IBM System/360 Model 50

Functional Characteristics

This manual presents the organization, characteristics, functions and features unique to the івм System/360 Model 50. Major areas described are system structure, generalized information flow, standard and optional features, system control panel, instruction timings, channel characteristics, concurrent input/output capabilities, selector channel loading, multiplexer channel loading, and channel interference with the CPU.
Descriptions of specific input/output devices used with the ibm System/360 Model 50 appear in separate publications.

Configurators for the Iвm 2050 Processing Unit and I/o devices are available. See IBM System/360 Bibliography, Form A22-6822.

It is assumed that the reader has a knowledge of the System/ 360 as defined in the IBM System/360 Principles of Operation, Form A22-6821 and the IBM System Summary, Form A22-6810.

Second Edition

This is a major revision of, and obsoletes, Form A22-6898-0. Sections, tables, and illustrations have been added covering concurrent input/output capabilities, selector channel loading, mutiplexer channel loading, and channel interference with the cpu. The descriptions of the controls and lights in the "System Control Panel" section have been rearranged into alphabetical sequence. Other significant changes to the text are indicated by a vertical line to the left of the change; revised illustrations are denoted by the symbol \bullet to the left of the caption.

Specifications contained herein are subject to change from time to time. Any such change will be reported in subsequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM representative or to the mem branch office serving your locality.

This manual has been prepared by the iвm Systems Development Division, Product Publications, Dept. B98, P.O. Box 390, Poughkeepsie, N.Y. 12602. A form is provided at the back of this publication for readers' comments. If the form has been removed, comments may be sent to the above address.

System Description	
Main Storage	
Arithmetic-Logic Unit	
Local Storage	
General Registers	
Floating-Point Registers	
Read Only Storage	
2361 Core Storage	7
Channels	
Channel-to-Channel Feature .. 8	
Multiplexer Channel	
Selector Channel .. 8	
Control Panel ... 8	
Universal Instruction Set ... 10	
System Control Panel .. 11	
System Control Functions ... 11	
System Reset ... 11	
Store and Display .. 11	
Initial Program Loading .. 12	
System Control Panel Controls ... 12	
Operator Controls .. 12	
Operator Intervention Controls 15	
Key Switch and Meters ... 18	
Channel Characteristics ... 19	
General Channel Information	19
Channel Control ... 19	
Channel Registers	20
Chaining .. 20	
Fetching Channel Command Words 20	
Data Chaining in Gaps	20
Late Command Chaining .. 21	
Storage Addressing ... 21	
Channel Implementation .. 21	
Selector Channel .. 21	
Multiplexer Channel	21
Channel Priority	22

Concurrent Input/Output Capabilities 23
Worst Case Loads 23
Conventions for Satisfactory Channel Programs 23
Evaluating Heavily Loaded Channels 26
Selector Channel Loading 27
Overrun Test Exception 27
Testing for Overrun 27
Multiplexer Channel Loading 29
Multiplex Mode Considerations 29
Device Load 29
Device Wait Time 29
Device Priority on Multiplexer Channel 29
Interference from Priority Devices 30
Multiplex Mode Evaluation Procedure 32
Worksheet Entries for 2821 33
IBM 2702 Considerations 33
Special Analysis of 2702 Performance 34
Synchronization Tendency of Buffer Servicing 37
Channel Interference with CPU 39
Channel Interference Procedure 39
Available CPU Time Example 39
Instruction Times 41
Timing Considerations 41
Timing Assumptions 41
Average Timing Formulas 41
Variable Field Length Instructions 47
Large Capacity Storage Timing 48
Legend for System/360 Timing 50
Appendix 54
Index 91

IBM System/360 Model 50

System Description

The ibm System/360 Model 50 is part of a series of distinguished, compatible, high performance, data processing systems. The Model 50 provides the reliability, convenience, and confidence demanded by large-scale business and scientific computation, as well as general-purpose data processing for communications or control applications.

The Model 50 includes the advantages, characteristics, and functional logic established for the System/ 360, as defined in the IBM System $/ 360$ Principles of Operation, Form A22-6821. The high performance of its logical structure is principally due to:

1. Access to four bytes in parallel with a 2 -microsecond processor storage cycle time, with a standard capacity ranging from 65,536 bytes for model F to 524,288 bytes for model I.
2. Local storage (with a 0.5 -microsecond cycle time), used for general and floating-point registers, as well as a "scratch-pad" for various channel and cPu activities.
3. Read only storage (with a 0.5 -microsecond cycle time) containing a microprogram that controls system operation.
4. Both arithmetic and storage operations are carried out using a full 32 -bit word in parallel.
5. Overlap of channel (I/o) operations with CPU operations.

A partial list of options available to Model 50 includes:

Storage. Up to $8,388,608$ bytes of 8 -microsecond core storage are available under direct control of the processing unit.

Shared 2361 Storage. The ibm 2361 Core Storage may be shared with any Model 50, 65, or 75 that has equal or greater processor storage.

Direct Control. Permits control and synchronization between two cru's, or between cPu and non-standard external device.

Compatibility. Permits system to emulate other systems, executing programs written for the other system. Either the 1410/7010 or the 7070/7074 compatibility feature may be plant installed in the Model 50.

Console Typewriter. The printer-keyboard is installed in operator position and includes programcontrolled audible alarm.

Channel-to-Channel Adapter. Permits interconnection of two System/360 channels (one per Model 50).

Channels. Up to three selector channels. Additional multiplexer subchannels in model H or I expand the number of subchannels from 128 to 256.

The major component in a System/360 Model 50 is the 2050 Processing Unit, which contains main storage, read only storage, local storage, the standard multiplexer channel, and up to three selector channels. To this unit are attached auxiliary (optional) storage, input/output devices and their related control units (Figure 1).
The four models of the Model 50 are termed F50, G50, H50, and I50. These models differ only in the amount of main storage contained within the 2050 processing unit and the number of multiplexer subchannels. The significant differences are:

processing		
IBM SYSTEM/ 360 model	UNIT	
	MODEL	description
F50	2050F	65,536 bytes of main storage
		64 multiplexer subchannels
G50	2050G	131,072 bytes of main storage
		128 multiplexer subchannels
H50	2050H	262,144 bytes of main storage
		128 multiplexer subchannels
150	2050I	524,288 bytes of main storage
		128 multiplexer subchannels

The F50 standard multiplexer channel has 64 subchannels; the G50, H50, and I50 have 128 subchannels. The number of subchannels can be increased to 256 on the H50 and 150, if desired.

The system control panel is located at one end of the 2050 Processing Unit. An optional 1052 PrinterKeyboard Model 7 may be mounted on the 2050 Processing Unit reading board to serve as an operator's console. (This is shown in Figure 1.) The operator control section of the system control panel may be duplicated once for each processing unit to provide a remote operator control panel, which can be mounted on either the 2150 Console, or the 2250 Display Unit Model 1. Standard features for any System/360 Model 50 include:

Multiplexer channel
Universal instruction set
Interval timer
Storage protection (store protection only)
Optional features for any Model 50 include:
Direct control
Selector channels (one, two, or three)
Channel-to-channel adapter
1052 Adapter
2361 Core storage attachment
Multiplexer subchannels - additional (H50 and I50 only)

Figure 1. IBM System/360 Model 50 Configurator

1410/7010 Compatibility feature (all models)
7070/7074 Compatibility feature (H50 and I50 only)
Outline configurations of the Model 50 , produced by the various combinations of a 2050 Processing Unit, 2361 Core Storage, and various channel options are shown in Figure 1, including input/output devices attached to the channels through control units.

A variety of control units and input/output devices are available for use with the Model 50. Descriptions of specific input/output devices appear in separate publications. Configurators for the I/o devices and systems components are also available. See IBM System $/ 360$ Bibliography, Form A22-6822.

2050 Processing Unit

The 2050 Processing Unit contains the facilities for addressing main storage, for fetching or storing information, for arithmetic and logical processing of data, for sequencing instructions in the desired order, and for initiating the communication between storage and external devices. The four models of the 2050 Processor Unit vary only in the capacity of the main storage unit and in the number of multiplexer subchannels.

The 2050 Processing Unit contains the following major components:

Main storage	Read only storage (ROS)
Arithmetic-logic unit	Multiplexer channel
Local storage	System control panel
General registers	Optional selector channels
Floating-point registers	

Main Storage

Main storage is available in the four storage capacities previously listed. The main storage read/write cycle time is 2 microseconds with access to four bytes. Byte locations are consecutively numbered starting with zero. An addressing exception is recognized when any part of an operand is located beyond the maximum available installed main storage capacity.

The Model 50 transfers information between main storage and the processing unit in units of four bytes.

Main storage has a small extension, not accessible by the problem programmer, that is used to store the control and status information for each subchannel of the multiplexer channel. The number of these special storage locations determines the number of subchannels available to the multiplexer channel.

Arithmetic-Logic Unit

The arithmetic-logic unit contains a four-byte addersubtractor that operates with either hexadecimal or decimal values. It is capable of producing both arith-
metic and logical combinations of the input data streams. Cycle time is 0.5 microsecond.

Local Storage

Local storage consists of a small high-speed core storage unit providing registers for fixed-point and float-ing-point data, for channel operations, and for internal scratch-pad use. Local storage cycle time is 0.5 microsecond per four bytes.

General Registers

The 16 general registers are used in address arithmetic and indexing, and as accumulators in fixed-point arithmetic and logical operations. The general-purpose registers have a capacity of one word (four bytes). For some operations, two adjacent registers can be coupled together, providing a double word capacity. The general registers are implemented in local storage and have a cycle time of 0.5 microsecond per four bytes.

Floating-Point Registers

Four floating-point registers are available for floatingpoint operations. These registers are two words (eight bytes) in length and can contain either a short (one word) or a long (two word) floating-point operand. The floating-point registers are implemented in local storage and have a cycle time of 0.5 microsecond per four bytes.

Read Only Storage

The control function of the Model 50 is achieved by the use of a read only storage (ros), which contains a permanent microprogram used to control the functions of data flow and instruction execution. ros is not directly addressable by the main program.

2361 Core Storage

The 2361 Core Storage is a large capacity direct access core storage unit. It has a basic 8 -microsecond storage cycle, with access to two words (eight bytes) in parallel. When used with the Model 50, however, only four bytes are accessed in parallel to match the internal data flow of the system.

The 2361 is an extension of the main storage (processor storage) and is addressed contiguously with the 2050 processor storage. The 2361 Model 1 has a storage capacity of $1,048,576$ bytes, and the Model 2 has a storage capacity of $2,097,152$ bytes.

A Model 50 can share a 2361 with a System/360 Model 65, another Model 50, or a Model 75, if the other model has equal or greater processor storage.

When a 2361 is shared, its addresses are an extension of the addresses of the larger of the two processor storages.
Storage protection is a standard feature on the 2361 and matches the type of protection provided for the System/360 model that is using it. For use by the Model 50, the 2361 provides store protection only, but if another model with the fetch protection feature is sharing the 2361 with the Model 50 , the 2361 provides both store and fetch protection for that other model. (The sharing of a common storage area by more than one program can be controlled by the use of the test and set instruction, which is described in the IBM System $/ 360$ Principles of Operation, Form A22-6821.)

The 2361's can be specified for two-way interleaving, when attached to a Model 65 or 75. Interleaving provides an addressing scheme between two 2361's that permits the overlapping of read/write storage cycles in sequential operations.

One 2361 Model 1 or one to four Model 2's, without interleaving, can be used with Model 50. Two 2361 Model 1's or two or four 2361 Model 2's, with interleaving, can be used with Model 50 when 2361's are shared with a Model 65 or Model 75. Any 2361's intended for intermixing with other 2361's must be equipped for two-way interleaving.

Channels

The channel directs the flow of information between the I/o devices and main storage. It relieves the cPu of the task of communicating directly with the I / o devices and permits data processing to proceed concurrently with i/o operations. Data are transferred one byte at a time between the 1/o device and the channel. Data transfers between the channel and storage are parallel by four bytes (one word) for selector channels. The multiplexer channel routes data to and from storage in units of a single byte (Figure 2).

For efficiency, the channels are integrated with the processing unit and share many of its facilities. For example, the channels utilize the same read only storage for control, and use the cru data paths for handling nearly all data and control information. A standard I/o interface provides a uniform method of attaching I/o control units to all channels, making the Model 50 adaptable to a broad spectrum of applications and devices.

Channel-to-Channel Feature

A channel-to-channel adapter is available as an optional feature. The adapter permits communication be-
tween two System/360 channels, thus providing the capability for interconnection of two processing units. The adapter uses one control unit position on each of the two channels. This feature is required on only one of the two connected channels. Only one channel-tochannel adapter can be installed on a Model 50.

Multiplexer Channel

The multiplexer channel is a standard feature of the Model 50. This channel is capable of controlling several low to medium speed $1 / 0$ units concurrently in multiplex mode or a single high-speed unit in burst mode.

The channel facility necessary to sustain an $1 / \mathrm{o}$ operation with an I/o device is called a subchannel. The number of multiplexer subchannels is determined by the size of the main storage unit. (See Figure 2.) In the multiplex mode, the multiplexer channel sustains concurrent I/o operations on several subchannels. Bytes of data are interleaved and transmitted to or from the selected I / o devices and to or from the desired locations in main storage. A maximum of eight control units may be attached to the multiplexer channel.

In the burst mode the multiplexer channel sustains one I/o operation on one subchannel. Only one I/o device can be selected at a time and no other device on the multiplexer channel can transfer data until the selected I/o activity has been terminated.

Selector Channel

One, two, or three selector channels are available, as optional features, for the Model 50 . The selector channel operates in burst mode only, although one to eight control units can be attached and the channel has the facilities for addressing as many as 256 devices. Only one I/o device may be selected at a time on a selector channel. No other I/o device on the selector channel can transfer data until the selected activity has been terminated.

Control Panel

The control panel located on one end of the 2050 Processing Unit provides the switches, the keys and the lights necessary to operate, monitor and control the Model 50 . The need for operator manipulation of manual controls is held to a minimum by the system design and the governing supervisory program. A detailed description of operator functions provided by the switches, keys and lights of the con-

Page Missing From Original Document

Page Missing From Original Document

System Control Panel

The system control panel contains the switches and lights necessary to operate, display, and control the system. The system consists of the cPu, storage, channels, on-line control units, and I/O devices. Off-line control units and I/o devices, although a part of the system environment, are not considered part of the system proper.
System controls are logically divided into three classes: operator control, operator intervention, and customer engineering control (key switch and meters). This section of the manual discusses the system control functions provided by the system control panel as well as the purpose and use of the switches and lights on the panel.

System Control Functions

Using the control panel, the operator can perform these system control functions:

1. Reset the system.
2. Store and display information in storage, registers, and program status word (psw).
3. Load initial program information.

System Reset

The system reset function resets the CPU, channels, and on-line, nonshared control units and I/o devices.

The CPU is placed in the stopped state and all pending interruptions are eliminated. The parity of the general and floating-point registers, as well as the parity of the psw are corrected. All error-status indicators are reset to zero.

In general, the system is placed in such a state that processing can be initiated without the occurrence of machine checks, except those caused by subsequent machine malfunction.

The reset state for a control unit or device is described in the appropriate System Reference Library (sRL) publication. A system reset signal from a cPU resets only the functions in a shared control unit or device belonging to that cPu. Any function pertaining to another CPU remains undisturbed.

The system reset function is performed when the system reset key is pressed, when initial program loading is initiated, or when a power-on sequence is performed.

Programming Notes

If a system reset occurs in the middle of an operation, the contents of the psw and of the result registers or storage locations are unpredictable. If the cPu is in the wait state when the system reset is performed, and no I/o operation is in progress, this uncertainty is eliminated.

A system reset does not correct parity in storage but does correct parity in the registers. Because a machine check occurs when information with incorrect parity is used, the incorrect information should be replaced by loading new information.

Store and Display

The store and display function permits manual intervention in the progress of a program. The storing and/ or displaying of data may be provided by a supervisor program in conjunction with proper I/o equipment and the interrupt key.

In the absence of an appropriate supervisor program, the controls on the operator intervention panel allow direct storing and displaying of data. This is done by placing the cPu in the stopped state, and subsequently storing and/or displaying information in main storage, in general and floating-point registers, and in the instruction-address part of the psw. The stopped state is achieved at the end of the current instruction when the stop key is pressed, when single instruction execution is specified, or when a preset address is reached. The store and display function is then achieved through the store and display keys, the address switches, the data switches and the storage select switch. Once the desired intervention is completed, the cPU can be started again.

The stopping and starting of the CPU in itself does not cause any alteration in program execution other than in the time element necessary for the transition from operating to stopped state.

Machine checks occurring during store and display functions do not log immediately, but create a pending log condition that can be removed by a system reset or check reset. The error condition, when not masked off, forces a log-out and a subsequent machine check interruption when the CPU is returned to the operating state.

Initial Program Loading

Initial program loading (IPL) is provided for the initiation of processing when the contents of storage or the psw are not suitable for further processing.

Initial program loading is initiated manually by selecting an input device with the load-unit switches and subsequently pressing the load key.
Pressing the load key causes a system reset, turns on the load light, turns off the manual light, and initiates a read operation from the selected input device. When reading is completed satisfactorily, a new psw is obtained, the CPU starts operating, and the load light is turned off.
System reset suspends all instruction processing, interruptions, and timer updating and also resets all channels, on-line nonshared control units, and I / o devices. The contents of general and floating-point registers remain unchanged.

When IPL is initiated, the selected input device starts transferring data. The first 24 bytes read are | placed in storage locations $0-23$. Store protection, program controlled interruption, and a possible incorrect length indication are ignored. Control of the loading operation is then assumed by the double word just read into location 8, which is used as the next channel command word (ccw). The remainder of the program to be loaded may therefore be located in any desired section of storage. When chaining is specified in this ccw, the double word in location 16 may also be used as a CCw to provide additional control.

After the input operation is completed, the $1 / 0$ address is stored in bits $21-31$ of the first word in storage. Bits $16-20$ are made zero. Bits $0-15$ remain unchanged.

The cpu then fetches the double word in location 0 as a new psw and proceeds as in normal operation. The load light is turned off. When the I / o operations and psw loading are not completed satisfactorily, the cPU idles, and the load light remains on.

Programming Notes

Initial program loading resembles a start \mathbf{I} / o that specifies the $1 / 0$ device selected in the load-unit switches and a zero protection key. The ccw for this start I/O is simulated by CPU circuitry, and contains a read command, zero data address, a byte count of 24, chain command flag on, suppress-length-indication flag on, program-controlled-interruption flag off, chaindata flag off, and skip flag off.

Initial program loading reads new information into the first six words of storage. The remainder of the ifL program may be placed in any desired section of storage.

If the selected input device is a disk, the IPL information is read from track 0 .

The selected input device may be a channel-tochannel adapter connecting the channels of two CPu's. After a system reset is performed and a read command is issued to the adapter by the requesting cpu, the adapter sends an attention signal to the addressed cpu. That cpu then should issue the write command necessary to load a program into main storage of the requesting CPU.

When the psw in location 0 has bit 14 set to one, the CPU is in the wait state after the IPL procedure (the manual, the system and the load lights are off, and the wait light is on). Interruptions that become pending during IPL are taken before instruction execution.

System Control Panel Controls

System controls are divided into three logical groups identified as operator control, operator intervention and customer engineering control. Figure 3 shows the operator controls located in areas labeled C and N and operator intervention controls in areas L, M, and N of the system control panel. The customer engineer will use all controls, but the controls in areas A, B, | F, G, and K are intended primarily for customer engineering use.

Operator Controls

Sections C and N of the system control panel contain the controls required by the operator when the CPU is operating under full supervisor control. Under supervisor control, a minimum of direct manual intervention is required because the supervisor performs operations similar to store and display.

The main functions provided by the operator controls are the control and indication of power, the indication of system status, operator to machine communication and initial program loading.
| The following table lists (alphabetically) all operator controls and indicators and their implementation. All operator controls except the emergency pull switch are located in the area of the control panel labeled N and shown in Figure 4. The controls in area N are identical in all models of the System/360. The emergency pull switch is located in area C.

name	implementation
Emergency Pull	Pull switch
Interrupt	Key
Load	Key
Load	Light
Load Unit	Three rotary switches
Manual	Light
Power Off	Key
Power On	Key, backlighted
System	Light
Test	Light
Wait	Light

Figure 3. System Control Panel

- Figure 4. Section N Panel

Emergency Pull

Pulling this switch turns off all power beyond the power-entry terminal on every unit that is part of the system or that can be switched onto the system.

The switch latches in the out position and can be restored to its normal position by maintenance personnel only.

When the emergency pull switch is in the out position, the power-on key is ineffective.

Interrupt

The interrupt key is pressed to request an external interruption.

The interruption is taken when not masked and when the CPU is not stopped. Otherwise, the interruption request remains pending. Bit 25 in the interrup-tion-code portion of the current psw is made 1 to indicate that the interrupt key is the source of the external interruption. The key is effective while power is on the system.

Load (Key)

The load key is pressed to start initial program loading. The key is effective while power is on the system.

Load (Light)

The load light is on during initial program loading; it is turned on when the load key is pressed and is turned off after the read operation and the loading of the new Psw are completed successfully.

Load Unit

Three rotary switches provide the 11-bit address of the channel and unit to be used for initial program loading.

The leftmost rotary switch has eight positions labeled 0-7 used for the channel address. The other two 16 -position rotary switches are labeled with the hexadecimal characters 0-9, A-F, and are used for the unit address.

Manual

The manual light is on when the cPU is in the stopped state. Several of the manual controls are effective only when the cPu is stopped (manual light on).

Power Off

The power-off key is pressed to initiate the power-off sequence of the system.

The contents of core storage (but not the keys in storage associated with the protection feature) are preserved, provided that the CPU is in the stopped state. The key is effective while power is on the system.

Power On

This key is pressed to initiate the power-on sequence of the system.

As part of the power-on sequence, a system reset is performed in such a manner that the system performs no instructions or $1 / 0$ operations until explicitly directed. The contents of main storage, including the protection keys are preserved.

The power-on key is backlighted to indicate when the power-on sequence is completed. The key is effective only when the emergency pull switch is in the normal position.

System

The system light is on when the cPu usage meter or customer engineering meter is running.

Test

The test light is on when a manual control is not in its normal position or when a maintenance function is being performed for CPU, channels, or storage. The normal position for rotary switches is straight up, and for lever switches is straight out.

Any abnormal switch setting on the system control panel or on any separate maintenance panel for the CPU, storage, or channels that can affect the normal operation of a program causes the test light to be on.
The test switches described are shown in Figures 5,6 , and 7 . These switches cause the test light to be on if any is not in its normal position:

switches	PANEL
Rate switch not to process	M
FLT Mode switch not to off	M
Address Compare switch (IAR) not to process	M
Address Compare switch (ROS) not to sync	M
Repeat INSN on (IAR or ROS) not straight out	M
Check Control not to process	M
Storage Test not to process	B

switches
PANEL
Disable Interval Timer not straight out Invert SAR Bit 16 not straight out Meter switch to CE

M
Manual Op not straight out F SAR Compare to stop

The test light may be on when one or more diagnostic functions under control of diagnose is activated or when certain abnormal circuit breaker or thermal conditions occur.

The test light does not reflect the state of marginal voltage controls.

Wait

The wait light is on when the CPU is in the wait state.

Programming Notes

The states indicated by the wait and manual lights are independent of each other; however, the state of the system light is not independent of the states of the wait and manual lights. The possible conditions when power is on are:

SYSTEM	MANUAL	Wait	CPU	1/0
LIGHT	Light	Light	State	State
Off	Off	Off	*	*
Off	Off	On	Wait	Not working
Off	On	Off	Stopped	Not working
Off	On	On	Stopped, Wait	Not working
On	Off	Off	Running	Undetermined
On	Off	On	Wait	Working
On	On	Off	Stopped	Working
On	On	On	Stopped, Wait	Working

[^0]

Figure 6. Section B Panel

Figure 7. Section F Panel

Operator Intervention Controls

Sections L, M, and N of the system control panel contain the controls required for the operator to intervene in normal programmed operation. These controls are intermixed with the customer engineering controls. Only operator intervention controls are described in detail.

Operator intervention controls provide the system reset and the store and display functions.

Figure 5. Section M Panel

The following table lists (alphabetically) all intervention controls and indicators and their implementation. Keys have momentary pushbutton action. The section L panel is shown in Figure 8.

Name	Panel	Implementation
Address	L	Key switches
Address Compare (IAR)	M	Key switch
Check Reset	M	Key
Data	L	Key switches
Display	M	Key
PSW Restart	M	Key
Rate	M	Rotary switch
Rev Data Pty	L	Key switch
SAR Compare	M	Key switch
Set IC	M	Key
Start	M	Key
Storage Select	L	Rotary switch
Store	M	Key
Stop	M	Key
System Reset	M	Key

Address

The address lever switches provide a means of manually selecting an addressable location in storage when used in conjunction with the storage select switch or to identify the address to be compared when an address-comparison stop is desired. Correct parity is automatically generated.

For main storage select, the address switches are used to manually address a main storage location when the storage select switch is set to the main position. For an address-comparison stop, the address switches provide the stop address. When addressing main storage, the 24 switches represent a 24 -bit binary address. The rightmost toggle is the units position or low-order position. Because data in main storage are stored or displayed a word at a time, the two low-
order position address switches (switch positions 30 and 31) are not involved in determining the address.

When an address switch is in the down position it represents a one bit; when in the center or restored position it represents a zero bit. Color coding is provided to identify the hexadecimal digit groupings.

If the address switches are manipulated while address compare (IAR) is set to stop, a machine check can occur.

Address Compare (IAR)

The address compare switch provides a means of stopping the CPU on a successful instruction address comparison.

1. In the stop position, an equal comparison between the address switches and the instruction address register causes the CPU to stop. The stop occurs at completion of the addressed instruction.
2. In the process position, no comparison occurs.
3. The sync position is for customer engineering use.

The address compare switch can be manipulated without disrupting CPU operation other than by causing the address-comparison stop. When the switch is set to sync or stop position, approximately 3 microseconds are added to each instruction to accomplish the comparison.

Check Reset

The check reset key resets all CPU and channel check indicators to the no-error state. Check reset can be considered a subset of the system reset. It is active in all modes. Check lights remaining on after check reset must be cleared at the check source by use of appropriate manual controls.

- Figure 8. Section L Panel

Data

The storage data switches in section L are used to specify or represent the data to be stored in the location specified by the storage select switch and address switches. Correct data parity is automatically generated. Changing the keys does not affect cPu operation.

The storage data switches can be used to represent a word of information. The leftmost switch is not used as part of the word for customer store functions. A storage data switch in the down position represents a one bit and in the center position a zero bit.

Display

The display key is pressed to display information that is in the location specified by the storage select switch and address switches. When the designated location is not available, the displayed information is unpredictable. The key is effective only while the cru is in the stopped state.

PSW Restart

This key causes a system reset, after which a psw is loaded from storage location zero and the CPU is changed from stopped to operating state.

Rate

This three-position rotary switch is used to indicate the manner in which instructions are to be performed. The position of the switch should be changed only while the CPU is in the manual state. Otherwise unpredictable results may occur. The rate switch has the following settings:

1. Process: In this position, the system starts operating at normal speed when the start key is depressed. The test light is on when the rate switch is not set to process. Moving the rate switch from process to instruction step stops the cPu.
2. INSN STEP (Instruction Position): In this position, the system executes one instruction for each depression of the start pushbutton and returns to the manual state. All pending interruptions not masked are subsequently taken. The timer is not updated when the switch is in this position.

Any instruction can be executed with the rate switch set to insn step. Input/output operations are completed to the interruption point. When the cpu is in the wait state, no instruction is performed, but pending interruptions, if any, are taken before the cPu returns to the stopped state. Initial program loading is completed with the loading of the new psw before any instruction is performed.
3. Single Cycle: The system executes one machine cycle for each depression of the start pushbutton and
returns to the stopped state. The stopped state for single cycle is one in which no cPU clocks are running. Otherwise, in the normal stopped state, the ros is running, executing a halt loop.

Single cycle operates with $1 / 0$ equipment to the point of the initiation of the asynchronous operation. The asynchronous operation starts with the next depression of the start pushbutton and runs to completion. If start is pressed during this time, the next cycle is taken. If an interruption results, the interruption sequence is not automatically executed but must be single cycled. Moving the rate switch from process to single cycle while the CPU is running stops CPU.

Rev Data Pty

This switch generates incorrect parity for data specified in the data switches. Parity is inverted for all bytes of the word. When this switch is on, the test light is on.

SAR Compare

The storage address register compare switch provides a means of stopping the CPU on a successful data address comparison.

1. In the stop position, an equal comparison between the data lever switches 8 -31 (low-order 24 positions) and a storage address may be used either to locate data or as a successful branch address. Either comparison causes the CPU to stop at the completion of the instruction containing that address. Data switch positions 0 and 1 may be set to effect the stop when the storage reference is made either by the cru, by the channels, or by both.
2. In the sync position, no stop occurs.

The SAR compare switch can be manipulated without disrupting CPU operation other than by causing the address-comparison stop.

Set IC (Instruction Counter)

This key enters the address set in the address switches. The key is active only when the CPU is in the stopped state.

Start

The start key is pressed to start instruction execution as specified by the rate switch. The key is effective only while the CPU is in the stopped state.

Pressing the start key after a normal stop causes instruction processing to continue as if no stop had occurred, provided that the rate switch is in the process or instruction-step position. If the start key is pressed after the system reset, the instruction designated by the instruction address register is the first one executed.

Storage Select

This four-position rotary switch is used to select the main storage area addressed by the address switches. The storage select switch is active only in stopped state (manual light on). The storage select switch has the following settings:

1. MAIN (Main Storage): Selects a main storage location specified by the address switches.
2.. PROTECT (Storage Protect): Unconditionally selects the storage protect key register.
2. LOCAL: Used by the Customer Engineer.
3. MPX: Used by the Customer Engineer.

The switch can be changed without disrupting CPU operations.

Store

The store key is pressed to store information in the location specified by the storage select switch and address switches. The key is effective only while the CPU is in the stopped state.
The contents of the data switches are placed in specified locations in main storage, in general registers, or in floating-point registers. Store protection is ignored. When the locations designated by the address switches and storage switch are not available, data are not stored.

Stop

The stop key causes the cru to enter the stopped state and turns on the manual light. The cPu completes the instruction being executed at the time the stop signal is recognized. All pending interruptions that are not masked off are taken and any i/o operation in progress is completed. The key is effective while power is on the system.
Pressing the stop key has no effect when a continuous string of interruptions is performed or when the CPU is unable to complete an instruction because of machine malfunction.

System Reset

This key resets the CPU, channels, and control units, to initial state. The cPu is placed in the manual state, all pending interruptions are eliminated and all error indicators are reset. The key is effective while power is on the system.

Key Switch and Meters

The usage meter and a customer engineering meter are installed in panel M of the system control panel. A key switch controls which meter is to run. If the key switch is in the customer-operation position, the usage meter accumulates time when the system is doing productive work. If the key switch is in the ce position, the CE meter accumulates time instead, on the same basis as the usage meter it replaces.

Channel Characteristics

General Channel Information

IBM System/360 channels transfer data between core storage and I / o devices under control of a channel program executed independently of the CPU program. The Model 50 cPU is free to resume the cPU program after initiating an I / o operation.

Model 50 channels may run concurrently, within the data transfer rate and channel programming conventions specified in this manual.

A major feature of the channels is their common I/o interface connection to all System/360 input/output control units. The I/o interface provides for attachment of a variety of I / o devices to a channel.

At the end of an I/O operation, the channel signals an I / o interruption request to the cPu. If not masked off, an I / o interruption occurs that places the I / o new psw in control of the cru. When I/O interruptions are masked, interruption requests are queued. Until honored, an I/o interruption condition is called a pending I/o interruption.

At the end of an I / o operation, a channel has information concerning the success of the operation, or details about any lack of success. The information is available to the CPU program.

Each System/360 channel has facilities for performing the following functions:
Accepting an I/O instruction from the CPU
Addressing the device specified by an I/O instruction
Fetching the channel program from core storage
Decoding the channel command words that make up the channel program
Testing each channel command word (CCW) for validity
Executing CCW functions
Placing control signals on the I/O interface
Accepting control-response signals from the I/O interface
Transferring data between an I/O device and core storage
Checking parity of bytes transferred
Counting the number of bytes transferred
Accepting status information from I/O devices
Maintaining channel-status information
Signaling interruption requests to the CPU
Sequencing interruption requests from I/O devices
Sending status information to location 64 when an interruption occurs
Sending status information to location 64 upon CPU request

Channel Control

IBM System/360 channels provide a common input/ output interface to all System/360 control units. All control units are governed with six basic channel
commands and a common set of only four CPU instructions. The instructions are:

Start I/o

Test channel
Test I / o
Halt I / o
All I/o instructions set the psw condition code, and, under certain conditions, all but test channel may cause a channel status word to be stored. A test channel instruction elicits information about the addressed channel; a test I/o instruction elicits information about a channel and a particular device. Halt i/o terminates any operation on the addressed channel, subchannel, or device. Only Start I/o makes use of channel command words (ccw's).

A start I / o instruction initiates execution of one or more I/o operations. It specifies a channel, subchannel, control unit, and I/o device. It causes the channel to fetch the channel address word (caw) from location 72. The caw contains the protection key and the address of the first channel command word (ccw) for the operation. The channel fetches and executes one or more ccw's, beginning with the first ccw specified by the caw.

Six channel commands are used:
Read
Write
Read backward
Control
Sense
Transfer in channel
The first three are self-explanatory.
Control commands specify such operations as set tape density, rewind tape, advance paper in a printer.

A sense command brings information from a control unit into main storage concerning unusual conditions detected during the last $1 / 0$ operation, and detailed status about the device.
A transfer in channel (ric) command specifies the location in main storage from which the next ccw in the channel program is to be fetched. A tic may not specify another tic. Also, the caw may not address a tic.

Each ccw specifies the channel operation to be performed and, for data transfer operations, specifies contiguous locations in main storage to be used. One or more ccw's make up a channel program that directs a channel operation.

Channel Registers

System/360 channels maintain the following channel control information for each I/o device selected:

Protection key

Data address
Identity of operation specified by command code ccw flags
Byte count
Channel status
Address of next ccw
A selector channel has only one set of registers for the above information because it operates with only one I / o device at a time.

On a multiplexer channel, the listed information must be maintained for each subchannel in operation. Storage for this information is provided by special channel storage that is not directly addressable. Each subchannel has provision in channel storage for channel register information. When a particular subchannel is selected by a start I / o instruction and a channel program initiated, the channel storage locations for the subchannel are loaded with the information necessary for operation of the subchannel.

At each cessation of activity in a subchannel, its particular area in channel storage contains updated information, and the multiplexer channel is available for operation of another subchannel. The sharing of facilities by the multiplexer channel and the CPU is shown in Figure 9.

Chaining

A single ccw may specify contiguous locations in main storage for a data transfer operation, or successive ccw's may be chained together to specify a set of noncontiguous storage areas. Chaining to the next ccw is caused by the presence of a flag bit in a ccw.

In data chaining, the address and count information in a new CCW is used; the command code field is ignored.
Entire ccw's, including their command code fields, may also be chained together for use in a sequence of channel operations. Such coupling is called command chaining, and is specified by a different flag bit in a ccw.

Data chaining has no effect on a device, as long as the channel has sufficient time to perform both data chaining and data transfer for the device.
In this manual, when a device is said to data chain, it means that the channel program for the device specifies data chaining.

Fetching Channel Command Words

The channel must fetch a new ccw whenever a ccw specifies data chaining, command chaining, or transfer

Note: During multiplexer operation, the selector channels are scanned for higher priority data service requirements as shown. The CPU is allowed to absorb available time due to delays in device responses.

Figure 9. Equipment Sharing by Model 50 CPU and Multiplexer Channel
in channel (tic). The extra control activity caused by these operations takes time and diminishes a channel's ability to do other work.
A data chaining fetch usually occurs while a channel also has a data transfer load from the same device. The time required to fetch the new ccw necessarily limits the interval of time available for successive data transfers through the channel. An absence of data chaining ordinarily permits a channel to operate with a faster I/o device. Similarly, when a channel is not transferring data, a data chaining operation has a lesser impact on channel facilities.

Data Chaining in Gaps

For direct access storage devices, such as an IBM 2311 Disk Storage or an ibm 2314 Direct Access Storage Facility, formatting write commands cause the control
unit to create gaps between count, key, and data fields on the recording track. Read, write, and search commands that address more than one of the fields may specify data chaining to define separate areas in main storage for the fields.

The gaps on a track have significance to channel programming considerations for direct access storage devices. The channel does not transfer data during the time a gap is created or passes under the readwrite head, and this time is sufficient for a Model 50 to perform a command chaining or data chaining operation.

Command chaining ordinarily occurs only during gap time, but data chaining may occur during gap time or while data is being transferred. A data chaining operation occurring during gap time has a lesser impact on channel facilities than when data transfers also occur. If a channel program for a direct access storage device calls for data chaining only during gap time, the device's overall load on channel facilities is significantly less.

When a direct access device is said to data chain in a gap, the reference is to a gap other than a gap following a data field. The latter gap causes a device end indication and command chaining is used in such a gap if the transfer of more information is desired. A device end occurring in the absence of a ccw specifying command chaining results in termination of the operation. When command chaining continues the operation, the status information available at the end of the operation relates to the last operation in the chain.
While reading, an attempt to data chain in a gap following a data field causes an incorrect length indication in the channel status byte.

Late Command Chaining

Operation of direct access devices, such as disk storage, requires the use of command chaining. Between certain operations, such as the search for a record identification key and the reading of a data field on a direct access storage device, the control unit has a fixed time interval during which it must receive and execute a new command. If activity on other channel(s) causes too much delay in initiation of the operation specified by the new command, the channel prógram is terminated and an I/o interruption condition occurs.

Storage Addressing

When data chaining, the beginning and ending byte addresses and the minimum number of bytes transferred are factors in the maximum data rates that different System/360 channels can sustain. If the storage
width of larger models and the possibility of using faster I/o devices are kept in mind when writing channel programs for small models, better performance will be obtained when the programs are run on larger models or with faster I/o devices.

For example, a tape operation at a 30 kb (kilobyte) data rate may data chain with a byte count of one on a Model 30 with one selector channel, but the same tape operation cannot be performed at 90 kb on a Model 50. In this instance, the use of a larger count for data chaining would permit the Model 50 to execute the channel program at 90 kb .

Channel Implementation

The Model 50 has two types of channels. The multiplexer channel is standard; up to three selector channels are optional. All channels on the Model 50 are integrated with the 2050 Processor and share part of the cru facilities. Each channel may attach as many as eight control units and can address up to 256 I/o devices. Control units are connected to all channels through a standardized x / o interface.

Selector Channel

Each selector channel provides a path for moving data between storage and a selected I / o device. It has its own registers for control information and data buffering. Data move to or from an I/o device one byte at a time, but are buffered to a width of four bytes for communication with storage. Selector channels can operate concurrently with each other and with the cru.

Multiplexer Channel

A multiplexer channel has a single data path that may be monopolized by one $1 / 0$ device (burst mode) or shared by many $1 / 0$ devices (multiplex mode). The design of a control unit predetermines whether its operation on the multiplexer channel is in burst or multiplex mode. In either case, data transfer between storage and an I/O device is controlled one byte at a time. Multiplexer channel operation may overlap selector channel and CPU operation.

When multiple I / o devices concurrently share multiplexer channel facilities, the operations are in multiplex mode. Each device in operation is selected, one at a time, for transfer of a byte or a few bytes to or from main storage. Bytes from multiple devices are interleaved together and routed to or from desired locations in core storage. Thus, the multiplexer channel data path is used by one device for transfer of one or a few bytes of data and then another device uses the same data path. The sharing of the data path
makes each device appear to the programmer as if it has a data path of its own. This leads to calling a device's share of the data path a subchannel.

The numbering scheme for multiplexer subchannels relates to I / o device addresses; the device address assigned to each device determines the subchannel that controls its operation. For an unshared subchannel, one device address is used. A shared subchannel permits use of several device addresses. The devices share a single control unit, which connects them to the shared subchannel. The devices may be selected for use one at a time, but may not be selected concurrently.

Device addresses zero to less than 128 refer uniquely to the correspondingly numbered unshared subchannels. Devices addressed 128-255 are assigned to shared subchannels $0-7$ in eight groups of 16. For example, subchannel zero may be used by device addresses 000 or 128-143, and subchannel 1 may be used by device addresses 001 or 144-159, etc. Thus, each shared subchannel 0-7 has 17 different device addresses. Unshared control units may use shared subchannel addresses in the lower range; shared control units use addresses in the higher range.

The maximum number of multiplexer channel device addresses is 128 in the shared range, plus the number of uniquely addressed subchannels provided by the system. In the listing below, the Model F50 has 64 multiplexer subchannels; eight are shared subchannels (addresses 0-7 and 128-255) and 56 are unshared subchannels (addresses 8-63).

			SHARED SUBCHANNEL	UNSHARED SUBCHANNEL
MODEL CHANNELS	SUB-	I/O DEVICE	ADDRESSES I/O DEVICE	ADDRESSES
I/O DEVICE				
ADDRESSES				

*For the H50 and 150, the additional multiplexer subchannels optional feature provides a total of 256 subchannels. Each is uniquely addressed; none of the 256 subchannels can be shared.

Channel Priority

Priority for allocation of Model 50 cPU facilities is in this order, for normal operation:

Machine check interruption handling
Multiplexer channel data transfer
Selector channel data transfer
Selector channel chaining
Multiplexer channel chaining CPU operation
Selector channels receive priority in numerical order.
Although the multiplexer channel normally has higher priority than the selector channel, in certain cases, the selector channel may be promoted above the multiplexer channel. This occurs when selector channel service has been delayed to the point where it becomes likely that overrun will occur if the channel is not serviced immediately.

Each I/o device in operation places a load on its channel facilities. The magnitude of a load depends on a device's channel programming and its data transfer rate. In this manual, numeric factors are used to relate the loads caused by operation of I / o devices to the channel's abilities to sustain concurrent operation of the devices.
One or more numeric factors are specified for each x/o device and channel available with a Model 50. The numeric factors are presented in tables in the appendix to this manual and are used in arithmetic procedures for determining whether the operations of specific Model 50 input/output configurations are satisfactory.
Several procedures are provided for evaluating a configuration of I / o devices for concurrent operation on Model 50 channels. Use of the basic procedures will suffice for most configurations in determining whether operation is satisfactory; more detailed procedures are to be used only for configurations that appear to exceed Model 50 input/output capabilities.

Worst Case Loads

The evaluation factors and procedures allow for a worst case situation - when the most demanding devices in the configuration all make their heaviest demands on Model 50 I/o capabilities at the same time. Such a situation may not occur frequently, but it is the situation that the evaluation procedures place under test. If a particular configuration fails to pass testing, one or more devices may be expected to incur overrun or loss of performance.

Overrun

Overrun occurs when a channel does not accept or transfer data within required time limits during a read, read backward, or write operation. This data loss may occur when the total channel activity initiated by the program exceeds channel capabilities. Depending on the device, it may halt operation, or it may continue transferring data until the end of the block is reached.
An overrun causes a unit-check indication to be stored in the channel status word. An I/o interruption condition is generated at the conclusion of the operation. The cause for the unit check is indicated by turning on sense bit 5, the overrun bit, for subsequent interrogation.

Loss of Performance

Overrun occurs only on unbuffered $\mathbf{~} / \mathrm{o}$ devices. Buffered devices are not subject to overrun. Instead, when buffer service is not provided within required time limits, the device merely waits for channel service. While it is waiting, the device is said to incur a loss of performance.

Conventions for Satisfactory Channel Programs

Execution of a channel program causes a load on channel and system I/o facilities. Some I/o devices require execution of a chain of commands, preparatory to transfer of a data block. However, the impact of the load caused by a channel program is not a simple function of the number of commands used: the sequence in which particular types of commands appear in a channel program is also a factor.
A type of command particularly significant to sequencing considerations is a control command that is executed at electronic speeds and that does not cause any mechanical motion. Such a command is executed as an immediate operation and provides device end in the initial status byte. When command chaining is specified in such an immediate operation, channel facilities are not disengaged from the channel program until such a chain ends or a command causing mechanical motion or data transfer is executed. Therefore, when immediate operations with device end in the initial status byte are chained together, fetching and execution of the ccw's may cause a heavy load on channel facilities. Such a load may cause excessive delay in channel service to one or more devices in the I/O configuration, with resultant overrun or loss of performance. For example, a chain of no-op commands can contribute heavily to channel loading. Such a programming convenience may cause a severe overrun situation for concurrently operating devices.

Data Chaining Considerations

A System $/ 360$ user is free to specify data chaining in channel programs whenever he chooses to do so, although a channel is able to transfer data at a faster rate, without overrun, when data chaining is not specified. The channel evaluation procedures and tables in this manual provide guidance in gauging the effects of data chaining operations.
The factors in Table 1 in the appendix allow for data chaining on the 2702, except for data chaining
on telegraph controls on a 2702 , and as specified for other devices. The 2702 factors in Table 1 assume a count of 32 for data chaining. (The appendix is composed of Tables 1-7 and certain illustrations, which have been placed at the end of the manual so they can be removed easily for reference.)

To obtain maximum compatibility for data chaining channel programs, addressing resolution on double word boundaries and byte counts of 16 or greater are necessary.

Relationship of Conventions and Evaluation Procedures

The evaluation procedures are premised on channel programs having command sequences that provide efficient operation of $1 / 0$ devices and avoid placing unnecessary loads on channel facilities. Channel programming conventions have been established to help I/o programmers avoid overrun situations.

Observance of channel programming conventions is fundamental to the selection of an I/O configuration that will permit concurrent operation of $1 / 0$ devices in a satisfactory manner. The channel programming conventions described below are integral to the channel evaluation procedures. An evaluation yielding an indication of satisfactory channel performance is not dependable when channel programs written in violation of the conventions are used.

Scope of Conventions

1. The conventions relate to the sequence in which certain types of commands may be executed, not to their sequence in main storage.
2. The conventions define four classes of commands and the sequence in which they may be used.
3. The command sequences provided by the conventions are different for different types of devices. Sequences are provided for these devices:
DASD - 2302, 2303, 2311, 2314, 2321, 7320
Tape units - series 2400
Card units - 1442, 2501, 2520, 2540
Printers - 1403, 1443
Console - 1052
Communication adapters - 2701, 2702
4. The conventions relate to all the commands in a chain, including the ccw addressed by the caw and the terminating ccw that does not specify any chaining.
5. The conventions do not relate to commands addressed by the CAw which do not specify any chaining.
6. The conventions relate only to the avoidance of overrun; they do not define invalid command sequences that are rejected by a channel, such as tic to TIC, or that are rejected by a control unit. CCW
sequences causing command reject are specified in the r/o device manuals.

Note that item 4 is of particular interest to I / o programmers working on segments of a single channel program; the rules still apply when one segment is chained to another segment.

The channel programming conventions in this manual are recommended to System/360 users, particularly in a multi-programming environment where a programmer is not aware of the overall load on channel facilities. Where a programmer controls or has knowledge of all I/o activity, he may establish somewhat less restrictive channel programming conventions of his own which may be particularly suited to his application and configuration.

Classes of Commands

The conventions establish four classes of commands. Commands that always cause mechanical motion are in one class. The other three classes encompass commands that are always executed at electronic speeds, plus commands that are sometimes executed at electronic speeds. An example of the latter is rewind, which is executed at electronic speeds when tape is already at load point. The three classes of commands having electronic-speed properties differ in the length of time required for their execution.

The conventions for the different devices specify classifications for the specific commands pertinent to each device.

The conventions define the four classifications by the sequence in which they may precede or follow other commands:

Class A Commands: These commands may be chained in any order, without restriction. Class A commands always cause mechanical motion.

Class B Commands: Only one Class B command may be chained between two Class A commands:
$\rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{A}$. = permissible command chaining sequence
$\rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{B} \rightarrow \mathrm{A}$. = command chaining sequence excluded by conventions
A Class B command may be substituted for a Class C or Class D command.

Class C Commands: A Class C command may appear only once in a channel program, and then only as the first command in a channel program; therefore, a Class C command may appear only in the location specified by the caw:
CAW $\rightarrow \mathrm{C} \rightarrow \mathrm{A} \rightarrow \mathrm{B}$. = permissible program
$\mathrm{CAW} \rightarrow \mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{A} .=$ program excluded by conventions
A Class B command may be substituted for a Class C command:
$\mathrm{CAW} \rightarrow \mathrm{B} \rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{A} \rightarrow \mathrm{B}$. = permissible program

Class ${ }^{\circ}$ D Commands: A Class \mathbf{D} command may appear only as the last command in a channel program; it may not specify any chaining:

CAW $\rightarrow \mathrm{X} \rightarrow \mathrm{X} \rightarrow \mathrm{D} .=$ permissible program
$\mathrm{CAW} \rightarrow \mathrm{X} \rightarrow \mathrm{D} \rightarrow \mathrm{A}$. = program excluded by conventions
A Class B command may be substituted for a Class D command.

Some devices have conventions that exclude specific sequences of commands not excluded by the classifications above.

Some devices have conventions that allow a specific command sequence to be substituted for a single command of a specified class.

Command Classifications for I/O Devices

The rules below define classifications for specific commands used with a particular device. The bit pattern for each command code byte is specified to provide positive identification of commands.

Commands not classified may not specify any chaining and may be placed only in the location specified by the caw. Each such command thus constitutes an entire channel program in which it is the only command. The sense command is used in this manner for all devices.

Direct Access Storage Devices: These command classifications are valid for all devices attached to a 2841 control unit.

Class A commands (any order):

Read Write Search Erase		
Space Record Recalibrate	XXXX XX10 NoOp	0000 0001 000111 00011
	(Class A on 2311 only) (NoOp may be used only when preceded by a formatting write 0001 XX01 or 0000 0001)	

Class B commands (not more than one between Class A commands):

| TIC | XXXX 1000
 SEEK
 0000
 0111
 $000 X$
 1011 |
| :--- | :---: | :---: |

These command chains have the properties of a single Class B command:

TIC \rightarrow SEEK	XXXX	$1000 \rightarrow$	$\int 0000$	0111
THC \rightarrow SEEK	XXXX	$1000 \rightarrow$	2000X	1011
SEEK \rightarrow TIC	$\begin{aligned} & 0000 \\ & 000 \mathrm{X} \end{aligned}$	$\begin{aligned} & 0111\} \\ & 1011\} \end{aligned} \rightarrow$	XXXX	1000

Class C commands (first cCw in program). These command chains have the properties of a single Class C command:

$$
\text { Seek } \rightarrow \text { Set File Mask } \rightarrow \text { TIC } \begin{array}{ll}
0000 & 0111\} \\
000 \mathrm{X} & 1011\} \\
0001 & 1111
\end{array} \rightarrow \text { XXXX } \rightarrow \text { 1000 }
$$

Class D commands (last ccw in program):
NoOp 00000011 (except when preceded by a formatting write)
Restore 00010111 (NoOp on other than 2311)
Excluded chains:
SEARCH \rightarrow TIC \rightarrow WRITE $\left.\begin{array}{ll}\text { X011 } & 0001\} \\ \text { X010 } & 1001\end{array}\right\}$
XXXX $1000 \rightarrow 0000$ X101
Data chaining may propagate through a TIC command for gap-only data-chaining, as described in the "Data Chaining in Gaps" part of this manual (included in the "channel characteristics" section).

Series 2400 Tape Units

Class A commands (any order):

Read	XXXX	XX10
Write	XXXX	XX01
Read backward	XXXX	1100
Forward space	0011	X111
Backspace	0010	X111
Write tape mark	0001	1111
Erase gap	0001	0111

Class B commands (not more than one between Class A commands):
TIC XXXX 1000
Class C commands (first CCw in program):
Set Mode
XXXX X011
This command chain has the properties of a single Class C command:
Set Mode \rightarrow TIC \quad XXXX X011 \rightarrow XXXX 1000
Class D commands (last Ccw in program):

Rewind	0000	0111
Rewind and Unload	0000	1111
NoOp	0000	0011

Mixed Mode Seven-Track Tape Operations: A routine may be used to select a tape unit, set its density mode, and then tic to a desired channel program:
SIO \rightarrow Set Mode? Class C
TIC $\quad\{$ sequence
The conventions require the ccw addressed by the tic to be Class A.

If the tape applications involve mixed mode seventrack operations, the programmer may make provision for placing the proper set mode command in the location addressed by the caw before sio is issued, or the programmer may begin each channel program addressed by the TIC with an appropriate set mode command. Such an additional set mode command violates the convention for Class C commands and causes an additional load on channel facilities. Provision for the extra load is made in the multiplex mode evaluation procedure in this manual.

Card Units (1442, 2501, 2520, 2540):
Class A commands (any order):

READ	XXXX	XX10
WRITE	XXXX	XX01

Class B commands (not more than one between Class A commands):
TIC
XXXX 1000
Class C commands (first ccw in program): CONTROL XXXX XX11
Class D commands (last ccw in program): CONTROL XXXX XX11
Printers (1403, 1443):
Class A commands (any order):
WRITE XXXX XX01
Class B command (not more than one between Class A commands).
TIC XXXX 1000
Class C commands (first Ccw in program) :
CONTROL XXXX XXıl
Class D commands (last ccw in program) :
CONTROL 00000011
Console (1052):
Class A commands (any order):

Read inquiry	0000	1010
Write auto carriage return	0000	1001
Write inhibit carriage return	0000	0001

Class B commands (not more than one between Class A commands):
TIC
XXXX 1000
Class C commands:
Not applicable
Class D commands (last ccw in program):

Control XXXX XXI1

Communication Adapters (2701, 2702): Data chaining with or without tic may be used for these adapters.
Class A commands (any order):

Write Dial Break Diagnostic write	XXXX	XX01
Read	XXXX	
Prepare		
Inhibit		XXI0
Search		
Diagnostic read		

Class B commands:
Not applicable
Class C commands (first ccw in program):

Control*
 XXXX XXII

Class D commands (last ccw in program):

Control*
 XXXX XX11

${ }^{*}$ For a communication network of switch-type terminals, these two control commands are Class A:

Disable	0010	1111
Enable	0010	0111

Evaluating Heavily Loaded Channels

Concurrent operation of multiplex mode devices important to an application may be ensured by giving them higher priority than devices having less importance; higher priority may reduce the frequency of overrun or loss of performance incurred by a device.

When evaluating the performance of a system susceptible to channel overload conditions, consideration should be given to the relative ease of restarting an interrupted I/o operation. For example, an overrun on a communication line coupling two cPu's is handled more readily than a read overrun on an IBM 1442 Card Read Punch. Preferential priority may be given to devices that require manual intervention in response to an overrun condition.

Some circumstances may make it desirable to place devices with heavy load factors on the same selector channel, rather than on separate selector channels, in order to preclude interference with each other.

Evaluations should not ignore the characteristics of ibm Programming Systems input/output control programs. These programs will attempt to execute any start I / o instruction for which the channel and device are available. The programs that permit concurrent operation of more than one device on a multiplexer channel will not, however, initiate a burst mode operation on the multiplexer channel while any device subject to overrun is in operation on the multiplexer channel.

Selector Channel Loading

The impact on a selector channel of a load caused by operation of an unbuffered $I /$ o device depends on the device's data transfer rate and on:

1. Whether data chaining is specified for the device.
2. Whether data chaining is specified for the device and transfer in channel (TIC) commands are used.
3. Whether data chaining is also specified for other selector channels.
4. Whether the data chaining is performed with a count of 16 or greater (long records).
5. Whether the initial byte of each chained record is located on a word boundary.

Overrun Test Exception

Under certain circumstances, the load on channel facilities caused by data chaining may be ignored in testing for channel overload. It then is not a consideration in selecting a load value or a selector channel load limit. The exception is valid only for direct access storage devices that are programmed in a certain way.

A channel program for direct access storage devices, such as an IBM 2311 Disk Storage Drive, must specify command chaining, and it may, of course, specify datachaining operations. The time it takes a gap on a track to pass a read-write head on one of these devices is sufficient for the channel to perform a data-chaining operation. Gap time occurs in such operations as "write count, key, and data," where the gap time occurs between writing the count and the key, and between writing the key and the data.

If the program causes data chaining to occur only during gap time, the data-chaining load on channel facilities will not be additive to the device's data transfer load. Therefore, data chaining that occurs only during the gap time may be ignored in testing the channel for overrun.

Testing for Overrun

To determine whether selector channel operation can result in overrun, perform the following procedure:

1. Referring to Table 4 in the appendix, determine for each operating selector channel which device to be attached to it has the largest load value.
2. Determine whirh one of Tables $5-7$ in the appendix is applicable. These tables are divided into three
major groupings: load limit information pertinent (1) when both CPU and channel references (both data and ccw's) are made only to main storage, Table 5, (2) when CPU references may be made to the IBM 2361 Core Storage and channel references (both data and ccw's) are made only to main storage, Table 6, and (3) when both cPu and channel references (both data and ccw's) are made to the івм 2361, Table 7. Each of the three tables is subdivided as follows.

No data chaining
Data chaining, multiplexer operating, LWN.
Data chaining, multiplexer operating, LWT.
Data chaining, multiplexer operating, LBN.
Data chaining, multiplexer operating, LBT.
Data chaining, multiplexer operating, SBN.
Data chaining, multiplexer operating, SBT.
Data chaining, multiplexer not operating, LWN.
Data chaining, multiplexer not operating, LWT.
Data chaining, multiplexer not operating, LBN.
Data chaining, multiplexer not operating, LBT. Data chaining, multiplexer not operating, SBN. Data chaining, multiplexer not operating, SBT.

> LWN - long records, word boundaries, no TIC commands.
> LWT - long records, word boundaries, with TIC commands.
> LBN - long records, byte boundaries, no TIC commands.
> LBT - long records, byte boundaries, with TIC commands.
> SBN - short records, no TIC commands.
> SBT - short records, with TIC commands.

Long records are those chained segments that have a length of 16 or more bytes. The indication of boundaries refers to the location of the first byte of the chained segment. "No tic" or "with ric" refers to the command immediately following any command that specifies data chaining. To qualify as "multiplexer operating," the multiplexer channel may be in burst mode or multiplex mode.
3. Enter the applicable table, determined in step 2, with the load values found in step 1. Find the line on which the appropriate configuration appears; then compare the load values from step 1 with the appropriate values listed on that line under "Maximum Load Values." (In the tables, "N/Op" means "not operating.") If any of the values from step 1 is greater than the appropriate value in the table, the configuration will overrun. If the values from step 1 are equal to or less than the appropriate values in the table and if no coefficients are listed for the overrun equation, the configuration will not overrun; if, however, coefficients are listed, perform step 4.
4. Substitute in the following equation the load values found in step 1 :

$$
\mathrm{PC}_{1}+\mathrm{QC}_{2}+\mathrm{RC}_{3}+\mathrm{MC}_{\mathrm{m}} \leq 100
$$

where
C_{1} is the load value selected in step 1 for the first selector channel,
C_{2} is the load value selected in step 1 for the second selector channel,
C_{3} is the load value selected in step 1 for the third selector channel,
C_{m} is the load value selected in step 1 for the multiplexer channel operating in burst mode, and
$\mathrm{C}_{\mathrm{m}}=0$ for the multiplexer channel operating in multiplex mode;
and where $\mathrm{P}, \mathrm{Q}, \mathrm{R}$, and M are coefficients.
Then, determine whether the equation is satisfied for each set of coefficients given. If all the applicable equations are not satisfied, the configuration will overrun.

Example 1: An ibm 2311 Disk Storage Drive Model 1 is on the first selector channel, and an IBM 2401 Magnetic Tape Unit Model 5 ($1,600 \mathrm{bpi}$) is on each of the other two selector channels. References are to main storage only, the first selector channel is data chaining (long records, word boundaries, with tic's), and the multiplexer channel is operating in multiplex mode.

Table 4 shows a load value for the 2311 Model 1 of . 170 and a load value for the 2401 Model 5 of . 152 . The information just given shows that Table 5 is the applicable channel load-limit table. With a datachaining configuration of X 00 , the maximum load value for the first selector channel is . 269 ; for the second, .272 ; and for the third, .222. Although .170 is less than .269 and .152 less than .272 and .222 , coefficients are listed in the table for X00, indicating that calculations must be made to determine whether the overrun equation is satisfied. Substituting, in the overrun equation, the load value for the devices and using the coefficients listed, the following calculations can be made:

```
\(\mathrm{PC}_{1}+\mathrm{QC}_{2}+\mathrm{RC}_{3} \leq 100\)
\((312 \times .170)+(82.7 \times .152)+(82.7 \times .152) \leq 100\)
\(53.0+12.6+12.6 \leq 100\)
\(78.2 \leq 100\)
```

(Because the multiplexer channel is operating in the multiplex mode, $\mathrm{MC}_{\mathrm{m}}=0$.) The equation is satisfied, indicating that the configuration will not overrun.

Example 2: An ibm 2314 Direct Access Storage Facility Model 1 is on the first selector channel, an ibm 2314 Model 1 is on the second, and an Ibм 2401 Magnetic Tape Unit Model 3 (800 bpi , with data conversion operating) is on the third, and an IBM 2401 Model 1 (800 bpi , with data conversion operating)
is on the multiplexer channel. References are to main storage only, no selector channel is data chaining, and the multiplexer channel is operating in burst mode.

Table 4 shows a load value of .333 for the 2314 Model 1, a load value of .086 for the 2401 Model 3 , and a load value of .030 for the 2401 Model 1. The preceding information shows that Table 5 is applicable. Note in Table 5 that when all three selector channels are operating and when the multiplexer channel is operating in burst mode, either of two lines of maximum load values may be used. Because of the load value of the 2314 Model 1, a check of the first line of maximum values indicates that the allowable load for the second selector channel would be exceeded. A check of the second line, however, shows that for the multiplexer channel, .030 is less than the maximum value (. 044); for the first selector channel, .333 is equal to the maximum value (.333); for the second, .333 is equal to the maximum value; and for the third, .086 is less than the maximum value (.113). Because none of the maximum values is exceeded and because no overrun equation must be satisfied, the configuration will not overrun.

Example 3: An Івм 2314 Model 1 is data chaining (long records, word boundaries, no tic's) on the first selector channel, a 2401 Magnetic Tape Unit Model 6 ($1,600 \mathrm{bpi}$) is data chaining (long records, word boundaries, no TIc's) on the second selector channel, and the third selector channel is not operating. References are to main storage only, and the multiplexer channel is operating in multiplex mode.

Table 4 shows a load value for the 2314 Model 1 of .333 and a load value for the 2401 Model 6 of .222. The preceding information indicates that Table 5 is applicable. With a data-chaining configuration of X-X-N/Op, the maximum values are .352 for the first selector channel and .285 for the second. The load values of the devices do not exceed these limits, but coefficients are shown on the $\mathrm{X}-\mathrm{X}-\mathrm{N} / \mathrm{Op}$ line, indicating that calculations must be made to determine whether the overrun equation is satisfied. Substituting, in the overrun equation, the load values for the devices and using the coefficients listed, the following calculations can be made:

```
\(\mathrm{PC}_{1}+\mathrm{QC}_{2} \leq 100\)
\((82.5 \times .333)+(350 \times .222) \leq 100\)
\(27.5+77.7 \leq 100\)
\(105.2 \leq 100\)
```

(Because the third selector channel is not operating and the multiplexer channel is operating in multiplex mode, both RC_{3} and $\mathrm{MC}_{\mathrm{m}}=0$.) The equation is not satisfied, indicating that the configuration will overrun.

Multiplexer Channel Loading

The multiplexer channel on the Model 50 can handle a burst mode I / o device with a load value not greater than .182. (See Table 4 for maximum capabilities under various conditions.) If multiplex mode devices are in operation when a burst mode operation is initiated on the multiplexer channel, they will overrun or lose performance when their ability to wait for channel service is exceeded.

Multiplex Mode Considerations

Concurrent operation of I/o devices on a multiplexer channel is governed by several variables, including the following:

1. Devices vary in their data transfer rates.
2. Devices have buffers varying in capacity from 1 byte to 132 bytes.
3. Devices vary in the number and type of ccw's needed for their operation.
4. Combinations of devices on the selector channels vary in the interference they cause.
5. The large number of I / o devices available for use on a multiplexer channel may be combined in many different ways.
6. Devices in a particular configuration may be physically connected in many different priority sequences.

The problem of determining whether a particular multiplexer channel configuration will run concurrently in a satisfactory manner has been reduced to arithmetic procedures in which a worksheet form and factors provided in tables in this manual are used.

Device Load

A numeric factor has been computed for each multiplex mode device to represent its load on channel facilities. It is called a device load. The factors are listed in Table 1 in the appendix.

Other factors are listed in Table 1 for use in considering the impact of higher priority devices on lower priority devices.

Device Wait Time

After a multiplex mode device requests channel service, it has a fixed length of time that it can wait for service. If the channel provides service within this length of time, the device operates satisfactorily. If,
however, the channel does not service the device within the device's wait time, either of two things happens: if the device is not susceptible to overrun, it continues waiting; if it is, it loses data and subsequently causes an I/o interruption condition. For example, when an iвm 1403 Printer on an overloaded multiplexer channel fails to receive data within its particular wait time, it merely waits until service is provided by the multiplexer channel. The delay does not cause an interruption condition; nor is a new start I / o instruction required for selecting the 1403. The only effect is a lessening in performance. If an твм 1442 Card Read Punch read operation does not receive data service within its wait time, however, overrun occurs.

Wait time factors for multiplex mode devices are listed in Table 1.

Device Priority on Multiplexer Channel

The priority of devices on a multiplexer channel is determined at the time of installation by the sequence in which they are connected to the channel. The cabling facilities provide considerable flexibility in the physical location and logical position of I / o devices.

Devices may have the priority sequence in which they are attached to the cable (select-out line priority) or the device most remote from the channel may be connected to have highest priority and the device nearest the channel connected to have lowest priority (select-in line priority).

Each device on the multiplexer channel cable may be connected (for selection) either to the select-out line, or to the select-in line. Thus, one or the other of the lines is specified in establishing priority for a desired physical layout of devices.

Priority assignments and machine room layout should be established during the physical planning phase of an installation so that cables for the $1 / 0$ devices may be properly specified.

A major consideration in assigning priority to multiplex mode devices is their susceptibility to overrun. Devices are identified in this manual as being in one of three categories:

1. Devices subject to overrun, such as magnetic tape units.
2. Devices that require channel service to be in synchronization with their mechanical operations. For example, the ibm 2540 Card Read Punch has a fixed
mechanicai cycle. Delay in channel service for such devices usually occasions additional delay due to synchronization lag.
3. Devices that do not require synchronized channel service. An ibm 2260 Display Station with its 2848 Display Control is such a device; it is entirely electronic in nature. An івм 1443 Printer is another device that does not require synchronized channel service; it can begin printing as soon as its buffer is full and line spacing is completed. Any loss of performance by this category of devices is limited to that caused by channel delay in providing service.

Devices in the first category have a need for the - highest priority. The devices in the last two categories may operate with reduced performance on an overloaded channel but are not subject to overrun; their control units have data buffers or an ability to wait for channel service. Devices in the second category, however, should have higher priority than those in the third category.

Within each category, devices are assigned decreasing priority in the order of their increasing wait time factors; smaller wait time factors should have higher priority. Wait time factors are listed in Table 1.

When devices that operate only in burst mode, such as magnetic tape or disk storage devices, are attached to the multiplexer channel, they should have lower priority than multiplex mode devices. Low priority devices take longer to respond to selection than do higher priority devices; a burst mode device need be selected only once for an operation, but a multiplex mode device must be selected for the transfer of each byte, or a short burst, of data.

The control unit determines whether a device operates on the multiplexer channel in burst mode or in multiplex mode.

Some devices, such as the ibm 2821 Control Unit, may operate on a multiplexer channel in either burst mode or in multiplex mode, as determined by the setting of a manual switch on the control unit's customer engineering panel. Such devices are assigned priority on the multiplexer channel as specified above.

A multiplexer channel can transfer data most rapidly in burst mode. Where an application uses only category 2 or 3 devices that have the mode choice, improved multiplexer channel efficiency may be obtained by operating the devices in burst mode.

Table 1 specifies whether a device operates in burst mode or in multiplex mode.

Interference from Priority Devices

The multiplexer channel sustains concurrent operations in multiplex mode by servicing one device at a time.

The operating devices compete for service, and the multiplexer channel services them in the order of their priority.
Devices on the selector channels or higher priority devices on the multiplexer channel may force a lower priority mutiplex mode device to wait for channel service. The former are called priority devices, and the latter is called a waiting device.
When a priority device forces a waiting device to wait for channel service, the priority device is said to interfere with the lower priority device.

When there is more than one priority device, each of the priority devices may generate interference. All such interference must be considered in determining whether the waiting device will receive channel service before its wait time is exceeded.
The test procedures for concurrent operation of multiplex mode devices assume that a waiting device has made its request for channel service at the worst possible time, that is, when the priority devices will cause maximum interference during the waiting device's wait time.
The channel ordinarily works its way through the interference, and the waiting device is unaffected by the wait. If, however, heavy interference forces the waiting device to wait past its particular wait time, it will be subject to overrun or reduced performance, as determined by its type.

Priority Loads

To evaluate the effect of priority device interference on a waiting device, a numeric priority load is computed.
Three factors are considered in determining a priority load:
l. The control load caused by execution of ccw's, including chaining and transfer in channel operations.
2. The priority device's data transfer load.
3. The wait time of the device being evaluated.

Note that since a priority load is a function of wait time, a fixed priority load cannot be established for a priority device; the priority load caused by a priority device must be computed as a function of a particular waiting device's wait time.

Ranges of Wait Times

The relationship between the interference generated by a priority device (expressed as "priority load") and various wait times is shown in Figure 10. The abscissa relates to device wait times. The short wait time shown results in a heavy priority load; the longer wait time falls in a part of the curve showing much less priority load. This curve shows that the impact of a

Figure 10. Priority Load Curve
priority device on a waiting device is more intense for a waiting device with a short wait time than it is for a device with a long wait time.

Two factors, called A and B, are provided in this manual which relate each device's priority load curve to different wait times. The priority load curve was considered in segments related to different time intervals, and an A and a B factor were computed for each curve segment. These factors are used to compute the priority load for a waiting device having a wait time that falls within the range of the interval established for the curve segment.

Multiple A and B Factors: Table 1 lists the A and B factors for each Model 50 input/output device.

Some devices have only one set of A and B factors. Other devices have more than one set. Each set has an associated priority time factor that represents the beginning of the time interval over which the A and B factors are effective.

Priority Time Factors: The priority time factors in Table 1 are used in the evaluation procedure to identify the A and B factors to be used.

As each waiting device is evaluated on a multiplexer channel worksheet, its wait time is used to select a set of A and B factors for each priority device.

Each set of A and B factors in Table 1 has a priority time factor next to it that specifies the beginning of a time interval significant to that set of A and B factors. The range extends from the priority time factor specified for that set to the priority time factor specified for the next set, if any. The end of the last inter-

Figure 11. Use of Priority Time Factors
val is assumed to be unbounded. For example, a device may have three sets of A and B values which describe the priority load function over three contiguous intervals. Figure 11 shows the priority time factors and A and B factors as they appear in Table 1 for an IBM 1443 Printer Model N1 with a 13-character set.

Priority Load Formula

The A and B factors and wait time factors in Table 1 have been provided for use in a formula that yields the priority load which occurs when a priority device interferes with a waiting device.

The sum of the B factor and the quotient obtained by dividing the A factor by the wait time factor of the waiting device is the priority load. The arithmetic looks like this:
$\mathrm{A} /$ wait time $+\mathrm{B}=$ priority load
Table 1 provides priority load factors for data chaining byte counts of 20 and 100; the factors may be interpolated or extrapolated for other counts by using a linear function of $1 /$ count.

The procedure for using arbitrary counts is:

1. Use the wait time to select A and B factors for a count of 20 , compute the priority load, and call it L_{20} :
$\frac{\mathrm{A}_{20}}{\text { wait time }}+\mathrm{B}_{20}=\mathrm{L}_{20}$
2. Repeat step 1 for a count of 100 , and call the result L_{100} :
$\frac{\mathrm{A}_{100}}{\text { wait time }}+\mathrm{B}_{100}=\mathrm{L}_{100}$
3. Compute the priority load for the desired count:
$\mathrm{L}_{100}+\left(\frac{25}{\text { count }}-.25\right)\left(\mathrm{L}_{20}-\mathrm{L}_{100}\right)=\underset{\text { count }}{\text { Priority load for }}$

Previous Load

A waiting multiplex mode device may be forced to wait for channel facilities, not only by devices with higher priority, but also by a device with lower priority that is in operation when the waiting device requests
channel facilities. This interference is called a "previous load" and must be added to the priority load caused by priority devices. The device with lowest priority on the channel has no previous load; a zero value is used in the addition. Previous load factors are provided in Table 1.

Load Sum

Several load factors relating to multiplex mode operations have been described:

Device load (contributed by waiting device)
Priority load (contributed by each priority device)
Previous load (contributed by a lower priority device)
These loads are added together to form a load sum for each waiting device. The load sum represents the total load on system channel facilities under a worst case condition when:

1. All priority devices are causing maximum priority loads.
2. Any lower priority device, already in operation, is making maximum demands on channel facilities (previous load).
3. The waiting device places its maximum device load on channel facilities.
A step-by-step procedure for computing load sums is given in "Multiplex Mode Evaluation Procedure."

Multiplex Mode Channel Load Limit

A numeric factor of 100 has been established as the multiplex mode channel load limit. If a load sum exceeds 100 , loss of performance or overrun is indicated during worst case situations.

Lost Performance Time

A loss of performance indicated by a load sum greater than 100 is caused by the waiting device's having been forced to wait past its wait time. This reduced performance may be inconsequential in many cases, as shown in the following illustration. The total length of time the device waits for channel service during a worst case situation is computed as:
$\frac{\begin{array}{l}\text { load sum } x \text { wait time (ms) } \\ \begin{array}{c}\text { multiplex mode channel } \\ \text { load limit of } 100\end{array}\end{array}=\text { total delay in channel service }}{\text { (in ms) }}$
Wait time is subtracted from the quotient to find the amount of time lost:
total delay in ms - wait time $=$ lost performance time in ms
By relating the amount of time lost to the device's normal operating cycle time, the effect on performance may be seen:
$\frac{\text { lost time }}{\text { cycle time }} \times 100=$ percentage loss of performance

For a hypothetical device having:
Wait time $=20 \mathrm{~ms}$
Load sum $=120$
Cycle time $=200 \mathrm{~ms}$
The arithmetic is:
$\frac{120 \text { load sum } \times 20 \text { wait time }}{100 \text { (limit) }}=24 \mathrm{~ms}$ total delay
and,
24 ms total delay -20 ms wait time $=4 \mathrm{~ms}$ lost performance time
and
$\frac{4 \text { lost time }}{200 \text { cycle time }} \times 100=\underset{\begin{array}{c}\text { (occurring only during worst case } \\ \text { situations) }\end{array}}{2 \text { percent loss of performance }}$

Multiplex Mode Evaluation Procedure

The following step-by-step procedure is used with a System $/ 360$ Multiplexer Channel Worksheet, Form X24-3407, shown in Figure 12. (Figures 12-15 and 17-21 are part of the appendix; they are at the end of the manual so they can be removed easily for reference.)

Most of the steps call for an entry to be made on the worksheet. Each circled number shown on the worksheet in Figure 13 refers to the numbered step in the following procedure. For example, a circled number 1 is shown at the top of the worksheet in each of the two spaces that receive the entries called for by step 1 . As an additional aid in seeing where entries are made on a worksheet, refer to Figure 14, which shows a worksheet that has been completed for a configuration specified in the next part of this section.
The following procedure assumes that the selector channel configuration has already been defined and evaluated (see "Selector Channel Loading").

1. Enter the system identification and the date.
2. Identify for each operating selector channel the device that has the greatest load value.
3. For the devices entered in step 2, enter the "time, A, B" sets listed under "Selector Channel Priority Load" in Table 1.
4. Arrange the multiplex mode devices proposed for simultaneous operation in sequence by priority categories (1,2 , and 3), as specified for the devices in the Table 1 column headed "Key." Within the priority categories, arrange the devices according to increasing wait time; the device with the smallest wait time appears first (receives highest priority). Then enter the devices on the worksheet in the sequence just established.
5. For the first device entered in step 4, enter from Table 1 the wait time; the "time, A, B" sets listed under
"Multiplexer Channel Priority Load"; the previous load; and the device load.
6. Repeat step 5 for each remaining device entered in step 4; the lowest priority device has no previous load factor.
7. Compare the wait time factor of the first waiting device being evaluated to the time factors of the priority device for the first selector channel; enter the set of A and B factors that relate to the time interval that includes the wait time (that is, the set that is on the same line with the largest time factor that is less than the wait time factor).
8. Repeat step 7 with the time factors of the priority devices listed for the other selector channels in step 2.
9. For the second and each other waiting device on the multiplexer channel, compare its wait time to the time factors given for each of the selector channel priority devices (steps 7 and 8) and also for each of the multiplexer channel devices with higher priority; enter the appropriate set of A and B factors (that is, the set that is on the same line with the largest time factor that is less than the wait time).
10. For each multiplexer channel waiting device, add the selected A factors and enter the A sum.
11. Divide the A sum by the wait time factor for the device and enter the quotient.
12. For each multiplexer channel waiting device, add the B values, the quotient found in step 11 , the device load, and the previous load, and enter this sum as the load sum. The load sum must be less than or equal to 100 for satisfactory operation of the waiting device. If a 2702 Transmission Control has a load sum greater than 100 , further evaluation is required; consult the "Load Sums for 2702 " part of this section.

Worksheet Example

The following I / o configuration is evaluated for use on a Model 50 (Figure 14):
Selector channel $1 \quad 2311$ Disk Storage Model 1, no data chaining
Selector channel 22401 Magnetic Tape Unit Model 6 ($180 \mathrm{~kb} / \mathrm{sec}$), no. data chaining
Selector channel 32401 Magnetic Tape Unit Model 6 ($180 \mathrm{~kb} / \mathrm{sec}$), no data chaining
Multiplexer channel 2501 Card Reader Model B2 (EBCD) 2821 Control Unit

2540 Card Read Punch Model 1 (reading EBCD)
1403 Printer Model N1 (1,100 lines a minute)
1403 Printer Model N1 (1,100
lines a minute)
1052 Printer-Keyboard Model 7 (2150 Console)

The completed multiplexer channel worksheet for the given configuration is shown in Figure 14; it shows satisfactory operation for all multiplex mode devices: no load sum exceeds 100 .

Worksheet Entries for 2821

Each device attached to an ibm 2821 Control Unit is evaluated as if it were a separate control unit. Each device has its own channel service requirements and is evaluated in a separate column on the multiplexer channel worksheet. The space provided on the worksheet may not be sufficient for evaluating all the pertinent devices, and the user must then make appropriate adjustments.

The priority sequence for 2821 devices is:

```
IBM 2540 Card Read Punch Model 1 (Reading)
IBM 2540 Card Read Punch Model 1 (Punching)
Printers
    Printer Control No. 1
    Printer Control No. }
    Printer Control No. }
```


IBM 2702 Considerations

The ibm 2702 Transmission Control may connect a variety of communication terminals to a multiplexer channel; 1-15 or 1-31 terminal lines may be connected.

The 2702 uses delay lines for storage of data and control information. The information circulates in the delay lines and may be accessed for transfer to or from the multiplexer channel or to or from a terminal.

When priority devices force a 2702 to wait for channel service, additional delay may occur in the 2702 because of time required for synchronization with the delay line. Such additional delay exists only for the 2702 and does not affect other devices on the multiplexer channel.

A bit of information takes a certain length of time to go once around a delay line. A 2702 with a capacity for 15 terminal lines takes 0.480 millisecond per revolution, and a 31 -line 2702 has a delay line revolution time of 0.992 millisecond. The number of communication lines attached to a 2702 has a direct bearing on how long it can wait for channel service. Maximum wait time exists when only one communication line is used. Each additional line in operation reduces the time a 2702 can wait for channel service.

In addition, the data transfer speed of a terminal affects 2702 wait time; a high-speed line cannot wait for channel service as long as a lower-speed line. Therefore, the wait time factors specified in Table 1 vary with the type of terminal control and number of lines available. The factors shown in Table 1 for the 2702 are for all lines operating at the same speed.

Worksheet Example With Two 2702's and a 2821

The following Model $50 \mathrm{I} / \mathrm{o}$ configuration is evaluated:
Selector channel 12303 Drum Storage Model 1, no data chaining
Selector channel 22311 Disk Storage Model 1, no data chaining
Selector channel 32401 Magnetic Tape Unit Model 5 ($120 \mathrm{~kb} / \mathrm{sec}$), no data chaining
Multiplexer channel 2702 Transmission Control - 15 1030's
(Terminal Control II) at 600 bps
2702 Transmission Control - 31 1050's
(Terminal Control I) at 135.5 bps 2821 Control Unit

2540 Card Read Punch Model 1
(Reading EBCD)
2540 Card Read Punch Model 1
(Punching EBCD)
1403 Printer Model N1 (1,100 lines a minute)
1403 Printer Model N1 (1,100 lines a minute)
1052 Printer-Keyboard Model 7
The completed worksheet for this configuration is shown in Figure 15.

The load sum for the ibm 1403 Printer Model N1 with fifth priority is 102.5 , and the load sum for the 1403-N1 with sixth priority is 114.3 ; these sums indicate a loss in performance for both printers under worst case conditions.

The maximum length of time that channel service to the $1403-\mathrm{N} 1$ with sixth priority would be delayed may be computed:
$\frac{\text { waiting device load sum } \mathrm{x} \text { waiting device wait time }}{100}=$
maximum delay in ms
Values for the $1403-\mathrm{N} 1$ are:
$114.3 \times 15.7 / 100=17.9 \mathrm{~ms}$
The 1403 -N1 can wait 15.7 ms for its buffer to be serviced; in this worst case situation, it must wait an additional $2.2 \mathrm{~ms}(17.9-15.7=2.2$). The $1403-\mathrm{N} 1$ ordinarily prints a line in 54.5 ms . An increase to 56.7 ms during a period of maximum priority loads is an increase of 4 percent.

When a 2702 has a load sum in excess of 100 , the following "Load Sums for 2702" is pertinent.

When a 2702 contributes a priority load to any device having a load sum in excess of 100 , the "Priority Load Factors for 2702" is pertinent.
Load Sums for 2702: The wait time, device load, and previous load factors specified in Table 1 are conservative values, and in most instances their use in computing 2702 load sums gives an indication of satisfactory operation. However, when a 2702 load sum exceeds 100 , a more detailed examination is called for.
To this end, a special analysis procedure unique to the 2702 is provided in the next section of this manual.

The procedure uses a special 2702 worksheet for analysis, and resolution is to a single delay line cycle.

When the special analysis indicates satisfactory operation of the 2702, attention may be returned to the multiplexer channel worksheet for evaluation of the next waiting device. If, however, the special analysis load sum still indicates an overrun, some of the communication lines may have to be connected to another 2702 in order to eliminate overrun.

In a system with a large number of terminal lines, construction of a probabilistic model may lead to the conclusion that the frequency of overrun will not be great enough to be objectionable for a particular application.

Special Analysis of $\mathbf{2 7 0 2}$ Performance

If the multiplexer mode evaluation procedure finds a load sum greater than 100 for an tвм 2702 Transmission Control, the more sophisticated performance analysis given here may indicate that operation is satisfactory.

The special analysis assumes that all attached communication lines will request service during a single delay line revolution and that a scanning sequence will occur that gives service last to the highest speed communication line. The analysis reveals whether, considering priority loads, the number of delay line revolutions available is sufficient for the total delay line revolution requirements of all communication lines.

It is seldom necessary to test every communication line's requirements for delay line revolutions. After a communication line tests satisfactorily, a projection is made of both the minimum and the maximum number of revolutions needed to service the remaining communication lines. When a projected maximum is fewer than the maximum revolutions needed for the highest speed remaining line, satisfactory operation is indicated and no further analysis is required. Similarly, if a projected minimum is greater than the maximum revolutions needed for the highest speed remaining line, overrun is indicated, and the analysis is complete.

The projections are made on the 2702 worksheet as the procedure progresses. Figure 16 illustrates the relationship of the two projections to the maximum number of revolutions needed for the highest speed line. Satisfactory operation is indicated in Figure 16 whenever an upper curve crosses the line indicating the maximum number of revolutions before overrun.

To determine the number of delay line cycles required by a particular communication line, tables of factor values are provided in this manual for use with the 2702 Worksheet, Form X24-3406.

Figure 16. Projection of Delay Line Revolution Requirements

The factors are used to compute a load sum occurring during the servicing of each communication line. The load sum consists of priority loads caused by selector channel priority devices and by multiplexer channel priority devices, plus a device load factor and a previous load factor for the terminal being tested. The various factors are entered on the 2702 worksheet and are used to compute a load sum which is then compared to the load limit already specified on the worksheet for that particular delay line revolution (first, second, etc).
If the load sum is greater than the specified load limit, the communication line under consideration requires an additional delay line revolution. The projected minimum time for service is increased one revolution and tested. If overrun is not indicated, the next column of the 2702 worksheet is used to compute a new load sum which is compared, etc.

If, however, the first load sum mentioned in the previous paragraph was not greater than the specified load limit, adequate service is indicated for the communication line under consideration, and if it was serviced in one revolution, or if it is the last communication line to be considered, satisfactory operation of the 2702 is indicated. But if the communication line serviced was not the last one and was not serviced in a single revolution, it is necessary to see if the remain-
ing communication lines can be serviced within the number of revolutions remaining to them. A new projection of the maximum time for service is made.

In this analysis, no communication line remaining to be evaluated will take more revolutions than the communication line for which satisfactory service was just indicated; therefore, if the number of revolutions it required is multiplied by the number of remaining lines and the results compared to the remaining number of revolutions available, a low or equal comparison indicates satisfactory operation, and the analysis is complete. A high comparison indicates a need to test the next communication line. This is done by transferring values on the worksheet in use to a new 2702 worksheet and testing the next communication line for satisfactory operation. A load sum is computed and compared with the load limit. Comparison results have the significance already described.

Special Analysis Procedure

The following procedure is used with a 2702 worksheet, shown in Figure 17. (Figures 17-21 are part of the appendix; they are at the end of the manual so they can be removed easily for reference.) Most of the steps call for an entry to be made on the worksheet. The circled numbers shown on the worksheet in Figure 18 refer to the numbered steps in the procedure. The procedure is shown in flowchart form in Figure 19. This flowchart also is keyed to the numbered steps in the procedure.

To use the 2702 worksheet, perform the following:

1. In three places, enter the number of communication lines proposed for attachment.
2. Enter 1 as the line number.
3. Subtract the step 2 entry from the step 1 entry and enter the remainder as K.
4. In Table 2, find the smallest Nmax value that is listed for the terminals proposed for attachment and enter that value.
5. From Table 2, enter the device load and previous load values shown for the terminal selected in step 4.
6. Identify the selector channel and multiplexer channel priority devices in the leftmost column in the order of their priority (copy from the multiplexer channel worksheet).
7. For t 1 , enter a value of zero.
8. Enter zero values in the A1 and B1 spaces.
9. Enter the t 2 value.

When $\mathrm{j}=1$, the t 2 value is:
t1 + . 464 for a 15 -line 2702
$\mathrm{t} 1+.976$ for a 31 -line 2702
When $\mathrm{j}>1$, the t 2 value is:
the previous $\mathrm{t} 2+.480$ for a 15 -line 2702
the previous t $2+.992$ for a 31-line 2702
10. Use the t2 value just entered to select A2 and B2 factors from the left-hand column of the multiplexer channel worksheet. Copy the selected A's and B's from that worksheet into the A2 and B2 spaces on the 2702 worksheet.

Note: If the 2702 that is being evaluated has a configuration of terminal lines that operate at different speeds, use the A and B factors in Table 1 for the highest speed line or compute the factors by using the procedure described in the "Priority Load Factors for 2702 " part of this section.
11. Enter the A1 sum and B1 sum; this step is performed only once per worksheet. (When the line number is 1 , the Al sum and the B 1 sum are zeros.)
12. Multiply the B1 sum by the $t 1$ value and enter the product; this step is performed only once per worksheet.
13. Determine and enter the A2 sum and the B2 sum.
14. Multiply the B2 sum by the t 2 value and enter the product.
15. Subtract the A1 sum from the A2 sum and enter the A remainder.
16. Subtract the B1 product from the B2 product and enter the B remainder.
17. Add the A remainder, the B remainder, the device load, and the previous load, and enter the total as the load sum.
18. Compare the load sum to the appropriate load limit shown at the bottom of the worksheet. If the load sum is not greater, adequate communication line service is indicated; go to step 21. If it is greater, the communication line needs another delay line revolution; go to step 19.
19. Add 1 to the last-entered n value; enter that sum in the next n space.
20. If the new n value is greater than the Nmax value, no additional delay line revolution is available for the communication line. Overrun is indicated. If the new n value is not greater than Nmax, go to step 9 and repeat the performance analysis for the new delay line revolution. When j is greater than 8 , the analysis must be continued on another worksheet; each new load limit is then computed by adding a load limit increment to the old load limit.

Load limit increment:

```
48.0 for a 15-line 2702
99.2 for a 31-line 2702
```

21. The step 18 load sum was not greater than the load limit, indicating adequate channel service for the communication line under test. If this line is the last communication line (that is, the line number $=$ the number of lines), or if it was serviced by the first
delay line revolution ($\mathrm{j}=1$), satisfactory operation of the 2702 is indicated. But if the communication line serviced was not the last one and was not serviced by the first revolution (that is, if j is greater than 1), add its n value to the product of its revolution number minus one ($j-1$) times K, and enter the sum in the space at the bottom of the worksheet, where $n+$ ($\mathrm{j}-1$) K is printed.
22. If the value just entered is not greater than the Nmax, satisfactory operation of the 2702 is indicated. If it is greater, get a new 2702 worksheet.
23. Make the same "number of lines" entry for the new worksheet as was on the old worksheet. Enter the n value last used on the old worksheet in the spaces under tl and $\mathrm{j}=1$.
24. Enter a new line number one greater than the old line number.
25. Subtract the step 24 entry from the step 23 entry for "number of lines" and enter the remainder as K.
26. Make the same entries made in steps 4,5 , and 6.
27. Enter a new tl value by adding 0.048 to the old t2.
28. Use the new tl value to select priority device A and B factors from the multiplexer channel worksheet and enter the factors in the A1 and B1 spaces.
29. Go to step 9.

2702 Special Analysis Example

Figure 20 shows a multiplex mode evaluation of the following x / o configuration:
Selector channel 12314 Direct Access Facility Model 1, no data chaining
Selector channel 22311 Disk Storage Model 1, no data chaining
Selector channel 32311 Disk Storage Model 1, no data chaining
Multiplexer channel 2702 Transmission Control - 15 1030's (Terminal Control II) at 600 bps 2702 Transmission Control - 15 1030's (Terminal Control II) at 600 bps 2702 Transmission Control - 15 1030's (Terminal Control II) at 600 bps 2702 Transmission Control - 5 1030's (Terminal Control II) at 600 bps and 10 1050's (Terminal Control I) at 135.5 bps 1052 Printer Keyboard Model 7

Figure 20 shows an excessive load sum of 108.3 for the 2702 having fourth priority; use of the 2702 special analysis procedure is indicated.

Figure 21 shows the completed 2702 Worksheet used in the special analysis. The 2702 special analysis procedure in the preceding part of this section was used in making the entries.

Figure 21 (Sheet 1) shows service to be completed for the 1030 on the eighth cycle; the projected maxi-
mum number of cycles needed is 120 , which is greater than the Nmax of 30 ; a new 2702 Worksheet is used.

Figure 21 (Sheets 2-4) continue the analysis. The Nmax factor of 30 does not change; the procedure assumes that if all terminals request service, the 1030 may be the last to be serviced. The Nmax factor for the highest speed line is always used.

Figure 21 (Sheet 4) shows a satisfactory load sum on the 28th delay line revolution. This indication of satisfactory operation for the 2702 completes the evaluation of the communication configuration for concurrent operation.

Priority Load Factors for 2702

An ibm 2702 Transmission Control may have terminal lines attached that all operate at the same speed. Where this is the case, the priority load A and B factors listed in Table 1 (for the type of terminal control and the number of lines attached) are used for the multiplex mode evaluation.

An івм 2702 may have a configuration of terminal lines that operate at different speeds. Where this is the case, the priority load factors in Table 1 for the highest speed line may be used; the A and B factors used are those listed for the number of lines attached. When these factors are used, the slower speed lines receive undue weight; but if their use does not cause any load sum to exceed 100 , satisfactory operation is indicated, and the disparity in line speeds may be ignored.

If their use indicates unsatisfactory multiplexer channel operation, however, a more accurate assessment of the situation may be made:

1. Retain the first set of "time, A, B" factors already entered on the multiplexer channel worksheet for the priority 2702 and also retain the time factor from the second set.
2. As described below, compute a new second set of "A, B" factors, which then replace the second set already entered.

New load sums are then computed. Any new load sum that is less than or equal to 100 indicates satisfactory operation for the load sum device.

Each new second set of "A, B" factors is computed as specified in steps 1-3. An example computation is shown immediately following step 5.

1. Select from Table 2 a b factor for each type of terminal. Multiply each selected b factor by the number of terminal lines having that b factor, and add all the products. The sum of the products is the new B factor.
2. Subtract the new B factor from the B factor specified in the first set of "A, B" factors already entered; then multiply the remainder by the time factor retained from the second set.
3. Add the A factor specified in the first set of "A, B" factors already entered to the product found in step 2. The sum is the new A factor.
4. Substitute the "A, B" factors just determined in place of the second set of "A, B" factors previously entered on the multiplexer channel worksheet for the priority 2702.
5. Repeat steps $1-5$ for any remaining 2702 priority devices and then consider the new "A, B" factors in computing new load sums for the devices previously found to have excessive load sums.

A new second set of "A, B" factors can be computed for a 2702 with a mix of line speeds as shown in the following example:
Consider a 15 -line 2702 to which is attached:
One 1030 line (Terminal Control II) -at 600 bps
Ten 1050 lines (Terminal Control I) at 135.5 bps
Step 1. From Table 2.
1030: $1 \times .1150=.1150$
1050: $10 \times .0235=.2350+$
new $B=\overline{3500}$
Step 2. From first set: $\quad B=7.60$
From step 1: \quad new $B=\frac{.35}{7.25}$
From second set: $\quad t=\frac{7.21}{57.27} \mathrm{x}$
Step 3. From first set:
From step 2: $\quad \frac{57.27}{60.86}+$
Step 4. Previous priority load factors (from Table 1):

TIME	A	B
.200	3.59	7.60
7.21	46.4	1.67
New priority	load factors:	
TIME	A	B
.200	3.59	7.60
7.21	60.86	.35

Synchronization Tendency of Buffer Servicing

When evaluation of a multiplex mode configuration shows loss of performance for several buffered devices, additional analysis may show a reduction of the indicated loss because of the tendency of multiple buffered devices to synchronize, to a greater or lesser extent, their use of channel facilities.
By estimating the delays involved in servicing the device's buffers and by relating the delays to the devices requests for channel service, it may be discovered that some of the buffered priority devices do not interfere with buffered waiting devices to the extent premised in the evaluation procedure. The procedure assumes a random relationship between the operations
of the various I / o devices that may not apply to buffered devices.
For example, if both of two card readers in operation request channel service at the same time, the higher priority device will force the other device to wait; and having once waited, the second card reader will next request channel service after the first device has already made its next request for channel service. The two new requests will not coincide unless the first card reader has been similarly delayed by some other device. This synchronization effect tends to organize buffered devices' requests for channel service into a sequence that enables the channel to service them on a rotating basis, and a loss of performance premised
on random channel service requests may be significantly reduced.

The analysis of the synchronization effect is done by laying out the operating cycles of the buffered devices in their priority sequence, one below another, on a millisecond scale. The devices that operate satisfactorily are drawn with a zero starting point. A new starting point is established on the millisecond scale for each device found to incur delay. The resulting synchronization pattern may be studied to see which buffered device priority loads may be ignored in computing new load sums.

Operation cycle times are specified in Systems Reference Library manuals for the devices.

Channel Interference with CPU

A channel operation on the Model 50 interferes with cru use of main storage whenever the channel requests access to main storage. Additional CPU interference is generated because the channels use some cPu facilities.

The amount of cPU interference caused by an I / o device over a period of time depends on its data transfer rate and its channel programming. Table 3 lists the factors used to compute Model 50 channel interference with the cpu.

When an application requires the concurrent operation of I / o devices, it must first be determined that the devices will operate without overrun. This is done as described in the channel loading sections of this manual.

Channel Interference Procedure

After an indication of satisfactory operation has been found, channel interference with the CPU may be computed, after which the available CPU time may be determined. The procedure has three steps:

1. Examine record lengths, data transfer rates, gap times, device operating cycle times, etc., and establish an I/o operation time span pertinent to the application.
2. Calculate the cPu interference caused during the I/o time span by:
a. Execution of start I / o 's
b. Execution of ccw's
c. Data transfer
d. I/o interruptions
3. Subtract the sum of total cpu interference time in milliseconds from the I / o time span. The difference is the milliseconds of time available for cpu operations during the time span.

Dividing the available cPu time by the time span and multiplying by 100 gives the percentage of available cpu time for the application considered:
$\frac{\text { available CPU time }}{\text { time span }} \times 100=\%$ available CPU time

Available CPU Time Example

Application

Tape-to-printer operation.

Configuration

The Model 50 will use an ibm 2403 Magnetic Tape Unit and Control Model 2 (800 bytes per inch, data
conversion feature not in operation) on the first selector channel, and an івм 1403 Printer Model N1 (1,100 lines a minute) on the multiplexer channel.

Analysis

The tape read operation will handle 1,000 -byte tape blocks data chained into 10 scattered 100 -byte blocks in main storage which lie on word boundaries.

The printer may be programmed with a start I/o for each line of print, or it may be programmed with one start I/o and nine chained commands for each 10 lines of print. The difference in CPU interference caused by the two approaches is examined in the example.

Evaluation of Concurrent Operation

The 2403-2 load value of .076 is less than the selector channel load limit of .400 (for references to main storage only, a data-chaining configuration of X-N/OpN / Op, with multiplexer operating, and Lwn); it will run satisfactorily. Only one set of "A, B" factors are listed for the priority 2403-2 (800 bpi , data conversion not in operation, and data chaining with a count of 100); they are $\mathrm{A}=0$ and $\mathrm{B}=7.3$. The 1403 has a wait time of 15.7.
The formula $\mathrm{A} /$ wait time $+\mathrm{B}=$ priority load yields:
$\frac{0}{15.7}+7.3=7.3$ priority load
The 1403 device load is 11.8 and its previous load is 0.6 . A load sum is computed:

$$
\begin{array}{lr}
\text { Priority load } & = \\
\text { Device load } & =11.8 \\
\text { Previous load } & = \\
\text { Load sum } & =19.6
\end{array}
$$

The load sum is less than 100 ; satisfactory concurrent operation is indicated.

Arithmetic for Channel Interference Example

The computation of available cPu time demonstrated below uses the following three-step procedure:

1. Establish the I/o time span.
2. Compute the channel interference with cru.
3. Subtract the sum of interference from the time span to find the available CPU time.

The information necessary to execute step 2 is found in Tables 1 and 3.
Table 1 provides data transfer rates, gap times, and cycle times for I / o devices.

Table 3 provides the microseconds of cpu delay per byte transferred, both on the selector channels and the multiplexer channel, plus the microseconds of CPU delay per ccw execution and end interruption.

Step 1: Establish time span.
The time needed to read this 1,000 -byte tape record block (24.7 ms) is listed on the tape timing card, IBM System/360 Magnetic Tape Record Characteristics for IBM 2400 Series Magnetic Tape Units, Form X22-6837, or can be computed by using the formula on the same card:
Model $1-\mathrm{ms}$ per record block $=16.0+0.0333 \mathrm{~N}$
Model $2-\mathrm{ms}$ per record block $=8.0+0.0167 \mathrm{~N}$
Model $3-\mathrm{ms}$ per record block $=5.3+0.0111 \mathrm{~N}$
$\mathrm{N}=$ Number of bytes in record block
The time to print 10 lines is 10 times the 1403-N1 print cycle time (listed in Table 1):
$10 \times 54.5=545$ milliseconds to print 10 lines
Because the tape and printer operations will be overlapped, the longer printer time of 545 ms is the time span pertinent to the application configuration.

Step 2: Compute channel interference with cpu.
Tape transfer interference time is the product of the number of bytes in the tape block multiplied by the selector chanel byte transfer CPU interference factor, .95 microsecond (from Table 3):
$1000 \times .95=950$ microseconds tape transfer interference
Tape data chaining interference time is the product of the number of data chaining operations per record block and the selector channel data chaining cru interference factor, 7 microseconds (from Table 3):
$9 \times 7=63$ microseconds tape data chaining interference
Printer transfer interference is found by computing the product of the number of characters per print line times the multiplexer channel byte transfer CPU interference factor, 10 microseconds (from Table 3), times the number of print lines handled during the time span:
$\begin{aligned} & 100 \times 10 \times 10= 10,000 \text { microseconds printer transfer inter- } \\ & \text { ference }\end{aligned}$
Printer command time is the product of the number of chained commands per time span times the multiplexer channel command chaining cPU interference factor, 29 microseconds (from Table 3):
$9 \times 29=261$ microseconds printer command interference
Start I / o interference factors are referenced from the instruction timing section of this manual, end interruption factors are referenced from Table 3, and total interference time may be computed:

Tape MICROSECONDS
Start I/O 35
Transfer interference (as previously computed) 950
Data chaining interference (as previously
computed) 63
Channel end interruption 22
Printer

Start I/O	50
Transfer interference	10,000
Command chaining interference	261
Channel end interruption	28
Device end interruption	58
Total interference time $=$	11,467

Step 3: Compute available cru time in milliseconds.
Available cpu time is found by subtracting the interference time from the time span:
$545-11.5=533.5$ milliseconds available CPU time
Step 4: Compute available cPu time as a percentage.
The cPu interference may be expressed as a percentage by dividing the interference time by the time span and multiplying by 100 :
$(11.5 / 545) \times 100=2.1$ percent CPU interference

Command Chaining Efficiency

By ignoring printer data transfer interference, attention may be focused on the cPU interference caused by channel control functions for the printer. In the example, command chaining may be eliminated if a start I / o is used for each print line. A comparison of the CPU interferences caused by the two methods reveals which is more efficient, as shown below.

Printer control interference using command chaining is:

	MICROSECONDS
Start I/O	50
Command chaining	261
Channel end	28
Device end Printer control interference using command chaining $=$	-58

If command chaining is not used for printer operation each print line occasions a start I / o and two end interruptions, and the following arithmetic applies:

Microseconds
500
580
280
1,360

Start I/O - $50 \times 10 \quad 500$
Device end - 58×10
280
1,360
Total
Printer control interference using no command chaining is 1,360 microseconds.

The use of a start $1 / 0$ for each print-line occasions $1,360-397=963$ microseconds of additional cPu interference. Command chaining is clearly more efficient.

Instruction Times

The instruction time tables presented here are divided into two groups:
Group 1 This group of instruction times provides the average time for all instructions used with the Model 50.

Group 2 This group of instruction times contains the detailed timing formulas for all variable field length (VFL) instructions used with the Model 50.

All symbols used in the formulas should be interpreted in accordance with the Legend for System/360 Timing.

All times are given in microseconds. Complete information for each instruction is included in the publication IBM System/360 Principles of Operation, Form A22-6821.

Timing Considerations

The following conditions (unless otherwise noted) were used in the development of these instruction time tables.

1. The time required for indexing by a base register is included in the times given. For those instructions that may be double indexed (indicated by an asterisk in the instruction name column), an additional 0.5 microsecond must be added to the times given in the table.
2. In all arithmetic operations, positive and negative operands are equally probable.
3. Each bit location has equal probability of containing bit values 0 or 1 , and each bit location is independent of other bit locations. Decimal data may contain digit values $0-9$ in each digit position with equal probability.
4. Instructions may start on even or odd halfwords with equal probability.
5. Interruptions are not reflected in these timings. (Exception: supervisor call. See item 4 under "Timing Assumptions.") Interruption times are stated separately in a table following instruction times.
6. All timings provided include both decoding and execution of the instruction.

Timing Assumptions

The following assumptions (unless otherwise noted) were used in the development of the instruction time tables.

1. For decimal add (AP) and subtract (SP) instructions, the length of the first operand (i.e., the destination field) is assumed to be equal to or greater than the length of the second operand (i.e., the source field).
2. In the translate and test (trt) instruction, it is assumed that a nonzero byte from a translate and test table is found.
3. The instruction times for the floating-point instructions depend on the number of hexadecimal digits that are preshifted and postshifted, as well as the number of times recomplementation of the result occurs. The times given in the tables for floating-point instructions are a weighted average of these variables.
4. The supervisor call (svc) instruction includes interruption time.
5. Start I/o, Halt I/o and Test I / o instruction times and device end interruption times include average control unit response times to interface signals from the channels.

Average Timing Formulas

			INSTRUCTIONS \& DATA
INSTRUCTION	FORMAT	MNEMONIC	IN PROCESSOR STORAGE

INSTRUCTION	FORMAT	MNEMONIC	INSTRUCTIONS \& DATA IN PROCESSOR STORAGE
Add Logical	RR	ALR	3.25
Add Logical*	RX	AL	4.00
Add Normalized (Long)	RR	ADR	7.84
Add Normalized (Long)*	RX	AD	9.69
Add Normalized (Short)	RR	AER	6.13
Add Normalized (Short)*	RX	AE	6.88
Add Unnormalized (Long)	RR	AWR	7.15
Add Unnormalized (Long)*	RX	AW	9.00
Add Unnormalized (Short)	RR	AUR	5.38
Add Unnormalized (Short)*	RX	AU	6.13
AND	RR	NR	5.00
AND*	RX	N	5.75
AND	SI	NI	6.50
AND	SS	NC	$12.19+1.50 \mathrm{~N}$
Branch and Link	RR	BALR	$3.00+1.25 \mathrm{~F}_{2}$
Branch and Link*	RX	BAL	4.50
Branch on Condition	RR	BCR	$2.75+\mathrm{F}_{1}$
Branch on Condition*	RX	BC	$3.00+\mathrm{F}_{1}$
Branch on Count	RR	BCTR	$3.25+\mathrm{F}_{1}+0.50 \mathrm{~F}_{2}$
Branch on Count*	RX	BCT	$3.50+\mathrm{F}_{1}$
Branch on Index High	RS	BXH	$4.50+\mathrm{F}_{1}$
Branch on Index Low or Equal	RS	BXLE	$4.50+\mathrm{F}_{1}$
Compare	RR	CR	3.25
Compare*	RX	C	4.00
Compare Decimal	SS	CP	$12.03+1.63 \mathrm{~N}_{1}+0.47 \mathrm{~N}_{2}$
Compare Halfword*	RX	CH	5.50
Compare Logical	RR	CLR	3.00
Compare Logical*	RX	CL	4.00
Compare Logical	SI	CLI	4.50
Compare Logical	SS	CLC	$10.00+1.00 \mathrm{~B}$
Compare (Long)	RR	CDR	6.54

INSTRUCTION	FORMAT	MNEMONIC	INSTRUCTIONS \& DATA IN PROCESSOR STORAGE
Compare (Long)*	RX	CD	8.39
Compare (Short)	RR	CER	5.36
Compare (Short)*	RX	CE	6.11
Convert To Binary*	RX	CVB	$\begin{aligned} & \mathrm{C}_{1}: 10.75+2.00 \mathrm{H} \\ & \mathrm{C}_{2}: 17.50+2.00 \mathrm{H} \\ & \mathrm{C}_{3}: 23.75+2.00 \mathrm{H} \end{aligned}$
Convert To Decimal*	RX	CVD	$\begin{aligned} & \mathrm{C}_{1}: 13.00+2.00 \mathrm{H} \\ & \mathrm{C}_{2}: 23.25+2.00 \mathrm{H} \\ & \mathrm{C}_{3}: 28.75+2.00 \mathrm{H} \end{aligned}$
Divide	RR	DR	28.13
Divide*	RX	D	28.88
Divide Decimal	SS	DP	$\begin{aligned} & 15.00+16.00 \mathrm{~N}_{1} \\ & -13.13 \mathrm{~N}_{2}+\mathrm{T}_{6} \\ & {\left[13.00\left(\mathrm{~N}_{1}-\mathrm{N}_{2}\right)-6.00\right]} \end{aligned}$
Divide (Long)	RR	DDR	71.25
Divide (Long)*	RX	DD	74.00
Divide (Short)	RR	DER	21.25
Divide (Short)*	RX	DE	22.00
Edit	SS	ED	$\begin{aligned} & 9.63+2.38 \mathrm{~N}_{1} \\ & +0.50 \mathrm{~N}_{2}+0.50 \mathrm{~N}_{5} \end{aligned}$
Edit and Mark	SS	EDMK	$\begin{aligned} & 10.13+2.38 \mathrm{~N}_{1} \\ & +0.50 \mathrm{~N}_{2}+0.50 \mathrm{~N}_{5} \end{aligned}$
Exclusive OR	RR	XR	5.00
Exclusive OR*	RX	X	5.75
Exclusive OR	SI	XI	6.50
Exclusive OR	SS	XC	$12.19+1.50 \mathrm{~N}$
Execute*	RX	EX	$\begin{aligned} & \mathrm{E}_{1}=4.75+\mathrm{E} \\ & \mathrm{E}_{2}=5.00+\mathrm{E} \\ & \mathrm{E}_{3}=6.50+\mathrm{E} \\ & \mathrm{E}_{4}=6.75+\mathrm{E} \end{aligned}$
Halt I/O	SI	HIO	$\begin{aligned} & \mathrm{B}_{1}=31 \\ & \mathrm{~B}_{2}=94 \\ & \mathrm{~B}_{4}=8 \end{aligned}$
Halve (Long)	RR	HDR	4.00
Halve (Short)	RR	HER	3.00
Insert Character*	RX	IC	5.00

INSTRUCTION	FORMAT	MNEMONIC	INSTRUCTIONS \& DATA in PROCESSOR STORAGE
Insert Storage Key	RR	ISK	5.25
Load	RR	LR	2.50
Load*	RX	L	4.00
Load Address*	RX	LA	2.75
Load and Test	RR	LTR	2.50
Load and Test (Long)	RR	LTDR	4.25
Load and Test (Short)	RR	LTER	3.75
Load Complement	RR	LCR	2.75
Load Complement (Long)	RR	LCDR	4.25
Load Complement (Short)	RR	LCER	3.75
Load Halfword*	RX	LH	4.75
Load (Long)	RR	LDR	3.50
Load (Long)*	RX	LD	6.00
Load Multiple	RS	LM	$3.00+2.00 \mathrm{GR}$
Load Negative	RR	LNR	2.88
Load Negative (Long)	RR	LNDR	3.75
Load Negative (Short)	RR	LNER	3.25
Load Positive	RR	LPR	3.00
Load Positive (Long)	RR	LPDR	3.75
Load Positive (Short)	RR	LPER	3.25
Load PSW	SI	LPSW	7.50
Load (Short)	RR	LER	2.75
Load (Short)*	RX	LE	4.00
Move	SI	MVI	4.50
Move	SS	MVC	$10.69+1.00 \mathrm{~N}$
Move Numerics	SS	MVN	$12.19+1.50 \mathrm{~N}$
Move With Offset	SS	MVO	$\begin{aligned} & 11.88+1.00 \mathrm{~N}_{1} \\ & +0.88 \mathrm{~N}_{2} \end{aligned}$
Move Zones	SS	MVZ	$12.19+1.50 \mathrm{~N}$
Multiply	RR	MR	$26.13-1.50 \mathrm{~K}_{1}$
Mulitiply*	RX	M	$27.38-1.50 \mathrm{~K}_{1}$

INSTRUCTION	FORMAT	MNEMONIC	INSTRUCTIONS \& DATA IN PROCESSOR STORAGE
Multiply Decimal	SS	MP	$\begin{aligned} & 12.84+11.40 \mathrm{~N}_{1} \\ & -9.03 \mathrm{~N}_{2}+\mathrm{T}_{6} \\ & {\left[6.50\left(\mathrm{~N}_{1}-\mathrm{N}_{2}\right)+0.75\right]} \end{aligned}$
Multiply Halfword*	RX	MH	$22.50-1.50 \mathrm{~K}_{1}$
Multiply (Long)	RR	MDR	44.00
Multiply (Long)*	RX	MD	46.75
Multiply (Short)	RR	MER	20.75
Multiply (Short)*	RX	ME	21.50
OR	RR	OR	5.00
OR*	RX	O	5.75
OR	SI	OI	6.50
OR	SS	OC	$12.19+1.50 \mathrm{~N}$
Pack	SS	PACK	$10.38+1.13 \mathrm{~N}_{1}+0.75 \mathrm{~N}_{2}$
Read Direct	SI	RDD	$6.50+$ ED
Set Program Mask	RR	SPM	2.75
Set Storage Key	RR	SSK	6.75
Set System Mask	SI	SSM	5.50
Shift Left Double	RS	SLDA	$\begin{aligned} & 5.00+\mathrm{q}_{4}+\mathrm{r}_{4} \\ & +2.00 \mathrm{~S}_{6}+0.50 \\ & {\left[\mathrm{R}_{4}\left(1-\mathrm{S}_{6}\right)+\mathrm{S}_{5}\right]} \end{aligned}$
Shift Left Double-Logical	RS	SLDL	$4.00+\mathrm{q}_{4}+\mathrm{r}_{4}+0.50 \mathrm{R}_{4}$
Shift Left Single	RS	SLA	$\begin{aligned} & 4.00+0.50 \\ & {\left[\mathrm{q}_{4}+\mathrm{r}_{4}+\mathrm{S}_{7}+\mathrm{R}_{4}\right]} \end{aligned}$
Shift Left Single-Logical	RS	SLL	$\begin{aligned} & 4.00+0.50 \\ & {\left[q_{4}+\mathrm{r}_{4}+\mathrm{R}_{4}\right]} \end{aligned}$
Shift Right Double	RS	SRDA	$\begin{aligned} & 4.00+\mathrm{q}_{4}+\mathrm{r}_{4} \\ & +0.50\left[\mathrm{Q}_{4}+\mathrm{R}_{4}+\mathrm{S}_{5}\right] \end{aligned}$
Shift Right Double-Logical	RS	SRDL	$4.00+\mathrm{q}_{4}+\mathrm{r}_{4}+0.50 \mathrm{R}_{4}$
Shift Right Single	RS	SRA	$\begin{aligned} & 4.00+0.50 \\ & {\left[q_{4}+r_{4}+R_{4}\right]} \end{aligned}$
Shift Right Single-Logical	RS	SRL	$\begin{aligned} & 4.00+0.50 \\ & {\left[\mathrm{q}_{4}+\mathrm{r}_{4}+\mathrm{R}_{4}\right]} \end{aligned}$
Start I/O	SI	SIO	$\begin{aligned} & \mathrm{B}_{1}: 50 \\ & \mathrm{~B}_{2}: 50 \\ & \mathrm{~B}_{4}: 35 \end{aligned}$

Instruction	FORMAT	MNEMONIC	INSTRUCTIONS \& DATA IN PROCESSOR STORAGE
Store*	RX	ST	4.00
Store Character*	RX	STC	4.50
Store Halfword*	RX	STH	5.00
Store (Long)*	RX	STD	6.00
Store Multiple	RS	STM	$3.00+2.00 \mathrm{GR}$
Store (Short)*	RX	STE	4.00
Subtract	RR	SR	$3.25+\mathrm{G}_{2}$
Subtract*	RX	S	$4.00+\mathrm{G}_{2}$
Subtract Decimal	SS	SP	$\begin{aligned} & 16.22+1.13 \mathrm{~N}_{1}+0.53 \mathrm{~N}_{2} \\ & +\mathrm{T}_{1}\left[3.00+1.00 \mathrm{~N}_{1}\right] \end{aligned}$
Subtract Halfword**	RX	SH	$5.50+\mathrm{G}_{2}$
Subtract Logical	RR	SLR	3.25
Subtract Logical*	RX	SL	4.00
Subtract Normalized (Long)	RR	SDR	7.84
Subtract Normalized (Long)*	RX	SD	9.69
Subtract Normalized (Short)	RR	SER	6.13
Sutbract Normalized (Short)*	RX	SE	6.88
Subtract Unnormalized (Long)	RR	SWR	7.15
Subtract Unnormalized (Long)*	RX	SW	9.00
Subtract Unnormalized (Short)	RR	SUR	5.38
Subtract Unnormalized (Short)*	RX	SU	6.13
Supervisor Call	RR	SVC	12.75
Test and Set	SI	TS	4.50
Test Channel	SI	TCH	$\begin{aligned} & \mathrm{B}_{1}: 6.0 \\ & \mathrm{~B}_{2}: 83.5 \\ & \mathrm{~B}_{3}: 6.5 \\ & \mathrm{~B}_{4}: 6.0 \end{aligned}$
Test I/O	SI	TIO	$\begin{aligned} & \mathrm{D}_{1}: 12.0 \\ & \mathrm{D}_{2}: 83.5 \\ & \mathrm{D}_{3}: 6.0 \\ & \mathrm{D}_{4}: 38.0 \\ & \mathrm{D}_{5}: 49.0 \\ & \mathrm{D}_{6}: 6.0 \\ & \mathrm{D}_{7}: 29.0 \\ & \mathrm{D}_{8}: 18.5 \end{aligned}$

			INSTRUCTION \& DATA
INSTRUCTION	FORMAT	MNEMONIC	IN PROCESSOR STORAGE

Variable Field Length Instructions

In the following timing formulas, the times for the variable field length instructions (i.e., those instructions that contain an " L " field) are given in terms of word boundary crossovers. The term "word boundary" is used to specify the boundary between two physical words. A physical word is the amount of information fetched in a single storage cycle (for Model 50 this is four bytes). Thus, the number of word boundary crossovers is one less than the number of words spanned by the field.

```
Add Decimal - AP
17.88 + 4.5NWBLL1 + 2.13NWBL2
+ T1[4.00-2.00T T}+4.00(1-\mp@subsup{T}{2}{})\mp@subsup{\textrm{NWBL}}{1}{}
+ T T16 [1.5+0.5(N}\mp@subsup{\textrm{N}}{2}{}-\mp@subsup{\textrm{N}}{1}{})]+1.00\mp@subsup{\textrm{G}}{2}{
```

And - NC
$13.69+4.00 \mathrm{NWBL}_{1}+2.00 \mathrm{NWBL}_{2}$
Compare Decimal - CP
$13.63+4.50 \mathrm{NWBL}_{1}+1.88 \mathrm{NWBL}_{2}$
$+0.50 \mathrm{~N}_{1}+0.5 \mathrm{ABV}+\mathrm{T}_{16}$
$\left[0.5\left(\mathrm{~N}_{2}-\mathrm{N}_{1}\right)+2.50\left(\mathrm{NWBL}_{2}-\mathrm{NWBL}_{1}\right]\right.$
$+\mathrm{T}_{13}\left[0.50\left(\mathrm{NWBL}_{1}-\mathrm{NWBL}_{2}\right)\right]$

Compare Logical - CLC

$11.00+2.00 \mathrm{NWBB}_{1}+2.00 \mathrm{NWBB}_{2}-1.25 \mathrm{~T}_{14}$
Note: The compare logical operation is terminated when an unequal condition is found. All bytes of the first operand word that contain the unequal condition are processed with the corresponding bytes of the second operand.

$$
\begin{aligned}
& \text { Divide Decimal - DP } \\
& 15.00+2.50 \mathrm{NWBL}_{1}+2.00 \mathrm{NWBL}_{2} \\
& +2.00 \mathrm{NWBQ}_{1}+1.5 \mathrm{NWBR}_{1}+15.00 \mathrm{~N}_{1} \\
& -13.50 \mathrm{~N}_{2}+\mathrm{T}_{6}\left[13.00\left(\mathrm{~N}_{1}-\mathrm{N}_{2}\right)-6.00\right]
\end{aligned}
$$

Note: This divide decimal formula assumes that the quotient digits have random value. If the quotient contains zeros, the following times can be subtracted:

If $\mathrm{N}_{2} \leq 4$, subtract $4.00 \mu \mathrm{~s} /$ zero digit
If $\mathrm{N}_{2}>4$, subtract $8.00 \mu \mathrm{~s} /$ zero digit

```
Edit - ED
11.00+3.50NWBL
+1.50N N}+0.50\mp@subsup{N}{5}{
Edit and Mark - EDMK
11.50+3.50\mp@subsup{NWBL}{1}{}+2.00\mp@subsup{\textrm{NWBL}}{2}{}
+1.50N N}+0.50\mp@subsup{\textrm{N}}{5}{
```


Exclusive OR - XC

```
\(13.69+4.00 \mathrm{NWBL}_{1}+2.00 \mathrm{NWBL}_{2}\)
```


Move Characters - MVC

```
\(11.69+2.00\) NWBL \(_{1}+2.00\) NWBL \(_{2}\)
```


Move Numerics - MVN

```
\(13.69+4.00 \mathrm{NWBL}_{1}+2.00 \mathrm{NWBL}_{2}\)
```

```
Move With Offset - MVO
```

Move With Offset - MVO
$12.00+1.00 \mathrm{NWBL}_{1}+2.50 \mathrm{NWBL}_{2}$
$12.00+1.00 \mathrm{NWBL}_{1}+2.50 \mathrm{NWBL}_{2}$
$+1.00 \mathrm{~N}_{1}+\mathrm{T}_{13}$
$+1.00 \mathrm{~N}_{1}+\mathrm{T}_{13}$
$\left[1.00\left(\mathrm{NWBL}_{1}-\mathrm{NWBL}_{2}\right)-0.50\left(\mathrm{~N}_{1}-\mathrm{N}_{2}\right)\right]$

```
\(\left[1.00\left(\mathrm{NWBL}_{1}-\mathrm{NWBL}_{2}\right)-0.50\left(\mathrm{~N}_{1}-\mathrm{N}_{2}\right)\right]\)
```

Move Zones - MVZ
$13.69+4.00 \mathrm{NWBL}_{1}+2.00 \mathrm{NWBL}_{2}$

Multiply Decimal - MP

$12.80+4.00 \mathrm{NWBL}_{1}+2.0 \mathrm{NWBL}_{2}$ $-0.50 \mathrm{NWBL}_{1} \mathrm{~L}_{2}+10.40 \mathrm{~N}_{1}-9.40 \mathrm{~N}_{2}$ $+\mathrm{T}_{6}\left[0.75+6.50\left(\mathrm{~N}_{1}-\mathrm{N}_{2}\right)\right]+1.50 \mathrm{MQ}_{1}$

Note: This multiply decimal formula assumes that multiplier digits have random values. If the multiplier contains zeros, the following times can be subtracted: If $N_{2} \leq 4$, subtract $2.7 \mu \mathrm{~s} /$ zero digit If $N_{2}>4$, subtract $5.45 \mu \mathrm{~s} /$ zero digit

```
OR - OC
\(13.69+4.00 \mathrm{NWBL}_{1}+2.00 \mathrm{NWBL}_{2}\)
Pack - PACK
\(10.75+1.5 \mathrm{NWBL}_{1}+2.5 \mathrm{NWBL}_{2}+1.0 \mathrm{~N}_{1}\)
\(+\mathrm{T}_{11}\left[0.63-0.5 \mathrm{~N}_{1}+0.25 \mathrm{~N}_{2}\right]\)
Subtract Decimal - SP
\(17.88+4.50 \mathrm{NWBL}_{1}+2.13 \mathrm{NWBL}_{2}\)
\(+\mathrm{T}_{1}\left[4.00-2.00 \mathrm{~T}_{2}+4.00\left(1-\mathrm{T}_{2}\right) \mathrm{NWBL}_{1}\right]\)
\(+\mathrm{T}_{16}\left[1.5+0.5\left(\mathrm{~N}_{2}-\mathrm{N}_{1}\right)\right]+1.00 \mathrm{G}_{2}\)
Translate - TR
\(6.50+2.0 \mathrm{NWBL}_{1}+4.0 \mathrm{~N}\)
Translate and Test - TRT
\(8.25+2.0 \mathrm{NWBL}_{1}+2.5 \mathrm{~N}-1.75 \mathrm{~T}_{9}\)
Unpack - UNPK
\(11.00+2.00 \mathrm{NWBL}_{1}+2.50 \mathrm{NWBL}_{2}+0.50 \mathrm{~N}_{1}\)
\(+\mathrm{T}_{3}\left[0.13 \mathrm{~N}_{1}-0.25 \mathrm{~N}_{2}+0.5\right]\)
Zero and Add Decimal - ZAP
\(13.88+2.00 \mathrm{NWBL}_{1}+2.13 \mathrm{NWBL}_{2}\)
\(+0.50 \mathrm{~N}_{1}+2.00 \mathrm{~T}_{1} \mathrm{~T}_{2}\)
\(+\mathrm{T}_{16}\left[0.50\left(\mathrm{~N}_{2}-\mathrm{N}_{1}\right)\right.\)
\(\left.+0.50\left(\mathrm{NWBL}_{2}-\mathrm{NWBL}_{1}\right)+1.50\right]\)
```


Large Capacity Storage Timing

Instruction times are lengthened when instructions and/or data are located in the 2361 Core Storage, which has an 8.0 -microsecond cycle time. The following section contains timing factors which adjust the times previously quoted for instructions and data located in 2.0 -microsecond Processor Storage. Various combinations of instruction and data location, both with and without 2361 interleaving, are included.

The timing adjustments are presented in groups, according to the number of references to data in storage (none, one, or two). Within these groups, many instructions may be affected in the same way, and these are classified together. There are three classes for Rr instructions (no reference to data in storage), four classes for rx, rs, and si instructions (one reference to data in storage), and five classes for ss instructions (two references to data in storage).

In the instructions following, the times are given in microseconds. The symbol w / o indicates without inleaving, w indicates with interleaving. Where an asterisk (*) appears, it signifies no change with interleaving.

RR Instructions

${ }^{*}$ Class 1: Fixed- and floating-point multiply and divide instructions in LCS, add 3.0.
Class 2: Successful Branch.
*instruction in LCS, branch to main, add 3.0.
instruction in LCS, branch to LCS, total time:
$w / o \quad 12.0$
w $\quad 10.5$
*instruction in main, branch to LCS, add 4.0.
Class 3: All other instructions in LCS, add 3.0, minimum total:

$$
\begin{array}{rl}
w / o & 8.0 \\
w & 7.25
\end{array}
$$

RX, RS, and SI Instructions

Class 1: Fixed- and floating-point multiply and divide.
${ }^{*}$ instruction in LCS, data in main, add 3.0.
instruction and data in LCS, add:

$$
w / o \quad 8.5
$$

w $\quad 7.0$
(for long floating point)

$w / o \quad 10.5$

$w \quad 9.0$
*instruction in main, data in LCS, add 3.0 (except add 4.5 for long floating point).

Class 2: Successful Branch.
*instruction in LCS, branch to main, add 3.0.
instruction in LCS, branch to LCS, total time:

$$
w / o \quad 12.0
$$

$$
\begin{array}{ll}
w & 10.5
\end{array}
$$

*instruction in main, branch to LCS, add 4.0.
Class 3: Shift instructions in LCS, add 3.0, minimum total:

w / o	8.0
w	7.0

Class 4: All others.
instruction in LCS, data in main, add 3.0 , minimum total:
$\boldsymbol{u} \% \quad 8.0$
w $\quad 7.0$
instruction and data in LCS,
all double floating point, NI, OI, XI, total:

$$
\begin{array}{rr}
w / o & 24.0 \\
w & 22.5
\end{array}
$$

radix conversion, add:

$$
\boldsymbol{w} / 0 \quad 14.0
$$

$$
w \quad 12.5
$$

load and store multiple, total:

$$
\begin{array}{rl}
w / o & 8.0+8.0 \mathrm{GR} \\
w & 8.0+6.5 \mathrm{GR}
\end{array}
$$

others, total:
$w / o \quad 16.0$
$w \quad 14.5$
instruction in main, successive data in LCS,
*all double floating point, NI, OI, XI, 16.0 total.
*radix conversion, add 10.0.
load and store multiple, total:

$$
w / o \quad 0.5+8.0 \mathrm{GR}
$$

$w \quad 0.5+6.5 \mathrm{GR}$
others, add 3.0 , minimum total:
$w / o \quad 8.0$
$w \quad 7.0$
instruction in main, scattered data in LCS,
*all double floating point, NI, OI, XI, add 8.0.
*radix conversion, add 9.0.
load and store multiple, total: $w / o \quad 8.0 \mathrm{GR}$
$w \quad 6.5 \mathrm{GR}$
*others, add 3.0.

SS Instructions

Class 1: Decimal Multiply (MP).
instruction in LCS, data in main, add:

$$
\begin{array}{rr}
w / o & 9.0 \\
w & 7.5
\end{array}
$$

instruction and data in LCS, add:

$$
\begin{array}{rl}
w / o & 22.0+9.5 \mathrm{NWBL}_{1}+6.0 \mathrm{NWBL}_{2} \\
w & 17.5+8.0 \mathrm{NWBL}_{1}+4.5 \mathrm{NWBL}_{2}
\end{array}
$$

*instruction and destination in main, source in LCS, add 3.0 , then add $6.0 \mathrm{NWBL}_{2}$
*instruction and source in main, destination in LCS, add 8.0 , then add $10.5 \mathrm{NWBL}_{1}$.
instruction in main, data in LCS, add:

$$
\begin{array}{rl}
w / o & 9.0+9.5 \mathrm{NWBL}_{1}+6.0 \mathrm{NWBL}_{2} \\
w & 7.5+8.0 \mathrm{NWBL}_{1}+4.5 \mathrm{NWBL}_{2}
\end{array}
$$

Class 2: Decimal Divide (DP).
instruction in LCS, data in main, add:

$$
w / o \quad 9.0
$$

$w \quad 7.5$
instruction and data in LCS, add: $w / o \quad 20.5+5.5 \mathrm{NWBL}_{2}+9.0 \mathrm{NWBL}_{1}$
$w \quad 16.0+4.0 \mathrm{NWBL}_{2}+7.5 \mathrm{NWBL}_{1}$
instruction in main, data in LCS, add:

$$
\begin{array}{rl}
w / o & 13.0+5.5 \mathrm{NWBL}_{2}+9.0 \mathrm{NWBL}_{1} \\
w & 11.5+4.0 \mathrm{NWBL}_{2}+7.5 \mathrm{NWBL}_{1}
\end{array}
$$

*instruction and destination in main, source in LCS, add $8.5+7.5 \mathrm{NWBL}_{2}$
*instruction and source in main, destination in LCS, add $10.5+9.0 \mathrm{NWBL}_{1}$

Class 3: Character Move (MVC, ZAP, PACK, UNPK) and Compare (CLC, CP).
instruction in LCS, data in main, add:
$w / o \quad 9.0$
$w \quad 7.5$
instruction and data in LCS, add:

$$
w / o \quad 18.5+6.0 \mathrm{NWBL}_{2}+6.0 \mathrm{NWBL}_{1}
$$

$w \quad 14.0+4.5 \mathrm{NWBL}_{2}+4.5 \mathrm{NWBL}_{1}$
instruction in main, data in LCS, add:

$$
w / o \quad 5.5+6.0 \mathrm{NWBL}_{2}+6.0 \mathrm{NWBL}_{1}
$$

$w \quad 4.0+4.5 \mathrm{NWBL}_{2}+4.5 \mathrm{NWBL}_{1}$
*instruction and destination in main, source in LCS, add $6.0+6.0 \mathrm{NWBL}_{2}$
*instruction and source in main, destination in LCS, add $6.0+6.0 \mathrm{NWBL}_{1}$

Class 4a: Translate (TR).
instruction in LCS, data in main, add:

$$
\begin{array}{rr}
w / o & 9.0 \\
w & 7.5
\end{array}
$$

instruction and data in LCS, add:

$$
\begin{array}{cc}
w / o & 23.0+6.0 \mathrm{NWBL}_{1}+12.0 \mathrm{~N}_{2} \\
w & 20.0+4.5 \mathrm{NWBL}_{1}+9.0 \mathrm{~N}_{2} \\
\text { instruction in main, data in } \mathrm{LCS}, \text { add: } \\
w / o & 9.5+6.0 \mathrm{NWBL}_{1}+12.0 \mathrm{~N}_{2} \\
w & 9.5+4.5 \mathrm{NWBL}_{1}+9.0 \mathrm{~N}_{2}
\end{array}
$$

instruction and destination in main, source in LCS, add:

$$
\begin{array}{rl}
w / o & 3.5+4.0 \mathrm{~N}_{2} \\
w & 4.0+3.5 \mathrm{~N}_{2}
\end{array}
$$

instruction and source in main, destination in LCS, add:

$$
\begin{array}{rl}
w / o & 2.0+6.0 \mathrm{NWBL}_{1}+4.0 \mathrm{~N}_{2} \\
w & 2.0+4.5 \mathrm{NWBL}_{1}+4.0 \mathrm{~N}_{2}
\end{array}
$$

Class 4b: Translate and Test (TRT).
instruction in LCS, data in main, add:
w / o
9.0
w
7.5
instruction and data in LCS, add:

$$
\begin{array}{rl}
w / o & 23.0+6.0 \mathrm{NWBL}_{1}+5.5 \mathrm{~N}_{2} \\
w & 20.0+4.5 \mathrm{NWBL}_{1}+4.5 \mathrm{~N}_{2}
\end{array}
$$

instruction in main, data in LCS, add:

$$
\begin{array}{rl}
w / o & 9.5+6.0 \mathrm{NWBL}_{1}+5.5 \mathrm{~N}_{2} \\
w & 9.5+4.5 \mathrm{NWBL}_{1}+4.5 \mathrm{~N}_{2}
\end{array}
$$

instruction and destination in main, source in LCS, add:

$$
\begin{array}{rl}
w / o & 1.5+5.5 \mathrm{~N}_{2}-2.0 \mathrm{NWBL}_{1} \\
w & 2.5+4.5 \mathrm{~N}_{2}-2.0 \mathrm{NWBL}_{1}
\end{array}
$$

instruction and source in main, destination in LCS, add:

$$
\begin{array}{rl}
w / o & 2.5+3.0 \mathrm{NWBL}_{1} \\
w & 2.5+1.5 \mathrm{NWBL}_{1}
\end{array}
$$

Class 5: All others:
instruction in LCS, data in main, add:

w / o	9.0
w	7.5

instruction and data in LCS, add:
$w / o \quad 24.5+6.0 \mathrm{NWBL}_{2}+12.0 \mathrm{NWBL}_{1}$
$w \quad 20.0+4.5 \mathrm{NWBL}_{2}+10.5 \mathrm{NWBL}_{1}$
instruction in main, data in LCS, add:
$w / o \quad 13.0+6.0 \mathrm{NWBL}_{2}+12.0 \mathrm{NWBL}_{1}$
$w \quad 11.5+4.5 \mathrm{NWBL}_{2}+10.5 \mathrm{NWBL}_{1}$
*instruction and destination in main, source in LCS, add $5.0+6.0 \mathrm{NWBL}_{2}$
*instruction and source in main, destination in LCS, add $10.0+12.0 \mathrm{NWBL}_{1}$

Interruption Times

A pending interruption condition (if not masked) is recognized and allowed to occur only at the termination of an instruction. The interruption time, then, extends from the time of this recognition to the beginning of the next instruction. Average interruption times (in microseconds) for the five classes of interruption are:
External
Supervisor Call
Program
Machine Check
I/O
\quad Device End
Channel End
\quad Program Controlled (PCI)
*For multiplexer channel
${ }^{*}$ For selector channel

12	
12	
12	
97	
58^{*}	$41^{* *}$
28^{*}	$22^{* *}$
28^{*}	$22^{* *}$

${ }^{*}$ *For selector channel

Legend for System/360 Timing

This section contains legends for the timing formulas for the cases where multiple timing formulas for instructions are listed. In some cases more than one timing formula for an instruction may be given.

Legends A_{1} to A_{4} are timing formulas for Store Multiple or Load Multiple instructions depending on quantity of general registers and position with respect to double word boundaries.
A_{1} : Use if the number of registers is 2 , and if the operand lies on double word boundaries
A_{2} : Use if the number of registers is >2 and even, and if the operand lies on double word boundaries
A_{3} : Use if the number of registers is even, and if the operand does not lie on double word boundaries
A_{4} : Use if the number of registers is odd
Legends A_{5} and A_{6} are timing formulas for the Subtract Halfword instruction.
A_{5} : Use if leading 16 bits are not changed by Subtract Halfword instruction
A_{6} : Use if leading 16 bits are changed by Subtract Halfword instruction

Legends B_{1} to B_{4} are timing formulas to be used when addressing a channel.
B_{1} : Use when addressing the multiplexer channel in the multiplex mode
B_{2} : Use when addressing the multiplexer channel in the burst mode - first execution
B_{3} : (Same as \mathbf{B}_{2}) - executions subsequent to the first, during the same burst mode operation
B_{4} : Use when addressing the selector channel
Legends CH_{1} to CH_{4} are timing formulas to use for Compare Halfword instruction, depending on the nature of the numbers being handled.
CH_{1} : Use if signs differ
CH_{2} : Use if signs are alike, and the high-order 16 bits of the first operand are significant
CH_{3} : Use if inequality is found in byte 2
CH_{4} : Use if inequality is found in byte 3 , or if comparison is equal

Legends C_{1} to C_{3} are timing formulas to use for radix (number base) conversion instructions, depending on the size of the number converted.
C_{1} : Use when the number converted contains eight or less decimal digits
C_{2} : Use when the number converted contains more than eight decimal digits, but seven or less hexadecimal digits
C_{3} : Use when the number converted contains more than seven hexadecimal digits

Legends $C V D_{0}$ to $C V D_{4}$ are timing formulas to use for the Convert to Decimal instruction, depending on the number of leading zero bytes.
CVD_{0} : Use if there are no leading zero bytes
CVD_{1} : Use if there is one leading zero byte
CVD_{2} : Use if there are two leading zero bytes
CVD_{3} : Use if there are three leading zero bytes
CVD_{4} : Use if there are four leading zero bytes
Legends D_{1} to D_{8} are timing formulas to be used depending on the state of the addressed channel.
D_{1} : Use if the multiplexer chamnel is busy and in the multiplex mode
D_{2} : Use if the multiplexer channel is busy and in the burst mode - first execution
D_{3} : (Same as D_{2}) - executions subsequent to the first, during the same burst mode operation
D_{4} : Use if the multiplexer channel is idle
D_{5} : Use if the multiplexer channel has an interruption pending
D_{6} : Use if the selector channel is busy
D_{7} : Use if the selector channel is idle
D_{8} : Use if the selector channel has an interruption pending

Legends E_{1} to E_{4} are timing formulas to use for the Execute instruction, depending on the instruction length code and varying conditions.
E_{1} : Use when subject instruction is one halfword long
E_{2} : Use when subject instruction is two halfwords long
E_{3} : Use when subject instruction is a three-halfword character instruction
E_{4} : Use when subject instruction is a three-halfword decimal instruction

Legends V_{1} to V_{4} are timing formulas to use for the Move instruction, depending on the location of operand fields.
V_{1} : Use if first and second operand fields start and end on double word boundaries
V_{2} : Use if first and second operand fields start at corresponding byte addresses within double words but do not lie on double word boundaries
V_{3} : Use if first and second operand fields do not start at corresponding byte addresses within double words or if $\mathrm{N}<8$.
V_{4} : Use if first and second operand fields start on double word boundaries but do not end on double word boundaries. N must be greater than seven to use this case.

Note: A byte address of a double word can have the value $0,1,2,3,4,5,6$, or 7 .

This section contains the legends for terms to be used in the timing formulas for System $/ 360$.
$\mathrm{ABV}=$ Absolute value (i.e. unsigned value) of $\mathrm{NWBL}_{1}-\mathrm{NWBL}_{2}$
$B=$ Total number of bytes of the first operand which are processed (Applies to instructions with a single-length field)
$\mathrm{E}=$ Time for the subject instruction which is executed by the Execute instruction
$\mathrm{ED}=$ External delay
$\mathrm{F}=$ Input/output field .length specified in Transfer I/O instruction
$\mathrm{F}_{1}=1$ if the branch operation is successful
$=0$ otherwise
$\mathrm{F}_{2}=0$ if the R_{2} field (specified in the RR formatted branch instruction) is zero (i.e., branch is suppressed)
$=1$ otherwise
$\mathrm{G}_{1}=1$ if an overflow interruption occurs (PSW bit $36=1$) or fixed-point divide interruption occurs
$=0$ otherwise
$\mathrm{G}_{2}=1$ if overflow occurs and fixed-point interruption is masked (PSW bit $36=0$)
$=0$ otherwise
$\mathrm{G}_{3}=0$ if operand to be converted is positive
$=1$ otherwise
$\mathrm{G}_{4}=1$ if condition code is zero; i.e., all of the selected bits are zero or mask is all zero
$=0$ otherwise
$\mathrm{G}_{5}=0$ if first operand is positive
$=1$ otherwise
$\mathrm{GR}=$ Number of general registers loaded or stored
$\mathrm{HB}_{1}=1$ if the address of the high-order (leftmost) byte of the first operand is odd $=0$ otherwise
$\mathrm{HB}_{2}=1$ if the address of the high-order (leftmost) byte of the second operand is odd $=0$ otherwise
$H=$ number of significant (i.e., other than high-order zeros) hexadecimal digits in the binary operand
$\mathbf{H}_{2}=$ Number of high-order hexadecimal zeros in the second operand
$\mathrm{H}_{3}=\mathrm{H}_{2} / 2$ if H_{2} is even
$=\mathrm{H}_{2} / 2+1$ if H_{2} is odd
$\mathrm{H}_{4}=4-\mathrm{H} / 2$ if H is even
$=4-\frac{\mathrm{H}-1}{2}$ if H is odd
(H_{4} has a minimum value of 1)
$K_{1}=$ Number of zero-hexadecimal digits (both leading and imbedded) in the absolute value (recomplemented if negative) of the factor with a smaller absolute value. In Multiply Halfword K_{1} applies only to the 16 low-order bits of that factor
$\mathrm{LB}_{1}=1$ if the address of the low-order (rightmost) byte of the first operand is odd
$=0$ otherwise
$\mathrm{LB}_{2}=1$ if the address of the low-order (rightmost) byte of the second operand is odd $=0$ otherwise
$\mathrm{M}=$ greater of N_{1} or N_{2}
$\mathrm{MK}=$ number of times the mark address is stored in the Edit and Mark instruction
$\mathrm{MQ}_{1}=0$ if multiplier or quotient lies on a word boundary
$=1$ otherwise
$\mathrm{N}=$ total number of bytes in the first operand for those instructions with a single length field
$N_{1}=$ total number of bytes in the first operand (destination)
$\mathrm{N}_{2}=$ total number of bytes in the second operand (source)
$\mathrm{N}_{3}=$ total number of bytes which overlap between the first and second operands
$=0$ for nonoverlapping fields, and for overlapping fields where the address of the second operand is greater than or equal to (\geq) the first operand address
$\mathrm{N}_{4}=$ total number of field separator characters in the edit pattern
$N_{5}=$ total number of control characters in the edit pattern
$\mathrm{N}_{6}=$ number of bytes of the field which lie outside of that part of the field bounded by double words
NWBB $_{1}=$ number of word boundary crossovers for that part of the first operand processed
$\mathrm{NWBB}_{2}=$ number of word boundary crossovers for that part of the second operand processed
NWBL $_{1} \mp$ number of word boundary crossovers for the first operand (destination)
NWBL ${ }_{1} \mathrm{~L}_{2}=$ number of word boundary crossovers for that part of the first operand which consists of N_{2} bytes of high-order zeros
$\mathrm{NWBL}_{2}=$ number of word boundary crossovers for the second operand (source)
$\mathrm{NWBQ}_{1}=$ number of word boundary crossovers for the quotient field
NWBR $_{1}=$ number of word boundary crossovers for the remainder field
$\mathrm{q}_{4}=$ quotient found by dividing the number of positions to be shifted by 4
$\mathrm{q}_{8}=$ quotient found by dividing the number of positions to be shifted by 8
$Q_{4}=1$ if $q_{4}=0$
$=0$ otherwise
QS $=$ smaller of $\mathrm{N}_{1}-8$ or $\mathrm{N}_{1}-\mathrm{N}_{2}$
$\mathbf{r}_{4}=$ remainder found after dividing the number of positions to be shifted by 4
$\mathrm{R}_{3}=$ remainder when N is divided by 8

$$
\mathrm{R}_{4}=1 \text { if } \mathrm{r}_{4}=0
$$

$=0$ otherwise
SG $=$ number of signs in the field to be edited
$S_{1}=1$ if $r_{4}=3$, or if $q_{4}=0$
$=2$ if $\mathrm{r}_{4}=3$ and $\mathrm{q}_{4}=0$
$=0$ otherwise
$\mathrm{S}_{2}=-1$ if $\mathrm{r}_{4}=0$
$=1$ if $\mathrm{r}_{4}=1$, and $\mathrm{q}_{4}=0$
$=0$ otherwise
$\mathrm{S}_{3}=0$ if $\mathrm{r}_{4}=0$, and $\mathrm{q}_{4} \neq 0$
$=1$ if $\mathrm{r}_{4}=0$, and $\mathrm{q}_{4}=0$
$=3$ if $\mathrm{r}_{4}=1$
$=5$ if $\mathrm{r}_{4}=2$ or 3
$\mathrm{S}_{4}=0$ if $\mathrm{r}_{4}=0$
$=4$ if $q_{4}=0$ and $r_{4}=1$, or if $q_{4} \neq 0$ and $r_{4}=2$
$=3$ if $\mathrm{q}_{4}=0$ and $\mathrm{r}_{4}=2$, or if $\mathrm{q}_{4} \neq 0$ and $\mathrm{r}_{4}=3$
$=2$ if $\mathrm{q}_{4}=0$ and $\mathrm{r}_{4}=3$
$=5$ if $\mathrm{q}_{4} \neq 0$ and $\mathrm{r}_{4}=1$
$S_{\bar{s}}=1$ if the even-numbered register is zero

$$
=0 \text { otherwise }
$$

$\mathrm{S}_{6}=1$ if operand is negative
$=0$ otherwise
$S_{7}=1$ if $\mathbf{r}_{4} \neq 0$ and operand is negative
$=0$ otherwise
$\mathrm{T}_{1}=1$ if the result field is recomplemented (i.e., changes sign)
$=0$ otherwise
$\mathrm{T}_{2}=1$ if the result field is zero
$=0$ otherwise

$\begin{aligned} \mathrm{T}_{3} & =1 \text { if } \mathrm{N}_{2}<\frac{1 / 2}{}\left(\mathrm{~N}_{1}+1\right) \\ & =0 \text { otherwise } \end{aligned}$
$\begin{aligned} & \mathrm{T}_{4}=1 \text { if the second operand has leading hexadeci- } \\ & \text { mal zeros } \\ &=0 \text { otherwise } \end{aligned}$
$\begin{aligned} \mathrm{T}_{6} & =0 \text { if } \mathrm{N}_{2} \leq 4 \\ & =1 \text { otherwise } \end{aligned}$
$\begin{aligned} \mathrm{T}_{7} & =0 \text { if } \mathrm{N}_{\mathbf{1}} \leq 8 \\ & =1 \text { otherwise } \end{aligned}$
$\begin{aligned} \mathrm{T}_{8} & =0 \text { if fields do not overlap } \\ & =1 \text { otherwise } \end{aligned}$
$\begin{aligned} \mathrm{T}_{9} & =0 \text { if any nonzero function byte is found } \\ & =1 \text { otherwise } \end{aligned}$
$\begin{aligned} \mathrm{T}_{11} & =1 \text { if } \mathrm{N}_{1}>\frac{1 / 2}{2}\left(\mathrm{~N}_{2}+1\right) \\ & =0 \text { otherwise } \end{aligned}$
$\begin{aligned} \mathrm{T}_{12} & =1 \text { if } \mathrm{R}_{1} \text { field of the Execute instruction is not } \\ & =0 \text { otherwise } \end{aligned}$
$\begin{aligned} \mathrm{T}_{13} & =0 \text { if } \mathrm{N}_{2} \geq \mathrm{N}_{1} \\ & =1 \text { otherwise } \end{aligned}$
$\begin{aligned} \mathrm{T}_{14} & =1 \text { if } \mathrm{NWBL}_{2}=0 \\ & =0 \text { otherwise } \end{aligned}$

$\mathrm{T}_{3}=1$ if $\mathrm{N}_{2}<\frac{1 / 2}{\left(\mathrm{~N}_{1}+1\right)}$
$=0$ otherwise
$\mathrm{T}_{4}=1$ if the second operand has leading hexadecimal zeros
$=0$ otherwise
$\mathrm{T}_{6}=0$ if $\mathrm{N}_{2} \leq 4$
$=1$ otherwise
$\mathrm{T}_{7}=0$ if $\mathrm{N}_{1} \leq 8$
$=1$ otherwise
$\mathrm{T}_{8}=0$ if fields do not overlap
$\mathrm{T}_{9}=0$ if any nonzero function byte is found
$=1$ otherwise
$\mathrm{T}_{11}=1$ if $\mathrm{N}_{1}>\frac{1 / 2}{2}\left(\mathrm{~N}_{2}+1\right)$
$=0$ otherwise
$\mathrm{T}_{12}=1$ if R_{1} field of the Execute instruction is not $=0$ otherwise
$\mathrm{T}_{13}=0$ if $\mathrm{N}_{2} \geq \mathrm{N}_{1}$
$=1$ otherwise
$\mathrm{T}_{14}=1$ if $\mathrm{NWBL}_{2}=0$
$=0$ otherwise
$\mathrm{T}_{15}=1$ if $\mathrm{B}=\mathrm{N}$ and operands are equal $=0$ otherwise
$\mathrm{T}_{16}=0$ if $\mathrm{N}_{1} \geq \mathrm{N}_{2}$
$=1$ otherwise
$\mathrm{T}_{17}=1$ if $\mathrm{N}_{1}>\frac{\mathrm{N}_{2}}{2}$
$=0$ otherwise
$\mathrm{T}_{18}=1$ if $\mathrm{N}=1$
$=0$ otherwise
$\mathrm{T}_{19}=1$ if $\mathrm{N}_{1}>2 \mathrm{~N}_{2}$
$=0$ otherwise
$\mathrm{T}_{20}=1$ if signs are unlike for Add Decimal or if signs are alike for Subtract Decimal, when second operand $>$ first operand
$=0$ otherwise
$\mathrm{U}_{1}=$ select out delay plus device delay
$\mathrm{U}_{2}=$ device delay for halt I / O sequence
$\mathrm{V}=$ absolute value (i.e., unsigned value) of $\mathrm{N}_{1}-\mathrm{N}_{2}$
$\mathrm{W}=$ total number of double words in the first operand for those instructions with a single length field

Appendix

Table 1. IBM System/360 Model 50 Channel Evaluation Factors (Part 1 of 11)

Input/Output Device	Key	Nominal Data Rate ($\mathrm{kb} / \mathrm{sec}$)	Cycle Time (ms)	Selector Channel Priority Load			Multiplexer Channel					
							$\begin{aligned} & \hline \text { Wait } \\ & \text { Time } \\ & \text { (ms) } \end{aligned}$	Device Load	Previous Load	Priority Load		
				Time	A	B				Time	A	B
1052 Printer-Keyboard Model 7 (2150 console or 1052 attachment feature)	3M	. 0155	Variable	. 200	0	0	70.0	. 038	. 100	. 200	6.00	0
1442 Card Read Punch Model N1 - Reading EBCD	1M	0.53	150	. 200	0	. 200	. 800	9.20	12.5	. 200	10.0	0
										. 730	3.30	9.20
										2.40	15.7	4.10
	1M	1.07	150	. 200	0	. 400	. 800	14.8	12.5	68.0	155.	2.00
- Reading Card Image										. 200	10.0	
										. 350	4.90	14.8
										2.50	25.1	6.60
				. 200		. 100	11.0	. 700	. 900	68.0	254.	3.200
- Punching EBCD	2M	0.12	656		0					. 200	14.5	
										3.90	11.7	. 700
- Punching Card Image	2M	0.24	656	. 200	0	. 100	11.0	1.20	. 900	. 200	17.0	$\begin{aligned} & 0 \\ & 1.20 \end{aligned}$
										4.10	12.5	
1442 Card Punch Model N2 - Punching EBCD	2M	0.12	656	. 200	0	. 100	11.0	. 700	. 900	$\begin{array}{r} .200 \\ 3.90 \end{array}$	14.511.7	0.700
- Punching Card Image	2M	0.24	656	. 200	0	. 100	11.0	1.20	. 900	. 200	17.0	$.20$
										4.10	12.5	
1443 Printer Model N1 -13-Character Set	3M	1.44	100	$\begin{array}{r} .200 \\ 2,60 \end{array}$	$\begin{aligned} & 0 \\ & 12.6 \end{aligned}$	$\begin{gathered} 5.00 \\ 0 \end{gathered}$	18.5	25.7	. 500	$\begin{aligned} & .200 \\ & 4.80 \end{aligned}$	$\begin{aligned} & 0 \\ & 476 . \end{aligned}$	$\begin{aligned} & 100 . \\ & 0 \end{aligned}$
- 39-Character Set		0.72	200	$\begin{array}{r} .200 \\ 2.60 \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 12.6 \end{array}$		18.5	25.7	. 500	55.0	220.	4.80
	3M					$\begin{aligned} & 5.00 \\ & 0 \end{aligned}$. 200	0	00.
										4.80	476.	
- 52-Character Set	3M	0.58	250	$\begin{array}{r} .200 \\ 2.60 \end{array}$	$\begin{aligned} & 0 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 5.00 \\ & 0 \end{aligned}$	18.5	25.7	. 500	100.	$\begin{aligned} & 230 . \\ & 0 \end{aligned}$	$\begin{aligned} & 2.40 \\ & 100 . \end{aligned}$
										. 200		
										4.80	476.	.90 100. 1.60
-63-Character Set	3M	0.48	300	$\begin{array}{r} .200 \\ .2 .60 \end{array}$	$\begin{aligned} & 0 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 5.00 \\ & 0 . . \end{aligned}$	18.5	25.7	. 500	130.	230.	
										. 200	0	
										4.80	476.	
									.	160.	220.	
2501 Card Reader Model B1 - EBCD	1M	0.80	100	. 200	0	. 100	. 915	11.9	11.0		10.2	0
										. 200		
	1M	1.60								. 500	6.30	$\begin{aligned} & 7.60 \\ & 3.00 \\ & 0 \\ & 11.0 \\ & 4.20 \\ & \hline \end{aligned}$
			100	. 200	0	. 200	. 915	13.6	11.0	37.0	175.	
- Card Image										. 200	10.2	
										. 500	4.60	
										37.0	250.	
2501 Card Reader Model B2 - EBCD	1M	1.33	60	. 200	0	. 200	. 915	11.9	11.0			$\begin{aligned} & 0 \\ & 7.60 \\ & 5.00 \\ & 0 \\ & 11.0 \\ & 7.10 \end{aligned}$
										. 200	10.2	
- Card Image	1M	2.67	60							. 500	6.30	
				. 200	0	. 400				37.0	100.	
							. 915	13.6	11.0	. 200	10.2	
										. 500	4.60	
										37.0	150.	
2520 Card Read Punch Model B1												
- Reading EBCD	1 M	0.67	120	. 200	0	. 200	1.02	7.20	9.80	. 200	10.6	0
										1.00	3.50	7.10
										42.3	190.	2.60
- Reading Card Image	1M	1.33	120	. 200	0	. 400	1.02	10.1	9.80	. 200	10.6	0
										. 800	3.10	10.0
										42.3	275.	3.60
- Punching EBCD	2M	0.67	120	0	0	0	9.00	27.4	1.10	. 200	0	100.
										2.50	250.	0
										80.0	0	3.10
- Punching Card Image	2M	1.33	120	0	0	0	9.00	53.1	1.10	. 200	0	100.
										4.80	480.	0
										80.0	0	6.00

Key: 1: Device subject to overrun; highest priority required.
2: Device requires synchronized channel service; not subject to overrun; second highest priority required.

3: Device does not require synchronized channel service; not subject to overrun; lowest priority.
M: Multiplex mode on multiplexer channel.
B: Burst mode on multiplexer channel.

Table 1. IBM System/ 360 Model 50 Channel Evaluation Factors (Part 2 of 11)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Input/Output Device} \& \multirow[b]{3}{*}{Key} \& \multirow[b]{3}{*}{\begin{tabular}{l}
Nominal \\
Data Rate \\
(\(\mathrm{kb} / \mathrm{sec}\))
\end{tabular}} \& \multirow[b]{3}{*}{\begin{tabular}{l}
Cycle \\
Time \\
(ms)
\end{tabular}} \& \multicolumn{3}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{l}
Selector Channel \\
Priority Load
\end{tabular}}} \& \multicolumn{6}{|c|}{Multiplexer Channel} \\
\hline \& \& \& \& \& \& \& \multirow[t]{2}{*}{\begin{tabular}{l}
Wait \\
Time \\
(ms)
\end{tabular}} \& \multirow[b]{2}{*}{\begin{tabular}{l}
Device \\
Load
\end{tabular}} \& \multirow[b]{2}{*}{Previous Load} \& \multicolumn{3}{|c|}{Priority Load} \\
\hline \& \& \& \& Time \& A \& B \& \& \& \& Time \& A \& B \\
\hline \begin{tabular}{l}
2520 Card Read Punch Model B1 \\
- Both Reading and Punching (EBCD) \\
- Both Reading and Punching (Card Image)
\end{tabular} \& 1 M
1 M \& 1.33
2.67 \& 120
120 \& .200
.200 \& 0
0 \& .200
.400 \& * \& * \& * \& \[
\begin{array}{r}
.200 \\
2.50 \\
35.2 \\
.200 \\
4.80 \\
48.0 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 0 \\
\& 250 . \\
\& 80.0 \\
\& 0 \\
\& 455 . \\
\& 100 .
\end{aligned}
\] \& \[
\begin{aligned}
\& 100 . \\
\& 0 \\
\& 5.00 \\
\& 100 . \\
\& 0 \\
\& 8.00 \\
\& \hline
\end{aligned}
\] \\
\hline \begin{tabular}{l}
2520 Card Punch Model B2 \\
- EBCD \\
- Card Image
\end{tabular} \& 2 M
2 M \& 0.67
1.33 \& 120
120 \& 0
0 \& 0
0 \& 0
0 \& 9.00
9.00 \& 30.3
58.8 \& 1.10
1.10 \& \[
\begin{array}{r}
.200 \\
2.70 \\
80.0 \\
.200 \\
5.30 \\
80.0 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 0 \\
\& 275 . \\
\& 0 \\
\& 0 \\
\& 530 . \\
\& 0 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 100 . \\
\& 0 \\
\& 3.40 \\
\& 100 . \\
\& 0 \\
\& 6.60 \\
\& \hline
\end{aligned}
\] \\
\hline \begin{tabular}{l}
2520 Card Punch Model B3 \\
- EBCD \\
- Card Image
\end{tabular} \& 2 M
2 M \& 0.40
0.80 \& 200
200 \& 0
0 \& 0
0 \& 0
0 \& 15.0
15.0 \& 18.2
35.3 \& .700
.700 \& \[
\begin{aligned}
\& .200 \\
\& 2.70 \\
\& 135 . \\
\& .200 \\
\& 5.30 \\
\& 130 . \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& 275 . \\
\& 0 \\
\& 0 \\
\& 530 . \\
\& 0 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 100 . \\
\& 0 \\
\& 2.00 \\
\& 100 . \\
\& 0 \\
\& 4.10 \\
\& \hline
\end{aligned}
\] \\
\hline \begin{tabular}{l}
2821 Control Unit \\
- 1403 Printer Model 2 \\
- 600 Lines per Minute \\
-0 750 Lines per Minute (Universal CharacterSet)
\end{tabular} \& 3 M

3 M \& 1.32
1.65 \& 100

80 \& $$
\begin{aligned}
& .200 \\
& .700 \\
& .200 \\
& .700
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0 \\
& 12.2 \\
& 0 \\
& 12.2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 17.5 \\
& 0 \\
& 17.5 \\
& 0
\end{aligned}
$$
\] \& 15.7

15.7 \& 11.8
11.8 \& .600

.600 \& $$
\begin{aligned}
& .200 \\
& 1.80 \\
& 42.0 \\
& .200 \\
& 1.80
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0 \\
& 185 . \\
& 100 . \\
& 0 \\
& 185 .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 100 . \\
& 0 \\
& 2.00 \\
& 100 . \\
& 0
\end{aligned}
$$
\]

\hline | - 1403 Printer Models 3 and N1 |
| :--- |
| - 1, 100 Lines per Minute |
| - 1, 400 Lines per Minute (Universal CharacterSet) | \& 3 M

3 M \& 2.42
3.08 \& 54.5

42.8 \& $$
\begin{aligned}
& .200 \\
& .700 \\
& .200 \\
& .700
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0 \\
& 12.2 \\
& 0 \\
& 12.2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 17.5 \\
& 0 \\
& 17.5 \\
& 0
\end{aligned}
$$
\] \& 15.7

15.7 \& 11.8
11.8 \& .600

.600 \& $$
\begin{aligned}
& 34.0 \\
& .200 \\
& 1.80 \\
& 24.0 \\
& .200 \\
& 1.80
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 100 . \\
& 0 \\
& 185 . \\
& 100 . \\
& 0 \\
& 185 .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.50 \\
& 100 \text {. } \\
& 0 \\
& 3.50 \\
& 100 . \\
& 0
\end{aligned}
$$
\]

\hline | - 2540 Card Read Punch Model 1 |
| :--- |
| - Reading EBCD | \& 2M \& 1.33 \& 60 \& .200

.500 \& $$
7.30
$$ \& \[

$$
\begin{aligned}
& 14.6 \\
& 0
\end{aligned}
$$

\] \& 6.50 \& 24.6 \& 1.50 \& \[

$$
\begin{aligned}
& 19.0 \\
& .200 \\
& 1.60 \\
& 30.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 100 . \\
& 0 \\
& 160 . \\
& 80.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.50 \\
& 100 . \\
& 0 \\
& 2.70
\end{aligned}
$$
\]

\hline - Reading Column-Binary \& 2M \& 2.67 \& 60 \& $$
\begin{aligned}
& .200 \\
& 1.00
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0 \\
& 14.6
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14.6 \\
& 0
\end{aligned}
$$

\] \& 6.50 \& 47.5 \& 1.50 \& \[

$$
\begin{aligned}
& .200 \\
& 3.10 \\
& 30.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 308 . \\
& 154 .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 100 . \\
& 0 \\
& 2.70
\end{aligned}
$$
\]

\hline - Reading 51-Column EBCD \& 2M \& 1.07 \& 75 \& $$
\begin{aligned}
& .200 \\
& .500
\end{aligned}
$$ \& 0

7.30 \& $$
\begin{aligned}
& 14.6 \\
& 0
\end{aligned}
$$ \& 8.00 \& 13.8 \& 1.20 \& \[

$$
\begin{aligned}
& .200 \\
& 1.10 \\
& 35.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 107 . \\
& 85.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 100 . \\
& 0 \\
& 2.10
\end{aligned}
$$
\]

\hline - Reading 51-Column Column-Binary \& 2M \& 2.13 \& 75 \& $$
\begin{aligned}
& .200 \\
& 1.00
\end{aligned}
$$ \& \[

$$
\begin{array}{|l}
0 \\
14.6
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 14.6 \\
& 0
\end{aligned}
$$

\] \& 8.00 \& 25.5 \& 1.20 \& \[

$$
\begin{aligned}
& .200 \\
& 2.00 \\
& 35.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 204 . \\
& 164 .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 100 . \\
& 0 \\
& 4.10
\end{aligned}
$$
\]

\hline Punching EBCD \& 2M \& 0.40 \& 200 \& $$
\begin{aligned}
& .200 \\
& .500
\end{aligned}
$$ \& 0

7.30 \& $$
\begin{aligned}
& 14.6 \\
& 0
\end{aligned}
$$ \& 14.0 \& 12.2 \& . 700 \& \[

$$
\begin{aligned}
& .200 \\
& 1.70 \\
& 240
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 170 .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 100 \\
& 0 \\
& 0.70
\end{aligned}
$$
\]

\hline - Punching Column-Binary \& 2M \& 0.80 \& 200 \& $$
\begin{aligned}
& .200 \\
& 1.00
\end{aligned}
$$ \& 0

14.6 \& $$
\begin{aligned}
& 14.6 \\
& 0
\end{aligned}
$$ \& 14.0 \& 23.7 \& . 700 \& \[

$$
\begin{aligned}
& .200 \\
& 3.30 \\
& 240 .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 330 . \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 100 . \\
& 0 \\
& 1.40
\end{aligned}
$$
\]

\hline
\end{tabular}

[^1]Table 1. IBM System/360 Model 50 Channel Evaluation Factors (Part 3 of 11)

Input/Output Device			Key	Nominal Data Rate (Kb/sec)	Gap Time (ms)	Selector Channel Priority Load													
			No Data Chaining			Data Chaining													
			Count $=20$			Count $=100$													
			Time			A	B	Time	A	B	Time	A	B						
2400 Series Magnetic Tape																			
Model	Density (Bytes/inch)	Data Conversion in Operation																	
1	200	No	1B	7.50	20.0	. 200	0	0.90	. 200	0	1.10	. 200	0	0.90					
		Yes	1B	5.60	20.0	. 200	0	0.60	. 200	0	0.80	. 200	0	0.70					
	556	No	1B	20.8	20.0	. 200	0	2.40	. 200	0	3.10	. 200	0	2.50					
		Yes	1B	15.6	20.0	. 200	0	1.80	. 200	0	2.30	. 200	0	1.90					
	800	No	1B	30.0	16.0*	. 200	0	3.40	. 200	$\because 0$	4.50	. 200	0	3.60					
		Yes	1B	22.5	20.0	. 200	0	2.60	. 200	0	3.30	. 200	0	2.70					
2	200	No	1B	15.0	10.0	. 200	0	1.70	. 200	0	2.20	. 200	0	1.80					
		Yes	1B	11.3	10.0	. 200	0	1.30	. 200	0	1.70	. 200	0	1.40					
	556	No	1B	41.7	10.0	. 200	0	4.80	. 200	0	6.20	. 200	0	5.00					
		Yes	1B	31.3	10.0	. 200	0	3.60	. 200	0	4.60	. 200	0	3.80					
	800	No	1B	60.0	8.00*	. 200	0	6.80	. 200	0	8.90	. 200	0	7.30					
		Yes	1B	45.0	10.0	. 200	0	5.10	. 200	0	6.70	. 200	0	5.40					
3	200	No	1B	22.5	6.70	. 200	0	2.60	. 200	0	3.30	. 200	0	2.70					
		Yes	1B	16.9	6.70	. 200	0	1.90	. 200	0	2.50	. 200	0	2.00					
	556	No	1B	62.5	6.70	. 200	0	7.10	. 200	0	9.30	. 200	0	7.60					
		Yes	1B	46.9	6.70	. 200	0	5.40	. 200	0	7.00	. 200	0	5.70					
	800	No	1B	90.0	5.30*	. 200	0	10.3	. 200	0	13.4	. 200	0	10.9					
		Yes	1B	67.5	67.0	. 200	0	7.70	. 200	0	9.60	. 200	0	8.20					
4	800	**	1B	30.0	16.0	. 200	0	3.40	. 200	0	4.50	. 200	0	3.60					
	1600	**	1B	60.0	16.0	. 200	0	6.80	. 200	0	8.90	. 200	0	7.30					
5	800	**	1B	60.0	8.00	. 200	0	6.80	. 200	0	8.90	. 200	0	7.30					
	1600	**	1B	120.	8.00	. 200	0	13.7	. 200	0	17.8	. 200	0	14.5					
6	800	**	1B	90.0	5.30	. 200	0	10.3	. 200	0	13.4	. 200	0	10.9					
	1600	**	1B	180.	5.30	. 200	0	20.5	. 200	0	26.7	. 200	0	21.7					
7340 Hypertape Drive Model 3 Hypertape Control - 1511 Bytes/Inch - 3022 Bytes/Inch																			
			1B	170.	3.50	. 200	0	18.5	. 200	0	24.1	. 200	0	19.6					
			$1 \mathrm{~B}^{+}$	340.	3.50	. 200	0	37.0	. 200	0	48.2	. 200	0	39.2					
Direct Access Storage																			
					Rotation														
					Time (ms)														
2302 Disk Storage Models 3 and 4			1B	156.	34.0	. 200	0	15.4	. 200	0	20.2	. 200	0	16.3					
2303 Drum Storage Model 1			1^{+}	312.	17.5	. 200	0	31.3	. 200	0	40.7	. 200	0	33.2					
2311 Disk Storage Model 1			1B	156.	25.0	. 200	0	15.4	. 200	0	20.2	. 200	0	16.3					
2314 Direct Access Facility Model 1			1^{+}	312.	25.0	. 200	0	31.3	. 200	0	40.7	. 200	0	33.2					
2321 Data Cell Drive Model 1			1B	E.4. 7	50.0	. 200	0	5.70	. 200	0	7.40	. 200	0	6.10					

* Nine-track gap time.
** Data conversion not used on this model
+ Will not run on multiplexer channel.

Table 1. IBM System/ 360 Model 50 Channel Evaluation Factors (Part 4 of 11)

Table 1. IBM System/360 Model 50 Channel Evaluation Factors (Part 5 of 11)

Input/Output Device	Wait Time	15-Line Maximum					No. of Lines Available	31-Line Maximum					
		Device Load	Previous Load	Priority Load				Wait Time	Device Load	Previous Load	Priority Load		
				Time	A	B					Time	A	B
2702 Transmission Control Terminal Control I 135.5 bps		. 020	. 150	. 200	3.89	. 024	1	66.4	. 020	. 150	. 200	3.89	. 024
	33.1	. 040	. 302	. 200	3.59	7.60	2	32.7	. 040	. 306	. 200	3.74	3.80
				. 551	7.75	. 047					1.06	7.73	. 047
	22.1	. 059	. 453	. 200	3.59	7.60	3	21.8	. 060	. 459	. 200	3.74	3.80
				1.06	11.6	. 071					2.09	11.5	. 071
	16.3	. 080	. 613	. 200	3.59	7.60	4	15.9	. 083	. 631	. 200	3.74	3.80
				1.57	15.4	. 094					3.11	15.3	. 094
	12.9	. 101	. 773	. 200	3.59	7.60	5	12.9	. 102	. 776	. 200	3.74	3.80
				2.09	19.2	. 118					4.13	19.0	. 118
	11.0	. 119	. 907	. 200	3.59	7.60	6	10.9	. 120	. 918	. 200	3.74	3.80
				2.60	23.0	. 141					5.16	22.6	. 141
	9.10	. 144	1.10	. 200	3.59	7.60	7	8.91	. 147	1.12	. 200	3.74	3.80
				3.11	26.7	. 165					6.18	26.2	. 165
	8.14	. 161	1.23	. 200	3.59	7.60	8	7.92	. 165	1.26	. 200	3.74	3.80
				3.62	30.4	. 188					7.21	29.8	. 188
	7.18	. 182	1.39	. 200	3.59	7.60	9	6.93	. 189	1.44	. 200	3.74	3.80
				4.13	34.1	. 212					8.23	33.3	. 212
	6.22	. 210	1.61	. 200	3.59	7.60	10	5.94	. 221	1.68	. 200	3.74	3.80
				4.65	37.8	. 235					9.25	36.7	. 235
	5.74	. 228	1.74	. 200	3.59	7.60	11	5.94	. 221	1.68	. 200	3.74	3.80
				5.16	41.5	. 259					10.3	40.1	. 259
	5.26	. 249	1.90	. 200	3.59	7.60	12	4.94	. 265	2.02	. 200	3.74	3.80
				5.67	45.1	. 282					11.3	43.5	. 282
	4.78	. 274	2.09	. 200	3.59	7.60	13	4.94	. 265	2.02	. 200	3.74	3.80
				6.18	48.7	. 306					12.3	46.8	. 306
	$\begin{aligned} & 4.30 \\ & 4.30 \end{aligned}$	$\begin{aligned} & .304 \\ & .304 \end{aligned}$	2.32	. 200	3.59	7.60	14	3.95	. 331	2.53	. 200	3.74	3.80
				6.69	52.3	. 329					13.4	50.1	. 329
			2.32	. 200	3.59	7.60	15	3.95	. 331	2.53	. 200	3.74	3.80
				7.21	55.8	$\text { . } 353$					14.4	53.3	. 353
		$.304$					16	3.95	. 331	2.53	. 200	3.74	3.80
											15.4	56.5	. 376
							17	2.96	. 443	3.38	. 200	3.74	3.80
											16.4	59.6	. 400
							18	2.96	. 443	3.38	. 200	3.74	3.80
											17.4	62.6	. 423
							19	2.96	. 443	3.38	. 200	3.74	3.80
											18.5	65.7	. 447
							20	2.96	. 443	3.38	. 200	3.74	3.80
											19.5	68.6	. 470
							21	2.96	. 443	3.38	. 200	3.74	3.80
											20.5	71.6	. 494
							22	2.96	. 443	3.38	. 200	3.74	3.80
											21.5	74.4	. 517
							23	1.97	. 666	5.08	. 200	3.74	3.80
											22.6	77.3	. 541
							24	1.97	. 666	5.08	. 200	3.74	3.80
											23.6	80.1	. 564
							25	1.97	. 666	5.08	. 200	3.74	3.80
											24.6	82.8	. 588
							26	1.97	. 666	5.08	. 200	3.74	3.80
											25.6	85.5	. 611
							27	1.97	. 666	5.08	. 200	3.74	3.80
											26.7	88.1	. 635
							28	1.97	. 666	5.08	. 200	3.74	3.80
											27.7	90.7	. 658
							29	1.97	. 666	5.08	. 200	3.74	3.80
											28.7	93.2	. 682
							30	1.97	. 666	5.08	. 200	3.74	3.80
											29.7	95.7	. 705
							31	1.97	. 666	5.08	. 200	3.74	3.80
											30.8	98.2	. 729

Table 1. IBM System/360 Model 50 Channel Evaluation Factors (Part 6 of 11)

Table 1. IBM System/360 Model 50 Channel Evaluation Factors (Part 7 of 11)

Input/Output Device	15-Line Maximum						No. of Lines Available	31-Line Maximum					
	Wait Time	Device Load	Previous Load	Priority Load				Wait Time	Device Load	Previous Load	Priority Load		
				Time	A	B					Time	A	B
2702 Transmission Control Telegraph Control I 45 bps	159.	. 008	. 063	. 200	3.89	. 008	1	159.	. 008	. 063	. 200	3.89	. 008
	79.7	. 016	. 126	. 200	3.59	7.60	2	79.3	. 017	. 126	. 200	3.74	3.80
				. 551	7.77	. 016					1.06	7.76	. 016
	52.8	. 025	. 189	. 200	3.59	7.60	3	52.6	. 025	. 190	. 200	3.74	3.80
				1.06	11.6	. 025					2.09	11.6	. 025
	39.8	. 033	. 251	. 200	3.59	7.60	4	39.7	. 033	. 252	. 200	3.74	3.80
				1.57	15.5	. 033					3.11	15.5	. 033
	31.7	. 041	. 316	. 200	3.59	7.60	5	31.7	. 041	. 315	. 200	3.74	3.80
				2.09	19.4	. 041					4.13	19.3	. 041
	26.4	. 050	. 379	. 200	3.59	7.60	6	25.8	. 051	. 388	. 200	3.74	3.80
				2.60	23.2	. 049					5.16	23.1	. 049
	22.5	. 058	. 444	. 200	3.59	7.60	7	21.8	. 060	. 459	. 200	3.74	3.80
				3.11	27.1	. 057					6.18	26.9	. 057
	19.7	. 067	. 509	. 200	3.59	7.60	8	19.8	. 066	. 504	. 200	3.74	3.80
				3.62	30.9	. 066					7.21	30.6	. 066
	17.3	. 076	. 579	. 200	3.59	7.60	9	16.8	. 078	. 594	. 200	3.74	3.80
				4.13	34.7	. 074					8.23	34.4	. 074
	15.8	. 083	. 632	. 200	3.59	7.60	10	15.9	. 083	. 631	. 200	3.74	3.80
				4.65	38.5	. 082					9.25	38.1	. 082
	14.4	. 091	. 695	. 200	3.59	7.60	11	13.9	. 094	. 721	. 200	3.74	3.80
				5.16	42.3	. 090					10.3	41.9	. 090
	12.9	. 101	. 773	. 200	3.59	7.60	12	12.9	. 102	. 776	. 200	3.74	3.80
				5.67	46.1	. 098					11.3	45.6	. 098
	12.0	. 109	. 834	. 200	3.59	7.60	13	11.9	. 110	. 841	. 200	3.74	3.80
				6.18	49.9	. 107					12.3	49.3	. 107
	11.0	. 119	. 907	. 200	3.59	7.60	14	10.9	. 120	. 918	. 200	3.74	3.80
				6.69	53.7	. 115					13.4	52.9	. 115
	10.5	. 124	. 948	. 200	3.59	7.60	15	9.90	. 132	1.01	. 200	3.74	3.80
				7.21	57.5	. 123					14.4	56.6	. 123
							16	9.90	. 132	1.01	. 200	3.74	3.80
											15.4	60.2	. 131
							17	8.91	. 147	1.12	. 200	3.74	3.80
											16.4	63.8	. 139
							18	7.92	. 165	1.26	. 200	3.74	3.80
											17.4	67.4	. 148
					.		19	7.92	. 165	1.26	. 200	3.74	3.80
											18.5	71.0	. 156
							20	7.92	. 165	1.26	. 200	3.74	3.80
											19.5	74.6	. 164
							21	6.93	. 189	1.44	. 200	3.74	3.80
											20.5	78.2	. 172
							22	6.93	. 189	1.44	. 200	3.74	3.80
											21.5	81.7	. 180
			.				23	5.94	. 221	1.68	. 200	3.74	3.80
											22.6	85.2	. 189
							24	5.94	. 221	1.68	. 200	3.74	3.80
											23.6	88.7	. 197
							25	5.94	. 221	1.68	. 200	3.74	3.80
											24.6	92.2	. 205
							26	5.94	. 221	1.68	. 200	3.74	3.80
											25.6	95.7	. 213
							27	4.94	. 265	2.02	. 200	3.74	3.80
											26.7	99.1	. 221
							28	4.94	. 265	2.02	. 200	3.74	3.80
											27.7	103.	. 230
							29	4.94	. . 265	2.02	. 200	3.74	3.80
											28.7	106.	. 238
							30	4.94	. 265	2.02	. 200	3.74	3.80
											29.7	109.	. 246
							31	4.94	. 265	2.02	. 200	3.74	3.80
											30.8	113.	. 254

Table 1. IBM System/360 Model 50 Channel Evaluation Factors (Part 8 of 11)

Table 1. IBM System/360 Model 50 Channel Evaluation Factors (Part 9 of 11)

Table 1. IBM System/360 Model 50 Channel Evaluation Factors (Part 10 of 11)

Input/Output Device	15-Line Maximum						No. of Lines Available	31-Line Maximum					
	Wait Time	Device Load	Previous Load	Priority Load				Wait Time	Device Load	Previous Load	Priority Load		
				Time	A	B					Time	A	B
2702 Transmission Control Telegraph Control II 110bps													
	96.9	. 014	. 103	. 200	3.89	. 014	1	97.2	. 013	. 103	. 200	3.89	. 014
	48.5	. 027	. 206	. 200	3.59	7.60	2	48.6	. 027	. 206	. 200	3.74	3.80
				. 551	7.76	. 027					1.06	7.75	. 027
	32.1	. 041	. 311	. 200	3.59	7.60	3	31.7	. 041	. 315	. 200	3.74	3.80
				1.06	11.6	. 041					2.09	11.6	. 041
	24.0	. 055	. 417	. 200	3.59	7.60	4	23.8	. 055	. 420	. 200	3.74	3.80
				1.57	15.5	. 055					3.11	15.4	. 055
	19.2	. 068	. 521	. 200	3.59	7.60	5	18.8	. 070	. 531	. 200	3.74	3.80
				2.09	19.3	. 069					4.13	19.2	. 069
	15.8	. 083	. 632	. 200	3.59	7.60	6	15.9	. 083	. 631	. 200	3.74	3.80
				2.60	23.1	. 082					5.16	22.9	. 082
	13.4	. 098	. 745	. 200	3.59	7.60	7	13.9	. 094	. 721	. 200	3.74	3.80
				3.11	26.9	. 096					6.18	26.6	. 096
	12.0	. 109	. 834	. 200	3.59	7.60	8	11.9	. 110	. 841	. 200	3.74	3.80
				3.62	30.7	. 110					7.21	30.3	. 110
	10.5	. 124	. 948	. 200	3.59	7.60	9	9.90	. 132	1.01	. 200	3.74	3.80
				4.13	34.5	. 123					8.23	34.0	. 123
	9.58	. 137	1.04	. 200	3.59	7.60	10	8.91	. 147	1.12	. 200	3.74	3.80
				4.65	38.3	. 137					9.25	37.6	. 137
	8.62	. 152	1.16	. 200	3.59	7.60	11	7.92	. 165	1.26	. 200	3.74	3.80
				5.16	42.0	. 151					10.3	41.2	. 151
	7.66	. 171	1.30	. 200	3.59	7.60	12	7.92	. 165	1.26	. 200	3.74	3.80
				5.67	45.7	. 164					11.3	44.8	. 164
	7.18	. 182	1.39	. 200	3.59	7.60	13	6.93	. 189	1.44	. 200	3.74	3.80
				6.18	49.5	. 178					12.3	48.4	. 178
	6.70	. 195	1.49	. 200	3.59	7.60	14	6.93	. 189	1.44	. 200	3.74	3.80
				6.69	53.2	. 192					13.4	51.9	. 192
	6.22	. 210	1.61	. 200	3.59	7.60	15	5.94	. 221	1.68	. 200	3.74	3.80
				7.21	56.9	. 206					14.4	55.4	. 206
							16	5.94	. 221	1.68	. 200	3.74	3.80
											15.4	58.9	. 219
							17	4.94	. 265	2.02	. 200	3.74	3.80
											16.4	62.3	. 233
							18	4.94	. 265	2.02	. 200	3.74	3.80
											17.4	65.7	. 247
							19	4.94	. 265	2.02	. 200	3.74	3.80
											18.5	69.1	. 260
							20	3.95	. 331	2.53	. 200	3.74	3.80
											19.5	72.5	. 274
							21	3.95	. 331	2.53	. 200	3.74	3.80
											20.5	75.8	. 288
							22	3.95	. 331	2.53	. 200	3.74	3.80
											21.5	79.1	. 301
							23	3.95	. 331	2.53	. 200	3.74	3.80
											22.6	82.4	. 315
							24	3.95	. 331	2.53	. 200	3.74	3.80
											23.6	85.6	. 329
							25	2.96	. 443	3.38	. 200	3.74	3.80
											24.6	88.8	. 343
							26	2.96	. 443	3.38	. 200	3.74	3.80
											25.6	92.0	. 356
							27	2.96	. 443	3.38	. 200	3.74	3.80
											26.7	95.2	. 370
							28	2.96	. 443	3.38	. 200	3.74	3.80
											27.7	98.3	. 384
							29	2.96	. 443	3.38	. 200	3.74	3.80
											28.7	101.	. 397
							30	2.96	. 443	3.38	. 200	3.74	3.80
											29.7	104.	. 411
							31	2.96	. 443	3.38	. 200	3.74	3.80
											30.8	108.	. 425

Table 1. IBM System/360 Model 50 Channel Evaluation Factors (Part 11 of 11)

Table 2. IBM System/360 Model 50 Evaluation Factors for 2702 Special Analysis

Terminal Control	$N_{\text {Max }}$		b
	15 Lines	31 Lines	
IBM Type I			
75bps	242	117	. 0135
135.5bps	139	67	. 0235
600 bps	30	*	. 1150
IBM Type II			
Telegraph Type I			
45 bps	332	160	. 0082
57 bps	260	126	. 0103
75bps	200	96	. 0137
Telegraph Type II			
WTC Telegraph			
50bps	300	145	. 0091
75bps	200	96	. 0137
	15 Lines	31 Lines	
Device Load (All Types)	1.31	1.31	
Previous Load (All Types)	10.0	10.0	

* No control available

Table 3. IBM System/360 Model 50 CPU Interference Factors

Channel Activity	Interference Factor (in usec) for					
	Selector Channel			Multiplexer Channel		
	Main	Main/LCS	LCS	Main	Main/LCS	LCS
Data Service						
Multiplex Mode				10/byte	10/byte	18/byte
Burst Mode	. $95 /$ byte	. $95 /$ byte	2.5/byte	3.5/byte	3.5/byte	9/byte
Command Chaining	7	7	20	29	29	37
Data Chaining	7	7	20	19	19	28
Transfer in Channel (TIC) Command	7	7	20	9	9	18
I/O Interruption Condition						
PCIFlag in CCW	22	26	26	28	32	32
Channel End	22	26	26	28	32	32
Device End	41	45	45	58	62	62

MAIN: When both CPU and channel references are made only to main storage.

MAIN/LCS: When CPU references may be made to the IBM 2361 Core Storage and channel references are made only to main storage.

LCS: When both CPU and channel references are made to the IBM 2361.

Table 4. Load Values for I/O Devices

Device			Nominal Speed (kb/sec)	Load Value
2302-3 and -4			156	. 170
2303-1			312	. 333
2311-1			156	. 170
2314-1			312	. 333
2321-1			55	. 066
7340-3: 1511 bytes/inch			170	. 210
7340-3: 3022 bytes/inch			340	. 420
2401, 2, 3, 4				
Model	Density (Bytes/Inch)	Data Conversion in Operation	Nominal Speed ($\mathrm{kb} / \mathrm{sec}$)	Load Value
1	200	No	7.5	. 010
		Yes	5.6	. 008
	556	No	20.8	. 028
		Yes	15.6	. 021
	800	No	30.0	. 040
		Yes	22.5	. 030
2	200	No	15.0	. 020
		Yes	11.3	. 016
	556	No	41.7	. 055
		Yes	31.3	. 042
	800	No	60.0	. 076
		Yes	45.0	. 060
3	200	No	22.5	. 030
		Yes	16.9	. 023
	556	No	62.5	. 080
		Yes	46.9	. 062
	800	No	90.0	. 113
		Yes	67.5	. 086
4	800	*	30.0	. 040
	1600	*	60.0	. 076
5	800	*	60.0	. 076
	1600	*	120.0	. 152
6	800	*	90.0	. 113
	1600	*	180.0	. 222

* Data conversion not used on this model.

Table 5. IBM System/360 Model 50 Selector Channel Load Limits, References to Main Storage Only (Part 1 of 4)

No Data Chaining	Data Chaining (X)			Maximum Load Value for				Coefficients for Overrun Equation			
	First Selector Channel	Second Selector Channel	Third Selector Channel	Multiplexer Channel in Burst Mode	First Selector Channel	Second Selector Channel	Third Selector Channel				
								P	Q	R	M
				. 182	N/Op	N/Op	N/Op				
				. 106	. 600	N/Op	N/Op				
				. 055	. 375	. 333	N / Op				
				(.044	. 370	. 272	. 222				
				. 044	or						
				1.044	. 333	. 333	-113				
				N / Op	. 900	N/Op	N/Op				
				N/Op	. 642	. 545	N/Op				
				N/Op	. 600	. 470	. 470	83.0	83.0	172	
								72.5	72.5	181	
Data Chaining, with Multiplexer Operating, LWN	X	N/Op	N/Op	. 088	. 400	N/Op	N/Op				
	X	X	N/Op	. 050	. 352	. 285	N/Op	82.5	350.	0	0
								254.	791.	0	0
	0	x	N/Op	. 050	. 375	. 328	N / Op	81.7	304.	0	0
	x	0	N/Op	. 050	. 352	. 333	N/Op	254.	80.1	0	0
	x	x	x	. 040	. 300	. 264	. 222	84.4	84.4	425.	0
	0	0	x	. 040	. 370	. 272	. 222	84.0	84.0	333.	0
	0	x	0	. 040	. 370	. 272	. 222	83.2	304.	83.2	0
	x	0	0	. 040	. 300	. 272	. 222	275.	82.0	82.0	0
	0	x	X	. 040	. 370	. 272	. 222	84.4	84.4	379.	0
								83.2	304.	83.2	0
								87.5	125.	125.	250.
	x	x	0	. 040	. 300	. 264	. 222	83.4	350.	83.4	0
								275.	81.9	81.9	0
								125.	125.	87.5	250.
	x	0	x	. 040	. 300	. 272	. 222	83.7	83.7	350.	0
								275.	82.0	82.0	0
								125.	87.5	125.	250.
Data Chaining, with Multiplexer Operating, LWT	x	N/Op	N / Op	. 088	. 338	N/Op	N/Op				
	x	X	N / Op	. 050	. 272	. 205	N / Op	83.4	487	0	0
								337.	80.9	0	0
	0	x	N/Op	. 050	. 375	. 260	N/Op	82.9	383	0	0
	x	0	N / Op	. 050	. 276	. 333	N/Op	333.	81.9	0	0
	x	x	x	. 040	. 260	. 196	. 171	84.8	84.8	583	0
								84.1	479.	84.1	0
								325.	82.0	82.0	0
								163.	163.	163.	250.
	0	0	x	. 040	. 370	. 272	. 222	84.7	84.7	412.	0
	0	x	0	. 040	. 370	. 255	. 222	84.0	362.	84.0	0
	x	0	0	. 040	. 269	. 272	. 222	312.	82.7	82.7	0
	0	x	x	. 040	. 370	. 269	. 193	85.3	85.3	517.	0
								83.5	342.	83.5	0
								87.5	163.	163.	250.
	x	x	0	. 040	. 286	. 200	. 222	84.4	467.	84.4	0
								292.	81.8	81.8	0
								163.	163.	87.5	250.
	x	0	x	. 040	. 286	. 272	. 193	84.9	84.9	517.	0
								292.	82.1	82.1	0
								163.	87.5	163.	250.
Data Chaining, with Multiplexer Operating, LBN	X	N/Op	N / Op	. 088	. 125	N / Op	N/Op				
	x	X	N / Op	. 050	. 085	. 062	N / Op	79.2	1731	0	0
								1181	75.1	0	0
	0	x	N/Op	. 050	. 375	. 077	N / Op	79.2	1300	0	0
	x	0	N/Op	. 050	. 085	. 333	N/Op	. 1050	76.6	0	0
	X	X	x	. 040	. 117	. 060	. 049	81.8	81.8	2288	0
								80.1	1788	80.1	0
								987.	73.2	73.2	0
	0	0	x	. 040	. 370	. 272	. 083	81.4	81.4	1200	0
	0	x	0	. 040	. 370	. 102	. 222	79.2	975.	79.2	0
	X	0	0	. 040	. 117	. 272	. 222	725.	74.1	74.1	0
	0	x	x	. 040	. 370	. 102	. 058	82.4	82.4	1831	0
								78.3	1105	78.3	0
								87.5	169.	169.	250.

Table 5. IBM System/ 360 Model 50 Selector Channel Load Limits, References to Main Storage Only (Part 2 of 4)

Data Chaining, with Multiplexer Operating, LBN (Cont'd)	Data Chaining (X)			Maximum Load Value for				Coefficients for Overrun Equation			
	First Selector Channel	Second Selector Channel	Third Selector Channel	Multiplexer Channel in Burst Mode	First Selector Channel	Second Selector Channel	Third Selector Channel				
								P	Q	R	M
	X x	X 0	0 x	.040 .040	.117 .117	.060 .272	.222 .058	80.8 856. 169. 81.8 856. 169.	1656 73.3 169. 81.8 74.0 87.5	80.8 73.3 87.5 1831 74.0 169.	$\begin{array}{\|l} 0 \\ 0 \\ 250 . \\ 0 \\ 0 \\ 250 . \\ \hline \end{array}$
Data Chaining, with Multiplexer Operating, LBT	x	N/Op	N/Op	. 088	. 074	N/Op	N/Op				
	x	x	N/Op	. 050	. 062	. 043	N/Op	81.5	2431	0	0
								1606	78.3	0	0
	0	x	N/Op	. 050	. 375	. 058	N/Op	81.3	1725	0	0
	x	0	N/Op	. 050	. 063	. 333	N/Op	1450	79.7	0	0
	x	X	x	. 040	. 062	. 043	. 021	84.5	84.5	4588	0
								81.8	2462	81.8	0
								1612	78.6	78.6	0
	0	0	x	. 040	. 370	. 272	. 052	83.8	83.8	1900	0
	0	x	0	. 040	. 370	. 056	. 222	82.8	1650	82.8	0
	x	0	0	. 040	. 060	. 272	. 222	1400.	80.9	80.9	0
	0	x	x	. 040	. 370	. 056	. 040	83.7	83.7	2605	0
								81.8	1780	81.8	0
								87.5	207.	207.	250.
	x	x	0	. 040	. 060	. 028	. 222	84.2	3485	84.2	0
								1662	80.2	80.2	0
								207.	207.	87.5	250.
	x	0	x	. 040	. 060	. 272	. 040	83.2	83.2	2606	0 .
								1531	80.0	80.0	0
								207.	87.5	207.	250.
Data Chaining, with Multiplexer Operating, SBN	X	N/Op	N / Op	. 088	. 035	N/Op	N/Op				
	x	X	N/Op	. 050	. 042	. 027	N / Op	843.	3600	0	0
								2362	74.7	0	0
	0	x	N / Op	. 050	. 375	. 032	N/Op	80.6	3100	0	0
	x	0	N/Op	. 050	. 042	. 333	N/Op	2100	76.6	0	0
	x	x	X	. 040	. 031	. 025	. 020	867.	867.	4850	0
								841.	3950	0	0
								3225	78.3	78.3	0
	0	0	x	. 040	. 370	. 272	. 029	83.4	83.4	3450	0
	0	x	0	. 040	. 370	. 031	. 222	82.2	2950	82.2	0
	x	0	0	. 040	. 033	. 272	. 222	2975	81.3	81.3	0
	0	X	x	. 040	. 370	. 034	. 028	81.4	836.	3500	0
								80.1	2900	0	0
								87.5	950.	950.	250.
	x	x	0	. 040	. 034	. 025	. 222	839.	3700	80.7	0
								2700	0	78.1	0
								950.	950.	87.5	250.
	x	0	x	. 040	. 034	. 272	. 028	836.	80.7	3500	0
								2700	78.6	0	0
								950.	87.5	950.	250.
Data Chaining, with Multiplexer Operating, SBT	X	N/Op	N/Op	. 088	. 025	N/Op	N/Op				
	x	x	N/Op	. 055	. 033	. 020	N / Op	853.	4800	0	0
								2962	77.3	0	0
	0	x	N / Op :	. 050	. 375	. 027	N/Op	81.8	3700	0	0
	x	0	N/Op	. 050	. 033	. 333	N/Op	2700	79.1	0	0
	x	x	X	. 040	. 026	. 019	. 016	869.	869.	6150	0
								853.	5250	0	0
								3825	79.7	79.7	0
								1550	1550	1550	250.
	0	0	x	. 040	. 370	. 272	. 024	84.4	84.4	4100	0
	0	x	0	. 040	. 370	. 026	. 222	83.2	3600	83.2	0
	x	0	0	. 040	. 027	. 272	. 222	3100	81.6	81.6	0
	0	X	x	. 040	. 370	. 026	. 019	83.5	853.	5250	0
								82.0	3850	0	0
								87.5	1550	1550	250.

Table 5. IBM System/ 360 Model 50 Selector Channel Load Limits, References to Main Storage Only (Part 3 of 4)

Data Chaining, with Multiplexer Operating, SBT (Cont'd)	Data Chaining (X)			Maximum Load Value for				Coefficients for Overrun Equation			
	First Selector Channel	Second Selector Channel	Third Selector Channel	Multiplexer Channel in Burst Mode	First Selector Channel	Second Selector Channel	Third Selector Channel				
								P	Q	R	M
	X	X	0	. 040	. 026	. 019	. 222	851	5000	82.5	0
								3600	0	80.5	0
								1550	1550	87.5	250.
	X	0	X	. 040	. 026	. 272	. 019	853.	82.9	5200	0
								3600	80.9	0	
								1550	87.5	1550	250.
Data Chaining, without Multiplexer Operating, LWN	X	N/Op	N/Op		. 690	N/Op	N/Op				
	X	X	N/Op		. 490	. 333	N/Op	81.8	275.	0	
								175.	75.4	0	
	0	X	N/Op		. 642	. 533	N / Op	81.0	187.	0	
	X	0	N/Op		. 533	. 333	N / Op	158.	75.4	0	
	X	X	X		. 460	. 272	. 222	84.4	84.4	312.	
								82.8	237.	82.8	
								158.	77.6	77.6	
								125.	125.	125.	
	0	0	X		. 516	. 470	. 460	85.7	85.7	217.	
	0	X	0		. 516	. 414	. 222	82.8	212.	82.8	
	X	0	0		. 460	. 272	. 222	158.	77.6	77.6	
	0	X	X		. 516	. 394	. 222	85.4	85.4	267.	
								83.1	225	83.1	
								87.5	125.	125.	
	X	X	0		. 394	. 272	. 222	82.2	237.	82.2	
								196.	79.6	79.6	
								125.	125.	87.5	
	X	0	X		. 394	. 272	. 222	83.2	83.2	267.	
								196.	79.6	79.6	
								125.	87.5	125.	
```Data Chaining, without Multiplexer Operating, LWT```	X	N/Op	N/Op		. 460	N/Op	N/Op				
	X	X	N/Op		. 375	. 282	N/Op	82.4	354.	0	
								233.	78.3	0	
	0	X	N/Op		. 642	. 400	N/Op	82.7	250.	0	
	X	0	N/Op		. 400	. 333	N/Op	221.	79.0	0	
	X	X	X		. 370	. 254	. 204	85.0	85.0	487.	
								83.8	362.	83.8	
								208.	79.7	79.7	
								163.	163.	163.	
	0	0	X		. 516	. 470	. 374	86.0	86.0	267.	
	0	X	0		. 516	. 374	. 222	83.4	237.	83.4	
	X	0	0		. 370	. 272	. 222	208.	80.1	80.1	
	0	X	X		. 516	. 352	. 222	84.5	84.5	317.	
								83.7	254.	83.7	
								87.5	163.	163.	
	X	X	0		. 370	. 272	. 222	83.0	287	83.0	
								204.	79.9	79.9	
								163.	163.	87.5	
	X	0	X		. 370	. 272	. 222	83.8	83.8	317.	
								204.	79.9	79.9	
								163.	87.5	163.	
Data Chaining, without Multiplexer Operating, LBN	X	N/Op	N/Op		. 249	N/Op	N/Op				
	X	X	N/Op		. 181	. 087	N/Op	77.5	1325	0	
								556.	61.1	0	
	0	X	N/Op		. 642	. 148	N/Op	75.9	675.	0	
	X	0	N/Op		. 181	. 333	N/Op	425.	58.5	0	
	X	X	X		. 165	. 100	. 070	80.4	80.4	1688	
								76.5	1138	76.5	
								612.	65.3	65.3	
	0	0	X		. 516	. 470	. 117	84.5	84.5	850.	
	0	X	0		. 516	. 138	. 222	76.4	600.	76.4	
	X	0	0		. 165	. 272	. 222	350.	55.8	55.8	
	0	X	X		. 516	. 138	. 089	81.8	81.8	1255	
								76.2	730.	76.2	
								87.5	169.	169.	
	X	X	0		. 165	. 100	. 222	78.1	1138	78.1	
								612.	68.0	68.0	
	X	0	X		. 165	. 272	. 089	79.5	79.5	1256	
								481.	62.9	62.9	

Table 5. IBM System/360 Model 50 Selector Channel Load Limits, References to Main Storage Only (Part 4 of 4)

Data Chaining, without Multiplexer Operating, LBT	Data Chaining (X)			Maximum Load Value for				Coefficients for Overrun Equation			
	First   Selector   Channel	Second   Selector   Channel	Third   Selector   Channel	Multiplexer Channel in Burst Mode	First   Selector   Channel	Second   Selector   Channel	Third   Selector   Channel				
								P	Q	R	M
	X	$\mathrm{N} / \mathrm{Op}$	$\mathrm{N} / \mathrm{Op}$		. 130	N/Op	N/Op				
	X	X	N/Op		. 102	. 059	N/Op	79.9	1850	0	
								981.	72.5	0	
	0	X	$\mathrm{N} / \mathrm{Op}$		. 642	. 091	N/Op	80.8	1100	0	
	X	0	N/Op		. 105	. 333	N/Op	825.	73.5	0	
	X	X	X		. 102	. 058	. 025	84.2	84.2	3962	
								80.1	1838	80.1	
								987.	73.2	73.2	
	0	0	X		. 516	. 470	. 078	85.6	85.6	1275	
	0	X	0		. 516	. 087	. 222	81.6	1025	81.6	
	X	0	0		. 097	. 272	. 222	775.	75.1	75.1	
	0	X	X		. 516	. 087	. 054	83.7	83.7	1980	
								80.3	1155	80.3	
								87.5	207.	207.	
	X	X	0		. 097	. 034	. 222	83.3	2860	83.3	
								1038	75.9	75.9	
	X	0	X		. 097	. 272	. 054	82.1	82.1	1981	
								906.	74.7	74.7	
Data Chaining, without Multiplexer Operating, SBN	X	N/Op	N/Op		. 087	N/Op	N/Op				
	X	X	$\mathrm{N} / \mathrm{Op}$		. 054	. 037	$\mathrm{N} / \mathrm{Op}$	834.	2650	0	
								1862	71.3	0	
	0	X	N/Op		. 642	. 052	N/Op	79.6	1900	0	
	X	0	N/Op		. 054	. 333	N/Op	1600	73.0	0	
	X	X	X		. 051	. 035	. 032	875.	875.	3100	
								835.	2800	0	
								1975	72.7	72.7	
								950.	950.	950.	
	0	0	X		. 516	. 470	. 044	85.3	85.3	2250	
	0	X	0		. 516	. 050	. 222	80.4	1750	80.4	
	X	0	0		. 057	. 272	. 222	1250	71.7	71.7	
	0	X	X		. 516	. 050	. 035	81.1	834.	2800	
								78.4	2000	0	
								87.5	950.	950.	
	X	X	0		. 050	. 035	. 222	835.	2550	77.6	
								1750	0	72.8	
								950.	950.	87.5	
	X	0	X		. 050	. 272	. 035	834.	78.9	2800	
								1750	73.5	0	
								950.	87.5	950.	
Data Chaining, without Multiplexer Operating, SBT	X	N/Op	N/Op		. 054	N/Op	N/Op				
	X	X	N/Op		. 040	. 035	N/Op	826.	2850	0	
								2462	75.3	0	
	0	X	N/Op		. 642	. 040	N/Op	81.7	2500	0	
	X	0	N/Op		. 040	. 333	N/Op	2200	77.2	0	
	X	X	X		. 039	. 025	. 020	872.	872.	4900	
								847.	4000	0	
								2570	76.0	76.0	
								1550	1550	1550	
	0	0	X		. 516	. 470	. 035	85.9	85.9	2850	
	0	X	0		. 516	. 038	. 222	82.4	2350	82.4	
	X	0	0		. 042	. 272	. 222	1850	77.3	77.3	
	0	X	X		. 516	. 038	. 025	83.1	857.	4000	
								80.6	2600	0	
								87.5	1550	1550	
	X	X	0		. 038	. 025	. 222	843.	3750	80.8	
								2350	0	76.7	
								1550	1550	87.5	
	X	0	X		. 038	. 272	. 025	847.	81.5	4000	
								2350	77.2	0	
								1550	87.5	1550	

Table 6. IBM System/ 360 Model 50 Selector Channel Load Limits, CPU References to
IBM 2361 and Channel References to Main Storage Only (Part 1 of 4)


Table 6. IBM System/ 360 Model 50 Selector Channel Load Limits, CPU References to
IBM 2361 and Channel References to Main Storage Only (Part 2 of 4)

Data Chaining, with Multiplexer Operating, LBN (Cont'd)	Data Chaining ( X )			Maximum Load Value for				Coefficients for Overrun Equation			
	First   Selector   Channel	Second   Selector   Channel	Third   Selector   Channel	Multiplexer   Channel in   Burst Mode	First   Selector   Channel	Second   Selector   Channel	Third   Selector   Channel				
								P	Q	R	M
	X	X	0	. 010	. 083	. 050	. 222	81.8	2006	81.8	0
								1206	77.5	77.5	0
								169.	169.	87.5	250.
	X	0	X	. 010	. 083	. 272	. 048	82.5	82.5	2181	0
								1206	78.0	78.0	0
								169.	87.5	169.	250.
Data Chaining, with Multiplexer Operating, LBT	X	N/Op	N/Op	. 059	. 065	N/Op	N/Op				
	X	X	N/Op	. 025	. 051	. 037	N/Op	82.2	2781	0	0
								1956	79.9	0	0
	0	X	N/Op	. 025	. 375	. 048	N/Op	82.4	2075	0	0
	X	0	N/Op	. 025	. 052	. 333	N/Op	1800	81.3	0	0
	X	X	X	. 010	. 051	. 037	. 021	84.6	84.6	4938	0
								82.4	2812	82.4	0
								1962	80.1	80.1	0
	0	0	X	. 010	. 370	. 272	. 044	84.4	84.4	2250	0
	0	X	0	. 010	. 370	. 047	. 222	83.6	2000	83.6	0
	X	0	0	. 010	. 050	. 272	. 222	1750	82.3	82.3	0
	0	X	X	. 010	. 370	. 047	. 035	84.1	84.1	2955	0
								82.7	2130	82.7	0
								87.5	207.	207.	250.
	X	X	0	. 010	. 050	. 025	. 222	84.4	3820	84.4	0
								2012	81.5	81.5	0
								207.	207.	87.5	250.
	X	0	X	. 010	. 050	. 272	. 035	83.7	83.7	2956	0
								1881	81.4	81.4	0
								207.	87.5	207.	250.
Data Chaining, with Multiplexer Operating, SBN	X	N/Op	N/Op	. 059	. 036	N/Op	N/Op				
	X	X	N/Op	. 025	. 032	. 023	N/Op	853.	4300	0	0
								2362	74.7	0	0
	0	X	$\mathrm{N} / \mathrm{Op}$	. 025	. 375	. 026	$\mathrm{N} / \mathrm{Op}$	81.9	3800	0	0
	X	0	N/Op	. 025	. 032	. 333	N/Op	2800	79.5	0	0
	X	X	X	. 010	. 025	. 021	. 018	866.	866.	5550	0
								847.	4650	0	0
								3925	79.9	79.9	0
	0	0	X	. 010	. 370	. 272	. 024	84.1	84.1	4150	0
	0	X	0	. 010	. 370	. 025	. 222	83.2	3650	83.2	0
	X	0	0	. 010	. 027	. 272	. 222	3675	82.6	82.6	0
	0	X	X	. 010	. 370	. 027	. 023	82.4	842.	4200	0
								81.6	3600	0	0
								87.5	950.	950.	250.
	X	X	0	. 010	. 027	. 021	. 222	845.	4400	81.8	0
								3400	0	80.1	0
								950.	950.	87.5	250.
	X	0	X	. 010	. 027	. 272	. 023	842.	81.8	4200	0
								3400	80.5	0	0
								950.	87.5	950.	250.
Data Chaining, with Multiplexer Operating, SBT	X	N/Op	N/Op	. 059	. 026	N/Op	N/Op				
	X	X	N/Op	. 025	. 027	. 018	N/Op	856.	5500	0	0
								3662	79.2	0	0
	0	X	$\mathrm{N} / \mathrm{Op}$	. 025	. 375	. 022	$\mathrm{N} / \mathrm{Op}$	82.7	4400	0	0
	X	0	N/Op	. 025	. 027	. 333	N/Op	3400	80.9	0	0
	X	X	X	. 010	. 022	. 016	. 014	869.	869.	6850	0
								857.	5950	0	0
								4525	80.9	80.9	0
	0	0	X	. 010	. 370	. 272	. 020	84.6	84.6	4800	0
	0	X	0	. 010	. 370	.022.	. 222	83.9	4300	83.9	0
	X	0	0	. 010	. 023	. 272	. 222	3800	82.7	82.7	0
	0	X	X	. 010	. 370	. 022	. 016	84.0	857.	5950	0
								82.8	4550	0	0
								87.5	1550	1550	250.
	X	X	0	. 010	. 022	. 016	. 222	855.	5700	83.1	0
								4300	0	81.7	0
								1550	1550	87.5	250.

Table 6. IBM System/360 Model 50 Selector Channel Load Limits, CPU References to
IBM 2361 and Channel References to Main Storage Only (Part 3 of 4)

	Data Chaining (X)			Maximum Load Value for				Coefficients for Overrun Equation			
		Second		Multiplexer		Second					
	Selector   Channel	Selector Channel	Selector   Channel	Channel in Burst Mode	Selector   Channel	Selector   Channel	Channel	P	Q	R	M
	X	0	X	. 010	. 022	. 272	. 016	$\begin{aligned} & 857 . \\ & 4300 \\ & 1550 \end{aligned}$	$\begin{aligned} & 83.5 \\ & 82.0 \\ & 87.5 \end{aligned}$	$\begin{aligned} & 5900 \\ & 0 \\ & 1550 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 250 . \end{aligned}$
Data Chaining, without Multiplexer Operating, LWN	X	$\mathrm{N} / \mathrm{Op}$	N/Op		. 380	N/Op	N/Op				
	X	X	N/Op		. 381	. 300	N/Op	82.1	333.	0	
								233.	78.4	0	
	0	X	N/Op		. 445	. 407	$\mathrm{N} / \mathrm{Op}$	81.1	246.	0	
	X	0	N/Op		. 407	. 333	N/Op	217.	78.8	0	
	X	X	x		. 364	. 272	. 222	84.3	84.3	371.	
								83.1	296.	83.1	
								217.	80.4	80.4	
	0	0	X		. 445	. 400	. 346	84.9	84.9	275.	
	0	X	0		. 445	. 334	. 222	83.3	271.	83.3	
	X	0	0		. 364	. 272	. 222	217.	80.4	80.4	
	0	X	X		. 445	. 320	. 222	84.7	84.7	325.	
								83.6	287.	83.6	
								87.5	125.	125.	
	X	X	0		. 320	. 272	. 222	82.7	296.	82.7	
								254.	81.5	81.5	
	X	0	X		. 320	. 272	. 222	83.5	83.5	325.	
								254.	81.5	81.5	
Data Chaining, without Multiplexer Operating, LWT	X	N/Op	$\mathrm{N} / \mathrm{Op}$		. 375	N/Op	N/Op				
	X	X	$\mathrm{N} / \mathrm{Op}$		. 312	. 242	N/Op	82.8	412.	0	
								292.	80.0	0	
	0	X	$\mathrm{N} / \mathrm{Op}$		. 445	. 324	$\mathrm{N} / \mathrm{Op}$	82.4	308.	0	
	X	0	$\mathrm{N} / \mathrm{Op}$		. 324	. 333	N/Op	279.	80.8	0	
	X	X	X		. 308	. 222	. 183	84.9	84.9	546.	
								83.0	421.	83.0	
								267.	81.1	81.1	
								163.	163.	163.	
	0	0	X		. 445	. 400	. 308	85.3	85.3	325.	
	0	X	0		. 445	. 308	. 222	83.7	296.	83.7	
	X	0	0		. 308	. 272	. 222	267.	81.8	81.8	
	0	X	X		. 445	. 272	. 222	84.8	84.8	375.	
								83.9	312.	83.9	
								87.5	163.	163.	
	X	X	0		. 310	. 266	. 222	83.4	346.	83.4	
								262.	81.7	81.7	
								163.	163.	87.5	
	X	0	X		. 310	. 272	. 222	84.0	84.0	375.	
								262.	81.7	81.7	
								163.	87.5	163.	
Data Chaining, without Multiplexer Operating, LBN	X	N/Op	$\mathrm{N} / \mathrm{Op}$		. 143	N/Op	N/Op				
	X	X	$\mathrm{N} / \mathrm{Op}$		. 111	. 066	N/Op	79.1	1675	0	
								906.	71.3	0	
	0	X	$\mathrm{N} / \mathrm{Op}$		. 445	. 097	$\mathrm{N} / \mathrm{Op}$	78.0	1025	0	
	X	0	$\mathrm{N} / \mathrm{Op}$		. 111	. 333	N/Op	775.	72.5	0	
	X	X	X		. 105	. 074	. 056	81.1	81.1	2038	
								78.5	1488	78.5	
								962.	73.1	73.1	
	0	0	X		. 445	. 400	. 083	83.8	83.8	1200	
	0	X	0		. 445	. 093	. 222	80.0	950.	80.0	
	X	0	0		. 105	. 272	. 222	700.	73.6	73.6	
	0	X	X		. 445	. 093	. 067	82.2	82.2	1605	
								79.1	1080	79.1	
	X	X	0		. 105	. 074	. 222	79.9	1488	79.9	
								962.	75.1	75.1	
	X	0	X		. 105	. 272	. 067	80.9	80.9	1606	
								831.	73.7	73.7	
Data Chaining, without Multiplexer Operating, LBT	X	N/Op	$\mathrm{N} / \mathrm{Op}$		. 093	$\mathrm{N} / \mathrm{Op}_{\mathrm{p}}$	N/Op				
	X	X	N/Op		. 074	. 049	N/Op	80.9	2200	0	
								1331	76.4	0	
	0	X	$\mathrm{N} / \mathrm{Op}$		. 445	. 069	$\mathrm{N} / \mathrm{Op}$	81.0	1450	0	

Table 6. IBM System/360 Model 50 Selector Channel Load Limits, CPU References to
IBM 2361 and Channel References to Main Storage Only (Part 4 of 4)

Data Chaining, without Multiplexer   Operating, LBT (Cont'd)	Data Chaining (X)			Maximum Load Value for				Coefficients for Overrun Equation			
	First   Selector   Channel	Second   Selector   Channel	Third   Selector   Channel	Multiplexer   Channel in   Burst Mode	First   Selector   Channel	Second   Selector   Channel	Third   Selector   Channel				
								P	Q	R	M
	X	0	N/Op		. 077	. 333	N/Op	1175	77.8	0	
	X	X	X		. 075	. 048	. 024	84.3	84.3	4312	
								81.1	2188	81.1	
								1338	76.7	76.7	
	0	0	X		. 445	. 400	. 061	84.8	84.8	1625	
	0	X	0		. 445	. 066	. 222	82.5	1375	82.5	
	X	0	0		. 072	. 272	. 222	1125	79.2	79.2	
	0	X	X		. 445	. 066	. 045	83.7	83.7	2330	
								81.4	1505	81.4	
	X	X	0		. 072	. 030	. 222	84.0	3215	84.0	
								1387	78.8	78.8	
	X	0	X		. 072	. 272	. 045	82.8	82.8	2331	
								1256	78.3	78.3	
Data Chaining, without Multiplexer Operating, SBN	X	N/Op	N/Op		. 057	N/Op	N/Op				
	X	X	$\mathrm{N} / \mathrm{Op}$		. 039	. 029	N/Op	836.	3350	0	
								2562	75.7	0	
	0	X	N/Op		. 445	. 038	N/Op	80.2	2600	0	
	X	0	$\mathrm{N} / \mathrm{Op}$		. 039	. 333	N/Op	2300	77.6	0	
	X	X	X		. 037	. 028	. 026	864.	864.	3800	
								838.	3500	0	
								2675	76.5	76.5	
	0	0	X		. 445	. 400	. 033	84.5	84.5	2950	
	0	X	0		. 445	. 037	. 222	81.8	2450	81.8	
	X	0	0		. 040	. 272	. 222	1950	77.8	77.8	
	0	X	X		. 445	. 037	. 028	81.9	838.	3500	
								80.2	2700	0	
	X	X	0		. 037	. 028	. 222	833.	3250	79.7	
								2450	0	77.1	
	X	0	X	-	. 037	. 272	. 028	838.	80.7	3500	
								2450	77.6	0	
Data Chaining, without Multiplexer Operating, SBT	X	N/Op	N/Op		. 040	N/Op	N/Op				
	X	X	$\mathrm{N} / \mathrm{Op}$		. 031	. 028	N/Op	834.	3550	0	
								3162	78.0	0	
	0	X	N/Òp		. 445	. 031	$\mathrm{N} / \mathrm{Op}$	81.6	3200	0	
	X	0	N/Op		. 031	. 333	N/Op	2900	79.7	0	
	X	X	X		. 030	. 021	. 017	869.	869.	5600	
								850.	4700	0	
								3275	78.4	78.4	
								1550	1550	1550	
	0	0	X		. 445	. 400	. 028	85.1	85.1	3550	
	0	X	0		. 445	. 030	. 222	83.0	3050	83.0	
	X	0	0		. 032	. 272	. 222	2550	80.3	80.3	
	0	X	X		. 445	. 030	. 021	83.4	850.	4700	
								81.6	3300	0	
								87.5	1550	1550	
	X	X	0		. 030	. 021	. 222	847.	4450	81.9	
								3050	0	79.2	
	X	0	X		. 030	. 272	. 021	850.	82.4	4700	
								3050	79.6	0	
								1550	87.5	1550	

Table 7. IBM System/360 Model 50 Selector Channel Load Limits, CPU and Channel References to IBM 2361 (Part 1 of 4)

No Data Chaining	Data Chaining ( X )			Maximum Load Value for				Coefficients for Overrun Equation			
	First   Selector   Channel	Second   Selector   Channel	Third Selector Channel	Multiplexer Channel in Burst Mode	First Selector Channel	Second Selector Channel	Third   Selector   Channel				
								P	Q	R	M
				. 092	N/Op	N/Op	N/Op				
				. 057	. 276	N/Op	N/Op				
				. 016	. 270	. 170	N/Op	200	200	0	800
				. 001	. 270	. 170	. 113	200	200	200	800
				$\mathrm{N} / \mathrm{Op}$	. 445	N/Op	N/op				
				N/Op	. 445	. 340	N/Op	200	200	0	0
				N/Op	. 445	. 340	. 205	200	200	437	0
								188	188	488	0
$\begin{aligned} & \text { Data Chaining, } \\ & \text { with Multiplexer } \\ & \text { Operating, LWN } \end{aligned}$	X	$\mathrm{N} / \mathrm{Op}$	N/Op	. 049	. 150	N/Op	N/Op				
	x	X	$\mathrm{N} / \mathrm{Op}$	. 012	. 093	. 074	N/Op	193	1342	0	0
								1008	191	0	0
	0	X	N/Op	. 012	. 270	. 086	N/Op	196	1158	0	0
	x	0	N/Op	. 012	. 093	. 170	N/Op	1008	193	0	0
	x	x	x	. 001	. 080	. 070	. 062	195	195	1608	0
								194	1358	194	0
								1108	193	193	0
	0	0	x	. 001	. 270	. 170	. 080	199	199	1242	0
	0	x	0	. 001	. 270	. 080	. 113	198	1175	198	0
	x	0	0	. 001	. 080	. 170	. 113	1108	196	196	0
	0	x	X	. 001	. 270	. 080	. 070	198	198	1425	0
								197	1175	197	0
								200	300	300	800
	x	x	0	. 001	. 080	. 070	. 113	195	1358	195	0
								1108	194	194	0
								300	300	200	800
	x	0	x	. 001	. 080	. 170	. 070	196	196	1358	0
								1108	195	195	0
								300	200	300	800
Data Chaining, with Multiplexer Operating, LWT	X	N/Op	N/Op	. 049	. 125	N/Op	N/Op				
	X	x	N/Op	. 012	. 071	. 052	$\mathrm{N} / \mathrm{Op}$	195	1892	0	0
								1342	193	0	0
	0	X	$\mathrm{N} / \mathrm{Op}$	. 012	. 270	. 068	N/Op	197	1475	0	0
	x	0	N/Op	. 012	. 072	. 170	$\mathrm{N} / \mathrm{op}$	1325	195	0	0
	x	x	x	. 001	. 069	. 051	. 044	196	196	2242	0
								195	1875	195	0
								1308	193	193	0
	0	0	x	. 001	. 270	. 170	. 064	199	199	1558	0
	0	x	0	. 001	. 270	. 067	. 113	198	1408	198	0
	X	0	0	. 001	. 072	. 170	. 113	1258	196	196	0
	0	x	x	. 001	. 270	. 072	. 050	198	198	1975	0
								197	1325	197	0
								200	400	400	800
	x	x	0	. 001	. 076	. 052	. 113	196	1825	196	0
								11.75	194	194	0
								400	400	200	800
	x	0	x	. 001	. 076	. 170	. 050	197	197	1975	0
								1308	195	195	0
								400	200	400	800
Data Chaining, with Multiplexer Operating, LBN	X	N/Op	N/Op	. 049	. 050	N/Op	N/Op				
	x	x	$\mathrm{N} / \mathrm{Op}$	. 012	. 023	. 016	N/Op	190	6125	0	0
								4300	185	0	0
	0	x	N/Op	. 012	. 270	. 020	$\mathrm{N} / \mathrm{Op}$	194	4850	0	0
	X	0	N/Op	. 012	. 023	. 170	$\mathrm{N} / \mathrm{Op}$	4000	189	0	0
	x	x	x	. 001	. 035	. 016	. 013	192	192	7700	0
								190	6075	190	0
								2875	179	179	0
	0	0	x	. 001	. 270	. 170	. 022	198	198	4250	0
	0	x	0	. 001	. 270	. 029	. 113	195	3125	195	0
	x	0	0	. 001	. 035	. 170	. 113	2275	187	187	0
	0	X	x	. 001	. 270	. 029	. 016	196	196	6325	0
								191	3425	191	0
								200	400	400	800

Table 7. IBM System/360 Model 50 Selector Chamel Load Limits, CPU and Channel References to IBM 2361 (Part 2 of 4)

Data Chaining, with Multiplexer Operating, LBN (Cont'd)	Data Chaining (X)			Maximum Load Values for				Coefficients for Overrun Equation			
	First   Selector Channel	Second   Selector   Channel	Third   Selector Channel	Multiplexer Channel in Burst Mode	First   Selector   Channel	Second Selector Channel	Third   Selector   Channel				
								P	Q	R	M
	x	x	0	. 001	. 035	. 016	. 113	196	12860	196	0
								2575	181	181	0
								400	400	200	800
	x	0	x	. 001	. 035	. 170	. 016	194	194	6325	0
								2575	183	183	0
								400	200	400	800
Data Chaining, with Multiplexer Operating, LBT	X	N/Op	N/Op	. 049	. 031	N/Op	N/Op.				
	x	x	N/Op	. 012	. 016	. 011	N/Op	193	8925	0	0
								6000	189	0	0
	0	x	N/Op	. 012	. 270	. 015	N/Op	195	6550	0	0
	x	0	$\mathrm{N} / \mathrm{Op}$	. 012	. 016	. 170	N/Op	5600	192	0	0
	x	x	x	. 001	. 017	. 011	. 0059	196	196	16900	0
								193	8875	193	0
								5750	190	190	0
	0	0	X	. 001	. 270	. 170	. 014	199	199	7050	0
	0	x	0	. 001	. 270	. 015	. 113	197	6200	197	0
								200	$500^{\circ}$	200	800
	X	0	0	. 001	. 016	. 170	. 113	5350	195	195	0
	0	x	X	. 001	. 270	. 015	. 010	197	197	9425	0
								195	6500	195	0
								200	500	500	800
	X	x	0	. 001	. 016	. 011	. 113	196	12860	196	0
								5950	192	192	0
								500	500	200	800
	x	0	x	. 001	. 016	. 170	. 010	196	196	9425	0
								5650	192	192	0
								500	200	500	800
Data Chaining, with Multiplexer Operating, SBN	X	N/Op	N/Op	. 049	. 015	N/Op	N/Op				
	x	x	$\mathrm{N} / \mathrm{Op}$	. 012	. 0082	. 0056	N/Op	2328	17700	0	0
								12000	189	0	0
	0	x	N/Op	. 012	. 270	. 0076	N/Op	195	13100	0	0
	x	0	N/Op	. 012	. 0084	. 170	N/Op	11200	192	0	0
	X	x	x	. 001	. 0085	. 0068	. 0054	2346	2346	18300	0
								2316	14700	0	0
								11500	189	189	0
	0	0	x	. 001	. 270	. 170	. 0078	199	199	12700	0
	0	x	0	. 001	. 270	. 0085	. 113	197	11000	197	0
	x	0	0	. 001	. 0093	. 170	. 113	10500	194	194	0
	0	x	x	. 001	. 270	. 0095	. 0077	195	2306	12900	0
								194	10500	0	0
								200	2400	2400	800
	x	x	0	. 001	. 0093	. 0068	. 113	2313	14000	193	0
								10000	0	190	0
								2400	2400	200	800
	x	0	x	. 001	. 0093	. 170	. 0077	2306	193	12900	0
								10000	191	0	0
								2400	200	2400	800
Data Chaining, with Multiplexer Operating, SBT	X	N/Op	N/Op	. 049	. 011	N/Op	N/Op				
	x	x	$\mathrm{N} / \mathrm{Op}$	. 012	. 011	. 0073	$\mathrm{N} / \mathrm{Op}$	2316	13700	0	0
								8600	185	0	0
	0	x	$\mathrm{N} / \mathrm{Op}$	. 012	. 270	. 0085	$\mathrm{N} / \mathrm{Op}$	195	11700	0	0
	X	0	$\mathrm{N} / \mathrm{Op}$	. 012	. 011	. 170	N/Op	8000	189	0	0
	x	X	x	. 001	. 0071	. 005	. 0042	2350	2350	23500	0
								2350	19900	0	0
								13900	191	191	0
	0	0	x	. 001	. 270	. 170	. 0065	199	199	15300	0
	0	X	0	. 001	. 270	. 007	. 113	198	13600	198	0
	x	0	0	. 001	. 0075	. 170	. 113	11900	195	195	0
	0	x	x	. 001	. 270	. 007	. 005	197	2334	19900	0
								196	14300	0	0
								200	4000	4000	800

Table 7. IBM System/360 Model 50 Selector Channel Load Limits, CPU and Channel References to IBM 2361 (Part 3 of 4)

Data Chaining, with Multiplexer Operating, SBT (Cont'd)	Data Chaining ( X )			Maximum Load Values for				Coefficients for Overrun Equation			
	First Selector Channel	Second Selector Channel	Third   Selector Channel	Multiplexer Channel in Burst Mode	First Selector Channel	Second Selector Channel	Third   Selector Channel				
								P	Q	R	M
	x	X	0	. 001	. 007	. 005	. 113	2332	19200	195	0
								13600	0	193	0
								4000	4000	200	800
	x	0	x	. 001	. 007	. 170	. 005	2334	196	19900	0
								13600	194	0	0
								4000	200	4000	800
Data Chaining, without Multiplexer Operating, LWN	x	N/Op	N/Op		. 268	N/Op	N/Op				
	x	X	N/Op		. 131	. 096	N/Op	192	1042	0	
								692	186	0	
	0	x	$\mathrm{N} / \mathrm{Op}$		. 445	. 144	$\mathrm{N} / \mathrm{Op}$	198	692	0	
	X	0	$\mathrm{N} / \mathrm{Op}$		. 144	. 770	$\mathrm{N} / \mathrm{Op}$	625	188	0	
	x	x	X		. 129	. 102	. 086	195	195	1158	
								193	908	193	
								642	190	190	
	0	0	x		. 445	. 340	. 129	200	200	775	
	0	x	0		. 445	. 114	. 113	200	808	200	
	x	0	0		. 129	. 170	. 113	642	192	192	
	0	x	x		. 445	. 108	. 102	200	200	975	
								200	858	200	
								200	300	300	
	x	x	0		. 108	. 102	. 113	193	908	193	
								792	192	192	
	x	0.	x		. 108	. 170	. 102	195	195	975	
								792	194	194	
Data Chaining, without Multiplexer Operating, LWT	X	N/Op	N/Op		. 200	N/Op	N/Op				
	X	X	$\mathrm{N} / \mathrm{Op}$		. 101	. 073	N/Op	194	1358	0	
								925	190	0	
	0	x	$\mathrm{N} / \mathrm{Op}$		. 445	. 106	$\mathrm{N} / \mathrm{Op}$	199	942	0	
	x	0	N/Op		. 106	. 170	N/Op	875	192	0	
	x	X	x		. 102	. 067	. 053	196	196	1858	
								195	1408	195	
								842	190	190	
	0	0	x		. 445	. 340	. 102	200	200	975	
	0	x	0		. 445	. 102	. 113	200	908	200	
	x	0	0		. 102	. 170	. 113	842	194	194	
	0	x	x		. 445	. 096	. 085	200	200	1175	
								200	975	200	
								200	400	400	
	x	x	0		. 104	. 085	. 113	194	1108	194	
								825	192	192	
	x	0	x		. 104	. 170	. 085	196	196	1175	
								825	193	193	
								400	200	400	
Data Chaining, without Multiplexer Operating, LBN	X	N/Op	N/Op		. 085	N/Op	$\mathrm{N} / \mathrm{Op}$				
	X	x	N/Op		. 054	. 023	N/Op	187	4425	0	
								1800	165	0	
	0	x	N/Op		. 445	. 042	$\mathrm{N} / \mathrm{Op}$	197	2350	0	
	X	0	$\mathrm{N} / \mathrm{Op}$		. 054	. 170	N/Op	1500	169	0	
	x	x	x		. 054	. 029	. 017	190	190	5750	
								184	3475	184	
								1750	166	166	
	0	0	x		. 445	. 340	. 035	200	200	2850	
	0	x	0		. 445	. 042	. 113	200	2000	200	
	x	0	0		. 054	. 170	. 113	1150	171	171	
	0	X	X		. 445	. 042	. 025	200	200	4025	
								200	23900	200	
								200	400	400	
	x	X	0		. 054	. 029	. 113	187	3475	187	
								1750	172	172	
	x	0	x		. 054	. 170	. 025	191	191	4025	
								1450	170	170	

Table 7. IBM System/360 Model 50 Selector Channel Load Limits, CPU and Channel References to IBM 2361 (Part 4 of 4)




MULTIPLEXER CHANNEL WORKSHEET






Figure 19. Flowchart for 2702 Special Analysis Worksheet Procedure


		revolution		$i=1$		i 2			3	i-4			5	$i=6$		$i=7$		$i=8$	
		$t=0$		$\mathrm{t}_{2}=.464$		$\mathrm{t}_{2}=\quad .944$		t2 1.424		$\mathrm{t}_{2} \quad 1.904$		'2. 2.384		$\mathrm{t}_{2} \quad 2.864$		$\mathrm{t}_{2}=3.344$		$\mathrm{t}_{2}=3.824$	
		$n=15$		$n=15$		$n=16$		$n=17$		n 18		19		$n .20$		$n=21$		$\mathrm{n}=22$	
		$A_{1}$	${ }^{8}$	$A_{2}$	${ }^{8}$	$A_{2}$	$B_{2}$	$A_{2}$	$8_{2}$	$A_{2}$	$8_{2}$	$A_{2}$	$8_{2}$	${ }_{4}{ }^{8}$		$A_{2}$	$8_{2}$	$A_{2}$	$\mathrm{A}_{2}{ }^{22}$
SELECTOR CHANNEL I	2314	0	0	0	31.3	0	31.3	0	31.3	0	31.3	0	31.3	0	31.3	0	31.3	0	31.3
Selector channel 2	2311	$\bigcirc$	0	0	15.4	0	15.4	0	15.4	0	15.4	0	15.4	0	15.4	0	15.4	0	15.4
SEL CH 3:	2311	0	0	0	15.4	0	15.4	0	15.4	0	15.4	0	15.4	0	15.4	0	15.4	0	15.4
Device I	2702	0	0	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60
DEVICE 2	2702	0	0	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60
Device 3	2702	0	0	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60
DEVICE 4	2702	0	0	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60
DEVICE 5																			
DEVICE 6																			
DEVICE 7																			
DEVICE 8																			
device 9																			
DEVICE 10																			
SUM A's AND B's		0	0	14.36	92.5	14.36	92.5	14.36	92.5	14.36	92.5	14.36	92.5	14.36	92.5	14.36	92.5	14.36	92.5
MULTIPLY: ${ }_{1} \times$ SUM $B_{i}$			0		42.92		87.32	$>$	131.72	$>$	176.12	$>$	220.52	>	264.92	$\bigcirc$	309.32		353.72
A remainder					. 36		. 36		. 36		4.36		. 36		. 36		. 36		4.36
b Remalnder				92	. 5		. 32	131	. 72	176	. 12	220	. 52	264	. 92	309	. 32	35	3.72
DEVICE LOAD					. 39		. 39		. 39		. 39		. 39		. 39		. 39		1.39
Previous load					. 6	10	. 6		. 6		0.6		. 6	10	. 6	10	. 6		0. 6
LOAD SUM				118	. 85	113	. 67	158	. 07	202	2.47	246	. 87	291	. 27	335	. 67	380	0.07
$\begin{aligned} & \text { LOAD } \\ & \text { LIMIT } \end{aligned}$	15 Line 2702				. 4	94.4		142.4		190.4		238.4		286.4		334.4		382.4	
	31 Line 2702			97	. 6	196.8		296.0		395.2		494.4		593.6		692.8		792.0	

MAXIMUM NUMBER OF REVOLUTIONS TO COMPLETE SERVICE: $n+(i-1) k=120$
system identification MODEL 50-2702

NUMBER OF LINES $=$15   LINE NUMBER $=$   SUBTRACT: $K=\frac{13}{}$   $n_{\text {max }}=$$\quad$13		revolution		$i=1$		$i=2$		i 3		$i=4$		i- 5		$i=6$		$i=7$		$i=8$	
		$1{ }^{1}=$	3.872		4.336	$\mathrm{t}_{2}=4.816$		${ }_{2}{ }^{2}=5.296$		${ }_{2} \quad 5.776$		${ }^{2}=$		$\mathrm{t}_{2}=$		$\mathrm{t}_{2}=$		$\mathrm{t}_{2}=$	
		$n=$	22	$n=$	22	$\mathrm{n}=$	23	$\mathrm{n}=$	24		25	$\mathrm{n}=$		$n=$		$n=$		$\mathrm{n}=$	
		$A_{1}$	$\mathrm{B}_{1}$	$\mathrm{A}_{2}$	$B_{2}$	$\mathrm{A}_{2}$	${ }_{8}$	$\mathrm{A}_{2}$	$\mathrm{B}_{2}$	$\mathrm{A}_{2}$	$\mathrm{B}_{2}$	$\mathrm{A}_{2}$	$8_{2}$	$\mathrm{A}_{2}$	$\mathrm{B}_{2}$	$A_{2}$	$\mathrm{B}_{2}$	$A_{2}$	$\mathrm{B}_{2}$
SELECTOR CHANNEL 1	2314	0	31.3	0	31.3	0	31.3	0	31.3	0	31.3								
Selector channel 2	2311	0	15.4	0	15.4	0	15.4	0	15.4	0	15.4								
SEL CH 3:	2311	0	15.4	0	15.4	0	15.4	0	15.4	0	15.4								
DEVICE 1	2702	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60								
DEVICE 2	2702	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60								
device 3	2702	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60								
DEVICE 4	2702	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60	3.59	7.60								
DEVICE 5																			
DEVCE 6																			
DEVICE 7																			
DEVICE 8																			
DEVICE 9																			
DEVICE 10																			
SUM A's And ${ }^{\text {B's }}$		14.36	92.5	14.36	92.5	14.36	92.5	14.36	92.5	14.36	92.5								
MULTIPLY: $\mathrm{t}_{\mathrm{i}} \times$ SUM $^{\mathrm{B}_{\mathrm{i}}}$			358.16	$x$	401.08	$>$	$445.48$		489.88		534.28								
A remainder					0		0		0		0								
B REMAINDER				42	92	87.	32	131.	. 72	176	12								
device load					39		39		. 39		. 39								
Previous load				10		10		10.		10	. 6								
LOAD SUM				54	91	99.	31	143.	. 71	188	11								
$\begin{aligned} & \text { LOAD } \\ & \text { LIMIIT } \end{aligned}$	15 Line 2702			46.4		94.4		142.4		190.4		238.4		286.4		334.4		382.4	
	31 Line 2702			97.6		196.8		296.0		395.2		494.4.		593.6		692.8		792.0	

MAXIMUM NUMBER OF REVOLUTIONS TO COMPLETE SERVICE: $n+(i-1) k=64$


MAXIMUM NUMBER OF REVOLUTIONS TO COMPLETE SERVICE: $n+(i-1) k=64$
system Ioentification MODEL 50-2702

maximum number of revolutions to complete service: n+(i-1)k-1.

Where more than one page-reference is given, major references appear first and in italic type.
Channel-to-channel ..... 8, 5
1052 ..... 5
Address compare (IAR) switch ..... 15, 16
Address switch ..... 15
Addressing of storage ..... 21
Arithmetic-logic unit ..... 7
Average timing formulas ..... 41
CCW chaining and fetching ..... 20
Central processing unit time, example of determining avail- able ..... 39
Chaining ..... 20
Channel
Chaining ..... 20
Characteristics ..... 19
Control ..... 19
Data chaining in gaps ..... 20
Evaluating a heavily loaded ..... 26
Fetching CCW's ..... 20
Implementation ..... 21
Late command chaining ..... 21
Multiplexer ..... 21
Priority ..... 22
Program conventions ..... 23
Registers ..... 20
Selector ..... 7, 8, 21
Storage Addressing ..... 21
-to-channel adapter feature ..... 8, 5
Channel interference
Evaluation procedure ..... 39 ..... 39
With CPU
With CPU
Channel loading
Multiplexer ..... 29
Selector ..... 27
Check reset key ..... 16
Classes of commands ..... 24
Command chaining ..... 21
Commands, classes of ..... 24
Compatibility features ..... 7
Concurrent input/output operations ..... 23
Configurator, Model 50 ..... 6
Console typewriter ..... 5
Control panel, system ..... 11, 5, 8
Conventions, channel program ..... 23
CPU time, example of determining ..... 39
Data chaining in gaps ..... 20
Data switch ..... 17, 16
Device load in multiplex mode evaluation ..... 29
Device priority in multiplex mode evaluation ..... 29
Device wait time in multiplex mode evaluation ..... 29
Direct control ..... 5 ..... 17, 16
Display key
Display key
Emergency pull switch ..... 14, 12
External interruption time ..... 50
Fetching CCW's ..... 20
Floating-point registers ..... 7
General channel information ..... 19
General registers ..... 7
IBM 2702 Transmission Control
Consideration of in multiplex mode evaluation ..... 33
Special analysis of performance of ..... 34
IBM 2821 Control Unit, consideration of in multiplex mode evaluation ..... 33
Initial program loading ..... 12
Input/output (I/O)
Interruption time ..... 50
Operations ..... 8
Operations, concurrent ..... 23
Input/output devices, command classifications for ..... 25
Instruction times ..... 41
Interference caused by priority devices ..... 30
Interference by channel( see "Channel interference")
Interruption
Key ..... 14, 12
Times ..... 50
Interval timer ..... 5
Key switch and meters ..... 18
Large capacity storage (LCS) timing ..... 48
Late command chaining ..... 21
Legend for System/360 timing ..... 50
Light
Load ..... 14, 12
Manual ..... 14, 12
System ..... 14, 12
Test ..... 14, 12
Wait ..... 15, 12
Load
Device ..... 29
Key ..... 14, 12
Light ..... 14, 12
Previous ..... 31
Priority ..... 30
Sum ..... 32
Unit switch ..... 14, 12
Local storage ..... 7, 5
Machine check interruption ..... 50
Main storage ..... 7
Manual light ..... 14, 12
Meters ..... 18
Multiplex mode evaluation
Device load in ..... 29
Device priority in ..... 29
Device wait time in ..... 29
Load sum in ..... 32
Previous load in ..... 31
Priority loads in ..... 30
Procedure ..... 32
Multiplexer
Channel ..... 8, 5, 21, 22
Channel loading ..... 29
Subchannels ..... 5, 8, 22
Operator controls ..... 12
Operator intervention controls ..... 15
Optional features, Model 50 ..... 5
Overrun ..... 23
Overrun test
Exception ..... 27
Procedure ..... 27

Panel, system control ...............................................11, 5, 8	
Performance time, lost	32
Power-on/off key	14, 12
Previous load in multiplex mode evaluation	31
Priority, channel	22
Priority device	30
Priority load	
Factors for 2702	36
Formula	31
Priority loads	30
Priority of devices in multiplex mode evaluation .............. 29	
Processing unit, 2050	7, 5
Processor storage	
Program interruption ................................................... 50	
PSW restart key	17, 16
Rate switch	17, 16
Read only storage	7, 5
Reset, system .............................................................. 11	
Reverse data parity switch	17, 16
SAR compare switch	17, 16
Selector channel	8, 21
Selector channel loading ................................................. 27	
Set IC key	17, 16
Special analysis of 2702 performance .............................. 34	
Start key	17, 16
Stop key ...................................................................18, 16	
Storage	
2361 Core	7, 5
Addressing ........................................................................................................................... 5	
Local	7, 5
Main ....................................................................... 7	
Protection	.5, 8

Read only ..... 7, 5
Select switch ..... 18, 16
Store key ..... 18, 16
Store and display ..... 11
Supervisor call interruption time ..... 50
System/360 timing legend ..... 50
System control function of
Initial program loading ..... 12
Store and display ..... 11
System reset ..... 11
System control panel ..... 11
System control panel controls
Operator controls ..... 12
Operator intervention controls ..... 16
Key switch and meters ..... 18
Light (test) ..... 14, 12
Light (wait) ..... 15, 12
System description ..... 5
System light ..... 14, 12
System reset ..... 11
System reset key ..... 17, 16
Test light ..... 14, 12
Time, lost performance ..... 32
Timing assumptions ..... 41
Timing considerations ..... 41
Timing legend ..... 50
Universal instruction set ..... 5, 10
Variable-field-length instructions ..... 47
Wait light ..... 15, 12
Wait time in multiplex mode evaluation ..... 29
Wait times, ranges of ..... 30
Waiting device ..... 30

- How did you use this publication?

As a reference source
As a classroom text
As a self-study text

- Based on your own experience, rate this publication...

As a reference source:	......	......	.....	Poor	
	Very	Good	Fair		Very
	Good				Poor
As a text:	...	......	$\cdots$		
	Very	Good	Fair	Poor	Very
	Good				Poor

- What is your occupation?
- We would appreciate your other comments; please give specific page and line references where appropriate. If you wish a reply, be sure to include your name and address.


## YOUR COMMENTS PLEASE . . .

This SRL bulletin is one of a series which serves as reference sources for systems analysts, programmers and operators of IBM systems. Your answers to the questions on the back of this form, together with your comments, will help us produce better publications for your use. Each reply will be carefully reviewed by the persons responsible for writing and publishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM system should be directed to your IBM representative or to the IBM sales office serving your locality.

fold
-

0


International Business Machines Corporation Data Processing Division
112 East Post Road, White Plains, N.Y. 10601 [USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]


[^0]:    ${ }^{\circ}$ Abnormal condition

[^1]:    * Punching and reading should be evaluated separately by using the wait times, device loads, and previous loads listed for the independent operations.

