
IBM System/360 Operating System

FORTRAN IV (H) Compiler

Program Logic Manual

Program Number 3605-F0-500

This publication describes the internal
design of the IBM System/360 Operating
System FORTRAN IV CH) compiler program.
Program Logic Manuals are intended for use
by IBM customer engineers involved in pro
gram maintenance, and by system programmers
involved in altering the program design.
Program logic information is not necessary
for program operation and use; therefore,
distribution of this manual is limited to
persons with program.maintenance or modi
fication responsibilities.

Restricted Distribution

Form Y28-6642-0'

Program Logic

First Edition (December 1966)

Changes or additions to the specifications contained in this publication
will be reported in subsequent revisions or technical newsletters.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

A form for readers' comments appears at the back of this publication.
It may be mailed directly to IBM. Address any additional comments
concerning this publication to the IBM Corporation, Programming Systems
Publications, Department 058, PO Box 390, Poughkeepsie, N. Y. 12602

This publication provides customer engi
neers and other technical personnel with
information describing the internal organi
zation and operation of the FORTRAN IV (H)

compiler. It is part of an integrated
library of IBM System/360 Operating System
Program Logic Manuals. Other publications
required for an understanding of the FOR
TRAN IV (H) compiler are:

IBM System/360 Operating System: Princi
ples of Operation, Form A22-6821

IBM System/360 Operating System: FORTRAN
IV, Form C28-6515-4

IBM System/360 Operating System: Intro
duction to Control Program Logic, Pro
gram Logic Manual, Form Y28-6605

IBM System/360 Operating System: FORTRAN
IV (H) Programmer's Guide, Form C28-6602

Although not required, the following
manuals are related to this publication and
should be consulted:

IBM System/360 Operating System: Sequen
tial Access MethodsL Program Logic Manu
~!, Form Y28-6604

IBM System/360 Operating System: Con
cepts and Facilities, Form C28-6535

IBM system/360~rati!!Q._§ystem: Control
Program Services, Form C28-6541

IBM System/360 Operating System: Linkage
Editor, Program Lo~ Manual, Form
Y28-6610

IBM System/360 Qperating System: System
Generation, Form C28-6554

This manual consists of two parts:

1. An Introduction, describing the FOR
TRAN IV CH) compiler as a whole,
including its relationship to the
operating system. The major compo
nents of the compiler and the rela
tionships among them are also de
scribed.

2. A Body, containing a description of
each component. Each component is
discussed in terms of the functions it
performs and the level of detail pro
vided is sufficient to enable the
reader to understand the general oper
ation of the component. In the dis
cussion of each £unction of a compo
nent, the routines that implement that
function are identified by name. The
inclusion of the routine names pro
vides a frame of reference for the
comments and coding supplied in the
program listing. The program listing
for each identified routine appears on
the microfiche card having the name of
that routine in its heading. This
section also discusses common data,
such as tables, blocks, and work
areas, but only to the extent required
to understand the logic of the compo
nents. Flowcharts and routine direc
tories are included at the end of this
section.

Following the second part are
of appendixes, which contain
material.

a number
reference

If more detailed information is
required, the reader should refer to the
comments, rewarks, and coding in the FOR
TRAN IV (H) program listing.

SECTION 1: INTRODUCTION • • • 11

Purpose of the Compiler •• • • 11

The Compiler and Operating system/360 •• 11

Input/Output Data Flow • • • 11

• • 11 Compiler Organization. • • • • •
FORTRAN system Director
Phase 10.
Phase 15. • • • • •
Phase 20 ••

• • • • 11
. • • • 12
. • • • 12

Phase 25.
Phase 30. • • • • •

Structure of the Compiler.

SECTION 2: DISCUSSION OF MAJOR
COMPONENTS. • . • • • • .

• • 13
• • 13
• • 13

• • 13

• • 14

FORTRAN System pirector. • • • 14
Compiler Initialization • • • • 14

Parameter Processing • • 14
Data Field Initialization. . . • • 14

Phase Loading • • • • • . • • • 14
Storage Distribution. • . • • 15

Phase 10 Storage • • 15
Phase 15 Storage • • • • 16
Phase 20 Storage • • . . • • 17

Input/Output Request Processing ••• 17
Request Format • • • • • • 17
Request Processing • • • • • • 18

Deletion of .a Compilation • • • • 18
Compiler Termination. • • • • 18

Phase 10 • • . . • • • • • • • • • • • • 18
Source Statement Processing • . • • • 19

Dispatcher Subroutine. • • • • • • 19
Preparatory Subroutine • . 19
Keyword subroutines. • • • • • 20
Arithmetic Subroutines • • 21
Utiiity Subroutines. • • 22

Phase 15 • • • • • • • • •
STALL Processing ••••

Rechaining Entries for
Checking for Undefined

Numbers • • • • • • •

- • 22
• 23

Variables • 23
Statement

• 23
Processing of Common Entries in
the Information Table • • •

Processing of Equivalence
Entries in the Information

• 23

Table • • • • • 24
PHAZ15 Processing • • • • • • • • 24

Text Blocking. • • • • • • • • • • 25
Arithmetic Translation • • • . • • 25
Gathering Constant/Variable

Usag·e Information • • • • • • • • 29
Gathering Forward Connection

Information • • • • • • • • • • • 31

CONTENTS

Reordering the Statement Number
Chain • • • • • • • • . • • • • • 32

Gathering Backward Connection
Information • • • • • • • • . 33

CORAL Processing. • • • • • • • • 34
Translation of Data Text . • . 34
Relative Address Assignment. . 35
Rechaining Data Text . . . • • • • 38
Reserving Space in the Adcon
Table • • • • • . • • . . • •

Producing a Storage Map .•
38

. • 38

Phase 20 • • • • • • • •
Control Flow. • • •
Register Assignment .

Basic Register Assignment.
Full Register Assignment •

Branching Optimization. • • •
Reserved Registers • • • •
Reserved Register Addresses.
Block Determination and

• 38
• 39
. 40
. 40
. 43
. 46
• 47
. 47

Subsequent Processing . • • . 47
Structural Determination. • • • • 48

Determination of Back Dominators • 49
Determination of Back Targets

and Depth Numbers . • • • • • • • 50
Identifying and Ordering Loops
for Processing. . • . . • . • •

Busy-On-Exit Information. • • • • •
Structured source Program Listing •
Loop Selection. • • • . •

Pointer to Back Target
Pointer to Forward Target.
Pointers to First and Last

• 51
. 51
• 53
• 53
. 54
. 54

Blocks ••.•••.•.••••• 54
Loop Composite Matrixes. • . 54

Text Optimization • • • • • • • 55
Common Expression Elimination. • • 55
Forward Movement • • 57
Backward Movement. • • . • • • • . 57
Strength Reduction • • . • • • • • 59

Full Register Assignment During
Complete Optimization. • • •

Branching Optimization During
Complete Optimization. •

• 60

• 61

Phase 25 • • • • • • • • . • 61
Text Information. • • • . . 61

Adcon Table Entry Reservation. • • 62
Constant Processing .•••••.. 62
Variable and Array Processing .•• 63
FORMAT Statement Processing •••• 63
NAMELIST Statement Processing •.. 63
Initialization Instructions •••• 64
Adcon Table Processing • • • • • . 65
Phase 15 Data Text Processing. • . 65
Prologue and Epilogue Generation • 65
Text -Conversion. • • . • • . 66

External Symbol Dictionary. • • • 70
Relocation Dictionary • . • 70

Phase 30 • • • • • • • • • • . 70

Message Processing •

APPENDIX A: TABLES. • •

Communication Table CNPTR)

Classification Tables.

Information Table. • • • • • •
Information Table Chains.
Chain Construction. • • • •
Operation of Information Table

• • • 70

•• 117

.117

•• 117

.120
• .120
• .120

Chains ••••••••••••••• 121
Dictionary Chain Operation •••• 121
Statement Number chain Operation .122
common Chain Operation ••• • ••• 122
Equivalence Chain Operation •.•• 123
Literal Constant Chain Operation .123
Branch Table Chain Operation ••• 124

Information Table Components ••••• 124
Dictionary • • • • • • • • • • • .124
Statement Number/Array Table .•• 128
Common Table • • • • • • • .131
Literal Table ••••••••••• 133
Branch Table . • • • • • .133

Subprogram Table •

Text Optimization Bit Tables •

Register Assignment Tables • •
Register use Table •

NAMELIST Dictionaries. .

Diagnostic Message Tables ••
Error Table • •
Message Pointer Table •

. • .135

. .137

.•• 139

.•• 139

••••• 140

• .141
•• 141

.141

APPENDIX B: INTERMEDIATE TEXT •.••• 143
Phase 10 Intermediate Text .•• 143

Intermediate Text Chains .•••• 143
Format of Intermediate Text

Entry • • • • • • • • •••• 144
Examples of Phase 10

Intermediate Text • • • .146

Phase 15/Phase 20 Intermediate Text
Modifications • • • • • • • • • . 150

Phase 15 Intermediate Text
Modifications ••••

Unchanged Text • •
Phase 15 Data Text
Statement Number Text. •
Standard Text. • •

Phase 20 Intermediate Text

. •• 150
..••• 150

.•. 150
.151

•• 154

Modification • • • • • • • • .155
Standard Text Formats Resulting

from Phases 15 and 20 Processing •• 156

APPENDIX C: ARRAYS •• •• 165

APPENDIX D: TEXT OPTIMIZATION
EXAMPLES •• •• 173

Example 1: Common Expression
Elimination • • • • • • • • . • • 173

Example 2: Forward Movement ••• 174
Example 3: Backward Movement ••• 175
Example 3': Simple-Store
Elimination ••••.•••••. 176

Example 4: Strength Reduction ••• 177

APPENDIX E: OBJEC·r-TIME LIBRARY
SUBPROGRAMS •• 179

IHCFCOMH . • . .••..• 179
READ/WRITE Routines • • .•. 180

READ/WRITE Statements Not Using
NAMELI-ST. . • • • • . • • • . • • 18 0

Examples of IHCFCOMH READ/WRITE
Statement Processing ••••••• 184

READ/WRITE Statement Using
NAMELIST. • • • • . • • • • . . .187

I/O Device Manipulation Routines •.•• 187
Write-To-Operator Routines • • . •• 188
Utility Routines • • • • • . • . • .188

Conversion Routines CIHCFCVTH) •• 189

IHCFIOSH • • . • • • • • • • •• 189
Blocks and Tables Used. •

Unit Blocks ••••••
Unit Assignment Table.

• • • . • .18 9
• • • . • .189
• • • . . .190

Buffering • • • • • • . .
Communication With the Control

Program •••

..•• 191

• .191
•• 192 Operation ••

Initialization • • • . • .192
Read • • . • • •
Write. . . • . • •.•

.•• 193
.193

.• 194 Device Manipulation. •
Closing •••••• . • • . • .194

IHCDIOSH • • . • • • • • • .194
Blocks and Table Used • . • .194

Unit Blocks. • • • • •..•• 194
Unit Assignment Table. . .• 196

Buffering ...••••••••.•• 196
Communication With the Control

Program. • • . • • • • • • .197
Operation ••.•••••.•..•• 197

File Definition Section. • •.•. 197
File Initialization Section •..• 197
Read Section ••••••.•.•• 198
Write Section ••••••••.•. 199
Termination Section. 199

IHCIBERH .

IHCDBUG.
Items and Buff er •
Operation. • . • • • .
Subroutines ••

APPENDIX F: ADDRESS COMPUTATION FOR
ARRAY ELEMENTS. • •.•••

Absorption of Constants in
Subscript Expressions •

Arrays as Parameters . • .

• .199

.200
• .200
.• 200
. .201

.• 213

• .213
•• 213

APPENDIX G: COMPILER STRUC'rURE .•.•. 214

APPENDIX H: DIAGNOSTIC MESSAGES . .221

APPENDIX I: THE TRACE AND DUMP
FACILITIES.

Trace ••
Dump •••••

INDEX ••

. • • • . . . 225
• • • • . • . 225

.226

•• 227

Figure 1. Input/Output Data Flow. . . • 12
Figure 2. Storage Inventory for Phase

10 Normal, SF Skeleton, and Data Text • 16
Figure 3. Chaining of Unused Text

Area Main Storage • • • . . • • . . 17
Figure 4. Format of Prepared Source
Statement • • • • • • • • 2 0

Figure 5. Text Blocking • 26
Figure 6. Text Reordering Via the

Pushdown Table. • . • • • . . • • 27
Figure 7. Forward Connection

Information • . • • • • • • • 32
Figure 8. Backward Connection

Information • . • • • . • • • 34
Figure 9. Back Dominators • • 48
Figure 10. Back Targets and Depth

Numbers • • . . • • • • • • • 49
Figure 11. Storage Layout for Text
Information construction. • • • • • 62

Figure 12. .Information I'able Chains •• 121
Figure 13. Dictionary Chain • • . .122
Figure 14. Format of Dictionary Entry
for Variable .•••••.••..••. 124

Figure 15. Function of Each subfield
in the Byte A Usage Field of a
Dictionary Entry for a variable ..•• 124

Figure 16. Function of Each Subfield
in the Byte B Usage Field of a
Dictionary Entry for a VariablE .125

Figure 17. Format of Dictionary Entry
for Variable After Sorting. • • .126

Figure 18. Format of Dictionary Entry
for Variable After Commom Block
Processing. . . •126

Figure 19. Format of Dictionary Entry
for Variable After PHAZ15 Processing •• 126

Figure 20. Format of Dictionary Entry
for a Variable After Relative Address
Assignment. • • . • • • • • • . .126

Figure 21. Format of Dictionary Entry
for Constant. • • • • . . • • . .127

Figure 22. Format of Dictionary Entry
for Constant After Sorting. • • . .127

Figure 23. Format of Dictionary for
Constant After PHAZ15 Processing 127

Figure 24. Format of Dictionary Entry
for Constant After Relative Address
Assignment. . • . . • . • • • • . . • .128

Figure 25. Format of a Statement
Number Entry ...••.•••...•. 128

Figure 26. Function of Each Subfield
in the Byte A Usage Field of a
Statement Number Entry •.•••.... 128

Figure 27. Function of Each Subfield
in the Byte B Usage Field of a
Statement Number Entry ..•••.... 129

Figure 28. Format of Statement Number
Entry After the Processing of Phases
15, 20, and 25 .•.•.•••..... 129

Figure 29. Function of Each Subfield
in the Block Status Field ••....• 130

Figure 30. Format of Dimension Entry .• 130

FIGURES

Figure 31. Format of a Common Block
Name Entry. • • . • . . • . . • • • . .131

Figure 32. Format of Common Block
Name Entry After Common Block
Processing. • • • . •.••••. 131

Figure 33. Format of an Equivalence
Group Entry • • • • • . • • • . .132

Figure 34. Format of Equivalence
Group Entry After Equivalence
Processing •••.......•••.• 132

Figure 35. Format of Equivalence
Variable Entry •.....••••••. 132

Figure 36. Format of Equivalence
Variable Entry After Equivalence
Processing. . • • • . • • .132

Figure 37. Format of Literal Constant
Entry ...••.•....••••.. 133

Figure 38. Format of Literal Constant
Entry After Relative Address
Assignment ••.•..•..••••. 133

Figure 39. Format of Literal Data
Entry . . . • •133

Figure 40. Format of Initial Branch
Table Entry ••••..••..••.. 134

Figure 41. Format of Initial Branch
Table Entry After Phase 25
Processing ••....•..••••• 134

Figure 42. Format of Standard Branch
Table Entry ••.•.•...••..• 134

Figure 43. Format of Standard Branch
Table Entry After Phase 25
Processing • • .135

Figure 44. Format of Namelist Name
Entry • . . • • • • .140

Figure 45. Format of Namelist
Variable Entry. • .140

Figure 46. Format of Namelist Array
Entry • • . • • . . .140

Figure 4 7. Intermediate ·rext Entry
Format. • • . • • • • .144

Figure 48. Phase 10 Normal Text •... 146
Figure 49. Phase 10 Data Text ••.•. 147
Figure 50. Phase 10 Namelist Text ••• 148
Figure 51. Phase 10 Format Text ••... 149
Figure 52. Phase 10 SF Skeleton Text •• 149
Figure 53. Format of Phase 15 Data
Text Entry .•••••......... 150

Figure 54. Function of Each Subfield
in Indicator Field of Phase 15 Data
Text Entry. • • • • • • . . .150

Figure 55. Format of Statement Number
Text Entry ..•....•..••..• 151

Figure 56. Function of Each subfield
in Indicator Field of Statement
Number Text Entry . . • . . . • .153

Figure 57. Format of a Standard Text
Entry . • • • .154

Figure 58. Format of Phase 20 Text
Entry•.......... 155

Figure 59. Relationship Between
ItlCFCOMH and I/O Data Management
Interfaces ..•....•...•... 180

Figure 60. Format of a Unit Block for
a Sequential Access Data Set ••••.• 189

Figure 61. Unit Assignment Table
Format. • • • • • • . . • • • • • . • .191

Figure 62. CTLBLK Format4 ••••••• 192
Figure 63. Format of a Unit Block for

a Direct Access Data set •••••••. 195
Figure 64. Unit Assignment Table
Entry for a Direct Access Data Set ••. 196

Figure 65. Compiler overlay Structure .214

Table 1. Operators and Forcing
Strengths • • • • • • • • • • • • • • • 2 6

Table 2.- Item Types and Registers
Assigned in Basic Register
Assignment. • • • • • • • • • • •

Table 3. Text Entry Types .•••
Table 4. Operand Characteristics That

• 41
. 56

Permit Simple-Store Elimination • • • • 58
Table 5. FORMAT Statement Translation . 63
Table 6. FSD Subroutine Directory • 75
Table 7. Phase 10 Source Statement
Processing ••••••.••• • • 77

Table 8. Phase 10 Subroutine
Directory • • • • • • . • • • • . • • • 78

Table 9. Phase 15 subroutine
Directory • • • • • • • . • •

Table 10. Criteria for Text
Optimization. • • • • . . . •

Table 11. Phase 20 Subroutine
Directory • • • • • . . • • •

Table 12. Phase 20 Utility
Subroutines • . • • • • • • •

Table 13. Phase 25 subroutine
Directory • • • • • • •

Table 14. Phase 30 Subroutine
Directory • • • •

Table 15. Communication Table
CNPTR(2,35)) .••••••

Table 16. Keyword Pointer Table .
Table 17. Keyword Table •
Table 18. Operand Modes ••
Table 19. Operand Types •
Table 20. Subprogram Table. •
Table 21. Text Optimization Bit

Tables ••••••••••.

• • • 8 9

.•. 104

.•• 105

.•. 108

. • .111

. • .115

• • .118
. • .119

•• 119
••• 125

.125
..• 136

Table 22. Local Assignment Tables •
Table 23. Global Assignment Tables.
Table 24. Adjective Codes • • • . •
Table 25. Phase 15/20 Operators . •
Table 26. Meanings of Bits in Mode

.138
•• 139
•• 139
•• 144
• .151

Field of Standard Text Entry ••.••• 155

TABLES

Table 27. status Field Bits and Their
Meanings. • . • • . • • . . . • • .156

Table 28. IHCFCOMH FORMAT Code
Processing. • • • . • . •182

Table 29. IHCFCOMH Processing for a
READ Requiring a Format •185

Table 30. IHCFCOMH Processing for a
WRITE Requiring a Format.185

Table 31. IHCFCOMH Processing for a
READ Not Requiring a Format . . .186

Table 32. IHCFCOMH Processing for a
WRITE Not Requiring a Format. . .186

Table 33. IHCFCOMH Subroutine
Directory

Table 34. IHCFCVTH Subroutine
.. 205

Directory • • . • • . • • . . • .205
Table 35. IHCFIOSH Routine Directory .. 210
Table 36. IHCDIOSH Routine Directory .. 210
Table 37. Phases and Their Segments .215
Table 38. Segment-1 composition . • .215
Table 39. segment-2 Composition •. 215
Table 40. Segment-3 Composition •. 215
Taole 41. Segment-4 composition • • .216
Table 42. Segment-5 Composition •. 216
Table 43. Segment-6 Composition .. 216
Table 44. Segrnent-7 Composition ..•. 216
Table 45. Segment-e Composition • . .217
Table 46. Segment-9 Composition .. 217
Table 47. Segrnent-10 Composition. • .218
Table 48. Segrut:nt-11 Composition. . . 218
Table 49. Segrnent-13 Composition. • .218
Table 50. Segrnent-14 Composition. . .218
Table 51. Segment-15 Composition. . .218
Table 52. Segment-16 Composition. . .219
Table 53. Segrnent-17 Composition. • .219
Table 54. Segrnent-18 Composition. . .219
Table 55. Segment-19 Composition. • .219
Table 56. Segment-20 Composition. • .220
Table 57. Basic TRACE Keyword Values

and output Produced•. 225

CHARTS

Chart 00. Compiler Control Flow • • • . 72
Chart 01. FSD Overall Logic • • • • • . 73
Chart 02. FSD Storage Distribution ..• 74
Chart 03. Phase 10 overall Logic. . 76
Chart 04. Phase 15 Overall Logic .••• 83
Chart 05. STALL overall Logic • 84
Chart 06. PHAZ15 overall Logic ••.•• 85
Chart 07. ALTRAN Control Flow ••.•• 86
Chart 08. GENER - Text Generation .•• 87
Chart 09. CORAL overall Logic •.••. 88
Chart 10. Phase 20 Overall Logic •.•• 93
Chart 11. Common Expression
Elimination (XPELIM). • • • • • • • 94

Chart 12. Forward Movement CFORMOV) •• 95
Chart 13. Backward Movement CBACMOV) •• 96
Chart 14. Strength Reduction (REDUCE) • 97
Chart 15. Full Register Assignment

CREGAS) . • • • • • • • • • . • • 98
Chart 16. Table Building (FWDPAS) • 99
Chart 17. Local Assignment CBKPAS) •.• 100
Chart 18. Global Assignment (GLOBAS) •• 101
Chart 19. Text Updating (STXTR) •••• 102

Chart 20. Text Updating (STXTR)
(Continued) • . • • . . • . .. 103

Chart 21. Phase 25 (Initial Text
Information Construction) ..•.... 109

Chart 22. Phase 25 (Text Conversion) .. 110
Chart 23. Phase 30 CIEKP30) Overall

Logic . . • • . • . . • . • • • . .114
Chart 24. IHCFCOMH Overall Logic and
Utility Routines .•..•...•. .202

Chart 25. Implementation of
READ/WRITE/FIND Source Statements ... 203

Chart 26. Device Manipulation,
Write-to-Operator, and READ/WRIT~
Using NAMELIST Routines . . . • •

Chart 27. IHCFIOSH Overall Logic.
Chart 28. Execution-Time I/O Recovery

.204

.206

Procedure ••••..•.•..••.. 207
Chart 29. IHCDIOSH Overall Logic -
File Definition Section •.....•. 208

Chart 30. IHCDIOSH Overall Logic -
File Initialization, Read, Write, and
Termination Sections. • • . . 209

Chart 31. IHCIBERH Overall Logic. .211

This section contains general inf orma~
tion describing the purpose of the FORTRAN
IV CH) compiler, its relationship to the
operating system, its input/output data
flow, its organization, and its structure.

PURPOSE OF THE COMPILER

The IBM System/360 Operating System FOR
TRAN IV CH) compiler transf orrns source
modules written in the FORTRAN IV language
into object modules that are suitable for
input to the linkage editor for subsequent
execution on the System/360. At the user's
option, the compiler produces optimized
object modules (modules that can be execut
ed with improved efficiency).

THE COMPILER AND OPERATING SYSTEM/360

The FORTRAN IV CH) compiler is a proc
essing program which communicates with the
System/360 Operating system control program
for input/output and other services. A
general description of the control program
is given in the publication IBM System/360
Operating System: Introduction to Control
Program Logic, Program Logic Manual.

A compilation, or a batch of compila
tions, is requested using the job statement
(JOB), the execute statement (EXEC), and
data definition statements CDD). Alterna
tively, cataloged procedures may be used.
A discussion of FORTRAN IV compilation and
the available cataloged procedures is given
in the publication IBM System/360 Operating
System: FORTRAN IV Programmer's Guide.

The compiler receives control from the
calling program (e.g., job scheduler or
another program that calls, links to, or
attaches the compiler). Once the compiler
receives control, it communicates with the
control program through the FORTRAN system
director, a part of the compiler that
controls compiler processing. After com
piler processing is completed, control is
returned to the operating system.

INPUT/OUTPUT DATA FLOW

The source modules to be compiled are
read in from the SYSIN data set. Compiler
output is placed on the SYSLIN, SYSPRINT,
SYSPUNCH, or SYSUTl data set, depending on
the options specified by the FORTRAN pro-

SECTION 1: INTRODUCTION

gramrner. (The SYSPRINT data set is always
required for compilation.)

The overall data flow and the data sets
used for the compilation are illustrated in
Figure 1.

COMPILER ORGANIZATION

The IBM System/360 Operating System FOR
TRAN IV CH) compiler consists of the FOR
TRAN system director, four logical process
ing phases (phases 10, 15, 20, and 25), and
an error-handling phase Cphase30).

Control is passed among the phases of
the compiler via the FORTRAN system direc
tor. After each phase has been executed,
the FORTRAN system director determines the
next phase to be executed, and calls that
phase. The flow 0f control within the
compiler is illustrated in Chart 00.

The components of the compiler operating
together produce an object module from a
FORTRAN source module. The object module
is acceptable as input to the linkage
editor, which prepares object rnodules for
relocatable loading and execution.

The object module consists of control
dictionaries (external symbol dictionary
and relocation dictionary>, text
<representing the actual machine instruc
tions and data), and an END statement. The
external symbol dictionary CESD) contains
the external symbols that have been defined
or ref erred to in the source module. The
relocation dictionary CRLD) contains infor
mation about address constants in the
object module.

The functions of the components of the
compiler are described in the following
pa rag ra phs.

FORTRAN SYSTEM DIRECTOR

The FORTRAN system director CFSD) con
trols compiler processing. It initializes
compiler operation, calls the phases for
execution, and distributes and keeps track
of the main storage used during the compi
lation. In addition, the FSD receives the
various input/output requests of the com
piler phases and submits them to the con
trol program.

Section 1: Introduction 11

SYSIN

Source
Module (s)

FORTRAN IV
(H) Compiler

SOURCE
Option

EDIT
Option

t

MAP
Option

LOAD
Option

DECK
Option

LIST
Option

For All
Compilations

Source
Module
Listing

Intermediate
Output

for EDIT

Object Module Object Module Object
Program
Listing

Error and
Warning
Messages

Storage (ESD, TXT, (ESD, TXT,
Map RLD, and END RLD, and END

card images) card images) (If Any)

SYSPRINT SYSUTl

Structured
Source
Listing

SYSPRINT

SYSPRINT

Figure 1. Input/Output Data Flow

PHASE 10

SYSLIN

Phase 10 accepts as input Cf rom the
SYSIN data set> the individual source
statements of the source module. If a
source module listing is requested, the
source statements are recorded on the
SYSPRINT data set. If the EDIT option is
selected, the source statements are record
ed on the SYSUTl data set, which phase 20
uses as input to produce a structured
source listing. Phase 10 converts each
source statement into a form usable as
input by succeeding phases. This usable
input consists of an intermediate text
representation Cin operator-operand pair
format) of each source statement. In addi
tion, phase 10 makes entries in an informa
tion table for the variables, constants,
literals, statement numbers, etc., that
appear in the source statements. · During
this conversion process, phase 10 also
analyzes the source statements for syntac
tical errors. If errors are encountered,
phase 10 passes to phase 30 Chy making
entries in the error table) the information
needed to print the appropriate error mes
sages.

PHASE 15

Phase 15 gathers additional information
about the source module and modifies some
intermediate text entries to facilitate
optimization by phase 20 and instruction
generation by phase 25. Phase 15 is divid-

12

SYS PUNCH SYSPRINT SYSPRINT

ed into three segments that perform the
following functions:

• The first segment adds data to the
information table about COMMON and
EQUIVALENCE statements so that main
storage space can be allocated correct
ly in the object module.

• The next segment translates text
entries Cin operator-operand pair
format) representing arithmetic opera
tions into a four-part form, which is
needed for optimization by phase 20 and
instruction-generation by phase 25.
This part of phase 15 also gathers
information about the source module
that is needed for optimization by
phase 20.

• The last segment of phase 15 assigns
relative addresses, and where neces
sary, address constants to the named
variables and constants in the source
module. This segment also converts
intermediate text C in operator-ope.rand
pair format) representing DATA state
ments to a variable-initial value form,
which facilitates later assignment of a
constant value to a variable. In addi
tion, this segment produces a storage
map if the MAP option is specified.

Phase 15 also passes to phase 30 the
information needed to print the appropriate
messages for the errors detected during
phase 15 processing. {This is done by
making entries in the error table.)

PHASE 20

Phase 20 processing depends on whether
or not optimization has been requested and,
if so, the degree of optimization desired.

If optimization has not been specified,
phase 20 assigns registers for use during
execution of the object module. However,
phase 20 does not take full advantage of
all registers and makes no effort to keep
frequently used quantities in registers to
eliminate the need for some machine
instructions.

If a moderate amount of optimization is
specified, phase 20 uses all available
registers and keeps frequently used quanti
ties in registers wherever possible. Phase
20 takes other measures to reduce the size
of the object module, and provides informa
tion about operands to phase 25.

If complete optimization has been speci
fied, phase 20 uses other techniques to
make a more efficient object module. The
net result of these procedures is to elimi
nate unnecessary instructions and to elimi
nate needless execution of instructions.

During processing, phase 20 records
directly on the SYSPRINT data set messages
describing any errors it detects and, if
both the EDIT option and complete optimiza
tion are selected, produces, on the SYS
PRINT data set, a structured source program
listing.

PHASE 25

Phase 25 produces an object module from
the combined output of the preceding phases
of the compiler.

The text information <instructions and
data resulting from the compilation) is in

a relocatable machine language form. It
may contain unresolved external symbolic
cross references (i.e., references to sym
bols that do not appear in the source
module). The external symbol dictionary
contains the information required by the
linkage editor to resolve external symbolic
cross references, and the relocation dic
tionary contains the information needed by
the linkage editor to relocate the text
information.

Phase 25 places the object module
resulting from the compilation on the SYS
LIN data set if the LOAD option is speci
fied, and on the SYSPUNCH data set if the
DECK option is specified. Phase 25 also
produces an object module listing on the
SYSPRINT data set if the LIST option is
specified. Messages for any errors detect
ed during phase 25 processing are also
recorded directly on SYSPRINT.

PHASE 30

Phase 30 is called after phase 15 proc
essing is completed only if errors are
detected by phases 10 or 15. Phase 30
records on the SYSPRINT data set messages
describing the detected errors.

STRUCTURE OF THE COMPILER

The FORTRAN IV CH) compiler is struc
tured in a planned overlay fashion, which
consists of 20 segments. Two of these
segments constitute the FORTRAN system
director. The largest of these two seg
ments is the root segment of the planned
overlay structure. Each of the remaining
18 segments constitutes a phase or a logi
cal portion of a phase. A detailed discus
sion of the compiler's planned overlay
structure is given in Appendix G.

Section 1: Introduction 13

SECTION 2: DISCUSSION OF MAJOR COMPONENTS

The following paragraphs and associated
flowcharts at the end of this section
describe the major components of the FOR
TRAN IV CH) compiler. Each component is
described to the extent necessary to
explain its function(s) and general opera
tion.

FORTRAN SYSTEM DIRECTOR

The FORTRAN System Director (FSD) con
trols compiler processing; its overall
logic is illustrated in Chart 01. The FSD
receives control from the job scheduler if
the compilation is defined as a job step in
an EXEC statement. The FSD may also
receive control from another program
through use of one of the system macro
instructions (CALL, LINK, or ATTACH).

The FSD performs compiler initial
ization, phase loading, storage
distribution (including storage inventory),
input/output request processing, compila
tion deletion, and compiler termination.

COMPILER INITIALIZATION

The initialization of compiler process
ing by the FSD consists of two steps:

• Parameter processing.
• Data field initialization.

Parameter Processing

When the FSD is given control, the
address of a parameter list is contained in
a general register. If the compiler
receives control as a result of either an
EXEC statement in a job step or an ATTACH
or CALL macro-instruction in another pro
gram, the parameter list has a single
entry, which is a pointer to the main
storage area containing an image of the
options (e.g., SOURCE, MAP) specified for
the compilation. If the compiler receives
control as a result of a LINK macro
instruction in another program., the param
eter list may have a second entry, which is
a pointer to the main storage area contain
ing substitute ddnames (i.e., ddnames that
the user wishes to substitute for the
standard ones of SYSIN, SYSPRINT, SYSPUNCH,
SYSLIN, and SYSUTl).

COMPILER OPTIONS: To determine the options
specified for the compilation and to inform
the various compiler phases of these
options, the FSD scans and analyzes the

14

... ,.,.

storage area containing their images and
sets indicators to reflect the ones speci
fied. These indicators are placed into the
communication table Cref er to Appendix A,
ncommunication Table") during data field
initialization. The various compiler phas
es have access to the communication table,
and, from the indicators contained in it,
can determine which options have been
selected for the compilation.

SUBSTITUTE DDNAMES: If the user wishes to
substitute ddnames for the standard ones,
the FSD must establish a correspondence
between the DD statements having the sub
stitute ddnames and the DCBs (Data Control
Blocks) associated with the ddnames to be
replaced. To establish this necessary cor
respondence, the FSD scans the storage area
containing the substitute ddnames, and
enters each such ddname into the DCBDDNM
field of the DCB associated with the stan
dard ddname it is to replace.

Data Field Initialization

Data field initialization is concerned
with the communication table, which is a
central gathering area used to communicate
information among the phases of the compil
er. It contains information such as:

• User specified options.

• Pointers indicating the next available
locations within the various storage
areas.

• Pointers to the initial entries in the
various types of chains <ref er to
Appendix A, "Information Table" and
Appendix B, "Intermediate Text").

• Name of the source module being com
piled.

• An indication of the phase currently in
control.

The various fields of the communication
table, which are filled during a compila
tion, must be initialized before the next
compilation. To initialize this region,
the FSD clears it and places the option
indicators into the fields reserved for
them.

PHASE LOADING

The FSD loads and passes control to each
phase of the compiler by means of a stan-

dard calling sequence. The execution of
the call causes control to be passed to the
overlay supervisor, which calls program
fetch to read in the phase. Control is
then returned to the overlay supervisor,
which branches to the phase. The phases
are called for execution in the following
sequence: phase 10, phase 15, phase 20, and
phase 25. However, if errors are detected
by phase 10 or phase 15, phase 30 is called
after the completion of phase 15 process
ing.

STORAGE DISTRIBUTION

Phases 10, 15, and 20 require main
storage space in which to construct the
information table (refer to Appendix A,
ninformation Table") and to collect inter
mediate text entries. These phases obtain
this storage space by submitting requests
to the FSD Cat entry point GETCOR), which
allocates the required space, if available,
and returns to the requesting phase point
ers to both the beginning and end of the
allocated storage space. If main storage
space is not available, the FSD deletes the
compilation.

The main storage space available for
building the information table or for col
lecting text entries is assembled into the
FSD in the form of define storage CDS)
statements. The distribution of the avail
able storage by the FSD depends upon the
phase requesting the storage. For this
reason, the remainder of this discussion is
divided into three parts: the first relat
ing to phase 10, the second to phase 15,
and the third to phase 20.

Phase 10 Storage

Phase 10 can use all of the available
storage space for building the information
table and for collecting text entries. At
first, the FSD presents the entire block of
available main storage space to phase 10
for use in building the inf orrnation table.
At each phase 10 request for main storage
in which to collect text entries, the FSD
reallocates a portion <i.e., a sub-block)
of the storage (first allocated to the
information table) for text collection, and
returns to phase 10 either via the communi
cation table or the storage area PlOA
(depending upon__t.be type of text to be
collected in the sub-block; ref er to Appen
dix B, "Phase 10 Intermediate Text") point
ers to both the beginning and end of the
allocated storage space. If the sub-block
is allocated for phase 10 normal text, the
pointers are returned in the communication
table. If the sub-block is allocated for a
phase 10 text type other than normal text,
the pointers are returned via the storage
area PlOA. After the storage has been

allocated, the FSD adjusts the end of the
information table downward by the size of
the allocated sub-block. This process is
repeated for each phase 10 request for main
storage space in which to collect text
entries. (If the last information table
entry and the sub-block to be allocated for
text collection would overlap, the avail
able storage is split, with one part being
allocated for building the information
table and the other for collecting text
entries.)

The size of each sub-block allocated for
the collection of phase 10 text entries
depends upon the type of the text entries
that are to be placed into the sub-block.
All sub-blocks allocated to contain the
same type of phase 10 text entries are of
the same size.

sub-blocks to contain phase 10 text
entries are allocated in the order in which
requests for main storage are received.
(When phase 10 completely fills one sub
block with text entries, it requests
another.> A request for a sub-block to
contain a particular type of text entries
may immediately follow a request for a
sub-block to contain another type of text
entries. Consequently, sub-blocks allocat
ed to contain the same type of text entries
may be scattered throughout main storage.
The FSD must keep track of the sub-blocks
so that, at the completion of phase 10
processing, unused or unnecessary storage
may be allocated to phase 15. The manner
in which the FSD keeps track of sub-blocks
allocated to phase 10 is described in the
following paragraph.

Phase 10 Storage Inventory: The FSD
employs a pointer table and chains (see
Figure 2) to keep track of the sub-blocks
allocated for phase 10 text entries. If
the sub-block allocated is the first to be
used for the collection of a particular
type of phase 10 text, the FSD places a
pointer to that sub-block into the pointer
table. After the initial link is estab
lished, the size of the sub-block is placed
into the sub-block itself. If a second
sub-block is allocated for the same pur
pose, the FSD places a pointer to it into
the first word of the first sub-block
allocated for that purpose. The size of
the sub-block is then placed into the
sub-block itself. If a third sub-block is
allocated fur the same --purpes-e--,- --the- same
procedure is followed, with a pointer to
the third sub-block being placed into the
first word of the second sub-block. Figure
2 illustrates this concept as applied to
sub-blocks allocated to contain phase 10
normal, SF skeleton, and data text. (The
pointer field of the last sub-block of each
type is always zero.)

Section 2: Discussion of Major Components 15

FSD Pointer Table

Pointer

Pointer f-----i

Pointer ~

~
VJ

R
R
~

'll.

'lt.
•-..,-

I

'
Start

First sub-block allocated
Pointer J Size l for normal text entries

First sub-block allocated
Pointer J Size l for SF skeleton text entries

First sub-block allocated
Pointer] Size l for data text entries

Second sub-block allocated
Pointer J Size l for normal text entries

Second sub-block al located
Pointer J Size I for SF skeleton text entries

Third sub-block allocated
Pointer J Size] for normal text entries

Second sub-block al located
Pointer J Size l for data text entries

Last sub-block al located
0] Size l for SF skeleton text entries

Last sub-block allocated
0 l Size l for data text entries

Last sub-block allocated
0 1 Size J for normal text entries

Current Storage
Available for

Information Table

* Current end of information table storage, which may

-End

Available Storage
{initially all al located
to information table)

float downward if additional storage is required by phase
10 for text collection.

Figure 2. Storage Inventory for Phase 10 Normal, SF Skeleton, and Data Text

Phase 15 Storage

Phase 15, in collecting the text entries
that it creates, can use only those por
tions of main storage that are Cl) unused
by phase 10, and (2) occupied by phase 10
normal text entries that have been proc
essed by phase 15. The FSD first allocates
all unused storage (if necessary) to phase
15. If this is not sufficient, the FSD
then allocates the storage occupied by
phase 10 normal text entries that have
undergone phase 15 processing.

The main storage not used by phase 10
consists of:

• The portion between the last sub-block
allocated to phase 10 for text collec
tion and the end of the information
table.

• Those portions of the sub-blocks allo
cated to phase 10 that do not contain
text entries. (The last sub-block
allocated to each type of phase 10 text
may not be completely filled·.>

After phase 10 processing is complete,
the FSD splits the storage area between the

16

last sub-block allocated to phase 10 and
the last information table entry, allocates
one part to the information table, and
treats the other part as an unused text
storage area. The individual portions of
unused storage, excluding the portion allo
cated to the information table, are then
chained together (see Figure 3). The first
phase 15 request for storage for text
collection is satisfied with the unused
portion between the last sub-block allocat
ed to phase 10 and the end of the informa
tion table. Pointers to both the beginning
and end of the storage are passed to phase
15 via the communication table. Each sub
sequent phase 15 request for text area
storage is satisfied with an unused portion
of a phase 10 sub-block. (Sub-block por
tions are allocated in the order in which
they are chained.) Pointers to both the
beginning and end of the allocated sub
block portion are passed to phase 15 via
the communication table. If an additional
request is received after the last sub
block portion is allocated, the FSD
determines the last phase 10 normal text
entry that was processed by phase 15. The
FSD then frees and allocates to phase 15
the portion of storage occupied by phase 10
normal text entries between the first such
text entry and the last entry processed by
phase 15.

Phase 15 Storage Inventory: After the
processing of PHAZ15, the second segment of
phase 15, is completed, the FSD recovers
the sub-blocks that were allocated to phase
10 normal and SF skeleton text. These
sub-blocks are chained as extensions to the
storage space available at the completion·
of PHAZ15 processing. The chain, which
begins in the FSD pointer table, connecting
the various available portions of storage
is scanned and when a zero pointer field is
encountered, a pointer to the first sub
block allocated to phase 10 normal text is
placed into that field. The chain
connecting the various sub-blocks allocated
to phase 10 normal text is then scanned and
when a zero pointer field is encountered, a
pointer to the first sub-block allocated to
SF skeleton text is placed into that field.
Once the sub-blocks are chained in this
manner, they are available for allocation
to CORAL, the third segment of phase 15,
and to phase 20.

After the processing of CORAL is com
pleted, the FSD likewise recovers the sub
blocks allocated for phase 10 data text.
The chain connecting the various portions
of available storage space is scanned and
when a zero pointer field is encountered, a
pointer to the first sub-block allocated
for phase 10 data text is placed into that
field. After the sub-blocks allocated for
phase 10 data text are linked into the
chain as described above, they, as well as
all other portions of storage space in the
chain, are available for allocation to
phase 20.

Phase 20 Storage

Each phase 20 request for storage space
is satisfied with a portion of storage
available at the completion of CORAL
processing. The portions of storage are
allocated to phase 20 in the order in which
they are chained. Pointers to both the
beginning and end to the storage allocated
to phase 20 for each request are placed
into the corrununication table.

INPUT/OUTPUT REQUEST PROCESSING

The FSD routine IEKFCOMH receives the
input/output requests of the compiler phas
es and submits them to BSAM (Basic Sequen
~ial Access Method) for implementati~n
{refer to IBM System/360 Operating system:
Sequential Access Methods, Program Logic
Manual.>

Request Format

Phase requests for input/output services
are made in the form of READ/WRITE state
ments requiring a FORMAT statement. The
format codes that can appear in the FORMAT
statement associated with such READ/WRITE
requests are a subset of those available in
the FORTRAN IV language. The subset con
sists of the following codes: I~ (output
only), T~, A~, ~x, ~H, and z~ <output
only>.

-- End

Completely Filled with Phase 10 Text Entries

I Unused Portion of Sub-block I

~ 0 l
l i Unused Portion

of Sub-block
I Pointer 1

I Unused Portion of Sub-block I

.----: Pointer l
T

Available Storage
I Unused Portion of Last Phase I
I 10 Sub-block (first sub-block
I portion allocated to phase 15) I

:! Pointer 1
FSD first allocates this portion of unused storage to
phase 15. Sub-block portions are then allocated
in the order in which they are chained together.

Pointer l End of information table.
- (Fixed after phase 10 processing.)

Information Table

Start --

Figure 3. Chaining of Unused Text Area Main Storage
©

Section 2: Discussion of Major Components 17

Request Processing

To process input/output requests from
the compiler phases, the FSD performs a
series of operations, which are a subset of
those carried out by the IHCFCOMH/IHCFIOSH
combination (refer to Appendix E) to imple
ment sequential READ/WRITE statements
requiring a format.

DELETION OF A COMPILATION

The FSD deletes a compilation if either
of the following occurs:

• An error of error level code 16 (ref er
to the publication IBM System/360 Oper
ating System: FORTRAN IV Programmer's
Guide) is detected during the execution
of a processing phase.

• The value of the error level code
returned from phase 30 is 8 and the
LOAD option has not been specified.

In the former case, the phase detecting
the error passes control to the FSD at
entry point SYSDIR. If the error was
detected by phase 10, the FSD deletes the
compilation by reading records (without
processing them> until the END statement is
encountered. It then initializes the com
piler for the next compilation. If the
error was encountered in a phase other than
phase 10, the FSD simply initializes the
compiler for the next compilation.

In the latter case, phase 30 returns
control to the FSD at the next sequential
instruction. If the error level code
passed to the FSD is 8 and the LOAD option
has not been specified, the FSD initializes
the compiler for the next compilation.

Note: Phase 25 returns an error level code
~ to the FSD if errors are detected
during the translation of FORMAT state
ments. However, in this case, the FSD does
not delete the compilation if the LOAD
option has not been specified.

COMPILER TERMINATION

The FSD terminates compiler processing
when an end-of-file is encountered in the
input data stream or when a permanent
input/output error is encountered. If,
after the deletion of a compilation or
after a source module has been completely
compiled, the first record read by phase 10
from the SYSIN data set contains an end-of
f ile indicator, control is passed to the
FSD Cat the entry point ENDFILE), which
terminates compiler processing by return~ng
control to the operating system. If a
permanent error is encountered during the

18

servicing of an input/output request of a
phase, control is passed to the FSD Cat
entry point IBCOMRTN), which writes a
message stating that both the compilation
and job step are deleted. The FSD then
returns control to the operating system.
In either of the above cases, the FSD
passes to the operating system as a condi
tion code the value of the highest error
level code encountered during compiler
processing. The value of the code is used
to determine whether or not the next job
step is to be performed.

PHASE 10

Phase 10 converts each FORTRAN source
statement into usable input to subsequent
phases of the compiler; its overall logic
is illustrated in Chart 03. Phase 10
conversion produces an intermediate text
representation of the source statement
and/or detailed information describing the
variables, constants, literals, statement
numbers, data set reference numbers, etc.,
appearing in the source statement. During
conversion, the source statement is ana
lyzed for syntactical errors.

The intermediate text is a strictly
defined internal representation (i.e.,
internal to the compiler) of a source
statement. It is developed by scanning the
source statement from left to right and by
constructing operator-operand pairs. In
this context, operator refers to such ele
ments as conunas, parentheses, and slashes,
as well as to arithmetic, relational, and
logical operators. Operand refers to such
elements as variables, constants, literals,
statement numbers, and data set reference
numbers. An operator-operand pair is a
text entry, and all text entries for the
operator-operand pairs of a source state
ment are the intermediate text representa
tion of that statement.

There are five types of intermediate
text developed by phase 10. They are:
normal, data, namelist, format, and state
ment function CSF) skeleton.

• Normal text is the intermediate text
representation of source statements
other than DATA, NAMELIST, FORMAT, and
statement functions.

• Data text is the intermediate text
representation of DATA statements and
initialization values in type state
ments.

• Namelist text is the intermediate text
representation of NAMELIST statements.

• Format text is the intermediate text
representation of FORMAT statements.

• SF skeleton text is the intermediate
text representation of statement func
tions using sequence numbers as oper
ands of the intermediate text entries.
The sequence numbers replace the dummy
arguments of the statement functions.
This type of text is, in effect, a
"skeleton" macro.

The various text types are discussed in
detail in Appendix B, "Intermediate Text."

The detailed information describing
operands includes such facts as whether a
variable is dimensioned Ci. e. ,, an array)
and whether the elements of an array are
real, integer, etc. such information is
entered into the information table.

The information table consists of five
components: dictionary, statement
number/array table, common table., literal
table, and branch table.

• The dictionary contains information
describing the constants and variables
of the source module.

• The statement number/array table con
tains information describing the state
ment numbers and arrays of the source
module.

• The common table contains information
describing COMMON and EQUIVALENCE dec
larations.

• The literal table contains information
describing the literals of the source
module.

• The branch table contains information
describing statement numbers appearing
in computed GO TO statements.

A detailed discussion of the information
table is given in Appendix A, "Information
Table."

The intermediate text and the informa
tion table complement each other in the
actual code generation by the subsequent
phases. The intermediate text indicates
what operations are to be carried out on
what operands; the information table pro
vides the detailed information describing
the operands that are to be processed.

SOURCE STATEMENT PROCESSING

To process source statements, each
record Cone card image) of the source
module is first read into an input buff er
by a preparatory subroutine CGETCD). If a
source module listing is requested, the
record is recorded on an output data set
(SYSPRINT). If both the EDIT option and

complete optimization are selected, the
record and some control information used by
phase 20 to produce a structured source
listing are recorded on the SYSUTl data
set. Records are moved to an intermediate
buffer until a ·complete source statement
resides in that buffer. Unnecessary blanks
are eliminated from the source statement,
and the statement is assigned a classifica
tion code. A dispatcher subroutine
CDSPTCH) determines from the code which
subroutine is to continue processing the
source statement. Control is then passed
to that . subroutine, which converts the
source statement to its intermediate text
representation and/or constructs informa
tion table entries describing its operands.
After the entire source statement has been
processed, the next is read and processed
as described above. The recognition of the
END statement causes phase 10 to complete
its processing and return control to the
FSD, which calls phase 15 for execution.

The functions of phase 10 are performed
by five groups of subroutines:

• Dispatcher subroutine
• Preparatory subroutine
• Keyword subroutines
• Arithmetic subroutines
• Utility subroutines

Dispatcher Subroutine

The dispatcher subroutine CDSPTCH) con
trols phase 10 processing. Upon receiving
control from the FSD, the DSPTCH subroutine
initializes phase 10 processing and then
calls the preparatory subroutine CGETCD) to
read and prepare the first source state
ment. After the statement is prepared,
control is returned to DSPTCH, which deter
mines if a stattment number is associated
with the source statement being processed.
If there is a statement number, the DSPTCH
subroutine constructs a statement number
entry (refer to Appendix A, "Information
Table") for the statement number. A text
entry for the statement nu~ber is also
created. The DSPTCH subroutine then deter
mines, from the code assigned to the source
statement (refer to "Preparatory
Subroutine"), which subroutine (either key
word or arithmetic) is to continue the
processing of the statement, and passes
control to that subroutine. when the
source statement is completely processed,
control is returned to the DSPTCH subrou
tine, which calls the preparatory subrou
tine to read and prepare the next source
statement.

Preparatory Subroutine

The preparatory subroutine CGETCD) reads
each source statement, records it on the
SYSPRINT data set if the SOURCE option is

Section 2: Discussion of Major Components 19

selected, and on the SYSOTl data set if the
EDIT option and complete optimization are
selected, packs and classifies it, and
assigns it an internal statement number
(ISN) 1 • Packing eliminates unnecessary
blanks, which may precede the first charac
ter, follow the last character, or be
imbedded within the source statement.
Classifying assigns a code to each type of
source statement. The code indicates to
the DSPTCH subroutine which subroutine is
to continue processing the source state
ment. A description of the classifying
process, along with figures illustrating
the two tables (the keyword pointer table
and the keyword table> used in this proc
ess, is given in Appendix A,
°Classification Tables. 0 The ISN assigned
to the source statement is an internal
sequence number used to identify the source
statement. The source statement, after
being prepared, resides in the storage area
NCDIN in the format illustrated in Figure
4.

r---1
IPointer to first character of (1 word> I
lpacked source statement beyond I
lkeyword1 I
·---~
!Internal statement number Cl word> I
·---i
!Statement number indicator (*0 Cl word> I
lif present; 0 if not present) I
·---~
IClassification code Cl word> I
·---i
!Statement number (5 words> I
·---i
IPacked source statement <n words> I
·-----------------------~-----------------i
!Group mark2 Cl word> I
·---1
11For arithmetic statements and statement!
!functions, this field points to the first!
!character of the packed statementr I
12 End of statement marker. I
L---J
Figure 4. Format of Prepared Source State-

ment

Keyword Subroutines

A keyword subroutine exists for each
keyword source statement. A keyword source
statement is any permissible FORTRAN source
statement other than an arithmetic state
ment or a statement function. The function
of each keyword subroutine is to convert
its associated keyword source statement <in
NCDIN) into input usable by subsequent

1Logical IF statements are assigned two
internal statement numbers. The IF part is
given the first number and the "trailing"
statement is given the next.

20

phases of the compiler. These subroutines
make use of the utility subroutines anct, at
times, the arithmetic subroutines in per
forming their functions. To simplify the
discussion of these subroutines, they are
divided into two groups:

1. Those that construct only information
table entries.

2. Those that construct information table
entries and develop intermediate text
representations.

Note: One keyword subroutine, namely that
which processes the IMPLICIT statement, is
not assigned to either of the above stated
groups. The processing performed by this
subroutine CXIMPC) is somewhat specialized.
The function of this subroutine is defined
in Table 8.

Table Entry Subroutines: Only four keyword
subroutines belong to this gro_up (refer to
Table 8). Each is associated with a COM
MON, DIMENSION, EQUIVALENCE, or EXTERNAL
keyword statement.

The processing performed by these sub
routines is similar. Each scans its asso
ciated statement Cin NCDIN) in a left-to
right fashion and constructs appropriate
information table entries for each of the
operands of the statement. The types of
information table entries that can be
constructed by these subroutines are:

• Dictionary entries for variables and
external names.

• Common block name entries for common
block names.

• Equivalence group entries for equiva
.. lence groups.

• Equivalence variable entries for the
variables in an equivalence group.

• Dimension entries for arrays.

The formats of these entries are given
in Appendix A, "Information Table. 0

Table entry and Text Subroutines: The
keyword subroutines, other than those that
are grouped as table entry subroutines,
belong to this group (refer to Table 8).
Each of these subroutines converts its
associated statement by developing an
intermediate text representation of the
statement, which consists of text entries
in operator-operand pair format, and con
structing information table entries for the
operands of the statement. The processing
performed by these subroutines is similar
and is described in the following para
graphs.

Upon receiving control from the DSPTCH
subroutine, the keyword subroutine asso
ciated with the keyword statement being
processed places a special operator into a
text entry work area. This operator is
ref erred to as a primary adjective code and
defines the type (e.g., DO,ASSIGN) of the
statement. A left-to-right scan of the
source statement is then initiated. The
first operand is obtained, an information
table entry is constructed for the operand
and entered into the information table
<only if that operand was not previously
entered), and a pointer to the entry's
location in that table is placed into the
text entry work area. The mode (e.g.,
integer, real) and type (e.g., negative
constant, array) of the operand are then
placed into the work area. The text entry
thus developed is placed into the next
available location in the sub-block allo
cated for text entries of the type being
created.

scanning is resumed and the next opera
tor is obtained and placed into the text
entry work area. The next operand is then
obtained, an information table entry is
constructed for the operand and entered
into the information table (again, only if
that operand was not previously entered),
and a pointer to the entry's location is
placed into the text entry work area. The
mode and type of the operand are placed
into the work area. The text entry is then
placed into the next available location in
the sub-block allocated for text entries of
the type being created.

This process is terminated upon recogni
tion of the end of the statement, which is
marked by a special text entry. The spe
cial text entry contains an end mark opera
tor and the ISN of the source statement as
an operand.

Note: Certain keywork subroutines in this
group, namely those that process statements
that can contain an arithmetic expression
(e.g., IF and CALL statements) and those
that process statements that contain I/O
list items Ce.g., READ/WRITE statements),
pass control to the arithmetic subroutines
to complete the processing of their asso
ciated keyword statements.

Arithmetic Subroutines

The arithmetic subroutines (ref er to
Table 8) receive control from the DSPTCH
subroutine, or from various keyword subrou
tines, and make use of the utility subrou
tines in performing their functions, which
are to:

• Process arithmetic statements.

• Process statement functions.

• Complete the processing of certain key
word statements (READ, WRITE, CALL, and
IF.)

The following paragraphs
processing of the arithmetic
according to their functions.

describe the
subroutines

Arithmetic Statement Processing: In proc
essing an arithmetic statement, the arith
metic subroutines develop an intermediate
text representation of the statement, and
construct information table entries for its
operands. These subroutines accomplish
this by following a procedure similar to
that descrined for keyword (table entry and
text) subroutines.

If one operator is adjacent to another,
the first operator does not have an asso
ciated operand. In the example A=BCI)+C,
the operator + has variable C as its
associated operand, whereas the operator)
has no associated operand. If an operator
has no associated operand, a zero (null)
operand is assumed.

Statement Function Processing: In convert
ing a statement function to usable input to
subsequent phases of the compiler, the
arithmetic subroutines develop an inter
mediate text representation of the state
ment function using sequence numbers as
replacements for dummy arguments. These
subroutines also construct information
table entries for those operands that
appear to the right of the equal sign and
that do not correspond to dummy arguments.
The following paragraphs describe the proc
essing of a statement function ny the
arithmetic subroutines.

When processing a statement function,
the arithmetic subroutines:

• Scan the portion of the statement func
tion to the left of the equal sign,
obtain each dummy argument, ~ssign each
dummy argument a sequence numner Cin
ascending order), and save the dummy
arguments and their associated sequence
numbers for subsequent use.

• Scan the portion of the statement func
tion to the right of the equal sign and
ootain the first Cor next) operand.

• Determine if the operand corresponds to
a dummy argument. If it does corre
spond, its associated sequence number
is placed into the text entry work
area. If it does not correspond, a
dictionary entry for the operand is
constructed and entered into the inf or-

Section 2: Discussion of Major Components 21

mation table, and a pointer to the
entry's location is placed into the
text entry work area. (An opening
parenthesis is used as the operator of
the first text entry developed for each
statement function and a closing paren
thesis is used as the operator of the
last text entry developed for each
statement function.)

• Place the text entry into the next
available location in the sub-block
allocated for SF skeleton text.

• Resume scanning, obtain the next opera
tor, and place it into the text entry
work area.

• Obtain the operand to the right of this
operator and process it as described
above.

Kevword Statement Completion: In addition
to processing arithmetic statements and
statement functions, the arithmetic subrou
tines also complete the processing of key
word statements that may contain arithmetic
expressions or that contain I/O list items.
The keyword subroutine associated with each
such keyword statement performs the initial
processing of the statement, but passes
control to the arithmetic subroutines at
the first possible occurrence of an arith
metic expression or an I/O list item. (For
example, the keyword subroutine that proc
esses CALL statements passes control to the
arithmetic subroutines after it has proc
essed the first opening parenthesis of the
CALL, because the argument that follows
this parenthesis may be in the form of an
arithmetic expression.) The arithmetic
subroutines complete the ~rocessing of
these keyword statements in the normal
manner. That is, they develop text entries
for the remaining operator-operand pairs
and construct information table entries for
the remaining operands.

Utility subroutines

The utility subroutines (refer to Table
8) aid the keyword, arithmetic, and DSPTCH
subroutines in performing their functions.
The utility subroutines are divided into
the following groups:

• Entry placement subroutines.
• Text generation subroutines.
• Collection subroutines.
• Conversion subroutines.

Entry Placement Subroutines: The utility
subroutines. in this group place the various
types of entries constructed by the key
word, arithmetic, and DSPTCH subroutines
into the tables or text areas (i.e.,
sub-blocks) reserved for them.

22

Text Generation Subroutines: The utility
subroutines in this group generate text
entries <supplementary to those developed
by the keyword and arithmetic subroutines)
that:

• Control the execution of implied DO's
appearing in I/O statements.

• Increment DO indexes and test them
against their maximum values.

• Signify the end of a source statement.

Collection Subroutines: These utility sub
routines perform such functions as gather
ing the next group of characters {i.e., a
string of characters bounded by delimiters)
in the source statement being processed,
and aligning variable names on a word
boundary for comparison to other variable
names.

Conversion Subroutines: These utility sub
routines convert integer, real, and complex
constants to their binary equivalents and,
if requested, verify that a converted con
stant is of integer mode.

PHASE 15

Before phase 15 gains control, phase 10
has read the source statements, built the
information table, and restructured the
source statements into operator-operand
pairs. When given control, phase 15 proc
esses common and equivalence entries in the
common table, translates the text of arith
metic expressions, gathers information
about branches and variables, converts
phase 10 data text to a new text format,
assigns relative addresses to constants and
variables, and generates address constants
when needed, to serve as address ref eren
ces. Thus, phase 15 modifies and adds to
the information table and translates phase
10 normal and data text to their phase 15
formats.

Phase 15 is divided into three overlay
segments, STALL, PHAZ15, and CORAL. Chart
04 shows the overall logic of the phase.

STALL processes both common and equiva
lence entries in the information table. It
finds the maximum size of each common
block, assigns locations to variables in
each common block, and plans the storing of
operands equated by EQUIVALENCE statements.
It also determines the head of arrays
referred to in EQUIVALENCE statements.
(The head is the lowest-valued starting
address of two or more arrays after their
repositioning has been planned by equiva
lence processing.) CORAL later uses the
head during the computation of relative
addresses for variables and arrays.

PHAZ15 translates and reorders the text
entries for arithmetic expressions from the
operator-operand format of phase 10 to a
four-part form suitable for phase 20 proc
essing. The new order permits phase 25 to
generate machine instructions in the cor
rect sequence. PHAZ15 blocks the text and
collects information describing the blocks.
The information, needed during phase 20
optimization, includes tables on branching
locations, and on constant and variable
usage.

CORAL, the last overlay segment of phase
15, performs five functions. It first
converts phase 10 data text to a form more
easily evaluated by phase 25. CORAL then
ass-igns relative addresses to all varia
bles, constants, and arrays. During one
phase of relative address assignment, CORAL
rechains phase 15 data text in order to
simplify the generation of text card images
by phase 25. · CORAL also assigns address
constants, when needed, to serve as address
references for all operands. Lastly, as a
user option, CORAL prints a storage map of
named items (variables, arrays, and exter
nal references) as recorded in the informa
tion table.

STALL PROCESSING

STALL first rechains entries for varia
bles in the dictionary by sorting alphabet
ically the entries within each chain. The
rechaining frees storage in each entry for
later use by CORAL.

As a second function, STALL checks the
statement-number section of the information
table, noting undefined statement numbers.

STALL then processes common entries in
the information table. It computes the
off set (displacement) of each variable in a
common block from the start of the common
block. The off sets are subsequently used
to assign relative addresses to common
variables. The offsets are recorded in the
dictionary entries for the variables. The
total size of each common block is also
calculated. The block size is used by
phase 25 to generate a control section for
the common block.

Lastly, STALL processes equivalence
entries in the information table. The
processing plans the placing of the oper
ands of each equivalence group at the same
location in storage. During the processing
STALL recognizes a variable that must be
made equivalent to previously processed
variables in common.

Chart 05 shows the overall processing of
STALL.

Rechaining Entries for Variables

The STALL subroutine DCTSRT begins by
rechaining entries for variables in the
information table. Each dictionary entry
created by phase 10 contains two chain
address fields (ref er to Appendix A,
"Information Table Components"). DCTSRT
frees one of the chain address fields for
later use by CORAL. It does this by
sorting alphabetically within each length
grouping and then rechaining the entries.
After the entries have been rechained, the
dictionary consists of one chain for each
variable-name length. The chains of
entries describing symbols of 3 or less
characters ar~ arranged in descending
alphabetic order, while the chains of
entries describing symbols of 4 or more
characters are arranged in ascending alpha
betic order. As an integral part of
rechaining, DCTSRT also constructs dic
tionary entries for the imaginary parts of
complex variables and constants.

Checking for Undefined Statement Numbers

After subroutine DCTSRT has rechained
the dictionary, subroutine LABSCN checks
for undefined statement numbers. This
action is taken to insure that every state
ment number that is ref erred to is also
defined. LABSCN scans the chain of state
ment number entries in the information
table (refer to Appendix A, "Statement
Number/ Array Table") and examines a bit in
the byte A usage field of each such entry.
This bit is set by phase 10 to indicate
whether or not it encountered a definition
of that statement number. If the bit
indicates that the statement number is not
defined, LABSCN places an entry in the
error table for later processing by phase
30.

Processing of Common Entries in the
Information Table

After the statement numbers have been
checked, subroutine COMN processes common
entries in the information table. It com
putes the offsets (displacements) of varia
bles and arrays from the start of the
common block containing them and calculates
the total size in bytes of each common
block. COMN records the offsets in the
dictionary entries for the variables and
the block size in the common table entry
for the name of the common block (refer to
Appendix A, "Common Table"). It also plac
es a pointer to the common table entry for
the block name in the dictionary entry for
each variable or array in that common
block.

Section 2: Discussion of Major Components 23

Processing of :Equivalence Entries in the
Information Table

Subroutine EQU next gathers additional
information about equivalence groups and
the variables in them. It computes a group
head1 and the off set (displacement) of each
variable in the group from this head. It
records this information in the common
table entries for the group and for the
variables, respectively <refer to Appendix
Ai, "Common Table"). EQU identifies and
flags in their dictionary entries variables
and arrays put into common via the EQUIVA
LENCE statement. It also error-checks the
variables and arrays to verify that the
associated common block has not been im
properly extended because of the equiva
lence declaration. If a common block is
legitimately enlarged by an equivalence
operation, subroutine EQU recomputes the
size of the common block and enters the
size into the common table entry for the
name of the common block.

If the name of a variable or array
appears in more than one equivalence group,
!QU recognizes the combination of groups
and modifies the dictionary entries for the
variables to indicate.the equivalence oper
ations. EQU checks arrays appearing in
more than one equivalence group to verify
that conflicting relationships have not
been established for the array elements.

During the processing of both common and
equivalence information, subroutine TESTBN
is given control to check that variables
and arrays fall on boundaries appropriate
to their defined types. If a variable or
array is improperly aligned, TESTBN places
an entry in the error table for processing
by phase 30.

PHAZ15 PROCESSING

The functions of PHAZ15 are text block
ing, arithmetic translation., information
gathering, and reordering of the statement
number chain. Information gathering occurs
only if optimization (either intermediate
or complete) has been selected: it takes
place concurrently with text blocking and
arithmetic translation during the same scan
of intermediate text. Reordering of the
statement number chain occurs after PHAZ15
has completed the blocking, arithmetic
translation, and information gathering.

PHAZ15 divides intermediate text into
blocks for convenience in obtaining inf or-

1 The head of a equivalence group is that
variable in the group from which all other
variables or arrays in the group can be
addresses by a positive displacement.

24

mation from the text. Each block begins
with a statement number definition and ends
with the text entry just preceding the next
statement number definition. PHAZ15
records information describing a text block
in a statement number text entry and in an
information table statement number entry.

During the same scan of text in which
blocking occurs, PHAZ15 translates arith
metic expressions. The conversion is from
the operation-operand pairs of phase 10 to
a four part format <phase is.text). The
new format follows the sequence in which
algebraic operations are performed. In
general, phase 15 text is in the same order
in which phase 25 will generate machine
instructions. 2 PHAZ15 copies, unchanged
into the text area, phase 10 text that does
not require arithmetic translation or other
special handling.

During the building of phase 15 text for
a given block (if complete optimization has
been selected), PHAZ15 constructs tables of
information on the use of constants and
variables in that text block. It stores
information on variables and constants that
are used within a block, and variables that
are defined within a block. PHAZ15 also
gathers information on variables not first
used and then defined. The foregoing usage
information is recorded in the statement
number text for each block for later use by
phase 20.

Concurrently with text blocking, arith
metic translation, and gathering of
constant/variable usage information, PHAZ15
discovers branching text entries and
records the branching or connection inf or
ma tion. This information, consisting ini
tially of a table of branches from each
text block (forward connections), is stored
in a special array. Branching (connection)
information is used during phase 20 optimi
zation.

After PHAZ15 has completed the previous
ly mentioned processing, it reorders the
statement number chain of the information
table. The original order of statement
numbers, as phase 10 recorded them, was in
order of their occurrence in source state
ments as either definitions 3 or operands.
The new sequence after phase 15 reordering
is according to source statement occurrence
as definitions only. The new order is
established to facilitate phase 20 process
ing.

2 If optimization is selected, phase 20 may
further manipulate the phase 15 text.
3 A statement number occurs as a definition
when that statement number appears to the
left of a source statement.

Lastly, PHAZ15 acquires a table of back
ward connection information consisting of
branches into each statement number, or
text block. . PHAZ15 derives this informa
tion from the forward connection informa
tion it previously obtained. Thus, connec
tion information is of two types., forward
and backward. PHAZ15 r~cords a table of
branches from each text block and a table
of branches into each text block. Connec
tion information of both types is used
during phase 20 optimization.

Charts 06, 07, and 08 depict the flow of
control durin~ PHAZ15 execution.

Text Blocking

During its scan and conversion of phase
10 text, PHAZ15 sections the module into
text blocks, which are the basic unit upon
which the optimization and register assign
ment processes of phase 20 operate. A text
block is a series of text entries that
begin with the text entry for a statement
number and end with the text entry that
immediately precedes the text entry for the
next statement number. (The statement num
ber may be either programmer defined or
compiler generated.) When PHAZ15 encoun-
·ters a statement number definition (i.e.,
the phase 10 text entry for a statement
number) it begins a text block. It does
this by constructing a statement number
text entry (refer to Appendix B, "Phase 15
Intermediate Text Modifications"). PHAZ15
also places a pointer to the statement
number text entry into the statement number
entry Cinf ormation table> for the associat
ed statement number.

PHAZ15 resumes its scan and converts the
phase 10 text entries following the state
ment number definition to their phase 15
formats. After each phase 15 text entry is
formed and chained into text, PHAZ15 places
a pointer to that text entry into the
BLKEND field of the previously constructed
statement number text entry. This field is
thereby continually updated to point to the
last phase 15 text entry.

When the next statement number defini
tion is encountered, PHAZ15 begins the next
text block in the previously described
manner. A pointer to the text entry that
ends the.preceding block has already been
recorded' in the BLKEND field of the state
ment number text entry that begins that
block. Thus, the boundaries of a text
block are recorded in two places: ·the
beginning of the block is recorded in the
associated statement number entry
(information table); the end of the block
is recorded in the BLKEND field of the
associated statement number text entry.
All text blocks in the module are identi
fied in this manner.

Note: For each ENTRY statement in the
source module, phase 10 generates a state
ment number text entry and places it into
text preceding the text for the ENTRY
statement. Phase 10 also ensures that the
statement following an ENTRY statement has
a statement number; if a statement number
is not provided by the programmer, phase 10
generates one. The text entries for each
ENTRY statement therefore form a separate
text block, which is referred to as an
entry block.

Figure 5 illustrates the concept of text
blocking. In the figure, two text blocks
are shown: one beginning with statement
number 10; the other with statement number
20. The statement number entry for state
ment number 10 contain9 a pointer to the
statement number text entry for statement
number 10, which contains a pointer to the
text entry that immediately precedes the
statement number text entry for statement
number 20. Similar pointers exist for the
text block starting with statement number
20.

Arithmetic Translation

Arithmetic translation is the reordering
of arithmetic expressions in phase 10 text
format to agree with. the order in which
algebraic operations are performed. Arith
metic expressions may exist in IF, CALL,
ASSIGN, and GOTO statements and I/O data
list, as well as in arithmetic statements
and statement functions.

When PHAZ15 detects a primary adjective
code for a statement that needs arithmetic
translation, it passes control to the
arithmetic translator CALTRAN). If the
phase 10 text for the statement does not
require any type of special handling,
ALTRAN reorders it into a series of phase
15 text entries that reflect the sequence
in which arithmetic operations are to be
carried out. During the reordering proc
ess, ALTRAN calls various supporting rou
tines that perform checking and resolution
<e.g., the resolution of operations involv
ing operands of different modes> functions.

Throu~hout the reordering process,
ALTRAN is checking for text that requires
special handling before it can be placed
into the phase 15 text area. (Special
handling is required for complex expres
sions, terms involving unary minuses (e.g.,
A=-B>, subscript expressions, statement
function references, etc.) If special text
processing is required, ALTRAN calls one or
more subroutines to perform the required
processing.

During reordering and, if required, spe
cial handling, subroutine GENER is called

Section 2: Discussion of Major Components 25

Statement Number Entry for
Statement Number 10

Statement Number Entry for
Statement Number 20

20

lO

* LDF is the mnemonic for the statement number operator

Figure 5. Text Blocking

to format the phase 15 text entries and to
place them into the text area.

REORDERING ARITHMETIC EXPRESSIONS: The
reordering of arithmetic expressions is
done by means of a pushdown table. This
table is a last-in, first-out list. After
the table is initialized (i.e., the first
operator-operand pair of an arithmetic
expression is placed into the table), the
arithmetic translator CALTRAN) compares the
operator of the next operator-operand pair
(term> in text with the operator of the
pair at the top of the pushdown table. As
a result of each comparison, either a term
is transferred from phase 10 text to the
table, or an operator and two operands
(triplet) are brought from the table to the
phase 15 text area, eliminating the top
term in the pushdown table.

The comparison made to determine whether
a term is to be placed into the pushdown or
whether a triplet is to be taken from the
pushdown is always between the operator of
a term in phase 10 text and the operator of
the top term in the table. Each comparison
is made on the basis of relative forcing
strength. A forcing strength is a value
assigned to an operator that determines
when that operator and its associatea oper
ands are to be placed in phase 15 text.
The relative values of forcing strengths
reflect the hierarchy of algebraic opera-

26

LDF*

LDF*

LDF*

PHASE 15 TEXT

~ 10

-20

tions. The forcing strengths for the var
ious operators appear in Table 1.

Table 1. Operators and Forcing Strengths
r----------------------------T------------1
I I Forcing I
I Operator I Strength I
~----------------------------+------------~
End Mark I 1

.OR.

.AND.

.NOT.
• EQ. , . NE.,
• GT. , • LT. ,
• GE., • LE.
+, - minus (
*, /
**
(f --left parenthesis

a function name

(s --left parenthesis

I 2
I 3
I 6
I 7
I s
I 9

10

11
12
13

after 14

after 15
an array name I

16 I
L----------------------------i------------J

When the arithmetic translator CALTRAN)
encounters the first operator-operand pair
(phase 10 text entry) of a statement, the
pushdown table is effipty. Since the trans
lator cannot yet make a comparison between
text entry and table element, it enters the

first text entry in the top position of the
table. The translator then compares the
forcing strength of the operator of the
next text entry with that of the table
element. If the strength of the text
operator is greater than that of the top
(and only) table element, the text entry
(operator-operand pair) becomes the top
element of the table. The original top
element is effectively "pushed down" to the
next lower position. In Figure 6, the
number-1 section of the drawing shows the
pushdown table at this time.

The operator of the next text entry
(operator c--operand C at section 2) is
compared with the top table element
(operator B--operand B at section 1) in a
similar manner.

When a comparison of forcing strengths
indicates that the strength of the text
operator (operator c, section 2), is less
than or equal to that of the top table
element (operator B), the table element is
said to be "forced." The forced operator
(operator B) is placed in the new phase-15
text entry (section 3 of the figure) with
its operand <operand B) and the operand of
the next lower table entry (operand A).
Note that ALTRAN has generated a new oper
and t (see section 3) called a "temporary."
A temporary is a compiler-generated operand
in which a preliminary result may De held
during object-module execution. 1 With oper
ator B, operand B, and operand A Ca
triplet) removed from the pushdown table,
the previously entered operator-operand
pair (operator A, section 1) now becomes
the top element of the table <section 4).

1 A given temporary may be eliminated by
phase 20 during optimization.

ALTRAN assigns the previously generated
temporary t as the operand of this pair.
This temporary represents the previous
operation (operator B--operand A--operand
B).

Comparisons and text-to-table exchanges
continue, a higher strength text operator
"pushing" a phase 10 text entry into the
table and a lower strength text operator
"forcing" the top table operator and its
operands {triplet) from the table. In each
case, the forced table items beco~e the new
phase 15 text entry. An exception to the
general rule is a left parellthesis, which
has the highest forcing strength. Opera
tors following the left parenthesis can be
forced from the table only by a right
parenthesis, although the intervening oper
ators (between the parentheses) are of
lower forcing value. When the translator
reaches an end mark in text, its forcing
strength of 1 forces all remaining elements
from the table.

SPECIAL PROCESSING OF ARITHIV.E'TIC EXPRES
SIONS: As stated before, arithmetic trans
lation involves reordering a group of phase
10 text entries to produce a new group of
phase 15 text entries representing the same
source statement. Certain types of
entries, however, need special handling
(for example, subscripts and functions).
When it has been determined that special
handling is needed, control is passed to
one or more other subroutines (refer to
Chart 07) that perform the desired process
ing.

The following expressions and terms need
special handling before they are placed in
phase 15 text: complex expressions, terms
involving a unary minus, terms involving
powers, commutative expressions, subscript

l. Text in Pushdown Table 2. Phase 10 Text Entries

Operator Operand Operator Operand

Top Element Op B Oprnd B Op C Oprnd C

Op A Oprnd A Op D Oprnd D

4. New Top Element of Pushdown 3. New Phase 15 Text Entry

Op A OpB

Operator

NOTE: A phase 15 text entry having an arithmetic operator may be envisioned as
operand l =operand 2 - operator - operand 3, where the equal sign is implied.

Operand l

Figure 6. Text Reordering Via the Pushdown Table

Current phase l 0 text entry

Next phase 10 text entry

Oprnd A Oprnd B

Operand 2 Operand 3

Section 2: Discussion of Major Corr:ponents 27

expressions, routine or subprogram referen
ces, statement function references, and
expressions involved in logical IF state
ments.

Complex EXPressions: A complex expression
is converted into two expressions, a real
expression and an imaginary one. For real
elements in the expression, complex tempo
raries are generated with zero in the
imaginary part and the real element in the
real part. For example, the complex
expression B + C + 25. is treated as:

r-----------------~-----------------------1
I B + c + 25. I
I real real real I
~---~
I B + c + o. I
I imag imag imag I
L---J

An expression is not treated as complex
if the •result" operand Cleft of the equal
sign in the source statement) is real. In
this case., the translator places only the
real part of the expression in phase 15
text. But if a complex multiplication,
division, or exponentiation is involved in
the expression, the real and imaginary
parts will appear in phase 15 text., but
only the real part of the result will be
used at execution time.

Terms Containing a Unary Minus: In terms
that contain unary minuses, the unary min
uses are combined with additive operators
(+11 -> to reduce the number of operators.
This combining, done by subroutines UNARY
and· SWITCH, may result in reversed opera
tors or operands or both in phase 15 text.
For example, -CB-C) becomes C-B, and A+C-B)
becomes A-B. This process reduces the
number of machine instructions that phase
25 must generate.

Operations Involving Powers: Several kinds
of special handling are provided by subrou
tines UNARY and EXPON for operations
involving powers. Multiplications by pow
ers of two are converted to left shift
operations. A constant integer power of
two raised to a constant integer power is
converted to the equivalent left shift
operation. Lastly, a constant or variable
raised to a constant integer power between
-6 and +6 is converted to a series of
multiplications (and a division into one,
if necessary). This handling requires less
execution time than using an exponentiation
subroutine.

Commutative Operations: If an operation is
commutative (either ope~and can be operated
upon, such as in addition or
multiplication>, the two operands are reor
dered to agree with their absolute loca
tions in the dictionary.

28

Subscripts: Subroutines SBGLUT, SUBADD,
SUBMLT, and SUBSCR perform subscript proc
essing. Subscripted items are processed
one at a time throughout the subscript. If
the subscripted item itself is an expres
sion, it is first processed via the trans
lator. Text entries are then generated to
multiply the subscript variable by the
dimension factor and length. Each sub
script item is handled in a similar manner.
When all subscript items have been proc
essed, phase 15 text entries are generated
to add all subscript values together to
produce a single subscript value.

In general, during compilation, con
stants in subscript expressions are com
bined, and their composite value is placed
in the displacement field of the phase 15
text entry for the subscript item. CRef er
to Appendix B, "Phase 15/Phase 20 Inter
mediate Text Modifications."> Phase 25 uses
the value in the displacement field to
generate, in the resultant object instruc
tions, the displacement for referring to
the elements in the array. This combining
of constants reduces the number of instruc
tions needed during execution to compute
the subscript value.

Expressions Referring to In-Line Routines
or Subprograms: Expressions containing
references to in-line routines or subpro
grams are processed by the following sub
routines: FUNDRY, NEGCHK, XPARAM, BLTNFN,
and DFUNCT.

Arguments that are expressions are
reduced by the translator to a single
temporary, which is used as the argument.
If an argument is a subscripted variable,
subscript processing <previously discussed)
reduces the subscript to a single sub
scripted item. Either subroutine DFUNCT
(for references to library routines) or
subroutine BLTNFN (for references to in
line routines> then conducts a series of
tests on the argument and perform the
processing determined by the results of the
tests.

If a function is not external and is in
the IFUNTB table Cref er to Appendix A,
"Subprogram Table">, the IFU!j'l'B table is
scanned to determine if the requireu
routine is in-line. Thep, the mode is
tested. If the routine is in~line and the
mode is as expected, BLTNFN either gener
ates text or substitutes a special operator
(such as those for ABS or FLOAT) in the
phase 15 text so that phase 25 can later
expand the function. PHAZ15 provides in
line routines itself • 1 Instead of placing a

1 BLTNFN expands the following functions:
TBIT, LAND, LOR, LXOR, ADDR, SNGL, REAL,
AIMAG, DCMPLX, CMPLX, DCONJG, and CONJG.

special operator in text, PBAZ15 inserts a
regular operator, such as the operator for
AND or STORE.

If the mode and/or number of arguments
in the function is not as expected, another
test is performed. The ~est determines if
a previous reference was made correctly for
these arguments. If the previous reference
was as expected, an error is assumed to
exist. Otherwise, the function is assumed
to be external.

If a function is external (either used
in an EXTERNAL statement or does not appear
in the IFUNTB table>, text is generated to
load the addresses of any arguments that
are subscripted variables into a parameter
list in the adcon table. (If none of the
arguments are subscripted variables, the
load address items are not required.) A
text entry for a subprogram or function
call is then generated. The operator of
the text entry is for an external function
or subprogram reference. This entry points
to the dictionary entry for the name. The
text representation of the argument list is
then generated and placed into the phase 15
text chain.

If a function is not external, is in the
IFUNTB table, but does not represent an
in-line routine, text is generated to load
the addresses of any arguments that are
subscripted variables into a parameter list
in the adcon table. (If none of the
arguments are subscripted variables, the
load address items are not· required.} A
text entry having a library function
operator is generated. This entry points
to the IFUNTB entry for the function. The
text representation of the argument list is
then generated and placed into the phase 15
text chain.

Expressions Containing Statement Function
References: For expressions containing
statement function references, the argu
ments of the statement function text are
reduced to single operands (if necessary}.
These arguments and their mode are stored
in an argument save table (NARGSV), which
serves as a dictionary for the statement
function skeleton pointed to by the dic
tionary entry for the statement function
name. The argument save table is used in
conjunction with the usual pushdown proce
dure to generate phase 15 text items for
the statement function reference. When the
translator encounters an operand that is a
dummy argument, the actual argument corre
sponding to the dummy is picked up from the
argument save table and replaces the dummy
argument.

Logical Expressions: Subroutines ALTRAN,
ANDOR, RELOPS, and NOT perform a special
process, called anchor point, on logical

expressions containing relational opera
tors, ANDS, ORS, and NOTS, so that, at
object time, unnecessary logical tests are
eliminated. With anchor-point •optimiza
tion," only the minimum number of object
time logical tests are made before a branch
or fall-through occurs. For example, with
anchor-point handling, the statement
IF(A.AND.B.AND.C) GO TO 500 will produce
Cat object time) a branch to the next
statement if A is false, because B and c
need not be tested. Thus, only a minimum
number of operands will be tested. Without
anchor-point handling of the expression
during compilation, all operands would be
tested at object time. Similar special
handling occurs for text containing logical
ORS.

When a primary adjective code for a
logical IF statement or an end-of-DO IF is
placed in the pushdown table, a scan of
phase 10 text determines if the associated
statement can receive anchor-point hand
ling. The statement can receive anchor
point handling if two conditions are met.
There must not be a mixture of ANDs and ORs
in the statement. A logical expression, if
it is in parentheses, must not be negated
by the NOT operator. If these two
conditions are not met, special handling of
the logical expression does not occur.

Gathering Constant/Variable Usage
Information

During the conversion of the phase 10
text entries that follow the beginning of a
text block (i.e., the text entries that
follow a statement number definition} to
phase 15 format, the PHAZ15 subroutine MATE
gathers usage-information for the variables
and constants in that block. This informa
tion is required during the processing of
the .complete-optimized path through phase
20 <refer to "Phase 20"}. If complete
optimized processing is not selected, this
information is not compiled. Subroutine
MATE records the usage information in three
fields (MVS, MVF, and MVX), eac;::h 128 bits
long, of the statement number text entry
for the block <refer to Appendix B, "Phase
15 Intermediate Text Modifications·">. The
MVS field indicates which variables are
defined Ci. e.,. appear in the operand 1
position of a text entry> within the text
of the block. The MVF field indicates
which variables, constants, and base
variables (refer to CORAL PROCESSING,
"Adcon and Base Variable Assignment•) are
used (i.e., appear in. either the operand 2
or operand 3 position of a text entry>
within the text of the block. The MVX
field indicates which variables are defined
but not first used <not busy-on-entry)
within the text of the block.

Section 2: Discussion of Major Components 29

Subroutine MATE records the usage inf or
mation for a variable or constant at a
specific bit location within the three
fields. (Base variables are processed dur
ing CORAL PROCESSING.) The bit location at
which the usage information is recorded is
determined from the coordinate assigned to
the variable or constant when it is first
encountered in text.

Coordinates are assigned to variables
and constants in the following manner:

• The first 59 unique variables and/or
constants appearing in the text created
by phase 15 are assigned coordinates 2
through 60, respectively. 1 The coordi
nates are assigned in order of increas
ing coordinate number. CA coordinate
between 2 and 60 may be assigned to a
base variable if fewer than 59 unique
variables and constants appear in the
text.>

• The next 20 unique variables are
assigned coordinates 61 through 80,
respectively. The coordinates are
assigned in order of increasing coordi
nate number. (If constants are encoun
tered after coordinate 60 has been
assigned, they are not assigned coordi
nates.)

• The coordinates 81 through 128 are
reserved for assignment to base varia
bles (refer to CORAL PROCESSING, "Adcon
and Base variable Assignment").

Subroutine MATE assigns the first varia
ble or constant in phase 15 text a coordi
nate number of 2, which indicates that the
usage information for that variable or
constant, regardless of the block in which
it appears, is to be recorded in bit
position 2 of the MVS, MVF, and MVX fields.
MATE assigns the second variable or con
stant a coordinate number of 3 and records
its usage information in bit position 3 of
the three fields. MATE continues this
process until coordinate 60 has been
assigned to a variable or constant. After
coordinate nurober 60 has been assigned,
MATE only assigns coordinates to the next
20 unique variables. (MATE does not assign
coordinates to or gather usage information
for unique constants encountered after
coordinate number 60 has been assigned.)
It assigns these variables coordinates 61
through 80, respectively. It records the

1The coordinate 1 is assigned to items such
as unit numbers (i.e., data set reference
numbers), complex variables in common,
arrays that are equivalenced, variables
that are equivalenced to arrays, and varia
bles that are equivalenced to variables of
different modes.

30

usage information for each variable at the
assigned bit location in the three fields.
MATE does not assign coordinates to or
gather usage information for unique varia
bles encountered after coordinate number 80
has been assigned.

Subroutine MATE uses a combination of
the MCOORD vector, the MVD table, and the
byte-c usage fields of the dictionary
entries (refer to Appendix A, "Dictionary")
to assign, keep track of, and record coor
dinate numbers. MCOORD contains the number
of the last coordinate assigned. The MVD
table is composed of 128 entries, with each
entry containing a pointer to the dictiona
ry entry for the variable or constant to
which the corresponding coordinate number
is assigned or to the information table
entry for the base variable to which the
corresponding coordinate is assigned. The
coordinate number assigned to a variable or
constant is recorded in the byte-c usage
field of the dictionary entry for that
variable or constant.

Subroutine MATE does not assign coora1-
nates to or record usage information for
unique constants encountered in text after
coordinate number 60 has been assigned and
unique variables encountered in text after
coordinate number 80 has been assigned. If
MATE encounters a new constant after coor
dinate 60 has been assigned or a new
variable after coordinate 80 has been
assigned, it records a. zero in the byte-c
usage field of its associated dictionary
entry. Phase 20 optimization deals only
with those constants and variables that
have been assigned coordinate numbers
greater than or equal to 2 and less than or
equal to 80.

After a phase 15 text entry has been
formed, subroutine MATE is given control to
determine and record the usage information
for the text entry. It examines the text
entry operands in the order: operand 2,
operand 3, operand 1. If operand 2 has not
been assigned a coordinate (indicating that
this is the first occurrence of the operand
in the module), subroutine MATE assigns it
the next coordinate, enters the coordinate
number into the byte-c usage field of the
dictionary entry for the operand, and plac
es a pointer to that dictionary entry into
the MVD table entry associated with the
assigned coordinate number. After MATE has
assigned the coordinate, or if the operand
was previously assigned a coordinate, it
records the usage information for the oper
and. The operand's associated coordinate
bit in the MVF field Cof the statement
number text entry for the block containing
the text entry under consideration) is set
on, indicating that the operand is used in
the block. MATE executes a similar proce-

dure to process operand 3 of the text
entry.

If operand 1 of the text entry has not
been assigned a coordinate, MATE assigns it
the next and records the following usage
information for operand 1:

• Its associated coordinate bit in the
MVX field is set on only if the asso
ciated coordinate bit in the MVF field
is not on. (If the associated MVF bit
is on, operand 1 of the text entry was
previously encountered in the block as
a use and therefore is not not busy-on
entry.)

• Its associated coordinate bit in the
MVS field is set on, indicating that it
is defined within the block.

This process is repeated for all the
phase 15 text entries that are formed
following the construction of a statement
number text entry and preceding the
construction of the next statement number
text entry. When the next statement number
text entry is constructed, all the usage
information for the preceding block has
been recorded in the statement number text
entry that begins that block. The same
procedure is followed to gather· the usage
information for the next text block.

Gathering Forward Connection Information

An integral part of the processing of
PHAZlS is the gathering of forward connec
tion information, which indicates which
text blocks pass control to which other
text blocks. Forward connection informa
tion is used during phase 20 optimization.

Forward connection information is
recorded in a table called RMAJOR. Each
RMAJOR entry is a pointer to the statement
number entry associated with a statement
number that is the object of a branch or a
fall-through. Because each statement num
ber entry contains a pointer to the text
block beginning with its associated state
ment number <refer to "Text Blocking"),
each RMAJOR entry points indirectly to a
text block.

For each new text block, PHAZ15 places a
pointer to the next available entry in
RMAJOR into the forward connection field of
the associated statement number entry
(refer to Appendix A, "Statement
Number/Array Table"). The statement number
entry associated with the text block there
fore points to the first entry in RMAJOR in
which the forward connection information
for that block is to be recorded.

After starting a
converts the phase 10

text
text

block, PHAZ15
following the

statement number definition to phase 15
text. As each phase 15 text entry is
formed, it is analyzed to determine if it
is a GO TO or compiler generated branch.
If it is, a pointer to the statement number
entry for each statement number that may be
branched to as a result of the execution of
the GO TO or generated branch is recorded
in the next available entry in RMAJOR. (If
two or more branches to the same statement
number appear in the text following a
statement number definition and before the
next, only one entry is made in RMAJOR for
the statement number to be branched to.)

When PHAZ15 encounters the next state
ment number definition, it starts a new
block. If the new block is an entry block,
PHAZ15 saves a pointer to its associated
statement number entry for subsequent use
and processes the text for the block.

If the new block is neither an entry
block nor an entry point (i.e., a block
immediately following an entry block),
PHAZ15 records the fall-through connection
information (if any) for the previous
block. If the previous block is terminated
by an unconditional branch, it does not
fall-through to the new block. If the
previous block can fall-through to the new
block, PHAZ15 records a pointer to the
statement number entry for the new block in
the next location of RMAJOR. It then flags
this as the last forward connection for the
previous block.

If the new block is an entry point
Ci.e., a block immediately following an
entry block), PHAZ15 records the fall
through connection (if any) for the
previous non-entry block. It does this in
the manner described in the previous para
graph. It then records the forward connec
tion information for all intervening entry
blocks Ci.e., entry blocks between the
previous non-entry block and the new
block). CPHAZ15 has saved pointers to the
statement number entries for all interven
ing entry blocks.) Each such entry block
passes control directly to the new block
and therefore has only one forward connec
tion. To record the forward connection
information for the intervening entry
blocks, PHAZ15 places a pointer to the next
available entry in RMAJOR into the forward
connection field of the statement number
entry for the first intervening entry
block. In this RMAJOR entry, PHAZ15
records a pointer to the statement number
entry for the new block. It flags this
entry as the last, and only, RMAJOR entry
for the entry block. PHAZ15 repeats this
procedure for the remaining intervening
entry blocks Cif any). PHAZ15 then pro
ceeds to process the new text block.

Section 2: Discussion of Major Components 31

When all the connection information for
a block has been gathered, each RMAJOR
entry for the block, the first of which is
pointed to by the statement number entry
for the block and the last of which ls
flagged as such, points indirectly to a
block to which that block may pass control.

Figure 7 illustrates the end result of
gathering forward connection information
for sample text blocks. Only the forward
connection information for the blocks
beginning with statement numbers 10 and 20
is shown. In the figure, it is assumed
that:

• The block started by statement number
10 may branch to the blocks started by
statement numbers 30 and 40 and will
fall-through to the block started by
statement number 20 if neither of the
branches is executed.

• The block started by statement number
20 may branch to the blocks started by
statement numbers 40 and 50 and will
fall-through to the block started by
statement number 30 if neither of the
branches is executed.

Statement Number Entry for 10
I

l 1 l l 1 l I I 10]

Statement Number Entry for 20
_I

4 i I ITI20J
Statement Number Entry for 30

l

~I I I1J30J
RMAJOR

~ -30 t-------'
Statement Number Entry for 40

_L -40
j l I I 1I 40 J * -20 I-----'

I ~ -40
-so

~ * -30 Statement Number Entry for SO

J llll}soJ 1
L

-

Figure 7. Forward Connection Information

32

Reordering the Statement Number Chain

After text blocking, arithmetic transla
tion, and, if complete optimization has
been specified, the gathering of
constant/variable usage information have
been completed, subroutine VSETUP reorders
the statement number chain of the inf orma
tion table (refer to Appendix A,
"Information Table"). The original order
of the entries in this chain, as recorded
by phase 10, was in the order of the
occurrence of their associated statement
numbers as either definitions or operands.
The new sequence of the entries after
reordering is according to the occurrence
of their associated statement numbers as
definitions only.

Although the actual reordering takes
place after the scan of the phase 10 text,
preparation for it takes place during the
scan. As each statement number definition
is encountered, a pointer to the related
statement number entry is recorded. Thus,
during the course of processing, a table of
pointers to statement number entries, which
reflects the order in which statement num
bers are defined in the module, is built.

PHASE lS TEXT

+ LDF I l I - 10
J

L
LDF 1 i I -20 ..

T

l
LDF l l I - 30 ..

J

~

.... LDF l l 1-40
J

L--+;

~ LDF I J -so 1
I

~

The order of the entries in this table also
reflects the order of the text blocks of
the modu1e.

After the scan, VSETUP uses this table
to reorder the statement number entries.
It places the first table pointer into the
appropriate field of the communication
table (refer to Appendix A, "Communication
Table"}; it places the second table pointer
into the chain field of the statement
number entry that is pointed to by the
pointer in the communication table; it
places the third table pointer into the
chain field of the statement number entry
that is pointed to by the chain field of
the statement number entry that is pointed
to by the pointer in the communication
table; etc. When VSETUP has performed this
process for all pointers in the table, the
entries in the statement number chain are
arranged in the order in which their asso
ciated statement numbers are defined in the
module. The new order of the chain also
reflects the order of the text blocks of
the module.

Gathering Backward Connection Information

After the statement number chain has
been reordered, and if optimization has
been specified, subroutine VSETUP gathers
backward connection information. This
information indicates which text blocks
receive control from which other text
blocks. Backward connection information is
used extensively throughout phase 20 opti
mization.

subroutine VSETUP uses the reordered
statement number chain and the information
in the forward connection table CRMAJOR} to
determine the backward connections. It
records backward connection information in
a table called CMAJOR. Each CMAJOR entry
made by VSETUP for a particular text block
(block I} is a pointer to the statement
number entry for a block from which block I
may receive control. Because each-state
ment number entry contains a pointer to its
associated text block (refer to "Text
Blocking"}, each CMAJOR entry for block I
points indirectly to a block from which
block I may receive control.

Subroutine VSETUP gathers backward con
nection information for the text blocks
according to the order of the statement
number chain; it first determines and
records the backward connections for the
text b1ock associated with the initial
entry in the statement number chain; it
then gathers the backward connection infor
mation for the block associated with the
second entry in the chain; etc.

For each text block, VSETUP initially
records a pointer to the next available
entry in CMAJOR in the backward connection
field (JLEAD} of the associated statement
number entry (ref er to Appendix A,
"Statement Number/Array Table"}. The
statement number entry thereby points to
the first entry in CMAJOR in which the
backward connection information for the
block is to be recorded.

Then, to determine the backward connec
tion information for the block (block I},
VSETUP obtains, in turn, each entry in the
statement number chain. (The entries are
obtained in the order in which they are
chained.) After VSETUP has obtained an
entry, it picks up the forward connection
field CILEAD) of that entry. This field
points to the initial RMAJOR entry for the
text block associated with the obtained
statement number entry. (Recall that the
RMAJOR entries for a block indicate the
blocks to which that block may pass con
trol.} VSETUP searches all RMAJOR entries
for the block associated with the obtained
entry for a pointer to the statement number
entry for block I. If such a pointer
exists, the text block associated with the
obtained statement number entry may pass
control to block I. Therefore, block I may
receive control from that block and VSETUP
records a pointer to its associated state
ment number entry in the next available
entry in CMAJOR. VSETUP repeats this pro
cedure for each entry in the statement
number chain. Thus, it searches all RMAJOR
entries for pointers to the statement num
ber entry for block I and records in CMAJOR
a pointer to the statement number entry for
each text block from which block I may
receive control. VSETUP flags the last
entry in CMAJOR for block I. When the
statement number chain has been completely
searched, VSETUP has gathered all the back
ward connection information for block I.
Each entry that VSETUP has made for block
I, the first of which is pointed to by the
statement number entry for block I and the
last of which is flagged, points indirectly
to a block from which block I may receive
control.

Subroutine VSETUP gathers the backwa~d
connection information for all blocks in
the above manner. When all of this infor
mation has been gathered, control is
returned to the FSD, which calls CORAL, the
third segment of phase 15.

Figure 8 illustrates the end result of
the gathering of backward connection inf or
mation for sample text blocks. Only the
backward connections for the blocks begin
ning with statement numbers 40 and 50 are
shown. In the figure, it is assumed that:

Section 2: Discussion of Major Components 33

CMAJOR

Statement Number Entry for 10
l

~-i1ll 1 l 10 J
Statement Number En!_iy for 20

_l

~,__ ___ -__ 10---<1 I r
-20

-30
.----+- -20

1----------t

-40

Statement Number Entry for 40
l

Statement Number Entry for 50

Figure 8. Backward Connection Information

• The block started by statement number
40 may receive control from the execu
tion of branch instructions that reside
in the blocks started by statement
numbers 10 and 20 and that it may
receive control as a result of a fall
through from the block started by
statement number 30.

• The block started by statement number
50 may receive control from the execu
tion of a branch instruction that
resides in the block started by state
ment number 20 and that it may receive
control as a result of a fall-through
from the block started by statement
number 40.

CORAL PROCESSING

CORAL, the last overlay segment of phase
15, performs five functions. It first
converts phase 10 data text to a form more
easily evaluated by phase 25. CORAL then

34

PHASE 15 TEXT

+ LDF I l I -10

[
j

LDF l j l - 20
J c

LDF l l l -+- 30

J

~

... LDF I j I_. 40

L.._

i---L-o-F -....j-
1

--.-I-__..-50--1

J

assigns addresses relative to the start of
an object module to all symbolic operands
-- variables, constants, and arrays. Dur
ing the assignment of relative addresses to
variables, CORAL rechains the data text in
order to simplify the generation of text
card images by phase 25. CORAL assigns
space in the address constant table
CNADCON) for unknown references -- call-by
name variables, library routines, and name
list names. This reserved space will be
filled by later phases. Lastly, as a user
option, CORAL prints a storage map of named
items -- variables, arrays, and external
references as recorded in the
information table. {Chart 09 shows the
overall logic flow of CORAL).

Translation of Data Text

The first section of CORAL, subroutine
NDATA, translates data text entries from
their phase 10 format to a form more easily
processed by phase 25. Each phase 10 data
text entry (except for initial housekeeping

entries) contains a pointer to a variable
or constant in the information table. Each
variable in the series of entries is to be
assigned to a constant appearing in another
entry. Placed in separate entries, varia
ble and constant appear to be unrelated.
In each phase 15 data text entry, after
translation, each related variable and con
stant are paired (they appear in adjacent
fields of the same entry).

The following example shows how a series
of phase 10 data text entries are translat
ed by NDATA to yield a smaller number of
phase 15 text entries, with each related
constant and variable paired. Assume a
statement appearing in the source module as
DATA, A,B/2*0/. The resulting phase 10
text entries appear as follows (ignoring
the chain, mode, and type fields, and the
two initial housekeeping entries):

r--------------------T--------------------1
I Adjective I I
I Code for: I Pointer I
~--------------------+--------------------~
I I Pointer to A I
I I in dictionary I
~--------------------+--------------------~
I I Pointer to B I
I I in dictionary I
~--------------------+--------------------~
I / I 2 I
~--------------------+--------------------~
I * I Pointer to 0 I
I I in dictionary I
~--------------------+--------~----------~
I / I o I
L--------------------i--------------------J
Note that the variables A and B and the
constant value O appear in separate text
entries. The NDATA translation of the
above phase 10 entries (ignoring the con
tents of the indicator and chain fields,
and two optional fields needed for special
cases) appears as follows:

r---------T---------T----------T----------1
findicatorl Chain IPl Field IP2 Field I
~---------+---------+---~------+----------~
I I I pointer I pointer I
I I I to A in I to 0 in I
I I ldictionaryldictionaryl
~--------~+---------+----------+----------~
I I I pointer I pointer I
I I Ito B in Ito 0 in I
I I ldictionaryldictionaryl l _________ i _________ i __________ i __________ J

In this case, each variable and its speci
fied constant value appear in adjacent
fields of the same phase 15 text entry.
The reader should ref er to Appendix B,
"Phase 15/20 Intermediate Text
Modification" for the detailed format of
the phase 15 data text entry and the use of
the special fields not discussed.

Relative Address Assignment

The chief function of CORAL is to assign
relative addresses to the operands
(constants and variables) of the source
module. The addresses indicate the loca
tions, relative to zero, at which the
operands will reside in the object module
resulting from the compilation. The rela
tive address assigned to an operand con
sists of an address constant and a dis
placement. These two elements, when added
together, form the relative address of the
operand. The address constant for an oper
and is the base address value used to ref er
to that operand in main storage. Address
constants are recorded in the adcon table
CNADCON) and are the elements to which the
relocation factor is added to relocate the
object module for execution. The displace
ment for an operand indicates the number of
bytes that the operand is displaced from
its associated address constant. Displace
ments are in the range of 0 to 4095 bytes.
The relative address assigned to an operand
is recorded in the information table entry
for that operand in the form of:

1.

2.

A numeric displacement from its
ciated address constant.

A pointer to an information
entry that contains a pointer to
associated address constant in
adcon table.

as so-

table
the
the

Relative addresses are assigned through
use of a location counter. This counter is
initially set to zero and is continually
updated by the size Cin bytes) of the
operand to which an address is assigned.
The value of the location counter is used
to:

• Contain the displacement to be assigned
to the next operand.

• Determine when the next address con
stant is to be established. (When the
location counter achieves a value in
excess of 4095, a new address constant
is established.)

CORAL assigns addresses to source module
operands in the following order:

• constants.

• Variables.

• Arrays.

• Hollerith characters when used as argu
ments.

• Equivalenced variables and arrays.

Section 2: Discussion of Major Components 35

• Common variables and arrays, including
variables and arrays made common using
the EQUIVALENCE statement.

The manner in which addresses are assigned
to each of these operand types is described
in the following paragraphs. Because con
stants, variables, and Hollerith characters
are processed in the same manner, they are
described together.

Constants, variables, and Hollerith Charac
ter Strings Used as Arguments: Subroutine
CONST first assigns relative addresses to
the constants of the module. Then, subrou
tine VARA assigns addresses to the varia
bles and Hollerith character strings. (In
the subsequent discussion, constants, vari
ables, and Hollerith character strings are
referred to collectively as operands.) The
first operand is assigned a displacement of
zero, which is the initial value of the
location counter. Operands that are
assigned locations within the first 4096
bytes of the object module are not explic
itly assigned an address constant. such
operands use the base address value loaded
into reserved register 12 as their address
constant (refer to Phase 20, "Branching
Optimization"). The displacement is
recorded in the information table entry for
that operand. The location counter is then
updated by the size in bytes of the oper
and.

The next operand is assigned a displace
ment equal to the current value of the
location counter. The displacement is
recorded in the information table entry for
that operand. The location counter is then
updated, and tested to see if it exceeds
4095. If it does not, the next operand is
processed as described above.

If sufficient operands exist to cause
the location counter to achieve a value in
excess of 4095, the first address constant
is established. The value of this address
constant equals the location counter value
that caused its establishment. This
address constant becomes the current
address constant and is saved for subse
quently assigned relative addresses. The
location counter is then reset to zero and
the next operand is considered.

After the first address constant is
established, it is used as the address
constant portion of the relative addresses
assigned to subsequent operands. The dis
placement for these operands is equal to
the value of the location counter at the
time they are considered for relative
address assignment.

When the location counter again reaches
a value in excess of 4095, another address
constant is established. Its value is

36

equal to the current address constant plus
the displacement that caused the establish
ment of the new address constant. This new
address constant then becomes current and
is used as the address constant for subse
quent operands. The location counter is
then reset to zero and the next operand is
processed. This overall process is repeat
ed until all operands (constant, variables,
and Hollerith strings) are processed.
Source module arrays are then considered
for relative address assignment.

Arrays: Subroutine VARA assigns each array
of the source module that is not in common
a relative address that is less than (by
the span of the array) the relative address
at which the array will reside in the
object module. (The concepts of span is
discussed in Appendix F.) The actual rela
tive address at which an array will reside
in the object module is derived from the
sum of address constant and displacement
that are current at the time the array is
considered for relative address assignment.
The array span is subtracted from the
relative address to facilitate subscript
calculations.

VARA subtracts the span in one of two
ways. If the span is less than the current
displacement, it subtracts the span from
that displacement, and assigns the result
as the displacement portion of the relative
address for the array. In this case, the
address constant assigned to the array is
the current address constant. If the span
is greater than the current displacement,
VARA subtracts the span from the sum of the
current address constant and displacement.
The result of this operation is a new
address constant, which does not become the
current address constant. VARA assigns the
new address constant and a displacement of
zero to the array. It then adds the total
size of the array to the location counter,
obtains the next array, and tests the value
of the location counter. If the value of
the location counter does not exceed 4095,
VAR.A does not take any additional action
before it processes the next array. If the
location counter value exceeds 4095, VARA
establishes a new address constant, resets
the location counter, and processes the
next array. After all arrays have relative
addresses, VARA returns control to CORAL,
which calls subroutine EQVAR to assign
address to equivalence variables and arrays
that are not in common.

Equivalence Variables and Arrays Not in
Common: In assigning relative addresses to
equivalence variables and arrays, subrou
tine EQVAR attempts to minimize the number
of required address constants by using, if
possible, previously established address
constants as the base addresses for equiva
lence elements. EQVAR processes equiva-

lence information on a group-by-group
basis, and assigns a relative address, in
turn, to each element of the group. Prior
to processing, EQVAR determines the base
value for the group. The base value is the
relative address of the head1 of the group.
The base value equa1s the sum of the
current address constant and displacement
<location counter value). After EQVAR has
determined the base value, it obtains the
first (or next) element of the group and
computes its relative address. The rela
tive address for an element equals the sum
of the base value for the group and the
offset of the element. The off set for an
element is the number of bytes that the
element is displaced from the head of the
group (refer to "Common and Equivalence
Processing"). EQVAR then compares the com
puted re1ative address to the previously
established address constants. If an
address constant exists such that the dif
ference between the computed relative
address and the address constant is less
than 4095, EQVAR assigns that address con
stant to the equiva1ence element under
consideration. The displacement assigned
in this ca~e is the difference between the
computed relative·address of the element
and the address constant. EQVAR then proc
esses the next element of the group.

If the desired address constant does not
exist, EQVAR establishes a new address
constant and assigns it to the element.
The value of the new address constant is
the relative address of the element. EQVAR
then assigns the element a displacement of
zero, and processes the next element of the
group. When all elements of the group are
processed, EQVAR computes the base value
for the next group, if any. This base
value is equal to the base value of the
group just processed plus the size of that
group. The next group is then processed.

Common Variables and Arrays: Subroutine
COMVAR considers each common block of the
source module, in turn, for relative
address assignment. For each common block,
COMVAR assigns relative addresses to Cl)
the variables and arrays of that block, and
(2) the variables and arrays equivalenced
into that common block. (The processing of
variables and arrays equivalenced into com
mon is described in a later paragraph.)

Because conunon blocks are considered
separate control sections, COMVAR assigns
each conunon block of the source module a
relocatable origin of zero. It achieves
the origin of zero by assigning to the

1The head of an equivalence group is the
variable in the group from which all other
variables or arrays in the group can be
addressed by a positive displacement.

first element of a common block a relative
address consisting of an address constant
and a displacement whose sum is zero. For
example, both the address constant and the
displacement for the first element in a
block can be zero. Also, the address
constant can be -16 and the displacement
+16. Note that the address constant in the
latter case is negative. Negative address
constants are permitted, and may be a
by-product of the assignment of addresses
to common variables and arrays. They
evolve from the manner in which the rela
tive addresses are assigned to arrays. A
relative address assigned to an array is
equal to its actual relative address minus
the span of that array. The actual rela
tive address of each array in a common
block is equal to the off set computed for
it during the common and equivalence proc
essing of the first segment of phase 15,
STALL. From the off set of each array in
the common block under consideration, COM
VAR subtracts the span of that array. The
result then replaces the previously comput
ed offset for the array. If the result of
one or mere of these computations yields a
negative value, COMVAR uses the most nega
tive as the initial address constant for
the common block. It then assigns each
element <variable or array) in the common
block a relative address. This address
consists of the negative address constant
and a displacement equal to the absolute
value of the address constant plus the
off set of the element.

If the computations which subtract spans
from off sets do not yield a negative value,
COMVAR establishes an address constant with
a value of zero as the initial address
constant for the common block. It then
assigns each element in the block a rela
tive address consisting of the address
constant <with zero value) and a displace
ment equal to the offset of the element.

If at any time the displacement to be
assigned to an element exceeds 4095, COMVAR
establishes a new address constant. This
address _constant then becomes the current
address constant and is saved for inclusion
in subsequently assigned addresses. After
the new address constant is established,
the relative address assigned to each sub
sequent element consists of the current
address constant and a displacement equal
to the off set of that element minus the
value of the current address constant.
After the entire common block is processed,
variables and arrays that are equivalenced
into that common block are assigned rela~
tive addresses.

Variables and Arrays Equivalenced into Com
mon: Subroutine COMVAR processes variables
and arrays that are equivalenced into com
mon in much the same manner as EQVAR

Section 2: Discussion of Major Components 37

processes those that are equivalenced, but
not into common. However, in this case,
the base value for the group is zero. Only
those address constants established for the
common block into which the variables and
arrays are equivalenced are acceptable as
address constants for those variables and
arrays.

Adcon and Base Variable Assignment: As
CORAL establishes a new address constant
and enters it into the adcon table, it als·o
places an entry in the information table.
This special entry, called an "adcon varia
ble," points to the new address constant.
All operands that have been assigned rela
tive addresses will have pointers to the
adcon variable for their address constant.
The adcon variables generated for operands
are assigned coordinates, via MCOORD and
the MVD table. Coordinates 81 through 128
are reserved for base variables; however,
some base variables may be assigned coordi
nates less than 81 if less than 80 coordi
nates are assigned during the gathering of
variable and constant usage information.
(Refer to PHAZ15, "Gathering constant/
Variable Usage Information.") Having been
assigned coordinates, the adcon variables
are now called base variables. Only those
operands receiving coordinate assignments
are available for full register assignment
during phase 20.

Rechaining Data Text

During the assignment of relative
addresses to variables, subroutine DATACH
rechains the data text entries. Their
previous chaining (set by phase 10) was
according to their order of appearance in
the source program. DATACH now chains the
data text entries according to the order of
relative addresses it assigns to variables.
Thus data text entries are now chained in
the same relative order in which the varia
bles will appear in the object module.
This order simplifies the generation of
text card images by phase 25.

Reserving Space in the Adcon Table

After relative address assignment is
completed, subroutine EXTRNL reserves space
in the adcon table for certain special
references. It scans the operands of the
information table to detEct any of these
references: call-by-name variables, names
of library routines, namelist names, and
external references. The byte-B usage
field of each information table entry
informs EXTRNL if a particular reference
belongs to one of these categories. For
each special reference that EXTRNL detects,
it reserves four bytes in the adcon table.
Phase 25 places the needed address con
stants in the reserved spaces.

38

Producing a Storage Map

Lastly, as a user option, subroutine
STMAP produces a storage map of named
items. These items include variables,
arrays, function or subroutine references,
and statement functions CSF). For each of
these, except function or subroutine ref
erences, the map contains the name, loca
tion, type, and tag. (The tag indicates
whether a variable appeared in a COMMON or
EQUIVALENCE statement or in both. It is
set by phase 10 or by CORAL.) For a
function or subroutine reference the map
lists the name and whether the reference is
external or in IFUNTB table.

PHASE 20

The primary function of phase 20 is to
produce a more efficient object module
(perform optimization). However, even if
the applications prograrr@er has specified
no optimization, phase 20 assigns registers
for use during execution of, the object
module.

For a given compilation, the applica
tions prograrruner may specify no optimiza
tion, an intermediate amount of optimiza
tion, or complete optimization. Thus, the
functions performed by phase 20 depena on
the optimization specified for the compila
tion.

• If no optimization has been specified,
phase 20 assigns to interwediate text
entry operands the registers they will
require during object module execution
(this is called basic register
assignment). As part of this function,
phase 20 also provides information
about the operands needed by phase 25
to generate machine instructions. Both
functions are implemented in a single,
block-by-block, top-to-oottom Ci.e.,
according to the order of the statement
numoer chain>, pass over the phase 15
text output. The end result of this
processing is that the register and
status fields of the phase 15 text
entries are filled in with the informa
tion required by phase 25 to convert
the text entries to machine language
form (refer to Appendix B, "Phase 20
Intermediate Text Modifications").
Basic register assignment does not take
full advantage of the available general
and floating-point registers, and it
does not specify the generation of
machine instructions that keep operand
values in registers (wherever possible)
for use in subsequent operations
involving them.

• If an intermediate amount of optimiza
tion has been specified, two processes
are carried out:

1. The first process, call full reg
ister assignment, performs the
same two functions as basic reg
ister assignment. However, full
register assignment takes greater
advantage of available registers
and provides information that ena
bles machine instructions to be
generated that keep operand values
in registers for subsequent opera
tions. An attempt is also made to
keep the most frequently used
operands in registers throughout
the execution of the object
module. Full register assignment
requires a number of passes over
the phase 15 text. The basic unit
operated upon is the text block
(refer to phase 15, "Text
Blocking"). The end result of
full register assignment, like
that of basic register assignment,
is that the register and status
fields of the phase 15 text
entries are filled in with the
information required by phase 25.

2. The second process, called branch
optimization, generates RX-format
branch instructions in place of
RR-format branch instructions
wherever possible. The use of
RX-format branches eliminates the
need for an instruction to load
the branch address into a general
register. However, branch optimi
zation first requires that the
sizes of all text blocks in the
module be determined so that the
branch address can be found.

• If complete optimization has been spec
ified, other measures are taken to
improve object-module efficiency. Com
plete optimization is performed on a
"loop-by-loop" basis. Therefore,
before processing can be initiated,
phase 20 must determine the structure
of the source module in terms of the
·1oops within it and the relationships
(nesting) among the loops. Then phase
20 determines the order in which loops
are processed, beginning with the
innermost Cmost frequently executed)
loop and proceeding outward. Complete
optimization involves three general
procedures:

1. The first, called text optimiza
tion, eliminates unnecessary text
entries from the loop being proc
essed. For example, redundant
text entries are removed and,
wherever possible, text entries

are moved to outer loops, where
they will be executed less often.

2. The second procedure is full reg
ister assignment, which is essen
tially the same as in intermediate
optimization, but is more eff ec
tive, because it is done on a
loop-by-loop basis.

3. The final procedure is branching
optimization, which is the same as
in the intermediate-optimized
path.

CONTROL FLOW

In phase 20, control flow may take one
of three possible paths, depending on the
level of optimization chosen (ref er to
Chart 10). Phase 20 consists of a control
routine (LPSEL) and six routine groups.
The control routine controls execution of
the phase. All paths begin and end with
the control routine. The first group of
routines performs basic register assign
ment. This group is only executed in the
control path for non-optimized processing.
The second group performs full register
assignment. Control passes through this
group in the paths for both
intermediate-optimization and complete
optimization. The third group of routines
performs branch optimization and is also
used in the paths for both
intermediate-optimization and complete
optimization. The fourth group determines
the structure of the source module and is
used only in the path for
complete-optimization. The fifth group
performs loop selection and again is only
executed in complete-optimization. The
final group performs text optimization and
is only used in complete-optimization.

The control routine governs the sequence
of processing through phase 20. The proc
essing sequence to be followed is deter
mined from degree of optimization specified
by the FORTRAN programmer. If no optimiza
tion is specified, the basic register
assignment routines are brought into play.
The unit of processing in this path is the
text block. Each block is passed by the
control routine to the basic register
assignment routines for processing. When
all blocks are processed, the control rou
tine passes control to the FSD, which calls
phase 25.

When intermediate-optimization is speci
fied, the control routine passes the entire
module to the full register assignment
routines and then to the routines that
compute the size of each text block. When
all block size information is gathered, the
control routine calls the routine that

Section 2: Discussion of Major Components 39

computes, using the block size information,
the displacements required for branching
optimization. Control is then passed to
the FSD.

When the control path for complete
optimization is selected, the unit of proc
essing is a loop, rather than a block. In
this case, the control routines initially
pass control to the routines of phase 20
that determine the structure of the module.
When the structure is determined, control
is passed to the loop selection routines,
to select the first (innermost) loop to be
processed. The control routines then pass
control to the text-optimization routines
to process the loop. When text optimiza
tion for a loop is completed, the control
routine marks each block in the loop as
completed. This action is taken to ensure
that the blocks are not reprocessed when a
subsequent (outer) loop is processed. The
control routine again passes control to the
loop selection routines to select the next
loop for text optimization. This process
is repeated until text optimization has
processed each loop in the module. (The
entire module is the last loop.> ·

After text optimization has processed
the entire module, the control routine
removes the block completed marks and con
trol is passed to the loop selection rou
tines to reselect the first loop. Control
is then passed to the full register assign
ment routines. When full register assign
ment for the loop is complete, the control
routine marks each block in the loop as
completed and passes control to the loop
selection routines to select the next loop.
This process is repeated for each loop in
the module. (The entire module is the last
loop.) When all loops are processed, the
control routine passes control to the rou
tines that compute the size of each text
block and then to the routine that com
putes, using the block size information,
the displacements required for branching
optimization. Control is then passed to
the FSD.

REGISTER ASSIGNMENT

Two types of register assignment can be
performed by phase 20: basic and full.
Before describing either type, the concept
of status, which is integrally connected
with both types of assignment, is dis
cussed.

Each text entry has associated operand
and base address status information that is
set up by phase 20 in the status field of
that text entry (refer to Appendix B,
"Phase 20 Intermediate Text Modification").
The status information for an operand or
base address indicates such things as

40

whether or not it is in a register ana
whether or not it is to be retained in a
register for subsequent use; this informa
tion indicates to phase 25 the machine
instructions that must be generated for
text entries.

The relationship of status to phase 25
processing is illustrated in the following
example. Consider a phase 15 text entry of
the form A = B + c. To evaluate the text
entry, the operands B and c must be added
and then stored into A. However, a number
of machine instruction sequences could be
used to evaluate the expression. If oper
and B is in a register, the result can be
achieved by performing an RX-forn~at add of
c to the register containing B, provided
that the base address of c is in a reg
ister. (If the base address of C is not in
a register, it must be loaded before the
add takes place.) The result can then be
stored into A, again, provided that the
base address of A is in a register.

If both B and c are in registers, the
result can be evaluated by executing an
RR-format add instruction. The result can
then be stored into A. Thus, for phase 25
to generate code for the text entry, it
must have the status of operands and base
addresses of the text entry.

The following facts about status should
be kept in mind throughout the following
discussions of basic anct full register
assignment:

1. Phase 20 indicates to phase 25 when it
is to generate code that loads oper
ands and base addresses into reg
isters, whether it is to generate code
that retains operands and base
addresses in registers, and whether
operand 1 is to be stored.

2. Phase 20 makes note of the operands
and base addresses that are retained
in registers and are available for
subsequent use.

Basic Register AssigQmen~

Basic register assignment involves two
functions: assigning registers to the oper
ands of the phase 15 text entries and
indicating the machine instructions to be
generated for the text entries. In per
forming these functions, basic register
assignment does not use all of the availa
ble registers, and it restricts the assign
ment of those that it does use to special
types of items (i.e., operands and ba.se
addresses). The registers assigned during
basic register assignment and the item(s)
to which each is assigned are outlined in
Table 2.

Table 2. Item Types and Registers Assigned
in Basic Register Assignment.

r---------------T-------------------------1
!Register I Item Type I
~---------------+-------------------------1
Floating-Point
Register

0

2

General Purpose
Register

Arithmetic text entry
operands that are real~

Imaginary part of the
result of a complex func
tion.

0-1 Arithmetic text entry
operands that are inte
ger, or logical operands,

5

6

7

14

Branch addresses and
selected logical operands

Operands that represent
index values

Base addresses

1. Used for computed GO
TO operations,

2. Logical
comparison
tions

result of
opera-

15 Used for computed GO TOI
operations. I

L---------------L-------------------------J

Basic register assignment essentially
treats System/360 as if it had a single
branch register, a single base register,
and a single accumulator. Thus, operands
that are branch addresses are assigned the
branch register, base addresses are
assigned the base register, and arithmetic
operations are performed using a single
accumulator. (The accumulator used depends
upon the mode of the operands to be operat
ed upon.>

The fact that basic register assignment
uses a single accumulator and a single base
register is the key to understanding how
text entries having an arithmetic operator
are processed. To evaluate the arithmetic
interaction of two operands using a single
accumulator, one of the operands must be in
the accumulator. The specified operation
can then be performed by using an RX-format
instruction. The result of the operation
is formed in the accumulator and is availa
ble for subsequent use. Note that in
operations of this type, neither of the
interacting operands remains in a register.

Applying this concept to the processing
of text entries that are arithmetic in
nature, consider that a phase 15 text entry
representing the expression A = B + c is
the first of the source module. For this
text entry to be evaluated using a single
accumulator and base register, basic reg
ister assignment rr.ust tell phase 25 to
generate machine code that:

• Loads the base address of B into the
base register.

• Loads B into thE accumulator.

• Loads the base address of c into the
base register. (This instruction is
not necessary if c is assigned the saffie
base address as B.)

• Adds C to the accumulator (RX-forntat).

• Loads the base address of A into the
base register (if necessary).

• Stores the accumulated result in A.

If this coding sequence were executed,
two items woula remain in registers: the
last base address loaded and the accumulat
ed result. These items are available for
subsequent use.

Now consider that a text entry of the
form D A + F immediately follows tne
above text entry. In this case, A, which
corresponds to tne result operand of the
previous text entry, is in the accumulator.
Thus, for this text entry, basic register
assignment specifies code that:

• Loads the base address of F into the
base register. (If the oa.se address of
F corresponds to the last loaded base
address, this instruction is not neces
sary.)

• Adds F to the accumulator (RX-format
add).

• Loads the base address of D into the
base register (if necessary).

• Stores the accumulated resulr in D.

The above coding sequences are the basic
ones specified by basic register assignment
for arithmetic operations. Tne first is
specified for text entries in which neither
operand 2 nor operand 3 Csee Figure 5)
corresponds to the result operand Coperana
1) of the preceding text entry. The second
is specified for text entries in which
either operand 2 or operand 3 correspond5
to the result operand. If operand 3 cor
responds to the res~lt operand, the two
operands exchange roles, except for divi-

Section 2: Discussion of Major Components 41

sion. In the case of division, operand 3
is always in main storage.

If both operands 2 and 3 correspond to
the result operand of the previous text
entry, an RR-format operation is specified
to evaluate the interactions of the oper
ands.

In the actual process of basic register
assignment, a single pass is made over the
phase 15 text output. The basic unit
operated upon is the text block. As the
processing of each block is completed, the
next is processed. When all blocks are
processed, control is returned to the FSD.

Text blocks are processed in a top-to
bottom manner, beginning with the first
text entry in the block. When all text
entries in a block are processed, the next
text block is processed similarly.

For any text entry, the machine code to
be generated is first specified by setting
up the status field of the text entry.
Registers are then assigned to the operands
and base addresses by filling in the
register fields of the text entry.

Status Setting: Subroutine SSTAT sets the
operand and base address status information
for a text entry in the following order:
operand 2, operand 2 base address, operand
3, operand 3 base address, operand 1, and
operand 1 base address.

To set the status of operand 2, SSTAT
determines the relationship of that operand
to the result operand (operand 1) of the
previous text entry. If operand 2 is the
same as the result operand, SSTAT sets the
status of operand 2 to indicate that it is
in a register and, therefore, need not be
loaded; otherwise, it sets the status to
indicate that it is in main storage. SSTAT
uses a similar procedure to set the status
of operand 3.

To set the status of the base address of
operand 2, SSTAT determines the relation
ship of that base address to the current
base address <see note). If they corre
spond, SSTAT sets the status of the base
address of operand 2 to indicate that it is
in a register and, therefore, need not be
loaded; otherwise wise, it sets the status
to indicate that it is in main storage.

SSTAT sets the statuses of the base
addresses of operands 3 and 1 in a similar
manner.

Note: The current base address is the last
base address loaded for the purpose of
ref erring to an operand. This base address
remains current until a subsequent operand
that has a different base address is

42

encountered. When this occurs, the base
address of the subsequent operand must be
loaded. That base address then becomes the
current base address, etc.

SSTAT sets status of operand 1 to indi
cate whether or not the result of the
interaction of operands 2 and 3 is to be
stored into operand 1. If operand 1 is
either an actual operand or a temporary
that is not used in the subsequent text
entry, it sets the status of operand 1 to
indicate that the store is to be performed;
otherwise; it sets the status to indicate
that a store into operand 1 is unnecessary.

Register Assignment: After the status
field of the text entry is completed,
subroutine SPLRA assigns registers to the
operands of the text entry and their asso
ciated base addresses in the same order in
which statuses were set for them.

The assignment of registers depends upon
the statuses of the operands of the text
entry. To assign a register to operand 2,
SPLRA examines the status of that operand,
and, if necessary, of operand 3. If the
status of operand 2 indicates that it is in
a register or if the statuses of operands 2
and 3 indicate that neither is a register,
SPLRA assigns operand 2 a register. It
selects the register according to the type
of operand (refer to Table 2), and places
the number of that register into the R2
field of the text entry.

To assign a register to the base address
of operand 2, SPLRA determines the status
of operand 2. If the status of that
operand indicates that it is not in a
register, it assigns a register to the base
address of operand 2. The appropriate
register is selected according to Table 2,
and the register number is placed into the
B2 field of the text entry. If the status
of operand 2 indicates that it is in a
register, SPLRA does not assign a register
to the base address of operand 2. SPLRA
uses a similar procedure in assigning a
register to the base address of operand 3.

If the status of operand 3 indicates
that it is in a register, SPLRA assigns the
appropriate register (ref er to Table 2) to
that operand, and enters the number of that
register into the R3 field.

Operand 1 is always assigned a register.
SPLRA selects the register according to the
type of operand 1 <refer to Table 2), and
places the number of that register into the
Rl field.

The base address of operand 1 is
assigned a register only if the status of
operand 1 indicates that it is to be stored
into. If such is the case, SPLRA selects

the appropriate register, and records the
number of that register in the Bl field.
If the status of operand 1 indicates that
it is not to be stored into, SPLRA does not
assign a register to the base address of
operand 1.

When all the operands of the text entry
and their associated base addresses are
assigned registers, the next text entry is
obtained, and the status setting and reg
ister assignment processes are repeated.
After all text entries in the block are
processed, control is returned to the con
trol routine of phase 20, which then makes
the next block available to the basic
register assignment routines. When the
processing of all blocks is completed,
control is passed to the FSD.

Full Register Assignment

During full register assignment (also
refer to "Full Register Assignment During
Complete Optimization">, as during basic
register assignment, registers are assigned
to the text entry operands and their asso
ciated base addresses, and the machine code
to be generated for the text entries is
specified. To improve object module effi
ciency, these functions are performed in a
manner that reduces the number of instruc
tions required to load base addresses and
operands. This process reduces the number
of required load instructions by taking
greater advantage of all available reg
isters, by assigning the registers as need
ed to both base addresses and operands, by
keeping as many operands and base addresses
as possible in registers and available for
subsequent use, and by keeping the most
active base addresses and operands in reg
isters where they are available for use
throughout execution of the entire object
module.

During full register assignment, reg
isters are assigned at two levels:
"locally" and "globally." Local assiqnment
is performed on a block-by-block basis.
Global assignment is performed on the basis
of the entire module Cif intermediate
optimization has been specified).

For local assignment, an attempt is made
to keep operands whose values are defined
within a block in registers and available
for use throughout execution of that block.
This is done by assigning an available
register to an operand at the point at
which its value is defined. (The value of
an operand is defined when that operand
appears in the operand 1 position of a text
entry.) The same register is assigned to
subsequent uses Ci.e., operand 2 or operand
3 appearances) of that operand within the
block, thereby ensuring that the value of
the operand will be in the assigned reg-

ister and available for use. However, if
more than one subsequent use of the defined
operand occurs in the block, additional
steps must be taken to ensure that the
value of that operand is not destroyed
between uses. Thus, when the text entries
in which the defined operand is used are
processed, the code specified for them must
not destroy the contents of the register
containing the defined operand.

Because all available registers are used
during full register assignment, a number
of operands whose values are defined within
the block can be retained in registers at
the same time.

Applying the above concept to an exam
ple, consider the following sequence of
phase 15 text entries;

A X + Y
C A + Z
F A+ C

A register is assigned to A at the point at
which its value is defined, namely in the
text entry A = X + Y. The same register is
assigned to the subsequent uses of A. The
value of A will be accumulated in the
assigned register and can be used in the
subsequent text entry c = A + z. However,
because A is also used in the text entry
F = A + c, the contents of the register
containing A cannot be destroyed by the
code generated for the text entry
C = A + z. Thus, when the text entry c = A
+ -z is processed, instructions are speci
fied for that text entry that use the
register containing A, but that do not
destroy the contents of that register.

In the example, c is also defined and
sunsequently used. To that defined operand
and its subsequent uses, a register is
assigned. The assigned register is differ
ent from that assigned to A. The value of
C will be accumulated in the assigned
register and can be used in the next text
entry. The text entry F = A + c can then
be evaluated without the need of any load
operand instructions, because both the
interacting operands (A and C) are in
registers.

This type of processing typifies that
performed during local assignment for each
block. When all blocks are processed,
global assignment for the source module is
carried out.

Global assignment increases the eff i
ciency of the object module as a whole by
assigning registers to the most active
operands and base addresses. The activi
ties of all operands and base addresses are
computed prior to global assignment. The
first register available for global assign-

Section 2: Discussion of Major Components 43

ment is assigned to the most active operand
or base address; the next available reg
ister is assigned to the next most active
operand or base address; etc. As each such
operand or base address is processed, a
text entry, the function of which is to
load the operand or base address into the
assigned register, is generated and placed
into the first block Ci.e., entry block) of
the module. When the supply of operands
and base addresses, or the supply of avail
able registers, is exhausted, the process
is terminated.

All global assignments are recorded for
use in a subsequent text scan, which incor
porates global assignments into the text
entries, and completes the processing of
operands that have neither been locally or
globally assigned to registers (e.g., an
infrequently used operand that is used in a
block but not defined in that block).

The full register assignment process is
divided into five areas of operation: con
trol (subroutine REGAS), table building
(subroutine FWDPAS), local assignment
(subroutine BKPAS), global assignment
(subroutine GLOBAS), and text updating
(subroutine STXTR). The control routine of
phase 20 (LPSEL) passes control to the full
register assignment control routine, which
directs the flow of control among the other
full register assignment routines.

The actual assignment of registers is
implemented through the use of tables built
by the table-building routine, with assis
tance from the control routine. Tables are
built using the set of coordinate numbers
and associated dictionary pointers created
by phase 15 CMCOORD and MVD) for indexing.
The table-building routine constructs two
sets of parallel tables. One set, used by
the local assignment routine, contains
information about a text block; the second
set, used by the global assignment rou
tines, contains information about the
entire module. (The local assignment and
global assignment tables are outlined in
Appendix A, "Register Assignment Tables.")

The flow of control through the full
register assignment routines is as follows:

1. The control routine (REGAS) makes a
pass over the MVD table and the dic
tionary entries for the variables and
constants in the loop passes to it,
and constructs the eminence table
CEMIN) for the module, which indicates
the availability of the variables for
global assignment. The routine then
calls the table-building routine to
process the first block in the module.

2.

44

The table-building routine
builds the required set

CFWDPAS)
of local

assignment tables for the block and,
at the same time, adds information to
the global assignment tables under
construction. It then passes control
to the local assignment routine to
process the block. When processing of
the block is completed, control is
returned to REGAS.

3. The local assignment routine CBKPAS)
uses the tables supplied for the block
to perform local register assignment,
and returns control to FWDPAS when its
processing is completed.

4. The control routine (REGAS) selects
the next block in the module, and
passes it to the table-building rou
tine, which then passes control to the
local assignment routine. This proc
ess continues until all blocks in the
module have been processed by the
table-building and local assignment
routines.

5. The control routine passes control to
the global assignment routine, which
performs global assignment for the
module.

6. When global assignment is complete,
the control routine calls the text
updating routine (STXTR) to complete
register assignment by entering the
results of global assignment into the
text entries for the module. Control
is then returned to the control rou
tine of phase 20 CLPSEL).

Table Building for Register Assignment:
The table-building routine performs a for
ward scan of the intermediate text entries
for the block under consideration and
enters information about each text entry
into the local and global tables (ref er to
Appendix A, "Register Assignment Tables").
The local assignment tables can accommodate
information for 100 text entries. If a
block contains more than 100 text entries,
the table-building routine builds the local
tables for the first 100 text entries and
passes this set of tables to the local
assignment routine. The local assignment
routine processes the text entries rep
resented in the set of local tables. The
table-building routine then creates the
local tables for the next 100 text entries
in the block and passes them to the local
assignment routine. When the table
building routine encounters the last text
entry for the block, it passes control to
the local assignment routine, although
there may be fewer than 100 entries in the
local tables.

The global tables contain information
relating to variables and constants
referred to within the module, rather than

to text entries. The global tables can
accommodate information for 126 variables
and constants in a given module. Variables
and constants in excess of this number
within the module are not processed by the
global assignment routine.

Local Assignment: Local assignment is
implemented via a backward pass over the
text items for the block Cor portion of a
block) under consideration. The text items
are ref erred to by using the local assign
ment tables, which supply pointers to the
text items.

The local assignment routine examines
each operand in the text for a block and
determines (from the local assignment
tables) if the operand is eligible for
local assignment. To be eligible, an oper
and must be defined and used Cin that
order) within a block. Because local
assignment is performed via a backward pass
over the text, an eligible operand will be
encountered when it is used Ci.e., in the
operand 2 or 3 position) before it is
defined.

When an operand of a text entry is
examined, the local assignment routine
CBKPAS) consults the local assignment
tables to determine that operand's eligi
bility. If the operand is eligible, BKPAS
assigns a register to it. The register
assigned is determined by consulting the
register usage table CTRUSE). TRUSE is a
work table that contains an entry for every
register that may be used by the local
assignment routine. A zero entry for a
particular register i·ndicates that the reg
ister is available for local assignment. A
nonzero entry indicates that the register
is unavailable and identifies the variable
to which the register is assigned. The
register usage table is modified each time
a register is assigned or freed.

BKPAS records the register assigned to
the used operand in the local assignment
tables and in the text item containing the
used operand. It sets the status of the
operand in the text entry to indicate that
it is in a register. If subsequent uses of
the operand are encountered prior to the
definition of the operand, BKPAS uses the
register assigned to the first use, and
records its identity in the text item. It
then sets the status bits for the operand
to· indicate that it is in a register and is
to be retained in that register.

When a definition of the operand is
encountered, BKPAS enters the register
assigned to the operand into the text item
and sets the status for the operand to
indicate its residence in a register. Once
the register is assigned to the operand at
its definition point, BKPAS frees the reg-

ister by setting the entry in the register
usage table to zero, making the register
available for assignment to another oper
and.

If the block being processed contains a
CALL statement, no common variables may be
considered for local assignment and no real
operands can be assigned to registers
across that reference. In addition, if the
block contains a reference to a function
subprogram, no local assignment may be made
for real operands across the reference to
that function. The local assignment rou
tine assumes that:

1. All mathematical functions return the
result in general register 0 or
floating-point register O, according
to the mode of tne function.

2. The imaginary portion of a complex
result is returned in floating-point
register 2.

If no register is available for assign
ment to an eligible operand, an overflow
condition exists. In this case, BKPAS must
free a previously assigned register for
assignment to the current operand. It
scans the local assignment tables and se
lects a register. It then modifies the
local assignment tables, text entries for
the block, and register usage table to
negate the previous assignment of the
selected register. The required register
is now available, and processing continues
in the normal fashion.

Global Assignment: The global assignment
routine (GLOBAS), unlike the local assign
ment routine, does not process any of the
text entries for the module. The global
assignment routine operates only through
the set of global tables. The results of
global assignments are entered into the
appropriate text entries by the text updat
ing routine.

Before assigning registers, the global
assignment routine modifies the global
assignment tables to produce a single
activity table for all operands and base
addresses in the module.

Global assignment is then
based on the activity of the
operands and base addresses.

performed
eligible

GLOBAS determines the eligibility of an
operand or base address by consulting the
appropriate entry in the global assignment
tables. Eligible operands are divided into
two categories: floating point and fixed
point. The two categories are processed
separately, with floating-point quantities
processed first.

Section 2: Discussion of Major components 45

A register usage table CRUSE) of the
same type as described under local assign
ments CTRUSE) is used by the global assign
ment routine.. For each category of oper
ands, GLOBAS selects. the eligible operand
with the highest total activity and assigns
it the first available register of the same
mode. It records the assignment in the
register usage table and in the global
assignment tables. GLOBAS then selects the
eligible operand with the next highest
activity and treats it in the same manner.
Processing for ea·ch group continues until
the supply of eligible operands or the
supply of available registers is exhausted.

If the module contains any CALL state
ments, real and common variables are ineli
gible for global assignment. If the module
contains any references to function subpro
grams no global assignment can be perf orrned
for real quantities. In other words, if a
module contains both a reference to a
subroutine and to a function subprogram,
global assignment is restricted to integer
and logical operands that are not in com
mon.

Text Updating: The text updating routine
CSTXTR) completes full register assignment.
It scans each text entry within the series
of blocks comprising the module, looking at
operands 2, 3, and 1, in that order, within
each text entry. As each operand is proc
essed, STXTR interrogates the completed
global assignment table to determine if a
global assignment has been made for the
operand. If it has, STXTR enters the
number of the register assigned into the
text entry and sets the operand status bits
to indicate that the operand is in a
register and is to be retained in that
register.

If both a local and a global assignment
have been made for an operand, the global
assignment supersedes the local assignment
and STXTR records the number of the global
ly assigned register in the text items
pertaining to that operand. It also sets
the status bits for such an operand to
indicate that it is in a register and is to
be retained in that register.

If a register has not been assigned
either locally or globally for an operand,
STXTR determines and records in the text
entry the required base register for the
base address of that operand. If the base
address corresponds to one that has been
assigned a register during global assign
ment, STXTR assigns the same register as
the base register for the operand. If a
register has not been assigned to the base
address of the operand during global
assignment, it assigns a spill register
(register 0 or 15) as the base register of
the operand. STXTR sets the operand's base

46

status bits to indicate whether or not the
base address is in a register. "{The base
address will be in a register if one was
assigned to it during global assignment.)
It then assigns the operand itself a spill
register (general register 0 or 1 or
floating-point register O, depending upon
its mode).

As part of its text updating function,
STXTR allocates temporary storage where
needed for temporaries that have not been
assigned to a register, keeps track of the
allocated temporary storage, and completes
the register fields of text entries to
ensure compatibility with phase 25. On
exit from the text updating routine, all
text items in the module are fully formed
and ready for processing by phase 25. The
text updating routine returns control to
the full register assignment control rou
tine (REGAS) upon completion of its func
tions. REGAS, in turn, returns control to
the control routine of the phase CLPSEL).

BRANCHING OPTIMIZATION

This portion of phase 20 optimizes
branching within the object module. The
optimization is achieved by generating RX
format branch instructions in place of
RR-format branch instructions wherever
possible.

The use of RX-format branches eliminates
the need for an instruction to load the
branch address into a general register
preceding each branching instruction.
Thus, branching optimization decreases the
size of the object module by one instruc
tion for each RR-format branch instruction
in the object module that can be replaced
by an RX-format branch instruction. It
also decreases the number of address con
stants required for branching.

Phase 20 optimizes branching instruc
tions by calculating the size of each text
block (number of bytes of object code to be
generated for that block) and by determin
ing those blocks that can be branched to
via RX-format branch instructions.

Subroutine BLS calculates the sizes of
all text blocks after full register assign
ment for the module is completed. Subrou
tine LYT then uses the gathered block size
information to determine the blocks that
can be branched to by means of RX-format
branch instructions. BLS calculates the
number of bytes of object code by:

1. Examining each text item
code and the status of the
(i.e., in registers or not).

operation
operands

2. Determining, from a reference table,
the number of bytes of code that is to
be generated for that text item.

BLS accumulates these values for each block
in the module. In addition, it incr.-ements
the block size count by the appropriate
number of bytes for each encountered ref
erence to an in-line routine and for each
required prologue and epilogue, if a sub
program program is being compiled (refer to
Phase 25, "Prologue and Epilogue
Genera ti on" > •

After BLS computes all block sizes,
subroutine LYT determines those text blocks
that can be branched to via RX-format
branch instructions. A text block, once
converted to machine code, can be branched
to via an RX-format branch instruction if
the relative address of the beginning of
that block is displaced less than 4096
bytes from an address that is loaded into a
reserved register.

The following text discusses reserved
registers, the addresses loaded into them,
and the processing performed by LYT to
determine the source module blocks that can
be branched to via RX-format branch
instructions.

Reserved Registers

Reserved registers are allocated to con
tain the starting address of the adcon
table and subsequent 4096-byte blocks of
the object module. The criterion used by
phase 20 in reserving registers for this
purpose is the number of text entries that
result from phase 15 processing. (Phase 15
counts the number of text entries that
result from its processing and passes the
information to phase 20.) For relatively
small source modules (approximately 70
source statements), phase 20 reserves only
one register. For sufficiently large
source modules (approximately 280 source
statements), a maximum of four is reserved.
The registers are reserved, as needed, in
the following order: register 13, 11, 10,
and 9.

Note: Phase 20 also reserves register 12
to contain the relative address of the
"constants" portion of text information
<see Figure 11). It is used to refer to
the constants and/or variables that occupy
locations within the first 4096 bytes of
the text information portion of the object
module.

Reserved Register Addresses

The addresses placed into the reserved
registers as a result of the execution of
the initialization instructions (refer to

Phase
are:

25, "Initialization Instruction")

• Register 13 - address of main program
(or subprogram) save area. 1

• Register 11 Cif reserved) - address of
the save area plus 4096.

• Register 10 Cif reserved) - address of
the save area plus 2(4096).

• Register 9 Cif reserved) - address of
the save area plus 3(4096).

Block Determination and Subsequent
Processing

Because the instructions resulting from
the compilation are entered into text
information immediately after the adcon
table (see Figure 11), certain text blocks
are displaced less than 4096 bytes from an
address in a reserved register. such
blocks can b€ branched to by RX-format
branch instructions that use the address in
a reserved register as the base address for
the branch.

To determine the blocks that can be
branched to via RX-format branch instruc
tions, subroutine LYT computes the dis
placement (using the block size
information) of each block from the address
in the appropriate reserved register. The
first reserved register address considered
is that in register 13. If a block dis
placed less than 4096 bytes from that
address exists, LYT enters the displacement
of that block (from the address) into the
statement number entry for the statement
number associated with the beginning of
that block. It also places in that state
ment number entry an indication that the
block can be transferred to via an RX
format branch instruction, and records the
number of the reserved register to be used
in that branch instruction.

When LYT has processed all blocks
displaced less than 4096 bytes from the
address in register 13, it processes those
displaced less than 4096 bytes from the
addresses in registers 11, 10, and 9 (if
reserved) in a similar manner.

The information placed in the statement
number entries is used during code genera
tion, a phase 25 process, to generate
RX-format branch instructions.

1 Register 13 is used to ref er to the adcon
table, which resides in text information
immediately after the initialization
instructions Csee Figure 11).

Section 2: Discussion of Major Components 47

STRUCTURAL DETERMINATION

To achieve complete optimization, the
structural determination routines of phase
20 (TOPO and BAKT) identify module loops
and specify the order in which they are to
be processed. Loops are identified by
analyzing the block connection information
gathered by phase 15 and recorded in the
forward connection CRMAJOR) and backward
connection (CMAJOR) tables. The connection
information indicates the flow of control
within the module and, therefore, reflects
which blocks pass control among themselves
in a cyclical fashion.

Loops are ordered for processing start
ing with the innermost, or most often
executed, loop and working outward. The
inner-to-outer loop sequence is specif ed so
that:

• Text entries will not be relocated into
loops that have already been
processed.1

• The full register ·capabilities of
System/360 can first be applied to the
most frequently executed (innermost)
loop.

Loop identification is a sequential
process, which first requires that a back
dominator be determined for each text
bloc~he back dominator of a text block
(block I) is defined as the block nearest
to block I through which control must pass
before block I receives control for the
first time. The back dominators of all
text blocks must be determined before loop
identification can be continued. After all
back dominators have been determined, a
chain of back dominators is effectively
established for each block. This chain
consists of the back dominator of the
block, the back dominator of the back
dominator of the block, etc.

Figure 9 illustrates the concept of back
dominators. Each block in the figure rep
resents a text block. The blocks are
identified by single letter names. The
back dominator of each block is identified
and recorded above the upper right-hand
corner of that block.

When all back dominators are identified,
a back target and a depth number for each

1The text optimization process relocates
text entries from within a loop to an outer
loop. Thus, if an outer loop were proc
essed first, text entries from an inner
loop might be relocated to the outer loop,
thereby requiring that the outer loop be
reprocessed.

48

text block are determined. A block (block
I) has a back target (block J) if:

• There exists a path from block I to
itself that does not pass through block
J.

• Block J is the nearest block in the
chain of back dominators of block I
that has only one forward connection.

The text blocks constituting a loop are
identif ianle because they have a common
back target, known as the back target of
the loop.

The depth number for a block indicates
the degree to which that block is nested
within loops. For example, if a block is
an element of a loop that is contained
within a loop with a depth number of one,
that block has a depth nurn.oer of t~o. All
blocks constituting the same loop (i.e.,
all blocks having a common target) have the
same depth number. Entry

0

B

E

Exit

Figure 9. Back Dominators

The depth numbers computed for the
blocks that comprise the various loops are
used to determine the order in which the
loops are to be processed.

Figure 10 illustrates the concepts of
back targets and depth numbers. Again each
block in the figure represents a text
block, which is identified by a single
letter name. In this figure, the back
target of each block is identified and

recorded above the upper right-hand corner
of that block. The depth number for the
block is recorded above the upper left-hand
corner of the block. Note that blocks that
pass control among themselves in a looping
fashion have a common back target and the
same depth number. Also note that .the
blocks of the two inner loops have the same
depth numbers, although they have different
back targets.

When the back target and depth number of
each text block has been determined, loops
are identified and the order in which they
are to be processed is specified. The
loops are ordered according to the depth
number of their blocks. The loop whose
blocks have the highest depth number is
specified as the first to be processed; the
loop whose blocks have the next highest
depth number is specified as the second to
be processed; etc. When the processing
order of all loops has been established,
the innermost loop is selected for process
ing.

The following paragraphs describe the
processing performed by the structural
determination routines to:

• Determine the back dominator of each
text block.

• Determine the back target and depth
number of each text block.

• Identify and order loops for process
ing.:

Entry
0 0

A

Exit

Figure 10. Back Targets and Depth Numbers

Determination of Back nominators

Subroutine TOPO determines the back dom
inator of each text block by examining the
connection information for that block. The
first block processed by TOPO is the first
block (entry block) of the n:odule. Blocks
on the first level Ci.e., blocks that
receive control from the entry block) are
processed next. Second-level blocks Ci.e.,
blocks that receive control from first
level blocks) are then processed, etc.

TOPO assigns the entry block a back
dominator of zero, because it has no back
dominator; it records the zero in the back
dominator field of the statement number
entry for that block (refer to Appendix A,
"Statement Number/Array Table"). TOPO
assigns each block on the first level
either its actual back dominator or a
provisional back dominator. If a first
level block receives control from only one
block, that block must be the entry block
and is the back dominator for the first
level block. TOPO records a pointer to the
statement number entry for the entry block
in the back dominator field of the
statement number entry for the first level
block. If a first-level block receives
control from more than one block, TOPO
assigns it a provisional back dominator,
which is the entry block of the module.
All blocks on the first level are processed
in this manner.

TOPO also assigns each block on the
second level either its actual back
dominator or a provisional back dominator.
If a second-level block receives control
from only one block, its back dominator is
the first-level block from which it
receives control. TOPO records a pointer
to the statement number entry for the
first-level block in the back dominator
field of the statement number entry for the
second-level block. If more than one block
passes control to a second-level block,
TOPO assigns that block a provisional back
dominator. The provisional back dominator
assigned is a first-level block that passes
control to the second-level block under
consideration. Processing of this type is
performed at each level until the last, or
exit, block of the module is processed.
TOPO then determines the actual back dorni
nators of blocks that were assigned provi
sional back dominators.

For each block assigned a provisional
back dominator, subroutine TOPO makes a
backward trace over each path leading to
the block (using CMAJOR). The blocks at
which two or more of the paths converge are
flagged as possible candidates for the back
dominator of the block. When all paths
have been treated, the relationship of each
possible candidate to the other possible

Section 2: Discussion of Major Components 49

candidates is examined. TOPO assigns the
candidate at the highest level (i.e., clos
est to the entry block of the module) as
the back dominator of the block under
consideration; it records a pointer to the
statement number entry for the assigned
back dominator in the back dominator field
of the statement number entry for the block
under consideration. After the back domi
nators of all text blocks are identified,
subroutine BAKT determines the back target
and depth number of each text block.

Determination of Back Targets and Depth
Numbers

Subroutine BAKT determines the back tar
get of each text block through an analysis
of the backward connection information Cin
CMAJOR) for that block. Block J is the
back target of block I if:

1. Block J is the nearest block in the
chain of back dominators of block I.

2. Block J has only one forward connec
tion.

3. There exists
itself that
block J.

a path from block I to
does not pass through

If a block J exists that satisfies all
the above conditions except the second,
then the back target of block J is also the
back target of block I.

If a block J satisfying conditions 1 and
3 does not exist, then the back target of
block I is zero.

When the back
identified, that
depth number.

target of a block is
block is also assigned a

Back targets and depth numbers are de
termined for text blocks in the same order
as back dorninators are determined for them.
The first block of the module is the first
processed; first-level blocks are consid
ered next; etc.

BAKT assigns the first or entry block
both a back target and depth number of
zero, because it does not have a back
target and is not in a loop. It records
the depth number (zero) in the loop number
field of the statement number entry for the
entry block (refer to Appendix A,
"Statement Number/Array Table").

The processing perf orrned by BAKT for
each other block depends upon whether one
or more than one block passes control to
that block. If more than one block passes
control to the block under consideration,
BAKT makes a backward trace over all paths
leading to that block to locate its primary

so

path. The primary path of a block Cif one
exists) is a path that starts at that block
and converges on that block without passing
through any block in the chain of back
dominators of that block.

If such a path exists, BAKT obtains and
examines the nearest block in the chain of
back dominators of the block under consid
eration. If the obtained block has a
single forward connection, BAKT assigns
that block as the back target of the block
under consideration. BAKT then assigns a
depth number to the block. The number is
one greater than that of its back target,
because the block is in a loop, which must
be nested within the loop containing the
back target. BAKT records the depth number
in the loop number field of the statement
number entry for the block.

If the obtained block has ffiOre than one
forward connection, BAKT assigns its back
target as the back target of the block
under consideration. BAKT then records in
the statement number entry for the block a
depth number one greater than that of its
back target.

If a block that receives control from
two or more blocks does not have an asso
ciated primary path, that block, if it is
in a loop at all, is in the same loop as
one of the blocks in its chain of back
dominators. To identify the loop contain
ing the block (block I), BAKT obtains and
examines the nearest block to block I in
its chain of back dominators that has two
or more forward connections. BAKT makes a
backward trace over all paths leading to
the ontained block to determine whether or
not block I is an element of such a path.
If block I is an element of such a path, it
is in the same loop as the obtained block,
and BAKT therefore assigns block I the same
back target and depth number as the
obtained block; it records the depth number
in the statement number entry for block I.

If block I is not an element of any path
leading to the obtained block, BA.KT obtains
the next nearest block to block I in its
chain of back dominators that has two or
more forward connections and repeats the
process. If block I is not an element of
any path leading to any block in its chain
of back dorninators, block I is not in a
loop, and BA.KT assigns it both a back
target and depth number of zero.

A block that receives control from only
one block, if it is in a loop at all, is in
the same loop as one of the blocks in its
chain of back dorninators. To identify the
loop containing a block Cblock I) that
receives control from only one block, BAKT
obtains and examines the nearest block to
block I in its chain of back dominators

that receives control from two or mere
blocks. BAKT makes a backward trace over
all paths leading to the obtained block to
locate its primary path Cif any}. If the
obtained block has a primary path, BAKT
retraces it to determine if block I is an
element of the path. If it is, block I is
in the same loop as the obtained block,
and, BAKT therefore assigns block I the
same back target and depth number as the
obtained block; it records the depth number
in the statement number entry for block I.

If the obtained block does not have a
primary path, or if it does have a primary
path, which, however, does not have block I
as an element, BAKT considers the next
nearest block to block I in its chain of
back dominators that receives control from
two or more blocks. The process is repeat
ed until a primary path containing block I
is located Cif any such path exists). If
block I is not in the primary path of any
blocK in its chain of back dominators,
block I is not in a loop and BAKT assigns
it both a back target and depth number of
zero.

Identifying and Ordering_Loops for
Processing

Subroutine BAKT orders blocks for proc
essing on the basis of the determined back
target and depth number information.
Blocks that have a common back target and
the same depth number constitute a loop.
BAKT flags the loop with the highest depth
number (therefore, the most deeply nested
loop) as the first loop to be processed.
It assigns the blocks constituting that
loop a loop number of one, indicating that
they f orrn the innermost loop, which is the
first to undergo complete optimization.
CBAKT records the value 1 in the loop
number field of the statement number entry
for each block in that loop.} BAKT flags
the loop with the next highest depth number
as the second loop to be processed. It
assigns the blocks in that loop a loop
number of two, indicating that they form
the second Cor next outermost} loop to be
processed. CA value of 2 is recorded in
the loop number field of the statement
number entry for each block in that loop.}
BAKT repeats this procedure until the loop
with a depth number of one is processed.
It then assigns the highest loop number to
the blocks with a depth number of zero,
indicating that they do not form a loop.

If at any time, groups of blocks with
the same depth number but different back
targets are found, each group is in a
different loop. Therefore, each such loop
is, in turn, processed before blocks having
a lesser depth number are considered.
Thus, if the blocks of two loops have the
same depth number, BAKT assigns the blocks

of the first loop the next loop number. It
assigns the blocks of the second loop a
loop number one greater than that assigned
to the blocks of the first loop.

When loop numbers are assigned to the
blocks of all module loops, the order in
which the loops are to be processed has
been specified. Control is passed to the
routine that determines the busy-on-exit
information and then to the loop selection
routine to select the first (innermost}
loop to be operated upon. This loop con
sists of all blocks having a loop number of
one.

BUSY-ON-EXIT INFORMATION

Before the module can be precessed on a
loop-ny-loop basis, information indicating
which variables are busy-on-exit from which
text blocks must be gathered. A variable
is busy immediately preceding a use of that
variable, but is not busy immediately
preceaing a definition of that variable.
Thus, a variable is busy-on-exit from the
blocks which are along all paths connecting
a use and a prior definition of that
variable. This means that in subsequent
blocks the variable can be used before it
is defined. The busy-on-exit condition for
a variable assures that its proper value
exists in main storage or in a register
along each path in which it is subsequently
used.

Information about the regions in which a
variable is busy or not busy determines
whether or not a definition of that varia
ble can be moved out of a loop. For
example, if a variable is busy-on-exit from
the back target of a loop, text optimiza
tion Csee "Text Optimization") would not
attempt to move to the back target a
redefinition of that variable, because, if
moved, the value of the variable, as it is
processed along various paths from the back
target, might not be the desired one.
Conversely, if the variable is not busy-on
exit, the redefinition can be moved without
affecting the desired value of the
variable. Thus, text optimization respects
the redefinitions of variables that are
busy-on-exit from the back target of a
loop.

The inf orrnation about regions in which a
variable is busy or not busy also deter
mines whether or not loads and stores of a
register assigned to the variable are
required. For example, in full register
assignment (see "Full Register Assignment
During Complete Optimization"}, variables
that are assigned registers during global
assignment and that are busy-on-exit from
the back target of the loop must have an
initializing load of the register placed

Section 2: Discussion of Major Components 51

into the back target. The load is required
because the variable may be used before its
value is defined. Conversely, if the glob
ally assigned variable is not busy-on-exit
from the back target, an initializing load
is unnecessary.

Phase 15 provides phase 20 with not
busy-on-entry information for each operand
that is assigned a coordinate (an MVD table
entry). The not busy-on-entry information
is recorded in the MVX field of the state
ment number text entry for each text block
(see phase 15, "Gathering Constant/Variable
Usage Information"). An operand is not
busy-on-entry to a block, if in that block
that operand is only defined or defined
before it is used. Phase 20 converts the
not busy-on-entry information to busy-on
entry information. An operand is busy-on
entry to a block, if in that block that
operand is only used or used before it is
defined. Finally, phase 20 converts the
busy-on-entry information to busy-on-exit
information. The backward connection
information in CMAJOR is used to make the
final conversion.

The routine that performs the conver
sions is BIZX. This routine determines
busy-on-exit information for each constant,
variable, and base variable having an asso
ciated MVD table entry or coordinate. How
ever, because constants and base variables
are only used, they are busy-on-exit
throughout the entire module. Therefore,
the remainder of this discussion deals with
the determination of busy-on-exit informa
tion for variables.

Because RETURN statements (exit blocks)
and references to subprograms not supplied
by IBM constitute implicit uses of varia
bles in common, all common variables and
arguments to such subprograms are first
marked as busy-on-entry to exit blocks and
blocks containing the references. The com
mon variables and arguments are found by
examining the information table entries for
all variables in the MVD table. The module
is then searched for blocks that are exit
blocks and that contain references to sub
programs not supplied by IBM. The coordi
nate bit for each previously mentioned
variable is set on in the MVF field of the
statement number text entry for each such
block, while the same coordinate bit in the
MVX field is set off. This defines the
variable to be busy-on-entry to such a
block. During this process, a table, con
sisting of pointers to exit blocks, is
built for subsequent use.

After the blocks discussed above have
been appropriately marked for common varia
bles and arguments, BIZX, working with the
coordinate assigned to a variable, converts
the not busy-on-entry information for the

52

variable to a table of pointers to blocks
to which the variable is busy-on-entry.
(The not busy-on-entry information for the
variable is contained in the MVX fields of
the statement number text entries for the
various text blocks.) At the same time,
the variable's coordinate bit in each MVX
field is set off. The busy-on-exit table
and CMAJOR are then used to set on the MVX
coordinate bit in the statement number text
entry for each block from which the varia
ble is busy-on-exit. This procedure is
repeated until all variables have been
processed. Control is then passed to the
control routine of phase 20 CLPSEL).

To convert not busy-on-entry information
to busy-on-entry information, BIZX starts
with the second MVD table entry, which
contains a pointer to the variable assigned
coordinate number two, and works down the
chain of text blocks. The associated.MVX
coordinate bit in the statement number text
entry for each block is examined. If the
coordinate bit is off, the corresponding
MVF coordinate bit is inspected. If the
MVF coordinate bit is on~ a pointer to the
associated text block is placed into the
busy-on-entry table. This defines the
variable to be busy-on-entry to the block
(i.e., the variable is used in the block
before it is defined). If the associated
MVX coordinate bit is on, indicating that
the variable is not busy-on-entry, BIZX
sets the bit off and proceeds to the next
block. This process is repeated until the
last text block has been processed.

After BIZX has set off the MVX coordi
nate bit (associated with the variable
under consideration) in ea·ch statement num
ber text entry and built a table of point
ers to blocks to which the variable is
busy-on-entry, it determines the blocks
from which the variable is busy-on-exit.

Starting with the first entry in the
busy-on-entry table, BIZX obtains (from
CMAJOR) pointers to all blocks that are
backward connections of that entry. Each
backward connecting block is examined to
determine whether or not it meets one of
three criteria, which are:

• The block contains a definition of the
variable (i.e., the variable's MVS
coordinate bit is on).

• The variable has already been marked as
busy-on-exit from the block.

• The block corresponds to the busy-on
entry table entry being processed.

If the block meets one of these
criteria, the variable is busy-on-exit from
the block and its associated MVX coordinate

bit is set on. (The backward connections
of that block are not explored.)

If the backward connecting block does
not meet any one of these criteria, the
variable is marked as busy-on-exit from
that block and that block's backward con
nections are, in turn, explored. The same
criteria are then applied to the backward
connecting blocks. The backward connection
paths are explored in this manner until a
block in every path satisfies one of the
criteria.

If, during the examination of the back
ward connections, an entry block Ci.e., a
block lacking backward connections) is
encountered, the blocks in the table of
exit blocks, which was previously built by
BIZX, are used as the backward connections
for the entry block. Processing then con
tinues in the normal fashion.

When blocks in all backward connecting
paths have satisfied one of the criteria,
BIZX obtains the next entry in the busy-on
entry table and repeats the process. This
continues until the busy-on-entry table has
been exhausted.

When the busy-on-entry table has been
exhausted, the procedure of building the
busy-on-entry table and converting it to
busy-on-exit information is repeated for
the next MVD table entry. When all MVD
table entries have been processed, BIZX
passes control to LPSEL, which calls the
loop selection routines.

STRUCTURED SOURCE PROGRAM LISTING

If both the EDIT option and complete
optimization are selected, after subroutine
BIZX has compiled the busy-on-exit
information, control is passed to subrou
tine SRPRIZ, which records on the SYSPRINT
data set a structured source program list
ing. This listing indicates the loop
structure and logical continuity of the
source program. CA complete description of
the structured source listing is given in
the publication IBM System/360 Operating
System: FORTRAN IV CH) Programmer's Guide.)

To produce the listing, SRPRIZ reads the
SYSUTl data set prepared by phase 10 and
associates, by means of statement numbers,
the individual source statements with the
text blocks formed from them. By analysis
of the loop number information gathered for
the text blocks, SRPRIZ then identifies the
source statements that make up a particular
loop and flags them on the listing by
corresponding loop number. SRPRIZ also
uses the previously gathered back dominator
information to compute listing indentations
for the statements. The indentations show

dominance relationships; that is, SRPSIZ
indents the statements that form a text
block from the statements that form the
back dominator of that block.

LOOP SELECTION

The loop selection routines of phase 20
(TARGET, BASVAR, and BSYONX) select the
loop to be processed and provide the text
optimization and full register assignment
routines with the information required to
process the loop.

The loop to be processed is selected
according to the value of a loop number
parameter, which is passed to the loop
selection routines. The control routine of
phase 20 CLPSEL) sets this parameter to one
after the process of structural determina
tion is complete. The loop selection rou
tine TARGET is called to select the loop
whose blocks have a corresponding loop
number. The selected loop is then passed
to the text optimization routines. When
text optimization for the loop is complet
ed, the control routine increments the
parameter by one, sets the loop number of
the blocks in the loop just processed to
that of their back target, and marks those
blocks as completed. The control routine
again calls TARGET, which selects the loop
whose blocks correspond to the new value of
the parameter. The selected loop is then
passed to the text optimization routines.
This process is repeated until the outer
most loop has been text-optimized.

After text optimization has processed
the entire module Ci.e., the last loop),
the control routine removes the block com
pletion marks, initializes the loop number
parameter to 1, and passes control to
TARGET to reselect the first loop. Control
is then passed to the full register assign
ment routines. when full register assign
ment for the loop is completed, the control
routine marks the blocks of the loop as
completed. It then increments the parame
ter by 1 and passes control to TARGET to
select the next loop. Full register
assignment is then carried out on the loop.
This process is repeated until the outer
most loop has undergone full register
assignment. (When full register assignment
has been carried out on the outermost loop,
the control routine passes control to the
routines that compute the size of each text
block and then to the routine that computes
the displacements required for branching
optimization.)

The loop selection routine TARGET uses
the value of the loop number parameter as a
basis for selecting the loop to be proc
essed. TARGET compares the loop number
assigned to each text block to the parame-

Section 2: Discussion of Major Components 53

ter. It marks each block having a loop
number corresponding to the value of the
parameter as an element of the loop to be
processed. It does this by setting on a
bit in the block status field of the
statement number entry for the block <refer
to Appendix A, "Statement Number/Array
Table"). When all such blocks are marked,
the loop has been selected.

The information required by the text
optimization and full register assignment
routines to process the loop consists of
the following:

• A pointer to the back target of the
loop.

• A pointer to the forward target of the
loop Cif any).

• Pointers to both the first and last
blocks of the loop.

• The loop composite matrixes.

After the loop has been selected, this
required information is gathered.

Pointer to Back Targe~

The text optimization and full register
assignment routines place both relocated
and generated text entries into the back
target of the loop. Although the back
target of the loop was previously identi
fied during structural determination, it
was not saved. Therefore, its identity
must be determined again.

The loop selection routine TARGET deter
mines the back target of the loop by
obtaining the first block of the selected
loop. It then analyzes the blocks in the
chain of back dominators of the first block
to locate the nearest block in the chain
that is outside the loop and that passed
co:~trol to only one block. That block is
the back target of the loop, and TARGET
saves a pointer to it for use in the
subsequent processing of the loop.

Pointer to Forward Target

The text optimization and full register
assignment routines place both relocated
and generated text entries into the forward
target of the loop. The forward target of
a loop (if it exists> is the single block
to which the loop passes control after its
execution is complete.

To locate the forward target (if any),
the loop selection routine BSYONX analyzes
the backward connection information (in
CMAJOR) for each block that is not in the
selected loop. It marks all such blocks
that receive control directly from a block

54

in the selected loop as exit blocks. If
only one exit block exists, that block is
the forward target of the loop. (The
forward target must not be entered from a
block not in the loop.) BSYONX saves a
pointer to the forward target for use in
the subsequent processing of the loop.

If the above condition is not met, the
loop does not have a defined forward tar
get.

Pointers to First and Last Blocks

The pointers to the first and last
blocks of the selected loop indicate to the
text optimization and full register assign
ment routines where they are to initiate
and terminate their processing. To make
these pointers available, and loop selec
tion routine TARGET merely determines the
first and last blocks of the seltcted loop
and saves pointers to them for use in the
subsequent processing of the loop. To
determine the first and last blocks, TARGET
searches the statement number chain for the
first and last entries having the current
loop number. The block associated with
those entries are the first and last in the
loop.

Loop Composite Matrixes

The loop con:posi te matrixes, LMVS, LMVF,
and LMVX, provide the text optimization and
full register assignment routines with a
summary of which operands are defined with
in the selected loop, which operands are
used within that loop, and which operands
are busy-on-exit from that loop. (An oper
and is busy-on-exit from the loop if it is
used before it is defined in any path along
which control flows from the loop.)

The LMVS matrix indicates which operands
are defined within the loop. The loop
selection routine BASVAR forms LMVS by
combining, via or OR operation, the indi
vidual MVS fields in the statement number
text entry of every block in the selected
loop.

The LMVF matrix indicates which operands
are used within the loop. BASVAR forms it
by combining, via an OR operation, the
individual MVF fields in the statement
number text entry of every block in the
selected loop.

The LMVX matrix indicates which operands
are busy-on-exit from the selected loop.
BSYONX forms it during its search for the
forward target of the loop. BSYONX exam
ines the text entries of each block that is
not in the selected loop and that receives
control from a block in that loop. Any
operand in the text entries of such a block
that is either only used in the block or

used before it is defined is busy-on-exit
from the loop. BSYONX sets on the bit in
the LMVX matrix that corresponds to the
coordinate assigned to each such operand to
reflect that it Ci.e., the operand) is
busy-on-exit from the loop.

TEXT OPTIMIZATION

The text optimization process of phase
20 detects text entries within the loop
under consideration that do not contribute
to the loop's successful execution. These
non-essential text entries are either com
pletely eliminated or are relocated to a
block outside of the current loop. Because
the most deeply-nested loops are presented
for optimization first, the number of text
entries in the most strategic sections of
the object module will approach a minimum.

The processing of text optimization is
divided into four logical sections: common
expression elimination, forward movement,
backward movement, and strength reduction.

• Common expression elimination optimizes
the execution of a loop by eliminating
unnecessary re-computations of identi
cal arithmetic expressions.

• Forward movement optimizes the execu
tion of a loop by relocating to the
forward target computations essential
to the module but not essential to the
current loop.

• Backward movement optimizes the execu
tion of a loop by relocating to the
back target computations essential to
the module but not essential to the
current loop.

• Strength reduction optimizes the
incrementation of DO indexes and the
computation of subscripts within the
current loop. Modification of the DO
increment may allow multiplications to
be relocated into the back target. If
the DO increment is not busy-on-exit
from the loop, it may be completely
replaced by a new DO increment that
becomes both a subscript value and a
test value at the bottom of the DO.

The first three of the above sections
are similar in that they examine text
entries in strict order of occurrence with
in the loop.

The last section does not examine indi
vidual text entries within the loop;
instead, the TYPES table, constructed prior
to its execution, is consulted for optimi
zation possibilities. Furthermore, an
interaction of entries in the TYPES table

must exist before processing can proceed.
The TYPES table contains pointers to type
3, 4, 5, 6, and 7 text entries. The
various types, their definitions, and the
section<s> of text optimization that proc
ess them are outlined in Table 3. Pointers
to type 1 and type 2 text entries are not
entered into the TYPES table. The reason
is that such types have already been proc
essed during backward movement. (Although
type 4 text entries are included in the
table, they are not optimized by this
version of the compiler.)

The following text describes the proc
essing performed by each of the sections of
the text optimization. An example illus
trating the type of processing of each
section is given in Appendix o. These
examples should be ref erred to when reading
the text describing the processing of the
sections.

Common Expression Elimination

The object of common expression elimina
tion, which is carried out by subroutine
XPELIM, is to eliminate any unnecessary
arithmetic expressions. This is accom
plished by eliminating text entries, one at
a time, until the entire expression disap
pears. An arithmetic text entry is unnec
essary if it represents a value (calculated
elsewhere in the loop) that may be used
without modification. A value may be used.
without modification if, between appearan
ces of the same computation, operands 2 and
3 of the text entry are not redefined. The
following paragraphs discuss the processing
that occurs during common expression elimi
nation.

Within the current loop, XPELIM examines
each uncompleted block Ci.e., a block that
is not part of an inner loop) for text
entries that are candidates for elimina
tion. A text entry is a candidate if it
contains an arithmetic, logical, or sub
script operator. Once a candidate is
found, XPELIM attempts to locate a matching
text entry. A text entry matches the
candidate if operand 2, operand 3, and the
operator of that text entry are identical
to those of the candidate. If either
operand 2 or 3 of the matching text entry
is redefined between that text entry and
the candidate, the match is not accepted.
The search for the matching text entry
takes place in the following locations:

• In the same
between the
candidate.

block
first

as the candidate,
text entry and the

• In a back dominator (see note) of the
block in which the candidate resides.

Section 2: Discussion of Major Components 55

Table 3. Text Entry Types
r--------T---T--------------------------------1
I TYPE I DEFINITION I PROCESSED BY I
~--------+---+--------------------------------1
I Type 1 I A text entry having an absolute constant1 I I
I I in either the operand 2 or operand 3 I Backward Movement I
I I position. I I
~--------+---+--------------------------------1
I Type 2 I A text entry having stored constants 2 in I Backward Movement I
I I both the operand 2 and operand 3 positions. I I
~--------+---+--------------------------------1
I Type 3 I An inert text entry (i.e., a text entry I I
I I that is a function of itself and an addi- I Strength Reduction I
I I tive constant; e.g., J=J+l} I I
~--------+---+--------------------------------1
I Type 4 I A subscript text entry I I
~--------+---+--------------------------------1
I Type 5 I A text entry whose operand 1 Ca temporary} I I
I I is a function of a variable (or temporary} I Strength Reduction I
I I and a constant, and whose operator is I I
I I multiplicative (*, /, or~}. I I
~--------+---+--------------------------------1
I Type 6 I A text entry whose operand 1 Ca temporary> I I
I I is a function of a variable Cor temporary) I Strength Reduction I
I I and a constant, and whose operator is I I
I I additive C+, -, or->. I I
~--------+---+--------------------------------1
I Type 7 I A branch text entry I Strength Reduction I
~--------i---i--------------------------------1
l 1 Absolute constants are those that agree with the definition of numerical constants as I
I stated in the publication IBM System/360 Operating System: FORTRAN IV. I
I I
l 2 A stored constant is a variable that is not defined within a loop, and thus its value I
I remains constant throughout execution of that loop. f l ___ J

Note: Only back dominators that are not
elements of previously processed loops and
that are within the confines of the current
loop are considered. The first back domi
nator considered is the one nearest to the
block being processed. The next considered
is the back dominator of the nearest back
dominator, etc.

When a matching text entry is found,
XPELIM performs elimination in the follow
ing way:

56

• If operand 1 of the matching text entry
is not redefined between that text
entry and the candidate, XPELIM substi
tutes that operand for operand 2 of the
candidate and converts the operator to
a store.

• If, on the other hand, operand 1 is
redefined, XPELIM generates a text
entry to save the value of operand 1 in
a temporary and inserts this text entry
into text immediately after the match
ing text entry. It then replaces oper
and 2 of the candidate with this tem
porary, and converts the operator to a
store.

• Finally, if operand 1 of the candidate
is a temporary generated by phase 15,
XPELIM replaces all uses of the tem
porary with the new operand 2 of the
candidate and deletes the candidate.
Thus, the value of the matching text
entry is propagated forward for possi
ble participation in another candidate.
This provides the link to the next text
item of the complete common expression.

All text entries in the block under
consideration are processed in the pre
viously described manner. When the entire
block is processed, the next uncompleted
block in the loop is selected and its text
entries undergo common expression elimina
tion. When all uncompleted blocks in the
loop are processed, control is returned to
the control routine of phase 20, which
passes control to the portion of phase 20
that continues text optimization through
forward movement.

The overall logic of common expression
elimination is illustrated in Chart 11. An
example of common expression elimination is
given in Appendix D.

Forward Movement

Forward movement, which is carried out
by subroutine FORMOV, optimizes a loop by
moving text entries from the loop to the
forward target of the loop, an area where
they are executed less of ten. If the loop
does not have a defined forward target,
forward movement is bypassed and backward
movement is initiated. Only text entries
that are not required in the loop are moved
during forward movement. An example of
such a text entry is one whose operand 1 is
not needed elsewhere in the loop. The
following paragraphs describe the process
ing that occurs during forward movement.

Within the loop currently being opti
mized, FORMOV examines each uncompleted
block in the chain of back dominators of
the forward target <starting with the near
est back dominator of the forward target
and proceeding as described in common
expression elimination) for text entries
that are candidates for forward movement.
(The block is examined in a bottom-to-top
fashion.) A text entry is a candidate for
forward movement if:

• The text entry contains an arithmetic
or logical operator.

• Operand 1 of the text entry is not used
in another text entry in the loop.

When a candidate is found, FORMOV per
forms forward movement of the candidate in
one of two ways:

• If the operands of the candidate are
not defined in the text entries between
candidate and the forward target, FOR
MOV moves the entire candidate to the
beginning of the forward target.

• If an operand of the candidate is
defined and if the expression (i.e.,
operand 2-operator-operand 3) in the
candidate contains a variable and tem
porary, joined by a commutative opera
tor, FORMOV generates a text entry to
store the variable in a new temporary.
It then replaces the candidate with
this text entry, moves the candidate to
the forward target, and replaces the
variable with a reference to the new
temporary.

All the text entries in the block under
consideration are processed in the pre
viously described manner. When the entire
block is processed, the next uncompleted
block in the loop that is also a back
dominator of the forward target is selected
and its text entries undergo forward move
ment. When all uncompleted blocks that are
back dominators of the forward target and
within the confines of the loop are proc-

essed, control is returned to the control
routine of phase 20, which passes control
to the portion of phase 20 that continues
text optimization through backward move
ment.

The overall logic of forward movement is
illustrated in Chart 12. An example of
forward movement is given in Appendix D.

Backward Movement

Backward movement, wnich is performed by
subroutine BACMOV, moves text entries from
a loop to an area that is executed less
of ten, the back target of the loop. During
backward movement, each uncompletect block
in the loop being processed is examined for
text entries that are candidates for back
ward movement. To be a candidate for
backward movement, a text entry must:

• Contain an arithmetic or logical opera
tor.

• Have operands 2 and 3 that are not
defined within the loop.

When a candidate is found, BACMOV car
ries out backward movement of that candi
date in one of two ways:

• If operand 1 of the candidate is not
busy-on-exit from the back target of
the loop and if operand 1 of the
candidate is not defined elsewhere in
the loop, BACMOV moves the entire can
didate to the back target of the loop.
(An operand is not busy-on-exit from
the back target if that operand is
definea in the loop before it is used.)

• If operand 1 of the candidate is busy
on-exi t from the back target of the
loop or if it is defined elsewhere in
the loop, BACMOV generates a text entry
to perform the computation of the
expression in the candidate and store
the result in a new temporary. It
moves this text entry to the end of the
back target of the loop and then repla
ces the expression in the candidate
with operand 1, the new temporary, of
the generated text entry.

All the text entries in the block under
consideration are processed in the pre
viously described manner. When the entire
block is processed, the next uncompleted
block in the loop is selected and its text
entries undergo backward movement. When
all uncompleted blocks in the loop are
processed, control is returned to the con
trol routine of phase 20, which passes
control to the portion of phase 20 that
continues text optimization through
strength reduction.

Section 2: Discussion of Major Components 57

The overall logic of backward movement
is illustrated in Chart 13. An example of
backward movement is given in Appendix D.

Two add~tional optimization processes
are performed concurrently with backward
movement. They are the elimination of
simple stores and of arithmetic expressions
that appear in text entries and are func
tions of integer constants.

Elimination of Simple Stores: BACMOV
removes unnecessary simple stores <i.e.,
text entries of the form "operand 1 =
operand 2") from the block that is current
ly undergoing backward movement. The fol
lowing paragraphs describe the processing
that occurs during simple-store elimina
tion.

During the scan of each uncompleted
block for text entries to be moved to the
back target, BACMOV checks for simple
stores that are candidates for elimination.
A simple store is a candidate for elimina
tion if its operand 1 is a variable.

When a candidate is found, BACMOV exam
ines the characteristics of its operands to
determine if the candidate can be eliminat
ed. The various combinations of operand
characteristics that permit a candidate to
be eliminated are given in Table 4. If the

characteristics of the operands of the
candidate conform to any one of these ten
combinations, BACMOV eliminates the candi
date.

It does this by replacing the uses of
operand 1 (of the candidate to be
eliminated) with operand 2 of the candidate
in text entries between either:

• The candidate and the first redefini
tion of either operand.

• The candidate and the end of the
(i.e., if a redefinition of
operand does not occur).

block
either

BACMOV then deletes the
example of simple-store
illustrated in Appendix D.

candidate.
elimination

An
is

Elimination of Text Entry Expressions
Involving Integer Constants: During the
scan of a block for text entries to be
moved to the back target, BACMOV also
checks for text entries whose operators are
arithmetic and whose operands 2 and 3 are
both integer constants. When such a text
entry is found, BACMOV eliminates the
arithmetic expression in the text entry by:

• Calculating the result of the expres
sion.

Table 4. Operand Characteristics That Permit Simple-Store Elimination
r--------------T---------T---------T--------------T-------------T-----------------------1
!Operand 1 !Operand llOperand 210perand 1 usedlOperand 1 re-IOperand 1 redefined be-I
!busy-on-exit !refined lredefinedlin block belowldefined belowllow between redefini- I
I from block I below in !below in I redefinition jbefore redef-ltion of operand 2 and I
I lblock I block lof operand 2 linition of !first use of operand 1 I
I I I I !operand 2 !that follows redefini- I
I I I I I ltion of operand 2 I
·--------------+---------+---------+--------------+-------------+-----------------------1
11. No I No I No I X I X I X I
·--------------+---------+---------+--------------+-------------+-----------------------i
12. No I Yes I No I X I X I X I
·--------------+---------+---------+--------------+-------------+-----------------------1
j3. Yes I Yes I No I X I X I X I
·--------------+---------+---------+--------------+-------------+-----------------------1
14. No I No I Yes I No I X I X I
~--------------+---------+---------+--------------+-------------+-----------------------~
jS. No I Yes I Yes I No I Z I X I
·--------------+---------+---------+--------------+-------------+-----------------------1
16. No I Yes I Yes I Yes I Yes I X I
~--------------+---------+---------+--------------+-------------+-----------------------1
17. No I Yes I Yes I Yes I No I Yes I
·--------------+---------+---------+--------------+-------------+-----------------------i
18. Yes I Yes I Yes I No I z I x I
·--------------+---------+---------+--------------+-------------+-----------------------i
j9. Yes I Yes I Yes I Yes I Yes I X I
·--------------+---------+---------+--------------+-------------+-----------------------1
110. Yes I Yes I Yes I Yes I No I Yes I
·--------------i---------i---------i--------------i-------------L-----------------------~
IX = condition cannot exist because of previous characteristics of operands. I
IZ = characteristic is irrelevant. I
L---J

58

• Creating a new dictionary entry for the
result, which is a constant.

• Replacing the arithmetic
with the result.

expression

The text entry is thereby reduced to a
simple store, which may be eliminated by
simple-store elimination.

Strength Reduction

Strength reduction, which is performed
by subroutine REDUCE, optimizes loops that
are controlled by logical IF statements.
(DO loops are converted to loops controlled
by logical IF statements during Phase 10
processing.) such loops are optimized by
modifying the expression (e.g., Js20) in
the IF statement; this enables certain text
entries to be moved from the loop to the
back target of the loop, an area of lower
frequency of execution. The processing of
strength reduction is divided into two
sections:

• Elimination of multiplicative text.
• Elimination of additive text.

Both of these sections perform strength
reduction,, but each has a separate set of
criteria for considering a loop as a candi
date for reduction. However, the manners
in which these sections implement reduction
are essentially the same.

Elimination of Multiplicative Text: To
eliminate multiplicative text, REDUCE exam
ines the loop being processed to determine
if it is a candidate for strength reduc
tion. The loop is a candidate if:

• The loop contains an inert text entry
Ca type 3 text entry).

• Operand 1 of the inert text entry is
used in another text entry Cin the
loop) whose operator indicates multi
plication and whose other used operand
is a constant1 Ca type 5 entry).

• Operand 1 of the inert text entry is
the variable appearing in the expres
sion of the logic IF statement that
controls the loop.

If the loop is a candidate, REDUCE
implements strength reduction in one of two
ways:

1. If the constants in the inert text
entry and the multiplicative text
entry are both absolute constants,
REDUCE:

1 This other text entry is ref erred to as a
multiplicative text entry.

a. Calculates a new constant CK)
equal to the product of the abso
lute constants.

b. Generates another inert text entry
and inserts it into the loop
immediately after the original
inert text entry. The additive
constant in this text entry is K.

c. Modifies the expression in the
logical IF by:

1. Replacing the branch variable
(see note) with operand 1 of
the generated inert text
entry.

2. Replacing the branch constant
(see note) with a constant
equal to the product of the
branch constant and K.

d. Deletes the original inert text
entry if operand 1 of that text
entry is not busy-on-exit from the
loop.

e. Moves the multiplicative text
entry to the back target of the
loop.

f. Replaces operand 1 of the multi
plicative text entry with operand
1 of the generated inert text
entry.

g. R~places the uses of operand 1 of
the multiplicative text entry that
remain in the loop with operand 1
of the generated inert text entry.

Note: The branch variable is the
variable in the expression of the
logical IF that is tested to
determine if the loop is to be
reexecuted. The branch constant
is the constant to which the
branch variable is compared. For
example, IF (Js3) where J is the
branch variable and 3 is the
branch constant.

2. If either of the constants in the
inert text entry or the multiplicative
text entry is a stored constant,
REDUCE performs similar processing to
that described above. However, prior
to generating the inert text entry, it
generates two additional text entries
and places them into the back target
of the loop. The firs~ text entry
multiplies the two constants. Operand
1 of this text entry becomes the
additive constant in the generated
inert text entry. The seconQ text
entry multip.!.ies operand 1 of the
first generated text entry by the

Section 2: Discussion of Major Components 59

branch constant. Operand 1 of the
second text entry becomes the new
branch constant of the logical IF.

If additional multiplicative text
entries exist within the loop, the above
process is repeated. Repetitive processing
of this type results in a number of gener
ated inert text entries, which may be
eliminated from the loop by the processing
of the second section of strength reduc
tion.

Elimination of Additive Text: To eliminate
additive text, REDUCE examines the loop
being processed to determine if it is a
candidate for strength reduction. The loop
is a candidate if:

• The loop contains an inert text entry
(type 3).

• Operand 1 of the inert text entry is
used in the loop in another text entry
whose operator indicates addition 1

(type 6).

If the loop is a candidate, the process
ing performed by REDUCE to eliminate the
additive text entry is essentially the same
as that performed to eliminate a multi
plicative text entry.

The overall logic of strength reduction
is illustrated in Chart 14. An example
showing both methods of strength reduction
is given in Appendix D.

FULL REGISTER ASSIGNMENT DURING COMPLETE
OPTIMIZATION

During complete optimization, full reg
ister assignment is carried out on module
loops, rather than on the entire module, as
is the case for intermediate optimization.
Regardless of whether a loop or the entire
module is being processed, the full reg
ister assignment routines operate essen
tially in the same manner. However, the
optimization effect of full register
assignment, when carried out on a loop-by
loop basis, is more pronounced. Because
the most deeply-nested loops are presented
for full register assignment first, the
number of register loads in the most
strategic sections of the object module
will approach a minimum. The processing of
a loop by full register assignment differs
from its processing of the entire module
only in the area of global assignment. An
understanding of the processing performed
on a loop, other than global assignment,
can be derived from the previous discussion

1 This text entry is ref erred to as an
additive text entry.

60

of full register assignment (refer to "Full
Register Assignment"). Global assignment
for a loop is described in the following
text.

When processing a loop, the global
assignment routine (GLOBAS) incorporates
into the current loop, wherever possible,
the global assignments made to items (i.e.,
operands and base addresses) in previously
processed loops. It does this to ensure
that the same register is assigned in both
loops if an item eligible for global
assignment in the current loop was globally
assigned in a previously processed loop.

Before the global assignment routine
assigns an available register to the most
active item of the current loop, it deter
mines whether that item was globally
assigned in a previously processed loop.
(As global assignment is carried out on
each loop, all global assignments for that
loop are recorded and saved for use when
the next loop is considered.) If the item
was not globally assigned in a previously
processed loop, GLOBAS assigns it the first
available register. If the item was glob
ally assigned in a previously processed
loop, the global assignment routine then
determines whether the register assigned to
the item in the previously processed loop
is currently available. If that register
is available, GLOBAS also globally assigns
it to the same item in the current loop.
If the register is not available, the
global assignment of that item in the
previously processed loop cannot be incor
porated into the current loop. GLOBAS
therefore assigns the item an available
register different from that assigned to it
in the previously processed loop. GLOBAS
selects the eligible item with the next
highest activity in the current loop and
treats it in the same manner. Processing
continues in this fashion until the supply
of eligible items or the supply of availa
ble registers is exhausted.

As each global assignment is made to an
active item, GLOBAS checks to determine
whether or not that item is busy-on-exit
from the back target of the loop. If the
item is busy-on-exit, GLOBAS generates a
text entry to load that item into the
assigned register and inserts it into the
back target of the loop. The load is
required to guarantee that the item is in a
register and available for subsequent use
during loop execution. If the item is
not-busy-on-exit, the load text item is not
required. If any globally assigned item is
defined within the loop and is also Lusy
on-exit from the loop, GLOBAS generates a
text entry to store that item on exit from
the loop. The generated store is needed to
preserve the value of such an operand for

use when it is required
execution of an outer loop.

during the

GLOBAS records all global assignments
made for the current loop for use in the
subsequent updating scan Csee "Full Reg
ister Assignment") and also for incorpora
tion, wherever possible, into subsequently
processed loops.

BRANCHING OPTIMIZATION DURING COMPLETE
OPTIMIZATION

During complete optimization, branching
optimization is carried out in the same
manner as during intermediate optimization.
After all loops have undergone full reg
ister assignment, BLS is given control to
calculate the size of each block. when the
sizes of all blocks have been calculated,
subroutine LYT uses the block size informa
tion to determine the blocks that can be
branched to by means of RX-format branch
instructions.

PHASE 25

Phase 25 produces an object module from
the cornnined output of the preceding phases
of the compiler. An object module consists
of four elements:

• Text information.
• External symbol dictionary.
• Relocation dictionary.
• Loader END record.

The text information <instructions and
data resulting f rorn the compilation) is in
a relocatable machine language form. It
may contain unresolved external symbolic
cross references (i.e., references to sym
bols that do not appear in the object
module). The external symbol dictionary
contains the information needed to resolve
the external symbolic cross references
appearing in the text information. The
relocation dictionary contains the informa
tion needed to relocate the text inf orma
tion for execution. The END record informs
the linkage editor of the length of the
object module and the address of its main
entry point.

An object module resulting from a compi
lation consists of a single control sec
tion, unless common blocks are associated
with the module. An additional control
section is included in the module for each
common block.

The object module produced by Phase 25
is recorded on the SYSLIN data set if the
LOAD option is specified by the FORTRAN
programmer, and on the SYSPUNCH data set if
the DECK option is specified. If the LIST

option is specified, Phase 25 develops and
records on the SYSPRINT data set an assem
bler language listing of the instructions
and data of the object module. Error
messages produced during phase 25 (if any)
are also recoraed on the SYSPRINT aata set.

TEXT INFORMATION

Text information consists of the ma~hine
language instructions and data resulting
from the compilation. Each text informa
tion entry (a TXT record) constructed by
phase 25 can contain up to 56 bytes of
instructions and data, the address of the
instructions and data relative to the
beginning of the control section, and an
indication of the control section that
contains them. A more detailed aiscussion
of the use and format of TXT records is
given in the publication IBM System/360
Operating System: Linkage Editor, Program
Logic Manual.

The major portion of phase 25 processing
is concerneo with text information con
struction. In building text information,
phase 25 ontains each item that is to be
placed into text information, converts the
item to machine language form wherever
necessary, enters the item into a TXT
record, and places the relative address of
the item into the TXT record.

Phase 25 assigns relative addresses by
means of a location counter, which is
continually updated to reflect the location
at which the next item is to be placed into
text information. whenever phase 25 begins
the construction of a new TXT record, it
inserts the current value of the location
counter into the address field of tne TXT
record. The address field of the TXT
record thereby indicates the relative
address of the instructions and data that
are placed into the record.

Figure 11 shows the layout of storag~
that Phase 25 assumes in setting up text
information.

Phase 25 constructs text information by:

• Reserving adcon table entries
referenced statement numbers
module.

for
of

the
the

• Entering the constants of the source
module.into TXr records.

• Reserving storage within text informa
tion for the variables and arrays of
the mociule.

• Translating FORMAT statements (i.e.,
phase 10 format text) to a form recog
nizable by IHCFCOMH and entering the

Section 2: Discussion of Major Components 61

translated statements into TXT records.
CIHCFCOMH, a member of the operating
system library CSYSl.FORTLIB), performs
object-time implementation of I/O
statements. IHCFCOMH is explained in
Appendix E.)

•Converting NAMELIST statements (i.e.,
phase 10 namelist text) to object-time
namelist dictionaries, which are used
by IHCFCOMH to implement READ-WRITE
statements using NAMELIST statements.

• Generating the main program or subpro
gram initialization instructions and
entering them into TXT records.

• Completing the processing of the adcon
table entries and entering the resul
tant entries into TXT records.

• Assigning the initial values, as speci
fied, to the variables and arrays
appearing in phase 15 data text.

• Generating the prologue and epilogue
instructions for a subprogram and
entering these instructions into TXT
records.

• Converting phase 15/20 standard text
into Systern/360 machine code and enter
ing the code into TXT records.

Address
Registers
12-------..--~~~~~~~~~~--.

Constants

Variable and Arrays

Translated FORMAT statements
and object-time name list
dictionaries

Initialization Instructions

1
13-------

........ .,..,

Save Area

Address Constants
(Ad cans)

}

Far main program or
subprogram main
entry point

4096
Bytes

t---"~~ ..,...

4096
8

~10~
4096
Bytes

l__
9-------

Figure 11.

62

Prologue

Epilogue

Instructions
(resulting from text conversion)

Subprogram Secondary Entry Coding

Prologue

Epilogue

Instructions
(resulting from text conversion)

.,..

........

}

For main entry
point into
subprogram only

}

For secondary
entry point into
a subprogram

Storage Layout for Text Infor
mation Construction

Chart 21 shows the logic of phase 25
processing, down to, but not including,
conversion of text to machine code.

Adcon Table Entry Reservation

Prior to beginning its construction of
text information, subroutine LYTl reserves
address constants for the referenced state
ment numbers of the · module and for the
statement numbers appearing in computed GO
TO statements. The address constants are
reserved so that the relative addresses of
the statements associated with such state
ment numbers can be recorded, and subse
quently obtained during execution of the
object module, when branches to those
statements are required.

To reserve address constants for state
ment numbers, subroutine LYTl scans the
chain of statement number entries in the
statement number/array table. For each
encountered statement number that is ref
erenced, LYTl inserts into the appropriate
field of the associated statement n~mber
entry a pointer to the next available entry
in the adcon table. The actual value to be
placed into the address constant set aside
for a statement number is determined during
text conversion Ca subsequent phase 25
process), when the text representation of
that statement number is encountered.

Note: If branching optimization is being
implemented, LYT1 only reserves address
constants for statement numbers that are
associated with text blocks that can not be
branched to via RX-format branch instruc
tions.

After all statement numbers are proc
essed, address constants are likewise re
served for the statement numbers appearing
in computed GO TO statements. LYTl scans
the branch table chain (ref er to Appendix
A, "Branch Table"), and sets aside an entry
in the ADCON table for each statement
number for which a branch table entry was
constructed. It also records a pointer to
the address constant reserved for each fall
through statement number in the initial
branch table entry for that statement num
ber. LYTl does not record pointers to the
address constants set aside for the actual
statement numbers of the computed GO TO
statements in their associated standard
branch table entries. The values to be
placed into the address constants for
statement numbers in computed GO TO state
ments are also determined during text con
version.

Constant Processing

Subroutine INITIL obtains the constants
of the source module from their information
table entries and places them into text

information via TXT records. The address
field of each such record specifies rela
tive addresses for the constants that cor
respond to the relative addresses assigned
to them by CORAL in Phase 15.

Variable and Array Processing

Subroutine INITIL reserves storage with
in text information for the variables and
arrays of the module between the last
constant and the first translated FORMAT
statement, or the first object-time name
list dictionary, if FORMAT statements do
not exist in the module. To accomplish
this, INITIL assigns to the first trans
lated FORMAT statement Cor object-time
namelist dictionary) a. re la ti ve address
equal to the number of bytes occupied by
the constants, variables, and arrays of the
module.

FORMAT Statement Processing

If the source module contains READ/WRITE
statements requiring FORMAT statements, the
associate phase 10 format text must be put
into a form recognizable by IHCFCOMH. Sub
routine FORMAT develops the necessary form
by obtaining the phase 10 intermediate text
representation of each FORMAT statement,
and translating each element (e.g., H for
mat code and field count) of the statement
according to Table 5. FORMAT ente~s the
translated statement along with its rela
tive address into TXT records. It also

Table 5. FORMAT Statement Translation

inserts the relative address of the trans
lated statement into the address constant
for the statement number associated with
the FORMAT statement.

NAMELIST Statement Processing

If the source module contains READ/WRITE
statements using NAMELIST statements, sub
routine NLIST converts phase 10 namelist
text to object-time namelist dictionaries.
The object-time namelist dictionaries pro
vide IHCFCOMH with the information required
to implement READ/WRITE statements using
namelists (refer to Appendix A, "Namelist
Dictionaries"). The dictionary developed
for each list in a NAMELIST statement
contains the following:

• An entry for the narnelist name.

• Entries for the variables and arrays
associated with the namelist name.

• An end mark of zeros terminating the
list.

Each entry for a variable contains the
name, mode <e.g., integer*2 or real*4), and
relative address of the variable. Both the
address and the mode are obtained from the
dictionary entry for the variable.

Each entry for an
name of the array, the
ments, the relative

array contains the
mode of its ele

address of its first

r-------------------T----------------------------T--------------------------------------1
I I I Translated Form Cin hexadecimal) I
I FORMAT I ~------------T------------T------------1
I Specification I Description I 1st byte I 2nd byte I 3rd byte I
~-------------------+----------------------------+------------+------------+------------1

n(
n
nP
Fw.d
Ew.d
Dw.d
Iw
Tn
Aw
Lw
nX
nHtext
or
'text'
)

/
Gw.d

beginning of statement 02
group count 04
field count 06
scaling factor 08
F-conversion OA
E-conversion Oc
D-conversion OE
I-conversion 10
column set 12
A-conversion 14
L-conversion 16
skip or blank 18

literal data lA

group end le
record end lE
G-conversion 20
end of statement 22

n
n
n*
w
w
w
w
n
w
w
n

n

w

d
d
d

text

d

Zw Hexadecimal conversion 24 w
~-------------------L----------------------------L------------L------------L------------~
l*The first hexadecimal bit of the byte indicates the scale factor sign CO if positive, I
11 if negative>. The next seven bits contain the scale factor magnitude. I
L---J

Section 2: Discussion of Major Components 63

element, and the information needed to
locate a particular element of the array.
NLIST obtains the above information,
excluding the array name, from the informa
tion table.

NLIST places the entries of the namelist
dictionary along with their relative
addresses into TXT records. It also places
the relative address of the beginning of
the namelist dictionary into the address
constant for the namelist name.

Initialization Instructions

Phase 25 generates the machine instruc
tions for entry into a main program, a
subprogram, or a subprogram secondary entry
point. These instructions are ref erred to
as initialization instructions and are
divided into three catagories:

• Main program entry coding, which is
generated by subroutine ATTACH.

• Subprogram main entry coding, which is
generated by subroutine SUBR.

• Subprogram secondary entry coding,
which is generated by subroutine ENTRY.

Once generated, these instructions are
entered into TXT records.

Main Program Entry Coding~ The initializa
tion instructions generated by subroutine
ATTACH for a main program perform the
following functions:

64

• save the contents of general registers
14 through 12.

• Load the reserved registers with their
associated addresses. (The address
loaded into register 13 is that of the
save area. The address loaded into
register 11, if reserved, is that of
the save area plus 4096 bytes. The
address loaded into register 10, if
reserved, is that of the save area plus
8192 bytes. The address loaded into
register 9, if reserved, is that of the
save area plus 12288 bytes.)

• Load the address of the main program
save area into register 4, and store
register 4 into the save area of the
calling program.

• Save register 13 in the new save area.

• Load register 15 with the address of
IHCFCOMH.

• Branch and link to subroutine IBFINT
(arithmetic interruption subroutine of
IHCFCOMH) so that it can set the inter
ruption mask.

• Load register 13 from rtgister 4.

• Branch to apparent entry point.

• Load register 15 with the address of
IHCFCOMH.

• Branch and link to STOP entry point in
IHCFCOt'.lli.

• Constant for STOP 0.

• Set up a save area tnat receives the
contents of the main program registers,
if a subprogram is called.

• Set up the address constants to be
loaded into the reserved registers.

Note: At execution time, subroutine IBFINT
is given control to set the interruption
mask.

Subproqram Main Entry Coding: The initial
ization instructions generated by subrou
tine SUBR for the main entry point into a
suoprogram perform the following functions:

• Save the contents of general registers
14 through 12.

• Load the addresses of the prologue and
epilogue of the subprogram into reg
isters. (For an explanation of pro
logue and epilogue, refer to "Prologue
and Epilogue Generation.")

• Load the reserved registers with their
associated addresses.

• Load the address of the save area cf
the subprogram into register 13.

• Save the address of the save area of
the calling routine and the address of
the epilogue of the subprogram in the
save area of thE subprogram.

• Branch to the prologue.

• Set up a save area in which the con
tents of the registers used by the
subprogram are saved, should that sub
program, in turn, call another subpro
gram.

• Set up address constants in which the
addresses of the prologue and epilogue
of the subprogram and the addresses to
be placed into the reserved registers
are inserted.

Subprogram Secondary Entry Coding: The
initialization instructions for a subpro
gram secondary entry point are essentially
the same as those required for the main
entry point. For this reason, phase 25
makes use of a number of the initialization

instructions for the main entry point in
processing secondary entry points.

Main entry point initialization instruc
tions that precede and include the instruc
tion that loads the prologue and epilogue
addresses cannot be used, because each
secondary entry point has its own associat
ed prologue and epilogue. Therefore, for
secondary entry points, subroutine ENTRY
generates initialization instructions that
perform the following functions:

• save the contents of general registers
14 through 12.

• Load the addresses of the prologue and
epilogue of the secondary entry point
into registers.

• Branch to the subprogram main entry
point initialization instruction that
loads the reserved registers with their
associated addresses.

• Set up address constants in which the
addresses of the prologue and epilogue
of the secondary entry point are
placed.

Subprogram secondary entry coding does
not occupy storage within the
"Initialization Instructions" section of
text information (see Figure 11). That
section is reserved for:

• Main program entry coding, if the
source module being compiled is a main
program.

• Subprogram main entry coding, if a
subprogram is being compiled.

The initialization instructions for sec
ondary entry points are generated by sub
routine ENTRY when the text representation
of an ENTRY statement is encountered during
the processing of intermediate text. These
instructions reside in the "Instructions"
section of text information.

Adcon Table Processing

Entries in the compile-time adcon table
consist of the true address constants (base
addresses) assigned by CORAL for local
constants and variables and for common
variables, pointers to information table
entries for arguments and external ref
erence address constants, temporaries and
constants generated by phase 20, and re
served address constants, which are set
asiae for statement numbers. The output
that the phase 25 subroutine NADOUT gener
ates for the object-time adcon table con
sists of TXT records and RLD records in the
case of true address constants. The RLD
records provide the information needed to

relocate the true address constants. (A
type 5 ESD is output for each common
block.} For argument address constants,
NADOUT obtains the relative addresses of
the arguments from their information table
entries and places them into TXT records.
It also includes RLD records for them. For
an external reference address constant,
NADOUT also includes a type 2 ESD record in
addition to the TXT and RLD records.
NADOUT outputs temporaries and generated
constants in TXT records. It does not
accompany them with RLD records.

NADOUT does not process address con
stants for statement numbers and for state
ment numbers appearing in computed GO TO
statements at this time. However, it re
serves storage for them within the "address
constants" section of text information. It
does this by incrementing the location
counter by the number of address constants
set aside for such items times four. The
value of the updated location counter is
then assigned as the relative address of'
the "prologue" if a subprogram is being
compiled or of the "instructions" if a main
program is being compiled.

As previously stated, the values to be
placed into the address constants for
statement numbers and statement numbers in
computed GO TO statements are determined
during text conversion, when that process
encounters the END statement.

Phase 15 Data Text Processing

The phase 25 subroutine DATOUT assigns
the initial values specified for variables
and arrays in phase 15 data text in the
following manner:

1. The relative address of the variable
or array to be assigned an initial
value or values is obtained and placed
into the address field of a TXT
record.

2. Each constant Cone per variable) that
has been specified as an initial value
for the variable or array is then
obtained and entered into the TXT
record. CA number of TXT records may
be required if an array is being
processed.>

Such action effectively assigns the ini
tial value, because the relative address of
the initial value has been set to equal the
relative address of its associated variable
or array element.

Prologue and Epilogue Generation

Phase 25 generates the machine code: Cl)
to transmit parameters to a subprogram, and
(2) to return control to the calling rou-

Section 2: Discussion of Major Components 65

tine after execution of the subprogram.
Parameters are transmitted to the subpro
gram by means of a prologue. Return is
made to the calling routine by means of an
epilogue. Prologues and epilogues are pro
vided for subprogram secondary entry points
as well as for the main entry point.

Prologue: A prologue (generated by subrou
tine PROLOG) is a series of load and store
instructions that transmit the values of
"call by value" parameters and the address
es of "call by name" parameters to the
subprogram. (These parameters are
explained in the publication IBM System/360
Operating System: FORTRAN IV.)

When subroutine PROLOG generates a pro
logue, it enters the prologue into TXT
records and inserts its relative address
into the address constant reserved for the
prologue address during the generation of
initialization instructions.

Epilogue: An epilogue (generated by sub
routine EPILOG) is a series of instructions
that (1) return to the calling routine the
values of "call by value" parameters Cif
any), (2) restore the registers of the
calling routine, and (3) return control to
the calling routine. (If "call by value"
parameters do not exist, an epilogue con
sists of only those instructions required
to restore the registers and to return
control.)

When subroutine EPILOG generates an epi
logue, it enters the epilogue into TXT
records and inserts its relative address
into the address constant reserved for the
epilogue address during the generation of
initialization instructions. (When phase
25 encounters the text representation of a
RETURN statement, a branch to the epilogue
is generated.>

Residence of Prologues and Epilogues: The
prologues and epilogues for secondary entry
points do not reside in the "Prologue and
Epilogue" section of text information Csee
Figure 11). This section is reserved for
the prologue and epilogue of the main entry
point. The prologue and epilogue for a
secondary entry point into a subprogram are
generated immediately after the secondary
entry coding for the secondary entry point,
and reside in the "Instructions" section of
the text information following the secon
dary entry coding.

Text Conversion

The final function of phase 25 is the
conversion of intermediate text into Oper
ating System/360 machine code. (The text
conversion process is controlled by subrou
tine MAINGN.) In converting the text,
phase 25 obtains each text entry and,

66

depending upon the nature of the operator
in the text entry, passes control to one of
seven processing paths to convert the text
entry.

The seven processing paths are:

• Statement Number Processing.
• ENTRY Statement Processing.
• I/O Statement Processing.
• CALL Statement Processing.
• Code Generation.
• RETURN Statement Processing.
• END Statement Processing.

The logic of text conversion is illus
trated in Chart 22.

STATEMENT NUMBER PROCESSING: When the
operator of the text entry indicates a
statement number, MAINGN passes control to
subroutine LABEL. LABEL then inserts the
current value of the location counter,
which is the relative address of the state
ment associated with the statement number,
into the address constant for the statement
number. When the associated statement is
converted to machine code and placed into
text information, it resides at an address
equal to the value placed into the address
constant. All branches to that statement
are effected through the use of the address
constant.

Note: If branching optimization is being
implemented, only statement number that can
not be branched to via RX format branch
instructions <i.e., statement numbers that
are not within the range of registers 13,
11, 10, and 9) are processed as described
above.

After the relative address has been
placed into the address constant for the
statement number, subroutine LABEL deter
mines if that statement number appears in a
computed GO TO statement. If it does,
LABEL also inserts the relative address
into the appropriate field of the branch
table entry, or entries, for that statement
number. The relative address recorded in
the branch table entry is placed into the
storage reserved for it within text infor
mation (refer to "Adcon Table Processing">
when the text representation of the END
statement is encountered.

ENTRY STATEMENT PROCESSING: When the oper
ator of an intermediate text entry indi
cates an ENTRY statement, subroutine MAINGN
passes control to subroutines ENTRY, PRO
LOG, and EPILOG. These subroutines gener
ate the following for the subprogram secon
dary entry point:

• Subprogram secondary
(refer to the section
Instructions").

entry coding
"Initialization

• Prologue and epilogue (refer to
"Prologue and Epilogue Generation").

The machine code instructions that con
stitute the above are entered into TXT
records.

I/O STATEMENT PROCESSING: When the opera
tor of the text entry indicates an I/O
statement, an I/O list item, or the end of
an I/O list, MAINGN passes control to
subroutine IOSUB, which generates an
appropriate calling sequence to IHCFCOMH to
perform, at object-time, the indicated
operation .•

The calling sequence generated for an
I/O statement depends on the type of the
statement (e.g., READ, BACKSPACE). The
calling sequence generated for an I/O list
item depends on the I/O statement type with
which the list item is associated and on
the nature of the list item, i.e., whether
the item is a variable or an array. The
calling sequence generated for an end of an
I/O list depends on whether the end I/O
list operator signals:

• The end of an I/O list associated with
a READ/WRITE requiring a FORMAT state
ment.

• The end of an I/O list associated with
a READ/WRITE not requiring a FORMAT
statement.

once the calling sequence is generated,
subroutine IOSUB enters it into TXT
records.

CALL STATEMENT PROCESSING: When the opera
tor of the text entry indicates a CALL
statement, MAINGN passes control to subrou
tine CALLER to generate a standard direct
linkage calling sequence, which uses
general register 1 as the argument reg
ister. The argument list is located in the
adcon table in the form of address con
stants. Each address constant for an argu
ment contains the relative address of the
argument. CALLER enters the calling
sequence into TXT records.

CODE GENERATION: Code generation converts
text entries having operators other than
those for statement numbers and ENTRY,
CALL, I/O, RETURN, and END statements into
System/360 machine code. To convert the
text entry, code generation uses four
arrays and the information in the text
entry. The four arrays are:

• Register array. This array is reserved
for register and displacement informa
tion.

• Directory array. This array contains
pointers to the skeleton arrays and the

bit strip arrays associated with opera
tors in text entries that undergo code
generation.

• Skeleton array. A skeleton array
exists for each type of operator in an
intermediate text entry that is to be
processed by code generation. The
skeleton array for a particular opera
tor consists of all the machine code
instructions, in skeleton form and in
proper sequence, needed to convert the
text entry containing the operator into
machine code. These instructions are
used in various combinations to produce
the desired object code. (The skeleton
arrays are shown in Appendix C.)

• Bit strip array. A bit strip ~rray
exists for each type of operator in a
text entry that is to undergo code
generation. The bit strip array for a
particular operator contains strips of
bits. One strip is selected for each
conversion involving the operator. The
bits in each strip are preset (either
on or off) in such a fashion that when
the strip is matched against the skele
ton array, the strip indicates the
combination of instructions that is to
be used to convert the text entry.
(The bit strip arrays are shown with
their associated skeleton arrays in
Appendix C.)

In code generation, the actual base
registers and operational registers Ci.e.,
registers in which calculations are to be
performed), assigned by phase 20 to the
operands of the text entry to be converted
to machine code, are obtained from the text
entry and placed into the register array.
Any displacements needed to load the base
addresses of the operands are also placed
into the register array. The displacements
ref erred to in this context are the dis
placements of the base addresses of the
operands from the start of the adcon table
that contains the nase addresses. These
displacements are obtained from the inf or
mation table entries for the operands.
This action is taken to facilitate subse
quent processing.

The operator of the text entry to be
converted is used as an index to the
directory array. The entry in this direc
tory array, which is pointed to by the
operator index, contains pointers to the
skeleton array and the bit strip array
associated with the operator.

The proper bit strip is then selected
from the bit strip array. The selection
depends on the status of operand 2 and
operand 3 of the text entry. This status
is set up by phase 20 and is indicated in
the text entry ny four bits (see Appendix

Section 2: Discussion of Major Components 67

A, "Phase 20 Intermediate Text
Modifications"): the first two bits indi
cate the status of operand 2; the second
two bits indicate the status of operand 3.

The status of operand 2 and/or operand 3
can be one of the following:

00 The operand is in main storage and
is to remain there after the present
code generation. Therefore, if the
operand is loaded into a register
during the present code generation,
the contents of the register can be
destroyed without concern for the
operand.

01 The operand is in main storage and
is to be loaded into a register.
The operand is to remain in that
register for a subsequent code gen-
eration; therefore, the contents of
the register are not to be de-
stroyed.

10 The operand is in a register as a
result of a previous code genera
tion. After the register is used in
the present code generation process,
its contents can be destroyed.

11 The operand is in a register and is
to remain in that register for a
subsequent code generation. The
contents of the register are not to
be destroyed.

This four bit status field is used as an
index to select a bit strip from the bit
strip array associated with the operator.
The combination of instructions indicated
in the bit strip conforms to the operand
status requirements: i.e., if the status of
operand 2 is 11, the generated instructions
make use of the register containing operand
2 and do not destroy its contents. The
combination, however, excludes base load
instructions and the store into operand 1.

Once the bit strip is selected~ it is
moved to a work area. The strip is modi
fied to include any required base load
instructions. That is, bits are set on in
the appropriate positions of the bit strip
such that, when the strip is matched to the
skeleton array, the appropriate instruc
tions for loading base addresses are
included in the object code. The skeletons
for these load instructions are part of the
skeleton array.

The code generation process determines
if the base address of operand 2 and/or
operand 3 must be loaded into a register by
examining the status of these base address
es in the text entry. Such status is
indicated by four bits: the first two bits
indicate the status of the base address of

68

operand 2; the second two bits indicate the
status of the base address of operand 3.
If this status field indicates that a base
address is to be loaded, the appropriate
bit in the bit strip is set on. (The bit
to be operated upon is known, because the
format of the skeleton array for the opera
tor is known.)

Before the actual match of the bit strip
to the skeleton array takes rlace, the code
generation process determines:

• If the base address of operand 1 must
be loaded into a register.

• If the result producea by the actual
machine code for the text entry is to
be stored into operand 1.

This information is again indicated in the
text entry by four bits: the first two bits
indicate the status of the base address of
operand 1; the second two bits indicate
whether or not a store into operand 1 is to
be included as part of the object code. If
the base address of operand 1 is to be
loaded and/or if operand 1 is to be stored
into, the appropriate bit(s) in the bit
strip is set on.

The bit strip is then matched against
the skeleton array. Each skeleton instruc
tion corresponding to a bit that is set on
in the bit strip is obtained and converted
to actual machine code. The operation code
of the skeleton instruction is modified, if
necessary, to agree with the mode of the
operand of the instruction. The mode of
the operand is indicated in the text entry.
The symbolic base, index, and operational
registers of the skeleton instructions are
replaced by actual registers. The base and
operational registers to be used are con
tained in the register array. If an oper
and is to be indexed, the index register to
be used is obtained. (The index register
is saved during the processing of the text
entry whose operand 1 represents the actual
index value to be used.) The displacement
of the operand from its base address, if
needed, is obtained from the information
table entry for the operand. (The contents
of the displacement field are added to this
displacement if a subscript text entry is
being processed.) These elements are then
combined into a machine instruction, which
is entered into a TXT record. (If the
skeleton instruction that is being convert
ed to machine code is a base load instruc
tion, the base address of the operand is
obtained from the object-time adcon table.
The register (13) containing the address of
the adcon table and the displacement of the
operand's base address from the beginning
of the adcon table are contained in the
register array.)

Branch Processing: The code generation
portion of phase 25 generates the machine
code instructions to complete branching
optimization. The processing performed by
code generation, if branching optimization
is being implemented, is essentially the
same as that performed to produce an object
module in which branching is not optimized.
However, before a skeleton instruction
(corresponding to an on bit in the selected
and modified bit strip) is assembled into a
machine code instruction, code generation
determines if that instruction either:

• Loads into a register the address
instruction to which a branch is
made and which is displaced less
4096 bytes from the address in
served register1.

of an
to be
than

a re-

• Is an RR-f orrnat branch instruction that
branches to an instruction that is
displaced less than 4096 bytes from the
address in a reserved register2 •

Note: A load candidate usually immediately
precedes a branch candidate in the skeleton
array.

Code generation determines if the
instruction to be branched to is displaced
less than 4096 bytes from an address in a
reserved register by interrogating an indi
cator in the statement number entry for the
statement number associated with the block
containing the instruction to be branched
to. This indicator is set by phase 20 to
reflect whether or not that block is dis
placed less than 4096 bytes from an address
in a reserved register.

The com~letion of branching optimization
proceeds in the following manner. If a
skeleton instruction corresponding to an on
bit in the bit strip is a load candidate,
it is not included as part of the instruc
tion sequence generated for the text entry
under consideration. If a skeleton
instruction corresponding to an on bit in
the bit strip is a branch candidate, it is
converted to an RX-format branch instruc
tion. The conversion is accomplished by
replacing operand 2 Ca register) of the
branch candidate with an actual storage
address of the form Q CO,Br). Q represents
the displacement of the instruction (to be
branched to) from the address that is in
the appropriate reserved register CBr).

If the instruction to be branched to is
the first in the text block, both the
displacement and the reserved register to

1This type of text entry is subsequently
ref erred to as a load candidate.
2 This type of text entry is subsequently
ref erred to as a branch candidate.

be used for the RX-format branch are
obtained from the statement number entry
associated with the block containing the
instruction. (This information is placed
into the statement number entry during
phase 20 processing.)

If the instruction to be branched to is
one that is subsequently to be included as
part of the instruction sequence generated
for the text entry under consideration 3 ,

the displacement of the instruction from
the address in the appropriate reserved
register is computed and used as the dis
placement of the RX-format branch instruc
tion. The reserved register used in such a
case is the one indicated in the statement
number entry associated with the block
containing the text entry currently being
processed by code generation.

RETURN STATEMENT PROCESSING: When the
operator of the text entry indicates a
RETURN statement, MAINGN passes control to
subroutine RETURN, which generates a branch
to the epilogue. The epilogue address is
obtained from the subprogram save area.
The address of the epilogue is placed into
the save area during the execution of
either the subprogram main entry coding or
the subprogram secondary entry coding
(refer to the section "Initialization
Instructions").

END STATEMENT PROCESSING: When the opera
tor of the text entry indicates an END
statement, MAINGN passes control to subrou
tine END, which completes the processing of
the module by entering the address con
stants Ci.e., relative addresses) for
statement numbers and statement numbers
appearing in computed GO TO statements into
text information and by generating loader
END loader record.

Subroutine END enters the address con
stant (i.e., relative address) for each
statement number and for each statement
number in a computed GO TO statement into a
TXT record. The address inserted into each
such record places the address constant
into the storage reserved for it during
ADCON table processing.

The loader END record must be the last
record of the object module. Its functions
are to signal the end of the object module
and to inform the linkage editor of the
size Cin bytes> of the control section and
the address of the main entry point of the
control section.

3 Skeleton arrays for certain operators con
tain RR format branch instructions that
transfer control to other instructions of
that skeleton.

Section 2: Discussion of Major Components 69

EXTERNAL SYMBOL DICTIONARY

The external symbol dictionary contains
entries for external symbols that are
defined or referred to within the module.
An external symbol is one that is defined
in one module and referred to in another.
One external symbol dictionary entry Can
ESD record) is constructed by phase 25 for
each external symbol it encounters. The
entry identifies the symbol by indicating
its type and location within the module.
The ESD records constructed by phase 25
are:

• ESD-0 This is a section definition
record for the source module being
compiled.

• ESD-1 This record defines an entry point
for the source module being com
piled.

• ESD-2 This record is generated for an
external subprogram name.

• ESD-5 This is a section definition
record for a common block (either
named or blank).

For a more complete discussion of the
use and the format of these records, refer
to the publication IBM System/360 Operating
System: Linkage Editor, Program Logic Manu
al.

RELOCATION DICTIONARY

The relocation dictionary is composed of
entries for the address constants of the
object module. One relocation dictionary
entry Can RLD record) is constructed by
phase 25 for each address constant it
encounters. If the address constant is for
an external symbol, the RLD record iden
tifies the address constant by indicating:

• The control section to
address constant belongs.

which the

• The location of the address constant
within the control section.

• The symbol in the external symbol dic
tionary whose value is to be used in
the computation of the address con
stant.

If the address constant is for a local
symbol (i.e., a symbol that is located in
the same control section as the address
constant), the RLD record identifies the
address constant by indicating the control
section to which the address constant
belongs and its location within that con
trol section.

70

For a more detailed discussion of the
use and format of an RLD record, refer to
the publication IBM System/360 Operating
System: Linkage Editor, Program Logic Manu
al.

PHASE 30

Phase 30 records Con the SYSPRINT data
set) appropriate messages for syntactical
errors encountered during the processing of
phases 10 and 15; its overall logic is
illustrated in Chart 23. As errors are
encountered by these phases, error table
entries are created and placed into an
error table. Each such entry consists of
two parts: the first part contains either
an internal statement number, if the entry
is for a statement that is in error, a
dictionary pointer to a variable, if the
entry is for a variable that is in error,
or an actual statement number, if the entry
is for a non-defined statement number; the
second part contains a message number. (If
the error cannot be localized to a particu
lar statement, no internal statement number
is entered in the error table entry. Phase
30 simulates the internal statement number
with a zero.)

Message Processing

Using the message number in the error
table entry multiplied by four, phase 30
locates, within the message pointer table
(refer to Appendix A, "Diagnostic Message
Tables"), the entry corresponding to the
message number. This message pointer table
entry contains Cl) the length of the mes
sage associated with the message number,
and (2) a pointer to the text of the
message associated with the message number.
After phase 30 obtains the pointer to the
message text, it constructs a parameter
list, which consists of:

• Either the internal statement number,
dictionary pointer, or statement number
appearing in the error table entry.

• A pointer to the message text associat
ed with the message number.

• The length of the message.

• The message number.

Having constructed the parameter list,
phase 30 calls subroutine MSGWRT, which
writes the message on the SYSPRINT data
set. After the message is written, the
next error table entry is obtained and
processed as described above.

As each error table entry is being
processed, the error level code (either 4

or 8) associated with the message number is
obtained from the error code table
CGRAVERR) by using the message number in
the error table entry as an index. The
error level code indicates the seriousness
of the encountered error. (See the publi
cation IBM System/360 Operating system:
FORTRAN IV Programmer's Guide for explana
tions of all the messages capable of being
generated by the compiler.) The obtained
error level code is saved for subsequent

use only if it is greater than the error
level codes associated with message numbers
appearing in previously processed error
table entries. Thus, after all error table
entries have been processed, the highest
error level code (either 4 or 8) has been
saved. The saved error level code is
passed to the FSD when phase 30 processing
is completed. This code is used by the FSD
to determine whether or not the compilation
is to be deleted.

Section 2: Discussion of Major Components 71

Chart 00. Compiler Control Flow

****
* A2 *

I v

*****A2**********
****Al********* *FSO 01A2*

* FRON * *-•-•-•-•-•-*-*-*
* CALLING •~~~->* INITIALIZE *
* PROGRAM * * CALL

*************** * PHASE 10 *

72

I v
*****B2 ** ****** ** *PHlO 03A2* ·-·-·-·-·-·-·-·-· *CONVERT SOURCE *
*TO INFORMATION *
*TABLE ANO TEXT *

·~·····i········

v
*****C2**********
FSD 01A2 ·-·-·-·-*-•-·-·-· * CALL
* PHASE 15 :

I v
*****02**********
PH15 0463

·-·-·-·-·-·-·-·-· * CONVERT PHASE *
*10 TEXT.ASSIGN *
* ADDRESSES * ****
***************** * * I :.r:.:

v v
*****E2********** *****E3********** *****E4********** *****ES**********
FSD 01A2 *PH20 10C1* *FSD 01A2* *PH25 2181*
•-•-*-*-*-*-*-*-*NO •-•-•-•-•-•-*-*-* •-•-•-•-•-•-•-*-* •-•-•-•-•-•-*-*-*
IF ERRORS.CALL •~~~-> ASSIGN REGIS- •~~~->• CALL •~~~->* BUILD
*30. NO ERRORS. *ERROR * TERS.OPTINIZE * * PHASE 25 * * OBJECT
* CALL PHASE 20 * * IF REOUESTEO * * * * MODULE *
................... ••••••••••••••••• ***************** *****************

ERROR I

v ••• • ••

v
**** * * * J5 *

* *

*****G2********** G3 *• G4 *• *****GS**********
PH30 2383 •* *• •* *• * *
-•-•-•-•-•--*-* • •* ANY *• YES •* LOAD *• NO * OELETE *

OUTPUT •~-.~>*• ERRORS OF .•~~~->*• OPTION .•-----~>• COMPILATION
ERROR * *• LEVEL 8 •* *•SPECIFIED•*

* MESSAGES * *• •* *• •*
***************** *• •* ••••

* NO * YES

I <-------------J
v

*****H3**********
* *
*
*

CALL
PHASE 20

I
v

**** * * * E3 *
* *

OPERATIONS
WITHIN DOTTED

LINES ARE
PERFORMED dY

FSD.

.

I
v

*****HS**********
* • * TD READ TO •
* END CARD •
:(IF NECESSARY):

I
* * I * JS *->I
* • I v .•.

JS *•
•* *• * * NO •* LAST *•

* A2 *<---*• COMPILIHION •*
* * *• •* *• •* *• ... i "'

v
****KS*********

* TO *
* OPERATING
* SYSTEM *

Chart 01. FSD Overall Logic

. .
: A3 :
I

IEKAAOO AGAIN V

****Al********* !****A2*********! !****A3*********! :~;:;~~*****:;:;: ENTRY POINT
FOR END-OF-FI LE"
ENCOUNTER * FROM * * PROCESS * * INITIALIZE • •-•-•-•-•-•-•-•-•

* CALLING *--->* PARAMETERS •---->*FOR COMPILATION*--->*BUIL:D TEXT AND *

* ~~~~~:~ * : : : : : •• :::!;:~!::: .. :
SEE TABLE 6 FOR A
BRIEF DESCRIPTION
OF EACH SUBROUTINE
OF THE FSD.

ENTRY POINT FOR
PHASE 10
SUBROUTINE OR
FOR SERIOUS
ERROR (LEVEL 16)

SYSDIR

****01 *********
* FROM *
* CALLING *
* ~~~~~ *

v
•*•

Fl *•
•* *•

•* PHASE 10 *• YES
• SUBROUTINE •

*• ...

RTNPHlO V

!****B2*********! *****83**********
STALL OSB3

* RECOVER * *-•-•-•-•-•-•-*-*
.--->* UNUSED TEXT *--->*PROCESS COMMON *
I * AREA * * ANO EQUIVAL- *
I * * * ENCE *
I ***** ************ *****************

I I

ENTRY POINT
FOR I/D
ERROR

IB<:OMRTN

I
v

•*•
C3 *•

•* BLOCK *•
•* DATA *• YES

• SUBPROGRAM ·-1
• • I

• • I
• • I ro l

·····03·~.......... I
=~~~~~~-·-·-~~~~: • p~~~~En * 1

******!';~!******: I
I<---'
I
v

:****E3*********:
* RECOVER *
* UNUSED TEXT *
: AREA :

********i********

I
I
v

*****F3**********
CORAL 09B2

1

:****F4*********! * ****F2*********·* *-•-•-•-•-•-•-*-* * RECOVER *
* RELATIVE *---->• UNUSED TEXT •
* ADDRESS * * AREA •

: FROM I BCOM'f :

ENOFILE

*****BS**********

: FROM PliASE l 0 :

I
v

•*•
OS *•

•* IS *•
YES •* END FILE *• r--• .•. MISPLACED

0

,..•

I *• •*
v *· •*

**** * NO
* * I
• G2 * I • • I

OUT I
v

****ES********* * RETURN TO *

I
>* CALLING *
* PROGRAM *

**** ***************
* ..
! E5 :

·· ·*·* ········1···•**"

*LNO •••• •01 •
• Ga •->

IT v

: .. :::!~~:~~! ... : T
v

•••••Gt•••••••••• . .
• WRITE •

>• ERROR MESSAGE •
• wUH <:OOE • MT

...
"a •• •• ... •• us •. •••ta. ··-, •• S£t ••
•• •• v

., "° • ••••• •••• • • ••••
v

• Rl!AC TD •l:NO• • * CARD IP • * NECl!SSAAY • . .
****"*""j**••••••

v
: A3 :

...
G4 *• ••••*GS**********

•• ERROR *• *lEKP30 2383*
••OR WARNING *• YES •-•-•-•-•-•-•-*-*

•• MESSAGES .•----->• WRITE
•• •* " MESSAGES •• •• • *
r0

I v v
••• •*•

H4 *• HS *• •* BLOCK *• •* *•
YE:$ •* DATA *• NO •* DELETE *•

• SUBPROGRAM •<----*• COMPILATION •*
•• •* *• •*

•• •• *• •*
•• •* *• •*

* NO * YES

I)***
GO ~:***J4.*~******** : A3 :

::::;=·-·-·-!~;~:
* ASSIGN REG. *
* OPTIMIZE IF *

: :;~~~~!;~ :

'I v
*****K4**********
::~:!:;_ .. ___ ~::~:
* BUIL]) *

OBJECT * ~~~~;; :
I .:

* *
: A3 :

Section 2: Discussion of Major Components 73

Chart 02. FSD Storage Distribution

GETCOR

ENTRY POINT
FOR MAIN
STORAGE
REQUEST

****B3*********
* FROM *
* REQUESTING *
* PHASE *

I
v

•*• ·*·
C2 *• C3 *•

·* *• •* *•
NO •* MAIN *• YES •* PHASE 10 *•
r--*·*·A~!~E:~EE.*·*<~~~~-*.*· CALLING ·*·*
I *• •*
v *• •*

***** * YES
• • * NO

*01 * I * G2.*
* * I

74

* I v
OTHER v •*•

*****D2********** D3 *•
OVERRITE •*•

04 *•
* * •* *• •* *·
*DETERMINE TYPE * •* IS *• NO •* PHASE 2.0 *• YES
* OF TEXT AND * *• FREE BLOCK •*~~~~>*• CALLING •*~-1
* AMOUNT * *•AVAILABLE•* *• •* I
* * *• •* *• •* I
***************** *• •* *• •* v

I
I *1 YES * NO *****

I *Ol * I I **::*
v v v

*****E2********** *****E3**********
* * * CONVERT MAIN *
* CHAIN ONTO * *STORAGE LIMITS *
* BLOCKS TO *~~~~>* TO SUBSCRIPTS *<---,
* RECOVER * ** AND STORE ** I
* LATER *
***************** ********i******** I

I I
! I

*****E4**********
* DETERMINE *
* AMOUNT OF *
* PHASE 10 TEXT *
* PROCESSED *
* * *****************

I
v

•*•
F4 *•

I •* *• ****F3*********
* ZERO BLOCK *
* AND RETURN *

I YES •* MAIN *• NO

* * ***************

L-~~*• STORAGE •*---1
•AVAILABLE•

• •
· •

*

I
v

iliOl *
* G2*
* *
*

Table 6. FSD Subroutine Directory
r----------T--1
I Subroutine I Function I
~----------+--1

AFIXPI Exponentiation of integers by integers.

AFRXPI

GE TC OR

IEKAAOO

IEKAREAD

IEKFCOMH

IEKFIOCS

IEKUATPT

IHCFMAXI

IHCFMAXR

Exponentiation of reals by integers.

Allocates and keeps track of main storage used in the construction of the
information table and for collecting text entries.

Initializes compiler processing and calls the phases for execution.

Works in conjunction with SYSDIR to delete a compilation. It reads
records (without processing them) until an END statement is encountered.

Controls compile-time I/O.
E.)

(Corresponds to IHCFCOMH; refer to Appendix

Interface between IEKFCOMH and BSAM.
Appendix E. >

Unit assignment table for IEKFIOCS.

{Corresponds to IHCFIOSH; ref er to

Maximizing service routine for integers.

Maximizing service routine for reals.

SYSDIR Deletes compilation if requested. I
I

SYSTAB Dumps internal text and tables. I
I

SYSTRC Diagnostic trace routine. I
----------L--J

Section 2: Discussion of Major Components 75

Chart 03. Phase 10 Overall Logic
ENTRY IS TO ••
DISPATCHER
(DSPTCH).

DSPTCH *****A2**********
DISPATCHER (DSPTCH) IS
WITHIN DOTTED LINES.
DSPTCH CALLS THE
PREPARATORY SUB
ROUTINE.

76

****Al********* * * SEE TABLE 8 FOR A
DESCRIPTION DF THE
SUBROUTINES OF
PHASE 10.

* FROM * • * *
* FSD *~~.~->* INITIALIZE *
* * * *

*************** * * *****************

* * * 82 *->
* * ****

• 45 v
*****82********** *****83**********
* GET CD * * XCLASS *
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*
*READ1LIST• AND *~~~~>*PROCESS STATE- *
*PREPARE SOURCE * * MENT NUMBER *
* STATEMENT * * (IF PRESENT) *
***************** *****************

I
v

*****C3**********
* DETERMINE *
* ROUTE FROM *
*CLASSIFICATION *
* CODE *
* * *****************

I
I

·······································i············
v

*****03**********
* * SEE TABLE 7
* PROCESS *
* SOURCE *
* STATEMENT *
* * *****************

I
v

•*•
E3 *•

•* *• ****E4*********
•* END *• YES * TO PHASE 15 *

• STATEMENT •~~~~>* VIA FSD *
• • *

• • ***************
• • * NO

L ****
* * >* 82 *
* * ****

Table 7. Phase 10 source Statement Processing
r------------------T----------------~--T--1

I I Main Processing I I
I Statement Type I Subroutine I Subroutines Used I

~------------------+-------------------+--~
I ARITHMETIC I XARITH I COMAST, GRPKEQ, MINSLS, PRELOG, RTPRQT, TXTBLD1 1
~------------------+-------------------+--1
I STATEMENT I XASF/XASF2 I GETWD, ERROR, PUTX, CSORN I SYMTLU I
I FUNCTION I I I
~------------------+-------------------+--------------------~---------------------------1
I DIMENSION I XDIM I GETWD, CSORN, ERROR, SYMTLU I
~------------------+-----~-------------+--1
I EQUIVALENCE I XEQUI I GETWD, SYMTLU, ERROR, LITCON I
~------------------+-------------------+--1
I COMMON I XCOMON I GETWD, SYMTLU, ERROR I
~------------------+-------------------+--~
I EXTERNAL I XEXT I GETWD I ERROR I SYMTLU I
·------------------+-------------------+--1
I TYPE (INTEGER, I XTYPE I GETWD, ERROR, SYMTLU, PUTX I
I REAL, ETC.) I I I
~------------------+-------------------+--1
I DO I XDO I GETWD, ERROR, LITCON, SYMTLU, PUTX, CDOPAR I
~------------------+-------------------+--1
I SUBROUTINE, CALLI XSUBPG I GETWD, ERROR, SYMTLU, PUTX I
I ENTRY, FUNCTION I I I
~------------------+-------------------+--~
I READ, WRITE, I XIOOP I GETWD, ERROR, CSORN, PUTX, LITCON I
I PRINT, PUNCH I I I
~------------------+-------------------+--1
I NAMELIST I XNMLST I GETWD, SYMTLU, PUTX, ERROR I
~------------------+-------------------+--1
I BACKSPACE, I I I
I REWIND, I XBCKRW I GETWD, SYMTLU, PUTX, ERROR I
I END FILE I I I
~------------------+-------------------+--1
I RETURN I XRETN I GETWD, CSORN, ERROR, PUTX I

~------------------+-------------------+--~
I IF I XIF I PUTX, ERROR I
~------------------+-------------------+--i
I ASSIGN I XASGN I GETWD, LITCON, ERROR, SYMTLU, PUTX I
~------------------+-------------------+--1
I BLOCK DATA I XBLOK I PUTX, ERROR I
~------------------+-------------------+--i
I FORMAT I XFMT I CSORN, PUTX I
~------------------+-------------------+--1
I CONTINUE I XCONT I ERROR, PUTX I

~------------------+-------------------+--~
I GO TO I XGO I GETWD, ERROR, SYMTLU, LITCON, PUTX I
~------------------+-------------------+--~
I DATA I XDATA I GETWD, CSORN, ERROR, PUTX I

~------------------+-------------------+--~
I STOP I XSTOP I PUTX I
~------------------+-------------------+--1
I PAUSE I XPUSE I GETWD, ERROR, CSORN, PUTX I
~------------------+-------------------+--1
I END I XEND I ERROR, PUTX I

~------------------i-------------------i--~
I 1 The subroutines used by subroutine XARITH employ the following utility subrou- I
I tines: GETWD, CSORN, PUTX, COMPAT, ERROR, and SYMTLU. I
L---J

Section 2: Discussion of Major Components 77

Table 8. Phase 10 Subroutine Directory
r----------T-------------------------------T--1
I Subroutine I Type I Function I
~----------+-------------------------------+--i

CDOPAR Utility (entry placement) Constructs information table entries and
pushdown table entries for the index ini
tial value, index increment, and index
maximum value appearing in DO statements.

CO MAST Arithmetic

COMPAT Utility (collection>

CLOSE Utility (text generation>

CSORN Utility (entry placement)

DSPTCH Dispatcher

ERROR Utility (entry placement)

GENDO Utility (text generation)

GETCD Preparatory

GETWD Utility <collection>

GRPKEQ Arithmetic

INTCON Utility (conversion>

LABTLU Utility (entry placement)

LITCON Utility (conversion>

MINSLS Arithmetic

Develops intermediate text and builds
information table entries for variables
and constants connected by a comma or an
asterisk delimiter.

Places variable names on wora ooundaries
for comparison to other variable names.

Generates the text entry that signifies
the end of the intermediate text represen
tation of a source statement.

Directs the entering of variables ana
constants into the information table.

Control phase 10 processing, passes con
trol to the preparatory subroutine to
prepare the source statement, determines
from the code assigned to the statement
which subroutine is to continue processing
the statement and passes control to that
subroutine.

Builds error table entries for the syntac
tical errors detected by phase 10 and
places them into the error table.

Generates the intermediate text required
to increment a DO index and to test the
index against its maximum.

Reads, lists (if requested), packs, and
classifies each source statement.

Obtains the next group of characters in
the source statement being processed.

Develops intermediate text and builds
information table entries for variables
and constants connected by an equal sign
or a group mark (end of statement symbol).

Calls subroutine LITCON to convert a con
stant and then verifies that the converted
constant is of integer mode.

Places statement number entries into the
information table.

Converts integer, real, and complex con
stants to their binary equivalents.

Develops intermediate text and builds
information table entries for variables
and constants connected by a minus or
slash delimiter.

----------~-------------------------------~--J
(Continued)

78

Table 8. Phase 10 Subroutine Directory (Continued)
r----------T-------------------------------T--1
I Subroutine I Type I Function I
~----------+-------------------------------+--~

PERLOG Arithmetic Develops intermediate text and builds

PHlO

PHlOA

PUTX

RTPRQT

SYMTL_U

TXTBLD

XARITH

XASF

XASF2

Utility (common data area)

Utility (common data area)

Utility (entry placement)

Arithmetic

Utility (entry placement)

Arithmetic

Arithmetic

Arithmetic

Arithmetic

information table entries for variables
and constants connected by a period delim
iter.

Phase 10 COMMON area.

Phase 10 CO~iMON area.

Places text entries into the appropriate
sub-blocks, obtains the next operator of
the source statement, and places the oper
ator into the text entry work area.

Develops intermediate text and builds
information table entries for variables
and constants connected by a right paren
thesis or a quote delimiter.

Places the dictionary entries constructed
for the variables and constants of the
source module into the information table.

Develops intermediate text and builds
information table entries for variables
and constants connected by a left paren
thesis, or for complex constants.

Controls the processing of arithmetic
statements, CALL arguments, expressions
appearing in IF statements, I/O list
items, simple variable and array names
appearing in NAMELIST statements, complex
literals appearing in DATA statements, and
arithmetic expressions appearing in state
ment functions. Subroutine XARITH scans
the expression and passes control to one
of the following supporting subroutines,
depending on the nature of the delimiter
recognized: COMAST, GRPKEQ, MINSLS, PER
LOG, RTPRQT, and TXTBLD.

Scans the portion of a statement function
to the left of the equal sign, obtains
each dummy argument, and assigns it a
sequence number.

Insures that ali dummy arguments appearing
in the argument list of a statement f unc
tion are used in the expression to the
right of the equal sign in that statement
function.

XASGN Key Word (table entry and text) Develops an intermediate text representa-
tion of the ASSIGN statement, constructs
information table entries for its oper
ands, and analyzes the ASSIGN statement
for syntactical errors.

L----------~-------------------------------~--
(Continued)

Section 2: Discussion of Major Components 79

Table 8. Phase 10 Subroutine Directory (Continued)
r----------T-------------------------------T--1
I Subroutine I Type I Function I
~----------+-------------------------------+--~

XBCKRW Key Word (table entry and text> I Develops intermediate text representations I
I of the BACKSPACE, REWIND, and END FILE I
I statements, builds information table I
I entries for the operands of these state- I
I ments, and analyzes these statements for I
I syntactical errors. I
I I

XBLOK Key Word (table entry and text) Develops an intermediate text representa- I

XCLASS

XCOMON

XCONT

XDATA

XDIM

XDO

XEND

XE QUI

Utility (text generation)

tion of the BLOCK DATA statement, set a
switch in the communication table to indi
cate that a BLOCK DATA subprogram is being
compiled, and analyzes the BLOCK DATA
statement for syntactical errors.

Generates intermediate text for statement
numbers.

Key Word (table entry> Constructs information table entries for
block names, variables, and arrays appear
ing in COMMON statements, chains common
block name entries and associated varia
bles and arrays together, and analyzes
COMMON statements for syntactical errors.

Key Word (table entry and text> Develops and intermediate text representa
tion of the CONTINUE statement, and veri
fies that there is a statement number
associated with it.

Key Word (table entry and text> Develops an intermediate text representa
tion of the DATA statement, constructs
information table entries for the operands
of the DATA statement, processes the data
specifications in TYPE statements, and
analyzes DATA statements for syntactical
errors.

Key Word (table entry> Constructs information table entries for
the arrays appearing in DIMENSION, COMMON;
and TYPE statements, and analyzes arrays
for syntactical errors.

Key Word (table entry and text) Develops, with the aid of subroutines
CDOPAR and GENDO, the intermediate text
required to control a DO loop.

Key Word (table entry and text) Develops an intermediate text representa
tion of the END statement and analyzes the
END statement for syntactical errors.

Key Word (table entry) Builds information table entries for
equivalence groups and their associated
variables, chains equivalence groups and
associated variables together, and ana
lyzes EQUIVALENCE statements for syntacti
cal errors.

XEXT jKey Word (table entry)
I

Constructs information table entries for
the subprogram names appearing in the
EXTERNAL statement, signals the subpro
grams as external, and analyzes the EXTER
NAL statement for syntactical errors.

I
I
I

----------~-------------------------------
(Continued)

80

Table 8. Phase 10 Subroutine Directory (Continued)
r----------T-------------------------------T--1
f Subroutinel Type I Function I
~----------+-------------------------------+--~

XFMT Key Word (table entry and text) Develops an intermediate text representa-

XGO

XIF

XIMPC

XIMPD

XIOOP

XNMLST

XPUSE

XRETN

XS TOP

tion of the FORMAT statement.

Key Word (table entry and text) Develops intermediate text representations
of the GO TO (unconditional, assigned, and
computed) statements, constructs informa
tion table entries for the operands of
these statements, and analyzes these
statements for syntactical errors.

Key Word (table entry and text) Develops an intermediate text representa
tion of that portion of IF statements
which precedes the opening parenthesis and
passes control to subroutine XARITH to
complete the processing of these state
ments.

Key Word (special) Sets the type of the variables beginning
with the characters stated in the IMPLICIT
statement according to the type specifi
cations stated in the IMPLICIT statement,
and analyzes the IMPLICIT statement for
syntactical errors.

Utiltiy (text generation) Develops intermediate text representations
of implied DO's appearing in I/O state
ments.

Key Word (table entry and text) Develops intermediate text representations
of I/O statements, constructs information
table entries for their operands, and
analyzes 1/0 statements for syntactical
errors. CI/O list items are processed by
subroutine XARITH.)

Key Word (table entry and text) Develops an intermediate text representa
tion of the NAMELIST statement and con
structs information table entries for its
operands. (Passes control to subroutine
XARITH to process the simple variable of
array names.)

Key Word (table entry and text) Develops an intermediate text representa
tion of the PAUSE statement, constructs
information table entries for its operands
(if any), and analyzes the PAUSE statement
for syntactical errors.

Key Word (table entry and text) Develops an intermediate text representa
tion of the RETURN statement, constructs
information table entries for its operands
(if any), and analyzes the RETURN state
ment for syntactical errors.

Key Word (table entry and text) Develops an intermediate text representa
tion of the STOP statement and analyzes
that statement for syntactical errors.

XSTRUC Dummy key word subroutine.
__________ i _______________________________ i ___ _

(Continued)

Section 2: Discussion of Major Components 81

Table 8. Phase 10 subroutine Directory (Continued)
r----------T-------------------------------T--1
ISubroutinej Type I Function I
~----------+-------------------------------+--1

XSUBPG !Key Word (table entry and text) Develops intermediate text representations
I of CALL, SUBROUTINE, ENTRY, and FUNCTION
I statements, constructs information table
I entries for the operands of these state-
1 ments, and analyzes these statements for
I syntactical errors. (This subroutine
I passes control to subroutine XARITH to
I process the arguments appearing in CALL
I statements.)
I

XTYPE IKey Word (table entry and text) Develops intermediate text representations
I of TYPE statements, constructs information
I table entries for their operands, and
I analyzes the TYPE statements for syntacti-
1 cal errors.

----------~-------------------------------~--

82

Chart 04. Phase 15 overall Logic

****A3*********
* * *
*

FROM FSD

I

*
*

v
*****B3**********
STALL 0583
--*-*-*-*-*-*-*
* PROCESS *
* COMMON AND *
* EQUIVALENCE *

I

I
I
I
v

*****C3**********
PHAZ15 0682
·-·-·-·-·-*-*-*-*
* PROCESS *
* PHASE 10 *
* TEXT *

I
v

*****03**********
CORAL 0982

·-·-·-·-·-·-·-·-* * RELATIVE *
* ADDRESS *
* ASSIGNMENT *

I
v

****E3*********
* TO PHASE *
* 20 VIA FSD *
* * ***************

SEE TABLE 9 FOR A
BRIEF DESCRIPTION
OF THE SUBROUTINES
OF. PHASE 15e

Section 2: Discussion of Major Components 83

Chart 05. STALL Overall Logic

STALL

84

****A3*********
* FROM *
* FSD *
* * ***************

I
v

*****83**********
* LABSCN *
--*-*-*-*-*-*-*
* SCAN FOR NON- *
*DEFINED STATE- *
* MENT NUMBERS *

I
v

*****C3**********
* DCTSRT *
·-·-•-*-*-*-*-*-*
* SORT AND *
* RECHAIN *
* DICTIONARY *

I
v

*****D3**********
* COMN *
--*-*-*-*-*-*-*
* PROCESS *
* COMMON *
* BLOCKS *

I
v

*****E3**********
* EQU *
--*-*-*-*-*-*-*
* PROCESS *
* EQUIVALENCE *
* GROUPS *

I
v

****F3*********
* TO PHAZ15 *
* VIA FSD *
* * ***************

Chart 06. PHAZ15 Overall Logic
PHAZ15

****A2*********
* * FROM FSO
* * ***************

I
v

*****B2**********
* *
* * INITIALIZE

* *****************

I
120 v

:****C2*********!
* * * GET A PHASE *
* C2 *-->* 10 TEXT *
* * * ENTRY

········i········

v
•*• 20

02 *• *****03********** *****04**********
•*STATE- *• * INDICATE IF * *GENER 0882*

•*MENT NUMBER*• YES STATEMENT *-*-*-*-*-*-*-*-*
• TEXT ENTRY .•----> NUMBER IS *---->* CREATE NEW

• • *FOR ENTRY POINT* * TEXT BLOCK
• • * * *

• • ***************** *****************
i NO I
I .~**
v * *

100 •*• * C2 *
*****El********** E2 *• * *
GENER 0882 •* *•
--*-*-*-*-*-*-* YES •* IS *•

OUTPUT *<----*• OPERATOR •*
* END * *• END •*
* STATEMENT * *• •*
***************** *• •*

* NO

I
I v

..... •*·
F2 *• *****F3********** F4 *• *****F5*********•

•* *• *AL TRAN 07* •* IS *• * ARIF *
•*ARITHMETIC *• YES *-*-*-*-*-*-*-*-* •* STATE- *• YES *-*-*-*-*-*-*-*-*

• TRANSLATION •---->* PERFORM *---->*• MENT ARITH- •*~~~~>* OPTIMIZE
• NEEDED • * ARITHMETIC * *• METIC •* * BRANCHES

• • * TRANSLATION * *• IF •*
• • ***************** *• •* *****************

* NO * NO I I *~::~~----~-----j
v v * *

Gt•*•*• G2•*·.... *****G3********** : C2:
•* *• •* *. * * NO •* *• •* PRO- *• YES * PROCESS

.---*.OPTIMIZATION •* *• CESSING ·*---->* TEXT

• • *· •*
*
* I *•SELECTED •* *• NEEDED •* * ENTRY

* * * * ***************** I . (YES . (NO I
I I I I
1

101 v 23 v t
*****Hl********** *****H2********** *****H3**********
* VSETUP * :~;~;~*-*-*-~~:~: *GENER 0862* I :-*-*-~~;~~-*-*-: PASS ON * :-~o:P~E;E*T~x;-:

I :****~::~~:****** :**!i~!:~~!:!***: :*:!i~!:;~!~~~:*:

I 'I .. !:.. I
t : C2 :

****.Jl*********
* TO CORAL *

VIA FSO

Section 2: Discussion of Major Components 85

Chart 07. ALTRAN Control Flow

1-------------•FINISII

i
1-------------_.,.NEGCHK----------------~

BLTNFN ------1~

OPlCHK
1------DFUNCT

XPARAM

OPlCHK

SWITCH

UNARY

POWER2

AL TRAN EXP ON
MODTST GENEP

FUNRDY NEGCHK
t

CO MMD
CPLTST

MOOT ST

AN DOR GENRTN

RELOPS

MODTST

SUBMLT

SB GLUT

NSTRNG

SUBSCR

SUBADD

PAREN

• STTEST- RDTST

NOTE: The logic and flow of the arithmetic translator is too complex to be represented on one or two conventional
flowcnarts. Chart 07 indicates the relationship between the arithmetic translator (subroutine ALTRAN) and its lower
level subroutines. An arrow flowing between two subroutines indicates that the subroutine at the origin of the
arrow may, in the course of its processing, call the subroutine indicated by the arrowhead. In some cases, a sub
routine called by ALTRAN may, in turn, call one or more subroutines to assist in the performance of its function.
The level and sequence of subroutines is indicated by the lines and arrowheads.

In reality, all of the pathways shown connecting subroutines are two-way; however, to simplify the chart, only
forward flow has been indicated by the arrowheads. All of the subroutines return control to the subroutine that
called them when they complete their processing. (If a subroutine detects an error serious enough to warrant the
deletion of the compilation, the subroutine passes control to the FSD, rather than return control to the sub
routine that called it.)

The specific functions of each of the subroutines associated with the arithmetic translator are given in the sub
routine directory following the charts for phase 15.

86

Chart 08. GENER - Text Generation

GENER

****A2*********
* FROM *
* CALLING *
* ROUTINE *

I
v

*****B2**********
* *
* * * INITIALIZE *
* *
* * *****************

I
I

I
9004 v

20

*****C2**********
* GE TEXT *
--*-*-*-*-*-*-*
* GET STORAGE *
* FOR NEW *
* TEXT ENTRY *

I

I
v

* * * D5 *
* * ****

I
I
I

•*• 199 9000 I
D2 *• *****D3********** *****D4********** V

•* IS *• * * * SET TEXT * ****D5*********
•* OPERATOR *• NO * PASS ON * * CHAIN. BLOCK * * RETURN *

• PHASE 15 •-~~~->* PHASE 10 *~~~-->* SIZE, AND *----~-->* TD
• ITEM • * TEXT ENTRY * * BLOCK END * * CALLER *

·* * * * ***************
• · ***************** *****************

* YES

I
v

·*· 10
E2 *• *****E3**********

•* *• * TXTLAB * ****
•* STATEMENT *• YES *-*-*-*-*-*-*-*-* * *

• NUMBER •~~~~>* RECORD *-~->* D5 *

TXTLAB RECORDS fALL
THROUGH CONNECTIONS AND
SETS UP STATEMENT NUMdER
TEXT ENTRIES.

• TEXT • * CONNECTION * * *
• • * INFORMATION * ****

• • *****************
* NO

I
I

I
v

*****F2**********
* TXTREG *
--*-*-*-*-*-*-*
* PROCESS *
* REGULAR
* TEXT ENTRY *

I
I

I
I
v

*****G2**********
* SET TEXT *
* CHAIN. BLOCK *
* SIZE. AND *
* BLOCK END *
* *****************

I
v

* * * D5 *
* * ****

TXTREG RECORDS CONNECTION INFORMATION.
OBTAINS DICTIONARY SPACE FDR TEMPORARIES
(VIA A CALL TO SUBROUTINE GMAT)o ANO UP-.
DATES MVS, MVFo AND MVX (VIA A CALL TO
SUBROUTINE MATE).

Section 2: Discussion of Major Components 87

Chart 09. CORAL overall Logic
CORAL

88

•****A2**********
FROM FSD *

* ***************

I v
*****82********** *****B3**********
* NDATA * * CONST *
·-·-·-·-·-·-·-*-* ·-·-·-·-·-·-·-·-· PROCESS *~~~->*ASSIGN RELATIVE*
* DATA * * ADDRESSES *
* STATEMENTS * * TO CONSTANTS *
***************** *****************

I
v

*****C3**********
* VARA *
·-·-·-·-·-·-·-·-· *ASSIGN RELATIVE*
* ADDRESSES *
* TO VARIABLES *

I
v

*****03**********
* EQVAR *

·-·-·-·-·-·-·-·-· *ASSIGN ADDRESS-*
*ES TO EQUI VAL- *

:;~;;*~!~!:~;;;*:

I
v

*****E3**********
* COMVAR *
·-·-·-·-·-·-·-·-· *ASSIGN ADDRESS-*
* ES TD COMMON *

:***~!~!:~;;;***:

I
v

*****F3**********
* EXTRNL 4

·-·-·-·-·-·-·-·-· * COMPLETE REL- *
* ATIVE ADDRESS *
* ASSIGNMENT *

v
·*·

H3 *•
·* *•

•* MAP *• NO
• OPTION •-,

•.SPECIFIED·* I
•• •• I * YES

I
v

*****J3**********

:-·-·-~~:~~-·-·-: I
I

1<--_J

* GENERATE
STORAGE

MAP

I
v

****K3*********
* * * TO FSD *

Table 9. Phase 15 Subroutine Directory
r----------T----------T---1
I I Associated I I
ISubroutinejPhase 15 I Function I
I I Segment I I
~----------+----------+---1

ADSCAN CORAL Scans the adcon table for an address constant that references
the relative address computed for a variable.

ALTRAN1 PHAZ15

ANDOR1 PHAZ15

ARIF PHAZ15

BLTNFN1 PHAZ15

BSIZE STALL

C1520

CMSIZE CORAL

COMMD1 PHAZ15

COMN STALL

COMVAR CORAL

CONST CORAL

CORAL CORAL

CPLTST1 PHAZ15

DATACH CORAL

DCTSRT STALL

DFUNCT1 PHAZ15

DUMP15 PHAZ15

EQU STALL

Controls the arithmetic translation process.

Checks the mode of the arguments passed to it, decomposes IF
statements, and generates text entries for AND and OR opera
tions.

Optimizes the coding derived from the branching portion of an
arithmetic IF statement.

Determines whether or not a given
in-line function, and generates phase
erenced in-line function.

name represents a valid
15 text for the ref-

Computes the size Cin bytes) of a variable or array based on
its mode and dimensions (if any).

Common data area used by phases 1~ and 20.

Checks the displacement computed by subroutine SPAN to see if
it lies within the range of 0 to 4096 bytes.

Generates the text required for complex multiplication or
division (i.e., a call to a library routine).

Processes the common table entries constructed by ~hase 10 for
the operands appearing in COMMON statements.

Assigns relative addresses to common variables and variables
equivalenced into common.

Assigns relative addresses to all constants in the dictionary.

Controls the relative address assignment function of phase 15.

Checks triplets for complex operands and controls text genera
tion for the same.

Chains the data text created by subroutine NDATA in the order
in which it will be processed by phase 25.

Sorts the dictionary constructed by phase 10.

Determines if a reference is to
external function, and performs
typing for library functions.

an in-line, library, or
mode checking and automatic

Records errors detected during PHAZ15 processing.

Establishes a •head" for each equivalence group and computes
the displacement of each variable in the group from the group
head.

EQVAR CORAL Assigns relative addresses to equivalence variables except
those that are equivalenced into common.

L----------~----------~---
(Continued)

Section 2: Discussion of Major Components 89

Table 9. Phase 15 Subroutine Directory (Continued)
r----------T----------T---1
I IAssociatedl I
ISubroutinelPhase 15 I Function I
I I Segment I I
~----------+----------+---~

ERDATA CORAL I Places entries into the error table for errors detected during
I the processing of conunon blocks and equivalence groups.
I

EXPCN1 PHAZ15 j Generates the text required for exponentiation operations.

EXTRNL CORAL

FINISH1 PHAZ15

FUNRDY1 PHAZ15

GENER PHAZ15

GENRTN1 PHAZ15

GE TEXT PHAZ15

G.l'l......J:\.T PHAZ15

IFUNTB

LABSCN STALL

LOOKER1 PHAZ15

MATE PHAZ15

MODIFY 1 PHAZ15

MODTST1 PHAZ15

ND AT A CORAL

NEGCHK1 PHAZ15

NSTRNG1 PHAZ15

OP1CHK1 PHAZ15

PAREN1 PHAZ15

PH15

Completes the relative address assignment process by
address constants for quantities not previously
addresses.

reserving
assigned

Completes the processing required for a statement when its
primary adjective code is forced from the pusndown tanle.

Creates pushdown entries for references to implicit library
functions.

Outputs phase 15 text consisting of unchanged phase 10 text,
phase 15 standard text, and phase 15 statement number text.

Builds appropriate phase 15 text entries for simple items
forced from the pushdown table.

Provides suuroutine GENER with the main storage needed for a
text entry.

Creates an anbreviated one-word dictionary entry for temporar
ies.

Common data area, which is the FORTRAN supplied subprogram
table.

Scans the statement number entry chain for statement numbers
that are referenced, but not defined.

Looks up names in the IFUNTB (subprogram) table.

Records usage information in the MVS, MVF, and MVX fields if
the complete-optimized path through phase 20 is selected.

Changes modes for logical expressions.

Checks for mixed-mode conditions in the triplet supplied to it.

Converts phase 10 data text to phase 15 data text.

Checks for negative operands in the argument list of a function
or in arithmetic IF statements.

Determines the forcing strength of operators.

Determines if operand 1 is to be an actual operand or a
temporary.

Removes the or -< from the pushdown table when the corre-
sponding > is encountered.

Common data area used by phase 15.

PHAZ15 PHAZ15 Controlling subroutine of PHAZ15 processing.
L----------i----------i---J

<Continued)

90

Table 9. Phase 15 Subroutine Directory (Continued)
r----------T----------T---1
I I Associated I I
ISubroutinelPhase 15 I Function I
I I Segment I l
~----------+----------+---~

PHSTAL Common data area used during relative address assignment. I

POWER21 PHAZ15

PR TEXT CORAL

RDTST1 PHAZ15

REI..OPS1 PHAZ15

SBEROR STALL

SBGLUT1 PHAZ15

SIZE CORAL

SPAN CORAL

STALL STALL

STMAP2 CORAL

STTEST1 PHAZ15

SUBADD1 PHAZ15

SUBMLT1 PHAZ15

SUBSCR1 PHAZ15

SWITCH1 PHAZ15

TESTBN STALL

TESTWD CORAL

TXTLAB PHAZ15

TXTREG PHAZ15

I
Determines whether or not the argument passed to it is an I
integral power of two. I

Prints out phase 15 data text.
I
I
l

Builds text for replacement statements Ce.g., A=B, A=BCI), I
A(I)=B, A{I)=B(I)}. I

I
Calls suoroutine GENER to output text entries for relational l
operators. (Output may be either a relational or branch l
operation.) I

Places entries into the error table for errors detected
the processing of COMMON and EQUIVALENCE declarations.

I
during I

I
I

Optimizes subscript computations by evaluating subscript con- I
stants. I

Computes the total size Cin bytes) of a variable or constant.

Computes the span of an array.

Controlling subroutine of STALL processing.

writes a storage map if the MAP option is specified.

Calls RDTST to process replacement statements.

Generates the text to add the terms in a suoscript computation.

Generates the text to multiply the first term in a subscript
computation by its associated length factor, or, in the case of
variable dimension, to multiply the nth dimension by length.

Determines if a subscript text entry in the pushdown table
should be entered into phase 15 text, and calls subroutine
GENER to output the text entry when appropriate.

Inverts the order of the operands supplied to it.

Tests the mode and displacement of a variable to determine
whether or not a boundary violation exists.

Determines whether or not a given variable is to be processed
by subroutine VARA.

Processes statement number text entries for subroutine GENER;
creates entries in RMA.JOR.

Processes standard phase 15 text entries for subroutine GENER
and makes RMAJOR entries.

I
I
I
I
I

UNARY1 PHAZ15 Checks for negativeness in the triplet supplied to it, and
modifies the triplet Cif negativeness is present) to optimize
subsequent code generation. Also detects multiplication opera
tions and attempts to implement them by generating shift
operations.

__________ i __________ i __ _

(Continued)

Section 2: Liscussion of Major Components 91

Table 9. Phase 15 Subroutine Directory (Continued)
r----------T----------T---1
t I Associated I I
ISubroutinelPhase 15 I Function I
I I Segment I I
~----------+----------+---1
I VARA I CORAL I Assigns relative addresses to all variables in the dictionary I
I I I except for variables in COMMON and/or EQUIVALENCE statements, I
I I I external functions, namelist names, and variables called by I

I I I name and not by value. I

I I I I
I XPARAM1 I PHAZ15 I Inserts the appropriate function operator into phase 15 text I
I I I and builds the parameter list for the referenced subprogram in I
I I I the adcon table and in text. I
~----------i----------i---1
I 1Tfiis subroutine is used during arithmetic translation. I
l---J

92

Chart 10. Phase 20 overall Logic

LPSEL

****Al*********
* * FROM FSD

I
I

SEE TABLE 11 FOR A BRIEF
DESCRIPTION OF THE MAJOR
SUBROUTINES OF PHASE 20.

I
I .····.

* cs *
I * *

I l

v I I NO I

I
•*• 11001 •*• 9010 I

Cl *• *****C2********** *****C3********** C4 *• V
•* *• * * * SS TAT * •* *• ****C5*********

•* NON- *• YES V * OBTAIN FIRST * *-*-*-*-*-*-*-*-* •* LAST *• YES * *
• OPTIMIZED .•~~~->(NEXT) BLOCK •~~~->* SET STATUSES •~-~->*• BLOCK •*---~-->* TO FSO

• PATH • * * * ANO ASSIGN * *• •* *
• • * REGISTERS *• •* ***************

• · ***************** ***************** *· •*
* NO *
I
I
v

•*•
01 *• *****02********** *****03**********

•* *• * TOPO * * BAKT *
•* COMPLETE- *• YES *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*

• OPTIMIZED .•~~~-> DETERMINE *<~~~>*DETERMINE BACK *
• PATH • *BACK DOMINATORS* *TARGET AND LOOP*

· · : •• ~~~.~~~;~~ ••• : :~~~~~~.~~~.~;~;:
i NO I
I I
I I

7000 v v
*****El********** *****E2********** *****E3**********
* * * BIZX * * *
*INITIALIZE FOR * *-*-*-*-*-*-*-*-* * SET LOOP *
* OPTIMIZED * * DETERMINE •~~~->* NUMBER
* REGISTER * BUSY-ON-EXIT * * PARAMETER
* ASSIGNMENT * * DATA * * TO 1 *
***************** ***************** *****************

I • • I
v * F3 •->I

**** * * I * * I * K4 * 2 V * * *****F3**********

I
4500 v

* TARGET *
--*-*-*-*-*-*-*
* SELECT LOOP. *
* GET BACK TAR- *

:**~~!*~~.;~~~**:
I
I

*****Gl********** *****G2********** *****G3********** *****G4********** *****GS**********

:_._.~;~~~!-·-·-= :_._.~:~=~~-·-·-: :~~=;~:_._._!~:~: :~~~:~=-·-·-!:::: :~::~~=-*-•-!::::
DETERMINE *<~~~>*SET EMIN ARRAY.*~~~->* COMMON •-~-~->* FORWARD *----~-->* BACKWARD *

FORWARD * * FORM LMVS * * EXPRESSION * * MOVEMENT * * MOVEMENT
TARGET * AND LMVF * ELIMINATION *

***************** ***************** ***************** ***************** *****************

.·*·*. I
: H3 :--, I

**** v I
*****Hl********** soo*****H2********** 130 H3···.. *****H4********** I
* * * * ·* *• *REDUCE 14A2* I
*. L6~~R~~~~~R :<~~~-: MA~~ E~8~Ks •<~~~N_o.:• t~6~ *:•<~~~-:-·-;~:E~G~~·-•-:<-~--~--------J

PARAMETER * COMPLETED * *• •* * REDUCTION *
· •

***************** *• •*

I i YES

v v
•*• 2000 205 •*• ·*·

Jl *•
•* PRO- *•

•* CESSING *• REG
• TEXT OR •---,

•• •• REGS· •• ·* I
• • v

* TEXT * **** *
I * KS *
v * *

* *
: F3 :

*****J2********** J3 *· J4 *·
* BLS * •* *• •* *•

:****J5*********:
--*-*-*-*-*-*-* YES •* REGISTER *• NO •* COMPLETE- *• YES * SET LOOP

COMPUTE *<-~~~•. ASSIGNMENT •*~~~->*• OPTIMIZED •*--~~-->* NUMBER
SIZE OF * *oCOMPLETEDo* *• PATH •* * PARAMETER

: •••• :;~5~;*****: *· •• ·*·* *· •••• ·* : ••••• !~*!******:
I * * NO l
I * * I * * I I : K4 :->1 : K5 :->1
I I I
v 250 v 230 v

*****K2********** *****K3********** *****K4********** *****KS**********
* LYT * *REGAS 1582* * BASVAR * * TARGET *
·-·-·-•-*-*-*-*-* ·-·-·-·-·-·-·-·-· ·-·-·-·-·-·-·-·-· ·-·-·-·-·-·-·-·-· DETERMINE * FULL *<~~~-*SET EMIN ARRAY *<--------* SELECT LOOP. *

RX-FORMAT REGISTER * * (FORM LMVS * * GET BACK TAR- *

: ••• :~::5:~;****: : •• :::!~::~:! ••• : : ••• :~~.;:=:i ••• : : .• ~~!.~:.;~~~ .. :
I I . .

*~** '-->: H3 :

* * * C5 *
* *

Section 2: Discussion of Major Components 93

Chart 11. Common Expression Elimination CXPELIM)
XPELIM

•****Al**********
FROM LPSEL

I
v 1000 v

1
1

*****Bl********** *****62**********
:_._.~~~!~~-*-*-! : GET FIRST : I
* GET *--->* TEXT ENTRY IN * I

FIRST * * BLOCK * I

:*****~~~;~*****: ****************: I
~---->l ''" •*• 9800 •*·

5100 C2 *• *****C3********** C4 *•
•* *• * OBTAIN * •* ENO *• ****C5*********

•* *• YES •-*-*-*-*-*-*-*-* •* OF *• YES * *
•END OF BLOCK •---->* GET NEXT *---->*• CURRENT •*----->* TO LPSEL •

• • * TEXT ~LOCK * •. LOOP •* •
• • * *· •* ***************

• • ***************** *• •* i NO *

v
5000 2000 •*SEE TABLE 10 1900

*****01********** 02 *• *****03**********
* * •* *• * XPELOC * * GET * NO •* BASIC *• YES *-*-*-*-*-*-*-*-*

'

>*NEXT TEXT ENTRY*<----*• CRITERIA •*---->* SCAN FOR *
* * *• MET •* * LOCAL COMMON *
* * *• •* * TEXT ENTRY *
***************** *• •* *****************

.****... A * I

... 01 I
* * : E2 :--.

**** I v 4800 v ••• 4000
*****E2********** E3 *• *****E4**********
* OBTAIN * •* *• * XPLACE * •-•-•-•-*-*-*-*-* NO •* *• YES *-*-*-*-*-•-•-*-*

GET FIRST *<----*• ENTRY FOUND •*---->* ELIMINATE *--,
{NEXT) BACK * *• •* * EXPRESSION OR *

94

* DOMINATOR * *• •* * TEXT ENTRY *
***************** *• •* ***************** I . I

F2•~•*• 310~****F3********** 1'
•* *• * GET *

YES •* END *• NO * FIRST TEXT *
~-~---~-*.CURRENT LOOP •*---->* ENTRY IN BACK *

• • * DOMINATOR *

·· ·· : ~1:······: II

G3 *•
•* *•

NO •* OPERANDS *•
r--*2+3 USEO ELSE-•* I *·WHERE IN •*

I ·-;~:~;~: I
I I I
I 3200 -~SEE TABLE 10 2100 'YES
I H3 *· *****H4**********

I ·*·*PRIMARY*·*· YES :-*-*~;~!~~-*-*-:

I
v

* * * Dl *
* *

I *• CRITERIA .•---->* SECONDARY * SEE TABLE 10
• MET • * CRITERIA

* * * MET * I * ·:: ********i~;·*****

L >I JI ,<.---· 4600 v
:****J3*********:

* GET NEXT TEXT *
* ENTRY IN BACK *
* DOMINATOR *

I
I
v

•*·
K3 *•

•* *•
NO •* END BACK *• YES

~----*•*•DOMINATOR•* •*1

· • I
· ... · .~

* * * E2 *
* *

Chart 12. Forward Movement (FORMOV)

FORMOV •*•
A2 *•

****Al********* •* DOES *• ****A3*********
* * •* FORWARD *• NO * *

FROM LPSEL *---->*• TARGET •*---->* TO LPSEL
* *• EXIST •* *

*************** *• •* ***************
• • r

v
:****B2*********:

* OBTAIN
* FIRST BACK *
* DOMINATOR *
* * *****************

.----J
v

I •*•
9900 C2 *•

•* THIS *• ****C3*********

I .:* Do:~~~TOR *:*~>: TO LPSEL *
I ·-.~~~6~0:.·· • •••••••••••••••

1000
*****03**********
* GET * II ... :~~;~~ ..

•* BACK *• NO *FIRST (BOTTOM) *
oOOMINATOR IN •---->* TEXT ENTRY IN *

I
I *• INNER •* *BACK DOMINATOR *

•LOOP • * *
• • *****************

* YES
I

I I
1

9800 v
:****E2*********:

L: N~~:::A~~CK *
: DOMINATOR :

l < l J
•*• 50

2000 F3 *• *****F4**********
•* *• * GET NEXT TEXT *

•* BASIC *• NO * ENTRY IN BACK *
SEE TABLE 10 *oCRITERIA MET •*---->* DOMINATOR *<--1 *·.. ..·* f ;<so~!~~i~~3ToP : I

SEE TABLE 10

SEE TABLE 10

SEE TABLE 10

··.·;ES I ********~******** .i •.

J... I I
•* *• I I

•* PRIMARY *• ~ I
•••• CRI~~~IA •• ·* I

• • I
*·.·~ES I

I I
! I

•*• 6000 I
4000 H3 *• *****H4**********

•* OPl *• * ZPLACE *
•* SECONDARY *• YES *-*-*-*-*-*-*-*-*

• CRITERIA •---->* GENERATE RE- *
• MET • *PLACEMENT TEXTo*

• • *MOVE TEXT ENTRY*
• • ***************** ro

v
•*• 8200

3200 J3 *• *****J4**********
•* *• * ZPLACE *

•* OPS *• YES *-*-*-*-*-*-•-*-*

* * * F4 *
* *

•2 AND 3 SEC. •---->* MOVE TEXT *--,

·-~~I~~~I~··* :FoRi~~~vTr~GET : I
• • ***************** v

* NO ****

I
* * * F4 *
* *

8800 v
!****K3*********:

* ATTEMPT TO *
* PROMOTE SPLIT *
: TEMPORARIES :

I

I
v

* * * F4 *
* *

Section 2: Discussion of Major Components 95

Chart 13. Backward Movement (BACMOV)
BACKMOV 1000

*****A2********** ~ *****A3**********
****Al********* * OBTAIN * * *

* * *-*-*-*-*-•-•-•-* * GET FIRST *
* FROM LPSEL *---->* GET *---->* TEXT ENTRY IN *<-----
* * * FIRST * * BLOCK *

*************** : ••••• :;~~~*****: *****************

1
-~- •*• IYES

5100 82 83 *• *****64**********
•* *• •* PRO- *• * OBTAIN * ****BS*********

•* *• YES •* CESSING *• NO •-•-•-•-•-•-•-•-•NO * *
..--------->*oEND OF BLOCK •*---->*• LIBRARY .•---->* IS THERE •---->* TO LPSEl. *

• • *• FUNCTe •* * ANOTHER * *
• • *eARGS •* * BLOCK ***************

• • *· ·* ***************** * NO * YES

• • I I
: C2 :->1 I
**** v v

5000 I •*• •*•
:****Cl*********! 2000 •• c~Ra-*·.. a100 •• c3 *· ••
* GET NEXT * •* CESSING *• YES •* ARGUMENT *• YES
* TEXT ENTRY IN *<--, *•LIBRARY FUNC-.•---->*• PROCESSING •*--,
* BLOCK * I *•!!ON AR~;-· ··~!NISHE~··* I

***************** I *• •* *• •* v
A 4 ****4 * NO *NO**** 4 **** 4

I : c 1 : '1 L>: E2 : : H 1 :

NOTE - FOR OPTIMIZATION CRITERIA
FOR BACKWARD MOVEMENT,
SEE TABLE lOo

I **** 9100 1500 v 2200
!****Dl*********! :••••o~~=:~*****: :••••o~~~:~*****!
* ATTEMPT TO * YES*-*-*-*-*-*-*-*-*NO *-•-•-*-*-*-*-*-*NO * *
* PROMOTE SPLIT *<----* VALID •---->* VALID BACK- •-~>• Cl *
* TEMPORARIES * * BRANCH * * WARD MOVE * * *

:**************** : ••••• !!;: : : ••• ~:~~!~!!i ••• :
**** * *

: E2 :f
**** v

•*· •*•
2400 El *• 3000 E2 *•

•* *• •* *·

IYES

I .****. L->: El :

:****E3*********:

•* *• NO •* LIBRARY *• YES * SAVE *
r->*• STORE ITEM •*---->*• FUNCTION .•---->*POINTER TO TEXT*--, I *• •* A *· •• * ENTRY * I

I *· •••• •• I *· •••• •• :**************** t (::·: i 'ES I i ~ (::·:
*****Fl*l******** I *****F2*~******** 310~****F3********** 9000 F4·*· ••
* SUBTRY * * PERTRY * * YCHANG * •* PRO- *•
:-·-·T=v·T~-*-*-: I :-·-~P~~=~~5·-·-:_No_~~>:-•-•P:1=~=v·-•-:_No ___ >.:~IB~~~~I~~Nc~:.~~>: c2 :
* ELIMINATE * I * 2 AND 3 * * CRITERIA * •.TION ARGSo* * *
* SIMPLE STORE I * COMBINED * * MET *• •*

········i··*····· I ·*·····*r·:::*··· ···*····i~~~·**** *. r ·:o
V
I I •****• vi •*~**•

* El • ... I . * ••• ** 01 .* Gl *• 4000 G3 *•
•* *• •* *·

•* STORE *• NO •. ,.. -LIBRARY *• YES
• ELIMINATED •---' *• f'UNCTION •*--, *·.. ..·* *·!~GUMEN~··* I

• • *· ·* v * YES * NO ****

L •***** t •*****:Cl :

>: Cl : L->: HI : * *

4200 ·*·
*****H 1 ********** *****H2********** H3 * • *****H4**** ******
* XCHANG * * YPLACE * •* *• * YPLACE *
--*-*-*-*-*-*-*NO *-*-*-*-*-*-*-*-* •* LIBRARY *• YES *-*-*-*-*-*-*-*-*

r->: ~~i~~g~~y :---->:TR~o~gu~~~~g~M :--~->• ••• FUNCTION •• -·~-~->:MOVE A~guMENTS :--1
I

* MET *IN BACK TARGET * *• •* * BACK TARGET * I
************i~~;***** ***************** *·.·~a ***************** *~**

: HI : 1' 'L * **** * : C2 :
* * >: El : * *

3800 v •*•

96

*****Jl********** *****J2********** J3 *•
* YPLACE * * LORAN * •* *•
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* •* LIBRARY *• YES * *
* MOVE TEXT *---->* UPDATE VECTOR •---->*• FUNCTION •*-->* C2 *
* ENTRY TO * * FIELDS FOR * *• •* * *
* BACK TARGET * TEXT BLOCKS * *• •*
***************** ***************** *• •* * NO

I
v

* *
: Cl :

Chart 14. Strength Reduction (REDUCE)

REDUCE

* * ·* A4 *
* * ****

I
•*• 9000 I

A2 *• V
****Al********* •* DOES *• ****A4*********

* * •* BACK *• NO * *
FROM LPSEL •---->*• TARGET .•----------------->* TO LP5EL *

* *• EXIST •* *
*************** *• •* ***************

*·i·~ES I A

J j 62 *•
•* ANY *•

•* INERT *• NO
.TEXT ENTRIES •

• •
• · ****

• • * * * YES * C3 *
I * *

* * I ****
: C2 :->1 I

**** v v
SEE TABLE 10 •*• 3000 •*•

:****i~=~~~*****: 1000 •• c2ANY*·.. •*c3ANY*·.. I
:-•-~E;~·F~~·-•-:<~*=~NTRI~~TWITH*:*_No __ ~>*:~NTRI~~TWITH*: .. ~
* PRIMARY * *• * OPER- •* A *• + OPER- •*
* CRITERIA * *•ATORSe* I *.ATORS.*
***************** *• •* I *• •*

I * I * YES

I I I
I I

-~- l I SEE TABLE 10 I NO
v •*•

01 *· *****D3********** 04 *•
·* *• I * TYPLOC * •* *•

•* *• NO I ·-·-·-·-·-·-·-·-· • * *. *• CRITERIA •* >I * TEST FOR *---->*.CRITERIA MET •*
• MET • I

•• ·* I i YES I
* PRIMARY * *• •*
* CRITERIA * *• •*
***************** *• •*

* YES

I
v .t 7100 I •*• 8800

•* ••• * MBRAN *
E4 *• *****E5**********

•* *• * *
El * *****E2********** I

•* BOTH *• YES *-*-*-*-*-*-*-*-*NO •* SECONDARY *• NO * DO NOT *
• CONSTANTS •---->* INERT ANO *------' SEE TABLE 10 *• CRITERIA •*------>* CONSIDER TEXT •

•ABSOLUTE • * BRANCH *
• • * VARIABLE SAME *

• • *****************
* NO IYES

I I
7200 v v

• MET • * ENTRY *
· · *• •* * YES

I

l ****
* * ->* C3 •
* *

v 8500
*****Fl********** *****F2********** *****F3********** *****F4********** *****F5**********
* MBRAN * * * * MBRAN * * MBRAN * * MB RAN *
--*-*-*-*-*-*-*NO * COMPUTE * BUSY•-•-•-•-•-•-•-*-* YES*-*-*-•-•-•-•-*-*NO *-*-*-*-*-*-*-*-*YES
* I NERT ANO *---, * NEW I NC REM ENT *
:BRANC~A~~RIABLE: I * FOR BRANCH :

***************** v *****************

IYES :·::·: I !
*MODIFY LOGICAL *<----* INERT AND *------>* OTHER USES *---,
EXPRESSION. lN- *BRANCH VARIABLE* * OF OPERAND 1 •
DICATE BUSYNESS * SAME * * IN LOOP *
*********1:~;***** ***************** *********1:~******

BUSY
I I

I I I
v 2200 v

*****Gt********** *****G2**********
* GENERATE TEXT * * *

I :****G3*~*******: :****G5*~***•***:
* TO COMPUTE * * *
* ADDITIVE AND * * ESTABLISH NEW *
* BRANCH * * CONSTANT *
* CONSTANTS * *
***************** *****************

I I
v 7500 v

*****Hl********** *****H2**********
* * * * * CHAIN * * GENERATE *

I
I

* DELETE *
*ORIGINAL INERT *
* TEXT ENTRY *
* * *****************

I

~--->I
I

8400 v
*****H3**********
* * * MOVE ADDITIVE *

* TEXT TO BACK *---->* INERT TEXT * * TEXT TO BACK *---,
* TARGET * * ENTRY * TARGET * I

* ***************** * *****************
* * I ***************** v

I
I
I
v

*****J2********** *****J3**********
* MBRAN * * *
--*-*-*-*-*-*-*NOT * DELETE *
*MODIFY LOGICAL *---->*ORIGINAL INERT *
*EXPRESSION. TN-*BUSY * TEXT ENTRY *

:~!~!!; .. ~~~!~;~~: :****************
!BUSY I
I
I I
1

1

7700 v
*****K3**********

* * * A4 *
* *

L * MOVE *
*MULTIPLICATIVE * * *

----~->* TEXT ENTRY TO *-~>* C2 *
* BACK TARGET * * *

Section 2:

* DELETE *
*ORIGINAL INERT *
* TEXT ENTRY *

I I <---------1

I
8700 v

*****HS**********
* * * MOVE ADDITIVE *

r--* TEXT TO BACK *
I * TARGET
I * v *****************

* * * C3 *
* *

Discussion of Major Components 97

Chart 15. Full Register Assignment (REGAS)

REGAS

****A2*********
* FROM *
* LPSEL *
* * ***************

I
I
v

*****B2**********
* * * BUILD *
* EMIN ARRAY *
* FOR LOOP *
* * *****************

I

I
I
v

*****C2**********
* *
*
*
*
*

DETERMINE
RESERVED
REGISTERS

*
*
*
* *****************

I

I
v

*****D2**********
* * * SET POINTERS *
* TO START OF *
* FIRST BLOCK *
* * *****************

I
v

70 •*•
E2 *•

•* WAS *•
•* BLOCK IN *• YES

r->*• INNER •*---,

I *• LOOP •*
* ·*

I • *. •*

I
I
I
I

I

* NO

I
v

*****F2**********
FWDPAS 16A2
·-·-·-·-·-•-*-*-*
*BUILD REGISTER *
* ASSIGNMENT *
* TABLES *

I

1<---_J
I
v

I
I
I

I
75 •*• I

G2 *• I ·* *•
•* END *• YES

• OF •----'
• LOOP •

· ·
· • * NO

I
I
I
v

*****H2**********
* * 1___: S~ci ~~!~iE~~ :
* NEXT BLOCK *
* *****************

98

v
80 •*•

B3 *·
•* *·

•* CALL *• NO
• OR FUNCTION •---i

• IN LOOP • I
• • I

··.·~ES I
I I

! 1' *****C3**********
* MAKE COMMON *
* VARIABLES IN- *
* ELIGIBLE FOR I

! As~ig~~~NT : I
********i******** I

I<-----'
I

85 v
*****03**********
GLOBAS 18A2
--*-·-·-·-·-·-·
* PERFORM
* GLOBAL *
* ASSIGNMENT *

I
I
v

*****E3**********
* * * SET POINTER *

TO START OF
FIRST BLOCK *

* *****************

I
I
I
v

*****F3**********
STXTR 1982
·-·-·-·-·-•-*-*-*
* PERFORM *<~-~-----------,
* TEXT UP- * I
* DATING * I
***************** I

I I

I I
I I
I I
I I
I *****G4**********
I * * I * SET POINTER *
l : ~~x~T~~6c~F :

l :***************:

I I
I I

.~. I
H3 *• I

•* *· I
.:* ~~D *:*~-0~~~-~--~--j

• LOOP •
• ·

• • * YES
I
I
I

I
I
v

****J3*********
* TO *

LPSEL *
* ***************

Chart 16. Table Building CFWDPAS)

FWDPAS •*•
!****A2*********: *****A3********** A4 *•

•****Al*********. * * :_._.~~=~~~-·-·-= .. P:ocESSIN~· •• YES .****AS*********.
: FROM REGAS :~--->: INITIALIZE *---->:FO~N~~i~~~;ING :---->*•*•COMPLETE•*•*~-~~>: TO REGAS

*************** * * TEXT BLOCK * *• •* ***************
***************** ***************** *• •* A

. i" I
700 ·*· u 1690 I

•*BLOCK BACK *• YES * * * INITIALIZE * * *
TARGo OF INNER.---->* UPDATE RUSE *---->* TRUSE TABLE *---->* INITIALIZE W.J *

•*Bl IS *• *• :****B2*********: :****83*********: :****84*********: ,I':

17

···-~~:::.:··· : :::~: : f : ;·······: : :::!~: :
I •****• * *
~ 83 : : *::* :->1

v
:****C4*********!

GET FIRST
* (NEXT} TEXT *
*ENTRY IN BLOCK *
* * *****************

____ _J
v

•*•
01 *· *****02********** *****03**********

•* *• *BKPAS l 7A2* * *
.:*TABLES FULL*:.~>:-·-·;:~;o:;·-·-: __ . __ >:J EQuAEE~o ZERO:-----, l

·· ·*·* : Ass'ig~~~NT : : (o) : I I
... ... ***************** ***************** v I

*I NO * * :**::*:* l
* E3 *--,
* * I v

170 v •*• •*• 601 I
*****El********** 605 E2 *• 48 E3 *• *****E4********** l
* * •* *• •* *• *BKPAS 17A2* j
* INCREMENT .Jo * •* OPERATOR *• NO •* END OF *• YES *-*-*-*-*-*-*-*-* .
* SET TXP(.J}. •---->*• OF •*---->*• BLOCK ·*---->* PERFORM *-------------
: BV~~~?_,ro : *·!~TERES~*·* *·*· ·*·* : Assig~~~NT :
***************** *• •* *• •* *****************

* YES * NO

I L .**** *

L >: .. ::*:
*****F3**********
* *
* * >*PROCESS SPECIAL*
: CASES :

21

I
I
v

•*•
G3 *•

•* WHICH 'fe
* * 1 •* IS FIRST *• 3 * *
* Kl *<--*• OPERAND OF •*-->* KS *
* * *•INTEREST •* * *

· •
• • i '

2101 v
*****H3**********
* *
* * *INITIALIZE FOR *
* OPERAND 2 *

I
I

~-------------J ____ _
I

22 v
*****J3**********
* FWDPSl *'

·-·-·-·-·-·-·-·-· *UPDATE ACTIVITY*
* TABLES FOR *

**** * OPERAND *
* * *****************

I * K2 * I
I **j*** I

4700 I -~- .~. ·*·
*****Kl********** K2 *• 46 K3 *• 4601 K4 *•
* * •* *• •* WHICH *• •* *•

l
I
I

4600 I
!****K5*********:

* * YES •* OPRND 1 *• 3 •*OPRND .JUST *• 2 •* OPRND 3 *• YES * *
*INITIALIZE FOR *<~---*• OF INTEREST •*<----*• PROCESSED •*---->*• OF INTEREST •*----->*INITIALIZE FDR *
* OPERAND 1 * *• •* *• •* *• •* A * OPERAND 3 *
****************: •• •••• •• •• •••• •• •• •••• •• I ****************:

A * NO * I * NO ****

L **** I I I * *
* * I I * KS *
: Kl : *~** *~** *~** * *

* * * * * *
: E3 : : E3 : : K2 :

Section 2: Discussion of Major Components 99

Chart 17. Local Assignment CBKPAS)
BKPAS •*•

****Al********* !****A2*********! •*A3 *•*•
* * * GET * •* EXTERNAL *• YES

FROM FWDPAS *---->* BLOCK TO BE *---->*.CALL IN BLOCK·*-------
* * PROCESSED * *• •*

*************** * *· •*
***************** *· •*

* NO

I
:****Bl*********!

GET FIRST
* (NEXT) TEXT *<------------------------------
:ENTRY IN BLOCK :

**** ***************** * * I : ;, :
v •*• 20 •*• ·*· *****Cl********** C2 *• C3 *• C4 *•

* SETUP * •* *• •* *• •* *•
--*-*-*-*-*-*-* •* OPERAND 1 *• ND •* OPERAND 2 *• NO •* OPERAND 3 *• NO
* INITIALIZE •~~~->*• OF INTEREST •*~~~->*• OF INTEREST •*~~~->*• OF INTEREST •*----~

FOR TEXT * *• ·* *• •* *· ·* I * ENTRY * *• •* *• •* *• •*
***************** *• •* *• •* *• •*

* YES * YES * YES I

I I I I
.--~~~~~~~~~~-v~~~~~~~~~~~-v~~~~~~~~~____J l

*****AS**********
* PREVENT *
* LOCAL *

>*ASSIGNMENT F:JR *
* EXTERNAL *

: ••• ~!~!~~;~~ ••• :

10

I
>I<----------,

v
•*•

as *•
·* *•

NO •* ALL *•
•TEXT ENTRIES •

.PROCESSED.
• •

*• • * * YES

I
v

4C5******
* * TO FWDPAS

v
22 •*• •*•

DI *• 02 *• *****03**********
•* IS *• •* IS *• * RECORD *

1
120

:****DS*********:
L * ACCOUNT •* OPERAND *• NO •* OPERAND A *• NO * DEFINITION *

• ZERO .•~~~->• TEMPORARY •*~~~->* POINT OF * ->* FOR SPECIAL
• • *• •* * TEMPORARY * * CASES

• • *• •* * * * *• ·* *• •* ***************** ****4************
* YES * YES f

L * **** * I * **** * I

>: C3 : L>: C3 : II .-----------.
**** v I v

I

I
I

99930 •*• •*• I •*•
*****El********** E2 *• E3 *• I E4 *•

v
*****ES**********
* UPDATE TEXT *
* ENTRY WITH *

* SET OPl OF * •* *• •* *• I •* *•
: s~~~c~UR~~~~ :<~*:* s~~~~Rf PT *:*<~~~N-0.:*P~g~~~~bN~ *: • .::..:J ~ .. :~s~~E~~NgL6c~:* * REGISTER AND *---

: OPE~:~g TO : •••• •••• •••• •••• I •••• •••• * STATUS
* INFORMATION •
***************** ***************** *• •* *· •* I *• •*

100

I * NO * I * YES

.. L I .-_l I
: C3 : 34 -~- 37 l I
* * F2 *• *****F3********** I

v

•* *• * PREVENT * f

:;Io~E~b~~T I~:-N°~~~>:ASSIG~~~~~ FOR ! I
• BLOCK • * TEMPORARY * f

· • * I
*·.·~ES ***************** I

I ****

I L>: C3 : I
I
v

*****G2**********
FLAG DEFINITION
POINT FOR TEMP.
* USED *--------------

IN BLOCK *

v
40 ·*· G4 *. *****GS**********

•* *• * PROP! *
•*PROCESSING *• YES *-*-*-*-*-*-*-*-*

>*• OPERAND 1 •*----->* ASSIGN
• • * REGISTER TO

* • • * OPERAND *
• • *****************

* NO I ****

L>: C3 :

•*• 130 300 •*•
•*Ht *•*• :****H2*********: •*H30Pl*•*• :•;~;H;~·:;;~~~*: :****ttS*********:

•* PREVIOUS *• YES * RECORD •* ASSIGNED *• YES * TO CURRENT * * RECORD
•ASSIGNMENT IN.~~~->* REGISTER .-->*• FIXED-POINT •*~~-->*OPRND THE SAME *---~>* ASSIGNMENT

• EFFECT • * ASSIGNMENT * f *•REGISTER •* * REG. AS * * INFORMATION
• • * * I *• •* OPERAND 1 *

• • ***************** *• •* ***************** *****************
* NO I * NO I
I ,.****• I

I L>** C3 *. I I l
v * **** *

•*• 1320 V 351 * C3 *
Jl •• I J3•······*** *·****J4**········* • •

•* *• * SEARCH *
•* FLOATING *• NO * FOR AVAILABLE * * RECORD * * *

• POINT ·---------------' * REG. FREE ONE •---->* ASSIGNMENT *-->* C3 *
*•,.

0

MADE •*•* : IF NECESSARY * * INFORMATION * * *

• • * YES

I
v

140 •*• 130
*****Kl********** K2 *• *****K3********** *****K4**********
* SEARCH * •* WAS *• * TRY TO * * *
* FOR AVAILABLE * NO •* OPERAND 1 *• YES * ASSIGN TO * * RECORD * * *
: ~~GNE~~~~A~~E :<~-~-* •• ~ss~~~:D A·*·•~~-->: ~~~R~~~Eo~~~~ :---i\-->: ~~~6~~~~~~N :---->: C3:
* * .. • • * .. AS OPERAND 1 * I
***************** *· ... ·* ***************** *****************

100

Chart 18 .. Global Assignment (GLOBAS)

GLOB AS 8000
****Al********* :****A2*********! :****A3*********! :~~:~~;:·~~=:::•:

500
:****AS*********:

* * * COMPUTE * * OF OPERANDS CALCULATE
: FROM REGAS :~~~->: INITIALIZE •~~~->* REGISTER •~~~->* THAT ARE *----~->* BASE REGISTER *

: : AVAILABILITY * *CANDIDATES FOR * : ACTIVITY

***************** ****************: : •• !~~!:~~~~! ••• : *****************

1
I
v 900 ·*· 25

*****Bl********** B2 *• *****63*******4**
*PREVENT GLOBAL * •* IS *• * DOWNGRADE ALL *
* ASSIGNMENT TO * •* THIS AN *• YES *VARIABLES THAT *
* BUSY-ON-EXIT, •~~~->*• OUTERMOST •*~~~->* ARE STORED IN *
* STORED * *• LOOP •* *THIS OURERMOST *

VARIABLES * *• •* * LOOP *
***************** *• •* ***************** i NO I

.--~~~~~~~~->1 I

I
v v

10 •*• 27 •*•
C2 *• C3 *• 48

II

•*F~OA~~~G :T*o NO o* 0 ;IX~~

1
YPT~ 0 *o NO *****C4 **********

REGS AND ELIGI-~~~->*• REGS AND •*~~~->* TO REGAS
oBLE VARS • A *•ELIGIBLE •* *

• • *•VARS •* ***************
• • *• •* /\

* YES * YES I

I 1•.'••••D>•!••••••••. •••••03•!•••••••• I

I * HI LOWS * I
* SEARCH FOR * *-*-*-*-*-*-*-*-*
*CANDIDATE WITH * * GET CANDIDATE * I

I * HIGHEST * * FOR BXH OR * I

I
* ACTIVITY * * BXLE INSTo * II

I

********ii******** :****:**i********

: E3 :->1 I
-~- 11 **** t 1'

:****~t~:;~*****! •*E2 *•*• :****E3*********:

:-·~;c;:;:~-;E;;:•-: .:* o~Ag~~~~NT *:*~>I !cA~~~~~~EF~~TH : I
TO REFLECT *• FOUND •* I * HIGHEST *
ASSIGNMENT * *• * * ACTIVITY *

········1········ .. ··i·~~' I ········1········ I

1

1

~··:iiii~~i~;···~ I

11

1

1

I

* * YES •* *• NO •* *• NO *IF BXH OR BXLE•*
:••**G..1*******! •*G)..... J 34 0 *G3°~ 0*•*• 4

:****G4*********!

ASSIGN REGISTER<-~~~•. REGISTER * *• FOUND .•~~~->* DO FINAL *<-~~---~~-~-,

: •••••••• *******: •• •• ::u:~···· *··· •••• •••• : •• :::~:::::: ••• : I
* * YES I

v I NO ·*· •*• 35 •*•
Hl *• H2 *• *****H3********** H4 *• HS *•

•* REG. *• •* IS *• * TRY TO * •* *• •* *•
•* ASSIGNED *• NO •* ITEM *• YES * ASSIGN THE 3 * •* *• YES •* MORE *•

• TO ITEM IN .•~~~->•INCREMENT FOR.•~~-->*REGS NECESSARY *~~-->*• ASSIGNMENT .•~---~->*• CANDIDATES •*
• INNER • *·BXLE.BXH •* *FOR BXLE OR BXH* •.success- •* A *• •*

- -··;~::~:: ····r~~* : ••• ************: *·*~?:~· I ····r~::

~-----------v_____ --->1 I .:**
I * *

43 v I * E3 * *****J4********** * *
* * *ASSIGN VARIABLE*
*OR CONSTANT TO *
: REGISTER * I

·······r .. ···· I

*****K4*:******** -I

:~*-*~;~~~!-*-*-: j
* UPDATE TEXT •-~
* TO REFLECT *
* ASSIGNMENT *

Section 2: Discussion of Major Components 101

Chart 19. Text Updating (STXTR)

STXTR

****A2*********
* * FROM REGAS

I
v

:****82*********:
* INITIALIZE *
*GET FIRST TEXT *
* ENTRY :

***************** _______ J

I

I

I
27 I

!****El*********:
* GET *
:NEXT TEXT ENTRY:

10
v

·*· C2 *•
•* *• ****C3*********

•* *• YES * *
•END OF BLOCK •~~~->* TO REGAS

• • *
• • *************** *• •* * NO

I
30 v

*****02**********
* GET ANY *
* COMPLETED *
ASSIGNMENTS FOR
* TEXT ENTRY *
* * *****************

I
35 v

*****E2**********
* * *INITIALIZE FOR *
* PROCESSING *
* ACCORDING TO

* * OPERA TOR *
***************** *****************

II I

I *19 * I
: F2**->I<~~~~~~~~~~~~~~~~~~~~~~

538 I **** .t l
*****F 1 ********** 130 F2 *• *****F3********** *****FS**********
* * •* IS *• * * * SET REG * * STORE * •* OPRND 2 *• YES * * *-*-*-*-*-*-*-*-*
: RESU~~~TINTO : *•*!oc~~s~~o-.*·*-~~->:INI6~~~!~6 ~OR :-----i :TOU~~~~EG~5~!L :

* * * * * I ****A**S*S*I G*N*,*"IE*N**T***** ***************** • • *****************

/Ill i NO I l
v I I YES

I * I •*• •*•
!****Gl*********: •*G2:S·*·.... !****G3*********! 220 •*G4 15 *•*• •*GSOP.*•*•

SAVE INFO. * •* OPRND 3 *• YES * * V •* OPERAND A *• NO •* GLOBALLY *•
* RELATING TO * *• TO BE PRO- .•~~~->*INITIALIZE FOR *~~~->*• TEMPORARY •*~~--->*• ASSIGNED •*
:NEXT TEXT ENTRY: *• CESSED •* * OPERAND 3 * /\ *• •* *•*• •*•*

***************** *·. •·• ***************** ,, ••• .·* *• •*
A •*•NO •*•YES * NO

I I ! l
I I I ***** ***** v *20 * *20 *

·*· * 83* * 63*
*****Hl********** H2 *• *****H3********** I * * * *
* PERFORM FINAL * •* IS *• * *_J
*PROCESSING FOR * NO •* OPRND 1 *• YES * *
* SPECIAL *<-----*• TO BE PRO- .•---->*INITIALIZE FOR *
* CASES * *• CESSEO •* * OPERAND l *
* *• •*
***************** •• ... ·*

102

Chart 20. Text Updating CSTXTR) (Continued)

300

***** *20 *
* B3*
* * *
I
v

•*•
B3 *•

•* WHICH *•
2 •*DPRNO BEING*• 3 r---------------------. PROCESSED •*-----------------------------,

I
v

•*•
Cl *•

•* WAS *•

• • I
• • I

*·i·; I
I· I
v v

310 •*• 330 •*•
C3 *• CS *•

•* WAS *• •* WAS *•
•* OPRNO 2 *• YES

• ASSIGNED BY •-,
•* OPRND 1 *• NO YES •* OPRND 3 *•

• ASSIGNED BY • r--*· ASSIGNED BY •*
··BKPAS·*·* I *• BKPAS •* I *• Bk PAS •*

• • I *• •*
· • v *• •* v *• •*

* NO ***** * YES ***** * NO

I :1~2: I I *
v v

•*• •*•
01 *• ****•02********** 03 *.

•* IS *• * USE * •* MUST *•
•* OPRND = *• YES * SAME REG. AS * •*OPRND 1 BE *• NO

• OPRND 1 OF •---->*OPl OF PREVIOUS* *• STORED •*----.
·~~~~i~~=·· : TEXT ENTRY * *·*· ·*·* I

· • ***************** *• •* v
*I NO II i YES :;~::

I • ... • v I v ·*· 10330 v 10350 ·*·
•*E2 *•*• :****E3*********: •*E~UST*•*•

YES •* *• * SET STATUS * YES •* OPRND 1 *•
<-------*• REG. 0 •* TO GENERATE *<----*• BE STORED •*

• • STORE * *• •*
• • * *• •*

• • ***************** *• •*

: Fl :->vi **I*:o vi *II NO

*19 *
•*• * F2* •*• 10370 V

32S Fl *• * * F3 *• *****F4**********
•* IS *• * •* IS *• * *

•* BASE *• YES •* OPERAND *• NO * SET STATUS *
•~EGISTER 0~*•*-i *•*~ TEMPORAR~*·*----.

1
: TO ~~6~~NT :

• • I *· •* * *• •* v *• •* *****************
* NO ***** * YES I

I :1~2: '1 I I
* * I **~**

v I I *19 *
•*• v I * F2*

10325 Gt *• *****G2********** *****G3********** * *
•* IS *• * RELCOR * * ALLCOR * *

... :*A T~=~~gARv *:._YE_s ___ >:-~~~E*s;o~;:~e·-: :-·-:L~o~;:;E·-·-: I
·· •• ·* ! F~~ ~6~~~~t~Y ! ! s~~~~~~A~~R : I

·-.·~a *********!******** ********j******** I
I<:-----'

~-----------v----------->1
I

360 v
*****H3**********
* GTBASE *
--*-*-*-*-*-*-*
* FIND BASE *

REG. FOR *
* OPERAND *

I
v

*****J3**********
* RECORD *
* BASE INFO.

FOR *
APPROPRIATE *

* OPERAND *

I
v

*19 *
**F;*

*19 * I
.F; I

I
v

•*•
05 *·

•* IS *•
NO •* OPRND = *•

r--*· OPRND 1 OF •*
I *.PREVIOUS •*
I *·ENTRY.*
v *• •*

**** * YES
* * * Fl *
* * I

v
*****ES**********
* USE *
* SAME REG. AS *
OPl OF PREVIOUS
* TEXT ENTRY *

90330

I
v

·*·
FS *•

•* *•
NO •* *•

r--*• REG. 0 •*
· •

I *• •*
v *• •*

**** * YES
* * I * Fl * I
* * v

*19 *
* F2*
* *
*

Section 2: Discussion of Major Components 103

Table 10. Criteria for Text Optimization
r------------------T----------------------T----------------------T----------------------1
I Process I Basic I Primary I Secondary I
~------------------+----------------------+----------------------+----------------------1
I Common !Subscript, arithmetic !Matching operand 2, !Matching operand 2, I
I Expression lor logical operator; !operand 3, ana !operand 3, and I
I Elimination lbinary operator !operator I operator with I
I (XPELIM) I I Inc intervening I
I I I I redefinitions I
~------------------+----------------------+----------------------+----------------------~
I Forward !Arithmetic or logical !Operand 1 unused !Operand 1, operand 2, I
I Movement !operator lin the loop !operand 3 undefined I
I (FORMOV) I I !below the text item I
~------------------+----------------------+----------------------+----------------------1
I Backward !Arithmetic or logical !Operand 2 and !Operand 1 not busy I
I Movement !operator !operand 3 undefined Ion exit from target; I
I (BACMOV) I lin the loop !operand 1 undefined I
I I I !elsewhere in the loop I
~------------------+----------------------+----------------------+----------------------1
I Strength !Additive operator; !Interaction of inert !Function of absolute I
I Reduction !inert variable 1variable with additivelconstants or stored I
I <REDUCE) I jor multiplicative jconstants I
I I joperator I I
L------------------i-----~----------------~----------------------i----------------------J

104

Table 11. Phase 20 Subroutine Directory
r----------T--1
I Subroutine I Function I
~----------+--~

ACCEPT Performs final acceptance test on variables which are candidates for local

ALLCOR

BACMOV

BAKT

BAS VAR

BIZX

BKDMP

BKP

BK PAS

BLK

BLS

BLSDTA

BS TRIP

BSYONX

CNT

CXIMAG

DISCHR

FCLT50

FOLLOW

FORMOV

FREE

FWDPAS

FWDPSl

FWP

GLOBAS

register assignment.

Allocates main storage to temporaries when necessary during text updating.

Controls backward movement.

Computes the loop number of each module block.

Assigns eminence values to base variables, and sets up composite MVF and
MVS matrixes.

Computes the proper MVX setting for each variable in each block of the
module.

Printing routine for full register assignment.

Common block for local register assignment.

Controls local register assignment.

Common block for structural determination routines.

computes the total size of each block in the module.

Block data for branching optimization.

Block data for branching optimization.

Identifies forward target (if any) of a loop and sets up composite MVX
matrix.

Block data area for phase 20.

Processes imaginary parts of complex functions during local register
assignment.

Performs a displacement check on a subscript text items during local
register assignment.

Performs special checks on text items whose function codes are less than
50.

Determines if interfering block causes redefinition of a variable.

Controls forward movement.

Releases busy registers during overflow conditions (local assignment).

Table-building routine for full register assignment.

Determines if text operands are register candidates prior to local
register assignment.

Common block for local register assignment.

Assigns most active variables to registers across the loop.

GLOBSl Provides (if necessary) loads and stores for variables globally assigned
outside the loop.

L----------i--
(Continued)

Section 2: Discussion of Major Components 105

Table 11. Phase 20 Subroutine Directory (Continued)
r----------T--~---------------------------1

I Subroutine I Function I
~----------+--1

GLS Common block for global assignment.

GT BASE

HI LOWS

INDTRY

INERT

INVERT

LOC

LPSEL

LYT

MB RAN

MRCLEN

NORMIZ

NPRFUN

OPT

PERTRY

PRELUD

PROPl

REDUCE

REG

REGAS

RELCOR

SEARCH

SEG4

SETREG

SETUP

SHARE

SPLRA

Gets a base register for operands of text items during text updating.

Determines if an even-odd register pair is available for indexing.

Determines if an inert variable is valid for the entire loop.

Produces new inert text entries for strength reduction.

Gets text pointers in a backward direction.

Block data for register assignment.

Controls sequencing of loops and passes control to text optimization and
register assignment routines.

Determines which module blocks can be reached via RX branch instructions.

Controls alternation of the compare and test entry for strength reduction.

Performs special checks on text items whose function codes are greater
than 55.

Builds type tables for use by strength reduction.

Controls phase 20 printing.

Common block for phase 20.

Performs compile-time mode conversions.

Determines if block under consideration has a branch which transfers out
of the loop.

Processes operand 1 of text item being processed by local register
assignment.

Controls strength reduction.

Common block for register assignment.

Controls full register assignment.

Releases temporary main storage so it can be reused.

Provides register loads upon entering the module.

Computes size of prologues, epilogues, and entry code.

Updates text items to reflect global register assignments.

Performs initialization for each text item during local assignment.

Determines if the register assigned to operand 2 or 3 can be assigned to
operand 1 during local register assignment.

Assigns registers during basic register assignment.

SRPRIZ Prints a flowchart indicating the structure of the module.
----------L---~----------------------------------

(Continued)

106

Table 11. Phase 20 Subroutine Directory (Continued)
r----------T--1
I Subroutine I Function I
~----------+--i

SSTAT Sets status information for operands and base addresses of text entries.

STDMP

STX

STXTR

SUB TRY

TARGET

TOPO

TRNSFM

TYPLOC

XCHANG

XPELIM

XPELOC

XPLACE

XS CAN

YCHANG

YPLACE

ZCHANG

Printing routine for basic register assignment.

Common block for text updating.

Controls text updating.

Checks conditions for elimination during backward movement.

Identifies the members of a loop and its back target.

Computes the immediate back dominator of each block in the module.

Performs special checks on text items whose function codes are in the
range of 50 to 55 inclusive.

Locates interactions of text entries for strength reduction.

Determines stored constants for common expression elimination.

Controls common expression elimination.

Locates common text entries in a local block during common expression
elimination.

Performs manipulations for common expression elimination.

Performs local block scan for common expression elimination.

Determines stored constants for backward movement.

Performs manipulations for backward movement.

Determines stored constants for forward movement.

ZPLACE Performs manipulations for forward movement.
L----------i--

Section 2: Discussion of Major Components 107

Table 12. Phase 20 Utility Subroutines
r----------T--1
I Subroutine I Function I
~----------+--~

CIRCLE Examines composite vectors, or each local vector if necessary.

CLAS IF Classifies operands of the current text entry.

DELTEX Deletes the current text entry by rechaining.

FILTEX Fills text space according to the arguments.

GE TD IC Gets space for temporaries.

GETDIK Gets space for constants.

GETS PC Gets space for new text item.

KORAN Performs bit manipulation for text optimization.

LORAN Updates composite MVS and MVF matrixes.

MOD FIX Adjusts text entry for possible mode change.

MOV Common block for text optimization.

MO VT EX Moves text entries by rechaining, and updates MVS and MVF vectors.

MOZ common block for text optimization.

OBTAIN Obtains next local block for processing.

PARFIX Changes parameter list to correspond to text replacements.

PERFOR Performs combination of constants at compile time.

SUBACT Performs replacement of operands with equivalent values.

su:asuM Replaces, if possible,, operand values with equivalent values.

WRJ:TEX Printing routine for text optimization.

YSCAN Performs local block scan for backward movement.

ZSCAN Performs local block scan for forward movement. __________ i __ J

108

Chart 21. Phase 25 (Initial Text Information Construction)

INITIL

****Al*********
* FROM *
: FSD

I
SEE TABLE 13 FOR A BRIEF
DESCRIPTION OF THE SUB
ROUTINES OF PHASE 25.

............. i
v

•*· 1530
Bl *• *****82********** *****83**********

•* *• * NA DO UT * * DAT OUT *
•*BLOCK DATA *• YES *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*

• SUBPROGRAM •~~~->* PROCESS *~>* PROCESS *
• • * ADCON * * DATA

• • * TABLE * * STATEMENTS *
• • ***************** *****************

1- I
v v

:****Ct~;~******! !****C2*********! !****C3=~~******:

--*-*-*-*-*-*-* *ENTER CONSTANTS* *-*-*-*-*-*-*-*-*
* RESERVE *--->* INTO TEXT * COMPLETE
* ADDRESS * * INFORMATION * * PROCESSING
* CONSTANTS * * * * OF MODULE
***************** ***************** *****************

l I
*****02********** v * * ****03*********
RESERVE STORAGE * TO
* FOR VARIABLES * FSD
* AND ARRAYS *
* * *****************

I
v

·*·
E2 *• *****E3**********

•* *• * NL I ST *
•* ANY *• YES *-*-*-*-*-*-*-*-*

• NAMELIST •~~~->* BUILD
• TEXT • * NAMELIST

• • * DICTIONARIES *
• • ***************** Fo

I
v

181 •*•

NOTE-SUBROUTINE INITIL
CONTROLS THE CONSTRUCTION
OF TEXT INFORMATION OOWN
TO, BUT NOT INCLUDING,
THE CONVERSION OF TEXT.
INITIL IS CONTAINED WITH
IN THE DOTTED LINES.

F2 *• *****F3********** *****F5**********
•* *• * FORMAT * * NADOUT *

•* ANY *• YES *-*-*-*-*-*-*-*-* *-*-*-•-*-*-*-*-*
• FORMAT •---->* TRANSLATE I<->* PROCESS *

• TEXT • * FORMAT * I * ADCON
• • * TEXT * I * TABLE *

· • ***************** *****************
i NO I I

I< I
G2°~ 0 *o *****G3********** I *****G5**********

•* *• * SUBR * • * PROLOG *
*:*suB~~~~~AM *:*~>=-~E~E=~;E*s~~~-=<~--·--~~~----~->1<-~>:-*-~E~E:~;E*-*-:
·~~MPILE~·* : ~~~~~A~0~~~~ : I * PRDLDG *

• • ***************** I *****************
* NO I I

I I I
v -~- I *****H2********** H3 *• *****HS**********

:-*-*~!~!:~-*-*-: •*•* ANY *•*• NO ' :-*-*~~:;~;-*_*_:
GENERATE *~~-->*•PHASE lS DATA.*----, I<->* GENERATE

* MAIN PROGRAM * *• TEXT •* I * EPILDG
* ENTRY COOING * *• •* I *
***************** *• •* v *****************

A * YES *****
I I *22 * • I **A!*.

I v
*****J3**********
* OAT OUT *
·-·-·-·-·-·-·-·-· * PROCESS *----,

~m : I
***************** v

*22 * •
.A! •

. .. .
v

*****K2**********
=-*-*~!~~~!-*-*-:
* PROCESS *

A OCON
* TABLE *

Section 2:

TO PHASE 2S
TEXT CONVERSION
(SU8ROUTINE MAINGN)

Discussion of Major Components 109

Chart 22. Phase 25 (Text Conversion)

***** *22 *
* Al*
* *

••••••••••••••i•••••••••••••••••••••••••••••••••••••: ~g~~~g~~N~E~~INGN
• CONVERSION. IT

211 V • IS CONTAINED IN

110

*****Al********** • THE DOTTED LINES. *****A4**********
* * • ENTRY POINT NAME * RETURN *

GET FIRST * • IS MAINGN. *-*-*-*-*-*-*-*-*
* (NEXT) TEXT * I<->* GENERATE * RETURN
* ENTRY * * BRANCH TO *

***************** : ••• ;~;;~~~; •••• :

J ... I
•*B~NTR~·.. !****~~~;~;*****! J !****B;~;~:*****: 1/0 STATEMENT

•*RETURN. I/O*• YES *-*-*-*-*-*-*-*-* l *-*-*-*-*-*-*-*-* OR
E~~·N~~~~~ME~!•~~~->: O~~~~M~~E :<~~~~~~~~~~~-> <->: G2~E~Ai~ : END I/D LIST

• • TEXT ENTRY * IHCFCOMH *
· · ***************** I ***************** i NO L>(::·: I

v II •*• L4015
Cl *• *****C2********** *****C3********** l *****C4**********

•*•* *•*• YES :-*-*~=~=~~-*-*-: • :-*-*~=~~~~-*-*-: :-*-*-~~=~~-*-*-: STATEMENT
• CALL •~~~->*IF TO FUNCTION.•<~~~>* GENERATE 1<->* LOCATION * NUMBER

• • * GENERATE CODE * * CALLING * COUNT TO *

·· •• ·* :!~.i!~~i.~ii~i!: : ••• ii~~;:;;***** :*.:~;~:*;:!~!**:
* NO I I

I L .•·•••
1

1 I >: Al :

•*• L23 v I
01 *• *****02********** *****03********** *****04********** ENTRY *****05**********

•* *• * LSTGEN * * IOSUB * l * ENTRY * * PRDLOG *
•* I/O *• YES *-*-*-*-*-*-*-*-* • *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *• LIST •*~~~->* GENERATE CODE *<~~~>* GENERATE <~->* GENERATE *<-~~~>* GENERATE *
• ITEM • * TO LOAD BASE * * CALL TO * SECONDARY * * PRDLDG *

··*· ·*·· :*~~.;!~!*!!;~*.: ****!~;~;~=~·*··· I :*;~!~!.;~~!~~**: :*******~*******:
i NO L * **** * I
1 >: Al : I l

!****El*********: I *****E5**********

* SET UP ,II =-*-*~~~;~~-*-*-: REGISTER * GENERATE *
ARRAY : EPILOG

***************** *****************

: ,..!.. : I :···· .. ;~; :
• SE~w * L_>:-*-~~;,P~E;E*-*-:

STRIP * PROCESSING *
* *****************

I
v

*****Gl**********
* MODIFY *
* STRIP FOR
* BASE LOADS
* AND STORE

1<-~
210 .t I

Hl *· I
•*C~E~~~s~I;·*· NO I

• OF STRIP •---,

• ON • I I •· •..• ·• I * YES

I I NO
v 110 ·*·

*****Jl********** J2 *·
* * •* END *•
--*-*-*-*-*-*-* V • * OF * •
* GENERATE •~~~->*• BIT •*
* INSTRUCTION * *• STRIP •*
* MATCHING BIT * *• •*
***************** *• •*

PERFORMED BY
APPROPRIATE
CODE GENERATION
SUBROUTINE (SEE
TABLE 13)

* YES

I
v

* *
: Al :

* OF MODULE *

I
v

****G4*********
* TO *
* FSD

Tab1e 13. Phase 25 Subroutine Directory
r----------r--~---------------1
I Subroutine I Function I
~----~-----+--~

ABSGEN1 Generates instructions for ABS, !ABS, and DABS in-line functions.

ADMDGN1

ATTACH

BDATA

BITNFP1

BRANCH1

BRCOMB1

BRCOMP1

BRLGL1

BTBF1

BXHCOM

CALLER

CGNDTA

CMPLGN1

DATOUT

DBLGEN1

DC LIST

DIMGEN1

DIVGEN1

END

ENTRY

EPILOG

FAZ25

FLTGEN1

FNCALL

FORMAT

Generates instructions for the AMOD and DMOD in-line functions.

Generates main program entry coding.

Initializes the masks and flags used by phase 25.

Generates instructions for the BITON, BITOFF, and BITFLP in-line func
tions.

Generates the instructions for all unconditional branching.

Generates instructions for computed GO TO operations.

Generates instructions for assigned GO TO operations.

Generates instructions for text entries whose operator is a relational
operator operating upon two operands or one operand and zero.

Generates instructions for branch true and branch false operations.

Common data area used by phase 25.

Generates calling sequences for CALLS Cother than those to IHCFCOMH) and
function references.

Initializes the arrays used during code generation.

Generates instructions for the COMPL and LCOMPL in-line functions.

Processes phase 15 data text by entering into text information the initial
data values at the appropriate variable locations.

Generates instructions for the DBLE in-line function.

Produces a listing of the address constants of the object module.

Generates instructions for the DIM and IDIM in-line functions.

Generates instructions for all half- and full-word integer division.

Completes the processing of the object module.

Generates subprogram secondary entry coding.

Generates the epilogues associated with a subprogram and its secondary
entry points Cif any).

Common data area used by phase 25.

Generates instructions for the FLOAT and DFLOAT in-line functions.

Generates the instructions. to store the result returned by a function
subprogram.

Translates FORMAT statements to a form acceptable to IHCFCOMH.

GOTOKK Used by subroutine MAINGN to branch to the code generation subroutines.
----------~--

(Continued)

Section 2: Discussion of Major Components 111

Table 13. Phase 25 Subroutine Directory (Continued)
r----------y--1
I Subroutine I Function I
~----------+--~

IEKTLOAD Builds ESD, TXT, RLD, and loader END records.

IEKWAG1

IN I TIA

INITIL

INTMPY1

IO SUB/
IOSUB2

LABEL

LBITTF1

LDADDR1

LDBGEN1

LGLNOT1

LISTER

LYTl

MAINGN/
MANGN2

MINUS 1

MOD24 1

MXMNGN1

NADOUT

NDORGN1

NL I ST

NTFXGN1

PACKER

PLSGEN1

PRO LOG

RETURN

Generates the instructions to implement the ASSIGN statement.

Interface between FSD and subroutine INITIL.

Controls the construction of that portion of text information down to, but
not including, text conversion.

Generates instructions for all half- and full-word integer division.

Generate calling sequences for calls to IHCFCOMH.

Processes statement numbers by entering the current value of the location
counter into the address constant reserved for the statement number.

Generates the instructions for the TBIT in-line function.

Generates the instructions for all load address operations.

Generates the instructions for all load byte operations.

Generates the instructions for logical NOT operations.

Produces a listing of the final compiler generated instructions.

Reserves address constants for statement numbers.

Control the text conversion process of Phase 25.

Generates the instructions for all subtraction operations.

Generates the instructions for the MOD24 in-line function.

Generates the instructions for the MAX2 and MIN2 in-line functions.

Enters the address constants developed during the compilation into text
information.

Generates the instructions for the AND and OR in-line functions.

Builds the object-time namelist dictionaries.

Generates the instructions for the INT, IDINT, IFIX, and HFIX in-line
functions.

Packs the various parts of each instruction produced during code genera
tion into a TXT record.

Generates the instructions for all addition operations and for real
multiplication and division operations.

Generates prologues for subprograms and secondary entry points Cif any>.

Processes the RETURN statement by generating a branch to the epilogue.

SHFT21 Generates the instructions for all right- and left-shift operations.
L----------i--

(Continued)

112

Table 13. Phase 25 Subroutine Directory (Continued)
r----------T--1
jSubroutinej Function I
~----------+--~

SHFTRL1 Generates the instructions for the SHFTR and SHFTL in-Line functions. I
I

SIGNGN1 Generates the instructions for the SIGN, !SIGN, and DSIGN in-line I
functions. I

I
STOPPR1 Generates character strings in calls to IHCFCOMH for STOP and PAUSE I

STRGEN1

SUBGEN1

SUBR

TENTXT

TSTSET1

statements. I

Generates the instructions for all store operations.

Generates the instructions for subscript text entries.

Generates subprogram main entry coding.

Controls the processing of END, RETURN, I/O, and ENTRY statements,
statement numbers, and end of I/O list indicators.

Generates the instructions to (1) compare two operands across a relational
operator, and (2) set operand 1 to either true or false depenaing upon the
outcome of the comparison.

I

UNRGEN1 Generates the instructions for unary minus operations (e.g., A=-B).
~----------i--~
I 1Code generation subroutine. I
L---J

Section 2: Discussion of Major Components 113

Chart 23. Phase 30 (IEKP30) overall Logic

IEKP30

****A3*********
* FROM
* FSD

* ***************

I

I
v

*****B3**********
* *
* * INITIALIZE

* *****************

I
v

*****C3**********
*OBTAIN MAXIMUM *
* ENTRIES ANO *
*ACTUAL ENTRIES *
: FROM COMMON :

l
I
v

·*·

SEE TABLE 14
FOR A BRIEF

DESCRIPTION OF
EACH SUBROUTINE

DF PHASE 30.

03 *• *****04**********
•*ACTUAL *• * SET UP ERROR *

•*NO. GREATER*• YES * MESSAGE
• THAN THAT •---->* AND *----·----------1

·.~LLOWE~·· * LENGTH : I
• • ***************** I * NO I

I I
* * I I

: *::*:->I II
LDERCOM V

:****E3*********:

* OBTAIN FIRST *
* (NEXT) ERROR * I

:*.:::~:*::::: .. : I
I * * I ! : *::*:->I

•*• STRESS! OFFSET V
F3 *• *****F4********** *****FS**********

•*MESSAGE*• * SET UP * * MSGWRT *
•* NUMBER *• NO * ADDRESS * *-*-*-*-*-*-*-*-*

•L/T 1000 ANO .•-----> FOR ERROR *-------->* WRITE *
• G/T 0 • * MESSAGE * * ERROR

• • * MESSAGE *
· · ***************** *****************

* YES I

I I
I v
v •*•

*****G3********** GS *•
* OBTAIN * •* LAST *•

ERROR LEVEL * NO •* ERROR *•
CODE FROM * r--*· TABLE •"

GRAVERR I *• ENTRY •*
* TABLE * I "· ·*
***************** v *• ·* I ****** *YES

I : E3 : I
t I

•*• OUT V
H3 *• *****H4********** *****HS**********

•* ERROR *• * SAVE * * PASS SAVED *
•*LEVEL CODE *• YES * ERROR ERROR

•G/T PREVIOUS •--->* LEVEL LEVEL
• ONES • * CODE CODE

• • * *
• • *****************

* NO I

I JI
I<
I

HA5H V
*****J3**********
* GET *

ASSOCIATED
* MESSAGE *
* POINTER TABLE *
* ENTRY *

I

I
v

*****K3**********
* * BUILD *

PARAMETER *---,
LIST * I

* I
***************** v

114

* * * F5 *
* *

" *****************

I
I
v

****JS*********
* TO "

FSD *

Table 14. Phase 30 Subroutine Directory
r----------T---------------------------------------~------------------------------------1

I Subroutine I Function l
~----------+--1
I IEKP30 I Controls phase 30 processing. I
I I I
I MSGWRT I Writes the error messages using the FSD. I
l __________ i __ J

Section 2: Discussion of Major Components 115

This appendix contains text and figures
that describe and illustrate the major
tables used and/or generated by the FORTRAN
System Director and the compiler phases.
The tables are discussed in the order in
which they are generated or first used. In
addition, table modifications resulting
from the compilation process are explained,
where appropriate, after the initial for
mats of the tables have been explained.

COMMUNICATION TABLE (NPTR)

The communication table <ref erred to as
the NPTR table in the program listing>, as
a portion of the FORTRAN System Director,
resides in main storage throughout the
compilation. It is a central gathering
area used to communicate necessary informa
tion among the various phases of the com
piler.

various
table are
compiler.
termines:

fields in the communication
examined by the phases of the

The status of these fields de-

• Options specified by the source pro
grammer.

• Specific action to be taken by a phase.

If the field in question is null, the
option has not been specified or the action
is not to be taken. If the field is not
null, the option has been specified or the
action is to be taken. Table 15 illus
trates the organization of the communi
cation table.

CLASSIFICATION TABLES

Classifying, a function of the prepara
tory subroutine (GETCD) of phase 10,

APPENDIX A: TABLES

involves the assignment of a code to each
type of source statement. This code indi
cates to the DSPTCH subroutine which sub
routine (either keyword or arithemtic) is
to continue the processing of that source
statement. The following paragraph de
scribes the processing that occurs during
classifying. The tables used in the
classifying process are the keyword pointer
table and the keyword table. They are
illustrated in Tables 16 and 17, respec
tively.

If the source statement has not been
signaled as arithmetic during source state
ment packing (see note>, the classifying
process determines the type of the source
statement by comparing the first character
of the packed source statement with each
character in the keyword pointer table. If
that first character corresponds to the
initial character of any keyword, the key
word pointer table is then used to obtain a
pointer to a location in the keyword table.
This location is the first entry in the
keyword table for the group of keywords
beginning with the matched character. All
characters of the source statement, up to
the first delirr~ter, are then compared with
that group of keywords. If a match
results, the classification code associated
with the matched entry is assigned to the
source statement. If a match does not
result, or if the first character of the
source statement does not correspond to the
first character of any of the keywords, the
source statement is classified as an inval
id statement.

Note: The packing process, which precedes
classifying, marks a source statement as
arithmetic if, in that statement, an equal
sign that is not bounded by parentheses is
encountered. If the source statement has
been marked as arithmetic, it is classified
accordingly by the classifying process.

Appendix A: Tables 117

Table 15. Communication Table CNPTRC2,35))
r--T--------------T-----------------------1
I 11 I Pointer to 1-characterl
I I jsymbol chain I
~--+--------------+-----------------------1
I 21Previous I Pointer to 2-character I
I IClassificationjsymbol chain I
I I code (phase I I
I 110> I I
~--+--------------+-----------------------1
I 3jOptions Ce.g.,jPointer to 3-character I
I ISOURCE, MAP) !symbol chain I
~--+--------------+-----------------------1
I 41 !Pointer to 4-characterl
I I !symbol chain I
~--+--------------+-----------------------1
I SIDisplacernent !Pointer to 5-character I
I jfor temporary jsymbol chain I
I I <phase 20> I I
~--+--------------+-----------------------~
I 61Maximum line I Pointer to 6-character I
I !count !symbol chain I
~--+--------------+-----------------------1
I 71Reserved !Reserved I
~--+--------------+-----------------------1
I 81Type of text !Reserved I
I I <phase 10> I I
~--+--------------+-----------------------~
I 9jPointer to !Pointer to last avail- I
I tnext availablelable phase 10 text I
I !phase 10 text jentry I
I f entry I I
~--+--------------i-----------------------1
1101 Name of routine I
I I (subprogram/main program) I
~--f--------------T-----------------------1
jlljPhase switch !Trace switch I
~--+--------------+-----------------------1
l12jLast error I I
I jtable entry I I
~--+--------------+-----------------------1
1131GETCD 'END' I I
I jcard indicator! I
~--+--------------+-----------------------~
114jPointer to !Pointer to 4-byte I
I f parameters !constant chain I
~--+--------------+-----------------------1
jlSIAddr. const. !Pointer to 8-byte con- I
I tentry number jstant chain I
~--+--------------+-----------------------1
1161Page count !Pointer to 16-byte con-I
I I jstant chain I
~--+--------------+-----------------------1
j17jCurrent line !Pointer to statement I
I jcount jnumber chain I
~--+--------------+-----------------------1
j181Reserved jl,34 copied here byl
I I !phase 20 I l __ i ______________ i _______________________ J

(Continued)

118

Table 15. communication Table CNPTRC2,35))
(Continued)

r--T--------------T-----------------------1
l19jReserved 12,34 copied here byl
I I jphase 20 I
~--+--------------+-----------------------1
j20JReserved I Reserved I
~--+--------------+-----------------------1
j21jReserved I Pointer to common!
I I !address constants I
~--+--------------+-----------------------1
j22jPointer to jNext available error I
I !dictionary jtable entry I
I jentry for I I
I IIBCOM I I
·--+--------------+-----------------------1
l231External func-jPointer to end of I
I jtion or CALL !statement number chain I
I !indicator I I
·--+--------------+-----------------------1
j241Pointer to in-IOptimization switch I
I !line function I I
I !storage I I
~--+--------------+-----------------------1
1251 !Pointer to common chain!
~--+--------------+-----------------------1
j261Reserved !Pointer to equivalence!
I I I chain I
~--+--------------+-----------------------1
j27jPointer to IPointer to data text I
I !literal con- jchain I
I lstant chain I I
~--+--------------+-----------------------1
l281Instruction !Pointer to normal text I
I !count jchain I
~--+--------------+-----------------------1
l29JPointer to !Pointer to next avail- I
I !branch table jable information table I
I I cha.in I entry I
~--+--------------+-----------------------1
l30IBLOCK DATA !Pointer to end of I
I jsubprogram I information table I
I !switch I I
·--+--------------+-----------------------1
131IFUNCTION SUB- !SUBROUTINE SUBPROGRAM I
I !PROGRAM switchlswitch I
~--+--------------+-----------------------1
l321Pointer to JPointer to format text I
I lnamelist text !chain I
I !chain I I
~--+--------------+-----------------------1
j331Size of con- !Size of variables I
I I stants I I
~--+--------------+-----------------------1
1341Adcon table IAdcon entry number I
I lnurr~er I I
·--+--------------+-----------------------1
l351Size of commonlDelete/error switch I l __ i ______________ i _______________________ J

Table 16. Keyword Pointer Table
r------------T-----------T----------------1
I Character I Number1 I Displacement2 I
I Cl word) I Cl word) I Cl word) I
~------------+-----------+----------------~

A 1 0

B 2 8

c 5 30

D 7 80

E 5 159

F 2 203

G 1 221

H 0 0

I 5 227

J 0 0

K 0 0

L 2 271

M 1 297

N 2 303

0 0 0

p 3 321

Q 0 0

R 5 342

s 3 384

T 2 413

u 0 0

v 0 0

w 1 432

x 0 0

y 0 0

z 0 0
~------------L-----------L----------------~
l 1 This field contains the number of keyl
I words beginning with the associatedl
I character. I
j 2 This field contains the displacementl
I from the beginning of the key word table!
I for the group of key words associatedf
I with character. I
L---J

Table 17. Keyword Table
r----------T-----------------------T------1
I I I I
I Length-11 1 Key Word2 jCode3 I
I I I I
~----------+-----------------------+------~

5 I ASSIGN I 1
I I

8 I BACKSPACE I 2
I I

8 BLOCKDATA I 3
I

14 COMPLEXFUNCTION I 4
I

7 CONTINUE I 5
I

6 COMPLEX I 6
I

5 COMMON I 7
I

3 CALL I 8
I

22 DOUBLEPRECISIONFUNCTIONI 10
I

14 DOUBLEPRECISION I 11

8 DIMENSION 14

6 DISPLAY 15

4 DEBUG 16

3 DATA 17

1 DO 18

10 EQUIVALENCE 19

7 EXTERNAL 20

6 END FILE 21

4 ENTRY 22

2 END 23

7 FUNCTION 24

5 FORMAT 25

3 GOTO 27

14 INTEGERFUNCTION 28

7 UIPLICIT 29

6 INTEGER 30

1 IF (Logical) 31

1 IFCArithmetic) 32

14 LOGICALFUNCTION 33
----------L-----------------------L------

C Continued)

Appendix A: Tables 119

Table 17. Keyword Table (Continued)
r----------T-----------------------T------1
I Length-1 1 1 Key Word2 1Code3 I
~----------+-----------------------+------i

6 LOGICAL 35

3 MOVE 34

7 NAME LIST 36

5 NORMAL 37

4 PAUSE 38

4 PRINT 39

4 PUNCH 40

11 REALFUNCTION 41

5 REWIND 42

5 RETURN 43

3 READ 44

3 REAL 45

9 SUBROUTINE 46

8 STRUCTURE 47

3 STOP 48

7 TRACEOFF 49

6 TRAC EON 50

4 WRITE 51
~----------i-----------------------i------i
I I
l 1 This part of the entry for each keyword!
I is one byte in length and contains al
I value equal to the number of charactersl
I in that keyword minus one. I
I I
l 2 This part of the entry for each keyword!
I contains an image of that keyword at onel
I byte per character. I
I I
l 3 This part of the entry for each keyword!
I is one byte in length and contains thel
I classification code for that keyword. I
L---J

INFORMATION TABLE

The information table (referred to as
NDICT or NDICTX) is constructed by Phase 10
and modified by subsequent phases. This
table contains entries that describe the
operands of the source module. The infor
mation table consists of five components:
dictionary, statement number/array table,
common table, literal table, and branch
table.

120

INFORMATION TABLE CHAINS

The information table is arranged as a
number of chains. A chain is a group of
related entries, each of which contains a
pointer to another entry in the group.
Each chain is associated with a component
of the information table.

The information table can contain the
following chains:

• A maximum of nine dictionary chains:
one for each allowable FORTRAN variable
length Cl through 6 characters> and one
for each allowable FORTRAN constant
size (4, 8, or 16 bytes>. Each dic
tionary chain for variables contains
entries that describe variables of the
same length. Each dictionary chain for
constants contains entries that de
scribe constants of the same size.

• One statement
entries that
hers.

number/array chain for
describe statement num-

• Two common table chains: one for
entries describing common blocks and
their associated variables, and one for
entries describing equivalence groups
and their associated variables.

• One literal table chain for entries
that describe literal constants used as
arguments in CALL statements.

• One branch table chain composed of
entries for statement numbers appearing
in computed GO TO statements.

Entries describing the various operands
of the source module are developed by Phase
10 and placed into the information table in
the order in which the operands are encoun
tered during the processing of the source
module. For this reason, a particular
chain's entries may be scattered throughout
the information table and entries describ
ing· different types of operands may occupy
contiguous locations within the information
table. Figure 12 illustrates this concept.

CHAIN CONSTRUCTION

The construction of a chain requires Cl)
initialization of the chain, and (2) point
er manipulation. Chain initialization is a
two step process:

1. The first entry of a particular type
(e.g., an entry describing a variable
of length one) is placed into the
information table at the next availa
ble location.

r---1
\ I ~ I ' ~

r---1T ____ T_~1:~~~--lT __ 1Tl ___ _/::: _ _/~~~~l~ _ _/:~: _ _/://
I I I I ISTMT/I ISTMT/I I I I I
IDICTICOMMIBRANIDICTIARRAYILITIARRAYICOMMILITIBRANIDICTI
11 11 11 12 I 1 Ill 2 12 1212 13 I

,:,,.--;,'1---1i,,----i---1i----~i,--i-----if---i---i----ij ___ J

I I I I~-----.~/------~--------------------'-
/ I II I

___ J

Figure 12. Information Table Chains

2. A pointer to this first entry is
placed into the communication table
entry <refer to the section,
"Communication Table"> reserved for
the chain of which this first entry is
a member.

Subsequent entries are linked into the
chain via pointer manipulation, as de
scribed in the following paragraphs.

The communication table entry containing
the pointer to the initial entry in the
chain is examined and the first entry in
the chain is obtained. The item that is to
be entered is compared to the initial
entry. If the two are equal, the item is
not reentered; if unequal, the first entry
in the chain is checked to see if it is
also the last. CAn entry is the last in a
chain if its "chain" field is zero.>

If the chain entry under consideration
is the last in the chain, the new item is
entered into the information table at the
next available location, and a pointer to
its location is placed into the chain field
of the last chain entry. The new entry is
thereby linked into the chain and becomes
its last member.

If the entry under consideration is not
the last in the chain, the next entry is
obtained by using its chain field. The
item to be entered is compared to the entry
that was obtained. If the two are equal,
the item is not reentered: if unequal, the
entry under consideration is checked to see
if it is the last in the chain; etc.

This process is continued until a com
parable entry is found or the end of the
chain is found. If a comparable entry is
found, the item is not re-entered. If the
new item is not found in the chain, it is
then linked into the chain.

OPERATION OF INFORMATION TABLE CHAINS

The following paragraphs
operation of the various
information table.

describe the
chains in the

Dictionary Chain_QEeration

The operation of a dictionary chain is
based upon "binary tree" notation. This
notation provides two chains, high and low
Cwith a common starting point), for the
entries describing variables of the same
length or constants of the same size. The
common starting point is the first entry
placed into the information table for a
variable of a particular length or a con
stant of a particular size. The following
example illustrates the manner in which
phase 10 employs the binary tree notation
to construct a dictionary chain.

Assume that the following
appear in the source module in
presented.

D C E F A B

variables
the order

When phase 10 encounters the variable D,
it constructs a dictionary entry for it
(refer to "Dictionary">, places this entry
at the next available location in the
information table, and records a pointer to
that entry into the appropriate field of
the communication table Cref er to
"Communication Table"). The entry for Dis
the common starting point for the chain of
entries describing variables of length one.
(When a dictionary entry is placed into the
information table, both the high and low
chain fields of that entry are zero.)

When phase 10 encounters the variable c,
it constructs a dictionary entry for it.
Phase 10 then obtains the dictionary entry
that is the common starting point and
compares C to the variable in that entry.
If the two are unequal, phase 10 determines

Appendix A: Tables 121

if the variable to be entered is greater
than or less than the variable in the
obtained entry. In this case, C is less
than D in the collating sequence, and,
therefore, phase 10 examines the low chain
field of the obtained entry, which is that
for D. This field is zero, and the end of
the chain has been reached. Phase 10
places the entry for C into the next
available location in the information table
and records a pointer to that entry in the
low chain field of the dictionary entry for
D. The entry for c is thereby linked into
the chain.

When the variable E is encountered,
phase 10 carries out essentially the same
procedure; however, because E is greater
than D, phase 10 examines the high chain
field of the entry for D. It is zero,
which denotes the end of the chain. Phase
10 therefore places the dictionary entry
for E into the next available location in
the information table and records a pointer
to that entry in the high chain field of
the dictionary entry for D.

When the variable F is encountered,
phase 10 constructs a dictionary entry for
it and compares it to the variable in the
entry that is the common starting point for
the chain. Because E is greater than D,
phase 10 examines the high chain field of
the entry for D. This field is not zero
and., hence, the end of the chain has not
yet been reached. Phase 10 obtains the
entry (for E) at the location pointea to by
the non-zero chain field (of the entry for
D) and compares F to the variable in the
obtained entry. The variable F is greater
than the variable E. Therefore, phase 10
examines the high chain field of the entry
for E. This field is zero and the end of
the chain has been reached. Phase 10
places the entry for F into the next
available location in the information table
and records a pointer to that entry in the
high chain field of the entry for E.

Phase 10 carries out similar procedures
to link the entries for the variables A and
B into the chain.

(If one of the comparisons made between
a variable to be entered into the dictiona
ry and a variable in an entry already in
the dictionary results in a match, the
variable has previously been entered and is
not reentered.)

Figure 13 illustrates
which the entries for the
chained after the entry
linked into the chain.

122

the manner in
variables are

for B has been

r---1
I I
I I
I~~~ I I D"---"C~A B I
I I
I I
~-~---------------------------------------1
!Note: The pointers from the top of onel
jvariable to the top of another variable!
jrepresent high chain pointers. Thel
jpointers from the bottom of one variable!
Ito the bottom of another variable rep-I
!resent low chain pointers. I
L---J
Figure 13. Dictionary Chain

Statement Number Chain Operation

The statement number chain constructed
by phase 10 is linear; that is, each
statement number entry (refer to "Statement
Number/Array Table") is pointed to by the
chain field of the previously constructed
statement number entry. The first state
ment number entry is pointed to by a
pointer in the communication table.

To construct the statement number chain,
phase 10 places the statement number entry
constructed for the first statement number
in the .module into the next available
location in the information table. It
records a pointer to that entry in the
appropriate field of the communication
table. (When a statement number entry is
placed into the information table, its
chain field is zero.) Phase 10 links all
other statement number entries into the
chain by scanning the previously construct
ed statement number entries (in the order
in which they are chained) until the last
entry is found. The last entry is denoted
by a zero chain field. Phase 10 then
places the new entry at the next available
location in the information table and
records a pointer to that entry in the zero
chain field of the last entry in the chain.
The new entry is thereby linked into the
chain and becomes its last member.
(Throughout the construction of the state
ment number chain, phase 10 makes compari
sons to insure that a statement number is
only entered once.>

Common Chain Operation

The chain constructed by phase
the common information appearing
source module is bi-linear; that is,
10 links together:

10 for
in the
phase

1. The individual common block name
entries (refer to "Common Table") that
it develops for the common block names
appearing in the module.

2. The dictionary entries (refer to
"Dictionary") that it develops for the
variables appearing in a particular
common block. (The dictionary entry
for the first variable appearing in a
corrunon block is also pointed to by the
common block name entry for the common
block containing the variable.)

To construct the common chain, phase 10
places the common block name entry that it
constructs for the first conunon block name
appearing in the module at the next availa
ble location in the information table. It
records a pointer to this entry in the
appropriate field of the communication
table. Phase 10 then obtains the first
variable in the common block, constructs a
dictionary entry for it, places the entry
at the next available location in the
information table, and records a pointer to
that entry in the Pl field of the common
block name entry for the common block
containing the variable. Phase 10 obtains
the next variable in the common block,
constructs a dictionary entry for it, plac
es the entry in the information table, and
records a pointer to that entry in the
common chain field of the dictionary entry
constructed for the variable encountered
inunediately prior to the variable under
consideration. (This entry is found by
scanning the chain of dictionary entries
for the variables in the common block until
a zero common chain field is detected.)
Phase 10 obtains the next variable in the
common block, etc.

When phase 10 encounters a second unique
common block name, it constructs a common
block name entry for it, places the entry
in the information table, and records a
pointer to that entry in the chain field of
the last common block name entry, which is
found by scanning the chain of such entries
until a zero chain field is detected.
Phase 10 then links the dictionary entries
that it constructs for the variables
appearing in the second common block into
the chain in the previously described man
ner.

If a common block name is repeated in
the source module a number of times, phase
10 constructs a common block name entry
only for the first appearance. However, it
does include as members of the common block
the variables associated with the second
and subsequent mentions of the common block
name. Phase 10 constructs a dictionary
entry for the first variable associated
with the second mention of the common block
name and places it into the information
table. It then scans the chain of dic
tionary entries constructed for the varia
bles associated with the first mention of
the common block name. When the last entry
in the chain is found, it records in the

couunon chain field of that entry a pointer
to the dictionary entry for tne new varia
ble. Phase 10 links the dictionary entry
it constructs for the second variable asso
ciated with the second mention of a common
block name to the dictionary entry for the
first variable associated with the secona
mention of that name; etc.

If a third mention of a particular
common block name is encountered, phase 10
processes the associated variables in a
similar manner. It links the dictionary
entries constructed for these variables as
extensions to the dictionary entries devel
oped for the variables associated with the
second mention of the common block name.

Equivalence Chain OperatioQ

The chain constructed by phase 10 for
the equivalence information appearing in
the source module is also bi-linear. Phase
10 links together:

1. The individual equivalence group
entries (refer to "Common Table") that
it constructs for the equivalence
groups appearing in the module.

2. The equivalence variable entries
(refer to "Common Table") that it
constructs for the variables appearing
in a particular equivalence group.
(The equivalence variable entry for
the first variable appearing in an
equivalence group is pointed to by the
equivaience group entry for the group
containing the variable.}

The construction of the equivalence
chain by phase 10 parallels its construc
tion of the common chain. It links the
equivalence group entries in the same man
ner as it does common block name entries,
and links equivalence variable entries in
the same manner as the dictionary entries
for the variables in a common block.

Literal Constant Chain 0_£eration

Phase 10 constructs the literal constant
chain in the same manner as it constructs
the statement number chain. It records a
pointer to the first literal constant entry
(refer to "Literal Table") it enters in the
information table in.the appropriate field
of the communication table. For each other
literal constant entry, phase 10 records a
pointer to its location in the information
table in the chain field of the previously
developed literal constant entry, which is
found by scanning the chain of such entries
until a zero chain field is found.

Appendix A: Tables 123

Branch Table Chain Operation

The phase 10 construction of the branch
table chain parallels that of the statement
number chain. It records a pointer to the
first branch table entry (refer to "Branch
Table") it places into the information
table in the appropriate field of the
communication table. For each other branch
table entry, phase 10 records a pointer to
its location in the information table in
the chain field of the previously developed
branch table entry.

INFORMATION TABLE COMPONENTS

The following text describes the con
tents of each component of the information
table and presents figures illustrating the
phase 10 formats of the entries of each
components. Modifications made to these
entries by subsequent phases of the compil
er are also illustrated in figure form.

Dictionary

The dictionary contains entries that
describe the variables and constants of the
source module. The information gathered
for each variable or constant is derived
from an analysis of the context in which
the variable or constant is used in the
source module.

VARIABLE ENTRY .FORMAT: The format of the
dictionary entries constructed by phase 10
for the variables of the source module is
illustrated in Figure 14.

r---1
I Byte A usage field Cl word) I
~---i
I Low chain field Cl word> I
~---i
I Byte B usage field Cl word> I
~---i
I High chain field Cl word> I
~---i
I Mode/type field (2 words> I
~---i
I Pl field Cl word>I
~---i
I Byte C usage field Cl word) I
I (Used by phase 15) I
~---1
I Used by Phase 15 Cl word) I
~---i
I Used by Phase 15 Cl word> I
~---i
I Common chain field Cl word> I
~---i
I Name field C2 words> I
L---J
Figure 14. Format of Dictionary Entry for

Variable

124

Byte A Usage Field: This field is con
tained in a full word, the high-order three
bytes of which are not used. This field
indicates a portion of the characteristics
of the variable for which the dictionary
entry was created. The byte A usage field
is divided into eight subfields, each of
which is one bit long. The bits are
numbered from 0 through 7. Figure 15
indicates the function of each subfield in
the byte A usage field.

r------------T----------------------------1
I Subfield I Function I
~------------+----------------------------i
I Bit 0 'on' I not used I
~------------+----------------------------i
I Bit 1 'on' I symbol used I
~------------+----------------------------i
I Bit 2 'on' I variable is in common I
~------------+----------------------------i
I Bit 3 'on' I variable is an array usedl
I I to contain an object-time!
I I FORMAT statement. I
~------------+----------------------------i
I Bit 4 'on' I variable is equated I
~------------+----------------------------i
I Bit 5 'on' I variable has appeared in anl
I I equivalence group that hasl
I I been processed by STALLI
I I (used by phase 15) I
~------------+----------------------------i
I Bit 6 'on' I symbol is an external func-1
I I tion name I
~------------+----------------------------i
I Bit 7 'on' I not used I
L------------i----------------------------J
Figure 15. Function of Each Subfield in

the Byte A Usage Field of a
Dictionary Entry for a Variable

Low Chain Field: The low chain field is
used to maintain linkage between the var
ious entries in the chain. It contains
either a pointer to an entry that collates
lower in the collating sequence or an
indicator (zero), which indicates that
entries in the chain that collate lower
than itself have not yet been encountered.

Byte B Usage Field: The byte B usage field
is contained in a full word, the high-order
three bytes of which are not used. This
field indicates additional characteristics
of the variable entered into the diction
ary. It is divided into eight subfields,
each of which is one bit long. The bits
are numbered from 0 through 7. Figure 16
illustrates the function of each subfield
in the byte B usage field.

High Chain Field: The high chain field is
used to maintain linkage between the var
ious entries in the chain. It contains
either a pointer to an entry that collates
higher in the collating sequence or an
indicator (zero), which indicates that

entries in the chain that collate higher
than itself have not yet been encountered.

r------------T----------------------------1
I Subfield I Function I
~------------+----------------------------~
I Bit 0 'on' I variable is "call by value" I
I I parameter I
~------------+----------------------------~
I Bit 1 'on' I variable is "call by name"I
I I parameter I
·------------+----------------------------1
I Bit 2 'on' I variable is used as anl
I I argument I
·------------+----------------------------~
I Bit 3 'on' I variable is used in NAME-I
I I LIST statement I
·------------+----------------------------~
I Bit 4 'on' I variable has appeared in al
I I previous DATA statement!
I I Cphase 15) I
·------------+----------------------------~
I Bit 5 'on' I variable is used as a sub-I
I I script I
~------------+----------------------------1
I Bit 6 'on' I variable is in common, orj
I I in an equivalence group andl
I I has been assigned a rela-1
I I tive address <phase 15) I
·------------+----------------------------~
I Bit 7 'on' I variable appears in DATA!
I I statement I
L------------~----------------------------J
Figure 16. Function of Each Subfield in

the Byte B Usage Field of a
Dictionary Entry for a Variable

Mode/Type Field: The mode/type field is
divided into two subfields,, each one word
long. The first word (mode subfield) is
used to indicate the mode of the variable
(e.g., integer, real); the second word
(type subfield) is used to indicate the
type of the variable (e.g., array, external
function). Both the mode and type are
numeric quantities and correspond to the
values stated in the mode and type tables
(see Tables 18 and 19).

Table 18. Operand Modes
r---------------------T-------------------1
I Mode of Operand I Internal I
I I Representation I
I I Cin hexadecimal) I
·---------------------+-------------------1

Logical*l 2
Logical*4 3
Integer*2 4
Integer 5
Real*8 6
Real*4 7
Complex*l6 8
Complex*8 9
Literal A
Statement number· B
Hexadecimal C
Namelist D

L---------------------~-------------------J

Table 19. Operand Types
r---------------------T-------------------1
I Type of Operand I Internal I
I I Representation I
I I Cin hexadecimal) I
·---------------------+-------------------i
Scalar I 0
Dummy scalar I 1
Array I 2
Durruny array I 3
External function I 4
Constant I 5
Statement function I 6
Negative scalar I 8
Negative dummy scalar! 9
Negative array I A
Negative dummy array I B
Cin text) I
Dummy array
Cin dictionary)
Negative external

function
Negative constant
Negative statement
function

I
I
I
I
I
I
I

B

c

D
E

L---------------------~-------------------J

Pl Field: The Pl field contains either a
pointer to the dimension information in the
statement number/array table if the entry
is for an array Ci.e., a dimensioned
variable), or a pointer to the text gener
ated for the statement function (SF) if the
entry is for an SF name. If the entry is
neither for the name of an array nor the
name of a statement function, the field is
zero.

Common Chain Field: This field is used to
maintain linkages between the variables in
a common block. It contains a pointer to
the dictionary entry for the next variable
in the common block. (If the variable for
which a dictionary entry is constructed is
not in common, this field is not used.)

Name Field: This field contains the name
of the variable (right-justified) for which
the dictionary entry was created.

MODIFICATIONS TO DICTIONARY ENTRIES FOR
VARIABLES: During compilation, certain
fields of the dictionary entries for varia
bles may be modified. The following exam
ples illustrate the formats of dictionary
entries for variables at various stages of
phase 15 processing. Only changes are
indicated; * stands for unchanged.

Dictionary Entry for , Variable After Dic
tionary Sorting: The format of a diction
ary entry for a variable after the diction
ary has been sorted during STALL is illus
trated in Figure 17.

Appendix A: Tables 125

r---1
I * (1 word) I
~---~
I Freed by sorting Cl word> I
~---i
I * (1 word>I
~---i
I New chain field (1 word> I
~---i
f * (2 words)!
·---i
I * Cl word) I
t---i
I * Cl word) I
t---i
I * Cl word> I
t---i
I * Cl word)j
t---~
I * (1 word) I
·---i
I * C2 words)!
L---J
Figure 17. Format of Dictionary Entry for

Variable After Sorting

Dictionary Entry for Variable After Common
Block Processing: The format of a diction
ary entry for a variable after common block
processing is illustrated in Figure 18.

r---1
I * (1 word) I
t---i
I Freed by sorting (1 word> I
t---i
I * (1 word) I
t---i
I New chain field Cl word> I
t---i
I * (2 words> I
t---i
I * (1 word) I
·---i
I * Cl word) I
t---i
I Displacement from start of Cl word)j
I common block Cif variable is I
I in common) I
·---i
I Pointer to common block name Cl word) I
I entry for block containing I
I variable I
t---i
I * Cl word) I
t---i
I * (2 words) I
L---J
Figure 18. Format of Dictionary Entry for

Variable After Comrnom Block
Process5.ng

Dictionary Entry for Variable After PHAZ15
Processing: The format of a dictionary
entry for a variable after PHAZ15 process
ing is illustrated in Figure 19.

126

r---1
I * Cl word) I
·---i
I Freed by sorting Cl word> I
t---i
I * (1 word) I
t---i
I New chain field (1 word) I
·---i
I * (2 words)!
t---i
I * (1 word) I
·---i
I Coordinate number for variable Cl word) I
·---i
I Displacement from start of Cl word>I
I common block (if variable is I
I in common) I
·---i
I Pointer to common block name Cl word> I
I entry for block containing I
I variable I
·---i
I * Cl word)j
·---1
I * (2 words)j
L---J
Figure 19. Format of Dictionary Entry for

Variable After PHAZ15 Process
ing

Dictionary Entry for Variable After Rela
tive Address Assignment: The format of a
dictionary entry for a variable after rela
tive address assignment is illustrated in
Figure 20.

r---1
I * (1 word) I
·---i
I Pointer to entry containing (1 word)j
I pointer to the address con- I
I stant for the variable I
·---i
I * Cl word)!
·---i
I New chain field (1 word) I
·---1
I * (2 words>I
t---i
I * Cl word>I
·---i
I Coordinate number for variable (1 word> I
t---1
I Displacement from associated Cl word)I
I address constant I
·---1
I Pointer to common block name Cl word> I
I entry for block containing I
I variable I
·---1
I * (1 word>I
t---i
I * (2 words) I
L---J
Figure 20. Format of Dictionary Entry for

a Variable After Relative
Address Assignment

CONSTANT ENTRY FORMAT: The format Of the
dictionary entries constructed by phase 10
for the constants of the source module is
illustrated in Figure 21.

r---1
I Byte A usage field (1 word> I
~---1
I Low chain field Cl word> I
~---1
I Byte B usage field Cl word) I
~---~
I High chain address field (1 word) I
~---1
I Mode/type field C2 words> I
~---~
I Not used Cl word) I
~---1
I Byte C usage field (used by (1 word> I
I phase 15) I
~---~
I Used by phase 15 Cl word> I
~---~
I Constant field C4 words) I
L---J
Figure 21. Format of Dictionary Entry for

Constant

The byte A usage, low chain, byte B
usage, high chain, and mode/type fields of
a dictionary entry for a constant contain
the same information as a dictionary entry
for a variable.

Constant Field: The field contains the
binary equivalent of the constant for which
the dictionary entry was constructed.

MODIFICATIONS TO DICTIONARY ENTRIES FOR
CONSTANTS: During compilation, certain
fields of the dictionary entries for con
stants may be modified. The following
examples illustrate the formats of diction
ary entries for constants at various stages
of phase 15 processing. Only changes are
indicated; * stands for unchanged.

Dictionary Entry for Constant After Dic
tionary Sortinq: The format of a diction
ary entry for a constant after the diction
ary has been sorted is illustrated in
Figure 22.

r---1
I * Cl word>I
~---1
I Freed by sorting Cl wcrd>l
~---1
I * Cl word>I
~---1
I New chain field Cl word> I
~---~
I * C2 words> I
~---~
I * Cl word>!
~---~
I * Cl word) I
~---~
I * Cl word) I
~---1
I * {4 words>!
L---J
Figure 22. Format of Dictionary Entry for

Constant After Sorting

Dictionary Entry_f or Constant After PHAZ15
Processing: The format of a dictionary
entry for a constant after the processing
of PHAZ15 is illustrated in Figure 23.

r---1
I * Cl word>l
~---~
I Freed by sorting Cl wordll
~---1
I * Cl word>I
~---~
I New chain field Cl word> I
~---~
I * C2 wordsll
~---~
I * Cl wordll
~---1
I Coordinate number for constant Cl word> I
~---~
I * Cl wordll
~---1
I * (4 wordsll
L---J
Figure 23. Format of Dictionary for Con-

stant After PHAZ15 Processing

Dictionary Entry for Constant After Rela
tive Address Assignment: The format of a
dictionary entry for a constant after the
relative address assignment processes is
complete is illustrated in Figure 24.

Appendix A: Tables 127

r---1
I * (1 word>I
~---1
I Pointer to entry containing Cl word) I
I pointer to the address con- I
I stant for the constant I
~---i
I * 1 WORD)I
~---1
I New chain field Cl WORD) I
~---1
I* (2 words>I
~---i
I * Cl word> I
~---1
I Coordinate number for constant Cl word> I
~---i
I Displacement from associated (1 word> I
I address constant I
~---i
I * (4 words>!
L---J
Figure 24. Format of Dictionary Entry for

constant After Relative Address
Assignment

Statement Number/Array Tabl~

table con
which de
the source
which de

The statement number/ array
tains statement number entries,
scribe the statement numbers of
module, and dimension entries,
scribe the arrays of the source module.

STATEMENT NUMBER ENTRY FORMAT: The format
of the statement number entries constructed
by phase 10 is illustrated in Figure 25.

r---1
I Byte A usage field (1 word) I
~---i
I Chain field Cl word> I
~---i
I Not used Cl word> I
~---1
I Pointer field Cl word> I
~---1
I Byte B usage field Cl word> I
~---i
I Image field Cl word) I
~---1
I Used by Phase 20 Cl word) I
~---i
I Used by Phase 20 Cl word> I
~---1
I Used by Phase 15 Cl word> I
~---1
I Used by Phase 15 Cl word> I
~---i
I Used by Phase 20 Cl word> I
~---1
I Used by Phase 15 Cl word> I
~---i
I Not used Cl word> I
L---J
Figure 25. Format of a Statement Number

Entry

128

Byte A Usage Field: This field is con
tained in a full word, the high-order three
bytes of which are not used. This field
indicates a portion of the characteristics
of the statement number for which the entry
was created. The bytes A usage field is
divided into eight subfields, each of which
is one bit long. The bits are numbered
from 0 through 7. Figure 26 indicates the
function of each subfield of this field.

r------------T----------------------------1
I Subfield I Function I
~------------+----------------------------i
I Bit 0 'on' I statement number defined I
~------------+----------------------------1
I Bit 1 'on' I statement number referenced!
~------------+----------------------------1
I Bit 2 'on' I referenced in an ASSIGN!
I I statement I
~------------+----------------------------i
I Bit 3 I not used I
~------------+----------------------------1
I Bit 4 'on' I statement number of a FOR-I
I I MAT statement I
~------------+----------------------------1
I Bit 5 'on' I statement number of a GOI
I I TO, PAUSE, RETURN, STOP, orl
I I DO statement I
~------------+----------------------------1
I Bit 6 'on' I statement number used as anl
I I argument I
~------------+----------------------------1
I Bit 7 'on' I statement number is thel
I I object of a branch I
L------------i----------------------------J
Figure 26. Function of Each Subfield in

the Byte A Usage Field of a
Statement Number Entry

Chain Field: The chain field is used to
maintain linkage between the various
entries in the chain. It contains either a
pointer to the next statement number entry
in the chain or an indicator (zero), which
indicates the end of the statement number
chain.

Pointer Field: rhis field contains a
pointer to the text entry constructed by
phase 10 for the associated statement num
ber.

Byte B Usage Field: This field is con
tained in a full word, the high-order three
bytes of which are not used. The byte B
usage field indicates additional charac
teristics of the statement number for which
the entry was constructed. The byte B
usage field is divided into eight sub
fields, each of which is one bit long. The
bits are numbered 0 through 7. Figure 27
indicates the function of each subfield in
the byte B usage field.

r------------T----------------------------1
I Subfield I Function I
~------------+----------------------------i
I Bit 0 'on' I statement number is within!
I I a DO loop and is trans-I
I I ferred to from outside thel
I I range of the DO loop I
~------------+----------------------------~
I Bit 1 'on' I compiler generated state-I
I I ment number I
~------------+----------------------------i
I Bits 2-5 I not used I
~------------+----------------------------1

·1 Bit 6 'on' I statement number appears inl
I I END or ERR parameter of I
I I READ statement I
~------------+----------------------------~
I Bit 7 'on' I statement number is used inl
I I a computed GO TO statement I l ____________ i ____________________________ J

Figure 27. Function of Each Subfield in
the Byte B Usage Field of a
Statement Number Entry

Image Field: This field contains the
binary representation of the statement num
ber for which the entry was created.

MODIFICATIONS TO STATEMENT NUMBER ENTRIES:
During the processing of phases 15, 20, and
25, each statement number entry created by
phase 10 is updated with information that
describes the text block associated with
the statement number. Figure 28 illus
trates the format of a statement number
entry after the processing of phases 15, 20
and 25. Only changes are indicated; *
stands for unchanged. The phase making the
indicated change is specified within paren
theses.

New Chain Field: The new chain field
pointer to the entry for the statement
number that is defined in the source module
immediately after the statement number for
which the statement number entry under
consideration was constructed. (Phase 15
modifies the phase 10 chain pointer when it
rechains the statement number entries to
correspond to the order in which statement
numbers are defined in the source module.)
This field is not modified by subsequent
phases.

Address Constant Pointer Field: The
address constant pointer field (after phase
25 processing) contains either:

• An indication of a reserved register
and a displacement, if branching opti
mization is being implemented and if
the text block (associated with the
statement number entry under
consideration) can be branched to via
an RX-format branch instruction (refer
to the phase 20, "Branching Optimi
zation").

• A pointer to the address constant re
served for the statement number (refer
to phase 25, "ADCON Table E.ntry
Reservation").

r---1
I * Cl word) I
·---1
I New chain field (phase 15) Cl word> I
~---1
I * Cl word) I
~---1
I Address constant pointer field Cl word> I
I (phase 20 or phase 25) I
~---1
I * Cl word) I
~---1
I * Cl word) I
~---i
I Loop number field (phase 20) Cl word> I
~---1
I Back dominator field Cl word) I
I {phase 20 > I
~---1
I Forward connection field Cl word> I
I CILEAD) {phase 15) I
~---1
I Backward connection field Cl word> I
I {JLEAD) Cphase 15) I
~---i
I Block status field (phase 20) Cl word)j
~---1
I Text pointer field Cphase 15) Cl word> I
~---1
I * Cl word) I l ___ J

Figure 28. Format of Statement Number
Entry After the Processing of
Phases 15, 20, and 25

Loop Number Field: The loop number field
contains the number of the loop to which
the text block (associated with the state
ment number entry under consideration>
belongs. This field is set up and used by
phase 20. Just before the loop number is
assigned, this field contains a depth num
ber.

Back Dominator Field: The back dominator
field contains a pointer to the statement
number entry associated with the back domi
nator of the text block associated with the
statement number entry under consideration.
This field is set up and used by phase 20.

Forward Connection Field (ILEAD): The for
ward connection field contains a pointer to
the initial RMAJOR entry for the blocks to
which the text block associated with the
statement number entry under consideration
connects. This field is set up by phase 15
and used by phase 20.

Backward Connection F'ield (JLEAD) : The
backward connection field contains a point
er to the initial CMAJOR entry for the
blocks that connect to the text block

Appendix A: Tables 129

associated with the statement number entry
under consideration. This field is set up
by phase 15 and used by phase 20.

Block Status Field: The block status field
is contained in a full word, the low-order
three bytes of which are not used. This
field indicates the status of the text
block associated with the statement number
entry under consideration. The block sta
tus field is divided into eight subfield,
each of which is one bit long. The bits
are numbered 25 through 32. Figure 29
indicates the function of each subfield in
the block status field.

r-------------T---------------------------1
I Subfield I Function I
~-------------+---------~-----------------1
I Bit 25 I used for various reasons!
I I by the routines that!
I I explore connections Ce.g.,j
I I the associated block hasj
I I previously been considered!
I Bit 26 I in the search for the backl
I I dominator of the block) I
~-------------+---------------------------1
I Bit 27 'on' I the associated block exits!
I I from a loop I
~-------------+---------------------------1
I Bit 28 'on' I the associate block is al
I I fork Ci.e., it has two orl
I I more forward connections) I
~-------------+---------------------------1
I Bit 29 I same as bits 25 and 26 I
~-------------+---------------------------~
I Bit 30 'on' I the associated block is inl
I I the current loop I
~-------------+---------------------------1
I Bit 31 'on' I the associated block hasl
I I been completely processed!
I I along the complete-I
I I optimized path I
~-------------+---------------------------1
I Bit 32 'or' I the associated block is anl
I I entry block I l _____________ i ___________________________ J

Figure 29. Function of Each Subfield in
the Block Status Field

Text Pointer Field: The text pointer field
contains a pointer to the phase 15 text
entry for the statement number with which
the statement number entry under considera
tion is associated. This field is not used
by phase 10; it is filled in by phase 15,
and is unchanged by subsequent phases.

DIMENSION ENTRY FORMAT: The format of the
dimension entries constructed by phase 10
is illustrated in Figure 30.

Dimension Number Field: The dimension
number field contains the number of dimen
sions Cl through 7) of the associated
array.

130

Array Size Field: The array size field
contains either the total size of the
associated array or zero, if the array has
variable dimensions.

r---1
I Dimension number field Cl word) I
~---1
I Not used Cl word) I
~---1
I Array size field Cl word) I
~---1
I Not used Cl word> I
~---1
I Element length field Cl word> I
~---1
I Second dimension factor field Cl word)j
~---1
I Third dimension factor field Cl word) I
~---1
I Fourth dimension factor field Cl word> I
~---1
I Fifth dimension factor field Cl word)j
~---1
I Sixth dimension factor field Cl word) I
~---1
I Seventh dimension factor field Cl word) I
~---1
I Pointer to last subscript par- Cl word> I
I ameter I
~---1
I Not used Cl word) I l ___ J

Figure 30. Format of Dimension Entry

Element Length Field: The element length
field contains the length of each element
(first dimension factor) in the associated
array.

Second Dimension Factor Field: The field
contains either a pointer to the dictionary
entry for the second dimension factor,
which has a value of Dl*L, or a pointer to
the dictionary entry for the first sub
script parameter used to dimension the
associatedbarray, if that array has varia
ble dimensions.

Third Dimension Factor Field: This field
contains either a pointer to the dictionary
entry for the third dimension factor, which
has a value of Dl*D2*L, or a pointer to the
second subscript parameter used to dimen
sion the associated array, if that array
has variable dimensions. This field is not
used if the associated array is has a
single dimension.

Fourth Dimension Factor Field: This field
contains either a pointer to the dictionary
entry for the fourth dimension factor,
which has a value of Dl*D2*D3*L, or a
pointer to the third subscript parameter
used to dimension the associated array, if
that array has variable dimensions. This
field is not used if the associated array
has fewer than three dimensions.

Fifth Dimension Factor Field: This field
contains either a pointer to the dictionary
entry for the fifth dimension factor, which
has a value of D1*D2*D3*D4*L, or a pointer
to the dictionary entry for the fourth
subscript parameter used to dimension the
associated array, if that array has varia
ble dimensions. This field is not used if
the associated array has fewer than four
dimensions.

Sixth Dimension Factor Field: This field
contains either a pointer to the dictionary
entry for the sixth dimension factor, which
has a value of Dl*D2*D3*D4*D5*L, or a
pointer to the dictionary entry for the
fifth subscript parameter used to dimension
the associated array, if that array has
variable dimensions. This field is not
used if the associated array has fewer than
five dimensions.

Seventh Dimension Factor Field: This field
contains either a pointer to the dictionary
entry for the seventh dimension factor,
which has a value of Dl*D2*D3*D4*D5*D6*L,
or a pointer to the dictionary entry for
the sixth subscript parameter used to
dimension the associated array, if that
array has variable dimensions. This field
is not used if the associated array has
fewer than six dimensions.

Pointer To Last Subscript Parameter: This
field contains a pointer to the dictionary
entry for the seventh subscript parameter
used to dimension the associated array, if
that array has variable dimensions. This
field is not used if the associated array
has fewer than seven dimensions.

Common Table

The common table contains: 1) common
block name entries, which describe common
blocks, 2) equivalence group entries, which
describe equivalence groups, and 3) equiva
lence variable entries, which describe
equivalence variables.

COMMON BLOCK NAME ENTRY FORMAT: The format
of the common block name entries construct
ed by phase 10 is illustrated in Figure 31.

Character Number Field: The character num
ber field contains the number of characters
in the common block name.

Chain Field: The chain field is used to
maintain linkage between the various common
block name entries. It contains either a
pointer to the next common block name entry
or an indicator (zero), which indicates
that additional common blocks have not yet
been encountered.

Pl Field: The Pl field contains a pointer
to the dictionary entry for the first
variable in this common block.

Name Field: The na~e field contains the
name Cright-justif ied) of the common block
for which this common block name entry was
constructed.

r---1
I Character number field Cl word) I
~---~
I Chain field Cl word) I
~---~
I Not used Cl word) I
~---~
I Pl field Cl word) I
~---~
I Not used Cl word) I
~-------------------~---------------------~
I Used by phase 15 (1 word) I
~---~
I Name field (2 words)j
~---~
I Not used (5 woras)I
L---J
Figure 31. Format of a Common Block Name

Entry

MODIFICATIONS TO COMMON BLOCK NA~IB ENTRIES:
During compilation, certain fields of com
mon block name entries may be modified.
Figure 32 illustrates the format of a
common block name entry after common block
processing by STALL, the first segment of
phase 15. Only changes are indicated; *
stands for unchanged.

r---1
I* Cl word) I
~---~
I* Cl word) I
~---~
I* Cl word) I
~---~
I* Cl word) I
~---~
I* (1 word) I
~---~
!Total size of common block (1 wcrd)I
~---~
I* (2 words)!
~---~
I* C5 words)!
L---J
Figure 32. Format of Common Block Name

Entry After Common Block Proc
essing

EQUIVALENCE GROUP ENTRY FORMAT: The format
of the equivalence group entries construct
ed by phase 10 is illustrated in Figure 33.

Number Field: The number field contains
the number of variables being equivalenced
in this equivalence group.

Appendix A: Tables 131

Chain Field: The chain field is used to
maintain linkage between the various equiv
alence groups. If contains a pointer to
the next equivalence group entry.

r---1
I Number field Cl word> I
~---i
I Chain field Cl word> I
~---i
I Not used Cl word) I
~---i
I P1 field Cl word> I
~---i
I Not used Cl word> I
~---i
I Used by phase 15 Cl word) I
~---i
I Not used C7 words) I
L---J
Figure 33. Format of an Equivalence Group

Entry

Pl Field: The Pl field contains a pointer
to the equivalence variable entry for the
first variable in the equivalence group.

MODIFICATIONS TO EQUIVALENCE GROUP ENTRIES:
During compilation, certain fields of
equivalence group entries may be modified.
Figure 34 illustrates the format of an
equivalence group entry after equivalence
processing by STALL, the first segment of
phase 15. Only changes are indicated; *
stands for unchanged.

r---1
I* Cl word> I
~---i
I * Cl word) I
~---i
I * Cl word> I
~---i
I * Cl word>I
~---i
I * Cl word> I
~---i
I Pointer to the "head" of Cl word) I
I the equivalence group I
~---i
I * (7 words> I
L---J
Figure 34. Format of Equivalence Group

Entry After Equivalence Proc
essing

EQUIVALENCE VARIABLE ENTRY FORMAT: The
format of the equivalence variable entries
constructed by phase 10 is illustrated in
Figure 35.

Offset Field: The offset field contains
the displacement of this variable from the
first element in the equivalence group.

132

Pl Field: The Pl field contains a pointer
to the dictionary entry for this equiva
lence variable.

r---1
I Used by phase 15 Cl word> I
~---i
I Off set field Cl word) I
~------------------------~----------------i
I Not used Cl word) I
~---i
I Pl field Cl word) I
~---i
I Not used Cl word>I
~---i
I Chain field Cl word)j
~---i
I Not used C7 words) I
L---J
Figure 35. Format of Equivalence Variable

Entry

Chain Field: The chain field is used to
maintain linkage between the various varia
bles in the equivalence group. It contains
a pointer to the equivalence variable entry
for the next variable in the equivalence
group.

MODIFICATIONS TO EQUIVALENCE VARIABLE
ENTRIES: During compilation, certain
fields of equivalence variable entries may
be modl£ied. Figure 36 illustrates the
format of an equivalence variable entry
after equivalence processing by STALL, the
first segment of phase 15. Only changes
are indicated; * stands for unchanged.

r---1
I Null indicator Cl word> I
~---i
I Displacement of variable Cl word> I
I from group "head" I
~---1
I * Cl word) I
~---i
I * Cl word) I
~---1
I * Cl word) I
~---1
I * Cl word>I
~---i
I * C7 words>I
~---1
IThe null indicator indicates to the rela-1
ltive address assignment portion of phase!
115 that main storage has been previously!
!allocated to this variable. This implies!
lthat the variable: Cl) is also in common, I
lor (2) appears in more than one equiva-1
llence group. I
L---J
Figure 36. Format of Equivalence Variable

Entry After Equivalence Proc
essing

Literal Table

The literal table contains literal con
stant entries, which describe literal con
stants used as arguments in CALL state
ments, and literal data entries, which
describe the literal data appearing in DATA
statements. (Entries for literal data
appearing in DATA statements are not
chained. They are pointed to from data
text.)

LITERAL CONSTANT ENTRY FORMAT: The format
of the literal constant entries constructed
by phase 10 is illustrated in Figure 37.

Length Field: The length field contains
the length <in bytes) of the literal con
stant.

Chain Field: The chain field is used to
maintain linkage between the various liter
al constant entries. It contains a pointer
to the next literal constant entry.

Literal Constant Field: The literal con
stant field contains the actual literal
constant for which the entry was construct
ed. The field ranges from 1 to 255 words
(1 character/word, left-justified) depend
ing on the size of the literal constant.

r---1
I Length field (1 word) I
~---i
I Used by phase 15 (1 word) I
~---~
I Not used (1 word) I
~---i
I Used by phase 15 (1 word) I
~---~
I Not used (1 word) I
~---~

/I Chain field (1 word) I
~---~
I Literal constant field (1-255 words) I
L---J
Figure 37. Format of Literal Constant

Entry

MODIFICATIONS TO LITERAL CONSTANT ENTRIES:
During compilation, certain fields of
literal constant entries may be modified.
Figure 38 illustrates the format of a
literal constant entry after relative
address assignment by CORAL, the third
segment of phase 15. Only changes are
indicated; * stands for unchanged.

r---1
I * (1 word)I
~---i
I Pointer to entry containing (1 word) I
I pointer to the address con- I
I stant for the literal constant I
~---~
I * (1 word) I
~---i
I Displacement from associated Cl word)!
I address constant I
~---i
I * (1 word) I
~---~
I * (1 word>I
~---~
I * (1-255 words) I
L---J
Figure 38. Format of Literal Constant

Entry After Relative Address
Assignment

LITERAL DATA ENTRY FORMAT: The format of
the literal data entries constructed by
phase 10 is illustrated in Figure 39.

r---1
I Length field Cl word) I
~---~
I Literal data field (1-255 words> I
L---J
Figure 39. Format of Literal Data Entry

Length Field: The length field contains
the length (in bytes> of the literal data
for which the entry was constructed.

Literal Data Field: The literal data field
contains the actual literal data. The
field ranges from 1 to 255 words (1
character/word, left-justified) depending
on the size of the literal data.

Branch Table

The branch table contains initial branch
table entries and standard branch table
entries. An initial branch table entry is
constructed by phase 10 upon encounter of
each computed GO TO statement of the source
module. Standard branch table entries are
constructed by phase 10 for each statement
number appearing in the computed GO TO
statement.

INITIAL BRANCH TABLE ENTRY FORMAT: The
format of the initial branch table entries
constructed by phase 10 is illustrated in
Figure 40.

Appendix A: Tables 133

r---1
I Indicator field (1 word) I
~---1
I Used by phase 25 Cl word) I
~---1
I Not used Cl word) I
~---1
I Chain field (1 word) I
~---~
I Not used Cl word) I
~---~
I Pl field (1 word) I
~---~
I Used by phase 25 Cl word) I
~---~
I Not used (6 words) I
L---J
Figure 40. Format of Initial Branch Table

Entry

Indicator Field: The indicator field is
non-zero for an initial branch table entry.
This indicates that the entry is for
compiler-generated statement number for the
"fall-through" statement. (The fall
through statement is executed if the value
of the control variable is larger than the
number of statement numbers in the computed
GO TO statement.)

Chain Field: The chain field is used to
maintain linkage between the various branch
table entries. It contains a pointer to
the next branch table entry.

Pl Field: The Pl field contains a pointer
to the statement number/array table entry
for the statement number for the compiler
genera ted statement number for the fall
through statement.

MODIFICATIONS TO INITIAL BRANCH TABLE
ENTRIES: During compilation certain fields
of initial branch table entries may be
modified. Figure 41 illustrates the forffiat
of an initial branch table entry after the
processing of phase 25 is complete. Only
changes are indicated; * stands for
unchanged.

STANDARD BRANCH TABLE ENTRY FORMAT: The
format of the standard branch table entries
constructed by phase 10 is illustrated in
Figure 42.

Indicator Field: This field is zero for
standard branch table entries.

Chain Field:
tain linkage

134

This field is used to rnain
between the various branch

table entries. It contains a pointer to
the next branch table entry.

Pl Field: The Pl field contains a pointer
to the statement number/array table entry
for the statement number (appearing in a
computed GO TO statement) for which the
standard branch table entry was construct
ed.

r---1
I * Cl word) I
·---1
I Pointer to address constant Cl word) I
I reserved for fall-through I
I statement number I
~---1
I * Cl word)j
·---1
I * Cl word) I
·---1
I * (1 word)I
·---1
I * Cl word)J
~---1
I Relative address of statement Cl word>I
I associated with fall-through I
I statement number I
·---1
I * (6 words)j
L---J
Figure 41. Format of Initial Branch Table

Entry After Phase 25
Processing

r---1
I Indicator field Cl word) I
~---1
I Not used Cl word) I
·---1
I Not used Cl word) I
~---1
I Chain field Cl word) I
·---1
I Not used (1 word) I
~---1
I Pl field (1 word) I
~---1
I Used by phase 2S Cl word) I
·---1
I Not used (6 words)j
L---J
Figure 42. Format of Standard Branch Table

Entry

MODIFICATIONS TO STANDARD BRANCH TABLE
ENTRIES: During compilation, certain
fields of standard branch table entries may
be modified. Figure 43 illustrates the
format of a standard branch table entry
after the processing of phase 25 is com
plete. Only changes are indicated; *
stands for unchanged.

r---1
I * Cl word)!
~---~
I * Cl word) I
~---1
I * Cl word) I
~---~
I * Cl word) I
~---1
I * Cl word)j
~------~----------------------------------1
I * Cl word)I
~---1
I Relative address of statement Cl word) I
I associated with this statement I
I number I
~---~
I * (6 words) I
L---J
Figure 43. Format of Standard Branch Table

Entry After Phase 25
Processing

SUBPROGRAJvl TABLE

The subprogram table (ref erred to as
IFUNT or IFUNTB) contains entries for the
IBM supplied subprograms and in-line rou
tines. The subprograms reside on the FOR
TRAN system library (SYSl.FORTLIB), while
the in-line routines are expanded at com
pile time. The subprogram table is used oy
phase 15 to establish subprogram/argument
compatibility. That is, phase 15 changes
subprogram names Cif necessary) so that the
referenced subprogram or in-line routine is
made to agree with the mode of the
argument(s) to it. For example, if the
FORTRAN programmer references the MOD in
line routine, and if the argument to be
operated upon is of real mode, phase 15

replaces the
reference to
comparability1 •

reference
AMOD to

to IviOD
ensure

with a
argument

Each entry in the subprogram table (see
Table 20) contains three fields: usage (4
pytes), mode (2 bytes), and name (6 bytes).

Usage Field: For an in-line routine, the
usage field contains an indication of the
mode of the result returned from it (see
Table 18). For a subprogram, the usage
field is initially zero. If a subprogram
is referred to in the source module (either
explicitly when the subprogram referred to
agrees with the mode of the argument to be
operated upon, or implicitly either when
the subprogram ref erred to is changed to
ensure compatibilit:y or when exponentiation
or complex multiplication and ciivision
operation are converted to a function
reference), the arithmetic translator sets
on the high order bit of the usage field in
the entry for that subprogram. The rela
tive address assignment portion of phase 15
interrogates in the high-order bit in the
usage field for each subprogram. If on, an
address constant is reserved for the sub
program, and a pointer to that address
constant is placed into the usage field of
the entry for that subprogram.

Mode Field: The mode field contains an
indication of the mode of the arguments to
the subprogram Csee Table 18).

Name Field: The name field contains the
name of the subprogram, right-justified.

1 This process is called automatic typing.

Appendix A: Tables 135

Table 20. Subprogram Table r----------T---------T---------T----------1
r----------T---------T---------T----------1 I Index I Usage I Mode I Name I
I Index I Usage I Mode I Name I ~----------+---------+---------+----------1
~----------+---------+---------+----------1 63 I 6 DMAXl

1 8 CD ABS 64 I 7 AMAX1
2 9 CABS 65 I 7 MAXl
3 6 DEXP 66 I 5 AMINO
4 7 EXP 67 I 0 MIN
5 8 CDEXP 68 I 5 MINO
6 9 CEXP 69 I 6 DMINl
7 6 DSIN 70 I 7 AMINl
8 7 SIN 71 I 7 MINl
9 8 CDS IN 72 I 5 FIXPI#

10 9 CSIN 73 6 FDXPD#
11 6 DCOS 74 7 FRXPR#
12 7 cos 75 6 FDXPI#
13 8 CDC OS 76 7 FRXPI#
14 9 ccos 77 8 FCDXI#
15 6 DSQRT 78 9 FCXPI#
16 7 SQRT 79 8 COD VD#
17 8 CDSQRT 80 9 CDVD#
18 9 CSQRT 81 8 CDMPY#
19 0 LOG 82 9 CMPY#
20 6 DLOG 83 MAX2#
21 7 ALOG 84 MIN2#
22 8 CD LOG 85 7 7 DIM
23 9 CLOG 86 5 5 IDIM
24 0 LOG10 87 6 6 DMOD
25 6 DLOG10 88 5 5 MOD
26 7 ALOG10 89 7 7 AMOD
27 8 CDLG10 90 6 6 DSIGN
28 9 CLOG10 91 7 7 SIGN
29 6 DAT AN 92 5 5 ISIGN
30 7 ATAN 93 6 6 DABS
31 6 DATAN2 94 7 7 ABS
32 7 ATAN2 95 5 5 IABS
33 6 DSINH 96 6 6 ID INT
34 7 SINH 97 7 7 AINT
35 6 DCOSH 98 5 7 INT
36 7 COSH 99 4 7 HFIX
37 6 DTANH 100 5 7 IFIX
38 7 TANH 101 6 5 DFLOAT
39 6 DTAN 102 7 5 FLOAT
40 7 TAN 103 6 7 DBLE
41 6 DCOTAN 104 0 BI TON
42 7 COT AN 105 0 BI TO FF
43 6 DARSIN 106 0 BITFLP
44 7 AR SIN 107 7 AND
45 6 DARCOS 108 7 OR
46 7 ARCOS 109 7 COMPL
47 6 DERF 110 0 MOD24
48 7 ERF' 111 3 LCOMPL
49 6 DE RFC 112 3 SHFTL
50 7 ERFC 113 3 SHFTR
51 6 DGAMMA 114 3 TBIT
52 7 GAMMA 115 3 LAND
53 6 DLGAMA 116 3 LOR I
54 7 ALGAMA 117 3 LXOR I
55 0 LGAMA 118 I
56 119 5 ADDR I
57 120 7 6 SNGL I
58 121 7 9 REAL I
59 122 7 9 AI1'1A.G I
60 5 AMAXO 123 8 6 DCMPLX I
61 0 MAX 124 9 7 CMPLX I
62 5 MAXO 125 8 8 DCONJG I L __________ i _________ i _________ i __________

126 9 9 CON JG I
(Continued)

__________ i _________ i _________ i __________ J

136

TEXT OPTIMIZATION BIT TABLES

There are eight major bit tables used
extensively throughout text optimization.
These tables (each four words or 128 bits
in length) contain bits that are preset.
Only the first 86 bit positions in each
table are meaningful and each of these is
associated with a particular text entry
operator. The settings <on or off) given
to these bits indicate either the validity
of operand positions in a text entry with a
particular operator or the candidacy of a
text entry with a particular operator for
text optimization procedures.

Three of these tables, MVW, MVU, and MVV
are tested by subroutine KORAN and indicate
the validity of the operand positions in a
text entry with a given operator. The ~VW
table indicates the validity of the operand
1 position; the MVU table indicates the
validity of the operand 2 position; and the
MVV table indicates the validity of the
operand 3 position. For example, if the
bit in MVW that corresponds to a particular
operator is on, then the operand 1 position
of a text entry having that operator con
tains a valid or actual operand. If the
bit is off, the operand 1 position of the
text entry does not contain an actual
operand. Cin the latter case, the operand
1 position may still contain information
that is pertinent to the text entry; howev
er, it does not contain an actual operand.)

The rerr.aining five tables, MFM, MBf.Y.i,
MXM, MSM, and MB~ are also testea Ly
suoroutine KORAN and indicate the candidacy
of a text entry with a particular operator
for text optimization procedures. The MFM
tanle indicates whether or not text entries
with a particular operator are to be con
sidered for forward movement; the MBM table
indicates whether or not text entries with
a particular operator are to be considerea
for backward movement; the f•1XM table indi
cates whether or not text entries with a
particular operator are to ne considered
for common expression elimination; the MS~
table indicates whether or not text entries
with a particular operator are to oe con
sidered for strength reduction; and the MBR
table indicates whether or not the operator
is a branch. For example, if the bit in
the MFM table that corresponds to a partic
ular operator is on, then text entries
having that operator will be considered for
forward movement; if the bit is off, they
will not.

The text optimization bit tables are
illustrated in Table 21. In this table,
the operator associated with each bit posi
tion in the bit tables is identified. The
bits settings for each operator as they
appear in the bit tabies is also shown. An
x signifies that the oit is on; a olank
signifies that the bit is off.

Appendix A: Tables 137

Table 21. Text Optimization Bit Tables

Bit Tables Bit Tables

Bit Operator Bit Operator
MVW MVU MW MFM MBM MXM MSM MBR MVW MVU MVV MFM MBM MXM MSM MBR

1 •NOT• x x x x x 44 LIBF x x x x
2 UNARY MINUS x x x x x 45 RS x x x x x
3 46 LS x x x x x
4 •AND• x x x x x x 47 BXHLE

5) 48

6 •OR• x x x x x x 49

7 50 •LE• x x x x x x
8 ST x x x x 51 •GE• x x x x x x
9 I (ARG) x x x x x 52 • EQ• x x x x x x

10 + x x x x x x x 53 •LT• x x x x x x
11 - x x x x x x x 54 •GT• x x x x x x
12 * x x x x x x 55 •NE• x x x x x x
13 i_ x x x x x x 56 MAX2 x x x x x x
14 LA x x x x 57 MIN2 x x x x x x
15 EXT x x 58 DIM x x x x x x
16 BG x x x x 59 IDIM x x x x x x
17 BL x x x x 60 DMOD x x x x x x
18 BNE x x x 61 MOD x x x x x x
19 BGE x x x x 62 AMOD x x x x x x
20 BLE x x x x 63 DSIGN x x x x x x
21 BE x x x 64 SIGN x x x x x x
22 SC x x x x x x 65 !SIGN x x x x x x
23 1/0 LIST x x x 66 DABS x x x x x
24 BCOMP x x 67 ABS x x x x x

25 (68 IABS x x x x x
26 EM 69 IDINT x x x x x
27 B 70

28 BA x x 71 INT x x x x x
29 BBT x x x 72 HFIX x x x x x
30 BBF x x x 73 IFIX x x x x x
31 LBIT x x x x x x 74 DFLT x x x x x
32 BGZ x x 75 FLT x x x x x I
33 BLZ x x 76 DBLE x x x x x
34 BNEZ x x 77 BITON x x
35 BGEZ x x 78 BITOFF x x
36 BLEZ x x 79 BITFLP x x

37 BEZ x x 80 ANDF x x x x x x
38 81 ORF x x x x x x
39 NMLST x x 82 COM PL x x x x x
40 83 MOD24 x x x x
41 BF x x 84 LC OM PL x x x x
42 BT x x 85 SHFTR x x x x x x
43 LOB x x x x 86 SHFTL x x x x x x

138

REGISTER ASSIGNMENT TABLES

The register assignment tables are a set
of one-dimensional arrays used by the full
register assignment routines of phase 20.
There are three types of tables: local
assignment tables· (refer to Table 22),
global assignment tables (ref er to Table
23), and register usage tables. The reg
ister usage tables are work tables used by
the local and global assignment routines in
the process of full register assignment.

Register Use Table

The format of the register use tables,
TRUSE and RUSE, are the same for the local
and global assignment routines. Each table
is sixteen words long. Words 1 through 11
represent general registers 1 through 11,
words 12, 14, and 16 represent floating
point registers 2, 4 and 6, and words 13
and 15 are unused.

Table 23. Global Assignment Tables
r------T-------------------------T--------1
!Name I Function I Origin I
·------+-------------------------+--------~
IMCOORD Serves as an index tolPhase 151
I MVD, EMIN, RA, RAL, WABP,j I
I WA and WJ. I I
I I I
IMVD Gives the location of thejPhase 15

~ dictionary entry for thel
variable associated with!
the given value of I
MCOORD. I

I
EMIN Indicates whether the I REGAS

variable associated with!
a particular MCOORD value!
is eligible for glocall
assignment. I

I
RA Indicates the number ofjGLOBAS

the first register glob-I
ally assigned to thel
variable represented byl

~~--~~~~l~t~h~e~-MCOORD value; pro-

Table 22. Local Assignment Tables
r----T----------------------------T-------1
INamel Function IOrigin1 1
·----+----------------------------+-------~
IJ Serves as index to TXP, BVR,IFWDPAS
I BVRA, BVA. I
I I
ITXP Gives the storage locationjFWDPAS
I of the text item associatedl
I with each value of J. I
I I
IBVR Contains the MCCORD valuelFWDPAS
I associated with operand 1 of I
I the text item represented byl
I J • I
I . I
IBVRA Indicates the registerlBKPAS
I locally assigned to thel
I quantity represented by J. I
I I
BVA Represents the activitylFWDPAS

within the block of thel
quantity represented by J;I
also contains indicator bitsj
describing the quantity. I

I
WJ2 Indicates whether a variablelFWDPAS

is eligible for local I
assignment. Indexed via the!
MCCORD values obtained from!
BVR. I

·----i----------------------------i-------~
l 1 This column indicates the name of thel
I register assignment routine that ini-1
I tially creates the particular table. I
l 2 Although WJ is distinctly a locall
I assignment table, it is indexed by thel
I quantity MCCORD (which is used to indexl
I the global assignment tables) rather!
I than by the local assignment table!
I index, J. I
L---J

vides continuity in glob
al assignment from inner
to outer loops.

RAL Indicates the register GLOBAS
globally assigned to the
variable represented by
the MCOORD value.

WA Indicates the total FWDPAS
activity for the variable
represented by the MCOORD
value. Calculated by
adding 4. to the valuej
each time a definition of I
the variable is encoun-1
tered and adding 3. tol
the value for a use of I
the variable. I

I
IWABP Indicates the activity of jFWDPAS
I base variables. Calcu-1
I lated in the same manner!
I as the WA table. I
l ______ i _________________________ i _______ _

If the contents of TRUSE(i) and RUSE(i}
is equal to zero, then register i is
available for assignment. If the value
contained in TRUSE(i) or RUSE(i} is between
2 and 128, inclusive, then the register i
is assigned to the variable whose MCOORO
value is equal to the contents of TRUSE{i)
or RUSE{i}. If the contents of TRUSE{i) or
RUSE(i) has a value between 252 and 255,
register i is unavailable for assignment
and is reserved for special use <see next
paragraph).

Register Use Considerations: Registers 15
and 14 are not available for use by reg
ister assignment. They are reserved, and
used for branching during the execution of

Appendix A: Tables 139

the object module resulting from the compi
lation.

Register 13 is not available for use by
register assignment. It is reserved, and
used during the execution of the object
module to contain the address of the save
area set aside for the object module (ref er
to phase 25, "Initialization
Instructions"). This register is also used
to reference the adcon table.

Register 12 is not available for use by
register assignment. It is set aside to
contain the starting address of the
"Constants" portion of text information.

Registers 11, 10, and 9 may or may not
be available for use by register assignment
Their use depends upon the number of
required reserved registers. (Refer to
phase 20, "Branching Optimization").

NAMELIST DICTIONARIES

Namelist dictionaries are developed by
phase 25 for the NAMELIST statements
appearing in the source module. These
dictionaries provide IHCFCOMH with the
information required to implement
READ/wRITE statements using NAMELISTs. The
namelist dictionary constructed by fhase 25
from the phase 10 narnelist text representa
tion of each NAMELIST statement contains an
entry for the namelist name and entries for
the variables and arrays associated with
that name.

NAMELIST NAME ENTRY FORMAT: The format of
the entry constructed for the namelist name
is illustrated in Figure 44.

r---1
I Name field C2 words) I
L---J
Figure 44. Format of Namelist Name Entry

Name Field: The name field contains the
namelist name, right-justified, with lead
ing blanks.

NAMELIST VARIABLE ENTRY FORMAT: The format
of the entry constructed for a variable
appearing in a NAMELIST statement is illus
trated in Figure 45.

r---1
I Name field (2 words) I
~---~
I Address field Cl word) I
~-----------T----------T------------------~
I Item Type I Mode I Not used I
I field I field I C 2 bytes) I
I Cl byte> I Cl byte> I I
L ___________ i __________ i __________________ J

Figure 45. Format of Namelist Variable
Entry

140

Name Field: The name field contains the
narae of the variable, right-justified, with
leading blanks.

Address Field: The address field contains
the relative address of the variable.

Item Type Field: This field is zero for a
variable.

Mode Field: The mode field contains the
mode of the variable.

NAMELIST ARRAY ENTRY FORMAT: The format of
the entry constructed for an array appear
ing in a NAMELIST statement is illustrated
in Figure 46.

r---1
I Name field (2 words>!
~---~
I Address field Cl word) I
~----------T---------T-----------T--------~
I Item Typel Mode I Number of !Element I
I field I field I dimensionsjlength I
I I I field !field I
I c1 byte> I u byte> I c1 byte> I Cl byte> I
~----------+---------i ___________ i ________ ~

I Indicator! First dimension I
I field I factor field I
I Cl byte) I C 3 bytes) I
~----------+------------------------------~
I Not used I Second dimension I
I I factor field I
I Cl byte) I (3 bytes) I
~----------+------------------------------~
I Not used I Third dimension I
I I factor field I
I Cl byte> I C3 bytes> I
~----------i------------------------------~
I Etc. (refer to "Dimension Entry Format"> I
L---J
Figure 46. Format of Namelist Array Entry

Name Field: The
name of the array,
leading bl<;mks.

name field contains the
right-justified, with

Address Field: The address field contains
the relative address of the beginning of
the array.

Item Type Field:
for an array.

This field is non-zero

Mode Field: This field contains the mode
of the elements of the array.

Number of Dimensions Field: This field
contains the number of dimensions Cl
through 7) of the associated array.

Element Length Field: The element length
field contains the length of each element
in the associated array.

Indicator Field: This field is zero if the
associated array has variable dimensions;
otherwise, it is non-zero.

First Dimension Factor Field: If the asso
ciated array does not have variable dimen
sions, this field contains the total size
of the array. If the array has variable
dimensions, this field contains the rela
tive address of first subscript parameter
used to dimension the array.

Second Dimension Factor Field: If the
associated array does not have variable
dimensions, this field contains the loca
tion of the second dimension factor CDl*L).
If the array has variable dimensions, this
field contains the relative address of the
second subscript parameter used to dimen
sion the array.

Third Dimension Factor Field: If the asso
ciated array does not have variable dimen
sions, this field contains the location of
the third dimension factor CDl*D2*L). If
the array has variable dimensions, this
field contains the relative address of the
third subscript parameter used to dimension
the array.

DIAGNOSTIC MESSAGE TABLES

There are two major diagnostic tables
associated with error message processing by
phase 30: the error table and the message
pointer table.

ERROR TABLE

The error table is constructed by phases
10 and 15. As source statement errors are
encountered by these phases, corresponding
entries are made to the error table. Each
error table entry consists of 2 one-word
fields. The first field contains either an
internal statement number, if the entry is
for a statement that is in error, a dic
tionary pointer, if the entry is for a
symbol that is in error (e.g., a variable
that is incorrectly used in an EQUIVALENCE
statement), or a statement number, if the
entry is for a non-defined statement num
ber; the second field contains the message
number associated with the particular
error. The message numbers that can appear
in the error table are those associated
with messages of error code levels 4 and 8
(refer to the publication IBM System/360
Operating system: FORTRAN IV Programmer's
Guide).

MESSAGE POINTER TABLE

The message pointer table contains an
entry for each message number that may
appear in an error table entry. Each entry
in the message pointer table consists of a
single word. The high-order byte of the
word contains the length of the message
associated with the message number. The
three low-order bytes contain a pointer to
the text for the message associated with
the message number.

Appendix A: Tables 141

Intermediate text is an internal rep
resentation of the source module from which
the machine instructions of the object
module are generated. The conversion from
intermediate text to machine instructions
requires information about variables, con
stants, arrays, statement numbers, in-line
functions, and subscripts. This informa
tion, derived from the source statements,
is contained in the information table, and
is referenced by the intermediate text.
The information table supplements the
intermediate text in the generation of
machine instructions by phase 25.

PHASE 10 INTERMEDIATE TEXT

Phase 10 creates intermediate text (in
operator-operand pair format) for use as
input to subsequent phases of the compiler.
There are five types of intermediate text
produced by phase 10:

• Normal text - the operator-operand pair
representations of source statements
other than DATA, NAMELIST, FORMAT, and
Statement Functions (SF).

• Data text - the operator operand pair
representations of DATA statements and
the initialization constants in expli
cit type statements.

• Namelist text - the operator-operand
pair representations of NAMELIST state
ments.

• Format text - the internal representa
tions of FORMAT statements.

• SF skeleton text - the operator-operand
pair representations of statement func
tions using sequence numbers as oper
ands of the intermediate text entries.
The sequence numbers replace the dummy
arguments of the statement functions.
This type of text is, in effect, a
"skeleton" macro.

Note: The intermediate text representa
tions are comprised of individual text
entries. Each intermediate text type is
allocated unique sub-blocks of main stor
age. The sub-blocks that constitute an
intermediate text area are obtained by
phase 10, as needed, via requests to the
FSD (see FORTRAN System Director, "Storage
Distribution").

APPENDIX B: INTERMEDIATE TEXT

Intermediate Text Chains

Each intermediate text area (i.e., the
sub-blocks allocated to a particular type
of text) is arranged as a chain, which
links together (1) the text entries that
are developed and placea into that area,
and (2) in some cases, the intermediatt
text representation for individual state
ments.

The normal text chain is a linear chain
of normal text entries; that is each normal
text entry is pointed to by the previously
developed normal text entry.

The data text chain in bi-linear. This
means that:

1. The text entries that constitute the
intermediate text representation of a
DATA stattment are linked by means of
pointers. ~ach text entry for the
statement is pointed to by the pre
viously developed text entry tor the
sta ternent.

2. The intermediate text representations
of individual DATA statements are
linked by means of pointers, each
representation being pointed to by the
previously developed representation.
CA special chain address field within
the first text entry developed for
each DATA statement is reserved for
this purpose.)

The namelist text chain operates in the
same manner as the data text chain.

The f orrnat text chain consists of link
ages between the individual intermediate
text representation of FORMAT statements.
The pointer field of the second text entry
in the interniediate representation of a
FORMAT statement points to the intermediate
text representation of the next FORMAT
statement. (The individual text entries
comprising the intermediate text represen
tation of a FORMAT statement are riot
chained.)

The SF skeleton text chain is linear
only in that each text entry developed for
an operator-operand pair within a particu
lar statement function is pointed to by the
previous text entry developed for that same
statement function. The intermediate text
representations for separate statement
functions are not chained together. Howev
er, a skeleton can readily be obtained by

Appendix B: Intermediate Text 143

means of the pointer contained in the
dictionary entry for the name of the state
ment function.

Format of Intermediate Text Entry

Those statements that undergo conversion
from source representation to intermediate
text representation are divided into
operator-operand pairs, or text entries.
Figure 47 illustrates the format of an
intermediate text entry constructed by
phase 10.

r--------------------------------1
I Adjective code field (1 word) I operator
~--------------------------------1
I Chain field Cl word) I
~--------------------------------1
I Mode field (1 word) I
~--------------------------------i
I Type field Cl word) I
~--------------------------------1
I Pointer field (1 word) I operand
L--------------------------------J
Figure 47. Intermediate Text Entry Format

Adjective Code Field: The adjective code
field corresponds to the operator of the
operator-operand pair. Op~rators are not
entered into text entries in source form;
they are converted to a numeric value as
specified in the adjective code table {see
Table 24). It is the numeric representa
tion of the source operator that actually
is inserted into the text entry. Primary
adjective codes {operators that define the
nature of source statements) also have
numeric values.

Chain Field: The chain field is used to
maintain linkage between intermediate text
entries. It contains a pointer to the next
text entry.

Mode and Type Fields: The mode and type
fields contain the mode and type of the
operand of the text entry. Both items
appear as numeric quantities in a text
entry and are obtained from the mode and
type table (see Tables 18 and 19).

Pointer Field: The pointer field contains
a pointer to the information table entry
for the operand of the operator-operand
pair. However, if the operand is a dummy
argument of a statement function, the
pointer field contains a sequence number,
which indicates the relative position of
the argument in the argument list.

Note: The text entries for FORMAT state
ments are not of the above form. FORMAT
text entries consist of the characters of
the FORMAT statement in source form packed
into successive text entries.

144

Table 24. Adjective Codes
r--------T-----------T--------------------1
I I Mnemonic I I
!Code CinlCwhere I I
I decimal) I applicable) I Meaning I
~--------+-----------+--------------------1

1 .NOT.

4 .AND.

5

6 .OR.

8

9

10 +

11

12 *
13 /

14 **
15 Cf

16 .LE.

17 .GE.

18 .EQ.

19 .LT.

20 .GT.

21 .NE.

22 Cs

25

26

71

193

205

208

209

210

NOT

AND

Right arithmetic
parenthesis

OR

Equal sign

Comma

Plus

Minus

Multiply

Divide

Exponentiation

Function parenthesis

Less than or equal

Greater than or
equal

Equal

Less than

Greater than

Not equal

Left subscript
parenthesis

Left arithmetic
parenthesis

End mark

GOTO, and implied
branches

BLOCK DATA

DATA

SUBROUTINE,
FUNCTION, or ENTRY

FORMAT (text)

End of I/O list
L--------~-----------~--------------------J

(Continued)

Table 24. Adjective Codes (Continued)
r--------T-----------T--------------------1
I I Mnemonic I I
ICode CinlCwhere I I
ldecimal)lapplicable>I Meaning I
~--------+-----------+--------------------i

211 I CONTINUE I
I I

213 !Object time format I
I variable I
I I

214 BACKSPACE I
I

215 REWIND I
I

216 END FILE I
I

217 WRITE unformatted I
I

218 READ unformatted I

219

220

221

222 LDF

WRITE formatted

READ formatted

Beginning of I/O
list

Statement number
definition

223 GLDF Generated statement

I

I number definition
I
I 225 WRITE using NAMELISTJ
I I
I 226 READ using NAMELIST I
I I
I 230 I/O end-of-file I
I parameter I
I I
I 231 I/O error parameter I
L--------i-----------i--------------------J

C Continued)

Table 24. Adjective Codes (Continued)
r--------T-----------T--------------------1
I I Mnemonic I I
!Code CinlCwhere I I
ldecimal>lapplicable) I Meaning I
~--------+-----------+--------------------1
I 232 BLANK
I
I 233 RET RETURN

234 STOP

235

238

240

241

242 NDOIF

243

244

246

247 LIST

248

249 END

250

251

252

STOP

PAUSE

ASSIGN

Beginning of DO

Arithmetic
assignment statement

End of DO ' IF'

Arithmetic IF

Relational IF

CALL

I/O or NAMELIST list
item

NAMELIST

END

Computed GOTO

I/O unit number

FORMAT (statement
numbers)

253 NAMELIST name
L--------i-----------i--------------------

Appendix B: Intermediate Text 145

Examples of Phase 10 Intermediate Text

An example of each type of phase 10 text (normal, data, namelist, forrr~t, and SF
skeleton) is presented below. For each type, a source language statement is first given.
This is followed by the phase 10 text representation of that statement.

The phase 10 normal text representation of the arithmetic statement 100 A
/ E is illustrated in Figure 48.

r-----------------T-----------------T-----------------T----------------T----------------1
I Adjective I I I I I
I Code I Chain I Mode I Type I Pointer I
~-----------------+-----------------+-----------------+----------------+----------------1
I statement I I I I I
I number I I Statement I I I

c:J:---~:~~~~:~~~----t-----------------t----~~~~:~-------i---~------------t~=~~--------~
I Arithmetic I I Real I Scalar1 I ~A I

L:t-----------------+-----------------+-----------------+----------------+----------------1
-1 = I I Real I Scalar1 I ~B I

L:J"-----------------+-----------------+-----------------+----------------+----------------1
I + I I Real I Scalar1 I ---. c I

LOJ"-----------------+-----------------+-----------------+----------------+----------------1
I * I I Real I Scalar1 I ---. D I

c=;f-----------------+-----------------+-----------------+----------------+----------------1
I / I I Real I Scalar1 I --.E I

c=F-----------------+-----------------+-----------------+----------------+----------------1
-I I To next normal I I I I

I End mark2 I text entry I 0 I 0 I ISN3 I
""" ~ + +-----------------+----------------+----------------~

I 1 word I 1 word I 1 word I 1 word I 1 word I
~-----------------i _________________ i _________________ ~----------------~----------------1
I 1 Nonsubscripted variable. I
I 2 0perator of the special text entry that signals the end of the text representation I
I of a source statement. I
I 3 Compiler generated sequence number used to identify each source statement. I
L---J
Figure 48. Phase 10 Normal Text

146

The phase 10 data ~text representation of
A,B/2.l,3HABC/,C,D/l.,l./ is illustrated in Figure 49.

the DATA statement DATA

r-----------------T-----------------T-----------------T----------------T----------------1
I Adjective I I I I l
I Code I Chain I Mode I Type I Pointer I
~-----------------+-----------------+-----------------+----------------+----------------~
I l I I I To text for 1
I I l I 1--..next DATA h

c:l------~~=~--------t-----------------t------~----------t---~------------t----~~~=:~:~=---1 :
c=J-----------------+-----------------+-----------------+----------------+----------------~ +

I 0 I I Real I Scalar I _..,A I
L::J-----------------+-----------------+-----------------+----------------+----------------1

I , I l Real I Scalar I __. B I
c=J"--~--------------+-----------------+-----------------+----------------+----------------~

I / I I Real I Constant I --. 2.1 I
c::;F-----------------+-----------------+-----------------+----------------+----------------1

I , I I Literal I Constant I ---. 3HABC I
IJ ----- +-----------------+-----------------+----------------+----------------1
I / I I Real I Scalar I --+ C I
IJ-----------------f-----------------+-----------------+----------------+----------------1
I , I I Real I Scalar I __.., D I
q / t t------;~~1-------t---~~~~~~~~-----t--=;1~----------1
~ , f 0 t------;~~1-------t---;~~~~~~~-----t-~1~----------1

~-----------------+-----------------+-----------------+----------------+----------------1
I 1 word I 1 word I 1 word I 1 word I 1 word I
L-----------------L-----------------L-----------------L----------------L----------------J
Figure 49. Phase 10 Data Text

Appendix B: Intermediate Text 147

The phase 10 namelist text representation of the NAMELIST statement NAMELIST
/NAME1/A,B,C/NAME2/D,E,F/NAME3/G where A and F are arrays is illustrated in Figure SO.

r-----------------T-----------------T-----------------T-----------T---------------------1
I Adjective I I I I I
I Code I Chain I Mode I Type I Pointer I
~-----------------+-----------------+-----------------+-----------+---------------------~
I NAMELIST I I NAMELIST I 0 I -----. NAME1 I

I]------------------+-----------------+-----------------+-----------+---------------------~
-. I I I 0 I 0 I To text for I

I I I I I----. next NAMELIST
I I I I I block I
q-----------------+-----------------+-----------------+-----------+---------------------~

LIST I I Real I Array I ---+ A I
L-4 LIST t t------;~~l-------t---~~~l~~--t-~-~--------------1
q f- + ------------+-----------------+-----------+---------------------~

LIST I 0 I Real I Scalar I ---+ C I
~-----------------+-----------------+-----------------+-----------+---------------------~
I NAMELIST I I NAMELIST I 0 I ---+ NAME2 I

IJ + +-----------------+-----------+---------------------~
~ I I I 0 I 0 I To text for

I I I I I ---+ next NAMELIST I
I I I I I block

g LIST -r t------;~~l-------t---~~~l~~--t-===:-~--------------1
L=-f LIST t t------;~~l-------t---~~~l~~--t-==-.=--~--------------1
11" +- -----------+-----------------+-----------+---------------------1
~ LIST I 0 I Real I Array I ______., F I

~-----------------+-----------------+-----------------+-----------+---------------------1
I NAMELIST I I NAMELIST I 0 I ---+ NAME3 I

Li{ / t t------0----------t---0-------t------;~-~~~~-f~~----1

I I I I I -----. next NAl"VlELIST I
I I I I I statement h

L=-f LIST t 0 t------;~~l-------t---~~~l~~--t-===:-~--------------1 :
~-----------------+-----------------+-----------------+-----------+---------------------~ I
I 1 word I 1 word I 1 word I 1 word I 1 word I t L-----------------i _________________ i _________________ i ___________ i _____________________ J

Figure 50. Phase 10 Namelist Text

148

The phase 10 format text representation of the FORMAT statement 5 FORMAT
(2HOA,A6//5X,3CI4,E12.5,3F12.3,'ABC')) is illustrated in Figure 51.

r-----------------T-----------------T-----------------T----------------T----------------1
I Pointer I I I I I
I Code I Chain I Mode I Type I Pointer I
~-----------------+-----------------+-----------------+----------------+----------------1
I Statement ·I I I I I
I number I I Statement I I I
I definition I I number I 0 I 5 I

q f-----------------+-----------------+-----------------+----------------+----------------1
I I I I To text for I

I I I I I next FORMAT ~
I FORMAT I I 0 I 0 I statement I

1:~-----------------f-----------------t-----------------t----------------t----------------i I
~ (2HO I A,A6 I //SX I ,3(I I 4,El I I

~-----------------t-----------------t-----------------t----------------t----------------i I
I 2. 5 I I 3F12 I . 3 I • I ABC. I)) $ 1 I +
~-----------------+-----------------+-----------------+----------------+----------------i
I 1 word I 1 word I 1 word I 1 word I 1 word I
~-----------------i-----------------i-----------------i----------------~----------------1
I 1 Group mark. I
L---J
Figure 51. Phase 10 Format Text

The phase 10 SF skeleton text representation of the statement function ASF CA,B,C)
A+D*B*E/C is illustrated in Figure 52.

r-----------------T-----------------T-----------------T----------------T----------------1
I Adjective I Chain I Mode I Type I Pointer I
I Code I I I I I
~-----------------+-----------------+-----------------+----------------+----------------i
I < I I o I o I 1 I

I:~ + ---------------+-----------------+----------------+----------------i
--i + I I Real I Scalar I ---.. D I
Ii" + +-----------------+----------------+----------------i
..___, * I I o I o I 2 I
L04-----~ -t-----------------t------;~~1-------t---~~~i~~-------t-==::-;-----------1
i=~ + +-----------------+----------------+----------------i
I/ I Io 10 I 3 I
L04 t t-----------------t----------------t----~~b~~-~f---1

I I I I I dummy I
I I I 0 I 0 I arguments I

L04- End mark t 0 t------O----------t---O------------t----0-----------1
~-----------------+-----------------+-----------------+----------------+----------------i
I 1 word I 1 word I 1 word I 1 word I 1 word I
L-----------------i-----------------i-----------------i----------------i----------------l
Figure 52. Phase 10 SF Skeleton Text

Appendix B: Intermediate Text 149

PHASE 15/PHASE 20 INTERMEDIATE TEXT
MODIFICATIONS

During phase 15 and phase 20 text proc
essing, the intermediate text entries are
modified to a form more suitable for opti
mization and object-code generation. The
intermediate text modifications made by
each phase are discussed separately in the
following paragraphs.

PHASE 15 INTERMEDIATE TEXT MODIFICATIONS

The intermediate text input to phase 15
is the intermediate text created by phase
10. The intermediate text output of phase
15 is an expanded version of phase 10
intermediate text. The intermediate text
output of phase 15 is divided into four
categories:

• Unchanged text
• Phase 15 data text
• statement number text
• Standard text

Unchanged Text

The unchanged text is the phase 10
normal text that is not processed by phase
15. Unchanged text is passed on to subse
quent phases in phase 10 format with but
one modification: the contents of the oper
ator and chain fields are switched.

Phase 15 Data Text

To facilitate the assignment of initial
data values to their associated variables,
phase 15 converts the phase 10 data text
for DATA statements to phase 15 data text,
which is in variable-constant f orrnat. The
format of the phase 15 data text entries is
illustrated in Figure 53.

r---1
I Indicator field Cl word) I
~---1
I Chain field Cl word> I
~---1
I Pl field Cl word> I
~---1
I P2 field Cl word) I
~-----------~-----------------------------~
I Offset field Cl word) I
~---1
I Number field (1 word) I
L---J
Figure 53. Format of Phase 15 Data Text

Entry

Indicator Field: The indicator field indi
cates the characteristics of the initial
data value (constant) to be assigned to the
associated variable. This field is con
tained in a full word, the high-order three
bytes of which are not used. The indicator

150

field is divided into eight subfields, each
of which is one bit long. The bits are
numbered from O through 7. Figure 54
indicates the function of each subfield in
the indicator field.

r---~--------T----------------------------1

I Subfield I Function I
~------------+----------------------------~
I Bit O I not used I
~------------+----------------------------1
I Bit 1 I not used I
·------------+----------------------------1
I Bit 2 I not used I
~------------+----------------------------1
I Bit 3 I not used I
·------------+----------------------------1
I Bit 4 'on' I initial data value is nega-1
I I tive constant I
·------------+----------------------------1
I Bit 5 'on' I initial data value is al
I I Hollerith constant I
~------------+----------------------------1
I Bit 6 'on' I initial data value is inl
I I hexadecimal f orrn I
~------------+----------------------------1
I Bit 7 'on' I data table entry is sixl
I I words long <variable is anl
I I array element) • I
L------------i----------------------------J
Figure 54. Function of Each Subfield in

Indicator Field of Phase 15
Data Text Entry

Chain Field: The chain fiela is used to
m~intain linkage between the various phase
15 data text entries. It contains a point
er to the next such entry.

Pl Field: The Pl field contains a pointer
to the dictionary entry for the variable to
which the initial data value is to be
assigned.

P2 Field: The P2 field contains a pointer
to the dictionary entry for the initial
data value (constant) which is to be
assigned to the ass-ociated variable.

Off set Field: The off set field contains
the displacement of the subscripted varia
ble from the first element in the array
containing that variable. If the variable
to which the initial data value is to be
assigned is not subscripted, this f ielu
does not exist.

Number Field: The number field contains an
indication of the number of successive
items to which the initial data value is to
be assigned. If the initial data value is
not to be assigned to more than one item,
this field does not exits.

Statement Number Text

The statement number text is an expanded
version of the phase 10 intermediate text
created for statement numbers. It is
expanded to provide additional fields in
which statistical information about the
text block associated with the statement
number is stored. The format of statement
number text entries is illustrated in Fig
ure 55.

r---1
I Chain field Cl word> I
~---~
I Operator field Cl word) I
~-----------~-----------------------------1
I Pl field Cl word> I
~---1
I Block size field Cl word) I
~---~
I Indicator field Cl word) I
~---1
I BLKEND field Cl word)j
~---~
I Use vector field (MVF) (4 words> I
~---1
I Definition vector field CMVS) (4 words> I
~---1
I Busy-on-exit (4 words>!
I Vector field CMVX) I
L---J
Figure 55. Format of Statement Number Text

Entry

Chain Field: The chain field is used to
maintain the linkage between the various
intermediate text entries. It contains a
pointer to the next text entry.

Operator Field: The operator field con
tains an internal operation code (numeric>
for a statement number definition (see
Table 25).

Pl Field: The Pl field contains a pointer
to the statement number/array table entry
for the statement number.

Block Size Field: The block size field
contains the number of text entries within
the block (started by the statement number
for which the current text entry is made).

Table 25. Phase 15/20 Operators
r--------T-----------T--------------------1
I I Mnemonic I I
!Code Cini <where I I
ldecimal>lapplicable>I Meaning I
~--------+-----------+--------------------1

1 .NOT. NOT I

2 u

4 .AND.

5

6 .OR.

8 ST

9

10 +

11

12 *
13 /

14 LA

15 EXT

16 BG

17 BL

18 BNE

19 BGE

20 BLE
I
I

21 I BE
I

22 I SUB
I

23 I LIST
I

24 !· BC
I

25 I
I

26 I
I

27 I B
I

28 I BA
I

29 I BBT

Unary minus

AND

Right parenthesis

OR

Store

Argument

Plus

Minus

Multiply

Divide

Load address

External function or
subroutine CALL

Branch greater than

Branch less than

Branch not equal

Branch greater than
or equal

Branch less than or
equal

Branch equal

Subscript

I/O list

Branch computed

Left parenthesis

End mark

Branch

Branch assigned

Branch bit true ________ i ___________ i ___________________ _

(Continued)

Appendix B: Intermediate Text 151

Table 25. Phase 15/20 Operators (Cont.)
r--------T-----------T--------------------1
I f Mnemonic I I
fCode Cinf Cwhere I I
fdecimal>lapplicable>I Meaning I
~--------+-----------+--------------------~

I
30 BBF Branch bit false I

31 LBIT Logical value 0f bit

32 BGZ

33 BLZ

34 BNEZ

35 BGEZ

36 BLEZ

37 BEZ

39 NMLS

41 BF

42 BT

43 LDB

44 LIBF

45 RS

46 LS

47 BXHLE

50 LE

51 GE

52 EQ

53 LT

54 GT

55 NE

56 MAX2

57 MIN2

58 DIM

Branch greater than
zero

Branch less than
zero

Branch not equal
zero

Branch greater than
or equal zero

Branch less than or
equal zero

Branch equal to zero

NAMELIST

Branch false

Branch true

Load byte

Library function
call

Right shift

Left shift

Branch on index

Less than or equal

Greater than or
equal

Equal

Less than

Greater than

Not equal

MAX2 in-line routine

MIN2 in-line routine

DIM in-line routine

59 IDIM IDIM in-line routine

I

________ i ___________ i ____________________ j

(Continued)

152

Table 25. Phase 15/20 Operators (Cont.)
r--------T-----------T--------------------1
I I Mnemonic I I
!Code CinlCwhere I I
Jdecimal>lapplicable>I Meaning I
~--------+-----------+--------------------~

I
60 DMOD DMOD in-line routine!

I
61 MOD MOD in-line routine I

I
62 AMOD AMOD in-line routine!

I
63 DSIGN DSIGN in-line rou- I

tine I
I

64 SIGN SIGN in-line routine

65 ISIGN

66 DABS

67 ABS

68 IABS

69 ID INT

71 INT

72 HFIX

73 IFIX

74 DFLOAT

75 FLOAT

76 DBLE

77 BI TON

78 BITOFF

79 BITFLP

80 ANDF

81 ORF

82 COMPL

83 MOD24

84 LCOMPL

I

ISIGN in-line rou
tine

DABS in-line routine

ABS in-line routine

IABS in-line routine

IDINT in-line rou
tine

INT in-line routine

HFIX in-line routine

IFIX in-line routine

DFLOAT in-line rou
tine

FLOAT in-line rou-
tine

DBLE in-line routine!
I

BITON in-line rou- I
tine I

I
BITOFF in-line rou- I
tine I

I
BITFLP in-line rou- I
tine I

ANDF in-line routine

ORF in-line routine

COMPL in-line rou
tine

MOD24 in-line rou
tine

LCOMPL in-line rou-
tine

I

L--------i-----------i--------------------
(Continued)

Table 25. Phase 15/20 Operators (Cont.)
r--------T-----------T--------------------1
I I Mnemonic I I
ICode Cini Cwhere I I
ldecimal)japplicable>I Meaning I
~--------+-----------+--------------------~

I I
85 SHFTR ISHFTR in-line rou- I

I tine I
I I

86 SHFTL ISHFTL I
I I

100 LR Load register Cphasel
20 only) I

I
101 RC Restore main storage

102 RR

103

193

200

201

202

205

208

209

210

211

213

214

215

216

217

218

219

220

221

222 LDF

223 GLDF

(phase 20 only)

Restore register
(phase 20 only>

Register usage
(phase 20 only)

BLOCK DATA

COMMON

EQUIVALENCE

EXTERNAL

DATA

FUNCTION

FORMAT

END I/O

CONTINUE

Object time FORMAT

BACKSPACE

REWIND

END FILE

WRITE unformatted

READ unformatted

WRITE forma.tted

READ formatted

Begin I/O

Statement number
definition

Generated statement
number definition

________ i ___________ i ___________________ _

(Continued)

Table 25. Phase 15/20 Operators (Cont.)
r--------T-----------T--------------------1
I I Mnemonic I I
!Code CinlCwhere I I
ldecimal>lapplicable) I Meaning I
~--------+-----------+--------------------~

I I
22 4 I IMPLICIT I

I I
225 !WRITE using NAMELIST

I
226 IREAD using NAMELIST

I
227 Statement function

230

231

232

233 RET

234 STOP

235

249 END

I/O end-of-file
parameter

I/O error parameter

BLANK

RETURN

STOP

PAUSE

END

251 II/O unit number
________ i ___________ i ____________________ J

Indicator Field: The indicator field is
contained in a full word, the high-order
three bytes of which are not used. This
field indicates some of the characteristics
of the text entries in the associated
block. The indicator field contains eight
subfields, each of which is one bit long.
The subfields are numbered 25 through 32.
Figure 56 indicates the function of each
subfield in the indicator field.

r-------------T---------------------------1
I Subfield I Function I
~-------------+---------------------------~
I Bits 25-28 I not used I
~-------------+---------------------------1
I Bit 29 'on' I associated block contains!
I I an I/O operation I
~-------------+---------------------------~
I Bit 30 'on' I associated block contains!
I I a reference to a library!
I I function I
~-------------+---------------------------~
I Bit 31 I not usea I
~-------------+---------------------------~
I Bit 32 'on' I associated block contains!
I I an abnormal function ref-I
I I erence I
l _____________ i ___________________________ J

Figure 56. Function of Each Subfield in
Indicator Field of Statement
Number Text Entry

Appendix B: Intermediate Text 153

BLKEND Field: The BLKEND field contains a
pointer to the last intermediate text entry
within the block.

Use Vector Field CMVF): The use vector
field is used to indicate which variables
and constants are used in the associated
block. Variables and constants, as they
are encountered in the module by phase 15,
are assigned a unique coordinate Cl bit) in
this vector field. In general, if the ith
bit is on Cl), the variable or constant
assigned to the ith coordinate is used in
the associated block.

Definition Vector Field (MVS): The defini
tion vector field is used to indicate which
variables are defined in a block. Varia
bles and constants, as they are encountered
by Phase 15, are assigned a unique coordi
nate Cl bit) in this vector field. In
general, if the ith bit is on Cl), the
variable assigned to the ith coordinate is
defined in the associated block.

Busy-on-Exit Vector Field CMVX): The busy
on-exit vector field in phase 15 indicates
which variables are not first used and then
defined within the-- text block (not
busy~on-entry). This field is converted by
phase 20 to busy-on-exit data, which
indicates which operands are busy-on-exit
from the nlock. Variables and constants,
as they are encountered by phase 15, are
assigned a unique coordinate Cl bit) in
this vector field. In general, during
phase 15, if the ith bit is on (1), the
variable assigned to the ith coordinate is
not busy-on-entry to the block. During
phase 20, if the ith bit is on, the
variable or constant assigned to the ith
coordinate is busy-on-exit from the block.

Standard Text

The standard text is
modified form of phase 10
that is more suitable
The format of standard
illustrated in Figure 57.

an expanded and
intermediate text
for optimization.
text entries is

Chain Field: The chain field is used to
maintain the linkage between the various
intermediate text entries. It contains a
pointer to the next text entry.

Operator Field: The operator field con
tains an internal operation code {numeric)
that indicates either the nature of the
statement or the operation to the performed
(see Table 25).

Pl Field: The Pl field contains either a
pointer to the dictionary entry or state
ment nwrber/array table entry for operand 1
of the text entry, or zero (0) if operand 1
does not exist.

154

r---,
I Chain field Cl word) I
~---1
I Operator field Cl word) I
~---1
I Pl field Cl word>I
~---1
I P2 field Cl word) I
~---1
I P3 field Cl word)j
~------T--------T-----T------T-----T------1
I Not IUsed by ID !Not JS !Mode I
I used !phase 20jfieldlused jfieldlfield I
I Cbitsl <bits I Cbit I <bits I Cbit I Cbits I
I o-u 12-13> 114> 11s-2s> 126> 121-31> I
~------+--------i _____ i ______ i _____ i ______ ~
I Not I I
I used I Used by phase 20 I
I Cbitsl Cbits 8-31> I
I 0-1> I I
~------i----------------------------------1
I Displacement field (1 word>I
L---J
Figure 57. Format of a Standard Text Entry

P2 Field: The P2 field contains either a
pointer to the dictionary entry for operand
2 of the text entry, a pointer to an IFUNTB
entry, or zero CO) if operand 2 does not
exist.

P3 Field: The P3 field contains either a
pointer to the dictionary entry for operand
3 of the text entry, a pointer to a
parameter list in the adcon table, an
actual constant {for shifting operations),
or zero (0) if operand 3 does not exist.

D Field: The D field only has meaning for
division operations. A setting of O signi
fies division, and indicates that the quo
tient is to replace operand 1. A setting
of 1 signifies a MOD operation, and indi
cates that the remainder is to replace
operand 1.

s Field: The S field indicates whether or
not a text entry is involved in a subscript
computation. (If the s bit is on (1), the
text entry is part of a subscript computa
tion.>

Mode Field: The mode field indicates the
general mode of the expression and the mode
of the operands. The bits are set by phase
15. The meanings of the bits in the mode
field are given in Table 26.

Displacement Field: The displacement field
appears only for subscript and load address
text entries; it contains a constant dis
placement Cif any) computed from constants
in the subscript expression.

Table 26. Meanings of Bits in Mode Field of Standard Text Entry
r-----------T---------T---1
I Mode I Bits I Meaning I
~-----------+---------+---1
I general I 27-28 I 00 - logical I
I I I 01 - integer I
I I I 10 - real I
~-----------+---------+---1
I operand 11 29 I 0 - short mode(logical*l, integer*2, real*4) I
I I I 1 - long mode Clogical*4, integer, real*8) I
~-----------+---------f---1
I operand 21 30 I 0 - short mode (logical*l, integer*2, real*4) I
I I I 1 - long mode Clogical*4, integer, real*8) I
~-----------+---------+---1
I operand 31 31 I 0 - short mode Clogical*l, integer•2, real*4) I
I I I 1 - long mode Clogical*4, integer, real*8) i
L-----------L---------L---J

PHASE 20 INTERMEDIATE TEXT MODIFICATION

The intermediate text input to phase 20 is the output text from phase 15. 'I'he
intermeaiate text output of phase 20 is of the same form as the standard text output of
phase 15. The format of the phase 20 output text is illustrated in Figure 58.

Rl, R2, and R3 Fields: The Rl, R2, and R3 fields (each is 4 bits long) are filled in by
phase 20 during register assignment, and are referred to by phase 25 during the code
generation process. The assigned registers are the operational registers for operand 1,
operand 2, and operand 3, respectively.

Bl, B2, and B3 Fields: The Bl, B2, and B3 fields Ceach is 4 bits long) are filled in by
phase 20 during register assignment, and are referred to by phase 25 during the code
generation process. The assigned registers are the base registers for operand 1, operand
2, and operand 3, respectively.

Status Field: The status field is composed of 12 bits that are set by phase 20 to
indicate the status of the operands and the status of the base addresses of the operands
in a text entry. The information in the status field is used by phase 25 to determine
the machine instructions that are to be generated for the text entry. The status field
bits and thei+ meanings are illustrated in Table 27.

r---1
I Chain field 1 Cl word) I
~---1
I Operator field 1 Cl word) I
~---1
I Pl field 1 { 1 word) I
~---1
I P2 field 1 Cl word) I
~---1
I P3 field 1 Cl word) I
~----------T----------------T------------T----------------T------------T----------------1
!Not used I Status field I D field1 I Not used I s field1 I Mode field1 I
!<bits 0-1> I Cbits 2-13> I Cbit 14> I <bits 15-25> I <bit 26> I <bits 21-31> I
t----------+-----------T----L-------T----L-------T--------L---T--------L---T------------1
jNot used I Rl field I Bl field I R2 field I B2 field I R3 field I B3 field I
I <bits 0-1> I <bits s-11> I <bits 12-1s> I <bits 16-19> I <bits 20-23> I Cbits 24-27> I <bits 28-31> I
~----------L-----------L------------L------------L------------L------------L------------~
I Displacement field1 Cl word) I
~---1
11The chain field, mode field, operator field, Pl field, P2 field, P3 field, D field, S I
I field, and displacement field are as defined in a phase 15 standard text entry. I
I (Phase 20 does not alter these fields.) I
L---J
Figure 58. Format of Phase 20 Text Entry

Appendix B: Intermediate Text 155

Table 27. status Field Bits and Their Meanings
r--------------------r-----------r--1
I Operand/ I I I
I Base Address I Bit I Meaning I
~--------------------+-----------+--~
I I 2 I O - base address in storage I
I Operand 2 I I 1 - base address in register I
I base address I I I
I status I 3 I 0 do not retain base address in register I
I I I 1 - retain base address in register I

~--------------------+-----------+--1
I I 4 I 0 - base address in storage I
I Operand 3 I I 1 - base address in register I

I base address I I I
I status I 5 I 0 do not retain bas~ address in re~ister I
I I I 1 - retain base address in zegister I
~--------------------+-----------+--1
I I 6 I 0 - operand in storage I
I Operand 2 I I 1 - operand in register I

I status I I I
I I 7 I 0 - do not retain operand in register I
I I I 1 - retain operand in register I
~--------------------+-----------+--1
I I 8 I 0 - operand in storage I
I Operand 3 I I 1 - operand in register I
I status I I I
I I 9 I O - do not retain operand in registtr I
I I I 1 - retain operand in register I
~--------------------+-----------+--~
I I 10 I 0 - base address in storage I
I Operand 1 I I 1 - base address in register I
I base address I I I
I status I 11 I 0 - do not retain base address in register I
I I I 1 - retain base address in register I
~--------------------+-----------+--1
I I 12 I 0 - generate store into operand 1 I
I Operand 1 I I 1 - do not generate store into operand 1 I
I status I I I
I I 13 I - not used I
l ____________________ i ___________ i __ J

STANDARD TEXT FORMATS RESULTING FROM PHASES 15 AND 20 PROCESSING

The following formats illustrate the standard text entries developed by
phase 20 for the various types of operators. When the fields of the
differ from the standard definitions of the fields, the contents of the
explained. In addition, notes that explain the types of instructions
phase 25 are also included to the right of the text entry format, when
For an explanation of the individual operators see Table 25.

156

phase 15 and
text entries
fields are

generated by
appropriate.

Branch Operator CB)

r---1
!Chain Cl word>I
~------------------~----------------------i
!Branch operator Cl word> I
~---i
IPl Cl word> I
~---i
I Cl word) I
~---i
I Cl word>I
~----------y---------y-T---------T-T------i
I I Stat us I I I I I
~----------ir----y---iri ___ T----1i-i-T----i
I I I I I I I I
L-----------i----i----i----i----i----i----J

Logical Branch Operators (BT, BF)

r---1
IChain Cl word>I
·---i
!Logical branch operator Cl word> I
·---i
IPl Cl word>I
·---i
IP2 Cl word> I
·---i
I Cl word>I
·----------y---------T-,---------T-T------i
I I Status I I I I Mode I
•----------ir----T---ir~---y----,i-i-T----i
I I I I R2 I B2 I I I
L-----------i----i----i ____ i ____ i ____ i ____ J

Binary Operators (+, - *,, / 1 OR, and AND)

r---1
JChain Cl word>I
·---i
!Binary operator Cl word> I
·---i
IPl Cl word>I
·---i
IP2 Cl word> I
·----~------------------------------------i
IP3 Cl word>I
·----------T---------T-,---------T-T------i
I I Status 101 I I Mode I
~----------ir----T---ir~---T----,i-i-T----i
I I Rl I Bl I R2 I B2 I R3 I B3 I
L-----------i----i-___ i ____ i ____ i ____ i ____ J

Pl: The Pl field contains a pointer to tHe
statement number/array table ~ntry for the
statement number branched to.

Note: Phase 25 decides if an RR or an RX
branch instruction should be generated.

Pl: The Pl field contains a pointer to the
statement number/array table entry for the
statement number being branched to.

P2: The P2 field contains a pointer to the
dictionary entry for the logical variable
being tested.

Note: The test of the logical variable
will be done with a BXH or BXLE for BT and
BF, respectively.

Appendix B: Intermediate Text 157

Test and Set Operators (GT, LT, GE, LE, EQ, and NE)

r---1
!Chain Cl word) I
~---~
!Test and set operator Cl word> I
~---1
IPl Cl word> I
~---1
I P2 Cl word) I
~---~
jP3 Cl word) I
~----------T---------T-1---------T-T------1
I I Status I I I I Mode I
~----------ir----T---irl ___ T ____ 1i-i-T----~
I i Rl I Bl I R2 I B2- l R3 I B3 I
l ___________ i ____ i ____ i ____ i ____ i ____ i ____ J

In-line Functions CMAX2, MIN2, DIM, IDIM, DMOD, MOD, AMOD, DSIGN, SIGN, ISIGN, LAND, LOR,
LCOMPL, IDIM, BITON, BITOFF, AND, OR, COMPL, MOD24, SHFTR, and SHFTL)

r---1
!Chain Cl word) I
~---1
!Function Operator Cl word> I
~---1
IPl Cl word> I
~---~
IP2 Cl word) I
~---1
IP3 Cl word) I
~----------T---------T-1---------T-T------~
I I Status IDI I I Mode I
~----------ir----T---irJ ___ T ____ ,i_L_T----1
I I Rl I Bl I R2 I B2 I R3 I B3 I
l ___________ i ____ i ____ i ____ i ____ i ____ i ____ J

Testing a Byte Logical Variable CLDB)

r---1
!Chain Cl word> I
~---1
ILDB operator Cl word> I
~---~
IP1 Cl word> I
~---1
I P2 Cl word) I
~---~
I Cl word) I
~----------T---------T-,---------T-T------1
I I Status I 1 I I Mode I
~----------Lr----T---irJ ___ T ____ ,i_i_T----1
I I Rl I I R 2 I I R3 I B 3 I
l ___________ i ____ i ____ i ____ i ____ i ____ i ____ J

158

Note: The LDB operator is used to load a
register with a byte logical variable.

Branch on Index Low or Equal, or Branch on Index High

r---------------------------------1
I Chain (1 word> I
~---------------------------------i
I Add operator (1 word) I
~---------------------------------i
I Pl Cl word> I
~---------------------------------i
I P2 (1 word) I Text
~---------------------------------i Entry 1
I P3 Cl word) I
~--T---------T-1---------T-T------i
I I Status I I I I I
~--Lr----T---iri ___ T----,i-L-T----i
I I I I R2 I I R3 I B3 I
l ___ i ____ L ____ i ____ i ____ i ____ i ____ J

r---------------------------------1
I Chain (1 word> I
~---------------------------------i
I Branch operator (1 word) I
~---------------------------------i
I Pl Cl word) I
~---------------------------------i
I P2 Cl word) I Text
~---------------------------------i Entry 2
I P3 Cl word) I
~--T---------T-T---------T-T------i
I I Status I 1 I I I
~--Lr----T---irl ___ T----,i-i-y----i
I I I I R2 I I R3 I B3 I l ___ i ____ i ____ i ____ i ____ i ____ i ____ J

Computed GO TO Operator

r---1
I Chain Cl word) I
~---i
!Computed GO TO operator Cl word> I
~---i
I Pl (1 word) I
~---i
IP2 Cl word) I
~---i
IP3 Cl word)I
~----------T---------T-r---------T-T------i
I I Stat us I I I I I
~----------Lr----T---irL ___ T ____ ,L_i_T ____ i
I I I J I B2 I R3 I B3 I
l-----------L----L----i----i----i----L----J

Note: A BXHLE ·instruction will be generat
ed by phase 25 when an add operator is
followed by a branch operator.

Pl and P2 of text entry 1 equals P2 of
text entry 2.

Pl: The Pl field of text entry 2 contains
a-pointer to the statement number/array
table entry for the statement number being
branched to.

Pl: Pl contains the number of items in the
branch table that are associated with the
computed GO TO operator.

P2: P2 contains a pointer to the informa
tion table entry for the branch table.

P3: P3 contains a pointer to the indexing
value for the computed GO TO statement.

Appendix B: Intermediate Text 159

Branch Operators (BL, BLE, BE, BNE, BGE, BG, BLZ, BLEZ, BEZ, BNEZ, BGEZ, and BGZ)

r---1
I Chain Cl word) I
~---~
!Branch operator (1 word) I
~--------------------------· ----------------1
I Pl (1 word) I
·---1
IP2 (1 word) I
~---~
IP3 (1 word> I
~----------T---------T-,---------T-T------1
I I St:::ttus I I I I Mode I
~----------ir ____ T ___ irJ ___ T ____ 1i_i_T ____ ~
I I I I R2 I B2 I R3 I B3 I L-----------L ____ i ____ L ____ i ____ i ____ i ____ J

Binary Shift Operators (RS, LS)

r---1
IChain (1 word)I
·---1
IBinary shift operator Cl word> I
~---~
IPl Cl word>I
·---1
I P2 Cl word} I
~---~
!Shift quantity Cl worri>I
~----------T---------T-1---------T-T------~
I I Status I I I I Mode I
~----------ir ____ T ___ irJ ___ T ____ 1i_i_T ____ ~
I I I I R2 I B2 I R3 I B3 I
L-----------i ____ i ____ i ____ i ____ i ____ i ____ J

Load Address Operator CL~)

r---1
!Chain Cl word) I
~---1
jLoad address operator Cl word} I
·---1
IPl Cl word>I
~---~
IP2 Cl word>I
~---~
IP3 Cl word) I
~----------T---------T-1---------T-T------~
I I Status I 1 IS I Mode I
~----------ir ____ T ___ ir~---T----1i_i_T ____ ~
I I Rl I I R2 I I R3 I B3 I
~-----------i ____ i ____ i ____ i ____ i ____ i ____ ~

!Displacement Cl word>!
L---J

160

Pl: The Pl field contains a pointer to tne
statement number/array table entry for the
statement number being branched to.

Note: Operands 2 and 3 IrtUSt be compared
before the branch. Fer the BLZ, BLEZ, BEZ,
BNEZ, BG~Z, and BGZ operators, operand 3 is
zero and a test on zero is generated.

Note: The purpose of the load aaaress
operator is to store an address of an
element of an array in a parameter list.
The Pl field defines the parameter list.

Subscript Text Entry - Case 1

r---1
!Chain Cl word>I
~---~
I Subscript operator Cl word) I
~---~
I Pl Cl word) I
t---~
IP2 (1 word>I
t---~
IP3 Cl word>I
t----------T---------T-T---------T-T------~
I I Stat us I I I SI Mode I
t----------ir----T---iri ___ T ____ ,i_L_T----1
I I Rl I Bl I R2 I B2 I R3 I B3 I
~-----------i ____ i ____ i ____ i ____ i ____ i----~

!Displacement Cl word>I
l ___ J

Subscript Text Entry - Case 2

r---1
!Chain (1 word) I
t---1
!Subscript operator Cl word) I
~---~
I (1 word) I
t---1
I P2 U word) I
t---1
IP3 (1 word)I
~----------T---------T-T---------T-T------~
I I Status I I ISi Mode I
t----------ir----T---iri ___ T ____ ,i_i_T----1
I I I I I B2 I R3 I B3 I
t-----------i----i----i----i----i----i----~
!Displacement Cl word) I
l---J

P2: The P2 field contains a pointer to the
dictionary entry for the variable being
indexed.

P3: The P3 field contains a pointer to the
dictionary entry for the indexing value.

Note: For Case 2 subscript text entries,
the subscript text entry is combinea with
the next text entry to form a single RX
instruction. (Case 2 will be formed by
phase 15 only when the second text entry
has the store operator. Phase 20 will
change Case 1 text entries to Case 2 text
entries when appropriate.)

Pl is zero and either P2 or P3 of the
next text entry will be zero.

In-line routines (DABS, ABS, IABS, IDINT, INT, HFIX, DFLOAT, FLOAT, DBLE)

r---1
!Chain (1 word) I
t---1
!Operator Cl word) I
~---1
!Pl Cl word) I
~---~
IP2 (1 word) I
t---1
I Cl word>!
t----------T---------T-T---------T-T------~
I I Status I I I I Mode I
~----------ir----T---iri ___ T ____ ,i_i_T----1
I I Rl I Bl I R2 I B2 I I I
l ___________ i ____ i ____ i ____ i ____ i ____ i ____ J

Appendix B: Intermediate Text 161

EXT, and LIBF Operators

r---1
I Chain (1 word) I
~---1
!Operator (1 word>!
t---1
!Pl Cl word>!
t---~
IP2 Cl word>!
t---1
IP3 Cl word>!
t----------T---------T-1---------T-T------~
I I Status I I I I I
t----------ir----T---..Lr~---T----,i-i-T----1
I I Rl I Bl I I I I I L ___________ .,L ____ .,L ____ .,L ____ .,L ____ .,L ____ .,L ____ J

Arguments for Functions and Calls

r---1
!Chain Cl word> I
t---~
!Argument operator Cl word> I
t---~
IPl Cl word)I
t---1
IP2 Cl word>I
t---~
IP3 (for complex) Cl word> I
~----------T---------r-T---------T-T------1
I l I I I l I
t----------..Lr----T---L,..L---T----,..L-i-T----1
I I I I I I I I
L-----------i----i----i----i----i ____ .,L ____ J

Pl: Pl is zero for the EXT operator of a
subroutine call.

P2: The P2 field contains either a pointer
to the dictionary entry for an external
function or a subroutine name, or a pointer
to the IFUNTB entry for a library function.

P3: The P3 field contains either zero or a
symbolic register number and a displacement
that points to the object-time parameter
list of the external function, library
function, or subroutine.

Note: No registers are needed for this
type of text entry.

For calls and ABNORMAL functions, Pl
P2. For NORMAL functions and library func
tions, Pl = 0.

See the next text entry for the case of
complex statements.

Special Argument Text Entry for Complex Statements

r---1
!Chain Cl word) I
t---~
!Argument operator Cl word) I
t---~
!Pl Cl word) I
t---~
I Cl word) I
t---1
I (1 word) I
t----------T---------T-,---------T-T--~---~
I I Status I I I I I
t----------..Lr----T---..Lr~---T----,..L-..L-T----~
I I Rl I Bl I I I I I
L-----------i ____ .,L ____ ..L ____ .,L ____ .,L ____ i ____ J

162

Note: For complex statements, the first
text entry of the argument list contains
the register information for the imaginary
part of the complex result.

Assigned GO TO Operator (BA)

r---1
!Chain Cl word) I
~---i
!Assigned GO TO operator Cl word) I
t---i
I · Clword)j
t---i
jP2 Cl word)j
t---i
I Cl word)!
t----------T-----------T-T-------T-T------i
I I Status I I I I I
t----------ir----T----1i-~-T----1L-L-T----i
I I I I R2 I B2 I I I
L-----------i----L----i ____ i ____ i ____ i ____ J

READ/WRITE Operators for I/O lists

READ

r---1
!Chain Cl word)!
t---i
!READ operator Cl word)I
~---i
jPl Cl word)!
~---i
I Cl word) I
t---i
IP3 Cl word)!
~----------T-----------T-T-------T-T------i
I I Stat us I I I I I
~----------Lr----T----1i-L_T ____ ,L_i_T----i
I I Rl I Bl I I I I I
L-----------L----L----L----L----i ____ i ____ J

WRITE

r---1
!Chain Cl word)j
~---i
!WRITE operator Cl word>I
~---~
I Cl word) I
~---i
IP2 Cl word)j
t---i
IP3 Cl word)j
t----------T-----------T-r-------T-T------i
I I Status I I I I I
t----------ir----T----1i-L-T----1L-i-T----i
I I Rl I Bl I I I I I
L ___________ i ____ L ____ i ____ i ____ i ____ i ____ J

P2: The P2 fitld contains a pointEr to the
variable .being used in the assigned GO TO
statement.

Pl: The Pl field contains a pointer to the
I/O list for the READ statement.

Note: If the P3 field contains a zero, an
entire array is being read. This causes a
different instruction sequence to be gener
ated.

P2: The P2 field contains a pointer to the
I/O list for the WRITE statement.

Note: If the P3 field contains a zero, an
entire array is being written. This causes
a different instruction sequence to be
generated.

Appendix B: Intermediate Text 163

Logical Branch Operators (BBT, BBF)

r---1
!Chain Cl word> I
~---~
!Logical Branch Operator Cl word> I
t---i
IPl (1 word>I
~---i
IP2 Cl word> I
~---i
IP3 (1 word>I
~----------T---------T-,---------T-T------i
I I Status I I I I Mode I
~----------ir----T---ir~---T----,L-i_T ____ i
I I Rl I I I B2 I I I
L-----------L----i----i----i----i----L----J

LBIT Operator

r---1
IChain Cl word> I
t---1
jLBIT Operator Cl word> I
~---i
IPl Cl word> I
~---1
IP2 Cl word>I
~---i
IP3 Cl word> I
~----------T---------T-1---------T-T------1
I I Status I I I I Mode I
~----------ir----T---ir~---T----,i-i-T----1
I I I I I B2 I I I
L-----------i----i----i----~----i----i----J

164

Pl: The Pl field contains a pointer to the
statement number/array table entry for the
statement number being branched to.

P2: The P2 field contains a pointer to the
dictionary entry for the logical variable
being tested.

P3: The P3 field contains a pointer to the
dictionary entry for the number of the bit
being tested.

P2: The P2 field contains a pointer to the
dictionary entry for the logical variable
being tested.

P3: The P3 field contains a pointer to the
dictionary entry for the number of the bit
being tested.

The major arrays of the compiler are the
bit strip and skeleton arrays, which are
used by phase 25 during code generation.
The following figures illustrate the bit
strip and skeleton arrays associated with
the operators of text entries that undergo
code generation. The skeleton array for
each operator is illustrated by a series of
assembly language instructions, consisting
of a basic operation code, which is modi
fied to suit the mode of the operands, and
operands, which are in coded form. The
operand codes and their meanings are as
follows:

Bn--base register for operand n

BD--base register used for loading an
operand's base address

Rn--operational register for operand n

x--index register when necessary

To the right of the skeleton array for
an operator is the bit strip array for the
operator. Each bit strip in the bit strip
array consists of a vertical string of O's,
l's, and X's. A particular strip is
selected according to the status informa
tion, which is shown above that strip. For
example, if the combined status of operands
2 and 3 is 1010 (reading downward), the bit
strip below that status is to be used
during code generation: (The status of
operand 2 is indicated in the first two
vertical positions, reading downward; the
status of operand 3 is indicated in the
second two vertical positions, reading
downward1). The meanings of the various
bit settings in each bit strip are as
follows:

0--The associated skeleton array
instruction is not to be included
as part of the machine code
sequence.

1--The associated skeleton array
instruction is to be included as
part of the machine code sequence.

x--The associated skeleton instruc
tion may or may not be included as
part of the machine code sequence,
depending upon whether or not the
associated base address is to be

1 In some cases, operand 3 does not exist
and only the status of operand 2 is indi
cated.

APPENDIX C: ARRAYS

loaded, or whether or not a store
into operand 1 is to be performed.
(In some cases, O's rather than
X's appear for base register loads
and the subject store
instruction.)

MINUS: Used for All subtract Operations
r-----T------------------T----------------1
I I skeleton I I
IIndexl Instructions I Status I
~-----+------------------+----------------1

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2,DCO,BD) XXXXXXXXOOOOOOOO
2 LH R2,DCO,B2) 0000111100000000
3 LH Rl,D(X,B2) 1100000000000000
4 L B3,DCO,BD) XXOOXXOOXXOOXXOO
5 LCR R3,R3 0010001000000010
6 LR Rl,R2 0000110100001101
1 LH R3,D(0,B3) 0100010001000100
8 LCR Rl,R3 0001000000000000
9 SH Rl,D(X,B3) 1000100010001000

10 SR Rl,R3 0100010101110101
11 AH R3,D(X,B2) 0010000000000000
12 AH Rl,D(X,B2) 0001000000000000
13 AR R3,R2 0000001000000010
14 L Bl,DCO,BD) XXX.XXXXXXXXXXXXXI
15 STH Rl,DCO,Bl) XXXXXXXXXXXXXXXXI

L-----L------------------L----------------J

NTFXGN: Used for the INT, IDINT, IFIX, and
HFIX In-Line Routines

r-----T------------------T----------------1
I I I INT, I
I I I IFIX, I
I I Skeleton I HFIX IDINTI
IIndexj Instructions I Status Statusj
~-----+------------------+----------------~

0011 0011
0101 0101

1 SOR 0,0 1111 0000
2 L B2,DCO,BD) XXOO XXOO
3 LD R2,D(0,B2) 0100 0100
4 LD O,D(O,B2) 1000 1000
5 LOR O,R2 0111 0111
6 AW 0,60(0,12) 1111 1111
7 STD 0,64(0,13) 1111 1111
8 L Rl,68(0,13) 1111 1111
9 BALR 15,0 1111 1111

10 BC 10,6(0,15) 1111 1111
11 LNR Rl,Rl 1111 1111
12 L Bl,0(0,BD) XXXX XXXX

I 13 ISTH Rl,D(O,Bl) xxxx xxxx
L-----L------------------i----------------

Appendix C: Arrays 165

ABSGEN: Used for the ABS, !ABS and DABS
In-Line Routines

r---------T--------------------T----------1
I I Skeleton I I
I Index I Instructions I Status I
~---------+--------------------+----------~
I I I 0011 I
I I I 0101 I
I I I I
I 1 I L B2,DC0,BD} I xxoo I
I 2 I LH R2, D (0, B2} I 110 0 I
I 3 I LPR Rl,R2 I 1111 I
I 4 I L Bl , D co I BD} I xx xx I
I 5 I STH Rl,D(O,Bl} I xxxx I
L---------L--------------------L----------J

MOD24: Used for the MOD24 In-Line Routine
r---------T--------------------T----------1
I I Skeleton I I
I Index I Instructions I Status I
~---------+--------------------+----------~
I I I 0011 I
I I I 0101 I
I I I I
I 1 I L B2,DC0,BD} I xxoo I
I 2 I L R2,D(X,B2} I 1100 I
I 3 I LA Rl,O CO,R2} I 1111 I
I 4 I L Bl,DCO,BD} I xxxx I
I 5 I ST Rl,D co ,Bl} I xxxx I
L---------L--------------------L----------J

MXMNGN: Used for the MAX2 and MIN2 In-Line
Routines

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~

00000000111111111
00001111000011111
00110011001100111
01010101010101011

I
1 L B2,DC0,BD} XXXXXXXXOOOOOOOOI
2 LH R2,D{0,B2} 00001111000000001
3 LH Rl,DCO,B2) 11000000000000001
4 CR Rl,R2 00000010000000101
5 CH R3,D(0,B2) 00010000000000001
6 CH Rl,DCO,B2} 0010000000000000
7 L B3,D{0,BD} XXOOXXOOXXOOXXOO
8 LlI R3,DCO,B3} 0100010001000100
9 CR R2,R3 0100010101110101

10 CH R2,D(0,B3} 0000100000001000
11 CH Rl,DCO,B3) 1000000010000000
12 LR Rl,R2 0000110100001101
13 LR Rl,R3 0001000000000000
14 BALR 15,0 1111111111111111
15 BC N,6(0,15) 1 1111111111111111
16 LR Rl,R2 0000001000000010
17 LR Rl,R3 0100010101110101
18 LH Rl,D(0,B2) 0011000000000000
19 LH Rl,DCO,B3) 1000100010001000
20 L Bl,DCO,BD) XXXXXXXXXXXXXXXX
21 STH Rl,D(O,Bl) XXXXXXXXXXXXXXXX

~-----L------------------L----------------~
j 1 For MAX2,N=2; for MIN2,N=4. I
L---J

166

SHFTRL: Used for the SHFTR and SHFTL In-
Line Routines

r-----T------------------T----------------1
I I Skeleton I I
I Index! Instructions I Status I
~-----+------------------+----------------~

00000000111111111
00001111000011111
00110011001100111
01010101010101011

I
1 L B2,DCO,BD) XXXXXXXXOOOOOOOOt
2 L R2,D2CX,B2) 11111111000000001
3 LR Rl,R2 00001111000011111
4 L B3,DCO,BD} XXOOXXOOXXOOXXOOI
5 LH R3,D3CX,B3} 11001100110011001
6 SRL Rl,0(0,R3) 11111111111111111
7 L Bl,0(0,BD} XXXXXXXXXXXXXXXXj
8 ST Rl,DCO,Bl} XXXXXXXXXXXXXXXXI

L-----L------------------L----------------J
DBLGEN: Used for the DBLE In-Line Routines
r---------T--------------------T----------1
I I Skeleton I I
I Index I Instructions I Status I
~---------+--------------------+----------~

I 0011 I
I 0101 I
I I

1 I L B2,DCO,BD) xxoo I
2 I SDR Rl,Rl 1111 I
3 I LER O,R2 0010 I
4 I LE Rl,D(0,B2) 1100 I
5 I LER R2,R1 0100 I
6 I LDR Rl,O 0010 I
7 I L~R Rl,R2 0001 I
8 I L Bl,D(O,BD} xxxx I
9 I STD Rl,DCO,Bl) xxxx I

L---------L--------------------L __________ J

DIMGEN: Used for DIM and IDIM In-Linc
Routines

r-----T------------------T----------------1
I I Skeleton I I
jindexl Instructions I Status I
~-----+------------------+----------------~

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2,DCO,BD) XXXXXXXXOOOOOOOO
2 LH R2,DCO,B2) 0000111100000000
3 LH R1,DCO,B2} 1101000000000000
4 LCR Rl,R3 0010001000000010
5 AH R1,DCO,B2} 0010000000000000
6 L B3,DCO,BD) XXOOXXOOXXOOXXOO
7 LH R3,DCO,B3} 0100010001000100
8 LR R1,R2 0000110100001101
9 SH Rl,DCO,B3) 1000100010001000

10 AR Rl,R2 0000001000000010
11 SR R1,R3 0101010101110101
12 BALR 15,0 1111111111111111
13 BC 10,6(0,15) 1111111111111111
14 SR R1,R1 1111111111111111
15 L Bl,DCO,BD) XXXXXXXXXXXXXXXX
16 STH Rl,D(O,Bl) XXXXXXXXXXXXXXXXI

L-----L------------------L----------------J

SIGNGN: Used for SIGN, !SIGN, and DSIGN
In-Line Routines

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2,D(0,BD) XXXXXXXXOOOOOOOO
2 LH R2,DCO,B2) 0000111100000000
3 LTR R3,R3 0010001000100010
4 LH R1,D(0,B2) 1111000000000000
5 L B3,D(0,BD) XXOOXXOOXXOOXXOO
6 LH R3,DCO,B3) 0100010001000100
7 LR Rl,R2 0000001000000010
8 LPR Rl,R2 0000110100001101
9 LPR Rl,Rl 1101000011010000

10 LTR R3,R3 0101010101010101
11 TM 128,DCO,B3) 1000100010001000
12 BALR 15,0 1111111111111111
13 BC 14,6(0,15) 1000100010001000
14 BC 10,6(0,15) 0111011101110111
15 LNR Rl,Rl 1111111111111111
16 BC 15,12(0,15) 0010001000100010
17 LPR Rl,Rl 0010001000100010
18 L Bl,D(O,BD) XXXXXXXXXXXXXXXX
19 STH Rl,D(O,Bl) XXXXXXXXXXXXXXXXI

L-----i------------------~----------------J

ADMDGN: Used for DMOD and AMOD In-Line
Routines

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~

I 00000000111111111
I 0000111100001111
I 0011001100110011
I 0101010101010101
I

1 IL B2,D(0,BD) xxxxxxxxoooooooo
2 ILD R2,DCO,B2) 0000111100000000
3 ILD Rl,D(0,B2) 1111000000000000

jSTD Rl,Temp1 done by ADNDGN
4 IL B3,D(0,BD) xxooxxooxxooxxoo
5 ILD R3,DCO,B3) 0100010001000100
6 LDR Rl,R2 0000111111111111
7 DDR R1,R3 0111011101110111
8 DD Rl,DCO,B3) 1000100010001000

I. 9 AD Rl, n(0, 12) 1111111111111111
I 10 MDR Rl,R3 0111011101110111
I 11 MD Rl,D(0,B3) 1000100010001000
I 12 LCDR Rl,Rl 1111111111111111
I 13 AD Rl,DCO,B2) 1 1111111100000000
I 14 ADR R1,R2 0000000011111111
I 15 L Bl,D(O,BD) xxxxxxxxxxxxxxxx
I 16 STD Rl,D(O,Bl) xxxxxxxxxxxxxxxx
~-----i------------------~----------------~
l 1 When the statuses and base addressl
I statuses of operands 2 and 3 are zero, al
I store of operand 2 into a temporary willl
I be done as indicated and the add will bel
I from the temporary location. I
L---J

CMPLGN: Used for COMPL and LCOMPL In-Line
Routines

r---------T--------------------T----------1
I I skeleton I I
I Index I Instructions I Status I
~---------+--------------------+----------1

0011 I
0101 I
0000 I
0000 I

I
1 L B2,DC0,BD) xxoo I
2 L R2,D<O,B2) 0100 I
3 LA Rl,1(0,0) 1101 I
4 LCR Rl,Rl 1111 I
5 x Rl,D2(X,B2) 1000 I
6 Xrt R1,R2 0101 I
7 BCTR Rl,O 0010 I
8 L Bl, D co I BD) xxxx I
9 ST Rl,DCO,Bl) xxxx I _________ i ____________________ i __________ J

LGLNOT: Used for NOT Operations
r---------T--------------------T----------1
I I Skeleton I I
I Index I Instructions I Status I
~---------+--------------------+----------1

I 0011 I
I 0101 I
I I

1 I L B2,D(0,BD) xxoo I
2 I LA Rl,lC0,0) 1101 I
3 I BCTR Rl,O 0010 I
4 I LCR Rl,Rl 0010 I
5 I x R1,D{X,B2) 1000 I
6 I L R2,D2CO,B2) 0100 I
7 I XR R1,R2 0101 I
8 I L Bl,DCO,BL) xxxx I
9 I ST Rl,D(O,Bl) xxxx I

---------L--------------------L----------J

BTBF: Used for All Branch True and Branch
False Operations

r-----T-----------------T-----------------1
I I Skeleton I I
IIndexj Instructions I Status I
~-----+-----------------+-----------------1
I I 10000000011111111 I
I I 10000111100001111 I
I I 10011001100110011 I
I I 10101010101010101 I
I I I I
I 1 IL B2,D{0,BD) 10000000000000000 I
I 2 IL R2,DCO,B2) 11111111100000000 I
I 3 ISR R3,R3 11100110011001100 I
I 4 IL Bl,D(O,BD) 11111111111111111 I
I 5 IBXH R2,0CR3,B1) 11111111111111111*1
I 6 IBXLE R2,0{R3,B1) 11111111111111111*1
~-----L-----------------L-----------------1
l*One of these two instructions will bel
ladded to the bit strip by subroutine!
IMAINGN depending on the operation. I
L---J

Appendix C: Arrays 167

LDADDR: Used for All Load Address Opera-
tions

r-----T------------------T----------------1
I I Skeleton I I
!Index! Instructions I Status I
~-----+------------------+----------------1
I 0000000011111111
I 0000111100001111
I 0011001100110011
I 0101010101010101
I
I 1 L B3,D(0,BD) 0000000000000000
I 2 LH R3,D(0,B3) 1100110011001100
I 3 L B2,DC0,BD) 0000000000000000
I 4 LA Rl,D(R3,B2) 1111111111111111
I 5 L Bl,DCO,BD) 0000000000000000
I 6 ST Rl,D(O,Bl) 1111111111111111
I 7 LA 0,128(0,0) 0000000000000000
I 8 MVI 128,D(O,Bl) 00001111000000001
L-----i------------------i----------------J

LDBGEN: Used for All Load Byte Operations
r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~
I I 100000000111111111
I I 100001111000011111
I I 100110011001100111
I I 101010101010101011
I I I I
I 1 IL B3,D(0,BD) 100000000000000001
I 2 ISR R3,R3 111111111000000001
I 3 IIC R3,D(X,B3) 111111111111111111
I 4 IL B1,D(0,BD) 100000000000000001
I 5 IST R3,D(0,Bl) 100000000000000001
L-----i------------------i----------------J

DIVGEN: Used for all Half-Word Integer
Division Operations and for the
MOD In-Line Routine

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2,DC0,BD) 0000000000000000
2 LH R2,D(0,B2) 0000111100000000
3 LH Rl,DCO,B2) 1111000000000000
4 L B3,D(0,BD) 0000000000000000
5 LH R3,D(X,B3) 1100110011001100
6 LR Rl,R2 0000111100001111
7 SRDA Rl,32(0,0) 1111111111111111
8 DR Rl,R3 1111111111111111
9 D R1,D(X,B3) 0000000000000000

10 L Bl,D(O,BD) 0000000000000000
11 STH Rl+l,D{O,Bl) 0000000000000000
12 STH Rl,D(O,Bl)* 0000000000000000

~-----i------------------i----------------~
I* For MOD in-line routine only. I
L---J

168

SUBGEN: Used for Case 1 and Case 2 Sub-
script Operations

r-----T------------------T----------------1
I I Skeleton I I
IIndexl Instructions I Status I
~-----i------------------i----------------~
I Case 1 I
~-----T------------------T----------------~
I I 100000000111111111
I I 100001111000011111
I I 100110011001100111
I I 101010101010101011
~-----+------------------+----------------1
I 1 IL B3,D(0,BD) 100000000000000001
I 2 ILH R3,D(O,B3) 111001100000000001
I 3 IL B2,DCO~BD) 100000000000000001
I 4 ILH R2,DCO,B2) 111111111000000001
I 5 IL Bl,D(O,BD) 100000000000000001
I 6 ISTH R2,DCO,Bl) 100000000000000001
~-----i __________________ i ________________ ~

I Case 2 I
~-----T------------------T----------------~
I I 100000000111111111
I I 100001111000011111
I I 100110011001100111
I I 101010101010101011
~-----+------------------+----------------1
I 1 IL B3,D(0,BD) 100000000000000001
I 2 ILH R3,D{O,B3) 111001100110011001
I 3 IL B2,DCO,BD) 100000000000000001
I 4 ILH R2,DCO,B2) 100000000000000001
I 5 IL Bl,D(O,BD) 100000000000000001
I 6 ISTH R2,D(0,B1) 100000000000000001
L-----~------------------i----------------J

UNRGEN: Used for All Unary Minus Opera-
tions

r-----T------------------T----------------1
I I Skeleton I I
IIndexl Instructions I Status I
~-----+------------------+----------------1
I I 100000000111111111
I I 100001111000011111
I I 100110011001100111
I I 101010101010101011
I I I I
I 1 IL B2,DCO,BD) 100000000000000001
I 2 ILH R2,D2CX,B2) 111111111000000001
I 3 ILCR Rl,R2 111111111111111111
I 4 IL Bl,DCO,BD) 100000000000000001
I 5 ISTH Rl,Dl(X,Bl) 100000000000000001
L-----i------------------i----------------J

BRCOMP: Used for All Assigned GO TO Opera-
tions

r-----T------------------T----------------1
I I Skeleton I I
IIndexl Instructions I Status I
~-----+------------------+----------------~
I I 100000000111111111
I I 100001111000011111
I I 100110011001100111
I I 101010101010101011
I I I I
I 1 IL B2,D(O,BD) 100000000000000001
I 2 IL R2,DCO,B2) 111111111000000001
I 3 IBCR 15,R2 111111111111111111
L-----i------------------i----------------J

BRCOMB: Used for All Computed GO TO Opera-
tions

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------i

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B3,DC0,BD) 0000000000000000
2 L R3,D3(0,B3) 1100110011001100
3 LR Rl,R3 0101010101010101
4 LA R2,Pl(0,0) 1111111111111111
5 CLR Rl,R2 1111111111111111
6 BALR R2,0 1111111111111111
7 SLL Rl,2(0,0) 1111111111111111
8 BC 2,14(0,R2) 1111111111111111
9 L R2,D(Rl,B) 1111111111111111

10 BCR 15,R2 1111111111111111 _____ i __________________ i ________________ J

STRGEN: Used for All Store Operations
r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------i
I I 100000000111111111
I I 100001111000011111
I I 100110011001100111
I I 101010101010101011
I I I I
I 1 IL B2,D(0,BD) 100000000000000001
I 2 ILH R2,DCO,B2) 111111111000010001
I 3 IL Bl,DCO,BD) 100000000000000001
I 4 ISTH R2,D(X,Bl) 100000000000000001
L-----i------------------i----------------J

FLTGEN: Used for the FLOAT and DFLOAT
In-Line Routines

r---------T--------------------T----------~

I I Skeleton I I
I Index I Instructions I Status I
~---------+--------------------+----------~

0011
0101

1 L B2,DCO,BD) XXOO
2 LH R2,DCO,B2) 1100
3 LD Rl,60(0,12) 1111
4 STD Rl,72(0,13) 1111
5 LTR R2,R2 1111
6 BALR 15,0 1111
7 BC 4,16(0,15) 1111
8 ST R2,76C0,13) 1111
9 AD Rl,72(0,13) 1111

10 BC 15,26(0,15) 1111
11 LPR 0,R2 1111
12 ST 0,76(0,13) 1111
13 SD Rl,72(0,13) 1111
14 L Bl,DCO,BD) XXXX
15 STD Rl,DCO,Bl) XXXX

L---------i--------------------i----------J

INTI•1PY: Used for All Fixed Point Multi-
plication Operations

r-----T------------------T----------------1
I I Skeleton I I
IIndexl Instructions I Status I
~-----+------------------+----------------~

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2,DCO,BD) 0000000000000000
2 LH R2,DCO,B2) 0000111100000000
3 LH Rl,DCX,B2) 1100000000000000
4 L B3,DCO,BD) 0000000000000000
5 LH R3,DCO,B3) 0100010001000100
6 LR Rl,R2 0000110100001101
7 LR Rl,R3 0001000000000000
8 MR R1-1,R3 0100010101110101
9 MR Rl-1,R2 00000010000000101

10 MH Rl,D(X,B3) 10001000100010001
11 MH Rl,D(X,B2) 00110000000000001
12 L Bl,DCO,BD) 00000000000000001
13 STH Rl,DCO,Bl) 00000000000000001

L-----L------------------i----------------J

NDORGN: Used for the AND and OR In-Line
Routines

r-----T------------------T----------------1
I I skeleton I I
IIndexj Instructions I Status I
~-----t------------------+----------------1

I 100000000111111111
I 100001111000011111
I 100110011001100111
I 1010101o~J~o101011

I I I
1 IL B2,DCO,BD) 100000000000000001
2 IL Rl,DCX,B2) 111111111111111111
3 IL B3,D(0,BD) 100000000000000001
4 IN Rl,DCX,B3) 111111111111111111
5 IL Bl,DCO,BD) 100000000000000001
6 IST Rl,DCO,Bl) 111111111111111111

-----L------------------i----------------J

SHFT2: Used for All Right- and Left-Shift
Operations

r-----T------------------T----------------1
I I Skeleton I I
IIndexl Instructions I Status I
~-----t------------------+----------------i

00000000111111111
00001111000011111
00110011001100111
01010101010101011

I
1 L B2,DCO,BD) 00000000000000001
2 LH R2,DCO,B2) 11111111000000001
3 LR Rl,R2 00001111000011111
4 SRA Rl,P3(0,0) 11111111111111111
5 HDR Rl,R2 00000000000000001
6 L Bl,DCO,BD) 00000000000000001
7 STH Rl,D(O,Bl) 00000000000000001

-----L------------------L----------------J

Appendix C: Arrays 169

DIVGEN: Used for all Full-Word Integer
Division Operations and for the
MOD In-Line Routine

r-----T------------------T----------------1
I I Skeleton I I
!Index! Instructions I Status I
~-----+------------------+----------------i

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2,DCO,BD) 0000000000000000
2 LH R2,D(0,B2) 0000111100000000
3 LH Rl,DCO,B2) 1111000000000000
4 L B3,DCO,BD) 0000000000000000
5 LH R3,D(X,B3) 0100010001000100
6 LR Rl,R2 0000111100001111
7 SRDA Rl,32(0,0) 1111111111111111
8 DR Rl,R3 0111011101110111
9 D Rl,DCX,B3) 1000100010001000

10 L Bl,D(O,BD) 0000000000000000
11 STH Rl+l,DCO,Bl) 0000000000000000
12 STH Rl,DCO,Bl)* 0000000000000000

~-----L------------------L----------------i
I* For MOD in-line routine only. I
L---J

TSTSET: Used to Compare Operands Across a
Relational Operator and Set the
Result to True or False

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------i

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2,DCO,BD) 0000000000000000
2 LH R2,DCX,B2) 1111111100000000
3 L B3,D(0,BD) 0000000000000000
4 LH R3,DCO,B3) 0100010001000100
5 CH R2,D(X,B3) 1000100010001000
6 CR R2,R3 0111011101110111
7 LA Rl,1(0,0) 1111111111111111
8 BALR 15,0 1111111111111111
9 BC M,6(0,15) 1111111111111111

10 SR Rl,Rl 1111111111111111
11 L Bl,DCO,BD) 0000000000000000
12 ST Rl,DCO,Bl) 0000000000000000

-----L------------------L----------------J

170

LOGCL: Used for All Logical Operations
r-----T------------------T----------------1
I I Skeleton I I
!Index! Instructions I Status I
~-----+------------------+----------------i

00000000111111111
00001111000011111
0011001100110011
0101010101010101

1 L B2,D(0,BD) 0000000000000000
2 L R2,D(0,B2) 0000111100000000
3 L Rl,D2(0,B2) 1101000000000000
4 L B3,D(0,BD) 0000000000000000
5 L R3,DCO,B3) 0100010001000100
6 L Rl,D3(X,B3) 0000100000001000
7 LR R1,R2 0000010100000101
8 NR R1,R2 0000101000001010
9 NR Rl,R3 0101010101110101

10 N Rl,D2(0,B2) 0010000000000000
11 N Rl,D3CX,B3) 1000000010000000
12 L Bl,D(O,BD) 0000000000000000
13 ST R1,D1(0,B1) 0000000000000000 l _____ i __________________ i ________________ J

PLSGEN: Used for All Addition Operations
and for Real Multiplication and
Division Operations

r-----T------------------T----------------1
I I Skeleton I I
!Index! Instructions I Status I
~-----+------------------+----------~-----~

I 00000000111111111
I 0000111100001111

0011001100110011
0101010101010101

1 L B2,D(0,BD) 0000000000000000
2 LH R2,D(0,B2) 0000111100000000
3 LH R1,DCX,B2) 1101000000000000
4 L B3,D(0,BD) 0000000000000000
5 LH R3,D(0,B3) 0100010001000100
6 LH Rl,D(X,B3) 0000000000000000
7 LR Rl,R2 0000110100001101
8 AR R1,R2 0000000000000000
9 AR R1,R3 0101010101110101

10 AH R1,DCX,B2) 0010000000000000
11 AH Rl,D(X,B3) 1000100010001000
12 L Bl,D(O,BD) 0000000000000000
13 STH Rl,DCO,Bl) 0000000000000000

~-----L------------------L----------------i
!Note: For real multiplication and divi-1
tsion operations, the basic operationt
!codes will be replaced by the required!
I codes. I
L---J

BRLGL: Used for Text Entries Whose Opera
tor is a Relational Operator Oper
ating on Two Non-Zero Operands

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------1

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2,D(0,BD) 0000000000000000
2 LH R2,D(0,B2) 1111111100000000
3 L B3,D(0,BD) 0000000000000000
4 LH R3,D(X,B3) 0100010001000100
5 CH R2,D(X,B3) 1000100010001000
6 CR R2,R3 0111011101110111
7 LTR R2,R2 0000000000000000
8 L Rl,Pl 1111111111111111
9 BCR M,Rl 11111111111111111 _____ i __________________ i ________________ J

BRLGL: Used for Text Entries Whose Opera
tor is a Relational Operator Oper
ating on One Operand and Zero.

r-----T------------------T----------------1
I I Skeleton I I
IIndexj Instructions I Status I
~-----+------------------+----------------~

00000000111111111
00001111000011111
00110011001100111
01010101010101011

I
1 L B2,DCO,BD) 00000000000000001
2 LH R2,DC0,B2) 11111111000000001
3 L B3,D(0,BD) 00000000000000001
4 LH R3,DCX,B3) 00000000000000001
5 CH R2,D(X,B3) 00000000000000001
6 CR R2,R3 00000000000000001
7 LTR R2,R2 11111111111111111
8 L Rl,Pl 11111111111111111
9 BCR M,Rl 11111111111111111

L-----L------------------L----------------J

LBITTF: Used for the LBIT, BET, and BBF In-Line Routines
r-------T-----------------------T---------------------------Tr--------------------------,
I I I BBT,BBF II LBIT I
I I r---------------------------++--------------------------~
I I Skeleton I simple subscripted I I simple subscripted I
I Index I Instructions I variable variable I I variable variable I
r-------+-----------------------+---------------------------++--------------------------~

1 L B2,D(0,BD) X X X X
2 LA 15,D+N/8(X,B2) 0 1 0 1
3 TM M,D+N/8{B2) 1 0 1 0
4 TM M,0(15) 0 1 0 1
5 TM M,D+N/8CR2) 0 0 0 0
6 L 15,Pl 1 1 0 0
7 BCR MM,15 1 1 0 0
8 BALR 15,0 0 0 1 1
9 LA Rl,1(0,0) 0 0 1 1

10 BC 1,10(0,15) 0 0 1 1
11 SR Rl,Rl 0 0 1 1
12 L Bl,DCO,BD) 0 0 X X
13 ST Rl,DCO,Bl) 0 0 X X

r-------L-----------------------L---------------------------LL--------------------------~
I N The bit to be loaded or tested. I
I I
I M MSKTBL(MOD(N,8)+1). MSKTBL is an array of masks used by LBITTF. I
I I
I MM 1 FOR BBT. I
I I
I MM 8 FOR BBF. I
L---------------------------------------~---J

Appendix c: Arrays 171

APPENDIX D: TEXT OPTIMIZATION EXAMPLES

This appendix contains
sample text entry sequences.
text optimization.

examples that illustrate the effects of text optimization on
An example is presented for each of the five sections of

Example 1: Common Expression Elimination

This example illustrates the concept of common expression elimination. The text
entries in block A are to undergo common expression elimination. Block B is a back
dominator of block A. Block B contains text entries that are common to those in block A.

{l)
Block B

..
n=l*4
T2 = J * 12
T3 =Tl + T2
T4 = X (s T3
A= T4 + Y
....

Block A ,
. . .

T7=1*4
T8=J*12
T9 = T7 + T8
no= x (s T9
B =no+ z
. . .

B

Eliminate
T9 =Tl + T2

A

Eliminate
T7=1*4

(4)

Unchanged

r

....

no= x (s T3
B =no+ z
....

A

(2)

Unchanged

. . . .
T8=J*12
T9 =Tl +TB
no= x (s T9
B =no+ z
. . . .

Eliminate
no= x (s T3

B

A

Eliminate
T8 = J * 12

(5)

Unchanged

_...

B = T4 + Z

NOTE: The items Ti are temporaries and (s represents a subscript operator

(3)
B

Unchanged

A r
..

T9 =Tl + T2
no= x (s T9
B =no+ z
..

Appendix D: Text Optimization Exawples 173

Example 2: Forward Movement

This example illustrates both methods of forward movement. Block A, containing
the text entries to be moved, is a back dominator of the forward target of the loop,
which is block B.

(1)
Block A

Tl=A+B
T2=Tl+C
Q = T2 + D
C=E+F

Block 8 w

(3)
A

Tl=A+B
Tj = C

C=E+F

------+-

B

T2 =Tl + Tj
Q = T2 + D

Move
Q=T2+D

Move
Tl=A+B

(2)
A

Tl=A+B
T2 =Tl+ C

C = E + F

Move T2 = Tl + C
{note generated
text ent!):'.)

B •
Q=T2+D

(4)
A

Tj = C

C = E + F

...
B

Tl=A+B
T2 =Tl + Tj
Q=T2+D

NOTE: The text entry C = E + F cannot be moved, because operand 1
(C) is used elsewhere in the loop

174

Example 3: Backward Movement

This example illustrates both methods of backward movement. The text entries in
block A are to undergo backward movement. Block B is the back target of the loop
containing block A.

(l)
Block B

E = W+ Z

A 1
X=E+U
Tl=A+B
T2 =Tl + C
E=T2+D

(3)
B

E = W+ Z

Tl=A+B
T2 =Tl + C

... l A

X=E+U

E=T2+D
..

Move
Tl =A+B

Move the
expression
T2 + D

(2)
B

E = W + Z

Tl=A+B
Move

l T2 =Tl+ C
,..

A

X=E+U

T2=Tl+C
E = T2 + D

(4)
B

E = W+ Z

Tl=A+B
T2=Tl+C
Tj = T2 + D

.... l A

X = E + U

E = Tj

NOTE: The text entry X = E + U cannot be moved, because its operand 2 is
defined elsewhere in the loop. The text entry E = T2 + D cannot be
moved, because operand l (E) is busy-on-exit from the back target;
however, the expression T2 + D can be moved.

Appendix D: Text Optimization Examples 175

Example 3": Simple-Store Elimination

The following example illustrates the concept of simple-store elimination, an
integral part of the processing of backward movement. Note that the characteristics
of the operands of the simple store correspond to the last combination of
characteristics stated in Table 4.

r--~--1

(l)

Z=X
A=Z+B
D = F * Z
X = 2 * M
z = y /4

N=Z+G

Eliminate Z = X

(2)

A=X+B
D=F*X
X=2*M
Z=Y/4

N=Z+G

~---~
I Note: Uses of operand 1 of the simple store that appear below the redefinition of I
I either operand of the simple store are not replaced. I
L---J

176

Example 4: Strength Reduction

This example illustrates both methods of strength reduction. In the example,
strength reduction is applied to a DO loop. The evolution of the text entries that
represent the DO loop, and the functions of these text entries are also shown. The
formats of the text entries in all cases are not exact. They are presented in this
manner to facilitate understanding.

Consider the DO loop:

I=3
DO 10 J=l,3
A=X CI ,J)

10 CONTINUE

As a result of the processing of phases 10 and 15, and backward movement, the DO loop
has been.converted to the following text representation.

r----------------T--------------------T---1
I Text Entry I Function I Evolution I
~----------------+--------------------+--------------------------~--------------~

I
I I = 3 Initializes I Stated in source module, converted tol
I phase 10 text and then to phase 151
I text. It resided in the back target of I
I the loop because of text blocking. I
I I
I J = 1 Initializes J Generated phase 10 text entry, converted I

Back I to phase 15 text entry. It resided in thel
Target I back target of the loop because of textl

I blocking. J

I I
I Tl I * 4 Multiplies first Generated by phase 15 when it encounters I
I subscript parameter the subscript parameter I during its pro-I
I by its dimension cessing of phase 10 text. It resides in I
I factor tne back target of the loop as a result!
I of the processing of backward movemtnt. I
~----------------+--------------------+---1
Y T2 = J * 12 Multiplies second !Generated by phase 15 when it encounters

subscript parameter jthe subscript parameter J during its pro-
by its dimension jcessing of phase 10 text.
factor. I

I
T3 Tl + T2 Computes index valuejGenerated by phase 15 after the last sub-

for the subscripted !script parameter in the phase 10 text
variable X. !representation of the subscripted varia

lble has becn processed.
I

Loop A X Cs T3 stores X(I,J) into AIThe phase 10 text entry forced and con-
lverted to phase 15 text after the index
jvalue fer the subscripted variable has
!been established.
I

J J + 1 Increments DO index.IGenerated by phase 10 and converted to
jphase 15 text representation.
I

IFCJ~3)GOTO Y Tests DO index !Generated by phase 10 and converted to
against its maximum jphase 15 text representation.
and controls branch-I
ing. I

·-------~--------L--------------------L---1
!Note: The statement number Y is generated by phase 10. Also, it is assumed!
jthat the array X is of the form XC3,3) and that its elements are real Clengthl
14>. I
l-------------------------------------=-~=---------------------------------------J

Appendix D: Text Optimization Examples 177

The following figure illustrates the application of strength reduction to the loop.

(1)

1=3
J = 1
T1=1*4

Y T2 = J * 12
T3 =Tl + T2
A=X(sT3
J = J + 1
IF (Js 3) GOTOY

178

Eliminate
Multiplicative
Text from Loop

(2)

1=3
J = 1
Ti= I* 4
M = J * 12

Y T3 =Tl+ M
A= X (s T3
M = M + 12
IF (Ms. 36) GO TOY

Eliminate
Additive
Text from Loop

(3)

1=3
J = l
Tl =·I* 4
M = J * 12
N = 36 + M
P=Tl+M

YA=X(sP
p = p + 12
IF (P s N) GOTOY

This appendix describes the logic of
some of the object-time library subprograms
that may be referenced by the FORTRAN load
module. Included at the end of this appen
dix are flowcharts that describe the logic
of the subprograms.

Each object module, compiled from a
FORTRAN source module, must be first proc
essed by the linkage editor prior to execu
tion on the IBM System/360. The linkage
editor must combine certain FORTRAN library
subprograms with the object ntodule to form
an executable load module. The library
subprograms exist as separate load o~dules
on the FORTRAN system library
(SYSl.FORTLIB). Each library subprogram
that is externally referenced by the object
module is included in the load module by
the linkage editor. Among the library
subprograms that may be so referenced are:

• IHCFCOMH (Object-time I/O source state
ment processor) - entry name IBCOM#.

• IHCFIOSH (Object-time sequential access
I/O data management interface) - entry
name FIOCS#.

• IHCNAMEL
routines)
FWRNL#

(object-time
entry names

namelist
FRDNL# and

• IHCDIOSH1 (Object-time direct
I/O data management interface) -
name DIOCS#.

access
entry

• IHCIBERH (Object-time source statement
error processor) - entry name IBERH#.

• IHCFCVTH
routine)

{object-time conversion

• IHCDBUG1 {object-time Debug Facility
support routine> - entry name DEBUG#.

IHCFCOMH receives I/O requests from the
FORTRAN load module via compiler-generated
calling sequences. IHCFCOMH, in turn, sub
mits these requests to the appropriate data
management interface CIHCFIOSH or
IHCDIOSH).

1Although the FORTRAN IV CH) compiler does
not yet have the code generation facilities
for direct access and DEBUG statements,
discussions of IHCDIOSH and IHCDBUG are
included to describe the routines that will
be used to perform object time implementa
tion of these statements when these facili
ties are incorporated into the compiler.

APPENDIX E: OBJ.ECT-TIME LIBRARY SUBPROGRAIV..S

IBCFIOSH receives sequential access
input/output requests from IliCFCOli·iH and, in
turn, sub1:-.i ts those requests to the
appropriate BSAM (basic sequential access
method) routines for execution.

ItlCDIOSH receives direct access
input/output requests from IHCFCOMH and, in
turn, submits those requests to the
appropriate BDAM (basic direct access
method) routines for execution.

If source statement errors are detected
during compilation, the compiler generates
a calling sequence to the IHCIBERH subpro
gram. IHCIBERH processes object-time
errors resulting from improperly codea
source statements. IHCFCVTH contains the
various object time conversion routines
required by IHCFCOMH and IHCNAfV.'.EL.

IHCFCOMH

IHCFCOMH performs object-time implemen
tation of the following FORTRAN source
statements.

•READ and WRITE (for sequential I/O).

• READ, FIND,
access I/O).

and WRITE {for direct

• BACKSPACE, REWIND, and ENDFILE
<sequential I/O device manipulation).

• STOP and PAUSE <write-to-operator).

In addition, IHCFCOMH: Cl) processes
object-time errors detected by various FOR
TRAN library subprograms, (2) processes
arithmetic-type program interruptions, and
(3) terminates load module execution.

All linkages from the load module to
IHCFCOMH are compiler generated. Each time
one of the above-mentioned source state
ments is encountered during compilation,
the appropriate calling sequence to
IHCFCOMH is generated and is included as
part of the object module. At object-time,
these calling sequences are executed, and
control is passed to IHCFCOMH to perform
the specified operation.

Note: IHCFCOMH itself does not perform the
actual reading from or writing onto data
sets. It sunrnits requests for such opera
tions to the appropriate I/O data manage
ment interface (IHCFIOSH or IHCDIOSH). The
I/O interface, in turn, interprets and
submits the requests to the appropriate

Appendix E: Object-Time Library Subprograms 179

access method CBSAM or BDAM) routines for
execution. Figure 59 illustrates the rela
tionship between IHCFCOMH and the I/O data
management interfaces.

Charts 24, 25, and 26 illustrate the
overall logic and the relationship among
the routines of IHCFCOMH. Table 33, the
IHCFCOMH routine directory, lists the rou
tines used in IHCFCOMH and their functions.

submit
Sequential
Access I/O
Request to
IHCFIOSH

I/O

r---------1
I FORTRAN I
I Load I
I Modu1e I
L----T ____ J

I
I
I

Request I
I
I

r------i------, r----------,
I IHCFCOMH I I IHCFCVTH I
I (Determine ~--~Conversion!
!Request type> I I Routines I
L-T---------y-J L----------J

I I
I I
I I
I I
I I
I I
I I
I I
I I

Submit
Direct
Access I/O
Request to
IHCDIOSH

r-----------i-, r-i-----------,
I IHCFIOSH I I IHCDIOSH I
I (Sequential I I (Direct I
I Access I/O I I Access I/O I
I Interface) I I Interface) I
L-------y-----J L-----T _______ J

I I
I I

Interpret I I Interpret
And submit
Request to
Appropriate
BSAM/BDAM
Routine

And submit I I
Request to I I
Appropriate I I
BSAM Routinel I

I I
I I

r-----i-----, r-----i-----,
I BSAM I I BSAM/BDAM I
I Routines I I Routines I
L-----------J l-----------J

Figure 59. Relationship Between IHCFCOMH
and I/O Data Management Inter
faces

The routines of IHCFCOMH are divided
into the following categories:

• Read/write routines.

• I/O device manipulation routines.

180

• Write-to-operator routines.

• Utility routines.

The read/write routines implement both
the sequential I/O statements (READ and
WRITE) and the direct access I/O statements
(READ, FIND, and WRITE). (The direct
access FIND statement is treated as a READ
statement without format and list.)

The I/O device manipulation routines
implement the BACKSPACE, REWIND, and END
FILE source statements for sequential data
sets. These statements are ignored for
direct access data sets.

The write-to-operator routines implement
the STOP and PAUSE source statements.

The utility routines: Cl) process errors
detected by FORTRAN library subprograms,
(2) process arithmetic-type program inter
rupts, and (3) terminate load module execu
tion.

READ/wRITE ROUTINES

The READ/WRITE routines of IHCFCOMH
implement the various types of READ/WRITE
statements of the FORTRAN IV language. For
simplicity, the discussion of these rou
tines is divided into two parts:

• READ/WRITE statements not using NAME
LIST.

• READ/WRITE statements using NAMELIST.

READ/WRITE Statements Not Using NAMELIST

For the implementation of both sequen
tial and direct access READ and WRITE
statements, the read/write routines of
IHCFCOMH consist of the following three
sections:

• An opening section, which initializes
data sets for reading and writing.

• An I/O list section, which transfers
data from an input buff er to the I/O
list items or from the I/O list items
to an output buffer.

• A closing section, which terminates the
I/O operation.

Within the discussion of each section, a
read/write operation is treated in one of
two ways:

• As a read/write requiring a format.

• As a read/write not requiring a format.

Note: In the following discussion, the
term "read operation" implies both the
sequential access READ statement and the
direct access READ and FIND statements.
The term "write operation" implies both the
sequential access WRITE statement ana the
direct access WRITE statement.

OPENING SECTION: The compiler generates a
calling sequence to one of four entry
points in the opening section of IHCFCOMH
each time it encounters a READ or WRITE
statement in the FORTRAN source module.
These entry points correspond to the opera
tions of read or write, requiring or not
requiring a format.

Read/Write Requiring a Format: If the
operation is a read requiring a format, the
opening section passes control to the
appropriate I/O data management interface
to initialize the unit number specified in
the READ statement for reading. (The unit
number is passed, as an argument, to the
opening section via the calling sequence.)
The I/O interface: Cl) opens the data
control block Cvia the OPEN
macro-instruction) for the specified data
set if it was not previously opened, and
(2) reads a record <via the READ
macro-instruction) containing data for the
I/O list items into an I/O buffer that was
obtained when the data control block was
opened. The I/O interface then returns
contrql to the opening section of IHCFCOMH.
The address of the buff er and the length of
the record read are passed to IHCFCOMH by
the I/O interface. These values are saved
for the I/O list section Of IHCFCOMH. The
opening section then passes control to a
portion Of IHCFCOMH that scans the FORMAT
statement specified in the READ statement.
(The address of the FORMAT statement is
passed, as an argument, to the opening
section via the calling sequence.) The
first format code (either a control or
conversion type) is then obtained.

For control type codes <e.g., an H
format code or a group count), an I/O list
item is not required. Control passes to
the routine associated with the control
code under consideration to perform the
indicated operation. Control then returns
to the scan portion, and the next format
code is obtained. This process is repeated
until either the end of the FORMAT state
ment or the first conversion code is
encountered.

For conversion type codes (e.g., an I
format code), an I/O list item is required.
Upon the first encounter of a conversion
code in the sca!l of the FORMAT statement,
the opening section completes its process-

ing of a read requiring a format and
returns control to the next s~qutntial
instruction within the load module.

The action taken by IHCFCOMfi when the
various format codes are encountered L.:;
illustrated in Table 28.

If the operation is a write requiring a
format, the opening section passes control
to the I/O interface to initialize the unit
number specified in tne WRITh statern~nt for
writing. (The unit number is passed, as an
argument, to the opening section via the
calling sequence.) The I/O interface opens
the data control block Cvia the OPEN
macro-instruction) for the specified data
set if it was not previously opened. The
I/O interface then returns control to thE
opening section of IrlCFCOMH. The address
of an I/O buffer that was obtained when the
data control block was opened is saved for
the I/O list section of IHCFCOMH. ~Subse

quent opening section processing, starting
with the scan of the FORMAT statement, is
the same as that described for a read
requiring a format.

Read/Write Not Requiring a Format: If the
operation is a read or write not requiring
a for~at, the opening section processing
except for the scan of the FORMAT statement
is the same as that described for a reaa or
write requiring a format. (For a read or
write not requiring a format, there is no
FORMAT statement.>

I/O LIST SECTION: The compiler generates a
calling sequence to one of four entry
points in the I/O list section of IHCFCOM&
each time it encounters an I/O list item
associated with the READ or wRITE statement
under consideration. These entry points
correspond to a variable or an array list
item for a read and write, requiring or not
requiring a format. The I/O list section
performs the actual transfer of data from:
Cl) an input buffer to the list items if a
READ statement is being implemented, or (2)
the list items to an output buffer if a
WRITE statement is being implemented. In
the case of a read or write requiring a
forrr~t, the data must be converted before
it is transferred.

Read/Write Requiring a Format: In process
ing a list item for a read requiring a
format, the I/O list section passes control
to the conversion routine associated with
the conversion code for the list item.
(The appropriate conversion routine is de
termined by the portion of IHCFCOMH that
scans the FORMAT statement associated with
the READ statement. The selection of the
conversion routine depends on the conver
sion code of the list item being
processed.)

Appendix E: Object-Time Library Subprograms 181

Table 28. IHCFCOMH FORMAT Code Processing
r------------T--------------T----------T--1
I I I I I
IFORMAT Code !Description !Type !Corresponding Action Upon Code by IHCFCOMH I
I I I I I
t------------+--------------+----------+--~

n(

n

nP

Tn

nX

beginning of control Save location for possible repetition of thel
statement format codes; clear counters. I

group count control

field count control

scaling factor control

column reset control

skip or blank control

I
I

Save n and location of left parenthesis forj
possible repetition of the format codes in thel
group. I

I
I

Save n for repetition of format code which!
follows. I

Save n for use by F, E, and D conversions.

I
I
I
I
I

Reset current position within record to nthl
column or byte. I

I
I

Skip n characters of an input record or insert nl
blanks in an output record. I

I

'text' or nH literal data control Move n characters from an input record to
FORMAT statement, or n characters from
FORMAT statement to an output record.

I
the I

Fw.d
Ew.d
Dw.d
Iw
Aw
Gw.d

ILW
zw

the I
I
I
I

F - conversion conversion Exit to the load module to return control to I
E - conversion conversionlentries FIOLF or FIOAF in IHCFCVTH. Using in- I
D - conversionlconversionlformation passed to the I/O list section, thel
I - conversionlconversionladdress and length of the current list item are I
A - conversiontconversionlobtained and passed to the proper conversion!
G - conversionlconversionlroutine together with the current position inl
L - conversionlconversionlthe I/O buffer, the scale factor, and the values!
z - conversion conversion of w and d. Upon return from the conversion I

group end control

record end control

routine the current field count is tested. If I
it is greater than 1, another exit is made tol
the load module to obtain the address of thel
next list item. I

I
I

Test group count. If greater than 1, repeat!
format codes in group; otherwise continue to
process FORMAT statement from current position.

Input or output one record via I/O Interface
and READ/WRITE macro-instruction.

end of control If no I/O list items remain to be transmitted,
statement return control to the load module to link to the

closing section; if list items remain, input or
output one record using I/O interface and READ/
WRITE macro-instruction. Repeat format codesj
from last parenthesis. I ____________ i ______________ i __________ i __ J

182

The selected conversion routine obtains
data from an input buff er and converts the
data to the form dictated by the conversion
code. The converted data is then moved
into the main storage address assigned to
the list item.

In general, after a conversion routine
has processed a list item, the I/O list
section determines if that routine can be
applied to the next list item or array
element Cif an array is being processed).
The I/O list section examines a field count
that indicates the number of times a par
ticular conversion code is to be applied to
successive list items or successive ele
ments of an array.

If the conversion code is to be repeated
and if the previous list item was a varia
ble, the I/0 list section returns control
to the load module. The load module again
branches to the I/O list section and pass
es, as an argument, the main storage
address assigned to the next list item.

The conversion routine that processed
the previous list item is then given con
trol. This procedure is repeated until
either the field count is exhausted or the
input data for the READ statement is
exhausted.

If the conversion code is to be repeated
and if an array is being processed, the I/O
list section computes the main storage
address of the next element in the array.
The conversion routine that processed the
previous element is then given control.
This procedure is repeated until either all
the array elements associated with a spe
cific conversion code are processed or the
input data for the READ statement is
exhausted.

If the conversion code is not to be
repeated, control is passed to the scan
portion of IHCFCOMH to continue the scan of
the FORMAT statement. If the scan portion
determines that a group of conversion codes
is to be repeated, the conversion routines
corresponding to those codes are applied to
the next portion of the input data. This
procedure is repeated until either the
group count is exhausted or the input data
for the READ statement is exhausted.

If a group of conversion codes is not to
be repeated and if the end of the FORMAT
statement is not encountered, the next
format code is obtained. For a control
type code, control is passed to the asso
ciate~ control routine to perform the indi
cated operation..-- - ----EGr a conue-r--S--i-Gn- type
code, control is returned to the load
module if the previous list item was a
variable. The load module again branches
to the I/O list section and passes, as an

argument, the main storage address assigned
to the next list item. Control is then
passed to the conversion routine associated
with the new conversion code. The conver
sion routine then processes the data for
this list item. If the data that was just
converted was placed into an element of an
array and if the entire array has not been
filled, the I/O list section computes the
main storage address of the next element in
the array and passes control to the conver
sion routine associated with the new con
version code. The conversion routine then
processes the data for this array element.
Subsequent I/O list processing for a READ
requiring a format proceeds at the point
where the field count is examined.

If the scan portion encounters the end
of the FORMAT statement and if all the list
items are satisfied, control returns to the
next sequential instruction within the load
module. This instruction (part of the
calling sequence to IHCFCOMH> branches to
the closing section. If all the list items
are not satisfied, control is passed to the
I/O interface to read (via the READ
macro-instruction) the next input record.
The conversion codes starting from the last
left parenthesis are then repeated for the
remaining list items.

If the operation is a write requiring a
format, the I/O list section processing is
similar to that for a read requiring a
format. The main difference is that the
conversion routines obtain data from the
main storage addresses assigned to the list
items rather than from an input buffer.
The converted data is then transferred to
an output buffer. If all the list items
have not been converted and transferred
prior to the encounter of the end-of-the
FORMAT statement, control is passed to the
I/O interface. The I/O interface writes
(via the WRITE macro-instruction) the con
tents of the current output buff er onto the
output data set. The conversion codes
starting from the last left parenthesis are
then repeated for the remaining list items.

Read/Write Not Requiring a Format: In
processing a list item for a read not
requiring a format, the I/O list section
must know the main storage address assigned
to the list item and the size of the list
item. Their values are passed, as argu
ments, via the calling sequence to the I/O
list section. The list item may be either
a variable or an array. In either case,
the number of bytes specified by the size
of the list item is moved from the input
buff er to the main storage address assigned

----t-0-------t-he---- ±-i--s--to--item. The I/O list section
then returns control to the load module.
The load module again branches to the I/O
list section and passes, as arguments, the
main storage address assigned to the next

Appendix E: Object-Time Library Subprograms 183

list item and the size of the list item.
The I/O list section moves the number of
bytes specified by the size of the list
item into the main storage address assigned
to this list item. This procedure is
repeated either until all the list items
are satisfied or until the input data is
exhausted. control is then returned to the
load module.

If the operation is a write not requir
ing a format, the I/O list section process
ing is similar to that described for a read
not requiring a format. The main differ
ence is that the data is obtained from the
main storage addresses assigned to the list
items and is then moved to an output
buffer.

CLOSING SECTION: The compiler generates a
calling sequence to one of two entry points
in the closing section of IHCFCOMH each
time it encounters the end of a READ or
WRITE statement in the FORTRAN source
module. The entry points correspond to the
operations of read and write, requiring or
not requiring a format.

Read/Write Requiring a Format: If the
operation is a read requiring a format, the
closing section simply returns control to
the load module to continue load module
execution. If the operation is a write
requiring a format, the closing section
branches to the I/O interface. The I/O
interface writes (via the WRITE
macro-instruction) the contents of the cur
rent I/O buffer (the final record) onto the
output data set. The I/O interface then
returns control to the closing section.
The closing section, in turn, returns con
trol to the load module to continue load
module execution.

Read/Write Not Requiring a Format: If the
operation is a read not requiring a format,
the closing section branches to the I/O
interface. The I/O interface reads Cvia
the READ macro-instruction) successive

184

records until the end of the logical record
being read is encountered. (A FORTRAN
logical record consists of all the records
necessary to contain the I/O list items for
a wRITE statement not requiring a format.)
When the I/O interface recognizes the end
of-logical- record indicator, control is
returned to the closing section. The
closing section, in turn, returns control
to the load module to continue load module
execution.

If the operation is a write not requir
ing a format, the closing section inserts:
Cl) the record count (i.e., the number of
records in the logical record) into the
control word of the I/O buffer to be
written, and (2) an end-of-logical-record
indicator into the last record of the I/O
buff er being written. The closing section
then branches to the I/O interface. The
I/O interface writes <via the WRITE
macro-instruction) the contents of this I/O
buff er onto the output data set. The I/O
interface then returns control to the clos
ing section. The closing section, in turn,
returns control to the load module to
continue load module execution.

Examples of IHCFCOMH READ/WRITE Statement
Processing

The following examples illustrate the
opening section, I/O list section, and
closing section processing performed by
IHCFCOMH for sequential access R~AD and
WRITE statements, requiring or not requir
ing a format.

Note: IHCFCOMH processing for the direct
access READ, FIND, and WRITE statements is
essentially the same as that described for
the sequential access READ and WRITE state
ments. The main difference is that for
direct access statements, IHCFCOMH branches
to the direct access I/O interface
(IHCDIOSH) instead of to the sequential
access I/O interface (IHCFIOSH).

READ REQUIRING A FORMAT: The processing
performed by IHCFCOMH for the following
READ statement and FORMAT statement is
illustrated in Table 29.

READ (1,2) A,B,C
2 FORMAT (3F12.6)

Table 29. IHCFCOMH Processing for a READ
Requiring a Format

r--------T--------------------------------1
!Opening 11. Receives control from load I
!Section I module and branches tol
I I IHCFIOSH to initialize data!
I I set for reading. I
I I I
I 12. Passes control to scan por-1
I I tion of IHCFCOMH. I
I I I
I 13. Returns control to loadl
I I module. I
~--------+--------------------------------1
I/O List 1. Receives control from load I
Section module, converts input datal

for A using IHCFCVTH, andl
moves converted data to A. I

2.

3.

4.

Returns
module.

control

Receives control
module, converts
for B, and moves
data to B.

Returns
module.

control

I
to loadl

I
I

from loadl
input datal

converted I

to

I
I

load I
I
I

5. Receives control from loadl
module, converts input datal
for c, and moves convertedl
data to c. I

I
6. Returns control to loadl

module. I
~--------+--------------------------------~
IClosing 11. Receives control from load I
!Section I module and closes out I/OI
I I operation. I
I I I
I 12. Returns control to loadl
I I module to continue loadl
I I module execution. I
L--------i--------------------------------J

WRITE REQUIRING A FORMAT: The processing
performed by IHCFCOMH for the following
WRITE statement and FORMAT statement is
illustrated in Table 30.

WRITE (3,2) (D(I) ,I=l,3)
2 FORMAT (3F12.6)

Table 30. IHCFCOMH Processing for a wRITE
Requiring a Format

r--------T--------------------------------1
IOpening 11 •. Receives control from load I
!Section I module and branches tol
I I IHCFIOSH to initialize data!
I I set for writing. I
I I I
I 12. Passes control to scan por-1
I I tion of IHCFCOMH. I
I I I
I 13. Returns control to loadl
I I module. I
~--------+--------------------------------i
I/O List 1. Receives control from load I
Section module, converts 0(1), andl

moves D(l) to output buffer.I
I

2. Returns control to load!
module. I

I
3. Receives control from loadl

module, converts 0(2), andl
moves 0(2) to output buffer.I

I
4. Returns control to loadl

module. I
I

5. Receives control from loadl
module, converts 0(3), andl
moves 0(3) to output buffer.I

I
6. Returns control to loadl

module. I
~--------+--------------------------------i
!Closing 11. Receives control from load I
!Section I module and nranches tol
I I IHCFIOSH to write contents!
I I of output buffer. I
I I I
I 12. Returns control to load!
I I module to continue load I
I I module execution. I l ________ i ________________________________ J

Appendix E: Object-Time Library Subprograms 185

READ NOT REQUIRING A FORMAT: The process
ing performed by IHCFCOMH for the following
READ statement is illustrated in Table 31.

READ (5) X,Y,Z

Table 31. IHCFCOMH Processing for a READ
Not Requiring a Format

r--------T--------------------------------1
!Opening tl. Receives control from load t
!Section t module and branches tot
I I IHCFIOSH to initialize datal
I I set for reading. I
I I t
I 12. Returns control to loadt
t I module. t
t t I
~--------+--------------------------------~
I/O List11. Receives control from load t
Section I module and moves input datal

I to x. t
t I
12. Returns control to load
I module.
t
t3. Receives control from load
I module and moves input data
I to Y.
I
t4. Returns control to load
t module.
t
15. Receives control from load
I module and moves input data
I to z.
t
16. Returns control to load
I module.

~--------+--------------------------------~
tclosing 11. Receives contro1 from load t
!Section I module and branches tot
I I IHCFIOSH to read successive!
I I records until the end-of-I
I I logical-record indicator isl
I I encountered. I
I I I
I 12. Returns control to loadl
I I module to c0ntinue loadl
t I module execution. I
L--------i--------------------------------J

186

WRITE NOT REQUIRING A FORMAT: The process
ing performed by IHCFCOMH for the following
WRITE statement is illustrated in Table 32.

WRITE (6) (W(J) I J=l, 10)

Table 32. IHCFCOMH Processing for a wRITE
Not Requiring a Format

r--------T--------------------------------1
!Opening 11. Receives control from load I
!Section I module and branches toj
I I IHCFIOSH to initialize dataj
I I for writing. I
I I I
I j2. Returns control to loadl
I I n.odule. I
~--------+--------------------------------~
I/O List 1. Receives control from load I
Section module and moves W(l) tol

output buffer. I
I

2. Returns control to loadj
module. I

I
3. Receives control from loadl

module and moves W(2) tol
output buffer. I

I
4. Returns control to loadl

module. I
I
I
I
I
I

5. Receives control from loadj
module and moves WC10) tol
output buffer. I

I
6. Returns control to loadl

I module. I
~--------+--------------------------------~
!Closing 11. Receives control from load I
!Section I module and branches tol
I I IHCFIOSH to write contents!
I I of output buffer. I
I I I
I 12. Returns control to loadl
I I module to continue loadl
I I module execution. I
L--------L--------------------------------J

READ/WRITE Statement Using NAMELIST

Included in the calling sequence to
IHCNAMEL1 generated by the compiler when it
detects a READ or WRITE using a NAMELIST is
a pointer to the object-time namelist dic
tionary associated with the READ or WRITE.
This dictionary contains the names and
addresses of the variables and arrays into
which data is to be read or from which data
is to be written. The dictionary also
contains the information needed to select
the conversion routine that is to convert
the data to be placed into the variables or
arrays, or to be taken from the variables
and arrays.

READ USING NAMELIST: The data set contain
ing the data to be input to the variables
or arrays is initialized and successive
records are read until the one containing
the namelist name corresponding to that in
the namelist dictionary is encountered.
The next record is then read and processed.

The record is scanned and the first name
is obtained. The name is compared to the
variable and array names in the namelist
dictionary. If the name does not agree, an
error is signaled and load module execution
is terminated. If the name is in the
dictionary, processing of the matched vari
able or array is initiated.

Each initialization constant assigned to
the variable or an array element is
obtained from the input record. (One con
stant is required for a variable. A number
of constants equal to the number of ele
ments in the array is required for an
array. A constant may be repeated for
successive array elements if appropriately
specified in the input record.) The
appropriate conversion routine is selected
according to the type of the variable or
array element. Control is then passed to
the conversion routine to convert the con
stant and to enter it into its associated
variable or array element.

The process is repeated for the second
and subsequent names in the input record.
When an entire record has been processed,
the next is read and processed.

Processing is terminated upon recogni
tion of the &END record. Control is then
returned to the calling routine within the
load module.

1IHCNAMEL is included in the load module
only if reads and writes using NAMELISTs
appear in the compiled program. Calls are
made directly to FRDNL# Cf or READ) or to
FWRNL# (.for WRITE) .

WRITE USING NAMELIST: The data set upon
which the variables and arrays are to be
written is initialized. The namelist name
is obtained from the namelist dictionary
associated with the wRITE, moved to an I/O
buffer, and written. The processing of the
variables and arrays is then initiated.

The first variable or array name in the
dictionary is moved to an I/O buffer fol
lowed by an equal sign. The appropriate
conversion routine is selected according to
the type of the variable or array elements.
Control is then passed to the conversion
routine to convert the contents of the
variable or the first array element and to
enter it into the I/O buffer. A comrr~ is
inserted into the buff er following the
converted quantity. If an array is being
processed, the contents of its second and
subsequent elements are converted, using
the same conversion routine, and placed
into the I/Q buffer, separated by commas.
When all of the array elements have been
processed or if the item processed was a
variable, the next name in the dictionary
is obtained. The process is repeated for
this and subsequent variable or array
names.

If, at any time, the record length is
exhausted, the current record is written
and processing resumes in the normal f ash
ion.

When the last variable or array has been
processed, the contents of the current
record are written, the characters &END are
moved to the buffer and written, and con
trol is returned to the calling routine
within the load module.

I/O DEVICE MANIPULATION ROUTINES

The I/O device manipulation routines of
IHCFCOMH implement the BACKSPACE, REWIND,
and END FILE source statements. These
routines receive control from within the
load module via calling sequences that are
generated by the compiler when these state
ments are encountered.

Note: The I/O device manipulation routines
apply only to sequential access I/O devices
(e.g., tape units). BACKSPACE, REWIND, and
ENDFILE requests for direct access data
sets are ignored.

The implementation of REWIND and END
FILE statements is straightforward. The
I/O device manipulation routines submit the
appropriate control request to IHCFIOSH,
the I/O interface module. After the
request is executed, control is returned to
the calling routine within the load module.

The BACKSPACE statement is processed in
a similar fashion. However, before control

Appendix E: Object-Time Library Subprograms 187

•

is returned to the calling routine, it is
determined whether the record backspaced
over is an element of a data set that does
not require a format. If the record is an
element of such a data set, that record is
read into an I/O buff er and the record
count is obtained from its control word.
Backspace control requests, equal in number
to the record count, are then iss~ed and
control is returned to the calling routine.
If the record is not an element of such a
data set, control is returned directly to
the calling routine.

WRITE-'110-0PERATOR ROUTINES

The write-to-operator routines of
IHCFCOMH implement the STOP and PAUSE
source statements. These routines receive
control from within the load module via
calling sequences generated by the compiler
upon recognition of the STOP and PAUSE
statements.

STOP: A write-to-operator (WTO) macro
instruction is issued to display the
message associated with the STOP statement
on the console. Load module execution is
then terminated by passing control to the
program termination routine of IHCFCOMH.

PAUSE: A write-to-operator-with-reply
(WTOR) macro-instruction is issued to dis
play the message associated with the PAUSE
statement on the console and to enable the
operator's reply to be transmitted. A WAIT
macro-instruction is then issued to deter
mine when the operator's reply has been
transmitted. After the reply has been
received, control is returned to the call
ing routine within the load module.

UTILITY ROUTINES

The utility routines of IHCFCOMH perform
the following functions:

• Process object-time error messages.
• Process arithmetic-type program inter

ruptions.
• Terminate load module execution.

PROCESSING OF ERROR MESSAGES:
message processing routine
receives control from various
library subprograms when they
object-time errors.

The error
(IBFERR)
FORTRAN
detect

Error message processing consists of
initializing the data set upon which the
message is to be written and also of
writing the message. If the type of error
requires load module termination, control
is passed to the termination routine of
IHCFCOMH; if not, control is returned to
the calling routine.

188

PROCESSING OF ARITHMETIC INTERRUPT];:oNS:
The arithmetic-interrupt routine CIBFI~T)
of IHCFCOMH initially receives control from
within the load module via a compiler
generated calling sequence. The call is
placed at the start of the executable
coding of the load module so that the
interrupt routine can set up the program
interrupt mask. Subsequent entries into
the interrupt routine are made through
arithmetic-type interruptions.

The interrupt routine sets up the
program interrupt mask by means of a SPIE
macro-instruction. This instruction speci
fies the type of arithmetic interruptions
that are to cause control to be passed to
the interrupt routine, and the location
within the routine to which control is to
be passed if the specified interruptions
occur. After the mask has been set, con
trol is returned to the calling routine
within the load module.

In processing an arithmetic interrup
tion, the first step taken by the interrupt
routine is to determine its type. If
exponential overflow or underflow has
occurred, the appropriate indicators, which
are referenced by OVERFL (a library
subprogram), are set. If any type of
divide check caused the interruption, the
indicator referenced by DVCHK (also a
library subprogram) is set.

Regardless of the type of interruption
that caused control to be given to the
interrupt routine, the old program PSW is
written out for diagnostic purposes.

After the interruption has been proc
essed, control is returned to the inter
rupted routine at the point of interrup
tion.

PROGRAM TERMINATION: The load module ter
mination routine (IBEXIT) of IHCFCOMH
receives control from various library sub
programs (e.g., DUMP and EXIT) and from
other IHCFCOMH routines (·e.g. , the routine
that processes the STOP statement).

This routine terminates execution of the
load module by the following means:

• Calling the appropriate I/O
interface(s) to check Cvia the CHECK
macro-instruction) outstanding write
requests.

• Issuing a SPIE macro-instruction with
no parameters indicating that the FOR
TRAN object module no longer desires to
give special treatment to program
interruptions and does not want maska
ble interruptions to occur.

• Returning to the operating system
supervisor.

CONVERSION ROUTINES CIHCFCVTH)

The conversion routines Cref er to Table
34) either convert data to be placed into
I/O list items or convert data to be taken
from I/O list items.

These routines receive control either
from the I/O list section of IHCFCOMH
during its processing of list items for
READ/WRITE statements requiring a format,
from the routines that process READ/WRITE
statements using a NAMELIST, or from the
DUMP and PDUMP subprograms.

Each conversion routine is associated
with a conversion type format code and/or a
type. If an I/O list item for READ/WRITE
statement requiring a format is being proc
essed, the conversion routine is selected
according to the conversion type format
code which is to be applied to the list
item. If a list item for a READ/WRITE
using a NAMELIST is being processed, the
conversion routine is selected according to
the type of the list item.

If a READ statement is being implement
ed, the conversion routine obtains data
from the I/O buffer, converts it according
to its associated conversion type format
code or type, and enters the converted data
into the list item. The process is re
versed if a WRITE statement is being imple
mented.

For the DUMP and PDUMP subprograms,, the
format code parameter passed to them deter
mines the selection of the output conver
sion routine to be used to place the output
in the desired form.

IHCFIOSH

IHCFIOSH, the object-time FORTRAN
sequential access input/output data manage
ment interface, receives I/O requests from
IHCFCOMH and submits them to the appropri
ate BSAM (basic sequential access method)
routines and/or open and close routines for
execution.

Chart 27 illustrates the overall logic
and the relationship among the routines of
IHCFIOSH. Table 35, the IHCFIOSH routine
directory, lists the routines used in
IHCFIOSH and their functions.

BLOCKS AND TABLES USED

IHCFIOSH uses the following hlocks and
table during its processing of sequential
access input/output requests: Cl> unit
blocks, and (2) unit assignment table. The
unit blocks are used to indicate I/O activ
ity for each unit number Ci.e., data set

reference number) and to indicate the type
of operation requested. In addition, the
unit blocks contain skeletons of the data
event control blocks CDECB) and the data
control blocks (DCB) that are required for
I/O operations. The unit assignment table
is used as an index to the unit blocks.

Unit Blocks

The first reference to each unit number
(data set reference nurr,ber> by an
input/output operation within the FORTRAN
load module causes IHCFIOSH to construct a
unit block for each unit number. The main
storage for the unit blocks is obtained by
IHCFIOSH via the GETMAIN macro-instruction.
The addresses of the unit blocks are placed
in the unit assignment table as the unit
blocks are constructed. All subsequent
references to the unit numbers are then
made through the unit assignment table.
Figure 60 illustrates the format of a unit
block for a unit that is defined as a
sequential access data set.

r-----T-----T-----T-------1
IABYTEIBBYrEICBYTEf LIVECNTI
·-----i _____ i _____ i _______ i
!Address of Buffer 1 I
~-------------------------i Housekeeping
!Address of Buffer 2 I Section
·-------------------------i
!Current buffer pointer I
~-------------------------i
!Record offset I
~-------------------------i
IDECB skeleton section I
·-------------------------i
IDCB skeleton section I
L-------------------------J
Figure 60. Format of a Unit Block for a

Sequential Access Data Set

Each unit block is divided into three
sections: a housekeeping section, a DECB
skeleton section, and a DCB skeleton sec
tion.

HOUSEKEEPlNG SECTION: The housekeeping
section is maintained by IHCFIOSH. The
information contained in it is used to
indicate data set type, to keep track of
I/O buffer locations, and to keep track of
addresses internal to the I/O buffers to
enable the processing of blocked records.
The fields of this section are:

• ABYTE. This field, containing the data
set type passed to IHCFIOSH by
IHCFCOMH, can be set to one of the
following:

FO - Input data set requiring a format.
FF - Output data set requiring a for

mat.

Appendix E: Object-Time Library Subprograms 189

00 - Input data set not requiring a
format.

OF - Output data set not requiring a
format.

• BBYTE. This field contains bits that
are set and examined by IHCFIOSH during
its processing. The bits and their
meanings are as follows:

Bit on

0 - exit to IHCFCOMH on I/O error
1 - I/O error occurred
2 - current buff er indicator
3 - not used
4 - end-of-current buffer indicator
5 - blocked data set indicator
6 variable record format switch
7 - not used

• CBYTE. This field also contains bits
that are set and examined by IHCFIOSH.
The bits and their meanings are as
follows:

Bit on

O - data control block opened
1 - data control block not TCLOSEd
2 - data control block not previously

opened
3 - buff er pool attached
4 - data set not previously rewound
5 - data set not previously backspaced
6 - concatenation occurring -- reissue

READ
7 - not used

• LIVECNT. This field indicates whether
any I/O operation performed for this
data set is unchecked. (A value of 1
indicates that a previous read or write
has not been checked; a value of 0
indicates that all previous read and
write operations for this data set have
been checked.)

• Address of Buffer 1 and Address of
Buffer 2. These fields contain point
ers to the two I/O buffers obtained
during the opening of the data control
block for this data set.

• current Buffer Pointer. This field
contains a pointer to the I/O buffer
currently being used.

• Record Off set. This field contains a
pointer to the current logical record
within the current buffer.

DECB
event
block
block.

190

SKELETON SECTION: The DECB (data
control block) skeleton section is a
of main storage within the unit

It is of the same form as the DECB

constructed by the control program for an L
form of an S-type READ or WRITE macro
instruction (ref er to the publication IBM
Systern/360 Operating system: Control
Program Services). The various fields of
the DECB skeleton are filled in by IHCFI
OSH; the completed block is referred to
when IHCFIOSH issues a read/write request
to BSAM. The read/write field is filled in
at open time. For each I/O operation,
IHCFIOSH supplies IHCFCOMH with: (1) an
indication of the type of operation (read
or write), and (2) the length of and a
pointer to the I/O buffer to be used for
the operation.

DCB SKELETON SECTION: The DCB (data con
trol block) skeleton section is a block of
main storage within the unit block. It is
of the same form as the DCB constructed by
the control program for a DCB macro
instruction under BSAM (refer to the
publication IBh System/360 Operating Sys
tem: Control Program Services). The var
ious fields of the DCB skeleton are filled
in by the control program when the DCB for
the data set is opened (refer to the
publication IBM Systern/360 Operating Sys
tem: Concepts and Facilities). (Standard
default values may also be inserted in the
DCB skeleton by IHCFIOSH. Refer to "Unit
Assignment Table" for a discussion of when
default values are inserted into the DCB
skeleton._)

Unit Assignment Table

The unit assignment table (IHCUATBL)
resides on the FORTRAN system library
(SYSl.FORTLIB). Its size depends on the
maximum number of units that can be
ref erred to during execution of any FORTRAN
load module. This number (~ 99) is speci
fied by the user during the system genera
tion process via the FORTLIB macro
instruction.

The unit assignment table is designed to
be used by both IHCFIOSH and IHCDIOSH. It
is included once, by the linkage editor, in
the FORTRAN load module as a result of an
external reference to it within IHCFIOSH
and/or IHCDIOSH.

The unit assignment table contains a 16
byte entry for each of the unit numbers
that can be referred to by the user. These
entries differ in format depending on
whether the unit has been defined as a
sequential access or a direct access data
set.

Figure 61 illustrates the format of the
unit assignment table.

r---~------------------T----------T-------1
IUnit number (DSRN} I I I
lbeing used for current! I I
I operation I 1.n x 16 14 bytes I
~--------T-------T-----L-T--------f-------1
I ERRMSG I READ I PRINT I PUNCH I I
I DSRN2 I DSRN3 I DSRN 4 I DSRN 5 14 bytes!
~--------i-------L-------L--------f-------1
fUBLOCKOl field 14 bytes!
~---------------------------------+-------~
fDSRNOl default values 18 bytesl
~---------------------------------+-------i
ILISTOl field 14 bytesl
~--------------~------------------+-------1
I I I
I · I · I
I · I · I
I · I · I
I I I
~---------------------------------+-------~
IUBLOCKn field 6 14 bytes I
~----------------------------------+-------i
'DSRNn default values 7 18 bytes!
~---------------------------------+-------1
ILISTn field8 14 bytesl
~---------------------------------L-------1

1 n is the maximum number of units that
can be ref erred to by the FORTRAN load
module. The size of the unit table is
equal to (8 + n x 16} bytes.

2 Unit number (DSRN} of error output
device.

3 Unit number (DSRN} of input device for a
read of the form: READ b,list.

4 Unit number (DSRN} of output device for
a print operation of the form: PRINT
b,list.

5 Unit number (DSRN} of output device for
a punch operation of the form: PUNCH
b,list.

6 The-iIBLOCKn field contains either a
pointer to the unit block constructed!
for unit number n if the unit is beingl
used at object-time, or a value of 1 if I
the unit is not being used. I

7 The default values for the various unit!
numbers are specified by the user andl
are assembled into the unit assignment!
table entries during the system genera-I
tion process. The default values arel
used only by IHCFIOSH; they are ignored!
by IHCDIOSH. I

8 If the unit is defined as a direct!
access data set, the LISTn field con-I
tains a pointer to the parameter list!
that defines the direct access data set.I
Otherwise, this field contains a valuet
Of 1. I

L---J
Figure 61. Unit Assignment Table Format

Because IHCFIOSH deals only with sequen
tial access data sets, the remainder of the
discussion on the unit assignment table is
devoted to unit assignment table entries
for sequential access data sets. If IHCFI
OSH encounters a reference to a direct

access data set, it is considered as an
error, and control is passed to the load
module termination routine of IHCFCOMH.

The pointers to the unit blocks created
for sequential data sets are inserted into
the unit assignment table entries by IHCFI
OSH when the unit blocks are constructed.

Note: Default values are standard values
that IHCFIOSH inserts into the appropriate
fields (e.g., BUFNO} of the DCB skeleton
section of the unit blocks if the user
either:

• Causes the load module to be executed
via a cataloged procedure, or

• Fails, in stating his own procedure for
execution, to include in the DCB param
eter of his DD statements those sub
parameters (e.g., BUFNO) he is permit
ted to include (ref er to the publica
tion IBM S~stem/360 Operating system:
FORTRAN IV fH) Programmer's Guide}.

Control is returned to IHCFIOSH during
data control block opening so that it can
determine if the user has included the
subparameters in the DCB parameter of his
DD statements. IHCFIOSH examines the DCB
skeleton fields corresponding to user
permitted subparameters, and upon
encountering a null field (indicating that
the user has not specified the
subparameter>, inserts the standard value
(i.e., the default value) for the subparam
eter into the DCB skeleton. (If the user
has included these subparameters in his DD
statement, the control program routine per
forming data control block opening inserts
the subparameter values, before giving con
trol to IHCFIOSH, into the DCB skeleton
fields reserved for those values.}

BUFFERING

All input/output operations are double
buffered. (The double buffering scheme can
be overridden by the user if he specifies
in a DD statement: BUFNO=l.} This implies
that during data control block opening, two
buffers will be obtained. The addresses of
these buffers are given alternately· to
IHCFCOMH as pointers to:

• Buffers to be filled Cin the case of
output).

• Information that has been read in and
is to be processed Cin the case of
input}.

COMMUNICATION WITH THE CONTROL PROGRAM

In requesting services of the control
program, IHCFIOSH uses L and E forms of

Appendix E: Object-Time Library Subprograms 191

s-type macro-instructions (refer to the
publication IBM System/360 Operating Sys
tem: Control Program Services).

OPERATION

The processing of IHCFIOSH is divided
into five sections: initialization, read,
write, device manipulation, and closing.
When called by IHCFCOMH, a section of
IHCFIOSH performs its function and then
returns control to IHCFCOMH.

Initialization

The initialization action taken by
IHCFIOSH depends upon the nature of the
previous I/O operation requested for the
data set. The previous operation possibil
ities are:

• No previous operation.
• Previous operation read or write.
• Previous operation backspace.
• Previous operation write end-of-data

set.
• Previous operation rewind.

NO PREVIOUS OPERATION: If no previous
operation has been performed on the unit
specified in the I/O request, the initiali
zation section generates a unit block for
the unit number. The data set to be
created is then opened (if the current
operation is not rewind or backspace) via
the OPEN macro-instruction. The addresses
of the I/O buffers, which are obtained
during the opening process and placed into
the DCB skeleton, are placed into the
appropriate fields of the housekeeping sec
tion of the unit block. The DECB skeleton
is then set to reflect the nature of the
operation (read or write), the format of
the records to be read or written, and the
address of the I/O buff er to be used in the
operation.

If the requested operation is a write, a
pointer to the buff er position, at which
IHCFCOMH is to place the record to be
written, and the block size or logical
record length <to accommodate blocked logi
cal records) are placed into registers, and
control is returned to IHCFCOMH.

If the requested operation is a read, a
record is read, via a READ macro
ins truction, into the I/O buffer, and the
operation is checked for completion via the
CHECK macro-instruction. A pointer to the
location of the record within the buffer,
along with the numtler of bytes read or the
logical record length, are placed into

192

registers,
IHCFCOMH.

and control is returned to

Note: During the opening process, control
is returned to the IHCDCBXE routine in
IHCFIOSH. This routine determines if the
data set being opened is a 1403 printer.
If it is, the RECFM field in the DCB for
the data set is altered to machine carriage
control (FM). In addition, a pointer to
the unit block generated for the printer,
and the physical address of the printer are
placed into a control block area (CTLBLK)
for the printer within IHCFIOSH. CTLBLK
also contains a third print buffer. This
buffer is used in conjunction with the two
buffers already obtained for the printer.

Figure 62 illustrates the format of
CTLBLK.

r-------------------------T---------1
CTLBLKlaCBUF 3) I 4 bytes!

~-------------------------+---------~
la<unit block) I 4 bytes!
~-----------y-------------+---------1
1a<printer) !record lengthl 4 bytes!
~-----------i-------------+---------~
11 FTOO I 4 bytes!
~-------------------------+---------1
11 FOOl I 4 bytes!
~-------------------------+---------1

BUF3 !third print buffer 1144 bytes!
~-------------------------i---------1
l 1 Used in the task input/output!
I table (TIOT) search. I
L-----------------------------------J

Figure 62. CTLBLK Format

PREVIOUS OPERATION READ OR WRITE: If the
previous operation performed on the unit
specified in the present I/O request was
either a read or write, the initialization
section determines the nature of the pres
ent I/O request. If it is a write, a
pointer to the buffer position, at which
IHCFCOMH is to place the record to be
written, and the block size or logical
record length are placed into registers,
and control is returned to IHCFCOMH.

If the operation to be performed is a
read, a pointer to the buff er location of
the record to be processed, along with the
number of bytes read or logical record
length, are placed into registers, and
control is returned to IHCFCOMH.

PREVIOUS OPERATION BACKSPACE: If the pre
vious operation performed on the unit spec
ified in the present I/O request was a
backspace, the initialization section de
termines the type of the present operation
<read or write) and modifies the DECB
skeleton, if necessary, to' reflect the
operation type. Cif the operation type is
the same as that of the operation that
preceded the backspace request, the DECB

skeleton need not be modified.) Subsequent
processing steps are the same as those
described for "No Previous Operation,"
starting at the point after the DECB skele
ton is set to reflect operation type.

PREVIOUS OPERATION WRITE END-OF-DATA SET:
If the previous operation performed on the
unit specified in the present I/O request
was a write end-of-data set·, a new data set
using the same unit number is to be creat
ed. In this case, the initialization sec
tion closes the data set. Then, in order
to establish a correspondence between the
new data set and the DD statement describ
ing that data set, IHCFIOSH increments the
unit sequence number of the ddname. (The
ddname is placed into the appropriate field
of the DCB skeleton prior to the opening of
the initial data set associated with the
unit number.> During the opening of the
data set, the ddnarne will be used to merge
with the appropriate DD statement. The
data set is then opened. Subsequent proc
essing steps are the same as those de
scribed for "No Previous Operation," start
ing at the point after the data set is
opened.

PREVIOUS OPERATION REWIND: If the previous
operation performed on the unit specified
in the present I/O request was a rewind,
the ddname is initialized (set to FTxxF001)
in order to establish a correspondence
between the initial data set associated
with the unit number and the DD statement
describing that data set. The data set is
then opened. Subsequent processing steps
are the same as those described for "No
Previous Operation," starting at the point
after the data set is opened.

Read

The read section of IHCFIOSH performs
two functions: Cl> reads physical records
into the buffers obtained during data set
opening, and C2) makes the contents of
these buffers available to IHCFCOMH for
processing.

If the records being processed are
blocked, the read section does not read a
physical record each time it is given
control. IHCFIOSH only reads a physical
record when all of the logical records of
the blocked record under consideration have
been processed by IHCFCOMH. However, if
the records being processed are either
unblocked or of U-format, the read section
of IHCFIOSH issues a READ macro-instruction
each time it receives control.

The reading of records by this section
is overlapped. That is, while the contents
of one buffer are being processed, a physi
cal record is being read into the other
buff er. When the contents of one buffer

have been processed, the read into the
other buff er is checked for completion.
Upon completion of the read operation,
processing of that buffer's contents is
initiated. In addition, a read into the
second buffer is initiated.

Each time the read section is given
control it makes the next record available
to IHCFCOMH for processing. Cin the case
of blocked records, the record presented to
IHCFCOMH is logical.) The read section of
IHCFIOSH places: Cl> a pointer to the
record's location in the current I/O buf
fer, and (2) the number of bytes read or
logical record length into registers, and
then returns control to IHCFCOMH.

The write section of IHCFIOSH performs
two functions: Cl) writes physical records,
and C2> provides IHCFCOMH with buffer space
in which to place the records to be writ
ten.

If the records being written are
blocked, the write section does not write a
physical record each time it is given
control. IHCFIOSH only writes a physical
record when all of the logical records that
comprise the blocked record under consider
ation have been placed into the I/O buff er
by IHCFCOMH. However, if the records being
written are either unblocked or of u
format, the write section of IHCFIOSH
issues a WRITE macro-instruction each time
it receives control.

The writing of records by this section
is overlapped. That is, while IHCFCOMH is
filling one buffer, the contents of the
other buffer are being written. When an
entire buffer has been filled, the write
from the other buff er is checked for com
pletion. Upon completion of the write
operation, IHCFCOMH starts placing records
into that buffer. In addition, a write
from the second buff er is initiated.

Each time the write section is given
control, it provides IHC~COMH with buff er
space in which to place the record to be
written. IHCFIOSH places: (1) a pointer to
the location within the current buff er at
which IHCFCOMH is to place the record, and
(2) the block size or logical record length
into reg·isters, and then returns control to
IHCFCOMH.

Note: The write section checks to see if
the data set being written on is a 1403
printer. If it is, the carriage control
character is changed to machine code, and
three buffers, instead of the normal two,
are used when writing on the printer.

Appendix E: Object-Time Library Subprograms 193

ERROR PROCESSING: If an end-of-data set or
an I/O error is encountered during reading
or writing, the control program returns
control to the location within IHCFIOSH
that was specified during data set initial
ization. In the case of an I/O error,
IHCFIOSH sets a switch to indicate that the
error has occurred. Control is then
returned to the control program. The con
trol program completes its processing and
returns control to IHCFIOSH, which interro
gates the switch, finds it to be set, and
passes control to the I/O error routine of
IHCFCOMH.

In the case of an end-of-data
IHCFIOSH simply passes control to the
of-data set routine of IHCFCOMH.

set,
end-

Chart 28 illustrates the execution-time
I/O recovery procedure for any I/O errors
detected by the I/O supervisor.

Device Manipulation

The device manipulation section of
IHCFIOSH processes backspace, rewind, and
write end-of-data set requests.

BACKSPACE: IHCFIOSH processes the back
space request by issuing a BSP (physical
backspace) macro-instruction. It then
places the data set type, which indicates
the format requirement, into a register and
returns control to IHCFCOMH. (IHCFCOMH
needs the data set type to determine its
subsequent processing.)

REWIND: IHCFIOSH processes the rewind
request by issuing a CLOSE macro
instruction, using the REREAD option. This
option has the same effect as a rewind.
Control is then returned to IHCFCOMH.

WRITE END-OF-DATA SET: IHCFIOSH processes
this request by issuing a CLOSE macro
instruction, type = T. It then frees the
I/O buffers by issuing a FREEPOOL macro
instruction, and returns control to
IHCFCOMH.

Closing

The closing section of IHCFIOSH examines
the entries in the unit assignment table to
determine which data control blocks are
open. In addition, this section ensures
that all write operations for a data set
are comp1eted before the data control block
for that data set is closed. This is done
by issuing a CHECK macro-instruction for
all double-buffered output data sets. Con
trol is then returned to IHCFCOMH.

Note:
write

194

If a 1403 printer is being used, a
from the last print buff er is issued

to insure that the last line of output is
written.

IHCDIOSH

IHCDIOSH, the object-time FORTRAN direct
access input/output data management inter
face, receives I/O requests from IHCFCOMH
and submits them to the appropriate BDAM
(basic direct access method) routines
and/or open and close routines for execu
tion. (For the first I/O request involving
a nonexistent data set, the appropriate
BSAM routines must be executed prior to
linking to the BDAM routines. The BSAM
routines format and create a new data set
consisting of blank records.)

from: Cl) the
FORTRAN load

IHCDIOSH receives control
initialization section of the
module if a DEFINE FILE
included in the source
IHCFCOMH whenever a READ,
direct access statement

statement is
module, and (2)
WRITE, or FIND

is encountered in
the load module.

Charts 29 and 30 illustrate the overall
logic and the relationship among the rou
tines of IHCDIOSH. Table 36, the IHCDIOSH
routine directory, lists the routines used
in IHCDIOSH and their functions.

BLOCKS AND TABLE USED

IHCDIOSH uses the following blocks and
table during its processing of direct
access input/output requests: Cl) unit
blocks, and (2} unit assignment table. The
unit blocks are used to indicate I/O activ
ity for each unit number (i.e., data set
reference number) and to indicate the type
of operation requested. In addition, each
unit block contains skeletons of the data
event control blocks (DECB) and the data
control block (DCB) that are required for
I/O operations. The unit assignment table
is used as an index to the unit blocks.

Unit Blocks

The first reference to each unit number
(i.e., data set reference number) by a
direct access input/output operation within
the FORTRAN load module causes IHCDIOSH to
construct a unit block for each of the
referenced unit numbers. The main storage
for the unit blocks is obtained by IHCDIOSH
via the GETMAIN macro-instruction. The
addresses of the unit blocks are inserted
into the corresponding unit assignment
table entries as the unit blocks are con
structed. Subsequent references to the
unit numbers are then made through the unit
assignment table.

Figure 63 illustrates the format of a
unit block for a unit that has been defined
as a direct access data set.

r-------T-------T------T------T-----------1
IIOTYPE ISTATUSUI not I not I 4 bytes I
I I I used I used I I
·-------L-------L------L------f-----------~
I RECNUM I 4 bytes I
·-------T---------------------+-----------i
I STATUSAI CURBUF I 4 bytes I
·-------L---------------------t-----------~
I BLKREFA I 4 bytes I
·-------T---------------------t-----------~
I STATUSB I NXTBUF I 4 bytes I
·-------L---------------------t-----------i
I BLKREFB I 4 bytes I
·-----------------------------+-----------~
I DECBA I 28 bytes I
·-----------------------------+-----------~
I DECBB I 28 bytes I
·-----------------------------+-----------i
I DCB I 104 bytes I
L-----------------------------L-----------J
Figure 63. Format of a Unit Block for a

Direct Access Data Set

The meanings of the various unit block
fields are outlined below.

IOTYPE: This field, containing the data
set type passed to IHCDIOSH by IHCFCOMH,
can be set to one of the following:

FO - input data set requiring a format

FF - output data set requiring a format

00 - input data set not requiring a
format

OF - output data set not requiring a
format

STATUSU: This field specifies the status
of the associated unit number. The bits
and their meanings are as follows:

Bit on

O - not used
1 - error occurred
2 - two buffers are being used
3 - data control block for data set is

open
4-5 10 - u form specified in DEFINE

FILE statement
01 - E form specified in DEFINE
FILE statement
11 - L form specified in DEFINE
FILE statement

6-7 not used

Note: IHCDIOSH references only bits 1, 2,
and 3.

RECNUM: ·rhis field contains the number of
records in the data set as specified in the
parameter list for the data set in a DEFINE
FILE statement. It is filled in by the
file initialization section after the data
control block for the data set is opened.

STATUSA: This field specifies the status
of the buff er currently being used. The
bits and their meanings are as follows:

Bit on

0 - READ macro-instruction has been
issued

1 - WRITE macro-instruction has been
issued

2 - CHECK macro-instruction has been
issued

3-7 Not used

CURBUF: This field contains the address of
the DECB skeleton currently being used. It
is initialized to contain the address of
the DECBA skeleton by the file initializa
tion section of IHCDIOSH after the data
control block for the data set is opened.

BLKREFA: This field contains an integer
that indicates either the relative position
within the data set of the record to be
read, or the relative position within the
data set at which the record is to be
written. It is filled in by either the
read or write section of IHCDIOSH prior to
any reading or writing. In addition, the
address of this field is inserted into the
DECBA skeleton by the file initialization
section of IHCDIOSH after the data control
block for the data set is opened.

STATUSB: This field specifies the status
of the next buffer to be used if two
buffers are obtained for this data set
during data control block opening. The
bits and their meanings are the same as
described for the STATUSA field. However,
if only one buff er is obtained during data
control block opening, this field is not
used.

NXTBUF: This field contains the address of
the DECB skeleton to be used next if two
buffers are obtained during data control
block opening. It is initialized to con
tain the address of the DECBB skeleton by
the file initialization section of IHCDIOSH
after the data control block for the data
set is opened. However, if only one buffer
is obtained during data control block open
ing, this field is not used.

BLKREFB: The contents of this field are
the same as described for the BLKREFA
field. It is filled in either by the read
or the write section of IHCDIOSH prior to
any reading or writing. In addition, the
address of this field is inserted into the

Appendix E: Object-Time Library Subprograms 195

DECBB skeleton by the file initialization
section of IHCDIOSH after the data control
block for the data set is opened. However,
if only one buff er is obtained during data
control block opening, this field is not
used.

DECBA SKELETON: This field contains the
DECB (data event control block) skeleton to
be used when reading into or writing from
the current buffer. It is of the same form
as the DECB constructed by the control
program for an L form of an s-type READ or
WRITE macro-instruction under BDAM <refer
to the publication IBM system/360 Operating
System: Control Program Services).

The various fields of the DECBA skeleton
are filled in by the file initialization
section of IHCDIOSH after the data control
block for the data set is opened. The
completed DECB is ref erred to when IHCDIOSH
issues a read or a write request to BDAM.
For each I/O operation, IHCDIOSH supplies
IHCFCOMH with the address of and the size
of the buffer to be used for the operation.

DECBB SKELETON.: The DECBB skeleton is used
when reading into or writing from the next
buffer. Its contents are the same as
described for the DECBA skeleton. The
DECBB skeleton is completed in the same
manner as described for the DECBA skeleton.
However, if only one buffer is obtained
during data control block opening, this
field is not used.

DCB SKELETON: This field contains the DCB
(data control block) skeleton for the asso
ciated data set. It is of the same form as
the DCB constructed by the control program
for a DCB macro-instruction under BDAM
(ref er to the publication IBM System/360
Operating System: Control Program
services).

The various fields of the DCB skeleton
are filled in by the control program when
the DCB for the data set is opened Cref er
to the publication IBM System/360 Operating
System: Concepts and Facilities).

Unit Assignment Table

The unit assignment table CIHCUATBL)
resides on the FORTRAN system library
CSYSl.FORTLIB). Its size depends on the
maximum number of units that can be
ref erred to during execution of any FORTRAN
load module. This number (~99) is speci
fied by the user during the system genera
tion process via the FORTLIB macro
instruction.

The unit assignment table is designed to
be used by both IHCFIOSH and IHCDIOSH. It
is included once, by the linkage editor, in
the FORTRAN load module as a result of an

196

external reference to it within IHCFIOSH
and/or IHCDIOSH.

The unit assignment table contains a
16-byte entry for each of the unit numbers
that can be ref erred to by either IHCDIOSH
or IHCFIOSH. These entries differ in
format depending on whether the unit has
been defined as a direct access or as a
sequential access data set. Because IHCDI
OSH deals only with direct access data
sets, only the entry for a direct access
unit is shown here. (Refer to the IHCFIOSH
section "Table and Blocks Used", for the
format of the unit assignment table as a
whole.) If IHCDIOSH encounters a reference
to a sequential access data set, it is
considered as an error, and control is
passed to the load module termination rou
tine of IHCFCOMH.

Figure 64 illustrates the unit assign
ment table entry format for a direct access
data set.

r---------------------------------T-------1
I Pointer to unit block xx 14 bytesl
I (UBLOCKxx) I I
·---------------------------------+-------i
I Default values for DSRNxx (only 18 bytesj
I applies to sequential access I I
I data sets not used by I I
I IHCDIOSH) I I
·---------------------------------+-------i
I Pointer to parameter listxx 14 bytesl
I CLISTxx) I I
·---------------------------------i-------i
I UBLOCKxx is the unit block generated (
I for unit number xx. I
I I
I DSRNxx is the unit number for the I
I direct access data set Cxx~99). I
I I
I LISTxx is the parameter list that I
I defines the direct access data set I
I associated with unit number xx. I l ___ J

Figure 64. Unit Assignment Table Entry for
a Direct Access Data Set

The pointers to the
in~erted into the unit
entries by IHCDIOSH when
are constructed.

unit blocks are
assignment table

the unit blocks

The pointers to the parameter lists are
inserted into the unit assignment table
entries by IHCDIOSH when IHCDIOSH receives
control from the initialization section of
the FORTRAN load module being executed.

BUFFERING

All direct access input/output opera
tions are double-buffered. (The double
buffering scheme may be overridden by the

user if he specifies in his DD statements:
BUFNO=l.) This implies that during data
control block opening, two buffers will be
obtained for each data set. The addresses
of these buffers are given alternately to
IHCFCOMH as pointers to:

• Buffers to be filled in the case of
output.

• Data that has been read in and is to be
processed in the case of input.

Each buffer has its own DECB. This
increases I/O efficiency by overlapping of
I/O operations.

COMMUNICATION WITH THE CONTROL PROGRAM

In requesting services of the control
program BSAM and BDAM routines, IHCDIOSH
uses L and E forms of s-type macro
instructions <ref er to the publication IBM
svstem/360 Operating System: Control
Program Services).

OPERATION

The processing of IHCDIOSH is divided
into five sections: file definition, file
initialization, read, write, and termina
tion. When a section receives control, it
performs its functions and then returns
control to the caller <either the FORTRAN
load module or IHCFCOMH).

File Definition Section

The file definition section is entered
from the FORTRAN load module, via a
compiler-generated calling sequence, if a
DEFINE FILE statement is included in the
FORTRAN source module. The file definition
section performs the following functions:

• Checks fer the redefinition of each
direct access unit number.

• Enters the address of each direct
access unit number's parameter list
into the appropriate unit assignment
table entry.

• Establishes addressability for IHCDIOSH
within IHCFCOMH.

Each direct access unit number appearing
in a DEFINE FILE statement is checked to
see if it has been defined previously. If
it has been defined previously, the current
definition is ignored. If it has not been
defined previously, the address of its
parameter list (i.e., the definition of the
unit number) is inserted into the proper
entry in the unit assignment table. The
next unit number if any is then obtained.

When the last unit number has been
processed in the above manner, the file
definition section stores the address of
IHCDIOSH into the FDIOCS field within
IHCFCO~H. This enables IHCFCOMH to link to
IHCDIOSH when IHCFCOMH encounters a direct
access I/O statement. Control is then
returned to the FORTRAN load module to
continue normal processing.

File Initialization Section

The file initialization section receives
control from IHCFCOMH whenever input or
output is requested for a direct access
data set. The processing performed by the
initialization section depends on whether
an I/O operation was previously requested
for the data set.

NO PREVIOUS OPERATION: If no operation was
previously requested for the data set spec
ified in the current I/O request, the file
initialization section first constructs a
unit block for the data set. (The GETMAIN
macro-instruction is used to obtain the
main storage for the unit block.) The
address of the unit block is inserted into
the appropriate entry in the unit assign
ment table.

The file initialization section then
reads the JFCB (job file control block) via
the RDJFCB macro-instruction. The value in
the BUFNO field of the JFCB is inserted
into the DCB skeleton in the unit block.
This value indicates the number of buffers
that are obtained for this data set when
its data control block is opened. If the
BUFNO field is null (i.e., if the user did
not include the BUFNO subparameter in the
DD statement for this data set), or other
than 1 or 2, the file initialization sec
tion inserts a value of two into the DCB
skeleton.

The file initialization section next
examines the JFCBIND2 field in the JFCB to
determine if the data set specified in the
current I/O request exists. If the
JFCBIND2 field indicates that the specified
data set does not exist, and if the current
request is a write, a new data set is
created. (If the current request is a
read, an error is indicated and control is
returned to IHCFCOMH to terminate load
module execution. If the current request
is a find, the request is ignored, and
control is returned to IHCFCOMH.) If the
JFCBIND2 field indicates that the specified
data set already exists, a new data set is
not created. The file initialization sec
tion processing for a data set to be
created, and for a data set that already
exists is discussed in the following para
graphs.

Appendix E: Object-Time Library Subprograms 197

Data Set to be Created: The data control
block for the new data set_is first opened
for the BSAM, load mode, WRITE macro
instruction. The BSAM WRITE macro
instruction is used to create a new data
set according to the format specified in
the parameter list for the data set in a
DEFINE FILE statement. The data contro-i
block is then closed. subsequent file
initialization section processing after
creating the new data set is the same as
that described for a data set that already
exists (refer to the section "Data Set
Already Exists").

Data Set Already Exists: The data control
block for the data set is opened for direct
access processing by the BDAM routines.
After the data control block is opened, the
file initialization section fills in var
ious fields in the unit block:

• The number of records in the data set
is inserted into the RECNUM field.

• The address of the DECB skeletons
CDECBA and DECBB) are inserted into the
CURBUF and the NXTBUF fields, respec
tively.

• The addresses of the I/O buffers
obtained during data control block
opening are inserted into the appropri
ate DECB skeletons.

• The address of the
BLKREFB fields in the
inserted into the
skeletons.

BLKREFA and the
unit block are

appropriate DECB

Note: If the user specifies BUFNO=l in the
DD statement for this data set, only one
I/O buff er is obtained during data control
block opening. In this case, the NXTBUF
field, the BLKREFB field, and the DECBB
skeleton are not used.

Subsequent file initialization section
processing for the case of no previous
operation depends upon the nature of the
I/O request (find, read, or write). This
processing is the same as that described
for the case of a previous operation Cref er
to the section "Previous Operation").

PREVIOUS OPERATION: If an operation was
previously requested for the data set spec
ified in the current I/O request, the file
initialization section processing depends
upon the nature of 1 the current I/O request.

If the current request is either a find
or a read, control is passed to the read
section.

If the current request is a write,
control is passed to the secondary entry in
the write section.

198

Read Section

The read section of IHCDIOSH processes
read and find requests. The read section
may be entered either from the file ini
tialization section of IHCDIOSH, or from
IHCFCOMH. In either case, the processing
performed is the same. In processing read
and find requests, the read section per
forms the following functions:

• Reads physical records into the
buffer(s) obtained during data control
block opening.

• Makes the contents of these buffers
available to IHCFCOMH for processing.

• Updates the associated variable that is
defined in the DEFINE FILE statement
for the data set.

The read section, upon receiving con
trol, first checks to see if the record to
be found or read is already in an I/O
buff er. Subsequent read section processing
depends upon whether the record is in the
buff er.

RECORD IN BUFFER: If a record is in the
buffer, the read section determines whether
the current request is a find or a read.

If the current request is a find, the
associated variable for the data set is
updated so that it points to the relative
position within the direct access data set
of the record that is in the buffer.
Control is then returned to IHCFCOMH.

If the current request is a read, the
read operation that read the record into
the buff er is checked for completion. The
read section then places the address of the
buff er and the size of the buffer into
registers for use by IHCFCOMH. The asso
ciated variable for the data set is updated
so that it points to the relative position
within the direct access data set of the
record following the record just read.
Control is then returned to IHCFCOMH.

RECORD NOT IN BUFFER: If a record is not
in the buffer, the read section first
obtains the address of the buff er to be
used for the current request. The relative
record number of the record to be read is
then inserted into the appropriate BLKREF
field in the unit block Ci.e., BLKREFA or
BLKREFB). The proper record is then read
from the specified data set into the buf
fer. Subsequent read section processing
for the case of a record not in the buff er
is the same as that described for a record
in the buffer (refer to the section "Record
In Buffer").

Note 1: Record retrieval can proceed con
currently with CPU processing only if the

user alternates FIND statements with READ
statements in his program.

Note 2: If an I/O error occurs during
reading, the control program returns con
trol to the synchronous exit routine
(SYNADR) within IHCDIOSH. The SYNADR rou
tine sets a switch to indicate that an I/O
error has occurred, and then returns con
trol to the control program. The control
program completes its processing and
returns control to IHCDIOSH. IHCDIOSH
interrogates the switch, finds it to be
set, and passes control to the I/O error
routine of IHCFCOMH.

Write Section

The write section of IHCDIOSH processes
write requests. The write section may be
entered either from the file initialization
section of IHCDIOSH, or from IHCFCOMH. The
processing performed by the write section
depends upon where it is entered from.

PROCESSING IF ENTERED FROM FILE INITIALIZA
TION SECTION: If the write section is
entered from the file initialization sec
tion of IHCDIOSH, no writing is performed.
The write section only provides IHCFCOMH
with buffer space in which to place the
record to be written. The relative record
number of the record to be written is
inserted into the appropriate BLKREF field
(i.e., BLKREFA or BLKREFB). (The record is
written the next time the write section is
entered.) For a formatted write, the buf
fer is filled with blanks. For an unfor
matted write, the buffer is filled with
zeros. The write section then places the
address of the buff er and the size of the
buff er into registers for use by IHCFCOMH.
Control is then returned to IHCFCOMH.

PROCESSING IF ENTERED FROM IHCFCOMH: Each
time the write section is entered from
IHCFCOME, it writes the contents of the
buff er onto the specified data set. Subse
quent write section processing for entran
ces from IHCFCOMH is the same as that
described for entrances from the file ini

tialization section of IHCDIOSH (ref er to
"Processing If Entered From File Initiali
zation Section"). In addition, the asso
ciated variable is modified prior to
returning to IHCFCOMH. The associated
variable for the data set is updated so
that it points to the relative position
within the direct access data set of the
record following the record just written.

Note 1: The writing of physical records by
this section is overlapped. That is, while
IHCFCOMH is filling buff er A, buffer B is
being written onto the output data set.
When buff er A has been f il1ed, the write
from buffer B is checked for completion.
Upon completion of the write operation,

IHCFCOMH starts placing data into buffer B.
In addition, a write from buffer A is
initiated.

Note 2: If an I/O error occurs during
writing, the control program returns con
trol to the synchronous exit routine
(SYNADR) within IHCDIOSH. The SYNADR rou
tine sets a switch to indicate that an I/O
error has occurred, and thtn returns con
trol to the control program. The control
program completes its processing ana
returns control to IHCDIOSH. IHCDIOSH
interrogates the switch, finds it to be
set, and passes control to the I/O error
routine of IHCFCOMH.

Termination Section.

The termination section of IHCDIOSH
receives control from the load module ter
mination routine of IHCFCOMH. The function
of this section is to terminate any pending
I/O operations involving direct accesb data
sets. The unit blocks associated with the
direct access data sets are examined by
IHCDIOSH to determine if any I/O is pend
ing. CHECK macro-instructions are issued
for all pending I/O operations to insure
their completion.

The data control blocks for the direct
access data sets are closed, and the main
storage occupied by the unit blocks is
freed via the FREEMAIN macro-instruction.
Control is then returned to the load module
termination routine of IHCFCOMH to complete
the termination process.

IHCIBERH

IHCIBERH, a meroner of the FORTRAN system
library (SYSl.FORTLIB), processes object
time source statement errors. IHCIBERH is
entered when an internal sequence number
CISN) cannot be executed because of a
source statement error.

The ISN of the invalid source statement
is obtained (from information in the
calling sequence) and is then converted to
decimal form. IHCIBERH then links to
IHCFCOMH to implement the writing of the
following error message:

IHC230I - SOURCE ERROR AT ISN
XX.XX - EXECUTION FAILED
SUBROUTINE (name)

After the error message is written on
the user-designated error output data set,
IHCIBERH passes control to the IBEXIT rou
tine of IHCFCOMH to terminate execution.

Chart 31 illustrates the overall logic
of IHCIBERH.

Appendix E: Object-Time Library Subprograms 199

IHCDBUG

IHCDBUG performs the object-time opera
tions of the Debug Facility statements.
All linkages from the load module to
IHCDBUG are compiler generated.

Items and Buff er

The following items in IHCDBUG are ini
tialized to zero at load time:

• DSRN - the data set reference number
• TRACFLAG - trace flag
• IOFLAG - input/output in progress flag
• DATATYPE - variable type bits

Whenever information is assembled for
output, it is placed in a 70-byte area
called DBUFFER. The first character of
this area is permanently set to blank, for
single spacing.

Operation

The first portion of IHCDBUG, called by
entry name DEBUG#, is a transfer table;
this table is ref erred to by the code
generated for the Debug Facility state
ments, and branches to the thirteen section
of IHCDBUG. These sections are discussed
individual1y.

TRACE ENTRY: If TRACFLAG is off, this
routine exits. Otherwise, the characters
'TRACE' are moved to DBUFFER + 1, the
subroutine OUTINT converts the statem~nt
label to EBCDIC and places it in DBUFFER,
and a branch is made to OUTBUFFR.

SOBTRACE ENTRY: The characters 'SUBTRACE'
and the name of the program or subprogram
are moved to DBUFFER and a branch to
OUTBUFFR is made.

SUBTRACE RETURN ENTRY: The characters
'SUBTRACE *RETURN*' are moved to DBUFFER
and a branch to OUTBUFFR takes place.

UNIT ENTRY: The unit number argument is
placed in DSRN and the routine exits.

INIT SCALAR ENTRY: The data type is saved,
the location of the scalar is computed,
subroutine OUTNAME places the name of the
scalar in DBUFFER, and a branch is made to
OUT ITEM.

INIT ARRAY ELEMENT ENTRY: This routine
saves the data type, computes the location
of the array element, and <via the subrou
tine OOTNAME) places the name of the array
in DBUFFER. It then computes the element
number as follows:

element number= ((element location - first
array location) / element size) + 1

200

and places a left parenthesis, the element
number (converted to EBCDIC by subroutine
OUTINT), and a right parenthesis in DBUFFER
following the array name. A branch is then
made to OUTITEM.

INIT FULL ARRAY ENTRY: If IOFLAG is on,
the character X'FF' is placed in DBUFFER,
followed by the address of the argument
list, and a branch is made to OUTBUFFR.
Otherwise, a call to the INIT ARRAY ELEMENT
entry is constructed, and the routine loops
through that call until all elements of the
array have been processed, when it exits.

SUBSCRIPT CHECK ENTRY: The location of the
array element is computed; if it is less
than or equal to the maximum array loca
tion, the routine exits. If the array
element location is outside the bounds of
the array, the element number is computed
and the characters 'SUBCHK' are placed in
DBUFFER. The subroutine OUTNAME then plac
es the name Of the array in DBUFFER, OUTINT
supplies the EBCDIC code for the element
number (which is enclosed in parentheses),
and a branch is made to OUTBUFFR.

TRACE ON ENTRY: TRACFLAG is turned on (set
to non-zero) and the routine exits.

TRACE OFF ENTRY: TRACFLAG is turned Off
(set to zero) and the routine exits.

DISPLAY ENTRY: If IOFLAG is on, the char
acters 'DISPLAY DURING I/O SKIPPED' are
moved to DBUFFER and a branch is made to
OUTBUFFR. Otherwise, a calling sequence
for the NAMELIST write routine is con
structed. If DSRN is equal to zero, the
unit number for SYSOUT (in IHCUATBL + 6) is
used as the unit passed to the NAMELIST
write routine. On return from the NAMELIST
write, this routine exits.

START I/O ENTRY: The BYTECNT is set to 252
to indicate that the current area is full,
the IOFLAG is set to X'80' to indicate that
input/output is in progress, the CURBYTLC
is set to the address of SAVESTRT <where
the location of the first main block will
be - refer to the description of ALLOCHAR),
and the routine exits.

END I/O ENTRY: The IOFLAG is saved in
TEMPFLAG and IOFLAG is reset to zero so
that this section may make debug calls
which result in output to a device. If no
information was saved during the
input/output, this routine exits.

The subroutine FREECHAR is used to
extract one character at a time from the
save area. If an X'FF' is encountered
(indicating the output of a full array),
the next three bytes give the address of
the call to INIT FULL ARRAY entry. A call
to the DEBUG INIT FULL ARRAY entry is then

constructed and executed. If X'FF' is not
encountered, characters are placed in DBUF
FER until an X'15' is found, indicating the
end of a line. when this code is found,
the subroutine OUTPUT is used to write out
the line.

If no main storage or insufficient main
storage was available for saving inf orma
tion during the input/output, the charac
ters 'SOME DEBUG OUTPUT MISSING' are placed
in DBUFFER after all saved information (if
any> has been written out. The subroutine
OUTPUT is then used to write out the
messaae, and this routine returns to the
caller.

Subroutines

The following subroutines are used by
the routines in IHCDBUG.

OUTITEM: First, the characters ' = are
moved to ·DBUFFER. The routine then loads
the data to be output into registers. A
branch on type then takes place. For fixed
point, the routine OUTINT converts the
value to EBCDIC and places it in DBUFFER.
A branch to OUTBUFFR then takes place.

For floating values, subroutine OUTFLOAT
places the value in DBUFFER. A branch to
OUTBUFFR then takes place.

For complex values, two calls to OUT
FLOAT are made -- first with the real part,
then with the imaginary part. A left
parenthesis is placed in DBUFFER before the
first call, a comma after the first call,
and a right parenthesis after the second
call. A branch to OUTBUFFR then takes
place.

For logical values, a T is placed in
DBUFFER if the value was non-zero; other
wise an F is placed in DBUFFER. A branch
to OUTBUFFR then takes place.

OUTNAME: This is a closed subroutine. ?P
to six characters of the name are placed in
DBUFFER. However, the first blank in the

---- name causes--the routine to exit.

OUTINT: This is a closed subroutine. If
the value (passed in R2) is equal to zero,
the character '0' is placed in DBUFFER and
the routine exits. If it is less than
zero, a minus sign is placed in DBUFFER.
The value is then converted to EBCDIC and
placed in DBUFFER with leading zeros sup
pressed. The routine then exits.

O~TFLOAT: This is a closed subroutine. If
the value is zero, the characters '0.0E+OO'
or 'O.OD+OO' are placed in DBUFFER, depend
ing upon whether the value is single or

double-precision, respectively, and the
routine exits. If the values are less than
zero, a minus sign is placed in DBUFFER.
The floating number is then converted to a
string of decimal EBCDIC characters and a
power of ten by exactly the same algorithm
used in IHCFCUTH (this assures identical
results).

Let x = 8 for single-precision,

x 17 for double-precision.

If 1~1valuel<lO , it is output to the
DBUFFER in Fx+l.x-n format where n is
the integer portion of log 1value1.

Otherwise it is output in G x+5.x format.
The routine then exits.

OUTBUFFR: If IOFLAG is not set, the rou
tine calls the subroutine OUTPUT and then
exits. Otherwise, IOFLAG is set to indi
cate that debug output during input/output
occurred. Then, a call is made to ALLOCHAR
for each character in DBUFFER, and finally,
a call to ALLOCHAR' with X'15' indicating
the end of the line. The routine then
exits.

ALLOCHAR: This is a closed subroutine. If
BYTECNT is equal to 252, indicating the
current block is full, a new block of 256
bytes is obtained by a GETMAIN macro. If
no storage was available, an X'O?', indi
cating end of core, is placed in the last
available byte position, IOFLAG is set to
full, and the routine exits. Otherwise,
the address of the new block is placed in
the last three bytes of the previous block,
preceded by X'37' indicating end of block
with new block to follow. CURBYTLC is then
set to the address of the new block and
BYTECNT is set to zero. The character
passed as an argument is then placed in the
byte pointed to by CURBYTLC, one is added
to both CURBYTLC and BYTECNT, and the
routine exits.

FREECHAR: This is a closed subroutine. If
the current character extracted is X'37',
the next three bytes are placed in CURBYTLC
and the current block is freed. If the
currept character is X'07' the block is
freed and a branch to the End I/O exit is
taken. Otherwise, the current character is
passed to the callin9 routine and CURBYTLC
is incremented by 1.

OUTPUT: This is a closed subroutine. If
DSRN is zero, the SYSOUT unit number is
obtained from IHCUATBL + 6. A call is then
made to FIOCS# output initialize, DBUFFER
is transferred to the FIOCS# buffer, and a
call is made to FIOCS# output. The routine
then exits.

Appendix E: Object-Time Library Subprograms 201

Chart 24. IHCFCOMH Overall Logic and Utility Routines

SEE TABLE 33 FOR A BRIEF
DISCUSSION OF EACH ROUTINE
OF IHCFCOMHe

IBCOM1\

****A3*********
* LOAD *
* MODULE

I v
*****83**********
* * * DETERMINE *
* REQUEST *
* TYPE
* *****************

I

THE LOAD MODULE ENTERS
JHCFCOMH VIA A COMPILER
GENERATED CALLING SEQUENCE.

v

* * * * * * REQUEST TYPE *CHART *MAJOR PROCESSING * SUBROUTINES CALLED
* * : ROUTINES *

===
* * * *

* SEQUENTIAL ACCESS *25A2 *FRDWF.FWRWF,FJOLF, : ~~~~~g~~ (~g~ ~ig~~~T!~~E~~c):s~~D
: ~~~D~~~i~~ ~~=ESS : :FIOAF,FENDF * CONVERSIO~ ROUTINES -- FCVIJ, *
* QUIRING A FORMAT * * FCVJO,FCVEJ,FCVEO,FCVGI,FCVGO,FCVDio*
* * FCVDO,FCVLJ,FCVLO,FCVZioFCVZO,FCVFJ,*
* * * * FCVFO,FCVAJ,FCVAO *

* * * * : ~~gug~~~~~ ~~~~~~ :25F2 :~~g~~:~~~~~,FIOLN, : ~~~~~g~~ ~~g~ ~ig~~~T!~~E~~)ESS)
* READ/WRITE NOT * * *

*
*

: REQUIRING A FORMAT : : *

* * * * JHCFJOSH ANO CONV. RTNS - *
* READ USING *26El *FRONL * FCVEJ,FCVDJ,FCVAJ,FCVLJ,
: NAMELIST : : : FCVGI,FCVCI,FCVII,FCVFI *

* * * * IHCFIOSH AND CONV. RTNS - *
* WRITE USING *26E5 *FWDNL * FCVEO,FCVDO,FCVAOoFCVLOo
: NAMELJST : : : FCVGO,FCVCO,FCVJO,FCVFO *

* * * * *
: ~~~~~5LATJON :2663 :~~~~~oFRWNO, : IHCFJOSH

* * * * * ***
* * * * * WRITE TO :26G3 :FSTOP,FPAUS : NONE
: OPERATOR * * * *

* * * * * * DIRECT ACCESS *25F2 *FRDNF,FENDN * JHCDIOSH *
: FIND : : : :

UTILITY ROUTINES

IBEX IT JBFERR EXCEPT HlFJNT FERROR

****GI*********
* FROM FSTOP *
* OR
* JBFERR *

v
****•Hl**********
• IBEX IT * ·-·-·-·-·-·-·-·-· *CLtSE DATA SETS•
* TERM I NAT, *
• XECUTION *

v
****Jl *********

* TO *
* OPERATING
* SYSTEM *

202

****G2*********
* FROM *

LIBRARY *
* SUBPROGRAMS *

v
*****H2**********
* IBFERR *
•-*-*-*-*-•-•-*-*
* PROCESS *

ERRORS *
* * *****************

I
v

****J2*********
* TO *

IBEX IT *

****G3*********
* FROM *

JHCFIOSH *

I
v

*****H3**********
* EXCEPT *
--*-*-*-·-·-·-·
* DETERMINE IF *
* END PARAMETER •
* SPECIFIED *

v
****J3*••••••••

* TO LOAD *
* MODULE IF *
* SPECIFIED

IF PARAMETER NOT
SPECIFIED, EXIT IS
TO IBFERRo

****G4****** ***
* FROM *

LOAD
* MODULE *

*************•*

v
*****H4**********
• I BF INT *

·-·-·-·-·-·-·-·-· * PROCESS *
* ARITHMETIC *
* INTERRUPTION *

v
****J4*********

* TO *
* LOAD *

****~~~~~;***** *

****GS********* * FROM •
JHCFIOSH Oil

* JHCDJDSH •

I
v

*****HS**********
* FERRDR *
·-·-·-·-•-*-*-*-*
* DETERMINE IF *
* ERR PARAMETER *
* SPECIFIED *
****************~

v
****JS*********

* TO LOAD *
MODULE IF

* SPECIFIED

IF PARAMETER NOT
SPECIFIED, EXIT JS
TO JBFERRo

Chart 25. Implementation of READ/WRITE/FIND Source Statements

***** *25 *
IHCFCOMH FORTRAN

LOAD MODULE

* A2* FRDWF/FWRWF
* * *****A2**********

* *PERFORM OPENING*
l__>:op~~m~:~ T~OR :

* REQUIRING *
* A FORMAT *

I .----------------i
FIOAF/FIOLF V
*****B2********** *****84**********
* PERFORM I/O * *GET LIST ITEM. *
* LIST SECTION * • * CALL I/O LIST *
* OPERATIONS *<-------.---------* SECTION OF *<--1
* ON LIST ITEM * * IHCFCOMH * I

: : ***************** I
I I

I
C4°~ 0 *. JI

•* *•
•* LAST *• NO

• LIST •---
• ITEM •

• •
• •

* YES

I
I

FENDF V
*****02********** *****04**********
* * * * * CLOSE OUT * * CALL CLOSING *
* I/O *<------- --------* SECTION OF
* OPERATION * : IHCFCOMH *

* *****************
I

IHCFCOMH

I
v

*****E4**********
* * * CONTINUE WITH * * LOAD MODULE *

EXECUTION :

FORTRAN
LOAD MODULE

1
FIOLN/FIOAN V
*****G2********** *****G4********** * PERFORM I/O * *GET LIST ITEM. *
* LIST SECTION * * CALL I/O LIST *
* OPERATIONS *<------- --------* SECTION OF *<-1
* ON LIST ITEM * IHCFCOMH * I

: : ****************: I

~-----------.---------~~----,

Ill

-~- I
H4 *• I

•* *· I
: t~~+ *:.~~

• ITEM •
• •

• • * YES

I
FENDN V
:····~2*********: !****J4*********!
* CLOSE OUT * • * CALL CLOSING
: OPERl~~ONS :<-------.---------: Si~m~M~F

*
* * * *****************

I
l v

*****K4**********
* * * CONTINUE WITH *
* LOAD MODULE *
* EXECUTION *

Appendix E:

THIS CALL IS
GENERATED i3Y
COMPILER lllHEN
I/0 LIST ITEM
IS ENCOUNTERED.

THIS CALL IS
GENERATED BY
COMPILER WHEN
ALL I/O LIST ITEMS
ARE PROCESSED.

THIS CALL IS
GENERATED BY
COMPILER WHEN
I/0 LIST ITEM
IS ENCOUNTERED.

THIS CALL IS
GENERATED BY
COMPILER WHEN
ALL I/0 LIST ITEMS
ARE PROCESSED.

Object-Time Library Subprograms 203

Chart 26. Device Manipulation, Write-to-Operator, and READ/wRITE Using NAMELIST Routines

READ USING
NAMELIST

***** *26 *
* El*
* *
*
I

FRO NL V
:****El*********:

IMPLEMENT *
READ USING *

NAMELIST :

I
v

****F 1 ********* * TO *
* LOAD
* MODULE *

204

I
BACKSPACE!

I

I
FBKSP V
*****02**********
* IMPLEMENT *

*
*

BACKSPACE
SOURCE

STATEMENT :

DEVICE M!~!~~LATION

*26 *
* 63*
* * *

I
v

*****83**********
* DETERMINE *

TYPE OF *
* DEVICE *
: MANIPULATION

REWIND

I
FR WNO V
*****03**********
* IMPLEMENT *

~EWIND *
SOURCE

STATEMENT *
*

I
END FILEI

I
FEOFM V
*****04**********
* IMPLEMENT *
* END FILE *

SOURCE
STATEMENT

***************** ***************** *****************

I I I
I I I

I ****E3*~******* J
* TO *

~------->* LOAD *<-------

STOP

I
FSTOP V
*****H2**********
* IMPLEMENT *
* STOP *
* SOURCE
* STATEMENT :

I
I
I
v

****J2*********
* TO *

IBEX IT

*****=~~~~;******

WRITE TO OPERATOR

*26 *
* G3*

* *
*

I
v

*****G3**********
* DE TE RMI NE *

TYPE OF
WRITE TO
OPERATOR l

PAUSE

I
FPAUS V
*****H4**********
* IMPLEMENT *

PAUSE *
SOURCE *

STATEMENT
* *****************

I
v

****J4*********
* TD *

LOAD *

****~~~~;; *

WRITE USING
NAME\;!~!*

*26 *
* ES*
* * *
I

FWRNL V
*****ES**********
* * IMPLEMENT *

WRITE USING *
NAMELIST *

" *****************

v
****F5*********

* TO *
LOAD

* MODULE *

Table 33. IHCFCOMH Subroutine Directory
r----------T--1
I Subroutine I Function I
~----------+--~

EXCEPT Checks for presence of END= parameter, and passes control to the load module!
if present. I

FENDF
FENDN
FEOFM
FERROR

Closing section for a READ or WRITE requiring a format. I
Closing section for a READ or WRITE not requiring a format. I
Implements the END FILE source statement. I
Checks for the presence of the ERR= parameter, and passes control to thel
load module if present. I

FI OAF
FIOAN
FIOLF
FIOLN

I/O list section for list array of a READ or WRITE requiring a format. I
I/O list section for list array of a READ or WRITE not requiring a format. I
I/O list section for a list variable of a READ or WRITE requiring a format.I
I/O list section for a list variable of a READ or WRITE not requiring a
format.

FPAUS Implements the PAUSE source statement.
FRDNF Opening section of a READ not requiring a format.
FRDWF Opening section of a READ requiring a format.
FRWND Implements the REWIND source statement.
FSTOP Implements the STOP source statement.
FWRNF Opening section for WRITE not requiring a format.
FWRWF Opening section for WRITE requiring a format.
IBEXIT Closes all data sets and terminates execution.
IBFERR Processes object-time errors.
IBFINT Processes arithmetic-type program interruptions.
FBKSP Implements the BACKSPACE source statement.

L----------i--

Table 34. IHCFCVTH Subroutine Directory
r----------T--1
I Subroutine I Function I
~----------+--~

FCVAI Reads alphameric data.
FCVAO Writes alphameric data.
FCVCI Reads complex data.
FCVCO Writes complex data.
FCVDI Reads double precision data with an external exponent.
FCVDO Writes double precision data with an external exponent.
FCVEI Reads real data with an external exponent.
FCVEO Writes real data with an external exponent.
FCVFI Reads real data without an external exponent.
FCVFO Writes real data without an external exponent.
FCVGI Reads general type data.
FCVGO Writes general type data.
FCVII Reads integer data.
FCVIO Writes integer data.
FCVLI Reads logical data.
FCVLO Writes logical data.
FCVZI Reads hexadecimal data.
FCVZO Writes hexadecimal data. I

L----------i--J

Appendix E: Object-Time Library subprograms 205

Chart 27.

INITIALIZATION

IHCFIOSH overall Logic
FIOCS#

READ

****A3*********
* * FROM

IHCFCOMH

I
I
I
I
v

*****83**********
* * DETERMINE *
* OPERATION
* TYPE

I
WRITE I

I

SEE TABLE 35 FOR A BRIEF
DESCRIPTION OF THE FUNCTION
OF EACH IHCFIOSH ROUTINE.

DEVICE
MANIPULATION CLOSE

-,~~~~~~~~~~~~,~~~~~~~~~~~t~~~-~-~-~----~-,~~--~-----~~----~-,

FINIT V FREAD .v. FRITE •*• FCNTL V FCLOS V
!****Cl*********: •*C2ANY*•*• •*C3 *•*• :****C4*********: :****C5*********:
* DECODE DSRN * •* MORE RCDS *• YES •* OUTPUT *• NO * CHECK CHECK ANY *
*AND BUILD UNIT *<---. *oTHIS BLOCK TOo*----, *• BUFFER •*----, STATUS OF *---, OUTSTANDING *<--1
* N~~~~~A~Vi : I *·~: ~~gc:~·* I *•*•FULL •* •* I UNIT * I * I~~¥iu~R : I
***************** I *• •* v *• •* v ***************** v ***************** I

I ·****. * NO **** *YES **** **** I I

I : Cl : I : Kl : ,1 : Kl : :*::·:--, : Cl : I !
I **** v v I

*****Dl*~******** *****02*~******** *****D3*~******** CTLRTN 04·*·.. 05·*·.. I
*OPEN DATA CON- * * READ * *WRITE CONTENTS * •* *• •* *• I
:b~~~ ~~~C~FF~~T: :NmsB~3~~E~~TO: : O~E~~I~W~~~~ : ~.:* Mr~~E~~- *:*~=-~--1 *:* ~~~~ *:*~~-j
* PREVIOUSLY * * SWITCH BUFFER * BUFFER * I *• ERATION •* I *• •*

OPENED * * POINTERS * * POINTERS * I •.TYPE •* I *• •*
***************** ***************** ***************** *· ·* *· ·*

I I I * BKSP * YES

II I I I I I :~;· *

I I I I L->: 62 * *
.~. l v laKsP l IRwNo

•*El •••• :•••*E2*********: :****E3*********! I :****Ej;~~~·····: ' :****ES*********!

.:· OP~~~D *:.~ : g~E~~A~Ei~~6 *----, : g~E~~l~~s~~6M : I * s~~~i~m· L_>: ~cm
.... PROPERLY •* I * OTHER BUFFER * I * OTHER BUFFER * I * DATA SET * WITH REREAD ·· .. *,·~:: I =···*····**·····: :~:·: : i.* ••••• : '1

1 : •• ***!!~l;*::::*: : ••• *~~~t~~::::·:

··:=· **:** ->;
2
:2:• L->;

2
:2:•

I I *28 * I SETUBYTE V * B2* EOFM
*****F 1 ********** *****F2********** * * L *.****F4***********
* • L ·. * DETERMINE * ISSUE * * ISSUE CLOSE *
* RECORD FORMAT * >* MESSAGE *----, >* (TYPE=T) *

: AND BLOCKING * * IHC219C * **~** :****W*I0*T~*T**i6*,*~*VE*.******
***************** ***************** *28 * I *.F~*

I
v

•*•
Gl *•

•* IS *•
•* CURRENT *• YES

• OP. DEVICE •----,
*· .~ANIP •• * •* I

• • v
* NO •****•
I * D4 * I * *

OPENRW
v

•*•
Hl *•

•* *•
•* READ *• WRITE

••. Wg~TE •• ·-------i
•· •..• ·• I

c·i ••••• , •• !.~~~~···· I
READ

A
BLOCK

I

I
I

* ... I<-----' : ... ::.:->1
FIORE.T V

*****Kl**********
* PASS CURRENT *
*RECORD POINTER *
* AND LOGICAL *---,
* RECORD LENGTH * V
* TO IHCFCOMH * *****
***************** *28 *

* 62*
* *

206

I

I
v

*****G4**********
* * FREE 1/0
* BUFFERS
* FOR THIS

: ~!!!.;~!*****
I
I
I *28 * L->: 82* *

Chart 28. Execution-Time I/O Recovery Procedure
THE I/O SUPERVISOR IS ENTERED
VIA OATA MANAGEMENT ROUTINE
WHEN IHCFIOSH OR IHCDIOSH
ISSUES A MACRO-INSTRUCTION

*28 *
* B2*
* * *
I
v

•*•
B2 *• *****B3**********

•* *• * * •* HAS AN *• YES * ISSUE *
• EOF BEEN •--~~~>* MESSAGE *----,

· READ • ** IHC217I •• I
• •

• • ***************** v
* NO ****

I * * * F2 *
I * * ****
v

•*• •*•
*****Cl********** C2 *• *****C3********** C4 *•
* * •* *• *DATA MANAGEMENT* •* *•
* * NO •* 1/0 *• YES * RETRY * •* I/0 *• YES
* RETURN TO *<--,<~~*• ERROR IN •*--~~~>* APPROPRIATE •~~--~>*• ERROR BEEN •*~-,
* IHCFCOMH * I *• IOS •* * NUMBER * *.CORRECTED.* I
* * I *• •* * OF TIMES * *• ·* I
***************** *• •* ***************** *• ·* v

v
****Dl*********

* FORTRAN *
* LOAD *
* MODULE *

CONTINUES
NORMAL
PROCESSING

**** * * NO ****
* * I * Cl *

**** * * I
*****D3**********
* IHCFCOMH *

v
*****04**********
* * * DETERMINES * *

* IF AN INVALID *<~~~~•
RETURN

ABORT CODE
TO IHCFCOMH

* * * * BUFFER HAS * *
* BEEN READ * * *
***************** *****************

I
1<-

*****E2********** E3·~-* I
: ISSUE : YES ·*·* HAS ·*·*· I
* MESSAGE *<~~~~·*· BUFFER BEEN •*
* IHC21BI * *•READ YET •*
* * *· •*

**** I
*28 *
* F2 *->I
* * I
**** I

v
*****F2**********
* * * PASS *
* ABORT CODE *
* TO SCHEDULER *
* * *****************

I
v

****G2*********
* * * TO *
* SCHEDULER *

ISSUES ABEND
MESSAGE AND
THEN CONTINUES
NORMAL PRO
CESS I NG

·:r 1,1

F3 *•
•* RE- *• I

•* WIND OR *• NO
• BACKSPACE •---J

•BEEN IS- •
•SUED •

• •
* YES

I
v

*****G3**********
* * * VOID *
* ABORT CODE *
* IN IHCFCOMH *
* * *****************

I
v

****H3*********
* FORTRAN *
* LOAD *
* MODULE *

CONTINUES
NORMAL
PROCESSING

* * * Cl *
* * ****

·Appendix E: Object-Time Library Subprograms 207

Chart 29. IHCDIOSH Overall Logic - E'ile Definition Section

NOTE--

THE FILE DEFINITION
SECTION IS ENTERED
FROM THE FORTRAN
LOAD MODULE VIA A
COMPILER-GENERATED
CALLING SEQUENCE.

208

DIOCSf

****A3*********
* FORTRAN LOAD *
* MODULE *
* * ***************

I
v

*****B3**********
* GET FIRST *
* UNIT NUMBER *
* (DSRN) FROM *
*PARAMETER LIST *
* * *****************

SEE TABLE 36 FOR A
BRIEF DESCRIPTION OF THE
FUNCTION OF EACH IHCDIOSH
ROUTINE.

I<----, I
v

*****C3**********
* INSERT UNIT *
* NUMBER'S *
*PARAMETER LIST *
ADDRESS IN UNIT
*ASSIGNMENT TBL *

.!. I
D3 *• *****04**********

•* *• * GET NEXT *
•* LAST UNIT *• NO * UNIT NUMBER *

• NUMBER IN .•~~~~> (DSRN) FROM *
•PARAMETER. *PARAMETER LIST *

•LIST • * *
• • ***************** r·

DELA ST V
*****E3**********
* ESTABLISH *
LINKAGE BETWEEN
* IHCDIOSH AND *
* IHCFCOMH *
* * *****************

I
v

****F3*********
* FORTRAN *
* LOAD *
* MODULE *

CONTINUE NORMAL
PROCESSING

Chart 30. IHCDIOSH
Sections

overall Logic - File Initialization, Read, Write, and Termination

FILE INITIALIZATION
SECTION

I
DASI NIT .v.

Bl *•
•* *•

YES •* PREVIOUS *•
r--*• OPERATION •*

I ··... . .. ·•
v *• •* :·::·: i "'

v
*****Cl**********
*CONSTRUCT UNIT *
* BLOCK. INSERT *
* ADDR OF UNIT *
BLOCK INTO UNIT
*ASSIGNMENT TBL *

I v
*****Dl**********
* READ JOB FILE *
* CONTROL BLOCK *
*(JFCB). INSERT *
* BUFNO VALUE *

INTO DCB *

I v
:****E 1 *********:
* EXAMINE *
*JFCBIND2 FIELD *
: IN JFCB :

I
v

•*•
Fl *•

•* *•
•* NEW DATA *• NO

• SET TO BE •--,
• .. :REATE~ •* I

• • v

IBCENTRY DASTRA •*•
A3 *•

•****A2********** •*.~ETERMIN~·*·
IHCFCOMH *---->*• OPERATION •*

* *• TYPE •*
*************** *• • *

READ
SECTION

I

• •
I
v

DASREAO .v.
82 *• *****83**********

•* *• * *
•* IS *• NO * OBTAIN

r->*• RECORD IN .•---->* ADDRESS OF

I *• BUFFER •* * INPUT BUFFER
• • *

• • *****************

E·::*E *1 YES II

**** <------.
v

RDINBUF •*• v
C2 *• *****C3**********

•* *• *INSERT RELATIVE*
YES •* IS THIS *• *RCO NO. OF RCO *

r---*• A FIND •* *TO BE READ INTO*

I
• REQUEST • * BLKREFA OR *

• • * BLKREFB FIELD *
• • *****************

* NO I
I I I

·I *****D2*~******** I ******D3*~********* L· CHECK * READ
* FOR I/O * A RECORD
: COMPLETION

I
DA SEND

:****E3*********:

WRITE SECTION
(PRIMARY ENTRY
FROM IHCFCOMH)

I
DASWRITE V

******84***********

WRITE
A

RECORD

TERMINATION
SECTION

l
DAS TERM • v.

BS *•
•* *·

•* ANY *• NO
• PENDING 1/0 •---1

OPERATIONS. I
• • I

************* *• •* I
*"** lsECONDARY j YES j

* * IENTRY I '1

: C4 :->
**** I I I

WROBTNB V V
*****C4********** *.,****CS**********,. I
* OBTAIN NEXT *
*OUTPUT auFFER. * * WAIT *
* BLANK OR ZERO * FOR I/0 * I
:D~~=E~~~N~0g~AT: : COMPLETION * I
***************** ********i******** I

,,1 I <---------_J

I
V TE RMB V

*****D4********** *****D5**********
INSERT RELATIVE * *
*RCD NO. OF RCO * *CLOSE DCBS FOR *
* TO BE WRITTEN * * DIRECT ACCESS *
INTO BLKREFA OR * DATA SETS *
* BLKREFB FIELD * *
***************** *****************

I I
v I

•*• v
E4 *• *****ES**********

•* *• * FREE MAIN *
v

*****E2**********
* PLACE *
*BUFFER POINTER *
ANO BUFFER SIZE
: IN REGISTERS :

* PLACE BUFFER * IHCFCOMH •* DETERMINE *• * STORAGE *
.------* POINTER AND *<----*• ENTRANCE •* * OCCUPIED BY

I *BUFFER SIZE IN * *• •* UNIT BLOCKS
* REGISTERS * *• •* * *

***************** ***************** *• •* *****************

I
I *FILE INITIALIZATION I

!SECTION OF IHCDIOSH

> < L ____________ >

v ·*· UPDASSV 1NSRETURN I
:~:;·~~;~~;:;:~·: •*F

3
*·... :****~~~:;~*****: I ****FS*~*******

: x~~~mE~~D *---->*:* 1sF1~is *:*~>:As~gci~noI~AR :-->I : IHCFCOMH :

: REC~~~R~~~BER : ·- .. ~EQUES! .. ·* : POj~~~ ~~A~CD : I ****************

* YES ****
***************** ··.·:a ***************** I

I : K2 :

I * *
v

CREATE •*•
GI *• *****G2**********

•* *• * *
•* *• YES * OPEN *

•WRITE REQUEST.•----> DCB FOR NEW *
• • * DATA SET *

• · •• •* ro
v

CRNOT •*•
HI *•

•* *• FINO •* READ *•
r--*• OR FINO •*

I
• REQUEST •

• •
• • i ""

v
:****Jl*********!

*
*

INDICATE
ERROR

~---->

*
* *
*

I v
*****H2**********
* CREATE *
*AND FORMAT NEW *
*DATA SET USING *
* BSAM WRITE *
* MACRO

I
v

*****J2**********
* * * CLOSE *
* DCB FOR DATA *
: SET :

<----~~~~~, I
*****G3**********
* INSERT RECORD *
* NUMBER INTO

I
>* RECNUM FIELD *

* OF UNIT *
* BLOCK I *****************

I I
v

*****H3**********
*INSERT ADDR OF *
DECBA SKELETION
* INTO CURBUF *
* FIELD OF
* UNIT BLOCK

I
v

*****J3**********
*INSERT AOOR OF *
*DECBB SKELETON *
* INTO NXTBUF *
* FIELD OF UNIT *
* BLK IF 2 BFRS *

*****G4*~******** J
* UPDATE *
*ASSOCIATED VAR *
* SC THAT IT *--
*PO I NTS TO NEXT *
RCO IN DATA SET

*****H4**********
*INSERT ADDR OF *
* BLKREFA INTO *

r-->*DECBA SKELET I ON*
I * IN UNIT *
I * BLOCK * I ·······r······
I t
I :;~;~~~·:;~:·~;·:
l :D~2~=E~~EC~~gN :

* IN UNIT BLOCK *
* IF TWO BFRS *

NSRETURN
v

****Kl*********
* * : IHCFCOMH *

............ I
~'~::::~}······:J

* OPEN DCB FOR *
* DATA SET FOR *
* DIRECT ACCESS *
* PROCESSING *
*********4¥1F1FiRF·4·*

I
*****K3*~******** I
*INSERT AOOR OF * _J
* I/O BFRS *
* INTO DECB *
*SKELETON(S) IN *

: *::· :_>,
* * I v

•*•
K4 *•

•* *•
•* WRITE *• YES * *

• REQUEST •-->* C4 *

*************** * UNIT BLOCK *

Appendix E:

· • * * ... •*
• • * NO

I
v

* *
: 82 :

Object-Time Library Subprograms 209

Table 35. IHCFIOSH Routine Directory
r----------T--1
I Routine I Function I
~----------+--~
IFCLOS JCHECKs double-buffered output data sets. I
I I I
IFCNTL !Services device manipulation requests. I
I I I
IFINIT !Initializes unit and data set. I
I I I
IFREAD !Services read requests. I
I I I
I FRITE I Services write requests. ,, I
l----------~--J

Table 36. IHCDIOSH Routine Directory
r----------T--1
I Routine I Function I
~----------+--~
DASDEF Processes DEFINE FILE statements: enters address of parameter lists intol

DASI NIT

DAS READ

DAS TERM

DASTRA

IDASwRITE
I

unit assignment table, checks for redefinition of direct access unit!
numbers, and establishes addressability for IHCDIOSH within IHCFCOMH. I

Constructs unit blocks for nonopened direct access data sets, creates
formats new direct access data sets, and opens data control blocks
direct access data sets.

I
anol
for

Reads physical records, passes buffer pointers and buffer size to IHCFCOMH,
and updates the associated variable.

Checks pending I/O operations, closes direct access data sets, and frees
main storage occupied by unit blocks.

Determines operation type and transfers control to appropriate routine.

Writes physical records, provides IHCFCOMH with buffer
the associated variable.

space, and updates

L----------~--J

210

Chart 31. IHCIBERH Overall Logic

****A3*********
* FORTRAN *
* LOAD *
* MODULE *

I

I
v

*****B3**********
* * *OBTAIN INTERNAL*
SEQUENCE NUMBER
* (ISN) *
* * *****************

I
v

*****C3**********
* * * CONVERT ISN *
* TO DECIMAL *
* FORMAT *
* * *****************

I
I
v

*****03**********
* BRANCH TO *
* IHCFCOMH TO *
* HANDLE THE *

WRITING OF *
* ERROR MESSAGE *

I
I
v

****E3*********
* IBEXIT RTN *
* OF *
* IHCFCOMH *

IHCIBERH IS
ENTERED VIA
CALLING SE
QUENCES GEN
ERA TED AT
COMPILE-TIME

Appendix E: Object-Time Library Subprograms 211

APPENDIX F: ADDRESS COMPUTATION FOR ARRAY ELEMENTS

Data references in the form of sub
scripted variables expressions in FORTRAN
are converted into object code that
includes address arithmetic and indexed
references to main storage addresses.
Since the conversion involves all phases of
the compiler, a summary of the method is
given here.

Consider an array A of n dimensions
whose element length is L, and whose dimen
sions are Dl, D2, D3, •.• ,Dn. If such an
array is assigned main storage starting at
the address Pll, then the element A(Jl, J2,
J3~ ••• ,Jn) is located at

P = Pll + (Jl-l)*L + (J2-l)*Dl*L +
(J3-l)*Dl*D2*L + ••• + CJn-l)*Dl*D2*D3*
••• *D Cn-1) *L

This may be expressed as:

P = POO + Jl*L + J2*CD1*L) + J3*CDl*D2*L)
+ + Jn*CD1*D2*D3* •.• *D(n-l)*L)

where

POO = Pll - CDl*L + Dl*D2*L + ••• +
Dl*D2* ••• *D(n-l)*L)

For fixed dimensioned arrays, the quan
tities Dl*L, Dl*D2*L, Dl*D2*D3*L, ,
which are referred to as dimension factors,
are computed at compile time. The sum of
these quantities, which is referred to as
the span of the·array, is also computed at
compile time. (Phase 15 assigns an array a
relative address equal to its actual rela
tive address minus the span of the array.)

In the object code~ P is finally formed
as the sum of a base register, an index
register, and a displacement. The phase 15
segment CORAL associates an address con~
stant with each fixed dimensioned array
such that Pa~POO~Pa+4095, where Pa is the
address inserted into the address constant
at program fetch time. The effective
address is then formed using a base reg
ister containing the address constant, a
displacement equal to POO Pa, and an
index register, which contains the result
of a computation of the form:

L 2,Jl
SLL 2,log2 L
L 1,J2
M O,L*Dl
AR 2,1
L 1,J3
M O,Dl*D2*L

AR

L
M
AR

2,1

1,Jn
0,Dl*D2*···*D(n-1)
2,1

Absorption of Constants in Subscript
Expressions

Subscript expressions may include con
stant parts whose contribution to the final
effective address is computed at compile
time. For example,

B(I-2,J+4,3*5-(L+7)-6)

would usually be treated in such a way that
the effect of the 2, the 4, and the 6 wou1ct•
be absorbed into the displacement at com
pile time.

Consider an example of the form

A(Jl+K1,J2+K2, ,Jn+Kn),

where A is a fixed dimensioned array and
Kl, K2, , Kn are integer constants.
Phase 15 will insert the quantity

Kl*L + K2*(Dl*L) + K3*(Dl*D2*L) +
+ Kn(Dl*D2* *D(n-l)*L)

into the displacement CDP) field of the
corresponding subscript or load address
text entry. The constants will not other
wise be included in the subscript expres
sion. When phase 25 generates machine
code, the contents of the DP field are
added to the displacement. To ensure that
the resultant expression lies within the
range of 0 to 4095, phase 20 performs a
check. If the result is not in the range,
a dictionary entry is reserved for the
result of the addition, and a suitable add
text entry is inserted to alter the index
register immediately before the reference.

Arrays as Parameters

When an array is used as an argument,
the location of its first element, P11, is
passed in the parameter list. The prologue
of the called subroutine contains machine
code to compute the corresponding POO loca
tion. When an array has variable dimen
sions, no constant absorption takes place
and the dimension factors are computed for
each reference to the array.

Appendix F: Address Computation for Array Elements 213

APPENDIX G: COMPILER STRUCTURE

The FORTRAN IV CH) compiler is struc
tured in a planned overlay fashion. A
planned overlay structure is a single load
module, created by the linkage editor in
response to overlay control stattments.
These statements, a description of a
planned overlay structure, and instruction
in specifying such a program structure are
presented in the publication IBM System/360
Operating System: Linkage Editor. The
processing performed by the linkage editor
in response to the overlay control state
ments is described in the publication IBM
System/360 Operating System: Linkage Edi=
tor, Program Logic Manual.

The compiler's planned overlay structure
consists of 20 segments, one of which is
the root. The root segment contains the
major portion of the FSD and includes the

•processing uni ts Ce. g., the compile-time
input/output routines) and data areas
(e.g., communication region) that are used
by two or more compiler phases. The root
segment remains in main storage throughout
execution of the compiler.

Each of the remaining 19 segments,
except for segment 2, constitutes a phase,
or a logical portion of a phase. (Segment
2 is part of the FSD, and its function is
to aid in the deletion of a compilation.)
Phase segments are overlaid as compiler

I (155)*

processing requires the services of another
segment.

Figure 65 illustrates the compiler's
planned overlay structure. In the figure,
each segment is identified by number. Seg
ments associated with vertical line origi
nating from the same horizontal line over
lay each other as needed. The figure also
indicates the approximate size Cin bytes)
of each segment.

The longest path1 of this structure is
formed by segments 1 and 3 because, when
they are in main storage, the compiler
requires approximately 231,000 bytes.
Thus, the minimum main storage requirement
for the compiler is approxin.ately 231, 000
bytes.

The linkage editor assigns the relocata~
ble origin of the root segment Cthe origin
of the compiler) at O. The relocatable
origin of each segment is determined by O
plus the length of all segments in the
path. For example, the origin of segment
19 is equal to 0 plus the length of segment
1 plus the length of segment 5 plus the
length of segment 18.

1 A path consists of a segment and all
segments between it and the root segment,
and including the root segment.

r----.-----r-------..----'- - - - - - - - - - - - - - - -- - - - -
2 (.35)

5 (1.5)

4 (10)
6 (6.5)

18 (II)

17(20.5)
8 (26.5)

13 (17) 16 (9.5)

19 (20)

14 (26)

15 (49.5)

20 (58)

10 (42.5)

3 (76)
7 (67.5) II (8) 12 (7)

* The number in parentheses times 1,000 equals the approximate segment length

Figure 65. Compiler Overlay Structure

214

The segments that constitute each of the
compiler phases are outlined in Table 37.
The remainder of this appendix is devoted
to a discussion of the segments of the
compiler's planned overlay structure.

Table 37. Phases and Their Segments
r--------T--------------------------------1
I Phase I Segment(s) Constituting Phase I
~--------+--------------------------------~
IPhase lOISegments 3 I
IPhase 151Segments 4, 5, 6, 7, and 8 I
IPhase 20jSegments 6, 9, 10, 11, 12, 13, I
I I 14, 1s, and 16 I
!Phase 251Segments 18, 19, and 20 I
!Phase 301Segrnent 17 I
~--------i--------------------------------~
!Note: Segment 6 is considered a portionl
tof both Phases 15 and 20. It contains!
ldata areas used by both phases. I
L---J

Segment 1: This segment is the root of the
compiler's planned overlay structure. Seg
ment 1 is the FSD. It has a relocatable
origin at zero. Segment 1 is not overlaid.
The composition of segment 1 is illustrated
"in Table 38.

Table 38. Segment-1 Composition
r---------------------T-------------------1
I Control section I Entry Point(s) I
~---------------------i-------------------~

$SEGTAB
BLANK
ADC ON
ER COM
IEKFCOMH

IEKFIOCS

IEKAAOl
AFRXPI

SY STAB
IEKAAOO

SYSTRC
IHCFMAXI

IHCFMAXR

REWIND
PUTOUT

IBCOM
IBCOM#
FIOCS
FIOCS#

FRXPI#
FRXPI
SYSTAB
GE'I'COR
ENDFILE
SYSDIR
PAGE
SYSTRC
MAXO
MINO
AMAXO
AMINO
MAXl
MINl
AMAXl
AMINl
REWIND
PUTOUT

L---J

Segment 2: This segment is a portion of
the FSD. It contains only one routine,
IEKAREAD. IEKAREAD is executed if it
becomes necessary to delete a compilation
during phase 10 processing. CIEKAREAD
scans the remaining source statements until

the END statement is recognized.) The
origin of segment 2 is immediately after
segment 1. If it necomes necessary to
delete a compilation during phase 10 proc
essing, segment 2 overlays segment 3. Seg
ment 2 is then overlaid by segment 3 when
the next compilation is initiated. The
composition of segment 2 is illustrated in
Table 39.

Table 39. Segment-2 Composition
r--------------------T--------------------1
I Control Section I Entry Point I
~--------------------i--------------------~
I IEKAREAD IEKAREAD I
L---J

Segment 3: This segment is phase 10. The
origin of this segment is immediately after
segment 1. If it becomes necessary to
delete a compilation during phase 10 proc
essing, segrr1ent 3 is overlaid by segment 2,
and after segment 2 is executed, segment 3,
in turn, overlay segment 2 when the next
compilation is initiated. If a compilation
is not deleted during phase 10, segment 3
is overlaid by segment 4. The composition
of segment 3 is illustrated in Table 40.

Table 40. Segment-3 Composition
r--------------------T--------------------1
!Control Section I Entry Point(s) I
·--------------------i--------------------1
I PHlO I

XARITH XARITH I
XCLASS XCLASS I
PlOA I
GETW'D
GENDO
XCONT
ERROR
XSTOP
RTPRQT
XPUSE
LI TC ON
GET CD
XGO
XEQUI
DSPTCH
XNMLST
CSORN
GRPKEQ
PER LOG
XDO
CDOPAR
XDATA
XBCKRW
XIMPD
SYMTLU
XEXT
XFMT
LABTLU
MINSLS
XEND
XIF

For GENDO and the re
maining control sec
tions of this segment
the control section
names and the entry
point names are the
same.

L-----------~-----------------------------

I
I
I
I
I
I
I
I
I
I

(Continued)

Appendix G: Compiler Structure 215

Table 40. Segment-3 Composition (Cont.)
r--------------------T--------------------1
I Control section I Entry Point<s> I
~--------------------i--------------------~

CLOSE
COMAST
COMP AT
INTCON
PUTX
TXTBLD
XIOOP
XRETN
XSUBPG
XBLOK
XIMPC
XTYPE
XDIM
XCOMON
XASF
XASF2
XASGN
XS TR UC

L---J
Segment 4: This segment is a portion of
phase 15. It contains the subroutines that
sort the dictionary, and process COMMON and
EQUIVALENCE declarations. The origin of
segment 4 is immediately after segment 1
(the root segment). Segment 4 overlays
segment 3, and is overlaid by segment 5.
The composition of segment 4 is illustrated
in Table 41.

Table 41. Segment-4 Composition
r--------------------T--------------------1
I Control Section I Entry Point<s> I
~--------------------~--------------------~
I LABSCN For this segment, I
I DCTSRT control section I
I COMN names and entry I
I EQU point names are the I
I SBEROR same. I
I STALL I
I BSIZE I
I TESTEN I
L---J
Segment 5: This segment is a portion of
phase 15. It contains the subprogram table
(IFUNTB), which is used by both the PHAZ15
and CORAL segments of phase 15. The origin
of segment 5 is immediately after segment
1. Segment 5 overlays segment 4. The
compositjon of segment 5 is illustrated in
Table 42.

Table 42. Segment-5 Composition
r--------------------T--------------------1
I Control Section I Entry Point(s) I
~--------------------i--------------------~
I IFUNTB I
L---J
Segment 6: This segment is considered a
portion of both phases 15 and 20. It
contains data areas that are used by both
these phases. Included in this segment are

216

RMAJOR, CMAJOR, the full register assign
ment tables, and phase 15/20 work areas.
The origin of segment 6 is immediately
after segment 5. Segment 6 is overlaid by
segment 18, if abortive errors are not
encountered during the processing of phases
10 and 15. The composition of segment 6 is
illustrated in Table 43.

Table 43. Segment-6 Composition
r--------------------T--------------------1
I Control Section I Entry Point(s) I
~--------------------i--------------------~
I C1520 I
I RMAJOR I
L---J

Segment 7: This segment is a portion of
phase 15, It contains the subroutines that
implement the PHAZ15 functions of that
phase, which are arithmetic translation,
text blocking, and information gathering.
The origin of segment 7 is immediately
after segment 6. Segment 7 is overlaid by
segment 8. The composition of segment 7 is
illustrated in Table 44.

Table 44. Segment-7 Composition
r--------------------T--------------------1
I Control Section I Entry Point(s) I
~----------------~---i--------------------~

SUBS CR SUBSCR I
PH15 I
J:Yl..ATE MATE I
STTEST STTEST I
BLTNFN BLTNFN I
DUl-'iP15 DUMP15 I
EXP ON EXP ON I
AND OR ANDOR I
CPLTST CPLTST I
PHAZ15 PHAZ15 I
SUBMLT SUBMLT I
GENRTN GENRTN
LOOKER
ALTRAN ALTRAN
MODTST MODTST
XPARAM XPARAM
DFUNCT DFUNCT
RE LOPS RELOPS
FINISH FINISH
FAREN PAREN
LIBRTN LI BR TN
TXTREG TXTREG
GENER GENER
RDTST RDTST
GETEXT GE TEXT
ARIF ARIF
NEGCHK NEGCHK
UNARY UNARY
GMAT GMAT
TXTLAB TXTLAB
VSETUP VSETUP
WRIT15 WRIT15
MNE

(Continued)

Table 44. Segment-7 Composition (Cont.)
r--------------------T--------------------1
I Control Section I Entry Point(s) I
~--------------------L--------------------~
I SB GLUT SBGLUT
I FUND RY FUND RY
I SUBADD SUBADD
I MODIFY MODIFY
I NOT NOT
I OPlCHK OPlCHK
I POWER2 POWER2
I CO MMD CO MMD
I NSTRNG NSTRNG
I SWITCH SWITCH
I CNSTCV CNSTCV
L---

Segment 8: This segment is a portion of
phase 15. It contains the subroutines that
implement the CORAL functions of the phase.
The origin of segment 8 is immediately
after segment 6. Segment 8 overlays seg
ment 7. Segment 8 is overlaid by segment
9,, if syntactical errors are not encoun
tered by phases 10 and 15. If errors are
present, segment 8 is overlaid by segment
17. The composition of segment 8 is illus
trated in Table 45.

Table 45. Segment-8 Composition
r--------------------T--------------------1
I Control Section I Entry Point(s) I
~--------------------L--------------------~

EXTRNL
STMAP2
NDATA
VARA
CORAL
TESTWD
EQVAR
CONST
CMSIZE
COMVAR
AD SCAN
DATA CH
ERDATA
SIZE
PRTEXT
SPAN
CORLDT
PHSTAL

EXTRNL I

For NDATA and the
remaining control

I
I
I

sections of this I
segment, the control
section names and
entry point names
are the same.

Segment 9: This segment is a portion of
phase 20. It contains the controlling
subroutine of that phase, the loop selec
tion routines, and a number of frequently
used utility subroutines. The origin of
segment 9 is immediately after segment 6.
Segment 9 overlays segment 8, if source
module errors are not encountered by phases
10 and 15. If errors are encountered,
segment 9 overlays segment 17 after its
processing is completed, only if the errors
encountered are not serious enough to cause
the deletion of the compilation. The com
position of segment 9 is illustrated in
Table 46.

Table 46. Segment-9 composition
r--------------------T--------------------1
I Control Section I Entry Point(s) I
~--------------------L--------------------~

c~ I
on I
GETDIK 'GETDIK I
GETDIC GETDIC I
LPSEL LPSEL I
NPRFUN NPRFUN I
INVERT INVERT I
GETS PC GETSPC I
FILTEX FILTEX I
TARGET TARGET y I
BAS VAR BAS VAR I
BSYONX BSYONX I

L---J

Seqment 10: This segment is a portion of
phase 20. It contains the subroutines that
perform common expression elimination and
strength reduction as well as the major
portion of the utility subroutines used
during text optimization. Segment 10 is
executed only if the complete-optimized
path through phase 20 is specified. The
origin of segment 10 is immediately after
segment 9. During the course of complete
optimization, segment 10 overlays segment
14. Segment 10 is overlaid by segment 15
after all module loops have been text
optimized. The composition of segment 10
is illustrated in Table 47.

Segment 11: This segment is a portion of
phase 20. It contains the routines that
perform forward and backward movement. The
origin of segment 11 is immediately after
segment 10. The composition of segment 11
is illustrated in Table 48.

Segment 12: This segment is not executed
in this version of the compiler.

Seqment 13: This segment is a portion of
phase 20. It consists of the subroutines
that perform basic register assignment.
Segment 13 is only executed in the non
optimiz ed path through phase 20. The
origin of segment 13 is immediately after
segment 9. Segment 13 does not overlay any
other segment in phase 20, nor is it
overlaid by another segment in phase 20.
The composition of segment 13 is illustrat
ed in Table 49.

Segment 14: This segment is a portion of
phase 20. It consists of the subroutines
that determine (1) the back dominator, back
target, and loop number of each source
module block, and (2) the busy-on-exit
data. Segment 14 is only executed if the
complete-optimized path through phase 20 is
followed. This segment is only executed
once and is overlaid by segment 10. The
origin of segment 14 is immediately after
segment 9. The composition of segment 14
is illustrated in Table 50.

Appendix G: Compiler Structure 217

Tab1e 47. Segment-10 Composition
r--------------------T--------------------1
I Control Section I Entry Point(s) I
~--------------------i--------------------~

NORMIZ NORMIZ
MOV
REDUCE
MOZ
PARFIX
SUBACT
CLAS IF
SUBTRY
SUBS UM
PERTRY
MOD FIX
LORAN
PERFOR
MO VT EX
OBTAIN
XS CAN
XPLACE
YSCAN
ZSCAN
MB RAN
CIRCLE
DELTEX
XCHANG
XPELIM
KORAN
FOLLOW
XPELOC
TYPLOC
WRITEX
INDTRY
INERT

REDUCE

For PARFIX and the
remaining control
sections, the con
trol section names
and entry point
names are the same.

___ J

Table 48. Segrnent-11 Composition
r--------------------T--------------------1
I Control Section I Entry Point(s) I
·--------------------i--------------------1
I YCHANG YCHANG I
I BACMOV BACMOV I
I ZCHANG ZCHANG I
I YPLACE YPLACE I
I ZPLACE ZPLACE I
I FORMOV FORMOV I
L---J

Table 49. Segment-13 Composition
r--------------------T--------------------1
I Control Section I Entry Point(s) I
~--------------------i--------------------~
I TALL TALL I
I SPLRA SPLRA I
I SSTAT SST AT I
L---J

Table 50. Segment-14 Composition
r--------------------T--------------------1
I Control Section I Entry Point(s) I
~--------------------i--------------------1
I BAKT BAKT I
I BLK I
I SRPRIZ SRPRIZ I
I TOPO TOPO I
I BIZX BIZX I
L---J

218

Segment 15: This segment is a portion of
phase 20. It contains full register
assignment subroutines and the utility sub
routines used by them. Segment 15 is
executed in both the intermediate-optimized
and complete-optimized paths through phase
20. In the intermediate-optimized path,
segment 15 is overlaid by segment 16.
During complete-optirrdzation, segment 15
overlays segment 12 after all loops have
been text-optimized and is overlaid by
segment 16 after all loops have undergone
full register assignment. The origin of
segment 15 is immediately after segment 9.
The composition of segment 15 is illustrat
ed in Table 51.

Table 51. Segment-15 Composition
r--------------------T--------------------1
I control Section I Entry Point(s) I
~--------------------i--------------------~

REGAS REGAS
REG
PRO Pl PROPl
BKP
LOC
FWD PAS
FWP
BKPAS
GTBASE
ALLCOR
STX
GLOBAS
FCLTSO
STX TR
GLS
MRCLEN
CXIIY.tA.G
FWDPSl
HI LOWS
SETUP
GLOBSl
ACCEPT
DISC HK
SEARCH
FREE
SHARE
TRNSFM
SE'l'REG
RE LC OR
PRELUD
BKD~iP

FWDPAS

BKPAS
GT BASE
ALLCOR

GLOBAS
FCLTSO
STXTR

For MRCLEN and the
remaining control
sections, the con
trol section names
and entry point
names are the same.

L---
Segment 16: This segment is a portion of
phase 20. It consists of tne subroutines
that 1) calculate the size of each text
block and 2) determine which text blocks
can be branched to via RX-format oranch
instructions. Segment 17 is executed in
both the intermediate-optiroized and
complete-optimized paths. Segment 16 over
lays segment 15 after full register assign
ment is completed. Segment 16 is not
overlaid within phase 20. The origin of
segment 16 is irr~ediately after segment 9.
The composition of segment 16 is illustrat
ed in Table 52.

Table 52. Segment-16 Composition
r--------------------T--------------------1
I control Section I Entry Point(s) I
~--------------------~--------------------1
I SEG4 SEG4 I
I BLS BLS I
I LYT LYT I
I BLSDTA I
I BS TRIP I
L---J

Segment 17: This segment is phase 30. The
origin of segment 17 is immediately after
segment 6. Segment 17 overlays segment 8,
if syntactical errors are encountered dur
ing the processing of phases 10 and 15. If
the errors detected by these phases are not
serious enough to cause deletion of the
compilation, segment 17, after its process
ing is completed, is overlaid by segment 9.
The composition of segment 17 is illustrat
ed in Table 53.

Table 53. Segment-17 Composition
r--------------------T-------~------------1

I Control Section I Entry Points(s) I
~--------------------~--------------------1
I IEKP30 IEKP30 I
I MSGWRT MSGWRT I
L---J

Segment 18: This segment is a portion of
phase 25. It contains a nuwher of subrou
tines that are employed by both the initial
text information construction and the text
conversion portions of phase 25 Csee Charts
21 and 22). The origin of segment 18 is
immediately after segment 5. Segment 18
overlays segment 6. The composition of
segment 18 is illustrated in Table 54.

Table 54. Segment-18 Composition
r--------------------T--------------------1
I Control Section I Entry Points(s) I
~--------------------i--------------------1

FAZ25 I
BXHCOM I
PRO LOG
DCLIST
LISTER
END
LABEL
IEKTLOAD

I NI TIA
PACK.ER
EPILOG

PRO LOG
DC LIST
LISTER
END
LABEL
ESD
TXT
RLD
IEND
IN IT IA
PACKER
EPILOG

I
I
I
I
I
I
I
I
I
I
I
I

$ENrAB I
L--------~--------------------------------J

Segment 19: This segment is a portion of
phase 25. It contains most of the subrou
tines that perform initial text informati0n
construction (see Chart 21.) The origin of
segment 19 is immediately after segment 18.
Segment 19 is overlaid by segment 20. The
composition of segment 19 is illustrated in
Table 55.

Table 55. Segment-19 Composition
r--------------------T--------------------1
I Control Section I Entry Point(s) I
~--------------------i--------------------1
I NADOUT For this segment, I
I SUBR the control section I
I ATTACH names and entry I
I FORMAT point names are tne I
I IN IT IL same. I
I LYTl I
I DATO UT I
I NLIST I
L---J

Appendix G: Compiler Structure 219

Seqment 20: This segment is a portion of
phase 25. It contains the subroutines that
perform text conversion (see Chart 22).
The origin of segment 20 is immediately
after segment 18. Segment 20 overlays
segment 19. The composition of segment 20
is illustrated in Table 56.

(·

Table 56. Segment-20 Composition
r--------------------T--------------------1
I Control Section I Entry Points(s) I
~--------------------L--------------------~

MANGN2
DB LG EN
IOSUB
LBITTF
BR COMB
FLTGEN
DIMGEN
TSTSET
NTFXGN
RETURN
DIVGEN
.MAINGN
CGEN
STRGEN
SHFT2
IOSUB2
CALLER
I EK WAG
TENTXT

MANGN2
DB LG EN
IOSUB
LBITTF
BRCOMB
FLTGEN
DIMGEN
TS TS ET
NTFXGN
RETURN
DIVGEN
MAINGN

For STRGEN and the
remainder of this
segment, the control
section names and
entry point names
are the same.

___ J

(Continued)

220

Table 56. Segment-20 Composition (Cont.)
r--------------------T--------------------1
I Control Section I Entry Points(s) I
~--------------------L--------------------1

LDADDR
BR COMP
STOPPR
BRLGL
BRANCH
BTBF
LGLNOT
LDBGEN
ENTRY
SIGNGN
ABS GEN
GOTOKK
LSTGEN
SUBGEN
.MXMNGN
LOGCL
FNCALL
CMPLGN
ADMDGN
NDORGN
MOD24
BITNFP
SHFTRL
PLSGEN
MINUS
INTMPY
UNRGEN
MODGEN

L---J

,

The messages produced by the compiler
are explained in the publication IBM
System/360 Operating System: FORTRAN IV
Programmer's Guide. Each message is iden
tified by an associated number. The fol
lowing table associates a message number
with the phase and subroutine in which the
corresponding message is generated.

As part of its processing of errors,
whenever the compiler encounters an error
that is serious enough to cause deletion of
a compilation, it prints out a value, ~,
for the PHASE SWITCH <refer to Appendix c

r---------T----------------T--------------1
I !Routine in whichlPhase in whichl
I Message !message number jrnessage numberf
I number lis generated jis generated I
·---------+----------------+--------------~
I IEK002I I XCLASS I
·---------+----------------i
I IEK003I I PERLOG I
·---------+----------------i
I IEK004I I PERLOG I
·---------+----------------1
I IEKOOSI I RTPRQT I
·---------+----------------i
I IEK006I I LABTLU I
·---------+----------------1
I IEK007I I MINSLS I
~---------+----------------1
I IEK008I I LITCON I
·---------+----------------i
I IEK009I I LITCON I
·---------+----------------i
I IEKOlOI I LITCON I
·---------t----------------1 PHASE 10
I IEKOllI I CSORN I
~---------+----------------i
I IEK012I I CSORN I
·---------+----------------i
I IEK013I I PUTX I
·---------+----------------i
I IEK014I I INTCON I
·---------+----------------i
I IEK016I I XGO I
·---------+----------------i
I IEK017I I XGO I
·---------+----------------i
I IEK018I I XGO I
·---------+----------------i
I IEK019I I XGO I
·---------+----------------i
I IEK020I I XGO I
·---------+----------------i
I IEK021I I XGO I
·---------+----------------i
I IEK022I I XGO I
L---------i----------------i--------------J

APPENDIX H: DIAGNOSTIC MESSAGES

of the above referenced publication). This
value is in hexadecimal and indicates which
phase of the compiler was in control when
the error occurred. The value for ~ may be
any one of the following:

m Phase
1 Phase 10
2 Phase 15 (STALL)
4 Phase 15 CPHAZ15)
8 Phase 15 (CORAL)

10 Phase 20
20 Phase 25
40 Phase 30

r---------y----------------y--------------1
I IEK027I I XASGN I
·---------+--~-------------i
I IEK028I I XASGN I
r---------+----------------i
I IEK029I I RTPRQT I
·---------+----------------i
I IEK030I I XDO I
·---------+----------------i
I IEK031I I CDOPAR I
·---------+----------------i
I IEK032I I XARITH I
·---------+----------------i
I IEK033I I XARITH I
·---------+----------------i
I IEK034I I DSPTCH I
·---------+----------------i
I IEK036I I DSPTCH I
~---------+----------------i
I IEK037I I XASF I
·---------+----------------i
I IEK040I I PERLOG I
·---------t----------------i PHASE 10
I IEK041I I PERLOG I
·---------t----------------i
I IEK043I I COMAST I
·---------+----------------i
I IEK044I I COMAST I
·---------+----------------i
I IEK045I I COMAST I
·---------+----------------i
I IEK046I I XDIM I
·---------+----------------i
I IEK047I I COMA.ST I
·---------+----------------i
I IEK048I I XARITH I
·---------+----------------i
I IEK049I I LITCON I
·---------+----------------i
I IEKOSOI I RPTRQT I
·---------+----------------i
I IEK051I I RPTRQT I
·---------t----------------i
I IEK052I I DSPTCH I I L---------i ________________ i ______________ J

Appendix H: Diagnostic Messages 221

r---------T----------------7--------------1
I IEK053I I GRPKEQ I I
~---------+----------------1 I
I IEK054I I GRPKEQ I I
~---------+----------------~ I
I IEK055I I GRPKEQ I
~---------+----------------~
I IEK057I I XSUBPG I
~---------+----------------1
I IEK058I I XSUBPG I
~---------+----------------1
I IEK059I I XSUBPG I
~---------+----------------1
I IEK063I I XDATA I
~---------+----------------1
I IEK064I I XNMLST I
~---------+----------------~
I IEK065I I XNMLST I
~---------+----------------1
I IEK066I I XNMLST I
~---------+----------------1
I IEK067I I XNMLST I
~---------+----------------1
I IEK068I I XEQUI I
~---------+----------------1
I IEK069I I XCOMON I
~---------+----------------~
I IEK070I I XEQUI I
~---------+----------------1
I IEK071I I XEQUI I
~---------+----------------1
I IEK072I I XEQUI I
~---------t----------------1 PHASE 10
I IEK073I I XEQUI I
~---------+----------------1
I IEK074I I XDIM I
~---------+----------------1
I IEK075I I XCOMON I
~---------+----------------1
I IEK076I I XARITH I
~---------+----------------1
I IEK077I I XIMPC I
~---------+----------------1
I IEK078I I XIMPC I
~---------+----------------1
I IEK079I I XIMPC I
~---------+----------------1
I IEK080I I XIMPC I
~---------+----------------1
I IEK081I I XIMPC I
~---------+----------------1
I IEK082I I XIMPC I
~---------+----------------1
I IEK083I I XIMPC I
~---------+----------------1
I IEK084I I XH1PC I
~---------+----------------1
I IEK085I I XIMPC I
~---------+----------------1
I IEK086I I XCOMON I
~---------+----------------1
I IEK087I I XCOMON I
~---------+----------------1
I IEK090I I XEXT I
~---------+----------------1
I IEK091I I XEXT I
L---------i----------------i--------------J

222

r---------T----------------T--------------1
I IEK093I I XTYPE I
~---------+----------------1
I IEK094I I XTYPE I
~---------+----------------1
I IEK095I I XTYPE I
~---------+----------------1
I IEK096I I XTYPE I
~---------+----------------1
I IEK101I I XDO I
~---------+----------------1
I IEK102I I XBCKRW I
~---------+----------------1
1 IEK103I I XBCKRW I
~---------+----------------1
I IEK104I I XBCKRW I
~---------+----------------1
I IEK105I I XCONT I
~---------+----------------1
I IEK106I I XCONT I
~---------+----------------1
I IEK107I I XSTOP I
~---------+----------------1
I IEK109I I XPUSE I
~---------+----------------~
I IEKllOI I XPUSE I
~---------+----------------1
I IEK111I I XPUSE I
~---------+----------------1
I IEK112I I XDATA, SYMTLU,I
I I XPUSE, LABTLU I
~---------+----------------1
I IEK113I I XRETN I PHASE 10
~---------+----------------1
I IEK115I I XRETN I
~---------+----------------1
I IEK116I I CDOPAR I
~---------+----------------1
I IEK117I I XBLOK I
~---------+----------------1
I IEK120I I XBLOK I
~---------+----------------1
I IEK121I I XDATA I
~---------+----------------1
I IEK122I I XDATA I
~---------+----------------1
I IEK123I I XDATA I
~---------+----------------1
I IEK124I I XDATA I
~---------+----------------1
I IEK125I I XDATA I
~---------+----------------1
I IEK126I I XDATA I
~---------+----------------1
I IEK127I I XDATA I
~---------+----------------1
I IEK128I I XDATA I
~---------+----------------1
I IEK129I I XDATA I
~---------+----------------1
I IEK130I I XDATA I
~---------+----------------1
I IEK132I I XDATA I
~---------+----------------1
I IEK133I I XDO I
~---------+----------------1
I IEK134I I XDO I I
L---------i----------------i--------------J

r---------y----------------T--------------1
I IEK135I I CDOPAR I
t---------+----------------i
I IEK136I I XDO I
t---------+----------------i
I IEK137I I XDO I
·---------+----------------i
I IEK138I I XDO I
t---------+----------------1
I IEK139I I XIF, XIMPC, I
I I XTYPE, XDIM, I
I I XCOMON, XEQUI I
·---------+----------------i
I IEK140I I XIF I
t---------+----------------1
I IEK141I I XFMT I
t---------+----------------i
I IEK142I I XASF I
·---------+----------------i
I IEK143I I XASF I
t---------+----------------i
I IEK144I I XASF I
t---------+----------------i
I IEK145I I XASF I

t---------+----------------i
I IEK146I I XASF I
t---------+----------------i
I IEK147I I XASF I
·---------+----------------i
I IEK149I I XDIM I
t---------+----------------i
I IEKlSOI I XDIM I
·---------+----------------i
I IEK151I I XDIM I
t---------f----------------i PHASE 10
I IEK152I I XSUBPG I
·---------+----------------i
I IEK156I I XIOOP I
t---------+----------------i
I IEK157I I XARITH I
t---------+----------------1
I IEK158I I XIMPD I
·---------+----------------i
I IEK159I I XFMT I
t---------+----------------i
I IEK160I I XIOOP I
t---------+----------------i
I IEK161I I XIOOP I
t---------+----------------1
I IEK162I I XIOOP I
·---------+----------------i
I IEK163I I XIMPD I
·---------+----------------i
I IEK1641 I XIOOP I
t---------+----------------i
I IEK165I I XIOOP I
·---------+----------------i
I IEK166I I XIOOP I
·---------+---~------------i
I IEK167I I XCLASS I
t---------+----------------i
I IEK168I I XSUBPG I
·---------+--------~--~----i
I IEK176I I XIMPD I
·---------+----------------i
I IEK192I I XGO, XFMT I

L---------i----------------i--------------J

r---------T----------------T--------------1
I IEK193I I XCLASS I
t---------+----------------i
I IEK194I I XTYPE I
·---------+----------------1
I IEK195I I XDATA I
t---------+----------------1
I IEK197I I XSTOP I
t---------+----------------i
I IEK199I I XSUBPG I
·---------+----------------i
I IEK200I I XDIM I
t---------+----------------1 PHASE 10
I IEK201I I RTPRQT I
·---------+----------------i
I IEK222I I LITCON I
·---------+----------------1
I IEK224I I XCLASS I

t---------+----------------i
I IEK225I I DSPTCH I
·---------+-~--------------i
I IEK226I I COMPAT I
t---------+----------------i
I IEK229I I XASF2 I
·---------+----------------+--------------i
I IEK302I I EQU I
·---------+----------------i
I IEK304I I EQU I
t---------+----------------i
I IEK305I I COMN I
·---------+----------------i
I IEK306I 1 EQU I
·---------+----------------1
I IEK307I I TESTWD I
·---------+----------------i
I IEK308I I EQU I
·---------+----------------i
I IEK310I I EQU I
t---------+----------------i
I IEK312I I EQU I
·---------+----------------i
I IEK314I I TESTBN I
·---------+----------------i
I IEK315I I EQU I
t---------+----------------i
I IEK318I I NDATA I
·---------+----------------1
I IEK319I I NDATA I
·---------+----------------i
I IEK322I I TESTBN I
·---------+----------------i
I IEK323I I COMN I
·---------+----------------i
I IEK332I I LABSCN I
t---------+----------------1
I IEK334I I COMN I
·---------+--~-------------i
I IEK350I I NDATA I
t---------+------~---------i
I IEK352I I NDATA I
·---------+----------------i
I IEK353I I EXTRNL .I
t---------+----------------i
I IEK356I I COMN I

PHASE 15
(STALL and
CORAL)

L---------i----------------i--------------

Appendix H: Diagnostic Messages 223

r---------T----------------T--------------1
I IEK500I I FORMAT I
~---------+----------------i
I IEK501I I EXPON I
~---------+----------------i
I IEK502I I EXPON I
~---------+----------------i
I IEK503I I BLTNFN I
~---------+----------------i
I IEK505I I PHAZ13 I
~---------+----------------i
I IEK506I I ALTRAN I
~---------+----------------i
I IEK507I I BLTNFN I
~---------+----------------i
I IEK508I I BLTNFN I
~---------+----------------i
I IEK509I I PHAZ15 I
~---------+----------------i
I IEK510I I ANDOR I
~---------+----------------i
I IEK511I I NOT I
~---------+----------------i
I IEK512I I FINISH I
~---------+----------------i
I IEK515I I RELOPS I
~---------+----------------i
I IEK520I I ALTRAN I
~---------+----------------i
I IEK521I I ALTRAN I PHASE 15
~---------t----------------i (PHAZ15)
I IEK522I I ALTRAN I
~---------+----------------i
I IEK523I I ALTRAN I
~---------+----------------i
I IEK524I I ALTRAN I
~---------+----------------i
I IEK525I I ALTRAN I
~---------+----------------i
I IEK526I I RELOPS I
~---------+----------------i
I IEK527I I ANDOR I
~---------+----------------i
I IEK528I I BLTNFN I
~---------+----------------i
I IEK529I I XPARAM I
~---------+----------------i
I IEK530I I SUBADD I
~---------+----------------i
I IEK531I I ALTRAN I
~---------+----------------i
I IEK541I I DFUNCT I
~---------+----------------i
I IEK542I I ALTRAN I
~---------+----------------i
I IEK550I I ALTRAN, XPARM I
L---------i----------------~--------------J

224

r---------T----------------T--------------1
I IEK555I I GENER, GMATI
~---------+----------------i
I IEK560I I GETEXT I
~---------+----------------i
I IEK573I I GENER, TXTLAB,I
I I TXTREG I
~---------+----------------i
I IEK580I I ALTRAN I PHASE 15
~---------t----------------i (PHAZ15)
I IEK581I I SUBMLT I
~---------+----------------i
I IEK583I I TXTREG I
~---------+----------------i
I IEK584I I MATE I
~---------+----------------i
I IEK585I I FINISH I
~---------+----------------+--------------i
I IEK600I I TOPO I
~---------+----------------i
I IEK610I I TOPO I
~---------+----------------i
I IEK631I I GETDIK I
~---------+----------------i
I IEK640I I GETSPC I
~---------t----------------i PHASE 20
I IEK650I I TOPO I
~---------+----------------i
I IEK66DI I TOPO I
~---------+----------------i
I IEK670I I BAKT I
~---------+----------------i
I IEK671I I BIZX I
~---------+----------------i
I IEK680I I RELCOR I
~---------+----------------+--------------i
I IEK710I I FORMAT I
~---------+----------------i
I IEK720I I FORMAT I
~---------+----------------i
I IEK730I I FORMAT I
~---------+----------------i
I IEK740I I FORMAT I
~---------t----------------i PHASE 25
I IEK750I I FORMAT I
~---------+----------------i
I IEK760I I FORMAT I
~---------+----------------i
I IEK770I I FORMAT I
~---------+----------------i
I IEK780I I NADOUT I
~---------+----------------+--------------i
I IEK999I I IEKP30 I I
~---------t----------------i PHASE 30 I
I IEKOOlI I IEKP30 I I
L _________ i ________________ i ______________ J

Included in the FORTRAN IV CH> compiler
are two optional facilities which provide
output that can be used to analyze compiler
operation and to diagnose compiler malfunc
tion. These two facilities are TRACE and
DUMP.

TRACE

The TRACE facility can be used to trace
the creation of and the modifications made
to the information table and intermediate
text, and to provide various other types of
diagnostic information. This facility is
activated by the inclusion of the TRACE
keyword parameter in the PARM field of the
EXEC statement used to invoke the compiler.
The format of this parameter is

TRACE=value

where:
value may be either: Cl) any one of
the basic keyword values appearing in
Table 57, or (2) any value that is
formed by adding two or more of these
basic keyword values.

The type of diagnostic information to be
provided by the compiler for a given compi
lation or batch of compilations is deter
mined according to the value specified for
the TRACE keyword. Table 57 defines the
type of diagnostic information produced for
each of the basic keyword values for the
TRACE keyword. If one of these values is
specified, the corresponding information is
provided by the compiler. For example, if
the basic keyword value of 4 is specified,
the compiler generates PHAZ15 diagnostic
information.

If the value given to the TRACE keyword
is the sum of two or more basic keyword
values, then the compiler will produce the
type of information that corresponds to
each basic keyword value that was added to
form that value. For example, if the value
12 (the sum of basic keyword values 4 and
8) is specified, the compiler will generate
both PHAZ15 diagnostic information and
CORAL diagnostic information.

APPENDIX I: THE TRACE AND DUMP FACILITIES

Table 57. Basic TRACE Keyword Values ano
Output Produced

r-------T---------------------------------1
IBasic I I
IKeywordlOutput Produced I
!Values I I
~-------+---------------------------------~
I 1 !Phase 10 diagnostic information I
~-------+---------------------------------~
I 2 !Printout of the information tablel
I las it appears after the execution!
I lof STALL in Phase 15 I
~-------+---------------------------------~
I 4 IPHAZ15 diagnostic information I
~-------+---------------------------------~
I 8 !CORAL diagnostic information I
~-------+---------------------------------~
I 16 !Phase 20 diagnostic information I
~-------+---------------------------------~
I 32 !Phase 25 diagnostic information I
~-------+---------------------------------~
I 64 Printout of:
I 1. Intermediate text and infor-
1 mation table as they appear
I after the execution of Pnase
I 10.
I 2. Information table as it
I appears after the execution
I of STAL.L in PhasE 15.
I 3. Intermediate text and infor-
1 mation table as they appear
1 after the execution of
I PHAZ15 in Phase 15.
I 4. Information table as it
I appears after the executionl
I of CORAL in Phase 15. I
I 5. Intermediate text as itl
I appears after the execution!
I of Phase 20. I
·-------+---------------------------------1
I 128 !Block size information for eachl
I !text block (Phase 20) I
~-------+---------------------------------1
I 256 !Diagnostic information from thef
I I register assignment routines I
I I <Phase 20) I
·-------+---------------------------------1
I 512 !Diagnostic information from thef
I !text optimization routines CPhasel
I 120> I
·-------+---------------------------------~
I 1024 !Busy-on-exit information for eachl
I I text block (Phase 20) I
·-------+---------------------------------~
I 2048 !Additional diagnostic information!
I !from the register assignment rou-1
I I tines C Phase 20 > I
~-------+---------------------------------~
I 4096 !Printout of intermediate text andl
I !information table before and!
I I after the execution of Phase 20 I
L-------~---------------------------------J

Appendix I: The Trace and Dump Facilities 225

DUMP

The dump facility, if activated, will
cause abnormal termination of compiler
processing if a program interrupt occurs
during compilation. It will also cause the
main storage areas occupied by the compil
er, as well as any associated data and
system control blocks to be recorded on an
external storage device. The dump facility
is activated by including in the compile
step of the job: Cl) the word DUMP as a

226

parameter in the PARM field of the EXEC
statement, and (2) a SYSABEND data defini
tion CDD) statement.

Note: If the DUMP parameter is specified
but the SYSABEND DD statement is omitted,
abnormal termination, accompauied i.Jy an
indicative dump, will occur if a program
interrupt is encountered. If a program
interrupt occurs and the DUMP parameter is
not specified, the current compilation will
be deleted and the next will be attempted.

Absolute constant
definition of 56

Adcon table
generation of ESD. TXT. and RLD records

for 65
in relative address assignment 35
reserving entries within 62

Adcon variable 38
Address assignment

Csee relative address assignment)
Address constant

in relative address assignment 35
Adjective code

in intermediate text 144-145
Allocation

of storage for compiler 15-17
Arithmetic expressions

reordering of 26-27
special processing of 27-29

Arithmetic subroutines 21-22
Arithmetic translation 25-29
Arithmetic type interruptions

object-time processing of 188
Array I/O list items

object-time processing of 181-184
Arrays

address computation for elements of 213
as parameters 213
relative address assignment for 36-38
statement number/array table entry for

130-131
Assignment

of registers 40-46,60-61
of relative addresses 35-38

Back dominator
definition of 48
determination of 49-50

BACKSPACE statement
object-time implementation of

187-188,194
Back target

definition of 48
determination of 50-51.

Backward connection information
gathering of 33-34

Backward movement
example of 175
processing performed during 57-59

Base value, for equivalence group
definition of 37

Base variable 38
Basic direct access method

object-time use of 179-180
Basic register.assignment 40-43
Basic sequential access method

compile-time use of 17
object-time use of 179-180

BDAM
(see basic direct access method)

Bit strip arrays
composition of 67

format of 165-171
use of 67-68

Bit tables, text optimization 137-138
Branch table

chaining in 120,124
contents of 133
entry formats 133-135
modifications to 134-135

Branching optimization 46-47,61
BSAM

(see basic sequential access method)
BSP macro-instruction

object-time use of 195
Buffers

object-time use of 191-194,196-199
Busy-on-exit information 51-53

CALL statements
generation of calling sequences for 67

Chains
construction of 120-121
definition of 120
in information table 120
in intermediate text 143

CHECH macro-instruction
object-time use of 193,195,199

Classification
process of 117

Classification tables
format of 117-120
use of 117

CLOSE macro-instruction
object-time use of 194

CMAJOR
construction of 33-34

Code generation 67-69
Corrunon blocks

common table entries for 131
Common expression elimination

example of 173
processing performed during 55-56

Common table
chaining in 120,122-123
contents of 131
entry formats 131-132
modifications to 131-132

Corrununication table
format of 118
use of 117

Commutative operations
processing of 28

Compilation
deletion of 18

Compiler
initialization of 14
input/output data flow of 11-12
organization of 11-13
purpose of 11
relation to operating system 11
structure 12,214-220
termination of processing 18

Index 227

Literal data
literal table entry for 133

Literal table
chaining in 120,123
contents of 133
entry formats 133
modifications to 133

LMVF
(see loop composite matrixes)

LMVS
(see loop composite matrices)

LMVX
(see loop composite matrixes

Local assignment
in full register assignment 43-45

Location counter
use in building object module 61
use in assigning relative addresses 35

Logical expressions
processing of 29

Loop composite matrixes 54-55
Loop numbers

assigning of 51
Loops

identification of 51
ordering of 51
selection of 53-54

Main program entry coding 64
Mask, program interruption

object-time setting of 188
MBM bit table 137-138
MBR bit table 137-138
Message pointer table

use of 70
format of 141

MFM bit table 137-138
Mode/type field

in dictionary 125
in intermediate text 144,154,155

Movement
forward

(see forward movement)
backward

(see backward movement)
MSM bit table 137-138
MVD table 30,51-53
MVF field 29-30
MVS field 29-30
MVU bit table 137-138
MVV bit table 137-138
MVW bit table 137-138
MVX field 29-31,51-53
MXM bit table 137-138

Namelist dictionaries
construction of 63-64
format of entries in 140-141
object-time use of 187

Namelist text
conversion of 63-64
example of 148

Negative address constant 37
Non-optimized path

processing performed within 38-39
Normal text

example of 146

230

Object module 61
Object program

(see object module)
Object-time I/O errors

processing of 194,199,207
Object-time library subprograms

(see library subprograms>
Object-time namelist dictionaries

<see namelist dictionaries>
Offset 23,24
Opening

of data control blocks at object-time
192-193,197-198

OPEN macro-instruction
object-time use of 181,193

Operands
source statement scan of 20-22

Operators
source statement scan of 20-22

Overlay structure
of compiler 214-220

Parameter processing 14
PAUSE statement

object-time implementation of 188
Preparatory subroutine 19-20
Primary path

definition of 50
Prologue 65-66
Pushdown table 26-27

READ macro-instruction
object-time use of 181-185,192-193,198

READ statement, direct access
object-time implementation of

179-186,197-199,209
READ statement, sequential access

object-time implementation of
179-187,192-193,206

Reduction, strength
(see strength reduction)

Register array 67-68
Register assignment 40-46,60-61
Register assignment tables 139-140
Relative address assignment

for arrays 36
for common variables and arrays 37
for constants 36
for equivalence variables and arrays not

in common 36-37
for Hollerith character strings 36
for variables 36
for variables and arrays equivalenced

into conunon 37-38
Relocation dictionary 70
Reordering of intermediate text

for arithmetic expressions 26-27
Reserved register addresses 47
Reserved registers 47
RETURN statement

processing of 69
REWIND statement

object-time implementation of 187,194
RLD

(see relocation dictionary)
RLD record

contents of 70

RMAJOR
construction of 31-32

Scan
of source statements 20-22

Sequential access I/O data
management interface

(see IHCFIOSH library subprogram)
SF

Csee statement function>
SF skeleton text

construction of 21-22
example of 149

Simple store
definition of 58

Simple store elimination
example of 176
processing performed during 58

Skeleton arrays ·
composition of 67
format of 165-171
use of 67-69

source module listing 19
Source statement scan 20-22
Span

definition of 213
SPIE macro-instruction

object-time use of 188
Standard text

examples of 156-164
format of 154-155

Statement functions
processing of 21-22,29
text for 149

Statement number chain
reordering of 32

Statement number/array table
chaining in 120,122
contents of 128
entry formats 128-131
modifications to 129-130

Statement numbers
assigning address constants to 66
reserving adcon table space for 62
statement number/array table entries

for 128-130
text for 151-154

Statement number text
format of 151-154
construction of 25

statement processing, compile-time
arithmetic 21,25-29,77
CALL 21,22,67,77
COMMON 20, 23, 37-38,, 77
DATA 34-35,38,65,77,147,150
DIMENSION 20,77
DO 77,177
END 69,77
ENTRY 66-67,77
EQUIVALENCE 20,,24,36-38, 77
EXTERNAL 20,77
FORMAT 63,77,149
GO TO 62~65,69,77
IMPLICIT 20
keyword 20-21,77
NAMELIST 63-64, 77., 148
READ/WRITE 20,21,67,77

RETURN 69,77
statement function 21-22,, 29, 77,149

Statement processing, object-time
BACKSPACE 187-188,194
DEFINE FILE 197,208
END FILE 187,194
FIND 180-181., 198-199
FORMAT 181-183
PAUSE 188
READ, direct access 179-186,197-199,209
READ, sequential access not using

NAMELIST 179-186,192-193,206
READ, sequential access using NAMELIST·

187,192-193
REWIND 187,194
STOP 188
WRITE, direct access

179-186,197-199,209
WRITE, sequential access not using

NAMELIST 179-186,192-193,206
WRITE, sequential access using NAMELIST

187,192-193
Status

in code generation 67-68
in intermediate text 155-156
in register assignment 40

STOP statement
object-time implementation of 188

Storage allocation
for compiler 15-17

Storage map
production of 38

Stored constant
definition of 56

Strength reduction
example of 177-178
processing performed during 59-60

Structural determination 48-51
Structure

(see overlay structure)
Structured source listing 19-20,53
Subprogram main entry coding 64
Subprogram references

processing of 28-29
Subprogram secondary entry coding 64-65
Subprogram table

use of 28-29,135
format of 136

Subscript expressions
computation of 213

Subscripts
processing of 28

Substitute ddnames 14

Table building
for full register assignment 44-45

Tables
adcon 35,62,65,70
branch 133-135
classification 117,119-120
common 131-132
communication 117-118
diagnostic.message 141
dictionary 124-128
error 141
information 120-135
keyword 117,119-120
keyword pointer 117,119

Index 231

literal 133
message pointer 141
register assignment 139-140
statement number/array 128-131
subprogram 28-29,135-136
text optimization bit 137-138
unit assignment 190-191,196

Termination
of compiler processing 18
of load module execution 188

Text
(see intermediate text)

Text block
definition of 25

Text blocking 25
Text conversion 66-69
Text information

composition of 61
construction of 61-62

Text optimization
bit tables 137-138
examples of 173-178
processing performed during 55-60

Text updating
in full register assignment 46

Translation, arithmetic 25-29
Trace facility 225
TXT

Csee text information)
TXT records

contents of 61

232

Unary minuses
processing of 28

Unit assignment table
in IHCDIOSH 196
in IHCFIOSH 190-191

Unit blocks
in IHCDIOSH 194-196
in IHCFIOSH 189-190

Utility subroutines
of phase 10 22

Variables
dictionary entries for 124-126
point of definition for 43
relative address assignment for
reserving space in object module

WRITE macro-instruction

36-38
for 63

object-time use of 183,184,193,199
WRITE statement, direct access

object-time implementation of
179-186,197-199,209

WRITE statement, sequential access
object-time implementation of

179-187,192-193,206
Write-to-operator routines

in IHCFCOMH 188
WTO macro-instruction

object-time use of 188
WTOR macro-instruction

object-time use of 188

Y28-6642-0

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

. !

READER'S COMM~NTS

Title: IBM System/360 Operating System
FORTRAN IV (H)
Program Logic Manual

Is the material: Yes
Easy to Read?
Well organized?
Complete?
Well illustrated?
Accurate?
Suitable for its intended audience?

How did you use this publication?
As an introduction to the subject
Other~--------~-~~~-~~

Please check the items that describe your position:
_Customer personnel _Operator
_ IBM personnel _Programmer

No

_Manager _customer Engineer
_ Systems Analyst _Instructor

Form: Y28-6642-0

For additional knowledge
folc

_Sales Representative
_Systems Engineer
_Trainee

Other~~~~~~~

Please check specific criticism(s), give page number{s) ,and explain below:
__ Clarification on page { s)
_ Addition on page (s)
__ Deletion on page (s)
_ Error on page { s)

Explanation:

tole

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

/ Y28-6642-0

staple

fold

r--------------~---------------------------------1
I BUSINESS REPLY MAIL I
I NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I ._ ___ J

POSTAGE WILL BE PAID BY

IBM CORPORATION
P.O. BOX 390
POUGHKEEPSIE, N. Y. 12602

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS
DEPARTMENT D58

told

®

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[1JSA Only]

IBM World Trade Corporation
821 Unit'ed Nations Plaza, New York, New York 10017
[International]

Ste

r--------------------1
I FIRST CLASS I
I PERMIT NO. 81 I
I I
I POUGHKEEPSIE, N.Y. I
L--------------------J

111111

111111

111111

II II II

111111

111111

111111

I'd
11
::s
rt
('D
Qi

f

..... --.
::s ft
c::
(I) . .

sta1

Forward connection information
gathering of 32-33

Forward movement
example of 174
processing performed during 57

Forward target 54
FREEMAIN macro-instruction

object-time of 199
FREEPOOL macro-instruction

object-time use of 194
Full register assignment 43-46,60-61

GETMAIN macro-instruction
object-time use of 189,195

Global assignment
in full register assignment· 43-46,60-61

Head, for equivalence group
definition of 24

Hollerith character strings
relative address assignment for 36

IFUNTB
Csee subprogram table)

IHCDBUG library subprogram 179,200-201
IHCDIOSH library subprogram

buffering scheme of 196-197
communication with control program 197
file definition section of 197
file initialization section of 197-198
functions of 179
I/O error processing of 199,207
overall logic of 208-209
read section of 198-199
tables and blocks used in 194-196
termination section 199
unit assignment table 196
unit blocks of 194-196
write section of 199

IHCFCOMH library subprogram
closing section of 184
conversion routines of 189
device manipulation routines of 187-188
format scan of 181,183
functions of 179
generation of calling sequences to 67
I/O list section of 181-184
opening section of 181
read/write routines of 180-187
utility routines of 188
write-to-operator routines of 188

IHCFCVTH library subprogram 189
IHCFIOSH library subprogram

buffering scheme of 191
closing section of 194
communication with control program

191-192
device manipulation section of 194
error processing of 194
functions of 179
initialization section of 192-193
I/O error processing of 194
overall logic of 206
processing for 1403 printer 192-194
read section of 193
write section of 193
unit assignment table in 190-191
unit blocks in 189-190

IHCIBERB library subprogram 179,199
IHCNAMEL library subprogram 179,187
Information table

chains within 120-121
components 120
operation of chains within 121-124

Initialization Instructions 64-65
Initialization section

in IHCFIOSH 192-193
In-line routine references

processing of 28-29
Input/output buffers

(see buffers)
Input/output data sets

(see data sets>
Input/output list items

object-time processing of 181-184
Input/output requests

compile-time processing of 18
format of 17

Input/output statements
generation of calling sequences for 67
object-time implementation of 179-211

Intermediate-optimized path
processing performed within 39-40

Intermediate text
chaining in 143
types of 143., 150
entry formats 144,150-155
examples of 146-149,157-164

Internal statement number
compiler assigning of 20

Interruptions, arithmetic
object-time processing of 188

I/O library subprograms
Csee library subprograms>

I/O list items
(see input/output list items>

I/O recovery procedure
object-time 207

I/O requests
Csee input/output requests)

I/O statements
(see input/output statements)

!SN
(see internal statement number)

Keyword pointer table
format of 119
use of 117

Keyword subroutines 20-21
Keyword table

format of 119-120
use of 117

Library subprograms
IHCDBUG 200-201
IHCDIOSH 194-199
IHCFCOMH 179-188
IHCFCVTH 189
IHCFIOSH 189-194
IHCIBERH 199
IHCNAMEL 187

List items
Csee input/output list items>

Literal constant
literal table entry for 133

Index 229

Litera1 data
literal table entry for 133

Literal table
chaining in 120,123
contents of 133
entry formats 133
modifications to 133

LMVF
(see loop composite matrixes)

LMVS
<see loop composite matrices)

LMVX
(see loop composite matrixes

Local as$ignment
in full register assignment 43-45

Location counter
use in building object module 61
use in assigning relative addresses 35

Logical expressions
processing of 29

Loop composite matrixes 54-55
Loop numbers

assigning of 51
Loops

identification of 51
ordering of 51
selection of 53-54

Main program entry coding 64
Mask, program interruption

object-time setting of 188
MBM bit table 137-138
MBR bit table 137-138
Message pointer table

use of 70
format of 141

MFM bit table 137-138
Mode/type field

in dictionary 125
in intermediate text 144,154,155

Movement
forward

(see forward movement>
backward

(see backward movement)
MSM bit table 137-138
MVD table 30,51-53
MVF field 29-30
MVS field 29-30
MVU bit table 137-138
MVV bit table 137-138
MVW bit table 137-138
MVX field 29-31,51-53
MXM bit table 137-138

Namelist dictionaries
construction of 63-64
format of entries in 140-141
object-time use of 187

Namelist text
conversion of 63-64
example of 148

Negative address constant 37
Non-optimized path

processing performed within 38-39
Normal text

example of 146

230

Object module 61
Object program

(see object module)
Object-time I/O errors

processing of 194,199,207
Object-time library subprograms

(see library subprograms)
Object-time namelist dictionaries

Csee namelist dictionaries>
Offset 23,24
Opening

of data control blocks at object-time
192-193,197-198

OPEN macro-instruction
object-time use of 181,193

Operands
source statement scan of 20-22

Operators
source statement scan of 20-22

Overlay structure
of compiler 214-220

Parameter processing 14
PAUSE statement

object-time implementation of 188
Preparatory subroutine 19-20
Primary path

definition of 50
Prologue 65-66
Pushdown table 26-27

READ macro-instruction
object-time use of 181-185,192-193,198

READ statement, direct access
object-time implementation of

179-186,197-199,209
READ statement, sequential access

object-time implementation of
179-187.192-193,206

Reduction, strength
(see strength reduction)

Register array 67-68
Register assignment 40-46,60-61
Register assignment tables 139-140
Relative address assignment

for arrays 36
for common variables and arrays 37
for constants 36
for equivalence variables and arrays not

in common 36-37
for Hollerith character strings 36
for variables 36
for variables and arrays equivalenced

into common 37-38
Relocation dictionary 70
Reordering of intermediate text

for arithmetic expressions 26-27
Reserved register addresses 47
Reserved registers 47
RETURN statement

processing of 69
REWIND statement

object-time implementation of 187,194
RLD

<see relocation dictionary)
RLD record

contents of 70

Absolute constant
definition of 56

Adcon table
generation of ESD, TXT, and RLD records

for 65
in re1ative address assignment 35
reserving entries within 62

Adcon variable 38
Address assignment

(see relative address assignment)
Address constant

in relative address assignment 35
Adjective code

in intermediate text 144-145
Allocation

of storage for compiler 15-17
Arithmetic expressions

reordering of 26-27
special processing of 27-29

Arithmetic subroutines 21-22
Arithmetic translation 25-29
Arithmetic type interruptions

object-time processing of 188
Array I/O list items

object-time processing of 181-184
Arrays

address computation for elements of 213
as parameters 213
relative address assignment for 36-38
statement number/array table entry for

130-131
Assigrunent

of registers 40-46,60-61
of relative addresses 35-38

Back dominator
definition of 48
determination of 49-50

BACKSPACE statement
object-time implementation of

187-188,194
Back target

definition of 48
determination of 50-51.

Backward connection information
gathering of 33-34

Backward movement
example of 175
processing performed during 57-59

Base value, for equivalence group
definition of 37

Base variable 38
Basic direct access method

object-time use of 179-180
Basic register.assignment 40-43
Basic sequential access method

compile-time use of 17
object-time use of 179-180

BDAM
(see basic direct access method)

Bit strip arrays
composition of 67

format of 165-171
use of 67-68

Bit tables, text optimization 137-138
Branch table

chaining in 120,124
contents of 133
entry formats 133-135
modifications to 134-135

Branching optimization 46-47,61
BSAM

(see basic sequential access method)
BSP macro-instruction

object-time use of 195
Buffers

object-time use of 191-194,196-199
Busy-on-exit information 51-53

CALL statements
generation of calling sequences for 67

Chains
construction of 120-121
definition of 120
in information table 120
in intermediate text 143

CHECH macro-instruction
object-time use of 193,195,199

Classification
process of 117

Classification tables
format of 117-120
use of 117

CLOSE macro-instruction
object-time use of 194

CMAJOR
construction of 33-34

Code generation 67-69
Common blocks

common table entries for 131
Common expression elimination

example of 173
processing performed during 55-56

Common table
chaining in 120,122-123
contents of 131
entry formats 131-132
modifications to 131-132

Communication table
format of 118
use of 117

Commutative operations
processing of 28

Compilation
deletion of 18

Compiler
initialization of 14
input/output data flow of 11-12
organization of 11-13
purpose of 11
relation to operating system 11
structure 12,214-220
termination of processing 18

Index 227

Complete-optimized path
processing performed within 39-40

Complex expressions
processing of 28

Computed GO TO statements
compile-time processing of 62,66,69

Constants
absorption of 213
dictionary entries for 127-128
generation of TXT records for 62-63
relative address assignment for 36

Constant/variable usage information
gathering of 29-31

Control block, data
(see data control block}

Control block, data event
(see data event control block}

Control codes
(see format codes>

Conversion codes
(see format codes)

Conversion routines
in IHCFCOMH 189

Counter, location
(see location counter)

Data control block 190
Data control block skeleton section

in unit block 190
Data event control block 190
Data event control block skeleton section

in unit block 190
Data set reference numbers

object-time creation of unit blocks for
189,194

Data sets
object-time initialization of

192-193,197-198
Data text

DCB

example of 147
final processing of 65
format of 150
rechaining of 38
translation of 34-~5

(see data control block}
DCB skeleton section

(see data control block skeleton
section)

Ddnames, substitute 14
DECB

(see data event control block}
DECB skeleton section

(see data event control block skeleton
section)

Default values
object-time insertion of into DCB

skeletons 191
DEFINE FILE statement

object-time processing of 197,208
Definition point

for a variable '43
Depth number

determination of 50-51
Device manipulation

object-time routines for 187-188,195
Diagnostic messages 221-224
Diagnostic message tables 141

228

Dictionary
chaining in 120,121-122
contents of 124
entry formats 124-128
modification to 125-128

Dictionary entries
rechaining of 23

Dimension entry
in statement number/array table 130-131

Dimension factor
definition of 213

Direct access I/O data management
interface

(see IHCDIOSH library subprogram}
Directory array 67
Dispatcher subroutine 19
Displacement

in relative address assignment 35
Displacement field

in intermediate text 154
DSRN

(see data set reference numbers}
Dump facility 226

Elimination
of common expression

(see common expression elimination}
of simple stores

(see simple store elimination>
END statement

processing of 69
END FILE statement

object-time implementation 187,195
ENTRY statement

processing of 66-67
Epilogue 65-66
Equivalence groups

common table entries for 131-132
Equivalence head 24
Equivalence variables

common table entries for 132
Error level code 70-71
Error messages

generation of 70
Errors

object-time processing of 188,194,199
Error table

ESD

format of 141
use of 70
construction of 70

(see external symbol dictionary>
ESD record

contents of 70
External symbol dictionary 70

FIND statement
object-time processing of 179-180,198

Forcing strength 26-27
Format codes

control 181-183
conversion 181-183,189

FORMAT intermediate text
example of 149
object-time scan of translated form

181,183
translation of 63

