I on the left; the result shown, however, is that given for system/360 implementations. I L ___ J

Figure 10. Bxamp1es of Zero suppression

Insertion Characters

The picture characters £Q!!!!!!~ (,), EQirr!:
(.) I and blank (B) are insertion charac
ters; they-cause the specifiea character to
be inserted in the associated position of
the numeric-character aata. They do not
indicate digit fositions, but are inserted
between digits. Each does, however, actu
ally represent a character position in the
£h~£g£!:~£=§!:£illg_Y~~y§, whether or not the
character is suppressea. The comma and
point are £~llgiiiQll~1_in§~£iiQll_£h~f~£1~f§;
within a string of zero supfression charac
ters, they, too, may be suppressed. The
blank (B) is an YllgQllgitiQll~~_ill§~1!:iQll
£h~fs£!:~f; it specifies that a blank is to
appear in the associatea position.

NQt~: Insertion characters are applicable
only to the character-string value. They
have no influence on the arithmetic value
of the data item.

causes a comma to be inserted in the
associated-position of the numeric
character data when no zero suppression
occurs. If zero suppression does occur,
the comma is inserted only when an
unsuppressed digit appears to the 1~~1
of the comma position, or when a V

appears immediately to the left of it
and the fractional part contains any
significant di~its. In all other cases
where zero suppression occurs, one of
three possible characters is inserted in
[lace of the comma. The choice of char
ac~er to ref lace the comma depends u~on
the first picture character that both
precedes the comma position and speci
fies a digit position:

• If this character is an asterisk, the
comma position is assigned an
asterisk.

• If this character is a drifting sign
of a drifting currency symbol (dis
cussed later), the drifting string is
assumed to include the comma posi
tion, and the action taken is the
same as that for drifting characters.

• If this character is not an asterisk
or a drifting character, the comma
fosition is assigned a blank
character.

is used the sallie way the comma picture
character is used, except that a EQilli
(.) is assigned to the associated posi
tion. This character never causes point

Picture-Specification Characters 93

alignment in the picture specifications
of a fixed-point decimal number and is
not a ~art of the arithmetic value of
the data item. That function is served
solely by the picture character V.
Unless the V actually appears, it is
assumed to be to the right of the right
most digit position in the field, and
point alignment is handled accordingly,
even if the point insertion character
appears elsewhere.

B specifies that a Qb~n!_£h~£~£t~£ is to
be inserted in the associated position
of the character-string value of the
numeric-character field.

You can use the }oint (or the comma) in
conjunction with the V to cause insertion
of the point (or comma) in the position
that delimits the end of the inte~er }or
tion and the beginning of the fractional
portion of a fixed-loint (or floating-

point) number, as you may'desire it in
printing, since the V does ll21 cause print
ing of a point. In this case, the point
must immediately precede or immediately
follow the V. If the point precedes the V,
it will be inserted only if a significant
digit appears to the left of the V, even if
all fractional digits are significant. If
the point immediately follows the V, it
will be suppressed if all digits to the
right of the V are suppressed, but it will
appear if there are ~llI fractional digits
(along with any intervening zeros).

The insertion characters 8, comma, and
point must be lreceded by a digit position
in the same field.

Fiyure 11 yives examples of the use of
insertion characters. In the figure, the
letter Q indicates a blank character.

r-------------------T--------------------r------------------------r----------------------,
I source J Source Data J Picture I Character-string J
I Attributes I (in constant form) I Specification I Value l I
~-------------------+--------------------+------------------------+----------------------~
I FIXED(4) I 123~ I 9,999 1,234 I
I I I I
I FIXED(6,2) I 1234.56 I 9,999V.99 1,234.56 J

I I I I
I FIXED(4,2) J 12.34 I ZZ.VZZ 12.34 J

I I I I
I FIXED(4,2) J 00.03 I Zz.vzz bbb03 J

I I I
J FIXED(4,2) J 00.03 ZZV.ZZ bb.03 I
I I I
I FIXED(4,2) I 12.34 ZZV.ZZ 12.34 I
I I I
I FIXED(4,2) I 00.00 ZZV.ZZ bbbbb J

I I I
I FIXED(4,2) J 67.89 9,999,999.V99 ~,000,067.89 J

I I I
J FIXED(7,2) J 12345.67 **,999V.99 12,345.67 J

I I I
FIXED(7,2) I 00123.45 **,999V.99 ***123.45 I

I I
FIXED(9,2) J 1234567.89 9.999.999V,99 1.234.567,89 J

I I
FIXED(6) J 123~56 99.999.9 12.345.6 J

I I
FIXED(6) J 001234 ZZ,ZZ,ZZ bbb12,34 J

I I
FIXED(6) J 000000 ZZ,ZZ,ZZ bbbbbbbb I

I I
FIXED(6) J 000000 **,**,** ******** I

I I
FIXED(6) J 123~56 99B99B99 12b34b56 I

I I
FIXED(3) J 123 9BB9BB9 1bb2bb3 I __________________ L ____________________ L ________________________ L ______________________ ~

I lThe arithmetic value is the value expressed by the digits and the actual or assumed I
I location of the V in the sFecification. I L ___ J

Figure 11. Lxamtles of Insertion Characters

94 IBM System/360 Model 20 DPS PL/I

Numeric Signs and Currency Symbol

The picture characters Sand - specify
§igrr§ in numeric-character data. The pic
ture character $ specifies a £Y£~~n£Y_§Y~=
QQl in the character-string value of
numeric-character data.

You may use these ticture characters in
either a static or a drifting manner. A
~£itt!rrg character is similar to a zero
suppression character in that it can cause
zero suppression. However, a single drift
ing character is always inserted (unless
the entire field is suppressed) in the
position specified by the end of the drift
ing string or in the position immediately
to the left of the first significant digit.

The §i~ti£ use of these characters sFe
cifies that a sign, a currency symbol, or a
blank (in the case of a minus sign charac
ter if the data value is less than or equal
to zero) ~l~~Y§ appears in the associated
position. The drifting use specifies that
leading zeros are to be sUPl:ressed. In
this case, the rightmost suppressed posi
tion associated with the picture character
will contain a blank, a sign, or the $ cur
rency symbol.

A drifting character is specified by
mylti£lg use of that character in a picture
field. Thus, if the field contains one
currency symbol, it is interpreted as stat
ic; if the field contains more than one
currency symbol, it is int~rpreted as
drifting. The drifting character must be
specified in each digit position through
which it may drift.

Drifting characters must appear in
strings. A string is a sequence of the
same drifting character, optionally con
taining a V and one of the insertion
characters comma, point, or B. Any of the
insertion characters Gomma, point, or B
following the last drifting symbol of the
string is considered part of the drifting
string. However, a following V terminates
the drifting string and is not part of it.
A field of a picture specification can con
tain only one drifting string. A drifting
string cannot be preceded by a digit posi
tion, insertion characters, or a V. If a
drifting string exists in a field, zero
suppression characters (Z or *) must not
appear in the same field.

The position in the data associated with
the characters comma, point, and B appear
ing in a string of drifting characters will
contain one of the following:

• comma, point, or blank if a significant
digit has appeared to the left;

• the drifting symbol, if the next posi
tion to the ri~ht contains the leftmost
significant digit of the field;

• blank, if the leftmost significant digit
of the field is more than one position
to the right.

If a drifting string contains the drift
ing character n times, then the string is
associated with g - 1 conditional digit
positions. The [osition associated with
the leftmost drifting character can contain
only the drifting character or blank, never
a digit. If a drifting string is specified
for a field, the other potentially drifting
characters can ap}ear only once in the
field, i.e., the other character represents
a static sign or currency symbol.

Only one type of sign character can
appear in each field. An S or a minus (-)
used as a static character can appear to
the left of all digits in the mantissa and
exponent fields of a floating-point speci
fication and either to the right or left of
all digit positions of a fixed-point
specification.

If a drifting string contains a V within
it, the V delimits the preceding portion as
a subfield, and all digit positions of the
subfield following the V must also be part
of the drifting string.

In the case in which all digit positions
after the V contain drifting characters,
suppression in the subfield will occur only
if all of the integer and fractional digits
are zero. The reSUlting edited data item
will then be all blanks. If there are any
significant fractional digits, the entire
fractional portion will appear
unsupl;ressed.

$ specifies the currency symbol. If this
character appears more than once, it is
a drifting character; otherwise it is a
static character. The static character
specifies that the character is to be
placed in the associated position. The
static character must appear either to
the left of all digit positions in a
field of a specification or to the right
of all digit positions in a specifica
tion. See details above for the drift
ing use of the character.

s specifies the plus sign character (+) if
the data value is equal to or ~reater
than zero, otherwise it specifies the
minus-sign character (-). The character
may be drifting or static. The rules
are identical to those for the currency
symbol.

specifies the minus-sign character (-)
if the data value is less than zero,

Picture-Specification Characters 95

r------------------r--------------------T------------------------T----------------------,
I Source I Source Data I Picture I Character-String J
J Attributes J (in constant form) J Specification I Value 1 I
t------------------t--------------------t------------------------+----------------------~
I FIXED(5,2) I 123.45 $999V.99 $123.45 J

I I
FIXED(5,2} I 001.23 $ZZZV.99 $bb1.23 J

J I
FIXED(5,2) I 000.00 ~ZZZV.ZZ bbbbbbb J

I I
FIXED(5,2) I 123.45 $$$9V.99 $123.45 I

I I
FIXED(5,2) I 001.23 $$$9V.99 bb$1.23 I

I
FIXED(5,2) 012.00 99$ 12$ 1

I
FIXED(2) 12 $$$,999 bbb$012 J

I
FIXED (4) 1234 $$$,999 b$1,234 I

I
FIXED(5,2) 123.45 S999V.99 +123.45 I

I
FIXED(5,2) -123.45 S999V.99 -123.45 1

I
FIXED(5,2) -123.45 -999V.99 -123.45 1

I
FIXED(5,2) 123.45 -999V.99 b123.45 1

J
FIXED(5,2) 123.45 999V.99S 123.45+ I

I
FIXED(5,2) 001.23 ---9V.99 bbb1.23 I

I
FIXED(5,2) 1 -001.23 SSS9V.99 bb-1.23 1

t-----------------.-~--------------------L------------____________ L ______________________ ~

I 1The arithmetic value is the value expressed by the digits and the actual or assumed I
I location of the V in the specification. J
L __________________ . __ J

Figure 12. Exam~les of Numeric Signs and the :urrency symbol in picture Specifications

otherwise it specifies a blank. The
character may be drifting or static.
The rules are identical to those for the
currency symbol.

li~~~: $, S, and - cannot be drifting
characters in floating-point picture
specifications.

Figure 12 gives examples o£ the use of
numeric signs and the currency symbol as
picture characters. In the figure, the
letter Q indicates a blank character.

Credit, Debit, and Overpunched-Sign Characters

The character pairs CR (credit) and DB
(debit) specify the signs of fixed-point
numeric character data items and usually
appear in business re~ort forms.

Any of the picture characters T or R
specifies an overpunched sign in the as~~~
ciated digit rosition of a fixed-point
numeric-character da ta i tern. An over-

96 IBM System/360 Model 20 DPS PL/I

punched sign is a 12-punch (for plus) or an
11-punch (for minus) punched in to the §9J!~
column as a digit. It indicates the sign
of the arithmetic data item. Only one
overpunched sign can appear in a specifica
tion for a fixed-point number. The over
punch character can appear only in the l~§t
gigit_EQ§!t!Qll within a field.

CR specifies that the associated positions
will contain the letters CR if the
value of the data is less than zero.
Otherwise, the positions will contain
two blanks. The characters CR can
appear only to the right of all digit
positions of a field.

DB is used the same way that CR is used
except that the letters DB appear in
the associated ~ositions.

T slecifies that the associated position,
on input, will contain a digit over
punched with the sign of the data. It
also specifies that an overpunch is to
be indicated in the character-string
value.

r------------------r--------------------T------------------------T----------------------l
I Source I Source Data I Picture I Character-string I
I Attributes J (in constant form) I Specification I Value l I
~------------------t--------------·------t------------------------+----------------------~
I FIXED (3) I -123 I $Z.99CR I ~1.23CR I
I J J I J
I FIXED(4,2) I 12.34 I $ZZV.99CR I $12.34bb I
I I I I I
I FIXED(4,2) I -12.34 I ~ZZV.99DB I $12.34DB I
J I J I I
I FIXED(4,2) I 12.34 I 'SZZV.99DB I $12.34bb I
J I J I J
I FIXED (4) I -1021 I Z99R I 102J I
J J I I J
I FIXED (4) I 1021 I 999T I 102A I
~------------------~--------------------L------------------------~----------------------1
J lThe arithmetic value is the value expressed by the digits and the actual or assumed J

I location of the V in the specification. I L _________________________________ • __ J

Figure 13. Examples of CR, DB, T, and R Picture Characters

R s~ecifies that the associated position,
on in~ut, will contain a digit over
punched with - if the value is smaller
than zero; otherwise, it will contain
the digi t wi th no overpunching" It
also specifies that an overpunch is to
be indicated in the character-string
value if the data value is smaller than
zero.

NQig: You cannot use the picture charac
ters CR, DB, T, and R with any other sign
characters in the same field.

Figure 13 gives examples of the CR, DB,
and overpunch characters. In the figure,
the letter Q indicates a blank character.

The Exponent Specifier E

The picture character E delimits the
exponent field of a numeric-character spe
cification that describes flQ~ihrr~=£Qh~~

Q~fim~l_rr~illQ~£§. The exponent field is
always the last field of a numeric
character floating-point picture
sIecification.

E specifies that the associated ~osition
contains the letter E, which indicates
the beginning of the eXfonent field.

The value of the exponent is adjusted
(that is, it is varied) in the character
string value so that the first significant
digit of the first field (the mantissa)
appears in the ~osition associated with the
first digit specifier of the specification
(see the first two examples of Figure 14).

NQi~: Drifting and zero-suPfression chara
cters are not allowed i~ floating-point
pictures. Exponent-field pictures are
restricted to the only format ES99.

Figur~ 14 gives examples of the use of
exponent delimiters.

r------------------T---------------------r------------------------r----------------------l
I Source I Source Data I Picture I Character-String I
I Attributes I (in constant form) I Specification I Value l J

I------------------t---------------------t------------------------+----------------------~
I FLOAT{S} I .1234SE06 I 9V.99999ES99 I 1.234S0E+OS I
I I J J J
I FLOAT{S} I .12345E-06 I 9V.99999ES99 I 1.234S0E-07 I
I I J J I
I FLOAT(S} I -123.4SE12 I S999V.99ES99 I -123.4SE+12 I
I I I I I
I FLOAT(S) I 001.23E04 I S99V.99ES99 I +12.30E+03 I
~------------------~---------------.-----L------------------------~----------------------1
I lThe arithmetic value is the value expressed by the digits and the actual or assumed I
I location of the V in the specification. I L _______________________________ ---. ___ J

Figure 14. Examples of Floating-Point Picture Specifications

Picture-Specification Characters 97

Edit-·Directed Format Items

This section contains a description of each
of the edit-directed format items that can
appear in the format list of a GET, PUT or
FORMAT statement.

There are three categories of format
items:

• data format items,

• control format items, and

• remote format item.

The three categories are discussed
se~arately and the format items are listed
under each category. The remainder of the
section contains detailed ~iscussions of
each of the format items.

Data Pormat Items

A data-format item describes the external
format of a single data item.

fQ£_ig~g~, the data in the stream is
cons~dered to be a continuous string of
characters. Each data-format item in a GEr
statement specifies the number of charac
ters to be obtained from the stream and
describes the way those characters are to
be interpreted, whether as characters or as
arithmetic values.

E2f_2Y1EY1, the data in the stream takes
the form specified by the format list.
Each data-format item in a PUT statement
specifies the width of the field into which
the associated data item in character form
is to be placed and describes the format
that the value is to take.

Leading blanks are not inserted automat
ically to seiarate data items in the output

stream. Character-string data is left
adjusted in the field whose width is speci
fied. Arithmetic data is right-adjusted.
Leading blanks will not appear in the
stream unless the sfecified field width
allows for them. Truncation due to ina de
yuate field-width specification is on the
!~i~ for arithmetic items, on the ~~gh1 for
character-string items.

Figure 15 shows all data format items
and their formats.

r--------------------T--------------------l
I Category I Data Format Item I
~--------------------+--------------------~
I I I
I Fixed-point I F (w,[d,[p]]) I
I I I
I Floating-point I E(w,d[,s]) I
I I I
I Character-string I A[(w)] I L ____________________ ~ ____________________ J

Figure 15. Data Format Items

Control Format Items

The control-format items apply to input and
output files. They specify formatting of
the data items coming from or going to the
external medium.

Figure 16 shows all control format items
and their formats.

A control format item has no effect
unless it is encountered before the data
list is exhausted.

The PAGE and SKIP format items have the
same effect as the corresponding options of
the PUT statement, except that the format
items are executed only when they are

r------------------r---------------------------------------,
I I Control Format Item I
I Category ~-----------------T---------------------~
I I for PRINT files I for non-PRINr files I
.-----------------~-----------------+---------------------i
I Paging I PAGE I I
~-----------------+-----------------+---------------------~
I Line skipt- ing I SKIP [(w)] I I
I-------------------~-----------------+---------------------i
I Record skipping I I SKIP : (w) J I
~-----------------+-----------------+---------------------~
I St-acing I X (w) I X (w) I
L ___ . _______________ .L _________________ ..L _____________________ J

Figure 16. Control Format Items

98 IBM System/360 Model 20 DPS PL/I

encountered in the format list, while the
options of the PUT statement are executed
before any data is transmitted.

Remote Format Item

The remo~e format item specifies the l~hgl
of a FORMAT statement: This statement con
tains a format list which replaces the
remote format item in the GET or PUT
statement.

The remote format item is:

R(statement-label-designator)

The statement-label designator is a
label constant or an unsubscripted element
label variable.

Alphabetic List of Format Items

The A format item is:

For inI;;ut: A (w)
For output: A [(w) J

where w is the ngmQ§f_Q!_gh~£2f~§£§ to be
transmItted.

The gh2£2gi§£=§1£ing format item
describes the external representation of a
string of characters. You must use it only
for character strings. Character strings
cannot be transmitted by any other format
item. No conversion is performed.

General Rules:

1. The letter! must be a decimal integer
constant, unsigned and greater than
zero, but less than 256. It specifies
the number of characters to be
transmitted.

2. On b~~~t, the stecified number af
characters is obtained from the data
stream and assiyned to the associated
variable in the data list. For input,
yau must always s}ecify~. If apos
trophes appear in the stream, they are
treated as characters in the string.

3. On Qgi[g1, ~ need not be s~ecified; in
this case, the length of the associated
string is used, and the data item com
pletely fills the field. Enclosing
apostrophes are not inserted.

rhe E format item is:

For input: E (w, d)
For output: E (w,d[,sJ)

where w is the field-width, d the number of
h£~£1bQllal_~i~ii§;-and-§-the-llgID£§£=Q!=§ig~
nbhb£~!t!:_~i9.b1§ •

The !lQa1in9.=EQbn1 format item E
describes the external representation of
decimal arithmetic data in floating-point
format.

General Rules:

1. The letters ~, Q, and § must be
~ll§igll§Q_Q§giID21_inl§g§£_£Qll§1anl§·
The integer ~ specifies the lQ!al num
ber of characters in the field. It
must be less than 33. The integer Q
s~ecifies the number of fractional
digits, that is, the number of digits
following the decimal point in the man
tissa: § specifies the number of
digits that IDg§1 appear in the
man1b§§2'

2. On inEg1, the data item in the stream
is the character representation of an
optionally signed decimal floating
point or fixed-point constant located
allYlihgfg within the specified field.
If the data item is a fixed-point num
ber, an eXionent of zero is assumed.

The external form of the llgillb~~ is:

[±] mantissa {[EJ{ ±J} exponent
E[±]

The mantissa mu~t be a fixed-point
decimal constant.

rhe number can appear anywhere in the
specified field; blanks may appear
before and after the number in the
field. If the entire field is blank,
the CONVERSION condition is raised.
When no decimal point appears, the num
ber of fractional digits (d) specifies
the number of character positions to
the right of the 2§§Yill§Q decimal ~oint
of the man tissa. If a decimal point
actually does appear in the data, it
overrides £1.

The value expressed by ~ includes
trailing blanks, the exponent
position(s), the ~osition for the
o~tional plus or minus sign, the }osi
tion for the optional letter E, and the
position for the optional decimal point
in the mantissa.

Edit-Directed Format Items 99

The g~EQngn1 must be a de~imal integer
constant that does not exceed two sig
nificant digits. Leading zeros are
allowed. Whenever the exponent and a
preceding sign or the letter E are
omitted, a zero exponent is assumed.

3. On QY1EY1, the internal data is con
verted, if necessary, to floating-point
numeric-character representation, and
the external data item in the specified
field has the following general form:

[-J[s-d digits}.{d digits}E[+J-}exponent

The g~EQngn! is a two-digit decimal
integer constant, whi~h may be two
zeros. The exponent is automatically
adjusted so that the leading digit of
the mantissa is non-zero (provided that
the mantissa is not zero, of course).

If the above form of the number does
llQt fill the specified field on outfut,
the number is right-adjusted and
extended on the left with blanks. If
the number of significant digits is not
s~ecified, it is taken to be 1 plus the
number of fractional digits. For the
Model 20 PL/I Compiler, the field width
for negative or non-negative values of
the data item must be greater than or
elual to 6 plus the number of signifi
cant digits (although the sign of a
positive digit is not written, it must
be accounted for). However, if the
number of fractional digits is zero,
the decimal point is not written, and
the above figure for the field width is
reduced by 1.

When the internal data is converted to
the outiut format, it is rounded as
follows: if trun~ation causes a digit
to be lost on the right and this di~it
is greater than or equal to 5, then 1
is added to the digit to the left of
the lost digit ..

Examf>le:

DCL (A,B,C) FLOAT('I5);
A -1234567
B -1.2345678E-10
C 1.2345678E+1

pur FILE (OUT) EDIT (A, B, C)
(E15,6),E (15,6,8),E (15,8)

When A,B and C are pointed, they will look
as follows:

bb-1.234567E+06b-12.345678E-11
b1.23456780E+01

100 IBM System/360 Model 20 DPS PL/I

rhe F format item is:

F (w[,d[,p]])

where w is the field width, d the number of
f££ftiQll£!_gigii~;-and-E-the-§f~lg=f~£tQ~~-

The fi!g~=£Qill! format item describes
the external representation of a decimal
arithmetic data item in fixed-point format.

General Rules:

1. The letters ~, ~, and £ must be decimal
integer constants. ~nly E can be
signed; the others must be unsigned; w
must be less than 33 and must, for out
put, account for the sign, even if it
is blank.

2. On irrEY!, the data item in the stream
is the character representation of an
optionally si~ned decimal fixed-point
constant located anywhere within the
Siecified field. Blanks may appear
before and after the number in the
field. If the entire field is blank,
it is interpreted as zero.

If ~ is not s}ecified, the number of
fractional digits is assumed to be
zero.

If Q is not s}ecified and no decimal
point appears in the field, g specifies
the number of fractional digits, that
is, the number of digits to the right
of the £§§ymgg decimal point. If a
decimal point actually does ap}ear in
the data, it overrides the specifica
tion g.

If E is s~ecified, it effectively mul
tiplies the value of the data item in
the stream by 10 raised to the power of
the value of L. Thus, if E is posi
tive, the number is treated as though
the decimal point appeared E positions
to the right of its given position. If
E is negative, the number is treated as
though the decimal point appeared L
positions to the left of its given
position. The given position of the
decimal point is that indicated either
by an actual point, if it appears, or
by the specification for the number of
fractional digits, in the absence of an
actual faint.

3. On QY1~Y!, the internal data is con
verted, if necessary, to fixed-point,
and the external data is the character
representation of a decimal fixed-point
number, right-adjusted in the specified
field.

If only R is specified in the format
item, only the integer portion of the
number is written; no decimal point
appears.

If both Rand g are sfecifiedq both the
integer and fractional fortions of the
number are written, and if ~ is greate~
than zero a decimal point is inserted
before the leftmost g digits. Trailing
zeros are supplied when the actual num
be~ of fractional digits is less than ~
(the value 1 must be less than the
field width (w». suppression of lead
ing zeros is applied to all digit posi
tions (except the first) to the left of
the decimal point.

When the internal data is converted to
the output format, it is rounded as
follows: if truncation causes a digit
to be lost on the right and this digit
is greater than or equal to 5, then 1
is added to the digit to the left of
the lost digit.

When E is specified, the value of the
associated element in the data list is
effectively multiplied by 10 raised to
the power of ~ before it is converted
to its external character representa
tion. When the number of fractional
digits is zero, only the integer por
tion of the number is used.

If the value of the fixed-point number
is less than zero, the external charac
ter representation is preceded by a
minus sign. If it is greater than or
equal to zero, a blank appears. rhere
fore, for all values of the fixed-~oint
number, R must account for both the
sign and a ~ossible decimal point (the
decimal point will not appear if the~e
are no fractional digits).

The PAGE format item is:

PAGE

The raging format item PAGE s}ecifies that
printing is to continue on a new page.

General Rules:

The PAGE format item implies that printing
is to continue on line 1 of the new page.

rhe R format item is:

R (statement-label- designa tor)

rhe remote format item allows the use of
format items specified in a FORMAT
statement.

General Rules:

1. The statement-label designator is a
label constant or a label variable
whose value is the statement label of a
FORMAT statement. The FORMAT statement
includes a format list that is taken to
rellace the format item. The
statement-label designator cannot be
subscri.i;ted.

2. The R format item and the s[ecified
FORMAT statement must be contained
within the same procedure.

3. A FORMAT statement must not contain an
R format item.

rhe SKIP format item is:

SKIP [(w)]

where ~ specifies that writing or reading
is to continue at the beginning of the ~th
line or record (for non-PRINT files) fol
lowin~ the one just being written or read.

The skip~in~ format item SKIP can be
used with both PRINT and non-PRINT files,
in GET as well as PUT statements. When
used in a PUT statement for a PRINT file,
it specifies that printing is to continue
on a new line. When used in a GET state
ment, it specifies that a new record is to
be read.

General Rules:

1. rhe letter R must be an unsigned deci
mal integer constant between a and 3
for PRINT files and 1 and 3 fo~ non
PRINT files (SKIP (0) is not allowed for
non-PRINT files). If ~ is not speci
fied, 1 is assumed.

2. If ~ is greater than or egual to 1, w-1
blank lines or records will be inserted
for output, or w-1 complete records
will be skiPred for input.

3. If SKIP (0) is specified for PRINT
files, the effect is that of carriaye
~eturn without line skipping. Charac
ters previously written will be over
printed by the new characters. For

Edit-Directed Format Items 101

example, underscoring can be done in
this form.

4. If the SKIP format item is not speci
fied at the end of a line or record,
SKIP (1) is assumed, that is, printing
continues at the beginning of the fol
lowing line (single spacing), or read
ing continues at the beginning of the
following record.

5. If, for PRINT files, the s~ecified line
lies beyond the limit set by default
(which is 60) or by the PAGESIZE option
of the OPEN statement, the ENDPAGE con
dition is raised.

The X format item is:

X (w)

102 IBM System/360 Model 20 DPS PL/I

The slacin9 format item controls the
relative spacing in the data stream. It
can be used in GET as well as PUT
statements.

General Rules:

1. The letter ~ must be an unsigned deci
mal integer constant less than 256.

2. On 1llEg1, ~ specifies the number of
characters to be spaced over in the
data stream, i.e., not to be trans
mitted to the rro~ram.

3. On 2Q1~Q1, the specified number of
blank characters is inserted in the
da ta stream.

Built-In Functions and the Pseudo-Variable SUBSTR

This section contains a description of the
built-in functions and the pseuao~variable
SUBSTR available in Model 20 PL/IA These
features are discussed in the following
order:

1. Computational Built-In Functions

a) String-handling built-in functions

b} Arithmetic built-in functions

c) Mathematical built-in functions

2. other Built-In Functions

3. The Pseudo-Variable SUBSTR

The ~2~£gi~iiQll~1_~Yili~ill_fgll~iiQ~~, as
shown above, ~rovide string handling,
arithmetic operations (absolute value,
truncation, etc.), mathematical operations
(trigonometric functions, square root,
etc.) A

The computational built-in functions
are:

~1.£ill.Sl_li.9:11Qli'!!.51 :
CHAR
HIGH
LOW
SUBSTR

!f:i!hmg!ig:
ABS
CEIL
FLOOR
MAX
MIN
ROUND
TRUNC

!i~ihg!!!~iif.~l :
ATAN
COS
EXP
LOG
SIN
SQRT
TAN
TANH

Qihgf:_Qgili~iQ_fgll~iiQll§ are:
ADDR
DATE

The section on the ~§ggQQ=Y~£i~Qlg_
~Q~~Ig gives a short discussion of the
pseudo-variable. You find a more complete
description in the discussion of the corre
sponding built-in function.

The built-in functions and the Fseudo
variable are presented in alphabetical
order under their proper headings.

Computational Built-In Functions

You may use the functions described in this
section for manipulating character strings.
The arguments you may use must be
g~.l?£g§§iQll~ .

Definition: CHAR is used to control the
size-of-a-character-string expression. In
Model 20 PL/I, it is mainly used to converl
a picture variable to a character strin~.

Rgfg£gll~g: CHAR (expression [,size])

a. a character-string expression, or

b. a numeric-character expression

The argument ~i1g# when specified, must
be a Qg~im~1_in!gSlg£_~Qll.2i~1l1 giving the
length of the result. If size is not spe
cified, the length resultin~ from the
character-string expression or numeric
character expression is taken.

Result: The value returned by this func
tion-is g!2£g~§iQQ converted to a character
string. The length of this character
string is determined by §i~g, as described
above.

DCL X PIC' **9V. 99' ;

pur FILE(OUT} EDIT
(CHAR (X» (A) ;

Definition: HIGH forms a character string
of-a-~feclfied length. Each character in
the constructed string is the highest char
acter in the collatin~ sejuence. For
System/360 implementations, this character
is stored as hg!~Qg~i!!!~l_ff.

Built-In Functions and the Pseudo-Variable SUBSTR 103

~£l~ill§gt: The argument ~ must be an
unsigned decimal integer constant specify
ing the length.of the string that is to be
formed.

R§~~it: The value returned by this func
tion is a character string of length i each
character in the string is stored as hexa
decimal FF.

Figure 17 illustrates the use of the
built-in function HIGH.

Two sequential files with ascending keys
shall be merged. When the first file is
exhausted its key is set 'high'. Thus,
only the re~ords of the non-exhausted file
will be copied.

MER GE:: PROCEDURE OPTIONS (MAIN) ;
DCL S1 BASED (P1),

2 KEY CHAR (5) , ••••
S2 BASED (P2),

2 KEY CHAR(5), ••••
s3 BA~;ED (P) ,

2 KEy •• , ••••••
(P,P1,P2)POINTER,

LBL LABEL INIT (START) ,
F1 FILE SEQUENTIAL INPUT
F2 FILE SEQUENTIAL INPUT
FO FILE SEQUENTIAL OUTPUT •••.

I*FILE ACTIVATION*I
OPEN FILE{F'I) ,FILE(F2) ,FILE (FO);
ON ENDFILE(F1) GO TO EOF1;
ON ENDFILE (F2) GO TO EOF2;

READ1: READ FILE(F1) SET(P1); GO TO LBL;
START: LBL = COMP;
READ2: READ FILE(F2) SET(P2);
COMP : IF S 1 .. KEY)=S2. KEY THEN P=ADDR (S2) ;

ELSE P=ADDR (S1) ;
WRITE FILE (FO) FROM (S3) ;
IF P=ADDR (S2) THEN GO TO READ2;
GO TO READ1;

EOF1 IF S2.KEY=HIGH (5) THEN GO TO FINIS;
S1.KEY=HIGH(5); GO ro COMP;

EOF2 IF S1.KEY=HIGH (5) THEN GO TO FINIS;
S2.KEY=HIGH(5); GO TO COMP;

FINIS: END;

Figure 17. Example for the Usage of a
Built-in Function (HIGH)

Q§fiD.~1i2g: LOW forms a character string
of srecified length from the lowest charac
ter in the collating sequence which, for
System/360 im~lementations, is hg~sQg£~~~1
00. Each character in the constructed
string will be stored as hexadecimal 00.

~£ggillgn1: The argument i must be an
unsigned decimal integer constant specify
ing the length of the string to be for~ed.

104 IBM System/360 Model 20 DPS PL/I

Bg2~lt: The value returned by this func
tion is a character string of length i each
character in the string is the lowest char
acter in the collating sequence which, for
System/360 implementations, is hexadecimal
00.

~~sill~lg: LOW(3) has the value X'OOOOOO'

Q§f~nitiQg: SUBSTR extracts a substring of
defined length from a given string and
returns the substring to the point of invo
cation. (SUBSTR can also be used as a
pseudo-variable) .

R§i§£§ll£g: SUBSTR (string,i,j)

~~ggIDgn!§: The argument §1£igg refresents
the string from which a substring will be
extracted. This argument can be:

• a character string expression, or

• a numeric-character expression

The argument i represents the starting
point of the substring relative to the
beginning of the specified string, and the
argument j re~resents the length of the
substring. Argument i must be an expres
sion that allows conversion to an integer;
j must be a decimal integer constant.

Assuming that the length of §1~~ng is !,
the arguments i and j must satisfy the fol
lowing conditions:

1 . j must be less than or equal to t and
greater than or equal to 1.

2. i must be less than or equal to t and
greater than or equal to 1 •

3. The value of i + j - 1 must be less
than or equal to !.

rhus, the substring as specified by i
and j must lie within §~£ing. Note that
condition 1 is checked by the compiler;
conditions 2 and 3 are not.

B§§~lt: The value returned by this func
tion 1S a substring of length j beginning
with the ith character of §1£i~1.

~~sill~l§: If AAA is a character string of
length 8, the statements:

DCL AAA CHAR (8) INIT ('ABCDEFGH')

ITEM SUBSTR{AAA,3,5);

will cause a 5-character substring to be
extracted from AAA. The extracted string
is then returned to the point of invoca
tion, after which it is assigned to ITEM
(assuming ITEM is a character-string vari
able) • It will have the follow ing form:

CDEFG

All values returned by the arithmetic
built-in functions are in coded arithmetic
form. The arguments of these functions
should also be in that form. If an argu
ment is not coded arithmetic, then it is
converted to coded arithmetic before the
function is invoked. Note, therefore, that
in the function descriptions below, a
reference to an argument always means the
converted argument, if conversion was
necessary.

The argument of an arithmetic built-in
function may only be an expression. Unless
specifically stated otherwise, the scale
and precision of the returned value are
determined according to the conversion
rules for ex~ression operands as given in
Part I, under ~~££~§§iQrr§.

In many of these built-in functions, the
symbol li is used. This symbol represents
the maximum precision that a value may
have. It is defined, for System/36D im~le
mentations, as follows:

N = 15 for FIXED and FLOAT DECIMAL
values.

Definition: The absolute value of a number
I~-~~~-~~~ber with the sign removed. rhus,
the absolute values of 1.5 and -1.5 are the
same, namely, 1.5.

ABS finds the absolute value of a ~iven
quantity and returns it to the point of
invocation.

l£gYIDgn1: I represents the value whose
absolute value is to be found.

Rg§Y11: The value returnea by this func
tion is the absolute value of I. The scale
and precision are the same as those of I.

~1~ffi£l§: To ~et the absolute value of a
variable A, write

ABS (A)

since the built-in function SQRT allows
only positive arguments, it is advisable to
write:

SQRT (ABS (A»

if you are not sure that A is positive.

Definition: CEIL determines and returns
th~-next-Integer above I unless I is an
integer, ~n which case it returns the value
of x itself to the point of invocation.

l£~Yffi~n1: I represents the value whose
ceiling value is to be found.

E§§~1t: The value returned by this func
tion is the smallest inte~er that is great
er than or equal to I. The scale and rre
cision are the same as those of x with one
exception: if I is a fixed-point value of
precision (p,g), the ~recision of the
result is defined as:

(MIN (N, MAX (p-q+1, 1»,0)

CEIL (12.345)
CEIL (345.99)
CEIL (43.001)
CEIL (-2.4)

13
346
44
-2

CEIL (OD56.34E02)
CEIL (0012.37E-03)
CEIL (000.D1E-02)
CEIL (-00.1EOO)
CEIL (000.01E-04)

0056.34E02
100D.ODE-03
100.00E-02
OO.DEOO
100.0DE-2

Definition: FLOOR determines and returns
~h~-~~x~-Integer below I unless I is an
integer, in which case it returns the value
of ! itself.

~£g~~~rrt: ! represents the value whose
floor value is to be found.

E~§~lt: The value returned by this func
tion is the largest integer that does not
exceed I. The scale and precision of this
value are the same as those of x, with one
exception: if! is a fixed-poi~t value of
precision (p, ':I.), the precision of the
result is:

(M IN (N , M A X (p- q + 1 , 1)) , 0)

Built-In Functions and the Pseudo-Variable SUBSTR 105

FLOOR (12.345)
FLOOR (345.99)
FLOOR (43.001)
FLOOR (-2.4)

12
345
43
-3

FLOOR (0056.34E20)
FLOOR (00 12. 37E~03
FLOOR (000.01E-02)
FLOOR (-000.1EO)

0056.34E02
OOOO.OOEOO
OOO.OOEOO
- 00 1. OE 00

Definition: MAX finds the expression with
the~hIghest value from a given set af two
or more expressions ana returns its value
to the point of invocation.

,R.§.f.§.£.§.!l£.§.: MAX (x1, x2, ••• , xn)

!£ggill~Q!§: Two or more arguments must be
given. They must have iaentical scale and
precision.

Result: The value returned by MAX is the
~~[~e-of the maximum-valued argument. rhe
scale and precision is the same as of the
arguments.

~~~~21~: Assume the following ~arameter 
list specified for MAX: 

MAX (003.200, 042.356, NUMBER) 

with NUMBER having the value 102.000. rhen 
MAX returns the value 102.000. 

Definition: MIN finds the lowest-valued 
ei~;e~~I~~ from a given set of two or more 
expressions and returns the value of this 
expression to the point of invocation. 

Rgf.§.£g!!.£.§.: MIN (x1, x2, ••• , xn) 

&£ggill~ll!§: Two or more arguments must be 
given. They must have identical scale and 
precision. 

E.§.~~l~: The value returned by MIN is the 
value of the lowest-valued argument. rhe 
scale and precision of the result is the 
same as that of the argument. 

Q~!illi!i2ll: ROUND rounds a given value at 
a specified digit position to the right of 
the decimal point and returns the rounded 
value to the point of invo~ation. 

R.§.f.§.£g!!.£.§.: ROUND (ex,tression,n) 

106 IBM System/360 Model 20 DPS PL/I 

&£g~~g!l~~: g~E£g~§iQ!!' must be of fixed
decimal type. It is an expression re,tre
senting the value to be rounded: n must be 
an unsigned decimal integer consta~t. It 
specifies the fractional digit position (to 
the ri~ht of the decimal point) at which 
the value of ~~E£g§§iQll is to be rounded. 

Result: ~!L£g~§iQ!!' is rounded at digit 
~osItIon II to the right of the decimal 
Faint. S~are digit positions are padded 
with zeros. The precision of the result 
is: 

(MIN (p+1,N) ,g) 

Note that if '§'~E£g§§i2ll is negative, its 
absolute value is rounded. Its sign 
;em~i~~-~~ch~nged. 

~~~~Q1~: If R is a fixed-point decimal 
variable of precision (7,5) containing the
value 36.24976, and X, Y and Z are fixed
point decimal variables of precision (6,4),
then after execution of the following
statements:

x
Y
Z

R;
ROUND (R,3);
ROUND (R,4);

the value of X is 36.2497 (normal trunca
tion due to precision deviation), the value
of y is 36.2500, and the value of Z is
36.2498.

QgfiniliQn: TRUNC truncates a given value
to an integer as follows: First, it deter
mines whether a given value is positive,
negative, or equal to zero. If the value
is negative, TRUNC returns the smallest
integer that is greater than that value
(ceiling): if the value is positive or
e~ual to zero, TRUNC returns the largest
integer that does not exceed that value
(floor) .

~£ggm~n!: ~ represents the value to be
truncated.

,Rg§gl!: If x is less than zero, the value
returned by TRUNC is CEIL(x). If! is
greater than or equal to zero, the value
returned by TRUNe is FLO:lR (x). In either
case, the scale of the result is the same
as that of~. If ~ is floating-point, the
precision remains the same. Lf! is a
fixed-poinl value of precision (p,g), the
Frecision of the value is:

(MIN (N, MAX (p-:i+1», 0)

All arguments passed to the mathematical
buil t-in functions should be in co,ded
arithmetic form and in floating-point
scale. Any argument that does not conform
to this rule is converted to coded arith
metic and floating-point before the func
tion is invoked. Note, therefore, that in
the function descriptions below, a
reference to an ~rgument always means the
converted argument, if conversion was
necessary.

An argument to a mathematical built-in
function must be an expression. All of the
mathematical built-in functions return
coded arithmetic floating-point values.
The precision of these values is always the
same as those of the arguments.

Figure cc frovides a survey Df the
mathematical built-in functions available
in Model 20 PL/I.

Definition: ATAN finds the arctangent of a
~I;~~-;;I~e and returns the result~ ex
pressed in radians, to the point of
invocation.

!£gymgn1§: The argument ! must always be
sfecified; the argument y is optional. If
y is omitted, ! represents the value whose
arctangent is to be found.

If Y is specified, then the value whose
arctangent is to be found is taken to be
the expression x/Yo In this case, ! and y
must not be equal to 0 both at the same
time.

B,g§Y1i:.. When! alone, is specified, the
value returned by ATAN is the arctangent of
! eXfressed in radians, where:

-pi/2<ATAN (x) <pi/2

If both! and yare stecified, the possible
values returned by this function are
defined as follows:

1 • For y > 0 and any x, the value is Ar AN"
(x/y) •

2. If x > 0 and y 0, the value is
(pi/2) .

3. If x ;?: 0 and y < 0, the value is
(pi+ ATAN (x/y)) •

4. If x < 0 and y = 0, the value is
(-t-'i/2) •

5. If x < 0 and y < 0, the value is
(-pi+ATAN (x/y».

6. If x = 0 and y = 0, the ERROR condition
is raised.

Definition: cos finds the cosine of a
gIv~n-value, which is expressed in radians,
and returns the result to the point of
invocation.

!£g~mgni: The value whose cosine is to be
found is given by!; this value must be ex
pressed in radians.

Result: The value returned by this func
tion-is the cosine of !.

Definition: EXP raises e (the base of the
natural-logarithm system) to a given power
and returns the result to the point of
invocation.

!£~Yillgni: The ar~ument ! specifies the
po w er to which e is to be raised. It must
not be greater than 112.8.

Result: The value returned by this func
tion-Is § raised to the power of !.

Definition: LOG finds the natural
logarithm-(i.e., base g) of a given value
and returns it to the point of invocation.

!£~~illgni: The ar~ument x is the value
whose natural logarithm is to be found; it
must not be less than or equal to O.

Bg§~lt: The value returned by this func
tion is the n~tural logarithm of !.

Qgfiniii2n: SIN finds the sine of a given
value, which is expressed in radians, and
returns it to the point of invocation.

~£gYillgn!: The ar~ument ! is the value
whose sine is to be found; it must be ex
pressed in radians.

B§§~lt: rhe value returned by this func
tion is the sine of !.

Built-In Functions and the PseudO-Variable SUBSTR 107

Definition: SQRT finds the sluare root ~f
;-~I;~~-;;lue and returns it to the p~int
of invocation.

~£g~mgnt: The argument x is the value
whose square root is to be found; it must
not be less than O.

Rg§~li: The value returned by this func
tion is the ~ositive square root of !.

Definition: TAN finds the tangent ~f a
given-value, which is expressed in radians,
and returns it to the point of invocation.

~£ggm§ni: The argument, !, represents the
value whose tangent is to be found; ~ must
be expressed in radians.

Result: The value returned by this func
tion-Is the tangent of ~.

Qg~initi~~: TANH finds the hyperbolic tan
gent of a given value and returns the
result to the foint of invocation.

&£g~~§nt: The ar~ument, ~, represents the
value whose hyperbolic tangent is to be
found.

Result: The value returned by this func
tIon-Is the hyperbolic tangent of ~.

SUMMARY OF MArHEMATICAL FUN~TIONS

Figure 18 summarizes the mathematical
built-in functions. In using it l you
should be aware of the following:

1. All arguments must be coded arithmetic
and floating-~oint scale, or such that
they can be converted to coded arith
metic floating-point.

2. The value returned by each function is
always floating-point.

3. rhe error conditions are those defined
by the PL/I language. Additional error
conditions detected by the Model 20
PL/I compiler can be found in Part III,
under ~£~fi!f~l_~Qn§i~g£~tiQn~_Rg~~£~~
bn~_E£Qg£~m_~!~~~tiQn·

r----------------------------T----------------------------r------------------------------,
I Function Reference I Value Returned I Error Conditions I
r----------------------------~----------------------------+------------------------------~
r----------------------------~----------------------------+------------------------------~
I ATAN (x) I arctan (x) in radians I I
I I - (pi/2) <ArAN (x) < (pi/2) I I
r----------------------------~----------------------------~------------------------------~
I AT AN (x, y) I see function I error if I
I I description I x=O and y=O I
~----------------------------+----------------------------t------------------------------~
I cos (x) I cosine (x) I I
I ~ in radians I I I
r----------------------------~----------------------------+------------------------------~
I EXP (x) I eX I error if x>112.8 I
~-----------------.----------+----------------------------t------------------------------~
I LOG (x) I loge (x) I error if x$O I
t-----------------·----------~----------------------------+------------------------------~
I SIN (x) I sine (x) I I
I ~ in radians I I I
r---------------------------+----------------------------~------------------------------~
I SQRT(x) In I error if x<O I
t---------------------------~----------------------------+------------------------------~
I TAN (x) I tangen t (x) I I
I ~ in radians I I I
r---------------------------+----------------------------t------------------------------~
I TANH (x) I tanh (x) I I L __________________ . __________ L ____________________________ J.. ______________________________ J

Figure 18. Mathematical Built-In Functions

108 IBM System/360 Model 20 DPS PL/I

Other Built-In Functions

Definition: ADDR finds tbe location in
mairt-storage which has been allocated to a
given variable and returns a pointer value
to the point of invocation. This pointer
value identifies the location allocated t~
the variable.

££~gill~rrt: The argument, ~ is the variable
whose location is to be foun1. It can be
an element variable, an array variable, a
structure variable, an element of an array,
or an element of a structure. It can be of
any data ty~e and storage class.

Bg§y1!: ADDR returns a pointer value iden~
tifying the main storage location allocated
to~. If ~ is a i; aramet er I the returned
value identifies the corresponding argument
(dummy or otherwise). If ~ is a based
variable l the returned value is determined
from the ~ointer variable declared with ~;
if this pointer variable contains no value,
the value returned by ADDR is undefined.
For an example of the ADDR function refer
to the example illustrating the HIGH built
in function in this section.

Definition: DATE returns the current data
to-the-poInt of invocation.

Rg§g1t: The value returne1 by this func
tion is a character string of length six,
in the form YYmmgg, where:

YY is the current year
mill is the current month
~~ is the current day

~~2-.!!!.~b.g:
29, 1970,

If the current date is February
execution of the statement

x = DATE;

will cause the character string '700229' to
be returned to the point of invocation.

N~tg: If the DATE built-in function is
used, DATE has to be declared with the
BUILrIN attribute in a DECL~~E statement.

The Pseudo-Variable SUBSTR

~g§£fi£iiQrr: SUBSTR re~resents a substring
of §~£ing. The value being assigned to
SUBSTR is assigned to the substring of
§!£~n~, starting at the ith position of
§lfinl and extending over a length of j
positions as defined for the built-in fUnc
tion SUBSTR. The remainder of §l£ing
remains unchanged.

DCL NAME CHAR (10)
INIT 'JOHN SMITH';

SUBSTR (NAME,2,6) = 'ACK KE';

After execution of the assignment state
ment, NAME will contain the character
strin~ 'JACK KEITH'.

Built-In Functions and the PseudO-Variable SUBSTR 109

ON -Condi lions

The ON-conditions are those gl£gEtiQrr~~
fQn~iti2n§ for which you can make an ~£tiQrr
§Eg£bfb£~tbQll by means of an ON-statement.
If a condition is enabled, the occurrence
of the condition will-result in an inter
ruption of the program and in the execution
of the current action specification for
that condition. If an ON-statement for
that condition is not in effect, the cur
rent action s}ecification is the §~~n~~£~
§y§~g~_~fi!2n for that condition. If an
ON-statement for that condition is in
effect, the current action specification as
given in that statement is either SYSTEM,
in which case the standard system action
for that condition is taken, or an ON-unit,
in which case you have supplied your own
action to be taken for that condition
(i.e., either a null statement or a GO ro
statement) •

If a condition is not enabled (1. e., if
it has been disabled), and the condition
occurs, an interrupt will not take place,
and errors may result.

ON-conditions are always enabled unless
they have been explicitly jisabled by con
dition prefixes.

Some of the ON-conditions can be dis
abled by a condition prefix specifying the
condition name preceded by NO without
intervening blanks. Thus, one of the fol
lowiny names in a condition prefix will
disable the respective conjition:

NOCONVERSION
NOFIXEDOVERFLOW
NOOVERFLOW
NOUNDERFLOW
NOZERODIVIDE

Such a condition prefix renders the
corresponding condition disabled throughout
the scope of the prefix; the condition
remains enabled outside this scope (see
Part I, ~!£gE~bQn~l_~Qn~iiiQrr_fian~ling fJr
a discussion of the scope of condition
prefixes) •

The following conditions are always
enabled and remain so for the duration of
the l?rJgram:

ENDFILE
ENDPAGE
ERROR
KEY
RECORD
TRANSMIT

110 IBM System/360 Model 20 DPS PL/I

Groups of ON-Conditions

rhis section presents
logical grour-ing, and
within that grou~ing.
lowing information is
condition:

each condition in its
in alphabetical order
In general, the fol

given for each

1. ~§ll§£~~_fQ£m~t -- given only when it
consists of more than the condition
name.

2. ~g§££bE~iQll -- a discussion of the con
dition, including the circumstances
under which the condition can arise.

3. R§§Y!i -- the result of the operation
that caused the condition to occur.
rhis applies when the condition is dis
abled as well as when it is enabled.
In some cases, the result is not
defined; that is, it cannot be rre
dicted. This is stated wherever
apf1icab1e.

4. 2~an~a£~_§y§~gm_aftbQll -- the action
taken by the system when an interrupt
occurs and an ON-unit to handle that
interrupt has not been specified.

5. ~Q£m~!_£§tg£ll -- the point to which
control is returned as a result of a
null ON-unit. A GO TO statement ON
unit is an abnormal ON-unit termina
tion. Note that the conditions
ENDFILE, KEY, and CONVERSLON cannot
have the null statement associated with
them and, therefore, a normal return
can never be made for these conditions.

rhe conditions are grouped as follows:

1. fQillE~i~t!Qn~1_f2n~i~iQn§ -- those con
ditions associated with data handling,
eKpression evaluation, and computation.
They are:

CONVERSION
FIXEDOVERFLJW
OVERFLOW
UNDERFLOW
ZERJDIVIDE

2. I 191LQg~EYt_f2nQi~iQn§ those condi-
t ons associated with data transmis-
s on. They are:

ENDFILE
ENDPAGE
KEY
RECORD
TRANSMIT

3. ~I§ig!=~£iiQn_£Qn~iiiQn -- the condi
tion (i. e., ERROR) that provides faci
lities to extend the standard system
action that is taken after the occur
rence of a condition.

Computational Conditions

Q§§££i£tiQn: The CONVERSION condition
occurs whenever an illegal conversion is
attempted. This attempt may be made
inte~nally or during an input/output
opera tion.

All conversions of character-string data
a~e carried out character-by-characte~ in a
left-to-right sequence and the condition
occurs for the first illegal character.
When such a character is encountered, an
interrupt occurs (provided, of course, that
CONVERSION has not been disabled by means
of the condition prefix NOCONVERSION) and
the current action specification for the
condition is executed.

Bg§glt: When CONVERSION occurs, the con
tents of the entire result field are
undefined.

~i~n~~£~_~Y§igill_!fiiQll: In the absence of
an ON-unit, the system prints a message and
raises the ERROR condition.

Normal Return: A null ON-unit cannot be
sfeciiied-ior this condition.

Example:

On input, an attempt is made to convert
data that has been mispunched as

10R-01

to the floating-point format specified in
the following GET statement:

GET FILE (CARD) EDIT (Y)(E(8,2»;

The CONVERSION condition is raised, since
10R-01 does not have a valid floating-point
format.

Q§§££i£tiQn: The FIXEDOVERFLOW condition
occurs when the length of the result of a
fixed-point arithmetic operation exceeds lie
For System/360 implementations, li is 15 foe
decimal fixed-point values.

FIXEDOVERFLOW can be ~isabled by the
condition prefix NOFIXEDOVERFLOW.

Result: The result of the invalid fixed
point-operation is undefined.

~t~n~~~~_~Y§i~!_~£tiQn: In the absence of
an ON-unit, the system prints a message and
raises the ERROR condition.

NQ~ill~l_Bgiy£n: If a null ON-unit is sreci
fied for this condition, control returns to
the point immediately following the point
of interrupt.

Q~§££!£i!Qll: The JVERFLJW condition occurs
when the magnitude of a floating-point num
ber exceeds the permitted maximum. For
Model 20 PL/I, a floating-point number or
intermediate result must be less than 10 49 •

OVERFLOW can be disabled by the condition
prefix NOOVERFLOW.

Rg§yli: When OVERFLOW has occurred, the
value in the affected floating-paint field
is undefined.

~i~ng~f~_~Y§i~lli_~£iiQn: In the absence of
an ON-unit, the system prints a message and
raises the ERROR condition.

liQ£m~l_B§tg£ll: If a null ON-unit is speci
fied for this condition~ control returns to
the point immediately following the point
of interrupt.

Qg§£~i~iiQn: The UNDERFLOW condition
occurs when the absolute value of a
floating-point number is smaller than the
permitted minimum. For Model 20 PL/I, the
absolute value of a floating-point value
must not b~ less than 10- 51 # except that it
may be zero.

UNDERFLOW does not occur when equal num
bers are subt~acted (often called signifi
cance error).

UNDERFLOW can be disabled by the condi
tion prefix NOUNDERFLOW.

Bg§yli: The invalid floating-point value
is set to O.

[t~ng~£g_~Y§i~m_~£iiQn: In the absence of
an ON-unit, the system prints a message and
continues execution from the point at which
the interru~t occurred.

liQ£m~l_E~tg£n; If a null ON-unit is speci
fied for this condition, control returns to
the point immediately following the point
of interrupt.

Qg§£~i~iiQn: The ZERODIVIDE condition
occurs when an attempt is made to divide by
zero. This condition is raised fo~ fixed
point and floating-point division.

IN-:onditions 111

ZERODIVIDE can be disabled by the condi
tion prefix s~ecifying NOZER~DIVIDE. How
ever, in this case, division by zero
results in a Model 20 hardware stop.

Result: The result of a division by zero
Is-undefined.

~1~n~~f~_~Y§1gm_!£1iQQ: In the absence of
an oN-unit, the system prints a message and
raises the ERROR condition.

liQ£m~~_g§t~£ll: If a null ON-unit is speci
fied for this condition, control returns to
the point immediately following the point
of interrupt.

Input/Output Conditions

The input/output conditions are always
enabled and cannot appear in condition pre
fixes; they can be specified only in ON
statements.

~g§£~1E1iQn: The ENDFILE condition can be
raised during a GET or READ operation; it
is caused by an attem~t to read Fast the
end-af-file record of the file named in the
GET or READ statement.

After ENDFILE has been raised, the file
should be closed.

~1~nQ~fQ_~Y§igm_!f1!QQ: In the absence of
an ON-unit, the system prints a message and
raises the ERROR condition.

Normal Return: A null ON-unit cannot be
s~~~I~I~~-~;~ this condition.

The filename must be the name of a file
having the-PRINT attribute.

Qg§££!liiQQ: The ENDPAGE condition is
raised when a PUT statement results in an
attempt to start a new line beyond the
maximum default page length (60 lines) or
the page length specified in the PAGESIZE
option of the OPEN statement for the file.
The attempt to exceed the limit may be made
duriny data transmission (including any
format items specified in the PUT state
ment), or by the SKIP option. ENDPAGE is
raised only once per page.

When ENDPAGE is raised, the current line
number is one greater than that specified

112 IBM system/360 Model 20 DPS PL/I

by the PAGESIZE option (or the default) so
that it is possible to continue writing on
the same page.

After ENDPAGE has been raised, a new
ta~e can be started by executing a PAGE
option or a PAGE format item. If a new
~age is not started, the current line num
ber may increase indefinitely.

~i~n~~£~_~Y§i~m_!£iiQn: In the absence of
an ON-unit, the system starts a new page.

NQ£m~1_Bg1Y£Q: If ENDPAGE is raised during
data transmission, then, on return from a
null ON-unit, the data is written on the
current line. If ENDPAGE results from a
SKIP option, then, on return from a null
ON-unit, the action specified by SKIP is
i;jnored.

~g~££i~iiQn: The KEY condition can be
raised only during operations on keyed
records. It is raised in any of the fol
lowin:] cases:

1. The keyed record cannot be found for a
READ or REWRITE statement. In this
case, the contents of the variable into
which data is to be read is
unpredictable.

2. An attempt is made to add a duplicate
key by a WRITE statement.

3. The key~ of a KEYED SEQUENTIAL OUTPUT
file are not in ascending order.

4. No space is available to add the keyed
record.

~i~n~~£~_~Y§i~m_!£iiQn: In the absence of
an ON-unit, the system prints a messa~e and
raises the ERR~R condition.

Normal Return: A null ON-unit cannot be
sleciiied-ior this condition.

Qg§f£iEiiQn: The RECJRD condition can be
raised only durin~ a READ, WRITE, REWRITE,
or LOCATE operation. It is raised in eith
er of the following cases:

1. The size of the record is greater than
the size of the variable.

2. The size of the record is less than the
size of the variable.

If the size of the record is greater
than the size of the variable, the excess
data in the record is lost on input and is
unpredictable on outfut. If the size of
the record is less than the size of the
variable, the excess data in the variable
is not transmitted on output and is unal
tered on infut. Note that an ON-unit can
only be s~ecified for ~AEg_inEY~_!ilg§.

~i~a~~£~_~Y~igm_!£iiQa: In the absence of
an ON-unit, the system prints a message and
raises the ERROR condition.

status: RECORD is always enabled; it cannot-be disabled.

liQ~m~l_RgiY~n: Upon execution of a null
ON-unit, execution continues with the sta
tement immediately following the READ sta
tement for which RECORD occurred. An ON
unit can only be specified for tape input
files; in all other cases l the standard
system action is executed.

!hg_!E!li~tll!_£QngiiiQn

~gn§f~1_E2fm~~: TRANSMIT (filename)

Qg§££i~ii~a: The TRANSMIT condition can be
raised during any input/output operation.
It is raised by a permanent transmission
error and, as a result, any data trans
mitted is potentially incorrect. Durin~
input, the condition is raised after
assignment of the potentially incorrect
data item or record. During output, the
condition is raised after the transmission

of the potentially incorrect data item or
record has been attemfted.

~~~n~~~~_~Y§~£m_!£iiQll: In the absence of 
an ON-unit, the system prints a message and 
raises the ERROR condition. 

liQ£m~b_R§i~£ll: Upon execution of a null 
ON-unit, processing continues with the next 
data item for STREAM I/O, or with the next 
statement for RECORD I/O. 

System Action Condition 

ng§£f~f!~Qll: The ERROR condition is raised 
under the following circumstances: 

1. As a result of the standard system 
action for an ON-condition for which 
that action is to "I--rint an error mes
sage and raise the ERROR condition". 

2. As a result of an error (for which 
there is no ON-condition) occurring 
during program execution (for example, 
taking the SQRT of a negative value). 

~!~ng~fg_~Y§!£m_!£iiQa: In the absence of 
an ON-unit, a message is printed and con
trol is returned to the DPS Monitor 
program. 

liQ~m~b_Rg!Y~ll: Upon execution of a null 
ON-unit, control is returned to the DPS 
Monitor pro:Jram. 

ON-Conditions 113 



Attributes 

A name appearing in a PL/I program may have 
one of many different meanings. It may, 
for example, be a variable referring to 
arithmetic data items; it may be a file 
name; it may be a variable referring to a 
character string, or it may be a statement 
label or a variable referring to a state
ment label. 

Properties, or charaGteristics, of the 
values a name represents (for exam}le, 
arithmetic characteristics of data items 
represented by an arithmetic variable) and 
other properties of the name itself (such 
as scope, storage class, etc.) together 
make up the set of g~~~1QY!~§ that can be 
associated with a name. 

The attributes enable the compiler to 
assign a unique meaning to the identifier 
specified in a DECLARE statement. For 
example, if the variable is an arithmetic 
data variable, the scale and precision 
attributes must be associated with the 
name. Associated attributes are those 
which you specifiy in a DECLARE statement 
or which are assumed by default. 

This section discusses the different 
attributes. The attributes are grouped by 
function. Detailed discussions follow, in 
alphabetic order, showing the rules, 
default, and format for each attribute. 

Attributes srecified in a DECLARE statement 
must be separated by blanks. However, in 
case of dimension, length, and precision 
attributes, blanks are not necessary. 
Except for the dimension, length, FILE, and 
precision attributes, they may appear in 
any order. The dimension attribute must 
immediately follow the array name; the 
length attribute must follow the CHARACTER 
attribute, and thE! i,recision attribute must 
follow the base or scale attribute; the 
FILE attribute must be the first attribute 
in every file declaration. A comma must 
follow the last attribute specification for 
a particular name (or the name itself, if 
no attributes are specified with it) , 
unless it is the last name in the DECLARE 
statement, in which case the semicolon is 
used. For example: 

DCL MASTER FILE ~ECORD INPUT 
SEQUENTIAL other-attributes, 

A(10,10) FIXED DECIMAL, 
B DECIMAL FIXED (4,2), 
C :HAR (5) INIT (' JOHN '); 

114 IBM System/360 Model 20 DPS PL/I 

Factoring is achieved by enclosing the 
names in parentheses, and following this by 
the set of attributes which ap~ly. Names 
within the parenthesized list are separated 
by commas. All factored attributes must 
apply to all of the names. No factored 
attribute can be overridden for any of the 
names by a separate specification, but any 
name within the list may be given other 
attributes so long as there is no conflict 
with the factored attributes. 

Except for the ~i~~~§iQ~L_llil!I!~, and 
fil~=~g§~£i£!iQ~_~!!£iQy!g§, you can factor 
any attributes common to several names in a 
declaration to eliminate repeated specifi
cation of the same attribute for many iden
tifiers. Note, however, that in Model 20 
PL/I, a pair of factorization parentheses 
cannot contain more than 60 declarations 
and that factoring can be nested to a level 
of eight. (See the fourth example below 
for an illustration of nesting.) 

NQ!g: If elements of structures are fac
tored, their level numbers must also be 
factored by preceding the Farenthesized 
list. (See the third example below.) 

DECLARE (A,B,C) DECIMAL FIXED (4,2); 
DECLARE (Y DECIMAL (6),F CHARACTER (10» 

STATIC; 
DECLARE 1 A, 2 (B,C,D) FIXED DECIMAL(4,2); 
DECLARE«A,B) FIXED(10), C FLOAT (5» 

EXTERNAL; 

Data Attributes 

Attributes for problem data are used to 
describe arithmetic and character-string 
variables. An arithmetic variable has 
attributes that siecify the base, scale and 
precision of the data item. A character
string variable has attributes that identi
fy it as a character-string variable and 
slecify its length. 

DECIMAL 
FIXEDIFLOAT 
(prec ision) 

PICTURE 



CHARACTER 
(length) 

You can also declare other attributes 
for data variables. with the DEFINED 
attribute you can specify that the data 
variable is to occupy the same main-storage 
area as some other data variable. The 
storage class and scope attributes also 
apply to data. With the INITIAL attribute 
you specify initial values for data 
variables. 

An attribute that applies only to array 
variables, is the dimension attribute. It 
specifies the number of dimensions and the 
bounds of an array. 

Program-control data are labels and poin
ters. You can use them to control the 
execution of your program. The associated 
attributes are LABEL and POINTER. 

ENTRY-NAME ATTRIBUTES 

An entry name is a special type of label, 
namely, the label identifying a PROCEDURE 
statement. With the entry-name attributes 
you specify that the associated name is an 
entry name and describe features of that 
entry point. 

ENTRY 
RETURNS 
BUILTIN 

All entry names of procedures that are 
invoked within a procedure must be declared 
in the invokin~ procedure with the ENTRY or 
RETURNS attribute. The RETURNS attribute 
has to be specified for a function return
ing a value that does not have the default 
at tr ibu t es. It has to appear in both the 
invoking and the invoked procedure (func
tion). In the function, the attributes of 
the value to be returned must be specified 
in the RETURNS attribute in the PROCEDURE 
statement. The PROCEDURE statement of a 
function is the only tlace where an attri
bute may appear outside a DECLARE state
ment. The BUILTIN attribute must be Sfeci
fied for the DATE built-in function. 

Pile Description Attributes 

The file-descriftion attributes establish 
an identifier as a file-name and describe 
characteristics for that file, for example, 
how the data of the file is to be trans-

mitted, what the characteristics of the 
file are, etc. If the same filename is 
declared in more than one procedure, the 
file attributes must not conflict. A 
filename must always have the EXTERNAL 
attribute, either explicitly or by default. 
For file-description attributes see also 
!~~gllgi~_~~_Ki1~_!ii£iQgig§_~ng_Q£!!Qn§· 

FILE 
STREAMIREC:>RD 
INPUTIOUTPUTJUPDATE 
PRINT 
SEQUENTIALIDIRECT 
BACKWARDS 
E NVI RON ME NT (option -list) 
KEYED 

Scope Attributes 

With the scope attributes you specify 
whether or not a name declared in a proce
dure is to be known only within or also 
beyond the scope of that procedure. 

EXTERNAL 
INTERNAL 

For a discussion of the scope of names, 
see Part I, Eg£Q~ll!i!Qll_QK_li£mg§. 

All external declarations of the same 
identifier in a program are considered as 
declarations of the same variable. The 
scope of the variable name is the union of 
the scopes of all the external declarations 
of this name. 

In all of the external declarations of 
the same identifier, the attributes 
declared must be consistent, since the 
declarations all involve a single variable. 
For example, it would be an error if the 
identifier ID were declared as an EXTERNAL 
filename in one procedure and as an 
EXTERNAL entry name in another frocedure in 
the same program. 

The INTERNAL attribute specifies that 
the declared name is not known in any pro
cedure other than the one in which it is 
declared. INTERNAL cannot be s[ecified for 
a file or entry name. 

You can declare the same identifier with 
the INTERNAL attribute in more than one 
procedure without regard to whether the 
attributes given in one procedure are con
sistent with the attributes given in anoth
er procedure, since such declarations refer 
to different variables. 

Attributes 115 



Storage Class Attributes 

The storage-class attributes are used to 
specify the class of storage to be all~
cated to a data variable. 

STATIC 
AUTOMATIC 
BASED (pointer-variable) 

Alphabethic List of Attributes 

Following is a list of attributes along 
wiht a detailed description of each attri
bute. Alternative attributes are discussed 
together, with the discussion listed in the 
al~habetic location of the attribute whose 
name is the lowest in alphabetic order. A 
cross-reference to the combined discussi~n 
appears wherever an alternative appears in 
the alphabetic listing. 

You use the storage-class attributes t~ 
specify the type of main-storage allocation 
for data variables. 

!gIQ~!IJf specifies that storage is to be 
allocated upon each entry to the procedure 
in which the declaration has been made 
(ei ther explici tly or by defaul t). The 
storage area is freed (released) upon exit 
from the frocedure. 

~!!I~f specifies that storage is to be 
allocated when the program is loaded and is 
not to be released until program execution 
has been completed. 

The ~!2~~_1~Qillig£=Y~£i~Qlg) attribute spe
cifies a variable that is a description of 
data that can be apllied to different loca
tions in a storage. 

General Format: 

STATICIAUTOMATICIBASED(pointer-variable) 

General Rules: 

1. AUTOMATIC and BASED variables can have 
INTERNAL scope only. STATIC variables 
may have either INTERNAL or EXTERNAL 
scope. 

2. You must not s~ecify storage-class 
attributes for entry names, file names, 
members of structures, DEFINED data 
items, or parameters. 

3. For a §~~Y£iy~§_!~~i~£l§, you can s~e
cify a storage-class attribute only for 
the ~~jQ£=§t£~£t~£g_llAmg. The attri-

• 116 IBM System/360 Model 20 DPS PL/I 

bute then apflies to all elements of 
the structure. 

4. The following rules govern the use of 
!;H!§gfL~~~!~.Qlg§ : 

a) The EQ!lli§£_Y~£iAQ1§ must be expli
citly declared with the POINTER 
attribute. The ~ointer variable 
must be an element variable; ~t can
not be an element of a structure, 
and it cannot have the BASED 
attribute. 

b) When reference is made to a based 
variable, the data attributes---
as~umed-are those of the based vari
able, while the associated pointer 
variable identifies the location of 
data. 

c) You can use a based variable to 
identify and describe existing data 
or to obtain storage in a buffer by 
use of the LOCATE statement. 

d) You cannot specify the EXTERNAL 
attribute with a based variable~ but 
you can use a based variable with an 
EXTERNAL pointer variable. 

Assumptions: 

1. If no storage-class attribute is speci
fied and the scope is INTERNAL, AUTO
MATIC is assumed. 

2. If no storage-class attribute is speci
fied and the scope is EXTERNAL, STATIC 
is assumed. 

3. If neither the storage class nor the 
scope is specified, AUTOMATIC is 
assumed. 

~!~KR!EQ~_lKi!g=~§§££i£i!Q~_~ti£!Q~igL 

With the BACKWARDS attribute you specify 
that the records of a SEQUEN~IAL INPUT file 
on magnetic tape are to be accessed in 
reverse order, i.e., from the last record 
to the first record. 

General Format: 

BACKWARDS 

General Rules: 

1. The BACKWARDS attribute applies to 
RECORD files only; you may not specify 
it for STREAM files. 

2. The BACKWARDS attribute applies to tape 
files only. 

3. The BACKWARDS attribute cannot be spe
cified for variable-length records • 



~!~gQ_J~!Qf~gg=~l~§§_!!!f~Qy!gl 

See AUTOMATIC. 

~rrI~tIN_Jgllt£Y_!tt£i~ytgL 

In Model 20 PLII, the BUILTIN attribute 
must be specified with the DATE built-in 
function. For the other built-in functions 
it may be specified, but is not necessary. 

General Format: 

BUILTIN 

General Rule: 

The BUILTIN attribute has to be specified 
with the DATE built-in function. It must 
be the only attribute sfecified for the 
built-in function. 

For example: 

DCL DATE BUILTIN; 

£li!B_~£_£li!R!f!ER_JfhA£A£t!£=~i£ing~QAi~ 
!tt£i~!!tgL 

The CHARACTER attribute (abbreviated CHAR) 
is used to srecify character-string 
variables. Together with the CHARACTER 
attribute you have to specify the length 
attribute. 

General Format: 

{
CHARACTER}(length) 
CHAR 

Genera I Rules: 

1. With the length attribute you specify 
the length of the declared string. It 
must be a decimal integer constant, 
unsigned and greater than zero. The 
maximum length specification is 255. 

2. The length attribute must immediately 
follow the CHARACTER attribute at the 
same factoring level, with or without 
intervening blanks. 

Q~~I~!1_1!£iihmgii£=Qaia_!tt£iQytgL 

With the DECIMAL attribute you specify that 
the base of the data item represented by an 
arithmetic variable is decimal. In Model 
20 PLII, arithmetic variables can only have 
the DECIMAL base. 

General Format: 

DECIMAL 

General Rule: 

The DECIMAL attribute cannot be specified 
with the PICTURE attribute. 

Assumf;tions: 

Identifiers that are not ex~licitly 
declared (Dr identifiers declared only with 
dimension, storage class, and scope attri
butes) are invalid if they begin with any 
of the letters I to N. If they begin with 
any other alphabetic character, they are 
assumed to be arithmetic variables with the 
default attributes FLOAT DECIMAL (6). 

Qgf_Q£_Q~fI[gQ_1Q~tE_!ii£iQytgL 

rhe DEFINED attribute (abbreviated DEF) 
specifies that the variable being declared 
is to represent part or all of the same 
storage area as that assigned to another 
variable. The DEFINED attribute can be 
declared for element, array, or major
structure variables. 

General Format: 

{
DEFINED}base-identifier 
DEF 

The Qa~~_~~grrtifi~f is an unsubscripted 
variable whose location in main storage (or 
part of it) is also to be represented by 
the variable being declared. 

Rules for Definin~: 

1. You cannot s~ecify INITIAL, storage
class, and scope attributes for the 
ggfillgg_y~£iA~lg. Note that although 
the base identifier can have the 
EXTERNAL attribute, the ~gfing~_!~f~= 
~~lg always has the INTERNAL attribute 
and cannot be declared with any scope 
attribute. If the base identifier is 
external, it will be known in all fro
cedures in which it has been declared 
external, but the name of the defined 
variable will not. However, the value 
of the defined variable will be changed 
if the value of the base identifier is 
changed in any procedure. The defined 
variable cannot be a minor structure or 
an element of a structure. 

2. The ~A~~_~~~lltifig£ must always be 
known ~ithin the block in which the 
defined variable is declared. The base 
identifier cannot have the DEFINED 
attribute; it cannot be a based vari
able, a pointer variable or a 
parameter. 

3. The base identifier cannot be a minor 
structure or an element of a structure. 
However, it can be a major structure, 
and it can also be an array. 

Attributes 117 



There are two types of defining: §i~~l~ 
~gfb~i~g and §~£b~g~Qyg£l~y_~gfbning· 
Sim~le defining is given if both the 
defined variable and the base identifier 
have identical formats. String-overlay 
defining is given when the formats are not 
identical. 

Simple defining means that a reference to 
an element of the defined variable is 
interpreted as a reference to the corres
ponding element of the base identifier. 

corresponding structures must have the 
same structuring. corresponding arrays 
must have the same number of dimensions and 
bounds. The elements of the base identifi
er and the elements of the defined item 
must have the same descri~tion. 

~i£bng~Qyg£l~y_~gfinb~~ 

string-overlay defining means that the 
defined variable is to occupy part or all 
of the storage area allocated to the base 
identifier. In this way, changes to the 
value of either variable may be reflected 
in the value of the other. string-overlay 
defining is permitted between 

a) character-string variables, 

b) numeric-character variables, and 

c) aggregates consisting of items a and b. 

The extent of the defined variable must 
not be Iaeger than the extent of the base 
identifier. The extent is calculated by 
summing the lengths of the elements of a 
variable, e.g., all individual elements of 
an array .• 

With the dimension attribute you specify 
the number of dimensions of an array and 
the bound of each dimension. 

General Forma t: 

(bound[,bound[,boundJJ) 

General Rules: 

1. rhe nllmber of bounds sfecifies the num
ber of dimensions in an array. As 
shown by the general format, the maxi
mum number of dimensions allowed in 
Model 20 PL/I is i~£~~. 

2. Each bOllnd must be an unsigned decimal 
integer constant greater than zero. 
This number specifies the llpper bound 
of the correstonding dimension. rhe 

118 IBM System/360 Model 20 DPS PL/I 

lower bound is always assumed to be 1. 
Therefore, this number also specifies 
the extent of the corresponding dimen
sion. For exam~le, if a bound is 8, 
the extent of that dimension is 1, 2, 
•.. , 8. 

3. The dimension attribute must immediate
ly follow the array name. Intervening 
blanks are optional. The dimension 
attribute cannot be factored. 

Example: 

DECLARE ARRAY (2,5,10); 

The numbers 2, 5, and 10 are the bounds 
of a three-dimensional array of 100 ele
ments. You obtain the number of elements 
in an array by multiplying the bounds with 
each other. 

with the DIRECT and SEQUENTIAL attributes 
you specify the manner in which the records 
of a RECORD file are to be accessed. 
SEQUENTIAL specifies that the records are 
to be accessed according to their logical 
se~llence in the file. DIRECT specifies 
that the records are to be accessed by llse 
of a key. Each record of a direct file 
must, therefore, have a key associated with 
it. 

General Format: 

SEQUENTIALIDIRECT 

General Rllles: 

1. DIRECT files must also ha ve the KEYED 
attribute which, if not explicitly spe
cified, is implied by DIRE:T. 
SEQUENTIAL files may have the KEYED 
attribute only if the SEQUENTIAL attri
bllte is associated with a file of 
INDEXED organization. 

2. The DIRECT and SEQUENTI~L attributes 
cannot be s~ecified with the STREAM 
attribllte. 

Assllmption: 

Defalllt is SE~UBNTIAL for RECORD files. 

~!!1:E.X_&i:t£bQ.Qig 

~ith the ENTRY attribute YOll specify that 
the associated identifier is an entry name. 

General Format: 

ENTRY 



General Rules: 

1. The ENTRY attribute must be sFecified 
for every entry name that is referred 
to in a procedure, unless RETURNS is 
specified, which implies the ENTRY 
attribute. 

2. The ENTRY attribute must not be speci
fied for built-in functio~~: 

Assumptions: 

The appearance of a name as a label of a 
PROCEDURE statement is an explicit decla
ration of that name as an entry name. How
ever, if you want to refer to that entry 
name from within another procedure, you 
have to explicitly declare that identifier 
with the ENTRY attribute in the invoking 
procedure. 

~NY_Q~_~NYIBQli~~liI_l[i!g=~g§~£i£iiQrr 
l!.:tt~ifU~!~l. 

The ENVIRONMENT attribute (abbreviated ENV) 
is an attribute that specifies various file 
characteristics that are not part of the 
PL/I language. 

General Format: 

{
ENVIRONMENT}(Options-list) 
ENV 

The option list is defined individually 
for each implementation of PL/I. For Model 
20 PL/I, it is as follows: 

[
CONSECUTIVE] 
INDEXED 

{

F (blocksize [,reCOrdSiZe])} 
V (maxblocksize) 
U (maxblocksize) 

[ BU FFERS (1 12) ] 
MEDIUM (symbolic-device-address, 

device-tYf e ) 
[CTLASA] 
[LEAVE] 
[ NOTAPEMK] 
[NOLABEL] 
[VERIFY] 
[NOWRIrE] 
[KEYLENGTH (decimal-integer-constant)] 
[EXTENTNUMBER (decimal-integer-constant)] 
[OFLTRACKS (decimal-integer-constant) ] 
[KEYLOC (decimal-integer-constant)] 
tALTTAPE] 

General Rules: 

1. Each file declaration must include the 
ENVIRONMENT attribute. 

2. The options must be separated by one or 
more blanks. 

~X1_Q£_~XI~RN!1_~ll~_!NI~BN!~_j~£Q2~ 
!tt£iQ!!i~§l 

rhe EXTERNAL (abbreviated EXT) and INTERNAL 
attributes specify the scope of a name. 
INTERNAL specifies that the name is to be 
known only in the declaring procedure. 
EXTERNAL specifies that the name may be 
known in other procedures containing a dec
laration of ' the same name with the EXTERNAL 
attribute. 

General format: 

EXTERNALIEXTIINTERNAL 

General Rules: 

1. All file and entry names must be 
external. They cannot be declared as 
internal. 

2. All external names are restricted, in 
Model 20 PL/I, to a length of six 
characters. 

Assumf'tions: 

INTERNAL is assumed for variables with any 
storage class.. EXTERN AL (abbrevia ted EXT) 
is assumed for filenames and entry names. 

With the FILE attribute you specify that 
the identifier being declared is a 
filename. 

General Format: 

FILE 

General Rule: 

The FILE attribute must be explicitly 
declared for each filename. It must be the 
first attribute in a file declaration. 
File declarations cannot be factored. 

With the FIXED and FLOAT attributes you 
specify the §£~1~ of the arithmetic vari
able being declared. FIXED specifies that 
the variable is to represent fixed-point 
data items. FLOAT specifies that the vari
able is to represent floating-point data 
items. 

General Format: 

FIXEDIFLOAT 

rittributes 119 



General Rule: 

You cannot specify the FIXED and FLOAT 
attributes with the PICTURE attribute. 

Assumptions: 

Identifiers that are not ex~licitly 
declared (or identifiers declared only with 
the dimension, storage class, and scope 
attributes) are invalid if they begin with 
any of the letters I to N. If they begin 
with any other alphabetic character, they 
are assumed to be arithmetic variables with 
the default attributes FLOAT DECIMAL(6). 

See FIXED. 

With the INITIAL attribute (abbreviated as 
INIT) you can specify an ini tial value f::>r 
a variable. The initial value is assijned 
to the variable at the time storage is 
allocated for it. 

General Format: 

{ 
INIr IALtci tem[ , item] ••• ) 
INIT f 

General Rules: 

1. You may sfecify the INITIAL attribute 
for element variables and arrays. How
ever, you cannot specify it for arrays 
of the storage class AUTOMATIC. 

2. The variables you can initialize ~ay 
either be arithmetic, character-string 
or label variables. 

3. INITAL values £~llllQi be declared f::>r 
BASED variables, DEFINED variables, 
structures, parameters, STATIC LABEL 
variables and arrays, POINTER 
variables, file names and entry names. 
In a §1£Y£1y£g_~g~!~£~iiQ~, the INlrIAL 
attribute can only be used in the dec
laration of g!gmgrr1a£Y_llamg§. 

4. Each !!g~ in the list following the 
INITIAL attribute may either be an 
~£iihmg~i£_£Qll§1~rrl, a £~a£a£ig£=~i£igg 
£e~~ta~i, or an ii~£~iiQll 
~H2.g£i1i£~iiQll· 

5. The itg£atiQll_§Eg£ifi~aiie~ has one of 
the following general forms: 

(iteration-factor) constant 
(iteration-factor (i tern [, item] ••• ) 

Iteration factors must be unsigned dec
imal integer constants. The i!g£a!iQrr 
fa£!Q£ specifies the number of ti~es 

120 IBM System/360 Model 20 DPS PL/I 

the constant, or item list, is to be 
releated in the initialization of ele
ments of an array. If a constant fol
lows the iteration factor, then the 
specified number of elements are to be 
initialized with that value. For 
example: 

DCL B (5,5) DECIMAL FIXED STATIC INIT 
«25)0); 

In this DECLARE statement, the 25 ele
ments of the array B are initialized to 
O. If a list of items follows the 
iteration factor, then the list is to 
be reFeated the specified number of 
times, with each item initializing an 
element of the array; for example: 

DCL C (10,10) STATIC FLCl~T INIT (1,(9) 
«10)0,1»: 

In this iteration specification, the 
first element is to be initialized to 
1, then the item list «10)0,1) is to 
be repeated nine times. In this case, 
all diagonal elements of the matrix C 
are initialized to 1, while all other 
elements ~re initialized to O. The 
iteration specification must not con
tain more elements than the array. 

6. For initialization of cha~acter-string 
data, if only one parenthesized integer 
constant precedes the string initial 
value, the expression is interpreted to 
be a §!£irr~_£g2gii1iQrr_f~£iQ£ for the 
string; that is, it is interpreted as a 
part of the s}ecification of the value 
for a ~irrgl~ element. Consequently, in 
order to cause initialization of more 
than one element in a character string, 
both the string repetition factor and 
the iteration factor must be eXflicitly 
stated, ~Y~n_if_ih~_§l£ing_~gEgliliQn 
f~£!Qf_!§_llL. For example, consider 
the following 

( (2) , A ' ) is e qui val en t to ( I A A I ) ( for 
a single element) 

«2) (1) 'A') is equivalent to 
(' A', 'A I) (for two elements) 

7. The depth of nested iteration factors 
in an INIrIAL attribute is restricted 
to three in Model 20 PL/I. In the 
example 

DCL C (10,10) STATIC FLJ~T INIT 
(1(9) «10)0,1»; 

the INITIAL attribute of the two
dimensional array C has a nested depth 
of two. 

8. The INITIAL attribute cannot be 
factored. 



The INPUT, OUTPUT, and UPDATE attributes 
indicate the function of the file. With 
INPUT you specify that data is to be trans
mitted from the file to the program. with 
OUT pur you specify that data is to be tran
smitted from the program to the file. A 
new file is created, or, with INDEXED 
organization, an existing file may be 
extended at its end. With UPDATE you sfe
cify that data can be transmitted in either 
direction; that is, records of the file are 
read, updated, and rewritten. In case of 
INDEXED DIRECT files, file extension is 
~ossible. 

General Format: 

INPUTIOUTPUTIUPDATE 

General Rules: 

1. For a file with the INPUT attribute you 
cannot specify the PRINT attribute. 

2. A file with the OUTPUT attribute cannot 
have the BACKWARDS attribute. 

3. For a file with the UPDATE attribute, 
you cannot specify the STREAM, BACK
WARDS, or PRINT attributes. A decla
ration of UPDATE for a SEQUENTIAL file 
indicates the u~date-in-place mode. To 
access such a file, the sequence of 
statements must be READ, and then 
optionally, REWRITE. 

4. For each file you have to specify one 
of the above attributes, unless you 
have declared the file with the PRINT 
attribute, in which case, OUTPur is 
implied. 

5. You cannot specify OUTPUT for INDEXED 
DIRECT files. 

Assumption: 

T~e PRINT attribute implies OUTPUT. 

See EXTERNAL. 

K~X~Q_1Eb!g=Q§2f£i£iiQn_~ii£i£QigL 

with the KEYED attribute you specify that 
each record in the file has a key asso
ciated with it. 

General Format: 

KEYED 

General Rules: 

1. A KEYED file can be read sequentially 
only if it has the INDEXED option and 
SEQUENTIAL attribute. 

2. You can specify the KEYED attribute 
only for a file residing on a direct
access storage device. 

Assumption: 

rhe DIRECT attribute implies KEYED. 

with the LABEL attribute you specify that 
the identifier being declared is a label 
variable and is to have statement labels as 
values. 

General Format: 

LABEL 

General Rules: 

1. The variable can have as values any of 
the statement labels known within the 
scope of the variable. 

2. Label variables and arrays must not be 
contained in structures. 

3. A label variable cannot be assigned an 
entry name as value. 

See CHARACTER. 

See INPUT. 

You use the PICTURE (abbreviated PIC) 
attribute to specify the internal and 
external formats of numeric-character data 
and to define the editing of data. 
Numeric-character data is data having an 
arithmetic value but stored internally in 
character form. Before arithmetic opera
tions can be performed, numeric-character 
data is converted to coded arithmetic. 

General Format: 

{
PICTURE}'nUmeric-Picture-specification' 
PIC 

The nQm~£i~=£i£iy£g_§£g£bfif~iiQg is 
composed of a string of picture
s~ecification characters enclosed in apos
trophes (as shown in the format) . 

Attributes 121 



You find a detailed description as well 
as a table of iicture-specification charac
ters in the section gi£iY£~=~Eg£i£i£~ii~~ 
~h~~~£ig~§· 

RQJNr~B_JgfQgf~ID=fQg1fQ1_Q~1~_~11£iQYigL 

With the POINTER attribute you specify that 
the identifier being declared is a pointer 
variable and can be used to identify data 
declared with the BASED storage-class 
attribute. 

General Format: 

POINTER 

General Rules: 

1. You can specify the POINTER attribute 
for an identifier only in a DECLARE 
statement. Thus, you have to explicit
ly declare a pointer variable with the 
POINTER attribute. 

2. There are two ways of assigning a value 
to a fainter variable: 

a. by pointer assignment, and 

b. by the SET option in a READ or 
LOCATE statement. 

3. Pointer data cannot appear as an 
operand in an arithmetic expression, 
nor can conversion be performed between 
pointer data and other data types. 

4. The only operators that can be used 
directly with pointer data are the com
parison operators = and 1=. 

5. Pointer variables cannot be used with 
STREAM 1/0. 

6. A pointer variable ~annot have the 
BASED attribute. 

7. A pointer variable cannot be an element 
of a structure or of an array. 

8. POINTER variables must not be defined. 

You use the precision attribute to specify 
the minimum number of significant digits to 
be maintained for the values of variables, 
and to specify, for fixed-point decimal 
variables# the scale factor (i.e., the 
assumed position of the decimal point). 

General Format: 

(number-of-digits [,scale-factor]) 

The gYIDQ§f_Q!_gigi1§ and §£~1g_!~£tQf 
are unsigned decimal integer constants. 

122 IBM System/360 Model 20 DPS PLII 

rhe number of digits cannot be zero. The 
precision-attribute specification is often 
represented, for brevity, as (p,g), where 2 
represents the number of digits and g 
represents the scale factor. 

General Rules: 

1. The precision attribute must immediate
ly follow, with or without intervening 
blanks, the scale (FIXED or FLOAT), or 
base (DECIMAL) attribute at the same 
factoring level. 

2. The number of digits specified is the 
number of digits to be maintained for 
data items assigned to the variable. 
The scale factor specifies the number 
of fractional digi ts. No point is 
actually present; its location is 
assumed. 

3. The scale factor is a decimal integer 
constant that states the number of 
digits to the ri~ht of the decimal 
point. It can be used only wi th fixed
point variables. 

4. When the scale factor is not specified 
for fixed-point data, it is assumed to 
be zero; that is, the variable is to 
represent integers. 

5. The maximum precision allowed in Model 
20 PLII is 15. The scale factor may 
ranye from 0 to 15. 

AssumlJtions: 

The defaults in Model 20 PLII are as 
follows: 

(5,0) 
(6 ) 

for D~CIMAL FIXED 
for DECIMAL FLOAT 

gEJNI_1Ki1g=Q§§£~i£i!Qn_~iif!QY1g1 

with the PRINT attribute you specify that 
the data of the file is ultimately to be 
printed. The PAGE and SKIP options of the 
pur statement and the PAGESIZE option of 
the OPEN statement can be used only with 
files having the PRIIT attribute. These 
options are described in the section 
2t~tgmg!!.i§.· 

General Format: 

PRINT 

General Rules: 

1. The PRINT attribute implies the OUTPUT 
and STREA~ attributes. 

2. The PRINT attribute causes the first 
data byte within each record to be 
reserved for an ASA printer-control 



character. To account for this control 
character any length specification of 
the record must be 1 plus the length of 
the print line. The control characters 
are set by the PAGE and SKIP format 
items or options in the PUT statement. 

With the RECORD and STREAM attributes you 
specify the kind of data transmission to be 
used for the file. STREAM indicates that 
the data of the file is considered to be a 
continuous stream of data items, in charac
ter form, to be assigned from the stream to 
variables, or from expressions into the 
stream. RECORD indicates that the file 
consists of a collection of physically 
separate blocks, each of which consists of 
one or more records in any form. Each 
record is transmitted as an entity directly 
to or from a variable or directly to or 
from a buffer. 

General Format: 

RECORDISTREAM 

General Rllles: 

1. A file with the STREAM attribute can be 
referenced only in the OPEN, CLOSE, 
GET, and PUT statements. 

2. A file with the RECORD attribute can be 
referenced only in the OPEN, CLOSE, 
READ, WRITE, REWRITE, and LOCATE 
statements. 

3. A file with the STREAM attribute cannot 
have any of the following attributes: 
UPDATE, DIRECT, SEQUENTIAL, BACKWARDS, 
and KEYED. 

4. A file with the RECORD attribute cannot 
have the PRINT attribute. 

AssUmf'tions: 

Default is STREAM. 

You must specify the RETURNS attribute when 
a function invoked by a function reference 
returns a value that has attributes other 
than the default attributes FLOAT DECIMAL 
(6) • It must appear in the invoking as 
well as in the invokei procedure. 

General Format: 

RETURNS (attributes-list) 

General Rules: 

1. The RETURNS attribute must be s~ecified 
as follows: 

DECLARE entry-name [ENTRY] RETURNS 
(a ttributes-list) ; 

entry-name: PROCEDURE [ (parameter
list) J RETURNS (attributes-list); 

2. The RETURNS attribute in the DECLARE 
statement implies the ENTRY attribute; 
hence, you can omit ENTRY in the 
DECLARE statement of the invoking 
procedure. 

3. The attributes in the farenthesized 
list following the keyword RETURNS have 
to be separated by blanks. The attri
blltes specified in the attributes list 
following the keyword RETURNS in the 
invoking as well as in the invoked pro
cedure must be identical. 

4. You can sf'ecify only arithmetic, 
character-string, PICTURE, or POINTER 
attributes with the RETURNS attribute. 

5. The RETURNS attribute must not be s~e
cified for built-in functions. 

Assuml!tions: 

If the RETURNS attribute is not sfecified 
and the entry name referred to in the func
tion reference does not start with any of 
the letters I to N, the value returned by 
the invoked function is assumed to have the 
default attributes FLOAT DE:IMAL (6). If 
the entry name starts with any of the let
ters I to N, the RETURNS attribute has to 
be specified. 

See DIRECT. 

See AUTOMATIC. 

See RECORD. 

See INPUT. 

Attributes 123 



Statements 

This section presents the PL/I statements 
in alfhabetical order. Most statements are 
accompanied by the following information: 

1. Egnfi1Qn -- a short description of the 
meaning and use of the statement. 

2. §~n§~~l_tQ~m~l -- the syntax of the 
statement. 

3. ~Yn!~~_~glg§ -- rules of syntax that 
are not reflected in the general 
forma t. 

4. §~n§~~l_~gl§§ -- rules governing the 
use of the statement and its meaning in 
a Model 20 PL/I program. 

Function: 

The assignment statement evaluates expres
sions and assigns values to elements, 
arrays, or structures. 

General formats: 

The assignment statement has five general 
format types. They are shown in Figure 19. 

Syntax Rules: 

1. In ~YE§_l, the variable in the receiv
ing field (i.e., to the left of the 
e;ual sign) must re~resent a single 
element whose data type is arithmetic 
or character-string. 

2. In ~YE§_~, the variable in the recei v
ing field must represent an array of 
arithmetic or character-string 
elements. 

If an expression appears to the right 
of the equal sign, the value of the ex
fression is assi~ned to each element of 
the array in the receiving field. 

If an array name appears to the right 
of the equal sign, the array in the 
receiving field must have the same num
ber of dimensions and identical bounds~ 

3. In lY~§_l, the variable in the receiv
ing field must represent a structure 
and each element of the structure must 
be an arithmetic or character-string 
element. 

r----------------------------------------------------------------------------------------1 
±yE§_1~ __ ~1§m§nl_~§§1~n~§ni I 

{
'element-variable} 
, pseudo-variable 

array-name 

structure-name 

= eXl,Jression; 

={ array- na mel 
expression!; 

= structure-name; 

a. element-label-variable ={label-constant } 

b. label-array 

element-label-variable ; 

{

label-constant } 
= element-label-variable ; 

label-array 

pOinter-variable = pointer-expression; 

I 
I 
I 
I 
I 
I 
I 

L ________________________________________________________________________________________ J 

Figure 19. Assignment Statement Types 

124 IBM system/360 Model 20 DPS PL/I 



The structure name to the right of the 
equal sign must have the same relative 
structuring as the structure name to 
the left and corresponding elementary 
items of both structures must have the 
same attributes. 

This means that you can assign minor 
structures to major structures and vice 
versa, if the relative structuring is 
the same and the corresponding elemen
tary items in both the minor and the 
major structure have the same attri
butes. For examfle: 

DCL 1 INDEX_REC, 
2 KEY CHAR (12), 
2 OTHER CHAR (53), 

OUTREC, 
2 CTL_CHAR CHAR (1) INI!' (I WI) , 
2 RECORD, 

3 KEY CHAR(12), 
3 OTHER CHAR(63); 

RECORD = INDEX_REC; 

In this example, the major structure 
INDEX_REC is assigned to the minor 
structure RECORD. Except for the level 
numbers (which need not be identical) , 
both structures have the same structur
ing and the same attributes. 

4. In ;£YEg_.!:!, item !2, if a label constan t 
or an element label variable appears on 
the right, then the constant or the 
value of the variable is assigned to 
every element in the label array in the 
receiving field. 

If a label array appears on the right, 
then the number of dimensions and the 
bound of each dimension of that array 
must be identical to those of the label 
array in the receiving field. 

5.. I n XrQg_~, a n ~!.~!!!.~!!.i_QQ.i!!..i~£_~!E£~§'= 
§.bQ.!!' is either an element pointer vari
able or a function reference that 
returns an element pointer value. 

General Rules: 

1. The assignment statement is evaluated 
as follows: 

a. For Ty~es 1, 4, and 5, any expres
sions that appear in the receiving 
field. either in subscripts or in 
pseudo-variables, are evaluated 
from left to right. The expression 
on the right of the equal sign is 
evaluated and its value is assigned 
to the variable in the receiving 
field. 

b. For Types 2 and 3, the assignment 
statement is treated as a sequence 
of element assignment statements 
involving corresponding elements of 
the arrays or structures concerned. 
For arrays, the elements are 
assigned in row-major order;.for 
structures, the elements are 
assigned in the order in which they 
were declared. 

c. Except for Type 3, the value of the 
exrression on the right is, when 
necessary converted to the charac
teristics of the variable in the 
receiving field according to the 
rules given under ~~££~22iQ!!'§'. 

2. When a variable in the receiving fielj 
is a character string, the expression 
on the right is evaluated as described 
in general rule 1, and the assignment 
is ~erformed from left to right, start
ing with the leftmost character posi
tion. The following may also apply: 

a. If the value of the eXfression is 
longer than the character string, 
the value is truncated on the right 
to ma~ch the length of the string. 

b. If the value of the expression is 
shorter than the character string, 
the value is extended on the right 
with blanks. 

3. Label-array assignment as shown in rYfe 
4 follows the rules given for array 
assignment in general rule 1. 

The following example illustrates array 
assignment: 

Given the array A 2 4 
j 5 

and the array B 

1 7 
4 8 

1 5 
7 8 
3 4 
6 3 

Consider the assi~nment statement 

A = B; 

After execution, A has the value: 

1 5 
7 8 
3 4 
6 3 

S ta tements 125 



Consider the assignment statement: 

A = 2-A{1,1); 

After execution, A has the value: 

a 2 
2 2 
2 2 
2 2 

Note that the new value for A(1,1), which 
is 0, is used in evaluating all other 
elements. 

The following example illustrates 
character-string assiynment: 

Given: 

A is a string whose value is 'XZ/BQ'. 
B is a string whose value is 'MAFY'. 
C is a string of length 3. 
D is a string of length 5. 

Then in the sta temen t: 

C A, the value of C is 'XZ/'. 
C 'X', the value of C is 'Xbb'. 
D B, the value of D is 'MAFYb'. 
D SUBSTR (A,2,3) II SUBSTR (A,2,3), the 

value of D is 'Z/BZ/'. 
SUBSTR (A,2,4) B, the value of A is 

'XMAFY'. 
SUBSTR (B,2,2) 'R', the value of B is 

t MRbY , • 

The following example (where A, B, and C 
are element variables) illustrates element 
assignment: 

A = A + S IN (B) + C ** 2; 

The following example illustrates structure 
assignment: 

DECLARE 1 X, 2 Y, 2 Z, 2 R, 3 S, 3 P, 
1 A, 2 B, 2 C, 2 D, 3 E, 3 Q; 

x = A; 

The assignment sta.tement is equivalent to: 

X.Y 
x.z 
x.s 
x. P 

A. B ; 
A.C; 
A.E; 
A.Q; 

The followin~ example illustrates 
statement-label assignment: 

126 IBM System/360 Model 20 DPS PL/I 

DECLARE P LABEL; 
P = A; 
GO TO P; 

A: X Y ** 2; 

This set of statements causes control to 
transfer to A when the GO TO P statement is 
executed. 

The following example illustrates conver
sion of data defined by a picture descrip
tion assigned to floating-point data, and 
vice versa: 

DCL A FLOAT, B PIC '999V99'; 
A = B; (B is converted from fixed-point 

numeric character to 
floa ting- point) 

B A; (A is con verted from floating
point to fixed-point numeric 
character) 

Function: 

The CALL statement invokes a procedure and 
causes control to be transferred to the 
entry point of that procedure. 

General Format: 

CALL entry-name (argument [,argument] ••. ); 

syntax Rules: 

1. The entry name (i. e., the label of the 
PROCEDURE statement) represents the 
entry point of the ~rocedure bein~ 
invoked. The entry point of a proce
dure is always the first executable 
statement in the invoked procedure. 

2. An argument can be any expression 
except a based variable, a built-in 
function name, a file name, an entry 
name, or a label. 

Examples of valid arguments include 
minor structure names, pointer ex~res
sions, character-string constants, and 
array names. 

NQt~, however, that if the attributes 
of an argument are not consistent with 
those of its corresponding parameter, 
no conversion is performed and an error 
will resul t. 

General Rule: 

See the section !£~g~~rri2_~~~_R~£~illg~g£2' 
for detailed descriptions of the interac-



tion of arguments with the parameters that 
represent these arguments in the invoked 
procedure. 

Function: 

The CLOSE statement de-activates the named 
file which was activated by a previous 
opening. It also dissociates from the spe
cified file PAGESIZE, if specified in the 
OPEN statement for that file. However, all 
attributes explicitly specified for that 
file in a DECLARE statement remain in 
effect. 

General Format: 

CLOSE FILE (filename) [,FILE (filename) ] ••• ; 

General Rules: 

1. The f~lgn~mg in the FILE(filename) spe
cification indicates the file to be 
closed. Since more than one such s~e
cification can be given in a CLOSE sta
tement, more than one file can be 
closed by one CLOSE statement. 

2. A closed file (except an INDEXED file) 
may be reopened after it has been 
closed. 

3. Closing an unopened file, or a pre
viously closed file, has no effect. 

4. If a file is not closed by a CLOSE sta
tement 8 it is automatically closed at 
the com~letion of the program in which 
it was opened. 

Function: 

The DECLARE (abbreviated DCL) statement is 
the principal method for explicitly declar
ing attributes of names. 

General Format: 

{
DECLARE}[leVel] identifier [attribute] ••. 
DCL [,[level] identifier 

[ at tri b ute J ... ] ... ; 

Syntax Rules: 

1. ~gygl is a nonzero unsigned decimal 
integer constant which must not exceed 
255. It can appear only in structure 
declarations; the major structure must 
have the level 1. A blank space must 
se[arate a level number from the iden
tifier followin~ it. 

2. In general, attributes must immediately 
follow the identifier to which they 

apply (as shown in the general format). 
However, attributes common to several 
name declarations can be factored to 
eliminate repeated specification of the 
same attribute for many identifiers. 
Factoring is achieved by enclosing the 
involved declarations (non-common 
attributes included) in parentheses and 
following this by the set of common 
attributes. In the case of factored 
elements of structures, the level num
ber must precede the parenthesized list 
(a blank is not reguired between the 
factored level number and the left 
parenthesis). For example: 

DCL 1 A, 2 (B,C,D) CHAR (20) ; 

Dimension INITIAL, and file-description 
attributes cannot be factored. Factor
ing can be nested u~ to a level of 
eight. For more examples of factoring 
see E~~1Q£~ll~_Qi_!11£~Q~ig§ in the sec
tion !ii£~Q!!ig§. 

General Rules: 

1. A major-structure identifier or an 
identifier not contained within a stru
cture can be specified in only one 
DECLARE statement within a particular 
procedure. All attributes given ex~li
citly for that identifier must be 
declared together in one DECLARE 
statement. 

2. Attributes of external names, in separ
ate procedures and compilations, must 
be consistent. 

3. Labels may be prefixed to DECLARE sta
tement, however, such labels are 
treated as comments and# hence, have no 
meaning. 

4. File names must be ex~licitly declared, 
and the first attribute in a file dec
laration must be FILE. 

5. All entry names (except built-in func
tion names) referred to in a procedure 
through a CALL statement or a function 
reference must be explicitly declared. 

6. The built-in function DATE must be 
eXilicitly declared. 

Function: 

rhe DISPLAY statement is used to display ~ 
one-byte message on the CPU console, usual
ly to the operator. It is used, together 
with the REPLY specification, to allow the 
operator to communicate with the program. 
REPLY permits the operator to return a one
byte message. Execution of the program is 

sta tements 127 



r------------------·---------------------------------------------, 
I !YE~_l: I 
) 1 
I DO; I 
I I 
I IYE§_~: I 
I I 
I DO variable = eXfression1 [TO eXFression2][BY expresion3J; I L ____ . ____________________________________________________________ J 

Figure 20. General Format of DO statement 

suspenaea until the operator has enterea 
his reply. 

General Forma t: 

DISPLAY (exfression) REPLY (character
strin g var iable) 

General Rules: 

1. The DISPLAY statement aisplays one 
character in the T-R register. The E-S 
register contains stanaara information. 
The REPLY specification returns one 
character from the DPS operator com
munication byte. 

2. REPLY must be s,[ecifiea. 

3. The expression must result in a charac
ter string. 

Function: 

The DO statement heaas a DO-group ana can 
also be used to sFecify repetitive execu
tion of the statements within the group. 

General Formats: 

There are two format types for the DO sta
tement as shown in Figure 20. 

syntax Rules: 

1. In both types, the DO statement is usea 
in conjunction with the END statement 
to aelimit the DO-group. Type 2 pro
viaes for iterative execution of the 
statements within the group, Tyre 1 
aoes not. 

2. The ~~£i~~!~ in Type 2 must be arith
metic and must re~resent a single ele
ment; it cannot be subscriptea. F:)r 
example: 

DO COUNrER = 1 TO 10 BY 2; 

In this example, COUNTER is the control 
variable, 1 is expression1, 10 is 
eXfression2, and 2 is expression3. 
COONrER must either be explicitly 

128 IBM System/360 Moael 20 DPS PL/I 

aeclared to be an arithmetic variable 
or it is given the default attributes 
FLOAT DECIMAL(6). 

3. Each eXlression in a DO statement must 
be an element expression~ 

4. If ~!_§IE£~§§iQnJ is omittea l ana if !Q 
g~f£g§§iQll~ is included, ~~££~§§iQn~ is 
assumea to be 1. 

5. If TO expression2 is omitted, iterative 
execution continues until it is ter
minatea by some statement within the 
gcoup. 

6. If both TJ expression2 ana BY expre
ssion3 are omitted from a specifica
tion, it implies a single execution of 
the group, with the control variable 
having the value of expression1. 

General Rules: 

1. In Type 1, the DJ statement only aeli
mits the start of a DO-group; it does 
not proviae for iterative execution. 

2. In Type 2, the DJ statement aelimits 
the start of a DO-group and provides 
for controlled iterative execution as 
definea by the following: 

LABEL: DO variable = ex,[ression1 
TO expression2 BY expression3; 

statement-1 

sta temen t-m 
LABEL1: 'END; 
NEXT: statement 

The above is exactly eguivalent to the 
following expansion: 

LABEL: e1 
e2 
e3 
v 

LABEL2: IF 

expression1; 
expression2; 
expression3; 
e1; 

e3 )= 0 
THEN IF v > e2 

THEN GO ro NEXr; 
ELSE; 

ELSE IF v < e2 



THEN GO TO NEXT; 
sta tement-l 

statement-m 
LABELl: v = v + e3; 

GO TO LABEL2·; 
NEXr: statement 

In the above expansion, el, e2, and e3 
ace compiler-created work ar~as having 
the attributes of expressionl, ex~re
ssion2, and expression3, respectively; 
! is synonymous with variable. 

3. ~~2f§§~bQn1 represents the initial 
value of the control !~£h~Ql§; §~~£§= 
§§i2n~ represents the increment to be 
added to the control variable after 
each execution of the statements in the 
group; §~E~§§§i2n~ represents the tec
minating value of the control variable. 
Execution of the statements in a DO
group tecminates as soon as the value 
of the control va~iable is outside the 
range defined by expressionl and expre
ssion2. When execution of the DO-group 
is terminated, control passes to the 
statement following the DO-group. 

4. If both options, TO and BY, are present 
in an iterative s~ecification, TO must 
occur first. 

5. The control variable must not be 
changed during the execution of an 
iterative s~ecification other than by 
the iterative specification itself. 

6. Control may be transferred from outside 
the DO-group into the DO-group (i. e., 
to a statement in the group other than 
the DO statement) only if the DO-group 
is delimited by a DO statement of Ty}e 
1; that is, only if iterative execution 
is not specified. See also Thg_QQ_2i~= 
tement in Part I of the manual, undec 
§t~tg~§rrt_~b~22iii£~ii2n. 

Function: 

rhe END statement terminates DO-groups and 
procedures. 

General Forma t: 

END; 

General Rules: 

1. The END statement always terminates 
that DO-group or procedure headed by 
the neacest preceding DO or PROCEDURE 
statement for which there is no corres
ponding END statement. 

2. If control reaches an END statement for 
a proceduce, it is treated as a RETURN 
statement. 

Function: 

With the FOR~AT statement you specify a 
format list that is to be used in edit
directed transmission statements to control 
the format of the data being transmitted. 

General Format: 

label: [label:] ••• FORMAT (focmat-list); 

Syntax Rules: 

1. The fQ£m~i_bi2i must be s~ecified 
according to the rules governing 
format-list s~ecifications with edit
directed transmission as described in 
the section Q~i~1~~n§~i2§i2n. 

2. You must specify at least one 1~Q§1 for 
a FORMAT statement. In general, one of 
the labels (or a label vaciable having 
the value of one of the labels) is the 
statement-label designat~r specified in 
the remote format item. 

Gene['al Rules: 

1. A GET or ~UT statement may include a 
['emote format item, R, in the format 
list of an edit-directed data specifi
cation. That portion of the format 
list represented by R must be supplied 
by a FORMAT statement preceded by the 
statement label specified with R. An R 
format item cannot appear in the format 
list of a FORMAT statement. 

2. You have to specify the remote forma t 
item and the FORMAT statement in the 
same procedure. 

3. The format list in a FOR~~T statement 
may contain nested iteration factors. 
Howeve[', the depth of the nest is 
limited to 2. 

4. If the format list of a GET oc PUT sta
tement contains a remote format item 
(R (statement-Iabel-designator» con
tained in an iteration nest, it must 
not be at a depth greatec than 2. 

Function: 

rhe GEr statement is a STRE~~ transmission 
statement which you can use in eithec of 
the following ways: 

Sta tements 129 



• It can cause the assignment of data from 
an external source (that is, from a 
file) to one or more internal receiving 
fields (that is, to one or more 
variables) • 

• It can cause the assignment of data from 
an internal source (that is, frow a 
character-string variable) to one or 
more internal receiving fields (that is, 
to one or more variables) • 

General Format: 

GET {FILE (filename) } 
STRING (character-string-variable) 

data-specification; 

Synt.ax Rules: 

1. The ~§i§_§£g£!fi£~iiQll is as described 
in Part I, under ~§i§_!£§n§mi§§!Qn. 

2. The data specification must follow the 
FILE or STRING oftion one of which must 
be specified. 

3. The £h~~~£!§~=§!~!ng_!~~!~~1§ refers to 
the character string that is to provide 
the values to be assigned to the 
variables in the data specification. 

4. The Kilgn~mg is the name of a file that 
will provide the values to be assigned 
to the variables in the data specifica
tion. It must have the STREAM and 
INPUT attributes. 

General Rules: 

1. If the FILE option refers to an 
unopened file~ the file is opened 
implicitly. 

2. If the STRING option has been speci
fied, the internal GET operation always 
starts at the beginning of the speci
fied string. If the number of charac
ters in this string is less than the 
total number of characters required by 
the variables in the data specifica
tion, the ERROR condition is raised. 
Note that the variables in the data 
s~ecification do not have to be charac
ter strings; the internal assignment is 
the same as the transmission from the 
stream to internal storage, the only 
difference being that the character
string variable is considered to be the 
input stream. 

Function: 

The GO TO statement causes control to be 
transferred to the statement identified by 
the s~ecified label. 

130 IBM System/360 Model 20 DPS PL/I 

General Format: 

{
GO TO} {label-constant; } 
Goro element-label-variable; 

General Rules: 

1. If an g1gffi~ll!_1~~gl_Y§£i§~lg is speci
fied, the value of the label variable 
determines the statement to which con
trol is transferred. Since the label 
variable may have different values at 
each execution of the GO TO statement, 
control may not always pass to the same 
sta tement. 

2. A GO TO statement cannot fass control 
to an incactive procedure. 

3. A GO TO statement cannot transfer con
trol from outside a DO-group to a sta
tement inside the DO-group if the DO
group specifies iterative execution, 
unless the GO TJ terminates a procedure 
invoked from within the DO-grouf or 
unless t~e GO TO is an ON-unit given 
control from within the DO-group. 

4. If a GO TJ st~tement transfers control 
from within a procedure to a point not 
contained within that procedure, the 
procedure is terminated. Also, if the 
transfer foint is contained in a proce
dure that did not directly activate the 
procedure being terminated, all inter
vening procedures in the activation 
se~uence are also terminated (See R~£! 
JL_flQ~_Qf_~Qlli£Ql_§ng_~!Q~§gg_!11Q£~= 
tiQrr, for examples and details). When 
one or more procedures are terminated 
by a GOTO statement, conditions are 
reinstated and automatic variables are 
freed just as if the procedures had 
been terminated in the usual fashion. 

5. When a Goro statement transfers control 
out of a procedure that has been 
invoked as a function, the evaluation 
of the eXfression that contained the 
corresponding function reference is 
discon tin ued. 

6. If the GO TO statement is an ON-unit, 
the specified label must be 
unsubscrifted. 

Function: 

The IF statement tests the value of a spe
cified ex~ression and controls the flow of 
execution according to the result of that 
test. 



Gener-al For-mat: 

If element-expr-ession THEN unit-1 
[ELSE unit-2] 

Syntax Rules: 

1. Each unit is either a single statement 
or- a DO-group. It must, however-, not 
be a PROCEDURE, a DECLARE, or FORMAT 
statement. 

2. The IF statement itself is not ter
minated by a semi=olon; however, each 
~ni~ specified must be terminated by a 
semicolon. 

3. Each unit may be labeled. 

Gener-al Rules: 

1. The g~~£~22iQll following the keywor-d IF 
must contain one and only one compari
son oper-a tion .• 

2. If the comparison is true, the THEN 
clause is executed. After execution of 
the THEN clause, control branches 
around the ELSE clause and execution 
continues with the next statement. If 
the comparison is not true, contr-ol 
br-anches ar-ound the THEN clause, and 
the ELSE clause is executed. contr-ol 
then continues normally. 

IF--CTHEN~ 
ElSE~ 

Note that the THEN clause or the ELSE 
clause can contain a GOTO statement or
some other control statement that can 
cause a different transfer- of contr-ol. 

IF --C

THEN

--: 

3. If the THEN clause does not cause a 
tr-ansfer- of control and if it is not 
followed by an ELSE clause, the next 
statement will be executed whether or 
not the THEN clause is executed. 

This may be illustrated by the follow
ing diagram: 

IF~ment-
In the kind of .IF statement illustr-ated 
above, the alternatives are "execute 
the THEN clause" or "do not execute the 

4. 

THEN clause". In either- case# the next 
sequential statement is executed. If 
the expression tested is not tr-ue, con
tr-ol continues thr-ough the logical flow 
of execution. If the expression is 
true, the THEN clause is executed, and 
control r-eturns to exactly the same 
poinh where it would have been if the 
expression had not been true. In this 
kind of IF statement the word ELSE must 
llQ~ appear since the ELSE clause woula
be skipped whenever the THEN clause it 
executed. 

IF statements may be nested; that is, 
either unit, or both, may itself be an 
IF statement. In Model 20 PLII, the 
number of IF and DO statements in one 
nest must not exceed 20. However-, the 
number of DO statements alone must not 
exceed 12 per- nest. Any IF statement, 
at any level, may have a DO-group as 
either or both of its alter-native 
units. An ELSE clause is always asso
ciated with the innermost unmatched IF 
in the same DO-group; an ELSE with a 
null statement may be required to spe
cify a desired sequence of contr-ol. 

IF A > B 
THEN IF C o THEN X 

ELSE X 
SQRT (A-B) ; 
1 ; 

In this example, the statement X 1; 
is executed if A is greater than Band 
C is not equal to o. 

If the statement X = 1; is to be 
executed if A is not gr-eater than B, 
r-egardless of the value of C, you may 
write the example in the following way: 

IF A > B 
THEN IF C = 0 THEN X SQRT (A-B); 

ELSE; 
ELSE X = 1; 

Function: 

The LOCATE statement is a RECORD transmis
sion statement which you can use only for
CONSECUTIVE output files. It allocates 
storage for a based variable in an output 
buffer- to allow the creation of a record 
for that based variable. The r-ecor-d is 
cr-eated by assigning values to the based 
variable within the buffer. The eecord is 
not transmitted to the external medium 
until immediately befor-e the next WRITE, 
LOCATE, or CLOSE statement (or implicit 
close operation) is executed for the s~eci
fied file. 

statements 131 



General Format: 

LOCATE based-variable FILE (filename) 
SET (pointer-variable); 

syntax Rules: 

1. The FILE and SET specifications must 
appear in the order shown in the gener
al format. 

2. The based variable must be an unsub
scri~~;~-Ei;;~-~i~iable that is not a 
minor structure or an element of a 
st~ucture. It may, however, be an 
array name or a major-structure name. 

3. The £Qin1gf_Y~r.~~Qlg must be an element 
pointer variable. 

4. The filename is the name of the file 
that-has-been activated (by opening) 
and that will eventually ~eceive the 
record. The file must have the 
SEQUENTIAL and OUTPUT attributes. It 
must, however, not be an INDEXED file. 

General Rules: 

1. The based variable is used to determine 
the length of the buffer area to be 
reserved. When the LOCATE statement is 
executed, the fointer variable in the 
SET specification is set to identify 
the location in the buffer at which the 
based variable is to be allocated. 

2. The record identified by the based 
variable is written from the buffe~ 
into the output file, immediately 
before the next WRITE 1 LOCATE, or CLOSE 
operation (im~licit or explicit) for 
that file. For blocked records, the 
reco~d is not written until the whole 
block is completea. 

3. The FILE sfecification must refer to a 
previously opened file. 

Function: 

The null statement causes no action and 
does not modify se~uential statement execu
tion. The null st~tement is represented by 
the semicolon (;). 

General Format: 

General Rule: 

The null statement must not be specified 
for an ON statement whose condition is 
CONVERSION, ENDFILE, or KEY. 

132 IBM System/360 Model 20 DPS PL/I 

Function: 

With the ON statement you s~ecify what 
action is to be taken when an interrupt 
results from the occurrence of the speci
fied exceptional condition. 

General Format: 

ON condition [SYSTEM;ION-unit} 

For a description of the ON statement and 
the ON-conditions that may be s~ecified 
with it see the section ~R~~Qllgi1~Qll§. 

Fu nction: 

The OPEN statement Q£gg§ (activates) a file 
by associating a file with a file 
declaration. 

General format: 

OPEN FILE (filename) [option] 
[, FILE (filename) [option] J ••• ; 

where QEtiQll is 

PAGESIZE (element-expression). 

syntax Rules: 

1. The FILE specification must appear 
first. 

2. The filename is the name of the file 
that-Is-to-be activated. Several files 
can be opened by one OPEN statement. 

General rules: 

1. The opening of an already open file 
does not affect the file. In such 
cases, any expressions in the option, 
if specified, are evaluated, hut they 
are not used. 

2. The PAGESIZE option can be specified 
only for a file having the STREAM and 
PRINT attributes. The expression is 
evaluated and converted to an integer, 
which represents the maximum number of 
lines to a page. This integer must be 
greater than zero and less than 256. 
Duriny subsequent transmission to the 
PRINT file, a new page may also be 
started by use of the PAGE format item 
or by an option in the PUT statement. 
For the Model 20 PL/I Compiler, the 
default for PAGESIZE is 60. 

3. When a PRINT file is opened, a new page 
is started. 



4. The OPEN statement is mandatory for 
RECORD files and optional for srREAM 
files. 

Function: 

The PROCEDURE statement has the following 
functions: 

a. It heads a procedure and defines its 
entry point. 

b. It specifies the farameters, if any, 
for the entry point. 

c. It may specify certain special chaLac
teristics that a procedure can have. 

d. It specifies the attributes of the 
value that is returned by the procedure 
when it is invoked as a function. 

General Format: 

[ (condition-prefix) : ] 
entry-name: PROCEDURE 

{

OPTIONS (option-list) } 

{
[ (parameter[ , parameter) J ... J} 
[RETURNS (data-attributes) J ; 

where, for the Model 20 PL/I Compiler, the 
Q£1iQn_li21 is defined as: 

MAIN[,ONSYSLOG] 

Syntax Rules: 

1. The ~~1~_~11~i~gl~2 represent the 
attributes of the value returned by the 
procedure when it is invoked as a func
tion. Only arithmetic, string, 
PICTURE, and POINTER attributes are 
allowed. 

2. OPTIONS is a s~ecial procedure specifi
cation. Two options can be srecified 
in the OPTIONS attribute which must be 
sfecified for only one external proce
dure in the program: 

a. MAIN must be srecified if and only 
if the frocedure is the initial 
procedure of the program. 

b. ONSYSLOG s}ecifies that diagnostic 
output is on SYSLOG instead of 
SYSLST. ONSYSLOG can only be spe
cified together with MAIN. 

3. One and only one entry name must apFear 
in a PROCEDURE statement. The entLy 
name must not exceed 6 characters. 

4. The maximum number of parameters that 
can be specified for one procedure is 
12. 

General Rules: 

1. When a procedure is invoked, a rela
tionshif is established between the 
arguments passed to the procedure and 
the parameters that represent those 
ar~uments in the invoked procedure. 
This topic is discussed in Part I, 
under !£~g~gll12_~ll~_g~£~~g1g£§. 

2. The MAIN option specifies that the ~ro
cedure for which it is specified is the 
initial procedure and will be invoked 
by the programming system as the first 
ste} in the execution of the program. 
The ONSYSLOG option specifies that all 
output resulting from actions derived 
from ON conditions will be printed on 
the device assigned to SYSLOG. No 
other options are permitted. The pro
cedure declared with the OPTIONS attri
bute remains active for the duration of 
the program and hence cannot be called 
by other procedures. For the Model 20 
PL/I Compiler, only one procedure must 
have the ::>PTION S (MAIN) designa tion. 

3. rhe data attributes specify the attri
butes of the value returned by the fro
cedure when it is invoked as a func
tion. For details see the section 
!£ggmgll12_~nQ_~~~~~glg£§ in Part I. 

4. The entry name of a procedure is an 
external name and as such is restricted 
in Model 20 PL/I to a length of six 
characters. 

5. The name of a procedure must not be 
redeclared within that ~rocedure. 

Function: 

The PUT statement is a STREAM transmission 
statement which can be used in either of 
the following ways: 

1. It can cause the values in one or more 
main-storage locations to be trans
mitted to a file on an external medium. 
Related to this, it can control the 
format of a PRINT file. 

2. It can cause the values in one or more 
main-storage locations to be assigned 
to an internal receiving field (repre
sented by a character-string variable). 

General Format: 

with the STRING option: 

pur STRING (character-string-variable) 
data-s}ecification; 

Statements 133 



with the FILE option: 

pur FILE (filename) 
(.EDIT data-specification ) 
'PAGE { 
< SKIP (expression) J ' 
JpAGE EDlr data-specification' 
(,SKIP [ (expression) J' 

data-specification 

Syntax Rules: 

1. Either the FILE or the STRING option 
must be specified in the pur statement. 

2. The FILE option specifies transmissi~n 
to a file on an external medium. The 
file name in this option is the name of 
the file that has been activated (by 
implicit or explicit opening) and that 
is to receive the values. This file 
must have the OUTPUT and STREAM 
cl t trib utes. 

3. The STRING option specifies transmis
sion from main-storage locations 
(represented by variables or ex~res
sions in the ~~1~_§E~~!t!~~1iQn) to a 
character string (represented by the 
~~~~~£~~f=§~~ing_Y~£i~~!~). The 
"character-string variable" cannot be a
pseudo-variable.

4. The data specification is as described
in R~~!_IL_Q~1~_!~~n§~i§2iQn.

5. The FILE or STRING option must always
be the first option. If the data spe
cification appears, it must be the last
o~tion. At least one of the options
PAGE, SKIP, or data specification must
afpear. Note that the options PAGE and
SKIP must not appear both in one pur
statement.

G'eneral Rules:

1. If the FILE option is specified, and
the filgn~ill~ refers to an unopened
file, the file is opened im~licitly.

2. If the STRING option is specified, the
PUT operation begins assigning values
to the beJinning of the string (that
is, at the leftmost character posi
tion), after appropriate conversions
have been performed. Blanks and deli
miters are inserted as usual. If the
string is not long enough to accommod
ate the data, the ERROR condition is
raised. Note that the variables in the
data specification do not have to be
character strings; the internal assign
ment is the same as the transmissi~n
from main storage to the output stream,
the only difference being that the
character-string variable is considered
to be the output stream.

134 IBM System/360 Model 20 DPS PL/I

3. The option PAGE or SKIP can be given
only for PRINT files. If specified#
they take effect before the transmis
sion of the values defined by the data
siecification takes place.

4. The PAGE option causes ~rinting to con
tinue on a new page. If a data speci
fication is present, the transmission
of values occurs after the definition
of a new current page. A new current
page implies line 1.

5. The SKIP option causes a new current
line to be defined for the file. The
~!E£~§§iQn is the number of lines (w)
to be skif~ed and may range from zero
to three inclusive. If ~ is greater
than zero, w - 1 blank lines will be
inserted in the data stream. If w is
egual to zero, the effect is that-of ~
carriage return, the characters pre
viously printed will be overprinted.
(SKIP(O) may be used to
underline parts of the printed line by
use of the break character.) If w is
not sf-ecif ied, 1 is assumed. If less
than ~ lines remain on the current page
(where the number of lines is deter
mined by the PAGESIZE option of the
OPEN statement or by default), the
ENDPAGE condition is raised.

Function:

The READ statement is a RECDRD transmission
statement that you can use to transmit a
record from an INPUT or UPDATE file to a
variable or buffer in main storage.

General format:

READ FILE (filename)

{

INTO (variable) }
SET (pointer-variable)
INTO (variable)

KEY (exi-ression)

syntax rules:

1. The FILE specification must appear
first. Either INTO or SET must be
siecified.

2. The filename is the name of the file
from-which-the record is to be read.
The file must have the RECORD attribute
and must also have either the INPUT or
UPDATE attributes.

3. The variable of the INTD option is the
variable-rnto which the record is to be
read. It must be an unsubscripted
variable not contained in a structure.
It cannot be a label or pointer vari-

able or a parameter and it cannot have
the DEFINED attribute.

4. KEY can be specified only if INro is
specified.

General Rules:

1. The file appearing in the FILE specifi
cation must have been opened
previously.

2. The KEY option must appear if the file
has the DIRECT attribute. The g~f£g§=
§i2Q is the key that determines which
[" ecord w ill be read,. (S ee P art III,
!llEY1lQY!lY!, for a discussion of keys.

The KEY option may also appear for
files of INDEXED organization having
the SEQUENTIAL and KEYED attributes.
In such cases, the file is positioned
to the record having the specified key.
Thereafter, records may be read seguen
tially from that point on by using READ
statements without the KEY option.

If the key specified in the KEY option
of a READ statement for an INDEXED
SEQUENTIAL file is not found in the
file the KEY condition is raised.

3. The SET option can only be specified
for CONSECUTIVE files; it cannot be
specified for any file having the KEYED
attribute. The SET option specifies
that the record is to be read into a
buffer and the ~Qin!g£_Y~£i~Q£g is to
be set to point to the locatiori of that
record within the buffer. The descri~
tion of the record is determined by a
based variable. The value of the
pointer variable is valid until the
next READ statement is executed or
until the file is closed.

Function:

The RETURN statement terminates execution
of a procedure and returns control to the
inVOking procedure. It may also return a
value to the invoking procedure.

General Format:

RErURN [(expression) ~;

General Rules:

1. If the gl£~g§§iQn is not sfecified, the
RETURN statement =an only terminate a
frocedure that has not been invoked as
a function. When such a statement is
executed, control is returned to the

invoking procedure at the point logic
ally following the point of invocation.
If a RETURN statement is executed in
the initial procedure, program execu
tion is terminated.

2. If you have specified an expression,
the procedure from which control is to
be returned, must be a function proce
dure. When such a statement is
executed, control is returned to the
invoking procedure at the point of
invocation; the value returned to this
point is the value of the expression.
If this value does not conform to the
explicit or default attributes speci
fied for the rrocedure being ter
minated, the value is converted to
these attributes before it is actually
returned.

Function:

You can use the REWRITE statement only for
UPDArE files to replace an existing record
in a file.

General Format:

REWRITE FILE (filename) [FROM (variable)
[KEY (expression)]];

Syntax Rules:

1. The FILE specification must appear
first. KEY cannot be specified without
FROM.

2. The filename is the name of the file
contaInIng-the record to be rewritten.
The file must have the UPDATE
attribute.

3. The I~£i~Q£g in the FROM option repre
sents the record that will replace the
existing record in the specified file.
It must be an unsubscripted variable;
it cannot be contained in a structure;
it cannot be a parameter; it cannot be
a label or pointer variable; and it
cannot have the DEFINED attribute.

General Rules:

1~ The file whose name appears in the FILE
s~ecification must have been opened
previously.

2. If the file has the DIRE::T attribute,
you have to s~ecify the KEY option.
The expression must be a character
string. This character string is the
source key that determines which record
is to be rewritten.

S ta temen ts 135

3. The FROM option must be slecified for
UPDATE files of INDEXED organizati~n
having either the DIRECT attribute or
the SEQUENTIAL attribute.

4. The FROM option can be omitted only for
SEQUENTIAL UPDATE files of CONSECUTIVE
organization. When this is the case,
the record rewritten is the record in
the buffer. Hence, this record must be
the last record that was read and it
should have been read by a READ state
ment with the SET option. (The record
will be updated by whatever assignments
were made to it in the buffer). If the
record had been read by a READ with the
INTO option, it would be rewritten
unchanged.

Function:

The WRITE statement is a RECORD trans~is
sian statement that transfers a record from
a variable in main storage to an ourpur ~r
UPDATE file.

General Format:

WRITE FILE (filename) FROM (variable)
[KEYFROM (expression)];

Syntax Rules:

1. The FILE specification must appear
first.

136 IBM System/360 Model 20 DPS PLfI

2. The tbl~rr~illg specifies the file into
which the record is to be written.
This file must be a RECORD file that
has either the DUTPUT attribute or the
DIRECT and UPDATE attributes.

3. The ~~£1~£1~ in the FROM specification
contains the record to be written. It
must be an unsubscripted variable; it
cannot be a parameter; it cannot be
contained in a structure, it cannot be
a label or pointer variable; and it
cannot have the DEFINED attribute.

4. The KEYFRDM option must be specified
for DIRECT files, it must also be sie
cified for INDEXED SEQUENTIAL files,
but not for any other files.

General Rules:

1. The file must have been opened
previously.

2. If the KEYFRDM option is specified# the
eXlression is the source key that sle
cifies the logical location in the file
where the record is written. (See Part
III, ~rr2giL~gi2gi, for a discussion of
source keys). In Model 20 PL/I the
source key automatically replaces the
recorded key whose length is determined
by the KEY LENGTH option and whose loca
tion in the record is specified in the
KEYLOC option in the ENVIRONMENT
attribute.

Part III

Model 20 PL/I as Part of the Disk Programming System

PL/I in the Model 20 Disk Programming System

Model 20 PL/I is part of the System/360
Model 20 Disk Programming System. It
re~uires a minimum of 16,384 bytes of main
storage. Model 20 PL/I consists of a com
piler and a set of subroutines, all operat
ing under the control of the DPS System
control programs.

The Model 20 PL/I language is a subset
of the full PL/I language and, except for
support of input/output devices that can
only be attached to a Model 20, is upward
compatible with the System/360 DOS PL/I
subset language.

~1~!g~_£QNF~QQEh!JQN~

MINIMUM SYSTEM CONFIGURATION

The minimum system configurations for both
compilation and execution of PL/I programs
under the System/360 Model 20 Disk program
ming System are as follows:

An IBM 2020 Central Processing Unit Model
D2 (16,384 bytes of main storage) ;

an IBM 2311 Disk storage Drive Model 11 or
12 ;

one of the following card reading devices:

IBM 2501 Card Reader Model A1 or A2,
IBM 2520 Card Read-Punch Model A1,
IBM 2560 Multi-FunGtion Card Machine
(MFCM) Model A 1 ;

one of the following printers:

IBM 1403 Printer Model N1, 2, or 7,
IBM 2203 Printer Model A1.

~Y!2!!!Qg~!_~

An IBM 2020 Central Processing unit Model
D4 (16,384 bytes of main storage);

an IBM 2311 Disk storage Drive Model 12;

an IBM 2560 MFCM Model A2;

an IBM 2203 Printer Model A2.

~!!Q!!H~!!g!._~

An IBM 2020 Central Processing Unit Model
D5 (16,384 bytes of main storage);

an IBM 2311 Disk Storage Drive Model 11 or
12 ;

one of the following card reading devices;

IBM 2501 Card Reader Model A1 or A2,
IBM 2520 Card Read-Punch Model ~1,
IBM 2560 Multi-Function Card Machine
(MFCM) Model A 1;

one of the following Frinters:

IBM 1403 ~Dinter Model N1, 2, or 7,
IBM 2203 Printer Model A1.

MAXIMUM SYSTEM CONFIGURATION

An IBM 2020 Central Processing Unit Model
D2 (16,384 bytes of main storage) ;

two IBM 2311 Disk Storage Drives Model 11
or 12 (both must be the same model) ;

an IBM 2415 Magnetic Tape and ~ontrol Unit
Model 1 throu]h 6;

an IBM 2501 Card Reader Model A1 or A2;

an IBM 1442 Card Punch Model 5;

one of the following card units:

IBM 2520 Card Read-Punch Model A1,
IBM 2520 Card Punch Model ~2 or A3,
IBM 2560 MFCM Model A1;

one of the following printers:

IBM 1403 Printer Model N1, 2, or 7,
IBM 2203 Printer Model A1;

an IBM 2152 Printer-Keyboard.

An IBM 2020 Central Processing Unit Model
D4 (16,384 bytes of main storage);

two IBM 2311 Disk Storage Drives Model 12;

an IBM 2560 MFCM Model A2;

an IBM 2203 Printer Model ~2.

an IBM 2152 Printer-Keyboard.

PL/I in the Model 20 Disk Programming System 139

An IBM Central Processing Unit ~odel E5
(32,768 bytes of main storage);

four IBM 2311 Disk storage Drives Model 11
or 12;

an IBM 2415 Magnetic Tape Unit and Control
Model 1 through 6;

an IBM 2501 Card Reader Mo~el A1 or A2;

an IBM 1442 Card Punch Model 5;

140 IBM system/360 Model 20 DPS PL/I

one of the following card units:

IBM 2520 Card Read-Punch Model A1,
IBM 2520 Card Punch Model A2 or A3,
IBM 2560 MFCM Model A1;

one of the following printers:

IBM 1403 Printer Model N1, 2, or 7,
IBM 2203 Printer Model A1;

an IBM 2152 Printer-Keyboard.

To show how programs written in Model 20
PL/I are compiled and executed under the
Disk Programming System (DPS), the main
components of the DPS must first be
described.

The programs that form the Disk Program
ming System can be grouped into five cate
gories as listed below:

1. Control programs

2. Service frograms

3. Language translators

4. Several Utility programs

5. User-written programs

Disk Programmil)g System

Control Programs
Language Translators and
Macro Definitions

I Initial Program Loader I Assembler

Repork Program
Generator (RPG)

PI/I Compiler

Monitor Program Input/Output Control
Service Programs System and Monitor

Macro Definitions

General Utility
Programs

I So./~~· I
Job Control Program DPS Disk and Tape

UtllltJe~

~ User-Written Programs I

Figure 2~. Schematic Representation of the
Disk Programming System

The l~b~b~!_~£Qg£~~_1Q~g§£ loads the ~Qn=
b~Q£_k£Qg£~ill into main storage and trans
fers control to it, causing it to load the
~QQ_~Qnt£Ql_f£Qg£~m. After execution of
the Job Control program, control is
returned to the Monitor program. The Job
Control program is used before each job (1)
to assign actual input/output addresses to
the symbolic addresses used in the pro-

The Model· 20 Disk Programming System

grams, (2) to specify other environmental
data (e.g., the ~ate or the storage capaci
ty), and (3) to communicate the name of the
next frogram to be executed to the Monitor
program.

The service programs are a group of pro
grams that create and maintain the system
libraries. They are executed under control
of the Monitor.

rhe system libraries are:

• the £Q£g_bill~~g_!bQ£~£Y, which contains,
for example, the Job Control Program,
the PL/I Compiler, and executable
user-programs.

• the ill~f£Q_lb~£~£Y, which contains macro
definitions.

• the £glQ£~~~Qlg_~£g~, which is used to
temporarily hold compiler output that is
to be executed or cataloged immediately.

One of the DPS language translator progr~ms
is the R1iI_£Q~£blg£ which compiles PL/I
source programs, and links together separ
ately compiled PL/I procedures and library
routines into an executable object program.

For the execution of PL/I programs, the
most important parts of the programming
system are the ~Qnb1Q£_££Q~£~ill, the JQQ
~Qnt£Ql_E£Qg£~ill, and the R1il_£Qill£bl§£, all
of which are discussed below.

Figure 21 gives a schematic representa
tion of the Disk Programming System.

Monitor Program

The Monitor program, which is loaded by the
Initial Program Loader, is the main control
program of the DPS. It provides functions
and contains information needed by all pro
grams. Therefore, it must be in main
stora~e throughout a system run. The Mon
itor program controls the loading and
execution of object programs, that is, pro
grams that have already been compiled
(i. e., translated into machine language) by
the PL/I compiler.

The Model 20 Disk programminj System 141

Job Control Program

The Job Control program, which is the first
program to be loaded by the Monitor pro
gram, provides for automatic job-to-job
transition in a sy st.emrun. It prepares
the system for the execution of the next
job by reading and processin~ a set of j~b
control statements iunched into cards by
the user. The job-control statements must
contain all the information required to run
a job. They have to indicate the start and
name of a job, specify the jobs that are to
be executed, and to define input/output
requirements of the programs. In response
to the job-control statements, the Job Con
trol program allocates the input/output
units re~uired, and then requests the Mon
tior program to initiate the execution of
the specified job (or batch). After execu
tion of a job, the Job Control program
prints the error statistics if specified
and obtains information about the next j~b
from a new set of control statements.

Model 20 PL/I Compiler

The Model 20 PL/I compiler is a pro~ram
that

142 IBM System/360 Model 20 DPS PL/I

1. translates (i.e., £Q!Eil~§) a PL/I
source program into a set of System/360
Model 20 machine instructions, and

2. link-edits the set of machine instructIons-Into a form suitable for
execution.

The set of machine instructions produced
by a £QillEil~iiQn is termed a £Qill2!!~Q
QQ.j~£i_illQ~Yl~·

The set·of machine instructions Froduced
by lillk=~~itin~ is termed an ~~§£~~~E!§
Q£j§£~_E£Qg£~!l!·

A compiled object module is not execut
able. It must first be link-edited by the
PL/I compiler, that is, linked with other
~ser and IBM-supplied modules or -- if the
comriled object module is a complete pro
gram only with IBM-supplied modules to
form an executable object program.

rhe Job Control program is executed before
each job to prepare the system for the job
to be executed, and it is called subse
quently each time the end of the job is
reached. Control statements sUPily the
information required by the Job Control
program.

This section gives a detailed descrip
tion of the most important job-control sta
tements you need to compile and execute
your programs.

Figure 22 is an illustration of the liD
device assignments used for compilation and
execution.

Note:

SYSOOO

SYSRDR and SYSIPT may be assigned the same card-reading device,
In which case the cards read on SYSIPT follow those read on SYSRDR
In the hopper. If the additional work areas WORK2 or WORK3
are used, the two (three) extents WORK1, WORK2, (and WORK3)
must reside on different disks. Note also that the symbolic
device addresses specified in this figure must be used for
the work files. The work file WORKLI. used in
connection with the option LSORT.

~K---7

~~ ~Ion~} ,
,RK:r--' ,

,.1. 2e!1~S!.!~ I \
I WORI<2 I t-.l.

t.=:=!~ Work F;ile 2 ~_.l. SYSOO3
\ (optional) \ SYSOO2 ,, ______ ...l.

SYSOOl

SYSLST

Figure 22. liD Device Assignments Used for
Compilation and Execution

liD Device Assignment

The liD devices used by the system for PLO
gLam compilation and execution are referred

lob Control

to by symbolic, not actual device
addresses. This means that, when writing
your programs, you can disregard the actual
device assignments of the system configura
tion you use. The symbolic device
addresses you can use are listed in Figure
23. No other addresses may be used.

r--------T--------------------------------~
ISymbolicl J
IDevice lRefers to I
IAddress I I
~--------t--------------------------------~
ISYSRDR ICard reading device for control I
I Jstatements. Not used by PL/I I
I Icompiler or object programs. I
r--------t--------------------------------~
ISYSIPT IInput device (card Leader or I
I Itape drive) from which the inputl
I I for the compiler is read. J
~--------t--------------------------------~
ISYSOPT ICard punching device or I
I Imagnetic-tape drive on which the)
I lobject program of the compiler I
I lis written. J

~--------t--------------------------------~
ISYSLST IPrinter for printing listings I
) land diagnostic messages.)
r--------t--------------------------------~
ISYSLOG IPrinter used to print operator I
J I messages. The device may be the)
I Isame as the one referred to by I
I ISYSLST. J

r--------t--------------------------------i
ISYSOOO- I User-program liD devices (disk I
I SY5019 land magnetic tape devices only}.1 L ________ ~ ________________________________ J

Figure 23. Symbolic Device Addresses

Symbolic device addresses can be
assigned to actual devices

1. when building the system, or

2. by means of the ASSGN statements.

Job Control Statements

Job-control statements identify a job and
define its requirements and options. They
seLve as input to the Job Control program
and enable it to ~rovide automatic job-to
job transition. Figure 24 lists the DPS
job-control statements and their functions.

Job :::ontrol 143

r-------------r----------------------------l
I O~eration I I
ISpecificationlFunction I
I------·--------t----·-----------------------~
IASSGN IChanges or deletes 1/0 I
I Jassignments I
I------.--------+---.-----------------------~
ICONFG ISpecifies main-storage I
I Icapacity (either 16K, 24K, I
I lor 32K bytes) I
I---------------t---------------------------~
ID~TE lspecifies date, i.e., the I
I Iday of the year and the I
1 Iyear I
~-------------+---------------------------~
IDELET I Causes permanent labels to I
I Ibe deleted I
~-------------+---------------------------~
IDLAB ISupflies disk label infor- I
I Imation for individual file I
~-------------+---------------------------~
IDSPLY ICauses listing of all per- I
I Imanent labels I
l-----.---------t---------------------------~
1 EXEC I Indica tes end of control 1
I I statements I
I--------------t----------------------------~
I FILES IPositions magnetic taFe I
1 Ireel by skipping specified I
I Inumber of tape marks 1
~-------------+---------------------------~
IJ~B Ispecifies name of job and 1
I lthe tYte of operation to bel
I I performed I
~-------------+---------------------------~
ILOG I Causes listing of control I
1 Istatements on SYSLOG I
~-------------+---------------------------~
INOLOG ICauses listing of control 1
1 Istatements to be I
I I discontinued I
~-------------+---------------------------~
10PTN I Indicates that the printout I
I lof tape error statistics isl
I Irequired by the job and/or I
I lindicates that the execu- I
I Ition of the job is not to I
I Ibe interru~ted by an I
I lin1uiry program I
~-------------+---------------------------~
IPAUSE I Causes immediate halt I
l---------------t----------------------------~
ITPLAB ISupplies tape label infor- I
I Imation for individual file I
I-------------t---------------------------~
IVOL ISpecifies name of file to I
I Ibe processed and the sym- I
I Ibolic address of the drive I
I Ion which it is mounted I
l--------------t----------------------------~
IXTENT IDefines the extents used bYI
I la file on a disk pack and I
I Ispecifies the symbolic I
I laddress of the drive on I
I Iwhich the pack is mounted I
L ___ . __________ .L ____________________________ J

Figure 24. Summary of Job Control state
ments and their Functions

144 IBM System/360 Model 20 DPS PL/I

Job-control statements are read by the Job
Control program on a device whose symbolic
address is SYSRDR. Normally, the first
job-control statement for a particular job
is a JOB statement. ~nly PAUSE, LOG~ and
NOLOG statements may precede a JOB state
ment. The last job-control statement must
be an EXEC statement.

Except where noted, the remalnlng job
control statements may be arranged in any
order between the J~B and the EXEC
statements.

rhe general format of the job-control sta
tements is as follows:

r----r---------r--------------------------,
INameIOperationIO~erand(s) Comments I
l-----t---------+--------------------------~
III loperationl[operand] [~operand]... I L ____ ~ _________ ~ __________________________ J

II identifies a statement as a job-control
statement. The slashes must appear in
the first two columns of the job-control
statement and must be followed by at
least one blank.

Q£g£~i!Qg indicates the function of the
job-control statement. For example, the
word ASSGN indicates that the control
statement specifies an 1/0 device
assignment. The operation field can be
uF to five characters long and must be
followed by at least one blank.

QEg£!n~§ sUPFly additional information
about the job-control statement. For
exam~le, the oferands of the ~SSGN sta
tement specify the symbolic device
address and the characteristics of the
actual device. The operand field may be
blank or may contain one or more
operands, separated by commas, with no
intervening blanks. A blank to indicate
the end of the field must follow the
last operand in the field. The field
must not extend beyond column 71 of the
punched card. With a DLAB statement
where not all operands can be accommo
dated on one card, a continuation card
must be used.

~£Qg£~~~g£~2_~Qmmgnt§ may be inserted in
all control statements used in conjunc
tion with the Model 20 DPS Control and
Service programs. They must, however,
follow the rightmost operand of the
sta temen t.

When preparing a control statement that
contains comments, observe the followin~
rules:

1. If the control statement has one or
more operands, the comments must be
separated from the last operand by at
least one blank column.

2. If the sta tement does not permit the
use of an operand, the comments must be
separated from the operation entry by
at least one blank column.

3. If an operand has been omitted from the
statement, the absence of the operand
must be indicated by a comma and the
comments must be ~receded by at least
one blank column.

Comments are printed but have no effect
on th,e program. They must not exte'nd
beyond column 71 of the statement.

The JOB Control statement indicates to the
Job Control program that a set of job
control statements follows. The format of
the JOB control statement indicates whether
the program is to be executed or compiled
only or compiled and executed. The JOB
control statement has the following
formats:

r----r---------r---------------------------,
INameIOperationIOperand(s) Comments I
~----+---------+--------------------------~
III IJOB Iprogram-name 1 I
l-----t---------t---------------------------~
III IJOB IPL1 I
~----+---------+--------------------------~
III IJOB IPL1, program-name 2 I
l-----L---------.L---------------------------1
limay be any name I
12 must be name of root segment I L ___ J

E!;:Qg!;:!!ill:.!!5U!!~
The name of the program to be executed.
If the name ap~ears by itself, it is the
name of either a program in the core
image library or an executable object
program stored on cards or magnetic
taf e.

If the name is preceaed by the word PL1,
the input is to be compiled, link
edited, and executed. If only precom
filed object modules are used, comlila
tion is skipped.

If the word PL1 appears alone, the input
is to be com~iled andlor link-edited,
but not immediately executed.

There is no limit on the length of the
~rogram-name in any JOB control state-

mente However, if the length exceeds
six characters, only the leftmost six
characters are recognized.

Fi~ure 25 ~ives an example of using job
control statements.

The DATE control statement must be included
in the control statements for the first job
after initial pro~ram loading. Further
DArE statements need only be supplied if
the date is to be changed.

The format of the DATE control statement
is:

r----r---------T--------------------------l
lNameIOperationIDperand(s) comments I
l-----t---------t--------------------------i
III IDATE Iyyddd J L ____ L _________ L __________________________ J

yy -- the last two dijits of the year;
e.g., 70 for 1970.

ggg -- the day of the year; e.g., 002 for
January 2nd. (Any of the numbers 001 -
366 may be used).

The year and the day of the year are
used for label checking. The date can be
used for dating output reports of Froblem
programs by use of the PL/I DlTE built-in
function.

~~Rf2_~Qni!;:Ql_~i!!igillgn1

The CONFG control statement sFecifies the
capacity of main storage. It must be
included only if the capacity of main
storage stored in the Monitor program is to
be changed. The CONFG statement must pre
cede any label information for tape files
(e.g., VOL, TPLAB).

The format of the CONFG control state
ment is:

r----r---------T--------------------------,
INameIOperation'O~erand(s) Comments J

~----+---------+--------------------------~
III I CON FG 116 I
l-----t---------t--------------------------i
III ICONFG 124 I
~----+---------+--------------------------~
III ICONFG 132 I L ____ L __ ---____ L __________________________ J

12 indicates a storage capacity of 16,
384 bytes.

indicates a storage capacity of 24,
576 bytes.

indicates a storage capacity of 32,
768 bytes.

Job Control 145

suspend operation

discontinue listing job-control 5tatements

begin listing job- ..
control s'tatements

specify capacity
of main storage •

----')execute

/ ~rogram abtained
from core-image
library

compile, link-edit, and execute source program

specify date ---I
compile, but do not link-edit and execute source program

Figure 25. Example of Using Job Information Control statements

The OprN control statement has the follow
ing format:

r----w----------r---------------------------l
INameloperationIOperand(s) Comments I
~----+---------+--------------------------~
III JOPTN INOINQI TES I L __ . __ .L _________ .J. ___________________________ J

1'!Q!'!!Q
No program may be executed as an inquiry
program until the next Job Control run
has been completed. For information
about in~uiry frograms, refer to the
section ~£gfi~!_~£Qg£~IDIDing_!.n!Q~ID~1iQn.

146 IBM System/360 Model 20 DPS PL/I

rr.:s
---Indicates that tape error statistics are

to be kept during the job that follows
and ~rinted before the next Job Control
run. When TES is sfecified, LOG must
also be specified. You may specify one
or both operands, in any order,
separated by a comma.

rhe Job Control program does not normally
list job-control statements. However, when
a LOG control statement is encountered, it
begins to list all job-control statements
for all jobs until a NOLOG statement is
encountered. The LOG statement is the
first statement that appears in the list
ing. The format of the LOG control state
ment is:

r----T---------T--------------------------l
INameIOperationIO~erand(s) Comments I
r----t---------t---------------------------~
III ILOG I I L ____ ~ _________ ~ __________________________ J

li21g: You may place the LOG statement
either before the JOB statement or anywhere
between the JOB and EXEC statements, but
not between the VOL, DLAB, XTENT, or VOL,
TPLAB control statements. The LOG state
ment is only effective if a printer is
assigned to SYSLOG.

liQ~Q2_£Qg~£Ql_~lgl~ID~gl

The NOLOG control statement sto~s the list
ing of job-control statements for all jobs.
It is the last statement to appear in the
listing. Listing of control statements is
resumed only if another LOG control state
ment is encountered. The format of the
NOLOG statement is:

r----r---------r-----------------~--------l
INameIOperationIOperand(s) Comments I
r----+---------+--------------------------~
III INOLOG I I L ____ L _________ L __________________________ 1

li21g: You may place the NOLOG statement
either before the JOB statement or anywhere
between the JOB statement and the EXEC sta
tement, but not between the VOL, DLAB,
XTENT or VOL, TPLAB control statements.

The PAUSE control statement is used to
interrupt processing. It merely sus~ends
operation and does not affect the contents
of main storage. The operator need only
press the Start key on the CPU console to
resume operation. The PAUSE control state
ment has the format:

r----r---------T--------------------------l
INameIOperationIOperand(s) Comments I
r----+---------+-------------------·-------1
III IPAUSE I I L ____ L _________ L-__________________ . _______ J

The Job Control frogram executes the
PAUSE statement as soon as it encounters
it. You may place it anywhere among the
control statements, but not between the
VOL, DLAB, XTENT or VOL, TPLAB control
statements.

~!~£_£Qn1£Q!_~lglgIDgnl

The EXEC control statement indicates to the
Job Control program that the reading of a
set of job-control statements has been cow
~leted and that control is to be returned
to the Monitor. The EXEC control statement
has the following formats:

r----r---------T--------------------------,
INameIOperationJO~erand(s) :omments J

r----+---------+--------------------------~
III IEXEC I I
r----t---------t--------------------------~
III IEXEC IR J
r----+---------+--------------------------i
III IEXEC ILOADER I
.----t---------t--------------------------~
III IEXEC JLOADER,R J L ____ ~ _________ ~ __________________________ J

The operand E as the only operand (2nd
format) is used exclusively in EXEC
statements for core-image maintenance.
It indicates that the input to the
CMAINT (Core-Image Maintenance) program
is read from the relocatable area on the
system disk pack.

kQ!D§B
The operand LOADER used as the only
operand (3rd format) indicates that the
execute-loader function is used, i.e.,
your executable program is read from the
card reading device or tape drive
assigned to SYSIPT and then excuted.

~Q~Q~gLg
The operand R used in conjunction with
the operand LOADER (4th format) indi
cates that the execute loader function
is to be used and that the program you
want to be executed is read from the
relocatable area and executed. The name
in the JOB statement is then ignored.

li~tg: When the execute-loader function is
used, the CMAINT program must be contained
in the core-image library of your disk
resident system.

Figure 26 shows examples for the usage
of the JOB and the EXEC control statement.

In the PLII program itselt, you refer to
IIO devices in the MEDIUM option of the
ENVIRONMENT attribute by symbolic device
addresses, and not by srecifying the actual
device address. The Job Control program
assigns actual I/J device addresses to the
symbolic device address. the actual device
address is assigned to the symbolic one by
means of an ASSGN control statement.

Fi~ure 27 shows an examfle of IIO device
assignment.

Permanent device assignments are made by
means of ASSGN macro instructions when
~enerating the Monitor. These ~ermanent
device assignments are written onto the
system disk ~ack and loaded into main
storage together with the Monitor at IPL
time.

Job Control 147

r-----·-------------------------r---,
11. II JOB CMAINT IInput from SYSIPT = Card or Tape unless R is specified inl
I II EXEC[R] I which case the program in the relo- I
1 1 eatable area is included in the core-I
I I image library. 1
t-----·-------------·-----------f--~
12. II JOB ~rogram-name IFetch executable object program from core-image library I
J II EXEC land execute. 1
t----------------------------f--~
13. II JOB program-name ILoad executable object program from SYSIPT and execute. I
I II EXEC LOADER IInput (pr~gram) in card image form from SYSIPT = Card or I
I ITat e • I
~-----------------------------+---~
14. II JOB program-name ILoad program from relocatable area and execute. 1

1 II EXEC LOADER,R I 1
~-----------------------------+---~
15. II JOB PL1, program-name ICompile, link-edit, and execute program. I
1 II EXEC IInput from SYSIPT = Card or Tape. I
~-----------------------------+---~
16. II JOB,PL1 ICompile, or compile-and-link, or link depending on I
I II EXEC Icompiler-control statements. I
I IInput from SYSIPr = Card or Tape. I
1 I~utput onto SYSOPT = Card or Ta~e and onto the relocat- I
I lable area. I L ______________________________ ~ ____________________________________ - ____________________ J

Figure 26. Examples for the Usage of JOB and EXEC Control statements

Permanent device assignments loaded into
main storage apply to all jobs, unless y~u
alter them by inserting ASSGN control sta
tements in your problem program. These new
device assignments then remain in effect
for all subsequent jobs unless changed
again by other ASSGN control statements.

Figure 27. Example of I/O Device
Assignment

148 IBM System/360 Model 20 DPS PL/I

If the operator reloads the Monitor into
main storage through an IPL run, the per
manent device assignments written on the
system disk pack are reloaded into main
storage and take effect, cancelling any
assignments that have been changed by ASS3N
control statements.

Changing, at execution time, assignments
for card devices, printer and printer
keyboard has no effect on the device
addresses specified in the MEDIUM options
in the source program. These device types
can only be changed by changing the device
tYle in the MEDIUE option of the ENVIRON
MENT attribute and recompiling the program.

The formats of the ASSGN control state
ment are:

r----T---------T--------------------------l
INameloperationlJperands Comments I
t----t---------f---------------------------~
III IASSGN Isymbolic-device-address, I
1 1 lactual-device-address, 1
I I Itype, srecification I
~----+---------+--------------------------~
III IASSGN Isymbolic-device-address, I
I I lactual-device-address,typel
~----+---------+--------------------------~
III IASSGN Isymbolic-device-name, UA I L ____ ~ _________ ~ __________________________ J

§YillQQ1if=g~Yif~=~ggf~§§
One of the following names:

r--------T--------------------------------l
I SYSRDR ICard-reading device for job-
I Jcontrol statements I
~--------+--------------------------------i
I SYSIPT ICard-reading device or magnetic-I
I I tape drive for input I
j---------t------------------------------:----1
I sysopr ICard-punching device or J
J Imagnetic-tape drive for output I
j---------t--------------------------------~
I SYSLST IPLinter for output listings I
~--------+--------------------------------i
I SYSLOG JPrinter for listing job-contLol I
I I statements I
~--------t--------------------------------i
I SYSOOO-IUser 1/0 devi~es (tape and disk I
J SYS019 ldevices only) I
L ________ L _________________________ . _______ J

N21g_1: In the case of magnetic tape and
disk units, the introduction of symbolic
device names allows to change the actual
device address by means of an ASSGN job
control statement.

Note 2: If SYSRDR and SYSIPr are both
assIgned to the same 2560 device, two 1*
caLds must follow the source in~ut on
SYSIPT.

actual-device-address ---The-device-address of the unit chosen by
the machine operator. The attachment
point and the unit must be specified in
the form X'cuu' where

r----------T------------------------------l
IAttachmentlfor Device Type I
I Point I I
~----------+------------------------------.

1 IIBM 2501 Card Reader I
I I

2 I IBM 2520 or 2560 (all models) I
I I

3 IIBM 1442 Card Punch I
I I

4 IIBM 1403 or 2203 printer I
J J

7 IIBM 2415 Magnetic Tape Unit I
J J

S IIBM 2311 Disk storage Drive I __________ L-_____________________________ J

gg, the ~n!i, is:

r------------T----------------------------l
J Unit J for Device Type J
j-------------t----------------------------i
101,02,03,1 I
J and 04 I disk J
r------------t----------------------------i
I OS through I I
I FD J tape I
j-------------t----------------------------1
I 00 I all other equipment J L ___________ -.L-_____________________ . ______ :I

t.YEg
Code specifying the device type:

r------T----------------------------------l
I Code I for Device Type I
j-------t----------------------------------~
J D3 I 2311 Disk storage Drive Model 11 1
I D4 I 2311 Disk storage Drive Model 12 I
I Ll I 1403 Printer I
I L3 I 2203 Printer I
I P2 J 1442 Card Punch I
I P3 I 2520 Card Punch I
I R4 I 2501 Card Reader I
J R5 I 2520 Card Read Punch J
I R6 I 2560 MFCM Primary Feed I
I R7 I 2560 MFCM Secondary Feed I
I Tl J 2415 7-track Tape Drive J
I T2 I 2415 9-track Tape Drive I L ______ L __________________________________ J

§.Eg~iti~9:.t.iQ~
Code indicating device specifications
for 7-track tape and 9-track phase
encoded taie. This field is not used
for other types of equipment. The codes
for 7-track tape are shown in Figure 2S.

r-----r--------r------T---------T-------,
I J Bytes I ITranslateJConvertl
I Codelper InchlParitYI Feature IFeaturel
j------t--------t------t---------+-------~
JX'10'J 200 I odd I off J on I
IX'20'1 200 I even I off I off I
JX'2S'J 200 I even I on I off J
IX'30'1 200 I odd I off I off I
J X' 3S' I 200 I odd I on I off I
r-----+--------+------+---------+-------~
IX'50'1 556 J odd I off I on I
IX'60'1 556 I even I off I off I
I X' 6S' J 556 I even J on I off I
IX'70'1 556 I odd 1 off I off I
IX'7S'1 556 I odd I on I off I
j------t--------t------t---------+-------~
IX'90'1 SOO I odd I off I on I
I X' AO'I SOO I even I off I off I
IX'AS'I sao J even I on I off I
I X ' B a ' ISO 0 I odd I off I 0 f f I
IX'BS') sao I odd I on I off I L _____ L ________ L ______ L ________ -L _______ J

Figure 2S. Codes for 7-Track Tapes

For 9-track tape, specifications are not
required unless phase-encoded tape with the
compatibility feature is used.

The codes for 9-track phase-encoded tape
are:

X'CO'
X'CS'

1600 bytes per inch
sao bytes per inch

Indicates that the device is to be
unassigned.

The following examples illustrate the
use of the ASSGN control statement.

Job Control 149

1. The following control statement assigns
SIS001 to a 2415 9-track magnetic tape"
drive whose unit number is 08, specifi
cation 1600 bytes per inch.

II ~SSGN SYS001,X'70B',T2,X'CO'

2. The following control statement assigns
SYS002 to a 2311 Disk storage Drive
Moael 11, whose unit number is 02.

II ASSGN SYS002,X'802',D3

3. The following control statement
releases SYS003 from a device
a.ssignment.

The FILES control statement is usea to
position the magnetic tape at the beginning
of any file on a multi-file reel. If, in a
set of job-control statements, a FILES con
trol statement and an ASSGN control state
ment refer to the same symbolic IIO
addrE~ss, the FILES statement must follow
the ASSGN statement. The format of the
FILES control statement is:

r----r---------,----------------------------,
INameIOperationIOperand(s) comments I
~----+---------+--------------------------~
III IFILES Idevice-name,ski~ I L ____ L ________ L ___________________________ :1

device-name
---The-symbolic name of the tape drive on

which the reel of ta~e to be positionea
is mounted. (A complete list of device
names is given in the discussion of the
ASSGN control statement) •

§~iE
The number of tape marks to be skippea
(1-999), counted from the load point, in
order to position the tape. (On unla
beled files, a tape mark follows each
file. On labeled files, another tafe
mark follows the labels).

An example showing the use of the FILES
control statement is shown in the section

150 IBM System/360 Moael 20 DPS PL/I

tnEY1LQg1,~1, under the heading RQ§iiiQnin~
Q~_~nl~Q~l~~_I~E~_Eiig§·

The Job Control program pretares for the
writing and checking of stanaara labels for
aisk and magnetic tape files.

Control statements are requirea only for
labeled tape and disk files. Two control
statements must be suppliea for each
labeled tape file. At least three control
statements must be supplied for each disk
file (a minimum of four is required for
inaexed files). The types of control sta
tements are:

1. I/OL (volume)

2. TPLAB (tape label)

3. DLAB (aisk label)

4. lCrENT (disk extent)

Each file requires a VOL control state
ment and either a TPLAB or DLAB control
statement. XTENT control statements are
required only for disk files.

The control statements must be read in
the order inaicated below.

1. The VOL control statement for a file.

2. Either the TPLAB or the DLAB control
statement for that file.

3. One or more XTENT control statements if
the file is in disk storage. If there
is more than one XTENT control state
ment, they must be arranged in the
order in whiCh the areas they define
are to be used.

The label control statements for tape
and aisk are further discussed in the sec
tion JnE~1LQg1Eg1.

Figure 29 shows another example illus
trating the use of job-control statements.

r--,
II LOG THIS JOB STREAM ILLUSTRATES OPERATIONAL
II LOG ASPECTS OF PLII AND THE JOB CONTROL LANGUAGE.
II LOG FIRST IS AN EXAMPLE OF PLII COMPILE AND EXECUTE
II JOB PL1,PROG1
II DATE 70001

If different [/1 CONFG 16
from the II ASSGN SYSOOO,X'801',D3
Monitor II ASSGN SYSIPT,X'100',R4
Assignments II ASSGN SYSLST.X'400',L1

II ASSGN SYSOPT,X'200',R7
II ASSGN SYSLOG,X'400',L1
II OPTN NOINQ

2311 DISK DRIVE, MODEL 11
2501 READER
1403 PRINTER
2560 SECONDARY
1403 PRINTER

Two 1* -->
cards if
SYSRDR =
SYSIPT and
assigned to
the same
2560
If SYSRDR -->
SYSIPT,
CATAL cards

Jhave to be
lincluded for
leach program
Isegment
I

II DELET
II VOL SYSOOO, WORK1
II DLAB'DPS 16K DISK WORK FILE1 1202020', X

0001,70001,70001 col.72
II XTENT
II EXEC

1,000,0090000,0102009,'202020',SYSOOO

+
+

COPTN LINK,GODECK
SEGMENT PROGA

+ PROCESS XREF,ATR,LIST
1* PLII SOURCE DECK *1

1* DELIMITER
DATA CARDS
1*

CARD

1/ PAUSE END OF JOB. INSERT OBJECT IN JOB STREAM BELOW.
II LOG PL/I PROGRAM IS STILL IN RELOCATABLE AREA, AND IT IS
II LOG POSSIBLE TO CAT~LOG IT INTO THE CORE IMAGE LIBRARY,
1/ LOG AS SHOWN IN THE FOLLOWING JOB.
1/ JOB CMAINT
II EXEC R
II CATAL
II END
II PAUSE END DF JOB.
II LOG IT IS ALSO POSSIBLE TO CATALOG THE PRJGRAM INTO
1/ LOG THE LIBRARY FROM THE OBJECT DECK, AS FOLLOWS.
II JOB CMAINT
II EXEC , NOTE--FOLLOWING IS COMPILER OUTPUT FROM FIRST JOB!
II CATAL

I
I
I
I
IOBJ
IDECK
I

(

PHASE

1~ ESD

12

PROGA,A,X'1200' GENERATED DURING LINK-EDITING.

I
I
I
I
I

l ~ TXT

12
2 END
9

1*
II END

J
I
I
I
J
I
J
I
I
I
I
I
I
I
J
I
J
I
1
I
I
I
I
I
J
I
1
I
I
I
I
I
J
I
I
I
I
I
I
I
J
I
I
I
I
I
I
I
I
I
I
I
I
I L __ - ____________________ J

Figure 29. Example of the Sequence of Job Control statements, Part 1 of 2

Job Control 151

r--,
II PAUSE END OF JOB
II LOG THE OBJECT PROGRAM IS STILL IN THE RELOCATABLE
II LOG AREA AND CAN BE AGAIN EXECUTED, AS FOLLOWS •••
II JOB ANYNAME
II EXEC LOADER,R
DATA CARDS
1*
II PAUSE
II LOG OR THE OBJECT DECK CAN BE EXECUTED, AS FOLLOWS.
II JOB ANYNAME
II PAUSE INSERT OBJECT DECK AFTER EXEC CARD
II EXEC LOADER

OBJECT DECK GOES HERE
1*

[~!TAJ
II PAUSE
II LOG THE PROGRAM CAN ALSO BE EXECUTED FROM THE
II LOG CORE IMAGE LIBRARY, SINCE IT HAS BEEN
II LOG PREVIOUSLY CATALOGED.
II JOB PROGA
II EXEC
[~!TA CARDS]

II PAUSE END OF JOB
II LOG FOLLOWING IS AN EXAMPLE OF PL/I COMPILE ONLY.
II JOB PL1 OTHER JCL PROVIDED BY FIRST JOB
II EXEC
... PROCESS

1*

1* IN THIS EXAMPLE, ALL COMPILER OPTIONS ARE ASSUMED *1
1* PLII SOURCE DECK GOES HERE *1

II PAUSE

)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
J
I
I
I
I
I
I
I
I
I
I
I
I
I
I ___ J

Figure 29. Example of the Sequence of J~b Control statements, Part 2 of 2

152 IBM System/360 Model 20 DPS PL/I

The Model 20 PL/I compiler is a component
of the Model 20 Disk programming System.

This section describes the Model 20 PL/I
com}iler, its options, the listings it pro
duces, and its diagnostic features. (At
the present stage, this section contains
only preliminary information.)

Let us briefly recall the essential
functions of the control programs described
so far:

After initial program loading, the Mon
itor receives control and loads the Job
Control program, which reads and processes
the job-control statements. It then
returns control to the Monitor, which loads
the PL/I comFiler and transfers control to
it.

The compiler is the frogram that trans
lates source irograms into machine language
and performs the necessary link-editing to
trahsform com~iled object modules into an
executable object program.

In addition to translating the source
program, the PL/I com~iler produces list
ings useful for documentation and program
check-out. If it detects errors, it prints
the corresponding diagnostic messages.
Syntax errors are ~rinted with the source
program listing. Errors ietected within
data declarations are printed together with
the symbol table listing. other eErors are
frinted at the end of com~ilation with an
extra listing.

Input to Compiler

When the Job Control program has read and
processed the job~control statements fre
ceding a job, it transfers control to the
comfiler. The compiler then reads the
input -- which may be on cards or on mag
netic tape in card-image format -- from
SYSIPT to perform any of the following:

• compile

• compile-and-link

• compile-link-and-execute

• link

• link-execute

The input read from SYSIPr may consist
of

The Compiler

• one or more PL/I source modules

• one or more precompiled object modules
or

• PL/I source module(s) and precomfi1ed
object module (s)

A mQg~1g is a procedure that is either
part of a program or a complete program.
Precompiled object modules are modules that
have been comfiled, but not link-edited, or
assembled by the PL/I compiler or the
Assembler, respectively, and are used again
as compiler input.

If more than one module is processed by
the compiler in one jOb, we speak of £~i£h
QQ!!!Eil~.:thQ!l·

Source modules are always read from SYSIPT.
They may either be on cards or on magnetic
tape, depending on whether a card reading
deviGe or a tape drive is assigned to
SYSIPr.

The first statements processed by the
compiler are always the compiler-control
statements, with their options.

Compiler-control statements and options
are furnished to the compiler on cards
either for the whole job or separately, for
each }rocedure.

For the Model 20 PL/I compiler, we have
the following control statements: COPTN,
PROCESS, SEGMENT 1 and COPY. The COPTN con
trol statement is valid for the whole job.
The PROCESS statement is furnished once per
procedure.

The statement immediately preceding a
source module must always be the PROCESS
statement. The PRJCESS statement must be
sIecified for every source module to be
compiled. For a compile-link-and-execute
run in which several frocedures are to be
compiled and link-edited, the first
compiler-control statement read from SYSIPT
must always be the CJPTN statement with the
LINK or GODECK option specified. For
source modules that are to be compiled
only, the COPTN statement is optional. If
specified, the CJPTN statement must precede
all other compiler-control statements.

If overlay is used, SEGMENr control sta
tements must ~recede each segment.

The Compiler 153

ro compile two source modules without imme
diate execution andlor cataloging and
obtain the output (i.e., the comriled
object modules) on cards, use the jab and
comliler-control statements in the sequence
shown in Figure 30.

r--,
I II JOB PL1
I
I (other job-control statements)
I
I II EXEC
1[+ COPTN compiler-options]
I + PROCESS DECK
I
I (source program 1)
1
I + PROCESS DECK
I
I (source ~rogram 2)
1
I 1* L ___ J

Figure 30. Com'},ilation of PL/I Source
Modules

The option DECK in the PROCESS cantral
statements specifies that the compiler out
put (i.e., the compiled object modules) is
to be funched or written on tape. Since we
want the output to be punchej into cards,
we have to assign SYSOPT to a card-lunching
device. (The complete set of options af
the PROCESS control statement is discussed
in the section QE1hQn§_~ni_£Qn1£Ql
§.1~t§H!!.g!!.t§.) •

If the two source modules are to be linked
as well as compiled, that is, to have an
executable object program available for
execution at a later date, your control
statements would have to look as shown in
Figure 31.

r---l
II JOB PL1

(other job-control statements)
II EXEC
+ COPTN LINK,GODECK
+ PROCESS DECK

(source program 1)

+ PROCESS DECK

(source program 2)

Figure 31. Compilation and Linkage of PL/I
Source Modules

154 IBM System/360 Model 20 DPS PL/I

For a compile-link-and-execute run, you
would need the control statements shown in
Figure 32.

r---,
II JOB PL1,~rogram-name I

(other job-control statements)

II EXEC
+ COPTN LINK
+ PROCESS

(PL/I source program 1)

+ PROCESS

(PL/I source program 2)

1*
data card.::;
1*

I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I - __ J

Figure 32. Compilation, Linkage, and
Execution of PL/I Source
Modules

Compilation starts with the compiler
control statement + COPTN LINK. The option
LINK indicates that the program is to be
link-edited into an executable object
program.

Precompiled object modules produced by
the Model 20 PL/I comiiler cannot be
handled by the DPS Linkage Editor program,
nor can they be loaded immediately by the
Fetch routine of the Monitor.

ro compile-link-and-catalog a PL/I source
module, that is, to include it in the core
image library as a permanent entry, use the
set of control statements shown in Figure
33.

Compilation starts with the + COPTN LINK
control statement, LINK specifying that the
PLII source module is to be compiled and
link-edited.

If you want to compile-link-and-catalog
and then immediately execute the same pro
gram, specify the job-control statements

II JOB program-name
II EXEC

following the CMAINT control statements
(see Figure 33).

r----------------------------------·-------,
J II JOB PL1 I

J
(other job-control statements) I

II EXEC
... COPTN LINK
+ SEGMENT
+ PROCESS

1*
II
II
II
II

(source module)

JOB CMAINT
EXEC R
CATAL
END

J
I
J
I
J
I
I
I
I
I
I
I ___ l

Figure 33. Compilation, Linkage, and :ata
loging of PL/I Source Modules

A precompiled object module is a S0urce
module that has been compiled or assembled
but not link-edited and that is used again
as input to the PL/I compiler.

Precompiled object decks may be output
from the Model 20 PL/I compiler or fro~ the
DPS Assembler. If subroutines assembled
with the DPS Assembler are usei# none of
the following Assembler options are allowed
in the AOPTN control statements: NOESD,
NORLD, ENTRY. The assembler language must
not contain any supervisor macros or in~utl
output programming, nor the XFR pseudo
instruction.

Control statements for the DPS Linka~e
Editor Program must not be contained in the
precompiled deck.

Suppose yon have several precompiled object
modules which you want to be linked into
one executable PL/I object program and
executed immediately. The set of control
statements for this job wouli have to look
as shown in Figure 34.

The job-control statements for this run
indicate that the pro~ram is to be executed
immediately after compilation -- in this
case, after link-editing. The link-editing
of the precompiled object modules starts
with the COPTN LINK card and ends with the
first end-of-file (/*) recori.

Link-editing produces an object program
that can be executed immediately.

r---l
I II JOB PL1,program-name
I
I (other job-control statements)
I
I II EXEC
J + COPTN LINK
I + COpy
J
I (precompiled object module 1)
I
I [+ COpy]
J
I (precompiled object module 2)
J
I [+ COPY]
I
J (precompiled object module 3)
I
I 1*
I
I (da tal
I
J 1* L ___ J

Figure 34. Linkage and Execution of Pre
compiled Jbject Decks

If you want to only link the same precom
piled object programs and have them avail
able for execution at a later date, use a
set of control statements as shown in
Figure 35.

r---,
II JOB PL1

(other job-control statements)

II EXEC
+ COPTN LINK,G)DECK
+ COpy

(precompiled object program 1)

[+ COPY]

(precompiled object program 2)

[+ COpy]

(precompiled object program 3)

1* ___ J

Figure 35. Linkage of precompiled Object
Modules

~Qt~: You have to specify 3JDE:K in the
COPTN control statement in addition to
assigning SYSOPT to a card-punching device
or a magnetic-tale drive.

The :ompiler 155

If several PL/I source modules are to be
com~iled and several ~recompiled object
modules are to be link-edited with the com
piled object modules into one executable
object program that is to be executed imme
diately, you must use the set of control
statements needed for such a job as shown
in Figure 36.

r------------------·------------------------,
I II JOB PL1 l program-name
I
I (other job-control statements)
I
, II EXEC
J + COPTN LINK
J + COpy

(precompiled object module 1)

+ PROCESS

(source module 1)
+ PROCESS

(source module 2)

+ COpy

(precompiled object module 2)
1*

[
(data)]
1* ____ . _____________________________________ J

Figure 36. Compilation and Linkage of PL/I
Source Modules and Pre-Compiled
Object Modules for Immediate
Execution

The frecom~iled object decks must be
headed by a COpy control statement, each
source program by a PROCESS control
statement.

To compile, link-edit, and catalog the set
of programs shown in Figure 36, omit the
LE£Qg£~m~ll~m~ in the first job-control sta
tement and the data cards followed by 1*.

The following control statements would
be needed to catalog the job after
comt-ilation:

II JOB CMAINT
II EXE: R
II END

These control statements must follow the
in~ut deck if the program is to be cata
loged from the relocatable area.

156 IBM System/360 Model 20 DPS PL/I

Output from Compiler

output from the compiler may be

• a compiled object module
andlor

• an executable object program

The executable object program is always
in the relocatable area and on the device
assigned to SYSOPT if the option GODECK has
been specified in the COPTN control
statement.

The com~iled object module is on the
device assigned to SYSOPT. Note, however,
that you must specify the option DECK in
the PROCESS control statement and assign a
card-punching device or a tape drive to
SYSOPT. Otherwise, the output is lost.

A compiled object module is an output
module that has been compiled but not link
edited by the PL/I compiler. It cannot
immediately be executed or cataloged.
Before the object module can be linked,
linked-and-executed, or linked-and
cataloged, it must be read again from the
device assigned to SYSIPT like a PL/I
source module, but with different and addi
tional control statements and options.
Such an object module, which is used again
as compiler input, is referred to as a }re
compiled object module. (For the necessary
control statements, refer to the section
Jn2gt_iQ_ihg~~QmEilg£).

Compiled object module output may be on
cards or on magnetic tare.

The output is on cards if the DECK option
has been specified in the PROCESS control
statement, and if a card-punching device
has been assigned to SYSOPT.

The output is on magnetic tape if the DECK
option has been specified in the PROCESS
control statement and if a magnetic-tape
dLive has been assigned to SYSOPT. The
outrut ta~e contains the compiled object
module (s) in card-image forma t.

SYSOPT must be assigned if PRO:ESS DECK
is srecified.

Executable object programs are programs
that have been compiled and link-edited.
They are in the relocatable area and can
immediately be executed and/or cataloged
into the core-image library by the CMAINr
program.

R~~2: Executable object programs cannot be
used again as compiler input.

If the GODECK option has been specified
in the COPTN control statement, the execut
able object-program output is also on a
device assigned to SYSOPT. Depending on
whether a card punching device or a
magnetic-tap~ drive is assigned to SYSOpr,
the output is either on cards or on magnet
ic tape ..

For the job-control statements necessary
to execute an executable object program,
refer to the section ~QQ_~Qn~£Q1.

For the control statements necessary to
catalog an executable object program, refer
to the section f~~glQging.

Compiler-Control Statements and Options

The control statements for the Model 20
PL/I compiler are COPTN, PROCESS, SEGMENT,
and COPY.

The general format of the compiler
control statements is:

r----T---------T--------------------------l
)Name)Operation)Operand(s) I
fo----t---------t-----------------·--------i
I + loperationl[operand [,operand) •••] I L ____ ~ _________ ~ __________________________ l

name
---Identifies the statement as a compiler

control statement. The l;lus (+1' sign
must appear in the first card column of
the control statement and must be fol
lowed by at least one blank column.

~E.2££\.~i~!l
indicates the function of the control
statement. For example, the word COpy
specifies that the deck following the

COpy card is a rrecompiled object deck.
The operation field must be followed by
at least one blank.

QE.§£g!!f!l§l
sUfply additional information about the
compiler-control statement. For
example, the o~erand DECK in the PROCESS
control statement specifies that the
compiled object module is to be punched
on cards or written on tape. The
operand field may be blank or may con
tain one or more operands, separated by
commas, with no intervening blanks. A
blank to indicate the end of the field
must follow the last operand in the
field. The field must not extend beyonl
column 71 of a ~unched card. Operands
of a statement may be referred to as
options whenever a choice can be made
among them.

Whenever a job is to be com~iled and
link-edited for execution, the'first
statement read from the device assigned
to SYSIPT must always be COprN, with the
option LINK or GODECK. In all other
cases the use of the COPTN statement is
optional.

The control statement immediately pre
ceding the PL/I source deck must always be
the PROCESS statement. The PROCESS state
ment is mandatory for PL/I source modules.
If overlay is used, SEGMENT control state
ments must precede each segment. If ~re
compiled object modules are used in the
input deck, they must be preceded by a COpy
statement.

options valid for the whole job are speci
fied in the COPTN control statement which
has the following format: \

r----T---------T--------------------------l
INameIOperationIJperand(s) I
.,----t----------t--------------------------.p
I + lCOPTN loption [,option]... J L ____ ~ _________ ~ __________________________ J

Note that you may specify one or more COPTN
control statements for a job. However,
they must precede the whole job and follow
each other. In case of conflicting
options, the option specified last is the
one that is valid.

The possible options shown in Figure 37
(default values underlined) are:

The Compiler 157

r--------T--------------------------------l
IOption IFunction)
1---------+----------------------------------1
IQ~~R jcauses the contents of main I
I Istorage and registers to be I
1 Ilisted on SYSLST or SYSLOG in 1
I lease of abnotmal termination ~f I
lithe job. 1
I---------+---------------------------------~
)NODUMP jsuppresses the DUMP option. I
~--------+--------------------------------1
ILINK Icauses the source module(s) to 1
) Ibe compiled and link-edited. I
~--------+--------------------------------i
IRQ1~~~ I suppresses the LINK and GODECK I
I I options. The program is only I
I Icom~iled# not link-edited.)
1---------+----------------------------------1
IRQE~l Ispecifies that the work file is I
I Ilocated on one disk drive. I
~--------+--------------------------------i
)WORK2) specifies that the work files I
I I are located on two disk drives. I
j---------+----------------------------------i
IWORK3 Ispecifies that the work files I
) lare located on three disk)
I Idrives.)
~--------+--------------------------------i
)LSORT I indicates that, for batch COm- I
I Ipile mode, the specified list- I
I lings are to be collected for I
I I each Frocedure. 1
j----------+--------------------------------~
IBQb~QB! lindicates that, for batch compi-I
Illation, the specified listings I
1 lare to be collected for each I
1 Ilist type: first all source I
1 I module listings, then all crOSs-I
1 Ireference listings, etc. I
,..--------f----------------------------------~
IGODECK Is~ecifies that the executable)
1 lobject program is punched or I
1 I written on SYSOPT. If GODECK isl
I Is~ecified, LINK must also be)
I Ispecified.)
~--------+--------------------------------i
IRQ~Q£I~Klsuppresses the GODECK option. I L _________ J. ________________________________ J

Figure 37. Ottion of COPTN Control
StatemE~nt

options used for the =ompi1ation of a
single procedure are s~ecified in the PRO
CESS statement, which has the following
forma t:

r----T---------T--------------------------,
I Name) Operationl op!3!rand (s) I
,..----+---------~f---------------------------~
I + I PROCESS I [option [, option] •• 4]) L ____ . .1. ____ ... ____ .L._-________________________ J

The possible options shown in Figure 38
(default values un1er1ine1) are:

158 IBM system/360 Model 20 DPS PL/I

r--------r--------------------------------,
)Option IFunction I
~--------+--------------------------------~
IDECK Ipunches or writes a compiled I
I lobject module on SYSOPT if no I
I lirrecoverab1e errors have been I
I Idetected during compilation. I
j---------t--------------------------------~
INQQ~~li Isuprresses the DECK option. 1
~--------+--------------------------------~
I~Q~E~§ 11ists the source module on I
1 ISYSLST. I
~--------+--------------------------------~
INOSOURCElsuppresses the SOUR~E option. I
~--------+--------------------------------~
I XREF I causes the PL/I Compiler to list I
lithe cross-reference table. 1
~--------+--------------------------------~
INQ!R~K Isuppresses the XREF option. I
~--------+--------------------------------~
IATRO Ilists the offsets of labels and I
I Ivariables and the length of I
I lautomatic storage.. I
~--------+--------------------------------~
lNOATRO I suppresses the ATRO option. I
j---------t--------------------------------~
IATR Ilists the attributes of all 1
I Ivariables, entry names, and fi1el
I Inames (Symbol-table listing). I
r--------t--------------------------------~
INQ~TE Isup~resses the ATR option. I
j---------t--------------------------------~
ILIST Ilists the object module in sym- 1
1 Ibolic form on SYSLST~ I
~--------+--------------------------------~
I[QkI~! Isuppresses LIST option. I
~--------+--------------------------------~
IWARNING Ilists all detected errors and I
1------- Iwarning-messages. I
j---------t--------------------------------~
IERROR Ilists errors and severe errors. I
~--------+--------------------------------~
IS EV ERE Ilists only severe errors. I
j---------t--------------------------------~
I~HAR48 linforms the compiler that the I
I Isource module is written in the I
I I 48-character set in EBCDI~ I
I Inotation. I
j---------t--------------------------------~
l~li!E§Q linforms the compiler that the 1
I Isource module is written in 60- I
I I character set in EBCDIC I
I I nota tion. I
j---------t--------------------------------~
ISTMT Ipermits the listing of "the 1astl
I Istatement entered" in case of ani
I lobject time error message. 1
~--------+--------------------------------~
I[Q~r[I I suppresses the STMr option. I
~--------+--------------------------------~
IEXTREF Iprints all external references, I
I Inames with the attributes I
I IEXTERNAL, and library names of I
I I this i- rocedure. I L ________ J. ________________________________ J

Figure 38. O~tions of PROCESS Control Sta
tement, Part 1 of 2

r--------r--------------------------------,
IliQ~IIB~llsup~resses the EXTREF option. I
~--------t--------------------------------i
IOFFSET Ilists the offsets of the begin- I
lining of each statement from the I
I Ibeginning of the procedure. I
I IThis listing is a subset of the I
I ILIST option, ana cannot be used I
I Itogether with LIST. If the srMrl
I loption would take up too much I
I Imain storage, use the I
I IOFFSET option for debugging. Itl
I Jpermits the number of the state-I
I Iment that caused the error to bel
I Idetermined by simple I
I Icom~utation. I
~--------t--------------------------------.
INQQEE~~Ilsup~resses the OFFSET option. I L ________ L ________________________________ J

Figure 38. options of PROCESS Control Sta
tement, Part 2 of 2

Printed Listings and Diagnostic Aids

(This section contains only preliminary
informatiou) •

PL/I s~urce module diagnostic messages will
be given at three levels:

1. ~Ynia~_~££Q£~ will be printed with the
PL/I source module listing.

2. Errors detected with aata declacations ;iii-be-prInted-together-;Ith-the-----
symbol-table listing (ATR).

3. Qihg£_&££Q£~ will be printed at the end
of the compilation with an extra
listing.

The following diaynostic car abilities will
be provided at execution time:

1. A dynamic dum} facility that can be
called by the statement CALL DYNDUMP
(variable-name [,variable-name] •••) ;.
This statement dumps data in hexa
decimal format, including sta tement'
label and pointer variables. This fea
ture will require a minimum of main
storage.

2. Jbject time error conditions will be
printed on a device assigned to SYSLST
or SYSLOG, giving an error code, the
address where the error occurred, the
chain of active procedures and, if
applicable, the address of the file
that caused the error.

3. If the ERRJR condition has been raised,
the standard system action must be
taken. If the DUMP option was speci
fied at compile time, a hexadecimal
main storage dump will be taken before
the end of job is called. All files
are closed automatically before the end
of the job.

4. In case of a hardware stop, the opera
tor can start the same action as
described under 3.

5. If the ST:-t T option was specified at
com~ilation time, actions 2 to 4 above
are extended by printing the statement
number of the last PL/I statement
entered.

The Compiler 159

Executing a Simple PL/I Program

Figure 39 shows a simple, but complete PL/I
program which reads cards and prints them.
It !s shown with the complete set of job
control statements needed to run the iro
gram. The job-control statements used are
discussed below in the sequence in which
they appear.

LL_~Q~_EblLflE~±: indicates to the Job
ContL'ol program tha t (1) a set of job
control statements and a PL/I program are
to follow, that (2) the PL/I Compiler is to
translate the source program ~nto an object
module, and that (3) the PL/I~program is to
be executed immediately.

The JOB statement must be specified for
every program. It indicates to the Monitor
what kind of job is to be done.

LL_Q!Ig_1QQQ~: specifies the day of the
year (January 2nd, 1970). The DATE control
statement must appear in the first job fol
lowing initial pro~ram loading.

The DArE statement is used for label
checking and for dating output reports.

LL_~~~~li_~X~QQQLX~~Ql~L~l: specifies that
2311 Disk drive, Model 11, (identified by
D3) will hold the work area for the compi
lation of the program. SYSOOO is the sym
bolic device address to be used by the com
piler to refer to the address of the disk
device holding the work area whose location
(actual device address) is 01.

A work area must always be assigned for
a com,=-ilation.

LL_A~~§li_~I~IfILI~lQQ~LR~: specifies that
the PL/I source program is to be read from
the 2501 card reader (identified by R4)
whose symbolic device address is SYSIPT.

Input to the compiler is always read
from SYSIPT.

LL_~~~~li_~X~1~ILX~~QQ~L11: assigns the
1403 frinter to the symbolic device address
SYSLST on which the output of the PL/I com
piler is to be printea.

It is assumed that SYSOOO, SYSIPr, and
SYSLSr had other assiynments in the [re
vious job or, if this is the first job,
that they had other standard assignments.
otherwise, the ASSGN statements would not
be needed.

160 IBM System/360 Model 20 DPS PL/I

LL_YQk_~I~QQQLR~R[l: The VJL (volume),
DLAB (disk label), and XTENT cards must be
supplied because a disk work file is used.
rhe VOL control statement indicates the
symbolic address of the device (SYS 000) and
name (WORK1) of the work file to be used.

II DLAB ••• contains the standard IBM disk
label-for-the file (WORK1) named in the VOL
control statement that frecedes the DLAB
control statement.

LL_~~~~r~~~ specifies the purpose of the
extent, the extent sequence number, the
location of the extent etc.

ror a full description of the label con
trol statements VOL, DLAB, and XTENT see
the section InE~iL2Y1EY1.

LL_~X~£: indicates to the Job Control fro
gram that the reading of the control state
ments has been completed and that control
is to be returned to the Monitor. +he Mon
itor then transfers control to the PL/I
compiler, which begins reading and compil
ing the source progra~ from the card
reader.

~_~Q~~~_kl~[L~~R~l: specifies that the
source program is to be com~iled and link
edited (LINK). The option WORK1 specifies
that one work file is to be used. Since
the option NOLINK is applied by default,
LINK must always be specified if the job is
to be comfiled and link-edited to form an
executable object program.

t_REQ~g~~_~RgKL!!RLhl~±: causes the com
piler to print the cross-reference table
(XREF), the source program (by defa ul t) ,
the symbol table (ATR), and the object
module (LIST) on the device assigned to
SYSLST. The input on SYSIPT will be (by
default) in 60-character set EBCDIC
notation.

L~ signifies the end of the source frogram.

L~ signifies that no more data cards
follow.

Figure 40 illustrates the arrangement of
Input/Out~ut aevices that would be needed
for compilation and execution of the pro
gram shown in Figure 39.

+
I
I

Job Contro
Program
Input

I

I
I

t

CompHer
Input

I
I
I
I ,

1 2 3 4 5 6 7 • , 10 11 12 13 14 15 16 17 11 19 20 21 22 23 24 25 36 27 21 2t 30 31 32 33 34 35 36 31 31 3t 40 41 42 43 44 45 46 47 • 4t 50 51 52 53 54 55 56 57 51 " 60

I I J ne piL .1 IFI IRIST
I I DA Te L'Zi i.lez
I I ASS N. Sy 151111 Idlm x I Bi 1 ' n3

II I Ais SI!.N S'y 51 PT X 1 1'~ lib I Rif
I I AS SGN SY 15 L ST X 1 4$ lib I L 1
II I VOL SY 5i !il~ \'40 RK1
I I IDL AS \ W OIR KF lLE 12 62. tb2.

0!0 Iii t 61B 221. ~B 2. z!t
I I XT ENT 1 ~.Idl t •• ~I~ ib 'ib I;) IZIII '1I1Z

I Isv IsiIJ I., If>
I I EX lee
It- co PiTN L~ NK Iwlo RK1
1+ PIR DC ESis XR EE IA TIR L I ST

PR IZ N '1: PRlo eD URE OP Tl ON 511 IMIA J N II·
IDe CL ARIE IN 1=1 LIE II N PUT f»T IRE lAu
FN Iv I [RID NH ENT (Fit lal'l~ ~e D1 UH If 5 Iys IPT ~5 1'1 I))

OUT Fl LE ~w TP UT 1ST RE IAH
EN V I RO Nt1 ENT Fr= ([8 1 I HE DI Uti i(5 l~~ ST 1 Lf 111,3 I})
Ir[.\ RD CH AR AC TE R I laltb) :

1* rrf.l IS PR lOG RIAH LI STS ln~ TA - C ~R DS FIR nH RI; AD ~IA 15 li1 .,
ON EN nF I L ~(1 Nit GO T_O .E~ID

LO O~ : GET FI LE i (I N') ED IT "" Iw All lallb ».
PUT ~l LE Ie n urr1 lED IT L c. AR tnl) fA 1/8 .!} I) .
GO TO LO Op· I'

EN D; EN D"
I~
TH IS leA RD IS A T'lA ~IA . C ~ RID P'i~i p c ~/~
I~

I 2 3 4 5 6 7 • , 10 11 12 13 14 15 16 17 " 1920 2122 2324 2536 2721 2t30 3132 3334 3536 3131 3t40 4162 4344 4546 47. 4tSO 5152 5354 5556 5751 is'60

6162 6364 6566

~'

j
T
:

flOI r~4!

I

I

I

I
I
I

~

6162 6364 6566

Figure 39. PL/I Program, with a Complete set of Job-Control statements

47" 61" 7172 73 74 1576 777. "reo j

f--

C

-

. --i-I-f--

- ,- -- 1-" ..
;

47" "" 71 72 In 7. 15 76 7771 1"1 111

Running a simfle PL/I Program Under the DPS 161

Note: If you assume that the same device has been assigned
-- to SYSRDR CRlS SYSIPT I the sequence of cards is as

shown.

SYSLST

Figure 40. Arrangement of 110 Devices for
the PL/I Program shown in
Figure 39

162 IBM System/360 Moael 20 DPS PL/I

Practical Considerations Regarding Program Execution

(At the present stage, this section con
tains only preliminary information).

Overlay Facility

with the Model 20 PLII, you can divide
(segment) large programs into segments that
can all be executed one segment at a time
in one job. This feature allows you to
save main storage and reduce the overall
requirements of a program.

suppose you have a program consisting of
many procedures that would not fit into
main storage wi thout parti tioning. By
means of SEGMENT compiler-control state
ments, which you must include between pro
cedures in the input deck, you can parti
tion your program into segments that can -
at execution time -- be successively called
into main storage and executed.

A §ggmgni may consist of one or more
procedures. Segments are called into main
storage by the calling (fetching) procedure
with a statement of the format CALL OVERLAY
('segment-name'). The called segments suc
cessively 2ygf1~y each other, except the
first, the £QQ1_§~~~~rrl, which must re~ain
active and reside in storage throughout
execution of the problem progra~.

When overlay is used, the second segment
occupies the main storage immediately above
the first segment. The third, fourth,
etc., segments start, when they are over
laid l at the same location where the second
segment started after loading. Each seg
ment, including the first (root) segment,
must be preceded by the SEGMENT compiler
control statement, which has the following
format:

r----T---------T--------------------------l
)Name)Operation) Operand (s))
t----+--------t---------------------------~
I +- ISEGMENT Iname [,option] I L ____ ~ _________ ~ __________________________ J

QEg£~!1fU§L
n~mg is the segment name, which has the
same syntax as an external PLII name,
exce~t that break characters are not
allowed. The segment name is indepen
dent of any ~rocedure name.

QE!i2ll is a decimal integer constant
specifying the load address of the root
segment. It may optionally follow the
name of the root segment. If this
option is not sfecifiea or, if the pro-

gram is. not segmented, the SEGMENT sta
tement is missing, the executable object
program will be loaded immediately
behind the end of the Monitor.

ro segment a program, include SEGMENT con
trol statements between procedures in your
input deck; one or more procedures may fol
low each SEGMENT card.

Figure 41 illustrates how you might seg
ment a program to be compiled, link-edited,
and executed:

r---l
II JOB PL1,EXAMPLE J

(other job-control statements)

II EXEC
+ COPTN LINK
+ SEGMENT ROJT
+ COpy

+-

+

+
+

+
+

(rrecompiled Object module)

PROCESS NODECK

(PL/I source module)

COpy

(precompiled Object module)

SEGMENT Y
COpy

(1recomriled Object module)

SEGMENT X
PROCESS NODECK,NOXREF

(PL/I source module)

I
I
I
I
I
I
I
I
I
I
I
I
J
I
I
J
I
1
I
J
I
I
I
J
I
J
I
I
J L __ J

Figure 41. Seymentin~ a PL/I Program

During program execution, the individual
segments are loaded by the fetchin9
procedure (5) with a statement of the forma t

CALL OVERLAY ('segment-name')

Practical Considerations Regarding Program Execution 163

CALL OVERLAY does not automatically
invoke a ~rocedure in the newly loaded seg
ment. This has to be done by a normal CALL
statement or function reference.

The fetching procedure must always be
contained in the root segment, never in one
of the segments that are overlaid during
program execution.

However, within a segment, one procedure
may call another procedure. Figure 42
illustrates how segments are fetched and
executed.

r----·--------------------------------------,
II JOB PL1,EXAMPLE

II
+
+
+

+
+

+
+

(other job-control statements)

EXE::::
COPTN LINK
SEGMENT ROOT
PRO::::ESS NODECK
A: PROCEDURE OPTIONS (MAIN);

DCL (data-items) EXTERNAL;
ON ENDFILE (filename) action;

BEGIN: CALL OVERLAY ('SEGM1');
CALL B1;

END;

CALL OVERLAY ('SEGM2');
CALL B2;
CALL BL~;

(PL/I source statements)

SEGMENT SEGM1
PROCESS NODECK
B1:PROCEDURE;

D::::L (data-items) EXTERNAL;

RETURN;
END;

(PL/I source statements)

SEGMENT S EGM 2
PRO::::ESS NODECK
B2:PROCEDURE;

D::::L (data-items) EXTERNAL;

CALL B3;
END;

(PL/I source statements)

+ PROCESS
B3:PROCEDURE;

D::::L (data-items) EXTERNAL;

(PL/I source statements)
END;

+ PRO::::ESS
B4:PRO::::EDURE;

DCL (data-items) EXTERNAL;

(Pt/I source statements)
END;

L ___ J

Figure 42. Fetchiny PL/I Program Segments

164 IBM System/360 Model 20 DPS PL/I

In this example, the main procedure A of
the program (contained in the root segment)
first loads SEGM1 and calls procedure B1
(contained in SEGM1t for execution. After
B1 has returned control to A, A loads SEGM2
and successively calls the two frocedures
B2 and B4 for execution. However l before
B2 returns control to A, it calls B3 for
execution, which returns control to B2.
B2, B3, and B4 are contained in SEGM2.

The structure of the overlay scheme of
the above example is shown in Figure 43.

Second
Segment
(SEGM1)

Automatically 1
Included Library
Routines Used in
SEGM2 but not
in the Root Seg
ment

81

~.

Root
Segment <

MONITOR

~- 1-.

\ MaIn """,odu'. (A)

)

Automatically Included PL/I
Library Modules Used in the
Root Segment

) 02

Third -1-\
Segment < B3
(SEGM2)

Automatically 1
included Library
Routines Used In
SEGM1 but not
in the Root Seg
ment

)M

Figure 43. Structure of Overlay Scheme

If you use files in the different segments
of your program, observe the following
rules:

If (1) a file is declared in a procedure
that is not contained in the root segment,
(2) this file is opened in this procedure,

and (3) the segment in which this procedure
is contained is about to be overlaid with
another segment, close this file be'fore the
segment is overlaid. However, this restr
iction does not apply if the file is not
only declared in the fetched segment in
which it is opened, but also in the root
segment.

If you have data that is to be used in more
than one segment, you must give the data
the EXTERNAL attribute (which implies the
STATIC attribute) or transmit them through
argument lists of the CALL statement. F:Jr
larger volumes of data, the use of the
EXTERNAL attribute generally requires less
storage than argument transmission. These
data must be declared EXTERNAL in the root
segment as well. However, where the argu
ments change, argument transmission is
normally more useful.

This section gives a summary of the rules
to be observed when using overlay:

1. After a segment has been fetched into
main storage, the procedure(s) con
tained in it may be activated by means
of a call to the name of the procedure
or, if more than one procedure is con
tained in the segment, by a call to one
of the procedure names.

2. The segment name is inrrependent of any
procedure name. It is assigned by
means of the SEGMENT compiler-control
statement contained in the input deck.

3. CALL OVERLAY statements must always be
contained in the root segment.

4. The root segment cannot be overlaid.
It is in storage throughout execution
of the problem program.

5. Any procedure of a segment may be acti
vated at any time after the segment has
been loaded, provided it has not been
overlaid.

6. Fetching a segment already fetched into
main storage causes the segment to be
loaded again. The variables contained
in the segment that are in static
storage have no known values or the
values s~ecified in an INITIAL
at tribute.

7. Names of segments to be fetched must be
un~gue. Names of procedures in the
whole program must also be unique.

8. A library subroutine is automatically
included in every segment in which it
is used if Ca) it is used in a segment
other than the root segment and (b) it
is not in the root se~ment.

9. Data referred to in more than one seg
ment must either be given the EXTERNAL
attribute in each segment in which they
are used and in the root segment or
they must be transmitted as arguments
with the CALL statement.

10. Files declared and opened in a segment
below the root segment but not declared
in the root segment also must be closed
before the segment is overlaid by
another segment.

Practical Considerations Regarding Program Execution 165

Input/Output

In this section, we will discuss and
illustrate how to create a file and how to
relate a file on an external medium to your
program.

rhe section headed Data Transmission in
Part I is prerequisite-for-the-understand
ing of this section.

Let us briefly repeat what a file is and
how you can relate it to your program.

A ~!1§ is an organized collection of
related data external to a pro~ram. A file
is stoEed on an external medium, generally
referred to as a volume, such as a Eeel of
magnetic tape or a-aisk pack. One reel of
magnetic tape or one disk pack, for
example, i.e., a valume, may contain one DE
more files or parts of a file. A voluille
that contains more than one file, is called
a multi-file volume. If more than one
voI~ie-I;-i~~~~~-~o hold one file, we speak
of a ~g!ti=!Qlgmg_til§.

The individual data items in a file are
arranged in distinct physical gEoupin~s
called Q~~£~~. For processin~ purposes,
each block consists of one or more logical
parts called records, each of which can
contain one oi-;~i~-related data items. A
block is also called a £hY~i£~!_£g£Qfg,
because it is the unit of data that is
physically transmitted to and from a
volume. To avoid confusion between a ~hys
ical record and its logical parts, the log
ical ~arts are called lQg!£~l_f§£Qfg§.

When a physical record contains two or
more logical records, we say the records
are Q!Q£k~~. Blocking permits a more COIll

pact and efficient use of external storage
and a faster access to the logical Eecords.

To be able to deal with the data items
of a file, that is, to read them into main
storage OE to write them onto an external
storage medium, a relationship has to be
established between a file and a program.
You do this by means of a til§_gg£l~f~!iQn,
that is, by declaring a file name for the
file to be processed in your-program and by
s~ecifying ~ii£iQ~ig2 that describe the
file and the manner in which it will be
handled. You establish the connection
between the device on which the file
resides and the program in main stora~e by
means of the MEDIUM option in the
ENVIRONMENT attribute in the file decla
ration and, if necessary, with ASSGN con
trol statements. (For the ASSGN control

166 IBM System/360 Model 20 DPS PL/I

statement, see also the section ~Q£
~Q!!t!;:Q!)·

Unlike a file, however, a file decla
ration has si~nificance only in a proyram.
For example, if you use the same file
again, you may stecify a diffeEent file
name and some different attributes for it.

Pile Organization

The organization of a file determines how
data is recorded in a file and how data may
be retrieved from a file to be transmitted
to a frogram for frocessing.

For the Model 20 PL/I, a file may be of
~QN2~~Q!IY~_~£~~ai~~ti~a, in which case
logical records can be stored in and retri
eved from a file in sequential order, or it
may be of l[Q~X~~_Q£g~ni~~!!Q!!, in which
case logical records may be retrieved from
or stored in a file either in sequential OE
direct order, that is, on the basis of key
values specified in the data- transmission
statements.

Files of C~NSECUTIVE organization may be
Eead or written in either stEeam- or
recoEd-oriented transimission. INDEXED
files may be read or written in record
oriented transmission only.

Logical records can appear in one of three
formats: fiKgg=!gngth (format F),
!~£i~Q!g=lgngth (format V), or Yngg~in§g=
!gngih (format U). Jne of these record
formats must be specified. They provide
flexibility in the design of files and
allow you to take advantage of the fixed
length and variable-length features of spe
cific input/output devices.

The block size and the Eecord size are
specified as the number of bytes in a block
or record, resI:ectively. For fQ.£m.~i=K
£g£Qf~§, if the Eecord size is not speci
fied in the ENVIRONMENT attribute, the
Eecords are assumed to be unblocked. The
block size must be specified. The record
size may be slecified for format F records
only. Blocking and deblocking is handled
automatically.

With format F records, blocking is based
on the stated record size. The block size
must be an integer multiple of the record
size.

With tQ£mAi_! records, deb10cking is
based on information at the beginning of
each block and at the beginning of each
logical record. Four bytes are used at the
beginning of each block to specify block
length, and another four bytes are used at
the beginning of each record to specify the
length of that record. Although insertion
of this length information is done automat
ically by the system when the file is
created, you must include the number of
control bytes when you specify the length
of the block ~n the ENVIRONMENT attribute.
When format V files are created, records
are always blocked if their lengths allow
two or more to be ~laced into a block

a. Unblocked Record Format

One Physical Record

Record

A B c o E F

b. Block Record Format

smaller than or egual to the maximum that
is sfecified.

with format-U records, each block con-
sists of-only-one record. The blocks
(records) are of varying lengths. No sys
tem control bytes appear anywhere within
the block. All processing of record is
your responsibility. If you include a
length specification in the record, you
must insert it yourself, and must retrieve
the information yourself.

Figures 44 through 46 illustrate record
formats.

Record

H

IBG = Inter - Block Gap

G H

Figure 44. Example of Format-F Records on Magnetic Tape

Input/Output 167

I~

Record 1
(80 Bytes)

S = Sector Address
Schematic Representation of Unblocked Format-F Records on Disk

270 Bytes --------..:.,---..t

Record 1 -. 1-_ Record 2 --II~_ Record 3 -1'"'_
(80 Bytes) (80 Bytes) (80 Bytes)

Record 2
(80 Bytes)

50 Bytes

Record 5
(80 Bytes)

J..---------- Sector Sector

S = Sector Address
Schematic Representation of Blocked Format-F Records on Disk, assuming five Records per Block.

Figure 45. Example of Format-F Records on Disk

BL RL Record
Data

XXbb XXbb

a 3 .4 7
BL = 84 1 RL = 80

a. Variable Length - Unblocked Recor.d Format

BL RL Record 1
Data

XXbb XXbb

a 3 4 7
BL = 234 I RL = 80

b. Variable Length - Blc>cked Format

BL is Block Length
RL is Record Length
IBG iis Inter-block Gap

RL

XXbb

83184
1

BL

XXbb

87

RL

XXbb

7

Record 2
Data

RL = 100

Record 2
Data

RL = 100

RL

XXbb

1831184
1

Figure 46. Example of Format-v Records on Magnetic Tape

168 IBM system/360 Model 20 DPS PL/I

187

BL

XXbb

Record 3
Data

RL = 50

31 4
I

RL

XXbb

7
RL = 50

In a CONSECUTIVE file, the logical records
are organized on the basis of their succes
sive ~hysical positions, such as they
appear on magnetic ta~e. Records can only
be retrieved in sequential order. There
fore, the associated files must either be
declared with the SEQUENTIAL attribute Dr
be STREAM files.

The file attributes l which are part of the
PL/I language, are not discussed in detail
here. They are explained in Part I, in the
section Q~t~_I£~ll§ill1§§1Qll, and in Part II,
in the section ~~~f1Qg~g§.

The ~~~f1~g~§§ you may specify for
CONSECUTIVE files are:

FILE
RECORD
STREAM
SEQUENTIAL
INPUT
OUTPUT
UPDATE
PRINT
BACKWARDS
ENVIRONMENT (options-list)

The QEt1Qll§ you may specify in the
ENVIRONMENT attribute for CONSECUTIVE files
are:

[CONSECUTIVE]

{

F (blocksize ["recordsize])}
V (maxblocksize)
U (maxblocksize)

(BO FFERS ((11 2 })]
MEDIUM (symbolic-device-address,

device-type)
[CTLASA]
[LEA VE]
[NOT APEMK]
[NOLABEL]
[VERIFY]
[ALTTAPE]

The individual options -- which are not
part of the PL/I language, but Model 20
compiler keywords -- are discussed in the
two programming examples shown in Figures
47 and 48 in the sequence in which they
appear.

A complete list of all options you may
use for CONSECUTIVE as well as INDEXED
files is given later in this section under
the heading Ih§_~NYJEQN~~N!_~11£1~Y1g_~ng
1~§_QE~1Qn§. See also !EEgngb!_~~_fb~g
l11f1Qg1g§_!llg_QE~1Qn§·

Records in consecutive files may be of for
mat FI format V, or format U. The format V

may be used only for record-oriented I/O,
and only with tape units. However, format
V records cannot be read backwards. The
format U may only be used for magnetic tape
and printer-keyboard I/O. It must be used
with lrinter-keyboard 1/0. With magnetic
tape 110 you may use format U with record
oriented transmission only.

Input/output devices permitted for
CONSECUTIVE files include magnetic-ta~e
drives, card readers and punches, a
printer-keyboard, disk-storage devices, and
printers.

Following now are two simple programmin~
examples that illustrate the use of files
of CONSECUTIVE organization, their attri
butes and options.

The fi£§1_~~~mhlg, shown in Figure 47,
demonstrates the use of the ASA control
character for record-oriented output. With
RECORD OUTPUT files that are to be printed,
you cannot use the SKIP or PAGE format
items or options, which are used for
frinter-carriage control with STREAM PRINT
files (see second example, Figure 48).
with the CTLASA option specified in the
ENVIRONMENT attribute, you can, however,
achieve the same effect with RECORD OUTPUT
files that are to be printed. The first
program uses mUlti-valume tape input and
printed output.

!§§iggmggt§: The alternate tape drive
must always be assigned to a symbolic
device address that is one higher than
that specified in the MEDIUM option.

2 Labels: For an explanation of file
labels refer to filg_~gQgl§ in this
section.

3 Eg!g~1gg_thg_g£2~£~m_i2_ihg_lg£~i_filg:
The program LISTTAPL -- which uses
multi-volume file tape input -- is
related to the input file by means of
the FILE declaration which associates
the name INP with the file and declares
it to be an INPUT file that is to be
transmitted in RECORD-oriented mode.
The MEDIUM option of the ENVIRONMENT
attribute in the file declaration spe
cifies that the file is located on a
2415 9-track tape drive assigned to the
symbolic device address 5YS004. The
records have a fixed length of 120
bytes and are blocked 20 logical reco
rds to a block. On input, the blocked
records are automatically deblocked so
that the program deals only with

Input/Output 169

r---T'---1
11/ JOB PL1,LISTTAPE
III ASSGN SYS004,X'780',T2,X'CO'
III ASS3N SYS005#X'782',T2#X'CO' ALrERNArE rAPE UNIT
III VOL SYS004,INP

I
J
I
J
I
I
I
I
I
I
I
I
I
I
I
I
I
J
I
I
J
I
J
I
I
I
I
I
I
I
J
I
I
I
I
I
J
I
I
I
J
I

2 III TPLAB 'TRANSACTION FILE 00111100010001000700 70010 71009'
II EXEC
• COPTN LINK,WORK2
• PROCESS LIST,CHAR60,ATR,NODECK

LIST: PROCEDURE OPTIONS (MAIN) ;
3 DCL INP FILE RECORD INPUT ENV (MEDIUM (SYS004,2400)

F (2!J00, 120) ALrrAPE),
4 PRT FILE RECORD OUTPUT ENV (MEDIUM (SYSLST,2203)
5 F(121) CTLASA),

1 INRCD BASED (P),
2 KEY CHAR (8),
2 FILLER CHAR (112),

INSTREAM BASED (P) CHAR (120),
1 OUTRCD,

6 2 CTLASA_CONTROL CHAR (1),
2 TEXT CHAR (120)#

(LINE FIXED (3) INIr (57), OLDKEY CHAR (8), P POINTER) STATIC;
7 OPEN FILE (INP), FILE (PRT);
8 ON ENDFILB (INP) Goro FINIS;

LOOP: READ FILE (INP) SET (P);
IF LINE> 56 THEN DO;

9 CTLASA_CONTROL = '1';
LINE = 1;
END;

10
ELSE IF KEY = OLDKEY THEN DO;

crLASA CONrROL = , ';
LINE LINE + 1;

11

END;

TEXT = INSTREAM;
WRITE FILE (PTR) FROM (OUTReD);
OLDKEY = KEY;
GO TO LOOP;

FINIS: END;
1*

ELSE DO;
crLASA_CONTROL = '0';
LI NE = LIN E + 2;
END;

___ ~ __ - ________________________________ J

~~~g: rhe numbers to the left of Figure 47 are used for eXflanation purposes only. 
They are not ~art of the codin9. 

Figure 47. Programming Example Illustrating the Use of the ASA Control Characters for 
RECORD OUTPUT 

logical records. Since a multi-volume 
tape file is used, the option ALTTAPL 
must be s~ecified in the ENVIRONMENr 
attribute. ALTTAPE indicates that an 
alternate tape drive is assigned to 
enable automatic switching from one 
drive to the other. 

4 ngi§~~rrg_~h~_E£Qg£§m_iQ_ih~_Qy!£y1 
K~!g: The connection between the pro
gram and the device on which the out~ut 
file is to be storei is established by 
means of the FILE declara tion for PRr . 
which declares PRT to be an OUTPUT file 
that is to be printed on a 2203 printer 
assigned to the symbolic device address 
gYSLST. The records are unblocked with 

170 IBM system/360 Model 20 DPS PL/I 

a length of 121 bytes, the first being 
reserved for the ASA control character. 
An ASSGN statement for SYSLST is not 
needed since the device assignments for 
printers are taken from the device spe
cification in the MEDIUM option only. 

7 Qlgning_1h~_K~ig2. Both the in~ut file 
INP and the outfut file PRT are opened 
(acti va ted) which means that the file 
declarations for the two files are 
associated with the respective actual 
files on the external storage medium 
and that processing of the records can 
begin. 



5 g§g_Qf_~I~!~!. The option crLASA in 
the ENVIRONMENT attribute of a RECORD 
file specifies that the first character 
of a logical record transmitted to the 
out~ut file is to be interpreted as an 
ASA control character. When RECORD 
output is to be on a ~rinter or on 
cards, the ASA carriage control charac
ter is used for printer carriage con
trol and for punched card stacker 
selection. (The character codes that 
you can use with CTLASA are shown in 
The ENVIRONMENT Attribute and Its 
Q2iIQ~~-In-thI~-~ectlon):-------'--

6 In the structure declaration for the 
output record OUTRCD, the first charac
ter is reserved for the ASA control 
character. 

9 Depending on the result of comparison 
operations, the ASA control character 
is either set to '1' which is inter
rreted as "skip to channel 1 before 
printing", when the output record is 
[-,rinted, 

10 or set at ' , (blank) which is inter
[-reted as "space one line before 
printing", 

11 or to '0' which is interpreted as 
"space two lines before printing". 

8 ~g~!£t1I!t1ll~_i~g_R~Q~~!m: The proces
sing loop ends automatically when the 
ENDFILE condition is raised for the 

input file INP. Control is transferred 
to the statement labeled FINIS by means 
of the ON statement. When control is 
returned to the Monitor by execution of 
the last END statement of the program, 
both files are automatically closed. 

The §§£QD~_E~Qg~~mm!llg_gl!mElg, shown in 
Figure 48, illustrates frinter-carriage 
control for STREAM files. Printer-carriage 
control for STREAM files is achieved by 
means of the SKIP option in the POT 
statement. 

The second program (LISTBA:K) uses tape 
input that is on a multi-file tape volume 
which is to be read backwards in record
oriented transmission mode. 

The job-control statement II JOB PL1, 
LISTBACK specifies that the program 
LSTBACK is to be compiled, link-edited, 
and executed immediately. For an 
eXflanation of the other job-control 
statements, see the section ~Q~_~Qnl~Qi 
and the paragraph headed liig_L~~gl§ in 
this section. For the compiler-control 
statements, see the section I~g 
~Q!!!l:i!g£· 

2 The input file that is to be processed 
by LISTBACK is related to LISTBACK by 
means of the FILE declaration which 
declares the file to be an INPUT file 
that is to be read BACKWARDS from a 

r---r-----------------------------------------------------------------------------------1 

4 

5 

6 

II PAUSE LOAD REEL 118 ON UNIT 81 
I II JOB PL1,LISTBACK 
J II ASSGN SYS007,X'781',T2 
t II VOL SYS007,BACKT 
t II TPLAB 'BACKWARDS EXAMPLE00011800010002000101 70111 70113' 
I II FILES SYS007,6 
I II EXEC 
I + :OPTN LINK,WORK2 

+ PROCESS LIST,ATR,NODECK 
LISTB: PROCEDURE OPTIONS (MAIN); 

DCL BACKT FILE INPUT RECORD BACKWARDS ENV 
(MEDIUM (SYS007,2400) F (1500,100) LEAVE), 

PRT FILE OUTPUT PRINT ENV (MEDIUM (SYS003, 2400) 
F (121) NOLABEL NOrAPEMK), 

1 INRCD BASED (P), 2 KEY :HAR (8), 2 TEXT CHAR (92) , 
(SKIP FIXED(1), P POINTER, OLDKEY CHAR (8»STATIC; 

OPEN FILE (BACKr), FILE (PRr) PAGESIZE (48); 
ON ENDFILE (BACKT) GO TO FINIS; 
OLDKEY = HIGH(S); 

LOOP: READ FILE (BACKT) SET (P); 
IF KEY = OLDKEY rHEN SKIP = 1; ELSE SKIP = 2; 
PUT FILE (PRT) SKIP (SKIP) EDIT (KEY, TEXT) (A,X (5) ,A); 
OLDKEY = KEY; 
GO TO LOOP; 

FINIS: END; 
1* L ___ ~ _________________________________________________ - _________________________________ J 

Figure 48. programming Example showing printer-Carriage Control for STREAM Files 

Input/Out~ut 171 



multi-file tape volume. The file BACKr 
is on the multi-file tape volume 
assigned to the symbolic-device address 
SYS007. (It is the file following the 
sixth tapemark on the volume (FILES 
control statement) .) 

The records are of blocked format, with 
15 logical records, each of a length of 
100 bytes. On infut, the records are 
automatically deblocked, so that the 
pe~gram deals only with the logical 
I:ecords. 

The LEAVE option in the ENVIRONMENr 
attribute is used to specify that no 
rewind operation is to be perfoemed 
when the file BACKT is opened. You 
should always specify it for files that 
have the BACKWARDS attribute to ensure 
proper positioning of the file. 

3 The file PRT that is to be created by 
LISTBACK is declared as an OUTPUT tape 
file that is to be printed. The attri
bute PRINT specifies that the first 
byte of each logical record of the 
STREAM file is to be reserved for an 
AS~ control character needed for 
peinter-carriage control. The records 
are unblocked and of fixed length. 
since outfut is stream-oriented, in 
this example, the records must not be 
blocked. 

The options NOLABEL and NOTAPEMK in the 
ENVIRONMENT attribute specify that no 
label peocessing is to be done for the 
file. On output, a tapemark is auto
matically written as the first record 
on the tape, unless NOTAPEMK is speci
fied in the ENVIRONMENT attribute. 

4 Both the input and the output file are 
opened by means of the OPEN statement 
which specifies the names of the files 
to be opened. The PAGESIZE option spe
cifies that, before writing beyond the 
48th line, the ENDPAGE condition is 
raised. Since no appropriate ON state
ment is given, standard system action, 
i.e., advancing to a new page, is 
taken. 

5 OLDKEY is assigned an initial value of 
16 hexadecimal Fs. 

6 ~ feinter-carriage control character is 
created preceding each output record on 
tape. 

An existing CONSECUTIVE file can be 
accessed in two ways: either as an INPur 
or as an UPDATE file. 

172 IBM System/360 Model 20 DPS PL/I 

Reading of an INPUT file may be either 
stream- or record-oriented. If the file is 
on magnetic tape, it may be read either 
forward or backwards. 

Transmission of an UPDATE file must 
always be record-oriented. An UPDATE file 
cannot have the STREAM, BACKW~RDSI or PRINT 
attributes. The attribute UPDATE specifies 
that the record is to be read l processed, 
and rewritten into its previous vlace in 
the existing file. )nly disk files may be 
uldated. 

It is not possible to insert additional 
records into an existing CONSECUTIVE file 
or to extend it by adding records at its 
end. 

DISK ORGANIZATION 

A file of INDEXED organization is always on 
a direct-access device. For the Model 20 
system, this is a 1316 Disk Pack used with 
the 2311 Disk-Storage Drive Model 11 or 12. 

Before we come to the discussion of 
INDEXED file organization, we will, there
fore, first deal with the organization of 
the IBM 1316 Disk Pack, as shown in Figure 
49. 

The 1316 disk pack is the medium on which 
data is stored externally. It is mounted 
on a 2311-11 or 2311-12 disk-storage drive. 
Let us consider the physical characteris
tics of the 1316. 

A 1316 disk pack consists of six disks. 
The top surface of the upper disk and the 
bottom surface of the lowest disk are not 
used, which leaves ten surfaces foe storage 
of data. Each disk surface has 203 con
centric 1£~£~§ of which, on a 2311-11, you 
may use tracks 004 to 202 whereas, on a 
2311-12, you may use only tracks 004 to 
102~ Track 1,2,3, etc., on each surface 
is physically located below or above track 
1,2,3, etc., of the other surfaces. Each 
geoup of ten vertically aligned tracks can 
therefore be said to form an imaginary 
£~li~~g£. 200 or 100 cylinders, respec
tively, are used for actual recording 
de}ending on the disk pack used; the 
eemaining three are reserved. (Refer to 
Figura 49) . 



CYLINDER 002 
TRACK 1 

READ /WRITE 
HEADS 

o 

1 
2 
3 
4 
5 
6 
7 
8 

1

9 

202 } 
000 CYLINDER 

ACCESS 
MECHANISM 

I I I Iii 
I" l11,- l,-_. __ <~J j j ) 

'-... ---~----"" ./ / -- -- --- ~ -- -== -- - -- .-/ -- ----
Figure 49. 1316 Disk Pack and Access Mechanism 

The 2311 has one access arm, equipped 
with ten read/write heads. These heads are 
aligned vertically so that data contained 
in one and the same cylinjer can be 
accessed without any mechanical movement of 
the arm from track to track. This, how
ever, makes it necessary to switch from 
surface to surface within a cylinder when a 
file being written overflows from track to 
track or when one track has been read and 
the file continues on the next. When a 
cylinder is filled with data, writing con
tinues on the first track of the next 
cylinder. This technique reduces the time 
needed to move the access arm. 

Thus, a disk pack is thought of as con
sisting of 200 or 100 cylinders, each 
cylinder in turn consisting of ten tracks. 
A consecutive set of tracks or cylinders 
set aside for usage of a specific file is 
referred to as an ~!1gn1. 

Each track consists of ten §g~1Qf§. 
Each sector can accommodate 270 bytes of 
data. When reading records from, or writ
ing them onto disk, one or more complete 
sectors are always read or written. Parts 
of sectors cannot be transferred. A single 
read or write operation may transfer the 
contents of one 270-byte sector, of several 
sectors of a single track, or of several 
sectors of two or more tracks within the 
same cylinder. A single read or write com
mand must not exceed cylinder limits. 

The fact that only one or more ~Qm~1g1g 
sectors can be read or written is important 
in dealing with disk-file organization. 

All records written on disk must be of 
fixed length (format F). They may be 
blocked or unblocked. Only one logical 
record at a time is available for proces
sing by the problem program. However, data 
may be transferred between a disk file and 

Input/Output 173 



main storage in blocks of two or more log
ical r-ecords. 

For examfle, assume that a file is spe
cified to contain unblocked logical records 
of 160 bytes in length. In this case, the 
fir-st 160 bytes of each sector contain one 
record. Note that 110 bytes of each sector
are wasted. The input/output area that is 
automatically establishej in main storage 
is 270 bytes in length to accommodate one 
complete sector, even though only 160 bytes 

UNBLOCKED RECORDS 160 bytes per record 
1 record per sector 

of each sector are utilized by a logical 
r-ecor-d. This is obviously wasteful. In 
this exam~le, unblocked records result in 
poor utilization of disk capacity. An 
additional disadvantage is a delay in 
retr-ieval of records (slower retrieval 
times as compared with retrieval of blocked 
r-ecor-ds). 

Figure 50 shows the possibilities of 
blocking records to achieve good utiliza
tion of the disk area. 

~'----y---/'-~'----v---''-----v----I' '----v---"'---v------'~ 

160 110 160 110 160 110 160 110 

3 RECORDS PER BLOCK 160 bytes per record 
3 records in 2 sectors 

..... ---sector 1 --~I4---sector 2 --........... I----sector 3 --~I4---sector 4 --~ 

5 RECORDS PER BLOCK 

~'-----v---'~ 

60 160 160 160 60 

160 bytes per record 
5 records in 3 sectors 

~---·sector 1 --.... 114--- sector 2 ---'14--- sector 3 --............ 1---- sector 4---a.I 

~ '---v----' '---v------' '---v------' '---v---" 
160 160 160 160 160 10 160 

Figur-e 50. Com~arison of Blocked and Unblocked Records 

174 IBM System/360 Model 20 DPS PL/I 



Fo~ the Model 20, a file of INDEXED organi
zation is always on a 1316 disk pack 
mounted on the 2311-11 or the 2311-12 disk
storage d~ive. The structure of an INDEXED 
file is basically sequential. Its records 
a~e ar~anged in logical sequence according 
to k~Y§ that are associated with eve~y 
~eco~d. The key must be a character string 
that represents an item within the record, 
such as a date or a name. Each key must be 
unique. Records may be retr ieved either 
sequentially or directly. 

INDEXED file organization offers the 
following additional features not provided 
by CONSECUTIVE file organization: 

• Sequential retrieval of records within 
s~ecified limits in the file. 

• Direct retrieval. 

• Extension of the file at its end. 

• Insertion of new records without copying 
the whole file. 

When an INDEXED file is created (or 
loaded), it must be created as an INDEXED 
SEQUENrIAL OUTPUT file. INDEXED DIRECT 
files cannot be output files. rhe records 
of the file to be written must be pre
sorted to the required sequence. Once an 
INDEXED file is created, it may be 
retrieved in either sequential or direct 
access mode. 

~ggggn1i~1_gg1Iigx~1 

sequential ~et~ieval rermits all records of 
the file to be read into main storage, 
beginning with the record that is lowest in 
sequence. However, you may also read only 
a portion of the file by specifying the key 
of the lowest record of that portion and 
then p~ocessing as many records as 
required. The lowest record is ret~ieved 
in direct access and the file is then pro
cessed sequentially by READ statements 
without source keys until the upper limit 
is ~eached. 

Fo~ di~ect ~et~ieval, you must specify a 
source key in every READ statement. 

An INDEXED file may be extended at its end, 
once it has been created. For file exten
sion6 the records that are to be added must 
all have keys that are higher in sequence 
than the key of the last record of the cu~
rent file. Note, however, that extension 
is not possible if a record has been 

inserted on the last active t~ack of the 
file in a previous run. In this case, the 
file must be entirely rewritten. 

You may also insert records with new keys 
into the file. For the inse~tion of new 
~ecords, you must reserve overflow areas 
within the file. 

Deletion is not accomplished by physically 
removing the records from the file. If you 
want to delete records, you must specify 
this by writing a deletion code in each 
~eco~d to indicate that it is to be removed 
when the file is eventually ~eorganized by 
a reorganization program that you must 
sUPfly yourself. 

The ability to read and write records any
where in an INDEXED file is provided by 
indexes that are cart of the file. Two 
types of indexes are automatically con
structed whenever a file is created or 
extended: a fYling~~_ing~~ for the entire 
file, and a 1f~£k_ing~~ for each cylinder. 
An entry in a cylinder or track index con
tains the identification of a specific 
cylinder or track and the highest key asso
ciated with that cylinder or track. The 
indexes are automatically retrieved and 
searched when their use is required, that 
is, when a READ, WRITE, or REWRITE state
ment with a source key is encountered dur
ing execution of a program. 

When new records are added to the file, 
as insertions or extensions, the indexes 
are automatically modified to account for 
the new records. 

In addition to the £~im~_g~t~_~~~~, whose 
t~acks initially receive the records of an 
INDEXED file, there are overflow areas for 
~ecords forced off their original tracks by 
the insertion of new records. An overflow 
a~ea called a fYling~~_QY~~ilQ~_~~~~, may 
be designated for each cylinder of the 
p~ime data area. If a large number of 
additions is anticipated, an in~g£gnd~n1 
QY~~flQ~_~~~~ may be designated to supple
ment or replace the cylinder-overflow 
areas. This area must be defined as a 
serarate extent. 

When a new record is to be inserted in a 
track that is already full, the records 
already on the track with keys that are 
higher in sequence than the key of the 
record to be added are removed and -- after 
insertion of the new record -- written back 

Input/Output 175 



Page Missing From Original Document 



Page Missing From Original Document 



first 45 bytes of each card are pro
cessed, even thou3h a complete card is 
fed throu9h the card reader each time a 
RE~D statement is executei. 

4 The format of the records to be written 
on the INDEXED file is described in the 
structure declaration DATA. The key, 
which, in this example, has also the 
name KEY, starts with the eighth char
acter of the record as specified by the 
KEYLO: option in the file declaration. 
The length of the key, 12 characters, 
must be the same as specified in the 
KEYLENGTH option. 

2 ExrENTNUMBER (3) serves for either (a) 
one index extent, one prime data 
extent, and one independent overflow 
area, or (b) one index extent and tw~ 
prime data extents. Of which kind the 
last extent actually is, has to be spe
cified by the third job control XTENT 
statement for this file (not shown in 
this exam~le). Two tracks ~er cylinder 
are set aside for later insertion ~f 
overflow records by the OFLTRACKS 
option. The records of the file to be 
loaded are blocked with a blocking fac
tor of 6. Since the file is to be 

saved for later usage, the VERIFY 
option has been specified to assure 
error detection during writing of 
blocks on the disk pack. 

3 The }rinter will be used only in excep
tional cases, that is, when the KEY or 
the ENDFILE condition is raised. 
Therefore, the use of only one buffer 
will not impair performance 
significantly. 

5 Even thou3h the key is already in its 
final position in the record, the 
KEYFROM option must be specified with 
the WRITE statement. 

6 This point is reached each time a key 
is out of sequence. The program need 
not be terminated; it proceeds with 
reading the next record. 

7 The projram is terminated by detecting 
an end-of-file statement, 1*, in card 
columns 1 and 2 in the input file. A 
termination message is printed. 

In the second example, shown in Figure 
53, the file created in the previous 
erample is updated and records are added to 

r---T--------------'---------------------------------------------------------------------, 
~DDUPD: PROCEDURE OPTIONS ~MAIN); 

DCL INPUT FILE RECORD INPUT ENV(MEDIUM(SYSIPT,2520)F~5», 
INDEX FILE RECORD UPDATE DIRECT ENV(MEDIUM(SYS008,2311) 

F (270,45) 
INDEXED KEYLENGTH (12) KEYLOC (8) EXTENTNUMBER (3) 
OFLTRACKS (2) VERIFY), 

1 DATA BASED (P), 
2 PERS_NO PIC' (7) 9', 
2 INKEY CHAR(12), 

2 FDATA, 
2 PERS NO PIC' (7) 9' , 
2 FKEY-CHAR (12) , 

P POINTER STATIC; 
1* FILE ACTIVATION*I OPEN FILE (INPUT), FILE (INDEX); 

ON ENDFILE (INPUT)GO TO END_OF_JOB; 
ON KEY (INDEX) GO TO NEW_RECORD; 

1* PROCESSING LOOP*I 
LOOP: READ FILE (INPUT) SET (P); 

3 READ FILE (INDEX) INTO (FDATA) KEY (INKEY); 
1* UPDATE RECORD IN 'FDATA' BY 'DATA'*I 

4 REWRITE FILE (INDEX) FROM (FDATA) KEY (FKEY) 
:;0 TO LOOP; 
1* ADD NEW RECORD TO INDEXED FILE *1 

5 NEW_RECORD: WRITE FILE (INDEX) FROM (DATA) KEYFROM (INKEY); 
GO TO LOOP; 

END_OF_JOB: END; L ___ ~ ___________________________________________________________________________________ J 

Figure 53. U~dating of and Addition of Records to an INDEXED File 

178 IBM system/360 Model 20 DPS PLII 



the file. The distinGtion between updating 
and adding is made by use of the KEY condi
tion. The KEY condition is raised when 
searching for a record with a READ state
ment is unsuccessful. In this case, adding 
instead of u~dating is performed. 

control branches automatically to the 
statement label NEW RECORD where the 
new records are added to the INDEXED 
file. 

The attribute DIRECT implies the attri
bute KEYED. 

4 The updated record is written back into 
its previous location on the INDEXED 
file. 

3 The key (INKEY) I which is used to 
determine whether a record is to be 
updated or added, is provided by the 
card file INPUT whose records are read 
into the structure DATA. 

In the third example, shown in Figure 
54, sequential regions of an INDEXED file 
(SAMPLE) are punched into cards with an 
output file (~UNCH). The limits of the 
regions to be punched are defined by upper 
keys and lower keys read from a third file 
(CONTRL). The block length of the INDEXED 
file is 525 bytes occupying two disk sec
tors, so that 15 bytes of the second sector 
are left unused. The output file (PUNCH) 
uses the ASA control character W, which 
causes the cards from the secondary hopper 
of the MFCM to be fed into stacker 4. All 
cards receive running numbers in columns 76 
to 80. 

2 Since both the card record and the old 
record from the INDEXED file are needed 
for updating, an extra structure, 
FDATA, is used for holding the records 
of the INDEXED file. 

5 If a record with a key specified in 
INKEY is not yet on the INDEXED file, 

r---r-----------------------------------------------------------------------------------1 

2 
3 
4 

INDXPC: 

::LOOP: 

EOJ: 

PROCEDURE OPTIONS (MAIN) ; 
DCL SAMPLE FILE RECORD INPUr KEYED SEQUENTIAL 

ENV(MEDIUM(SYS006~2311) INDEXED KEYLENGTH (12) 
KEYLOC (1) EXTENTNUMBER (3) F (525,75) ) ; 

DCL CONTRL FILE RECORD INPUT ENV(MEDIUM (SYSIPT,2560P) 
F (24) BUFFERS (1) ) ; 

DCL PUNCH FILE RECORD OUTPUT ENV(MEDIUM(SYSOPT,2560S) 
F (81) CTLASA); 

DCL 1 INDEX REC, 
2 KEY-CHAR(12), 
2 OTHER CHAR (63]1, 
OUTREC, 
2 CTL_CHAR CHAR(1) INlr (' W') , 
2 RECORD, 

3 KEY CHAR(12) , 
3 OTHER CHAR(63), 

2 NUMBER PIC' (5)9', 
CTL REC, 
2 (LOWER, UP~ER) CHAR (12) , 

NO FIXED DECIMAL (5,0) INIT (1) ; 
/* FILE ACTIVATION *1 
OPEN FILE (SAMPLE), FILE (CONTRL), FILE (PUNCH); 
ON ENDFILE (CONTRL) GO TO EOJ; 
/* CONTROL-FILE LOOP *1 
READ FILE (CONTRL) INTO (CTL_REC); 
READ FILE (SAMPLE) INTO (INDEX_REC) KEY (LOWER) 
GO TO E_2; 
/* SAMPLE-FILE LOOP *1 
READ FILE (SAMPLE) INTO (INDEX_REC); 
IF INDEX_REC.KEY > UPPER THEN GO TO CLOOP; 
RECORD = INDEX_REC; 
NUMBER = NO; 
W~ITE FILE (PUNCH) FROM (OUTREe); 
NO = NO + 1; 
GO TO SLOOP; 
END; ___ L ___________________________________________________________________________________ J 

Figure 54. Example Illustrating (a) sequential Retrieval of Records within Specified 
Limits From an INDEXED File and (b) Stacker Selection 

Input/Output 179 



The READ statement for the first record 
of each sequential region to be punched 
requires the KEY option to fosition the 
file to the specified lower limit. 

2 Further READ statements to transmit 
records of the same sequential region 
do not resruire the KEY option. The 
next sequential record is read 
a.utomatically. 

3 The IF statement tests whether the 
upper limit of the region to be punched 
has been exceeded. If it has, a branch 
to CLOOP is taken, where the next con
trol key from the file CNTRL is read. 

4 This is a structure assignment. Note 
that both structures have the same 
structuring and description, but no 
identical level numbers. Level numbers 
need not be identical. 

Records in INDEXED files are arranged on 
the basis of keys that are associated with 
each record. INDEXED files may be trans
mitted only in record-oriented mode. rhey 
must be created as INDEXED SEQUENTIAL 
OUTPUT files. Once they have been created, 
they can be accessed only as INPUT or 
UPDATE files, for either sequential or 
direct retrieval. 

To retrieve the entire file sequential
ly, you may read it just like a CONSECUTIVE 
file, without s~ecifying a key. To read 
only a given portion of the file, you must 
specify the key of the lowest record of 
that portion and then test whether the key 
of the highest record of that portion has 
been reached. The records between the low
est and the highest record can be retrieved 
without specifying source keys in the READ 
statements. 

To retrieve records from an INDEXED file 
in random order, you must specify a source 
key with every READ statement to identify 
the record to be retrieved from the file. 
And, in the file declaration, you must sfe
cify the attribute DIRECT, together with 
the option INDEXED. 

For an INDEXED file that is to be retri
eved sequentially, you must specify the 
attributes SEQUENTIAL and KEYED, toyether 
with the option INDEXED in your file 
declaration. 

The ENVIRONMENT Attribute and Its Options 

The ENVIRONMENT attribute is an 
implementation-defined attribute that spe-

180 IBM System/360 Model 20 DPS PL/I 

cifies va~ious file characteristics that 
are not part of the PL/I language. 

The options list for the Model 20 PL/I 
compiler is as follows: 

[
CONSECUTIVE] 
INDEXED 

{ 

F (blocksiz e[ , recordsize ])} 
V (max blocksiz e) 
U (maxblocksize) 

[ BUFFERS ({ 11 2}) ] 
MEDIUM (symbolic-device-address, 

device-type) 
[ CTLASA] 
[LEAVE] 
[ NOTAPEMK] 
[NOLABEL] 
[ALTTAPE] 
[VERIFY] 
[ NOWRITE] 
[KEYLENGTH 

(decimal-integer-constant) ] 
[ EXTENTNUMBER 

(decimal-integer-constant) ] 
[ OFLTRACKS 

(de cim al- in teger- consta nt) ] 
[KEYLOC (decimal-integer-constant) ] 

General Rules: 

1. Each file declaration must have an 
associated ENVIRONMENT attribute. 

2. The options must be enclosed in paren
theses and se}arated by one or more 
blanks. 

3. The MEDIU~ option and one of the record 
forma t options (F, V, and U) must 
always be specified. The others are 
optional. Their use defends upon the 
associated files that are to be 
processed. 

The individual options are discussed in 
the sequence in which they are listed 
above. 

rhe option CONSECUTIVE indicates that the 
logical records of the associated file are 
arranged on the basis of their successive 
physical 10sitions, such as they appear on 
tape. 

1. A CONSECUTIVE file must either have the 
SEQUENTIAL attribute or be a STREAM 
file. 

2. If neither the CONSECUTIVE nor the 
INDEXED option is specified in the 
ENVIRONMENT attribute, CONSECUTIVE is 
assumed by default. 



3. Once a CONSECUTIVE file has been 
created, it may be opened only as an 
INPUT oe UPDATE file. Such a file may 
be read either forward or backwaeds if 
it is on magnetic ta~e. In order to be 
read backwards, it must have the 
BACKWARDS attribute, and the LE~VE 
option specified in the ENVIRONMENr 
atteibute. 

4. All three kinds of record formats -- F, 
V, and U -- are allowed for CONSEcurIVE 
files. The last two formats, V, and U, 
may be used only for RECORD IIO and 
only with magnetic ta~e. As an exceF
tion to this rule, printer-keyboard 
files must always consist of format-U 
records. Format-V records, however, 
cannot be read backwards. 

5. IIO devices permitted for CONSECUTIVE 
files include magnetic tape units, card 
readers and punches, disk-storage 
drives, printer-keyboards printers. 

!h~_I!~~K~~_QLtiQll 

The INDEXED option specifies that the 
records of the associated file has or will 
have its records arranged in logical 
sequence, according the keys associated 
with every recoed. 

1. An INDEXED file may be created only as 
an INDEXED SEQUENTIAL OUTPUT file. 
Once it has been created, it may be 
peocessed as an INDEXED SEQUENTIAL 
OUTPUT file only if it is to be 
extended, in which case the keys of the 
extended part must be higher in the 
collating sequence than the keys of the 
already existing part. Although you 
can extend an INDEXED SEQUENTIAL file 
at its end, you cannot insert new, 
additional records into it. 

INDEXED DIRECT files may be opened only 
for INPUT oe UPDATE activity. You can
not extend an INDEXED DIRECT file at 
its end, but you can replace old 
recoeds and insert new, additional 
ones. 

2. Only record-oriented retrieval is per
mitted with INDEXED files. 

3. The key associated with each logical 
record must always be a character 
strin~ of not more than 60 characters. 
The length of the recorded key must be 
s~ecified in the ENVIRONMENT option 
KEYLENGTH(n). The high-order position 
of the key -- which is always embedded 
in the actual data part of the logical 
record -- is s[ecified in the 
ENVIRONMENT option KEYLOC(n). 

4. Only format-F records (blocked or 
Qnblocked) may be used with INDEXED 
file organization. 

5. LOCATE and READ with the SET option ace 
not allowed for INDEXED files. 

rhe options F, V, and U are used to 
describe ~hysical records. F s~ecifies 
fixed-length records, V specifies variable
length records, and U specifies records of 
Qndefined length. 

Records may be blocked or unblocked. 
Block size and record size are specified in 
number of bytes, as unsigned decimal integ
er constants. 

Format-F records: 

1. If the record size of format-F records 
is not specified in the ENVIRONMENT 
attribute, the eecords are assumed to 
be unblocked. In case of blocked 
records, record and block size must be 
s}ecified. The record size can be spe
cified for format-F records only. 
Blocking and deblocking is handled 
aQtomatically. It is dependent upon 
the stated record size. The quotient 
of block size divided by record size 
must be an integer. Fixed-length 
blocked records are constructed if, on 
output, both block size and record size 
are s~ecified. The blocking factor is 
the block size divided by the record 
size. 

2. For INDEXED files, only format-F 
records (blocked or unblocked) are 
allowed. The maximum block size foe 
INDEXED files is 16200, the maximum 
record size 4090 bytes. 

3. For STREAM files, only fixed-length, 
Qnblocked records are allowed, with the 
exce}tion of ~rinter-keyboard files 
which re1uire format-U records. 

Format-V records: 

1. Blocking and deblocking of format-V 
records is dependent on the information 
at the beginning of each block and at 
the beginning of each logical record. 
Four bytes are used at the beginning of 
each block to specify block size, and 
another four bytes at the beginning of 
each logical record to specify the size 
of that logical record. ~lthough the 
block and record sizes are inserted 
aQtomatically in these four bytes when 
the file is created, you must include 
the number of these bytes when you spe-

Input/Output 181 



cify the length of the block in the 
ENVIRONMENT attribute. When format-V 
files are created, records are always 
blocked if their sizes allow two or 
more records to be placed into a block 
smaller than or egual to the maximum 
that is s~ecified. 

2. Format-V reco~ds cannot be ~ead 
backwards. 

Format-U records: 

1. With format-U records, each block con
sists of only one record. The blocks 
(~ecords) are of varying lengths. No 
system-control bytes appear anywhere 
within the block. All processing of 
records is your responsibility. If y~u 
include a length specification in the 
record, you must insert it yourself, 
and you must also retrieve this infor
mation yourself. 

2. The two formats V and U may be used 
only with record-oriented magnetic tape 
I/O, printer-keyboard files must con
sist of format-U records. 

3. The minimum and maximum physical record 
sizes (or block sizes) that are allowed 
with the various I/O devices are shown 
in Figure 55. 

r-----------------T-----------------------l 
J ,Block Size in Bytes , 
, Device t----------r------------~ 
, , Mi n ,Max I 
~-----------------+----------+------------i 
, Card I 1 I 80 I 
I Printer j 1 I 1 line I 
I Typewriter , 2 I 511 I 
I MagnetiC Tape I 18* J 4095 I 
I 2311 DASD (for I 1 I 26730 I 
I CONSECUTIVE I I I 
I files) I I I 
12311 DASD (for I I 16200 I 
I INDEXED files) I I I 
J------------------.L----------.L------------~ 
I *The minimum record size must also be I 
I 18. I .. ----.------------.-----------------------~ 
I Add 1 to the above values if an ASA con-I 
I trol character is used. I L __________________________________________ J 

Figure 55. Block Sizes Permitted De~end
ing Upon the liD Devices Used 

4. When reading files with format V ~r U 
~ecords, you normally decide from 
some control field in the record you 
must have inserted yourself, which 
type of record you are processing. 
In this case, you should use the READ 
statement with the SET option to 
avoid raising of the RECORD 
condition. 

182 IBM System/360 Model 20 DPS PL/I 

The BUFFERS{n) option is used to sfe~ify 
that buffer storage area is used for dat~ 
transmission. If you specify BUFFERS(2), 
input/output activity can run concurrent
ly with internal processing. 

3eneral Rules: 

1. The number n must eithe~ be 1 or 2. 

2. If the BUFFERS(n) option is not s~e
cified, the number of buffers is 
assumed to be 2, except for INDEXED 
DIRECT files. 

3. BUFFERS(n) may be used with both 
STREA~ and REC)RD files. 

!hg_tl~QIQ~_QEiiQn 

The MEDIUM option in the ENVIRONMENT 
attribute -- and, if necessary, the ASS3N 
statement of the Model 20 Job Control -
are used to associate a file on an 
external storage medium with a program. 
rhe format is: 

~EDIUM (symbolic-device-address, 
device-tYt e ) 

The symbolic-device-address entry 
~elates a device to a particular file. 
rhe device-type entry defines the type of 
I/O device on which the file is located. 

General Rules: 

1. The symbolic device aBdress is speci-
fied as SYSnnn, where nnn can be IPT 
(system input device), LST (system 
outfut device), used for listing), 
PCH or OPT (system out~ut device used 
for punching or writing on tape), or 
000 through 019 (as selected by the 
t-'rogrammer). 

2. QR! should not be used fo~ Model 20 
PL/I programs that are expected to 
run under DJS/T)S as well. 

3. The device-ty~e entry is a four or 
five-character code identifying the 
type of I/O device to be used. For 
exam~le, for the IBM 2415 Magnetic 
rape Unit, the code is 2400, for the 
IBM 2311 Disk Unit, the code is 2311. 
Figure 56 shows how the individual 
device ty~es are specified. 



r------------r--------------r-----'--------l 
I I IDevice-Type I 
ITYfe IDevice ISpecification) 
~------------t--------------+-------------i 
I Card I IBM 1 4 42 I 1 4 4 2 I 
IReadecs IIBM 2520 J 2520 I 
land Punches JIBM 2560 1 I 2560P I 
I IIBM 2560 2 I 25605 J 

I I IBM 2501 I 2501 I 
~------------+--------------+-------------~ 
IPcinters IIBM 1403 I 1403 I 
I IIBM 2203 I 2203 I 
~------------+--------------+-------------~ 
IMagnetic IIBM 2415 I J 
I I (9-tra=k) I 2400 I 
ITape Units IIBM 2415 I I 
I I (7-track) I 2400 I 
~------------+--------------+-------------i 
IDisk stocagelIBM 2311 I 2.311 I 
f------------t-------------+-----·--------1 
IPrinter- IIBM 2152 I 2152 I 
IKeyboard I I I 
f-------------L-------------~-------------1 
I 1 Primary feed I 
J 2 Secondary feed I L ___________ - _____________________________ J 

Figuce 56. Device Types and Correspond
ing specifications 

4. The device types listed in Figure 56 
may be assigned to the logical unit 
names SYSIPT~ SYSLST, SYSPCH, SYSOPT, 
or SYSOOO - SYS019 , as shown in 
Figure 57,. 

r--------------------r---------------------l 
I Symbolic Device I Device Type I 
) Address I S pecifica tion I 
f------------·--------f---------------------1 
I SYSIPT I 2501 I 
I I 2520 I 
I I 2560P I 
I I 2560S I 
I I 2400 I 
J I 2152 I 
j---------------------f--------------·-------i 
I SYSLST I 1403 I 
I I 2203 I 
I I 2152 ) 
~--------------------f--------------,-------i 
I SYSOPT, I 1442 I 
I SYSPCH I 2520 I 
I ,2560P I 
I ,2560S I 
I I 2LJOO I 
f--------------------f---------------------i 
I SYSOOO through , 2311 and 2400 I 
) sys019 I and any of the I 
I I above devices I L ____________________ ~ ____________________ J 

Figure 57. Device Type Specifications 
that may be Associated with 
Symbolic Device Addresses 

5. The system automatically associates 
the symbolic device address with the 

devi=e tYte specified in the MEDIUM 
option of the ENVIRONMENT attribute. 
~nly if standard assignments are 
used, no additional ASSGN job-control 
statements are needed. 

For magnetic tape and disk storage, 
you may have to change the permanent 
device assignments of the system. 
This means that, in addition to spe
cifying the symbolic device address 
and the device type in the MEDIUM 
option, you may have to furnish ASS3N 
statements. These ASSGN job-control 
statements must contain the actual 
device address and device type fol
lowing the SYSnnn. The device speci
fication in the MEDIUM option must 
correspond with the device specifica
tion in the ASSGN statement. (For a 
complete discussion of the ASS3N job
control statement, refer to the sec
tion ~QQ_£Qni~Q1.) 

6. All files in Model 20 PL/I must be 
ex}licitly declared with the MEDIUM 
option in the E~VIR~NMENT attribute. 
ASSGN statements are re1uired only if 
you want to change the previous 
device assignments for tape and disk 
files. 

7. with card, printer, and magnetic 
tare, only one file must be open at 
the same time for the same device. 
An ex=eption is the 2560 multi
function card machine. with the 
2560, one file may be open at the 
same time for each hopper. Disk 
files that are open at the same time 
must not have overlapping extents. 

with the 2152 printer-keyboard, one 
infut and one output file may be open 
at the same time. For synchronisa
tion of these files, see Use of the 
~~!g!~~=K~YQQ~£~ in the sectIon-~£g= 
~!~!_gfQ~f~mm!nl_£Q~2!~g£~i!Qrr2. 

rh~ CTLASA option may be used for card 
and printer RECORD OUTPUT files. It 
indicates that the first chacacter of a 
cecord is to be interpreted as an ASA 
control character for printer-carriage 
control and for punched-card stacker 
selection. 

Seneral Rules: 

1. It i$ your resfonsibility to provide 
the correct control character. For 
an example of its use, refer to 
~~~~!!gg_l!!g2_Qf_fQ~~~~[~III_Q£gArri= 
~~!!Qn in this section.

Input/Output 183

2. The character coies you can use with
CTLASA are listed in Fi~ure 58.

r-------T---------------------------------l
I ~~~g l!rrtg£~£gi~i!Qrr I
~-------+---------------------------------~
I (blank)
I 0
I

+
1
2
3
4
5
6
7
8
9
A

B

C

v
W

Space one line before ~rinting I
Space two lines before printing I
Space three lines before printingl
Suppress space before ~rinting I
Skip to channel 1 before printingl
Skip to channel 2 before printing I
Skip to channel 3 before printing I
Skip to channel 4 before printingl
Skip to channelS before printing1
Skir to channel 6 before printingl
Skip to channel 7 before printing I
Skip to channel 8 before printingl
Skip to channel 9 before printingl
Skip to channel 10 before I
printing I
Skip to channel 11 before 1
printing I
Skip to channel 12 before I
printing I
Select stacker 1 (5 if 2560S) I
Select stacker 2 (4 if 25605) I

L _______ 1-__________________________________ J

Figure 58. Character Coies that can be
used with Printer Carriage Con
trol for Record Output Files

!h~_1~~Y~~QE1!Qn

The LEAVE option is used for file position
ing. It is used to specify, that no rewind
o~eration is to be performed when a tape
file is opened or closed.

General Rules:

1. LE~ VE can only be usei wi th tape 1/0
files, either RECORD or STREAM.

2. LEAVE should be s~ecified for files
that have the BACKWARDS attribute to
ensure proper positioning of the file.

!h~-NQr~R~~~_Q£tiQn

The NOTAPEMK option for tape files enables
you to prevent a leading tape mark frow
being written ahead of the data records in
unlabeled tape files.

General Rules:

1. NOTAPEMK may be used for tape OUTPUT
files with NOLABEL specified.

2. NOTAPEMK may be used with STREAM and
HECORD files.

The NOLABEL option is used to indicate that
no label processing is to be done for the
associated file.

184 IBM System/360 Model 20 DPS PL/I

3eneral Rules:

1. If ~he NOLABEL option is specified for
output files, a tapemark is automatic
ally written as the first record on the
tape unless, in addition to NOLABEL,
NOTAPEMK is s~ecified in the
ENVIRONMENT attribute. Labels are not
processed.

2. If your program is to run as an inquiry
program the NOLABEL option must be spe
cified for all tape files.

The ALTTAPE option is used to indicate that
an alternate tape drive can be assigned to
enable automatic switching from one tape
drive to another.

1. The ALTTAPE option is used for multi
volume tape files.

2. The alternate tape drive is always
assigned a symbolic device address that
is one higher than the symbolic device
address specified in the MEDIUM option.
For example, if the symbolic device
address specified in the MEDIOM option
is SYS004, the symbolic device address
for the alternate tape drive is SYS005.

The VERIFY option causes a check to be per
formed after every WRITE operation.

1. The VERIFY option is allowed only for
files that are associated with a 2311
disk-storage device.

2. It is recommended to use VERIFY if the
disk file is to be retained for re-use
at a later date.

rh§_~QffR!~~_QEt!Qg

The NOWRITE option is used to specify that
no new records will be added to the file by
the associated program. This results in
loading a smaller library routine, thus
saving main storage space.

General Rule:

This option may only be used with DIRECT
UPDATE file s.

rhe KEYLENGrH(n) option is used to specify
the length of the recorded key for IIO
operations.

General Rules:

1. This option may be used only for
INDEXED files.

2. The length of the recorded key, speci
fied by n, must not exceed 60
characters.

3. n must be an unsigned decimal integer
constant.

The EXTENTNUMBER (n) option is used to spe
cify the number of extents used for INDEXED
files.

General Rules:

1. EXTENTNUMBER (n) must be specified for
INDEXED files. It is not permitted
with 20NS~CUTIVE files.

2. The minimum number that may be speci
fied is two: one extent for the prime
data area, and one for the cylinder
index.

3. The number D must be a decimal integer
constant.

4. EXrENTNUMBER Cn) must include all prime
data area extents, the cylinder index
extent, and the independent-overflow
area extent, if any.

The OFLTRACKS (n) option is used to specify
the number of tracks to be reserved on each
cylinder for the addition of new records.

General Rules:

1. This option is s~ecified only for
INDEXED SEQUENTIAL OUTPur and INDEXED
DIRECT UPDATE files. It is meaningless
for INPUT and SEQUENTIAL UPDATE files.
If specified for these files, the
option is ignored.

2. The number n -- which must be a decimal
integer con~tant -- must be from 0 to
8.

The KEYLOC(n) option is used to specify the
high-order position of the key field within
the data ~art of each logical record in
INDEXED files. For example, if the key

field is to start in the second byte of the
record, KEYLC>C(2) has to be specified.

General Rules:

1. The KEYLOC Cn) oftion is used wi th
INDEXED files only. It must be
specified.

2. The number n must be a decimal integer
constan t.

3. At least three bytes in the logical
record must follow the last byte of the
key.

Pile Labels

A reel of tape may be, whereas a disk pack
must be identified to determine whether it
contains the file to be processed. Besides
a sticker on the pack or reel that identi
fies a volume to the operator there are
also internal labels. The internal label
is written, like other data, on the tape or
on the disk and provides programmed identi
fication of the files contained in the
volume.

Internal labels are also used to protect
files on a volume from being destroyed,
For example, labels are checked to deter
mine whether the correct volume has been
mounted. Another use of labels is to spe
cify the location of the data files.
Labels also contain other information con
cerning files, such as expiration dates.
They are processed whenever an OPEN or
CLOSE statement is executed for a particu
lar file.

There are two types of internal labels:
volume labels and file labels.

YQlgillg_l~Q~l§ are used to identify the
volume (tape reel or disk pack). They are
written by IBM-supplied Utility programs
when a tape reel or a disk pack is prepared
for use. They are automatically checked
each time a file is opened.

~i1g_1sQg1§ are used to identify a file
on a volume and to specify how long a file
is to be retained on the volume. When an
OPEN statement is encountered for a file,
the information contained in the file
labels is comfared against the information
supplied by the job-control statements. If
a mismatch is found, a message is displayed
to the operator and execution of the fro
gram may be discontinued.

In our discussion, we will be concerned
mainly with file labels. Volume labels are
of minor interest to the programmer.

Input/outlut 185

Punched card, printer-keyboard, and print
files cannot be labeled.

Tape files may be labeled or unlabeled.

In the case of unlabeled tape files, neith
er the volume nor the file is associated
with an identification. The operator ~ust
make sure that the correct volume is
mounted by checking external labels. When
working with multi-file volumes, the opera
tor must also correctly position the volume
at the beginning of the file in question
(II FILES card).

The first record 'on a tape containing
unlabeled files mayor may not be a tape
mark; however, every unlabeled tape file is
iQllQ!!~ by a tapemark~ The last file on a
volume is always followed by two tapemarks.

If the first recora on a tape containing
unlabeled files is not a tapemark, the
record is assumed to be a data record.

If no labels are specified for an output
tape fi1e~ no label checking is performed,
and any labels on the output tape are
destroyed. A tapemark is automatically
written on the output file unless, in addi
tion to the option NOLABEL, the option
NOTAPEMK has been s~ecified in the
ENVIRONMENT attribute Qf the associated
file declaration.

1~£gl!g_X~E!_I11!§

There are two types of labels: h!sg!I
labels and trailer labels. The header
r;~;r-prece~;;-;;~~-1II;-and defines it.
The trailer label is written at the end of
the file. It furnishes the information
re1uired to determine whether the end of
the file has been reached or whether the
file is continued on another volume.

Label information for tape files is fur
nished to the Job Control program in two
consecutive control cards: The VOL and the
TPLAB card.

The VOL card is simply a header card for
the TPLAB card. It contains the file name
and the symbolic device address and serves
a diagnostic function. It is used to check
whether the device assigned to the symbolic
address in the TPtAB card is really a tape
drive. The TPLAB cara contains the file
identification, file sequence number, and
all other information used by the Open rou
tine to position and identify the file.

186 IBM System/360 Moae1 20 DPS PL/I

Only one VOL and one TPLAB statement are
needed for each logical file, regardless of
the number of reels on which the file is
recorded.

Disk files mY§1 be labeled, that is, the
volume and the actual file must both be
identified. However, these labels do not
precede or follow the individual file on
the disk. The file labels are contained in
a special region referred to as VTOC
{Volume Table of contents} •

Disk labels are also automatically writ
ten, checked, and updated by IBM-supplied
programs. The correct mounting of the
packs is checked by means of the volume
serial number. The positioning at the
beginning of the actual data on the volume
is done by means of the file identifica
tion. In your program, you need only spe
cify the filename and the symbolic device
address. switching from volume to volume
for multi-volume files is automatic without
any programming effort.

All information necessary to locate the
data on the disk pack is specified in the
job-control statements. A set of three
related, consecutive control statements is
used: the VOL, DLAB, and XTENT statements.
The VOL and DLAB statements have the same
function for disk files as the correspond
ing control statements have for labeled
tape files. The XTENT statements contain
the symbolic device address to locate the
drive, the volume serial number to deter
mine whether the correct pack is mounted,
and the extent limits.

The label-control statements for tape and
disk must precede the II EXEC statement in
the following sequence:

for tape files:

II VOL
II TPLAB

for disk files:

II VOL
II DLAB
II XTENT
II XTENT

[II XTENT]

YQ1_~2n1I2!_§1~1~m~n1

A VOL (volume) control statement is
required for each labeled tape and disk
file used in your problem progra~s. It
indicates the symbolic address of the
device to which the volume is assig:ned and
identifies the file by name. A VOL control
statement must be followed by a TPLAB con
trol statement if the .olume is a reel of
magnetic tape, or by a DLAB control state
ment and one or more XTENT control state
ments if the volume is a disk pack T The
format of the VOL control statement is:

r----r---------r--------------------------~
INameIOperationIOperand(s) COIDments I
~----+---------+--------------------------1
III IVOL Isymboli~-device-address, I
I I I filename I
L ____ ~---------~--_-----------------------j

§Ym~Qli£=~~!i9g=!~~£g§§
The symbolic address identifies the
device on which the associated file is
to be read or written. (A complete list
of symbolic device addresses is given in
the discussion of the ASSGN control
sta tement) •

filename
---¥~;-~ame of the file to be processed.

!2ig: If the symbolic device address
refers to a tape drive, a TPLAB control
statement is expected as the next control
statement. If it refers to a disk drive, a
DLAB statement is expected to follow.

I~~~~_~~~t£Ql_~iai~m~gi

The TPLAB (tape label) ~ontrol statement
contains a portion of the tafe heaaer label
for the file named on the VOL control sta
tement that precedes the TPLAB control sta
tement. The contents of the tape file
label are shown in Figure 59. The informa
tion in the TPLAB control statement is used
to check input-file tape labels or write
output-file tape labels. The format of the
TPLAB control statement is:

r----T---------T--------------------------l
INameIOperationIOperand(s} Comments I
~----t---------t--------------------------~
III ITPLAB I 'label-information' J L ____ ~ _________ ~ __________________________ J

'label-information'
---The-InformatIo~-in fields 3 through 10

of the standard IBM tape label (see
Figure 59) for the associa ted file. The
label information must be enclosed in
apostrophes. The following information
is required:

r-----T------------------------T----------,
I I) I
lFieldlContents I No. of I
I I I:haractersl
I I I I
~-----+------------------------t----------~

I
3 IFile identification 17

I
4 IFile serial number 6

I
5 IVolume sequence number 4

I
6 IFile sequence number 4

I
7 JGeneration number 4

I (if used)
I

8 I Version number (if used) 2
I I

9 ICreation date (yyddd I 6
I preceded by one blank) I
I I

10 I Expiration date (yyddd I 6
J freceded by one blank) I L _____ ~ ________________________ L _________ _

Figure 59. Label Information for Tape
Files

The file-label fields required in the
operand field of a TPLAB control statement
must be contiguous and not separated by
commas. The operand requires 51 columns
(two apostrophes with 49 columns of infor
mation between them) •

The standard IBM tape-file label format
and contents are as shown in Figure 60.

Input/Output 187

r-----T----------------------T---1
IFieldlName and Length IDescription I
r-----t---------------------t---1
I 3 l~ilg_iggniitif~1iQn luniquely identifies the entire file; may contain only
I 117 bytes# EBCDIC Iprintable characters.
I I I
I 4 If!1g_§g£!~~_n~mQ~£ luniquely identifies a file/volume relationship.
I 16 bytes, EBCDIC IThis field is identical to the Volume Serial Number in the
I I Ivolume label of the first or only volume of a multi-volume
I I Ifile or a multi-file set. This field will normally be num-
I I leric (000001 to 999999) but may contain any six alphameric
I I Icharacters.
I I 1
I 5 I!Q1gIDg_§~gY~ll~g indicates the order of a volume in a given file or

Inumber multi-file set. The first must be numbered 0001
/4-bytes, EBCDIC and subsequent numbers must be in proper numeric sequence.
I

6 If!1g_§ggggn~g_llgmQg~
/4 bytes" EBCDIC

assigns numeric sequence to a file within a multi-file set.
The first wust be numbered 0001.

I
7 /9gllg~~!!Qll_llgIDQg~

/4 bytes" EBCDIC
uniquely identifies the various editions of the file.
May be frow 0001 to 9999 in proper numeric sequence.

indicates the version of a generation of a file. version number of
g~ng~~112n-------

8

2 bytes, EBCDIC

9 g£g~i!Qll_g!!!g
6 bytes, EBCDIC

inaicates the year and the day of the year the
file was created;

~Q§ii!.~!l
1

2-3
4-6

~~g~
blank
00-99
001-366

tlga!l!.!l9
none
year
day of year

(e.g., January 31, 1970 would be entered as 70031).

10 ~~Ei£~!iQn_g~!g
6 bytes, EBCDIC

indicates the year and the day of the year when the file
way become a scratch tape. The format of this field is
identical to that of Field 9. ~n a multi-file reel, pro-
cessed seluentially, all files are considered to expire on
the same day. L _____ L ______________________ L ___ J

Figure 60. Label Information for Tape Files

The DLAB (disk label) control statement
contains the disk-label information for the
file named in the VOL control statement
that precedes the DLAB control statement.
The information in the DLAB control state
ment is used to check input-file disk
labels or write output-file iisk labels.
The format of the DLAB control statement
is:

r----r---------r---------------------------1
IName/OperationIOperand(s) Comments I
~----+---------+--------------------------~
II/ IDLAB I label-information / L ____ ~ _________ ~ __________________________ J

label-information
---i~~~ii~tI~~-~~ntained in the disk label

for the associated file. Fields 1-3 of

188 IBM System/360 Model 20 DPS PL/I

the disk file label (a 51-character
string) are punched into the DLAB state
ment as they appear in the label. The
contents of the file label are shown in
Figure uc. The character string must be
enclosed in apostrophes and followed by
a comma. If the label information is to
be cataloged permanently, the comma must
be followed by the code P followea by ~
blank (See g~£m~!lg!li_~!lg_rgIDEQ£~£y_Qi~~
1aQg!§ in this section). The remainder
of the required label information,
beginning with the volume sequence num
ber, is lunched into a continuation
card. Therefore, column 72 of the DLAB
control statement must contain a con
tinuation punch (any EBCDI: character
exce}t blank). The information in the
continuation card must begin in column
16. Columns 1-15 must be left blank.
The fields in the continuation card are

r-----T------------------------r---,
IFieldlName and Length IDescription I
t-----~------------------------~--~

1 !gggii1i9sii2n Ithis field serves as identifier of the file. Each I

2

3

3a

4

5

6

7

44 bytes l EBCDIC Ifile must have a unique filename. Duplication of I
I filenames will cause retrieval errors. The Model 20 I
IDisk progcamming System compares the entice filename I
Ifield against the filename given in the DL~B card. I
I I
I 1 J
I I
I I
luniquely identifies a file/volume relationship. I
lIt is identical to the volume serial number of the firstl
lor only volume of a file. I
I)

£Q~g_iQf_E§fm!n§gi_l~hgllspecifies that the label is to be cataloged permanently I
2 bytes, EBCDIC I (optional) • I

creation date S-bytes------

g!Eif~!i2n_~~!§
5 bytes

I I
lindicates the order of a volume relative to the I
Ifirst volume on which the data file resides. I
I I
I
lindicates the year and the day of the year the file
Iwas created. It is of the form yyddd, where IY signi
I fies the year (0-99) and ddd the day of the year
1(1-366) •
I
lindicates the year and the day of the year the file
Imay be deleted. The form of this field is identical to
Ithat of Field 5.
I
luniquely identifies the programming system. The
Icharacter codes that can be used in this field are
Ilimited to 0-9, A-Z, or blanks. _____ L ________________________ 4 __ J

Figure 61. Label Information for Disk Files

separated' by commas. The last field
(system code, 13 characters) is option
al, and if used, must be enclosed in
apostiophes. The following fields are
used:

r-----T------------------------r----------,
J I I No. of I
IFieldlContents IChacactecsl
~-----+------------------------+----------~
I 1 IFile Identification I 44 I
I 2 I Format (always I 1 I
I I coded as 1) I I
I 3 IFile serial number I 6 I
I 3a ICode for permanent labell 2 I
I I (optional) I I
I 4 IVolume sequence number I 4 I
I 5 ICreation Date (yyddd) I 5 I
I 6 I Expiration date (yyddd) I 5 I
I 7 ISystem code (optional) I 13 I L _____ L ________________________ L __________ J

The standard IBM d~sk-file label (see
Figure 61) is common to all data files on
disk:

In addition to the VOL and DLAB control
statements, the user must provide at least
one XTENT control stafement for SEQUENTIAL
files and at least two XTENT control state
ments (prime data area plus cylinder index)
for an INDEXED file. The format of the
xrENT control statement is:

r----r---------r--------------------------,
INameIOperationIOperand(s) Comments I
~----+---------+--------------------------~
1// I XTEN T I type, sequence, lower-limi t, I
I I lupper-limit, I
I I I'volume-serial-number', I
I I Isymbolic-device-address 1 L ____ L _________ L __________________________ J

iYE§
A code indicating the purpose of the
extent:

1 for prime data area
2 for independent overflow area
4 for cylinder index area

Input/Output 189

!Q1g_1: At least one type-1 XTENT state
ment must be among the file definition
statements.

[Qig_f: Only one XTENT statement is
allowed for types 2 and 4. If type 2 is
used, it ~ust be the last XTENT statement
for that file.

Note 3: If an indepen1ent overflow extent
exists, a cylinder-index extent must also
be specified.

!Q1g_~: If a cylinder-index extent is spe
cified, the ~rime-data extents must be on
cylinder boundaries (i.e., lower limit
track 0, upper limit track 9). The index
extent itself may not occupy more than ten
tracks.

§ggggn~g

The three-digit extent sequence nu~ber
(ESN), indicating the position of the
extent within a multi-extent file. The
ESN may be any of the numbers 000-255.
The extent sequence numbers must be sFe
cified in ascending orier, but not
necessarily consecutive.

lower-limit
---rhe-address of the beginning (lowest

disk address) of the area. The address
is given in the form cccchhh, where cccc
is the four-digit =ylinder nunber (0000-
0202) and hhh the three-digit head num
ber (000-009). The lower-limit address
must not be cylinder 0, track 1. It
should at least be cylinder 4, track O.

g££g£=li~it
rhe address (form cccchhh) of the end
(highest disk address) of the area.

Netg: A file must not occuiY the volume
label area (cylinder 0, track 1) or the
alternate track area (cylinders 1-3).

'volume-serial-number'
---An-EBCDic-character string (6 charac

teLs) enclosed in apostrophes.

Note 1: The file serial number of the DLAB
statement and the volume-serial-number
operand of the first XTENT statement must
be identical.

!~tg_£: If several volume serial numbers
occur in a group of XTENT statements, the
statements with identical volume serial
numbers must be grouped together.

190 IBM System/360 Model 20 DPS PL/I

Note 3: A volume serial number is assigned
to-each disk pack by the Initialize Disk
utility program.

~Y~QQ!i£=~~~i£~=a~~£g§§
The symbolic address of the device on
which the volume containing the extent
is mounted.

• The symbolic-device-address operand in
the VOL and first XTENT statement must
be assigned to the same actual device
address.

• The symbolic-device-address operand in
XTENT statements with the same volume
serial number must be assigned to the
same actual device address.

• The volume-serial-number operand of the
xrENT statement is used for controlling
multi-volume processing. For INDEXED
files located on more than one disk
pack, multi-drive operation is
mandatory.

• One disk volume may contain several
files, each with its own extent. The
volume serial number in the XTENT state
ment must be the same for all these
files. The symbolic device address in
the VOL statements may be different for
these files, but the actual device
addresses in the ASSGN statement must be
the same.

• One-drive users may also use different
files with different volume serial num
bers assigned in the XTENT statements.
They must then change disk packs before
a file with a different volume serial
number is opened or processed.

• If different extents are used for one
set of VOL and DLAB statements the sym
bolic device addresses and the volume
serial numbers in the XTENT statements
must refer to the correct disk pack.

• All information for the XTENT statement
can be accommodated on one card; the
information must not be continued on a
continuation card.

For examples of label-information con
trol statements refer to Figure 62.

r---,
11 1 2 3 4 5 6 7 7 SI
I 0 0 0 0 0 0 0 2 01
~---~
/1 JOB FIRST
// ASSGN SYS001,X'708',T2
II FILES SYS001,1
// VOL SYS001,KEY
/1 TPLAB 'KEY TAPE FILE 0003S400010001000102 700S5 71085'
// EXEC

1/ JOB
/1 ASSGN

SECOND
SYS002,X'S01',D3

1/ VOL SYS002,INPUT MOLTI-VOL I SINGLE DRIVE
/1 DLAB 'INPUT DATA FILE 1SSSSSS', C

/1
1/
/1

XTENT
XTENT
XTENT

0001,70032,71033,'0000000000000'
1,001,0011003,0011006,'S5SSSS',SYS002
1,003,0201000,0202009,'TTrTrr',SYS002
1,OOS,005000S,0060006,'UUUUUU',SYS002

1/ EXEC

THIRD
SYS019,X'S02',D3

1/ JOB
1// ASSGN
1// VOL
1// DLAB

SYS002,OUTPUT MOLTI-VOL, r~o DRIVES
'OUTPUT DATA FILE 1SSSSSS',P C

1
1// xrENT
II/ XTENT
1// EXEC

0001,70032,71033,'0000000000000'
1,004,0023001,0023001,'S5SSSS',SYS002
1,099,0050008,0060006,'A12BCZ',SYS019

L ______________ . ____________________ • __ _

Figure 62. Example of Using Label Information Control statements

Multi-File Volumes

The handling of multi-file volumes requires
no special programming effort. All infor
mation re1uired for locating the correct
file is contained in the job-control
statements,.

Files on a multi-file tape reel may be
labeled or unlabeled. 1!g~1~~_t!Eg_fil~§
are identified by file header and tra~ler
labels. Ynl~gglg~_1!E~_filg~ are identi
fied by tapemarks, that is, a tapemark
separates one file from the next.

If a reel of tape contains more than one
file and BACKWARDS reading is not speci
fied, the label processing routines use the
file-sequence number to position the file
correctly. The file-sequence numbers in
the header labels are checked against the
file sequence number in the TPLAB state
ment, and the files on the tape are
bypassed until a match is found or the end
of the tape is reached. If the tape is
positioned beyond the desired file when a
search is started or if the file is not
contained on the ta~e, the operator. is
notified.

To position labeled tape files, you may
also use the FILES card. Note, however,
that th£gg tapemarks are associated with
every tape file that is labeled.

For tapes that are to be read backwards,
you must specify the attribute BACKWARDS
and the option LEAVE for the file to be
processed to prevent the normal rewinding
of the tape when the file is opened. You
must also use the FILES statement to prop
erly position the file, if it has not been
properly positioned by a previously
executed program.

Figure 63 shows the format of a labeled
multi-file reel.

olu
Label

Flnt
Header
Label

ape Flnt
Mar Data

Flnt T Sec:ond
ape Trailer ,:;:: H.ader

Label Label

Figure 63. Format of Labeled Tape File
(~ulti-File Reel)

Unlabeled tape files are positioned on a
multi-file reel in accordance with the

Input/Output 191

entries of the FILES statement, which has
the following format:

r-----r---------r--------------------------,
INameIOperationtOperand{s) comments I
~----+---------+--------------------------~
111 IFILES Isymbolic-device-address, I
I I I skip I L ____ ~ _________ ~ __________________________ J

§YmQQli£~~~Yi£~~~~~£~§§
The name of the ta~e drive on which the
tape to be positioned is mounted. (A
complete list of symbolic-device
addresses is given in the discussion of
the ASSGN statements in the section ~~Q
~Q!lt£Q!)·

§~!£
The number of tapemarks to be skipped (1
- 999, counted from the load point) in
order to position the tape.

Note that a tapemark mayor may not precede
the-first file on the tape, while a tape
mark must always follow each file.

The use of the FILES statement is illus
trated by the following example.

Suppose you have a ta~e reel that contains
unlabeled files. Each file on the tape is
delimited by tapemarks as shown in Figure
64.

[E
Load
Point

Flnt Tope
File Mar~

Second Tape
File Mar~

Third Tape Fourth Tape Fifth Tape
File Mar~ File ~rk File Mar~

Figure 64. Unlabeled Files and Tape Marks

To read the first file on this tape for
wards, you need not specify a FIkES state
ment at all. To read the first file on the
tape backwards, however, you must use the
following FILES statement:

II FILES SYSnnn,2

When this statement is executed, the
first two tapemarks are skipped and the
tape is positioned immediately behind the
second tapemark. The file is then pro
cessed backwards, if you have s~ecified the
BACKWARDS attribute and the LEAVE option in
the ENVIRONMENT attribute of the associated
file declaration.

192 IBM System/360Moael 20 DPS PL/I

I

ro read the third file on the tape forward,
your FILES statement must look as follows:

II FILES SYSnnn,3

The first three tapemarks are skipped
and the tape is positioned at the beginning
of the third file.

If the first file on the tape is not
preceded by a tapemark, the FILES statement
has to read as follows:

II FILES SYSnnn,2

rhe handling of multi-file volumes on disk
storage requires no special preparation,
since all file labels are available when
the file is opened. The positioning at the
beginning of a file on a disk volume is
done automatically by means of the file
identification.

Multi-Volume Piles

Generally, the handling of mUlti-volume
files requires no special programming
effort either. All information required
for processing multi-volume files must be
contained in the job-control statements and
in the ENVIRONMENT attribute of the asso
ciated file declaration. The only excep
tion is with unlabeled multi-volume tape
input files.

Multi-volume tape files §hQ~!g always be
labeled because end-of-volume conditions
raised for unlabeled mUlti-volume tape
input files are not handled automatically.
You must handle them in your program as
described below under the heading ~Q§iliQli~
ing_Q~_Qn!~Q§!§g_!~£g_Kil~§. Note that
multi-volume tape files cannot be read
backwards.

A multi-volume labeled tape file is always
automatically positioned at the beginning
of the first reel, if correctly mounted by
the operator. The labels are checked by
the system.

To enable automatic switching between
tape units with labeled multi-volume files,
you must specify the option ALTTAPE in the
ENVIRONMENT attribute for the file to be
processed. For the alternate tape, you
must assign {by means of the ASSGN control

statement) a symbolic ~evice address that
is one higher than the one specified in the
MEDIUM option of the ENVIRONMENT attribute
for the associated file. The ALTTAPE
option saves you extra mounting ti~e when
an end-of-volume condition arises. (For an
example illustrating the use of the ALrTAPE
option, refer to Figure 62.

RQ§i~iQniEg_Qt_Qn1g~§1§g_~g£§_fi1g§

An unlabeled multi-volume tape file is
always automatically positioned at the
beginning of the first reel.

End-of-volume conditions that arise dur
ing the processing of unlabeled multi
volume tare inrg~ files, are not handled
automatically by the system. You may, h~w
ever, handle end-of-volume conditions for
these files in your program.

On input, the ENDFILE condition is
raised when the end of volume is reached.
You may now use a control field you have
inserted in your file to decide whether the
end of file or the end of volume has been
reached. When an end-of-volume has been
reached, you must close the file and reopen
it when the new reel has been mounted.

For unlabeled multi-volume tape ~g1~g~
files, you may specify the ALTTAPE option
to achieve automatic switching between
volumes. For unlabeled multi-volume tape
input files, the ALTTAPE option cannot be
used.

All information needed to position a multi
volume disk file correctly is contained in
the job-control statements. The XTENT sta
tements sup~ly the necessary information
regarding each extent occupied by a file.
switching from one volume to the next is
automatic. It requires no programmin~
effort on your part. However, with an
INDEXED file, all volumes used by the file
must be mounted when the file is opened.

For every disk file to be opened, the per
tinent label information must be available
to the system when the file is opened.

The re~uired label information may eith
er be supplied in the job-control cards
preceding the program to be executed, or it
may already be contained as a permanent
entry in the label-information area of the
system disk pack where it is checked by the
Open routine when the file is opened. Per
manent label information may be added t~

the label-information area in any Job Con
trol run.

CATALOGING LABEL INFJRMATION

To identify permanent label information,
the DLAB control statement must contain the
code P followed by a blank in the two
character field following the file serial
number. For example:

// DLAB 'OUTFILEbbb ••• 1SSSSSS',Pb •••
~/- _/

label information
(51 characters)

C

• Col.72

NQ1g: If both permanent and temporary
label information is specified with the
same Job Control run, the control state
ments Froviding the permanent information
must precede those providing temporary
label information.

When processing a disk file whose label
information is already cataloged, you can
omit the VOL, DLAB, and XTENT statements
from the job-control cards preceding the
program to be executed.

The ability to catalog label information
of disk files is of special importance for
running inquiry programs (see 1~~gi£Y_~£Q=
gfam§ in this section).

DELETING CATALOGED LABEL INFDRMATION

You can delete permanent labels from the
label information area with the following
statement:

r----r---------r--------------------------l
INameIOperationJJperand(s) I
~----+---------t--------------------------~
III IDELET l[filename1,filename2, •••] I L ____ L _________ L __________________________ J

If the operand field is blank, all per
manent labels will be deleted from the
label-information area.

If the operand field contains a file
name, the permanent label information for
that file will be deleted.

The DELET control statement enables you
to make room for new labels if the label
information area is full, or if the file to
which the label refers has expired.

The control statement may be inserted
anywhere between the JOB and the EXEC con
trol statements but (1) it must not inter
rUFt the sequence VOL, DLAB, XTENT or VOL~
TPLAB, (2) disk-label informa tion sta te
ments may not appear anywhere before a
DELET statement.

Input/Output 193

DISPLAYING PERMANENT LABELS

You may display all permanent labels by
using the following ~ontrol statement:

r----T---------T--------------------------,
INameJOpecationJOperand I
I----·-+---------t--------------------------~
III IDSPLY I I L ____ ~ _________ ~ __________________________ J

The DSPLY statement may be placed any
whece between the JOB and EXEC statements,
but it must not inerrrupt the sequence VOL,
DLAB, XTENT (or VOL, TPLAB).

The DSPLY statement is executed as soon
as it is encountered. The infocmation dis
played consists of the filename, the
expiration date, and the extents of the
pertinent file.

The DSPLY statement enables you to
determine which label information is per
rnaueuL and to check the expiration date of
your files.

Inquiry Programs

Inquiry pLograms which are initiated by
pressing the Request key on the printeL
keyboard, do not begin with a Job Control
run. TheLefore, all disk-label information
required by the inquiry program must be
provided in an earlier Job Control run as
permanent labels. Labeled tape files can
not be processed by inquiry programs.

Program-Label Communication

Figure 65 shows the communication between a
PL/I source program, the object program,
job-control statements, and a 2311 disk
drive with a 1316 disk pack.

T'he FILE table (I/O ~ontrol) produced by
the PL/I com~iler somewhere contains the
filendme as a character striu~. The C~~
munication between this table and the actu
al file extent(s) is established by storing
the extent information in the table during
execution of the OPEN statement.

The VOL statement in the deck of control
statements used during opening the file
contains the same filename as stored in the
character string of the FILE table. The
symbolic device address is taken from the

194 IBM System/360 Model 20 DPS PL/I

VOL and XTENT cards. The actual device
address -- in this case that of a 2311 disk
drive -- is then determined from the stan
dard assignment or from II ~SSGN state
ments, res[ectively. The serial-number
field of the XTENT statement is compared
against the volume label of the 1316 disk
pack to determine whether the right pack
has been mounted.

The rema1n1ng action depends on the type
of file. For INPUT or UPDATE files, the
VTOC on the disk pack is searched for a
label matching the file identification
entered in the DLAB statement (EMPLOYEE
MASTER FILE in Figure 65). When a matching
label is found, the remaining file informa
tion is checked against the label informa
tion in the VTOC, and the extent informa
tion is passed to the FILE table to allow
proper addressing of the blocks to be
transferred.

In the case of OUTPUT files, all exist
ing labels in the VTJC are checked to
determine whether the extents of any exist
ing, unexpired file overlap with the
extents of the file to be created. The
file is opened only if there is no overlap
with any unexpired file. The new label is
then written into the VTOC.

If an unexpired file with the same iden
tification as the file to be created alrea
dy exists on the disk pack, the action
taken depends on the file organization. If
the new file is a CONSECUTIVE file, it can
not be opened. If it is an INDEXED file,
it can be opened only to be extended.
(Note that all extents that are required
for ~reation of an INDEXED file and all
extents that mi~ht be required later when
new records are to be added, must be speci
fied for the initial creation of the file).

In the case of CONSECUTIVE mUlti-volume
files, one volume will be opened at a time,
i.e., the second volume is opened when the
last extcnt of the first volume has heen
processed, et=. O~ening of the second and
following volumes is automatic. Thus, no
explicit OPEN statement need be given. For
INDEXED multi-volume files, all volumes
will be opened at once. Therefore, all
volumes to be processc~ must be mountea at
the same time.

The handling of tafe-label information
is similar.

'II ASSGN SYso().(, X'801', 03

I I I
~~~ 

I; XTENT 1,000,01000 000,0129009, VOLl2A,SYso()'( 

~I OW EMPLOYEE MASTER FILE 

!;/VOL SYso()'(, FILEA 

m. Infarmatlon chain 

EMPLOYEE 
MASTER FILE 

VTOC contain
Ing label rJ 

EMPLOYEE 
MASTER FILE 

Infonnatlon flow betw..., VTOC and FILE table at open timed 

VO atatemenh control actual data transf.r 

I 
lJ'.IlT J 

2311 Disk lktit 

,-

I 
I 
I 
I 
I 
I 

~--------------~ 

Object program 
FILE table 

DC CL8' FILEA 

PL/I source program 

DECLARE FILEA FILE 

LPDATE ENVIRONMENT 

(MEDIUM (SYS004,2311) I -~--~-~-------
--------------1 



Cataloging 

If you have a PL/I program you freguently 
use, you may catalog this program into the 
core-image library as a permanent entry and 
call it each time you want it to be 
executed. This greatly reduces the time 
required for card or tape reading. When 
you no longer neea the cataloged program, 
you can delete it from the core-image 
library and use the same storage space for 
other purfoses. 

The program used to catalog a PL/I pro
gram into or to delete it from the core
image library, is the CMAINT (Core-Image 
Library Maintenance) program. Therefore, 
the first control statement needed for 
cataloging or deleting a PL/I program is 
always the JOB control statement with the 
operand named CMAINT: 

r----T---------T--------------------------l 
INamelOperationlOperand I 
f-----t-------t--------------------., 
III IJOB ICMAINT I I. ____ -L _________ -L ______ ~-. ___________________ J 

CMAINT 
---Identifies the operation as a main

tenance operation for the core-image 
library. 

For cataloging a PL/I program, the 
CMAINT program uses the information fur
nished to the compiler by the SEGMENT cards 
to identify the segments to be added to the 
core-image library. Thus, a program to be 
cataloged must always be [receded by a 
SEGMENT card, even if it consists of only 
one segment. For a compile-and-execute run 
of a one-segment program, however, no 
SEGMENT card is needed. 

You must make sure that the name of a 
segment to be cataloged is different from 
the name of any segment already cataloged 
in the core-image library, except if you 
want to replace an old segment. 

Cataloging a PL/I Program into the 
Core-Image Library 

The control statement used to cause CMAINT 
to add a program segment to the core-image 
library is the CATAL control statement, 
which has the following format: 

r----T---------T--------------------------l 
INameJOperationlOperand I 
f----·I---------t---------------------------., 
III ICATAL I I I. ____ -L _________ -L ___ . _______________________ J 

196 IBM System/360 Model 20 DPS PL/I 

A CATAL statement, encountered on 
SYSRDR, specifies that the next program 
segment is to be read and cataloged from 
either the device assigned to SYSIPT or the 
relocatable area. If read from SYSIPT, it 
must be an §!l£§!£y.l2.12!g object program stored 
on either cards or magnetic tape. 

When setting u~ the control statements 
for cataloging from SYSIPT, you must con
sider whether or not the same device is 
assigned to SYSIPT and to SYSRDR. Another 
posibility is to catalog from the relocat
able area on disk~ In the following, all 
three methods are described: 

1. cat aloging from SYSIPT, with 
SYSIPT=SYSRDR 

2. ~ataloging from SYSIPT, with 
SYSI PT;!:S YS RDR 

3. cataloging from the Relocatable Area. 

Suppose you have a precompiled object pro
gram consisting of any number of program 
segments, which you want to be cataloged 
into the core-image library. The input is 
to be read from the device assigned to 
SYSIPT, and the same device is assigned to 
SYSRDR. The control statements required 
for such a job are shown in Figure 66. 

r-----------------------~-----------------l 
III JOB CMAINT I 
III ASSGN SYSIPT,... I 
III EXEC I 
I I 
I (executable object program con- I 
I sisting of any number of program I 
I segments) I 
J I 
III END I L _________________________________________ J 

Figure 66. cataloging Program Segments 
from SYSIPT (=SYSRDR) 

Note that you have no CATAL cards here. 
CATAL cards are provided automatically by 
the compiler, one card per segment, if the 
option GODECK has been specified in the 
COPTN control statement preceding the 
program. 

A II END card must follow the input 
read from the device assigned to SYSIPT. 



The cDntrDl cards needed to catalog an 
executable object program consisting Df 
three segments from SYSIPT, if different 
devices are assigned to SYSIPT and SYSRDR 
are shown in Figure 67. 

Control cards 
on SYSRDR 

Input read 
from SYSIPT 

r-----------------·---------l 
III Job CMAINT I 
III ASSGN SYSIPT,... I 
III EXEC I 
III CATAL I 
III CATAL I 
III CATAL I 
III END I 
I (executable Dbject deck, I 
Iconsisting of three ) 
I segmen ts) I 
1/* I L ___________________________ J 

Figure 67. cataloging from SYSIPT 
(:;l:SYSRDR) 

For each segment in your executable 
Dbject deck program you must supply a 
II CArAL statement on the device assigned 
to SYSRDR. The CATAL statements autDmat
ically prDvided by the compiler are 
ignored by CMAINT. 

A II END statement must follow the con
trol statements on SYSRDR, 1* and a state
ment has to follow the input read frDm the 
device assigned to SYSIPT. 

In Drder to be cataloged from the relocat
able area, your program must have been 
compiled previously. The set of contrDl 
statements needed to catalog such a pro
gram is shown in Figure 68: 

r------------------------------~--------l 

I II JOB CMAINT I 
I II EXEC R I 
I II CATAL I 
1[// CATAL] J 
1[// CATAL] I 
I I 
I (additional CATAL statements, I 
I as reguired) ) 
I I 
I II END I L _________________________________________ J 

Figure 68. Cataloging from the RelDcat
able Area 

For each program segment contained in 
the relocatable area, you must supply one 
CATAL statement on the device assigned to 
SYSRDR. Note that, when cataloging from 
the relocatable area, an R must be speci
fied in the II EXEC statement. 

Executing a Cataloged PL/I Program 

The set of job-contrDI statements needed 
tD fetch a PL/I program from the core
image library for executiDn, looks as 
fDIIDws: 

II JOB prDgram-name 
II EXEC 

12~Q.sg:!!!!l=!E!:!!!g 
The name of the root segment Df the 
prDgram to be executed. 

When the root segment of a multi
segment program to be executed has been 
called into main storage by the above set 
of control statements, the remaining pro
gram segments are successively called into 
main stDrage and executed one at a time. 
This is done automatically by a procedure 
in the root segment, with a statement hav
ing the format: 

CALL OVERLAY ('segment-name'); 

Thus, with the above set of control 
statements, YDU can call a prDgram con
sisting Df any number of segments from the 
core-image library into main storage for 
execution. (Refer to Q.Y~.£ls!'Y_E~£ili!Y in 
the section Practical Considerations 
Rgg!!~g!ng_R~Q~f~m=~ig£gir~U)~-------

Deleting a PL/I Program from the 
Core-Image Library 

When you no longer need a program con
tained in the core-image library, you can 
delete it with the DELET statement, which 
has the following format: 

r----r--------~--------------------------l 
INamelOperationl~perand I 
t----t---------t-------------------------l 
III IDELET Isegment-name J 

~----+---------+-------------------~----~ 
III I DELET I name .• ALL I L ____ L _________ ~ __________________________ J 

2.ggill.g!lt.=!!§J!!~ 
The name of the segment to be deleted 
from the core-image library. 

name.ALL 
---Indicates that all segments whose names 

begin with the characters specified in 
the left-hand portion of the operand 
(name) are to be deleted frDm the core-
image library. The name may contain 
one to six characters. 

If, for example, all segments in your 
program start with the same three 
characters, YDU can delete all segments 
with one DELET statement, instead of 

:ataloging 197 



specifying a DELET statement for each 
segment to be deleted. 

Segments whose names begin with SYS or 
$$$ must not be deleted. If $.ALL, 
SY.ALL, S.ALL, or $$.ALL is specified, 
a halt occurs when a segment name 
beginning with the characters SYS or 
$$S is encountered. 

rhe operand ALL must not be the only 
operand of the DELET statement in CMAINr 
programs. 

Suppose you want to delete from the core
image library a program that consists of 

198 IBM system/360 Model 20 DPS PL/I 

five segments whose names all start with 
the same two characters PS, but no other 
segments start with the two characters. 
The set of control statements needed to 
delete all five segments of the program 
would look as shown in Figure 69. 

r-----------------------------------------l 
I II JOB CMAINT I 
I II EXEC I 
I II DELET PS.ALL I 
I II END I L _________________________________________ J 

FiguLe 69. Deleting a PL/I Program from 
the Core-Image Library 



The following sections provide you with 
the information you need to fully use all 
of the facilities of PL/I under the Disk 
Programming System. 

(At the ~resent stage, this section 
contains only preliminary information). 

Inquiries on the IBM 2152 Printer-Keyboard 

The IBM 2152 printer-Keyboard can be used 
as an inquiry device. It is used for fast 
retrieval of information from disk files, 
with only a brief interruption of proces
sing in progress. You just enter the name 
of your inquiry program on the printer
keyboard. The job in progress is inter
rupted while the inquiry is made. 

The Model 20 DPS support for the 
[rinter-keyboard as an inquiry device con
sists of interrupt routines. Through the 
use of these IBM-supplied routines, an 
inquiry request entered on the printer
keyboard interrupts the job in progress, 
saves the status of that job, and 
initiates the processing of a specified 
user~written program. After this program 
has been processed as an inquiry program 
the interrupted program is returned from 
the system disk pack to main storage and 
its execution is resumed. The intervening 
program, which must be in the core-image 
library, is called into main storage by 
entering the program name on the printer
keyboard~ It can occupy all of main 
storage, except for the part required for 
the Monitor, and can use any 1/0 devices, 
provided such use does not inerfere with 
the status of the interrupted program. 
This versatility enables it to perform the 
operations required of any program 
executed on the Model 20. The interrupted 
program is referred to as the mainline 
program. 

You can write an assortm~nt of inquiry 
programs and store them in the core-image 
library. An inquiry program specifies the 
operations to be performed, using the 
inquiry file and any other files that are 
necessary. These normally include only 
disk files from which records designated 
in a printer-keyboard INPUT file are to be 
retrieved. Note that an inquiry may be 
requested during the processing of a wide 
variety of mainline programs. If these 
mainline programs are operating with tape 

Special Programming Information 

or card devices that are also accessed by 
the inquiry program, it may not be possi
ble to restore the interrupted mainline 
pcogram to its original status. 

Some Model 20 DPS programs and certain 
routines in such programs must not be 
interrupted by an inquiry program. These 
programs and routines are listed in the 
SRL publication I~~_~Y§1g!LJ£Q_tlQ~gl_£QL 
~!§~_~~Qgf~IDID!gg_2Y§ig!L_~~g£~iill~_~£Q£~~ 
gYfg§, Form C33-6004. 

The inquiry program, like any other 
program, reguires that label information 
be supplied in order to open disk files to 
be used in the program. The disk files, 
of course, must be on-line at the time the 
inquiry is requested. The label informa
tion submitted to the Job Control program 
in VOL, DLAB, and XTENT statements must 
have been cataloged permanently in a pre
vious Job Control Run into the 1abel
information area. (Refer to Permanent and 
I§ID2Qf~fY_~!§~_h~Qgl§ in the sectIon-----
InE1Ltt:Q.Y.tEY.t • 

All programs compiled with the Model 20 
PL/I compiler can be used as mainline pro
grams as well as inquiry programs. How
ever, programs running as inquiry programs 
must not use labeled tape files. To pro
tect a PL/I program from being interrupted 
by an inquiry program, the job-control 
statement II OPTN NOINQ must be used. The 
PL/I compiler itself runs only as mainline 
program. 

!21g: The inquiry input and output area 
of the Monitor and the inquiry record are 
not used by PL/I. Inputloutput on the IBM 
2152 Printer-Keyboard is through normal 
PL/I file processing. 

Even though all types of file processing 
available with Model 20 PL/I are supported 
by the IBM 2152 printer-Keyboard, its main 
purpose is the transfer of messages 
between the program and the operator. 

Since messages are mostly of variable 
length, undefined record format has been 
introduced as the only record format for 
the printer-keyboard. If, however, with 
RECORD transmission, an input record does 
not have the same length as the variable 
into which it is read, the RECORD condi
tion is raised. 

Special Programming Information 199 



The transfer of messages between the 
program and the operator requires that the 
input and the output file are synchronized 
in such a way that the listing on the key
board reflects the sequence in which the 
input and output statements have been 
executed. This synchronization is guaran
teed if both files have the option 
BUFFERS (1) in the BNVIRONMENT attribute. 
otherwise, read reguests are issued to the 
printer-keyboard h~fore PLII GEr or READ 
statements are executed. 

The following set of additional rules 
applies to files that are read from or 
written on the printer-keyboard: 

1. For STREAM files, the actual length of 
an output record is defined as 
follows: 

• By an explicit occurrence of a SKIP 
option or format item. 

• By an implicit occurrence of SKIP( 
1) when the maximum record length 
(decLared in the U option of the 
ENVIRONMENT attribute) is being 
exceeded. 

• When a GET or READ statement for a 
printer-keyboard file is executed, 
any output produced by previous PUT 
statements that has not been writ
ten out, is lrinted before the key
board is unlocked, that is# before 
the input data can be ty~ed in. 

2. SKIP(O) is not supported for printer
keyboard files since over-printing is 
not possible. 

3. CTLASA is meaningless for printer
keyboard files. 

4. Since pages are not defined on a 
printer-keyboard, the PRINT attribute 
and the PAGESIZE option are ignored 
for printer-keyboard files. The PAGE 
option or format item is treated as 
SKIP(3). The END PAGE condition cannot 
be raised. 

Linking PL/I Programs with Assembler Procedures 

In order to increase the capability and/or 
efficiency of your programs# you may com
bine programs written in PLII with proce
dures written in Assembler language (in 
the following referred to as Assembler 
procedures). 

For a PL/I program consisting of sever
al procedures, the compiler automatically 
generates the code required for the acti
vation and de-activation of the proce
dures. When writing Assembler procedures 
that are to be linked with PL/I proce
dures, however, you must write the code 
required for the activation and de
activation of other procedures yourself. 
rhe code you must supply corresponds 
exactly to the code generated automatical
ly by the compiler for PL/I procedures. 

Following, now, is a description of the 
code that will be of interest for you when 
writing Assembler procedures that are to 
be included in PL/I programs. 

Figure 70 shows the code generated by 
the compiler for each procedure of a PL/I 
program. 

r---------------------------------------------------------------------------------------, 
entry-name DC X'FFFF't 

ONBLOCK 

D~ X'FFFF' ~ 
DC X'FFFF' 
DC f-1'O' 
DC Y (ONBLOCK) 

DC X'FFOO' 
DC X, ••• , 
DC C'. ' •• ' 

DC X'7FFF' 

{for n addresses of parameter~ 

(for address of function value) 
(end of farameter list) 
(address of On-Block) 

(code generated for the statements of the procedure) 

(length of dynamic-storage area) 
(entry-name, six bytes in length) 

(On-Block entries) 

(end of On-Block) L _______________________________________________________________________________________ J 

Figure 70. Code Generated by the Compiler for Each Procedure of a PL/I Program 

200 IBM System/360 Model 20 DPS PL/I 



r---------------------------------------------------------------------------------------1 
J DC X'4D80' (BAS instruction to invoke the Library Call Routine) I 
I DC Y (PL 1SCA) I 
J DC Y( ••• ) (address of called procedure) I 
I DC Y (. '. ,.) * ) I 
I t I 
I '. ~ (addresses of arguments) I 
I • I 
I DC Y ( •• ,.) * I 
J DC Y ( ••• ) * (address of function value) I 
I DC H'O' (end of argument list) I 

t---------------------------------------------------------------------------------------~ 
I*All addresses marked by an asterisk may also consist of a register and a displacement. I L _______________________________________________________ ~ _______________________________ J 

Figure 71. Code for a CALL Invoking Another Procedure 

f~ll This address is specified even if no func
tion value is returned. 

Whenever, during program execution, one 
procedure calls another procedure, the 
Call routine PL1SCA, a member of the PL/I 
library, is entered. 

This routine 

• provides the Dynamic storage Area 
(DSA) 1 

• stores the register contents and the 
return address of the calling procedure 
in the DSA 

• provides On-Block 1 information 

• transmits the addresses of arguments 

• causes the branch to the called 
procedure 

1 DSA and On-Block are discussed below in 
this section. 

To include in a PL/I program an Assemb
ler procedure that calls a PL/I procedure, 
you must yourself supply the code needed 
for the call. 

The code generated automatically for 
the CALL statement is shown in Figure 71. 

Arguments are passed to the invoking pro
cedure by transferring the addresses of 
the arguments to the invoked procedure. 
In the invoked procedure, the arguments 
are referred to by names called 
parameters. 

During transmission of the addresses, a 
test is performed to determine whether the 
addresses are absolute. If they are not, 
they are converted to absolute addresses. 
Also passed to the invoked procedure is 
the address of a function value that might 
be returned by the invokea procedure. 

liQ~g: The number of arguments of a call 
m~st be identical to the number of parame
ters in the called procedure. 

The On-Block holds all information needed 
about ON-conditions during activation of a 
procedure. Its address is contained in 
the code for the called procedure. 

For Assembler procedures, the On-Block 
must only contain the following: 

DC X'FFOO' 
DC X'length of DSA' 
DC C'entry-name' (6 bytes) 
DC X'7FFF' 

Note: The On-Block must begin on a halfword boundary. 

since a procedure needs working storage 
for its own purposes, storage is dynamic
ally allocated for it during activation by 
the Call routine; This dynamically allo
cated storage is freed again by the Return 
routine PL1SCAR, a member of the PL/I 
library, upon deactivation of the 
procedure. 

The DSA is used to save register con
tents and the return address of the cal
ling procedure and to hold any intermedi
ate results used only by the called proce
dure. Its length is given in the On-Block 
of a ~rocedure. It must have a length of 
at least 24 bytes. These 24 bytes are 
needed for internal use. To use addition
al dynamic storage for an Assembler proce
dure, you can increase the length of the 
DSA up to 4096 bytes. You can address the 
DSA via register 13. This register is set 
by the Call routine and reset by the 
Return routine. 

Special Programming Information 201 



[21g: If you use register 13 for other 
purposes in an Assembler procedure, you 
must save it and restore it later. You 
must not use register 13 for other ~ur
poses during activation of another PL/I 
procedure. 

When a procedure returns control to the 
calling procedure, this is done via the 
Return routine PL1SCAR which is entered. 
This routine 

• restores the register contents 

• frees the Dynamic storage Area 

• passes control back to the calling 
procedure 

The code generated for a return ~s a 
branch to PL1SCAR and looks as follows: 

DC X'47FO' 
DC Y(PL1SCAR) 

For an Assembler procedure, you have to 
supply this return code yourself. 

1. When combining PL/I procedures with 
Assembler procedures, the main proce
dure must always be written in PL/I; 
it must not be coded in Assembler. 

2. To combine Assembler procedures with 
PL/I ~rocedures, include the already 
assembled procedures in your PL/I 
source program or precompiled object 
program. The assembled object deck(s) 
(as well as any precompiled PL/I 
object deck(s) I must be headed by a + 
COpy card. (For more information 
about the COpy card, refer to the sec
tion entitled Tk~_~Q~Eil~£). 

B~1g§_~ng_Bg§~f!£~i2n§_!Q£_li£!1!~9 
!§§gmQlgf_Rf2£ggYfg§ 

When writing Assembler procedures to be 
combined with PL/I procedures, you must 
observe the following rules and 
restrictions: 

1. An Assembler procedure may have more 
than one entry point. All entry names 
of an Assembler procedure have to be 
declared with the ENTRY (or START or 
CSECT) statement. 

202 IBM System/360 Model 20 DPS PL/I 

2. If a PL/I procedure is called from 
within an Assembler procedure, the 
name of the PL/I procedure must be 
declared with the EXTRN statement in 
the Assembler procedure. Names 
declared with the EXTRN statement must 
appear only within DC Y( ••• ) 
constants. 

1. An Assembler ~rocedure used in combi
nation with PL/I procedures must not 
contain any Monitor or IOCS macro 
instructions. 

2. It must not contain any :10, XIO. or 
TIOB instructions. 

3. It must not change the communication 
region and must not contain an XFR 
Assembler instruction. 

4. The Assembler procedure must be relo
eatable; that is, it must not contain 
the NOESD or NORLD options in the 
AOPTN control statement, nor contain 
the Linkage-Editor ENTRY statement. 

5. When linking PL/I with Assembler pro
cedures, the main procedure must 
always be written in PL/I. 

In order to illustrate the use of an 
Assembler procedure in combination with 
PL/I procedures, a small programming 
example consisting of three procedures is 
given in Figure 72. 

The problem dealt with in the program 
is to determine whether the current year 
is a leap year or not. 

The main procedure ALPHA is written in 
PL/I. ALPHA calls the procedure LEAP, 
which returns, as a function value, the 
letter Y or N, depending on whether the 
current year is a leap year (Y) or not 
(N). The returned letter is displayed in 
the E-S-T-~ registers on the pannel. How
ever, before LEAP can return its function 
value, it calls the function YEAR which 
returns to LEAP a two-digit number speci
fying the current year. The procedure 
YEAR is also written in PL/I, whereas the 
procedure LEAP is written in PL/I as well 
as in Assembler language. The two proce
dures are eguivalent. 

The Assembler and the PL/I coding for 
the procedure LEAP are shown in parallel 
in Figure 72 for comparison. 



r---------------------------------------------------------------------------------------1 
I ALPHA: PROCEDURE OPTIONS (MAIN) ; I 
I DCL LEAP RETURNS CHAR(1), A CHAR(1); I 
I DISPLAY (LEAP) REPLY (A); END: I 
~--------------------------------T-------------------------------------------------------~ 

LEAP: PROCEDURE CHAR(1); ILEAP srARr 0 I 
DCL V,W FIXED (2,0), I BASR 8,0 I 

YEAR RETURNS PIC'99';J EXTRN PL1SCA CALL ROUTINE I 
I EXTRN PL1SCAR RETURN ROUTINE I 
I EXrRN YEAR PL/I PROCEDURE TO BE I 
I CALLED I 
IRA EQU 9 WORKING REGISTER I 
ILO DC X'FFFF' HALFWORD FOR ADDRESS OF I 
I FUNCTION VALUE ) 
I DC X'OOOO' I 
I DC Y(ONBLOCK) POINTER TO ONBLOCK I 

~--------------------------------+------------------------------------------------------~ 
I V=YEAR; I DC X' 4D80' BAS INSTRUCrION TO I 
I I DC Y(PL1SCA) CALL PROC YEAR I 
I I DC Y(YEAR) ADDRESS OF CALLED I 
I I PROCEDURE YE~R I 
I I DC YeA) ADDR OF FUNcrION VALUE I 
I I DC X'OOOO' I 
I I PACK B(3),A(2) PACK VALUE RETURNED FROM I 
I I YEAR I 
~--------------------------------+------------------------------------------------------~ 
I W=V/4; I DP B(3),V(1) DIVIDEITBY4 I 
I IF V=W*4 THEN I CLI B+2,X'OC' TEST REST FOR 0 I 
I I BNE L1 IF YES, LEAP-YEAR I 
~--------------------------------t·------------------------------------------------------~ 
I RETURN('Y'); I LH RA,LO ELSE,NO LEAP-YEAR I 
I ELSE I MVI O(RA),C'Y' RETURN C'Y' FOR RESULT I 
I I DC X'47FO' I 
I I DC Y(PL1SCAR) BRANCH TO RETURN ROUTINE I 
~--------------------------------t------------------------------------------------------~ 
I RETURN('N'); IL1 LH RA,LO LOAD ADDR OF RETURN VALUE I 
I I MVI 0 (RA) C' N' RETURN C' N' FOR RESULT I 
I I DC X ' 4 7FO ' I 
I I DC Y (PL 1 SCAR) BRANCH TO RETU RN ROUT INE I 
I IV DC X'4C' CONSTANT 4 I 
I IA DS CL2 VALUE RETURNED FROM YEAR I 
I IB DS CL3 WORKING STOR~GE I 
~--------------------------------+------------------------------------------------------~ 
I END; IONBLOCK DC X'FFOO' BEGIN OF ONBLOCK I 
I I DC H'24' LENGTH OF DSA I 
I I DC C' LEAPbb' PROCEDURE NAME I 
I I DC X'7FFF' END OF ONBLOCK I 
I I END I 
~--------------------------------L--------------------__________________________________ ~ 
IYEAR: PROCEDURE CHAR(2); I 
I DCL DATE BUILTIN; I 
I RETURN (DATE); J 
I END: I L _________________________________ , ______________________________________________________ J 

Figure 72. Programming Example Illustrating the Use of an Assembler Procedure in Combi
nation With PL/I Procedures 

Sterling Currency Processing Routines 

Model 20 PL/I does not support Sterling. 
However, the Model 20 Sterling Currency 
processing Routines (260-LM-015) can be 
linked to PL/I object programs. The lin
kage of these routines to PL/I programs 

must be done like the linkage of Assembler 
procedures. 

For detailed information, refer to the 
publication 1~~_2y§1§mL12Q-[Qg~1-£QL 
~t§£1!gg_~~££§g£y_~£Q£§§§ing_~Qy1in§§, 
Form C26- 3605. 

Special Programming Information 203 



The DYNDUMP Routine 

Model 20 PL/I provides you with a dynamic 
dump facility that can be called at execu
tion time with the statement 

CALL DYNDUMP 
(variable-name [, var iable- name J •• ,.) ; 

This statement may be used to display the 
items listed in the variable list in hexa
decimal notation. The variable list may 
contain up to 12 variables and include 
label and pointer variables. 

The following example shows the use of 
the DYNDUMP routine: 

DCL A FIXED (5,2) , (B (20) ,C) CHAR (2) ; 

CALL DYNDUMP (A,B,C); 

The three items A, B, and C are dis~layed: 
A as three bytes (five hexadecimal digits 
+ sign), B as 40 bytes (80 hexadecimal 
digits), and Cas two bytes (four hexade
cimal digits). 

This feature requires a minimum of main 
storage. 

Data Btorage Mapping 

This section discusses the location of a 
data item in storage in relation to other 
data items. 

!11gll~~llt_Q~_Qgtg_J1~ID§_in_~!Qfgg~ 

The Model 20 PL/I compiler aligns all data 
items -- except label variables and point
er variables -- on one-byte boundaries, 
that is, the data items in storage are 
aligned one after the other without any 
storage s~ace being lost between the indi
vidual items. Only label variables and 
pointer variables are aligned on two-byte 
boundaries, that is, the first byte of a 
label or pointer variable is in a stora~e 
position where the address is divisible by 
two. 

The storage requirement of an array is the 
sum of the requirements of the individual 
data items contained in the array, For 
example, the storage requirement of an 
array declared in the statement 

DCL A (5,4,3) CHAR (2) ; 

can be calculated as follows: The number 
of data items in the array is 5 * 4 * 3 = 

204 IBM System/360 Model 20 DPS PL/I 

60. Each data item requires two bytes as 
declared. Thus, the total storage 
requirement of the array is 2 * 60 = 120 
bytes. 

The individual items of an array are 
stored in row-major order. For the above 
example, this means that the items are 
stored as follows: 

A(1,1,1) 
A(1,1,2) 

A(S,4,2) 
A(S,4,3) 

with structures, storage is required only 
for data on the ~!~m~lll~£Y structure 
level. Rgm~§ of major and minor struc
tures xequire no storage space. Elemen
tary items are stored in the order in 
which they are declared within the struc
ture, the length of each individual item 
being dependent on the attributes declared 
for it. The length of a structure is 
equal to the sum of the lengths of all 
elements contained in it. 

The starting point of a major or minor 
structure is the starting point of its 
first element. 

NQ1~: The pointer and label variables 
cannot be elements of structures. Thus, 
no boundary problems can appear in struc
ture mapping. 

Figure 73 illustrates the storage map
ping of the structure declared as follows: 

DECLARE 1 A, 
2 B, 
2 C, 

3 D, 
3 E, 

2 F, 
3 G, 
3 H, 

4 I, 
4 J, 

5 K, 
5 L; 

r---T---T---T---T---T---T---l 
I BID I E I G I I I K I L I L ___ L ___ L ___ L ___ L ___ L ___ L ___ J 

J-------
H-----------

F---------------
C-----------------------A----------------------------

Figure 73. storage MaPfin9 of structures 
-- Example 1 



r-------------T--------------------T---------------------T----------------------, 
1 J I 1 1 
IVariab1e TypelStored Internally aslStorage RequirementslA1ignment Requirementsl 
1 1 1 1 1 
~-------------+--------------------t--------------------t----------------------~ 
1 CHARACTER en) 11 Byte per Characterl n I Byte I 
t-------------t--------------------t--------------------+----------------------~ 
\PICTURE 11 Byte for each \Numbe~ of PICTURE IByte 1 
1 IPICTURE Character lCharacters 1 I 
1 lexcept for VII I 
~-------------+--------------------t--------------------t----------------------~ 
1 DECIMAL J 1/2 Byte Per 1 w + 1 I Byte I 
IFIXED (w,d) IDigit Plus 1/2 ICEIL ----- 1 I 
1 IByte for Sign 1 2 I I 
t------------~-~------------------t--------------------+----------------------~ 
IDECIMAL IShort Floating Pointl I 1 
IFLOAT (w) I I 5 IByte 1 
I w < 7 1 I 1 I 
~-------------+--------------------+--------------------t----------------------~ 
1 DECIMAL )Long Floating Point 1 1 I 
IFLOAT en) I I 9 IByte 1 
16 < w < 16 I ~ I I 
t-------------t--------------------t--------------------+----------------------~ 
ILABEL I 1 4 1 Half-Word 1 
~-------------+--------------------+-----------------.---t----------------------~ 
IPOINTER I I 2 IHa1f-Word I L _____________ L ____________________ ~--------____________ ~ ______________________ J 

Figure 74. Summary of Data Alignment Requirements 

:f!~E19:!!~!:i2!!: Only the elementary data 
items B, D, E, G, I, K, ana L actually 
occupy storage space. A, the major st~uc
tu~e name, and the minor structure names 
C, F, H, and J occupy no storage space. 
The range of the structure names is inai
cated by the vertical lines in Figure 73. 
For the length of each data item, see 
Figure 74. 

Figure 75 shows storage mapping of a 
fully declared structure. The structu~e 
has been declared as follows: 

A, 
2 B PICTURE '999V99', 
2 C, 

3DCHAR (3), 
3 E FIXED (5,2), 

2 F FLOAT (6), 
2 G CHAR (1); 

<5 bytes><3bytes><3 bytes><5 bytes><1byte> 
r-------T--------T--------r--------r------, 
1 BID 1 ElF 1 G I L _______ L ________ ~ ________ ~ ________ ~ _____ J 

C---------------A------------------------------------------

Figure 75. Storage Map~ing of structures 
-- Example 2 

~~El~!!~iiQ!!: B, D, E, F, and G are ele
mentary data items and occupy actual 
storage space according to the rules 
listed in Figure 74. A and C are st~uc
ture !!~ill~§ and require no storage space. 
Their range is indicated by the ve~tica1 
lines in Figure 75. 

Special programming Information 205 



Two Programm:ing Examples 

This section discusses two complete pro
gramming examples: 

(1) an example for scientific application, 
and 

(2) an example for commercial application. 

Example for Scientific Application 

The example shown in Figure 76 illustrates 
numerical integration of an ordinary dif
ferential e~uation, using the method of 
Runge and Kutta. Since this method can be 
used for numerical integration of more 
than one type of ordinary differential 
e~uation, a main procedure (RUKU) was 
written for the Runge-Kutta method, and a 
separate rrocedure (YPRIME) to evaluate a 
special differential equation y' = f(x,y). 

Both procedures are to be compiled 
together and executed immediately. In 
addition, two decks are to be produced: a 
£~mEi~gg object deck from the main proce
dure, and an ~~g~~!~~~! object deck from 
the complete program. 

The compiled object deck can -- in 
later applications with other equations 
be used again as compiler input (headed by 
a + COpy card) together with a PL/I source 
module for any new equation. 

The executable object deck can be used 
to solve the same problem again with dif
ferent parameters. 

The parameters are the starting values 
for xO, yO, the ena value xn, and the step 
width h. They are read from a card. The 
result of each step is printed. 

The differential equation used in this 
example is: 

y' = 2 * Y * cotan x 

The first two job-control statements 
specify that the program is to be com
filed, link-editej, and executed imme
diately. No other job-control state
ments are used; it is assumed that the 
VOL, DLAB, and XTENT statements for 
the two work files WORK1 and WORK2 are 
cataloged as permanent labels. 

206 IBM System/360 Model 20 DPS PL/I 

2 rhe COPTN statement is a compiler-
con trol statemen t. The LINK option is 
required so that the program can be 
link-edited and executed immediately. 
The option WORK2 specifies that two 
work files are to be used to achieve 
faster compilation. The option GODECK 
indicates that an executable object 
deck is to be provided by the 
compiler. 

3 The PROCESS compiler-control statement 
signals that a PL/I source deck fol
lows. The option DECK specifies that 
a compiled object deck is to be pro
vided. The option SOUR~E specifies 
that the source program is to be 
printed. 

4 Comments in the form of headings are 
used in the program to document the 
requirements for the parameters as 
well as to indicate the main program 
steps. 

5 Although the parameters XO, YO, Band 
XN need not be declared explicitly 
since their attributes are the default 
attributes FLOAT DECIMAL (6), they are 
explicitly declared for documentation 
purposes. 
YPRIME is explicitly declared as an 
entry point by the RETURNS attribute. 

6 PARAM is the file from which the para
meters are read. In this case, it is 
one card read from a 2501 card reader 
assigned to SYSIPT. PARAM is by 
default a STREAM file. RESULT is the 
output file, which is printed on a 
2203 printer assi~ned to SYSLST. It 
is a STREAM file, which is implied by 
the attribute PRINT. 

7 As the first action, the parameters 
are read in. 

8 Then, a heading is printed. 

9 Following the heading; one line is 
left blank. 

10 The step length divided by two is used 
within the loop that follows. To 
avoid repeated computation of this 
value (BB), it is computed once out
side the loop. This saves execution 
time. 



(j) 
® 
@ 
<!> 

@ 

® 

1 I 2 ' ),. 5,', 7 '; 9 10 11 1213 ,. 15 16 II 18 19 :lO 21 22 23 2. 2S 26'27 2829 30m 3233 305 36 37 3839 40 ., .2.:J ... 5 ~ ql"~.9 SO:51 52'S) 5455 56 57 58 59'60,61 62'63'~I6S'66'61:"'69'70;71 1: :31.' 15'16,'1:18 19 10 

L~, l~ le. IpL if Ru ~G EK IUT TA I I I lL~- I' I' , 
I- - - 1-1- - - -, + , • 1 1-. -, t--

~ I t- ·EX lEe f--- -~-tt -•.. -... r " ........ 
ciD IPT toI LI NK ".\11 loA K2 ,G OD EICIK ' I 

~ , ' 
l)e ls 

..--.-r--t-+-- +- -+ .. +---+-

± _ PIR b r IES 5 CK ou RC E ~: ' ...;.. + --t-
I!' iT ,.,1 ~ PI? OC ED u~ E f.lA ND Lf 5 THE NlJ He: RI ~AL IN TE GR AT ION OF OR IDI NA RY , I' ,I , -rtp Fe G 

+--+-+;t--r-:; .~_~D IF A£ NT I A L EQ u~ T I ON S us I IN IT,., E ME T'" 00 10 r: RU ING E AN D Ku TT A. ft/: 1-\ . . 
,'*' IT HE n IF' F'E RE NT Ill. L EO UA TJ ON IY , . F'ir )( Iy ) 1M uls if Isle I SS U.E D 

-+--f .' ~ t.-f- T'l 1-+-t-- -1-~-+--___ 

. A ~ A SE PEE GA .... IE' P to( .1:: U RI: Jrr s NA IHE H us IT ~elE IJ" J-IH ~. .' I 15 'R ET URN TI~ PE 1[;_. 
ANO T HIE Tly PE 101F JTIs PA RA HE Iff RIS IS FL OA Tit 1611. *1 ,. TINE piA IDIA 1I1~ TE Rls ARIE EIAD .FR OM AIN II IBM 12. Is 16:1 CA RD RE AD IE~ 

!- -

TH EY ARI;- IT'UE piA JR 10 1ST IAR Til NIG i\llAI, l='c:, Ix Idl IA~1n y Itt TulE ST Flp -Iw III TH N 
~iNID TIHlE ,UP PER IL I HIlT ~N IN TH lis lOR DE R· TUE F'lo RIM AT OF THE pia R --
t:~ RD lis " E{ 12 I, S ) . ",1 

AU t<U: PR rOC E'n URE OP TI, I'l',.. Is I{M AI Nil' i 
nE leL IAIRIE If xl. y~ H ~IN,} Flo. OAiT If 16,) ! 

{ f.I ~ IFL 1 bll 
r--f--

1<1 IK2. K3 K4} OAT 
-Y p 11:1'1 ME RE' TU RNS I F LO AT it (, I) I) 
PA RAM Fil LIE 7l'1 pur lEN 'III IMiE 011 U~ ILls lYs IPT c215 ~1} IF( 48) 

Isu FF ERS If 1 ) II 
RE 5U .. T J:I LE plR II NT FN Ivlf HE Dr Il Ii 15 ~$ L5 TI", 2.2 Id31 F( 218 1>1· 

I'A RE AID PA RA lMe TIER AINIfl plR INT "IE ~D LI NE 'It I 
I GET FI LE ,p AR AINll ED IT ;( X'. 16 1-4 )l.N) ( 4 Ef 12 5) 11 . 

- pur FI LE olR ES UL tr, ) elIJ IT ( I Xl , Y I) If x ( 611 lA, 151) AI) . 
, PUT FI LE IIQ ES Il L IT) SK IP If 2 1· 

UH · "III 2· 1* co HP UTe Jo4A LF ST Elp VII IDTH ftlcl 
1* ST EP PI NG LO OP F'iOR RU t-IG E- Kil TI'T A'S ME !'rlf.l Inn .1 , ; ~ 

LO 01P: PLT F'I LE It iR els ~L T 1 ED IT If Ix. ,~(6 ) If E: 111 2. 51) If I J5 5 ) I) . . I I I! :'. :+ .. - -I-

f-2-~" IF )1.1(6 ~ = XN TII-I EN IGO rro 'rlo 'HP I, E TIE' 1* TE ST FOR EN Il_ OF _ L OOP *1 : I , 
,+7 +++-1-,* Ru NG E- f(U TTA AL ~O RI THH *1 trtH:-r-K1 · liP RI lt1 E It x • I~ttl) * ..,. 

1 2 3 • 5 6 7 • 9 1011 1213 •• ,5 16 17 ,.,9 :lO 21 2223 20S 26 27 2829 3(\ 31 3233 1:105 3631 3839 040 ., .2.:J ... 5 ~47 .. ., so 51 5253 s.ss 5651 58 S9 60 61 6263 ~6S "61 68" 70 71 nlnJ7. 7S 16 11 78179 10 

1 2 I 3 I • : 5 ! 6 . 1 I • '9 10 ",'2.13:'. 1516 1118 19 :lO 21 22 23,. 2S 26'27 2829 xi 31 3233 305 36 31 3839 40 ., .2.:J ... 5 ~ q I .. '.9 SOl51 52 S) s.ss 56 51 58 5960:61 62'63'~!6S'66'61:"''':70111 1: :31"15'1611:"19.111 

+-H· ~_ xl. ,. x. + f.lH· I i -+t- 1" it.' I I 
,-~, .-

Iyp II x l6 Yltt 21) 
--l- I--- -- ~ -+- ~ ~.. I·, - • -~-t 

1<2 · RI HE +1< 1 I it H· f-- .. +-r--. ~~·-i-+-+---r-l-
K3 = yp RI ~E t x:. yl41 +K 21 21> * 1-1. I t-r-. 'Ij , 
xG x, :+ 

-rl--t- ~.++-
I = UI-I· 

tW:±-~t II( " · ~P RI ~E II XI~ y Itt + KB I) * H· 
ytt Iy. If K 1<3 3+ I) 1 b' 

+- r--t-
, ; · + 1+ K2 +K 2+ +K Kif. 1.1 ~. '-ii -t--t : I 60 T[O LO op· t'l • 

- .+---+--

C'O HP L'E TE: EM D' ; 

+ plR O~ ES$ SO UR rE' 

1'* 11;1 V All !JA Til OIN olF Y I .. 2* Y ... CO TAN X *1 
Iy p Rlr HIE. : PR lot lE:n URIE It 1)1. I':lJ ' 

RE' Tlu RIN If If ~f+ ~ ) II T AIN ,I x } I ~ . 

fl:iN D' 
'l.JA tr--. -I--

.11 IE+ ~tb Ii. 5E +6; . 1 E- ~'l .5 E+ 161m 
v'* t -r--. 

I 

Figure 76. Programming Example for scientific APrlication 

Two Complete programming Examples 207 



11 The PUT statement that edits the 
values of the individual integration 
steps precedes the integration loop so 
that also the initial values of xO and 
yO are printed. Since the record 
length (28) specified in the ENVIRON
MENT attribute for the PRINr file is 
e~ual to the length of the two fields 
for xO and yO (12 and. 15) plus one 
character for printer-carriage con
trol, a new line is printed each time 
the PUT statement is encountered, even 
though no SKIP format item is 
specified. 

12 A test for completion is made. > = is 
used instead of =, since round-off 
errors in floating-point arithmetic 
may prevent an equal compare. 

13 The formulas used for the integration 
from the l;oint (xi, y i) to 

(x = x + h) are: 
i+l i 

k fex , y ) * h 
1 i i 

k f (x + h/2, Y + k /2) * h 
2 i i 2 

k f ex + h/2, Y + k /2) * h 
3 i i 2 

k f (x + h, Y + k ) * h 
4 i i 3 

Y Y + (k + 2k + 2k + k ) /6 
i+1 i 1 2 3 4 

Since the values of xi,yi are no long
er needed when xi+1,yi+1 have been 
computed, the same variables used for 
the old values are used far the new 
values, i.e., there is no need to 
declare x and y as arrays. Since the 
argument xi + h/2 is used twice, name
ly in the computation of k2 and k3, xi 
is incremented. once by h/2 before the 
computation of k2 and k3, thus avoid
ing duplicate computation of this ex
pression. Xo itself can be replaced 
by XO+HH since the old value of XO is 
no longer needed. 

14 K2+K2 has been chosen instead of 2 * 
K2, since addition is normally faster 
than multil;lication. 

15 When the END statement of the main 
procedure is executed, all files are 
automatically closed and control is 
returned to the Monitor. 

16 The RETURN statement is the only 
executable statement in the procedure 
YPRIME. Since YPRIME, X, and Y have 
default attributes, no DECLARE state-

208 IBM System/360 Model 20 DPS PL/I 

ment and no EETURNS attribute are 
required. YPRIME uses the TAN built
in function. Note that tan (x) = 
1/cotan (x) • 

Example for Commercial Application 

rhe programming example shown in Figure 78 
is a simplified inventory problem. Dif
ferent departments of a factory order dif
ferent quantities of different parts 
(screws, nuts, nails, etc.) from a centr-
al store. If orders cannot be fulfilled 
because there are not enough parts avail
able from the store or if, after fulfil
ling the order, less than the required 
minimum number of parts remains in the 
store, a purchase order is issued 
automatically. 

The main file is an inventory file, 
called MASTER, residing on disk. It con
tains all information about the individual 
parts in the store, like part-number, num
ber of Farts currently in store, price, 
minimum number to be held in store, etc. 
This file may very well also be used by 
other inventory programs. 

The orders coming in from the factory 
defartments are on punched cards (DETAIL 
file). They are not sorted in ascending 
sequence by part number. Therefore, the 
MASTER file is accessed as an INDEXED 
DIRECT file, since the DETAIL records com
ing in in random order require random pro
cessing of the MASTER inventory file. 
(For rather large detail files it may be 
advisable to sort the detail file with the 
DPS Sort/Merge program and then process 
the sorted output against a SEQUENTIAL 
UPDArE INDEXED or CONSECUTIVE inventory 
file. However, this case is not handled 
in the sample program). 

Records for parts that are no longer 
held in store are marked by a character 
code and deleted from the M~STER file when 
it is eventually reorganized. 

The program produces three outrut 
files: (1) a transaction report file 
(REPORT), which is initially written on 
tape and is used later to produce a 
printed output rel;ort of the orders ful
filled, (2) a card file (REORDR) in the 
form of reorders to refill the store, and 
(3) an exception file (EXCEPT), which is 
printed immediately and cdntains detail 
records for which no MASTER 
records exist or for which the MASTER 
records have been marked for deletion, as 
well as any orders that cannot be 
fulfilled. 

Since the printer is used for printing 
the EXCEPT file, the REPORT file is stored 



intermediately on magnetic tape. The 
REPORT file might be used by other pro
grams for the printing of orders or the 
computation of product costs, etc. There
fore, the REPORT file is labeled to make 
it easily identifiable. Figure 77 shows 
the configuration used for this example. 

SYSIPT 

Processing 

SYSOO4 

SYSLST 

Figure 77. Configuration Used for Inven
tory Problem 

Note that the numbers to the left of the 
programming example are used for reference 
purposes only. They are not part of the 
coding. 

The first job-control statement speci
fies that the program is to be com
piled, link-edited, and executed 
immediately. 

2 NOINQ in the OPTN control statement 
specifies that the execution of this 
program must not be interrupted by any 
inguiry program~ TES specifies that 
the tape error statistics are to be 
printed after program execution. 
NOINQ is used to ensure that the posi
tion of the tape and card file is not 
changed by an inquiry program. 

3 When TES is specified, LOG must also 
be specified. 

4 The 2311 disk drive, which holds the 
prime data extent of the MASTER file, 
is assigned the symbolic-device 
address 5YS004 and the unit number 02. 

5 The index area of the M~5TER file is 
on the system disk pack with the sym
bolic device address SYSOOO. 

6 MASTER INVENTORY FILE is the file 
identification. The numbers in 
columns 55 through 61 are the format 
(always coded as 1) and the file seri
al number which must correspond to the 
file serial number of the XTENT state
ment (the first in this example) for 
the cylinder index area of the M~STER 
file. The numbers in the continuation 
card are the volume sequence number 
(OOOO), the creation date (January 
2nd, 1970), and the expira tion da te. 

7 While the prime data extent is on an 
extra pack with the volume label 
INV002, the index area is on another 
pack, the system disk pack, to mini
mize disk-arm movement time when read
ing the cylinder index. 

8 The tape used for intermediate storage 
of the REPORT file is a 9-track mag
netic tape with a density of 1600 
bytes per inch. 

9 Label information for the REPORT file 
is the file identification INVENTORY 
REPORT (44-character field padded with 
blanks) followed by the file serial 
number (6 characters) the volume 
sequence number (4 characters), the 
file sequence number (4 characters) , 
the generation number (4 characters) 
indicating that this is the first edi
tion of the file, the version number 
(2 characters) indicating that this is 
the first version of the generation of 
this file, the creation date (Jan. 

2 3r d, 1970), and the expira tion da te. 

10 rhe COPTN com~iler-control statement 
indicates that two work files are used 
(WORK2), that the source program is to 
be compiled and link-edited (LINK), 
and that the ~!~£~i~£lg object deck is 
to be produced on the device assigned 
to 5YSOPT (G)DECK). No label control 
statements have been provided for the 
two work files. We assume that these 
labels are permanent. 

11 The PROCESS compiler-control statement 
indicates that no £2m£!lgg object deck 
is to be produced on SYSDPT (NODECK, 
specified for documentation purposes; 
it need not have been specified, since 
it is applied by default anyway). 
ATRO causes the printing of the off
sets of labels and variables and the 
length of automatic storage. ATR 
causes the listing of all attributes 
of all variables, entry names, and 
file names. 

Two Complete Programming Examples 209 



12 Columns 73 to 80 are ignored by the 
compiler. In this case, they are used 
for sequential numbering of the cards, 
so that -- in case of accidental 
scattering -- they can easily be 
sorted again. 

13 The main procedure of the program, 
that is, the procedure initially 
invoked by the system, must always 
have 
OPTIONS (MAIN) specified in the PROCE
DURE statement. 

14 The MASTER file is declared to be an 
INDEXED DIRECT UPDATE file. Note that 
DIRECT and UPDATE are file attributes 
while INDEXED is an option of the 
ENVIRONMENT attribute. since no new 
records are added to MASTER when it is 
updated, NOWRITE has been specified to 
cause loading of a smaller library 
routine, which saves main storage 
space. 
The record length 41 is the number of 
bytes actually needed to hold all the 
information reguired for one part. It 
is the length of the structure MAST 
REC. The block size of 533 was chosen 
when the file was built so that a 
minimum of the disk extent (7.bytes 
per 2 sectors) is unused. 

The key of each record has a length of 
eight bytes and starts in the second 
byte of each record (KEYLOC(2». Two 
extents are used (see XTENT control 
statements), one for the prime data 
area, and one for the cylinder index. 
One track I:-er cylinder is reserved for 
overflow records. 

VERIFY is s~ecified to ensure error 
detection when the updated records are 
rewritten onto disk. 

15 The DETAIL file contains the orders 
coming in from the different factory 
departments. Only the first 25 bytes 
of each card are used. 

16 Following are the structure declara
tions for the MASTER record, the 
DETAIL record, the REORDR record, and 
the REPORT record (TRANSACT). In 
order to have the individual data 
items of the TRANSACT record separated 

210 IBM System/360 Model 20 DPS PLII 

by blanks when it is finally printed, 
"fillers" initialized to blanks, have 
been introduced in the record. 

17 An invalid part number specified in 
the records of the file DETAIL will 
raise the KEY condition when the file 
MASTER .is read. The raising of the 
KEY condition will result in a transf
er of control to an error-handling 
routine. Note that, because internal 
names may be up to 31 characters in 
length, labels and variables may have 
explanatory names, like the labels END 
OF_JOB and NO_RECORD_FOUND. 

18 The part number specified in each 
record of the file DETAIL is used to 
select the associated record from the 
file MASTER. 

19 Even though building of the 
transaction-report record (TRANSACT) 
starts later -- with card ST00150 -
OLD_SIZE and ~LD_VALUE are assigned 
values here, since the appropriate 
variables are updated before TRANSACT 
is built. 

20 rhe auxiliary variable WlNTED has been 
introduced to minimize the number of 
conversions, saving space and execu
tion time. 

21 In the second format item (A (15», a 
length of 15 has been specified to add 
three blank characters to the right of 
the output field. This specification 
is equivalent to the specification 
(A,X (3». 

22 The size of the purchase order 
(REORDER REC.SIZE) has been determined 
in either of two ways before: If the 
department order exceeds the number of 
pieces in store, the order size is 
computed with the formula shown card 
ST00121, otherwise the standard order 
size is taken (see card ST00126). 

23 This statement is preceded by two 
label prefixes. 

24 This is not an error message but mere
ly a comment that the list is 
complete. 



1 2 3 4 5 • 7 • , 10 11 12 13 14 l' ,16 17 18 19 20 21 on 23 '4123 76171 21 lit 3e!~1 32 J3 3C ~ ~ 'SI 31 3P 40 41 42 43 44 45 46 47 41 49!50 51 52 53 S. 55 56 57 51 " .0 61 62 63 66 65 66 67 68 " I'D 71 72 73 74 75 7. 77 111" _ 
CD ~/+!./~J~O~B::!J.-j.--l--jI=-Pj::.L~I~I~N~V~E~"'~T~0'4R~'i f--+-I--+t-+-+-+-+++++++--I-+-I--+t-+--H-+-++--I-+-I-+-I--+t-+-+-++++++--I-+-If+-~++-+- t- + ~_, 1 J _ 
~ 1/ OPTN NOINla TES , J' 

I~! ~~~~;~HH~R~~~S~GN~S~'i4S41'+I~+4+1'+X+'+8~1~~2~I~D~SHH~-H++++~~~~~HHHH~4+++++"H""++~+-H - III lJt 
~~v O~L~~5cpll \Ip2.Ic.~'" 1~A."'~'H~A~S!f-!-Tf!;IE~IR~-+-+--+-+-+--I-~-+-+-+++-+--I-+-~-l--t++-++++f---+--l-++++-++'-t+--lf--t-I--4 _+ I-- "I-c.- r- --U, 11 J,J,_±J] 

~L~e 'IMASIT~R INVIEN~O~Y I~I C 112~1~21~' 
1001~10 1?10!~ 271m 1&4 'lJ 11 

<V 1 I Yo TENT 
I I X TIEINrr 

® / I A SSGN 
II VOL 

I~ 1~I~t ~ I. f '2~21'1~' ISlY.s~~' I 
1 ~~2 ~.~4.~~ ~ 'IN~~~~I S~S~~4 I 
sly sltt,lb 7 X '1781 I IT 2 X' cle ' I I 
I~ 1~1~'~7 RElpORT I I , I 

® II I T P IL IA B 

liE xlElr 
@ ff. clolplTN MlolR KI2 LIN K GolDlElr K 
@ ~ Ip ROic Elsl.; N'~ln elt- K IA TRio IAT R 

1 2 3 4 5 • 7 • , 10 11 12 13 14 1516 17 II 1920 21 22 23 24 2526 27:18 2930 3132 333C 3536 3731 

Iitt ST OCK IN vie NT ORy PR I" G Alt-I * 1 
ST Oc K: PR 10 C. ED UR E OP T I ON S I( H AI Nil 

nc L 1'* II: I L II; Irl .. Irll lAic 1.6 IT 1110 NS ..,.1 
HA sIT E~ r: IL Ie I~IE Iclo RID ID IR EC T 

2~ IH I) lIN IT1E XE rn 
KE Iy L oc II 12 ) EX 

,,~ TA I L FI LE RE co I,:cD I NP UT E 
ex CE PT 1='1 LE PR IN T EN Iv If H ED 

I R ~I ILI:- RIE leo IRID '0 UT PU T 
RE pb RT FI lE RE ~o RD 0 lJT Ipu IT 

Fir " Idlld) lB' I) ) 
lnrl 1* Rlf: c.'" RD l "A rrA In E~ itA RA rt"I 

1 HA ST _I~ EC. I ~ HIA sIT ER R EC. 
2. ne LE TE C A R If 11 } I ~ leo 
12 Nlu He ER r J.IA Cl 'Ie 1 I '* KE 
12 NA HE ,. 

~A R ( 1 &11 I '* Pit. 
.2 PPP F IX E~ (1.5 2 .l lilt 

I 2 HI HI~ F 1 X lelD (5 Id !) II~ 

2 OR Is I IzlE II J. E~ (15 lit I) "* 2 5 I ZE FI XE ID (15 lib I) Iiii-
2 vIA LUE FI XIE In (I? 2) 1* 

1 tE T_ RE I * DE TA 1 L R IEIr 
12 IN 1M Ie EIR c J.IA R Ie 8 I} I'rr- IF 
12 51 ZE Ip Ie I 19 1 ,1-1-

~ 2 loR IDEI~ C I-IIA R If ~ ~I) I~ 

I 2 , . 5 • 7 • , 10 11 12 1314 15 " 171. 19311 2122 Iz:u 2526 27. 2930 '3132 333C 3536 3731 

3P4O 41 42 4344 4546 47\61 4950 51 52 53S. 5556 

IkE lYE In UP ID~ Te E NV II 
INO Vd~ IT E Ff S~ I~ I.d 
Tie NT NU He ER ( '1. I) V ER I 
NY I HIE Dr UN ,Is I ... Is J P T 

r U H f Is y Is: LS T Ifl4 1t3 I 
elN v ( HI~ 01 llN If S lyS OP T 
EN v I HE Dr UH If s ~S cb~ 7 

ION S *1 
OR n ffl 
-JIA LS '10 I r F RE C'" 
'!IF J e LID lP A~ rr NU MIA 
Rtf N AIM E ,*1 

Ip Rr ele p EA Ip IE CE * 1M IN JIM ult-j N UN 191e ID lolr: 

0 RD iER S I Z E ~II 
IA CT It. A L OF 
Is IZ E * PP IF rrl 

nR ~ *11 
AI~ IT NU ~113 IFIR f!. , 

Is IZ E 10 If:: I" R""' lEla:; * I 10 RID IER N ulM IslF R 1* I 

3940 4142 43144 4546 47_ 4950 51 52 S3S. 5556 

5751 ".0 6162 

HE Inll Ll lfo1 

'K EY L 
y OF IT 
215 1'1 I) 
J:" I f 12 f ) 

25 2' }" 
24 16~ II 

RD I~ 
~R *, 
II 

p J c~ 

e-' 
PI lEt,. EC, 

~-

5751 15'.0 6162 

f- -

6366 6566 67168 "I'D 71 72 73 74 

sIT 

I 
I 

II 
I 'TT 

111111 

1 IIII1 
I I I I 

75 7' 1111 ,,-
O. Idllb l " 

1= $J~" .~ 21--ISTO~;'3 
Is ~? ~~ 1+1* 9r;~~1 ~§. I~ L 9 ) 5 T 0 ~I~ ~151 " 
RA C.K 

S( t ~ tQiII';~1 F f 25 I)J~ .. ~ ~~t.~1 ) - §I126 t8-F ( ~ f }) [sTO" ~ 
I-~ l± ~IQ. t i-I r 

r-" f·_· 

-- T ~I Q~'~~! - f--- ~LO '1. __ 
f-- i- SIDI~. 21 

~g "'I:' T~~ rTo~r2 , S!]!l·;fi>-,-- 1_ sIlOtU -,-f-- - ,----

-- ~:rla. 'G-
~h" lrQ fl ro~' ~ >-t L If!J Is TO •• 2 '7 f--

_ .s Tlo .1.2 Bf-
it 15IIlo~. 29 f_ 

J 
· MOir>-f- stria et.;j 1 
f ~tr~(l :3l~f-

str 0 3~ 
f- 1ST Oil4'19Qf-

f ~lllr >-
ii Ii IL= 

63"" 65'" 67"'f" I'D 71 72 I 1iI 7. 75 7~77 itTnl1ll 

Figure 78. Programming Example for Commercial Apllication, Part 1 of 3 

Two Complete Programming Examples 211 



1 2 3 4 5 , 7 I , 10 11 12 1314 1516 17 II l' :» 21 22 23 24 2526 2721 3930 3132 3334 3536 3731 3940 41 42 4344 4546 4741 4950 51 52 5354 5556 57,. ".0 6162 6364 6564 "61 "70 71 72 73 74 7576 7771 7910 

W i RE OR [JE R- RIEC 1* PU RC HA SE -'0 R~ EIR RE' CO RD 'It I ST o lib ,dl41m 
2 NU ,.,8 If::tR CI-I AR It el} 1* PA RIT NU Hie IER *1 s:r a. Ii If t 
2 NA HE CI-I AR ( 1 Ed If; 'PA RT NA HE 'r'kl ST In_ If If 2 
2 051 ZE PI c' 99 99 9' II it 51 ZE OF RE O~ DEIR fel ST 
2 Fl II ER CJ.l AR If 2) IN lIT J' , l) ; .. 

.:::t 

2. VA L UIE PI C' S ""'It ** 9'1 .g 9' I ... IvlA LLJE .OF PU RC HA Is e - 0 AD EA *11 ST 
1 TR AN SA C.T 1ST AT I C l';rc T~ AIN SA CT 10 N IRE Irl'l Rn - IEln litE .11 1111 51> 

2. NU MB IER rH AR Ie BI) 1* PiA Rtf I",', fo.4l=l I~R '1:1 loST o ill 51 
2. FI L_J c.I-I AI~ Ilf } IN IT e I 'I) ISTn 52 
2 NA HE elJ.l AR If ~ (1) I~ PA RT NA HE *11 !STO 53 
2 FI IL L _ ,2. ell-l AR If 1 I} IN rl"r (' , J !SI 

2. CH !ANIG PI" '1- -1- -9 ISS' Ifrc TR AN SA ~rr ION fel '':' 

2- OL :D- lSI ZE PIC ' Z zz Z9 B' • 1ft OLD NU H8 ER I'IF AR TS 'fel 5 :r' .... 
2 Ol D- IvA LU[E prr 'r. *9 v· 91g' 1* OLID VA LUE OF PA RT S ",1 ,II 5'1 ** !~ 

2. FI IL l -13 c.?f AIR Ie 2 ) IN I T I ( I , ) 
~ 8 

2. HE ~- sit ,Z[E PI,C ' Z zz z9 
, 

1* tiE", NU HB ER 01= PA RT S ffcl ST I ... 

2 HE ~- ViA [L [t e pr C '* *;-l\ 1*9 v. 919 ' 1* NE[W VA LU E OF PA IRT~ *1 
,~ ,.. 

2 Fr lL -4 c.f.4 AR t 21) IN IT I{ , , ) 
I~ 11 

2 OR DIER CJ.I AR ( f 21) II * IOIR. DER NU H8 ~R .1 I~ ~ 

12. FI Ll _5 Ie 1-1 ~R ( 21) [I N Ill" f I ') STO big 
12 I~E - - I ND 1~ C.H .AI~ If 1 I· Ie; T 016 614 

OCl 1* 51 NG LE IDII TA IT IE~ 5 US ED lDu RI NG CA- lC Ul ~T JON *1 5T 101, 665 
~A NT E,D FI )I.E D I( 5 (bl) • ftT kJltb 6 ~~ 

1 2 3 4 5 6 7 • , 10 11 12 13 14 15 16 17 1. 19 :» 21 22 23 24 25 26 27 21 39 30 31 32 33 34 35 36 37 31 39 40 41 42 43 44 45 46 47 [4149 50 51 52 53 54 55 56 57 51 " .0 61 62 63 64 65 64 " • " 70 71 72 73 74 75 76 17 71 79110 

1* PROGRAH AC.T'VATI[ON. ~~ STol~1~~ 
OIPEN FILE (REPORTI) FILE. I(ne-TAIL) ILE i(REORIDRI)' STIOI4)i.~1 

FILE (EXCEPT) FIL.E (HIA,5TER II' Sr[o i;(bZ 

ON ENDFrLE I(DETAIL) GO TO IE[N~_OF_J08' ~Tolm1:(b~ 
@ ON KEY IU.fA5TER) (;,0 TO N[O_RECORD-FOUND· __ SIO~1l;4 

1* TRANSAC.TION ~ANDLIN~ *1 ~TO 11tt 
I TRANSACTION_READ: READ FILE IDETAILI) INTO (DEr_REC)' STO tift 

~l~~~~~R~EAA~D~rF~I~LrE~(~H~A~S~T~e~R¥I)~I~N~T~lo~ll~H~A~S~T~_~R~E~lc.~ll~K~E~Y~~(D~E~T~-~h~E~C~.N~UI~HIB~ER~l~'~~rlHHH~15rT~0~11~11~~~ 
IF DELE~~ • '~' rUE~ &~ TO ~~~ORD_DElErE~' STO 111~ 

~ ~++44~~0~l~D~-~S~I~Z~E~a~~~IA~S~HF-~R~E~C~.~S~I4Z~E~.~~O~L~D~_~V4A~LrUrErr·~,H~A~SrTF-FR~E~C~·4_V~A~l~U~E~·~~~~r+~S~T40~.r1rt~5~ 
@ ~ANTEID = DET-REC·SIZE· IItt- CONVE[AT TO I=lXEIIllf5 t, i':/ :5TO 116 

PUT FrL[e i/EXCEPTI, EDIT (D[ET_RE~.loIR~ER 'ORDEiR [sirZE GREATEiR ~TO 1118 
THAIN INVEN,TORy. ONLlI' HAST_REC. srZE 'PIECEls ,DELIVERED1) STO 1119 

~~~~~~~~~r+#I/~STK~I+P~A~lf~1~5~)~I~.A~F_-~I~i&~)~A~1~· ~~~~rlH~HrHr~~rr~~rrrrrr~+f~+TTO~1T2~~~ 
REO[~DER_A~c.srze - ~ANTE[D ~ ORSIZE - HAlsT_AEC.SIZE· ~~O 11121
IWANT[ED • I,.,AST_AE .ISIlE. MA[sIT_REc·srzE & ~. IST~ 122

,~ HAST-I~Er .srZE ~< HINIH TU~N GO ~IO [lPDATE_HAS~ER' 5TO t25
REORDER-RIEIC.SIZc : PRSIZ,E' 5TO i~6
1"It Plu Nir I,., A ,e II olt ASE *11 15,""£ 7

PURC.~AlsE: REORDFR_REC.NUH·8ER = ~EiT_REC.INUN°ER· 5TO i~8
REDRDIER_RiEr.NIAHE = MAlsT_Rf".NA~E· STn f?Q

REI'IRDER_Rle r . VALUE • REORDIER REC.lsrZE * HA~T REC.PPP· 5 .~
I~RITE FILE IREORDR} FROIH II~EORP~RI_QEiCI}' STO 1i~i

1 2 3 4 5 6 7 • , 1011 1213 1415 16 17 II 19 20 21 22 23 24 25 26 27 21 29 30 31 32 33 34 35 36 37 31 39 40 41 42 43 44 45 46 47 41 49 50 51 52 53 54 55 56 57 51 59 60 61 62 63 f64 65[66 67 • "70 71 72173 74 75 76 77 71179 10

Figure 78. Programming Example for Commercial Application, Part 2 of 3

212 IBM System/360 Model 20 DPS PL/I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3) 31 32 33 34 35 36 37 • 39 40 41 42 43 44 45 46 41 i4' 49 50 51 52 53 54 55 56 57 51 59 .0 61 62 63 64 65 66 " " " 10 711n 73 74 75 76 77 71 79 10

1* UPDATE HASTER FILE *, r-- r-L~"-r+~~O 14if
UPDATE_IMAIsiTER: Ml6.ST_REC,VALUE:. MAls~_R c.SIZE '* ppp ._ LI ____ , STO 141

RE~~ITE FILE IHAi~ER) F~OH IHASI-RECJ KEY{DET_REC'NUM~ER)~ll __ STO 14~
1* BUILD TRANSACTION-~EPORT I~ECORD *1 ' 5~ID 11~lm
~RA!N5ACT.NUIHI8!EQ :. DET~REC.NUHBER. r~ ~~Io 151
~RANSACT.NA~E a ~AST-REC.NAHE· ---r- _ _ S~~ J~2
CUANG • IW~NTED' STP 153
INIEI~-SIZE ~ IHIAST-REC.lsIZE· ~~O 154
N~~-VALUE: HAST_Ret.~~LUE'_~ ~~O 155
TRANS,ACT.'ORIDER : DET~IREC.ORDER· B~n 156
WRI~IE FILE II~EPOR~l) FROI~ I(TRANs~C~)' I~~O 1~7
Gn TO TRANSACTION-READ' STO 158 ,* ERROR CASE; PART NUHlsER NloT ON HAS~ER FILE OR DELETED *, ISTO 1ab

NO~RECORD-FOUND: RECOnID-DELETED' PUT FIILIE I(EXCEPT~ IEDI'T IIDET-RIEC.ORDER STQ~~~!
, PART NuH8ER Nn!T O~ ~AlsTER FILE. lolRDIER CANCFLEin ' j ~_ 5TO~1182

l(SK/P AlliS} Al· STO 1~3
GO ~o TIRIANSACT.JblN-REIAD· ~TO 1~~

END-OF_JOB: PUT ~ILE(EX~EPT:) EDIT ('ENI~-OIF-JO:8'll ISKI~ 1(3} A}' ~TO f9f
~E~N~D~·~~~~~~~~~~~~~++~~rr+++4~~+4~~~rr~~~~~~~." c-~ -~~++44~~++~-4

1 2 3 4 5 6 7 • , 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 21 29;10 31 32 33 34 35 36 37 • 39 40 41 42 43 44 45 46 41, 50 51 52 53 54 55 56 57 51 fw.o 61 62 63 66 65 66 " " " 10 71 n 73 74 7S 76 77 71179 ~

Figure 78. Programming Example for Commercial Application, Part 3 of 3

Two Complete programming Examples 213

Appendix A. Definition of Terms

!Q2Q~~~g_~gg£~22: (1) an address that is
permanently assigned by the machine to a
storage loca tion. (2) a pa t tern of char
acters that identifies a unique storage
location without further modification.

~££~§§_ill~1hQg: any of the data management
techniques available to the user for
transferring data between main storage and
an inputloutput device.

~£1iQll_§Egf!t!f~!!Qll: in an ON statement,
the ON-unit or single keyword SYSTEM,
either of which specifies the action to be
taken whenever an interrupt results from
the raising of the named condition.

activation: (1) initiation of execution
of-a-procedure. A procedure is activated
when it is invoked at its entry point; (2)
opening of a file to access it.

active: the sta te in which a procedure or
fIle-Is said to be after activation and
before termination;

~£1Y~1_g~Yi£~_sgg~g§§: address specified
in the ASSGN job-control statement.
Includes attachment point, unit, and 1/0
device type.

additive attributes: file attributes for
which-there-ire-no-aefaults and which, if
required, must always be stated
explicitly;

~gg£g§§: (1) a specific storage location
at which a data item can be stored, (2)
I/O device address.

allocated variable: a variable with which
storage-has-been-associated.

allocation: the association of storage
wIth-i-variable.

~lEh~Qgii£_£h~£~£ig£: any of the charac
ters A through Z and the alphabetic exten
ders tf:, $, and :n.

~!Eh~mg~i£_£hs~sf1g~: an alphabetic char
acter or a digit.

~~1g£ll~1iY~_s11~i~y!~§: file attributes
that may be chosen from groups of two or
more alternatives. If none is specified,
a default is assumed.

alternative drive: when two drives are
given-for-one-multi-volume file, the first
volume is mounted onto the primary drive
and the second volume onto the alternative

214 IBM System/360 Model 20 DPS PL/I

drive. If no alternative drive is given,
all reels ,or packs must be read or written
on the primary drive.

~illQig~Q~§_~~!~~gn£g: name with insuffi
cient qualification to make the name
unique.

g£g~ill~ll1: an expression, a constant, or
variable passed to an invoked procedure as
part of the procedure or function
reference.

arithmetic data: data that has the chara
cterIstlcs-oi-base, scale, and precision.
It includes coded arithmetic data and num
eric character data.

~£i~hmgti£_Q2g£~~Q£§: any of the prefix
operators, + and -, or the infix opera
tors, +, -, *, I, and **.

~~£~y: a named, ordered collection of
data elements, all of which have identical
attributes. An array has dimensions, and
elements that are identified by
subscripts.

!~§gmQlg£: a proyram which prepares an
object program by producing absolute or
relocatable machine code from a source
program of statements containing symbolic
operation codes and symbolic operands.

~ii£iQYig: a descriptive property asso
ciated with a name or expression to
describe a characteristic of a data item
or a file that the name may represent.

g~1Qmg1!f_§1Q~ggg: storage that is allo
cated at the activation of a procedure and
released at the termination of that
procedure.

Q~2g: the number system in terms of which
a written value is represented. Examples
are the decimal base (ten), the binary
base (two), and the hexadecimal base (six
teen). For Model 20 PL/I, the base is
decimal.

based variable: a variable declared to
have-the-BASED (pointer-variable) attri
bute specification. The pointer variable
associates the description with an alloca
tion of storage.

££2gg_2tQ££gg: storage that is allocated
for based variables. This allocation is
dependent upon the manipulation of a
pointer variable.

Q~tfh_fQilll11~t1Qn: the processing of more
than one procedure by the compiler in one
job.

Q~!:fh~g=jQ1LE~Qf§§§.bng: a technique tha t
permits multiple job definitions to be
grouped (stacked) for presentation to the
comruting system, which automatically
recognizes the jobs, and executes them one
after the other~

bit: The smallest unit of information in
system/360. It can have either of the two
values: zero or one.

Q1Qf~: distinct physical grouping of data
items within a file.

Q12£~gg_~g£2~g: logical record grouped
together with other logical records to
form a physical record (or block) •

Ql~f~!g9_~~ftQ£: block size divided by
record size. Applies to fixed-length
records only.

.Q2!:!!!g: the upper or lower limi t of an
array dimension. The lower limit is
always assumed to be 1.

£~~t~£: an intermediate main-storage
area, used in input/output bperations,
into which a record is read during input
and from which a recori is written during
output.

built-in function: one of the PL/I-defined-functions.
.Qytg: The basic unit of information in
IBM System/360. Every byte consists of 8
bits, each having a value of zero or one.
(See Bit).

£~11: the invocation of a procedure by
means of the CALL statement.

£~t~12gi!!g: insertion of an executable
object program or program segments, or of
label information as a temporary or per
manent entry into the core-image library
or the label information area,
respectively.

£h~£~£tg£: An 8-bit (1-byte) code that
can be manipulated in the main storage of
the central processing unit.

character set: a collection of 48 or 60
characters-used to write PL/I source
programs .•

£h~£~£tg£_~t£ing: a string composed of
one or more characters from the data char
acter set.

£12§bng_l~_fblgL: de-activation of a file
by means of a CLOSE statement for the
associated file or by an END or RETURN
statement of the main procedure of a
program.

£~ggg_~£ithmgti£_~~t~: internal re~resen
tation of arithmetic data whose charac
teristics are given by the base, scale,
and precision attributes. The types for
Model 20 PL/I are packed decimal and short
or long floating point form.

fQll~!:igg_§~gyg!!£~: the relative order of
alphameric characters upon which sorting
or merging is based.

fQmill~gt: a string of characters, used for
documentation, which is preceded by /* and
terminated by */.

fQillE~£i§Qg_QE~£~t2£§: the operators ,<,
<, <=, ,=, =, >=, >, 1>·

£QillE!l~!:!Qg: translation of a PL/I source
module into an object module (i.e.,
machine language).

£QmEb1g~_2Qjg£1_m2g!:!lg: the set of
machine instructions produced by
comrila tion.

£QillEil§_!:!ill~: the time during which a
source program is translated into an
object module.

£QmEil~£: a transiator that converts a
PL/I source program into a compiled and/or
executable object program.

£QillEilg£_£2g!:£Q1_§1~lgmg~t: anyone of
the control statements in the input stream
that defines the requirements and options
of a job to the compiler.

fQillE2§it~_QE~£~12~: operator composed of
two operator symbols (e.g.11 =) •

£QillEQYn~_§!:~l~m~nl: a statement that con
tains other statements. IF and ON are the
only compound statements.

£~~£~~gn~tiQn: the operation that con
nects two character strings in the order
indicated, thus forming one string whose
length is equal to the sum of the lengths
of the two strings. It is specified by
the operator 11.

fQgg!t!Qg_n~m~: a language keyword that
represents an exceptional condition that
might arise during execution of a program.

fQngi!:!Qn_E~g!b~: a parenthesized list of
one or more condition names prefixed to a
pLocedure statement by a colon and preced
ing the entry name. It determines whether
or not the program is to be interru~ted if

Appendix A. Definition of Terms 215

one of the sfecified conditions occurs
within the scope of the prefix. Condition
names within the list are separated by
commas.

£QU§~£gt1yg_t~!g_Qfgsn1~s11Qn: organiza
tion of records on the basis of their suc
cessive physical positions. Records of a
consecutive file can be accessed only
sequentially.

£Qn§1~n1: (1) an arithmetic or character
string data item that does not have a
name, (2) a statement label.

contextual declaration: the appearance of
an-identiiier-to-the-Ieft of an assignment
symbol or in the data list of a GET state
ment, or as a built-in function name
(excet.-t DATE).

£Qn~IQ!_tQIm~1_11~m: description of page
and spacing operations.

£Qn~IQ!_EIQ~I~m2: a set of system pro
grams that control the execution of the
compilar and of user-programs. They are
the Monitor, the Job Control program, and
the Initial Program Loader.

control statement: any of the statements
In-the-Input-stream that define the
requirements of the job, its options, or
control its actions.

control variable: variable used to con
t~~I-the-lie~itIve execution of a
DO-group.

conversion: the transformation of a value
f~~m-~ne-representation to another.

~9Ig~lm~~~_1iQI~fY: a disk area contain
ing the Job Control program, other IBM
supplied programs (except the Monitor and
the IPL), and user's ~roblem progra~s.
Permits retrieval of programs and(or seg
ments by the Monitor~

~QI~=lm~~~_1iQf~fY_tl~ill1~ll~a£g_ffQ~£~~
J£~!l[!l: a DPS service program. Updates
the core-image library and directory. Is
used to add and/or delete program
segments.

£y!inggI: a group of ten vertically
aligned tracks on a 1316 disk pack.

£Ylillgg£_illgg~: table containing the
identification and the highest key asso
ciated with each cylinder occupied by an
INDEXED file.

£Y!1llgg£_Qyg£f!Q~_~f~~: overflow area
designated for each cylinder of the prime
data area of an INDEXED file.

216 IBM System/360 Model 20 DPS PL/I

~~1~: representation of information in
the form of digits and characters that
have certain characteristics called
attributes.

data character set: all of those charac
ters-;h~se-~It-~;nfiguration is recognized
by the computer in use.

data file: a collection of related
re~ords-organized in a specific manner.
For example, a payroll file (one record
for each employee, showing his rate of
pay, deductions, etc.) or an inventory
file (one record for each inventory item,
showing the cost, selling price 6 number in
stock, etc,.).

g~!~_~Qfills!_i1gill: description of data in
the stream that specifies whether the data
items are characters or arithmetic values
in character form.

gst~_itgm: a single unit of data; it is
synonymous with "element".

data list: a list of expressions used in
a-~~i~i~-input/output specification that
represent storage areas to which data
items are to be assigned during input, and
from which data items are to be written,
during output. (In input, the list may
contain only variables).

g~1~_§£g£ifi£~1iQa: the portion of an
edit-directed data transmission statement
that s}ecifies the mode of transmission
(EDIT) and includes the data list and the
format list.

data transmission: the transfer of data
~r~m-in-eite~naI-storage medium to main
storage and vice versa.

QgQ!Qf~ing_JQt_fg£Qfg§l: segregating
physical records into their logical parts.
Deblocking is done automatically by the
system so that a program deals only with
log ica 1 record s.

decimal: the number system based on the
vaTile-1"O.

gg£i~~!_fi~gg=EQint_g~t~_i1gill: data item
consisting of one or more decimal digits
and an optional decimal point. If no dec
imal point appears, the point is assumed
to be immediately to the right of the
rightmost digit.

Qgfim~!_t!Qsting~EQin1_g~1~_it~m: decimal
number followed by an integer exponent.
The exponent specifies the assumed posi
tion of the decimal point, relative to the
position in which it actually appears.
rhe data item is written as one or more
digits, the mantissa, followed by the
letter E, followed by the exponent.

declaration: the association of attri
butes-with-an identifier explicitly, con
textually, or implicitly.

default: the alternative assumed when an
IdentIfier has not been declared to have
one of two or more alternative attributes.

defined item: item having the DEFINED
attrIbute:---

£g~imiig£: any valid special character or
combination of special characters used to
sefarate identifiers and constants, or
statements from one another.

ggYi£g_~g££g22: see §Y~Q£li£_£gYi£g
~gg£§2§ and ~£t~~l_ggYi£g_~gg£g§§·

g§!!£g_!n~gEgnggn~g: the ability to requ
est input/output operations without regard
to the physical characteristics of the
input/out~ut devices.

the ten decimal digits 0 through

g!IDgn§!gning: the number of bound speci
fications associated with an array. It
cannot be greater than three.

direct access: random processing of the
logIcal-records of a file by use of a key.

gi§~Q!gg_l~Qn£iiiQllL: the state in which
the occurrence of a particular condition
will not result in a program interrupt.

g!§~=~g§!g§Dt_§l§tg~: contains the Mon
itor, the disk-resident portion of the
IPL, and the Job Control program. May
contain any IBM-supplied and/or user
written programs and/or macro definitions
as well as the relocatable area.

gQ=g~2£E: a seguence of statements headed
by a DO statement and closed by its corre
sponding END statement.

~~~_£Qnt£Ql_R£Q~£!~§: a collective term 
used to refer to the Initial Program Load
er, the Monitor program, and the Job Con
trol program. 

~~~_1in~~~g_~gii2f: a system service pro
gram. Relocates programs or phases and
links separately assembled programs or
phases. Cannot be used for Model 20 PL/I
programs.

g~i;t!ng_E!£t£~g_£a~~~stg~: multipally
specified picture character ($, Sf or -)
that causes leading zeros to be suppressed
and a $ symbol, a sign, or a blank to
appear in the rightmOst position of the
suppressed field of the character-string
value of an arithmetic aata item.

£gIDIDY_~f~Q~gni: a compiler-assigned vari
able for an argument that has no
programmer-assigned name.

ggIDE: (1) print-out of total main storage
or of parts of main storage, (2) print-out
of disk areas.

gYn~ID!£_§t2~~~§: storage that is allo
cated when execution of a procedure begins
and that is freed when execution of a pro
cedure is terminated. See ~~i2~~ti~
§iQf!9.g·

~~~Q!~: (Extended Binary Coded Decimal 
Interchange Code) a specific set of eight
bit codes standard throughout System/360. 

edit-directed transmission: STREAM trans
illIssIon;-both-a-aata-IIst-and a format 
list are specified. 

ggitin~_£h~£~£ig£: a picture character in 
a numeric-picture specification that 
causes the specified picture character to 
appear in the character-string value of 
the numeric-picture specification. 

glgmgrri: a single data item as opposed to 
a collection of data items, such as a 
structure or an array. (sometimes called 
a "scalar item"). 

element variable: a variable that can 
refresent-only-a: single value. 

grr~Qlg£_l~Qn~itiQllL: that state in which 
the occurrence of a particular condition 
will result in a program interrupt. 

grri£Y_n~ID§: a label of a PRO:EDURE 
statement. 

gnifY_£Qini: that point in a procedure at 
which it may be invoked by reference to 
the entry name. (For Model 20 PL/I only 
the PROCEDURE statement). 

gE!!Qggg: those ~rocesses which occur at 
the termination of a procedure. 

g§i~Qli§hg£_~~iiQll: any action specified 
to take place when an enabled condition 
arises and causes an interrupt. 

gK~g£iiQll~l_~Qll£iiiQrr: an occurrence, 
which can cause a program interrupt, or an 
unexpected situation, such as an overflow 
error, or an occurrence of an expected 
situation, such as an end of file, that 
occurs at an unpredictable time. 

§1§£gi~~!§_Q~j§£i_££2g£~ID: the set of 
machine instructions produced by compila
tion and link-editing. 

Appendix A. Definition of Terms 217 



execute-loader function: reading of 
executable-abject-program and its 
execution. 

gK£li£i!_~~£la£al~Qll: the assignment of 
attributes to an identifier by means of 
the DECLARE statement, the appearance of 
the identifier as a label, or the 
appearance of the identifier in a paramet
er list. 

~KElifi!_~11g_2E~ning: opening of a file 
by means of an OPEN statement. RECORD 
files always have to be explicitly opened. 

~K2~rr~rrt_l~t_tlQatill~~£Qirri_£~rr2iarril: a 
decimal integer constant specifying the 
power to which the base of the floating
point number is to be raised. 

~K~£g22i~ll: the representation of a 
value; examples are variables and con
stants appearing alone or in combination 
with operators, and function references. 

~!I~nl: area of a disk file specified by 
an upper limit and a lower limit; and 
reserved for or occupied by a particular 
file. 

g!1~In~!_ggg!~I~liQll: an explicit or 
implicit declaration of the EXTERNAL 
attribute for an identifier. Such an 
identifier is known in all other proce
dures K~£_~hi£h~§~£h_~_~~£la£~iiQrr_~!i2t§. 

external name: an identifier which has 
t~e-ii¥iiiii-attribute. 

g!t§£g~1_§tQ£g9g_ill~g1gill: the medium on 
which data may be stored; for example, 
cards, magnetic tape, or disk. 

~!tg£rral_~YmQQ1: a control section name, 
entry point name, or external reference; a 
symbol contained in the external symbol 
dictionary. 

K~£!Q£ing_1Qf_~!!£i£Y!~2L: enclosing of 
names having the same attributes in paren 
theses. Following the parenthesized list 
is the set of attributes that apply, in 
order to eliminate re~eated specification 
of the same attributes for more than one 
name. 

!i§lg_liu_th~_g2t~_21£g~ml: that portion 
of the data stream whose width, in number 
of characters, is defined by a single data 
or spacing format item. 

file: the collection of related records 
organized in a specific manner on an 
external storage medium. 

~il§_g~glg£~tiQn: the association of 
attributes with a filename in a program. 

218 IBM System/360 Model 20 DPS PL/I 

K~lg_l~Qgl: label containing information 
applicable to a given data file or portion 
of a data file stored on a particular 
volume. 

ti!gll~mg: tha symbolic reference, within 
a program, to a file. 

~i!~_£~Q£9glli~~iiQn: a term used to 
describe the process of writing a new file 
from an indexed file, purging records that 
are tagged for deletion, and merging reco
rds in the overflow area in their sequen
tial positions in the prime data area. 

fi!gg=!gngih_£g£2£g: a record having the 
same length as all other records with 
which it is logically or physically 
associated. 

fiK~~~£Qirri_a~ia_~i~m: see gggim~!_!i!~g= 
2Qirri_Q~i~_iigm· 

K!~~iing=£2in!_~~!~_i!gm: see gggim~! 
K!~~iing=£Qini_~~ia_i!gID· 

KQ£m~!_i!gm: a specification used in 
edit-directed transmission to describe the 
representation of a data item in the 
stream or to control the spacing and the 
format of a printed page. 

format list: a list of format items 
required-for an edit-directed data 
specification. 

!I~fliQllg!_gigi!: digit to the right of 
the decimal point. 

fYngliQn: a procedure that is invoked by 
the appearance of its entry name in a 
function reference. 

function reference: the appearance of an 
entry-name-ifi-afi-expression, usually in 
conjunction with an argument list. 

halfword: two adjacent bytes where the 
left-byte is on a halfword boundary. 

h~!K~QI~_Q2Yn~~Il: even-numbered pOSition 
in main storage. 

header label: file label preceding a 
labeled-tape file and defining it. 

hg!gg~fim~!: a character representation 
for a set of four bits. The values 0 - 15 
are represented by the digits 0 - 9 and 
the alphabetic characters A-F. 

high=QI~gI_~i~i!: leftmost digit of a 
decimal number. 



ig~n!!~ig£: a string of alphameric and 
break characters, not contained in a com
ment or constant, preceded and followed by 
a delimiter and whose initial character is 
alphabetic .• 

imE!i~i!_~g~!~f!!iQD: association of 
attributes with an identifier that is not 
explicitly or contextually declared. 

i~£li~it_til~_QE!nin~: opening a file by 
means of a GET or PUT statement when no 
previous OPEN statement for that file has 
been executed. Only STREAM files can be 
implicitly opened. 

iu~£tiyg_~£Qfggy£g: a procedure that has 
not been activated or that has been 
terminated. 

inggEgUggnt_Qyg£t!Q~_a£~a: overflow area 
designated to supplement or replace 
cylinder-overflow areas. 

iugg!gg:~i!g_Q£ggni~g!iQn: organization 
of records in a disk file on the basis of 
keys that are associated with each logical 
record. Indexed files may be accessed 
sequentially as well as directly. 

in~i!_QEg£a1Q£: an operator that defines 
an operation between two operands. 

ini1ia1_E£Q~g~y£~: a procedure whose PRO
CEDURE statement has the OPTIONS (MAIN) 
attribute. Every PLII program must have 
an initial procedure. It is invoked autJ
matically as the first step in the execu
tion of a program. 

!ni1ia1_~£Q~£a~_1Qa~g£_1!R1l. A DPS Con
trol program. Loads Monitor into main 
stora ge.. I s used to a ssig n ph ysi cal 1/0 
device addresses to symbolic addresses 
SYSRES and SYSRDR. Required for the 
initialization of the disk-resident 
system. 

initial value: value assigned to a vari
~Er;-~E-E~~-Eime storage is allocated to 
i t~ 

ingYi~Y_E~Qg~gm§: inquiry programs are 
initiated by pressing the Request key on 
the printer-keyboard and typing in the 
name of the program. The mainline program 
is rolled out on the system disk ~ack; 
then the inquiry program is loaded and 
processed; after execution is completed, 
the mainline program is rolled back into 
main storage and resumes processing. 
Inquiry programs can be executed o·nly 
under control of a Monitor that supports 
inquiry facilities. The execution of 

inquiry programs is not preceded by a Job 
Control run. 

inEY1LQY!EY1: the transfer of data 
between an external storage medium and 
(main) storage. 

!LQ_ti~g: (1) the time interval between 
the instant at which data is called for 
from an external storage device and the 
instant delivery is completed i.e., the 
read time. (2) the time interval between 
the instant at which data is requested to 
be stored and the instant at which storage 
is completed, i.e., the write time. 

ig§g£tiQg_£hs£s£tg£_jin_n~mg£i~_Ei£1y£g 
§Eg£iti~a!iQll§L: a picture character that 
causes a character to appear in the 
character-string value of a numeric char
acter data item. There are three picture 
character in Model 20 PL/I: (.) causing 
a decimal poin t to be inserted; (,) ca us
ing a comma to be inserted and (B) causing 
a blank to be inserted. 

intggg£_~igit: digit to the left of the 
decimal point. 

internal name: an identifier that has the 
INTERNAL-fiEEribute. 

1U!g£:£gfQ£g_gsE: a blank space on mag
netic tape that separates physical 
records. 

illtg££~£t: the suspension of normal pro
gram activities as the result of the 
occurrence of an enabled condition. 

invoke: to activate a procedure at its 
entry-point. 

inYQkg~_E£Q£g~y£~: a procedure that has 
been activated at its entry point. 

lnYQkin~_E£Q£~gy£~: a procedure contain
ing a statement that activates another 
procedure. 

iteration factor: a constant that speci
fi~s-(1r-E~~-number of consecutive ele
ments of an array that are to be initia
lized with a given constant; (2) the num
ber of times a given format item or list 
of format items is to be used in succes
sion in a format list. 

jQg: a unit of work for the programming 
system that is externally identified by 
one set of job-control statements. 

~Qg_£Qn!£Q!_E£Q~£a~: a DPS Control pro
gram. Resides in main storage between 
jobs and provides for automatic job-to-job 
transition. Performs IIO device assign
ment. Causes Monitor to load next 
program. 

Ap~endix A. Definition of Terms 219 



jQQ=~QU~£Ql_21~1~ID~n1: anyone of the 
control statements read from the device 
assigned to SYSRDR that identifies a job 
or defines its requirements and options. 

~gy: see §Q~£f~_~gy and £g£Q£g~g_~gy. 

~~Yli2f~: an identifier that is part of 
the language and which, when used in the 
proper context, has a specific meaning to 
the compiler. 

known: a term that is used to indicate 
the-scope of an identifier. For example, 
an identifier is always known in the pro
cedure in which it has been declared. 

hAQgl: (1) a ~hysical identification 
record on magnetic tape located either 
preceding or following a data file, or 
both. If a data file extends beyond a 
single reel of tape, a label can be placed 
preceding and following the data on each 
reel; (2) a physical identification record 
on disk which identifies the volume or 
file, (3) statement label. 

~AQgl_!~f~£~AliQn_!£gA_l1!!L: an area on 
the system disk pack into which each disk 
file label information, as contained in 
the VOL, DLAB, and XTENT statements, is 
placed by the Job Control program. This 
information is used by the label proces
sing routines. 

l~Qgl_E£g~!~: an unparenthesized identi
fier prefixed to a statement by a colon. 

lAngg~gg_~f~n§l~~Q~: a general term for 
any assembler, compiler, or other routine 
that accepts statements in one language 
and produces equivalent statements in 
another language. 

19~9i~g_~g£~2: zeros that have no signi
ficance in the value of an arithmetic num
ber; all zeros to the left of the first 
significant digit (1 through 9) of a 
number. 

19y9l_n~illQg£: an unsigned decimal integer 
constant specifying the hierachy of a name 
in a structure. It appears to the left of 
the name and is separated from it by a 
blank. 

liQ£~£Y=ill~ll~g~illgnt_E£Q9£~ID§: collective 
term for four system service programs: 
Core-Image Maintenance, Macro Maintenance, 
Directory Service, and Library Allocation 
organization programs. 

lin~=ggiiill9: combining of compiled 
object module (s) with other compiled 
object module(s) and/or PL/I library rou
tines into an executable object program. 

220 IBM system/360 Model 20 DPS PL/I 

load: to read an executable object pro
gram into main storage preparatory to 
executing it. 

1~Q2: sequence of statements executed 
successively more than one time. 

b~~=Q£gg£_~igi1: rightmost digit of a 
decimal number. 

mAi~_212£~gg: the internal storage area 
of the central processing unit (CPU) that 
controls all internal manipulation of 
data. 

m~inlill~_2£Q9£~!: program whose execution 
is interrupted by an inquiry program and 
whose execution is continued when the 
inquiry program has been processed. 

m~jQ£_2t£g£1y£g: a structure whose name 
is declared with level number 1. 

ill~jQ£=§!fY£!Yfg_nA~g: name used to refer 
to the entire structure must be declared 
with level number 1. 

minor structure: a structure whose name 
Is-declared-;ith a level number greater 
than 1. 

mQg~!g: the input to, or output from, a 
single execution of an assembler or com
piler; a source, object, or load module; 
hence, a program unit that is discrete and 
identifiable with respect to compiling, 
combining with other units, and loading. 

~Qlli~Q~_~£Qg£~m. The main DPS control 
program. Resident in main storage 
throughout a system run. Loads programs 
into main storage and causes their 
execution. 

multi-extent disk file: file stored on a 
aisk-pack-defined-by-;ore than one extent. 

multi-file volume: volume that contains 
more-than-one-iile. 

illylli=fggl_!AEg_filg: a file stored on 
more than one tape reel. 

multi-volume disk file: a disk file 
stored-on-more-than-one disk pack. 

ill~!i!2!g_gg~12£A1iQn: two or more 
declarations of the same identifier in the 
same procedure without different qualifi
cations, or two or more EXTERNAL declara
tions of the same identifier as different 



names within a single program. Multiple 
declaration is in error. 

name: an identifier that has been 
declared. 

rrg~tia~: 1. the occurrence of a DO-group 
within another DO-group. 2. the occur
rence of an IF statement in a THEN clause 
or an ELSE clause. 3. the occurrence of 
a function reference as an argument of 
another function reference. 

null statement: represented by a semicolon;-indicates that no action is to be 
taken .• 

ngillg~i~~~ha£a~tg~_~~l~: arithmetic data 
described by a picture that is stored in 
character form. It has both an arithmetic 
value and a character-string value. 

QQjg~1_illQ~glg: the output of an assembler 
or a compiler. An object module consists 
of (1) one or more control sections in 
relocatable, though not executable, form 
or (2) one executable object program. See 
fQillE11gQ_QQig£1_illQ~gl§. ana §.!§.~gtaQlg 
Q.Qjg£t_~Q.4!!lg· 

2n=11Q§: pertaining to equipment or 
devices under direct control of the centr
al processing unit. 

Q~=gnil: the action to be executed upon 
the occurrence of the ON-condition named 
in the containing ON statement. 

QE§n1ng_l~_~il§L: activating a file by 
means of an OPEN or GET or PUT statement 
associated with that file. 

Q.£g£~rr~: the representation of (1) infor
mation that must be supplied to define a 
selecti ve function to the pro~ ram, (2) 
selection of a value on which an operation 
is to be ~erformed. 

QE§~~112Q: a selective function to be 
performed by the program. 

Q.E§£~11Q.n~1_§!E£§§§iQn: eXfression con
taining operators. 

QE§f~1Qf: a symbol specifying an opera
tion to be performed. See ~£i1~!g1i£ 
QEgfalQ~§L_~2IDE~~i§2Q_QEg£~1Q.£§, and 
£.Qng~i§nE:1i2n· 

Q.£tiQ.rr: a specification in a statement 
that may be used by the programmer to 
influence the execution of the statement. 

2£gE:n1~~1i2n_2~_~_fil§: see £Q~§gg~1iY§ 
!11§_Q£gE:n1~~ii2n and in~g!g~_filg 
2f$l~n1~~iiQn· 

Qyg£flQ~_~£gE:: tracks designated to 
accommodate records that are forcea off 
the prime-aata tracks by the insertion of 
new recor ds. 

Q!§£l~Y: to ~lace a segment of an execut
able object program into main storage 
locations occupied by another program or 
segment that has alreaay been processed. 

E~9f~g=$~91ID~1: storage technique whereby 
two dig~ts or one digit·and a sign are 
stored per byte. 

E~£~mgig~: a name in an invoked procedure 
that is used to represent an argument 
passed to that procedure. 

E§£ill~llgllt_gl§~_l~~gl: disk label that has 
been cataloged as a permanent entry into 
the label information area. 

£ha§g=gn£Q~g~_l~£g: tape of the magnetic 
tape drive models 2415-4,-5,-6. 

EhY§i£al_£g£Q£~: the block (or the unit) 
of data that is physically transmitted to 
and from a volume. 

E1£lg£g: a character-by-character speci
fication describing the composition and 
attributes of numeric character data. It 
allows editing. 

EQ.irrt_~lignillgni: alignment of arithmetic 
data in a variable depending upon the 
location of the decimal point as specified 
by the precision and scale attributes or 
the picture character V in a numeric
picture specification. 

EQ1n1_Qf_in!Qg~liQn: the point in the 
invoking procedure at which the procedure 
reference to the invoked procedure 
appears. 

EQ1n1g~_!~£iE:Qlg: a variable that identi
fies the storage to be used when referring 
to a based variable. 

E£gfi~iQn: the value range of an arith
metic variable expressed as the total num
ber of digits allowed and# for fixed-point 
variables, the assumed location of the 
decimal point. 

E£g£Q.~Eilgg_Q£jg~i_mQQglg: module that 
has been compiled or assembled by the PL/I 
Compiler or Assembler, respectively, but 
not link-edited, and that is used again as 
compiler input to be link-edited. 

E£§!i!: (1) a label connected by a colon 
to the beginning of a statement; (2) a 
parenthesized list of condition names con
nected by a colon to the beginning of a 
procedure statement. 

Appendix A. Definition of Terms 221 



££gK!!_~£g£~t~£: an operator that Fre
cedes, and is associated with, a single 
operand. The prefix operators are + 
and -

£~!mg_~~l~_~~g~: disk areas where the 
records of an INDEXED file are initially 
stored. 

££QQ1§ill_9~1g: character string or arith
metic data that is processed by a PL/I 
program. 

£~2g~gQ~g: a block of statements, headed 
by a PROCEDURE statement and ended by an 
END statement, that defines a program 
region and delimits the scope of names and 
that is activated by a reference to its 
name. It controls allocation and freeing 
of automatic storage declared in it. A 
procedure may contain any statement except 
another PROCEDURE statement. 

£~Qg~gy~§_~§!gIgnfg: the appearance of a 
procedure name in a CALL statement. 

£~Qg£~ill: a set of one or more procedures, 
one of which must have the OPTIONS (MAIN) 
attribute in its PROCEDURE statement. 

£IQgI~m=£Qn1fQl_g~!~: data used in a PL/I 
program to affect the execution of the 
program. Label data and pOinter data are 
the types of program control data. 

££~l~~~g: those processes that occur at 
the activation of a procedure. 

£§~yg2~Y~~!~Qlg: the built-in function 
SUBSTR that can be used as a receiving 
field. 

gg~l!f!gg_n~m~: a sequence of names of 
structure members connected by periods, to 
uniquely identify a component of a 
structure. 

£gggky!ng_f!gl£!.: any field to which a 
value may be assigned~ 

~~g2~9: a general term for any unit of 
data that is distinct from all others when 
considered in a particular context. 

fg£Qfg_~QfID~!: see ~!!§g=l§n[iQ_£g£~£gL 
Y~f1~Qlg=lgng!g_f§~Qf~, and Yng§~ing£!.~ 
1§ng1!Lf§£2fQ· 

fg£~fg=~£!gntgg_JLQ: the transmission of 
collections of data, called records, one 
record at a time. The external represen
tation of the data is an exact copy of the 
internal, and vice versa. 

222 IBM System/360 Model 20 DPS PL/I 

£§fQ£9§9_~gy: a character string recorded 
in a logical record of an INDEXED file to 
identify that record. 

£glQg~l~Qlg_~£g~: an area on the system 
disk pack to temporarily hold an object 
module, thus ~ermitting the assembly or 
compilation and the execution of a program 
or program segment in one job. 

fg12£~1!2n: the modification of address 
constants required for a change of origin 
of a module or control section. 

remote format item: specification of a 
label-of-a-separate statement that con
tains the format list to be used. 

£~2g1!t!Qn_!~g12£: a parenthesized 
unsigned decimal integer constant preced
ing a string configuration as a shorthand 
re~resentation of a string constant. The 
repetition factor specifies the number of 
occurrences that make up the actual con
stant. In picture specifications, the 
repetition factor specifies repetition of 
a single picture character. 

£§2§t!t!yg_§2gf1!1£~1i2n: an element of ~ 
data list that specifies controlled itera
tion to transmit a list of data items, 
generally used in conjunction with arrays. 

Rg£Q£t_2gng£~tQf_~n£!._Bg£Q£1_gf~gI~ill 
2gng£~tQ£_JR~21: A program which con
structs reports or report-writing programs 
in accordance with input specifications ~f 
the data file and of the desired report. 

reserved word: a keyword that has a spe
cIiIc-meanIng and may only be used in a 
specific context. 

returned value: the value returned by a 
functIon-to-the point of invocation. 

£QQt_~ggillgni: segment containing the main 
procedure of a segmented program. Must 
remain in storage throughout execution of 
a program. Must be the 1st segment of the 
program. 

§£~!§: fixed-or floating-point represen
tation of an arithmetic value. 

§£~!§_~~£!Q£: the number of digits to the 
right of the decimal point. 

~£QEg_JQf_~_gQng!liQrr_£fgKi!L: the range 
of a program throughout which a condition 
prefix applies. 

§£QE~_JQf_~_rr~illgL: the range of a program 
throughout which a name has a particular 
inteq~-,reta tion. 

2§f1Q£: one tenth of a track (270 bytes). 



§§gID§n~: the smallest aaaressable unit in 
the core-image library of a aisk-resident 
system. 

§§gY§i1i~1_~££~§§_lQf_~_fil~L: consecu
tive transfer of either the whole file or 
part of the file. 

§§~Y!~§_££Q9£2ID§: a group of programs 
that create and maintain the system 
libraries and the relocatable area. 

§i~niti£~nt_~i~it: a digit that contri
butes to the accuracy or precision of a 
numeric value. The number of significant 
digits is counted beginning with the digit 
contributing the most value, called the 
most significant digit, ana ending with 
the one contributing the least value, 
called the least significant value. 

§QY~£§_~§Y: a character string or a num
eric character data item referrea to in a 
RECORD transmission statement that iaenti
fies a particular record within an INDEXED 
file. The source key is a character 
string to be compared with, or written as, 
a recorded key to identify the record. 

§Qy~g2_IDQ~Y1§: a set of source statements 
forming a complete control section or 
procedure. 

§Q~££§_££Q9£2ID: the program that is 
translated and link-editea by the 
compiler. 

§~§£i~l_£h~£~£t~£: each non-alphameric 
character of the 60 or 48 character set. 

§1~£~§~~jQ£_E£Q£~§§in~: see £~t£h~~~i~Q 
££Q£g§§in~· 

§~~gg2£g_§Y§~§ID_2£~1Qn: action taken by 
the system when an interrupt occurs for 
which no other action has been specified. 

statement: a basic element of a PL/I pro
gram-that is usea to aelimit a portion of 
a program, to describe data used in the 
program, or to specify action to be taken. 

§1~1§ID§n~_1~~§1: an identifying name pre
fixea to any statement other than a PROCE
DURE statement. 

statement label variable: a variable 
decra~ed-wIth-the-LABEL-attribute and thus 
able to assume as its value a statement 
label. 

§1~li£_§lQ£~~~: storage that is allocated 
before execution of the program begins and 
that remains allocated for the duration of 
the program. 

§tQr~g§_~11Qf~1iQn: Association of a 
storage area with a variable. 

§l£~~ill: data being transferred from or to 
an external medium represented as a con
tinuous string of data items in character 
form. 

§1£~~ill~Q£i~nl~~_inE~iLQ~1EY~: transmis
sion of data items as a continuous stream 
of characters that are, on input, automat
ically converted to conform to the attri
bute of the variables to which they are 
assigned ana, on output, are automatically 
converted to character representation. 

§l£in~: a connected sequence of charac
ters that is treated as a single data 
item. 

§l£in~_QE~£~lQ£: the string operator is 
II, denoting concatenation of character 
strings. 

§t£~£t~£§: a hierarchical set of names 
that refers to an aggregate of data items 
that may have different attributes. 

§~£fi~l~: the integer description portion 
or the fraction description portion of a 
picture specification field that describes 
a noninteger fixed-point data item. The 
subfields are divided by the picture char
acter V. 

§Y£§££iLl: expression enclosed in paren
theses following an array variable. It 
specifies the relative position, within 
the array, of a particular data element. 

substructure: structure declared one or 
more-levels-below the major-structure 
level. 

§YIDQQ1!£_~§Yi£§_~gg£§§§: a symbol usea in 
IBM-supplied and user-written programs to 
refer to an I/O device (e. g., SYSRES, SYS
IPT, SYS005). 

§Y§l~ill~~i§~_£~£&: the disk pack on which 
the user's disk-resiaent system is stored. 

!a£~_~££Q£_g~£QY~£Y_£Qg1ig§_J!~BL: a rou
tine to control the execution of error 
recovery proceaures in the case of magnet
ic tape IIO errors. 

!a£g_~££Q£_~l~li§ii£§_£Qyti~~_JI~~L' a 
routine to analyze the interrupts and mag
netic tape I/J errors occurring during the 
execution of a program. 

laE~illa£~: a special record that can be 
read from, or written onto, magnetic tape. 
Used to distinguish the end of a file or 
file segment, ana to se~arate labels from 
the aata. 

Appendix A. Definition of Terms 223 



19~min~1iQn: cessation of execution of a 
procedure and the return of control to the 
activating procedure by means of a RETURN 
or END statement, or the transfer of con
trol to the activating procedure or some 
other active procedure by means of a GO ro 
statement. A return of control to the 
programming system via a RETURN or END 
statement in the initial procedure. See 
g£b!Qgyg· 

track: concentric circle on a disk sur
face-used for the storage of data. One 
track may accommodate 2,700 bytes of data. 

1~2g~_!ngg!: table containing the identi
fication and the highest key associated 
with each t~ack occupied by a file. 

traile~ label: file label following a 
fIle-or-part-of tape file furnishing the 
information required to determine whethe~ 
the end of file has been reached or wheth
er the file is continued on another 
volume. 

truncation: loss of digits to the right 
or-left-ot a data item. 

~rrg§iirrgg~lgngih_rg~Qr~2: records of 
va~ying length, where by each block con
sists of only one record. The system does 
not inse~t any length-specifying records 
into the block. 

Q1ili1Y_£~Q~~~~1§l: a program or a set of 
programs which assist in the operation of 
a computer, i.e., storage clearing, inter
mediate data transmission, dump program, 
file o~ganization routines, etc. 

!~~!~~lg: a name that represents data. 
Its attributes remain constant, but it can 
represent different values at diffe~ent 

224 IBM System/360 Model 20 DPS PL/I 

times. Variables fall into three cate
gories: element, array, and structure 
variables~ Variables may be subscripted 
and/or 1ualified. 

y~ri~Qlg=lgn~1h_rg£Q£g2: logical ~ecords 
whose number of bytes is not fixed, but 
may vary within prescribed limits. 
Variable-length logical reco~ds may be 
blocked into physical records. Deblocking 
is de~endent ufon length-specifying bytes 
at the beginning of each logical and each 
physical record. The length bytes are 
inserted automatically by the system. 

YQ1Qillg: that portion of a single unit of 
storage media that is accessible to a 
single read/write mechanism. For example, 
a reel of magnetic tape for a 2415 magnet
ic tape drive, or one 1316 Disk Pack for 
an IBM 2311 Disk storage Drive. 

volume label: the volume label indenti
tIes-ana-protects the entire volume (disk 
pack or magnetic tape reel). It is fixed 
in length and format, and lies in a fixed 
location within the volume. The volume 
label contains the volume se~ial number. 
In addition, the disk volume label con
tains the address of the volume table of 
contents. 

~Q1Yillg_r~~!g_Q!_~Qn1gn1§_lY!Q~l: a number 
of records on a disk pack, composed of 
disk file labels, specifying the extents 
of, and identifying all files on the pack. 

~g£Q=2Q£[rg22bQrr_£h~r~£lgr_liu_~_2ifly£g 
2gg£iii£~iiQnL: picture characte~ (Z or 
*) used to suppress leading zeros. 



(This appendix contains on~y preliminary 
information) • 

Source programs written in Model 20 
PL/I are upward com~atible to DOS/TOS PL/I 
and yield identical results on other 
System/360 models with the following 
exceptions: 

1. Floating-point arithmetic is imple
mented in Model 20 PL/I in decimal 
arithmetic. This means that internal 
precision and round-off errors are 
slightly different. 

2. The difference mentioned above causes 
a file incompatibility when using 
FLOAT variables in PL/I record
oriented I/O. This is due to the dif
ference in the representation of data. 
A method for reading such files with a 
DOS/TOS PL/I program will be described 

Appendix B. Upward Combatibility 

in the third part of this publication 
at a later date. 

3. The IB~ 2560 ~ulti-Function Card 
Machine, the 2203 Printer, and the 
2152 Printer-Keyboard are not sup
ported on other System/360 models. 
~inor changes in the ENVIRONMENT 
attribute are necessary to change to 
other devices. 

4. In the ~EDIU~ option, the symbolic
device address SYSOPT has been intro
duced for Model 20 DPS. Programs that 
are expected to run on both Model 20 
and DOS/TOS PL/I should use SYSPCH 
instead of SYSOPT. SYSPCH and SYSOPT 
are synonymous in Model 20 PL/I. 

Appendix B. Compatibility 225 



Appendix C. Character Sets with EBCDIC and Card-Punch Codes 

§ Q: f!j!]! £!:~!! _~:§.! 

Character Card-Punch 8-Bit Code --blank-- no-punches 0100-0000-
12-8-3 0100 1011 

< 12-8-4 0100 1100 
( 12-8-5 0100 1101 
+ 12-8-6 0100 1110 
I 12-8-7 0100 1111 
& 12 0101 0000* 
$ 11-8-3 0101 1011 
* 11-8- IJ 0101 1100 
) 11-8-5 0101 1101 

11-8-6 0101 1110 
11-8-7 0101 1111 
11 0110 0000 

1 0-1 0110 0001 
, 0-8-3 0110 1011 
% 0-8-4 0110 1100* 

0 8-5 0110 1101 
> 0=8-6 0110 1110 
'? 0-8-7 0110 1111* 

8-2 0111 1010 
# 8-3 0111 1011 
~~ 8-4 0111 1100 

8-5 0111 1101 
8-6 0111 1110 

l~ 12-1 1100 0001 
B 12-2 1100 0010 
C 12-3 1100 0011 
D 12-4 1100 0100 
E: 12-5 1100 0101 
p 12-6 1100 0110 
G 12-7 1100 0111 
H 12-8 1100 1000 
I 12-9 1100 1001 
J 11-1 1101 0001 
K 11-2 1101 0010 
L 11- 3 1101 0011 
M 11-4 1101 0100 
N 11-5 1101 0101 
0 11-6 1101 0110 
P 11-7 1101 0111 
Q 11-8 1101 1000 
R 11-9 1101 1001 
S 0-2 1110 0010 
T 0-3 1110 0011 
U 0-4 1110 0100 
V 0-5 1110 0101 
W 0-6 1110 0110 
x 0-7 1110 0111 
y 0-8 1110 1000 
Z 0-9 1110 1001 

* not used in Model 20 PL/I 

226 IBM System/360 Model 20 DPS PL/I 

£h.~£§!£:t~£ 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Composite 
~Y!!l!2Q!§ 

<= 
II 
** 
1 < 
,> 
,= 
>= 
1* 
*1 

~§!£!!=!:!!n£h. 
o 

8-Bit Code 
1111-0000-

1 
2 
3 
4 
5 
6 
7 
8 
9 

Card Punch 

1111 0001 
1111 0010 
1111 0011 
1111 0100 
1111 0101 
1111 0110 
1111 0111 
1111 1000 
1111 1001 

12=8=4;-8=6 
12-8-7, 12-8-7 
11- 8- 4, 11- 8- 4 
11-8-7, 12-8-4 
11- 8- 7, 0- 8- 6 
11-8-7, 8-6 
0-8-6, 8-6 
0-1,11-8-4 
11-8-4, 0-1 

NQ!~: When using the 60-character set the 
following rule should be observed: The 
composite symbols of the 48-character set 
(see ~§=£h~f§!£!gf_2gi in this Appendix) 
must not be used as keywordS or delimiters 
with the 60-character set~ The alphabetic 
character combinations would be inter
preted as identifiers; the special charac
ter combinations would cause errors. 
Exceptions are the character combinations 
for comments. They are identical in both 
character sets. 



~§=~§~!i!£!~!i_2~! 60-Char-acter-
Composite Set 

~h§:£§:52t~£ Card-punch 8-Bit code 2Y!!!QQ1§ Card punch £;a!!!y.2.1sm:t 
blank no-punches 0100-0000- 12=8=:3"~-12 - 8 - 3 

12-8-3 0100 1011 LE 11-3, 12-5 <= 
12-8- 5 0100 1101 CAT 12-3, 12-1, 0-3 1.1 

+ 12-8-6 0100 1110 ** 11-8-4, 11- 8- 4 ** $ 11- 8- 3 0101 1011 NL 11-5, 11-3 1 < 
* 11-8- 4 0101 1100 NG 11-5, 12-7 ,> 
) 11-8-5 0101 1101 NE 11-5, 12-5 1 = 

11 0110 0000 , . 0-8 -3, 12-8-3 
1 0-1 0110 0001 AND 12-1, 11- 5, 12- 4 & 

0-8-3 0110 1011 GE 12-7, 12-5 >= 
8-5 0111 1101 GT 12-7, 0-3 > 
8-6 0111 1110 LT 11-3, 0-3 < 

A 12-1 1100 0001 NOT 11- 5, 11- 6, 0- 3 1 

B 12- 2 1100 0010 OR 11-6, 11-9 I 
C 12-3 1100 0011 1* 0- 1, 11- 8- 4 1* 
D 12- 4 1100 0100 *1 11-8-4, 0-1 *1 
E 12-5 1100 0101 
F 12-6 1100 0110 
G 12-7 1100 0111 
H 12-8 1100 1000 
I 12-9 1100 1001 Note: Wh·en using the 48-character set, 
J 11-1 1101 0001 the following rules should be obser-ved: 
K 11- 2 1101 0010 
L 11-3 1101 0011 
M 11- 4 1101 0100 1 • The se'1uence "comma period" represents 
N 11-5 1101 0101 a semicolon except when it occurs in a 
0 11-6 1101 0110 comment or- character string, or when 
P 11-7 1101 0111 it is immediately followed by a digit. 
Q 11-8 1101 1000 
R 11-9 1101 1001 
S 0-2 1110 0010 2. The composite symbols of the 48-
T 0-3 1110 0011 character set are reserved words in 
U 0-4 1110 0100 the 48-character set; i. e. , these 
V 0-5 1110 0101 identifiers must not be used as 
W 0-6 1110 0110 variables, entry names, or- filenames. 
X 0-7 1110 0111 
y 0-8 1110 1000 
Z 0-9 1110 1001 
0 0 1111 0000 
1 1 1111 0001 
2 2 1111 0010 
3 3 1111 0011 
4 4 1111 0100 
5 5 1111 0101 
6 6 1111 0110 
7 7 1111 0111 
8 8 1111 1000 
9 9 1111 1001 

Appendix C. Character sets with EBCDIC and Card-Punch Codes 227 



Appendix D. Model 20 PL/I Keywords 

ABS (x) 
ADDR (x) 
ATAN(x[,y]) 
AUTOMATIC 
BACKWARDS 
BASED (pointer-variable) 
BUILTIN 
BY 
CALL 
CEIL (x) 
CHAR (val ue[ , size]) 
CHAR (length) 
CHARACl' ER (lengt h) 
CLOSE 
CONVERS ION 
COS (x) 
DATE 
DCL 
DECIMAL 
DECLARE 
DEF 
DEFINED 
DIRECT 
DISPLAY 
DO 
EDIT 
ELSE 
END 
ENDFILE 
ENDPAGE 
ENTRY 
ENV 
ENVIRONMENT 
ERROR 
EXP (x) 
EXT 
EXTERNAL 
FILE 
FILE (file-name) 
FIXED 
FIXEDOVERFLOW 
FLOAT 
FLOOR (x) 
FORMAT (format-list) 
FROM 
GET 
GO TO,GOTO 
HIGH(i) 
IF 
INIT 
INITIAL 
INPUT 
INTERNAL 
INTO (variable) 
KEY (file-name) 
KEY(x) 
KEYED 
KEYFROM (x) 
LABEL 
LOCATE 

built-in function 
built-in function 
built-in function 
attribute 
attribute 
attribute 
attribute 
clause of DO statement 
statement 
built-in function 
built-in function 
attribute 
attribute 
statement 
condition 
built-in function 
built-in function 
statement 
attribute 
statement 
attribute 
attribute 
attribute 
statement 
statement 
STREAM 1/0 tcansmission mode 
clause of IF statement 
statement 
condition 
condition 
attribute 
attribute 
attribute 
condition 
built-in function 
attribute 
attribute 
attribute 
option of GET and PUT, specification of RECORD 1/0 statement 
attribute 
condition 
attribute 
built-in function 
statement 
option of REWRITE or WRITE statement 
statement 
statement 
built-in function 
statement 
attribute 
attribute 
attribute 
attribute 
option of READ statement 
condition 
option of READ and REWRITE statement 
attribute 
option of WRlrE and LOCATE statement 
attribute 
statement 

228 IBM System/360 Model 20 DPS PLII 



LOG (x) 
LOW (i) 
MAIN 
MAX (argumen ts) 
MIN (arguments) 
NOCONVERSION 
NOFIXEDOVERFLOW 
NOOVERFLOW 
NOUNDERFLOW 
NOZERODIVIDE 
ON 
ONSYSLOG 
OPEN 
OPTIONS (list) 
OUTPUT 
OVERFLOW 
PAGE 
PAGESIZE(w} 
PIC 
PICTURE 
POINTER 
PRINT 
PROCEDURE 
pur 
READ 
RECORD 
RECORD (file-name) 
REPLY (c) 
RETURN 
RETURNS 
REWRITE 
ROUND(x,n) 
SEQUENTIAL 
SET 
SIN (x) 
SKIP[ (x) ] 
SQR T (x) 
STATIC 
STREAM 
STRING (stI:' ing-name) 
SUBSTR(string,i,j) 
SYSTEM 
TAN (x) 
T ANH(x) 
THEN 
TO 
TRANSMIT 
TRUNC (x) 
UNDERFLOW 
UPDATE 
WRITE 
ZERODIVIDE 

built-in function 
built-in function 
option of PROCEDURE statement 
built-in function 
built-in function 
condition prefix identifier, 
condition prefix identifier, 
condition prefix identifier, 
condition prefix identifier, 
condition prefix identifier, 
statement 

·disables 
disables 
disables 
disables 
disables 

option of PROCEDURE statement 
statement 
option of PROCEDURE statement 
attribute 
condition 
format item, option of PUT statement 
option of the OPEN statement 
attribute 
attribute 
at·tribute 
attribute 
statement 
statement 
statement 
attribute 
condition 
option of DISPLAY statement 
statement 
attribute 
statement 
built-in function 
attribute 
option of READ and LOCATE statements 
built-in function 
format item, option of PUT statement 
built-in function 
attribute 
attribute 

CONVERS ION 
FIXEDOVERFLOW 
OVERFLOW 
UNDERFLOW 
ZERODIVIDE 

option of GET and PUT statements 
built-in function, pseudo-variable 
action specification of the ON statement 
built-in function 
built-in function 
clause of IF statement 
clause of DO statement 
condition 
built-in function 
condition 
attribute 
statement 
condition 

Appendix D: Model 20 PL/I Keywords 229 



Appendix E. File .Attributes and Options 

A 
T 
T 
R 
I 
B 
U 
T 
E 
S 

o 
P 
T 
I 
o 
N 
S 

< 

< 

STREAM 

INPUT OUTPUT 
TYPE OF FILE 

FILE 
ATTRIBUTES 

C<: 
w 

AND OPTIONS 0 w 0 I- w ~ z C<: a.. VI C<: a.. 
oc( oc( 0 

oc( ~ oc( 
U I- U a.. I-

filename 1-6 characters S S S S S S 

FILE S S S S S S 

RECORD 

STREAM D D D D D D 

SEQUENTIAL 

DIRECT 

KEYED 

. INPUT S S S 

OUTPUT S S S 

UPDATE 

PRINT 

BACKWARDS 

ENVIRONMENT ( S S S S S S 

MEDIUM ( S S S S S S 

SYSIPT C C C 

SYSOPT/SYSPCH C C 

SYSLST C 

SYSnnn (nnn = 000 - 019) C C C C C C 

250 1/252O/2560P /2560S/215 2 C 

252O/2560P /2560S/1442 C 

1403/2203/2152 C 

2400 S S 

2311) S 

CONSECUTIVE D D D D D D 

INDEXED 

KEYLENGTH 

KEYLOC 

OFLTRACKS 

EXTENTN UMBER 

U (maxblocksize) T T 

F (blocksize) S S S S S S 

F (blocksize, recsize) 

V (maxblocksize) 

BUFFERS (1) 0 0 0 0 0 0 

BUFFERS (2) D D D D D D 

LEAVE 0 0 

NOlABEl 0 0 

VERIFY 

NOTAPEMK 0 

AlTTAPE 0 0 

CTlASA 

NOWRITE) 

Symbols used: S = Attribute must be specified 
D =Default attribute, if not specified 
o -Optional attribute. Specify if applicable 
C -Choice must be made among these attributes 
T = For 2152 U must be used instead of F 
No entry i"s permitted, where a blank appears 

230 IBM System/360 MOQel 20 DPS PL/I 

es 
I-

~ z 
0 ~ a.. 

S S 

S S 

D D 

S D 

S 

S S 

S S 

C 

C 

C C 

C 

S 

D D 

T 

S S 

0 0 

D D 

0 

OUTPUT 
PRINT 

~ ~ 
VI 

0 I-

S S 

S S 

D D 

D D 

S S 

S S 

S S 

C C 

S 

S 

D D 

S S 

0 0 

D D 

0 

0 

0 

0 

0 

'-' RECORD 

SEQUENTIAL DIRECT 

CONSECUTIVE INDEXED 

~Rfm TAPE DISK 

~ ~ 
u 

5 0 ~ 5 5 w 5 w w 

5 .... 5 I- 5 I- 5 I-a.. a.. a.. oc( a.. oc( oc( 

5 a.: a.: 5 5 5 a.. a.. 0 a.. 0 a.. 0 
~ 0 ~ ~ 0 ~ 0 ~ ~ 0 ~ ~ ~ 

S S S S S S S S S S S S S 
S S S S S S S S S S S S S 

S S S S S S S S S S S S S 

D D D D' D D D D D D D 

S S 

S S S S S 

S S S S S S 

S S S S 

S S S 

S 

S S S S S S S S S S S S S 

S S S S S S S S S S S S S 

C C C 

C C C 

C 

C C C S C C C S S S S S S 

C 

C 

C 

S S S 

S S S S S S S S 

D D D D D D D D 

S S S S S 

S S S S S 

S S S S S 

0 0 

S S S S S 

T T C C C 

S S C C C C C C C C C C C 

C C C C C C C C C C C 

C C 

0 0 0 0 0 0 0 0 0 0 0 D D 

D D D D D D D D D D D 

0 0 0 

0 0 0 

0 0 0 0 0 

0 

0 0 

0 

0 



Appendix F. Valid liD Statements 

RECORD 

STREAM SEQUENTIAL DIRECT 
VALID INPUT/OUTPUT 

CONSECUTIVE INDEXED 
STATEMENT FORMATS 

Z 
Q2 
Q.. 

l-
I- Z 

APPLICABLE 
0 Q2 
Z Q.. 

ON-CONDITIONS 5 5 5 w 5 w w 

5 5 I- 5 I- 5 I-
Q.. Q.. Q.. « Q.. « « 

Q.. 5 5 Q.. 5 0 Q.. 5 0 Q.. 0 
Z 0 0 z 0 ~ ~ 0 ~ z ~ 

OPEN FILE (filename) 0 0 0 M M M M M M M M 

FILE (filename) PAGESIZE (n) 0 

CLOSE FILE (filename) 0 0 0 0 0 0 0 0 0 0 0 

GET FILE (filename) EDIT (data) (format) ... 0 

FILE (filename) EDIT (data) (format) ... 0 0 -
fiLE (filename) PAGE 0 

PUT FILE (filename) SKIP (n) 0 

FILE (filename) PAGE EDIT (data) (format) •.• 0 
-""- ."-

FILE (filename) SKIP (n) EDIT (data) (format) •.• 0 

FILE (filename) INTO ;(variable) 0 0 0 0 

READ fiLE (filename) SET (pointer) 0 0 

FILE (filename) INTO (variable) KEY (expression) 0 0 0 0 

FILE (fi lename) 0 

REWRITE FILE (filename) FROM (variable) 0 0 

FILE (filename) FROM (variable) KEY (expression) 0 0 

LOCATE variable FILE (filename) SET (pointer) 0 

FILE (filename) FROM (variable) 0 
WRITE --r-

FILE (filename) FROM (variable) KEYFROM (expression) 0 0 

CONVERSION 0 

ENDFILE (filename) 0 0 0 0 0 
"-

ON-CONDITIONS ENDPAGE (filename) 0 

WHICH MAY OCCUR KEY (filename) 0 0 0 0 0 -"_O- r--
RECORD (filename) 0 

TRANSMIT 0 0 0 0 0 0 0 0 0 0 0 

Symbols used: M = Use of this statement is mandatory 
0= For I/O statements: Use of this statement format is optional 

For ON conditions: This condition may occur 

Appendix F. Valid I/~ statement Formats 231 



INDEX 

A data-format item 
general description and examples ••••• 62 
rules and syntax ••••••••••••••••••••• 99 

ABS built-in function ••••••••••••••••• 105 
Access 

of a consecutive file ••••••••••••••• 172 
of an indexed file •••••••••••••••••• 180 

Activation of a procedure •••••••••••••• 19 
Actual device address ••••••••••••••••• 149 
Addition 

attributes of result of •••••••••••••• 34 
of fixed-point operands •••••••••••••• 32 
of records to an indexed file 

(':=xample) •••••••••••••••••••••••••• 178 
Additive file attribute •••••••••••••••• 55 
ADDR built-in function 

general description and examples ••••• 85 
syntax and rules •••••••••••••••••••• 109 

Alignment of data items in storage •••• 204 
Alphabetic character ••••••••••••••••••• 15 
Alphameric character ••••••••••••••••••• 15 
Alternate tape unit, assignment of •••• 170 
Alternative file attribute ••••••••••••• 55 
ALTTAPE option 

example of its use •••••••••••••••••• 170 
general rules ••••••••••••••••••••••• 184 

Ambiguous reference •••••••••••••••••••• 53 
Argument ••••••••••••••••••••••••••••••• 75 
Argument list •••••••••••••••••••••••••• 75 
Arguments and parameters 

in Assembler procedures ••••••••••••• 201 
general description and examples of •• 75 
relationship of •••••••••••••••••••••• 79 
types of ••••••••••••••••••••••••••••• 80 

Arithmetic built-in function •••••••••• 105 
Arithmetic data •••••••••••••••••••••••• 20 

base of •••••••••••••••••••••••••••••• 20 
precision of ••••••••••••••••••••••••• 21 
scale of ••••••••••••••••••••••••••••• 20 
values of ••••••••••••••••••••••••• 21,22 

Arithmetic operation ••••••••••••••••••• 30 
conversion of operands in •••••••••••• 31 
format of result of •••••••••••••••••• 31 
result of •••••••••••••••••••••••••••• 31 

Arithmetic operator •••••••••••••••••••• 16 
list of arithmetic operators ••••••••• 16 

Arithmetic value 
of numeric-character variable •••••••• 72 

Array 
assignment •••••••••••••••••••••••••• 124 
bound of ••••••••••••••••••••••••••••• 26 
dimension of ••••••••••••••••••••••••• 26 
extent of •••••••••••••••••••••••••••• 26 
general description and examples •• 25,26 
storage mapping of •••••••••••••••••• 204 
subscript •••••••••••••••••••••••••••• 25 

expression as array subscript •••••• 26 
variable ••••••••••••••••••••••••••••• 25 

ASA control character ••••••••••••••••• 170 
Assembler ••••••••••••••••••••••••••••• 200 

procedure linked with PL/I 
procedures ••••••••••••••••••••••••• 203 

232 

ASSGN job-control statement ••••••••••• 147 
Assignment 

array ••••••••••••••••••••••••••••••• 124 
element variable •••••••••••••••••••• 124 
expression •••••••••••••••••••••••••• 124 
label array ••....••••..•••••.•.••.•. 124 
label constant •••••••••••••••••••••• 124 
label variable •••••••••••••••••••••• 124 
of alternate tape unit •••••••••••••• 170 
pointer ••••••••••••••••••••••••••••• 124 
by stream-oriented I/O ••••••••••••••• 70 
by using the STRING option in the 

GET and PUT statements •••••••••••••• 71 
Assignment statement 

formats and syntax rules •••••••••••• 124 
general description and examples ••••• 40 

asterisk picture character ••••••••••••• 92 
ATAN built-in function •••••••••••••••• 107 
ATR option •••••••••••••••••••••••••••• 158 
ATRO option ••••••••••••••••••••••••••• 158 
Attribute 

alphabetic list of attributes ••••••• 116 
table of file attributes and options 230 

Automatic storage •••••••••••••••••••••• 48 
AUTml}ATIC storage-class attribute ••••• 116 

BACKWARDS file-description attribute 
example of its use •••••••••••••••••• 171 
general description •••••••••••••••••• 57 
rules and format •••••••••••••••••••• 116 

Base identifier •••••••••••••••••••• 117,29 
Based storage •••••••••••••••••••••••••• 86 
BASED storage-class attribute 

general description and examples ••••• 86 
rules and format •••••••••••••••••••• 116 

Based variable 
general description and examples ••••• 84 

Batch compilation ••••••••••••••••••••• 153 
Blank 

picture character •••••••••••••••••••• 94 
use of blanks in PL/I statement •••••• 17 

Block 
ON-block •••••••••••••••••••••••••••• 201 
record block ••••••••••••••••••••••••• 54 

Blocking 
of records ••••••••••••••••••••••••••• 54 
summary of block sizes permitted •••• 182 

Bound of array ..•••..•..••••.•.••.••••. 26 
Break character •••••••••••••••••••••••• 17 
Buffer ••••••••••••••••••••••••••••••••• 55 
BUFFERS option 

example of its use •••••••••••••••••• 177 
general rules ••••••••••••••••••••••• 182 

BUILTIN attribute ••••••••••••••••••••• 117 
Built-in function 

general description ••••••••••••••• 78,52 
list of built-in functions •••••••••• 103 

CALL DYNDUMP statement •••••••••••••••• 204 
CALL OVERLAY statement •••••••••••••••• 163 
Call routine PL1SCA ••••••••••••••••••• 201 



CALL statement 
format and rules ..................... 126 
general description and examples •• 43,76 

Card-punch codes 
for character sets •••••••••••••• Q ••• 226 

CATAL control statement 
examples of its use ••••••••••••••••• 197 
format and rules •••••••••••••••••••• 196 

Cataloging 
disk labels ••••••••••••••••••••••••• 193 
programs 

from SYSIPT=SYSRDR •••••••••••••••• 196 
from SYSIPT*SYSRDR •••••••••••••••• 197 
from relocatable area ••••••••••••• 197 

CEIL built-in function •••••••••••••••• 105 
CHAR built-in function •••••••••••••••• 103 
CHAR character-string data attribute •• 117 
CHARACTER character-string data 
attribute .................•.......... 117 

Character set 
card-punch codes 

for 48-character set •••••••••••••• 227 
for 60-character set •••••••••••••• 226 

using the •••••••••••••••••••••••••••• 16 
48-character set ••••••••••••••••••• 16 
60-character set ••••••••••••••••••• 15 

Character-string data •••••••••••••••••• 23 
altering the length of ••••••••••••••• 70 
general description and examples ••••• 24 
maximum length allowed ••••••••••.••••• 24 

Character-string handling •••••••••••••• 70 
built-in functions for ................ 74 

Character-string value 
of numeric-character variable •••••••• 72 

CHAR48 option ••••••••••••••••••••••••• 158 
CHAR60 option ••••••••••••••••••••••••• 158 
CLOSE statement 

format and rules •••••••••••••••••••• 127 
general description ••••••••••••••• 39,57 

Closing a file ••••••••••••••••••••••••• 57 
CMAINT operand •••••••••••••••••••••••• 196 
Comma picture character •••••••••••••••• 93 
Comments 

in job-control statements ••••••••••• 144 
in PL/I statements ••••••••••••••••••• 17 

Comparison operation ••••••••••••••••••• 33 
algebraic •••••••••••••••••••••••••••• 34 
character •••••••••••••••••••••••••••• 34 
in IF statement •••••••••••••••••• 131,34 
pointer ••••••••••••••••• ~ •••••••••••• 34 

Comparison operators •••••••••••••••• 16,33 
Compatibility .••.•••.••.•..•.••••••••. 225 
Compilation 

of PL/I source modules •••••••••••••• 154 
and linkage ••••••••••••••••••••••• 154 
,linkage, and execution ••••••••••• 154 
,linkage, and cataloging •••••••••• 154 

,linkage, and execution of source 
modules and precompiled object 
modules •••••••••••••••••••••••••••• 156 

Compiled object module •••••••••••••••• 156 
Compiler •••••••••••••••••••••••••• 153,142 

input to •••••••••••••••••••••• 0 ••••• 153 
output from ••••••••••••••••••••• 156,159 

Compiler control statement •••••••••••• 157 
Compound statement ••••••••••••••••••••• 18 
Computational built-in functions •••••• 103 
Computational conditions •••••••••••••• 110 

Concatenation operation •••••••••••••••• 36 
Concatenation operator ••••••••••••••••• 16 
Condition 

computational conditions •••••••••••• 111 
conditions always enabled •••••••••••• 92 
enabling and disabling of conditions • 81 
exceptional conditions •••••••••••••• 110 
general description and examples ••••• 81 
input/output conditions ••••••••••••• 112 
system-action condition ••••••••••••• 113 

Condition name ••••••••••••••••••••••••• 18 
Condition prefix ••••••••••••••••••••••• 18 
Conditional digit position ••••••••••••• 92 
CONFG job-control statement ••••••••••• 145 
Consecutive file 

accessing of •••••••••••••••••••••••• 172 
attributes and options •••••••••••••• 169 
creation of ••••••••••••••••••••••••• 169 
input/output devices •••••••••••••••• 169 
record formats •••••••••••••••••••••• 169 

CONSECUTIVE option 
general rules ••••••••••••••••••••••• 180 

Constant •••••• ~ •••••••••••••••••••••••• 20 
Contextual declaration ••••••••••••••••• 51 
Control format item 

general description and examples ••••• 63 
table of control format items •••••••• 98 

Control program ••••••••••••••••••••••• 141 
Control variable 

in DO statement •••••••••••••••••• 42,128 
Conversion 

of. fixed-point operand ••••••••••••••• 31 
of floating-point operand •••••••••••• 31 

CONVERSION condition •••••••••••••••••• 111 
COPTN compiler-control statement 

format and rules •••••••••••••••••••. 157 
options ••••••••••••••••••••••••••••• 158 

COpy control statement •••••••••••• 155,156 
COS built-in function ••••••••••••••••• 107 
Creation 

of consecutive file ••••••••••••••••• 169 
of indexed file ••••••••••••••••••••• 177 

CR picture character ••••••••••••••••••• 96 
Credit picture character ••••••••••••••• 96 
CTLASA option 

example of its use •••••••••••••••••• 170 
general rules ••••••••••••••••••••••• 183 

Currency symbol picture character •••••• 95 
Cylinder •••••••••••••••••••••••••••••• 172 
Cylinder index •••••••••••••••••••••••• 175 
Cylinder overflow area •••••••••••••••• 17~ 

Data format item 
general description and examples ••••• 62 
table of data format items ••••••••••• 98 

Data list 
general description and examples ••••• 60 
repetitive specification in •••••••••• 60 

Data-movement and computational 
statements •••••••••••••••••••••••••••• 40 

Data organization •••••••••••••••••••••• 25 
array •••••••••••••••••••••••••••••••• 25 
structure •••••••••••••••••••••••••••• 27 

Data storage mapping 
of arrays ••••••••••••••••••••••••••• 204 
of structures ••••••••••••••••••••••• 204 

Index 233 



Dat.a types 
problem data ••••••••••••••••••••••••• 20 

arithmetic data •••••••••••••••••••• 20 
character-string data •••••••••••••• 23 

program-control data ••••••••••••••••• 24 
label data ••••••••••••••••••••••••• 25 
pointer data ••••••••••••••••••••••• 24 

DATE built-in function •••••••••••••••• 109 
DATE job-control statement •••••••••••• 145 
DB picture character ••••••••••••••••••• 96 
DCL statement ••••••••••••••••••••••••• 127 
Debit picture character •••••••••••••••• 96 
DECIMAL arithmetic-data attribute ••••• 117 
Decimal point alignment 

in numeric-character variable •••••••• 73 
Decimal point picture character •••••••• 73 
Decimal point specifier V ••••••••••• 91,73 
DECLARE statement 

examples •••••••••••••••••••• 170,171,177 
general description •••••••••••••••••• 38 

DECK option ••••••••••••••••••••••••••• 158 
DEF data attribute •••••••••••••••••••• 117 
Default precision 

of fixed-point data •••••••••••••••••• 21 
of floating-point data ••••••••••••••• 22 

DEFINED attribute 
general description and examples ••••• 28 
rules and format •••••••••••••••••••• 117 

Defined item ••••••••••••••••••••••••••• 29 
Defined variable •••••••••••••••••••••• 117 
Defining of data ••••••••••••••••• ~. 117,29 

simple •••••••••••••••••••••••••••••• 118 
string-overlay ••..•.....•.•••.•..••• 118 

Definition of terms ••••••••••••••••••• 214 
DELET control statement 

example ••••••••••••••••••••••••••••• 198 
format and rules •••••••••••••••••••• 197 

Deletion of records 
from indexed file ••••••••••••••••••• 175 

Descriptive statement •••••••••••••••••• 38 
Device independence •••••••••••••••••••• 58 
Device type 

specification in MEDIUM option •••••• 183 
Diagnostic capabilities 

during compilation •••••••••••••••••• 159 
during execution •••••••••••••••••••• 159 

Digit •••••••••••••••••••••••••••••••••• 15 
Digit specifier 9 ••••••••••••••••••• 91,72 
Dimension attribute 

rules and format •••••••••••••••••••• 118 
Dimension of array 

general description and examples ••••• 26 
DIRECT file-description attribute 

general description •••••••••••••••••• 56 
rules and format •••••••••••••••••••• 118 

Direct retrieval 
of indexed file ...................... 175 

Disabled condition ••••••••••••••••••••• 81 
Disk file •••••••••••••••••••••••••••• 186 
Disk organization ••••••••••••••••••••• 172 
Disk programming system 

general description ••••••••••••••••• 142 
schematic representation of ••••••••• 142 

DISPLAY statement 
format and rules •••••••••••••••••••• 127 
example of its use •••••••••••••••••• 203 

Division 
of fixed-point operand ••••••••••••••• 32 

234 

attributes of result of •••••••••••••• 34 
DLAB control statement •••••••••••••••• 1 88 
DO-group ••••••••••••••••••••••••••••••• 19 
DO statement 

format and rules •••••••••••••••••••• 128 
general description and examfles ••••• 42 

Drifting character 
in picture specification ••••••••••••• 95 

DSPLY control statement ••••••••••••••• 194 
Dummy argument ••••••••••••••••••••••••• 79 
DUMP option ••••••••••••••••••••••••••• 158 
Dynamic storage allocation ••••••••••••• 48 

automatic storage •••••••••••••••••••• 48 
based storage •••••••••••••••••••••••• 48 

Dynamic storage area •••••••••••••••••• 201 
DYNDUMP routine ••••••••••••••••••••••• 204 

E data format item 
general description and examfles ••••• 62 
rules and syntax ••••••••••••••••••••• 99 

E exponent specifier ••••••••••••••••••• 97 
E picture character •••••••••••••••••••• 97 
EBCDIC codes for 

48-character set •••••••••••••••••••• 227 
60-character set •••••••••••••••••••• 226 

Edit-directed transmission ••••••••••••• 59 
Editing 

by assignment •••••••••••••••••••••••• 70 
numeric-character data ••••••••••••••• 72 

Element assignment •••••••••••••••••••• 124 
ELSE clause 

in IF statement ••••••••••••••••••••• 130 
Enabled condition •••••••••••••••••••••• 81 
END statement 

format and rules •••••••••••••••••••• 129 
general description and examples •• 43,77 

ENDFILE condition ••••••••••••••••••••• 112 
ENDPAGE condition ••••••••••••••••••••• 112 
ENTRY attribute 

general description and examples ••••• 79 
rules and format •••••••••••••••••••• 118 

Entry name ••••••••••••••••••••••••••••• 19 
ENV file-description attribute •••••••• 119 
ENVIRONMENT attribute and its 
options •••••••••••••••••••••••••• 180,119 

Epilogue ...•....•...................... 50 
ERROR condition ••••••••••••••••••••••• 112 
ERROR option •••••••••••••••••••••••••• 158 
Errors 

detected with declarations •••••••••• 159 
syntax •••••••••••••••••••••••••••••• 159 

Established action ••••••••••••••••••••• 81 
EXEC job-control statement •••••••••••• 147 
Executable object module •••••••••••••• 157 
Exception-control statement •••••••••••• 44 
EXP built-in function ••••••••••••••••• 107 
Explicit declaration ••••••••••••••••••• 51 
Exponent specifier E ••••••••••••••••••• 97 
Exponentiation 

of fixed-point operand ••••••••••••••• 32 
attributes of result of •••••••••••••• 34 

Expression 
general description and examples ••••• 30 

Expression operation ••••••••••••••••••• 30 
ari thrnetic ....•••............•....... 30 
comparison ••••••••••••••••••••••••••• 33 
concatenation •••••••••••••••••••••••• 36 

EXT scope attribute (see EXTERNAL) 



Extent 
of array ••••••••••••••••••••••••••••• 26 
of file ••••••••••••••••••••••••••••• 173 

EXTERNAL scope attribute •••••••••••••• 119 
Extension 

of indexed file ••••••••••••••••••••• 175 
EXTENTNUMBER option 

example ••••••••••••••••••••••••••••• 178 
rules ••••••••••••••••••••••••••••••• 185 

EXTERNAL scope attribute 
general Qescription •••••••••••••••••• 52 
rules and syntax •••••••••••••••••••• 119 

EXTREF option ••••••••••••••••••••••••• 158 

F data-format item 
general description and examples ••••• 62 
rules and syntax •••••••••••••••••••• 100 

F-format option 
general rules ••••••••••••••••••••••• 181 
examples ••••••••••••••••••••••• 170,177 

Field width 
of E format item ••••••••••••••••••••• 
of F format item •••••••••••••••••••• 
of X format item •••••••••••••••••••• 

File ••••••••••••••••••••••••••••••••• 
FILE attribute 

99 
100 
102 

54 

general description •••••••••••••••••• 55 
table of file attributes and options 230 

File declaration ••••••••••••••••••••••• 55 
File label •••••••••••••••••••••••••••• 185 
FILE option •••••••••••••••••••••••••••• 66 
File organization ••••••••••••••••••••• 166 

consecutive ••••••••••••••••••••••••• 169 
indexed ••••••••••••••••••••••••••••• 175 

Filename ••••••••••••••••••••••••••••••• 54 
FILES control statement 

example ••••••••••••••••••••••••••••• 192 
format and rules •••••••••••••••••••• 150 

FIXED arithmetic-data attribute ••••••• 119 
Fixed-length record ••••••••••••••••••• 166 
Fixed-point data item •••••••••••••••••• 21 

default precision of ••••••••••••••••• 21 
format of •••••••••••••••••••••••••••• 21 
internal form of ••••••••••••••••••••• 21 
range of values of ••••••••••••••••••• 21 

Fixed-point operand •••••••••••••••••••• 32 
addition and subtraction of •••••••••• 32 
conversion of •••••••••••••••••••••••• 31 
di vision of •••••••••••••••••••••••••• 33 
exponentiation of •••••••••••••••••••• 33 
multiplication of •••••••••••••••••••• 32 

FIXEDOVERFLOW condition ••••••••••••••• 111 
FLOAT arithmetic-data attribute ••••••• 119 
Floating-point data item ••••••••••••••• 21 

format of •••••••••••••••••••••••••••• 22 
default precision of ••••••••••••••••• 22 
internal form of ••••••••••••••••••••• 22 
range of values of ••••••••••••••••••• 22 
maximum precision of ••••••••••••••••• 22 

Floating-point operand ••••••••••••••••• 32 
conversion of •••••••••••••••••••••••• 31 

FLOOR built-in function ••••••••••••••• 105 
Forrnat item •••••••••••••••••••••••••••• 59 

control •••••••••••••••••••••••••• ~ ••• 59 
data ••••••••••••••••••••••••••••••••• 59 
remote ••••••••••••••••••••••••••••••• 59 
rules and syntax ••••••••••••••••••••• 98 

Format list •••••••••••••••••••••••••••• 62 

FORMAT statement 
FROM option •••••••••••••••••••••••••••• 
Function 

attributes of value returned by a 
general description and examples 

Function reference 
expression containing •••••••••••••••• 
general description and examples 

GET statement 
format and rules •••••••••••••••••••• 

GET STRING statement 

129 
67 

77 
76 

37 
77 

129 

general description and examples 40,71 
GODECK option ••••••••••••••••••••••••• 158 
GO TO statement 

format and rules •••••••••••••••••••• 
general description •••••••••••••••••• 

Group •••••••••••••••••••••••••••••••••• 

130 
41 
19 

Header label ••••••••••••• 1. • • • • • • • • • • •• 186 
HIGH built-in function •••••••••••••••• 103 

IBM 1316 Disk Pack •••••••••••••••••••• 
IBM 2152 printer-Keyboard ••••••••••••• 
Identifier ••••••••••••••••••••••••••••• 

length of •••••••••••••••••••••••••••• 
IF statement 

172 
199 

16 
17 

format and rules •••••••••••••••••••• 130 
general description and examples 41 

Implicit declaration of a name ••••••••• 51 
Implicit opening of a file •••••••••• 57,39 
Independent overflow area ••••••••••••• 175 
Indexed file 

accessing an •••••••••••••••••••••••• 
attributes and options of ••••••••••• 
creation of ••••••••••••••••••••••••• 
deletion of records from •••••••••••• 
direct retrieval of ••••••••••••••••• 
extension of •••••••••••••••••••••••• 
insertion of new records into ••••••• 
record formats and keys of •••••••••• 
sequential retrieval of ••••••••••••• 

Indexed file organization ••••••••••••• 
INDEXED option •••••••••••••••••••••••• 
Index 

cylinder index •••••••••••••••••••••• 
track index ••••••••••••••••••••••••• 

Infix operator ••••••••••••••••••••••••• 
INIT data attribute (see INITIAL) 
INITIAL data ••••••••••••••••••••••••••• 
INITIAL data attribute 

general description and examples 
rules and format •••••••••••••••••••• 

Initial procedure •••••••••••••••••••••• 
Initialization of data ••••••••••••••••• 
INPUT file-description attribute 

180 
177 
177 
175 
175 
175 
175 
176 
175 
175 
181 

175 
175 
30 

49 

29 
120 

47 
29 

general description •••••••••••••••••• 56 
rules ••••••••••••••••••••••••••••••• 121 

Input/output condition •••••••••••••••• 110 
Input/output devices used with conse-
cutive files ••••••••••••••••••••••••• 

Input/output statements •••••••••••••••• 
summary of RECORD •••••••••••••••••••• 
summary of STREAN •••••••••••••••••••• 
table of valid I/O 

statements 
Inquiry program ••••••••••••••••••••••• 

169 
68 
68 
65 

231 
199 

Index 235 



Insertion character 
examples and rules •••••••••••••• ' ••••• 93 
general description •••••••••••••••••• 73 

INTERNAL scope ati:ribute 
general description •••••••••••••••••• 52 
rules and formai: •••••••••••••••••••• 119 

Internal form 
of fixed-point data items •••••••••••• 21 
of floating-point data items ••••••••• 22 

INTO option •••••••••••••••••••••••••••• 66 
Invoking procedure ••••••••••••••••••••• 19 
Invocation of a procedure •••••••••••• 47 
Iteration factor 

compared with repetition factor •••••• 29 
Iteration specification 

in INITIAL attribute •••••••••••••••• 120 

Job control 
Job control 
JOB control 
Job-control 

program ••••••••••••••••••• 
statement ••••••••••••••••• 
statement 

143 
142 
145 

comments in .......................... 144 
examples ............................. 151 
format ................................ 144 
operands in .......................... 144 
order of input ....................... 144 
surnrnary ••••••• IP • • • • • • • • • • • • • • • • • • • •• 144 

Key .................................... . 
KEY condition ••••••••••••••••••••••••• 
KEY option ••••••••••••••••••••••••••••• 
KEYED file-description attribute 

175 
112 

67 

general description •••••••••••••••••• 57 
rules ••••••••••••••••••••••••••••••• 121 

KEYFROM option .......................... 68 
KEY LENGTH option 

example ••••••• u ••••••••••••••••••••• 177 
general rules 

KEYLOC option 
.0 ••••••.••.•••••••.•.• 185 

example .............................. 177 
general rules .fi ••••••••••••••••••••• 185 

Keywords 
alphabetic list ••••••••••••••••••••• 228 
use of •••••••••••••••••••••••••••• 15,16 

Label 
file •••••••••• 0 ••••••••••••••••••••• 

volume •••••••• t) ••••••••••••••••••••• 

Label assignment ...................... . 
Label constant ......................... . 
Label data ••••••••••••••••••••••••••••• 
Label information 

for disk files •••••••••••••••••••••• 
for tape files •••••••••••••••••••••• 

Label-information processing •••••••••• 
Label-control sta1:ement ••••••••••••••• 
Label prefix ........................... . 
LABEL program-control data attribute •• 
Language translator ••••••••••••••••••• 
LEAVE option 

example ............................. . 
general rules ....................... . 

Length 

185 
185 
124 

24 
24 

189 
188 
150 
186 

18 
121 
141 

171 
184 

of identifier ......................... 16 
of picture specification ••••••••••••• 23 
of qualified name •••••••••••••••••••• 28 

Length ~haracter-string attribut~ 121 

236 

Level of a structure ••••••••••••••••••• 27 
Level number ••••••••••••••••••••••••••• 27 
Linkage 

of precompiled object modules ••••••• 
and execution ••••••••••••••••••••• 

LINK option ••••••••••••••••• ~ ••••••••• 
Linking PL/I procedures 

with Assembler procedures ••••••••••• 
rules and restrictions •••••••••••••• 

LIST option ••••••••••••••••••••••••••• 
Loading a segment ••••••••••••••••••••• 
LOCATE statement 

155 
156 
158 

200 
202 
158 
163 

format and rules •••••••••••••••••••• 131 
general description and options 66,85 

LOG built-in function ••••••••••••••••• 107 
LOG job-control statement ••••••••••••• 146 
Logical record ••••••••••••••••••••••••• 54 
Long floating-point form ••••••••••••••• 22 
LOW built-in function ••••••••••••••••• 104 
LSORT option •••••••••••••••••••••••••• 158 

MA.I N option ••••••••••••••••••••••••••• 1 33 
Main procedure ••••••••••••••••••••••••• 47 
Mainline program •••••••••••••••••••••• 199 
Major-structure name ••••••••••••••••••• 27 
Mathematical built-in function •••••••• 107 

summary ••••••••••••••••••••••.••••••• 
MAX built-in function ••••••••••••••••• 
MEDIUH option 

108 
106 

examples •••••••••••••••••••••••• 179,177 
general rules ••••••••••••••••••••••• 182 

MIN built-in function ••••••••••••••••• 106 
Minus sign 

in numeric-character data •••••••••••• 95 
Module •••••••••••••••••••• _.. • ••• •• • • •• 153 
Monitor program ••••••••••••••••••••••• 141 
Multi-file volume 

disk •••••••••••••••••••••••••••••••• 192 
ta pe •••••••••••••••••••••••••••••••• 1 92 

Multi-volume file 
di s k •••••••••••••••••••••••••••••••• 1 93 
tape •••••••••••••••••••••••••••••••• 192 

Multiple declaration ••••••••••••••••••• 53 
Hultiplication 

attributes of result of •••••••••••••• 34 
of fixed-point operand ••••••••••••••• 32 

Name ••••••••••••••••••••••••••••••••••• 
contextual declaration of •••••••••••• 
explicit declaration of •••••••••••••• 

51 
51 
51 

implicit declaration of •••••••••••••• 52 
length of ••••••••••••••••••••••••• 16,28 
recognition of ••••••••••••••••••••••• 51 
scope of ••••••••••••••••••••••••••••• 51 

Negative scale factor •••••••••••••••••• 33 
Nesting 

of DO statement •••••••••••••••••••••• 43 
of IF statement •••••••••••••••••••••• 42 
of iteration specification ••••••••••• 29 
of repetition specification •••••••••• 29 

NO condition prefix •••••••••••••••••••• 81 
NOATR option •••••••••••••••••••••••••• 158 
NOATRO option ••••••••••••••••••••••••• 158 
NODECK option ••••••••••••••••••••••••• 
NODUMP option ••••••••••••••••••••••••• 
NOEXTREF option ••••••••••••••••••••••• 
NOGODECK option ••••••••••••••••••••••• 

158 
158 
159 
158 



NOINQ operand 
of OPTN control statement 

NOLABEL option 
example ••••••••••••••••••••••••••••• 
general rules ••••••••••••••••••••••• 

NOLINK option ••••••••••••••••••••••••• 
NOLIST option ••••••••••••••••••••••••• 
NOLOG job-control statement ••••••••••• 
NOLSORT option •••••••••••••••••••••••• 
Non-iterative DO statement ••••••••••••• 
NOOFFSET option ••••••••••••••••••••••• 
NOSOURCE option ••••••••••••••••••••••• 
NOSTMT option ••••••••••••••••••••••••• 
NOTAPEMK option 

example ••••••••••••••••••••••••••••• 
general rules ••••••••••••••••••••••• 

NOWRITE option 
example ••••••••••••••••••••••••••••• 
general rules ••••••••••••••••••••••• 

NOXREF option ••••••••••••••••••••••••• 
Null statement •••••••••••••••••••••••• 
Numeric-character variable 

credit, debit, and overpunched signs 
in •••••••••••••••••••••••••••••••••• 

currency symbol in ••••••••••••••••••• 
drifting character in •••••••••••••••• 
exponent specifier E in •••••••••••••• 
insertion characters in •••••••••••••• 
picture characters in •••••••••••••••• 
purpose of ••••••••••••••••••••••••••• 
signs in ••••••••••••••••••••••••••••• 
static character in •••••••••••••••••• 
values of •••••••••••••••••••••••••••• 
zero-suppression characters in ••••••• 

OFFSET option ••••••••••••••••••••••••• 
OFLTRACKS option 

example ••••••••••••••••••••••••••••• 
general rules ••••••••••••••••••••••• 

On-block •••••••••••••••••••••••••••••• 
ON-condition 

(see condition) 
ON statement 

format and rules •••••••••••••••••••• 
general description and examples 
scope of ••••••••••••••••••••••••••••• 

ON-unit •••••••••••••••••••••••••••••••• 
ONSYSLOG option ••••••••••••••••••••••• 
OPEN statement 

146 

171 
184 
158 
158 
147 
158 

43 
159 
158 
158 

171 
184 

211 
184 
158 
132 

96 
95 
95 
97 
93 
90 
74 
95 
95 
72 
92 

159 

177 
185 
201 

132 
44 
82 
82 

133 

format and rules •••••••••••••••••••• 132 
general description ••••••••••••••• 39,57 

Opening a file ••••••••••••••••••••••••• 57 
Operand 

expression ••••••••••••••••••••••••••• 30 
fixed-point •••••••••••••••••••••••••• 32 
floating-point ••••••••••••••••••••••• 32 
of control statements (see indivi

dual control statements) 
Operational expression ••••••••••••••••• 30 
Operator 

priority of operators •••••••••••••••• 36 
Option 

options of ENVIRONMENT attribute 
(see ENVIRONMENT attribute) 

options of statements 
(see individual statements) 

OPTIONS (MAIN) attribute ••••••••••••••• 47 
OPTN job-control statement •••••••••••• 146 

Output 
from compiler ••••••••••••••••••••••• 156 

OUTPUT file-description attribute 
general description •••••••••••••••••• 56 
rules ••••••••••••••••••••••••••••••• 121 

Overf low area ••••••••••••••••••••••••• 175 
OVERFLOW condition •••••••••••••••••••• 111 
Overlay ••••••••••••••••••••••••••••••• 163 
Overpunched sign ••••••••••••••••••••••• 96 

Packed decimal ••••••••••••••••••••••••• 
Page layout for print files •••••••••••• 
PAGE format item 

general description and examples 
rules and syntax •••••••••••••••••••• 

PAGESIZE option ••••••••••••••••••••••• 
Parameter •••••••••••••••••••••••••••••• 
Parameter list ••••••••••••••••••••••••• 
PAUSE job-control statement ••••••••••• 
Permanent device assignment ••••••••••• 
Permanent disk label 

cataloging of ••••••••••••••••••••••• 
deletion of ••••••••••••••••••••••••• 
displayment of •••••••••••••••••••••• 

Physical record •••••••••••••••••••••••• 
PIC data attribute (see PICTURE) 
Picture character 

21 
64 

63 
101 
132 

75 
75 

147 
148 

193 
193 
194 

54 

general description •••••••••••••••••• 72 
rules and examples ••••••••••••••••••• 90 

PICTURE data attribute 
examples ••••••••••••••••••••••••••••• 90 
general rules ••••••••••••••••••••••• 121 

Picture specification 
general description and examples 
maximum length of •••••••••••••••••••• 
picture characters ••••••••••••••••••• 
possible digit positions ••••••••••••• 

Point 

71 
23 
90 
23 

of invocation ••••••••••••••••••••• 47,19 
picture character •••••••••••••••••••• 93 

Point alignment 
in numeric-character variable •••••••• 73 

Pointer assignment •••••••••••••••••••• 124 
Pointer data ••••••••••••••••••••••••••• 25 
POINTER program-control data attribute 122 
Pointer manipulation ••••••••••••••••••• 87 
Pointer value 

assignment of •••••••••••••••••••••••• 
Pointer variable ••••••••••••••••••••••• 

restrictions on •••••••••••••••••••••• 
values of •••••••••••••••••••••••••••• 

.J;>ositioning 
of multi-file volume 

disk file ••••••••••••••••••••••••• 
labeled tape file ••••••••••••••••• 
unlabeled tape file ••••••••••••••• 

Precompiled object module ••••••••••••• 
Precision (arithmetic-data attribute) • 
Prefix ••••••••••••••••••••••••••••••••• 

condition prefix ••••••••••••••••••••• 
label •••••••••••••••••••••••••••••••• 

85 
84 
86 
84 

192 
191 
191 
155 
122 

18 
18 
18 

Prefix operator •••••••••••••••••••••••• 30 
Prime data area ••••••••••••••••••••••• 175 
PRINT file-description attribute 

general description •••••••••••••••••• 56 
rules ••••••••••••••••••••••••••••••• 122 

Printed listings •••••••••••••••••••••• 159 

Index 237 



Printer-carriage control 
character codes 

for RECORD files •••••••••••••••••• 
for RECORD files •••••••••••••••••••• 
for STREAM files •••••••••••••••••••• 

Printer-keyboard •••••••••••••••••••••• 
Priority of operators •••••••••••••••••• 
Problem data ••••••••••••••••••••••••••• 

ari thmetic data •••••••••••••••••••••• 

184 
170 
171 
199 

36 
20 
20 

character-string data •••••••••••••••• 23 
Procedure ••••••••••••••••••••••••••• 47,19 

acti vation of •••••••••••••••••••••••• 47 
invocation of •••••••••••••••••••••••• 47 
main ...••••.•.•••••••••••.••..•••.•.• 47 
termination of •••••••••••••••••••• 47,76 

Procedure reference 
general description and examples 

PROCEDURE statement 
76,19 

format and rules •••••••••••••••••••• 
general description and examples 

PROCESS compiler-control statement 
format and rules •••••••••••••••••••• 
options ••••••••••••••••••••••••••••• 

Program 
segments •••••••••••••••••••••••••••• 
termination •••••••••••••••••••••••••• 

Program-control data ••••••••••••••••••• 
label data ••••••••••••••••••••••••••• 
pointer data ••••••••••••••••••••••••• 

Program-flow control statement ••••••••• 
Program-name 

in job-control statements ••••••••••• 
Program structure •••••••••••••••••••••• 
Prologue ••••••••••••••••••••••••••••••• 
Punch card ••••••••••••••••••••••••••••• 

reserved columns of •••••••••••••••••• 
PUT statement 

133 
45 

158 
158 

163 
48 
24 
24 
25 
41 

145 
18 
49 
15 
15 

format and rules •••••••••••••••••••• 133 
general description and examples 40,71 

PUT STRING statement ••••••••••••••••••• 71 

Qualified name ••••••••••••••••••••••••• 28 
general description and examples ••••• 28 
maximum length of •••••••••••••••••••• 28 

R format item ••••••••••••••••••••••••• 101 
R picture character •••••••••••••••••••• 97 
READ statement 

format and rules •••••••••••••••••••• 134 
general description and options •••••• 66 
with SET option •••••••••••••••••••••• 85 

Record ••••••••••••••••••••••••••••••••• 54 
RECORD attribute ••••••••••••••••••••••• 56 
RECORD condition •••••••••••••••••••••• 112 
Record format ••••••••••••••••••••••••• 166 

fixed-length •••••••••••••••••••••••• 166 
of consecutive file ••••••••••••••••• 169 
of indexed file ••••••••••••••••••••• 176 
undefined-length •••••••••••••••••••• 167 
variable-length ••••••••••••••••••••• 167 

RECORD file-description attribute ••••• 123 
Record I/O transfer statements ••••••••• 39 
Record-oriented transmission ••••••••••• 65 
Recorded key •••.••••.•.•••.•••..•••••.• 67 
Remote format item 

general description and examples 64 
rules and syntax ••••••••••••••••••••• 99 

238 

Repetition factor •••••••••••••••••••••• 22 
compared with iteration factor ••••••• 29 

Repetitive specification 
in a data list ••••••••••••••••••• 60 

Replacement character •••••••••••••••••• 73 
RETURN statement 

format and rules •••••••••••••••••••• 135 
general description and examfles 43~77 

RETURNS entry-name attribute 
general description and examfles 78 
rul es ....••....•.••..••........••... 1 23 

REWRITE statement 
format and rules •••••••••••••••••••• 135 
general description and options •••••• 66 

Root segment •••••••••••••••••••••••••• 163 
ROUND built-in function ••••••••••••••• 106 
Row-major order 204 

Scope of a name •••••••••••••••••••••••• 51 
extending the •••••••••••••••••••••••• 75 
EXTERNAL ••••••••••••••••••••••••••••• 52 
INTERNAL ••••••••••••••••••••••••••••• 52 

Sector •••••••••••••••••••••••••••••••• 173 
Segment 

loading of •••••.•••.•••••••••••••••. 
use of files and static storage in 

SEGMENT compiler-control statement 
SEQUENTIAL attribute 

163 
164 
163 

general description •••••••••••••••••• 56 
rules ...••....•..•....•.•.••.•.•••.. 11 8 

Sequential retrieval of indexed file 175 
examp~le ••••••••••••••••••••••••••• 179 

Service program ••••••••••••••••••••••• 141 
SET option ••••••••••••••••••••••••••••• 66 
SEVERE option ••••••••••••••••••••••••• 158 
Short floating-point form •••••••••••••• 22 
Signs 

in numeric-character data •••••••••••• 95 
Simple defining •••••••••••••••••••• 29,118 
Simple statement ••••••••••••••••••••••• 18 
SIN built-in function ••••••••••••••••• 107 
SKIP format item 

general description and examples 63 
rules and syntax •••••••••••••••••••• 101 

Source key •••••.•••••••••••••.••••.•••. 67 
Source module ••••••••••••••••••••••••• 153 
SOURCE option ••••••••••••••••••••••••• 158 
Special character •••••••••••••••••••••• 15 

list of special characters ••••••••••. 15 
SQRT built-in function •••••••••••••••• 108 
Stacker selection ••••••••••••••••••••• 179 
Standard system action 

(see individual conditions) 
Statement 

alphabetic list of statements ••••••• 124 
compiler control ••••••.•••••.••••... 157 
compound ••••••••••••••••••••••••••••• 18 
data-movement and computational ••.•.• 40 
descriptive •••••••••••••••••••••••••• 38 
exception-control •••••.•••••.•••••••• 44 
format of PL/I statement ••••••••••••• 15 
input/output ••••••••••••••••••••••••• 38 
job control •••••••••••••••••••••.••• 144 
keyword •••••••••••••••••••••••••••••• 18 
null .........•..••..•.....•.•••.•.... 18 
program-flow control ••.•.•••••••••••. 41 
program-structure •••••••••••••••••••• 45 
simple ••.•....••••.....•.•...••...••. 18 



Statement label constant ••••••••••••••• 24 
Statement prefix ••••••••••••••••••••••• 18 
Static character 

in picture specification ••••••••••••• 95 
Static storage 

general description and example •••••• 49 
in segments ••••••••••••••••••••••••• 165 

STATIC storage-class attribute •••••••• 116 
Sterling currency processing •••••••••• 203 
STMT option ••••••••••••••••••••••••••• 158 
Storage allocation ••••••••••••••••••••• 48 

dynamic allocation ••••••••••••••••••• 48 
static allocation •••••••••••••••••••• 49 

Storage mapping 
of array ••••••••••••••••••••••• ~ •••• 204 
of structure ••••••••••••••••••• 0 •••• 204 

STREAM file-description attribute 
general description •••••••••••• ~ ••••• 56 
rules •••••••••••••••••••••••••• u •••• 123 

Stream-oriented data transmission .... 54,59 
Stream I/O transfer statements .......... 39 
String-handling built-in functions 103 
String operator ......................... 16 
STRING option ........................... 71 
String-overlay defining •••••••••••• 29,118 
Structure 

element •••••••••••••••••••••••••••••• 
general description and examples ••••• 
level ............................... . 

27 
27 
27 

name ••••••••••••••••••••••••••••••••• 27 
storage mapping of •••••••••••••••••• 204 

Structure assignment •••••••••••••••••• 124 
Subscript •••••••••••••••••••••••••••••• 25 
SUBSTR built-in function •••••••••••••• 104 
SUBSTR pseudo-variable •••••••••••••••• 109 
Subtraction 

attributes of result of •••••••••••••• 33 
of fixed-point operand ••••••••••••••• 32 

Symbolic device address ••••••••••• 183,149 
Syntax notation ••••••••••••••••••••••••• 9 
SYSIPT (symbolic device address) •••••• 143 
SYSLOG ~ymbolic device address) •••••• 143 
SY$LST (symbolic device address) •••••• 143 
SYSOPT (symbolic device address) •••••• 143 
SYSRDR (symbolic device address) •••••• 143 
System action condition ERROR ••••••••• 112 
SYSOOO-019 (symbolic device addresses) 143 
System configuration of DPS 

maximum ••••••••••••••••••..•.•••.••. 
minimurn ..••••••••••••••••••••••••••• 

SYSTEM keyword ••••••••••••••••••••••••• 

139 
139 

82 

T picture character •••••••••••••••••••• 96 
TAN built-in function ••••••••••••••••• 
TANH built-in function •••••••••••••••• 
Tape files •••••••••••••••••••••••••••• 
Tapemark •••••••••••••••••••••••••••••• 
Termination 

of a procedure 

108 
108 
186 
186 

47 

of a program ••••••••••••••••••••••••• 48 
TES operand 

of OPTN control statement ••••••••••• 146 
THEN clause 

in IF statement ••••••••••••••••••••• 130 
TLAB control statement •••••••••••••••• 187 
Track ••••••••••••••••••••••••••••••••• 172 
Track index ••••••••••••••••••••••••••• 175 
Trailer label •••••••••••.•.•••••••••.. 186 
TRANSMIT condition •••••••••••••••••••• 113 
TRUNC built-in function ••••••••••••••• 106 

Undefined-length record ••••••••••• 167,199 
U-format option ••••••••••••••••••• 182,199 
UNDERFLOW condition ••••••••••••••••••• 111 
Unlabeled tape files •••••••••••••••••• 186 
UPDATE file-description attribute 

general description •••••••••••••••••• 56 
rules ••••••••••••••••••••••••••••••• 121 

Updating 
an indexed file 

V-format option 
general description ••••••••••••••••• 
rul es ....................•...•...... 

V picture character •••••••••••••••••••• 
Values 

of numeric-character data •••••••••••• 
returned by mathematical built-in 
functions •••••••••••••••••••••••••• 

Variable ................•..•........... 
Variable-length record 

general description ••••••••••••••••• 
rul es .............................. . 

VERIFY option 
example ........•.••..•.......•...... 
rules .............................. . 

VOL control statement ••••••••••••••••• 
Volume ••••••••••••••••••••••••••••••••• 
Volume label •••••••••••••••••.•••••••• 

WARNING option •••••••••••••••••••••••• 
WRITE statement 

format and rules •••••••••••••••••••• 
general description and options •••••• 

WORK1 option of COPTN control 
statement ........................... . 

WORK2 option of COPTN control 
statement ........................... . 

WORK3 option of COPTN control 
statement •••••••••••••••••••••••••••• 

x spacing format item 
general description and examples 
rules and syntax •••••••••••••••••••• 

XREF option ••••••••••••••••••••••••••• 
XTENT control statement ••••••••••••••• 

ZERODIVIDE condition •••••••••••••••••• 
zero-suppression character ••••••••••••• 

178 

167 
181 

72 

72 

108 
20 

167 
181 

178 
184 
187 

54 
185 

158 

136 
66 

158 

158 

158 

63 
102 
158 
189 

111 
92 

Index 239 



READER'S COMMENT FORM 

IBM System/360 Model 20 
Disk Programming System 
PL/I 

• How did you use this publication? 

As a reference source .............................. D 
As a classroom text ................................... D 
As a self-study text .................................. D 

• Based on your own experience, rate this publication 

As a reference source: 

As a text: 

Very 
Good 

Very 
Good 

Good 

Good 

Fair 

Fair 

Poor 

Poor 

Very 
Poor 

Very 
Poor 

Form C33-6007-1 

• What is your occupation? ................................................................................................................... . 

• We would appreciate your other comments; please give specific page and line references 
where appropriate. If you wish a reply, be sure to include your name and address. 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



• C33·6007·1 

YOUR COMMENTS, PLEASE ... 

This SRL manual is part of a library that serves as a reference source for systems analysts, 
, programmers and operators of IBM systems. Your answers to the questions on the back of this 

form, together with your comments, will help us produce better publications for your use. Each 
reply will be carefully reviewed by the persons responsible for writing and publishing this 
material. All comments and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys
tem should be directed to your IBM representative or to the IBM sales office serving your 
locality. 

Fold Fold 

'. 

() 
c 
-; 
» 
r 
o 
Z 
G) 

-; 
:c 
en 
r 
Z 
m 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• lit •••••••••••••••••••••••••••••••••••••••••••• . 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY ... 

IBM Corporation 

112 East Post Road 

White Plains, N. Y. 10601 

Attention: Department 813 BP 

FIRST CLASS 

PERMIT NO. 1359 

WHITE PLAINS, N. Y. 

.......................................................................................................................... 

Fold 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.IOBOI 
[USAOnlyj 

IBM World Trade Corporation 
821 United Nations Plaza, NllwYork, New York 10017 
( International] 

Fold 



C33-6007-1 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.I060t 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[ International] 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	replyA
	replyB
	xBack

