
Systems Reference Library

IBM System/360 Model 19 5

'Functional Characteristics

This publication describes the organization and functional characteristics
of the IBM System/360 Model 195, an information-processing system
designed for ultrahigh-speed, large-scale scientific applications.

System components are described, and detailed consideration is given
to the functions of processor storage, central processing unit, input/output
channels, and operator-control and operator-intervention portions of the
system control panel. Coding and timing considerations are discussed.

The reader is assumed to have a knowledge of information-processing
systems and to have read the IBM System/360 Principles of Operation,
GA22-6821.

File No. S360-01
Order No. _GA22-6943-1

Second Edition (August 1970)
This is a major revision of, and obsoletes, GA22-6943-0 and Technical Newsletter
GN22-0345. The section headed "Operator Intervention" has been revised and
rearranged. Other changes to the text, and small changes to illustrations, are indi
cated by a vertical line to the left of the change; changed or added illustrations are
denoted by the symbol • to the left of the caption.

Changes are periodically made to the specifications herein; before using this publi
cation in connection with the operation of IBM systems, refer to the latest System/
360 SRL Newsletter, GN20-0360, for the editions that are applicable and cwrent.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

This manual has been prepared by the IBM Systems Development Division, Product
Publications, Dept. B98, PO Box 390, Poughkeepsie, N.Y. 12602. A form for readers'
comments is provided at the back of this publication. If the form has been removed,
comments may be sent to the above address.

©Copyright International Business Machines Corporation 1969, 1970

Contents

System Description 5 2880 Block Multiplexer Channel 21
Relationship to Other Models of IBM System/360 5 Extended Channel Feature 21
System Components . 6 Channel-to-Channel Adapter Feature 22

Central Processing Complex 9 System Control Panel 23
Central Processing Unit 9 System Control Functions . 23
Processor Storage 10 System Reset 23

Instruction Processor 10 Store or Display 23
Instruction Fetching 10 Initial Program Loading 23
Instruction Issuing 11 Controls 24
Execution of Branching Instructions 11 Operator Control . 24
Execution of Other Instructions 13 Operator Intervention Controls (Normal) 26
Handling Interrupts 13 Operator Intervention Controls (Special) 31

Storage Control Unit 16 Key Switch and Meters 34
Buffer Storage 16
Buff er Storage Operation 16 Appendix A: Coding Considerations 35

Fixed-Point/Variable-Field-Length/Decimal Execution
Element 17 Appendix B: Timing Considerations 36

Floating-Point Execution Element 18 Instruction Processor Delays 36
Add Execution Unit 19 Transmission Time 36
Multiply /Divide Execution Unit 19 Branches 36
E.ll. iern.ln! Exe\.:u liun Cn.il l:: fixed-Pomt L .. e(;utiun ,

Floating-Point Execution 37
Channels :::'0 5elerted Fxecuti0ri Tirne~ ~Q

2860 Selector Channel 20
2870 Multiplexer Channel 20 Index 39

The IHM System(36UMode1 195 is an information-processing
system designed for ultrahigh-speed, large-scale computer
applications. Its speed and power result primarily from ad
vanced circuit technology, a high performance buff er for
processor storage accesses, buffering within the processor,
··--·· c __ ._ _______ .. : __ .. : ___ _ t.:_t. ..l----- _c ----··------· :_
vc1y Hl:IL C.AC\,;UUUll UJUC:i, i:1 HJ!:;H UC!:;JCC Ul \,;Ull\,;U!H:::Hl;Y 111

operations, and employment of exceptionally efficient
algorithms, particularly in floating-point operations.

Speed in accessing storage and in executing instructions is
achieved with a high-speed buffer storage and multiple, inter
leaved processor storage elements, by functional buffering
within the processor, and by an assembly-line approach to
instruction processing. All of these factors are controlled to
maintain a high degree of concurrent, continuous operation
in the instruction unit and in several execution units. A
unique internal bus system also plays a major role.

In the Model 195, five separate units - each to a large de
gree autonomous - may be operating concurrently: proces
sor storage, storage control unit and buffer storage, instruc
tion processor. fixed-point/VFL/decimal processor, and
tloating-point processor. Furthermore, each of these units
may be performing several functions at one time. In the
floating-point processor, for example, as many as three
floating-point operations may be taking place concurrently.

Because of the concurrency achieved in the Model 195, the
effective time required by a given instruction is not directly
related to the rate at which that instruction can be processed.
For example, one normalized floating-point-add operation
requires two cycles and one normalized floating-point-multi
ply operation requires three cycles; if the operations are
logically independent, it is possible in the Model 195 to
process up to two add and one multiply instructions concur
rently for a total of three cycles, rather than sequentially
for a total of seven.

Although central processing unit (CPU) operations are to a
high degree performed in parallel, no special optimization is
required in preparing programs for CPU processing. In gen -
eral, System/360 coding is processed in the CPU with a high
degree of efficiency. Using the interrupt mechanism as a
part of the problem program logic should be avoided. Al
though this use of interrupts applies reasonably well to
slower, serial CPU's, such use degrades higher performance
CPU's. In particular, certain program interrupts that occur
at the end of a particular "assembly line" are too late to act
as modifiers to the beginning of that line. This situation re
stricts the user from taking unique, in-line action based on
exceptions like floating-point overflow.

Another consequence of the high-performance design is a
recommendation (not a functional requirement) that
FORTRAN users arrange arrays in COMMON so that long
precision data precedes short-precision data, etc. This ensures

System Description

that the data does not need to be aligned at execution time.
(See IBM System/ 360 FORTRAN IV Language, GC28-6S 15 .)

Model 195 machine cycle time is 54 nanoseconds; data
flow is eight bytes (one doubleword) in parallel. The proces·
sor storage cycle time is 756 nanoseconds, and the buffer
-.L----- --r-1- .L!-- J: __ ..,.,..,....,..,_..,...,...,.! ___ ---....1 -- !,.,.,_.:
lSlU!i:l!:;C \,;Y\,;lC lllUC lUl :IU\,;\,;C:l:s!VC 1Ci:1U Ul :IU\,1,,C:!:IJVC WIHC

cycles is 54 nanoseconds. (Depending on the addressing
pattern, an occasional Write followed by a Read may
encounter a blank cycle.)

Monolithic circuitry is used in the Model 195. The ad
vanced circuits have a basic delay time of less than 5 nano·
seconds, compared to SLT delay times ranging from 5 to 30
nanoseconds. In packaging, densities many times that of SLT
have been achieved. Boards approximately 8 by 12 inches
can hold pluggable cards containing up to 4,000 circuits. Two
of these boards can contain a-floating-point-add execution
unit for 64 bits in which both preshifting and postshifting
are accomplished.

The buff er storage, also in monolithic technology, has a
54-nanosecond read cycle with an eight-byte data path. The
buffer storage capacity of 32,768 bytes is packaged, using
pluggable cards. on two 10- by 12-inch boards. Storage cir
cuits lend themselves to much denser packaging techniques,
with one board containing as many as 150,000 circuits.

Relationship to Other Models of IBM System/360

Because of the emphasis on high performance, the operation
of the Model 195 in the following cases differs from that
specified in the IBM System/360 Principles of Operation,
GA22-6821.
1. The quotient of a floating-point-divide operation may

differ in the Model 195 from that of other models by
an amount equal to one bit in the low-order fraction
position. For zero remainders, the results are indentical.

2. Several program interruptions that should, according to
the IBM System/360 Principles of Operation, store a
nonzero instruction-length code are imprecise in the
Model 195. An imprecise interruption is one that causes
an instruction-length code of zero to be stored; this eode
indicates that the address of the instruction causing the
interruption has not been retained. When imprecise pro
gram interruptions occur, the interruption-code portion
of the current PSW is used in a special way. (See the
discussion of imprecise interruptions in "Instruction
Processor.")

3. Because floating-point overflow and underflow cause
imprecise interruptions on the Model 195, it is possible
that subsequent instructions will be executed using the
overflow or underflow results. For this reason, the re
sults are made to differ from the standard System/360
results, which produce the correct fraction and a

System Description S

wraparound exponent. In the Model 195, overflow pro
duces the correct sign and the maximum fraction and
exponent; underflow produces a true zero result. For
those instructions that change the condition code, the
code is 1 or 2 for overflow and 0 for underflow.

4. The Model 195 is capable of executing CPU stores out
of sequence. Logical consistency is maintained within
CPU programs, including the beginning and ending of
I/O operations. However, if a CPU program is to modify
a string of CCW's while they are being used by the chan
nel, steps must be taken to arrange the CPU program so
that the stores are made in sequence.

To provide a synchronization when other means are not
practical, a branch instruction may be used. This particular
branch instruction is a no-operation instruction for other
models of System/360, but is implemented in the Model 195
in such a way that its execution is delayed until all previously
decoded instructions have been completed. (See the handling
of interrupts discussion in "Instruction Processor.,,)

System Components

Major components of the Model 195 include an IBM 3195
Processing Unit (which includes the Processor Storage), an
IBM 2860 Selector Channel, and/or an IBM 2870 Multi
plexer Channel, and/or an IBM 2880 Block Multiplexer
Channel. Input/output (I/O) devices are attached to the
channels through control units (Figure 1). The four pro
cessor models are termed J, K, KJ, and L, depending upon
the amount of processor storage available. (In this publi
cation, main storage and processor storage are used inter
changeably.)

Processing Interleave
Unit Model Processor Storage Factor

J 1,048,576 bytes 8
K 2,097,152 bytes 16
KJ 3,145,728 bytes 16/8
L 4,194,304 bytes 16

Figure 2 is an outline configuration of the 3195 J, K, KJ,
and L Processing Units, including processor storage.

The standard features for any IBM 3195 Processing Unit
(CPU) include:

6

Universal Instruction Set (including the Standard Instruction Set,
Floating-Point Arithmetic, Decimal Arithmetic, and storage pro
tection)

Extended Precision Floating-Point Arithmetic
Byte-Oriented Operands
Direct Control
Protection Features (Store and Fetch Protection)

Buffer Storage
Interval Timer (9.6-kilohertz - about 104-microsecond interval)
2860 Selector Channel Attachment
2870 Multiplexer Channel Attachment
2880 Block Multiplexer Channel Attachment
Display Console
Remote Operator Control Panel Attachment
Emergency Power-Off Control

Resolution of the interval timer is 104 microseconds. The
timer is updated by decrementing bit position 28 every 104
microseconds (more precisely, at a frequency of 9.6 kilo
hertz). The updating takes place with minimal interference;
and no backup storage for the timer is used.

The display console, similar to an IBM 2250 Display Unit
Model 1, is integrated with the system console, which is a
stand-alone unit. Positioning a switch connects the display
console with either an I/O channel or the system console.
(When connected to a channel, the display console may be
used for two-way communication with the system. When
the display console is connected to the system console, the
communication path is from the system console to the dis
play console.) For connection to an 1/0 channel, the display
console requires one control unit position on a 2860 Selector
Channel, a 2880 Block Multiplexer Channel, or on a selector
subchannel of a 2870 Multiplexer Channel.

Standard on the display console are an alphameric key
board, character generator, light pen, 8,192-byte buffer
(4,096 bytes of which are reserved for maintenance pur
poses and contain format control data), and operator con
trol panel with one set of controls and indicator lights.

To control another System/360 processor, a second set of
controls and indicator lights may be added as an optional
feature to the operator control panel.

One set of the operator control panel controls and indi
cators may be duplicated as a remote panel on a stand-alone
operator's console (IBM 2150 Console or IBM 2250 Display
Unit Model 1). Provision for this attachment is a standard
feature.

A channel-to-channel adapter, an optional feature, may
be installed on an IBM 2860 Selector Channel (maximum
of one per seiector channei), permitting program-controUed,
storage-to-storage operations to take place directly between
I/O channels.

A variety of control units and input/output devices is
available for use with the Model 195. Descriptions of these
devices appear in separate publications. Configurators for
I/O devices and for system components are also available.
(See IBM System/360 Bibliography, GA22-6822.)

:3!J5 PROCESSING UNIT

~~~C:~~s~_~el 

3195J-1,048,576 Bytes 
8-Way Interleaving 

3195K-2,097, 152 Bytes 
16-Way Interleaving 

3195KJ-3, 145,728 Bytes 

I

I 

1

1 I 16/8-Wav lnterleavin!l I 
3195L-4, l94,304 Byte; I 
16-Wa lnterleavin 

2860 Selector Channel 

First Selector hannel 

Channel-to-Channel 
Adapter t 

S•uonnd Selector Channel 

( Chan::~~~~~annei ) 

I Third Selector Channel 

~I '-----C-ha_n_n_e_l--to_-_C_h-an_n_e_I ___ ....., I I Adapter t 

_...._..._...__.__,__._........,_...--t Up to eight 
control units 

--..,...--------~ 

T Up to eight 
control units -.----------' 

T T T T T T T T Up to eight 

-...---------' control units 

~ach selector channel addresses up to 256 1/0 devices, one at a time. Operation is in burst mode with overlapped processing. 
The 2860 Selector Channel is available in three models: 

Model 1 - one channel 
Model 2 - two channels 
Model 3 - three channels 

Minimum requirement: one 2860, one 2870, or one 2880. If only a 2870 is installed, the first selector subchannel feature is 
required. See table for maximum number of channels allowed. 

2870 Multiplexer Channel 

First Selector 
Subchannel 

Up to eight control units t 

D 
Second Selector 

Subchannel 
Up to eight control units t 

Addresses up to 16 1/0 devices 

..___ ____ t/ 1111 ~--
'. 11 . 

I I 
Fourth Selector 

Subchannel 
Up to eight control units t 

A second 2870 may be installed; a maximum of two selector subchannels is allowed on the second 2870. 

Maximum Allowable Channels and Frames 

Without Extended Channel Feature 

Channels Frames* 
2880 Block Multiplexer Channel 

2860 6 2 
2870 2 2 

Firs! Block Multiplexer Channel 

( Two-byte Interface ) 
Up to eight control units t 

2880 6 3 
2860/2870/2880 7 7 

With Extended Channel Feature Second Block Multiplexer Channel 

Up to eight control units t 
~ frgmn* 

8 

( Two-byte Interface ) 

2880 13 
With one or two 2870's 14 
With zero 2870's 13 

8 
8 Each block multiplexer channel addresses up to 256 1/0 devices. Sixty-four devices may operate concurrently through use 

of the block multiplexing function. Operation is in burst mode with overlapped processing. The 2880 Block Multiplexer 
Channel is available in two models: 

*Maximum per frame: three 2860 channels, 
two 2880 channels, or one 2870 channel 

Model 1 - one channel 
Model 2 - two channels 

Indicates Optional 
Feature 

The universal instruction set includes the standard instruction set, floating-point arithmetic, decimal arithmetic, 
and storage protection. 

A channel-to-channel adapter option (one per 2860 channel) permits interconnection of two channels. 
One 2860 channei position can connect to one channei po1ition on any other i8M Syatem/360 channei. Oniy one 
channel-to-channel adapter is needed per connection; it counts as one control unit on each channel. 

Input/output control units and devices are shown on the IBM System/360 Input/Output Configurator, 
. GA22-6823. 

•Figure 1. System/360 Model 195 Configurator 

System Description 7 



3086 
Coolant 

Distribution 
Unit* 

3085 3080 
Power Model l 

Distribution CPU 
Unit* Power 

Unit* 

•.'I: ·p·~~~-;;~:v··.·.•:···.• .. •.•:· .. ·.>.l Storage uA 
(3195 KJ and L) 

3080 
Model 2 

CPU 
Power 
Unit* 

3080 
Model 3 

CPU 
Power 
Unit* 

3060 Model l 
System Console* 

*These items may be positioned elsewhere as required. See 
IBM System/360 Installation Manual-Physical Planning, 
GC22-6820. 

•Figure 2. IBM 3195 J, K, KJ, L Processing Unit and Processor Storage Configurations 

8 



The central processing complex of the System/360 Model 
195 is made up of seven stand-alone units: a CPU, three 
CPU power supply units, a power distribution unit, a coolant 
distribution unit, and a system console (Figure 2). (A motor
generator set must be ordered separately and may be located 
in a remote area.) 

CENTRAL PROCESSING UNIT 

Functionally, the central processing unit consists of these 
major logical elements: instruction processor, fixed-point/ 
variable-field-length {VFL)/decimal execution element, 
floating-point execution element, high-speed buffer storage, 
storage control unit, and processor storage (Figure 3). The 
instruction processor and the two execution elements make 
up the central processing element (CPE), also called the 
processor. 

The instruction processor is the major coordinating ele
ment in the Model 195. For each instruction, it determines 
what must be done and issues the operation to the proper 
execution unit. Branching, status switching, and 1/0 instruc
tions are handled by the instruction processor; other in
structions are issued by the instruction processor to other 
processor elements for completion. 

The fixed-point/VFL/decimal executior. element contains 
the general registers, which are used also by the instruction 

Central Processing Unit (CPU),.---------l Processor Storage 

• 

Central Processing Complex 

processor. Functionally, this element operates as an inde
pendent stored-program computer; it has its own instruction 
strean1, its own execution circuitry, and a set of operand 
buffers. 

The floating-point execution element also operates as an 
independent computer. Although most of the floating-point 
instructions require more than one cycle of execution time, 
thi11. PlPmPnt 111. l"'!:ln!:!hlP nf 11.1111.t!:!inino ~n PvPrnt1nn r~tP nf 11n ..... __ -·-···-··· ·- --r--·- -- --- ... --·-·o _ .... -.1 ... --~ ...... - ....... _ ... _ - ... '"61"' 

to one instruction per cycle. 

The storage control unit handles all fetching and storing 
of data for the CPE. It is designed to minimize conflicting 
requests for storage and to make the most efficient use of 
storage. 

The high-speed buffer storage provides the principal means 
of reducing average access time to main storage. The most 
current blocks (a block is eight doublewords) of storage are 
maintained in the buffer storage, the operation of which is 
not obvious to the programmer. The first processor fetch to 
a block, for a storage address within that block, accesses the 
addressed location and initiates a transfer of the block into 
the buffer storage. 

Subsequent accesses to that block can then be made di
rectly from1 the buffer storage. Processor stores are made to 
both the buffer (if appropriate) and t0 prv..::css0r ~t0ra.gc. 
1/0 fetches and stores are made to processor storage only. 

Buffer jc----1 
Storage 1----+1 

Storage 
Control 
Unit 

r------------+--~~ 1/0 
Channels 

l 
j._ 

Fixed-Point/ 
VFL/Decimal 
Execution 
Element 

+ 

Instruction 
Processor 

1 l 
Floating-Point 
Execution 
Element 

--------------------------------~ 

Figure 3. Model 195 Logical Elements 

Central Processing Complex 9 



An 1/0 store to a location also currently held in the buffer 
storage invalidates the appropriate block in the buffer storage. 

PROCESSOR STORAGE 

Up to 4, 194,304 bytes of processor storage are available 
with an individual access of eight bytes (a doubleword). 
Interleaving of processor storage is provided so that the ad
dresses of successive doublewords are in successive, func
tionally independent units. Processor access to storage is 
performed in combination with the high-performance buffer 
storage. The effect is that average access time approaches 
the access time ,of the buffer storage. Transfers between the 
buffer storage and processor storage are made in blocks of 
eight doublewords. 1/0 accesses (eight bytes) to processor 
storage do not involve buffer storage except where necessary 
for control. 

Function Per[ armed 

Access time to buffer storage 
Access time to processor storage if not in 

buff er storage 
Access time to processor storage for 1/0 

channels 
Cycle time for buff er storage, successive 

read or successive write cycles 
Cycle time for processor storage 

INSTRUCTION PROCESSOR 

Time 
(Nanoseconds) 

162 
810 

648 

54 
756 

The primary functions of the instruction processor are 
fetching and buffering instructions from storage, fetching 
required operands, issuing instructions to the appropriate 

0 

2 

3 

4 

5 

6 

7 

Proccessor 
Storage 

64 bits 

Instruction 
Stack 

Decoder 
(64 bits) 

T empora Buffer 1 

Temporary Buffer 2 

I LB I IR 
__ :::J I 

- - - _ _J 

UB 

I 
I 

_ _J 

} 
General 
Registers 

Storage 
......_ ___ .,Control 

Unit 

..,.__ _ __.,Instruction Processor Execution Circuits 

____ ., Fixed-Point/YFL/Decimal Execution Element 

~-----Floating-Point Execution Element 

Figure 4. Instruction Processor 

10 

execution elements, handling interrupts, and executing all 
branching, status-switching, and 1/0 instructions. 

The instruction processor has an instruction stack of eight 
doublewords, a set of three instruction-control registers, a 
set of temporary instruction buff er registers totaling two 
doublewords, a decoder, and a three-input adder for the 
generation of effective addresses (Figure 4). The instruction 
processor uses the general registers in the fixed-point/VFL/ 
decimal execution element. 

Instruction Fetching 

Instructions fetched from storage are stored in the instruc
tion stack of the instruction processor. An instruction stack 
is used for two principal reasons: 
1. To minimize storage access time for instruction fetching. 
2. To reduce the number of instruction fetches required 

while the program is executing a tight loop. 
The instruction stack normally contains the current in

struction dou~leword, and seven doublewords of either his
tory (instructions already decoded) or instructions to be 
executed. Keeping a number of doublewords ahead enables 
the fetching mechanism to fit instruction fetches into slack 
periods between data fetches and stores. The doublewords 
of history in the stack minimize refetching of instructions 
when a loop backward that can be contained in the instruc
tion stack is detected. 

The fetching mechanism operates differently under each 
of three conditions: initialization, normal operation, and 
recognitioi:i of a discontinuity. It is governed by three con
trol registers: the instruction register (IR), the upper-bound 
(UB) register, and the lower-bound (LB) register. The IR 
points to the instruction being decoded, the UB register to 
the most recent doubleword brought into the stack, and the 
LB register to the earliest doubleword in the stack. 

Initialization 

Initially, the instruction stack is empty. When instruction 
fetching is initiated, the main-storage address of the first 
doubleword of instructions is set into the UB and LB regis
ters, and part of the address of the first instruction is set into 
the IR. The UB register, which controls the actual fetching 
of doublewords of instructions, brings the first doubleword 
into the appropriate position of the instruction stack. At 
the same time, the first doubleword is brought into the de
coder. 

As each instruction doubleword is fetched during initiali
zation, the UB register is incremented (a doubleword being 
brought into the stack for each increment) until any of 
three conditions occurs: 
1. The address in the UB register is seven doublewords higher 

than that of the IR (Figure 4). Doubleword instruction 
fetches are made whenever it does not delay data fetching 
or storing . 

2. A branch instruction is decoded that sets conditional 
mode (see "Execution of Branching Instructions"). 

3. A discontinuity is recognized (see "Discontinuities"). 



Normal Operation 

During normal operation, the instruction fetching mechan
ism cqntinually attempts to fetch a doubleword (Figure 4). 
Fetching will not take place if any of the three conditions 
just described is present. 

When incrementing the UB register would cause the three 
low-order bits of that register to match the three low-order 
bits of the LB register, both the UB and LB registers are 
incremented. This incrementing of both registers causes the 

'o'3rl;o.,+ ( nlrlo.,+\ rlnuhlournrrl ln tho d'31"1r tn ho ron1'31"Arl urith 
""'Y..1..L.L""'ti;i" \ V.J.W."11"\./ W.V W'.I."' TY""'.&.""' .LI& •.&J.'°" Y .. u. ...... n .. "'-' VV AV ,t'.l.U""'W. 't''f'.&\io.&& 

the iatest doubieword just fetched. The LB and UB registers 
then point to a doubleword positioned one doubleword 
hiiber in the stack. This relative positioning of the LB and 
UB pointers (instruction stack addressing) remains constant 
during normal operation. 

Discontinuities 

A branch operation, interrupt, or store into the instruction 
stream may cause a disruption in fetching. (Branching oper
ations and interrupts are discussed separately. See "Execu
tion of Branching Instructions" and "Handling Interrupts.") 

If the store instruction results in the alteration of the 
contents of a doubleword in the stack, the instruction fetch
ing mechanism treats that doubleword slot as empty and 
fetches the altered doubleword from storage. 

Because the Model 195 can execute several instmctions at 
one time, the instruction STORE * + 4 presents a special 
problem. This problem is solved by making a check of the 
effective address of each store operation to determine 
whether the operation affects the instruction following the 
store; if the next instruction might be affected, measures 
are taken to preserve the logical consistency of the program. 

Instruction Issuing 

In addition to fetching and buffering instructions, the in
struction processor fetches the required operands and issues 
instructions to the appropriate execution elements. 

During each machine cycle, the instruction processor checks 
for interlocks. If there are none, the instruction selected by 
the instruction register is decoded. After an instruction has 
been decoded, the IR is incremented by the number of half
words of the instruction just decoded, and the next instruc
tion is then decoded. Decoding is the first" of three possible 
stages in the issuing of the instruction. 

Stage 1 

During decoding, the following are determined: 
1. The type of operation to be performed. 

2. Whether the operation stack for the appropriate execu
tion element can accept the operation. 

3. If a storage operand is required, whether a buff er regis
ter in the appropriate execution element is available to 
receive the operand; or, if a store opel'.ation is specified, 
whether a store address register is avaiiabie in the stor
age control unit. 

4. If an effective address is required, whether the three
input adder and general registers used in generating the 
effective address are available. 

\\'hen the results of these checks indicate that the instruc
tion can be processed, the decoding control determines 
whether the instruction processor is operating in conditional 
mode (see "Execution of Branching Instructions"); if it is, 
the operation is tagged as conditional, indicating to the exe
cution element that it is not to decode or execute the opera
tion until signaled to do so. The operation is then issued 
for processing to the appropriate execution element (usu
ally during stage 2), along with information about which 
buffer registers in the execution element, if any are needed, 
have been assigned by the instruction processor for use in 
the operation. 

Stage2 

If address generation is required, the pertinent operand ad
dresses are routed to the three-input adder. {Another in
struction can now be processed at stage 1 ) If the instruc
tion is a store, a quick check is made of the effective address 
and, if this check indicates a possible store into the already 
fetched instruction stream, processing of the instruction at 
stage 1 is stopped until the processor determines whether 
the store is actually into the instruction stream. If it is, the 
processing at stage 1 remains stopped until the processor has 
issued a fetch to storage for the updated value of the in
struction doubleword affected. 

Fetches and stores can be made to operands that are not 
on proper boundaries; however, performance is degraded. 
Operands should be located on proper boundaries. 

Stage 3 

At this stage, the effective address of the storage operand 
is passed to the storage control unit. If a fetch operation 
is specified, the address of the buffer register to which the 
operand is to be issued is also specified. (During stage 3, 
another instruction can be processed at stage 1 and another 
at stage 2.) 

Execution of Branching Instructions 

The instruction processor executes all branching instruc
tions~ The actions taken by the instruction processor as a 
result of decoding a branch instruction are determined by 

Central Processing Complex 11 



the type of branch instruction to be processed, the availabil
ity of circuitry for processing, and the following: 
1. Whether the instruction processor is in conditional mode 

(see "Conditional Mode"). 
2. Whether the instruction processor is in loop mode (see 

"Loop Mode"). 
3. If loop mode is established, whether the current instruc

tion is that which defined the current loop. 
4. Whether the current instruction is the target of an 

'execute' instruction currently being processed. 
When a branch is taken, the target address of the branch 

normally is set into the instruction register, and the UB and 
LB registers and instruction stack are adjusted as required. 

When a conditional branch is encountered and loop mode 
is not set, the instruction processor operates as though either 
direction could be taken. It continues to process the in
structions in the instruction stack as long as conditions per
mit, while issuing operations to the fixed-point and floating
point execution elements on a conditional basis. These con
ditional operations will not be executed until after the con
dition code is set. 

The instruction processor also makes use of two tempor
ary buffers. Into these buffers it fetches the branch-target 
doubleword and the succeeding doubleword. Therefore, 
regardless of the outcome of the branch operation, the in
struction processor will have a lead in the correct direction. 

Conditional Mode 

Conditional mode is established when the instruction proc
essor executes a 'branch on condition' instruction for which 
the condition code is not yet determined. 

When conditional mode is set, no additional instruction 
fetches are made beyond the first two doublewords at the 
target address of the branch. The instruction processor con
tinues to decode instructions, generate addresses, and issue 
operations to the fixed-point and floating-point execution 
elements. The operations issued, however, are tagged as 
conditional and cannot be decoded or executed until the 
condition code is set and the instruction processor sends a 
signal to the execution element. 

The instruction processor continues to decode instructions 
conditionally until any of the following occurs: 
1. The condition code is set. 
2. No instructions are available in the instruction stack. 
3. The operation stack of the fixed-point or floating-point 

execution element is full, and the currently decoded in
struction needs the filled execution element. 

4. An instruction to be executed within the instruction 
processor is decoded, or a variable-field-length instruction 
is decoded. (However, a no-operation instruction or an 
unconditional branch may be executed during conditional 
mode.) 

12 

Loop Mode 

Whenever a branch backward is taken to a target fewer than 
eight doublewords back from the current address in the in
struction register, loop mode is entered and the instruction 
stack is reinitialized to contain the pertinent eight double
words. The loop is then locked into the instruction stack 
and, as a result, can be executed repetitively without re
fetching the instructions. Thus, conflicts between instruc
tion fetching and data fetching are eliminated, and branches 
can be executed faster. 

D . 1 d ...... 1' .... ···h-- -- ..J_ ... _ £'_ ... _,_ __ --unng ioop n10 e rem1Lia11ZaLi0fl, w 1t:u uu uC:lLC:l Ha~rn:;:s u1 

stores are to be made, an instruction doubleword is fetched 
every cycle until the instruction stack is full. If data fetches 
or stores are to be made, instruction doubleword fetches 
take second priority. 

When loop mode is entered, the branch target address is 
placed in one special register, and the address of the branch 
instruction is placed in a second special register. Subsequently, 
when a branch instruction is decoded during loop mode, that 
instruction address is compared with the address (in the sec
ond special register) of the branch instruction that initiated 
loop mode; if they are the same, the branch is made to the 
target address in the first special register. Because no time 
is taken to re-form the address specified in the branch in
struction, one cycle is saved. 

If a conditional branch instruction is processed when loop 
mode is already set, it is assumed that the branch will be 
taken; therefore, during loop rnode no temporary fetches 
(down the no-branch path) are made for conditional branches. 

Loop mode is turned off when any of the following occurs: 
1. A branch out of the instruction stack is taken. 
2. The instruction processor starts to decode the 32nd half

word in the instruction stack. 
3. The target of the quick loop is the same as the target 

of the outermost loop, and the branch closing the quick 
loop is not taken. (If two nested loops fit in the instruc
tion stack, the innermost loop is called the quick loop.) 

4. The base register or index register of the quick-loop 
branch is al~ered. 

Programming Notes: Because of item 2, a loop with 29-j 1 

halfwords should be aligned on a doubleword boundary. If 
the loop has fewer than 29 halfwords, the loop is executed 
in loop mode regardless of boundary alignment; if it has 
more than 31 halfwords, it is not executed in loop mode. 

Because of item 3, if the nested loops both have the same 
target address, loop mode will be destroyed every time an 
exit is made from the quick loop. To prevent loop mode 
from being destroyed, a no-operation instruction may be 
used as a dummy branch target for the outer loop. 



Execution of Other Instructions 

The instruction processor executes all status-switching and 
I/O instructions and plays a large part in the execution of 
multiple-operation instructions. When one of these instruc
tions is processed, the instruction processor usually does not 
issue any succeeding instruction until its part in processing 
the fust instruction is completed. 

None of these instructions is executed while conditional 
mode is set. Some require that all instructions being executed 
when that instruction is decoded, be completed prior to its 
_______ ... : __ ,...,, __ : ___ ..__ .... _.: ...... _______ :_: ___ ... t...: _ ___ _._1_ ... : __ ..... r 
t:Xt:~UUUH. J. Ut: llll>Ll U~L!Ulll) 1cy_u11111~ Lllil> ~uu1p1cuu11 Ul 

other instructions are the four I/ 0 instructions and 'load 
PSW', 'supervisor call,' 'set storage key,' and 'set program 
mask' (except when the old and new mask bits are the 
same). Also, one type of 'branch on condition' instruction 
(a no-operation instruction) is implemented in the Model 195 
in such a way that all other instructions being executed when 
it is decoded must be completed before its execution. See 
the programming note in "Handling Interrupts." 

The following instructions are classed as multiple-operation 
instructions: 

Load Multiple (LM) 
Store Multiple (STM) 
Translate (TR) 
Translate and Test (TRT) 
And (NC) 
Or (OC) 
Exclusive Or (XC) 

Move With Off set (MVO) 
Pack (PACK) 
Unpack (UNPK) 
Edit (ED) 
Edit and Mark (EDMK) 
Add Decimal (AP) 
Subtract Decimal (SP) 

Compare Logical tCLC) Compare Dec1mai tCP) 
Move Zones (MVZ) Multiply Decimal (MP) 
Move Numerics (MVN) Divide Decimal (DP) 
Move (MVC) Zero and Add (ZAP) 

These multiple-operation instructions have variable length 
data fields and require the issuing of more than one opera
tion from the instruction processor to the fixed-point exe
cution element, which shares responsibility for execution 
with the instruction processor. Also, each operation of a 
multiple-operation instruction issued to the fixed-point area 
contains information concerning at least one storage request. 

The multiple-operation instructions are the only instruc
tions, except 'convert to binary,' that cause operands to be 
fetched into the floating-point operand buffers for use in the 
fixed-point area. Four of the six fixed-point operand buf
fers are unavailable for reassignment while a multiple-opera
tion instruction is being executed. 

Usually, the instruction processor is available to issue the 
succeeding instruction after it has issued the last required 
operation to the fixed-point area. If the next instruction is 
in the SI format, it is not issued until the variable-field-length 
execution for the multiple-operation instruction is complete. 
If the multiple-operation instruction is a 'translate and test' 
(TRT) or an 'edit and mark' (EDMK) instruction, the in
struction processor will be available to issue subsequent 
instructions only after the entire TR T or EDMK instruction 
has been executed. 

Handling Interrupts 

The Model 195 performs all interrupt functions defined for 
the IBM System/360. (See IBM System/360 Principles of 
Operation, GA22-6821.) The supervisor call, external, 
machine check, and I/O interrupts are logically handled as 
defined. 

The performance objectives of the Model 195, however, 
require some deviations in handling program exceptions. 
The program-exception deviations are basically those re
sulting from an operation that has been sent by the instruc-
+~l"'\9'\ ....,.,.",.u~~if'~l""-'I" +" n..,,n+l-...t"t...- n.1n.---+ +-.. 4,, __ ,.,.+.:-- n- +t... ... + +t... .... 
L.lVU }'J.V ...... .,.,v .. l.V QUVl.U"'J. ~1 ... lU..,UI. J.Vl "'h"'\,Ul.lVU, '3V LUaL u11;; 

current PSW no longer references the operation. Conse
quently, the interrupt-causing instruction cannot be directly 
identified. Such a program interrupt is called imprecise. An 
imprecise interrupt is identified by the storing of zero as the 
instruction-length code in the PSW current at the time of 
interrupt. 

Logical accuracy is preserved in all situations where a 
basic machine status change is involved. For example, all 
instructions issued under a program mask are completed be
fore the mask is changed to ensure that the mask stored is 
that which allowed the interrupt. 

The instruction-length codes (ILC) for program interrupts 
on the Model 19 5 follow. The codes in this listing replace 
those listed for ILC on program interrupts in the IBM 
System/360 Principies of Operation. 

Program Exception 

Operation 
Privileged Operation 
Execute 
Protection 
Addressing 
Specification 
Data 
Fixed-Point Overflow 
Fixed-Point Divide 
Decimal Divide 
Decimal Overflow 
Exponent Overflow 
Exponent Underflow 
Significance 
Floating-Point Divide 

Imprecise Interrupts 

!LC 

1,2,3 
1,2 
2 
0 
0,1,2,3 
1,2,3 
0 
0 
0 
0 
0 
0 
0 
0 
0 

The following program exceptions always cause imprecise 
interrupts: 

l. Data, fixed-point-overflow, fixed-point-divide, decimal 
overflow, and decimal divide exceptions signaled from the 
fixed-point/VFL/decimal execution element. 

2. Exponent-overflow, exponent-underflow, significance, 
and floating-point-divide exceptions signaled from the 
floating-point execution element. 

3. A protection exception when a protection violation is 
detected. 

Central Processing Complex 13 



An addressing exception can produce either a precise or 
an imprecise program interrupt, as determined by the prob
lem. 

When an imprecise interrupt is signaled, the instruction 
processor ensures that all instructions that were decoded be
fore the signal was recognized are completed before the 
iriterrupt is honored. When the interrupt is taken, the in
struction address stored in the program old PSW points to 
the next instruction that would have been decoded, and for 
which an attempt would have been made to issue it, had the 
interrupt not occurred. 

Imprecise interrupts that arise from conditional instruc
tions (that is, instructions issued subsequent to a 'branch on 
condition' instruction for which the condition code is not 
yet determined) are noted and either activated or canceled, 
as appropriate, when the conditional instructions themselves 
are activated or canceled. 

When an imprecise interrupt takes place, not just one but 
several exceptions may have occurred, because all deco~ed 
instructions are completed before the interrupt is taken. 
Also, because instructions can be executed out of sequence, 
the interrupt condition recognized first may not be the con
dition that logically should be recognized first. To account 
for both possibilities (an out-of-sequence detection and the 
occurrence of more than one type of exception, either with
in one or different instructions), the action taken when an 
imprecise interruption occurs is that each type of exception 
that took place is identified in bits 16-27 of the program 
old PSW, and bits 28-31 are set to zero. Also, the instruc
tion-length code (bits 32-33) is set to zero. 

Bit Position in Program 
Program Old PSW Exception 

16 Protection 
1 7 Addressing 
18 Not Used 
19 Data 
20 Fixed-Point Overflow 
21 Fixed-Point Divide 
22 Exponent Overflow 
23 Exponent Underflow 
24 Significance 
25 Floating-Point Divide 
26 Decimal Overflow 
27 Decimal Divide 

Note: For an imprecise interrupt, the types of exceptions 
that occurred, but not the number of exceptions of any one 
type that occurred, are identified in the program old PSW. 

Precise Interrupts 

When the program interrupt is precise, bits 28-31 of the 
program old PSW identify the exception causing the inter
rupt; the remainder of the interrupt code (bits 16-27) is all 
zeros; and the instruction-length code (bits 32-33) is 1, 2, 
or 3, as appropriate. 

A logical consistency is maintained when a precise pro
gram interrupt precedes an imprecise program interrupt that 
logically should have taken place first. If an imprecise inter
rupt occurs during execution of outstanding instructions 

14 

before a precisely identifiable interrupt is honored, the in
struction causing the precise interrupt is not executed, the 
precise interrupt condition associated with this instruction 
is not indicated, and the address of the instruction causing 
the precise interrupt is placed in the instruction-address 
portion of the program old PSW. In effect, the instruction 
causing the precise interrupt is treated as never having 
occurred, and a return to the program causes the original 
interrupting instruction to be reinitiated. (The same opera
tion takes place when a supervisor-call interrupt is followed 
by an imprecise program interrupt that logically should 
have occurred first.) 

Addressing Exceptions 

An addressing exception resulting in a precise program 
interrupt is produced if any of the following conditions is 
detected: 
1. Any portion of the current instruction to be decoded lies 

outside available storage. 
2. The address generated for any of the following instructions 

lies outside available storage: 'read direct,' 'write direct,' 
'load PSW ,' 'set system mask,' 'set storage key', 'insert 
storage key,' and 'diagnose.' 

3. Any portion of the target instruction for 'execute' lies 
outside available storage. 

All other addressing exceptions, which are signaled after 
the completion of address generation leading to the fetching 
or storing outside of available storage, result in imprecise 
program interrupts. 

Specification Exceptions 

A specification exception resulting in a precise program 
interrupt is produced if any of the following conditions is 
detected: 
1. An attempt is made to execute an instruction specified at 

an odd-numbered location in storage. 
2. The Rl field of an instruction specifies an odd-numbered 

register for the pair of general registers that contains a 
64-bit operand. 

3. A number other than 0, 2, 4, or 6 is specified for a float
ing-point register (0, 4 - Extended Precision). 

4. The block address specified in 'set storage key' or 'insert 
storage key' has the four low-order bits not all zero. 

5. The three low-order bits are not all zero in the address 
generated for 'load PSW' or .'diagnose.' 

6. The multiplier or divisor in decimal arithmetic exceeds 
15 digits and sign. 

7. The first operand field is shorter than or equal to the 
second operand field in decimal multiplication or 
division. 

Programming Notes 

A program may not operate correctly on the Model 195 if 
identification of the instruction that caused an imprecise 
interrupt is required. When an imprecise interrupt occurs, 
the program old PSW does not reference the operation that 
caused it. 



Also, a program may not operate correctly on the Model 
195 if it requires the honoring of an imprecise interrupt be
fore' some instruction later in the program is executed. When 
an imprecise interrupt is detected, all instructions decoded 
by that time are executed before the interrupt is taken. 
Therefore, several instructions following the instruction that 
caused the imprecise interrupt may be executed before the 
interrupt is taken. (How many of these subsequent instruc
tions will be executed will vary, principally because the 
~1odel 195 ;can execute instructions concurrently and out of 
sequence.) It is possibie, at the programmer's option, to 
return to the problem program but, because all decoded in
structions are completed before the interrupt is taken, the 
instructions executed after the interrupt may have been 
adversely affected by the program exception. 

If preciseness is a principal concern, the unwanted effects 
of imprecise program interrupts can usually be eliminated 
by testing and masking, as appropriate, and by using this 
'branch on condition' instruction: 

Mnemonic 

BCR 

Type 

RR 

M1 Field 

Not zero 

R 2 Field 

Zero 

This branch instruction is a no-operation instruction for 
Systcrn/ 360 gcncrall;/ ~ but is implcrr1cntcd in the ~1ode1 195 
in such a way that its execution is delayed until all previously 
liei.;uJeu 111::il1ui.;uu11::i liave bt:e11 i.;umplt:ted. 

Note: The address in the instruction counter is that of the 
BCR instruction, and the instruction length code is as listed 
at the beginning of this section. The use of this no-operation 
instruction degrades the performance of the Model 195. It 
should be used only to eliminate a problem for which there 
is no other reasonable solution. 

Note that a program may have 1 been naturally arranged so 
that the adverse effects of certain imprecise program inter
rupts are eliminated in advance. For example, in addition 
to the branch (no-operation) instruction just mentioned, 
execution of the following instructions is· delayed until all 
previously decoded instructions have been completed: the 
four I/O instructions, 'load PSW ','supervisor call', 'set stor
age key', 'diagnose', and 'set program mask' (except when 
the old and new mask bits are the same). 

The execution of instructions out of sequence may pre
sent a problem in a situation other than the one concerning 
imprecise interrupts. Although the CPU maintains a logical 
consistency with respect to its own operations, including the 
starting and ending of I/O operations, it cannot ensure 
logical consistency between the CPU and asynchronous units 
during their operations. For example, if an I/O channel pro
gram relies on proper sequencing of stores by the CPU to 
ensure proper channel operation, steps must be taken in the 
CPU program to guarantee that the stores actually are made 
in that sequence. The no-operation instruction can be used 
to accomplish this. 

Interrupt Example 

The following example taken from the program controlled 
interrupt (PCI) appendage for dynamic buffer allocation in 
the basic telecommunications access method (BTAM) illus
trates the dependence of an asynchronous channel program 
upon seriai execution. The exampie aiso demonstrates use 
of the BCR instruction to effect serial execution. 

The purpose of the PCI appendage is to maintain an un
interrupted transmission of data into main storage. The 
controlling factors in this transmission are the availability of 
buffers and the ability (of the appendage routine) to modify 
and chain two channel programs. Each channel program 
consists of the following two channel command word (CCW) 
chains: 
Chain I CCWl READ into a buffer with data chaining (CD) 

and PCI flags 

CCW2 READ into CCW3 with skip (SKIP) and 
suppress length indication (SLI) flags 

Chain 2 CCW3 READ into a buffer with CD and PCI flags 

CCW4 READ into CCWl with SKIP and SLI flags 

1. In Chain 1, CCWl is initialized with the first available 
buffer address. 

2. The address fields for CCW2 and CCW4 initially contain 
the storage addresses of CCW3 and CCWl, respectively. 

3. When the PCI interrupt in CCWl occurs, the PCI append
age routine determines the address of the next available 
buffer and stores it into the address field of CCW3. 

4. The command code in CCW2 is changed from a READ 
to a transfer-in-channel (TIC), and the command code in 
CCW4 is reset to READ as shown in Chain 2. (The first 
time through the channel program, CCW4 is already set 
to READ.) 

5. When the PCI interruption in CCW3 occurs, the PCI 
appendage routine determines the address of the next 
available buffer (after the one indicated in step 3) and 
stores it into the address field of CCWl. 

6. The command code in CCW4 is changed from a READ to 
a TIC, and the command code in CCW2 is reset to READ 
as shown in Chain 1. 

Steps 3 through 6 of the preceding sequence of events 
continue until the input data transmission is completed. 
The PCI appendage instructions that accomplish the alter
ation of the CCWs are: 

ST available buffer address into CCW3 (or CCWl) 
BCR 15, 0 
MVI into CCW2 (or CCW4), the code for a TIC command 
MVI into CCW4 (or CCW2), the code for a READ command 

On the Model 195, use of the BCR instruction effects a 
pipeline drain to ensure that the proper buff er address is 
stored before the READ command is changed to a TIC com 
mand. If, as could happen when the BCR instruction is 
omitted, the MVI instructions were completed out of 
sequence (i.e., before the ST instruction), the channel could 
fetch a READ (into buffer) command with an old buffer 
address. In such a situation, the new input would overlay 
the old data. 

Central Processing Complex 15 



Note: In this example, it is assumed that the PCI appendage 
instructions necessary to alter the format of the CCWs were 
executed before the channel fetched the "READ xx (SKIP, 
SLI)" command. If, in a given situation, this is not the case, 
then the fetching of the "READ xx (SKIP ,SLI)" command 
is executed without transfer of data and causes a normal 
termination. Then, the appropriate channel program must 
be restarted at the expense of additional input/output time. 

STORAGE CONTROL UNIT 

The storage control unit (SCU) is the intermediary between 
main storage and the other system units. As such, it controls 
central processing element (CPE) access to the high-speed 
buffer storage backed up by the full capacity of main stor
age. The SCU: 
1. Provides and controls data and address paths to and from 

main storage and the buff er storage for the central proc
essing element, the channels, and the system console. 

2. Controls the transfer of doubleword blocks of informa
tion from main storage to the high-speed buffer storage. 

3. Buffers store operations pending the availability of store 
data. 

4. Properly sequences CPE stores and fetches to the same 
address. 

5. Provides the storage protection function. 

Buffer Storage 

Because of the sequential nature of most programs, a CPE 
fetch is likely to be followed by succeeding fetches to the 
s~me storage block. Access time for subsequent fetches is 
considerably reduced by placing the addressed block of 
main storage in the high-speed buffer storage. Block trans
fer is controlled by the storage control unit so that use of 
the buff er storage is not obvious to the programmer. 

The Model 195's increased performance is due in part to 
the faster access to instructions and operands provided by 
the high-speed buffer storage. Whereas normal instruction 
or operand fetches from main storage require 810 nano
seconds, fetches from the buff er storage require only 162 
nanoseconds. 

Main storage and the high-speed buffer storage (Figure 5) 
are similarly arranged. In main storage, eight doublewords 
(64 bytes) occupy each of the 128 blocks that form a seg
ment. The largest processor storage, in the Model 195 L, 
has 512 segments. The buffer storage is arranged in a like 
manner but with four segments. Also provided are four 
data directories, one for each buffer segment, with 128 lo
cations per directory. Each location in the directory contains 
the main storage address of the block of data in the corre
sponding block of the high-speed buffer storage. 

16 

Data 
Directory 

512 Main Storage Addresses 

4 

( 

..._ 0 ___..__I --'-- 2 ............... i.....i... 125 ...J.-126...J.-127 _, 

High-
Speed 
Buffer 
Storage 

r ... 511 

Ql

1 
.. 510 

~ 
.E Block 
~ Identifier 

~ + 1 

•0 

512 Blocks 

I I I I )\ I 
(64 
Bytes) 

Eight 
Double 

- Blocks -

t t t Transmit 

T 

r-

Eight 
Double-
words 

fill II~ 
'- ~ l 

24 Bit Address 

Figure 5. High Speed Buffer Storage 

Buffer Storage Operation 

I I Is .. -, .. 
(64 
Bytes} 

2-Way 
Segment 3 

Inter-
leaved 

Segment 2 

125 126 127 Segment 1 

t t t 

64 
Bytes 

-

125 -'- 26 _.__ 27-

When the central processing element performs a store opera
tion to main storage, the main storage address is placed in a 
store address register to await arrival of data in a store data 
buffer. See Figure 6. Comparing the address of the block 
addressed by the store operation with the block addresses 
in the data directory indicates whether the location also 
resides in the buff er storage. If so, the store is directed to 
both main storage and the buffer storage; if not, only main 
storage is modified by the store operation. 

A channel or system console store to main storage must 
also determine when the addressed block resides in both 
main storage and the buffer storage, but for a different 
reason. Input from the channel or system console is 
directed only to main storage. Therefore, when the store ad· 
dress is also in the buffer storage, the addressed block is in
validated in the data directory. Consequently, it must be re
transmitted from main storage before a subsequent fetch to 
that block is allowed. 



Buffer-Storage Addressing 

I Addresses 
from CPE 

Addresses 
from Channa! 

• r 9 Data Directory r 1 
!tj TAR I ! ! !j SAR I! ! t-+ Data Directory 1 ~ _ h 

t I I ~~I t Fl SAR
2 I~ I ~ ~:::~::::::::: ~ ~~ I I I 

L:J 
=~es I I I I yTAR3I ~SAR3I ~ I 
~II~I I II. 

I I I Boundcry I I I Data from CPU/Channels r-1 I I .J...t.. l Alignment}- l I I , T t--+ 
~ SC t 

t--+ Buffer 3195 B SDBl ~ Channe! Processa-

SDB2 }- t--+ Storage Storage 
CPE 

L SDB3 j- L.+ ........., 

"' 

-
Main Storage Addressing 

..... 

"'Ill 
COMP - Compare 
CPE - Central Processing Element 
CPU - Centfal Processing Unit 
SC - System Console 
SAR - Sta-e Address Register 
SOB - Store Data Buffer 
SPF - Storage Protection Feature 
TAR - Transfer Address Register 

• Figure 6. Storage Control Unit Data Paths 

CPE fetches from main storage are usually fetches from 
the high-speed buffer storage. The CPE fetch address is 
placed in a transfer address register (Figure 6), and a 
comparison is made with the store address register and the 
directory. An equal compare with the store address register 
causes the fetch to be delayed until the indicated store to 
that address is completed. 

An equal comparison of the CPE fetch address and the 
data directory indicates that the data to be fetched resides 
in the high-speed buffer storage. The fetch is then made 
from the buff er storage and the data placed on the bus to 
the CPE. 

When the fetch address does not reside in the buff er stor
age, a block transfer to the buffer storage is called for. The 
addressed doubleword is fetched from main storage and 
placed on the bus to the CPE. This doubleword is also 
transmitted to the buff er storage to become the first of 
eight doublewords in the block transfer. Subsequent fetches 
to this block can then be made from the high-speed buff er 
storage. 

The block of doublewords transmitted to the buffer stor
age is placed in a block location corresponding to its main 
storage location as determined by the block address (Fig
ure 5), and the block's main storage address is placed in 
the corresponding data directory location. The block may 
be placed, however, in any one of four possible buff er stor
age segments. 

--"' 

l 
SC J 

Data to CPU and Channels 1 l 

Because all doublewords having the same block address 
are assigned to the same buff er storage location, four 
identical buffer segments are used to avoid conflicts. Whictt 
of the four buffer segments is used or replaced is deterntined 
by the replacement code. The replacement code is main .. 
tained to indicate the order of buff er storage segment usage. 
It indicates the most recently, second most recently, third 
most recently, and least recently accessed segment for each 
of the four possible blocks to be accessed. 

The block transmitted from main storage replaces the 
least recently accessed segment block. Thus, the buff er 
always contains 512 blocks of main storage that have been 
used most recently. 

Channel fetches are made only from main storage. Ad· 
dresses from channels are held until the requested storage is 
free. Channel requests are then given highest priority to 
ensure against channel overrun. 

FIXED-POINT/VARIABLE-FIELD-LENGTH/DECIMAL 
EXECUTION ELEMENT 

The fixed-point/variable-field-length (VFL)/decimal execu .. 
tion element executes all fixed-point arithmetic, logical, and 
variable-field-length and decimal arithmetic operations. It 
consists of six major logical elements (Figure 7): 
1. An operation stack (FXOS) of six positions 
2. Sixteen general registers 
3. Six 32-bit operand buffers (FXB) 

Central Processing Complex t 1 



General Registers Fixed-Point 
Operation 

Storage Control Unit 

JL 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

1 
I 

f FLPT Buffers 

f 
]I bits 

Stock (FXOS) 
1 1 32 bits 
2 2 
3 3 Fixed-Point 

4 4 Buffers (FXB) 

5 5 
6 6 

ato 

Instruction 
~-----+--------+--+----.,..Processor 

Fixed-Point 
(FXEU) 

~-----~.__ ________ __....._5toroge 

Control Unit 

Figure 7. Fixed-Point/VFL/Decimal Execution Element 

4. A fixed-point execution unit (FXEU) 
S. A VFL execution unit (VFLEU) 
6. A decimal execution unit (DEU) 

Fetches from storage of data fields necessary for processing 
a fixed-point operation are initiated by the instruction proc
essor, which also reserves in the fixed-point area the buffers 
that are to receive the requested operands. 

The instruction processor also maintains for its own use 
counters that indicate whether: (1) the fixed-point opera
tion stack has an available position, (2) which fixed-point 
buffers are available, and (3) which general registers are 
available to the instruction processor and which are being 
used by the fixed-point/VFL/decimal execution element. 

During normal processing, operations in the FXOS are 
decoded serially and issued to either the fixed-point execu
tion unit or the VFL or decimal execution unit. An opera
tion can be executed if it has been decoded, if the data is 
available, and if the execution circuitry is free. When decod
ing is completed, the instruction processor is notified that the 
stack position and operand buffers assigned to that operation 
are free. 

The execution of one operation is overlapped when possi
ble with the decoding of the next. When a multiple-opera
tion instruction is processed (see the discussion of multiple
operation instructions under "Instruction Processor"), de
coding of the next instruction in the FXOS does not begin 
until the execution of the last of the multiple operations is 
begun. 

Operations tagged as conditional are not decoded or 
executed until they are activated or canceled by the instruc
tion processor. A canceled operation is decoded in one 
cycle, and execution of the operation consists of freeing any 
operand buffers previously assigned to the canceled opera
tion without actual execution of the operation. 

At any time during a fixed-point/VFL/decimal operation, 
the instruction processor can request a direct store into the 

18 

general registers, which, because the instruction processor has 
priority, may delay fixed-point/VFL/decimal processing. 

Fetches made during the execution of a multiple-opera
tion instruction may require the use of operand buffers in 
the floating-point execution element; also, four of the six 
fixed-point operand buffers are unavailable for reassignment 
while such an instruction is being processed. 

FLOATING-POINT EXECUTION ELEMENT 

The floating-point execution element handles execution of 
the floating-point arithmetic operations, including the 
extended precision operations. (See "Extended Execution 
Unit.") Several operations can be executed at one time 
(maximum: two adds and one multiply or divide) if the 
operations are logically independent. This performance 
capability results largely from three significant features: 
( 1) operand and instruction buffering, (2) multiple execu
tion units employing extremely efficient algorithms, and 
(3) a common data bus, which links the several sets of ex
ecution circuitry so that the full power of the multiple 
execution units is realized without a reliance on programming 
for the special arrangement of instructions. 

The floating-point area contains the following major 
logical elements (Figure 8): 
1. An operation stack (FLOS) of eight positions. 
2. Four floating-point registers (FLR). 
3. Six operand buffers (FLB), which are also used by the 

fixed-point area when any multiple-operation instruction 
or the 'convert to binary' instruction is processed. 

4. Three execution units: an add unit (preceded by three 
reservation stations) capable of performing two add 
operations concurrently, a multiply/divide (M/D) unit 
(preceded by two reservation stations), and an extended 
execution unit (preceded by one reservation station). 

Decoding of operations in the FLOS proceeds serially. 
As an execution unit is selected for an operation (on the 
second cycle), the decoding of the next operation (on the 
first cycle) can begin. The FLOS issues operations subject 
to only one principal constraint: a reservation station of 
the appropriate type must be available. 

The FLOS need not wait for all the operands to be avail
able (as in the fixed-point area) before issuing the operation. 
Instead, the selected reservation station and controls hold 
the issued operation until the required operands have been 
collected and then engage the execution circuitry. 

Because several operations may be in various stages of 
execution at one time, provision must be made for properly 
sequencing dependent operations. A system of tagging for 
usage of the common bus ensures proper sequencing and 
also facilitates fastest execution of independent operations. 

The FLB and the common data bus execute all RX load 
operations. RR load and RR load and test operations are 
executed by the common data bus and special testing 
circuitry. Store operatio!1s are executed by the three store 
data buffers. Multiply and divide operations are executed 



Floating-Point ___ i_ts_, 

RegisteB (FLR) .....,2.....-__ _, 

Floating-Point 
Operation Stack (FLOS) 

I 
2 
3 
4 
5 
6 
7 
8 

I 
2 
3 
4 
-

I~ 

, 
64 bits 

I I 

Fl 

Storage 
Control Unit 

oating-Point 
ffeB (FLB) Bu 

1 
F~B t I 

CDB I I 
.-t-loa_t_in....;.g_-P_o_in,..; _Bu_f_fe_r _Bu_s-....,__ _____ _..,, __ __._+ ______ _..,. Fixed-Point Area 

I I FI oating-Point LRegister Bus 

i Storage 
Control 
Unit 

_t l 
I I 
Reservation 

Station I 

• ~ ' • . ~ 

• Reservation Reservation 
Station 2 Station I 

~ • ~ 

Reservation 
Station 3 

J 

' 
r 1 

Add 
Execution 

! Unit 

Figure 8. Floating-Point Execution Element 

by an M/D unit, and the extended unit, if required. Add 
operations are executed in either the add unit or the ex
tended unit. 

Fetches for data fields needed to process a floating-point 
operation are initiated by the instruction processor, which 
also reserves the buffers in the floating-point area that are 
to receive the requested operands. The instruction processor 
also maintains for its own use counters that indicate whether 
the FLOS has an available position and which floating-point 
buffers are available. 

When the FLOS completes decoding, it signals the instruc
tion processor that the stack position is empty. If an opera
tion has been decoded, the related operand buff er is set free 
at the time it is filled; if the operand buffer is filled before 
the related operation is decoded, however, the buffer is set 
free one cycle after decoding is completed. 

Operations tagged as conditional are not decoded or 
executed until they are activated or can~eled by the instruc
tion processor. A canceled operation is decoded in one cycle, 
and execution of the operation consists of freeing all oper
and buffers previously assigned to the canceled operation 
without actual execution of the operation. 

Add Execution Unit 

The add execution unit can begin execution if the opera
tion has been decoded, the data is available, and another 

l Common Data Bus _.... 

1 i 
.. 

Reservation Reservation 
Station 2 Station 

oj 

[ Multiply/Divide Extended 

Execution Unit Execution 
Unit 

T T 

add operation of higher priority is not beginning on the 
same cycle. Two add operations can be executed concur
rently by offsetting the start of the second operation one 
cycle from the start of the first. While two operations are 
being performed, the third reservation station may be 
acquiring data. 

Multiply/Divide Execution Unit 

The multiply or divide execution unit can begin execution 
if the operation has been decoded, the data is available, an
other multiply or divide operation of higher priority is not 
beginning on the same cycle, and the execution circuitry is 
free. The two M/D reservation stations share a single execu
tion section; therefore, only one M/D operation may be 
executed at a time. 

Extended Execution Unit 
The extended execution unit (Figure 8) is a standard feature 
that provides additional logic for handling extended precision 
(28-digit fraction) floating-point operands. The feature 
includes seven instructions and additional controls for using 
the multiply unit. (Details of the extended-precision 
floating-point instructions are in IBM System/360 Principles 
of Operation, GA22-6821.) 

Instruction execution begins when the operands are in the 
reservation station. For an extended-precision multiply 
operation, priority for the use of the multiply unit is required. 

Central Processing Complex 19 



Channels 

The IBM 2870 Multiplexer Channel, the IBM 2860 Selector 
Channel, and the IBM 2880 Block Multiplexer Channel pro
vide for attachment of 1/0 devices to the Model 195 system. 
The channel relieves the CPU of communicating directly 
with 1/0 devices and permits data processing to proceed con
currently with 1/0 operations. 

Channel priority is independent of the channel address and 
is selected at time of installation. Priority is determined by 
pluggable circuit jumpers in the CPU. (Note: Only qualified 
maintenance personnel may insert or remove these circuit 
jumpers.) Guidelines for assigning priority are: 
1. Channels with the 2301 Drum Storage or 2305 Fixed 

Head Storage attached should be assigned highest 
priorities. 

2. The 2870 Multiplexer Channels with overrunable devices 
attached should follow in priority channels with a 2301 
or 2305 attached. 

3. Continue assigning priority in decreasing data rate order 
to channels with overrunable devices, that is, lower pri
ority to lower data rate device. 

4. Channels with non-overrunable devices should have 
lowest priority. 

A standard channel-to-control-unit interface provides a 
uniform method of attaching control units to channels. Data 
is transferred a byte at a time between the 1/0 device and 
the channel. An optional two-byte-wide interface on the 
2880 channel provides for attachment of devices with very 
high data rates. Data transfers between the channel and the 
SCU are eight bytes (one doubleword) in parallel for both 
selector and multiplexer channels. 

The following descriptions include the maximum data 
rates attainable by the different channels. During system 
operation, the actual rates may be less than the maximums, 
depending on (1) channel priority, (2) the number of chan
nels operating concurrently, (3) the speed of the devices 
operating on each channel, and ( 4) the type of channel pro
gramming used; for example, single record versus chained 
records. 

2860 SELECTOR CHANNEL 

The 2860 Selector Channel provides for attachment and con
trol of 1/0 control units and associated devices. At least one 
2860 (any model) is required if no 2870 Multiplexer or 2880 
Block Multiplexer Channel is attached. The 2860 is available 
in three models: 

Model 1 - provides one selector channel 
Model 2 - provides two selector channels 
Model 3 - provides three selector channels 

20 

The 2860 Selector Channel permits data rates of up to 1.3 
million bytes a second. 1/0 operations are overlapped with 
processing and, depending on the data rates and channel 
programming considerations, all selector channels can oper
ate concurrently. A set of channel control and buffer regis
ters permits each channel to operate with a minimum of 
interference. 

Eight control units can be attached to each selector chan
nel. Each control unit may have more than one 1/0 device 
connected to it, but only one device per channel may trans
fer data at any given time. A selector channel operates only 
in burst mode, and may be assigned addresses one through 
six only. 

2870 MULTIPLEXER CHANNEL 

The 2870 Multiplexer Channel provides for attachment of a 
wide range of low- to medium-speed 1/0 control units and 
associated devices. The basic 2870 Multiplexer Channel with 
192 subchannels can attach eight control units and can ad
dress 192 1/0 devices. The basic multiplexer channel can 
operate several multiplex-mode 1/0 devices concurrently or 
a single burst-mode device. 

Two 2870's can be attached to the Model 195: the first 
one provides 196 subchannels including four optional selector 
subchannels; the second one provides 194 subchannels in
cluding two optional selector subchannels. The address of 
the first 2870 must be zero; the second 2870 may be assigned 

any address from one through six. The address priority as
signed to the second 2870 should be as high as possible, but 
not higher than a- selector channel with a 2301 drum attached 

Selector subchannels are optional. Each selector subchan
nel can operate one 1/0 device concurrently with the basic 
multiplexer channel. 

Each selector subchannel permits attachment of eight con
trol units for certain devices having a data rate not exceeding 
180 kilobytes (kb) a second. Regardless of the number of 
control units .attached, a maximum of 16 1/0 devices can be 
attached to a selector subchannel. 

The maximum aggregate data rate for the multiplexer chan
nel ranges from 110 kb to 670 kb, depending on the number 
of selector subchannels in operation. The first three selector 
subchannels may operate concurrently at up to 180 kb for 
each subchannel. When all four selector subchannels operate 
concurrently, the fourth has a. maximum data rate of 100 kb. 

Each selector subchannel in operation diminishes the basic 
multiplexer channel's maximum data rate of 110 kb; the 



maximum data rates for concurrent selector subchannel op-
erations are: 

Basic 
Multiplexer 

Channel 
llOkb 
88 kb 
66 kb 
44 kb 
30kb 

Data Rates for Selector Subchannel 
1st or 2nd 2870 1st 2870 Only 
1st 2nd 3rd 4th 

180 kb 
180 kb 
180 kb 
180 kb 

180 kb 
180 kb 
180 kb 

180 kb 
180 kb 100 kb 

Note: The 180-kb maximum data rate for 2870 selector sub
channels pertains to attachment of magnetic tape devices; 
timing factors other than data rates may preclude attachment 
of direct-access storage devices that have lesser data rates. 
Also, note that when other channels in addition to the 2870 
are in operation, the total system 1/0 data rate must be 
analyzed. 

2880 BLOCK MULTIPLEXER CHANNEL 

The functional use of the 2880 Block Multiplexer Channel 
closely parallels that of the 2860 Selector Channel; devices 
that attach to the Model 195 through a 2860 may also attach 
through a 2880 assigned one of the addresses one through 
six. The 2880 is capable of higher data rates than the 2860, 
however, and also offers a block multiplexing capability. A 
two-byte !/0 interface used with the high-speed data trans
fer mode permits data rates of up to three million bytes per 
st:~und. 

Unlike the 2860 and 2870 channels, the 2880 performs a 
channel logout on occurrence of a channel data check condi
tion. The logout occurs at the completion of the current 
command and into locations 272 through 399. Data check 
logouts may be eliminated during selector mode operation 
by inserting the bypass-logout circuit jumper. (Note: Only 
qualified maintenance personnel may insert or remove the 
bypass-logout circuit jumper.) 

At least one 2880 Block Multiplexer channel is required if 
no 2860 Selector or 2870 Multiplexer channels am attached. 
The 2880 always transfers data in burst mode, and may be 
assigned any address from one through thirteen. 

Two models of the 2880 Block Multiplexer Channel are 
available: 

Model 1 - provides one channel 
Model 2 - provides two channels 
The standard features of the 2880 are the high-speed data 

transfer mode (up to 1.5 million bytes per second) and the 
block-multiplexing capability (concurrent operation of up to 
64 devices). 

An optional feature is the two-byte interface which pro
vides for a data transfer rate of up to 3.0 million bytes per 
second. 

The basic 2880 Block Multiplexer Channel attaches to the 
standard one-byte 1/0 interface. The 2880 utilizes a high
speed data transfer mode that incorporates two additional 
interface tag lines, Data-In and Data-Out, to allow 1/0 data 

rates up to 1.5 million bytes per second. Data rates of 1.5 to 
3.0 million bps are achieved through additional buffering and 
use of an optional two-byte 1/0 interface. All data transfers 
over the two-byte interface are in the high-speed data trans
fer mode. 

The block multiplexing function provides 64 subchannels 
to be biock multiplexed over the standard 1/0 interface. 
Block multiplexing is similar to the byte multiplexing capa
bility of the 2870 Multiplexer Channel; the principal differ= 
ence is the quantity of data transferred per transmission. The 
2880 multiplexes blocks (bursts) of data; that is, burst mode 
devices share the channel facilities and transmit data in burst 
mode. When the channel is multiplexing (interleaving) blocks 
of data on the single data path it may also control the non
data transfer activities of multiple devices. 

Eight control units can be attached to each 2880 Block 
Multiplexer Channel. Each control unit may have more than 
one 1/0 device connected to it, but only one device per chan
nel may transfer data at any given time. However, as many 
as 64 channel programs may be in concurrent execution in 
each 2880 channel through use of the block multiplexing 
function. 

To facilitate conversion, the 2880 also operates in selector 
channel mode, thus permitting operation under the current 
operating system. A switch is provided on the system con
sole for selection of either the selector or hlock multiplex 
mode. 

EXTENDED CHANNEL FEATURE 

This feature permits attachment of as many as 14 channels 
to the Model 195, in which case bit 6 in the system mask of 
the PSW masks channels 6-13 as a group rather than channel 
6 alone. 

Without the extended channel feature, one or two 2870's 
and up to six 2860's and/or 2880's may be attached to the 
CPU as follows: 

2870's 
0 
1 
2 

2860's and/or 2880's 
1to6 
0 to 6 
0 to 5 

With the extended channel feature the number of channels 
and frames allowed is as follows: 

Maximum Number Allowed 
Channels Channels 
2860 6 
2870 2 
2860/2870 7 

2880 13 

2860/2880 13 
2870/2880 14 
2860/2870/2880 14 

*Maximum channels per frame: 
3 - 2860 
2 - 2880 
1 - 2870 

Frames* 
2 
2 
4 

8 

8 
8 
8 

Channels 21 



CHANNEL-TO-CHANNEL ADAPTER FEATURE 

A channel-to~hannel adapter is available as an optional fea
ture on the 2860. The adapter provides a path for operations 
to take place between two channels and synchronizes those 
operations. It may be used in multiple-processor or single
processor systems: in a multisystem, to achieve rapid com
munications between the channels of two System/360 
models; in a single system, to move blocks of data from one 
main storage area to another. 

The adapter uses one control-unit position on each of the 
two channels, but only one of the two connected channels 
requires the feature. In the Model 195, one adapter may be 
installed per 2860 selector channel. 

When the 2870 or 2880 channel is connected to a 2860 
channel, the channel-to~hannel adapter is installed on the 
2860 channel, not on the 2870 or 2880. 

For restrictions on channel attachments for another IBM 
System/360 model used with the Model 195, refer to the 
Systems Reference Library (SRL) functional characteristics 
publication for that model. 

22 



The system controi panei on the system consoie contains the 
switches, keys, and indicator lights to operate and control 
the system (CPU, storage, channels, on-line control units, 
and input/output devices). Off-line control units and 1/0 
devices, though part of the system environment, are not 
considernd part of the system. 

System controls are divided into three classes: operator 
control, operator intervention, and customer engineering 
control. This section of the manual discusses operator con
trol and operator intervention. 

Using the control panel, the operator can perform the fol
lowing system control functions: 
1. Reset the system. 
2. Store and display information in storage, registers, and 

program status word (PSW). 
3. Load initial program information. 

SYSTEM CONTROL FUNCTIONS 

System Reset 

The system-reset function resets the CPU, channels, and on
Hne nonshare-d control units :md l/O devices. 

The CPU is placed in the stopped state, and all pending 
interrupts are eliminated. All error-status indicators are re
set to zero. 

In general, the system is placed in such a state that proc
essing can be initiated without machine checks occurring, 
except those caused by subsequent machine malfunction. 

Addresses in the data directory of the high-~peed buffer 
storage are reset to zero by a system reset. Subsequently, 
the contents of the high-speed buff er storage are replaced, 
block by block, as required by ensuing fetch requests. 

The reset state for a control unit or device is described in 
the appropriate Systems Reference Library (SRL) publica
tion. A system-reset signal from a CPU resets only the func
tions in a shared control unit or device belonging to that 
CPU. Any function pertaining to another CPU remains un
disturbed. 

The system-reset function is performed when the system
reset key is pressed, when the PSW-restart key is pressed, 
when initial program loading is initiated, or when a power
on sequence is performed. 

Programming Note: If a system reset occurs in the middle 
of an operation, the contents of the PSW and of the result 
registers or storage locations are unpredictable. If the CPU 
is in the wait state when the system reset is performed, and 
no 1/0 operation is in progress, this uncertainty does not 
exist. 

A system reset does not correct parity in registers or stor
age. Because a machine check occurs when information 

System Control Panel 

with incorrect parity is used, the incorrect information 
should be replaced by loading new information. 

I ~~ore.or Disp~~y. ,. . . . . . 
l ine store-or-a1sp1ay runct10n permits manual mtervention 
I in the progress of a program. The storing or displaying 

of data may be provided by a supervisor program, proper 
1/0 equipment, and the interrupt key. 

In the absence of an appropriate supervisor program, the 
controls on the operator intervention panels allow direct 
storing or displaying of data. This is done by placing the 
CPU in the stopped state and subsequently storing or 
displaying information in main storage, in general and 
floating-point registers, and in the instruction-address part 
of the PSW. The stopped state is achieved when the stop 
key is pressed, when single instruction execution is specified 
and the instruction has been executed, or when a preset 
address is reached. 

In Model 195, the transition from operating to stopped 
state includes completing all instructions that were decoded 
at the time stopped state was called for. The store-or-
display function is achieved by use Jf the stcr..:, display, ..,11d 
set CAR keys, address switches, data switches, store/display/ 
storage select switch, scan key, and CRT display switch. 
Once the desired intervention is completed, the CPU can be 
started again. 

Normal stopping and starting of the CPU in itself does not 
cause any alteration in program execution other than in the 
time element involved in the transition from operating to 
stopped state. 

Machine checks occurring during store-or-display opera
tions do not log immediately but create a pending log condi
tion that can be removed by a system reset or CPU reset. 
The error condition, when not disabled, forces a log-out and 
a subsequent machine check interrupt when the CPU is re
turned to the operating state. 

Initial Program Loading 

Initial program loading (IPL) is provided for initiation of 
processing when the contents of storage or the PSW are not 
suitable for further processing. 

Initial program loading is initiated manually by selecting 
an input device with the load-unit switches and pressing 
the load key. 

Pressing the load key causes a system reset, turns on the 
load light, turns off the manual light, and initiates a read 
operation from the selected input device. When the IPL is 
completed satisfactorily, a new PSW is obtained, the CPU 
starts operating, and the load light is turned off. 

System Control Panel 23 



The system reset suspends all instruction processing, inter
rupts, and timer updating and also resets all channels, on
line nonshared control units, I/O devices, and the data 
directory. The contents of general and floating-point reg
isters remain unchanged. 

When IPL is initiated, the selected input device starts trans
ferring data. The first 24 bytes read are placed in storage 
locations 0-23. Protection, program-controlled interrupt, 
and a possible incorrect length indication are ignored. The 
doubleword read into location 8 is used as the channel com
mand word (CCW) for reading more than 24 bytes. When 
chaining is specified in this CCW, the operation proceeds 
with the CCW in location 16. Either command chaining or 
data chaining may be specified. 

When the device provides channel end for the last opera
tion of the chain, the I/O address is stored in bits 21-31 of 
the first word in storage. Bits 16-20 are made zero. Bits 
0-15 remain unchanged. 

The CPU subsequently fetches the doubleword in location 
O as a new PSW and proceeds under control of the new PSW. 
The load light is turned off. No I/O interrupt condition is 
generated. When the I/O operations and PSW loading are 
not completed satisfactorily, the CPU idles and the load 
light remains on. 

Programming Notes: Initial program loading resembles a 
'start I/O' that specifies the I/O device selected by the load
unit switches and a zero protection key. The CCW for this 
'start I/O' is simulated by CPU circuitry and contains a read 
command, zero data address, a byte count of 24, chain
command flag on, program-controlled-interrupt flag off, 
chain-data flag off, and skip flag off. The CCW has a virtual 
address of zero. 

Initial program loading reads new information into the 
first six words of storage. Because the remainder of the 
IPL program may be placed in any desired section of storage, 
it is possible to preserve such areas of storage as the timer 
and PSW locations, which may be helpful in program debug
ging. 

If the selected input device is a disk, the IPL information 
is read from track 0. 

The selected input device may be a channel-to-channel 
adapter connecting the channels of two CPU's. After a sys
tem reset is performed and a read command is issued to this 
adapter by the requesting CPU, the adapter sends an atten
tion signal to the addressed CPU, which then should issue 
the write command necessary to load a program into main 
storage of the requesting CPU. 

When the PSW in location 0 has bit 14 set to 1 , the CPU is 
in the wait state after the IPL procedure. (The manual sys
tem and load lights are off, and the wait light is on.) Inter
rupts that become pending during IPL are taken before in
struction execution. 

24 

CONTROLS 

System controls are divided into three groups: operator 
control, operator intervention, and customer engineering 
control. Figure 9 shows the location of panels used to per
form the operator control and the operator intervention 
functions. Figure 10 shows controls and indicator lights 
used in operator control, and Figure 11 shows the controls 
and indicator lights used in operator intervention. 

*Panels containing operator controls. See Figure 10. 
**Panels containing operator intervention controls. See Figure 11. 

• Figure 9. System Console Panels 

Operator Control 

The operator-control section of the system console panel 
(Figure 9) contains controls and indicator lights required 
by the operator when the CPU is operating under full super
visor control. Under supervisor control, a minimum of di
rect manual intervention is required because the supervisor 
performs operations similar to store and display. 

To control another System/360 processor, a second set of 
controls and indicator lights (an optional feature) can be 
provided on the operator control panel (Figure 10). One 
set may be duplicated as a remote panel on a stand-alone 
operator's console (IBM 2150 Console or IBM 2250 Display 
Unit Model I). Provision for the remote panel is a standard 
feature. 

The main functions provided by the operator controls are 
the control and indication of power, the indication of sys
tem status, operator-to-machine communication, and initial 
program loading. 

The operator controls and indicator lights (Figure 10) are: 

Name 
Display Power Off 
Display Power On 
Emergency Pull 
Interrupt 
Load 
Load 

Type · 
Key 
Key (backlighted) 
Pull switch 
Key 
Key 
Indicator light 



1~ 
r - - - - - - - - - - - - - -- -, 

CONT!'!OL PANEL 
FOR SECONO CPU 

(OPTIONAL) 

I 
II 
11 

1 ........... 1000001~1 II 1~1 1~1 
---~~~~~L--------------------------~'-' ~~------

OPERATOR CONTROL PANEL 

Figure 10. Operator Control Panel and Power Panel 

Name 

Load Uriit 
Manual 
Power Off (System) 
Power On (System) 
System 
Test 
Wait 

Display Power Off 

Type 
Rotary switches (3) 
Indicator light 
Key 
Key (backlighted) 
Indicator light 
Indicator light 
Indicator light 

The display-power-off key un the power panel initiates the 
power-off sequence of the display console integrated with 
the system control panel. The contents of the upper 4,096 
bytes of display console buff er storage (containing format 
control data) are preserved after a power-off to the display 
console. 

Display Power On 

The display-power-on key on the power panel initiates the 
power-on sequence of the display console integrated with 
the system control panel. While power is on the display 
console, the key is backlighted white. The contents of the 
upper 4,096 bytes of display console buffer storage (con
taining format control data) are preserved after a power-on 
to the display control. 

Emergency Pull 

Pulling the emergency-pull switch turns off all power, be
yond the power-entry terminal, on every unit that is part 
of the system or that can be switched onto the system. 
Therefore, the switch controls the system proper and all 
off-line and shared control units and 1/0 devices. A second 
emergency-pull switch is on the power distribution unit. 

The switch latches in the out position and can be restored 
to its in position by maintenance personnel only. 

Interrupt 

The interrupt key is pressed to request an external interrupt. 
The interrupt is taken when it is allowed and when the CPU 
is not stopped. Otherwise, the interrupt remains pending. 

POWER PANEL 

When the interrupt is taken, bit 25 in the interrupt-code por
tion of the current PSW is set to 1 to indicate that the inter~ 
rupt key is the source of the external interrupt. The key is 
effective while power is on the system. 

Load (Key) 

The load key begins initial program loading. (See "Initial 
Program Loading.") It is effective while power is on the 
system. 

Load (Light) 

The load light is on during initial program loading. It turns 
on when the load key is pressed and turns off after the new 
PSW is successfully loaded. 

Load Unit 

The three load-unit switches provide the 12 rightmost 1/0 
address bits of the device to be used for initial program 
loading. They are 16-position switches labeled hexadecimally 
0-F. (Positions 7-D of the leftmost switch are used only if 
the extended channel feature is installed.) 

Manual 

The manual light is on when the CPU is in the stopped state. 
Several manual controls are effective only when the CPU is 
stopped, that is, when the manual light is on. 

Power Off (System) 

The power-off key initiates the power-off sequence of the 
system. The contents of main storage (but not the keys in 
storage associated with the protection features nor the con
tents of the high-speed buffer storage) are preserved if the 
CPU is in the stopped state and all 1/0 operations are com
plete. The key is effective while power is on the system. 

System Control Panel 25 



Power On (System) 

The power-on key initiates the power-on sequence of the 
system. As part of the power-on sequence, a system reset is 
performed in such a way that the system performs no in
structions or 1/0 operations until explicitly directed. The 
contents of main storage are preserved. 

The power-on key is backlighted white when power is on 
the entire system. The key is backlighted red during the 
power-on sequence and when any remote/local power con
trol switch in the power system is in the local position. If 
there is a loss of power in some section of the processor, 
main storage units, or channels, the light will change from 
white to red. The power-on key is effective only when the 
emergency-pull switch is in its in position. 

System 

The system light is on when the CPU-cluster usage meter or 
customer engineering meter is running. These meters are on 
the display console. 

The states indicated by the wait and manual lights are 
independent of each other; however, the state of the sys
tem light is not independent of the states of the wait and 
manual lights. The possible conditions when power is on 
are: 
System Manual Wait CPU I/O 
Light Light Light State State 

Off Off Off * * 
Off Off On Wait Not working 
Off On Off Stopped Not working 
Off On On Stopped, Wait Not working 
On Off Off Running Undetermined 
On Off On Wait Working 
On On Off Stopped Working 
On On On Stopped, Wait Working 

* Abnormal Condition 

Test 

The test light is on when a manual control is not in its 
normal position or when a maintenance function is being 
performed for the CPU, channels, or main storage. 

Any abnormal setting of a switch on the system control 
panel or on any separate maintenance panel for the CPU, 
main storage, or channels that can affect the normal opera
tion of a program causes the test light to go on. 

The test light may be on when certain diagnostic functions 
are activated or when certain abnormal circuit-breaker or 
thermal conditions occur. 

The test light is on when any of the following controls is 
not in its normal position: 

Address Compare 
Address Increment (Beat BSM/Beat ADR) 
Address Increment (Block Scan) 
Block Multiplex Channel Mode 
CRT Display and Tape Operation 
Decimal Alternate Sign 
Disable Interval Timer 

26 

Enter Instruction 
Inhibit Overlap 
Inhibit Replace Buffer 1, 2, 3, or 4 
Mach Check Stop 
MCW Active/Chan Sim 
Rate 
Repeat/Repeat and Reset 
Reverse CBR PTYS/Block DD Reset 
Storage Reconfiguration 
Storage Test (Store/Fetch) 
System Console Test, Rotary 

vVait 

The wait light is on when the CPU is in the wait state. The 
wait state exists whenever bit position 14 of the current 
PSW contains a 1. The wait state can be changed to the 
running state only by loading a new PSW in which bit posi
tion 14 contains a O; it cannot be changed by pressing the 
system reset key. 

•Operator Intervention Controls (Normal) 

This section of the system control panel {Figure 11) con
tains controls required by the operator to intervene in nor
mal programming operation. These controls are intermixed 
with the customer engineer controls, which are not used 
by the operator. 

Operator intervention controls, classified in the Model 195 
as either normal or special operator intervention controls, 
provide the system-reset function and the store or display 
function. The following are normal operator intervention 
controls: 

Name Type Panel 

Address/ Address Compare (8-31 + Key Switches M 
3 parity) 

CBR To Ones Key L 
CBR To Zeros Key M 
CRT Display and Tape Operation Rotary Switch N 
Data (0-63 plus eight parity) Key Switches M 
Display Key M 
PSW Restart Key N 
Scan Key N 
Set CAR Key M 
Set IC Key N 
Set PSW Key N 
Start Key L 
Stop Key L 
Store Key M 
Store/Display /Storage Select Rotary Switch N 

Address/Address Compare (Panel M) 

The 27 address switches (24 address switches and three 
parity switches) are locking key switches and are used to 
set an address into the console address register (CAR) or 
are used as the comparand in an address compare operation. 



L 

I 
I 

SYSTEM CONSOLE 
TEST 

BLOCK !11£1 
DDRf:SET INSO 

rlEMICI' .... 

STORAGE 
RECONFIGURATION 

111111SE1111rm111 

F ~ 

CYCLIC PROGRAM COUNTER ENTRY 

DfCllAL I 

I lalrrr. 
I I u I Y I Y I Y I 

~ 11!!... !!!!.. 
y I u 
I!!!. 

M 

IU!lll 
IHPm 

SYSTEM 

CONSOLE 
TUT 

._ flH IHlllT HI tllAILf AUi IH IH IH • BLOCK 
"flUI' ACT11E "r~::ll 11111 SEii SEii 511 I SEI I SCH 

FORCE 
MACH CHK BOOD 

0000 0001 OOIO 0011 OIOO 0101 0110 0111 1000 IOOI 

STORAGE TEST ADDRESS 
COMPARE 

® O=O=O=O CXXX) ® O=O=O=O CXXX) ~ O=O=O=O ()()().() @ O=O=O=O 0-0-0-0 
0-7 1-111 11-11 14-11 

.:i ~ ~ ~ ~ ~ i i i t ~ i i t t t ~ i t ~ ~ i ~ I i I i t i i ' i i i i t 

I D~LAY I 

N STORE/DISPLAY/STG SELECT MACH CHECK 

-=~-"'l 
STOP 

--=-=~ - -,LPttH •:.,u • ~Mai • ~ 

LC>e WOllD 
DllPLAY 

CRT DISPLAY CHANNEL 
&TAPE OP INDICATION 

,-~ ._~ .. .-1-11 IT'Obll -.u. 
l-.oc--·· U•j:" 

fV fl!:GS IKIP 

@] B EJ @] IYITEM 
llESET w T 

~ ~ AP£ ~ T D D 

•Figure 11. Operator Intervention Controls and Indicator Lights 

System Control Panel 27 



The address switches have locking set positions. The 
associated bit position of the console address register is set 
according to the position of the switch when the SET CAR 
key is pressed. (When this switch is down, the bit position 
is set to 1 ; in the center position, the bit position is set to 
0.) The console address register addresses storage or a 
register as specified by the address compare, CRT display 
and tape operation, or store/display/storage select switches. 

When used for address compare, the value set in the 
switches is the comparand (CAR may contain a different 
"" 111 .. \ 'fU..&.U."" ,. 

The console address register can also be altered by the 
address stepping circuitry. The contents of the console 
address register are indicated continuously. 

The three low-order bit positions and positions 8 and 9 
are not used in main-storage addressing and are not affected 
by the address stepping circuitry. Thus, main-storage ad
dressing always specifies a doubleword boundary. In the 
performance of the address-compare and for register selec
tion, however, the entire address is used. 

Parity for each byte is indicated by the parity indicators 
in the address register and is generated automatically when
ever the address register is used. The three parity switches 
do not affect address usage; when activated, they turn the 
associated address-register bit on or off, but parity is auto
matically updated in the address register before the address 
is used. 

CBR to Ones (Panel L) 

Depression of this key sets all I-bits (including the parity 
bits) in the console buffer register. 

CBR to Zeros (Panel M) 

Depression of this key sets all 0-bits (including the parity 
bits) in the console buff er register. 

CRT Display and Tape Operation (Panel N) 

This switch connects the display console with either an 1/0 
channel or the system control panel. The CRT-display por
tion of this switch, labeled "scan," determines the type of 
display to be produced on the CRT when the scan key is 
pressed. The enable diagnostic message and tape operation 
portions of this switch are used by the customer engineer. 

When the switch is in any position other than process, the 
test light is on. 

Process: When the switch is in this position, the display con
sole is connected to either a 2860 channel, a 2870 selector 
subchannel, or a 2880 channel, and is under program control. 

Storage: When the switch is in this position, the type of 
storage scan operation performed is determined by the 
storage select setting of the store/display/storage select 
switch. 

28 

Processor: When the switch is in this position and the CPU 
is in the stopped state, pressing the scan key initiates an 
operation by the system console in which all of the CPU 
displayable data is placed sequentially into the console 
buff er register and then transferred to the display console 
buffer storage. An integrated program in the display con
sole selects the proper data to be displayed along with the 
identification of the registers (Figure 12). 

FLP Regs: When the switch is in this position and the CPU 
is in the stopped state, pressing the scan key initiates an op
eration identical to that described for the processor posi
tion, except that the floating-point registers are scanned 
and displayed (Figure 13). 

Data (Panel M) 

The 72 data switches (64 data switches and eight parity 
switches), labeled CBR, are nonlocking key switches and 
are used to enter data into selected areas of the CPU or 
storage. 

The contents of the console buffer register (CBR) are 
normally the output of the data switches; the contents of 
this register are altered by manipulation of these switches, 
by a storage fetch operation, or by a log-word or register 
display. 

The switches have nonlocking set and reset positions; they 
are in a neutral position when they are not being operated. 
The associated bit position of the buff er register is set or 
reset depending on the position to which the switch is 
operated. (When the switch is operated down, the bit posi
tion is set to 1.) The contents of the console buffer register 
are indicated continuously so that any manipulation of the 
data switches can be seen. 

Data is stored according to the contents of the console 
address register and the setting of the store/display/storage 
select rotary switch. The store key must be pressed to 
initiate the store operation. Parity is automatically gener
ated whenever the data is transferred. 

Data cannot be stored into the high-speed buffer-storage 
data directory from the data switches. 

Display (Panel M) 

The display key is pressed to place data into the console 
buffer register, as determined by the setting of the store/ 
display/storage select rotary switch and by the contents of 
the console address register. The lights for the console buf
fer register continuously display the contents of that register. 

When the designated location is not available, the dis
played information is unpredictable. 



PROCESSOR DISPLAY 

TEMP l 
IBFR 0 

l 
2 
3 

00 00 00 00 00 00 00 00 
oo ~o oo oo oo oo oo oo 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 

OP REG 00 00 00 00 
OP STG 00 00 00 

LB 00 00 00 00 
UB 00 00 00 00 

GPR 0 
2 
4 
6 

A 
c 
E 

FXB A 
c 
E 

DEC G 
J 

00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 vv 00 vv 

00 00 00 00 
00 00 00 00 
00 00 00 00 

00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 

GPR 
3 
5 
7 
9 

D 
F 

FXB B 
D 
F 

DEC H 

00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 

00 00 00 00 
00 00 00 00 
00 00 00 00 

00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 

TEMP 2 
IBFR 4 

5 
6 
7 

00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 

IR 00 
AOC 00 

ISR 00 

SLT 
SLCIR 

SLCB 
SLCX 

00 
00 

00 
00 

DWCR 00 
BYT BUF 00 

SV RI 
XECOR 

00 
00 

L REG BUF 

TEMP 00 00 00 00 
WR 00 00 00 00 

FXOS l 
2 
3 
4 
5 
6 

00 00 00 
00 00 00 
00 00 00 
00 00 00 
00 00 00 
00 00 00 

L ACC 00 00 00 00 00 R ACC 00 00 00 00 0 

TAR l 
2 
3 

CL ADDRESS RS SA 
00 00 00 00 00 00 
00 00 00 00 00 00 
00 00 00 00 00 00 

P/B CTR 00 
P/C CTR 00 

P CTR 00 

BOO CONTROL 
AD RS LS SA 
00 00 00 00 

SAR l 
2 
3 

C'lAN <;DB 

SBO 

ADDRESS MK 
00 00 00 00 
00 00 00 00 
00 00 00 00 

PI P2 ADDRESS 
f"\("', f"'\f"'I ,..,A fl('\ 
V'..J '~U V'-· '-'~-=' '--='V 

00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 

SIM REG BC 
l 00 
2 00 
3 00 

STD KEY 00 
PRO KEY 00 

DEC SHF 00 00 00 00 00 00 00 00 
BOO SHF 00 00 00 00 00 00 00 00 

SOB l 
2 
3 

MK I MK2 

00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 

Note: A blank following any byte indicates correct parity; 
an asterisk denotes incorrect parity. 

• Figure 12. Sample Processor Display 

FLOATING POINT DISPLAY 

FLB 1 
2 
3 
4 
5 
6 

FLB 0 
2 
4 
6 

00 00 00 00 00 00 00 00 0 
00 00 00 00 00 00 00 00 0 
00 00 00 00 00 00 00 00 0 
00 00 00 00 00 00 00 00 0 
00 00 00 00 00 00 00 00 0 
00 00 00 00 00 00 00 00 0 

00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 

FLOS 0 00 00 
1 00 00 
2 00 00 
3 00 00 
4 00 00 
5 00 00 
6 00 00 
7 00 00 

RSLT EXP 
0 PSI 00 

L/R PSI 00 
0 PS2 00 

L/R PS2 00 
EP 00 

EP SRC 00 00 00 00 00 00 00 00 
SNK 00 00 00 00 00 00 00 00 
SUM 00 00 00 00 00 00 00 00 

Al SRC 
SNK 

A2 SRC 
SNK 

A3 SRC 
SNK 

00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 

ADR INT 00 00 00 00 00 00 00 00 0 
AD RSLT 00 00 00 00 00 00 00 00 

MUL DEC 00 00 00 00 00 00 00 
CSA SUM 00 00 00 00 00 00 00 00 00 
CSA CAR 00 00 00 00 00 00 00 00 00 
PA RSLT 00 00 00 00 00 00 00 00 00 

MD! SRC 00 00 00 00 00 00 00 00 
SNK 00 00 00 00 00 00 00 00 

MD2 SRC 00 00 00 00 00 00 00 00 
SNK 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 0 

Note: A blank following any byte indicates correct parity; 
an asterisk denotes incorrect parity. 

Figure 13. Sample Floating-Point Display 

System Control Panel 29 



PSW Restart (Panel N) 

The PSW-restart key is pressed to initiate the following op
erations in sequence: 
1. System reset. 
2. Loading a new PSW from location 0. 
3. Instruction fetching, starting at the new program loca

tion specified by the new PSW. 
4. Execution of instructions as specified by the setting of 

the rate switch. 
The PSW-restart key is effective in all CPU states. 

Scan (Panel N) 

The scan key is pressed to produce a display on the cathode
ray tube of the display console. The display produced is 
determined by the settings of the CRT display and tape op
eration switch and the store/display/storage select rotary 
switch. 

This key should be used only while the CPU is in the 
stopped state; otherwise, the results are unpredictable. 

Set CAR (Panel M) 

Pressing the set CAR key transfers the setting in the 24 ad
dress switches to the console address register. 

Set IC (Panel N) 

The set IC (instruction counter) key is pressed to enter the 
contents of bit positions 40-63 of the console buffer register 
into bit positions 40-63 (the instruction address part) of the 
current PSW. 

This key is effective only while the CPU is in the stopped 
state. 

Set PSW (Panel N) 

The set PSW (program status word) key is pressed to enter 
the contents of bit positions 0-15 and 32-63 of the console 
buffer register into bit positions 0-15 and 32-63 of the 
current PSW. 

The key is effective only while the CPU is in the stopped 
state. 

Start (Panel L) 

The start key is pressed to start instruction execution as 
specified by the setting of the rate switch. 

Pressing the start key after a normal halt causes instruc
tion processing to continue as if no halt had occurred, 
provided the rate switch is in the process, instruction-step, 
or multiple-step position. 

Pressing the start key after system reset without first hav
ing introduced a new instruction address yields unpredict
able results. 

Pending interrupts that are allowed will be honored be
fore the first instruction is executed. 

The key is effective only while the CPU is in the stopped 
state. 

30 

Stop (Panel L) 

The stop key is pressed to terminate machine operation 
without destroying system status. The CPU enters the 
stopped state after all previously decoded instructions have 
been executed, after all pending interrupts have been pro
cessed, and after any interrupts that became pending while 
the CPU was in the decode or stop-decode state have been 
processed. 

When the CPU enters the stopped state, the manual light 
turns on. After stopped state has been entered, no inter-

The stop key is active while power is on the system. 

Store (Panel M) 

The store key is pressed to store data from the console buf
fer register into the location specified by the setting of the 
store/display/storage select rotary switch and by the con
tents of the console address register. 

Store protection is ignored. When the location designated 
by the console address register and by the setting of the 
store/display/storage select rotary switch is not available, 
no data is stored. 

If data is stored into a main storage location that is also 
resident in the high-speed buff er storage, the buffer storage 
block containing this information is invalidated to maintain 
the integrity of storage. 

Data cannot be stored into the high-speed buff er-storage 
data directory from the system control panel. 

The store key is active only while the CPU is in the stopped 
state. 

Store/Display/Storage Select (Panel N) 

The store/display positions of this rotary switch specify the 
sections of the CPU that are addressed by the console ad
dress register when the store and display keys are used. 
Store data is set in the 72 data key switches. 

The storage select positions of the rotary switch specify 
the parts of storage affected by the console address register 
when the CRT display and tape operation switch is in the 
storage position. 

Gen Regs: When the switch is in this position and the CPU 
is in the stopped state, the contents of the general register 
(indicated by the console address register) can be placed in 
the console buff er register by pressing the display key, or 
can be replaced by the contents of the console buff er regis
ter by pressing the store key. The contents of the general 
register are displayed left-justified in the console buff er 
register. For store operations, the data must be placed in 
the upper half of the 72 data key switches. 



FLP Regs: When the switch is in this position and the CPU 
is in the stopped state, the contents of the floating-point 
register (indicated in the address register) are placed in the 
console buff er register by pressing the display key, or are 
replaced by the contents of the console buffer register by 
pressing the store key. 

Log wora lltsptay: 'Wben the switch is in this position and 
the CPU is in the stopped state, the log word that has its 
pseudo-address (01-97) in the console address register is 
displayed in the console buffer register lights. 

Core Storage: In this position, 16 doublewords of main 
storage are displayed. The starting doubleword address 
must be placed in the console address register (Figure 14). 

STORAGE DISPLAY 

ADDRESS 
000000 

DATA 
00 00 00 00 00 00 00 00 

000008 

000010 

000018 

000028 

0.00030 

000038 

000040 

000048 

000050 

000058 

000060 

000068 

000070 

000078 

01 02 03 04 05 06 07 08 

09 OA OB OC OD OE OF 00 

11 12 13 14 15 16 17 18 

19 , "" , n ..!..~ lD , ri lF ..!....!.. 

20 21 22 23 24 25 26 27 

28 29 2A 2B 2C 2D 2E 2F 

30 31 32 33 34 35 36 37 

38 39 3A 3B 3C 3D 3E 3F 

40 41 42 43 44 45 46 47 

48 49 4A 4B 4C 4D 4E 4F 

50 51 52 53 54 55 S6 S7 

S8 59 SA SB SC SD SE SF 

60 61 62 63 64 6S •6 67 

68 69 6A 6B 6C 6D 6E 6F 

70 71 72 73 74 7S 76 77 

A blank following any byte indicates 
corre.ct parity; an asterisk denotes 
incorrect parity. 

Figure 14. Sample Main Storage or Buffer Storage Display 

SCV Buffer: In this position, 16 doublewords of high
speed buffer storage are displayed. Console address regis
ter bit positions 17 and 18 select the buff er storage seg
ment, and bit positions 19-28 select the first doubleword 
within the segment for display. The address displayed on 
the screen represents the buff er storage location only 
(Figure 14 ). 

SCU DD: In this position, 16 doublewords from the data 
directory, including the chronology array, are displayed. 
Bit positions 19-25 in the console address register address 
one of the 128 locations in the data directories and chro
nology array (Figure 15). For each address, reading from 
left to right, characters 1, 2, and 3 of the display refer to 
the contents of data directory 1; characters 5, 6, and 7 to 
data directory 2; characters 9, 10, and 11 to data directory 
3; and characters 13, 14, and 15 to data directory 4. Char
acters 4, 8, and 12 are hexadecimal representations of 
special chronology array bits (denoted by C above the char
acter). Character 16 is always F. 

Note: With the CRT display and tape op switch set to the 
storage position, pressing the display key causes a single 
directory display in the CBR lights. (Storing into the data 
directories is not allowed.) 

ADDRESS 

00 00 00 

00 00 40 

00 00 80 

00 00 co 

00 01 00 

00 01 40 

00 01 80 

00 01 co 

00 02 00 

00 02 40 

00 02 80 

00 02 co 

00 03 00 

00 03 40 

00 03 80 

00 03 co 

DIRECTORY 
DATA 

1 c 2 c 3 c 4 
00 05 00 05 00 05 00 OF 

00 05 00 05 00 05 00 OF 

00 05 00 05 00 05 00 OF 

00 05 00 05 00 05 00 OF 

00 05 00 05 00 05 00 OF 

00 05 00 05 00 05 00 OF 

00 05 00 05 00 05 00 OF 

00 05 00 05 00 05 00 OF 

00 05 00 05 00 05 00 OF 

00 05 00 05 00 05 00 OF 

00 05 00 05 00 05 00 OF 

00 05 00 05 00 05 00 OF 

00 05 00 05 00 05 00 OF 

00 05 00 05 00 05 00 OF 

00 05 00 05 00 05 00 OF 

00 05 00 05 00 05 00 OF 

Note: A blank following any byte indicates correct parity; 
an asterisk denotes incorrect parity. 

•Figure 15. Sample Data Directory Display 

•Operator Intervention Controls (Special) 

The special operator intervention controls are used by the 
operator in special situations such as the loading of stand
alone programs (for example, DASDI-Direct Access Stor
age Device Initialization program) or use of error recovery 
procedures. 

System Control Panel 31 



Name Type Panel 

Address Compare Rotary Switch L 
Block Multiplex Channel Mode Key Switch L 
Check Reset Key N 
CPU Reset Key N 
Decimal Alternate Sign Key Switch L 
Disable Interval Timer Key Switch L 
Force Machine Check Key L 
Inhibit Overlap Key Switch L 
Inhibit Replace SCU Buff er Key Switches (4) L 

Segments 
Machine Check Stop Rotary Switch N 
Rate Rotary Switch L 
Start Storage Test Key L 
Storage Reconfiguration Rotary Switch L 
Storage Test Rotary Switch L 
Storage Test Key Switch L 
System Reset Key N 

Address Compare (Panel L) 

The address-compare rotary switch controls synchronizing 
pulses, program loops, and machine stops by means of ad
dress comparisons during instruction-fetch or data-store 
operations. The switch has ten active positions, seven of 
which are used by the customer engineer (soft stop-channel 
setting, the CPC hard stop settings, and the CPC loop 
settings). If the switch is in other than the process position, 
the test light will be on. 

The address-compare switch can be manipula!ed among 
the three customer settings, described below, without dis
rupting CPU operation, other than by causing the address
comparison stop. 

Process: When the switch is in this position, a synchroniz
ing pulse is provided when the address specified in the ad
dress register matches the instruction address. The pulse 
occurs when decoding of the instruction begins and may 
be used to synchronize an oscilloscope at the start of an 
instruction. This position is in the normal operating posi
tion for the switch; program execution proceeds normally 
at the rate specified by the rate rotary switch. 

Insn Soft Stop: When the switch is in this position, the 
CPU enters the stopped state when the address specified in 
the address register matches the instruction address. This 
position may be used to control the stopping point of a 
program. The instruction-fetch operation, all other out
standing operations, and all pending interrupts that are 
allowed are completed before the CPU enters the stopped 
state. 

SCU Store Soft-Stop: When the switch is in this position, 
the CPU enters the stopped state when the address speci
fied in the address register matches a main-storage address 
specified in any CPE store operation or in an I/O store op
eration into main storage. The store operation, all other 

32 

outstanding operations, and all pending interrupts that are 
allowed are completed before the CPU enters the stopped 
state. 

Block Multiplex Channel Mode (Panel L) 

This switch, in conjunction with a selector mode circuit 
jumper in the channel, determines the mode of operation 
for each attached 2880 Block Multiplexer Channel. In the 
BLK MPX (center) position, all attached 2880's are en
abled for block multiplex operation. In the selector (down) 
no<;.ition ~Jl rh~nnp].;; th~t h~VP thP <;.p]prtor monP tllmnPT r--···---, -·· -··-····-·- ···-- ---·- ···- --·----- ··---- J-·--r--
inserted operate as selector channels; those channels that do 
not have the selector mode jumper in place continue to 
function in the block multiplex mode. 

Check Reset (Panel N) 

Pressing this key resets all CPU and storage error checks. 

CPU Reset (Panel N) 

Pressing this key resets all CPU and storage error checks, all 
CPU control triggers, and all high-speed buffer data direc
tories; it also forces the CPU into the stopped state. 

Decimal Alternate Sign (Panel L) 

This key switch determines which decimal arithmetic sign 
codes are recognized. With the switch in the down position, 
codes 0100 and 0101 are recognized as plus signs, and code 
0110 is recognized as a minus sign (in addition to the normal 
plus codes 1010, 1100, 1110, 1111, and minus codes 1011 
and 1101). With the switch in the normal (center) position, 
only the normal set of codes is recognized. 

Disable Interval Timer (Panel L) 

When set in the down position, this switch prevents updating 
of the interval timer (the test light is on). It is used when 
address-stop or error-recovery procedures are utilized. This 
switch is set in the center position for normal program ex
ecution. 

Force Machine Check (Panel L) 

Pressing this key causes a hard stop. A log-out, computer and 
check reset, and a machine check interruption occur. Its pri
mary function is to clear an abnormal CPU condition (loop 
or wait) that did not generate a machine check. 

Inhibit Overlap (Panel L) 

This key switch is set in the down position during SYSGEN 
to force the CPU to execute instructions serially; that is, 
each decoded instruction is executed before the next se
quential instruction is decoded. Normal program execution 
is allowed when this switch is in the center position. 



Inhibit Replace SCU Buffer Segments (Panel L) 

Each of these four key switches is set down to inhibit block
transfers into one of the four buffer storage segments. 
Fetches to main-storage locations contained in buffer storage 
are made from buff er storage, assuming the address is not 
invaiid in the daia directory. Fetches tu main-storage ioca
tions not contained in buffer storage are made from niain 
storage, and the corresponding main-storage block is trans
fered to one of the remaining buffer storage segments (the 
one used least recently). The normal (center) position of 
the seg..."'llent key S\Vitch allo\1/S the block tr an sf er to take 
place. 

When all four segment switches are set down, and the 
computer reset key is pressed, subsequent processor opera
tions bypass the buffer storage entirely. (The inhibit
replace switches do not affect stores/fetches to buffer stor
age from the system console.) 

Machine Check Stop (Panel N) 

This rotary switch determines the resultant action because 
of machine check. The test light is on except in the normal 
(process) position. 

Disable: For customer engineer use only. 

Process: All errors are handled by the operating system. 

Hard Stop: A machine check causes the CPU to enter the 
hard stop state. 

Rate (Panel L) 

The rate rotary switch indicates in which way the instruc
tions are to be performed. The test light is on if the rate 
switch is set to any position other than process. 

The position of the rate switch should be changed only 
while the CPU is in the stopped state. Otherwise, results 
are unpredictable. 

Process: When the switch is in this position, the system 
operates at normal speed after the start key is pressed. The 
decoding of instructions is halted by pressing the stop key. 

Jnsn Step: When the switch is in this position, one instruc
tion is completely executed each time the start key is 
pressed. The CPU automatically halts in the stopped state. 
When the start key is pressed, but before the one instruction 
is processed, interrupts that were allowed but became pend
ing during the stopped state are processed before execution 
of the next instruction. 

Mple Step: When the switch is in this position, an instruc
tion is executed every 100 milliseconds for as long as the 
start key is pressed. The CPU automatically halts in the 
stopped state when the start key is released. 

Single Cycle: This position is used by the customer 
engineer. 

Single Pulse: This position is used by the customer 
engineer. 

Start Storage Test (Panel L) 

Pressing this key starts a storage test as specified by the 
storage test key switch. The storage test rotary switch 
determines the stop condition. 

Storage Reconfiguration (Panel L) 

This rotary switch provides a manual reconfiguration of 
main storage to operate at one-half its normal storage 
capacity when the switch is set at any position to the left 
of "normal." The switch setting indicates which half (low/ 
high) of main storage is to be utilized. Regardless of the 
switch setting (except normal), the first half (low order) of 
main storage addresses are applicable. Use of addresses in 
the upper half of main storage causes an address exception. 
(Reconfiguration does not change Model L interleaving, 
but changes 16-way Model K interleaving to 8-way, and 
changes 8-way Model J interleaving to 4-way.) 

Storage Test (Panel L J 

This rotary switch controls the stop conditions that are 
availablt: for rnrmmatmg tne storage Ietcn tests. 1 he con
sole address register, decremented by one, indicates the 
main-storage address from where the invalid data was 
fetched during a test. 

Stop On Compare: When the switch is in this position, a 
fetch test is terminated by a compare signal. (The contents 
of the console auxiliary register are compared with the 
contents of the console buffer register.) 

Stop On Parity Check: When the switch is in this position, 
a fetch test is terminated by a data parity error. 

Process: This is the normal position of the switch; no stor
age test stops are performed. 

Stop On No Compare: When the switch is in this position, 
a fetch test is terminated by a no-compare signal. 

Stop On Parity Check/No Compare: When the switch is in 
this position, a fetch test is terminated by either a data 
parity error or a no-compare signal. 

Storage Test (Panel LJ 

This key switch specifies the storage test mode when the 
start-storage-test key is pressed. In the store/fetch posi
tions, the test light is on. 

System Control Panel 33 



Fetch: When the switch is in this position, doublewords of 
data are fetched from main storage to the console buffer 
register starting with the address indicated by the console 
address register. The fetch operation continues until the 
storage test key is returned to the center position, unless 
stopped by a condition specified by the storage test rotary 
switch. 

Store: When the switch is in this position, the contents of 
the console buff er register are stored in each main-storage 
doubleword address starting with the address indicated by 
the console address register. The store operation continues 
until the storage test key switch is returned to the center 
position, unless stopped by a condition specified by the 
storage test rotary switch. 

System Reset (Panel N) 

The system-reset key is pressed to reset on-line channels, 
control units, and CPU controls to their initial states. All 
check indicators are reset and the contents of the high-

34 

speed buffer storage data directory are cleared. The current 
PSW, data flow registers, keys in storage, and main storage 
are not reset. The CPU is placed in the stopped state, and 
all pending interrupts are eliminated. The reset function 
does not affect any off-line or shared devices. 

This key .is active while power is on the system. 

Key Switch and Meters 

The customer usage and the customer engineer (CE) meters 
for the CPU cluster are on the left side of the display console. 

The Model 195 CPU cluster includes: CPU, processor 
storage, processor system console, CPU power supplies, and 
power and coolant distribution units. 

A key switch controls which meter is to run while the sys
tem is in operation, that is, initiating, executing, or com
pleting instructions, including 1/0 and assignable unit op
erations. 



Although the Model 195 1performs CPU operations in a highly 
parallel fashion, no elaborate optimization plan is required to 
prepare programs for CPU processing. For the most part, 
they may be written in a straightforward IBM System/360 
code. If a program will benefit by some modification, how= 
ever, the following suggestions may be helpful. 

1. Place index loading and incrementing instructions well 
ahead of instructions that use them for address genera
tion. In a loop, a convenient place for an indexing in
struction such as 'add' (AR) is at the end of the loop, 
just before a 'branch on index low or equal'; by the time 
the branch is completed, the index registers will be ready 
for use. 

2. The instructions 'load address', 'branch on count' (BCT, 
!lCTR), 'branch on index low or equal', and 'branch on 
index high' use the address adder to change a general 
register. As suggested in item 1, make sure that the 
registers required are available. 

3. The 'load address' instruction requires three cycles that 
cannot be overlapped; it is also subject to delays if regis
ters are unavailable. Instructions such as 'add' (A, AR) 
require only one unoverlapped cycle and are not subject 
to delays if registers are unavailable. In most cases, 
lherefore, replal.:e the 'load address· mstrucuon with an 
AR instruction. In some situations, the 'load address' 
instruction is preferable: 
a. When the register to be used is needed for addressing 

by the next instruction. 
b. When the fixed-point execution element is busy with 

a lengthy instruction sequence and a register is needed 
for addressing within the next few cycles. 

c. When the condition code must not be changed. 

4. Because the Model 195 fetches and stores doublewords, 
align operands on doubleword boundaries for faster op
erations. Operands that are not aligned to doubleword 
boundaries can be used in fixed- and floating-point 
arithmetic and in variable field length (VFL) operations, 
but performance is affected adversely. 

5. In normal coding, a condition-setting instruction im
mediately precedes most 'branch on condition' instruc
tions. On the Model 195, place neutral instructions, 

Appendix A: Coding Considerations 

such as those dealing with loads and stores, between the 
condition-setting instruction and the conditional branch, 

6. Avoid storing into the. next several words of the instruc
tion stream. 

7. Whenever possible, contain a loop in the instruction 
stack so that it is executed in loop mode. (See the dis
cussion of ioop mode in ''instruction Processor.;;) 

8. Because al1'instructions that store data use the samt: 
three store address registers (SAR) and the same three 
store data buffers (SDB), if a fourth store is encountered 
before a store address register is freed, the instruction 
processor must wait. When possible, avoid more than 
three stores in a row. For example, if it is necessary to 
store data from six registers by using one 'store multiple' 
instruction, only three SAR's are required if the first 
address started on a doubleword boundary; four stores 
are required otherwise. 

9. When only two registers are to be loaded, using two load 
(L) instructions is faster than using a 'load multiple' in
struction; however, when four or more registers are to 
be loaded, prefer the 'load multiple' instruction. Also, 
the 'store multiple' instruction is usually better than re
peated 'store' (ST) instructions because it requires fewer 
SAR's and SDB's. 

10. Avoid repeated accesses to different doublewords in the 
same storage module; conflicts result. For example, 
with 16-way interleaving of processor storage, a Model 
l 95K that is storing by column into a 16 x 16 array 
of doublewords is storing consecutively into the same 
storage module. This does not take advantage of the 
interleaving, nor of the buff er storage because it is a 
store operation. 

11. Try not to use the interrupt mechanism to effect logical 
program branches; operation is slow because of the re
quired program interlocks. Also, some logical program 
operations available through the interrupt mechanism 
in slower, more serial processors are not available in the 
Model 195 ·if the interrupt in question is not precise. 

12. Efficiency is increased by eliminating short records. 
Avoid excessive use of SIO for small quantities of data, 
because the 1/0 device response time is included as a 
part of the instruction. 

Appendix A 35 



Appendix B: Timing Considerations 

For other models of the IBM System/360, average times can 
be given for each instruction. For a parallel system like the 
Model 19 S, however, no average times are meaningful, be
cause the amount of overlap varies from program to program. 

The following information gives an appreciation of some 
major aspects of timing.in the Model 195 but it is not in~ 
tended to be comprehensive. In the discussion, "cycle" re-
fers to a major-macl1ine-cycle time of 54 nanoseconds. 

Instruction Processor Delays 

Any of the following conditions delay the instruction proc
essor: 

1. The next instruction is unavailable. 
2. The system is in conditional mode, and the next in

struction is an instruction to be executed by the instruc
tion processor or is a variable-field-length instruction. 
(An unconditional branch or a no-operation instruction, 
however, can be executed in conditional mode.) 

3. A general register is unavailable for the addressing of 
the next instruction. 

4. A general register is unavailable for modification by the 
next instruction - a condition that applies only to an 
instruction-processor instruction, such as 'load address' 
or 'branch on index low or equal,' which changes a 
general register. 

5. The next instruction requires an address generation, but 
a previous instruction will not be able to complete its 
address generation for another cycle. 

6. The next instruction requires a fixed-point buff er regis
ter, but all fixed-point buffer registers are busy. 

7. The next instruction requires a floating-point buffer 
register, but all floating-point buffer registers are busy. 

8. The next instruction is a fixed-point operation, but the 
fixed-point operation stack is full. 

9. The next instruction is a floating-point operation, but 
the floating-point operation stack is full. 

10. The next instruction requires a store, but all store ad
dress registers are busy. 

11. An instruction is decoded whose execution is delayed 
until the completion of all previously decoded instruc
tions. 

Transmission Time 

Each of the following transmissions requires one cycle. In 
most cases, these transmissions take place concurrently with 
other operations, but instances may occur in which delays 
due to these transmissions will directly affect the timing. 

36 

1. A fixed-point or floating-point operation from the in
struction processor to the fixed-point operation stack 
or the floating-point operation stack, respectively. 

2. An activate or cancel signal from the instruction proc
essor to the fixed-point operation stack or the floating
point operation stack. 

3. A condition-code indication from an execution unit to 
the instruction processor. 

4. A general-register-available indication from the fixed
point execution element to the instruction processor. 

5. A buff er-free indication from the fixed-point execution 
element or the floating-point execution element to the 
instruction processor. 

6. An operation-stack-position-free indication from the 
fixed-point execution element or the floating-point exe
cution element to the instruction processor. 

7. A store-address-register-free indication from the storage 
control unit to the instruction processor. 

Branches 

When loop mode is not set, the first cycle of a branch is the 
usual decoding in the instruction processor. The next two 
cycles are address generations for the target and target + 1 
doublewords; the two temporary fetches are initiated im
mediately after the address generations. Minimum time for 
any branch out of the instruction stack, therefore, is two 
cycles plus the access time. 

The test for a conditional branch is normally made after 
the address generation. The two types of conditional 
branches are: those whose condition is set by the instruction 
processor, and those whose condition is set by the fixed
point or floating-point execution element. For the instruc
tions 'branch on count' (BCT, BCTR), 'branch on index 
high,' and 'branch on index low or equal,' the condition is 
set by the instruction processor. For the 'branch on condi
tion' (BC, BCR) instruction, the condition is set by the exe
cution elements. (Masks of 0 and 15 are special cases and 
are detected during the decoding cycle.) 

When the condition is set by the instruction processor, no 
further instructions are decoded until all tests have been 
completed. Instruction processor times (in cycles) for some 
of the more important branches are: 

Target in Stack Target Not in Stack 
Loop Quick Loop Not Loop 
Mode Mode Mode Mode 

BX, Branch 4 3 6 +access 8 (or 2 + 
time access time)* 

BX, No Branch 6 5 5 6 
BCT, Branch 4 3 5 +access 7 (or 2 + 

time access time)* 
BCT, No Branch 5 4 4 5 

* The actual time required is the longer of the two times listed. 



When the condition is set by an execution element, the 
first three cycles of the branch are taken by the instruction 
processor, and the temporary fetches are made. The instruc
tion processor then enters conditional mode until the condi
tion code is determined. 

made. The instruction processor continues to decode in
structions, generate addresses, and issue operations to the 
fixed-point operation stack and the floating-point operation 
stack; the operations are conditional and cannot be decoded 
or executed until an activate signal is sent by the instruction 
processor. 

The instruction processor continues to decode instructions 
conditionally until any of the following conditions occurs: 
1. The condition code is set. 
2. No more instructions are available in the stack. 
3. The fixed-point or floating-point operation stack is filled. 
4. An instruction-processor or variable-field-length instruc

tion is encountered (except for an unconditional branch 
or a no-operation instruction, which can be executed in 
conditional mode). 

When the condition code is set, the instruction processor 
takes one cycle to make a decision. If the branch is not 
taken, an activate signal is sent to the fixed-point and float
ing-point operation stacks, and the instruction processor con-
tinues decoding instructic11s. lf the branch is taken, a cancel 

signal is sent to the fixed-point and floating-point operation 
;:,l.11,,k.::. a11J Lu Ll1c: SAR·.,, aHJ i.hi; w;:,ll u~L.iu11 p1u~t:;:,;:,u1 bi;
gins decoding instructions along the new path. When condi
tional mode is ended, instruction fetching resumes along the 
correct path. 

When the machine is in loop mode, no temporary fetches 
are made for conditional branches. 

An unconditional branch (BC 15 or BCR 15) takes either 
six cycles or two cycles plus the access time. A branch with
in the stack takes five cycles, and a branch closing a loop 
takes two cycles. 

The 'branch and link' instructions (BAL, BALR) require 
four cycles plus the time required for access or plus the time 
required for the condition code to be determined, which
ever is longer. The 'branch and link' instruction destroys 
loop mode. 

A no operation (BC O,X; BCR O,R; BCR C,O) requires one 
cycle; a count without branching (BCTR R,O), three cycles; 
a link without branching (BALR R,O), five cycles or the time 
until the condition code is determined; and an 'execute,' 
five cycles plus the access time plus the target execution 
time. 

Fixed-Point Execution 

The following information is pertinent to fixed-point execu
tion timing: 
1. Decoding proceeds serially. 
2. No conditional operation can be decoded until it has 

been activated or canceled. 

3. Canceled operations are decoded in one cycle. 
4. An active operation is not completely decoded until the 

cycle before its execution starts. 
5. Execution can begin if the following conditions are met: 

a. The operation is decoded. 
b. The data is available. 
c. The execution circuitry is free. 

6. As soon as decoding is compieted for a one-cycie opera
tion, the instruction processor is notified that the stack 
position is free. For operations of more than one cycle, 
the stack-position-free notification is delayed until the 
second or third cycle. Notification that the fixed-point 
buffers are released is given to the instruction processor 
during the first cycle for all instructions except 'convert 
to binary' and 'divide' (D), which do not release the buf
fers until during the last cycle. 

Floating-Point Execution 

In the following information, pertaining to floating-point 
execution timing, precision conflicts (differences in precision 
between overlapped floating-point operations using the same 
floating-point register) and RR instructions for which both 
registers are free may cause exceptions to items 1-6: 

1 . Decoding proceeds serially. 
L. No conditional operation can be decoded until it has 

been activated or canceled. 
3. Canceled operations are decoded in one cycle. 
4. Operations that do not require an execution unit can 

be decoded in one cycle. 
5. Operations that require an adder or a multiplier can be 

decoded in one cycle if a reservation station is available. 
6. If a decode is waiting for a reservation station, it can be 

completed on the cycle before the result of that reser
vation station goes on the common data bus. 

7. The test for 'load and test' (LTDR and LTER) is made 
during the common data bus cycle. 

8. An operation in which the adder is used can begin if 
the following conditions are met: 
a. The operation is decoded. 
b. The data is available. 
c. Another add with higher priority is not beginning 

on the same cycle. 
d. The execution circuitry is free. 

9. A multiply or divide can begin if the following condi
tions are met: 
a. The operation is decoded. 
b. The data is available. 
c. Another multiply or divide with higher priority is 

not beginning on the same cycle. 
d. The execution circuitry is free. 

10. If more than one unit request the common data 
bus simultaneously, the following operations are given 

Appendix B 37 



priority in the order indicated: loads, short- and long
precision adds, short- and long-precision multiplies, 
extended-precision operations. 

11. As soon as an operation has been decoded, the instruc
tion processor is notified that the stack position is free. 

12. If the operation has already been decoded, the buffer 
is set free as soon as the data enters it. 

13. If the buffer is filled before the operation is decoded, 
the buffer is set free one cycle after the dewding. 

Selected Execution Times 

Because of the concurrency achieved in the Model 195, the 
effective time required by a given instruction is not directly 
related to the rate at which the instruction can be processed. 

The following is a list, by category, of the number of cycles 
required by the appropriate execution element to process 
certain instructions. These times do not include any of the 
other processing times required for that instruction and do 
not reflect the effects of simultaneous operations or over
lap. Instructions are listed by their mnemonics. 

Fixed-Point Instructions 
A, AH, AL, ALR, AR, C, CH, CL, CLR, CR, IC 
L,LCR,LH,LNR,LPR,LR,LTR,N,NR,0, 
OR, S, SH, SL, SLR, SR, ST, STC, STH, X, XR 

SLA, SLL, SRA, SRL 

SLDA, SLDL, SRDA, SRDL 

MH 

M,MR 

38 

No. of Machine 
Cycles 

2 

3-4 

7 

7-11 

Fixed-Point Instructions 

D,DR 

CVB 

CVD 

Immediate Instructions 

retch only: CLI, TM 

Store only: MVI 

Fetch and Store: NI, OI, XI 

Floating-Point Instructions 

LD,LDR,LE,LER,LTDR,LTER,STD,STE 

AD, ADR, AE, AER, AU, AUR, AW, AWR, CD, 
CDR, CE, CER, HDR, HER, LCDR, LCER, 
LNDR, LNER, LPDR, LPER, SD, SDR, SE, 
SER, SU, SUR, SW, SWR 

MD, MDR, ME, MER (normalized numbers) 

MD, MDR, ME, MER (unnormalized numbers) 

DE, DER 

DD,DDR 

No. of Machine 
Cycles 

36-37 

17-18 

17-32 

1 

2 

0 

2 

3 

4 

9 

11 

The 0-cycle instructions do not require an execution unit. The 
2-cycle instructions are executed in the adder. The 3-, 4-, 9-, and 
12-cycle instructions are executed in the multiplier. 

Extended-Precision Floating-Point Instructions 

LRDR, LRER 

AXR, SXR 

MXR (normalized/unnormalized) 

MXDR, MXD (normalized numbers) 

MXDR, MXD (unnormalized numbers) 

2 

9 

25/29 

7/8 

7/8 



Adapter, Channel-to-Channel 22 
Add Execution Unit 1 ':J 

Address Compare Rotary Switch 32 
Address Key Swiiches 26 

Block Multiplexer Channel, 2880 21 
Branch Instructions 

Execution of 11 
Timing Considerations 36 

Buffer Storage 16 
Burst Mode 20 
Byte Oriented Operands 6 

Central Processing Complex 9 
Central Processing Element (CPE) 9 
CPU Cluster 34 
Channel-to-Channel Adapter 22 
Channels 20 
Channel Priority 20 
Circuitry, Logic 5 
Coding Considerations 35 
Conditional Mode 12 
Configurations of Models 8 
Configurator, Model 195 7 
Console. System 24 
Control Panel, System 23 
Controls 24 
CPC 9 
Central Processing Unit 9 
CRT Display and Tape Operation Switch 28 
Customer Engineering Usage Meter Switch 34 
Cycle Time 

Buffer Storage 10 
Machine (CPU) 5 
Main Storage 10 

Data Key Switches 28 
bata Rates, Channel 21 
Decimal Alternate Sign 32 
Decimal Execution Unit 17 
Discontinuities 11 
display 

Console 6 
Function, Store or 23 
Key 28 
Power-Off Key 25 
Power-On Key 25 

Emergency-Pull Switch 25 
Execution Element 

Fixed-Point/Variable Field Length 17 
Floating-Point 18 

Execution Times of Instructions 38 
Execution Unit 

Add 19 
Extended 19 
Fixed-Point 17 
Multiply /Divide 19 
Variable Field-Length 17 

Extended Precision 19 

Features 
Optionai 6 
Standard 6 

Index 

F ixed-Poin t/Variabie-F ieid-Length /Decimal Execution Eiemen t 1 i 
Fixed-Point Timing Considerations 37 
Floating-Point Execution Element 18 
Floating-Point Timing Considerations 37 
Force ~1achine Check Interrupt Key 32 

Initial Program Loading (IPL) 23 
I/O Interface, Two-Byte 21 
Instruction 

Execution Times 38 
Fetching 10 
Processor 10 
Timing Considerations 36 

Interleaving 9 
Interrupts 

Handling of 13 
Imprecise 13 
Precise 14 

Interrupt Key 25 
Interval Timer 6 

Key Switch and Mt'tt'r~ 14 

Key~, Operator Contrnl 24 

LuaJ 
Key 25 
Light 25 
Unit Switches 25 

Logout 21 
Log Word Display Switch 31 
Logic Circuitry 5 
Loop Mode 12 

Machine Cycle Time 5 
Main (Processor) Storage 10 

Capacity 6 
Manual Light 25 
Meter Switch 

Customer Engineering 34 
Customer Usage 34 

Mode 
Conditional 12 
Loop 12 

Models of System/360 
Configurations 8 
Relationship 5 

Monolithic Circuitry 5 
Multiple Operation Instructions 13 
Multiplex Mode 20 
Multiplexer Channel, 2870 20 
Multiply/Divide Execution Unit 19 

Normal Operator Intervention Controls 26 

Operator Controls 24 
Operator Intervention Controls 

Normal 26 
Special 31 

Index 39 



Operator's Control Panel (OCP) 24 
Optional Features 6 

Power-Off (System) Key 25 
Power-On (System) Key 26 
Processing Unit (CPU) 9 
Processor (Main) Storage 10 
PSW-Restart Key 30 

Rate Rotary Switch 3 3 

Scan Key 30 
Selector Channel, 2860 20 
Selector Subchannel 20 
Set CAR Key 30 
Set IC Key 30 
Set PSW Key 30 
Special Operator Intervention Controls 31 
Standard Features 6 
Start Key 30 
Stop Key 30 
Storage 

Buffer 16 
Control Unit 16 
Data Paths 17 
Processor (Main) 10 

Store or Display Function 23 
Store Key 30 

40 

Store/Display /Storage Select Rotary Switch 30 
Subchannel 20 
System 

Components 6 
Console 24 
Control Panel 14 
Description 5 
Light 26 
Reset 23 
Reset Key 34 

System/360 Model Relationship 5 
Switches, Operator Control 24 

Test Light 26 
Timer, Interval 6 
Times, Instruction Execution 38 
Timing Considerations 36 
Transmission Time 36 
Two-Byte 1/0 Interface 21 

Usage Meter 
Customer 34 
CE 34 

Variable-Field-Length Execution Unit 17 

Wait Light 26 



IBM System/360 Model 195 
Functional Characteristics 

READER'S COMMENT FORM 

Your comments about this publication may be helpful to us. If you wish to comment, 
please use the space provided below: giving specific page and paragraph references. 

Please do not use this form to ask technical questions about the system or equipment 
or to make requests for copies of publications; this only delays the response. Instead, 
make such inquiries or requests to your IBM representative or to the IBM Branch 
Office serving your locality. 

Reply requested 

Yes D 
No D 

WTC users must add postage. 

Name 

Job Title ______________ _ 

Address ________________________ __ 

--------------------- Zip ------

GA22-6943-l 



GA22-6943-1 

YOUR COMMENTS, PLEASE ....... ~ .. . 

This SRL manual is part of a library that serves as a reference source for systems analysts, 
programmers and operators of IBM systems. Your comments will help us produce better 
publications for your use. Each reply will be carefully reviewed by the persons responsible 
for writing and publishing this material. All comments and suggestions become the property 
of IBM. 

Note: Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

fold fold 

n 
c 
-I 
)> 
r-
0 z 
G') 

-I 
::c 
u; 
!: 
z 
m 

·: 
....................................................................................................................................................... 

BUSINESS REPLY MA IL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY ..•..... 

IBM CORPORATtON 
P.O. BOX 390 
POUGHKEEPSIE, N.Y. 12602 

ATTENTION: CUSTOMER MANUALS, DEPT. B98 

fold 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N. Y. 10601 
[USA Only! 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
I International] 

FIRST CLASS 
PERMIT NO. 419 

POUGHKEEPSIE, N.Y. 

fold 





International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N. Y. 10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 


